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Dear Cognitive Scientists, 

Welcome to London for the 39th Annual Conference of the Cognitive Science 
Society! Our meeting brings together some of the most innovative and exciting 
research in cognitive science. The program features exceptional plenary talks 
by three leading international experts: Richard Granger (Dartmouth), Ulrike Hahn 
(Birkbeck, University of London), and Richard Sutton (University of Alberta). It also 
includes an invited symposium aimed at showcasing the theme for this year: 
Computational Foundations of Cognition.  

CogSci 2017 received 1185 submissions, including 873 full papers, 259 member 
abstracts, 20 publication-based short papers, as well as 19 proposals for a 
symposium, 9 for a workshop, and 5 for a tutorial. After a rigorous review process, 
we selected 255 papers for oral presentation (29%), 418 papers for poster 
presentation (48%), 233 member abstracts for poster presentation, 15 
publication-based talks, 9 symposia, 7 workshops, and 3 tutorials. 

We hope that you enjoy the program this year and the global city of London, 
certainly the most vibrant and historically significant city in the United Kingdom. 
There are thousands of shops and restaurants near the conference venue and 
throughout the city. We encourage you to set aside the time to enjoy some of 
the many tourist attractions while you are here. 

 
Your Program Co-Chairs, 
 
Glenn Gunzelmann (U.S. Air Force Research Laboratory), 
Andrew Howes (University of Birmingham, UK),  
Thora Tenbrink (Bangor University, Wales, UK),  
Eddy Davelaar (Birkbeck, University of London, UK) 
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Anais Leroy (University of Nice Cote d’Azur) 
Tamar Malinovitch (Hebrew University of Jerusalem) 
Rui Meng (University of Wisconsin, Madison) 
Purav Patel (University of Minnesota) 
John Patterson (Binghamton University) 
Francisco Quiroga-Vergara (University College London) 
Hanane Ramzaoui (Cote d’Azur University) 
Gwendolyn Rehrig (Rutgers University) 
Megan Smith (University of California, Merced) 
Sean Snoddy (Binghamton University) 
Patrick Trettenbrein (University of Graz) 
Siqi Xiang (Beihang University) 
Amelia Yeo (University of Wisconsin, Madison) 
Qiong Zhang (Carnegie Mellon University) 
Mark Zrubka (Eotvos Lorand University) 
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Conference Awards 
Robert J. Glushko Dissertation Prizes 
The Cognitive Science Society and the Glushko-Samuelson Foundation award 
up to five outstanding dissertation prizes in cognitive science each year. The 
goals of these prizes are to increase the prominence of cognitive science and 
encourage students to engage in interdisciplinary efforts to understand minds 
and intelligent systems. The hope is that the prizes will recognize and honor 
young researchers conducting ground-breaking research in cognitive science. 
The eventual goal is to aid in efforts to bridge between the areas of cognitive 
science and create theories of general interest to the multiple fields concerned 
with scientifically understanding the nature of minds and intelligent systems. 
Promoting a unified cognitive science is consistent with the belief that 
understanding how minds work will require the synthesis of many different 
empirical methods, formal tools, and analytic theories. 2011 was the inaugural 
year of this prize, and a new competition is held annually. 
 
The 2017 recipients of the Robert J. Glushko Prizes for Outstanding Doctoral 
Dissertations / Theses in Cognitive Science are listed below. 
 
Alexandra Carstensen: “Universals and variation in language and thought: 
Concepts, communication, and semantic structure”, 2016 (University of 
California, Berkeley) 
 
Judith Ellen Fan: “Role of cognitive actions in learning”, 2016 (Princeton 
University) 
 
Julian Jara-Ettinger: “The inner life of goals: Costs, rewards, and commonsense 
psychology”, 2016 (MIT) 
 
Samuel Johnson: “Cognition as sense-making”, 2016 (Yale University) 
 
Dave Kleinschmidt: “Perception in a variable but structured world: The case of 
speech perception”, 2016 (University of Rochester) 
 
The Glushko Dissertation Prize Symposium showcases the award winning PhD 
research projects, moderated by Adele Goldberg (Princeton). 
 
Friday, 3:00PM-4:40PM (King Suite) 
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Marr Prize 
The Marr Prize, named in honor of the late David Marr, is awarded to the best 
student paper at the conference. All student first authors were eligible for the 
Marr Prize for the best student paper. The Marr Prize includes an honorarium of 
$1000 and is sponsored by The Cognitive Science Society. The winner of the 2017 
Marr Prize for the Best Student Paper is: 
 
Melody Dye, Petar Milin, Richard Futrell, & Michael Ramscar: 
Cute little puppies and nice cold beers: An information theoretic analysis of 
prenominal adjectives 
Thursday, 10:50-11:10, Linguistic Conventions (Blenheim) 
 

Computational Modeling Prizes 
Four prizes worth $1000 each are awarded for the best full paper submissions to 
CogSci 2017 that involve computational cognitive modeling. The four prizes 
represent the best modeling work in the areas of perception/action, language, 
higher-level cognition, and applied cognition. These prizes are sponsored by The 
Cognitive Science Society. The winners of the 2017 Computational Modeling 
Prizes are listed below. 
 
Perception & Action: 

Tianmin Shu, Yujia Peng, Lifeng Fan, Song-Chun Zhu, & Hongjing Lu: 
Inferring Human Interaction from Motion Trajectories in Aerial Videos 
Friday, 16:00-16:20, Interaction (Blenheim) 

 
Language: 

Peter Blouw & Chris Eliasmith: 
Inferential Role Semantics for Natural Language 
Thursday, 10:50-11:10, Semantics & Concepts (Buckingham) 

 
Higher-Level Cognition: 

Simon Stephan & Michael Waldman: 
Preemption in Singular Causation Judgments: A Computational Model 
Saturday, 15:00-15:20, Judgement (Windsor) 

 
Applied Cognition: 

Jane Wang, Zeb Kurth-Nelson, Hubert Soyer, Joel Leibo, Dhruva Tirumala, 
Remi Munos, Charles Blundell, Dharshan Kumaran, & Matt Botvinick: 

Learning to Reinforcement Learn 
Saturday, 10:30-10:50, Learning Mechanisms (Blenheim) 
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Student Travel Awards 
The Robert J. Glushko and Pamela Samuelson Foundation generously sponsored 
$10,000 for student travel awards. Travel awards have been provided to students 
whose submissions were accepted as full papers, received high rankings, and 
who indicated a need for travel funding. This year’s travel awards went to: 
 
Keith Ransom 
Ardavan Salehi Nobandegani 
Maurici López-Felip 
Christian Ramiro 
Katherine Adams 
Anita Slonimska 
Vencislav Popov 
Shari Liu 
Vasanth Sarathy 
Rachel Magid 
Matt Lou-Magnuson 
Elizaveta Konovalova 
Martin Schoemann 
Darren Frey 
Jasmeen Kanwal 
Yue Ji 
Tian Xu 
Francis Mollica 
Michael Tessler 
Dan Kim 
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Invited Presentations 

Rumelhart Prize Lecture 
Lila Gleitman, University of Pennsylvania 

Takes Two to Tango: The Linguistic Representation of Symmetry 

Friday, July 28, 17:10-18:10, King Suite 

 

Rumelhart Prize Symposium 
Symposium in honor of Lila Gleitman: 

Finding structure and meaning in language acquisition 

Panelists: 

 Elissa Newport, Georgetown University 

Cindy Fisher, University of Illinois 

John Trueswell, University of Pennsylvania 

Barbara Landau, Johns Hopkins University 

Friday, July 28, 10:30-12:10, King Suite 

 

Heineken Prize Lecture 
Elizabeth Spelke, Harvard University 

Core Knowledge and Composition 

Thursday, July 27, 17:10-18:10, King Suite 
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Thursday’s Keynote 
Richard Sutton, University of Alberta 

Reinforcement Theories of Learning and Thinking 

Thursday, July 27, 9:00-10:00, King Suite 

 

Friday’s Keynote 
Richard Granger, Dartmouth 

Principles of Brain Circuit Architectures, from Percept to Concept 

Friday, July 28, 9:00-10:00, King Suite 

 

Saturday’s Keynote 
Ulrike Hahn, Birkbeck, University of London 

Rationality and the Role of Limited Experience 

Saturday, July 29, 9:00-10:00, King Suite 

 

Invited Symposium 
Computational Foundations 

Panelists: 

 Peter Dayan, University College London 

Karl Friston, University College London 

Matt Botvinick, DeepMind, University College London 

Howard Bowman, University of Kent 

Ulrike Hahn, Birkbeck, University of London 

Thursday, July 27, 10:30-12:10, King Suite 
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Tutorial: Recent Advances in Deep Learning 
 

Matthew Botvinick (botvinick@google.com) 
DeepMind, London, U.K. 

Gatsby Computational Neuroscience Unit, University College London 
 

Peter Battaglia (peterbattaglia@google.com) 
DeepMind, London U.K. 

 
 

Keywords: Deep learning, reinforcement learning, artificial 
intelligence 

Overview 
The past several years have seen a dramatic acceleration in 
artificial intelligence (AI) research, driven in large part by 
innovations in deep learning and reinforcement learning 
(RL) methods. The relevant developments, as showcased in 
a series of recent high-profile publications in Nature and 
elsewhere (e.g., Graves et al., 2016; Mnih et al., 2015; 
Silver et al., 2016), have generated intense interest in 
cognitive science, partially because they appear to have 
potentially far-reaching implications for understanding 
human intelligence. Unfortunately, the pace of innovation in 
AI has been so rapid that it is difficult for non-experts — 
and sometimes even for experts — to stay abreast of the 
latest developments.  
The present tutorial brings together five front-line 

researchers in AI, each with dual credentials in neuroscience 
and/or cognitive science, to provide an accessible overview 
and update on the most important recent developments in 
deep learning and deep RL. The tutorial will be aimed at a 
broad audience, ranging from graduate students to senior 
investigators, and spanning specialties from cognitive and 
developmental psychology to psychiatry, human factors 
research, and systems neuroscience. The focus will be on 
fundamental concepts and principles, and a central goal will 
be to maximize accessibility, in line with the tutorial format.  

Significance  
Neural network modeling has played a pivotal role in 
cognitive science since at least the 1980’s. Over the past 
decade or so, neural networks have been overshadowed to 
some extent by other techniques. Beginning around 2012, 
interest in neural network methods (often rebranded as 
‘deep learning’) began to take off machine learning 
research, and have since then become the dominant 
approach in AI. In combination with RL methods, deep 
learning has enabled a series of breakthroughs in tasks 
ranging from image classification to game play (see 
Marblestone et al., 2016 for a review).  
  The implications of this tectonic shift for cognitive science 
are currently under intensive debate (Marblestone, 2016; 
Lake et al., 2016). It seems clear that AI innovations, 
including memory architectures, generative models, and 
deep RL techniques are likely to stimulate new hypotheses 

about human cognition. At the same time, it seems likely 
that AI research would benefit from richer input from 
cognitive science.  

  Ironically, the potential for exchange between the two 
fields has been hindered by the very pace of innovation in 
AI. (Emblematic is the fact that the developments we will 
review in the present tutorial have almost all emerged since 
the last time the Cognitive Science meeting featured a 
tutorial on neural networks, just two years ago.)  Our aim in 
the present tutorial is to mitigate this problem by providing 
an accessible update on the most recent key developments 
in deep learning and deep RL. 

Tutorial structure and activities 
The tutorial will assume a half-day format, consisting of 
five tutorial lectures, each covering an area in which some 
of the most important recent innovations have arisen. As 
detailed below, all five lecturers are members of the 
research team at DeepMind in London (deepmind.com), 
with dual citizenship in AI and cognitive science. The 
material covered in each lecture will include recent work at 
DeepMind, but also related work from other groups.  

Participant credentials 
Matthew Botvinick (Organizer) is DeepMind’s Director 
of Neuroscience Research and Honorary Professor in the 
Gatsby Computational Neuroscience Unit. He holds a Ph.D 
in Cognitive Neuroscience from CMU’s Center for the 
Neural Basis of Cognition, and has done extensive research 
in the computational neuroscience of reinforcement learning 
and decision making. His research at DeepMind focuses in 
part on meta-learning.  
Peter Battaglia (Organizer) is a senior Research Scientist 
at DeepMind. He holds a Ph.D. in Brain and Cognitive 
Sciences from MIT and has done extensive research in 
scene representation, intuitive physics, and probabilistic 
inference. His research at DeepMind focuses on novel 
architectures for structured inference, with an emphasis 
understanding physical systems.  
Tim Lillicrap is a senior Research Scientist at DeepMind. 
He holds a Ph.D in Neuroscience from Queen’s University, 
and has done high profile research on deep reinforcement 
learning and biologically plausible neural network learning 
algorithms. His research at DeepMind focuses on the 
interface between reinforcement learning and memory. 
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Greg Wayne, a senior Research Scientist at DeepMind,  
holds a Ph.D. in Neurobiology from Columbia University.  
He has conducted high profile work in hierarchical planning 
and deep RL. His research at DeepMind focuses on 
integrative architectures for artificial intelligence.  
Daan Wierstra is a senior Research Scientist and research 
team leader at DeepMind. He holds a Ph.D. in Artificial 
Intelligence from IDSIA, and has conducted high-profile 
research in RL and neural networks. His research at 
DeepMind focuses in part on computational models of 
imagination and planning. 

Presentations 
As noted above, the tutorial will be comprised of five 
lectures, each covering a key area.  

Deep Reinforcement Learning (Tim Lillicrap) 
Advances in deep RL have driven some of the highest-
profile recent work in AI, including differentiable neural 
computers (Graves et al., 2016) and superhuman play in the 
game of go (Silver et al., 2016). This talk will provide a 
tutorial review of the cutting edge in deep RL research.  

Memory Architectures (Greg Wayne) 
A major development over the past couple of years has been 
the incorporation of special modules for memory storage 
into deep learning AI systems (e.g., Graves et al. 2016; 
Santoro et al., 2016). This talk will review the state of the 
art, and consider the relationship with human episodic and 
working memory.  

Structured Models for Structured Domains (Peter 
Battaglia) 
Recent work in AI has introduced structure into deep 
learning architectures, which biases such systems toward 
particular forms of representation. Such measures have 
allowed dramatic advances in modeling physical systems 
and other structured domains (e.g., Battaglia et al., 2016). 
The present talk will review this approach and discuss its 
relation to the notion of compositional representation in 
cognitive science.  

Deep Learning to Learn (Matthew Botvinick)  
Recent work has explored the capacity of deep learning 
systems to ‘learn how to learn,’ leveraging previous 
experience to adapt more quickly to new challenges (e.g., 
Wang et al., 2016). This lecture will review recent progress 
toward endowing deep learning systems with this important 
capacity.  

Deep Generative Models (Daan Wierstra) 
One of the most exciting developments in recent deep 
learning research has been the rapid progress in building 
rich and flexible generative models, models that support 
operations like imagination and forecast-based planning 
(e.g., Gregor et al., 2015). This lecture will review the most 

recent techniques for building generative models, 
considering their many implications for cognitive science.  

Related events 
Yildirim and colleagues will present a half-day workshop 
focusing on the interface between recent AI advances and 
cognitive science. This can be considered a companion to 
the present tutorial, in that it will also cover techniques 
other than deep learning/RL, and will more deeply explore 
applications to cognitive and neuroscience.  

References  
Battaglia, P., Pascanu, R., Lai, M., & Rezende, D. J. (2016). 

Interaction networks for learning about objects, relations 
and physics. In Advances in Neural Information 
Processing Systems (pp. 4502-4510). 

Graves, A., Wayne, G., Reynolds, M., Harley, T., 
Danihelka, I., Grabska-Barwińska, A., ... & Badia, A. P. 
(2016). Hybrid computing using a neural network with 
dynamic external memory. Nature, 538(7626), 471-476. 

Gregor, K., Danihelka, I., Graves, A., Rezende, D. J., & 
Wierstra, D. (2015). DRAW: A recurrent neural network 
for image generation. arXiv preprint arXiv:1502.04623.  

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & 
Gershman, S. J. (2016). Building machines that learn and 
think like people. arXiv preprint arXiv:1604.00289. 

Marblestone, A. H., Wayne, G., & Kording, K. P. (2016). 
Toward an integration of deep learning and 
neuroscience. Frontiers in Computational 
Neuroscience, 10. 

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, 
J., Bellemare, M. G., ... & Petersen, S. (2015). Human-
level control through deep reinforcement 
learning. Nature, 518(7540), 529-533. 

Rezende, D. J., Mohamed, S., Danihelka, I., Gregor, K., & 
Wierstra, D. (2016). One-shot generalization in deep 
generative models. arXiv preprint arXiv:1603.05106. 

Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., & 
Lillicrap, T. (2016). One-shot learning with memory-
augmented neural networks. arXiv preprint 
arXiv:1605.06065. 

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., 
Van Den Driessche, G., ... & Dieleman, S. (2016). 
Mastering the game of Go with deep neural networks and 
tree search. Nature, 529(7587), 484-489. 

Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer, H., 
Leibo, J. Z., Munos, R., ... & Botvinick, M. (2016). 
Learning to reinforcement learn. arXiv preprint 
arXiv:1611.05763. 
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Methods for Reconstructing Causal Networks from Observed Time-Series:
Granger-Causality, Transfer Entropy, and Convergent Cross-Mapping

Fermı́n Moscoso del Prado Martı́n (fmoscoso@linguistics.ucsb.edu)
Department of Linguistics, South Hall 3521, UCSB

Santa Barbara, CA 93106 USA

Keywords: convergent cross-mapping; development, dynam-
ical systems; Granger-causality; information theory; phase-
space reconstruction; time series

Objectives and Scope
A major question that arises in many areas of Cognitive Sci-
ence is the need to distinguish true causal connections be-
tween variables from mere correlations. The most com-
mon way of addressing this distinction is the design of well-
controlled experiments. However, in many situations, it is
extremely difficult –or even outright impossible– to perform
such experiments. Researchers are then forced to rely on cor-
relational data in order to make causal inferences. This situa-
tion is especially common when one needs to analyze longi-
tudinal data corresponding to historical time-series, symbolic
sequences, or developmental data. These inferences are often
very problematic. From the correlations alone it is difficult to
determine the direction of the causal arrow linking two vari-
ables. Worse even, the lack of controls of observational data
entail that correlations found between two variables need not
reflect any causal connection between them. The possibility
always remains that some third variable which the researchers
were not able to measure, or were actually unaware of, is the
actually driver for both measured variables, giving rise to the
mirage of a direct relationship between them.

In recent years, it has been shown that, under particular cir-
cumstances, one can use correlational information for mak-
ing sound causal inferences (cf., Pearl, 2000). In this tu-
torial I will provide a hands-on introduction to the use of
modern causality techniques for the analysis of observational
time series. I will cover causality analyses for three types of
time-series that are often encountered in Cognitive Science
research:

• For numerical time-series of a predominantly stochastic
nature I will discuss how to perform Granger-Causality
(Granger, 1981) analyses used by econometricians, us-
ing the methodology introduced by Toda and Yamamoto
(1995).

• For symbolic stochastic time-series, I will introduce the
Transfer Entropy measure developed in Physics (Schreiber,
2000).

• Finally, for numerical series that can be shown to have a
predominantly deterministic (even if possibly chaotic) na-
ture, I will discuss Convergent Cross-Mapping (Clark et
al., 2015; Sugihara et al., 2012), a very powerful technique
recently developed in the field of ecology, that relies on the
Theory of Dynamical Systems to make causal inferences.

Finally, I will demonstrate how to use each of these tech-
niques for reconstructing networks of causal relations be-
tween large sets of variables.

Overview of Causality Methods for Time Series
Granger-Causality
Granger-Causality (cf. Granger, 1981) is a powerful tech-
nique developed in Econometrics for assessing whether one
time sequence can be said to be the cause of another one (or
viceversa). If x and y are stationary time sequences on dis-
crete time (τ), in order to test whether x Granger-causes y,
one tests whether the past of x is able to predict the future
of y, over and above the predictive power that can be ob-
tained from y’s own past. Between just two variables, this
is assessed using Autoregressive Models. When more than
two variables are involved this is naturally extended by using
Vector Autoregressive Models.

This technique is useful for the analysis of numerical time
series data that are generated by a process whose nature is
predominantly stochastic, which is typical of data resulting
from the aggregation of multiple sources. One important re-
quirement of the Granger-causality method is that it is limited
to stationary time series. This property is sometimes difficult
to guarantee in the types of series that one typically encoun-
ters in Cognitive Science, which tend to exhibit a certain de-
gree of co-integration. This limitation can, however, be ad-
dressed by using the methodology introduced by Toda and
Yamamoto (1995), which I will introduce in the tutorial.

Transfer Entropy
Often, in Cognitive Science, researchers need to analyze se-
quences of discrete symbols, as could for instance be the
sounds uttered by a developing child. Schreiber (2000)
extended the main idea of Granger-Causality to symbolic
stochastic processes. Instead of analyzing correlations be-
tween variables, one moves into using mutual informations,
in the sense of Shannon (1948). Even when one’s data are
actually of a numerical nature, it can be actually beneficial to
analyze them in symbolic terms, as the mutual informations
are capable of capturing non-linear relations that could be
missed by linear correlation-based methods (see, Hlaváčcova-
Schindler, Paluš, Vejmelka, & Bhattacharya, 2007, for a re-
view). This later usage will be demonstrated in the tutorial
using a dataset from human speech.

Convergent Cross-Mapping
The Granger-Causality and Transfer-Entropy approaches out-
lined above are suitable only for stochastic systems. In some
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Cognitive Science domains, especially those dealing with
longitudinal developmental data, one also encounters numeri-
cal data that can be argued to originate from a predominantly
deterministic Dynamical System. Such cases can be mod-
elled explicitly using systems of coupled differential equa-
tions. However, in many cases, only a few of the variables
that relevant for the system are available to the researchers
(the others being unmeasurable or plainly unknown). How-
ever, Takens’ Theorem (Takens, 1981) states that the crucial
properties of a dynamical system’s attractor can be succes-
fully recovered using a single one of its variables, in what
is known as Phase-State Reconstruction. Using this fact,
Sugihara et al. (2012) developed the Convergent-Cross Map-
ping (CCM) technique, which enables recovering the direc-
tion of causality between any two time sequences generated
by the same dynamical system. Importantly, and in contrast
with the methods discussed above, CCM is also capable of
distinguishing the case when two correlated variables are not
actually causally related, but rather they are both driven by
a third unstudied variable. A limitation of CCM is that it
requires relatively long time series, which are often unavail-
able in many actual research problems. Clark et al. (2015)
extended CCM to allow combining multiple short time se-
ries originating from similar processes (i.e., as if considering
random effects in a regression model), introducing the “mul-
tispatial” variant of the CCM method. I will demonstrate how
the multispatial CCM analyses can be performed.

Format and Organization
This tutorial is designed to cover half a day (three hours)
broken into two sections of 1.5 hours each. The first ses-
sion in the tutorial will discuss the theoretical basis, con-
ditions of applicability, advantages, drawbacks of each of
the three causal analysis methods. The second session will
be hands-on, guiding attendants on how to perform each of
these analyses, together with the necessary diagnostics, us-
ing the R statistical software. For this, I will make use of
previously published datasets, covering three different time-
scales: historical (Moscoso del Prado Martı́n, 2014), devel-
opmental (Irvin, Spokoyny, & Moscoso del Prado Martı́n,
2016), and the time-scale of a typical behavioral experiment
(Moscoso del Prado Martı́n, 2011).

Target Audience
The tutorial is aimed at advanced graduate students, post-
docs, and senior researchers wishing to use this type of causal
analyses in this research. A familiarity with basic statistics
and with programming (preferably using R) will be neces-
sary to be able to follow the theoretical arguments, and to be
able to perform the analyses.

Tutor Information
Fermı́n Moscoso del Prado Martı́n is assistant professor of
Linguistics at the University of California, Santa Barbara.
Previously he has held positions at the Max Planck Institute

for Psycholinguistics, the Medical Research Council – Cog-
nition and Brain Sciences Unit, and at the Cognitive Psychol-
ogy Laboratory of the French National Research Center. He
holds an MEng in Computer Science by the Technical Uni-
versity of Madrid, and a PhD in Linguistics by the University
of Nijmegen, where he was a student of Prof. R. H. Baayen.
Over the last decade he has published multiple papers com-
bining information-theoretical methods, computational mod-
eling, corpus analyses, and psycholinguistic experiments.
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Objectives and Scope 

Dynamical Systems thinking has been influential in the 

way psychologists, cognitive scientists, and neuroscientists 

think about sensori-motor behavior and its development. 

The initial emphasis on motor behavior was expanded when 

the concept of dynamic activation fields provided access to 

embodied cognition. Dynamical Field Theory (DFT) offers 

a framework for thinking about representation-in-the-

moment that is firmly grounded in both Dynamical Systems 

thinking and neurophysiology. Dynamic Neural Fields are 

formalizations of how neural populations represent the 

continuous dimensions that characterize perceptual features, 

movements, and cognitive decisions. Neural fields evolve 

dynamically under the influence of inputs as well as strong 

neuronal interaction, generating elementary forms of 

cognition through dynamical instabilities. The concepts of 

DFT establish links between brain and behavior, helping to 

define experimental paradigms in which behavioral 

signatures of specific neural mechanisms can be observed. 

These paradigms can be modeled with Dynamic Neural 

Fields, deriving testable predictions and providing 

quantitative accounts of behavior. 

One obstacle for researchers wishing to use DFT has been 

that the mathematical and technical skills required to make 

these concepts operational are not part of the standard 

repertoire of cognitive scientists. The goal of this tutorial is 

to provide the training and tools to overcome this obstacle. 

We will provide a systematic introduction to the central 

concepts of DFT and their grounding in both Dynamical 

Systems concepts and neurophysiology. We will discuss the 

concrete mathematical implementation of these concepts in 

Dynamic Neural Field models, giving all needed 

background and providing participants with some hands-on 

experience using interactive simulators in MATLAB. 

Finally, we will take participants through a number of 

selected, exemplary case studies in which the concepts and 

associated models have been used to ask questions about 

elementary forms of embodied cognition and their 

development.  

A newly published book on Dynamic Neural Field 

modeling, Dynamic Thinking: A Primer on Dynamic Field 

Theory, covers these topics and more, with interactive 

simulators available to give hands-on experience to readers. 

We will take participants through the process of building 

and simulating models to illustrate key concepts in the case 

studies we describe in the tutorial. 

Suggested Readings 

(available online, see Online Resources below) 

1. Schöner, G. & Spencer, J.P. (2015). Introduction. 

[Chapter 1] In G. Schöner, J. P. Spencer, & the DFT 

Research Group (Eds.), Dynamic Thinking: A Primer on 

Dynamic Field Theory. New York, NY: Oxford 

University Press. 

2. Schöner, G., Reimann, H., & Lins, J. (2015). Neural 

Dynamics. [Chapter 2] In G. Schöner, J. P. Spencer, & 

the DFT Research Group (Eds.), Dynamic Thinking: A 

Primer on Dynamic Field Theory. New York, NY: 

Oxford University Press. 

3. Schöner, G. & Schutte, A.R. (2015). Dynamic Field 

Theory: Foundations. [Chapter 3] In G. Schöner, J. P. 

Spencer, & the DFT Research Group (Eds.), Dynamic 

Thinking: A Primer on Dynamic Field Theory. New York, 

NY: Oxford University Press. 

4. Johnson, J.S. & Simmering, V.R. (2015). Integrating 

Perception and Working Memory in a Three-Layer 

Dynamic Field Architecture. [Chapter 5] In G. Schöner, J. 

P. Spencer, & the DFT Research Group (Eds.), Dynamic 

Thinking: A Primer on Dynamic Field Theory. New York, 

NY: Oxford University Press. 

5. Simmering, V.R. & Schutte, A.R. (2015). Developmental 

Dynamics: The Spatial Precision Hypothesis. [Chapter 

10] In G. Schöner, J. P. Spencer, & the DFT Research 

Group (Eds.), Dynamic Thinking: A Primer on Dynamic 

Field Theory. New York, NY: Oxford University Press. 

6.  Sandamirskaya, Y., Zibner, S., Schneegans, S., & 

Schöner, G. (2013). Using Dynamic Field Theory to 

Extend the Embodiment Stance toward Higher Cognition. 

New Ideas in Psychology. 
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Target Audience 

No specific prior knowledge of the mathematics of 

dynamical systems models or neural networks is required as 

the mathematical and conceptual foundations will be 

provided during the tutorial. An interest in formal 

approaches to cognition is an advantage. 

Schedule of Material Covered in the Tutorial 

1. Conceptual foundations of Dynamical Systems Thinking 

and Dynamical Field Theory (DFT) – 30 minutes: 

embodied and situated cognition; stability as a necessary 

property of embodied cognitive processes; distributions of 

population representation as the basis of spatially and 

temporally continuous neural representations. 

2. Dynamical Systems and Dynamic Field Theory Tutorial – 

90 minutes: concept of dynamical system; attractors and 

stability; input tracking; detection, selection, and memory 

instabilities in discrete neuronal dynamics; Dynamical 

Fields and the basic instabilities: detection, selection, 

memory, boost-driven detection; learning dynamics; 

categorical vs. graded mode of operation; practical 

implementation of DFT in simulators; interactive 

simulation; illustration of the ideas through robotic 

implementations; 

3. Case study using DFT to understand brain-behavior 

relations in humans with functional neuroimaging – 60 

minutes: mapping of neural activation patterns in dynamic 

neural fields to the hemodynamic response measured with 

fMRI and fNIRS; case study on the neural processes that 

underlie visual working memory in children and adults. 

4. Case study using DFT to understand embodied cognition 

and its development – 90 minutes: visual and spatial 

working memory in infants, children, and adults; spatial 

precision hypothesis as a developmental mechanism 

visuospatial cognition 

5. Case study using DFT to understand higher cognition – 

90 minutes: integrating location and feature information 

to form working memory representations of visual scenes; 

linking spatial language to visual perception 

Lecturers 

John P. Spencer is a Professor of Psychology at the 

University of East Anglia in Norwich, UK. Prior to arriving 

in the UK, he was a Professor of Psychology at the 

University of Iowa and served as the founding Director of 

the Delta Center (Development and Learning from Theory 

to Application). He received a Sc.B. with Honors from 

Brown University in 1991 and a Ph.D. in Experimental 

Psychology from Indiana University in 1998. He is the 

recipient of the Irving J. Saltzman and the J.R. Kantor 

Graduate Awards from Indiana University. In 2003, he 

received the Early Research Contributions Award from the 

Society for Research in Child Development, and in 2006, he 

received the Robert L. Fantz Memorial Award from the 

American Psychological Foundation. His research examines 

the development of visuo-spatial cognition, spatial 

language, working memory, and attention, with an emphasis 

on dynamical systems and neural network models of 

cognition and action. He has had continuous funding from 

the National Institutes of Health and the National Science 

Foundation since 2001 and has been a fellow of the 

American Psychological Association since 2007. He will 

lecture on the topics 1-3 above. 

Vanessa R. Simmering is an Assistant Professor of 

Psychology at the University of Wisconsin – Madison. She 

obtained her B.S. with Honors in Psychology from the 

University of Iowa in 2001 and a Ph.D. in Psychology from 

the University of Iowa in 2008. Her research takes a 

dynamic systems approach to understanding cognition and 

development, with particular emphasis on how visuospatial 

cognition relates to other developing skills during early 

childhood. She will lecture on topic 4 above.  

Sebastian Schneegans is a postdoctoral researcher in the 

Department of Psychology at the University of Cambridge. 

He obtained his PhD (Dr.-Ing.) at the Institut für 

Neuroinformatik, Ruhr-Universität Bochum, for his work on 

visual working memory, spatial cognition and spatial 

language within the framework of DFT. He is now 

developing population code models of visual working 

memory and testing them in psychophysical experiments. 

His work has been published in seven journal articles, six 

book chapters, and numerous conference contributions. Dr. 

Schneegans will lecture on mechanisms for feature binding 

and spatial transformations in DFT. He will lecture on topic 

5 above. 

Computer Use 

Participants who bring laptops with Matlab installed 

(student version is sufficient) will be able to follow 

demonstrations by actively working with the simulator 

during lectures. 

Online Resources 

We will use simulators from the free Matlab toolbox 

Cosivina for demonstrations. Installation instructions and 

documentation for the toolbox can be found on the website. 

Related publications, lecture material, and interactive 

simulators can all be found at our website, 

http://www.dynamicfieldtheory.org/.  
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Abstract
This workshop is aimed at giving human interaction re-
searchers the conceptual and practical apparatus to balance
their representations of data (mixes of drawings and pho-
tographs in the most part), so as to “maximally incite, but also
constrain” their representations, just as artists sometimes suc-
ceed in doing (Streeck, Grothues, & Villanueva, 2009, p.28).
Why—as Streeck points out—are the drawings and visuali-
sations of interaction researchers so halting and timid, com-
pared to the ways artists have responded to the same kinds of
representational problems? Are these heavily segmented and
sparsely constructed representations of interaction the result
of a prevailing positivistic outlook with regard to representing
shared space, where interaction is presented as staggered and
discrete physical events with apparently little to connect them.
The workshop seeks to redress this situation by examining the
solutions that artists have arrived at when representing human
interaction, and asking participants to engage in a series of ac-
tivities and discussions which will re-frame their approaches
to this issue.
Keywords: cognitive science; arts; interaction; drawing; em-
bodiment; creativity; representation; comics; art; film; photog-
raphy

Depicting Human Interaction
Detailed representations focusing on social interaction in fine
art are surprisingly rare. Where they do occur, they reveal
something about the artist’s conception of communication
and their (possibly implicit) theories about how these repre-
sentations are percieved and processed. Similar issues attend
the representation of interaction in the Cognitive Sciences
(C. P. R. Heath, 2014). Researchers have developed a di-
verse range of specialized methods for describing interaction;
from graphic transcripts including photographs mixed with
line drawings showing joint action and embodiment (Laurier,
2014), to coupled representations of the patterns of neural ac-
tivation during social interaction in the brains of participants
(Dumas, Nadel, Soussignan, Martinerie, & Garnero, 2010).
For thousands of years drawing, mapping, diagramming, and
other forms of visual notation have been key methods for
transmitting human knowledge and culture, and line drawing
has been a particularly salient and widespread form of visual
communication (Craig-Martin & Martin, 1995).

None of these representations are innocent. Drawing it-
self is a kind of transcription, encoding our own analytical
assumptions about what we see as relevant to a reader or

viewer (Ochs, 1979). A wide range of commonalities be-
tween drawing systems have evolved, such as the practice of
perspective drawing, and each system has developed its own
rationale, method, and objects of enquiry (Dubery & Willats,
1972). Importantly, these approaches to representation are
rarely scrutinised as empirical methods.

It is not surprising, then, that artists have become living
repositories of expertise in the practice of drawing systems
of all kinds, and as such have become a valued resource
(Kozbelt, 2001). Visual reasoning can be examined in the
ways that drawings are commonly constructed, (Van Som-
mers, 1984), and the ways in which novel drawing situations
are spoken of and acted upon (C. P. Heath, Cameron, & Cain,
2008). Added to this, drawing and diagramming have be-
come standard tools in the repertoire of participatory action
research (Chambers et al., 1997) applied in diversely situated
engagements, (Theron, Mitchell, & Smith, 2011). The pro-
cess of interpreting visual depictions in itself is an intersub-
jective phenomenon, where particular methods and practices
of reading determines the consequential social meanings and
practical uses of the inscription (Goodwin, 2000).

This workshop will bring together a range of perspectives
from the cognitive sciences and the arts, asking whether our
long legacies of drawing systems in artistic and scientific
representations is telling us something about our varied ap-
proaches to mind, intersubjectivity and social interaction. Re-
searchers explore very different phenomena of interest, often
using highly specialized research methods particular to their
subdomain within the cognitive sciences. Many of these are
represented in the list of prospective participants in the work-
shop which we are submitting with this outline. The proposed
workshop aims to encourage new opportunities for dissemi-
nation and collaboration within and beyond the cognitive sci-
ences, scrutinising the received and conventional methods of
depicting human interaction as a starting point for conversa-
tion and exchange.

Goals and workshop plan
Background The organizers have participated in and run
workshops, specialist conferences and presentations bridging
cognitive science, human interaction and the arts, including
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at the 2014 meeting of the Society1. This workshop aims to:
a). build upon and extend the networks of researchers estab-
lished at prior meetings, and to use the clear focus on methods
of depicting human interaction as a binding theme to draw
together and engage the widest possible range of fields and
approaches; b). to provide an entry point into the themes and
discussions for a broader audience within Cognitive Science;
c). to encourage cross-disciplinary researchers and especially
those just starting out in their research to collaborate with oth-
ers, seeking out connection points, looking at how human in-
teraction and communication is depicted in their fields.

Format In order to create and sustain a broadened inter-
est in the workshop, a blog page will be set up in advance so
that invitees, workshop participants and others may browse
examples of artworks that have already stimulated discussion
amongst the organisers and can contribute their own. The
blog will also provide a centralised focus for the workshop
and is intended to test and support be the impetus for an il-
lustrated publication. The central function of the blog will be
gather and examine cases in which fine art has succeeded (or
failed in interesting ways) to create credible depictions of in-
teraction. Discussions on the blog both before and after the
workshop will enable participants to contribute to threaded
discussions alongside each artwork (link to follow on notifi-
cation of acceptance of proposal).

Practical workshop activities will centre on previously
worked-up examples of interactional depictions, and will use
questions and criteria suggested in the workshop presenta-
tions. Activities will involve drawing out points and patterns
of interest from artworks using projections onto whiteboards
and screens, the results of which can later be digitally over-
laid onto source artworks and can be documented on the blog.
A 3-step line drawing protocol for drawing out shared inter-
actional spaces using field inscriptions will also be used and
adapted to the available ‘data’—in this case the artworks un-
der discussion.

An overview at the end of the day will compare the outputs
of different groups, and will conclude with a group visit to a
London gallery to look at and discuss prime examples of the
kinds of artworks and drawn phenomena encountered during
the day.

Planning committee
The planning committee consists of researchers who have
been working together on related projects in human inter-
action research, cognitive science, psychology and the arts.
Each will give a short overview presentation in order to frame
the subsequent activities and discussions.

• Claude Heath, ”Drawing out interaction”

• Patrick Healey, ”What’s so difficult about drawing interac-
tion?”

• Saul Albert, ”Representing unformulated action”

1See http://bit.ly/2kPpZtF, checked 1/30/2017

The following list of participants (partial here, since numbers
who have expressed interest are growing) comprises cognitive
science researchers who have dealt with depictions of human
interaction in their research. It also includes scientists from
other fields, and artists who can bring to their highly rele-
vant interests and methodological approaches to the cross-
disciplinary objectives of the workshop.

Toby Harris (QMUL), Daniel G. Jay (Tufts), Sophie Skach
(QMUL), Rosella Paulina Galindo Esparza (QMUL), Shauna
Concannon (QMUL), Lida Theodorou (QMUL), Leshao
Zhang (QMUL), Melissa Bliss (QMUL), Nicola Jane Plant
(QMUL), Soomi Park (QMUL), Saul Albert (Tufts), Chris-
tian Heath (KCL), Yal Kreplak (EHESS), Dirk vom Lehn
(King’s), Jrgen Streeck (U. Texas), Eric Laurier (Edinburgh),
J.P. De Ruiter (Tufts), Michael Sean Smith (UCLA), Eliza-
beth Stokoe & A Dozen Eggs (Loughborough),
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Introduction
Reasoning is a core ability in human cognition. Its power lies
in the ability to theorize about the environment, to make im-
plicit knowledge explicit, to generalize given knowledge and
to gain new insights. It is a well researched topic in cognitive
psychology and cognitive science and over the past decade
impressive results have been achieved. Early researchers
starting with Störing (1908) often used propositional logic
as a normative framework. Any deviation from it has been
considered an error. Central results like findings from the
Wason selection task (Wason, 1968) or the suppression task
(Byrne, 1989) inspired a shift from propositional logic and
the assumption of monotonicity in human reasoning towards
other reasoning approaches. This includes but is not lim-
ited to models using probabilistic approaches (Oaksford &
Chater, 2007), mental models (Johnson-Laird, 2006), or non-
monotonic logics (Stenning & Lambalgen, 2008). Consider-
ing cognitive theories for syllogistic reasoning show that none
of the existing theories is close to the existing data (Khemlani
& Johnson-Laird, 2012). But some formally inspired cogni-
tive complexity measures can predict human reasoning dif-
ficulty for instance in spatial relational reasoning (Ragni &
Knauff, 2013).

Automated deduction, on the other hand, is mainly focus-
ing on the automated proof search in logical calculi. And
indeed there is tremendous success during the last decades.
Recently a coupling of the areas of cognitive science and au-
tomated reasoning is addressed in several approaches. For
example there is increasing interest in modeling human rea-
soning within automated reasoning systems including model-
ing with answer set programming, deontic logic or abduc-
tive logic programming (Dietz & Hölldobler, 2015; Dietz,
Hölldobler, & Wernhard, 2014). There are also various ap-
proaches within AI research for common sense reasoning
(Furbach & Schon, 2014, 2016).

Despite a common research interest – reasoning – there
are still several milestones necessary to foster a better inter-

disciplinary research. First, to develop a better understand-
ing of methods, techniques, and approaches applied in both
research fields. Second, to have a synopsis of the relevant
state-of-the-art in both research directions. Third, to combine
methods and techniques from both fields and find synergies.
E.g., techniques and methods from computational logic have
never been directly applied to model adequately human rea-
soning. They have always been adapted and changed. Fourth,
we need more and better experimental data that can be used
as a benchmark system. Fifth, cognitive theories can benefit
from a computational modeling. Hence, both fields – human
and automated reasoning – can both contribute to these mile-
stones and are in fact a conditio sine qua non. Achievements
in both fields can inform the others. Deviations between fields
can inspire to seek a new and profound understanding of the
nature of reasoning.

This is the third workshop in a series of successful Bridg-
ing the Gap workshop1 located at previous conferences: 2015
at the International Conference on Automated Deduction in
Berlin (CADE-25) focused on the automated reasoning as-
pects. 2016 at the International Conference on Artificial In-
telligence in New York (IJCAI 2016) included an AI perspec-
tive. The Annual Meeting of the Cognitive Science Society is
the central place for bringing a strong human centric perspec-
tive into discussion.

Goal and Scope
The goal of this workshop is to bring together leading re-
searchers from cognitive science, computational logics, and
psychology interested in computational foundations of hu-
man reasoning – both as speakers and as audience members.
Its ultimate goal is to share knowledge, discuss open research
questions, and inspire new paths. Like its preceding event,
it is intended to get an overview of existing approaches and
make a step towards a cooperation between computational
logic and cognitive science. Topics of interest include, but
are not limited to the following:

• Benchmark problems relevant in both fields

1http://ratiolog.uni-koblenz.de/bridging.html

9



• limits and differences between automated and human rea-
soning

• psychology of deduction and common sense reasoning,

• logics modeling human reasoning

• non-monotonic, defeasible, and classical reasoning

The workshop is planned as a half-day event. There will be
an invited speaker, sponsored by IFIP TC 12 (this is why this
Workshop would have the “(supported by IFIP TC 12)” in its
announcement.

Workshop Organization
Ulrich Furbach is a Senior Research Professor of Artificial
Intelligence at the University of Koblenz. His research inter-
ests include knowledge management, automated reasoning,
multi-agent systems, and e-learning. He is co-founder of the
spin-off company wizAI (www.wizai.com), which develops
knowledge management systems and information extraction
tools. Steffen Hölldobler is professor for Knowledge Repre-
sentation and Reasoning at the Technical University Dresden.
He is currently Director of the International Center for Com-
putational Logic and co-ordinator of the European Master’s
Program in Computational Logic. He is particularly inter-
ested in combining methods and techniques from computa-
tional logic and cognitive science to adequately model hu-
man reasoning and to develop connectionist systems for hu-
man reasoning. Marco Ragni is a DFG-Heisenberg fellow
and associate professor at the technical faculty and the Cen-
ter for Cognitive Science of the Albert-Ludwigs-University
Freiburg and associated with Department. His research in-
terests include qualitative spatio-temporal reasoning, knowl-
edge representation and reasoning, cognitive modelling, and
complex cognition with a special focus on analyzing why and
how human reasoning often deviates from classical logical
approaches. Claudia Schon is a postdoctoral researcher at
the Institute for Web Science and Technologies at the Univer-
sity of Koblenz-Landau. During the last years, she was work-
ing in various projects in the area of artificial intelligence.
One of these projects was the RATIOLOG project were she
focused her research on commonsense reasoning and model-
ing human deduction.

Target Audience
Our specific focus dovetails this years overall conference
theme: “Computational Foundations of Cognitive Science”.
Hence, the target audience for this workshop overlaps signif-
icantly with the target audience of Cognitive Science confer-
ence. The workshops central topics (psychology of deduc-
tion, common sense reasoning, logic, non-monotonic reason-
ing, formal systems) are core topics of Cognitive Science with
the multidisciplinary nature of the workshop being particu-
larly appropriate for the multidisciplinary Cognitive Science
conference.

Confirmed Speakers
• E-A. Dietz Saldanha, TU Dresden, Germany

• S. Hölldobler, TU Dresden, Germany

• S. Khemlani, Naval Research Lab, USA

• B. Kowalski Imperial College London, GB

• A. Kakas, University Cyprus, Cyprus

• L. Pereira, Universidade Nova Lisboa, Portugal

• M. Ragni, University of Freiburg, Germany
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Missionsstrasse 62A, 4055 Basel, Switzerland 
 
 

Keywords: citizen science; volunteer science; experimental 
design, gamification; online experimentation, virtual reality; 
problem solving 

Introduction 
This workshop discusses three distinct but related topics. The 
first topic is citizen science which involves volunteers all 
around the world generating data to address scientific prob-
lems and recently led to breakthroughs in the natural sci-
ences. Citizen science typically involves volunteers playing 
online games while unknowingly solving real scientific prob-
lems. This approach can benefit cognitive research either in-
directy – if volunteers implicitly solve computationally hard 
research problems disguised behind a game – or it benefits 
researchers directly – if players do experimental tasks, with 
the key benefit that online games are easily accessible for a 
diverse international subject pool. Also, the data from exist-
ing citizen science projects provide insights for cognitive sci-
entists (e.g., one citizen science project involved classifica-
tion of galaxies). Although citizen science data is limited with 
respect to precise experimental control, its benefits are worth 
discussing.  

Our second topic is gamification, which citizen science of-
ten relies on. Gamification, in general, involves adding game-
like features to a task and could involve, for example, adding 
levels, points, or virtual characters to an experimental task. 
Gamified tasks are typically motivating for participants. 
While citizen science often uses gamification, also traditional 
laboratory studies can be supplemented with game-like ele-
ments and use technology from the gaming industry. 

Our third topic is virtual reality (VR). This technology de-
veloped by the gaming industry enables players, equipped 
with a headset, to experience a controlled 3-dimensional en-
vironment that emulates being in the middle of a 3D scenario.  
Virtual reality typically causes subjective immersion by sim-
ulating a naturalistic experience of interacting with the world, 
while simultaneously offering full experimental control about 
the environmental structure and interactions. The link be-
tween (large-scale online) citizen science and (smaller-scale 
lab-based) VR research lies in that usually both approaches 
use gamification. 

How can cognitive scientists use gamification and virtual 
reality environments for their research? 

Goals and Scope 
This workshop brings together experts from the natural and 
social sciences who have successfully launched citizen sci-
ence platforms as well as gaming researchers and game de-
velopers from different disciplines. The aim is to introduce 

citizen science to cognitive psychologists, stimulate a discus-
sion about similarities and differences between laboratory 
and citizen science data, and explore the potential of existing 
citizen science platforms and data for cognitive research. A 
further goal is to gain insights into how best to conduct citizen 
science projects using gamification. Moreover, the workshop 
will explore the potential of virtual reality environments, 
fleshing out the challenges and opportunities of this novel 
technological opportunity for research. By the end of the 
workshop, all participants and speakers, will have been intro-
duced to citizen science platforms, including how and where 
to run citizen science projects. They will understand the ad-
vantages and drawbacks of games for cognitive research, in-
cluding an accessible way to design online applications. 
Lastly, the participants will have the knowledge to under-
stand when and how virtual reality environments can be used 
to answer cognitive research questions in novel ways. 

Target Audience 
The workshop targets researchers at all levels with an interest 
in investigating domains like problem solving, learning, at-
tention, or decision making in settings suitable for interactive, 
gamified, or web studies. Note, that citizen science cannot 
offer maximum experimental control. Research interested in 
gamification in any form—offline or online—with a special 
focus on gamified experimental design and virtual reality are 
welcome. In particular researchers interested in cross-cultural 
data may be interested, as citizen science offers unique op-
portunities for international data collection. We also invite 
researchers interested in using virtual reality devices in the 
lab, and discussing its potential for cognitive research. 

Format 
The full-day workshop involves short talks, hands-on experi-
ence with several of the games developed by the invited 
speakers, and the possibility to try out a task in virtual reality 
(using a HTC Vive). There will be two round table discus-
sions. The first discussion focuses on the potentials and dis-
advantages of gamification and online data compared to la-
boratory data; the second discussion asks which of cognitive 
sciences’ research problems can be fruitfully advanced by 
implementing the study within a virtual reality environment. 

Contributions 

Introduction of Concepts 
Jana B. Jarecki, cognitive scientist at Basel University, will 
introduce the concepts citizen science and gamification.  
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Jacob Sherson, who has pioneered citizen science in quan-
tum physics, will discuss how the citizen science platform 
ScienceAtHome, aims to exploit the clear mathematical 
framework of quantum physics and other natural science re-
search challenges. This enables the construction of a suite of 
games bridging low-dimensional model challenges with 
complex relevant problem solving. He will also discuss the 
aim to turn ScienceAtHome into a large-scale social and cog-
nitive science research platform offering insights into the in-
dividual minds and collective interactions.  

 
Pinja Haikka, researcher at Aarhus University and head of 
outreach at ScienceAtHome, will talk about how to set up cit-
izen science projects, with a special focus on QuantumMinds 
a citizen science project bridging quantum physics challenges 
and individual learning of volunteers participating in citizen 
science games. 

Where Citizen Science meets Cognitive Science 
Ed Manley, who studies navigation skills with citizen sci-
ence, discusses the Sea Hero Quest project, one of the most 
successful citizen science games in recent times. Originally 
developed to study navigation skills for dementia research, 
this project offers data on human navigation abilities from 
worldwide players from all age groups.  

 
Carsten Bergenholtz from Aarhus University will introduce 
the Alice Challenge, a remote access experiment where vol-
unteer players could remotely access and modify the settings 
of an actual instrument in the physics lab at Aarhus Univer-
sity. He discusses the challenges of remote experimental set-
ups and discuss the advantages of running social science ex-
periments on high-dimensional, real-life problems. 

 
Oana Vuculescu, from the University of Aarhus, will intro-
duce a game-based research project, the AlienGame, a se-
quential problem solving task to study the heuristics that in-
dividuals use in problem solving  

Designing and Building Games 
Juho Hamari, is a Professor of Gamification (Associate & 
tenure-track) and leads the Gamification Group spread across 
Tampere University of Technology, University of Turku and 
University of Tampere in Finland. He will give an overview 
about the academic literature on gamified crowdsourcing. 

Nathaniel D. Phillips, cognitive scientist at the University 
Basel introduces the R Shiny platform as an easy yet power-
ful tool to build online experiments and games directly from 
R code. Through shiny, web application can directly interface 
with R which enables the researcher to conduct dynamic ex-
periments in which the user interface is determined by cogni-
tive modeling running behind the scene. 

 
Julia A. Bopp, PhD candidate and player experience re-
searcher at the Human-Computer Interaction Lab at the Uni-
versity of Basel, will introduce what game aspects may evoke 

emotions and in turn how these emotions may influence good 
player experience. 
 
Sharon T. Steinemann, PhD candidate at the Human-Com-
puter Interaction Lab at the University of Basel, discusses 
meaningful game experiences. Her work investigates how in-
game interactions shape experiences into being moving, 
thought-provoking, and personally meaningful. Findings and 
implications will be discussed using examples from current 
games with a focus on the relationship between game experi-
ences and behavior change. 
 
Julian Jarecki, virtual reality gaming developer at the Uni-
versity of Freiburg, introduces virtual reality with GraphVR 
and Ultimate Automizer. GraphVR is a virtual reality envi-
ronment in which people can dynamically create and interact 
with near-real three-dimensional visualization of graph struc-
tures. The presentation will explore how VR creates an excit-
ing opportunity to experience abstract concepts and struc-
tures. 
 
Libby Heaney, virtual reality artist and research tutor at the 
Royal College of Art, will present a different way to use vir-
tual reality, namely in the form of an exhibition that explains 
complex scientific matters to laypeople and makes these mat-
ters graspable. 

Hands-on Experience and Discussions 
Experience Virtual Reality. We will additionally offer par-
ticipants of the workshop the opportunity to directly experi-
ence and try out how virtual reality environments feel. We 
will have a live demo of Graph3D and other virtual reality 
environments. 

Invited Speakers 
Jacob Sherson | Professor of Physics and Astronomy, Aar-
hus University | Founder of the citizen science platform Sci-
enceAtHome 
Juho Hamari | Professor of Gamification, Tampere Univer-
sity of Technology and University of Turku 
Carsten Bergenholtz | Associate Professor of Management, 
Aarhus University 
Ed Manley | PostDoc in spatial cognition, UCL London | 
Partner at the citizen science project SeaHeroQuest (tbc) 
Julia A. Bopp | PhD candidate, gaming researcher, Univer-
sity of Basel 
Julian Jarecki | app and gaming developer with focus on 
development in VR, University of Freiburg 
Libby Heaney | Digital and virtual reality artist and tutor at 
the Royal College of Art London 
Nathaniel D. Phillips | PostDoc in cognitive science, Uni-
versity of Basel (tbc) 
Pinja Haikka | PostDoc in Physics, Aarhus University | 
Head of Outreach at ScienceAtHome (tbc) 
Sharon T. Steinemann | Phd Candidate | University of Ba-
sel 
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Cooperative Social Intelligence:
Understanding and Acting with Others

Max Kleiman-Weiner (maxkw@mit.edu), Yibiao Zhao (ybz@mit.edu) & Joshua Tenenbaum (jbt@mit.edu)
Brain and Cognitive Science,
Cambridge, MA 02139 USA

Keywords: multi-agent, cooperation, communication, coordi-
nation, theory-of-mind, social learning

Theme
This workshop will focus on new developments and ap-
proaches to studying social intelligence with a specific fo-
cus on cooperation, theory-of-mind and social learning. With
a diverse set of speakers and panelists, we anticipate these
three themes will allow for connections to be made between
developmental psychologists, cognitive scientists and artifi-
cial intelligence and robotics researchers.

1. Cooperation: How do we coordinate our limited individ-
ual capacities and perspectives to accomplish goals that no-
one could have completed on their own? How do we share
the spoils of a cooperative activity fairly and equitably and
how does this capacity develop in early childhood? How do
we learn who is cooperative and who is not to be trusted?
What special purpose representations have we evolved that
make cooperation so robust?

2. Theory-of-Mind: How do we go from sparse, noisy,
underdetermined observations of behavior to acquire ab-
stract knowledge of latent mental states which generalize
to novel situations and people? How does this capacity
develop and what representations support these capacities
in infancy and early childhood? How do we understand
the actions and intentions of groups or even collectives of
agents?

3. Social Learning: When and how do we realize that other
intelligent agents are often the richest source of world
knowledge in an environment? How do we actively learn
from others? How do we efficiently share important cul-
tural knowledge through teaching? How do norms and
conventions originally form and how do we learn existing
norms and conventions so quickly?

One motivation for understanding social intelligence is to
re-engineer socially intelligent artificial agents that treat peo-
ple like people and can be treated like people by people.
While a world where artificial agents roam the sidewalks
still feels far away, automated agents are already roaming the
streets in self-driving cars. The above challenges to under-
standing our own social intelligence become challenges for
engineering cooperative AI:

1. Cooperation: How can we build agents that can work with
us on mixed teams? Will they need to be taught cooperative
values or must these values be baked in from the start?

2. Theory-of-Mind: How can we build agents that can un-
derstand our intentions, how they unfold over time, and the
ways in which they may change dynamically? Can agents
without theory-of-mind robustly cooperate with humans?
How can agents reveal their intentions in ways that are nat-
ural to us?

3. Social Learning: How can machine learning from teach-
ers go beyond imitation and reinforcement? Can artificial
agents take advantage of the human ability to teach and
learn like children do?

Speakers
We have already invited and received confirmations from six
speakers (one tentative) that will form the core of our work-
shop. These speakers come from communities ranging from
computer science and artificial intelligence to cognitive sci-
ence and developmental psychology. Each speaker brings a
unique perspective that will be of interest to the entire CogSci
community. We believe these interdisciplinary interactions
are a unique and positive element of the CogSci community
and we hope to build on that foundation. We may invite 1-
2 more speakers and are committed to organizing a gender
balanced workshop.

Nick Chater (Professor of Behavioral Science, Warwick)
Possible topics: Virtual bargaining, instantaneous conven-
tions, one-shot communication, joint intentions

Joel Leibo and Thore Graepel (DeepMind) Possible top-
ics: Deep learning for cooperation and competition

Stuart Russell (Professor of Computer Science, Berkeley)
Possible topics: Cooperative inverse reinforcement learning,
value alignment, cooperative robotics

Hyo Gweon (Professor of Psychology, Stanford) Possible
topics: Social learning, social development, theory-of-mind,
cooperation

Igor Mordatch (Professor of Robotics, CMU & OpenAI)
Possible topics: Emergent communication, deep reinforce-
ment learning
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Victoria Southgate (Professor of Psychology, Copen-
hagen) [tentative] Possible topics: Infant social cognition,
action processing, Imitation and mimicry, Theory of mind,
Motivation and learning

Workshop Program
We plan to host a full day workshop consisting of talks given
by 6-8 invited speakers (depending on final commitment).
Our intention is to explore having an extended lunch and al-
low (space permitted) for the presentations of posters in this
topic area. This will allow for more informal interactions
between interesting parties and will allow for researchers to
have an additional opportunity to present their work. At the
end of the workshop we will have a discussion panel with all
of the speakers to synthesize the topics discussed throughout
the workshop.

Potential Financial Support
As this topic will be of interest to some of the industrial re-
search labs we will also see if they are interested in providing
some support to defer some of the registration costs. However
as we already have confirmations from most of our speakers
this funding will not be necessary and we believe we will
have a very successful within the constraints of the funding
provided by the conference.
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Building Bridges from (Ivory) Towers: 
Combining Academia and Industry for Cognitive Research 

 
Katherine A. Livins (klivins@netflix.com) & Jay B. Martin (jaym@netflix.com) 

Originals Product Innovation, Netflix 
121 Albright Way, Los Gatos, CA 95032, US 

 
Keywords: methods; basic and applied research; industry 

Objectives 
This half-day workshop will discuss how to enrich 

research by marrying academic and industry-based work. 
Attendees will learn the theoretical, practical, and logistical 
complexities involved in advancing cognitive science across 
these distinct research sites.  

This topic is relevant to the cognitive community because 
academia and industry often have common goals but distinct 
capabilities. For example, academics have the freedom to 
study almost any quantifiable question, and typically run 
small-scale studies performed in highly controlled settings 
with limited sets of participants. This approach results in 
high internal validity, but low statistical confidence, external 
validity, and limited replicability. Industry researchers are 
also often interested in human behavior (that of their users 
or clients) but typically need to further a company’s 
business objectives with their work. However, these 
researchers have access to large-scale data sets and 
resources unmatched by the academic sector (Griffiths, 
2014). This workshop will help attendees identify cases 
where cross-site collaborations might be useful, along with 
the methods necessary for carrying out such research. 

Workshop Outline 
The workshop will begin with a series of talks highlighting 
a) the use of cognitive theory in industry contexts, b) the 
methodological considerations necessary for undertaking 
industry-centered research, and c) how to build holistic 
networks that pass information gleaned from industry 
activity back into academia-centered research. It will 
provide examples from the following industries in order to 
deliver a broad perspective.  
 
Education Thinking, reasoning, and learning are central to 
cognitive science, however little attention is given to 
applied education. That said, a number of researchers have 
realized that watching how people process information in 
real learning contexts can not only help to shape better 
educational programs (e.g., Weitnauer et al., 2016), but also 
provide insights into cognition (e.g., Goldstone et al., 2008). 
This workshop will provide examples of how research in 
real learning settings can provide access to diverse research 
participants, and an ability to ‘cache-out’ learning theories.  

 
Data Science and Machine Learning Cognitive science is 
broadly interested in observing human behavior to make 
claims about mental mechanisms. While data science and 

machine learning can leverage any data, many companies 
are specifically interested in describing, understanding, and 
predicting their human users. This data can be important to 
basic research since, as Jones (2015) points out, social 
media, web-tracking, search-logs, and consumer reviews are 
huge sources of behavioral data that are typically 
inaccessible to academic researchers. This workshop will 
use data science and ML as examples of how industry is 
using cognitive science to model user behavior, as well as 
how those models can provide insights into cognition. 
 
User Experience (UX) Cognitive science often specifies 
how cognitive mechanisms interact with external stimuli. 
While these interactions are typically described in terms of 
high-level principles, they govern real-world interactions 
such as those between a user and a product. UX focuses on 
applying these principles to optimize usability (Kujala et al., 
2011). As a result, it relies on both cognitive research and 
methods. For example, it can consider work about 
perception and attention in order to lessen cognitive load on 
a human worker (e.g., Zheng et al., 2011), and it can be 
evaluated using measures such as eye-tracking, EEG, and 
reaction times (Oviatt, S.L., 2006). This workshop will use 
UX as an example of how academic learnings can be 
directly translated into concrete products, and how the 
development of those products can provide cognitive data.   
 
The workshop will then provide participants with an 
opportunity to develop their own cross-site methodologies, 
with guidance from the facilitators.  Finally, there will be a 
round-table discussion with both the facilitators and 
speakers where participants can ask further questions, get 
group feedback on their ideas, and further develop their 
understanding of cross-site research. 

Audience 
This workshop will appeal to the broad cognitive 
community.  As Jones (2015) states, ‘Cognitive research is 
increasingly coming out of the laboratory’, and increased 
interest has been demonstrated in past CogSci workshops, 
such as Mason & Suri (2011). Thus, this workshop will be 
useful for experimentalists, who will learn about the 
methodological and operational considerations necessary for 
completing studies in industry contexts, as well as 
computational modelers who will learn how their models 
may be applied or developed through industry applications.  

It will also benefit researchers at various stages in their 
careers. Graduate students may be interested in a window 
into research-oriented job trajectories outside of academia. 
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Likewise, younger professors interested in building 
academic/professional research networks, and professors 
attending to the flow of students into industry will value a 
venue for considering the positive benefits of increased 
connections across research sites. 

Presenters 
This workshop will include speakers who have experience 
in both academic and industry research.  

Facilitators   
This workshop will be run by Katherine Livins and Jay 
Martin. Livins’s academic research focused on reasoning 
and perception, while Martin’s focused on models of causal 
reasoning and categorization. They both now work as Data 
Scientists, leveraging cognitive science for the purpose of 
optimizing human decision-making in online working 
environments.  

Additional Speakers  
David Landy - Indiana University, Department of 
Psychological and Brain Sciences. Landy’s research focuses 
on computational and theoretical approaches to formal 
reasoning, mathematical cognition, and perception. He used 
this research to create an application called “Graspable 
Math”, which teaches mathematical concepts by exploiting 
perceptual and gestural processes. He will speak on how 
real-world situations challenge academic research by 
providing richer contexts to develop and test the robustness 
of theories, with examples grounded in Graspable Math. 
 
Noah Goodman - Stanford University, Advisor to 
Geometric Intelligence (now Uber AI Labs), Co-founder 
and advisor to Gamalon Labs and Ought Inc. Goodman’s 
academic work spans cognitive modeling, probabilistic 
programming languages, categorization, and social 
reasoning. He also recently began working with Uber on 
applied AI and machine learning projects. He will speak 
about how these projects are interacting with his pre-
existing academic research. 
 
Robert Rauschenberger – Exponent. Rauscehnberger’s 
academic work focused visual attention in displays. He now 
works as a Managing Scientist on human factors and 
industrial engineering, applying his knowledge about the 
visual system to product design and human-product 
interface interaction. He will speak on the role of cognitive 
psychology in user research and experience design.  
 
Nick Gaylord - CrowdFlower.  Gaylord’s academic 
research focused on the application of experimental design 
principles to the collection of training data for NLP models, 
and the role of domain-general decision making processes in 
human language comprehension. He now works as a Senior 
Data Scientist on how to curate human-generated data sets 
for algorithm consumption. He will speak on how skill sets 
and methods can translate between academia and industry. 

Workshop Structure 
Livins will open by introducing and framing the workshop. 
Each speaker will then present a 25-minute talk (including 
questions), before Martin closes by identifying consistent 
themes. Livins and Martin will then engage participants to 
identify cross-site opportunities in their own work, and help 
them develop a list of necessary methods and resources. The 
session will end with a 20-minute round-table discussion. 

 
Table 1: Schedule. 

 
Event Time 
Opening Remarks: Livins 20 minutes 
Speaker 1: Landy 25 minutes 
Speaker 2: Goodman 25 minutes 
Speaker 3: Rauschenberger 25 minutes 
Speaker 4: Gaylord 25 minutes 
Closing Remarks: Martin 20 minutes 
Guided research development  20 minutes 
Round-table discussion 20 minutes 
Total time 180 minutes 
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The Computational Foundations of Religious Cognition: 
A Workshop Hosted by the International Association for the Cognitive Science of 

Religion (IACSR) 
 

Ann Taves (taves@religion.ucsb.edu) 
Department of Religious Studies, Mailcode 3130, UCSB, Santa Barbara, CA 93106, USA 

University of California, Santa Barbara 
 

Dimitris Xygalatas (xygalatas@uconn.edu) 
Department of Anthropology, 354 Mansfield Road, Storrs CT 06269, USA 

University of Connecticut 
 

John Shaver (john.shaver@otago.ac.nz) 
Religion Programme, P.O. Box 56, Dunedin 9012, New Zealand 

University of Otago 
 
 
 

Keywords: religious cognition; fMRI; placebo studies; 
natural language processing; text data mining; belief reversal; 
dual processing; IACSR 

Workshop Description 
 
Religion is of global significance, and its study requires 
explanations from cognitive science. Currently, the 
cognitive science of religion consists of researchers working 
in an array of disciplines, employing diverse methods, 
including, among others: experimental research and 
modelling in psychology and neuroscience, and historical, 
archaeological, and comparative studies of religious 
cognition in anthropology and religious studies. The 
International Association for the Cognitive Science of 
Religion (IACSR) seeks to advance the naturalistic and 
cognitive study of religion by providing settings for 
productive dialogue across disciplinary boundaries and 
methodological approaches. This half-day workshop, 
organized by the IACSR, has three complementary goals: 1) 
to expose attendees to diverse methodologies for studying 
the computational foundations of religious cognition, 2) to 
provide a forum for researchers to present recent empirical 
findings that bear on our understanding of religious 
cognition, and 3) to foster new research collaborations. 
  

To achieve these goals, the IACSR has invited three 
speakers whose recent work represents cutting-edge, yet 
diverse, methodological approaches to the study of the 
foundations of religious cognition. The IACSR executive 
board also solicited poster submissions from members and 
interested researchers. The first half of this workshop will 
consist of the three invited lectures, and the second half will 
involve the presentation and critical discussion of eight 
posters that were the highest rated by blind peer review.  
 

Invited talks 

The Power of Suggestibility: Using Placebo Brain 
Stimulation Devices to Manipulate Subjective Experience. 

Michiel Van Elk, Department of Psychology, University of 
Amsterdam 
 
Effects of expectancy have been studied widely in both 
clinical as well as experimental settings and show the 
powerful effects of expectations on treatment outcomes. 
However, most studies on expectancy effects have focused 
selectively on the use of inert treatments for alleviating pain 
or illness. Less is known about the potential of enhancing 
cognitive performance or human experience through 
expectancy manipulations. In this talk I will present a series 
of studies aimed at investigating the psychological and 
neurocognitive basis of expectancy effects on human 
performance and experience. First, in three studies we used 
a placebo 'God-helmet' to manipulate mystical experiences 
and to investigate the effects of self-transcendence on self-
perception. In a second research line we used a placebo 
cognitive enhancement device and we found that belief in 
cognitive enhancement was associated with a stronger 
externalization of agency and a change in neural responses 
to errors. Third, in an fMRI study we found that the 
tendency to get absorbed in external stimuli was associated 
with a decreased activity of the default mode network 
(DMN) and the anterior cingulate cortex (ACC), thereby 
indicating that a process of de-selfing and reduced cognitive 
control could underlie suggestibility effects. These findings 
are integrated in the computational framework of predictive 
processing, which provides a unifying theory to account for 
religious and spiritual beliefs and experiences. 
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“I once was blind…” Choice Blindness and Religious 
Attitude Reversals 
 
Ryan McKay, Department of Psychology, Royal Holloway 
London 
 
“Choice blindness” refers to the fact that research 
participants often fail to notice mismatches between an 
outcome they choose and an outcome they receive, while 
nevertheless being prepared to offer justifications for 
choosing the outcome they did not in fact choose. Recently 
this phenomenon has been demonstrated in the domain of 
peoples’ political and moral attitudes. For example, one 
study ‘magically’ exposed participants to a reversal of their 
previously stated attitudes, and found that many participants 
not only failed to detect these reversals, but constructed 
coherent and unequivocal arguments supporting the 
opposite of their original position. In this talk I will describe 
some recent research adapting this paradigm to the domain 
of religion. Our findings reveal a dramatic potential for 
flexibility in our religious attitudes and beliefs. I will situate 
this research in the broader context of attempts to 
manipulate religiosity. 
 
 
Mind the Text - Retracing Mental States and Cognitive 
Trajectories in Historical and Text-Heavy Data 
 
Kristoffer Nielbo, Digital Text Laboratory & Interacting 
Minds Centre, Department of Culture & Society, Aarhus 
University 
 
Humans exhibit a species-unique capacity for long-term 
planning and future-oriented cognition. This ‘deep 
temporality’ is so fundamental to human behavior, that it 
can be considered the hallmark of our symbolically 
mediated environmental interactions. Systems of cultural 
norms and behavior (e.g., religious groups and traditions) 
have a long history and develop at a time scale, which can 
present a challenge to the canonical methods in cognitive 
and experimental anthropology. How, for instance, can we 
approach the historical and cognitive trajectories of 
adherents to a religion codified several thousand years ago? 
The proliferation of digitized historical and text-heavy data 
we are currently witnessing holds part of the solution. To 
illustrate this within the domain of cultural cognition, we 
present three studies that combine techniques from Natural 
Language Processing (NLP) and text data mining in order to 
study cognitive and affective trends at multiple time scales. 
Study 1 compares cognitive trajectories for historically 
significant religious experts; study 2 explores semantic 
change and concepts of mind in classical Chinese literature; 
and study 3 presents evidence for an evolutionary-based 
motivational model of religious fundamentalism. We argue 
that when combined with domain knowledge in language 
and culture, NLP and text data mining are promising 
approaches to cultural cognition at long time scales. 

Peer-reviewed Posters 
 
Supernatural Agents in Predictive Minds. Marc Anderson, 
Aarhus University. A description of what is currently 
regarded as one of the most promising models of perception 
in cognitive neuroscience, predictive coding, and the results 
of three experimental studies in which this framework is 
operationalized. 
 
AVM: Data Structures for the Cognitive Science of Religion. 
Tamás Biró, Eötvös Loránd University. Describes a method 
for understanding religion as a complex network of 
attribute-value matrices (AVMs). 
 
Flag Identity Theory (FIT): A Cognitive Explanation for 
Large Scale Group Cooperation and Conflict. Michael 
Gantley, University of Oxford, Justin Lane, Boston 
University. Describes Flag Identity Theory, which relies 
upon cognitive mechanisms for social identification and 
biases of loss avoidance to explain patterns of large scale 
cooperation. 
 
Culturally and Developmentally Robust Intuitions about 
Purpose and Intentional Design in Nature: Dual Processing 
Evidence from China. Deb Kelemen, Boston University, 
Elisa Järnefelt, University of Helsinki, and Liqi Zhu, 
Chinese Academy of Sciences. Describes the results of two 
studies conducted in China: the first replicated earlier 
Western-based findings of a default teleological bias. In the 
second, participants revealed marked tendencies to view 
natural phenomena as created, particularly under speeded 
conditions and in a non-human-made rather than human-
made condition. 
 
Computer Simulation of Large-scale Religious Systems. 
Justin Lane, Boston University. Describes the use of multi-
agent artificial intelligence to simulate individual and group 
level dynamics of religious cognition.  

Do forgiving God Primes Strengthen Support for State 
Sanctioned Punishment? Katherine O'Lone, Royal 
Holloway London. Describes the results of a study that 
investigated whether the manner in which God is believed to 
intervene affects people’s endorsement of state-sanctioned 
punishment.  
 
Cognitive Foundations of Theodicy. Karolina Prochownik, 
Jagiellonian University. Describes a dual-process cognitive 
approach to the study of theodicy. 
 
“I can’t believe she’s dead”: The Effects of Corpse Viewing 
and Corpse Condition on Vigilance for Deceased Loved 
Ones. Claire White, UC Northridge, Daniel MT Fessler, 
UCLA, Pablo Gomez-Forero, UC Northidge. Describes the 
results of a study that examines the effect of exposure to 
cues of death on vigilance for agents.  
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Overview and significance 
A new generation of deep neural network architectures has 
driven rapid advances in AI over the last ten years.  These 
architectures include convolutional neural networks 
(CNNs), recurrent neural networks (RNNs), and many 
variants and extensions.  Computational cognitive scientists 
and neuroscientists have now begun to explore these 
techniques, and how they might combine with other 
computational tools such as Bayesian models, symbolic 
grammars and rule-systems, probabilistic programs, and 
reinforcement learning. The goal of this workshop is to 
bring together some of the leading researchers working at 
this interface, for short talks and an integrative discussion of 
open questions and promising directions. 

Talks will cover many areas of cognition including 
perception, problem-solving and planning, decision-making, 
language and social cognition.  The focus will be on models 
of human behavior, but the potential bridge to neural studies 
in humans (via fMRI) and animals (via physiology) will 
also be explored.  Most talks will assume only a basic 
familiarity with neural networks, and so should be 
accessible to all CogSci attendees.  We hope to be scheduled 
for an afternoon slot, and have coordinated our plans with 
the DeepMind’s Deep Learning tutorial proposed for the 
morning which could serve as an introduction to more 
advanced methods that several talks will build on.   
 

Workshop structure. We plan a half-day workshop 
comprising seven talks, each 20-25 minutes, followed by a 
30-minute panel discussion with all speakers on open 
questions.  We will also encourage student participants to 
present posters on relevant work during the coffee break.  

Organizers and Presenters 
Ilker Yildirim (Organizer) is a research scientist at MIT. 
His research spans visual and multisensory perception, 
computational neuroscience, and artificial intelligence 

 

Joshua Tenenbaum (Organizer) is Professor of 
Computational Cognitive Science at MIT. He studies 
learning, perception, common-sense reasoning, and has been 
active in both cognitive science and artificial intelligence. 

 

Matt Botvinick is DeepMind’s Director of Neuroscience 
Research, and was formerly Professor of Psychology and 
Neuroscience at Princeton. He is a leader in computational 
cognitive neuroscience and reinforcement learning. 

 

Noah Goodman is a Associate Professor of Psychology, 
Linguistics and Computer Science at Stanford University. 
His research centers on computational modeling of higher-
level cognition and probabilistic programming languages. 
 

Thomas Griffiths is a Professor of Psychology and 
Cognitive Science at UC Berkeley. His group develops 
computational models of higher-level cognition, drawing on 
probabilistic, neural network, and evolutionary paradigms. 
 

Jessica Hamrick is a PhD candidate at UC Berkeley and 
former intern at DeepMind. Her research focuses on mental 
simulation, planning and metacognition.  
 

Tal Linzen is a postdoctoral researcher at ENS and will be 
Assistant Professor in the Department of Cognitive Science 
at Johns Hopkins starting in the fall. His research interests 
involve computational modeling and psycholinguistics.  
 

Daniel Yamins is an Assistant Professor of Computational 
Neuroscience in the Department of Psychology at Stanford. 
His research lies at the intersection of neuroscience, 
artificial intelligence, and psychology.  

Presentations 
Prefrontal cortex as a meta-reinforcement learning 
system (Botvinick). Two decades of neuroscience research 
on reward-based learning has converged on a canonical 
model, under which the neurotransmitter dopamine ‘stamps 
in’ associations between situations, actions and rewards by 
modulating the strength of synaptic connections between 
neurons. However, a growing number of recent findings 
have placed this standard model under strain. This talk 
draws on recent advances in AI to introduce a new theory of 
reward-based learning.  Here, dopamine trains another part 
of the brain, the prefrontal cortex, to operate as its own free-
standing learning system. This perspective accommodates 
the findings that motivated the standard model, but also 
deals gracefully with a wider range of observations, laying a 
fresh foundation for next-generation research. 
 
Less-supervised loss functions for training models of the 
visual system (Yamins). Recent advances in computer 
vision and AI have made it possible to build deep neural 
networks that mimic aspects of computation in the primate 
and human visual system.   The core idea behind these 
results is task-driven modeling, e.g. optimize a neural 
network for a complex ecologically relevant behavior, and 
then compare the learned model to neural responses in the 
brain areas thought to underlie that behavior.  While this 
approach has produced powerful predictive models of neural 
representations in adult animals, its main successes so far 
have unfortunately relied on using heavy semantic 
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supervision, using large labeled datasets – data streams to 
which real animals do not have access.  I will discuss recent 
work my lab has been doing to move beyond this limitation, 
developing less heavily supervised approaches to train deep 
neural network models of vision that may be more plausible 
models of real neural learning.  These ideas rely on loss 
functions defined in interactive worlds that attempt to better 
capture the true complexities of the environment in which 
early juvenile development takes place.  
 
Modeling “analysis by synthesis” in perception by 
combining generative models and deep inverse networks 
(Yildirim and Tenenbaum). In its most general form, 
perception can be defined as the solution to an inverse 
problem: identifying the world scene that gave rise to the 
observed retinal (or auditory, or haptic) data. It remains a 
mystery how the brain constructs such rich representations 
of the geometry of objects in a scene and their physical 
properties extremely quickly, in at most a few hundred 
milliseconds. Traditional models of how the brain solves 
such inference problems use iterative methods that are hard 
to map onto neural circuits and much too slow to explain 
online perception. Here we present a new approach that 
combines a deep neural network with a probabilistic 
generative model. This approach is as fast as pure feed-
forward models, but generates a rich description of 3D 
object shapes and physical properties. Applied to faces, our 
model explains both the tuning properties of cells in the 
macaque face patch system and human behavior in 
recognizing familiar and unfamiliar individuals. 
 
Deep networks for amortized inference in structured 
probabilistic models (Goodman). I will discuss deep 
amortized inference for probabilistic programming 
languages (PPLs). This is an approach that uses a PPL to 
describe complex probabilistic conceptual knowledge, and 
captures knowledge about how to use these concepts for 
inference via a deep 'inference network'. I will discuss 
several different objectives and training methods, including 
variational inference and 'dream learning' (a modern variant 
of wake/sleep). After describing the technical setup and 
showing the results for a few model-learning tasks, I will 
speculate about the relation of deep inference networks to 
human procedural knowledge. 
 
Leveraging deep learning to study representations 
underlying human cognition (Griffiths). Recent neural 
network models have resulted in significant progress in 
computer vision, speech recognition, and natural language 
processing, by learning representations of the statistical 
structure of complex visual, auditory, and linguistic stimuli. 
Understanding how the resulting models work — and how 
well they correspond with human perception — is an 
interesting scientific challenge. However, the 
representations that these models discover, when treated just 
as representations of complex stimuli, also offer the 
opportunity to extend the scope of psychological research. 

Psychologists studying problems such as categorization or 
memory have tended to focus on very simple stimuli that 
can be carefully controlled and parameterized. This makes it 
possible to formulate precise theories, but at the cost of 
potentially losing sight of the original phenomena: Do the 
same models that predict how people categorize sinusoidal 
gratings explain how they differentiate cats and dogs? I will 
talk about recent work that tries to leverage representations 
produced by neural networks — for both images and 
language — to study human cognition, highlighting the 
promise of this approach as well as some of the challenges. 
 
Metacontrol for Adaptive Imagination Based 
Optimization (Hamrick). Many machine learning systems 
are built to solve the hardest examples of a particular task, 
which often makes them large and expensive to run---
especially with respect to the easier examples, which might 
require much less computation. For an agent with a limited 
computational budget, this "one-size-fits-all" approach may 
result in the agent wasting valuable computation on easy 
examples, while not spending enough on hard examples. 
Rather than learning a single, fixed policy for solving all 
instances of a task, we introduce a "metacontroller" inspired 
by human cognition which learns to optimize a sequence of 
imagined internal simulations over predictive models of the 
world (called "experts") in order to construct a more 
informed, and more economical, solution. Our approach 
learns to adapt the amount of computation it performs to the 
difficulty of the task, as well as which experts to consult by 
factoring in both their reliability and individual 
computational resource costs. The metacontroller achieves a 
lower overall cost (task loss plus computational cost) than 
more traditional fixed policy approaches, demonstrating that 
our approach is a powerful framework for using rich 
forward models for efficient model-based reinforcement 
learning. 
 
Understanding neural models of human language 
(Linzen). Large-scale artificial neural networks have shown 
great promise in natural language processing, reportedly 
reaching human-level performance in some tasks. Yet our 
understanding of the capabilities of these methods is 
typically limited to general statistics averaged across a 
random sample of texts. Such coarse-grained evaluation 
metrics stand in marked contrast to the rich array of highly 
specific patterns identified by linguists and cognitive 
scientists. I will argue that this detailed characterization of 
human-level knowledge of language provides a yardstick for 
the desired behavior of an artificial intelligence system. 
Applying it to neural networks can help us understand the 
strengths and weaknesses of existing architectures and 
analyze models that are otherwise difficult to interpret. 
Finally, neural networks that combine powerful statistical 
learning with different degrees of representational 
assumptions can serve as useful baselines for psychological 
modeling. I'll discuss case studies illustrating this approach 
in both syntax and semantics.  
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Anthropology was a founding member of cognitive science 
(Bender et al., 2010; Gardner, 1985), sharing with other 
cognitive disciplines a deep interest in thinking and behav-
ior. With its unique expertise in the cultural content, con-
text, and constitution of cognition, it would still be essential 
to any comprehensive endeavor to explore the human mind 
(Bloch, 2012), but rather has turned into cognitive science’s 
“missing discipline” (Boden, 2006), thus leaving important 
questions unanswered or even unasked. Given that substan-
tial shares of knowledge are implicit and that cognition is 
situated, distributed, embodied, and grounded in various 
other ways, anthropological approaches provide privileged 
access to investigation: for arriving at reasonable hypothe-
ses, ensuring ecological validity, and even for coming up 
with new research questions and paradigms (Astuti & 
Bloch, 2012; Hutchins, 2010; Nersessian, 2006).   

In line with recent calls for rapprochement in Topics in 
Cognitive Science (Bender et al., 2012; Beller & Bender, 
2015), our symposium brings together scholars that repre-
sent different branches of contemporary anthropology with 
distinct perspectives—including ‘traditional’ social anthro-
pology, cognitive anthropology and ethno-linguistics, cogni-
tive ecology, evolutionary anthropology, and archaeology—
to present what they consider to be indispensable contribu-
tions to cognitive science.  

With our selection of authors, we hope to demonstrate the 
value of anthropological approaches for cognitive science as 
well as the potential benefits of cross-disciplinary collabora-
tion. Cognitive archaeologist Overmann discusses a theo-
retical perspective on how mind, behavior, and material 
artifacts interact to shape human cognition. Combining their 
expertise in linguistics and evolutionary anthropology, Rácz 
and Jordan investigate the design principles of kinship sys-

tems as near-universal conceptual tools. With his back-
ground in (ethno-)linguistics and cognitive anthropology, 
Le Guen uses Yucatec Maya sign languages to illustrate the 
importance of cultural practices for shaping cognitive be-
havior. Based on Hutchins’ cognitive ecology approach, 
Solberg speaks to questions at the intersection of anthropol-
ogy and philosophy of science by illuminating the cultural 
framework of science production in a biology lab. And so-
cial anthropologist Astuti  concludes by taking a bird’s eye 
view on how efforts to understand the human mind crucially 
benefit from acknowledging its historical origins and from 
taking the specific sociocultural contexts into consideration.  

Based on work some of which is published in high-quality 
journals (such as Science, Nature, PNAS, BBS, TiCS, Cur-
rent Anthropology, or Cognition), these participants will 
offer invaluable contributions to a more diverse, more inclu-
sive, and hence more comprehensive cognitive science.  

Archaeology and Cognitive Science 
Karenleigh A. Overmann 

Archaeology contributes to cognitive science in two key 
areas. First, in understanding human cognitive evolution, 
archaeology furnishes critical data on the timing and context 
of developments (Wynn, 2002). This approach assumes 
minds make tools: increasing complexity in material forms 
is an effect of, and thus signals, cognitive change related to 
neurological developments like encephalization. Second, 
archaeology provides unique insight into the ways materiali-
ty functions within the extended, enacted mind. This invert-
ed approach—tools make minds (Malafouris, 2013)—
examines how material forms interact with body and brain 
to create meaning and experience and potentialize behavior-
al and psychological change. In both contributions, archae-
ology negotiates temporalities, centuries to millennia and 
longer, that can be challenging for psychological theories 
and methods to assimilate (e.g., Overmann, 2016). 
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Cognitive and Adaptive-Historical Explanations  
for Kinship Diversity 

Peter Rácz & Fiona Jordan 

Kinship systems are semantic systems whose forms can be 
explained in terms of domain-general cognitive principles; 
kinship categories are optimised to be maximally distinct 
and as simple as possible. Kinship, then, is similar to other 
universal semantic categories such as colour terms. Howev-
er, whereas colour terms broadly fit into one typological 
hierarchy, kinship systems comprise a diverse typology. 
Alternatively, adaptive-historical explanations emphasise 
how cultural traditions and social practices (particularly 
marriage and transfer of resources) place functional pres-
sures on the shape of kinship systems (Jordan & Dunn, 
2010). Using a global ethnographic database of over a thou-
sand societies we show that marriage rules and ancestry 
have a significant influence on the type of kinship system 
found in a society. This remains true if we control for the 
effect of lateral transmission and phylogeny. This, in turn, 
means that kinship is best approached by combining cogni-
tive and historic-anthropological explanations. These results 
have broader implications for the understanding of lexical 
systems in particular and the mechanisms of human cogni-
tion in general.  

How Cultural Settings Frame Spatial Cognition: 
The Example of Yucatec Maya and  

Yucatec Maya Sign Language 
Olivier Le Guen 

On the Yucatec peninsula, the main native language is spo-
ken Yucatec Maya (YM). However, in villages where deaf 
people are born, a local sign language (YMSL) was created 
both by deaf and their hearing kin. Although both languages 
are in intense contact, they are genetically different, and 
YMSL is not a signed version of YM. In Le Guen (2011), I 
showed how gestures—in addition to linguistic structures 
(Levinson, 2003)—can support a geocentric frame of refer-
ence. In this paper, I want to elaborate on how deaf signers 
using YMSL still ‘inherit’ the same conception of space 
through cultural practices. 

Exploratory Experimentation in Experimental 
Systems: Novel Directions for the Cognitive 

Anthropology of Science 
Mads Solberg 

It is now widely recognised that progress in many scientific 
disciplines, like molecular biology, are not adequately de-
scribed by the hypothetic-deductive model of epistemic ac-
tion through experimental falsification. Instead, cumulative 
progress is achieved through description and modelling of 
mechanisms (interacting parts that produce regularities). 
One view claims that mechanistic discovery proceeds 
through exploratory experimentation; a practice where ex-
perimentation takes on many other cognitive functions than 
just hypothesis-testing. Experimental systems (material, 

conceptual, social, and cultural infrastructures of laborato-
ries) set up divisions of cognitive labour and distribute cog-
nition through time and space in ways that are critical to this 
process. This talk looks at how the alliance between anthro-
pology, cognitive science, and adjacent fields like philoso-
phy and history of science, can contribute to further devel-
oping this research area. Such collaborations are necessary 
for adequately explaining cultural transmission and cultural 
evolution in scientific knowledge, and for describing inter-
actions between mental representation, epistemic action, and 
material culture in scientific experimentation. I draw on 
examples from a long-term cognitive-ethnographic case-
study in a community of molecular life-scientists.  

Anthropology as a Critical Friend  
Rita Astuti  

Anthropology is commonly listed as one of the disciplines 
that make up cognitive science. But what exactly is the con-
tribution that anthropology can make to the interdisciplinary 
study of human cognition? The paper will argue that an-
thropology must take on the role of critical friend, constant-
ly reminding other disciplines of the historical origins of all 
human phenomena and of the theoretical and methodologi-
cal challenges that come from recognising that all aspects of 
human cognition develop in specific social and cultural con-
texts.  
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Introduction 
Narrative has been studied for millennia, though recent 

attention in the cognitive sciences has turned towards visual 
narratives like those found in comics (Cohn, 2013a) and 
films (Zacks, 2014). Most agree that the basic principles 
guiding comprehension involve principles that extend across 
the verbal and visual domains (Cohn, 2013b; Gernsbacher, 
1990; Magliano & Zacks, 2011). However, visual units of 
narrative—both drawn and moving—demand different 
affordances to retrieve and integrate information.  

Unlike verbal information, the sequential units of visual 
narratives use an analog spatial representation, from which a 
comprehender must extract the relevant information, ignore 
or suppress the irrelevant information, and work to connect 
such information across a sequence of units. This involves 
the integration of complex event information and its 
interaction with narrative structures.  

Such a process is further varied in the difference between 
static, drawn visual narratives (as in comics) and dynamic, 
moving ones (as in films). The introduction of movement to 
a sequence provides important cues and an additional layer 
of constraints on the effective communication of visual 
sequential information. 

This symposium highlights this growing field within the 
cognitive sciences. First, the presentations focus on visual 
narratives of both types: static, drawn narratives, and 
dynamic, moving ones. Second, they split their focus 
between eye-tracking and cognitive neuroscience. Together, 
these presentations will highlight the relevance of visual 
narratives for studying many facets of cognition, including 
attention, events, narrative, and discourse.   

Do you see what I see? The curious absence of 
endogenous effects on gaze during cinematic 

narratives 
Our first talk by Tim J. Smith, along with John P. Hutson 

(Kansas State University), Joseph P. Magliano (Northern 
Illinois University), and Lester C. Loschky (Kansas State 
University), explores the dynamic nature of film narratives. 
Cinematic narratives are ubiquitous but unlike textual 
narratives or static images, how we process edited 
audiovisual sequences is barely understood. From reading 
and scene processing we know that exogenous (i.e. stimulus 
demands) and endogenous factors (i.e. higher-cognitive 
factors such as individual differences and comprehension) 
compete over our overt attention, biasing where we fixate 
and how we process the information. However, eye-tracking 
studies of film viewing have demonstrated a surprising 
similarity in where multiple viewers direct their gaze; a 
phenomenon we call attentional synchrony (Smith & Mital, 
2013). Task instruction, individual differences such as 
expertise and age, and even differences in how the edited 
scenes are comprehended often fail to show gaze 
differences. This fragility of endogenous influence is at 
odds with emerging theories of active vision (Henderson, 
2017). In this talk we will review several studies from our 
labs investigating the causes of attentional synchrony and 
show how filmmakers have intuited techniques to guide 
viewer attention in complex dynamic scenes. These findings 
will be used to extend the Attentional Theory of Cinematic 
Continuity (Smith, 2012) to include an appreciation of the 
dynamic interplay between exogenous and endogenous 
factors during cinematic narratives and the apparent 
dissociation between gaze and comprehension.  

Eye-tracking sequential context in scenes, 
comics and movies 

The scenes that confront us in our everyday lives are highly 
structured in time and space.  However, most of what we 
know about how people look at such scenes is based on 
experiments with isolated images presented in a random 
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order. This talk by Tom Foulsham will describe results 
from scenes, comics and movies which show how even 
minimal sequential context changes the way that visual 
attention is deployed. In natural scene viewing, the way that 
people look at isolated photographs can be compared to how 
they view dynamic video or to the gaze behaviour shown 
when people walk through a real environment. In these 
cases the differences observed reveal how expectations 
govern our attention. Building up expectations is also a key 
part of how visual narratives function in comics and movies. 
We have begun to examine how eye movement patterns 
reflect information processing of comic strips (Foulsham, 
Wybrow, & Cohn, 2016). As expected, participants’ 
viewing patterns change when a coherent narrative is 
available. The eye-tracking data can also be used to generate 
new experimental manipulations (e.g., mimicking fixations 
by zooming into particular content). These manipulations 
reveal how attention to particular features or moments can 
affect comprehension of the narrative. This technique is 
being pursued in both comics and video sequences, 
providing new insights into top-down control of attention 
and the exploitation of this in visual media. 

Event Comprehension and Memory in Healthy 
Aging and Early Alzheimer’s Disease 

Research on film has also shared methods with the study 
of visual events. In this presentation, Jeffrey M. Zacks 
explores these relations along with Heather R. Bailey 

(Kansas State University, and Christopher A. Kurby (Grand 
Valley State University). Events unfold in time, and viewers 
track the temporal dynamics of activity as part of event 
understanding. Adaptively tracking event dynamics is 
important for guiding action online and for forming durable 
episodic memories. Event perception and event memory 
both can be affected by healthy aging and by neurological 
disorders. Here, we describe a line of research aimed at 
characterizing how the visual comprehension of events is 
impacted by healthy aging and by early Alzheimer’s disease 
(AD). One characteristic of aging is that older adults 
segment ongoing activity into events less well than do 
younger adults. However, this general pattern is moderated 
by individual differences, and is amplified by AD. Impaired 
event segmentation is associated with reduced subsequent 
memory and impaired action performance. Superior event 
perception is associated with greater neural synchrony in the 
right posterior temporal sulcus and left dorsolateral 
prefrontal cortex. These results suggest that interventions to 
improve event segmentation or online event memory 
representations may help visual comprehension and memory 
in aging and AD. 

Towards a processing model of visual 
narratives 

The past decade has seen a rapid growth of studies on 
visual narrative in the cognitive and brain sciences, in static 
form often focusing on the sequential images in comics. 
Neil Cohn will summarize and integrate a growing literature 
of both behavioral and neurocognitive research into a model 
of sequential image processing. Complex visual narratives 

involve an interaction between two processing streams. An 
ongoing semantic understanding builds meaning into a 
growing mental model of a visual discourse. Discontinuity 
across dimensions of spatial, referential, and event 
information then incur costs when discontinuous with the 
growing context. In parallel to these processes, a structural 
system organizes semantic information into coherent 
sequences using a narrative grammar that maps semantic 
information to categorical roles, which are then embedded 
within a hierarchic constituent structure. This system allows 
for specific predictions of structural sequencing on the basis 
of constructional schemas, independent of semantics. 
Together, these interacting streams engage an iterative 
process of retrieval of semantic and narrative information, 
prediction of upcoming information based on those 
assessments, and subsequent updating based on 
discontinuity. These core mechanisms are argued to be 
domain-general, as suggested by similar 
electrophysiological brain responses generated in response 
to sequential images, music, and language.  
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Why games? How could anyone consider action games
as experimental paradigms for Cognitive Science? In 1973,
as one of three strategies he proposed for advancing Cogni-
tive Science, Allen Newell exhorted us to “accept a single
complex task and do all of it.” More specifically, he told us
that rather than taking an “experimental psychology as usual
approach” that, we should “focus on a series of experimental
and theoretical studies around a single complex task” so as to
demonstrate that our theories of human cognition were pow-
erful enough to explain, “a genuine slab of human behavior”
with the studies fitting into a detailed theoretical picture. Ac-
tion games represent the type of experimental paradigms that
Newell was advocating and the current state of programming
expertise and laboratory equipment, along with the emer-
gence of Big Data (Griffiths, 2015) and Naturally Occurring
Data Sets (NODS, Goldstone & Lupyan, 2016), provide the
technologies and data needed to realize his vision. Action
Games enable us to escape from our field’s regrettable fo-
cus on novice performance to develop theories that account
for the full range of expertise through a twin focus on ex-
pertise sampling (across individuals) and longitudinal studies
(within individuals) of simple and complex tasks.

This Symposium is inspired by the recent Action Games
as Experimental Paradigms for Cognitive Science (Game-
XP), issue of Topics in Cognitive Science (topiCS), April
2017. It includes late-breaking work from some of the re-
searchers represented in that topic as well as new work by
new researchers.

Symposium Presentations – in Brief

• Ray Perez provides our keynote and focuses on the
long history and current promise of action games as

Organized by Wayne D. Gray. Address all correspondence to
Wayne Gray <wayne.gray.cogsci@gmail.com>.

a research tool for understanding theory and as a de-
livery vehicle for training.

• Martin Butz introduces a new, hybrid cognitive archi-
tecture which takes as its domain the world of Super-
Mario Brothers™.

• Stuart Reeves introduces our field to Ethnomethodol-
ogy and Conversation Analysis (EMCA) research and
to the questions this community asks of games.

• Matt Sangster uses 1.9 million records from 539 thou-
sand matches of teams of 5 vs 5 people who play
the world’s most popular game, League of Legends,
to study the distinction between individual and team
expertise.

• Tom Stafford uses data from a cellphone game to in-
vestigate the efficacy of sleep consolidation versus
wake-time distributed practice.

• Fernand Gobet provides calm and perspective by dis-
cussing this recent flurry of Game-XP from the 50+ yr
perspective of cognitive science research on Chess.

Ray Perez – Prequel to Game-XP: Time Spent, Player
Age, Effects of Game Play, and Understanding Expertise

Within two months of its release, the video game Call
of Duty: Black Ops (Activsion Publishing Inc., 2010) was
played more than 600 million hours worldwide, with sales of
over one billion dollars (Albnanesius, 2010). U.S children
spent on average 1 hr and 13 min playing video games every
day in 2010, a 300% increase from 1999 (Rideout, Foehr, &
Roberts, 2010). The average age of game players is 31, with
29% under 18 years old, 32% in the 18-35 year range, and
39% being 36 year or older. Video game playing is pervasive
in our society; there is growing body of evidence that video
gaming can have beneficial effects on the organization and
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function of the brain and learning. However, very little is
known about the long term effects of playing video games
or what is learned from these games or for that matter what
expert game playing looks like and how it develops. This
symposium explores the nature of extreme expertise in game
playing with the focus that understanding expert game play-
ing should inform theories of cognition.

Martin V. Butz – Mario becomes Cognitive

The SEMLINCS cognitive architecture uses the world of
SuperMario™ as its task environment and endows Mario,
himself, with agency. Mario learns a conceptual, genera-
tive model of its environment in the form of probabilistic
production rule-like structures from its own, autonomously
gathered, continuous sensorimotor experiences. As a result,
SEMLINCS enables Mario not only to plan and control en-
vironmental interactions in a versatile, goal-directed, self-
motivated manner – focusing, for example, on rescuing the
Princess or on gathering coins – but also to verbalize this
knowledge and to receive additional knowledge linguistically
(Schrodt, Kneissler, Ehrenfeld, & Butz, 2017).

Stuart Reeves – The Ethnomethodogy of Games

Like Cognitive Science, Ethnomethodology and Conver-
sation Analysis (EMCA) focuses on human activities that oc-
cur during game play. Yet EMCA sets cognitive explanations
of human action to one side and instead describes how such
action is practically, witnessably achieved. The presentation
will demonstrate the utility of the EMCA approach and em-
phasize the contrast between the questions asked by CogSci
and EMCA (Reeves, Greiffenhagen, & Laurier, 2017).

Matthew Sangster – Finding the “I” in Team

Can we study the contribution of individual performance
in a team setting? Can we find the “I” in team? Using Big
Data (1.9 million records from 539 thousand matches) from
League of Legends™ Sangster says “yes” and presents steps
towards establishing a measure that can evaluate individuals
performing in a team context.

Tom Stafford – Sleep Consolidation: A Field Study

Few researchers would expect that data collected from a
cellphone action game could be used to address questions of
sleep consolidation in skill learning. Realizing that their data
set of Axon™ games included long breaks between some
games, they pulled out instances in which successive games
occurred across sleep or non-sleep hours, with the former
(but not the latter) being candidates for sleep consolidation

effects. The approach and results demonstrate the promise
of Big Data to raise questions that have little or nothing to
do with the paradigm used to collect the data (Stafford &
Haasnoot, 2017).

Fernand Gobet – Discussant

Newell (1973) argued that progress in psychology was
slow because its empirical research focused on answering bi-
nary questions rather than building theories that were pow-
erful enough to explain “a genuine slab of human behavior”.
As measured by the work presented in this symposium and
in its associated issue of Topics in Cognitive Science (Gray,
2017), Gobet (2017) attempts to assess the age-old question
of any young field; namely, “are we there yet?”
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Overview 

In recent years there has been new recognition of the 

importance of spatial thinking in Science, Technology, 

Engineering and Mathematics (STEM) disciplines, in part 

because of evidence that spatial ability predicts success and 

persistence in STEM (Wai, Lubinski & Benbow, 2009), but 

is not fostered in our educational systems (National 

Research Council, 2006).  Based on this evidence, current 

approaches aim to increase science achievement by training 

the types of general spatial skills measured by spatial ability 

tests. However, although there is considerable evidence that 

these spatial skills can be trained (Uttal, et al., 2013), there 

has been little evidence to date that training of general 

spatial skills transfers to success in STEM disciplines (Stieff 

& Uttal, 2015).  
In this symposium, we will take a critical approach to 

issues of how to educate spatial thinking, both by raising 
some theoretical questions about the nature of spatial 
thinking in STEM, and by considering a range of different 
approaches to enhance the development of spatial 
thinking at different educational levels (elementary, 
secondary, and college) and in different STEM 
disciplines. The participants will discuss a broad range 
of spatial challenges faced by students in STEM learning, 
including mastering discipline-specific spatial language, 
novel visuospatial representations, and the interplay 
between visualization and analytic reasoning strategies.  

The four talks will be by researchers that differ in 

disciplinary expertise, methodologies, and theoretical 

frameworks. David Uttal, an expert in cognitive and 

developmental psychology will describe a program that 

develops 12
th

 grade students’ spatial skills through the use 

of Geographic Information Systems (GIS). Mike Stieff, an 

expert in chemistry and learning sciences will describe how 

he has used theories of representational competence to 

design laboratory studies and classroom interventions that 

improved spatial thinking in college-level chemistry by 

targeting students’ understanding of domain-specific 

visuospatial representations. Tom Lowrie, an expert in 

mathematics education and assessment will describe an 

intervention conducted by elementary school teachers in the 

Australian school system, which improved students’ spatial 

reasoning and transferred to mathematics achievement. 

Stella Vosniadou will describe laboratory studies that 

provide evidence for a shift from visual-spatial to analytic 

thinking with expertise in Geometry and Chemistry. She 

will interpret these results as an instance of conceptual 

change that raises questions about the relationship of spatial 

reasoning to STEM problem solving as learning progresses. 

Mary Hegarty will introduce the topic, moderate the 

symposium and lead a discussion on lessons learned about 

the nature of spatial thinking and how it can be best fostered 

in our educational systems.  

 

Training Spatial Problem-Solving (David Uttal) 

Many studies have demonstrated that spatial skills 

strongly predict STEM achievement and attainment, and 

that spatial skills can be improved through training and 

experience (e.g., Uttal et al., 2013).  However, most of these 

studies have focused only on psychometrically-assessed 

spatial skills, such as mental rotation.  Although important, 

it seems likely that STEM skills will involve more than 

these core skills.  For example, learning STEM will involve 

higher-order spatial skills, such as reasoning about patterns 

and distributions, and determining how best to represent and 

make decisions about spatial data. Therefore, we have 

created a program that emphasizes the usual of spatial data 

and extensive mapping challenges with Geographic 

Information Systems (GIS) to facilitate the development of 

higher-order spatial skills (Jant et al, 2013). 12
th

-grade 

students in several high schools completed the curriculum.  

They demonstrated improvement in spatial reasoning and 

more general scientific problem solving, indicating that 

higher-order spatial skills can be enhanced. 
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Improving Spatial Thinking in STEM through 

Representational Competence (Mike Stieff) 

Using the domain of chemistry as a context, I will explore 

the design of interventions that enhance spatial thinking by 

improving students’ representational competence (i.e., skills 

related to interpreting, transforming, and creating 

visuospatial representations). Spatial thinking with 

visuospatial representations is central to learning and 

problem solving in all STEM fields. Students with low 

spatial ability have more difficulty interpreting visual 

representations in STEM courses, fueling deficit models of 

who can succeed in STEM fields and motivating 

educational interventions that aim to train general spatial 

ability independent of disciplinary content. Interventions 

developed in my laboratory include alternative strategy 

training (Stieff, et al. 2014), modeling activities (Stieff, et 

al., 2016a) and gesture (Stieff, et al., 2016). Each 

intervention has yielded significant improvements in 

representational competence and student achievement on 

spatially-demanding assessments. In three experiments, I 

will show that representational competence is highly 

responsive to instruction and demonstrate that students who 

might otherwise be excluded from STEM degree programs 

based on their spatial ability can attain successful learning 

outcomes with appropriate support. 

 

Developing Spatial Reasoning Programs for STEM 

learning: Empowering Classroom Teachers to Embed 

Intervention into Practice (Tom Lowrie) 

Although there has been considerable research on how to 

improve spatial ability, few studies have considered the 

effect of spatial training on STEM learning (Stieff & Uttal, 

2015); despite evidence that improving spatial thinking can 

improve skills necessary to succeed in STEM disciplines 

(Uttal, et al., 2013). In fact, even very limited spatial 

training seems to improve student’s mathematics skills 

(Cheng & Mix, 2014). However, current spatial intervention 

programs are not likely to have much impact on school 

curricula, since the training is not embedded within daily 

classroom practices. Recently, a classroom-based spatial 

intervention study demonstrated improvements in students’ 

spatial and mathematics performance (Lowrie, Logan & 

Ramful, in press). The intervention was implemented by 

students’ own classroom teachers. This presentation will 

focus on the need for spatial intervention programs to be 

framed around meaningful pedagogical frameworks, 

informed by cognitive science, aligned to school curricula, 

and implemented by classroom teachers.   

The Paradoxical Relation between Spatial Reasoning 

and Success in STEM (Stella Vosniadou)  

I will present results from two studies which used a 

visual/analytic strategy task to investigate changing 

relations in the adoption of visual/spatial and analytic 

strategies in geometry and chemistry. The results showed 

that a) there is increasing reliance on the adoption of 

analytic strategies with the development of domain 

expertise (see also Stieff et al., 2014), and b) that this 

reliance seems to depend on domain knowledge rather than 

on individual differences in spatial reasoning (Kospentaris 

et al., 2016; Vlcacholia et al., 2015). Given the convincing 

evidence that spatial reasoning abilities can predict success 

in STEM disciplines (Wai et al., 2009), the finding that 

problem solving in expert scientists increasingly relies on 

specialized, domain-specific analytic approaches raises 

important questions about the exact relationship between 

spatial reasoning and scientific problem solving.   
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Background and Motivation
Problem solving is one of the hallmarks of human cog-
nition. The term covers a wide range of behaviors, in-
cluding abilities for solving unfamiliar puzzles, designing
new artifacts, generating extended plans, and pursuing
complex routine activities. These each require people to
carry out sequences of mental or physical steps to achieve
their objectives. They can involve reasoning, subgoaling,
recognizing alternatives, evaluating them, and guiding
search through large spaces.

The study of problem solving played a crucial role in
the early development of cognitive science as a field. Re-
search on this topic revealed basic insights about the
representations and processes that underlie high-level
cognition. Empirical studies of human problem solv-
ing provided some of the first evidence for the compu-
tational nature of human thinking, and related compu-
tational models led to major theoretical advances con-
cerning heuristic search, goal processing, expert perfor-
mance, and production systems. There is little question
that, without its early emphasis on problem solving, cog-
nitive science would be a very different discipline.

In recent years work on this topic has been poorly rep-
resented at the annual Cognitive Science meeting. Some
might draw the mistaken conclusion that research has
stalled or that there remain no open issues. In fact, re-
search has continued and has produced clear advances.
Thus, problem solving or, more generally, goal-directed
sequential activity is now typically understood within
the context of the wider cognitive architecture, including
how it uses domain-specific knowledge and heuristics in
the service of goals. This symposium will draw together
some of the recent work in this area, with the aims of
highlighting progress and clarifying outstanding issues
and contemporary research questions.

Scope and Organization
The five talks in this symposium will report research
that covers a wide range of issues within contemporary
problem-solving research, from incubation processes on
insight tasks to the use of heuristics by experts in goal-
directed design. What the research has in common is a
concern with activity over time that is goal directed but
also situation aware.

Thomas Ormerod will examine the development and
testing of computational models of insight, with a fo-
cus on capturing differences between problem-solving
tasks with unitary or multiple architectures, the diffi-
culty of modelling apparently non-monotonic processes,
and whether insight is governed by special or general cog-
nitive processes. A meta-analysis by Sio and Ormerod
(2009) of incubation effects found differences on linguis-
tic puzzles such as Remote Associates tasks and on visual
puzzles like the nine-dot problem, and similar task-based
differences occur with sleep and analogy. His presenta-
tion will examine the extent to which different architec-
tures and mechanisms, such as activation of associative
networks (Monaghan et al., 2013) or goal-directed search
for problem representations (Ormerod et al., 2013), are
needed for different puzzle types, and will report models
developed for both types of problem.

Colleen Seifert will discuss creative problem solving
in design, focusing on how designers intentionally in-
troduce variation. Consideration of multiple candidate
concepts early in the design process is linked to bet-
ter solution outcomes, but creating divergent pathways
within the sequential activity of problem solving requires
additional processes oriented to this goal. As in many
areas of expertise, use of analogies with past solutions
or precedents can be usefully applied in creative prob-
lem solving. Her Design Heuristics approach (Yilmaz
et al., 2016) distills knowledge of design precedents to
serve as generative constraints to guide divergent think-
ing. The heuristics are captured from studies of success-
ful design outcomes within a wide variety of problem set-
tings, including award-winning products, a longitudinal
case study of an industrial designer, and protocol stud-
ies of industrial and engineering designers. Compilation
of 3450 design outcomes revealed 77 design heuristics
that introduce intentional variation into the generation
process. These ‘cognitive shortcuts’ guide processing to-
wards more, and more varied, design solutions.

Dario Salvucci will examine people’s ability to per-
form multiple tasks at the same time. Often, multitask-
ing is viewed as involving two separate and distinct activ-
ities, and indeed such multitasking appears often in the
everyday world (the literal and metaphorical “walking
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and chewing gum”). However, multitasking often occurs
in service of a single goal, with multiple ‘threads’ of pro-
cessing performing different actions that eventually come
together to complete a single purpose. Threaded cogni-
tion (Salvucci & Taatgen, 2008, 2011) is a computational
theory, embedded within the ACT-R cognitive architec-
ture, that aims to explain the power and limitations of
human multitasking. In his presentation, he will dis-
cuss the theory and implications of threaded cognition
for problem solving and other goal-oriented sequential
activities, especially in the context of concurrent multi-
tasking and task interruptions.

Richard Cooper will consider problem solving in terms
of a core distinction between routine and nonroutine
behaviour. His architecture is based on Norman and
Shallice’s (1986) dual-systems theory of the control of
thought and action. In this account, routine or over-
learned behaviour, while goal oriented, is schema driven
and controlled by an activation-based ‘automatic’ sys-
tem. In contrast, nonroutine behaviour involves higher-
level cognitive processes that bias the routine sys-
tem’s activation in a deliberative, goal-directed fashion
(Cooper et al., 2014). He will argue that human cogni-
tion requires: (a) explicit representation of subroutines,
including their goals or effects, (b) hierarchically struc-
tured task knowledge, to support flexible and creative
combination of subroutines in novel ways, and (c) con-
trol mechanisms that monitor progress towards goals,
suppress prepotent response schemas, and recall rele-
vant episodic memories to support analogical planning.
He will contrast these features with those that underlie
recent machine learning accounts of sequential activity.

Pat Langley will present a new architectural theory
that addresses four issues typically neglected in accounts
of problem solving. One is an embodied agents’ need
to represent and reason about both qualitative relations
and quantitative attributes when describing states. A
second is the relation between symbolic goals and nu-
meric evaluation functions, which address different as-
pects of purpose-driven behavior. A third issue con-
cerns the introduction of agents’ top-level goals and their
change over time. A final topic is the great variability
observed in human problem solving, both across people
and task settings. He will present a new cognitive archi-
tecture that incorporates ideas from earlier work but in-
troduces new structures and processes that address these
challenges (Langley et al., 2016).

In order to ensure coherence, presenters will each con-
sider the problem-solving phenomena of interest, repre-
sentational issues, and relevant architectural processes,
such as retrieval, attention, and goal handling. Cooper
and Langley will jointly moderate the session, summariz-
ing the symposium aims, introducing each of the presen-
ters, and ensuring the question-answer session remains
timely and on topic.

Concluding Remarks
Taken together, these presentations will offer a broad
sample of current research on problem solving and se-
quential activity. Each speaker has contributed to this
area for many years and is well known for his or her ac-
complishments. Their topics range from creativity and
insight to routine behavior on complex tasks. Their re-
search builds on empirical studies of cognition but also
contributes to architectural accounts of the mind.

We believe that this diverse set of presentations will
convince conferences attendees that problem solving re-
mains a critical area of enquiry within Cognitive Science,
with both continuing theoretical progress and outstand-
ing challenges. We further hope that the symposium will
motivate audience members to join the quest to under-
stand this fundamental aspect of human cognition.
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Introduction 
This symposium presents four collaborative research 

projects conducted as part of LUCID, a unique cross-
disciplinary graduate training program funded by the NSF’s 
National Research Traineeship mechanism. LUCID trains 
scientists from computational and behavioral disciplines to 
advance basic and applied research in domains where 
machines are used to instruct, predict, understand, respond 
to or learn from human users. Such human-machine 
interactions have a remarkably broad range of application—
in public and private education across the lifespan, industry 
and information technology, public and private health 
management, social networking and communication, 
robotics and human-computer interaction, national security, 
public policy, and, of course, basic research into the nature 
of learning, cognition, and intelligent behavior.  

The current talks all consider how machine learning, 
cognitive modeling, and data-science might be integrated to 
address core questions in human learning and education. 
How can computational learning models best be leveraged 
to speed knowledge acquisition and breadth of transfer in 
educational contexts? How can we efficiently measure 
perceptual and cognitive structures online or in the lab? 
How do such structures change with increasing knowledge 
or expertise? How can cognitive models developed to 
explain behavior in simple lab-based tasks be extended to 
aid learning in educational contexts? And, if human beings 
are rational learners as most models assume, how do false 
beliefs arise and why are they so widespread? 

The speakers consider answers to these questions that 
arise at the intersection of computer science, engineering, 
psychology, and education sciences. Sen, Meng, Matthews, 
Alibali, and Zhu consider how state of the art search 
techniques in machine learning, combined with cognitive 
models of human learning, can yield prescriptions for the 
optimal “diet” of practice in any given learning task. 
Mason, Nowak, and Rau describe research using a novel 
adaptive-sampling tool to measure the perceptual 
similarities discerned by undergraduates amongst diagrams 
of molecules, with the aim of understanding which 
perceptual features support or undermine a good 
understanding of the underlying chemical structure. Binzak, 
Sievert, Murphy and Hubbard apply contemporary 
multidimensional scaling algorithms to show that single 
digit number concepts differ qualitatively in experts and 

novices, and consider the implications for our developing 
understanding of numerical representation in the brain. 
Finally, Frigo and Rogers describe behavioral and 
simulation work suggesting a new hypothesis about how 
and why learning can go so wrong when information 
propagates in social networks. 

Following these talks we will briefly lay out the 
challenges we have encountered in pursuing cross-
disciplinary training of this kind with the goal of spurring a 
brief discussion session in which the audience can ask the 
program PIs and trainees about both the science and the 
training approach. 

Optimizing Human Learning with Machine 
Teaching 

A long-standing but elusive goal in machine-aided 
education has been to exploit cognitive models of human 
learning to select teaching or practice experiences for 
students that will efficiently lead them toward the desired 
knowledge state. We show how contemporary optimization 
methods allow theorists to discover, for any implemented 
learning model and desired outcome, an optimal teaching 
set—that is, a model training set that most efficiently 
produces the desired outcome given the model. We then 
report experiments assessing whether thus approach can be 
used to speed human learning, taking arithmetic as an 
example domain. Prior work has shown that people employ 
different learning strategies depending upon the structure of 
their practice experiences. When practice is purely symbolic 
(e.g. flash-card learning) people acquire item-specific 
knowledge that does not generalize, whereas when practice 
highlights underlying quantitative relationships, people 
learn functions that transfer well to unpracticed problems. 
This suggests that the optimal teaching set—the practice 
experiences that most rapidly produce knowledge that 
transfers broadly—will differ qualitatively depending on 
whether practice is symbolic or quantitative. We describe a 
series of experiments testing these predictions with 
participants learning new arithmetic relations through a 
computer-mediated teaching system that controls how 
practice problems are sampled. The results highlight the 
potential for machine teaching and cognitive modeling to 
boost learning in important educational domains.  

 
Discovering perceived relations among 

molecular representations 
To succeed in science courses, students must learn to 
rapidly and effortlessly translate among different visual 
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representations of key representational structures with a 
high degree of fluency. This is a difficult task because 
students must learn to interpret individual representations on 
their own while simultaneously learning the relations among 
different representations. To better understand these 
processes, we used a novel adaptive embedding algorithm to 
identify which molecular representations beginning 
undergraduate students find similar and why (e.g., Lewis 
structure, ball-and-stick). Each trial of the embedding task 
asks participants to decide which of two candidate diagrams 
is most similar to a third. The algorithm adaptively selects 
triplets for comparison in a manner that allows for efficient 
estimation of perceived dissimilarities amongst all 
diagrams. From these dissimilarities we generated models of 
how different molecules are embedded in a perceptual 
similarity space, in the eyes of the typical undergraduate 
student. The result revealed an otherwise inaccessible set of 
visual features that jointly predict the novice similarity 
judgments, allowing us to identify the features salient to 
novice students without relying on verbal mediation. The 
same tool can likewise be used to identify features that 
govern the perceptual decisions of chemistry experts, with 
the ultimate aim of developing interventions that guide 
novice perceptual attention toward the features discerned by 
experts. 

Beyond Magnitude: Psychological and Neural 
Representations of Number Properties 

In classic work Roger Shepard and colleagues (1975) 
employed multidimensional scaling to show that, among the 
graduate students and colleagues who were his subjects, 
single-digit number concepts encode rich structure including 
primeness, parity, trinity, and exponentiation. This 
conclusion is hard to reconcile with much contemporary 
work suggesting that number concepts are grounded in an 
innate and widely-conserved approximate magnitude 
estimation system. In a series of studies, we used behavioral 
and brain imaging methods to investigate the psychological 
and neural mechanisms supporting adults’ sensitivity to 
properties of number beyond magnitude, with the aim of 
reconciling this discrepancy. We first replicated Shepard’s 
result in a cohort of students and colleagues, using a triadic 
judgment task to estimate conceptual similarities discerned 
amongst single-digit numbers. We then compared these 
representations among expert (math and CS grad students) 
and non-expert (Psychology undergraduates) groups, and 
found that rich structure was only observed in the experts. 
In a third study we examined whether explicit instruction 
can tune number concepts, with results revealing that 
magnitude information strongly dominates conceptual 
structure in non-experts but not experts. Finally, we have 
begun to assess what these behavioral differences suggest 
about the neural representation of number concepts. 
Participants viewed single-digit numbers while their brains 
were scanned in a slow event-related fMRI design. After a 
delay, they were instructed to think about a specific property 
of that number, and then were asked to judge whether that 

number matched a target number on that specific property. 
Using multivariate pattern classification, we assessed 
whether magnitude, primeness, and parity could be decoded 
from the neural responses measured, both before and after 
the important property was cued on each trial. The 
comparison of behavioral and brain imaging results carries 
important implications for an understanding of numerical 
cognition beyond magnitude, and for the role of expertise in 
reorganizing conceptual representations of numbers. 

Why do false beliefs persist in crowds? 
If human learning is rational as most cognitive models 

propose, what explains the emergence and widespread 
persistence of demonstrably false beliefs? We consider a 
new hypothesis that stems from an important difference 
between learning studies in the lab versus the real world. In 
the lab learners typically receive a single source of correct 
feedback, whereas in real life learners encounter many 
different sources of information that vary in their 
knowledge, motivation, and trustworthiness. How then do 
learners combine information from disagreeing sources? 
We examined how learners weight different sources when 
updating their beliefs, as a function of the degree to which 
the sources cohere with the learner’s prior beliefs. The 
results reveal a previously undescribed learning bias that, 
counterintuitively, can lead groups of learners to disagree 
despite overwhelmingly similar learning experiences. To 
understand how this learning bias might lead to the 
emergence and persistence of false beliefs, we report 
simulation experiments in which many learners provide 
teaching labels to one another through a social network. 
Each simulated learner updates its beliefs in accordance 
with the empirically-observed learning bias, with the 
consequence that the cohort fractionates into mutually 
distrustful subgroups that adhere to different beliefs and 
ignore feedback from out-group members. The work thus 
provides a candidate mechanism for understanding how 
incorrect beliefs can arise and why they persist, even if 
individual learners behave in accordance with rational 
models in lab-based studies. 

UW-Madison Participants 

Computer Science: X. Zhu, A. Sen* 
Educational Psychology: J. Binzak*, E. Hubbard, C. Kalish, 
P. Matthews, R. Meng*, M. Rau. 
Electrical & Computer Engineering: B. Mason*, R. Nowak, 
S. Sievert* 
Psychology: M. Alibali, V. Frigo*, A. Murphy*, T. Rogers 
 
*LUCID Trainee
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Motivation & Overview 
Questions about science literacy and the rejection of 
scientific consensus are once again in the spotlight, with 
freshly-ignited international debate over the facts of climate 
change, and continued controversy around the teaching of 
evolution. In recent years, cognitive scientists have made 
valuable contributions to these debates: a now substantial 
and diverse research field has implicated a range of 
cognitive, motivational and emotional factors that contribute 
to science acceptance, and researchers are increasingly 
concerned with the application of these insights to improve 
the quality of public debate and science-relevant policy. 

In this symposium we focus on a specific strand of this 
research field – that related to the concepts and intuitions 
deployed in reasoning about the biological world. A 
defining feature of our symposium is the inclusion of 
nascent research programs exploring the role of biological 
reasoning in newly-emerging domains of public debate (e.g. 
synthetic biology), alongside more established research 
areas (e.g. climate change & evolutionary theory). Our core 
aims are two-fold: to advance key theoretical debates 
relating to reasoning in the biological domain via the 
presentation of new empirical data, and to highlight 
emerging best-practice in translating this basic research into 
applied tools in both formal learning and informal 
communication contexts. We are confident that this focus 
will be of interest not only to researchers in the broader 
areas of science literacy, reasoning and conceptual change, 
but also to those interested in the challenge of applying 
cognitive science research for the public good.  

Within this theoretical and applied framework we bring 
together researchers from a variety of disciplinary 
backgrounds, including anthropology, philosophy, and 
psychology, to explore the themes of the symposium from 
the perspectives of human development, education, 
cognitive processing, moral reasoning, cultural variation, 
risk perception, and conceptual knowledge structure.  

The symposium will consist of four talks and a panel 
discussion. Kelemen will present cross-cultural evidence 
for the developmental persistence of teleological biases, and 
describe the translation of these findings into early-
education tools. Shtulman will present data on the 
conceptual prerequisites for understanding evolution, and 
discuss implications for increasing support for evolution-
relevant policies. Coley & Betz will present new work on 
intuitive reasoning about climate change. Swiney will 
present data on the interplay of intuitive biology and moral 
reasoning in shaping risk perceptions of synthetic biology 
and discuss related communication challenges. Blancke will 
lead the panel discussion, drawing on his own research 
bridging cognitive science and public understanding of 
biotechnology (Blancke et al. 2015). Together the 
participants have published several dozen papers in the area, 
including in PNAS, Psychological Science, Cognitive 
Science, Cognition, and Child Development. 

Kelemen: Purposefully Designing Materials for 
Teaching Children About Natural Selection 

In a world where economies are increasingly fueled by 
biotechnological responses to rapidly adapting disease 
pathogens, pesticide-resistant insects, and climate change, 
understanding evolutionary processes is prerequisite for 
informed decision-making about bioethical issues. Despite 
this, the fundamental evolutionary mechanism of natural 
selection is one of the most misunderstood concepts in 
science. The roots of these misconceptions can be traced to 
intuitive cognitive biases emergent in early childhood. In 
this talk, I will overview evidence from Eastern (e.g. China) 
and Western (e.g. U.S.) cultures that suggests the 
universality and developmental persistence of biases to 
construe nature in terms of purpose and intentional design 
(e.g. Rottman et al., 2017; Schachner et al., 2017). I will 
describe the application of these child developmental and 
adult dual-processing findings to the design of explanation-
rich storybooks for teaching elementary school children 
about adaptation by natural selection. Findings reveal that 
after analogical discussion of two storybooks, young 
children accurately and enduringly generalize the theory of 
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natural selection. Implications for theories of conceptual 
change and early science education will be discussed.  

Deb Kelemen is Professor of Psychological and Brain 
Sciences and Director of the Child Cognition Lab at Boston 
University.  

Shtulman: Why People Fail to Understand 
Evolution and Why it Matters 

Evolutionary theory underlies several issues of global 
importance—biodiversity, conservation, antibiotics, 
chemotherapy, cybersecurity—but studies have shown that 
the general public misunderstands what evolution is and 
how evolution works (Shtulman & Schulz, 2008; Shtulman 
& Calabi, 2013). In this talk, I will explore three conceptual 
prerequisites for understanding evolution: geologic time, 
intraspecies variation, and intraspecies competition. All 
three concepts have been implicated in the discovery of 
natural selection in the history of science, and I will show 
that all three concepts explain a significant amount of 
variance in who understands evolution and who does not. 
Nevertheless, one concept in particular—intraspecies 
competition—explains nearly three times as much variance 
as that explained by the other two concepts combined. I will 
discuss the implications of these data for improving 
evolution education, as well as increasing public acceptance 
of evolution and public support for evolution-relevant 
policies. 

Andrew Shtulman is Associate Professor of Psychology 
and Chair of the Department of Cognitive Science at 
Occidental College. 

Coley & Betz: Intuitive Thinking Impacts 
Understanding of Global Climate Change  

Although most US citizens believe that climate change is a 
serious issue, fewer engage in mitigative behaviors. One 
psychological barrier is lack of understanding of causes and 
effects (Bord, O’Connor & Fisher, 2000). We examined the 
extent to which intuitive “cognitive construals” (essentialist, 
teleological, and anthropocentric thinking, Coley & Tanner 
2015) influence understanding of climate change. 
University students rated agreement with facts and 
misconceptions (consistent with cognitive construals) about 
climate change. We found that teleological thinking about 
the climate was negatively related to understanding the 
causes of climate change while anthropocentric thinking 
was positively related. Further, we found that essentialist 
and teleological thinking were negatively related to 
understanding the effects of climate change, while 
anthropocentric thinking was positively related. We discuss 
these findings in the context of broader debates about 
biological reasoning, and consider options for leveraging or 
mitigating intuitive beliefs to increase sustainable behavior. 

Nicole Betz is a doctoral candidate and John Coley is 
Associate Professor and Director of the Conceptual 
Organization, Reasoning and Education Lab at Northeastern 
University.  

Swiney: Essentialism, Moral Reasoning, and 
Evaluations of Synthetic Biology  

The field of Synthetic Biology (SB) is already realising its 
promise to re-engineer living things from the bottom-up, 
creating new life forms, drastically changing existing 
organisms, and heralding a level of human intervention in 
biology that challenges entrenched distinctions between the 
evolved and the designed. The cognitive sciences have 
much to offer the now-urgent public debates about the risks 
and benefits of such technologies, but cognitive research in 
this area remains in its infancy (Blancke et al., 2015). I 
introduce a research program drawing on theories from 
distinct areas of the cognitive sciences, including intuitive 
biology, risk perception, and moral psychology, 
highlighting the rich test-ground that SB provides for 
investigating the interplay of cognitive processes across 
these domains. I present data from a series of experiments in 
which participants evaluate specific SB technologies 
varying across dimensions such as the source of genetic 
material and the extent of genetic change. I show that both 
psychological essentialism and moral purity concerns shape 
moral judgments and risk assessments of SB, and I explore 
the unique challenges of applying these insights to public 
debate about biotechnology.  

Lauren Swiney is a cognitive anthropologist and Research 
Career Development Fellow in the Warwick Integrative 
Synthetic Biology center.  
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Introduction 
The ways in which we experience and reason about time 

are fundamental aspects of human cognition. In the 
industrialized world, keeping track of time is vital to 
successful functioning in society. Ideas about the nature of 
time underlie many aspects of adult life: how we 
communicate with others, how we schedule our days, how 
we plan for the future, how we interpret and react to 
autobiographical events, and how we reason about cause 
and effect. Both philosophers and cognitive scientists have 
struggled to explain the nature and origins of this rich, 
multifaceted, and highly abstract concept of time. One 
means of exploring the nature of time in the adult mind is by 
asking how the ability to mentally represent and reason 
about time develops in children. Although some aspects of 
temporal cognition, like low-level duration perception, are 
present at birth, others, like using a clock, take children up 
to a decade to learn. By tracking how different time-related 
cognitive phenomena emerge and change across 
development, we may gain a fuller picture of how the many 
facets of time interrelate, including the biological and 
cultural factors that underlie them. To this end, this 
symposium brings together researchers from around the 
world to discuss five different aspects of children’s temporal 
cognition, each of which change dramatically during the 
preschool years.  

Each case study presented in the symposium investigates 
time in the context of a different cognitive system, including 
motor planning, spatial cognition, language, emotion, event 
representation, and prospective reasoning. First, Monier 
will discuss children’s developing capacity to synchronize 
their movements to external temporal rhythm. Next, 
Tillman will examine the development of culture-specific 
spatial representations of time, such as the left-to-right 
“mental timeline.” Zhang will explore how children learn 
time-related language, including the words “yesterday” and 
“tomorrow.”  Redshaw will investigate how children 
become able to hold two alternative possible futures in 
mind. Finally, McCormack will discuss her work on the 
development of emotional and value judgments about past 

and future events. A leader in the field of temporal cognitive 
development, McCormack will also serve as symposium 
moderator.  

 
The role of motor and cognitive capacities in 

developmental differences in rhythmic 
synchronization 

Florie Monier & Sylvie Droit-Volet 
Rhythmic synchronization is the ability to synchronize a 
movement to an external rhythm. Prior studies have shown 
that, relative to older children and adults, younger children 
have a faster and more variable spontaneous motor tempo, 
and they have more difficulty slowing down their motor 
tempo to synchronize it with a slow external tempo. 
Rhythmic synchronization involves both motor and 
cognitive capacities. Here, we ask which of these factors 
drives developmental change. In a series of studies, 3- to 8-
year-old children were given a spontaneous motor tempo 
(finger tapping) task, a synchronization task involving 
differing inter-stimulus-intervals (ISI), and a continuation 
task, in which they were asked to maintain the tempo 
initiated in synchronization. Neuropsychological tests were 
used to assess their motor and cognitive capacities. Our 
results showed that the variability of children’s inter-tap-
intervals (ITI) decreased with increasing age, and that 8-
year-olds were better able to slow down their motor tempo 
with an external tempo than 3- or 5-year-olds. Both motor 
and cognitive abilities predicted individual differences in the 
length of ITI on the synchronization and continuation tasks. 
However, only cognitive capacities (i.e., short-term 
memory, attention-concentration) accounted for children’s 
variability on the continuation task. These results reveal that 
improvement in synchronization capacities is related to the 
development of both motor and cognitive capacities, but that 
the continuation task is more cognitively demanding. 
 

The development of the mental timeline 
Katharine Tillman, Nestor Tulagan, Eren Fukuda, & 

David Barner 
When reasoning about time, English-speaking adults often 
invoke a “mental timeline” stretching from left to right. 
Although the direction of the timeline varies across cultures, 
linear representations of time have been argued to be 
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ubiquitous and primitive. On this hypothesis, we might 
predict that children also spontaneously invoke a spatial 
timeline when reasoning about time. However, little is 
known about how and when the mental timeline develops, 
or to what extent it is variable and malleable in childhood. 
We used a sticker placement task to test whether 
preschoolers spontaneously produce linear representations 
of temporal events (breakfast, lunch, and dinner) and deictic 
time words (yesterday, today, tomorrow), and to what 
degree those representations are adult-like. At age 4, 
children were able to make linear mappings between time 
and space with minimal spatial priming. However, unlike 
older children and adults, most preschoolers did not adopt 
linear representations spontaneously. Lines produced by 
children were also more variable in orientation and children 
could be easily primed to adopt an unconventional vertical 
timeline. Our findings suggest that preschoolers can readily 
form linear mappings between time and space to represent 
temporal sequences and past/future relationships when 
prompted to do so, but most do not yet do so automatically. 
These representations are initially flexible, and become 
increasingly automatic and conventionalized in the early 
school years. 
 

Children’s understanding of ‘tomorrow’ and 
‘yesterday’ 

Meng Zhang and Judith Hudson 
Children’s use of temporal language is often taken as an 
indication of their understanding of time. This study used a 
picture-sentence matching paradigm to test children’s 
understanding of the temporal adverbs yesterday and 
tomorrow. Children viewed two pictures of an object, e.g., a 
carved pumpkin and an intact pumpkin, while listening to a 
sentence, e.g., “I carved the pumpkin yesterday” or “I’m 
gonna carve the pumpkin tomorrow”. They were asked to 
select one picture to match the sentence. Experiment 1 
showed that 3-, 4-, and 5-year-olds all performed better 
when sentences were in the past tense than in the future 
tense. In Experiments 2 and 3, the sentences contained 
conflicting cues from tense and temporal adverbs, e.g., “I 
carved the pumpkin tomorrow”. While adults selected 
pictures based on the temporal adverbs they heard, 4- and 5-
year-olds tended to select pictures showing the outcome of 
actions, regardless of both tense and temporal adverb. In 
Experiment 4, children completed two additional tasks 
involving temporal reasoning. The Before & After Task 
served as a baseline measure of temporal sequencing and the 
Yesterday & Tomorrow Task tested children’s 
understanding of yesterday in backward reasoning and 
tomorrow in forward reasoning. Results indicated that 
forward temporal reasoning is easier for children than 
backward temporal reasoning, and linguistically, they 
understand the term yesterday better than tomorrow. 
 
 
 
 
 

Young children's capacity to envision and prepare 
for mutually exclusive future possibilities 

Jonathan Redshaw, Talia Leamy, Phoebe Pincus, Jessica 
Crimston, & Thomas Suddendorf 

Because future events can be difficult to predict, adults 
often envision and prepare for multiple, even mutually 
exclusive alternatives.  To investigate the emergence of this 
capacity in children, we developed a minimalist paradigm in 
which participants were given the opportunity to catch a ball 
dropped into a forked tube with two possible exits.  The 
initial study showed that 2- and 3-year-olds often covered 
only one exit when preparing to catch the ball, whereas most 
4-year-olds spontaneously covered both exits from the first 
trial onwards.  A follow-up study revealed a 
similar developmental pattern when the mechanism 
controlling the uncertain outcome was visible, rather than 
hidden within the tube.  Additional follow-up studies, 
however, showed that 2- and 3-year-olds were much more 
likely to cover two exits when two balls were certain to drop 
from separate locations.  These findings suggest that young 
children are not generally limited in reasoning about 
multiple future events, but rather they are specifically 
limited in reasoning about mutually exclusive 
possibilities.  One potential explanation is that older 
children, unlike younger children, possess a meta-
representational understanding that their representations of 
future events can be incorrect, and so they take the 
opportunity to prepare for alternative versions. 
 

 Temporal asymmetries in children’s past and 
future thinking 

Teresa McCormack, Agnieszka Jaroslawska, Patrick 
Burns, Aine Fitzpatrick, Jemma McGourty, & Eugene 

Caruso 

There are striking asymmetries in the way adults think about 
the past versus the future: adults typically (i) report stronger 
emotion when thinking about the future than the past (ii) 
place greater value on a future event than a past event and 
(iii) judge that a future event feels closer than a past event at 
an equivalent distance. These future biases suggest that 
adults are more oriented toward the future than the past. In 
this talk, I will describe the first developmental studies to 
examine whether these biases exist in children. We have 
found that the tendency to judge future events as feeling 
closer in time than equivalent past events is very robust, and 
can be demonstrated in children as young as 4-5 years. 
Children from around 6-7 years, like adolescents and adults, 
also report stronger emotions when thinking about the future 
versus the past. We also found that children from 9-10 years 
place greater value on future than past events. We will 
discuss what these findings suggest about children’s 
thinking about the past and future, and their implications for 
theoretical accounts of temporal asymmetries. 
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Introduction 

Recent advances in the data sciences, particularly within the 

area of language technology, have been impressive and non-

incremental. For example, within the domain of language 

translation, the application of deep Long Short Term Memory 

(LSTM) neural networks to large bodies of text have resulted 

in a 60% reduction in translation errors from traditional 

methods, significantly closing the gap between machine and 

human performance (Wu et al., 2016). Similarly impressive 

advances have been observed in, e.g., speech recognition 

(Hinton et al., 2012), syntactic parsing (Dyer et al., 2015) and 

automatic content extraction (Berant et al., 2015). 

 Clearly, excitement is justified as a new era of linguistic 

technology is emerging. But should this excitement lead to a 

fundamental rethinking of our theories of child language and 

cognition? Doesn’t the “poverty of the stimulus” still pose a 

problem for human language learners? What role do 

hierarchical linguistic formalisms play within statistical 

theories of language learning and use? This symposium 

brings together leading figures in cognitive science who offer 

different informed perspectives on these matters. 

The data and the learner  

from a developmental perspective 

Linda Smith (Indiana University) 

The world offers data to learning systems that is massive in 

total scale and that comes in many forms. However, the 

relevant data for any learning system are only those that 

actually engage the learning mechanisms of that system. For 

living and breathing learners, this engagement begins with 

their sensory systems. Sensory systems are on bodies that 

move through the world – constrained by the physics of space 

and time – and thus the sampled data are constrained and 

ordered by space in time. Human infants learn their first 

words during a period in which their bodies (and brains) 

change dramatically and systematically and do so in ways 

that put those sensory systems in different parts of the data 

space at different points in development. The data for 

learning – and the learning tasks to be solved – are 

systematically ordered by development itself. This talk will 

present evidence from a large corpus of head-camera data 

recorded in infants’ homes (over 500 million frames 

extracted at 1 Hz) that illustrate how human development 

(and the reality of bodies learning in space and time) 

fundamentally changes the questions to be asked and the 

computational answers to how language is learned. 

Existence proofs 

and computational mechanisms 

Charles Yang (University of Pennsylvania) 

Mathematicians have always drawn a useful distinction 

between existence and constructive results. An analogy can 

be made in the study of language acquisition, especially in 

the age of Big Data and Big Machines. While distributional 

regularities can be captured by idealized statistical models, it 

is a different matter whether, and how, such regularities are 

exploited by computational mechanisms available to human 

children.  

 Consider the use of indirect negative evidence in language 

acquisition. A specific example concerns the predicative and 

attributive use of the so-called a-adjectives in English: “the 

cat is asleep/away” vs. “*the asleep/away cat”. Indirect 

negative evidence can be formulated in certain probabilistic 

models of inference: the conspicuous absence of forms such 

as “the asleep cat” reduces the learner’s confidence in the 

hypothesis that permits such expressions. While these models 

are presented as existence proofs without commitments to 

psychological mechanisms, they are still unlikely to succeed 

when evaluated against realistic statistical distribution of 

adjectives in a large corpus of child-directed English speech. 

The alternative approach is to avoid the use of indirect 

negative evidence, and to develop a transparently 

mechanistic models that can be readily tested. I review the 

Tolerance Principle, a parameter-free model of inductive 

generalization, and its application to morphological and 

syntactic acquisition, including artificial language learning 

(joint work with Kathryn Schuler and Elissa Newport). 

Furthermore, the Tolerance Principle suggests that language 

acquisition may succeed only with small data, the kind 

similar to the small vocabularies of young children. This 

supports the view that cognitive and maturational constraints 

support rather than hinder language development.  
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On what you can't learn from (merely) all the 

data in the world, and what else is needed  

Josh Tenenbaum (University of Edinburgh) 

Recent successes with recurrent neural networks and other 

big-data techniques in AI applications raise the question of 

whether similar approaches might explain human language 

acquisition. How far can the data of language take us alone, 

with little other structure? I will first describe some 

experiments testing RNN models developed by Google that 

can perform some truly impressive feats in language 

technology, yet at the same time fail a number of basic tests 

of understanding syntax and semantics that cognitive 

scientists have long been interested in, as well as some new 

benchmarks that we have come up with. They often fail for 

interesting reasons, based on the differences between their 

linear (sequential) processing architecture and the 

hierarchical structure of thought, their emphasis on character-

level modeling as opposed to words and phrases, and their 

lack of interfaces to core cognition outside language. Their 

successes and failures illustrate how both advocates and 

critics of early statistical language learning were correct — 

Chomsky and Gleitman and Pinker were right after all, but 

Elman and Hinton were also right. They were just right about 

different things, and we can learn much by re-interpreting 

early debates. 

 As a way forward, I argue for combining smart statistics 

with more structured, hierarchical representations, 

interfacing to a cognitively grounded semantics. I report 

some promising results, although we are far from being able 

to implement this at the scale Google requires. I will also 

sketch ideas for how RNNs can make these more structured 

approaches work better, with the hope of integrating these 

often-opposing traditions to best make progress. 
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Abstract 

Recent studies of naturalistic face-to-face communication have 
demonstrated temporal coordination patterns such as the 
synchronization of verbal and non-verbal behavior, which provides 
evidence for the proposal that verbal and non-verbal 
communicative control derives from one system. In this study, we 
argue that the observed relationship between verbal and non-verbal 
behaviors depends on the level of analysis. In a re-analysis of a 
corpus of naturalistic multimodal communication (Louwerse et al., 
2012), we focus on measuring the temporal patterns of specific 
communicative behaviors in terms of their burstiness. We 
examined burstiness estimates across different roles of the speaker 
and different communicative channels. We observed more 
burstiness for verbal versus non-verbal channels, and for more 
versus less informative language sub-channels. These findings 
demonstrate a new method for analyzing temporal patterns in 
communicative behaviors, and they suggest a more complex 
relationship between verbal and non-verbal channels than 
suggested by prior studies. 

 

Keywords: burstiness, multimodal communication, verbal 
and non-verbal communication 

Introduction 
In cognitive science, a considerable number of studies have 
investigated the role of non-verbal communication in 
relation to verbal communication. The majority of these 
studies suggest an intrinsic relationship between verbal and 
non-verbal communication. For instance, a strong link has 
been shown between lexical access and gesturing, such that 
when people gesture, lexical access is facilitated (Rime & 
Schiaratura, 1991). Also, the time gap between gesture and 
a familiar word is considerably shorter than the gap between 
gesture and an unfamiliar word (Morrel-Samuels & Krauss, 
1992), and when speech is disrupted, gestures are halted 
(Mayberry & Jaques, 2000). Gesture is thought to be 
intrinsically related to language processing (Butterworth & 
Morrissette, 1996) because most gestures occur when 

people speak (McNeill, 1992), and because of evidence 
linking gesture with language development (Butcher & 
Goldin-Meadow, 2000). In fact, non-verbal and verbal 
communication are sometimes argued to be so interwoven 
that gesture and speech are co-expressive manifestations of 
one integrated system, forming complementary components 
of one underlying process that helps organize thought 
(Goldin-Meadow, 2005; McNeill, 1992).  

Louwerse, Dale, Bard, and Jeuniaux (2012) investigated 
the temporal relationship between matching behaviors in 
dialog partners, such as manual gesture in one speaker vs. 
the same manual gesture in the other speaker. By applying a 
cross-recurrence analysis, Louwerse et al. showed 
synchronized matching behavior in all categories (language, 
facial, gestural) that were investigated at temporal lags short 
enough to suggest imitation of one speaker by the other. 
Louwerse et al. concluded that the similarities between the 
different channels – verbal and non-verbal – demonstrated 
that the temporal structure of matching behaviors provided 
low-level and low-cost resources for human interaction.  

So far, all studies focusing on the similarities between 
verbal and non-verbal communication, including Louwerse 
et al. (2012), focused on the temporal matching of verbal 
and non-verbal behavior. They tend not to investigate the 
temporal distribution of independent behavioral event 
dynamics. Complex behaviors such as human interaction 
tend not to show the strictest forms of synchrony, but 
instead are more loosely, functionally coupled (e.g., Fusaroli 
et al., 2014). Instead, the overall pattern of behavior, 
expressed in the distribution of events, may reflect particular 
local patterns of interaction – when one interlocutor 
gestures, it may sustain itself for a given period of time 
before waning; when another person speaks, this burst of 
behavior may look quite different, sustaining itself for 
longer, more regular periods of time. These event dynamics 
might paint a different picture of the relationship between 
verbal and non-verbal channels. 
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The Property of Burstiness 
Most work studying human communication is based on 
dyadic analyses that focus on temporal patterns across 
partners rather than the temporal patterns of specific 
behaviors produced by each partner. In the current study, the 
large multimodal corpus of human communication collected 
and reported in Louwerse et al. was re-analyzed to focus on 
the quantification of a particular property of behavior, 
burstiness.  

Using the framework developed by Goh and Barabasi 
(2008) and extended by others (e.g., Jo, Karsai, Kertész, & 
Kaski, 2012), we estimated the burstiness of verbal and non-
verbal behaviors. The burstiness parameter, B, provides an 
estimate of a system’s activity patterns spanning from 
periodic (B = −1), to random (B = 0), to theoretically 
maximal burstiness (B = 1) (see Figure 1). Goh and 
Barabasi (2008) observed that human phenomena like 
human texts and email patterns have positive burstiness 
estimates, B > 0, whereas human cardiac rhythms were 
found to have periodic burstiness estimates, B < 0.  

 
Figure 1: Overview of system’s activity patterns spanning 
from periodic, to random, to theoretically optimally bursty. 

The Current Study 
The goal of the current study was to investigate the temporal 
dynamics of behavioral events across verbal and non-verbal 
communicative modalities during face-to-face human 
interaction. We focus on the measure of burstiness, now 
widely used in statistical physics to capture the temporal 
patterns of point processes in complex network interactions.  

In the first analysis section, we investigated whether or 
not there were differences in the burstiness of behaviors that 
are categorized into verbal and non-verbal channels. It is 
possible that verbal and non-verbal channels have similar 
degrees of burstiness, which would be consistent with 
previous work suggesting a strong intrinsic relationship. 
However, if the channels exhibit different degrees of 
burstiness, such results would suggest a more complex 
relationship between verbal and non-verbal communication. 
To further explore and understand the burstiness measure, 

we also investigated the burstiness of sub-channels that 
constitute the language communicative channel. Our results 
indicate that burstiness is different for verbal versus non-
verbal behaviors, and also for different aspects of language 
behaviors. 

Methods 

Multimodal Communication Corpus 
The original task developed to collect these multimodal data 
is described by Louwerse et al. (2008) and Louwerse et al. 
(2012), who were interested in collecting multimodal 
structure of human interaction in order to inform avatar 
design for intelligent tutoring systems and other 
technologies. In the task, N = 24 pairs of participants helped 
each other navigate a map. Each pair of participants 
completed 8 rounds of navigation. For each round, one 
participant was chosen as the “Information Giver”, and 
other the “Information Follower.” The Information Giver 
had a complete map, and the Information Follower had a 
noisy and partial map. This mismatch between maps was 
intended to elicit communication and predict the points at 
which misunderstandings were likely to occur. The 
participants had to use language and gesture via webcam so 
that the Information Follower could reconstruct a map route 
with the help of the Information Giver. The corpus was 
developed by taking these 192 recordings of interactions 
and coding a wide variety of behaviors. These codings were 
based on well-known or adapted coding schemes in 
discourse, along with some other semi-automated 
procedures (see Louwerse et al., 2008 for details). All 
behaviors were coded in 250ms to encompass relatively fast 
behaviors such as nodding, acknowledgements, and smiling. 
The output from this coding procedure was a multicolumnar 
data format of binary point series that represented the 
occurrence of different behaviors at a 250ms interval. These 
250ms intervals were the subject of our burstiness analyses.  

We chose 39 behaviors that fit into four specific 
behaviors channels (as did Louwerse et al., 2012). 
Behavioral channels were categorized into two factors, 
Channel and Role. For the Channel factor, channels were 
identified as either “Face & Head,” “Manual Gesture,” 
“Face Touch,” or “Language.” For the Role factor, channels 
were identified as either Giver or Follower. For the levels of 
the Role factor, all channels were included for the Giver and 
the Follower. See Table 1 for the behaviors that were 
included into each channel. The language sub-channels were 
annotated at the utterance-level.  
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Table 1: List of Channels, Sub-channels, and Behaviors 
 

channel sub-channels behaviors 
face & 
head 

mouth laughing, lip tightening 

 eyes blink, rolling eyes 
 eyebrows asymmetrical, down-

frowning, out brow raiser 
 head nodding, shaking 

manual 
gesture 

 beat, deictic, iconic, 
metaphoric, symbolic 

touch 
face 

 touching cheek, chinrest 

language dialogue acts acknowledgements, align, 
check, clarify, explain, 
instruct, query-what, 
query-yes/no, ready, 
reply-no, reply-what, 

reply-yes 
 discourse 

connectives 
alright, no, ok, um, well, 

yes 
 descriptions color, compass direction, 

digit, relative direction, 
spatial preposition 

	

Construction of Multivariate Spike Trains and 
Inter-event Intervals 
We are interested in estimating the burstiness of multimodal 
communicative behavior and are therefore working with a 
multivariate class of spike trains. To our knowledge, the 
current study provides the first steps towards dealing with 
burstiness in multivariate spike train corpora. The protocol 
converts multivariate spike trains into inter-event interval 
(IEI) distributions. These interval distributions help quantify 
the temporal clustering of communicative events across 
channels.  

First, for each behavior, we created a spike train of onset 
events which excludes successive ‘1’s for prolonged events. 
Second, for each communicative channel (Face & Head, 
Manual Gesture, Face Touch, Language), we summed the 
spike trains from each behavior, yielding a multimodal 
event series where a ‘0’ represents a sample when no event 
occurred, a ‘1’ represents a sample when one event 
occurred, and any number greater than 1 represents a sample 
when two or more events occurred. For example, a sample 
with a “Laughing” event and a “Nodding” event would have 
a “2” in the event series. Any sample with two or more 
events is considered a sample of simultaneous 
communicative behavior which we discuss below. Finally, 
IEI’s were computed from the multimodal event series to 
construct an IEI distribution for each channel for each map 
task role (Giver or Follower).  

An IEI is computed by considering two consecutive 
events, tj and tj+1, and finding the temporal difference 

between them, τ = tj+1 − tj. For an IEI that contains 
simultaneous communicative behavior (2 or more events in 
the same sample), an IEI, τ, was computed and added to the 
distribution in addition to a zero for each additional event. 
For example, when an IEI with the second sample has 3 
events, we would add to the IEI distribution (1) the 
corresponding τ and (2) two zeros (0,0). We chose to add 
this component to the protocol because we wanted to treat 
simultaneous communicative behavior as quantitatively 
’more bursty’. Adding zeros to an IEI distribution will 
amplify a burstiness estimate. IEI distributions for each 
communicative channel and each map task role were 
submitted to estimates of burstiness.  

Estimation of Burstiness 
The burstiness parameter, B, is defined as,  
	

	
	
where στ is the standard deviation of the IEI distribution and 
mτ is the mean of the IEI distribution (Goh & Barabási, 
2008; Jo, Karsai, Kertész, & Kaski, 2012). Alternative 
measures of burstiness have been employed in previous 
studies in computational linguistics (Altmann, 
Pierrehumbert, & Motter, 2009; Pierrehumbert, 2012) 

utilizing parameter fitting from a stretched exponential 
distribution (Weibull distribution). These alternative 
measures have provided unique insights into the dynamics 
of linguistic levels of description. Our decision to utilize the 
burstiness parameter, B, is twofold. First, parameter 
estimation from a distribution requires a minimum number 
of data points or IEIs. Therefore, with the properties of our 
corpus, parameter estimation from distribution fitting 
requires the implementation of confidence intervals, which 
can be avoided with the utilization of the burstiness 
parameter, B. Second, one goal of this study is to account 
for simultaneous communicative behavior as a higher 
degree of burstiness. The burstiness parameter, B, is 
amplified when zeros are added to the IEI distribution and 
therefore an ideal option for the current study. B is bounded 
from [-1,1], where B = 1 for a theoretical maximum bursty 
behavior, B = -1 for completely regular behavior (e.g., 
metronome), and B = 0 for a homogeneous Poisson process, 
i.e., independent events. We omitted trials that did not 
include reliable burstiness estimates for any of the four 
channels across the MapTask roles in the first analysis 
section (1.24% of trials) and for any of the three channels 
across the MapTask roles in the second analysis section 
(1.00% of trials).  

result also points to the context-specific nature of communicative dynamics: the Giver/Follow dyad was constrained by the
specific task rules and goals.

Finally, we observed that the degree of matching of burstiness and memory was predictive of task performance. The more
the Giver and the Follower in a dyad mismatched in their linguistic burstiness, the better they performed on the map task. This
result, in addition to the differences in burstiness estimates across role structure suggests that burstiness is sensitive to role
structure and also that it is beneficial for task roles to be distinct for this particular communicative context. The result of more
mismatched memory estimates predicting better task performance adds additional evidence for the importance of distinctive
role structures in communicative tasks.

Overall, our results suggest that multimodal communicative behavior can be characterized by burstiness and memory
properties estimated from the dynamics of event onsets. Furthermore, estimates of burstiness and memory have predictive value
for successful and unsuccessful interactions. Future work should focus on applying this perspective to other communicative
contexts and across diverse groups such as developing populations and populations at risk for social and communicative
disorders.

Methods
Source of Maptask Corpus
The original task developed to collect these multimodal data is described in Louwerse et al. (2008) and Louwerse et al. (2012).
Researchers were interested in collecting multimodal structure of human interaction in order to inform avatar design for
intelligent tutoring systems and other technologies. In the task, N = 24 pairs of participants helped each other navigate a map.
Each pair of participants did 8 rounds of navigation. For each round, one participant was chosen as the “Information Giver”, and
other the “Information Follower”. The Information Giver had a complete map, and the Information Follower had a noisy and
partial map. The participants had to use language and gesture via webcam so that the Information Follower could reconstruct a
map route with the help of the Information Giver. The corpus was developed by taking these 192 recordings of interactions and
coding a wide variety of behaviors. These codings were based on well-known or adapted coding schemes in discourse, along
with some other semi-automated procedures (see Louwerse et al., 2008 for details). The output from this coding procedure was
a multicolumnar data format of binary point series that represented the occurrence of different behaviors at a 250ms interval.
These 250ms intervals were the subject of our burstiness and memory analyses.

Construction of multivariate spike trains and inter-event intervals
We are interested in estimating the burstiness and memory of multimodal communicative behavior and are therefore working
with a multivariate class of spike trains. To our knowledge, the current study provides the first steps towards dealing with
burstiness and memory in multivariate spike train corpora. The protocol converts multivariate spike trains into IEI distributions
accounting for simultaneous communicative events across channels.

First, for each channel, we created a spike train of onset events which excludes successive ’1’s for prolonged events. Second,
for each communicative modality (linguistic or nonlinguistic), we summed the spike trains from each channel (11 or 9 for
linguistic or nonlinguistic communicative modalities, respectively), yielding a multimodal event series where a ’0’ represents a
sample when no event occurred, a ’1’ represents a sample when one event occurred, and any number greater than 1 represents a
sample when two or more events occurred. For example, a sample with an ”affirmative head shake” event and a ”laughing”
event would have a ”2” in the event series. Any sample with two or more events is considered a sample of simultaneous
communicative behavior which we discuss below. Finally, inter-event intervals (IEI) were computed from the multimodal event
series to construct an IEI distribution for each communicative modality for each map task role (Giver or Follower).

An IEI is computed by considering two consecutive events, tj and tj+1, and finding the temporal difference between them,
t = t j+1 � t j. For an IEI that contains simultaneous communicative behavior (2 or more events in the same sample), an IEI, t ,
was computed and added to the distribution in addition to a zero for each additional event. For example, when an IEI with
the second sample has 3 events, we would add to the IEI distribution (1) the corresponding t and (2) two zeros (0,0). We
chose to add this component to the protocol because we wanted to treat simultaneous communicative behavior as quantitatively
’more bursty’. Adding zeros to an IEI distribution will inflate a burstiness estimate (see below). IEI distributions for each
communicative modality and each map task role were submitted to estimates of burstiness and memory.

Estimation of burstiness and memory
The burstiness parameter, B, is defined as,

B =
st �mt
st +mt

, (1)
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Figure 2a and 2b: Burstiness across channels with a) 

Information Giver (G) and Follower (F) combined, and b) 
the roles separated. Error bars reflect 95% CIs. 

Investigating Differences in Burstiness across 
Verbal and Non-verbal Channels 

Mixed effects models (Bates et al., 2014; Team R., 2013) 

were utilized to determine if burstiness differed across 
different channels. The first set of analyses was conducted 
to compare burstiness estimates across role structure and 
communicative channels. Linear models were utilized to 
predict burstiness estimates. Fixed effects for these models 
included map task role (leader or follower), communicative 
channels (Face & Head, Manual Gesture, Face Touch, and 
Language), and event count for each communicative 
channel. Event count was added into the model as a 
covariate to control for the potential relationship between 
burstiness estimates and the number of behavioral events 
going into the analysis. Dyad and map type were included as 
random effects.  

If there are differences across communicative channels, 
we can observe such differences in a variety of ways: are 
there differences in the temporal structure across 
communicative modalities (1) collapsing burstiness 
estimates across MapTask roles? (2) within MapTask roles 
(e.g., Follower:Manual Gesture vs. Follower:Language)? 
and/or (3) across MapTask roles (e.g., Follower:Manual 
Gesture vs. Giver: Manual Gesture)? 

Collapsing burstiness estimates across MapTask role, we 
observed a significant main effect of communicative 
channel, F(3, 1030) = 162.55, p < .0001 (Figure 2a). See 
Table 2 for results from multiple comparison tests. Overall, 
the language channel (M=.16, SE=.003) was observed to be 
more bursty relative to the manual gesture channel (M = .14, 
SE = .01), b = .08, p = .009. 
	
	

Table 2: Multiple Comparisons from the random mixed 
effects model: *p < .05, **p < .01, ***p < .001.  
 Multiple Comparisons Beta Z-score 

Channel Man. Gest. v.  Face/Head .08 7.9*** 
 Touch Face v.  Face/Head .11 9.6*** 
 Language v.  Face/Head .17 16.7*** 
 Touch Face v.  Man. Gest. .02 2.2 
 Language v.  Man. Gest. .08 7.5*** 
 Language v. Touch Face .05 4.6*** 

Role Leader v. Follower .01 .7 
Int.  F:Man. Gest v. F:Lang -.07 -4.79 *** 

 G:Man. Gest. v. G:Lang .05 3.17*  
 F:Man. Gest v. G:Lang .06 3.08* 
 G:Man. Gest v. F:Lang .04 2.79 

 
The communicative channel x map task role interaction 

was significant, F(3, 1030) = 20.97, p < .0001, therefore, we 
tested for multiple comparisons using Tukey Honestly 
Significant Difference tests to investigate differences within 
and across MapTask roles (Figure 2b). At this level of the 
analysis, we were specifically interested in the differences 
between language and manual gestures, so we limit our 
report to those subsets of the analysis. We observed within-
role differences between language and manual gesture 
burstiness estimates for the Follower role (b = -.07, p < 
.001) and for the Giver role (b = .05, p = .03). We also 
observed a between-role difference for Follower: Manual 
Gesture v. Giver: Language (b=.06, p=.04). The results from 
this analysis suggest that, across map task role, the verbal 
channel (i.e., language channel) had higher burstiness 
estimates relative to the non-verbal channels, and 
specifically the manual gesture channel.  

Investigating the Relative Magnitude of 
Burstiness in the Language Channel 

In the last section, we established that communicative 
channels exhibit temporal patterns of behavior that (1) vary 
across verbal and non-verbal channels and (2) are all bursty 
relative to exhibiting random or periodic temporal patterns. 
But what does it mean to be more bursty?  It is important to 
note that these channels are made up from specific sub-
channels that are further made up from individual behaviors. 
In an effort to better understand the relative magnitude of 
burstiness, in this section, we focused on the language 
channel because this channel exhibited the highest estimates 
of burstiness. Specifically, we zoomed into the language 
channel and investigated the temporal patterns of the sub-
channels.  

The language channel is made up of three specific sub-
channels: dialogue acts, discourse connectives, and 
descriptions. We expected to observe higher burstiness 
estimates for the ‘descriptions’ sub-channel relative to the 
other two channels. This hypothesis is motivated by 
previous research that focused on the burstiness of various 
linguistic levels in texts (Altmann, Cristadoro, & Esposti, 
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2012; Altmann, Pierrehumbert, & Motter, 2009). Altmann 
et al. (2009) observed that burstiness increased across 
semantic classes where ‘entities’ like proper nouns had 
higher burstiness estimates relative to predicates like in, 
which in turn had higher estimates than higher level 
operators like the. If the results observed in texts are 
consistent with human dialogue, we should expect to 
observe that descriptions like providing a relative direction 
will have higher burstiness estimates relative to dialogue 
acts like saying no or discourse connectives like saying um.  
	

 
Figure 3a and 3b:  

Burstiness across language channels with a) Information 
Giver (G) and Follower (F) combined, and b) the roles 

separated. Error bars reflect 95% CIs. 
 
Linear models were utilized to predict burstiness 

estimates. Fixed effects for these models included map task 
role (Giver or Follower), language sub-channels (Dialogue 
Acts, Discourse Connectives, Descriptions), and event count 
for each communicative channel. Similar to the previous 
analysis section, event count was added into the model to 
act as a covariate to control for the potential relationship 
between burstiness estimates and the number of events 
going into the analysis. Dyad and map type were again 
included as random effects. We observed that descriptions 
(M = .08, SE = .005) had higher burstiness estimates relative 
to discourse connectives (M = -.06, SE = .004, b = .06, p < 
.001) and dialogue acts (M = -.11, SE = .004; b = .17, p < 
.001) (Figure 3a). Discourse connectives and dialogue acts 
were both more periodic than bursty, and dialogue acts were 
more periodic (closer to -1) relative to discourse connectives 
(b = .11, p < .001). These results suggest that various levels 
of verbal dialogue have different temporal patterns and such 
patterns have interesting parallels to previous research 
studying the burstiness of text corpora. We discuss these 
parallels in addition to the insights gained from the analysis 
section to better understand the pattern of results in the 
previous analysis section.   

Discussion 
The primary goal of the current paper was to better 
understand the temporal patterns of verbal and non-verbal 
behaviors during face-to-face multimodal human 
communication. We submitted the multimodal corpus to an 
analysis of burstiness. In the first analysis section, we 
observed that communicative channels differed in the 
degree of burstiness, with the verbal channel having higher 
burstiness estimates relative to non-verbal channels like 
manual gestures, face & head, and face touch. To add 
nuance to this result, in the second analysis section, we 
focused on better understanding the magnitude of 
burstiness, and zoomed into the language channel. In this 
analysis, we observed that a more informative sub-channel, 
‘descriptions’, had higher burstiness estimates relative to 
sub-channels that focused on operators and modifiers. 

Much work in the cognitive sciences has argued that 
verbal and non-verbal behaviors are intrinsically related via 
the same communicative system (Golden-Meadow, 2005; 
McNeill, 1992). Recent work (Louwerse et al., 2012) has 
made this argument by focusing on evidence of 
synchronization across verbal and non-verbal channels. In 
the current paper, we observed that, verbal and non-verbal 
channels differ in terms of estimates of their temporal 
burstiness. An important question is what these differences 
reflect. To begin to find an answer to this question, we 
examined certain language sub-channels and found higher 
degrees of burstiness for descriptive productions compared 
to pragmatic productions like dialog acts or connectives.  

Considering the latter results, there are a few possible 
explanations for the observation that verbal and non-verbal 
channels exhibit different types of temporal patterns, with 
the verbal channel exhibiting higher burstiness estimates. 
The first possible explanation is that increased estimates of 
burstiness for the verbal channel means that more 
information is contained within this communicative channel 
relative to the non-verbal channels. This suggestion is 
influenced by the observations of higher degrees of 
burstiness in higher-level semantic classes in texts 
(Altmann, et al., 2009) and higher degrees of burstiness in 
descriptive sub-channel in dialogue (the current paper’s 
second analysis section). If this is the case, our results point 
to the proposal that verbal channels during human 
communication are more informative relative to non-verbal 
channels. However, this possibility seems unlikely because 
our own results show that the direction of burstiness 
estimate differences for the language and manual gesture 
channels are not consistent: higher estimates for language 
relative to manual gesture for the information giver and 
higher estimates for manual gesture relative to language for 
the information follower.  

The second possible explanation is that an important 
property of multimodal communication is having a 
collection of different types of temporal patterns across 
communicative channels. This proposal, what we call the 
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‘temporal heterogeneity’ hypothesis, suggests that 
successful communication emerges from a diverse suite of 
information channels that vary in temporal properties. An 
important adaptive property of a complex system, such as a 
dyadic communicative system (Dale, Fusaroli, Duran, & 
Richardson, 2013; Fusaroli, Raczaszek-Leonardi, & Tylén, 
2013), is the ability for multiple components with specific 
intrinsic properties to self-organize to form higher-level 
structures (Kello & Van Orden, 2009; Kugler & Turvey, 
1987). This proposal is amenable to the hypothesis that 
verbal and non-verbal channels are part of the same 
integrated system (Golden-Meadow, 2003; McNeill, 1992) 
and that gesture and speech are complementary 
communicative channels important for the resolution of 
referential expressions (Louwerse & Bangerter, 2010; 
Seyfeddinipur & Kita, 2001). The current paper contributes 
to this line of argument by showing, at a specific level of 
analysis, that verbal and non-verbal channels have different 
types of temporal patterns and that the heterogeneity of 
these temporal patterns might be important for successful 
communication. Another important contribution is the 
introduction to a simple analysis of the temporal structure of 
behavioral event dynamics, the burstiness analysis. Future 
work is required to better understand the connection 
between varying degrees of burstiness across diverse types 
of human behavioral patterns. 
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Abstract

In this paper we examine an enactive approach to social cog-
nition, a species of radical embodied cognition typically pro-
posed as an alternative to traditional cognitive science. Ac-
cording to enactivists, social cognition is best explained by
reference to the social unit rather than the individuals that par-
ticipate in it. We identify a methodological problem in this
approach, namely a lack of clarity with respect to the model
of explanation it adopts. We review two complaints about
a mechanistic explanatory framework, popular in traditional
cognitive science, that prevent enactivists from embracing it.
We argue that these complaints are unfounded and propose a
conceptual model of enactive mechanistic explanation of so-
cial cognition.
Keywords: enactivism; social cognition; mechanistic expla-
nation

Introduction
Embodied Cognition (EC) is most generally a plea to ac-
knowledge that the states of the body and the environment
can influence cognition and that lower sensorimotor knowl-
edge plays a role in higher cognition like language and rea-
soning (e.g. Eerland, Guadalupe, & Zwaan, 2011). Radical
Embodied Cognition (REC) is the claim that the body and
the environment are actually part of cognition and as a re-
sult, for example, there is no need to have internal represen-
tations of the environment (Wilson & Golonka, 2013; van
Dijk, Kerkhofs, van Rooij, & Haselager, 2008). Enactivism
is a strand of REC that stems from the early work in phi-
losophy of biology of Maturana and Varela (1980) and was
popularized as an alternative to traditional cognitive science
by Varela, Thompson, and Rosch (1991). It shares theoreti-
cal commitments with complex systems theory, phenomenol-
ogy and Buddhist tradition in, on the one hand, grounding
cognition on the organizational principles of living systems
while at the same time giving a prominent role to the inves-
tigation of human experience. Three main principles adopted
by enactivism are (1) challenging the dichotomy between in-
ternal components of the system and its external conditions,
instead stressing the interaction between the two, (2) empha-
sizing emergent properties on higher levels of organization
and (3) viewing the organism as an active autonomous entity
that is able to adaptively maintain itself in the environment1.

We think enactivism has a lot to offer to the study of cog-
nition because it is an approach that is both naturalistic and

1For an accessible introduction to enactivism see (McGee, 2005).

non-reductionist. However, in this paper we highlight its
methodological weakness that might be preventing it from
gaining popularity, namely a lack of explicit commitment to
how cognitive phenomena are to be explained. We exem-
plify this issue using a case of enactive accounts of social
cognition. We further point out that contemporary cognitive
science has two major explanatory frameworks on offer: a
deductive-nomological framework, typically associated with
REC, and a mechanistic framework, typically adopted by tra-
ditional cognitive scientists. We suggest that given the simi-
larity between enactivists and other REC-ers, it is likely that
enactivists implicitly subscribe to the deductive-nomological
framework. In contrast to this, we argue that the mechanistic
framework is not only compatible with enactivism but also
preferable. We consider two main objections raised by REC-
ers against mechanistic explanation and show that they rely
on a misunderstanding of what such an explanation entails.
We end the paper with a preliminary picture of enactive mech-
anistic explanation of social cognition.

Enactive Social Cognition
In broadest terms, a non-EC view on social cognition assumes
that humans can interact with others successfully only if they
are able to see other people as beings with mental states, can
infer these states using a so-called ‘theory of mind’ or sim-
ulation and plug in the results of such inferences in plan-
ning their own actions. A regular EC view denies the need
for such complex representations and inferences emphasizing
real-time interaction with other people and perceptual infor-
mation available in such settings. Certain varieties of simula-
tion accounts of mindreading fit into this framework.

What distinguishes a REC approach is an insistence that
the particular dynamics of social interaction themselves play
a crucial role in explaining social cognition. This is because
“becoming a temporary unit of social action with another per-
son also involves creation of a new perception-action sys-
tem with new capabilities ” (Marsh, Johnston, Richardson,
& Schmidt, 2009, p. 1219). Theoretically this has lead to a
claim that there is no need to represent other people or their
perspective on the world in order to coordinate with them suc-
cessfully. Methodologically, it has been suggested that the
correct level of analysis in the study of social cognition is the
social unit, rather than an exclusive focus on the individuals
that comprise it. Instead of searching for internal properties

45



Figure 1: Perceptual crossing experiment.
A pair of blind-folded participants (call them A and B) are asked
to interact in a one-dimensional horizontal field in which they can
move using a computer mouse. The field is perceived solely via
tactile feedback: encountering a stimulus produces a vibration. Par-
ticipant A can sense 3 kinds of stimuli: a static object, B’s avatar and
B’s “shadow” that follows B’s avatar movement but does not provide
B with sensation (the situation is analogous for B). Participants are
asked to click when they think to be in contact with the other’s avatar.
A typical strategy is to move back and forth, especially when a stim-
ulus is encountered. This allows for discriminating between a static
and mobile object (if the stimulation changes despite the participant
staying in place, the object is not static). The results also show that
participants click more often when encountering the other’s avatar
compared to the other avatar’s shadow. However, this increased cor-
rect clicking is not due to better recognition (the relative probability
of clicking on the avatar is not higher) but rather because the avatars
spend more time in front of each other. This effect emerges because
the situation of ‘sensing the other’ while ‘being sensed’ is more sta-
ble than sensing an insensitive shadow. The task is solved globally
even if participants are not conscious of this effect and if the solution
does not appear in an individual behavioral measure.

of individual independent cognizers, we are to investigate the
social interconnectivity that emerges as a result of the inter-
action and constrains individual-level behavior from the level
of a new overarching structure.

One of the most distinctive empirical paradigms that exem-
plifies this idea is a perceptual crossing (PC) study (Auvray
& Rohde, 2012) presented in Figure 1, in which the task is to
distinguish another agent from inanimate objects. A frequent
assumption in traditional explanations of social cognition is
that such a recognition is accomplished by some special cog-
nitive module (e.g. a module of agency or animacy detection)
that is a precondition for interacting successfully. The results
of the PC experiment (see Figure 1 caption and the original
article for details) have been interpreted to show the reverse:
that the social interaction itself and its particular dynamics
constitute a solution to such a task. Therefore, in the oft-
repeated claim by enactivists, social interaction constitutes
social cognition.

Despite a theoretical and empirical research program on
social cognition, we believe so far enactivists have not
been sufficiently explicit about the explanatory methodol-
ogy they subscribe to, by which we mean clarity on what is
their explanatory target and what constitutes an explanation
(Cummins, 2000; Wright & Bechtel, 2007).

Since social interaction is proposed as an explanation, it
cannot be what enactivists are trying to explain. It would
mean that the explanandum is perhaps social cognition or ex-
perience but these are traditionally understood as individual-
level phenomena2. If an explanandum is to be re-construed
on a supra-personal level, we need an account of social cogni-
tion on that level (without equating it with social interaction).
Enactivists could, for example, take more precisely defined
types of interaction as their phenomena of interest (cooper-
ation, competition, exchange) and then seek non-individual
explanations for their emergence. Our proposal discussed in
the last section is to shift to a multi-level explanandum.

Moving on to the model of explanation, an explicit com-
mitment on what constitutes an (good) explanation is impor-
tant so that any given instance can be judged as to whether it
succeeds. In contemporary cognitive science two explanatory
frameworks have been discussed most widely: a deductive-
nomological (DN) and a mechanistic one (Cummins, 2000)3.

According to a DN framework, explaining a particular phe-
nomenon proceeds by citing relevant general laws, the details
of particular circumstances, and how the phenomenon is to be
expected given these two pieces of knowledge. Such an ex-
planation has a form of a deductive argument that derives the
explanandum from a certain law taken as a premise (Hempel,
1965). Many REC-ers have explicitly argued for adopting the
DN framework for explaining cognition (Walmsley, 2008).

By contrast, in a mechanistic framework, one wants to
know not just that a certain regularity holds and what it is
but also why it holds and how it is implemented. An answer
to this question is sought in identifying a mechanism, where:

A mechanism is a structure performing a function in
virtue of its component parts, component operations,
and their organization. The orchestrated functioning of
the mechanism is responsible for one or more phenom-
ena (Bechtel & Abrahamsen, 2005, p. 423).

Enactivists have not explicitly accepted or rejected either
of the frameworks. However, given the similarity between
them and other proponents of REC, it seems safe to assume
that their implicit notion of explanation is likely closer to the
DN framework. We now proceed to considering the reasons
behind this preference and show that in fact there can be en-
active mechanistic explanations.

2This interpretation is suggested by a version of the task by
(Froese, Iizuka, & Ikegami, 2014) in which participants’ experience
of the other’s presence is one of the dependent variables.

3The reader should be aware that this is a necessary over-
simplification of the variety of positions held within philosophy
of science overall and that even within cognitive science there
are heated debates on the precise understanding of deductive-
nomological, probabilistic, rational, mechanistic and other explana-
tions. We merely focus on the distinction that has been most widely
used in discussions between traditional cognitive science and REC.
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Enactivist Worries about Mechanistic
Explanation

Since space is limited we will focus on just two worries that
prevent enactivists from adopting a mechanistic approach.
We acknowledge that there are other issues that could be
raised (e.g. the role of representations in mechanistic expla-
nation) but our reply to them would be similar in spirit to
what we offer here: that the notion of mechanism is richer and
more flexible than typical complaints about it presuppose.

The Decomposability Worry
The main worry enactivists and other REC-ers seem to have
with the mechanistic approach is that it allegedly views cog-
nitive systems as decomposable or near-decomposable while
in reality they are non-decomposable. For example, Lamb
and Chemero (2014) argue that according to the mechanists,
producing an explanation requires (1) “decomposition [that]
involves developing a model of a system’s behavior by iden-
tifying discrete component parts and their linear, or weakly
non-linear, interactions” and (2) “localization [that] involves
mapping those discrete components and interactions onto fea-
tures of a physical system” (pp. 809-810). What is often
added to this charge is that such an explanatory strategy views
cognitive systems as component-dominant, i.e. the behavior
of the whole is a simple additive result of the behavior of
its components, whose properties and functions are rigid and
pre-determined (Favela, 2015). Therefore, a single compo-
nent can be analyzed in isolation as responsible for some par-
ticular capacity of the system.

In an opposition to this view on the brain and cognition,
REC-ers argue that in fact living cognitive systems are non-
decomposable into components and interaction-dominant.
That is, the behavior of the whole is more than a simple sum
of the parts because interactions between parts are mostly
non-linear, the behavior of each part dynamically depends on
all other parts of the system and it is not possible to assign any
specific task to any component. Therefore, interactions be-
tween components are more important than the components
themselves (Richardson & Chemero, 2014)4.

If neural and cognitive systems are indeed non-
decomposable and mechanistic framework can only be ap-
plied to decomposable systems, then obviously enactivists
cannot make use of it. However, these arguments betray a
misunderstanding of the mechanistic framework and explicit
dismissal of the new developments in this field.

First of all, mechanists explicitly argue against mere ag-
gregation of components and place heavy emphasis on their
organization (Wimsatt, 1997). It is because the way parts are
organized in space and time that they together can exhibit be-

4This view composed of several statements can of course be
translated into a continuum of positions. Arguing against the ex-
planatory primacy of components might mean rejecting explanations
that (a) ignore interactions, (b) assume only linear interactions, (c)
assume only static interactions ignoring dynamics, (d) ignore the
effect of parameters external to the system. We thank anonymous
reviewer for pointing this out.

havior that they cannot exhibit on their own. It is because the
parts are on a lower level than the whole they comprise that
they cannot have the same properties (cf. the properties of
hydrogen and oxygen vs water).

Second, there is no reason to suppose that only linear and
sequential modes of organization are allowed in mechanisms.
Especially when dealing with biological mechanisms, non-
linear and cyclic modes are ever-present. Such a focus on bi-
ology has led mechanists to stress the necessity for dynamic
mechanistic explanation because in a system organized non-
linearly “the operations performed by parts of the mecha-
nism vary dynamically, depending on activity elsewhere in
the mechanism” (Bechtel, 2011, p. 551). Therefore, an ex-
planation has to include not just a static diagram of compo-
nents and their organization but also a description of how the
functioning of these parts is orchestrated in time, including
potential shifts of the overall functional organization. Adding
dynamics to a mechanistic explanation does not turn it into a
law-based explanation (Bechtel & Abrahamsen, 2010, 2011).

The general thrust of these extensions of the mechanistic
framework is to stress that cognitive systems are likely to lie
on a continuum between the extremes of non-decomposable
and fully-decomposable. They are, instead, integrated sys-
tems, in which it is still possible to identify components but
their functions are not necessarily predetermined and fixed.
Nor is there a trivial additive relationship between compo-
nent sub-functions and the overall phenomenon. Rather, their
contribution to the operation of the whole might dynamically
depend on other parts of the system, the larger context and be
variable in time. It does not mean that when studying a mech-
anism for a particular phenomenon it is impossible to identify
these contributions (see also Menary, 2007).

In reply to such arguments, Lamb and Chemero (2014)
state that

If a neo-mechanist wishes to discard the condition of de-
composability, then she does so at the cost of discarding
the feature of neo-mechanistic explanations that makes
them distinct from more general accounts of naturalistic
explanation (p. 813).

We wish to oppose this complaint. First, it is unreason-
able to expect that a certain concept or theory once pro-
posed cannot be developed further. Second, what is dis-
tinctive about mechanistic explanations is not decomposabil-
ity but a concern for causal structure underlying the phe-
nomenon5, and for explaining how things work rather than
merely stating what are the laws. Finally, specific for the
topic of this paper, a REC-er has yet to justify to what ex-
tent non-decomposability applies to social cognition, even if
it holds for the brain.

5We should note here that it might be that the mechanistic ap-
proach and enactivism rely on different notions of causality that
make them incompatible. Addressing this possibility would require
not merely examining the respective commitments but also the plau-
sibility of particular models of causality assumed, e.g. whether cir-
cular causality typically adopted by enactivists is a helpful notion.
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The Extended Cognition Worry

The second major worry enactivists have about mechanistic
explanation has to do with the claim that social interaction
itself constitutes social cognition. This is in line with a gen-
eral REC view that cognition is not done by the brain alone
but by an extended brain-body-environment system. In the
case of social cognition, it is rather an extended brain-body-
environment-body-brain system (Froese, Iizuka, & Ikegami,
2013). The fear is that perhaps mechanistic framework some-
how precludes such an extended conception of cognition.

The worry is seemingly justified by the following critique
by Herschbach (2012). In his article on social cognition
sub-titled “A mechanistic alternative to enactivism” (empha-
sis added), he very acutely points out that enactivists have
not been very clear on what they mean by constitution in
their claim that “social interaction constitutes social cogni-
tion”. Constitution is standardly taken to imply a part-whole
relationship and if the claim is that supra-personal interac-
tion constitutes individual cognition, then it is somehow a
category mistake and a confusion of levels of organization.
On the other hand, if constitution is aimed at emphasiz-
ing the causal links between agents engaged in the interac-
tion, then enactivists are committing a well-known coupling-
constitution fallacy (Adams & Aizawa, 2010). In this fallacy,
frequently ascribed to proponents of extended cognition in
general, one points out extensive causal coupling between a
cognitive agent and some external factors and then concludes
that therefore these factors are part of cognition. Such a con-
clusion is thought to be unwarranted because coupling and
constitutive relations are in general not equivalent.

Herschbach proposes that adopting a mechanistic frame-
work can capture everything that enactivists want to say about
social interaction without committing the fallacy. He states
that perceptual crossing example would be described by a
mechanist as a network composed of interacting agents to be
explained by focusing on the agents, their behavior and orga-
nization. A mechanist would then move one level down to the
internal mechanisms of the agents and how they produce the
particular behavior observed in the experiment in response to
particular sensory input. The main point of difference be-
tween enactivists and mechanists, according to Herschbach,
is that while the former would like to say that the environ-
mental input constitutes social cognition, the latter would say
that only the agent-internal mechanism constitutes the phe-
nomenon of interest (the behavior exhibited in the experi-
ment) while the environmental input is merely an external
influence on that mechanism. That is, the mechanism suc-
ceeds only when situated in the appropriate social context of
having contact with another agent.

Herschbach grounds this conclusion on the fact that only
parts that participate in a self-organized autonomous indi-
vidual can be truly said to constitute cognition. He follows
Bechtel (2009) who has argued that it is the autonomous liv-
ing system that is the proper “locus of control”, differenti-
ated from the environment, because it is the living system

that needs to maintain itself as a unity in constantly changing
external conditions.

If adopting a mechanistic framework were to indeed pre-
clude speaking of social interaction playing a constitutive
role, enactivists would not be able to accept it. However, we
believe there are reasons to oppose Herschbach’s conclusion.

The first most obvious reply to Herschbach is that he is re-
placing the enactive explanandum with his own by switching
from the phenomenon of interest being social interaction as
a whole to the behavior of the individual. Even though enac-
tivists have not been very clear on their exact explanandum,
they would definitely resist this move from the higher to the
lower level.

Furthermore, regarding autonomy as a guide to the bound-
aries of cognition, both Herschbach and Bechtel misunder-
stand the notion of autonomy adopted by enactivists. Liv-
ing systems are autonomous in being self-determined rather
than being steered from outside (Bechtel’s “locus of con-
trol”). However, they are also autonomous in being oper-
ationally closed, that is, organized in a circular manner, in
which the processes and components that constitute the sys-
tem are themselves constituted by that system. This, how-
ever, applies not just to the bio-chemical processes of self-
maintenance, but also to the closure of the sensorimotor loop
of the organism. This loop is closed not to the environment
but through the environment, which is merely an additional
step in the loop, not an input or output external to the system
(see Villalobos & Ward, 2015, for a more detailed argument).
The point here is that enactivist autonomy does allow for the
constitutive role of the environment in the cognitive process.

Finally, to respond to Herschbach from within a mecha-
nistic framework itself is to point at the recent literature that
treats the coupling-constitution fallacy as an instance of a
general problem of demarcating the boundaries of a mech-
anism (Kaplan, 2012). In short, what is required to allow for
deciding what constitutes part of the mechanism is an account
of constitutive explanatory relevance, i.e. a way to determine
which components and processes are relevant to a particular
mechanistic explanation (Craver, 2007). This does not need
to be a priori based on deciding what cognition really is and
whether it really extends beyond the brain. In fact, it is even
possible to develop a deflationary (yet still mechanistic) ac-
count which shows how certain kinds of dynamic non-linear
coupling just are constitutive (Kirchhoff, 2016).

In sum, contra Herschbach (2012), adopting the mecha-
nistic framework does not in fact necessitate abandoning the
constitutive role of social interaction in social cognition.

The Enactive Mechanisms Proposal
We believe enactive mechanistic explanation is possible as
there is sufficient basis on both sides of the debate for such
a reconciliation. Constructing such an account requires two
things. First, it requires disambiguation of the notion of
‘composition’ involved in mechanistic explanations to rec-
ognize its compatibility with enactivist claims about non-
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Figure 2: Traditional social cognition. Figure 3: Enactive social cognition.

decomposability of cognitive systems. Identifying compo-
nents in a cognitive system does not necessarily entail that
these components are self-contained, so that the mechanism
is a mere linear addition and causal interrelation of them. We
can just as well identify components that are defined by their
role in the overall whole. This latter, holistic, notion of ‘com-
ponent’ is in line with enactivism. Crucially, though, it does
leave room for a mechanistic explanation. Secondly, a tai-
loring of the mechanistic framework is required to fit wider
enactivist commitments, such as, for example, making room
for cognitive mechanisms that are non-representational and
extended. This reorientation towards mechanisms can be ad-
vantageous to enactivists for several reasons.

First, it equips enactivism with an explicit and coherent ex-
planatory framework, which comes with specific tools and
strategies for constructing explanations of cognitive phenom-
ena. For example, mechanistic literature on mutual manipula-
bility as a guide to constitutive relevance (Craver, 2007) can
help make clear what elements of individual cognition and
social interaction are essential to particular tasks. Similarly,
discussions on how to think of inter-level causation (Craver
& Bechtel, 2007) can help understand the autonomy of the
supra-personal level that enactivists consider important.

Second, the claim that social interaction itself should con-
stitute the primary level of explanation in enactive work on
sociality to some extent encourages ignoring the individual
mechanisms. By contrast, mechanistic emphasis on working
parts and their operations highlights the need to provide a dis-
tinctively enactive account of what goes on in the individual
brains and bodies, i.e. offer a truly multi-level explanation for
a multi-level explanandum. Otherwise, a traditional cognitive
scientist might well acknowledge the role of interaction but
combine that with a non-enactive account of internal mecha-
nisms, thereby defying the whole purpose of constructing an
explanatorily complete enactive cognitive science.

Third, enactive mechanistic explanation promotes integra-
tion with the rest of cognitive science while at the same time
making clear how enactive explanations are different from
traditional ones. That is, competing explanations could now
be formulated in the same language and compared, instead
of two communities adopting completely different explana-
tory frameworks and talking past each other. This is not to
say that dynamical, more law-oriented approaches are to be

eliminated and we definitely see value in a pluralistic attitude
(Dale, Dietrich, & Chemero, 2009). However, we think at
least some intersection is essential for continued progress.

The ‘commensurability’ of mechanistic enactivism and tra-
ditional cognitive science can be illustrated schematically.
Figure 2 represents a traditional cognitive science approach
to social cognition. All the components of the cognitive
mechanisms (differently colored cogs) are located inside the
agents’ brains. Succeeding in a social task requires one agent
to “replicate” the cogs of the other agent inside their own
brain, i.e. internally represent the mental states of the other
by means of “theory of mind” or simulation. The replicated
cogs will not be the same as the original ones (hence the blur-
riness) but need to be sufficiently close if the agents are to
interact successfully. The unfolding of the interaction is then
explained in terms of the operations of this internal machin-
ery, giving a strong impression that once all the cogs are in
place, the whole process might as well proceed offline.

The contrasting enactive mechanistic view is depicted in
Figure 3. Here the explanandum is particular kinds of so-
cial interactions in which the individuals participate. The ex-
planation is to be achieved by specifying all the components
of the picture that contribute to the realization of such inter-
actions. The components of the cognitive mechanisms (the
cogs) are distributed across the brain and the body of both
agents and dynamically coupled (the toothed belt), respect-
ing the enactivist rejection of the internal-external dichotomy.
The contribution of the individual brains to the overall social
interaction is diminished with respect to the previous figure,
suggesting a need for an alternative account of such internal
mechanisms. The fact that the coupling is a constraint on in-
dividual mechanisms rather than an additional cog, expresses
the idea that interaction consists of interacting individuals yet
allowing for emergent effects. Furthermore, the picture in-
cludes the possibility that the coupling might be affected by
contextual factors (the tension pulley), such as the layout of
the environment in which interaction unfolds, or some socio-
cultural circumstances.

To restate the point of our paper in terms of the second
figure above, we believe the current state of the matters in en-
activist theorizing about social cognition is an exclusive focus
on the toothed belt. We think the time is ripe to start examin-
ing the rest of the picture.
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Abstract

When people search for a target in a novel image they often
make use of eye movements to bring the relatively high acuity
fovea to bear on areas of interest. The strategies that control
these eye movements for visual search have been of substantial
scientific interest. In the current article we report a new com-
putational model that shows how strategies for visual search
are an emergent consequence of perceptual/motor constraints
and approximately optimal strategies. The model solves a Par-
tially Observable Markov Decision Process (POMDP) using
deep Q-learning to acquire strategies that optimise the trade-
off between speed and accuracy. Results are reported for the
Distractor-ratio task.
Keywords: Computational Rationality; Deep Reinforcement
Learning; Deep Q-Learning; Visual Attention.

Introduction
One of the many tasks for which people use vision is to search
for items in the environment. Visual search might be used to
locate a phone on a table, a car in a parking lot or a fam-
ily member in a crowd. In a typical laboratory visual search
task, participants are asked to find a visual target amongst dis-
tractors. For example, searching for a Gabor patch in a high
contrast noisy background (Najemnik & Geisler, 2008), or
searching for a red coloured letter O in a display that consists
of red Xs and green Os (Shen, Reingold, & Pomplun, 2000).
Many, though not all, visual search tasks require a number of
fixations and saccades before the target is found.

From a cognitive science perspective, visual search is in-
teresting because data from visual search experiments can be
used to inform theories of the underlying constraints on vision
(e.g (Geisler, 2011) and also to inform theories of how peo-
ple adapt eye movement strategies to these constraints (e.g
(Najemnik & Geisler, 2005). Human behaviour is a con-
sequence of both the constraints and the adapted strategies
and explanations of behaviour require both (Lewis, Howes,

& Singh, 2014). In fact, there is a long history of cognitive
science research on visual search and there are a number of
competing theoretical approaches.

First are the map-based approaches described by (Kowler,
2011), such as salience maps (Itti & Koch, 2000) and activa-
tion maps (Pomplun, Reingold, & Shen, 2003; Wolfe, 2007),
where the perceived visual information is represented as a
topological distribution in a graphical map form. The salient
area or peaks in the map represent items that significantly dif-
fer from their neighbouring items, that may contain attributes
of interest. These peaks in the map are then used to guide the
eyes through the display using some selection rules, such as
a greedy heuristic (Pomplun et al., 2003) or a winner-take-all
heuristic (Itti & Koch, 2000). To summarize, the map based
approach assumes that saccades are programmed to move the
fovea to those areas in the display that stand out from sur-
roundings.

Second are the Bayes optimal state estimation approaches
(Myers, Lewis, & Howes, 2013; Najemnik & Geisler, 2008),
in which it is assumed that visual information is recorded as
a Bayesian estimate of the state of the world. On each fix-
ation the estimated state is updated by optimally integrating
information (Bayes rule) from the previous state and from the
fovea and from the periphery according to its reliability. The
eye movements are then made using these states and apply-
ing a heuristic decision rule (e.g., ‘Maximum A Posteriori’
(MAP)) to navigate. This rule generates a behaviour in which
attention is directed to areas which have the highest proba-
bility of target present. Alternatively, Najemnik and Geisler
(2005) observed that the number, and spatial distribution, of
saccades could be better explained by a model in which each
saccade was directed to an ‘ideal’ location (i.e., a location
that maximises information gained). Their model was sensi-
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tive to known human constraints on vision, i.e., the accuracy
of perceiving a feature degrades with eccentricity.

Third are the optimal control approaches (Butko & Movel-
lan, 2008; Hayhoe & Ballard, 2014; Nunez-Varela & Wyatt,
2013; Sprague, Ballard, & Robinson, 2007), in which it is as-
sumed that the eye movements are not made to estimate some
statistics about the world but rather the goal is to maximize
the overall performance utility. The maximum reward/utility
an individual can attain throughout the task is bounded by
the noisy encoding of the visual information by the human
brain. In contrast to map-based and optimal state estimation
approaches, where prior assumptions about eye movement
decisions are made by heuristic rules, the control strategy
emerges as a consequence of bounds imposed by the human
visual system. To summarize, the optimal control approach
assumes that the saccades are programmed to move the fovea
so as to maximise task utility/reward.

In the current article we report a novel (approximately) op-
timal control model of the distractor ratio task. The purpose
of this model is to (1) explain phenomena not previously ex-
plained as optimal control, (2) to further elucidate the fram-
ing of visual search as a Partially Observable Markov De-
cision Process (POMDP) (Kaelbling, Littman, & Cassandra,
1998), and (3) to explore the role of deep Q-learning (Mnih
et al., 2015) in solving the tractability problems with previ-
ous optimal state estimation and optimal control approaches.
The model goes beyond the optimal state estimation model
of Myers in that it is applied to the full display size used by
(Shen, Reingold, & Pomplun, 2003). The model uses deep
Q-learning to solve a POMDP. It attempts to maximise a re-
ward signal given constraints imposed by the human visual
information processing system. We compare the performance
of the optimal control model to a model that uses MAP-like
heuristics. We show that the optimal control model offers
higher utility and better fits to the human data than the heuris-
tic model. Lastly, we use the model to explain phenom-
ena associated with the distractor ratio paradigm (Bacon &
Egeth, 1997; Shen et al., 2000; Zohary & Hochstein, 1989).
A phenomena that has previously been explained using the
salience-map based approach.

The Distractor Ratio Task
In the distractor ratio task the display consists of a target ob-
ject, which is randomly positioned amongst distractor objects
each of which shares at least one common feature with the
target. The goal is to respond whether the target is present or
absent. An example display is shown in Figure 1 where the
target is a red letter O. The distractors in this display share
either a same-colour or same-shape feature with the target.

In a number of studies it has been observed that people re-
spond more quickly, and with fewer eye movements, for ex-
treme ratios of same colour to same shape distractors (Egeth,
Virzi, & Garbart, 1984; Shen et al., 2003). In Figure 1, the
target – a red letter O – can be located easily in display (a)
and (c) with ratios 3:45 and 46:2 respectively as compared to

(a) (b) (c)

Figure 1: Distractor ratio stimuli with ratio distributions: (a)
3:45, (b) 24:24, (c) 46:2 and target stimuli: red coloured letter
O.

(a) (b)

Figure 2: (a) Average number of fixations per trial as a func-
tion of the number of distractors sharing colour with the
search target in target-absent trials and target-present trials
for high discriminability condition. (b) Saccadic bias (the
difference between the observed frequency and chance per-
formance) as a function of the number of same-colour distrac-
tors in target- absent trials for high discriminability condition
(Shen et al., 2003)

display (b), for which a response takes a relatively long time.
The distractor ratio effect reported by Shen et al. (2003) is
shown in Figure 2.

In addition to the distractor-ratio effect, Shen et al. (2003)
also observed a saccadic selectivity effect. In Figure 2, the
frequency of saccades to same-colour distractors is plotted
against the number of same-colour distractors. In the plot,
the saccade frequencies are higher for rare features (colour
or shape) than should be expected by chance (represented by
the horizontal line). When the same-colour distractors are
rare in the display, the participants were more likely to make
eye movements towards them than when they were common.
Conversely, when the number of same-colour distractors was
high, the participants were more likely to make eye move-
ment towards same-shape distractors.

The Model
In the following sections we describe the individual compo-
nents of the model for performing a 36-element distractor-
ratio task, and provide a walk-through of the model process
before presenting the model results.
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External Display
In the model, we represent the display by randomly distribut-
ing the target and the distractors in a grid, where each cell
consists of either a target object, a distractor object with com-
mon colour or a distractor object with common shape. In
the display, there is only one target object and the number of
distractors are determined by randomly sampling a ratio per
trail.

The display is represented by two feature vectors, one for
colour and one for shape. The presence or absence of a fea-
ture in each cell in the model is represented numerically by
the number 1 for presence and 0 for absence. The random
distribution of these features in the environment was achieved
by sampling randomly from the following set of ratios, r = R
(3:33, 6:30, 9:27, 12:24, 15:21, 18:18, 21:15, 24:12, 27:9,
30:6, 33:3).

Actions
The action space consists of (1) fixate on a cell, (2) respond
present and (3) respond absent. In our study there was a grid
of 6x6 coloured shapes and there were therefore a total of 36
possible fixation actions. A trial was terminated by the choice
of the present or absent action.

Reward
A reward was given after choosing a present or absent ac-
tion. The reward distribution was defined as a value 10 for
a correct response, a value of −10 for an incorrect response
and a value of−1 for each fixation. The penalty on each fixa-
tion imposes a speed-accuracy trade-off. More fixations gives
greater accuracy but at a cost.

Observation Model
Every time the model fixates, it also makes an observation.
The observation obtained by the model is constrained by the
noise in the human visual system. Two types of noise are
added to the signal: spatial smearing noise and feature noise.

1. Feature Noise: The human eye’s ability to discriminate
and perceive object features degrades with eccentricity ac-
cording to a hyperbolic function (Strasburger, Rentschler,
& Jüttner, 2011). To model this function we added Gaus-
sian white noise with mean 0 and standard deviation as ec-
centricity, i.e., a function of visual angle ‘θ’ between the
fovea and the given location, and a scalar weight ‘w f eatural’
to scale the effect of distance to the fovea for feature noise.
Therefore, the equation for the observation after adding
feature noise at location j given that the eye is focused on
location k is as follows,

δ f eatural(St , j) = v[st ]+N(θ,σ f (θ jk,w f eatural))

σ f eatural(θ jk,w f eatural) =
θ jk

(w f eatural)
+ c

where, v[st ] = 1 if the location st contains a target feature,
else v[st ] = 0, c is a constant with value 10−4 to avoid 0

variance in the model, σ f (θ,w f ) is the variance to simulate
the degrading eccentricity and ‘θ’ is the distance between
the fixated cell and location j.

2. Spatial Smearing: Another source of uncertainty in the
human visual system is the localization error (Levi, 2008),
where information in the parafovea may erroneously com-
bine features from one location with adjacent locations.
Therefore, for each location in the colour and shape vector
a weighted sum is calculated for the location and its adja-
cent eight locations. For example, If a red X is surrounded
by green Os in the parafovea then, as a consequence of spa-
tial smearing, the participant would be uncertain whether
they are actually looking at a red X or a green O.

In the model, spatial smearing is represented by a weight-
ing function (Gaussian kernel) with standard deviation as
a function of visual angle ‘θ’ between the fovea and the
given location, and a scalar weight ‘wspatial’ to scale the ef-
fect of distance to the fovea for spatial noise. The weight-
ing function here is a normalised function. As ‘θ’ (dis-
tance) increases the acuity decreases and the standard de-
viation of the Gaussian kernel increases, this means that the
percept of the item at a given location suffers greater inter-
ference from surrounding items. This encoding is done for
each location in the display. Thus, the equation for the ob-
servation after adding spatial noise at location j given that
the target features are at location St ∈ (1,2, ...,n) and the
eye is focused on location k is as follows,

δpercept(St , j) = K(s,σs(θ jk,wspatial))×δ f eatural(St , j)

σspatial(θ jk,wspatial) =
θ jk

(wspatial)
+ c

where, K is the Gaussian kernel with kernel size s = 1,
σs(θ jk,ws) is the variance. δpercept(St , j) is calculated sep-
arately for both shape and colour feature vectors. c is a
constant with value 10−4 to avoid 0 variance in the model.

Now each percept (δpercept ) (one for colour and one for
shape) is represented as a vector of noisy observations for
each location. A consequence of introducing the noise is
uncertainty in the content of the location.

State Estimation
At each time step t on which a fixation is made the model
receives a noisy observation for each location. The values for
perceived colour and shape are then combined (Hadamard
product) for each location [i, j]. We refer to these combined
values as relevance scores, where a higher score in a loca-
tion signifies high relevance to the task. These scores are
then integrated across fixations, using naive Bayesian infer-
ence (Kalman filter), to get the current state Bt which is a
vector of estimated relevance scores across fixations1.

1The integration of information across fixation is a local update
for each cell.
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Heuristic Control Model

The Heuristic control model makes fixations and observations
as described above. In order to decide which fixations to use
and when to respond it makes use of two heuristics. The first
uses a MAP-like strategy to determine where to fixate next,
and the second uses a thresholded stopping rule.

Optimal Control Model

As we have said, at each point in time, the model observes
the external environment through a noisy percept with a high
resolution fovea and low resolution parafovea and receives an
observation ot . The model then extract the high resolution lo-
cal information from the environment by taking actions at ∈A
(A is the set of actions) to move the fovea (e.g., choose where
to move the fovea). Since the environment is only partially
observed the model needs to integrate information over time
in order to determine how to act and how to make eye move-
ments most effectively. It does this using the Bayesian state
estimator described above.

At each step, the model receives a scalar reward rt (which
depends on the action taken by the agent), and the goal of
the agent is to maximize the total sum of such rewards R =
E[∑γt−1rt ], where γ ∈ (0,1) is the discount factor.

The most important aspect of the Optimal Control model
is that rather than using heuristics to choose what to do next,
it learns an approximately optimal policy using Deep Q-
learning.

Deep Q-learning The Deep Q-learner made use of the fol-
lowing network architecture.

The relevance score estimate Bt (36 element vector) from
the state estimator (above) was taken as the input. This input
was connected to a fully connected hidden layer consisting of
nodes equivalent to number of elements in the display, i.e.,
36, with rectifier activation function. This is followed by a
second fully connected hidden layer consisting of again nodes
equivalent to number of elements in the display, i.e., 36, with
sigmoid activation function. Finally, the output layer was a
fully connected linear layer of 38 nodes with single output for
each action in the task. To avoid over-fitting of the network
l2 regularization of the weights was applied with value 10−5.

During the training process a fixed size batch of transitions
< s,a,r,s′ > were sampled from a replay memory and used
for learning. For each time step (t), the deep Q-network (with
parameters θ) is trained to approximate the action-value (Q-
value) function from the sampled transitions by minimizing
the loss functions L(θi):

L(θi) = Es,a∼πθ
[(yi−Q(s,a;θ))2]

where yi = r+γmaxa′Q(s′,a′;θ′) is the target Q-value esti-
mated from a target Q-network (θ′). The parameters of target
Q-network (θ′) is copied over from the learned network (θ)
after a fixed number of iterations.

Algorithm 1 Deep Q Network Algorithm

1: initialize replay memory D, weights of the main network
θ and target network θ′.

2: observe the initial state s.
3: repeat
4: select an action a
5: with probability epsilon select a random action.
6: otherwise select a = argmaxa′Q(s,a′;θ).
7: perform the action a.
8: observe the reward r and new state s′ for action a.
9: store transition < s,a,r,s > in the replay memory D.

10: sample random transitions < s,a,r,s > from the re-
play memory D.

11: calculate the target value t for each sampled transi-
tion.

12: if s′ is the terminal state then
13: t = r
14: else
15: t = r+ γQ(s′,maxa′Q(s′,a′;θ);θ′)
16: end if
17: update the network using (t−Q(s,a;θ))2 as the loss.
18: s = s′

19: after every fixed steps θ′ = θ

20: until terminal state

Model Results
The Heuristic control model was run for 30,000 trials and 10
regression runs to check for consistency. The Optimal con-
trol model was run for 20 million trials. We first tested the
accuracy of the models. Accuracy is the proportion of tri-
als on which the model correctly responded either present or
absent. The best fitting optimal control model achieved an ac-
curacy of 96% in its last 50000 trials. In comparison, human
participants achieved 98% accuracy. The accuracy of the best
fitting Heuristic control model was 94%. Accuracy and utility
of both models is plotted in Figure 3. The plots show a clear
advantage of the Optimal control model for all explored pa-
rameter settings. In other words, the approximately Optimal
control model outperforms the Heuristic control model in all
cases.

Plots of fixation frequency versus same colour distractor-
ratio at different levels of spatial and feature noise are shown
in Figure 5. The results show that both model Heuristic
and Optimal control model generate similar distractor ratio
curves to humans (Figure 2) for target absent, where more
fixations are required for ratios close to 1. While the RM-
SEs for the Heuristic control model were smaller than for the
Optimal control model (Optimal: RMSE = 0.81; Heuristic
RMSE = 0.41), the goodness of fit against Human perfor-
mance for the Heuristic control model was R2 = 0.95 and for
the Optimal control model was R2 = 0.98. A weakness of the
Heuristic control model was that it produced DR effects for
both target present and target absent. In contrast, the Optimal
control model predicted a DR effect in the absent condition
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(a) (b)

Figure 3: (a) Mean accuracy achieved by both models plotted
against different noise parameter settings. (b) Mean utility
gained by both models plotted against different noise param-
eter settings. Where, FN is Feature noise, SN is Spatial Noise
and TH is the threshold set for heuristic control model.

(a) Heuristic Control model (b) Optimal Control model

Figure 4: Saccadic bias as a function of the number of same
colour distractors for Target Absent.

only. In terms of the shape of the DR curve and saccadic se-
lectivity curve, the similarity between humans and Optimal
control model is greater than the similarity between Heuristic
control model and humans (see Figure 2).

The saccadic bias effect is shown in Figure 4. For the ex-
plored parameter settings, the Heuristic control model gen-
erated higher levels of saccadic bias than generated by the
Optimal control model and these levels were nearer to those
generated by humans (Optimal: RMSE = 8.93; Heuristic
RMSE = 6.93). However, the Optimal control model ex-
plained more of the variance. The goodness of fit of the best
fitting Heuristic control model was R2 = .94. In contrast, the
best fitting Optimal control model had a goodness of fit of
R2 = 0.97. While the Heuristic control model predicts a mag-
nitude of saccadic bias that corresponds to that of humans at
extreme levels of same-color (around 30%), it is the Optimal
control model that has the better fit. This is likely due to
the extreme curvature (sinusoidal) of the saccadic bias for the
Heuristic model which is not present in the humans.

One of the effects in the human data that is not captured by
either the Optimal or the Heuristic control model is the asym-
metric effect of shape and colour (see Figure 2). This is very

(a) Heuristic Control Present (b) Optimal Control Present

(c) Heuristic Control Absent (d) Optimal Control Absent

Figure 5: Number of fixations as a function of same-colour
distractors for (a) the Heuristic model with target present, (b)
the Control model with target present, (c) the Heuristic model
with target absent, (d) the Heuristic model with target present.

likely due to the fact that we used the same noise parameter
values for both shape and colour in the model’s observation
function. Further work is needed to explore the effect of the
known differences in acuity functions for shape and colour
(Kieras & Hornof, 2014).

Discussion and Conclusion
While the results presented here are preliminary, they offer
some evidence that the distractor-ratio effect is the conse-
quence of an approximately optimal adaptation to the con-
straints imposed by the human visual information processing
system. Unlike previous work, including Myers et al. (2013),
our results are based on a model that makes approximately
optimal control decisions to choose fixation locations rather
than a model that uses MAP-like heuristics.

Achieving these results required two contributions to cog-
nitive modeling. The first is the novel application of POMDPs
to the framing of the distractor-ratio problem, further extend-
ing the work of Butko and Movellan (2008). The POMDP
framing is important because it provides a rigorous basis
for exploring the computationally rational adaptation of hu-
man strategies to known information processing constraints
(Lewis et al., 2014; Howes, Lewis, & Vera, 2009). It thereby
helps make the crucial link between cognitive mechanism and
rationality that supports deep explanations of behaviour.

The second contribution is the novel application of Deep
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Q-Learning (Mnih et al., 2015) to determine the optimal pol-
icy given a theory of human visual information processing
capacities. The role of reinforcement learning based algo-
rithm’s have previously been proposed as means of explaining
human learning processes (Dayan & Daw, 2008) and also, as
means of deriving rational analyses of what a person should
do in particular task (Chater, 2009). Our work is more aligned
with the goals of (Chater, 2009). The purpose of our rein-
forcement learner was not to model the step-by-step learn-
ing process, but rather to model the rational outcome of the
learning process – an approximately optimal adaptation to in-
formation processing limits.

There is a substantial amount of work to be done. While the
best fitting Optimal control model explained 98% of the vari-
ance, to be fully confident that it is better than the Heuristic
control model, we need to more fully explore the parameter
space of both models. For example, for the Heuristic control
model, it might be the case that even higher feature noise,
and lower spatial noise, might further improve the fit. We
also need to find a fit that reduces the RMSE of the Optimal
control model.

In conclusion, we have demonstrated that framing the vi-
sual search problem as a POMDP and solving this problem
with deep Q-learning is a viable approach to explaining ef-
fects such as distractor-ratio and saccadic selectivity.
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Abstract

Recent studies find that school-age children learn better when
they have active control during study. Yet little is known
about how individual differences in strategy or cognitive con-
trol skills may affect active learning for preschoolers, nor if
experimental measures of active learning map onto real-world
learning outcomes. The current study assesses 101 low-income
5-year-olds on an active category learning task, and measures
of executive function, attention, and school readiness. We find
that preschoolers use an informative sampling strategy for cat-
egories defined by stimuli features in 1D and when presented
with a distractor dimension (2D). Children accurately classify
in 1D, but show mixed performance in 2D. Attention predicts
sampling accuracy, and working memory and inhibitory con-
trol predict classification accuracy. Performance in the active
learning task predicts early math and pre-literacy skills. These
findings suggest that trial-by-trial learning decisions may re-
veal insight into how cognitive control skills support the ac-
quisition of knowledge.

Keywords: active learning; executive function; attention; cog-
nitive development; education

Introduction
From the enthusiastic preschooler who asks “why?” to the in-
fant who turns her head to attend to a novel toy, children learn
by actively exploring the world around them. Experimen-
tal studies show that children are engaged problem-solvers
and employ strategies such as hypothesis testing, for exam-
ple playing more with a toy after being shown confounded
information about how it works (Schulz & Bonawitz, 2007).

Research in cognitive science suggests that active informa-
tion gathering boosts children’s performance in learning ex-
periments (Partridge, McGovern, Yung, & Kidd, 2015; Sim,
Tanner, Alpert, & Xu, 2015). For example, Sim and col-
leagues (2015) recently found that 7-year-old children learn
categories better after self-selecting examples of category
membership than when passively presented with a random
sequence of examples. Yet little is known about how vari-
ation in children’s abilities to optimally sample information
may affect learning outcomes. Do young children differ in
their information sampling strategies? What skills help chil-
dren be good active learners? How do experimental measures
of active learning map onto real-world learning outcomes?
These questions have important implications within cognitive
science and may inform targeted education interventions, par-
ticularly for children from under-resourced backgrounds who
are at increased risk for poor academic outcomes (Blair &
Raver, 2014). This study takes a first step in addressing these
questions by examining low-income preschool children’s ac-
tive sampling strategies in a category learning task. We then

ask how individual differences in a series of executive func-
tion, attention, and school readiness measures relate to active
learning performance.

Educational research has long been interested in how
young children’s abilities to actively attend and engage dur-
ing learning affect academic outcomes. One set of factors
identified are executive functions (EF), higher-order cogni-
tive control skills such as the ability to hold items in working
memory, inhibit a prepotent response, and flexibly shift at-
tention. Higher EF is associated with higher socioemotional
and cognitive skills, and predicts early math and pre-literacy
skills (Blair & Raver, 2014). Similarly, individual differ-
ences in preschool children’s sustained and selective atten-
tion are important predictors of cognitive and academic skill
(Steele, Karmiloff-Smith, Cornish, & Scerif, 2012). The neu-
ral networks that underlie EF and attention undergo tremen-
dous growth during the preschool years. Several success-
ful preschool interventions capitalize on this neurocognitive
plasticity by targeting EF and attention as a means to boost
school readiness and close income-based academic achieve-
ment gaps (Ursache, Blair, & Raver, 2012). Importantly,
these intervention programs promote children’s active en-
gagement in learning as a key mechanism to support both EF
and academic skills. However, this research is limited both
by conceptualizing active learning in global behavior terms
and by operationalizing learning outcomes with static stan-
dardized assessments.

Active learning paradigms from the cognitive science and
machine learning literature offer a higher resolution to ex-
amine how young children actively learn and employ cog-
nitive control processes. Here, active learning is defined as
allowing learners to generate or make decisions about the in-
formation they want to experience trial by trial (Gureckis &
Markant, 2012). Trial-by-trial analyses of active information
gathering can reveal meaningful variation in learning strate-
gies. For example, Gureckis and Markant (2009) investigated
adult learners’ ability to gauge information value during an
active search task similar to the children’s game battleship.
The authors found that participants’ information generating
behaviors took two forms: one relatively fast and undirected
and another slower, more effortful, that exploited local in-
formation constraints. Moreover, response time and search
efficiency differed across these “modes.”

Benefits of active control during information gathering are
that learners can ask targeted questions to avoid redundant ex-
amples or content too difficult, creating learning situations to
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best fill their personal knowledge gaps (Gureckis & Markant,
2012). Active control also supports learning by enhancing the
encoding of episodic representations which increases the like-
lihood of retrieving information about the experienced stim-
uli from memory (Markant, Ruggeri, Gureckis, & Xu, 2016).
Adult learners can benefit from even subtle control over tim-
ing by coordinating the presentation of new information with
their optimal attentional state so they are alert and ready to en-
code (Markant, DuBrow, Davachi, & Gureckis, 2014). More-
over, active control during memorization is associated with
increased coordination in the neural networks that support ex-
ecutive control, attention, and memory encoding (Markant et
al., 2016).

A limitation to active learning is that benefits can vary
based on learners’ abilities and task demands. For example,
learners may be biased when sampling data, creating an un-
informative feedback loop. Markant (2016) manipulated the
hypothesis generation process in a series of category learning
tasks to assess the impact on adults’ ability to learn simple
and complex rules. Results showed successful active learn-
ing depended on a match between the target rule and salient
perceptual and abstract features of the task stimuli, and poor
learning was due to generation of hypotheses that followed a
non-relevant rule. That is, adult participants benefited from
active learning opportunities under complex task demands
when they were able to shift their attention to relevant rules
or dimensions while ignoring others–a central EF skill.

To our knowledge, no studies to date have examined the
coordination of EF and attention in children during active
learning. Moreover, very little is known about how individual
differences in active learning relate to sampling strategies or
school readiness. Identifying the mechanisms supporting suc-
cessful active learning may inform both cognitive science the-
ory and educational interventions to support school readiness.
The current study addresses these research gaps by examining
active learning in a large sample of low-income preschoolers
using a multi-dimensional category learning task, as well as a
well-validated battery of EF, attention, and school readiness
measures.

Method
Participants

One hundred and one preschoolers (M = 61m; Range = 55-
67m; Male = 46) were tested as part of a school readiness
study run in collaboration with two Head Start preschool cen-
ters. Participants came from low-income backgrounds, with
an average reported yearly income of $11,968 (Range = 733-
34,486). The sample was predominantly African American
(N = 86).

Children were tested in their preschools by trained asses-
sors using a touchscreen laptop. Administration of the tasks
was divided over two testing days within a one week period.
EF tasks were administered on day 1, and the category learn-
ing task and school readiness assessment were administered
on day 2.

Figure 1: Examples of 1D trials varying by size dimension.

Category Task
Materials The category task (a modified version from Sim
et al., 2015) was presented as a multi-slide questionnaire us-
ing the Qualtrics survey system. First, Block 1D presented
two forests of trees that varied by one stimuli feature. The
color row showed 10 images, identical in size and shape, but
with varied leaf color, ranging from orange to green (left to
right). The size row of 10 images were identical in color and
shape, but progressed in size from smallest to largest (left to
right). Block 2D presented a 7-by-6 grid of trees that var-
ied horizontally by size (smallest on the left) and vertically
by color (orange on top). In this task, worms and snails live
in different groups of trees. The goal of the task is to clas-
sify trees based on the type of animal that lives there. Small
worm and snail icons were displayed above exemplar trees in
the sampling phase, and appeared as two larger button choices
at the bottom of the screen in the test phase.
Procedure The 1D and 2D blocks each began with a
demonstration phase, followed by two testing sequences
which switched the dimension of categorization. In the 1D
block, the first sequence featured the color row of stimuli and
the second used the size row. In the 2D block, the first se-
quence was categorized by the size dimension and the second
by color. Each sequence began with a 2-trial sampling phase
followed by a classification phase (4 1D trials, 8 2D trials).

Block 1D Demonstration phase. To introduce the task, chil-
dren were told to pretend they were scientists and figure out
where two types of animals, worms and snails, liked to live.
First, children were shown the the 1D color row. To demon-
strate an example categorization of the trees, children were
shown a small worm or snail icon above each and every tree
(see Fig. 1). A red circle appeared around the group of trees
with worms and another around the group with snails to em-
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phasize that the animals were grouped separately. Children
were asked to point to the category boundary, described as
the “edge between the trees where the worms and the snails
live.” Once the child guessed, they were shown the boundary
with a red arrow. This sequence was repeated with the 1D
size row of trees and a new category boundary. Following the
Sim et al. (2015) task design, these practice trials were meant
to establish that (1) the animal icon above the tree indicated
that the animal lived in that tree, (2) there was an invisible
category boundary that divided the trees into two groups, and
(3) the category boundary moved with each new forest.

Sampling phase. Children were first presented with the 1D
color row of trees. In sampling trial 1, a worm and a snail
icon appeared over 2 exemplar trees. The letters A, B, and C
appeared under possible trees to sample. One sampling op-
tion was informative to find the category boundary, while the
other two were non-informative because their category mem-
bership could be inferred by the position of the exemplars.
By limiting learners to three sampling options, we increased
our power to differentiate informative vs. uninformative sam-
pling strategies over fewer trials, reducing noise and task de-
mands for this very young sample.

To complete the sampling selection, the child was
prompted, “Here’s where a worm lives and here’s where a
snail lives. If you want to find the edge between the trees,
would you want to learn about what lives in tree A, B,
or C?” Once the child touched the sampling tree option of
their choice, the selection was automatically logged in the
Qualtrics database. Sampling trial 2 revealed the correct
worm and snail icons above the three sampling tree options
of the previous trial, and three new trees were shown as sam-
pling options (see Fig. 1). Children selected a sampling op-
tion and the task advanced to the classification phase.

Classification phase. Children were presented with the 1D
color row of trees without exemplars. At the bottom of the
screen, a larger image of a worm and snail were shown ver-
tically aligned. To reduce task demands, only 4 of the 10
trees were queried for classification. On each classification
trial, the test trial number (1-4) appeared underneath one of
the trees as a cue to guess the category membership of that
tree. Children indicated their response by touching either
the worm or snail response icon. Together, these responses
demonstrated where each child believed the category bound-
ary was generally located.

The sequence of sampling and classification phases was
repeated for the 1D size row of trees, with a new category
boundary and locations for exemplars and test trials.

Block 2D To introduce the 2D block, children were shown
the 6x7 grid of trees and instructed, “In big forests, you have
to find out if the worms and snails live in groups based on
the SIZE of the trees or the COLOR of the trees. They only
care about the size OR color!” The demonstration phase was
identical to that in the 1D block (see Fig. 2). Sampling and
classification phases in 2D followed the same procedure as
1D. Children were not told whether color or size was the rel-

Figure 2: Examples of 2D trials with horizontal category
boundary (classification trial not shown).

evant dimension for categorization.
The first 2D sequence had a category boundary determined

by tree size, following a vertical axis. Sampling trial 1 fea-
tured 3 category exemplars and 4 sampling tree options. The
location of the exemplars made categorization only possible
by the vertical dimension (i.e. by size). One sampling option
was informative to the vertical category boundary. The cate-
gory membership of the three other non-informative options
could be inferred by the locations of the exemplars. After 2
sampling trials, children completed 8 classification test items.
The number of exemplars, sampling options, and classifica-
tion trials were increased compared to the 1D block to include
a variety of positions across the 2D grid.

The second 2D sequence had a category boundary deter-
mined by tree color, following a horizontal axis (see Fig. 2).
This dimensional switch (i.e., requiring attention to horizon-
tal relations between exemplars to infer category boundary,
not vertical as in past trials) is a feature of dimensional card
sort games, classic EF tasks which require the participant to
flexibility shift attention to the new relevant dimension and
inhibit response to the old dimension.
Coding Selection trials were coded as correct if the child
selected the option informative to finding the category bound-
ary. Aggregate scores were computed for overall task accu-
racy and overall sampling and classification accuracy, and for
sampling and classification accuracy on 1D vs. 2D blocks.

EF, Attention, and School Readiness Tasks
Working Memory. Digit Span is a widely used executive func-
tion task that assesses children’s working memory (WM).
Children are instructed to repeat number sequences of se-
quentially longer length in forward and backward conditions.
Children in this sample were largely unable to repeat se-
quences backwards, so only correct responses on the forward
condition are reported here.

Attention and Inhibitory Control. In the Continuous Per-
formance Test (CPT), one hundred pictures are randomly pre-
sented on a touch screen one at a time for 300 ms followed by
blank response screen for 1500 ms. Children are instructed
to touch the screen as soon as an animal appears. Stimuli in-
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clude 20 presentations of the target stimuli (animals) and 80
presentations of nontarget stimuli (objects). We report reac-
tion time on correct touches to targets, a measure of attention
processing speed (APS). We reverse-coded percent of missed
responses to targets (omission error) and incorrect touches to
distractors (commission error) as indices of sustained atten-
tion (SA) and inhibitory control (IC), respectively.

Math and Pre-Literacy Skills. The Woodcock Johnson III
Tests of Achievement (WJ-III) is a well-validated assessment
of school readiness skills. The Applied Problems subtest as-
sesses children’s early mathematical reasoning. The Letter
Word subtest requires children to identify letters and words
to measure their pre-literacy skills. A sum of the total correct
answers is computed for each subtest and then translated into
a standardized W-Score.

Results
Sampling Performance
We first ask if preschoolers can strategically sample in a cate-
gory learning task. In the 1D block, children are significantly
above chance in accurately choosing the informative sam-
pling option (M = .48, chance = .33; t(99)= 4.06, p< 0.001).
Within the 1D block, mean sampling accuracy is not different
for color (M = .45) and size (M = .51), t(99) = −1.37, p =
.18. Children also chose the informative sampling option in
the 2D block (M = .35, chance = .25; t(98) = 3.5, p= 0.001).
Within the 2D block, mean sampling accuracy is also not dif-
ferent for color (M = .33) and size (M = .37), t(99) =−1.07,
p = .29. We find that sampling accuracy in 1D is related to
sampling accuracy in 2D, r = .26, p = .01.

Figure 3 shows participants’ mean accuracy on sampling
questions (left panel) and subsequent categorization ques-
tions (right panel) by stimulus dimension and dimension of
the sampling space.

Classification Performance
Overall, children are above chance in correctly classifying
test items in 1D (M = .66, chance = .5; t(99) = 6.3, p <
0.001) but not in 2D (M = .51, chance = .5; t(98) = .97, p
= .337). Mean classification accuracy in the 1D block is sig-
nificantly higher than mean classification accuracy in the 2D
block (t(97) = 5.14, p < .001). Within the 1D block, mean
classification accuracy is significantly higher for color (M =
.71) than for size (M = .63), t(99) = 2.23, p = .03. Within
the 2D block, children are at chance on the size condition
(M = .47, chance = .5; t(98) = −1.35, p = .18) but interest-
ingly above chance on the subsequent color condition, which
includes a dimension switch on the category boundary (M =
.55, chance = .5; t(98) = 2.15, p = .034). Mean classification
accuracy is significantly higher for color in the 2D block than
for size (t(98) = 2.24, p = .03). Note that effects of size vs.
color dimensions should be interpreted with caution, as the
blocks were presented in fixed order.

Does Sampling Predict Classification?
We next ask if sampling accuracy benefits subsequent clas-
sification accuracy, as suggested in previous active category

Figure 3: Accuracy on sampling questions (left) and cate-
gorization test (right) for each relevant stimulus dimension
(color/size) and dimensionality of the stimulus space. Dotted
lines show chance (sampling chance: 1D=33%, 2D=25%).

learning studies with both adults and school-age children.
Surprisingly, sampling accuracy is not related to classifica-
tion accuracy. Children who choose the most informative
sampling strategy in 1D are not better at 1D classification,
r = .06, p = .58, nor are 2D sampling and classification accu-
racy related, r =−.03, p = .81. Comparing classification ac-
curacy on 1D of good samplers (Macc > .7) vs. poor samplers
(Macc < .3) yielded no significant differences, t(72.9) = .84,
p = .41, nor for good vs. poor samplers in 2D, t(35.7) = .2,
p = .84.

Relations Between EF and Active Learning
We next examined the role of executive function and atten-
tion in predicting active learning performance using a series
of exploratory logistic mixed-effects regression models to the
item-level with subject as a random factor. Age, sex, EF, and
attention measures were fixed predictors. Prior to analyses,
we scaled and centered all variables. Table 1 presents de-
scriptives of executive function, attention, and school readi-
ness measures.

First, we predicted overall accuracy, including both
sampling and classification trials (N = 2,632; R syn-
tax: Correct ∼ age + sex + WM + APS + SA +
IC + (1|Subject)). There was a significant positive
effect for WM (β = .11, Z = 2.11, p = .04), showing that
participants with higher working memory perform better
overall in the task. Next, we predicted accuracy on all
sampling trials (N = 676), adding overall classification accu-
racy as an additional fixed predictor (R syntax: Correct ∼
age + sex + WM + APS + SA + IC + class Acc +
(1|Subject)). There was a significant positive effect
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Table 1: Descriptives of Executive Function, Attention, and
School Readiness Measures.

Mean (SD) Range
Digit Span (% correct forward) 44% (13) 0-67%
CPT Omission Errors (%) 47% (28) 0-100%
CPT Commission Errors (%) 12% (14) 0-78%
CPT Reaction Time (ms) 824 (166) 474-1364
WJ-III Applied Probs (W-Score) 407 (17) 350-440
WJ-III Letter Word (W-Score) 333 (20) 276-369

for attention processing speed (APS) (β = .38, Z = 2.57,
p = .01), showing that participants with faster attention
processing are more accurate at sampling. We then predicted
accuracy on all classification trials (N = 1956), substituting
in overall sampling accuracy as an additional fixed predictor.
There was a significant positive effect for WM (β = .12,
Z = 2.14, p = .03), showing that participants with higher
working memory are more accurate at classification.

We next ran the models by 1D and 2D blocks. Predicting
1D sampling (N = 339) with 1D classification accuracy as the
additional fixed predictor revealed no significant effects. For
1D classification trials (N = 598) with 1D sampling accuracy
as the additional fixed predictor, there was a surprising signif-
icant negative effect for sustained attention (SA) (β = −.37,
Z = −1.98, p = .048), such that children who were less re-
sponsive to targets during a sustained attention task had better
classification accuracy in the 1D block.

Predicting to 2D sampling (N = 337) with 2D classifica-
tion as the additional fixed predictor also revealed a positive
effect of attention processing speed (β = .357, Z = 2.026,
p = .043). For 2D classification trials with 2D sampling ac-
curacy as the additional fixed predictor, there was a signifi-
cant effect of inhibitory control (IC) (β = .131, Z = 2.087,
p = .037), showing that children who are better at inhibiting
a prepotent response are more accurate at 2D classification.

Predictors of School Readiness
How does active learning performance relate to school readi-
ness? To examine this question, we use an exploratory lin-
ear mixed-effects model fit by REML (nlme package) at the
subject level to predict to math and pre-literacy scores on the
WJ-III assessment. First, we predict to math scores using sub-
ject as a random effect, and age, sex, EF, attention, and over-
all sampling and classification accuracy as fixed predictors
(R syntax: math ∼ age + sex + WM + APS + SA + IC
+ class Acc + Sampling Acc, random= ∼ 1|subject).
We found significant positive effects for overall sampling ac-
curacy (t(77) = 3.85, p < .001), and overall classification ac-
curacy (t(77) = 2.64, p = .01), suggesting that children who
are better at active learning in the category task are have bet-
ter early math skills over and above the contributions of EF,
attention, and demographics.

We ran the same exploratory linear mixed-effects model

to predict pre-literacy scores but did not find any relations
between pre-literacy and sampling or classification accuracy.
We modified the predictors, collapsing over sampling and
classification trials to examine the effect of overall active
learning performance. Here, we find that overall accuracy in
the active learning task is a positive predictor of pre-literacy
skills (t(78) = 2.03, p = .046).

Discussion
We found that 5-year-olds from low-income backgrounds use
an informative sampling strategy in an active category learn-
ing task. Preschoolers are able to accurately classify the cat-
egory membership of test items in 1D, but show mixed per-
formance in the 2D classification blocks. Sampling accuracy
across dimensions hangs together: children who choose the
most informative option in 1D are also better at sampling in
2D. However, children who are good at classification in 1D
are not more likely to be good at classification in 2D. Contrary
to past active learning studies, we do not find that better sam-
pling accuracy benefits classification accuracy in either 1D
or 2D blocks. However, individual differences in children’s
EF and attention skills shine a light on potential cognitive
control processes that support success in active learning. We
found that attention processing speed largely supports sam-
pling accuracy and better working memory is linked to higher
accuracy on classification. Notably, better inhibitory control
supports classification accuracy when the categories are pre-
sented with a distractor dimension (2D).

Previous published work has found active learning benefits
in categorization tasks for 7-year-olds (Sim et al., 2015), but
little research has examined preschool-aged children. One
concern was that younger children would struggle with the
metacognitive organization needed to plan and follow an in-
formative sampling strategy. Despite variability, our data
show that many preschool children made queries that were
informative to finding a category boundary.

It may be that categorization within a 2D space was espe-
cially difficult to navigate for children at this age, however we
found that children had above chance classification accuracy
within the 2D block after the dimensional rule switch from
a vertical to horizontal category boundary. Although surpris-
ing, one possibility is that children became accustom to cat-
egorization within a 2D space over multiple trials, and thus
increased accuracy was partially due to practice. A limitation
to this study is that the task order was fixed, and thus size vs.
color performance is confounded with practice effects. It is
interesting to note that practice effects may be present in the
2D condition despite the added complexity of a categoriza-
tion switch. Additional study is needed to understand how
variation in boundary options and stimuli characteristics may
affect children’s active category learning.

Exploratory analyses examining the role of executive func-
tion and attention skills add nuance to understanding chil-
dren’s performance in this task. We found that attention pro-
cessing speed supports children’s sampling strategies. The
link between attention processing and active learning benefits
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is discussed in Markant et al. (2014), who found that learners
benefit from even minimal control of timing during learning
by matching the presentation of information to their optimal
attentional state. It is possible that those children who were
able to maintain a ready state of attention processing were
better able to encode information about sampling parameters
than those whose attention processing was slower.

We found that higher working memory supports both over-
all task accuracy and classification across 1D and 2D blocks.
Working memory may help children to remember the relative
locations of exemplars within the 1D and 2D spaces, which is
necessary to infer both the category boundary and test items’
class. Inhibitory control significantly predicts classification
accuracy in the 2D block. Dimensional shifting requires the
learner to inhibit a learned response or rule and attend to new
information. To attend to the category boundary and correctly
classify exemplars in a 2D space, this task requires children to
determine how exemplars related to each other along the rel-
evant dimension, while ignoring relations on the non-relevant
dimension. These exploratory findings suggest that inhibitory
control may help children attend to relevant features under
complex learning demands.

The lack of relation between category learning sampling
and classification is at odds with previous studies which
found better sampling led to better performance in active
learning (e.g., Ruggeri et al., 2016). In fact, our design was
meant to decouple sampling performance from categoriza-
tion performance: the category memberships of all sampling
choices are revealed once the selection is made. Thus a child
who makes a bad selection is not penalized–they see the ex-
emplar of the informative choice as well as the uninforma-
tive choices. Because we were limited to a fixed task across
all administrations, this design allowed us to make sure all
children’s sampling choices were revealed and that they all
saw the same information about the boundary leading into the
classification phase. Thus, this design removed the necessity
of good sampling to support classification accuracy within the
task. We found that children’s memory skills, likely related
to remembering the location of exemplars, appeared to play a
more important role in classification accuracy.

Our results also suggest that children’s performance in the
active learning task is related to their early math and pre-
literacy skills. Both overall sampling and overall classifica-
tion accuracy significantly predict math scores, above and be-
yond demographics, executive function, and attention skills.
Overall active learning accuracy predicts pre-literacy skills.
These exploratory findings suggest that trial-by-trial perfor-
mance in a lab-based measure of active learning may be re-
lated to children’s acquisition or implementation of academic
knowledge. Children’s development and use of learning pro-
cesses and problem solving strategies may rely in part on
cognitive control skills. The benefits of good active learn-
ing skills may cascade overtime to support children’s acquisi-
tion and practice of domain-specific knowledge. Importantly,
these correlational data are only the first step in investigat-

ing active learning in relation to school readiness and addi-
tional research should examine this potential link, as it could
be highly informative to educational intervention efforts.

While most education and developmental researchers ex-
amine EF and learning by way of standardized school readi-
ness tests, the current study’s findings suggest that details of
children’s trial-by-trial learning decisions may reveal impor-
tant details of how cognitive control skills support the acquisi-
tion of knowledge. We note several limitations to this study.
First, the sample is low-income and the restricted range of
socio-economic status (SES) may lower generalizability, al-
though examining the relations between learning processes
and school readiness is of particular importance for this popu-
lation. We plan follow-up studies including a high income co-
hort to examine the relations between SES, cognitive control
skills, and active learning. Second, this work is both corre-
lational and uses concurrent measures. Our future studies in-
clude experimental active learning paradigms for young chil-
dren that vary aspects of cognitive control processes to better
tease apart the role of EF and attention on active learning.
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Abstract 

Computational models of cognitive development have been 
frequently used to model impairments found in developmental 
disorders but relatively rarely to simulate behavioural 
interventions to remediate these impairments. One area of 
controversy in practices of intervention is whether it is better 
to attempt to remediate an area of weakness or to build on the 
child’s strengths. We present an artificial neural network 
model of productive vocabulary development simulating 
children with word-finding difficulties. We contrast an 
intervention to remediate weakness (additional practice on 
naming) with interventions to improve strengths (improving 
phonological and semantic knowledge). Remediating 
weakness served to propel the system more quickly along the 
same atypical trajectory, while improving strengths produced 
long-term increases in final vocabulary size. A combination 
yielded the best outcome. The model represents the first 
mechanistic demonstration of how interventions targeting 
strengths may serve to improve behavioural outcomes in 
developmental disorders. The observed effects in the model 
are in line with those observed empirically for children with 
word-finding difficulties.   

Keywords: artificial neural networks; developmental 
disorders; intervention; vocabulary development; word-
finding difficulties 

Introduction 

Theories of deficits versus theories of intervention 
In the field of developmental disorders, there are extensive 
theories about the causes of behavioural deficits. However, 
these have played a relatively small role in intervention 
practices. Indeed, theories of treatment have often 
developed relatively independently of theories of deficit 
(Laws et al., 2008; Michie & Prestwich, 2010). The gap 
between a mechanistic understanding of the causes of 
deficits and everyday therapeutic practice exists for a 
number of reasons. Most obviously, the primary focus of 
intervention is on behavioural outcomes, which do not in 
themselves necessitate an understanding of underlying 
cause. In addition, there are diverse real-world constraints 
influencing the interventions that are selected. And it is 

difficult to apply causal principles to the complex 
therapeutic situation involving treatment of the whole child 
via a social interaction with the therapist. Nevertheless, it 
remains an important ambition to narrow the gap between 
theories of deficit and practices of intervention. 

Improve strengths or remediate weaknesses? 
One area of controversy in practices of intervention is 
whether it is better to attempt to remediate an area of 
weakness or to build on the child’s strengths. For example, 
in the field of developmental language disorders, Leonard 
(2014) argues that generally, therapists prefer to work on 
developing compensatory strategies through targeting the 
child’s strengths rather than trying to improve his or her 
area of weakness (see also Bishop, Nation & Patterson, 
2014). 

To take a more specific case, where children have 
difficulties in producing words that they already know (so 
called word-finding difficulties; WFD), therapists may 
simply require the child to spend more time practicing 
naming, the area of weakness. Alternatively, they have the 
option of targeting children’s knowledge of word sounds 
(phonology) or word meanings (semantics). Therapists have 
found that interventions that elaborate the semantic aspect 
of words (e.g., McGregor & Leonard, 1989) or interventions 
that focus on the phonological component of word finding 
(e.g., Best, 2005) both alleviate WFD to some extent. In a 
survey, Best (2003) asked therapists what kind of 
difficulties they found most often co-occurring with WFD in 
the children they saw. Phonological problems were reported 
to co-occur 46% of the time, while semantic problems co-
occurred only 13% of the time. Nevertheless, when asked 
which types of intervention they most often used, therapists 
reported more often using techniques to improve semantic 
knowledge than phonology (79% of the time compared to 
54%). In this case, then, therapists frequently sought to 
buttress areas of strength to improve naming skills. 

One explanation for the tendency of therapists to work 
less on areas of weakness and more often on areas of 
strength is to improve the child’s confidence in a domain 
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where he or she is struggling. However, from a theoretical 
perspective, one might ask through what mechanisms could 
improving a strength serve to remediate a behavioural 
impairment in a developing cognitive system? 

There are at least three ways that improving a strength 
could remediate a behavioural impairment. First, the 
‘strength’ could represent an alternative cognitive system or 
pathway to deliver a similar behavioural outcome. 
Improving a strength then translates to encouraging a 
compensatory strategy. Second, the target behavior may be 
delivered by an interactive system in which multiple sources 
of knowledge combine to drive behavior. Stronger input 
from one source might then make up for weaker input from 
another. Third, the target behavior may require mappings to 
be learned between representations. Improving the structure 
of the representations might serve to make learning those 
mappings easier. In this article, we use computational 
modeling to investigate the third of these options. 

Computational modeling of interventions 
Computational modeling, particularly the use of artificial 
neural networks, has been extensively applied to 
understanding the mechanisms underlying developmental 
deficits, in disorders such as dyslexia, Specific Language 
Impairment, and autism (Thomas & Karmiloff-Smith, 
2002). Relatively few models of developmental deficits 
have been extended to the simulation of behavioural 
interventions to remediate these deficits, and the framework 
for doing so has only recently been laid out (Thomas et al., 
2017). Two notable exceptions are Harm, McCandliss and 
Seidenberg’s (2003) simulation of an intervention for 
dyslexia, and Best et al.’s (2015) model of interventions for 
productive vocabulary deficits. In both cases, a typical 
model established the developmental trajectory under 
normal circumstances; an atypical model was created in 
which a computational constraint limited development; and 
a behavioural intervention was simulated by adding further 
input-output mappings to the model’s training set for a 
discrete period, usually relatively early during training. 
Here, we adapt Best et al.’s model of vocabulary 
development to contrast the effects of improving strengths 
versus remediating weaknesses. 

Connectionist models of vocabulary development 
Sentence production involves a sequence beginning with a 
planned message, followed by selection of major lexical 
concepts, assigning syntactic functions, assembling 
phonologically realized words and morphemes into a 
sentence frame, and programming articulatory processes 
(e.g., Bock & Levelt, 1994). Connectionist models of word 
production have tended to focus on the step involving the 
retrieval of phonological forms given a semantic 
specification of the desired lexical item (e.g., Dell, 
Schwartz, Martin, Saffran, & Gagnon, 1997). 
Developmental models have simulated the learning of 
mappings between pre-specified semantic and phonological 
codes (e.g., Plunkett et al., 1992), or between semantic and 

phonological representations emerging in self-organizing 
maps (e.g., Li, Zhao & MacWhinney, 2007; Mayor & 
Plunkett, 2010). Best et al. (2015) used a similar approach, 
but implemented the semantic and phonological components 
of the model via 3-layer autoassociator networks trained 
using backpropagation (Rumelhart, Hinton & Williams, 
1986). The hidden unit representations of the semantic 
component were then mapped to the hidden units of the 
phonological component, via an intermediate layer of 
hidden units, to provide a pathway for the development of 
naming. A reverse pathway simulated comprehension. 
Naming behavior began to emerge while the semantic and 
phonological representations were themselves still 
developing. By restricting learning in the semantic 
component, the phonological component, or the pathway 
between them (for example, by reducing hidden unit 
numbers or the learning rate), Best et al. were able to 
capture various patterns of atypical naming development 
observed in a sample of children with WFD. 

Simulations 

Simulation design 
Using the same architecture, we followed the Best et al. 
(2015) model in simulating productive vocabulary 
development in children with WFD by restricting the 
computational capacity of the pathway mapping between 
semantic and phonological representations. The semantic 
and phonological components themselves developed 
typically. Early in development – when slow vocabulary 
growth was already detectable – a behavioural intervention 
was applied for a limited period during training. Five 
different interventions were contrasted, of three types: (1) 
remediating the weakness – the model was provided with 
additional training on the naming pathway; (2) improve the 
strength – the model was provided with additional training 
to improve the semantic representations, the phonological 
representations, or both at once; (3) both types 1 and 2 were 
combined into an intervention that sought to simultaneously 
improve strength and remediate weakness. We observed the 
immediate effect of intervention, in terms of potentially 
accelerated vocabulary growth, and the eventual outcome, in 
terms of the largest vocabulary size achieved following each 
type of intervention. 

The original Best et al. (2015) model used a fairly abstract 
rendition of semantics and phonology and a training set of 
only 100 items. Here, we used more realistic semantic and 
phonological representations, and scaled up the training set 
slightly to around 400 items. The typically developing 
model was designed in such a way that it reflected salient 
properties of vocabulary growth, including a 
comprehension-production asymmetry (Bloom, 1973) and a 
vocabulary explosion / exponential growth in vocabulary 
size (e.g., McMurray, 2014). 

The model contained three assumptions not in the Best et 
al. (2015) model. First, phonological representations were 
required to be more accurate than semantic outputs to drive 
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a behavioural response, under the assumption that 
phonological output needs to drive motor assemblies, while 
semantic comprehension only requires that the output fall in 
the correct attractor basin (Hinton & Shallice, 1991). This 
assumption generated the production-comprehension 
asymmetry. 

Second, we implemented a sensitive period in the 
development of the components but not the pathways in the 
model, through pruning of network connectivity after a 
given point in development. This created the potential for 
early training to create enriched lower level representations 
by utilizing the then-available rich connectivity. Pathways 
did not experience this pruning, under the view that 
sensitive periods are characteristic of lower but not higher 
cognitive systems (Takesian & Hensch, 2013). The effect of 
timing of intervention was subsequently evaluated. 

Third, plasticity was set higher in the pathways than the 
components (via the learning rate parameter), so that the 
development of semantic and phonological representations 
would be the limiting factor on the development of naming. 
If the semantic and phonological representations were to 
quickly reach ceiling before naming had developed, 
interventions targeting phonology and semantics would 
have no scope to improve naming performance. The effects 
of both the second and third assumptions were evaluated by 
also running the model in their absence. 

Finally, we explored whether the five types of 
intervention would enhance performance in a typically 
developing model, or whether they only had the potential to 
improve performance in systems exhibiting delayed 
development. 

Simulation details 
Architecture: The architecture of the vocabulary 
development model is shown in Figure 1. It comprised four 
linked backpropagation networks. The semantics component 
comprised a 3-layer autoassociator with 1029 input and 
output units and 45 hidden units. The phonology component 
was an autoassociator with 456 input and output units and 
60 hidden units. The naming pathway linked the semantic 
hidden units with the phonological hidden units via an 
intermediate layer of 175 units. Naming constituted 
activating semantic inputs and measuring phonological 
outputs. The comprehension pathway ran in the other 
direction and also contained 175 units. In the atypical 
model, the number of hidden units in the naming pathway 
was reduced to 90 prior to training. 

Additional parameters: The learning rate in the semantic 
component was .015 and in the phonological component 
was .025. In the pathways, the learning rate was .15. 
Sigmoid activation functions had a temperature of 1.5 in the 
components and 1 in the pathways. In the components, after 
epoch 75, any connection weights with an absolute 
magnitude of less than .5 had a 5% chance of being 
permanently removed each epoch. Initial weights were 
given random values via a Gaussian distribution with mean 
0 and standard deviation 0.5. Gaussian noise with a standard 

deviation of .15 was added to the net input of units in the 
components, and noise with a standard deviation of .05 in 
the pathways, to provide a stochastic basis for naming errors 
in normal functioning. Continuous activation values on the 
phonological output were converted to responses by finding 
the nearest legal phoneme in each slot and assessing 
whether the full phoneme string was the correct name. If the 
average root mean square error between the activation 
vector for each phoneme and the nearest legal phoneme 
code exceeded 0.03, that phoneme was coded as no 
response. A nearest neighbor technique was also used to 
assess the accuracy of semantic outputs. These parameters 
were selected to calibrate the typical model. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: Architecture of the productive vocabulary 

model, with phonological and semantic components and 
linking pathways 

 
Training set: The training set comprised 397 words, each 

with a phonological and a semantic representation. It was 
generated by combining two sources, a set of 1029 speaker 
generated semantic feature norms for 456 words collected 
by Vinson and Vigliocco (2008) from 280 adults; and the 
Children’s Printed Word Database (Masterson et al., 2010), 
which is an online database of the vocabulary in reading 
materials used by 5-9 year old children in the UK. The 397 
words represent those present in both resources. The 
semantic representations comprised the 1029 feature set, 
where a feature was set to 1 if any adult rated it as a 
characteristic of a given word meaning, and 0 otherwise. 
The phonological representations used a 19-bit articulatory 
code for phonemes (Thomas & Karmiloff-Smith, 2003) and 
a left-justified slot-based CCCVVCCC syllabic scheme to 
capture words up to three syllables in length, with 3x8x19 = 
456 phonological features in total. 

Training schedule: Networks were trained for 1000 
epochs, with random presentation and pattern update. 
Training of autoassociators and pathways was interleaved. 
Weights were updated using the backpropagation algorithm 
with the cross entropy error measure. 

Simulation of interventions: For atypical networks, an 
intervention began at 100 epochs of training and lasted for 
100 epochs. For the main condition, at this point TD models 
had acquired a productive vocabulary size of 67 words, 
while atypical models had a vocabulary size of 36 words. 
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For the intervention, one or more components or pathways 
were trained with 5 times the frequency of the rest of the 
system. The extra training could be on the semantics-
phonology naming pathway, the semantics component 
alone, the phonological component alone, both semantics 
and phonological components, or all of these combined. 

Conditions: To test the importance of timing, 
interventions were compared at 100, 250 and 750 epochs. 
To test the effect of plasticity assumptions in the model, the 
first variant removed connectivity pruning from the 
components. The second variant removed the higher 
plasticity of the pathways, setting their value to .025. 

Replications: All conditions were replicated three times 
with different random seeds. The full design took 
approximately 100 days of simulation time. Results graphs 
are shown averaged over replications; individual data are 
included in the following tables. 

Results 
Figure 2 displays developmental trajectories for naming and 
comprehension in the typical and atypical models. For the 
typical model, naming lagged behind comprehension, 
exhibiting the expected comprehension-production 
asymmetry. Naming itself showed an accelerating rate of 
development, consistent with a vocabulary explosion. The 
atypical model with WFD exhibited delayed development in 
naming but not comprehension (the slightly better 
comprehension was just a chance difference). 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Development of naming and comprehension in 

the typical and atypical models. The dotting line depicts the 
point at which the intervention was applied 

 
 

Figure 3 shows the effects of the intervention to remediate 
weakness, with extra training on the naming pathway, 
compared to the impaired model without treatment. The 
intervention produced accelerated development, but there 
was no gain in final productive vocabulary level. Figure 4 
shows the result of improving strengths – extra training on 
the otherwise typically developing semantic and 
phonological representations, which are respectively the 
inputs and outputs of the naming pathway. These 
interventions produced slower effects during the 
intervention itself, but led to long-term (if relatively modest) 
increases in final productive vocabulary levels. Figure 3 also 

contains the combined strength-and-weakness intervention. 
The combined intervention showed the initial immediate 
gains of the remediation intervention as well as the long-
term elevated final level of the strengths intervention. Figure 
5 includes the effects of these interventions on typically 
developing models. Extra practice in naming accelerated 
development but did not raise the final level. Extra 
elaboration of semantic and phonological representations by 
contrast increased the final productive vocabulary size even 
for the typically developing networks. 

Tables 1 and 2 show the final level performance, split by 
replication, contrasting the intervention targeting weakness 
(Naming), the intervention targeting strengths (S+P), and 
the intervention targeting both strengths and weaknesses 
(Both). Table 1(a) contains the data for the above base 
condition; 1(b) demonstrates that when plasticity reductions 
in the components were removed as a model assumption, 
the same pattern of results held. Table 1(c) shows that 
without the assumption of greater plasticity in the pathways, 
the same pattern also held. Table 2 contrasts the effect of 
interventions at different points in training. The strengths 
intervention (S+P) diminished in size and disappeared the 
later in development it was applied. The weakness 
intervention (Naming) showed the opposite pattern, 
increasing in size the later it was applied. The combined 
(Both) showed a uniform effect across development. Within 
each condition, the three replications demonstrated a 
common profile. 

 
 
 
 
 
 

 
 
 
 
 
 

Figure 3: The effect of interventions to remediate 
weakness on naming accuracy, as well as the combined 

intervention. Shaded region = period of intervention 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: The effect of interventions to improve strengths 
on naming accuracy. Shaded region = period of intervention  
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Figure 5: The effect of interventions on naming accuracy 
for typically developing (TD) and impaired networks. 

Shaded region = period of intervention 
 

Table 1: Naming accuracy at the end of training for 
typical (TYP), atypical (ATYP), and atypical intervened 
networks: (a) the base condition; (b) removing plasticity 

reduction in the semantic and phonological components; (c) 
removing greater plasticity in pathways. S+P = strengths 
intervention. Naming = weakness intervention. Both = 
combined. Three replications and average are shown 

 
(a) Naming accuracy at the end of training 
 TYP ATYP Intervention 
   S+P Naming Both 
R1 84% 49% 57% 50% 52% 
R2 86% 52% 57% 50% 57% 
R3 86% 49% 54% 51% 55% 
      
Avg 85% 50% 56% 50% 55% 
      
(b) Without plasticity reduction in S and P components 
 TYP ATYP Intervention 
   S+P Naming Both 
R1 94% 49% 54% 48% 51% 
R2 95% 52% 55% 51% 53% 
R3 95% 51% 55% 50% 53% 
      
Avg 95% 51% 55% 50% 53% 
      
(c) Equalized plasticity in pathways and components 
 TYP ATYP Intervention 
   S+P Naming Both 
R1 84% 55% 61% 54% 60% 
R2 81% 55% 64% 53% 60% 
R3 82% 54% 60% 50% 59% 
      
Avg 82% 55% 61% 52% 60% 

Discussion 
We used an artificial neural network model of impaired 
vocabulary development to explore the relative merits of a 
behavioural intervention to remediate weakness versus one 
to improve strengths. The two interventions yielded 
contrasting patterns. The intervention to remediate the 
weakness – more practice on naming itself – produced an 

immediate improvement in naming accuracy, but did not 
raise the ceiling vocabulary size that could be attained by 
the model. Intervention had served to propel the model more 
quickly along the same atypical trajectory. This is because 
the (lower) ceiling level of performance was constrained by 
the reduced computational capacity of the naming pathway. 
By contrast, either improving the semantics representations 
or the phonological representations – which were otherwise 
developing typically – produced slower changes during the 
intervention period, but then long-term gains in the size of 
the productive vocabulary that the model could acquire. 
Improving both semantic and phonological representations 
together gave the largest gains. These gains occurred 
because semantic and phonological representations became 
more delineated (or less confusable) through additional 
training, so that a pathway with limited capacity could 
achieve higher accuracy. Combining intervention on 
weakness and strengths gave both immediate gains during 
intervention and a long-term improvement in the vocabulary 
size that could be attained.  

 
Table 2: Effects of timing: (a) Phonological + Semantic 
intervention, (b) Naming intervention, (c) Combined 

intervention at 100, 250, and 750 epochs 
 

(a) Phonological+Semantic intervention  
 TYP ATYP 100 250 750 
R1 85% 50% 57% 53% 50% 
R2 85% 51% 57% 54% 52% 
R3 87% 51% 54% 55% 52% 
      
Avg 86% 51% 56% 54% 51% 
      
(b) Naming intervention  
 TYP ATYP 100 250 750 
R1 85% 50% 50% 50% 53% 
R2 85% 51% 50% 51% 55% 
R3 87% 51% 51% 51% 55% 
      
Avg 86% 51% 50% 51% 54% 
      
(c) Combined intervention  
 TYP ATYP 100 250 750 
R1 85% 50% 52% 54% 52% 
R2 85% 51% 57% 55% 55% 
R3 87% 51% 55% 55% 55% 
      
Avg 86% 51% 55% 55% 54% 
 
We included assumptions about plasticity in the model – 

that there would be sensitive periods in the components but 
not pathways, that the lower plasticity of the components 
would be the limiting factor on naming development – but 
neither proved essential for producing the above effect. We 
also altered the timing of intervention, and here showed that 
improving strengths yielded greatest gains early in 
development, while remediating weaknesses yielded the 
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greatest gains late in development. Combining both 
produced a uniform effect across development.  

This model represents the first mechanistic demonstration 
of how working on strengths may serve to improve 
behavioural outcomes in developmental disorders. The 
observed effects of improving semantic and phonological 
representations are in line with those observed empirically 
for children with WFD (Best, 2005; McGregor & Leonard, 
1989). Two further methods by which improving strengths 
might improve behavioural outcomes remain to be explored: 
encouraging compensatory mechanisms through 
intervention, and bolstering convergent sources of 
information in interactive systems. 

The model nevertheless demonstrated relatively modest 
accuracy gains through intervention – certainly there was no 
elimination of the deficit (it was reduced from 35% to 29%). 
This is in line with general arguments made by Thomas et 
al. (2017): with some exceptions, where deficits arise 
through neurocomputational constraints in developing 
systems, behavioural interventions alone are unlikely to be 
successful in fully alleviating deficits. The conditions of 
optimal outcome are, however, a fruitful avenue for 
computational investigations, in the wider context of 
narrowing the gap between mechanistic theories of deficit 
and clinical practices of intervention. 
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Abstract

The study of memory for texts has had an long tradition of re-
search in psychology. According to most general accounts of
text memory, the recognition or recall of items in a text is based
on querying a memory representation that is built up on the ba-
sis of background knowledge. The objective of this paper is to
describe and thoroughly test a Bayesian model of this general
account. In particular, we develop a model that describes how
we use our background knowledge to form memories as a pro-
cess of Bayesian inference of the statistical patterns that are
inherent in a text, followed by posterior predictive inference of
the words that are typical of those inferred patterns. This pro-
vides us with precise predictions about what words will be re-
membered, whether veridically or erroneously, from any given
text. We then test these predictions using data from a memory
experiment using a relatively large sample of randomly chosen
texts from a representative corpus of British English.
Keywords: Bayesian models; Memory; Reconstructive mem-
ory; Text memory;

Introduction
The seminal study on memory for text1 is usually attributed
to Bartlett (1932). In this now classic work, Bartlett argued
that a person’s memory for what they read is based on a re-
construction of the information in the text that is strongly
dependent on their background knowledge and experiences.
From this seminal work, but especially since the widespread
adoption of schema based accounts of text memory begin-
ning in the 1970’s (e.g., Mandler & Johnson, 1977; Schank
& Abelson, 1977; Bower, Black, & Turner, 1979), there has
been something close to a consensus on the broad or general
characteristics of human text memory. According to this gen-
eral account — which we can summarize by the following
schematic:

Representation

Knowledge

TextMemory

— the recognition or recall of items in a text is based on
querying a representation of the text that is built up on the
basis of background knowledge and experience.

Although some variant of this general account is widely
held, it is essentially an informal and untestable theory. Cer-
tainly, there has been ample evidence showing that we use
our background knowledge to make inferences and associa-
tions concerning text content and that these inferences then
influence our memory (e.g. Bransford, Barclay, & Franks,

1In this paper, we use the term text to refer generally to any co-
herent or self-contained piece of spoken or written language.

1972; Graesser, Singer, & Trabasso, 1994; Zwaan & Rad-
vansky, 1998; Rawson & Kintsch, 2002, to name but a few).
However, in most studies, even fundamental concepts such as
memory schemas are not formally defined (see, e.g. Ghosh
& Gilboa, 2014), and ostensibly formal models of knowl-
edge influences on text representation, such as the well known
work of Kintsch (1988), often require hand-coding of back-
ground knowledge and text structures and can only be applied
to small and contrived examples. Consequently, there is no
formal or computational account of how background knowl-
edge is used to infer a representation of text content and how
memories are then derived from this representation that is suf-
ficiently precise to lead to testable empirical predictions.

In this paper, following general principles followed by
Hemmer and Steyvers (2009a, 2009b, 2009c) in their studies
on memory for visual objects and natural scenes, we describe
a probabilistic model that uses Bayesian inference to infer a
representation of a text’s content on the basis of background
knowledge and then uses posterior predictive inference to
represent the memories of that text. This provides us with
precise predictions about what words will be remembered,
whether veridically or erroneously, from any given text. We
then test these predictions using data from a memory experi-
ment using a relatively large sample of randomly chosen texts
from a representative corpus of British English.

Probabilistic Model
We begin with the assumption that our background knowl-
edge that is relevant for our memory of text is primarily
knowledge of the statistical patterns across spoken and writ-
ten language. Given any probabilistic language model that
specifies these statistical patterns, as we explain below, we
may then use Bayes’s rule to infer which patterns are inher-
ent in any given text. From this, we may then predict, via
posterior predictive inference, which words are and are not
typical or compatible with the inferred statistical representa-
tion of the text. This effectively serves as the memory of the
content of the text. As such, this provides a computational
description of the previous schematic, i.e.,

Bayes’s rule
posterior prediction

Representation
(statistical patterns inherent in Text)

Knowledge
(statistical patterns in language)

TextMemory

In practical terms, we have many options for our choice of
probabilistic language model. However, probabilistic topic
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models (see, e.g. Griffiths, Steyvers, & Tenenbaum, 2007;
Steyvers & Griffiths, 2007; Blei, 2012) have proved highly
effective in capturing the statistical patterns that character-
ize the coarse-grained “discourse topics” across spoken and
written language. Here, we use a type of probabilistic topic
model known as a hierarchical Dirichlet process mixture
model (HDPMM) (Teh, Jordan, Beal, & Blei, 2006).

A HDPMM is a probabilistic generative model of bag-of-
words2 language data. It treats a corpus of language data as a
set of J texts w1,w2 . . .w j . . .wJ , where text j, i.e., w j, is a set
of n j words from a finite vocabulary, represented simply by
the V integers {1,2 . . .V}. From this, we have each w j defined
as w j = w j1,w j2 . . .w ji . . .w jn j , with each w ji ∈ {1 . . .V}. As
a generative model of this corpus, the HDPMM treats each
observed word w ji as a sample from one of an underlying set
of component distributions, φ1,φ2 . . .φk . . ., where each φk is
a probability distribution over {1 . . .V}. Each φk effectively
identifies a “discourse topic”. For example, here is a sample
of 6 topics from an inferred model, where we show the 7 most
probable words in each topic:

theatre music league prison rate pub
stage band cup years cent guinness
arts rock season sentence inflation beer
play song team jail recession drink

dance record game home recovery bar
opera pop match prisoner economy drinking
cast dance division serving cut alcohol

The identity of the particular topic distribution from which
w ji is drawn is determined by the value of a discrete latent
variable x ji ∈ {1,2 . . .k . . .} that corresponds to w ji. The prob-
ability distribution over the possible values of each x ji is given
by a categorical distribution π j, i.e., π j = π j1,π j2 . . .π jk . . .,
where 0≤ π jk ≤ 1 and ∑

∞
k=1 π jk = 1, that is specific to text j.

Each π j is assumed to be drawn from a Dirichlet process prior
whose base distribution, m, is a categorical distribution over
the positive integers and whose scalar concentration parame-
ter is a. The m base distribution is assumed to be drawn from
a stick breaking distribution with a parameter γ. As such, the
generative model of the corpus is as follows:

w ji|x ji,φ∼ dcat(φx ji), x ji|π j ∼ dcat(π j), i ∈ 1 . . .n j

π j|a,m∼ ddp(a,m), j ∈ 1 . . .J
m|γ∼ dstick(γ),

where dcat is a categorical probability distribution, ddp is
a Dirichlet process, and dstick is a stick breaking distribu-
tion. The prior on the component distributions φ1 . . .φk . . .
was a Dirichlet distribution with concentration parameter b
and length V location parameter ψ.

Having inferred a HDPMM on the basis of a corpus of lan-
guage data D , given any new text, w j′ , we can use Bayes’s
rule to infer the posterior probability over π j′ , which is the
probability distribution over the discourse topics in w j′ :

P(π j′ |w j′ ,D) ∝ P(w j′ |π j′ ,D)P(π j′ |D).

2According to a bag-of-words model, a language corpus is a set
of texts, where each text is an unordered set, or bag, of words.

We may then use the posterior predictive distribution to infer
the words that are typical of the topics inherent in w j′ . The
predicted probability of word w j′i′ given text w j′ is given by

P(w j′i′ |w j′ ,D) =
∫

P(w j′i′ |π j′ ,D)P(π j′ |w j′ ,D)dπ j′

Corpus As our language corpus, we used the British Na-
tional Corpus (BNC) (BNC Consortium, 2007). From the en-
tire BNC, we extracted all sections that were tagged as para-
graphs. This gave us a corpus with a total word count of
87,564,696 words. From this, we created a set of 184,271
texts, each between 250 and 500 words long. These were cre-
ated by using either single paragraphs in this count range, or
concatenating consecutive paragraphs until they were within
this range. The total word count of this set of texts was
78,723,408 words. We then restricted the word types by ex-
cluding words that occurred less than 5 times in total, and any
words on either of two lists of stopwords, and any words that
were not listed in a dictionary of ≈ 60K English words. This
lead to a final vocabulary of 49,328 word types. For more
information, see Footnote3.

Inference We used a Gibbs sampler to infer the posterior
distribution over the values of latent variables, i.e., {x ji : j ∈
1 . . .J, i∈ 1 . . .n j}, as well as the hyper-parameters m, a, b, ψ,
and γ. For more information, see Footnote4

Prediction From the entire set of paragraphs in the BNC, we
randomly sampled 50 paragraphs whose length was 150±10
words, where at least 90% of the words are in the aforemen-
tioned dictionary of English words, and where at least 75% of
the words were in a set of words for which word association
norms exists (see the following section for more details on
the word association norms we used). For more information,
see Footnote5.

For each of the 50 sampled texts, we then used poste-
rior predictive inference, as described above, to obtain the
probability distribution over words that are typical or com-
patible with the topic based representation of each text. As
explained above, this distribution effectively provides the in-
ferred model’s memory of the content of the text. A Gibbs
sampler was used to infer each text’s posterior distribution
over π, which is the probability distribution over discourse
topics in that text. Two example texts and their posterior pre-
dictive inferences are shown in Figure 1. For more informa-
tion, see Footnote6.

3Full details about how the corpus was created, in-
cluding all the code used to create it, is available at
https://github.com/lawsofthought/tantalum

4Full details about the Gibbs sampler for the HDPMM,
including the code implementing it, can be found at
https://lawsofthought.github.io/gustavproject.

5Full details about how we sampled the texts, including the code
implementing the sampling and the sampled texts themselves, can
be found at https://github.com/lawsofthought/berkelium.

6Full details about how we sampled from the posterior predictive
distribution, including the code implementing the sampling, can be
found at https://github.com/lawsofthought/gallium.
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Improve your mood and counteract stress: Ask anyone who ex-
ercises regularly and they will tell you that they always feel
exhilarated at the end of a session even if they had begun by
feeling that they were not in the mood for exercise and had al-
most forced themselves to continue. Physical fitness also pro-
vides considerable protection against stress and the illnesses it
can cause. So, however busy your life, perhaps you could try
and fit some regular exercise into your day. Let it be some-
thing which is in complete contrast to the way you normally
spend your time. One word of warning though: if you are some-
one whose daily life involves a strong competitive element, you
would do well to avoid too much in the way of competitive
sport (squash, tennis and so on) as your form of exercise as
these will only tend to maintain an already high level of stress.

2222222222

relaxation feel mind exercise people

exercising stretching walking stamina build energy

routine walk swimming fit training weight

aerobics health yoga anxiety programme rest session

fitness increase life running week jogging rate level

aerobic tension exercises regular stress start

begin muscles gym minutes mood heart strength

body muscle physical day time

Developmental norms are an attempt to provide an indica-
tion of the ages at which one might expect ordinary children
to show evidence of certain skills or abilities. Since chil-
dren vary with respect to the ages at which they demonstrate
any particular behaviour, norms represent an average obtained
from an examination of the developmental changes occurring
in a large number of children. Data from a large sample will
show the earliest age at which a child would be expected to
gain control of a particular aspect of language, and the age
by which 90 per cent or 95 per cent of non-handicapped chil-
dren might be expected to show evidence of the same abil-
ity. If children who have already been diagnosed as suffer-
ing from some specific handicapping condition are included,
the data will show the expected age delay before this group
matches the performance of the normally developing children.

2222222222

data time carried play individual children items
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test parent ability testing aged assessment
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tests
Figure 1: An example of two of the texts used in the memory experiment, and samples from the HDPMM’s posterior prediction
for each one. The predicted words are scaled as a function of their predicted probability, and we show the 50 most highly
predicted words (excluding stopwords and words not in the vocabulary) for each text. Words in italics are predicted words that
were not in the text itself. These, in effect, are the model’s false memories.

Comparison models
The focus of our analysis is whether the probability of rec-
ognizing or recalling any given word having read a partic-
ular text is predicted by our HDPMM’s posterior predictive
distribution over words for that text. To properly evaluate
the model’s predictions, it is necessary to compare them to
those of other plausible models. Here, we will compare the
Bayesian model to predictions made by two associative mod-
els. Both of these models predict that the words that are
remembered from a text are those that are most associated,
on average, with the text’s content. Associative models are
strong models to compare to the Bayesian model because as-
sociative strength has been repeatedly shown to a strong pre-
dictor of memory for words in word lists (e.g., Roediger, Wat-
son, McDermott, & Gallo, 2001; Gallo, 2006).

The statistical co-occurrence probability of two words, wk
and wl , which we will denote PC(wk,wl), is defined as the em-
pirical probability of observing word wk and wl in the same
text7 in the language. Here, we calculate PC(wk,wl) using

7Here, as above, we use the term text to denote any coherent and

the same BNC corpus as was used above, i.e. with the same
184,271 texts each between 250 and 500 words. From this,
we can calculate

PC(wk|wl) =
PC(wk,wl)

PC(wl)
,

which is the conditional probability of observing wk in any
text given that wl has been observed. From this, if text j =
w j1,w j2 . . .w jn j , the predicted association probability of word
wk according to text j is

PC(wk|text j) =
1
n j

n j

∑
i=1

PC(wk|w ji).

We can interpret this value intuitively as the average associa-
tion between wk and text j, with association defined in terms
of statistical co-occurrences in the language.

An alternative means to calculate the average association
between wk and text j is using word association norms, rather

self-contained piece of language.
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than statistical co-occurrences. If Akl is the frequency that
word wk is stated as associated with word wl , then the condi-
tional probability of word wk given wl is

PA(wk|wl) =
Akl

∑
V
i=1 Ail

,

where V is the total number of words in our vocabulary of
response words. Now, given text j = w j1,w j2 . . .w jn j , we can
calculate

PA(wk|text j) =
1
n j

n j

∑
i=1

PA(wk|w ji),

which we can interpret as the average association between wk
and text j, with association now defined in terms of word asso-
ciation norms rather than statistical co-occurrences. Though
a large set of English word association norms are available
from the widely used Nelson norms (Nelson, McEvoy, &
Schreiber, 2004), we used an even larger set that is a pre-
release of the English small world of words association norms
(De Deyne & Storms, 2017). This provided word associates,
produced by 101,119 participants, to 10,050 word types. For
more information, see Footnote8.

Experiment
Our aim in this experiment is to measure participants’ mem-
ory of the 50 sampled texts described in the previous section.
Participants read these texts at their normal reading speed and
then their memory for what they have read is tested using both
recall and recognition tasks. We will then compare the pat-
tern of results from our participants with the predictions of
the models.

Methods
Participants 216 people (113 female, 103 male) partici-
pated in the experiment. The ages ranged from 17 to 78 years,
with a median of 34 years. Participants were recruited from
the student and general populations, with the only restriction
being that they be native English speakers.

Design Pre-experiment sample size determination calcu-
lations showed that, given the reasonable assumptions of
both inter-text and inter-subject variability in memory per-
formance, a relatively large number of texts and participants
was necessary. In particular, we showed that there is a high
probability of detecting effects, even when these effects are
relatively weak, if we have at least 50 texts and at least 150
subjects are used. Importantly, these results hold even when
each subject sees only a small subset of total number of texts,
and this subset can be as low as 3 texts per each participant.
We therefore used all 50 texts described above, and initially
aimed for approximately 200 participants, with each partici-
pant being tested with a randomly sample of 3 texts.

8Full details about how these two associative models were cre-
ated, including the code implementing them, can be found at
https://github.com/lawsofthought/gallium.

Materials The texts used as stimuli for this experiment
were the above mentioned 50 texts.

For the recognition tasks, test word lists with 20 words
each were created. Of the 20 words in each list, 10 were
present in the to-be-memorized text, while the remaining 10
were not present in it. For each text, the list was created as fol-
lows. Key words were extracted from each text and also from
the surrounding paragraphs to that text in the BNC. This was
done by calculating the tfidf (term frequency, inverse docu-
ment frequency) value for each word, and then applying a
threshold to exclude the less informative words. 10 words
were then randomly selected from the key words of each text.
A further 10 words were randomly sampled from the key
words of the surrounding paragraphs excluding any words the
in the main text itself. This set of 10 words were therefore not
present in the text to be memorized, but given that they were
selected from surrounding paragraphs, they were likely to be
meaningfully related to it. As such, they would serve a useful
items on the recognition memory test as they could not easily
be dismissed without a proper search of memory. For more
information, see Footnote9.

Text

Tetris

Recognition test

Recall test

45s - 90s

60s

5s

2s

5s ...

Figure 2: The task diagram of one block in the experiment:
Participants read a randomly assigned text, perform a filler
task, and then have their memory tested using either a recog-
nition or recall test, with the test type being randomly chosen.
This process is repeated three times for each participant.

Procedure Each experiment session proceeded as follows
(see also Figure 2):

• After initial information and instructions, which informed
participants that they would be engaging in memory tasks,
one of the sample texts appeared on screen. Participants
were instructed to read this text at their normal reading.
The text stayed on screen for a maximum of 90 seconds,

9Full details about the recognition test word lists were cre-
ated, including the code implementing this, can be found at
https://github.com/lawsofthought/berkelium.
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but after 45 seconds, participants were able to move on the
next screen if they so wished.

• On the following screen participants were asked to play the
computer game Tetris for exactly 60 seconds.

• At the completion of the game, participants proceeded to
the memory task. For each participant and for each text,
the memory test was randomly chosen to be either a recog-
nition or a recall task.

– For the recognition test, the 20 test items were presented
on screen, one word at a time, with an inter-stimulus-
interval of 2 seconds. They remained on screen for 5
seconds or until the subject indicated with a button press
whether the word shown was present or absent from the
text. No feedback was given after each response.

– If the participant was assigned to the recall test, a screen
of a list of small empty text boxes was presented where
and they were asked to type as many words as they could
remember, one word into each text box. Initially, 10
empty texts boxes were presented, and more boxes could
be added with a button press.

• Upon completion of the memory test, participants were
given the option of pausing or proceeding to the next test.
Each participant performed three tests in total, with the
three texts to which they were assigned being always ran-
domly sampled from the set of 50 texts.

The experiments were presented using the Wilhelm10 web-
browser based experiment presentation software that was
hosted at https://www.cognitionexperiments.org. This soft-
ware allowed the experiment to be done any web-browser
based device, e.g., phones, tablets, laptops and desktops.

Results
For more information about the results, see Footnote11.

Descriptives In the recognition memory tests trials, the
overall accuracy rate was 76%. Overall, the false positive
rate, i.e. where participants responded “present” to words
that were not present in the text they read, was 27%. The
false negative rate, i.e. where participants responded “absent”
to words that actually were present in the text, was 22%. For
the recall tests, the median number of recalled words per each
test was 7, with between 2 and 15 words recalled in 95% of
tests. The overall accuracy of recall was 70%, and thus there
was an overall false recall rate of 30%.

Model evaluation For the recognition memory data, we
model how well each model predicts the behavioural results
using a random effects logistic regression model. In other
words, for each of the models being evaluated, we fit the

10This is open-source software and is available at
https://github.com/lawsofthought/wilhelmproject

11All raw data, and code for all analyses, can be found at
https://github.com/lawsofthought/gallium.

recognition memory data using the same random effects lo-
gistic regression but using a different predictor variable in
each case. The logistic regression model is

log
(

pi

1− pi

)
= α+αsi +αti +(βsi +βti +β)φi +bxi,

where i indexes the experiment trial, pi is the probability of
the participant responding “present” to the word presented on
trial i, si is the identity of the participant on trial i, ti is the
identity of the text on trial i, φi is the log of the model’s pre-
dicted probability of the word on trial i, xi indicates if the
word on trial i was present in text ti. The random effects re-
gression coefficients are αsi , αti , βsi , βti , which are modelled
as drawn from zero-mean Normal distributions.

Having fit the logistic regression model using the predic-
tions of the HDPMM topic model, the co-occurrence based
model, the association norm based model, and a null model
(where φi is set to 0 for all i), we calculate model fit statis-
tics such as BIC, AIC, and Deviance. They are shown in the
following table:

HDPMM Co-occur Assoc Null

BIC 5775.68 5824.33 6083.58 6212.77
AIC 5715.97 5764.62 6023.87 6186.23

Deviance 5697.97 5746.62 6005.87 6178.23

We will concentrate on the BIC results as the loge of the
Bayes Factor comparing any model M0 to model M1 can be
approximated by half the difference of the BIC of models M1
and M0. Thus, the loge of the Bayes factor comparing the
HDPMM predictions to those of the co-occurrence based asso-
ciation model is 24.32. By any standard, this is overwhelming
evidence in favour of the predictions of the HDPMM relative
to those of the co-occurrence model. For example, Kass and
Raftery (1995) argue that a log Bayes factor on a log10 scale
that is greater than 2.0 is already decisive evidence in favour
of the better model. In our case, our loge result of 24.32 is
10.42 on a log10 scale. As the BIC of the association norm
model is even greater than that of the co-occurrence model,
there is overwhelming evidence in favour of the HDPMM rel-
ative to the comparison models.

For the recall memory task results, each set of recalled
words by a participant on any given test j, which we will de-
note by ω j = ω j1,ω j2 . . .ω jn, can be reasonably viewed as
draws from a subjective probability distribution that is the
participant’s memory representation of the contents of the
text. We can calculate the likelihood of this data according
to the probability distribution defined by any of our models,
denoted generically by ψ, as follows:

P(ω j|ψ) =
n

∏
i=1

V

∏
v=1

ψ
I(ri=v)
v =

V

∏
v=1

ψ
r jv
v

where I(·) is an indicator variable that takes the value of 1 if
its argument is true, and r jv is the number of times that word
wv occurs in ω j, which in this case will be either r jv = 1 if
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word wv was recalled and r jv = 0 otherwise. The loge of the
likelihood of all the recall memory task data is

loge

L

∏
j=1

P(ω j|ψ) = loge

L

∏
j

V

∏
v=1

ψ
r jv
v =

L

∑
j

V

∑
v=1

r jv loge ψv.

These results are presented in the following table:

HDPMM Co-occur Assoc

logLik -14109.02 -15100.94 -16039.98
Deviance 28218.03 30201.88 32079.96

Given that the deviance is equal to the BIC plus a constant
term, the difference of the deviances is identical to the differ-
ence of the corresponding BIC’s. Approximating the loge of
the Bayes factor by half this difference, we therefore calculate
a log10 Bayes factor for the evidence for the HDPMM predic-
tions relative to those of the nearest model, the co-occurrence
based association model, as 430.79. On the basis of the in-
terpretation described above, this is again overwhelming evi-
dence in favour of the HDPMM.

Discussion
In this paper, we have proposed — and then tested using a
high powered behavioural experiment — a Bayesian account
of how we form memories for spoken and written language.
This account models how we use our background knowledge
to form memories as a process of Bayesian inference of the
statistical patterns that are inherent in each text, followed by
posterior predictive inference of the words that are typical
of those inferred patterns. We have implemented this model
specifically as a HDPMM and applied it to an approximately
80m word corpus of texts taken from the BNC. This allowed
us to make predictions of the probability of remembering any
given word in each text from a sample of texts taken from the
BNC. We tested these predictions in a behavioural experiment
with 216 participants. The results of the analysis from both
the recognition and recall data provided overwhelming evi-
dence in favour of the Bayesian model relative to non-trivial
alternative models.
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Abstract 

Over the past two-and-a-half decades, numerous empirical 
studies have demonstrated a relationship between numbers 
and space. A classic interpretation is that these spatial-
numerical associations (SNAs) are a product of a stable 
mental number line (MNL) in the mind, yet others have 
argued that SNAs are a product of transient mappings that 
occur in working memory. Importantly, although the latter 
interpretation has no implications for the representation of 
number, the former suggests that the representation of 
number is inherently spatial. Here, we tease apart questions 
of spatial representation (à la an MNL perspective) and 
spatial strategy (à la alternative accounts). In a novel place-
the-number task, we demonstrate that numbers 
automatically bias spatial attention whereas other ordinal 
sequences (i.e., letters) do not. We argue that this is 
evidence of an inherently spatial representation of number 
and explore how this work may help answer future 
questions about the relationship between space and 
number. 

Keywords: spatial-numerical associations (SNAs); mental 
number line (MNL); automaticity; working memory; 
polarity correspondence; synesthesia 

Introduction 
Since the seminal work of Dehaene, Bossini, and Giraux 
(1993), the link between space and number has inspired a 
wealth of research (for recent review, see Fischer & 
Shaki, 2014). In the classic paradigm, participants made 
parity judgments (odd/even) of Arabic numerals using left 
and right response keys, finding that participants 
responded faster to smaller numbers when using the left 
key and faster to larger numbers when using the right key. 
This general finding has since been replicated using 
numerous paradigms. One such example is the magnitude 
comparison task in which participants indicated whether 
the digit shown is greater than or less than some value 
(e.g., 5; Fitousi, Shaki, & Algom, 2009). Later work 
demonstrated that simply perceiving numbers biases 
spatial attention: participants were faster to detect a 
leftward target when primed with a small digit and faster 
to detect a rightward target when primed with a large digit 

(Fischer, 2003; but see, e.g., Zanolie & Pecher, 2014, for 
replication failure). Further, changes in spatial attention 
bias number generation: when asked to randomly generate 
numbers while making alternating left/right head 
movements, participants more frequently generate small 
numbers when their head is oriented to the left and large 
numbers when their head is oriented to the right 
(Loetscher, Schwarz, Schubiger, & Brugger, 2008).  

A common theory of the spatial-numerical associations 
(SNAs) described above is that they are the product of a 
stable mental number line (MNL), wherein smaller 
numbers are represented on one side of space and larger 
numbers are represented on the other (in Western 
cultures, smaller numbers are represented on the left and 
larger numbers on the right; e.g., Dehaene et al., 1993). 
Yet there remain objections to this theory. Proctor and 
Cho (2006), for example, argued that polarity 
correspondence (a +/- categorization of stimulus and 
response) can explain the observed associations. Indeed, 
many tasks rely on a dichotomous response (e.g., 
left/right keys, left/right head position), and may be 
explained in this way. Another view, which has posed an 
even greater challenge to the MNL account, argues that 
SNAs are a product of task-specific associations 
established online within working memory (WM; van 
Dijck & Fias, 2011). The crux of this debate is whether 
the observed SNAs are driven by a stable spatial-
numerical link (e.g., MNL) or by transient mappings of 
number onto space (e.g., polarity correspondence, or a 
WM account; for further discussion, see Cheung et al., 
2015).  

In general, those who argue in favor of a WM account 
argue that the ostensibly transient mappings are, at least in 
part, a product of task demands. For example, in the 
classic parity judgment task, participants respond using 
leftward and rightward oriented keys. One may argue that 
the relative orientation of these keys is sufficient to 
induce a spatial mapping (see Viarouge, Hubbard, & 
Dehaene, 2014 for discussion on the induction of spatial 
reference frames in SNA tasks).
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Table 1: SNA tasks and their task demands. 
 

Category Examples 

Task demands Ordinal control 

Dichotomous 
Categorization 

Directional 
prime 

Magnitude 
salience  

Parity Judgment Dehaene et al., 1993 
Marghetis et al., 2013 ✓ ✓ ✓ ✓ 

Mag. Judgment Fitousi et al., 2009  
Marghetis et al., 2013 ✓ ✓ ✓ X 

Lat. Comparison Lavidor et al., 2004  
Cheung et al., 2015 ✓ ✓ ✓ X 

Numerical Posner Fischer et al., 2003  
Ruiz Fernández et al., 2001 

X ✓ X X 

Num. Bisection Fischer et al., 2001 
Calabria & Rossetti, 2005 

X ✓ X X 

Number generation  Loetscher et al., 2008  
Cheung et al., 2015 

X ✓ ✓ X 

Eye-tracking Holmes et al., 2016 
Schwarz & Keus, 2004 X X ✓ X 

Place-the-number X X X ✓ 

 
In particular, a polarity correspondence account would be 
concerned about the use of a dichotomous response. Indeed, 
many of the SNA tasks mentioned above possess some kind 
of task demand. Parity judgment tasks and magnitude 
comparison tasks involve both a dichotomous manual 
response (left key/right key) and a dichotomous judgment 
(less than/greater than). Other parity and magnitude 
judgment tasks have utilized a go/no-go paradigm to 
circumvent the spatial information provided by the response 
keys, but these tasks nevertheless depend on a dichotomous 
response scheme (e.g., Marghetis, Kanwal, & Bergen, 
2013). This dichotomous response, though not spatial, 
nevertheless lends itself to a polarity correspondence 
account. Furthermore, even tasks that do not require a 
dichotomous response still have certain features that may 
instantiate a left-to-right reference frame. For example, in 
the work of Fischer and colleagues (2003), a left-to-right 
frame may be induced by the locations of the target (as 
either on the left or right side of fixation). The same may be 
said for the paradigm utilized by Ruiz Fernández and 
colleagues (2011), wherein, after presentation of a number, 
they made an arbitrary selection between items construed on 
the left and right sides of space. In the work of Loetscher 
and colleagues (2008), a left-to-right frame is being 
specifically induced by the turning of the head. (For a more 
complete list of SNA paradigms and their task demands, see 
Table 1). Thus, it is unclear whether there is any evidence of 
an SNA (and consequently, a stable MNL) in the absence of 
any such task demands. 

Eye-tracking paradigms have been promising in this 
regard. For instance, Holmes, Ayzenberg, and Lourenco 
(2016) had participants play a virtual blackjack game while 
their eye gaze was being tracked. It was found that both the 
value of a card on a given trial as well as the overall value           

 
of one's hand at a given time significantly predicted eye 
gaze in a manner consistent with observed SNAs for 
Western participants (i.e., smaller magnitudes produced 
more leftward eye movements and larger magnitudes 
produced more rightward eye movements). This study 
provides strong evidence for a left-to-right oriented MNL by 
demonstrating that number representations bias spatial 
attention even in the absence of a directional prime and a 
dichotomous response scheme (see Table 1). Other eye-
tracking studies have yielded similar results (e.g., Schwarz 
& Keus, 2004; Loetscher et al., 2010). Yet in Holmes et al. 
(2016), the task requires the explicit processing of numerical 
value (e.g., value of a card or hand). Though the processing 
of numerical magnitude may not be explicitly required in 
the other tasks above, they do invoke some property of 
number (e.g., parity). As such, two questions remain: do 
numbers automatically bias spatial attention in the absence 
of a directional prime and even when numerical properties 
are irrelevant to the task at hand? Furthermore, and 
critically, is this bias specific to number?  

Automaticity as a criterion for representation 
Understanding whether SNAs manifest automatically (i.e., 
in the absence of task demands) is crucial for understanding 
the relationship between space and number, in large part 
because automaticity suggests that the relationship is 
representational (as an MNL hypothesis would predict) 
rather than transient (as a polarity correspondence or WM 
account would predict). Nowhere is this criterion more 
apparent than in the literature on synesthesia. Automaticity, 
here, is where many have drawn the line between a 
relationship that is merely associative as opposed to truly 
synesthetic (see Grossenbacher & Lovelace, 2001; 
Mattingley, 2009). We argue that the spatial-numerical 
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relationship should be considered in similar terms (see also, 
Cohen Kadosh & Henik, 2007). By this criterion, 
automaticity helps us to understand the nature of the relation 
between space and number: namely, whether they share 
representational space (as an MNL hypothesis predicts), or 
whether the two are only transiently associated with one 
another (as alternative hypotheses predict). 

Here, we present evidence from a novel SNA paradigm -- 
the place-the-number task -- which suggests that numbers 
do in fact automatically bias spatial attention. Very simply, 
participants viewed a number on a screen, memorized its 
location, and, after a delay, placed the number back in its 
original location. This task revealed a robust spatial-
numerical relationship. In two additional control 
experiments, we found no consistent mapping of letters to 
space, suggesting that these attentional biases are specific to 
number and not ordinal sequences (a control which has not 
always been tested with other paradigms). Predictions made 
by MNL and WM accounts of SNAs diverge in such 
conditions: an MNL account predicts that this spatial bias is 
specific to number whereas a WM account predicts that this 
bias generalizes to any ordinal sequence (e.g., letters, 
months, etc.; van Dijck et al, 2014).   

Experiment 1: Place-the-number task 

Method 
In this novel paradigm, participants viewed an Arabic 
numeral (1-9) presented in black font within a rectangle 
(white fill with black outline; 918 × 495 pixels). This task 
was created in Visual Basic and presented on a 19in 
computer monitor. Participants sat approximately 65cm 
from the monitor. Each digit was presented 20 times, for a 
total of 180 trials, randomly ordered. On each trial, 
participants were instructed to remember the location of the 
digit. The digit remained on screen until participants clicked 
a button located at the bottom of the screen, at which time 
the digit disappeared. Participants were then instructed to 
click the remembered location to place the digit at that 
location. These instructions were presented in a pop-up 
dialog box, which also ensured that participants did not 
fixate on the original location of the digit. Participants could 
further adjust this initial placement by dragging and 
dropping the digit. Participants then confirmed their final 
placement by clicking another button on screen and 
immediately proceeded to the next trial.  

Thirty-seven undergraduates participated in this task for 
course credit. All participants had normal or corrected-to 
normal vision. Procedures were approved by the 
Institutional Review Board (IRB). One participant was 
excluded from the statistical analyses due to poor accuracy 
(> 2.5 SD from the group mean), where accuracy is 
calculated as the distance between the digit’s original 
location and the participant’s final placement. 

Results 
The remaining participants (N = 36) had a mean accuracy of 
18.76 pixels (SD = 13.67). The variable of interest was 
participants’ accuracy along the horizontal axis1. For each 
trial, we calculated accuracy as the difference between the 
x-coordinate of the participant’s final placement and x-
coordinate of the digit’s original location, such that a 
negative value represents a more leftward placement, in 
comparison to the original location, and a positive value 
represented a more rightward placement, in comparison to 
the original location. For each participant, we calculated the 
mean accuracy for each digit and calculated a slope by 
regressing these values onto their corresponding numerical 
value (See Fig 1). Thus, in this paradigm, a positive slope 
represents the canonical, left-to-right SNA. Participants’ 
slopes were significantly greater than zero, t(35) = 2.11, p < 
.05, d = .35. Furthermore, a significant number of 
participants (N = 24) showed this effect (binomial test, p < 
.05). In other words, participants placed smaller numbers 
more leftward than larger numbers, consistent with a left-to-
right SNA2. To determine whether the SNA shown here is 
unique to number (as an MNL account predicts) or occurs 
for any ordinal sequence (as a WM account predicts), we 
conducted a control experiment (Exp. 2A) with letters. 

 

 
Figure 1: Scatterplot displaying mean spatial bias (final – 
original placement) for digits 1-9 including the best-fitting 

regression line. 

                                                           
1 Across all three experiments, we find no evidence of spatial-

numerical associations in the vertical dimension. 
2 Consistent with previous research on pseudoneglect (Lourenco 

& Longo, 2007; for review, see Jewel & McCourt, 2000), there is 
an overall leftward bias in all three experiments. 
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Experiment 2A: Letter control (A-I) 

Method 
The procedure for Experiment 2A was identical to 
Experiment 1 except instead of Arabic numerals as stimuli, 
participants were presented with the first nine letters of the 
alphabet (A-I). Thirty-eight undergraduates participated for 
course credit. One participant was excluded from the 
statistical analyses as they did not complete all trials.  One 
participant was excluded from the statistical analyses for 
poor accuracy. 

Results 
The remaining participants (N = 36) had a mean accuracy of 
14.25 pixels (SD = 7.62). Importantly, unlike Experiment 1, 
participants’ slopes were not significantly different from 
zero, t(35) = -.85, p = .40. These results demonstrate that 
letters, although ordinal, do not generate a spatial 
association in this paradigm. However, since the letters used 
only spanned the beginning of the alphabet, it remains 
possible this sequence was not comparable to the Arabic 
numerals used in Experiment 1. The following experiment 
was designed to address this concern. 

 
Figure 2: Scatterplot displaying mean spatial bias (final – 

original placement) for letters A-I including the best-fitting 
regression line. 

Experiment 2B: Letter control (A-Z) 

Method 
The procedure for Experiment 2B was identical to 
Experiment 1 and 2A but instead of Arabic numerals as 
stimuli, nine letters evenly spaced throughout the alphabet 
(A, D, G, J, M, P, S, V, Y) were presented, as we 
hypothesized participants could more easily distinguish 
between the ordinal position of “A”/“Y” than “A”/“I”, for 

example. Thirty-eight undergraduates participated for 
course credit. One participant was excluded from the 
statistical analyses as they did not complete all trials.  One 
participant was excluded from the statistical analyses for 
poor accuracy.  

Results 
The remaining participants (N = 36) had a mean accuracy of 
13.65 pixels (SD = 9.11)3. Consistent with the findings of 
Experiment 2A, participants’ slopes were not significantly 
different from zero, t(35) = -.14, p = .89, confirming that 
letters do not generate a spatial association in this paradigm. 

 

 
Figure 3: Scatterplot displaying mean spatial bias (final – 
original placement) for letters evenly distributed in the 

alphabet including the best-fitting regression line. 

General Discussion 
A primary goal of this study was to demonstrate an SNA in 
the absence of any sort of task demand. In the place-the-
number task, participants’ responses are non-dichotomous, 
there is no left-right directional prime, and the value of the 
stimulus is not necessary to complete the task. Yet 
participants nevertheless exhibited an SNA consistent with 
past results. Our two control experiments demonstrate that 
this effect is specific to number and not other ordinal 
sequences such as letters. 

Consistent with our hypotheses, these findings 
demonstrate that numbers — but not letters —automatically 
bias spatial attention in accordance with an MNL account. 
The fact that this effect occurs in the absence of relevant 
task demands is critical. Those who posit alternative 
accounts of SNAs often offer explanations that rest on 
demand characteristics of the tasks themselves, but there are 

                                                           
3 Mean accuracy was not significantly different across the three 

experiments as determined by a one-way analysis of variance 
(ANOVA). 
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no such demands here. Therefore, we conclude that the 
automaticity of the spatial bias in this task sheds light on the 
nature of numerical representations — that they are 
inherently spatial unlike other ordinal sequences. Though 
other accounts exist, we believe these results provide strong 
evidence in favor of an MNL account of SNAs. 

This interpretation is consistent with recent neural work 
which has explored the relation between space and number 
(Harvey et al., 2013). Harvey and colleagues (2013) found 
evidence of a topographic map for numerosity in the 
posterior superior parietal lobule, akin to topographic maps 
for sensorimotor systems (Udin & Fawcett, 1988). Within 
this area, medial regions preferred small numerosities and 
lateral regions preferred large numerosities. Importantly, the 
location and numerosity preference of this topographic map 
was consistent across participants. These data support the 
growing body of evidence not only that number and space 
are deeply related in the mind, but, additionally, that 
numerical representations have an inherently spatial 
organization.  

Spatial representation versus spatial strategy 
One question that arises from this interpretation is why 
others have demonstrated effects of ordinal sequences (e.g., 
Gevers, Reynovet, & Fias, 2003; van Dijck & Fias, 2011). 
To answer this question, we want to make a critical 
distinction. On the one hand, we might ask what things we 
can organize spatially; on the other hand, we might ask what 
things are inherently spatial. It is only in the context of the 
latter question that we argue numbers are unique. That we 
can organize ordinal sequences spatially should come as no 
surprise. People can organize items in any number of spatial 
arrangements and this type of spatialization has often been 
considered important for reasoning (Johnson-Laird, 1983). 
But the question that concerns the authors here is whether 
numbers are unique in the sense that they are automatically 
represented spatially in the mind.  

This dichotomy is reminiscent of the so-called “dual-
process” model of SNAs (e.g., Ginsburg & Gevers, 2015) 
which entail both long-term SNAs as well as spatialization 
in working memory. Abrahamse, van Dijck, and Fias (2016) 
have argued against this view, suggesting that their WM 
account is more parsimonious – that it “captures the 
complexity of the empirical database” without the need for 
long-term associations (p. 7). Indeed, if the mind were 
constructed for the sole purpose of representing number, 
then it may have evolved to do so in a parsimonious 
manner. Yet, Abrahamse and colleagues (2016) ignore the 
possibility that multiple mechanisms, some of them domain-
general, may be at play. As we suggest, all ordinal 
sequences can be represented in space, but only numbers are 
automatically represented in this manner.  

A working memory account of SNAs suggests that we 
have the propensity to organize sequences spatially in order 
to minimize the load of maintaining the sequence in the 
mind at once. This idea is reminiscent of the "method of 
loci" — a means of improving memory per spatial 

visualization —  is at least two millennia old (as in Cicero’s 
De Oratore), but it has nothing to do with intrinsic 
characteristics of the representation. Thus, it becomes 
important to differentiate questions of spatial representation 
and spatial strategy. Previous tasks, some rife with potential 
task demands, failed to make a distinction between these 
two perspectives, yet have been interpreted as evidence of 
spatial representation. van Dijck and Fias (2011) have 
argued, partially on account of these task demands, that 
SNAs are merely transient mappings that occur in working 
memory – which, within our framework, falls under the 
purview of spatial strategy. In pursuing the latter issue of 
strategy, those who have espoused this WM perspective 
have overlooked the former, more crucial question of 
representation. That is, while we have argued that numbers 
are unique insofar as they are inherently spatial, van Dijck 
and Fias have succeeded only in showing that other 
sequences can, in certain contexts, be mapped spatially.    

Empirical horizons 
What does the distinction between spatial representation and 
spatial strategy buy us? As a starting point, it establishes 
that numbers are in fact unique: they bias spatial attention 
automatically which suggests that their representation is 
inherently spatial in a way that other ordinal sequences are 
not. With this in mind, we are able to ask more nuanced 
questions about the underlying relationship between space 
and number. For example, why are numbers unique in this 
way? Do we come into the world with the propensity to 
represent numbers spatially, or is it learned? Perhaps more 
critically: what is the utility of a spatial-numerical mapping? 
For example, despite the seeming ubiquity and permanence 
of SNAs, it is unclear whether this spatial-numerical bias is 
related to math performance, with some studies reporting a 
positive relationship, some a negative relationship, and 
some no relationship at all (for review, see Cipora, Patro, & 
Nuerk, 2015).  

Not only does the place-the-number task play a part in 
raising these questions, it may also help to answer them. To 
further understand the phylogenetic and ontogenetic 
development of these associations, it is necessary to 
examine them in early childhood as number concepts are 
still being acquired. This has proven challenging, however, 
given that many SNA tasks are difficult to administer to 
children. The place-the-number task alleviates these 
concerns and might allow for the study of SNAs at a time in 
development when they have greater utility. 

In sum, we have shown that numbers, but not letters, bias 
spatial attention in a manner that is consistent with an MNL 
hypothesis of SNAs. We argue that previous work which 
has posited alternative explanations to this account have 
been inadvertently answering a separate question – one 
about spatial strategy rather than spatial representation. 
Here, we have clarified the difference between these two 
accounts and suggested how the place-the-number task may 
be used to guide future research on the deep relationship 
between space and numbers in the mind. 
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Abstract 

The use of subject pronouns by bilingual speakers using both a   

pro-drop and a non-pro-drop language (e.g. Spanish heritage 

speakers in the USA) is a well-studied topic in research on 

cross-linguistic influence in language contact situations. 

Previous studies looking at bilinguals with different proficiency 

levels have yielded conflicting results on whether there is 

transfer from the non-pro-drop patterns to the pro-drop 

language. Additionally, previous research has focused on 

speech patterns only.  In this paper, we study the two modalities 

of language, speech and gesture, and ask whether and how they 

reveal cross-linguistic influence on the use of subject pronouns 

in discourse. We focus on elicited narratives from heritage 

speakers of Turkish in the Netherlands, in both Turkish (pro-

drop) and Dutch (non-pro-drop), as well as from monolingual 

control groups. The use of pronouns was not very common in 

monolingual Turkish narratives and was constrained by the 

pragmatic contexts, unlike in Dutch. Furthermore, Turkish 

pronouns were more likely to be accompanied by localized 

gestures than Dutch pronouns, presumably because pronouns in 

Turkish are pragmatically marked forms. We did not find any 

cross-linguistic influence in bilingual speech or gesture 

patterns, in line with studies (speech only) of highly proficient 

bilinguals. We therefore suggest that speech and gesture 

parallel each other not only in monolingual but also in bilingual 

production.  Highly proficient heritage speakers who have been 

exposed to diverse linguistic and gestural patterns of each 

language from early on maintain monolingual patterns of 

pragmatic constraints on the use of pronouns multimodally. 

Keywords: bilingualism; heritage speakers; gesture; cross-

linguistic influence; pronoun; pragmatics; discourse 

Introduction 

The use of subject pronouns by bilingual speakers of a pro-

drop (e.g. Spanish) and a non-prop language (e.g. English) in 

contact situations has been a commonly studied test case of 

cross-linguistic influence. Pro-drop languages habitually 

drop arguments and use overt pronouns mainly to mark 

pragmatic information such as contrast and emphasis (e.g. 

Enç, 1986). The alternation between overt pronouns and 

dropped arguments is determined by discourse-pragmatics in 

those languages unlike in non-pro-drop languages such as 

English. Studies looking at heritage speakers who had lower 

proficiency in their pro-drop language than in their non-pro-

drop language found an increase in the frequency of pronouns 

or a loss of the pragmatic constraints on the use of pronouns 

in the pro-drop language (Paradis & Navarro, 2003; Polinsky, 

1995; Silva-Corvalan, 1994). On the other hand, studies 

looking at heritage speakers who are exposed to the pro-drop 

language more regularly and who have high proficiency in 

both languages found no cross-linguistic influence (Cerrón-

Palomino, 2016; Keating, Jegerski & van Patten, 2016; 

Montrul, 2004). Most studies, however, have focused on 

Spanish as a pro-drop language and English as a non-pro-

drop language in the United States.  

In this paper, we look at language contact influence on 

subject pronouns studying Turkish heritage speakers in the 

Netherlands. Pronouns are less frequently used in pro-drop 

Turkish than in non-pro-drop Dutch, and they are 

pragmatically marked forms in Turkish (Enç, 1986) (similar 

to Spanish) but not in Dutch. Additionally, unlike previous 

studies in this domain, we examine not only patterns in the 

pro-drop language but also in the non-pro-drop language. We 

ask whether bilingual speakers maintain differences between 

Turkish and Dutch in terms of pragmatic constraints on the 

use of pronouns. Furthermore, as a novel contribution to 

research on cross-linguistic influence on subject pronouns, 

we extend our investigation to the visual modality of 

language, i.e. co-speech gestures. Studies of multimodal 

narratives have shown that speakers’ gestures are sensitive to 

the amount of information encoded in speech. When referents 

are maintained in discourse, speakers not only reduce content 

of the referring expression by using pronouns or null forms, 
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but they also reduce the frequency of gestures related to 

referents (Azar & Özyürek, 2015; Perniss & Özyürek, 2015). 

Additionally, referents that are uniquely identified in speech 

are more likely to be accompanied by gestures (So, Kita & 

Goldin-Meadow, 2009), suggesting gesture is tightly linked 

to speech. Whether this link extends to pragmatic marking of 

pronouns, that is whether languages that mark pronouns 

pragmatically in speech are more likely to mark them with 

gestures as well, has not been investigated so far. 

Furthermore, nothing is known about the multimodal nature 

of the cross-linguistic transfer in this domain.  

As for gestures of bilingual speakers, in particular 

proficient L2 learners have been reported to show cross-

linguistic influence in how frequently they gesture overall 

(So, 2010; see Cavicchio & Kita, 2013 who found no cross-

linguistic influence) and in their motion verb expressions 

(Brown & Gullberg, 2008; Özçalışkan, 2016).  Gestural 

transfer in the contexts of language contact and for 

differential pragmatic marking of pronouns on the other hand 

is an unexplored research topic. Thus, as a novel contribution 

to bilingualism research, we investigate whether heritage 

speakers who are highly proficient in their two languages 

maintain pragmatic constrains on the use of subject pronouns 

in speech and gesture or whether there is cross-linguistic 

influence in the two modalities. 

An earlier study that looked at the use of subject pronouns 

by adult Turkish heritage speakers in the Netherlands 

(Doğruöz, 2007) found no cross-linguistic influence in the 

quantity of subject pronouns in informal interviews, though a 

few cases of the 1st person pronoun were attested where 

monolinguals would not use a pronoun, e.g. in the 

immediately preverbal positions. We contribute to the 

literature on the use pronouns by Turkish-Dutch bilingual 

adult speakers in the Netherlands with a more controlled 

study (with respect to the discourse content) and in the 

context of narratives eliciting third-person references. 

Furthermore, we study not only Turkish narratives but also 

Dutch narratives produced by the same set of speakers. 

Finally, we take the multimodal aspects of reference 

production into account and investigate the use of gestures to 

mark subject referents by Turkish-Dutch bilinguals for the 

first time. 

Method 

Participants 

20 Dutch monolingual speakers studying in Nijmegen (14 

females; age mean = 21.5), 20 Turkish monolingual speakers 

studying in Istanbul (17 females; age mean = 22.2) and 20 

bilingual speakers (14 females; age mean = 23.3) studying in 

Nijmegen participated in our study in return for payment or 

course credits. Note that “monolingual” speakers in our study 

have some knowledge of English but they speak only one of 

the two languages that are of interest for this study.  

Bilingual participants filled in a survey regarding their 

language history, current language use, and language 

proficiency in Turkish and Dutch. All bilingual speakers were 

born and raised in the Netherlands; their parents immigrated 

from Turkey to the Netherlands as young adults. Bilinguals 

were exposed primarily to Turkish at home until they started 

school at around the age of 4. They reported to mainly speak 

Dutch at school and mostly mix the two languages at home 

and among friends. Bilinguals rated their overall reading, 

speaking and comprehension proficiency higher in Dutch 

than in Turkish on a 5-point Likert scale (see Table 1). As a 

measure of oral fluency, we calculated articulation rate 

(number of syllables/ articulation time) (cf. De Jong, & 

Wempe, 2009 for the script) for each participant using 

samples of around 30 seconds from the narratives we 

collected (the stimuli and procedure explained below). 

Bilinguals did not differ significantly from monolinguals in 

Turkish t(38) = 1.994, p = .053 or in Dutch t(38) = 0.934, p = 

.356. Bilinguals’ articulation rate was not significantly 

different between their Turkish and Dutch, either, t(19) = 

2.047, p = .954, suggesting they have similar levels of oral 

fluency in both languages (see Table 2). 

 

Table 1 

Self-rated Bilingual Proficiencies (1 = native; 5 = 

beginner), Mean (SD)  

 Speaking Comprehension Overall 

Turkish 2.50 (1.32) 2.25 (0.79) 2.40 (1.27) 

Dutch 1.30 (0.47) 1.10 (0.31) 1.50 (0.76) 

 

Table 2 

Monolingual and Bilingual Speakers’ Articulation Rates, 

Mean (SD) 

 Monolingual Bilingual 

Turkish 4.81 (0.55) 4.44 (0.63) 

Dutch 4.62 (0.71) 4.42 (0.57)  

Stimuli 

We used two short silent videos (cf. Azar, Backus & 

Özyürek, 2016) to elicit narratives. Three characters were 

engaged in joint activities; cooking in one video and office 

work in the other.  Figure 1 illustrates stills from each video.  

 

 

 

 

 

 

 

 

Figure 1: Stills from the stimulus videos featuring kitchen 

(upper row) and office activities (bottom row) 
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Procedure 

Participants were invited to a quiet room in pairs and were 

assigned the role of either speaker or addressee (the 

assignment was random in monolingual sessions). The 

speaker watched the stimulus videos one by one on a 

computer screen. Once each video ended, the computer 

screen turned white and the speaker told the addressee what 

they had watched. The addressees were instructed that after 

each narrative, they could ask clarification questions and that 

they would be given two short written questions about each 

narrative. The purpose of this was to ensure that the speakers 

included enough details in their narratives and that the 

addressees paid attention. Once the instructions were given, 

the experimenter left the room and came back after each 

narrative with the questions for the addressee. The bilingual 

participants repeated the task once in Turkish with a Turkish 

monolingual addressee and once in Dutch with a Dutch 

monolingual addressee. The addressees were not 

confederates and there was at least two weeks between the 

two sessions. The order of the two videos was counter-

balanced across participants. For bilinguals, the order of 

language was counterbalanced as well. All sessions were 

videotaped. 

Data Coding 

We coded and analyzed speech from the speakers of each 

pair. We transcribed the video narratives using the standard 

orthography of each language and coded gestures with the 

frame-by-frame video annotation software ELAN (cf. 
Lausberg., & Sloetjes, 2009). 
 

Speech Coding We divided the narratives into clauses, 

utterances with a single subject argument and a single 

predicate. We coded only clauses with an animate subject 

argument (referring to the human characters in the stimulus 

videos) and marked whether the subject argument was 

maintained from the previous clause or not. We analyzed 

only clauses with maintained subjects since pronouns as 

reduced forms are used most frequently in those contexts (cf. 

Azar et al., 2016 for Turkish and Dutch). We further coded 

each maintained subject argument for one of the three 

possible referring expression types: noun phrase (NP), 

pronoun (third person and demonstrative pronouns) and null 

form. (1b) in Dutch and (2d, 2e) in Turkish illustrates clauses 

with maintained subjects. Subject arguments are underlined 

and subscripts index coreferentiality. Following Paradis and 

Navarro (2003), we coded Turkish subjects for pragmatic 

marking: contrast (disambiguation between two possible 

referents) or emphasis (highlighting information). 

Additionally, we also coded whether pronouns referring to 

subjects that are marked for emphasis were accompanied by 

the emphatic marker dA ‘also’ (as in 2e). This clitic has been 

suggested to be a focus marker in Turkish (Enç, 1986) and 

has been shown to accompany pronouns when used for 

maintained subject arguments by monolingual Turkish 

speakers (Azar et. al., 2016). We did not code pragmatic 

marking for Dutch subjects because we expect Dutch 

speakers to maintain subjects with pronouns as defaults forms 

rather than using pronouns to mark pragmatic information 

due to Dutch being a non-pro-drop language.  

(1) a. Een meisjei probeerde een pot open te maken.  

      A girli tried to open a jar. 

      b. Diei kreeg hem niet open.  pronoun 

          Thati (the girl) did not open it. 

 

(2) c. Ondan sonra kızk geliyor. 

    Then girlk is coming. 

d. Øk çocuğa yardım ediyor.  null form 

   (She)k is helping the boy. 

e. Ok da kağıtları diziyor.  pronoun 

   Shek, too, is sorting paper. 

 

Gesture Coding We coded gestures temporally aligning with 

maintained subjects in speech, specifically with subject 

pronouns. We analyze gestures that anchored subjects in 

gesture space (i.e. index-finger and whole hand points).  In 

Figure 2, the subject in (b) is maintained from (a) and marked 

with a pronoun in speech in Turkish and with an index-finger 

pointing gesture. The pronoun in speech is given in bold and 

the gesture and the character the pronoun refers to are 

highlighted in pictures. 

 

 

 

 

 

 

 

 

Figure 2: Index-finger pointing gesture referring to the 

character in the video (highlighted) and temporally aligning 

with maintained subject pronoun in speech (in bold) 

Predictions 

With regard to monolinguals, we expect speech and gesture 

to parallel each other in terms of the information they encode 

and therefore we expect cross-linguistic differences in the 

frequency of pronouns in speech and frequency of gestures 

marking pronominalized referents. In speech, we expect to 

find few pronouns in Turkish and in contexts where subject 

arguments are pragmatically marked for contrast or 

emphasis. Considering pronouns are marked forms in 

Turkish but not in Dutch, we predict that Turkish 

monolingual speakers will mark subject pronouns with 

gestures more than Dutch speakers. In terms of bilinguals we 

can anticipate the following scenarios for speech.  

Influence of Dutch on bilingual Turkish: Based on studies 

that found cross-linguistic influence from non-pro drop 

English on pro-drop Spanish in subject pronouns of Spanish 
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heritage speakers in the States (e.g., Silva-Corvalan 1994), 

we expect bilinguals to have loosened the pragmatic 

constraints on the use of pronouns.  Bilinguals in Turkish 

might use pronouns also when the subjects are not 

pragmatically marked and might accompany subjects that are 

marked for emphasis with the emphatic marker dA less 

frequently than monolinguals.  

No cross-linguistic influence: Taking into account the 

literature which did not find cross-linguistic influence on 

subject pronouns for bilinguals with high proficiency in both 

languages (e.g. Cerrón-Palomino, 2016; Keating, Jegerski & 

van Patten, 2016), we predict that bilinguals will maintain 

pragmatic constraints on the use of pronouns. 

As for gestures, based on theories suggesting that speech 

and gesture parallel each other in production (Kita & 

Özyürek, 2003; So et al., 2009), we expect the cross-

linguistic influence on gestures to align with patterns of 

influence in speech. Alternatively, considering some L2 

studies have found cross-linguistic transfer on gesture but not 

on speech (Özçalışkan, 2016), we may observe cross-

linguistic influence on gesture modality only. Speakers may 

extend the pragmatic marking of pronouns with gestures from 

Turkish to Dutch and gesture with Dutch pronouns more 

frequently than Dutch monolinguals. Alternatively, 

bilinguals might loosen the pragmatic marking of gestures in 

Turkish as an influence from Dutch and gesture with 

pronouns less than monolinguals in Turkish.  

Analyses and Results 

We performed arcsine transformation on ratio values for 

analyses though we report untransformed values. We 

analyzed the data using Linear Fixed Effects Models in IBM 

SPSS statistics 20. We started with the simplest model with 

fixed effects only, and built more complex models by adding 

random intercepts. We compared each ‘more complex’ 

model to the previous simpler one in each step and in case of 

a significant difference we picked the model with the lower 

log-likelihood value. Bonferroni correction for multiple 

comparisons was applied for each model.  

Pronouns in Speech 

We calculated the ratio of subject arguments referred to with 

a pronoun (subject pronouns) out of all maintained subject 

arguments in narratives per participant. We performed linear 

mixed model on subject pronouns with the following fixed 

effects: language type (Turkish vs. Dutch), language status 

(monolingual vs. bilingual) and the interaction between 

language type and language status. We started with the fixed 

effects only, and built more complex models by adding 

random intercepts and slopes for participants, language type 

and language status. The model that best described the 

variance of the data had random intercepts for participants 

and random intercepts for language type (Turkish or Dutch) 

varying by participants random slopes. 

We found a significant effect for language type F(1, 

66.657) = 316.119, p < .001 and for language status F(1, 

45.204) = 4.600, p = .037 and a significant interaction 

between the two F(1, 66.657) = 4.174, p = 0.045. We further 

broke down the interaction and performed mixed linear 

models for Turkish and Dutch with language status 

(monolingual vs. bilingual) as fixed effect, following the 

same procedure as before. The model that best explained the 

variance for both Turkish and Dutch data was the simplest 

model with fixed effect language status. We did not find a 

main effect for language status F(1,40) = 0.852, p = .362 for 

Turkish but for Dutch F(1,40) = 4.721. p = .036. Bilingual 

speakers used more pronouns in Dutch than monolinguals. 

Figure 3 illustrates the mean proportions of pronouns 

referring to subject arguments in monolingual and bilingual 

narratives by language.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Mean proportions of maintained subject pronouns 

in monolingual and bilingual narratives across Turkish and 

Dutch. The error bars represent standard errors of the mean. 

 

Since we did not predict the findings in bilingual Dutch, we 

compared the use of the other two referring expressions we 

coded in speech, noun phrase (NP) and null form, across 

monolingual and bilingual Dutch to understand whether the 

higher use of pronouns by bilinguals could be driven by the 

lower use of one of the other two forms. We found that the 

bilinguals used null forms less frequently (although 

marginally) than monolinguals in Dutch t(30.790) = -2.047, 

p = .049 (M = 0.132;  0.246 respectively).  

Next, we looked at whether monolingual and bilingual 

speakers differed in the pragmatic marking of pronouns in 

Turkish. Out of all subjects that were encoded as pronouns, 

82% in monolingual and 78% in bilingual narratives was 

marked for either emphasis or contrast. In total, there were 49 

subject referents in monolingual Turkish and 44 subject 

referents in bilingual Turkish that were marked for emphasis 

and referred to with pronouns in speech.  88% of those 

pronouns in monolingual Turkish and 84% in bilingual 

Turkish was accompanied by the emphatic marker dA. Thus, 

bilinguals were similar to monolinguals in Turkish in terms 

of the pragmatic constrains on the use of pronouns in speech.  
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Pronouns Marked with Gestures  

We calculated the ratio of gesturally marked subject 

pronouns out of all subject pronouns in speech per 

participant. We performed linear mixed model on gesturally 

marked subject pronouns with fixed effects language type, 

language status and the interaction of the two, following the 

same procedure as in our speech analyses. The model that 

best described the variance of the data had random intercepts 

for participants and language type (Turkish or Dutch) 

varying by participants random slopes. We found a 

significant effect for language type F(1, 69.358) = 10.062,  p 

= .002, showing Turkish speakers were more likely to mark 

pronouns with gestures than Dutch speakers. We did not find 

a significant effect for language status F(1, 92.697) = 0.078, 

p = .781 and no significant interaction between the fixed 

effects (language type and language status) F(1, 64.913) = 

.001, p = .979, suggesting bilinguals did not differ from 

monolinguals in terms of marking pronouns with gestures in 

either language. See Figure 4 for the mean values of 

gesturally marked pronouns.  

Even though we found pronouns were more likely to be 

gesturally marked in Turkish than in Dutch, both in 

monolingual and bilingual speech, this could be due to an 

overall higher frequency of gestures in Turkish than in Dutch 

rather than an effect modulated by pragmatics. As a control, 

we looked at whether speakers per language group differed 

in how likely they are to gesturally mark a noun phrase (NP), 

the other overt referring expression type that we coded for 

speech. We performed mixed linear models on the ratio of 

gesturally marked NPs, following the same procedure as in 

our pronoun analyses. We did not find a main effect for 

language F(1, 56) = 0.410, p = .525, suggesting Turkish and 

Dutch speakers did not differ in how likely they were to mark 

NPs with gestures, contrary to what we found for pronouns.  

Turkish monolingual speakers gestured with NPs (M = 0.33, 

SE = .083) as often as Dutch monolinguals (M = 0.28, SE = 

.126), suggesting the cross-linguistic difference we found for 

pronouns can be explained by the difference in the pragmatic 

status of pronouns across Turkish and Dutch and this effect 

is sensitive to the referring expression type used in speech. 

We did not find a main effect for language status F(1, 56) = 

2.551, p = .116 or an interaction of language and language 

status F(1, 56) = 1.144, p = .289. Bilinguals did not differ 

from monolinguals in Turkish (M = 0.42, SE = .120) or in 

Dutch (M = 0.31, SE = .135) in terms of how frequently they 

marked NPs with gestures.  

Discussion 

 

In this study, we investigated whether there is cross-linguistic 

influence on the use of pronouns in narratives by heritage 

speakers who have high proficiency in both languages they 

speak. We specifically focused on the pragmatic constraints 

on the use of pronouns and we studied both speech and 

gestures for the first time in this domain looking at narratives  

 

Figure 4: Mean proportions of gesturally marked maintained 

subject pronouns in monolingual and bilingual narratives 

across Turkish and Dutch. The error bars represent standard 

errors of the mean. 

 

of Turkish heritage speakers in the Netherlands. We 

compared bilingual speech and gesture productions to those 

of monolinguals in Turkish and Dutch. 

We showed that monolingual Turkish speakers used 

pronouns infrequently to maintain subject referents in 

narratives and mostly when the referents were pragmatic 

marked. Additionally, in line with our predictions, Turkish 

monolingual speakers were more likely to gesturally mark 

pronouns than Dutch monolingual speakers, suggesting 

linguistic forms that are pragmatically marked in speech (i.e. 

pronouns in pro-drop Turkish) are more likely to be marked 

with gestures as well. 

Bilingual speakers did not differ from monolinguals in their 

pro-drop language, Turkish, in terms of how likely they were 

to use pronouns to maintain subject referents. Furthermore, 

we did not find any differences between monolingual and 

bilingual speakers in Turkish in terms of pragmatic 

constraints on the use of pronouns. Bilinguals used pronouns 

in Turkish to maintained referents that were marked for 

pragmatics, either for emphasis or contrast and they used the 

emphatic marker dA in similar ways to monolinguals. Our 

findings suggest that heritage speakers who were raised 

bilingually and who have high proficiency in both languages 

as well as using them daily, seem to have mastered the 

pragmatic constraints on the use of pronouns and to maintain 

them. 

Although we did not expect any differences between 

monolingual and bilingual Dutch speech, we found that 

bilingual speakers used more pronouns and fewer null forms 

in Dutch than monolingual speakers. We suggest that 

bilingual speakers might have used coordinated clauses 

which allows null forms in Dutch less often than 

monolinguals and therefore dropped referents less often. 

However, since the use of null forms is not the main focus of 

our paper, we will not investigate this possibility further.  

As for the visual modality, bilinguals maintained pronouns 

as marked forms in Turkish similar to monolingual speakers. 
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Bilinguals did not extend Turkish gestural marking to their 

Dutch narrative productions, either. Our findings are in line 

with those of Cavicchio & Kita (2013) who looked at the 

overall gesture rate in L2 narratives, but differ from others 

which found cross-linguistic transfer of gesture with regard 

to the overall gesture rate (So, 2010) or motion verb 

expressions (Brown & Gullberg, 2008; Özçalışkan, 2016).   

To conclude, we show that speech and gesture parallel each 

other at the discourse-pragmatic level: Forms that are 

pragmatically marked in speech are more likely to be marked 

with gestures as well, extending the literature on cross-

linguistic gestural differences in monolingual narratives.  

Furthermore, we provide the first evidence that the parallel 

relation between speech and gesture (cf. So et al., 2009) 

extends to the domain of crosslinguistic influence in contact 

situations: When the influence is not evident in speech, it is 

not observable in gesture as well, at least with regard to 

pronoun use in the narratives of heritage speakers. Heritage 

speakers with high proficiency in both languages maintain 

pragmatic constraints on the use of subject pronouns, both in 

speech and gesture. Our findings therefore align with the 

studies that did not find cross-linguistic influence on the 

speech of highly proficient heritage speakers (e.g. Cerrón-

Palomino, 2016; Keating, Jegerski & van Patten, 2016). This 

suggests that proficiency in the heritage language may be an 

important determinant of the cross-linguistic influence on the 

use of pronouns in narratives in both modalities of language. 

We suggest that studying bilingual gestures in addition to 

speech, especially in domains that show cross-linguistic 

influence in speech, will contribute to more complete theories 

of bilingualism. A better understanding of whether spoken 

and visual modalities undergo the same processes will 

provide valuable insight into the scope of cross-linguistic 

influence and language change beyond what we can learn 

from studies of speech alone. 
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Abstract 

Recent dual process models proposed that the strength of 
competing intuitions determines reasoning performance. A 
key challenge at this point is to search for boundary 
conditions; identify cases in which the strength of different 
intuitions will be weaker/stronger. Therefore, we ran two 
studies with the two-response paradigm in which people are 
asked to give two answers to a given reasoning problem. We 
adopted base-rate problems in which base rate and stereotypic 
information can cue conflicting intuitions. By manipulating 
the information presentation order, we aimed to manipulate 
their saliency; and by that, indirectly the activation strength of 
the intuitions. Contrary to our expectation, we observed that 
the order manipulation had opposite effects in the initial and 
final response stages. We explain these results by taking into 
account that the strength of intuitions is not constant but 
changes over time; they have a peak, a growth, and a decay 
rate.  

Keywords: reasoning; conflict detection; hybrid dual process 
model 

Introduction 

Decades of research in thinking and reasoning has 

revealed that people are usually subject to errors. Consider 
for example the following situation: 

 

“There is a party with 1000 people. Jo is a randomly 

chosen participant from the party. We know that Jo is 23 

years old and is finishing a degree in engineering. On 

Friday nights, Jo likes to go out cruising with friends while 

listening to loud music and drinking beer. We also know 

that 900 people attending the party are women. What is 
most likely: Is Jo a man or a woman?”  

   

This is a so-called base rate problem. Based on the 

“normative”1 principle that a randomly drawn individual 

                                                        
1 Note that we will be using the label “normative”, ‘‘correct”, or 

‘‘logical” response as a handy shortcut to refer to ‘‘the response 
that has traditionally been considered as correct or normative 

according to standard logic or probability theory”. The 
appropriateness of these traditional norms has sometimes been 
questioned in the reasoning field (e.g.,see Stanovich & West, 2000, 
for a review). Under this interpretation, the heuristic response 
should not be labeled as ‘‘incorrect” or ‘‘biased”. For the sake of 

will more likely come from the largest group, one should 

favor the conclusion that Jo is a woman. However, the 

majority of people tend to err on this problem by going with 

the presented stereotype (which cues that Jo is a man). Dual 

process theories provide an explanation for general thinking 

bias on problems such as the base rate task. They 

distinguish two types of processing, Type 1 and Type 2. 

One should note that there are many dual process theories, 
but in this study, we will focus on the most influential dual 

process theory, the default-interventionist theory. Type 1 

processes (also referred to as intuitive processes) are 

thought to be completely autonomous, while Type 2 

processes (also referred to as analytic processes) are more 

controlled. Type 1 processing generates responses cued by 

stereotypes or common beliefs; relying on this intuitive, 

initial response is what makes people biased in such 
situations. After Type 1 processing produced a response, in 

some cases, Type 2 processing gets engaged; this type of 

processing has the ability to override and correct the 

response generated by Type 1 processing. In general, it is 

assumed that Type 2 processing has the ability to generate 

responses based on logic or probabilities, while Type 1 

processing has not been considered to be able to handle 

information such as logical properties of the task, or 
probabilities (Kahneman, 2011; Stanovich & Evans, 2013). 

However, recently, conflict detection studies (De Neys, 

2012, 2014) indicated that the assumption that Type 1 

processing is not able to handle probabilistic or logical 

information might not hold. These studies showed that even 

biased reasoners were able to detect the conflict between 

intuitive “heuristic” cues (e.g., stereotypes) and “normative” 

logical and probabilistic principles (e.g., base rate 
probabilities). These studies usually contrast conflict and 

no-conflict reasoning problems. In conflict problems, 

heuristic processing and normative principles cue different 

responses as in the base rate problem above. In a no-conflict 

problem normative principles and heuristic processing cues 

the same response; for example, imagine that the above-

presented base rate problem would state that there are 900 

men and 100 women. In this case, both the stereotype and 

                                                                                              
simplicity, we stick to the traditional labeling. In the same vein, we 
use the term ‘‘logical” as a general header to refer both to standard 
logic and probability theory. 
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base rate probabilities would cue the same response (that Jo 

is a man). In conflict problems, studies showed that even 

incorrect reasoners (compared to correct reasoners in no-

conflict problems) showed elevated response times, 
decreased post-decision confidence, and higher activation in 

brain areas mediating conflict detection across a range of 

tasks (for review see De Neys, 2012). 

These results made some authors suggest that there occurs 

some kind of elementary processing of logical/probabilistic 

information even during Type 1 processing. De Neys (2012) 

argues that conflict detection happens as a result of two 

conflicting Type 1 outputs, generated by two kinds of 
intuitions. He argues that one of these intuitions is based on 

stereotypes or common beliefs (heuristic intuition) the other 

one is based on logico-mathematical principles (logical 

intuition). 

Recently, Bago and De Neys (2017a) went a step further 

and argued that people are not just able to detect the conflict 

intuitively but some of them are able to give the logically 

correct response intuitively. Our so-called hybrid dual 
process model argues that the two different intuitions differ 

in activation strength (or “salience”), and the actual intuitive 

response that the person provides will be the one which 

gained more strength. The relative difference between the 

strength of the heuristic and logical intuitions defines how 

pronounced the conflict is; the smaller the relative 

difference, the more pronounced the conflict will be; the 

larger the relative difference, the less pronounced  it will be.  
A key question at this point is to search for boundary 

conditions; identify cases in which the strength of different 

intuitions will be more or less pronounced. One way to do 

so is to manipulate the presentation order of base rate 

information and stereotypes. Let us explain why. In a 

previous study, Pennycook, Fugelsang, and Koehler (2015) 

argued that a “given piece of information is at its most 

salient just prior to judgement” (Pennycook et al., 2015, p. 
57). Pennycook et al. (2015) further argued that this would 

mean that base rate information is most salient if presented 

right before the decision was made (after the stereotypical 

description had been presented). The authors observed that 

presenting the base rate information at the end of the 

problem indeed boosted participants’ accuracy compared to 

the condition when it was presented first. To help us explain 

these results, one could operationalize saliency as the 
strength of a given intuitive response. Hence, whatever 

information was presented later, would be the more salient, 

therefore the intuition cued by this piece of information 

would be the stronger one. 

In this study, we wanted to test the robustness of these 

findings – will we get the same effects after purely intuitive 

Type 1 processing?  Thus, to test this question, one needs to 

use a research design which is able to separately measure 
intuitive Type 1 responses from analytic Type 2 responses. 

For this reason, we used the two response paradigm 

(Thompson, Prowse Turner, & Pennycook, 2011). In the 

two response paradigm, participants are presented with the 

same item twice. First, they are asked to give a very quick 

intuitive, initial response. Then, the same task is presented 

again and now they can take as much time as they want 

before providing their final response.  One also needs to be 

sure that the initial response is truly intuitive; we achieved 
this by applying a strict response deadline (3 seconds) and a 

secondary task that burdens reasoner’s (executive) cognitive 

capacity during the initial response. With these 

manipulations we can experimentally knock out Type 2 

processing during the initial responding (Bago & De Neys, 

2017a).  

Our hypothesis was that if presentation order indeed 

affects the strength of an intuition, we should observe the 
same effect after purely intuitive processing as has been 

observed previously after deliberative thinking. That is, if 

base rates are presented last, the strength of the base rate 

intuition should be higher, and therefore more correct 

responses should be observed both at the initial and final 

response stages. 

Study 1 

Method 

Participants 

In total, 149 participants took part in the experiment (86 

female, M = 39.3 year, SD =12.7 year). Participants were 

recruited online, via Crowdflower, and received $0.25 for 

their participation. Subjects were randomly assigned to one 
of the two conditions. Note that data in the S-BR condition 

were taken from the study of Bago & De Neys, (2017b).  A 

total of 44.5% of participants reported having high school as 

highest completed educational level, while 52.1% reported 

that they have a post-secondary educational degree (3.4% 

reported less than high school). 

Materials 

Reasoning task. Participants solved a total of eight base-
rate problems. All problems were taken from Pennycook, 

Cheyne, Barr, Koehler, and Fugelsang (2014). Participants 

always received a description of the composition of a 

sample (e.g., “This study contained I.T engineers and 

professional boxers”), base rate information (e.g., “There 

were 995 engineers and 5 professional boxers”) and a 

description that was designed to cue a stereotypical 

association (e.g. “This person is strong”). Participants’ task 
was to indicate to which group the person most likely 

belonged. 

The problem presentation format we used in this research 

was based on  Pennycook et al.'s (2014) rapid-response 

paradigm. In this paradigm, the base rates and descriptive 

information are presented serially and the amount of text 

that is presented on screen is minimized. Pennycook et al. 

introduced the paradigm to minimize the influence of 
reading times and get a purer and less noisy measure of 

reasoning time per se.  Participants received 3 pieces of 

information in a given trial. First, the names of the two 
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groups in the sample (e.g., “This study contains clowns and 

accountants”). This sentence stayed on the screen and was 

always presented first. Participants were presented with 

stereotypical descriptive information (e.g., Person ‘L’ is 
funny) as well.  The descriptive information specified a 

neutral name (‘Person L’) and a single word personality trait 

(e.g., “strong” or “funny”) that was designed to trigger the 

stereotypical association. Participants also received the base 

rate probabilities. In this experiment, we manipulated the 

presentation order of the base rate probabilities and 

stereotypes. So, for one group the base rates were presented 

first (BR-S), for the other group, the base rates were 
presented last, after the stereotype (S-BR). Presentation 

order was manipulated between-subject. The following 

illustrates the full problem format in the S-BR condition: 

 

This study contains clowns and accountants.  

Person 'L' is funny. 

There are 995 clowns and 5 accountants. 

Is Person 'L' more likely to be: 
o A clown 

o An accountant 

 

Half of the presented problems were conflict items and 

the other half were no-conflict items. In no-conflict items, 

the base rate probabilities and the stereotypic information 

cued the same response. In conflict items, the stereotypic 

information and the base rate probabilities cued different 
responses. Three kinds of base rates were used: 997/3, 

996/4, 995/5. 

Each problem started with the presentation of a fixation 

cross for 1000 ms. After the fixation cross disappeared, the 

sentence which specified the two groups appeared for 2000 

ms. Then the first information appeared, for another 2000 

ms, while the first sentence remained on the screen. Finally, 

the last information appeared together with the question and 
two response alternatives. Note that we presented the last 

information and question together (rather than presenting 

the last information for 2000 ms first) to minimize the 

possibility that some participants would start solving the 

problem during the presentation of the last part of the 

problem. Once all the parts were presented, participants 

were able to select their answer by clicking on it. The 

position of the correct answer alternative (i.e., first or 
second response option) was randomly determined for each 

item. The eight items were presented in random order.  

Confidence in the correctness of the response was 

recorded after the initial and the final response stages by 

asking participants to indicate their confidence level on a 

scale ranging from 0% to 100%.  

Cognitive load task. We used a concurrent load task - the 

dot memorization task - to burden participants’ executive 
cognitive resources while they were solving the reasoning 

tasks. The idea behind the load manipulation is 

straightforward. One of the defining features of Type 2 

processing is that it requires executive (working memory) 

resources (e.g., Evans & Stanovich,2013; Kahneman, 2011). 

Hence, if we burden participants’ cognitive resources with a 

secondary load task while they are solving the reasoning 

problems, we reduce the possibility that they can engage in 

Type 2 thinking  (De Neys, 2006). 
In every trial, after the fixation cross disappeared, 

participants were shown  a matrix in which 4 dots were 

presented in a complex interspersed pattern in a 3 x 3 grid 

for 2000 ms. Participants were instructed to memorize the 

pattern. Previous studies established that this demanding 

secondary task successfully burdens executive resources 

during reasoning (De Neys, 2006). After the matrix 

disappeared, the reasoning problem was presented as 
described above and participants had to give their first 

response. Then participants were shown four matrices with 

different dot patterns and they had to select the correct, to-

be-memorized matrix.  Participants were given feedback as 

to whether they recalled the correct matrix or not.  

Subsequently, the problem was presented again and 

participants selected their final response and response 

confidence. Hence, no load was imposed during the second, 
final response stage. All trials on which an incorrect matrix 

was selected (9.5 % of trials) were removed from the 

analysis. 

Response deadline. In order to minimize the possibility of 

Type 2 engagement during the initial response, we used a 

strict response deadline (3000 milliseconds), based on a 

reading pre-test (see Bago & De Neys, 2017a). 1000 ms 

before the deadline, the background turned yellow to alert 
the participants to the approaching deadline. If participants 

did not select an answer within 3000 ms they got feedback 

to remind them that they had not answered within the 

deadline and they were told to make sure to respond faster 

on subsequent trials. Obviously, there was no response 

deadline on the final response, but only on the initial 

response. All trials where participants did not manage to 

provide a response were excluded from the analysis (8.7% 
of trials).  

Procedure. The experiment was run online. People were 

clearly instructed that we were interested in their first, initial 

response to the problem. Instructions stressed that it was 

important to give the initial response as fast as possible and 

that participants could afterwards take additional time to 

reflect on their answer. After the instructions, participants 

were presented with practice problems to familiarize them 

with the procedure. At the end of the experiment, 

demographic questions were collected. 

Results 

Our main interest concerns the response accuracy 

analysis. Table 1 gives an overview of the findings. As one 

can see, we replicated the findings of Pennycook et al. 

(2015) at the final response stage for the conflict problems: 

Final accuracies on conflict problems are higher (41.6%) 

when the base rates are presented last vs. first (24.3%). 
However, contrary to our expectations, we do not observe 

the same effect at the initial response stage; there is even a 

trend towards fewer correct responses in the “base rates 
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last” S-BR condition (29.7%) vs BR-S (31.8%) condition. 

Indeed, the final conflict response accuracies in the S-BR 

condition were higher than the initial conflict response 

accuracies, whereas the reverse trend can be observed in the 
BR-S condition. In other words, the condition with the 

highest final accuracy (S-BR) was the one with the lowest 

initial accuracy, while the condition with the lowest final 

accuracy (BR-S) was the one with the highest initial 

accuracy. 

Finally, as expected, note that accuracies on the no-

conflict problems were always very high. Not surprisingly, 

in the absence of conflict, both the stereotype and base-rates 
can cue the correct response whatever order the information 

is presented in.  

 

Table 1. Percentage of correct initial and final responses for 

conflict and no-conflict items in both order conditions. 

 

 Response Order 

  S-BR BR-S 

Conflict Initial  29.7% 31.8% 

Final 41.6% 24.3% 

No-conflict Initial 93.4% 90.1% 

Final 93.7% 91.4% 
Note. S-BR = base rates last/ BR-S = base rates first. 

 

We used mixed effect logistic regression (logit) models to 

analyze the data and entered accuracy as a dependent 
variable. The order manipulation (S-BR/BR-S), response 

number (initial/final response), and their interaction were 

entered as predictors into the model. We also accounted for 

the random effect (random intercept) of subjects. We 

concentrated our analysis on the critical conflict problems. 

Only the interaction improved model fit significantly χ2 (5) 

= 20.18, p < 0.0001, b = 1.94, but not the main effect of 

order χ2 (3) = 0.19, p = 0.66 or response number χ2 (4) = 
0.38, p = 0.54.  These results confirm our visual inspection 

that order affects initial and final accuracies differently. 

 

Table 2. Frequency of each direction of change category 

(number of trials) for conflict items in both conditions. 

 

Direction of change Order 

 S-BR BR-S 

11 26.7% (54) 19.7% (47) 

00 55.4% (112) 63.6% (152) 

10 3% (6) 12.1% (29) 

01 14.9% (30) 4.6% (11) 
Note. S-BR = base rates last/ BR-S = base rates first. 

 

For completeness, one could also test the direction of 
change in every trial (Bago & De Neys, 2017a). 

Specifically, people can give correct or incorrect responses 

on both response stages; this means that one could give two 

correct (“11”), two incorrect (“00”), an initial correct but 

final incorrect (“10”), or an initial incorrect but final correct 

(“01”) response.  The results of the direction of change 

analysis are summarized in Table 2. In both order 

conditions, the most frequent categories were the “00” and 

“11” cases. In line with previous observations (Bago & De 

Neys, 2017a; Thompson et al., 2011) people rarely changed 

their initial response (i.e., taken together the “10” and “01” 

cases account for 16%-18% of the trials). Interestingly, the 

direction in which people changed also tended to be 
reversed; in the S-BR condition most people who did 

change, changed from an incorrect to correct response (i.e., 

“01” category, 14.9% vs “10” category, 3%). However, in 

the BR-S condition most people who changed their initial 

response, changed it to an incorrect response (i.e., “10” 

category dominates with 12.1% vs 4.6% for the “01” 

category). Hence, this fits with the overall trend towards the 

higher likelihood of an initial incorrect and final correct 

response when the base rates are presented last.  A Chi-

square test of independence revealed that the distribution of 

the direction of change categories in the two order 

conditions significantly differed from each other χ2 (3) = 
27.56, p < 0.0001.  

Discussion 

 

Contrary to our expectations, we did not observe the 

expected accuracy effect at the initial response stage; we 

only observed it in the final response stage. However, we 

wanted to be sure that the findings were robust before 

drawing any conclusions. Note that Pennycook et al. (2015) 
already observed that their order findings were robust 

against manipulations of the extremity of the base rates. 

That is, they found the same order effect on (final) 

accuracies when they used so-called “moderate” base rates 

(e.g., base rate probabilities of 700 men and 300 women) 

instead of the “extreme” base rates (e.g., e.g. base rate 

probabilities of 995 men and 5 women) that were adopted in 

our (and their) Study 1. In Study 2 we therefore also 
adopted the moderate base-rates and examined whether the 

unexpected reversal of the order effect on initial, intuitive 

responses would still be observed.   

Study 2 

Method 

Participants 

In total, 162 participants took part in the experiment (98 

female, M = 40.2 year, SD =14.6 year). Participants were 

recruited online, via Crowdflower, and received $0.25 for 

their participation. Subjects were randomly assigned to one 

of the two conditions. Note that data in the S-BR condition 

were taken from the study of Bago and De Neys (2017b).  A 

total of 46.3% of participants reported having high school as 

highest completed educational level, while 52.5% reported 
that they have a post-secondary educational degree (1.3% 

reported less than high school).  
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Materials 

Reasoning task. The identical experimental design was 

used as in Study 1. The only difference is that we used 

moderate base rates instead of extreme ones, namely 

700/300, 710/290 and 720/280. In 16.7% of the trials 

participants did not provide the correct response for the dot 

matrix task, and in 10.5% of the trials, participants did not 

manage to produce an initial response within the deadline. 

These trials were excluded from further analysis. Overall, 

24.6% of the trials were excluded and 977 were analyzed. 
 

Results and discussion 

Table 3 summarizes the accuracy results. As the table 

indicates, no-conflict response accuracies are again very 

high overall and we also replicated the conflict problem 

pattern we observed in Study 1: As Pennycook et al. (2015) 
found, presenting the base rates last led to increased 

accuracy on the final response. However, as in Study 1, the 

opposite trend was observed in the initial response. We also 

observe again that there were more initial than final 

incorrect response in the BR-S condition, whereas the 

opposite trend is observed in the S-BR condition. Statistical 

analysis on the conflict problems confirmed our visual 

inspection; neither presentation order χ2 (3) = 0.04, p = 0.84, 
nor response number improved model fit significantly, χ2 (4) 

= 0.05, p = 0.83, only their interaction did χ2 (5) = 9.73, p = 

0.0018, b = 1.4. 

 

Table 3. Percentage of correct initial and final responses for 

conflict and no-conflict items in both order conditions. 

 

 Response Order 

  S-BR BR-S 

Conflict Initial  16.4% 18.3% 

Final 23% 13.2% 
No-conflict Initial 90.9% 90.9% 

Final 90% 92.5% 
Note. S-BR = base rates last/ BR-S = base rates first 

 

Table 4 summarizes the results of the direction of change 

results for conflict items. Here too we observe the same 

trend as in Study 1.  Among the few people who changed 

their response, the direction in which they changed are 

reversed as a function of presentation order; in the S-BR 

condition most people who did change, changed from an 

incorrect to correct response. But in the BR-S condition, 
more people changed to an incorrect response.  A Chi-

square test of independence revealed that the distribution of 

the direction of change categories in the two order 

conditions significantly differed from each other χ2 (3) = 

18.22, p = 0.0004. 

 

 

 
 

Table 4. Frequency of each direction of change category 

(number of trials) for conflict items in both order conditions. 

 

Direction of change Order 

 S-BR BR-S 

11 14.2% (32) 8.2% (21) 

00 74.8% (169) 76.7% (197) 

10 2.2% (5) 10.1% (26) 
01 8.8% (20) 5.5% (13) 

Note. S-BR = base rates last/ BR-S = base rates first 

 

General Discussion 

In this paper, we tested whether manipulating the 

presentation order of the base rates and stereotypes had the 

same effect after purely intuitive processing (i.e., initial 

response) as had been observed previously after deliberative 

thinking (i.e., final response). In two studies, we replicated 
the findings of Pennycook et al. (2015) at the final response 

stage: Final accuracies on conflict problems were higher 

when the base rates were presented last. However, contrary 

to our expectations, in both studies this effect consistently 

reversed at the initial response stage. Why is this the case? 

We believe that these results draw attention to a simple but 

somewhat neglected issue in reasoning models, namely that 

intuitive responses are not generated instantly at full 
strength. 

The hybrid dual process model that we presented in the 

introduction (e.g., Bago & De Neys, 2017a) argues that 

reasoning performance in the initial response stage is 

determined by the strength of different intuitions, for 

example. The implicit assumption here is that the strength of 

these intuitions is “instant” and “constant”. That is, the idea 

is that the intuition is readily generated with full force and 
maintains this strength level.  

However, upon some further reflection, this assumption 

might be quite naïve. It is reasonable to assume that even a 

quickly generated intuition needs some time to reach its 

peak. Keeping this feature in mind might suffice to explain 

the current findings. Have a look at Figure 1. In this 

illustration, the strength of two intuitions (I1, I2) change over 

time – they have a peak, a growth and a decay rate. The y-
axis represents the strength, the x-axis represents time, 

while T1 and T2 represent the time of initial and final 

response, respectively.  

I1 and I2 will start gaining strength when the relevant cue 

is presented (in the S-BR condition I1 is the heuristic 

intuition cued by the presentation of the stereotype, and I2 is 

the logical intuition cued by the base rate information). So, 

in the S-BR condition, the stereotype is presented first. 
When the stereotype is presented, the intuition (I1) cued by 

it starts gaining strength. Subsequently, the presentation of 

the base rate information cues the logical intuition (I2) and 

its strength will also start rising. Both intuitions grow until 

they reach their peak. At T1, I1 has already reached its peak, 

and is stronger than I2 (which has not reached its peak yet); 

as a result, I1 will be the initial response. But after T1, the 
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strength of I1 starts decaying, while the strength of I2 is still 

increasing, and it reaches its peak at T2. At T2, I2 will be the 

stronger intuition, so people will more likely pick I2 as their 

final response. Hence, the mere growth and decay of an 
intuition – or it’s “rise and fall” as we labelled it in the title - 

implies that (ceteris paribus) the most recently cued 

intuition will be weaker earlier on in the reasoning process 

(e.g., initial response stage) and dominate later in the 

reasoning process (e.g., final response).   

Clearly, we have presented and illustrated the most 

generic and general case in which two intuitions have the 

same peak level, growth, and decay rate. Obviously, these 
features might vary. One intuition might have a higher peak 

than the other, or a faster/slower growth/decay than the 

other. In addition, we believe that deliberation might also 

modulate the strength level. For example, one can imagine 

that one functional consequence of deliberation might be to 

boost or sustain the peak activation level of one intuition 

and decrease activation of the other. These more specific 

features have to be tested and validated in future studies. 
For example, one could try to test the role of deliberation by 

examining the impact of cognitive load on the presentation 

order findings in the second response stage. However, in all 

these more specific cases the general principle holds that we 

have to keep in mind that intuitions are not necessarily 

generated instantly but “rise and fall”; we need to consider 

their growth and decay. We believe this should motivate 

further research in the area by trying to determine what the 
growth and decay functions look like exactly. 

 

 

 
 
Figure 1. Illustration of how the strength of intuitions might 
change over time. The y-axis represents the activation strength 
while the x-axis represents time. I1 and I2 represent the two cued 
intuitions. Note that in the BR-S condition I1 is the logical intuition 

cued by the base rate probabilities, while I2 is the heuristic intuition 
cued by the stereotypes. Consequently, in the S-BR condition, I1 is 
the heuristic and I2 is the logical intuition. T1 and T2 represent the 
time of initial and final response, respectively. 
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Abstract 

The focus of the present work concerns the nature of 
deontological decisions. We test the hypothesis that it is 
possible to specify deontological moral choices based on an 
unemotional rule, norm or principle and that such moral 
choices can be distinguished from emotion-driven ones. 
Using a novel paradigm for moral choice that we call The 
Refugees’ Dilemma, we provide evidence for such a rule-
based route to moral choice. We show that participants with 
high scores in a Cognitive Reflection Test (CRT) were more 
likely to adopt utilitarian or rule-based responses, as opposed 
to emotional ones. We also found that rule-based respondents 
reported the highest average psychological distance, more so 
that even utilitarian respondents. These findings show how 
emotional and rule-based influences can be separated with the 
appropriate scenario and challenges the approach of assuming 
both influences can be combined into a single deontological 
route in dual-process models.  

Keywords: Dual-Process Models; Deontological Ethics; 
Moral Judgment; Moral Psychology. 

 
Introduction 

Moral decision-making is at the heart of modern 
democracies. Therefore, understanding the principles 
underpinning moral judgment is fundamentally important. 
Consider the recent refugee crisis. The number of forcibly 
displaced people worldwide reached 59.5 million at the end 
of 2014, the highest level since World War II. Of these 
59.5 million, 19.5 million were refugees, and 1.8 million 
were asylum-seekers. How do individuals in destination 
countries form opinions regarding refugees and asylum 
seekers? At the very least, understanding the influences 
shaping moral choice should provide individuals with better 
insight (and possibly control) into their ultimate 
determinations.  

The established theory is that moral decisions are driven 
by two complementary influences (Singer, 1991; Chaiken & 
Trope, 1999). Such so-called dual-process theories contrast 
utilitarian responses, resulting from controlled cognitive 
processes, with non-utilitarian (considered deontological) 
responses, assumed to be driven by automatic/intuitive 
emotional processes (Greene et al., 2001; Greene & Haidt, 
2002; Greene et al., 2004; Koenigs et al., 2007). 
Utilitarian/consequentialist judgments are aimed at 
maximizing benefits and minimizing costs across affected 
individuals (Mill, 1861/1998), while the deontological 
perspective (Kant, 1785/1959) emphasizes rights and duties.   

We focus on deontological decisions. It seems there is a 
fundamental inconsistency in current understanding of such 

decisions. On the one hand, they are meant to be based on 
some rule, principle or norm. On the other hand, the 
deontological route is meant to be automatic and rely on the 
emotional content of the situation. However, evaluating a 
decision in terms of consistency to a rule (such as a moral 
norm) should be an analytic process (Posner & Snyder, 
1975; Sloman, 1996; Kahneman, 2003). There is a 
corresponding debate, with some researchers arguing that 
deontological decisions are a confabulation of moral 
emotions (Greene, 2007; Haidt, 2001) and others rejecting 
this assumption (Kahane & Shackel, 2010; Kahane, 2012; 
Mihailov, 2016). We propose progress this debate, using a 
novel lab-based moral dilemma, that we call The Refugees’ 
Dilemma. We explore whether it is possible to discriminate 
between moral decisions based on the emotional content of 
a situation (emotional decisions) and decisions driven by a 
prerogative of consistency with a rule (rule-based 
decisions).  

Moral decision-making has been dominated by the 
Trolley dilemma (Thomson, 1985). However, the footbridge 
version of this dilemma is ill-suited for the present purposes, 
because the deontological option (not to push the fat man) is 
confounded with the emotional choice. The novel Refugees’ 
Dilemma addresses this problem. The Refugees’ Dilemma 
is an adaptation of the Trolley dilemma, but involving three 
choices: Utilitarian (driven by consequences/outcomes) vs. 
Emotional (driven by emotions) vs. Rule-based (driven by 
an unemotional rule).  

We employ three tools which may reveal differences 
between the three postulated routes to moral decision-
making. First, we measured psychological distance. We 
assume that participants making rule-based or utilitarian 
decisions will evaluate a situation with greater 
psychological distance and conversely regarding emotional 
decisions. Psychological distance weakens the intensity of 
people’s affective reactions, such as feelings of empathy 
(Williams et al., 2014). Furthermore, increasing 
psychological distance leads individuals to construe 
situations in more abstract terms, which sometimes aligns 
with more utilitarian decision-making (Trope & Liberman, 
2010) and, we hypothesize, with more rule-driven decisions 
too. 

Second, we tested participants on the Cognitive 
Reflection Test (CRT) (Frederic, 2005), which distinguishes 
two modes of cognitive processing, one that is more 
reflective and slow versus one that is more immediate with 
little conscious deliberation. Differences in the CRT should 
align with a propensity to adopt utilitarian vs. rule-based vs. 
emotional decision making, whereby we assume that 
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utilitarian and rule-based decisions require greater reflection 
(since a person needs evaluate how the well-being of one 
group of individuals is balanced with that of another or 
consider the applicability of a rule and the consequences of 
violating it) than emotional ones.  

Third, we implemented a time-manipulation, whereby 
participants would either be told they had unlimited time or 
that they should respond as quickly as possible (but even in 
the time pressure condition participants had ample time to 
respond). Finally, we included measures with a mindset for 
practical application. Is responding in The Refugees’ 
Dilemma sensitive to religious or political characteristics?  
 

Method 

Participants  
A total of 1508 participants, all of whom were US residents, 
were recruited on-line and received $0.80 for doing the task 
(706 women, 801 men; M age = 34.6 years, SD = 11.17). As 
this is the first study with The Refugees’ Dilemma, no prior 
power analyses were conducted and instead we decided a 
priori to limit recruitment to 1500 participants. The City, 
University of London Psychology Department Research 
Ethics Committee granted approval for this project 
(reference PSYETH (S/L) 15/16 238).  
 
Materials and Procedure 

The study was designed in Qualtrics, run on Amazon 
Mechanical Turk and lasted 10 minutes approximately. We 
used frequency of Type of Judgment (Utilitarian vs. 
Emotional vs. Rule-based) as the dependent measure. Time 
(No Time vs. Unlimited Time vs. Time Pressure) was 
manipulated between participants and we used the scores 
from the CRT (Frederic, 2005) to measure thoughtful (high 
CRT scores) vs. unreflective (low CRT scores) cognitive 
processes.  

After a few preliminary screens (consent form; some basic 
demographic information), all participants were presented 
with The Refugees’ Dilemma (full text in Online 
Supplementary Material). They were instructed to read it 
carefully and had to spend at least 60 seconds reading it 
before the experiment advanced. The Refugees’ Dilemma 
asks a participant to imagine himself/herself as a security 
guard in a border control of a hypothetical country, which 
neighbors three other countries. Participants are told they 
have to make one last decision before borders close (until 
further notice) and that there are instructions that entry into 
their country will be allowed from just one country. 

Then, participants were presented with a reinforcement-
learning task to ensure that they had been paying attention 
during the previous screen. Three basic multiple-choice 
questions regarding The Refugees’ Dilemma were presented 
(e.g., “As a security guard, what is the name of your 
country?). Feedback was provided and participants had to 
keep responding until no mistakes were made.  

Subsequently, the three moral scenarios were presented 
(Utilitarian: where ten refugees from another country need 
help; Emotional: where a refugee orphan child from another 
country needs medical attention immediately; and Rule-
based: where a traveller from your own country wants to go 
back home and the law from your country specifies that 
travellers who are citizens from your own country have to 
take priority when returning). The text for each scenario was 
supplemented with an illustration (Figure 1). The moral 
choice was then presented to participants: “Who do you 
allow to your country? Remember, you can only allow 
traveller(s) from one neighbouring country”. Participants 
had to choose between Choice 1 (Utilitarian; “The 10 
refugees from Beta”), Choice 2 (Emotional; “The refugee 
orphan child from Gamma”), or Choice 3 (Rule-based; “The 
traveller who is an Alpha citizen coming from Delta”).  

Regarding the time manipulation, one third of participants 
was not provided with any indication of time for making 
their judgment (No Time). Participants in the Unlimited 
Time condition were instructed as follows: “You will 
have unlimited time to answer the question in the next page. 
Think carefully about your judgment before responding”. 
Participants in the Time Pressure condition were presented 
with the following instructions: “The question in the next 
page should be answered as fast as possible. Use your first 
impression/ gut feeling in order to respond”; these 
participants had to make their moral choice while a timer (at 
the top of their screen) kept track of elapsed time.  

Participants were next asked to complete a 4-items 
questionnaire (see Online Supplementary Material), which 
was intended as a measure of the basis of participants’ 
judgments (e.g., “How much would you say that doing the 
greater good for the greatest number of people/ emotion/ a 
principle, norm or rule was the basis for your decision?”). 
The order of these three questions was presented randomly 
and participants had to respond moving a slider that went 
from 0 (not at all) to 7 (for the above question, completely 
based in doing the greater good for the greatest number of 
people/ emotion/ a principle, norm or rule). The fourth item 
of the questionnaire, following the same format, was a 
measure of psychological distance (Trope & Liberman, 
2010) (e.g., “How distant do you feel yourself from the 
scenario when making your decision?”).  

Participants were next presented with three “catch 
questions”, to control for attention and basic comprehension 
during the task (e.g., “How many refugees there were in the 
group from Beta?”).  

Then, participants had to complete a CRT (Frederic, 
2005) as a measure of two modes of cognitive processing, 
quick with little conscious deliberation versus slower and 
more reflective. The test consisted of three multiple-choice 
questions (e.g., “If it takes 5 machines 5 minutes to make 5 
widgets, how long would it take 100 machines to make 100 
widgets?”).  

Finally, participants were asked to complete demographic 
questions regarding their levels of Religiosity (using a 7-
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point Likert scale) and Political Views (Liberal, Moderate, 
Conservative or Something else). 

 

 
 

Figure 1: Illustrations and choices used in The Refugees’ 
Dilemma: (1) Utilitarian (judgment driven by consequences/ 
outcomes) vs. (2) Emotional (judgment driven by emotions) 
vs. (3) Rule-based (judgment driven by a rule, principle or 

norm).  
 

Results  

Validation of the Experimental Paradigm 

We excluded those participants who did not answer the 
catch questions correctly (92/1508). No other sample 
trimming was conducted.  

We first discuss results which aim to validate the 
assumptions in the design of The Refugees’ Dilemma. We 
tested if the three different choices presented in the dilemma 
(Choice 1, Utilitarian, “The 10 refugees from Beta”; Choice 
2, Emotional, “The refugee orphan child from Gamma”; and 
Choice 3, Rule-based, “The traveller who is an Alpha 
citizen coming from Delta”) were indeed aligned with doing 
the greater good for the greatest number of people, with 
emotion or with a rule, as assumed (see Figure 2). As 
expected, participants making the utilitarian choice reported 
that their decision was mainly based on doing the greater 
good for the greatest number of people (M = 6, SD = 1.3). 
Participants making the emotional choice reported that their 
decision was mainly based on emotions (M = 5.7, SD = 
1.4). Finally, participants making the rule-based choice 
reported that their decision was mainly based indeed on a 
rule, principle or norm (M = 6, SD = 1.5). One-way 
ANOVAs for each group of participants were all significant: 
F(2,308) = 56.93, p < .001, w2 = .27 for the utilitarian 
respondents; F(2,1226) = 337.787, p < .001, w2 = .35 for 
the emotional respondents; F(2,2708) = 2511.996, p < .001, 
w2 = .65 for the rule-based respondents. A Tukey post-hoc 
test for each group revealed significant differences in the 
expected directions (p < .001). These results are all 

consistent with expectation regarding the assumptions 
motivating the three options in The Refugees’ Dilemma.  
 

 
 

Figure 2: Mean scores for the basis of judgments, for 
participants making the utilitarian, emotional, or rule-based 

choice. Error bars represent standard errors.  
 

As a manipulation check regarding time, we examined the 
amount of time that participants took to make their 
judgments. Participants spent more time responding in the 
Unlimited Time condition (18.74s) than in the No Time 
condition (14.47s) and than in the Time Pressure condition 
(8.11s). A one-way between subjects ANOVA for these 
means was significant (F(2, 1414) = 25.017, p < .001, w2 = 
.03). A Tukey post-hoc test revealed that all pairwise 
comparisons between groups were significant (p = .013).  
 

High vs. Low Cognitive Resources, Psychological 

Distance and Time 

We first considered whether results from the CRT influence 
moral choice (entire sample; Figure 3). We selected 
participants who reported High vs. Low CRT scores (i.e. 3/3 
points and 0/3 points in the CRT, respectively). As 
expected, high CRT participants were more likely to opt for 
the utilitarian response (59.38%) than low CRT ones 
(40.63%). Likewise, emotional answers were more likely 
for low CRT participants (55.7%) than otherwise (44.31%). 
Importantly, the rule-based response was also more likely 
for high CRT participants (60.73% vs. 39.27%), indicating 
the rule-based moral choices require a similar route as 
utilitarian ones. A 3x2 chi-square test on response counts, 
with the variables Type of Response (Utilitarian vs. 
Emotional vs. Rule-based) and CRT score (High vs. Low) 
was significant, χ2 (2, N=897) = 19.66, p < .001.  
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Figure 3: Percentage of Utilitarian, Emotional and Rule-
based responses for participants who followed a slow and 
more reflective cognitive process (High CRT) or a quicker 

with little conscious deliberation one (Low CRT). Error bars 
represent standard errors.  

 
We next examined whether different moral changes 

reflected the expected differences regarding Psychological 
Distance (see Figure 4). Participants opting for the rule-
based option reported the highest distance (M = 3.77, SD = 
2.1), followed by participants making the utilitarian 
selection (M = 3.18, SD = 2.1), and finally the ones 
selecting the emotional answer (M = 2.71, SD = 1.93). It is 
interesting that participants making the rule-based choice 
reported the highest distance, perhaps because the 
application of a rule to the dilemma requires a degree of 
detachment from the specifics of the situation more so than 
even for utilitarian respondents. A one-way between 
subjects ANOVA for these means was significant (F(2, 
1414) = 38.233, p < .001, w2 = .05). A Tukey post-hoc test 
revealed that psychological distance was significantly 
different between participants making the utilitarian and the 
rule-based selection (p = .018) and between participants 
making the emotional and rule-based selection (p < .001). 
There were no statistically significant differences between 
the utilitarian and emotional groups (p = .089). 

 
 

Figure 4: Mean scores for psychological distance between 
the different moral choices presented in The Refugees’ 

Dilemma. Error bars represent standard errors.  
 

Finally, we considered differences in Type of Response 
(Utilitarian vs. Emotional vs. Rule-based) depending on 
both the Time manipulation (No Time vs. Unlimited Time 
vs. Time Pressure) and the CRT score (High vs. Low). The 
three-way loglinear analysis produced a final model that 
retained the Type of Response x CRT score interaction, but 
not the three-way interaction. The likelihood ratio of this 
model was χ2 (12) = 11.647, p = .475. The Type of 
Response x CRT score interaction was significant, χ2 (2) = 
20.225, p < .001. This interaction indicates that the relative 
frequencies of utilitarian, emotional and rule-based 
responses were different across high, low CRT scores. Of 
interest, the frequency of rule-based responses increased 
more dramatically between low, high CRT scores (225 to 
351), than for utilitarian responses (25 to 38). As expected, 
the frequency of emotional responses followed the opposite 
direction (142-113 ratio of low to high CRT scores). 
Therefore, the analysis reveals a fundamental difference 
between the cognitive resources used to reach a specific 
type of judgment (as also concluded with the other analyses 
above), but these effects were not influenced by the time 
manipulation.  
  
Political Views and Religiosity 

We first explored the differences in moral choice, depending 
on participants’ stated Political Views (Figure 5a). Liberals 
were more likely to opt for the utilitarian response (10.11%) 
compared to Moderates (5.3%) and Conservatives (3.9%). 
Liberals were also more likely to opt for the emotional 
answer (33.23%) compared to Moderates (28.53%) and 
Conservatives (21.19%). Interestingly, Conservatives were 
more likely to opt for the rule-driven judgment (74.93%) 
compared to Liberals (56.67%) and Moderates (66.13%). A 
corresponding 3x3 chi-square test of independence was 
highly significant, χ2 (4, N=1363) = 37.62, p < .001. 
Individual 3x2 chi-square tests for each category of 
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respondents (utilitarian, emotional, rule-based) were also 
significant (χ2 (2, N=1363) = 15.61, p < .001; χ2 (2, 
N=1363) = 15.64, p < .001; χ2 (2, N=1363) = 33.23, p < 
.001; respectively).  

Regarding religiosity, we selected only participants who 
reported Low vs. High levels of religiosity (i.e. 1/7 points 
and 3/7 or more points in the 7 point Likert scale, 
respectively; Figure 5b). Low-Religious participants were 
more likely to opt for the utilitarian response (8.1%) 
compared to High-Religious ones (6.32%). High-Religious 
participants were more likely to opt for the emotional 
answer (31.04%) compared to Low-Religious ones (25.6%). 
Finally, Low-Religious participants were more likely to opt 
for the rule-driven judgment (66.35%) compared to High-
Religious ones (62.64%). A 3x2 chi-square test of 
independence on Type of Judgment (Utilitarian vs. 
Emotional vs. Rule-based) against participants’ levels of 
Religiosity (Low vs. High) was significant χ2 (2, N=994) = 
15.36, p < .001.  

 

 
 

Figure 5: Percentage of Utilitarian, Emotional and Rule-
based responses for (a) participants’ Political Views (Liberal 
vs. Moderate vs. Conservative) and (b) participants’ levels 

of Religiosity (Low vs. High). Error bars represent standard 
errors.  

Discussion 
Established theory assumes that deontological moral choices 
involve a fast, gut-feeling process, driven by the emotional 
content of the situation (Greene, 2009). There is no doubt 
that this is sometimes the case, e.g., in cases of moral norms 
of high emotional content (Valdesolo & DeSteno, 2006). 
However, it seems counterintuitive that all deontological 
moral choices are of this kind. We supported the hypothesis 
that there are deontological moral choices based on an 
unemotional rule, which can be distinguished from emotion-
driven ones. We provided evidence for a route to moral 
choice, distinct from the emotional and utilitarian routes, 
and rather based on a prerogative to adhere by a given rule.  

The characteristics of the rule-based influence in moral 
choice were explored with three manipulations. First, 
according to Construal Level Theory (CLT), greater 
psychological distance would go hand-in-hand with lower 
emotional involvement. We found that rule-based 
respondents reported the highest average distance, more so 
that even utilitarian respondents. Such a result is consistent 
with the nature of the rule provided in The Refugees’ 
Dilemma, since application of the rule forces ignoring most 
characteristics of the different options. Second, high CRT 
participants were more likely to adopt utilitarian or rule-
based responses, as opposed to emotional ones. This shows 
how emotional and rule-based influences can be separated 
and challenges the approach of assuming both can be 
combined into a single deontological route. Note, other 
work supports a view of utilitarian judgments as reflecting a 
greater “need for cognition” (Bartels, 2008), “cognitive 
reflection” (Hardman, 2008), and working memory capacity 
(Moore et al., 2008). Third, a time manipulation produced a 
complex interaction with CRT level. Future work should 
examine whether perhaps just tracking time might result in 
reduced cognitive resources for moral decisions, regardless 
of condition.  

We developed a new paradigm for moral choice, The 
Refugees’ Dilemma, which is based on a situation relevant 
for millions of citizens, especially in Europe and North 
America. We hope that future work will further explore 
moral decision situations informed by relevant current 
affairs or near-future social dilemmas (e.g., Bonnefon et al., 
2016). With a mind to such applications, we reported some 
interesting correspondences between moral choice in The 
Refugees’ Dilemma and participants’ political affiliations 
and religious convictions.  
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Abstract

Natural pedagogy emerges early in development (Knudsen &
Liszkowski, 2012), but good teaching requires presenting ev-
idence specific to learners’ knowledge (Shafto, Goodman, &
Griffiths, 2014). How might the development of Theory of
Mind (ToM) relate to the ability to select pedagogical evi-
dence? We present a training study in which we investigated
the link between preschool-aged children’s false-belief under-
standing and their ability to select evidence for teaching. Our
results suggest that children with more advanced ToM abili-
ties were better evidence selectors, even when controlling for
effects of age and numerical conservation abilities. We also
found that children who improved more in false-belief under-
standing from pre- to post-test performed better on the peda-
gogical tasks over the course of the training. Finally, we report
tentative evidence for a link between the pedagogical train-
ing and improvements in ToM. Our findings suggest important
connections between ToM and evidential reasoning in natural
pedagogy in early childhood.

Keywords: pedagogy, theory of mind, evidence selection

Introduction
The ability to teach and be taught by others is an indispens-
able human capability. Social transmission of information
is one of the key ways in which both children and adults
learn about the world, and some have argued that the natu-
ral tendency to teach and to be ready to learn from others
may be what sets human intelligence apart from other ani-
mals (e.g., Moll & Tomasello, 2007). Indeed, teaching in
children emerges at an early age: Three-year-olds sponta-
neously engage in teaching behavior with their peers (Ashley
& Tomasello, 1998), and infants as young as 12 months se-
lectively point to convey information to naı̈ve (as opposed to
knowledgeable) adults (Knudsen & Liszkowski, 2012). In-
vestigating children’s developing ability to teach others may
shed insight into the cognitive mechanisms that support nat-
ural pedagogy. We will suggest that the factors that support
this skill – reasoning about the knowledge states of others and
reasoning about evidence – are intertwined.

Teaching in Early Childhood and Theory of Mind
Children’s teaching abilities improve considerably between
the ages of three and five years. Davis-Unger and Carlson
(2008) had three- to five-year-old children teach a confeder-
ate how to play a novel board game, and found that older
children 1) taught for longer periods of time, 2) explained

more of the rules, and 3) used a more diverse range of teach-
ing strategies. Similarly, Strauss, Ziv, and Stein (2002) found
that five-year-olds taught others by providing verbal expla-
nations, whereas three-year-olds used more demonstration-
based teaching strategies. There is also evidence that older
children possess more declarative knowledge about pedagogy
in general (Ziv & Frye, 2004).

What are the fundamental cognitive underpinnings that
support the development of children’s pedagogical skills?
Theory of Mind (the ability to represent others’ mental states
and to understand that others may experience mental states
that are different from one’s own) has been proposed as be-
ing critical for children’s teaching. Intuitively, a relationship
between Theory of Mind (ToM) and children’s developing
teaching skills makes sense: ToM involves monitoring the
mental states of others, and effective teaching requires under-
standing what your student does and does not know. Addi-
tionally, ToM undergoes drastic qualitative change between
the ages of three and five, the same period during which chil-
dren’s pedagogical skills are developing. Indeed, there is a
wealth of empirical work that provides evidence for a link be-
tween ToM development and pedagogical skill (Davis-Unger
& Carlson, 2008; Strauss et al., 2002). ToM may thus be an
important cognitive mechanism that drives the development
of children’s ability to teach others.

Evidence Selection in Teaching

The past work on children’s teaching and ToM ability has op-
erationalized teaching ability in various ways, including by
the length of the teaching interaction, the types of strategies
used, and whether children recognize that some individuals
need to be taught while others do not. An additional and
perhaps more detailed way of conceptualizing pedagogical
skill comes from the distinct but related body of literature on
concept learning and pedagogical sampling. Research in this
field emphasizes the importance of selecting and presenting
a learner with specific evidence that will allow them to infer
a particular conclusion (e.g., Gweon, Tenenbaum, & Schulz,
2010; Shafto et al., 2014). According to this view, being a
“good” teacher requires more than just recognizing whether
or not someone needs to be taught, or even that some learn-
ers need to be taught more than others; rather, good teaching
depends on having a deeper understanding of the precise ev-
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idence that certain learners may or may not need in order to
infer a particular conclusion.

Prior work has shown that children are sensitive to learn-
ing goals in pedagogical scenarios. Six-year-olds will select
diverse samples to teach a novel concept to a peer, but not
to learn a novel concept for themselves (Rhodes, Gelman, &
Brickman, 2010). Preschoolers are even capable of selec-
tively presenting evidence to intentionally deceive learners.
Rhodes, Bonawitz, Shafto, Chen, and Caglar (2015) showed
three- to six-year-olds a novel toy that activated when any
block was placed on it. They then asked children to pick two
blocks to either 1) teach a naı̈ve puppet how the toy really
worked, or 2) trick her into thinking that only red blocks made
it go. Children reliably selected blocks that would best com-
municate the pedagogical goal, regardless of whether the goal
was to teach or to deceive (Rhodes et al., 2015).

There is also an abundance of work demonstrating that
when learning from others, children use the evidence pre-
sented to them to make inferences about the knowledgeabil-
ity of their teachers (see Kushnir and Koenig (in press) for
a recent example). Pasquini, Corriveau, Koenig, and Har-
ris (2007) showed children videos of adults naming famil-
iar objects with varying rates of accuracy; children were then
asked from whom they would prefer to learn the names of
novel objects. Three- and four-year-olds preferred to learn
from more accurate teachers, suggesting that children use pre-
sented evidence in pedagogical scenarios to update their be-
liefs about whether teachers are knowledgeable or not. De-
spite this robust preference for accurate teachers, there has
also been work showing that children are able to exonerate
previously inaccurate teachers whose past inaccuracies oc-
curred for legitimate reasons (Nurmsoo & Robinson, 2009).
Children therefore additionally monitor teachers’ epistemic
states in conjunction with the evidence they’ve presented in
order to make inferences about their competence.

Together, the works cited in this section suggest that chil-
dren are developing the ability to reason about evidence in the
service of teaching in the early childhood years. However, we
are unaware of any work that has investigated the precise rela-
tionship between ToM development and children’s ability to
effectively select pedagogical evidence to teach others. ToM
may play an especially important role in supporting this as-
pect of teaching, because effective evidence selection requires
the on-line monitoring of a learner’s epistemic state relative to
a particular learning goal. The current paper presents a novel
experiment that explores the relationship between children’s
pedagogical evidence selection and ToM development.

Teaching Training and Theory of Mind Study
We investigated the relationship between children’s Theory of
Mind ability (as measured by a false-belief battery; Wimmer
& Perner, 1983; Gopnik & Astington, 1988) and their ability
to select evidence to teach another. Assuming this link, we
predicted that children with more proficient Theories of Mind
would be better at pedagogical evidence selection, and also

that training pedagogical skill might lead to improvements
in ToM reasoning abilities. To explore this, we assessed
children’s false-belief understanding before and after training
them on two pedagogical tasks. We also assessed children’s
understanding of numerical conservation; we wanted to be
sure that any improvements we saw due to the pedagogical
training was specific to ToM abilities and not to other unre-
lated domains of cognitive development.

We chose to use false-belief tasks to measure ToM; be-
tween the ages of three and five, children reliably transition
from predicting others’ actions based on the veridical state
of the world to understanding that others’ actions are in fact
guided by their (sometimes false) beliefs (Wellman, Cross,
& Watson, 2001). Some have argued that implicit false-
belief understanding emerges at much earlier ages (between
10 and 15 months), and that apparent developments in ToM
between the ages of 3 and 5 years are actually reflections of
task demands (Baillargeon, Scott, & He, 2010). Neverthe-
less, there is ample evidence that the changes that occur in
children’s ToM understanding during the preschool years are
critical: This is the time during which children gain the abil-
ity to provide explicit causal explanations for others’ actions
based on epistemic states (e.g., Bartsch & Wellman, 1989);
further, differences in preschoolers’ false-belief understand-
ing are predictive of numerous other capabilities, including
children’s tendency to talk about people in everyday conver-
sation, and their social competence more broadly (see Ast-
ington & Jenkins, 1995; Imuta, Henry, Slaughter, Selcuk, &
Ruffman, 2016), suggesting an important link between per-
formance on these tasks in early childhood and real cognitive
development. We therefore used false-belief tasks to measure
ToM abilities.

Methods
Participants
Sixty-one children (Mage = 47 months, range = 39 − 55
months) were recruited from and tested at local preschools.

Tasks
False-Belief Children’s ToM was assessed using two clas-
sic false-belief tasks. In the first task, children saw a story-
book in which Sally put her cookie in a box and then left
the room. While Sally was gone, Anne came in and moved
Sally’s cookie from the box to a bag. Children were then
asked, “When Sally comes back, where will she look for
her cookie?” Children earned a point if they correctly re-
ported that Sally would look for her cookie in the box. In
the second task, children were shown a crayon box that, it
was soon revealed, actually contained some keys. Experi-
menters asked the children 1) what they thought was inside
the box when they first saw it, and 2) what was really inside.
Children earned one point if they correctly answered both of
these questions. The experimenter then introduced a doll, and
asked children the same two questions (“What will the doll
think is inside this box? What’s really inside?”). Children
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again received one point for correctly answering both ques-
tions. False-belief scores could thus range from zero to three.
Numerical Conservation Control Task To assess chil-
dren’s understanding of numerical conservation, experi-
menters showed children two parallel rows of ten objects
each, both of which were equal in length. Children were
asked if row A or B had more objects, or if they were the
same. Then, experimenters lengthened one of the rows, and
again asked children if row A or B had more objects, or if
they were the same. This process constituted one trial; chil-
dren had to answer both questions correctly on a given trial to
earn one point. Experimenters administered two trials; con-
servation scores could thus range from zero to two.
Pedagogical Training and Test The pedagogical training
entailed a novel word learning task and a causal toy activa-
tion task. In the novel word learning task, children were told
that a novel word (e.g., “Dax”) represented the concept they
were trying to learn. They were shown a picture of an object
with two discrete features (e.g., a fork that is white), and were
told that this picture represented the target concept (“This is
a Dax!”). Given the inherent ambiguity in the word’s exten-
sion, the experimenter explained what the novel word really
meant (“Dax means fork.”). The experimenter then presented
two additional pictures, each of which contained an item that
overlapped with exactly one of the original picture’s two fea-
tures (e.g., a white spoon, and a black fork). The experi-
menter then asked children to teach a confederate what the
novel word meant by providing examples using the three pic-
tures, without explicitly telling the confederate what the novel
word meant. In order to provide a correct response, children
had to present the necessary and sufficient examples to iden-
tify the correct rule while ruling out other hypotheses1.

In the causal toy activation task, children were presented
with a novel toy with two distinct mechanisms (e.g., a wheel
and a bell). The experimenter first showed children how to ac-
tivate the toy, causing it to perform some desirable outcome
such as lighting up or playing music (“You need to ring the
bell and spin the wheel at the same time to make the toy go.”).
As in the novel word task, children were then instructed to
teach a confederate about the toy by providing examples of
which combinations of mechanisms did and did not make the
toy go. In order to provide a correct response, children had
to demonstrate both necessary and sufficient evidence for the
confederate to rule out all alternative explanations and cor-
rectly infer which mechanism(s) activated the toy.

For both tasks, if children provided insufficient evidence,
the confederate prompted the child by musing aloud about
the remaining possible explanations. For example, if the child
only showed the confederate that operating both mechanisms
simultaneously made the toy go, the confederate might say:

1To help children understand the hypotheses under considera-
tion, the confederate announced the full set of hypotheses before
the child began teaching (e.g., “I see, Dax could mean fork, or Dax
could mean white, or it could mean white fork.”).

“Oh, so you showed me both at the same time. It could be
that you need to do both at the same time to make it go, or
it could be that the wheel by itself could make it go, or that
the bell by itself could make it go. Can you teach me?” Note
that often children would need to present negative examples
to rule out plausible hypotheses (e.g., showing that the wheel
by itself did not make it go). The number of prompts children
required before providing complete evidence was the primary
DV for both pedagogical training tasks; these scores could
range from a minimum of zero (i.e., children who provided
necessary and sufficient evidence spontaneously) to a maxi-
mum of two (i.e., children who required prompting after each
demonstration until all evidence had been provided).

There were six different versions of each task: The novel
words were fep, dax, modi, toma, wug, and blicket; the causal
toys were phone, gear toy, helicopter, shadowbox, red air-
plane, and purple. Some of the novel words represented just
one of the two categories to which the example object be-
longed (“Dax means fork”), while others represented both
categories (“Dax means white fork”). Likewise, some causal
toys would activate any time one of the mechanisms was op-
erated (“Any time you ring the bell, it makes the toy go”),
while others would only activate if both mechanisms were
operated simultaneously (“You need to ring the bell and spin
the wheel at the same time to make the toy go”). Varying the
stimuli in this way ensured that children would have distinct
teaching goals on different trials, and would thus have to se-
lect evidence that corresponded to the particular teaching goal
of a given trial in order to provide a correct response.

Procedure
Children’s understanding of false-belief and numerical con-
servation was assessed on a preliminary testing day. Chil-
dren who scored fewer than two out of three points on the
false-belief task were classified as copy theorists (i.e., those
who think that beliefs are always consistent with the world),
while children who scored two or more points were classi-
fied as perspective theorists (i.e., those who understand that
beliefs may vary with perspective, and can thus be false; see
Goodman et al., 2006). Copy theorist (CT) children (N = 40)
were randomly assigned to either the control or the training
condition. Over the course of the following six weeks (begin-
ning on the preliminary testing day), children in the training
condition (N = 22; Mage = 46 months) received two training
sessions per week on both pedagogical tasks. One version of
each task was administered on a given testing session, with
the novel word task always being presented first. As there
were six versions of both the novel word task and the causal
toy task, the experimenter administered the same version of
each task across both sessions of a given week. The order in
which the different versions of the tasks were presented was
randomized across participants. At the end of this six week
period, children’s understanding of false-belief and numerical
conservation were reassessed using the same measures with
slightly different stimuli.

CT children in the control condition (N = 18; Mage = 46
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Figure 1: A schematic of our study design, with examples of possible pedagogical training schedules for CT children in the
training condition and PT children.

months) received no pedagogical training, and their false-
belief and conservation understanding was reassessed after
a six-week delay. Perspective theorist (PT) children (N = 21;
Mage = 49 months) did not receive longitudinal pedagogical
training, since they had little to no room for improvement on
the false-belief tasks; instead, they received just one session
of the pedagogical tasks on the preliminary testing day, allow-
ing us to measure their initial teaching abilities. The versions
of the pedagogical tasks used with PT children were random-
ized across participants. PT children’s false-belief and con-
servation understanding was not reassessed. See Figure 1 for
a schematic of our study design.

Results
One CT child in the training condition did not complete one
session of the causal toy task, another CT child did not com-
plete one session of both tasks, and one PT child’s numeri-
cal conservation abilities were not assessed; these individual
data points were treated as missing in subsequent analyses.
Otherwise, all children completed all training sessions and
assessments. We created a composite pedagogical skill score
for each training session by calculating the average number
of prompts children required across both tasks in a given ses-
sion. Lower scores indicated better task performance.

Initial False-Belief & Pedagogical Skill
We first investigated the effects of preliminary false-belief
understanding on initial (i.e., non-trained) pedagogical skill.
An independent-samples t-test compared CT children in the
training condition to PT children on the average number of
prompts required on the preliminary testing day. We found
that PT children (M = 1.05, SD = .57) provided complete
evidence with significantly fewer prompts than CT children
(M = 1.45, SD = .55), t(41) = 2.38, p = .022, 95% CIdiff =
[.06, .75]; see Figure 2A. We also looked at the novel word
and causal toy tasks separately: While PT children (M = .57,
SD = .68) significantly outperformed CT children (M = 1.27,
SD= .78) on the causal toy task (t(41) = 3.17, p= .003, 95%

CIdiff = [.26, 1.15]), there were no significant differences be-
tween the two groups on the novel word task (CT: M = 1.64;
PT: M = 1.52; p = .584, 95% CIdiff = [-.30, .53]). This dis-
parity may be explained by the seemingly increased difficulty
of the novel word task relative to the causal toy task. Indeed,
two paired-samples t-tests revealed that both CT and PT chil-
dren performed better on the causal toy task than on the novel
word task on the preliminary testing day (CT: t(21) = 5.05,
p< .001, 95% CIdiff = [.56, 1.35]; PT: t(20)= 2.16, p= .042,
95% CIdiff = [.01, .71]); additionally, more children required
the maximum of two prompts on the novel word task (N = 29)
than on the causal toy task (N = 12). The novel word task
might have been more difficult for children than the causal
toy task for several reasons; perhaps children are more gen-
erally familiar with toys, or have more experience teaching
about toys than about words. Future work could explore the
differences between these two tasks.

There are many possible reasons why PT children may
have outperformed CT children on the causal toy task, in-
cluding age or other cognitive factors. To control for this,
we ran two between-subjects ANCOVAs, with theorist type
(CT vs. PT) predicting performance on the causal toy task;
we included preliminary conservation scores as a covariate in
one analysis, and age at pre-test in the other. PT children still
outperformed CT children on the causal toy task, even when
controlling for effects of age (F(1,40) = 6.11, p = .018) and
conservation scores (F(1,39) = 9.35, p = .004), providing
stronger evidence for a direct link between false-belief un-
derstanding and teaching ability.

False-Belief Improvement & Pedagogical Skill

Next, we investigated the relationship between overall aggre-
gate performance on the two pedagogical tasks and improve-
ment on the false-belief task from pre- to post-test. Using
data from CT children in the training condition, we ran a
correlation between false-belief improvement (i.e., pre-test
false-belief scores subtracted from post-test scores) and the
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Figure 2: A. PT children provided the confederate with complete evidence after receiving significantly fewer prompts than CT
children on the first day of pedagogical testing. B. Children required fewer prompts over the course of the pedagogical training.
C. For children who answered all false-belief questions incorrectly at pre-test, those in the training condition significantly
improved in false-belief understanding from pre- to post-test, whereas those in the control condition did not. Asterisks denote
significance at the p < .05 level. All error bars represent two standard errors.

mean number of prompts required across all twelve training
sessions. We found a statistically significant negative linear
relationship between these two factors, r(20) = −.43, p =
.047. In other words, children who required fewer prompts
over the course of the training generally improved more in
false-belief understanding from pre- to post-test. Two partial
correlations revealed that this finding qualitatively persisted
when statistically controlling for average age (r(19) =−.43,
p = .054) and improvement in conservation understanding
(r(19) =−.41, p = .063).

Effect of Training on False-Belief Understanding
Finally, we evaluated the possible effects of pedagogical
training on children’s false-belief scores. Our first question
was whether the training was actually effective in improving
children’s pedagogical skills. A repeated-measures ANOVA
on the mean number of prompts children required on each
of the twelve training sessions revealed a significant effect
of session (F(11,220) = 4.96, p < .001), as well as a sig-
nificant linear trend (i.e., a straight line fit the data at better
than chance levels; F(1,20) = 20.85, p < .001). Children’s
performance on the pedagogical tasks thus did improve with
training (see Figure 2B).

Next, we ran an independent-samples t-test comparing CT
children in the training condition (N = 22) to those in the con-
trol condition (N = 18) on false-belief improvement. This di-
rect comparison between training and control participants did
not yield significant results (p = .65). However, CT children
who answered one false-belief question correctly at pre-test
had less room for improvement. Indeed, looking only at CT
children who answered zero false-belief questions correctly at
pre-test, we did observe improved false-belief understanding
for children in the training condition (N = 12; Mimprove = .19,
SD = .26; t(11) = 2.55, p = .027), but not for those in the
control condition (N = 8; Mimprove = .08; p = .170); see Fig-
ure 2C. Importantly, conservation scores did not differ for ei-
ther group between pre- and post-test (Training: p = .551;
Control: p = .197), suggesting that the training targeted ToM

without necessarily leading to general improvement in cog-
nitive reasoning. Note that this result does not directly com-
pare training to control children, and should be interpreted
with caution. However, coupled with our finding that initial
false-belief understanding is related to non-trained pedagogi-
cal skill, this may suggest an important link between reason-
ing about others’ minds and pedagogical evidence selection.

Discussion
Past work has shown that children’s developing ToM reason-
ing abilities are related to their pedagogical skill, but has not
looked at the precise relationship between ToM development
and the ability to select optimal evidence to teach others. Our
results suggest that having a more developed ToM is broadly
related to being better at evidence selection, even when con-
trolling for age and more general cognitive abilities. Further,
we found tentative supporting evidence for the idea that train-
ing pedagogical evidence selection may in turn improve chil-
dren’s ToM reasoning abilities. Taken together, our results are
consistent with prior work on the relationship between ToM
and teaching skills, and provide support for a strong link be-
tween pedagogical evidence selection and theory of mind.

Our results speak to existing models of ToM develop-
ment that postulate genuine conceptual change during the
preschool years. Specifically, we found evidence for a link
between performance on a false-belief task and the discrete
developmental capability of pedagogical evidence selection,
suggesting that the changes in false-belief understanding that
occur between the ages of 3 and 5 may reflect deeper quali-
tative changes in children’s Theories of Mind. As we noted
in the introduction, we recognize that there is a diverse range
of perspectives on the course of children’s ToM development,
and we will not attempt to resolve that debate here. Rather,
we simply suggest that our findings cannot be explained in
their entirety by false-belief task demands (especially given
that our results persist when controlling for effects of age),
and may therefore be indicative of some type of conceptual
change in ToM during the preschool years.
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Our findings also have implications for current theories and
models of natural pedagogy and epistemic trust. Shafto et
al. (2014) propose a Bayesian model of pedagogical teach-
ing and learning, according to which the evidence that teach-
ers choose to present directly depends on the learner’s prior
knowledge and the learning goal that the teacher is trying to
communicate. This pedagogical model is a special case of the
broader model of epistemic trust (Shafto, Eaves, Navarro, &
Perfors, 2012; Eaves & Shafto, 2012, in press), which explic-
itly connects developmental changes in reasoning about oth-
ers’ beliefs to interpretation of evidence selection by others.
Our results support these models that link evidence selection
and reasoning about other minds. We also extend their find-
ings, showing that this link 1) exists even in young children
who have not yet been exposed to formal schooling, and 2) is
manifest in their selection of evidence for others.

Along with this prior work, our paper also speaks to
broader theories of natural pedagogy, and supports a potential
link between the uniquely human ability to teach others and
the development of the ability to reason about others’ minds;
this raises questions about whether these skills may even be
evolutionarily intertwined. Whatever the case may be, rea-
soning about other minds, as conceptualized in the field, is
composed of multiple interrelated inference problems. Un-
derstanding the role of these social inferences in learning re-
quires investigating how children approach several conjoined
problems, as we have done. Our work exemplifies and shows
the value of that approach.
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Abstract
The ability to recognize and evaluate reliable informants is a
critical skill for effective social learning. Building on prior
work showing children’s sensitivity to informants who omit
relevant information, here we asked whether children’s teacher
evaluations incorporate information about 1) the epistemic
state of the teacher, and 2) the amount and value of information
taught. Preschool-aged children rated informants who taught
learners about a novel toy with four functions; we systemat-
ically varied the number and value of functions the teachers
knew and taught. Our results indicate that children exoner-
ated unintentional omissions of teachers who had incomplete
knowledge, and provided graded ratings based on the degree of
omission. These findings are consistent with the predictions of
prior computational work, and suggest that the ability to reason
about others’ knowledge plays an important role in children’s
inferences about others’ efficacy as informants.
Keywords: cognitive development, pedagogy, social learning

Introduction
Young children rely heavily on others for their learning. Al-
though children readily explore and learn from their own ex-
perience (Schulz, 2012; Bonawitz, van Schijndel, Friel, &
Schulz, 2012; Stahl & Feigenson, 2015), pedagogy is a pow-
erful, effective way to learn about the world. Recent research
suggests that children do more than simply absorb and accu-
mulate information from others; they actively modulate their
inferences depending on the social context (Bonawitz et al.,
2011), and selectively approach others to request informa-
tion when help is needed (Gweon & Schulz, 2011; Goupil,
Romand-Monnier, & Kouider, 2016). However, learning
from pedagogy comes with an inherent hazard: being mis-
informed. Informants may vary in quality – some may be
wrong, ignorant, or even deceptive. Thus, the ability to de-
tect and evaluate unhelpful informants is critical for accurate
learning. How do young children face this challenge?

Prior research has found that children avoid learning from
informants who provide inaccurate information (e.g., Birch,
Vauthier, & Bloom, 2008; Jaswal & Neely, 2006; Koenig,
Clément, & Harris, 2004; Pasquini, Corriveau, Koenig, &
Harris, 2007). Recent studies further suggest that young chil-
dren recognize and evaluate a more subtle form of misinfor-
mation: providing accurate yet insufficient evidence. Given
a teacher who presented one function on a toy, children rated
the teacher as more helpful when the toy only had one func-
tion than when it had four (i.e., when the teacher omitted 3 of
the 4 functions; Gweon, Pelton, Konopka, & Schulz, 2014a;
Gweon & Asaba, in press). Children as young as four show
this sensitivity, although they successfully evaluate under-
informative teachers only after observing a fully informative

teacher (Gweon & Asaba, in press). Thus by the preschool
years, children expect teachers to be accurate and fully infor-
mative, and penalize those who violate these expectations.

This early-emerging sensitivity to teacher informativeness
raises important questions about how children make these
evaluations: What are the representations and inferences that
allow children to distinguish helpful and less helpful teach-
ers? One possibility is that children learn sets of rules and
exceptions that allow them to recognize and avoid undesir-
able teachers. Prior findings suggest that young children
are biased towards trusting adult informants, and may even
continue to trust them after discovering their unreliability
(Jaswal, Croft, Setia, & Cole, 2010). Children may also ac-
quire a set of rules akin to Gricean Maxims (Grice, 1975),
which prescribe that a helpful, cooperative communicator
should provide accurate and relevant information in the right
amount. If children are simply using learned heuristics or
rules to evaluate informants, it may be difficult for them to
make nuanced, context-specific judgments of informant qual-
ity, particularly in novel situations. However, another possi-
bility is that these evaluations arise from sophisticated infer-
ences about teacher informativeness; by understanding how
unobservable mental states of others (e.g., informants’ intent
or knowledge) can influence their teaching behaviors, chil-
dren can draw much more flexible and accurate informant
evaluations even in novel contexts.

Previous work on Theory of Mind and moral reasoning
suggests that young children readily interpret others’ observ-
able actions in light of their unobservable mental states: They
evaluate others’ actions based on their outcomes and on the
actor’s underlying intent, exonerating accidental harms (e.g.,
Cushman, Sheketoff, Wharton, & Carey, 2013; Wellman,
Cross, & Watson, 2001; Nelson, 1980; Baird & Astington,
2004). Furthermore, even toddlers exonerate an agent who re-
fused to help another person when the agent was incompetent
and thus unable to help the requester (Jara-Ettinger, Tenen-
baum, & Schulz, 2015). Given prior work on children’s abil-
ity to consider others’ mental states in evaluating others, here
we ask whether children can consider informants’ knowledge
and their competence in evaluating their teaching.

Prior computational work describes teacher-learner inter-
actions as based on a set of mutually constraining inferences.
The teacher considers the learner’s knowledge to select the
evidence that would maximally increase the learner’s belief
in the correct hypothesis. The learner updates his beliefs with
the assumption that the teacher is knowledgeable and intends
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to provide the best information for the learner (Shafto, Good-
man, & Frank, 2012; Shafto, Goodman, & Griffiths, 2014).
In this framework, a teacher can be evaluated based on how
she samples information for the learner, and what the learner
can infer from the information.

This allows us to consider two key hypotheses about what
might influence children’s evaluations of teachers. Consider
a teacher demonstrating a device with four functions (some
interesting, some humdrum) to a naı̈ve learner. How might
a rational observer evaluate the teacher, based on what she
demonstrates? First, we might predict that an evaluation of an
informant is sensitive to the epistemic state of that informant.
For example, consider two teachers, each of whom demon-
strates just one of the four functions. One teacher knows that
the device has four functions, but the other only knows about
the one function she demonstrated. While the learner only
learns about one of the four functions in both cases, we might
be more inclined to pardon the teacher who didn’t know about
the additional functions: The ignorant teacher demonstrated
everything she knew, and may thus be considered a better
teacher than the knowledgeable informant who omitted infor-
mation. We refer to this as the epistemic pardon hypothesis.

Our second hypothesis pertains to the quality of the taught
information. A teacher who knows all four functions of a
device will be most helpful if she demonstrates all four, and
least helpful if she demonstrates none. Extending this reason-
ing to partial demonstrations, we would predict evaluations
to be modulated by the degree of omission: Even when two
teachers both omit information, a teacher who demonstrates
two functions is still better than someone who showed just
one. Further, if the functions differ in their value (e.g., how
interesting they are), we might also expect an effect of the
value of demonstrated functions: A teacher who demonstrates
two high-value functions and omits two low-value functions
would be better than someone who does the opposite. We re-
fer to these predictions as the quality-of-omission hypothesis.

Recent computational work has formalized the two hy-
potheses posited above, and shown that adults’ evaluations
of various teachers are highly consistent with these hypothe-
ses (Bass, Hawthorne-Madell, Goodman, & Gweon, 2015).
When adults evaluate informant quality, they readily incor-
porate information about a teacher’s epistemic state, as well
as the amount and the value of taught information. Adults’
informant evaluations are thus likely based on abstract rep-
resentations of others’ minds rather than a set of rules that
dictate what a teacher should or should not do.

Some prior work suggests that children’s evaluations of
teachers also depend on abstract representations of knowl-
edge states rather than simple heuristics. For instance, chil-
dren show increased exploration of a toy following a teacher’s
demonstration of that toy if the teacher had previously com-
mitted a sin of omission (Gweon et al., 2014a), suggesting
that children use concrete demonstrations to infer abstract
qualities of teachers’ quality, and adjust their inferences ac-
cordingly. Children also understand that omission isn’t al-

ways bad: Given a toy with 20 buttons but only 3 that are
functional, children prefer a teacher who shows just the 3
functional buttons (as opposed to the one who additionally
shows the 17 inert buttons), if the learner already expects
only a few of the buttons to work (Gweon, Shafto, & Schulz,
2014b). Children thus readily consider learners’ epistemic
states to evaluate teacher helpfulness, and even judge omis-
sion as beneficial when partial demonstration is sufficient.
However, these studies leave open a critical question: Can
children consider the teacher’s epistemic state in evaluating
the helpfulness of their teaching? Going beyond recognizing
that teachers might not know everything (Jaswal & Neely,
2006), can children actually use this information to exoner-
ate under-informative pedagogy? Because children are sur-
rounded by many adults who are much more knowledgeable
than they are, this may be a particularly challenging inference
for young children.

Preschoolers’ Evaluations of Teachers
In the current study, we investigate whether preschool-aged
children’s teacher evaluations reflect the underlying represen-
tations of teachers’ knowledge and competence; in particu-
lar, we ask whether each of our two hypotheses (epistemic
pardon, and quality-of-omission) – both of which are con-
sistent with adults’ teacher evaluations (Bass et al., 2015) –
are also consistent with children’s ratings of teacher quality.
We showed children videos of five different informants who
taught learners about a novel toy with four functions. We
systematically varied the number and value of functions that
the teachers knew and taught, and randomized the order in
which the five teachers were seen with one caveat: All chil-
dren first saw the teacher who knew and taught all four of the
toy’s functions, and were told that this was an example of ex-
cellent teaching. Our decision to anchor children’s responses
in this way was motivated by prior findings: First, children
reliably rate teachers highly when they provide true and com-
plete information (e.g., Gweon et al., 2014a; Koenig & Har-
ris, 2005); second, although four- and five-year-olds’ ability
to evaluate under-informative teachers is limited, seeing an
example of a fully informative teacher first allows them to
successfully evaluate under-informative teachers (Gweon &
Asaba, in press). These results suggest that such contextual
support helps children attend more closely to dimensions of
teacher informativeness. Since we are interested in children’s
ratings of several under-informative teachers relative to each
other (and not to the fully informative teacher), we anchored
children’s ratings of this ideal teacher at the top of the scale.

Methods
Participants
Thirty-four children (Mage = 60 months, range = 49 − 72
months; 15 females) were tested at local preschools.

Materials
Rating Scale Children used a 0 to 20 point rating scale to
evaluate teachers. Children placed a small circular magnet on
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Figure 1: All children saw and rated the KA TA teacher first. The order of the remaining four test trials was counterbalanced
across children. Memory cues were adhered to the rating scale as children provided their ratings.

the scale to indicate how good they thought a teacher was.

Novel Toy The novel toy was a square pyramid covered in
blue felt with four colorful buttons, each corresponding to a
different function. Two functions were low-value: The toy
could beep, and it could make a static-like noise. The other
two functions were high-value: The toy could play clips of
two different children’s songs. The relative value of these
functions were validated in a separate group of 10 children
(Mage = 66 months, range = 49 − 91 months), who were
asked to rate “how cool” each of the four functions were using
the rating scale described above. The two songs (M = 15.3,
SD = 3.1) were rated significantly higher than the beep and
the noise (M = 8.8, SD = 3.7; t(9) = 3.41, p = .008), with
no differences within the value pairs (p’s > .33).

Teaching Videos Teaching videos were presented on a 15-
inch MacBook Pro, and comprised two main phases. In the
Exploration phase, the teacher sat down at a table on which
the novel toy was placed and explored the toy’s functions;
then, a naı̈ve learner suddenly entered the room, startling the
teacher out of her exploration, and asked her to show him how
the toy worked. In the Teaching phase, the teacher demon-
strated to the learner some subset of the functions she had
discovered during the exploration phase (details follow), after
which she said, “That’s how this toy works!” thereby clearly
ending the demonstration.

There were five versions of the teaching videos, which
varied based on the number and value of the functions that
the teacher discovered and taught. In the Exploration phase,
the teacher either discovered 1) all four functions, or 2) just
the low-value “beep” function before the learner entered the
room. In the Teaching phase, the teacher either taught: 1)
all four functions, 2) both high-value functions, 3) both low-
value functions, or 4) just one low-value function (“beep”).
Crossing these two variables yielded five possible teaching
scenarios: KA TA, in which the teacher Knew All and Taught

All; KA THH, where she Knew All and Taught 2 High-
value functions; KA TLL, in which she Knew All and Taught
2 Low-value functions; KA TL, where she Knew All and
Taught 1 Low-value function (“beep”); and KL TL, where
she Knew 1 Low-value function (“beep”) and taught it.
Memory Cues To help children recall precisely what each
teacher knew and taught, we created small cards that depicted
screenshots of the Exploration and Teaching phases from the
teaching videos. Small arrows with adhesive backs were at-
tached to each memory cue (see Figure 1).

Procedure

Frame Story & Rating Scale Training Children were told
that they would be meeting some people who were in teach-
ing school; the experimenter needed the child’s help to figure
out how good the different teachers were so that she would
know how much more school the teachers needed. The exper-
imenter then introduced the rating scale, and children were
briefly trained on how to use it to indicate teacher quality.
Children who failed this training did not proceed to the main
task and were dropped from analysis (see Results).
Novel Toy Next, the experimenter introduced the novel toy,
and encouraged children to try to figure out how it worked.
After the child successfully pressed all four buttons, the ex-
perimenter noted that they now knew all about the toy. Chil-
dren were then told that the other day, the teachers from the
school had taught some new students about how the novel toy
worked, and it was the child’s job to watch them teach about
the toy and figure out how good each teacher was at teaching.
Teacher Evaluations All children were first shown the
KA TA condition. Before watching the video, children were
told that this teacher was all done with school, and was there-
fore already a good teacher. After watching the first video,
children were shown the memory cue for the KA TA teacher,
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and were asked to provide a rating. Children who did not
place the marker near the top of the rating scale were re-
minded that this teacher was already done with school. The
experimenter adhered the memory cue’s arrow to the rating
scale where the child had placed the marker.

Children were then shown the remaining four teachers
who, they were reminded, were still in teaching school; these
constituted the four test trials. The order in which these four
teaching scenarios were presented was completely counter-
balanced, yielding 24 different orders. While the actors in
the videos and the test conditions were fully counterbalanced
with respect to each other, such that any potential effects of
teaching condition could not be explained by personal char-
acteristics of the actors, the order of the actors was always the
same (e.g., “Liz” was always the first teacher, even though the
first test condition varied between participants). After watch-
ing each video, children were shown the memory cue for the
teacher they had just seen, and were asked to provide a rat-
ing. The experimenter adhered the memory cue’s arrow to
the rating scale where the child had placed the marker. Chil-
dren who merely placed each teacher on the scale in the order
of presentation (from most helpful to least helpful) were ex-
cluded from analysis. See Figure 1 for a schematic of the
procedure for teacher evaluations.

Results
Prior to analysis, we dropped children who did not pass the
rating scale training (N = 1), placed teachers in descending
order on the rating scale as they saw them (N = 7), or gave all
teachers the same rating (N = 1). One additional child did not
want to continue playing after the first KA TA trial. Our final
sample therefore consisted of 24 children (Mage = 60 months,
range = 49−72 months; 12 females).

We first asked whether children differentiated between the
four teachers in the test trials. An omnibus repeated-measures
ANOVA on children’s ratings in these four trials revealed a
significant main effect of condition (F(3,69) = 3.50, p =
.020, ηp

2 = .132; see Figure 2). We therefore conducted fol-
lowup analyses to investigate our two stated hypotheses.

Epistemic Pardon Hypothesis
To investigate the effect of the teacher’s epistemic state on
children’s ratings, we compared the KA TL condition to the
KL TL condition, thereby holding constant what the teacher
taught and only varying what she knew. A paired-samples
t-test revealed significant differences between the ratings of
these two teachers (t(23) = 2.58, p = .017, ηp

2 = .224), with
children giving higher ratings to the teacher who knew only
one function (M = 11.5, SD= 5.7) than the teacher who knew
all four functions but taught just one (M = 7.8, SD = 5.4).

We also looked at the number of children who placed the
KL TL teacher higher than the KA TL teacher on the rating
scale. Seventy-one percent of participants rated the KL TL
teacher higher than the KA TL teacher; this proportion dif-
fered significantly from chance (50%, p = .032 one-tailed),

Figure 2: Average ratings for the KA TA reference teacher
and all four test conditions. Children rated the teacher who
knew only one function (KL TL) higher than the teacher who
knew all but taught one (KA TL), pardoning omission when
it occurred for epistemic reasons. Children also showed sen-
sitivity to the degree of omission, rating the teacher who
demonstrated two low-value functions (KA TLL) as better
than the teacher who demonstrated one (KA TL).

providing additional evidence that children considered teach-
ers’ epistemic states when making their evaluations, and were
even able to exonerate bad teaching when it was explained by
limited knowledge.

Quality-of-Omission Hypothesis
We explored the effect of the degree of teachers’ omission
of information on children’s ratings with a paired-samples t-
test, comparing the KA TLL condition to the KA TL condi-
tion (varying the number of functions taught while holding
epistemic state and value constant). We again found signifi-
cant differences (t(23) = 2.54, p = .019, ηp

2 = .218): Chil-
dren gave higher ratings to the teacher who demonstrated two
low-value functions (M = 11.9, SD = 6.4) than the teacher
who demonstrated just one low-value function (M = 7.8,
SD = 5.4). As before, we also compared the proportion
of children who rated the KA TLL teacher higher than the
KA TL teacher to chance. This binomial test neared signifi-
cance (p = .076 one-tailed), with 67% of children rating the
KA TLL teacher higher than the KA TL teacher.

Finally, we compared the KA TLL teacher to the KA THH
teacher to examine the effect of information value on chil-
dren’s ratings. This paired-samples t-test was not significant
(p = .874): Children did not differentiate between teachers
who taught two high-value (M = 12.1, SD = 5.2) versus two
low-value (M = 11.9, SD = 6.4) functions. Possible explana-
tions for this null result follow in the discussion.1

1In an ongoing replication with adults, we are finding the same
pattern of results as we did with children: Adults’ ratings are influ-
enced by the informant’s knowledge state and the degree of infor-
mation omission, but not by the value of the functions taught.
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Discussion
Inspired by computational models of pedagogy and prior be-
havioral work with adults (e.g., Shafto et al., 2014; Bass et
al., 2015), here we investigated how children make nuanced
evaluations of helpful and unhelpful teachers; specifically, we
asked whether children 1) exonerate partial teaching based on
the teacher’s epistemic state, and 2) provide graded evalua-
tions based on the amount and value of information taught.
We found that, like adults, preschoolers were sensitive to
teachers’ epistemic states, and accordingly pardoned infor-
mants who provided less information when teaching from
limited knowledge. Children’s ratings were also sensitive to
the amount (but not the value) of information taught.

The results from our epistemic comparisons extend prior
work showing that children prefer truthful teachers (Koenig
et al., 2004; Koenig & Harris, 2005; Jaswal & Neely, 2006),
and fully informative teachers (Gweon et al., 2014a; Gweon
& Asaba, in press). They are also consistent with more recent
findings on children’s ability to consider learners’ epistemic
states (Gweon et al., 2014b) in evaluating teachers. How-
ever, our findings are somewhat surprising in light of the idea
that many explicit Theory of Mind (ToM) skills are just de-
veloping between the ages of three and five (Wellman et al.,
2001). Without explicit information about what the teacher
knew, preschoolers were able to 1) infer her epistemic state
by observing her exploration, and 2) use this representation
to pardon her “sin of omission”.

This finding thus raises important questions about the re-
lationship between the development of ToM reasoning and
social evaluation in pedagogical contexts. If ToM does in
fact modulate children’s teacher evaluations, children may
become more adept at selecting from whom to learn through-
out their preschool years. Indeed, Jaswal et al. (2010) found
that three-year-olds are almost indiscriminately trusting of
informants, while older children are more wary of possible
misinformation. It would be interesting to ask whether chil-
dren who are better at ToM reasoning also consider teachers’
epistemic states more readily, leading them to be more will-
ing than children with less proficient ToM abilities to exon-
erate teachers who were unintentionally under-informative.
Critically, given recent findings on the relationship between
ToM and children’s own teaching skills (Bass et al., in press),
such results would support important links between theory of
mind, pedagogical skill, and teacher evaluations.

Note that although children did exonerate the KL TL
teacher relative to the KA TL teacher, no under-informative
teacher was rated as favorably as the informant who knew and
taught all four of the toy’s functions. Intuitively, this makes
sense: Children’s ratings of an informant’s helpfulness will
reflect, among other things, how well a learner learned as
a consequence of the informant’s teaching. Thus while the
KL TL teacher did the best she could given what she knew,
she was still not as good of a teacher as the KA TA teacher
because she failed to discover information that could have
been useful for the learner. This intuition also naturally arises

in adults’ teacher evaluations, and is consistent with Bayesian
models of pedagogical reasoning (e.g., Bass et al., 2015). Are
there circumstances under which under-informative teaching
can be fully exonerated? In ongoing work, we are explor-
ing whether the degree to which children exonerate under-
informative teachers is modulated by contexts that explain
away the teacher’s failure to discover relevant functions and
resultant lack of knowledge (e.g., a broken toy).

Our results also show that children did not penalize all
omissions equally. Even though all teachers were under-
informative, children were sensitive to the “degree of omis-
sion,” giving lower evaluations to teachers who provided less
information. This extends prior work showing that children
distinguish fully informative teachers from those who were
vastly under-informative (Gweon et al., 2014a; Gweon &
Asaba, in press), and further suggests that children’s eval-
uations of under-informative teachers are based on a more
nuanced understanding of teachers’ behaviors than a simple
binary judgment. This leaves open questions about the nature
of the mechanisms that underlie sensitivity to informant qual-
ity more generally: How early do they emerge? What other
factors can children incorporate into their informant evalua-
tions, and how do these change as children develop?

Our work adds to the growing body of literature on chil-
dren’s ability to draw pragmatic inferences from others’ be-
haviors in both verbal and nonverbal communication. Re-
cent work has demonstrated intriguing parallels between chil-
dren’s evaluations of pedagogical informants and their ability
to draw scalar implicature (Gweon & Asaba, in press). Given
prior work on scalar implicature that reveals children’s ability
to evaluate infelicitous uses of quantifiers (Barner, Brooks, &
Bale, 2011; Katsos & Bishop, 2011), our results further sug-
gest that children as young as four might have the necessary
prerequisites for considering the “degree of sin” in infelici-
tous scalar expressions (e.g., it is worse to say that the boy
drank “a bit” of milk than to say he drank “some” milk, when
really he drank almost all the milk in the cup).

Finally, we note that children’s ratings in the current study
were not moderated by the value of the demonstrated func-
tions: Children rated a teacher who chose to show the
two lower-value functions just as highly as the teacher who
showed two higher-value functions. These results differ from
adults’ sensitivity to information value in a highly similar
paradigm (Bass et al., 2015). There are several possible ex-
planations for this null finding. First, the relative value of the
toy’s functions in our study may not have been salient enough
to elicit this difference. While we did validate the functions’
values in a separate group of participants, those children were
explicitly asked to compare and consider the functions’ “cool-
ness”; for children in the current study, these subtle value dif-
ferences may not have been conspicuous enough to differenti-
ate teachers who taught the songs versus the noises. A second
possibility is that the ability to consider the value of informa-
tion in service of making pedagogical evaluations does not
emerge until later in development. This would suggest that
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although children show remarkable ability in evaluating oth-
ers, there may be other important factors that young children
fail to consider. Third, it is possible that children are capa-
ble of considering information value (and that the functions’
values were sufficiently salient in our task), but that children
spontaneously attributed a reason for why the informant se-
lected these functions; for instance, perhaps the low-value
teacher really liked those functions, or thought they would
be more important for the learner to know. Future work could
tease apart these hypotheses to identify the role of informa-
tion value in children’s informant evaluations.

As we have discussed, there are many unanswered ques-
tions concerning the nature of children’s reasoning about ped-
agogical informants that our results do not directly address.
Nevertheless, along with prior work, our findings suggest
that young children do have abstract representations of what
it means to be a good teacher. Understanding the develop-
ment of children’s epistemic trust and its relationship to their
growing ability to reason about others’ minds will provide
further insight into the cognitive mechanisms that support the
uniquely human abilities to learn from and teach others.
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Abstract: Over the last few decades, cognitive scientists have developed sophisticated formal models of human categorization,
and computer vision researchers have achieved increasingly impressive performance in natural image classification. In this
paper, we combine the strengths of these approaches, using representations from a convolutional neural network to evaluate
cognitive models of categorization against >300,000 human judgments of natural images. We find that a prototype model
performs best overall, and that an exemplar model performs best when the network’s most abstract features are used. Altogether,
our results demonstrate that the optimal categorization strategy over a set of stimuli is deeply linked to how they are represented,
suggesting that any satisfying characterization of categorization behavior over naturalistic stimuli must consider it the result
of a dual process of feature learning and strategy selection. The paradigm we present herein offers one avenue to begin this
undertaking.
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Abstract
Patterns of crosslinguistic variation in the expression of word
meaning are informative about semantic organization, but most
methods to study this are labor intensive and obscure the gra-
dient nature of concepts. We propose an automatic method for
extracting crosslinguistic co-categorization patterns from par-
allel texts, and explore the properties of the data as a potential
source for automatically creating semantic representations for
cognitive modeling. We focus on indefinite pronouns, com-
paring our findings against a study based on secondary sources
(Haspelmath 1997). We show that using automatic methods on
parallel texts contributes to more cognitively-plausible seman-
tic representations for a domain.
Keywords: semantic typology; semantic representation; par-
allel corpora

Introduction
An important goal of cognitive science is to determine
valid semantic representations, e.g., for use in computational
cognitive models of language acquisition and processing.
Semantic typology – which studies the patterns of cross-
linguistic variation in what words and other linguistic ele-
ments mean – reveals universal tendencies in how languages
carve up the space of a semantic domain (Haspelmath, 2003;
Regier, Kemp, & Kay, 2015). In particular, Bowerman (1993)
argues that (all else being equal) the greater the number of
languages that label a pair of situations (objects, events, . . . )
with the same word (called co-categorization), the more con-
ceptually similar these situations are. For instance, many lan-
guages co-categorize situations of ‘stable support’ (see Fig. 1)
with those of ‘tenuous support’, but use a different term for
‘containment’, reflecting that the first two situations are more
semantically similar than the last.

More generally, such crosslinguistic co-categorization pat-
terns can define a geometric semantic similarity space (Levin-
son et al. 2003). To obtain such a space, we first represent a
situation as a vector of terms used to express that situation
across languages (cf. the row of terms in Fig. 1). These vec-
tors are then projected into a lower-dimensional space (cf.
the distances in the two-dimensional space of Fig. 1). This
insight has informed cognitive modeling work on spatial re-
lations (Beekhuizen, Fazly, & Stevenson, 2014) and color
(Beekhuizen & Stevenson, 2016), where descriptions of situ-
ations, elicited from speakers of a number of languages, were
used to create vector-based geometric semantic representa-
tions. A computational learning model trained on those rep-
resentations successfully simulated developmental error pat-
terns in word meaning acquisition.

In order to deploy such approaches to additional semantic
domains, we need practical and robust methods for seman-
tic typological analysis. Elicitation data (e.g., Berlin & Kay,

 English   Mandarin  Dutch Finnish
Horiz., no contact Lamp above table  < above   shang  boven yläpuolella  >
Stable support Cup on table    < on   shang  op -ssa            >
Tenuous support Coat on hook    < on   shang  aan -lla              >
Containment Apple in bowl    < in      li  in -lla              >

<in,li,in,-lla>

<on,shang,aan,-lla>
<on,shang,op,-ssa>

<above,shang,boven,yläpuolella>

Figure 1: Representing the conceptual distance between situ-
ations as the number of languages co-categorizing them.

1969; Bowerman & Pederson, 1992) – terms describing non-
linguistic stimuli, obtained from informants – allows control
in defining the set of stimuli for a domain, but is resource in-
tensive and limited to concrete domains. Expert (Haspelmath,
1997) or automatic (Youn et al., 2016) analyses of secondary
sources (such as dictionaries and grammars) don’t rely on ac-
cess to informants across many languages, but are focused on
coarser-grained semantic distinctions than are found in elic-
itation stimuli. Both of these methods lack the frequencies
and patterns of actual usages in natural communication.

A complementary source of data recently used in seman-
tic typology is parallel text (e.g., Cysouw & Wälchli, 2007) –
i.e., the same text translated into different languages. While
parallel text has its own potential disadvantages, such as a
risk of “translationese” or mistranslations (Levshina, 2017),
it can be applied to abstract domains that are hard to obtain
elicitation data for, and has actual usage tokens that can re-
veal nuances of meaning not captured in dictionaries. This
latter point is especially relevant for creating semantic spaces
for cognitive modeling, as semantic categories display proto-
type structures with more and less central members (Rosch,
1973). Deriving semantic representations from actual usages
can yield a continuous semantic similarity space which po-
tentially reflects such structures; training computational cog-
nitive models on such representations thus has the potential
to better match behavioural data. To exploit this potential of
parallel text, we need automatic methods for extracting the
co-categorization patterns – the terms used across multiple
languages for the same situation (cf. Fig. 1) – that can form
the basis for such vector-based representations.

In this paper we first propose an automatic method for ex-
tracting crosslinguistic co-categorization patterns from par-
allel texts, to complement elicitation data and secondary
sources. Next, we explore the properties of the resulting
data as a potential source for automatically creating seman-
tic spaces for cognitive modeling. We focus on indefinite
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Acronym Semantic function Example

SP-K specific, known I want to tell you something.
SP-U specific, unknown Someone broke into our apartment.
NS irrealis non-specific I need someone strong for the job.
CD conditional Let me know if anybody shows up.
QU question Is anything bothering you?
IN indirect negation I don’t think anything matters.
DN direct negation Nobody came.
CP comparison She can run faster than anybody.
FC free choice You can pick anything!

Table 1: Haspelmath’s 9 functions with examples.

pronouns as an abstract semantic domain for which elicita-
tion would be a difficult method, but for which we have a
good understanding of the typology from expert judgments
and secondary sources (Haspelmath, 1997). By using parallel
texts, we are able to get a fuller picture of the semantic struc-
ture of this domain, in particular seeing evidence for gradi-
ence in multiple ways: finer-grained semantic functions that
show gradient patterns across languages, and gradient rela-
tionships (distances) among the semantic functions. We thus
show that using automatic methods on this complementary
data source can contribute to more cognitively-plausible se-
mantic representations, by fleshing out expert analysis of sec-
ondary sources with usage data that reflects the discourse use
and frequency of the semantic functions.

Indefinite pronouns
Indefinite pronouns, such as somebody, anything, and
nowhere, are used to express indefinite reference – i.e., intro-
ducing a discourse referent which the speaker typically does
not intend the hearer to uniquely identify. Reference may
be to an entity from any of the major ontological categories
such as PEOPLE, THINGS, and PLACES. Haspelmath (1997)
outlines 9 semantic functions that indefinite pronouns can ex-
press; see Table 1. To identify the set of functions, he draws
on semantic motivation – whether a coherent functional defi-
nition can be established for each. Importantly, linguistic ev-
idence is considered for deciding whether two related func-
tions should be merged or split: specifically, if at least one
language has a term that can be used for only one of the func-
tions – i.e., if there is a language with a term that does not
co-categorize the two – then the two functions are considered
distinct.

The identified semantic functions are analogous to stim-
uli in an elicitation task, although at a coarser grain: each
function represents a set of situations that are co-categorized.
Like elicitation data, terms in each language are associated
with each of the semantic functions they can express, and
patterns of crosslinguistic co-categorization can be revealed.
These patterns can be visualized in a graphical semantic map:
functions (nodes) are connected by edges such that connected
subgraphs correspond to sets of functions that can be co-
categorized. The semantic map of Haspelmath (1997), in
Fig. 2, shows that, in both example languages, the terms carve
out different, but in both cases connected, partitionings of the
graph.

Figure 2: Semantic map from Haspelmath (1997) with En-
glish and Nanay terms.

Despite the insight they provide, semantic maps do not
capture certain properties of the underlying semantic space
that are important to semantic representation. Two related is-
sues in particular motivate our work here. First, there is no
indication of the distance in semantic space that an edge in
the map represents, although it is likely that some functions
connected to a node may be closer or further semantically
than others. For example, although IN connects to both DN
and CP by a single edge in Fig. 2, it is likely more similar
to DN. Second, the use of a single node for a function as-
sumes (instrumentally) that functions are internally homoge-
neous. However, functions may display a gradient internal
structure – e.g., some cases of DN may be ‘better’ instances
than others. Both of these factors may contribute to the cogni-
tive plausibility of a semantic space for use in computational
modeling.

As discussed above, parallel usage data has the potential to
address these issues by providing a more continuous repre-
sentation than secondary data. Actual usage data may reveal
how related Haspelmath’s various functions are, and how ho-
mogeneous they are internally. Such insights are crucial for
the use of semantic-typological analyses in cognitive science,
e.g., in modeling the acquisition of such terms.

Method: Translations from Parallel Text
Our goal is to construct geometric semantic spaces through
the use of parallel (translated) usage data. We draw on the
patterns of how terms are translated across many languages to
find co-categorization patterns, which can then be used to de-
rive a semantic space. We propose an automatic method that
extracts the translations of each occurrence of a seed word
(here, English indefinite pronouns) in every other language
in our corpus. These extracted arrays of translations form a
vector of terms across languages analogous to those obtained
through elicitation data (cf. Fig. 1), and can be used to con-
struct a geometric space.
Corpus and language sample. We extracted our
data from a sentence-aligned parallel corpus of subti-
tles of films and TV series (Lison & Tiedemann, 2016;
www.opensubtitles.org). We selected the 30 (out of 65)
languages across 9 language families for which the most
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en

nl hieriser

someone

is here

is hier

neko

alguien

hay

someone

je tamo

iemand

b

a

c

d Utterance en nl es sr
someone is here someone iemand alguien neko
anyone got 5 billion? anyone iemand alguien neko
....

is

iemand

here

en

es alguienhay

someone is

aquí

here

en

sr jeneko

someone is

tamo

here

aquí
er

is here

is hier

neko

alguien

hay

someone

je tamo

iemand

aquí

nl hieriser iemand

es alguienhay aquí

sr jeneko tamo

nl hieriser iemand

es alguienhay aquí

sr jeneko tamo

Figure 3: Extraction of situation vectors; see text.

parallel data was available,1 and extracted all utterances for
which we found a translation into all languages.
Identifying translations across languages. We first ob-
tained automatic alignments of translated words for each pair
of languages in our corpus, using the HMM implementation
of Liang, Taskar, and Klein (2006) with the default settings;
see Fig. 3(a) for an example with four languages. From the
pairwise alignments, we created a graph, per utterance, with
edges between all words that are aligned with each other,
(Fig. 3(b)). From this graph, we extracted the subgraphs that
were densely connected (i.e., for which the words are often
mutually aligned),2 and select those subgraphs that contain
one of the indefinite pronouns in English (Fig. 3(c)). Each
such subgraph is then linearized to form the vector represen-
tation of a situation (Fig. 3(d)). The Table in Fig. 3(d) illus-
trates the correspondence to semantic typology: Every row
contains a ‘stimulus’, for which the various languages present
elicited terms (cf. the table in Fig. 1). Note that sometimes re-
sponses are missing, or multiple words form the response.
Extraction of indefinite pronouns. We focus on the two
ontological categories PEOPLE and THINGS; other categories
(e.g., TIME and PLACE) were too infrequent. To identify
indefinite pronoun usages in our corpus, we extracted utter-
ances for which the English expression consists of any of the
9 words combining some-, any-, no- with -thing, -body, -one
(cf. rows in bold in Fig. 3(d)). From among these situations,
we selected only those that included an expression from each
of at least 25 languages, to ensure sufficient linguistic varia-
tion for each situation.3 The resulting data consisted of 698

1The set of languages is (per language family, in ISO 639-2):
(Semitic) ar, he; (Indo-European) bg, bs, cs, da, de, el, en, es, fr, hr,
it, nl, no, pl, pt, ro, ru, sl, sr, sv; (Finno-Ugric) et, fi, hu; (Austrone-
sian) id; (isolate) ja; (Turkic) tr; (Vietic) vi; (Sino-Tibetan) zh.

2We used k-clique percolation (Palla et al., 2005) with k = 9.
3We used a manually compiled stemming dictionary to lemma-

tize the words and correct spelling and alphabetic variation.

situations – i.e., exemplars of indefinite pronoun usage repre-
sented by vectors of terms in 25-30 languages.
Annotation. In order to compare the patterns in our usage
data to Haspelmath’s (1997) analysis, it was necessary to
identify the semantic function (see Table 1) of the indefinite
pronoun usages in each of our situations. To do so, three an-
notators (the authors) labelled the English indefinite pronoun
in each situation with its Haspelmath function. Annotators
were provided the sentence containing the pronoun, as well
as some context before and after. We merged Specific Known
and Specific Unknown into one function called Specific (SP),
given the uncertainty in this task of judging whether some-
thing is known to the speaker.4 152 cases consisted of neg-
ative English indefinite pronouns like nothing and no one,
which we automatically marked as DN. On the remaining 546
exemplars, inter-annotator agreement was satisfactory for a
task of this difficulty (pairwise Cohen’s κ = [.84, .80, .79]),
and the majority annotation was used for each situation.
Further experimental set-up. Although the extracted situa-
tions are generally of a high quality,5 sometimes mistransla-
tions are extracted. To reduce noise, we only use those terms
that are statistically significantly associated with at least one
of the annotated functions (using a Fisher Exact test). This
way, low-frequency translations that are dispersed over func-
tions are filtered out. To avoid the risk of overinterpreting
patterns or overtuning models on the basis of a single sample,
we split the data set into a development (dev) and test set. The
examples and patterns reported below come from both the dev
and test set, but quantitative results are provided for the test
set only. We conduct all analyses on PEOPLE and THINGS
separately, because we found in exploratory data analysis
that PEOPLE and THINGS showed differences in their patterns
which have potentially interesting cognitive implications.
The full data set, including stemming dictionary, annotation
schemas, and all software used for the analyses, can be found
at https://github.com/dnrb/indefinite-pronouns

Results
With the extracted situation vectors, we can now study the se-
mantic space derived from parallel usage data, and see how
similar it is to Haspelmath’s (1997) semantic typology based
(primarily) on secondary sources. In particular, we are in-
terested to see where the parallel usage data reveals charac-
teristics of the semantic space not observed in Haspelmath’s
map.

Are all semantic functions equally important?
Table 2 presents the frequency of the semantic functions.
We see that most functions in the center of Haspelmath’s

4Annotation was done for English only. It is possible that
Haspelmath’s functions are not always translated: a conditional may
be translated as an declarative. Being relatively infrequent, we con-
sider these cases noise.

5Evaluating the method on a parallel Bible corpus against a gold
standard of Strong number annotations gives a cluster purity of .89
and a cluster recall of .90.

114



SP NS CD QU IN DN CP FC

PEOPLE .16 .20 .07 .16 .05 .28 .01 .08
THINGS .28 .15 .05 .09 .02 .36 .00 .06

Overall .24 .17 .06 .11 .03 .33 .00 .06

Table 2: Distribution of functions given ontological category.

k = 2 3 4 5 6 7 8 9 10

PEOPLE .20 .25 .41 .35 .34 .34 .32 .30 .32
THINGS .30 .38 .47 .36 .35 .35 .33 .39 .33

Table 3: Adjusted Rand index score for PEOPLE and THINGS
with k-means clustering, given various values of k.

(1997) semantic map are rather infrequent (CD, IN, CP). This
may explain Haspelmath’s observation that, across languages,
there are no terms that solely apply to two functions in the
middle of the map: Languages typically co-categorize infre-
quent functions with one of the more frequent neighboring
functions (e.g., NS or DN). It also explains aspects of the
graphical structure of the map: low-frequency functions are
in the middle of the map because sometimes they share a term
with the left side of the map, and sometimes with the right.

A notable exception is FC, located at the edge of the map
despite its low frequency. This suggests FC is conceptually
different from the other functions (except CP). Many lan-
guages co-categorize FC and universal quantification – unlike
English, which generally uses any- vs. every- respectively.
The use in many languages of a universal quantification term
for the semantic function FC may account for its distinctive
position in the map despite its low frequency.

Are the functions at the right level of granularity?
A second issue worth investigating is whether Haspelmath’s
proposed functions constitute the best way of grouping the
usage data into sets with related semantics: actual usage data
may reveal that the functions are not well discriminable or
have further coherent subdivisions. We explore this through
automatic clustering of the parallel usage data. Each of our
extracted situations is a vector of mutually-translated indef-
inite pronouns (see Fig. 3(d)); together they form a vector
space within which we can measure situation (dis)similarity.
Thus we can determine the optimal partitioning of the data
into clusters and see how well those clusters correspond
to the gold annotation. Here, we use k-means clustering
(MacQueen, 1967), an unsupervised technique that partitions
the data into k clusters. The input for k-means is a distance
matrix between all pairs of situations belonging to either PEO-
PLE or THINGS. The distance d between a pair of situations s,
s′ is given by taking the Jaccard index over the sets of terms6

Tl(s) and Tl(s′) used to express each of s, s′ in each of the
languages l ∈ L, and summing over all languages l:

6We use sets of translated terms, because an indefinite pronoun
in English may be translated to multiple terms in other languages.

Function Evaluation

Cluster SP NS CD QU IN DN CP FC P R F1

1 18 24 6 3 0 2 0 0 .91 .92 .91
2 1 0 2 15 1 4 0 2 .60 .83 .70
3 0 0 1 0 5 27 0 0 .97 .82 .89
4 0 0 0 0 0 0 1 7 .80 1.00 .89

Table 4: Correspondence table for the 8 functions with k = 4
clusters for PEOPLE; rightmost columns present cluster pre-
cision (P), recall (R) and F1 score for every cluster against
function tuples (SP,NS,CD); (QU); (IN,DN); (CP,FC).

d(s,s′) = ∑
l∈L

|Tl(s)∩Tl(s′)|
|Tl(s)∪Tl(s′)|

. (1)

We assess the relative quality of different numbers of clusters
by comparing their fit to the annotations using the adjusted
Rand index (Rand, 1971). Table 3 presents the results.

If Haspelmath’s set of functions is the best way of describ-
ing the data, k-means clustering with k = 8 should be the k
with the highest correspondence to the annotated functions,
partitioning the data into 8 clusters corresponding to the 8
functions. However, with k = 8, a relatively poor Rand index
score is achieved, and rather than aligning with the semantic
functions, the inferred clusters mostly cross-cut them (e.g.,
there are 2 clusters containing many DN). The fact that the
optimal partitioning cross-cuts functions suggests that there
are finer semantic distinctions within the functions that play
out in the way languages label these.

Instead, we find that k = 4 gives the highest correspon-
dence with the manually annotated clusters. The 4 clusters
correspond to 4 sets of related functions: (SP,NS,CD), (QU),
(IN,DN), and (FC,CP); see Table 4. There is some leakage
between the clusters (see the non-boldface numbers in Ta-
ble 4), but the precision, recall, and F scores using these sets
of functions as the target labels for the 4 clusters are very
high, showing these sets of related functions have a clear sim-
ilarity structure.7

These results yield two distinct views of the data. On one
hand, the typological usage data points to more fine-grained
semantic distinctions within some of the 8 functions. On the
other hand, we find semantic similarity between the functions
that reveals a coarser grouping of the functions than is appar-
ent from the semantic map structure of Haspelmath (1997).
These findings point to a key role of gradience in understand-
ing the semantic space of indefinite pronoun usage.

The perspective of a similarity space
The clustering over the parallel usage data suggests more gra-
dience in the semantic space underlying indefinite pronoun
semantics, both within and between functions, than the se-
mantic map of Haspelmath (1997) suggests. We take a more

7These clusters do not completely coincide with the further anal-
ysis of Haspelmath (1997, par. 5.6), but we leave that comparison
for future research.
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(c) Terms for DN THINGS in (left-to-right) Estonian,
Croatian, English, Slovene.

Figure 4: OC plots for indefinite pronouns (best viewed on screen).

direct way of obtaining insight into this space by represent-
ing the similarity between all situations in a low-dimensional
space. Visualizing this space can also be informative about
the use of such a space in a computational cognitive model.

We apply 2-dimensional Optimal Classification (OC), a di-
mensionality reduction technique useful for typological data
(Croft & Poole, 2008). The input for this algorithm is the
list of individual situations, each represented as a set of terms
(across all languages) used for that situation. For each term
w across all languages, OC creates a cutting line in the 2-
dimensional plane, which divides the situations into those ex-
pressed with w and those not expressed with it. This way,
pairs of situations expressed with similar sets of terms will
typically be located close together in the OC space. (In our
data, we have n = 303 cutting lines for PEOPLE and n = 435
cutting lines for THINGS.) Our data yields very high accu-
racy (proportion of situations being on the correct side of the
cutting line, averaged over all cutting lines) of .94 (PEOPLE)
and .95 (THINGS). Because each situation is represented by a
set of terms across all languages, this result shows high agree-
ment among the languages in how they carve up the situations
into functions – although, as we see next, they exhibit gradi-
ence in the gradual shifting of terms for related situations.

The topology of the function annotations in the two-
dimensional space generally follows Haspelmath’s map, de-
spite working from different data and with different methods
(see Figures 4a and 4b): in the top-left corner, we find NS and
SP followed by CD and QU towards the center; the top-right
cluster contains DN and IN, whereas the bottom cluster con-
sists of CP and FC. 8 However, there are several aspects of
the functions that are observable in this continuous space that
are not apparent in the graphical semantic map.

First, we observe that not all functions that neighbor each

8Here and elsewhere, we observe evidence of a finer-grained se-
mantic space for PEOPLE than for THINGS, in line with typological
observations such as Silverstein (1976): The distribution of func-
tions given each ontological category is more spread out for PEOPLE
than for THINGS (Tab. 2), and decreasing the number of clusters to
3 or 2 deteriorates the Rand score less for THINGS than for PEOPLE
(Tab. 3). We note that usage data reveals distinctions that remain
obscured when glossing over ontological categories.

Language
bs hr en sl pt da Functions

išta išta QU
što QU, CDanything

QU, CDkaj
QU, CD, NS

alguma coisa

NS, SPnešto nešto something nekaj algo

noget

NS, SP

Table 5: A gradient for the (SP,NS,CD,QU) region.

other in Haspelmath’s map are equidistant in the OC solu-
tion: QU has an edge to each of NS and IN in the map, but
is closer to the former in the OC projection. The projection
furthermore displays gradience among the functions: some
QU-labeled situations are closer to NS, whereas others are
closer to IN, DN, or FC, suggesting that the functions are
more continuous than the graphical map suggests.

Second, the functions display internal gradience. Fig. 4c
shows terms in four languages for THINGS annotated as DN.
The gradient comes about because of languages whose terms
form supersets of each other: Estonian keegi is a superset of
Croatian nitko, which is a superset of English nobody, which
is a superset of Slovene nihče. Across languages there thus
seems to be agreement about a scale of subtypes of DN, but
languages vary on the placement of the lexical boundaries.

Finally, we find gradients that cross-cut the function
boundaries. Table 5 illustrates a gradient of terms stand-
ing in a superset-subset relation to each other that cross-cuts
the functions SP, NS, CD, and QU. This gradient was ob-
tained by running a one-dimensional OC on the situations
in the (SP,NS,CD,QU) region, which lays out all situations
on one line so as to obtain a maximal accuracy in placing
cutting points for terms. This analysis yields an accuracy of
.96, which suggests that languages strongly agree on having a
single dimension roughly cross-cutting the functions SP, NS,
CD, and QU on which they locate their term boundaries.

Visualizing crosslinguistic usages in a continuous space
gives further insight into the structure of the underlying se-
mantic domain. The observed gradients call for further anal-
ysis and provide predictions for behavioural experiments. In
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particular, if the patterns of crosslinguistic variation are in-
dicative of cognitive distinctions in semantic space, we expect
to see evidence in both adult behaviour and developmental
patterns in children.

Conclusions
Crosslinguistic patterns of co-categorization yield insight into
the semantic space underlying linguistic usages. We deploy
parallel usage data in the form of movie subtitles to study the
patterns of crosslinguistic variation in the categorization of
indefinite pronouns. We find the cross-linguistic usages dis-
play a more fine-grained pattern than suggested by a study on
the basis of (primarily) secondary data (Haspelmath, 1997).
In particular, the frequencies of the identified semantic func-
tions vary, the distances between the functions are not uni-
form, and within functions, coherent subgroupings could be
established. Our findings suggest the parallel usage data cap-
tures something about the semantic space that is not repre-
sented in the more static secondary sources.

The current method can easily be applied to other domains,
but also involves several restrictions. Using pairwise align-
ments on parallel texts makes the approach computationally
intractable beyond 30–50 languages, as a set of alignments
has to be extracted for every language pair. We are looking
into methods to circumvent this aspect of the method. The
inability of the model to go ‘below’ the word level is also
limiting, as many well-established patterns of cross-linguistic
semantic variation involve morphology (e.g., case marking,
nominalization patterns).

Furthermore, it is crucial to establish the cognitive plausi-
bility of the semantic similarity space independently by see-
ing if it can predict behavioral experiments such as word us-
age similarity judgments, or developmental patterns. For ex-
ample, we must explore whether, as for space and color, the
semantic space for indefinite pronouns predicts aspects of the
acquisitional pattern of these words: Is English any-, for in-
stance, hard to acquire because it covers a large, rather dis-
junct region of the semantic space? Are indefinite pronoun
systems in languages that follow the typologically more com-
mon patterns easier to acquire for first and/or second language
learners? We hope these automatic methods for using parallel
text in semantic typology can help us further understand pat-
terns of learning and usage in abstract domains of meaning.
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Figure 1: Variants of the relative FoR for frontal settings 
(according to Levinson, 2003); L/R: left/right; F/G: 
figure/ground; V: viewpoint of the observer. 

(C) Rotation 

The ball is in front 
and to the left of 

the box. 

R G L 

L R 

F 

V 

(A) Translation 

The ball is behind 
and to the right of  

the box. 

L R 

L R 

G 

F 

V 

(B) Reflection 

The ball is in front 
and to the right of 

the box. 

L G R 

L R 

F 

V 

How Relative is the Relative Frame of Reference? 
Front and back in Norwegian, Farsi, German, and Japanese 

 
Sieghard Beller (sieghard.beller@uib.no) 
Andrea Bender (andrea.bender@uib.no) 

Department of Psychosocial Science, University of Bergen 
N-5020 Bergen, Norway 

 
 

Abstract 

Across languages, people differ in which of the three basic 
frames of reference (FoRs) they prefer when describing 
spatial relations: absolute, intrinsic, or relative. But how much 
variation is there with regard to the relative FoR, which is 
anchored in the observer and occurs as one of three variants? 
Is the reflection variant canonical, as assumed by many 
scholars? And how are objects in a person’s back referred to: 
by turning towards the objects? Results from two studies, one 
with speakers of Norwegian and Farsi, the other with speakers 
of German and Japanese, reveal that reflection is not 
canonical, but that translation and even rotation are used as 
well. In addition, turning towards objects arranged in a 
person’s back is very rare; what people use instead is a 
backward projection strategy that goes without rotation. 

Keywords: Spatial cognition, frames of reference (FoR), 
relative FoR, cross-linguistic study. 

Introduction 
“Where is the ball in relation to the box?” In order to answer 
questions like this, we have to establish a coordinate 
system—a frame of reference (FoR)—that allows us to 
derive a specific response such as “The ball is in front and 
to the right of the box.” Across languages, people differ in 
the frame of reference they preferentially adopt. Variation 
has been documented especially with regard to which of the 
three basic FoRs is used: the absolute FoR anchored in a 
superordinate field like the cardinal directions, the intrinsic 
FoR anchored in a reference object like an arrow, or the 
relative FoR anchored in an observer (Levinson, 2003; 
Majid et al., 2004; Senft, 1997). Less attention has been 
devoted to the variants of the relative FoR, despite the fact 
that variation in relative referencing has been known since 
Hill’s (1982) comparison of English and Hausa speakers.  

This paper adds to a survey exploring variation in the use 
of the relative FoR in different languages (for results on 
German, English, Mandarin Chinese, and Tongan, see 
Beller et al., 2015), by extending the set of sampled 
languages. In two studies, one with speakers of Norwegian 
and Farsi, and another with speakers of German and 
Japanese, we inspected which variant of the relative FoR 
speakers of these languages apply in frontal and dorsal tasks 
with objects laid out in front of or behind an observer. 

Variants of the Relative Frame of Reference 
Frames of reference are used to describe the position of a 
figure object F in reference to a ground object G. In contrast 
to the absolute and intrinsic FoR, the relative FoR requires 

to do so from an observer’s viewpoint V. As objects can be 
in front of or behind the observer, the distinction between 
frontal and dorsal is indispensable. 

FoRs in Frontal Settings 
Constructing a relative frame of reference requires the 
coordinate system that is originally anchored in the 
observer—his or her FRONT/BACK and LEFT/RIGHT—to be 
projected onto the ground object G. In frontal settings, this 
can be done in three ways (Levinson, 2003): The coordinate 
system can be translated into G so that FRONT is assigned in 
gaze direction of the observer to the space beyond G (see 
Figure 1A). It can be reflected in G so that FRONT is 
assigned to the space between the observer and G (Figure 
1B). In both cases, assignment of LEFT and RIGHT remain 
unaffected. Finally, it can be rotated in G by 180°; in this 
case, FRONT is, again, assigned to the space between the 
observer and G, but assignment of LEFT and RIGHT are 
swapped (Figure 1C). 

Of these variants, reflection is often assumed to be the 
canonical one (Clark, 1973; Grabowski & Miller, 2000; 
Janzen et al., 2012). In our cross-linguistic survey (Beller et 
al., 2015, cf. Table 3, p. 11), such a preference for reflection 
was found most strongly among speakers of German (89%) 
and English (73%), whereas speakers of Mandarin Chinese 
and Tongan clearly preferred translation (64%) over 
reflection (24%). The rotation variant was chosen rarely in 
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all four languages. Extending our survey to other languages 
so as to broaden our knowledge with regard to intra- and 
cross-linguistic variation in the use of these variants of the 
relative FoR is the first aim of the current paper. 

FoRs in Dorsal Settings 
Research on the relative FoR has focused nearly exclusively 
on how people describe relations of objects that are laid out 
in front of an observer—for obvious reasons the most 
natural situation—although adopting someone’s perspective 
already includes the distinction between what is in front of 
and what is behind that person. But how, if at all, would 
objects laid out behind that person be referred to? 

One hypothesis put forward by Grabowski and Miller 
(2000) is that people refrain from referring to objects in 
their back. Rather, they turn around toward the objects, 
thereby converting the dorsal into a frontal setting, and then 
employ the FoR they prefer for frontal settings. However, 
the first studies on dorsal references (Beller et al., 2015, 
2016) provided only weak evidence for this turn hypothesis. 
Despite participants’ preferences for reflection or translation 
in frontal tasks, only a few responses in dorsal tasks were in 
accordance with the corresponding strategies turn-reflection 
and turn-translation. What most participants seemed to do 
instead was a kind of backward projection of the observer’s 
coordinate system (without rotating the observer’s perspec-
tive) either in a back translation version (Figure2A) or a 
reflection “with eyes in the back of one’s head” (Figure 2B).  

For logical reasons, both of these backward projection 
strategies lead to the same responses as the turn-rotation 
strategy (turn the perspective and apply the rotation variant 
to the resulting frontal setting; see Figure 2C). The reasons 
for why we assumed that the participants applied backward 
projection were twofold: First, these strategies do not 
necessitate two laborious (mental) rotations, and second, 
participants applied the rotation variant (Figure 1C) only 
rarely in frontal tasks—why should they do so in dorsal 

tasks? Exploring backward projection further, as compared 
to the turn-hypothesis, is the second aim of the current 
paper. 

Study 1 
The first study was implemented as a paper-and-pencil 
survey that followed the design described in Beller et al. 
(2015) and included two languages from the Indo-European 
language family: Norwegian from the Germanic branch and 
Farsi from the Indo-Iranian branch. 

Methods 
Materials. The materials were the same as in Beller et al. 
(2015): twelve items in each of two conditions (frontal and 
dorsal), six with a non-oriented ground object (three 
depicting inanimate objects, three depicting living beings) 
and six with an oriented ground object (again three 
depicting inanimate objects and three depicting living 
beings). Participants were asked to indicate for each item 
the relation between figure F and ground G from the 
viewpoint V of a depicted observer, by choosing one of 
eight options (in front of, behind, to the left of, to the right 
of, and combinations of in front of/behind and to the 
left/right of). Four example items are shown in Figure 3. All 
materials were translated into Norwegian and Farsi by 
bilinguals. 

“The ball is in front and to the right of the box.” 

Figure 2: Three variants of the relative FoR for dorsal 
settings (Beller et al., 2015); BP: backward projection. 
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Figure 3: Four example items (Beller et al., 2015, p. 6). 
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Participants. The Norwegian sample consisted of 64 
students from the University of Bergen (51 female; age M = 
23.3 years, SD = 5.3), and the Farsi sample of 130 
participants, most of them students from the Universities of 
Teheran, Schiraz, and Ghazwin, but also some non-students 
(88 female; age M = 26.8 years, SD = 15.9). 

 
Design and Procedure. For each of the two conditions 
(frontal vs. dorsal), two item orders were prepared: The first 
one started with the six non-oriented items (in a random 
order) and then proceeded with the six oriented items (also 
in a random order); the second order was the exact reversal 
and thus started with the six oriented items. The eight 
response options were always presented in the same order. 
A between-subjects design was used. Participants were 
assigned randomly (but equally) either to the frontal or to 
the dorsal condition; the two item orders per condition were 
balanced in each subgroup. Participants were tested 
individually or in small groups, and were instructed to work 
on all tasks in the given order. 

Results and Discussion 
In the frontal condition, we distinguished between the three 
variants of the relative FoR: translation, reflection, and 
rotation (Figure 1). In the dorsal condition, we distinguished 
between three variants according to the turn-hypothesis: 
turn-translation, turn-reflection, and turn-rotation, the latter 
one being equivalent to two backward projection strategies, 
translationBP and reflectionBP (Figure 2). For items with an 
oriented ground object, we also considered the intrinsic 
FoR. 

In a first step, we checked the two samples for differences 
in the mean number of responses that are not covered by one 
of these FoRs. Overall, this number of “unexplained 
responses” was fairly low (M = 8.6%; Table 1). An analysis 
of variance with two between-subjects factors, language 
(Norwegian vs. Farsi) and perspective (frontal vs. dorsal), 
and one within-subject factor ground object (non-oriented 
vs. oriented) indicated no significant effects (all F(1,190) < 
1.53; p ≥ .218; η2 ≤ .008), suggesting that neither the 

unusual dorsal perspective nor the type of ground object 
influenced the coverage of responses by the FoRs under 
scrutiny in the two samples alike. 

In the next step, we determined whether the individual 
participants adopted one FoR consistently and, if so, which 
one. To this end, we counted for each participant how often 
each FoR variant could be coded in each of the four blocks 
of six items (frontal non-oriented, frontal oriented, dorsal 
non-oriented, and dorsal oriented). For example, if 
reflection could be coded on 6 out of the 6 frontal oriented 
items, consistency would be 100% for reflection; if 
reflection could be coded on 5 items and translation on 1 
item, consistency would be 83.3% for reflection and 16.7% 
for translation; etc. We then used the maximum of these 
values (among the different FoR variants) as estimate of a 
participant’s consistency in FoR adoption across the items 
of the respective block (100% and 83.3% in the examples). 
Mean consistency values are displayed in Table 2.  

Overall, FoRs were adopted with a mean consistency of 
80.1% across the two samples. In other words: Participants 
adopted their individually preferred FoR in 4.81 of 6 items 
of a block. An analysis of variance with two between-
subjects factors, language (Norwegian vs. Farsi) and 
perspective (frontal vs. dorsal), and one within-subject 
factor ground object (non-oriented vs. oriented) indicated 
three significant effects: Consistency was generally higher 
for the Norwegian speakers than for the Farsi speakers 
(84.9% vs. 75.3%; F(1,190) = 11.3; p = .001; η2 = .056); it 
was higher for non-oriented items than for oriented items 
(85.1% vs. 75.2%; F(1,190) = 31.8; p < .001; η2 = .144); 
and there was an interaction of the two factors language × 
ground object (F(1,190) = 5.6; p = .019; η2 = .029). Thus, 
the possibility of applying an additional FoR (here: 
intrinsic) was a source of inconsistency, but to a different 
extent in the two languages. Interestingly, the unusual dorsal 
perspective per se did not matter: Consistency did not differ 
significantly between the frontal and the dorsal condition 
(84.4% vs. 79.8%; F(1,190) = 0.045; p = .832; η2 < .001). 

Finally, we identified each participant’s preferred FoR as 
the one FoR variant that was coded (a) more often than all 
others and (b) in at least 4 out of the 6 items of a block (i.e., 

Table 1: Frequency (%) of responses that are not covered 
by one of the FoRs under scrutiny in Study 1 and Study 2. 

S
tu

dy
 1 

Type of item Norwegian Farsi 

Frontal, non-oriented 5.7 10.6 
Frontal, oriented 8.3 10.1 
Dorsal, non-oriented 7.8 10.7 
Dorsal, oriented 7.3 8.6 

S
tu

d
y 

2
 Type of item German Japanese 

Frontal, non-oriented 3.7 3.7 
Frontal, oriented 4.8 3.5 
Dorsal, non-oriented 4.0 2.6 
Dorsal, oriented 4.2 3.5 

Table 2: Individual consistency in FoR adoption (in % of 
items) in Study 1 and Study 2. 

S
tu

dy
 1 

Type of item Norwegian Farsi 

Frontal, non-oriented 88.5 79.5 
Frontal, oriented 85.4 68.2 
Dorsal, non-oriented 87.0 85.2 
Dorsal, oriented 78.6 68.5 

S
tu

d
y 

2
 Type of item German Japanese 

Frontal, non-oriented 93.5 87.3 
Frontal, oriented 89.8 82.1 
Dorsal, non-oriented 92.6 90.7 
Dorsal, oriented 91.2 83.9 
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with a consistency of ≥ 66.7%). Participants’ preferred FoRs 
are presented in Table 3. Log-linear analyses of FoR 
preferences revealed differences between the two languages 
for the two blocks of frontal items (non-oriented: G2 = 12.7; 
df = 3; p = .005; oriented: G2 = 33.7; df = 4; p < .001), and 
for the block of oriented dorsal items (G2 = 8.9; df =2; 
p = .012), but not for the block of non-oriented dorsal items 
(G2 = 4.7; df = 3; p = .194). 

If adopting the intrinsic FoR was possible, some 
participants preferred this FoR1, particularly in the Farsi 
sample (mean percentage across all items with an oriented G 
for Norwegian: 4.7%; Farsi: 19.2%). Other participants 
seemed to change their referencing strategy item-
specifically, as indicated by the increased number of 
participants with no clear preference for any FoR variant as 
compared to the items with a non-oriented ground object. 

Among the variants of the relative FoR for frontal tasks, 
both translation and reflection were adopted, but to a 
different extent in the two samples. The reflection variant 
prevailed most strongly among the Norwegian speakers 
(mean percentage across all frontal items for Norwegian: 
71.9%; Farsi: 28.8%), while translation was preferred by a 
substantial proportion of speakers in both samples 
(Norwegian: 18.8%; Farsi: 23.5%); the rotation variant, in 
contrast, was confined to some Farsi speakers (7.6%). 

Among the variants of the relative FoR for dorsal tasks, 
one variant clearly stood out, namely the one that is indi-
cative of the application of backward projection and turn-
rotation (Figure 2). Its frequency (mean percentage across 

                                                           
1 Inspecting the oriented items with inanimate objects versus 

living beings indicated no differences in how often the intrinsic 
FoR was applied. The two types of items were therefore pooled. 

all dorsal items for Norwegian: 76.6%; Farsi: 61.7%) 
approximates the sum of translation, reflection, and rotation 
from the frontal tasks. But since the factor perspective was 
implemented between-subjects, the frontal and dorsal data 
cannot be related to one another on an individual basis, 
which would have provided a stronger argument in favor of 
this correspondence. In either case, the two FoR variants 
predicted by the turn-hypothesis—turn the view towards the 
objects and then apply the FoR preferred for frontal settings 
(i.e., reflection or translation)—were adopted very rarely. 

In sum, Study 1 demonstrated that the reflection variant of 
the relative FoR is not canonical. While being the most 
frequent FoR in frontal tasks, the translation variant is 
adopted as well, and some participants even adopted the 
rotation variant. Participants’ dorsal references suggested 
backward projection as the main strategy, but the data are 
not fully conclusive due to the between-subjects design. 

Study 2 
In order to allow us to relate a participant’s referencing 
preference in dorsal tasks to that in frontal tasks, the second 
study included perspective (frontal vs. dorsal) as a within-
subject factor. The study was implemented as an online 
survey and compared two languages from different language 
families: German, another Germanic language, and Japanese 
from the Japonic language family.  

Methods 

Materials. The items were the same as in Study 1. The 
materials were translated from German into Japanese by 
bilinguals and were implemented as a web-based online 
questionnaire. 

Table 3: Preferred FoR (in %), adopted in at least 4 out of 6 items of a block (frontal non-oriented, frontal oriented, dorsal 
non-oriented, and dorsal oriented) in Study 1 and Study 2. 

 Study 1  Study 2 

 Non-oriented G Oriented G  Non-oriented G Oriented G 

FoR Norwegian Farsi Norwegian Farsi  German Japanese German Japanese 

Frontal items (N = 32) (N = 66) (N = 32) (N = 66)  (N = 140) (N = 109) (N = 140) (N = 109) 

Intrinsic n.a. n.a. 3.1 19.7  n.a. n.a. 2.9 4.6 
Translation 21.9 28.8 15.6 18.2  7.1 48.6 4.3 45.9 
Reflection 71.9 40.9 71.9 16.7  88.6 36.7 85.0 28.4 
Rotation — 10.6 — 4.5  0.7 1.8 — 0.9 
No preference 6.3 19.7 9.4 40.9  3.6 12.8 7.9 20.2 

Dorsal items (N = 32) (N = 64) (N = 32) (N = 64)  (N = 140) (N = 109) (N = 140) (N = 109) 

Intrinsic n.a. n.a. 6.3 18.8  n.a. n.a. 3.6 6.4 
Turn-translation 3.1 — — —  — 1.8 — 2.8 
Turn-reflection 3.1 — — —  5.7 2.8 6.4 2.8 
TranslationBP/reflectionBP/turn-rotation 81.3 82.8 71.9 40.6  88.6 89.0 85.7 78.9 
No preference 12.5 17.2 21.9 40.6  5.7 6.4 4.3 9.2 

Note. BP: backward projection; n.a.: not applicable; modal response printed in bold face. 
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Participants. The German sample consisted of 140 student 
and non-student participants (105 female; age M = 27.3 
years, SD = 10.9), and the Japanese sample of 109 student 
and non-student participants (64 female; age M = 28.5 
years, SD = 10.4, with 15 not indicating their age). 

 
Design and Procedure. The two perspectives (frontal vs. 
dorsal) were implemented within-subject. Which came first 
was assigned randomly for each participant. Within each 
perspective, non-oriented and oriented items were presented 
in blocks, and within each block in random order. 

Results and Discussion 
The data were analyzed in the same way as in Study 1. In 
the first step, we checked the two samples for differences in 
the mean number of responses that are not covered by one 
of the FoRs under scrutiny. Overall, this number of 
“unexplained responses” was very low (M = 3.7%; Table 1) 
and lower still than for Norwegian and Farsi. An analysis of 
variance with the between-subjects factor language 
(German vs. Japanese) and two within-subject factors, 
perspective (frontal vs. dorsal) and ground object (non-
oriented vs. oriented), indicated no significant effects (all 
F(1,247) < 1.9; p ≥ .171; η2 ≤ .008). Neither the unusual 
dorsal perspective nor the type of ground object influenced 
the coverage of responses by the FoRs under scrutiny in the 
two samples alike. 

Then, we checked how consistently each FoR variant was 
adopted. Overall, FoRs were adopted with a mean 
consistency of 88.9% across the two samples (Table 2). In 
other words: Participants adopted their individually 
preferred FoR in 5.33 of 6 items of a block. An analysis of 
variance with the between-subjects factor language 
(German vs. Japanese) and two within-subject factors, 
perspective (frontal vs. dorsal) and ground object (non-
oriented vs. oriented), detected the same three effects as in 
Study 1: main effects of language and ground object, and an 
interaction of the two factors. Consistency was higher for 
the German speakers than for the Japanese speakers (91.8% 
vs. 86.0%; F(1,247) = 15.2; p < .001; η2 = .058). It was also 
higher for non-oriented items than for oriented items (91.0% 
vs. 86.8%; F(1,247) = 32.2; p < .001; η2 = .115), indicating 
again that the possibility of applying the intrinsic FoR was a 
source of inconsistency, but to a different extent in the two 
languages (as reflected in the interaction; F(1,247) = 5.1; 
p = .024; η2 = .020). And, as in Study 1, the unusual dorsal 
perspective per se did not matter: Consistency was nearly 
the same for the frontal items as for the dorsal items (88.2% 
vs. 89.6%; F(1,247) = 2.258; p = .134; η2 = .009). 

Participants’ preferred FoRs are shown in Table 3. Log-
linear analyses of FoR preferences indicated differences 
between the two languages for the same three item blocks as 
in Study 1: for the two blocks of frontal items (non-oriented: 
G2 = 78.3; df = 3; p < .001; oriented: G2 = 96.0; df = 4; 
p < .001), and for the block of oriented dorsal items 
(G2 = 10.4; df =4; p = .034), but not for the block of non-
oriented dorsal items (G2 = 4.6; df = 3; p = .201). 

If adopting the intrinsic FoR was possible, again some 
participants preferred this FoR (mean percentage across all 
items with an oriented G for German: 3.2%; Japanese: 
5.5%), but less so than in the Farsi sample. Some par-
ticipants also seemed to change their referencing strategy 
item-specifically, as indicated by the increased number of 
participants with no clear preference for any FoR variant as 
compared to the items with a non-oriented ground object. 

Among the variants of the relative FoR for frontal tasks, 
translation and reflection were preferred most often, but 
again to a different extent in the two samples. The reflection 
variant prevailed most strongly among the German speakers 
(mean percentage across all frontal items for German: 
86.8%; Japanese: 32.6%). This finding replicates data from 
a German sample collected with a paper-and-pencil 
questionnaire (Beller et al., 2015), thereby validating the 
methodological change to an online assessment (see Beller 
et al., 2015, 2016, for a broader discussion of the paper-
pencil assessment and other methodological issues). In 
contrast, the translation variant prevailed among the 
Japanese speakers (German: 5.7%; Japanese: 48.6%). The 
rotation variant was adopted only by very few participants 
(German: 0.4%; Japanese: 1.4%). 

Among the variants of the relative FoR for dorsal tasks, 
the variant indicating the application of backward projection 
and turn-rotation strongly dominated in the two samples 
alike (mean percentage across all dorsal items for German: 
87.1%; Japanese: 83.9%).  

The implementation of perspective as a within-subject 
factor in this study allows us to relate each participant’s 
preference in dorsal tasks to his or her preference in frontal 
tasks and thereby to disambiguate the dorsal response 
(cf., Beller et al., 2016). To this end, we cross-tabulated 
participants’ preferred FoRs for frontal and dorsal tasks 
(summed over non-oriented and oriented item blocks and 
the two samples). The results are reported in Table 4. Of the 
498 preference pairs, 26 (5.2%) were indicative of the turn-
hypothesis (grey cells). Most of these participants adopted 
the turn-reflection variant in line with the overall higher 

Table 4: Preferred FoR in dorsal item blocks depending on 
the preferred FoR in frontal item blocks in Study 2. 

Dorsal  
preference 

Frontal preference 

Translation Reflection Rotation Other 

Turn-translation  3  — —  2 
Turn-reflection  2  20 —  1 
BP/turn-rotation  106BP  278BP 3  40 
Other  8  16 1  18 

N = 498  119  314 4  61 

Note. Data are summed over non-oriented and oriented item blocks and the 
two samples. BP: backward projection (translationBP or reflectionBP); the 
category other includes participants with no preference (from all tasks) and 
with a preference for the intrinsic FoR (from tasks with an oriented G). 
Grey cells: Responses according to the turn-hypothesis. 
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prevalence for reflection. This provides some support for the 
turn-hypothesis. However, the vast majority of pairings (384 
or 77.1%) pointed at backward projection as the prevailing 
strategy (translationBP: 21.3%; reflectionBP: 55.8%). 

In sum, Study 2 corroborated further that the reflection 
variant of the relative FoR is not universally adopted. While 
being the most frequent FoR used for frontal tasks in the 
German sample, the translation variant predominated in the 
Japanese sample. In line with the results from Beller and 
colleagues (2016), participants’ dorsal references indicated 
backward projection as the main strategy. 

General Discussion 
The goal of this paper was to broaden our knowledge 
regarding intra- and cross-linguistic variation in the use of 
different variants of the relative FoR for spatial references in 
frontal and dorsal settings. In particular, we asked two 
questions: Do people have a canonical preference for the 
reflection variant of the relative FoR in frontal settings, as 
assumed by some scholars? And do people (mentally) turn 
around to an object configuration in their back and apply the 
FoR they prefer for frontal settings (turn-hypothesis)? Our 
findings indicate that neither is the case. 

With regard to the first question, we detected a great deal 
of intra- and cross-linguistic variation in people’s use of the 
relative FoR in frontal settings. The speakers of Norwegian, 
German, and Japanese exhibited high intra-individual 
consistency. Almost all participants applied the same variant 
of the relative FoR repeatedly for a whole set of tasks. 
Among the speakers of Farsi, consistency was lower, 
indicating more task-specific references, particularly in 
cases where the intrinsic FoR was also possible. With regard 
to the inter-individual consensus within the samples, we 
observed high consensus among the German speakers (i.e., 
most speakers adopted the same FoR variant as everybody 
else: reflection), moderate consensus among the Norwegian 
and Japanese speakers (some of which preferred the 
reflection variant, others the translation variant), and an 
even weaker consensus among the Farsi speakers (for which 
the data also indicate a rare but consistent use of the rotation 
variant). All in all, reflection and translation were the 
dominant variants of the relative FoR for frontal settings, 
replicating the general pattern found for German, English, 
Mandarin Chinese, and Tongan (Beller et al., 2015). 

In spite of this diversity in frontal tasks, most participants 
converged on the very same response in the dorsal tasks. In 
most cases, this response could be attributed to backward 
projection strategies that are in line with people’s frontal 
preference for translation or reflection, but get by without 
(mental) rotation, and are thus quite adaptive given the fact 
that mental rotation comes with substantial cognitive costs 
(Duran, Dale, & Kreuz, 2011; Shepard & Cooper, 1982). 

Finally, the degree of linguistic variation is revealing in 
yet another regard. The intra-linguistic variation we found 
reflects the fact that spatial prepositions like “in front of” or 
“behind” are inherently underspecified. Nothing in these 
words tells us where exactly FRONT or BACK is. This can 

only be established after having adopted a specific point of 
view, or frame of reference. Yet, which FoR a speaker 
adopts is either due to his or her individual preference or to 
conventions within his or her speech community. Viewed in 
this way, the variation we found is a cultural rather than a 
purely linguistic phenomenon. 
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Abstract 

Theories of language acquisition and perceptual learning 

increasingly rely on statistical learning mechanisms. The 

current meta-analysis aims to clarify the robustness of this 

capacity in infancy within the word segmentation literature. 

Our analysis reveals a significant, small effect size for 

conceptual replications of Saffran, Aslin, & Newport (1996), 

and a nonsignificant effect across all studies that incorporate 

transitional probabilities to segment words. In both 

conceptual replications and the broader literature, however, 

statistical learning is moderated by whether stimuli are 

naturally produced or synthesized. These findings invite 

deeper questions about the complex factors that influence 

statistical learning, and the role of statistical learning in 

language acquisition. 

Keywords: language acquisition; statistical learning; word 

segmentation; meta-analysis 

Introduction 

Statistical learning (SL), the ability to extract statistical 

patterns from a continuous stream of perceptual 

experiences, is of fundamental theoretical importance. The 

first evidence that infants can extract statistical information 

from speech and use it to group syllables was provided by 

Saffran, Aslin, and Newport in 1996. This seminal paper has 

since accrued thousands of citations, and spurred a rich 

literature invoking SL as one foundation for language 

acquisition (see Newport, 2016) as well as perceptual 

learning more broadly (see Aslin, 2017). SL mechanisms 

have furthermore been successfully implemented in a range 

of computational models (e.g., Pearl, Goldwater, & 

Steyvers, 2010; Lloyd-Kelly, Gobet, & Lane, 2016). In 

short, statistical learning abilities are of fundamental, cross-

disciplinary importance to better understand the 

computational foundations of cognition. 

While many would accept some role for SL mechanisms, 

the nature and extent of this role remains contested. The 

more abstract the level of analysis, the more vigorous the 

debate (e.g., can SL yield syntactic ‘rules’?) – but 

inconsistencies emerge even at the level of tracking 

transitional probabilities (TPs) as a means of word 

segmentation. For example, the original effect has failed to 

replicate under certain conditions (e.g., variable word 

length: Johnson & Tyler, 2010; Lew-Williams & Saffran, 

2012) or showed a developmental shift in cue-weighting 

(e.g., Thiessen & Saffran, 2003). Finally, a recent meta-

analysis that examined natural speech word segmentation 

(not determined by TPs) revealed a significant, but small 

effect (Bergmann & Cristia, 2016), leading to concerns 

about the robustness of infants’ word segmentation in the 

absence of TPs.  

In the current paper, we use meta-analysis to quantify and 

contextualize infants' ability to detect regularities in a 

continuous speech stream. To this end, we have aggregated 

all available evidence from the published record and present 

a meta-analysis of infant SL word segmentation studies. A 

meta-analytic approach helps establish the magnitude of an 

underlying effect, something single experiments are not 

equipped to do – and thus has the potential to impact future 

theory- and model-building. On the practical side, effect 
sizes are crucial for determining power of future studies, 

thus increasing the replicability of a line of inquiry and 

reducing the cost (failed studies, or testing too many 

participants) for single researchers.  

We also take several steps beyond quantifying the 

underlying effect: Aggregating over studies allows for the 

identification of moderator variables, which also contributes 

to theory building and may guide future research. We 

examine three potential moderators that are relevant to the 

intersection of theories of infant cognition and statistical 

learning: (1) age, (2) stimulus naturalness, and (3) non-TP 

cues. The justification for investigating these particular 

moderators is described in brief. (1) All studies in the 

current meta-analysis use looking-time preferences. The 

direction of preference (to novel or familiar items) is 

commonly thought to relate to infant age and/or stimulus 

complexity (e.g., Hunter & Ames, 1988). We therefore 

predicted that developmental change might be reflected in a 

shift of preference (e.g., from a preference for words to one 

for non-words), or in a stronger effect over time. (2) Given 

the familiarity preference found in a previous meta-analysis 

on natural speech (Bergmann & Cristia, 2016), we 

hypothesized that it might be that the predominant novelty 

preference established for SL studies since Saffran et al. 

(1996) is grounded in methodological choices. The primary 

difference between these two datasets is in the nature of the 

stimuli: naturally produced vs highly artificial speech 

stimuli. Even within the literature of the current dataset, 

however, stimuli differ along this dimension. We therefore 

compare SL studies with natural and artificial stimuli. (3) 

Finally, a number of studies pitted alternative cues (e.g., 

word-level stress) against TPs. It is therefore important to 
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examine the impact of these conflicting cues on SL 

performance compared to no conflict.  

We also assess publication bias in the literature; a current 

topic that is especially important for infant research, 

considering the high cost of testing participants and the 

consequent use of small samples (Frank et al., 2017).  

 

Methods 

To collect data, we complemented expert lists with two 

google scholar searches. We first surveyed papers citing 

Saffran, Aslin, & Newport (1996) with the word 

“infant/infancy”, but not “visual” in the title. The second 

search aimed to cast a wider net; search terms were now 

“month/s” and not “infant/infancy” or “visual”. These two 

strategies yielded a total of 314 unique papers, which were 

then screened for inclusion. The criteria were: (1) contains 

data on infants from (2) behavioral experiments which 

exposed infants to a familiarization phase of continuous, 

artificial speech and which measured (3) reactions (typically 

looking times to unrelated visual stimuli) to both statistical 

words and non-words (this definition includes part-words).  

The final sample encompassed 20 papers (10 containing 

conceptual replications1) yielding 68 (17 replication) effect 

sizes. Note that one paper often contains several 

experiments (henceforth: samples) that can yield effect 

sizes, for example when testing different age groups. In 

total, we are reporting on experiments testing 1,454 infants 

between 4.5 and 11.1 months. Children were tested in the 

headturn preference procedure (Kemler Nelson, et al., 1995; 

59 samples) or the central fixation paradigm (Graf-Estes & 

Lew-Williams, 2015; 9 samples). 

 

Effect Size Calculation 

All scripts and raw data are available on github.2 The effect 

size we report here is a standardized mean difference of 

infants' looking behavior when listening to statistical words 

versus non-words. Since a preference for non-words 

(novelty preference) is dominant in the literature, positive 

values reflect this direction of the effect. The larger the 

effect size, the bigger the observed standardized mean 

difference between the two types of test trials. In turn, 

negative values indicate that infants demonstrated a 

familiarity preference, i.e. they listened longer to statistical 

words over non-words3.   

                                                           
1 A conceptual replication was defined as a study that did not 

introduce an additional, non TP-based cue, and did not differ from 

the original study protocol in a significant way. For example, 

studies that included a priming phase pre-familiarization, or a test 

phase involving carrier phrases were not included. See Github 

repository for a full list of included papers and the subset of 

conceptual replications.  
2 https://github.com/christinabergmann/StatLearnDB  
3 Given that infant looking-time studies generally accept either 

familiarity or novelty preferences, one might argue that we should 

instead use the absolute value of looking-time difference as 

dependent measure. Indeed, in the studies reported here that pit 

statistical learning against other cues, a switch in looking-time 

We computed Hedges’ g (Morris, 2010), a variant of 

Cohen's d (Cohen, 1988) that is preferred in the case of 

small sample sizes. Effect sizes were calculated based on 

reported test statistics: for 50 samples we could use means 

and standard deviations of test trials; for 17 samples t-values 

for the main comparison were available. To ensure 

consistency in the direction of the effect, we re-coded t-

values as positive when infants listened longer to statistical 

non-words and as negative otherwise. We used standard 

formulae for effect size calculation in within-participant 

designs (Lipsey & Wilson, 2001, when means and standard 

deviations were available; Dunlap et al., 1996, for effect 

sizes based on t-values). One paper reported between-

participant results and we computed effect sizes and 

variances from means and standard deviations accordingly 

(Lipsey & Wilson, 2001). When the same infants 

contributed to multiple effect sizes, we computed the 

median of all critical values to ensure independent samples 

(here, 4 effect sizes were derived from 8 non-independent 

samples). We could not compute effect sizes for 6 additional 

experiments, due to lack of information. 

Only one of the 20 papers included reported correlations 

between test trials, which capture the dependency between 

the two data points stemming from the same participants 

and are necessary for t-value based effect size and general 

effect size variance calculation. We imputed random values 

based on the distribution of correlations reported in a similar 

meta-analysis (Bergmann & Cristia, 2016; updated data 

available via metalab.stanford.edu).4  

 

Meta-Analysis  

To establish the size and variance of the effect, we fitted a 

multivariate random effects model using the R (R core team, 

2016) package metafor (Viechtbauer, 2010). Random 

effects models assume that all effect sizes are sampled from 

a distribution of effect sizes and try to estimate the mean 

and variance of this distribution. In the multivariate model, 

the interdependence between effect sizes from the same 

paper is taken into account, yielding a more robust measure 

                                                                                                   
preference is explicitly predicted. We address these cues and their 

impact in the Complete Literature section of the paper. We would 

also like to address the general idea of absolute values in meta-

analysis, and point to why this method may not be appropriate: 1) 

Theories of infant cognition and language acquisition have long 

sought to motivate the direction of looking-time preference; meta-

analysis offers the potential power to test those theories and 

generate new possibilities when the theory is found to be 

inadequate. 2) Two opposing outcomes should reflect two 

underlying effects. Using raw effect sizes and testing the value of 

proposed moderators is a much more powerful use of meta-

analytic techniques. Furthermore, it is important to recognize that 

allowing for two opposing outcomes, without the ability to predict 

those outcomes, increases the risk for false positives and might 

violate basic assumptions of sampling and null hypothesis 

significance testing.   
4 To assess the impact of this imputation, we re-ran our analysis 

with imputations based on varying means and verified that our 

conclusions about key findings do not change. 
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of the true effect. To investigate the impact of additional 

variables, we introduce moderators to this model. 

Bias  

We tested for bias in the published literature by assessing 

funnel plot asymmetry, which is significant when a portion 

of the expected distribution of effect sizes around the 

weighted mean is missing, yielding an over-representation 

of a part of the underlying effect size distribution. We test 

for asymmetry using the rank correlation test (implemented 

in metafor; Viechtbauer, 2010). 

To further investigate biases, we make use of p-curves to 

test whether there is an excess in p-values just below the 

significance threshold of .05 and if the distribution of p-

values indicates an underlying real effect (Simonsohn, 

Nelson, & Simmons, 2014). To this end, we enter all exact 

t-values that were reported (n = 48 for the whole dataset).  

 

Results 

Original Paper 

We first calculated the effect size and its variance for the 

two experiments reported by Saffran, Aslin, and Newport 

(1996). Hedges’ g was 0.4 (SE = 0.040) for experiment 1 

and 0.38 (SE = 0.041) for experiment 2. According to 

Cohen's (1988) criteria this is a small to medium effect. 

If experimenters base their sample size decisions on this 

effect size, they would have to test 53 infants in a paired 

samples design to achieve 80% power (computed with the R 

package pwr; Champely, 2016). The median sample size in 

our dataset is 22 participants, which would mean a 42% 

probability of obtaining a significant result, assuming the 

effect is of the size reported in the initial study; inversely, 

58% of attempts to replicate this finding should fail.  

 

Conceptual Replications  

First, we report on the experiments that were identified as 

replications of the original report (Saffran et al., 1996). 

Seventeen experiments could be included in these analyses. 

 

Meta-Analytic Effect The variance-weighted effect size 

Hedges’ g is 0.21 (SE = 0.1), which is significantly different 

from zero (95% CI [0.02, 0.4], p = .03) and indicates a 

preference for statistical non-words. Note that this effect is 

smaller than the original report, and typical power is thus 

only 16% with 22 participants. Heterogeneity is significant, 

indicating variance in the data that is not explained by 

random measurement error (Q(16) = 71, p < .001). 

 

Moderator Analysis: Age We find no significant effect of 

the moderator centered age in days (Q(1) = 0.6, β = -0.001, 

SE = 0.0015, 95% CI [-0.004, 0.018], p = .5).  

 

Moderator Analysis: Stimuli Naturalness Studies on SL 

differ in the stimuli; in this dataset, 11 effect sizes came 

from experiments with synthetically generated speech, 6 

were based on experiments with naturally produced speech. 

 
 

Figure 1: Funnel plot (code adapted from Sakaluk, 2016) 

showing standard error of the effect size as a function of 

effect size for 17 conceptual replications. The solid line 

marks zero, the dashed line the effect estimate, and the grey 

line indicates the funnel plot asymmetry. 

 

    Overall, the moderator test is significant (Q(1) = 5, p = 

.023) with a negative estimate (β = -0.35, SE = 0.16, 95% 

CI [-0.66, -0.05]), indicating that infants tend to show less 

of a novelty preference with stimuli produced by human 

speakers. 

Follow-up analyses focusing on subsets revealed that 

synthetically produced stimuli lead to a significant positive 

effect (Hedges’ g = 0.32, SE = 0.05, 95% CI [0.2, 0.4], p < 

.001), while those replications relying on naturally-produced 

speech yield an effect size not different from zero (Hedges’ 

g = 0.02, SE = 0.2, 95% CI [-0.36, 0.41], p = .9). 

 

Publication Bias The funnel plot shown in Figure 1 

displays a greater density of large effect sizes that are of 

low-precision (lower right quadrant) and some effect sizes 

that are of high precision but outside the expected 

distribution (upper left quadrant), which is illustrated further 

by the linear regression line in grey. This line should be 

horizontal in the case of an even distribution around the 

median effect. Nonetheless, asymmetry is not significant 

with Kendall's 𝜏 = .26, p = .15.  
The p-curve analysis based on the 6 significant t-values 

available in this dataset indicates a flat distribution of p-

values, as would be expected when there is no underlying 

effect (Z = -0.43; p = .33). However, these 6 t-values might 

not be representative of the 17 studies analyzed here. 

 

Complete Literature 

Meta-Analytic Effect When taking into account all 68 

independent effect sizes, the meta-analytic effect size 

Hedges’ g is 0.09 (SE = 0.05), which is not significantly 

different from zero (CI [-0.02, 0.19], p = .1). This dataset, 

however, includes a number of samples that explicitly pit 

TPs against other segmentation cues, and thus may be 

expected to lead to different effects represented within the 

same data. Indeed, heterogeneity is significant (Q(67) = 

334, p < .001). We thus analyze each of our moderators. 
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Figure 2: Effect size by participant age for all samples; 

point size is inverse variance. Black refers to synthetic, grey 

to natural speech. The dashed line indicates zero. 

 

Moderator Analysis: Age As described in the introduction, 

more mature infants might show a different direction of 

preference or larger effect. However, we find no (linear) 

effect of age (Q(1) = 0.3, p = .6). Follow-up analyses 

introducing a quadratic term for age confirmed this finding.  

 

Moderator Analysis: Stimuli Naturalness In the full 

dataset, the use of artificial and natural speech is fairly 

balanced, with 38 instances of computer-generated stimuli 

and 30 of human speakers. The moderator test is significant 

(Q(1) = 11, p < .001), and the results mirror our findings in 

the conceptual replication dataset. Figure 2 displays all 

samples, with color encoding natural (grey) vs artificial 

(black) stimuli. The meta-analytic effect for experiments 

with artificial stimuli is significantly above zero (Hedges’ g 

= 0.23, SE = 0.06, 95% CI [0.11, 0.35], p < .001). In 

contrast, natural speech yields an effect not different from 

zero (Hedges’ g = -0.05, 95% CI [-0.2, 0.06], p = .4).  

 

Moderator Analysis: Cue conflict Cues can either be 

absent (n = 20), congruent with TPs (32), or in conflict with 

statistical information (16). Those cues encompass word 

stress (8), sentence level prosody (3), duration (2), intensity 

(2), and co-articulation (1). We predicted that cues that 

coincide with TPs might strengthen the effect, while those 

that conflict with TPs may reveal a different, possibly even 

opposing effect. We therefore introduced a three-leveled 

moderator. This analysis revealed no significant moderator 

effect (Q(2) = 1.9, p = .4).  

Of the 48 samples that involve additional cues, 24 are 

based on the effect of a correlate of word-level stress on 

segmentation. These studies propose that infants will be 

driven to segment speech using a trochaic stress pattern, in 

line with their native language. Artificial languages with 

trochaic stress are therefore congruent with TP cues, and are 

predicted to lead (as a whole) to novelty preferences; those 

with iambic stress conflict with TPs, and are predicted to 

lead (as a whole) to null or familiarity preferences.  

  

Figure 3: Funnel plot of all samples. For details see 

Figure 1. 

 

A moderator analysis restricted to samples with additional 

stress-based segmentation cues fails to confirm this 

prediction (Q(1) = 0.7, p = .4; Cue conflict [iambic stress]: β 

= -0.07, SE = 0.08, 95% CI [-0.23, 0.09]). 

 

Publication Bias Figure 3 shows an even distribution of 

effect sizes around the estimated median, the large spread 

illustrating the unexplained heterogeneity. The ranktest 

indicates no significant asymmetry (Kendall's 𝜏 = -.01, p = 

.9; see also grey linear regression line in Figure 3). 

The p-curve based on 34 significant t-values indicates that 

the data contain evidential value (Z = -2.47; p = .007 for the 

full p-curve) and there is no excess of "just significant" p-

values. Power based on the p-curve is estimated to be 25%.  

Discussion 

In the present paper, we examine infants’ ability to track 

transitional probabilities (TPs) in continuous streams of 

speech. Experiments replicating the original Saffran et al. 

(1996) paradigm reveal a significant and reliable effect 

(Hedges’ g = .21) that is on par with the effect found in the 

meta-analysis of natural speech segmentation (Hedges’ g = 

.22; Bergmann & Cristia, 2016), albeit in the opposite 

direction of preference. An analysis of the whole literature 

fails to find a significant aggregated effect, but is reliably 

influenced by naturally vs. synthetically produced speech. 

There was no evidence for a developmental shift in or 

strengthening/weakening of preference, nor for a consistent 

and reliable role of additional cues. Finally, there is no clear 

evidence for publication bias. Taken together, these results 

invite deeper consideration of several issues in the future 

study of SL and theories of language acquisition, discussed 

in turns below. 

 

One Mechanism Among Many 

The data presented here confirm that infants can track 

statistically defined patterns and use that information to 

segment a stream of speech into word-like units. The 

strength of this capacity, however, may be more fragile than 

expected. How are we to understand these findings, as we 
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continue to examine the import of statistical learning in 

language acquisition?  

When aggregating across different studies, we put to the 

test the idea that researchers can predict the direction of 

infant looking-time preferences. Most popular theories of 

infant preference (e.g. Hunter & Ames, 1988; Kidd, Aslin & 

Piantadosi, 2012; 2014) predict an interplay between 

stimulus complexity and infant readiness to encode this 

complexity. In the case of TP-based word segmentation, we 

therefore expected a linear (or quadratic) shift from 

familiarity to novelty preferences as infants age. We instead 

find a consistent novelty preference. On the other hand, 

there is a significant effect of stimuli naturalness: While 

studies using synthesized speech yield reliable novelty 

preferences, studies using naturally produced speech fail to 

find reliable effects. It is likely that natural speech, even 

when altered to be largely monotonic and lacking syllable 

co-articulation, is more acoustically complex than synthetic 

speech. This is supported by the consistent familiarity 

preference across age groups found by Bergmann & Cristia 

(2016). Infants may thus be more likely to show a 

familiarity preference to natural speech because it may take 

more time to process (and hence habituate to/learn from) 

this complex signal. There is some evidence in the SL 

literature to support this idea: some studies find alternating 

patterns of looking preference by block (e.g. Graf-Estes & 

Lew-Williams, 2015). This, however, is rarely reported. 

Future investigations based on the meta-analytic data 

presented here might pursue the role of stimulus complexity 

by assessing the possible interactions between stimulus 

type, familiarization duration, age, and direction of looking-

time preference.  

Several of the studies in the dataset were designed to test 

the limits of SL. They have been included because in all 

cases infants might have opted to segment the language 

based on TPs alone; we hypothesized that, once taken in 

sum, these studies might have revealed evidence that TPs 

drive segmentation even in the face of alternative cues. This 

did not turn out to be the case – there is no reliable effect for 

segmentation when all studies are considered together. 

Moreover, and surprisingly, there is no pattern that unites 

samples in which cues are congruent with TPs vs those in 

conflict with TPs. These results, in fact, suggest that infants 

only succeed at tracking TPs when presented with artificial 

speech sounds. Given the results of the Bergmann & Cristia 

(2016) meta-analysis, we find this unlikely to reflect the true 

state of the world; rather, we believe it suggests that what 

does drive performance in the relatively simple paradigm of 

TP-based word segmentation remains underspecified and 

requires further theoretical, experimental, and meta-

analytical consideration. Future work extending from the 

current dataset will aim to contribute to this discussion by 

accruing enough data to be able to examine additional 

moderators (e.g. familiarization duration) and outcome 

variables (i.e. effect sizes based on proportions of infants 

showing the effect, as opposed to standardized means of 

looking-time differences).  

Practical Implications  

There are several points to take into account when 

planning future SL word segmentation studies. First, 

assuming an effect size of Hedges’ g = .21, the power of a 

typical 22 sample design is a meagre 16% (note that the p-

curve analysis indicates an overall power level of 25% in 

the significant portion of the studies). A well-powered study 

(80%) would require a sample of 180 infants (142 if the 

direction of the preference can be predicted). This is 

impractical in the current state of infant research which 

relies on single labs conducting such studies (but see the 

alternative collaborative approach outlined by Frank et al., 

2017). We do not intend to suggest that SL is not worth 

investigating – but it does call into question the methods 

with which we choose to investigate it. Power might, for 

example, be increased with more robust methods, calling for 

infant researchers to improve extant paradigms. At this 

point, we are only beginning to have sufficient power to 

fully understand the role of methods, stimuli, and test set-up 

(see e.g., Frank et al., 2017). One possibility lies in adopting 

more implicit measures of SL such as through 

neuroimaging, which may be less susceptible to factors 

affecting the direction of infant looking-preference.  
 

Limitations  

Any meta-analysis is limited by a number of factors, one of 

which is that the analysis is only as good as the data it 

contains. In other words, the studies reported here are those 

that have been published (or made available online) and 

were findable through our search criteria (see supplementary 

material for a full list of included studies). Since the effect is 

small, we expect that a number of failures to replicate the 

original finding are confined to the file-drawer, simply 

because they were underpowered. Further, studies showing 

a familiarity preference might not be published as those are 

not expected in replications of Saffran et al., (1996). 

Including such (presumed) file-drawer studies would make 

our estimates much more reliable and we strongly 

encourage researchers with unpublished work to contact the 

authors and contribute these findings (or any published data 

that may have been regrettably missed).  

A second limitation is missing information. For example, 

in order to compute effect sizes and their variance for 

within-participant designs, it is necessary to know the 

correlation between infants’ preferences for each test-item 

type. We have temporarily imputed these figures based on 

similar data (Bergmann & Cristia, 2016), and ran additional 

analyses to confirm that different values result in similar 

outcomes. However, we hope that authors who can retrieve 

this data will be willing to enrich our dataset, and 

recommend to all to include this information in future 

publications 

 

Conclusion  

This meta-analytic analysis of statistical learning as applied 

to word segmentation has revealed a reliable but small 
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effect. We hope that this paper promotes future research that 

will seek to better characterize infant performance on SL 

tasks, and will thus contribute to stronger theories and 

models of infant cognition and behaviour. 
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Abstract 

The Cone of Direct Gaze (CoD) is described as the range of 
eye gaze deviations over which an observer reports gaze as 
being directed towards them. The CoD has been found to 
narrow with age across childhood (Mareschal et al. 2016). We 
investigated whether reinforcement learning, so critical in 
shaping eye gaze responses in infancy, was able to account 
for the emergence of a CoD and its narrowing in childhood. 
To this end, we adapted Triesch et al.'s (2006) reinforcement 
learning model by (1) defining a topology over object 
locations, and (2) introducing opponent non-linear reward 
profiles for looking at objects and caregivers. In Simulation 1 
we show that these modifications give rise to a functional 
CoD in which there is reduced eye gaze following and 
increased fixation on the caregiver for locations with a small 
caregiver eye gaze eccentricity. In Simulation 2 we show that 
the width of this effect reduces with learning, suggesting that 
developmental decreases in the CoD may be driven by 
reinforcement learning. In Simulation 3 we explore how 
changes in model parameters can explain the CoD in high 
anxiety populations. Finally, the model provides one way of 
unifying the developmental gaze-following and CoD 
literatures, until now considered largely independent. 

Keywords: Reinforcement Learning; Cone of Direct Gaze; 
Gaze Following; Development; Social Anxiety; Autism; 

Background 
The eyes are a key aspect of social intelligence. From the 

eyes one can infer an individual’s emotions or desires, 
which can help guide social behavior, and also learn about 
the surrounding environment (Shepherd et al., 2010). 
Through joint attention, individuals can alert others to 
interesting objects in the environment by guiding their 
attention to that object. Eye gaze following is one form 
(Scaife and Bruner, 1975). In this seminal study the authors 
showed that infants were able to interpret the direction of 
another individual’s eye gaze could and use that as a cue to 
look in the perceived direction. This allows infants to find 
objects of interest in the environment and learn from 
experienced caregivers in a non-verbal manner. Indeed, 
infants have been shown to be sensitive to eye gaze from a 
very young age, appearing to show a preference for eyes 
over other parts of the face (Hains & Muir, 1996). 

Infants with autism have a reduced ability to follow eye 
gaze (Leekam et al., 1997). A recent study by Thorup et al. 
(2016) found that infants at high risk of developing autism 
rely disproportionally on directional information from the 
head as compared to the eyes. This reduced ability to follow 
eye gaze may be a contributing factor to the deficits in 
social cognition and communication associated with autism. 

While joint attention via eye gaze following appears to be 
a crucial tool for the developing infant, the perception of 

eye gaze direction is not uniform across eye gaze deviations. 
The Cone-of-Direct gaze (CoD), is defined as the range of 
gaze deviations that we perceive to be looking directly at us 
(Gamer and Hecht., 2007). The CoD, therefore, has 
implications for how we perceive social situations and our 
interpretation of eye gaze. For example, if a gaze deviation 
falls inside our CoD then we may perceive it as looking 
directly at us and not engage in any eye gaze following 
behavior. 

The perception of whether an individual is looking 
directly at you or not is also of particular interest to those 
investigating social anxiety disorders (Schulze et al., 2013). 
For example, a study by Jun et al. (2013) reported a wider 
CoD for high socially anxious males compared to low 
socially anxious males. Similarly, Gamer et al. (2011) 
conducted a study where participants had their CoD 
measured in response to a virtual head. They found that 
participants with social phobia had a wider CoD in the 
presence of a second virtual head that was directed at them. 
Such studies suggest that a wider CoD is associated with 
social anxiety and may play a role in the disorder. 

Both eye gaze following and the CoD undergo changes 
during development. Eye gaze following emerges and 
improves during infant development (Brooks and Meltzoff., 
2005, Deak., 2015), while the CoD becomes narrower 
during childhood (Mareschal et al., 2016). This equates to 
older children being more reliable at following eye gaze and 
more accurate at interpreting small eye gaze deviations as 
not being directed at them. It is possible that these 
developmental timelines for eye gaze following and the 
CoD are crucial for infant and child development and may 
be altered in clinical disorders such as autism and social 
anxiety. It is therefore important to understand their 
emergence and developmental trajectory.  

Reinforcement learning (Sutton and Barto, 1998) has 
received much interest in recent years and there is now good 
evidence of the neurocomputational basis of reinforcement 
learning (Schultz et al., 1997). It has been proposed as a 
possible mechanism for the emergence and improvement of 
eye gaze following in infants. Triesch et al. (2006), describe 
a reinforcement learning model in which rewards obtained 
by following a caregiver’s gaze led to the reinforcement of 
eye gaze following behavior. According to this account, 
infants associates the rewarding object that the caregiver is 
looking at with the act of following the caregiver’s gaze, 
thereby building a predisposition to follow gaze as a 
consequence of experience rather than an innate behavior. 

While reinforcement learning may account for the 
emergence of eye gaze following, the mechanism behind the 
emergence of a CoD is yet to be elucidated. To what extent 
is the CoD and its development the result of an innate prior 
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and to what extent is it the result of learning and the external 
environment? To investigate such a question, we explored 
whether the reinforcement learning framework could also 
account for the CoD and its changes through development. 
If reinforcement learning where to play a role in the 
emergence of a CoD then it may provide a link between eye 
gaze following and the CoD. It would also highlight 
reinforcement learning as a promising target for the 
therapeutic investigation of disorders such as autism and 
social anxiety. 

Triesch et al.’s (2016) Model 
Triesch et al.’s (2006) model serves as a spring board for 
this study. The model consists of an infant, a caregiver and 
an object (Figure 1). Both the infant and caregiver remain in 
fixed positions while the object is able to move around N 
discrete locations. Two parameters, T_min and p_shift are 
responsible for the movement of the object around these 
locations. T_min specifies the minimum amount of time an 
object must spend in a location, while p_shift specifies the 
probability of shifting to a new location per time step after 
T_min. This shifting of the object also determines the 
shifting of the caregiver’s gaze.  

 

 
Figure 1. Diagram of the gaze following reinforcement 
learning model proposed by Triesch at al. (2006).  

 
When the object moves to a new location the caregivers 

gaze is shifted to a new location. The caregiver can look at 
N+1 potential locations; the N locations the object can 
reside in plus the location of the infant. The parameter 
p_valid determines the probability that the new location of 
the caregiver’s gaze is the same as the new location of the 
object. This probability effectively models two scenarios. 
The first scenario is when the caregiver’s gaze may not be a 
100% predictive of where the object is and the second 
scenario is when the infant’s interpretation of the 
caregiver’s gaze may not be a 100% accurate. The p_valid 
parameter accounts for both of these scenarios because both 
an inaccurate caregiver gaze or a poor interpretation of the 
caregiver gaze will lead to the infant following the 
caregivers gaze to an incorrect location. 

The infant’s behavior is modelled using a reinforcement 
learning framework whereby it is essentially driven to 
maximize rewards in the environment. The infant is broken 
up into two agents, a ‘when’ agent and a ‘where’ agent. The 
when agent is responsible for deciding whether it is time to 
shift gaze on a time step and the where agent is responsible 

for deciding where to shift the gaze. These decisions are 
driven by the rewards encountered in the environment by 
the infant. In this environment the infant has four possible 
views, each of which having an associated reward: 

1. An empty location (Rnothing) 
2. A location containing the object (Robject) 
3. A profile view of the caregiver (Rprofile) 
4. A frontal view of the caregiver as they look 

directly at the infant (Rfrontal) 
For each of these views the infant receives the associated 

reward (Rx) multiplied by a habituation value. This 
habituation value exponentially decreases as the infant 
fixates on a location. The degree of this decrease is 
controlled by the habituation parameter beta ( ). Equally, 
the reward value for locations that have been habituated to, 
but the infant is no longer looking at, recover at the same 
rate. Habituation is important in a reinforcement learning 
framework such as this because otherwise the infant could 
just fixate on a single reward (e.g. the caregiver), and never 
have the motivation to shift gaze. 

Taking the reward structure and habituation into account, 
the state-space of the when agent becomes two dimensional. 
The first dimension is how long has the infant been looking 
at the same location and the second dimension is the reward 
received by the infant. Representing the state-space with 
these two dimensions allows the when agent to decide 
whether to carry on looking at the same location or look 
somewhere else. If the decision is made to look somewhere 
else, then the where agent then specifies the location of the 
new gaze. The state-space of the where agent varies along a 
single dimension, which represents the gaze of the 
caregiver. This corresponds to N+2 states. There are N 
number of states for when the caregiver is looking at each of 
the N object locations. It is these states that the infant uses 
to interpret where the caregiver is looking. Another state is 
for when the caregiver is looking directly at the infant and a 
final state is for when the gaze of the caregiver is unknown 
to the infant. While the action-space of the when agent is 
simply stay or move, the action-space of the where agent is 
of size N+1. The where agent can decide to shift gaze to one 
of the N object locations or to look directly at the caregiver. 

Both the when and where agents learn using temporal 
difference (TD) learning and the SARSA algorithm 
(Rummery and Niranjan, 1994; Equation. 1).  

 
 

  
 

 
 

 
 

 
 

 
In this framework the temporal difference error is calculated 
and the parameter gamma ( ) is used as the discount factor 
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for future rewards. This temporal difference error is then 
used to update the appropriate state-action value and the size 
of this update is controlled by the learning parameter alpha 
( ). A softmax function was used to mapped the state-action 
values to actions. This allowed for a balance between 
exploration and exploitation, determined by the parameter 
tau was responsible for this balance. A larger value of tau 
results in more exploration and less exploitation of the state-
action values. 

Simulation 1 – Emergence of the Cone of 
Direct Gaze 

To investigate whether reinforcement learning could also 
account for the emergence of a CoD, the reward structure of 
Triesch et al.’s model was modified to include a spatial 
topology in the reward space 

Methods 
A CoD is inherently a spatial phenomenon that is assessed 
by having an individual look further and further away from 
a participant until the participant judges the gaze to no 
longer be directed at them. For this reason, the N object 
locations in Triesch et al.’s model were first given a spatial 
location identity based on the gaze deviation required from 
the caregiver to look at them (Figure 2). Values stepped four 
degrees at a time and the N locations were arranged in a 
linear manner. This alteration to Triesch et al.’s model 
allowed for the analysis of gaze following behaviour based 
on the spatial location of the caregiver’s gaze.  

 
Figure 2. Layout of the object locations in the model.  
Next, the model’s reward structure was modified. 

Specifically, the caregiver profile reward (Rprofile) and object 
reward (Robject) were changed in an opposing manner using 
Gaussian functions (Figure 3).  

Various studies have shown that infants prefer direct gaze 
over averted gaze (e.g., Farroni et al., 2002), which in the 
model equates to Rfrontal > Rprofile. In terms of a CoD, small 
eye gaze deviations are likely to be interpreted as being 
direct and so Rprofile should have a higher reward value for 
small eye gaze deviations compared to large eye gaze 
deviations. A Gaussian function was therefore applied to 
Rprofile so that it increased in value as the caregiver looked at 
locations which required smaller eye gaze deviations. 

The opposite transformation was applied to Robject so that 
it decreased in value as the caregiver looked at locations 
which required smaller eye gaze deviations. This aimed to 
represent the fact that objects outside of the infant’s current 

visual field are more likely to be unexpected ( so 
informative) and therefore more rewarding than objects that 
currently reside in the visual field. These two modifications 
to the reward structure had the net effect of increasing the 
caregiver’s relative reward at smaller eye gaze deviations 
and increasing the object’s relative reward at large eye gaze 
deviations. 

 

 
Figure 3. The modified reward structure for the object and 
the profile view of the caregiver.  
 

To evaluate the effect of these modifications 500 
simulations were run for 100,000 learning iterations to 
establish gaze following. After learning, each simulation 
was run for 10,000 iterations without any learning to gather 
stable gaze following measurements, which were then 
averaged across simulations. The model parameters were as 
follows: Number of locations ( N)= 10; Degree step per 
location (D)= 4; Reward for looking at empty location 
(Rnothing ) = 1; Reward for looking at the frontal view of the 
caregiver (Rprofile )=1; Peak Reward for looking at the object  
(Robject )= 1; Sigma of the Gaussian applied to the object 
reward (Sobject )= 9; Sigma of the Gaussian applied to the 
caregiver (Sprofile )=9; Habituation rate (b) =0.5; Learning 
Rate (a) =0.0025; Discount Factor (g) =0.8; Exploration vs. 
exploitation(t)=0.095; Minimum fixation time (Tmin)=4; 
Probability of shifting (pshift)=0.5; Predictiveness of 
caregiver gaze  (pvalid)=0.75. Unless otherwise stated, these 
values were used in all simulations 

Results 
Two measurements were used to assess the effect of the 
modified reward structure. The first measurement was the 
mean time spent by the infant fixating on the caregiver. This 
represented how long the infant looked at the caregiver 
before shifting gaze and served as an indirect measure of the 
probability of shifting gaze. The second measurement was 
the total number of gaze follows made by the infant. This 
was a direct measure of eye gaze following behaviour. Both 
of these measurements were examined as a function of 
object location. 

After implementing the reward structure in Figure 3, the 
mean time spent fixating on the caregiver was larger when 
the caregiver was looking at locations that required small 
eye gaze deviations (Figure 4, left panel). This contrasted 
with the model’s performance when endowed with a flat 
reward profile. In addition, the total number of gaze follows 
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was smaller when the caregiver was looking at locations 
that required small eye gaze deviations (Figure 4, right 
panel). These findings are consistent with the concept of a 
CoD. By fixating on the caregiver for longer during small 
eye gaze deviations the infant acts as if the caregiver is 
looking directly at them and is unable to follow their gaze to 
another location. Similarly, the increased number of eye 
gaze follows for large eye gaze deviations indicates that the 
infant is correctly classifying them as indirect and can 
therefore follow them to the object. These findings suggest 
that a CoD can emerge under a reinforcement learning 
framework where the caregiver and object rewards act in an 
opposing manner. 

 
Figure 4. (Left panel) Mean time spent by the infant fixating 
on the caregiver as a function of the caregiver’s gaze. The 
dotted magenta line represents the results when the object 
reward and caregiver profile reward are not modified, as in 
the original Triesch et al. (2006) model. (Right pane) Total 
Number of gaze follows made by the infant as a function of 
the caregiver’s gaze. The dotted magenta line represents the 
results when the object reward and caregiver profile reward 
are not modified. 

Simulation 2 – Developmental Trajectory of 
the Cone of Direct Gaze 

After confirming that reinforcement learning could lead to 
the emergence of a CoD, we investigated the effect of 
reinforcement learning on the CoD over time to see if it 
could also explain known developmental changes. 

Methods 
In order to get a measure of the width of the induced 

CoD, the mean fixation duration and the number of gaze 
follows were overlaid and their intersects calculated. To 
achieve this, it was first necessary to rescale the feature so 
that both measurements were operating on the same scale 
(Equation 2). Each value had the minimum value subtracted 
and this was then divided by the range of the values. This 
produced a final value that ranged between 0 and 1. 
Gaussian curves were then fit to both feature scaled 
measures, with the mean fixation time requiring a single 
term and the number of gaze follows requiring two terms. 
Finally, the two intersection points of the fitted Gaussian 
curves were calculated and the width between the two points 

was taken as a proxy for the width of the CoD in the model 
(Figure 5). 

Equation 2              
 
To observe the change in this width over time, 500 

simulations were run for 1,000,000 learning iterations. At 
100,000 learning iteration intervals, learning was halted and 
10,000 iterations were run to gather stable gaze following 
measurements. These results were averaged across all 
simulations for each break in the learning process. 

 
Figure 5. Quantification of the width of the CoD effect. After 
feature scaling each measure, Gaussians were fit to both of 
them. The intersect points of these Gaussians were then 
calculated and the horizontal distance between the 
intersection points was taken as a proxy for the width of the 
CoD effect. 

Results 
The CoD width was found to decrease as the number of 

learning iterations increased (Figure 6). This is consistent 
with the finding that the CoD decreases during child 
development (Mareschal et al., 2016) and suggests that 
reinforcement learning may be one explanation for these 
changes. 

 
Figure 6. Change in the width of the CoD effect as a 
function of the number of learning iterations. 

Simulation 3 –High Anxiety Populations 
In this simulation, we explore different parameter values 

in an attempt to capture known differences in the CoD for 
individuals with social anxiety. 
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Methods 
The peak reward value for both the frontal and caregiver 

rewards (Rfrontal, Rprofile) were systematically decreased. For 
each set of Rfrontal and Rprofile values 500 simulations were 
run for 1,000,000 learning iterations. At 200,000 learning 
iteration intervals, learning was halted and 10,000 iterations 
were run to gather stable measurements. These results were 
averaged across all simulations for each break in the 
learning process. The same method was used for decreasing 
values of  (habituation rate) but results were taken at 
100,00 learning iteration intervals. The  values allowed for 
a finer temporal resolution than adjusting the Rfrontal and 
Rprofile values because when Rfrontal and Rprofile were set to a 
value of 0.5 the CoD effect broke down at 100,000 
iterations.  

Results 
Socially anxious individuals have a wider CoD than 

control individuals (Jun et al., 2013; Gamer et al., 2011). 
One possible explanation for this is that they are avoiding 
eye contact (Schneier et al., 2011; Schulze et al., 2013) and 
therefore may have a reduced ‘caregiver’ reward compared 
to non-socially anxious individuals. To test this hypothesis, 
we reduced the rewards associated with the caregiver 
(Rfrontal, Rprofile) and looked at the effect on the width of the 
CoD. Simulations were run for longer than previous 
simulations because the wider CoD for highly anxious 
individuals should be present during adulthood (Jun et al., 
2013; Gamer et al., 2011). Reducing Rfrontal and Rprofile did 
not result in a wider CoD (Figure 7). On the contrary, the 
simulations suggest that after 600000 iterations, there is a 
trend towards a narrower CoD when Rfrontal and Rprofile were 
reduced.  

 
Figure 7. Change in the width of the CoD effect for different 
values of Rprofile and Rfrontal as a function of the number of 
learning iterations.  

 
Another common theory relating to social anxiety is the 

hyper-vigilance-avoidance hypothesis (Horley et al., 2004) 
(Wieser et al., 2009). This hypothesis states that socially 
anxious individuals are hyper-vigilant towards anxiety 
provoking stimuli and tend to engage in avoidance by 
looking away. To investigate whether such a hypothesis 
could account for the wider CoD in socially anxious 
individuals we increased the value of the habituation 
parameter . The goal of this modification was to reduce the 

infant’s gaze fixation time on the caregiver, as would be 
expected from avoidance. Increasing the value of  resulted 
in a progressively narrower CoD effect (Figure 8). This 
effect was evident after around 200,000 learning iterations.  

 
Figure 8. Change in the width of the CoD effect for different 
values of  as a function of the number of learning 
iterations. Larger values of  resulted in a narrower CoD 
effect. 

Discussion 
We have demonstrated that a reinforcement learning 

account of eye gaze following behavior can be extended to 
account for the emergence and development of a CoD. In 
addition, the model also captured the developmental 
narrowing of the CoD (Mareschal et al., 2016). While a 
preference for direct gaze may be present from birth for 
example (Farroni et al., 2002), the fact that the CoD appears 
to narrow under the influence of reinforcement learning, as 
seen in developing children, suggests that at least some 
aspects of the CoD are experience dependent. 

The fact that the CoD appears to be influenced by 
experience and learning poses interesting questions for 
researchers investigating clinical populations of socially 
anxious individuals. Importantly it suggests that a critical 
developmental period may exist that could act as a 
therapeutic window to reduce the occurrence of behaviors 
such as social anxiety. We used the model to investigate 
which aspects of the reinforcement learning framework 
could influence the developmental trajectory of the CoD. 
One theory for why socially anxious people may have a 
wider cone than control individuals is because of their 
aversion to direct eye contact (Schneier et al., 2011; Schulze 
et al., 2013). To probe this further, we reduced the rewards 
associated with the caregiver (Rfrontal and Rprofile) and looked 
at the effect on the width of the CoD. Reducing Rfrontal and 
Rprofile resulted in a trend towards a narrower CoD, the 
opposite of what is seen in highly anxious individuals.  

As an alternative to reducing Rfrontal and Rprofile, we also 
investigated the effect of increasing the value of the 
habituation parameter . This was done in an attempt to 
capture the hyper-vigilance-avoidance hypothesis, which 
states that socially anxious individuals are quicker to engage 
and then avoid anxiety provoking stimuli. An increase in the 
value of  however, did not lead to a wider CoD. That said, 
care must be taken when making conclusions from this 
result. We used mean the infant’s fixation time on the 
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caregiver as a functional measure of COD. This measure 
was used because under a CoD an infant should fixate for 
longer at small eye gaze deviations because it judges the 
gaze to be direct. However, this poses a problem when we 
want to model hyper-vigilance and avoidance by increasing 

. An individual exhibiting hyper-vigilance and avoidance 
will have a reduced mean fixation time on the ‘caregiver’ 
even if they perceive the gaze to be directed at them because 
they would rather shift their gaze to nothing than hold direct 
gaze. So while increasing the value of  may capture this 
behaviour, the measure of mean fixation duration will be 
lower for these cases causing the width of the CoD effect to 
be smaller even if the CoD is actually wider. Therefore, in 
order to accurately assess the effect of hyper-vigilance and 
avoidance on the width of the CoD effect, a different 
measure that captures when the infant perceives the gaze as 
being direct is needed. 

Our findings (and Triesch et al’s) have potential 
implications for several disorders other than social anxiety. 
The fact that both eye gaze following and the CoD appear 
linked by reinforcement learning could provide novel 
opportunities to investigate disorders that produce both 
characteristic eye gaze following and CoD behavior. One 
example of this is autism spectrum disorder. Triesch et al. 
(2006) put forth multiple candidates under the 
reinforcement learning framework that could produce the 
reduced eye gaze following described in individuals with 
autism. These candidates included a reduced learning rate, 
reduced caregiver reward and increased shifting latency. 
The fact that reinforcement learning can account for both 
eye gaze following and the CoD allows us to explore these 
candidates further. For example, studies have suggested that 
individuals with autism have a narrower CoD (Matsuyoshi 
et al., 2014) and so these candidates should be able to 
account for that. Indeed, in this study we demonstrated that 
reducing the caregiver rewards resulted in a slightly 
narrower cone in the later stages of a simulation. This 
finding lends weight to reduced caregiver rewards being 
present in autism. A similar approach should be taken for 
the other candidates to see if they too can account for both 
the eye gaze following and CoD differences described in 
autism, thereby either confirming or rejecting their validity. 

Acknowledgments 
This work was funded by the Biotechnology and Biological 
Sciences Research Council (BBSRC), UK. We thank 
Isabelle Mareschal for very helpful input. 

References  
Brooks R. & Meltzoff A.N. (2005) The Development of Gaze 

Following and its Relation to Language. Dev. Sci, 8:535-543. 
Deak G.O. (2015) When and Where do Infants Follow Gaze? 

5th International Conference on Development and Learning 
and on Epigenetic Robotics, Providence, RI USA. 

Farroni T., Csibra G., Simion F. & Johnson M.H. (2002) Eye 
Contact Detection in Humans From Birth. PNAS, 99: 9602-5. 

Gamer M. & Hecht H. (2007) Are you Looking at me? 
Measuring the Cone of Gaze. JEP: HPP, 33:705-15. 

Gamer M., & Hecht H., Seipp N. & Hiller W. (2011) Who is 
Looking at me? The Cone of Direct Gaze Widens in Social 
Phobia. Cog. & Emotion, 25:756-64. 

Hains S.M.J. & Muir D.W. (1996) Infant Sensitivity to Adult 
Eye Direction. Child Development,  67:1940-51. 

Horley K., Williams L.M., Gonsalvez C. & Gordon E. (2004) 
Face to Face: Visual Scanpath Evidence for Abnormal 
Processing of Facial Expression in Social Phobia. Psychiatry 
Res, 127:43-53. 

Jun Y.Y., Mareschal I., Clifford C.W. & Dadds M.R. (2013) 
Cone of Direct Gaze as a Marker of Social Anxiety in Males. 
Psychiatry Res, 210:193-8. 

Leekam S.R., Baron-Cohen S., Perrett D.I., Milders M. & 
Brown S. (1997) Eye-Direction Detection: A Dissociation 
Between Geometric and Joint Attention Skills in Autism. 
BJDP, 15:77-95. 

Mareschal I., Otsuka Y., Clifford C.W., Mareschal D. (2016) 
“Are you Looking at me?” How Children’s Gaze Judgments 
Improve with Age. Dev. Psy, 52:695:703. 

Matsuyoshi D., Kuraguchi K., Tanaka Y., Uchida S., Ashida H. 
& Watanabe K. (2014) Individual Differences in Autistic 
Traits Predict the Perception of Direct Gaze for Males, but 
not for Females. Molecular Autism, 5:12. 

Rummery G.A. & Niranjan M. (1994) On-Line Q-Learning 
Using Connectionist Systems. CUED/F-INFENG/IR 166. 
Cambridge University, UK. 

Scaife M. & Bruner J.S. (1975) The Capacity for Joint Visual 
Attention in the Infant. Nature, 253:265-66. 

Schneier F.R., Rodebaugh T.L., Blanco C., Lewin H. & 
Liebowitz M.R. (2011) Fear and Avoidance of Eye Contact 
in Social Anxiety Disorder. Compr Psychiatry, 52:81-7. 

Schulze L., Renneberg B. & Lobmaier J.S. (2013) Gaze 
Perception in Social Anxiety and Social Anxiety Disorder. 
Front. in Human Neuroscience, 7:872. 

Schultz W., Dayan P. & Montague P.R. (1997) A Neural 
Substrate of Prediction and Reward. Science, 275:1593-9. 

Shepherd S.V. (2010) Following Gaze: Gaze-Following 
behaviour as a Window into Social Cognition. Front. in 
Integrative Neuroscience, 4:5. 

Sutton R.S.& Barto A.G. (1998) Reinforcement Learning: An 
Introduction. Cambridge, MA: MIT Press. 

Thorup E., Nystrom P., Gredeback G., Bolte S., Falck-Ytter T. 
& the EASE Team (2016) Altered Gaze Following During 
Live Interaction in Infants at Risk for Autism: an Eye 
Tracking Study. Molecular Autism, 7:12. 

Triesch J., Christof T., Deak G.O. & Carlson E. (2006) Gaze 
Following: Why (not) Learn it? Dev. Sci, 9:125-47. 

Wieser M.J., Pauli P., Weyers P., Alpers G.W. & Muhlberger 
A. (2009) Fear of Negative Evaluation and the 
Hypervigilance-Avoidance Hypothesis: An Eye-Tracking 
Study. Journal of Neural Transmission, 116:717-23. 

135



Functionally localized representations contain distributed information:  
insight from simulations of deep convolutional neural networks 

 
Nicholas Blauch (nblauch@umass.edu) 

University of Massachusetts, Amherst 
Center for the Neural Basis of Cognition, Pittsburgh PA 

 
Elissa Aminoff 

Department of Psychology, Fordham University 
Center for the Neural Basis of Cognition, Pittsburgh PA 

 
Michael J. Tarr 

Department of Psychology, Carnegie Mellon University 
Center for the Neural Basis of Cognition, Pittsburgh PA 

 
 

Abstract 

Preferential activation to faces in the brain’s fusiform gyrus has 
led to the proposed existence of a face module termed the 
Fusiform Face Area (FFA) (Kanwisher et. al, 1997). However, 
arguments for distributed, topographical object-form 
representations in FFA and across visual cortex have been 
proposed to explain data showing that FFA activation patterns 
contain decodable information about non-face categories 
(Haxby et. al, 2001; Hanson & Schmidt, 2011). Using two deep 
convolutional neural network models able to perform human-
level object and facial recognition, respectively, we 
demonstrate that both localized category representations 
(LCRs) and high-level face-specific representations allow for 
similar decoding accuracy between non-preferred visual 
categories as between a preferred and non-preferred category. 
Our results suggest that neuroimaging of a cortical “module” 
optimized for face processing should yield significant 
decodable information for non-face categories so long as 
representations within the module are activated by non-face 
stimuli. 

Keywords: module, localized categorical representation, 
distributed object-form topography, deep convolutional neural 
network, virtual electrophysiology 

Introduction 
 How are mental representations organized in the 

brain? Do certain brain regions contain functional modules, 
dedicated to representing and processing a very specific type 
of information? Or is neural real estate more generally 
involved in the processing of many different types of stimuli? 
Evidence from fMRI has been used to propose the existence 
of functional modules for the processing of certain classes of 
visual information within the brain. Cortical modularity was 
proposed first for the visual processing of faces in the so-
called Fusiform Face Area (FFA) (Kanwisher et. al, 1997), 
then for the visual processing of scenes/places in the so-called 
Parahippocampal Place Area (PPA) (Epstein & Kanwisher, 
1998), and then for the visual processing of body parts in the 
so-called Extrastriate Body Area (EBA) (Downing et. al, 
2001). In each of these studies, preferential activation of a 
certain class of visual stimuli (e.g. faces) in a certain region 
of the brain (e.g. fusiform gyrus) was used as evidence for 

modular processing within that region, leading to the authors 
renaming the region in terms of the modular processing (e.g. 
Fusiform Face Area). Not all authors agreed that preferential 
activation of a cortical region by a certain stimulus class was 
convincing evidence of underlying modular processing. 
Haxby et. al (2001) used multi-variate pattern analysis 
(MVPA) to demonstrate that putative functional modules for 
processing of scenes in the PPA and faces in the FFA contain 
patterns of activation useful for decoding whether a subject 
is viewing one of two categories not thought to be processed 
within the module. These authors interpreted their findings in 
the context of an “object-form topography” model, in which 
the ventral temporal cortex possesses a distributed, 
topographical representation of object-form features which 
underlie all forms of visual recognition. In their account, the 
large responses found in proposed functional modules are 
complemented by small responses throughout ventral 
temporal cortex in computations underlying visual 
categorization and other aspects of visual cognition.  

Later, Spiridon & Kanwisher (2002) ran a similar fMRI 
study incorporating greater variability across images within a 
category (e.g. different viewpoints, exemplars, and image 
formats) in order to determine whether decodable abstract 
category information was truly distributed equally 
throughout ventral temporal cortex, as was argued by Haxby 
et. al (2001), or whether there might be localized decoding 
advantages corresponding to the locations of proposed 
functional modules. This study demonstrated that some 
abstract categorical information was present for certain 
categories outside their region of maximal activation (i.e. the 
location of a proposed module), replicating a main finding of 
Haxby et. al (2001). However, controlling for the number of 
voxels used in decoding analysis, this study demonstrated 
strong advantages in decodable information relating to 
discrimination between a preferred category (e.g. faces) and 
a non-preferred category (e.g. houses) in the region of 
proposed modularity (e.g. FFA). Additionally, in PPA and 
FFA, distinct disadvantages were found for the decoding of 
two non-preferred categories (e.g. faces vs. objects and 
objects vs. houses, respectively). Thus, while abstract 
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categorical information of certain categories may exist 
outside the region where modular processing is proposed, 
such abstract categorical information is by no means equally 
distributed throughout ventral temporal cortex. The authors 
thus argued for a more modular account of PPA and FFA, 
whereby these regions are primarily involved in the 
processing of a single category of information (scenes/houses 
and faces, respectively).  

To account for both sets of findings, Cowell & Cottrell 
(2013) performed multi-variate pattern analysis (MVPA) on 
a neurocomputational model capable of discriminating 
between the 6 visual categories used in the analyses of Haxby 
et. al (2001). The neurocomputational model first applies 
Gabor filtering of input images to obtain a perceptual 
representation; it then feeds the activations of many Gabor 
filters into a self-organizing Kohonen map, which utilizes 
unsupervised learning to cluster its inputs into a two-
dimensional representation. While the neurocomputational 
model contained no modular mechanisms, through 
unsupervised learning it developed the types of functionally 
localized stimulus representations used to argue in favor of 
modular processing, whereby certain patches of the Kohonen 
grid contained both preferential activation and enhanced 
decodable information about some categories. The effects 
were greatest for faces. Because they were able to simulate 
the data used to argue both for localized and distributed 
topographical representation with a neurocomputational 
model of distributed topographical representations that is 
more parsimonious than one postulating the existence of 
functional modules, the authors rejected the interpretation of 
a functional module for face processing based on the data of 
Spiridon & Kanwisher (2002).  

The result of Cowell & Cottrell (2013) demonstrates that 
the evidence used to postulate functional modules may be 
accounted for by a model employing a distributed 
representation. However, the model is unable to account for 
human-level behavioral performance, and rather was 
constrained only to perform 6-way visual categorization. In 
the age of biologically-inspired computational systems 
capable of human-level object categorization (e.g. 
Krizhevsky et. al, 2012) and face individuation (e.g. Parki, 
Vedaldi, and Zimmerman, 2015), such behavioral constraints 
should become standard practice for models of neural 
representation. The decision not to constrain the 
computational model to perform human level face 
individuation, for example, belies the need for a functional 
module for face processing. Thus, we examine two deep, 
convolutional neural networks (DCNNs), one trained for 
large-scale object categorization and one trained for expert 
face individuation. In these networks, we focus on two types 
of category-specific representations for analysis. The first 
type of representation is the localized categorical 
representation (LCR), found in the final hidden layer of 
AlexNet (Krizhevsky et. al, 2012), whereby a single unit 
represents the likelihood of a given category in an image 
shown to the network. Such a localized categorical 
representation differs from the topographical object-form 

representations proposed by Haxby et. al (2001), in that a 
single value represents the abstract category information. 
However, localized category representations receive input 
from a processing layer which is well-described as a 
topographical object-form representation; thus, they are not 
true “modules”. The second type of representation is taken as 
a deep layer of face-specific representations within the face-
individuation network of Parki, Vedaldi, and Zimmerman 
(2015), VGG-Face, which is optimized for facial recognition 
only. In our view, VGG-Face in toto is a face-dedicated 
module; that is, a system optimized on and dedicated to to the 
processing of faces, only. The deep layer was chosen as a 
layer with high-level, complex face-specific features useful 
for recognition, but not explicitly representing individuals. 
We think that such representations are a reasonable model for 
what is proposed to be encoded in FFA (see Kanwisher & 
Yovel, 2006). We perform “virtual electrophysiology,” 
(Yamins & DiCarlo, 2016) on both systems in order to 
determine whether these two types of category-specific 
representations produce the characteristic signal used to 
argue for distributed category-general representations: 
decodable information for non-preferred categories. 

Method 
Model simulations were run in the MATLAB 

programming environment, using the MatConvNet toolbox 
(Vedaldi & Lenc, 2015). Both models used in this study are 
examples of deep convolutional neural networks (DCNNs). 
Such networks were developed by computer vision 
researchers as engineering solutions for problems of visual 
recognition (e.g. LeCun et. al, 1998; Krizhevsky et. al, 2012). 
DCNNs contain several layers of processing, each of which 
contains a set of mathematical filtering operations (units or 
filters) which are convolved across the input, usually 
followed by a set of fully-connected layers which contain 
units which apply simple weighted summations of the units 
at the layer before. In all DCNNs for visual categorization, 
there exists a final layer of processing containing a set of units 
whose size is equal to the number of categories to be tested 
from, where each unit’s activation corresponds to the 
likelihood that a certain category is present in the image; this 
vector of information is typically transformed via a softmax 
operation into explicit probabilities that the image may be 
categorized into each possible category.  

The first DCNN model used is AlexNet (Krizhevsky et. al, 
2012), pre-trained and uploaded to MatConvNet by Vedaldi 
& Lenc (2015). AlexNet was trained to perform 1000-way 
categorization of visual images on the 2011 ImageNet 
training set, which contains 1.2 million images evenly 
distributed across 1000 categories. For simulations, a 
different set of images not used in training, the 2011 
ImageNet validation set, was used as stimuli, containing 50 
images for each of 1000 categories. First, we recorded the 
activation patterns of each unit within AlexNet to each image 
of the validation set. While the network is said to contain 5 
convolutional layers and 3 fully-connected layers, additional 
intermediate operations (rectification, pooling, 
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normalization) result in 22 stages of processing with 
activation values, where the first stage is defined by the RGB 
coordinates of the image. Full details on AlexNet can be 
found in the original paper (Krizhevsky et. al, 2012).  

In our initial analyses, we consider four representative 
layers within AlexNet (Conv1, Conv5, FC6, and FC8) to 
demonstrate how informational content changes with depth 
in the network (Figure 1). The activation patterns of Conv1 
are those which are input directly to Conv2, thus occurring 
after rectification, max-pooling, and response normalization. 
The activation patterns of Conv5 are taken after the fifth 
convolution and rectification, and are the inputs to FC6. The 
patterns of fully-connected layers FC6 and FC8 are taken 
after rectification. For each unit of each layer considered, we 
compute a set of “categorical signal-to-noise ratios” (cSNRs), 
for each category of ImageNet. For a given unit and category, 
the cSNR is computed as the signal-to-noise ratio of the unit’s 
activation across all exemplars of the category. To create 
populations of units sorted by their cSNR for a given 
discrimination task on a subset of categories, we first create 
a vector containing the maximum unit cSNRs across all 
categories in the subset. This vector is then sorted in three 
ways, keeping the indices of units available: increasing 
cSNR, decreasing cSNR, and random. For each layer and 
discrimination task, three populations of size n are created by 
selecting the first n units from each of these vectors, for 
several values of n, and bootstrapping is performed across 
random samples of categories. The activation patterns of each 
population serve as the set of predictors for the classification 
of the ImageNet validation set images for each category in 
the discrimination task. Multi-class classification is achieved 
with a classification-tree based system, using the fitctree 
function in the MATLAB Statistics and Machine-Learning 
toolbox. The classifier is cross-validated using 10-folds of 
80% training, 20% testing samples (crossval function). 
Finally, the loss is computed across the several folds of the 
cross-validated model (kfoldLoss function). Across 
bootrsapped camples of category, accuracy is reported as 1 – 
mean loss, and error bars are the standard error of accuracy. 

Next, AlexNet FC8 is examined in more detail (Figure 2). 
In analyses similar to those conducted by Haxby et. al (2001), 
we compare the 2-way classification of preferred and non-
preferred categories. For a given unit, the preferred category 
is the category which is explicitly represented; all other 
categories are potential non-preferred categories. Starting 
with 20 randomly-drawn ImageNet categories, we generate 
100 pairs of preferred/non-preferred categories, and 100 pairs 
of non-preferred/non-preferred categories, with 5 pairs of 
each type for every category. For 2-way classification, we use 
a support-vector machine classifier (fitcsvm function, 
MATLAB Statistics and Machine-Learning toolbox). The 
same cross-validation and bootstrapping methods described 
in preceding analyses are used to generate an estimate of 
mean and standard error of classification accuracy for each 
pair type.   

We perform similar analyses on VGG-Face, a DCNN 
trained for face-individuation on over 2000 faces (Parki, 

Vedaldi, and Zimmerman, 2015). To achieve a representation 
to serve as a model of FFA representations, we examine the 
activations in layer 35, the final layer before activations are 
condensed to individual face-specific representations. Layer 
35 contains 4096 nodes representing high-level, complex 
information optimized for face individuation. In performing 
virtual electrophysiology on VGG-Face, we use as stimuli the 
fMRI localizer stimulus sets for faces, body-parts, objects, 
and scenes, in addition to the 2011 ImageNet validation set. 
These localizer sets are used by TarrLab and many other 
laboratories in the Center for the Neural Basis of Cognition, 
Pittsburgh PA, for fMRI research in order to localize 
functionally-defined regions such as the Fusiform Face Area 
(FFA), Extrastriate Body Area (EBA), Lateral Occipital area 
(LO), and Parahippocampal Place Area (PPA). Each localizer 
set contains 80 images of the category used to localize a 
corresponding functional brain area. 2-way classification 
tasks are created using pairs of the categories defining each 
localizer set. Additionally, a sample of 45 pairs taken from 
10 randomly drawn ImageNet categories are used to 
bootstrap an estimate of the ability to predict all pairs of 
ImageNet categories. All units in VGG-Face layer 35 are 
used as predictors in a 2-way SVM classification system akin 
to that used in Figure 2 and the results are shown in Figure 3.  

Results 
The results of initial system-wide analyses of 

AlexNet representations are shown in Figure 1. In nearly all 
cases, decoding accuracy increases with the number of units 
used as predictors in the classifier, and decreases with the 
number of categories required for discrimination. In Conv1, 
Conv5, and FC6, for all discrimination tasks, sorting units by 
their categorical signal-to-noise ratio (cSNR; see methods) 
allows for improvements in decoding accuracy given the 
same number of units. However, in FC8, for all 
discrimination tasks, sorting units by cSNR has no effect on 
decoding accuracy, suggesting that localized categorical 
representations in FC8 possess information relevant to 
decoding between non-preferred categories. 

The results of detailed analyses of AlexNet fully-connected 
layer 8 (FC8) are shown in Figure 2, where categories are 
organized by whether they are preferred (explicitly 
represented) or non-preferred (not represented) by a given 
unit in FC8. The decoding accuracy between the preferred 
category and a randomly chosen non-preferred category (see 
Methods) is not significantly greater than the decoding 
accuracy between randomly-generated pairs of non-preferred 
categories (p=0.57); both values are significantly greater than 
chance (p<0.001).  

The results of all analyses of VGG-Face are shown in 
Figure 3. All discriminations involving face as one of two 
categories yield perfect discrimination accuracy. 2 out of 4 
discriminations involving pairs of non-face categories (scene 
vs. body part; scene vs. object) yield perfect discrimination 
accuracy. The remaining 2 discrimination tasks (body part vs. 
object; pairs of ImageNet categories) yield non-perfect but 
greater than chance discrimination accuracy (p<0.001).
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Figures 

 
Figure 1: Population decoding from specified layers of the DCNN. Populations are selected in three ordering schemes, 

choosing the units with the highest cSNR (blue), the lowest cSNR (red), or at random (yellow). A large separation between 
curves indicates a local code, whereas a small separation indicates a distributed code. 

 
Figure 2: Single-unit decoding of FC8 in AlexNet. Each 

unit has a “preferred” category – the category it represents. 
All other categories are non-preferred categories. 
Bootstrapping was performed as described in Methods. Mean 
accuracies and standard errors across bootstrapping are 
shown. Accuracy for preferred/non-preferred is not 
significantly greater than accuracy for non-preferred only 
(p=0.57). Both values are significantly greater than chance 
(p<0.001).  
 

 
Figure 3: Support-vector machine (SVM) classification of 

layer 35 activations of VGG-Face network, shown for 
different pairs of categories. Each SVM is cross-validated 
with 10 folds of 80% training/20% test data, and the accuracy 
is reported as 1 – mean loss across folds. Error bars are shown 
as 1 – standard error of loss across folds. For ImageNet, 
standard error is computed across 45 bootstrapped pairs of 10 
randomly chosen categories. All accuracies are significantly 
greater than chance (p < 0.001). 
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Discussion 
First, using AlexNet, an arbitrary deep 

convolutional neural network (DCNN) for visual object 
categorization, we demonstrated that units explicitly 
representing a single visual category, what we deem localized 
categorical representations (LCRs), provide information 
allowing for the decoding of non-preferred categories, at a 
level equal to that for decoding between the represented 
category and a non-preferred category. Demonstrating that 
these localized categorical representations contain distributed 
information related to non-preferred categories suggests that 
the presence of domain-general decodable information in a 
putative domain-specific cortical region is not grounds to 
reject domain-specificity, as was done by Haxby et. al (2001), 
and Hanson & Schmidt (2011), in favor of distributed object-
form topographical representations. While LCRs differ from 
distributed object-form topographical representations in that 
they represent abstract category information in a single value, 
the LCRs in AlexNet receive their input from a distributed 
object-form representation of the sort proposed by Haxby et. 
al (2001), and are by no means well-described as the sort of 
functional modules rejected by this study and proposed by the 
likes of Kanwisher et. al, (1997) for visual face processing, 
Epstein & Kanwisher (1998) for visual place/scene 
processing, or Downing et. al (2001), for visual body-part 
processing, whereby functional modules likely contain 
several processing stages for fine-grained analysis of 
exemplars of the preferred category. To ask whether such 
functional modules might also give rise to decodable 
information about stimuli outside the domain of modularity, 
we relied on a second DCNN specialized for face 
individuation, VGG-Face. 

To acquire a representation of maximal similarity to the 
high-level face-optimized representations thought to be 
housed in the Fusiform Face Area, we took the layer 35 
activations of VGG-Face, a set of 4096 nodes which project 
to the individual face probability nodes one layer later. We 
model these layer 35 nodes as a face module akin to the 
domain-specific interpretation of the Fusiform Face Area 
(e.g. Kanwisher et. al, 1997; Kanwisher et. al, 2006). We 
demonstrated that this “face module” contains patterns of 
activation capable of perfect discrimination between pairs of 
categories containing a face, and two of four pairs of 
categories not containing a face; the other two pairs yielded 
high discrimination significantly above chance. Thus, we 
find that domain-specific, face-optimized representations 
yield domain-general decodable information. This result 
provides support for the idea that activations within a cortical 
“module” might contain information relevant to decoding 
between categories for which that module is not specialized 
to process. This result strengthens our earlier result, 
demonstrating that it is improper to reject the possibility of a 
functional module associated with a given brain region on the 
grounds that the region’s activation patterns allow for 
decoding between stimuli unrelated to the module’s proposed 
primary function. 

An important conceptual point is that the interpretation of 
our results – that modules should not be rejected on the 
grounds of producing domain-external information – rests on 
the assumption that a cortical module would be activated by 
domain-external information. In the case of localized 
categorical representations for object categories, it seems 
likely that all categories would be processed and that some 
activation might reach LCRs not representing the category of 
viewing. However, in the case of a cortical module for face 
processing, this point is less clear. Evidence of subcortical 
face detection mechanisms (for review, see Johnson, 2005) 
suggest that the brain may be capable of filtering out non-face 
information from higher processing (i.e., in FFA), via a fast 
detection process. Though, as we sometimes perceive faces 
on trees and in other places in which there are not faces, it is 
likely that non-face information does, on occasion, pass 
through the face-detector for further processing. It is possible 
that all information that arises for domain-external stimuli in 
FFA, for example, comes from images or image parts which 
contain something that looks enough like a face to pass 
through an early detection process, into higher regions of the 
face processing network. Once the visual information is 
allowed to pass, our results demonstrate that its processing 
within a face-optimized processor should give rise to 
decodable information.  

Some authors have argued that the Fusiform Face Area 
(FFA) is better described as a mechanism for expert-level, 
fine-grained visual discriminations rather than a face-
processing module, suggesting that neural substrate within 
FFA is specialized for visual categorization requiring 
repeated subordinate-level identification, a task which 
happens to occur most frequently in the context of face 
processing, thus resulting in the large preference for faces 
(e.g. Gauthier et. al, 1999; Tarr & Gauthier, 2000). Indeed, 
our results add an interesting point to this theoretical 
framework. Regardless of whether FFA is specialized for 
faces or expertise, if it develops representations useful for 
discriminating between individual faces, these 
representations are also likely to be useful for discriminating 
other visual objects. Thus, learning a new category of 
expertise (e.g. birds) might recruit a previously face-specific 
cortical region, on the basis of that region containing the most 
useful representations for the expert task, especially if 
exemplars of these categories have sufficient visual similarity 
to faces to pass through an early face-detection gate (if one 
exists). In this sense, FFA would not be a face module, but 
rather a brain area optimized most strongly for face-
recognition, but also recruited for expert subordinate-level 
visual recognition.   

Whether cortical modules exist in the sense motivated most 
strongly by Kanwisher (2010) remains an open debate. 
However, should such cortical modules exist, if their 
representations are activated by non-preferred categories, 
these “modules” are likely to produce activation patterns 
which allow for decoding between non-preferred categories, 
the characteristic result of studies which sometimes claim 
evidence of distributed, non-modular processing. As such, it 

140



behooves the field to develop more sensitive and diagnostic 
measures to assess these critical questions regarding the 
fundamental nature of representation in the brain.   
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Abstract

Cognitive models have long been used to study linguistic phe-
nomena spanning the domains of phonology, syntax, and se-
mantics. Of these domains, semantics is somewhat unique in
that there is little clarity concerning what a model needs to be
able to do in order to provide an account of how the mean-
ings of complex linguistic expressions, such as sentences, are
understood. To help address this problem, we introduce a tree-
structured neural model that is trained to generate further sen-
tences that follow from an input sentence. These further sen-
tences chart out the “inferential role” of the input sentence,
which we argue constitutes an important part of its meaning.
The model is trained using the Stanford Natural Language In-
ference (SNLI) dataset, and to evaluate its performance, we re-
port entailment prediction accuracies on a set of test sentences
not present in the training data. We also report the results of a
simple study that compares human plausibility ratings for both
ground-truth and model-generated entailments for a random
selection of sentences in this test set. Finally, we examine a
number of qualitative features of the model’s ability to gener-
alize. Taken together, these analyses indicate that our model
is able to accurately account for important inferential relation-
ships amongst linguistic expressions.
Keywords: natural language inference; recursive neural net-
works; language comprehension; semantics

Introduction
By most accounts, linguistic comprehension is the result of
cognitive processes that map between sounds and mental rep-
resentations of meaning (Christiansen & Chater, 2016; Pick-
ering & Garrod, 2013; Smolensky & Legendre, 2006). An
obvious challenge for these accounts is to provide a good the-
oretical characterization of the relevant representations. Nu-
merous proposals can be found in the literature, but there is
no obvious consensus regarding their relative merits.

Arguably, the reason for this lack of consensus is that lin-
guistic comprehension is itself a somewhat vague and ill-
defined phenomenon. In the context of efforts to model lin-
guistic comprehension, for instance, it is not entirely obvious
what a model needs to be able to do in order to provide an
account of how people understand complex linguistic expres-
sions such as phrases and sentences.

In this paper, we argue that one thing models of linguis-
tic comprehension need to be able to do is generate predic-
tions about what follows from a given sentence during a con-
versation. For example, to understand the statement “The
dancers parade down the street”, one must be able recog-
nize that the dancers are outside, that they are not standing
still, that there is likely a surrounding audience, along with
various other things. Comprehending a sentence therefore
involves drawing inferences that identify the expected con-
sequences of the occurrence of the sentence in the linguistic
environment. And since comprehending a sentence involves

Figure 1: Sentence encoding with a dependency tree recur-
sive neural network (DT-RNN). A dependency parser is used
to produce the computational graph for a neural network,
which is then used to produce a distributed representation of
sentence by merging distributed representations of individual
words. Figure adapted from Socher et al. (2014).

comprehending its meaning, it follows that meaning of an ex-
pression is at least partly determined by the inferences it li-
censes (Brandom, 1994)

To motivate this inferential approach to semantics, we in-
troduce a neural network model that learns to generate sen-
tences that are the inferential consequences of its inputs. The
model functions by first encoding a sentence into a distributed
representation, and then decoding this representation to pro-
duce a new sentence. The encoding procedure involves dy-
namically generating a tree-structured network layout of the
sort depicted in Figure 1. Once a sentence encoding is pro-
duced using this network, it is fed through an “inverse” tree-
structured network to produce a predicted sentence. Inter-
estingly, different inverse or decoding networks can be used
to generate different sentences from a single encoding. To
train the model parameters (i.e. the network weights shared
across different tree structures) we use the Stanford Natural
Language Inference dataset (Bowman et al., 2015).

In what follows, we first describe the model and then em-
pirically evaluate its ability to produce plausible entailments
for sentences unseen in the training data. We present experi-
mentally produced plausibility ratings for a random collection
of generated sentences, and from these ratings conclude that
the model captures something important about the inferential
roles of ordinary linguistic expressions. We further contend
that the model motivates the view that understanding a lin-
guistic expression is not (as is typically thought) a matter of
mapping it onto a representation that somehow constitutes its
meaning. Rather, understanding a linguistic expression is a
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matter of inferring the expected consequences of its occur-
rence in the linguistic environment. The reason for drawing
this conclusion is that the expected consequences of a sen-
tence cannot be “read off” of any single representation in
the model. Instead, these consequences are derived from the
global behavior of the model and the processes that it imple-
ments.

Tree-Structured Neural Networks
To build our model, we take advantage of recently developed
techniques for using neural networks to define composition
functions that merge distributed representations of words into
distributed representations of phrases and sentences (Socher
et al., 2012, 2014). The core idea behind these techniques is
to produce a parse tree for a sentence, and then transform the
tree into a neural network by replacing its edges with weights
and its nodes with layers of artificial neurons. Activation is
then propagated up the tree by providing input to layers that
correspond to certain nodes, as shown in Figure 1. The input
at each node is typically a distributed representation or “em-
bedding” corresponding to a single word (see Mikolov et al.,
2013).

This general method can be applied using arbitrary tree
structures, and we adopt a dependency-based syntax in the
experiments described below. There are three reasons for this
choice (Socher et al., 2014). First, the assignment of different
network weights to different dependency relations allows for
the creation of networks that are more sensitive to syntactic
information. Second, the semantic role of an individual word
can often be read off of the dependency relation it bears to a
head word, which allows for the creation of networks that are
also sensitive to semantic information. Finally, dependency
trees are less sensitive to arbitrary differences in word order,
which helps to ensure that simple variations of a sentence get
mapped to similar distributed representations. The model we
adapt - the dependency tree recursive neural network (DT-
RNN) - is introduced in Socher et al. (2014)

Some formal details concerning the behavior of DT-RNNs
are helpful at this point. First, an input sentence s is converted
into a list of pairs, such that s = [(w1,x1),(w2,x2), ...(wn,xn)],
where w is a word and x is the corresponding word embed-
ding. Next, a dependency parser is used to produce a tree that
orders the words in the sentence in terms of parent-child rela-
tions. Each node in this tree is then assigned an embedding in
a two-step manner. First, all of the leaf nodes in the tree (i.e.
nodes that do not depend on other nodes) are assigned embed-
dings by applying a simple transformation to their underlying
word embeddings:

hi = f (Wvxi +b) (1)

where hi is the embedding for some leaf node i in the tree, xi
is the embedding for the word corresponding to this node, Wv
is a matrix that transforms word representations, b is a bias
term, and f is an element-wise nonlinearity. Second, embed-

dings are recursively assigned to all of the non-leaf nodes by
composing the embeddings of their children as follows:

hi = f (Wvxi + ∑
j∈C(i)

WR(i, j) ·h j +b) (2)

where hi is again the embedding for some node i in the tree,
xi is the embedding for the word corresponding to this node,
j is an index that ranges over the children, C(i), of the node i,
and WR(i, j) is a matrix associated with the specific dependency
relation between node i and its jth child. h j is the embedding
corresponding to this child. So, in the example tree in Figure
1, the embeddings for nodes 1, 4, and 6 would be computed
first, since these nodes have no children. Then, embeddings
will be computed for any nodes whose children now all have
assigned embeddings (in this case, nodes 2 and 7). And so
on, until an embedding is computed for every node.

Model training is done via backpropogation and requires
that a cost function be defined for the sentence embeddings
produced at the root of each tree. The free parameters are
the weights Wv and Wr∈R, along with the bias term b. Word
embeddings can also be fine-tuned over the course of training.

Generating Entailments
Choosing an appropriate cost function for a recursive neu-
ral network can be difficult, since it is not always clear what
makes for a “good” sentence embedding. It is accordingly
common to see these networks applied to narrow classifica-
tion tasks such as the prediction of sentiment ratings (e.g.
Socher et al., 2012). Our goal is define an optimization ob-
jective that accounts for the principle that understanding a
linguistic expression involves drawing inferences about what
follows from it.

To accomplish this goal, we define a model composed of
two DT-RNNs, one that encodes an input sentence into a dis-
tributed representation, and another that decodes this repre-
sentation into a new sentence that is entailed by the input sen-
tence. This model is inspired by Iyyer et al.’s (2014) work us-
ing DT-RNNs analogously to autoencoders, but introduces a
decoding procedure that computes an appropriate response to
the input sentence, rather than merely reconstructing it. Other
related work is described in (Kolesnyk et al., 2016).

The model is trained on pairs of sentences standing in en-
tailment relations. A dependency parser1 is again used to pro-
duce a tree-structured network for each sentence, but the net-
work associated with the second sentence is run in reverse, as
shown in Figure 2. A word prediction is generated at each
node in this second tree using a softmax classifier, which al-
lows us to define a cross-entropy loss function over nodes and
trees as follows:

J(θ) =−∑
i

∑
j

t(i)j log p(c(i)j |si) (3)

1We use the SpaCy python library, available at https://spacy.io
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Figure 2: Generating entailments with paired encoder and decoder DT-RNNs. The decoder network computes a probability
distribution over words at each node, conditioned on the sentence representation produced by the encoder. The parameters of
both the encoder and decoder are trained via backpropogation through structure using error derivatives supplied at each node in
the decoding tree. The encoder and decoder trees are dynamically generated for each pair of sentences in the training data.

where t(i)j is the target probability (i.e. 1) for the correct word

at the jth node in the ith training example, p(c(i)j |si) is the
computed probability for this word given the input sentence
si, and θ is the set of combined parameters for the encoder
and decoder DT-RNNs.

We train the model via stochastic gradient descent by back-
propogating through both the decoder and encoder tree for
each training example. The result of training is a set of
weights associated with dependencies for both encoding and
decoding, a set of weights for predicting a distribution over
words from a node embedding for each dependency, a set of
biases (we allow dependency-specific biases), and the input
transformation matrix Wv. When the trained model is used to
perform inference using a novel input sentence, the encoder
DT-RNN is assembled into a tree using the learned encoding
weights. The decoder DT-RNN is then also assembled into
a tree using the learned decoding weights, and activation is
propagated through the encoder and into the decoder to pro-
duce a probability distribution over words at each tree node.
The words with the highest probability at each node are then
used to construct the predicted entailment for the input sen-
tence. The tree structure for the decoder can either be selected
randomly or stipulated ahead of time.

Experiments
In the remainder of the paper, we describe a number of basic
experiments that illustrate how this general modeling frame-
work can be used to illuminate the phenomenon of language
comprehension. We first perform a basic evaluation of how
well the decoder model is able to generate entailments by
measuring the percentage of correct word predictions over
all decoding tree nodes in both the training set and an un-
seen test set. We then present the results of an experiment
designed to evaluate the quality of the entailments generated
by our model. Next, following Kolesnyk et al. (2016), we it-
erate the encoding-decoding procedure to generate chains of

entailments from a given input sentence that delineate simple
inferential roles. Finally, we analyze the effect of substitut-
ing individual words in an input sentence. The goal of this
analysis is to evaluate the extent to which the model is able
to learn indirect inferential roles for words and appropriately
generalize to a wide range of novel sentences that can be sub-
stitutionally derived from a single familiar sentence.

Training Data
To train encoder and decoder networks, we use a subset of the
Stanford Natural Language Inference dataset introduced in
Bowman et al. (2015). This dataset consists of approximately
570,000 sentence pairs with labeled inferential relationships.
Specifically, the first sentence in each pair can either entail,
contradict, or be neutral with respect to the second sentence,
and since our interest is generating entailments, we restrict
our attention to pairs labeled with the entailment relation.

To reduce the amount of noise and complexity in the
dataset, we also perform some simple pre-processing steps.
First, we screen for misspelled words,2 and eliminate all sen-
tence pairs containing a misspelling. Second, we eliminate all
sentence pairs containing a sentence longer than 15 words in
order to avoid fitting model parameters to a small number of
very long sentences that produce highly complex dependency
trees. After preprocessing, the data consists of 106,288-pair
training set, a 1701-pair development set, and 1666 pair test
set. We train on the training set and use the development set
for tuning hyperparameters such as the learning rate and the
number of training epochs. The vocabulary used during train-
ing and testing consists of 22,555 words.

Quantitative Evaluations
To evaluate the ability of the model to generate plausible en-
tailments, we first measure the proportion of correct word-
level predictions during decoding in both the training set and

2We use the PyEnchant python library, available at
http://pythonhosted.org/pyenchant/.
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Table 1: Examples of Entailments Generated From Novel Test Sentences.

Sentence A boy and girl child swing together on a swing set. A young blond boy is eating cake with a spoon.
Entailment Two kids swing on a swing. A boy is eating a cake.

Sentence A young man sleeping next to a dog A surfer is performing a jump stunt in the ocean.
Entailment A man is near a dog. A surfer and a surfboard is outside.

Table 2: Word-Level Accuracy for Entailment Generation

Model Training Set (%) Test Set (%)
Chance 6.0 5.9

DT-RNN 66.7 61.8

the test set. We provide the tree structure of each entailed
sentence during decoding, so inference involves propagating
activities through paired trees of the sort depicted in Figure 2
to generate a set of word predictions. Some example entail-
ments produced from sentences drawn from the test set are
listed in Table 1. The decoding tree used to produce each
entailment is chosen randomly in these examples.

The word vectors that provide input to the encoder are
initialized using 300-dimensional Word2Vec embeddings
(Mikolov et al., 2013), while biases are initialized as the zero
vector. Each set of weights associated with a syntactic de-
pendency is initialized as a 300× 300 identity matrix with
mean-zero Gaussian noise for both the encoder and decoder.
The word transformation matrix, Wv, is initialized in the same
way. During learning, all of these matrices are updated using
stochastic gradient descent, along with the Word2Vec embed-
dings and the biases. We perform approximately 5 epochs of
training using an initial learning rate of 6×10−4, and we pro-
gressively anneal this rate over the course of training.

To collect accuracy measures, we simply tally the propor-
tion of nodes in the decoding trees for which the predicted
word is the same as the actual word given in the relevant test
set; the decoding tree is determined by a parse of the correct
entailment in every case. We compare against a baseline ac-
curacy of chance. As shown in Table 2, The DT-RNN model
performs considerably better. It is worth noting that gener-
ated sentences containing words not present in the correct en-
tailment may still be appropriate, given that no entailment is
uniquely correct. It is also worth noting that prior work in-
volving SNLI has almost uniformly focused on the problem
of classifying sentence pairs. Given that our interest is in gen-
eration rather than classification, we cannot easily draw com-
parisons to earlier work, and therefore use novel methods of
evaluation.

Empirical Evaluations
Next, we conduct a simple study in which human subjects
are asked to evaluate the plausibility of model-generated sen-
tences. During the study, participants are shown a series of

Table 3: Plausibility Ratings for Inferential Relations.

Source Status Mean Likert Rating (1-5)
Human Entailment 4.05 ± 0.09
Model Entailment 3.53 ± 0.12
Human Contradiction 2.05 ± 0.12

* Margins are bootstrapped 95% confidence intervals.

sentences introduced as true captions for unseen images.3

For each caption, the participants are shown an alternate cap-
tion and asked to evaluate the likelihood that it is also true
of the corresponding image. Evaluations are recorded using
a five point Likert scale that ranges from “Extremely Un-
likely” (1) to “Extremely Likely” (5). The original caption
in each case is the first sentence in a pair randomly chosen
from the SNLI test set, while the alternate captions are ei-
ther (a) model-generated entailments, (b) human generated
entailments drawn from the test set, or (c) human generated
contradictions also drawn from the test set. This between-
subjects experimental design is similar to the method used by
Bowman et al. (2015) to validate human-generated sentence
pairs during the creation of SNLI. The main difference is that
we evaluate model-generated sentences in addition to human-
generated sentences.

Seventy-five participants from the United States were re-
cruited through Amazon’s Mechanical Turk and split evenly
into the three conditions. The main captions were identical
across conditions, and each participant was asked to rate 20
caption pairs.4 Participants were paid $1.00 for their time.
Two of the seventy-five participants failed to complete the
study and did not have their responses included in the results.
Repeat participation was blocked by screening Mechanical
Turk worker IDs.

The Likert ratings collected during the study are assess-
ments of the plausibility of the inferential transition from one
sentence (the main caption) to another (the alternate caption).

3Note that all of the sentence pairs in SNLI were generated by pro-
viding subjects with a caption for an unseen image and asking them
to produce a further caption that is either true, false, or maybe true
of the image. So all of the sentences in SNLI can be described as
image captions. The point of using this caption-based strategy in
the construction of the dataset is to eliminate co-reference ambigu-
ities that make it difficult to determine the appropriate inferential
relationship between two sentences. See Bowman et al. (2015) for
more details.

4Two of the main captions had no associated contradictions in SNLI,
so subjects in the contradiction condition only rated 18 captions.
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Figure 3: A model-generated inferential network around the sentence “A man is outside”. Each inferential transition is the
result of generating a predicted entailment after encoding the sentence at the beginning of each arrow. The entire network is
generated starting with only the four outermost sentences, which are drawn from the SNLI test set.

The transitions involving sentence pairs drawn directly from
SNLI offer a kind of gold standard for both good and bad
transitions. The results shown in Table 2 indicate that model-
generated transitions are seen to be almost as plausible as the
gold-standard transitions drawn from SNLI. We take this to
be preliminary evidence that model is able to capture cer-
tain tacit inferential relationships between natural language
expressions.

Qualitative Extensions
In order to further analyze the model’s behavior, we exam-
ine a number of qualitative features of the inferential re-
lationships it is able to learn. First, we examine iterative
applications of the model to its own predictions, following
similar work by Kolesnyk, Rocktäschel, and Reidel (2016)
that makes use of a sequential LSTM. Next, we examine the
model’s ability to disciminate the inferential significance of
lexical items by performing simple word-by-word substitu-
tions in an input sentence. The point of these analyses is to
demonstrate that models of the general class we are proposing
are useful tools for both formalizing and learning the inferen-
tial roles of a wide variety of linguistic expressions.

Iterative Inferences
Once an input sentence has been passed through the model to
generate an entailment, it is possible to use this entailment as
a new input to the model. Repeated applications of the model
accordingly make it possible to chart out an “inferential net-
work” around a particular starting sentence. Figure 3 offers
a simple model-generated example of an inferential network
in which numerous sentences describing men doing things
outdoors are eventually mapped to the sentence “A man is
outside”.

In general, predicted entailments that are shorter than an in-
put sentence tend to be more abstract and general, while pre-
dicted entailments that are longer than an input sentence tend
to introduce plausible elaborations (Kolesnyk et al., 2016).
For instance, the sentence “A bird is in a pond.” can be used
to generate the sentence “A little bird is outside in a small
pond.” by using a decoding tree with nodes for two additional
adjectives and an additional adverb.

Substitutional Analysis
If individual words in an input sentence are replaced, it be-
comes possible to identify the impact of particular words on

the inferences that are licensed by a particular sentence. In
Figure 4, for instance, the replacement of a subject noun or
the main verb can be seen to have significant effects on the
kinds of entailments that are generated. The model is im-
pressively sensitive to sophisticated linguistic cues concern-
ing agreement. For instance, the model correctly infers that
“boy” should be paired with the male possessive “his”, while
“girl” should be paired with the female possessive “her”. It
is worth emphasizing that all of the sentences that result from
substitution are completely novel from the model’s perspec-
tive. The fact that the model is able to generate reasonable
entailments for many of these sentences suggests that it is
able generalize beyond the training data quite successfully.

A further application of substitutional analysis involves ex-
amining a model’s ability to learn about theoretically inter-
esting constructions involving negations, quantifiers, and nu-
merals. For instance, the model exhibits a rudimentary ability
to handle numerals appropriately, as is shown by the inference
from “A boy and a girl...” to “Two kids...” Negations are a bit
more troublesome: the model correctly infers “not outside”
from “in a car”, but incorrectly infers “not indoors” from
“in a store”. Quantifiers, finally, are an open question: the
model correctly infers “The women” from “Many women”,
but it is not clear that this is the result of learning a relation
between “Many” and the plural forms of nouns. Examining
specific linguistic constructions in this substitutional manner
is a promising avenue for future research.

Discussion
Overall, the point of this work is to motivate an approach to
semantics based on inferential relationships amongst linguis-
tic expressions (Brandom, 1994). Our use of the encoder-
decoder DT-RNN model is designed to illustrate how general-
ized inferential roles can be learned for arbitrary linguistic ex-
pressions from examples of how sentences are distributed as
tacit “premises” and “conclusions” in a space of inferences. It
is accordingly possible to characterize this work as an exten-
sion to the well-known distributional approach to semantics
(Turney & Pantel, 2010), wherein we replace the generic no-
tion of a linguistic context with the more fine-grained notion
of an inferential context.

As with most natural language generation systems, many
of the sentences produced by our model are defective in some
way. As can be seen in the examples in Table 1, our gener-
ated entailments are almost always thematically appropriate,
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Figure 4: Substitutional analysis using the sentence “A boy in a beige shirt is sleeping in a car”. The model is able to predict
appropriate entailments for a range of sentences that are similar to this initial sentence shown at the top left. The fact that these
substitutionally-derived sentences are not present in SNLI dataset indicates that our model is able to generalize by interpolating
between the example inferential transitions found in the training data.

but sometimes contain agreement errors or misplaced words
that render the entailment as a whole ill-formed. And, not in-
frequently, the model produces entailments that are more or
less incomprehensible. There are two ways to address these
problems. The first involves the use of increased amounts
of training data to provide the model with a more points in
the “space of inferences” to interpolate between. The second
involves the use of more sophisticated network architectures
that help the model to learn to more selectively make use of
only the input information that is most relevant to generating
a good entailment. LSTM network architectures, such as the
Tree LSTM (Tai et al., 2015), are likely to provide improve-
ments on this second front.

Finally, an important limitation of our work is that we do
not consider the relationship between linguistic expressions
and the non-linguistic world. A natural way to account for
this relationship is to suppose that a sentence’s occurrence in
the linguistic environment licenses certain expectations about
what can be seen, heard, or otherwise perceived. To return
to our initial example, if one understands the statement “The
dancers parade down the street”, one will expect to see and
hear dancers upon going to the relevant street. We accord-
ingly suggest that if an individual can adequately infer all that
follows from a given linguistic expression, both linguistically
and non-linguistically, then there is nothing further they need
to be able to do to count as understanding what the expression
means. The main consequence of this view is that inference
should be at the core of any theory of semantic cognition.
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Abstract: Economic interactions often imply to gauge the trustworthiness of others. Recent studies showed that when making
trust decisions in economic games, people have some accuracy in detecting trustworthiness from the facial features of unknown
partners. Here we provide evidence that this face-based trustworthiness detection is a fast and intuitive process by testing its
performance at split-second levels of exposure. Participants played a Trust game, in which they made decisions whether to
trust another player based on their picture. In two studies, we manipulated the exposure time of the picture. We observed that
trustworthiness detection remained better than chance for exposure times as short as 100 ms, although it disappeared with an
exposure time of 33ms. We discuss implications for ongoing debates on the use of facial inferences for social and economic
decisions.
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Abstract: Four experiments explored the effect of diversity of contrasting negative evidence on inductive inferences drawn
from a single-item target. In Experiments 1 and 2, we found that increasing the diversity of a contrast set led people to infer
that a target exemplar corresponded to a higher level category and led to greater generalization of a novel property associated
with the target. Further, we demonstrated two boundary conditions in which the effect only occurred when the contrast set
was consistent with a higher level category that both united the contrast exemplars and distinguished them from the target
(Experiment 4) and when contrast and target shared an obvious parent category (Experiment 5). Taken together, these findings
demonstrate that increasing the diversity of a contrast increases generalization from a target, but only if the contrast set is drawn
from a single category that excludes, but shares a common parent with, the target.
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Abstract

Event timing and interventions are important and intertwined
cues to causal structure, yet they have typically been studied
separately. We bring them together for the first time in an ex-
periment where participants learn causal structure by perform-
ing interventions in continuous time. We contrast learning in
acyclic and cyclic devices, with reliable and unreliable cause–
effect delays. We show that successful learners use interven-
tions to structure and simplify their interactions with the de-
vices and that we can capture judgment patterns with heuristics
based on online construction and testing of a single structural
hypothesis.
Keywords: causal learning; intervention; time; causal cycles;
structure induction; dynamics.

In a dynamically unfolding world, using actions to uncover
causal relationships requires good timing. It is hard to tell
whether a new medication is effective if you take it with oth-
ers, or just as you start to feel better. Likewise, it is hard
to tell whether a new law lowers crime if it is introduced
just after other reforms or before a major election. Such in-
ferences, having to do with delayed effects and an evolving
causal background, can be particularly tough in cyclic sys-
tems in which feedback loops make prediction difficult even
with complete knowledge (Brehmer, 1992). Thus, for inter-
ventions to be effective tools for unearthing causal structure
it is important to time and locate them carefully, paying close
attention to the temporal dynamics of surrounding events and
the possibility of feedback loops.

Previous work has shown that people make systematic use
of temporal information, taking event order as a strong cue
to causal order (Bramley, Gerstenberg, & Lagnado, 2014),
and making stronger attributions when putative cause–effect
delays are in line with expectations (Buehner & McGregor,
2006) and have low variance across instances (Greville &
Buehner, 2010). Recent work has also developed frameworks
for probabilistic causal inference from event timings based
on parametric assumptions about cause–effect delays (Bram-
ley, Gerstenberg, Mayrhofer, & Lagnado, submitted; Pacer &
Griffiths, 2015).

A distinct line of work has shown that people are adept
at inferring causal structure from interventions — idealized
actions that set variables in a system (e.g., Bramley, Dayan,
Griffiths, & Lagnado, 2017; Coenen, Rehder, & Gureckis,
2015). This work has not explored the role of temporal in-
formation however. While researchers have speculated about
the close relationship between temporal and interventional in-
ference (e.g., Lagnado & Sloman, 2004), our paper is the first
to explore interventional causal learning in continuous time.

The learning problem
We explore the general problem of how people learn about

a causal system by interacting with it in continuous time. We
focus on abstract causal “devices” made up of 3–4 compo-
nents (cf. Figure 1). For causally related components, we
assume each activation of a cause will tend to bring about
a single subsequent activation of its effect after a paramet-
ric delay (described below). For example, Figure 1a shows a
learner’s interactions with a B← A→ C Fork during which
time they perform four interventions. Activations of both B
and C succeed the interventions on A but with some variabil-
ity in delays.

We focus on situations where components never sponta-
neously activate, but where causal relations work stochasti-
cally (e.g., are successful with probability wS). Any pair of
components can be connected in either, neither or both direc-
tions resulting in a hypothesis space S of 64 possible struc-
tures for devices made up of three components, and 4096
for four components. Learners can intervene on the devices
by directly activating any component at any moment of their
choosing. Interventions are always successful in that they in-
stantaneously activate the targeted component. The down-
stream causal effects of intervened-on components are the
same as those of components that were activated by other
components. Thus, we model the consequences of interven-
tions in analogy to the Do(.) operator introduced by Pearl
(2000), such that interventions provide no information about
the causes of the intervened-on component.

Choosing interventions
Seeing the effects of one’s interventions in continuous time

provides rich information for causal inference. On the flip
side, there are also no completely independent trials. For in-
stance, in Figure 1a, the early interventions on C and B might,
in principle, be responsible for the observed effects that hap-
pen shortly after the intervention on A. In general, one can-
not rule out the possibility something that happened earlier
is still exerting its influence, or that an effect is yet to reveal
itself. Fortunately, interventions provide anchor points. We
know that events due to interventions weren’t caused by any-
thing else, and that these events only affect the future but not
the past (Lagnado & Sloman, 2004). This means that by in-
tervening, learners can recreate some of the advantages that
come with a discrete trial structure. For example, by wait-
ing long enough between interventions to be confident prior
effects have dissipated, an otherwise confusing event stream
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Figure 1: Examples of using real-time interventions to infer causal
structure. Left: True generative causal model with subplots showing
delay distributions. Right: Timelines showing an active learners’ in-
teractions with each system with a row for each component A (top),
B (middle) and C (bottom), and white circles indicating their acti-
vations over 45 seconds (x-axis). “+” symbol and incoming hand
icon indicate interventions. Dashed gray lines indicate the actual
cause–effect relationships.

becomes more palatable and informative about the underly-
ing structure. Figure 1b gives an example of interventions
that are not well chosen. The learner performs four inter-
ventions in the same locations as Figure 1a but does so in
close succession. It is hard to attribute causal responsibility
for these activations, since there are so many similarly plausi-
ble candidates. Consequentially, this data is considerably less
informative.

In discrete-trial interventional learning, participants exhibit
a positive testing strategy — they prefer to intervene on root
variables that bring about many effects (Coenen et al., 2015).
While often not leading to the most globally informative
choice, a positive testing strategy is an effective way of as-
sessing the adequacy of one’s current working hypothesis,
making it a manifestation of confirmatory testing (Nicker-
son, 1998). Many other components will be affected if one’s
hypothesis is right, and few if it is wrong. Repeated posi-
tive testing might be more justifiable in the continuous time
context because cause–effect delays may play out differently
each time, and potential temporal reversals between variable
activations will help to rule out candidate structures (Bram-
ley et al., 2014). For example, in Figure 1a the second in-
tervention on A leads to B and C occurring in reversed order,
allowing the learner to rule out a A→ B→C Chain structure.

Causal cycles
The vast majority of causal learning studies have focused

on acyclic causal systems in which causal influences flow
only in one direction, never revisiting the same component.
However, many natural processes are cyclic and people fre-
quently report cyclic relationships when allowed to do so (e.g.

Sloman, Love, & Ahn, 1998). While there are ways of adapt-
ing the causal Bayes net formalism to capture cycles (Re-
hder, 2016), these generally simplify the problem to influ-
ences between fixed time steps (e.g. Rottman & Keil, 2012),
or just to the long-run equilibrium distribution (e.g. Lauritzen
& Richardson, 2002). However, by focusing on continuous
time and developing a representation capable of modeling
causal dynamics, we are able to directly compare learning in
acyclic and cyclic causal systems.

Dynamic systems can be hard to predict even with per-
fect knowledge. Positive feedback loops can lead to sensitive
dependence on initial conditions with very different behav-
ior resulting from small perturbations in starting conditions
(e.g., Gleick, 1997). Figure 1c gives an example of interven-
tions on a cyclic causal system (assuming that the connections
work 90% of the time). Interventions initialize looping be-
havior because of the bidirectional relationship A↔ B (e.g.,
A→ B→ A→ B . . .) leading to many subsequent activations
of both the loop components and the output component C,
continuing until either the A→ B or B→ A connection fails.
Based on simply looking at the timeline, it seems likely that
it will be easier to identify which components are either di-
rectly involved in cycles, or outputs from cyclic components
(due to their recurrent activations), but harder to identify the
exact causal relationships (e.g. whether it is A or C that causes
B in this example since both tend to recur shortly before B).

Normative inference
As a benchmark, we developed a Bayesian model of causal

structure inference. We consider the data dτ

{
d(1)

X , . . . ,d(n)
X

}
to be made up of all activations (with events indexed in
chronological order and X indicating the activated com-
ponent) conditioned upon the set of interventions iτ ={

i(1)X , . . . , i(m)
X

}
. Both dτ and iτ are restricted to the interval

between the beginning of the clip and time τ, which we as-
sume to be the moment at which the learner makes the infer-
ence. For instance, one might interact with a causal device for
5000 ms, performing interventions on components A and B at
100 ms and 1200 ms respectively: i5000 = {i

(1)
A = 100, i(2)B =

1200}, and observing two activations of C: d5000 = {d(1)
C =

1500,d(2)
C = 2800}.

Normative Bayesian structure inference involves updat-
ing a prior over structure hypotheses P(S) with the likeli-
hood p(dτ|S; iτ,w) to get a posterior belief over structures
P(S|dτ; iτ,w) given the set of parameters w:1

P(S|dτ; iτ,w) ∝ p(dτ|S; iτ,w) ·P(S) (1)

An immediate issue with calculating the likelihood of an
observed set of activations given a candidate model is that
there are likely to be multiple potential paths of actual causa-
tion that could have produced the data (Halpern, 2016), each

1In this specific case, we assume the parameters (i.e., causal
strength wS, expected length of delays µ, and delay variability α)
to be known which is consistent with the setup of the experiment.
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Figure 2: Devices tested and results from experiment in a) reliable and b) unreliable delay conditions. Node shading: Intervention choice
prevalence by component. Edge shading: accuracy. Note: Ints = average number of interventions performed; Acc = mean accuracy.

of which implying a different likelihood. For example, if the
true structure is a A→C← B Collider, the data above might
be produced in two ways. A could have caused the first acti-
vation of C and B the later (i(1)A → d(1)

C , i(1)B → d(2)
C ). Alterna-

tively, A could have caused the later activation of C and B the
earlier (i(1)A → d(2)

C , i(1)B → d(1)
C ).

However, as there can only be one true path of actual cau-
sation in the set of possible paths Zs, we can sum over these
to get the likelihood of the data given a candidate model s∈ S:

p(dτ|s; iτ,w) = ∑
z′∈Zs

p(dτ|z′; iτ,w) (2)

We assume that the actual causal delays (in Zs) are Gamma
distributed (see also Bramley et al., submitted) with a known
expected duration µ and shape α (i.e., variability). The likeli-
hood of the data given a specific path z′, then, is the product
of the (Gamma) likelihoods of the observed delays and causal
strength wS combined with the likelihoods of (non-)events,
the occurrence of which failed either due to the 1−wS causal
failure rate or due to the effect potentially occurring after τ

(i.e., some time in the future).
With these ingredients the posterior belief over causal

structure hypotheses can be determined. However, it is only
feasible to enumerate all possible paths of actual causation for
a sufficiently small number of events. While for a large num-
ber of events the calculations become intractable, we were
able to compute the posteriors in the described manner for
the data from the current experiment, resorting only in rare
cases to an approximation.2

Experiment
Participants’ task was to discover the causal connections

between the components of several devices in limited time

2Where necessary, we ruled out paths that implied an implausibly
high number of failed connections, or extreme cause–effect delays,
until the number of possible paths fell below 100,000.

(see Figure 2). Half of the devices were acyclic (top; no feed-
back loops) and half were cyclic (bottom; contained a feed-
back loop). Participants were able to activate any of the com-
ponents by clicking on them. We were interested in how par-
ticipants chose where to intervene and when. We examined
two delay conditions between subjects, one in which the true
cause–effect delays were reliable (Gamma distributed with
α = 200,M±SD 1.5±0.1 seconds) and one where they were
unreliable (α = 5,M ± SD 1.5± 0.7 seconds). Following
Greville and Buehner (2010), we expected that performance
would be better when causal delays were reliable. We also
predicted that complex dynamics would lead to worse perfor-
mance when the true structure was cyclic, and that success-
ful participants would spread their interventions widely over
time, thus minimizing the ambiguity of resulting patterns of
effects.

Methods
Participants Forty participants (14 female, aged 32± 9.0)
were recruited from Amazon Mechanical Turk (yielding 20
subjects in each delay-reliability condition) and were paid
between $0.50 and $3.20 ($2.06± 0.39) depending on per-
formance (see Methods section). The task took around 20
minutes.
Materials and procedure Each device was represented with
a circle for each component and boxes marking the locations
of the potential connections (see Figure 3a).3 Trials lasted for
45 seconds during which components activated if clicked on
or if caused by the activation of another component, with de-
lay and probability governed by the true underlying network
(Figure 3b). Causal relationships worked 90% of the time
(i.e., causal strength wS = 0.9) and there were no spontaneous
activations. Activated components turned yellow for 200ms,
and intervened-on components were additionally marked by
a “+” symbol. Initially, all components were inactive and no

3Try the task https://www.ucl.ac.uk/lagnado-lab/el/it
or watch a trial https://www.ucl.ac.uk/lagnado-lab/el/itv.
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connections were marked between them.
Prior to the inference tasks, participants were trained on the

delays in their condition and how to register structure judg-
ments through interaction with an an example device. They
then had to correctly answer comprehension check questions
and complete a practice problem, before facing the 12 test
devices in random order with randomly orientated and unla-
beled components.

In the test phase, participants could perform up to 6 in-
terventions on each trial and register/update their judgments
about the causal structure as often as they liked until the 45
seconds for a device ran out (for details see Figure 3). At the
end of each trial, they were given feedback showing the true
relationships and which of them they had correctly identified.
To incentivize proper judgments, bonuses were paid based on
connections participants had registered at a randomly chosen
point during each trial.

Results
We analyze participants’ judgments by first comparing

their accuracy by delay-reliability condition (between sub-
jects: reliable vs. unreliable) and device type (within subject:
acyclic vs. cyclic). We then analyze the timing and spacing
of participants’ interventions and how these relate to the evi-
dence and judgments.
Accuracy Participants updated and confirmed their judg-
ment about the structure M±SD 1.6± 1.2 times per trial
on average. Judgment time was not significantly related
to accuracy, but within trials, final judgments were slightly
more accurate than initial judgments, with participants cor-
rectly identifying 69%±30% (chance performance would be
25%) compared to 65%± 28% of the connections, t(479) =
5.2, p < .001 (remember that bonuses incentivised making
judgments early). Only 4% of judgment updates decreased
the number of connections, 24% resulting in the same num-
ber as before, and 72% increasing the number of connections.

Focusing on final judgments, participants correctly identi-
fied [reliable,acyclic]: 82%± 29%, [reliable,cyclic]: 68%±
28%, [unreliable,cyclic]: 69% ± 29%, [unreliable,cyclic]:
56%± 29% of the connections. A repeated measures anal-
ysis revealed a significant effect of delay-reliability condi-
tion, F(1,38)= 4.6, p= .04, and cyclicity, F(1,38)= 39, p<
.001, but no interaction, with unreliable delays and cyclic
structures associated with lower accuracy. Figure 2 shows
that participants found the Cyclic 3, 5 and 6 structures hard-
est to identify on average, struggling in particular with distin-

guishing looping from output components.
Ideal Bayesian inference based on the evidence generated

by participants predicts a different pattern. While reliable de-
lays allow greater accuracy than unreliable ones, F(1,38) =
24.3, p < .001, there is no predicted difference in accuracy
between acyclic and cyclic devices, F(1,38) = 0.43, p = .5.
In fact, posterior uncertainty over all possible models, mea-
sured by Shannon entropy, was generally lower for evidence
generated by a cyclic .74± 1.26 than an acyclic 1.95± 1.29
devices, F(1,38) = 109, p < .001.
Timing of interventions We hypothesized that spacing in-
terventions out in time would be important for successful
learning. Participants waited 7.3± 2.8 seconds between in-
terventions on average. In a regression including delay con-
dition and total number of interventions as covariates, leav-
ing longer intervals between interventions was positively
associated with accuracy, F(1,36) = 14.0,β = 0.04,η2

p =
.26, p = .001, with no interaction with condition. The
variability of these gaps — measured by their coefficient
of variation CV = σ

µ — was also inversely related to ac-
curacy, F(1,36) = 7.9,β = −0.5,η2

p = .18, p = .008 and
this effect was stronger in the unreliable delay condition,
F(1,35) = 4.5,η2

p = .11, p = .04. We also assessed the
intervals participants left after the most recently preceding
event (whether this was an intervention or an effect) be-
fore performing their next intervention. Again larger inter-
vals, F(1,36) = 7.7,β = 0.06,η2

p = .18, p = .008, and less
variation, β = −.25,F(1,36) = 5.0,η2

p = .12, p = .03, was
associated with accuracy with neither measure interacting
with delay condition. Both larger intervals between interven-
tions, and between interventions and the most recently pre-
ceding effect were also associated with lower posterior en-
tropy, with β = 0.05,F(1,36) = 9.9,η2

p = .22, p = 0.003 and
β = 0.09,F(1,36) = 8.1,η2

p = .18, p = 0.007, respectively.
However, there was no evidence for a relationship between
entropy and the variability of either interval type.
Positive testing We found evidence of a preference for posi-
tive testing, with participants performing 1.2± 0.5 times as
many interventions per root component than per non-root
component t(59) = 3.9, p < .001. This preference was as-
sociated with higher accuracy after accounting for condition,
F(1,37) = 21,η2

p = 0.37, p < .001, and did not interact with
condition. Degree of root preference, however, was not sig-
nificantly related to posterior uncertainty from the perspective
of an ideal Bayesian learner.
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Adaptation to cycles While participants performed fewer
interventions on cyclic (4.1±1.1) compared to acyclic (5.4±
0.7) devices, t(39) = 8.7, p < .001 (see Figure 2), they still
experienced far more effects in the cyclic systems (29.3±10)
compared to the acyclic ones (4.7± 1.1), t(39) = 15.5, p <
.001. This was due to the reciprocal relationships sustaining
activations until one of the links failed. Thus while there was
normatively more evidence available in the cyclic trials — as
reflected by the generally lower posterior uncertainty — the
large number of events resulted in more ambiguous evidence,
with many candidate causes per effect and a large number of
potential actual causal pathways.
Summary Participants were better at identifying causal re-
lations from interventions when delays were reliable and the
true structure was acyclic. Meanwhile, ideal learner accuracy
was affected by reliability by not cyclicity. Successful par-
ticipants spread their interventions out more in time, waited
longer after previous events, distributed them more evenly
and favored root components. Participants frequently updated
their models by adding additional connections but rarely re-
moved connections.

Modeling heuristic inferences
Participants’ deviations from the prediction of an ideal

Bayesian learner suggests that they relied on simpler learn-
ing strategies. In this section we compare judgment patterns
to several heuristic models inspired by work on order–driven
(e.g., Bramley et al., 2014) and incremental causal structure
learning (e.g., Bonawitz, Denison, Gopnik, & Griffiths, 2014;
Bramley et al., 2017).

Several papers have proposed that human causal learn-
ing is based on the adaptation of a single global hypothe-
sis (Bonawitz et al., 2014), which might be achieved incre-
mentally through making local changes as data is observed
(Bramley et al., 2017). This seems particularly applicable in a
continuous-time context, where normative inference is tough
and the evidence arrives continuously. People may learn lo-
cally, ignoring dependence on beliefs about surrounding rela-
tionships (e.g. Fernbach & Sloman, 2009), or use their current
model as a basis, comparing observations against predictions,
only adding new connections to explain events that cannot
easily be accommodated by their existing model (Bramley et
al., 2017).

The idea that learners might construct their causal hypothe-
ses incrementally can be combined with different degrees of
sensitivity to timing as well as the predictions of their current
structure hypothesis. This suggests several potential heuris-
tics that adapt a single model belief b as events are experi-
enced. The result in each case is a single structural belief that
evolves as events occur (we write b = {b(0), . . . ,b(n)}, where
the sequence of belief indices correspond to the event indices
in dτ):

1. Order Only (OO) Heuristic OO attributes each new effect
to the most recently preceding event at any different com-
ponent (either the most recent intervention in iτ or activa-

tion in dτ). If the currently held model hypothesis b(t−1)

does not contain a respective edge, b(t−1) is augmented
with an edge to make b(t). Figure 4a gives an example of
this. Starting from b(t−1) with a single D→ B connection,
the heuristic connects A to B upon observing B’s activation
straight after activating A, and then B to C when C activates
shortly after.

2. Time Sensitive (TS) TS is like OO but with sensitivity to
the expected cause–effect delays. It attributes activations
to the (previous) event such that the respective delay would
be most likely given the knowledge of the true causal de-
lay distribution, and augments b(t−1) with an edge, if there
is none yet, to form b(t). In the example (Figure 4b), C’s
activation time is most consistent with C being caused by
the intervention on A, thus the model adds an A→C con-
nection, rather than a B→C connection, going into b(t+1).

3. Structure + Time Sensitive (STS) STS is like TS, but it
first checks if there is already an adequate explanation in
the current model b(t−1). Concretely, it compares the like-
lihood of the most likely explanation that is already a cause
in b(t−1) to the most likely explanation overall (i.e., the one
selected by TS). Where these differ, it only adds an edge if
the respective delay is substantially more likely than the
delay implied by the best existing explanation in b(t−1),
where we assume that “substantially more likely” means
a likelihood ratio > 20

1 . Figure 4c gives an example. Un-
like TS, this heuristic does not add an A→ C connection
going into b(t+1) because C’s activation can be explained
well enough by the existing connection D→C. While an
i(2)A → d(1)

B delay is slightly more probable than a i(1)D → d(1)
B

delay, the difference is not substantial enough to warrant
the addition of another connection.

Model comparison procedure
To compare the heuristics to participants’ judgments, we

simulated belief trajectories bs for all the heuristics based on
the evidence generated by all participants, starting each trial
with an unconnected model at t = 0. For TS and STS, we as-
sumed knowledge of true µ, α and wS as participants had been
trained on these during the instructions. We predicted partici-
pants’ judgments based on what the simulated belief trajecto-
ries looked like at judgment time. We then assessed their ac-
curacy in the task (e.g. the proportion of connections marked
correctly) and accordance rate (the proportion of connections
marked the same as the matched participant’s). Addition-
ally, we also compared participants to a Random baseline that
marked a new random causal structure on every judgment,
and an Ideal learner that always selects the maxP(M|dτ; iτ,w)
according to the Bayesian inference model.

Modeling results
The results of these simulations are reported in Table 1.

Overall, STS was the most closely accordant with participants
but individually participants were almost evenly split between
STS and OO, both for all judgments and restricted to the final
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judgments. Participants accuracy (0.65±0.19) was closest to
that of the simplest heuristic OO. Mean participant accuracy
by trial was correlated with that of all three heuristics rOO =
.83,rTS = 0.92,rSTS = 0.61, but negatively correlated with
Ideal judgments rIdeal =−.45. Like participants but unlike the
Ideal learner, all three heuristics were less accurate at cyclic
than acyclic structures OO: t(39) = 9.5, p< .001, TS:t(39) =
10.6, p < .001, STS: t(39) = 4.5, p < .001.

General Discussion
In our experiment, people used interventions to learn about

the causal structure of devices whose dynamics unfolded in
continuous time. As we predicted, cyclic structures were
harder to learn than acyclic ones even though this was not
reflected in the evidence available for an ideal learner, sug-
gesting that the evidence produced by cyclic devices, involv-
ing many activations and potential causal paths, was harder
for human learners to process. We found that the observed
determinants of successful learning – equal spacing of inter-
ventions in time and a preference to intervene on root vari-
ables — made structure inference easier for a heuristic and

Table 1: Model comparison

Model Accuracy (%) Accordance (%) N best (/40)
All Final All Final All Final

Random 25.0 25.0 25.0 25.0 0 0
OO 66.2 64.7 67.2 64.9 16 17
TS 79.7 78.9 67.3 65.5 4 5
STS 87.9 90.9 69.3 69.2 15 13
Ideal 91.0 95.3 66.1 68.9 5 5

Note: “N Best” = the highest according model for each participant.

bounded learning system.
In light of this, we considered several heuristic learning

models. Participants’ judgments were best explained by as-
suming that they added connections to a single evolving can-
didate hypothesis as they observed events. Some subjects ap-
peared to rely on a simple order heuristic (OO) whereas oth-
ers displayed sensitivity to the delays between events (TS)
and whether events were predicted by existing structure be-
liefs (STS). Participants rarely removed connections during
the trials. Given more time to learn, however, it seems likely
that they would also sometimes prune connections from their
models — e.g., when events predicted by their current model
repeatedly fail to occur. In general, positive testing of one’s
current hypothesis is an effective way for learners that are
limited to a single global hypothesis to test its predictions
against reality, and tune, refine, or or even abandon it, if nec-
essary.

In sum, rather than grappling with an unmanageable space
of possible structures and causal paths, participants seem to
naturally follow Yogi Berra’s advice: “You don’t have to
swing hard [to hit a home run]. If you got the timing, it’ll
go.”
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Abstract
Recent studies using artificial language learning have argued
that the cross-linguistic frequency of harmonic word order
patterns–in which heads are ordered consistently before or af-
ter dependents across syntactic categories–reflects a cognitive
bias (Culbertson, Smolensky, & Legendre, 2012; Culbertson
& Newport, 2015a). These studies suggest that English speak-
ing adults and children favor harmonic orders of nouns and
different nominal modifiers (adjectives, numerals). However,
because they target English learners, whose native language
is harmonic in the nominal domain (Num-Adj-N), this pref-
erence may be based on transfer rather than a universal bias
for harmony. We present new evidence from French-speaking
children, whose native language is non-harmonic in this do-
main (Num-N-Adj). Our results reveal clear effects of native
language transfer, but also evidence that a harmonic pattern is
favored even in this population of learners.
Keywords: cognitive biases; artificial language learning; ty-
pology; syntax; word order; French

Introduction
Cross-category harmony (Greenberg, 1963; Hawkins, 1983)
is perhaps the most well-known typological generalization of
syntax: while it has been revised many times over the years
(Dryer, 1992; Biberauer, Holmberg, & Roberts, 2014), most
linguists continue to assume that it reflects some underlying
“law of human behavior” (Greenberg, 1966). Nevertheless,
like most typological generalizations, harmony is a statisti-
cal tendency, and researchers have pointed to the possibility
that correlations in word order across categories may largely
reflect the effects of language contact and shared inheritance
rather than universal properties of human cognition (Dunn,
Greenhill, Levinson, & Gray, 2011; Ladd, Roberts, & Dediu,
2014).

To provide evidence of a link to cognition, a number of
recent studies have investigated word order harmony using
artificial language learning experiments. Culbertson et al.
(2012) taught English-speaking adults a miniature artificial
language in which simple noun phrases, including a noun
and either an adjective or a numeral word, are used to de-
scribe a set of pictures. The languages feature variable pat-
terns of nominal word order that tend toward either harmonic
or non-harmonic. Learners tended to regularize harmonic in-
put patterns–using the input harmonic order more frequently
than it appeared in the input. By contrast, they tended
to shift non-harmonic patterns toward harmonic ones rather
than regularizing. Culbertson and Newport (2015a) found
an even stronger effect in English-speaking children, who al-
most across the board altered non-harmonic input patterns to

make them harmonic (e.g., by changing the order of one of
the modifiers to match the other). Indeed, even when chil-
dren were taught a completely regular non-harmonic pattern
(e.g., adjectives always follow and numerals always precede
the noun), they still produced a harmonic output (Culbertson
& Newport, 2015b).

Cognitive bias or native language influence?
These studies suggest the possibility that learners may pref-
erentially change non-harmonic patterns to harmonic ones,
rather than the reverse, offering a potential explanation for a
similar typological asymmetry. Frequencies of the relevant
nominal word order patterns are reported in the World Atlas
of Language Structures Online, shown in Table 1. Harmonic
patterns (both modifiers either pre-nominal or post-nominal)
outnumber non-harmonic patterns. Note in addition, that
within both harmonic and non-harmonic pattern types, the
one with post-nominal adjectives is more frequent (i.e., N-
Adj with N-Num; N-Adj with Num-N).

Table 1: Frequency of harmonic and non-harmonic combi-
nations of noun with adjective and numeral (Dryer, 2013a,
2013b).

Adj-N N-Adj
Num-N 251 168
N-Num 37 509

Data from English-speaking learners reflects both a har-
mony bias and a bias for post-nominal adjectives to some
extent. For example, English-speaking adults were equally
likely to regularize pre- and the post-nominal harmonic pat-
terns, despite the latter having less surface-level overlap
with English than either non-harmonic pattern. They were
also least likely to regularize the non-harmonic pattern with
pre-nominal adjectives (Culbertson et al., 2012). English-
speaking children did not exhibit any differences among non-
harmonic patterns, however, their overall preference for har-
monic patterns was in fact skewed toward the post-nominal
N-Adj with N-Num (Culbertson & Newport, 2015a).

Nevertheless, evidence of a harmony preference in En-
glish speakers does not unequivocally suggest an explanation
for the typological asymmetry seen here. This is of course
because English itself exemplifies one of the two harmonic
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patterns–Adj-N with Num-N. Thus a preference for harmony
in this population may be due to transfer at a more abstract
level. In other words, English speakers may find the post-
nominal harmonic pattern easy to learn because they are used
to treating numerals and adjectives similarly in terms of their
relative order with the noun. If abstract transfer is respon-
sible for the harmony bias in English speakers, then French
speaking learners should behave quite differently. The default
nominal word order in French exemplifies the more common
non-harmonic pattern, N-Adj with Num-N. Numeral order
is strictly pre-nominal, while adjectives are typically post-
nominal but exhibit some flexibility. Most importantly, there
is a small lexically-specified set of adjectives which precede
the noun. Examples of default order are shown in (1).1

(1) a. maison
house

bleue
blue

‘blue house’
b. deux

two
maisons
houses

‘two houses’

French speakers could therefore be reasonably expected to
prefer non-harmonic patterns over harmonic ones, since their
prior language experience provides evidence that these two
types of modifiers behave differently with respect to order.
On the other hand, if the preference for harmony reflects a
universal cognitive bias, then even French speakers–whose
native language violates it–may exhibit its effects.

Experiment 1
Here we explore the potential effects of native language in-
fluence and cognitive biases on nominal word order learn-
ing in French-speaking children. We follow the general de-
sign and procedure of Culbertson and Newport (2015a) and
Culbertson and Newport (2015b). Children are taught a vari-
able version of one of four patterns corresponding to those
in Table 1. They are trained on simple phrases comprising
a noun with an adjective or a noun with a numeral, and are
then tested on their production of those phrases. The extent
to which learners accurately reproduce and regularize these
variable patterns is used to infer their relative preferences.

Participants
Participants were 48 children (24 females), 6-7 years of
age (mean=6;7, matched with participants in Culbertson and
Newport (2015a)). They were recruited from elementary
schools in Southwest France, and were native speakers of
French, who were either monolingual, or bilingual in French
and Occitan (a Romance language spoken in this region,
which uses the same nominal word order as French). Parental
consent was obtained for all participants. Three additional
children were excluded from the analysis due to failure to

1For a more complete discussion of the flexibility of adjective
ordering in French, including features which predict whether an ad-
jective can be pre-nominal, see Fox and Thuilier (2012).

complete the experimental session (2), or extremely low score
on vocabulary learning (1).

Materials
The artificial language consisted of 10 words: 4 nouns cor-
responding to novel objects, 3 adjectives, and 3 numeral
words. Following Culbertson and Newport (2015a), nouns
were nonce words which were phonotactically plausible in
the participants’ native language, and modifiers were pseudo-
nonce words resembling the corresponding native language
words. This lexicon was used to describe pictures like those
shown in Figure 1. Importantly, all of the adjectival modifiers
used here appear in the default post-nominal order in French,
they are not in the set of pre-nominally ordered adjectives.

Table 2: Artificial language lexicon.

Nouns Adjective Numerals
[bogi] [bly] (bleu ‘blue’) [doks] (deux, ‘two’)
[sefi] [tachu] (tacheté , ‘spotted’) [tKa] (trois, ‘three’)
[voli] [pølu] (poilu, ‘furry’) [kitK] (quatre, ‘four’)
[kani]

Figure 1: Example visual stimuli.

Design & Procedure
Participants were randomly assigned to one of four input
word order conditions. Each condition featured a dominant
pattern for each modifier type, used in 75% of utterances.
The remaining 25% used the alternative order. The variation
present in the input was unpredictable; it was not conditioned
on any particular lexical items. These conditions are illus-
trated in Table 3.

Table 3: Conditions, according to dominant pattern type
(shaded cells are non-dominant.

Adj-N N-Adj Num-N N-Num
Harmonic dominant
Pre-N 75% 25% 75% 25%
Post-N 25% 75% 25% 75%
Non-harmonic dominant
N-Adj, Num-N 25% 75% 75% 25%
Adj-N, N-Num 75% 25% 25% 75%

Following Culbertson and Newport (2015b), the experi-
ment consisted of a single session, lasting approximately 30
minutes. During this session participants were trained and
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tested on the language with an experimenter present. The
experiment was presented using PsychoPy software (Peirce,
2009) on a Macintosh laptop in a quiet corner of the child’s
classroom. Children were told they would be playing a game
to learn an alien language with the help of a friendly alien
named Clémy.

The experiment began with a series of games designed to
teach children the novel nouns and their meanings. The first
game (20 trials) involved seeing a grayscale picture of a single
object, listening to the label provided by the alien speaker,
and repeating the label aloud. The second game (20 trials)
involved listening to a label and clicking on whichever of the
four novel objects it corresponded to. Feedback highlighting
the correct picture was given on all trials. A sound indicated
whether the child’s choice was correct or incorrect. The third
game (20 trials) tested children’s ability to provide the correct
label for an object shown on the screen. Feedback in the form
of the correct noun label was provided on all trials.

The second part of the experiment consisted of a series of
similar games designed to teach children simple phrases in
the language. Recall that each phrase consisted of either a
noun with an adjective or a noun with a numeral, but never
both. Half of all trials featured an adjective, and half a nu-
meral. The first game (48 trials) involved seeing pictures as
in Figure 1 above, and hearing a phrase to describe it pro-
vided by the alien speaker. Participants were told to repeat
the phrase. The second game (48 trials) involved hearing a
phrase and choosing the corresponding picture from an array
of four choices. Feedback was given as described above. Fi-
nally, children were shown a picture, and were asked to pro-
vide a description for it (48 trials). No feedback was given,
however if the child had trouble with one of the words, the
experimenter would help.

Results
Here we report results from the final phrase production task.
Comprehension of phrases was uniformly high across condi-
tions (> 85%). Figure 2 shows the average proportion of tri-
als in which children used the dominant word order in each of
the four word order input conditions. Children used the dom-
inant order almost exclusively in the post-nominal harmonic
condition, however dominant order use in the other three con-
ditions was much lower. Children roughly matched the input
proportions in the non-harmonic N-Adj, Num-N condition,
which is most similar to their native language pattern.

Figure 3 shows use of the dominant pattern broken down
by the type of modifier, illustrating more clearly what learn-
ers are producing when they don’t match the input. While
in the post-nominal harmonic condition both modifier types
are regularized equally often, there is a clear difference be-
tween modifier types for the other three conditions. In the
pre-nominal harmonic condition, children tended to use the
numeral in the dominant input order more often, however nei-
ther modifier type reproduces the input pattern closely. In
the two non-harmonic conditions, children were more likely
to match the dominant input order for whichever modifier
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Figure 2: Average proportion use of dominant input order by
condition. The dotted line is the proportion of the dominant
order used in the input (75%). Error bars represent 95% CIs.

tended to appear post-nominally: the adjective in the French-
like N-Adj, Num-N condition, and the numeral in the Adj-
N, N-Num condition. In other words, learners’ productions
in these three conditions tended to move the language away
from the input pattern and toward a post-nominal harmonic
pattern.
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Figure 3: Average proportion use of dominant input order
for each modifier type by condition. The dotted line is the
proportion of the dominant order used in the input (75%).
Error bars represent 95% CIs.

These data were analyzed using mixed-effects logistic re-
gression as implemented in the lme4 R package (Bates,
2010), with condition (input pattern type) and modifier type
(adjective or numeral) as fixed effects and participants and
items (stimulus picture) as random effects. Modifier type
was sum coded; condition was treatment coded with the
most French-like pattern (N-Adj, Num-N) as the baseline
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level. This model revealed a significant difference between
the French-like (N-Adj, Num-N) condition and each of the
other three conditions: compared to this condition there was
significantly less use of the input order in the pre-nominal har-
monic condition (β =−3.99±0.56, p < 0.001) and the non-
harmonic Adj-N, N-Num condition (β = −3.60± 0.54, p <
0.001), but significantly more use of the input order in the
post-nominal harmonic condition (β = 17.88 ± 17.03, p =
0.03). A significant main effect of modifier type was also
present, indicating less matching of numeral order overall
(β = −2.28 ± 0.22, p < 0.001). Finally, significant inter-
actions between condition and modifier type were found.
As suggested by Figure 3, the main difference between
the French-like and post-nominal harmonic conditions is in
use of the dominant order for the numeral (β = −12.50 ±
17.04, p = 0.04). By contrast the opposite was true for both
the pre-nominal harmonic (β = 4.45± 0.33, p < 0.001) and
non-harmonic Adj-N, N-Num (β = 4.89± 0.31, p < 0.001)
conditions where the bigger difference with the French-like
condition was in use of the dominant adjective order.2

A visualization of the general direction of change from the
input in each condition can be seen in Figure 4. This shows
the proportion of pre-nominal adjectives and numerals each
individual child produced, colored by their input condition.
Learners generally cluster in the harmonic post-nominal area
of the space, no learners for whom this was the input condi-
tion shifted away from this pattern. A smaller cluster appears
around the non-harmonic French-like (N-Adj, Num-N) area,
with children in that input condition plus some from the pre-
nominal harmonic input condition who have switched only
the adjective order to post-nominal. Figure 5 summarizes this
picture by calculating each child’s preferred pattern, deter-
mined by the order used in the majority of utterances (greater
than 50%) for each modifier type. For example, one child
in the French-like N-Adj, Num-N condition produced adjec-
tives post-nominally 100% of the time, and numerals post-
nominally 88% of the time. This child was thus classified as
having the post-nominal harmonic pattern.

Discussion
French-speaking children learning variable patterns of har-
monic or non-harmonic nominal word order showed a strik-
ing pattern of behavior in their productions. When their input
featured the post-nominal harmonic pattern N-Adj, N-Num
as the dominant order, they regularized this pattern, produc-
ing nearly deterministic output. When their input featured a
dominant pattern similar to their own native language, N-Adj,
Num-N, they matched or regularized the adjective order, but
not the numeral order. To the extent that children were fail-

2Note that the standard error on estimates for coefficients en-
coding contrasts between the French-like condition and the post-
nominal harmonic condition is very high. This is likely due to in-
dividual variation in the French-like condition, where some partici-
pants strongly regularized the input order (similar to behavior in the
post-nominal harmonic condition), while others shifted away from
the input dramatically. This is illustrated in Figure 4.
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Figure 4: Output patterns for each individual participant, col-
ored by condition, defined as proportion pre-nominal order
for each modifier type. Points are jittered to prevent over-
plotting. Larger points outlined in black represent input pro-
portions for each condition. Dashed lines provide a visualiza-
tion of rough pattern types.
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Figure 5: Number of participants in each condition whose
preferred pattern (used in > 50% of utterances) corresponds
to each pattern type.

ing to match the pre-nominal numeral order, they were nec-
essarily switching it to post-nominal, in harmony with the ad-
jectives. This same behavioral pattern, of switching the pre-
dominantly pre-nominal modifier to match the post-nominal
one, is seen to a more extreme degree in the non-harmonic
Adj-N, N-Num condition. Children in that condition gen-
erally matched the post-nominal numeral order, and showed
a very strong tendency to switch the adjective to follow as
well. In the pre-nominal harmonic condition, a similar pat-
tern is again found: children generally produced more post-
nominal phrases than were present in the input for both mod-
ifier types, but particularly the adjective. Overall then, most
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of the children in this experiment produced a pattern corre-
sponding most closely to the post-nominal harmonic N-Adj,
N-Num.

Recall that above we suggested two competing hypothe-
ses which generated different predictions about the behavior
of French-speaking learners in our experiment. Under the
first hypothesis, influence from the native language is the pri-
mary driver of behavior. Previous results with English speak-
ing learners were consistent with abstract level transfer (i.e.,
a general preference for harmonic patterns). Thus French
speakers would be predicted to prefer non-harmonic patterns,
though a preference for the specific native language pattern
(here N-Adj, Num-N) is also possible. The second hypothesis
is that a cognitive bias favoring harmonic patterns is present
universally across learners, even learners whose native lan-
guage actively violates it. This predicts that French-speaking
learners will, like English speakers, prefer harmonic patterns.
The results reported here are not fully consistent with either
hypothesis. Most obviously, learners did not show a pref-
erence for the pattern, or pattern type, most similar to their
native language. Neither did they prefer harmonic patterns
across the board. However, a combination of native language
transfer effects and a universal harmony bias provides a co-
herent explanation. French-speaking children in our experi-
ment exhibited a strong preference for post-nominal adjective
order, in accord with their native language. This preference
was generalized to numerals under a pressure for harmony.

In order for this explanation to work, we need to rule out
a potential alternative: that French-speaking children age 6-
7 years do not distinguish numerals from adjectives, or have
not fully mastered the order of numerals in their native lan-
guage. This could lead to the over-use of post-nominal order-
ing if children have, by contrast, mastered the default adjec-
tive order. There is relatively little work on the acquisition
of nominal word order in monolingual French children. In-
deed, we are not aware of corresponding work on the acqui-
sition of numeral-noun order. We therefore extracted all in-
stances of noun phrases including one of the numeral words
‘two’ through ‘ten’ in the Lyon corpus (Demuth & Tremblay,
2008).3 This is a publicly available corpus of naturalistic
parent-child interactions including 5 children, recorded for
1 hour every 1-2 weeks from age 1 to 3 years (185 hours of
speech total). Children’s first noun phrases with a numeral
word occurred as early as 1;9. Out of a total of 258 instances,
no word order errors were found. Based on this evidence,
it appears likely that by 6-7 years of age, French-speaking
children have long since mastered the pre-nominal order of
numerals words in their language. Given the variation in ad-
jective ordering in French, it would seem plausible that chil-
dren may take longer to acquire this aspect of the syntax of
their native language. However, evidence from spontaneous
speech suggests that French-English bilingual children have

3The numeral ‘one’ in French, un(e), corresponds to the indef-
inite article ‘a’, and therefore may be acquired differently or much
earlier than other numerals.

mastered French adjective order very early as well, by 2;5 at
least (Nicoladis, 2002). This may be accomplished earlier in
monolinguals, in line with the early documented acquisition
of adjective order in English by the age of 2 (Brown, 1973).
In our study then, it does not seem likely that French-learning
children’s preference for post-nominal order in both adjec-
tives and numerals is the result of a lack of knowledge about
the syntax of these categories in their native language.

What remains then, is to understand how the results of
this study fit with with the previous findings from English-
speaking adults and children. As mentioned above, English-
speaking child learners did not generalize their native pre-
nominal order preferentially, but rather readily produce both
harmonic patterns. If anything, there was somewhat stronger
preference for the post-nominal harmonic pattern (Culbertson
& Newport, 2015a, 2015b). For English-speaking adults,
both harmonic patterns were regularized, and among non-
harmonic patterns the one with pre-nominal adjectives (Adj-
N, N-Num), was particularly dispreferred (Culbertson et al.,
2012). Recall that the typological distribution in Table 1 sug-
gests both a preference for harmonic patterns, and a general
preference for post-nominal adjectives. Thus among the har-
monic patterns, the post-nominal one is more common, and
within the non-harmonic patterns, N-Adj, Num-N is the most
common. If these two pressures are at work across both
learner populations, English and French, then we expect to
see behavior mirror the typology. However, if these two bi-
ases are, as suggested above, influenced by learners’ native
language experience, then a more complex picture emerges.
For English-speaking children (and adults), the harmony bias
is strengthened by native language experience, while the pref-
erence for post-nominal adjectives is weakened. As a result,
learners strongly prefer harmonic languages, and only weakly
prefer post-nominal over pre-nominal order. For French-
speaking children, the opposite holds. The harmony bias is
weakened, while the preference for post-nominal adjectives
is strengthened. This results in a strong preference for the
post-nominal harmonic pattern only, and changes to the input
in each other condition which move the language toward that
pattern via the adjective. Based on differences found between
English-speaking adults and children, we would predict that
French adults should show a similar but less dramatic pattern
of preferences to children in our study.

Why these biases?
Both of the biases we have argued to be at work here reflect
potentially quite general cognitive mechanisms. Harmonic
patterns are simpler, in the sense that they involve fewer, more
general rules, which can be generalized across categories. For
extensive discussion of this idea, see Culbertson and Kirby
(2016). The preference for post-nominal adjectives may re-
flect a pressure to establish the object of modification first,
particularly in cases where the meaning of the noun is pre-
dictive in determining the meaning of the adjective, e.g., for
gradable adjectives like ‘tall’ (Kamp & Partee, 1995; Ram-
scar, Yarlett, Dye, Denny, & Thorpe, 2010). Interestingly,
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Nicoladis (2006) shows that French-English bilingual chil-
dren (2;11-5;3) produce more reversals of adjective order than
their monolingual counterparts in both French and English.
These reversal errors were more likely to involve adjectives
incorrectly in the post-nominal position than the reverse. In
French, this corresponded to placing a typically pre-nominal
adjective like grand ‘big’ after the noun. In English, this cor-
responded to placing adjectives in an incorrect post-nominal
position when they were post-nominal in French (e.g., ‘a
monkey purple’). This is in line with our findings in the sense
that post-nominal adjective order seems to be more readily
generalized than pre-nominal order. Overall then, the pref-
erence for post-nominal adjective ordering found among lan-
guages of the world and reflected in both English and French
learners, may be related to general properties of learning and
processing.

Conclusion
This study tested a classic hypothesis in linguistics: that har-
monic word order patterns, which maintain a consistent or-
der of syntactic heads relative to modifiers, are preferred to
non-harmonic alternatives. Previous studies have shown that
English-speaking learners prefer harmony in the nominal do-
main, however this could reflect abstract transfer since En-
glish exemplifies a pre-nominal harmonic pattern. Here, we
targeted French-speaking child learners, whose native lan-
guage is non-harmonic. If a harmony bias is present in this
population it would provide a strong indication that this is
indeed a universal pressure. By contrast, if transfer is the
main driver of learning behavior, then no harmony bias is
expected in this population–instead, non-harmonic patterns
may be preferred. Our results revealed a strong preference
for post-nominal harmonic order, which we argue reflects the
effects of a harmony bias in conjunction with a preference for
post-nominal adjectives.
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Abstract

When young children see others fail to achieve a goal, they
spontaneously help. But there are many reasons why someone
might fail, and consequently, many ways to help. In order to
help effectively, we need to understand why someone is fail-
ing, so we can address the cause. One important distinction is
whether the failure is due to the agent’s own actions or some-
thing external to her in the world. Here we show that 24- to
48-month-olds can use their past experience to reason about
the probable cause of another person’s failure and provide help
appropriate for that cause. Children’s help targeted the world
when their prior knowledge suggested that the source of fail-
ure was external to the agent, and targeted the person’s actions
when this source appeared to be internal to the agent.
Keywords: social cognitive development; prosocial behavior;
causal reasoning; theory of mind; helping

Introduction
Imagine a frustrated traveler at a train station, fumbling with
a ticket machine. Chances are someone will offer help, but
how this person helps might depend on the situation. If the
helper sees that the traveler is inserting the bill in the wrong
direction, she might kindly re-orient the bill; however, if the
helper knows that the ticket machine is out of order, she might
direct the traveler to another machine nearby.

Humans are remarkably helpful creatures from an early age
(Tomasello, 2009). Although preverbal infants may not yet
be able to offer help with ticket machines, they will pick up
objects others have dropped and pass them back, and show
someone struggling to reach inside a box an easier way to get
in (Warneken & Tomasello, 2006). As in the ticket machine
example, however, helping others is not only a decision of
whether to help, but also a decision of how to help.

The decision of how to help is sometimes straightforward.
When someone is struggling to hold open a door, there is typ-
ically only one way to help. In many contexts, however, it is
not so clear what kind of help is needed. In order to figure
out how to help others, we need to understand why someone
is struggling. Critically, more often than not, it is up to the
helper, rather than the helpee, to determine exactly what kind
of help is needed. If the traveler knew the reason why she
was failing to insert her bill, she might have already solved
the problem. When deciding how to help, therefore, it is crit-
ical to determine the source of an actor’s failure: whether the
failure is due to the actor herself, or due to the external world.

We routinely make these judgments about our own failed
actions. If everyone else bought a ticket from the machine but
somehow you cannot, you are likely using the machine incor-
rectly. However, if everyone experienced occasional failure,
perhaps the machine is not reliable. Furthermore, these in-
ferred reasons inform our decisions about what to do next: if

you are the source of your failure, you might seek help; if the
machine is broken, you might try a different one.

Previous work suggests that even infants can infer the
causes of their own failed actions, and respond appropri-
ately to achieve their goals (Gweon & Schulz, 2011). In
this study, children were given covariation evidence indicat-
ing either that a toy sometimes worked and sometimes did
not (regardless of the agent), or worked for some agents but
not others. In the former case, when children failed to acti-
vate the toy, they reached for a new toy, suggesting they at-
tributed their failures to the toy and not to their own actions.
In the latter case, they were more likely to hand the toy to
their mother, suggesting they inferred that their failures were
due to something about their own actions and not the toy. In
this case, infants were able to determine the source of their
failures because they had observed others’ interactions with
the toy. Without such information, they would not have been
able to determine why they had failed; they might not know
what to do without a knowledgeable agent’s help. Critically,
this agent’s help would be most effective is she could directly
address the cause of the child’s failure.

Here, we ask whether young children can reason about the
cause of others’ failures to inform their decisions of how
to help. There are reasons to believe that even very young
children may be able to do this. Studies with toddlers and
preschoolers suggest that young children can provide help
not only when the helpee’s needs are straightforward and
observable (e.g., picking up dropped objects, Warneken &
Tomasello, 2007), but also when her needs are more internal
and abstract (e.g., beliefs, goals, competence). For instance,
12-month-olds are more likely to point out the location of a
dropped object if their social partner has not seen it fall than
when she has seen it (Liszkowski, Carpenter, & Tomasello,
2008); 18-month-olds can use their social partner’s prior ex-
perience to infer different goals from the same failed action
and help her achieve that goal (Buttelmann, Carpenter, &
Tomasello, 2009). Preschoolers (42-month-olds) can reason
about other peoples’ action capabilities to predict from whom
someone else will ask for help (Paulus & Moore, 2011), and
even anticipate that their social partner needs help before she
does and pre-emptively intervene to help her achieve her ul-
timate goal (Bridgers, Jara-Ettinger, & Gweon, 2016; Martin
& Olson, 2013).

However, inferring the possible causes of others’ failed
goal-directed actions might be more challenging than reason-
ing about the goals themselves, as the child must decide be-
tween (at least) two competing hypotheses which may or may
not be observable in the failed action itself. Furthermore, us-
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ing this inferred cause to generate the appropriate helpful be-
havior is also a nontrivial task, and arguably more difficult
than helping in contexts in which there is one clear way to
help. Even though prior work suggests that preverbal infants
can make these inferences about their own failures and de-
cide what to do to achieve their own goals, applying the same
inferences to others’ actions and providing the most effective
help may be more challenging. Indeed, there is a body of
research suggesting that reasoning about one’s own actions
may precede, and is a necessary precursor to, reasoning about
others (e.g., Sommerville & Woodward, 2005; Sommerville,
Woodward, & Needham, 2005).

The current study investigates 24- to 48-month-olds’ abil-
ities to reason about the causes of others’ failed actions and
offer help accordingly. Children observed an adult fail to ac-
tivate a toy because she either (a) used the toy incorrectly,
or (b) chose a faulty toy. We then gave children the choice to
help by either handing the person a working toy or by demon-
strating the correct way to use the toy. Individually, both op-
tions were perfectly reasonable ways to help, and within the
repertoire of behaviors children have exhibited in prior work
(e.g., Warneken & Tomasello, 2006). The critical question
here, however, is whether children will provide help that best
addresses the likely cause of this person’s failure (i.e., the toy
or her own actions).

Experiment
In our experiment, we created a situation in which children
were faced with two ways to help. We manipulated the cause
of the helpee’s failure, which made one way more effec-
tive than the other. We recruited 24- to 48-month-olds, who
were slightly older than children in other studies that reported
spontaneous helping behaviors (e.g., Warneken & Tomasello,
2006; Cortes Barragan & Dweck, 2014), as the ability to help
others appropriately based on the cause of their failure might
require richer representations about others’ goal-directed ac-
tions and more sophisticated inferential abilities.

Methods
Participants Fifty-two 24- to 48-month-olds (M(SD) =
2.78(.48)yrs, 44% female) from a museum in Palo Alto, CA
participated. An additional 15 children were excluded from
analysis due to parental interference (n = 9), experimenter er-
ror (n = 1), shyness (n = 3), or lack of video recording (n = 2).
We randomly assigned children to one of two conditions: the
Broken Toy condition (n = 26; M(SD) = 2.78(.54)yrs) or the
Wrong Action condition (n = 26; M(SD) = 2.78(.43)yrs).

Stimuli We constructed 3 identical-looking toys. One side
of each toy was covered in yellow felt and had a yellow button
in the center. The opposite side was covered in red felt and
had a red button in the center. The yellow button on two toys
played music, while the yellow button on the third toy was in-
ert. On all 3 toys, the red buttons were always inert. The toys
were placed on a white-plastic tray and covered with grey felt.
See Figure 1 for a schematic of the toys and procedure.

Procedure The experiment began with a warm-up phase in
which a confederate and experimenter engaged the child in
reciprocal games (e.g., rolling a ball back and forth through
a tube) in order to help the child feel comfortable with
the researchers, and promote general helping behavior (see
Cortes Barragan & Dweck, 2014). After approximately 5
minutes of warm-up, the confederate excused herself from
the room, explaining that she had work to do.

Next came the play phase in which the child gained expe-
rience with the toys. The experimenter did not pedagogically
demonstrate how the toys worked, but instead behaved as if
she were exploring the toys and discovering what they did.
She took one toy out at a time and showed it to the child. In
the Broken Toy condition, the toys were oriented such that
the yellow side was on top. She noticed the yellow button,
pressed it, and reacted positively to the music that played. She
also encouraged the child to press the yellow button and again
reacted positively, saying, “Music! The yellow side plays mu-
sic!”. She then turned the toy around in her hands until she
discovered the red button on the opposite side, and expressed
mild surprise, as if she did not expect it to be there. She
pressed the red button and also encouraged the child to do so,
acting perplexed and disappointed that it did not play music.
The experimenter then took the second toy out, which she
and the child explored in the same way (i.e., the experimenter
pressed each button, and then encouraged the child to do so).
This second toy was always the broken toy, so neither button
played music. This process was repeated with the third toy,
which functioned the same as the first (i.e., the yellow but-
ton played music, but the red button did nothing). The child
and experimenter then explored each toy again, taking turns
pressing the buttons. In the Wrong Action condition, every-
thing was the same except that the toys were placed with the
red side up, such that the red button was discovered first, and
then the yellow. By the end of this phase, all children expe-
rienced that pressing the yellow buttons on two of the toys
played music (and one was inert), and that none of the red
buttons played music.

In the helping phase, the experimenter placed toys back
on the tray and covered them with the felt. The toys were
placed as they were during the play phase: yellow-side-up in
the Broken Toy condition, and red-side-up in the Wrong Ac-
tion condition. The child sat approximately 6 ft away from
the tray, either by him-/herself or with a parent. The exper-
imenter then called the confederate back into the room and
explained that she and the child were playing with toys that
played music. The confederate said, “I love music!” and knelt
down behind the tray, facing the child. She appeared to select
a toy at random from behind the felt; the child could not see
which toy was chosen.

The confederate then moved the tray (which contained 2
of the 3 toys, covered by the felt) off to one side (counterbal-
anced) and placed her chosen toy in front of her. She pressed
the button on top (the yellow button in the Broken Toy condi-
tion; the red button in the Wrong Action condition), and the
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Figure 1: Schematic of the play phase and the helping phase and the toys used in both conditions.

toy did not play music. The confederate remarked, “Hmm,
no music!” and pressed the button again, expressing disap-
pointment and saying, “Still no music! I really want to play
music!” She then put one hand on the tray, and at the same
time, slid her toy with the other hand such that it was parallel
with the tray but on her opposite side. Once the toy and tray
were equidistant from the confederate, she removed her hand
from the toy and removed the felt from the tray to reveal the
two other toys. She then gestured to both the toy and the tray
and asked, “Can you help me play music?” The toy and tray
were far enough apart (approx. 2 ft) and from the child (ap-
prox. 5 ft) that s/he could not approach both simultaneously.

If the child did not respond, the confederate and experi-
menter provided planned prompts, waiting 5 seconds in be-
tween, until the child responded. The last of these prompts
involved the confederate moving closer to the child (approx.
2 ft.) and placing the tray and the toy within the child’s reach
but still far enough apart that the child could only reach to
one location at a time.

In summary, the only difference across conditions was
whether the non-obvious button (i.e., the button on the bottom
of the toy) that the experimenter revealed to the child during
the course of the play phase was non-functional (Broken Toy
condition) or functional (Wrong Action condition). In both
conditions, the confederate pressed the obvious button (i.e.,
the button on top) and the toy did nothing.

Coding We were interested in children’s first helping re-
sponse after the confederate’s failure to activate the toy (i.e.,
her first button press). The key dependent measure was the
target toy of this behavior, coded as either the “confederate’s
toy” or the “toys on the tray”. All children who responded
fell into one of these two categories.

Additionally, we looked at the consequence of children’s
first helping responses. We coded whether their behavior
was “successful or “unsuccessful” in achieving the confed-
erate’s goal of playing music. In the Broken Toy condition,
a child’s first response was coded as “successful” if the child
pressed the yellow button on a toy from the tray or directed

the confederate to press it (e.g., telling her to do so; handing
or pointing to a toy yellow side up); “unsuccessful” responses
included pressing or directing the confederate to press the red
button on any toy or the yellow button on the confederate’s
toy. In the Wrong Action condition, a behavior was coded as
“successful” if a child flipped and pressed the yellow button
or directed the confederate to do so (e.g., telling her to press
it, flipping a toy and handing or pointing to it yellow-side-
up). Thus, in the Wrong Action condition, a behavior could
be successful regardless of which toy a child’s first response
targeted, whereas in the Broken Toy condition, only behavior
directed toward the toys on the tray could be successful. The
first and second author transcribed and coded children’s be-
havior and a researcher blind to the hypotheses coded these
transcriptions for reliability; agreement was 100%.

Predictions and Results
Children in both conditions saw the same set of toys and a
confederate fail in the same way (she pressed an obvious but-
ton on top of a toy and it did not play music). Furthermore, in
response, all children could approach either the confederate’s
toy or a toy on the tray. What differed across conditions was
the likely cause of the confederate’s failure. We manipulated
the source of failure by varying whether the obvious button
on top of the toy was functional on 2 of the 3 toys (i.e., yel-
low button; Broken Toy condition) or non-functional on all 3
toys (i.e., red button; Wrong Action condition).

We predicted responses to vary across conditions depend-
ing on the source of the confederate’s failure. In the Broken
Toy condition, the likely reason for her failure was the toy and
not her own action. Thus, it was more helpful to get a new
toy (a toy on the tray) than to act on the confederate’s toy. In
the Wrong Action condition, however, the likely reason was
the confederate’s action and not the toy, suggesting that chil-
dren could help by approaching the confederate’s toy to cor-
rect her action (there was less need to get a new toy). Thus,
we predicted that more children would approach the “toys on
the tray” in the Broken Toy condition than in the Wrong Ac-
tion condition. As predicted, children were significantly more
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Figure 2: Proportion of children whose first response was di-
rected to the confederate’s toy (blue) or the toys on the tray
(red) in the helping phase. Error bars: bootstrapped 95% CI.

likely to direct their help toward a toy on the tray in the Bro-
ken Toy condition than in the Wrong Action condition (73%
vs. 27%; two-tailed Fisher’s Exact Test, p = 0.002).

We then looked at children’s responses within each condi-
tion. In the Broken Toy condition, it was clear that the con-
federate was acting on the broken toy, and that children could
offer help only by approaching a toy on the tray. No action
on the confederate’s toy could yield music. We thus predicted
that children in this condition would preferentially direct their
help toward a toy on the tray. Indeed, children were more
likely to approach the “toys on the tray” than the “confeder-
ate’s toy” (19/26; two-tailed binomial test, p = 0.029).

In the Wrong Action condition, children could, in princi-
ple, help the confederate by showing the yellow button on ei-
ther the confederate’s toy or a toy on the tray. In fact, unlike
in the Broken Toy condition, the outcome of their help was
probabilistic, as there was a 33% chance that any toy children
chose to flip over would be broken. However, there were rea-
sons to expect a preference for the confederate’s toy in the
Wrong Action condition. First, children might have been in-
clined to approach the toy on which the confederate had just
acted. Second, by acting on the object with which she failed,
children can guarantee that they are offering help to achieve
her specific goal to activate that toy. Finally, while approach-
ing a toy on the tray changes two variables (both the object
and the agent), by acting on the confederate’s toy, children
can more clearly disambiguate the cause of her failure. Thus,
we expected that children might show a mild preference for
the confederate’s toy, although we did not have a strong a pri-
ori prediction. The results showed that the majority of chil-
dren in the Wrong Action condition did approach the “con-
federate’s toy” (19/26, two-tailed binomial test, p = 0.029).
See Figure 2 for a summary of children’s first responses.

Our secondary measure of interest was the success of chil-
dren’s helping responses (i.e., did their help enable the con-
federate to achieve her goal of playing music?). Successful
behavior in the Wrong Action condition was arguably more

complex than in the Broken Toy condition, as children had
to reveal the non-obvious button on the bottom of a toy. In
the Broken Toy condition, children simply had to point out
another obvious button on a different toy. Despite this dif-
ference, children’s help did not differ across conditions (two-
tailed, Fisher’s exact test, p = 0.01) and was remarkably suc-
cessful overall. The majority of children engaged in success-
ful helping behavior (44/52, 85%), and this trend was consis-
tent within each condition (Broken Toy: 19/26, 73%; Wrong
Action: 25/25, 100%). In the Broken Toy condition, chil-
dren’s help could only be successful if they approached the
“toys on the tray”. Of the children who did this, 100% of
them were successful. In the Wrong Action condition, chil-
dren’s help could be successful if they approached either the
“toys on the tray” or the “confederate’s toy”. One child was
dropped from this analysis because the camera angle pre-
vented clear visual access to the nature of her helping behav-
ior, but all children included provided successful help.

Finally, as an exploratory analysis, we re-coded children’s
first responses as “correct” (Broken Toy: “toys on tray”;
Wrong Action: “confederate’s toy”) or “incorrect”. We fit
a generalized linear model with correctness as the outcome
variable, condition as a categorical predictor variable, and
age as a continuous predictor variable. This analysis revealed
no difference in children’s tendency to behave “correctly” by
condition or age (condition: β =−.364, z =−.471, p = .638;
age: β = 1.533, z = 1.614, p = 0.107).

Discussion
Our results suggest that 2- and 3-year-old children were able
to infer the likely cause of another person’s failure and of-
fer help that appropriately addressed this cause. Rather than
simply helping the confederate with the toy she previously
tried but failed to activate, or offering her a new toy across
the board, children selectively approached the confederate’s
toy or a new toy depending on the source of the confederate’s
failure. More specifically, when children’s prior knowledge
suggested that the confederate was failing due to something
about the world (e.g., a faulty toy), they provided help that
changed this external variable (i.e., acting on a new toy in the
same way). But when her own action was the likely culprit,
children helped by keeping the world constant and showing
her the correct action to take (i.e., acting on the same toy but
in a different way). Moreover, beyond simply directing their
help toward the likely cause, they provided assistance that
successfully fulfilled the confederate’s goal.

These results support the idea that young children are not
just motivated to help (Tomasello, 2009); they are also moti-
vated (and able) to provide help that is appropriate and effec-
tive. From a brief training with the causal structure of simple
toys, children as young as 2 years of age were able to use their
prior experience to infer the cause of the actor’s failure, and
intervene in a way that specifically targeted this cause.

In the Broken Toy condition, the toy was clearly the cause
of the confederate’s failure, and the only way to help was
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to get her a new toy. In the Wrong Action condition, the
confederate’s action was clearly the cause of her failure, but
there was more than one way to help: you could show her the
right action on her toy or another toy. Children in this condi-
tion appeared sensitive to this response ambiguity. Although
most children approached the confederate’s toy (19/26; 73%)
and revealed the functional button on the bottom, some (7/26;
27%) approached the toys on the tray and flipped one of these
toys over instead. Therefore, although the children who ap-
proached the tray may have thought the confederate’s toy was
broken, their behavior suggests they still attributed the con-
federate’s failure to her action.

Though children in the Wrong Action condition could have
helped the confederate by revealing the functional button on
the confederate’s toy or on a toy from the tray, children still
preferentially approached the confederate’s toy. While this
tendency could be a simple inclination to approach a toy that
someone else has chosen before, it could also reflect more so-
phisticated reasoning about how best to help the confederate.
First, showing the confederate the correct action on the same
toy directly helps her achieve her specific goal of making that
toy play music. Second, by acting on the confederate’s toy,
children can effectively hold the “toy” variable constant and
vary just the “action” variable. Thus, even though the prob-
ability of providing effective help is the same (67%) for any
of the toys, the outcome of the action is more informative
when the child acts on the confederate’s toy. If this action is
successful (i.e., the toy plays music), then the confederate’s
action was wrong; if this action is unsuccessful, the confed-
erate has a broken toy. By contrast, acting in a new way on
a different toy can only be informative for the confederate if
the action is successful. The exact reasoning underlying chil-
dren’s preference for the confederate’s toy remains unclear
and is an avenue for future work.

The content of children’s helping behavior provides a more
nuanced picture of their reasoning about the confederate.
Children not only seemed to reason about the confederate’s
observable, failed action but also her internal mental states.
In the Broken Toy condition, all of the children who success-
fully helped indicated that the confederate should try to press
the yellow button on one of the toys on the tray. However,
none of these children provided exhaustive information about
the functionality of the toys (i.e., they did not reveal the non-
functional red button on the bottom). This suggests that the
children were sensitive to the fact that the confederate’s goal
was to play music, rather than to learn how the toys worked.
This finding is consistent with prior research showing that
4- to 5-year-olds adjust the amount of information they pro-
vide depending on whether their social partner wants to know
how a toy works or simply wants to see what the toy does:
children were more likely to provide information that fully
disambiguated the causal system for the former than for the
latter goal (Gweon, Chu, & Schulz, 2014). Would children in
our current age range similarly demonstrate the other side of
the toy if the confederate expressed a desire to learn how the

toy works? This is an interesting question we might explore
in future studies.

In addition to reasoning about the confederate’s goal, it
is possible that children were reasoning about her knowl-
edge and beliefs. This possibility is particularly salient in
the Wrong Action condition. The confederate held the in-
correct expectation that the red button played music and ex-
pressed frustration upon failure. Thus, a rich interpretation
of children’s helping behavior (in this case, flipping over the
toy) is that they acted on the toy to correct the confeder-
ate’s false belief. Although considerable evidence from the
literature on Theory-of-mind development suggests children
are unable to represent others’ mistaken beliefs until around
age 4 (e.g., Gopnik & Slaughter, 1991; Wellman, Cross, &
Watson, 2001), some work suggests children the age of our
participants might be capable of such belief reasoning, espe-
cially in contexts in which they are motivated to help oth-
ers (Buttelmann et al., 2009; Southgate, Chevallier, & Csibra,
2010).

Although this is an interesting possibility, it is important
to note that it was not necessary to attribute a mistaken be-
lief to the confederate in order to provide appropriate help in
our task. Children could have selected the appropriate action
by simply attributing ignorance about the functionality of the
toys instead of a false belief. Thus, understanding the exact
nature of the representation that motivated children’s behav-
ior remains an important question for future research.

The absence of age-related trends raises the question of
when children might be able to offer help that addresses the
cause of others’ failed actions. As previously discussed, 16-
month-olds are capable of distinguishing between external
and internal sources of their own failed actions and will inter-
vene accordingly (Gweon & Schulz, 2011). Our current work
extends these findings in an important direction, suggesting
that the causal inference that supports how we respond to our
own failed actions may also support how we help others rem-
edy theirs. Thus one might naturally ask: Would 16-month-
olds also use this reasoning to choose how to help?

In order to succeed in our task, children must (1) have the
ability to infer the cause of failure for others’ goal-directed
actions, (2) have the knowledge to figure out how best to help,
and (3) select and execute the more effective action. One pos-
sibility is that even though preverbal infants can reason about
the cause of agents’ failures, they may fail to recruit this rea-
soning in helping decisions due to constraints in their working
memory or executive function. Additionally, prior work sug-
gests that although one-year-olds can provide help when the
helping action is constrained, they struggle when the situation
is more open-ended (Svetlova, Nichols, & Brownell, 2010).
However, it is possible that we may find similar abilities in
infants in a simple paradigm that minimizes such demands.
We are currently exploring this possibility.

Finally, our findings have implications for understanding
the nature of early instrumental helping. Much of the prior
work on the development of helping behavior has focused
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on whether and why young children help (e.g., Warneken &
Tomasello, 2006; Cortes Barragan & Dweck, 2014; Svetlova
et al., 2010). Though our experiment instead focuses on the
how of early helping, it is still reasonable to ask whether chil-
dren in our task were really offering help to the confederate
or if they responded for another reason, such as a desire to
socially interact, or a personal desire to hear the music (see
Paulus & Moore, 2012). Although the selectivity in children’s
helping responses in our study provides suggestive evidence
that children were not simply motivated to interact with the
confederate, our experimental design does not allow us to
completely disentangle the different possible motivations be-
hind their helping behavior. However, this distinction is not
critical for our current purposes. Our main interest in this
study was whether children can infer the likely cause of oth-
ers’ failures, and whether such causal reasoning can lead to
behaviors that are consequentially effective in helping others
achieve their goals.

In fact, children’s behaviors in our study suggest that an-
other important motivator for our prosocial behaviors may be
our curiosity and desire to understand causal relationships
(Gopnik, 1998). When we see someone struggling at the
ticket machine, we might want to help not only because we
want to help her but also because we want to know why she
is failing. Children in our study might have been motivated
by similar reasons; such actions would not only help others
achieve their goals but also help children themselves learn
about the world.

By using what we know, we can better help others. Al-
though deciding how to help in the real-world can be a chal-
lenging, open-ended problem, humans can figure out why
others fail and the best way to help. Our work suggests that
even toddlers are able to solve this problem using their own
experience as a guide. While young children are constantly
helped and taught by others, the ability to harness this knowl-
edge to figure out how to effectively help others themselves
is present early in life.
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Abstract 

This study investigates whether making and observing 
(human) gestures facilitates learning about non-human 
biological movements and whether correspondence between 
gesture and to-be-learned movement is superior to non-
correspondence. Functional near-infrared spectroscopy was 
used to address whether gestures activate the human mirror-
neuron system (hMNS) and whether this activation mediates 
the facilitation of learning. During learning, participants 
viewed the animations of the to-be-learned movements twice. 
Depending on the condition, the second viewing was 
supplemented with either a self-gesturing instruction (Y/N) 
and/or a gesture video (corresponding/non-corresponding/no). 
Results showed that high-visuospatial-ability learners showed 
better learning outcomes with non-corresponding gestures, 
whereas those gestures were detrimental for low-visuospatial-
ability learners. Furthermore, the activation of the inferior-
parietal cortex (part of the hMNS) tended to predict better 
learning outcomes. Unexpectedly, making gestures did not 
influence learning, but cortical activation differed for learners 
who self-gestured depending on which gesture they observed. 
Results and implications are discussed. 

Keywords: Learning about movements; dynamic 
visualizations; human mirror-neuron system; gestures; 
functional near-infrared spectroscopy. 

Learning from Dynamic Visualizations 
In recent years, dynamic visualizations such as animations 
and videos have become a popular instructional tool to 
visualize processes and phenomena that are dynamic in 
nature (e.g., cardiovascular system, lightning formation, fish 
movements). Obviously, dynamic visualizations are well-
suited for this purpose given that they explicitly depict 
visuospatial information over time. Nevertheless, research 
thus far indicates that dynamic visualizations are often not 
superior to learning from static visualizations (e.g., Castro-
Alonso et al., 2016; Mayer et al., 2005). It appears that 
dynamic visualizations are particularly effective for learning 
about movements when biological movement is involved 
(Hoffler & Leutner, 2007) like when learning to tie knots 

with the hands (Marcus et al., 2013) or learning to classify 
fish movements (Brucker et al., 2015). However, so far (1) 
there is only a handful of studies investigating the 
instructional potential of dynamic visualizations addressing 
biological movement and most of them focus on hand-
manipulative tasks, and (2) it is yet unexplored to what 
extent learning about biological movements from dynamic 
visualizations can be enhanced by additional instructional 
support. These aspects provided the basis for the present 
study wherein we investigated the value of observing and 
making gestures for learning to classify fish movement 
patterns from dynamic visualizations. 

Gestures and Learning 
It is by now relatively well-established that making and 
observing gestures is beneficial for acquiring knowledge 
about different scientific topics and spatial problem solving 
(e.g., Chu & Kita, 2011; Cook & Goldin-Meadow, 2006). In 
learning about movements from dynamic visualizations, 
there is also increasing evidence that showing hands in 
manual tasks (e.g. origami folding, Marcus et al., 2013) or 
observing gestures in addition to the learning material 
improves learning outcomes (Brucker et al., 2015; De 
Koning & Tabbers, 2013). It is assumed that this is due to 
the activation of brain regions (i.e., the human mirror-
neuron system [hMNS]; Fogassi & Ferrari, 2011; Rizzolatti 
& Craighero, 2004) involved in the observation, 
understanding and imitation of other persons’ actions. This 
is in line with the current hypothesis that the stimulation and 
involvement of this hMNS might be beneficial for learning 
about complex continuous aspects with dynamic 
visualizations (Ayres et al., 2009; Van Gog et al., 2009).  

Initial evidence for this comes from a study by Brucker 
et al. (2015) wherein low- and high-visuospatial-ability 
learners had to learn fish movement patterns from dynamic 
visualizations whilst observing additional gestures that did 
or did not correspond to the depicted movements. Results 
showed better learning outcomes and higher cortical 
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activation in the inferior-frontal cortex (part of the hMNS) 
for low-visuospatial-ability learners after watching gestures 
that corresponded to the to-be-learned fish movements 
compared to watching non-corresponding gestures. High-
visuospatial-ability learners achieved high learning 
outcomes with both gestures. Unexpectedly, low-
visuospatial-ability learners who watched the non-
corresponding gestures could also achieve high learning 
outcomes if they activated their inferior-parietal cortex (also 
part of the hMNS). These findings provide the first 
indication that the hMNS is also involved in representing 
non-human biological or even non-biological movements, if 
the observer is able to anthropomorphize these movements 
(cf. De Koning & Tabbers, 2011). So, drawing on the 
hMNS by showing learners gestures associated with the 
learning content seems an effective instructional strategy to 
improve learning about biological movements from 
dynamic visualizations.  

Based on the notion that learner-generated gestures, as 
compared to just observing other’s gestures, have a more 
direct and stronger influence on the degree to which the 
hMNS is activated (e.g., Montgomery, Isenberg, & Haxby, 
2007), asking learners to make gestures related to the 
movements depicted in a dynamic visualization themselves 
may be a way to further enhance learning (cf. De Koning & 
Tabbers, 2011). Additional advantages of self-performed 
gestures relate to the manner (e.g., speed, amplitude) in 
which the gestures are made and the possibility to draw on 
one’s personal experiences (with fish movement) in order to 
perform the gestures. By embodying the learning content in 
one’s sensory and motor systems based on physical 
movements (i.e., gestures), the information is coded in a 
distinct, visuospatial representational format that enriches 
the way the information is represented, thereby creating a 
higher-quality mental representation (Paas & Sweller, 
2012). Higher-quality mental representations are associated 
with better learning (Goldin-Meadow et al., 2001), yielding 
faster and more accurate performance on learning tests. It is 
important to note that these anticipated benefits only arise as 
long as the act of making gestures is not too demanding, 
complex or distracting (De Koning & Tabbers, 2013; 
Skulmowski et al., 2014). Together, by focusing on self-
performed gestures whilst learning about biological 
movements from dynamic visualizations, we move into a 
promising but yet unexplored field of research (for an 
exception see De Koning & Tabbers, 2013). 

Visuospatial Ability, Gestures, and Learning 
As processing continuous changes requires visuospatial 
ability (cf. Hegarty, 1992), it is likely that learners’ 
visuospatial ability will determine how much they benefit 
from dynamic visualizations and additional gestures (cf. 
Hegarty & Waller, 2005). According to previous research 
(e.g., Höffler, 2010) learners with higher visuospatial ability 
outperform learners with lower visuospatial ability during 
learning with visualizations, and visuospatial ability may 
moderate the effectiveness of learning with different 

instructions and visualization formats. Higher visuospatial 
ability may compensate for “poor” instructions (i.e., in our 
case unrelated non-corresponding gestures, cf. Methods 
section), whereas learners with lower visuospatial ability 
suffer from such instructions (cf. ability-as-compensator 
hypothesis; Höffler, 2010). For example, relating this to the 
Brucker et al. (2015) study, high-visuospatial-ability 
learners likely possess the skills and resources to see when 
gestures are in conflict with the depicted content and come 
up with an own strategy to elaborate on the relevant 
movements, whereas low-visuospatial-ability learners do 
not possess these skills and therefore are less able to deal 
with situations where gestures are in conflict with the 
dynamic visualizations resulting in lower learning 
outcomes. Thus, taking into account learners’ visuospatial 
ability is relevant when studying the value of gestures in 
learning about movements from dynamic visualizations.  

Present Study 
This study addresses the question to what extent learning 
about biological movements from dynamic visualizations 
can be enhanced by adding information in the form of 
gestures. We implemented gesture-information in two ways: 
By making gestures of the learners themselves and by 
observing gestures displayed on a video. We investigated 
making gestures (by the learner) by contrasting (1) studying 
the dynamic visualizations whilst making gestures to (2) 
studying the visualizations without making gestures. 
Moreover, we examined observing gestures (that do or do 
not correspond to the depicted non-human biological 
movements) by contrasting studying the dynamic 
visualization whilst (1) observing corresponding versus (2) 
observing non-corresponding versus (3) not observing 
additional gestures. Furthermore, functional near-infrared 
spectroscopy (fNIRS), which is a non-intrusive 
neurophysiological method to gather data about cortical 
activation of humans, is used to investigate whether the 
hMNS is activated during viewing gestures and learning 
about biological movements from dynamic visualizations. 
We hypothesize that studying the dynamic visualization 
with additionally making gestures yields higher learning 
outcomes than studying without making gestures. 
Additionally, we hypothesize that studying the dynamic 
visualizations with additionally observing gestures yields 
higher learning outcomes than studying without observing 
gestures. In accordance with Brucker et al. (2015), this 
pattern is expected to vary as a function of level of gesture 
correspondence and learner’s visuospatial ability: low-
visuospatial-ability learners are expected to show higher 
learning outcomes only on corresponding gestures, whereas 
high-visuospatial-ability learners are expected to show 
improved learning outcomes for corresponding and non-
corresponding gestures. Furthermore, we hypothesize that 
the hMNS is more strongly activated with self-performed 
gestures than with observed gestures, which in turn is more 
strongly activated than studying without gestures. 
Moreover, we hypothesize that higher hMNS activation is 
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associated with higher learning outcomes. This is expected 
to be particularly true for low-visuospatial learners.  

Methods 

Participants and Design 
One hundred and eighteen university students (M = 24.37 
years, SD = 3.99; 84 females; 109 right handed) were 
recruited via an online system (http://www.orsee.org/) and 
compensated with 10 Euro. They had to learn to 
discriminate different fish according to their movements 
based on dynamic visualizations. There were four different 
to-be-learned movement patterns of fish. The participants 
saw each movement pattern twice: Firstly, they saw an 
animation of the specific movement pattern. Secondly, they 
saw the animation of the specific movement pattern again. 
But this time depending on the experimental condition, the 
animation could have been complemented with two 
additional sources: either a written instruction to self-gesture 
(making gestures) and/or a video of a person performing 
gestures with his hands and arms (observing gestures). 
Depending on this 2-by-3-between subjects design of the 
study with the two independent factors making gesture and 
observing gesture there were six conditions in total. Making 
gesture was varied in two variants: Participants either did or 
did not get the instruction “Please make your own gestures, 
that help you to better understand the movement.” 
Observing gesture was varied in three variants: Participants 
either saw gestures that did correspond or that did not 
correspond (i.e., were unrelated) to the fish movement 
patterns or they saw no gesture at all (see Figure 1). 

For the observing gestures conditions we used the 
gestures from Brucker et al. (2015). For the corresponding 
gestures, an expert regarding fish movements displayed with 
his hands and arms representations of the respective 
movements as clearly as possible, whereas for the non-
corresponding gestures the (same) expert performed 
gestures with his hands and arms that were unrelated to the 
fish movement patterns (i.e., waving, circulating the 
forearms around each other, drumming, and pointing.  

Participants saw the animation of the first fish movement 
for 30 s. Then a pause of 30 s (black screen) followed before 
they saw the animation of the first fish movement with its 
additions (depending on the experimental condition) for 30 s 
again. Then again a pause of 30 s (black screen) followed 
before the presentation of the next fish movement started in 
the same manner. The learners were instructed to relax in 
the pauses with the intention that the activations of the brain 
areas of interest were supposed to return to baseline level 
before the next visualization was displayed. 

Materials 
Participants were asked to learn to classify four different 
fish movement patterns. These fish movement patterns 
differ in terms of the parts of the body that generate 
propulsion (i.e., several fins or the body itself) and also in 
the manner of how these body parts move in the three-

dimensional space (i.e. different paddle-like or wave-like 
movements). The four different movement patterns were: 1. 
oscillation of the pectoral fins; 2. undulation of the body; 3. 
undulation of the dorsal and anal fins; and 4. oscillation of 
the dorsal and anal fins (and undulation of the pectoral fins). 
During identifying these movement patterns it is very 
challenging that fish may deploy other movements in 
addition (e.g., to navigate) and these additional movements 
can easily be mistaken for movements used for propulsion 
in another movement pattern. We used the fish animations 
and gesture videos from Brucker et al. (2015). The 
movement cycles of the movement patterns were presented 
in loops in the animations (30 s per movement pattern, 25 
fps, size: 480 x 360 pixels). The gestures were presented in 
the respective conditions in loops in the videos (30 s per 
movement pattern, 25 frames per s, size: 480 x 360 pixels). 
The presentation of all visualizations was system-controlled. 
 

 
Figure 1: Six conditions in the 2-by-3-design of the study. 

Measures 
Learning Outcomes To assess learning outcomes, we 
administered a movement pattern classification test 
comprising 45 dynamic multiple-choice items. These items 
consisted of underwater videos of real fish performing one 
of the four to-be-learned movement patterns or a distractor 
movement pattern. Learners had to identify the body parts 
relevant for propulsion and their way of moving to choose 
for each item the kind of movement pattern that was 
depicted. Each item was visible for 7 s and immediately 
afterwards participants had 3 s time to choose the correct 
answer by pressing a corresponding button. Each item was 
awarded one point for the correct answer (0 to max. 45 
points). The test items were presented in blocks of 30 s so 
that 3 items were grouped together. Pauses of 30 s (black 
screen) followed each block.  

Learners’ Visuospatial Ability To assess learners’ 
visuospatial ability we used a short version of the paper 
folding test (PFT, Ekstrom et al., 1976; ten multiple-choice 
items; total processing time: three minutes). In this task, 
participants see five options from which they have to choose 
the correct answer. The stimuli are depictions of papers that 
are folded stepwise and then were punched in the folded 
state. The answer options depict unfolded papers with 
punches being either in the correct or incorrect positions. 
Each correct answer is worth one point (max. 10 points). 
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Cortical Activation During viewing the fish animation for 
the second time in the learning phase, cortical activation 
was assessed via fNIRS measurements with an ETG-4000 
(Hitachi Medical Co.). We used a 2x22 channel array as 
probe set that was placed over fronto-temporo-parietal 
regions and was centered at the T3-T4 and C3-C4 positions 
(not exactly terminating on these positions because of the 
fixed interoptode distances) according to the standard 
locations of the 10-20 system for electrode placement 
(Jasper, 1958). The fNIRS system measures the change in 
the product of hemoglobin (Hb) concentration and effective 
optical path length in human brain tissue. The unit of Hb 
change is molar concentration (mM = mmol/l) multiplied by 
optical path length (mm). Local increases of Hb are 
indicators of cortical activity (Obrig & Villringer, 2003). 

Procedure 
Participants were tested individually. After reading a printed 
overview with information about the procedure of the study, 
they had to answer the demographics and the PFT. Then, the 
experimenter placed and adjusted the fNIRS probe set on 
the scalp of the participants. Subsequently, the computer-
based learning materials were presented (learning phase). 
For each of the four to-be-learned movement patterns, 
learners were presented with the two presentations of the 
fish animations (1. fish animation and 2. fish animation plus 
additional gesture video and/or self-gesturing instruction 
depending on the experimental condition). Following the 
learning phase (8 min) learners performed a filler task 
(about 8 min), in which they answered some questions on 
object positions of depicted objects. Subsequently, learners 
completed the movement classification test (15 min). 
Participants were instructed to put both their forefingers and 
both their middle fingers on predefined keys as well as one 
of their thumbs on the space bar to answer the test items. 
The predefined keys were labeled on the screen with static 
screenshots from the learning animations of the four 
movement patterns and the spacebar was labeled with a grey 
bar indicating movements that were not part of the learning 
phase (i.e. distractor items). In total, one experimental 
session lasted approximately 50 minutes. 

Results 

Learning Outcomes 
To analyze learning outcomes, we conducted an ANCOVA 
(univariate analysis of covariance) with the factors making 
gesture, observing gesture, and the continuous factor 
learners’ visuospatial ability as a covariate. We inserted all 
interaction terms in the analysis to investigate the possible 
interactions. For learning outcomes, results showed no main 
effect of making gestures (F < 1, ns), no main effect of 
observing gestures (F(2, 106) = 1.65, MSE = 119.63, p = 
.20, η2

p = .03, ns), but there was a significant main effect for 
learners’ visuospatial ability (F(1, 106) = 11.58, MSE = 
119.63, p = .001, η2

p = .10). This effect has to be interpreted 
in terms of the significant interaction between observing 

gestures and learners’ visuospatial ability on learning 
outcomes (F(2, 106) = 7.93, MSE = 119.63, p = .001, η2

p = 
.13; see means and standard errors in Figure 2). There were 
no other significant interactions or three-way-interactions 
(all ps > .35, ns). The significant interaction between 
observing gestures and learners’ visuospatial ability on 
learning outcomes showed that for participants with high 
visuospatial ability (defined as one standard deviation above 
the sample mean) the non-corresponding gesture led to 
better learning outcomes than the corresponding gesture (p 
= .001) and no gesture (p = .02). For participants with low 
visuospatial ability (defined as one standard deviation below 
the sample mean) non-corresponding gestures were worse 
for learning than no gesture (p < .01), whereas there was no 
significant difference between the corresponding gesture 
condition and the no gesture condition (p = .23, ns). Thus, 
the non-corresponding gestures are beneficial for high-, but 
detrimental for low-visuospatial-ability learners. 

 

 
Figure 2. Interaction between learners’ visuospatial ability 

and observing gestures on learning outcomes. 

Cortical Activation 
To analyze the cortical activation, we defined two regions of 
interest (ROIs) on the left hemisphere for the hMNS among 
the respective channels (cf. Rizzolatti & Craighero, 2004). 
The two ROIs were the left inferior-frontal cortex (IFC) and 
the left inferior-parietal cortex (IPC, cf. Figure 3). Cortical 
activation in these areas was analyzed with two ANCOVAs 
with the factors making gestures, observing gestures, and 
learners’ visuospatial ability as a covariate. We had to 
exclude five participants from these analyses because of 
poor data quality resulting in a total number of 113 
participants in these analyses. Even though making gestures 
did not influence results on learning outcomes, analyses on 
cortical activation showed tendencies for an interaction 
between making gestures and observing gestures for both 
IFC activation (F(2, 100) = 2.94, MSE = .001, p = .06, η2

p = 
.06) and IPC activation (F(2, 100) = 2.42, MSE = .001, p = 
.06, η2

p = .05). There were no other significant main effects 
or interactions in these analyses (all ps > .104, ns). Pairwise 
comparisons revealed that participants observing 
corresponding gestures showed higher IFC activation if they 
self-gestured than when they did not self-gesture (p = .005). 
However, participants observing non-corresponding 
gestures showed higher IPC activation if they self-gestured 
than when they did not self-gesture (p = .02). This might be 
an indicator that during watching corresponding gestures the 
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IFC is more important, whereas during processing non-
corresponding gestures the IPC becomes more important – 
at least when the participants were instructed to self-gesture.  
 

 
Figure 3. Spatial arrangement of the left probe set. 

Effects of Cortical Activation on Learning 
To address the question whether higher hMNS activation is 
directly associated with better learning outcomes, we 
conducted two ANCOVAs with the factors making gestures, 
observing gestures, learners’ visuospatial ability and 
cortical activation in terms of IFC activation or IPC 
activation, respectively. There was a tendency that higher 
IFC activation lead to higher learning outcomes (F(1, 88) = 
3.22, MSE = 124.85, p = .08, η2

p = .04). This analysis on 
IFC activation did also show the main effect for visuospatial 
ability (F(1, 88) = 7.58, MSE = 124.85, p < .01, η2

p = .08) as 
well as the interaction between observing gesture and 
visuospatial ability (F(2, 88) = 3.93, MSE = 124.85, p = .02, 
η2

p = .08; both effects reported for learning outcomes, see 
Figure 2). For IFC activation there were no other significant 
main effects or interactions (all ps > .27, ns). The analysis 
on IPC activation did also show the main effect for 
visuospatial ability (F(1, 88) = 7.18, MSE = 128.56, p < .01, 
η2

p = .08) and the interaction between observing gesture and 
visuospatial ability (F(2, 88) = 5.18, MSE = 128.56, p < .01, 
η2

p = .11; both effects reported for learning outcomes, see 
Figure 2). For IPC activation there were no other significant 
main effects or interactions (all ps > .189, ns). 

Discussion 
This study investigated whether making and observing 
additional gestures improves learning about biological 
movements from dynamic visualizations and to what extent 
this is related with the cortical activation in areas associated 
with the hMNS. Regarding learning outcomes, our results 
indicate that the observation of gestures has different effects 
for high- and low-visuospatial-ability learners, particularly 
when dealing with non-corresponding gestures. For high-
visuospatial-ability learners, non-corresponding gestures 
improved learning (even beyond corresponding gestures), 
whereas for low-visuospatial-ability learners the observation 
of non-corresponding gestures had detrimental effects on 
learning. These findings are largely in line with those 
reported by Brucker et al. (2015) and indicate that 
particularly when high-visuospatial-ability learners are 
challenged by a desirable difficulty (cf. Schüler, 2017), in 
this case by creating a conflict between the visualized fish 
movements and the (mismatching) gestures, they are 
stimulated to put more effort in reducing the conflict and 
come up with a strategy to more elaborately process the 
relevant movements. This in turn increases the chance that 

they properly understand the depicted movement. In 
contrast, low-visuospatial-ability learners presumably are 
insufficiently equipped for managing such a situation of 
conflicting information (e.g., they do not have the resources 
to identify the mismatch or do not know how to cope with 
that), and are not able to accurately process the movements 
and to avoid reduced performance.  

In this study, IFC activation tended to predict better 
learning outcomes. However, compared to the Brucker et al. 
(2015) study, we did not find the result pattern that IPC 
activation compensates for missing support of visuospatial 
ability or non-conflicting gestures. This might be explained 
by the fact that in the present study participants who neither 
have visuospatial ability nor non-conflicting gestures at their 
disposal (i.e. the group of low-visuospatial-ability learners 
who saw non-corresponding gestures) still could focus on 
the fish animation. This was possible because in this study 
the gestures were presented at the same time as the fish, 
whereas in our prior study the gestures were presented 
separated in time from the fish animations. However, further 
research should investigate direct comparisons of sequential 
and simultaneous presentations of additional gestures.  

Another interesting result of this study is that, in contrast 
to our hypothesis, self-performed gestures did not improve 
learning outcomes. In line with this, several recent attempts 
to augment learning about non-human movement (e.g., 
lightning formation, grammar rules) by instructing learners 
to make gestures while studying an animation also failed to 
improve learning performance (e.g. De Koning & Tabbers, 
2013; Post et al., 2013). Collectively, the conclusion from 
this and other studies is that independent from timing of 
gestures (during or after learning from dynamic 
visualizations) and instructional approach (instruct specific 
ways to perform gestures or let learners decide how to 
perform gestures) making gestures does not seem to benefit 
learning from dynamic visualizations involving non-human 
movement. Importantly, however, making gestures did 
activate the hMNS. Participants who were instructed to self-
gesture activated different parts of the hMNS depending on 
which gesture they simultaneously observed: with the 
corresponding gestures there was higher IFC activation, 
whereas with the non-corresponding gestures there was 
higher IPC activation. This can be brought in line with our 
previous findings (Brucker et al., 2015), in which we also 
found evidence that the IFC plays a role during watching 
corresponding gestures, whereas the IPC comes into the 
picture when (conflicting) non-corresponding gestures have 
to be processed. The IPC is associated with processes of 
motion analysis and motor imagery, which may both be 
helpful in the context of identifying the mismatch between 
the to-be-learned movements and the non-corresponding 
gestures. However, future research is needed to explore 
these processes in more detail. Future research should also 
address one limitation of this study – namely the lack of 
insight into learners’ strategies – by replicating it with 
think-aloud protocols so that it is possible to discover the 
strategies learners use when observing and making (non-
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corresponding) gestures in learning from dynamic 
visualizations. Furthermore, it is important to further 
identify potential neural correlates of (gesture-supported) 
learning with dynamic visualizations and to further unravel 
the relations between activation in different parts of the 
brain and learning outcomes. The present study provides a 
starting point from which future research endeavors within 
this emerging field of research can be explored with the goal 
to incorporate (observing and making) gestures in a way that 
learning about non-human movements from dynamic 
visualizations is enhanced. In conclusion, this study shows 
that observing additional gestures is helpful for learning 
about movements, but learners need different types of 
gestures depending on their amount of visuospatial ability. 
Thus, different types of gestures should be applied: High-
visuospatial-ability learners should be challenged with non-
corresponding gestures, whereas low-visuospatial-ability 
learners might be supported with corresponding gestures. 
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Abstract 

Prior research indicated that information processing is 
influenced by the proximity of the hands to information: 
visuospatial processing is fostered near the hands, whereas 
textual processing might not be affected or even inhibited 
near the hands. This study investigated how the proximity of 
the hands to digital information in pop-ups influences 
learning outcomes on multi-touch devices. Depending on the 
distance between the information in the pop-ups and the 
hands of the users there were three conditions: (1) all pop-ups 
opened near the hands, (2) all pop-ups opened far from the 
hands, and (3) pop-ups with visuospatial information opened 
near the hands, whereas pop-ups with textual information 
opened far from the hands (mixed condition). Results showed 
better learning outcomes when visuospatial pop-ups are 
presented near the hands, whereas there was no difference in 
learning outcomes between near and far presented textual 
pop-ups. Results and implications for multi-touch designs are 
discussed. 

Keywords: Learning; Information in Pop-Ups; Near-Hand-
Attention; Hand Proximity; Multi-Touch Devices; Design 
Implementations 

Learning with Multi-Touch Devices 
Our hands are the perfect interface of our body to get in 
contact with the world we live in. They allow us to grasp 
objects or defend us from potentially harmful things. In our 
daily life not only real objects, but also digital objects on 
multi-touch devices become more and more present due to 
the rapid technological development. One general question 
that arises, is, how such interaction devices should be 
designed and implemented to support users during acquiring 
knowledge with digital objects, such as digital pictures and 
texts (cf. North et al., 2009). Particularly, the conditions 
under which interactive multi-touch displays are able to 
facilitate learning are important. This study investigated 
how the distance between the hands and fingers of the users 
to additional digital information in pop-ups influences 
learning on multi-touch devices. Additionally, this was 
addressed for different types of information in the pop-ups, 
namely visuospatial and textual information. 

Near Hand Attention 
A few studies investigate the directness of manipulation in 
terms of hand proximity on multi-touch-tables. For 

example, Schmidt, Block, and Gellersen (2009) compared 
direct input on a multi-touch table display with indirect 
input where the input is made on the table but the surface on 
which the action was visible was a separate vertical display. 
Schmidt et al. (2009) showed that the direct condition led to 
better results than the indirect version. Moreover, Brucker et 
al. (2014) and Brucker, Ehrmann, & Gerjets (2016) showed 
that direct interaction with visuospatial elements (i.e., 
pictures of art pieces) was beneficial for learning compared 
to indirect interaction. This leads to the assumption that 
hand proximity is particularly beneficial for learning about 
visuospatial information. 

Indeed, prior research on information processing near 
the hands on computers without multi-touch interaction 
indicated that the processing of visuospatial information is 
positively influenced when the hands are near the to-be-
processed stimuli. For example, Reed, Grubb, and Steele 
(2006) showed that visuospatial processing is enhanced near 
the hands, because objects that are located near the hands 
receive higher visual attention than objects that are distant 
to the hands. There is a large amount of studies pointing in 
the same direction that visuospatial processing is fostered 
near the hands (e.g., Abrams et al., 2008; Cosman & 
Vecera, 2010; Tseng & Bridgeman, 2011; Vishton et al., 
2007). Tseng and Bridgeman (2011) found evidence that the 
proximity of the hands lead to deeper and more detailed 
processing of visual information. Cosman and Vecera 
(2010) showed facilitated figure-ground-distinctions near 
the hands. Vishton et al. (2012) showed higher visual 
precision near the hands (lower Ebbinghaus-illusion). 

However, Davoli et al. (2010) showed that not only 
visuospatial processing is fostered, but that also semantic 
processing might be impaired near the hands. In their first 
experiment, participants judged sentences classified by the 
experimenters as meaningless (e.g., “Tim typed his suitcase 
to the car” instead of a sentence classified as meaningful, 
such as “Tim carried his suitcase to the car”) more often as 
meaningful in the near-hand conditions than when the 
sentences were presented far from the hands (cf. Figure 1). 
In their second experiment, Davoli et al. (2010) found a 
reduced stroop-interference in the near-hand condition on a 
classical stroop-task (naming the color of a word instead of 
reading it: for example the word “RED” could be written in 
red [congruent condition] or in green [incongruent 
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condition]). Thus, participants could better suppress reading 
the word when their hands were near the stimuli. Davoli et 
al. (2010) interpreted the results of both studies as impaired 
semantic processing. According to Graziano and Gross 
(1994) stimuli that appear outside the border of 20 cm 
around the hands do not activate bimodal neurons sensitive 
to both touch and sight and thus, these stimuli can be 
considered as presented far from the hands. Furthermore, 
Adam et al. (2012) demonstrated that the proximity of the 
hands to the stimuli plays also a role while the hands are 
moving. This is particularly of interest, because during 
interaction gestures on multi-touch devices the hands have 
to be moved almost all the time.  

 

 
Figure 1: Experimental setting in the near-hand (left) and 

the far-hand condition (right; cf. Abrams et al., 2008). 

Design Implementations of Information in Pop-Ups 
During interacting with digital information on mutli-touch 
devices it is common that touching on the information 
activates a certain functionality. We address one specific 
functionality of information depiction on multi-touch 
devices – namely pop-ups displaying additional information 
– by addressing how the information processing of the 
additional information is influenced by the proximity of the 
hands to the pop-ups. If pop-ups are used on multi-touch 
devices the question arises where these pop-ups should open 
on the display in relation to the position of the hands and 
fingers that activate it. We will shortly introduce three 
possible distances: near, far, or mixed.  

Near distances between the pop-ups and the fingers of 
the users have the advantage that users easily find the 
additional information and do not have to run with their 
eyes over the display to search for it. However, near 
distances might also lead to coverings because information 
that is beforehand near to the finger of the user has to be 
superimposed by the new additional information in the pop-
ups. Regarding far distances between the pop-ups and the 
fingers of the users exactly the opposite advantages and 
disadvantages occur: Coverings can be prevented, but 
learners might have to use cognitive resources to find the 
additional information with their eyes (even though the 
information might be connected to the position of the finger 
with a line or an arrow or something similar). This might 
cause a type of split attention effect (cf. Ayres & Sweller, 
2005) between the users previous focus, where her/his hands 
and fingers are, and the new additional information in the 
pop-ups. The third way of presenting additional information 
in pop-ups – the mixed distances – depends upon the 
information that is entailed in the pop-up: As 
abovementioned there is a large amount of studies showing 
that visuospatial information processing is fostered near the 
hands. Thus it might be advantageous to depict pop-ups 

entailing visuospatial information near the hands (even 
though coverings might occur). For textual information the 
result pattern is not that clear: there is one study indicating 
that it might be better to process textual information further 
away from the hands (cf. Davoli et al., 2010), but this is not 
enough evidence to make a strong assumption about the best 
position for pop-ups entailing textual information. 

Hypotheses 
We assumed that information in pop-ups entailing 
visuospatial information should be learned better when the 
visuospatial pop-ups are presented near to the hands of the 
users. For information in pop-ups entailing textual 
information we did not expect such a difference, although it 
might be even advantageous if these textual pop-ups are 
presented far from the hands of the users.  

Methods 

Participants and Design 
Fifty-six university students (average age: 24.39 years, SD = 
4.58 years; 43 female) from a German university were 
randomly assigned to one out of three conditions in a 
between-subjects-design with the factor “pop-up distance” 
(near versus far versus mixed). Each student received 12 
Euro for participating in the study. Art history majors were 
excluded from the study.  

Materials and Domain 
Learning Materials and Multi-Touch Table As 
instructional domain, art history was chosen. The learning 
materials consisted of five paintings (cf. Figure 2) from the 
Herzog Anton Ulrich-Museum in Braunschweig, Germany.  
 

 
Figure 2: Pictures of the five paintings used in this study. 

 
High quality photographs of the paintings (in the following 
termed pictures) were displayed on a multi-touch table:  
1) ”Selbstbildnis“ (1547) - Ludger tom Ring d. J. (1522-1584),  
2) ”Porträt des Reinhard Reiners und seiner Ehefrau Gese“ (1569) - 

Ludger tom Ring d. J. (1522-1584),  
3) “Frühstücksstillleben“ (1642) - Willem Claesz. Heda (1594-168/82),  
4) ”Die Hochzeit des Peleus und Thetis“ (1602) - Joachim Anthonisz. 

Wtewael (1566-1638), and 
5) ”Die Heilige Katharina“ (around 1620/24) - Bernardo Strozzi 

(1581/82-1644).  
 
The size of the display of the multi-touch table was 128x135 
cm with a resolution of 1920px x 2160px via 2-x-Full-HD-
projection. We implemented the following interaction 
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possibilities with the pictures on the multi-touch table. For 
all five pictures additional information was accessible by 
touching a “i”-symbol on the bottom right corner. By 
pressing the “i” the picture turned around and a menu 
appeared. The menu entailed on the top left a small version 
of the painting in the middle on the top a short introduction 
text to the painting, and moreover four thematic index cards 
with teaser sentences (see Figure 3 for an example).  
 

 
Figure 3: Menu of “Die Hochzeit von Peleus und Thetis” 

(1602) with the four thematic index cards. 
 
Each index card could be opened via the “i”-symbol and 
gave additional information about a certain aspect 
concerning the painting (e.g., the artist, the story of the 
painting, details and imagery, space and composition, light 
and color; see Figure 4 for an example). By touching the 
“x”-symbol the index card could be closed again to get back 
to the menu, which could then be itself closed again by 
touching the respective “x”-symbol on it to go back to the 
picture. This structure with its three layers (painting – menu 
– index card) was developed in cooperation with the 
curators from the museum as well as the computer scientists 
that implemented the information on the multi-touch table in 
the context of developing an informal visitor-information-
system for the museum (Gerjets et al., 2013). 
 

 
Figure 4: Example of an opened thematic index cars. The 
arrows mark the pop-ups within the text and the picture. 

 
We decided to stick to three layers at the maximum, 
however for some aspects there was more additional 
information that would not have fit the limited space of the 
respective index card. For this additional information we 
decided not to open another layer to avoid the user of 
getting lost (e.g., Conklin, 1987), but instead used pop-ups. 
These pop-ups appeared by touching highlighted words or 

parts of the pictures. The distance in which the pop-ups 
opened when participants touched them was subject to 
experimental manipulation (see next subsection). 
 
Hand Proximity of Pop-Up Distance According to the 
factor “pop-up distance” we compared experimental 
conditions in which all pop-ups opened near the touching 
hand/finger of the users (see Figure 5) with conditions in 
which all pop-ups opened far from the touching hand/finger 
of the users (at least 25 cm; this distance was chosen to 
definitely exceed the peripersonal space of 20 cm around the 
hands, cf. Graziano & Gross, 1994; see Figure 6) with 
conditions in which pop-ups containing visuospatial 
information opened near, whereas pop-ups containing 
textual information opened far (at least 25 cm) away from 
the touching hand/finger of the users (mixed, see Figure 7). 
 

 
Figure 5: Near pop-ups condition. 

 

 
Figure 6: Far pop-ups condition. 

 

 
Figure 7: Mixed pop-ups condition. 

 

Measures 
The measures comprised a questionnaire on demographics 
and on participants’ familiarity with the domain, a 
visuospatial ability test, and learning outcome measures. 
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Demographic Data and Familiarity with the Domain The 
demographic questionnaire assessed age, gender, body size, 
need of glasses or contact lenses, major, and study progress. 
Moreover, this questionnaire assessed participants’ 
familiarity with the domain to determine participants’ 
familiarity with the content domain of this study (i.e., art) 
and to ensure that all students were novices with respect to 
this domain. Questions comprised details of the participants’ 
school education in art (e.g., number of courses taken, 
grades) and their familiarity with and interest in art, for 
instance, indicated by their visits in museums or galleries 
within the last year. Participants received points for answers 
that indicated at least some familiarity with the domain. 
Depending on the question they could receive only positive 
points (e.g., 0 to +4 points), whereas for some questions 
they could also receive negative points (e.g., -2 to +2 
points). Depending on these calculations, a participant could 
receive points within the range of -28 to +40 points. 

 
Learners’ Visuospatial Abilities Visuospatial abilities of 
the participants were assessed with a short version of the 
paper folding test (PFT, Ekstrom, French, Harman, & 
Dermen, 1976). This short version consists of ten multiple-
choice items. Participants have to choose the correct answer 
out of five options for each item. The stimuli are depictions 
of stepwise folded sheets of paper that were perforated in 
their folded state. The answer options depict the holes of 
various unfolded sheets of paper with the holes being either 
in the correct or incorrect positions. A maximum of three 
minutes is assigned to work on the items. For each correct 
answer participants received one point (max. 10 points).  

 
Learning outcome measures Learning outcomes were 
measured by means of 60 multiple-choice items about the 
contents entailed in the pop-ups. For each of the 60 
implemented pop-ups, there was one multiple-choice item. 
Most of the items (88 %) had four answer possibilities of 
which always only one was correct. The remaining items 
had two answer possibilities. Depending upon the content of 
the pop-up (visuospatial versus textual), the respective item 
asked for visuospatial or textual information. Visuospatial 
items asked for certain details (e.g., depicted objects or 
parts) from the picture, showed different versions due to 
color filters or mirroring (see Figure 8 for an example). 
Textual items asked for specific information that was only 
given in the texts of the corresponding pop-up (see Figure 9 
for an example). For each correct answer participants 
received one point (max. 60 points). 

Procedure 
Participants were tested individually. Subsequently to 
reading a short overview on the study, they worked on the 
demographics, the questionnaire on participants’ familiarity 
with the domain, and the PFT. Afterwards, participants were 
instructed to stand at a fixed position in front of the multi-
touch table to control the distance from the table. Then, they 
started with a practicing task on the multi-touch table to get 

– depending on the experimental condition – used to 
manipulating the digital objects and the way they could 
interact with the depicted information (about four minutes). 
Subsequently, participants started with the learning phase in 
which they could – again depending on the experimental 
condition – freely explore the five pictures of the paintings 
with the corresponding menus, index cards, and pop-ups 
(maximal 45 Minutes to explore the five paintings; 
participants took on average 35.84 Minutes [SD = 7.47]). 
During the learning phase participants were allowed to 
zoom and move the digital objects and freely switch 
between the paintings, their menus, index cards and pop-
ups. They were instructed to focus on the information in the 
pop-ups to ensure that they open preferably all of them to 
extract the relevant information. Subsequently to the 
learning phase, the participants answered the 60 multiple-
choice items. One session lasted approximately 80 Minutes. 
 

 
Figure 8: Example of a visuospatial test item. 

 

 
Figure 9: Example of a textual test item. 

Results 

Learner Prerequisites 
To investigate the comparability of the experimental 
conditions we conducted several analyses of variance 
(ANOVAs) with the between-subjects-factor “pop-up 
distance” and the dependent variables participants’ 
familiarity with the domain, age, and visuospatial abilities 
and a chi-squared-test for gender. There were no differences 
between the three experimental conditions regarding 
participants’ familiarity with the domain (F(2, 53) = 2.00, 
MSE = 118.66, p = .15, η2

p = .07, ns) and participants’ age, 
(F < 1, ns). In general, the means indicated that participants’ 
familiarity with the domain was rather low and that it varied 
a lot across participants (cf. large standard deviations; for 
means and standard deviations see Table 1). Furthermore, 
there were no significant associations between the three 
experimental conditions and participants’ gender (χ2(2, 56) 
= 1.58, p = .45, ns; see Table 1 for the number of females in 
each condition). Thus, the conditions are comparable with 
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regard to learners’ prerequisites in terms of familiarity with 
the domain, age and gender. 

However, for participants’ visuospatial abilities there 
was a significant difference between the three experimental 
conditions (F(2, 53) = 3.76, MSE = 5.81, p = .03, η2

p = .12). 
Bonferroni-adjusted post-hoc comparisons showed that only 
participants in the mixed condition had higher visuospatial 
abilities than participants in the far condition (p = .04). 
Thus, we calculated an analysis of covariance (ANCOVA) 
with the between-subjects factor “pop-up distance” and 
learning outcomes as dependent variable, in which we 
included visuospatial abilities as a covariate and moreover 
the interaction term pop-up distance * visuospatial abilities 
to test whether there was an interaction between pop-up 
distance and visuospatial abilities. Because this interaction 
term did not reach statistical significance, we report for 
reasons of simplicity the ANCOVA with visuospatial 
abilities included as covariate, but without incorporating the 
interaction term (pop-up distance * visuospatial abilities).  
  
Table 1: Means and standard deviations (in parentheses) of 
learner prerequisites and learning outcomes (% correct) as a 

function of hand proximity. 
 

 pop-ups 
near  

(n = 18) 

pop-ups 
far  

(n = 18) 

pop-ups 
mixed  

(n = 20) 
Domain Familiarity  
(-28 to +40) 

6.83 
(9.04) 

2.11 
(11.65) 

- 0.15 
(11.09) 

Visuospatial abilities  
(PFT 1-10) 

6.61 
(2.45) 

4.89 
(3.01) 

6.90 
(1.65) 

Age (in years) 24.06 
(5.86) 

25.00 
(4.06) 

24.15 
(3.84) 

Female Participants  15 12 16 
Learning Outcomes 
in % correct 

58.53 
(10.67) 

52.98 
(8.29) 

59.82 
(9.79) 

Learning Outcomes 
An ANCOVA with the between-subjects factor pop-up 

distance and visuospatial abilities as covariate revealed a 
significant main effect of pop-up distance for learning 
outcomes (F(2, 52) = 3.17, MSE = 92.77, p = .05, η2

p = .11, 
achieved power = 0.62), whereas there was no effect of 
visuospatial abilities on learning (F(1, 52) = 1.08, MSE = 
92.77, p = .30, η2

p = .02, ns). To disentangle the main effect 
of pop-up distance for the three groups, we calculated 
contrast analyses in which we compared on the one hand the 
two conditions with near pictures (pop-ups near and pop-ups 
mixed) to the condition with far pictures (pop-ups far) and 
on the other hand the two conditions with far texts (pop-ups 
far and pop-ups mixed) to the condition with near texts 
(pop-ups near). These contrast analyses revealed that near 
pictures lead to better learning outcomes than far pictures 
(F(1, 52) = 6.10, MSE = 92.77, p = .02, η2

p = .11), whereas 
there were no differences in learning outcomes for near and 
far texts (F < 1, ns). This result pattern is in line with our 
hypothesis (for means and standard deviations see Table 1). 

Discussion 
This study addressed how the position of pop-ups in relation 
to the hands and fingers of the users on multi-touch devices 
influences learning about the information entailed in the 
pop-ups. Results showed that learning outcomes are better if 
pop-ups that contain pictures are presented near the hands, 
whereas there was no difference for learning outcomes 
between near-presented and far-presented pop-ups that 
contain texts. This result pattern is in line with prior 
findings that visuospatial information is better processed 
near the hands (e.g., Reed et al., 2006). Moreover it is in 
line with our hypothesis that visuospatial contents should be 
presented near the hands of users on multi-touch displays.  

Both alternative explanations of split-attention (cf. Ayres 
& Sweller, 2005) or possible coverings of important 
information were not solely valid. A split-attention effect 
would have favored the near condition because in the far 
hand conditions the attention of the learners would have 
been split between the origin of the pop-up where the finger 
activates it and the location where the pop-up really opens 
(at least 25 cm distance). A prevent-coverings explanation 
would have favored the far hand condition, in which the 
pop-ups open at least 25 cm away from the users fingers, 
because this implementation prevents coverings of the 
relevant contents that might have been caused by the 
opening pop-ups or the fingers, hands or arms of the users.  

For textual contents it seems to be indifferent of how 
near or far these information is presented to the hands of the 
users. Maybe we were not able to find any differences for 
near and far texts because we measured recognition of 
specific details from semantically correct sentences. In 
contrast to this measure, the only paper that found evidence 
for differences regarding textual information so far, 
addressed semantic processing and contrasted meaningful 
with meaningless sentences (Davoli et al., 2010). However, 
we did not investigate this more basal type of semantics, but 
rather a more complex type of semantics. Weidler and 
Abrams (2014) showed enhanced cognitive control near the 
hands. Admittedly, they did not address textual processing 
directly in their studies, but their results indicate that tasks 
that highly focus on cognitive control should be enhanced 
near the hands. This result pattern might also explain parts 
of the Davoli et al. (2010) study, namely the reduced 
Stroop-inference-effect that can be also explained by higher 
cognitive control near the hands and not by worse semantic 
processing. Hence, particularly the complexity of the textual 
materials might have influenced the information processing. 
Thus, one might have also assumed that textual information 
should also be better processed near the hands. However, 
our results showed neither better nor worse performance for 
pop-ups containing textual information near the hands. We 
cannot preclude that both processes – the worse processing 
of semantic stimuli (cf. Davoli et al., 2010) and the 
enhanced processing due to higher cognitive control (cf. 
Weidler & Abrams, 2014) – might have influenced learning 
about textual information in this study. Further research is 
needed to disentangle these concurring explanations. 
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Another important difference from our study compared to 
prior research in this field is the direct interaction with the 
materials. Participants directly manipulated the pop-ups 
during learning, instead of only holding their hands next to 
the stimuli as in many prior studies. Thus, in the present 
study the participants were involved by their active 
manipulation of the given materials (e.g., freely choosing 
with which object they want to interact, moving and 
zooming of objects). Under the evolutionary assumption 
visuospatial stimuli are potential candidates for 
manipulation, because grasping of desirable objects or 
withdrawing the hands in case of dangerous or harmful 
objects was important in the evolution of human beings. 
Thus visuospatial stimuli are much more likely to be 
interacted with than textual stimuli for which no such 
evolutionary assumption exists. This might also give some 
hints for the result pattern that we found differences for pop-
ups with pictures, but not for pop-ups with texts. Future 
studies should investigate the importance of the direct 
manipulation for our result patterns by comparing 
interactive with non-interactive conditions. 

Moreover, in this study the hands and the fingers of the 
participants, with which they opened the pop-ups, was 
visible for both the near pop-ups, as well as the far pop-ups, 
whereas in prior research the hands of the participants were 
often not visible in the far hand conditions as the hands are 
for example positioned in the lab of the participants. The 
visibility of the hands and fingers might have influenced the 
result pattern even though the far pop-ups opened at least 25 
cm away from the finger of the participants.  

Further research is needed to replicate our findings. In 
future studies the exact distance of the pop-ups in the 
different conditions should be assessed. Moreover, the pop-
up attendance should be gathered as a manipulation check 
whether all participants really accessed all relevant 
information by opening all pop-ups. Additionally, eye-
tracking data would deliver more insights in the question 
which information the participants really processed during 
learning. Furthermore, assessing verbal and visual memory 
skills in addition to visuospatial abilities might contribute to 
the understanding of the different result patterns for 
visuospatial and textual contents in the pop-ups.  

In sum, the results from this study yield direct 
implications for designing multi-touch environments: Let 
pop-ups containing visuospatial information open near the 
hands, but let pop-ups containing textual information open 
further away to prevent coverings if the size of the display 
and the number of users allow for such a far presentation.  
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Abstract

While research on emotions has become one of the most pro-
ductive areas at the intersection of cognitive science, artifi-
cial intelligence and natural language processing, the diversity
and incommensurability of emotion models seriously hampers
progress in the field. We here propose kNN regression as a
simple, yet effective method for computationally mapping be-
tween two major strands of emotion representations, namely
dimensional and discrete emotion models. In a series of ma-
chine learning experiments on data sets of textual stimuli we
gather evidence that this approach reaches a human level of
reliability using a relatively small number of data points only.
Keywords: Models of Human Emotion; Representation Map-
ping; Machine Learning; Natural Language Processing

Introduction
In the past decades, a multitude of different models have been
devised to elucidate the nature of human emotion (Scherer,
2000). A common distinction at the representational level
of emotions sets dimensional models apart from discrete or
categorical models (Stevenson, Mikels, & James, 2007).

Dimensional models consider affective states to be best de-
scribed relative to a small number of independent emotional
dimensions (often two or three). Substantial contributions to
this line of research are often attributed to Osgood, Suci, and
Tannenbaum (1957) as well as Mehrabian and Russell (1974)
(Scherer, 2000). Although different labels have been pro-
posed by major proponents of this approach, we here refer to
these fundamental dimensions as Valence (the positiveness or
negativeness of an emotion), Arousal (a calm–excited scale)
and Dominance (the perceived degree of control over a (so-
cial) situation)—VAD, in short.1

Discrete models, on the other hand, often refer to emotions
as evolutionary derived response pattern to major environ-
mental events—each with its specific elicitation conditions
(Scherer, 2000). Thus, in contrast to dimensional models
which tend to focus on the subjective feeling aspect of emo-
tion (and its associated verbal expression) researchers who
adhere to the discrete approach rather tend to focus on motor
(especially facial) expression and adaptive behavior. Among
others, Plutchik (1980), Izard (1994) and Ekman (1992) are
most influential for the development of this line of research.

1Another common name for the Valence dimension is Pleasure
(PAD). Our choice of terminology (VAD) follows the more recent
stimulus sets we use here (Warriner, Kuperman, & Brysbært, 2013;
Ferré, Guasch, Martı́nez-Garcı́a, Fraga, & Hinojosa, 2016).

Although many different sets of such basic emotions have
been proposed (typically ranging between 7 and 14 cate-
gories), up until now, no consensus has been reached on their
exact and complete number (Scherer, 2000). However, most
researchers seem to agree on at least five basic categories,
namely Joy, Anger, Sadness, Fear, and Disgust.

For dimensional models, a broad variety of stimulus data
bases have been developed, predominantly covering lexical
stimuli. The Affective Norms for English Words (ANEW)
(Bradley & Lang, 1999a) have been one of the first and
probably most important data sets which comprise affective
norms for Valence, Arousal and Dominance for 1,034 En-
glish words. Complementary lexical affective norms have
also been developed for a wide range of other languages, such
as German, Spanish or Polish (Võ et al., 2009; Redondo,
Fraga, Padrón, & Comesaña, 2007; Riegel et al., 2015). In
addition, larger linguistic units have been considered for emo-
tion assessment moving ratings from lexical items up to sen-
tence and text level (Pinheiro, Dias, Pedrosa, & Soares, 2017;
Bradley & Lang, 2007), on the one hand, and considering al-
ternative modalities, such as pictures and sounds, on the other
hand (Lang, Bradley, & Cuthbert, 2008; Bradley & Lang,
1999b). Although these stimulus sets were primarily cre-
ated for dimensional representations, research activities in-
creasingly covered discrete emotion representations, as well
(for all modalities). Consequently, many of the stimuli which
have formerly been rated according to affective dimensions
only, in the meantime, have also received discrete categorical
norm ratings in terms of double encodings (e.g., Stevenson
and James (2008), Stevenson et al. (2007) and Libkuman,
Otani, Kern, Viger, and Novak (2007); see Table 1 for a list
of resources with both dimensional and discrete ratings).

These resources have been highly influential for artificial
intelligence (AI) research: Within the broader context of
affective computing (Picard, 1997), they have specifically
fostered the prediction of affective states from textual stim-
uli which is—as a subtask of natural language processing
(NLP)—most commonly referred to as sentiment analysis
(Pang & Lee, 2008; Liu, 2015; Mohammad, 2016). At the
outset, NLP researchers focused on the Valence dimension
only, typically trying to assign a piece of text to either a
positive or a negative class (Pang, Lee, & Vaithyanathan,
2002). In the meantime, the interest in more advanced
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models of emotions (going beyond positive-negative polar-
ity judgments) has increased considerably. At first, this de-
velopment was centered around discrete models (Ovesdotter
Alm, Roth, & Sproat, 2005; Strapparava & Mihalcea, 2007),
whereas only very recently the interest in dimensional mod-
els rapidly began to rise, as well (Buechel & Hahn, 2016;
Wang, Yu, Lai, & Zhang, 2016; Sedoc, Preoţiuc-Pietro, &
Ungar, 2017)—a focal change that profoundly benefited from
the availability of affective norms developed in psychology
labs. Ironically, in NLP, we now face a situation where the
enormous interest in analyzing affectively loaded language
has led to a proliferation of competing formal representa-
tion schemes for affective states whose motivation can be
traced in various branches of psychological emotion theory
(Valence-only, Valence-Arousal-Dominance, different sets of
basic emotions, etc.). Consequently, it has become increas-
ingly difficult to reliably compare the performance of differ-
ent emotion recognition algorithms (Buechel & Hahn, 2016).

A possible solution to this dilemma is to elaborate explicit
mappings between different representation formats, i.e., to
predict the affective norm of a stimulus according to one rep-
resentation format when the norm is already known in an-
other format (e.g., dimensional and discrete representations;
see Figure 1 for a graphical illustration). Not only would this
affect formerly incommensurable algorithms but also widely
ease the reusability of text collections annotated with differ-
ent emotional ratings—one of the most important factors for
advances given the predominance of training data-dependent
supervised machine learning in NLP. In fact, not only com-
putationally focused research would benefit from such map-
pings but also empirical research in psychology and cogni-
tive science (Stevenson et al., 2007). By that, both the di-
mensional and the discrete view on emotion would be fur-
ther integrated so that empirical findings from one view (e.g.,
regarding priming or memory) could be more directly com-
pared to findings from the other view. Furthermore, exist-
ing stimulus sets originally based on one of these approaches
could be easily enriched by norms employing other encoding
schemes so that researchers could choose from a number of
alternative, though mutually translatable emotion representa-
tion formats when designing experiments. This outlook be-
comes even more promising when we take into account the
vast number of stimuli sets which bear ratings according to
dimensional and discrete formats (see Table 1).

Despite the benefits of transferability, previous work on au-
tomatically translating between those formats (in contrast to
manual re-annotation) has been relatively rare in the fields of
psychology and AI. Stevenson et al. (2007) collected discrete
ratings in addition to the dimensional ratings of ANEW. They
repeated this effort in a follow-up study for the International
Affective Digitized Sounds (IADS) stimulus set (Stevenson &
James, 2008; Bradley & Lang, 1999b). Performing multiple
linear regression between the categories/dimensions of both
formats they evaluated the predictive power of the elements
of the source representation (dimensions or categories) by the
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Figure 1: Affective space spanned by the Valence-Arousal-
Dominance model, together with the position of six basic
emotions (as determined by Russell and Mehrabian (1977);
figure adapted from Buechel and Hahn (2016)).

statistical significance of their β-coefficients. They conclude
that neither any of the affective dimensions consistently pre-
dict (one of the) discrete categories nor can predictions be
made the other way round. The findings of Pinheiro et al.
(2017) on their own data set of Portuguese sentences, in prin-
ciple, support this conclusion. The present study differs from
these precursors by concentrating on the combined model
performance (and not on the contribution of the individual
independent variables to it).

In contrast with these rather negative interpretations, in AI
research, such emotion mappings have already been imple-
mented with quite promising results. Calvo and Kim (2013)
presented an algorithm that determines the emotional cate-
gory of a text based on dimensional word ratings from psy-
chology, using VAD as an interim representation before map-
ping onto discrete categories. Similarly, Buechel and Hahn
(2016) presented a tool for predicting VAD scores from texts
which maps their output onto basic emotions using support
vector machines. Not only did they achieve highly competi-
tive results regarding their emotion predictions, but they also
report on a surprisingly high mapping performance (up to
R2 = .944 when predicting Valence given numerical scores
for five basic emotions).

In this contribution, we follow up on this line of research
by presenting a series of machine learning experiments that
scrutinize the capability of such mapping schemes for textual
stimuli. We restrict ourselves to well-known data sets of rel-
atively small size so that the implications of our work can be
put into practice without further restrictions (e.g., data limi-
tations in a specific domain). For modeling, we decided to
rely on k Nearest Neighbor (kNN) regression because of its
simplicity, thus demonstrating that even elementary machine
learning methods are sufficient here.

Our experiments fall into three steps. First, we gener-
ally demonstrate the feasibility of our approach by examining
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the mapping performance between discrete and dimensional
emotion formats on two different data sets, an English and a
Spanish one. Second, we investigate how well these models
generalize over different data sets and languages. In a third
step, we examine how well this approach can be ported from
psychology to NLP.

Study A: Mapping within a Stimulus Set
In the first experiment, we examine the capability of machine
learning techniques to map dimensional and discrete emotion
formats onto each other when training and test data are de-
rived from the same data set.

Method
Material. We compose two different stimulus sets each re-
ceiving dimensional and discrete ratings from individual con-
tributions. The first data set is ANEW which carries norms
for Valence, Arousal and Dominance as supplied by Bradley
and Lang (1999a); later on Stevenson et al. (2007) added dis-
crete norms for Joy, Anger, Sadness, Fear and Disgust to it.
The first half of the second set was originally presented by
Redondo et al. (2007) as the Spanish adaptation of ANEW,
thus including direct Spanish translations from the original
English items. 1,012 of these words overlap with the ones
rated by Ferré et al. (2016) according to basic emotions (to-
gether forming the second stimulus set). For both the English
and the Spanish stimulus set, dimensional ratings were as-
signed using a 9-point SAM (a set of human-like pictograms
displaying different levels of Valence, Arousal and Domi-
nance (Bradley & Lang, 1994)). For the emotional categories,
5-point scales ranging from not at all to extremely were used.
We use mean ratings by all subjects as supplied by the respec-
tive authors without performing any further transformation of
the data (e.g., re-scaling).

Procedure. We used the R package CARET2 to train kNN
models in order to map between dimensional and dis-
crete emotion representation schemes. For each dimen-
sion/category of the target representation, an individual
model was trained given all the dimensions/categories of the
source representation as features (e.g., there is one model to
predict Anger given Valence, Arousal and Dominance rat-
ings as input). We ran a 10-fold cross-validation (90% of
the data were used for training and hyper-parameter tuning
and the remaining 10% were made available for testing; the
process was repeated ten times averaging the results). For
the hyper-parameter k a grid search was performed repeating
the procedure for each integer in the interval [1,100]. Conse-
quently, the k-values may vary across the individual models.
For comparability between different contributions, Pearson’s
r was used to assess the goodness of the fit.

Results
Table 2, section “Study A”, depicts the results of the cross-
validation (data sets in rows, target dimension/category in

2http://topepo.github.io/caret/index.html

columns). As can be seen, the results range roughly be-
tween r ≈ .73 up to .97 (both for mapping onto VAD on the
English data set). We consider these figures to be surpris-
ingly high, given the small amount of data points we have
(from a machine learning point of view) and the elementary
model we chose. Henceforth, for comparing correlation co-
efficients, we use two-tailed Z-tests for independent samples
(tests for dependent samples are not eligible due to our cross-
validation methodology). We find that mapping from dimen-
sional to discrete ratings performs significantly better on the
English data set than mapping the other way round (z = 2.42,
p < .05), while the difference in mapping accuracy is not sig-
nificant regarding the Spanish data (z = 0.74, p≥ .05).

Next we compare our model’s fit against human reliability.
Warriner et al. (2013) replicated the ratings of ANEW find-
ing a correlation of their novel data with the original norms
of r = .953, .759 and .795 for Valence, Arousal and Domi-
nance, respectively. Thus, on the English data set, computa-
tionally mapping discrete emotion norms to dimensional rat-
ings results in a significantly higher correlation with the orig-
inal values than this replication study regarding Valence and
Dominance (Valence: z= 4.1, p< .001; Dominance: z= 3.1,
p < .001). For Arousal, the results are not significantly dif-
ferent (z = 1.72, p≥ .05).

Study B: Crosslingual Mapping
In our second experiment, we examine in how far the above
models generalize over different studies and languages.

Method
We use the same English and Spanish data sets as for the pre-
vious experiments (with both dimensional and discrete rat-
ings). In line with Study A, we train an individual model
for each target category/dimension using all dimensions or
categories of the source format (discrete or dimensional) as
features. The k-parameter was chosen according to the high-
est performance in the 10-fold cross-validation set-up from
the prior experiment. This time, the models were trained on
the whole of one data set and then mutually tested on the
other one (so that eight models are trained on the English
data—one for each dimension/category—and then tested on
the Spanish data, and the other way round). Therefore, no
cross-validation is necessary. Performance is measured as
correlation between predicted and actual values.

Results
Overall, we find that the models trained on the English data
generalize well over the Spanish data and vice versa (see
Table 2, Study B). The drops in performance (compared
to Study A) regarding the individual dimensions/categories
range well below 10% points. In fact, regarding the average
performance of mapping basic emotions onto VAD dimen-
sions, for neither of the two data sets the correlation decreases
significantly (comparison relative to the target data; mapping
to English: z = 1.46, p ≥ .05, to Spanish: z = 1.6, p ≥ .05).
Regarding the mapping from the dimensional to the discrete
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Table 1: Overview of selected stimulus sets bearing ratings according to both dimensional and discrete models.

Stimuli Overlap Dimensional Ratings Discrete Ratings

words 1,012 Redondo et al. (2007) Ferré et al. (2016)
1,036 Bradley and Lang (1999a) Stevenson et al. (2007)

sentences 1,192 Buechel and Hahn (2017) Strapparava and Mihalcea (2007)
192 Pinheiro et al. (2017) Pinheiro et al. (2017)

images 703 Lang et al. (2008) Libkuman et al. (2007)
sounds 111 Bradley and Lang (1999b) Stevenson and James (2008)

Table 2: Results for studies A, B and C in Pearson’s r relative to the data sets on which the models are trained and tested
on (English, Spanish and EMOBANK (EMOB.)), and what the input and what the target emotion format for the mapping
is (dimensional or discrete). Av: Average over the respective correlation coefficients (dimensional (VAD) or discrete basic
emotions (BE)).

Study Data Dimensional→Discrete Discrete→Dimensional
Joy Ang. Sad. Fear Dsg. AvBE Val. Aro. Dom. AvVAD

A English→English 0.960 0.873 0.863 0.868 0.798 0.872 0.967 0.725 0.840 0.844
Spanish→Spanish 0.959 0.848 0.826 0.872 0.743 0.849 0.971 0.743 0.860 0.858

B English→Spanish 0.948 0.791 0.807 0.829 0.698 0.815 0.966 0.740 0.808 0.838
Spanish→English 0.948 0.831 0.855 0.841 0.772 0.850 0.963 0.715 0.795 0.825

C EMOB.→EMOB. 0.738 0.481 0.674 0.559 0.348 0.560 0.788 0.227 0.412 0.476
English→EMOB. 0.643 0.411 0.637 0.518 0.301 0.502 0.682 0.156 0.360 0.400

Inter-Rater Reliab. EMOB. 0.599 0.495 0.682 0.638 0.445 0.572 – – – –

format, losses in performance are significant, however, only
by a small margin when mapping from Spanish to English
(z= 1.98, p< .05; to Spanish: z= 2.52, p< .05). Comparing
our models to human reliability (see above), we find that, for
Valence, the predictions by the models trained on the Spanish
data have still a significantly higher correlation with the orig-
inal norms by Bradley and Lang (1999a) than the reproduced
norms by Warriner et al. (2013) (z = 2.81, p < .001). For
Arousal, the reproduction yields a significantly higher corre-
lation (z = 2.19, p < .5) while for Dominance the difference
is not significant (z = 0.03, p≥ .05).

Study C: Application to NLP Data Set
In the third experiment, we examine whether the mapping ap-
proach from the previous two studies translates to a concrete
NLP scenario, given the task to automatically enrich existing
emotion data sets with complementary emotion formats.

Method
We here rely on the recently developed EMOBANK data set3

(Buechel & Hahn, 2017) which comprises 10k sentences to-
gether with their VAD ratings. To the best of our knowledge,
EMOBANK is the only NLP resource annotated for multi-
ple emotion formats: A subset of 1,192 sentences (English
news headlines) has formerly been annotated for six emotion
categories on a [0,100] scale by Strapparava and Mihalcea

3https://github.com/JULIELab/EmoBank

(2007). We use this subset, first, to train kNN models in a
cross-validation set-up (as in study A), and second, to evalu-
ate the performance of the models previously trained on the
English stimulus set on these novel ratings (as in Study B).

Results
This set-up yields three main results. First, the overall map-
ping performance drops sharply compared to the former two
studies. Comparing the cross-validation performance of our
models from the English stimulus set (Study A) with those
of the EMOBANK data (Table 2, Study C), we find a consid-
erable decrease in correlation of about 35 percentage points
(comparing average correlation coefficients for basic emo-
tions and VAD; z = 15.99 and 16.21, respectively, p < .001).

In contrast to these mediocre results, the second main find-
ing can be summarized such that our performance does only
decrease by a small margin when the models are not trained
on EMOBANK but on the English stimuli from Study A (com-
prising words instead of headlines and gathered with a dis-
similar methodology; first vs. second line of Table 2, Study
C). For mapping onto VAD, the drop is still statistically sig-
nificant (z = 2.11, p < .05) while for mapping onto BE it is
not (z = 1.82, p ≥ .05). This suggests that, although our ap-
proach works better for lexical data gathered in psychological
settings than for headlines annotated in NLP frameworks, the
models still generalize well in the sense that one can apply
models trained on the former to the latter without sacrificing
a lot of performance.

183



Even more surprisingly, our third main finding is that our
approach still performs very well compared to human relia-
bility (see bottom row of Table 2). Inter-rater reliability is re-
ported by Strapparava and Mihalcea (2007) as the correlation
of one rater with the mean judgment of the remaining raters
averaged over all raters. Therefore, the output of our models
can be cautiously compared against these reliability values. In
this setting, we find no significant difference regarding the av-
erage over the basic emotions (z= 0.4, p≥ .05). We carefully
interpret this observation to indicate that our output correlates
with the aggregated rating of several subjects about as good
as an average human does. Thus, consistent with our find-
ings from Study A and B, our approach appears to perform
comparably to human subjects and, in fact, even predicts nor-
mative Joy ratings significantly better (z = 6.02, p < .001).
This suggests that the performance drop highlighted as the
first main finding might point at different levels of data qual-
ity rather than taking this as evidence that our approach might
be unsuitable for NLP data (we will get back to this issue in
the subsequent discussion section).

General Discussion
We presented a series of experiments in which we examined
the level of performance that can be achieved for mapping
emotion ratings onto each other following the dimensional or
the discrete representation format for the case of textual stim-
uli. To make our work more informative in terms of immedi-
ate reusability, we limited ourselves to employing relatively
small and commonly used data sets, as well as elementary
machine learning techniques.

In study A, we took into account two data sets from psy-
chology, an English and a Spanish word stimulus set, each
one bearing dimensional and discrete emotion ratings. On
both sets, the mapping performance was surprisingly high.
When comparing our prediction accuracy to a reassessment
study of the English norms with human subjects, we found
that our predicted values yielded significantly higher corre-
lation with the original ratings than the novel reproduction
regarding two of the three VAD dimension. This astonish-
ing result suggests that given affective ratings in one format,
ratings for the complementary emotion format can be compu-
tationally induced at a human level of reliability.

Study B goes beyond these considerations by asking how
well these models generalize over different data sets with fo-
cus on different languages. The observation that the decrease
in average mapping performance is only statistically signifi-
cant in half of the cases suggests that the models generalize
well over different (European) languages. However, it must
be taken into account that the English and Spanish data sets
are direct translations of each other regarding their raw data,
possibly boosting the pairwise reusability of the models.

In Study C, we investigated a realistic usage scenario for
our approach. Instead of lab data sets typically used in psy-
chology, we here focused on a recently developed corpus of
real-world news headlines, again annotated for both emo-

tional dimensions and categories. This set-up yielded three
results. First, compared to the former studies, we found a
strong decrease in overall mapping performance. Second, the
difference between the models directly trained on these data
and the ones transfered from Study A were quite small (not
even significant for mapping onto BEs). And third, our data
suggest that our approach is on par with human annotation
performance, despite the overall drop in mapping accuracy.

A possible explanation for this somewhat inconsistent be-
havior could be that, while the psychological data sets consist
of word stimuli with explicit selection criteria, EMOBANK
comprises “real-world” language data (news headlines in-
stead of individual words). Thus, subjects can interpret these
stimuli in a greater number of ways and may also be more
strongly affected by biases from, e.g., political orientation or
personal biography. In addition, the stimuli from Studies A
and B have typically received a greater number of individual
ratings which makes their aggregation potentially more reli-
able (i.e., less noisy in terms of training data).

Besides the above considerations, the results from Study C
actually support the flexibility of the approach outlined here.
Especially the observation that our models for mapping exist-
ing annotations operate about as accurately as a single human
rater freshly annotating new raw data suggests that soon we
may be able to fully automatically translate affective norms
in terms of VAD to basic emotions and vice versa.

In conclusion, the experiments we presented here clearly
demonstrate the power as well as the possible impact of our
(still rather simple) set-up. The perspective of being reliably
able to map back and forth between those popular emotion
formats could not only lead to an improved availability of
emotionally rated data sets in psychology and NLP. In addi-
tion, it may promote the integration of both views on emotion
in psychological theory. Despite only presenting evidence
from textual stimuli, we suggest that our approach may work
for other modalities (and possibly across modalities) as well
because no linguistic information was used for the prediction.
We will address this conjecture in future work.
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Ferré, P., Guasch, M., Martı́nez-Garcı́a, N., Fraga, I., & Hino-
josa, J. A. (2016). Moved by words: Affective ratings for
a set of 2,266 Spanish words in five discrete emotion cate-
gories. Behavior Research Methods. (Online First Article)
doi: 10.3758/s13428-016-0768-3

Izard, C. E. (1994). Innate and universal facial expressions:
Evidence from developmental and cross-cultural research.
Psychological Bulletin, 115(2), 288–299.

Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (2008). Inter-
national Affective Picture System (IAPS): Affective ratings
of pictures and instruction manual (Tech. Rep. No. A-8).
Gainesville, FL: University of Florida.

Libkuman, T. M., Otani, H., Kern, R., Viger, S. G., & Novak,
N. (2007). Multidimensional normative ratings for the In-
ternational Affective Picture System. Behavior Research
Methods, 39(2), 326–334.

Liu, B. (2015). Sentiment analysis: Mining opinions, senti-
ments, and emotions. New York, NY: Cambridge U.P.

Mehrabian, A., & Russell, J. A. (1974). An approach to
environmental psychology. Cambridge, MA: MIT Press.

Mohammad, S. M. (2016). Sentiment analysis: Detecting
valence, emotions, and other affectual states from text. In
H. L. Meiselman (Ed.), Emotion Measurement (pp. 201–
237). Oxford, U.K.: Elsevier.

Osgood, C., Suci, G., & Tannenbaum, P. (1957). The mea-
surement of meaning. Urbana, IL: Univ. of Illinois Press.

Ovesdotter Alm, E., Roth, D., & Sproat, R. (2005). Emotions
from text: Machine learning for text-based emotion predic-
tion. In HLT-EMNLP 2005 — Proc. of the Human Lan-
guage Technology Conference & Conference on Empirical
Methods in Natural Language Processing (pp. 579–586).

Pang, B., & Lee, L. (2008). Opinion mining and sentiment
analysis. Foundations and Trends in Information Retrieval,
2(1-2), 1–135.

Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up?
sentiment classification using machine learning techniques.

In EMNLP 2002 — Proc. of the Conference on Empirical
Methods in Natural Language Processing (pp. 79–86).

Picard, R. W. (1997). Affective computing. Cambridge, MA:
MIT Press.

Pinheiro, A. P., Dias, M., Pedrosa, J. a., & Soares, A. P.
(2017). Minho Affective Sentences (MAS): Probing the
roles of sex, mood, and empathy in affective ratings of ver-
bal stimuli. Behavior Research Methods, 49(2), 698–716.

Plutchik, R. (1980). A general psychoevolutionary theory
of emotion. In R. Plutchik & H. Kellerman (Eds.), Emo-
tion: Theory, research and experience (Vol. 1: Theories of
Emotion, pp. 3–33). New York, NY: Academic Press.

Redondo, J., Fraga, I., Padrón, I., & Comesaña, M. (2007).
The Spanish adaptation of ANEW (Affective Norms for En-
glish Words). Behavior Research Methods, 39(3), 600–5.

Riegel, M., Wierzba, M., Wypych, M., Żurawski, L., Jed-
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Abstract

Acoustic and contextual cues to linguistic categories (e.g.,
phonemes or words) tend to be temporally distributed across
the speech signal. Optimal cue integration thus requires main-
tenance of subcategorical information over time. At the same
time, previous work suggests that finite sensory memory or
processing capacity strongly limits how much subcategorical
information can be maintained (or for how long). We ar-
gue that previous work might have over-interpreted the role
of these limitations. In two perception experiments, we find
no limit in the ability to maintain subcategorical information.
We also find that maintenance seems to be the default, neither
limited to perceptually particularly ambiguous signals, nor a
learned strategy specific to our experiment. In contrast, listen-
ers’ decision for how long to delay categorization, we find, is a
function of perceptual ambiguity. It is therefore crucial to dis-
tinguish between in-principle abilities (even when they reflect
default processing), and decisions made within the bounds of
those abilities.
Keywords: linguistics; cognitive science; speech recognition;
language comprehension

Introduction
One of the most fundamental problems of auditory process-
ing is the transient nature of the acoustic signal; the systems
underlying speech perception receive large amounts of infor-
mation every second. The bounds of sensory memories thus
create a pressure to incrementally infer abstract linguistic cat-
egories (e.g., phonemes and words) from the auditory signal
before that information becomes unavailable.

However, much of the information relevant to inferring a
particular part of the auditory signal, for example a segment
(phoneme), is not contained on the segment itself. For ex-
ample, one of the main cues to coda stop voicing is duration
of the previous vowel (Klatt, 1976). Thus, in order to suc-
cessfully resolve the voicing of a coda stop, listeners must
maintain information about the previous vowel and integrate
it with the evidence they receive later. This is opposed to
a scheme where the listener removes information about the
previous vowel and only maintains some abstract categorical
representation that does not include duration information.

Previous work suggests that listeners can indeed main-
tain and use subcategorical information at least at short
timescales. In a classic study, Ganong (1980) found that lex-
ical constraints can influence the perception of a word-initial
sound: sounds varying on the /d/-/t/ continuum are perceived
to be more /d/-like when presented before “ash” (dash is a
word while tash is not). More evidence that subcategorical
information is maintained within a word comes from eye-
tracking studies: McMurray, Tanenhaus, and Aslin (2002)
found that listeners looked to competitor items like “bear”

and “pear” gradiently according to voice onset time (VOT),
the cue that distinguishes /b/ and /p/, suggesting that sub-
phonemic information is maintained and used in higher-level
processes (for a review of related work, see Dahan, 2010).

However, there are other possible sources of information
that follow a target segment or word that occur much later
downstream. For example, persevatory co-articulation might
spread information over following syllables (Magen, 1997).
The identity of later segments might also contain informa-
tion about earlier segements because of phonotactic depen-
dencies within and across syllables. Even context beyond
word boundaries regularly contains information that can help
to resolve uncertainty about the input.

A small literature has investigated the extent to which lis-
teners can maintain subcategorical information at longer dis-
tances across the word boundary. In a classic study, Connine,
Blasko, and Hall (1991) tested whether listeners could main-
tain subcategorical information about a segment 3 syllables or
6-8 syllables downstream. Participants listened to sentences
like “When the ?ent in the fender was well camouflaged, we
sold the car.” and judged whether the word they heard was
tent or dent. The ? represents a sound that varied along VOT,
the primary cue distinguishing between /t/ and /d/. In this
example, the later word fender semantically biases interpre-
tation of the target word to be dent. If listeners can maintain
information about the identity of the ?-segment, they should
integrate the biasing context into their decisions. Connine and
colleagues reported two important findings, both of which
have recently been revisited.

First, participants maintained subcategorical information
about the ?-segment for 3 syllables: responses reflected both
the specific VOT of the segment and the contextual bias. Af-
ter 6-8 syllables responses reflected only VOT, but not biasing
context. This finding is often interpreted to demonstrate the
limits of subcategorical information maintenance. However,
participants were allowed to respond at any point during the
sentence; in fact, in the 6-8 syllables condition, participants
responded before even hearing biasing context 84% of the
time. This leaves open whether participants could not main-
tain subcategorical information for longer periods of time, or
chose to respond early for other reasons.

Secondly, Connine and colleagues report that the context
effect was only reliably present at ambiguous VOTs: sounds
that were perceptually unambiguously /t/ or /d/ were not inte-
grated with later context. This has been taken to mean that
even information maintenance of up to 3 syllables is lim-
ited to the special case of perceptually highly ambiguous per-
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cepts. This second conclusion, too, however, has to be inter-
preted with caution. Connine and colleagues measured the
context effect in proportion of /t/ vs. /d/ responses. This is
problematic (see also Jaeger, 2008): a context effect that is
identical across all VOTs when measured in log-odds—i.e.,
equally large for perceptually clear and perceptually ambigu-
ous VOTs—will results in smaller or insignificant context
effects for perceptually clear VOTs when measured in pro-
portions. Crucially, there are a priori reasons to believe that
the effect should be constant in log-odds (Bicknell, Jaeger, &
Tanenhaus, 2016). The analysis conducted by Connine and
colleagues thus leaves open whether subcategorical informa-
tion maintenance is limited to special cases.

A recent study, Bicknell et al. (2016), revisited both of
these problems. Bicknell and colleagues replicated Connine
et al. (1991) with one minor change to procedure. Participants
were required to wait until the end of the sentence to respond,
ensuring that they heard the biasing context. Unlike in the
original study, Bicknell et al. (2016) analyzed the log-odds of
responding /t/ vs. /d/ and found that listeners maintained sub-
categorical information for both the 3 and 6-8 syllable con-
ditions (see also Szostak & Pitt, 2013 for similar results in a
different phonetic contrast). This suggests that there may be
an important distinction between listeners’ ability to main-
tain subcategorical information and when listeners decide to
respond.

The idea of a distinction between in-principle abilities and
the decision process motivates the present experiments. Our
first goal is to replicate the between-experiment comparison
across Bicknell et al. (2016) and Connine et al. (1991) within
the same paradigm. Anticipating our result, we indeed repli-
cate the contrast, showing that it is important to distinguish
between the ability to maintain information and the decision
to provide a categorization response. Given that listeners
sometimes choose to make a response before receiving ad-
ditional semantic information, we ask whether subcategorical
information maintenance is a default strategy employed by
listeners or is specific to experience in our task. Finally, we
ask what influences the decision process by investigating the
role of perceptual ambiguity on when participants choose to
make a response.

In order to answer these questions, we conducted a web-
based experiment that closely followed the paradigm of
Connine et al. (1991) and Bicknell et al. (2016). Between-
participants we manipulated only one aspect of the proce-
dure, holding everything else constant. In the forced-response
group of participants, they were required to wait until the
end of the sentence before making a response. In the free-
response group, they could make a response whenever they
wanted during the sentence. The forced-response group gives
us insight into the ability to maintain subcategorical informa-
tion. The free-response group allows us to ask what drives
listeners’ decisions to categorize.

Context Distance Sentence

Tent-biasing Near (3 syllables)
When the [t/d]ent in the
forest was ...

Dent-biasing Near (3 syllables)
When the [t/d]ent in the
fender was ...

Tent-biasing Far (6-8 syllables)
When the [t/d]ent was
noticed in the forest, ...

Dent-biasing Far (6-8 syllables)
When the [t/d]ent was
noticed in the fender, ...

Table 1: Example stimuli from the experiment in each biasing
context and distance condition.

Experiment
Participants
We recruited a total of 96 participants from Amazon Mechan-
ical Turk (48 for the forced-response group, 48 for the free-
response group). Participants were awarded $3.00 for their
participation in a 30-minute experiment.

Materials
Materials were identical across the two participant groups and
were modeled on Connine et al. (1991). Table 1 shows ex-
ample sentences in each context and distance condition. We
manipulated context (tent-biasing vs. dent-biasing), distance
(near, 3 syllables vs. far, 6-8 syllables), and VOT (10, 40, 50,
60, 70, and 85ms). We chose our range of VOTs based on
simulation-based power analyses so as to maximize statisti-
cal power to assess the size of the context effect across the
VOT continuum, while also ensuring that there were a range
of perceptually ambiguous and unambiguous sounds (based
on the VOT distributions of our recording speaker). Seven
different sentence frames were constructed. Each participant
heard each sentence frame in each of the context, distance,
and VOT condition combinations, resulting in a total of 168
sentences in the experiment.

Procedure
Participants were instructed to listen to the sentence and re-
port whether they heard tent or dent. In the forced-response
group, participants were instructed to wait until the end of the
sentence to make a response. In the free-response group, par-
ticipants were instructed that they could respond whenever
they wish during the sentence after hearing the critical word.

Data Exclusions
We excluded participants who showed no main effect of VOT
on their responses from further analysis. That is, these were
participants who did not increase their /t/ responses as VOT
increased, suggesting that they had faulty audio equipment,
did not understand the task, or were otherwise not paying
attention. In the forced-response group, this resulted in the
removal of nine participants (18.75%) from analysis. In the
free-response group, eleven participants (22.92%) were re-
moved. These exclusions hold across all analyses below.
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Figure 1: Proportion /t/ responses by biasing context condition for both groups of participants. Error bars are 95% confidence
intervals over subject means. See text for discussion of subset vs. all trials.
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Figure 2: Size of context effect in log-odds space at each VOT for each group as estimated by our simple effects mixed models.
Error bars are 95% confidence intervals.

Analysis 1: Limits of Subcategorical
Information Maintenance

Analysis
Analyses 1 and 2 are based on the same mixed-effects regres-
sion, analyzing the proportion of /t/ responses as a function
of VOT (a continuous variable), context, distance, trial num-
ber, and their interactions. We included random slopes for
context and distance by participants and items (due to data
sparsity and the consistency of the VOT effect across partic-
ipants and items, we did not use the maximal random effects
structure; see Bates, Kliegl, Vasishth, & Baayen, 2015). Dif-
ferent predictors in this model answer different questions. In
Analysis 1, we focus on the overall effect of context and its
interactions with VOT and distance.

In addition to the model described above, in Analysis 1 we
also fit a second model which assessed the relative magni-
tudes of the effect of context at each VOT while removing the
potentially problematic assumption that VOTs are related lin-
early to the log-odds of /t/ responses. This was achieved by
recoding the model so as to assess the simple effects of con-
text at each level of VOT. This analysis does thus not a priori
assume any specific relation between VOTs and /t/ responses.

For each model of the free-response group, we present two
analyses. First, we analyzed only the trials on which par-
ticipants responded at least 200ms after offset of the biasing
context. This allows a direct comparison with the forced-

response group, where participants always responded after
hearing the biasing context by design. Second, we also con-
ducted the same analyses using all of the data in the free-
response group in case these data are more comparable.

Results
Figures 1 and 2 summarize the context effect results of both
groups. We found a main effect of VOT on /t/ responses
(forced-response: β̂ = 0.18, p < 0.001, free-response subset:
β̂ = 0.13, p < 0.001, free-response all trials: β̂ = 0.16, p <
0.001). We also found a context main effect (forced-response:
β̂ = 1.11, p < 0.001, free-response subset: β̂ = 2.08, p <
0.001, free-response all trials: β̂ = 1.62, p < 0.001). In the
forced-response group and the subset of trials in the free-
response group where participants responded after biasing
context, there was no interaction between context and dis-
tance (forced-response: β̂ = −0.09, p = 0.57, free-response:
β̂ = 0.18, p = 0.38). When we analyzed all trials of the free-
response group, there was a context x distance interaction
such that the context effect was smaller in the far condition
(β̂ =−0.39, p = 0.02).

A simple effects analysis revealed that the effect of con-
text was significantly positive at 50ms, 70ms, and 85ms VOT
in both groups (β̂s = 0.58− 1.95, ps < 0.05). In the free-
response group, the context effect was also significant at all
other VOTs (subset: β̂s = 0.93 − 2.23, ps < 0.01, all tri-
als: β̂s = 0.61 − 1.97, ps < 0.05). In the forced-response

188



0.2

0.4

0.6

0 50 100 150
Trial Number (Binned)

P
ro

po
rti

on
 R

es
po

ns
es

 /t
/ Biasing Context

Dent
Tent

Forced-Response Group

0.4

0.6

0.8

0 50 100 150
Trial Number (Binned)

Free-Response Group
(Responses After Biasing Context)

0.4

0.6

0.8

0 50 100 150
Trial Number (Binned)

Free-Response Group
(All Trials)

Figure 3: Interaction between context effect over trial for both groups of participants.

group, the context effect was marginal at 40ms and 60ms
VOT (β̂s = 0.87,0.47, ps = 0.06,0.08), and not significant
at 10ms VOT (β̂ =−0.42, p = 0.5).

Discussion

Replicating both Connine et al. (1991) and Bicknell et al.
(2016), we found that listeners have the ability to maintain
subcategorical information well beyond the word boundary.
When forced to wait, participants’ responses reflected both
the VOT and the contextual bias even at the longest de-
lay tested (replicating Bicknell et al., 2016; Szostak & Pitt,
2013). Interestingly, the effect of context seemed more or
less constant across the entire range of VOTs tested in both
groups. This is exactly as expected by an ideal observer
that integrates the perceptual signal with context (Bicknell,
Bushong, Tanenhaus, & Jaeger, in preparation). It also sug-
gests that listeners do not necessarily limit the maintenance of
subcategorical information to perceptual inputs that are per-
fectly ambiguous. Instead, it seems listeners maintain sub-
categorical information even when the perceptual input is al-
ready rather unambiguous1.

When participants were free to choose when to respond,
however, we found an interaction between context and dis-
tance, such that the context effect was smaller at longer
timescales. This would suggest that participants were decid-
ing to respond before hearing biasing context: indeed, the
free-response group responded before biasing context on 32%
of far trials and 0.5% of near trials (a point we return to in
Analysis 3).

Analysis 1 leaves open whether this tendency to maintain
subcategorical information is a strategy participants adopt
specifically for this experiment, rather than reflecting a more
general property of speech perception. Analysis 2 begins to
address this question by investigating the context effect across
trials.

1We note that analyses in VOT space do not tell us about the
context effect on the basis of individual participants’ subjective per-
ceptual ambiguity, however.

Analysis 2: Subcategorial Information
Maintenance: Experimental Artifact or Default

Behavior?
We analyze changes in the effect of context over the course
of the experiment in both groups. If we observe an effect
of context from the very beginning of the experiment, this
suggests that listeners maintain subcategorical information by
default. On the other hand, if we observe no context effect
until later in the experiment, this suggests that listeners have
learned to maintain subcategorical information.

Analysis
We used the same logistic regression model from Analysis 1
and focus on the effects of context, trial, and their interaction.
Trial was coded so that the coefficient estimate for context
reflects the context effect at the very first trial (by subtracting
1).

Results
Figure 3 shows the context effect over trials in both groups
of participants. The context effect was significant from
the very first trial of the experiment (forced-response: β̂ =
1.11, p < 0.001, free-response subset: β̂ = 2.08, p < 0.001,
free-response all trials: β̂ = 1.62, p < 0.001). We found a sig-
nificant negative interaction between context and trial for both
groups of participants (forced-response: β̂ = −0.004, p <
0.001, free-response subset: β̂ = −0.009, p < 0.001, free-
reponse all trials: β̂ =−0.004, p < 0.001).

Discussion
Particpants in both experiments exhibited clear context ef-
fects right from the beginning of the experiment. This sug-
gests that participants have the ability to maintain subcate-
gorical information without requiring extensive exposure to
a particular task. We also found a negative context by trial
interaction, such that the context effect got smaller over the
course of the experiment. This could mean that participants
maintain subcategorical information to a lesser extent as time
goes on (e.g., because of fatigue or boredom with the task).
Alternatively, participants may still be maintaining subcate-
gorical information but may rely less on context during their
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decision making process, and use VOT more (e.g., because
participants become more certain of the talker-specific VOT
distribution, cf. Kleinschmidt & Jaeger, 2015).

Analysis 3: Strength of Perceptual Evidence
and Decision to Categorize

Although maintenance of subcategorical information seems
to be a default strategy among participants, the context by
distance interaction in the free-response group in Analysis 1
suggests that participants did not necessarily wait for biasing
context to make their responses.

This raises questions about what determines when listeners
provide a categorization response. If listeners have enough
perceptual evidence to confidently make a categorization,
they may tend to respond early rather than waiting for the bi-
asing context that provides additional information about the
identity of the segment (note that this leaves open whether lis-
teners maintain subcategorical information beyond this point;
we return to this below). To answer this question, we analyze
when participants in the free-response group made responses,
and whether this was dependent on the perceptual ambiguity
of the stimulus.

Analysis

We used mixed-effects logistic regression to analyze the pro-
portion of responses before biasing context as a function
of perceptual ambiguity and distance. For each trial, we
coded whether the participant responded before or after hav-
ing heard biasing context (defined as 200ms after biasing
word offset to account for motor planning). To estimate (sub-
jective) perceptual ambiguity, we compute the distance (in
probability space) of each VOT from the maximally unam-
biguous point based on average response probabilities2. If
strength of perceptual evidence affects when listeners make a
decision before obtaining more information (provided by the
biasing context), we should see more responses before bias-
ing context for less ambiguous stimuli.

Results

Figure 4 shows proportion of responses before biasing con-
text by perceptual ambiguity of the stimulus. We found a sig-
nificant effect of ambiguity (β̂ =−4.06, p = 0.006), such that
participants were less likely to respond before biasing context
when the perceptual stimulus was more ambiguous. We also
found a main effect of distance (β̂ = 6.93, p < 0.001) such
that participants were more likely to respond before biasing
context when it occurred 6-8 syllables away from the target
word than when it occurred 3 syllables away. We addition-
ally found a main effect of VOT such that participants were
less likely to respond before biasing context as VOTs became
longer (β̂ = −0.007, p < 0.001). There were no other main
effects or interactions.

2This perceptual ambiguity measure can also be computed on a
by-subject basis and does not change the results.

0.10

0.15

0.20

0.1 0.2 0.3
Perceptual Ambiguity 

(<- less ambiguous       more ambiguous ->)

P
ro

po
rti

on
 R

es
po

ns
es

 
B

ef
or

e 
B

ia
si

ng
 C

on
te

xt

Figure 4: Proportion of responses before biasing context by
perceptual ambiguity. Error bars are 95% confidence inter-
vals.

Discussion

We found that participants were more likely to respond be-
fore hearing biasing context when the perceptual signal was
less ambiguous, and when biasing context appeared farther
away from the target word. We also found a main effect of
distance: participants were more likely to respond before bi-
asing context when it occurred farther away from the target
word. These results suggest that while listeners have the abil-
ity to maintain subcategorical information for unambiguous
stimuli over long distances, when given a choice listeners de-
cide to respond earlier when they have stronger perceptual
evidence for categorization.

General Discussion
Together, our results suggest that in principle, listeners
can maintain subcategorical information well beyond word
boundaries. Listeners seem to do so by default, and both for
ambiguous and unambiguous percepts. This suggests that the
limits of listeners ability to maintain subcategorical informa-
tion are less strict than previously assumed (Connine et al.,
1991; Christiansen & Chater, 2016). At the same time, lis-
teners do not wait arbitrarily long for additional informative
context. When given the opportunity, listeners responded on
16% of all trials before additional context could aid recogni-
tion. Critically, listeners’ decisions to respond early were not
arbitrary, but rather systematically conditioned on the ambi-
guity of the perceptual input: listeners were more likely to re-
spond before biasing context when the perceptual signal was
less ambiguous. This strategy seems to vary little across par-
ticipants.

Three questions stand out to us as requiring further atten-
tion. First, importantly, little is known about what kind of
information is being maintained. It is possible that listeners
retain a rich representation of the original percept, some more
abstract representation of their certainty in the identity of the
segment, or something in between.
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Second, it is unclear what becomes of these representations
after listeners make a perceptual decision. It could be the
case that the maintenance process and decision-making pro-
cess are dependent on or independent of each other. The large
literature on exemplar-based approach to speech perception
suggests that exemplars are stored and used later in speech
perception (Hay & Drager, 2010; Strand & Johnson, 1996;
Goldinger, 1997). The apparent storage of this low-level in-
formation in long-term memory is puzzling if there are strict
limitations on the amount of information that can be main-
tained during speech perception—a paradox that has, to the
best of our knowledge, received surprisingly little attention.

Third, we found evidence that the maintenance of subcate-
gorical information in the present experiments does not seem
to be learned over time in a task-specific manner. It is, how-
ever, an open question whether listeners can flexibly adapt the
degree to which (or duration for which) they maintain subcat-
egorical information, depending on their goals or the struc-
ture of the current task. Such flexibility would suggest that
listeners’ decisions about at which point to categorize input
might more often be constrained by the goal to quickly infer
the meaning-bearing message, rather than being constrained
by strong limits of perceptual memory. For example, it is
possible that the limits (or lack thereof) of maintenance ob-
served in experiments like ours (and a large body of previous
work; for review, see Dahan, 2010) reflect participants’ be-
liefs based on previous experience about the expected utility
of delaying categorization. In that case, listeners might adapt
these beliefs after exposure to stimuli that contain or do not
contain helpful contextual information.
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Abstract 

The estimation of duration has been shown to follow Bayesian 
inference, where people use their prior belief to calibrate the 
estimation. This explains timing biases such as the range bias 
where a duration is reproduced as longer when previously 
encountered durations were longer than shorter. However, it is 
unclear whether prior belief is based on previously perceived 
or reproduced durations. In 4 experiments, we show that the 
range bias occurs between short and long reproduction ranges 
but not between short and long perception ranges. Further 
analyses also show that the prior is updated by the most recent 
reproduced (but not perceived) duration. Together these results 
support a task-oriented Bayesian inference account of time 
reproduction, where people use the perceived duration and 
their past reproduction experience to make an inference about 
how much time to reproduce. 

Keywords: time perception; Bayesian inference; memory; 
psychophysics 

Introduction 

The mind is good at estimating quantitative dimensions of 

the physical world: we are able to estimate how much time 

has elapsed, how much distance has been traveled, how large 

an area is, etc. Indeed, our superb capacity to quantify things 

enables us to better adapt to the environment.  However, these 

quantitative intuitions are not without errors. Systematic 

biases in human magnitude estimation have been identified 

(for reviews see Poulton, 1979, and Petzschner, Glasauer, & 

Stephan, 2015). Of these, the most robust is probably the bias 

of central tendency (Hollingworth, 1910), a phenomenon 

which has also been known by a variety of other names (e.g., 

contraction, regression effect, regression toward the mean). 

Central tendency refers to the observation that people tend to 

make estimates closer to the mean of the magnitudes to be 

estimated, leading to the (relative) overestimation of lower 

magnitudes in the stimulus set and underestimation of higher 

magnitudes. A central tendency bias has been observed in the 

estimation of distance (Jou et al., 2004; Radvansky et al., 

1995), brightness (Fotios & Cheal, 2007), weight (Jones & 

Hunter, 1982), and loudness (Algom & Marks, 1990), to 

mention a few. In particular, the central tendency bias has 

been most often observed in the estimation of time intervals, 

with the tendency for people to relatively overestimate 

shorter durations and underestimate longer durations 

(Bausenhart, Dyjas, & Ulrich 2014; Gu & Meck, 2011; 

Jazayeri & Shadlen, 2010; Lejeune & Wearden, 2009; Moon 

& Anderson 2013). More interestingly, as a result of the 

central tendency bias, a stimulus duration tends to be 

reproduced as longer if it occurs as a member of a longer 

range (e.g., 1000 ms in the range of 847 - 1200 ms) than as a 

member of a shorter range (1000 ms in the range of 671 - 

1023 ms) (Jazayeri & Shadlen, 2010), a phenomenon which 

we refer to as the range bias. 

Jazayeri and Shadlen (2010) argue that the central tendency 

and the range bias occur because time estimation follows 

Bayesian inference: as memories of durations (indeed 

magnitudes in general) are inherently noisy (Gallistel & 

Gelman, 2000), people resort to their prior belief about how 

likely a duration is in order to calibrate their estimate of the 

magnitude of a perceived duration. In Bayesian inference, a 

posterior belief is the product of the “likelihood” (reflecting 

the variability of perceptions of a given duration) and the 

prior, and this posterior (the estimated duration) is necessarily 

pulled toward the mean of the prior distribution (e.g., the 

midpoint of experienced durations), hence the central 

tendency and the range bias. Such a Bayesian inference 

account of timing has been endorsed in many subsequent 

related research on timing behaviour, e.g., animal timing (Li 

& Dudman, 2014), time prediction (Griffiths & Tenenbaum, 

2011; Di Luca & Rhodes, 2016) and delay discounting 

(McGuire & Kable, 2012) (see Shi, Church & Meck, 2014, 

for a review). Indeed, Petzschner et al. (2015) argue that 

Bayesian inference is used in estimating all kinds of physical 

magnitudes and can accommodate a wide range of 

behavioural effects in magnitude estimation, central tendency 

included. 

A common assumption in Bayesian accounts of timing 

(and indeed magnitude estimation in general) is that people 

make an optimal estimate about how long the perceived 

duration is by incorporating their belief about how likely a 

duration is as a function of previously presented magnitudes; 

in a time reproduction task, they then reproduce an amount of 

time to match this estimate (Cicchini et al., 2012; Jazayeri & 

Shadlen, 2010; Di Luca & Rhodes, 2016). These accounts 

thus assume that the estimation of a perceived duration makes 

reference to the previously perceived durations. 

However, these accounts ignore another source of 

information that participants can rely upon when trying to 

optimally reproduce durations, i.e. their past experience with 
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reproduced durations. According to this alternative account, 

instead of making an estimate of a perceived duration and 

then use this estimate to guide time reproduction, people 

directly make an estimate about how long the reproduced 

duration should be. In this task-oriented inference, people 

make use of their past reproduction experience rather than 

their past perception experience;  after all, when one is to 

reproduce a duration, the history of the reproduced durations 

may provide a better constraint for optimally determining 

how much time to reproduce. 

The current study investigates whether people resort to 

previous perception or reproduction experience as the prior 

in their inferences. To do so, we take advantage of the range 

bias (a duration is reproduced as longer if it is placed in a 

context of long than short stimulus durations). If people use 

their perception experience to calibrate their time estimation, 

then we should expect the range bias to occur between 

contexts of long vs. short perceived durations, even when the 

context of reproduced durations is kept constant. If instead 

people use their reproduction experience in their inference, 

we should expect the range bias to occur between contexts of 

long vs. short reproduced durations, even when the context of 

perceived durations is kept constant. 

Experiment 1 

Methods 

    Participants. 32 volunteers (24 females, 20.3 ±1.6 in age) 

from the South China Normal University community 

volunteered for a small monetary reward. Participants in this 

experiment (and indeed in each experiment reported here) did 

not take part in any other experiment, though participants for 

all the experiments came from the same participant pool. 

These participants (and also those in other experiments) had 

normal or corrected-to-normal vision and received a small 

monetary reward for their participation 

    Design. We manipulated the reproduction context while 

keeping the perception context constant. To do this, we used 

an alternative-task paradigm where participants perceived a 

duration and then, upon a cue, either reproduced the stimulus 

duration or compared it to a new duration. Participants were 

presented with a set of short durations (600 – 2200 in steps 

of 200 ms) a set of long durations (1800 – 3400 in steps of 

200 ms), all interleaved. Half of the participants reproduced 

the short durations and compared the long durations; the other 

half did the opposite (i.e. reproducing long durations and 

comparing short durations). Note that, in such a design, while 

the two groups of participants differed in their reproduction 

contexts, they had identical perception contexts. Critically, 

the two reproduction contexts overlapped in three stimulus 

durations (1800, 2000, 2200 ms), which allowed us to 

determine whether different reproduction contexts lead to a 

range bias, even when the perception context was kept 

constant. 

    Materials. For each of the 18 durations, a shorter (0.1 log 

shorter) and a longer (0.1 log longer) comparison duration 

was created. Each participant completed 5 blocks of trials. In 

each block, every stimulus duration was presented twice, 

either both as reproduction or comparison trial. Half of the 

comparison trials used a shorter comparison duration and the 

other half had a longer one. Trials in each block were 

presented in an individually randomized order. In total, there 

were 180 experimental trials. 

Procedure. The experiment was run on a desktop using E-

Prime 2.0. Participants sat about 50 cm away from the 

monitor. The experiment began with a practice session of 4 

trials (2 reproduction and 2 comparison trials) followed by 

the main experiment. In a trial, a black cross (Courier New 

48) was presented for a stimulus duration, followed by a 

blank screen of 300 ms. Then, a cue (an asterisk “*” or the 

phrase “第二段时间”, meaning “second duration”) was 

presented. An asterisk informed participants to reproduce the 

stimulus duration by holding down the spacebar for the same 

duration. At the press of the spacebar, the asterisk turned into 

three asterisks which remained on screen until the release of 

the spacebar. The phrase “第二段时间” informed 

participants to compare the first (stimulus) duration with an 

upcoming (comparison) duration. The text cue stayed on 

screen for 1 s and was replaced by a blank screen of 300 ms. 

The comparison duration was then presented with a blue 

cross (Courier New 48), followed by a blank screen of 300 

ms. Then a judgment screen was displayed asking 

participants to decide whether the first (stimulus) or second 

(comparison) duration was longer by pressing the “F” or “J” 

key. 

 

 
Fig. 1. Results of Experiment 1. Each dash represents a 

participant’s averaged reproduction for each stimulus 

duration in the long (red) or short (blue) reproduction context; 

the squares represent the averaged reproductions at the group 

level. 

Results and discussion 

    As the comparison data does not address our theoretical 

interest, to save space, we only report analyses on the 

reproductions. We first excluded as outliers reproductions 

that were 1/3 or 3 times the stimulus duration, leading to the 

loss of 2% (65 reproductions) of the data (this trimming 
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criterion was adopted for all experiments reported in this 

study). For the remaining data, a participant’s mean 

reproduction for each stimulus duration was computed. We 

compared reproductions for the three overlapping stimulus 

durations (1800, 2000, and 2200 ms) between the two 

reproduction contexts. An ANOVA with reproduction 

context as a between-participant factor and stimulus duration 

as a within-participant continuous variable revealed a 

significant main effect of reproduction context (F(1,30) = 

12.41, p = .001, η2 = .29): durations were reproduced for 

longer in the long than the short reproduction context (see 

Fig. 1). Reproduced durations increased as a function of the 

stimulus duration (F(1,30) = 72.03, p < .001, η2 = .71) and did 

not significantly interact with reproduction context (F(1,30) = 

1.44, p = .240, η2 = .05).  

    The main effect of reproduction context suggested a range 

bias in the reproduction of the overlapping durations: even 

when the perception context was kept constant, durations 

were reproduced as longer when prior reproductions were 

longer. Such a reproduction range bias is inconsistent with 

previous Bayesian inference accounts which posit that, to 

estimate a duration, people use their memory of the perceived 

duration and experience of previously perceived durations. 

Instead, the results suggest that people make use of their 

experience of previously reproduced durations in order to 

calibrate their reproductions. 

    In Experiment 2, we aimed to replicate the reproduction 

range bias using a within-participant design. In particular, we 

distinguished the long and short reproduction contexts using 

different modalities of reproduction: for half of the 

participants, people reproduce long durations with motor 

reproduction and short durations with an auditory 

reproduction (see below); for the other half, the paring was 

reversed. If reproduction experience calibrates duration 

reproduction, we should again expect a range bias for 

overlapping durations between the two reproduction 

contexts. 

Experiment 2 

Methods 

    Participants. 20 volunteers (10 females, 20.8 ±2.5 in age) 

took part in the experiment.  

    Design. This experiment was similar to Experiment 1 

except that we replaced the comparison task in Experiment 1 

with an auditory reproduction task (and we manipulated 

reproduction task within-participants). As in Experiment 1, 

there were two duration ranges (short range: 600 – 2200 in 

steps of 200 ms; long range: 1800 – 3400 in steps of 200 ms). 

Two experimental versions were created such that one 

version had the short range paired with motor reproduction 

and the long range with auditory reproduction and the other 

version had the reverse. As in Experiment 1, we were 

interested whether people would be susceptible to the 

reproduction range bias when reproducing the overlapping 

durations (i.e. 1800, 2000 and 2200 ms) under different 

reproduction contexts.  

    Materials. As in Experiment 1, there were 5 blocks of 

trials and each block contained two occurrences of each of 

the 18 stimulus durations (i.e. 36 trials in each block). Trials 

in each block were presented in an individually randomized 

order. For auditory reproduction, a 10s sine-wave pure tone 

sampled at a rate of 44100 Hz was created using Audacity. 

Procedure. The experimental setting and overall 

experimental procedure were the same as those in 

Experiment 1, except that participants always reproduced a 

stimulus duration. After a cross was presented for a stimulus 

duration, followed by a blank, an image of a keyboard (as a 

cue for motor reproduction) or a mouse (as a cue for auditory 

reproduction) was displayed. For motor reproduction, as in 

Experiment 1, participants held down the spacebar to 

reproduce the stimulus duration. For auditory reproduction, 

participants clicked the mouse (at which point the mouse 

image disappeared) to initiate a tone and clicked again to 

terminate it when they felt that tone had been played for the 

same length as the stimulus duration. The experiment lasted 

for about 25 min. 

 

 
Figure 2. Results of Experiment 2. Each dash represents a 

participant’s averaged reproduction for each stimulus 

duration in the long (red) or short (blue) reproduction range; 

the squares represent the averaged reproductions at the group 

level. 

Results and discussion 

    About 6% (216 reproductions) of the data were excluded 

as outliers (the high exclusion rate was due to the fact that 

participants sometimes accidentally pressed rather than held 

down the spacebar due to the influence of the auditory 

reproduction method). For the overlapping durations, an 

ANOVA using reproduction context and stimulus duration as 

within-participant variables reveals a significant main effect 

of reproduction context (F(1,19) = 27.73, p < .001, η2 = .59), 

with longer reproductions of the overlapping stimulus 

durations in the long compared to the short reproduction 

context. Reproductions also increased as a function of 

stimulus duration (F(1,19) = 131.5, p < .001, η2 = .87). There 

was no significant interaction between reproduction context 

and stimulus duration (F(1,19) = 0.13, p = .724, η2 = .01).  
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The results thus replicated, with a within-participant 

design, the finding in Experiment 1 that reproduction 

experience calibrates duration reproductions. That is, a 

duration was reproduced as longer if it was done in the 

context of long reproductions compared to short 

reproductions. They also suggest that people construct task-

specific priors (i.e. past motor vs. auditory reproduction 

experience in the current experiment) in their time estimation, 

an issue that awaits further empirical verification. 

In Experiment 3, we further explore whether manipulating 

the perception context alone leads to a range bias. If 

reproduction experience, but not perception experience, 

calibrates reproduction, we should not see a range bias in this 

experiment. 

Experiment 3  

Methods 

Participants. 20 volunteers (14 females, 20.0 ±1.2 in age) 

took part in Experiment 3.  

Design. We manipulated perception context (short vs. 

long) within-participants in a blocked design. As in 

Experiment 1, Experiment 3 used an alternative-task 

paradigm (reproduction or comparison). The two perception 

contexts were created using three ranges of durations: the 

short perception context consisted of 6 short durations (600 – 

1600 in steps of 200 ms) serving as comparison durations and 

6 mid durations (1200 – 2200 in steps of 200 ms) serving as 

reproduction durations; the long perception context consisted 

of the 6 mid durations serving as reproduction durations and 

6 long durations (1800 – 2800 in steps of 200 ms) serving as 

comparison durations. Thus, the two perception contexts had 

the same range of durations to be reproduced (i.e. both had 

the mid durations for reproduction) but differed in the range 

of durations to be perceived (long and mid durations for the 

long perception context but short and mid durations for the 

short perception context). If the perception context 

manipulation leads to a range bias, we should expect the mid 

durations to be reproduced as longer in the long than in the 

short perception context. Alternatively, if the range bias is 

driven by reproduction experience only, we should expect the 

mid durations to be reproduced as equally long between the 

two perception contexts. 

Materials. As in Experiment 1, a shorter (0.1 log shorter) 

and longer (0.1 log longer) comparison duration were created 

for each of the comparison durations. Three blocks of 

materials were created for both the short and the long 

perception context. In each block, each stimulus duration was 

presented twice for reproduction and twice for comparison 

(once with a longer comparison duration and once with a 

shorter comparison duration), amounting to 24 trials in each 

block. Two experimental versions were created: the three 

blocks of the short perception context preceded those of the 

long perception context in one version and the order was 

reversed in the other. A short practice block of 4 trials 

preceded the first block. In order to prevent possible spillover 

of the perception context in the first three blocks to the last 

three blocks, a compulsory 2-min break was inserted after the 

first three blocks; additionally, a practice block of 12 trials 

preceded the 4th block. 

Procedure. The experimental setting and the trial structure 

were identical to those in Experiment 1; that is, after the 

presentation of a stimulus duration, depending on the ensuing 

cue, participants either reproduced the stimulus duration or 

compared it with an upcoming duration. During the 2-min 

break, participants were allowed to do whatever they liked as 

long as they remained seated in the test cubicle. The 

experiment took about 25 min. 

 

 
Figure 3. Results of Experiment 3. Each dash represents a 

participant’s averaged reproduction for each stimulus 

duration in the long (red) or short (blue) perception context; 

the squares represent the averaged reproductions at the group 

level. 

Results and discussion 

The trimming criterion led to the exclusion of 5% (80 data 

points) of all the reproduced durations. An ANOVA with 

perception context as a within-participant factor and 

reproduction durations (1200 – 2200) as a within-participant 

continuous variable revealed no significant main effect of 

perception context (F(1,19) = 0.82, p = .377, η2 = .04), 

suggesting that the reproductions of stimulus durations were 

similar between the two perception contexts. Reproduction 

increased as a function of the stimulus duration (F(1,19) = 

255.3, p < .001, η2 = .93). There was no significant interaction 

(F(1,19) = 1.18, p = 290, η2 = .06). 

The failure for the perception context manipulation to 

induce a range bias suggests that participants did not use their 

perception experience to infer stimulus duration for their 

reproductions. In Experiment 4, we changed all the 

comparison trials in Experiment 3 into reproduction trials so 

that the long and short perception context had respectively a 

long and short reproduction range (i.e. we additionally 

introduced the reproduction context manipulation). If people 

use reproduction experience to calibrate their time 

estimation, we should restore the range bias that was missing 

in Experiment 3. 
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Experiment 4 

Methods 

    Participants. Another 20 volunteers (14 females, 19.9±1.1 

in age) took part in the experiment.  

Design, materials and procedure. These were the same 

as those in Experiment 3 except that the comparison trials in 

Experiment 3 were changed into reproduction trials. Thus, 

the short perception context had 6 short durations (600 – 1600 

in steps of 200 ms) and 6 mid durations (1200 – 2200 in steps 

of 200 ms), all to be reproduced; the long perception context 

had 6 mid durations (1200 – 2200 in steps of 200 ms) and 6 

long durations (1800 – 2800 in steps of 200 ms), all to be 

reproduced. 

 

 
Figure 4. Results of Experiment 4. Each dash represents a 

participant’s averaged reproduction for each stimulus 

duration in the long (red) or short (blue) 

perception/reproduction context; the squares represent the 

averaged reproductions at the group level. 

Results and discussion 

We excluded 3% (106 data points) of all the reproduced 

durations as outliers. We compared the reproductions of the 

6 overlapping stimulus durations (1200 – 2200 in steps of 200 

ms) between the two perception (and indeed reproduction) 

contexts. In contrast to the finding in Experiment 3, the 

ANOVA showed a significant main effect of 

perception/reproduction context (F(1,19) = 10.00, p = .005, η2 

= .34), with longer reproductions of the stimulus durations 

when they were part of the long than the short 

perception/reproduction context. Reproductions increased as 

a function of the stimulus duration (F(1,19) = 255.6, p < .001, 

η2 = .93). The two variables did not interact significantly 

(F(1,19) = 0.44, p = .514, η2 = .02), suggesting a central 

tendency in the reproduced durations in both contexts. 

The most striking observation is the return of the 

range bias for the overlapping stimulus durations when 

different reproduction ranges were introduced, in contrast to 

Experiment 3, where the reproduction range was the same 

between the two perception contexts. Such a finding clearly 

suggests that the reproduction experience, rather than the 

perception experience, drives the range bias. 

Prior updating 

A crucial prediction of Bayesian inference in time 

perception is that the prior is constantly updated. If the prior 

in time reproduction is based on previously reproduced rather 

than perceived durations, as our experiments have shown, we 

should predict the most recently reproduced (but not 

perceived) duration to have an influence on the prior, and 

hence on the posterior, such that a longer reproduced (but not 

perceived) duration in the preceding trial leads to a longer 

reproduced duration in the current trial. 

    The comparison trials in Experiments 1 and 3 allowed us 

to examine the possible influence of the preceding perceived 

(i.e. stimulus) duration on the prior belief (and the reproduced 

duration in the current trial). We used linear mixed effects 

modelling for these analyses, where we included as predictors 

the stimulus duration of the current trial and the stimulus 

duration in the preceding trial. For Experiment 1, though 

reproductions increased as a function of the current trial’s 

stimulus duration (β = 556.28, SE = 35.56, t(31.0) = 15.65, p < 

.001 ), they were insensitive to the magnitude of the stimulus 

(i.e. perceived) duration in the preceding comparison trial (β 

= -1.75, SE = 17.64, t(28.1) = -0.10, p = .922). The same pattern 

was also observed in Experiment 3 (β = 241.36, SE = 16.73, 

t(19.4) = 14.43, p < .001, for current stimulus duration; β = -

36.90, SE = 26.35, t(19.1) = -1.40, p = .177, for preceding 

stimulus duration). 

We next analyzed reproductions taking into account the 

preceding reproduced duration (i.e. when the preceding trial 

was a reproduction trial) in all the 4 experiments. 

Reproductions always increased as a function of the stimulus 

duration of the current trial (β = 570.52, SE = 23.86, t(31.1) = 

23.91, p < .001; β = 643,41, SE = 45.47, t(19.0) = 14.15, p < 

.001; β = 225.05, SE = 20.50, t(17.6) = 10.98, p < .001; : β = 

413.54, SE = 22.89, t(19.0) = 18.07, p < .001; for Experiments 

1-4 respectively) and also of the preceding trial (β = 191.46, 

SE = 16.99, t(38.2) = 11.27, p < .001; β = 89.34, SE = 16.64, 

t(18.4) = 5.37, p < .001; β = 151.48, SE = 19.95, t(20.6) = 7.59, p 

< .001; β = 125.94, SE = 15.96, t(17.7) = 7.89, p < .001; for 

Experiments 1-4 respectively). These findings consistently 

suggest that the prior was updated by a recent reproduction 

output such that a recent longer reproduction increased the 

prior mean, which in turn increased the posterior mean, 

resulting in a longer reproduction in the current trial.  

General discussion 

In four experiments, we showed that people use their past 

(in particular the most recent) reproduction experience to 

calibrate their duration reproduction. These results are 

inconsistent with previous Bayesian inference accounts of 

timing (and magnitude estimation in general), whereby 

people use previously perceived durations to calibrate their 

noisy memory of stimulus duration, which in turn is used to 

guide reproduction (Jazayeri & Shadlen, 2010; Di Luca & 

Rhodes, 2016; Cicchini et al., 2015; Petzschner et al., 2015). 
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Such a memory-optimizing account is explicitly spelled out 

in Petzschner et al. (2015) as a Bayesian inference account of 

magnitude estimation in general. In this account, people 

perceive a magnitude (e.g., a duration) and keep a noisy 

memory of it. Later they use their prior belief to infer an 

optimal estimate based on this noisy memory, and this 

estimate represents the inferred stimulus duration that is used 

to guide subsequent response (e.g., time reproduction). 

Instead, the current findings support a task-oriented 

Bayesian inference account, where people directly use the 

noisy memory of the stimulus duration and their past 

reproduction experience to infer a reproduction estimate. 

Note that, unlike previous accounts, such an estimate is not 

an updated version of the stimulus duration but should instead 

be viewed as a planned reproduced duration. 

If it is the case that Bayesian inference is task-oriented (i.e. 

the inference serves the task at hand), then we should expect 

the source of the prior information to vary across different 

magnitude tasks. For instance, it is possible that, whereas 

time reproduction recruits prior reproduction experience, 

time comparison may instead recruits prior perception 

experience as the task would involve making inferences 

about perceived durations. It is also possible, as Experiment 

2 suggested, that different reproduction tasks may resort to 

task-specific priors. These remain to be tested in future 

studies. 
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Abstract 

Previous research has shown that the sequence in which 
concepts are studied changes how well they are learned. In a 
series of experiments featuring naturalistic concepts 
(psychology concepts) and naïve learners, we extend previous 
research by showing that the sequence of study changes the 
representation the learner creates of the study materials. 
Interleaved study leads to the creation of relatively interrelated 
concepts that are represented by contrast to each other and 
based on discriminating properties. Blocked study, instead, 
leads to the creation of relatively isolated concepts that are 
represented in terms of their central and characteristic 
properties. The relative benefits of these representations 
depend on whether the test of conceptual knowledge requires 
contrastive or characteristic information. These results argue 
for the integrated investigation of the benefits of different 
sequences of study as depending on the characteristics of the 
study and testing situation as a whole. 

Keywords: study sequence; interleaving; interrelated 
concepts; 

Introduction 
The sequence of study while learning concepts changes what 
is learned and how well it is learned. Therefore, it is perhaps 
not surprising that understanding how students should 
organize their study to promote learning has emerged as a 
major area of active interest in educational and cognitive 
science research. Previous research has focused on how 
different sequences might improve learning (Birnbaum et al., 
2013), and how the benefits of different sequences might 
interact with different study conditions (Carvalho & 
Goldstone, 2015), materials (Carvalho & Goldstone, 2014), 
individual characteristics (Sana et al., 2016), or self-
regulation (Carvalho et al., 2016). 

When hard-to-discriminate concepts are studied in an 
interleaved fashion, by alternating the study of the different 
concepts, learning is improved compared to when different 
concepts are studied in separate blocks (Kornell & Bjork, 
2008). However, the benefit of interleaved study is not 
universal. For example, it has been shown that when studying 
concepts that have high within-category diversity in their 
properties (for example, the category mammal which 
includes bats, cows, and whales), studying each concept in 
separate blocks can result in better learning (Carvalho & 
Goldstone, 2014). This apparent inconsistency lead to the 
proposal that different sequences of study emphasize 
different properties of the studied materials and thus might be 
more appropriate for different types of concept learning tasks 

(Carvalho & Goldstone, 2014). The Sequential Attention 
Theory (Carvalho & Goldstone, 2015), proposes a 
mechanism through which attention and encoding during 
blocked study are progressively directed towards the 
similarities among successive items belonging to the same 
category whereas attention and encoding during interleaved 
study are progressively directed towards the differences 
between successive items belonging to different categories. 
Because of this influence on cognitive processing, Carvalho 
and Goldstone (2015) propose that the sequence of study can 
accelerate or delay learning, depending on whether the 
constraints created by the sequence of study match those of 
the encoding situation (e.g., interleaved study in situations 
critically hinging on the encoding of differences between 
concepts, such as the study of highly similar concepts), or 
mismatch it (e.g., blocked study in the same situations). 

In this work, we aim to extend these results to demonstrate 
that different encoding experiences will result in different 
representations that will be more or less appropriate 
depending on the requirements of the testing situation. Our 
proposal is as follows: because different information is 
encoded with different sequences of study, different 
sequences of study potentiate different representations of 
what was studied. More specifically, encoding the 
differences between concepts through interleaved study will 
tend to lead to the creation of interrelated concepts whose 
representations are contrasted away from each other by 
emphasizing or exaggerating their distinctive characteristic 
relative to each other (Corneille et al., 2006; Goldstone, 
1996). Conversely, blocking will tend to lead to encodings of 
the similarities within each concept that will, in turn, create 
relatively isolated, stand-alone, representations (Goldstone, 
1996). 

These different representations, once created, are suited for 
different uses. Although an interrelated representation of two 
concepts will be helpful in a new context in which 
discriminating the previously learned concepts is important, 
isolated representations of the same concepts may not be as 
useful. Conversely, an isolated representation of a concept 
will include more information about all the properties of that 
concept, whether or not they serve to distinguish it from the 
other learned concepts, making it ideal for situations in which 
these details are relevant, such as when the concept must be 
differentiated from other new concepts possessing new 
distinctive features. 

Students often create flashcards as a study and self-testing 
tool (Hartwig & Dunlosky, 2012). These flashcards might 
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include a definition or an example of a concept on one side 
of the card and the correct response on the other. When 
studying using examples, students might choose to study all 
the cards from one concept in a block or to interleave cards 
from different concepts. One important question, then, is if 
different sequences of examples will influence students’ 
performance for different types of tests – a question that, to 
the best of our knowledge, has not been addressed before. 
This is not only an important question at the theoretical level 
– to know the representational differences created by 
different sequences – but also at the practical level because 
changing the sequence of study materials is an easy and cheap 
intervention that might have substantial influences on 
learning outcomes (Dunlosky et al., 2013). In fact, previous 
researchers have emphatically advocated presenting 
information interleaved whenever possible, warning students 
about the perils of blocked study (e.g., Bjork, Dunlosky, & 
Kornell, 2013), and it has been suggested as an important 
factor of which all new instructors should be aware (Deans 
for Impact, 2015). 

For this purpose, we developed two experiments in which 
learners studied concepts of psychology (e.g., “Hindsight 
bias”; Rawson et al., 2015) in one of the sequences and were 
then tested in different situations, similar to common study 
practices by students. Importantly, some of the tests required 
discrimination between different concepts (e.g., multiple-
choice test), whereas others required an independent 
representation of each concept (e.g., writing a definition). We 
consider writing a definition to require an independent 
representation because these definitions can be expressed 
without referring to other learned concepts. For example, a 
participant could write a definition for “availability heuristic” 
without having learned or remembered any of the other 
presented concepts (Goldstone, 1996). We predict that for 
tests that emphasize isolated, independent knowledge of the 
properties of each concept, such as writing a definition, 
participants will perform better following blocked study. 
Conversely, for tests that require discriminating different 
concepts, i.e., those that involve choosing between several 
options, participants will perform better with interleaved 
study. 

Experiment 1 

Method 
Table 1: Participant demographic characteristics for  

Experiments 1 and 2. 
Pair Exp. 1 Exp. 2 

Mean Age (SD) 33 (10) 36 (11) 
Gender (% Females) 45.5% 68% 

Education (% Bachelor’s or 
higher) 50% 64% 

Age Learned English (SD) 0.04 (0.21) 0.21 (1.13) 
 

Participants. A group of twenty-eight people were recruited 
through Amazon’s Mechanical Turk 
(https://www.mturk.com/). Data from 6 participants were 
excluded from analyses because of possible compliance 

issues (see below for details). The demographic 
characteristics of participants in the overall sample are 
presented in Table 1. 
Stimuli. We used a stimulus set of introductory concepts and 
examples created by Rawson et al. (2015). The stimuli 
included 10 concepts taught in Introductory Psychology and 
10 example situations for each concept, collected from 
textbooks of Introductory Psychology. The concepts were 
divided into two groups by relatedness. Each group contained 
unrelated concepts only, whereas across groups pairs of 
related concepts existed (see Table 2). Relatedness of the 
concepts was judged by the authors by comparing the 
definitions of the concepts and confirmed by analyzing the 
pattern of errors in multiple-choice questions without 
feedback in a pilot study. Previous research looking at 
sequence of study using these materials used this concept 
grouping as well (Rawson et al., 2015). 

 
Table 2: Groups of concepts used in Experiment 1 and 

Experiment 2. Each row includes a pair of related concepts. 
Columns contain only unrelated concepts. 

Pair Group A Group B 

1 Availability Heuristic Representativeness 
heuristic 

2 Door-in-the-face 
technique 

Foot-in-the-door 
technique 

3 Hindsight bias Counterfactual 
thinking 

4 Fundamental 
attribution error Deindividuation 

5 Mere exposure effect Social facilitation 
 

Design and Procedure. This Experiment had two conditions 
manipulated within-subject: Study Sequence (Blocked vs. 
Interleaved) and Type of Test (Multiple-Choice Test vs. 
Definition Match Test vs. Write Definitions Test).  

The experiment had three phases: pretest, study and test. 
Participants completed one pretest, two study phases and two 
tests phases in the following order: Pretest – Study 1 – Test 1 
– Study 2 – Test 2. The first and second study phases were 
the same in every aspect except for the sequence of study and 
the concepts studied. One study phase was interleaved and 
the other blocked (order counterbalanced across 
participants). A different group of to-be-learned concepts was 
used in each study phase. In the interleaved condition learners 
studied an example of each concept before studying the same 
concept again (e.g., ABCABC…). Conversely, in the blocked 
condition learners studied all examples of each concept 
before starting a new concept (e.g., AABBCC…). Moreover, 
the test phase only tested the concepts learned in the 
immediately preceding study phase. Between each study and 
test phase participants completed a distractor task by 
watching a 4-minute video on an unrelated topic and 
answering a question about that video. 

During the pretest phase participants were told that they 
would be presented with several psychology concepts that 
they were asked to rate regarding their 
familiarity/knowledge. Participants were told that not 
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knowing the concepts was not an issue for the study, would 
not impact their eligibility or payment, and that they should 
be honest in their responses. On each trial, the name of a 
concept was presented and participants had to rate on a scale 
from 1 (“Not familiar at all”) to 7 (“Very familiar”) how 
familiar they were with that concept. Following each rating, 
participants were asked to provide an example of that 
concept, or enter “I don’t know” if they did not know any. 
Participants completed the pretest for the ten to-be-studied 
concepts across both study phases. 

Following the completion of the pretest, participants 
completed the study phase. During the study phase, 
participants studied examples of situations depicting each of 
five concepts, one at a time and were asked to choose the 
name of the concept they thought the example instantiated. 
Participants were given feedback after each response. During 
study, participants studied five examples of each of the five 
concepts. 

During the test phase, participants completed three types of 
tests: Multiple-Choice, Writing Definitions and Match 
Definitions, always in that order. The Multiple-Choice test 
used the same procedure as the study phase with new 
examples and without feedback. In the Writing Definitions, 
test participants were shown the name of each of the concepts 
studied one at a time and asked to write the best definition 
possible for that concept, based on what they had learned in 
the previous study phase. In the Match Definitions test 
participants were presented with the textbook definition of 
each concept, one a time, and asked to identify what concept 
that definition belonged to by pressing the corresponding 
button on the screen. The order of trials within each of the 
tests was randomized across participants. None of the test 
phase tasks had any time limit. 

Results and Discussion 
Because the study was conducted online without 
experimenter supervision, we first inspected the data in order 
to identify potential compliance issues. For each participant, 
we calculated the median response time during both study 
phases. The sample’s median response time to complete the 
study phase was 10.5 seconds per problem (max: 22.9 
sec./problem; min: 0.73 sec./problem). We calculated the 
10th and the 90th percentiles for the distribution of median 
response times, 3.3 sec./problem and 16 sec./problem 
respectively, and used these values as a measure of non-
compliance in the task. Responding too fast (faster than the 
10th percentile) is likely due to participants who are not 
reading the problems and just advancing through the 
experiment quickly; similarly, longer response times (above 
that of the 90th percentile) are likely due to potentially 
distracted participants. Six participants were identified based 
on this analysis and their data were excluded from further 
analyses. 

All the analyses below are ANCOVA analyses including 
average pretest score and counterbalancing condition as 
covariates. 

Pretest. To analyze the data from the pretest we calculated 
25th, 50th and 75th percentiles of the ratings (see Table 3). 
As can be seen, most participants showed little or no 
knowledge of the to-be-studied concepts (mean of 
approximately 2 in a 1-7 scale). The provided examples 
further confirmed this interpretation. 
 

Table 3: Pretest results for Experiments 1 and 2 (1-7 scale). 

 25 
Percentile 

50 
Percentile 

75 
Percentile M SEM 

Exp 
1 1.00 1.55 2.03 1.71 0.16 

Exp 
2 1.34 1.79 2.39 1.97 0.16 

 
Study Phase. Mean performance during the blocked study 
phase was 72% (SEM = 5%), whereas during interleaved 
study it was 67% (SEM = 5%). This difference was not 
statistically significant, F (1,20) = 1.95, p =.169, ŋ2

G = .012. 
Test Phase. Two trained coders, blind to condition 
assignment, rated as correct or incorrect each of the written 
definitions. These two coders agreed 87% of the time and 
inter-coder reliability was high, Cohen’s Kappa = .725, p < 
.0001. Disagreements were resolved by a third coder, also 
blind to condition assignment of the responses. 

Performance for the test phase is depicted in Figure 1. As 
can be seen in the figure, the type of tests varied in their level 
of difficulty, with participants performing better in the 
Definitions Match test and worse in the Write Definitions 
test, F (2,42) = 17.62, p = < .0001, ŋ2

G = 0.151. Although 
there was no overall main effect of study sequence F (2,42) 
= 1.36, p = .256, ŋ2

G= .006, there was a significant interaction 
between type of test and study sequence, F (2, 42) = 5.26, p 
= .022, ŋ2

G = .022. 

 
Figure 1:  Results for the Test Phase of Experiment 1. Dotted lines 
represent chance level. Error bars represent standard errors of the 

mean. 
 
To further investigate this interaction, we compared the 

effect of type of study sequence on each of the tests by 
calculating the difference in performance following blocked 
and interleaved study for each type of test (interleaved – 
blocked). The difference in performance between the two 
conditions varied across type of test, F (2, 42) = 5.10, p = 
.011, ŋ2

G = .110. Planned contrasts using FDR correction 
indicate that the effect of study sequence was significantly 
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different when comparing the Write Definitions test (M = -
.15, SEM = .06) with the Multiple-Choice test (M = .009, 
SEM = .03), p = .033, and the Match Definitions test (M = 
.02, SEM = .05), p = .040, but not when comparing the 
Multiple Choice and the Match Definitions tests, p = .844. 

These results are consistent with our proposal that blocked 
study encourages learners to develop independent, stand-
alone representations rather than highlighting diagnostic 
features (i.e., those that discriminate between the concepts). 
Interleaved study emphasizes features that discriminate 
between concepts, which would be more helpful for a 
subsequent categorization task than a task that requires 
generation of stand-alone definition of the concept. 

Experiment 2 
Our main proposal in this paper is that blocked study creates 
relatively independent representations of each concept 
studied which emphasizes the concept’s characteristic 
features. These independent representations include more 
details from each concept than what is fostered by the 
relatively interrelated representations created during 
interleaved study. In the context of studying examples of 
different concepts, we proposed that blocked study allows 
learners to more successfully write definitions of the concepts 
because a definition requires the type of knowledge that 
blocked study promotes; it is generally possible to write good 
definitions for the learned psychology concepts without 
mentioning other psychology concepts learned at the same 
time. Consistent with this hypothesis, Experiment 1 showed 
that following blocked rather than interleaved study, learners 
were more successful at writing definitions of concepts, but 
the groups did not differ on classifying examples.  

However, when two concepts are highly related (e.g., foot-
in-the-door and door-in-the-face technique) their definitions 
can be aptly construed in relation to each other. If they are 
studied together, one central feature to include in the 
definition is the feature that discriminates them. Thus, the fact 
that in the previous experiments learners studied in the same 
session concepts that were dissimilar from each other and 
varied in many properties (see Table 2) might have 
contributed to the pattern of results seen. Would studying 
similar concepts together change the pattern of results 
observed? 

Studying related concepts together changes the learning 
task in at least three critical ways. First, studying similar 
concepts in the same session might result in the necessity to 
discriminate between similar situations in order to find the 
subtle differences between the two types of concepts. It has 
been shown before that the interrelated representations 
promoted by interleaved study are likely to improve learning 
in these situations of learning highly similar concepts 
(Carvalho & Goldstone, 2014). Second, the features that 
discriminate these related concepts are also characteristic 
features of the concept, unlike what is the case when the 
concepts are dissimilar (see Table 2). This means that 
interleaved study could promote representations appropriate 
for a writing definitions test through identification of 

differences between concepts, whereas these differences 
would not be likely to be highlighted in the previous 
experiment. 

In sum, when similar items are studied in the same session, 
there are several reasons to believe that performance would 
benefit from interleaved study, even when the test requires 
learners to write definitions. However, when similar items are 
studied in separate sessions, as in Experiment 1, blocked 
study would promote best performance in a test requiring 
isolated representations, such as writing definitions. 

To test this, we used a procedure similar to how students 
often organize their study. In most natural situations students 
are likely to randomly assign the topics to be studied to a 
study session or to follow the sequence of their textbook or 
instructor. Therefore, in this experiment we randomly 
assigned concepts to being studied either interleaved or 
blocked, instead of using different pre-defined groups of 
concepts that guarantee low between-category overlap as in 
the previous experiment. This results in a situation where 
similar concepts might be studied together or separately. We 
compare performance on multiple-choice and writing 
definitions tests following blocked or interleaved study in 
each one of these situations. 

Method 
Participants. A group of 36 people completed the 
experiment following recruitment through Amazon’s 
Mechanical Turk (https://www.mturk.com/). Data from 3 
participants were excluded due to self-reported previous 
participation in another study with the same materials. Data 
from an additional 8 participants were excluded from 
analyses because of possible compliance issues (see below 
for details). The final sample included 25 participants. Table 
1 includes the demographic characteristics of participants in 
the overall sample. 
Stimuli and Procedure. In this experiment, we used the 
same set of materials as in Experiment 1 and Experiment 2, 
but concepts were randomly assigned to be studied 
interleaved or blocked. Thus, in this experiment we did not 
force related concepts to be studied in separate phases. 

The procedure was similar to the procedure used in 
Experiment 1 except for the following differences. 
Participants studied only eight concepts, four interleaved and 
four blocked. During study, participants saw four situations 
depicting each one of the concepts. After study, participants 
played a game of Tetris for 30 seconds. 

The test phase included only a multiple-choice test and a 
writing definitions test, always presented in that order. 
During the multiple-choice test participants saw a total of 
four novel examples of the concepts studied, presented one at 
a time, and were asked to indicate which concept it 
illustrated. 

Results and Discussion 
We identified potentially non-compliant participants using 
the participants’ response times during study. The sample’s 
median response time to complete the study phase was 8.4 
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seconds per problem (max: 22.8 sec./problem; min: 0.47 
sec./problem). The 10th and 90th percentiles for the 
distribution of median response times were 2.6 sec./problem 
and 16 sec./problem respectively. Eight participants were 
identified as outliers based on their falling outside of this 
range and their data were excluded from further analyses. 

In all the analyses presented below, mean pretest score and 
counterbalancing condition were included as covariates. 
Pretest. As in the previous experiments, participants showed 
little to no pre-training knowledge of the to-be-studied 
concepts (see Table 3). 
Study Phase. Mean performance during the blocked study 
phase was 79% (SEM = 2.5%), while during interleaved 
study it was 73% (SEM = 4%). However, this difference was 
not statistically significant, F (1,25) = 2.65, p = .116, ŋ2

G = 
0.04. 
 

 
Figure 2: Results for the Test Phase of Experiment 2. Dotted lines 
represent chance level. Error bars represent standard errors of the 

mean. 
 

Test Phase. Two trained coders, blind to condition 
assignment, rated as correct or incorrect each of the Written 
Definitions provided. The two coders agreed 84% of the time 
and inter-coder reliability was high, Cohen’s Kappa = .611, p 
< .0001. Disagreements were resolved by a third coder, also 
blind to the condition assignment of the responses. 

To analyze the results from the two tests used in this 
experiment we classified each concept based on whether it 
had been studied blocked or interleaved and whether its 
related concept (see Table 2) had been studied in the same 
sequence or in different sequences. When both related 
concepts were studied in the same phase and in the same 
sequence (e.g., “foot-in-the-door technique”, “door-in-the-
face technique” studied blocked), they were both classified as 
“Blocked” and “Same Sequence.” However, when only one 
of the related concepts was studied, or the two related 
concepts were studied in different phases/sequences, both 
were marked “Different Sequences.” 

This classification of the concepts resulted in empty cells 
for participants who did not have both concepts studied in the 
Same Sequence and concepts studied in Different Sequences 
for both interleaved and blocked study. Because traditional 
repeated-measures ANOVA does not allow for the existence 
of empty cells and we wanted to maximize the inclusion of 
all data collected, here we used mixed model analyses and 
report Wald F tests and respective p-values using Kenward-
Roger’s approximation (Kenward & Roger, 1997). The 
results are depicted in Figure 2. 

As we saw in the previous experiments, overall learners 
performed better on the Multiple-Choice test than when 
writing definitions, Wald F (1, 33.842) = 91.68, p < .0001. 
Similarly, the sequence of study had no overall effect on 
performance, Wald F (1, 33.948) < 1. No interaction was 
found between these two variables, Wald F (1,92.007) < 1. 

However, the relatedness between concepts presented in 
the same sequence influenced performance. Overall, when 
participants studied the two related concepts in the same 
sequence their performance was lower (M = 46.52%, SEM = 
1.50%) than when related concepts were not in the same 
sequence (M = 62.41%, SEM = 1.04%), Wald F (1, 24.284) 
= 15.60, p = .0006. Item relatedness also interacted with 
sequence of study and type of test, Wald F (1, 98.522) = 6.83, 
p = .010. 

To further analyze this interaction, we explored the test 
results for each type of test separately. For the Multiple-
Choice test, only the effect of relatedness reached statistical 
significance, Wald F (1, 24.264) = 9.43, p = .005. However, 
for the Writing Definitions test, in addition to a significant 
effect of item relatedness, Wald F (1, 25.649) = 9.81, p = 
.004, we also found a significant interaction between item 
relatedness and sequence of study, Wald F (1, 29.282) = 6.71, 
p = .015 (see right panel of Figure 5). As predicted by the 
results of Carvalho and Goldstone (2014), the relative 
relatedness between items modulates the relative benefit of 
each sequence for the Writing Definitions test. Moreover, 
consistent with the results of Experiment 1, we see that when 
similar items are not studied in the same sequence, 
performance in the Write Definitions test benefits from 
blocked study, although this effect was only marginally 
significant, t (35) = 1.90, p = .066, d = 0.317. 

General Discussion 
Overall, the results presented here show that the different 

sequences of study affect performance differently for 
different types of test. Studying examples of different 
concepts in a blocked sequence improves performance in a 
test requiring learners to provide a definition of the concept 
studied, whereas for other tests there is no difference in 
performance between the two sequences of study. 

Consistently with previous research, we have argued that 
this pattern of results is related to the acquisition of different 
knowledge with each sequence. Whereas blocked study 
results in the creation of a relatively isolated representations 
(i.e., a stand-alone, independent representation of each 
concept), interleaved study results in interrelated 
representations (i.e., focusing on how a concept differs from 
other(s) studied at the same time; Corneille et al., 2006; 
Goldstone, 1996). Going one step further, these different 
representations are likely to be the result of differences in the 
underlying attentional and encoding processes (Carvalho & 
Goldstone 2015). The information attended to and encoded 
during study will dictate what type of representation is 
brought to a new situation and therefore what is available at 
test. 
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Moreover, we also saw that the effect of study sequence is 
modulated by whether discrimination based on subtle 
differences is necessary or not during study or test, such as is 
the case with the related concepts presented together in 
Experiment 2. We argued that this is the result of the 
pressures of the study and testing situation: when studying 
related concepts, interleaved study (and the interrelated 
representations it promotes) helps learners determine what 
discriminates between closely related concepts. This 
interpretation is consistent with the results of Carvalho and 
Goldstone (2014) showing that when learners studied similar 
categories, interleaved study improved learning, whereas 
when studying dissimilar categories, blocked study improved 
learning. Although the sample sizes used in the studies 
reported here might seem small, it is important to note that all 
critical comparisons were within-subject manipulations 
which increases the analytic power and that the effect sizes 
reported here are large and in line with previous similar 
research. 

In sum, the two main contributions of the present work are 
as follow; first, it goes beyond existing demonstrations that 
blocking is better/worse than interleaving by showing how 
sequence affects what is learned by creating different 
representations given the same content. Second, it provides 
evidence for the context-dependent nature of learning and 
how the benefits of each sequence depend on the learning 
situation. This evidence adds to previous demonstrations that 
the best sequence of study depends on the type of material 
being studied (Carvalho & Goldstone, 2014; Patel et al., 
2016), the type of study task (Carvalho & Goldstone, 2015; 
Rawson et al., 2015), and whether students actively decide 
how to organize their study (Carvalho et al., 2016). These 
results also show the importance of developing theories of 
why one intervention is better than another. We have 
proposed a theory based on the similarities of the materials 
being learned and the nature of the task. When concepts are 
similar to each other, learners prioritize learning 
discriminating features. Writing definitions generally 
benefits from stand-alone representations unless the concepts 
being defined are similar to each other and benefit by being 
contrasted. The study of how an intervention interacts with 
the learning situation, we would argue, has the potential to 
not only provide a fuller understanding of how learning takes 
place, but also provide richer, more precise, 
recommendations for practice (Jonassen, 1982). 
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Abstract 

Learning by doing refers to learning practices that involve 
completing activities as opposed to explicit learning (e.g., 
reading). Although the benefits of learning by doing have been 
described before, it is still relatively uncommon in instructional 
practice. We investigated how much students employ learning 
by doing in online courses, and whether it is associated with 
improved learning outcomes. Spending more time completing 
activities had a larger impact on learning outcomes than 
spending more time reading, even in the case of mostly 
declarative content, such as in a Psychology course. Moreover, 
learning by doing is more efficient: grade improvements of 1 
standard-deviation require 10-20% less time in learning by 
doing than reading. Finally, we contrast this evidence with 
students’ a priori intuitions on best study strategies for their 
online course. Students overestimate the value of explicit 
learning through reading, and underestimate the value of active 
learning. 

Keywords: learning by doing; retrieval practice; self-regulated 
learning; doer effect 

Introduction 
A lot of instruction is focused on explicit learning (for 
example, through textbook reading, classroom lectures, and 
online videos). The underlying assumptions often are (a) that 
most knowledge we expect students to acquire in our courses 
is declarative in nature and, (b) perhaps, that even procedural 
knowledge can initially be acquired this way. Consistent with 
these beliefs, much emphasis has been devoted to the creation 
of video-based Massive Open Online Courses (MOOCs) and 
text-based online courses. 

The emphasis on explicit learning is in stark contrast to 
established phenomena in cognitive psychology, advocating 
for the use of testing (Roediger & Karpicke, 2006) and active 
learning (Wieman, 2014) as better learning tools. The testing 
effect describes the positive effects of engaging in self-
testing, instead of additional passive study (for a review see 
Roediger & Karpicke, 2006). This effect has been repeatedly 
shown in laboratory settings with diverse materials, including 
word pairs and text passages (e.g., Karpicke & Blunt, 2011; 
Karpicke & Roediger, 2008). The success of the testing effect 
in the laboratory led to some in-classroom studies looking at 
its extensibility as a tool to promote students’ learning, also 
with positive outcomes (e.g., McDaniel et al., 2007). 

Why might active practice not be used in the classroom? 
One possibility is that the effect is limited to controlled 
laboratory contexts in which other aspects of real-world 
instruction do not vary. There is currently a lack of evidence 

from large-scale classroom studies demonstrating the 
benefits of testing over reading outside the lab. Another 
possibility is that the advantage of learning by doing is 
specific to some types of materials (e.g., procedural 
knowledge), thereby limiting its use by instructors and 
students. Indeed, there is some evidence showing that, under 
some circumstances, additional passive reading practice, 
compared to doing activities, might result in better learning 
(Sweller & Cooper, 1985). In the KLI framework, Koedinger 
and colleagues (2012) postulate that the learning goals and 
the nature of the materials being studied are the determining 
forces behind whether reading or doing are better for 
improving learning. 

In sum, conceivably, learning by doing is not used because 
it is not effective in real-world contexts or across a wide range 
of knowledge types. Moreover, there is an underlying 
assumption that when the focus of learning is declarative 
knowledge, the emphasis should be on reading activities that 
would foster the formation of connections between concepts 
and the creation of robust declarative knowledge (Anderson 
& Schunn, 2000). Nonetheless, learning by doing is 
important because most of human expertise involves tacit 
knowledge of the cues and conditions for deciding when, 
where, and what knowledge to bring to bear in complex 
situations (Zhu et al., 1996). In this view, there might be no 
verbal shortcut to acquiring expertise; it might be best 
acquired by repeated practice. 

In our research, we explore whether learning by doing is a 
better way of learning across different types of knowledge 
(i.e., declarative and procedural), and whether it is more 
efficient. We compare learning outcomes of students enrolled 
in two online courses as a function of frequency and time 
spent completing practice activities (doing) vs. reading. 

Students’ study behavior and their beliefs about the 
best study strategy 

Even if a class is designed to encourage students to learn 
by doing, including extensive self-testing and guided practice 
activities but minimal text, it is an open question whether 
students a) realize its potential, b) use it, and c) whether self-
directed learning by doing in the classroom is as effective as 
its guided counterparts in the laboratory. These questions are 
theoretically and practically important because previous 
research on other cognitive approaches to improve learning 
have repeatedly shown a difference in outcomes between 
when students are in control of their study and when they are 
not (Carvalho et al., 2016; Ciccone & Brelsford, 1976), as 
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well as a lack of awareness by the students on how to best 
organize their study (Karpicke et al., 2009). 

Koedinger et al. (2015, 2016) illustrated the power of 
learning by in the context of online courses used in real 
classrooms. The Open Learning Initiative (OLI) at Carnegie 
Mellon University (CMU) is a learning environment that 
includes several courses each focusing on rich and interactive 
learn-by-doing activities, aligned with student-centered 
learning outcomes, and designed around science-based 
learner models. By analyzing student self-regulated study 
behavior in online classes taught at different universities 
using OLI materials, Koedinger et al. (2015, 2016) identified 
a “doer effect” – completing more practice activities is a 
stronger predictor of student performance than completing 
more reading activities. 

The present work 
The present work builds on early evidence of the “doer 

effect” and extends it. One explanation for why completing 
more doing activities has a larger impact on learning than 
completing more reading activities is that completing doing 
activities may be more time intensive. If students devote 
more time to studying, regardless of how they do it, they are 
more likely to learn more. In other words, more learning 
results from the time devoted to an activity (e.g., reading or 
doing), not from the activity itself. Conversely, if learning by 
doing is more beneficial because it engages students in an 
active learning process (Wieman, 2014), it should be 
associated with better learning outcomes even if students 
spend comparatively less time engaging in that activity. To 
investigate this question, we compare the time spent reading 
and doing, and its relative impact on learning outcomes. Is it 
the case that reading for longer periods results in better 
learning outcomes than doing for shorter periods? 

Additionally, to probe the generalizability of learning by 
doing even for declarative knowledge, we investigate 
students’ behavior in two courses. An introductory 
psychology course focusing mostly on declarative knowledge 
and a computation course focusing on both declarative and 
procedural (learning how to code) knowledge. 

Finally, we investigate students’ beliefs about the 
usefulness of using learning by doing in their study. At the 
start of each course, as part of an optional unit, students 
completed a question on what they thought was the best 
strategy to study for the course. Are students’ a priori beliefs 
on how to study biased towards explicit learning (i.e., 
reading)? 

The “doer effect” in a Psychology MOOC 

Method 
Sample. Our analyses include data from 783 students 
enrolled in an online “Introduction to Psychology as a 
Science” MOOC offered by the Georgia Institute of 
Technology through Coursera. We included in the analyses 
students registered in OLI for whom pretest, quizzes and the 

final exam data were available. For a description of the entire 
sample see Koedinger et al. (2015). 
Description of the course. The course “Introduction to 
Psychology as a Science” was designed as a 12-week 
introductory survey course, and is often taught during the first 
year of college. For each week of class, the course targeted a 
major topic area (e.g. Memory, Sense and Perception, 
Abnormal Behavior). Elements of CMU’s Open Learning 
Initiative (OLI) “Introduction to Psychology” course were 
incorporated into Georgia Tech’s “Introduction to 
Psychology as a Science” MOOC. OLI materials including 
text and interactive activities were available to students, in 
addition to the lectures, quizzes and other Coursera-based 
activities of the larger course. Each sub-topic was supported 
by a pre-recorded video lecture (10-15 minutes, with 
downloadable slides) and included matched modules and 
learning outcomes in the OLI learning environment. A high-
stakes quiz assessed students against these outcomes at the 
end of each week. 

The OLI modules included a variety of expository content 
(text, examples, images, and video clips) and a large number 
of interactive activities. Broadly, these activities serve two 
purposes. “Learn By Doing” activities, intended to support 
student outcome achievement, provide feedback and robust 
hints to support students. Figure 1 shows an example of a 
“Learn by Doing” activity from the Personality module 
covered in week 9 of the course. Another type of activity, 
“Did I Get This” activities, provided a self-comprehension 
check for students. These activities were created in 
conjunction with the OLI text materials and complement it by 
providing testing (“Did I Get This”) or active learning 
(“Learn by Doing”) activities that cover the concepts 
described in the text. 

 
Figure 1: Screenshot of an OLI “Learn By Doing” activity from 

the module on Personality. 
 

Research questions, measures, and analysis plan. We 
explore three main research questions: Q1: Does completing 
more practice (“doing”) activities, compared to completing 
more reading activities, predict better learning outcomes?; 
Q2: Does spending more time on practice (“doing”) 
activities, compared to time spent on reading activities, 
predict better learning outcomes?; Q3: What are students’ 
beliefs regarding “best study strategies” for an online course? 

To approach these questions, we created the following 
analyses plan. First we calculated our dependent measures: 

expository content (text, examples, images, and video 
clips) and a large number of interactive activities. 
Broadly, these activities serve two purposes. “Learn By 
Doing” activities, intended to support student outcome 
achievement, provide feedback targeted to diagnose 
misconceptions and robust hints to support students. In 
Figure 1a, we show a screenshot of a Learn by Doing 
activity from the unit on Personality covered in week 9 of 
the course. “Did I Get This” activities provide a self-
comprehension check for students. They are introduced at 
points when students are expected to have achieved 
mastery and do not provide hints, though they do offer  
feedback [31]. 
 

 

 

Figure 1. (a) Screen shot of a Learn By Doing OLI activity 
from the unit on Personality© OLI. (b) Corresponding quiz 

question © OLI. (c) Related final exam question © Dr. 
Anderson Smith, GA Institute of Technology. 

 

METHODS 
It is important to point out that using data from natural 
student use of MOOCs adds uncertainty in making 
inferences about causal relationships as compared to 
using data from experimental designs. This uncertainty is 
further increased by the large attrition or dropout that is 
typical in MOOCs. The sample of students involved in 
any particular analysis is determined by student 
participation and effects that might be attributed to other 

factors (e.g., course features) might instead be so-called 
“selection effects”, that is, effects of sampling differences 
based on the choices or selections that students make. 
Nevertheless, there is a real opportunity to use the large 
and naturally-occurring data that comes from MOOCs to 
provide initial, if not confirming, evidence of factors of 
potential importance for course participation and learning 
outcomes.   

Table 1 shows different subsets of students as indicated 
by different forms of participation in the course.  We refer 
to it in describing how samples were selected to address 
our research questions.  

Our first research question is: What factors determine 
whether or not students stay in the course or dropout? 
 27720 students registered in the Coursera MOOC 
Psychology course while 1154 students completed it (see 
Table 1). We are interested in what indicators or features 
may predict dropouts throughout the course, and we use 
quiz and final exam participation as estimates of student 
dropout. For example, if a student has a score for quiz 4 
but none of the remaining quizzes or the final, we 
consider that student to have dropped out after quiz 4. We 
are interested in factors that predict future dropouts. In 
addition to whether students used the OLI material or not, 
we also included quiz participation and quiz score in a 
logistic regression model to predict final exam 
participation.  

Our second research question is: Do students who use 
OLI learn more than students who only use the MOOC 
materials?  MOOC+OLI students (N=9075) are those who 
registered to use the OLI materials. MOOC-only students 
(N=18,645) did not (see Table 1).  To address the 
question, we did a quasi-experimental comparison of 
learning outcomes between the MOOC+OLI students who 
took the final (N=939) with the MOOC-only students who 
took the final (N=215). 

Our third research question is: What variations in course 
feature use (watching videos, reading text, or doing 
activities) are most associated with learning?  And can we 
infer causal relationships? In the results section, we 
describe an exploratory data analysis to identify 
relationships between usage of these features (garnered 
from the log data [15]) and our two measures of learning, 
quizzes scores and final exam score. To frame that 
analysis, we present some global data on feature usage. 
Of all MOOC registrants, 14,264 (51.4% of total) started 
to watch at least one lecture video. Of the 9075 students 
(32.7% of total) registered for OLI material study, 84.5% 
(7683 students) accessed at least one page of OLI 
readings and visited or revisited an average of 69 pages 
with a maximum of 1942 pages (variable pageview). On 
average, 33 unique pages were viewed with a maximum 
of 192 unique pages. Of the 9075 OLI registered students, 
62.3% (5658 students) started at least one interactive 
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number of reading and doing activities and total time spent in 
each. We started by identifying for each student the number 
of doing and reading activities. A doing activity was 
identified as responding to at least one practice activity in the 
OLI. A reading activity was identified as opening a text 
webpage in the OLI. Because opening a text webpage does 
not necessarily mean a student was reading, we adjusted the 
total number of activities by removing extremely short 
reading activities (below the 10th percentile of reading time 
for all reading activities for that student). Our reasoning is 
that when students took extremely short amounts of time in a 
page, they might not have in fact read the associated text. 

 
Table 1: Study strategies students could choose from. The 

metacognitive activity in the Psychology MOOC course included 
only the first 4 strategies. The Computing OLI course included all 

strategies in this table. 
 

Strategy Description 
Game the 
System 

Do activities without reading text. Select different 
answer choices until correct. 

Do-Read Do first activity and if cannot answer, read relevant 
text. 

Read-Do Read text and complete do activities as they come 
up 

Read Read text, skip doing activities. 

Do Complete some activities, then go back to text and 
look for a similar example to read. 

 
Because doing activities were contained inside webpages, 

often surrounded by text, time spent doing and reading for 
each activity/page was inferred from recorded data as 
follows. Timestamps were recorded for when a student 
opened a OLI page, when a student made a choice in each 
step of an activity (e.g., selected an option in a multiple-
choice question), checked their responses in activities, asked 
for hints in the activities, and closed the page. From these 
logs, we could infer doing time as the time difference 
between the initial step and the final step of an activity. All 
other time spent (from opening to closing) in the page was 
considered reading time. However, this process does not 
include the time spent reading the doing activity text before 
starting the activity. To correct for this, the time spent 
completing each doing activity also includes a proportion of 
the time right before completing the first step (the other 
portion being classified as time spent reading). For reading 
time, we calculated the difference between the time when a 
webpage was initially accessed and the time an activity was 
started, as well as the time between an activity was finished 
and the another one started or the webpage was closed plus 
the portion of the time immediately before the first step of 
each activity. However, initial analyses of the time spent in 
each page revealed a number of large outliers (several 
standard deviations above the student mean for the student). 
These times might be indicative that a student left the 
webpage opened while completing other activities 
(potentially not related to the course). To correct for this, in 
addition to removing very short reading times (for 

consistency with the number of reading activities analysis 
above), we also replaced very long reading times (above the 
90th percentile for that student) with the average reading time 
for that student. This way, we hope to reduce the influence of 
situations during which the student had the page opened but 
was not actively reading the text presented. 

Our dependent measures included the summed quiz score 
across the 11 quizzes and the final exam score, all multiple-
choice questions. Each quiz was worth 10 points. The final 
exam had 35 questions (each worth 1 point). To account for 
differences in student prior knowledge, we entered pretest 
score as a predictor in the models. The pretest, completed at 
the start of the course, was composed of multiple-choice 
questions from content covered in most of the units of the 
course and was graded from 0-20 points. 

We converted the raw scores for the independent measures 
of student behavior as well as the dependent measures into 
standardize z-scores for ease of comparison across measures. 
We analyzed the effect of each independent measure on each 
dependent measure separately using a logistic regression 
model (in R code): 

 
zQuiz[zExam] = lm(zPretest+zNumDoAct 

[zTotalDoTime] + zNumReadAct[zTotalReadTime] + 
zNumDoAct[zTotalDoTime]*zNumReadAct[zTotalReadTi
me], data = oli_do_read) 

 
Finally, to identify students’ beliefs regarding best 

studying strategies (Q3), we took the students’ responses in 
an activity during the “Learning Strategies” module included 
in the beginning of the OLI course. In this optional module 
(not included in the other analyses), students were introduced 
to several key research findings in learning sciences, and 
“best strategies” to achieve best learning. In one of the 
activities included in this unit students were asked to choose 
which of four study strategies they thought would yield best 
results in the course (see Table 1). To describe students a 
priori study strategy judgments, we calculated the proportion 
of students who chose each of these alternatives before 
starting their study in the course. Each student could choose 
one or more of the options, out of the four offered: “Game the 
system”, “Do-Read”, “Read-Do”, and “Read” (see Table 1). 

Results and Discussion 
 

 

Table 2: Descriptive statistics for the main measures of students’ 
study behavior and independent measures in the Psych MOOC 

 

 M (SD) Median 25th 
Prctl. 

75th 
Prctl. 

Read Time 
(mins) 

9408 
(5377) 9091 6080 12265 

Doing Time 
(mins) 833 (748) 478 244 1240 

#Read Activities 287 (210) 245 156 384 
#Doing 

Activities 435 (265) 541 152 683 

Pretest 11 (3.5) 11 9 13 
Quizzes 89 (18.3) 94 83 101 

Final Exam 27 (5.8) 28 24 31 
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Descriptive measures of student behavior. As it can be 
seen in Table 2, students spent on average more time reading 
than doing (9000 min vs. 800 min, respectively); conversely 
students completed more doing than reading activities (435 
vs. 287, respectively). This overall descriptive data is 
consistent with the nature of the OLI course, which included 
a large number of short doing activities and text passages. 
Q1: More “doing” activities predicts better learning 
outcomes. Results of the logistic regression predicting Quiz 
and Exam performance using number of doing and reading 
activities are presented in Table 3. 

The regression analysis showed that higher quiz and exam 
scores are predicted by completing a larger number of doing 
activities (b = 0.40, p < .0001 and (b = 0.24, p < .0001, 
respectively), and by completing more reading activities (b = 
0.11, p = .001 and b = 0.11, p =.03, respectively). 

Importantly, the relative benefit of completing more doing 
activities was 2.4 to 3.6 times larger than completing more 
reading activities. 

Overall, these results support those found by Koedinger et 
al. (2015, 2016), showing that completing more doing 
activities predicts better learning outcomes to a greater 
degree than completing more reading, even when we correct 
for the existence of very short (potentially off-task) reading 
events. 

Finally, contrary to some intuitive predictions of the 
complementary nature of the two types of learning activities, 
their positive effect on learning outcomes are not additive. 
Completing more doing activities is more beneficial when 
students completed less reading activities (and vice-versa; b 
= -0.15, p < .0001 and b = -0.04, p =.40, respectively). 
 

 

Table 3: Results of logistic regression for both courses. Coefficients are standard deviations from the mean (z-scores). 
  Quiz Exam 

Course DV Adj 
R2 

Doing 
Coef. 

Reading 
Coef. 

Interact 
Coef. 

Effect 
Ratio 

Adj 
R2 

Doing 
Coef. 

Reading 
Coef. 

Interact 
Coef. 

Effect 
Ratio 

Psych 
MOOC 

Number 
Activities .29 0.40 

(0.04) 
0.11 

(0.04) 
-0.15 
(0.04) 3.6 .14 0.24 

(0.05) 
0.10 

(0.05) 
-0.04 
(0.04) 2.4 

Total 
Time .19 0.39 

(0.04) 
0.11 

(0.04) 
-0.19 
(0.03) 3.5 .11 0.19 

(0.05) 
0.13 

(0.04) 
-0.09 
(0.03) 1.5 

Computing 
OLI 

Number 
Activities .42 0.56 

(0.02) 
0.23 

(0.02) 
-0.16 
(0.06) 2.43 .08 0.28 

(0.02) 
0.05 

(0.02) 
-0.05 
(0.02) 5.6 

Total 
Time .10 0.19 

(0.03) 
0.27 

(0.03) 
-0.03 

(0.003) 0.70 .02 0.15 
(0.04) 

0.08 
(0.03) 

-0.02 
(0.003) 1.9 

Q2: More time in doing activities predicts better learning 
outcomes. The results of the logistic regression predicting 
Quiz and Exam performance using total time doing and 
reading are also presented in Table 3. The regression analyses 
showed that higher quiz and exam scores were predicted by 
spending more time doing (b = 0.39, p < .0001 and b = 0.19, 
p <.0001, respectively), as well as reading (b = 0.11, p = .006 
and b = 0.13, p =.001, respectively). 

Importantly, because reading requires, on average, more 
time than doing (see mean and standard deviations in Table 
3), for each 1 standard-deviation (18.3 points, 17% total 
score) improvement in the total quiz score, students had to 
complete only a total of 18.45 hours of doing work during the 
12 weeks of the course (or 1.5 hours/week), but 166.22 hours 
of reading work during the same period (or 13.8 hours/week). 
Similar improvements in final exam score require 16.16 
hours of doing work but 168.77 hours of reading work over 
the entire course. Finally, similarly to what we saw when 
analyzing number of activities completed, spending more 

time completing doing activities is more beneficial when 
students spend less time reading (and vice-versa; b = -0.19, p 
< .0001 and b = -0.09, p =.005, respectively). This result 
further indicates that the benefits of the two types of activity 
is not additive. 

Q3: Students overestimate the benefits of reading. Only 
a subset of students (N = 389) from the original sample 
described above also completed the “Learning Strategies” 
module (the module was optional). Table 4 shows the 
percentage of students who chose each possible study 
strategy as well as the percentage of students who chose 
exclusively each option. As it can be seen from the table, the 
large majority of students (93%) chose “reading and 
completing the activities as they appear” (“Read-Do”) as the 
best strategy. In fact, Read-Do was the most popular as the 
exclusive choice. Did students who chose a strategy focused 
on learning by doing spend more time doing than reading? To 
evaluate this question, we looked at the relative time spent 
doing vs. reading depending on the strategy the student chose.

 
Table 4: Percentage of students who selected each strategy as best for learning in the course. 

Course N 
Game the system Do-Read Read-Do Read Do 

Selected Only 
selection Selected Only 

selection Selected Only 
selection Selected Only 

selection 
Selected Only 

Selection 
Psychology 

MOOC 389 8% 8% 32% 5% 93% 61% 6% 0.05% N/A N/A 

Computing 
OLI 950 3% 0% 36% 4% 94% 40% 4% 0% 36% 0.05% 
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For each student, we calculated the difference between 
total time doing and total time reading (doing-reading). More 
positive values in this measure indicate more time doing 
relative to time spent reading. We compared students who 
chose only the strategy “Do-Read”, those who chose that 
strategy and another strategy, and those who chose any other 
strategy. Students who chose only the “Do-Read” strategy (M 
= -7202, SD = 6139), or that strategy in addition to another 
(M = -7694, SD = 4414), spent relatively more time 
completing doing activities than those who did not choose 
that option (M = -9746, SD = 4983; t (386) = 2.238, p = .026 
and t (386) = 3.63, p < .0001, respectively). 

The “doer effect” in an online Computing 
Course 

One of the goals of this research was to investigate whether 
engaging in learning by doing is an effective learning strategy 
for different types of knowledge. To extend the nature of the 
types of knowledge covered, we ran the same analyses with 
data from students’ study behavior in an online version of a 
computing course. The content of this course is substantially 
different from the more expositive nature of an introductory 
psychology course. The course design followed the same 
overall principles and was similar to the Psychology course 
in terms of number of activities available to the students (see 
Koedinger et al., 2016 for details). 
Sample. Our analyses include data from 2261 students 
enrolled in the online computing course “Information 
Systems” at University of Maryland University College 
(UMUC) using the OLI platform. We included in the 
analyses below students registered in OLI for whom quiz 
scores and a final grade were available. No pretest was 
available in this course. 
Research questions and analyses plan. The same research 
questions and analyses plan as for the Psychology MOOC 
were used. The dependent measures used were the percentage 
correct across all quizzes and the final grade in number (1-5). 
Regression models do not include a pretest score. 

Results and Discussion 
Descriptive measures of student behavior. Similar to what 
we found in the Psychology MOOC course, students spent on 
average more time reading than doing; conversely students 
completed more doing than reading activities (see Table 5). 
Q1: More “doing” activities predicts better learning 
outcomes. Better quiz and exam scores are predicted by 
completing more doing activities (b = 0.56, p < .0001 and b 
= 0.27, p <.0001, respectively), as well as more reading 
activities (b = 0.22, p < .0001 and b = 0.05, p =.02, 
respectively; see Table 3). Moreover, we found similar ratios 
of benefit of doing over reading (2.43-5.6) as in the Psych 
MOOC, as well as a counter-intuitive interaction whereby the 
effect of doing activities is greater for lower amounts of 
reading, but only when predicting quiz scores (and vice-
versa; b = -0.16, p < .0001 and b = -0.05, p =.02, 
respectively). 

 

Table 5: Descriptive statistics for the main measures of students’ 
study behavior and independent measures in the Computing course 

 M (SD) Median 25th 
Prctl. 

75th 
Prctl. 

Read Time 
(mins) 

13714 
(21948) 4679 613 19481 

Doing Time 
(mins) 

2830 
(7447) 234 26 1749 

#Read Activities 30 (31) 24 14 36 
#Doing 

Activities 70 (55) 64 14 130 

Percent Correct 
Quizzes 7.98 (2.8) 8.5 5.82 10.44 

Final Grade 3.89 
(1.25) 4 3 5 

 
Q2: More time in doing activities predicts better learning 
outcomes. Better quiz and exam scores are predicted by 
spending more time completing doing activities (b = 0.19, p 
< .0001 and b = 0.14, p <.0001, respectively), as well as more 
time reading (b = 0.27, p < .0001 and b = 0.08, p =.01, 
respectively; see Table 3). There is also an interaction, 
whereby the positive effect of more time spent in doing 
activities is larger when students spend less time reading (and 
vice-versa; b = -0.03, p < .0001 and b = -0.02, p <.0001, 
respectively). Although for the quiz scores we see a larger 
impact of more reading time compared to more doing time 
(as evidence by a ratio smaller than 1), for both quiz and exam 
scores it is clear that spending more time completing doing 
activities is more beneficial and efficient because it takes on 
average less time to complete more doing activities and this 
has an impact on performance. For example, for a 1 standard 
deviation (2.8%) improvement in quiz scores, students would 
have to spend 70.9 hours over the duration of the course 
completing doing activities, but a whopping 326.13 hours 
reading – a gain of more than 20%. 
Q3: Students overestimate the benefits of reading. Among 
the subset of students who completed the question on what 
they believed was the best learning strategy (N = 950), the 
large majority of students indicated that they should read all 
the text and complete all activities as they show up (94%, see 
Table 4). Only a small number of students indicated that they 
should focus mostly on the doing activities (36%). Moreover, 
the students’ a priori strategy preference did not predict their 
relative time spent doing, F (2, 938) < 1, p = .558, 
demonstrating that even students who completed more doing 
activities are probably unware of its benefits. 

General Discussion 
The results of this research indicate that self-regulated 
learning by doing is associated with larger learning gains than 
learning by reading. More importantly, besides being a 
desirable learning strategy, it might also be more efficient. 
Across two different online courses focusing on different 
types of content, we found that students who completed more 
doing activities showed larger learning gains in shorter time 
(between 10 and 20% less time to achieve similar 
improvements). This result is important for two reasons: (1) 
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it emboldens efforts to include more active, doing activities 
in lessons, as an alternative to reading activities, and (2) it 
shows the generalizability of learning by doing to different 
kinds of materials, even materials often thought of as 
involving declarative, as opposed to procedural, knowledge. 

Learning by doing as described here involved effortful 
(Roediger & Karpicke, 2006), active engagement and 
knowledge manipulation by the student (Wieman, 2014), 
with timely feedback (Roediger & Karpicke, 2006). All these 
properties have been associated with better learning 
outcomes compared to passive learning situations such as 
reading. Any of these factors might have contributed to the 
benefits of spending more time completing doing activities. 
Interestingly, the benefits of learning by doing were larger 
when students spent less time reading, suggesting that the two 
types of activity might be non-additive. An interesting 
hypothesis for future research is whether learning by doing 
could replace some or all of the learning that takes place from 
reading. Can effective learning of declarative knowledge be 
done exclusively by doing with feedback? 

Importantly, we found that students do not realize the 
potential of learning by doing. Students seem to overestimate 
the value of explicit, verbal, learning and underestimate the 
value of active learning, as seen by their overwhelming 
support for strategies that emphasize reading and weak 
support for strategies that emphasize doing. Similar 
dichotomies between best learning outcomes and students a 
priori judgements of best study practices have been described 
before (see Roediger & Karpicke, 2006), and underscore the 
important role of familiarizing students with empirically 
tested best-practices. 

Finally, the naturalistic character of the data and the 
approach used here have great potential. Natural datasets 
(such as the two used in this investigation) are increasingly 
available and allow for a wider investigation of the 
generalizability, effectiveness and adequacy of learning 
methods, theories, and approaches developed in the 
laboratory. This approach can play a key role for the future 
of learning science because of the novel insights that can only 
be gained from studying how learning takes place in natural 
contexts by their natural agents (Jones, 2016). However, 
admittedly, the research presented here does not allow us to 
establish causal links or discriminate between alternative 
theories of why learning by doing is a more efficient learning 
strategy. It is possible that the differences in learning by 
completing reading and doing activities presented here are 
due to a third variable; though previous research suggests that 
might not be the case (Koedinger et al., 2016). Nonetheless, 
the research presented here can stimulate future controlled 
studies that establish causal links, and investigate which 
characteristics of learning by doing in classroom contexts 
contribute to its benefits. 
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Abstract 

We present a schema-based model of a classic 
neuropsychological task, the Wisconsin Card Sorting Task 
(WCST), where competition between motor and cognitive 
schemas is resolved using a variation of a neuroanatomically 
detailed model of the basal ganglia (Gurney et al., 2001). We 
show that the model achieves a good fit with existing data at 
the group level, and correctly identifies two distinct cognitive 
mechanisms held to underlie two distinct types of error. 
However, at the individual level, the correlations amongst 
other error types produced by the model differ from those 
observed in the human data. To address this, we cluster 
participant performance into distinct groups and show, by 
fitting each group separately, how the model can account for 
the empirically observed correlations between error types. 
Methodologically, this demonstrates the importance of 
modelling participant performance at the sub-group or 
individual level, rather than modelling group performance. 
We also discuss implications of the model for the WCST 
performance of elderly participants and Parkinson’s patients. 
 
Keywords: schema theory; contention scheduling; basal 
ganglia; Wisconsin Card Sorting Task; modelling individual 
performance 

Introduction 
Schema theory is a framework based on the idea that 
behaviour in many areas depends on abstractions over 
instances, i.e., schemas. In these abstract terms, schema 
theory is very general. It has been applied in domains 
ranging, for example, from event memory (Bartlett, 1932) to 
motor control (Schmidt, 1976). Norman and Shallice (1980) 
applied the theory in the domain of routine sequential 
action. Their theory proposes that action schemas work in a 
cooperative or sequential fashion, but also compete with 
each other for activation. While schema theory is helpful in 
representing functional interactions in the action-perception 
cycle, it is not committed to a specific neural 
implementation. However, at the neural level the basal 
ganglia have been proposed as a good candidate for 
resolving competition between schemas in order to carry out 
action selection (Redgrave et al., 2001). In part this is 
because of their recurrent connections with the cortex. 

In this paper we present a model of the Wisconsin Card 
Sorting Task (WCST) where competition between motor 
and cognitive schemas is resolved using a variation of a 
neuroanatomically detailed model of the basal ganglia. We 

use a genetic algorithm to search the model’s parameter 
space and obtain a good fit for the data. Further analysis of 
correlations between error types, however, suggests the need 
to model individual participant data. Yet for reasons of 
computational efficiency this is impractical. We therefore 
cluster participant performance into a small number of 
distinct groups (5) and run separate genetic algorithms to fit 
the groups individually. The results capture both group 
performance and correlations between error types across 
individuals.  

The Task and the Model 
In the WCST, participants are required to sort a series of 
cards into four categories based on binary (i.e., correct / 
incorrect) feedback. Each card shows one, two, three or four 
shapes, printed in one of four colours, and there are four 
shapes (triangle, star, cross, circle). It is therefore possible to 
sort cards according to colour, number or shape. To 
succeed, participants must match each successive card with 
one of four target cards (One Red Triangle, Two Green 
Stars, Three Yellow Crosses, Four Blue Circles), and use 
the subsequent feedback to discover the appropriate rule, but 
once they have discovered the rule (as indicated by a 
succession of 10 correct sorts), the experiment changes the 
rule without notice. The task yields a number of dependent 
measures, including the number of rules obtained (with a 
deck of 64 cards), the number of cards correctly sorted, the 
number of perseverative errors (where negative feedback is 
ignored) and the number of set-loss errors (where the 
participant fails to stick with a successful rule). 

The model comprises three cognitive schemas and four 
motor schemas (see Fig. 1).1 Cognitive schemas represent 
the selection rules (Sort by Colour, Sort by Number, Sort by 
Shape) while the four motor schemas represent the acts of 
putting the stimulus card below each of the four target cards. 
Each schema has an activation level that varies over time as 
a function of input from various sources. Cognitive schemas 
are fed by an external channel that changes by a fixed 
amount according to external positive/negative feedback. 
Motor schemas are fed by cognitive schemas, and this signal 
is rule-dependent. If, for instance, the stimulus card displays 

                                                
1Source code for the simulation, including a complete list of 
parameters and their values, is available from the first author on 
request. 
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three red circles, the colour schema will excite the fourth 
motor schema (Four Blue Circles), the shape schema will 
excite the third motor schema (Three Yellow Crosses), and 
the colour schema will excite the first motor schema (One 
Red Triangle). Motor schemas are also fed by 
environmental cues depending on the stimulus card feature. 
Thus, when cognitive schemas are not strong enough to 
influence motor schemas, action selection may be driven by 
stimulus features only. 

This simple model is complemented by a mechanism that 
implements and resolves competition between schemas 
within each hierarchical level: cognitive and motor schemas 
feed into two parallel computational mechanisms that each 
return a signal in the form of inhibition to the individual 
channels at each level (see Fig. 2 for an illustration at the 
cognitive level). In the brain, this competition between 
schemas is thought to be carried out by the basal ganglia 

(Gurney et al., 2001). Corticobasal loops are mostly 
segregated (Alexander et al., 1986) and this is reflected in 
the model through the independence of information 
processed in the basal ganglia units at the two levels 
(cognitive and motor). 

The model also implements a rudimental learning 
mechanism. This consists in a fixed change in signal to the 
cognitive schemas following a reward.  Its purpose is to 
analyse how baseline levels of signal influence schema 
selection and ultimately, performance on the WCST. 
Manipulation of the thresholds of saturation functions in 
cortical units and associated basal ganglia units represent 
dopamine signalling in the cortex and in the basal ganglia, 
respectively. Therefore, the mechanism underlying 
cognitive control is a feedback-driven signal to the cognitive 
schemas. 

Computation in Individual Units  
The model consists of 7 cortical units, 3 of which control 
cognitive operations and 4 of which control motor 
operations (see Fig. 1). These units correspond to schemas. 
Cognitive and motor units send their signal to their 
respective striatal units (see Fig. 3). Subthalamic units 
connect all units at the same hierarchical level (cognitive or 
motor), ensuring that the basal ganglia units act as a 
competitive suppressor of schemas as a function of the other 
schemas’ outputs. 

Individual units are connected as shown in Fig. 3. Their 
computations are shown below. In all cases, ui represents 
the entry signal to the unit, ai is the result of integration 
along the time domain, and oi represents the output of the 
individual units. The function σ computes the sigmoid 
function of the input, ensuring output values are bounded 
between 0 and 1. Sigmoid functions have a fixed slope and 
threshold. Varying the threshold of cortical or striatal units 
alters the way competition between units is carried out, and 
can be considered a function of tonic dopamine present in 
the circuit. (In a separate simulation it has been shown that 
the level of external dopamine from the substantia nigra pars 
compacta (SNpc) unit can be simulated by varying the 
threshold of the saturation curve in the striatum (βctx), 
without making use of an additional unit.) 

Cortical Units: 

𝐮𝐢 ⟸  𝐰𝐢,𝐣 ∙ 𝐮𝐣
𝐣

+  𝐨𝐞𝐱𝐭,𝐢 + 𝐨𝐭𝐡𝐚𝐥,𝐢 

𝐚𝐢 𝐭 ⇐ 𝛅 ∙ 𝐚𝐢 𝐭 − 𝟏 + (𝟏 − 𝛅) ∙ 𝐮𝐢 𝐭 − 𝟏  

𝐨𝐢 ⟸ 𝛔 𝐚𝐢  

Striatum (D1 and D2): 

𝐮𝐢 ⟸  𝐨𝐜𝐭𝐱,𝐢 

𝐚𝐢 𝐭 ⇐ 𝛅 ∙ 𝐚𝐢 𝐭 − 𝟏 + (𝟏 − 𝛅) ∙ 𝐮𝐢 𝐭 − 𝟏  

𝐨𝐢 ⟸ 𝛔 𝐚𝐬𝐭𝐫𝐃𝟏/𝐃𝟐,𝐢  

 
Figure 1: Schematic of the model, not showing 
competition between schemas. Cognitive schemas (top 
row) send signals to the motor schemas (bottom row) 
 

 
Figure 2: Schematic of the competition between 
schemas. The basal ganglia units compute the amount of 
inhibition that each schema receives given the activation 
of the others. 

 
Figure 3: Schematic of the basal ganglia. Legend: 
Cortex-Thalamic complex (CTX-THAL), Striatum 
(STR), Subthalamic nucleus (STN), Globus Pallidus 
Internal/External Segment (GPi and GPe) 
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Subthalamic Nucleus: 

𝐮𝐬𝐭𝐧,𝐢(𝐭)⟸  𝐰𝐬𝐭𝐧 ∙ 𝐨𝐜𝐭𝐱,𝐢 +  𝐰𝐠𝐩𝐞_𝐬𝐭𝐧 ∙ 𝐨𝐠𝐩𝐞,𝐢 (𝐭 − 𝟏) 

𝐚𝐬𝐭𝐧,𝐢 𝐭 ⇐ 𝛅 ∙ 𝐚𝐬𝐭𝐧,𝐢 𝐭 − 𝟏 + (𝟏 − 𝛅) ∙ 𝐮𝐬𝐭𝐧,𝐢 𝐭 − 𝟏  

𝐨𝐬𝐭𝐧,𝐢 ⟸ 𝛔 𝐚𝐬𝐭𝐧,𝐢  

Globus Pallidus (External Segment): 

𝐮𝐠𝐩𝐞,𝐢 ⟸  𝐰𝐬𝐭𝐧_𝐠𝐩𝐞 ∙ 𝐨𝐬𝐭𝐧,𝐢 
𝐢

+  𝐰𝐬𝐭𝐫𝐃𝟐_𝐠𝐩𝐞 ∙ 𝐨𝐬𝐭𝐫𝐃𝟐,𝐢  

𝐚𝐠𝐩𝐞,𝐢 𝐭 ⇐ 𝛅 ∙ 𝐚𝐠𝐩𝐞,𝐢 𝐭 − 𝟏 + (𝟏 − 𝛅) ∙ 𝐮𝐠𝐩𝐞,𝐢 𝐭 − 𝟏  

𝐨𝐠𝐩𝐞,𝐢 ⟸ 𝛔 𝐚𝐠𝐩𝐞,𝐢  

Globus Pallidus (Internal Segment): 

𝐮𝐠𝐩𝐢,𝐢 𝐭 ⟸  𝐰𝐬𝐭𝐧_𝐠𝐩𝐢 ∙ 𝐨𝐬𝐭𝐧,𝐢 
𝐢

+  𝐰𝐠𝐩𝐞_𝐠𝐩𝐢 ∙ 𝐨𝐠𝐩𝐞,𝐢 𝐭 − 𝟏

+  𝐰𝐬𝐭𝐫𝐃𝟏_𝐠𝐩𝐢 ∙ 𝐨𝐬𝐭𝐫𝐃𝟏,𝐢 𝐭 − 𝟏  

𝐚𝐠𝐩𝐢,𝐢 𝐭 ⇐ 𝛅 ∙ 𝐚𝐠𝐩𝐢,𝐢 𝐭 − 𝟏 + (𝟏 − 𝛅) ∙ 𝐮𝐠𝐩𝐢,𝐢 𝐭 − 𝟏  

𝐨𝐠𝐩𝐢,𝐢 ⟸ 𝛔 𝐚𝐠𝐩𝐢,𝐢  

Thalamus: 

𝐮𝐢 ⟸  𝐨𝐠𝐩𝐢,𝐢 

𝐚𝐢 𝐭 ⇐ 𝛅 ∙ 𝐚𝐢 𝐭 − 𝟏 + (𝟏 − 𝛅) ∙ 𝐮𝐢 𝐭 − 𝟏  

𝐨𝐢 ⟸ −𝛔 𝐚𝐢  

Feedback 
Feedback takes place after each trial. If the selected 
response is correct, the external signals oext,i to the cognitive 
units2 that correspond to the matched features are increased 
by a fixed amount bl. If the selected response is incorrect, 
inputs to those units that correspond to the matched features 
are decreased by a fixed amount bl.  

Simulation of Wisconsin Card Sorting Test 

Simulation of an Individual Task 
To simulate the WCST, a virtual deck of 64 cards is 
produced, shuffled and presented to the model. All the units 
perform the computation outlined in the previous section. 
The first motor unit to reach a fixed activation value 
(measured as the area under the time-curve, rather than 
simply as a threshold) is selected. After the selection and 
feedback, a new card is presented. The resulting plot for 
activation of the cognitive units is shown in Fig. 4.  

As can be seen in Fig. 4, when the first card is presented 
the system must work out that ‘colour’ is the first correct 

                                                
2That is, those cortical units that represent cognitive schemas. 

sorting criterion. Feedback alone is not sufficient, as the 
selected card may match more than one feature. Basal 
ganglia units intervene by supressing the inappropriate 
cognitive schemas, enabling the correct schema to be 
permanently selected. When the sorting criterion changes 
(after 10 correct responses) the system tends to perseverate 
for a short period of time, before selecting the correct 
criterion again. Feedback-dependent external activation and 
resolution of competition both play a role in activating the 
correct cognitive schemas. Whereas the activation of 
cognitive schemas is regulated by feedback, the activation 
of motor schemas is regulated by cognitive schemas and 
environmental cues. 

Parameters 
The model has a number of parameters. One important 
parameter is the threshold of the saturation curve of the 
striatum, represented by the threshold of the sigma function 
applied to the striatal output (βstr). Extreme values of this 
parameter (substantially greater than or less than 0.5) disrupt 
the competition between schemas. When the threshold is too 
high schemas are driven by their input values and they 
undergo increasingly homogenous inhibition from the basal 
ganglia. This phenomenon is analogous to the Parkinson's 
disease dopamine depletion in the SNpc (Cooper & Shallice, 
2000).  

Dependent Measures  
Performance was scored according to a range of measures as 
indicated in Heaton (1981). Completed Categories (CC) and 
Total Errors (TE) measure the overall performance. A Set 

Figure 4: Activation of cognitive schemas during a 
complete run (involving sorting all 64 cards). Solid lines 
represent the actual activation while dashed lines 
represent the external input due to positive/negative 
feedback. Processing cycles are represented on the 
horizontal axis. 
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Loss Error (SL) is counted whenever an incorrect response 
is selected after 5 or more correct responses, where at least 
one is unambiguous (i.e., the card matches only one 
feature). A Perseverative response (PR) is counted 
whenever a response would have been correct under the 
previous rule. (A subject can score a perseverative response 
even before completing the first category: if three 
consecutive responses are made selecting the same sorting 
rule, that rule will be the criterion that the subject can 
perseverate to.) Those perseverative responses that are also 
incorrect responses are counted as Perseverative Errors 
(PE). Non-perseverative errors (NPE) are calculated as the 
Total Errors (TE) minus Perseverative Errors (PE).  

Results 
Results for two sets of 48 participants (48 healthy young 
adults and 48 simulated participants) are depicted in Fig. 5. 
The figure compares the aggregate results from the 
simulation (Sim) with the aggregate data from the human 
participants (Data).  

A genetic algorithm attempted to find the best parameters 
that produce low t statistics and low z statistics between data 
and simulation. Given the presence of a multitude of 
parameters that influence each other in a non-linear fashion, 
a perfect fit is unattainable. However, the model appears to 
do a good job in reproducing group mean and standard 
errors, as shown by the figure. 

Correlational Analysis 
Analysing aggregate data is not sufficient to assess model 
performance, since a model should also aim to dissociate 
between psychological constructs (Cassimatis et al., 2008). 
Therefore, correlational analysis between the most 
informative variables (TE, PE, SL) was also performed, 
using bootstrapping and sampling the mean value to obtain 
1000 points. Multiple runs of the sampling algorithm 
produce very similar results. Fig. 6 and Fig. 7 show the 

correlation matrices for these variables in both the human 
data and the simulation. 

The correlation matrices show that the simulation 
correctly identifies that the mechanism that produces set 
loss error can be dissociated from the process that causes 
other types or errors. However, the simulation fails to 
reproduce the high correlation (r = .91, p < .01) between 
Total Errors and Perseverative Errors. In addition, it 
displays a weak but significant negative correlation (r = -
.31, p < .01) that is not present in the empirical data. 

Discussion   
The model yields an adequate fit for young participants on 
the WCST. Computation in the model appears to be stable, 
in that minimal parameter variations do not disrupt 
functioning. The model also correctly reflects the 
independence between Set Loss Errors (SL) and Total 
Errors (TE) found in the human data, suggesting a 
dissociation in the cognitive processes that produce those 
errors.  

However, the model is subject to several limitations. The 
lack of positive correlation between PE and TE in the 
simulation is both puzzling and concerning. One possibility, 

 
Figure 5: Comparison between Simulation and Data from 
neurologically healthy young participants. Z values 
indicate the z score of the difference between human and 
simulated data for each dependent measure. 

 
Figure 6: Correlations – Neuropsychological Data 

 

 
Figure 7: Correlations – Simulation 
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however, is that this apparent failing reflects the implicit 
assumption that performance of the human participants can 
be modelled by a single set of parameter values (i.e., by a 
group of 48 virtual participants with identical cognitive 
characteristics). We explore this possibility in the following 
section.  

Grouping Data   

Introduction  
In the light of the failure of the model to reproduce the 
empirically observed correlations between TE and PE, we 
analyse how data from young participants can be clustered 
into a small number of groups based on the three critical 
dependent variables reflecting errors (TE, PE, SL).  

These three types of errors have been specifically chosen 
because they are most representative of performance 
failures. Data clustering was calculated using a k-means 
algorithm with k = 5 (purely for reasons of computational 
efficiency). Two points were excluded because they were 
outliers. The algorithm was initialised based on the 
observation of the spatial 3D distribution of points. The 
most distinctive features are the accumulation of points 
around the origin, the sparseness of points as total and 
perseverative errors increase, and an isolated cluster of 
points with SL equal to 1.  

Fig. 8 shows how the clustering of the groups and Table 1 
shows mean and standard deviation of the dependent 
variables in the individual groups.  

Simulation 
After clustering the groups, as outlined in Table 1, we run 
five genetic algorithms separately to determine best-fitting 
parameter values for each group. In each case, seven model 
parameters were initially randomised to values within their 
reasonable ranges, and model errors recorded. A t-value 
between the simulation’s and the original experimental data 
was computed and its mean used as the inverse of the GA’s 
fitness value. Table 1 shows performance errors of the 
simulation with the highest fitness and Fig. 9 shows a 3D 
representation of the individual values.  

Discussion   
Results from the simulation are shown in Table 2. In total, 4 
outliers have been excluded from the analysis (2, 1 and 1 
from categories 3, 4 and 5, respectively). These outliers may 
conceivably have been produced by the model’s unstable 
response to increasingly higher parameter values. Clustering 
the participant data into a small number of more 
homogenous groups greatly increases the correlation 
between TE and PE (r increases from .04 to .50, compared 
with the observed value of .92) and decreases the correlation 
between SL and TE/PE, improving the fit of the model in 
both respects. Fig. 10 displays the new correlation plots 
worked out combining all of the five simulations together.  

General Discussion 
The model we presented combines a variation of the Cooper 
and Shallice (2000) model of action selection and a 
variation of the Gurney et al. (2001) model of the basal 
ganglia. One of the strengths of this combined model is the 
possibility to generalise it to other cognitive control tasks 
(e.g. Stroop task, Probabilistic Reversal Learning, Eriksen 
Flanker Task, etc.) and to accommodate the presence of 

Table 1: Data Groups 

G N TE PE     SL 
1● 18 8.89 (SD = 2.03) 6.22 (SD = 2.03) 0 (SD = 0) 
2● 13 14.85 (SD = 1.77) 8.77 (SD = 1.92) 0 (SD = 0) 
3● 5 28.00 (SD = 1.73) 18.40 (SD = 2.30) 0 (SD = 0) 
4● 7 14.71 (SD = 2.63) 9.57 (SD = 0.53) 1 (SD = 0) 
5● 3 22.33 (SD = 2.08) 11.67 (SD = 1.15) 0 (SD = 0) 

 
Table 2: Simulation of the five clusters 

G N TE PE        SL 
1● 18 8.83 (SD = 1.38) 5.89 (SD = 1.08) 0.11 (SD = 0.32) 
2● 13 14.31 (SD = 1.55) 9.23 (SD = 1.17) 0.08 (SD = 0.28) 
3● 3 22.00 (SD = 5.00) 7.33 (SD = 0.58) 0.67 (SD = 1.15) 
4● 6 15.00 (SD = 2.53) 10.83 (SD = 1.72) 0.5 (SD = 0.55) 
5● 2 18.50 (SD = 2.08) 9.50 (SD = 0.71) 0.00 (SD = 0.00) 

 

 
Figure 8: Clustering of experimental data Figure 9: Simulated data with five clusters 
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units representing other brain areas where different 
computation is performed (e.g., amygdala, cerebellum), 
enabling the simulation of cognitive tasks in broader 
contexts (e.g. Emotional Stroop Task, WCST in cerebellar 
patients). In principle, this enhances the contention 
scheduling theory with neuroanatomical detail, allowing a 
more precise localisation of processes in a particular task, 
and integration with functional neuroimaging data. In 
addition, this implementation allows for the inclusion of two 
distinct learning mechanisms in the cortex and the basal 
ganglia: the current model can potentially be updated to a 
learning-based model by developing these mechanisms.  

With respect to cortical learning, in the model as it stands, 
the supervisory system that controls how subjects respond to 
positive and negative feedback is fixed and consequently 
performance tends to be too robust to basal unit 
dysfunctions. This might be addressed by incorporating 
dynamic learning that allows supervisory control to vary 
according to the schemas’ activations, resulting in low or 
high baseline levels of dopamine in the striatum having a 
greater impact on cognitive performance. 

The present paper makes the case for modelling sub-
group data (or, whenever possible, individual data), instead 
of aggregate results, and presents evidence of how data 
clustering improves the model overall fit.  Clustering is 
especially advisable for models of higher-order cognition, 
where subjects tend to have variable attention and may use 
qualitatively different cognitive strategies.  

A final conclusion emerges from two joint observations: 
First, fitting clusters with increasingly extreme error values 
becomes increasingly more problematic. Second, another set 
of simulations (not reproduced here) shows that damaging 
the cortical and subcortical units threshold does not seem to 
produce the level of decline in performance found in 
Parkinson's disease patients without dementia (Paolo et al., 
1996). Since healthy older controls have a different 
performance profile than the younger controls against which 
the current model was assessed, the loss of dopaminergic 

cells in SNpc does not alone explain the inferior 
performance in the elderly and PD patients3.  

These two joint findings suggest that the cognitive 
mechanisms producing perseverative and set loss errors 
might be independent only for a small number of errors. As 
that number increases, these two mechanisms might be 
correlated and possibly causally related. New experimental 
data to confirm this hypothesis is warranted. 
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Abstract

In this study, results of computational simulations on English
child-directed speech are presented to uncover what distribu-
tional properties of words make it easier to group them into
lexical categories. This analysis provides evidence that words
are easier to categorize when (i) they are hard to predict given
the contexts they occur in; (ii) they occur in few different con-
texts; and (iii) their contextual distributions have a low entropy,
meaning that they tend to occur more often in one of the con-
texts they occur in. This profile fits that of content words, espe-
cially nouns and verbs, which is consistent with developmental
evidence showing that children learning English start by form-
ing a noun and a verb category. These results further charac-
terize the role of distributional information in lexical category
acquisition and confirm that it is a robust, reliable, and devel-
opmentally plausible source to learn lexical categories.
Keywords: Distributional bootstrapping; Lexical category ac-
quisition; Statistical learning; Computational psycholinguis-
tics; Language acquisition

Introduction
Distributional bootstrapping (Maratsos & Chalkley, 1980) is
an influential account of how children start breaking into lan-
guage, and specifically of how they start grouping words into
lexical categories such as nouns and verbs. More specifi-
cally, it claims that children use patterns of co-occurrences
across linguistic units, such as words and morphemes, to
group words that share similar contexts. Several computa-
tional simulations have shown that distributional information
is a rich, useful, and usable source of knowledge about lex-
ical categories (Mintz, 2003; Redington, Chater, & Finch,
1998; St. Clair, Monaghan, & Christiansen, 2010). More-
over, a number of behavioral experiments have confirmed that
children use this information to group words together (Mintz,
Wang, & Li, 2014; Reeder, Newport, & Aslin, 2013).

Research on distributional bootstrapping has mostly fo-
cused on investigating which contexts constitute the best cues
for the acquisition of lexical categories. Several proposals
that have been put forward share the approach of grouping to-
gether those words that share similar contexts of occurrence,
but differ in the starting assumptions and the types of con-
texts they evaluate. For example, Mintz (2003) suggested
that frequent frames, i.e. trigrams consisting of two words
flanking an empty slot (a X b), are a psychologically plausi-
ble and highly effective type of context for acquiring lexical
categories. St. Clair et al. (2010), on the contrary, provided
evidence that better categorization can be achieved by using
bigrams (a X + X b) that can be readily combined to obtain
trigram level information.

This paper aims to explore distributional bootstrapping fur-
ther and uses computational simulations to answer the follow-
ing research question: what distributional properties of words
make it easier to categorize them on the basis of the contexts
they co-occur with? The relation between distributional prop-
erties of words and the extent to which these can be easily
categorized in terms of lexical categories has been largely ne-
glected in previous research, but characterizing it is important
for two main reasons. Firstly, it generates predictions about
the effect that several distributional properties of words have
on lexical category acquisition in English speaking children:
testing them can shed further light on the plausibility of distri-
butional learning as an underlying mechanism for lexical cat-
egory acquisition. Importantly, it is not enough that a model
behaves like humans: a statistical analysis of what drives the
model’s behavior is necessary to assess whether it is driven
by the same factors that affect human behavior. Secondly,
it can help to constrain the development of psychologically
motivated models of lexical category acquisition, by showing
what information children are sensitive to when solving the
task of grouping words into lexical categories.

In this work, computational simulations are used to carry
out a categorization experiment whose outcome is used as the
dependent variable in a regression analysis aimed to uncover
the effect of several distributional properties of words on cat-
egorization accuracy. Results shed light and generate predic-
tions on the mechanisms underlying distributional learning
of lexical categories, and ultimately provide information to
guide and constrain the development of psychologically mo-
tivated models of bootstrapping in language acquisition.

Methods
Corpora and pre-processing
In order to perform the computational simulations, tran-
scribed interactions involving children and caretakers avail-
able in the CHILDES database (MacWhinney, 2000) were
used. More specifically, the Manchester corpus (Theakston,
Lieven, & Pine, 2001) from the British English part, and the
Suppes corpus (Suppes, 1974) from the American English
part were selected, since they have both been widely used
in previous research on distributional bootstrapping of lexical
categories. The Suppes corpus consists of transcripts of one
child, Nina, recorded from 1;11 to 3;3, while the Manchester
corpus contains data of 12 children, recorded for varying pe-
riods within the age range 1;8 to 3;0. Both come with an au-
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tomatic categorization in terms of Part-of-Speech (PoS) tags,
which can be accessed on the MOR tier of the CHILDES an-
notation scheme. The child-directed speech from the corpora
was pre-processed to deal with some aspects of the transcrip-
tions. Two dummy symbols, #start and #end, were inserted at
the beginning and end of each utterance. This manipulation
is motivated by evidence that sentence boundaries provide
useful distributional information (Freudenthal, Pine, & Go-
bet, 2008). It also allows us to exploit every utterance from
the corpus, including single word utterances: words occur-
ring in isolation are considered to be occurring in the bigrams
#start X and X #end, and in the trigram #start X #end.

Corpora from individual children were processed sepa-
rately using a sliding window approach: starting from the first
lexical element of the utterance, each word was considered as
target, and all bigrams and trigrams occurring next to it were
collected. These types of contexts were chosen given that
they have been widely explored in previous research (Mintz,
2003; Monaghan & Christiansen, 2008; St. Clair et al., 2010).
As an example, consider the following utterance from the
Manchester corpus: #start are~v you~n going~v to~funct
put~v that~adv one~n inside~adv? #end. The first target
word, are, occurs in two bigrams, #start X and X you~n,
and two trigrams, #start X you~n and X you~n going~v. For
words in the middle of the utterance, three trigrams are avail-
able. The tags after the tilde indicate the lexical category to
which each word belongs according to the automatic catego-
rization. The original categories were collapsed to a coarser
set, consisting of five categories: nouns (n), including pro-
nouns; verbs (v), including auxiliaries, copulas, and non-
finite forms1; adjectives (adj), adverbs (adv), and function
words (funct). The idea is to zoom in on the open classes,
conflating the closed class words in a single category given
that function words are categorized later in development. No
lemmatization is performed, and all information about lexical
categories is preserved2, although it is only used to evaluate
whether categorization has been successful.

In order to minimize both the number of assumptions and
that of possible decisions in the design of the experiment, all
bigrams and trigrams are considered: some will turn out to be
more informative to the categorization task than others, but
the analysis of this aspect of the problem falls outside of the
scope of this study. Larger n-grams are not considered due to
the limited size of the corpora: they would be too infrequent
to affect categorization.

Experimental setting
A categorization experiment was carried out, in which words
were clustered together based on the similarity of the contexts
in which they occurred in corpora of English child-directed
speech (Redington et al., 1998). Words that tend to occur

1Results from Mintz (2003) show that merging pronouns with
nouns, and auxiliaries, copulas, and non-finite forms with verbs does
not bias categorization results.

2X dog~n and X dogs~n are different contexts, just as light~n X,
light~v X, and light~adj X

in the same contexts are considered to be more similar and
clustered together: target words are categorized correctly if
they are assigned the correct lexical category by the com-
putational simulation. The experiment was performed us-
ing Memory-Based Learning (MBL, (Daelemans & van den
Bosch, 2005)), a class of machine learning algorithms which
implements an exemplar-based strategy and categorizes new
items using retrieval of or similarity to items stored in mem-
ory, with no explicit abstraction.

The categorization experiment consists of two main
phases, which are referred to as training and testing in the
paper. During training, co-occurrence counts between target
words and contexts are collected on a portion of the input data
and stored in memory. Each word is represented as a vector
of counts, with each count indicating the co-occurrence fre-
quency of the corresponding word and context. During test-
ing, a new portion of the input is considered and the same pro-
cedure is applied. At the end of this second stage, the learner
has created two matrices of co-occurrence counts. Each word
from the test matrix is categorized by comparing its vector
of co-occurrences with all the vectors from the training ma-
trix, looking for the most similar one; the two are then clus-
tered together. During learning, the model has no access to
the correct lexical categories of the words and only groups
them together based on their co-occurrence patterns, in an
unsupervised way. At the end of the process, the category of
two words that were clustered together is inspected: if they
share the same lexical category, the word from the test set has
been categorized correctly. In this framework, the only factor
driving clustering is similarity, which is a well-documented
cognitive mechanism in categorization (Sloutsky, 2003).

In order to divide each individual corpus into a training and
a test set, utterances of child-directed speech were ordered
chronologically and split in two parts: (i) the first 70% of the
utterances were allocated for training; and (ii) the last 30% of
the utterances were used as test set. To evaluate how different
distributional properties interact with time, operationalized as
a larger exposure to the input language, an incremental train-
ing approach was implemented. In detail, training started on
the first 40% of all the utterances, then proceeded on the first
45%, always increasing by 5 percentage points, up to the full
training set (70% of the total utterances). The test set was
kept constant to make sure that any change in performance
came from the knowledge inferred from the training set and
not by differences in the test set.

The TiMBL package (Daelemans, Zavrel, van der Sloot, &
van den Bosch, 2009) was used to carry out the simulation,
using the default IB1 algorithm (Aha, Kibler, & Albert, 1991)
and cosine as a distance metric, because of its robustness to
different frequencies in the co-occurrence vectors, and setting
the number of nearest neighbors to 1. Moreover, no feature
weighting based on co-occurrence statistics from the training
corpus was applied during the categorization experiment: this
allows us to perform the categorization experiment without
weighting contexts according to their informativity, avoiding
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the effect of supervision on classification, which would be
psychologically questionable and bias the results.

Importantly, no claim is put forward that children actually
keep track of all available bigrams and trigrams, or that they
implement an analogue of the IB1 algorithm with the cho-
sen parameter setting. The interest of the current analysis is
purely in the information that supports learning and in the
analysis of the effects that distributional properties of words
have on categorization, as operationalized using MBL.

Statistical analysis
Four pieces of distributional information were computed for
each word on the test set (last 30% of utterances of each cor-
pus) and used as predictors in a regression model:

Token frequency: the log-transformed frequency count of
each token. The transformation is motivated by evi-
dence from Keuleers, Diependaele, and Brysbaert (2010)
that lexical frequency effects are better captured by log-
transformed frequency counts. A positive effect of fre-
quency is expected (Ambridge, Kidd, Rowland, & Theak-
ston, 2015), since more frequent items are typically learned
better than less frequent ones.

Contextual diversity: the log-transformed count of how
many different contexts a word occurs in. A negative effect
for contextual diversity is predicted: if a word occurs in
many different contexts, its co-occurrence vector is noisy
and it is harder to reliably group it with other words. This
is the case, e.g., of function words, like conjunctions and
determiners: they occur in all sort of contexts, making it
hard to group them with similar words.

Average conditional probability: the average conditional
probability of a word given all the contexts it occurs with.
Consider a toy example where the context the X occurs 100
times, 15 of which with the word cat: p(cat|the X), is thus
0.15. Assume also that the word cat occurs 40 times in the
context a X, which in turn occurs 200 times: p(cat|a X)
is 0.2. In order to obtain the average conditional proba-
bility for the word cat, p(cat|the X) and p(cat|a X) are
averaged, yielding 0.175. This independent variable is pre-
dicted to have a negative effect on categorization: high con-
ditional probability means that the contexts in which a tar-
get word occurs do not occur with other words, making
it hard to find shared contexts of occurrence between the
target and other words.

Entropy: the entropy of the co-occurrence vector of a word
(Shannon, 1948), normalized by the number of contexts it
occurs with, so that entropy lies between 0 and 1. The en-
tropy of a word is low when it occurs in the same context
the majority of the times, while the more even the distri-
bution of co-occurrences for a word, the higher its entropy.
Entropy relates to diversity and its effect should go in the
same direction: the more a word occurs equally frequently
in the contexts it co-occurs in, the noisier its co-occurrence

vector and the harder it is to correctly group it with similar
words. Importantly, normalized entropy provides a related
but different piece of information than contextual diversity:
the normalization ensures that the number of different con-
texts a word occurs in does not affect entropy.

A further independent variable was considered for both
words and contexts, i.e. time, operationalized as the amount
of training input on which the computational simulations
were trained: time goes from 0 (i.e. 40% of all utterances
in the corpus used as training set) to 6 (70% of all utterances
in the corpus used as training set). Time should have a posi-
tive effect, since exposing the model to more input language
should provide more reliable and robust information about
co-occurrence patterns.

The analysis was restricted on words that appeared in all
13 individual corpora (12 from the Manchester corpus and
1 from the Suppes corpus), to reduce the effect of idiosyn-
crasies and focus on general patterns. All words with a token
frequency of 1 were also excluded from the analysis, because
when this is the case, contextual diversity and entropy are
fully determined. If a word occurred only once, then it also
occurred in only one context (diversity of 1), and its entropy
is 0, because the full probability mass is on the only context
the word occurred in.

In order to analyze how easy it is to categorize a word,
logistic mixed-effects models (Baayen, Davidson, & Bates,
2008) were fitted using the “lme4” package in R (D. Bates,
Maechler, Bolker, & Walker, 2015). Random intercepts for
corpus (13 levels) and word (456 levels, i.e. the single words
that survived the filtering steps just detailed) were included.
The categorization outcome of each word was used as a
binary dependent variable, with each correctly categorized
word coded as 1. Covariates were included in a step-wise
fashion, according to the improvement in fit measured by the
Akaike Information Criterion (AIC, (Akaike, 1973)).

Results
The best converging logistic mixed-effects model included
main effects for average conditional probability, entropy,
time, and contextual diversity. Adding a main effect for token
frequency resulted in the model not converging. Two-way in-
teractions between time and conditional probability, entropy,
and lexical diversity were tested; however, when these were
entered, the model did not converge. Table 1 provides the
βs estimated for this model, expressed on the log-odds scale,
while Figure 1 represents the effects graphically, with accu-
racy expressed as proportion. The final model resulted in a
marginal R2 of 0.055 and in a conditional R2 of 0.913, sug-
gesting that while the effect of predictors is significant, they
do not explain much variance in the data. This is further ad-
dressed in the discussion.

As predicted, the average conditional probability of a word
given the contexts in which it occurs has a strong negative ef-
fect on the estimated accuracy (β =−12.17, t =−11.56, p <
0.001), and the same is true for the entropy of the distribu-
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Table 1: Mixed-effects model fitted to analyze what distribu-
tional properties make words easier to categorize. Estimates
(Est.) and standard errors (Std. Err.) are provided on the log-
odds scale. (Cond. Prob.: average conditional probability of
words given contexts; Cont. Div.: contextual diversity.

Ind. Vars. Est. Std. Err. z p val.
(Intercept) 14.185 1.298 10.928 < .001
Cond. Prob. -12.170 1.053 -11.560 < .001
Entropy -11.027 1.215 -9.077 < .001
Time 0.078 0.011 6.838 < .001
Cont. Div. -0.893 0.255 -3.509 < .001

tion of co-occurrence counts of a word over all the contexts it
occurs in (β =−11.027, t =−9.077, p < 0.001). Time has a
significantly positive effect (β = 0.078, t = 6.838, p < 0.001),
showing that the clustering algorithm is actually exploiting
the larger amount of input language to better group similar
words together. Finally, contextual diversity has a signif-
icant negative effect (β = −0.893, t = −3.509, p < 0.001),
suggesting that words are easier to categorize when they oc-
cur in fewer contexts, matching the initial hypothesis. As it
was reported, adding frequency resulted in convergence is-
sues: this is most likely due to the filtering step. It is possible
that surviving words had similar frequency counts, making
it impossible for the model to find sufficient variation to esti-
mate the effect of token frequency on categorization accuracy,
once contextual diversity already entered the model (since it
improved the fit more than token frequency).

Discussion
The results that have been presented point to a relation be-
tween distributional properties of words and the degree to
which it is easy to categorize them into lexical category. The
easiest words appear to (i) be on average hard to predict given
the contexts in which they occur; (ii) have a very skewed dis-
tribution of co-occurrence counts with the contexts they occur
in, meaning that they tend to occur most often in one or few
contexts; and (iii) tend to generally occur in few contexts.

First, being able to predict a word given the contexts it
occurs in is detrimental to categorization. This entails that
effective categorization depends on some uncertainty in the
co-occurrence patterns of words and contexts. Since catego-
rization works on similarity (Sloutsky, 2003), two words can
only be grouped together if they occur in the same context, i.e.
they have something in common. The negative effect of con-
ditional probability of words given contexts also points to a
feature that contexts should have in order to be useful and us-
able, namely that they need to occur with more than one word.
As a matter of fact, the conditional probability of words given
contexts is computed by dividing the co-occurrence count of
the word and the context by the frequency count of the context
itself. For the average conditional probability of word given
context to be low, each context must occur with other words

Figure 1: Main effects, with confidence bands, of average
conditional probability, entropy, time, and contextual diver-
sity on how easy it is to categorize a word in terms of lexical
categories. The order, from top to bottom, reflects the im-
provement in fit brought by each predictor. The y-axis rep-
resents probabilities estimated from the log-odds reported in
Table 1. Each axis is automatically scaled to provide a clear
depiction of the effect. The plots were obtained using the ef-
fects package in R (Fox, 2003).
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a substantial amount of times. This hypothesis fits evidence
provided by Matthews and Bannard (2010) that children find
it easier to group words together when these occur in contexts
that, in turn, occur with several different words.

The negative coefficients of entropy and contextual diver-
sity complement the negative effect of average conditional
probability: the latter indicates that words are easier to cat-
egorize when they tend to occur in contexts only a fraction
of the times the contexts themselves occur. βs for normal-
ized entropy and contextual diversity, on the contrary, tell that
words are easier to categorize when they tend to occur most
often in one or few contexts. The ideal situation is thus that
of a word that always and only occurs in a single context,
which however occurs with many other words, which also
only occur in that context (to reduce noise). The effects of
entropy and contextual diversity indicate that uncertainty in
word-context co-occurrence patterns is necessary at the con-
text level but detrimental at the word level: words need to oc-
cur in few contexts for effective categorization. This is likely
due to the fact that when contextual diversity and entropy are
high, the co-occurrence pattern of a word can be very noisy.

The distributional properties that make a word easier to
categorize are rather distinctive of content words, especially
nouns: knowing a context, e.g. a determiner, it is hard to pre-
dict exactly which noun will appear next to it, because many
different nouns (and some adjectives) are possible, which
translates into a low conditional probability of words given
contexts. Moreover, it is likely that a noun occurs with one
of the few determiners or possessive pronouns of the English
language, thus scoring low on contextual diversity, and that
most of the times it occurs with just a couple of specific de-
terminers or possessive pronouns, scoring low on entropy. In
order to get a grasp of which lexical categories easier words
belonged to, those words that were categorized correctly for
at least 80% of the 13 individual corpora at the last stage of
training were selected. This analysis highlighted 127 such
words: 2 function words, 101 nouns, and 24 verbs. This
shows that the distributional properties of words that make
them easier to categorize strongly correlate with lexical cat-
egories, and that the same features are a possible candidate
to explain why certain lexical categories are formed earlier
than others3. Furthermore, the majority of the 51 words
that are never categorized correctly predominantly consists of
function words (26) and adverbs (18), the categories that are
learned later in development (E. Bates, Dale, & Thal, 1995).
The observation that nouns are categorized best also relates
to the observation that children form a productive noun cate-
gory earlier than any other category (Tomasello, 2000). The
reported evidence lends support to the hypothesis that the
so-called noun bias can be traced back to the distributional
properties of words belonging to different lexical categories
(Cassani, Grimm, Daelemans, & Gillis, submitted), showing

3The bias towards nouns and verbs in categorization does not
result from an imbalance in the set of target words, consisting of 40
adjectives, 47 adverbs, 76 function words, 145 nouns, and 148 verbs.

that regardless of the fact that the set of target words con-
tained an equal number of nouns and verbs, noun categoriza-
tion is more effective.

The reported evidence also parallels and complements re-
sults about word learning, which suggest children find it eas-
ier to learn words (particularly nouns) when they occur in
a variety of different contexts (Hills, Maouene, Riordan, &
Smith, 2010). While a comprehensive experiment is still
lacking that explicitly contrasts the effect of contextual di-
versity on word learning and categorization, it emerges that
this factor impacts both phenomena, although in opposite di-
rections. While a higher contextual diversity is beneficial for
word learning, it is detrimental to word categorization, as ap-
pears from the statistical analysis reported here. Further re-
search about the interplay between different frequency effects
(Ambridge et al., 2015) is needed to clarify to what extent dis-
tributional learning drives and explains language acquisition
in its many different aspects and sub-tasks.

Lastly, this study investigated a fully distributional ex-
planation of the developmental pattern of lexical category
acquisition. However, the low R2 shows that the distribu-
tional properties we investigated leave a substantial portion
of variance unexplained, calling for further research on which
properties affected the machine learner and whether these
also influence children during lexical category acquisition.
Moreover, current research has highlighted the importance
of other sources of information during lexical category ac-
quisition and word learning (Roy, Frank, DeCamp, Miller, &
Roy, 2015), including morphology, phonetics, semantics and
prosody (Monaghan & Christiansen, 2008). The influence of
these sources of information should be further analyzed to
complement research on distributional bootstrapping.

Summarizing, this study provided evidence about the ef-
fect of different distributional properties of words on the ac-
quisition of lexical categories from distributional informa-
tion. Conditional probability, entropy, and contextual diver-
sity have a negative effect on categorization accuracy. Words
with these features tend to be content words, mostly nouns,
which also appear to be the words children start grouping
earlier and most effectively. Future studies should assess
the cross-linguistic validity of these findings, to understand
whether the same distributional properties have similar ef-
fects in typologically different languages. Moreover, a sim-
ilar approach — performing statistical analysis on the out-
come of computational simulations — could be used to inves-
tigate what distributional properties make contexts more use-
ful. Finally, other computational models should be tested, to
compare their outcome to developmental data and shed light
on which architectures are closer to what children actually do.

Conclusion
The evidence presented in this study shows that specific dis-
tributional properties of words determine how easy it is to
cluster them together based on the similarity of their co-
occurrence patterns. In detail, words are easier to categorize
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(i) when they are hard to predict given the contexts they oc-
cur in, (ii) when they generally occur in few contexts, and
(iii) when they tend to occur more often in one context, hav-
ing low entropy. This study extends previous research on
distributional bootstrapping by providing evidence that dis-
tributional properties also affect which words are categorized
more easily and which lexical categories are formed earlier.
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Abstract

In many domains, people are able to transfer abstract knowl-
edge about objects, events, or contexts that are superficially
dissimilar, enabling striking new insights and inferences. We
provide evidence that this ability is naturally explained as the
addition of new primitive elements to a compositional mental
representation, such as that in the probabilistic Language Of
Thought (LOT). We conducted a transfer-learning experiment
in which participants learned about two sequences, one after
the other. We show that participants’ ability to learn the second
sequence is affected the first sequence they saw. We test two
probabilistic models to evaluate alternative theories of how al-
gorithmic knowledge is transferred from the first to second se-
quence: one model rationally updates the prior probability of
the primitive operations in the LOT based on what was used in
the first sequence; the other stores previously likely hypotheses
as new primitives. Both models perform better than baselines
in explaining behavior, with the human subjects appearing to
transfer entire hypotheses when they can, and otherwise updat-
ing the prior on primitives.
Keywords: Knowledge transfer; Concepts; Language Of
Thought; One-shot learning

Introduction
One of the most remarkable capabilities of human cognition
is the ability to rapidly create algorithms that are applicable
to a new situation. For instance, an adult can quickly pick up
a new card game, absorbing the rules and intuiting the strat-
egy. Yet even the simplest card game is complex: it requires
knowledge of basics like moves and turns; and it requires
complex reasoning abilities, such as general-purpose strategic
maneuvers in games. It seems more generally that humans’
capacity to infer a lot from sparse data must be undergirded
by a flexible array of useful concepts about many domains
developed over a lifetime. For example, knowing about strat-
egy in Texas Hold ‘Em makes it possible to quickly pick up
many other types of poker without reverting to a novice level,
because requisite concepts across types of poker share simi-
larities – betting, bluffing, winning hands. Yet this still leaves
open the question: what are the representations and computa-
tions that make such effective transfer of abstract knowledge
in this and myriad other domains possible?

Part of humans’ adeptness in learning about new domains
quickly may lie in their ability to map old conceptual struc-
tures to new ones, allowing them to infer abstract knowledge.
This relational reasoning ability has often been characterized
as “analogical” in nature (Markman, 1997), and many theo-
ries of analogical inference have been proposed on this ba-
sis (e.g. Gick & Holyoak, 1980; Gentner, 1983; Holyoak &
Thagard, 1989; Hummel & Holyoak, 1997). Gentner’s 1983
theory of “structure-mapping”, formalized later as the “Struc-
ture Mapping Engine” (SME) (Falkenhainer et al., 1989), is
an influential framework for describing analogical inference.
On this account, situations or facts are given descriptions in

predicate logic, the components of which are either objects,
relations, or attributes. The goal of a learner when presented
with two situations is to make a mapping between these com-
ponents by finding structural correspondences, and then infer-
ring facts about one situation from the mapping to the other.

A commonality among SME and other theories of analogi-
cal transfer is their assumption of static knowledge represen-
tations. But structure only captures a limited subset of human
knowledge. Other kinds of knowledge, such as learned pro-
cesses or algorithms are untouched by these theories. In the
poker example above, the algorithm of shuffling or bluffing
may be transferred whole cloth to a new kind of poker. These
abilities may be borrowed and incorporated into the algo-
rithms that reason strategically. This kind of reuse would be
much more like a programming language library—a location
from which pieces of algorithms can be copied and reused—
than just a recognition of a correspondence of pieces. Indeed,
in the same way that SME allows for powerful new infer-
ences based on structure, transfer of algorithmic pieces could
be part of the answer to how children eventually acquire al-
gorithmically sophisticated representations: learners who can
transfer algorithmic pieces need not construct entirely new
representations each time they encounter a new domain.

Here, we experimentally and computationally test transfer
of algorithmic components of representations by modeling
concept learning as program induction over compositional
functions, a system often called a “Language Of Thought”
(Fodor, 1975). Under the LOT, a learner’s job is to in-
duce simple generative programs from primitive functions
that match their observations of the world. In essence, this
model treats learning as programming: there are a small set
of “built in” operations that must be composed correctly in or-
der to express richer algorithmic knowledge. This family of
models has successfully been applied to explain human be-
havior in many rule-learning domains (Piantadosi & Jacobs,
2016), including kinship and taxonomies (Kemp et al., 2008;
Katz et al., 2008; Mollica & Piantadosi, 2015), number (Pi-
antadosi et al., 2012), causality, (Goodman et al., 2011), and
words (Siskind, 1996; Piantadosi et al., 2008), among others.

Unlike structure mapping theories, LOT models are able
to account for concept learning without requiring a signifi-
cant amount of pre-developed knowledge. On the other hand,
LOT models do not provide an account of humans’ ability
to transfer abstract knowledge between already-learned con-
cepts. In general, it is an open question how LOT models
can adapt their inductive biases and primitive representations
through experience.

One possibility is that primitives are weighted in their prior
according to their past utility as in the “Rational Rules” model
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(Goodman et al., 2008). On this account, the prior is com-
puted integrating out the production probabilities, allowing
for a reduction in the penalty for repeated use of the same pro-
duction rule. Among other things, this model has been used
to explain selective attention effects, the finding that people
tend to focus on as few features as possible to explain an ob-
servation.

Another possible way of explaining knowledge transfer in
a LOT model is that upon learning a useful program, people
store that program as a primitive for later re-use. This ap-
proach seems potentially more powerful than only updating
priors over primitives themselves, as it could provide a ba-
sis for building increasingly complex, hierarchical conceptual
structure. Indeed, Dechter et al. (2013) demonstrated how
program recombination and re-use can facilitate and improve
learning in the domains of both arithmetic and Boolean logic,
using program induction over combinatory logic expressions.
Others have explored models of sub-program re-use in Prob-
abilistic Context Free Grammars, such as adaptor grammars
(Johnson et al., 2006) and fragment grammars (O’Donnell et
al., 2011). However, it has yet to be determined empirically
if any of these models can explain human transfer of knowl-
edge.

We ran a sequence-learning experiment to test human
knowledge transfer, training people on one sequence and then
testing them on a transfer sequence. We manipulated the con-
gruity of the sequence pairs, corresponding to the abstract
similarity of the training and transfer sequences. The re-
sults from our experiment suggest that having seen a con-
gruous sequence in the past has a significant beneficial ef-
fect on accuracy. We modeled participants’ learning curves
in a probability-matching model and three probabilistic LOT
models: a Rational Rules-type model that updates the prior of
production rules in previously useful concepts; a model that
adds previously useful concepts in full to its set of production
rules; and a baseline model LOT model that does not update
between training and transfer sequences. We compared the
fit of each model to human data from our experiment. We
found that the LOT model that re-uses high probability hy-
potheses from training provides the best fit to the data in the
congruous condition, and the Rational Rules model provides
the best fit in the incongruous condition. These findings sug-
gest that learners transfer entire concepts when they can, and
otherwise prefer previously used primitives.

Experiment

We used a one-shot transfer learning paradigm in which par-
ticipants were shown pairs of sequences which could either
have come from similar LOT programs or not. To determine
effects of knowledge transfer, we tested whether participants’
overall accuracy on the the second sequence varied as a func-
tion of the first.

Participants 360 participants were recruited from Amazon
Mechanical Turk, whose ages varied from 20 to 67. They
were paid 50 cents to complete the experiment, which took
roughly 3-5 minutes.

Figure 1: Example of display participants saw in the experi-
ment.

Method

Design The task involved a repeated binary choice, in
which participants had to pick between two colored sym-
bols (orange and blue) 15 times in learning both the train-
ing and transfer sequence. There were a total of 12 stimuli
of which 6 were designated training sequences and 6 were
designated transfer sequences. The manipulation was a full-
factorial between-subjects design with respect to the stimuli,
so every possible combination of these sequences was tested,
with only two shown to any given subject. An example of
the display shown to participants is given in Figure 1. Note
that every participant in both conditions saw the exact same
training sequences — the differences in stimuli between con-
ditions were only in the transfer sequence (the second of the
two).

Stimuli The particular stimuli we chose were partly de-
signed to allow for differing levels of compression in encod-
ing in the LOT model. Some pairs of stimuli involve very
simple repetitions, e.g. ((A2B)N) and ((A3B)N) 1, which in
our model are expressible in short hypotheses. Other patterns
are not as efficiently compressible in our model, such as the
repetition of ((AB)2B). But, more importantly, they were de-
signed such that the congruous pairs had abstract similarity,
such that learning the first might help with learning the sec-
ond. For instance, a congruous counterpart of the sequence
(A2B3)N is the sequence (A2B4)N , since a simple change to
the description of one would result in the other. Every se-
quence in the first set had a congruous counterpart in the sec-
ond set. The full set of stimuli is shown in Table 1, with
congruous pairs adjacent.

Procedure Participants each saw two sequences, one after
the other. Starting with no information about each sequence
and ending with the entire sequence displayed on the screen,
participants chose the symbol they thought was most likely
given the previous values of the sequence they could see. Af-
ter each guess, feedback appeared on the screen as to whether
or not they were correct, and the correct symbol was placed at
the end of the sequence on the screen. After participants com-
pleted the first sequence, it was erased from the screen, and
they then completed the same task for the second sequence,
starting from the beginning.

1((A2B)N ) and ((A3B)N ) are, in full, N repetitions of AAB and
AAAB, respectively. In general XN means the symbol or sequence
X repeated N times.
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Figure 2: This plot shows participants’ accuracy in the transfer sequence over all 15 trials in the congruous (blue) and incon-
gruous (red) conditions. The dots on top and bottom represent participants responding correctly or incorrectly at that trial,
respectively. The decreasing transparency of squares of dots on top shows increasing numbers of correct responses, and the
fact that the blue squares on top are less transparent than the red squares on top represents better learning in the congruous
than incongruous condition. The two curves are the best-fit logistic regression predictions for the congruous and incongruous
conditions.

Training Transfer
(A2B3)

N
(A2B4)

N

B5(AB)N A4(BA)N

(A2B)N
(A3B)N

(ABAB2)
N

(BABA2)
N

B6AN A4BN

BA2BA3BA4... BAi−1BAi ABAB2AB3... ABi−1ABi

Table 1: The full set of stimuli in our experiment is comprised of
the first 15 symbols of each of these sequences. The congruous pairs
are adjacent, and any non-adjacent pair is considered incongruous.
The notation XN used here can be understood as N repetitions of se-
quence X. The bottom-most congruous pair is not as easily express-
ible in this way, but can be understood as incrementally increasing
runs of one symbol interspersed by the other.

Participants were instructed to make their best guess about
the next value of each sequence, even if they were unsure.
They were told nothing about whether the two sequences
were related, only that they both involved strings of colored
symbols.

Results
Our primary concern in analysis is to determine both the ef-
fect of sequence step and the effect of congruity on learning
the transfer sequence. To determine both in a single analysis,
we ran a logistic regression with both factors as fixed effects
as well as random subject and sequence intercepts.

The results of this analysis revealed both a main effect of
sequence step (β = 0.12,z = 15.8, p < 0.001) and congruity
(β= 0.70,z= 4.69, p< 0.001). The interaction between con-
gruity and sequence step was not significant (z = −0.12).

The fits from this analysis are shown in Figure 2, with the
curves representing the best-fit regression lines for the con-
gruous (blue) and incongruous (red) conditions.

Collapsing over all sequences and sequence steps in the
transfer sequence, and just considering the average correct
response given condition, those in congruous condition re-
sponded correctly more often (M = 0.75) than those in the
incongruous condition (M = 0.61). The lack of interaction
between congruity and sequence step implies that there is a
lingering but constant beneficial learning effect in the con-
gruous condition compared to the incongruous condition, but
that the speed of learning in the two conditions is roughly the
same.

Model
The general modeling framework we used is a probabilistic
Language Of Thought. In this approach there are a set of
primitive, typed, and compositional operations, analogous to
the statements that define programming languages (e.g. for
Python ’if’, ’elif’, ’while’, ’True’, etc... would be consid-
ered primitive operations). The set of operations defines the
“grammar”, and the allowed rules for composing them are
the rules for a Probabilistic Context Free Grammar (PCFG).
The list of all possible compositions of production rules de-
fines the entire hypothesis space. Since the number of pos-
sible hypotheses produced in our grammar is infinite, we use
Metropolis-Hastings, a Markov Chain Monte Carlo (MCMC)
sampling method, to provide a finite approximation to the en-
tire space.

Each hypothesis H can be assigned a probability for any
observed data D, which is computed via Bayesian inference:
P(H|D) ∝ P(D|H)P(H). The likelihood, P(D|H) is deter-
mined by how well the output of the hypothesis matches the
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data. The prior probability P(H) is computed according to
the prior rule for PCFGs, which is the product of the prior
probability of each primitive production rule R composing
H: P(H) = ∏R∈H P(R). The highest posterior probability hy-
pothesis is therefore the most concise one that fits the data.

In the likelihood, we assume that hypotheses’ output may
be slightly noisy, giving each digit in the output sequence
a 0.01 chance of being flipped. This likelihood formulation
weights generated sequences higher in the likelihood in pro-
portion to their similarity with the observed data. In addition
to the intuitive plausibility of a similarity-weighting likeli-
hood metric, this likelihood helps MCMC learn correct hy-
potheses by providing a graded (non-modal) posterior space.
We performed no model fitting, and all parameters were used
“out-of-the-box”.

We ran a Metropolis-Hastings sampler for 100,000 steps
and stored the top 100 hypotheses with the highest posterior
found on each incremental prefix of the sequence.

Hypotheses
In our model, hypotheses output binary sequences, corre-
sponding to the binary colored symbols in the experiment.
The production rules — which are the same across models —
are themselves operations on sequences and integers that re-
turn sequences. The production rules we chose were simply
chosen to roughly be the minimal set necessary to concisely
represent the sequences humans saw:

• A∞. Returns the symbol A repeating unboundedly.

• B∞. Returns the symbol B repeating unboundedly.

• Alternate(INT1, INT2). Returns the sequence of alterna-
tions of INT1 and INT2. E.g. Alternate(2,3)⇒ (A2B3)

∞.

• Increment(INT1). Returns the sequence of alternating rep-
etitions of increasing length, starting from length INT1.
E.g. Increment(2)⇒ A2B3A4B5...AN−1BN ....

• Append(SEQ1,SEQ2). Returns SEQ2 on SEQ1. E.g.
Append(A2,B2)⇒ A2B2.

• Weave(SEQ1,SEQ2). Returns SEQ2 weaved between
SEQ1. E.g. Weave(A2,B2)⇒ (AB)2.

• Take(SEQ1, INT1). Returns the first INT1 items from
SEQ1. E.g. Take((AB)5,2)⇒ AB.

• Invert(SEQ1). Returns the inversion of SEQ1. E.g.
Invert(B3A)⇒ A3B.

In these rules, INT could expand to the integers 1...10.

Models of Learning
We implemented three different LOT models to test various
possibilities about human concept learning from experience:
a baseline model which does not update; a model that updates
the prior of primitives; and a model that adds previous high-
posterior programs to its set of primitives. Each model was
run on all 36 conditions in the experiment. Additionally, we

implemented a unigram model of the sequence to compare
against the LOT models. The LOT models all started with
the same production rules, which we assumed to have a uni-
form prior probability. All models were implemented using a
freely available software package called LOTlib (Piantadosi,
2014).
Non-Updating Model In the baseline model, the primitives
and their priors were fixed between the first and second se-
quence, and did not change.
Rational Rules Model We implemented a version of the
Rational Rules model (Goodman et al., 2008), which up-
dates the priors over primitives according to their posterior-
weighted production rule count. This corresponds to a
Dirichlet-Multinomial model, in which counts of each pro-
duction rule in the Maximum A Posteriori (MAP) hypothe-
sis from the training sequence are summed and subsequently
used in computing the primitives’ priors when learning the
transfer sequence. Since a higher count corresponds to a de-
creased penalty for use in a tree, this is essentially a way of
increasing the prior for primitive production rules useful in
learning the training sequence. We assumed a uniform prior
over production probabilities in the training sequence.
Re-Use Model Upon learning a concept, people may store
and re-use this concept as a primitive. The way we captured
this idea in our model was by placing the MAP hypothesis
from the end of the training sequence as a primitive for gen-
erating hypotheses in the transfer sequence. The hypothesis
space over primitives was re-normalized such that the primi-
tives retained a uniform prior probability after this primitive
was added.
Unigram Model We implemented a unigram model that re-
sponds proportionally to the probabilities of previous sym-
bols. More specifically, we modeled this as a beta-binomial
over the counts of the digits with a uniform prior. The counts
were updated starting on the first sequence and continued
through the second sequence. This is a baseline compari-
son, as it implements (smoothed) probability matching with-
out taking into account any contingency.

Results

Figure 3 shows the model’s performance (with human data
for comparison) at each step, collapsed over all sequences.
The top panels display performance in the congruous con-
dition and the bottom four show performance in the incon-
gruous condition. It’s worth noting again that these are pre-
dictions made with no model parameter tuning, but the rank-
order speed of learning between models is unlikely to be af-
fected by this. The first interesting thing to note is how well,
and how quickly, each of the models learns in the congruous
and incongruous conditions. The Re-Use model shows the
greatest disparity between conditions, guessing accurately on
average 66% of the time in congruous case and 54% of the
time in the incongruous case, a difference of 12%. This is
substantially higher than the difference in the Rational Rules
model (4%), the unigram model (1%), and the no-updating

225



No−Updating Rational Rules Re−Use Unigram

 C
ongruous

 Incongruous

0 1 2 3 4 5 6 7 8 9 1011121314 0 1 2 3 4 5 6 7 8 9 1011121314 0 1 2 3 4 5 6 7 8 9 1011121314 0 1 2 3 4 5 6 7 8 9 1011121314

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Sequence Step

P
ro

po
rt

io
n 

R
es

po
nd

in
g 

C
or

re
ct

ly

Human
Model

Figure 3: Overall model correctness overtime in the congruous (top) and incongruous (bottom) conditions, collapsed overall all
sequences. The human data is shown in red in each plot, as comparison. The dashed line is the just the constant of y=0.5, for
comparison.

Condition Analysis No Update Rat. Rules Re-Use Unigram
Congruous Mean Squared Error (x10) 0.57 0.37 0.17 0.65
Congruous R2 0.60 0.70 0.72 0.13
Congruous Log Likelihood −853 −796 -736 −870
Incongruous Mean Squared Error (x10) 0.16 0.12 0.13 0.23
Incongruous R2 0.67 0.75 0.75 0.56
Incongruous Log Likelihood −4322 -4268 -4280 −4412

Table 2: Overall performance measured in Mean Squared Error, R2, and Log Likelihood, for each of the models in both the
congruous and incongruous condition. The best fit for each metric is bolded. Note that the log likelihoods can be compared
like AIC values since there are no free parameters.

model (0%). This difference in the re-use model is most sim-
ilar to humans, who responded correctly 75% of the time in
the congruous congruous and 61% of the time in the incon-
gruous condition, a change of 14%.

To more precisely compare the model and human fits for
each sequence, we report the Mean Squared Error (MSE), R2,
and Log Likelihood to aggregate human responses, for each
sequence and condition in Table 2. In both conditions, all the
LOT models were significantly better fits than the unigram
model. In the congruous condition, the Re-Use model was
clearly a better fit than any other LOT model or the unigram
model. The reason it out-performs all the other models in this
case is primarily that none of the others learn the sequences
fast enough. In the incongruous condition, the LOT models in
this case perform more similarly than in the congruous con-
dition, but the Rational Rules model provides a slightly better
fit of the three according to each metric.

Discussion
The fact that the Re-Use model has the highest accuracy in
the congruous condition (and closest to human-level) sug-
gests that it is a better model of how humans’ inferences ben-
efit from helpful experience. The Re-Use model also displays
the greatest disparity in accuracy between the two conditions,

though still not quite as large in the gap in human perfor-
mance between conditions (12% versus humans’ 14%). In-
terestingly, the models display much more similar learning
curves in the incongruous case. This means that the dispar-
ity in performance in the two conditions may be entirely due
to the relative benefit of congruous experience – insofar as
it changes primitives or their priors beneficially – but not as
much to hindrance from incongruous experience. If true, this
would predict that humans would perform about as well on
the transfer sequence with no training sequence at all as with
an incongruous training sequence.

To understand the Re-Use model’s performance, it is in-
formative to look at the actual representations that allow it to
learn more quickly than the other models in the congruous
condition. For each sequence, the MAP hypothesis from the
first sequence is used in the MAP representation of the sec-
ond sequence by the final step. Indeed, it is often orders of
magnitude higher in the posterior than any other hypothesis.
For instance, consider the case where the model sees:

((AB)2B)
3

as training followed by:

((BA)2A)
3
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as transfer. The MAP hypothesis for the training sequence is
displayed in orange in Figure 4.

This hypothesis gets added as a primitive, which we can
call MAP1. The shortest program on the transfer sequence
that fits the data by the final step (and before), is simply
invert(MAP1), which is the entirety of the tree in Figure 4.
This, of course, generates the inverse sequence generated by
MAP1, which is a simple and low-cost transformation when
treating MAP1 as a primitive. The tree representing the MAP
hypothesis for the transfer sequence in the Re-Use model is
much higher in the prior than the MAP representation both
the Rational Rules model and the No-Update model con-
struct, since it only uses two primitives, compared to their
use of eight.

Figure 4: The Re-Use model’s MAP hypothesis for generating rep-
etitions of ((BA)2A) in the congruous condition. The part in or-
ange is the MAP hypothesis from learning the training sequence
((AB)2)B, and the blue is a transformation on it, treating it as a prim-
itive production rule.

It is also interesting that the Rational Rules model provides
the best fit in the incongruous condition, closely followed by
the Re-Use model. This suggests that even when people can’t
transfer a whole concept, they still prefer using primitives of
past hypotheses. One possibility to explore in the future is
combining the Rational Rules and Re-Use models. Another
potentially powerful model could account for partial sub-tree
re-use. This would reflect the possibility that people not only
store useful programs in their entirety, but store useful sub-
programs. This added flexibility in recombination has been
modeled using adaptor grammars (Johnson et al., 2006) and
fragment grammars (O’Donnell et al., 2011). But inference in
these models is substantially more complicated than models
considered in this paper, and the extent of human flexibility
in this regard remains an open question.

Conclusion
Our experiment showed that people benefit in learning a se-
quence given prior experience with an abstractly congruous
sequence. By considering congruity as a function of similar-
ity in LOT program-space, we can understand human knowl-
edge transfer as changes in the representations and biases of
LOT models. We showed that a LOT model that treats pre-
viously learned programs as primitive rules is the best fit to
human data in the congruous condition. On the other hand,
we found that the LOT model that rationally updates the prior

on existing production rules is the best fit in the incongruous
condition. This provides evidence that people spontaneously
transfer knowledge of both whole programs and their sub-
components when learning.
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Abstract 

Word learning research has shown that learners constrain the 
hypothesis space for word meanings by using multiple 
sources of information, such as cross-situational regularities 
of word-context co-occurrences or syntactic cues, like the 
number of arguments. These studies typically focus on word 
meaning development where these cues can be helpful but not 
necessary. As such, it sheds little light on the acquisition of 
anaphors, which requires tracking syntactic dependencies 
across situations. To test whether or how learners track this 
information, we conducted a novel anaphor learning 
experiment with English and Japanese speakers, manipulating 
cross-situational regularities in anaphors and their syntactic 
dependencies. Results show both English and Japanese 
speakers closely track the frequency of interpretive 
possibilities for novel anaphors. However, they demonstrate 
difficulties learning long-distance reflexives, which are 
compatible with either local or non-local antecedents. This 
suggests that successful anaphor learning requires more than 
cross-situational regularities of interpretive possibilities. 

Keywords: anaphors; binding; language acquisition; 
statistical learning; word learning 

Introduction 
Sentences (1) and (2) illustrate that the interpretation of 
local reflexives like himself and pronouns like him rely on 
structural relationships to their antecedents (the noun phrase 
that the reflexive or pronoun refers to, e.g. himself = John in 
(1), but him = Bill in (2)). 

(1) Bill said that John kicked himself. 
(2) Bill said that John kicked him. 

This complementarity suggests that these anaphors respect 
different locality constraints; informally, English reflexives 
can only be bound by antecedents in the same clause, 
whereas pronouns must not be bound by antecedents in the 
same clause (Chomsky, 1981). 

Other languages have different types of anaphors. For 
example, Japanese has a long-distance (LD) reflexive zibun, 
and replacing himself with this LD reflexive in the Japanese 

translation of (1) results in an ambiguous sentence, as zibun 
can refer to either Bill or John. This suggests that in 
Japanese and other related languages, the local domain for 
zibun is expanded to the whole sentence, thereby allowing 
both the local and non-local antecedents. 

This cross-linguistic variation suggests that the 
interpretive possibilities for anaphors are not universally 
determined, and must be learned from language experience. 
Learning the interpretive possibilities of anaphors requires 
learners to infer the intended meaning of the utterance based 
on the utterance context. For example, the nature of the 
events described by (1) and (2) is different: one is reflexive, 
while the other is transitive. Thus acquiring anaphors 
requires the learner to simultaneously track the syntactic 
relations between the anaphor and its antecedent, as 
determined by the context of the utterance. Critically, 
learning that the LD reflexive can take either a local or non-
local antecedent requires tracking such information across 
multiple situations in which the LD reflexive is used with 
either one. 

Previous word learning research has investigated how 
learners use such cross-situational regularities or syntactic 
structures to learn word meanings. For example, 2.5 year-
olds acquired the meaning of a novel verb (e.g. pim) 
dependent solely on the frequency with which the verb was 
presented with a particular video of a particular action (Scott 
& Fisher, 2012; for similar work on nouns see Smith & Yu, 
2008). While there is an on-going debate over whether 
learners gradually update word meaning hypotheses across 
situations, or whether learners instead iteratively test and 
revise successive hypotheses across situations (see Medina, 
Snedeker, Trueswell, & Gleitman, 2011), both lines of work 
critically point to the fact that information across trials 
contributes to the word learning process. 

Much work has also explored how learners use syntactic 
frames to constrain the meaning of novel words (syntactic 
bootstrapping; see Gleitman, 1990). For example, Yuan and 
Fisher (2009) showed that when infants heard a series of 
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transitive sentences with two arguments (e.g. Jimmy blicked 
the cat) in the absence of contextual information, they 
reliably interpreted the novel verb as referring to a causative 
event that requires two participants. On the other hand, 
presenting a series of intransitive sentences led infants to 
interpret the novel verb as referring to a single participant 
event. Such work shows that learners can use information 
from syntactic structures to narrow their hypotheses about 
word meanings. 

In sum, the work reviewed above shows that learners 
make use of both distributional and linguistic cues. 
However, few studies have investigated the mechanism of 
anaphora acquisition, which requires tracking the cross-
situational regularities of syntactic relations themselves. 
Research on anaphora acquisition mechanisms not only fills 
this empirical gap, but also provides a novel window into 
the constraints on cross-situational, statistical learning 
mechanisms. 

The present study uses a novel anaphor learning 
experiment to investigate if and how participants use cross-
situational co-occurrences of word form, contextual 
information, and syntactic structure. During the learning 
phase, participants are presented with sentence-picture pairs 
that contextually constrain the intended meaning of the 
target English sentence like (1) or (2) with a novel anaphor. 
We used three novel anaphors, following the interpretive 
possibilities of local reflexive (botu), pronoun (sumu), as 
well LD reflexive (togu). We included these three anaphor 
types for three reasons. First, this combination of anaphors 
is attested in Japanese and other languages, and therefore 
provides an ecologically valid anaphor system. Second, for 
English speakers, the Japanese LD reflexive is a new 
category of anaphor, so this allows us to simulate an actual 
learning process. Third, the local reflexive and pronoun are 
expected to be readily learnable for English speakers since 
both exist in English, and are also presented with a single 
interpretive possibility across trials. Thus, these anaphors 
can be used to validate this novel experimental procedure.  

In order to probe the effectiveness of distributional 
information, we manipulated the frequency of two 
interpretive possibilities for the LD reflexive (i.e., local 
antecedent, akin to the meaning of (1), or non-local 
antecedent, akin to the meaning of (2)) by creating three 
between-subjects learning conditions: a Balanced condition 
where there were 50% local and 50% non-local antecedents; 
an LD-majority condition where 80% of the time the 
antecedent was non-local, and only local 20% of the time; 
and a Local-majority condition, where 80% of the time the 
antecedent was local, and only non-local 20% of the time.  

If anaphor acquisition relies on accruing information and 
testing hypotheses across situations, then we would expect 
that a learner in the Balanced condition would be best able 
to learn the Japanese-style LD reflexive; encountering both 
interpretive possibilities should maximize learners’ chances 
to realize the optionality of local and non-local antecedents. 

However, there are two additional biases that may affect 
how learners use distributional information. For example, it 

has been proposed that in the absence of clear 
disambiguating information, learners are often biased to 
adopt syntactic structures that are easier to process in 
subsequent comprehension (e.g. Fedzeschkina, Newport, & 
Jaeger, 2016; Hawkins, 1999). With respect to processing 
LD reflexives, it has been found that at least in processing 
of Chinese LD reflexives, readers are biased to access local 
antecedents due to constraints on the working memory 
mechanism (e.g., Dillon et al., 2014). If this bias extends to 
anaphor acquisition, learners may struggle to learn the 
availability of the non-local antecedent with the LD 
reflexive, whereas even a relatively small percentage of 
input supporting the local antecedent may be sufficient to 
learn the availability of the local antecedent. Under this 
account, learners may in fact represent our LD-majority 
condition as if it were a ‘Balanced’ condition, because this 
local binding bias would enhance the availability of the 
local antecedent while dampening that of the non-local 
antecedent. If this is the case, then learners in the LD-
majority condition – instead of the Balanced – should be 
best able to realize the optionality of local and non-local 
antecedents with the LD reflexive.  

Another potential source of bias, which may be 
particularly relevant to the present study, is the influence of 
anaphors in the participants’ native languages. The second 
language (L2) acquisition literature has found evidence for 
strong first language influence on the L2 acquisition of 
anaphors. For example, Yuan (1998) showed that Japanese 
speakers learning the Chinese LD reflexive were more 
likely to accept non-local antecedents than English speakers 
learning Chinese. Conversely, Japanese speakers learning 
English struggled to rule out non-local antecedents for 
English reflexives in a similar task (Hirakawa, 1990). 
Together, these results suggest that learners tend to 
‘transfer’ and expect the same anaphors in their L2. Given 
that our study explores how adult learners acquire a novel 
anaphor, anaphors in the native language may constrain 
what can be learned within a single experimental session. 

To investigate the native language influence on anaphor 
acquisition, we conducted this experiment with English 
native speakers and Japanese native speakers. If prior 
knowledge affects novel anaphor acquisition, then we would 
expect a contrast between the English and Japanese group: 
English speakers should struggle to learn the optionality in 
the LD reflexive, whereas Japanese speakers should be able 
to correctly learn the novel LD reflexive based on their 
knowledge of zibun in their native language. 

Experiment 

Participants 
Fifty-seven native English-speaking members of the Johns 
Hopkins University community participated in the 
experiment. They were compensated with course credit or 
$10 cash. According to self-reports, none of the participants 
knew languages with LD reflexives. Participants were 
randomly assigned to one of the three learning manipulation 
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conditions. All participants completed a learning phase and 
then a test phase in the same session. 

In addition, 57 native Japanese-speaking students from 
Tsuda College participated in the Japanese version of the 
same experiment. They were compensated ¥1000. 
Performance in an English cloze task (adapted from 
Kobayashi, 2002) revealed intermediate syntactic and 
semantic knowledge in English (maximum possible score: 
25; M = 15.529, SE = 4.130), suggesting the relative 
dominance of Japanese over English. 

Materials 
Learning Phase Trials The 78 sentences for the Learning 
Phase were English sentences with clausal embedding (e.g. 
John {said/remembered} that Susan combed 
{botu/togu/sumu}), where botu, togu and sumu were the 
novel words used as the local reflexive, LD reflexive, and 
pronoun respectively. These anaphors were not marked for 
gender. Three main clause verbs (comb, wash, fan) were 
used once with both said and remembered. Using these six 
sentence frames, three male and three female character 
names were permuted to create 24 sentences containing the 
local reflexive and 24 containing the pronoun. For the local 
reflexive sentences, one sentence for each main clause verb 
was replaced with a mono-clausal sentence with the same 
verb. Taking these local reflexive sentences (including the 
mono-clausal sentences) and adding 6 additional embedded 
clause sentences following the same procedure described 
above created the 30 sentences containing the LD reflexive. 

In order to make the intended interpretation of each 
sentence clear, throughout the experiment pictures were 
paired with each sentence to form a trial. Local reflexive 
sentences were depicted with pictures showing the 
syntactically local noun phrase as the antecedent of the 
anaphor; pronoun sentences were depicted with pictures 
showing the syntactically non-local noun phrase as the 
antecedent of the anaphor (as in Figure 1). Critically, LD 
reflexive sentences were depicted with either type of 
picture; referred to as the local antecedent in the former 
case, and the non-local antecedent in the latter. 

 

Learning Conditions The picture-sentence pairs were used 
to create three different distributions of LD reflexive 
interpretations. For the Balanced condition, 15 LD reflexive 
sentences were paired with local antecedent pictures 
(including the necessarily local mono-clausal sentences, 
which appeared with a single character performing an action 
to themselves, with no speech bubble); the remaining 15 
sentences appeared with non-local antecedent pictures. For 
the LD-majority condition, 24 sentences appeared with non-
local antecedent pictures, while the remaining six sentences 
(including the three mono-clausal sentences) appeared with 
local antecedent pictures. For the Local-majority condition, 
24 sentences (including the three mono-clausal sentences) 
appeared with local antecedent pictures, while the remaining 
6 appeared with non-local antecedent pictures. This resulted 
in an 80%/20% distribution in the two unequally distributed 
conditions. 
 
Picture Verification Test To create the sentences for the 
picture verification test, one set of six embedded clause 
sentence frames for each anaphor was reused with three new 
main clause verbs (splash, paint, measure). To create the 
trials, half the sentences were paired with their appropriate 
picture as described above to make match trials, and the 
other half was paired with the inappropriate picture (e.g. a 
non-local picture with a local reflexive sentence) to make 
mismatch trials, making sure that a roughly equal number of 
each anaphor, embedding and main clause verbs were in 
both sets of trial types. 1 

 
Materials for the Japanese experiment For the Japanese 
version of this experiment, the Japanese sentence materials 
were constructed in a very similar way as in the English 
experiment. However, because Japanese verbs are more 
selective in their argument structure, we were forced to 
change the events depicted in order to maintain natural 
sounding sentences, opting for a construction where the 
anaphor is marked with the dative particle -ni. The events 
depicted in the Japanese learning materials were: sticking 
tape to someone (__-ni gamutepu-wo haru), wrapping a 
ribbon around someone (__-ni ribbon-wo makitsukeru), and 
loading a log onto someone (__-ni maruta-wo noseru). In 
the test they were: spilling water onto someone (__-ni mizu-
wo kakeru), putting paint on someone (__-ni enogu-wo 
nuru), and pinning an award on someone (__-ni bajji-wo 
tsukeru). All stimuli were presented in Japanese using 
hiragana and kanji, with novel anaphors spelled in katakana. 
 
Procedure 
The procedure was identical for the two language groups, 
but the Japanese version was carried out in Japanese by 
trained native Japanese-speaking research assistants. 

                                                             
1 Since both local and non-local antecedents are acceptable for 

the LD reflexive, there were no mismatch trials for this anaphor in 
the embedded clause sentence types discussed here.  

 

 
 

Figure 1: An example picture-sentence pair with togu 
(the novel LD reflexive), which illustrates the non-local 
antecedent (Adam washing David). The local antecedent 
version of this trial type would picture Adam washing 
himself inside the speech bubble. 
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Learning Phase This experiment was implemented in 
PsychoPy (Pierce, 2007). During the Learning Phase the 
participant was presented with one picture-sentence trial at a 
time. They were instructed to read the sentence aloud, and 
take as long as they needed to figure out the meaning of the 
novel word. They used the space bar to progress to the next 
trial, working at their own pace.  

Participants were instructed to infer the meaning of novel 
words they would encounter in the experiment. The 
instructions explicitly stated that the novel words may or 
may not correspond to existing words in their native 
language. After the instructions, there were three blocks of 
learning trials, consisting of 26 trials each, with eight 
sentences each for the local reflexive and pronoun, and 10 
LD reflexive sentences (including 1 mono-clausal local and 
one LD reflexive sentence). 

In order to motivate participants during the learning 
phase, these learning blocks were interspersed with two quiz 
blocks containing 12 picture verification test trials, four for 
each anaphor. At the start of the first quiz block participants 
were given brief instructions telling them to respond 
‘match’ if the sentence appropriately described the picture 
based on what they thought the novel words meant. There 
were two practice trials. No feedback was provided.  

The order of these learning blocks, and of the quiz blocks 
was counter-balanced across participants to control for any 
list order effects. The trial presentation order was 
randomized within each block using PsychoPy’s trial 
randomization function. Participants typically completed 
this phase in 20-30 minutes. 
 
Test Phase Participants were given the picture verification 
test as described above for the quiz trials. Again, they were 
told to indicate if the sentence described the picture by 
pressing either ‘f’ for match or ‘j’ for mismatch. The trials 
were presented randomly, with a break halfway through. 
Participants typically completed the test phase in 20-30 
minutes. 

Results 
For statistical analyses of the data, the picture verification 
responses from each language group were entered into a 
mixed logit model (Jaeger, 2008) with the acceptance 
response (i.e. the picture and the sentence description 
match) as the dependent variable. We used learning 
condition, picture antecedent and anaphor type, and the two- 
and three-way interactions as predictors, and participant and 
item as random effects.  
 
English Figure 2 shows the results for the English-speaking 
participants. On average, participants in all three learning 
conditions were more likely to accept the local reflexive 
with a local antecedent (β = 1.568, z = 13.239, p < .000) and 
less likely to accept the pronoun with a local antecedent (β = 
-1.531, z = -12.833, p < .000). This was an expected pattern 
given that local reflexives and pronouns exist in English, 
and the input provided consistent information. This 

reassured us that the task was achievable given consistent 
input. We turn now to the optionality in the LD reflexive. 

With respect to the acquisition of the LD reflexive, we 
had initially expected participants in the Balanced condition 
to show the best ability to accept the LD reflexive in both 
local and non-local antecedent trials. However, this 
expectation was not confirmed, as the acceptance rate for 
the LD reflexive was not high in either local or non-local 
antecedent trials (Figure 2). In order to explore the impact of 
distributional regularities, we conducted planned pairwise 
analyses and compared response rates for the LD reflexive 
across the three learning conditions. Participants in the 
Local-majority condition and LD-majority condition 
showed a reliable preference to accept the LD reflexive with 
the antecedent that was frequently presented in the input 
(Local-majority condition: β = 1.211, z = 6.336, p < .001; 
LD-majority condition: β = -1.024, z = -5.201, p < .001). 
Finally, when response rates for the LD reflexive were 
compared across the three conditions, participants only 
showed a strong preference for an antecedent in the Local 
condition (β = 1.211, z = 6.336, p < .001) and the LD 
condition (β = -1.024, z = -5.201, p < .001), not the 
Balanced condition. Furthermore, in a model considering 
only acceptance rates of the LD reflexive in the Balanced 
condition, there was no significant preference for either 
antecedent (β = 0.614, z = 1.547, p = .122), suggesting that 
participants in the Balanced condition truly were responding 
at chance on a given LD reflexive trial. This pattern of 
responses suggests that participants’ behavioral response 
patterns reproduced the distributional regularities they 
observed in their input. 

Moreover, participants in the LD-majority condition were 
less likely to accept the local antecedent with the LD 
reflexive compared to those in the Local-majority condition 
(β = -0.823, z = -6.119, p < .000), or those in the Balanced 
condition (β = -0.347, z = -2.593, p = .010). Similarly, 
participants in the Local-majority condition were more 
likely to accept the LD reflexive with local antecedents 
compared to those in the Balanced condition (β = 0.340, z = 

 

 
 
Figure 2: Mean acceptance rates, split by each anaphor 
given a particular antecedent, across the three learning 
conditions, from English speaking participants. 
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2.775, p = .006), and the LD-majority condition (β = 0.823, 
z = 6.119, p < .000). These patterns suggest that participants 
in the unequally distributed learning conditions also 
reproduced the rate at which the local or non-local 
antecedents appeared in their input. 

 
Japanese Figure 3 shows the results for the Japanese-
speaking participants. Overall, Japanese speakers’ response 
patterns were very similar to those of English speakers. 
Participants across the three learning conditions accepted 
the local reflexive more often with local antecedents (β = 
1.196, z = 10.524, p < .001) and rejected the pronoun with 
local antecedents (β = -1.275, z = -10.519, p < .001). 
Japanese speakers were also sensitive to the distributions in 
their learning condition. When participants in the Balanced 
condition were compared to those in the Local-majority 
condition, there was no significant difference in their 
acceptance rates for the two antecedents with the LD 
reflexive (β = 0.208, z = 1.378, p = .168)2. But like English 
speakers, participants in the LD condition compared to the 
Balanced were less likely to accept the LD reflexive with a 
local antecedent (β = -0.637, z = -4.757, p < .000). 

Pairwise analyses of the LD reflexive data at each group 
level again reveal the similarity between English and 
Japanese speakers. Participants only showed a strong 
preference for a local antecedent in the Local-majority 
condition (β = 0.787, z = 4.065, p < .001) and non-local 
antecedent in the LD-majority condition (β = -1.062, z =      
-5.228, p < .001), but no clear preference was observed in 
the Balanced condition. Furthermore, in comparison to 
participants in the Local-majority condition, those in the 
LD-majority condition were less likely to accept the LD 
reflexive with local antecedents (β = -0.679, z = -5.228, p < 
.000). Finally, when response rates for the LD reflexive 
were compared across the three conditions, participants only 

                                                             
2 However, the main model shows that overall participants in the 

Local condition were more likely to accept the LD reflexive with 
the local antecedent (β = 0.517, z = 3.444, p = .001). 

showed a strong preference for an antecedent in the Local 
condition (β = 0.787, z = 4.065, p < .001) and the LD 
condition (β = -1.062, z = -5.228, p < .001), not the 
Balanced condition. In the model considering only 
acceptance rates of the LD reflexive in the Balanced 
condition, there was again no significant preference for 
either antecedent (β = -0.493, z = -1.215, p = .224).  

Overall, participants across both language groups show 
strikingly similar response patterns. They were only willing 
to accept each anaphor following the distribution of 
antecedent co-occurrences provided in their input, even 
when the optionality presented there resembled their native 
language (i.e. Japanese speakers). Results also suggest that 
the chance responding in the Balanced condition across both 
language groups was not the result of different individuals 
preferring different antecedents, rather as a group these 
participants are simply reproducing the statistical 
regularities in their input. 

Discussion 
The present study used a novel anaphor learning paradigm 

to investigate cross-situational learning of novel anaphors. 
Overall, we found that participants in our study appear to 
track the distribution of syntactic structures across situations 
to constrain their anaphor acquisition. The fact that learners 
reproduced the distribution of local vs. non-local 
interpretations for the LD reflexive indicates that the input 
distribution was guiding the process of anaphor acquisition. 
This kind of probability-matching behavior, which has been 
reported in other statistical learning paradigms (e.g. Hudson 
Kam & Newport, 2005), further illustrates humans’ ability 
to reproduce and learn regularities in their input from simple 
frequency tracking (c.f. Estes, 1976). Furthermore, the fact 
that there was little difference between the two language 
groups – specifically the fact that Japanese speakers, like 
English speakers, treated the LD reflexive as a local 
reflexive or pronoun based on their learning condition rather 
than following the interpretive possibilities of their native 
zibun – suggests that biases to copy and reproduce 
regularities in the input distribution played a more important 
role than other potential biases (e.g. processing biases or L1 
influence).  

One of the main research questions in this study 
concerned how participants handle the optionality in the 
interpretive possibilities of the LD reflexive, and how 
manipulating the distribution of those two options would 
affect acquisition. The results demonstrate that learners 
struggle to acquire the optionality of the LD reflexive, 
regardless of their native language. Participants in the 
unequally distributed learning conditions appeared to treat 
the antecedent that only appeared 20% of the time as noise, 
ignoring it during learning, and accepting roughly that same 
rate of ‘noise’ during test (for all three anaphors). In other 
words, participants in the LD-majority and Local-majority 
conditions simply treated the LD reflexive as another form 
of either the pronoun or local reflexive, respectively. 

 

 
 
Figure 3: Mean acceptance rates, split by each anaphor 
given a particular antecedent, across the three learning 
conditions, from Japanese speaking participants. 
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Participants in the Balanced condition appear to be roughly 
at chance in accepting or rejecting the provided antecedent.  

These results and conclusion raise an important question 
for future research: if distributional regularities are not 
useful in acquiring anaphors that allow for more than one 
interpretation, how do speakers of languages like Japanese 
acquire the interpretative optionality of their LD reflexives?  

One possible explanation is that learners must first be 
confident about one possible antecedent before allowing 
optionality. For example, learners in the two unequally 
distributed learning conditions may have settled on one 
interpretation, without having received enough evidence to 
allow optionality. Learners in the Balanced condition, 
however, were not confident about either antecedent. To test 
this, an on-going follow-up experiment is exploring the 
effect of presentation order and the frequency of particular 
antecedents, e.g. presenting a majority of either local or 
non-local antecedents before introducing the kind of 
optionality we presented in the Balanced condition.  

Alternatively, this difficulty could be explained by a 
uniqueness principle, i.e., bias against many-to-one 
meaning-form mappings. Learners must learn that both 
multiple semantic and syntactic mappings are acceptable for 
LD reflexives, so future work should investigate this bias at 
both levels. For example, highlighting the distinctiveness of 
the LD reflexive’s interpretive optionality may increase 
learners’ acceptance of optionality. To this end, sentences 
with relative clauses may help learners disambiguate 
between anaphor types: in “The woman standing next to 
Susan splashed her/herself,” zibun is only interchangeable 
with herself, not her because Susan does not c-command the 
anaphor. The current data can only address the acquisition 
of the locality constraint, and not the c-command 
requirement on the structural relation between antecedent 
and anaphor, but learning both in tandem may be critical for 
successful acquisition of an LD reflexive.  

Sentences where the reflexive is in the subject position of 
an embedded clause could also provide evidence that the LD 
reflexive differs from the local reflexive in its syntactically 
constrained interpretive possibilities (e.g. “John said that 
zibun-wa awesome.”). While such a sentence is not possible 
with a local reflexive, it is grammatical for zibun precisely 
because the LD reflexive can take an antecedent outside the 
local clause (in contrast to the local reflexive’s more 
restricted locality constraint). Providing these sentences in 
the learning input may provide further evidence to learners 
about the distinctiveness of the LD reflexive, and increase 
their confidence that optionality is integral to the LD 
reflexive type anaphor itself and not noise in the input. 

In short, findings from the present study provide an 
important step towards understanding the constraints on 
cross-situational learning of anaphoric expressions. We 
suggest that successful acquisition of an LD reflexive may 
require that learners incrementally acquire interpretive 
possibilities in sequence, or that they are presented with an 
additional syntactic cue that unambiguously indicates the 
availability of the non-local antecedent interpretation. 
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Abstract 

The choice to enter and leave a romantic relationship can be 
framed as a decision-making problem based on expected 
utility of the partnership over time, akin to a forager deciding 
whether to stay in a particular patch based on the amount of 
resources it provides. We examined the temporal trajectory of 
three traits that may correspond to resources in romantic 
relationships—trust, love, and satisfaction—to determine 
whether they behave like depleting or replenishing patches 
from a foraging perspective.  All three rise over time in intact 
relationships—suggesting replenishment—but plateau or fall 
in dissolved relationships—suggesting depletion.  Survival 
analysis demonstrated that higher ratings of all three quality 
variables decreased the risk of romantic dissolution. The 
results suggest that these cues are lower in dissolved 
relationships, indicating individuals could potentially use 
them as cues for leaving an unsatisfactory relationship patch 
via aspiration-level cognitive mechanisms. 
 

Keywords: foraging theory; romantic relationships; survival 
analysis; relationship dissolution; mate choice 
 

All good things must come to an end, including romantic 

relationships. In some cases, it is not until death that we 

part, but many relationships end before that point through 

someone’s active choice.  Relationship dissolution is a high-

intensity and long-lasting stressor (Simpson, 1987; 

Sprecher, 1994), indicating that avoiding it is important to 

people. Yet most people seem to enter relationships that 

eventually end and are often caught off-guard when it 

occurs, indicating that it can be difficult to predict.  

Individuals cannot usually determine the expected outcome 

of a relationship prior to entering the relationship itself, 

meaning they may continuously evaluate their relationship 

and decide whether one’s relationship is likely to (or 

should) end. Previous work in this choice domain has 

tackled the brighter side of romance, such as how 

individuals choose a relationship partner (e.g. Beckage, 

Todd, Penke, & Asendorpf, 2009), but less work has 

examined how individuals decide to move on. What cues do 

individuals consider when choosing to end a relationship, 

and how are they incorporated into choices? 

How long to stay with something typically depends on 

what one is getting out of it. Individuals clearly expect to 

get something out of romantic relationships, given that 

many expend significant time, money, and energy searching 

for and maintaining them. The best-studied aspects of 

relationship quality (or utility) include relationship 

satisfaction, intensity of love, and level of trust. Meta-

analyses have found that measures of relationship quality 

more strongly influenced relationship dissolution than either 

individual traits (e.g. neuroticism) or external factors (e.g. 

social network overlap; Le et al., 2010). Daters may thus 

consider the amount of utility, quality, or other valued 

attribute produced in a relationship when choosing whether 

to exit it and attempt to find a better relationship. This 

utilitarian view departs from the traditional cultural 

emphasis on the holistic nature and complexities of 

romance. However, for a significant portion of human 

history, relationships were designed to be mutually 

beneficial to a couple and their extended families, and 

relationships with little expected gain were avoided.  

It is not novel to suggest individuals attempt to get the 

best relationship possible (whatever that might be), but few 

have connected the study of romantic relationships to 

theoretical models of choice. Problems involving searching 

for and maximizing resources are well studied within the 

foraging literature in biology. Optimal foraging theory 

(OFT; Stephens & Krebs, 1986) considers how foragers 

maximize their total gain (e.g. calories) in an environment. 

Foragers traverse a landscape filled with patches of some 

resource (e.g. berry bushes), choosing to enter and obtain 

(e.g. consume) those resources before leaving to find new or 

better patches. The relationship-foraging model (Cohen & 

Todd, 2017) treats the search for successive relationships as 

a foraging problem. Entering a relationship could be thought 

of as entering a “patch” that provides some mix of 

satisfaction, love and other benefits. Relationship foragers 

search through a social landscape of potential romantic 

partners, choosing to pass by some, entering into a 

relationship with others (and reaping the benefits), and 

possibly eventually departing in search of another. 

Depending on just what sort of patch a relationship is like, 

OFT can make predictions about how long people should 

stay in the relationship patches they find. 

One commonly-studied type of patch is characterized by 

resources that are depleted over time as the forager 

consumes them. Berry bushes are a common example of this 

type of patch, with the ripe berries being continually 

consumed until the forager decides to leave.  For these 
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bushes, the rate of return (e.g. calories consumed per unit 

time) is expected to increase rapidly early on as a forager 

enters a patch, with a diminishing rate of return as resources 

are consumed. The Marginal Value Theorem (Charnov, 

1976) in OFT states that individuals should leave such 

depleting patches when the rate of return within the current 

patch is less than the rate of return that is expected from the 

environment at large, given optimal search behavior and 

expected search costs.  

But not all patches only deplete over time—some may 

deplete and replenish (such as a berry bush with new berries 

ripening across weeks), and some may produce a roughly 

constant output for extended periods.  Immobile barnacles 

settled on a tide-pool rock capturing food floating past are 

partaking of such long-lasting patches.  These and other 

animals are known as sit-and-wait foragers (Beachly, 

Stephens, & Toyer, 1995), as once they have found a patch 

location of this non-depleting type they can stay there 

exploiting it for a long time.  In such situations, “simply 

staying put can make good economic sense” (p. 265), but 

leaving is also predicted when patch quality declines or 

other circumstances change, such that the forager could get 

a better rate of return by looking (and exploiting) elsewhere. 

How do relationships compare to these types of patches?  

Some aspects seem typically to start high and deplete over 

time, such as the novelty of a new partner. But others do not 

appear to be capped—there is probably no preset amount of 

satisfaction, love, or trust that one can get in a relationship, 

unlike the fixed number of ripe berries currently in a bush. 

This suggests that various measures of relationship quality 

may not only fall but also can replenish over time, and can 

even stay level or grow indefinitely. 

It is important for specifying the relationship-foraging 

model to determine whether any aspect of relationship 

quality follows the assumptions of OFT regarding particular 

types of patchy resource, whether depleting, or replenishing, 

or constant. A depleting patch should show high (or rapidly 

growing) initial rate of return, then falling over time.  A 

replenishing patch would have a rate of return that falls and 

rises, possibly repeatedly. Finally, a constant patch would 

have a rate of return that rises (possibly very quickly) to a 

roughly steady state. 

In this work, we assess ratings of three types of quality in 

a romantic relationship: satisfaction, love, and trust. We 

examine how these factors change over time, to determine 

which may be useful in predicting relationship dissolution 

given different patch definitions in the relationship-foraging 

model.  The data come from self-reports from intact and 

dissolved romantic relationships. 

Previous research has demonstrated that aspects of 

quality, especially satisfaction, tend to increase dramatically 

at the start of a relationship (Rusbult, 1983) followed by 

relative stability or decreasing levels over time (Levenson & 

Gottman, 1985; Rusbult, 1983; Sprecher, 1999). In one of 

the rare longitudinal works, satisfaction and commitment to 

the relationship increased over time (Rusbult, 1983). 

Sprecher (1999) measured several aspects of quality at 

yearly intervals in couples and found the opposite result: 

Satisfaction was significantly lower for both genders and 

love was significantly lower for men at the first yearly 

interval, but otherwise, ratings were remarkably stable. Only 

the longest-lasting couples (those lasting the full 4 year 

study period) reported an increase in quality, with a slight 

increase in commitment and satisfaction for women in the 

final year. Thus, we expect that longer-lasting relationships 

will report greater satisfaction, and possibly other quality 

variables such as trust, although this pattern will not hold 

for love beyond the earliest time points.  

 These trajectories diverge depending on the eventual 

relationship outcome. Among relationships remaining intact 

(at least, during the duration of a particular study), 

satisfaction and commitment stabilize or slowly increase 

over time (Rusbult, 1983; Sprecher, 1999). Individuals 

exiting a dissolved relationship report decreased satisfaction 

but only slight decreases in love, suggesting relationships 

tend to end due to changes in satisfaction rather than love 

(Sprecher, 1994; Sprecher 1999). These diverging paths lead 

to large disparities in commitment and satisfaction between 

couples remaining intact and those ending (Rusbult, 1983; 

Simpson, 1987). Hence, we expect that reports on 

satisfaction and trust, but not love, to be higher for intact 

than dissolved couples.  

In the next section we analyze the time-course of self-

reported ratings of different types of relationship quality, to 

assess their similarity to rates of return for depleting, 

replenishing, and constant patches. We then use survival 

analysis to test whether these self-reported aspects of quality 

influence the likelihood of exiting a relationship (i.e., 

leaving a relationship patch). 

Method 

A survey was used to assess relationship length versus 

quality of intact and dissolved romantic relationships in 

undergraduates. All procedures were approved by the 

Indiana University Institutional Review Board. 

Participants 

A sample of 700 undergraduates was collected from the 

Indiana University psychology subject pool. To qualify, 

participants needed to have at least one romantic experience, 

including but not limited to casually going on dates, being 

in a committed relationship, or getting married. Forty-five 

participants who indicated they had never been in any sort 

of romantic relationship or did not indicate whether they 

were in a relationship currently were not included in the 

analyses.  Of the remaining 655 participants, 62.0% were 

currently in a romantic relationship. All 655 participants 

indicated the type of relationships they were giving us 

ratings for (whether their current relationship or their most 

recent dissolved relationship); 50.8% were describing 

committed relationships (but not engaged or married),  

44.4%  were casual relationships and early relationships 

without a clear classification, 2.4% were engaged or 

married, and the remaining 2.3% fell outside these 
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categories. Of participants primarily identifying with a 

single racial group (n=616), 72.1% identified as white, 

14.90% as Asian, 8.1% as black, and 4.9% as Hispanic or 

Latino. Subjects were primarily heterosexual (91.3%) 

females (58.6%) between the ages of 18-21 (90.2%). 

Participants were compensated with course credit. 

Measures 

Participants completed a survey for approximately 30 

minutes online through Qualtrics. Participants currently in a 

romantic relationship (intact couples) were asked to 

describe various qualities of their current relationship. 

Individuals not currently in a relationship were asked to 

imagine their most recent romantic relationship prior to its 

dissolution (dissolved couples). Duration of the relationship 

was measured from its current state (for intact couples) or 

its final duration (for dissolved couples) in months (n=395) 

and month- and year-based categorical bins (n=655) (see 

Figure 1).   

Participants reported three measures of relationship 

quality on Likert scales: 

 
 Love: “How in love with your partner are you?” 

 Trust: “How much do you trust your partner?” 

 Satisfaction: “In general, how satisfied are you    

with your current relationship with your partner?” 

 
Love was measured only for participants indicating 

they were in love with their partner (meaning a rating is 

not available for all participants) and ranged from 1 (not 

very) to 9 (intensely) (n=391, M=7.55, SD=1.50). Trust 

ranged from 1 (not at all) to 9 (completely) (n=655, 

M=6.79, SD=2.05). Relationship satisfaction ranged from 

1 (extremely dissatisfied) to 7 (extremely satisfied) 

(n=655, M=5.33, SD=1.75). The upper endpoint for the 

satisfaction scale was different from the other two scales 

because satisfaction is typically measured on a bipolar 7-

point scale (e.g. Simpson, 1987), so scores are compared 

only via correlations.  

Results 

To determine whether love, trust, or satisfaction follow 

appropriate rate of return curves to be considered depleting, 

replenishing, or constant resources as found in foraging 

theory, we plotted their mean trajectories over categorical 

duration groups (see Figures 2, 3, and 4, respectively).  Note 

that each of these trajectories are constructed across 

subjects, as we only have zero or one data point on each 

scale from each subject.  Love (Pearson’s R, r=0.20, n=222, 

p=.003) and trust (r=0.11, n=395, p=.02) both weakly but 

significantly positively correlated with relationship duration, 

but satisfaction did not (r=0.03, n=395, p>.05). This 

suggests that love and trust are generally higher at longer 

relationship durations, while satisfaction is relatively stable. 

The variables were highly intercorrelated, with significant, 

moderate relationships between love and trust (r=0.51, 

n=391, p<.001), love and satisfaction (r=0.29, n=391, 

p<.001), and trust and satisfaction (r=0.48, n=655, p<.001). 

While love showed a dramatic increase over the first few 

months, in line with our prediction, each variable overall 

tended to continually increase slightly as duration grew, 

rather than forming a curve of diminishing returns with a 

plateau (although the curve of trust beyond one year might 

be described as a plateau).  

 

 
 

Figure 1: Distribution of relationship lengths for both 

dissolved and intact relationships. 

 

Comparing dissolved and intact couples’ ratings of each 

variable, intact couples generally had equal or greater 

quality across relationship durations with lower variability.  

Looking at all time points together, there was also greater 

quality for intact over dissolved relationships as a whole 

(Independent Samples T-Test, love: t(391)=5.11, trust: 

t(655)=10.02, satisfaction: t(655)=9.58, all p <.001. 

The rapid initial rise in love overall is driven largely by 

ratings of dissolved relationships, which start at much lower 

levels before plateauing. Intact relationships vary in love by 

little more than a point across durations. This is somewhat 

surprising—were the data longitudinal, we could conclude 

that individuals experiencing strong feelings of love early in 

a relationship are more likely to stay together. However, for 

the present work, we can only say that individuals looking 

back on dissolved, low-duration relationships report them as 

low in love, while those who are still in them report more 

intense feelings of love. Trust shows a slight increase 

overall for both intact and dissolved couples (the few data 

points for 3-5 year dissolved couples makes that mean value 

unreliable). Satisfaction is relatively stable both overall and 

for intact couples, but varies widely, rising and falling, for 

dissolved couples.  
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Survival Analysis 

While the quality-over-time plots are indicative of general 

trends, they do not accurately reflect the outcome of all 

relationships. Many of the currently intact relationships in 

our sample will end after the completion of the study. That 

is, the eventual outcome for these relationships is unknown 

(or censored), and we should not assume that they will 

never end. 

 

 
 

Figure 2: Mean intensity of love for individuals currently 

in an intact relationship, reporting a previous dissolved 

relationship, and overall. Error bars are ± 1 SE. 

 

 
 

Figure 3: Mean intensity of trust for individuals currently 

in an intact relationship, reporting a previous dissolved 

relationship, and overall. Error bars are ± 1 SE. 

 

 
 

Figure 4: Mean intensity of satisfaction for individuals 

currently in an intact relationship, reporting a previous 

dissolved relationship, and overall. Error bars are ± 1 SE. 

 

To more fully assess how each quality variable interacts 

with relationship duration while accounting for these 

possible eventual dissolutions, a survival analysis of 

relationship duration was run using the lifelines package in 

Python 3.5 (Davidson-Pilon, 2016). This analysis measures 

the connection of specified variables with the likelihood of 

relationship dissolution over time by estimating the number 

of relationships currently intact that will eventually dissolve 

at any particular duration.  If a variable has no impact on 

relationship dissolution (and hence inversely duration), then 

it is not likely to be a resource that matters in terms of 

relationship foraging. However, if a resource increases or 

decreases the risk of dissolution (hence, a shorter or longer 

duration, respectively), it is something to be actively 

avoided or sought out, respectively, from the perspective of 

relationship foraging. 

A Cox Proportional Hazard model of relationship 

duration (in months, available for n=395) was fit 

individually to satisfaction, trust, and love to determine how 

they affect the risk of dissolution. Dissolved relationships 

were coded as observed events, and non-numeric durations 

(e.g. “more than 24 months”) were excluded.  

Table 1 shows the coefficients for each factor, which 

indicate the change each factor causes to the baseline hazard 

rate of dissolution based on length of the relationship alone. 

A positive coefficient indicates a heightened risk of 

dissolution relative to the baseline; a negative coefficient 

indicates a reduced risk of dissolution. 

All three variables were significantly predictive of 

reduced risk of dissolution (p<.001), such that individuals 

reporting greater love, trust, or satisfaction would have 

longer relationships on average (with love having the 
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Table 1: Results of the Cox Proportional Hazards model, where the log of the coefficient indicates the proportional 

dissolution risk compared to the baseline hazard rate. 

 

 

greatest impact and satisfaction the least).  This is in line 

with our predictions and corroborates the patterns in Figures 

2-4 while also considering possible eventual dissolutions 

beyond the durations in our data.  

Discussion 

Examining changes in relationship quality over time 

revealed that longer relationships had reliably elevated 

levels of love and trust (but not satisfaction), contrary to our 

predictions. Our findings of satisfaction stability across 

relationship lengths mirror those of Sprecher (1999), while 

our continual rise in trust and love is in line with Rusbult 

(1983)’s pattern of satisfaction increase.   

As we expected, intact relationships showed significantly 

higher and more consistent rates of return in trust and 

satisfaction than dissolved relationships, in line with 

findings by Rusbult (1983).  However, contrary to 

expectations, love was also higher in intact couples than 

dissolved couples. Sprecher (1994) previously found that 

love, but not satisfaction, generally remains high for 

dissolved couples, suggesting dissolution may be based on 

satisfaction alone. Results from our survival analysis 

showing that greater love was associated with lower 

likelihood of dissolution also countered Sprecher’s finding. 

All three variables were thus higher in intact than dissolved 

relationships, and were predictive of dissolution. This 

suggests that these dyadic relationship factors may be used 

as criteria for choosing when to exit a relationship, or may 

co-vary with other factors predictive of dissolution.  

The goal of this work was to examine whether particular 

aspects of relationship quality follow the time courses 

expected for depleting, or replenishing, or constant resource 

patches, to enable characterization of a relationship-foraging 

model (Cohen & Todd, 2017).  The three qualities of love, 

trust, and satisfaction show rising levels over time on 

average for all relationships (intact and dissolved), 

suggesting that they are replenishing resources.  It is 

important from a foraging perspective though to consider 

dissolved relationships separately, where a decision to leave 

the relationship-patch was made by at least one party; there 

love seems to plateau, suggesting a constant resource, while 

trust and satisfaction may actually decrease somewhat at the 

longest duration, suggesting depletion.  Here more data is 

needed to better specify the form of these functions and 

what kind of patches they may conform to. 

How might individuals use different aspects of quality to 

choose when to leave a relationship patch? If relationships 

are like depleting patches, then OFT predicts that people 

will usually decide to leave and break up the relationship 

when its quality declines below the level they could expect 

to get elsewhere, without necessarily having any other 

relationship to move to.  If relationships are like non-

depleting sit-and-wait patches, then people would not be 

expected to leave while quality remains constant (or grows), 

but if they encounter another potential relationship of 

possibly higher value this could prompt a shift to that new 

patch, depending on switching costs. These strategies could 

make use of key cognitive comparison abilities.  

First, while individuals would benefit from being able to 

accurately track their current relationship quality over time, 

previous work suggests that they may not be good at it 

(Sprecher, 1999). Regardless of the actual change in 

relationship quality, humans have a tendency to say that 

things have changed for the better. Individuals reporting 

annual current ratings of love and satisfaction for four years 

show very little significant differences between temporal 

samples, but report increases when asked how their feelings 

have changed over time (Sprecher, 1999). This suggests that 

individuals are not especially accurate at recalling past rates 

of return from a relationship, at least explicitly.  However, 

given the relatively stability of quality after the first few 

months, individuals could conceivably hold a single average 

of quality and accurately characterize the overall quality of 

the relationship.  Searchers are generally sensitive though to 

the rates of return from other possible relationships 

(interdependence theory; Thibaut & Kelley, 1959). That is, 

one’s satisfaction with a relationship’s quality can depend 

on comparison to the quality one could expect from 

currently available alternative mates (Rusbult, 1983; 

Simpson, 1987; Thibaut & Kelley, 1959).  Thus we might 

expect relationship-leaving strategies to depend on 

comparison to other current possibilities or to averages of 

past experienced quality levels. 

Second, by comparing the current relationship quality to a 

single previous average level or to the expected level of 

another currently possible relationship, individuals can use a 

simple aspiration value heuristic to assess the value of 

staying in their current relationship. Previous work in 

romantic partner choice shows individuals use aspiration-

level heuristics when choosing to enter a new relationship 

based on the attractiveness of potential mates at speed-

dating events (e.g. Beckage et al., 2009), so conceivably, 

this mechanism may apply to choosing to exit a relationship 

as well. The decision threshold could be based on the gap in 

Variable Events/Observations Cox Coefficient (β) eβ    p 95% CI 

Love 73/221 -0.432 0.649 <.001 -0.649 to -0.216 

Trust 184/395 -0.391 0.677 <.001 -0.512 to -0.270 

Satisfaction 184/395 -0.285 0.752 <.001 -0.409 to -0.161 
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quality between successful and unsuccessful relationships 

over time. In our data, the size of this gap generally 

increased over time, which would predict continual 

dissolutions over time. Individuals may also consider the 

length of time spent below an aspiration value, given that a 

large gap between initial and long-term quality (for love, at 

least) is expected in all relationships in the early stages. 

Relationships may be a different type of patch from just 

depleting or non-depleting: one where the quality level 

(return rate) increases the more the forager puts effort into it 

(up to a point).  Moreover, the forager does not usually 

know how high the return rate will grow until they get there. 

(nor know how low the return may fall if it ever does start to 

decline).  How should an individual decide whether to stay 

in such a situation?  This may depend on how rapidly the 

rate of return is increasing or decreasing at particular stages 

of the relationship as a consequence of particular amounts of 

effort.  New models will be needed to explore this, going 

beyond some of the strong simplifying assumptions made in 

existing models of non-depleting patch foraging.  For 

instance, rather than having patches switch from being good 

to being bad instantaneously and searchers switch from not 

knowing anything about the return rate to knowing it 

precisely (Beachly et al., 1995), more realistic models for 

relationship foraging should include gradual change in rates 

of return and gradual learning of those rates. 

A limitation of this work is that each relationship quality 

variable was measured at only one point, so intra-individual 

change in quality cannot be examined. Instead, we 

calculated the expected curves of returns over time using 

population averages. These patterns of change in quality do 

though mirror those from related longitudinal work. While 

not ideal, this replication provides some reassurance that 

using single observations per individual gives a relatively 

realistic representation, at least of the overall shapes of these 

curves, though future iterations of this model should use 

longitudinal data. Relatedly, there could have been 

systematic differences in ratings between those participants 

who were currently in relationships and so were asked to 

give current ratings, and participants who were not currently 

in relationships and so were asked to recall ratings from 

their earlier, now-dissolved relationship.  For participants 

asked to recall their ratings of quality prior to their 

previously relationship’s breakup, it is inevitable that this 

type of recall could skew ratings of quality, likely 

negatively. In addition, ratings could differ depending on 

who initiated dissolution.  If the person did the breaking up, 

then they may rate their relationship quality as decreasing 

before the breakup; but if the person was on the receiving 

end, they may not rate quality as declining so much.  

Getting data from both parties in multiple relationships 

would help address this issue.  We only asked for ratings of 

love from those participants who indicated they were in 

love, which may have skewed results positively (although 

they still showed a significant difference between intact and 

dissolved relationships).  Finally, this work used a college 

sample, and the results may not generalize to the overall 

population, especially given that most college students are 

not yet old enough to have had many long-term 

relationships. 

Using a new framework, relationship-foraging modelling, 

and a technique that is relatively uncommon in cognitive 

science research, survival analysis, we found that some 

aspects of relationship quality may be considered depleting 

or replenishing resources from a foraging perspective, 

depending on how the relationship proceeds.  Further 

research will explore whether thinking about relationships 

in terms of resource-filled patches that people can exploit 

and deplete or work to replenish themselves over time can 

help us understand how and when couples decide to stay or 

leave to forage for greener pastures. 
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Abstract 

Sensitivity to the causal structure underlying phenomena is 
critical to expert understanding. Fostering such understanding 
in learners is therefore a key goal in education. We 
hypothesized that observing analogical gestures—which 
represent relational information in visuospatial format—
would lead learners to notice and reason about underlying 
causal patterns, such as positive and negative feedback. 
Participants watched brief video lectures about the human 
body and the plant kingdom, which were delivered along with 
gestures representing either: 1) visuospatial details (iconic 
gesture condition); or 2) relational structure (analogical 
gesture condition). In a subsequent classification task, relative 
to participants who saw iconic gestures, participants who saw 
analogical gestures were more likely to sort the phenomena 
described in the videos—as well as novel phenomena—by 
their causal structure (e.g., positive feedback). The results 
suggest that analogical gestures can be harnessed to foster 
causal understanding. 

Keywords: analogy; relational reasoning; gesture; learning; 
complex systems  

Introduction 
A deep understanding of any complex phenomenon—from 
the ebb and flow of the tides, to the rise and fall of blood 
pressure—requires an understanding of the causal structure 
that gives rise to it (Lagnado, Waldmann, Hagmayer, & 
Sloman, 2007; Mackie, 1980; Sloman, 2005). Yet this is no 
trivial task. The causal relations that govern phenomena 
throughout the physical and social world are often 
embedded in a wealth of concrete, causally irrelevant 
particulars (e.g., Rottman, Gentner, & Goldwater, 2012). 
Thus a key question for cognitive scientists and educators 
alike is: How do people come to understand causal 
structure, and how can we foster this understanding? 
 We focus here on an important arena of causal 
understanding: namely, causal systems—abstract patterns of 
causation, such as positive and negative feedback, that occur 
in a wide range of phenomena (Fernbach & Sloman, 2009; 
Rottman, Gentner, & Goldwater, 2012; see also Day, Motz, 
& Goldstone, 2015). Feedback systems can be found in the 
human body, in household appliances, in economic markets, 
and in plant physiology, to name just a few domains. For 

example, in a simple two-factor positive feedback system, 
an increase in one causal factor causes an increase in a 
second factor, which in turn causes an increase in the first 
factor; in a negative feedback system, an increase in one 
causal factor causes an increase in a second factor, which 
then causes a decrease in the first factor. The challenge such 
systems present for a learner are considerable: To notice, for 
instance, the abstract causal likeness between human 
perspiration and a flush toilet—i.e., that both involve 
negative feedback—one has to look past a host of 
visuospatial and sensory differences between the two. One 
way that expertise in noticing such causal patterns comes 
about is through repeated opportunities to compare 
examples across domains, as happens over an extended 
science education (Rottman et al., 2012). Indeed, such a 
process can be induced in the laboratory by having learners 
analogically compare disparate examples of causal systems 
(Goldwater & Gentner, 2015), much as comparison can 
promote relational learning more generally (Christie & 
Gentner, 2010; Doumas & Hummel, 2013; Gentner, 
Loewenstein, Thomspson, & Forbus, 2009; Gick & 
Holyoak, 1983; Jung & Hummel, 2011; Kotovsky & 
Gentner, 1996; Kurtz, Boukrina, & Gentner, 2013).  
 Here we explore a less-studied route through which it 
may be possible to foster causal understanding: analogical 
gestures. In previous work, we found that, people produce 
gestures in abundance when explaining feedback systems 
(Cooperrider, Gentner, & Goldin-Meadow, 2016). These 
gestures were analogical in that they used space, not to 
represent concrete spatial details, but to represent relational 
structure: they used locations to distinguish causal factors, 
motion to show increases and decreases to those factors and 
causal relationships between them, and complex movements 
to summarize the overall relational structure of the systems. 
Strikingly, these gestures occurred in abundance even 
though participants were explaining systems that were not 
inherently spatial and were, by design, devoid of the kinds 
of concrete details that usually prompt gestures. These 
laboratory findings provide insights into how people express 
spatial analogies in gesture, and also raise an important 
further question: Might using such analogical gestures 
during instruction foster understanding of causal patterns? 
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 Gesture is ubiquitous in everyday conversation as well as 
in the classroom (Goldin-Meadow, 2003). Despite being 
more implicit than speech (McNeill, 1992), gesture is an 
important medium for communicating ideas (Hostetter, 
2011), including abstract ideas about relational structure 
(Jamalian & Tversky, 2012). Moreover, gesture has been 
found to boost learning in a range of content domains (Ping 
& Goldin-Meadow, 2008; Singer & Goldin-Meadow, 2005; 
Valenzeno, Alibali, & Klatzky, 2003). While prior studies 
have focused on gesture’s consequences for young learners, 
gestures conveying abstract concepts have also been attested 
in lectures to older students, in disciplines ranging from 
literary studies to mathematics (Corts, 2006; Mittelberg, 
2008; Núñez, 2008).  
 Importantly, the gestures used in everyday 
communication and the classroom come in different 
varieties, and may not all be equally effective in conveying 
ideas about causal structure. A first type is iconic gestures. 
These are produced in the course of explaining concrete, 
visuospatially rich content, and are used to represent size 
and shape, location, motion, and spatial relationships 
(Alibali, 2005; Alibali & Hostetter, 2008; McNeill, 1992). A 
second type of gesture is more abstract, using location, 
motion, and spatial relationships to represent ideas and 
relationships that are not inherently spatial. Such gestures 
include those described in our prior work on explanations of 
feedback systems (Cooperrider, et al., 2016), and also a 
range of other content domains (Cienki & Muller, 2008; 
Cooperrider & Goldin-Meadow, 2017; Goldin-Meadow, 
2003). It is this latter type—analogical gestures—that we 

predict would lead observers to notice and reason about 
causal structure. Iconic gestures, by contrast, may have no 
effect on causal understanding, or may even hinder it by 
highlighting concrete particulars. 
 In the present study, we test the idea that analogical 
gestures can be used to foster understanding of causal 
systems—patterns which are often buried beneath concrete 
particulars. To this end, we created two sets of short video 
lectures: one in which an actor accompanies his 
explanations of phenomena in the human body and plant 
kingdom with iconic gestures that depict concrete 
visuospatial details (iconic gesture condition); another in 
which the actor accompanies his explanations with 
analogical gestures depicting relational structure (analogical 
gesture condition). We hypothesized that participants in the 
analogical gesture condition would be more likely to notice 
the underlying causal structure of the phenomena described 
in the lectures and, moreover, that these participants would 
be more likely to discern causal structure when 
encountering novel phenomena.    

Methods 

Participants 
60 undergraduate students from Northwestern University 
participated in exchange for course credit. 15 participants 
were eliminated for failing a video comprehension check 
(described below), and two were eliminated for admitting 
during debriefing that they listened to the audio but did not 
watch the screen. In all, 43 participants (21 iconic condition, 

 
 

Figure 1: A selection of gestures from one of the video explanations, describing the phenomenon of anxiety attacks. In the 
version seen by participants in the iconic condition, all the gestures represented concrete aspects of the phenomenon (panels 
a, b, and d); in the version seen in the analogical condition, the gestures represented the two causal factors (e) and the 
pattern of increase and decrease to those factors (f and h). For all phenomena, the contrasting versions of the explanations 
used the same number of gestures, included beat gestures in the same places (c and g), and used an identical audio track.  
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22 analogical condition; 24 men; M age = 18.7 years) were 
included in the analyses. 

Materials and procedure 
Video Stimuli Drawing on materials from prior studies 
(Rottman et al., 2012; Smith & Gentner, 2014), we 
developed short descriptions of four phenomena: anxiety 
attacks (a positive feedback system within the domain of the 
human body); blood pressure regulation (negative feedback, 
human body); bracken fern growth (positive feedback, plant 
kingdom); and prayer plant cycles (negative feedback, plant 
kingdom). The descriptions balanced concrete details (e.g., 
for the anxiety attacks description: the “heart feeling like it 
is pounding”) with clues to causal structure (“this will lead 
to even more intense symptoms”). We filmed an actor 
delivering each of these (~45 sec) explanations in two 
versions: one with iconic gestures depicting concrete aspects 
of the phenomenon described, and one with analogical 
gestures representing the causal factors involved in the 
phenomenon and the behavior of those factors (Fig. 1). The 
iconic gestures were based on the actor’s intuitions about 
what would be most natural; the analogical gestures were 
inspired by the gestures produced spontaneously by 
participants when describing highly abstract versions of 
feedback systems (Cooperrider et al., 2016). For each 
phenomenon, the two versions had the same number of 
target—i.e., iconic or analogical—gestures (5-7 per 
explanation), as well as the same number of beat gestures 
(2-3), which were included to make the explanation more 
naturalistic. Finally, to control for differences in prosody, 
the audio track of the actor speaking was identical in the two 
versions. This was achieved by: 1) recording a primary 
audio track, 2) filming the actor talk and gesture in sync 
with the primary track while it played, 3) aligning the video 
with the primary track and removing the secondary audio.   
 
Classification Task We developed a phenomenon 
classification task inspired by the Ambiguous Sorting Task 
(AST) used in prior studies (Rottman et al., 2012; 
Goldwater & Gentner, 2015). Participants were first 
presented with written descriptions of three new 
phenomena: blood clots (positive feedback, human body); 
spotted knapweed growth (negative feedback, plant 
kingdom); and internet routers (common cause, technology). 
These three phenomena served as the “seed” categories into 
which further descriptions would have to be classified. The 
central feature of the task, as with the AST variants used 
previously, is that nature of the categories is up to the 
participant to decide: the seed phenomena represent three 
different domains as well as three different causal structures, 
thus affording both kinds of classification. 

After reviewing the seed phenomena, the participant 
classified eight further written descriptions, one at a time. 
Four of these were descriptions of novel phenomena; the 
other four were written versions of the videos watched 
earlier. Note that only six of the phenomena were “critical” 
in that classifying by domain and by causal structure were 

mutually exclusive: all four novel phenomena and two of 
the familiar ones (blood pressure, bracken fern). The other 
two familiar phenomena (anxiety, prayer plants) shared the 
same combination of domain and causal structure as the 
seed phenomena (e.g., anxiety attacks and blood clotting are 
both in the domain of the human body and both positive 
feedback systems).  
 
Other Assessments Participants completed two further 
assessments of causal system understanding: a battery of 
inference questions and a diagram task. Both concerned 
only the four phenomena familiar from the videos. For the 
inference battery, participants answered eight questions (two 
per phenomenon) querying general behaviors of—and 
predictions about—the systems described. For the diagram 
task, participants were shown contrasting diagrams of 
positive and negative feedback, with a detailed explanation 
of the symbols used (e.g., plus and minus signs). 
Participants were then asked to match each of the videos 
seen previously to the correct diagram.  
 
Procedure All video stimuli and assessments were 
implemented in Qualtrics and displayed on a desktop 
computer. The experiment started with a brief video 
introduction by the lecturer, which was the same for both 
conditions. Participants then watched the four videos in a 
fixed order, in the versions corresponding to their condition 
assignment, i.e., for a participant in the iconic condition, the 
iconic gesture versions of all four explanations. After 
watching each video, participants answered two multiple-
choice questions about their basic content (e.g., which 
symptoms of anxiety were mentioned). These questions 
were intended as an attention check, and participants who 
got one or more wrong were excluded.  
 After the final video, participants proceeded to the 
classification task. The seed phenomena were presented as 
fixed blocks of text on the screen; the to-be-classified 
phenomena were presented, one at a time, on moveable 
digital “cards.” Participants were instructed to: “Decide 
which of the descriptions [i.e., the seed phenomena] the card 
[i.e., the to-be-classified phenomenon] is most similar to, 
and drag it to that pile.” The eight phenomena were 
presented in a fixed order, with the four novel ones first, 
followed by the four familiar ones. We had participants sort 
the novel phenomena first to encourage them to think deeply 
about the task, rather than sort by first impulse. After the 
classification task, participants completed the inference 
question battery and the diagram task, both in a fixed order, 
and were debriefed. In all, the task took around 20 minutes. 

Results 

Classification Task 
Our primary measure was the mean proportion of 
phenomena that participants classified by domain (human 
body, plant kingdom, or technology), by causal structure 
(positive feedback, negative feedback, or common cause), 
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or by other criteria. We first considered only the six critical 
items—that is, those for which classification by domain or 
by causal structure were mutually exclusive. Participants in 
the iconic gesture condition classified a higher proportion of 
the critical phenomena by domain than did participants in 
the analogical gesture condition (iconic: M = .37, SD = .20; 
analogical: M = .19, SD = .16; t = -3.2, df = 41, p = .003, 
Cohen’s d = -0.98). Conversely, participants in the 
analogical gesture condition classified a higher proportion 
of the critical phenomena by causal structure than did 
participants in the iconic gesture condition (analogical: M = 
.64, SD = .18; iconic: M = .47, SD = .20; t = 3.02, df = 41, p 
= .004, Cohen’s d = 0.92) (Fig. 2). Participants in the two 
conditions sorted by some other criterion to the same extent 
(iconic: M = .17, SD = .15; analogical: M = .17, SD = .15; t 
< .001, df = 41, p = 1). Importantly, the same pattern of 
significance holds when looking only at the four novel 
phenomena (by domain: p = .01; by causal structure: p = 
.01; by other: p = .88). Indeed, for all eight phenomena, a 
higher proportion of participants in the analogical gesture 
condition sorted by causal structure than did participants in 
the iconic gesture condition. 
 To get a better sense of individual participants’ 
classification behavior, we also zoomed in on the two 
critical phenomena that were featured in the videos: blood 
pressure regulation and bracken fern growth. Note, again, 
that to classify these by causal structure, participants had to 
resist the temptation to group the blood pressure description 
with the human body seed (blood clots) and the bracken fern 
description with the plant kingdom seed (spotted 
knapweed). Yet not a single participant in the analogical 
gesture condition classified both these phenomena by 
domain, compared to six participants in the iconic gesture 
condition who did (two-tailed Fisher’s exact, p = .009) 

Other assessments 
Inference Question Battery Participants in both conditions 
answered the majority of inference questions correctly and 
at close to ceiling, with no difference between the 
conditions (iconic: M = .90, SD = .12; analogical: M = .86, 
SD = .13, t = -1.09, df = 41, p = .28). 
 
Diagram Task Participants in both conditions answered the 
majority of diagram questions correctly and at close to 
ceiling, but with those in the analogical gesture condition 
performing marginally better (iconic: M = .80, SD = .19; 
analogical: M = .89, SD = .13, t = 1.82, df = 41, p = .08).  

Discussion 
The present study investigated the hypothesis that seeing 
certain types of gestures would lead observers to notice and 
understand causal structure. Specifically, we expected that 
analogical gestures, which represent relational structure 
spatially, would foster understanding of causal structure 
better than would iconic gestures, which represent concrete 
visuospatial details. This hypothesis was borne out. 
Participants in the analogical gesture condition noticed the 
causal structure of the phenomena described in videos, and 
were also more likely to notice causal structure in entirely 
new phenomena. Given the design of our classification task, 
this was no easy feat. To classify by causal structure, 
participants had to look past compelling differences of 
content to find deeper similarities, or look past compelling 
content similarities to discern deeper differences. Our prior 
work showed that people spontaneously produce analogical 
gestures when explaining causal systems; the current study 
builds on these findings to show that such analogical 
gestures have important consequences for learning. 
   Our leading interpretation of the present findings, again, 
is that observing analogical gestures led participants to 
notice and reason about causal structure. A second—and not 
mutually exclusive—possibility is that the concrete gestures 
in the iconic condition hindered participants from the 
discerning the underlying relational structure by lavishing 
them with vivid details. Follow-up studies with a “no 
gesture” control condition would clarify whether our two 
gesture conditions are indeed pulling observers in opposite 
directions or, if not, which gesture type is driving the 
observed pattern of results. This question is of clear 
theoretical interest, but we also note that, in teaching 
contexts, gesture is ubiquitous, perhaps even inevitable. 
Thus, from a practical perspective, the important question is 
not whether teachers should gesture about the phenomena 
they are explaining, but how. Our results suggest that iconic 
gestures, as natural as they are, may not always be the best 
choice. It may be that the best instructors already intuit this, 
using gestures that highlight relational structure when 
possible.  

By what specific mechanism(s) did analogical gestures 
have their beneficial effects? We hypothesize that these 
gestures helped convey the causal content of each 
phenomenon by capturing it in schematic spatial form. 

 
Figure 2: The mean proportion of critical phenomena 
classified by domain, by causal structure, or by other 
criteria in the two gesture conditions. Error bars represent 
standard error of the mean. 
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Indeed, space is a familiar and intuitive format in which to 
represent and reason about relational structure (e.g., Gattis, 
2004; Tversky, 2011). But we think there may have also 
been another important reason for the efficacy of analogical 
gestures: namely, that they invited comparison and uniform 
representation across the scenarios. Participants in the 
analogical gesture condition viewed four videos, all 
featuring qualitatively similar gestures. For example, all 
four parsed the phenomena into causal factors by 
establishing locations in space, and all showed the increases 
and decreases to those factors as vertical movements. The 
gestures in the iconic gesture condition also had some 
commonalities across videos (e.g., the gestures in both 
human body videos indexed body parts), but they were 
hardly as schematic and alignable. Prior work has shown 
that using the same words in superficially different contexts 
prompts observers to compare those contexts (Clement, 
Mawby, & Giles, 1994; Gentner, 2003), and using similar 
gestures across different examples may have similar effects. 
The idea that such a mechanism drives the current results is 
consistent with earlier findings that prompting people to 
compare examples of feedback systems fosters causal 
understanding (Goldwater & Gentner, 2015). Thus, while 
we refer to the abstract gestures in the present study as 
“analogical” because they rely on a structured mapping 
between spatial structure and relational structure 
(Cooperrider et al., 2016), they are also “analogical” in 
another sense: they invite observers to form analogies across 
the different contexts in which they are used. Future studies 
might assess these mechanisms by comparing a condition in 
which the analogical gestures are qualitatively similar and 
thus alignable across lessons—as in the present study—with 
a condition in which the analogical gestures are more 
heterogeneous and thus less alignable. 

What makes the present findings perhaps surprising is that 
co-speech gestures are largely implicit (Goldin-Meadow, 
2003; McNeill, 1992). People seem to produce gestures 
spontaneously and unreflectively, and do not always notice 
the ones that others produce. Indeed, when we queried 
participants at the end of the present experiment about what 
they thought of the lecturer’s gestures, several participants 
demurred, saying that they “didn’t notice them.” And yet, 
despite this “under the radar” quality, these gestures have 
clear consequences for learning (for a recent review, see 
Novack & Goldin-Meadow, 2015). Another question for 
further research is whether the implicit nature of gesture is 
key to its benefits. Would the techniques that speakers use 
to make gesture more salient—e.g., looking at their own 
gestures (Cooperrider, 2017)—make gesture even more 
powerful in instruction? And would more explicit forms of 
visuospatial communication, such as diagrams (Novick, 
2003; Tversky, 2011) or sketches (Forbus, Usher, Lovett, & 
Wetzel, 2011), also be effective in fostering causal 
understanding?  

Conclusion 
Sensitivity to causal structure is a hallmark of expert 
understanding. Discovering how to foster such sensitivity is 
an important goal for cognitive scientists and educators 
across the natural and social sciences. Our results suggest 
that a ubiquitous dimension of communication—gesture—
might be harnessed to this end. Analogical gestures like 
those in the present study have been elicited in the lab 
(Cooperrider et al., 2016), but their importance in 
instruction has not been investigated. The present findings 
offer first steps toward figuring out whether those gestures 
have consequences for learners and, if so, why. 
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Abstract 

Spatial construction—creating or copying spatial 
arrangements—is a hallmark of human spatial cognition. 
Spatial construction appears early in development, predicts 
later spatial and mathematical skills, and is used throughout 
life. Despite its importance, we know little about the cognitive 
processes underlying skilled construction. Construction tasks 
are highly complex but analyses have tended to focus on 
broad-stroke measures of end-goal accuracy. In this paper we 
introduce a novel behavioral coding formalism to characterize 
an individual’s entire construction process, examine many 
individuals’ processes in aggregate, and summarize patterns 
that emerge. The results show high consistency at certain 
points occurring throughout the construction, but also indicate 
flexibility in the interim paths that lead to and diverge from 
these points. Our approach offers a new method that can more 
precisely describe the behavioral patterns observed during 
construction in order to reveal the underlying cognitive 
processes engaged, and capture individual differences in 
building expertise. 

Keywords: spatial skills; spatial cognition; block copying; 
computational model 

Introduction 
Spatial construction—the activity of creating novel spatial 
arrangements or copying existing ones—is a hallmark of 
human spatial cognition. These activities naturally occur 
during childhood and adolescence and are related to later 
achievements in science, technology, engineering, and 
mathematics (STEM) fields (Hsi, Linn, & Bell, 1997; Kell, 
Lubinski, Benbow, & Steiger, 2013; Verdine, Golinkoff, 
Hirsh-Pasek, Newcombe, et al., 2014). Moreover, spatial 
play during early schooling—including spatial building 
tasks—contributes to school readiness (Verdine, Golinkoff, 
Hirsh-Pasek, & Newcombe, 2014; Wai, Lubinski, & 

Benbow, 2009), developmental of logico-mathematical 
abilities (Casey et al., 2008; Cheng & Mix, 2012; Nath & 
Szücs, 2014), and math performance in middle and high 
school (Stannard, Wolfgang, Jones, & Phelps, 2001; 
Wolfgang, Stannard, & Jones, 2003). 

Despite the importance of spatial construction skills, little 
is known about the cognitive processes underlying their 
origins and development. Part of the reason for this is that 
spatial construction skills are highly complex, yet the 
cognitive characterization of these skills and their 
measurement has been quite limited. For example, although 
evaluation of block construction tasks has long been 
recognized as an important assessment of spatial skills 
(Bailey, 1933), most methods of assessment only evaluate 
the end product (accuracy), and fail to measure the 
construction process. Studies have generally reported broad 
stroke outcome measures such as time to complete a 
structure (Akshoomoff & Stiles, 1996; Frick, Hansen, & 
Newcombe, 2013), binary measures of block placement as 
correct or incorrect (Brosnan, 1998; Hoffman, Landau, & 
Pagani, 2003; Stiles & Stern, 2001), or summary ratings for 
the complexity, planning, or organization of free-play block 
designs (Caldera et al., 1999; Casey & Bobb, 2003; Stiles-
Davis, 1988; Stiles & Stern, 2001). Even studies that aim to 
characterize development of construction processes or 
strategies have used analytic categories that are limited in 
their generality for understanding construction. For 
example, some have suggested that children start with 
simple iterative methods (i.e. stacking blocks on top of one 
another), then move to sequential combinations of methods 
(i.e. first creating a line of blocks next to one another, then 
creating a stack), and finally come to flexibly shift between 
multiple methods (Stiles-Davis, 1988; Stiles & Stern, 2001; 
Stiles, Stern, Trauner, & Nass, 1996). These 
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characterizations tell us little about the step-by-step 
processes that the user takes when carrying out a complex 
construction, nor how the ever-expanding set of outcomes 
grows over time. 

More recent studies have attempted to provide a more 
precise characterization of the process occurring during 
construction. Verdine and colleagues characterized 
children’s placement errors, including whether a block was 
placed in the correct layer, in correct orientation relative to 
other blocks, and with the correct attachment studs 
connected (Verdine, Golinkoff, Hirsh-Pasek, Newcombe, et 
al., 2014; Verdine, Golinkoff, Hirsh-Pasek, & Newcombe, 
2016). Researchers in computer science have generated 
step-by-step instructions for assembling block models based 
on physical constraints such as avoiding ‘floating blocks’ 
not supported from below (Zhang, Igarashi, Kanamori, & 
Mitani, 2016). Both studies begin to characterize the 
temporal and incremental nature of block construction. 

Each of the approaches discussed above provides a 
description of the accuracy of a block construction at points 
intermediate to building or at the end; but none provides a 
characterization of an individual’s complete construction 
process. Yet, variability and/or consistency across 
individuals’ construction processes may reveal much about 
the underlying cognitive and perceptual abilities and biases 
that influence the builder’s construction choices. 

The incremental process of adding blocks to a structure 
can unfold in many ways, with different strategies leading to 
the same successful solution. Some of this variation may be 
unimportant—merely small tweaks in the options one can 
use to complete a construction. Other aspects of variation 
are likely to reflect important cognitive processes. For 
example, limitations of attention and memory make it likely 
that certain strategies or processes will be preferred as they 
may reflect more efficient use of available cognitive 
resources (Ballard, Hayhoe, Pook, & Rao, 1997). Certain 
strategies may also reflect the builder’s understanding of the 
physical principles engaged during building. For example, 
the effect of gravity could bias the builder to construct from 
the bottom layer upwards (Zhang et al., 2016). Finally, 
construction strategies may be related to perceptual or 
semantic groupings of the blocks within the structure. The 
sub-parts which the builder chooses to construct, and the 
order in which they are created may be driven by the 
builder’s perceptual parsing of the model being copied. 
More generally, there may be systematic commonalities in 
the construction paths that builders use, and these may vary 
depending on the builder’s level of skill. 

Understanding the principles underlying construction 
requires methods that can characterize the builder’s full 
construction process. Ideally, the best analysis would 
completely describe the entire construction process, 
capturing any imaginable construction outcome as well as 
each step of building along the way. This kind of 
characterization would be as relevant for a simple stack of 
blocks as it would be for an elaborate castle or an abstract 
collection of connected pieces. 

To our knowledge, such methods have never been 
reported. Therefore, in this paper, we report a new method 
for characterizing the precise nature of processes involved 
when people carry out a relatively simple construction task: 
using blocks to copy a target model. To do this, we ask 
adults to carry out a simple building task, using a set of 
Duplos™. We describe our new method for coding block 
construction behavior that uses a novel computer interface. 
Our method characterizes each partial assembly created 
during the building process as a step taken along a path 
from the start to the end of construction. We then evaluate 
common states and predominant path types traversed by 
adults as they move through the construction process. 
Finally, we make inferences about the underlying cognitive 
mechanisms engaged during block construction. 

Method 

Participants 
Twenty-seven healthy adults 18-53 years old (M = 21;4, SD 
= 6;6) participated in the study. A university ethical review 
board approved the study’s procedures, and all participants 
provided informed consent. 

Materials 
Participants were asked to copy six different block models 
of varying size, each consisting of 4, 6, or 8 blocks. Each 
participant copied each of the six models in randomized 
order, but always began with the two smallest models 
(models 1 and 2). Figure 1 shows each of the six models. 

We used Duplo™ blocks for the construction copy task. 
These blocks were chosen for several reasons. First, the 
attachment mechanism allowed the blocks to be connected 
to each other in fixed ways. The attachment studs permitted 
precise specification of the relationships between blocks 
above and beside one another. In addition, the limited set of 
colors (red, yellow, green, blue) of each shape (2x2 square, 
4x2 rectangle) were ideal for the precise measurement 
system we developed.  

 
 
Figure 1: The block models used in this study. Models 1 and 
2 contain four blocks, models 3 and 4 contain six blocks, 
and models 5 and 6 contain 8 blocks. 

We mounted a PrimeSense Carmine RGBD camera in an 
overhead configuration to record participants’ behaviors as 
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they carried out the construction task, at a rate of 30 frames 
per second. All videos were coded using our annotation 
interface. The coder viewed the video recording frame-by-
frame on a desk-top computer. 

Procedures 
Participants were seated at a table marked with an outline of 
a rectangular area (14.75 x 24.00 in.) in which they 
completed their block construction copy. During data 
collection, the experimenter observed participants in real 
time on a video display monitor. A vertical black barrier 
was placed on the table behind the construction area to 
obscure the video display monitors from the participant and 
to avoid distraction. Figure 2 shows the testing equipment 
setup used for the study. 

In the procedure, the experimenter first placed the model 
at a 45° angle in the rear left corner of the marked 
construction area on the table. Each model was presented in 
a standardized orientation so that the greatest number of 
model surfaces were visible to the participant. Then, the 
experimenter placed the corresponding loose blocks on the 
table in the center of the construction area by emptying 
them from a small bag. This ensured random starting 
positions for each of the blocks used to construct the copy. 
Participants were instructed to take their time and to copy 
the model, building as efficiently and accurately as possible. 

 

 
 
Figure 2: Overhead camera and blocks set up for the block 
copying task. The model was placed at the rear left of the 
table, and blocks for the copy construction were placed at 
the center.  

Analytic Rationale 
To account for the broad range of construction behaviors 
and resulting complex patterns in the copy, we developed a 
new behavioral coding system, executed in a custom 
designed computer interface. The video frames for each trial 
from each participant were coded as a series of actions, each 
of which culminated in a state. Each action captured the 
start and end time of a change made to the copy as it was 
being constructed. Actions could be comprised of a single 
relationship, such as placing two blocks adjacent on the 

table. Other actions included a complex set of simultaneous 
relationships such as adding a single block in a location that 
was both above and beside other blocks. Actions could be 
constructive, such as adding a block or connecting multiple 
parts, or deconstructive, such as removing a block or 
separating a structure into two parts.  

Each relationship was defined specifically by the set of 
attachment studs involved. For example, if two rectangle 
blocks were placed horizontally adjacent to each other along 
the principal (long) axis, then four studs on each block 
would be involved in the adjacency. Alternatively, if they 
were attached along the secondary (short) axis, only two 
studs on each block would be implicated. Block studs were 
identified according to the column and row on each block, 
so the coded data specified the exact relationship between 
sets of two blocks. 

Each action modified the environment to result in a new 
block state, defined as a set of block attachments present in 
the copy. Since the construction process occurred over time, 
each action included a time stamp that allowed block states 
to be ordered. Here, we refer to the ordered sequence of 
states over time as a construction path, where actions 
represent transitions connecting one state to the next. To 
illustrate, Figure 3a shows six observed states (illustrated as 
images of block configurations) and 11 observed actions 
(directed arrows). Any set of arrows that lead from the first 
null state to the final correct copy state could comprise a 
construction path.  

Data analysis 
One researcher coded all videos. The initial state of the 
model was always a null state in which no blocks were 
connected. Each other state along the path to the final copy 
was attained via a constructive or deconstructive action 
taken at the preceding state. Since each participant could 
take any number of actions, construction path length was 
not balanced across individuals. We also used the coded 
data to count the number of unique state transitions for all 
participants in aggregate. Results of the analysis are 
described below. Principles of the results are true across all 
six models, but we illustrate using two models as examples. 

Results 
Overwhelmingly, the most common actions were correct 
single-block placements over time. Participants tended to 
take efficient paths that traversed an average of just over n-1 
states for a model that contains n blocks. This held true for 
all six of the models, including the four-block models 1 and 
2 (M = 3.3, SD = 0.9 and M = 3.1, SD = 0.6, respectively), 
the six-block-models 3 and 4 (M = 5.0, SD = 0.7, and M = 
5.5, SD = 1.8, respectively), and the eight-block-models 5 
and 6 (M = 7.4, SD = 0.9, and M = 7.9, SD = 1.7, 
respectively). Strikingly, the observed correct states 
represented only a small proportion of total possible correct 
states. For example, for the six-block model 3 (shown in 
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Figure 3b), 79 possible correct states exist1. In aggregate, 
our sample executed a total of 136 actions, but only created 
16 different correct states (27% of all possible correct 
states). An additional three erroneous states were observed 
in model 3; these will be discussed later.  

 
 

 
 
Figure 3: Observed paths for models 2 (a) and 3 (b). Paths 
begin at the top, where the null state represents no blocks 
connected. Images represent block states; arrows connecting 
images represent actions. Numbers adjacent to arrows 
represent the number of times that action was executed. 

 
Of the 16 observed states for model 3 (Fig 3b), some were 

created by a majority of participants, while others were rare. 
We found the same pattern in the observed paths, that is, the 
actions moving from state to state. Though all observed 
paths led to a correct copy construction, some were highly 
likely, while others were highly unlikely. For example, the 
first image in the fourth row in Figure 3b was created by a 
great majority of participants (96.3%). The most common 

                                                             
1 For a given model with n blocks, we define the set of possible 

correct states as the set of unique states traversed along any path 
which begins at the null state, ends at the goal state, and contains n 
states. These states can be enumerated computationally. 

path to achieve this state led from the fifth image in the third 
row of Figure 3b, such that 17 of the 26 (65.4%) people who 
created the same penultimate state achieved it by placing the 
green square on the second layer. 

The most commonly traversed states created points of 
convergence. Convergence points represented a single 
subassembly that results from several different preceding 
actions. We observe that convergence points tend to be 
highly likely states, which most or all participants created 
along the way to a complete construction. As shown in 
Figure 3b, most participants (66%) passed through the state 
in which three blocks are joined with horizontal adjacency 
to create the base of the copy (second image, second row). 
The observed frequencies of convergence points are 
remarkable when one considers that only a fraction of all 
possible efficient paths go through these states.  

We also observed points of divergence. Divergence points 
represented cases where participants, when presented with 
identical partial assembly states, chose to proceed with 
several different actions. For example, about 70% of those 
who created the base of model 3b proceeded to place the 
green then the blue square in the second layer. The other 
30% instead placed the same two blocks in the opposite 
order, first placing the blue and then the green square in the 
second layer. This is illustrated in Figure 3b, in the third and 
fifth images of the third row. 

Our results demonstrated some commonalities across the 
six different models. The most frequently constructed partial 
assembly states for all six of the models represented a 
complete layer. Across all six models, 83.6% of participants 
began their copy construction by creating the base layer. For 
the models with six or eight blocks, 77.4% and 86.5% of 
participants created the complete second layer as a partial 
assembly, respectively. Across all six models, each 
complete layer state is visited more frequently than would 
be expected by chance, even with the most conservative 
comparison against only other observed states with the same 
number of blocks (all p’s < .001). 

Many participants’ construction paths (75.5%) traversed 
all complete layer states, although this is by no means 
necessary in order to achieve a correct copy. Specifically for 
the most complex model, model 6, those participants who 
traversed each complete layer partial assembly state in their 
individual construction path also tended to have the shorter 
path lengths (t(24) = −2.57, p = .017). In other words, when 
faced with a complex block copying task, building layer by 
layer appears to be both highly likely and highly efficient. 
These observations provide insight into the importance of 
layers, which may be driven by the builder’s understanding 
of physical properties such as gravity and/or perceptual 
biases that suggest a natural parse in terms of layers.  

Although most block placements were correct (i.e. 
replicated part of the model in the copy), there were some 
errors—that is, states that did not represent a correct part of 
the model. These errors contributed to deviations from the 
main construction paths. If erroneous states are included in 
our calculation, the number of possible block states in given 
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a starting set of 4, 6, or 8 blocks is vast, but finite. For 
example, a mathematician recently estimated that there are 
nearly a billion possible ways to connect six uniform 
rectangular Lego™ blocks contiguously (Abrahamsen & 
Eilers, 2011). The model and our instructions to participants 
constrained their behavior such that even though errors 
occurred, only an extremely small proportion of all possible 
states were observed.  

The errors observed in this sample also provided insight 
into the cognitive limitations of our adult participants. Two 
categories of errors were observed. First, spatial errors 
occurred when a participant utilized the correct block, but 
placed it in incorrect orientation relative to the rest of the 
copy. For example, in model 2, one participant placed the 
yellow square block with incorrect relationship relative to 
the red and green rectangles underneath, shown in the first 
image of the first row in Figure 3a. Second, block identity 
errors occurred when a participant created the correct form 
in their copy, but used the wrong color block relative to the 
model. For example, for model 3, one participant used the 
yellow rectangle to create the base of their copy instead of 
the green rectangle (first image, first row of Figure 3b). 

Overall, our results provided rich detail about the step-by-
step process undertaken by our adult participants in the 
block copying task. We observed only a small portion of all 
possible correct states, and a yet smaller portion of all 
possible states including erroneous ones. The distribution of 
the sample across different construction paths was not 
uniform, but rather demonstrated commonalities across the 
six models. Specifically, convergence points were observed 
corresponding to completed copy layers, and divergence 
was observed in the order of block placement within a 
single layer. Most common construction paths involved the 
sequential construction of horizontal layers, beginning with 
the base and building upward.  

Discussion 
Our study presented a precise, quantitative method for 
understanding how people carry out a simple block 
construction task. Using a novel behavioral coding method 
together with computational modelling, we precisely 
described the block construction process as a temporal 
sequence of states. This approach shed light on the cognitive 
processes that support spatial construction tasks. 

A description of state transitions illustrated commonalities 
among the construction paths that participants used for each 
of the six models. Convergence points tended to correspond 
to the completion of a horizontal layer in the model, while 
divergence points tended to correspond to various orders of 
placing blocks within a layer. We hypothesize that 
convergence points can be interpreted as boundaries 
between perceptual or semantic chunks—that is, they 
represent sub-goals that builders had in mind as they 
approached and carried out the task. Although we did not 
provide any pre-determined conceptual units or clear 
perceptually-based chunks (such as sub-parts built from 
same-colored blocks), participants nonetheless created these 

chunks in systematic ways. The location of convergence 
points, for example, at the completion of a horizontal layer, 
may indicate that participants grouped or chunked the 
models principally into horizontal layers or “floors”.  

It is likely that the underlying structure of sub-goals will 
vary substantially, depending on a variety of factors. For 
example, a model that is organized to highlight salient 
perceptual units, such as multiple vertically adjacent blocks 
of the same color, could induce a construction path that 
would take most builders through a convergence point 
organized as a vertical chunk, and not the horizontal layers 
observed in the present study. In this case, we anticipate that 
adults would attend to the imposed perceptual units and 
change their construction strategy to build using sub-goals 
defined by these color-units. Similarly, incorporating 
conceptual structure into the models could radically alter 
people’s construction paths—heads and eyes on structures 
that look like animals, or wheels on structures that look like 
vehicles could serve as the chunks or sub-goals to be built. 
The role of conceptual knowledge in the reproduction of 
complex figures has a long history in the domain of chess, 
where experts are known to reproduce board configurations 
using sub-structures that reflect high-level concepts such as 
attack and defend (Chase & Simon, 1973).  

In our simple construction task, errors were relatively 
rare. Errors were characterized as either spatial relationship 
or block identity errors. We hypothesize that spatial errors 
indicate problems with spatial working memory, in 
translating information observed in the model into the 
working copy. Block identity errors, on the other hand, may 
involve object working memory, or a prioritization of 
spatial configuration over color information. These error 
types are likely linked to the relative simplicity of the 
models we used; analysis of error patterns for more complex 
models may well reveal more variation. 

We see our method as a powerful way to examine the 
nature of sub-goals and errors, applicable to a variety of 
visual-spatial construction tasks involving conceptual or 
perceptual chunks. The extent to which observed 
construction paths and construction errors change over 
variations in the target model would provide insight into 
how building principles change across target types. In 
addition, our method permits evaluation of variation in 
construction paths across different participant populations 
including construction experts compared to novices, and 
developmental populations of children at different ages.  

We believe that our analytic method has great potential 
for revealing the fine-grained nature of many tasks that 
require step-by-step actions, which in turn require rich 
cognitive capabilities, including representation of the goal 
as well as strategies for moving from a start state to an end 
state. Such general task requirements are ubiquitous 
throughout life—from the toddler who learns to operate an 
iPad to the adult who learns to cook a gourmet meal. Our 
insight is that understanding complex skills requires a fine-
grained and precise approach, exemplified by the method 
we have introduced. Block construction serves as a first 
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demonstration of the utility of our approach, but it is by no 
means the end. 
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Abstract

Recent research has identified three invariants or identities that
appear to hold in people’s probabilistic decision making: the
addition law identity, the Bayes rule identity, and the QQ
identity (Costello and Watts, 2014, Fisher and Wolfe, 2014,
Costello and Watts, 2016b, Wang and Busemeyer, 2013, Wang
et al., 2014). Each of these identities represent specific agree-
ment with the requirements of normative probability theory;
strikingly, these identities seem to hold in people’s probability
judgments despite the presence of strong and systematic bi-
ases against the requirements of normative probability theory
in those very same judgments. We assess the degree to which
two formal models of probabilistic reasoning (the ‘probability
theory plus noise’ model and the ‘quantum probability’ model)
can explain these identities and biases in probabilistic reason-
ing.

Introduction
A fundamental goal of science is to find invariants: constant
relationships that hold between different variables. While
such invariants occur frequently in the ‘hard’ sciences, they
are rare in behavioural science. Recent work, however, has
identified three invariants that appear to hold in people’s prob-
abilistic reasoning: the addition law, Bayes rule and ‘QQ’
(‘Quantum Question’) identities (Costello and Watts, 2014,
Fisher and Wolfe, 2014, Costello and Watts, 2016b, Wang
and Busemeyer, 2013, Wang et al., 2014). Each identity de-
scribes a constant relationship that holds between different
probabilistic judgments, and each represents specific agree-
ment with the requirements of probability theory. Strikingly,
these identities hold in people’s probability judgments despite
the presence of strong biases, or systematic deviations from
probability theory, in those very same judgments. We assess
two formal models of probabilistic reasoning (the probability
theory plus noise model, Costello and Watts, 2016, and the
quantum probability model, Wang et al. 2014) in terms of
their ability to explain these invariant identities and biases.

Identities in probabilistic reasoning
We use the following notation. We take P(A) to represent the
normatively correct probability of event A. We take P∗(A)
to represent a subjective estimate of P(A). The QQ identity
involves the relationship between probability estimates when
questions are presented in specific orders. We take PBA(A)
to represent the subjective estimated probability of A when
questions are presented in the order BA (when people are
asked to estimate P(A) immediately after being asked to es-
timate P(B)) and take PAB(A) to represent the estimate when

questions are in the reverse order. Since a subsequent esti-
mate for P(B) cannot affect the results obtained from a prior
estimate for P(A), P∗(A) = PAB(A) and P∗(B) = PBA(B).

The QQ identity

Consider a situation where people are asked questions in two
alternative orders AB or BA. This situation is commonly seen
in polls; for example, in a Gallup poll conducted in September
1997, half of participants were asked the question “Do you
think Al Gore is honest and trustworthy?” followed immedi-
ately by the question “Do you think Bill Clinton is honest and
trustworthy?”, while the other half of participants were asked
the same questions in the reverse order (Moore, 2002). Peo-
ple’s answers in such situations are often strongly influenced
by the order of question presentation (PAB(A) 6= PBA(A)). In
the Clinton-Gore questions, for example, 76% of participants
answered ‘yes’ to the Gore question when it was asked first
(PAB(A) = 0.76), while 66% answered yes when it was asked
second (PBA(A) = 0.66): the prior presentation of the Clinton
question produced a bias, reducing the likelihood of a ‘yes’
answer to the Gore question. Simultaneously, however, re-
sults (both from experimental studies and from polls) show
that the following identity tends to hold reliably in sequential
question answering:

PAB(A∧B)+PAB(¬A∧¬B)−PBA(A∧B)−PBA(¬A∧¬B)= 0

(where A∧B represents a ‘yes’ answer to both A and B and
¬A∧¬B represents a ‘no’ answer to both questions). This
expression has a value of −0.003 in answers to the Clinton-
Gore questions, for example. This identity holds for ques-
tions across a wide range of different topics in 72 different
national representative surveys in the US, and in laboratory
studies of the effects of order in question answering, even
though these surveys show significant bias due to question or-
der (Wang et al., 2014). This is just as predicted by the quan-
tum probability model, and is seen as providing ‘the strongest
form of support’ for that model (Wang et al., 2014).

The Addition Law and Bayes Rule identities

A number of identities must hold in standard probability the-
ory. One such identity is the addition law, which requires that

P(A)+P(B)−P(A∧B)−P(A∨B) = 0 (1)
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must hold for all events A and B. Two other ‘expansion’ iden-
tities require that

P(A∧B)+P(A∧¬B)−P(A) = 0 (2)

P(A∧B)+P(¬A∧B)−P(B) = 0 (3)

must hold for all events A and B. Consider experiments where
we ask people to estimate various probabilities P(A), P(B),
P(A∧B), P(A∨B), P(A∧¬B), P(B∧¬A) (not in any fixed
ordering), and combine those estimates as in the various iden-
tities. Results show that, when we combine people’s proba-
bility estimates for a given pair of events A,B as in the addi-
tion law identity, the average value obtained is equal to prob-
ability theory’s required value of 0. When we combine the
same estimates for the same events A,B as in the two expan-
sion identities, the average value is not equal to 0; instead,
the average value is positive (typically around 0.25) and is
similar for both of these expansion identities. In other words,
people’s probability estimates reliably agree with probability
theory for the addition law identity, but deviate from proba-
bility theory for the two expansion identities.

The addition law identity applies to direct or marginal
probabilities. Similar results hold for identities that involve
conditional probabilities. One such identity is the additive
form of Bayes rule, which requires that

P(B|A)P(A)−P(A|B)P(B) = 0 (4)

must hold for all events A and B. Two parallel ‘Bayes expan-
sion’ identities require that

P(A∧B)−P(A|B)P(B) = 0 (5)

P(A∧B)−P(B|A)P(A) = 0 (6)

must hold for all events A and B. Experimental results for
these identities follow those seen above: for the Bayes Iden-
tity the average value in people’s estimates is equal to 0, while
for the two Bayes expansion identities, the average value is
positive (typically around 0.12, half the value seen for expan-
sion identities in Equations 2 and 3) and is similar for both
of these expansion identities (see Table 1). Results for these
identities don’t just hold when averaging across events: they
also hold separately for each individual pair of events A and
B, and they hold for estimates about familiar everyday events,
medical diagnoses, future political or economic outcomes, or
personality-description scenarios (Costello and Watts, 2014,
Fisher and Wolfe, 2014, Costello and Watts, 2016b).

These patterns of agreement with the addition law and
Bayes rule identity and simultaneous violation of the expan-
sion identities (with approximately the same positive value
for Equations 2 and 3 and approximately half that value for
Equations 5 and 6), are predicted by the probability the-
ory plus noise model. Confirmation of these predictions has
been taken as evidence that the probability theory plus noise

model ‘may provide a fully general account of the mecha-
nisms by which people estimate probabilities’ (Costello and
Watts, 2016b).

The quantum probability model, then, accounts for the QQ
identity and for biases due to order effects, while the noise
model accounts for the addition law and Bayes rule identities
and for biases in the expansion identities. Can either model
explain all three sets of results? In the next section we show
that the quantum model is in principle unable to explain the
addition law and Bayes rule results. We then show that the
noise model gives a natural account for all these results.

The quantum probability model
The quantum probability model (Wang and Busemeyer, 2013,
Wang et al., 2014) assumes that people’s probabilistic rea-
soning follows the mathematical rules used to calculate event
probability in quantum theory. A fundamental aspect of quan-
tum theory is that the probability of two quantum events can
depend on the order in which those events are measured. This
order dependence allows the quantum probability model to
address various order effects seen in people’s sequential in-
ference and judgment.

Probability has a geometric interpretation in quantum the-
ory, based on the projection of vectors. We avoid this geomet-
ric interpretation here and instead focus on explaining how
quantum probability agrees with, and deviates from, standard
probability theory. In quantum probability, an observable de-
fines the set of all possible distinct outcomes for a given mea-
surement: the set of possible answers to the question rep-
resented by that measurement. The primary theoretical dis-
tinction between quantum and standard probability lies in the
idea of ‘compatible’ or ‘incompatible’ observables. Two ob-
servables are compatible if both observables can be measured
simultaneously. If two observables are compatible, quan-
tum probability theory reduces exactly to standard probabil-
ity theory in all cases. This means that if two observables
are compatible then all the probability theory identities de-
scribed above have a value of 0, and there are no order effects
in judgment.

Incompatible observables, by contrast, cannot be measured
simultaneously, and measurement outcomes depend on the
order of measurement. If all probabilities are measured with
the same ordering then again quantum probability theory re-
duces exactly to standard probability theory (if all probabili-
ties are of the form PAB()̇, for example, then all relationships
between those probabilities match the requirements of stan-
dard probability theory and all probability theory identities
hold). If probabilities are measured with different orderings,
however, then quantum probability deviates from standard
probability, producing biases in judgment and order effects
in sequential question answering such as PAB(A) 6= PBA(A)
and PAB(A∧B) 6= PBA(A∧B).

Addition law and Bayes rule identities
The addition law and Bayes rule identities apply in cases
where questions are not presented in some specific order AB
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Table 1: Predicted values of the noise model and the quantum model for a series of probability theory identities. Standard
probability theory requires these identities to have a value of 0. Observed average values for these identities are from Costello
and Watts (2016b), Experiment 1. Similar average values hold for each individual pair A,B in that experiment and in a range of
other experiments.

identity noise model quantum model observed
compatible incompatible: incompatible:

order AB order BA
(1) P(A)+P(B)−P(A∧B)−P(A∨B) 0 0 δA δB 0.01
(2) P(A∧B)+P(A∧¬B)−P(A) d 0 −δA 0 0.26
(3) P(A∧B)+P(¬A∧B)−P(B) d 0 0 −δB 0.23
(4) P(B|A)P(A)−P(A|B)P(B) 0 0 ∆AB ∆AB 0.006
(5) P(A∧B)−P(A|B)P(B) d/2 0 ∆AB 0 0.12
(6) P(A∧B)−P(B|A)P(A) d/2 0 0 −∆AB 0.12

or BA, but instead are order independent. In this situation
there are no order effects for simple probabilities (the proba-
bility of A is P∗(A)=PAB(A) and that of B is P∗(B)=PBA(B)).
Order effects for incompatible observables still apply when
people are asked to estimate conjunctive or disjunctive prob-
abilities such as P(A∧B), P(A∧¬B) or P(A∨B). For such
conjunctions or disjunctions the quantum probability model
assumes a particular characteristic ordering for observables
that depends on the causal link between those observables.
Complex probabilities such as P(A∧B) are estimated using
this characteristic ordering. This means that the relationship
between a simple probability P∗(A) and the conjunctive prob-
abilities P(A∧B) and P(A∧¬B) will depend on this charac-
teristic ordering. In particular, when the characteristic order-
ing of observables for conjunctions is AB we have

P∗(A) = PAB(A) = PAB(A∧B)+PAB(A∧¬B) (7)

as in standard probability theory (since the ordering of ob-
servables is the same for all three probabilities in this expres-
sion, quantum probability reduces to standard probability in
this case). When the characteristic order of observables for
conjunctions is BA, however, we have

P∗(A) = PAB(A) = PBA(A∧B)+PBA(A∧¬B)+δA (8)

where δA is a ‘quantum interference’ term for observable A.
This quantum interference term represents deviation from the
requirements of probability theory in the estimate P∗(A), and
arises from the difference between probabilities measured in
the orders AB and BA. Note that quantum interference is not
an error term here: it is a constant that specifies the relation-
ship between P∗(A) and PBA(A∧B)+PBA(A∧¬B) for a given
participant and a given pair of events AB. Parallel results arise
for the probability of B, where with the characteric ordering
BA we have

P∗(B) = PBA(B) = PBA(A∧B)+PBA(¬A∧B) (9)

as in probability theory, while with the ordering AB we have

P∗(B) = PBA(B) = PAB(A∧B)+PAB(¬A∧B)+δB (10)

where δB is the interference term for the estimate P∗(B).

From these expressions for P∗(A) and P∗(B) we derive the
quantum probability model’s predictions for values of the ad-
dition law and the two expansion identities (Equations 1, 2
and 3) in three separate situations: where observables are
compatible, where the ordering of observables is AB, and
where the ordering is BA. The first three lines of Table 1
shows these predictions. From Table 1 we see that, if ob-
servables are compatible, all three identities have a predicted
value of 0 (contrary to experimental results). If observables
are measured in the order AB or BA, however, one expansion
identity has a predicted value of 0 and the addition law and the
other expansion identity have values that deviate from 0 by
exactly the same magnitude but with opposite signs (contrary
to experimental results). The quantum probability model’s
predictions are inconsistent with the experimental results in
all three situations.

In quantum probability theory a conditional probability
P(A|B) is necessarily measured in the order BA (with the
given event occurring first and the conditional event occur-
ring after). This means that the relationships

PBA(A∧B) = P(A|B)PBA(B) = P(A|B)P∗(B) (11)

PAB(A∧B) = P(B|A)PAB(A) = P(B|A)P∗(A) (12)

necessarily hold in quantum probability (since the probabili-
ties in these expressions are all measured in the same order,
and so follow the requirements of probability theory). We
define

∆AB = PAB(A∧B)−PBA(A∧B)

to represent the effect of order on conjunctive probability
judgments PAB(A∧B) and PBA(A∧B). Then substituting from
Equations 11 and 12 into the Bayes rule and ‘Bayes expan-
sion’ identities (Equations 4, 5 and 6), we derive predictions
in three separate situations, as before (see Table 1). Here
we see that, if observables are compatible, all three identities
have a predicted value of 0 (contrary to experimental results).
If observables are measured in the order AB, one expansion
identity has a predicted value of 0 and the Bayes rule and the
other expansion identity have the same values, deviating from
zero by ∆AB (contrary to experimental results). If observables
are measured in the order BA, one expansion identity has a
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predicted value of 0 and the Bayes rule and the other expan-
sion identity have values that deviate from zero by exactly
the same magnitude of ∆B but with opposite signs (again,
contrary to experimental results). The quantum probability
model’s predictions are inconsistent with the experimental re-
sults in all three situations.

The QQ identity
Consider our definition of ∆AB to represent order effects
for the conjunctive probability judgments PAB(A ∧ B) and
PBA(A∧B). A necessary mathematical consequence of quan-
tum probability is that exactly the same order effects apply to
conjunctive probabilities PBA(¬A∧¬B) and PAB(¬A∧¬B),
and so we have

PAB(A∧B)−PBA(A∧B)=∆AB =PBA(¬A∧¬B)−PAB(¬A∧¬B)

and therefore the QQ identity holds for events A and B in the
quantum probability model. Wang et al. (2014) estimate the
size of the order effect in each of their 72 different polls or
experimental studies via the related measure

Z = max


|PBA(A∧B)−PAB(A∧B)|+
|PBA(¬A∧¬B)−PAB(¬A∧¬B)|

|PBA(A∧¬B)−PAB(A∧¬B)|+
|PBA(¬A∧B)−PAB(¬A∧B)|

(so that the overall order effect is equal to the summed ab-
solute values of the order effects for A∧B and ¬A∧¬B, or
for A∧¬B and ¬A∧B, whichever is greater). The greater
the value of this measure, the larger the order effect. They
find statistically significant order effects in most of these polls
or studies, but reliable agreement with the QQ identity. The
fact that this QQ identity appears to hold simultaneously with
such order effects has been taken as clear evidence that ‘hu-
man judgments follow quantum rules’ (Wang et al., 2014).

The probability theory plus noise model
The probability theory plus noise model assumes that people
estimate probabilities via a mechanism that is fundamentally
rational (following standard frequentist probability theory),
but is perturbed in various ways by the systematic effects or
biases caused by purely random noise or error. This approach
follows a line of research leading back at least to Thurstone
(1927) and continued by various more recent researchers (see,
e.g. Dougherty et al., 1999, Erev et al., 1994, Hilbert, 2012).
This model explains a wide range of results on bias in peo-
ple’s direct and conditional probability judgments across a
range of event types, and identifies various probabilistic ex-
pressions in which this bias is ‘cancelled out’ and for which
people’s probability judgments agree with the requirements
of standard probability theory (see Costello and Watts, 2014,
Costello and Mathison, 2014, Costello and Watts, 2016a,b,c).

In standard probability theory the probability of some event
A is estimated by drawing a random sample of events, count-
ing the number of those events that are instances of A, and

dividing by the sample size. The expected value of these esti-
mates is P(A), the probability of A; individual estimates will
vary with an approximately normal distribution around this
expected value. The probability theory plus noise model as-
sumes that people estimate the probability of some event A
in exactly the same way: by randomly sampling items from
their memory, counting the number that are instances of A,
and dividing by the sample size. Since memory is subject to
various forms of random error, the model assumes that items
have some probability d < 0.5 of being counted incorrectly.
Given this error, a randomly sampled item can be counted as
A in two mutually exclusive ways: either the item truly is an
instance of A and is counted correctly (this occurs with prob-
ability P(A)(1−d), since P(A) items are truly instances of A,
and items have a (1− d) chance of being read correctly), or
else the item truly is not an instance of A and is counted in-
correctly as A (this occurs with probability (1−P(A))d, since
(1−P(A)) items are truly not instances of A, and items have
a d chance of being read incorrectly). The expected value for
a noisy estimate for the probability of A is thus

P∗(A) = P(A)(1−d)+(1−P(A))d = (1−2d)P(A)+d (13)

and we expect individual estimates p∗(A) to vary indepen-
dently around this expected value. This equation represents a
pattern of regressive bias moving probability estimates P∗(A)
away from the true, objectively correct probability P(A).
Reasoning just as above, the model similarly predicts an ex-
pected value for the conditional probability P(A|B) of

P∗(A|B) =
(1−2d)2P(A∧B)+d(1−2d) [P(A)+P(B)]+d2

(1−2d)P(B)+d
(14)

These expressions account for various observed patterns of
bias in people’s direct and conditional probability judgment
(see Costello and Watts, 2014, 2016b).

Addition law and Bayes rule identities
This model makes predictions about the values of various
probability theory identities. If we substitute Equation 13 into
the addition law identity, for example, we get an expected
value of

P∗(A)+P∗(B)−P∗(A∧B)−P∗(A∨B) = 0

and so this model predicts that this expression should have a
value of 0, and just as seen in experimental results (Costello
and Watts, 2014, 2016b, Fisher and Wolfe, 2014). Similarly,
if we substitute Equation 13 and Equation 14 into the Bayes
rule identity, we get an expected value of

P∗(B|A)P∗(A)−P∗(A|B)P∗(B) = 0

and again the model predicts a value of 0, just as just as seen
in experimental results.

Agreement with probability theory for the addition law and
the Bayes rule identity arises, in this model, despite signifi-
cant regressive bias due to random noise in individual proba-
bility estimates making up these expressions. This is because
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in these identities the various biases due to random noise in
those individual probability estimates all cancel out. For other
probability theory identities, however, this model predicts no
cancellation of regressive effects. For example, substituting
the expression from Equation 13 into the two ‘expansion’
identities (Equation 2 and 3), we get

P∗(A∧B)+P∗(A∧¬B)−P∗(A) = d

P∗(A∧B)+P∗(¬A∧B)−P∗(B) = d

and the model predicts the same positive value for both iden-
tities, again just as observed in experimental results (Costello
and Watts, 2016b, Fisher and Wolfe, 2014).

For the two ‘Bayes expansion’ identities (Equation 5 and
6) we get

P∗(A∧B)−P∗(A|B)P∗(B)
= d(1−d)−d(1−2d) [P(A)+P(B)−2P(A∧B)]

P∗(A∧B)−P∗(B|A)P∗(A)
= d(1−d)−d(1−2d) [P(A)+P(B)−2P(A∧B)]

Since probability theory requires that 0 ≤ P(A) + P(B)−
2P(A∧B)≤ 1 for all A and B, and since d < 0.5 by assump-
tion, we see that

d2≤ d(1−d)−d(1−2d) [P(A)+P(B)−2P(A∧B)]≤ d(1−d)

and values for both these identities will be distributed be-
tween d2 and d(1− d) in a way that depends on P(A) +
P(B)− 2P(A ∧ B). The average value for P(A) + P(B)−
2P(A∧B) (across uniformly distributed probabilities that are
constrained to be consistent with probability theory) is 0.5,
and so the average value for this expression is equal to d/2,
the centerpoint of this range. The model thus predicts the
same average positive value for these identities; a value half
that for the first two expansion identities. Again, this is just
as seen in experimental results (Costello and Watts, 2016b).

The QQ identity and order effects
The probability theory plus noise model, as presented above,
assumes that when P(B) and P(A) are estimated sequentially,
the value given for P(A) is not influenced by the prior value
given for P(B). This is because the model assumes that peo-
ple estimate some probability P(A) by drawing a sample of
items at random from memory, and counting the proportion
that are A. To allow sequential effects in the noise model, we
can relax this assumption, and say that the chance of a given
item being sampled from memory is influenced by the degree
to which that item is already active or ‘primed’. Since the
estimation of probability P(B) involves drawing a sample of
items and counting the proportion that are B, those items that
were counted as B are more active (are primed), and so are
more likely to be included in the ‘random’ sample of items
drawn when estimating P(A), causing an order effect.

Suppose that the chance of an already primed item being
sampled is s. Also suppose that P(B) has just been estimated

in a previous sample: P∗(B) then represents the proportion of
items in that previous sample that were read as B. A sample
is now drawn to estimate P(A). Each item drawn to make
up that new sample has a probability sP∗(B) of coming from
the primed set of items that were already read as B, and a
probability 1− sP∗(B) of being drawn randomly from the set
of all items in memory. For the sP∗(B) items in our sample
that were previously read as B, the probability of one of those
items being read as A is P∗(A|B); this is the conditional prob-
ability of an item being read as A, given that it was read as
B. For the remaining items that were just sampled randomly
from memory, the probability of one of those items being read
as A is simply P∗(A). Given that we have just given an esti-
mate for the probability P(B), then, the expected value for an
immediately following estimate for P(A) will be

PBA(A) = sP∗(B)P∗(A|B)+(1− sP∗(B))P∗(A)

and, substituting from Equations 13 and 14 and simplifying
we get

PBA(A) = P∗(A)+ s(1−2d)2[P(A∧B)−P(A)P(B)] (15)

From Equation 15 we see that PBA(A) 6= P∗(A) and so
PBA(A) 6= PAB(A) will hold in this model in general, with the
probability of a ‘yes’ answer to question A when that question
comes first being different from the probability of a ‘yes’ an-
swer when question A immediately follows question B. This
model thus produces order effects in question answering, just
as seen in experimental data.

Despite these order effects, the QQ identity also holds in
this model. To see this, consider that, since P∗(B) is the prob-
ability of answering ‘yes’ to a question B and PBA(A) is the
probability of answering ‘yes’ to a question A that immedi-
ately follows a question B, the probability of answering ‘yes’
to both questions when presented in the order BA is

PBA(A∧B) = P∗(B)PBA(A)

= P∗(B)P∗(A)+P∗(B)s(1−2d)2[P(A∧B)−P(B)P(A)]

and the probability of answering ‘yes’ to both questions in the
order AB is

PAB(S∧B) = P∗(A)PAB(B)

= P∗(A)P∗(B)+P∗(A)s(1−2d)2[P(A∧B)−P(B)P(A)]

and so

PBA(A∧B)−PAB(A∧B)

= s(1−2d)2[P(A∧B)−P(B)P(A)][P∗(B)−P∗(A)]
(16)

Using the same line of reasoning for the probability of an-
swering ‘no’ to both questions, we get

PAB(¬B∧¬A)−PBA(¬B∧¬A)

= s(1−2d)2[P(¬B∧¬A)−P(¬B)P(¬A)][P∗(¬A)−P∗(¬B)]

Substituting from Equation 13 and rearranging we have
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P∗(¬A)−P∗(¬B) = (1−2d)[1−P(A)]+d− (1−2d)[1−P(B)]−d

= P∗(B)−P∗(A)

and from standard probability theory we have

P(¬A∧¬B)−P(¬A)P(¬B) = P(A∧B)−P(B)P(A)

and so

PAB(¬A∧¬B)−PBA(¬A∧¬B)

= s(1−2d)2[P(B∧A)−P(B)P(A)][P∗(B)−P∗(A)]
(17)

giving

PAB(A∧B)+PAB(¬A∧¬B)−PBA(A∧B)−PBA(¬A∧¬B)= 0

and this model satisfies the QQ identity.

Conclusions
Much research on people’s probabilistic reasoning over the
last 50 years has focused on the various significant biases
seen in probability estimation and judgment. Invariants such
as the addition law, the Bayes rule identity, and the QQ iden-
tity, which hold simultaneously with these biases, reveal an
important fact: they show us that these biases are systemat-
ically and quantatitively related and can be explained math-
ematically. We can see this in the case of the QQ identity,
where there are reliable order effects (biases) in responses
which nonetheless cancel out when responses are combined
in the identity. We also see this in the addition law and Bayes
rule identities, where there are reliable biases in probability
estimates which again, cancel out when those estimates are
combined in those identities.

In this paper we’ve shown that, unlike the quantum proba-
bility model, the probability theory plus noise model is able
explain the satisfaction of three invariants in people’s proba-
bilistic judgment (the addition law, Bayes rule and QQ iden-
tities) alongside the occurence of various forms of systematic
bias in those same judgments. These results support the the-
oretical proposal in that account, which is that human proba-
bilistic judgment is based on a rational process (one that fol-
lows frequentist probability theory) that is subject to random
noise. It is important to stress that we are not suggesting that
people’s probability estimates are themselves rational. This is
clearly not the case: there is very extensive evidence demon-
strating that people’s probability estimates are systematically
biased away from the requirements of probability theory. We
argue that these biases are a consequence of the influence
of random noise on the probability estimates generated by
an underlying rational process. While this noise is random,
it has systematic, directional effects (our noisy model’s ex-
pected averages for probability estimates are systematically
biased away from the ‘true’ probability values, in a way that
seems to match the biases seen in people’s estimates) which
are cancelled out in these three identities. This model gives a
new and useful perspective on the various systematic biases
seen in people’s probabilistic reasoning.
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Experts are better than novices when imagining wines, but not odors in general
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Abstract: Olfactory imagery is disputed to exist in novices, but is reported to be easier for smell experts. It plays an important
role in wine expertise. Previous research shows experts’ superior cognitive abilities do not transfer beyond their domain of
expertise. This leads to two questions: do wine experts have more vivid imagery for the multisensory experience of wine? And
how general is wine experts’ olfactory imagery? Wine experts and novices completed a questionnaire measuring the vividness
of imagery for the color, smell, and flavor of wine. In addition, all participants completed a questionnaire on general smell
imagery. Wine experts were better than novices at imagining wines in all modalities, but not better at imagining smells in
general. Novices reported the strongest imagery for the appearance of wine, but experts showed no difference between the
senses. So mental imagery becomes more vivid with expertise; but only for imagery directly expertise related.
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Abstract 

The inference of or-introduction, p, therefore p or q, is 
fundamental in classical logic and probability theory. Yet 
traditional research in the psychology of reasoning found that 
people did not endorse this inference as highly as other one-
premise valid inferences. A radical response to this finding is 
to claim that or-introduction is in fact invalid. This response is 
found in the recent revision of mental model theory (MMT). 
We argue that this revision of the theory leads to a number of 
logical problems and counterintuitive consequences for valid 
inferences, and present an experiment extending recent 
studies showing that people readily accept or-introduction 
under probabilistic instructions. We argue for a pragmatic 
explanation of why the inference is sometimes considered 
odd. The inference is not odd when people reason from their 
degrees of belief. 

Keywords: or-introduction; reasoning; mental models; 
probabilistic approach 

The New Paradigm and earlier MMT 

There has been a paradigm shift in the psychology of 

reasoning (Oaksford & Chater, 2013; Over, 2009), from 

binary approaches focussed on drawing conclusions from 

arbitrary assumptions, to Bayesian and probabilistic 

accounts focussed on people's degrees of belief and belief 

revision and updating in reasoning. 

The probabilistic approach 

A central position in the probabilistic approach is that most 

reasoning in both everyday life and science takes place 

under uncertainty. This uncertainty cannot be captured in 

classical binary logic, but it can be in probability theory 

(Adams, 1998; Coletti & Scozzafava, 2002).  

A basic hypothesis in this new approach is that people's 

degree of belief in a conditional statement, P(if p then q), 

does not correspond to the probability of the material 

conditional of classical logic (which is equivalent to not-p 

or q), but instead to the conditional probability, P(q|p). The 

proposal is that people arrive at this conditional probability 

by performing a Ramsey test, a mental simulation in which 

they hypothetically add p to their beliefs, make any changes 

necessary to preserve consistency, and judge the probability 

of q on this basis (Evans & Over, 2004; Ramsey, 

1929/1990; Stalnaker, 1968). The identity P(if p then q) = 

P(q|p) is generally called The Equation (Edgington, 1995) 

and has received strong empirical support (Evans, Handley, 

Neilens, & Over, 2007; Evans, Handley, & Over, 2003; 

Oberauer, Geiger, Fischer, & Weidenfeld, 2007; Oberauer 

& Wilhelm, 2003; Fugard, Pfeifer, Mayerhofer, & Kleiter, 

2011; Barrouillet & Geauffroy, 2015). 

Probabilities in earlier MMT  

Earlier versions of mental model theory (MMT) proposed 

that people reason by creating a mental representation of the 

logical possibilities in which the premises of an inference 

are true (e. g. p & q is true in one possibility: that in which 

both p and q are true; whereas p or q is true in three 

possibilities: when p is true and q false, when p is false and 

q true, and when p and q are both true). Each of these 

possibilities is called a model. People then eliminate any 

models of the premises that contradict one another (e. g. if 

Premise 1 of an inference is p or q and Premise 2 is not-p, 

then people eliminate the two models of Premise 1 in which 

p is true). Finally, people formulate an informative 

conclusion based on any models remaining after eliminating 

inconsistencies. It was further held that people make errors 

in reasoning because they tend to represent only what is true 

in a model, and to leave implicit what is false, and because 

they tend to leave implicit and then forget entire models. 

MMT was originally formulated within the binary 

approach to reasoning. Hence it focussed on the truth or 

falsity of a statement, given the truth of some other 

statements, and proposed the core meaning of conditionals 

to correspond to the material conditional (Johnson-Laird & 

Byrne, 1991, 2002). 

However, MMT was early on extended to reasoning with 

extensional probabilities, representing these as proportions 

of models or numerical "tags" on models (Girotto & 

Johnson-Laird, 2004, 2010; Johnson-Laird, Legrenzi, 

Girotto, Legrenzi, & Caverni, 1999; c. f. Geiger & 

Oberauer, 2010) in a way consistent with the rules of 

probability theory.   

MMT has also been recently extended to subjective 

probabilities (Khemlani, Lotstein, & Johnson-Laird, 2014). 

However, a problem with this account is the lack of clarity 

in its computational level specification. For example, it 

proposes that people intuitively grasp that the "logical 

relation" p or not-p has a probability of 1, but also that 

people intuitively compute P(p or q) by taking the average 

of p and q (cf. Juslin, Nilsson, & Winman, 2009) – even 

though the logical connective is the same in both cases. The 

account also provides no means for computing correct 
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conditional probabilities, and can therefore not account for 

their occurrence. This contrasts with the earlier proposal in 

MMT of the subset principle for computing extensional 

conditional probabilities (Johnson-Laird et al., 1999), which 

could account for both errors and normative responses. 

New MMT 

Johnson-Laird and colleagues recently proposed a radical 

revision of MMT that claims to integrate logic further with 

probability (Johnson-Laird, Khemlani, & Goodwin, 2015). 

The revision changes the meanings of conditionals, 

conjunctions and disjunctions. These statement types are 

still represented using the same models as before, but 

whereas in previous versions of MMT a statement was true 

when at least one of its models was true, in the new version 

of the theory a statement is true when all of its models are 

possible (Johnson-Laird et al., 2015).  

A positive consequence of this revision, in our view, is 

that the paradoxes of the material conditional are now 

considered invalid. For example, the inference q, therefore 

if p then q is considered invalid because the model for q 

does not establish that all three models of the material 

conditional are possible. But the revision creates a number 

of logical problems and counterintuitive consequences for 

other inferences (Baratgin, Douven, Evans, Oaksford, Over, 

& Politzer, 2015; Over & Cruz, in press).  

Logical problems with new MMT 

"Possible", "true", and "valid" 

Johnson-Laird et al. (2015) argue that a statement is true 

when all of its models are possible. But it is not clear what 

is meant by "possible". It cannot be logical possibility, 

because logically the four combinations of the truth and 

falsity of p and of q (p & q, p & not-q, not-p & q, not-p & 

not-q) are always possible unless they contain a 

contradiction (Baratgin et al., 2015). Moreover, with logical 

possibility the new version of MMT would imply that the 

tautology p or not-p is false because the p & not-p model is 

not possible (Baratgin et al., 2015).  

Yet a narrower notion of possibility does not seem to 

work either. This can be seen if we apply the idea that a 

statement is true whenever all of its models are possible to 

statements that have a single model. The theory then implies 

that a statement p is true when it is possible. But it can be 

possible, and readily conceivable, for us to sleep a little 

longer tomorrow, and yet be false if we wake up early 

instead. Truth does not follow from mere possibility, no 

matter how it is defined (Over & Cruz, in press). 

A further problem arises when the notion of truth in new 

MMT is used to assess the validity of an inference. Johnson-

Laird et al. (2015) continue to define an inference as 

logically valid when its conclusion is true in every case in 

which its premises are true. If a statement is true when all of 

its models are possible, then by implication an inference is 

valid when the truth of the premises establishes that all 

models of the conclusion are possible. This formulation of 

the concept of validity is of course difficult to understand 

without a clear definition of "possible". But one way of 

operationalising it could be as follows. An inference is valid 

in new MMT when the models of the premises contain all 

the models of the conclusion. This operationalisation 

renders the paradoxes invalid. But it leads to 

counterintuitive conclusions for other inferences. For 

example, it implies that the inference p or q, therefore p is 

valid, even though it is counterintuitive and invalid in 

classical and probabilistic logics. At the same time, the 

account implies that the inference not-p, therefore not-(p & 

q) is invalid, but this is an intuitive inference to make, and it 

is valid in classical and probabilistic logics. 

Or-introduction 

In what follows we focus on the inference of or-

introduction, p, therefore p or q. This inference is valid in 

classical logic and in the probabilistic approach because it is 

incoherent to judge that P(p) > P(p or q). It was also valid in 

previous versions of MMT.  

Past studies using binary instructions (asking participants 

to assume the premises to be true, and then to judge whether 

the conclusion also had to be true) found that people accept 

the inference less frequently than other valid inferences 

(Braine, Reiser, & Rumain, 1984; Orenes & Johnson-Laird, 

2012; Rips, 1983). But the probabilistic approach and 

previous versions of MMT agreed that the lower acceptance 

rate can be explained through pragmatic factors: p is a 

stronger, more informative statement than p or q, and so it is 

pragmatically infelicitous to assert p or q when one has 

enough information to assert p (Grice, 1989). Orenes & 

Johnson-Laird (2012) specified this position further, 

suggesting that the pragmatic infelicity of the inference 

comes from the fact that the conclusion p or q includes a 

model in which the premise p is false. We agree with Grice 

(1989) that it is potentially misleading to assert p or q in a 

conversation, suggesting that p is possibly false, after 

inferring p or q from p (Gilio & Over, 2012). 

However, in the new version of MMT or-introduction is 

considered invalid for the same reason as the paradoxes: the 

model for p does not establish that the three models for the 

disjunction are possible. This revision does not take into 

account the more recent finding that under probabilistic 

instructions (asking participants for their degree of belief in 

the premise, and for their degree of belief in the conclusion 

given their degree of belief in the premise) or-introduction 

is accepted to a high degree, indistinguishable from that of 

other, uncontroversially valid inferences (Cruz, Baratgin, 

Oaksford, & Over, 2015; Politzer & Baratgin, 2016). 

According to the probabilistic approach, people accept the 

inference under probabilistic instructions because pragmatic 

constraints related to what is asserted in a conversation tend 

to be eliminated or reduced when people are asked directly 

for their subjective beliefs. Conversational principles about 

not misleading our hearers (Grice, 1989) do not apply when 

we are making inferences from our own beliefs as premises 

to further beliefs in a subjective mental process. 
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The assumed invalidity of or-introduction also disables 

central logical and probabilistic principles. For example, if 

or-introduction is invalid, then so is a version of the 

inference in which the disjunction is "packed": p, therefore 

superset of p. For example, there is tea, therefore there is 

tea or coffee can be paraphrased as there is tea, therefore 

there is a hot beverage. Or-introduction thus enables us to 

establish basic set-subset relations. If people are unable to 

establish such relations, then the MMT account of reasoning 

with categorical syllogisms breaks down. Or-introduction is 

also used in the proofs of many fundamental theorems of 

probability theory, such as the theorem of total probability, 

P(p) = P((p & q) + P(p & not-q)), which is itself derived 

from the fundamental logical principle that p is equivalent 

to (p & q) or (p & not-q). MMT cannot integrate logic and 

probability theory while implying that such principles are 

invalid.  

In what follows we analyse in more detail the relation 

between or-introduction and two further inferences: and-

elimination, p & q, therefore p, and or-MP: if p or q then r, 

p, therefore r.  

And-elimination = or-introduction 

And-elimination appears to be valid in the new version of 

MMT, because the model of the premise contains all the 

models of the conclusion. But the validity of and-

elimination implies the validity of or-introduction, and vice 

versa, as follows:  

 

p & q, therefore p 

not-p, therefore not-(p & q)   

not-p, therefore not-p or not-q           

p, therefore p or q                        

 

(by reductio ad absurdum) 

(by de Morgan) 

(by substitution of terms) 

 

Mental model theory could argue that it does not accept this 

proof because one or more of the rules used in the derivation 

are itself invalid in the theory. But the invalidity of such 

elementary logical rules would have counterintuitive 

consequences for a wide range of further inferences.  

Or-MP: or-introduction through the back door 

The inference if p or q then r, p, therefore r can be called or-

MP because it is the short form of a two-step inference, in 

which one first uses or-introduction to infer p or q from p, 

then then uses p or q together with if p or q then r to infer r 

through the inference of modus ponens (MP).  

Under binary instructions or-MP is endorsed to a degree 

at least as high as MP (Rips, 1983). The inference also 

appears to be valid in new MMT because the models of the 

premises contain all the models of the conclusion. But as 

outlined above, or-MP includes or-introduction as a 

component.  

Followers of MMT might reply that, in the new version of 

the theory, or-MP is valid directly without the intermediate 

step of or-introduction. But the validity of or-MP also 

implies the validity of or-introduction in a direct way. If we 

substitute p or q for r, the resulting inference is if p or q 

then p or q, p, therefore p or q. The first premise is a 

tautology, which always holds and does not have to be 

assumed, and the rest is explicit or-introduction (c. f. Over 

& Cruz, in press).  

We conducted an experiment to test people's intuitions 

about the validity of or-introduction, and its relation to and-

elimination and or-MP, using probabilistic instructions. 

Method 

Participants 

A total of 121 participants from English speaking countries 

completed the experiment through the online platform 

Prolific Academic. After removing cases that failed a test 

question or included trial reaction times of 3 sec or less, 112 

participants remained for analysis. They had a mean age of 

29 years (range: 18-73), and a varied formal-educational 

background. All indicated having at least good English 

language skills. Participants' percentage rating of task 

difficulty was on average 48%. 

Design and materials 

Participants were shown the 6 inferences of Table 1 (two 

further inferences investigating other questions are not 

discussed here due to space constraints). Inferences 1 to 5 

were presented three times, with three different premise 

probabilities (100%, 80%, and 60%). Inference 6 was only 

presented with a premise probability of 100% because one 

of its premises is a tautology. Premise probability was 

varied with the aim of generalising the results to different 

premise probabilities, and was not associated with particular 

predictions. For each trial, participants' task was to judge 

how likely the conclusion of the inference can be, given the 

likelihood of the premise.   

 

Table 1. The inferences investigated. 

 

 Name Form 

1 or-introduction p  p or q 

2 and-elimination p & q  p 

3 Paradox 1 q  if p then q 

4 Paradox 2 not-p  if p then q  

5 or-MP (a) if p or q then r, p  r 

6 or-MP (b) if p or q then p or q, p 

 p or q 

Note. "" = "therefore".  

 

The experiment involved three comparisons. The first was 

between inference 1 (or-introduction) and inference 2 (and-

elimination). The probabilistic approach predicts people will 

give similar ratings to these two inferences because the 

validity of one implies the validity of the other, and asking 

directly for people's degree of belief in the conclusion is 

expected to reduce pragmatic factors that may have led to 

lower acceptance rates of or-introduction using binary 

instructions (Orenes & Johnson-Laird, 2012; Rips, 1983). In 

contrast, new MMT would predict inference 2 to be 
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accepted to a high degree but inference 1 to be rejected, 

because inference 2 is valid but inference 1 is invalid in the 

new version of the theory.  

The second comparison was between inference 1 (or-

introduction) and inferences 3 and 4 (the paradoxes of the 

material conditional. The probabilistic approach predicts 

people will accept inference 1 to a higher degree than 

inferences 3 and 4 because the first is valid but the latter two 

invalid. In contrast, new MMT would predict that people 

will reject all three inferences to a similar degree, because 

they are considered invalid for the same reason in the 

theory.  

The third comparison was between inference 1 (or-

introduction) and inferences 5 and 6 (or-MP). The 

probabilistic approach predicts people will endorse 

inferences 1, 5 and 6 to a similar degree, because they are 

all valid. New MMT would predict inference 5 to be 

accepted as valid (by assuming it to be computed in a direct 

way without the intermediate step of or-introduction), but 

inferences 1 and 6 to be rejected because or-introduction is 

invalid on their account.  

On each trial participants saw an inference embedded in a 

pseudo-naturalistic context story. The context stories 

changed on every trial, and were randomly allocated to the 

inferences for each participant. The order of occurrence of 

the inferences was also varied randomly for each 

participant. With 8 inferences (two not reported here) and 3 

probabilities (and inference 6 only being paired with a 

probability of 100%), there were 22 trials overall, plus two 

control trials to check whether participants were paying 

attention.  

Procedure  

After going through the instructions and three practice trials 

involving different inferences to those in Table 1, 

participants worked through the 24 trials of the experiment. 

They then provided demographical information and 

indicated whether they had taken part seriously. The final 

page provided debriefing information. The experiment took 

on average 13.2 minutes to complete.  

Results and discussion  

To compare the above predictions of the probabilistic 

approach and the revised version of MMT, two linear mixed 

model analyses were performed. The procedure for model 

construction followed the recommendation of Barr, Levy, 

Scheepers, & Tily (2013) of implementing the maximum 

possible random effects structure justified by the design. 

The models included a random intercept for participants, but 

random effects for material could not be included because 

the random allocation of materials to inferences had as a 

consequence that there were not enough repetitions of the 

same type of material within each cell of the design. 

Predictor variables were centred around their grand mean to 

avoid problems of multicollinearity when including 

interaction terms. Comparisons of the main F-test results 

with likelihood-ratio tests led to the same pattern of 

significant and non-significant effects. Effect sizes were 

calculated using the formulas suggested by Snijders and 

Bosker (2012), requiring the use of ML as opposed to reML 

as estimation method. The results are displayed in Figure 1.  

Analysis 1: Inferences 1 to 5  

We first fitted an overall model with inference (1 to 5) 

and probability (100%, 80%, 60%) as independent 

variables
1
. Judgments of conclusion probability increased 

with increasing premise probability, F(2, 1568) = 118.76, p 

< .001, ηp
2
 = .074. Mean probability judgments differed 

between inferences, F(4, 1568) = 269.09, p < .001, ηp
2
 = 

.334. The size of the effect of premise probability also 

differed between inferences, F(8, 1568) = 13.06, p < .001, 

ηp
2
 = .055. 

 

 
Figure 1. Judgments of conclusion probability for 

inferences 1 to 5 as a function of premise probability. 

Error bars show 95% CIs. 

 

 

                                                           
1
Following the notation of Snijders & Bosker (2012), the 

equation for measurement i of participant j was given by: 

 
This random coefficients model had 17 parameters: 1 for the 

fixed effect of the intercept, 4 for the fixed effect of 

inference, 2 for the fixed effect of premise probability, 8 for 

the fixed interaction between inference and premise 

probability, 1 for the variance of the intercept, and 1 for the 

residual variance. The fact that the predictors were centred 

is not represented in the equation due to space constraints. 

The equations for the other linear mixed models computed 

in the analyses followed the same principles, but are not 

reported due to limitations of space. 
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Figure 1 suggests that the interaction between inference 

and premise probability can be traced back to the lack of an 

effect of premise probability for inference 4. Follow-up 

analyses showed that there was indeed no effect of premise 

probability for inference 4, F(2, 224) = 1.06, p  = .35, ηp
2
 = 

.005. However, the size of the effect of premise probability 

still varied between inferences 1, 2, 3 and 5, F(2, 1232) = 

189.60, p < .001, ηp
2
 = .017.  

Follow-up analyses to the effect of inference showed that 

there was no significant difference in probability judgments 

for inference 1 (M = 75.14, SE = 1.34) and inference 2 (M = 

78.02, SE = .82) (F(1, 560) = 3.23, p = .073, ηp
2
 = .005). 

This is in accordance with the predictions of the 

probabilistic approach, because or-introduction and and-

elimination can be derived from one another as valid 

inferences. The result is at odds with new MMT, which 

predicts the second to be valid but the first invalid. 

Judgments for inference 1 were higher than those for 

inference 3 (M = 59.66, SE = 1.77) (F(1, 560) = 70.028, p < 

.001, ηp
2
 = .085) and than those for inference 4 (M = 37.58, 

SE = 1.70) (F(1, 560) = 424.164, p < .001, ηp
2
 = .371). This 

is again in accordance with the probabilistic approach, for 

which or-introduction is valid, but the paradoxes of the 

material conditional are not. It goes counter to new MMT, 

in which the three inferences are invalid for the same 

reason. 

Judgments for inference 5 (M = 83.85, SE = 1.03) were 

slightly higher than those for inference 1 (F(1, 560) = 33.47, 

p < .001, ηp
2
 = .044) and than those for inference 2 (F(1, 

672) = 14.990, p < .001, ηp
2
 = .022). Taken by itself this 

finding is in accordance with both the probabilistic approach 

and new MMT, because both predict the inference to be 

valid. Small differences in the acceptance of valid 

inferences are not a problem for either theory, as long as the 

difference between responses to valid and responses to 

invalid inferences is larger, as Figure 1 clearly corroborates. 

The slightly higher acceptance of or-MP than of or-

introduction and and-elimination is in accordance with the 

fact that or-MP includes MP as a component, and MP tends 

to be endorsed at ceiling. Responses to inference 5 become 

more consequential to the questions investigated here when 

compared to those of inference 6.   

Analysis 2: Inferences 1, 5, and 6 

We next fitted a model with inference (1, 5, 6) as the 

independent variable, using responses for a premise 

probability of 100%. Judgments for inference 1 (M = 85.60, 

SE = 1.98) were again slightly lower than those for 

inference 5 (M = 92.63, SE = 1.98) (F(1, 112) = 8.34, p = 

.005,  ηp
2
 = .027) and than those for inference 6 (M = 91.32, 

SE = 2.03) (F(1, 112) = 4.69, p = .032, ηp
2
 = .019). 

Judgments for inference 5 did not differ from those for 

inference 6 (F(1, 112) = .31, p = .58). Thus version (a) of 

or-MP (if p or q then r, p, therefore r) and version (b) of the 

inference (if p or q then p or q, p, therefore p or q) were 

endorsed to the same degree, even though version (b) 

explicitly contains or-introduction as a component. This is 

in accordance with the probabilistic approach, under which 

the two inferences are equivalent, but at odds with new 

MMT, which would predict version (b) of the inference to 

be rejected because or-introduction is invalid in its account.   

An interesting, not anticipated finding concerns the 

pattern of results for the paradoxes (inferences 3 and 4). For 

inference 4 there was no effect of premise probability, and 

judgments of conclusion probability were consistently low. 

Judgments for inference 3 were also clearly lower than those 

for inferences 1, 2, and 5, but they did covary positively 

with premise probability.  

A first account of this difference could be as follows. In 

the case of inference 4, not-p, therefore if p then q, premise 

and conclusion contain no elements in common, and so the 

fact that the premise is uninformative about the conclusion 

is clearly apparent. Without any information about the 

conclusion, people assign a low probability to it, expressing 

that it does not follow from the premise. In the case of 

inference 3, q, therefore if p then q, the premise is also 

uninformative about the conclusion, and so any response is 

coherent. But in the absence of further information, it is 

reasonable to infer that a given probability of q will remain 

invariant under the assumption of p. It therefore makes 

sense for responses to covary positively with premise 

probability.  

General discussion 

We investigated the inference of or-introduction and its 

relation to and-elimination and or-MP. Earlier research 

using binary instructions had found or-introduction to be 

accepted less frequently than and-elimination (Rips, 1983). 

The recent revision of MMT argues that or-introduction is 

in fact invalid. But the assumptions of this revision have 

inconsistencies and counterintuitive consequences for other 

inferences. We extended recent findings (Cruz et al., 2015; 

Polizer & Baratgin, 2016) using probabilistic instructions 

and found that or-introduction is accepted to a high degree, 

indistinguishable from that of and-elimination. People's 

responses to or-MP were slightly higher than those for or-

introduction and and-elimination, even though or-MP 

contains or-introduction as a component. These findings are 

in accordance with the predictions of a Bayesian approach 

to the study of reasoning, but not with those of new MMT.  

With the exception of the paradoxes, the findings could 

also have been accounted for in earlier versions of MMT 

concerned with extensional probabilities (Girotto & 

Johnson-Laird, 2004, 2010; Johnson-Laird et al., 1999; c. f. 

Orenes & Johnson-Laird, 2012). These earlier formulations 

converged with the probabilistic approach in holding that 

or-introduction is valid, but is sometimes odd for pragmatic 

reasons. The results of this experiment provide further 

evidence for the pragmatic explanation. The findings also 

suggest that people tend to reason using or-introduction in a 

more logical and less biased way under probabilistic than 

under binary instructions. People's inferences from their 

own degrees of belief to further degrees of belief do not 

seem to be governed by the conventions of conversation for 
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speakers and hearers in open discussions, but rather by the 

Bayesian principles of belief revision and updating, as 

proposed in the new paradigm in the psychology of 

reasoning.  
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Abstract 

The delay discounting perspective, which assumes an 
alternative-wise processing of attribute information, has long 
dominated research on intertemporal choice. Recent studies, 
however, have suggested that intertemporal choice is based on 
attribute-wise comparison. This line of research culminated in 
the tradeoff model (Scholten & Read, 2010; Scholten, Read, 
& Sanborn, 2014), which can accommodate most established 
behavioral regularities in intertemporal choice. One drawback 
of the tradeoff model, however, is that it is static, providing 
no account of the dynamic process leading to a choice. Here 
we develop a dynamic tradeoff model that can qualitatively 
account for empirical findings in intertemporal choice 
regarding not only choices but also response times. The 
dynamic model also outperforms the original, static tradeoff 
model when quantitatively fitting choices from representative 
data sets, and even outperforms the best-performing dynamic 
model derived from Decision Field Theory in Dai and 
Busemeyer (2014) when fitting both choices and response 
times. 
 

Keywords: intertemporal choice; tradeoff model; dynamic 
models, random utility, discrimination threshold 

Introduction  

Many human decisions, mundane or momentous, involve 

choices between outcomes that materialize at different times 

in the future, ranging from dieting and exercising plans to 

education and saving decisions. Research on such 

intertemporal choices has a long history and has revealed 

various behavioral regularities. For example, it was found 

that large rewards suffer less proportional discounting than 

small ones do (the magnitude effect; e.g., Green, Myerson, 

& McFadden, 1997), and that people’s preference between 

options that have different delays can reverse as time passes 

(e.g., Green, Fristoe, & Myerson, 1994). Various descriptive 

models have been developed to account for these empirical 

phenomena. Among them, the tradeoff model (Scholten & 

Read, 2010; Scholten, Read, & Sanborn, 2014) currently 

appears to be one of the most promising models since it 

provides a unified framework for qualitatively explaining a 

majority of the empirical findings. Most crucially, it can 

account for the nonadditivity in delay discounting (e.g., 

Scholten & Read, 2010; Scholten, Read, & Sanborn, 2014), 

which eludes any model built on the notion of delay 

discounting.  

One drawback of the tradeoff model, however, is its static 

nature. As a result, it lacks an account of the dynamic 

process leading to the explicit intertemporal choices. 

Nevertheless, any decision is a result of some process that 

unfolds in time. The characteristics of the process affect the 

final decision as well as process-related variables such as 

response time. Therefore, a static model provides only an 

incomplete description of intertemporal choice, and an 

account of the underlying dynamics is required for a more 

comprehensive understanding thereof. 

In this paper, we propose a modified tradeoff model of 

intertemporal choice that has a dynamic structure and can 

thus account for both choice and response time data. We 

show that this dynamic tradeoff model can qualitatively 

accommodate key findings in the literature regarding both 

choice patterns and relationship between choices and 

response times. In two model-comparison analyses, we 

further show that the dynamic model can even outperform 

promising competing models when fitting empirical data 

quantitatively.  

The Tradeoff Model  

To account for intertemporal choice, research has for a long 

time been mainly conceptualized using the notion of delay 

discounting, according to which the delay of a reward 

decreases its present subjective value. One major concern of 

this approach has been to find the most appropriate form of 

the discount function, which describes how subjective value 

decreases with increased delay length. A critical assumption 

in this endeavor is that each option has a discounted utility 

or present value independent of other competing options. 

Importantly, this predicts that intertemporal choice should 

be transitive: if, among three options X, Y, and Z, one 

chooses X over Y and Y over Z, then he or she should also 

choose X over Z.  

A series of studies by Read, Scholten, and colleagues, 

however, demonstrated that the transitivity of intertemporal 

choices is sometimes violated for a triple of options S, M, 
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and L with increasing money amounts and delay lengths 

(e.g., Scholten et al., 2014). For example, when facing 

Option S of receiving $30 in one week, Option M of 

receiving $35 in two weeks, and Option L of receiving $40 

in three weeks, some people might choose Option S over 

Option M, choose Option M over Option L, but choose 

Option L over Option S. In each pair, one option has a 

smaller but sooner reward (smaller-but-sooner, or SS, 

option), and the other has a larger but later reward (larger-

but-later, or LL, option). The cyclical choice pattern 

suggests that such people prefer the SS options for adjacent 

pairs of options (e.g., Option S vs. Option M), but the LL 

option for the distant pair (Option S vs. Option L). By 

contrast, others may instead choose the LL options for 

adjacent pairs but the SS option for the distant pair. The 

former cyclical pattern can be accounted for by assuming 

that the amount of discounting associated with a given 

difference in delay (i.e., the interval between one and three 

weeks) is smaller when it is treated as a whole than when it 

is divided into subintervals (e.g., two subintervals of one 

week), whereas the latter implies the opposite. Together, 

these patterns suggest nonadditivity in delay discounting.   

To accommodate violation of transitivity in intertemporal 

choice, several alternatives to discounting models were 

developed, culminating in the tradeoff model. The key 

difference between the tradeoff model and previous delay 

discounting models lies in how attributes are assumed to be 

processed. In contrast to the notion of alternative-wise delay 

discounting, the tradeoff model assumes that people process 

attribute information in intertemporal choice by comparing 

options within each attribute, and that advantages on one 

attribute (e.g., reward amount) are traded off against the 

disadvantages on the other attribute (e.g., waiting time). 

Such an attribute-based approach has been shown to better 

capture the empirical data quantitatively than the traditional 

alternative-based approach reflected in the delay 

discounting paradigm (Dai & Busemeyer, 2014).  

According to the tradeoff model, when choosing between 

an SS option with a money amount of xS and a delay length 

of tS, and an LL option with a money amount of xL and a 

delay length of tL, a decision maker (DM) compares the 

effective compensation with the effective interval. Let v(x) 

denote a value function and w(t) denote a time weighting 

function. The effective compensation is defined as the 

difference in the value of the two money amounts, that is, 

v(xL) – v(xS), and the effective interval is defined as the 

difference in the weighted delay lengths, that is, w(tL) - 

w(tS). In addition, the effective interval is assumed to be 

weighed against the effective compensation by a tradeoff 

function Q(w(tL) – w(tS)) to make the decision. The SS 

option should be preferred when Q(w(tL) – w(tS)) is larger 

than v(xL) – v(xS), and the LL option should be preferred 

when Q(w(tL) – w(tS)) is smaller than v(xL) – v(xS). 

In the latest version of the tradeoff model (Scholten et al., 

2014), the subjective value of a money amount x is given by 

                            𝑣(𝑥) =
1

𝛾
log(1 + 𝛾𝑥),                            (1)                                                                    

where γ represents diminishing absolute sensitivity to 

differences in money amount, the time weight of a delay 

length t is given by 

                              𝑤(𝑡) =
1

𝜏
log(1 + 𝜏𝑡),                           (2) 

where τ represents diminishing absolute sensitivity to 

differences in delay length, and                                          

        𝑄(𝑤(𝑡𝐿) − 𝑤(𝑡𝑆)) =
𝜅

𝛼
log (1 + 𝛼 (

𝑤(𝑡𝐿)−𝑤(𝑡𝑆)

𝜗
)

𝜗

),  (3) 

in which κ > 0 represents delay sensitivity, ϑ > 1 represents 

superadditivity, and α > 0 represents subadditivity. To 

accommodate probabilistic choice patterns (Dai & 

Busemeyer, 2014), it is further assumed that the choice 

probability of the LL option over the SS option is given by a 

ratio rule, that is, 

                    Pr(LL|{SS, LL}) = (
𝑣(𝑥𝐿)−𝑣(𝑥𝑆)

𝑄(𝑤(𝑡𝐿)−𝑤(𝑡𝑆))
)1/𝜖 ,           (4) 

where ε > 0 represents response noise. With these 

assumptions, the models can accommodate a large number 

of behavioral regularities in intertemporal choice, such the 

aforementioned magnitude effect, preference reversal, and 

nonadditivity in delay discounting.  

A Dynamic Version of the Tradeoff Model 

One important aspect of intertemporal choice that the 

tradeoff model cannot explain is the recent finding 

regarding a relationship between choices and response times 

in intertemporal choice (Dai & Busemeyer, 2014). 

Specifically, it was found that pairs of options that give rise 

to extreme choice proportions tend to be associated with 

faster response times than pairs with more moderate choice 

proportions. We refer to this relationship as the fast-and-

extreme effect. Because the tradeoff model is silent on the 

temporal dynamics underlying intertemporal choice, it lacks 

an account of this finding. Here we present a modification 

of the model to equip it with a dynamic structure while 

keeping its key assumption of attribute-based processing.  

As the original tradeoff model, we assume that a DM 

performs intertemporal tradeoffs by comparing the effective 

intervals with the effective compensations. However, unlike 

the latest implementation of the model (Scholten et al., 

2014), in the modified version we assume a more 

straightforward comparison that goes without the mediation 

of the tradeoff function. Specifically, we assume that v(xL) – 

v(xS) is directly compared to w(tL) – w(tS). To accommodate 

the probabilistic nature of intertemporal choice, we make 

two further assumptions. First, both the effective 

compensation and the effective interval are assumed to be 

random, denoted as V(xL) – V(xS) and W(tL) – W(tS), 

respectively, to reflect the uncertainty in these subjective 

evaluations. Second, it is assumed that a decision is made 

when the absolute difference between the two (random) 

quantities is larger than a positive value; otherwise the DM 

acquires another sample of the effective compensation and 

interval without accumulating preferences from previous 

samples. This process continues until a decision can be 

made. Note that the first assumption echoes the notion of 

random utility in economics (e.g., McFadden, 1973), while 
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the second assumption is built on the concept of 

discrimination threshold in psychophysics (Fechner, 1860).  

To derive quantitative predictions, we assume that the 

effective compensation and effective interval follow 

independent normal distributions, with respective variance 

proportional to the mean of the distribution. As a result, the 

difference between effective compensation and effective 

interval is also normally distributed with  

               𝜇 = [𝑣(𝑥𝐿) − 𝑣(𝑥𝑆)] − [𝑤(𝑡𝐿) − 𝑤(𝑡𝑆)],         (5) 

and  

       𝜎 = √𝑐{[𝑣(𝑥𝐿) − 𝑣(𝑥𝑆)] + [𝑤(𝑡𝐿) − 𝑤(𝑡𝑆)]},       (6) 

in which c is a proportional constant to be estimated from 

the data.
1
 Given the assumption of non-accumulative 

sampling until a sufficiently large difference is obtained, the 

choice probability of the LL option is given by  

               Pr(𝐿𝐿|{𝑆𝑆, 𝐿𝐿}) =
Φ(

μ−δ

𝜎
)

Φ(
−μ−δ

𝜎
)+Φ(

μ−δ

𝜎
)
,                  (7) 

in which Φ represents the cumulative distribution function 

of a standard normal distribution, and δ denotes the smallest 

positive difference (i.e., the positive discrimination 

threshold) required to make a decision. 

Because the modified model goes without the tradeoff 

function and the related ratio choice rule (which are critical 

for the original model to accommodate the nonadditivity in 

delay discounting), an alternative mechanism is required in 

order to retain this capability. To this end, we further 

assume that the discrimination thresholds for choosing the 

SS and LL options (i.e., δS and δL) are different, echoing the 

general idea of decision bias in the literature of choice 

models (e.g., Busemeyer & Townsend, 1993).
2
 In this case,  

                Pr(𝐿𝐿|{𝑆𝑆, 𝐿𝐿}) =
Φ(

μ−δ𝐿
𝜎

)

Φ(
−μ−δ𝑆

𝜎
)+Φ(

μ−δ𝐿
𝜎

)
.                  (8) 

To derive predictions on response time distributions for 

the modified tradeoff model, we assume that the time it 

takes to assess a sample follows a Gamma distribution with 

a scale parameter of θ and a shape parameter of 2. Because 

empirical distributions of response time tend to be single-

peaked (rather than monotonously decreasing), we fix the 

shape parameter at 2 instead of 1. The total response time is 

assumed to be the sum of time(s) required for all samples 

drawn until a decision is made, plus a nondecision time. 

With these assumptions, we analytically derive joint 

probability density functions for both choices and response 

times (see Dai, Pleskac, & Pachur, 2016). Such analytical 

solutions are usually not available for other dynamic choice 

models. This ends our description of the modified tradeoff 

model (hereafter the dynamic tradeoff model). See Figure 1 

for the dynamic structure of the model. 

                                                           
1 The model performance results (reported in a later section) 

were virtually the same or worse when the standard deviation 

instead of variance of the relative distribution was set to be 

proportional to the mean and/or the tradeoff parameter κ in the 

static model was incorporated into w(t) as a multiplicative constant 

to put subjective value and time weight on the same scale. 
2 Mathematical proof on the necessity of this assumption for 

accommodating the relevant phenomena is available upon request.  

Explanatory Power of the Dynamic Tradeoff Model 

Because the dynamic tradeoff model inherits the assumption 

of attribute-based processing, it can accommodate several 

key findings in intertemporal choice, including the 

magnitude effect, the common ratio effect, and the common 

difference effect. According to the magnitude effect, larger 

amounts appear to be discounted at a lower rate than smaller 

ones. For example, if a DM is indifferent between receiving 

$100 now and receiving $200 in a year, suggesting an 

annual discount rate of 50%, then the same person would 

tend to prefer receiving $2000 in a year to receiving $1000 

now, suggesting an annual discount rate lower than 50%. 

From an attribute-based perspective, this change in discount 

rate can be easily explained by noticing that the effective 

compensation between $1000 and $2000 is much larger than 

that between $100 and $200, whereas the effective intervals 

for the two choice scenarios are just the same.  

 

 
 

Figure 1: The dynamic structure of the modified tradeoff 

model of intertemporal choice. 

 
The common ratio effect (i.e., the delay duration effect in 

Dai and Busemeyer [2014]) implies that increasing the 

delays of both options proportionally would shift people’s 

preference toward the SS option. In this case, the change in 

attribute values produces a larger effective interval while 

keeping the same effective compensation, with the observed 

effect as a natural result. Finally, the common difference 

effect suggests that postponing both options by the same 

length would increase people’s preference to the LL option. 

This effect is accounted for by the attribute-based approach 

together with the nonlinearity of the time weighting function 

(i.e., w(t)). The particular form of the function (i.e., 

Equation 2) entails that increasing both delays by the same 

length would lead to a smaller effective interval and thus 

shift preference towards the LL option.  

With the assumption of distinct discrimination thresholds 

for choosing the SS and LL options, it can be shown that the 

dynamic tradeoff model can produce nonadditivity in delay 

discounting demonstrated as a violation of transitivity. 
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Specifically, when the probabilistic nature of choice is 

considered, a violation of transitivity is usually formalized 

as a violation of weak stochastic transitivity (WST; 

Davidson & Marschak, 1959). WST requires that for a triple 

of options X, Y, and Z, if PXY ≥ 0.5, PYZ ≥ 0.5, then PXZ 

should also be no smaller than 0.5, in which PAB represents 

the probability of choose option A over option B in a binary 

choice. In other words, a violation of WST occurs when PXZ 

< 0.5 given the two preconditions. This is consistent with 

the dynamic tradeoff model. For example, for the 

aforementioned triple of options with increasing money 

amounts and delay lengths, the dynamic tradeoff model 

would predict PSM = 0.53, PML = 0.58, but PSL = 0.35 when γ 

= 0.05, τ = 0.01, c = 1, δS = 0.01, and δL = 2, violating WST. 

Besides showing intransitive intertemporal choices 

produced by sub- or superadditivity in delay discounting, 

Scholten et al. (2014) also suggested a more intricate pattern 

of intransitive intertemporal choice called relative 

nonadditivity. Specifically, intransitive intertemporal 

choices tend to show subadditivity when differences 

between delay lengths are large relative to the differences 

between money amounts, and show superadditivity when 

the differences between delay lengths are large relative to 

those between money amounts. To account for this pattern, 

Scholten et al. defined additivity in delay discounting in 

terms of a product rule of choice odds and showed that this 

definition naturally led to the pattern of relative 

nonadditivity. According to this definition, subadditivity 

occurs when  

                             Ω𝐿𝑆 > Ω𝑀𝑆 × Ω𝐿𝑀 ,                             (9) 

in which ΩXY denotes the choice odds of option X over 

option Y, that is, PXY/PYX, and superadditivity occurs when  

                             Ω𝐿𝑆 < Ω𝑀𝑆 × Ω𝐿𝑀 .                           (10) 

According to Scholten et al., the ratio choice rule of the 

static tradeoff model is the key component for explaining 

relative nonadditivity.  

The dynamic tradeoff model, which goes without the ratio 

choice rule, can account for the same phenomenon. 

According to the dynamic model, ΩMS and ΩLM tend to be 

smaller than 1 when differences between delay lengths are 

large relative to the differences between money amounts, so 

is ΩLS. Given the choice rule of the dynamic model (i.e., 

Equation 7 for equal discrimination thresholds for choosing 

the SS and LL options, or Equation 8 for distinct 

discrimination threshold), it can be shown that the same 

conditions tend to render Ω𝐿𝑆 > Ω𝑀𝑆 × Ω𝐿𝑀. For example, 

for a triple of options X, Y, and Z with increasing reward 

amounts of 10, 11, and 12 dollars, and increasing delay 

lengths of 5, 10, and 15 days, ΩMS = 0.074, ΩLM = 0.105, 

but ΩLS = 0.026 > 0.008 = ΩMS × ΩLM when γ = τ  = 0.05, c 

= 1, and δS = δL = 0.05. To the contrary, with the same set of 

model parameters but another triple of options X’, Y’, and 

Z’ with increasing reward amounts of 10, 20, and 30 dollars, 

and the same increasing delay lengths of 5, 10, and 15 days, 

ΩMS = 3.15, ΩLM = 2.30, but ΩLS = 4.14 < 7.26 = ΩMS × ΩLM. 

In the first triple, the differences between delay lengths are 

large relative to those between reward amounts, whereas in 

the second triple, the latter are large relative to the former. 

Besides accounting for major empirical regularities in 

choice, the dynamic tradeoff model can also accommodate 

the fast-and-extreme effect, one robust relationship between 

choices and responses in intertemporal choice (Dai & 

Busemeyer, 2014). According to the model, the more 

strongly the expected difference between effective 

compensation and effective interval differs from zero, the 

higher the probability of obtaining a difference large enough 

in each sample and the further away ratio of Φ(
μ−δ

𝜎
) to 

Φ(
−μ−δ

𝜎
) is from 1. The former leads to faster response 

times because fewer samples are required to trigger a 

decision, whereas the latter leads to more extreme choice 

proportions.  

In summary, the dynamic tradeoff model can qualitatively 

accommodate all the major findings in intertemporal choice 

that are captured by the static tradeoff model; in addition, it 

can also qualitatively accommodate the fast-and-extreme 

effect, a prominent relationship between choices and 

response times that eludes the static tradeoff model. In the 

next section, we show further that the dynamic model can 

also quantitatively fit empirical data better than promising 

competing models.  

Quantitative Model Comparisons 

We conducted two model-comparison analyses to show the 

power of the dynamic tradeoff model in quantitatively 

fitting empirical data. First, we compared it with the latest, 

full version of the static tradeoff model (Scholten et al., 

2014) in terms of their performance in fitting choice data 

only. Second, we compared the dynamic tradeoff model 

with the best-performing model in Dai and Busemeyer 

(2014)—which is built on Decision Field Theory (DFT; 

Busemeyer & Townsend, 1993)—with regard to their 

performance in fitting choice and response time data 

simultaneously. The DFT model assumes a sequential 

sampling approach and an attention shift mechanism for 

making intertemporal choices. Specifically, it suggests that a 

DM attends to either the money or the delay attribute at a 

time and evaluates the relevant difference between options 

to update his or her preference. This preference updating 

process continues over time as the DM switches attention 

between the two attributes until the preference level of one 

option reaches a preference threshold to trigger a decision. 

See Dai and Busemeyer for more details of the DFT model.  

Method 

We used data from three representative empirical studies to 

assess the performance of the models in accounting for 

individual-level data. The first data set came from Study 1 

in Dai (2014), in which half or all the choice questions for 

each individual had an immediate SS option. The second 

data set came from Dai (2016), which focused on the 

nonadditivity in delay discounting and involved only 

delayed SS and LL options. The third data set came from 
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Study 3 in Dai and Busemeyer (2014), which examined the 

magnitude effect, the common ratio effect, and the common 

difference effect, and again involved only delayed SS and 

LL options. All three data sets contained participants who 

showed the fast-and-extreme effect. A total of 138 

participants contributed data to the analysis: 61 from the 

first data set, 40 from the second, and 37 from the third. In 

all three studies, the choice questions for each participant 

were adjusted to suit the time preference level of the 

individual, and each question was presented multiple times. 

In this way, moderate choice proportions could be induced 

at an individual level to better distinguish probabilistic 

models from one another.  

The models were fitted to individual data from each data 

set using the predicted functions of choice probability or 

joint probability density functions of choices and response 

times. We used the SIMPLEX algorithm implemented in the 

fminsearch function of Matlab to find the maximum-

likelihood parameter estimates of each model, which was 

then used to calculate the Bayesian Information Criterion 

(BIC; Schwarz, 1978). The BIC is a common measure for 

relative model performance and expresses a model’s ability 

to capture the data, taking into account its complexity 

(based on the number of free parameters). A lower BIC 

indicates a better balance between goodness of fit and model 

complexity and thus a more desirable model.  

To evaluate the absolute performance of the dynamic 

tradeoff model, we compared its predictions with the 

observed data in terms of the fast-and-extreme effect. 

Specifically, we categorized all repeatedly presented 

questions into five equal-interval groups regarding observed 

choice proportions of the LL options and then calculated the 

mean observed and predicted response times for each 

question. The observed and predicted response times within 

each bin were then averaged to obtain overall measures of 

the observed and predicted results regarding response time. 

The fast-and-extreme effect suggests that mean response 

times associated with moderate choice proportions should 

be longer than those with extreme choice proportions. 

Results  

Table 1 presents the results of comparing the static and 

dynamic tradeoff models in terms of the numbers of 

participants whose data were better described by either 

model when fitting only choice data, whereas Table 2 shows 

the results of comparing the dynamic tradeoff model with 

the best-performing DFT model in Dai and Busemeyer 

(2014) when fitting both choice and response time data. In 

each comparison, the dynamic tradeoff model outperformed 

the other model both separately for each data set and 

aggregated across all data sets.
3
 Furthermore, Figure 2 

shows that the dynamic tradeoff model reproduces the 

observed fast-and-extreme effect, supporting the validity of 

the model as a descriptive account. The difference in mean 

response time between questions with extreme choice 

                                                           
3 Overall BICs across participants showed the same pattern. 

proportions (i.e., p < 0.2 or p > 0.8) and those with moderate 

choice proportions (i.e., 0.2 ≤ p ≤ 0.8) was statistically 

significant for both observed (t = -9.83, p < .001) and 

predicted data (t = -5.08, p < .001).  

 

Table 1: Number of Participants Whose Choice Data 

Were Better Described by the Static or Dynamic Tradeoff 

Model. 

 

Data Set Static model Dynamic model 

1 10 51 

2 1 39 

3 18 19 

Across 29 109 

 

Table 2: Number of Participants Whose Choice and 

Response Time Data Were Better Described by the Best-

Performing DFT Model in Dai and Busemeyer (2014) or the 

Dynamic Tradeoff Model. 

 

Data Set DFT model Dynamic tradeoff model 

1 18 43 

2 14 26 

3 15 22 

Across 47 91 

 
 

Figure 2. Average mean response times for questions with 

different observed choice proportions of the LL options. 

Error bars show 95% confidence intervals.  

Discussion 

The static tradeoff model (Scholten et al., 2014) represents 

one of the most successful cognitive models to describe 

intertemporal choice. However, up to now there have been 

no attempts to examine how this modeling approach could 

be extended to also account for the dynamics of the 

underlying decision process. Here we developed a dynamic 

modification of the tradeoff model, which can accommodate 

not only key choice regularities but also the response time 

data and prominent regularities therein (e.g., the fast-and-

extreme effect). We also showed that this modified model 

quantitatively outperforms the original static tradeoff model 

when fitting choice data and the best-performing DFT 

model in Dai and Busemeyer (2014) when fitting both 
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choice and response time data. The model’s ability to 

capture the data both qualitatively and quantitatively 

underlines the value of developing dynamic accounts of 

intertemporal choice for a better understanding of this 

central topic in both psychology and economics. 

A General Framework for Developing Dynamic 

Models of Choice 

When developing the dynamic tradeoff model, we invoked 

and combined two time-honored concepts: the notion of 

random utility in economics and the concept of 

discrimination thresholds in psychology. Combining these 

concepts seems to offer a promising, but so far neglected, 

approach to developing dynamic choice models, and we 

argue that it could be applied to transform existing static 

models of choice also in other domains. For example, it 

could be applied to extend static models of risky choice into 

dynamic ones as long as the corresponding models can 

reasonably offer a measurement of the relative attractiveness 

of each option and the variability thereof. With dynamic 

models, both choice and response time data from empirical 

studies can be utilized to compare competing models for a 

more powerful model selection. Dai, Pleskac, and Pachur 

(2016) conduct a more comprehensive development and 

analysis of such a random-utility-with-discrimination-

threshold (RUDT) framework, and compare it to other 

dynamic approaches to modeling intertemporal choice. 

Future Directions 

In addition to the fast-and-extreme effect discovered in Dai 

and Busemeyer (2014), recent studies (Dai, 2014) have 

suggested another striking but less common relationship 

between choices and response times in intertemporal choice. 

Specifically, it was found that, within each choice question, 

the option chosen more frequently also tended to be chosen 

more quickly than the other option. Unfortunately, this fast-

and-frequent effect poses a severe challenge to both the 

best-performing DFT model in Dai and Busemeyer and the 

dynamic tradeoff model developed here. Both models 

predict that the conditional response time distribution given 

choosing one option should be identical to that given 

choosing the other option. As a consequence, the option 

chosen more frequently is predicted to have the same mean 

response time as the other option, contradicting the fast-and-

frequent effect. It is possible, however, to modify the 

dynamic tradeoff model to accommodate this effect (Dai et 

al., 2016). Specifically, by assuming that the discrimination 

thresholds are not fixed across successive samples but 

converging, it is possible to account for the pattern. To put 

DFT models of intertemporal choice on equal footing, 

attempts should be made to improve them as well. Future 

research should explore alternative forms of the tradeoff 

model under the RUDT structure and compare them with 

appropriate competing models to examine the performance 

of the dynamic tradeoff model.  

Conclusion 

Most existing models of intertemporal choice, including the 

original tradeoff model, are static and thus lack a proper 

account of the dynamic processes leading to a choice. In this 

paper, we showed how the static tradeoff model can be 

modified into a dynamic one with a general structure built 

on the concepts of random utility and discrimination 

threshold. The advantages of the dynamic tradeoff model 

are demonstrated by its capability to qualitatively 

accommodate empirical findings and its better performance 

in quantitative model comparisons. Future studies should 

further explore the capacity of this approach for explaining 

more phenomena in intertemporal choice and beyond.  
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Abstract 

Many intuitive notions of “learning” do not support the 
diverse kinds of learning across different situations and 
learners. In this paper I offer a functional definition of 
learning from a cognitive science perspective, which attempts 
to account for the presence of learning in different physical 
substrates. The definition is that a particular event should be 
considered a good example of “learning” to the degree to 
which the following characteristics describe it: 1) a system 
undergoes change to its informational state or processing 2) 
the change is for the purpose of more effective future action, 
3) the change is in response what the system experiences, and 
4) the system executes the change, rather than some outside 
force. Episodes are better examples of learning according to 
how many of these characteristics they have. I discuss 
benefits and limitations of this characterization. 

Keywords: learning; philosophy; conceptual analysis; 
cognitive science; functionalism; substrate neutrality 

Introduction 

According to Daniel Reisberg (Wilson & Keil, 
2001), learning “can be understood as a change in 
an organism’s capacities or behavior brought 
about by experience.”  The Oxford Companion to 
Philosophy defines it as “the acquisition of a form 
of knowledge or ability through the use of 
experience.” These examples are reasonable and 
intuitive first passes, but are not defended. 

Perhaps the simplest definition of learning 
would be “the creation of memory,” but this 
merely pushes the definitional difficulty to the 
term “memory.” Nevertheless, this discussion will 
assume that all memory-creating processes are 
examples of learning (as a sufficient condition), 
though I will not use the term in the definition.  

In this article, I will present and defend a 
definition of “learning” for cognitive science. My 
goals are that this definition will cover all 
accounts of learning that we observe in natural 
and artificial systems, and reject cases of change 
that should not be considered learning.  

My approach assumes a version of 
functionalism as applied to mental concepts: that 
many entities in our world should be defined not 

by their physical properties, but by how they 
interact in an information processing system.  

The definition is that a particular event should 
be considered a good example of “learning” 
according to the degree to which the following 
characteristics describe it: 1) a system undergoes 
change to its informational state or processing, 2) 
the change is for the purpose of more effective 
future action, 2) the change is in response what 
the system experiences, and 3) the system 
executes the change, rather than some outside 
force. This is a “family resemblance” 
characterization, rather than one of necessary and 
sufficient conditions, though in this paper I will 
discuss the characteristics as though they were 
necessary for purposes of clarifying the benefits 
and drawbacks of including each one.  

What Can Learn? 

Learning is prototypically thought of as 
something animals do. But some plants have a 
limited form of memory, and the encoding of this 
memory can be considered a form of learning. 
The venus flytrap, for example, has hairs around 
its trap to detect the presence of food. These hairs 
have haptic sensors. But the trap will not close 
immediately upon triggering these sensors, which 
is good, because closing and opening the trap is 
expensive in terms of energy and, for opening it 
again, time. So the plant will only close when 
another sensor detects touch within 20 seconds of 
the first touch elsewhere—effectively detecting a 
bug walking across the plant. This prevents the 
trap from closing when hit with raindrops, twigs, 
or other non-food entities (Chamovitz, 2012). 
This is a very simple, very short-term memory. 
But even in humans we do not require that 
encodings be long-term to be considered memory, 
such as the phonological loop (Baddeley, 1992). 
Because we classify some explicitly short-term 
stores as memory in humans suggests that it is 
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sensible to refer to flytraps as systems that can, 
because they can create memories, learn. 

Perhaps even more surprising are examples of 
learning recently discovered in single-celled 
organisms (Boisseau, Vogel, & Dussutour, 2016). 
Even slime molds can habituate to stimuli.  

Our immune systems effectively remember past 
experiences to better deal with future infections. 
Immune system learning behaves a bit like 
classifier systems in artificial intelligence 
(Farmer, Packard, & Perelson, 1986), and can 
even overlearn, as seen in autoimmune disorders. 

Beyond the vast variety of organisms that can 
learn, we also have an entire field of machine 
learning to consider: pieces of software created by 
human beings that learn. Neither immune 
systems, plants, AIs nor slime mold cells have 
nervous systems, but they are capable of limited 
kinds of learning, suggesting that there should not 
be a biological, let alone a neuronal, condition. 

Human Learning at Different Levels of Analysis 

When we examine human learning, we can see 
it happening at many levels of analysis. I will use 
a running example of learning to avoid eating 
food that makes one ill.  

Neuroscientists now know a lot about how 
association and feedback can change neurons and 
how they communicate. This can happen, for 
example, through synaptic changes: neurons 
encode association through long-term potentiation 
and depression (associative learning; Cooke & 
Bliss, 2006), and can engage in supervised 
learning (Ishikawa, Matsumoto, Sakaguchi, 
Matsuki, & Ikegaya, 2014). An immediate nausea 
response could trigger an instance of supervised 
learning, “punishing” neurons that were involved 
with consuming the food, and their relationships 
to sensing that that food was present. 

Synapatic changes in taste receptors allow us to 
habituate to bitter foods and drinks—children 
sometimes vomit when they first taste the foods 
that many adults enjoy. We evolved to dislike 
bitter foods, generally speaking, because they are 
more often lacking in nutrition (Sandell & 
Breslin, 2006). Eating bitter foods that don’t 
sicken us gradually habituates the sensors in our 
tongue to the particular taste.  

In addition to synaptic changes, the brain learns 
through creation, movement, destruction, and the 
changing of the shape of neurons. 

Moving up to the information processing level, 
every major cognitive architecture has a theory of 
learning. The most popular control system used in 
cognitive architectures is the production system 
(e.g., ACT-R, Soar, EPIC, and OpenCog all use 
them). When something bad happens, recently-
fired productions are “punished,” making the 
system less likely to get itself in the same 
situation again. In connectionist architectures, 
learning changes connection weights in neural 
networks using learning algorithms such as 
backpropagation (Chauvin & Rumelhart, 1995).  

At the behavioral level, we can describe a 
person’s reluctance to eat a food that previously 
made them sick with the theory of conditioning. 

I have shown how the same event of an 
individual agent learning not to eat a particular 
food can be effectively described as learning at 
different levels, but we might describe other 
examples of learning in distributed cognitive 
systems (Hutchins, 1995). A theater company 
might better learn how to market its 
performances, or a game development team might 
better learn how to use feedback from user testing 
to make better products. 

The idea of distributed cognitive systems (and 
the related notion of extended minds) is 
controversial (Davies & Michaelian, 2016), but 
those who accept their existence would probably 
consider them capable of learning. 

 “Systems” Learn 

To conclude this section, it is a mistake to define 
learning so that only humans and other animals 
are included. We can see learning in single-celled 
organisms, artificial intelligences, immune 
systems, and plants. Nor can we define learning as 
something only “agents” do. Distributed cognitive 
systems learn, but these are, perhaps, not best 
described as “agents” or “organisms.”  

As such, I suggest the term “system,” meaning a 
complex of elements that engage in information 
processing in pursuit of goals or preferences, be 
they explicit (as in a person’s desire to be not 
hungry) or implicit.  
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Information Processing 

In the proposed definition, the changes to the 
system need to be changes to the representation 
or processing of information. For purposes of this 
definition, information is defined as anything that 
has a representational use in a system—be it 
symbolic or subsymbolic. That is, the information 
stands for something else, be it a physical referent 
in the world, a utility to the system, an internal 
category, or anything else.  

To make this clearer, I will describe systems 
that are not information processors. A memory-
foam mattress changes in response to your lying 
down on it. It does so for purposes of your 
comfort—so it even has a function. It was 
designed to adapt to the environment, just as 
machine learning programs were designed to 
adapt to theirs. The mattress even has the word 
“memory” in its label.  

According to my definition, the mattress is a 
poor example, because the change is not 
informational. The change in topography of the 
mattress does not mean anything to anybody in its 
normal use (if you came home and found that 
nobody was on your mattress but there was a 
deformity, you might use that deformation to 
conclude someone had been on it recently. In this 
case, the mattress deformation becomes a 
representation (to you), and is arguably a part of 
some distributed processing information system 
including you and the mattress.) 

Similarly, a knife is not learning when you 
sharpen it, and your muscles are not learning 
when they get stronger because of a workout.  

But all of these cases are merely physical 
changes, and in learning, these physical changes 
are important only because they encode changes 
to information storage and processing. Changes in 
knife sharpness and muscle tone are functional 
changes, but not of information processing 
systems. Instances of biological plasticity that do 
not involve information processing (like the 
growth of a callus) are not considered learning. 

The Purpose of More Effective Action 

The intuitive notion of learning is that when the 
system learns something, it is somehow improved. 
It either knows something it didn’t before, or is 

able to do something it couldn’t before, or can do 
it better.  

This characteristic poses some immediate 
problems, because not everything people learn is 
good for them. If people tell you something that 
isn’t true, and you believe them, then you have 
learned something false. And even though some 
false beliefs might help us, we can assume that, in 
general, false beliefs lead to poorer behavior 
(mental or physical) in the future.  

Some learned behaviors are bad for us. In the 
case of post-traumatic stress disorder (PTSD), we 
learn behaviors that are problematic in non-
traumatic situations (such as diving beneath the 
table whenever a helicopter flies by, or having 
nightmares that plague one for years; see Levin, 
2000). I’ll refer to learning false things, and the 
learning of maladaptive behaviors as “bad 
learning.”  

For the definition to be able to include bad 
learning, it is insufficient to say that learning must 
always leads to better behavior. However, we can 
avoid the problem by saying that it learns with the 
purpose of better future behavior.  

I will explain with an analogy to digestion. We 
might describe the purpose of digestion as altering 
large, insoluble food molecules into smaller 
molecules that can be used as nutrition. The fact 
that we can digest poisons and non-nutritional 
food does not mean that the function of digestion 
isn’t to nourish the organism. A system can be 
used poorly without removing its function. For the 
same reason, just because we can engage in bad 
learning does not mean that the function of 
learning isn’t to promote better future behavior, 
nor that those bad things aren’t learned.  

Similarly, we remember lots of true but trivial 
facts that we might not productively use (or, 
indeed, even retrieve) ever again. In these cases, 
too, these declarative memories are not being used 
for better future action. But they are encoded 
because they might be useful someday. The mind 
remembers things without the certainty of what, 
exactly, will and won’t be useful in the future. 
Will it be important to remember that Jill was 
wearing a red sweater? Probably not, but if we 
need to describe her to someone else, that fact 
might turn out to be useful. 
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We can see how memory is biased in terms of 
what it expects will be useful, however. For 
example, people tend to better remember things 
likely to be relevant to future events. The 
existence of a push pin will be better recalled if it 
is on the floor, where it might be stepped on, than 
if it is safely in a box (Zwaan, Van den Broek, 
Truitt & Sundermeier, 1996). Words related to 
survival are better remembered than other words 
(Nairne, 2010). 

When an organism gets hit in the head, and 
suffers some deficit as a result, we would not 
want to consider this learning. Although brain 
damage affects the information processing of a 
system, the purpose of being hit in the head (if 
there even is one) is not to promote better future 
behavior, so the definition excludes this.  

Another challenging example is the deliberate, 
direct physical change to a brain. When a doctor 
performs neurosurgery, or prescribes psychoactive 
medication, the purpose is better future behavior. 
If, in the future, we are able to “download” skills 
directly into our heads, as is done in Matrix films, 
should this be considered learning? In this account 
it is a bad example of learning, because the 
system is not changing itself. However, if, 
somehow, somebody managed to brain surgery on 
oneself, then my account would have to accept 
that as learning, strange as it sounds.  

We sometimes deliberately alleviate mental 
tiredness by taking a rest, drinking coffee, or 
eating something. These activities have the 
purpose (among others, perhaps) of better future 
behavior. And some of these examples are the 
agent changing itself. Although rest and 
consuming coffee and food might be best 
described at a biological level, rather than at an 
information processing level, it is likely that there 
is an information processing level of description 
of how these activities promote better behavior. 
My definition includes these activities as decent 
examples of learning. The only characteristic 
missing is “experience,” because the 
psychological experience of doing brain surgery 
on oneself or drinking coffee is not what causes 
the change (beyond placebo effects).  

This raises the question of what counts as 
“experience.” A body can experience hair loss at a 

barber, arguably, but what we want to capture 
here should not include experiences irrelevant to a 
cognitive system. I suggest that we ignore 
consciousness and say that an experience is 
limited to what the sensory apparatus of the 
system can detect. For an immune cell, it has 
receptors for detecting pathogens. A committee 
has analogues to sensory apparatus in the sense 
organs of the people that make it up.  

Should the system be required to change itself 
for it to be considered learning, or are outside 
forces acting on a system acceptable? I will deal 
with issues regarding this question next.  

Cultural and Evolutionary Learning 

Some might want to describe learning at the 
sociological level. For example, in Fiji there is a 
cultural taboo: pregnant and lactating women may 
not eat certain kinds of fish. It turns out that 
avoiding consumption of these fish reduces a 
woman’s chances of being getting fish poisoning 
by 30% during pregnancy and 60% during 
breastfeeding (Henrich & Henrich, 2010).  

It is common for cultural taboos to have 
practical value that the people in the culture are 
not aware of. Often these are framed in terms of 
religion (for an example, see Harris, 1978). These 
taboos are refined over the course of generations. 
No single individual need engage in learning for 
this to happen, though individuals encode the 
information state of the cultural system. If we 
look at culture as an evolving entity, and, in 
particular, the ideas in the culture as undergoing 
evolutionary selection, we can see how ideas that 
facilitate reproduction will have a better chance of 
enduring over the years than others (Richerson & 
Boyd, 2008).  

What we observe, then, is that the society itself 
is doing the learning. The society, in this respect, 
is a cognitive system that is distributed over time, 
and we can observe the information changes it 
makes to act better in the future.  

One might also look at a species as a system that 
learns through Darwinian evolution. Sweller and 
Sweller (2006) suggest that this happens, 
analogically mapping long-term memory with a 
genome; learning from other humans with 
biological reproduction; problem solving with 
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random mutation, and so on. Although I have not 
found an analogous argument for culture, it seems 
that one could easily be made.  

But is evolutionary change “for the purpose of 
better future behavior?” We often can take a 
design stance to evolutionary processes to help us 
understand them, but biologists take great pains to 
make it clear that evolution is not goal-directed. 
Darwinian evolution is not purposeful (unless it is 
artificial selection, or is designed by a 
programmer in a simulation). 

Specific behavioral phenotypes can be described 
as having purposes. As Daniel Dennett describes 
it, cuckoo chicks push other birds out of the nest. 
As scientists, we can ask why, and get a 
description at the level of neurons, but it is also 
profitable to look at the function of this behavior: 
to maximize resource acquisition from the 
cuckolded parent bird (1987). The function is a 
“free floating rationale.” But application of this to 
the evolutionary process itself is more 
problematic. The products of evolution might be 
purposeful, even if evolution itself is not. 

My point here is not take a strong stance on 
whether or not the changes to cultures and species 
that we see over time should count as learning, 
but to discuss how different definitions of learning 
would or would not include them. The definition 
I’m suggesting in this paper would render these 
poorer examples, because the changes are not for 
the purpose of better future behavior in genetic 
nor in cultural evolution, the changes are 
(arguably) not occurring through experience (can 
a culture or species experience something?) and 
finally because the system is not changing itself 
(this is clear for the genome, and possibly true for 
a culture). We still might metaphorically describe 
them as learning, and doing so might help us 
understand or teach these concepts. 

Limitations of the Analysis 

 “Learning” happens to be a word in English, the 
lingua franca of science. However, we need to be 
careful not to assume that the existence of a word 
means that it necessarily refers to a natural kind. 
Other languages might break up the world in 
different ways, and ultimately whether learning 

exists in a way that happens to be captured by the 
English word for it is an empirical question.  

This paper is in the tradition of a classical-styled 
conceptual analysis, looking for and suggesting 
conditions for what would count as an instance of 
“learning,” and this is, admittedly, old-fashioned.  

Is there a better way to do it? An earthquake can 
be described and explained using theories and 
equations from geology, but it turns out that these 
same theories apply to quakes that happen 
elsewhere as well—moons, starts, other planets, 
etc. Thus it makes sense to suggest that the idea of 
a “quake” extends beyond those that happen on 
Earth (United States Geological Survey, 2012).  

This makes sense because we have a theory that 
is broadly, and successfully, applied. Admittedly, 
this is not happening with learning. Perhaps future 
descriptions of learning will be more theory-
based. That is, we come up with a theory of 
learning (or a particular kind of learning), and 
then see to which phenomena in the world the 
theory can be productively applied. These future 
investigations might mean that “learning,” as we 
conceive of it in English, isn’t a sensible scientific 
category at all (Churchland, 1989, suggests that 
no sensible scientific categories should be based 
on folk psychology).  

However, there is no general theory of learning 
yet, and if we think of cognitive science as the 
study of cognition independent of the substrate 
that supports it, it is helpful to have some idea of 
what we mean by learning. This paper is intended 
to be a start to the discussion, and more of a 
stepping-stone for future refinement rather than 
the final answer. 

Conclusion 

We’ve known for a long time that the search for 
necessary and sufficient conditions for concepts is 
often a fruitless task, so the definition should be 
seen as a list of family-resemblance features. My 
suggested definition is that an event is a better fit 
for the category “learning” depending on the 
degree to which the characteristics in the 
following list describe it: 

1. The change happens to an information 
processing system 
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2. The change happens with the purpose of 
better future action 

3. The change happens in response to the 
system’s experience 

4. The change is executed by the system 
itself, rather than some outside influence 

 
This definition covers the intuitive and 

prototypical instances of learning, but renders as 
poor examples some processes that we might want 
to productively talk about as learning, such as 
evolutionary processes over species and cultures.  

With hope, future research will ground the 
definition of learning in a theory of learning 
process, in contrast to my attempt to define it 
from a conceptual analysis.  
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Abstract 

Re-representation is a crucial component of structure mapping 
theory, allowing individuals to notice structural commonalities 
between situations that do not initially have identical relational 
representations. Despite its theoretical importance, however, this 
concept has been the subject of very little empirical work. In two 
experiments, we find that a case’s participation in one comparison 
systematically changes its perceived similarity to new cases, in a 
pattern consistent with re-representation. Additional work rules out 
alternative explanations based on relational priming.    

Keywords: analogy; re-representation; similarity 

Introduction 
Consider how similar you find the following events: 

 Nicole finally got out of the bad relationship that had 
prevented her from pursuing her own interests. 

 As the zoo keeper was busy cleaning its habitat, the Burmese 
python was able to escape its open cage. 

 
If you are like the participants in our research, you were 

probably willing to call these events fairly similar, at least after a 
little bit of consideration. In a very literal sense, these cases differ 
in significant ways—in their settings, their characters, their 
implications, even in the species of their protagonists. At a more 
abstract level, however, they share important structural features. 
Specifically, both situations describe characters who are able to 
escape from a confining environment.  

The dominant model for understanding structured 
comparisons such as these is Gentner’s (1983, 1989) structure 
mapping theory (SMT). According to this model, individual 
cases involve hierarchically-structured mental representations of 
labeled relations, each of which may take other relations or 
entities as arguments. For example, the common relational 
structure in the sentences above might be conveyed through a 
proposition such as: ESCAPED_FROM(ESCAPER, 
CONFINING_ENVIRONMENT). In this formulation, ES-
CAPED_FROM is a relation: it describes a relationship between 
multiple entities, and is therefore represented as a predicate that 
takes multiple distinct arguments. These arguments represent the 
assignment of entities to the relation’s roles. 

Comparison, according to SMT, involves a process of 
mapping in order to establish a structural alignment between the 
representations. The goal of this process is to define 
correspondences between the representations while following 
certain important rules and constraints. For example, although 
two corresponding objects may be quite dissimilar (e.g., Nicole 
and the python), relations in two representations will only be 

mapped to one another if they are semantically identical. Another 
constraint, the principle of one-to-one correspondence, states that 
each element in one representation may be mapped to no more 
than one element in the other. Additionally, if relations in two 
representations correspond to one another, those relations’ 
arguments must also correspond (the principle of parallel 
connectivity). 

In the example cases above, the ESCAPED_FROM relations 
in the two representations would be placed in correspondence, 
which is allowed because they are identical. In order to maintain 
parallel connectivity, the arguments of those relations would then 
be mapped in a role-consistent way, despite their surface 
differences: Nicole would correspond with the python (they are 
both “escapers”), and her bad relationship would correspond 
with the snake’s cage (as the confining environments). 

Structure mapping theory has been a very successful model for 
understanding a wide range of cognitive phenomena, including 
similarity, analogy, classification and knowledge transfer (see 
Markman & Gentner, 2001). However, in the basic form 
described above, it would quickly run into significant problems 
in the real world. For example, as noted, SMT asserts that 
relations may only be mapped to one another if they are 
semantically identical. However, it is not difficult to find cases 
that are perceived as analogically similar despite having non-
identical relations. For example, people can easily recognize the 
structural similarity between Bill drove to the store and Bill 
jogged to the store, even though their relations do not perfectly 
match (Gentner & Kurtz, 2006). Or consider the sentences John 
is taller than George and Martha is shorter than Mary. Despite 
the conspicuous appropriate mapping (John and Mary are both 
taller), strict enforcement of the identity requirement would lead 
to a failed match, since TALLER_THAN and 
SHORTER_THAN are clearly not the same. 

Fortunately, researchers have proposed a way around this 
problem. Specifically, it is theorized that representations may 
undergo a process of re-representation, in which structural and 
conceptual changes occur in order to enable potential relational 
matches (see Falkenhainer, Forbus & Gentner, 1989; Holyoak, 
Novick & Melz, 1994; Kotovsky & Gentner, 1996; Kurtz, 2005). 
A variety of methods for re-representation have been proposed. 
For example, a cognitive system may store information about the 
similarity of different relations (e.g., knowing that drive is 
relatively similar to jog; Holyoak & Thagard, 1989), or may 
initiate a search for common superordinate relations (e.g., both 
drive and jog are examples of move; Falkenhainer, et al., 1989). 
Another approach is to decompose a relation into its component 
structure (e.g., Gentner, 1983; Gentner & Kurtz, 2006). For 
example, buying a book and taking a book do not initially 
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contain a match, but their relations can be decomposed into 
representations such as:  

 BUY(book)  CAUSE(PAY_FOR(book), OBTAIN(book)) 

 TAKE(book)  CAUSE(PICK_UP(book), OBTAIN(book)) 

which would reveal an identically-matching predicate: OBTAIN.  
Despite the importance of re-representation to the overall 

theory of structure mapping, however, it has been the subject of 
very little empirical work. The primary experimental research 
directly addressing the issue comes from Gentner and Kurtz 
(2006). Participants in their studies were willing to call two 
sentences analogous when the verbs were nearly synonymous 
(Fred reclined on the couch and Carl lay on the couch) or 
semantically “near” to one another (Fred reclined on the couch 
and Carl sat on the couch), but not when they were semantically 
“distant” in meaning (Fred reclined on the couch and Carl 
sneezed on the couch). Interestingly, response times were 
significantly longer when judging the “near” verbs than the 
synonyms. This finding is interpreted as evidence for re-
representation, which would have required additional processing 
in order to determine a match. The authors also reported a 
tendency for participants to use new language (terms not present 
in either sentence) in their later justifications for their similarity 
ratings, consistent with a change in how those cases were 
represented. They acknowledged, however, that this might have 
reflected processes occurring during the justification task itself 
rather than the initial comparison. 

In our studies, we use similarity ratings to assess potential re-
representation. Similarity is a fundamental psychological process 
thought to play a role in everything from stimulus generalization 
in classical conditioning (Pavlov, 1927; Shepard, 1987) to 
categorization (e.g., Smith & Medin, 1981), retrieval (e.g., 
Hintzman, 1984), inference (e.g., Osherson, et al., 1990) and 
problem solving (e.g., Ross, 1987). Similarity ratings have also 
been used successfully in prior research as a measurement of 
representational change (e.g., Boroditsky, 2007; Goldstone, 
Lippa & Shiffrin, 2001). In the present experiments, we examine 
whether participation in one comparison can alter a case’s mental 
representation in a way that changes its perceived similarity to 
new cases. 

For example, consider the similarity between these cases: 

 While testing a network security system, the computer scientist 
inadvertently released a destructive virus onto the internet. 

 As the zoo keeper was busy cleaning its habitat, the Burmese 
python was able to escape its open cage. 

Participants in our studies were able to recognize important 
structural commonalities between the described events, and 
responded with fairly high similarity ratings. In this case, the two 
situations are similar because they both describe someone 
inadvertently releasing something dangerous. According to 
SMT, this perceived similarity would require them to establish a 
common relational representation for the overlap between the 
cases, such as re-representing both in terms like: 
RELEASE(AGENT, RELEASED_ENTITY). But consider 

what would happen if a participant then compared one of those 
cases to a new situation, as in: 

 As the zoo keeper was busy cleaning its habitat, the Burmese 
python was able to escape its open cage. 

 Nicole finally got out of the bad relationship that had 
prevented her from pursuing her own interests. 

 
Now the relational structure of the first sentence, established 

during the prior comparison, would be incompatible with that of 
the second, because the RELEASE relation is not identical with 
the ESCAPE relation. (Of course, this depends on some 
assumptions about participants’ mental representations, but ones 
that are borne out by our data—see General Discussion.) At this 
point, it is possible that the participant might devote the 
additional processing effort required to change the 
representational structure yet again, in search of potential shared 
relations. However, in most real-world experiences—as in most 
experimental settings—we believe that individuals will tend to 
exert a more modest level of processing, in this case typically 
relying on the representation that has already been created. If so, 
they would determine that the two cases in the second 
comparison are simply not very similar to one another. 

In these two experiments, we examine whether similarity 
ratings are reliably higher when one of the compared cases has 
recently participated in another comparison that involves the 
same shared relational structure, relative to recent comparisons 
involving a different structure. For control purposes, the relevant 
test comparisons were always the same across participants—only 
the preceding comparison varied between conditions. In 
Experiment 1, we establish this basic effect, while Experiment 2 
both replicates this finding and rules out alternative explanations 
based on relational priming. 

Experiment 1 
Participants Thirty participants were recruited through 
Amazon’s Mechanical Turk in return for $1.00 payment. 

Materials and Design The study was computer-based, and was 
administered online. After reading the instructions, each 
participant read 18 sentence pairs, presented on-screen one at a 
time. Participants were asked to rate the similarity of each pair by 
clicking on a horizontal 15-point scale. Above the scale was a 
prompt, “How similar are these situations?”, and the scale’s 
endpoints were labeled Very dissimilar and Very similar. The 
entire task took approximately five minutes to complete. 

We developed six Standard sentences, each of which could 
reasonably be construed according to two different relational 
structures, which we will refer to as Structure A and Structure B 
(see Figure 1 for a visual depiction of the overall design). For 
example, the sentence about the python and the zoo keeper 
described in the Introduction could be represented as an example 
of “being able to escape from a confining environment,” or as an 
example of “inadvertently releasing something dangerous.” Each 
of these Standards was involved in two consecutive 
comparisons.  
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Figure 1: Design of Base-Test comparison pairs in Experiment 1. 
 
We will refer to the first of these comparisons for each 

Standard as the Base comparison. The other sentence in the Base 
comparison varied between participants: approximately half of 
the participants compared the Standard to an unambiguous 
example of Structure A, while the remainder compared the 
Standard to an example of Structure B. The subsequent trial was 
the Test comparison. The sentences in this comparison were the 
same for all participants: the Standard was compared to a new 
example of Structure A. Ratings from the six Test comparisons 
(one for each Standard) provided the relevant measurement in 
our experiment. While the sentences in the Test comparisons 
were identical for all participants, they were classified as either 
Same trials or Different trials, according to whether the preceding 
Base comparison involved the same relational structure 
(Structure A) or a different structure (Structure B). Our primary 
question within this experiment is whether similarity ratings on 
Same trials would be significantly greater than those on Different 
trials, consistent with re-representation of the Standard. 

In sum, the relevant stimuli included six relevant items sets, 
each containing one Standard sentence, two analogous examples 
of Structure A (one for potential use in the Base comparison and 
one for the second Test comparison), and one example of 
Structure B (for potential use in the Base comparison). 

 

 
 

Figure 2: Results from Experiment 1 

Each participant completed three Same trials and three 
Different trials. The condition (Same vs. Different) of each of the 
six Test trials was assigned randomly for each participant. The 
presentation order of the six comparison pairs also varied 
randomly between participants. Additionally, participants 
completed six filler comparisons—one at the beginning of the 
task, and one following each of the Test trials except the last—
for a total of 18 comparisons. 

Results and Discussion A paired-samples t-test revealed a 
significant difference between conditions (see Figure 2; t(29) = 
4.99, p < .001, d = 1.17), with Same trials (M = 9.59, SD = 2.41) 
receiving considerably higher similarity ratings than Different 
trials (M = 6.40, SD = 2.99). To ensure that these effects were not 
driven by a small subset of the materials, we also analyzed the 
data across items. Similarity ratings for all of the six items were 
higher during Same trials than Different trials, and there was a 
significant difference between the ratings at the item level (t(5) = 
4.13, p = .009, d = 2.23). Because the sentences in these Test 
trials were identical for all participants, these systematic 
differences must reflect the influence of the Base comparisons 
that preceded them, the sole variation between conditions. 

The observed pattern is consistent with a process of re-
representation. According to this explanation, the structure and 
content of the mental representation of the Standard sentence was 
altered during the Base comparison in order to maximize its 
similarity to its paired sentence. When the resulting 
representational structure was also a good match for the sentence 
in the subsequent Test trial, a straightforward mapping would 
have been possible and comparison would proceed smoothly. 
However, when the initial re-representation left the Standard 
with a structure that mismatched the paired sentence in the Test 
trial, the perceived similarity between the sentences would be 
poor unless the participant devoted the additional processing 
effort necessary to alter the Standard yet again.  

Experiment 2 
Changes in perceived similarity represent a straightforward, 

low-level means of assessing participants’ mental 
representations. However, while our data is consistent with the 
proposed explanation of re-representation, there is a salient 
alternative explanation that must also be considered. Our 

Base comparison: 

Test comparison: 
• Standard sentence 
• New sentence reflecting Relation A 

OR 

“Same” condition “Different” condition 

• Sentence reflecting Relation A 
• Standard sentence 

• Sentence reflecting Relation B 
• Standard sentence 

*** 
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approach suggests that the changes in similarity ratings were the 
result of persisting changes in the mental representations of the 
Standard sentences themselves. However, our data could also be 
explained by the activation of more abstract representations that 
are external to the individual sentences, through a process of 
relational priming. 

Consider the example stimuli discussed in the Introduction, 
with Nicole escaping from her bad relationship, and the python 
escaping from its enclosure at the zoo. In the course of 
comparing these situations, participants may be activating an 
abstract representation of the relation ESCAPED_FROM. In 
fact, there is considerable empirical evidence that comparison 
can promote the generation or activation of abstract knowledge 
structures (e.g., Catrambone & Holyoak, 1989; Gentner, 
Loewenstein & Thompson, 2003; Gick & Holyoak, 1983). If so, 
that representation could presumably still be active and 
influential during the subsequent Test comparison. As such, it 
would be in a position to alter the perceived similarity in that trial 
in at least two different ways. First, it could serve to influence 
and bias the interpretations of each of the comparison sentences 
independently. For example, prior research has shown that when 
individuals are primed with traits such as brave and adventurous, 
they tend to develop more positive impressions of a character 
who attempts dangerous, exciting tasks, relative to participants 
who were primed with traits such as reckless and foolish 
(Higgins et. al, 1977). In other words, the mental availability of a 
concept appears to bias people’s interpretation of novel, 
ambiguous stimuli. In our example case, priming of a general 
relational concept such as escape could be biasing participants to 
interpret subsequent sentences as examples of that schema.  

At the same time, priming of the ESCAPED_FROM relation 
could be influencing participants’ assessments of the relationship 
between the sentences in the Test trial. A large body of literature 
has shown that individuals give higher ratings on a variety of 
measures to a stimulus when it is processed more fluently (e.g., 
Mandler, Nakamura & Van Zandt, 1987; Whittlesea, 1993). This 
fluency may be the result of a variety of factors, including 
physical properties of the stimulus itself, but it is most commonly 
associated with prior exposure to a stimulus. In our study, all 
participants might have been able to recognize the relevant 
relationship between the sentences in the Test trials. However, if 
that particular relationship was already primed and strongly 
available, the commonalities might have become easier to 
process, and this ease of processing may in turn have led to a 
heightened sense of relevance or meaning. If so, prior research 
suggests that this sense of fluency (or disfluency, in the Different 
trials) could have influenced participants’ similarity ratings in a 
pattern similar to that observed in our data. Some prior research 
is consistent with the idea that relational priming may influence 
comprehension and interpretation (e.g., Estes, 2003; Estes & 
Jones, 2006). 

In some ways, the distinction between an explanation based on 
re-representation and an explanation based on relational priming 
is subtle. At a theoretical level, however, this distinction is 
crucial. As discussed, structure mapping theory is a highly 
influential model that has had a great deal of explanatory success. 
However, its viability depends upon its ability to accommodate 

matches between relationships that are similar but not identical—
and this ability depends upon the process of re-representation: 
structural and/or conceptual changes in one or both of the mental 
representations. An explanation based on relational priming 
would not require any changes in the representation of the 
Standard itself, and therefore would provide no evidence that re-
representation was occurring. In order to draw any meaningful 
support for our hypotheses, we therefore need to either rule out a 
priming explanation, or to demonstrate that re-representation is 
exerting an influence over and above that of simple priming. In 
Experiment 2, we add a control condition in order to assess the 
independent contributions of re-representation.  

Participants Sixty participants were recruited through 
Amazon’s Mechanical Turk in return for $1.00 payment. 

Materials and Design Experiment 2 included two between-
participants conditions. In the Repeated Standard condition (n = 
30), the materials and procedure were identical to those used in 
Experiment 1. The Relational Priming condition (n = 30), which 
served as a control, was identical to the Repeated Standard 
condition with the exception that each of the Standard sentences 
was compared only once, during the Test trial, rather than in two 
consecutive trials (the Base and the Test). During the Base trials, 
participants in this condition were presented with two sentences 
that were each an example of one of the two relevant relational 
structures. That is, each participant compared either two 
examples of Structure A or two examples of Structure B. 

For instance, two consecutive trials in the Relational Priming 
condition might include the following two comparisons: 

 When the instructor turned around to write something on the 
board, Eric slipped out of the boring lecture. 

 The rabbit had been cornered by a fox for several minutes, but 
finally lunged through the weeds and got away safely. 

 As the zoo keeper was busy cleaning its habitat, the Burmese 
python was able to escape its open cage. 

 Nicole finally got out of the bad relationship that had 
prevented her from pursuing her own interests. 

Unlike Experiment 1, and unlike the Repeated Standard 
condition in this experiment, participants in this condition did not 
see the Standard sentence (about the python at the zoo) until the 
Test comparison. There was therefore no opportunity for prior 
re-representation of that situation. There was, however, still an 
opportunity for relational priming. The two sentences in the Base 
trial are each unambiguous examples of escape, and that is the 
most salient commonality between them. According to a priming 
explanation for our data, that relation would have been 
highlighted and made more accessible during the Base trial, and 
would therefore be in a position to influence subsequent 
comparisons. 

If the differences in Experiment 1 were solely the result of 
relational priming, we would expect no differences between the 
Repeated Standard and Relational Priming conditions, because 
the priming effects should be equivalent. If, on the other hand, re-
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representation is influencing perceived similarity, effects should 
be greater for participants in the Repeated Standard condition. 

Results and Discussion There were three primary goals in 
Experiment 2. First, it gave us an opportunity to attempt a 
replication of the findings from Experiment 1, which is important 
given the novelty of those results. Second, it allowed us to assess 
whether relational priming may exert an influence in simple 
consecutive similarity judgments. This is an interesting question 
in its own right, as we will explore in the General Discussion. 
Finally, and most importantly, this experiment allowed us to 
compare the two between-participants conditions, one of which 
provided the opportunity for re-representation and one of which 
did not. Because the two conditions should have been equivalent 
in terms of potential relational priming, any observed advantages 
for the Repeated Standard condition would provide strong 
evidence that re-representation had taken place. 

We again found an overall advantage for ratings on the Same 
trials (M = 8.81, SD = 2.49) relative to the Different trials (M = 
6.47, SD = 2.36; F(1, 58) = 46.17, p < .001, η²p = .44). However, 
because this includes both of the between-participants conditions, 
we performed a separate analysis of the Repeated Standard 
condition (which was identical to Experiment 1) to determine 
whether the basic pattern from the first study had been replicated. 
This revealed a pattern of results very similar to Experiment 1 
(see Figure 3). Similarity ratings for the Same trials (M = 8.89, 
SD = 2.48) were significantly higher than those for Different 
trials (M = 5.66, SD = 2.46; t(29) = 5.72, p < .001, d = 1.31), 
replicating our initial finding. This pattern also held in a separate 
analysis across items (t(5) = 7.16, p = .001, d = 1.94). 

Next, we examined whether relational priming might have had 
an influence on participants’ ratings. In a separate analysis of the 
Relational Priming condition, Same trials (M = 8.63, SD = 2.53) 
received higher similarity ratings on average than Different trials 
(M = 7.28, SD = 1.98), across participants (t(29) = 3.67, p = .001, 
d = 0.59) and items (t(5) = 3.00, p = .03, d = 1.00), suggesting 
that relational priming was indeed having a measurable effect. 

 

 

Figure 3: Results from Experiment 2 
 

Most important for our theoretical interests, a 2 (Repeated 
Standard vs. Relational Priming) × 2 (Same vs. Different trials) 
ANOVA showed a significant interaction between participant 
condition and item condition (F(1, 58) = 8.16, p = .006, η²p = 
.12). This interaction reflected the fact that the advantage of 
Same over Different trials was significantly greater in the 
Repeated Standard condition (mean difference = 3.81, SD = 
3.84) than the Relational Priming condition (mean difference = 
1.36, SD = 2.03). This advantage was seen for all six items sets 
individually, and confirmed by an interaction in an analysis 
across items (F(1, 10) = 4.08, p = .021, η²p = .43). 

(To ensure that the materials were equally apt in both 
conditions, we confirmed that ratings for the Base comparisons 
did not differ between conditions (t(59) = 1.22, p = .23). In fact, 
there was a small numerical advantage for the Relational Priming 
condition: M = 10.23, SD = 1.52, vs. M = 9.74, SD = 1.55.) 

General Discussion 
The results of these two studies are informative in several 

ways. First and foremost, they provide important evidence for a 
process of re-representation during comparison. As the dominant 
model of analogy and structured comparison, structure mapping 
theory has been used to explore and explain a wide variety of 
cognitive phenomena. However, its ability to scale up to even 
very basic real-world situations depends on its ability to flexibly 
find connections between related but non-identical structures. 
Re-representation has historically been cited as the underlying 
explanation for this ability. Despite its theoretical importance, 
however, direct evidence for re-representation has remained 
scarce. In our studies, comparing a standard case to one situation 
systematically changed its perceived similarity to new cases. The 
pattern of these changes indicates that the representational 
structure and content of the original standard had been altered in 
a way that made it more compatible with its compared 
situation—in other words, it had been re-represented. This effect 
held even when controlling for potential relational priming 
effects. By adding support to this critical but under-explored 
area, our results are able to further bolster the viability of 
structure mapping theory in general. 

Although it was not our primary research focus, another 
informative contribution of these studies is that Experiment 2 
demonstrates a novel form of relational priming. The idea of 
relational priming—that processing a particular semantic relation 
in one situation may make it easier to process in the future—
seems reasonable, and perhaps even obvious given what we 
know about priming in other contexts. However, finding 
evidence to support this phenomenon has not always been 
straightforward. In one of the earliest experimental attempts, 
Spellman and colleagues (2001) found no indication of relational 
priming between word pairs in a lexical decision task, even when 
participants were explicitly told to focus on the relationships 
between the presented words. Only when individuals were told 
to notice that consecutive trials might involve the same 
relationship was a modest effect observed. Subsequent research 
has been more successful in finding examples of relational 
priming, through the use of more tightly controlled stimuli and 
by having participants engage in tasks that more naturally 

*** 
*** *** 
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involved the activation of relations, such as the interpretation of 
two-word phrases (e.g., Bendig & Holyoak, 2009; Estes, 2003; 
Estes & Jones, 2006; Gagné, 2001). However, our control 
condition in Experiment 2 is the first example to our knowledge 
that demonstrates relational priming through changes in 
perceived similarity, and the first to find large effects with such 
naturalistic stimuli. 

Finally, our experiments introduce a novel method for 
assessing mental representation more generally. As with most 
studies of this type, the stimuli for the present experiments were 
coded by the authors largely as a function of our intuitions about 
the semantics of the situations involved. However, as history has 
repeatedly shown, researcher intuitions can often be wrong. 
Furthermore, intuitions can vary markedly between individuals. 
Consider the following two situations: (1) X was victorious over 
Y, and (2) Y was defeated by X. In our stimuli, we assumed that 
these reflected two distinct representational structures. Another 
researcher, however, might reasonably argue that they are simply 
two different ways of expressing the same underlying 
proposition. Our experimental method provides a direct way to 
address this issue. In our studies, comparing a sentence to a clear 
example of the DEFEAT structure made it subsequently seem 
significantly less similar to an unambiguous example of 
VICTORY. In this case, the intuition that these reflect distinct 
mental representations appears to have been correct, although 
until that point it was an open empirical question. Examination of 
the similarity changes resulting from re-representation offers us 
an intriguing tool for exploring and answering questions about 
the semantics of mental relations, and therefore provides a 
potential window into a variety of important mental processes.  
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Abstract 

When semantic information is activated by a context prior to 
new bottom-up input (i.e. when a word is predicted), semantic 
processing of that incoming word is typically facilitated, 
attenuating the amplitude of the N400 event related potential 
(ERP) – a direct neural measure of semantic processing. This 
N400 modulation is observed even when the context is just a 
single semantically related “prime” word. This so-called 
“N400 semantic priming effect” is sensitive to the probability 
of seeing a related prime-target pair within experimental 
blocks, suggesting that participants may be adapting the 
strength of their predictions to the predictive validity of their 
broader experimental environment. We formalize this 
adaptation using an optimal Bayesian learner, and link this 
model to N400 amplitudes using an information-theoretic 
measure, surprisal. We found that this model could account 
for the N400 amplitudes evoked by words (whether related or 
unrelated) as adaptation unfolds across individual trials. 
These findings suggest that comprehenders may rationally 
adapt their semantic predictions to the statistical structure of 
their broader environment, with implications for the 
functional significance of the N400 component and the 
predictive nature of language processing. 

Keywords: language; prediction; rational adaptation; 
semantic priming; EEG/ERP; word processing; information 
theory; Bayesian modeling; surprisal 

Introduction 

How a word is processed fundamentally depends on the 

context. Predictable words are processed more quickly than 

unpredictable words (Fischler & Bloom, 1979), with shorter 

fixations (and more frequent skips) during reading (see 

Staub, 2015 for review). A similar facilitation pattern is 

found on the N400 component (Kutas & Hillyard, 1984), an 

event-related potential (ERP) that reflects semantic 

processing (Kutas & Federmeier, 2011). The degree to 

which any particular word is facilitated is proportional to the 

probability of encountering that word given the context 

(DeLong, Urbach, & Kutas, 2005; Smith & Levy, 2013). 

Semantic facilitation is observed even when the 

preceding context is only a single word. For example, the 

processing of a “target” word is facilitated when it is 

preceded by a semantically related (versus an unrelated) 

“prime” word: the so-called “semantic priming effect” 

(Neely, 1991). Semantic priming is also apparent on the 

N400 component, with more predictable words eliciting a 

smaller (less negative) N400 amplitude than less predictable 

words (Bentin, McCarthy, & Wood, 1985).  

Importantly, the strength of the behavioral semantic 

priming effect is sensitive not only to the degree to which 

the prime and target are semantically related, but to the 

probability of receiving a related trial in the first place 

(Brown, Hagoort, & Chwilla, 2000; Grossi, 2006). This has 

also been found with ERPs: experimental blocks with a 

higher proportion of related trials elicit a larger N400 

semantic priming effect (Lau, Gramfort, Hamalainen, & 

Kuperberg, 2013; Lau, Holcomb, & Kuperberg, 2013). The 

semantic priming effect is likely sensitive to predictive 

validity because participants implicitly track and adapt to 

changes in the statistical contingencies over time.  

Here we utilized data from Lau and colleagues (Lau, 

Holcomb, et al., 2013) to build and test a quantitative 

hypothesis of what drives this effect of predictive validity 

on the N400 semantic priming effect. Specifically, we asked 

whether the larger N400 priming effect in the high 

predictive-validity block could have been achieved through 

a “rational” probabilistic model of trial by trial adaptation. 

Although there are an infinite number of ways to build such 

a model, there are some particular theoretical constraints we 

can start from. Current evidence suggests that (a) prediction 

in language processing is probabilistic in nature, (b) 

predictions incrementally adapt to new information (where 

adaptation should be rapid when the environment changes), 

and (c) the brain calculates something like prediction error. 

Probabilistic Prediction in Language Processing 

and Semantic Priming 

The role of prediction in language has long been debated, 

with differing definitions of what a “prediction” actually 

entails (see Kuperberg & Jaeger, 2016 for discussion). Here, 

we view probabilistic prediction as a central feature of 

language comprehension (DeLong et al., 2005; Federmeier, 

2007; Smith & Levy, 2013), which does not necessarily 

need to be strategic or even conscious in nature. For any 

given context, there exists a probability distribution over the 

words that could be encountered next. A “prediction” is 

simply the presence of this probability distribution. While 

there is evidence for probabilistic prediction at multiple 

different levels of representation (Kuperberg & Jaeger, 

2016), here we focus only on prediction at the lexical level. 

283



Note that, defined in this way, prediction exists even in 

the absence of a local context. Consider an experiment 

where words are being serially presented to participants at 

random. The “prediction” that participants make in such an 

experiment could be expressed as a probability distribution 

over words given an average context. This is functionally 

identical to word frequency, where high frequency words 

are more probable given a random/average context and low 

frequency words are less probable given a random/average 

context (Norris, 2006).  

Given these assumptions about the nature of linguistic 

predictions, we can view the semantic priming effect as a 

type of probabilistic prediction. If a participant knows that a 

prime informs the target, they will implicitly generate a 

probability distribution over possible targets given that 

prime. Target processing is facilitated proportional to its 

probability. Though these prime-target transition 

probabilities are not easy to estimate from corpus studies 

(people don’t often write in prime-target pairs), it can be 

estimated using production tasks like word association. 

A Rational Model of Adaptation 

Probabilistic prediction is only beneficial if it actually 

approximates the statistical structure of the environment. 

Bad predictions aren’t helping anybody. A number of recent 

language studies suggest that people rapidly adapt local 

models based on changes in their environment 

(Kleinschmidt & Jaeger, 2015). For example, an 

environment with a high proportion of typically dis-

preferred syntactic parses can attenuate or even reverse the 

so-called “garden-path” effect in ambiguous sentences 

(Fine, Jaeger, Farmer, & Qian, 2013). At the phonemic 

level, participants change their perception of ambiguous 

phonemes if one of the two competing options was locally 

repeated (Kleinschmidt & Jaeger, 2016). And across longer 

periods, people show signs of adaptation to foreign accents 

that can generalize between different speakers with that 

accent (Bradlow & Bent, 2008). 

We can view the predictive validity manipulation in Lau 

et al (2013) through a similar lens. In experimental contexts 

with a higher proportion of semantically related word-pairs, 

participants will rely relatively more on the prime (versus 

relying more on a random/average context) to inform their 

predictions of the target. This means that the probability 

mass assigned to any particular target word depends not 

only on the associative strength of its prime, but also the 

likelihood that the prime provides information about the 

target in the first place (i.e. the predictive validity effect). 

When the proportion of semantically related and unrelated 

trials within a block changes, people adapt. 

Although there are many ways to quantify adaptive 

learning, one attractive theoretically motivated 

implementation is Bayesian updating. This  assumes that 

adaption is “rational” in nature  (Anderson, 1990). Here, 

initial belief about the probability of obtaining a particular 

type of trial (i.e. a related versus unrelated prime-target pair) 

is denoted by the prior probability p(h). Upon receiving a 

trial, this prior belief is updated using Bayes Law. This 

“posterior” is then used as the prior belief for the next trial. 

Applying this rational, Bayesian framework to the 

predictive validity effect (on semantic priming) has a 

number of advantages. It would allow for prior beliefs from 

an initial lower predictive validity block to influence 

expectations for a subsequent higher predictive validity 

block in a principled way (i.e. the prior). It would adapt 

incrementally across trials. It would adapt more quickly near 

the change point, when evidence is low. And beliefs would 

slowly asymptote to the known true probability of receiving 

a related trial.  

In the present investigation, we will use this type of 

Bayesian framework as the starting point for explaining how 

the brain adapts to changes in the statistical contingencies of 

incoming language input. We will refer to this as a Rational 

Adapter model.  

The N400 Measures Information Content 

So our model should be probabilistic, and it should adapt, 

but a third component of this model is required before it can 

be tested: a linking function to actual brain activity. It is not 

necessarily the case that N400 amplitudes — the brain 

activity we are attempting to model — need be linearly 

dependent on the probability of a word given a context. 

Here, we argue that the N400 is best thought of not as a 

measure of probability, but as a measure of information (see 

Rabovsky & McRae, 2014 for discussion). 

In information theory (Shannon & Weaver, 1949), the 

amount of information conveyed by an event is “whatever 

was not known ahead of time”. An input that was perfectly 

predicted does not convey any new information. In contrast, 

messages that are not very predictable convey a lot of 

information. The amount of information (in units of “bits”) 

that was not predicted ahead of time is called “surprisal”, 

quantified as -log2[p(word|context)]. One bit is the amount 

of information provided by flipping a fair coin once. A 

halving of the probability (e.g. conveying a sequence of two 

coin flips instead of one) corresponds with a 1 bit increase 

in surprisal.  

 This simple transformation has proved tremendously 

powerful in explaining language processing data (Hale, 

2001; Levy, 2008). Smith and Levy (2013) provide 

empirical evidence that reading times relate to word 

probability logarithmically (e.g. as with the surprisal 

transformation) across six orders of magnitude. More 

recently, Frank and colleagues (Frank, Otten, Galli, & 

Vigliocco, 2015) discuss ERP evidence that the N400 

component is sensitive to word surprisal. Given this 

evidence, for the present investigation, information-theoretic 

surprisal will be our linking function between the Rational 

Adapter model and N400 amplitude, rather than probability. 
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In the present investigation, we aim to build and test a 

Rational Adapter model of semantic priming against neural 

N400 component data. Specifically, we use data from Lau 

and colleagues (2013). Here, the N400 semantic priming 

effect was measured first in block 1 where 10% of the trials 

were related, and then in block 2 where 50% of the trials 

were related. We use the block 1 only to inform the prior, 

which is then fed into the Rational Adapter model to 

predict N400 amplitudes in block 2, as participants’ beliefs 

about the predictive validity of the prime adapt. 

We hypothesize that this Rational Adapter surprisal 

model will better account for the N400 data than a non-

learning model of N400 data. Specifically, we hypothesize  

that the size of the N400 effect (the difference in amplitude 

of the N400 evoked by  related and unrelated target words ) 

will increase rapidly near the beginning of block 2, as the 

Rational Adapter shifts from a “10% related” prior towards 

a “50% related” asymptote.  

Methods, Modeling and Results 

ERP Data collection 

We used data from Lau and colleagues (Lau, Holcomb, et 

al., 2013). Briefly, 32 right-handed participants (13 men) 

between age 19-24 were shown sequential prime-target pairs 

as event-related potentials (ERPs) were recorded and time-

locked to the onset of the target. Participants were asked to 

perform a semantic monitoring task that was not directly 

related to the experimental manipulation.  All participants 

saw an initial 400 trials (block 1) where 10% of the stimuli 

were related (e.g. “ladder… climb”), followed by 400 trials 

where 50% of the stimuli were related (block 2). The blocks 

were separated by a short break, but participants were not 

explicitly told about any changes in the experiment. 

80 of the trials in block 2 (40 related, 40 unrelated) were 

critical prime-target pairs that were matched and 

counterbalanced across participants, alongside 320 fillers.  

Primes were presented with an SOA of 600ms and targets 

had a duration of 900ms. The N400 component was 

averaged across a time window of 300-500ms over the 

average of three centro-parietal channels. Extreme outliers 

in N400 measures were removed (4 standard deviations or 

more from the mean). 

 

Visualization Lau et al originally reported that the N400 

semantic priming effect was larger in block 2 than block 1. 

For the present investigation, we plotted how the N400 

amplitudes of these critical trials changed over the course of 

block 2, as shown in Figure 1. This was estimated using a 

loess local regression over N400 amplitudes for related and 

unrelated words across the ordinal position of critical items 

in the experiment (this local regression was necessary 

because not every participant saw critical targets in the same 

place).  As can be seen here, N400 amplitudes for related 

and unrelated words are initially similar, but then diverge as 

participants are exposed to more and more of the block. 

 

Figure 1: Block 2 N400 amplitudes over trials.  

The Rational Adapter Word Surprisal Model 

Our Rational Adapter model consists of three primary 

components: a) a Bayesian belief about the probability of 

receiving a related vs. an unrelated prime-target pair at any 

given point, b) a mixture of p(word|prime) and 

p(word|average context) given these beliefs about the trial 

types, and c) a conversion from these probabilistic 

predictions to word surprisal (as a linking function to the 

N400 component). The whole model takes the form: 

Word surprisal = -log2[λ*p(word|prime) + (1-λ)* 

p(word|average context)] 

 

where λ is a point estimate of the probability with which a 

rational adapter expects a related trial at that point in time. 

We use a beta-binomial model to estimate a participant’s 

belief about the probability of seeing related versus 

unrelated trials. To set a prior on the beta distribution, we 

assume that participants enter block 2 assuming the 

proportion will be the same as block 1: a 10% chance of 

receiving a related trial. This prior is expressed using a 1:9 

ratio of related:unrelated pseudocounts. Though participants 

see 400 trials in block 1, participants will likely discount 

their previous experience somewhat (reflecting some 

uncertainty). As a best-guess approximation, we set the 

prior going into block 2 at Beta(5, 45), i.e. pseudocounts 

equivalent to having seen 5 related and 45 unrelated trials. 

In other words, participants were assumed to put more 

weight on their experience with the new block (vs their prior 

given the old block) after about 50 trials. 

After each new trial, this Beta distribution is updated by 

adding the observed trial counts to the prior pseudocounts. 

For example, after 5 related and 5 unrelated trials in block 2, 

a participant’s beliefs would be modeled as Beta(10, 50). 

We took the mean of this beta distribution just before each 

critical trial to reflect the point probability λ with which that 

participant expects a related trial for that event.  

This probability, λ, then provides a weighting term for a 

mixture model between the two ways that participants might 

generate more specific predictions about the upcoming 

target word at any given trial. Given a related trial, we 

285



model these within-trial predictions as p(word|prime), 

estimated using “forward association strength” (FAS) from 

the Florida Word Association Norms (Nelson, McEvoy, & 

Schreiber, 2004), and then we weight this probability by λ. 

Given an unrelated trial, we model these within-trial 

predictions as p(word|average context), as estimated by 

word frequency from the SUBTLEX corpus (Brysbaert & 

New, 2009), and then we weight this probability by 1-λ. 

 The mixture of these two terms yields a “word 

probability”, given the prime and beliefs about whether or 

not it will inform the target at any point in the experiment. 

Finally, this word probability is transformed into “word 

surprisal”, or the amount of information that was not 

predicted ahead of time (in bits), given by –log2[p(word 

probability)]. 

Word Surprisal and N400 Amplitudes 

To numerically test whether our estimate of surprisal 

explains variance in the N400 amplitudes evoked by each 

target word, we conducted a linear mixed-effects regression 

using the lme4 package in R, with word surprisal as a 

predictor and centro-parietal N400 amplitude for each trial 

in block 2 as an outcome. Word surprisal was standardized. 

The maximal random effects structure across (crossed) 

subjects and items was used (Barr, Levy, Scheepers, & Tily, 

2013). 

 

Results We found that word surprisal significantly 

accounted for variance in N400 amplitudes (β = -1.14, t = -

5.24, p < 0.001). As word surprisal increased, N400 

amplitudes tended to be more negative (i.e. larger). 

Word Surprisal Explains Trial-by-Trial Variance 

There is an important caveat to this “rational adapter” word 

surprisal effect, however: by definition, unrelated words 

tend to have high surprisal, while related words tend to have 

low surprisal. As such, the word surprisal effect in block 2 

could potentially be attributable to the categorical 

“Relatedness” effect already reported in the initial study. 

To address this possibility, we ran a second linear mixed-

effects regression that included both categorical Relatedness 

and word surprisal as predictors. This would show whether 

our rational adapter estimate of word surprisal could 

account for variance in N400 amplitudes above and beyond 

what could already be explained by the main effect of 

related vs unrelated trials. Again, the maximal random 

effects structure for word surprisal was used. 

 

Results We found that word surprisal significantly 

accounted for variance in N400 amplitudes (β = -2.21, t = -

2.76, p = 0.006) above and beyond the main effect of 

Relatedness. This indicates that the surprisal difference 

between related and unrelated words was not sufficient to 

account for the way that word surprisal related to the N400 

in the first model. 

We caution that given the multicollinearity between word 

surprisal and the relatedness effect (the primary motivation 

for running this test in the first place), this β estimate is 

likely inflated. We limit our conclusions to the explanatory 

power here, not the regression coefficient. 

The “Rational Adapter” Word Surprisal Model 

Outperforms its Constituent Elements Alone 

Another potential concern is that the model we used to 

estimate word surprisal simply includes more information 

about the trials. Namely, the word frequency and FAS of 

each trial are inputs to the Rational Adapter model 

calculations. These could have explained items-level 

variance in N400 amplitudes without resorting to 

adaptation, given that the N400 component is already 

known to be sensitive to both these factors. In short, perhaps 

the explanatory power of our rational adapter model is 

primarily due to the inclusion of trial-specific frequency and 

FAS information, rather than prediction and adaptation. 

To address this possibility, we ran a third linear mixed-

effects regression that includes not only word surprisal as a 

predictor, but also Frequency, FAS, and Relatedness 

predictors for each trial. This tests whether the particular 

arrangement of inputs into the “rational adapter” word 

surprisal model explains variance in N400 amplitudes 

marginal to the stationary main effect of Relatedness and to 

its constituent items-level elements. Again, the maximal 

random effects structure for word surprisal was used (across 

both items and subjects), and all continuous predictors were 

standardized. 

 

Results We found that word surprisal significantly 

accounted for variance in N400 amplitudes (β = -2.30, t = -

2.11, p = 0.036) above and beyond Frequency, FAS, and 

Relatedness. This indicates that the particular way items-

level features were combined into the our model is an 

important source of explanatory power, and that the 

increased fit is not simply due to the fact that our model 

included additional information about items-level features. 

Finding the Optimal Prior 

Our model assumed that the rational adapter should 

approach λ = 0.1 (the actual block 1 proportion) as they go 

through the first 400 trials of block 1, regardless of what 

their expectations were coming into the experiment. Given 

that our model is explicitly a rational one, we kept constant 

this 1:9 related:unrelated ratio for the prior for block 2. 

However, that still leaves the prior strength (i.e. number of 

pseudocounts) as an assumption that can be explored. For 

hypothesis testing above, we assumed that participants 

entered block 2 with a Beta(4, 45) prior, i.e. that participants 

believed it would have the same 10% relatedness proportion 

as block 1 with a weight of 50 pseudotrials. This 50 

pseudocount prior weighting, however, was essentially 

guesswork (we didn’t want to bias our hypothesis tests by 

interrogating many models and selecting the best one). 

Here, we sought to ensure that our results were not 

idiosyncratically dependent on having made a “lucky” 

guess.  
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Figure 2: Deriving the optimal prior strength. 

 

A low pseudocount prior like (1, 9) would cause rational 

adaptation to proceed very quickly, while a high prior 

pseudocount like (40, 360) would cause rational adaptation 

to proceed much more slowly, as participants enter block 2 

with much more certainty about the environmental statistics. 

The pseudocount (and thus speed of adaptation) that best 

explains variance in N400 amplitudes is thus an empirical 

question: what is the optimal prior strength? 

To find the optimal prior, we calculated the word surprisal 

(for all trials for all participants, as above) for every integer 

“prior strength” from 1 to 800 pseudocounts. We then ran a 

separate linear mixed-effects regression model for each 

prior strength with word surprisal and Relatedness as 

predictors and a maximal random effects structure. After 

fitting these 800 regression models, we extracted the log-

likelihood of each. 

 

Results These data are shown in Figure 2. The single 

maximum log-likelihood was obtained with a Beta(7.7, 

69.3) prior, a “prior strength” of 77 pseudocounts. However, 

all pseudocounts between 70 and 85 yielded similar model 

fits, and performance degrades smoothly on either side. 

This indicates that, on average, participants began giving 

more weight to the new block’s data than the previous 

block’s data 70-85 trials into block 2. A rational adapter 

with a very weak prior (below ~50 pseudocounts) does not 

account for N400 data well because it adapts too quickly. 

Similarly, a rational adapter entering block 2 with a very 

strong prior (above ~200 pseudocounts) also does not 

account for the N400 data well because it adapts too slowly.  

We note that some models had poor fit because they did 

not converge. None were within the 70-85 range capturing 

the maximum. 

Discussion 

Previously, Lau and colleagues (2013) found that the N400 

semantic priming effect shows evidence that adaptation 

occurred when the predictive validity of the local context 

changed. In the present investigation, we explored the 

nature of the adaptation process as it unfolded. Figure 1 

shows the trial-by-trial nature of this adaptation over ordinal 

position in block 2. Our Rational Adapter model provides a 

theoretically-grounded quantitative account of how that 

adaptation may have occurred on an incremental trial-by-

trial basis. It was built using three foundational 

considerations: that contexts can probabilistically inform 

lexico-semantic expectations for upcoming stimuli, that 

these expectations adapt rationally (in an optimal Bayesian 

manner), and that the N400 component is sensitive to units 

of information rather than units of probability (after the 

present analyses, we tested this assumption and found that 

word surprisal significantly accounted for variance in N400 

amplitudes [t = -2.57, p = 0.011] above and beyond word 

probability and the categorical Relatedness effect.). 

In a re-analysis of the original study, we provide 

empirical evidence that this model is consistent with how 

brain activity evoked by target words changed over the 

course of block 2. We showed that it accounted for variance 

in N400 amplitudes above and beyond the stationary effect 

of related versus unrelated trials, suggesting that it was 

capturing trial-by-trial differences within block 2. Further, 

we showed that this particular formulation of the rational 

adapter model accounted for significant variance in N400 

amplitudes above and beyond even its own constituent 

elements, suggesting that the additional explanatory power 

was not simply due to the inclusion of items-level 

information (our single trial approach to ERP analysis).  

These findings extend previous work on rational adaptation 

to demonstrate that it can account for changes in predictions 

during lexico-semantic processing. 

In addition, we used the rational adapter model to derive 

the rate  of adaptation that best accounted  for the ERP data. 

Even though participants saw 400 trials in Block 1, we 

estimate that participants adapted as if they had only seen 

70-85 trials of bock 1 by the time they entered block 2. 

Although participants were not informed of the changing 

environmental statistics (and the manipulation was not 

overtly task-relevant), we speculate that the conspicuous 

block boundary may have prompted participants to adapt at 

a faster rate.  Additionally, there may be a decay or filtering 

that occurs for distant exposures, which dynamical models 

of prediction and adaptation may be able to account for. 

While the present study included data from a semantic 

priming paradigm, we suggest that a similar pattern may 

hold in comparable experiments with more expansive 

contexts, like sentences or discourses, as the theoretical 

underpinnings are functionally the same. For example, in 

experimental contexts with a high proportion of highly 

constraining sentences, we might expect participants to 

learn to predict more strongly. Finally, these data have 

implications for the functional significance of the N400 

component. The N400 is often discussed as being sensitive 

to probabilities. We suggest that its sensitivity to 

probabilistic measures like cloze probability, forward 

association, and even frequency may be best conceptualized 

it as reflecting units of information rather than probability 

alone (see also Frank et al., 2015; Rabovsky & McRae, 

2014; Smith & Levy, 2013).  
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Abstract 

Structured imagination refers to reliance upon prior knowledge 

when generating novel examples of a provided category. Yet 

studies supporting this tenet use experimental designs where 

the stimuli themselves cue exemplars based on culturally 

relevant items. The present study combined exemplar 

generation with abstract stimuli as a means of attenuating 

instructional bias. Participants were shown a group of abstract 

shapes identified as a single category and instructed to generate 

another member of this category. We additionally examined 

whether the introduction of a cognitive conflict (by including 

an anomalous category member) and self-explanation during 

generation affected the level of imaginative responses. 

Contrary to expectations, the presentation of a conflicting 

category member did not result in more imaginative responses 

when compared to more homogenous stimuli sets. However, a 

significantly greater degree of imaginative responses was 

observed from participants who were required to explain their 

thinking prior to and whilst constructing their exemplars.  

Keywords: imagination; exemplar generation; cognitive 

conflict; self-explanation; reflective abstraction. 

[Ramanujan’s equations] must be true because no one 

would have the imagination to invent them.  

G. H. Hardy 

Introduction 

How does imagination impact the generation of novel ideas? 

Theories of structured imagination assert that the generation 

of ideas, concepts, and objects depends on and is constrained 

by prior knowledge (Ward, Patterson & Sifonis, 2004). Prior 

knowledge limits the set of features, dimensions, relations, 

functions, and so on under consideration. However, support 

for this position comes from experimental paradigms where 

instructions reference prior concept knowledge or examples 

that cue prior knowledge. Consequently, the influence of 

prior knowledge on the role of imagination in, for instance, 

an exemplar generation paradigm remains somewhat unclear. 

     The exemplar generation paradigm requires participants 

to generate new category members that could plausibly 

belong to some presented set (e.g. Jern & Kemp, 2013; Ward, 

1994). The paradigm anticipates that imagination behaves 

like other cognitive processes in requiring reasoning about 

the rules (or other requirements) for category membership. 

The empirical evidence supporting the role of prior 

knowledge has countered romantic views that imagination 

stems from some unique unobservable process. For example, 

Ward (1994) asked participants to draw an animal from 

another planet. Most responses contained features typical of 

Earth animals, (e.g., bilateral symmetry). Hence, knowledge 

from existing concepts was projected onto the generated 

exemplars. Evidence for the constraining effect of prior 

knowledge also comes from the study of cognitive biases in 

innovation. For instance, functional fixedness (Duncker, 

1945) refers to a tendency to focus on an object’s most 

common use.  By contrast, McCaffrey & Krishnamurty 

(2014) argue that more novel ideas are generated when 

attention shifts to less frequently noticed attributes of a 

problem (or in our case, of the stimulus).  

In the present study, we attempt to limit reliance on prior 

knowledge by using sets of abstract stimuli drawn from a 

continuous multidimensional space. The use of abstract 

stimuli should increase the reliance on identification of 

similarity between stimulus features (Tversky, 1977). For 

example, new exemplars generated to belong to a presented 

category (see Figure 1) should tend to be similar on features 

such as color and shape. If only perceptual features are 

accessible, participants would be prone to adopt feature 

matching strategies such as replication (e.g., copying one 

figure directly) or averaging (e.g., generating the mean of the 

presented examples; see Figure 1). Hence, although the use 

of abstract stimuli may lessen reliance on prior knowledge, 

the use of feature matching strategies will likely be enhanced. 

The extent to which participants merely replicate or copy 

one of the presented category members may also depend on 

whether participants adopt a strong sampling assumption 

(i.e., that the category members were deliberately chosen as 

positive examples; perhaps as the only members of that 

category; Navarro, Dry & Lee, 2012). Under a weak 

sampling assumption, participants may view the presented 

 

Figure 1. Examples of sets of abstract stimuli varying in 

perceptual features; shape, color and feature matching 

response strategies. Left: replication response strategy. Right: 

averaging response strategy. The conflict item is the blue 

category member. The online version is in color. 
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category as being sampled with no restrictions; hence, the 

presented objects may have implicit or hidden dimensionality 

with unknown support (i.e., the range of values that exist for 

a dimension). Our first goal was to examine how variability 

in the presented set affected the novelty of the generated 

exemplars.  

     Ward and Sifonis (1997) varied instructions across three 

experimental conditions: participants were told to generate 

(1) an alien animal, (2) an animal wildly different from Earth 

animals, or (3) a living thing. The second condition produced 

more unusual creatures than the first condition; while 

diversity was largest in the third group where many responses 

did not adhere to standard animal features. The authors’ 

suggested that this was encouraged through ambiguity in the 

instructions and by participants describing their creature prior 

to drawing it. A second goal of the present study was to 

examine whether self-explanation leads to more imaginative 

exemplars.  

     The present study aimed to examine the effects of: (i) 

variability of the presented category, (ii) inclusion of a 

conflict item, and (iii) prospective explanation and thinking 

aloud on exemplar generation. We compared a baseline 

condition to a condition which contained an anomalous 

exemplar and to a further condition which additionally 

required participants to engage in self-explanation during the 

generation process. Cognitive conflict is recognized as a 

reliable method for promoting the search for new knowledge 

(e.g. Limon, 2001). For example, a study conducted by Kang, 

Scharmann and Noh (2004) found conflict recognition 

promoted the invention of alternative concepts and 

explanations to account for the disparity caused by a 

conflicting stimulus. Consequently, presentation of a 

conflicting item may act to stimulate imagination, 

highlighting potential options for a new category member. 

For instance, an anomalous category member could highlight 

new dimensions from which an exemplar could be sampled. 

If the underlying category rules are unclear, self-

explanation may allow for exploration of alternative 

hypotheses through which to understand the presented 

                                                           
1 The amplitude of the sine waves was .5, .5, and a third amplitude 

sampled from a normal distribution with a mean of zero and a 

standard deviation .1(low), .2 (medium), or 3 (high). 

category (Williams & Lombrozo, 2010). Self-explanation, 

has a direct influence on how objects are mentally 

represented and understood. Verbalisation of thought 

processes during an activity can enable access to cognitive 

processes which are not directly observable (e.g. Ericsson & 

Simon, 1980). Self-explanation can also override the 

influence of similarity, facilitate generalisation, and promote 

the integration of novel information with existing knowledge 

(Lombrozo, 2006). Similar to its influence on intelligence 

observed in educational psychology models which aim to 

accelerate cognitive development (Adey, 1992), self-

explanation, therefore, affords a means of engaging 

imagination in order to resolve conflict.  
  

Method 

Participants  

Participants were 129 University of Melbourne students who 

received course credit for participation. Of the participants, 

16 were excluded as a result of missing data, leaving a total 

of 113 (91 females, M = 19.9, 3.11). Participants were 

randomly assigned to one of three conditions; baseline (n = 

35), conflict (n = 43) or self-explanation (n = 35). 

Stimuli  

The stimuli were “blob-shaped” radial frequency curves, 

which varied in shape and color. Four shapes were presented, 

and participants were asked to generate a new member of the 

same category by drawing a shape using the mouse and 

selecting a color. In the baseline condition, the shape of the 

objects could vary with color identical across all of the 

category members; the color of the objects could vary with 

shape fixed, or both shape and color could vary (see Figure 

2). The shape was determined by convolving three sine waves 

of different angles; two degrees, four degrees, and a third 

angle randomly generated from a normal distribution with a 

mean of zero and a standard deviation of 10 (low), 12.5 

(medium), or 15 (high)1.  

     The color was determined by selecting a starting hue from 

a set of fully saturated and fully bright hue values between 

 

Figure 2. Examples of Stimulus Variability and 

Dimensionality for each instruction condition. Baseline 

condition: top panel. Conflict and self-explanation condition: 

bottom panel.  The online version is in color. 
 

 

Figure 3.  Example of a Single Trial. A) presented category 

examples, B) black box for drawing generated exemplar, C) 

color bar and saturation and brightness cube. The online 

version is in color. 
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zero and 255. These values were converted to RGB values 

using a look-up table. If color varied, then the hue was 

adjusted by a normally distributed random adjustment with a 

mean of zero and standard deviation of 20 (low), 40 

(medium), or 60 (high)2.   

     In the conflict and self-explanation conditions, three of 

the items had low levels of variability (as in the baseline 

condition), and one study item varied markedly from the 

other three items on shape, color, or on both dimensions (see 

Figure 2). The levels of conflict variation were determined in 

the same way as the baseline condition but with much larger 

standard deviations. 
  

Procedure  

Participants completed 27 trials. Each trial consisted of 

presentation of four items displayed on a computer monitor, 

with instructions indicating that the four items all belonged 

to a single category. Participants were instructed to use the 

computer mouse to draw another member of this category in 

the provided box and to select its color. Colors were selected 

by choosing a hue from a color bar and then adjusting the 

saturation and brightness by selecting from the shading box 

(see Figure 3). 

     In the baseline and conflict conditions, after completion of 

all trials, participants were instructed to provide a 

retrospective explanation for each trial. For the self-

explanation condition, participants were asked to provide a 

prospective explanation and then to think aloud whilst 

drawing their exemplar. Prospective and retrospective 

verbalizations were recorded on a digital recorder. 

 

Shape and Color Similarity Scoring To provide an 

objective measure of how closely the generated objects 

                                                           
2 Brightness and saturation were adjusted by a similar adjustment 

with a standard deviation of 15 (low), 25 (medium), or 35 (high). 

matched the presented category exemplars, we developed 

two measures: (1) The first method used translation, rigid 

shape rotation, and scaling to find the maximum proportion 

of overlap between the generated object and each presented 

exemplar. This measure ranged from 0 and 1, with 1 

indicating perfect overlap. The shape similarity scores were 

approximately normally distributed with a mean of .61 (sd = 

0.13). (2) The second method extracted the color of the 

generated object and computed the Delta E color difference 

between the drawing and each of the presented examplars 

(Wyszeck & Stiles, 1982). These scores were positively 

skewed with a lower bound at 0 (perfect color match). We log 

transformed these scores and adjusted the range to 0 and 1, 

and finally subtracted the scores from 1 so that 1 indicated a 

perfect color match. The final score was the minimum score 

across all four presented category members. The color 

similarity scores had a mean of .18 (sd = .07).   

 

Expert Coding Note that our shape overlap similarity 

measure does not really capture the extent of creativity in the 

generated exemplars; nor does it capture other potentially 

interesting patterns of exemplar generation. To capture these 

patterns, we had two experts (one was the first author) 

classify each drawing into whether the generated object 

replicated one of the presented exemplars, whether the 

generated object appeared to be an average of the presented 

exemplars, or whether the generated object exhibited 

imaginative characteristics. This latter rating category was 

further broken down into cases which used the perceptual 

features of the presented shapes (termed explicitly 

imaginative; i.e., imaginative responses which utilized 

variations in blob-shape or color; e.g., a butterfly which is 

blob-shaped) or whether the generated exemplar drew on 

implicit characteristics (we term this rating category 

All values were selected based on pretesting to ensure perceptibly 

low, medium, and high levels of variation. 

 

Figure 4. Coding Response Strategies. Exemplars in the black boxes are participant examples of generated responses to 

presented stimuli. The online version is in color.  
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implicitly imaginative; i.e., response which utilize features 

other than blob-shape or color; e.g., a drawing of a space ship 

- which may have been justified as necessary to interact with 

the alien shapes that had been presented as part of the 

category). There was an 86% agreement between our expert 

raters; disagreements were then clarified between raters by 

drawing on the recordings generated by participants. Figure 

4 shows exemplars representative of each response strategy. 

Results 

What is the effect of variability in the presented 

category on the generated exemplars? 

We first examined the effects of dimensionality and 

variability within the baseline condition on both shape and 

color similarity.   Dimensionality refers to what aspects of the 

presented category exemplars varied within the presented set 

(e.g., shape could vary with color fixed across all four 

category members, color could vary with shape fixed, or both  

could vary). Variability refers to the level of variability 

applied to the dimensions which were not fixed in the 

presented set. We examined only the baseline condition 

because variability in the conflict and explanation conditions 

was instantiated via the anomalous items and is not 

comparable.  

     Figure 5 shows that there was little effect of 

dimensionality or variability on the shape similarity scores.  

On the other hand, the color similarity scores systematically 

decreased with increasing variability whenever color varied 

in the presented set. That is, whenever the presented category 

exemplars varied in color, people generated colors which 

were more dissimilar (to the presented colors) than when 

color was fixed or of lower variability. 

     A two-way Dimensionality x Variability ANOVA 

confirmed these results.  The largest F-ratio for the shape 

scores was the effect of variability, F(2, 882) = 1.45, p = .23.   

For the color scores, there was a main effect of 

dimensionality, F(2, 882) = 151.33, p < .001, a main effect of 

variability, F(2, 882) = 27.35, p < .001, and an interaction, 

F(4, 882) = 11.06, p < .001. 

 

 

 

 

 

 

Does conflict or explanation lead to less similar 

generated exemplars? 

Automated Scores We compared the average shape and 

color scores for each participant across the baseline, conflict, 

and explanation conditions. There was a general decreasing 

trend across these conditions for both shape and color 

Figure 5. Average shape similarity (top panel) and color 

similarity (bottom panel) as a function of dimensionality 

and variability in the baseline condition.  

 

Figure 6.  Average shape similarity (top panel) and color 

similarity (bottom panel) scores in the baseline, conflict and 

explanation conditions. Error bars are +/- 1 standard error. 
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similarity (see Figure 6). Both effects were significant using 

a one-way ANOVA: (Shape: F(2, 110) = 3.2, p = .044; Color: 

F(2, 110) = 64.05, p < .001).  
 

Expert Ratings The proportion of each drawing type is 

shown in Figure 7. It is immediately obvious that the main 

strategy for exemplar generation was to simply replicate one 

of the presented category members. While all conditions 

showed some evidence of generating imaginative exemplars, 

the level of implicitly imaginative exemplars appears to be 

higher (with a co-occurring decrease in replication) in the 

explanation condition. This was confirmed by a significant 

chi-squared test for independence across all three groups, Χ2 

(6) = 63.46, p < .001, and for the baseline vs explanation 

comparison, Χ2 (3) = 49.11, p < .001, the conflict vs 

explanation comparison, Χ2 (3) = 34.59, p < .001, but not the 

baseline vs conflict comparison, Χ2 (3) = 3.02, p = .15. 

Discussion 
 

This experiment examined the effects of stimulus variability, 

which included adding a conflict item to the presented 

category set, as well as the impact of prospective self- 

explanation and thinking aloud on exemplar generation.  

We first showed that variability on a color dimension 

leads to more novel generation of values for that color 

dimension. We did not find an effect of variability on shape. 

There are a few potential explanations for this difference 

between shape and color similarity.  For one, our 

operationalization of shape similarity as overlap did not 

adequately capture the more creative responses that were 

identified by our raters (see Figure 4, for examples). Second, 

color was easier to generate in our experiment than shape. 

Shape had to be hand-drawn but color could be selected from 

a color palatte. Hence, a third difference was that the range of 

color options was presented to the participant, but the range 

of possible shapes was unbounded. The use of a mouse 

instead of a stylus may have restricted the shapes that were 

generated; we leave this as a goal for future experiments. 

We next showed that including an anomalous exemplar 

and allowing self-explanation, led to responses which were 

less similar to the presented category members. Our rating 

analyses clearly showed that in all conditions, replication was 

the most utilized strategy.  Examination of the drawings 

revealed that most subjects drew blob like objects and that 

typically these blobs looked primarily like one of the 

presented objects. The predominant application of replication 

strategies in all conditions in this study may have been 

anticipated through our use of abstract stimuli. The use of 

abstract stimuli promoted the predilection toward perceptual 

features of the presented stimuli (Tversky, 1977), and the 

absence of feedback on task performance made category 

comprehension more ambiguous. Consequently, a replication 

strategy represented the simplest approach to meet task 

parameters, whilst requiring the least amount of cognitive 

effort. This result may also indicate that participants adopted 

a strong sampling assumption (Navarro et al., 2012) and 

simply sampled from the presented set.   

Despite stimuli having no direct links to prior conceptual 

knowledge, some responses drew on knowledge external to 

the perceptual features of the manufactured categories. This 

was more prevalent when participants were encouraged to 

self-explain. This implies that the method of instruction, 

along with the method of response, plays an active role in 

both understanding category membership and the subsequent 

exemplar generation process.  

     Presentation of a conflicting category member did not 

result in more or less imaginative exemplars. The implication 

is that the conflict item proved difficult to assimilate, 

resulting in replication being favoured as a strategy. The 

importance of delivering a conflict at the appropriate level so 

as to sustain interest has been demonstrated in previous 

research in learning. As noted by Limon (2001), the 

presentation of contradictory data can only result in a 

meaningful conflict if it presents a challenge to existing held 

beliefs. If the basis of the conflict is not understood, it fails to 

engage the person, and therefore the conflict may be ignored 

or explained away (Adey, 1992). Our results suggests that 

conflicting items which maintain the same explicit 

dimensional structure might limit the recruitment of 

imagination. We leave it for future research to examine 

conflicts which signal the implicit dimensionality of the 

concept. 

On the other hand, prospective self-explanation promoted 

greater use of imaginative strategies. This indicates that 

cognitive interaction via self-explanation can foster 

imaginative responses to category conflicts. It appears that 

self-explanation provided a mechanism for reflective 

abstraction of the conflict (Adey et al, 2007), and encouraged 

imagination to resolve the problem. In line with studies into 

the influence of self-explanation in dealing with anomalous 

data (e.g., Williams, Lombrozo, & Rehder, 2011), self-

explanation encourages the greater use of imaginative 

Figure 7. Expert rating proportions for the shape of the 

generated objects for each strategy type: replication, 

averaging, explicit imaginative, and implicit imaginative.  
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strategies in response to a category conflict. It is the 

combination of both a conflict and a mechanism to explore 

the reasons behind the conflict which increases the use of 

imagination.      

A limitation of the current study is that it failed to address 
whether self-explanation increases the likelihood of 

imaginative responses without the involvement of a conflict 

category member. It remains unclear whether highly 

imaginative responses would have arisen if a more complete 

range of feature variation had not been revealed by the 

conflict item. Therefore, repeating the current study allowing 

explanation in the baseline condition would facilitate a better 

understanding of the importance of self-explanation in 

promoting imaginative responses. Future studies should also 

explore the role of self-explanation in the use of replication. 

When a conflict category member was presented amongst 

similar stimuli, participants following a replication strategy 

either chose to replicate one of the three similar items or the 

minority conflict item. Understanding the patterns which 

underlies this decision making is important, as it represents 

the starting point for imaginative responses.  

     The motivation for the present study was to better 

understand the role of imagination in exemplar generation. 

To address the gap in the literature about the impact of 

instructions on structured imagination, abstract stimuli were 

used as a means of reducing access to prior knowledge when 

generating exemplars. Although participants favoured a 

strategy which leveraged perceptual features, the current 

study provides evidence of imaginative responses leveraging 

implicitly related prior knowledge. In addition, self-

explanation was shown to be an effective mechanism in 

generating imaginative exemplars in the presence of category 

conflict. This experiment confirms that self-explanation 

makes structured imagination more flexible when interacting 

with unexpected categorisation tasks, and represents the 

starting point for greater exploration into how imagination 

responds to cognitive challenges. 

     It is worthwhile to consider how one might develop a 

computational model of exemplar generation. Clearly an 

essential mechanism is the ability to retrieve instances or 

features from members of stored categories and then to 

combine these retrieved features. This type of mechanism is 

reminiscent of the echo content mechanisms in Minerva 

(Hintzman, 1984). Our results suggest a mix of strategies 

which direct retrieval of one of the presented category 

members being the most common. The fact that replication is 

increased in the conflict condition suggests a role for 

selective attention in determining retrieval. However, in 

some cases, there appears to be probabilistic sampling not 

only of the physically presented shape and color dimensions, 

but also of dimensions which are implicit to the presented 

category and likely more conceptual than physical (see 

Figure 4). McCaffrey & Krishnamurty (2014) propose a 

taxonomy of different feature types that ranges from physical 

features such as size, shape, mass, weight, to the 

identification of object parts, to the types of functions or uses 

an object has, its super- and subordinate categories, 

associated concepts, aesthetic values, and causal relations.  In 

this taxonomy, only certain types of features (or dimensions) 

are immediately available to sensory perception. Self-

explanation seems to result in an increased probability of 

sampling from more implicit dimensions. 
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Abstract 

Participants wore a smartphone, which collected GPS, audio,        
accelerometry and image data, in a pouch around their necks          
for a period of two weeks. After a retention interval of one            
week, they were asked to judge the specific day on which           
each of a selection of images was taken. To account for           
people’s judgements, we proposed a mixture model of four         
processes - uniform guessing, a signal detection process based         
on decaying memory strength, a week confusion process and         
a event confusion process in which the sensor streams were          
used to calculate the similarity of events. A model selection          
exercise testing all possible subsets of the processes favoured         
a model that included only the event confusion model. GPS          
similarities were found to be the most significant predictors,         
followed by audio and accelerometry similarities and then        
image similarities.  

Keywords: memory, experience sampling, hierarchical     
Bayesian model 

Introduction 
Friedman (1993, 2004) argued that people typically employ        
one of four strategies to identify when events occurred. On          
some occasions, people can directly retrieve declarative       
knowledge about the event. For instance, many people can         
recall that the attacks on the Twin Towers occurred on          
September 11th 2001. Friedman argues, however, that such        
declarative knowledge is quite rare and is reserved for         
events of global or personal significance. On other        
occasions, people have relative order information that they        
can use to make a judgement. If one were asked when           
George W. Bush initiated military action in Afghanistan,        
one may not know the date, but one can make an inference.            
The military action in Afghanistan occurred as a        
consequence of the September 11th attacks and therefore        
was most likely to have been in late 2001. There is a natural             
order in which these events occurred and provided someone         
has the order information and access to the time of the           

original event they can deduce the timing of the subsequent          
event. Again, Friedman argues that judgements based on        
relative order information are rare.  

More common, according to Friedman, are judgements        
made using location-based strategies. Location-based     
processes rely on the retrieval of information associated        
with the cues that can be used to draw inferences about the            
timing of an event. For instance, suppose you are asked          
when you last saw your friend Mary. You might recall that           
you share a Psychology-101 class with Mary. Furthermore,        
you know that Psychology-101 occurs on Mondays and        
Wednesdays at 2pm. It is now Saturday, so you infer that it            
was Wednesday at 2pm when you last saw Mary. 

Sometimes, however, the necessary knowledge to make an         
inference is not available. In these circumstances, Friedman        
argues one resorts to a distance-based strategy.       
Distance-based strategies rely on some quality of the        
memory that changes as a function of time. For instance,          
one might judge strong memories as having occurred more         
recently.  

There is a substantial literature that has asked people to           
report on the time at which events occurred (see Friedman,          
1993 and Thompson, Skowronski, Larsen & Betz, 1996, for         
reviews). Much of this literature has involved the memory         
for events that occurred outside of the laboratory, but which          
can be dated because they are part of the public record or            
have been recorded in personal diaries (Kemp, 1999).        
Generally, people are very poor at identifying when events         
occurred showing a bias to report events as being too recent           
when they occurred remotely in time - forward telescoping         
(Huttenlocher, Hedges, & Prohaska, 1988) or too remote        
when they occurred recently - backward telescoping       
(Hinrichs & Buschke, 1968).  

Early distance-based theories proposed that the       
psychological representation of time was logarithmically      
compressed, much as other psychophysical dimensions are       
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(Ferguson & Martin, 1983). These theories are able to         
account for the decrease in accuracy that occurs with         
retention interval, but have been discounted because       
well-known remote events are often dated accurately. If it         
were the time axis itself that was compressed, dating         
accuracy should always be directly related to recency        
(Huttenlocher et al., 1988). Alternatively, the accessibility       
of the memory trace could be used to infer the time of            
occurrence. Some evidence suggests that better known       
events are dated more recently (Brown, Rips & Shevell,         
1985). However, there is substantial subsequent evidence       
that this does not occur (Thompson et al. 1988). Again,          
better known events are reported more accurately.       
Furthermore, people are often capable of accurately       
reporting the day of the week an event occurred, while          
struggling to faithfully retrieve the month or year (Friedman         
& Wilkins, 1985). If people were using distance-based        
strategies, accuracy at smaller temporal scales ought to be         
worse than at larger temporal scales. The existing literature         
has tended to conclude that location-based strategies are far         
more commonly employed than distance-based strategies      
(Friedman, 1993; Thompson et. al. 1996). 

There are two main models of time reporting that have           
been proposed (Huttenlocher, Hedges & Prohaska, 1988;       
Kemp, 1999). The first of these, by Huttenlocher, Hedges,         
and Prohaska (1988), proposes that events are associated        
with time information, which is unbiased but subject to error          
that increases with time. Bias is introduced because answers         
are constrained to lie within the reference period either         
implicitly or explicitly defined by the memory query thus         
generating forward and backward telescoping. In addition,       
the theory posits that memory units are organized        
hierarchically - (e.g. day, month, year) and that events may          
be associated with any of these levels. The model provides a           
good quantitative fit to data they collected on judgements of          
when movies that were part of a campus initiative were          
shown.  

Kemp’s (1999) theory is similar to Huttenlocher’s in that          
the representation of time is not systematically distorted and         
that reconstruction of this time information is the basis of          
memory judgements. Rather than suggesting that temporal       
information is distorted with age, Kemp (1999) proposed        
that when time information is available it is accurate         
regardless of age. However, only a small number of         
memories have stored time information. Events of a similar         
kind are associated with each other and retrieval proceeds         
by retrieving similar events until one is found for which          
time information has been stored. An inference is then made          
on the basis of this information.  

Both the Huttenlocher and Kemp theories are typically         
construed as location-based theories because they rely on        
the retrieval of time information (i.e., a location in time) and           
inference proceeds on the basis of that information.        
However, another possibility is that the time information to         
which they refer evolves in a continuous fashion on multiple          

time scales simultaneously. This kind of model is commonly         
employed to account for grouping effects in short term serial          
recall (e.g., Henson, 1998). Furthermore, it is possible that         
what is retrieved from memory is a combination of specific          
content on which conscious inferences can be drawn        
(location-based) and this more graded hierarchical form of        
context (distance-based). 

Although it has long been argued that memory research          
that is focused solely on laboratory work is futile (Neisser,          
1976), the difficulty has been how to proceed when the          
experience of the participant before they enter the laboratory         
cannot be rigorously captured. Today, however, technology       
provides us with entirely new options. Easy to carry and          
able to monitor multiple sensor streams, smartphones can        
provide a convenient and ubiquitous window into the events         
of the life of an individual. We had participants wear a           
phone around their necks for two weeks and collected         
image, audio, GPS and accelerometry data. We then        
developed a hierarchical Bayesian model to capture distance        
and location based processes. 
 

Method 
Participants 
A total of 18 adult participants were recruited from flyers          
posted at the University of Newcastle and received $100         
compensation.  
 

Procedure 
In prior work, we built a system that consists of an Android            
app, server infrastructure and user interfaces. The app        
acquires image, time, audio (obfuscated), GPS,      
accelerometer and orientation information at approximately      
five minute time intervals. The app runs in the background          
as a service and users carried the phone in a pouch attached            
to a neck strap from morning till evening (see Figure 1).           
Participants could turn off the app anytime they needed         
privacy. When the phone detects WiFi and is charged, it          
sends the stored data automatically to a remote server. This          
usually happened once per day at the end of the day when            
users charge the phone overnight.  

Participants were instructed to wear the phone for two          
weeks. They returned to the laboratory on the Friday of the           
3rd week and were presented with images one at a time and            
were required to determine on which of the week days each           
image was taken (participants were informed that the        
images only came from the week days). Each participant’s         
test was based on images drawn from their own lifelogs. We           
selected images that came from distinct episodes as much as          
possible, and also avoided using images that were blurred         
due to excessive motion. The number of stimuli varied         
between participants since the available data depended on        
individual lifestyles. A presented image remained on the        
screen while they made the day judgment and they could          
use as much time as they needed to respond. 
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Figure 1. Android phone worn by a participant during the 
experience sampling phase of the study.  

 

Modeling 
To account for people’s judgements, we proposed a mixture         
model of four processes - (1) random (uniform) guessing,         
(2) a signal detection process based on decaying memory         
strength (distance), (3) a week confusion process (location)        
and (4) a event confusion process (location) in which the          
sensor streams were used to calculate the similarity of         
events. We start by describing the distance and location         
(sensor) models and then outline the mixture model        
incorporating all four processes. 
 

Distance model 
Figure 2 depicts the distance based model we employed.         
Mean memory strength (μ) elicited at retrieval was assumed         
to decay exponentially with scale, α, asymptote, β, and rate,          
λ. Variability around this mean was assumed to be Gaussian          
with standard deviation, σ. The probability of a response         
occurring given that the presented stimulus was taken on a          
given day, is given by the probability density that falls          
between criteria that separate it from the neighbouring days. 

The nine criteria that determined the response probabilities         
for each day were fixed to the mid-point of μ values of each             
neighbouring day (to alleviate sampling issues that resulting        
from attempting to estimate these as free parameters). We         
used Bayesian hierarchical modeling to fit the model, with         
each individual’s parameters being constrained by a group        
level distribution. All parameters were sampled on a double         
infinite scale, meaning that we sampled the inverse Probit of          
α and β, and the natural logarithm of λ and σ, and that all              
group level distributions were, therefore, normal.  

 

 
Figure 2. The distance based model.  

  

Location (sensor) model 
The location (sensor) model assumed that events were        
stored in memory and that the likelihood of confusing the          
representation of the correct event with the stored        
representation of another event is determined by the        
similarity of those events. Each day was divided into hour          
periods and image, GPS, audio and accelerometry       
representations of those events were calculated. For a given         
sensor stream the distance of an image’s event to a given           
day for a given stream was taken to be the minimum Jenson            
Shannon distance from the event to the events of that day           
(see Figure 3).  

 

 
Figure 3. The sensor model. 

 
These distance scores for each of the streams entered into a            

conditional logit model to determine the probability that the         
participant would respond with a given day. Missing data         
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were assumed to have a prior of a truncated normal          
distribution.  

Like the distance model, the parameters were estimated in          
a hierarchical fashion, with the natural logarithm of the         
weights being estimated, making the group-level      
distributions normal.  
 

Mixture model 
To estimate the probability of a participant's response we         
assumed a mixture model of the distance and location         
(sensor) models described previously as well as a random         
(uniform) guessing model and a location (week) model that         
assumed that participants correctly inferred the day of the         
week on which the event occurred, but had a certain          
probability of incorrectly determining the week (the kind of         
model that one might assume if people are relying on their           
schedules to make judgements).  

A model selection exercise testing all possible subsets of          
the processes was conducted using the common model        
selection metric WAIC, which attempts to weigh both the         
goodness of fit to the data and the complexity of the model,            
in order to approximate the leave-one-out cross validation        
metric. The preferred model was the location (sensor) model         
although the location (sensor) + random model also        
performed well (see Table 1). 
  
Table 1: Models tested and corresponding WAICs 
 

Model WAIC 
Location (sensor) -1544 

Location (sensor) + Random -1546 
Location (sensor) + Distance -1557 
Location (sensor) + Distance + Random -1565 

Distance + Random -1649 
Location (week) + Random -1958 
Distance + Location (week) -2161 
Random -2544 
Distance -2688 
Distance + Location (week) + Random -2812 
Location (week) - ∞  
 

To understand the performance of the models, it is useful           
to compare the posterior confusion matrices they produce to         
the data. Figure 4 shows the confusion matrix of responses          
accumulated over participants. The x-axis show the days on         
which the events actually occurred, and the y-axis shows the          
participants’ responses. The diagonal represents correct      
responses, while responses off the diagonal are errors. The         
matrix is dominated by correct responses, with cells close to          
the major diagonal (representing adjacent days) showing       
significant mass particularly in week one. 
 

 
Figure 4. Data confusion matrix 

 
 

 
Figure 5. Distance only confusion matrix 

 
The distance only model is able to explain the structure off           
the diagonal by estimating a large standard deviation for the          
strength distributions (see Figure 5). However, a large        
standard deviation prevents the model from capturing the        
proportion of correct responses on the diagonal. 

The distance model performs much better when it is mixed           
with the uniform distribution (see Figure 6). The structure         
off the diagonal is captured by the uniform component,         
while the structure on and adjacent to the diagonal is          
captured by the distance model. The observation that counts         
adjacent to the diagonal are larger in week one is          
accommodated naturally by the model because in the first         
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week the gradient of the strength is small, which makes it           
more difficult to distinguish between adjacent days. 
 

 
Figure 6. Distance + Random confusion matrix 

 
 

The week only model does poorly. The model assigns no           
probability to cells that are neither on the diagonal nor          
exactly a week out (the off diagonals five above and below           
the main diagonal). As there are observations in those cells,          
the WAIC is negative infinity. When mixed with the         
random model, the model does better, but still has a          
tendency to predict more week out responses than appears in          
the data (see Figure 7).  
 

 
Figure 7.: Week + Random confusion matrix 

 

 
 Figure 8. Sensor confusion matrix 

 
The best model is the sensor model (see Figure 8). Unlike            

the distance and week models the sensor model did not          
require the random component in order to provide a good fit           
to the data. In fact, adding the random component decreases          
the WAIC slightly as the model is penalized for additional          
complexity (i.e. the mixture probability). While the distance        
and week models are informed only by the day on which the            
event occurred, the sensor model constructs a representation        
of the event that captures where the participant was (GPS),          
what the participant was hearing (audio), what the        
participant was doing (accelerometry) and what the       
participant was seeing (images) and compares it with        
representations of all other events. The importance of these         
features can be inferred from the weights associated with         
each of the data streams. 

 
Figure 9. The posterior distributions of the sensor weights.  
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Figure 9 shows the posterior distributions of these         
weights. The GPS stream has the strongest weights followed         
by the audio stream and the accelerometry stream, which are          
approximately equal. The image stream has the lowest        
weights. That the image stream should have the lowest         
weights is counter intuitive. The participants are presented        
with the image as a retrieval cue, and so one might have            
expected the visual information to be salient.  

There are multiple possible interpretations of this result.         
It may be that the image representation that we chose          
(GIST; Oliva & Torralba, 2001) does not carry the         
information that participants rely upon when making       
memory judgements. Another possibility is that it is the         
static nature of the images or the fact that they are not            
synchronized with the direction of gaze that compromised        
this stream. While head mounted video technologies exist        
they are currently difficult to deploy for the duration of          
recording required for the time scales we explore here.         
Furthermore, they introduce additional ethical hurdles that       
need to be considered. A third possibility is that the result is            
not artifactual, but is a reflection of the information         
employed by the memory system. While the visual domain         
seems salient perhaps it is other aspects of experience that          
drive the retrieval and inferential systems that people        
employ to make location based judgements. 
  

Conclusions 
When people are asked to determine when an event         
occurred, Friedman (2004) argues that people use a        
combination of distance based and location based processes,        
with location based processes being the most common. The         
current work supports this assertion. 

Furthermore, we have demonstrated that it is possible to          
predict the responses people will make to images taken from          
their personal experience in the world outside the laboratory         
on a stimulus by stimulus basis. We believe this work          
establishes a new benchmark for what models of episodic         
memory should achieve and provides the promise of a more          
quantitatively rigorous, ecologically valid and     
translationally relevant memory science.  
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Abstract

The standard model is that word identification in reading is
a holistic process, most efficient when words are centered in
the visual field. In contrast, rational models of reading predict
word identification to be a constructive process, where readers
efficiently gather visual information about a word, and may
combine visual information about different parts of the word
obtained across multiple fixations to identify it. We tease apart
these accounts by arguing that rational models should predict
that the most efficient place in a word to make a second fixa-
tion (refixation) depends on the visual information the reader
has already obtained. We present evidence supporting this pre-
diction from an eye movement corpus. Computational model
simulations confirm that a rational model predicts this find-
ing, but a model implementing holistic identification does not.
These results suggest that refixations can be well understood
as rationally gathering visual information, and that word iden-
tification works constructively.
Keywords: eye movements; reading; word identification; ra-
tional analysis; refixation

Introduction
Reading is a complex information processing task with a goal
usually related to comprehending the text. In general, accu-
rate text comprehension requires the identification of many
(if not most) of the words in a text. It is not surprising, then,
that decades of research on eye movements in reading have
established that word identification can be seen as the pri-
mary driver of eye movements (Rayner, 1998). A substantial
body of work has studied the role in this process of many
information sources relevant to word identification in read-
ing, including especially word frequency and in-context pre-
dictability, among others. However, although visual informa-
tion is the primary source of information used to ultimately
identify a word, the fundamental way in which visual infor-
mation is used in word identification remains unresolved.

In the standard model of word identification in reading,
word identification is hypothesized to be a holistic process,
during which visual information about the word as a whole
constrains the efficiency of identification. Eye movement
studies have shown that a word presented in isolation is most
rapidly identified when fixating approximately at its center
(O’Regan, 1990, 1992). It has also been found in natural read-
ing that the fixation position that minimizes gaze duration (the
total amount of time spent fixating a word in first pass) and re-
fixation probability (the probability of making more than one
fixation on a word in first pass) is on average at or slightly left
of the center (Rayner, Sereno, & Raney, 1996). One explana-
tion for these results is that when the word center is directly
fixated, the largest possible part of the word falls in the central
high-acuity portion of the visual field (the fovea), yielding the
highest-quality visual input of the whole word; as the fixation
deviates from the center, more letters of the word fall out of

the fovea and suffer from a rapid drop in acuity, leading to
poorer visual information about the overall word. Following
this interpretation, it is hypothesized that visual processing ef-
ficiency of a word is maximized when fixating at word center,
and decreases with increasing distance between word center
and fixation position. This standard holistic account is incor-
porated in dominant eye movement models of eye movement
control in reading (e.g. E-Z Reader, Reichle et al., 2009; and
SWIFT, Engbert et al., 2005).

Alternatively, word identification may not utilize visual in-
formation holistically, especially in natural reading. Unlike in
isolated word identification where information about a word
comes only from visual input obtained by directly fixating
it, in natural reading information about a word comes from
more sources. These include contextual information from the
preceding text and visual information obtained from fixations
close to but not on the current word, which may still yield
some visual preview of the word’s initial letters. As a result,
the most efficient positions from which to obtain useful new
visual information about the word can vary from trial to trial,
dependent on the information already obtained. Even in such
an account, it is still possible that, on average, the most effi-
cient positions are located near the center (as has been found
in prior work). This account of word identification is imple-
mented in rational models, which consider reading as a pro-
cess of combining information from various sources to iden-
tify words and making eye movement decisions to maximize
identification efficiency (Bicknell & Levy, 2010, 2012; Legge
et al., 1997, 2002). For example, if a reader in this framework
is working to identify a particular word, considering all the in-
formation that has already been gathered, there may be parts
of the word that the reader has already identified relatively
well and parts that are still relatively uncertain. It is intuitive
in such a situation that identification efficiency will be maxi-
mized by moving the eyes next to the part of the word about
which the reader is still relatively uncertain. This is because
such fixations would obtain fine-grained visual information
of a particular part of the word, which can be combined with
visual information obtained from previous fixations (as well
as linguistic contextual information), and identify the word in
a constructive manner. Thus, contrary to the holistic account’s
view that any fixation landing on a non-central position slows
identification efficiency relative to a central fixation, the view
from rational models is that the position in the word to move
the eyes next to maximize identification efficiency will vary
from trial to trial and depend on information already obtained.

A phenomenon that can be used to tease apart these two ac-
counts is that of refixations, cases in which a word is fixated
more than once during first-pass reading. The goal of an in-
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tended refixation is assumed to be moving the eyes to a posi-
tion that will maximize identification efficiency of the current
word. Despite previous experiments showing that refixation
rate varied on average as a quadratic function of the distance
between word center and the fixation position (McConkie,
Kerr, Reddix, Zola, & Jacobs, 1989) and was influenced by
linguistic properties such as word frequency (Rayner et al.,
1996), few studies shed light on where refixations go. The two
accounts of word identification make different predictions for
this question. The rational model predicts that refixations tar-
get the part of the word about which sufficient information
has not yet been obtained. Which part of the word this is de-
pends on the visual information already available.1 In con-
trast, the standard model of word identification predicts that
refixations should always target the center to maximize the
holistic visual processing efficiency of the word, independent
of information obtained about different parts of the word.

Naively, then, we could tease apart these two hypotheses
by analyzing the relationship between the position of the ini-
tial fixation on a word (the ‘landing position’) and the refix-
ation position. The rational account would predict that if the
landing position is at the beginning of the word, a refixation
should be at the end, and vice versa, whereas the standard
model would predict that all refixations cluster around the
center, regardless of the landing position. Empirically, this
prediction of the rational models is borne out (Rayner et al.,
1996), but the standard model explains this phenomenon in
a different way. Specifically, there is a concept of systematic
error (McConkie et al., 1988), which suggests that intended
saccade sizes become biased toward the overall average sac-
cade size. This means that refixation saccades intended to be
short and target the center of the word in the standard model
will tend to overshoot their target, landing on the opposite end
of the word. Thus, both the standard model combined with
systematic error and the rational model predict the effect of
landing position on where refixations go.

Analyzing where refixations go as a function of the loca-
tion of the previous fixation made before fixating a word (the
‘launch site’), however, can tease apart these two accounts,
when controlling for effects of landing site. If a reader’s first
eye movement to the word is launched from a position close
to the word, then more visual information about the word’s
beginning should be available (relative to the launch site be-
ing further away), holding constant the landing site. There-
fore, rational models predict that for closer launch sites, a
refixation should be less likely to move the eyes back toward
the beginning of the word (Fig. 1, right panel). In contrast, the
standard model would not predict such an effect, but predict
that an intentional refixation that follows a fixation on the left
half of a word should always go forward, while one that fol-
lows a fixation on the right half should always go backward,
always targeting the word center (Fig. 1, left panel).

1In general, the most efficient place to move the eyes next in a
rational model depends not just on visual information already ob-
tained but also contextual information. For the present paper, we
ignore contextual information for simplicity.

Figure 1: The standard model and the rational model make
different predictions for where refixations go. For the stan-
dard model, refixations always target the center of the word,
regardless of launch site. For the rational model, refixations
target positions where character identity has low confidence
(here represented by hypothetical m( j) values). Therefore,
closer launch sites, which provide more visual information
about the word’s initial letters (schematically represented
here by grey rectangle) predict refixations are more likely to
move forward. The refixation decisions here are based on eye
movement policy parameters of α = .9 and β = .7. (See Eye
movement policy section for more details.)

In this paper, we empirically evaluate these two compet-
ing predictions by performing a statistical analysis of where
refixations go in a large eye movement corpus, and we com-
pare these results to simulations from computational models
of both accounts. In the next section, we report the results of
our statistical analysis of human refixation data, showing that
it is as predicted by the rational account. We then confirm
that an eye movement model that implements the standard
model cannot accommodate this finding by performing simu-
lations with E-Z Reader (Reichle et al., 2009). After that, we
describe our rational model of refixations. Finally, we confirm
that simulations using it show the same qualitative pattern as
the human data, and then conclude.

Experiment 1: Human data in Dundee corpus
This analysis aims to tease apart the predictions of the ratio-
nal model and the standard model on where refixations go.
Specifically, we use the English part of the Dundee corpus
(Kennedy, 2003) of eye movements during natural reading,
and analyze the direction of refixation as a function of launch
site, statistically controlling for landing site.

Methods
Data The English part of the Dundee corpus contained eye
movement records from 10 native English-speaking partici-
pants as they read through newspaper editorials (see Kennedy
& Pynte, 2005 for further details.) We first did a set of screen-
ing procedures, according to criteria that are generally ap-
plied to eye movement data, to remove fixations involving
blinks, non-first-pass fixations, and the first/last two fixations
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of the line. After this procedure, the corpus contained 23,854
fixations that were followed by a refixation during first-pass
reading (18.9% of first-pass fixations). These data then un-
derwent screening procedures excluding: (a) extremely far
launch sites (1%), leaving the launch sites of fixations in the
range [−16,−1] (in terms of number of characters from word
beginning); (b) fixations that landed on the space right before
the word (25.5%) or on the last character of the word (4.7%)
to ensure the variability of refixation directions; and (c) fix-
ations on words of which the previous word was skipped
to eliminate possible overshootings of the previous word
(20.9%), since these can be followed by corrective saccades.
In the end, the data consisted of 7,667 fixations.

Statistical analysis A logistic generalized linear mixed-
effects model (GLMM) was used to analyze the direction
of refixations (forward vs. backward). Fixed effects included
launch site and combinations of word length and landing site,
which controlled for arbitrary effects of word length and land-
ing site on refixation direction. Random effects included a
random intercept and slope of launch site by subjects. Signif-
icance testing was via likelihood ratio test. All statistical anal-
yses were implemented in the R environment, using the glmer
function from the lme4 package (Bates, Mächler, Bolker, &
Walker, 2015) for GLMM implementation. In order to ensure
model convergence, word length–landing site pairs for which
all refixations (or all but 1) moved in the same direction were
excluded, leaving 6714 fixations (87.6%).

Results and discussion
Fig. 2 shows the effect of launch site on the probability
that refixations move forward for each word length–landing
site pair. The GLMM showed that nearer launch sites pre-
dicted significantly more forward refixations, β̂ = 0.15, SE =
0.03, χ2

1 = 13.98, p < 0.001, 95% confidence interval (CI)
= [0.10,0.20]. As reported in the following section, the stan-
dard model can accommodate this effect only for landing sites
on the right half of the word. To see whether this was also
true of the human data, separate analyses were carried out for
fixations with landing sites on the left and the right half of
the word. For the left half (4790 fixations), launch site pre-
dicted more forward refixations, β̂ = 0.16, SE = 0.03, χ2

1 =
10.91, p < 0.001, 95%CI = [0.09,0.22], and the same was
true for the right half (1362 fixations), β̂ = 0.14, SE = 0.04,
χ2

1 = 7.40, p < 0.01, 95%CI = [0.05,0.22]. These observa-
tions that closer launch sites predicted more forward-moving
refixations confirm the rational model’s predictions. The sep-
arate analyses of fixations on the left and right halves of the
word indicated that this effect generalized across both.

Experiment 2: E-Z Reader
This section aims to show that the standard model does not
predict the effect of launch site on direction of refixations.
To this end, we carry out the same analyses as the previous
section on simulation data from E-Z Reader, a computational
model of eye movements in reading that incorporates the stan-
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Figure 2: Effect of launch site on proportion of forward-
moving refixations on data from Dundee corpus. Each panel
contains data from a combination of word length and landing
position, and shows a GAM smoother.

dard holistic model of word identification, and always targets
refixations to the center of words. In principle, then, all in-
tentional refixations following a fixation on the left half of
the word should move forward and those following a fixation
on the right half should move backward. Simulations with an
implemented version of this model help to ensure that un-
intentional refixations – saccades intended for another word
that happen to become a refixation due to motor error – do
not in general change these predictions.

Methods
Data We used E-Z Reader 10 (Reichle et al., 2009) to gen-
erate eye movement data for 100,000 virtual readers read-
ing sentences from the Schilling corpus (Schilling, Rayner, &
Chumbley, 1998) of single English sentences typical of read-
ing experiments. Each virtual reader was a simulation com-
pleted using a Monte Carlo run of the model.

The data cleansing procedure was the same as that in
Expt. 1. Out of the 20,189,603 first-pass fixations, 3,417,999
(16.9%) of them were followed by a refixation. Excluding ex-
treme launch sites, fixations landing on initial or final letters
of a word, and skipping of the previous word left 1,029,801
fixations. Launch site ranged between [−15,−1].

Statistical analysis A generalized linear model (GLM)
with the same fixed effects as that in Expt. 1 was adopted
to analyze the effect of launch sites on refixation direction.
Random effects were removed from the GLMM used for
Expt. 1 since the virtual readers were simply different Monte
Carlo runs with no systematic differences. Excluding word
length–landing position pairs where all refixations (or all but
1) moved in the same direction left 899,838 fixations (87.4%).

Results and discussion
Fig. 3 shows the effect of launch site on the probability for
refixations moving forward. The GLM showed that nearer
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launch site predicted significantly more forward refixations,
β̂ = 0.08, SE = 0.004, χ2

1 = 386.66, p < 0.001, 95%CI =
[0.07,0.09]. However, this effect was driven by fixations land-
ing on the right half of the word, β̂ = 0.10, SE = 0.004,
χ2

1 = 542.99, p < 0.001, 95%CI = [0.09,0.11], while fixa-
tions landing on the left half had 99% refixations moving for-
ward and yielded an opposite effect, β̂ = −0.33, SE = 0.03,
χ2

1 = 147.37, p < 0.001, 95%CI = [−0.39,−0.27].
Therefore, E-Z Reader does not in general predict that

closer launch sites should lead to refixations being more
likely to go forward, contrary to our observations on the hu-
man data, although it can accommodate such a prediction for
fixations on the right half of the word. Although this effect
on the right half of the word may seem surprising, we note
that the predictions we described above for this account only
hold for intentional refixations. We believe that this effect on
refixations on the right half of the word arises from uninten-
tional refixations. Specifically, for a fixation position on the
right half of a word, the E-Z Reader model will generally ex-
ecute one of two behaviors: initiating a saccade to refixate the
word or initiating a saccade to move on to the next word. In
this case, an intended refixation will target a leftward posi-
tion (since the center of the word is to the left of fixation)
and an intended saccade to the next word will target a right-
ward position. Which of these two behaviors occurs depends
on how quickly the identification (or more technically, L1) is
completed for the current word. Closer launch sites mean that
identification of the word will be completed more quickly,
which in turn will lead to a greater chance of making a for-
ward saccade intended for the next word. Assuming some of
these forward saccades become unintentional forward refixa-
tions, this creates exactly the predicted relationship between
launch site and refixation direction. For the present purposes,
however, the main conclusion here is that the standard model
cannot reproduce a general effect of launch site on refixation
direction.

Rational models of reading
In this section, we describe an implemented rational model
of refixations, which we will use in the next section to con-
firm that the intuitively-derived predictions of the rational ac-
count for the relationship between launch site and refixations
are actually produced by an implemented rational model. Ra-
tional models of reading use Bayesian inference to combine
visual information with language knowledge (e.g., contextual
information). Based on the posterior distribution, eye move-
ments are selected to maximize identification efficiency. The
rational model of refixations we describe in this paper also
follows this idea, and can be viewed as an application of the
more general-purpose rational models of eye movements in
reading to the specific situation of refixations. This section
introduces the framework of our model.

Word identification as Bayesian inference
Word identification consists of Bayesian inference, in which a
prior distribution over possible identities of the text given by
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Figure 3: Effect of launch site on proportion of forward-
moving refixations in data from E-Z Reader simulation. Each
panel contains data from a combination of word length and
landing position and shows a GAM smoother.

its language model is combined with a likelihood term given
by ‘noisy’ visual input at the position of fixation to form a
posterior distribution over the identity of the text given all
information sources. Formalized with Bayes’ theorem,

p(w|I) ∝ p(w)p(I|w) (1)

where the probability of the true identity of the word being
w given uncertain visual input I is calculated by multiplying
the language model prior p(w) with the likelihood p(I|w) of
obtaining this visual input from word w, and normalizing.

In general, the prior p(w) represents reader expectations
for words conditioned on the context, but for the present pa-
per, we ignore context and use only a word frequency model
for simplicity. The visual likelihood is computed similarly to
in Bicknell and Levy (2010): each letter is represented as a
26-dimensional vector with a single element being 1 and the
rest being 0s. Visual input about each letter is accumulated it-
eratively over time by sampling from a multivariate Gaussian
distribution centered on that letter with a diagonal covariance
matrix Σ = λ−1I, where λ is the reader’s visual acuity for that
letter. Visual acuity depends on the location of the letter in
relation to the point of fixation, which is a function of the let-
ter’s eccentricity ε. In our model, we assumed that acuity is a
symmetric, exponential function of eccentricity:

λ(ε) =
∫

ε+.5

ε−.5

1√
2πσ2

exp(− x2

2σ2 )dx (2)

with σ = 3.075, the average of two σ values for the asymmet-
ric visual acuity function (σL = 2.41 for the left visual field,
σL = 3.74 for the right visual field) used in Bicknell and Levy
(2010). In order to scale the quality of visual information, we
multiply each acuity λ by the overall visual input quality Λ,
which is set to 12 in our simulation (see Expt. 3 below).
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Eye movement policy
Based on the posterior distribution on possible identities of
the word, eye movement decisions are selected to maximize
reading efficiency. For example, the first rational model of
reading, Mr. Chips, used this optimizing principle: the model
reads input text sequentially, without error, in the minimum
number of saccades (Legge et al., 1997, 2002). Specifically,
saccades were made to minimize the expected entropy of the
current word after the next fixation.

In a more recent rational model of eye movements in read-
ing (Bicknell & Levy, 2010, 2012), eye movement decisions
depend on the uncertainty of the posterior distribution about
each letter position. Specifically, given a fixation landing on
an unknown character c in position j, the marginal probability
m of the most likely character under the posterior is

m( j) = max
c

p(w j = c) (3)

where w j indicates the character in position j. A high value of
m( j) indicates relative confidence about the character’s iden-
tity, and a low value relative uncertainty. The model then de-
cided between four possible actions based on m( j): continu-
ing to fixate the current landing position, moving backward,
moving forward, and ending the reading process.

We use a similar eye movement policy in our refixation
model. If the value of the aforementioned statistic m( j) is less
than a parameter α, the model chooses to continue fixating the
current position. Otherwise, if the value of m( j) is less than
the parameter β for some leftward position, the model initi-
ates a saccade to the closest such position. If no such positions
exist to the left, then the model initiates a saccade to the clos-
est position to the right for which m( j)< α. Once a refixation
is executed, the simulation ends. If all m( j) values to the right
(left) are above α (β), we decide this word is identified with
a satisfactory uncertainty level, and the identification of this
word ends. In such a situation, we expect that the eyes move
to the next word, which is beyond the current paper’s scope
of studying refixations.

The actual landing position is the intended fixation posi-
tion with random motor error: the actual landing position `i
is sampled from a Gaussian centered on the intended target
ti with standard deviation given by a linear function of the
intended saccade distance

`i ∼N (ti,(σ0 +σ1|ti− `i−1|)2) (4)

for some linear coefficient σ0 and σ1.2 In Expt. 3 in this paper,
we follow the SWIFT model in using σ0 = 0.87, σ1 = 0.084.
A refixation occurs if the actual landing site of the next fixa-
tion falls on the same word.

Experiment 3: Rational model
In this section, we analyze simulated data from our rational
model of refixations to verify that it does indeed make the

2Note that motor error in a rational model has only random error
(variance), but not systematic error (bias).

prediction that we derived from it intuitively: that refixations
would be more likely to move forward for closer launch sites.
As described in the previous section, the rational model of
refixations we use combines information from previous fix-
ations (including the launch site) to form a posterior distri-
bution on the identity of a word through Bayesian inference.
It then makes refixation eye movements to parts of the word
about which it is uncertain.

Methods
Model parameters For the language model component of
the word identification model (the prior), we used word fre-
quency information (a unigram model) from the Corpus of
Contemporary American English (COCA) (Davies, 2016).
For this simulation, we did not optimize the behavior pol-
icy parameters to maximize reading efficiency as in Bicknell
and Levy (2010), but set them manually to what we surmised
might be reasonable values of α = 0.9 and β = 0.7. Future
work will optimize them, but we do not expect the qualitative
predictions relevant to this analysis to change.

Data Eye movement data were generated to identify a
word. All words were in the most frequent 5,000 words in
COCA, and word lengths ranged between [3,10]. Launch site
had a range of [−10,−1]. For each word length, each pos-
sible landing position, and each launch site, 200 trials were
run to model the word identification process as when a fixa-
tion landed on that landing position, preceded by a fixation on
that launch site. In each trial, a word was randomly selected
uniformly from words with the same length.

Procedure Each trial began with a fixation with a duration
of 200 time steps on the launch site, in order to represent the
visual information obtained prior to fixating the word. Then,
the fixation at the landing site began. On each timestep of that
fixation, visual information was obtained and integrated with
prior information to update the posterior, and then a behav-
ior decision was made: whether to continue fixating, make a
refixation, or stop reading (see model description).

Statistical analysis A GLM with the same fixed effects as
that in Expt. 2 was adopted to analyze the effect of launch
site on refixation direction. Excluding word length–landing
position pairs where all refixations (or all but 1) moved in the
same direction left 25,636 fixations.

Results and discussion
Fig. 4 shows the effect of launch site on the probability for
refixations moving forward. As expected, the GLM showed
that nearer launch site predicted significantly more forward
refixations, β̂ = 0.07, SE = 0.005, χ2

1 = 187.62, p < 0.001,
95%CI = [0.06,0.08]. The same pattern held for both data
with landing positions on the left half of the word, β̂ = 0.04,
SE = 0.008, χ2

1 = 28.85, p < 0.001, 95%CI = [0.02,0.06],
and the right half, β̂ = 0.12, SE = 0.009, χ2

1 = 179.38, p <
0.001, 95%CI = [0.10,0.14]. These results confirm that an
implemented rational model does indeed make this predic-
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Figure 4: Effect of launch site on proportion of forward-
moving refixations in data from rational model simulation.
Each panel contains data from a combination of word length
and landing position and shows a GAM smoother.

tion, which we observed in Expt. 1 to hold of human data.

General discussion
In this paper, we investigated how visual information is used
for word identification during natural reading. We compared
two accounts: (1) the standard holistic model, in which visual
information about the word as a whole is used in word iden-
tification, and processing is always most efficient from the
center; and (2) a rational model, in which readers combine
information from many sources to identify a word construc-
tively, and the fixation location that maximizes identification
efficiency depends on what prior information has been ob-
tained. We suggested that these two models make divergent
predictions for the possible effects of launch site on where
refixations go. Specifically, only the rational model should
predict that refixations are more likely to go rightward for
closer launch sites. An analysis of a large human eye move-
ment corpus confirmed that this prediction of the rational ac-
count holds in human data. Model simulations confirmed that
a rational model does indeed predict it, and that at least one
of the implementations of the standard model (E-Z Reader)
could not accommodate this finding.

These findings seem strongly inconsistent with models in
which all intentional refixations target the center of a word,
which in turn suggests that the standard holistic model of
word identification in reading may be incorrect. However, it
is possible to imagine that other refixation targeting schemes
could be used even if the holistic model of word identifica-
tion in reading is correct. For example, even under the stan-
dard model, it might be a useful strategy to target a refixa-
tion further forward in a word when that word is closer to
being identified. Even if there is an efficiency penalty for be-
ing away from the center while that word is finished being
identified, that penalty might be outweighed by the benefits
of being closer to the next word when the reader’s attention

(soon) turns to it.
While it’s possible that such eye movement models could

be constructed while maintaining the standard model of word
identification, our findings are completely consistent with the
predictions of rational models of reading, and suggest that
these models should be more fully explored. Here, we fo-
cused specifically on how visual information already obtained
about a word influences where refixations should go, but ra-
tional models predict that the interaction of visual and lin-
guistic information is what should ultimately matter. Future
work should test these more complex predictions.
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Abstract
We present a rational analysis of curiosity, proposing that peo-
ple’s curiosity is driven by seeking stimuli that maximize their
ability to make appropriate responses in the future. This per-
spective offers a way to unify previous theories of curiosity
into a single framework. Experimental results confirm our
model’s predictions, showing how the relationship between cu-
riosity and confidence can change significantly depending on
the nature of the environment.
Keywords: curiosity; rational analysis; computational model

Introduction
In 1928, upon returning from a vacation, Alexander Fleming,
who was a professor of Bacteriology at St. Mary’s Hospital
in London, noticed how a mold floating in one of his dirty
petri dishes held the surrounding bacteria at bay. This pe-
culiar event led him to develop a hypothesis that would be
a prelude to the development of penicillin. The history of
science abounds with incidents in which an event piqued the
curiosity of a scientist thereby leading to important discover-
ies (other examples include Curie, Faraday, and Planck). For
this reason, intellectual curiosity has long been recognized as
the essence of science. In fact, Herbert Simon famously titled
a 1992 talk given at Carnegie Mellon as ‘The cat that curios-
ity couldn’t kill’ and described curiosity to be not only the
beginning of all science, but also its end (Gobet, 2016).

Considering how important curiosity is to scientific dis-
coveries and many other aspects of cognition, it is surpris-
ing that our understanding of curiosity as a psychological
phenomenon remains quite limited (Simon, 2001; Gottlieb
et al., 2013; Kidd & Hayden 2015). Encouragingly, the field
has seen a revived interest in curiosity in recent years with
psychologists and neuroscientists beginning concentrated ef-
forts to study curiosity systematically (Kang et al, 2009; Gru-
ber, Gelman, & Ranganath, 2013; Law et al., 2016; Walin,
O’Grady & Xu, 2016). However, much previous work on cu-
riosity has either focused on defining a taxonomy for curiosity
or providing a mechanistic explanation of curiosity (Kidd &
Hayden, 2015). This means that while we have made some
progress describing the psychological processes involved in
human curiosity, we have not satisfactorily provided an ex-
planation of the purpose and function of curiosity. For exam-
ple, a commonly held notion about the function of curiosity is
that it motivates learning (Loewenstein, 1994; Kidd & Hay-
den, 2015). Although it is easy to say that learning is the goal
of curiosity, this is not very precise in its meaning. How does
curiosity facilitate learning? Why does it do so?

In light of this, in this paper we present a rational anal-
ysis of curiosity in the spirit of Anderson (1990) and Marr

(1982) with the goal of providing a purposive explanation of
curiosity. Our work shows that a rational analysis can pre-
dict many aspects of curiosity without making assumptions
about its mechanisms. We start by defining an abstract rep-
resentation of the problem that curiosity solves and making
a small number of assumptions about the nature of the envi-
ronment. Following that, we explore the optimal solution to
this problem in light of these assumptions. Our theory posits
that people are curious about stimuli that maximally increase
the usefulness of their current knowledge. Depending on the
structure of the environment, the stimuli that maximize this
value can either be ones that are completely novel or that are
of intermediate complexity. As a consequence, our rational
analysis provides a way to unite previously distinct theories
of curiosity into a single framework.

The rest of the paper is structured as follows. We first re-
view previous theories of curiosity and then introduce our ra-
tional model of curiosity. Following that, we show how our
model offers support to previous distinct accounts of curios-
ity thereby unifying them in a single model. We then conduct
a behavioral experiment to test our model’s predictions and
evaluate how our model accords with human curiosity. We
close with a discussion of the implications of our results.

Models of curiosity
A number of theories have been proposed in the past to de-
scribe the psychological processes involving curiosity. In this
section, we describe these theories in brief and provide their
individual strengths and weaknesses.

Curiosity based on novelty. Several psychological theo-
ries have linked curiosity with novelty by hypothesizing that
gaining information about novel stimuli is intrinsically re-
warding (Berlyne, 1950; Smock & Holt, 1962). Berlyne
(1960) called this “perceptual curiosity” and described it as
a driving force that motivates an organism to seek out novel
stimuli which diminishes with an increase in exposure. This
has also been supported by some neuroscientific studies that
show that novel stimuli activate reward-responsive areas in
the brain (Ranganath and Rainer, 2003; Düzel et al., 2010).
However, a severe limitation of this theory is that it assumes
that it is optimal for an individual to explore novel stimuli in
all environments. A novel stimulus doesn’t necessarily mean
that it contains information that is useful or generalizable to
an individual. This is also pointed out by previous studies
that show that exploration based only on novelty could lead
agents to be trapped in unlearnable situations (Gottlieb et al.,
2013).
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Curiosity based on information-gap. One of the most
popular theories of curiosity is the information-gap hypoth-
esis proposed by Loewenstein (1994). According to the
information-gap hypothesis, curiosity arises whenever an in-
dividual has a gap in information prompting it to complete its
knowledge and resolve the uncertainty. Thus, curiosity peaks
when one has a small amount of knowledge but it diminishes
when one knows too little or too much about the stimuli. A
number of studies have supported this prediction and showed
that curiosity is an inverted U-shaped function of confidence,
with people showing the highest curiosity for topics that they
were moderately confident about (Kang et al., 2009; Baranes,
Oudeyer, & Gottlieb, 2015). Berlyne (1960) called this form
of curiosity “epistemic curiosity” and described it as a drive
to acquire knowledge. While this theory has considerable
strengths, it is also constrained in that an individual can only
be curious about stimuli in known contexts. Thus, if an indi-
vidual has no prior knowledge about stimuli in the environ-
ment then it is not clear how curiosity will function in that
environment (as one will not be curious about any stimuli in
an environment that it has no prior knowledge of).

Curiosity based on learning progress. A third theory
concerning curiosity is guided by the hypothesis that learn-
ing progress generates intrinsic reward (Schmidhuber,1991;
Schmidhuber, 2010). This hypothesis proposes that the brain
is intrinsically motivated to pursue tasks in which one’s pre-
dictions are always improving. Thus, an individual will not
be interested in tasks that are too easy or too difficult to pre-
dict but will rather focus on tasks that are learnable. Based
on Schmidhuber’s framework, a number of papers in devel-
opmental robotics have supported this idea showing how an
agent can explore in an unknown environment (Oudeyer &
Kaplan, 2006; Oudeyer, Kaplan, & Hafner, 2007). While this
theory can probably describe some forms of curiosity, it is
again constrained in explaining curiosity in certain environ-
ments. For example, if an agent is ever present in an envi-
ronment that has many difficult tasks then it is not clear how
curiosity will work (as an agent will not be curious about any-
thing within that environment).

Summary and prospectus. While each of these theories
have their strengths, we first note that all the above theories
are concerned with describing how curiosity functions and
how it relates to different psychological factors. However,
none of these theories satisfactorily provide an explanation as
to why curiosity works the way it does. Second, we believe
that all these theories need not be in contention but are all
rather special cases of curiosity. As we will describe in the
rest of the paper, our rational model supports each of these
theories and unifies them in one common model.

Rational model of curiosity
In this section, we detail our rational model of curiosity. We
first consider the abstract computational problem underlying
curiosity and then formally derive an optimal solution to this
problem.

Computational problem underlying curiosity
Suppose that an agent is in an environment with n stimuli,
each of which provides a reward if the appropriate response is
produced. The goal of the agent is to decide what to explore
in the environment in order to maximize its knowledge and
hence maximize rewards in the future.

The environment determines the probability with which
each stimulus occurs in the environment. Let pk denote the
“need probability” that a stimulus k will occur in the future
(Anderson, 1990). Given this, the agent assigns a confidence
value ck to each stimulus in the environment. ck denotes the
probability the agent knows the correct response to the kth
stimulus. This probability increases at a decreasing rate with
respect to the number of exposures hk with that stimulus. hk
denotes the number of times the agent has been exposed to the
kth stimulus. For convenience, we describe the relationship
between c and h by a bounded growth function,

ck = 1− e−hk . (1)

However, our predictions hold for any monotonically increas-
ing function.

Next, the agent computes the value of its overall knowl-
edge. The value, denoted as V , is a function of the need prob-
ability p and the confidence factor c and is given as follows:

V = ∑
k

pk.ck. (2)

According to this equation, the value of an agent’s knowl-
edge is simply the chance of successfully responding to the
next stimulus computed by summing over all stimuli in the
environment.

The goal of the agent is to increase the value of its current
knowledge V , which it can do so by taking actions to increase
h for the various stimuli in the environment. So the computa-
tional problem that the agent has to solve is choosing which
stimulus to explore further i.e. deciding which stimulus k to
increase hk for.

Deriving an optimal solution
To solve the problem of choosing which stimulus to explore
further, the agent can evaluate the change in V as it explores
each stimulus in the environment. Thus for every stimulus k
in the environment, the agent should compute the change in
its knowledge that would result from exploring that stimulus.
The stimulus that causes the largest increase in the overall
value should be explored first. This computation can be done
simply by differentiating V with respect to hk,

dV
dhk

= pk.
dck

dhk
. (3)

An agent operating according to this model will explore
stimuli that have a high rate of change of value w.r.t exposure
associated with them. This rate of change, i.e. dV

dhk
, is simply

the curiosity the agent has for knowing the kth item, which we
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Figure 1: Relationship between need probability pk, exposure
hk, and confidence ck in different environmental structures.
Graph 1 shows an environment in which need probability is
related to exposure and subsequently confidence. Graph 2
shows an environment in which need probability is indepen-
dent of exposure and confidence.

denote as Ωk. The agent will explore stimuli in the environ-
ment that it is most curious about. In this way, curiosity helps
the agent to achieve its goal of maximizing its knowledge.

Under the choice of the form of ck given in Equation 1, we
calculate this derivative as follows:

Ωk = pk.
d(1− e−hk)

dhk
. (4)

Upon differentiation, we get the relationship of curiosity Ωk,
with respect to need probability pk and exposure hk as fol-
lows:

Ωk = pk.e−hk . (5)

Relationship to previous models
Having a formal account of curiosity, we now describe how
our model relates to previous theories of curiosity.

First, we note that in our rational model framework, two
different forms of environmental structure can exist. The first
form comes in when the agent is an environment where pk is
related to hk (as described in Graph 1, Figure 1). In this envi-
ronment, stimuli frequently encountered by an agent are more
likely to be needed in the future. Thus, the probability that
the agent will require a stimulus in the future determines the
number of times the agent is exposed to the stimulus which in
turn determines the confidence of the agent in knowing that
stimulus. The second form comes in when the agent is in an
environment where pk and hk are independent of each other
(as described in Graph 2, Figure 1). In this environment, the
agent can encounter any stimulus in the future regardless of
their previous occurrence.

Novelty based curiosity. According to theories that are
based on curiosity driven by novelty, an agent is most curious

about stimuli that it is least confident about:

Ωk = 1− ck. (6)

According to our rational model, when the agent is in an
environment where pk and hk are independent of each other
(as described in Graph 2, Figure 1), the relationship between
curiosity and exposure will be the one described in Equation
5 where pk is simply a constant value. Thus, curiosity is high-
est when exposure is lowest and it decreases as exposure in-
creases i.e. curiosity is highest for novel stimuli. The rela-
tionship between curiosity and confidence can be rewritten
as

Ωk = pk.(1− ck). (7)

If pk is equal for all k, this reduces to Equation 6. Thus,
when need probability and exposure are not related to each
other, our rational model is similar to the previously proposed
novelty based curiosity theory.

Information-gap hypothesis. When the agent is in an en-
vironment pk and hk are related to each other (as in Graph 1,
Figure 1), then pk is proportional to hk and the relationship
between curiosity and exposure given in Equation 5 reduces
to

Ωk ∝ hk.e−hk . (8)

Subsequently, using Equation 1, confidence will be related to
curiosity as

Ωk ∝ − log(1− ck).(1− ck). (9)

Interestingly, this relationship between curiosity and con-
fidence is highly similar to the one described by the infor-
mation gap hypothesis. Loewenstein used Shannon’s (1948)
entropy formula to describe the relationship between curios-
ity and confidence as below:

Ωk =− log(ck).(ck). (10)

Both the information-gap theory and our model predict that
an inverted U-shape relationship exists between curiosity and
confidence. In this view, when an agent exists in an envi-
ronment where need probability is related to exposure, our
rational model relates to the information-gap theory.

Relationship to curiosity based on learning progress.
According to the learning progress hypothesis, an agent is in-
trinsically motivated to pursue tasks in which predictions are
constantly improving thereby avoiding boring or extremely
complicated tasks. An agent operating under this model ends
up exploring stimuli of “intermediate complexity”.

Our model proposes that an agent will explore stimuli that
maximize the value of its current knowledge. In an environ-
ment where need probability and exposure are related to each
other, then curiosity is highest for stimulus with moderate ex-
posure i.e. intermediate complexity (Equation 8 and 9). Thus,
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Figure 2: Relationship between a) curiosity and exposure,
and b) curiosity and confidence in an environment where need
probability is related to exposure (Graph 1, Figure 1).

in this environment, an agent that aims to maximize its knowl-
edge behaves similarly to an agent whose curiosity is driven
by learning progress.

Summary. Whereas previous theories associated curios-
ity to factors such as novelty, knowledge gap, and learnability,
our model shows that depending on the structure of the envi-
ronment, an agent’s curiosity can be driven by any of these
factors. In this way, our rational model allows to bridge pre-
vious theories related to curiosity in a single framework. In
an environment where need probability and exposure are re-
lated, our rational model associates with the information gap
and learning progress hypothesis. In an environment where
need probability and exposure are not related, our model is
akin to the novelty-based theory of curiosity.

Empirical predictions
The rational model presented above makes two different em-
pirical predictions.

Prediction 1. The first prediction arises when the agent is
in an environment where the relationship between pk and hk
holds true (as in Graph 1, Figure 1). The relationship between
curiosity and exposure can be described using Equation 8 and
between curiosity and confidence using Equation 9. Thus,
Equation 8 predicts that an inverted U-shape relationship will
exist between curiosity and exposure and Equation 9 simi-
larly predicts that curiosity will be highest when the agent is
moderately confident about a stimulus (see Figure 2). We test

Figure 3: Relationship between a) curiosity and exposure,
and b) curiosity and confidence in an environment where need
probability is independent of exposure (Graph 2, Figure 1).

this prediction in the confidence sampling condition of our
behavioral experiment.

Note that this prediction fits the information gap and learn-
ing progress hypothesis which also predict an inverted U-
shape curve between curiosity and confidence. While several
studies have supported the existence of this U-shaped rela-
tionship, our model also predicts how to make this effect go
away as described in our second prediction.

Prediction 2. Our second prediction comes in when the
agent is in an environment where the relationship between pk
and hk no longer holds true (as described in Graph 2, Figure
1). Then the relationship between curiosity and exposure will
be the one described in Equation 5 and the relationship be-
tween curiosity and confidence will be that given in Equation
7. Equation 5 predicts that curiosity is highest when exposure
is lowest and it decreases as exposure increases. Similarly,
Equation 7 predicts that curiosity will be highest when con-
fidence is the lowest (also shown in Figure 3). We test this
prediction in the uniform sampling condition of the behav-
ioral experiment.

While this prediction accords with the prediction of the
novelty based hypothesis, that hypothesis can’t explain our
model’s first prediction. On the other hand, while the infor-
mation gap and learning progress hypothesis were in line with
our model’s first prediction, both of these theories fail to ex-
plain our model’s second prediction.

Testing the model predictions
This section details the behavioral experiment that was con-
ducted in order to test our model predictions. The experiment
used two different scenarios – confidence sampling and uni-
form sampling – to assess whether people’s curiosity is af-
fected by changes in the relationship between need probabil-
ity and confidence. In the confidence sampling condition, we
created an environment such that need probability was related
to confidence (Graph 1, Figure 1) and in the uniform sampling
condition they were independent of each other (Graph 2, Fig-
ure 1). Based on our model predictions, we hypothesize that
an inverted U-shape relation will exist between confidence
and curiosity in the confidence condition and a decreasing re-
lation will exist in uniform sampling condition.

Participants
We recruited 298 participants from Amazon Mechanical
Turk. They earned $1.50 for participation with the option of
earning an additional bonus of $0.80. Participants in the ex-
periment were randomly assigned to one of two conditions:
confidence sampling condition (163 participants) and uni-
form sampling condition (135 participants). Informed con-
sent was obtained using a consent form approved by the in-
stitutional review board at Berkeley.

Stimuli
The stimuli used in the experiment were 40 trivia questions on
various topics that were taken directly from Experiment 1 in
Kang et al. (2009). According to the authors, these questions
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were designed to measure curiosity about semantic knowl-
edge and evoke a range of curiosity levels.

Procedure
The experiment was divided into two phases – the main round
and bonus round. The main round was used to elicit and
measure curiosity in participants. Participants were shown 40
trivia questions one after another and were asked to rate their
confidence (i.e., probability that they know the correct an-
swer) and curiosity in knowing the correct answer. Curiosity
ratings were on a scale from 1 to 7 and the confidence scale
ranged from 0 to 100%. Following Kang et al.’s methodol-
ogy, the raw curiosity ratings were individually normalized
and confidence was rescaled to range from 0 to 1. The order
of trivia questions was randomized for each participant. Thus,
the main round of the experiment followed the procedure of
Kang et al.’s design closely. This part of the experiment took
approximately 7-8 minutes to complete.

After the main round, the bonus round began which con-
sisted of two parts. In the first part, all 40 questions from the
main round were shown one after another and participants
could choose to reveal the answer to those questions. How-
ever, each time they chose to reveal an answer, they had to
wait an extra 10 seconds for the next question to appear. Find-
ings from Experiment 3 of Kang et al. (2009) showed that
participants were more likely to spend time, to wait longer,
for the answers that they were more curious about. Thus,
requiring participants to spend time to obtain information
served as a proxy to measure their curiosity.

In the second part, participants attempted to answer 10
questions that were sampled from the main round ($0.08
bonus for each correct answer). To discourse participants
from using Google or other search engines, they were only
given 2 minutes in total to answer the questions.

At the beginning of the experiment, participants were ran-
domly assigned to two conditions – the confidence and the
uniform condition. Both the conditions had the same main
round as described above but used different sampling meth-
ods for the bonus round. In the confidence condition, the sam-
pling in bonus round was done based on the confidence rat-
ings provided by the participants i.e. the questions for which
participant’s confidence rating was higher were more likely to
appear in the second part of the bonus round. In the uniform
condition, this sampling procedure was completely random
i.e. each question was equally likely to appear in second part
of the bonus round. Critically, participants were informed
about the sampling procedure for their respective condition
before the beginning of the bonus round. In a sense, the con-
fidence condition creates a situation in which confidence is
related to need probability (Graph 1 in Figure 1) and the uni-
form condition breaks this relationship (Graph 2 in Figure 1).

According to our model’s predictions we should see an in-
verted U-shape between curiosity and confidence for both the
conditions in the main round. However, the curiosity of par-
ticipants (i.e. the answers they revealed) should be differ-
ent for both conditions in the bonus round. For the confi-

Figure 4: Relationship of curiosity and confidence in the main
round for a) confidence condition and b) uniform condition.
The markers indicate mean curiosity at each confidence level
and the solid curve is the regression line. Curiosity is an
inverted-U function of confidence for both conditions.

dence condition participants’ probability of revealing an an-
swer should be highest for questions which they were moder-
ately confident about. On the other hand, in the uniform con-
dition, participants should be most curious about questions
for which they were least confident about.

Results
For all analyses that follow, we removed participants that re-
vealed either too little (<3) or too many answers (>37) in the
bonus round. 78 participants were excluded based on this cri-
terion and our final data consisted of 220 participants (118 in
the confidence condition and 102 in the uniform condition).

Main Round. Consistent with our prediction, an inverted
U-shape exists between curiosity and confidence for both

Figure 5: Probability of participants revealing an answer as
a function of confidence in the bonus round. Consistent with
our model’s prediction, an inverted U-shape exists between
curiosity and confidence in the confidence condition and a
decreasing relationship exists in the uniform condition.
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conditions (Figure 4). Following the method of Kang et al.,
we fitted curiosity with confidence and uncertainty i.e. con-
fidence × (1-confidence) for both conditions. For the con-
fidence condition, the model provided r = 0.2 and a signifi-
cant coefficient for uncertainty (estimate = 2.01, p < 0.001).
For the uniform condition, the model provided similar results
with r = 0.2 and significant coefficient for uncertainty (esti-
mate = 2.12, p < 0.001). Thus, for both conditions, the model
provided a significant quadratic coefficient thereby demon-
strating the prevalence of an inverted U-shape between cu-
riosity and confidence for both conditions.

Bonus Round. We first computed the probability of par-
ticipants revealing an answer conditioned on the confidence
rating for both the conditions. As per our model’s predictions,
an inverted U-shape exists for the confidence condition and a
decreasing relationship exists for the uniform condition (Fig-
ure 5). Similar to the previous analysis, we fitted confidence
and uncertainty to both the conditions. For the confidence
condition, the model provided r = 0.9 and a significant coef-
ficient for both confidence and uncertainty (estimates = -0.15
and 0.53 respectively with p < 0.05 for both) thereby show-
ing a U-shape relationship. For the uniform condition, the
model provided r = 0.91 but the coefficient for uncertainty
was not significant (p = 0.09). On the other hand, the coef-
ficient for confidence was significant (estimate = -0.23, p <
0.001), implying a decreasing relationship of curiosity with
confidence for the uniform condition.

Discussion
Curiosity is one of the hallmarks of human intelligence and
is crucial to scientific discovery and invention. Models
of curiosity have previously explained human curiosity by
linking it to various psychological factors such as novelty,
information-gap, and learning progress. We have shown that
these different models are all special cases of curiosity — de-
pending on the environment, curiosity can be driven by any of
these factors. Along with providing a way to unify previous
distinct mechanistic accounts of curiosity, our rational model
explains human curiosity in various settings.

Our results suggest that human curiosity is not only sensi-
tive to the properties of the stimuli but it is also affected by
the nature of the environment. If people are in an environ-
ment where need probability influences exposure, then their
curiosity is highest for stimuli for which they are moderately
confident about. On the other hand, if need probability and
exposure are independent of each other then curiosity is high-
est for novel stimuli, i.e. stimuli for which people have little
confidence. This can have important implications in the con-
text of education where researchers are concerned with ways
to pique curiosity in students. If we want to make people cu-
rious about tasks or activities for which they have little con-
fidence in, perhaps subtle changes in the structure of the en-
vironment might be a step towards achieving that. We intend
to explore such possibilities in future work, building upon the
foundation established in this paper and working towards a

better understanding of how to make people more curious es-
pecially in pedagogical settings.
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Abstract 

Distributional models of semantics assume that the meaning 
of a given word is a function of the contexts in which it 
occurs. In line with this, prior research suggests that a word’s 
semantic representation can be manipulated – pushed toward 
a target meaning, for example – by situating that word in 
distributional contexts frequented by the target. Left open to 
question is the role that order plays in the distributional 
construction of meaning. Learning occurs in time, and it can 
produce asymmetric outcomes depending on the order in 
which information is presented. Discriminative learning 
models predict that systematically manipulating a word’s 
preceding context should more strongly influence its meaning 
than should varying what follows. We find support for this 
hypothesis in three experiments in which we manipulated 
subjects’ contextual experience with novel and marginally 
familiar words, while varying the locus of manipulation. 

Keywords: distributional semantics; vector space models; 
discriminative learning; word frequency; semantic priming 

Introduction 
 In the study of human conceptual knowledge, a central 
theoretical question concerns how semantic representations 
are learned from the environment. How do speakers acquire 
knowledge of the meaning of a word and the precise 
contexts of its use? How are they able to make principled 
inferences about its senses and its similarity to other words? 
Inquiries in this domain have focused on two types of 
converging information sources that are thought to underpin 
these representations – perceptual and distributional 
(Andrews, Vigliocco, & Vinson, 2009; Bruni, Tran, & 
Baroni, 2014). Perceptual data derives from experiencing 
words in relation to the world, in connection with objects, 
events, and affordances in the immediate physical 
environment. Distributional data, by contrast, derives from 
experiencing words in relation to other words. While it is 
clear that neither data stream alone suffices to explain 
semantic representation, there appears to be considerable 
redundancy between them (Louwerse, 2007; Riordan & 
Jones, 2010).  
 Distributional models operate on the assumption that the 
similarity between two words is a function of the overlap 
between the contexts in which they occur, a principle 
commonly known as the distributional hypothesis (Firth, 
1957; Miller & Charles, 1991). For instance, encountering 
the word violin in the same context as classical and strings 
supports the inference that these words are semantic 
neighbors. Such an inference will also be supported for 
words that occur in closely related musical contexts, such as 
cello, but not for those that occur in unrelated contexts, such 

as jaguar. One of the key advantages of the distributional 
approach is that it provides an objective and replicable 
method of quantifying meaning, based solely on the 
statistical regularities found in large bodies of text. 
 Since the introduction of Latent Semantic Analysis (LSA; 
Landauer & Dumais, 1997) to the cognitive sciences, a 
variety of different distributional models have been 
proposed to account for semantic phenomena. Within this 
class of models, there is considerable variation in 
implementation (for the latest class, see Baroni, Dinu & 
Kruszewksi, 2014). Nevertheless, they share the same core 
architectural assumption that word meaning is derivable 
from lexical co-occurrence patterns. Words are represented 
as vectors within a high-dimensional semantic space, and 
word meanings as points located within that space. Whereas 
distributionally similar words tend to cluster together, words 
that occur in more distinctive contexts are more dispersed. 
The similarity relations derived from these models can then 
be used to account for phenomena as diverse as semantic 
priming (Jones, Kintsch, & Mewhort, 2006), semantic 
categorization (Bullinaria & Levy, 2007), and visual search 
(Huettig, Quinlan, McDonald, & Altmann, 2006).  
 Implicit in these models is the notion that the lexicon is a 
highly interconnected system. The representation of a given 
word is neither static nor modular, but changes as a function 
of lingustic experience, both with that word in particular, 
and with others within the lexicon. As a demonstration of 
this principle, McDonald and Ramscar (2001) manipulated 
readers’ semantic representations of marginally familiar and 
novel words by situating them in paragraph contexts that 
also contained close associates of a target meaning. For 
instance, subjects who read about a samovar in paragraph 
containing words like boil and electric rated it as closer to 
the meaning of kettle than subjects who read a modified 
version of the paragraph, which contained associates of an 
alternative meaning, urn. Even though subjects never 
directly observed the word kettle in training, their 
representation of the critical item—samovar—was moved 
closer to it, simply by virtue of encountering samovar in a 
similar linguistic context. 

Learning in Time 
 One question that arises from this, is the extent to which 
distributional learning about a particular item is influenced 
by the sequential structure of the context in which it is 
embedded (Elman, 1990; Jones & Mewhort, 2007). 
Language unfolds in time, with one word following another 
in succession. Thus, the influence that the local context 
exerts on the critical item might depend on whether it helps 
predict the occurrence of that item, or is, in turn, predicted 
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by it – that is, whether the context is encountered before or 
after the item. 
 This framing maps naturally onto the the convergent and 
divergent learning hierarchies described by Osgood 
(1949). These abstract schemas capture asymmetries in how 
information is structured in time (Figure 1). In associative 
learning, convergent hierarchies label a situation in which a 
variety of cues are associated with a functionally identical 
outcomes (C1, C2, ...Cx ⇒  O), while divergent hierarchies 
label the inverse scenario, in which a single cue is 
associated with varied outcomes (C ⇒  O1, O2, …Ox). 
Convergent hierarchies have been found to result in greater 
facilitation and positive transfer in learning, whereas 
divergent hierarchies yield interference and negative 
transfer.  

Figure 1: Sequential relationships between linguistic regularities. 
The left side of the figure shows a convergent hierarchy; the right, 
a divergent one (Ramscar, 2013). 

 The temporal asymmetries captured by these schemas 
appear to be ubiquitous in word learning (Ramscar et al., 
2010). Consider the problem of learning the relation 
between a class of things in the world – say, the category 
[ cat ] – and the word that denotes it – cat. Clearly, a sizable 
discrepancy exists between the rich array of perceptual 
features that belong to the class and the comparatively 
sparse acoustic features of the verbal label. Whereas the 
flesh and blood exemplars of the category exhibit a wide 
variety of discriminable features, across various perceptual 
modalities, the label itself comprises a simple sequence of 
sounds, which are likely to be perceived categorically 
(Kuhl, 2000). Accordingly, in a standard category learning 
paradigm, in which a category exemplar precedes its verbal 
label, a convergent hierarchy results. However, simply 
reverse the timing—by placing the label before the exemplar
—and the structure becomes divergent. 
 The terminology used to describe this pair of temporal 
structures varies by research domain. In the study of 
categorization, a distinction is commonly drawn between 
classification, in which subjects predict the class to which 
an exemplar belongs based on its features, in line with a 
convergent schema, and inference, in which subjects predict 
an exemplar’s feature values based on its class, in line with 
a divergent schema (Yamauchi & Markman, 1988). 
Likewise, in the study of causal reasoning, predictive 
reasoning licenses inferences from a variety of possible 
causes to a shared effect—both rain and sprinklers make 
grass wet—in line with a convergent schema, whereas 
diagnostic reasoning licenses inferences from a common 
cause to its possible effects—rain makes grass wet and 

green—in line with a divergent schema (Waldmann & 
Holyoak, 1992; Waldmann, 2000).  
 Learning algorithms can help provide a mechanistic 
account of how the structure of information in time affects 
what is learned in these tasks. A critical assumption shared 
by most models of learning, ranging from classical 
conditioning to perceptrons, is that learning is scaffolded by 
the predictions we make about our environments, and 
powered by the surprise we experience whenever there is a 
mismatch between expectation and reality. Learning 
proceeds as a continual process of updating and refining 
expectations, selectively weighting the most informative 
predictors to relevant outcomes, while eliminating 
redundant or potentially misleading cues. When our 
predictions align with reality, learning asymptotes 
(Rescorla, 1988). 
 To examine how convergent and divergent structures 
affect word learning, Ramscar and colleagues (2010) 
simulated supervised category learning with the Rescorla-
Wagner rule, while manipulating the sequencing of category 
exemplars and verbal labels. The findings were striking: The 
same algorithm, run over the same task, produced 
remarkably different representations of the learning 
environment, depending on the temporal sequencing of 
information: While convergent structures yielded predictive 
representations, divergent structures yielded veridical ones. 
Specifically, convergent schemas facilitated competition 
between the available perceptual features for associative 
weight, resulting in abstraction of the informative 
dimensions that best predicted the category label. By 
contrast, divergent schemas facilitated learning of the actual 
feature probabilities given the label. (For a closely related 
result in a different model architecture, see Yamauchi, Love, 
& Markman, 2002). 
 The differences in these representations can be mapped 
onto the differences between discriminative and generative 
classifiers in machine learning (Ng & Jordan, 2002). In 
learning a verbal category, the problem is to establish the 
likelihood of a category label L given some set of perceptual 
features F. To solve this problem, discriminative classifiers 
learn a direct mapping between features and labels, which 
yields p(L|F). Generative classifiers solve the same problem 
indirectly, by learning the joint probability of p(L, F) and 
relying on Bayesian inference to calculate the posterior 
likelihood of p(L|F). While discriminative classifiers are 
more efficient and better at minimizing error, generative 
classifiers operate with a more complete picture of the 
probability space (Levering & Kurtz, 2014). Convergent 
schemas yield p(L|F); divergent schemas p(L, F). 
 The resultant representations appear to be optimized for 
different tasks. In studies of human category learning, 
convergent schemas benefit the learning of categories that 
require information-integration (Ashby, Maddox, & Bohil, 
2003; Yamauchi et al., 2002), which likely form the 
majority of natural kinds (Rosch & Mervis, 1975). 
However, there are notable drawbacks to categorical 
responding. As a category structure becomes better learned, 
stimulus dimensions that are relevant to a particular 
categorization are selectively attended, such that they 
acquire distinctiveness, while irrelevant dimensions are 
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ignored, or down-weighted, maximizing intra-category 
similarities and inter-category differences (Goldstone, 1994; 
Lawrence, 1949; Nosofsky, 1986). Accordingly, while 
convergent schemas support accurate categorization across 
an array of perceptual domains, they can also systematically 
alter similarity relations, impairing memory for exemplars 
seen in training (Davis & Love, 2010; Dye & Ramscar, 
2009) and distorting judgements of the underlying featural 
space (Yamauchi & Markman, 1998). Likewise, in causal 
inference, whereas predictive reasoning is susceptible to 
blocking effects, diagnostic reasoning is not (Waldmann & 
Holyoak, 1992). The optimal information structure at 
encoding thus depends on the demands imposed at retrieval 
(Tulving & Thomson, 1973). 
 Previous research has examined the effect of these 
asymmetric information structures on category learning and 
causal inference. This paper addresses itself to distributional 
learning, where what is learned is not the relation between 
words and physical referents, but rather that of words in 
relation to each other. 

Table 1: Design differences between studies. 

Studies 
 In the following three experiments, our aims were first, to 
build on the original findings of McDonald and Ramscar 
(2001)—which demonstrated that a pair of words can be 
moved closer together in semantic space even if they have 
never been encountered together—and second, to 
investigate whether readers would attach more weight to the 
associates that occurred before a word of interest, rather 
than after, as predicted by previous simulations (Ramscar et 
al. 2010).  
 The three studies presented here are all variations on the 
same principal design. In training, subjects read short 
passages containing critical words. These passages had been 
constructed such that the contexts occurring before the 
critical item were designed to encourage one set of 
inferences about its meaning, while the contexts occurring 
after it were designed to encourage a different, competing 
set of inferences. This design allowed us to measure the 
relative influence of preceding and succeeding contexts on 
semantic representation. 
 Variations on this design were devised to investigate the 
robustness of the predicted effects of training, and included 
(e.g.) the choice of cover story, the semantic proximity of 

the topic meanings to the critical item and to each other, and 
the precise organization and length of training and test 
blocks (Table 1). Detailed descriptions of each experimental 
design, including counterbalancing and randomization, 
timing procedures, and lexical controls, are available in the 
Supporting Materials. 

The training phase of each study required a set of critical 
items, competitor topic meanings, and a set of close lexical 
associates of each topic. From these materials, a set of 
triplets was created, each of which consisted of a critical 
word and two different topic meanings. One of these topic 
words was designated the preceding topic, and the other, the 
succeeding topic (Table 2). 

Table 2: An example of a training triplet taken from Study 2, in 
which the critical word fugue has been paired with the competing 
topics dream and music.  

For each topic in a given triplet, corpus data were used to 
generate a ranked list of its lexical associates. These were 
used to construct training trigrams, which consisted of the 
critical item and a pair of its topics’ close associates on 
either side of it (Tables 3 & 4). These training trigrams were 
embedded into larger strings, which subjects were 
incidentally exposed to in training. The precise number of 
training trials varied by study. 

Table 3: Abstract representation of the training trigrams for a given 
critical word and its two topic meanings.  

Table 4: Partial training sets in Study 2 for the critical item fugue 
and its topic synonyms dream and music. In Condition 1 (right), 
the ordering of associates is reversed from Condition 2 (left). 

Post-training, two tests were administered. In the first, a 
semantic priming task, a prime word was briefly presented 
on-screen, and subjects were asked to determine whether the 
following word was a real word in English. Each critical 
item was tested in combination with its two competitor 
topics, alternating its position as a prime or target (Table 5). 

Triplet topic1 critical topic2

dream fugue music

Condition 1 Condition 2

T1 

associate1
critical T2 

associate1

T2 

associate1
critical T1 

associate1

T1 

associate2
critical T2 

associate2

T2 

associate2
critical T1 

associate2

… critical … … critical …

T1 

associateN
critical T2 

associateN

T2 

associateN
critical T1 

associateN

{DREAM, critical, MUSIC} {MUSIC, critical, DREAM}

chasing fugue listening listening fugue chasing

lucid fugue classical classical fugue lucid

worthy fugue primal primal fugue worthy

Study 1 2 3

Cover Story Alien 
Grammar

Man vs. 
Machine

Semantic 
Identification

Training 
Design

10 Train-Test 
Blocks

1 Train-Test 
Block

1 Train-Test 
Block

Training 
Length

8 Associates / 
Topic

15 / Topic 15 / Topic

Critical Item Pseudoword LF LF & HF

Topic 
Meanings

Random 
Assignment

Synonyms of 
Critical Item

Semantic 
Category
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Subsequently, in a semantic similarity rating task, subjects 
were asked to rate the similarity of various word pairs on a 
numerical scale, ranging from “unrelated in meaning” to 
“identical in meaning”. Each critical item was alternately 
paired with its two topics (Table 6). 

Table 5: Example test trials from the semantic priming task. 

Table 6: Example test pairs from the semantic rating task. 

A key point of difference between studies was the 
frequency of the critical item: Study 1 employed pseudo-
words, Study 2, low frequency items, and Study 3, a mix of 
high (HF) and low frequency (LF) items. 

Hypotheses 
Priming Semantic priming is a classic paradigm for 
studying representation in semantic memory (Neely, 1991). 
A general finding is that a target item will be processed 
more efficiently when it is preceded by a semantically 
related prime, with the degree of facilitation depending on 
the relatedness of the pair. For instance, bread will be 
processed more quickly and accurately when it is preceded 
by butter than when it is preceded by nurse (Meyer & 
Schvaneveldt, 1971). When what is studied is the extent to 
which recently trained associations can facilitate priming—
as is the case here—the priming is classed as episodic 
(Hayes & Bissett, 1998; McKoon & Ratcliff, 1979). When 
those associations are indirectly trained, it can be further 
classed as mediated (Lowe & McDonald, 2000). 
 In our studies, a key consideration is that lexical 
processing is sensitive to temporal contingencies (Deese, 
1965). If subjects learn about both the associative and 
temporal relations between critical items and their topics, 
then they should be faster and more accurate on lexical 
decision trials that are consistent with the sequences 
observed in training. For example, in training sequences in 
which Topic1 → Critical → Topic2, Topic1 should be a better 
prime to the critical item than Topic2, and Topic2 should be 
better primed by the critical item than Topic1. 

Similarity Similarity judgments can be affected by the 
dimensions of alignment that are currently deemed salient to 
the comparison (Nosofsky, 1986; Tversky, 1977). In the 
domain of perceptual learning, simulations of convergent 
and divergent schemas indicate that they develop different 
feature weights, resulting in correspondingly different 
representations of the similarity space among exemplars 
(Ramscar et al., 2010). 
 If distributional learning is also sensitive to how 
information is structured in time, then the associative 
relations the critical item develops with its topics over 

training should similarly depend on the positioning of their 
associates. When multiple lexical associates serve to predict 
a critical item, the information structure will be convergent; 
when the critical item serves to predict multiple lexical 
associates, the structure will be divergent (see Figure 1).  
 In the convergent case, competition between the lexical 
associates present in the preceding context should 
preferentially weight the shared semantic features they have 
in common with their topic word. By contrast, in the 
divergent case, weights will be tuned according to co-
occurrence rates, which may not select for the most 
predictive dimensions. Convergent learning should therefore 
bring the preceding topic into closer alignment in similarity 
space with the critical item (Dye & Ramscar, 2009). 

Study 1 
 Subjects were told that scientists had intercepted an alien 
communication that they had managed to partially translate, 
but needed further help in order to fully decode. Participants 
were presented with a series of these cryptic messages, and 
instructed to learn as much as they could about the alien 
word in the middle. That critical item was always a 
nonsense word. 

The experiment was designed such that each subject 
completed ten short experimental sessions, comprising both 
training and test, one after the other. This meant that 
participants learned about each critical item in individual 
blocks, rather than learning about multiple items 
simultaneously. The design was fully randomized, such that 
the specific pairing of topic meanings with a given critical 
item varied by participant. At the end of the experiment, 
results were aggregated across all sessions. 

Participants Eighteen Stanford University undergraduates 
participated for course credit. 

Results In the semantic priming task, lexical decision 
accuracy was at ceiling, averaging 98%. However, 
differences in response time were apparent. A paired 
samples t-test revealed that when the critical item served as 
a prime to one of its topics, subjects were significantly faster 
at recognizing succeeding topic words than preceding topic 
words [t(17)=2.30, p=0.017], with a mean 37 ms advantage. 
However, this advantage was mediated by the prime type: 
when the topic words themselves served as primes to the 
critical item, no difference was observed between the 
preceding and succeeding topics [t(17)=0.25, p>0.5].  
 After completing the priming task, subjects rated the 
semantic similarity of each critical item and its competitor 
topics. A sequential learning account suggests that the 
preceding topic word should become more similar to the 
critical item over training. In line with this prediction, 
subjects rated the preceding topic word as significantly 
more similar to the critical item than the succeeding topic 
word [t(17)=2.27, p=0.018]. Non-parametric analyses of the 
data, with the Wilcoxon signed-ranks test, yielded the same 
pattern of results. 

Study 2 
 Subjects were told they were taking part in a study testing 
their ability to distinguish human from artificial intelligence. 

Semantic 
Priming

topic1 ! 
critical

critical ! 
topic1

topic2 ! 
critical

critical ! 
topic2

music ! 
fugue

fugue ! 
music

dream ! 
fugue

fugue ! 
dream

Semantic 
Similarity

topic1  | critical topic2 | critical

music | fugue dream |  fugue
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On each trial, they were presented with a trigram sequence 
(Table 4), and asked to judge whether those words had 
come from a text generated by a human or a computer. In 
this study, critical items were LF words, whose potential 
topic meanings were plausible synonyms (e.g., the critical 
item abscond was matched with the topic words hide and 
flee). The design was counterbalanced such that the position 
of each topic word was split evenly across participants. 
Testing was conducted at the end of the full training session. 

Participants 43 undergraduates at Indiana University, 
Bloomington participated for course credit. 

Results The test results of Study 2 replicate the pattern of 
results in Study 1. In the priming task, lexical decision 
accuracy averaged 86.4% overall and 81.8% for critical 
items. A dependent samples t-test revealed that when the 
critical item served as a prime to one of its topics, subjects 
were faster [t(42)=-1.73, p=0.046] and more accurate 
[t(42)=2.45, p=0.009] at recognizing topic words that had 
followed that item, compared to those that had preceded it. 
A by-items analysis produced a similar pattern for speed 
[t(27)=1.53, p=0.068] and accuracy [t(27)=1.85, p=0.038]. 
This facilitation pattern was not evident when HF topic 
words primed LF critical items. 
 After completing the priming task, subjects rated the 
semantic similarity of each critical item and its competitor 
topics. Consistent with Study 1, a dependent samples T-test 
revealed that preceding topics were rated more similar to 
critical items, both by subjects [t(42)=2.99, p=.002] and 
items [t(13)=2.83, p=0.007]. Non-parametric analyses, with 
the Wilcoxon signed-ranks test, confirmed the pattern of 
results. 

Study 3 
 Subjects were told they were taking part in a study on 
reaction time. Words were presented one by one, and 
subjects were instructed to make a keyboard response every 
time they saw an item that was either a fruit or a piece of 
furniture. Training trigrams (Figure 4) were pseudo-
randomly interspersed throughout this text sequence, with 
the design counterbalanced such that the position of each 
topic word was split evenly across participants. 
 To further assess the extent to which the frequency of the 
critical item might mediate the predicted effects, both HF 
and LF critical words were chosen, and each pair of topic 
meanings was assigned to a pair of unrelated critical items, 
one in each frequency band (e.g., the critical items jacket 
and repast were both assigned the same topic pair). Topic 
meanings were moderately semantically related to each 
other, but not to either critical item. 
 As with Study 2, testing was conducted at the end of the 
full training session. 

Participants 26 undergraduates at Indiana University, 
Bloomington participated for course credit. Two subjects 

were dropped from the similarity analyses for selecting the 
same number for every pair. 

Results Study 3 largely replicated the pattern of results in 
Study 1 and 2. However, in the semantic priming task,  the 
locus of the effect was different: Lexical decision accuracy 
was at ceiling when HF topic words served as targets 
(98.7%). However, when topic words served as primes to 
the critical items, a 2 (training position) by 2 (critical item 
frequency) repeated measures ANOVA revealed main 
effects of item frequency for accuracy [F(1,25)=16.86, 
p<0.001] and RT [F(1,25)=29.49, p<0.001], and of training 
position for accuracy [F(1,25)=3.82, p=.061]: Subjects were 
faster and more accurate at recognizing HF targets overall, 
and more accurate at recognizing critical items that had 
followed that topic in training, compared to those that had 
preceded it. 
 Analysis of the similarity ratings data revealed a main 
effect of training position [F(1,22)=5.09, p=.034], a main 
effect of topic frequency [F(1,22)=10.07, p=.004], and a 
marginally significant interaction between training position 
and critical item frequency [F(1,22)=3.88, p=.062]. Post hoc 
analyses (Tukey HSD) indicated that, as predicted, LF 
critical items became more similar to their topic words over 
training than did HF items. Further, the effect of the training 
manipulation was mediated by the frequency of the critical 
item: The preceding topic word was rated as significantly 
more similar than the succeeding topic word for LF items 
(p<.03), but not for HF items. 

Discussion 
Priming Results Speakers appear to be finely attuned to the 
statistical regularities of their language, allowing them to 
anticipate upcoming linguistic events based on the current 
input (Pickering & Garrod, 2007). This notion is supported 
by our priming results in Studies 1 and 2, which indicate 
that when the critical items served as primes, subjects were 
significantly faster to respond to topic words whose 
associates had occurred after the critical items in training. 
This suggests that episodic priming is sensitive not only to 
temporal contiguity, but also to directionality.  1

Interestingly, however, when the prime order was 
reversed, and the topic words served to prime the critical 
items, the effect disappeared in two of the three studies. The 
effect thus appears to be mediated by the frequency 
relationship between primes and targets.  

At first blush, the results of Studies 1 and 2 may seem 
surprising. In semantic priming, a common finding is that 
while HF targets are responded to more efficiently overall, it 
is LF targets that typically show greater facilitation from 
semantically-related HF primes (Becker, 1979)—not HF 
targets, as in our studies. However, there are important 
differences between studies that test semantic memory (pre-
existing semantic associations in long term memory), and 
those that test episodic memory (associations developed 
over the course of study), like ours.  

 Our results may seem to invite comparison with those reported in associative priming, where the facilitation provided by forwards and backwards priming is 1

frequently indistinguishable (Koriat, 1981; Thompson-Schill et al., 1998). However, the association norms employed in such studies are distinct from the type of 
association built through temporal co-occurrence patterns (Jones et al., 2006; Lund, Burgess, & Audet, 1996), and are thus not directly comparable to our findings.

317



While HF words outperform LF words in semantic tasks, 
and appear to be more broadly accessible in the lexicon, in 
episodic paradigms, it is LF words that tend to be better 
recognized and recalled (Gregg, 1976). This is due, at least 
in part, to the fact that HF words occur in many more 
contexts than LF words, making them less associable with 
any given experimental context (Anderson, 1974; Steyvers 
& Malmberg, 2003).  

The studies presented here examined the extent to which 
recently trained semantic and temporal associations 
facilitate priming. As with other episodic tasks, LF words 
should develop stronger associations to other experimental 
items than HF words (the similarity analyses in Study 3 
attest to this). The key consideration is that these 
associations are directional: For a given item, its 
connections to other words may be distinct from its 
connections from other words (Nelson & McEvoy, 2000). It 
follows sensibly then that in Studies 1 and 2, the LF critical 
items served as effective cue to the HF topic words, even 
when the reverse does not obtain (Ramscar et al., 2014). 

Similarity Results Across three studies, critical items were 
rated as more similar to their preceding topics than their 
succeeding topics, a finding predicted by previous modeling 
simulations of convergent and divergent learning schemas. 
As with the priming results, the effect of this training 
manipulation was modulated by the frequency of the critical 
item (Study 3). 

General Discussion 
Learning is a temporal phenomena, and it can produce 

asymmetric outcomes depending on how information is 
structured in time. Such asymmetries have been previously 
documented in causal reasoning (Waldmann & Holyoak, 
1992) and categorization (Ashby et al., 2002; Ramscar et al., 
2010; Yamauchi et al., 2002), and are also attested in 
sequential learning in non-human animals (Chen et al., 
2016). The goal of the present research has been to 
investigate whether these asymmetric effects might be 
similarly observable in distributional learning from reading. 
Across three experiments, our results affirm that they are. 
An obvious next step is to assess whether models that learn 
distributed semantic representations of words can replicate 
these findings (following Jones et al., 2006). 

An additional theoretical possibility raised here is that 
linguistic regularities may play different functional roles 
depending on whether they participate in convergent or 
divergent schemas. Suggestive evidence has been offered in 
artificial language experiments: Whereas stable prefixes and 
their following nouns are better learned, stable suffixes 
increase the similarity among those nouns, helping them 
cohere better as a category (Ramscar, 2013; see also Valian 
& Coulson, 1988). Biases toward prefixing or suffixing may 
thus represent a trade-off between ease of processing and 
learnability, with suffixes facilitating the discovery of 
grammatical categories among young learners (St. Clair, 
Monaghan, & Ramscar, 2009), and prefixes serving to 
reduce uncertainty in online comprehension  and production 
(Dye et al., 2017). This proposal is consistent with the 
finding that in child-directed speech, new words are 

preferentially introduced in utterance-final positions 
(Fernald & Mazzie, 1991), which appears to promote the 
best learning outcomes (Fernald, Thorpe, & Marchman, 
2010; Yu & Smith, 2012). In future research, this framework 
might be extended to address broader typological questions 
on the forces at work in language change and evolution. 
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Abstract 

A central goal of typological research is to characterize 
linguistic features in terms of both their functional role and 
their fit to social and cognitive systems. One longstanding 
puzzle concerns why certain languages employ grammatical 
gender. In an information theoretic analysis of German noun 
classification, Dye et al. (2017) enumerated a number of 
important processing advantages gender confers. Yet this 
raises a further puzzle: If gender systems are so beneficial to 
processing, what does this mean for languages that make do 
without them? Here, we compare the communicative function 
of gender marking in German (a deterministic system) to that 
of prenominal adjectives in English (a probabilistic one), 
finding that despite their differences, both systems act to 
efficiently smooth information over discourse, making nouns 
more equally predictable in context. We examine why 
evolutionary pressures may favor one system over another, 
and discuss the implications for compositional accounts of 
meaning and Gricean principles of communication. 

Keywords: prenominal adjectives; grammatical gender; 
language comprehension; language production; language 
evolution; information theory; typology; formal semantics; 
Gricean conversational maxims 

Introduction 
 Linguistic typologists work to define similarity and 
difference across languages, in an effort to establish what 
invariant ‘universal’ properties might underpin the 
fundamental human capacity for language, amidst 
remarkable diversity (Evans & Levinson, 2009). This 
enterprise is complicated by the fact that language is a 
hybrid system, which is product both of a common 
biological endowment (shared across languages and 
peoples) and of a particular ecological niche (specific to a 
given language).  
 As languages evolve, they adopt communicative 
strategies in response to both social and cognitive pressures, 
strategies which are then refined over generations of cultural 
transmission (Becker et al., 2009; Tomasello, 2003; Boyd & 
Richerson, 2005; Atkinson & Gray, 2005). In seeking to 
understand the limits on variation, a typologist has the 
unenviable task of disentangling biological imperative 
(Christiansen & Chater, 2008) from cultural and historical 
contingencies (Lupyan & Dale, 2010), such as migrations or 
language contact. 

Information theoretic approaches to language can help 
clarify this problem, by setting a goalpost that is explicitly 
functional, rather than biological or cultural (Ramscar & 
Baayen, 2013). On this view, language is a communication 
system like any other, with the same fundamental purpose of 

transmitting information. A language’s structural features 
should thus be subject to the selection pressures that govern 
the design of efficient digital codes (Dahl, 2004). On this 
read, variation among languages is the result of selective 
adaptations to variable circumstances, with communicative 
efficiency the key measure of fitness.  

This is not to imply that the solutions that different 
languages converge on are ‘equally’ optimal to some pre-
specified degree. Evolutionary processes achieve local—
rather than global—optima, and are chained to their 
particular historical lineage (Simon, 1989). Rather, the idea 
is to provide an overarching framework in which the host of 
interacting variables may be arrayed, so as to better 
understand how the system maintains and restores a 
functional equilibrium. In particular, it allows us to ask: 
How are the perturbations in one part of the system 
balanced by compensating forces in another?  

For example, whereas more ‘synthetic’ languages, like 
German, rely heavily on morphological devices to convey 
information, others, like English, leave more to the 
surrounding context (Lupyan & Dale, 2010). This mode of 
typological inquiry can help uncover how languages use 
different means to nevertheless achieve similar functional 
ends, and the potential trade-offs—in terms of complexity 
and efficiency—that these different strategies may incur 
(Pellegrino, Coupé, & Marsico, 2011). 

Two Germanic Tongues 
 One longstanding puzzle for typologists concerns why 
certain languages employ grammatical gender, which 
assigns nouns to distinct classes and marks neighboring 
words for agreement. From a taxonomic standpoint, gender 
specification can often appear arbitrary, with little obvious 
correspondence between the semantic properties of a given 
referent and its noun class (Vigliocco et al., 2005). 
Historically, gender has thus been viewed as a useless 
ornament with little apparent rhyme or reason (Maratsos, 
1979). In previous work, Dye et al. (2017) offered a possible 
solution to this puzzle, using an information theoretic lens to 
clarify the communicative function of noun classification in 
German. 
 On their account, grammatical gender marking serves to 
modulate nominal entropy, making nouns more equally 
predictable in context. This functionality benefits language 
processing in multiple ways: 1) by helping speakers avoid 
the peaks in uncertainty that would otherwise occur over 
nouns, smoothing entropy over the larger sequence; 2) by 
reducing competition between nouns that are highly 
confusable in context; and 3) by facilitating the use of a 
richer array of lexical items.  
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 These findings raise a further puzzle: If gender systems 
are so beneficial to processing, languages should tend to 
maintain or expand them as they evolve. Yet a number of 
closely related Germanic tongues have followed precisely 
the opposite trajectory: Swedish, Danish, and Dutch have all 
consolidated their noun classification systems, while 
English has dispensed with gender altogether. 
 Like Modern German, Old English (~750-1150 AD) 
classified nouns according to three genders (masculine, 
feminine, and neuter) and all inanimate nouns belonged to 
one of the three classes (Curzan, 2003). However, in 
Modern English, aside from a few archaic exceptions, only 
nouns referring to males and females take gendered 
pronouns; inanimate nouns are neuter. The gender system in 
Modern English is thus far simpler than the noun class 
systems found in Old English and Modern German. 
 This raises the worrying possibility that English lacks the 
resources to accomplish the same specificity of expression 
available in German. However, another possibility, explored 
here, is that rather than employing a rigid grammatical 
device, English relies on a more graded, semantically 
transparent method of entropy reduction: namely, 
prenominal adjectives.  
 Like gender markers, adjectives may act to systematically 
delimit the space of following nouns. For example, massive 
and moist are likely to have markedly different following 
distributions. Yet even subtle differences, such as that 
between great big and very big, could be highly informative 
in English. To test this proposal, we use tools from 
information theory to compare gender marking in German 
(a deterministic system) to prenominal adjective use in 
English (a probabilistic one). 

Nominal Uncertainty Management 
 Languages appear to be organized to maintain relatively 
stable levels of uncertainty across discourse (Genzel & 
Charniak, 2002), employing various strategies to make each 
lexical choice more equally predictable in context, and 
thereby reducing processing difficulties (Tily et al., 2009; 
Jaeger, 2010). In information theory, uncertainty is 
quantified in terms of entropy. Formally, the entropy H over 
a distribution of lexical items is a measure of the expected 
value of information (‘surprisal’) over the full range of 
items (Shannon, 1948): 

  
  

In many languages, like English and German, nouns are the 
most diverse part of speech. When prior context is ignored, 
uncertainty should thus be highest at points where a noun 
occurs. For example, in the following sequence, uncertainty 
over possible noun continuations (!) will be higher than for 
possible verb continuations (#): 

  I would # like a ! beer     (1)  

Unsurprisingly, nouns are among the most common sites for 
disfluencies, incorrect retrieval, and mishearings (Clark & 
Wasow, 1998; Vigliocco, 1997). 
 Nevertheless, speakers have various resources at their 

disposal for making a particular lexical choice more or less 
predictable in context. One possibility is to rely on the 
preceding discourse as a form of scaffolding. Noun class is 
an efficient system for implementing this principle. 
Consider the German equivalent of (1): 

  Ich hätte gern ein ! Bier   (2) 

Grammatical gender markers can significantly ease the 
lexical access problem by systematically narrowing the set 
of candidate nouns that follow (Dahan et al., 2000), thereby 
offloading some of the uncertainty about the upcoming noun 
onto the determiner. 
 To evaluate this hypothesis, Dye et al. (2017) examined 
the entropy of nouns in German, a language with a three-
class gender system. An analysis of the Stuttgart deWaC 
mega-corpus (Faaß & Eckart, 2013) revealed that gender 
markers systematically reduced nominal entropy across all 
cases. Further, this appeared to benefit lexical diversity: 
German plurals, which are not gender-marked, showed a 
reduction in their type/token ratio, suggesting that the 
presence of a gender marker was catalyzing the use of a 
wider array of lexical items. 
 Yet English is not without its own entropy-smoothing 
resources. Compared to the sparse semantic context 
provided by (1), the noun beer should be more predictable 
following the comparatively constraining context provided 
by (3):  

  I would like a nice cold ! beer    (3) 

This raises an important question: Might prenominal 
adjectives in English serve a similar function to grammatical 
gender markers in German?  
 Suggestive evidence comes from the visual world 
paradigm, an experimental framework for studying online 
language processing in which subjects’ eye movements over 
a visual display are monitored as they listen to a concurrent 
speech stream (Tanenhaus et al., 1995). A common finding 
is that listeners fixate semantically-related pictures as they 
become relevant, with patterns of eye movements time-
locked to incoming speech. In studies of this kind, 
prenominal adjectives and gender markers have been shown 
to play similar functional roles: When French and Spanish 
speakers encounter a gendered determiner, they rapidly shift 
their gaze to gender-consistent referents in the display in 
anticipation of the upcoming noun (Dahan et al., 2000; Lew-
Williams & Fernald, 2007). Similarly, when viewing an 
array of semantically plausible competitors, English 
speakers interpret prenominal adjectives contrastively, 
quickly homing in on likely candidates (Sedivy et al., 1999; 
Fernald, Thorpe, & Marchman, 2010). Such findings 
suggest that both prenominal elements serve a predictive, 
discriminative function. 

Corpus Analysis 
 To more closely examine this apparent functional 
similarity between languages, we conducted a comparison 
of prenominal adjective and determiner usage in written 
English and German. 
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Corpora 
 Analyses were initially run on manually annotated 
newswire corpora, and subsequently replicated on larger 
web-crawled mega-corpora. These corpus types trade off  on 
scale and precision. Due to space constraints, we report one 
or the other, but not both; in each case, the qualitative nature 
of the results are the same. 
 The newswire corpora included the Negra II corpus of 
German newspapers, (Skut et al. 1997) and the New York 
Times Gigaword corpus (Graff et al., 2007). The web-
crawled WaCky mega-corpus supplied the SdeWaC, a 
subset of the German section (Baroni, Bernardini, Ferraresi, 
& Zanchetta, 2009), comprising more than 850M word 
tokens and 1.1 M word types (Faaß & Eckart, 2013), and the 
ukWaC, the British English subset, comprising nearly 2 
billion word tokens and 3.8 M word types (Ferraresi et al., 
2008). It is worth noting that these are collections of written 
language, which may not reflect the complexities of spoken 
production (Baayen, Milin, & Ramscar, 2015). 
 Additional annotation for fine-grained part-of-speech 
categories and extraction was carried out with the RFTagger 
(Schmid & Laws, 2008) and the Stanford Parser (Klein & 
Manning, 2003).  

Determiners 
Entropy Reduction In German, grammatical gender serves 
to subdivide the space of nouns that can legally follow each 
marker. By markedly reducing nominal entropy, gender 
facilitates the use of a more diverse—and more informative
—set of nouns following gender-marked determiners. 
Consistent with this thesis, when Dye et al. (2017) 
compared singular nouns in German (which are marked for 
gender), with plural nouns (which are not), they found that 
singular nouns following determiners were significantly 
more lexically diverse than their plural counterparts.  
 By comparison, English determiners, which are neither 
gender nor case-specific, have less potential to be 
informative about their following nouns. Consider that 
while the determiner the in English is informative about the 
type of word that will follow (a noun, most likely), in 
German, the determiners der, die, das, den, dem, and des 
convey not only part of speech information, but also 
delineate the specific set of lexical items that can follow. 
This suggests that English determiners may not support the 
same level of lexical diversity available in German. 
 To examine this possibility, we first compared the 
conditional entropy of German nouns following articles 
(which are gender-marked) to that of English nouns 
following articles (which are not), in the Negra II and NYT 
Gigaword corpus, respectively. While the average 
uncertainty following the determiners was similar across 
languages, German determiners supported much greater 
entropy reduction than their English equivalent, a result that 
held across corpus types.  
 As Figure 1 illustrates, following a definite article, the 
conditional entropy of English nouns was similar to that of 
German nouns (10.17 vs. 10.55). However,  whereas 
German provided a substantial entropy offset, English 
provided none at all. In German, removing information 

about definite articles—and hence, about noun class—led to 
a significant increase in entropy (from 10.55 to 11.71 bits). 
In the simplified model corpus depicted in Figure 1, 
whereas the baseline entropy difference between marked 
English and German nouns suggests a usage rate of around 
30% more nouns, the difference between marked and 
unmarked German nouns is the equivalent of more than 
125% more nouns. 

Lexical Diversity This finding suggests that compared to 
English, German noun usage must be more heterogeneous 
following determiners (Figure 1). To compare nominal 
usage across languages, we calculated the type/token ratio 
of noun lemmas in these contexts in the Negra II and NYT 
Gigaword corpus, following Dye et al. (2017), and 
normalizing for corpus size to make the results comparable. 
Conveniently, type/token ratio is the inverse of average 
frequency, which means that the greater the diversity of 
nominal usage, the lower the average frequency. We found 
that whereas the average frequency of the German noun 
lemmas in Negra II was 2.12, the average frequency of 
similar noun lemmas in the English ukWaC sample was 
4.93 (p < 0.001). 
 These results suggest that noun class allows German 
speakers to use more ‘informative’—and therefore, less 
frequent and less predictable—nouns after definite articles 
more often than English speakers do. Or, to put it another 
way, German speakers appear to use the entropy reduction 
provided by noun class to choose nouns that are more 
specific, resulting in greater nominal diversity. 

!  

Figure 1: To illustrate the relationship between entropy, 
probability, and frequency in a corpus of nouns, the x-axis above 
represents the entropy for a given noun as the size of a set of nouns 
of equal frequency (1, y-axis) increases. As the size of the set of 
items increases linearly, entropy rises as an exponential function. 

Adjectives 
 While our results confirm that nominal usage following 
determiners is more diverse in German than in English, it 
does not therefore follow that English is lexically 
impoverished compared to German, or unable to achieve the 
same degree of specificity. In particular, definite articles are 
not the only type of word that typically precede nouns—
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adjectives are also common prenominally, and may serve a 
similar function. 
 To further explore this idea, we compared the adjective-
noun sequences in the ukWaC and the SdeWaC corpora. 
Both the overall proportion of adjectives (tp = 1992.336; p < 
.0001) and the probability of a noun being preceded by an 
adjective (tp = 85.088; p < .0001) were significantly higher 
in English than in German. While German nouns are 
significantly more lexically diverse than their English 
counterparts, precisely the opposite obtains for adjectives. 
 These results present us with two different theoretical 
explanations. One possibility is that English speakers use 
more adjectives overall to compensate for the use of less 
varied nouns in communication—i.e., that they make their 
messages more specific through adjectival syntagmatic 
choices. Alternatively, it might be that while German 
speakers use more varied nouns after articles, English 
speakers use an equally diverse set of nouns, but rely on 
adjectives—rather than determiners—to facilitate the use of 
more informative nouns. Fortunately, these accounts make 
competing predictions, allowing us to distinguish between 
them empirically. 
 The first account accords well with the taxonomic 
assumption that adjectives add semantic detail to nouns, or 
somehow “modify” their semantic content (Kamp & Partee, 
1995). On this assumption, adjectives should preferentially 
modify high frequency nouns, which are in greater need of 
semantic augmentation, over low frequency nouns, which 
tend to be more specific (Rosch, 1978). For example, dog is 
less informative than retriever, which is less informative 
than dachshund; accordingly, dog should be the most 
frequently modified, and dachshund the least. 
 However, if prenominal adjectives in English serve a 
similar role to gendered determiners in German, precisely 
the opposite prediction should be made regarding frequency. 
In German, the entropy reduction properties afforded by 
noun class facilitate the use of more informative (lower 
frequency) nouns. If, in English, at least some of this 
functionality is subsumed by prenominal adjectives, then it 
is low frequency nouns that should be preferentially 
“modified”, not high frequency ones. The relationship 
between adjectives and noun frequency thus provides an 
important test case. 
 In line with the entropy smoothing account, our analysis 
reveals a negative correlation between a noun’s log 
frequency and its likelihood of being modified (r = -0.17, p 
< 0.001). Moreover, our investigation  indicates that in 1

English, adjectives redistribute the relative entropy of 
nouns, thus serving to balance the degree to which nouns 
can be predicted in context: More frequent nouns tend to be 
preceded by adjectives that are (on average) higher 
frequency and higher entropy (edf = 22.06: F = 32069: p < 
0.0001). Indeed, a nonlinear interaction between adjective 
entropy and adjective frequency accounts for fully 94% of 
the variance in noun frequency (Figures 3, 4). 

  

Figure 3: Adjective maximum entropy, which provides an upper 
bound on uncertainty about the preceding adjective, accounted for 
almost 90% of the variance in noun frequency (Adjusted R2 = 
0.891), revealing that more frequent nouns are preceded by larger 
number of different adjectives. 

Figure 4: To achieve greater precision, a second interactive model 
was run, which regressed noun frequency with the tensor product 
of adjective entropy by adjective average frequency. This 
interactive model accounted for fully 94% of the variance in noun 
frequency (Adjusted R2 = 0.941), and achieved better goodness-of-
fit than the max entropy model, as indicated by both the difference 
in AIC (28603.60), and the Chi-square test of fREML scores (χ2 = 
14274.832, edf difference = 3.000, p < 0.0001). 

Discussion 
 In comparing English and German, two closely related 
Germanic tongues, we found that whereas German nouns 
are significantly more lexically diverse than their English 
counterparts, precisely the opposite obtains for adjectives. 
These results suggest that the difference between German 
and English does not lie in the ‘specificity’ of expression, 
per se, but rather in how specificity is achieved.  
 German uses gender marking to distinguish between 
likely lexical competitors, and adjectives to make rarer 
lexical items more predictable in context. By contrast, in 
English, which largely lacks gender, adjectives assume both 
roles. While these findings are compatible with 
discriminative accounts of language processing (Ramscar et 
al, 2010), they raise questions about the explanatory 
adequacy of traditional taxonomic theories. 

 To better understand adjective-noun relations in English, we retrieved the top 50k most frequency nouns from the ukWaC, along with information about the 1

adjectives preceding them, including: their number, average frequency, and entropy (i.e., the uncertainty over the noun’s prior distribution). These results 
were log-transformed to approximate normality. For convenience, a base-two logarithmic transform was used for adjective-number, yielding adjective 
maximum entropy in bits.
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General Discussion 

To Gender or Not 
 On an evolutionary scale, languages tend to become more 
codified over time, as frequently used sequences of words 
gradually crystallize into more rigid conventions, a process 
known as grammaticalization (Hopper & Traugott, 1993). 
However, at a number of points in its history, English has 
taken the opposite developmental path.  
 One such turning point was the invasion and colonization 
of the British Isles in the 8th and 9th centuries by the Norse, 
followed by the Norman conquest of England in the 11th 
century. As a result of the extended interaction between Old 
English and Norse, much of the information that had been 
encoded in fixed aspects of the grammar became “optional” 
– expressed by words rather than fixed grammatical 
markers. Old English, the language of England at the 
beginning of this period, looks like Modern German, with 
relatively complex patterns of inflection for number, gender, 
and case. However, by the end of this period, Old English 
had been eclipsed by Middle English, which much more 
closely resembles the modern tongue: nouns are marked 
only for number, adjectives are no longer inflected, and 
demonstratives are reduced in kind (Dawson, 2003). What 
might explain this trajectory? 

Evolutionary Pressures While it is well known that some 
languages are easier for adult learners to master than others, 
it is also the case that first languages are acquired at 
different rates—Russian children, for example, take several 
years longer than their Turkish neighbors to sort out 
nominal case marking (Slobin, 2006). However, what is 
difficult for a child to learn, may not be difficult for an 
adult, and vice versa; early language acquisition and adult 
second-language learning are qualitatively different, both in 
the nature of the task demands, and in the capacities of the 
learners themselves (Ramscar & Gitcho, 2007; Thompson-
Schill et al., 2009). Likewise, there may be tradeoffs 
between what is easy to acquire, and what is efficient to 
process (see Ramscar et al. 2010 on adjective ordering). 
 In line with this proposal, there is accruing evidence that 
the structural form of a language is coupled to its population 
(and history) of adult learners (Johnson & Newport, 1989; 
Trudgill, 2002). Support for this comes from a series of in-
depth analyses of the World Atlas of Language Structures 
conducted by Lupyan and Dale (2010), who found that 
languages with “larger speaker populations, greater 
geographical coverage, and greater degree of contact with 
other languages” (p. 6) tend to be morphologically simpler, 
more transparent in their mappings between form and 
meaning, and more likely to express semantic distinctions 
through lexical or pragmatic means, rather than encoding 
them explicitly in the grammar.  
 On this account, languages strike a balance between early 
learnability and adult processing that is moderated by their 
social niche. Thus, while morphologically complex 
languages provide a rich set of additional cues to scaffold 
infant learning, this early advantage has significant 
drawbacks for adult speakers. The same marking 

conventions that support young learners, prove nearly 
impossible for adult learners to master (Johnson & Newport, 
1989), particularly when extrapolating from noisy input 
(Hudson Kam & Newport, 2009).  
 In languages spoken by large populations of adult 
learners, there is thus both impetus and imperative to 
simplify the obligatory aspects of the grammar. Moreover, 
adult speakers are instrumental to how languages evolve—it 
is skilled language users (not novices) who make and spread 
innovations (Labov, 1972; Trudgill, 2010), and adult 
learners readily adapt newly acquired grammars to better 
meet their communicative needs (Fedzechkina, Jaeger, & 
Newport, 2011; Kirby, Cornish, & Smith, 2010). 
 From this perspective, the distribution of Modern English 
can be seen as having developed in response to the selective 
pressures produced by the conflicting gender systems of Old 
English and Norse, combined with a large percentage of 
adults in the population of language learners. These 
conditions resulted in a shift away from the abstract, 
grammaticalized entropy management system of Old 
English gender marking, to the more probabilistic, 
semantically transparent system based on adjectives found 
in Modern English. In comparison to German and Old 
English, Modern English has thus traded efficiency—in 
communicative terms—for error tolerance, making it more 
amenable to later learning. 

Adjectives and Overspecification 
 From a certain perspective, languages with complex 
inflectional patterns can appear inefficient, in that they 
obligate the marking of certain distinctions—such as the 
temporal remoteness of an action or event—that may or may 
not actually be relevant to the topic at hand (Lupyan & 
Dale, 2010). Yet languages with more transparent semantics 
employ much of the same apparent redundancy: Native 
English speakers, who are not grammatically obliged to be 
superfluous, still regularly produce overspecified utterances 
like “that’s a cute little puppy” and “how about a nice cold 
beer?” (Deutsch & Pechmann, 1982; Engelhardt et al., 
2006) The logic of such productions has proved notoriously 
difficult to account for: For one, they appear to violate the 
Gricean Maxim of Quantity, which assumes that speakers 
provide just enough information to identify a referent, and 
no more; for another, their combinatorial meaning has 
defied systematic description (Lahav, 1989), relegated by 
formal semanticists to the realms of ‘context dependence’ 
and ‘vagueness’ (Kamp & Partee, 1995). 
 However, productions like these only appear mysterious if 
their meanings are assumed to be compositional—i.e., 
constructed as a function of their syntax and the meanings 
of their constituent parts (Fodor & Lepore, 2002; but see 
Baroni & Zamparelli, 2010 for a novel approach). Under the 
alternative model suggested by information theory, 
utterances are produced so as to iteratively reduce 
uncertainty, and different languages employ more (or less) 
conventionalized means of streamlining that process 
(Baayen & Ramscar, 2015). While the patterns of adjective 
use in English are difficult to account for in terms of formal 
semantics, their communicative function is strikingly clear 
from an information theoretic perspective. 
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Future Directions 
 One straightforward extension of this work is to the 
ordering of prenominal adjectives in English. Violations of 
conventional adjective ordering can make interpretation 
difficult, as when we compare ‘old French red wine crates’ 
with ‘red French old wine crates.’ Yet adjective ordering 
cannot be explained by a simple syntactic rule, and while 
various elaborate semantic hierarchies have been suggested 
(Table 1), they are not consistent enough to be implemented 
computationally (Malouf, 2000). 

!  
Table 1: A semantic account of adjective order, in which 
specifying adjectives “single out or quantify the referent”, 
descriptive adjectives “characterize the referent along a variety of 
semantic parameters”, and classifying adjectives “categorize the 
referent” (Kemmerer et al., 2007: 240). 

 Ziff (1960) proposed that adjective order was determined 
according to two closely related heuristics: the adjective’s 
“privilege of occurrence” (i.e., the range of nouns it might 
modify) and its “definiteness of denotation” (i.e., the extent 
to which its interpretation depended on the noun being 
modified). On this account, adjectives that are more 
privileged and more definite should be slotted closer to the 
noun. In a related vein, Danks and Glucksberg (1971) 
argued that adjectives are ordered according to their 
“discriminative potential”, with the most broadly 
discriminating being placed first. Both of these claims are 
amenable to further scrutiny in terms of information and 
prediction. 
 One possibility is that adjective chains follow the familiar 
branching structure seen in personal names (Ramscar et al., 
2014), with set-size increasing as a function of proximity to 
the head noun. This would be consistent with the finding 
that more frequent adjectives tend to precede less frequent 
ones. However, given that adjectives’ appear to smooth 
entropy, rather than simply reduce it, the precise chaining 
structure may be closely tied up with the frequency of the 
noun being ‘modified’. This could explain apparent 
exceptions to this trend (like “witty young lawyer”). 
 In addition to adjective order, similar analyses might help 
explain the cross-linguistic differences that have been 
observed in languages with postnominal adjective biases 
(Percy et al. 2009; see also Lambert & Paivio, 1956). More 
ambitious extensions could be made to other parts of 
speech, such as verbs and adverbs, and for other languages, 
beyond those studied here. 
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Abstract 

In the study of recognition memory, a mirror effect is 
commonly observed for word frequency, with low frequency 
items yielding both a higher hit rate and lower false alarm rate 
than high frequency items. The finding that LF items 
consistently outperform HF items in recognition was once 
termed the “frequency paradox”, as LF items are less well 
represented in memory. However, recognition is known to be 
influenced both by ‘context noise’—the prior contexts in 
which an item has appeared—and ‘item noise’—interference 
from other items present within the list context. In a typical 
recognition list, HF items will suffer more interference than 
LF items. To illustrate this principle, we deliberately 
manipulated both the contexts in which critical items had 
been encountered prior to study, and the confusability of 
targets and distractors. Our results suggest that when noise 
sources are balanced, the mirror effect disappears. 

Keywords: recognition memory; context noise; item noise; 
prior history; semantic similarity; orthographic similarity; list 
length; word frequency; mirror effect; differentiation 

Introduction 
 In a typical episodic memory experiment, subjects are 
introduced to a new item or list of items within the 
experimental context, and memory is then tested for that set. In 
an old-new recognition task, for example, subjects study a list 
of words, and then are asked to discriminate words seen at 
study (targets) from non-studied words (foils). What is 
potentially challenging about the task is that subjects must 
identify just those items seen at study from all other words 
encountered in everyday life. In other words, they must 
discriminate between pre-experimental familiarity with the test 
items and familiarity that is specific to the task context. 
Performance at test is assessed by the d’ sensitivity index, 
common in signal detection, which computes the distance 
between the means of the hit-rate distribution (the probability 
of correctly identifying a target) and the false alarm-rate 
distribution (the probability of misidentifying a lure), 
normalized by the common standard deviation. 
 The study of recognition memory has been dominated by 
global matching models, which are variants on signal detection 
models. These capture the idea that recognition of a particular 
item depends not solely on the properties of the item itself, in 
isolation, but also on other items present in memory (for a 
review, see Clark & Gronlund, 1996). When a particular item is 
tested, the available cues—such as item and context—form a 
joint probe of memory, which is accessed in parallel. This 
global search yields a numerical value, which prompts an ‘old’-
response if it exceeds some criterion. The returned value is 
variously understood as the global familiarity of the test item, 
the match between the test item and the contents of memory, 
and the activation strength of memory for that test item. How 
the value is calculated also depends on the process specified by 
the model, ranging from the sum of retrieval strengths (Gillund 

& Shiffrin, 1984) to the match between vectors (Murdock, 
1982).  
 A general assumption is that the distribution of familiarity 
values will have a higher mean for studied items than for 
unstudied lures. However, interference at retrieval can arise 
from two sources: item noise (McClelland & Chappell, 1998; 
Shiffrin & Steyvers, 1997) and context noise (Dennis & 
Humphreys, 2010). Item noise refers to the probability of a 
chance match between an item at test and memory traces for 
other studied items. Context noise refers to the probability of a 
match between the experimental context and other contexts in 
which the tested item has occurred. 
 To study how noise arises in recognition, designs typically 
manipulate one or more variables of interest, such as the 
number of items on the list (list length), the number of 
repetitions or exposure duration of a particular item at study 
(item strength), and the number of repetitions of the list (list 
strength). The properties of the items may also be 
systematically manipulated: For instance, a list might be 
comprised of an equal proportion of randomly selected high 
(HF) and low frequency (LF) items (mixed list), or alternately, 
contain only items selected from one frequency band (pure 
list). 
 The study presented here was designed to investigate the 
extent to which item and context noise affect recognition 
processes, by systematically manipulating both the prior 
contexts in which critical items had been encountered 
(Kinsbourne & George, 1974; Estes & Maddox, 1997), and the 
similarity of items within the list (Hintzman, 1988; Shiffrin, 
Huber, & Marinelli, 1995). There are a number of reasons to 
believe that these manipulations to item and context noise 
should differentially affect items as a function of their 
frequency, which we shall now review. 

Word Frequency Effects in Recognition 
 In studies of recognition memory, a mirror effect is 
commonly observed in subject performance with regards to 
item frequency: Compared to HF items, LF items are better 
discriminated, yielding a higher hit rate (HR) and lower false 
alarm rate (FAR) (Glanzer & Adam, 1985; Glanzer et al., 
1993). A similar effect is observed in forced-choice recognition 
paradigms that include (in addition to the usual old-new pairs) 
old-old and new-new pairs, for which there is no ‘correct’ 
answer. Subjects in these studies preferentially choose LF 
words over HF words for target pairs, and HF words over LF 
words for foil pairs (Glanzer & Bowles, 1976).  
 In assessing word frequency effects (WFE), there are a few 
wrinkles to consider: For one, the mirror effect is not always 
perfectly symmetric; the performance gap is typically smaller 
for hits than false alarms, and there may be differences in 
criterion as well as sensitivity (Hintzman, Caulton, & Curran, 
1994). For another, recognition performance does not vary 
monotonically with word frequency. Instead, LF words only 
appear to benefit when subjects have some familiarity with 
them (Schulman, 1976; Zechmeister, Curt, & Sebastian, 1978). 
Further, when frequency is considered as a continuous variable, 
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HR follows a U-shape, with the greatest decrements observable 
in the mid-frequency band (Hemmer & Criss, 2013). 
 Clearly, differences in performance on high and low 
frequency items cannot be reduced to their differential 
repetition in prior history. Instead, there appear to be multiple, 
interacting factors at play in producing differences between 
frequency bands. Some of the key factors include: 1) how well 
a particular item is differentiated from other items in the 
lexicon given prior learning history; 2) how discriminable that 
item is from other items on the present list, given the specific 
list composition; and 3) the degree to which that item will be 
associated with the present task context, which should be 
inversely related to the number of distinct contexts in which it 
has previously appeared. 

Differentiation over Learning 
 How do these dimensions differ for high and low frequency 
items in a standard recognition experiment? A common 
theoretical assumption is that greater experience with an item 
over learning leaves it better differentiated in memory—the 
idea being that repeated exposure acts to increase similarity 
between the studied item and its memory trace, while 
decreasing the similarity between its trace and all others (Criss, 
2006). This view of repetition falls naturally out of 
discriminative learning models (Rescorla, 1972; Ramscar et al., 
2010), in which cue weights are tuned to produce ever more 
efficient responding. It is also common to the study of 
categorization, where it is well known that similarity relations 
among items change in systematic ways as a function of 
learning (Nosofsky, 1986). 
 Models of recognition memory formalize this notion in 
slightly different ways. In the Retrieving Effectively from 
Memory (REM) model, each time an item is encountered 
within a given context, its episodic memory trace is updated, 
accruing more complete and accurate feature information 
(Shiffrin & Steyvers, 1997). Thus, more encoding opportunities 
lead to a higher probability of self-match and a lower 
probability of matching an unrelated item, leading to 
‘differentiation’ of the trace. Likewise, in the subjective 
likelihood model (SLiM), initial experience with an item yields 
a noisy and underspecified representation of its features, which 
is refined over learning (McClelland & Chappell, 1998). A 
logical inference from these models is that HF items—by virtue 
of having been experienced more often, and in more contexts—
should be better differentiated from one another in long-term 
memory than are LF items. 
 If HF items are better learned, why do they not routinely 
outperform LF items in recognition, as they do in other 
memory paradigms, like lexical decision and recall? This is 
known as the frequency paradox (Gregg, 1976). 

Context Noise 
 To address this question, it helps to consider how memory 
for a word depends on the contexts in which it has been 
previously encountered. Events stored in memory are 
comprised of both information that was central to processing 
(the item itself) and information that was available in the 
peripheral environment (the broader context). The contextual 
information that is encoded may include aspects of the 
temporal or physical context in which an item is presented, the 
emotional state of the learner, and so on (Murnane, Phelps, & 
Malmberg, 1999; Smith, Glenberg, & Bjork, 1978).  
 Because contextual information is stored alongside item 
information, memory for an item is facilitated when there is a 
high degree of match between its encoding and retrieval 

contexts, a principle known as encoding specificity (Tulving & 
Thomson, 1973). However, similarity between contexts can 
also produce interference in tasks, like recognition, that require 
discrimination among encoding contexts. In making an 
accurate recognition judgment, one of the key challenges is in 
distinguishing between familiarity with the item from the study 
list and familiarity from previous experiences in everyday life. 
The more prior contexts in which an item has occurred, and the 
more confusable those contexts with the study list, the harder 
the problem. 
 One way to demonstrate this is by incidentally exposing 
subjects to critical targets and lures in a familiarization phase 
prior to study, which shares many contextual features with the 
recognition task (e.g., the location, time of day, etc). 
Recognition for pre-exposed items is reliably impaired 
(Kinsbourne & George, 1974; Tulving & Kroll, 1995). Another 
method is to select list items that vary in their contextual 
diversity (CD)—i.e., the number of different pre-experimental 
contexts in which they have appeared. When CD varies, items 
with higher diversity scores are less well recognized overall, 
with a lower HR and higher FAR (Jones, Johns, & Reccia, 
2012; Steyvers & Malmberg, 2003).  
 These findings establish context noise as an important source 
of interference at retrieval. Importantly, context noise is also a 
key dimension on which HF and LF items differ. Not only are 
HF words experienced more often than LF words, they are 
experienced in a more variable set of verbal contexts (Adelman 
et al., 2006; Jones, Johns, & Reccia, 2012). Given their high 
frequency of occurrence in text and speech, they are also more 
likely to have been experienced more recently (Scarborough, 
Cortese, & Scarborough 1977; Anderson & Schooler, 1991). 
Relative to LF items, the contexts in which HF items are 
experienced will thus be more confusable with the study list, 
significantly increasing the difficulty of the recognition task for 
those items. 

Item Noise 
 Another clue to the “frequency paradox” concerns how 
memory for a single item depends on the composition of the 
surrounding list. As von Restorff (1933) demonstrated in a 
classic experiment, distinct items fare well on tests of 
recognition. For example, in a 10 item-list comprised of 9 
nonsense syllables and 1 number, the number is recalled with 
far greater accuracy than the syllables. However, the extent to 
which a particular item benefits from its distinctiveness—i.e., 
its dissimilarity from other items—depends crucially on how 
dissimilar the rest of the items on the list are from each other.  
 To illustrate this idea, von Restorff placed the lone number 
on a list with several equally unrelated items, including “a 
syllable, a color patch, a single letter, a word, a photograph, a 
symbol, an actual button, a punctuation mark, and the name of 
a chemical compound” (as reported by Hunt, 1995, p. 109). 
Unsurprisingly, once all the items were similarly distinct, no 
advantage for the lone number was found. A benefit only 
obtained when the other items were clustered in similarity 
space relative to the critical item. That is, “similarity must 
establish a context in which difference functions” (Hunt, 1995). 
 The distinctiveness hypothesis proposes that memory for a 
given item should vary inversely with its featural overlap with 
other items at study (Hunt & Mitchell, 1982). In line with this, 
when subjects are asked to remember a list of statements that 
are either congruent or incongruent with their expectations, 
incongruent-facts tend to be advantaged in recall—but only so 
long as they comprise a minority of the list (Hastie & Kumar, 
1979). Parallel results have been reported for word recall, 
where it has been found that orthographically or semantically 
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unusual items only benefit when presented with common ones 
(Hunt & Eliott, 1980; see also Zechmeister, 1972). This is 
consistent with a surprisal-based account of the von Restorff 
effect (Green, 1956). 
 In recognition, it is clear that distinctiveness matters both at 
encoding and at retrieval. Researchers as far back as Postman 
(1951) have observed that performance on tests of recognition 
memory varies inversely with the similarity of items at study 
and at test, and thus, with the choice of distractor (Anisfield & 
Knapp, 1968; Bahrick, Clark, & Bahrick, 1967). For example, 
in face recognition, distinctive faces are better recognized than 
common faces when lures are selected at random, but 
recognized more poorly when the similarity of lures to targets 
is controlled (Davidenko & Ramscar, 2005).  
 Importantly, distinctiveness is a feature on which low and 
high frequency items are bound to vary. LF words are, on 
average, more orthographically distinctive than HF words—
comprised of more rare letters, and more uncommon 
combinations of letters (Estes & Maddox, 2002; Malmberg et 
al. 2002)—and belong to much sparser orthographic 
neighborhoods, with both fewer and rarer neighbors (Landauer 
& Streeter, 1973).  
 In a random selection of words, LF items will also be more 
semantically distinctive than their HF counterparts. This is 
guaranteed by the distributional properties of the lexicon—
specifically the fact that LF words are drawn from a much 
larger sample than their HF counterparts (using a 1 per million 
word cutoff, 80% of all words can be classified as low 
frequency; van Heuven et al. 2014). As a result, LF items will 
be less semantically similar to one another, on average, than HF 
items. A variety of measures of semantic richness attest to this: 
LF words have fewer closer associates (Deese, 1960; Balota et 
al., 2004), fewer close semantic neighbors (Pexman et al., 
2008), and more sparse network connectivity (Steyvers & 
Tenenbaum, 2005).  
 While HF items are better differentiated in memory, they are 
also drawn from a much more tightly clustered similarity space, 
both in terms of their surface and semantic features. When 
presented in a mixed lists of randomly selected items, they 
should thus be less distinctive at encoding and more confusable 
at test.   1

Study 
 In standard recognition experiments, there is a significant 
imbalance between frequency bands. When item selection is 
random, LF words should tend to be more orthographically and 
semantically distinctive than HF words, suggesting that they 
demand more attentional resources at encoding, and are less 
confusable with frequency-matched distractors at test. At the 
same time, their occurrence as a list item is less confusable 
with other, previous occurrences: LF items have been 
experienced in fewer, less diverse contexts, and are less likely 
to have been experienced recently.  
 In this study, our goal is to bring the sources of noise for high 
and low frequency items more in balance. To accomplish this 
re-balancing act, we manipulated two key variables: (1) 
recency of exposure (‘context noise’) and (2) inter-item 
similarity (‘item noise’). When these noise sources are 
equalized, HF items, which are better represented in memory, 
should outperform LF items. 

Design In the familiarization phase of the study, subjects 
completed a simple reading comprehension test in which they 
were incidentally exposed to a set of critical words. Following 
a short delay, subjects returned to complete a list recognition 
task in which they studied a list of words, and at test, were 
asked to distinguish between studied items (targets) and novel 
items (foils).  
 Context noise was manipulated by inserting previously 
encountered critical words at study and at test. To assess how 
recent exposure affected recognition, the study counterbalanced 
both whether a given word was encountered in reading, and 
whether it occurred as a target or foil. Item noise was 
manipulated by selecting control words for the recognition task 
from dense semantic categories (Figure 1). To assess for 
frequency effects, both critical and control words were evenly 
divided between high and low frequency bands. 

Figure 1: The average semantic similarity of targets to distractors in 
lists randomly generated from the Exp. 1 control items, as compared to 
standard episodic word pools (see Dye et al., 2017 for methodology). 
Drawing items from semantic categories disproportionately increases 
similarity for LF items.   

Participants 54 undergraduate students at Indiana University 
participated in the experiment for course credit. All were native 
American English speakers with normal or corrected-to-normal 
vision. 3 subjects were excluded from the analysis for 
performing at chance on the reading comprehension portion of 
the experiment. 

Materials Two word lists were constructed (see Appendix), 
each of which comprised 40 critical words: 20 HF (165 
occurrences/million) and 20 LF (1 occurrence/million), 
frequency matched across lists, using counts drawn from the 
Corpus of Contemporary American English (COCA: Davies, 
2010).  
 In addition, an inventory of 240 control words was created, 
drawn from sixteen semantic categories (such as ‘music’ and 
‘time’). Half of these semantic categories were comprised of 
HF items, and half LF items. These control items were included 
to assess how item noise affects recognition. Introducing 

 This conclusion fits well with the finding that word frequency effects in recognition are closely related to list composition. Systematically varying 1

the frequency of targets and foils in pure list conditions neatly illustrates this point. While a list of LF targets is similarly well-discriminated when 
paired with a set of HF or LF foils, foil-frequency dramatically affects discrimination of HF targets. When paired with LF foils, the error rate is 
close to zero; when paired with other HF foils, the error rate far exceeds that of LF targets (Underwood & Freund, 1970). In line with this, raising 
the proportion of HF items on a list increases the magnitude of the WFE (Dorfman & Glanzer, 1988; Malmberg & Murnane, 2002).
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semantic categories should disproportionately amplify item 
noise for LF items, by increasing the semantic and orthographic 
confusability of targets and distractors (Figure 1). 
 To create reading materials for the comprehension task, short 
passages were excerpted from the collected works of the 
notable Columbian author, Gabriel Garcia Marquez. 
Specifically, for each word on each of the lists, a passage 
containing that word was identified and paired with a true 
statement that synthesized the sentence in which the word had 
occurred. Affirming the statement as true relied on correct 
comprehension of the word. Additionally, 20 control passages, 
which contained no critical items, were selected and paired 
with a false statement. Each critical word appeared in only one 
of all possible paragraphs, and only once in that paragraph.  
 To gauge how pre-exposure affected recognition accuracy 
and response time, four counterbalanced conditions were 
created, such that across subjects, each critical item was 
presented as both a target and as a foil, and was either pre-
exposed (encountered once previously in reading) or novel 
(occurring for the first time in the recognition task). 
 Study lists comprised 40 critical items and 120 control, and 
test lists comprised all 160 targets and an additional 160 foils, 
with the same 1:3 distribution between critical and control 
items. Here again, controls were evenly split between high and 
low frequency items, drawn from the same part of the 
frequency distribution as the critical words. 

Procedure In the first stage of the experiment, subjects 
completed a self-paced reading comprehension task in which 
they read a series of short passages and, following each 
paragraph, were presented with a short statement and asked to 
determine whether it was true or false. Subjects then moved to 
a different experiment room to complete a 20-minute distractor 
task, in which they solved a series of tangram puzzles. They 
then returned to the original room to complete the list 
recognition task.  
 At study, 160 words were presented on a computer monitor 
for 1s each, separated by a 100 ms ISI. At test, subjects were 
presented with a new set of items, and asked to judge whether a 
given item had been presented at study. Testing consisted in 
320 self-paced recognition trials, with up to 5s to respond. 
Order of presentation for passages and for list items was 
randomized. 

Results Looking first to the control items, which were drawn 
from tightly clustered semantic categories, but did not vary in 
their exposure history: Welch two-sample t-tests confirmed that
—consistent with the typical finding—LF targets had a 
significantly higher HR than HF targets, both by items 
[t(212.63)=-4.12, p<.0001] and by subjects [t(99.34)=-3.20, 
p=0.002]. However, the FAR for LF and HF foils was not 
significantly different (p>.5), and the speed of correct 
rejections was slower for LF foils, both by items 
[t(234.24)=-5.85, p<.0001] and (marginally) by subjects 
[t(97.82)=-1.70, p<.0.092]. 
 Performance on control items thus shows a marked departure 
from the standard mirror effect: The typical FAR advantage for 
LF items disappears, and LF foils are more slowly rejected than 
HF foils (Figure 2). The trends captured here are robust over 
the course of testing (see Figure 6 for contrast). This finding is 
consistent with the notion that the introduction of semantic 
categories differentially increases item noise for low frequency 
items, diminishing the typical LF advantage. However, LF 
control items still outperformed HF control items overall—the 
increase in FAR was balanced by the sustained HR advantage. 

Figure 2: Control item performance for correct RT (right panel) and 
p(old) (left panel), shown by frequency and trial type. Error bars are 
SEM. 

 An identical pattern is observable for the critical items with 
no prior exposure (Figures 3, 4). However, for these items, the 
mirror effect disappears completely following exposure at 
reading, and overall performance for HF and LF items draws 
even (Figure 3). This is because while p(old) increases overall, 
the LF FAR increases sharply, far outstripping that of the HF 
foils (Figure 4). 

Figure 3. The effect of prior reading exposure on critical items, as 
measured by d’ (using a 1/2N correction). 

Figure 4: The effect of prior reading exposure on p(old), graphed by 
frequency and trial type. Error bars are SEM. 

 Performance on critical items (Figures 4, 5) can be broken 
down as follows: For targets, there was a main effect of item 
frequency on accuracy [F(1,50)=28.42, p<0.001], and a main 
effect of exposure condition both on accuracy [F(1,50)=3.35, 
p=.073] and correct RT [F(1,50)=14.36, p<.0005]. Subjects 
were more likely to affirm LF targets overall, and to more 
quickly and (marginally more) accurately affirm targets that 
had previously been seen in reading. 
 For foils, the picture was somewhat more complicated, but 
no less consistent. For response time, there was a main effect of 
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item frequency on correct RT [F(1,50)=5.87, p<0.02], but no 
effect of prior context. For accuracy, there were main effects of 
item frequency [F(1,50)=3.98, p=0.052] and prior context 
[F(1,50)=14.82, p<.001], modulated by a significant interaction 
between frequency and context [F(1,50)=4.66, p<.05]. Post hoc 
analyses (Tukey HSD) indicated that previous exposure 
significantly increased the FAR for LF items (p<0.001) but not 
HF items (p>.5), and that the FAR for pre-exposed LF items 
was significantly higher than for pre-exposed HF items 
(p<0.005).  

Figure 5: The effect of prior reading exposure on response latency, 
graphed by frequency and trial type. Error bars are SEM. 

Figure 6: P(old) to critical LF items as a function of test position for 
hits (top) and false alarms (bottom). Trend lines are generated by the 
glm smoothing method in ggplot2. 

 To summarize: For HF items, the primary effect of prior 
exposure was to increase the speed and accuracy of hits. This 
effect was also observable for LF targets, and the time to 
execute a hit was similar for HF and LF targets. However, with 
LF items, the recency manipulation led to an overall bias in 
p(old), such that both the HR and the FAR were significantly 
higher than that of HF items. The dramatic increase in FAR, as 
a result of item and context noise, is mirrored by the finding 
that correct rejections were significantly slower for LF foils 
across both exposure conditions. 
 In this study, the magnitude of the performance drop for LF 
items is, in part, a function of testing (Annis, Malmberg, Criss, 
& Shiffrin, 2013). At the beginning of testing, no effect of prior 
history was apparent: the HR for exposed and unexposed 
critical items was identical, as was the FAR. However, while 

the HR for LF items uniformly declined over trials, the pattern 
of false alarms diverged depending on prior exposure (Figure 
6): Whereas for unexposed items, the FAR showed a steady 
downward trend, for previously encountered items, precisely 
the opposite was true. This suggests that the ability to 
discriminate prior context decreased with continued testing. By 
contrast: For HF items, while a similar decline in HR is 
observable over testing, the FAR remains constant, and 
exposure condition does not appear to interact with these 
trends. 

General Discussion 
 This paper investigates the sources and robustness of the 
mirror effect for normative word frequency, finding that under 
the right set of experimental conditions, it disappears. In 
particular, when noise sources for high and low frequency 
items are balanced, LF items prove to be more confusable than 
better-learned HF items. 

Word Frequency Effects 
 The aim of the present study was to examine how item and 
context noise interact with word frequency effects. Item noise 
was manipulated by selecting control items from a small set of 
semantically cohesive categories, such as ‘music’ and ‘cooking’ 
(Shiffrin, Huber, & Marinelli, 1995). Context noise was 
manipulated by incidentally exposing subjects to critical items 
prior to the recognition task (Kinsbourne & George, 1974; 
Tulving & Kroll, 1995). Both noise sources have been found to 
impair recognition in a similar fashion: While these 
manipulations lead to an overall increase in the probability of 
responding ‘old’, the increase in hits is slower than the 
concomitant increase in false alarms, leading to a general 
decline in discriminability. For instance, when categories of 
items are present within a recognition list, hits and false alarms 
increase monotonically with the number of items within each 
semantic category, such that discriminability decreases as a 
function of category size (Hintzman, 1988). Similarly, when 
items are incidentally exposed prior to study, confusability 
increases as a function of the number of prior exposures (Criss 
& Shiffrin, 2004; Chalmers & Humphreys, 1998), and as the 
delay between the familiarization and recognition phases 
decreases (Maddox & Estes, 1997). 
 While previous research has tended to focus on how noise 
affects items from within a single frequency band, our 
experiment assessed how items were differentially affected as a 
function of their frequency. A close analysis of the mirror effect 
for recognition suggests that it derives from the distinctiveness 
of LF items relative to their HF counterparts. Specifically—in a 
random selection of items, LF targets will be more distinctive 
at study, and more distinctive at test compared to foils; in 
addition, the contexts in which they have previously occurred 
will be less confusable with the present study context.  
 In our study, these advantages are systematically mitigated. 
Introducing verbal categories entails that items will be sampled 
from a dense semantic space, rather than randomly from the 
lexicon at large. This selects for LF items that are more similar 
to each other than HF items, rendering them more confusable at 
test. Likewise, pre-exposing critical items guarantees that all 
such items, regardless of frequency, will have recently been 
experienced in a highly similar, confusable context. If the usual 
LF FAR advantage is mediated, at least in part, by the greater 
distinctiveness of randomly selected LF targets relative to 
potential lures, and by the greater distinctiveness of their prior 
contexts of occurrence, then these manipulations should 
diminish or reverse that advantage. 
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 Our findings comport well with this proposal. The item noise 
manipulation disappeared the LF FAR advantage both for 
control items and for critical items with no prior exposures: LF 
foils attracted a similar number of false alarms as HF foils and 
were rejected significantly more slowly. (A similar result has 
been reported when orthographic similarity among items is 
controlled, and lures are orthographically matched to targets; 
Hall, 1979; Malmberg, Holden, & Shiffrin, 2004). 
 The context noise manipulation amplified this effect, fully 
reversing the FAR advantage in favor of pre-exposed HF items, 
a trend that intensified over the course of testing. This occurred 
because while pre-exposure dramatically increased the LF 
FAR, it had a negligible effect on HF items. These 
manipulations thus vanished one half of the standard mirror 
effect, equalizing the overall discriminability of HF and LF 
items. 
 Nevertheless, LF items maintained a strong HR advantage. 
There are a number of possible theoretical explanations for this 
result: LF items may have garnered more attentional resources 
at study (Malmberg & Nelson, 2003), been more easily 
associable with the present task context (Hirshman, Whelley, & 
Palij 1989), or simply been a better match to their own memory 
traces at retrieval. All these explanations are potentially 
consistent with the results of the present study, but beyond its 
scope to establish; further experimental work is needed to 
distinguish among these accounts. 

Modeling Accounts 
 Empirical results like those presented here can provide 
important constraints on representational assumptions in 
modeling (Criss & Shiffrin, 2004). For example, to account 
for the standard mirror effect, the REM model assumes that LF 
items possess more rare features than HF items, features that 
are more diagnostic (Steyvers & Shiffrin, 1997). This implies 
1) that LF targets will be a better match to their own memory 
traces than HF targets (resulting in a higher HR), and 2) that LF 
foils will be less likely to share features in common with targets 
than HF foils, resulting in less spurious matches (resulting in a 
lower FAR). REM thus correctly predicts that when targets are 
matched with highly similar foils, the FAR for LF items should 
substantially increase, diminishing or reversing the standard 
mirror effect. REM can also be modified to account for the 
finding that increasing the proportion of HF words on a list 
decreases the FAR for LF items, by assuming that the 
distinctiveness of the LF items at study leads to better encoding 
(Malmberg & Murnane, 2002). 
 Likewise, virtually all models of recognition memory 
incorporate the idea that an item’s prior contexts of occurrence 
are a critical source of interference (Dennis & Humphreys, 
2000). A common assumption is that both item and context 
information are stored at encoding and that similarity between 
the study context and prior experiences gives rise to 
interference at retrieval. What varies is how: In some models, 
the item and context on the current trial form a joint probe of 
memory (Gillund & Shiffrin, 1984). In others, the context cue 
first acts to restrict the subset of activated memory traces to 
those that match the current context, prior to comparing the 
item cue to the resulting set (Shiffrin & Steyvers, 1997).  
 In future work, it may be profitable to use item 
representations derived directly from the items themselves, by 
quantifying the lexical and semantic characteristics of a given 
list or word pool (Dye et al., 2017). Models can then be 
constructed and tested against the true properties of the 
stimulus set, permitting cleaner adjudication between 
competing accounts. 
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Abstract

We report the results of a large-scale (N=1571) experiment to
investigate whether spoken words can emerge from the process
of repeated imitation. Participants played a version of the chil-
dren’s game “Telephone”. The first generation was asked to
imitate recognizable environmental sounds (e.g., glass break-
ing, water splashing); subsequent generations imitated the im-
itators for a total of 8 generations. We then examined whether
the vocal imitations became more stable and word-like, re-
tained a resemblance to the original sound, and became more
suitable as learned category labels. The results showed (1) the
imitations became progressively more word-like, (2) even af-
ter 8 generations, they could be matched above chance to the
environmental sound that motivated them, and (3) imitations
from later generations were more effective as learned cate-
gory labels. These results show how repeated imitation can
create progressively more word-like forms while retaining a
semblance of iconicity.

Keywords: categorization; transmission chain; language evo-
lution

People have long pondered the origins of languages, es-
pecially the words that compose them. For example, both
Plato in his Cratylus dialogue (Plato and Reeve, 1999) and
John Locke in his Essay Concerning Human Understanding
(Locke, 1948) examined the “naturalness” of words–whether
they are somehow imitative of their meaning. Some theo-
ries of language evolution have hypothesized that vocal imi-
tation played an important role in generating the first words
of spoken languages (e.g., Brown et al., 1955; Donald, 2016;
Imai and Kita, 2014; Perlman et al., 2015); early humans may
originally have referred to a predatory cat by imitating its
roar, or to the discovery of a stream by imitating the sound
of rushing water. Such vocal imitation might have served to
clarify the referent of a vocalization and eventually establish
a mutually understood word. In this study, we investigate
the formation of onomatopoeic words–imitative words that
resemble the sounds to which they refer. We ask whether
onomatopoeic words can be formed gradually and without
instruction through repeated imitation.

Onomatopoeic words appear to be a universal lexical cate-
gory found across the world’s languages (Dingemanse, 2012).
Languages all have conventional words for animal vocaliza-
tions and various environmental sounds. Rhodes (1994), for
example, documented a repertoire of over 100 onomatopoeic

Figure 1: The design of the transmission chain experiment.
16 seed sounds were selected, four in each category of en-
vironmental sounds. Participants imitated each seed sound,
and then the next generation of participants imitated the imi-
tations and so on for 8 generations.

words in English, which he notes exist along a continuum
from “wild” to “tame”. People often use more wild vo-
cal imitations and other sound effects during demonstrative
discourse, especially when producing quotations (Blackwell
et al., 2015; Clark and Gerrig, 1990). Wild words have a more
imitative phonology whereas tame words take on more stan-
dard phonology of other English words. In some cases, words
that begin as wild imitations of sounds become fully lexical-
ized and integrated into the broader linguistic system, when
they behave like more “ordinary” words that can undergo typ-
ical morphological processes. Examples are English words
like “crack” or the recently adapted “ping”.

However, not all researchers agree that vocal imitation has
any significant role in language. For instance, Pinker and
Jackendoff (2005) suggested that, “Humans are not notably
talented at vocal imitation in general, only at imitating speech
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sounds (and perhaps melodies). For example, most humans
lack the ability (found in some birds) to convincingly repro-
duce environmental sounds . . . Thus ‘capacity for vocal im-
itation’ in humans might be better described as a capacity to
learn to produce speech.” Nevertheless, experiments show
that people can be quite effective at using vocal imitation.
For example, Lemaitre and Rocchesso (2014) collected imi-
tations and verbal descriptions of mechanical and synthesized
sounds. When participants listened to these and were asked
to identify the source, they were more accurate with imita-
tions than descriptions. A subsequent study found that vocal
imitations tend to focus on a few salient features of the sound
rather than a high fidelity representation, which aids identifi-
cation of the source (Lemaitre et al., 2016).

Thus humans can be effective at communicating with vocal
imitation, it can play an important role in narration and dis-
course, and it appears to be the basis for substantial invento-
ries of sound-imitative vocabulary across languages. But the
process by which onomatopoeic words like “meow”, “ping”
and “buzz” emerge from vocal imitations has yet to be ob-
served. Here we examine whether simple repeated imita-
tions of environmental sounds become more word-like even
in the absence of explicit communication intent or the intent
to create a word-like token. Alternatively, repeating imita-
tions might never stabilize on a particular wordform, or the
limited fidelity of human vocal imitation may simply restrict
the formation of stable words through iterated imitations.

To test this, we recruited participants to engage in a large
scale online version of the children’s game of “Telephone” in
which an acoustic message is passed from one person to the
next. After obtaining these imitations, we investigated how
the imitations changed over generations to determine whether
they became more word-like. We investigated the acoustic
properties of the imitations as well as the orthographic prop-
erties once transcribed into English words. We find that by
both measures the imitations become more stable through
repetition. In addition to stability, we also find that the im-
itations can still be matched back to the original sounds at
above chance levels for many generations. Finally, we mea-
sured how quickly the invented words are learned as category
labels in a category learning experiment, and find that later
generation imitations are easier to learn as category labels.

General Methods
In Experiment 1 we collected iterated vocal imitations using
the transmission chain design depicted in Fig. 1. We then
assessed changes in these imitations over generations in the
remaining experiments, which are listed in Table 1. In Ex-
periment 2 we assessed the extent to which each imitation
could be matched back to its originating sound. Experiment
3 involved collecting transcriptions of imitations, and these
transcriptions were matched back to the original sounds in
Experiment 4. In Experiment 5 we selected transcriptions
taken from first and last generation imitations as novel labels
in a simple category learning experiment.

Table 1: Experiment sample sizes. Participants in Experi-
ments 1-4 were recruited via Amazon Mechanical Turk and
paid to participate in an online study. Participants in Exper-
iment 5 were University of Wisconsin-Madison undergradu-
ates who received course credit in exchange for participation.

# Experiment N

1 Collecting imitations 94
2 Matching imitations to seeds 752
3 Collecting transcriptions 218
4 Matching transcriptions to seeds 444
5 Category learning 63

Exp 1: Collecting imitations

In Experiment 1 we collected the iterated vocal imitations that
served as the basis for the remaining experiments. Our hy-
pothesis was that these vocal imitations would become more
stable as they were repeated over generations of speakers.

Methods

We selected inanimate categories of sounds because they
were less likely to have lexicalized onomatopoeic forms al-
ready in English, and they were less familiar and more diffi-
cult to imitate. Nonetheless, it is possible that lexical knowl-
edge still influenced imitation fidelity–a possibility to be ex-
plored in future work. The sounds used here were selected us-
ing an odd-one-out norming procedure (N=105 participants)
to reduce an initial set of 36 sounds in 6 categories to a final
set of 16 “seed” sounds: 4 sounds in each of 4 categories. The
four final categories included: water, glass, tear, zipper.

Participants were paid to participate in an online version
of the children’s game of “Telephone”. The instructions in-
formed participants that they would hear some sound and
their task is to reproduce it as accurately as possible using
their computer microphone. Participants listened to and im-
itated 4 sounds. Participants received one sound from each
of the four categories of sounds drawn at random such that
participants were unlikely to hear the same person more than
once. Imitations were monitored by an experimenter to catch
any gross errors in recording before they were passed on to
the next generation of imitators, including blocking sounds
that violated the rules of the experiment, e.g., by saying some-
thing in English.

Given large differences in recording quality resulting from
conducting the experiment online, we were unable to use pre-
viously published techniques for calculating acoustic distance
(cf. Lemaitre et al., 2016). Instead, we obtained subjective
measures of acoustic similarity using a controlled, random-
ized norming procedure completed by research assistants.
Five RAs listened to pairs of imitations while blind to gen-
eration and rated their similarity on a 7-point scale where a 1
meant the sounds could never be confused with one another
and a 7 meant the sounds were nearly identical.
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Figure 2: Increase in acoustic similarity over generations.
Points depict mean acoustic similarity ratings for imitations
in each category of environmental sounds. The predictions of
the linear mixed effects model with random effects for rater
and category are shown, with error bands denoting +/- 1 stan-
dard error of the model predictions.

Results
We collected a total of 480 imitations, of which 115 were
removed, leaving 365 imitations along 105 contiguous trans-
mission chains for analysis. Imitations from later generations
were rated as being more similar to one another than imita-
tions from earlier generations, b = 0.09 (0.02), t(4.5) = 4.42, p
= 0.009 (Fig. 2), suggesting that the imitations are stabilizing
through repetition.

Exp 2: Matching imitations to seeds
Experiment 2 was conducted to determine if the imitations re-
tained some resemblance to the original environmental sound
that motivated it (i.e. the seed sound). Participants listened
to imitations and guessed which seeds they came from. By
varying the relationship between the imitation and the options
presented to each participant, we were able to assess the ex-
tent to which the imitations retained categorical as opposed
to specific, identifying information. On the view that repeti-
tion makes the imitations more word-like, we expected later
imitations to be better indicators of categories of sounds as
opposed to specific sounds within each category.

Methods
All 365 imitations collected in Experiment 1 were tested in
each condition depicted in Fig. 3. On each trial participants
listened to an imitation and selected among four possible op-
tions as to which option sounded the most like the imitation.
They did not receive any feedback on their performance. We
tested three types of matching questions that differed accord-
ing to the relationship between the imitation and the four seed
sounds serving as the options in the 4AFC task (Fig. 3).

Figure 3: Types of matching questions depicted in relation
to the 16 seed sounds. For each question, participants lis-
tened to an imitation (dashed circles) and had to guess which
of 4 sound choices (solid circles) they thought the person
was trying to imitate. (Top) True seed questions contained
the actual seed that generated the imitation in the choices,
and the distractor seeds were sampled from different cate-
gories. (Middle) Category match questions also used distrac-
tor sounds from different categories but the correct seed was
not the actual seed, but a different sound within the same cat-
egory. (Bottom) Specific match questions pitted the actual
seed against the other seeds within the same category.

Results

Matching accuracy for all question types started above chance
for the first generation of imitations, b = 1.65 (0.14) log-odds,
odds = 0.50, z = 11.58, p < 0.001, and decreased steadily
over generations, b = -0.16 (0.04) log-odds, z = -3.72, p <
0.001. We tested whether this increase in question difficulty
was constant across the three types of questions or if some
question types became more difficult at later generations.

The results are shown in Fig. 4. Performance decreased
over generations more rapidly for specific match questions
than for category match questions, b = -0.05 (0.02) log-odds,
z = -2.53, p = 0.012, suggesting that category information
was more resistant to loss through transmission. One ex-
planation for this result is that the specific match questions
are simply harder than the category match questions. How-
ever, performance also decreased more rapidly for the easiest
type of question where the correct answer was the actual seed
generating the imitation. The advantage for having the true
seed among the options decreased over generations, b = -0.07
(0.02) log-odds, z = -2.83, p = 0.005. These results indicate
that later generation imitations were more likely to be recog-
nized as identifiers of a particular category than they were of
particular exemplars within each category.
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Figure 4: Accuracy in matching imitations back to seed
sounds. Performance is separated by question type based on
the relationship between the imitation and the options in the
question (see Fig. 3). Lines depict predictions from the gen-
eralized linear mixed effects model along with +/- 1 standard
error of the model predictions.

Exp 3: Collecting transcriptions of imitations
In addition to assessing stability in the acoustic properties of
the imitations, we also measured orthographic agreement. If
imitations are becoming more wordlike we would expect or-
thographic agreement to increase over generations.

Methods
We selected the first and final three imitations in each trans-
mission chain to be transcribed into English orthography. Par-
ticipants were instructed to write down what they heard as a
word so that the written word would sound like the message.

Results
We collected a total of 2182 or roughly 21 transcriptions per
imitation. All transcriptions containing actual English words
were excluded from analysis. Orthographic agreement was
measured as the longest contiguous substring match between
the most frequent transcription of an imitation and all other
transcriptions. Analyzing changes in orthographic agreement
over generations paralleled what was observed in the analy-
sis of acoustic similarity: Transcriptions from later generation
imitations were more similar to one another in terms of ortho-
graphic distance than transcriptions from earlier generations,
b = -0.12 (0.03), t(3.0) = -3.62, p = 0.035 (Fig. 5). This result
supports our hypothesis that the imitations were becoming
more stable in both acoustic and orthographic forms.

Exp 4: Matching transcriptions to seeds
Experiment 4 tested whether the transcriptions could be
matched back to the original seed sounds.
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Figure 5: Average orthographic distance among transcrip-
tions of imitations taken from first and last generations. Each
point represents the average distance among all transcriptions
for a single imitation. Error bars are +/- 1 standard error of
the linear mixed effects model predictions.

Methods

The top 4 most frequent transcriptions for each imitation tran-
scribed in Experiment 3 were tested in Experiment 4. Partici-
pants completed a modified version of the 4AFC described in
Experiment 2. Instead of listening to imitations, participants
now read a transcription of an imitation, which they were told
was an invented word. They were instructed that the word
was invented to describe one of four presented sounds, and
they had to guess which one. Specific match questions (see
Fig. 3) were not collected for transcriptions.

Results

Participants were able to guess the correct meaning of the
transcribed word above chance even after 8 generations of
repetition, b = 0.83 (0.13) log-odds, odds = -0.18, z = 6.46, p
< 0.001 (Fig. 6). This was true both for true seed questions, b
= 0.75 (0.15) log-odds, odds = -0.28, z = 4.87, p < 0.001, and
for category match questions, b = 1.02 (0.16) log-odds, odds
= 0.02, z = 6.39, p < 0.001. The effect of generation did not
vary across these question types, b = 0.05 (0.10) log-odds, z
= 0.47, p = 0.637.

Exp 5: Transcriptions as category labels

In Experiment 5 we examined whether there was a learning
advantage to the more word-like imitations emerging through
iterated repetition as compared to direct imitations of the
source of the sound. We hypothesized that transcriptions of
the more word-like forms emerging through repeated imita-
tion should be easier to generalize to new category members
than transcriptions from direct imitations.
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Figure 6: Matching accuracy for transcriptions of imitations
taken from first and last generations. True seed questions con-
tained transcriptions of the actual seed generating the tran-
scribed word. Category match questions contained transcrip-
tions of imitations of other seeds from the same category.

Methods
To determine which transcriptions to test as category labels,
we selected transcriptions which were matched above chance
in Exp. 2. Of these, transcriptions with fewer than two
unique characters or more than 10 characters in length were
excluded. The final set comprised first and last generation
imitations sampled to control for overall matching accuracy.

Participants learned, through trial-and-error, the names for
four different categories of sounds. On each trial participants
listened to one of the 16 environmental sounds used as seeds
and then saw a novel word–a transcription of one of the imita-
tions. Participants responded by pressing a green button if the
label was the correct label and a red button otherwise. They
received accuracy feedback after each trial.

The experiment was divided into blocks so that participants
had repeated exposure to each sound and the novel labels
multiple times within a block. At the start of a new block,
participants received four new sounds from the same four cat-
egories (e.g., a new zipping sound, a new water-splash sound,
etc.) that they had not heard before, and had to associate these
sounds with the same novel labels from the previous blocks.
The extent to which their performance declined at the start
of each block serves as a measure of how well the label they
associated with the sound worked as a label for the category.

Results
When participants had to generalize the meaning of the novel
label to new category members (new sounds), they were faster
when the label came from transcriptions of later generation
imitations than from transcriptions of first generation imita-
tions, b = -114.13 (52.06), t(39.9) = -2.19, p = 0.034 (Fig.
7A). Accuracy improved over generations but did not signif-
icantly differ between groups, p > 0.05. The effect can be
further localized within each block. Comparing RTs on the
trials leading up to a block transition and the trials immedi-
ately after the block transition (6 trials) revealed a reliable
interaction between block transition and the generation of the
transcribed label, b = -146.75 (65.47), t(1869.7) = -2.24, p =
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Figure 7: (Top) RTs on correct trials by block, showing faster
responses when learning category labels transcribed from last
generation imitations. (Bottom) RTs on trials leading up to
and immediately following the block transition where new
category members are introduced.

0.025 (Fig. 7B). This suggests that in addition to becoming
more stable both in terms of acoustic and orthographic prop-
erties, imitations that have been more repeated may also be
faster to learn as category labels.

Discussion
We show that repeated imitation of an originally imitative vo-
calization gradually becomes more word-like as it is trans-
mitted along the chain of a “Telephone” game. The first ev-
idence provided showed that imitations became more stable
over generations of repetition, both in terms of acoustic sim-
ilarity as well as in orthographic agreement. But more than
just becoming more stable over generations, the imitations
also become more word-like in that they served as more effec-
tive category labels. Category information was more resilient
to transmission decay than specific information identifying a
particular exemplar within a category. This category infor-
mation remained even when the imitations were transcribed
into lexical forms, as participants were able to guess the cate-
gorical meaning of the word at above chance levels even after
8 generations of repetition. One such consequence of hav-
ing words is that they make categorization easier. In support
of this conclusion, we found that participants were faster and
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not less accurate in learning category labels that had emerged
through repeated imitation than those who learned from tran-
scriptions of direct imitations of the environmental sounds,
completing the transition from nonverbal imitation to a fully
lexicalized word form and demonstrating the impact of this
transition on communication.

One result that did not fit squarely with imitations becom-
ing more word-like is that with transcriptions, there was no
difference over generations between question types. If the re-
sults of matching transcriptions back to seed sounds would
have mirrored the results of matching imitations we would
have expected the difference between True seed questions and
Category match questions to decrease over generations, but
it did not. Although participants were able to match tran-
scriptions to categories of sounds after 8 generations of rep-
etition, it was easier for them to match a transcription to the
actual seed that generated the transcription, meaning that in-
dividuating information was retained over and above cate-
gory information. One possible explanation for this is that by
converting the imitations into orthographic representations of
phonemes, idiosyncratic features of the sound could become
rendered as categorical phonological features. This process
could exaggerate the features and facilitate identification of
the source. To test this we need to collect match accuracy for
transcriptions on Specific match questions to see if transcrip-
tions are able to be matched within-category even when the
imitations that generated those transcriptions are not.

Our study focused on the formation of onomatopoeia–
sound-imitative words–but in addition to onomatopoeia,
many languages have semantically rich systems of ideo-
phones. These words comprise a grammatically and phono-
logically distinct class of words that are used to express a
variety of sensory-rich meanings (Dingemanse, 2012; Voeltz
and Kilian-Hatz, 2001). Notably, these words are often rec-
ognized by native speakers to be somehow imitative of their
meaning. For example, in Japanese, the word ‘koron’ – with
a voiceless [k] refers to a light object rolling once, the redu-
plicated ‘korokoro’ to a light object rolling repeatedly, and
‘gorogoro’ – with a voiced [g] – to a heavy object rolling
repeatedly (Imai and Kita, 2014). The iconicity of ideo-
phones was verified by an experiment that tested the ability of
nave listeners to guess the meanings of words sampled from
five different languages (Dingemanse et al., 2016). Although
words for sounds were guessed more accurately than the rest,
listeners were better than chance at guessing the synonyms
of ideophones that expressed meanings from all five seman-
tic categories tested – color/visual, motion, shape, sound, and
texture. In addition, laboratory experiments show that people
are able to generate imitative vocalizations for a variety of
non-sound concepts, and that these are also understandable
to nave listeners (Perlman et al., 2015). Thus vocal imitation
has the potential to play a role in word formation that extends
beyond just the imitation of sounds.

Our findings from an online game of Telephone suggest
that the formation of words from vocal imitation can be a sim-

ple process. The results show how repeated imitation can cre-
ate progressively more word-like forms while retaining a re-
semblance to the original sound that motivated it. This raises
the possibility that onomatopoeic words can be created sim-
ply through repeated imitation.
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Abstract 

We present a connectionist model of event knowledge that is 
trained on examples of sequences of activities that are not 
explicitly labeled as events. The model learns co-occurrence 
patterns among the components of activities as they occur in 
the moment (entities, actions, and contexts), and also learns to 
predict sequential patterns of activities. In so doing, the model 
displays behaviors that in humans have been characterized as 
exemplifying inferencing of unmentioned event components, 
the prediction of upcoming components (which may or may 
not ever happen or be mentioned), reconstructive memory, 
and the ability to flexibly accommodate novel variations from 
previously encountered experiences. All of these behaviors 
emerge from what the model learns. 
 
Keywords: events; schema; scripts; prediction; recurrent 
connectionist model 

Introduction 
We know many things about the world. How that 
knowledge is organized, its content, and how it is stored, 
accessed, and learned have been the subject of semantic 
memory research for some time. A long and rich tradition of 
scholarship has produced a relatively stable set of 
theoretical constructs that are used for discussing this kind 
of knowledge, including categories, concepts, and features. 

But people also possess another type of knowledge that 
has been long recognized as extremely important, although 
it is less clearly understood. This is knowledge about 
common situations and events, and has been referred to by a 
range of names, including pragmatic knowledge and world 
knowledge. Such knowledge appears to serve multiple 
purposes. It guides our behavior, and helps us interpret the 
behavior of others. We use this knowledge to anticipate the 
consequences of events as they unfold. We use this 
knowledge extensively in language understanding to make 
inferences about components of situations that may be 
unstated or incompletely described. 

Bartlett (1932) was one of the first psychologists to talk 
about the role of such knowledge in memory. Later, in the 
1970s and 1980s, cognitive psychologists such as Bransford 
and colleagues demonstrated that event knowledge is 
important in encoding and retrieving details about 
situations. Garrod and Sanford, among many others, showed 
that this kind of knowledge supports inferences in language 

comprehension. One assumption that appears to be shared 
(though was often implicit) was that the use of 
world/pragmatic/event knowledge in language 
comprehension occurred at late stages in processing. In 
large part this reflected theoretical assumptions of the time 
in linguistics and psycholinguistics, but it is also true that 
the typical experimental tasks used at the time were off-line, 
and did not lend themselves to tracking real-time 
incremental processing. 

Over the years, there have been a number of attempts to 
formalize this kind of knowledge, giving rise to mechanistic 
explanations involving frames (Minsky, 1974), scripts 
(Schank & Abelson, 1977), schema (Norman & Rumelhart, 
1981), and stories (Mandler, 1984), among others. Although 
the core intuitions motivating these proposals were widely 
accepted, the actual implementations revealed a number of 
challenges. Templates were inherently rigid and inflexible. 
Yet most situations admit a large range of variation and 
novelty. Moreover, many situations involve blends of 
multiple events. Symbolic architectures did not lend 
themselves to dealing with such challenges. Thorny 
questions were raised and not satisfactorily answered:  What 
is an event (and what is not)? What is the content and detail 
of event knowledge? Does event knowledge have a structure 
common across all event types? How is event knowledge 
accessed and used? How is event knowledge learned? These 
questions remain open to this day. 

Several recent developments have encouraged cognitive 
scientists to focus more intensely on event knowledge and 
how best to model it. Our own interest arises from work in 
language processing using real-time measures to examine 
processing as comprehenders deal with incrementally 
presented input. There is now considerable evidence that 
event knowledge plays a significant role in comprehension 
very early in processing. Indeed, it guides expectations even 
in advance of input being received. The time course of how 
this knowledge is accessed and deployed is now not only of 
great theoretical interest (insofar as it may constrain our 
theories about the cognitive architecture underlying 
language understanding), but has become something that 
can be measured empirically. 

A second development was the emergence of non-
symbolic computational frameworks that demonstrate the 
ability to capture behaviors that simultaneously reflect 
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awareness of global abstractions as well as sensitivity to 
ways in which those abstractions may be graded and 
affected by subregularities and even idiosyncracies. 
Connectionist models have these qualities (although 
Bayesian models often do as well). Our research uses a 
connectionist model because they exhibit key additional 
capabilities. They learn by example, and they allow us to 
probe in (simulated) real time the dynamics of the network’s 
responses to incrementally presented input. 

In the remainder of this paper, we present a model and 
report a set of simulations we have conducted. We begin by 
explaining the design criteria that guided model 
development. These criteria were chosen because we 
believe they are needed to model processes that reflect the 
use of event knowledge in human behavior. We conclude by 
discussing what we have learned from the model, and ways 
in which it might guide future research. 

The Model 

Design Criteria 
The model’s architecture was developed with the goal that it 
should have the following four properties. 
 
Learn the components that comprise an activity. We 
make the assumption that events can be viewed as 
sequences of activities, where activities occur in the 
moment and are comprised of various participants, 
actions, and contexts. Rather than prespecifying a 
template for necessary or sufficient components, the 
model must learn which components occur and co-occur 
across contexts and sequences. These co-occurrences 
may be statistically variable, and the model must learn 
these (often high-order) statistical interdependences. 

 
Learn the temporal structure of activity sequences. We 
also assume that the temporal structure of activity sequences 
that make up an event may be variable across instances of 
any given event type. The model must learn this temporal 
structure, including cases in which that structure is rigid and 
obligatory as well as cases in which there is a high degree of 
variability or optionality. The model should be able to use 
its knowledge of temporal structure to anticipate likely 
future activities given previously encountered sequences. 
These expectations should reflect both global contingencies 
as well as predictions that may reflect more idiosyncractic 
variants of an activity sequence. In human terms, the model 
should be able to make predictive inferences. 
 
Learn to generalize from specific examples of events. 
Although the model will learn from multiple examples of a 
given event type, it must learn the (often graded) patterns 
that underly them. It must also learn subregularities and if 
possible, exceptions. 
 

Fill in missing information. Both during learning and 
testing, the model may be exposed to activity descriptions in 
which some highly expected information is omitted. The 
model should be able to activate missing elements, as 
appropriate (pattern completion). In human terms, the model 
should be able to make elaborative inferences. 

Architecture 
The architecture of the model is shown in Figure 1. 

 
Figure 1 

 
There is a single network, but the left and right portions play 
complementary roles. The left portion receives input from 
the world in the form of (localist) specifications of potential 
participants, actions, and contexts that might characterize 
the current activity under description. Each rectangle thus 
represents a number of possible inputs of the same category 
(agents, patients, etc.). It should be emphasized, however, 
that there is no representational status to these groups. As 
far as the network is concerned, every input node in all of 
these groups is orthogonal to every other node. If there are 
similarities in terms of behavior or statistics of privilege of 
occurrence, the network must discover them. Input nodes 
are fully connected to nodes in the Hidden Unit layer, and 
hidden units also connect (with different weights) back to 
input units. This use of recurrence allows the network not 
only to learn co-occurrence patterns among input units, but 
also to implement constraint satisfaction. This means that 
after the network has learned, it has the potential to activate 
missing elements in an input pattern, as appropriate. The 
Next Activity side of the network consists of units that are 
identical to the Current Activity units, but the job of the 
Next Activity units is to predict which activity will follow, 
given the sequence so far. Recurrent connections from the 
hidden units back to themselves are critical for this function 
because they provide the network with an internal 
representation (which must be learned) of the past that can 
be used for prediction. This architecture builds on elements 
of prior modeling that has provided a strong foundation for 
the present approach, including in particular Botvinick and 
Plaut (2004), Elman (1990), Rogers and McClelland (2004), 
Rumelhart, Smolensky, McClelland, and Hinton (1986), St. 
John and McClelland (1990), and Reynolds, Zacks, and 
Braver (2007). 
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Training and Testing  
Simulations were conducted using the rbp package from the 
PDPtool simulator (McClelland, 2016). Weights in the 
network were initialized with random values between ±0.1 
and adjusted gradually using backpropagation through time 
(Williams & Zipser, 2004). Training stimuli were either 
artificially generated activity sequences (Studies 1-3) 
presented one activity at a time, or sequences obtained from 
human norming data (Study 4). After training, testing was 
conducted by freezing weights and presenting the network 
with input sequences designed as analogs of stimuli used in 
human experimental paradigms. Details of the general 
training regime can be found in 
http://tatar.ucsd.edu/jeffelman/EventModelTraining.html, 
and details relevant to each simulation are given below. 

Simulation Results 

Study 1: Pattern completion and elaborative and 
predictive inferences 
Typical language use relies heavily on interlocutors’ shared 
knowledge. This allows speakers to omit information that is 
assumed to be known by the comprehender, and allows 
comprehenders to infer unstated information. A frequent 
distinction is made between elaborative inferences, which 
involve unstated details regarding an activity currently 
described, and predictive (or forward) inferences, which 
involve expectations about what will occur next. Bridging 
inferences are those in which a comprehender draws on 
knowledge only as needed to understand a prior statement. 
The extent to which, and conditions under which, such 
inferences are drawn remains a topic of debate. Bridging 
inferences are largely uncontroversial. However, whether, 
and under which conditions, elaborative and predictive 
inferences occur is still debated (for review, see Murray, 
Klin, & Myers, 1993). In Study 1, we first verify that the 
constraint satisfaction properties of the network do support 
inference under optimal conditions. We then examine the 
fragility or robustness of such inferencing because it has 
been claimed that discrepant data have arisen from stimulus 
properties and the sensitivity of behavioral measures. 
 
Simulation 1.1. The network was trained on event 
sequences that ranged in length from three to six activities. 
The sequences might be glossed as (1) John goes to a fancy 
restaurant; (2) John is cutting wood in the forest, using an 
axe; (3) John (and other people) cut themselves accidentally 
with a knife, and he bleeds; (4) John (and other people) cut 
themselves accidentally with an axe and the wound is fatal; 
(5) Mary and Penny are in the library and Mary asks Penny 
a question, which Penny answers. Having learned these 
sequences, the model was then tested on novel sequences. 
The sequences were novel both in that they omitted critical 
information, and they involved new combinations of 
activities that the model had not encountered in the same 
event. Figure 2 shows activations in the Next Activity units 

in response to the input sequence John is in a restaurant; 
John cuts himself; What happened to John? (the query takes 
the form of simply presenting John without any specified 
result, so the network must fill in the information). Figure 3 
shows similar activations, but in response to the sequence 
John is in the forest; John cuts himself; What happened to 
John? 

 
Figure 2 

 
Figure 3 
 
After receiving the input that John is in a restaurant, a knife 
is inferred to be present, whereas in the forest, axe is 
activated. These may be considered elaborative inferences. 
Then when John cuts himself, with no instrument 
mentioned, the network immediately begins to predict the 
result that is consistent with the instrument. These are 
predictive inferences. Such inferences have not always been 
found in humans, however. One possibility raised by 
Murray et al. (1993) is that failures to detect predictive 
inferences may result from experimental stimuli in which 
either the forward inference is disrupted, or it is not tested 
soon enough. In Figure 4, we see what happens when the 
discourse is disrupted by switching to a new topic, which is 

 
a situation involving Mary, immediately after the cutting 
activity. The network begins to predict that John will bleed 
(because he is assumed to have cut himself with a knife, 
given the restaurant context). However, as soon as Mary is 
introduced, the activations of all consequences of cut 

Figure 4 
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decrease sharply. Probing for the consequence of John 
cutting himself subsequent to this topic change would show 
little or no evidence of the predictive inference, consistent 
with Murray et al.’s findings. 

Simulation 1.2. One open question concerns precisely how 
far into the future comprehenders predict when processing 
incrementally presented language. In much of the empirical 
literature focusing on prediction in language, there has been 
an implicit assumption that the next word in a sequence is 
anticipated by comprehenders, but nothing beyond that. 
However, more recent findings suggest that when language 
is used to describe an event, comprehenders anticipate 
event-relevant elements even at points in the discourse 
where they might not be appropriate (Metusalem, Kutas, 
Urbach, Hare, McRae, & Elman, 2012). A simplified 
stimulus example is the short story: The crowd is in the 
stands. The crowd looks around. The skater goes to the 
podium. The audience applauds, The skater receives a ___. 
Participants’ brain activity was measured while reading the 
final noun. When an event-appropriate word, such as medal, 
was presented, the N400 amplitude was small. A word that 
was completely anomalous (e.g., bleach) elicited a large 
N400. However, a word that was contextually anomalous 
but event-appropriate (e.g., podium) produced an N400 with 
intermediate amplitude. The authors interpreted this as 
evidence that event elements are activated and available 
even at times when they might not be expected immediately.  
Figure 5 shows the network’s activations in the Next 
Activity units throughout such a stimulus sequence. 

 
Figure 5 

By the second activity, the network has already activated 
two event-appropriate elements, podium and medal. Bleach 
is not activated at all. As the focus shifts in the fourth 
activity back to the crowd, both medal and podium are 
deactivated. However, near the end, the network re-activates 
both. The re-activation of medal is not surprising because it 
has been mentioned explicitly. However, the network has 
also learned that podium is the likely location for awarding a 
medal and so activates it as well, though at a lower level. 
There are two lessons from this simulation. First, behavioral 
evidence for the activation of putatively inferred event 
elements may depend on the timing of the probe. Second, it 
may be that only highly sensitive behavioral measures will 
reveal the presence of partially activated event elements. 
These elements, even if only partially activated, become 
more easily accessible should subsequent discourse make 
reference to them. This in fact was seen in Simulation 1.1. 

Study 2: Novel Events and Blending 
In real life, events exhibit not only variability (which the 
model accommodates, as we see in Figures 1 and 2) but 
often are combined in novel ways. Fixed templates or rigid 
structures are ill suited for dealing with this. In the next 
simulation, we test the model’s ability to flexibly respond 
when events are combined in unusual ways. 
 
Simulation 2.1. The model was trained on sequences that 
included examples of going to a restaurant (as in Simulation 
1.1), and activities corresponding to a romantic relationship 
between two people (John and Mary), with Mary being 
married to a third person (Bill). Furthermore, the model was 
exposed to examples of aggressive behavior between 
various people (but not including John or Bill). In many of 
the latter examples, weapons are used. Gun is a more typical 
weapon, but knives are used occasionally. After training, the 
model was tested on a sequence that might be glossed as 
John and Mary are at a fancy restaurant. John and Mary 
cut steak with a knife. Bill enters the restaurant. Bill attacks 
John. Activations of relevant nodes are shown in Figure 6. 

 
Figure 6 

Two things are apparent. First, as soon as Bill enters the 
restaurant, the model quickly adjusts its expectations about 
what it predicts will happen next. Second, and more 
interesting, is that although the model has learned that gun 
is the most common weapon used in aggressive behavior, 
the presence of knife that was established from the outset 
(even prior to its mention) leads to the knife being the 
predicted instrument in this new situation. Thus, the model 
not only adjusts to a change in sequence structure that it has 
not encountered before, but it also flexibly incorporates 
relevant components from the first event into the second 
event. That is, the model produces a novel response to a 
situation it has never encountered by drawing and 
integrating knowledge from different events. 

Study 3: Priming 
Studies 1 and 2 illustrate examples of priming. There is a 
large literature showing that event relevant information 
facilitates processing target elements related to that event. 
These include typical agents, patients, and instruments 
priming their event-relevant verbs, priming between event-
relevant nouns, and verbs priming their event-related agents, 
patients, and instruments (for review, see McRae & 
Matsuki, 2009). The model exhibits the same behavior, not 
shown here because of space limitations. Instead, we 
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demonstrate an example of priming involving second order 
dependencies between event elements. Bicknell et al. (2010) 
found that the patient that is expected to follow a given verb 
may depend on the agent carrying out the action. Thus, 
shopper saved… primes money, whereas the lifeguard 
saved… primes person. (Control conditions established that 
the priming was not directly between the agent or verb and 
the patient, but that it required the combination.) 
 
Simulation 3.1. The model was trained on various examples 
of shoppers and lifeguards (and other people) in events in 
which saving was one of the activities. Typically, reflecting 
the corpus analyses carried out by Bicknell et al., shoppers 
save money whereas lifeguards save people. When probed 
with the partial description of an activity shopper+saved 
(Figure 7), the model predicted money as the most likely 
patient, compared to lifeguard+saved, which led to greater 
activation of person (Figure 8). However, we also see that 
that there is an asymmetry in the responses, such that at later 
stages in processing, lifeguard+saved results in an increased 
activation of money (though still lower than person). 

    
Figure 7                                         Figure 8 
     
This reflects asymmetries in the training data that mirror 
asymmetries in corpus analyses, that is, that save is overall 
more commonly associated with money than with people. 
We might test the model’s predictions (to our knowledge, as 
of now untested) by testing whether the timing of the patient 
probe leads to different degrees of facilitation, depending on 
when the probe was presented. 

Study 4: Learning from Human Data 
In the previous simulations, we used training sets that were 
designed by hand. The design of the training corpora was 
controlled to carefully probe the network’s behavior under 
different learning situations. This strategy is similar to that 
used in many human behavioral experiments. But in real 
life, people’s knowledge of events results from experiences 
that may involve considerably greater variability. 
Consolidating such experiences and making sense of 
commonalities, subregularities, and exceptions is a 
challenge. Furthermore, temporal structure may vary 
considerably not only between different event types but 
even within a single event type. For example, there may be 
some parts of an event in which the ordering of activities is 
consistent and even obligatory (eggs must be broken before 
they are fried), whereas activity sequences in other parts of 
the event may be optional (one might make coffee before 
making eggs, or after). To investigate these issues, we 

conducted a norming study to sample people’s knowledge 
of types of events. 
 
Norming study 4.1 We used 81 events, drawing on prior 
literature that has used stimuli that describe events and 
situations. Some of these events have clear goals and 
outcomes (e.g., fixing a flat tire). Other events are more 
situation-like, in that things happen but the goal and 
outcome are less clear (e.g., going to a picnic). Using 
Mechanical Turk, participants were asked to list up to 12 
activities for each event. Participants saw a random subset 
of 10-12 of the 81 events, and each event was presented to 
22-24 different participants. Table 1 shows responses from 
three participants for fixing a flat tire. 

Table 1: fixing a flat tire 

Pull over Get out of car Pull over 
Get out of car Loosen lug nuts Open trunk 
Open trunk Jack up car Get tire iron 
Get spare tire Remove lug nuts Get spare tire 
Get jack Remove flat tire Put on hazard lights 
Remove flat tire Put on new tire Jack up car 
Put on new tire Tighten lug nuts Remove lug nuts 
Tighten lug nuts Remove jack Take flat tire off 
Put flat tire in trunk  Put on new tire 
  Tighten lug nuts 
  Lower car 

 
The data can be visualized using graph analysis, in which 
nodes represent activities and directed arrows show 
temporal sequence (size indicates frequency), as in Figure 9. 

 
Figure 9 

Some of the sequences are consistently ordered (e.g., jack 
up car > remove flat tire > put on new tire), undoubtedly 
reflecting causal constraints. Other sequences may be 
performed optionally at different times. How does the model 
deal with such data? 
Simulation 4.1. The model was trained on the activity 
sequences provided by 23 participants for fixing a flat tire. 
Of particular interest is that although the model responds 
appropriately to the data it was trained on, its responses also 
incorporate what it has learned from other participants. The 
model thus does not slavishly reproduce the individual 
training data, but detects general patterns that are common 
across all the data. 

Can the model generate activity sequences on its own? We 
tested this by seeding the model with a reasonable starting 
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activity, and then using the most strongly predicted 
elements as the subsequent input. This process iterated until 
the event was complete. The initial five activities in the 
network’s self-generated sequence are shown in Figure 10 
(presenting greater than five makes the figure unreadable). 
Notably, the network’s self-generated activity sequence is 
not identical to any single participant’s sequence. However, 
it is a completely reasonable abstraction of the sequencing 
across all participants’ descriptions. 

 
Figure 10 

Discussion 
Our goal was to develop a model that could learn the 

structure and temporal dynamics of activity sequences, as 
well as the co-occurrence properties of participants, 
activities, and contexts in those sequences. Although we 
might call these sequences events, the concept of event is 
not a primitive in the model and events are not pre-defined 
templates. Rather, what we might call an event is an 
epiphenomenal consequence of having to learn about 
activity sequence structure. Having done this, the 
architecture of the model allows it to perform pattern 
completion, both in the moment (supporting elaborative 
inferences) and across time (supporting predictive 
inferences). The model replicates a wide range of behavioral 
studies (only a few of which are described herein) for which 
event knowledge has been hypothesized to play a role. It 
also produces unanticipated behaviors that can be tested 
empirically to assess the model. 

A great deal remains to be done. The model’s inputs serve 
as cues to event knowledge, but the model itself does not 
provide those cues. Those cues must come from perceptual 
or motor evidence from the world as well as a language 
processor. Nor does the model provide an account for how 
these various cues can serve to alter focus on different event 
elements, including adjusting how the temporal contour of 
the event is understood (e.g., by grammatical aspect). We 
are guardedly optimistic that these are tractable problems, 
and that the model we propose here provides a solid 
framework for understanding how people acquire, represent, 
and use knowledge of events in the world. 
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Abstract 

Speakers of Mandarin, Spanish, and Yucatec Maya watched 
videos of two actors involved in a causal chain initiated by 
one of them. After watching each video, participants divided 
10 tokens into piles indicating their assignment of 
responsibility for the resulting event. There was a significant 
interaction between intentionality and population: causer and 
causee intentionality made a significant difference only for 
the Spanish and Yucatec participants, but not for the Chinese 
participants. This is in line with previous findings suggesting 
that internal dispositions play a lesser role in responsibility 
attribution in societies in which attention to individual agency 
is far more common than attention to group agency.  

Keywords: causality; agency; responsibility; intentionality; 
cultural mediation; linguistics; social psychology 

Introduction 

Linguistic theories of the mapping between meaning and 

syntactic form in language have long recognized the key 

role of agency and causality. In verbal representations of 

causal chains, causality and agency determine the 

assignment of grammatical relations such as subject and 

object, voice (active/passive), case marking, and a host of 

other properties (e.g., Croft 1987; Dowty 1991; Foley & 

Van Valin 1984; among many others). Yet, much of this 

work implicitly treats causality and agency as universal 

notions – even in crosslinguistic research (e.g., Comrie 

1981; Dixon 2000; Shibatani 2002). Meanwhile, a growing 

body of work in the field of social psychology calls the 

universality of these notions very much into question. 

Take, for example, the nexus between responsibility and 

intentionality. Much theoretical work on agentivity in 

language assumes that prototypical agents are volitional and 

that nonvolitional causers are either atypical agents or not 

agents at all (Dowty 1991; Lakoff 1977; Van Valin & 

Wilkins 1996; inter alia). [We assume in the following that 

volitional actions require a choice on the actor’s part and 

intentional actions require a plan; the latter are thus a subset 

of the former (cf. Van & Valin & Wilkins 1996: 315-316)]. 

However, cross-cultural research since the 1990s has 

uncovered evidence suggesting that internal dispositions 

such as volition and intentions do not play the same role in 

attributions of causality across cultures. Much of this 

research has focused on a contrast (treated as binary) 
between two types of societies that are said to differ from 

one another in terms of the relative prominence of 

individual agency and group agency in their members’ 

cognition. American culture has been said to downplay 

collective agency in favor of individual agency. We assume 

that our Spanish participants exhibit the same trait. In 

contrast, group agency is hypothesized to play a relatively 

more prominent role in Chinese culture. 
For example, in one classic study, Morris & Peng (1994) 

examined reports of similar crimes in Chinese- and English-

language newspapers, showing that the former paid 

relatively more attention to explanatory factors in the 

situational context of the crime while the latter spent more 

time discussing the perpetrator’s presumed disposition. 

Similar patterns have been reported, with varying theoretical 

conclusions, by Chiu et al (2000); Choi & Nisbett (1998), 

Choi et al (1999), Maddux & Yuki (2006); Menon et al 

(1999), and Peng & Knowles (2003), inter alia. 

If the attribution of responsibility and causality is indeed 

influenced by culture-specific folk theories of agency, then 

such folk theories may also influence the role of agency in 

the grammars of different languages. We are currently 

laying the groundwork for a large-scale crosslinguistic study 

of the representation of causality in the grammars of 

languages spoken around the world. In preparation for this 

effort, we decided to directly investigate the role of 

intentionality in causal attributions in three populations: 

Mandarin Chinese speakers from Mainland China, Spanish 

speakers from Spain, and Yucatec Maya speakers from 

Mexico. Mayans practice a traditional Mesoamerican 

horticulturalist society surrounded by a Western-dominated 

Spanish-speaking society and transitioning into the Age of 
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Globalization. Their inclusion in our study allows us to open 

up the investigation beyond the egocentric-sociocentric 

dichotomy of the debate on ‘dispositionalism’ and 

‘situationalism’ in social psychology, but also to compare 

our findings to those reported in Le Guen et al (2015), 

whose sample includes Yucatecans as well.  

Le Guen et al (2015) investigated the role of concepts of 

chance and coincidence in causal attributions among four 

populations, comparing Tseltal and Yucatec Mayans, urban 

Mexicans of non-indigenous descent, and Germans. They 

based their stimuli on Alicke’s (2000) ‘Culpable Control 

Model’, which distinguishes three components of 

responsibility: whether the causer intended their immediate 

action (‘IA’), whether they intended the final outcome 

(‘IO’), and whether there is a causal relation between the 

action and the outcome (‘AO’). The distinction between 

IA and IO informed our stimulus design as well. Le 

Guen et al found that intentionality had a greater effect on 

the Mayan participants’ attributions of causality than on 

those of the German and Mexican populations. By way of 

interpretation, they tacitly point toward the tradition of 

anthropological research identifying elements of ‘magical 

thinking’ in traditional non-Western cultures (e.g., Evans-

Pritchard 1937). 

Method 

Speakers of Mandarin, Spanish, and Yucatec Maya watched 

videos of two actors involved in a chain of events that 

culminates in a resulting event. In each case, the chain is 

initiated by one actor, dubbed the Causer in the following. 

The second actor is affected by the Causer’s action and may 

or may not in turn affect a third, inanimate, entity. This 

second actor is labeled the Causee After watching each 

video, participants divided 10 tokens into piles indicating 

their assignment of responsibility for the resulting event. 

Piles represented ‘Causer’, ‘Causee’, and 'Neither'.  

Participants 

12 speakers of Yucatec Maya, 16 Mandarin speakers, and 

20 Spanish speakers were recruited from and tested at sites 

in Barcelona and Murcia, Spain, at Beihang University in 

Beijing, China, and in the village of Yaxley, Quintana Roo, 

Mexico. The Chinese participants included 8 women and 8 

men aged 19-40 (M = 27.46, SD = 4.98). Spanish 

participants included 12 women and 8 men aged 18-55 (M = 

28, SD = 12.92). The Yucatec participants included 5 

women and 7 men aged 18-76 (M = 44, SD = 16.83). 

Participants completed the tasks in about 45 minutes and 

were compensated 100 pesos (approximately $5 USD), 8 

euros (approximately $9 USD), and a cup of coffee, 

respectively (all Mandarin participants were students of the 

school of foreign languages at Beihang University). 

Materials 

The experiment comprised a training phase involving 10 

video clips and a test phase with 24 video clips. Four of the 

training clips and three of the test items were cut from news 

reports, a home video show, and a movie. The remaining 

videos were taped with students and faculty of the 

University at Buffalo Linguistics Department staging the 

actions and events. The mean duration of the test videos was 

8.05 seconds (SD 4.56s). They were shown to the 

participants on laptop computers. 

The test items are described in Table 1 in terms of the 

action/event involving the Causee. These actions/events can 

all in one way or another be understood as caused by the 

Causer – in some cases via a physical impact on Causee; in 

others via a reflexive/uncontrolled or deliberate 

psychological response to the Causer’s behavior or as a 

response to a gestural command by Causer. Three 

intentionality variables are represented as well: whether 

Causer intended their action (IA), whether Causer 

intended the outcomes of the chain (IO), and whether 

Causee acted intentionally/volitionally.1  

 

Table 1: Test Phase Video Descriptions 

Clip Description 

(CE=Causee) 

Causer 

intentional 

Causee 

intentional  

 IA IO  

CE breaks a plate  Yes Yes Yes 

CE breaks eggs  Yes Yes Yes 

CE collapses a cup tower Yes No No 

CE collapses a cup tower Yes Yes No 

CE collapses a cup tower Yes Yes No 

CE cuts a piece of paper Yes Yes Yes 

CE falls Yes Yes No 

CE falls No No No 

CE falls No No No 

CE is scared/falls over Yes Yes No 

CE is startled No No No 

CE is thrown a distance Yes Yes No 

CE laughs Yes Yes No 

CE leaves Yes No Yes 

CE leaves Yes Yes Yes 

CE sits down Yes Yes Yes 

CE swings a swing Yes Yes Yes 

CE tears a piece of paper Yes Yes Yes 

CE tears a piece of paper Yes Yes No 

CE tears a piece of paper No No No 

CE tears a piece of paper Yes Yes No 

CE tosses a ball into a box Yes Yes Yes 

CE wakes Yes No No 

CE yawns No No No 

 

                                                           
1 Items that are represented in terms of the same description and 

configuration of variables in Table 1 differed from one another in 

terms of 1) the use of an instrument by the Causee, 2) for 

unintentional Causees, the medium of interaction between the 

Causer and the Causee (physical (e.g., pushing) vs non-physical 

(e.g., yelling loudly to startle) manipulation). The impact of these 

further variables has not yet been analyzed. 
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Intentionality was indicated by obvious body language on 

the part of the actor, including whether or not they looked at 

the causee or touched them with their hands in a manner that 

appeared to be controlled. For example, in an 'unintentional' 

clip, a Causer walks into a room without looking at the 

causee and loudly sneezes, which causes a startled Causee 

to tear a piece of paper. In the contrasting 'intentional' clip, 

the Causer looks at the Causee and deliberately pushes 

them, causing them to tear the paper. Four of the training 

items featured scenes that fit the same parameters as the test 

items. The remaining six items featured actions on which 

the two actors collaborate, events that occurred without the 

involvement of either actor, and events in which one actor 

destroyed an object while the other looked on.  

Participants were given 10 identical tokens, which 

consisted of small glass stones or other objects of similar 

size. To prevent confusion about the purpose of the task, no 

tokens resembling currency were used. These tokens 

represented total responsibility for end results in video clips 

observed during the task, where each token symbolized 10% 

of total responsibility. Participants were also given a sheet 

of paper with three circles drawn on it. The leftmost circle 

represented the actor who ended in the left-most position or 

final frame of the video clip, the center circle represented 

the other actor, and the right-most circle represented 'neither 

actor.' Circles were arranged in a horizontal row, or in two 

rows where the two circles representing actors were next to 

one another in the top row and the 'neither' circle was drawn 

below them. 

Procedure 

Preparation. Prior to working with participants, researchers 

established how to convey the concept of responsibility in 

the target language. A complication of concern was the 

potential for negative implications of 'blame'. To avoid 

participant confusion over assigning blame to a neutral 

event, researchers explained that participants should think of 

assigning responsibility in terms of explaining the events to 

someone who wanted to know what happened and why. For 

video clips depicting one character involuntarily initiating a 

causal chain, participants had to decide between prioritizing 

intentionality or control in the assignment of responsibility. 

This provided data on cross-cultural differences on how 

these two factors were weighed. 

Before the training phase, the task was explained to 

participants in their native language. Participants were asked 

to indicate which actor in each video was responsible for the 

resulting event and reminded that they could distribute 

responsibility between all three piles, two piles, or just one 

pile so long as the distribution of tokens at the end of each 

trial was proportional to the amount of responsibility of each 

actor. After this explanation, the participant watched the 10 

training videos.  
 

Training. The purpose of the training phase was to allow 

the participants to gradually familiarize themselves with the 

rationale of the ratings procedure. For this reason, it was 

designed to initiate training with six scenes in which the 

assignment of responsibility seemed straightforward 

(collaborative action; no involvement of either actor; or one 

actor involved while the other was not), followed by four 

items similar in structure to the test items, where 

responsibility assignment is more competitive, at the end. 

For each of the first three videos, the experimenter would 

demonstrate by playing the video, and apportioning the 

tokens in the appropriate way, and then would explain why 

they did so. Next, the experimenter would invite the 

participant to use the tokens to rate responsibility in each of 

the remaining seven scenes. The experimenter would play a 

clip, establish which circle on the paper represented each 

actor in the video, replay the video and ask the participant to 

distribute the tokens. The experimenter would correct any 

confusion about allocating the tokens and verified that the 

participant understood the task.   

 

Testing. The test items were presented in one of four 

pseudo-randomized orders. Participants were randomly and 

evenly distributed over these four orders. 

During the test phase, participants watched the 24 test 

clips. After each clip, experimenter and participant 

established which circle would represent each actor in the 

video and then played the video a second time. The 

participant was then asked to distribute responsibility for the 

final outcome of the clip between the actors. Responses 

Figure 1: Causee leaves when causer sings poorly 

Figure 2: Causee knocked into cups by causer with cart 
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were recorded in a spreadsheet. Experimenters did not 

question participant understanding of video clips or correct 

token distribution during this portion of the experiment. 

After watching the 24 clips, the participant viewed each clip 

again and provided a verbal description of the action in the 

video. The sessions were video recorded in their entirety. 

Results 

Exclusions 

One response by a Mayan participant was accidentally 

omitted from recording. There are no further missing 

observations. 

Predictions 

If it is the case that East Asians pay relatively less attention 

to internal dispositions of the causer and more to situational 

factors in their causal attributions compared to Westerners, 

as suggested by the line of research starting with Morris & 

Peng (1994), both Causer intentionality and Causee 

intentionality should play a less predictive role in the ratings 

of the Chinese participants than in those of the Spanish 

participants. On the other hand, Le Guen et al’s (2015) 

findings suggest that Causer intentionality may play an even 

greater role in the Yucatecans’ responsibility assignments 

than in those of either of the other two groups. 

Analysis 

Figure 3 shows the mean Causer responsibility ratings by 

population, suggesting small but significant differences 

(Mandarin M = 7.37, SD = 2.09; Spanish M = 5.98, SD = 

3.14; Yucatec M = 6.67, SD = 3.24). Figure 4 presents a 

breakdown by Causer intentionality, suggesting that the 

Mayan and Spanish participants, but not the Chinese 

participants, assigned more responsibility to intentional than 

to unintentional Causers, as predicted.  

 

 
Figure 3: Mean Causer responsibility rating by population 

A linear mixed effects regression model was fitted, using 

the lme4 package in R and treating the Causer responsibility 

rating as dependent variable. The rating was treated as a 

continuous rather than ordinal (categorical) variable since 

the participants expressed it through the proportional 

allocation of the tokens rather than through labeled 

categories. As fixed factors were included Population, IA, 

IO, Causee Intentionality, and all binary interactions 

between Population and the intentionality variables. 

Random intercepts were added for participant and stimulus 

clip (formula: CR.Responsibility ~ Population + IA + 

IO + Intentionality.of.CE + Population * IA + 

Population *  IO + Population * Intentionality.of.CE + (1 

| Participant.ID) + (1 | Clip.Code)). The three intentionality 

variables were coded binarily.  

 
Figure 4: Mean Causer responsibility rating by population 

and Causer intentionality 

Table 2 summarizes the effects. Due to the multitude of 

models, the confidence level should be Bonferroni-adjusted 

to p<.001. Effects outside this level should be ignored. 

There were main effects of population and causee 

intentionality and significant interactions between 

population and the IA link and between population and 

causee intentionality. There was neither a main effect of the 

IO link nor did it feature in any significant interaction. 

Collinearity of factors above .6 occurred exclusively 

between the absence of IA and the absence of IO (to be 

expected, as in the design of the items, the former entails the 

latter, i.e., we did not include scenes in which an unintended 

action accidentally yielded an intended outcome; cf. Table 

1) and between some of the interactions and either their 

component factors or interactions sharing a factor. 

Discussion 

The presence of an unintentional (nonvolitional) Causee 

significantly boosted attribution of responsibility to the 

causer across populations. This is of course eminently 

plausible and thus can be seen as very basic support of 

internal validity. 

In line with what Figure 1 suggests, the Spanish and 

Yucatec participants’ ratings were significantly lower than 

those of the Chinese participants, although the differences 
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were quite small. This effect is plausibly attributable to the 

Spanish and Yucatecan participants having paid more 

attention to the intentionality/volitionality of the Causee 

than the Chinese participants, in line with the hypothesis 

that intentionality plays a lesser role in the Chinese 

participants’ attributions.  

 

Table 2. Significant factors in the regression model with 

coefficients (sig. codes 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05) 

Factor Baseline population 

(CE = Causee) Chinese Spanish Yucatec 

Chinese N/A *** 5.1  

Spanish *** -1.2 N/A ** -1.1 

Yucatec  ** 1.2 N/A 

No IO    

No IA  *** -3.6 * -2.2 

CE unintentional ** 1.7 *** 2.8 ** 1.6 

Chinese * No IO N/A   

Spanish * No IO  N/A  

Yucatec * No IO   N/A 

Chinese * No IA N/A *** 3.1 * 1.8 

Spanish * No IA *** -3.1 N/A * -1.4 

Yucatec * No IA * -1.8 * 1.4  N/A 

Chinese * CE unintentional N/A ** -1.1  

Spanish * CE unintentional ** 1.1 N/A ** 1.2 

Yucatec * CE unintentional  ** -1.2 N/A 

 

Crucial for the evaluation of our predictions are the 

interactions between population and the causer 

intentionality variables. In line with our predictions, we 

found that absence of the IA link – i.e., an unintended 

action on the causer’s part – strongly positively interacted 

with Chinese against Spanish as baseline and vice versa. In 

other words, the Chinese participants’ responsibility scores 

for unintentional causers were significantly higher than the 

Spanish participants, in line with predictions. The relevant 

interactions with Yucatec were not significant by the 

Bonferroni criterion. 

Turning to unintentional causees, this factor showed a 

significant positive interaction with Spanish against Chinese 

as baseline. The Spanish participants rated Causer 

intentionality higher than the Chinese participants when the 

Causee was unintentional. This suggests that the Spanish 

participants paid more attention to the intentionality of the 

causee than the Chinese participants did – again in line with 

predictions. When Spanish was the baseline, significant 

negative interactions with both Chinese and Yucatec were 

found (and when Yucatec was the baseline, of course the 

inverse positive interaction with Spanish materialized). This 

suggests that the Spanish participants rated Causer 

responsibility relatively higher when the Causee was acting 

involuntarily than did the Yucatec participants. It thus 

appears that Causee intentionality played a greater role for 

the Spanish participants than for the Yucatecans. 

The difference between the populations was specifically 

located in scenes that lacked IA, in other words, scenes in 

which an unintended action caused a certain result (which in 

our stimuli was likewise unintended). In all instances, the 

relevant actions of the Causer involved spontaneous bodily 

functions (yawning, sneezing, losing balance, fainting). 

Such acts caused the Spanish and Yucatec participants, but 

not the Chinese participants, to rate the Causer’s 

responsibility lower. In contrast, we found no significant 

effect for scenes in which intended actions had unintended 

consequences (e.g., causing somebody to leave the room by 

singing poorly or causing somebody to knock down a cup 

tower by running into them while dragging a cart backwards 

into the room). 

General discussion 

We did not find greater sensitivity to intentionality among 

our Mayan participants than among the other two groups. 

There is thus no apparent evidence of remnants of ‘magical 

thinking’ in our traditional non-Western population, 

contrary to the findings of Le Guen et al (2015). However, 

as predicted by a line of studies in social psychology, the 

Chinese participants in our experiment appear to have been 

less inclined to factor the intentionality of both the Causer 

and the Causee into their attributions of responsibility than 

the Spanish participants. To our knowledge, this has been 

demonstrated here for the first time in terms of relative 

responsibility distribution between competing actors.  

Future research 

Whether our evidence of culture-specificity in causal 

attributions  submits to the explanatory mechanisms in 

terms of folk theories of group agency vs. individual agency 

and/or context sensitivity invoked in research tradition that 

motivated the present study remains to be seen. A crucial 

test will be the extension of the investigation to other 

populations of the supposed ‘egocentric’ vs. ‘sociocentric’ 

types. We are currently preparing to test further populations. 

A question we intend to take up in the next phase of our 

investigation is whether the apparent difference in causal 

attribution also manifests itself in the grammatical means 

used when members of the different groups talk about 

causality. It has often been observed that more agentive 

causal chains tend to be represented more compactly in 

language than less agentive ones. Thus, Sally made Floyd 

knock over the cup tower implicates, but does not entail, that 

Sally acted intentionally, whereas Sally bumped into Floyd 

and he knocked over the cup tower does not (McCawley 

1976). This predicts that members of sociocentric societies 

may use relatively more compact representations of low-

intentionality scenarios than members of egocentric 

societies. If confirmed, this could suggest a relationship 

between grammars and folk theories of agency. 

For the treatment of agency in linguistic theories, two 

responses to our findings are conceivable: retain a universal 

notion of agency, which then plays a variable role in the 

grammars of different languages, or replace it with culture-

specific concepts of agency, which then would stand a 

chance of playing a more uniform role across languages.  
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Abstract 

Many of our cognitive capacities are shaped by enculturation. 

Enculturation is the temporally extended transformative 

acquisition of cognitive practices such as reading, writing, and 

mathematics. They are embodied and normatively constrained 

ways to interact with epistemic resources (e.g., writing systems, 

number systems). Enculturation is associated with significant 

changes of the organization and connectivity of the brain and of 

the functional profiles of embodied actions and motor programs. 

Furthermore, it has a socio-culturally structured dimension, 

because it relies on cumulative cultural evolution and on the 

socially distributed acquisition of cognitive norms governing the 

engagement with epistemic resources. This paper argues that we 

need distinct, yet complementary levels of explanation and 

corresponding temporal scales. This leads to explanatory 

pluralism about enculturated cognition, which is the view that we 

need multiple perspectives and explanatory strategies to account 

for the complexity of enculturation. 

Keywords: enculturation; neural plasticity; neural reuse; 
embodied cognition; cognitive niche construction; cumulative 
cultural evolution; cultural learning; reading acquisition; 
explanatory pluralism 

 

Introduction 

Many cognitive processes are shaped and facilitated by our 

successful acquisition of cognitive practices such as reading, 

writing, or mathematics. Cognitive practices are 

evolutionarily recent, embodied interactions with writing 

systems, number systems, and various other epistemic 

resources in our local environment (Fabry, 2017; Menary, 

2015). Given the evolutionary recency of cognitive practices, 

with reading, writing, and mathematics dating back to 

approx. 3000 BC (Donald, 1991), the question arises how 

their acquisition can be explained from an empirically 

informed perspective. The purpose of the present paper is to 

sketch an explanatory framework that can help close the 

current gap in thinking about the phylogenetic and 

ontogenetic emergence of cognitive practices. The proposal 

is that competence in the performance of cognitive practices 

is the result of enculturation.  

Enculturation is defined as the acquisition of cognitive 

practices during ontogeny. It is a temporally extended process 

that augments and transforms our overall cognitive 

capacities. There are two background assumptions that 

inform the conceptualization of enculturation. First, it is 

committed to a robust variant of embodied cognition 

(Menary, 2015). On this view, the embodied interaction with 

the local environment plays an indispensable functional role 

in at least some cognitive processes. In the present context, 

embodiment is understood as the bodily manipulation of 

epistemic resources (Menary, 2010; Rowlands, 1999), e.g. by 

initiating and executing eye movements and hand 

movements. Second, the present account of enculturation 

rests on on the assumption that cognitive practices are cases 

of strong embedded cognition (Menary, 2015). This amounts 

to the idea that at least some cognitive processes are realized 

by the integration of cerebral, extra-cerebral bodily, and 

environmental components. We will see in the course of this 

paper that the theoretical commitments to strong embodied 

and embedded cognition are supported by empirical research. 

 

Shaping the Brain and the Rest of the Body 

Enculturation is associated with significant changes to the 

organization and connectivity of the brain and to the 

functional profiles of embodied actions and motor programs. 

Learning driven plasticity (LDP) is a potent principle 

governing ontogenetic brain development, according to 

which structural changes of the organization and connectivity 

of brain areas lead to new neuronal functions (Ansari, 2012; 

Menary, 2015). LDP is not an open-ended process that leads 

to the unlimited realization of new neuronal circuits. Rather, 

it is constrained by the functional biases of certain cortical 

units that contribute to the development of new neuronal 

connections. This is suggested by empirical and conceptual 

work on neural reuse (Anderson, 2010, 2015) and neuronal 

recycling (Dehaene, 2005, 2010). The idea is that especially 

evolutionarily recent cognitive practices need to allocate and 

re-exploit already existing structural and functional 

connections of brain areas and integrate them into new 

neuronal circuitry. The scope of neural reuse in each 

particular case depends on the functional and structural biases 

of specific brain areas and on the functional proximity of uses 

to which these areas can be put (Anderson, 2015). 

Neural reuse – and its component process of neuronal 

recycling that is associated with the acquisition of reading, 

writing, or mathematics – is a guiding principle of LDP. This 

is especially important in cases of enculturation. The reason 

is that it helps explain how cognitive practices can be 

acquired, given that there was not sufficient evolutionary 

time for the development of brain circuits unequivocally and 

exclusively dedicated to them. 

The assumption that enculturation is defined as the 

acquisition of embodied cognitive practices gives rise to the 

idea that LDP is complemented by a genuinely bodily form 

of transformation. According to the principle of learning 

driven bodily adaptability (LDBA), new bodily ways to 
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interact with the socio-culturally structured environment 

emerge in the course of enculturation. LDBA guides the 

ontogenetic trajectory of skilled motor action. The resulting 

development of new motor patterns and action routines is 

constrained by extra-cerebral bodily biases, e.g., by the 

functional potential of the overall morphology of human 

bodies and their constitutive parts (Dounskaia, van Gemmert, 

& Stelmach, 2000; Furuya & Altenmüller, 2015; Phillips, 

Ogeil, & Best, 2009). The employment and allocation of 

bodily resources available to the human organism bring about 

the embodied adaptation to new cognitive practices in close 

co-ordination with LDP. In this sense, the functional biases 

of brain areas are complemented by the biases of functional 

units of the rest of the body. It is important to note that the 

overall possibility space of cognitive practices is not only 

defined, but also delimited by the anatomical and 

physiological properties of the human body. 

 

Interacting with the Cognitive Niche 

The present account of enculturated cognition is committed 

to the view that cognitive practices are distributed across the 

brain, the rest of the body, and the local environment. This 

leads to the assumption that our understanding of LDP and 

LDBA needs  to  be  complemented  by  considerations  of  

the  embodied  interaction  of  cognitive systems with the 

cognitive niche. The cognitive niche can be defined as the 

incrementally, trans-generationally structured socio-cultural 

environment that provides human organisms with epistemic 

resources for the completion of cognitive tasks (Bertolotti & 

Magnani, 2016; Clark, 2006, 2008; Kendal, 2011; Sterelny, 

2003, 2012; Stotz, 2010). Examples of resources in the 

cognitive niche include writing systems, number systems, 

and notational symbol systems. In addition, the cognitive 

niche is also characterized by socio-cultural institutions like 

kindergartens, schools, or universities. Cognitive practices 

are shared by a large number of individuals in the cognitive 

niche. Therefore, the skilful performance of cognitive 

practices is constrained by sets of cognitive norms. These 

norms regulate the interaction with epistemic resources 

(Menary, 2007, 2016). They need to be learned and 

automatized in the course of enculturation (Menary, 2013). 

Since cognitive practices are  socio-cultural  phenomena,  

their  acquisition  is itself  a  socio-culturally structured 

process. This process is characterized by scaffolded learning 

(Clark, 1997; Estany & Martínez, 2014; Wood, Bruner, & 

Ross, 1976). The notion of scaffolded learning refers to the 

idea that the acquisition of a cognitive practice is a systematic 

process of novice-expert interaction in the cognitive niche. 

This interaction is structured by the current developmental 

stage of the novice and a specific set of skills and knowledge 

that needs to be acquired in the long run (Vygotsky, 1978). 

 

Socio-Cultural Learning 

It is conceivable that scaffolded learning is the result of 

evolutionary processes that have shaped specific types of 

socio-culturally transmitted human cognitive capacities 

(Boyd, Richerson, & Henrich, 2011; Henrich, 2016). 

According to Kline’s (2015) recent framework for the 

investigation of teaching, direct active teaching is of vital 

importance for human scaffolded learning. It is defined by the 

“[…] manifestation of relevant information by the teacher to 

the pupil, as well as the pupil’s interpretation of that 

information as generalizable” (Kline, 2015, p. 12). In contrast 

to other forms of teaching and learning that are ubiquitous in 

the animal kingdom, e.g., social tolerance or opportunity 

provisioning, direct active teaching is specific to humans. It 

is likely to have co-evolved with genuinely human ways of 

cognitive niche construction. If correct, cumulative cultural 

evolution and scaffolded learning, where the latter might be 

the result of trans-generationally emerged socio-cultural 

processes (Heyes, 2012), mutually influence and constrain 

each other. 

In sum, enculturation is a complex phenomenon that 

requires the synthesis of several explanatory components 

targeting the cerebral, the extra-cerebral bodily, and the 

socio-cultural dimensions of cognitive practices. This leads 

the question how we can combine these components in such 

a way that we will end up with an explanation of 

enculturation that is both conceptually coherent and 

empirically plausible without running risk of committing 

mereological fallacies. The suggestion of the present paper is 

to analyse enculturation at three levels of explanation and 

corresponding time scales.  

  

Levels and Time Scales of Explanation 

Levels of explanation are defined by the conceptual and/or 

empirical tools, by the research questions, and by the 

individuation and operationalization that are employed to 

account for (a component of) a certain target phenomenon 

(Dennett, 1969; Drayson, 2012, 2014; Metzinger, 2013). In 

this sense, levels specify the scope and the epistemic tools of 

explanation. Following Drayson (2012), it is reasonable to 

include Kim’s distinction of the vertical and the horizontal 

into our meta-theoretical consideration of explanation: “The 

term ‘vertical’ is meant to reflect the usual practice of 

picturing micro-macro levels of a vertical array, with the 

micro underpinning the macro. In contrast, we usually 

represent diachronic causal relations on a horizontal line, 

from past (left) to future (right) […]” (Kim, 2005, p. 36). This 

distinction adds a temporal dimension to the individuation of 

levels of explanation. Accordingly, levels of explanation 

correspond to specific temporal scales. For the present 

considerations, we can distinguish three levels of explanation 

and corresponding time scales. 

First, on a sub-personal level of explanation, we can 

provide an account of the cerebral and extra-cerebral bodily 

functions that underlie the acquisition of cognitive practices. 

On this level of explanation, we focus on the corresponding 

physiological time scale. This temporal scale is defined by 

time intervals that have a duration of hundreds of 

milliseconds to several seconds. The time intervals are 
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determined by the full range of electrophysiological, 

neuroimaging, and eye-tracking paradigms and the resulting 

statistical analyses. This explanatory component is concerned 

with the consideration of LDP and LDBA. 

Second, on a personal level of explanation, we can 

investigate the diachronic unfolding of specific changes of 

the human organism as a whole that characterize the 

ontogenetic process of enculturation. This level of 

explanation corresponds to an organismic timescale. First, we 

can develop an account of the temporal unfolding of the 

novice’s ongoing interaction with experts in a particular 

domain. This helps specify the various stages of the 

acquisition of cognitive practices and the ways in which it 

relies on the scaffolding by other cognitive agents. Second, 

from this perspective we can provide an account of the 

properties of epistemic resources in the cognitive niche as 

they are relevant for the acquisition and on-going realization 

of cognitive practices. Finally, we can identify the set of 

cognitive norms that are acquired and applied in the course 

of the acquisition of a certain cognitive practice. 

Third, the supra-personal level of explanation is also 

relevant for a full-fledged account of enculturation. The 

reason is that contemporary cases of enculturation are 

rendered possible by evolved biological principles and the 

inter-generational transmission of practices, skills, and 

epistemic resources. On this view, enculturation is 

constituted by the interdependence of evolved cerebral and 

extra-cerebral bodily biases and of the on-going large-scale 

process of cognitive niche construction. Therefore, it seems 

reasonable to introduce an additional type of diachronic 

explanation, namely a supra-personal level of explanation 

that focuses on an evolutionary time scale comprising 

hundreds to thousands of years.   

 

Reading Acquisition: A Paradigm Case of 

Enculturation 

To illustrate the considerations, conceptual distinctions, 

and the meta-theoretical assessment of the account of 

enculturation, I will now consider reading acquisition as a 

paradigm case of enculturation. At first sight, reading poses 

a challenge to researchers, because it requires an explanation 

of how we are able to acquire reading, given that there was 

not sufficient evolutionary time for dedicated brain areas to 

develop. Dehaene (2010) refers to this as the “reading 

paradox.”  

On a sub-personal level of explanation and at a 

physiological time scale, this paradox can be solved by 

considering LDP and its guiding principle, i.e., neural reuse. 

There is now much empirical evidence suggesting that the 

brain undergoes significant plastic changes in the course of 

reading acquisition at times t1, t2, and t3. First, many studies 

                                                           
1 Intriguingly, recent data from fMRI experiments indicate that 

the left vOT area is also significantly associated with writing and its 

acquisition (Ludersdorfer, Kronbichler, & Wimmer, 2015; Purcell, 

Jiang, & Eden, 2017; Purcell, Napoliello, & Eden, 2011; Rapp & 

and theoretical evaluations emphasize the crucial importance 

of the left ventral occipito-temporal (vOT) area (Dehaene, 

2005, 2010; McCandliss, Cohen, & Dehaene, 2003; Price & 

Devlin, 2003, 2004; Vogel, Petersen, & Schlaggar, 2014).1 

Recent studies indicate that its activation level peaks in 

beginning readers and that its decrease, by way of 

comparison with the level of neuronal activation at t1, is 

associated with reading proficiency (Ben-Shachar, 

Dougherty, Deutsch, & Wandell, 2011; Brem et al., 2010; 

Maurer et al., 2006). Second, there is a significant increase of 

functional connectivity between the left vOT area and left-

hemispheric frontal and temporal areas that are reliably 

associated with language processing and production 

(Dehaene et al., 2010; Gaillard, Balsamo, Ibrahim, Sachs, & 

Xu, 2003; Turkeltaub, Gareau, Flowers, Zeffiro, & Eden, 

2003). It is in virtue of LDP that new structural and functional 

connections can be realized as a solution to new and 

challenging processing needs.  

LDP is complemented by LDBA. In the case of reading 

acquisition, LDBA is mainly realized by the developmental 

trajectory of eye movements. In general, eye movement 

patterns in reading are constituted by the alternation between 

fixations and saccades (Rayner, 2009; Rayner et al., 2001, 

2007). Eye movements are necessary because of the acuity 

limitations of the visual field. The functional biases of the 

ocular-motor system, e.g., the saccadic latency and the 

saccadic span, constrain the developmental trajectory of 

reading. Research paradigms employing eye-tracking 

methodologies are specifically interested in evaluating the 

span or amplitude of saccades, the duration of fixations, and 

the landing positions or locations of fixations with regard to 

certain target words embedded in syntactically and 

semantically structured linguistic items. Comparisons of 

novice and proficient readers reveal that proficient readers 

display a decrease of fixation durations, refixations (i.e., 

several fixations targeted at the same word), as well as an 

increase of saccadic amplitudes (Huestegge et al., 2009; 

Joseph & Liversedge, 2013; Seasseau et al., 2013). These 

findings suggest that ocular-motor patterns adapt to the 

demands and requirements of processing structured linguistic 

material. 

On a personal level of explanation and at an organismic 

time scale, reading acquisition is characterized by scaffolded 

learning and structured novice-teacher interactions. In the 

case of alphabetic writing systems, reading instruction puts a 

particular emphasis on phonics instruction (Rayner, 

Foorman, Perfetti, Pesetsky, & Seidenberg, 2001). Phonics 

instruction conveys the alphabetic principle, according to 

which graphemic units of an alphabetic writing system 

correspond to phonemic units of the target language (Castles 

& Coltheart, 2004; Dehaene, 2010; Snowling, 2000; Ziegler 

& Goswami, 2006). In the vast majority of cases, the 

alphabetic principle can only be understood and applied if 

Lipka, 2011). This provides further support for the idea of neural 

reuse, because it establishes that one particular brain area has a 

certain bias that makes it suitable to contribute to functionally 

distinct, yet partly overlapping neural circuits.  
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novices receive extensive instruction and scaffolded tutorials 

provided by teachers and other caregivers. These tutorials 

provide detailed information about the cognitive norms 

underlying reading, e.g., by progressively increasing the 

complexity of phoneme-grapheme correspondences in the 

training materials. In addition, there are other types of meta-

linguistic awareness that need to be made explicitly available 

to novice readers. Beginning readers are already proficient 

speakers of their native language and are able to apply 

fluently syntactic, semantic, and pragmatic norms in their 

everyday conversations. However, they usually lack the 

explicit insight that utterances are made up of sentences and 

that sentences are constituted by the combination of words 

(Frith, 1985; Rayner et al., 2001). To novices, these basic 

properties have to be made explicitly available in order to put 

them in the position to apply the knowledge about it 

automatically and fluently at later stages of reading 

acquisition. Furthermore, novices need to be acquainted with 

the norm that alphabetic writing systems are decoded from 

left to right and from the top to the bottom of a page 

(Dehaene, 2010). In sum, explicit reading instruction is a 

good example of scaffolded learning and of the socio-

culturally structured transmission of knowledge and skills.  

The history of writing systems is a good example of 

cumulative cultural evolution (Henrich, 2016). This example 

needs to be approached on a supra-personal level of 

explanation and at an evolutionary time scale. The first 

writing system we know of is the cuneiform system. It dates 

back to approx. 3000 BC and was pictorial in origin. The 

cuneiform system was cumulatively refined in the service of 

an accurate representation of abstract ideas and relations that 

were especially relevant for trade and the organization of 

social communities. Furthermore, the functional biases of the 

brain and the rest of the body constrained the properties of 

symbols, e.g., the arrangement of lines or inter-letter spacing 

(Dehaene, 2010). Linearity, the grouping of symbols, and 

grammatical norms were not pre-given properties of early 

writing systems. Rather, they gradually evolved over 

hundreds of years. Tracing back the development of 

alphabetic writing systems, Donald characterizes the 

evolutionary trajectory as a “[…] progression from a 

primarily visual medium, inventing completely new 

representations like lists of numbers, to a medium which, 

increasingly, tried to map the narrative products of the 

language system” (Donald, 1991, 289). In sum, then, 

contemporary writing systems are the direct result of 

cumulative cultural evolution. They were afforded by the 

socially structured need of a system that can represent 

transactions, relations, genealogies, and so forth. 

 

Towards Explanatory Pluralism 

The previous considerations suggest that we need at least 

three levels of explanation and corresponding temporal scales 

to unveil the complex dynamics that give rise to 

enculturation. This suggestion is at odds with explanatory 

monism, according to which there will always be one and 

only one explanation of a certain target phenomenon or a 

specific set of target phenomena in the long run (Colombo & 

Wright, 2017; Kellert, Longino, & Waters, 2006). It is 

informed by unificationism and by reductionism. 

Unificationism is the idea that there will always be one set of 

principles that is able to unify previously distinct kinds of 

explanation targeted at a certain phenomenon. Reductionism 

about theory formation is the idea that we will gain new 

knowledge if we discover low-level principles to which 

previously entertained higher-level explanations can be 

reduced (Colombo & Wright, 2017). The present analysis of 

enculturation and the distinction of complementary levels of 

explanation and corresponding time scales leads to the view 

that it is at least unlikely, if not impossible, that 

unificationism and reductionism are meta-theoretical 

principles that will lead to a complete and exhaustive account 

of enculturation. This is the reason why the present account 

of enculturated cognition is an example of explanatory 

pluralism about theory formation in the cognitive sciences. 

Explanatory pluralism is the view that there will always be 

more than one and only one explanation of a specific target 

phenomenon (Van Bouwel, Weber, & de Vreese, 2011; Dale, 

2008; de Jong, 2001). This stance towards enculturation 

promises to arrive at a better understanding of the complexity 

of the phylogenetic and ontogenetic development of 

cognitive practices and of the temporal unfolding of 

enculturated organism-niche interactions. Thus, the positive 

proposal is that the phylogenetic and ontogenetic components 

of enculturation on sub-personal, personal, and supra-

personal levels of explanation are required for the prospect of 

a full-fledged and complete account of enculturation. The 

consideration of reading acquisition as a paradigm case of 

enculturation can lend support to the idea that we need the 

pluralistic explanatory stance in order to account for the vast 

set of empirical results and empirically informed 

considerations applying to enculturation. 

 

Concluding Remarks 

Enculturation is a temporally extended process that 

transforms our overall cognitive capacities. In this paper, I 

have argued that enculturation is a complex phenomenon that 

needs to be approached on at least three levels of explanation 

and corresponding time scales. The reason is that 

enculturation spreads across the brain, the rest of the body, 

and the cognitive niche. Explanatory pluralism allows us to 

do justice to these dynamics, because it provides us with an 

explanatory strategy that is able to track the ontogenetic and 

phylogenetic component processes of enculturation. The 

application of this strategy to the cases of reading acquisition 

shows that the present account of enculturation has the 

conceptual resources to connect initially disparate lines of 

empirical research. The suggestion is that the present account 

of enculturation promises to provide us with a better 

understanding of the ways in which our cognitive processes 

are shaped and re-shaped by the delicate interaction of the 

brain, the rest of the body, and the cognitive niche. 
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Abstract

We developed a cognitive-pharmacokinetic computational
(CPC) model to understand how pharmacoactive substances,
such as caffeine and toluene, modulate cognition. In this in-
tegrated model, dynamic physiological mechanisms are sim-
ulated to predict concentrations of the solvent toluene in the
brain, which modulates specific cognitive systems in a dose-
response fashion over multiple hours. We used our CPC model
to reanalyze the results from prior research that documented an
increase in reaction time following exposure to toluene in sev-
eral laboratory tasks with no change in accuracy. Our analysis
provides tentative evidence that toluene affects motor execu-
tion, rather than attention or declarative memory.

Keywords: ACT-R; Toluene; Pharmacokinetic; Computa-
tional Models

Introduction
In cognitive science, there has been a growing trend toward
incorporating neurological, physiological, and bodily factors
into theories of cognition to improve our understanding of
cognition. van Rijn et al. (2016) argued that theories of cog-
nition should span multiple levels of abstraction, such as the
computational, algorithmic, and implementational levels pro-
posed by Marr (1982). Integrative models have the advan-
tage of explaining phenomena that are difficult to explain with
models cast at a single level, constraining and informing cog-
nitive models, demonstrating physiological/neural plausibil-
ity of cognitive models, and enabling prediction at multiple
time scales (e.g., milliseconds and hours).

Integrative models take several forms. For instance, em-
bodied cognition encompasses a diverse set of views with a
common emphasis on the central role for perceptual-motor
systems, bodily states, and the environment in cognition (Wil-
son, 2002). Many views of embodied cognition posit a recip-
rocal relationship between cognition and bodily states, or a
tight coupling between perception and action, whereas some
even consider the environment as part of the cognitive sys-
tem (Wilson, 2002). Another integrative approach incorpo-
rates physiological moderators of cognition, such as circadian

rhythm, to explain changes in cognition due to sleep depriva-
tion (Gunzelmann et al., 2009).

The benefits of integrated models have been demonstrated
in several recent studies. For example, Turner et al. (2016)
demonstrated that incorporating neural models into a sequen-
tial sampling model of inter-temporal decision making im-
proved fit and cross-validation compared to the component
models. Integrated models have also been used to understand
how cognitive moderators, such as stress and fatigue, alter
task performance. For example, Gunzelmann et al. (2009,
2012) developed integrated models to understand the detri-
mental effects of sleep deprivation on cognition. In the in-
tegrated models, the physiological dynamics of circadian os-
cillation and sleep homeostasis modulated specific cognitive
mechanisms. One important insight gained from these inte-
grated models was that sleep deprivation affects procedural
memory in simple reaction time (RT) tasks (Gunzelmann et
al., 2009) and declarative memory in arithmetic tasks (Gun-
zelmann et al., 2012). Dancy et al. (2015) used a similar ap-
proach to understand how the physiology of a startle response
affects cognition. Their integrated model revealed that the
startle response increases epinephrine and the behavioral con-
sequences could be explained in terms of fluctuations in the
level of noise in declarative memory.

Building upon these integrative approaches, we present a
general model that we call a cognitive-pharmacokinetic com-
putational (CPC) model to understand how pharmacoactive
substances (PSs) modulate cognition. PSs include toxins
(e.g., toluene), pharmaceuticals, and other chemicals (e.g.,
caffeine) that affect cognition. Although there is a robust lit-
erature showing that PSs impact behavior, there is little com-
putational work investigating which cognitive mechanisms
are affected by PSs. Cognitive models lack a theory detailing
how PSs are metabolized across time, whereas physiological
models lack a theory that can link physiological changes to
behavioral and cognitive consequences.

By integrating these approaches, we can disentangle the
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contributions of multiple cognitive systems to overall task
performance and identify which cognitive system is affected
by PSs. To test our CPC model, we focus on a chemical called
toluene, a colorless and odorless solvent commonly found in
products, such as paint and adhesives, and is present in many
work environments. Several studies have shown that acute
and chronic toluene exposure leads to performance deficits in
terms of RT or accuracy on a wide array of cognitive tasks
(Rahill et al., 1996; Tang et al., 2011). What remains unclear
is which cognitive system is affected by toluene exposure.
For example, RT could increase as a result of a slowdown in
attentional processing, motor execution, or memory retrieval.
We use our CPC model to distinguish between these compet-
ing explanations.

Data and Tasks
We developed a CPC model of the toluene exposure experi-
ment reported in Rahill et al. (1996). In that experiment, six
subjects completed a battery of cognitive tasks, once without
toluene exposure and again with toluene exposure. The ex-
periment was conducted in a chamber where the atmospheric
level of toluene was precisely controlled. A battery of seven
cognitive tasks was administered three times throughout each
8-hour condition: once upon entering the chamber, again at
150 minutes immediately following 15 minutes of exercise
and 15 minutes of biological exposure analysis, and one last
time at 330 minutes. In the toluene condition, the air concen-
tration of toluene was maintained at 100 ppm for the first 6
hours, after which point no further toluene was released into
the chamber. Rahill et al. (1996) found that toluene increased
mean RT for six of the seven tasks without impacting accu-
racy.

We developed CPC models for a subset of the tasks that
offered the greatest chance of differentiating between com-
peting accounts of performance decrements due to toluene
exposure. The tasks were the procedural memory task, the
recognition memory task, and the arithmetic task. Collec-
tively, these tasks form a discriminative test bed for evaluating
competing explanations because each task engages cognitive
mechanisms in the computational model to varying degrees
and thus produce a different pattern of predictions depending
on which mechanism is modulated by toluene. Furthermore,
a viable model must meet the challenge of producing the fol-
lowing pattern of effects with a single mechanism: an effect
of toluene on RT in the procedural and recognition memory
tasks, but not the arithmetic task.

Procedural Memory Task
On each trial of the procedural memory task, the number 1,
2, 3, or 4 was presented on the screen. Participants were
instructed to respond according to the following stimulus-
response mapping: press one button if the number was 1 or
2 and press another button if the number was 3 or 4. The
stimulus disappeared after a maximum of 600 ms. 1

1We interpreted the disappearance of the stimulus as a response
deadline in each task. In the discussion, we note that this assumption

Figure 1: An illustration of the dose-response predictions
of the motor CPC model for the procedural memory task.
Toluene is rescaled in RT units for illustration.

Recognition Memory Task
During the learning phase, participants studied a set of six
letters displayed simultaneously on the screen until they were
confident the letters were committed to memory. Next, on
each trial of the test phase, participants indicated whether or
not a memory probe was in the studied list. The stimulus
disappeared after a maximum of 850 ms.

Arithmetic Task
On each trial, a set of three single digit numbers were pre-
sented on the screen (e.g., 3 + 4 - 5) and participants indicated
with the appropriate button whether the solution was less than
or greater than 5. The stimulus disappeared after a maximum
of 3,500 ms.

Cognitive-Pharmacokinetic Computational
Model

The CPC model spans two levels of abstraction. At the phys-
iological level, the physiologically-based pharmacokinetic
pharmacodynamic (PBPK-PD) model describes the physio-
logical dynamics that control the distribution and concentra-
tion of toluene. The output of the PBPK-PD model is the con-
centration level of toluene in the brain at a given point in time.
At the cognitive level, the ACT-R cognitive architecture mod-
els the interplay of multiple cognitive systems during task
performance. ACT-R and the PBPK models are integrated
into a single model based on the assumption that toluene af-
fects physiological and neural processes that support cogni-
tion, which in turn, affects performance. Figure 1 illustrates
how mean RT for the motor CPC model tracks changes in
toluene level in a dose-response fashion. We describe the sub-
models and model integration in the following sections.

PBPK-PD Model
We used a PBPK-PD model to quantify the concentration of
toluene in the brain throughout the exposure period (Tardif
et al., 1997). The PBPK-PD model allows us to estimate the

does not change core findings.
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amount of toluene in the brain and formulate dose-response
predictions for task performance. A PBPK-PD model is an
in silico representation of the movement of chemicals in the
arterial blood, flowing to each major organ or lumped tissue
compartment, including the brain.

PBPK-PD models calculate the time-course of PSs in the
vascular and body tissues via ordinary differential equations
to account for absorption, distribution, metabolism, and ex-
cretion processes. The following is an example differential
equation of a metabolizing tissue:

dAl

dt
= (Ql×Ca)−

(
Ql×

Cl

Pl

)
−
(

VMax×CVl

KM+CVl

)
(1)

where subscripts l and a denote liver and arterial, respec-
tively, A = amount of chemical (mg), Q = blood flow (L/hr),
C = mg/L, KM = Michaelis-Menten constant (mg/L), P =
tissue/blood partition coefficient, CV is venous concentra-
tion, and Vmax = maximum rate of parent chemical change
to metabolite (mg/hr).

There are three basic critical components to PBPK-PD
models: 1) species-specific physiological parameters, 2)
chemical-specific parameters, and 3) experiment-specific de-
tails for the studies to be simulated. As per convention, the
physiological and chemical parameter values in our model
were based on prior empirical measurement (Tardif et al.,
1997). Species-specific physiological parameters are the or-
gan weights and blood flow rates for the defined compart-
ments (e.g., organs) in the PBPK-PD model and are derived
from the closest like species when not available. Chemical-
specific parameters that are unique for each chemical are the
tissue solubility (partition coefficient), metabolism of the par-
ent compound, and plasma and tissue binding characteristics.
The specific experimental details pertain to the time of dos-
ing and amount, route of dosing, and whether the subjects are
physically active or quiescent. These details were obtained
from Rahill et al. (1996).

Figure 1 shows the time-course of toluene concentration in
the brain. Toluene increases rapidly from 135 to 150 minutes
while the subject engages in exercise. Toluene concentration
plateaus during rest then declines rapidly after the end of the
360-minute exposure period.

ACT-R
ACT-R is a cognitive architecture that specifies how modular
cognitive systems interact to produce cognition and overt be-
havior (Anderson, 2007). Models developed within ACT-R
posit a common set of processes and mechanisms, which are
instantiated as a computer simulation. Independent modules
operate in parallel and include declarative memory, vision,
attention, and motor modules. Procedural memory coordi-
nates the behavior of the architecture through a set of pro-
duction rules. Production rules follow an ”IF-THEN” struc-
ture that encodes the conditions under which specific actions
are taken. ACT-R provides a structure within which poten-
tial explanations for the effect of toluene on cognition can

be formalized. For example, toluene might disrupt normal
functioning of declarative memory, resulting in a slowdown
in the retrieval of task-relevant information. We developed
CPC models that formalize three explanations: toluene af-
fects (1) declarative memory, (2) attention, or (3) motor exe-
cution. For brevity, we will refer to each of these explanations
as the memory CPC, attention CPC, and motor CPC model,
respectively.

The memory CPC model formalizes the hypothesis that
toluene interferes with memory retrieval. In ACT-R, each fact
stored in declarative memory—called a chunk— is associated
with an activation value corresponding to the frequency and
recency with which it has been used. Higher activation results
in faster and more accurate retrieval. The declarative mem-
ory system in ACT-R offers several potential mechanisms for
toluene modulation. Our criteria for selecting a mechanism
were (1) it must be theoretically grounded and (2) it must
produce a transient effect. We selected the parameter Fd be-
cause it produces a temporary decrease in activation and has
been successful in accounting for the transient effect of fa-
tigue on declarative memory (Gunzelmann et al., 2012). Fd
scales base-level activation as follows:

bi = Fd ·bLL (2)

where Fd = [0,1], bi is base-level activation for chunk i,
bLL represents activation associated with life-long learning
(≈ 2.68; Gunzelmann et al., 2012). According to this expla-
nation, toluene causes an acute decrease in activation, result-
ing in longer RTs and more errors. Decay, by contrast, has
a destructive effect, which cannot be restored without addi-
tional practice.

The attention CPC model formalizes the hypothesis that
the time required to attend to a stimulus is longer, resulting
in a longer observed RT with no direct change in accuracy.
Attentional processing time is controlled by increasing the
attention latency parameter. The motor CPC model formal-
izes the hypothesis that toluene slows down the motor system,
which increases RT without affecting accuracy. Motor execu-
tion is controlled by increasing the motor latency parameter.

Procedural Memory Model Declarative memory was pop-
ulated with four chunks that encoded the response mapping.
On each trial, the model attended to the number presented on
the screen, retrieved a response mapping, and responded with
the key specified in the retrieved chunk.

Recognition Memory Model Declarative memory was
populated with chunks representing each letter in the alpha-
bet. Once the list of six letters was presented, the model lo-
cated a new letter starting on the left. After locating the let-
ter, the model attended to the letter, and rehearsed it so as to
strengthen its activation in memory. Throughout the course
of the learning phase the model studied the list by repeating
this cycle of productions. In Rahill et al. (1996), the learning
phase was terminated by the subject when he or she was con-
fident that the letters were memorized. However, no informa-
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tion regarding the duration of the study phase was reported.
We assumed participants studied the list for 10 seconds before
proceeding to the test phase, which produced high accuracy
found in similar studies (Levinson et al., 2005) with mini-
mal time commitment. When a letter appeared during the test
phase, the model attended to it, attempted to retrieve a chunk
in memory that matched the letter and was in the study list,
and executed a response. The model responded ”yes” by key
press if the retrieved letter matched the letter presented on
the screen. If the letter did not match or no letter could be
retrieved, the model responded ”no” by key press.

Arithmetic Model Declarative memory in the arithmetic
model was populated with chunks representing arithmetic
facts. Once the problem was presented (e.g., 3 + 5 - 2), the
model processed each of the five components starting from
left to right. First, the model located the leftmost stimulus
(e.g., 3). Next, the model attended to the stimulus and then
encoded the stimulus to keep track of the problem state. The
model then repeated the procedure on the next stimulus (e.g.,
+). After encoding the first two numbers and operator, the
model retrieved and then encoded the intermediate solution
(e.g., 8). The model processed the remaining stimuli and re-
trieved the final solution (e.g., 8 - 2 = 6). Lastly, the model
responded whether the solution was less than or greater than 5
via key press. If a math fact could not be retrieved, the model
responded randomly.

Model Integration
The following equations provide a high-level representation
of the model integration:

PBPK(Λ, t) = τ (3)

where Λ is a set of parameters, t is time since the beginning of
the experiment, and τ is the predicted concentration of toluene
in the brain. A high level representation of ACT-R is given by

ACTRm(Θ) = (RT,ACC) (4)

where Θ is a set of parameters, m ∈ {procedual,recognition
memory,arithmetic} indexes the ACT-R models, and the tuple
(RT,ACC) is the predicted mean reaction time and accuracy.

A linear link function allows specific ACT-R parameters to
vary as a function of toluene level as follows:

θp = β0p +β1p τ (5)

p∈ P = {Fd ,A,M} ⊂Θ indexes the toluene-modulated ACT-
R parameters, which correspond to fatigue declarative mem-
ory (Fd), attention latency (A), and motor latency (M). The
intercept β0p is the value of parameter θp when the concen-
tration level of toluene in the brain is zero. β1p is the slope
which represents the degree to which θp varies as a function
of τ. β =

{
β0p ,β1p

}
represents the set of link function pa-

rameters. Let Θ̂ = Θ \P be the subset of ACT-R parameters
that are not determined from Equation 5 (e.g., latency factor).

Table 1: The slopes used in the link function of the CPC mod-
els. Slopes were varied over the ranges in brackets with 10
equal interval steps.

CPC Model β1A β1Fd
β1M

Attention [0, .015] 0 0
Memory 0 [-.03, 0] 0
Motor 0 0 [0, .015]
Baseline 0 0 0

The CPC model integrates the ACT-R and PBPK-PD mod-
els through the linear link function and can be represented
as:

CPC(Θ̂,Λ,β, t) = (RT,ACC) (6)

We imposed the following parametric restrictions on the
CPC models in the interest of parsimony. First, as shown in
Table 1, we assumed that toluene affected only one cognitive
system: either the attention, memory, or motor system. For
example, in the attention CPC model, the slope β1A was al-
lowed to vary while the other slopes were fixed to zero. As a
basis for comparison, we also included a baseline CPC model
in which no parameters were modulated by toluene. Second,
we used the same parameterization of the link function across
the three tasks. Specifically, when a slope was estimated, the
estimated value applied across the three tasks. We also fixed
the intercepts to β0A = .085 and β0M = .05, which are default
values that have emerged as good fitting values across a wide
range of studies. Because the intercept β0Fd

does not have a
default value, we fixed this parameter to theoretically justi-
fied values of .72, 1, and .83 for the procedural, recognition
memory, and arithmetic tasks, respectively, to reflect differ-
ences in prior exposure to task-specific stimuli. For example,
subjects had more experience with the alphabet used in the
recognition memory task than the response mapping used in
the procedural memory task.

Third, when possible, we fixed other parameters to default
values. For example, we fixed decay to .5. Mismatch penalty
and activation noise do not have default values, and as such,
were set to 2.8 and .15 for all models under consideration.
Fourth, task-specific parameters were fixed across toluene
conditions, blocks, and the four CPC models. Specifically,
we set the retrieval threshold to .78 in the recognition mem-
ory task to control the speed of negative responses. Finally,
the parameters of the PBPK-PD model were fixed to values
acquired through prior empirical measurement.

Results
Human RTs (black) are displayed in Figures 2-4 for each
task. Each panel represents an exposure condition, and points
within each condition represent mean RT for a given block.
Human RT increased in the toluene condition for the proce-
dural and recognition memory tasks, but remained relatively
constant in the arithmetic task. Although accuracy data were
not reported in Rahill et al. (1996), no effect of toluene on ac-
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Table 2: RMSE of best fitting models. PMT: procedural
memory task, RMT: recognition memory task, AT: arithmetic
task

RMSE

CPC Model β1p PMT RMT AT Aggregate
Attention .0015 10.13 28.04 92.30 56.00
Memory -.003 10.87 30.33 89.24 54.78
Motor .0045 9.59 23.40 90.17 54.07
Baseline 0 12.02 30.83 88.71 54.66

Figure 2: RT predictions for the CPC models plotted against
the human mean RT for the Arithmetic Task. Bars are stan-
dard deviations.

curacy was detected. Based on other studies using the same or
similar tasks, we assume that accuracy was≥ 90% (Levinson
et al., 2005; Vincent et al., 2012).

We fit the four CPC models using the parameter ranges dis-
played in Table 1 and selected the best fitting models using a
two-stage procedure. In the first stage, we selected the sub-
set of results for which accuracy was ≥ 90% in all blocks to
ensure that the predictions were in line with previous stud-
ies. In the second stage, we selected the β1p with the lowest
aggregate RMSE for each model. Table 2 summarizes aggre-
gate RMSE, RMSE broken down by task, and the best fitting
β1p for each model. The predictions of the best fitting CPC
models are compared to the human data in Figures 2-4.

Aggregate RMSE was the lowest for the motor CPC model,
suggesting that toluene slows down motor processing. Al-
though the improvement in aggregate RMSE relative to the
baseline model may appear small, it hides modest but impor-
tant improvements in the procedural and recognition memory
tasks. Importantly, the motor CPC model was able to capture
the qualitative pattern of effects found in the human data: an
effect of toluene in the procedural and recognition memory
tasks with no effect in the arithmetic task.

Figure 3: RT predictions for the CPC models plotted against
the human mean RT for the Procedural Memory Task. Bars
are standard deviations.

Figure 4: RT predictions for the CPC models plotted against
the human mean RT for the Recognition Memory Task. Bars
are standard deviations.

It is also informative to discuss patterns found in some
poorly fitting CPC models. For example, when β1A increased
for the attention CPC model, the RT predictions improved to
a similar degree as the motor CPC model in the procedural
and recognition memory tasks. In the arithmetic task, how-
ever, the attention CPC model greatly over-estimated RT due
to the large contribution of attention to the overall RT. This
finding provides further evidence against the attention CPC
model.

Discussion
We developed and tested a set of CPC models to understand
which cognitive systems are affected by toluene and lead to
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the performance decrements reported in the literature. The
CPC model integrated the physiological dynamics of toluene
concentration into the ACT-R cognitive architecture to pro-
duce dose-response predictions over a prolonged period of
toluene exposure. The CPC models formally instantiated
deficits in memory, attentional, and motor processing as com-
peting explanations for detrimental effects of toluene expo-
sure. Our model comparison provided tentative evidence that
performance decrements are driven by a slowdown in motor
execution. Furthermore, we also found evidence against at-
tention as a mechanism: when attention was modulated by
toluene to the same extent as the motor system, it greatly
overestimated RTs in the arithmetic task. Importantly, the
motor CPC model produced the pattern of toluene effects in
the human data: an effect of toluene in the procedural and
recognition memory tasks, and no effect in the arithmetic
task.

Our CPC model adds to the growing literature showing that
integrated models can yield more accurate predictions and
deeper insights compared to non-integrative approaches. The
CPC model has several benefits. First, it enabled us to ac-
count for data at two different time-scales: on the order of
milliseconds as well as hours. Second, the CPC model was
powerful yet highly constrained. With the CPC model, we
were able to account for the effects of toluene exposure in
three tasks using a single mechanism. Moreover, other pa-
rameters were either set to default values or otherwise highly
constrained. Third, the CPC model is quite general, allowing
it to be applied to any PS of interest.

Limitations
Our findings should be interpreted in light of several limita-
tions. First, research on PSs often has small sample sizes and
small exposure manipulations due to restrictions imposed by
institutional review boards to limit risk. As a result, discrimi-
nating among competing explanations is challenging and our
conclusions regarding the motor CPC model remain tentative.
Second, we also could not apply the model at the individual
level or examine nuanced predictions (e.g., false alarms vs.
misses) because only summary data were available. Third,
our PBPK-PD model could not examine the possibility of
region-specific effects of toluene in the brain. A model with
this level of detail would provide tighter integration and more
focused hypotheses about the affected mechanisms. Finally,
we made assumptions about several unreported or ambiguous
methodological details, such as the number of trials, the du-
ration of the study phase in the recognition task, and the use
of response deadlines. Nonetheless, when these assumptions
were changed, the motor CPC still emerged with the strongest
level of support.
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Abstract 

People often use spatial language to talk about time, and this 
is known to both reflect and shape how they think about it. 
Despite much research on the spatial grounding of temporal 
language and thought, little attention has been given to how 
spatial metaphors influence reasoning about real events, 
especially those in the future. In a large online study 
(N=2362), we framed a discussion of climate change using 
spatial metaphors that varied on reference-frame (ego- vs. 
time-moving), speed of movement (fast vs. slow), and time 
horizon (near, medium, or far future). We found that 
describing climate change as approaching (time-moving 
frame) – versus something we approach – made the issue 
seem more serious, but also more tractable, at least when the 
rate of motion was fast (e.g., “it’s rapidly approaching”). 
These findings offer novel insights into the relationship 
between spatial metaphors and temporal reasoning and how 
we communicate about uncertain future events.  

Keywords: metaphor, space, time, framing, reasoning, future  

Introduction 
People often talk about time in terms of space (Clark, 

1973; Lakoff & Johnson, 1980). Two holidays can be 
described as close together, and deadlines, as rapidly 
approaching. Spatiotemporal metaphors, which underlie 
such talk, are ubiquitous across cultures (Boroditsky, 2011; 
Núñez & Cooperrider, 2013). What’s more, much research 
has established that we actually mentally represent and 
reason about time in terms of space as well, and that this 
happens in a manner that is consistent with the particular 
language we use (Boroditsky, 2000, 2011; Boroditsky & 
Ramscar, 2002; Casasanto, 2005; Casasanto & Boroditsky, 
2008; Núñez & Cooperrider, 2013; but see Casasanto, 
2016).  

A popular method for assessing this claim is to 
manipulate how someone is thinking about space before 
asking them to reason about time. In one early study, for 
example, Boroditsky (2000) showed participants spatial 
primes that depicted an agent moving towards a goal or an 
object moving toward an agent, and then asked them to 
answer an ambiguous temporal question: “Next 
Wednesday's meeting has been moved forward two days. 
Which day is the meeting now that its been moved?”. 

English speakers use two spatial reference frames for 
talking about time: ego-moving, which depicts the agent as 
actively moving through time-space (e.g., “we are 
approaching retirement”) and time-moving, which depicts 
the agent as stationary while events in time move toward 
them (as in, “the holiday season is approaching”). In the 
ambiguous ‘Wednesday’s meeting’ question, the implied 
vector of motion (forward) differs depending on which 
frame you adopt – toward (time-moving) versus away from 
(ego-moving) the individual – such that the meeting could 
now be interpreted as falling either on Monday (time-
moving) or Friday (ego-moving). Boroditsky found that ego- 
and time-moving spatial primes reliably biased participant 
responses to the ambiguous question in a metaphor-
congruent manner, suggesting that people were relying on 
active spatial representations to reason about time (see also 
McGlone & Harding, 1998). 

This basic pattern of results has been replicated and 
extended in many ways, from the use of more ecologically 
valid spatial primes (Boroditsky & Ramscar, 2002), to non-
linguistic measures of temporal reasoning (Casasanto, 2005; 
Casasanto & Boroditsky, 2008), to cross-cultural 
comparisons (Boroditsky, Fuhrman, & McCormick, 2010). 
These data offer converging support for the view that people 
(frequently) represent and reason about time using their 
knowledge of space, and that the specific spatial relations 
that are mapped onto the domain of time are shaped by 
patterns of metaphor in language (along with other factors 
like writing direction and cultural values; Boroditsky, 2011; 
Casasanto, 2016; Núñez & Cooperrider, 2013).  

While research has been largely focused on showing links 
between space and time in the mind, scant attention has 
been given to whether metaphors influence how people 
reason about real world events in the future. Do people 
conceptualize impending events differently when they are 
described using different spatial metaphors for time?  

To address this question, we conducted a large-scale 
linguistic framing study to assess how people think about 
negative outcomes associated with climate change. We 
chose climate change because it is a real-world problem 
laden with uncertainty. In general, people have a very poor 
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understanding of what climate change is, what the specific 
outcomes will be, and what to do about it (see Barnosky et 
al., 2017). We reasoned that this inherent ambiguity might 
make it easier to observe the effects of spatiotemporal 
metaphors on how people think and feel about the issue 
since people’s prior beliefs may be somewhat nebulous.  

In our experiment, participants first read a brief article 
about US efforts to tackle climate change, and then 
responded to questions about how serious and tractable they 
viewed the issue. We manipulated whether the report 
described climate change with the ego- or time-moving 
reference-frame, whether speed of movement in time-space 
was fast or slow, and whether US conservation goals were 
situated in a relatively near, medium, or far future time 
horizon.  

We hypothesized that using a time-moving reference 
frame would make the effects of climate change seem more 
urgent and serious, since this perspective represents the 
individual as fixed in place, unable to control the arrival of a 
negative future event. This would be consistent with prior 
research showing that people who spontaneously adopt a 
time-moving perspective tend to show higher levels of state 
and trait anxiety and depression, which are associated with a 
loss in feelings of agency (Richmond, Wilson, & Zinken, 
2012).  

However, this increase in feelings of urgency does not 
imply an increase in pessimism about the tractability of the 
issue. In fact, it could be the case that the time-moving 
frame might lead people to view climate change as a more 
tractable problem, given that the individual is free to engage 
in their own actions on this construal (since they are not 
occupied with the task of moving through time). This would 
resonate with research showing that people who 
spontaneously adopt the time-moving reference frame 
procrastinate less and are more conscientiousness than those 
who spontaneously adopt the ego-moving reference frame. 
(Duffy & Feist, 2014; Duffy, Feist, & McCarthy, 2014).  
One way of thinking about this is that the decrease in 
feelings of control (and increase in anxiety) that results from 
the time-moving frame might lead to a compensatory 
counter-response, such that people would now be motivated 
to believe that personal actions are likely to be effective in 
addressing the problem. In other words, when it feels like 
you cannot stop a future event from happening, you will feel 
better if you consequently believe that at least you can deal 
it when it arrives. 

We included the speed manipulation to assess whether the 
“rate” at which we approach future events (or they approach 
us) might affect or interact with the temporal reference 
frame in shaping these attitudes towards climate change. It 
is plausible, for instance, that faster “motion” would be 
associated with a greater sense of urgency. The time horizon 
manipulation was included in part to affect perceptions of 
whether the US seemed likely to achieve the conservation 
milestones in the article, which allowed us to assess effects 
of the other spatial metaphors independently of this 
judgment (see Flusberg, Matlock, & Thibodeau, in press). 

Experiment 
Methods 
Participants A total of 2400 participants were recruited and 
paid through Amazon’s Mechanical Turk for the study in 
the Spring of 2016 (Berinsky, Huber, & Lenz, 2012; 
Buhrmester, Kwang, & Gosling, 2011). We restricted our 
sample to people living in the US who had a good 
performance rating (>90%) on previous Turk tasks. Data 
was not analyzed from 38 participants who did not complete 
the study (i.e. from participants who did not submit a valid 
completion code), leaving a sample size of N = 2362. The 
sample was 46% male and had a mean age of 35.2 years (SD 
= 11.1). 
 
Materials & Procedure Participants read a brief fictional 
article that described US efforts to reduce greenhouse gas 
emissions. It used (1) an ego- or time-moving frame of 
reference; (2) temporal language about climate change as a 
slow or fast process (speed), and (3) identified an outcome 
on a time horizon in the relatively near (2025), medium 
(2040), or distant future (2115).  

As shown in Figure 1, the report began, “In response to 
the recent Paris Climate Talks, the Associated Press release 
the following brief statement.” The title was presented 
below this heading in capital letters. The rest of the passage 
was an appeal for addressing climate change and identified a 
specific goal for the US: to reduce greenhouse gas emissions 
by more than 30% by 2025, 2040, or 2115.  

 
Figure 1. Participants read this report, which varied on 
frame of reference, speed of change and time horizon.  

The body of the report for the ego-moving frame of 
reference condition read (differences by speed and time 
horizon conditions are noted in the text): 

We’re {rapidly / gradually} approaching the day when it will 
be too late to prevent the devastating effects of climate 
change. We will {quickly / eventually} find ourselves in a 
world that includes more extreme weather conditions, more 
public health problems, as well as severe economic 
challenges if we don’t start {racing / inching} towards a 
solution soon. As a result, the United States has pledged to 
reduce its carbon footprint in the next few decades, approving 
dozens of projects as part of an effort to reduce greenhouse 
gas emissions by more than 30% by {2025, 2040, 2115}. The 
projects will leverage scientific expertise and individual 
engagement to improve the energy efficiency of cars and 

Speed
Fast Slow

Ego-Moving WE’RE MOVING QUICKLY 
TOWARDS DISASTER   

WE’RE MOVING SLOWLY 
TOWARDS DISASTER  

Time-Moving DISASTER QUICKLY 
COMING OUR WAY  

DISASTER SLOWLY 
COMING OUR WAY  

In response to the recent Paris Climate Talks, the Associated Press 
released the following brief statement: 

Fr
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e 
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As a result, the United States has pledged to reduce its carbon footprint 
in the next few decades, approving dozens of projects as part of an 
effort to reduce greenhouse gas emissions by more than 30% by...  

Time horizon 2025 2040 2115 

Report: 
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buildings, reduce personal energy use, and increase the use of 
renewable energies such as wind and solar. Let’s avoid the 
{race / slow crawl} towards disaster! 

The body of the report for the time-moving frame of 
reference condition read (differences by speed and time 
horizon conditions are noted in the text): 

The day is {rapidly / gradually} approaching when it will be 
too late to prevent the devastating effects of climate change. 
If a solution doesn’t start heading our way {quickly / 
eventually}, more extreme weather conditions, more public 
health problems, as well as severe economic challenges will 
{swiftly / slowly} appear. As a result, the United States has 
pledged to reduce its carbon footprint in the next few decades, 
approving dozens of projects as part of an effort to reduce 
greenhouse gas emissions by more than 30% by {2025, 2040, 
2115}. The projects will leverage scientific expertise and 
individual engagement to improve the energy efficiency of 
cars and buildings, reduce personal energy use, and increase 
the use of renewable energies such as wind and solar. Let’s 
watch out for disaster as it {quickly / slowly} approaches!        

Target and Background Questions. After reading the 
article, participants answered question about whether they 
thought the US would achieve its climate reduction goal in 
the stated time frame (i.e., by 2025, 2040, or 2115). Then 
they answered questions about whether they thought the 
problems of climate change would be solved, whether the 
disastrous effects of climate change were inevitable at this 
point, how urgent it is for the US to implement energy 
reduction programs, and how much risk they perceived to be 
associated with climate change. Participants also answered 
questions about their willingness to change their own 
behavior to reduce greenhouse gas emissions (see Figure 2).  

 
Figure 2. Dependent measures and background questions. 
 
Most dependent measures were rated on a 5-point scale. 

One exception was the measure of risk perception, recorded 
on an 8-point slide bar. The measure of risk perception 
included 13 items (Cronbach’s α = .93). The measure of 
behavioral intentions included six items (Cronbach’s α = 
.87). All other dependent measures were a single question. 

Participants then answered demographic questions about 
their age, gender, educational history, political ideology 
(categorically and on a continuum), and about their belief in 
global warming (two items: “I believe that burning fossil 
fuels increases atmospheric temperature to some measurable 
degree” and “I believe that the burning of fossil fuels on the 
scale observed over the last 50 years has increased 
atmospheric temperature to an appreciable degree”; 
Chronbach’s α = .90; Lewandowsky, Oberauer, & Gignac, 
2013). 

Data Reduction. As expected, the dependent measures 
were correlated with one another. As shown in Table 1, the 
six measures clustered into two groups: there was a high 
correlation (a) between the goal judgment, assessment of 
whether climate change would be solved, and whether the 
consequences of climate change were inevitable (rs > .19), 
and (b) between the measures of urgency, risk perception, 
and willingness to change one’s behavior (rs > .5).  

Table 1. Correlations between the dependent measures. 
Asterisk indicates statistical significance at the *p < .001 
level.  

 1   2   3   4   5   6 
1. Goal  .38* -.19* .15* .15* .15* 
2. Solvable   -.29* -.04 -.01 -.01 
3. Inevitable    -.13* -.06 -.10* 
4. Urgent     .52* .56* 
5. Risk       .55* 
6. Behavior       

 
To further investigate the relationship among dependent 

measures, we did an exploratory factor analysis: a principal 
components analysis, using singular value decomposition 
(Mardia, Kent, & Bibby, 1980). Principal components 
analysis (PCA) extracts the common variance in measures 
that are conceptually and empirically related (Dunteman, 
1989). The analysis revealed, based on the Kaiser criterion 
and an analysis of the Scree plot, two major underlying 
sources of variance in the data, consistent with the pairwise 
correlations in Table 1. As shown in Table 2, the first factor 
loaded most heavily on the measures of urgency, risk 
perception, and willingness to change. The second loaded 
most heavily on the goal judgment, whether people thought 
climate change would be solved, and whether they thought 
the consequences of climate change were inevitable.  

To analyze the data parsimoniously, we created two 
composite outcome variables based on the clustering of 
dependent measures found in the pairwise correlations and 
exploratory factor analysis. We combined the first three 
questions, using PCA, into a measure of how tractable 
participants considered the problem of climate change, and 
the last three questions into a measure of how serious 
participants considered the problem of climate change (see 
Table 2 for weights used to create the composite measures). 
The composite measures captured the majority of the 
variance in the raw data: the measure of how tractable 

Dependent Measures:  

Goal: The United States will achieve its goal of reducing greenhouse gas emissions by more than 30% by… 

1, Strongly disagree, to 5, Strongly agree 

Solvable: Humans will inevitably solve the problems associated with climate change, preserving the earth 
for future generations.  

1, Strongly disagree, to 5, Strongly agree 

Inevitable: The disastrous effects of climate change are inevitable, and there is nothing we can do to 
prevent them.  

1, Strongly disagree, to 5, Strongly agree 

Urgent: How urgent is it for the US to implement energy reduction programs right away?   

1, Not at all urgent, to 5, Very urgent 

Risk Perception: How concerned are you with the following potential consequences of climate change? 
(e.g., soil erosion, water drought, economic decline; 13 items; α = .93)  

0, Not at all concerned, to 7, Extremely concerned 

Behavioral Intentions: Would you be willing to pay a carbon offset cost on future purchases of items 
derived from fossil fuels? (6 items; α = .87) 

1, Definitely no, to 5, Definitely yes 

Belief in Global Warming: I believe that burning fossil fuels increases atmospheric temperature to some 
measurable degree. (2 items; α = .90) 

1, Strongly disagree, to 5, Strongly agree 

Political ideology (0, very liberal, 100, very conservative)	
Age, Gender, Education, Political affiliation (Democrat, Independent, Republican, or Other)

Background Questions:  
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participants’ considered climate change to be captured 53% 
of the variance in the first three questions; the measure of 
how serious participants’ considered climate change 
captured 70% of the variance in the last three questions1. 

Table 2. Factor loadings of exploratory factor analysis and 
weights used to create composite outcome measures. 

 PC1 PC2 Tractable Serious 
Goal .27  .50     .58  
Solvable .11  .66     .64  
Inevitable -.20 -.46    -.51  
Urgent .54 -.18    .58 
Risk .53 -.19    .57 
Behavioral intentions .55 -.18    .59 
 
There was a moderate correlation between the two 

composite measures (tractable and serious), r(2360) = .12, 
p < .001 (in contrast, pc1 and pc2 are orthogonal), and both 
were positively correlated with participants’ belief in global 
warming: tractable, r(2360) = .14, p < .001; solvable, 
r(2360) = .66, p < 001.  

Results 
Analysis We conducted our primary hypothesis tests on the 
two composite measures (i.e. how tractable and serious 
people consider climate change to be). We also analyzed the 
six dependent measures separately in exploratory follow-up 
analyses. For each analysis, an initial omnibus between-
subjects ANOVA is presented with tests for main effects of 
and interactions between the three experimental 
manipulations. We show the results of the two ANOVAs, 
along with the coefficients from the corresponding linear 
regression models in Tables 3 and 4. Time horizon (2025, 
2040, 2115) was treated as an ordinal variable; frame of 

                                                             
1 We created the composite outcome measures using two 

separate PCAs because we wanted the outcome measures to clearly 
reflect participants’ responses to the original questions. For 
example, as shown in Table 2, pc1 primarily reflects variability in 
judgments of urgency, risk perception, and willingness to change 
one’s behavior, but it also loads onto the other three judgments; 
pc2 loads positively on the first two questions (goal and solvable) 
and negatively on the remaining four (inevitable, urgent, risk, 
behavioral intentions). These patterns of weighting the original 
questions present some difficulty in interpreting what each factor 
actually reflects (e.g., pc2 mostly reflects an optimistic outlook 
regarding our capacity to address climate change, but also, to a 
lesser degree, reflects the inverse of judgments of urgency, risk 
perception, and willingness to change one’s behavior). In contrast, 
conducting separate principal components analyses—one on the 
first three questions, one on the last three questions—yields two 
outcome variables that clearly correspond to the original questions: 
tractable is tightly correlated with the three questions used to 
create it (goal, r = .73; solvable, r = .80; inevitable, r = -.64) and 
only slightly correlated with the other three questions (urgency, r = 
.10; risk perception, r = .09; behavior, r = .10); serious is tightly 
correlated with the three questions used to create it (urgency, r = 
.83; risk perception, r = .82; behavior, r = .85), and only slightly 
correlated with the other three questions (goal, r = .18; solvable, r 
= -.02; inevitable, r = -.11).  

reference (ego- versus time-moving) and speed (fast versus 
slow) were treated as factors.  

To account for the primary source of variance in the 
dependent measures, we included participants’ belief in the 
anthropogenic origins of climate change as a covariate, 
although this did not affect the reliability of the results. To 
address secondary research questions (e.g., who is affected 
by manipulating the reference frame?), we tested for 2-way 
interactions between the experimental manipulations and 
participants’ belief in global warming.  

Serious The results of a model in which the Frame of 
reference (ego- or time-moving), speed (fast or slow), and 
time horizon (2025, 2040, or 2115), as well as participants’ 
belief in global warming, were used to predict how serious 
people consider climate change to be (see Table 3). The 
strongest predictor of seriousness was participants’ belief in 
global warming. People who recognized the anthropogenic 
origins of climate change thought the issue was more 
urgent, recognized more risk, and were more willing to 
change their behavior to reduce greenhouse gas emissions.  

The model also revealed a main effect of the frame of 
reference, qualified by an interaction with participants’ 
belief in global warming. Overall, participants were more 
likely to think of climate change as an urgent issue with 
important risks worthy of behavior change in the time-
moving condition (M = .06, SD = 1.44), compared to the 
ego-moving condition (M = -.05, SD  = 1.52). This was 
especially true for people who were skeptical about the 
anthropogenic origins of climate change, likely due to a 
ceiling effect on this measure for non-skeptics.  

Table 3 Effects of experimental manipulations and belief in 
global warming on perceptions of the seriousness of climate 
change. The results of the ANOVA (df1 = 1 and df2 = 2350 
in every case) are shown in the first column; regression 
coefficients (and standard errors) are shown in the second 
column.   

      F(p)   B (SE) 
Intercept  0.00 (.02) 
Time horizon 0.63 (.429) -0.03 (.03) 
Speed: Slow 0.05 (.818) 0.00 (.02) 
Frame of reference: Time 4.55 (.033) 0.01 (.02) 
Belief in global warming 1775.65 (< .001) 0.95 (.02) 
Time horizon * Speed 0.51 (.475) 0.02 (.03) 
Time horizon * Frame 0.84 (.359) 0.03 (.03) 
Speed * Frame 0.04 (.839) 0.01 (.02) 
Time horizon * Belief 1.41 (.236) 0.04 (.03) 
Speed * Belief 1.55 (.213) -0.03 (.02) 
Frame * Belief 4.66 (.031) -0.05 (.02) 
Time * Speed * Frame 2.06 (.151) 0.04 (.03) 

 
Separate analyses on “raw” questions about urgency, risk 

perception, and behavioral intentions yielded consistent 
results. For example, people reported perceiving more risk 
in the time-moving reference frame, B = .43, SE = .20, p = 
.032. Perceptions of risk were related to beliefs about global 
warming, B = 1.01, SE = .04, p < .001. These predictors also 
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interacted, B = -.12, SE = .05, p = .029, suggesting that the 
effect of the reference frame most strongly affected people 
who reported skepticism about climate science.  

Finally, the exploratory analyses of participants’ 
responses to questions of urgency, risk perception, and 
behavioral intentions suggested that one effect was 
obscured by analyzing the composite measure: of speed on 
perceptions of urgency. Participants reported that global 
warming was a more urgent issue to address when the 
language suggested that the climate was changing quickly, B 
= .27, SE = .14, p = .049, regardless of time horizon or 
frame of reference.  
 
Tractable The results of a model in which the Frame of 
reference (ego- or time-moving), speed (fast or slow), and 
time horizon (2025, 2040, or 2115), as well as participants’ 
belief in global warming, were used to predict judgments 
related to how tractable people consider climate change to 
be (see Table 4). Consistent with the analysis of how 
serious people consider the issue, the strongest predictor in 
the model was participants’ belief in global warming. 
People who recognized the anthropogenic origins of climate 
change were more optimistic about being able to address the 
problem, probably due to the fact they are the ones who 
think it is a problem in the first place. There was also a main 
effect of the time horizon manipulation: people considered 
the issue more tractable when the specific goal was situated 
in the distant, as opposed to the near, future.  

Table 4. Effects of manipulations and belief in global 
warming on perceptions of tractable-ness of climate change. 
ANOVA results (df1 = 1 and df2 = 2350 in every case) are in 
the first column; regression coefficients (and standard 
errors) are in the second column.   

      F (p)    B (SE) 
Intercept  0.00 (.03) 
Time horizon 8.29 (.004) 0.07 (.03) 
Speed: Slow 0.00 (.981) 0.00 (.03) 
Frame of reference: Time 1.34 (.247) 0.02 (.03) 
Belief in global warming 43.04 (< .001) 0.17 (.03) 
Time horizon * Speed 1.94 (.164) -0.04 (.03) 
Time horizon * Frame 0.02 (.888) 0.00 (.03) 
Speed * Frame 3.11 (.077) 0.05 (.03) 
Time horizon * Belief 6.42 (.011) -0.08 (.03) 
Speed * Belief 0.22 (.638) -0.01 (.03) 
Frame * Belief 0.22 (.643) -0.01 (.03) 
Time * Speed * Frame 0.56 (.454) 0.02 (.03) 

 
Finally, there was an interaction between participants’ 

belief in global warming and the time horizon. The effect of 
the time horizon manipulation was driven by participants 
who were more skeptical about climate science. For 
example, among participants who reported the most 
skepticism about climate change (a score less than 2 on the 
measure of belief in global warming; n = 196), there was a 
relatively large effect of the time horizon manipulation 
(M2025 = -.75, SD = 1.34; M2040 = -.57, SD = 1.44; M2115 = -
.11, SD = 1.31), F(1, 194) = 8.652, p = .004. In contrast, 

among participants who reported the strongest belief in 
climate science (a score greater than 4 on the measure of 
belief in global warming; n = 668), there was no effect of 
the time horizon manipulation (M2025 = .10, SD = 1.22; 
M2040 = .10, SD = 1.40; M2115 = .19, SD = 1.35), F(1, 194) = 
0.36, p = .551. In other words, people who reported a belief 
in climate science tended to be optimistic about the issue, 
regardless of the time horizon of the goal, whereas people 
who were skeptical about climate science were more likely 
to think the issue would be solved on a more distant time 
horizon. 

 
Figure 3. Participants’ perception of the tractability of the 
problem of climate change, as a function of the reference 
frame and speed. Error bars denote SEMs. 

The omnibus test also revealed a marginal interaction 
between the speed manipulation (whether the effects of 
climate change were described as happening quickly or 
slowly) and the frame of reference (ego- or time-moving). 
As shown in Figure 3, there was an effect of the reference 
frame when the report described the effects of climate 
change as occurring quickly (but not slowly). In the fast 
speed condition, participants were more optimistic about 
solving climate change on the time-moving reference frame 
compared to the ego-moving reference frame, t(1160) = 
2.07, p = .039. In the slow speed condition, there was no 
effect of the reference frame, t(1198) = 0.38, p = .704.  

Discussion 
Time is highly abstract, but people manage to talk and 

think about it by drawing on spatial language and 
knowledge (Boroditsky, 2011). In this paper, we examined 
how particular spatial metaphors used to describe uncertain 
future outcomes would affect how people think about an 
important issue. So, instead of focusing on whether people 
reason about time using spatial representations, we looked at 
how different spatial construals would affect how they think 
about a real-world event. In a large online study, we framed 
a discussion of US efforts to tackle climate change using 
spatial metaphors that varied according to reference-frame 
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(ego- vs. time-moving), speed of movement (fast vs. slow), 
and time horizon (near, medium, or far future).  

People appeared to be more optimistic about solutions for 
climate change with a more distant time horizon (implying 
there would be more time to address it). This was especially 
true for people who were skeptical of climate science, which 
probably reflects a ceiling effect for those who are more 
inclined to accept the scientific consensus.  

More interestingly, and consistent with our initial 
hypothesis, climate change seemed more serious and urgent 
when described with a time-moving metaphor than with an 
ego-moving metaphor. This supports the view that talking 
about uncertain future events as approaching of their own 
accord may be associated with additional anxiety 
surrounding the issue. Because this effect was actually most 
pronounced for people who were skeptical about climate 
science (again suggesting a ceiling effect for non-skeptics), 
this finding may have important practical applications for 
policy makers and climate science communicators.  We also 
observed some suggestion that metaphorical speed affects 
this sense of urgency, such that fast “motion” language 
makes people think the issue is more urgent. 

Also consistent with our initial prediction, the reference 
frame appeared to affect perceptions of the tractable-ness of 
the issue of climate change, though only when the process 
was described as happening quickly: people felt the issue 
was more tractable on the time-moving reference frame 
when climate change was said to be occurring rapidly. This 
may arise from the increased sense of urgency and risk 
surrounding the issue on the time-moving frame – to 
effectively compensate for this increase in existential 
anxiety, people may come to view the problem as something 
they can actually address through concerted action.  

Though preliminary, these findings have shed some new 
light on how metaphor can affect reasoning – both in 
general and for an issue with real world consequences. 
Taking a nuanced approach like this to investigating 
metaphor has the potential to advance our understanding of 
how metaphor works in the context of communicating about 
real world problems. 
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Abstract
Colour word learning has traditionally been viewed as a diffi-
cult task. Previous accounts have focussed on infants’ ability to
show an adult-like understanding of colour terms. Here we ex-
amine whether infants understand colour terms at a basic level,
using two different methods: first, evidence from parental re-
ports that British infants can comprehend colour terms early,
second from experimental data using eye-tracking. These find-
ing show that colour word learning is a process that begins
much earlier than previously thought, and develops slowly as
infants learn where the boundaries of each term are located.
Due to their abstract properties, colour words present a unique
opportunity to assess category learning in infants, as well as
the mechanisms that control word learning in general.
Keywords: Word learning; language acquisition; colour

Introduction
It has long been documented that colour words are difficult
for children to learn (Kowalski & Zimiles, 2006; O’Hanlon
& Roberson, 2006; Soja, 1994; Sandhofer & Smith, 1999).
They are learned late (Heider, 1971; Franklin, 2006) and even
when infants do learn to say colour words, they are riddled
with errors (Pitchford & Mullen, 2003). But just how dif-
ficult are colour words to learn? Studies to date have had
difficulty establishing a time-line for when colour words are
learned, leading to various theories about why colour words
are more difficult to learn, such as the inability to put cate-
gorical terms on a continuous spectrum of colour (Andrick
& Tager-Flusberg, 1986), or their ability to abstract colour as
a relevant domain of linguistic meaning (Kowalski & Zimi-
les, 2006; O’Hanlon & Roberson, 2006; Sandhofer & Smith,
1999). In the present study, it is demonstrated that in fact in-
fants have some degree of colour word knowledge much ear-
lier than previously shown, and that they are able to recognise
typical colours when named. This finding suggests that the
difficulties that infants have with understanding colour terms
correctly may be due more to an inability to recognise the cat-
egory boundary, rather than a complete lack of understanding
of the basic terms.

Research into colour word learning in infants has shown
that the age of acquisition has dropped dramatically over time
(Franklin, 2006; Shatz, Behrend, Gelman, & Ebeling, 1996).
While early studies had colour words learned as late as 7;0
(Heider, 1971), more recent studies have concluded that they
are learned successfully around three years of age (Pitchford
& Mullen, 2002) or earlier (Mervis, Bertrand, & Pani, 1995).
While there may be an actual drop in age of colour term ac-
quisition due to a rise in coloured plastic goods or other such

environmental influences, it is also possible that an infant’s
comprehension of colour terms has been underestimated.

It is clear that infants have difficulty grasping an adult-like
understanding of the meaning of a colour word, but this does
not necessarily imply that they have failed to grasp the mean-
ing of the term. Research into the slow inductive process of
colour word learning has shown that it is possible for toddlers
from around 30 months to 40 months to comprehend basic
colour terms while still making errors (Wagner, Dobkins, &
Barner, 2013; Wagner, Jergens, & Barner, 2014). This sug-
gests that colour words are similar to most other classes of
word, in that children first acquire a partial meaning for the
colour terms, and start producing the terms, before then later
slowly acquiring a fuller, adult-like meaning. In this case,
proper, adult-like comprehension follows only after produc-
tion, further raising questions about what it is to comprehend
in such an abstract category of words. While this account may
provide some insight into how colour words are learned, the
participants are old enough that they may have already com-
prehended colour words to a degree. This raises two ques-
tions: when are colour words learned, and what is meant in
this instance by “learned?”

The present study employs two different means to an-
swer these questions: a parental word-learning survey, and
an eye tracking paradigm. While word-learning surveys are
particularly useful for measuring production (Fenson et al.,
1994), measuring comprehension in this way has been de-
bated (Tomasello & Mervis, 1994; Houston-Price, Mather, &
Sakkalou, 2007), despite test showing that if anything, they
could even be an underestimate of the child’s ability (Styles
& Plunkett, 2009). In the case of colour terms, which are a
much more abstract category of word than concrete nouns,
this doubt might be magnified. The aim of the present study
is to investigate when colour word learning is occurring, and
in doing so, establish where the process of colour term ac-
quisition might begin. The results of the parental survey are
then to be compared to eye-tracking data, in order to confirm
the measures of early comprehension, and compare them to
measures of production from the survey.

Parental Reports
Method
Participants 2692 8-30 month-old participants’ details
were filled out by parents either on paper or online before
visiting the lab. Participants were always visiting either Ply-
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mouth Babylab or Oxford BabyLab as part of an experiment.
Participants for whom there was incomplete descriptive data
of age and gender were not included in the analysis. As a
number of participants visited more than once, the total was
N = 3413 samples (1653 female). Figure 1 shows participant
information by age and gender.
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Figure 1: Histogram of participant samples in each age group
by gender.

Procedure Parents were asked to fill out the Oxford Com-
municative Development Inventory (Oxford CDI, Hamilton,
Plunkett, & Schafer, 2000). The Oxford CDI is a British
adaptation of MacArthur-Bates CDIs (Fenson et al., 1994),
which contains 416 terms. The Oxford CDI differs from
the MacArthur-Bates CDIs in that it measures comprehension
and production for the full age range of participants. Parents
or caregivers were asked to check if their child does not com-
prehend, comprehends, or comprehends and produces each
word. Thus an infant was marked as producing a term only
if they were thought to “comprehend and produce” the term,
while selecting either “comprehends” or “comprehends and
produces” saw them marked as comprehending.

The Oxford CDI contains four colour terms: red, blue,
green, and yellow. Only data from these four terms are in-
cluded in the analysis.

Data was analysed in two separate binomial regressions,
one for the comprehension data, and another for the produc-
tion data, where the outcome was a binary response for the
colour term in question (yes or no for either comprehension
or production). Both models had fixed effects of which colour
term was being recorded, as well as age of participant and
the gender of the participant. Gender and colour were both
dummy coded in each model.

Results
A summary of the model coefficients of each model can be
seen in Table 1 and Table 2. Effects were added into the
model individually and compared by measuring reduction in
deviance compared to degrees of freedom, distributed as a

χ2. Colour improved model fit in comprehension dev(3) =
15.95, p = 0.0012 and in production dev(3) = 21.58, p <
0.0001, as did gender, both in comprehension dev(1) =
43.2, p < 0.0001, and in production dev(1) = 59.89, p <
0.0001.

Table 1: Standardized values of comprehension model ef-
fects. Colours are as compared to Blue.

Estimate Std. Error z value Pr(> |z|)
(Intercept) -8.42 0.20 -41.51 0.000
Age 0.39 0.01 41.56 0.000
Green -0.25 0.07 -3.75 0.000
Red -0.04 0.07 -0.68 0.499
Yellow -0.11 0.07 -1.67 0.095
Male 0.66 0.27 2.42 0.016
Age:Male -0.05 0.01 -3.61 0.000

Table 2: Standardized values of production model effects.
Colours are as compared to Blue.

Estimate Std. Error z value Pr(> |z|)
(Intercept) -9.24 0.23 -39.59 0.000

Age 0.40 0.01 39.07 0.000
Green -0.34 0.07 -4.65 0.000

Red -0.17 0.07 -2.34 0.019
Yellow -0.19 0.07 -2.55 0.011

Male -0.60 0.34 -1.77 0.077
Age:Male 0.01 0.01 0.60 0.549

The results from Table 1 show that there was a large differ-
ence between green and the other colours, both in speaking
and comprehension, while yellow and red were both slightly
behind blue in both areas. Male infants learned the colour
words significantly slower than female infants, suggesting
that the general advantage that has been seen in word learn-
ing for female infants also applies to colour word learning,
although it is possible that there is an effect of the higher rates
of colour vision problems in males.

The results show that the four basic colour terms measured
in this report are learned at a similar age, as reported by par-
ents. All four colour terms are learned mostly within a month
of each other, however the data suggests that green may be
learned significantly after the other three, with blue gener-
ally the first colour term learned. Green may in many cases
be learned after the other three colours, but only by a short
amount of time. Around three months on average separates
learning the colour word and producing it – a gap that sug-
gests that there is a very short time in between basic learning
and production.

The colour word learning shown here suggests both com-
prehension and production at a much earlier age than has been
previously shown. By 24 months, around 75% of infants have
learned the four colour terms, and around 50% were already
producing the terms. This result is in stark contrast to previ-
ous studies that suggested that at the earliest, some children
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Figure 2: CDI estimates of proportion of British infants who understand colour terms at each age.

comprehended colour terms around 30 months (Sandhofer &
Smith, 1999; Pitchford & Mullen, 2002). Here, parents report
that roughly all of the children have learned the terms by this
age.

The above results make startling claims about when colour
word learning occurs. However, parental surveys have long
been called into question, particularly in the case of mea-
suring comprehension (Tomasello & Mervis, 1994; Houston-
Price et al., 2007). Additionally, the parental reports only
contain data from the four basic colour terms, which may not
capture the full picture of colour word learning. In order to
test the veracity of the claims made by the parental question-
naire, and to expand the scope of colours used from four to
six, a second study was designed, using eye tracking data.

Eye-tracking Study
Method
Participants N = 146 participants were recruited for this
study, either online or from the local maternity ward. A fur-
ther N = 23 participants were excluded for fussiness or for
failing to complete the experiment, while N = 5 participants
were excluded from the experiment for failing to complete at
least one trial with each colour as both target and distractor.
Full participant information can be seen in Table 3. Partic-
ipants were in 5 age groups, with the oldest age group as a
control group who have likely learned colour words (and thus
were not selected to be a specific age), and the youngest age
group a control group who likely have not yet learned colour
terms. All participants were monolingual and were learning
English as their first language.

Table 3: Descriptive statistics for participants in Exp 2
Group N Mean Age (months) SD (months)

12 30 11.84 0.70
16 29 15.96 0.70
19 31 19.69 0.73
24 28 24.30 0.36
48 28 53.46 18.78

Procedure Participants were seated on the lap of the care-
giver, around 75cm from the eye tracker and presentation
screen. Participants first completed a nine-point calibration
sequence, and following that the trials began. In each trial,
participants saw an attractive attention-getter for 2 seconds,
and then were presented with two objects. The objects were
identical in every way, except for colour. The objects on the
screen were coloured one of red, blue, green, yellow, black,
or white. All colours were considered to be typical examples
of that colour category by three independent observers, and
not too dark or light. 2 seconds after the test objects appeared
on the screen, participants heard a colour term corresponding
to one of the objects, in the format of “look, red,” “look at the
red one” or “look at the red chair.” The objects that made up
the stimuli were all regular items that would be seen around
the household by the infants, such as furniture or items of
clothing. The trial would continue for another 5 seconds after
colour label onset.

Each participant saw 18 trials, 3 of each colour, and all
trials were left right randomised. Presentation was counter-
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Figure 4: Fitted growth curve of looking to each colour after target word onset, separated by age group. Dotted red line indicated
target word onset, dotted black line indicates chance looking.

Figure 3: A typical trial as seen by participants.

balanced so that any pairing that participants saw with one of
the stimuli (e.g. the red chair) as a target, they would then see
again with that as a distractor, and the stimulus that had been
the distractor (e.g. the white chair) then became the target.
All stimuli were presented on a neutral grey background, and
trials were presented in a randomised order. Infant fixations
were recorded using a Tobii eye tracker sampling at 120Hz.

The data was modelled with a hierarchical binomial growth

curve, using the function glmmPQL, with quartic orthogonal
polynomials (Mirman, 2014), with a random effect of subject.
Age and time were treated as continuous numeric variables,
and target colour was dummy coded. Rather than modelling
the raw data, which allows infant colour preferences to over-
ride the effect of the label, trials were aggregated for each
participant, such that the proportion of looks to target was de-
fined by using the target and distractor for the same colour
i:

Proportion =
TargetLooks(i)

TargetLooks(i)+DistractorLooks(i)

Results

The fitted model can be seen in Figure 4. The results indicate
that there is very little colour word understanding at either 12
or 16 months, but by 19 months most of the participants un-
derstand all six colour words being examined. The effect of
the label becomes more defined in the 24 month age group,
until almost all participants react to the colour label by look-
ing to the target in the 48 month group. The key fixation
period is during the first two seconds after label onset. After
that initial effect of the target label, it is likely that the infants
return to random looking or looking by preference.
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The results of this experiment also show that there is very
little difference in the word learning of individual colour
terms. Over the three month period between 16 months and
19 months, infants progress from knowing little of any of the
colour terms to displaying some abilities in all of them. This
shows that any differences in colour word learning must be of
a smaller difference than three months.

The model output showed a significant effect of all four
polynomials (p < 0.0001), of age (p < 0.0001) and of the
interaction between age and each of the polynomials (p <
0.0001). The differences between colour terms had no sig-
nificant effects on the model output (all p > 0.05). This sug-
gests that general patterns of looking at the target vary over
the course of the trial by age, but do not really vary by colour.

Finally, the proportion of looks to the target was collapsed
so that for each colour and each participant any participant
with a proportion of looks to target over 0.55 (above chance)
in the first two seconds after target word onset were coded
as “looking to target,” while any participant looking at a pro-
portion lower than 0.55 were coded as “not looking.” These
answers were then compared with the responses given by par-
ents in the Oxford CDI for those participants by way of a Chi-
squared test with Yates’ continuity correction. N = 6 partic-
ipants were excluded from this analysis as they did not fill
out the Oxford CDI. Results showed a significant relation-
ship between CDI answers and infants performance in the
eye-tracking task, χ2(1,N = 560) = 22.974, p < 0.0001.

General Discussion
Two experiments were presented in order to measure colour
word learning, the first using parental reports of whether their
children were understanding and producing the terms, the
second an experimental study using eye-tracking to measure
whether infants looked to the coloured object upon hearing
the colour label. Both methods have shown that there is early
comprehension of colour terms, before 24 months in many
participants according to the CDI results. The purpose of the
second study was to verify the early comprehension that was
evidenced in the parental reports. In the parental reports, the
majority of participants were thought to have comprehended
all four colour terms in the Oxford CDI by around 24 months.
At 19 months, however, only 25% of participants were re-
ported to have understood the colour terms. It is clear from
the eye-tracking data that there is some understanding of the
colour terms already by 19 months. Not only does the exper-
imental evidence confirm that colour words are learned early,
but it suggests that parents may in fact be underestimating
how much their children know with respect to colour terms.

The results of each study showed that although there
maybe patterns in the order of acquisition of colour terms in
English, the differences between those colour terms are not
great – in the parental reports green was seen to be signifi-
cantly behind the other three colour terms, but only by a dif-
ference of around a month, while in the eye-tracking study,
none of the colours were learned by the majority of partic-

ipants at 16 months, while at 19 months all were learned.
This suggests that there is a great deal of consistency as to
when colour words are learned, and follow the assertion of
Mervis et al. (1995) that following the learning of the first
colour term, others quickly follow.

The results of the present study show that colour word
learning occurs as young as 18 months, significantly earlier
than has been shown by previous studies (Kowalski & Zimi-
les, 2006; O’Hanlon & Roberson, 2006; Pitchford & Mullen,
2002; Sandhofer & Smith, 1999; Soja, 1994). However, both
elements of the present study only addressed typical examples
of the colours in question, not a full adult-like understanding
of colour terms. Previous studies focussed on atypical ex-
amples of the colour categories in order to examine colour
word learning, but evidence presented here suggests that it is
highly likely that this may have led to an underestimation, as
the participants may have understood typical examples, but
been unable to extend the colour categories in the same way
an adult would (Wagner et al., 2013).

In the present study evidence is given for an early compre-
hension around 19 months of age, in contrast to this, Wagner
et al. (2013, 2014) have shown that errors are still consis-
tently made by participants around three years of age when
presented with atypical examples of the colour category. This
suggests that colour words are learned slowly over a long pe-
riod of time, where an early comprehension precedes produc-
tion, and that comprehension develops slowly until they have
achieved an adult-like understanding (Wagner et al., 2014).

In this sense, colour words behave the same as other classes
of word, including concrete nouns (Andersen, 1975), where
children begin with typical examples of the word, but take
time to learn the words closer to the boundary (Wagner et al.,
2014; Yurovsky, Wagner, Barner, & Frank, 2015). Often the
examples closer to the category boundary could be learned
after production, while the typical examples will be learned
before production. Very similar examples have been seen in
the case of time words (Tillman & Barner, 2015), where chil-
dren understand the order of time words, but not the exact
meaning until much later.

The present study also compared the results of a parental
report with those of an experimental eye-tracking study. The
eye-tracking data successfully corroborates the results of the
parental reports, with results suggesting a close relationship
between both measures. Measuring comprehension through
the use of questionnaires has long been questioned (Houston-
Price et al., 2007; Tomasello & Mervis, 1994), despite ev-
idence that it is a successful measure of comprehension at
least in the case of object labels (Dale, 1991; Styles & Plun-
kett, 2009). The data evidenced here suggests that parents es-
timate colour word comprehension conservatively, possibly
due to comprehension of a colour term being more abstract
and thus harder to observe than a more concrete term. Even
in the abstract case of colour terms, parental reports provide a
useful estimate of comprehension, but parents are sensitive to
small improvements that children make in their vocabularies
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at a young age, and as such this captures comprehension at an
early stage of the process. While parental reports are found
here to be largely consistent with CDI reports of their under-
standing of these individual terms, little is known about how
the rest of the colour vocabulary will develop after they learn
their first few terms.

Colour words in many respects behave like other classes of
words; they are learned early, but it takes infants some time to
establish where the boundaries are located, and find an adult-
like definition. We have provided strong evidence that colour
word comprehension occurs much earlier than thought, pre-
ceding production and slowly developing for a number of
years. It is worth noting all participants in this study were
British monolingual infants and toddlers, learning English.
The order and timing of early comprehension of colour words
at this stage is only known for British English; it remains to be
seen whether the same trends apply to colour word learning
globally.
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Abstract

Identifying the visual referent of a spoken word – that a partic-
ular insect is referred to by the word “bee” – requires both the
ability to process and integrate multimodal input and the abil-
ity to reason under uncertainty. How do these tasks interact
with one another? We introduce a task that allows us to ex-
amine how adults identify words under joint uncertainty in the
auditory and visual modalities. We propose an ideal observer
model of the task which provides an optimal baseline. Model
predictions are tested in two experiments where word recogni-
tion is made under two kinds of uncertainty: category ambigu-
ity and distorting noise. In both cases, the ideal observer model
explains much of the variance in human judgments. But when
one modality had noise added to it, human perceivers system-
atically preferred the unperturbed modality to a greater extent
than the ideal observer model did.

Keywords: Language; audio-visual processing; word learn-
ing; speech perception; computational modeling.

Language uses symbols expressed in one modality (e.g.,
the auditory modality, in the case of speech) to communicate
about the world, which we perceive through many different
sensory modalities. Consider hearing someone yell “bee!” at
a picnic, as a honeybee buzzes around the food. Determining
reference involves processing the auditory information and
linking it with other perceptual signals (e.g., the visual image
of the bee, the sound of its wings, the sensation of the bee
flying by your arm).

This multimodal integration task takes place in a noisy
world. On the auditory side, individual acoustic word tokens
are almost always ambiguous with respect to the particular se-
quence of phonemes they represent, which is due to the inher-
ent variability of how a phonetic category is realized acousti-
cally (e.g., Hillenbrand, Getty, Clark, & Wheeler, 1995). And
some tokens may be distorted additionally by mispronuncia-
tion or ambient noise. Perhaps the speaker was yelling “pea”
and not “bee.” Similarly, a sensory impression may not be
enough to make a definitive identification of a visual cate-
gory.1 Perhaps the insect was a beetle or a fly instead.

Thus, establishing reference requires reasoning under a
great deal of uncertainty in both modalities. The goal of this
work is to characterize such reasoning. Imagine, for example,
that someone is uncertain whether they heard “pea” or “bee”,
does it make them rely more on the visual modality (e.g., the
object being pointed at)? Vice versa, if they are not sure if
they saw a bee or a fly, does that make them rely more on the
auditory modality (i.e., the label)? More importantly, when
input in both modalities is uncertain to varying degrees, do

1In the general case, language can of course be visual as well as
auditory, and object identification can be done through many modal-
ities. For simplicity, we focus on audio-visual matching here.

they weight each modality according to its relative reliability,
or do they over-rely on a particular modality?

In this paper, we propose a probabilistic framework where
such reasoning can be expressed precisely. We characterize
uncertainty in each modality with a probability distribution,
and we predict ideal responses by combining these probabil-
ities in a optimal way. Our work can be seen as an extension
to previous Bayesian models of phoneme identification (e.g.,
Feldman, Griffiths, & Morgan, 2009), where, instead of a uni-
modal input, we model a bimodal one. A few studies have
explored some aspects of audio-visual processing in a prob-
abilistic framework (e.g., Bejjanki, Clayards, Knill, & Aslin,
2011). In these studies, the researchers focused on the spe-
cific case of phoneme recognition from speech and lip move-
ment, however, where information is tightly correlated across
modalities.

In the present work, we study, rather, the case of arbitrary
mapping between sounds and visual objects. We test partici-
pants on their ability to process audio-visual stimuli and use
them to recognize the underlying word. More precisely we
study the case where both the word’s form and the word’s ref-
erent are ambiguous, and we examine the extent to which hu-
mans conform to, or deviate from the predictions of the ideal
observer model. Moreover, some previous studies on audio-
visual processing documented cases of modality preference,
when people rely predominantly on the visual modality (e.g.,
Colavita, 1974) or the auditory modality (e.g., Sloutsky &
Napolitano, 2003). Thus, we will explore if participants in
our task show evidence of a modality preference.

The paper is organized as follows. First, we introduce our
audio-visual recognition task. We next present the ideal ob-
server model. Then we present two behavioral experiments
where we test word recognition under audio-visual uncer-
tainty. In Experiment 1, audio-visual tokens are ambiguous
with respect to their category membership. In Experiment 2,
we intervene by adding noise to one modality. In both exper-
iments participants show qualitative patterns of optimal be-
havior. Moreover, while participants show no modality pref-
erence in Experiment 1, in Experiment 2 they over-rely on
visual input when the auditory modality is noisy.

The Audio-Visual Word Recognition Task
We introduce a new task that tests audio-visual word recog-
nition. We use two visual categories (cat and dog) and two
auditory categories (/b/ and /d/ embedded in the minimal pair
/aba/-/ada/). For each participant, an arbitrary pairing is set
between the auditory and the visual categories, leading to two
audio-visual word categories (e.g., dog-/aba/, cat-/ada/).
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Figure 1: Overview of the task

In each trial, participants are presented with an audio-
visual target (the prototype of the target category), immedi-
ately followed by an audio-visual test stimulus (Figure 1).
The test stimulus may differ from the target in both the au-
ditory and the visual components. After these two presenta-
tions, participants press “same” or “different.”

This task is similar to the task introduced by Sloutsky and
Napolitano (2003) and used in subsequent research to probe
audio-visual encoding. However, unlike this previous line
of research, here participants are not asked whether the two
audio-visual presentations are identical. Instead, the task is
category-based: They are asked to press “same” if they think
the second item (the test) belonged to the same category as the
first (target) (e.g., dog-/aba/), even if there is a slight differ-
ence in the word, in the object, or in both. They are instructed
to press “different” only if they think that the second stimulus
was an instance of the other word category (cat-/ada/).

The task also includes trials where pictures were hid-
den (audio-only) or where sounds were muted (visual-only).
These unimodal trials provide us with participants’ catego-
rization functions for the auditory and visual categories and
are used as inputs to the ideal observer model, described be-
low.

Ideal Observer Model
The basis of our ideal observer model is that individual cate-
gorization functions from each modality should be combined
optimally. In each modality, we have two categories: /ada/
(A = 1) and /aba/ (A = 2) in the auditory dimension, and cat
(V = 1) and dog (V = 2) in the visual dimension. We assume,
for the sake of simplicity, that the probability of membership
in each category is normally distributed:

p(a|A)∼ N(µA,σ
2
A)

p(v|V )∼ N(µV ,σ
2
V )

In the bimodal condition, participants see word tokens with
audio-visual input, and have to make a categorization deci-
sion. We define word tokens as vectors in the audio-visual
space, w = (a,v). A word category W is defined as the joint
distribution of auditory and visual categories. It can be char-
acterized with a bivariate normal distribution:

p(w|W )∼ N(MW ,ΣW )

Figure 2: Illustration of our model using simulated data. A
word category is defined as the joint bivariate distribution of
an auditory category (horizontal, bottom panel) and a visual
semantic category (vertical, left panel). Upon the presenta-
tion of a word token w, participants guess whether it is sam-
pled from the word category W1 or from W2. Decision thresh-
old is where the guessing probability is 0.5.

We have two word categories: dog-/aba/ (W1) and cat-/ada/
(W2). Participants can be understood as choosing one of these
two word categories (Figure 2). For an ideal observer, the
probability of choosing category 2 when presented with an
audio-visual instance w = (a,v) is the posterior probability
of this category:

p(W2|w) =
p(w|W2)p(W2)

p(w|W2)p(W2)+ p(w|W1)p(W1)
(1)

We make the assumption that, given a particular word cat-
egory, the auditory and visual tokens are independent:

p(w|W ) = p(a,v|W ) = p(a|W )p(v|W ) (2)

Under this assumption, the posterior probability reduces to:

p(W2|w) =
1

1+(1+ ε)exp(β0 +βaa+βvv)
(3)

with βa =
µA1−µA2

σ2
A

, βv =
µV 1−µV 2

σ2
V

, β0 =
µ2

A2−µ2
A1

2σ2
A

+
µ2

V 2−µ2
V 1

2σ2
V

and

1+ ε = p(W1)
p(W2)

is the proportion of the prior probabilities. If
the identity of word categories is randomized, and if W1 is the
target, then ε measures a response bias to “same” if ε> 0, and
a response bias to “different” if ε < 0.

In sum, the posterior 3 provides the ideal observer’s pre-
dictions for how probabilities that characterize uncertainty in
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each modality can be combined to make categorical decision
about bimodal input.

Experiment 1
In Experiment 1, we test the predictions of the model in the
case where uncertainty is due to similar auditory categories,
and similar visual categories. Crucially, the similarity is such
that the distributions overlap. To simulate such uncertainty
in a controlled fashion, we use a continuum along the second
formant (F2) linking the words /aba/ and /ada/, and we use a
morph that links a dog prototype and a cat prototype.

Methods
Participants We recruited a planned sample of 100 partic-
ipants, recruited from Amazon Mechanical Turk. Only par-
ticipants with US IP addresses and a task approval rate above
85% were allowed to participate. They were paid at an hourly
rate of $6/hour. Data were excluded if participants completed
the task more than once (2 participants). Moreover, as spec-
ified in the preregistration (https://osf.io/h7mzp/), par-
ticipants were excluded if they had less than 50% accurate
responses on the unambiguous training trials (6), and if they
reported having experienced a technical problem of any sort
during the online experiment (14). The final sample consisted
of 76 participants.

Stimuli For auditory stimuli, we used the continuum intro-
duced in Vroomen, van Linden, Keetels, de Gelder, and Ber-
telson (2004), a 9-point /aba/–/ada/ speech continuum created
by varying the frequency of the second (F2) formant in equal
steps. We selected 5 equally spaced points from the original
continuum by keeping the end-points (prototypes) 1 and 9,
as well as points 3, 5, and 7 along the continuum. For visual
stimuli, we used a morph continuum introduced in Freedman,
Riesenhuber, Poggio, , and Miller (2001). From the original
14 points, we selected 5 points as follows: we kept the item
that seemed most ambiguous (point 8), the 2 preceding points
(i.e., 7 and 6) and the 2 following points (i.e., 9 and 10). The
6 and 10 points along the morph were quite distinguishable,
and we took them to be our prototypes.

Design and Procedure We told participants that an alien
was naming two objects: a dog, called /aba/ in the alien lan-
guage, and a cat, called /ada/. In each trial, we presented the
first object (the target) on the left side of the screen simulta-
neously with the corresponding sound. The target was always
the same (e.g., dog-/aba/). The second sound-object pair (the
test) followed on the other side of the screen after 500ms and
varied in its category membership. For both the target and the
test, visual stimuli were present for the duration of the sound
clip (∼800ms). We instructed participants to press “S” for
same if they thought the alien was naming another dog-/aba/,
and “D” for different if they thought the alien was naming
a cat-/ada/. For each participant, we randomized the sound-
object mapping as well as the identity of the target.

The first part of the experiment trained participants using
only the prototype pictures and the prototype sounds (12 tri-
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Figure 3: Average human responses in the auditory-only con-
dition (left), and visual-only condition (right). A) represents
data from Experiment 1, and B) data from Experiment 2. Er-
ror bars are 95% confidence intervals. Solid lines represent
unimodal logistic fits.

als, 4 each from the bimodal, audio-only, and visual-only con-
ditions). After completing training, we instructed participants
on the structure of the task and encouraged them to base their
answers on both the sounds and the pictures (in the bimodal
condition). There were a total of 25 possible combinations
in the bimodal condition, and 5 in each of the unimodal con-
ditions. Each participant saw each possible trial twice, for a
total of 70 trials/participant. Trials were blocked by condition
and blocks were presented in random order.

Results
Unimodal conditions this is the case where the pictures
were hidden, or where the sounds were muted. Average cate-
gorization judgments and fits are shown in Figure (3, A). The
categorization function of the auditory condition was steeper
than that of the visual condition. The fit was done using the
Nonlinear Least Squares (NLS) R package, as follows. For an
ideal recognizer, the probability of choosing category 2 (that
is, to answer “different”) when presented with an audio in-
stance a, is the posterior probability of this category p(A2|a).
If we assume that both categories have equal variances, the
posterior probability reduces to:

p(A2|a) =
1

1+(1+ εA)exp(βa0 +βaa)
(4)

with βa =
µA1−µA2

σ2
A

and βa0 =
µ2

A2
−µ2

A1
2σ2

A
. εA is the response bias

in the auditory-only trials.
For this model (as well all other models), we fixed the val-

ues of the means to be the end-points of the corresponding
continuum: µA1 = 0 and µA2 = 4 (and similarly µV 1 = 0, and
µV 2 = 4). To determine the values of the bias and the variance,
we fit a model for each modality, collapsed across partici-
pants. For the auditory modality, we obtained εA =−0.20 and
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Figure 4: Proportion of “different” judgments as a function of auditory distance. Solid lines represent average human responses
(left), predictions of the ideal observer (middle), and the bimodal fit (right). Dashed lines represent average human responses in
the unimodal conditions. Colors represent values in the visual continuum. A) represents data from Experiment 1, and B) data
from Experiment 2.

σ2
A = 2.04. For the visual modality, we obtained εV =−0.11

and σ2
V = 3.34.

Bimodal condition We fit a model to human responses in
the bimodal condition, collapsed across participants, finding
ε = −0.32, σ2

Ab = 5.00 and σ2
V b = 7.27. The fit explained

94% of total variance.

Ideal observer model We derived the predictions of the
ideal observer model by using the values of the variances
derived from the unimodal conditions, and the response bias
derived from the bimodal condition, and by substituting these
values into the expression of the posterior in Eq. 3. Figure
(4, A) shows participants’ responses in the bimodal condition
(left), as well as the prediction of the ideal observer (middle),
and the bimodal fit models (right).

Response bias We found negative values in all response
bias terms, which suggests a general bias toward answering
“different.” This bias is probably due to the categorical nature
of our same-different task: when two items are ambiguous but
perceptually different, this could cause a slight preference for
“different” over “same”.

Modality preferences We next analyzed whether there was
a preference for one or the other modality when making de-
cisions in the bimodal condition, beyond that explained by
the variance in categories implied by the unimodal responses.
This preference would manifest as a deviation from the de-
cision threshold predicted by the ideal observer model. The
decision threshold is defined as the set of values in the audio-

visual space along which the posterior (Eq. 3) is equal to 0.5.
The decision threshold takes the following form:

v =−σ2
V

σ2
A

a+ v0 (5)

If the slope derived from the bimodal fit is greater than the
slope of the ideal observer, this finding would suggest a gen-
eral preference for the auditory modality (similarly, a smaller
slope would suggest a preference for the visual modality).
The limit cases are when there is exclusive reliance on the
auditory cue (a vertical line), and where there is exclusive re-
liance on the visual (a horizontal line). Figure 5 (top left)
shows the decision threshold in the audio-visual space with a
constant intercept; the fit to human data (solid black line) was
very close to the ideal observer threshold (red line). Non-
parametric resampling of the data showed no evidence of a
deviation from the slope of the ideal observer (5, bottom left).

Discussion

Qualitatively, participants’ judgments were similar to the pre-
dictions of the ideal observer model (remember that the lat-
ter was obtained by optimally combining fits to the uni-
modal data). Consider, for example, the contrast between the
auditory-only case (dashed black line in Figure 4, top left) and
the bimodal case (solid colored lines). Higher certainty in the
visual modality generally influenced responses, with greater
visual distance leading to more “different” ratings and less
visual distance leading to more “same” ratings. Similar ob-
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servations can be made about the contrast between the visual-
only case and the bimodal case.

Overall, we found that the ideal observer model explained
much of the variance in judgments (r2 = 0.89). But although
we see a qualitative resemblance between human data and
the model, there were quantitative differences. For example,
model predictions were more influenced by the visual modal-
ity at the auditory midpoint (the point of highest uncertainty)
than human judgements, and were more compressed at the
endpoints (the points of lowest uncertainty).

Formally, there was an increase in the value of the vari-
ance associated with each modality. Whereas the ideal ob-
server model predicted the weights to be proportional to 1/σ2

A
and 1/σ2

V , for the auditory and the visual modalities, respec-
tively (see expression 3), the fit to human data suggested that
the real weights were proportional to 1/σ2

Ab and 1/σ2
V b. Our

analysis of modality preference showed that the relative val-
ues of these variances were almost the same (Figure 5, left).
Thus, 1) the bimodal presentation introduced a certain level
of randomness in the participants’ responses, and 2) this in-
creased randomness did not affect the relative weighting of
both modalities, i.e., participants were weighting modalities
according to their relative reliability. The latter explains the
qualitative resemblance between the predictions of the ideal
observer and human data, and the former explains the quanti-
tative discrepancy.

In sum, we found that participants followed the ideal ob-
server model in that they weighted modalities according to
their reliabilities. In real life, however, tokens can undergo
distortions due to noisy factors in the environment. In Exper-
iment 2, we explore this additional level of uncertainty.

Experiment 2
Imagine that the speaker generates a target production t from
an auditory category t|A ∼ N(µA,σ

2
A). In Experiment 1, we

assumed that the observer could directly retrieve this produc-
tion token. But if the observer is in a noisy environment, they
do not hear exactly this produced target, but the target per-
turbed by noise, which we assume, following Feldman et al.
(2009), that it is normally distributed: a|t ∼ N(t,σ2

N). When
we integrate over t, we get:

a|A∼ N(µA,σ
2
A +σ

2
N) (6)

In this experiment, we explored the effect of this added
noise2 on performance in our task. We tested a case where
one modality was ambiguous and noisy (auditory), and where
the other modality was ambiguous but not noisy (visual).
We were interested to know if participants would treat this
new source of uncertainty as predicted by the ideal observer
model, and whether noise in one modality would lead to some
systematic preference for the non-noisy modality.

2Note that we are considering environmental noise, which is dif-
ferent from the noise inherent to perception.

Methods

Participants A planned sample of 100 participants was re-
cruited online through Amazon Mechanical Turk. We used
the same exclusion criteria as in the previous experiment; the
final sample consisted of 93 participants.

Stimuli and Procedure We used the same visual stimuli as
in Experiment 1. We also used the same auditory stimuli, but
we convolved each item with Brown noise of amplitude 1 us-
ing the audio editor Audacity (2.1.2). The procedure was ex-
actly the same as in the previous experiment, except that test
stimuli were presented with the new noisy auditory stimuli.

Results

Unimodal conditions We fit a model for each modality,
collapsed across participants. For the auditory modality, our
parameter estimates were εA = −0.18 and σ2

A +σ2
N = 4.70.

For the visual modality, we found εV =−0.24 and σ2
V = 3.93.

Figure 3 (bottom) shows responses in the unimodal condi-
tions as well as the unimodal fits. In contrast to Experiment 1,
auditory responses were flatter (showing more uncertainty).

Bimodal condition We fit a model to human responses in
the bimodal condition, collapsed across participants. We es-
timated ε = −0.38, σ2

V b = 5.21, and σ2
Ab +σ2

Nb = 9.84. The
fit explained 97% of total variance.

ideal observer model We generated the predictions of the
ideal observer model by using the values of the variances de-
rived from the unimodal conditions, and the response bias de-
rived from the bimodal condition, and by substituting these
values into the expression of the posterior in Eq. 3. Results
are shown in Figure 4 (bottom).

Modality preferences Participants’ decision threshold sug-
gested a preference for the visual modality (the non-noisy
modality). Indeed non-parametric resampling of the data
showed a decrease in the value of the slope (5, right).

Discussion

We found, similar to Experiment 1, that participants gener-
ally showed qualitative patterns similar to the ideal observer
model (r2 = .91). But we also found a similar discrepancy
at the quantitative level. The ideal observer model predicted
the modality weights to be proportional to 1/(σ2

A +σ2
N) and

1/σ2
V , for the auditory and the visual modalities, respectively.

The fit to human data suggested that the empirical weights
were proportional to 1/σ2

Ab and 1/σ2
V b. An interesting differ-

ence with Experiment 1, however, was that participants had
a clear preference for the non-noisy modality, as the values
of the relative variances were different (Figure 5, right). This
preference affected the relative weighting, where, contrary to
Experiment 1, the visual modality had greater weight than
what could be expected from its relative reliability alone.

It is important to understand that this preference was not
the mere consequence of the added noise increasing the vari-
ance of the auditory modality, since this increase was already
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Figure 5: Top: decision thresholds in the audio-visual space.
Red dotted line is the prediction of the ideal observer. Blue
dotted lines are cases where modality preference is twice as
strong as the ideal observer. Solid line is the threshold de-
rived from human data. Bottom: comparison of the threshold
slope between the ideal observer and the fit to human data.
Error bars are 95% confidence intervals computed via non-
parametric bootstrap.

accounted for in the ideal observer model. The preference
was, rather, a form of over-reliance on the visual modality.

General Discussion
Understanding language requires both the ability to integrate
multimodal input, and the ability to deal with uncertainty. In
this work, we explored a case where both abilities were at
play. We studied the case of identifying a word when both its
form (auditory) and its referent (visual) were ambiguous with
respect to their category membership (Experiment 1), and
when the form was perturbed with additional noise (Experi-
ment 2). We introduced a model that instantiated an ideal ob-
server, predicting how information from each modality could
be combined in an optimal way. In both experiments, partici-
pants showed the qualitative patterns of the ideal observer.

There were, however, quantitative differences. Audio-
visual presentation increased the level of randomness in the
participants’ responses. One possible explanation is that this
phenomenon was caused by the arbitrary nature of the form-
meaning mapping. Previous studies suggest that while re-
dundant multimodal information improves performance (e.g.,
determining the frequency of a bouncing ball from visual and
auditory cues), arbitrary mappings generally tends to hinder
performance (for review, see Robinson & Sloutsky, 2010).

Interestingly, however, in Experiment 1 this increase in
randomness occurred at a similar rate for both the auditory
and the visual modality, and thus, it did not affect their rel-
ative weighting. The latter was primarily determined by in-

formational reliability. Only when we intervened by adding
noise to one modality in Experiment 2, did participants show
a systematic preference for the non-noisy modality. One pos-
sible explanation for this preference could be that people do
not combine cross-modal uncertainties of a similar kind (e.g.,
ambiguity in both modalities) in the same way they would
combine uncertainties of different kinds (e.g., ambiguity in
one modality and noise in the other). For instance, it could be
that the latter, but not the former, cause the over-reliance on a
particular modality.

Overall, in both Experiments, the majority of the variance
could be explained by an ideal observer that combined multi-
modal information optimally. In the light of this main result,
we can revisit some previous findings in the literature. For
instance, Sloutsky and Napolitano (2003) reported a domi-
nance for the auditory modality in children. This dominance
disappears or reverses in adults. Could this difference be
driven by changes across development in the level of percep-
tual noise affecting the intrinsic relative reliability of modal-
ities (by analogy to Experiment 2)? More work is needed
to carefully examine this (and other) speculations, and more
generally, to determine the extent to which the optimal com-
bination account helps us better understand the mechanisms
of word processing and learning.
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Abstract

While some word meanings, like “spotted,” depend on in-
tersubjectively accessible properties of the world, others like
“pretty” invoke speakers’ subjective beliefs. We explored chil-
dren and adults’ sensitivity to the subjectivity of a range of
adjectives, including words like “spotted” and “pretty,” but
also words like “tall,” which are evaluated relative to a stan-
dard. Participants saw two speakers who had independently
experienced sets of exemplars of a novel object kind disagree
about whether a critical exemplar was, e.g., “tall,” “pretty,” and
“spotted.” In Experiments 1 and 3, speakers had seen distinct
sets of exemplars, while in Experiments 2 and 4, the sets were
identical. Adults always judged disagreements over words like
“pretty” as faultless—indicating that both speakers “could be
right”—and permitted less faultless disagreement for ones like
“tall” when the speakers had experienced identical sets of ex-
emplars. Strikingly, children did not respond in an adult-like
manner until age 8 or 9, but their explanations for speakers’
conflicting assertions suggested some sensitivity to the kinds
of knowledge relevant for evaluating different adjectives.

Keywords: metalinguistic development; theory of mind

Introduction
What goes into our understanding of what other people
say? While comprehension of some words, like “spotted”
or “striped,” does not appear to rely on our knowledge of oth-
ers’ beliefs and experiences, comprehension of other words,
like “pretty” or “tasty,” does. Thus, when someone says that
they saw a “spotted bird,” we can understand what they mean
by leveraging our understanding of what “spotted” and “bird”
refer to. We understand that the bird must have some spots on
it to be called “spotted,” and that were we also to see the bird,
we would agree with the speaker’s description. The meaning
of “spotted” is in this sense intersubjective, based on proper-
ties in the external world all speakers can access. In contrast,
when someone says that they saw a “pretty bird,” it is not im-
mediately apparent what property of the bird she is describ-
ing, nor that we would agree that the same bird is “pretty.”
This is because the meanings of words like “pretty” are not
intersubjective, but instead depend on the speaker’s belief.

The present studies are motivated by the idea that many
words—far beyond clearly subjective predicates of personal
taste like “pretty,” “tasty,” and “funny”—are interpreted rel-
ative to their speakers. In particular, we consider the cases
of relative adjectives like “big” and “cold,” which have to be
interpreted relative to the nouns they modify: a “big bird” is
smaller than a “big lion.” We test whether these predicates
are also interpreted relative to the prior experiences and be-
liefs of speakers. Do we adjust the imagined size of a “big
apartment” or temperature of a “cold day” depending on the
sample of apartments and weather we believe our interlocutor
has experienced? Speakers may have different thresholds for
calling an apartment “big” or a day “cold” depending on their

prior experiences, such that they may not always agree about
whether a specific apartment or day is “big” or is “cold.”

As we review below, the fact that speakers may have differ-
ent things in mind when using words like “big” and “pretty”
may pose a challenge for successful communication. This is
especially true in light of evidence that children (and even
adults) have an overarching tendency toward naive realism;
i.e., to behave as though their own perception reflects reality
and their judgments are objective (Ross & Ward, 1996).

Background
Previous work demonstrates that children have sophisticated
knowledge of relative adjectives, but leaves open whether
they incorporate information about their interlocutors into
their interpretations. Four-year-olds understand that the
meanings of words like “big” and “tall” depend on distribu-
tions of referents within a given class. For example, they ap-
propriately identify “tall pimwits” as ones at the higher end of
the distribution of only pimwit heights, even if that means ig-
noring other, taller objects (Barner & Snedeker, 2008). Five-
year-olds also understand that the frame of reference for what
counts as “high” or “low” varies with the class of object in
question (e.g., “high” for a bird is much higher than “high”
for a bunny: Smith, Cooney, & McCord, 1986).

One reason to think that children may have difficulty in-
terpreting the meanings of words that depend on speakers’
beliefs is that they appear to begin life heavily influenced by
naive realism, and behave as if their own construal of a stim-
ulus will be shared by others. In one study, for example, chil-
dren were shown an image that was then covered so only an
unidentifiable quadrant of it was left visible. Four-year-olds
predicted that others would still be able to identify the largely
occluded image, seemingly discounting their previous subjec-
tive access to it in full (Taylor, Cartwright, & Bowden, 1991).

In general, the literature suggests that young children might
be able to understand why people say the things they say,
but still have difficulty thinking that others can have differ-
ent meanings for words than they do, perhaps due to their
fundamental assumptions about language itself. For example,
although toddlers recognize that others might want a different
snack from one that they themselves find delicious (Repacholi
& Gopnik, 1997), they judge statements of unconventional
snack opinions like “ice cream is yucky” as unacceptable well
into the preschool years (Holubar, 2015). Thus, preschool-
aged children understand that others may have different pref-
erences, but struggle with understanding that an unqualified
statement about a preference that they think is wrong can still
be “right.” Children’s eventual success on false belief tasks
(e.g., Wellman & Liu, 2004) demonstrates their understand-
ing that an individual’s experience leads to their beliefs. But
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it may be more challenging for children to understand that ex-
perience might result in speakers of the same language having
different meanings for the same word (e.g., such that speak-
ers have different temperatures in mind when they talk about a
“cold day”). Consistent with this, studies on children’s beliefs
about conventionality in language have argued that children
expect object labels to be shared by other speakers of their
language, even given evidence to the contrary (e.g., when
other speakers were absent when a novel object’s label was
taught: Diesendruck, 2005).

While adults “succeed” on some of these tasks that stump
children, they are also not immune to the influence of naive
realism, suggesting some form of continuity over develop-
ment. For example, adults often overestimate the prevalence
of their own attitudes in the general population, and are reluc-
tant to attribute those attitudes to their own subjective experi-
ence, rather than to objective features of the world (see Ross
& Ward, 1996 for a review). When it comes to language,
adults have the metalinguistic knowledge to be able to ex-
plicitly judge words and phrases like “pretty shirt” as subjec-
tive when they are presented in the absence of a referent that
they could evaluate (Scontras, Degen, & Goodman, 2016).
However, to our knowledge there have been no empirical in-
vestigations of whether adults permit different word mean-
ings for speakers when the adults themselves are confident of
whether the word applies: e.g., when they are confident that
a particular shirt is “pretty” or “big.” Additionally, no stud-
ies have explored whether adults’ tolerance of disagreement
about different word uses is influenced by their knowledge of
a speaker’s relevant prior experience.

The Present Studies
Here, we explore adults’ and children’s sensitivity to linguis-
tic subjectivity across four experiments. In particular, we ask
whether, in addition to considering the real-world distribution
of a specific noun’s referents along a given dimension, listen-
ers also interpret adjectives like “tall” relative to what they
know of the distribution that the speaker has experienced. To
test these ideas, we manipulate whether two speakers expe-
rience different distributions of exemplars of a novel object
kind (Exps. 1 and 3), or identical distributions of exemplars
(Exps. 2 and 4), and assess whether this affects adults’ (Exps.
1 and 2) and children’s (Exps. 3 and 4) judgments of whether
the two speakers can disagree about how to describe a novel
target exemplar that they can both see.

Across our studies, the disagreeing assertions that partici-
pants judge involve adjective-noun phrases that describe the
same target object: e.g., “That’s [not] a tall pimwit.” We
introduce novel nouns, but use familiar gradable adjectives
(GAs) that vary in how intersubjective versus subjective they
are. We categorize these adjectives into three classes. Fol-
lowing Syrett, Kennedy, and Lidz (2009), we call words like
“spotted” absolute GAs. These adjectives require their argu-
ments to possess some minimal degree of a property, and their
meaning is largely context-independent. We refer to context-
dependent adjectives like “tall” as relative GAs (Syrett et al.,

2009), and refer to adjectives like “pretty” as subjective GAs.
To assess individuals’ appreciation of the subjectivity of

these different kinds of adjectives, we obtain judgments of
faultless disagreement: disagreements where neither per-
son is wrong (Barker, 2013). Such judgments are closely
correlated with direct measures of statements’ subjectivity
(Scontras et al., 2016), and offer a less metalinguistically de-
manding measure to use with children. In addition, we elicit
qualitative explanations from participants to understand the
sources of knowledge that they are drawing on when evalu-
ating speakers’ utterances. Critically, given that participants
maintain visual access to the complete distribution of exem-
plars observed by both speakers, they are able to form their
own evaluation of whether the adjective-noun phrase applies
to the target exemplar that is the subject of the speakers’ dis-
agreement. Since they share this evaluation with only one of
the two disagreeing speakers (e.g., one will call the pimwit
“pretty” and one “not pretty”), we can interpret judgments of
faultless disagreement as overcoming naive realism.

Experiment 1
Participants Twenty-five UC Berkeley undergraduates
participated in Experiment 1 (18 women, 19.65–27.37, M =
21.24 years, SD = 1.68 years). All were native speakers of
English and received course credit for their participation.

Stimuli and Methods

Figure 1: Schematic of experimental setup for Exps. 1–4.

Experimental Setup The stimuli were sets of eleven ob-
jects belonging to distinct novel kinds. Critical kinds were
pimwits, thin purple cylinders ranging from 0.75 to 6.25
inches in height, and from densely to sparsely spotted, and
daxes, blue and yellow spheres ranging from 0.5 to 3 inches
in diameter, and from heavily to lightly striped. Each set was
divided into two arrays composed of the five smallest and five
largest exemplars, with the exemplar in the middle of the size
distribution used as the critical target exemplar (Figure 1).

Participants sat across a table from two wooden house-like
structures separated by a narrow stage. The experimenter
sat behind the display and animated pairs of puppets rep-
resenting familiar characters from Sesame Street, who she

380



explained could not see or hear anything that happened
beyond their “classrooms” while they were inside them.

The experiment consisted of two blocks of two training tri-
als each, followed by two blocks of three critical trials each
and a post-test. In each block, two speakers were indepen-
dently introduced to distinct arrays of a novel kind in their
classrooms by the experimenter, before emerging to view and
disagree about a new exemplar (the target) placed by the ex-
perimenter in the middle of the stage.

Training Trials The initial training trials familiarized par-
ticipants with the paradigm, and provided practice with judg-
ing disagreements as faultless and not. In them, characters
saw distinct sets of exemplars labeled with the same noun,
and then ‘disagreed’ over a target exemplar that shared prop-
erties with both sets. In a faultless training trial, Dawn might
see five feps that were matte white circles, while Big Bird saw
five feps that were sparkly white squares. Dawn would ex-
claim that the target fep, a sparkly white circle, was “sparkly,”
while Big Bird would assert that it was “round” (a faultless
disagreement). The non-faultless complement would con-
sist of one speaker asserting the target exemplar was “white,”
while the other said it was “black.” Participants received feed-
back for their answers on only the first block of training trials,
and we recorded their judgments prior to feedback.

Critical Trials In critical trials, the characters were intro-
duced to distinct sets of exemplars belonging to the same
novel kind (pimwits or daxes). For example, Zoe might
see five relatively short and densely spotted pimwits, while
Cookie Monster saw five relatively tall and lightly spotted
ones. Upon encountering the intermediate target pimwit, Zoe
would assert that it was tall, which Cookie Monster would
deny. Following the disagreement, participants answered
whether each speaker was “wrong” or “could be right,” and
explained why. Responses where participants answered
“could be right” for both speakers were coded as indicating
faultless disagreement. For each novel kind, speakers
disagreed over an absolute, relative, and subjective GA.

The order of the blocks, which speaker asserted the positive
statement, and the block-internal order of the relative versus
subjective disagreements were counterbalanced across partic-
ipants. Disagreements over absolute GAs were always pre-
sented last to avoid invalidating one of the speakers. To pre-
vent speakers from being degraded across blocks for wrong
assertions, new speakers were introduced each block of trials.

Qualitative Explanations In each critical trial, we col-
lected qualitative explanations of participants’ evaluations of
speakers’ assertions. From explanations collected during pi-
loting, we developed three primary codes to describe partici-
pants’ responses. Trained coders identified whether each ex-
planation made reference to apparently intersubjective prop-
erties of the target exemplar (OBJECT PROPERTY—e.g., “It
is beautiful;” “There are dots on it”), the distinct arrays

of exemplars the speakers had experienced (SPEAKER EX-
PERIENCE—e.g., “He saw tall pimwits and she saw short
ones”), or the speaker’s subjective evaluation of the object
(SPEAKER OPINION—e.g., “He likes purple and she doesn’t
like spots.”). Explanations could receive multiple codes.

Post-Test We directly assessed participants’ own evalua-
tion of the target exemplars in a post-test. Participants saw
the entire distribution of exemplars, and answered whether
the target exemplars were “spotted,” “tall,” “pretty,” etc.

Results
Faultless Disagreement Disagreements over relative and
subjective GAs were almost always judged as faultless (spot-
ted: 24%, striped: 20%, tall: 100%, big: 100%, pretty: 100%,
boring: 92%; see Figure 2). There were no significant differ-
ences between the proportions of faultless disagreement for
the two adjectives in each class, so we collapse them here.

Figure 2: Adult rates of faultless disagreement judgment during
critical trials in Exps. 1–2 by gradable adjective type (ABSOLUTE:
“spotted,” “striped;” RELATIVE: “tall,” “big;” SUBJECTIVE:
“pretty,” “boring”). Participants in Exp. 1 judged speakers exposed
to distinct distributions of exemplars, while participants in Exp. 2
judged speakers who had seen identical ones. Error bars for this and
all plots indicate 95% bootstrapped confidence intervals (k = 1000).

Relation to Post-test The relation between participants’
post-test evaluations and faultless disagreement judgments
qualitatively distinguished the three classes of adjectives. For
absolute GAs, participants uniformly answered “yes” when
asked whether the target pimwit or dax was “spotted” or
“striped,” and typically answered that only the speaker who
asserted the same could be right. For relative GAs, in con-
trast, while participants again all said that the target exemplar
was “tall” or “big,” they also all responded that both speakers
could be right. Despite variability in participants’ own evalu-
ations of the critical items’ beauty (91% said it was “pretty”)
or tedium (17% said it was “boring”), they almost always
judged disagreements over subjective GAs as faultless.

Qualitative Explanations Participants for the most part
cited distinct sources of knowledge to explain their judgments
of utterances from different adjective classes (Figure 3). They
referred to speakers’ opinions (SPEAKER OPINION) exclu-
sively when explaining their evaluations of utterances using
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subjective GAs (and did so on 80% of all subjective trials).
We fit separate logit models to the data for the two remain-

ing codes (OBJECT PROPERTY and SPEAKER EXPERIENCE)
that were used in explanations regarding more than one ad-
jective class, using GA type as our sole predictor. Partic-
ipants were more likely to refer to object properties to ex-
plain absolute GA utterances (β= 1.266, p< 0.001), and less
likely to cite them when explaining subjective GA judgments
(β =−3.462, p < 0.001). Participants cited speakers’ unique
experiences most in explaining judgments of relative GA ut-
terances, and were unlikely to do so to explain judgments of
absolute GAs (β =−1.153, p < 0.001).

Figure 3: Adult reference to properties of the target exemplar
(OBJECT PROPERTY), speakers’ distinct experiences of the object
kind (SPEAKER EXPERIENCE), and speakers’ subjective opinions
(SPEAKER OPINION), in explaining their evaluations of assertions.
Panels reflect proportions of each code for explanations regarding a
given GA type (in columns) in a given experiment (in rows).

Experiment 2
Having demonstrated that adults readily judge disagreements
over relative and subjective GAs as faultless when speakers
have experienced distinct distributions of exemplars, we ex-
plored the limits of listeners’ acceptance of subjective mean-
ings by equating the disagreeing speakers’ experiences.

Participants 33 undergraduate adults (26 women, 18.10–
39.83 years, M = 20.91, SD = 3.52) participated.

Stimuli and Methods
The experimental paradigm was identical to that of Experi-
ment 1 with two changes: 1) speakers saw identical distribu-
tions of exemplars in their respective classrooms, and 2) we
introduced an additional, plain (i.e., not spotted or striped)
target exemplar for each novel kind about which the speakers
only disagreed using our subjective GAs.1

Results
Faultless Disagreement We fit a logit model to the faultless
disagreement judgment data with GA type as a predictor. Par-

1We included plain exemplars of the critical object kinds after
most children during piloting for Exp. 3 cited the pimwit’s spots to
explain why the speaker who had denied it was pretty was wrong.

ticipants were highly likely to permit faultless disagreement
for subjective (β = 7.377, p < 0.001) and relative (β = 3.061,
p < 0.001) GAs. They were unlikely to permit faultless dis-
agreement over absolute ones (β =−2.501, p < 0.001).
Relation to Post-test As in Experiment 1, we see differ-
ences among the adjective classes in the relation between par-
ticipants’ own assertion of each GA and their permission of
faultless disagreement over it. In the post-test, all partici-
pants judged the target pimwit with spots “spotted,” “tall,”
and “pretty.” 94% answered “yes” when asked if the plain tar-
get pimwit was “pretty.” For the dax with stripes, 97% judged
it “striped.” 64% said it was “big,” and only 9% said it was
“boring,” while 55% said that the plain dax was. Despite sub-
stantial variation in their own evaluations of the critical items,
participants almost always permitted faultless disagreement
for the subjective GAs. For the absolute GAs, which the vast
majority of participants accepted as true of the critical items,
participants permitted very little faultless disagreement, but
judged disagreements over the relative GAs as faultless be-
tween half and three-quarters of the time (Figure 2).

Even when listeners do not have an explanation for speak-
ers’ differing standards for relative GAs, they may permit
faultless disagreement due to the standard’s uncertainty. Par-
ticipants permitted more faultless disagreement over “big”
(72% of participants), which a lower proportion (64%) agreed
was true of the critical dax, and less over “tall” (56%) which
all participants agreed was true of the pimwit.
Qualitative Explanations Fitting logit models to the data
for each explanation code and GA type, participants again
were likely to refer to object properties in explaining judg-
ments over absolute GAs (β = 1.541, p < 0.001), but not rel-
ative (β = −4.616, p < 0.001) or subjective (β = −4.616,
p < 0.001) ones. Participants were most likely to refer to
speakers’ experiences—even though they were identical—in
their explanations for relative (β= 3.960, p< 0.001) and sub-
jective (β = 2.060, p < 0.01) GAs, and least likely for ab-
solute ones (β = −3.466, p < 0.001). Finally, participants
were unlikely to refer to speakers’ opinions in explaining dis-
agreements over absolute GAs (β =−2.501, p < 0.001), but
were likely to do so in explaining disagreements over relative
GAs (β = 1.096, p < 0.05), and highly likely for subjective
(β = 3.521, p < 0.001) ones as well (Figure 3).

Compared to Experiment 1, adults permitted less fault-
less disagreement for relative and absolute GAs when speak-
ers had experienced identical distributions of exemplars (Fig-
ure 2). This was not the case for subjective GAs, which par-
ticipants continued to permit faultless disagreement over.

Experiment 3

Experiment 3 followed up on the previous experiments with
adults by exploring the developmental trajectory of linguistic
subjectivity. We tested a large age range to span a broad swath
of theory-of-mind and metalinguistic development.
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Participants Seventy-one children across three age groups
participated (24 4–5.5 years: 15 girls, M = 4.83, SD = 0.34;
23 5.5–7 years: 8 girls, M = 6.05, SD = 0.470; 24 8–9.5
years: 14 girls, M = 8.90, SD = 0.34). Four children were
excluded due to experimenter error or broken stimuli (n = 2).

Stimuli and Methods
Experiment 3 used the same method as Experiment 2, except
that speakers experienced distinct exemplar distributions as
they did in Experiment 1. We also only included one object
kind, pimwits, to keep it a more manageable length for chil-
dren.

Results

Figure 4: Child rates of faultless disagreement judgment in Exp.
3. TRAIN:ABS and TRAIN:FD trials were training intended to
elicit non-faultless and faultless judgments, respectively. Partici-
pants made two judgments over the subjective GA “pretty,” regard-
ing a spotted as well as a plain pimwit, but there was no significant
difference between rates of faultless disagreement between the two.

Faultless Disagreement We fit a logit model to the critical
trial faultless disagreement data with GA and age. Children
were significantly less likely to permit faultless disagreement
for absolute GA “spotted” (β =−7.646, p < 0.001), and sig-
nificantly more likely for relative and subjective GAs “tall”
and “pretty” (“tall”: β = 2.047, p < 0.001; “pretty” for spot-
ted pimwit: β = 1.170, p < 0.05; “pretty” for plain pimwit:
β = 1.831, p < 0.001). In general, they permitted faultless
disagreement more with age (β = 0.764, p < 0.001).

We can think of children’s initial judgment rates on the
faultless disagreement training trials as baselines (Figure 4).
Even in our oldest age group, rates of faultless disagree-
ment on the critical trials are significantly below those of
the faultless training trials (for relative trials: t = −2.164,
d f = 31.373, p < 0.05; for subjective trials: t = −3.820,
d f = 70.616, p < 0.001). While capable of judging disagree-
ments as faultless, children were reluctant to do so when they
themselves agreed with only one of the speakers.

Relation to Post-test 96% of children judged the target
pimwit “spotted.” More children judged it “pretty” (85%)
than “tall” (49%). 55% answered that the plain pimwit was
“pretty.” For the absolute and relative GAs, we see roughly

the same qualitative relation between post-test response and
faultless disagreement judgments as with adults: greater post-
test consensus meant less faultless disagreement.

Qualitative Explanations There appear to be some chil-
dren across our age range who understood the source of
knowledge most relevant for each GA, though children re-
ferred to object properties most frequently for all types un-
til our oldest age group (Figure 5). We fit logit models
to the data for each explanation code separately, with GA
type, age, and their interaction as predictors. Children were
highly likely to refer to properties of the objects in explain-
ing absolute (β = 2.543, p < 0.05) and relative (β = 3.758,
p < 0.05) GA utterances, and less likely to do so for rela-
tive (β = −0.800, p < 0.01) and subjective ones with age
(β = −0.642, p < 0.01). They were least likely to refer
to speakers’ experiences in explaining absolute utterances
(β = −6.608, p < 0.01), though more likely to refer to them
at all with age (β = 0.586, p < 0.05). Finally, they became
more likely to refer to speakers’ opinions to explain subjec-
tive utterances as they got older (β = 0.872, p < 0.05).

(a) Child explanations for “spotted” utterances.

(b) Child explanations for “tall” utterances.

(c) Child explanations for “pretty” utterances.

Figure 5: Proportion of children’s explanations in Exp. 3 receiving
each qualitative code, by GA type and age group (in panels).

Experiment 4

Experiment 4 used the same method as above, with children
at the older end of the age range. As in Experiment 2, the
distributions that the two speakers saw were identical.

Participants Participants were 24 children 8–9.5 years of
age (12 girls; M = 9.09, SD = 0.44).
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Results
Faultless Disagreement Children permitted faultless dis-
agreement on 98% of faultless training trials, and on none
of non-faultless training trials. They did so most on subjec-
tive trials (67% of the time, 95% CI : 53− 80), followed by
relative (38%, CI : 21−54) and absolute (1%, CI : 0−4).

Children were least likely to permit faultless disagree-
ment over absolute GA “spotted” (β = −3.135, p < 0.01),
and highly likely for all other adjectives (“tall”: β = 2.625,
p < 0.05, “pretty” for spotted pimwit: β = 4.052, p < 0.001,
“pretty” for plain pimwit: β = 3.829, p < 0.001).

Relation to Post-Test While all children judged the target
pimwit “spotted” and “tall,” they resembled adults by still
permitting faultless disagreement over “tall” about half the
time (and almost never over “spotted”). 79% and 92% partic-
ipants judged the spotted and plain pimwits “pretty,” respec-
tively. Despite general consensus over their beauty, children
responded more like adults in nonetheless permitting faultless
disagreement over them at relatively high, equivalent rates.

Qualitative Explanations Children’s explanations for ab-
solute GA “spotted” were highly likely to receive the OB-
JECT PROPERTY code (β = 2.398, p < 0.01), while expla-
nations of relative (β = −2.734, p < 0.01), and subjective
(β =−3.267, p < 0.001) utterances were unlikely to. Expla-
nations of absolute GA utterances were also unlikely to be
coded as referring to SPEAKER EXPERIENCE (β = −3.135,
p < 0.01), which was highly likely for relative GA utterances
(β = 2.625, p < 0.05). Lastly, explanations of subjective
GAs were likely to be coded as citing SPEAKER OPINION
(β = 4.005, p < 0.001), in contrast to explanations about ab-
solute GA utterances (β =−3.135, p < 0.01).

General Discussion
We tested theoretical claims about faultless disagreement
arising when there is uncertainty about how and whether to
assess something as, e.g., “pretty” or “tall” (Barker, 2013).
We asked in particular whether individuals consider the refer-
ence distribution of their interlocutors in interpreting relative
gradable adjectives. Adults reliably permitted faultless dis-
agreement over relative and subjective GAs when two speak-
ers had had distinct personal experiences. Rates of faultless
disagreement decreased for relative GAs when speakers had
experienced identical distributions, but did not disappear al-
together, suggesting that adults were instead permitting fault-
less disagreement out of an understanding of the standard’s
uncertainty. Together, these findings provide evidence for the
consideration of speaker at the level of semantics, as well as
adults’ sensitivity to the potential for differing standards of
more than just explicitly context-dependent adjectives.

The development of sensitivity to linguistic subjectivity ap-
pears to be exceptionally prolonged: for the most part, chil-
dren ‘sided’ with the speaker who voiced their own evalua-
tions. Two factors might explain the apparent gap between
adults and children in our studies. First, previous work sug-

gests that children better grasp subjectivity when they are able
to reason about an individual’s goals (Holubar, 2015), a di-
mension that was absent from our experiments. To this end,
our ongoing studies explore the effect of goal-oriented con-
texts (e.g., choosing who you would want to be friends with
or learn from), which might be more sensitive to children’s
nascent understanding of the different implications of being
“wrong” about whether something is “spotted” as opposed
to “pretty.” Second, there may be more continuity between
adults and children than it appears. Adults’ permission of
faultless disagreement and explanation of different GA utter-
ances may reflect social pressures and metalinguistic knowl-
edge, rather than a core belief that their own evaluation is
subjective. When it comes to predicates of personal taste, al-
though adults may readily say that the meaning of “good” is
subjective, such that both speakers can be right, we have all
had the experience of disagreeing about whether a movie or
song is “good.” Future studies will test for possible continu-
ity between children and adults by examining the contexts in
which children may behave more like adults in their metalin-
guistic judgments of subjectivity, and the contexts in which
adults may react similarly to children in their implicit com-
mitment to intersubjectivity.
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Abstract

It has been claimed that larger semantic distance between the
words of a sentence, as quantified by a distributional seman-
tics model, increases both N400 size and word-reading time.
The current study shows that the reading-time effect disap-
pears when word surprisal is factored out, suggesting that the
earlier findings were caused by a confound between semantic
distance and surprisal. This absence of a behavioural effect
of semantic distance (in the presence of a strong neurophysi-
ological effect) may be due to methodological differences be-
tween eye-tracking and EEG experiments, but it can also be
interpreted as evidence that eye movements are optimized for
reading efficiency.

Keywords: reading; eye tracking; N400; distributional seman-
tics; semantic distance; word surprisal

Introduction
An open question in the study of human language process-
ing is to what extent mere semantic similarity among words
within a sentence or text affects the comprehension process.
Results from controlled experiments are inconclusive. On the
one hand, there is ample evidence for effects on the N400
event-related brain potential (ERP) component: Reading a
word that is semantically related to words in the preced-
ing context decreases N400 size, relative to when the con-
text words are not meaning related (Camblin, Gordon, &
Swaab, 2007; Metusalem et al., 2012; Paczynski & Kuper-
berg, 2012). A number of behavioural experiments, however,
failed to find corresponding effects on word-reading time
(Gordon, Hendrick, Johnson, & Lee, 2006; Traxler, Foss,
Seely, Kaup, & Morris, 2000). In contrast, two studies that
analysed reading times on naturalistic texts (instead of tak-
ing a controlled experimental approach) did find that words
are read faster when they have stronger semantic relatedness
to earlier words in the text (Mitchell, Lapata, Demberg, &
Keller, 2010; Pynte, New, & Kennedy, 2008). In those stud-
ies, semantic relatedness measures were obtained from a dis-
tributional semantics model, which assigns numerical vectors
to words on the basis of the words’ co-occurrence patterns in
large text corpora. These vector representations are known as
word embeddings in the computational linguistics literature.
Words that tends to occur in similar contexts receive simi-
lar embeddings. Consequently, distances between the words’
embedding vectors correspond to semantic distances between
the corresponding words.

If semantically related words tend to co-occur, a word’s
occurrence can (to some extent) be predicted from the pres-
ence of related words. Consequently, if one wants to claim
that the reading process on word wt is affected by the word’s
semantic relatedness to the preceding words (w1, . . . ,wt−1),
it is crucial to factor out any effect of the predictability of

wt from its previous context. Otherwise, apparent effects of
relatedness could in fact be due to word predictability in-
stead. Frank and Willems (in press) recently showed that
N400 effects of semantic distance (as quantified by a dis-
tributional semantics model) remain when factoring out the
words’ (un)predictability as quantified by their surprisal (i.e.,
− logP(wt |w1, . . . ,wt−1)), leaving no room for a confound
between predictability and semantic distance. The current
paper will show that the same is not true for reading times:
Effects of semantic similarity on reading times for naturalis-
tic materials, of the type reported by Mitchell et al. (2010) and
Pynte et al. (2008), disappear when surprisal is factored out,
provided that surprisal is computed by a powerful enough lan-
guage model. Hence, semantic similarity between the words
of a sentence or text affects N400 size but not reading time.

Method
Eye-tracking Data
Word-reading times were extracted from two published sets
of eye-tracking data: The UCL corpus (Frank, Monsalve,
Thompson, & Vigliocco, 2013) and the English Dundee cor-
pus (Kennedy & Pynte, 2005). The UCL corpus comprises
data from 42 native English speakers reading 205 individ-
ual sentences sampled from three unpublished novels; the
Dundee corpus has 10 participants reading newspaper editori-
als. Frank and Willems (in press) demonstrated strong N400
effects of semantic distance (over and above the effect of sur-
prisal) for the sentences of the UCL corpus. Mitchell et al.
(2010) reported reading-time effects of semantic distance in
the Dundee data, and similar results by Pynte et al. (2008)
were based on the French part of the Dundee corpus, also
comprising newspaper texts.

Four measures of reading time will be investigated: first-
fixation duration, first-pass duration (the sum of fixation du-
rations on a word before the first fixation on any other word),
right-bounded reading time (the sum of fixation durations on
a word before the first fixation on a later word), and go-past
reading time (the sum of fixations on all words from the first
fixation on the current word until the first fixation on a later
word). These four measures, in this order, have been argued
to reflect increasingly late cognitive processes (Clifton Jr.,
Staub, & Rayner, 2007; Gordon et al., 2006).

Models
Each content word of the UCL and Dundee corpora was as-
signed a measure of semantic distance to preceding content
words, as well as five estimates of word surprisal. The dis-
tributional semantics and surprisal models were trained on
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the first slice of the ENCOW14 web corpus (Schäfer, 2015),
comprising 644.5M word tokens of 2.81M types.

Semantic Distance Word embeddings were generated by
the word2vec skipgram model (Mikolov, Chen, Corrado, &
Dean, 2013), which is basically a feedforward neural net-
work with one hidden layer. The network learns to associate
each input word wt to the k words immediately preceding and
following (i.e., the sequence wt−k, . . . ,wt−1,wt+1, . . . ,wt+k).
After training the network, the vector of connection weights
from each input unit to the 300-unit hidden layer forms the
embedding for the word corresponding to the input unit. The
‘window size’ parameter was set to k = 5 in the current appli-
cation of the model.

As explained in the Introduction, the distance between two
word vectors quantifies the semantic distance between the
two words. A common distance measure used in distribu-
tional semantics is the cosine of the angle between the vec-
tors. Here, we require a measure for the distance between the
current word’s embedding ~wt and its entire previous context
(not just a single word). The vector representing the combi-
nation of content words from the previous context is defined
as simply the sum of the words’ individual vectors. Thus, the
relevant distance measure becomes

semdist(t) =−cos

(
~wt , ∑

w∈At

~w

)
, (1)

where At is a collection of content words that precede wt in
the sentence or text. For the individual sentences of the UCL
corpus, At contains all content words preceding wt in the sen-
tence. For the full texts of the Dundee corpus, At contains the
four content words immediately preceding wt in the text (if
wt is among the text’s first four content words, At will contain
correspondingly fewer words). If At is empty, word wt has
no semantic distance. Semantic distance values on the UCL
corpus were identical to those used by Frank and Willems (in
press) to analyse N400 ERP effects.

Surprisal Word surprisal was computed by n-gram lan-
guage models, which simplify the full conditional probabil-
ity P(wt |w1, . . . ,wt−1) to P(wt |wt−n+1, . . . ,wt−1), that is, only
the n− 1 previous words are taken into account when esti-
mating the occurrence probability of wt . Model order n was
varied from n = 2 to n = 5, and the model was generated by
SRILM (Stolcke, 2002) with modified Kneser-Ney smooth-
ing (Chen & Goodman, 1999).

The semantic distance measure defined above is sensitive
to content words beyond the n−1 previous words that matter
to an n-gram model. If semantic distance correlates with sur-
prisal, this could yield apparent effects of semantic distance
that are in fact due to unpredictability resulting from words
outside of the n-gram window. To control for this, a ‘skip-
bigram’ language model (SBLM) was used to obtain a fifth
set of surprisal values:

Psblm(wt |At) =
1
|At | ∑

wi∈At

P(wt |wi) =
1
|At | ∑

wi∈At

P(wi,wt)

P(wi)
,

with At as defined as in Equation 1 and |At | the number of
words in At . P(wt |wi) denotes the probability that wt occurs
within a distance of 15 words after occurrence of wi. That is,
the preceding content words wi ∈ At are taken as independent
cues to the occurrence of wt , whose skip-bigram probability
is computed by averaging over these individual cues.

The required word-pair probabilities P(wi,wt) are esti-
mated from co-occurrence frequencies in the training corpus,
using the Simple Good-Turing smoothing method (Gale &
Sampson, 1995) to estimate the total probability of all unseen
pairs. This total probability P0 is divided over the unseen
pairs (v,w) in proportion to P(v)P(w), that is, the probability
of each particular unseen pair (v,w) is given by:

P(v,w) =
P0P(v)P(w)

1−∑(v′,w′)∈S P(v′)P(w′)
,

where S is the set of all ordered word pairs observed in the
training data within a 15-word distance from each other.

Relation between semantic distance and surprisal Ta-
ble 1 shows there indeed exists a positive confound between
surprisal and semantic distance, which grows stronger as the
language model is able to use words from further back in the
context.

Frank and Willems (in press) interpolate the 5-gram and
skip-bigram models to minimize average surprisal over the
UCL corpus and show empirically that the semantic distances
do not contain information that can be used to further improve
this interpolated language model. Hence, if the semantic dis-
tances account for variance in human reading difficulty mea-
sures over and above what is already explained by the sur-
prisal values, this cannot be attributed to a confound between
semantic relatedness and predictability but must be due to the
effect of semantic relatedness itself.

Data Analysis
Linear mixed-effects regression models were fitted to the log-
transformed reading times using as covariates: word position
in the sentence, word length (number of characters), word
log-frequency in ENCOW14, and a binary factor indicating
whether or not the previous word was fixated. To account for
the possibility that reading-time effects appear shortly after
the point at which they originate (so-called spillover effects),
the previous word’s length and log-frequency were also in-
cluded. All two-way interactions between these six factors
were also present.

Table 1: Correlation coefficients between semantic distance
and surprisal values.

Language model
Data set 2-gram 3-gram 4-gram 5-gram SBLM
UCL .19 .26 .27 .27 .29
Dundee .05 .18 .20 .21 .26
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The main factor of interest was the word’s semantic dis-
tance measure. Separate analyses were run using the current
and previous word’s semantic distance; the latter capturing
potential spillover.1 In addition to a control condition without
any surprisal measure in the regression, five separate analy-
ses were run including n-gram surprisal with n = 2,3,4,5, or
both 5-gram and SBLM surprisal (always for both the current
and previous word).

Random effects in the regression model were the by-
subject and by-word intercept, and by-subject slopes of se-
mantic distance and any surprisal measure that was included
as a fixed effect.

Regression models were fitted to each of the four reading
time measures from both data sets, making a total of 96 anal-
yses: 4 reading time measures × 2 corpora × 2 semantic dis-
tance measures (of current or previous word) × (5 surprisal
measures + 1 control). Words were excluded from analysis
if they were not fixated, were attached to punctuation, con-
tained any non-letter or more than one capital letter, or were
the first or last word on a line.

Results
Figure 1 displays the estimated regression coefficient (i.e., ef-
fect size) of the semantic distance predictor in each of the
96 fitted regression models. Note that effect sizes cannot
be compared between the analyses investigating the current
versus previous word’s semantic distance. This is because
these analyses apply to different sets of words: All content
words when the current word’s semantic distance is used, but
the words directly following content words (including many
function words) when the previous word’s semantic distance
is the variable under investigation. The same holds for the
estimated regression coefficients of the surprisal predictors,
plotted in Figure 2.2

For the UCL corpus, none of the semantic distance effects
reach statistical significance. For the Dundee corpus, there is
a clear effect of semantic distance in the expected (i.e., pos-
itive) direction when surprisal is not factored out, and it re-
mains present for later reading time measures when surprisal
takes only very local context into account (i.e., under a bi-
gram model).

As is clear from Figure 2, words with higher surprisal take
longer to read, as is well known from the literature (e.g. Mon-
salve, Frank, & Vigliocco, 2012; Smith & Levy, 2013). Sur-
prisal computed by the novel SBLM language model has
an effect over and above 5-gram surprisal, at least for the
Dundee corpus, which means that it is not merely the local,

1If both the current and previous word’s semantic distance had
been included as factors in a single regression model, this would
have greatly reduced the amount of usable data because both adja-
cent words would have to be content words.

2The displayed coefficients for current (previous) surprisal come
from the regression model that includes current (previous) semantic
distance. Consequently, exactly the same set of words was involved
in estimating the coefficients for the surprisal and semantic distance
measures, even though surprisal (unlike semantic distance) is also
defined for function words.

4-word context that is is taken into account when generating
expectations about upcoming words. Rather, long-distance
co-occurrence patterns between content words matter as well.

There are a few noticeable difference between the results
for the UCL and Dundee data sets, which mirror differences
in the text materials of these two corpora. Surprisal effects
appear to be more reliable in the Dundee data, in that the zero
point falls further outside the confidence intervals. This can
simply be explained by the Dundee data set being much larger
than the UCL data set (134,203 versus 18,178 data points).
Interestingly, the UCL corpus results show larger effect sizes
(i.e., larger coefficients) which is probably due to these ma-
terials having been specifically designed for language model
evaluation. Compared to the Dundee corpus texts, the UCL
corpus sentences contain fewer low-frequency words (for
which surprisal is hard to estimate reliably) and can com-
prehended more easily without relying on world knowledge
(which the language models do not incorporate). Finally, the
fact that the SBLM model explained unique variance in read-
ing times from the Dundee corpus only can be explained by
the fact that this corpus consists of full texts as opposed to the
UCL corpus’s individual sentences. Compared to individual
sentences, full texts will contain more content words outside
of the 5-gram window, making the SBLM model more influ-
ential.

Discussion
Results on the Dundee corpus showed significant, positive ef-
fects of semantic distance on all four reading time measures
when surprisal was not taken into account. However, fac-
toring out surprisal as computed by anything more powerful
than a bigram model made the effects of semantic distance
disappear. Apparently, these effects were due to a confound
between semantic distance and surprisal, that is, a word is less
likely to appear if it has weaker semantic relatedness to earlier
words. It was actually a word’s unpredictability, rather than
its semantic content per se, that resulted in increased reading
time.

Indeed, the findings by Pynte et al. (2008) and Mitchell
et al. (2010), on the French and English Dundee corpus, re-
spectively, can be attributed to confounds between semantic
relatedness and predictability. Pynte et al. (2008) did not fac-
tor out surprisal (or even simple transitional probabilities be-
tween words) in their analysis of the effect of semantic dis-
tance. Mitchell and Lapata’s (2009) goal was to show that in-
corporating semantic distance measures from their own ‘sim-
ple semantic space model’ (as well as from a Latent Dirichlet
Allocation Topics model; Griffiths, Steyvers, & Tenenbaum,
2007) reduces perplexity of a combined n-gram and proba-
bilistic phrase-structure grammar. That is, taking these se-
mantic measures into account improves the language model.
Consequently, the improved fit to reading time could be due
merely to more accurate next-word prediction rather than to
semantic similarity per se.

The UCL corpus results showed no effect of semantic dis-
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measures of surprisal. The leftmost two panels display results on the UCL corpus; the Dundee corpus results are shown in the
rightmost panels. The 2nd and 4th panel show the coefficient of the previous word’s semantic distance. Reading time measures
are indicated by FF (first fixation), FP (first pass), RB (right-bounded), and GP (go-past).
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tance on reading times whatsoever, even when surprisal was
not taken into account. This is remarkable considering that
Frank and Willems (in press) found that N400 effects of the
very same semantic distance values are of similar size as –
and independent from – the effect of surprisal as computed
by an interpolated 5-gram and skip-bigram language model.
This discrepancy between neurophysiological and behavioral
effects is consistent with findings from the controlled experi-
mental studies mentioned in the Introduction. But how can it
be explained?

One possible cause is the difference in stimuli presenta-
tion method. The eye-tracking methodology allows a natu-
ral reading processes whereas in most EEG reading studies,
words are presented one at a time for an unnaturally long du-
ration. The EEG data used by Frank and Willems (in press)
came from a study with word-length dependent presentations
durations of at least 627ms (Frank, Otten, Galli, & Vigliocco,
2015), which is much longer than fixation durations in natu-
ral reading. Wlotko and Federmeier (2015) showed that us-
ing more natural word presentation rates in an ERP reading
study can remove particular effects of semantic relatedness
on the N400. If semantic distance effects are delayed rela-
tive to surprisal effects, this could explain their absence in
reading times: By the time they would have appeared, any
effect has already been washed out by the processing of sev-
eral other words. Although Figure 1 indeed shows a trend for
the semantic distance effect to be somewhat stronger for the
later reading time measures (as was also found by Pynte et
al., 2008), the same is true for the surprisal effect (Figure 2)
so this cannot explain why reading times are insensitive to
semantic distance. Moreover, Frank and Willems (in press)
found fMRI effects of semantic distance (as quantified by dis-
tributional semantics) during normal speech comprehension,
indicating that the presence of a measurable neural response
does not rely on unnaturally slow presentation rates.

An alternative, and possibly more interesting explanation
of the difference between N400 and reading time effects is
that reading is optimized for speed (Smith & Levy, 2013).
Being faster on more predictable (i.e., lower surprisal) words
increases overall efficiency, whereas there is no reason to
be faster on merely semantically related words. Hence, we
would expect reading times to display effects of surprisal but
not of semantic distance. Other dependent variables from
eye-tracking, however, could show sensitivity to semantic
distance, and this is exactly what Van den Hoven, Hartung,
Burke, and Willems (2016) found in a recent analysis of data
from a Dutch narrative text reading eye-tracking study: Se-
mantic distance correlated with saccade distance and regres-
sion probability but not with reading time after factoring out
trigram surprisal. In contrast, the reason why the N400 shows
effects of both surprisal and semantic distance could be that
it forms an index of the difficulty of retrieving lexical infor-
mation from long-term memory (Brouwer, Fitz, & Hoeks,
2012; Kutas & Federmeier, 2000). As Frank and Willems
(in press) argue, this difficulty is reduced both by probabilis-

tic word prediction (surprisal) and by semantic similarity to
earlier words (word embedding distance).

Conclusion
The current results failed to replicate earlier findings of a pos-
itive correlation between reading times on naturalistic data
and semantic relatedness between words, as quantified by a
distributional semantics model. This apparent effect of se-
mantic relatedness appeared to be due to a confound with
word predictability. Of course, it is possible that an effect of
semantic distance reappears when using a different distribu-
tional semantics model, or a more sophisticated technique for
combining single word vectors into a sentence context vector
(Equation 1). However, it is equally true that improved sur-
prisal models may undo the work of more sophisticated word
embedding models. And crucially, the current distributional
semantics modelling choices were appropriate for predicting
reading times when surprisal was not taken into account, as
well as N400 sizes over and above surprisal, so they should
also have sufficed for revealing reading time effects of seman-
tic distance that are independent from surprisal, if there had
been any.
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Abstract

A great deal of reasoning research indicates that individuals
are  often  biased  by  intuitive  heuristics.  However,
contemporary results indicate that individuals seem sensitive
to their biases;  they seem to detect  conflict  with reasoning
norms.  One of the key remaining questions is whether this
conflict  sensitivity  is  domain  general.   To  address  this
question, we administered a battery of five classical reasoning
tasks to a large sample of subjects and assessed their conflict
detection efficiency on each task by measuring their response
confidence.  Results indicate that conflict detection is, in most
senses,  not  domain  general,  though  there  are  compelling
exceptions. 

Keywords: conflict  detection;  reasoning;  bias;  domain
generality; decision making

Introduction
That human reasoning is prone to error comes as no surprise
to most everyone.  Upon reflection, we discern blunders in
our own reasoning in the most ordinary of circumstances:
we realize we miscalculated how long a trip would take us;
we come to acknowledge our snap judgment of a colleague
was  mistaken.   Likewise,  we  often  witness  mistakes  in
others and throughout history, some of which aggregate in
the most atrocious of ways: an innocent man is convicted,
judged,  tried,  and  sentenced  to  more  than  forty  years  of
solitary  confinement  based  on  the  shakiest  possible
evidence,  the testimony of a single untrustworthy witness
(e.g., the case of Albert Woodford, see Aviv, 2017).   

Although  mistakes  like  this  seem,  at  first,  entirely
unrelated, one could argue they often issue from a uniform
set  of  underlying tendencies.   Exploring  these  tendencies
has  motivated  much  of  the  research  in  reasoning  and
decision  making  throughout  the  past  four  decades.   One
compelling and especially generative account of  reasoning
mistakes contrasts two types of thinking: fast, associative,
heuristic thinking and slower, more demanding, rule-based
reasoning (Kahneman, 2011).  Returning to the example of
misjudging a colleague, the fast type of reasoning (System
1) seems to account for our initially misguided impression,
which is then revised upon reflection—and after gathering
more  evidence—by  the  slower,  more  deliberate  type  of
thinking (System 2).  

The  family  of  dual  process  theories  that  rely  on
contrasting  these  two  forms  of  reasoning  has  provided

countless  testable  hypotheses  and  a  diverse  set  of
approaches  and  methods.   While  most  parties  agree  that
heuristics are useful, efficient, and often optimal means of
navigating  complex  environments,  investigators  disagree
about  how often  and  in  what  contexts  they  conflict  with
logical  and mathematical  principles.   Evans (2003, 2010),
Kahneman  (2011),  and  Stanovich  and  West  (2000)  insist
that individuals regularly make reasoning mistakes because
of unchecked heuristic inferences, while Gigerenzer (2008),
Katsikopoulos (2013) and others emphasize that heuristics
are generally ecologically rational and truth preserving.1 

Until recently, one of the cardinal doctrines of the dual
process  account  of  reasoning  mistakes  relied  on  the
imperceptibility of reasoning conflicts.  Prominent scholars
have  argued  that  our  reasoning  mistakes  masquerade
beneath  our  awareness,  which  is,  at  least  partially,  what
accounts for their ubiquity.  Surely—the argument goes—if
reasoners were aware of their mistakes they would correct
them.  However, many contemporary empirical analyses of
reasoning bias suggest that individuals are often sensitive to
conflicts between heuristics and normative principles even
when they err (e.g.,  Bonner & Newell, 2010; De Neys &
Glumicic, 2008; Pennycook, Fugelsang, & Koehler,  2015;
Handley & Trippas, 2015).

Researchers have demonstrated this across a number of
diverse  reasoning  tasks  using  many  different  methods.
Much of the work relies on contrasting tasks that  contain
conflicts between intuitively cued heuristics and normative
principles  with  structurally  identical  tasks  containing  no
such  conflict.   Standard  behavioral  markers  that  index
conflict on lower level tasks, like response times (RT) and
confidence  levels  (Yeung  &  Summerfield),  also  indicate
people  are  sensitive  to  conflict  in  higher  level  reasoning
tasks (Bonner & Newell, 2010; De Neys & Glumicic, 2008;
Pennycook,  Fugelsang,  &  Koehler,  2012).   Additionally,
people tend to fixate visually on the conflicting elements of
the tasks, as evidenced in eye and gaze tracking experiments
(De  Neys  &  Glumicic,  2008;  Ball,  Phillips,  Wade,  &

1 Given these fairly fundamental disagreements, it should come as
no  surprise  that  what  counts  as  a  normative  response  in  any
number of contexts is hotly debated.  For the sake of simplicity,
terms like “normative,”  “correct,”  and “logical” will  be used to
indicate conclusions that are considered correct in classical logic
and probability.
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Quayle,  2006),  and  they  register  heightened  levels  of
arousal on skin conductance recordings (De Neys, Moyens,
&  Vansteenwegen,  2010).   There  is  neuropsychological
evidence of conflict sensitivity as well, derived from both
fMRI  (De  Neys,  Vartanian,  &  Goel,  2008;  Simon  et  al,.
2015) and EEG analyses (De Neys, Novitskiy, Ramautar, &
Wagemans,  2010).   Despite  the  diversity  of  methods and
tasks supporting these effects, there are many who find the
research  problematic,  largely  because  its  results  seem  to
imply  that  individuals  have  fairly  immediate  access  to
logical  and  probabilistic  principles  (Mata,  Schubert,  &
Ferreira, 2014; Pennycook et al., 2012; Singmann, Klauer,
& Kellen, 2014; Travers, Rolison, & Feeney, 2016).  Even
the most ardent proponents of the work acknowledge that it
is still  developing and in need of greater clarification (De
Neys, 2012, 2014).

Although  conflict  detection  has  been  explored  with  a
variety of  methods  and  across  various  tasks,  no  previous
research examines individuals' tendencies to detect conflict
across a range of tasks, giving researchers no clear sense of
how or whether conflict sensitivities interact.  It is unclear,
for  example,  whether  a  given  person's  ability  to  detect  a
conflict  between  an  intuitively  cued  heuristic  and  a
reasoning rule on a particular kind of task is related to her
ability to do so on different tasks.  In essence, a key open
question is whether conflict detection is domain general or
task specific.  

By  further  clarifying  the  precise  nature  of  conflict
detection,  research  of  this  sort  will  help  characterize
emergent  dual  process  theories,  especially  those  that
explicitly  rely  on  conflict  detection  mechanisms.   For
example, Pennycook et al's (2015) three-stage dual-process
model relies on differentiating between successful conflict
detection  and  “cognitive  decoupling,”  which  is  the  more
resource intensive process of rejecting a conclusion at odds
with reasoning rules even when it has been facilitated by a
certain  heuristic.   Crucially,  although  conflict  detection
failures are a prominent feature of this model, it is unclear if
conflict  sensitivity  is  a  stable  individual  difference.  If
conflict detection is domain general, then one would expect
the prominence of these failures to extend fairly globally.
Apart from further specifying the theory, such a conclusion
would offer a partial account of the prevalence of cognitive
biases.  However, if conflict detection is task specific, then
one can suppose that  empirically observed detection on a
given task is largely unrelated to others, and the prevalence
of bias needs to be accounted for in other ways.

 To address this issue, we presented a battery of the most
intensively studied tasks in the field to a large number of
reasoners.  This enabled us to assess their conflict detection
efficiency  by  measuring  their  response  confidence.
Examining the relationship of detection efficiency across the
tasks  gives  us  evidence  with  which  to  evaluate  whether
conflict detection is domain general or task specific.

Method

Participants 
A total of 318 undergraduates (260 female; average age =
22.32, SD = 6.11) at Paris Descartes University completed
the experiment. 

Materials
The  experiment  consisted  of  adaptations  of  five  classic
reasoning  tasks.   For  each  of  the  five  tasks,  participants
received two conflict items, two no-conflict items, and one
abstract control,  resulting in 25 items.  The tasks were as
follows.

Bat and Ball Items (BB) The conflict items in this set were
modeled  after  the  canonical  CRT  problem  (Frederick,
2005): “A bat and a ball together cost $1.10.  The bat costs
$1 more than the ball.  How much does the ball cost?”  The
answer  that  often comes to  mind is  10 cents,  though the
correct  answer  is  5  cents  ($0.05  +  $1.05  =  $1.10).
Participants likely intuitively substitute the “costs $1 more
than”  phrase  with  “costs  $1,”  so  to  generate  no-conflict
variants  one  simply  removes  this  phrase  (see  De  Neys,
Rossi, & Houdé, 2013).    

Ratio Bias Items (RB)  Also called “denominator neglect”
problems,  these  items  consist  of  asking  participants  to
choose  between  two trays,  a  small  tray  and  a  large  one,
containing  a  mixture  of  gray  and  white  marbles.   The
participants' goal is to get a gray marble, but the marble will
be drawn from the tray they select at random.  In a conflict
item, the absolute value of gray marbles in the large tray is
greater than the absolute value of gray marbles in the small
tray, but the relative value of gray marbles is greater in the
small tray (e.g., 19/100 vs. 2/10, 19% vs. 20%).  Since the
marble is being selected at random, one should choose the
tray that maximizes the relative likelihood of getting a gray
marble (the small tray), but participants are often intuitively
and immediately drawn to the larger tray.  To generate no-
conflict items one aligns the relative and absolute values in
a tray, so that the tray most likely to have a gray marble—
the one  with the  highest  relative  value—is also the most
perceptually salient one—the one with the highest absolute
value (e.g., 21/100 vs. 2/10, see Bonner & Newell, 2010).

Syllogism  Items  (SYL)   Syllogisms  are  fundamental
arguments in classical logic that consist of two premises and
a conclusion, which necessarily follows from the premises
when the argument is valid.  When the conclusion is at odds
with common beliefs, participants tend to deem it logically
invalid  even  when  explicitly  told  just  to  evaluate  the
argument's validity (Markovits & Nantel, 1989).    A conflict
item  consists  of  a  logically  valid  (or  invalid)  argument
structure  with an  unbelievable  (or  believable)  conclusion.
Here is an  example of an unbelievable but valid argument:
All mammals can walk.  Whales are mammals.   Whales∴
can walk.   No-conflict  items are those in which common
beliefs  and  the  argument's  logical  structure  both  cue  the
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same response.  All problems were based on Markovits and
Nantel's material (1989).
   
Base Rate Items (BR)  Base rate items consist of statistics
describing a sample from which an individual is randomly
selected along with a description of the individual.  Here is
an example of a conflict item: “In a study 1000 people were
tested.  Among the  participants  there  were  5 sixteen-year-
olds  and  995  forty-year-olds.  Lisa  is  a  randomly  chosen
participant of the study.  Lisa likes to listen to techno and
electronic music. She often wears tight sweaters and jeans.
She loves to dance and has a small nose piercing. What is
most likely?  (A.) Lisa is sixteen.  (B.) Lisa is forty.”  This
item creates a conflict by calling to mind a stereotype that is
at  odds  with  the  statistically  most  likely  outcome.   To
generate no-conflict items, one aligns the statistics and the
intuitively cued heuristic.   For example to turn the above
item into a no-conflict example, switch the base rates so the
the sample consists  of  995 sixteen-year-olds  and  5 forty-
year-olds.   All  problems  were  based  on  De  Neys  and
Glumicic's (2008) material.

          Conjunction Items (CON)   Modeled on the classic Linda
problem,  participants  received  descriptions  about
individuals that either intuitively prompt a single statement
(no-conflict) or a conjunctive statement (conflict), and they
are asked to decide which statement is most likely.  Since a
single statement is  always more likely than a conjunctive
statement,  subjects  should  always  choose  the  single
statement  regardless  of  whether  it  coheres  with  the
stereotype.  Here is an example of a conflict item: “Jon is
32.  He  is  intelligent  and  punctual  but  unimaginative  and
somewhat lifeless. In school, he was strong in mathematics
but weak in languages and art.  Which one of the following
statements is most likely?  (A.) Jon plays in a rock band.
(B.) Jon plays in a rock band and is an accountant.”  Since
the  description  generally  cues  an  accountant  stereotype,
subjects often wrongly choose the less likely option, B.  No-
conflict items simply isolate the heuristically cued option.
All  problems  were  based  on  De  Neys,  Cromheeke,  and
Osman's (2011) material.

Procedure
The participants were tested in groups of no more than thirty
students in a silent classroom at the beginning of a course.
In addition to the conflict and no-conflict items illustrated
above, participants answered one abstract neutral problem
per task.  These were designed to query abstract knowledge
of relevant reasoning rules and were variants of the above
tasks with no clear, consistent intuitive or heuristic prompts.
Accuracy  on  the  neutral  control  items  was  high  (mean
accuracy 81.6%, SD = 0.18).  All analyses were run filtering
for controls and they made no significant impact on any of
the results.  Thus, we will present only our unfiltered data in
what follows and will not discuss the control items further.  

The overall structure of the experiment, a within subject
design, was manipulated in three ways: it was balanced for

conflict content, task order, and conflict presentation order.
The conflict and no-conflict contents were balanced across
participants,  such  that  half  the  participants  received,  for
example,  the  conflict   conjunction  item above,  while  the
other half received its no-conflict analogue, and vice versa.
Additionally, the order in which a given task was presented
varied, as did whether an individual first saw a conflict or
no-conflict  item.   A partial  Latin  square  of  these  factors
generated  10  different  experiment  formats,  which  were
distributed evenly across the participant sample.  

All  items  were  presented  on  their  own  page.   At  the
bottom  of  which  there  was  a  scale  where  participants
indicated how confident  they were in their response on a
range  from 0% (not at all confident) to 100% (completely
confident). 

Results

Accuracies
        Table 1 (first two rows) presents averages of accuracy levels

on  each  of  the  tasks,  separated  by  conflict  status.
Replicating  classical  findings,  performance on  no-conflict
items was consistently higher than performance on conflict
items.   In  all  cases  except  for  RB,  contrasts  between
performance  on  conflict  and  no-conflict  items  was
significant (all BB/SYL/BR/CON t > 10.07, p < 0.001; RB:
t(315) = 1.10, p = 0.28).

Table 1: Accuracies and Conflict Detection Effects

Conflict Detection
       To get a sense of how widely conflict detection efficiency is

distributed  across  tasks,  it  is  useful  to  look  at  what
proportion of  the sample tended to detect  conflict  on the
entire battery.  At the aggregate level, averaged across tasks,
we observe  most  individuals  (74.70%) tend  to  a  lowered
confidence level on conflict vs. no-conflict items.  Across all
tasks,  this  difference  amounts  to  a  9.50%  diminution  in
confidence on incorrectly solved conflict items compared to
correctly solved conflict items, t(307) = 12.01, p < 0.001.
This  is  roughly  reflected  in  the  task  by  task  contrasts,
though it is highly variable.  For example, in the case of the
BB  items  the  confidence  diminution  was  23.15%,  while
most  others  hovered  around  10%,  and,  in  contrast  with
previous  findings  (Stupple,  Ball,  Evans,  Kamal-Smith,
2011), there was little difference between confidence levels
on SYL items (0.37%).  In all cases except for SYL, t(177)
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= 0.50, p = 0.61, the task specific confidence decrease was
significant: BB/RB/BR/CON: all t >  2.65, all p < 0.01.   

Task Specificity and Domain Generality 
With a view to evaluating whether conflict detection is task
specific or  domain general,  we ran four primary kinds of
analyses:  correlations between conflict  items across tasks;
correlations between conflict detection effects across tasks;
analyses of the distribution of conflict detection effects by
individual;  and  regressions  to  predict  conflict  detection
effects with a composite meant to uncover diffuse evidence
of domain generality.

Table 2 summarizes the results of the first two analyses.
The statistics above the diagonal are correlations between
conflict detection effects across biased individuals on each
of  the  tasks.   The  correlations  below  the  diagonal  are
between  accuracies  on  each  of  the  conflict  items  across
tasks for all participants (N = 318).  Accuracies on conflict
items were significantly correlated between all tasks (all p <
0.04), although most correlations are fairly modest, ranging
from 0.12 to 0.32.

Table 2: Conflict Accuracy and Detection Correlations

* 0.05 < p < 0.01; ** p < 0.01.  Subscripts indicate Ns. 

As  a  reminder,  a  conflict  detection  effect  is,  in  this
context, a diminution of confidence on an incorrectly solved
conflict item relative to a correctly solved no-conflict item.
Given the notorious noisiness and subjectivity of confidence
measures and the difficulty of interpreting conflict detection
effect  sizes  (Frey,  Johnson,  &  De  Neys,  2017),  this  is
measured in a binary way: one either shows the effect or one
does not.  In stark contrast to the pattern below the diagonal,
correlations between conflict detection effects—those above
the diagonal—are almost uniformly insignificant.  The only
exception is CON & BR, which was correlated at 0.16 (p <
0.02).  The correlation between BR & SYL was marginally
significant,   r  =  0.144,  p  =  0.078.   Additionally,  Bayes
Factors  for  the  correlations  were  all  below  0.52,  except
CON & BR, which was 1.59.  

The  binary  correlations  of  conflict  detection  effects
provide no real evidence of domain generality.  However, if
there is  a  general  and diffuse signal,  why should that  be
captured by simple, pairwise correlations?  Perhaps it is the
case  that  conflict  detection  on  a  particular  task  is  better
predicted by a non-specific and global sensitivity to conflict
across tasks.  We ran a regression analysis to address this
hypothesis,  using  the  combined  predictive  power  of  a
participant's  responses  across  all  tasks.   In  particular,  we
used  logistic  regressions  to  determine  whether  conflict

detection on a given task was predicted by one's tendency to
detect conflict on  all of the other tasks.  For example, to see
if we can predict whether an individual shows an effect on
the BB items, we tallied how often she showed an effect on
all the other items (RB, SYL, BR, and CON) and used the
latter as our predictor variable.   

Table 3: Predicting Conflict Detection Effects

As is clear from Table 3, the goodness of fit of these first
models (BB, RB, SYL, BR, CON) was generally quite low.
The pseudo R2's (McFadden's) range from < 0.001 to 0.02,
except for the BB model which was at the limit of what is
considered reasonably good (0.17).  The relative goodness
of  this  model  is  reflected  in  its  higher  beta  coefficient
(1.02), which is significant (p < 0.001).  

The  only  other  models  with  significantly  predictive
coefficients were the BR and CON models.  However, given
the tight correlation between these items discovered in the
first  analysis,  we wondered if this was driving the effect.
Indeed, if one runs a restricted model, omitting the correlate
of the predictor (leaving out CON in the BR case, and vice
versa), the models (BR2 and CON2 in Table 3) have inferior
goodness of fit and coefficients that are both smaller and no
longer significant.2

Individual Differences
So  far,  we  have  uncovered  little  evidence  of  domain
generality  in  conflict  detection.   However,  most  of  the
previous findings rely on averaging effects across reasoners.
It might well be the case that there are individuals who show
evidence  of  fairly  generalized  conflict  detection.   The
concern  we  address  in  this  section  is  that  important
differences  between  individuals  might  be  lost  by
aggregating as we have, a concern that echoes theorists who
emphasize  the  importance  of  examining  individual
differences in reasoning and decision making (Baron, 2010).

2 This analysis was meant to assess whether there was a rather
diffuse and non-specific conflict detection signal that predicted an
individual's  detection  on  a  given  task  by  a  composite  of  their
relative effects on other tasks.  Were the data not binary, a factor
analysis would perhaps be appropriate here.  Essentially, this was
the most liberal  test  we could devise to  check for generality  of
conflict detection effects.  However, it is worth noting that a more
conventional  test,  using  multiple  regressions  with  all  tasks  as
predictors except the one being predicted, generated the exact same
pattern  of  results,  with  all  models  being  uninformative  except
where BR & CON items were concerned. 
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To  address  this  issue,  we  present  a  final  means  of
characterizing  the  sample's  overall  conflict  sensitivity,
which is summarized in Figure 1.  We scored every biased
participant  individually  in  order  to  get  a  sense  of  the
distribution  of  conflict  detection  effects.   For  a  given
individual, the total number of tasks on which she showed a
conflict detection effect was divided by the total number of
tasks  on  which  she  was  biased,  giving  us  a  range  of
detection levels spanning from 0 (showing no effect on any
of the tasks on which an individual is biased) to 1 (showing
an  effect  on  all  of  the  tasks  on  which  an  individual  is
biased).  

Figure 1: Frequency of Reasoners by Detection Level

There are concentrations of individuals who consistently
detect  (Detection  Level  1:  18.09% of  the  sample),  detect
half the time (Detection Level 0.50: 21.28% of sample), and
who  consistently  do  not  detect  (Level  0:  12.77%  of  the
sample),  with  all  other  participants  distributed  between
these three groups.  The observation that up to 13% of the
sample shows a Detection Level 0 is in line with previous
findings  that  suggest  there  are  subsets  of  reasoners  who
consistently  fail  to  detect  conflict  (Frey,  Johnson,  &  De
Neys,  2017,  Pennycook  et  al.,  2015).   The  additional
observation that 18% of the sample shows perfect detection
across all tasks also implies that there might be exceptions
to the overall  trend toward task specificity.  Although this
distribution  is  compatible  with  the  few studies  that  have
explored  individual  differences  in  conflict  detection
previously, we cannot confirm the representativeness of this
kind of a distribution given our methods, as we could have
arrived at it by chance. 

Discussion
 

While  performance  on  conflict  items  was  consistently
correlated,  we  found  no  clear  indication  that  conflict
detection is similarly correlated.  Even using a more liberal
measure,  one  that  leverages  the  predictive  power  of  the
entire  panel  of  tasks  to  anticipate  conflict  detection on  a
single task, there was only the faintest signal of generality.
Nevertheless, base rate (BR) and conjunction (CON) items

were  correlated,  and  the  more  liberal  regression  models
relying  on  them  were  minimally  predictive,  as  was  the
model predicting the bat and ball (BB) problems.  So we
found, additionally, no clear evidence of hard and fast task
specificity.  

One  might  classify  our  findings  as  “domain  specific,”
where a domain is defined as a set of problems that share
similar  reasoning  rules  subject  to  comparable  competing
intuitive heuristics.  From such a perspective, base rate and
conjunction  items  would be  considered  to  fall  within the
same  domain,  as  they  share  similar  underlying  reasoning
structures (statistics and probabilities, respectively) that are
in conflict with comparable intuitively prompted heuristics
(social stereotypes in both cases), and in indeed both were
developed  to  evaluate  biases  resulting  from  the
representativeness heuristic.

This hybrid outcome has a number of exciting theoretical
features  and  practical  applications.  For  example,
Teovanović,  Knežević,  & Stankov (2015) argue  against  a
single,  explanatory factor underlying cognitive biases  that
one can easily relate to general intelligence.  The account
we present here is commensurate with those findings, as it
seems  indicative  of  multiple,  often  dissociable  loci  of
conflict  detection  failures.   Additionally,  one  of  the
implications  of  our  findings  is  that  a  conflict  detection
failure on a given task may be largely dissociable from a
conflict detection failure on a distant task.  This is a hopeful
conclusion,  especially  given  the  evidence  that  at  the
individual level such failures are a non-negligible source of
reasoning  bias  (e.g.,  Pennycook  et  al.,  2015).   The
prominence of conflict detection failures on a certain task
need  not  paint  a  grim  picture  of  reasoning  globally.
However,  the  association  within  what  we  are  calling  a
domain indicates that at points detecting on a given task will
be related to detection on a different task, a relationship that
could be exploited educationally.  For example, a reasonable
pedagogical strategy might begin by allocating resources to
the  easier  of   two  related  tasks,  relying  on  the  shared
conflict prompting structures to aid in instructional transfer
and facilitate instruction on the second task.

These  findings  raise  many additional  questions.   Since
confidence  measures  are  inherently  noisy,  our  results  are
necessarily  tentative.   It  will  be  important  to  revisit  the
question of the domain generality of conflict detection with
additional  measures,  especially  response  times.
Additionally, given that we were interested in performance
across many tasks, we were only able to use a few items per
task,  so  our  findings  need  to  be  interpreted  cautiously.
Another  particularly promising research project will be to
further characterize those individuals who detect conflict in
a  domain  general  manner.   For  example,  it  would  be
particularly  instructive  to  determine  whether  they  share
similar  general  cognitive  capacities  or  tend  have  related
thinking dispositions.
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Abstract

We studied a simple binary prediction task and discovered that,
when making predictions, humans display sequential effects
similar to those in reaction time. Moreover, we found that there
are considerable individual differences in sequential effects in
prediction, again similarly to reaction time studies. We discuss
our results in light of the view that sequential effects are the
trace of an attempt at detecting a pattern in the sequence, as
well as the possible influence of randomness perception in our
results. We conclude that the same pattern detection mech-
anism is likely to underlie sequential effects in reaction time
and prediction.

Keywords: sequential effects; prediction

When responding to a sequence of stimuli, human perfor-
mance depends on the past sequence of stimuli, often to a
larger extent than on the properties of the stimuli (e.g. Ber-
telson, 1961; Cho et al., 2002). This phenomenon, known
as ‘sequential effects’, is commonly interpreted as the prod-
uct of an attempt at detecting a pattern in the sequence of
trials, and in particular whether it is a repeating or alternat-
ing sequence. Take for instance a random sequence with two
possible elements: after a repeating run, people tend develop
an expectation that the next event will be the same; similarly,
after an alternating run, an expectation will develop that the
next event will alternate relative to the last one. This is re-
flected in human reaction times (RTs) which tend to be faster
for those events which are expected and shorter for those that
are not. For instance, let ‘R’ and ‘A’ stand for repetitions
and alternations of stimuli: after seeing RRRR people react
faster if the next event was R, and slower if it was A; con-
versely, after seeing AAAA they will react faster to another
A and slower to an R. If we plot mean RT for all possible
histories of events we obtain a ‘profile’ of sequential effects.
Figure 1 shows a commonly obtained profile of sequential ef-
fects, often referred to as ‘cost-benefit’ in order to highlight
the trade-off in RT after a given sequence.

But what if, instead of reacting to each element, a predic-
tion must be made about what the next one will be? It fol-
lows from the expectation-based account expounded above
that those events which are expected should be predicted the
most (i.e,. prediction frequency should be negatively propor-
tional to RT). However, the longer a repeating run is, the more
people have been found to predict that the sequence will al-
ternate (Jarvik, 1951), an effect known as the ‘gambler’s fal-
lacy’ (Oskarsson, Van Boven, McClelland, & Hastie, 2009).
At first sight, results from prediction experiments where the
gambler’s fallacy is observed are incompatible with those of
RT experiments - where it is found that RT decreases as a

function of run length (Bertelson, 1961) - since, together, the
findings from the two paradigms paradoxically imply that hu-
mans predict more and more that which they predict less and
less. Also, note that, since people react faster when a pattern
is confirmed, they are going with the pattern - i.e. behaving as
if the pattern will continue - whereas, when predicting, they
seem to be going against the perceived pattern.

One possible explanation for the differences observed be-
tween prediction and RT is that people might perceive the
sequence to be random in some cases and not random in oth-
ers (Nickerson, 2002). It stands to reason that if a sequence
is random, then any regular pattern encontered must be short-
lived; if, on the other hand, a sequence is judged to be struc-
tured, then a pattern might be more likely to continue. Dif-
ferences in randomness perception might influence results,
but there is evidence that both phenomena - decreasing RT
and increasing proportion of prediction with increase in run
length - occur simultaneously, as both have been observed in
experiments where subjects were made to predict - as well
as react to - each stimulus (Hale, 1967; Perruchet, 1985). At
first sight, this finding does not seem compatible with the ran-
domness perception account, since that account would sug-
gest that whether or not the sequence is percieved as random
changes within the same trial. Thus, while randomness per-
ception cannot be ruled out as a possible explanation for some
results, it is not the full story.

Before a decision can be made to go with or against a pat-
tern, the pattern must be detected in the first place. Parsimony
suggests that the pattern detection mechanism underlying se-
quential effects in both prediction and reaction is the same,
but that the information it conveys is being used in different
ways, and this forms our first hypothesis. As evidence for this
hypothesis, we will take any similarities in the profiles of se-
quential effects in prediction and reaction time. For instance,
should the proportion of times people predict the next event
to repeat or alternate (i.e., the prediction probability) be found
to resemble the cost-benefit pattern in Figure 1, this would be
taken as evidence that the same type of sequential effects can
be found in RT and prediction. However, we do not know
beforehand whether humans are going with or against the
pattern in the sequence when making predictions. If going
against the pattern we would expect prediction probability to
be proportional to RT, and negatively proportional if going
with the pattern. In the latter case the profile of sequential
effects in prediction would look like an inverted copy of its
RT counterpart (see Figure 1, right panel). Previous evidence
points to the fact that humans are going against the pattern
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Figure 1: Illustration of working hypotheses. Sequences at
the bottom are shown in terms of repetitions (R) and alter-
nations (A) of stimuli and should be read from top to bot-
tom with the last event in bold. Left panel shows reaction
time data of a single individual included in the analyses per-
formed by Gökaydin et al. (2016), illustrating the ideal pro-
file of sequential effects, also known as ‘cost-benefit’. Right
panel illustrates what would be expected if prediction also
displayed sequential effects similar to those observed in RT.
The solid line on the right panel shows what would be ex-
pected if humans were going against the pattern in a pre-
diction task, i.e. predicting more often that the pattern will
continue; the dashed line shows what would be expected if
subjects were going with the pattern.

when predicting, so our second hypothesis is that prediction
probability will be proportional to RT, and that the respective
profile of sequential effects will show the same ‘polarity’ as
that of RT (Jarvik, 1951; Hale, 1967; Perruchet, 1985).

The structure of sequential effects
In order to test our hypotheses we must assess whether se-
quential effects in reaction and prediction are the same. How-
ever, this is not a simple matter of comparing results of two
sets of subjects performing a reaction and a prediction task,
as it is well known from reaction time studies that there is
extensive variation in the profile of sequential effects depend-
ing on experimental parameters such as the interval between
the stimuli (Soetens, Boer, & Hueting, 1985; Gökaydin et
al., 2016), as well as for different individuals performing the
same experiment. In fact, the ‘typical’ profile of sequential
effects shown in Figure 2 (left panel) is the exception rather
than the rule (Gökaydin et al., 2016). Therefore, in order to
demonstrate that sequential effects in prediction are the same
as those in reaction time we will try to show they have the
same structure.

There is growing evidence that sequential effects in reac-
tion time can be explained in terms of two separate compo-
nents, one perceptual and related to the sequence of stimuli
and the other motor in origin and related to the sequence of re-
sponses (Jentzsch & Sommer, 2002; Maloney, Dal Martello,
Sahm, & Spillmann, 2005; Wilder, Jones, Ahmed, Curran, &
Mozer, 2013; Gökaydin et al., 2016). Crucially, the relative
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Figure 2: Perceptual and motor sequential effects. Both pan-
els show data collected by Jentzsch and Sommer (2002). Left
panel shows the evidence for a perceptual component of se-
quential effects (S-LRP) and the right panel for a motor com-
ponent (LRP-R). See main text for an explanation of the
meaning of these two components.

contributions of the two components of sequential effects are
known, and take the form of the profiles shown in Figure 2.
Moreover, sequential effects in reaction time - across differ-
ent participant and experimental conditions - are known to be
well approximated by a linear combination of the two com-
ponents, giving us a simplified working model of sequential
effects in reaction time. Applying this model to results from
a prediction task gives us a way of testing whether sequential
effects in reaction time and prediction are similar.

Figure 2 shows the best evidence available about the two
components of sequential effects, from an EEG study con-
ducted by by Jentzsch and Sommer (2002). The authors mea-
sured the time between stimulus onset and the occurrence of
the lateralised readiness potential (LRP), termed S-LRP; and
the time between the LRP and the moment a response oc-
curred, or LRP-R. Since the LRP is thought to separate tem-
porally pre-motor from motor processing, S-LRP and LRP-R
are considered to give a measure of pre-motor and motor pro-
cessing respectively. By measuring both S-LRP and LRP-R
as a function of the sequence of stimuli, Jentzsch and Som-
mer (2002) sought to capture the pre-motor and motor con-
tributions towards sequential effects (see Figure 2). Further
evidence from other studies shows that what Jentzsch et al.
referred to as pre-motor processing can safely be assumed to
be perceptual in nature and associated with the processing
of stimuli (Maloney et al., 2005; Wilder et al., 2013). For
this reason, we will refer to the two components of sequen-
tial effects simply as perceptual and motor, denoting them,
respectively, as P and M.

Different ways of looking at the data
Sequential effects are usually studied in the context of two-
alternative forced-choice tasks (2AFCs) where one has to re-
act to each stimulus as quickly as possible (e.g., pressing one
button if the stimulus appears on the left and another if the
stimulus appears on the right). Error rates in this type of task
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tend to be quite low, which means that the sequences of stim-
uli and responses are very similar and that organising results
as a function of one or the other yields the same results. By
contrast, in a prediction task with two equiprobable stimuli,
the error rate is 50% by design, and this means that the se-
quence of responses and of stimuli become uncoupled. This
raises the question: should the sequence of stimuli or that of
predictions be used in order to study the way in which predic-
tions depend on the sequence? And what information is each
type of analysis conveying? One possibility is that analysing
predictions as a function of the history of predictions - which
involve a motor action - we will recover the motor component
of sequential effects in prediction; conversely, predictions as
a function of the history of stimuli might yield the perceptual
component.

Method
Participants
21 subjects (11 female, 10 male) participated in the exper-
iment. Subjects were recruited using Amazons Mechanical
Turk (Mturk) system. Only participants with at least 500
HITS completed on Mturk and with an approval rate of 95%
or above were accepted and paid $5 USD for taking part in
the experiment.

Stimuli
Stimuli consisted of two white dots of radius equal to 30 pix-
els, horizontally separated by a distance in pixels equal to
20% of the width of the screen. The dots were white and dis-
played against a grey (RGB 0.5/0.5/0.5) background. During
each trial, the two possible positions of the dots were indi-
cated by two black squares equal in width to the diameter of
the dots.

Procedure
Each trial began with a 2000ms-long text display above the
two black squares: ‘Is the next dot on the left or on the right?’.
Predictions were made with the ‘f’ key for ‘left’ and ‘j’ for
‘right’. If a prediction was made during the 2000ms period,
the corresponding black square’s border would thicken and
further key presses had no effect. Once 2000ms elapsed, the
next dot appeared for 600ms, together with feedback (green
tick for a correct prediction or a red cross for incorrect). If
no prediction was made, a warning message ‘Don’t forget to
guess’ was displayed before the appearance of the next dot. If
no prediction was made for five consecutive trials, the experi-
ment stopped, and the message ‘Please remember to respond’
was displayed until the space bar was pressed. Each subject
performed 500 trials separated into five blocks of 100 each,
with an additional 10 practice trials. The sequence of dots
was random, with the constraint that the frequency of left and
right dots was equal for each block.

Data analysis
In the sequential effects literature it has been customary to
show results as an average of a few participants. However,

recent work has uncovered that individual differences are not
only substantial but also meaningful in that they reflect differ-
ent contributions - perceptual and motor - towards sequential
effects (Gökaydin et al., 2016). Thus, average results are not
conclusive with respect to demonstrating that sequential ef-
fects in prediction are similar to those in reaction time.

In order to calculate the probability of repeating/alternating
as a function of the history of stimuli for each participant,
each participant’s trials were separated according to five-long
histories of predictions, with prediction probabilities being
calculated simply as the relative frequency with which a rep-
etition or alternation was predicted as the fifth event in each
of the 16 possible five-event-long histories presented on the
x-axis of Figure 1. For instance, denoting frequency by f (.),
the probability of alternating after predicting ARA was cal-
culated as p(ARAA) = f (ARAA)/( f (ARAA)+ f (ARAR)).

We will use Xs,Ys to denote the left/right dots and Xp,Yp
the left/right predictions. In order to calculate the probability
of repeating/alternating as a function of the history of stim-
uli, sequences such as ARAR consisted of XsYsYsXsXp and
YsXsXsYsYp. Probabilities of repeating/alternating were then
calculated as above.

As discussed above, in order to assess whether sequential
effects in prediction are similar to those in reaction time, we
will use a simple model which is known to provide a good
description of sequential effects in reaction time and apply it
to sequential effects in prediction. Our model will consist of
a simple linear combination of the perceptual elements of se-
quential effects. Our model then reads as aP+ bM, where a
and b are scalar free parameters and P and M are the percep-
tual and motor components of sequential effects - effectively
just the profiles shown in Figure 2.

Results
We will look primarily at individual results given that we
know from reaction time studies that individual differences
can be substantial (Gökaydin et al., 2016). Moreover, as
discussed above, looking at averaged results is inconclusive
with respect to assessing whether prediction and reaction time
show the same type of sequential effects. We will discuss
two types of analysis: prediction probability as a function
of the history of predictions - prediction history profiles for
short - and prediction probability as a function of the his-
tory of stimuli - or stimulus history profiles. Results from
both types of analysis will be shown in turn. Overall, pre-
diction history profiles emerged as having a larger number of
individuals with a better fit to the combination of the com-
ponents model: 17/21 prediction history profiles had an R2

greater than 0.5, compared to 8/21 for stimulus history pro-
files. Note that a clear profile of sequential effects on one
type of analysis was no guarantee that a clear profile emerged
for the other type: several subjects displayed clear sequential
effects on their prediction history profile but not in their stim-
ulus history profile; conversely, one subject displayed strong
sequential effects on the stimulus history profile but not on
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Figure 3: Individual sequential effects in prediction as a func-
tion of prediction history. Blue solid lines- empirical mean
prediction probability. Red dashed lines - best fitting linear
combination of the form aP+bM where P is represented by
S-LRP and M is represented by LRP-R. Inset bar plots show
coefficients a (P) and b (M). Also shown is the R2 value of
the fits.

the prediction profile.
Figure 3 shows a sample of prediction history profiles from

individual participants - chosen on the basis of their good-
ness of fit to the model, as well as being representative of
different types of profile. The lower-right panel of Figure 3
shows a typical cost-benefit profile, the hallmark of sequen-
tial effects in RT, observed here for the first time in predic-
tion. The lower-left panel shows yet another commonly ob-
served type of sequential effects, the result of a stronger mo-
tor contribution. The top-left panel shows an example of an
approximately ‘two-tiered’ profile, the product of a positive
perceptual and negative motor coefficient. Finally, the top-
right panel shows an individual with a negative score on both
components.

Figure 4 shows a selection of individual stimulus hostory
profiles, again chosen on the basis of their good fit and be-
cause they illustrate previously known profiles from RT stud-
ies. The profile on the top-left corner of Figure 4 is of par-
ticular relevance: not only did it occur in several subjects (4)
but it consists of an ‘inverted’ copy of what is thought to be
the motor element of sequential effects. The top-right corner
of Figure 4 shows a profile that is best fit by the perceptual
component of sequential effects in isolation, raising the pos-
sibility that it too can also occur ‘inverted’ and in isolation.
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Figure 4: Individual sequential effects in prediction as a func-
tion of stimulus history. Blue solid lines- empirical mean
prediction probability. Red dashed lines - best fitting linear
combination of the form aP+bM where P is represented by
S-LRP and M is represented by LRP-R. Inset bar plots show
coefficients a (P) and b (M). Also shown is the R2 value of
the fits.

The remaining profiles in Figure 4 (bottom two) show two
profiles which are consistent with a mixture of the two com-
ponents of sequential effects, where the motor component is
inverted but not the perceptual, and vice-versa. These types
of profile, resembling an almost two-tiered dependence on
the last event and whether this was a repetition or an alterna-
tion, are common at the individual level in RT studies despite
only recently having been described (Gökaydin et al., 2016).
Interestingly, no single participant exhibited a good fit to a
combination of the two components where both had positive
coefficients. Note that the two sets of subjects shown in fig-
ures 4 and 3 are different, with the exception of the lower-left
panel of both figures, which show both types of analysis for
the same individual.

Recall that, based on previous results, we hypothesized
that prediction probability would be proportional to reaction
time, reflecting the fact that humans predict less that to which
they respond the fastest, and vice-versa. In the context of
our model, this would imply that the coefficients of percep-
tual and motor components have the same sign on average
in reaction time and prediction. Figure 5 shows the coeffi-
cient values of both components for all the individuals with
very good fit to the model (R2 > 0.7). At first sight our re-
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Figure 5: Coefficients of the best fitting linear combination
aP + bM for those subjects with R2 ≥ 0.7. Blue triangles
show the coefficients of the fit to results as a function of pre-
diction history; red squares show fits to results as a function
of stimulus history. The large blue triangle and red square
show the respective means.

sults differ from RT experiments in one respect: in predic-
tion profiles at least, the motor component often varies from a
strongly positive to a strongly negative sign, whereas in RT it
has almost always a positive sign (see Gökaydin et al. (2016),
supplementary information). With respect to differences be-
tween prediction history profiles and stimulus history profiles
- squares and triangles in Figure 5 - there is a hint that per-
haps stimulus history shows one or the other component in
isolation, whereas prediction history shows a more balanced
mixture of the two components, but it is too early to draw any
firm conclusions.

Discussion
Our first hypothesis posited that we would find sequential ef-
fects in prediction similar to those in reaction time. The ev-
idence presented here - while falling short of demonstrating
that sequential effects in reaction and prediction are the same
- does strongly suggest that sequential effects in prediction
are similar to those in RT insofar as they are well captured
by a combination of the two components of sequential effects
in reaction time - perceptual and motor. That such clear pro-
files of sequential effects were obtained (Figures 3 and 4) was
somewhat surprising given the smaller number of trials rela-
tive to typical RT tasks, as well as the less constrained nature
of the task. Still, results were visibly noisier when compared
to reaction time experiments, and many subjects failed to ex-
hibit any appreciable fit to the two-component model. Never-
theless, we cannot rule out that those individuals who did not
exhibit a good fit to the model exhibit a new type of sequen-
tial effect which is meaningful. In order to firmly establish the
nature of sequential effects in prediction an experiment with
larger numbers, followed by latent variable analysis - such as
principal components analysis (PCA) (Gökaydin et al., 2016)
- is necessary. This would allow us to match the structures of
sequential effects in prediction and reaction time, rather than
just a few individual results.

We also hypothesized that prediction probability would be

directly proportional to RT, rather than negatively propor-
tional as is more intuitive. Again in this case conclusions
can only be drawn on average, since there is considerable
variation in the sign of the two components in both RT (see
Gökaydin et al. (2016)) and prediction (Figure 5). Despite the
small sample size, one difference did emerge: the sign of the
motor component in prediction profiles ranges from strongly
negative to strongly positive, whereas in RT studies the motor
component seems constrained to be positive. Another inter-
esting observation is that the motor component with a neg-
ative sign and in relative isolation - i.e. not in combination
with the perceptual component - occurred in half (4/8) of the
stimulus profiles with an R2 greater than 0.5. In other words,
when analysing results as a function of the history of stimuli,
half of the participants were using only the motor component
of sequential effects. Moreover, when analysing results as a
function of the history of predictions, we obtained clear con-
tributions from both the motor and perceptual components.
At first sight, these results at odds with the interpretation of
the components of sequential effects as associated with the
perceptual and motor systems since - in a task where the se-
quence of responses and stimuli are de-coupled - we should
recover the motor component when looking at the sequence
of responses and the perceptual component when looking at
the sequence of stimuli. Therefore, our results may force a re-
interpretation of the motor/perceptual association of the two
components of sequential effects.

There is some debate regarding the computational nature of
sequential effects. Some authors argue that sequential effects
reflect the tracking different types of statistics in the environ-
ment (Wilder, Jones, & Mozer, 2009), whereas others argue
that sequential effects are instead the product of the separate
detection of alternating and repeating patterns (Maloney et
al., 2005). We will use the latter interpretation in order to
guide our discussion, but the different explanations are not
incompatible and the ensuing discussion would hold if we in-
terpret sequential effects as tracking different statistics. In the
context of the pattern-detection interpretation, the perceptual
component is the natural candidate for an alternation detec-
tor, whereas the motor component would play the role of a
repetition detector (see (Gökaydin et al., 2016) for an expla-
nation of this mapping). A change in sign of either coeffi-
cient would therefore imply a change in whether a particu-
lar subject is going for or against the respective pattern. For
instance, when predicting, a positive sign of the motor com-
ponent would mean that the the participant is going against
a perceived repeating pattern, and the opposite is true for a
negative coefficient.1 In light of this, we can now see that
the variation in the sign of the coefficients of both compo-
nents of sequential effects (Figure 5) may reflect a differen-
tial treatment of repeating and alternating patterns: in some
cases subjects are going against both types of pattern - repeat-
ing or alternating - and other times against one but with the

1Note that in RT this is the opposite: a positive sign means going
with the pattern, and negative against it.
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other. The only combination we did not obtain was a negative
sign on both coefficients, which would imply going with both
patterns.

Earlier we proposed that the subjective perception of ran-
domness might influence the polarity of sequential effects,
since whether or not a pattern will continue depends on
whether the sequence is random or not. At first sight, the
randomness perception account would seem to imply that hu-
mans either go against both types of pattern - repeating and
alternating - or with both. After all, if we perceive the se-
quence as being random we should bet against both repeating
and alternating sequences continuing, and the opposite if we
believe the sequence to be structured. However, it is conceiv-
able that the perception of randomness has a differential effect
on repeating and alternating patterns or, somewhat equiva-
lently, that individuals give different weight to repetitions and
alternations when judging a sequence to be random. In fact,
it is well known from RT studies that there are substantial in-
dividual differences with respect to sensitivity to repetitions
and alternations (Soetens et al., 1985; Gökaydin et al., 2016).
In our experiment we did not bias the participants either way,
and it is therefore natural to assume that individual perception
of the random nature of the sequence would vary depending
on endogenous factors. One way to test the influence random-
ness perception on sequential effects in prediction would be
to conduct the same experiment giving participants a strong
hint that the sequence is random, and contrasting these re-
sults with a situation where it is implied that the sequence has
a pattern.

Some of the participants in our study exhibited a clear pre-
diction history profile, some a clear stimulus history profile,
and some both. The implication is that some humans are
tracking the sequence of predictions, others the sequence of
stimuli, and others both, in order to try and make predictions.
What is it that makes some people more sensitive to one or
the other type of information? The perception of random-
ness may yet again play a role in this respect, since a belief
that the sequence is random should lead to a dismissal of the
sequence of stimuli as uninformative. If participants believe
the sequence is random they might try to generate the most
random possible sequence of responses by using their repe-
tition and alternation detectors ‘in reverse’ in order to create
a sequence of responses that is poor in repeating and alter-
nating patterns. If this were the case, we should expect to
see a positive coefficient on both components in those partic-
ipants with a clear prediction history profile (blue triangles
in Figure 5), which seems to be the case for a few subjects,
but not all. Again, we cannot discard the possibility that indi-
vidual differences in sensitivity to repetitions and alternations
might play a role in this case, and that some individuals might
put more or less emphasis on repetitions or alternations when
generating the most random sequence possible.

Conclusion
We have shown for the first time that prediction tasks display
sequential effects similar in nature to those observed in re-
action time. This work goes some way towards unifying the
areas of prediction and reaction time in binary decision tasks.
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Abstract

Much of our knowledge is transmitted socially rather than
through firsthand experience. Even our memories depend on
recollections of those around us. Surprisingly, when people re-
call memories with others, they do not reach the potential num-
ber of items they could have recalled alone. This phenomenon
is called collaborative inhibition. Recently, Luhmann and Ra-
jaram (2015) analyzed the dynamics of collaborative inhibition
at scale with an agent-based model, extrapolating from previ-
ous small-scale laboratory experiments. We tested their model
against human data collected in a large-scale experiment and
found that participants demonstrate non-monotonicities not ev-
ident in these predictions. We next analyzed memory transmis-
sion beyond directly interacting agents by placing agents into
networks. Contrary to model predictions, we observed high
similarity only within directly interacting pairs. By comparing
behavior to model predictions in large-scale experiments, we
reveal unexpected results that motivate future work in eluci-
dating the algorithms underlying collaborative memory.

Keywords: collaborative memory; collaborative inhibition;
network transmission; crowdsourcing; agent-based modeling

Our memories often rely on the people around us: every
day we communicate with our colleagues and friends, form-
ing and editing memories in each interchange. People learn
to access each other’s memories within long-term couples
(Wegner, Erber, & Raymond, 1991), and groups collectively
form memories that define their values (e.g., Hirst & Echter-
hoff, 2012). As people connect within increasingly larger net-
works, collaborative memory becomes ever more relevant.

In psychology, collaborative memory has historically been
investigated in small-scale, lab-based experiments. Much
work on group memory has thus focused on dyads or triads.
However, our worlds are more richly connected than can be
replicated in a lab setting, and many of the findings from this
work may not be applicable to the larger systems of our ev-
eryday lives. To address this lack of understanding of large
groups, recent efforts have focused on investigating memory
abilities using agent-based modeling (Luhmann & Rajaram,
2015). By analyzing human performance in past memory ex-
periments, researchers can derive putative algorithms that de-
scribe human memory recall and embed these algorithms in
artificial agents. These “agents” can then participate in novel
memory paradigms with hundreds of agents interacting at a
time. Agent-based modeling provided a solution to the diffi-
culty of recruiting large numbers of participants and arrang-
ing them in the networks required by memory experiments.

However, we have recently developed a novel approach
that allows us to overcome the previous impossibility of an-
alyzing collaborative memory abilities at scale. Using new
technology interfacing with web-based crowdsourcing tools
such as Amazon Mechanical Turk, we can now recruit and

organize hundreds of online participants into real-time inter-
active chatrooms. Moreover, by considering participants as
“nodes” in a network graph, we can assemble participants
into arbitrary network structures.

The plan of the paper is as follows. We first validate our
approach by replicating established collaborative memory ef-
fects in small groups, then investigate collaborative memory
at unprecedented scale (Experiment 1). We then explore how
memories spread beyond direct communication by examining
memory transmission across networks (Experiment 2). We
compare our human results to those predicted by agent-based
modeling (Luhmann & Rajaram, 2015) to determine the mod-
els’ accuracy in describing behavior. We find that participants
show memory effects not predicted by the model, illustrat-
ing the difficulty of extrapolating findings to larger groups.
Within networks, participants also diverge from model pre-
dictions, showing reduced similarity in the words they recall
beyond direct interactions. These results highlight the impor-
tance of large-scale studies in developing predictive models
of human interaction, and further our understanding of the
complexity of real-world network transmission and memory.

Collaborative Inhibition
Imagine a group of people recalling a list of words collab-
oratively. The group would generate more words than any
individual trying alone. However, the key comparison is not
between the number of words on the group’s list and the num-
ber of words on any one individual’s list— it is between the
group’s list, and the cumulative list of what all the individu-
als could have done had they worked alone. This comparison
is often made in the well-established “collaborative memory”
task. In this task, participants listen to a long list of items (of-
ten words) and then recall as many items as possible, either
as a group or individually. The number of words recalled by
the group is compared to the number of words recalled by the
“nominal group”: the summed list of an equivalent number of
individuals (redundant words removed). In the collaborative
memory paradigm, nominal groups routinely outperform col-
laborative groups, a finding called collaborative inhibition.
This effect has been replicated across many studies and varia-
tions on the paradigm (see Rajaram & Pereira-Pasarin, 2010).

The leading theory describing collaborative inhibition is
the retrieval disruption hypothesis (e.g., Basden, Basden,
Bryner, & Thomas, 1997; Rajaram & Pereira-Pasarin, 2010).
This hypothesis states that when initially listening to a
wordlist, people form idiosyncratic representations of the
words. When recalling words alone, participants effectively
use their idiosyncratic organizations to recall the words.
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However, when placed in groups, other participants can dis-
rupt a participant’s recall, leading to reduced performance.
This hypothesis predicts that when participants are encour-
aged to organize information in similar ways, collaborative
inhibition will disappear. In fact, when participants are ex-
perts in their domain (Meade, Nokes, & Morrow, 2009) or
are exposed to similarly ordered information (Finlay, Hitch,
& Meudell, 2000), inhibition does not occur. In generating
model predictions, Luhmann and Rajaram (2015) incorpo-
rated the assumptions of the retrieval disruption hypothesis.
In Experiments 1 and 2, we design empirical studies to com-
pare behavioral results to these predictions.

Agent-Based Model
In the model described by Luhmann and Rajaram (2015),
agents encode N items (words), where N = 40. Agents have
two representations. The first is an activation vector A of
length N. Each entry A j gives the probability that the given
item j will be retrieved. The second representation is an
inter-item association matrix S of size N ×N. Each entry Si j
gives item j’s association with item i (associations were not
necessarily reciprocal). This matrix would normally contain
agents’ prior knowledge about word associations; however,
Luhmann and Rajaram (2015) assigned values of S randomly
between -2 and 2 to reflect agnosticism about the semantic
relationships between words. (The S matrix was not used in
our empirical studies.)

Each agent in this model has two behaviors. The first is
encoding an item i. The first step in encoding an item is to
reduce the activation of the maximally active item in vector
A, where β is the learning rate:

∆Amax =−βAmax . (1)

Next, the agent reduces the activations of items semantically
associated with the maximally active item:

∆A j =−βS j,maxA j . (2)

Finally, the agent increases the activation of the to-be-
encoded item i, with α acting as the learning rate:

∆Ai = α
[
1−Ai

]
. (3)

The activation A vector is then normalized to ensure that its
entries can be interpreted as probabilities: ∑i Ai = 1.

An agent can also retrieve (and “orally state”) an item.
Agents take turns retrieving items, and on each turn, an agent
retrieves an item with probability γ. The item i that is re-
trieved is chosen according to the proportions in A, such that
items with higher activations are more likely to be retrieved.
Then the activation vector is modified. First, the agent de-
creases activation of items semantically associated with the
retrieved item i, in line with the theory of retrieval disruption:

∆A j = βS jiA j . (4)

Next, if i is not the maximally activated item, the agent re-
duces the activation of the maximally active item according

to Equation 1, and the activations of items semantically asso-
ciated with the maximally active item according to Equation
2. Item i is then encoded according to Equation 3. A is then
normalized such that ∑i Ai = 1. Just as the retrieving agent en-
codes the item after retrieving it, “listening” agents also then
encode the item according to the encoding process described
previously. Luhmann and Rajaram (2015) used the following
parameter settings: α = 0.2, β = 0.05, and γ = 0.75.

In the first set of simulations in Luhmann and Rajaram
(2015) comparing collaborative and nominal recall (our Ex-
periment 1), model predictions were generated by presenting
agents with wordlists and then having agents recall words via
the described procedure. When an agent generated a word, it
was shared with every other agent in the network. Agents par-
ticipated in 20 rounds of retrieval within each simulation. A
total of 1000 simulations (comparing 1000 collaborative and
1000 nominal results) were run for each group size.

In their second set of simulations analyzing agent interac-
tion over networks (our Experiment 2), agents participated
in 800 “timesteps” rather than rounds. In contrast with the
large-scale collaborative simulations, in each timestep, every
agent interacted with one other randomly chosen agent who
was directly connected to them in the network. These in-
teractions were pairwise, in contrast to previous simulations,
during which the agent and their partner both had the opportu-
nity to retrieve a word. This pattern of one-on-one interaction
captures a form of organic social interaction in which some-
one may run into a friend and chat, and then continue on until
they happen upon someone new.

Agents were placed in two types of networks: one empiri-
cally derived network, Zachary’s karate club (Zachary, 1977),
and one algorithmically derived network, a small-world net-
work (Watts & Strogatz, 1998). The karate club network de-
scribes the 78 links between 34 members of a club. Small-
world networks are based on the 6-degrees-of-separation phe-
nomenon, the theory that it often takes around 6 links to con-
nect any two individuals (Travers & Milgram, 1969). To gen-
erate small-world networks, Luhmann and Rajaram (2015)
used the Watts-Strogatz algorithm with the following param-
eters: 100 nodes, an average degree of 4 (participants were on
average connected to four others), and a rewiring probability
of 0.1. A total of 1000 simulations were run for each net-
work type. Small-world networks were randomly generated
for each simulation.

In the network experiments, the measure of interest was
similarity across agents. Agent similarity was compared by
computing correlations across participants’ activation vectors
A. To capture the notion that agent similarity should be high
both when agents mutually forgot or remembered a word, the
absolute value of Pearson’s correlation coefficient was used.

Testing Model Predictions at Large Scale
In Experiments 1 and 2, we design empirical behavioral ex-
periments that align with the specifications of the modeling
work as closely as possible. However, the modeling work
differed in that agents were allowed to submit any word that

404



they had not previously retrieved, whereas in the behavioral
work, participants were not allowed to recall words that they
or any other group members had previously recalled.

In Experiment 1, we first replicate findings from small-
group experiments, then empirically explore the impact of
large group size on collaborative inhibition. Previous work
has suggested that collaborative inhibition increases as group
size increases from 1 to 4 participants (Basden, Basden, &
Henry, 2000; Thorley & Dewhurst, 2007), but Luhmann and
Rajaram (2015) were the first to scale up to a hundred agents
with their agent-based model. Their model predicts that col-
laborative inhibition rises with group size, peaks at around 8
individuals, and then begins decreasing (Figure 1a). Specif-
ically, collaborative recall continues increasing with group
size, but nominal recall hits ceiling at around 8 people as the
disruption of idiosyncratic recall strategies is compensated by
sheer group size. Since collaborative inhibition is the dif-
ference between nominal and collaborative recall, from this
point collaborative inhibition begins to decrease. This predic-
tion represents an extrapolation of results from small group
sizes, and we tested the assumptions underlying this agent-
based model by comparing human performance in the collab-
orative memory experiment to the model predictions.

In Experiment 2, we turn to memory transmission across
networks. One person’s behavior can have effects far beyond
their direct connections, and viruses, information, and behav-
iors like smoking can spread over social networks. This trans-
fer of information beyond direct interactions is called “hyper-
dyadic spread” (Christakis & Fowler, 2009). Consistent with
hyperdyadic spread, memory researchers have found that in-
directly connected pairs have more similar memories than
unconnected pairs (Yamashiro & Hirst, 2014) and that distal
partners can influence word recall (Choi, Blumen, Congleton,
& Rajaram, 2014). The model from Luhmann and Rajaram
(2015) accordingly predicts that agents who never directly
interacted, but share neighbors, will be similar (Figure 2a).
Moreover, the model also predicts that agent similarity will
depend on the networks that agents participate in. Agents in
small-world networks were expected to be more similar than
agents in karate club networks if they had directly interacted,
but the opposite was expected for agents further apart. In Ex-
periment 2, we implemented the agent-based network models
with real participants to test these predictions.

Experiment 1: Small and Large Groups
Methods
Participants 1138 participants were recruited through
Amazon Mechanical Turk. Participants were excluded from
the experiment if they did not complete the pre-experiment
arithmetic task and they did not contribute words in the
main experiment. Sixteen participants were removed from
the collaborative experiments for a total of 561 participants.
Nominal groups were matched; thus 561 participants par-
ticipated in the nominal experiments. The average (± SD)
number of participants in collaborative experiments was 15.2

± 0.7 for groups of size 16, 7.6 ± 0.7 for groups of size 8,
4.0 ± 0 for groups of size 4, 3.0 ± 0 for groups of size 3, and
2.0 ± 0 for groups of size 2.

Participants would occasionally repeat the task, as they
could choose to complete the task again on Amazon Me-
chanical Turk despite written advisement against this. Of the
participant data included in this paper (other pilot task ver-
sions were also executed), in Experiment 1, 134 participants
repeated the experiment more than once (14.6% of partici-
pants), and 30.03% of the data was generated by these partic-
ipants. Participants participated an average of 1.22 times. The
mean proportion of repeaters across group sizes (both nomi-
nal and collaborative) was as follows: group size of 2: 0.33 ±
0.35 (SD), group size of 3: 0.39 ± 0.31, group size of 4: 0.27
± 0.21, group size of 8: 0.27 ± 0.20, and group size of 16:
0.27 ± 0.09. The participants who repeated the nominal ex-
periments did not show improvement over time, despite hav-
ing seen the same wordlists: the correlation between number
of repetitions and number of words recalled was r = -0.03 (91
data points). Participants did improve across repetitions in
the collaborative experiments (r = .47, 89 data points). How-
ever, the proportion of repeaters within experiments was anti-
correlated with group size: the correlation between experi-
ments of group sizes 2, 3, 4, 8, and 16 and the proportion of
repeaters was r = -0.086.

Stimuli Participants saw 60 unrelated words, each selected
from a different category from Overschelde, Rawson, and
Dunlosky (2004). In collaborative experiments, words were
presented roughly simultaneously across all participants. The
average time (± SD) between presentation of a wordlist to the
first participant compared to the last participant was as fol-
lows: 0.4±0.5 seconds for groups of size 2, 0.2±0.3 secs for
groups of size 3, 0.9±0.9 secs for groups of size 4, 2.5±1.1
secs for groups of size 8, 4.2±2.6 secs for groups of size 16.

Procedure Participants observed wordlists: each word was
presented for two seconds. After seeing the list, partici-
pants completed a 30-second-long arithmetic filler task be-
fore advancing to the recall task. Participants were placed
in chatrooms alone or with other participants, and were en-
couraged to type as many of the words they had seen as
possible. Participants were not told how many other par-
ticipants were in the chatroom: their responses appeared in
blue font, and responses from all others appeared in black.
They saw all previous words entered and were not permitted
to submit any word that had already been submitted. This
choice— that any words already present on the group list
were not redisplayed— was made to encourage participants
to read others’ submitted words, and because it more closely
matched the lab-based version of the collaborative memory
paradigm, where verbal recall creates social pressure to not
repeat words. There was no time limit for the recall task.

Experiments contained group sizes of 2, 3, 4, 8, or 16 par-
ticipants. For each recall method (nominal or collaborative),
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Figure 1: Effect of group size on collaborative inhibition. (a) Model results, reproduced from Luhmann and Rajaram (2015).
(b) Behavioral results. The mean proportion of words (± SE) recalled in the nominal (red) and collaborative (blue) conditions
are shown; collaborative inhibition (yellow) is the subtraction of these two values. Note that the horizontal axis is logarithmic.

48 groups of 2 were analyzed; 32 groups of 3 were analyzed;
24 groups of 4 were analyzed, and 12 groups of 8 and 16 were
analyzed. This was a 2×5 design, crossing recall method
by group size. In the nominal recall condition, participants
recalled words alone, and their recall lists (with redundant
words removed) were added together according to the ap-
propriate group size. In the collaborative recall condition,
groups of participants were placed in chatrooms and recalled
together. Recalled words that had not been on the original
lists were marked as incorrect and not included.

Results
The collaborative inhibition effect is most reliably observed
in triads (Rajaram & Pereira-Pasarin, 2010), and we repli-
cated this effect in our behavioral data at group size 3: t(62)
= 2.34, p = 0.02, d = .60, independent 2-sample t-test. (α =
.05 for all planned comparisons to follow. Unlike previous
studies, we investigate the collaborative inhibition effect at
multiple group sizes. Had we run separate studies, we would
have used α = .05, justifying its use here.) Collaborative in-
hibition in the literature is frequently but not always observed
in pairs (Rajaram & Pereira-Pasarin, 2010), but we did not
observe this effect in this group size (t(94) = 0.78, p = 0.44,
d = .16). In the two studies known to the authors examining
tetrads (Thorley & Dewhurst, 2007; Basden et al., 2000), a
collaborative inhibition effect was observed, but we did not
observe this effect at group size of 4 (t(46) = -0.42, p = 0.67,
d = .13).

Given previous results at group sizes of 2, 3, and 4, it is
reasonable to extrapolate and hypothesize that the trend of
collaborative inhibition may be expected to continue or even
widen at larger group sizes (Luhmann & Rajaram, 2015). In-
triguingly, this was not the pattern of results observed: partic-
ipants did not show a collaborative inhibition effect at group
size of 4, and continued to not show a collaborative inhibition
effect at group size of 8 (t(22) = 0.25, p = 0.80, d = .11), con-
trary to model predictions. A collaborative inhibition effect
did reoccur at group size 16 (t(22) = 2.17, p = 0.04, d = .93),
but variance for the nominal group is likely decreased due to

ceiling effects.
Overall, using a between-participants two-way unbalanced

ANOVA, we surprisingly failed to observe a main effect of re-
call method (F(1,246) = 2.03, p = 0.16, η2 = .0045): nominal
and collaborative groups did not recall significantly different
numbers of words when results from all groups were com-
bined (Figure 1b). We did observe the expected main effect
of group size, F(4,246) = 49.08, p < 0.0001, η2 = .44, in that
larger group sizes increased word recall. There was no inter-
action effect between recall method and group size (F(4,246)
= 1.15, p = 0.33, η2 = .010).

Contrary to the model predictions from Luhmann and Ra-
jaram (2015), the collaborative inhibition effect became less
strong at group sizes greater than 3. This observation mo-
tivates the use of large-scale studies and further experiments
testing whether the retrieval disruption and related hypotheses
are enough to explain these results, or whether new models of
human collaborative recall are necessary.

Experiment 2: Networks
While people occasionally come together to work in short-
term groups, we often function in long-lasting social net-
works, communicating occasionally with far-flung friends.
These networks are complex and can spread information at a
prodigious rate: a secret you tell a close friend one day might
be known by the whole community the next. In Experiment
2, we sought to investigate how people share and generate
information when communicating across complex networks.

Methods
Participants After removing inattentive participants, 383
participants were sorted into one of 12 karate club networks;
the mean number of participants per network was 31.9 ± 1.4
(SD). 390 participants were sorted into 12 different small-
world networks; the mean number of participants per net-
work was 32.5 ± 0.7. Removing participants changed the
structure of the networks, and path lengths increased accord-
ingly. 81 participants repeated the network experiments more
than once (12.7% of participants), and 27.8% of the data was

406



Figure 2: Similarity of agents within networks. (a) Model results, reproduced from Luhmann and Rajaram (2015). (b) Behav-
ioral results. Mean similarity (± SE) across agents is plotted as a function of the minimum distance between each agent node.
Participants were arranged in karate club networks (red) or small-world networks (yellow).

generated by these participants. Participants participated an
average of 1.21 times. The mean proportion of repeaters in
the karate club experiments was 0.23 ± 0.10 (SD) and in the
smallworld experiments was 0.32 ± 0.11. The participants
who repeated the network experiments did not improve in the
task: the correlation between number of repetitions and words
recalled was r = -0.18 (159 data points).

Small-world networks were randomly generated for each
experiment. The average time (± SD) between presentation
of a wordlist to the first participant compared to the last par-
ticipant was as follows: 6.9±7.4 secs for the karate networks
and 3.3±1.2 secs for the small-world networks.

Procedure To compare our results with model predictions,
we sought to replicate the model’s paradigm as closely as
possible with human participants. Each participant was as-
signed as a node in a graph with the option to communicate
only with individual neighbors, where “neighbor” is defined
as nodes participants were directly connected to. Every time
a participant generated a word, their word was shared with a
randomly chosen neighbor, rather than broadcast to the entire
group as in Experiment 1. Networks were generated as de-
scribed in the model, except that 34 agents were included in
the small-world network, to match the karate club numbers.

Results
Hyperdyadic Spread We first asked whether participants
would show evidence of hyperdyadic spread. Luhmann and
Rajaram (2015) computed agent similarity by comparing
their agents’ activation vectors A, but in the non-modeling
world we were restricted to externally observable correlates
of participants’ representations. Thus, we computed the abso-
lute value of correlations for the list of words that participants
recalled in the task as our measure of hyperdyadic spread.

Using recalled lists of words, we calculated the similarity
between every two agents, and sorted the correlations based
on agents’ proximity in the network. Specifically, we used
“hops” to describe how many connections were necessary to

link an agent node to another. If agents were connected and
could directly communicate with each other, they were sep-
arated by a hop distance of 1. If the closest path between
agents included one other node, they were separated by a hop
distance of 2. In this study, hyperdyadic spread would be ob-
served if there was a non-zero similarity between agents at a
hop distance of 2 or greater.

Though modeling predictions suggest agents will show hy-
perdyadic spread, participants who did not interact (partici-
pants separated by more than 1 hop) did not show evidence
of hyperdyadic spread. We may have expected agents with
shared neighbors to be similar, analogous to the spread of
smoking habits (Christakis & Fowler, 2009). However, habits
develop over long time periods and are perhaps more trans-
missible than individual words, especially in social networks
crafted from personal relationships. The advantage of using
simplistic stimuli like wordlists is that if effective, we gain
access to a reductionist, explainable system for investigation:
in this case how memory representations are related. To this
end, perhaps if semantically related words had been selected
(rather than an unrelated wordlist presented in random order),
we would have observed hyperdyadic spread in a new model
system. This result highlights the effectiveness of iterating on
model-based predictions and behavioral comparison.

Network Structure We next asked whether choice of net-
work affects agent-pair similarity. In this case the model pre-
dictions closely align with behavioral results at a distance of 1
hop, though at greater distances the behavioral results exhibit
unpredicted non-monotonicities. Specifically, at a distance of
1 hop, participants in small-world networks were more simi-
lar than in karate club networks (t(22) = -6.24, p < 0.0001, d
= 2.66, independent t-test), likely due to the increased local
connections in small-world networks compared to the karate
club network. Behavior at hop distances greater than 1 exhib-
ited non-monotonicity: networks did not affect agent similar-
ity (2 hops: t(22) = -2.42, p = 0.024, d = 1.03; 3 hops: t(22)
= -1.17, p = 0.26, d = .50; 4 hops: t(22) = -0.84, p = 0.41, d
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= .36; 5 hops: t(22) = 1.45, p = 0.16, d = .62; 6 hops: t(12)
= 1.04, p = 0.49, d = 1.45; α = .008 to account for multiple
comparisons).

Accordingly, the behavioral results did not show a main
effect of network type across hop distance 1-6 (F(1,122) =
1.44, p = 0.23, η2 = 0.0014, between-participants 2-way un-
balanced ANOVA), indicating that overall similarity between
agents in karate club networks compared to small-world net-
works was not significantly different across all hop distances
(Figure 2b). We observed an expected main effect of hop dis-
tance (F(5,122) = 163.86, p < 0.0001, η2 = 0.81), describing
that agents were less similar when they were further apart.
There was an interaction effect between recall method and
hop distance (F(5,122) = 15.01, p < 0.0001, η2 = 0.075), de-
scribing the non-uniform decrease in agent similarity as hop
distance increased. In sum, though behavioral results failed
to show hyperdyadic spread, similarity between directly in-
teracting agents was dependent on the network structure.

General Discussion
In an increasingly interconnected world, understanding how
our memories are impacted by interacting with others will
influence how we organize ourselves, think and remember.
In two studies, we examined collaborative memory: how re-
membering words in groups changes performance compared
to recalling alone. We investigated collaborative memory in
small and large groups and across network structures, com-
paring empirical results to the agent-based model predictions
developed by Luhmann and Rajaram (2015).

We first replicated the collaborative inhibition effect in tri-
ads, the most reliable group size in exhibiting this effect. We
then observed that in real participants, collaborative inhibi-
tion does not uniformly persevere at larger group sizes, de-
spite what was suggested from small-scale studies (Luhmann
& Rajaram, 2015). One suggestion for why this could be
is that factors outside of retrieval disruption affected partici-
pants. For example, post-experiment questionnaires indicated
that in large groups where participants raced to submit non-
repeated words, some participants felt competitive pressure
rather than the cooperation evident in smaller groups. While
this issue might have been reduced by using a turn-taking
structure rather than free recall, waiting for each participant in
a large group to take a turn would introduce a new set of prob-
lems. Future models of collaborative memory should incor-
porate the intrinsic difficulties of organizing large groups of
people, especially as people perhaps develop different strate-
gies and algorithms to cope. To this end, large-scale quantita-
tive work would be well complemented by fine-grained anal-
ysis of individual differences in strategies, and closer study of
the interactions between individual cognition and the medium
of interaction.

Model predictions suggested that the collaborative mem-
ory paradigm would be a good candidate for examining hy-
perdyadic spread, but empirically only participants who had
directly interacted showed increased similarity. However, this

failure to observe hyperdyadic spread could perhaps be im-
proved if semantically related wordlists were used or if a
more sensitive measure than “words recalled” were used as
the comparison metric. Moreover, if the behavioral task had
been structured such that agents could re-submit words that
their neighbors had submitted to other neighbors, we likely
would have observed greater spread: future work will have
to determine which paradigm structures will best inform our
understanding of collaborative recall.

The unexpected results from these studies, in extrapolation
to larger group sizes and in network structure, motivate and
can inform future models describing the mechanisms under-
lying memory representations and collaborative interaction.
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Abstract
In this paper we introduce the hypothetical simulation model
(HSM) of physical support. The HSM predicts that people
judge physical support by mentally simulating what would
happen if the object of interest were removed. Two experi-
ments test the model by asking participants to evaluate the ex-
tent to which one brick in a tower is responsible for the rest
of the bricks staying on a table. The results of both experi-
ments show a very close correspondence between hypothetical
simulations and responsibility judgments. We compare three
versions of the HSM which differ in how they model people’s
uncertainty about what would happen. Participants’ selections
of which bricks would fall are best explained by assuming
that hypothetical interventions only lead to local changes while
leaving the rest of the scene unchanged.
Keywords: causality; counterfactual; hypothetical; mental
simulation; intuitive physics; physical support.

Introduction
When we look at a physical scene, such as the towers

shown in Figure 1, we don’t just see a pile of bricks. We also
have a sense for how stable the different towers are and what
is causing that stability (Battaglia, Hamrick, & Tenenbaum,
2013; Hamrick, Battaglia, Griffiths, & Tenenbaum, 2016). In
this paper, we look at how people judge the extent to which
different bricks carry the responsibility for a tower’s stability.
We argue that people judge responsibility by imagining what
would happen to the tower if the brick were removed, and
develop a hypothetical simulation model (HSM) of physical
support which captures this process.

We build on previous work in which we have shown how
a counterfactual simulation model (CSM) explains people’s
causal judgments about dynamic collision events (Gersten-
berg, Goodman, Lagnado, & Tenenbaum, 2012, 2014, 2015;
Gerstenberg & Tenenbaum, 2016). In these experiments, par-
ticipants saw collisions between billiard balls, and were asked
to evaluate to what extent one ball had caused another ball to
go through a gate in a wall (or prevented the ball from going
through). The CSM assumes that people reach this judgment
by comparing what actually happened with what would have
happened in a counterfactual situation in which the candidate
cause had been removed from the scene. As predicted by
the model, participants’ cause and prevention judgments in-
creased the more certain they were that the outcome would
have been different if the candidate cause had been removed
from the scene. The CSM also captures the cognitive pro-
cesses by which participants reach their judgments: partici-
pants’ eye movements reveal how they spontaneously antic-
ipate what would have happened in the relevant counterfac-
tual situation (Gerstenberg, Peterson, Goodman, Lagnado, &
Tenenbaum, in press).

The CSM makes the strong prediction that counterfactual
simulation forms a necessary part of how people make causal
judgments, and that no adequate account of people’s causal
judgments about particular events can be developed that does

Figure 1: Experiment 1. Example stimuli. Note: Red bricks that
would fall off the table if the black brick were removed (according
to ground truth) are marked with a white dot at their center. The dots
were not displayed in the actual experiment.

not rely on counterfactuals (cf. Wolff, 2007). Thus far, how-
ever, the CSM has only been applied to modeling causal
judgments about dynamic collision events. Here, we demon-
strate the generality of the account by showing how a model
of hypothetical simulation naturally handles judgments about
physical support.

Judging physical support is different from judging causa-
tion in several ways. First, hypotheticals are different from
counterfactuals in that they are future-oriented and don’t re-
quire going back in time (Beck, 2015). When making causal
judgments about dynamic collisions, the observer needs to re-
member what actually happened, and contrast this with what
would have happened in the relevant counterfactual situa-
tion. However, when making judgments of physical support
in static scenes, like the tower configurations in Figure 1,
there is no need to go back in time. We merely need to sim-
ulate what a possible future would look like in which certain
aspects of the scene were changed.

Second, the mental simulations that are required to imag-
ine the relevant counterfactual or hypothetical are different
(cf. Freyd, Pantzer, & Cheng, 1988; Holmes & Wolff, 2010).
When simulating counterfactuals, we want to stay as close
as possible to what actually happened, and only modify the
world as little as possible to make the counterfactual true
(Gerstenberg, Bechlivanidis, & Lagnado, 2013; Lewis, 1973;
Pearl, 2000). But what do we keep constant in the causal
model of the situation, and what do we change? When judg-
ing whether a ball would have gone into the goal, we need to
simulate what the trajectory of the ball would have been if the
collision hadn’t taken place. To model people’s uncertainty,
we can add noise to the simulation of the ball’s trajectory (cf.
Smith & Vul, 2013) and keep everything else that we know
about the scene as it was (e.g. we wouldn’t change the size
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(b) local noise
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Figure 2: Schematic illustration of how different versions of the
hypothetical simulation model apply noise when considering what
would happen if the black brick were removed.

of the goal in the counterfactual simulation). However, when
judging responsibility for a tower’s stability, it is less clear
what aspects of the scene we should hold constant. We will
compare several implementations of the HSM that differ in
how they capture people’s uncertainty about what would hap-
pen.

The road map for the rest of the paper is as follows: We first
present in detail how the HSM predicts judgments of physi-
cal support. We will test the model in two experiments in
which we ask one group of participants to make hypothetical
judgments, and another to evaluate causal responsibility. As
predicted by the HSM, there is a very close correspondence
between hypothetical and responsibility judgments. Heuris-
tic strategies that focus on features of the scene (such as a
tower’s height, or the number of bricks on top of the brick
of interest) cannot explain people’s judgments as well. We
end by discussing limitations of the current approach and by
offering directions for future research.

Hypothetical simulation of physical support
In our experiments, we ask participants how responsible

the black brick is for the red bricks staying on the table. To
derive predictions from the HSM we need to determine (1)
what hypothetical situation to consider, and (2) how to sim-
ulate what would happen in that situation. We assume that
when judging responsibility, participants consider a hypo-
thetical situation in which the black brick is removed. Par-
ticipants then use their intuitive understanding of physics to
mentally simulate what would happen in that situation.

Recent work has argued that some aspects of people’s in-
tuitive understanding of physics are well-described by as-
suming we have an approximate simulation engine in our
mind that is akin to a physics engine (Battaglia et al., 2013;
Lake, Ullman, Tenenbaum, & Gershman, 2016). Part of what
makes these simulation engines “approximate” is that they
assume that people’s representation of a physical situation is
uncertain. This uncertainty can come in many forms, such
as perceptual uncertainty about the exact location of objects
(Battaglia et al., 2013), dynamic uncertainty about how ex-
actly an object will move (Smith & Vul, 2013), and uncer-
tainty about latent physical parameters such as friction and
mass (Sanborn, Mansinghka, & Griffiths, 2013).

To investigate whether people’s mental simulations incor-
porate the assumption that only some aspects of the physical
scene would directly be affected by the hypothetical interven-
tion, we contrast three implementations of the HSM. These
implementations differ in how they capture people’s uncer-
tainty about what would happen if the black brick were re-
moved. All models apply noise in the same way: as a small
impulse to some of the red bricks immediately after the re-
moval of the black brick. The models differ, however, in
which bricks they apply noise to. Figure 2 illustrates how the
three different models work. The global noise model applies
a small impulse to all the bricks and thus captures a general
uncertainty about the scene (cf. Battaglia et al., 2013). The
local noise model applies the impulse only to the red bricks
that are directly in contact with the black brick. This model
captures the assumption that participants will be most uncer-
tain about what would happen in the area around the black
brick. The above noise model applies noise only to bricks
that are above the black brick and “connected” with it. Any
brick that directly contacts and has its center of mass above
that of the black brick counts as connected. This definition is
then applied recursively. For example, brick 2 in Figure 2c
is connected since brick 1 is in contact with and above the
black brick, and brick 2 is in contact and above brick 1. This
model captures that removing the black brick will affect the
other bricks in an asymmetric way. Similar to when we lift
a wooden block playing Jenga, this version of the model as-
sumes that we have uncertainty particularly about those parts
of the scene that would be affected by this kind of manipula-
tion.

Experiment 1
In the experiment, participants saw towers of bricks like

the ones shown in Figure 1. Depending on the experimen-
tal condition, participants were asked to consider what would
happen if the black brick weren’t there, or evaluate the ex-
tent to which the black brick is responsible for the red bricks
staying on the table. In line with the HSM, we predicted that
there would be a close relationship between hypothetical and
responsibility judgments.

Methods
Design & Procedure The experiment had three conditions
that differed only in terms of the dependent measure.1 In the
selection condition, participants were asked to “Please click
on the red bricks that would fall off either side of the table
if the black brick wasn’t there.” In the prediction condition,
participants were asked to answer the question: “How many
of the red bricks would fall off the table, if the black brick
wasn’t there?” Participants provided their answer on a slid-
ing scale ranging from 0 to the number of red bricks present in
the scene in steps of 1. In the responsibility condition, partic-
ipants were asked to answer the question: “How responsible

1Data, materials, figures, and code are available here: https://
github.com/tobiasgerstenberg/tower counterfactual
An interface to view the stimuli and play around with the different
noise models may be accessed here: http://web.mit.edu/tger/
www/demos/towers/physics interface.html
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Figure 3: Experiment 1. Scatter plots showing the relationship be-
tween the empirical probability with which each brick was selected
and (a) the ground truth as well as the predictions of the best-fitting
(b) global noise model, (c) local noise model, and (d) above noise
model.

is the black brick for the red bricks staying on the table?” Re-
sponses were provided on a sliding scale ranging from “not
at all” (0) to “very much” (100).

The procedure for all three conditions was identical. Par-
ticipants first received instructions about the task. They then
saw a number of warm-up animations that showed 20 bricks
being dropped on the table. These animations were shown
to familiarize participants with the relevant properties of the
physical scene such as gravity, the friction between the bricks,
as well as the table friction. Participants were only allowed to
proceed to the next stage once they had watched at least five
animations.

After the warm-up, participants saw 42 images of different
towers of bricks in randomized order (see Figure 1 for exam-
ples). The stimuli varied the number of bricks on the table
(range = 7 to 20, M = 13.7, SD = 3.3), as well as the num-
ber of red bricks that would fall off the table if the black brick
were removed (range = 0 to 6, M = 2, SD = 1.9). Participants’
tasks differed depending on the condition as described above.
Finally, participants were asked to provide open-ended feed-
back about the task, and provided demographic information.

On average, the experiment took 15.71 (SD = 6.49), 9.86
(SD = 6.49), and 8.88 minutes (SD = 8.90) in the selection,
prediction, and responsibility condition, respectively.

Table 1: Summary of model results for Experiments 1 and 2 as ap-
plied to the data in the selection condition.

Experiment 1 Experiment 2
model r RMSE L σ r RMSE L σ

truth 0.55 34.74 -21374 0 0.64 31.65 -22279 0
global 0.75 20.92 -9274 6.9 0.61 29.03 -14034 2.5

local 0.70 22.26 -9727 11.2 0.66 25.35 -12617 7.2
above 0.87 15.34 -8435 14.3 0.73 22.08 -11824 12.5

Note: r = Pearson correlation, RMSE = root mean squared error, L =
log-likelihood of the data, σ = SD of the Gaussian from which the noise
impulse is drawn that is applied to different bricks depending on the model.
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(b) Experiment 2

Figure 4: Relationship between the predicted number of red bricks
that would fall if the black brick weren’t there (prediction condition)
and number of selected bricks that would fall (selection condition).
Note: The letters refer to the examples shown in Figure 1 for Ex-
periment 1, and Figure 6 for Experiment 2. Error bars in all figures
denote bootstrapped 95% confidence intervals.

Participants 121 participants (Mage = 34, SDage = 12, 47 fe-
male) were recruited via Amazon Mechanical Turk using psi-
Turk (Gureckis et al., 2016) with N = 38 in the selection con-
dition, N = 42 in the prediction condition, and N = 41 in the
responsibility condition. We excluded participants from fur-
ther analysis based on their responses to the catch trial shown
in Figure 1a. Eleven participants in the prediction condition
were excluded because they predicted that at least one red
brick would fall. Six participants in the responsibility condi-
tion were excluded because they gave a responsibility rating
greater than 15. No participants were excluded from the se-
lection condition because no participant selected any of the
bricks on the catch trial.

Results
We will discuss the results from the selection, prediction,

and responsibility conditions in turn.
Selection condition We tested how well the three differ-
ent noise models captured participants’ selections of which
bricks would fall off the table if the black brick weren’t there
(see Figure 2). For each model, we used maximum likelihood
fitting to find the noise parameter which predicts participants’
selections best. For each setting of the noise parameter, we
ran 100 simulations per stimulus and used the proportion of
samples that each brick fell off the table in the noisy sim-
ulations to predict the probability that a given brick will be
selected to fall by participants. (Figure 8 gives an example
for what these predictions look like for stimuli used in Exper-
iment 2.) Overall, the above noise model accounted best for
the data (cf. Table 1).
Prediction condition Figure 4a shows the relationship be-
tween the number of bricks predicted to fall and the aver-
age number of bricks that participants selected in the selec-
tion condition. Overall, the two ways of probing partici-
pants’ hypothetical simulations lead to very similar results.
However, participants in the prediction condition predicted
that more bricks would fall than participants in the selec-
tion condition selected (most of the data points are below
the diagonal). The noise model which best accounted for
participants’ selections, also accurately predicts participants’
average judgments about how many bricks would fall with
r = .88,RMSE = 0.84.
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Figure 5: Relationship between the predicted proportion of bricks
that would fall if the black brick weren’t there and responsibility
judgments. Note: The letters refer to the examples shown in Figure 1
for Experiment 1, and Figure 6 for Experiment 2.

Responsibility condition Figure 5a shows the relationship
between the proportion of bricks that participants in the pre-
diction condition believed would fall off the table if the black
brick weren’t present in the scene, and participants’ respon-
sibility judgments. As predicted by the HSM, there was a
very close relationship between prediction and responsibil-
ity judgments r = .84, RMSE = 6.55. This suggests that
participants evaluated a brick’s responsibility by considering
what proportion of bricks would fall off the table if the brick
weren’t there. When we use the proportion of bricks selected
in the selection condition to predict participants’ responsi-
bility judgments, we get a similarly good fit with r = .78,
RMSE = 7.65. A noise-free model that uses the propor-
tion of bricks that actually fall off the table does not ac-
count well for participants’ responsibility judgments r = .35,
RMSE = 11.42.

As an alternative to the HSM, we compared a heuristic
model which predicts participants’ responsibility judgments
based on features of the physical scene. Table 2 shows how
well the different features correlated with participants’ judg-
ments individually, as well as when combined via a linear re-
gression model. We included features about the whole scene
such as the number of bricks, the tower height, the average
distance of each brick to the nearest edge of the table, as well
as the average height and angle of each brick. We also in-
cluded features specific to the black brick such as its distance
to the nearest edge, its height and angle, as well as the num-
ber of bricks above it. To define the number of bricks above,
we used the same criterion as the above noise model (cf. Fig-
ure 2c). As Table 2 shows, the best individual predictor for
participants’ responsibility judgments is the average height
of each brick in the scene, followed by the number of bricks
above the black one. Neither individual feature describes par-
ticipants’ responsibility judgments as well as the predictions

Table 2: Correlation coefficients between features and participants’
responsibility judgments in Experiments 1 and 2. Note: The scene
features, brick features, and all features columns show how well
regressions that combine these features correlate with participants’
judgments.

scene features black brick features
n tower avg edge avg avg scene edge height angle n bricks brick all

bricks height distance height angle features distance above features features

Exp 1 .16 .55 .39 .73 .21 .81 .02 -.19 -.05 .61 .62 .88
Exp 2 -.05 .21 -.10 .07 .01 .26 .12 -.74 -.04 .69 .79 .85

Note: n = number, avg = average.

Figure 6: Experiment 2. Example stimuli. Note: White dots indi-
cate which bricks would fall if the black brick weren’t there. There
were 6 different configurations of towers (I through VI), and 7 dif-
ferent positions for the black brick in each tower, see c), d), and h).

(and selections) that participants made in the other two condi-
tions of the experiment. A regression model that combines all
features correlates well with participants’ responsibility judg-
ments (r = .88,RMSE= 5.89), as does a model that only con-
siders the scene features (r = .81,RMSE = 7.14). A model
which only includes features about the black brick doesn’t
fare as well (r = .62,RMSE = 9.6). Even though a model
that includes all features explains slighlty more of the vari-
ance that the HSM, this is likely due to overfitting; using
model selection criteria, we find that the HSM performs bet-
ter (AIC = 276.52, BIC = 281.66) than the heuristic model
(AIC = 283.72, BIC = 302.57).

Discussion
The results of Experiment 1 support the predictions of the

HSM. Most importantly, there was a very close relationship
between the responsibility judgments of one group of partic-
ipants, and the number of bricks that another group of partic-
ipants predicted would fall if the black brick weren’t there.
A heuristic model that does not rely on physical simulations
but uses features that can be directly extracted from the scene
fared worse when taking into account both variance explained
and model complexity. We contrasted three implementations
of the HSM which differ in the way in which they capture
people’s uncertainty about what would happen if the brick
were removed. The results show that the above noise model
correlates best with participants’ selections. This model as-
sumes that participants are particularly uncertain about what
would happen to the bricks that are located above the black
one.

Experiment 2
Experiment 1 elicited participants’ judgments for a wide

array of different situations. In Experiment 2, we chose a
more tightly controlled stimuli set, a selection of which is
shown in Figure 6. We generated six different tower configu-
rations. For each configuration, we chose seven positions for
the black brick such that removing it would result in 0 to 6 red
bricks falling off the table. While a heuristic model that used
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Figure 7: Experiment 2: Scatter plots showing the relationship be-
tween the empirical probability with which each brick was selected
and (a) the ground truth as well as the predictions of the best-fitting
(b) global noise model, (c) local noise model, and (d) above noise
model.

global scene features explained responsibility judgments well
in Experiment 1, we expected this model to perform poorly
here since it doesn’t take into account where the black brick
is positioned.

In order to better tell apart the different implementations of
the HSM, we included tower configurations with disjointed
sets of bricks (Tower III and Tower IV). For example, con-
sider the configuration of bricks shown in Figure 6c. While a
global noise model predicts that some of the red bricks on the
right would fall off the table, the local versions of the model
predict that only the bricks on the left side will fall.

Methods
Design & Procedure The design, procedure, and questions
were identical to those of Experiment 1. Participants saw 43
trials in randomized order whereby one trial served as a catch
trial. On average, the experiment took 13.04 (SD = 6.87),
11.57 (SD = 5.24) and 7.86 minutes (SD = 3.48) in the selec-
tion, prediction, and responsibility condition, respectively.
Participants 129 participants (Mage = 36, SDage = 11.3, 59
female) were recruited via Amazon Mechanical Turk with
N = 42 in the prediction condition, N = 44 in the selection
condition, and N = 43 in the responsibility condition. We
used the same exclusion criteria as in Experiment 1 based on
the same tower shown in Figure 1a. 1 participant was re-
moved in the selection condition, 3 participants in the predic-
tion condition, and 3 in the responsibility condition.

Results & Discussion
Selection condition Figure 7 shows the correspondence be-
tween participants’ brick selections and the predictions ac-
cording to the ground truth as well as our three noise models
as illustrated in Figure 2. Overall, the above noise model ac-
counted best for participants’ selections, as in Experiment 1
(cf. Table 1).

Let us look at the two situations shown in Figure 8 in some

a) b) c) d)

e) f ) g) h)

empirical selection global noise local noise above noise

Figure 8: Empirical selection percentages for two different stimuli
together with the predicted selection probabilities according to the
different noise models. The numbers (and color fill) indicate what
percentage predicted that a particular brick would fall off the table if
the black brick were removed. Red and black frames around a brick
indicate that the brick would fall or stay on the table, respectively.

more detail. For the example shown in the top row, partic-
ipants’ selections corresponded closely to the ground truth.
Since the global noise model applies an impulse to all the
bricks, it incorrectly predicted that participants would select
bricks on the right. The local noise model incorrectly pre-
dicted selections of bricks underneath the black one. The
above noise model best predicted participants’ selection in
this case. It only assigned a small probability that any of the
bricks on the right would be selected (because sometimes the
bricks on top of the black brick will fall towards the right), or
bricks that are underneath the black one.

The example in the bottom row shows a situation where
participants’ selections didn’t correspond to the ground truth.
Here, the majority of participants believed that none of the
bricks would fall if the black brick weren’t there. When the
black brick is removed, the two bricks directly underneath
it fall to the left and right, and the one falling to the right
pushes the stack of bricks on the right off the table. None of
our noise models was able to capture participants’ selections
in this case. The above noise model did a particularly poor
job for the simple reason that it doesn’t apply any noise in
this case. Since the black brick is on top, its predictions cor-
respond to the ground truth. What this clearly shows is that
our noise models don’t yet completely capture participants’
hypothetical simulations. We will discuss some ideas about
how the improve the models in the General Discussion below.
Prediction condition Figure 4b shows the relationship be-
tween the number of bricks predicted to fall and the aver-
age number of bricks that participants selected in the selec-
tion condition. As in Experiment 1, there was a very close
relationship between predictions and selections, and, again,
participants predicted that more bricks would fall on average
than they selected. The above noise model again best ex-
plained participants’ predictions with r = .76,RMSE = 1.41.
Responsibility condition Figure 5b shows the relationship
between participants’ predictions and responsibility judg-
ments. Like in Experiment 1, participants’ responsibility
judgments were well-accounted for by the proportion of
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bricks that would fall off the table if the black brick were
removed r = .91,RMSE = 8.66. Again, we can also account
for participants’ responsibility judgments based on the pro-
portion of bricks that were selected in the selection condi-
tion r = .91,RMSE = 8.67. A noise-free model again fails to
account well for participants’ responsibility judgments with
r = .36,RMSE = 19.99.

Table 2 shows how well different features of the physical
scene correlate with participants’ responsibility judgments in
Experiment 2. Expectedly, global scene features did not cor-
relate well with participants’ responsibility judgments this
time because these features do not capture the actual posi-
tion of the black brick. For example, they don’t distinguish
the configuration shown in Figure 6c from the one shown in
Figure 6h. However, a good predictor of participants’ respon-
sibility judgments was the height of the black brick. The
lower the black brick was located, the more responsible it
was. Unlike in Experiment 1, the average height of the bricks
in the tower did not correlate with responsibility judgments.
Unsurprisingly, the number of bricks above the black brick
was again a good predictor. However, there was no single
predictor that accounted as well for participants’ responsibil-
ity judgments as participants’ predictions or selections in the
other two conditions did. Even a regression that combines
both scene and black brick features (r = .85,RMSE = 11.17)
does not explain participants’ responsibility judgments as
well as the HSM does.

General Discussion
How do people judge physical support? In this paper, we

develop and test a hypothetical simulation model (HSM) of
physical support. Based on a model of counterfactual simu-
lation which was originally developed to explain causal judg-
ments about collision events (Gerstenberg et al., 2012, 2014,
2015; Gerstenberg & Tenenbaum, 2016), the HSM predicts
that we judge physical support by imagining what would hap-
pen if the object were removed. An individual brick is respon-
sible for other bricks staying on a table to the extent that these
bricks would fall off the table if that brick were removed. The
results of two experiments show that the greater the propor-
tion of bricks that participants predict would fall of the table,
the more responsible that brick is seen for the other bricks
staying on the table. Simple features of the physical scene
such as the height of the tower, or the position of the brick
of interest, as well as combinations of these features cannot
explain participants’ judgments as well.

The central claim of the HSM is that people judge phys-
ical support by simulating what would happen to the scene
if the object of interest were removed. We contrasted three
different implementations of the HSM which differ in how
they model participants’ uncertainty about what would hap-
pen in the relevant hypothetical situation. Similar to how
people spontaneously consider counterfactuals when judging
causation (Gerstenberg et al., in press), people naturally play
“mental Jenga” when judging responsibility for physical sup-
port. Participants’ selections of which bricks would fall were

best explained by a model that adds noise to the bricks lo-
cated above the removed brick. While this model does a good
job overall, there remain situations that it cannot capture ade-
quately (cf. Figure 8).

We believe that there are at least three sources of uncer-
tainty that affect participants’ judgments: first, there is per-
ceptual uncertainty about the exact spatial location of the dif-
ferent bricks (cf. Battaglia et al., 2013). Second, there is un-
certainty about the hypothetical intervention itself: would the
black brick simply disappear, or would it be removed, thereby
affecting the bricks above it. Third, there is dynamic uncer-
tainty about what would happen once the brick is removed
(cf. Smith & Vul, 2013). While the current implementation
of the HSM uses a physics engine as a proxy for participants’
mental model, we are eager to explore how an approximate
simulation model (which doesn’t represent each brick indi-
vidually) might be able to capture participants’ judgments (cf.
Davis & Marcus, 2016). Ideally, such a model would help ex-
plain when it is that people’s physical intuitions are faulty and
deviate from the ground truth.
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Abstract 

Learning to read is often considered the most important skill taught 
in school because reading is a gateway to other learning. Many 
children struggle to acquire this fundamental skill. Suboptimal 
design of books for beginning readers may contribute to the 
difficulties children experience as close proximity between text 
and illustrations could promote attentional competition hampering 
literacy skills. The present work utilized eye-tracking technology 
to examine how beginning readers allocate attention and whether 
these patterns are related to fluency (Experiment 1) and 
comprehension (Experiment 2). Results suggest when reading 
books in which text and illustrations are in close proximity, 
children frequently shift attention away from the text. This pattern 
of attention was negatively associated with fluency, but not 
associated with comprehension. This line of research aims to 
provide theoretical insights about design principles for reading 
materials that can be employed to optimize instructional materials 
and promote literacy development in young children. 

Keywords: attention; reading; reading fluency; reading 
comprehension; illustrations; eye tracking 

Introduction 
Reading is often considered the most important skill taught 
in elementary school: it is not only important in its own 
right, but it is a key gateway to other learning within and 
outside of school. Failing to ‘learn to read’ early in life is 
followed by failure to ‘read to learn’ later in life (National 
Association for the Education of Young Children, 1998). 
Many children struggle to acquire this fundamental skill for 
a variety of reasons, including but not limited to 
neurodevelopmental disorders (e.g., Dyslexia and ADHD), 
poor pre-reading skills (e.g., phonological awareness), and 
vulnerabilities in general cognitive functioning (e.g., 
working memory, processing speed, etc.) (e.g., Armbruster, 
Lehr, & Osborn, 2009; Biederman et al., 2004; Dykman, & 
Ackerman, 1991; Jacobson et al., 2011).  In addition to 
these factors, empirical and theoretical work in the field of 
cognitive science may offer insights into how subtle 
changes in reading materials can affect the process of 
learning-to-read. It is important to understand how the 
properties of reading materials may affect children’s 
emerging literacy skills because these factors are 

considerably more malleable than factors intrinsic to the 
child, and thus can be leveraged to improve learning.  

The typical layout of books for beginning readers 
intermix text with illustrations in close proximity (see 
Figure 1). In many cases illustrations are detailed, colorful, 
and engaging.  There are a number of reasons for including 
illustrations in books for beginning readers, including: 
defining the setting and characters, contributing to text 
coherence, reinforcing the text, providing additional 
information, or motivating the reader (Carney & Levin, 
2002; Fang, 1996). However, the close proximity of text and 
illustrations may create competition for attentional 
resources, a situation that could be particularly problematic 
for beginning readers. 

 

There are theoretical reasons and related empirical 
findings that support the notion of competition between 
illustrations and text. According to the Dual-channel Theory 
of Multimedia Learning (Mayer et al., 2001), combining 
text with graphical representations can lead to split attention 
between the two sources of information.  Similarly, the 
Cognitive Load Theory suggests that illustrations in close 
proximity to text may increase extraneous cognitive load on 
the learner thereby reducing the amount of cognitive 
resources available for text decoding (Torcasio, & Sweller, 
2010; Chandler & Sweller, 1992).  

A number of studies examined the effects of 
supplementing text with illustrations on a variety of 

Figure 1. Examples of books for beginning readers where 
text and illustrations are in close proximity (i.e., embedded 
within the illustration). 
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outcome measures (e.g., comprehension, retention, and 
problem-solving) relating to the goal of reading-to-learn in 
college students (presumably, a population of fluent 
readers).  Some studies found that competition between text 
and graphical representations lead to reduced performance 
(e.g., Kalyuga, Chandler, & Sweller, 1998; Mayer et al., 
2001), whereas other studies reported facilitatory effects 
(e.g., Bétrancourt & Bisseret, 1998; Ginns, 2005; Moreno & 
Mayer, 1999). On the basis of this large body of evidence, 
researchers have formulated a number of principles 
regarding how to combine text with illustrations in a way 
that facilitates the process of reading-to-learn depending on 
the nature of the illustrations (e.g., illustrations that are well 
or poorly aligned with the text content), the level of 
difficulty of the text, and individual characteristics of the 
learners (e.g., learners possessing or lacking background 
knowledge relevant to the text content) (Carney & Levin, 
2002; Levin & Mayer, 1993; Mayer, 2014).  

However, the multimedia principles of effectively 
combining text and illustrations for the purpose of reading-
to-learn in fluent readers may have limited applicability to 
the design of reading materials for young children whose 
goal is learning-to-read. Conceivably, the detrimental 
effects of competition for attentional resources between 
difficult-to-decode text and easy-to-interpret illustrations on 
emerging literacy skills may be more pronounced in 
beginning readers in whom reading has not yet become an 
automatized skill.  

In contrast to the large body of research investigating 
the effects of combining illustrations with text for the 
purpose of reading-to-learn, few studies examined this 
question in the context of learning-to-read. The ubiquitous 
practice of combining illustrations and text in materials for 
beginning readers was first questioned in a handful of 
studies nearly five decades ago (Braun, 1969; Samuels, 
1967). In these studies children were taught to read sight 
vocabulary with words either presented in isolation or next 
to corresponding illustrations during the training phase. 
During the testing phase, printed words were presented 
without pictures. The results of these studies showed 
performance was better during the training phase for words 
that were accompanied by pictures than for words presented 
in isolation; however, the opposite was true during the 
testing phase, suggesting that pictures presented alongside 
printed words interfered with the acquisition of sight 
vocabulary. In another study, kindergarten-age children 
were given reading instruction using a storybook in which 
text was either accompanied by illustrations or presented 
without illustrations (Samuels, 1970). For more skilled 
readers, there was no difference in learning gains whether 
children received reading instruction using a storybook with 
or without illustrations; however, less skilled readers 
showed higher gains in the no-pictures condition. More 
recently, Torcasio and Sweller (2010) reported that reading 
proficiency in 6- to 7-year-old children improved more 
when children practiced reading a story without illustrations 
compared to reading the same story with illustrations.  

The studies above provide suggestive evidence that 
close proximity of text and illustrations in books for 
beginning readers may interfere with learning-to-read. 
However, these studies have two critical shortcomings that 
limit their impact. First, although prior studies have 
proposed a mechanism by which illustrations in storybooks 
may disrupt reading fluency, they have not assessed this 
mechanism directly. Specifically, Samuels (1970) suggested 
that pictures may distract children from printed text. 
Similarly, Torcasio and Sweller (2010) suggest that when 
text is accompanied by illustrations, children devote 
working memory resources to processing the illustrations 
thus having less resources for processing the text. While this 
possibility is plausible, there is no direct evidence showing 
that children devote less resources to processing text in the 
presence of illustrations. 

Second, prior studies focused on children’s ability to 
read words quickly and accurately (i.e., a component of 
reading fluency) but largely did not consider reading 
comprehension. However, it is possible that the detrimental 
effect of illustrations for decoding could be offset by the 
potential beneficial effects of illustrations on reading 
comprehension. Indeed, instructing children to refer to 
illustrations to aid comprehension as well as decoding is a 
common instructional strategy in elementary school 
(Samuels, 1970) (although we should note the paucity of 
research on the effectiveness of this strategy). Alternatively, 
it is possible that by interfering with fluency, illustrations 
also interfere with comprehension, as Torcasio and Sweller 
(2010) suggested. When considering possible effects of 
illustrations on learning-to-read it is essential to assess both 
reading fluency and comprehension in order to obtain 
evidence that can have an impact on educational practice.  

The present research investigates how beginning 
readers allocate their attention while reading and explores 
the possibility that gaze shifts away from the text 
(hypothesized to be due to the close proximity of text and 
illustrations) are negatively correlated with reading fluency 
(Experiment 1) and comprehension (Experiment 2). As 
noted previously, while we hypothesize that children’s gaze 
shifts are a result of attentional competition induced by the 
close proximity between text and illustrations, it is also 
possible that these gaze shifts are an explicit strategy 
children deploy to aid decoding and comprehension. The 
present study does not rule out this alternative interpretation, 
a point we return to in the Discussion section.   

Experiment 1 

Method 

Participants 
The sample consisted of 24 children (Mage=7.20 years, SD = 
0.35 years, 10 females, 14 males). Participants were 
recruited from schools in and around Pittsburgh 
Pennsylvania. Children were tested individually by trained 
hypothesis-blind research assistants.  
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Design and Procedure 
Book Selection 
To maintain a high level of ecological validity, children read 
commercially available books designed for beginning 
readers from the I Can Read book series (Children read 
either Biscuit Wants to Play (2002), or Biscuit Goes to 
School (2003) written by Alyssa Satin Capucilli).  
 

Children read aloud a commercially available book for 
beginning readers in which the text and illustrations are in 
close proximity. A Tobii X2-60 portable eye tracker was 
used to measure children’s patterns of attention allocation 
indexed by gaze shifts. Prior to reading the story an 
independent measure of reading fluency was administered 
(i.e., Word Recognition in Isolation Test). Reading fluency 
was also assessed while children were reading the story 
using a Running Record. Additional details regarding each 
measure are provided below.  
 
Measures 
Gaze Shifts  
Eye gaze is a common measure of attention in a variety of 
settings and is a particularly appropriate measure in the 
context of reading, a complex cognitive task in which eye 
gaze location and the focus of attention are difficult to 
dissociate as they are thought to overlap (for review see 
Rayner, 2009). The Tobii X2-60 portable eye tracker was 
utilized to measure children’s eye movements while 
reading. On each page of the book, text, picture, and white 
space Areas Of Interest (AOI’s) were created. A python 
script was then used to calculate the number of times a child 
shifted fixation away from the text AOI’s (i.e., to 
illustrations or white space AOI’s) and the average number 
of gaze shifts per page was then calculated.  

 
Reading Fluency Measures  
Fluency is defined as “accurate and automatic decoding of 
the words in the text, along with expressive interpretation of 
the text” (Rasinski, 2004, p. 2). In the present experiment 
one component of reading fluency, decoding accuracy, was 
assessed. Two measures of reading fluency were utilized: 
the Word Recognition in Isolation test and a Running 
Record. Both measures are described below.  
Word Recognition in Isolation Test. Children completed a 
modified Word Recognition in Isolation (WRI) test, which 
is a common measure of reading fluency (Morris, 2013).  In 
the WRI, participants were shown leveled lists of words 
presented individually on a computer screen. The participant 
is tasked with reading as many words as they can within the 
allotted time limit (in order to avoid frustration, a ceiling 
was imposed such that testing ceased if a participant failed 
to read at least 50% of the words correctly on a given word 
list). The child’s score was based on the number of words 
the participant correctly read aloud within the time limit 
(i.e., number of words read correctly out of 100 total 
possible words). 

Running Record. While participants read the story aloud, 
the experimenter completed a Running Record (Clay, 1972) 
in which the experimenter recorded the child’s decoding 
accuracy for each word in the story. The percentage of 
correct responses was then calculated.  

Results 
On average, children switched their point of fixation away 
from the text 3.68 times (range = 1.50 to 11.29 times) per 
page. The average number of words per page was 6.94; thus 
even when the text length was relatively short many 
children frequently shifted their attention away from the text 
(see Figure 2).  

Furthermore, children’s tendency to switch their point of 
fixation away from the text while reading was negatively 
associated with the WRI (M=.41, SD=.27), an independent 
measure of reading fluency, as shown in Figure 3 (Panel A); 
r=-.60, p=.002. Additionally, Running Record accuracy was 
obtained for a subset of participants1 (n=13; M=.97, SD 
=.04). Critically, this online measure of fluency was also 
negatively (and strongly) correlated with the number of gaze 
shifts away from the text (Figure 3, Panel B); r=-.96; 
p<.0001. Thus, less fluent readers (as measured by both the 
WRI and the Running Record) tended to make more 
frequent gaze shifts away from the text. 

The present results indicate gaze shifts away from text 
are negatively associated with reading fluency; however, it 
is an open question as to whether gaze shifts away from the 
text are also associated with reading comprehension. 
Experiment 2 begins to explore this possibility.  

Experiment 2 

Method 
Participants 
The sample consisted of 17 children (Mage=7.15 years, SD = 
0.59 years, 6 females, 10 males, and 1 child whose sex was 
not reported by the parents). Due to technological issues, for 
1 child no eye tracking data was available. Participants were 

                                                             
1 A running record was included in the test battery to obtain an online 

measure of decoding accuracy and was included after the experiment 
commenced. Thus, 13/24 participants have running record data available.   

Figure 2. A sample gaze plot showing multiple gaze 
shifts away from the text.  
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recruited from schools and camps in and around Pittsburgh 

Pennsylvania. Children were tested individually by trained 
hypothesis-blind research assistants.  

Design and Procedure 
Book Selection 
In order to test the generalizability of the results from 
Experiment 1, a new book was selected for Experiment 2. 
We selected a book that had a more complex story line in 
order to address the question of whether gaze shifts away 
from the text are also negatively associated with reading 
comprehension. As in Experiment 1, children read a 
commercially available book designed for beginning readers 
in order to maintain a high level of ecological validity. 
Children read a book from the Hooked on Phonics Learn to 
Read series entitled Good Job Dennis written by Amy Kraft.  

 
Akin to Experiment 1, children read aloud a commercially 

available book in which the text and illustrations are in close 
proximity. A RED250 mobile eye tracker was used to 
measure children’s patterns of attention allocation indexed 
by gaze shifts. Prior to reading the story an independent 
measure of reading fluency was administered (i.e., Word 
Recognition in Isolation Test). Reading fluency was also 
assessed using a Running Record. After reading the story 

children’s reading comprehension was assessed. Additional 
details regarding each measure are provided below. 

 
Measures 
Gaze Shifts  
A RED250 mobile eye tracker (SensoMotoric Instruments, 
Inc.) was used to measure children’s patterns of attention 
allocation. We used the RED250 mobile eye tracker in 
Experiment 2 (opposed to the Tobi X2-60 utilized in 
Experiment 1) due to its higher sampling rate which makes 
it better suited for reading studies. On each page of the 
book, text, picture, and white space AOI’s were created. The 
SMI BeGaze Eyetracking Analysis Software was then used 
to calculate gaze shifts away from the text AOI’s (i.e., to 
illustrations or white space AOI’s) and the average number 
of gaze shifts per page was then calculated.  
 
Reading Fluency Measures  
The reading fluency measures (WRI and Running Record) 
were identical to those described in Experiment 1. 

 
Reading Comprehension Measures 

Retelling Prompt Retelling is a common measure of 
reading comprehension in elementary school (Nilson, 2008).  
Children were asked to orally recount the story.  Retelling 
accuracy was scored by calculating the number of key 
events correctly recounted (out of 5 possible events). Scores 
are reported as the proportion of correct responses.  

Story Questions At the end of the story children were 
asked 3 questions probing their memory for details from the 
story. For example, in the story various animals escape from 
a pet store including cats, dogs, birds, rabbits, and frogs. 
Children might be asked to recall which pets escaped. 
Children could receive full credit if in their response the 
child identified 4 or more animals that escaped and 0 points 
if they failed to recall the animals that escaped or provided 
an incorrect response. Children could also receive partial 
credit if the child recalled correctly a subset of the animals. 
Accuracy on the Story Questions was scored as the 
proportion of correct responses (out of 7 possible points). 

 Results 
On average, children switched their point of fixation away 
from the text 8.03 times per page (range = 1.75 to 15.5 
times). The average number of words per page was 42.67. 
As in Experiment 1, there was a significant correlation 
between the number of gaze shifts and both measures of 
reading fluency (WRI and Running Records). Children’s 
tendency to switch their point of fixation away from the text 
while reading was negatively associated (r=-.78, p<.0004) 
with the WRI (M=.69, SD =.19) as shown in Figure 4 (Panel 
A) and with their Running Record accuracy (M=96%, 
SD=5%; Panel B; r=-.63, p=.009). This pattern of results 
provides corroborating evidence that gaze shifts away from 
the text are related to poorer reading fluency scores.  

Figure 3. Association between gaze shifts away from text and 
performance on two measures of reading fluency: WRI (Panel A) 
and Running Record (Panel B). Note only a subset of the sample 
had Running Record data available; thus, the gaze shift range 
differs across the two panels. 
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A composite variable was created for the reading 
comprehension measures. Retelling score (M=.45 SD=.23) 
and Story Question score (M=.59, SD=.29) were 
standardized using Z-scores and averaged together to create 
the composite variable, Comprehension Composite Score. 
Thus, the comprehension composite score reflects how 
many standard deviations the child is away from the overall 
mean. A score of 0 would indicate the child’s performance 
is equal to the overall mean (an average performer on the 
Story Question and Retelling measures). There was no 
significant correlation between gaze shifts and the 
Comprehension Composite, r = -.13, p = .62 (See Figure 4 

Panel C). In contrast to the results for fluency, the observed 
pattern of results for comprehension are not consistent with 
the hypothesis that the close proximity between illustrations 
and text could impede reading skills. Interestingly, the 
results also seem to suggest that children are not utilizing 
illustrations (or perhaps not utilizing illustrations in an 
effective manner) to aid comprehension, as one might 
expect to observe a positive correlation between gaze shifts 
and reading comprehension if referencing illustrations was 
in fact scaffolding children’s reading comprehension. Future 
research is needed to expound upon this initial work, a point 
we return to in in the discussion section.  

Discussion 
Although the practice of using illustrations in materials for 
teaching children to read has undergone little change in over 
250 years (Samuels, 1970), no research has systematically 
examined the possible costs and benefits of this practice for 
children’s attention, reading fluency, and comprehension. 
By leveraging mobile eye tracking technology, the present 
research found that gaze shifts away from the text 
(hypothesized to be due to the close proximity of text and 
illustrations) are negatively associated with reading fluency, 
an important component of literacy. This work highlights 
the importance of investigating experimentally more 
optimal book designs for beginning readers. This work also 
addresses an important gap in the prior literature, which 
focused almost exclusively on components of reading 
fluency. The present work adds to the prior literature by 
investigating the relationship between attention allocation 
(indexed by eye gaze) and both reading fluency as well as 
reading comprehension.  

Our working hypothesis is that the majority of gaze 
shifts away from the text occur as a result of the competition 
between text and illustrations being resolved in favor of the 
latter. The findings reported above are consistent with this 
hypothesis: across two experiments with different samples 
of children and different reading materials we observed a 
strong and negative relationship between the frequency of 
gaze shifts away from text and measures of reading fluency. 
However, given the correlational nature of the study, other 
interpretations of these findings are of course possible. For 
example, it is possible that less proficient readers attempt to 
use illustrations to help with decoding and comprehension. 
Future experimental work is necessary to adjudicate 
between these possibilities. Towards this goal, we are 
currently collecting data in which we assess children’s 
reading fluency and comprehension while children are 
reading stories in which the placement of illustrations 
relative to the text is experimentally manipulated.  

Overall, the present study provides evidence that gaze 
shift patterns are associated with reading performance, and 
thus highlights the need for further research into the nature 
of this association. Future research should also expound 
upon these findings to ascertain whether, illustrations in 
close proximity to text allow children to bypass the 
important work of decoding as this “shortcut” may have 

Figure 4. Association between gaze shifts away from text and 
two measures of reading fluency (Panel A-B) and reading 
comprehension (Panel C) in Experiment 2. 
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cumulative effects on children’s literacy acquisition and 
subsequent learning.  Additional research is also needed to 
systematically examine the role of individual differences. 
One future direction we are currently pursuing is whether 
the negative association between illustrations and reading 
fluency can be offset by modifying the design of books to 
reduce the competition between text and illustrations 
through increased spatial separation, a layout we 
hypothesize to be more optimal for beginning readers.  

This work begins to build an important foundation of 
research that has direct implications for educators and 
publishers and that aims to ultimately improve children’s 
literacy acquisition.  
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Abstract 

We study game theoretic decision making using a 
bidirectional evidence accumulation model. Our model 
represents both preferences for the strategies available to the 
decision maker, as well as beliefs regarding the opponent’s 
choices. Through sequential sampling and accumulation, the 
model is able to intelligently reason through two-player 
strategic games, while also generating specific violations of 
Nash equilibrium typically observed in these games. The 
main ingredients of accumulator models, stochastic sampling 
and dynamic accumulation, play a critical role in explaining 
these behavioral patterns as well as generating novel 
predictions. 

Keywords: Decision making; Game theory; Sequential 
sampling; Preference accumulation 

Introduction 

Game theory studies the behavior of idealized decision 

makers. The standard solution concept for a strategic game 

is Nash equilibrium, which relies on common rationality 

and accurate expectations.  Given expectations of others’ 

choices, players behave rationally, and the resulting play 

conforms to these expectations (Luce & Raiffa, 1957).  

Not surprisingly, human decision makers display 

numerous systematic departures from Nash equilibrium (see 

Camerer, 2003 for a review). We present a cognitive model 

of strategic deliberation and choice in one-shot, two-player 

games, that is able to accommodate these departures. Our 

model proposes that decision makers dynamically and 

stochastically accumulate both their own preferences for 

available strategies, as well as beliefs about the opponent’s 

preferred strategies. There are bidirectional relationships 

between preferences and beliefs, so that beliefs about what 

the opponent will choose influence the decision makers’ 

preferences, and these preferences in turn influence beliefs 

about the opponent’s choices. Ultimately, decision makers 

can respond to what they think the opponent will do, and 

also revise these beliefs as they deliberate.  

Our model can be seen as an extension of decision field 

theory (Busemeyer & Townsend, 1993; also Bhatia, 2014 

and Rieskamp, 2006), an existing accumulator-based theory 

of non-strategic risky choice. Accumulator models rely on 

two main ingredients: stochastic sampling and dynamic 

accumulation (see Busemeyer, 2015 for a review).  These 

ingredients are critical in our model for making deliberation 

subject to intrinsic variability and requiring it to play out 

over time, and we show that both ingredients have a central 

role in capturing the behavioral patterns observed in 

strategic choice. By demonstrating the relationship between 

our model and established preference accumulation models, 

we demonstrate that a single framework can be used to 

understand choice behavior across a variety of non-strategic 

and strategic settings. 

Game Theoretic Decision Making 

In strategic games, two or more players make choices over a 

set of strategies. Crucially, the strategies chosen by the 

players collectively determine the outcomes of the game, so 

that each player’s utility depends on the other’s choice as 

well as on their own. We define a finite-strategy two-player 

game with a set of pure strategies for each player, 𝑆1 =
{𝑠11, … 𝑠1𝑁} and 𝑆2 = {𝑠21, … 𝑠2𝑀} respectively, and a pair 

of payoff functions 𝑢1 and 𝑢2 that give each player’s utility 

for each profile of pure strategies (𝑠1𝑖 , 𝑠2𝑗). Thus if player 1 

selects 𝑠1𝑖 and player 2 selects 𝑠2𝑗the utility for player 1 is 

𝑢1(𝑠1𝑖; 𝑠2𝑗) and the utility for player 2 is 𝑢2(𝑠2𝑗; 𝑠1𝑖), with  

𝒖𝑖𝑗 = (𝑢1(𝑠1𝑖; 𝑠2𝑗), 𝑢2(𝑠2𝑗; 𝑠1𝑖)).  We define the set of best 

responses for player µ to an opponent’s strategy 𝑠−µ as 

BR(𝑠−µ) =  arg max 𝑢µ(𝑠µ;  𝑠−µ).  Then a pure strategy 

Nash equilibrium can be defined as a strategy profile 

(𝑠1𝑖 , 𝑠2𝑗) such that 𝑠1𝑖 ∊ BR(𝑠2𝑗) and 𝑠2𝑗 ∊ BR(𝑠1𝑖).  

There are a number of settings where Nash equilibrium 

fails to accurately describe human behavior. For example, 

Nash equilibrium predicts unraveling when players have 

incentives to undercut each other. Consider the traveler’s 

dilemma game (Basu, 1994), in which two travelers have 

lost identical items and must request compensation. The 

airline accepts the lower claim as valid and pays that 

amount to both players, and, additionally penalizes the 

higher claimant with a fee and rewards the lower claimant 

with a bonus.  We represent this game with the strategy sets 

S1 = S2 = {20,30,…,90}, where x1i and x2j correspond to the 

amounts (in dollars) associated with strategies s1i and s2j, 

and we have utilities uij = (0.01(x2j – γ), 0.01(x2j + γ)) if x1i > 

x2j, uij = (0.01x1j, 0.01x2j) if x1i = x2j, and uij = (0.01(x1j + γ), 

0.01(x2j – γ)) if x1i < x2j.  Here γ corresponds to the 

reward/penalty offered by the airline, and is set so that 10 < 

γ ≤ 20. For comparability with other games, we have scaled 

utilities to lie between 0 and 1. 

The airline’s scheme rewards undercutting the other 

traveler.  The best response is always to claim exactly 10 

less than the other traveler does (if it is feasible to do so).  
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As a result, the only Nash equilibrium strategy for both 

players is to claim 20. In experiments average claims 

actually are well above the lower bound that Nash 

equilibrium predicts (e.g. Capra et al., 1999).  

Experiments on the traveler’s dilemma game also find 

that claims are higher when the reward/penalty, γ, is lower. 

This payoff sensitivity is hard to reconcile with players 

choosing best responses to the strategies they expect their 

opponent to play. Nash equilibrium predicts that responses 

in the traveler’s dilemma should be independent of γ, as 

changing payoffs without changing best responses should 

have no effect on choice behavior.  

Another setting in which Nash equilibrium fails to 

appropriately describe behavior involves coordination 

games. These are games with multiple pure strategy Nash 

equilibria, in which players are incentivized to choose the 

same strategy.  Due to the presence of multiple equilibria, 

Nash theory cannot make precise predictions.  However, 

human decision makers are often fairly predictable. 

Consider the Hi-Lo coordination game, in which decision 

makers have to choose between two strategies: Hi and Lo. 

In this game we have: uij = (1.0,1.0) if both players both 

choose Hi; uij = (γ, γ), with 0 < γ < 1.0, if both plays choose 

Lo; and uij = (0,0) if they choose different strategies. Not 

surprisingly, decision makers almost always successfully 

coordinate on Hi-Hi to obtain the highest possible rewards 

in this game (Colman, 2003).  

In some games, decision makers do not choose any of the 

Nash equilibrium strategies when the potential costs of 

miscoordination are too great.  This can be observed in the 

boobytrap game, which is a standard prisoner’s dilemma 

augmented with a third option that allows decision makers 

to purchase a “boobytrap” to punish their opponent if he or 

she defects (Misyak & Chater, 2014). Particularly, we have 

uij = (0.9,0.9) if both players cooperate, uij = (0.8,0.8) if both 

players defect, and uij = (0.89,0.89) if both players choose 

boobytrap. Additionally, uij = (0.7,1) if player 1 cooperates 

and player 2 defects, uij = (0.9,0.89) if player 1 cooperates 

and player 2 chooses boobytrap, and uij = (0,0.69) if player 1 

defects and player 2 chooses boobytrap (and vice versa, as 

the game is symmetric). Nash equilibrium predicts that 

decision makers should ignore the boobytrap choice, 

however the presence of the boobytrap greatly increases the 

rate of cooperation in the game, contradicting the prediction 

of Nash equilibrium. 

Yet another set of findings not accounted for by Nash 

equilibrium theory involves strategy salience. In many 

games, strategies with salient labels are more likely to be 

chosen. This is the case in coordination games offering 

multiple payoff identical strategies, with one of the 

strategies circled, underlined, or made salient using some 

other technique. Here players can coordinate successfully by 

selecting the salient strategy (Mehta et al., 2004).  

Bidirectional Accumulation 

We propose an extension to a preexisting accumulator 

model of risky choice, decision field theory (Busemeyer & 

Townsend, 1993). As in decision field theory, decision 

makers use two layers of nodes: one to accumulate 

preferences in favor of the available choice options, and one 

to represent the probabilistic events involved in the decision.  

In the strategic context, the choice options are the strategies 

available to the decision maker and the events are the 

possible strategies the opponent may use. Thus, the strength 

of the connection from the node representing a strategy j for 

the opponent to the node representing preference for a 

decision maker’s strategy i, is proportional to the utility of 

strategy i for the decision maker, given that the opponent 

plays strategy j. Decision makers sample the events 

according to the subjective probabilities they assign to their 

occurrence. Thus, strategies that are more likely to be 

played by the opponent are sampled more frequently and 

thereby play a larger role in determining the decision 

makers’ preferences.  

Decision field theory assumes that decision makers’ 

beliefs about events (and subsequently sampling 

probabilities for these events) are fixed. For the most part 

this is reasonable: decision makers’ preferences do not 

influence the actual probability with which different events 

occur. This assumption is less reasonable in strategic 

settings. Sophisticated opponents, who can anticipate 

decision makers’ choices, will adjust their own choices to 

maximize their reward. We thus assume a bidirectional 

accumulation process to represent strategic deliberation. At 

each time period, decision makers sample one of their 

opponent’s strategies based on the activations of the nodes 

corresponding to these strategies, and update their 

preferences over their own strategies based on this sample. 

Decision makers then sample one of their own strategies 

based on the activation of the nodes, and use this sample to 

update their beliefs about their opponent’s choices. In 

essence, decision makers have dynamically changing mental 

representations for not only their own preferences, but also 

their beliefs about their opponents’ preferences, allowing 

them to deliberate intelligently using perspective taking and 

a sophisticated theory of mind.  

 
 

 
 

Figure 1: Illustration of bidirectional accumulation model 
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Figure 2: Simulated distribution of choices in the traveler’s dilemma. 

 

 

Formally, if the decision maker has to choose from the set 

of strategies 𝑆1 = {𝑠11, … 𝑠1𝑁}, then the preference layer in 

our model consists of N nodes, with node i representing 

strategy 𝑠1𝑖. The activation of node i at time t, A1i(t) 

corresponds to the decision maker’s preference for strategy i 

at time t.  Correspondingly if the opponent has the set of 

available strategies 𝑆2 = {𝑠21, … 𝑠2𝑀}, then the belief layer 

in our model consists of M nodes, with node j representing 

strategy 𝑠2𝑗. The activation of node j at time t, A2j(t) 

corresponds to the beliefs that the decision maker has about 

the opponent’s preference for strategy j, at time t.  We also 

denote the salience bias of any strategy i (for the decision 

maker) or j (for the opponent) as 𝜎1𝑖 or 𝜎2𝑗.  These salience 

biases 𝜎1𝑖 and 𝜎2𝑗 are independent of the decision process 

and are determined by various exogenous factors.  

At each time period t, the decision maker draws one 

sample of the opponent’s strategies. We assume that a 

softmax (logit) function, with stochasticity parameter 𝜆 > 0, 

determines the effect of activation strength and the 

exogenous salience bias on sampling probability. Thus, the 

probability of sampling strategy j at time t is given by: 𝑝𝑗 =

 𝑒𝜆(𝐴2𝑗(𝑡−1)+𝜎2𝑗)  ∑ 𝑒𝜆(𝐴2𝑘(𝑡−1)+𝜎2𝑘)𝑀
𝑘=1⁄ . If the opponent’s 

strategy j is sampled, then the decision maker observes the 

utility for each strategy i conditional on the opponent 

playing this sampled strategy: 𝑢1(𝑠1𝑖; 𝑠2𝑗).  The decision 

maker’s preferences are then updated based on this 

calculated utility, so the activation for each strategy i 

becomes: 𝐴1𝑖(𝑡) = 𝐴1𝑖(𝑡 − 1) +  𝑢1(𝑠1𝑖;  𝑠2𝑗). 

As discussed, beliefs about the opponent’s strategies are 

themselves updated based on the utility the opponent would 

derive conditional on a sample of the decision maker’s 

strategies. Thus, after updating activation states A1i(t), 

decision makers draw one sample of their own strategies. 

The probability of sampling strategy i at time t is given by: 

𝑞𝑖 =  𝑒𝜆(𝐴1𝑖(𝑡)+𝜎1𝑖) ∑ 𝑒𝜆(𝐴1𝑘(𝑡)+𝜎1𝑘)𝑁
𝑘=1⁄ . After sampling 

strategy i, the updated activation for each opponent strategy 

j is 𝐴2𝑗(𝑡) = 𝐴2𝑗(𝑡 − 1) + 𝑢2(𝑠2𝑗;  𝑠1𝑖). 

The deliberation process begins with nodes having no 

initial activation: A1i(0) = 0 for all i; A2j(0) = 0 for all j.  

Activation accumulates according to these equations until a 

time t = T. At this time, the most preferred strategy --that is, 

the one whose node has the highest activation-- is the 

strategy that is chosen by the decision maker. The parameter 

T corresponds to an exogenous time limit on the 

deliberation process, and represents the amount of time 

taken by the decision makers to make their choices.  The 

proposed model is illustrated in Figure 1.  

Explaining Behavioral Findings 

In order to demonstrate how our model works, we use it to 

simulate choices in the games we introduced earlier. Our 

simulations use the same strategy and reward profiles as in 

examples in the previous section. For each of the games and 

each set of parameter values, we simulate our model 3000 

times and report aggregate choice probabilities. We find that 

the model is fairly robust to parameter variation in the range 

𝜆 ∈ [0.25, 4] and  𝑇 ∈ [10, 30], and any combination of 

parameter values in this range produces behavior consistent 

with the empirical findings we have reviewed.  When not 

explicitly specified, we set salience to 𝜎1𝑖 =  𝜎2𝑗 = 0.  

Traveler’s Dilemma. In the traveler’s dilemma our 

model predicts a failure of unraveling. This is demonstrated 

in Figure 2 which plots the probability of selecting 
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strategies in the set {20, 30, …, 90} for γ = 11 and γ = 19, 

with varying values of 𝜆 and T. Instead of predicting that 

players always claim the lowest possible amount, as in Nash 

equilibrium, here the model generates a distribution of 

choices that spreads across the range of strategies available 

to the decision maker. The model also displays payoff 

sensitivity.  For a larger value of the reward/penalty 

parameter (γ = 19), the distribution of choices is smaller.   

The intuition behind the model’s predictions is appealing. 

For low rewards/penalties, i.e. low values of γ, the payoffs 

when both players make high claims are significantly higher 

than the payoffs when there is a low claim. The potential 

cost of missing out on this high payoff dwarfs the cost of 

making a higher claim than the opponent or the benefit of 

making a lower claim than the opponent.  So, a few samples 

(or even a single sample) of the opponent playing a high 

claim will lead to high activation for one’s own high claims.  

As beliefs about the opponent’s strategy are updated, there 

will be more samples of high claims, and strategies 

involving an additional step of undercutting can accumulate 

the most utility.  The number of steps of undercutting that 

does occur depends on payoff magnitudes. Increasing the 

parameter γ encourages undercutting.  Although it does not 

affect best responses (that is, the ranking of payoffs in any 

given sample of play), it does affect the accumulation of 

payoffs over time, so strategies involving more undercutting 

can accumulate activation more quickly.  

Stochastic sampling plays an important role in the 

emergence of payoff sensitivity.  The magnitudes of payoff 

differences affect the probabilities of sampling each 

strategy.  The degree of responsiveness to the payoff 

parameter γ that we observe in the predicted choices for this 

game depends on the logit sampling parameter 𝜆. 

Comparing across the columns of Figure 2, we see larger 

shifts in the distribution of choices from a change in the 

reward/penalty parameter γ as the parameter 𝜆 increases.  

Our model also makes new predictions about the 

relationship between decision time and the strategy chosen 

in the traveler’s dilemma.  Each step of undercutting takes 

time, and thus both the decision maker’s preferred claim and 

the beliefs about the opponent’s claim should thus decrease 

over time.  Comparing across the rows of Figure 2, we 

observe lower claims when the decision time T is larger. 

Indeed, experiments have revealed that decision makers take 

longer to choose the lowest claim than the highest claim 

(Rubinstein, 2007).  

Overall, with reasonable parameter values, the model 

predicts a failure of unraveling. Indeed, full unraveling, 

consistent with Nash equilibrium would only occur with 

very large values of 𝜆 and T, i.e., when poorly performing 

strategies are rarely sampled and there are many periods of 

sampling and iterative updating.  Assuming deterministic 

sampling of best responses or unlimited decision time would 

thus lead to poor behavioral predictions for the traveler’s 

dilemma. Conversely, assuming uniformly random 

sampling would lead to unreasonably high odds of choosing 

80 relative to 70, underestimating people’s ability to put 

themselves in their opponents’ shoes and think strategically 

about their responses.  

The Hi-Lo Game. Although the Hi-Lo game has two 

Nash equilibria, our model favors the Hi-Hi equilibrium. 

This is shown in Figure 3, which plots the probability of 

choosing Hi as a function of the payoff for coordinating on 

Lo (γ) for varying values of T and λ. Across all parameter 

values we consider, Hi is the modal choice. When the 

payoff asymmetry is extreme, i.e., γ = 0.1, Hi is almost 

certain to be chosen.  Still, as the Lo-Lo payoff γ increases, 

so does the probability of choosing Lo.   

Predictable coordination in the Hi-Lo game is intuitive.  

The Hi strategy, which offers higher payoffs in the case of 

successful coordination, accumulates more activation when 

it is sampled from the other layer of the network than the 

low strategy does. This creates a feedback effect, so the 

model is more likely to think about Hi when forming beliefs 

about the opponent’s choices.  Believing that the opponent 

will choose Hi further reinforces the model’s preference Hi. 

The positive feedback loop, along with stochastic 

sampling, actually facilitates the occasional choices of Lo.  

If Lo is sampled first, it gains an advantage, and it becomes 

more likely to be sampled again.  As the logit sampling 

parameter λ increases, it becomes somewhat more likely 

(albeit still not very likely) that the model repeatedly 

samples Lo early on, gets fixated on this strategy, and 

eventually chooses it.  In the extreme case that the sampling 

parameter λ gets unrealistically large, the strategy sampled 

in the first time period may be sampled forever thereafter, 

completely determining the path of the deliberation. Since 

both strategies have the same probability of being sampled 

in the first period of the deliberation, the model’s choice 

distribution approaches a 50-50 split between Hi and Lo 

independent of γ for very large values of λ. As can be seen, 

decision time has little effect on the choice distribution, with 

longer deliberation only slightly reducing noise and 

increasing the probability of selecting the modal choice, Hi.    

The Boobytrap Game. Our model deviates far from 

Nash equilibrium in the boobytrap game as well.  For 𝜆 ∈
[0.25, 4] and 𝑇 ∈ [10, 30], it predicts that players will 

almost certainly cooperate (cooperation with a greater than 

90% chance for all parameters). Here, a non-Nash strategy 

is favored due to the high magnitude of its advantage when 

the other player does not best respond compared to the low 

magnitude of its cost when the other player does respond 

rationally.  Against the boobytrap strategy, defection is 

extremely undesirable. The model predicts that players will 

never choose the boobytrap strategy, because it is dominated 

by cooperation.  However, the model predicts that decision 

makers usually will contemplate this boobytrap strategy as 

part of their deliberation, and this causes their preferences 

for defection to drop strongly.   

Again, our model’s behavior would be very different with 

an assumption of deterministic sampling of the most highly 

activated strategy.  With deterministic sampling, the model 

is confident that the boobytrap strategy will not be played, 

so it chooses to defect.   
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Figure 3: Simulated probability of choosing Hi in the Hi-Lo game. 

 

 

 

Figure 4: Simulated probability of heads in the simple heads-or-tails coordination game. 

 

Salient Labels. Our model recognizes salience effects, 

too.  In the simple heads-or-tails coordination game with 

heads being especially salient, such that 𝜎1H = 𝜎2H = 𝜍  and 

𝜎1T = 𝜎2T = 0, we find that the probability of choosing 

heads is increasing in its salience 𝜍, as shown in Figure 4.  

This figure plots the probability of choosing heads in this 

game as a function of the salience of heads, 𝜍, for varying 

values of T and λ. As we should intuitively expect, when 

sampling is less noisy, i.e., when λ is greater, the players are 

more sensitive to salience.  Specifically, when near the high 

end of our range, i.e., 𝜆 = 4, if heads is sufficiently salient, 

it is almost certain to be chosen.  (In contrast, with an 

assumption of uniformly random sampling, our model 

would not account for any salience effect at all.) 

Convergence occurs quickly, so we see few effects from 

increasing the decision time T. Higher values of T only 

slightly reduce noise and increase the choice probability of 

heads when the logit sampling parameter 𝜆 is small.  

Discussion 

We have proposed a cognitive model of strategic 

deliberation and decision making. Our model is able to 

account for violations of Nash equilibrium involving 

failures of unravelling, payoff sensitivity, predictable 

coordination, and salience, and we illustrate this by 

simulating our model on four different games. Note that 

these violations have also been documented in a number of 

additional games, including the minimum-effort 

coordination game, the stag hunt game, the battle of sexes 

game, the discoordination game, the 11-20 game, the hide 

and seek game, the matching pennies game, and the Kreps 

game. Elsewhere we show that our model makes realistic 

behavioral predictions for all of these games, for 𝜆 ∈

[0.25, 4] and 𝑇 ∈ [10, 30], however we exclude these 

findings from this paper, due to space constraints.  

Our model is closely related to existing accumulator 

theories choice, and we suggest that it can be seen as a 

direct extension of decision field theory (Busemeyer & 

Townsend, 1993; also see Busemeyer, 2015 for a review). 

The novel element in our model involves the representation 

of beliefs regarding opponent’s choices and the bidirectional 

updating of both preferences and beliefs over the time 

course of the decision process. Intuitively, bidirectional 

feedback in the accumulation process allows decision 

makers to base their choices on their beliefs about the 

opponent’s choices, but also to update their beliefs as their 

own preferences evolve. As this updating happens gradually 

over time, the decision makers’ intended choices (and 

beliefs about the opponent’s choices) get increasingly more 

sophisticated the longer they spend deliberating. Eventually 

the nodes for the opponent’s strategies develop unequal 

activation, with strategies that are appropriate responses to 

the decision maker’s preferences having higher activation. 

Highly activated opponent strategies are more likely to be 

sampled, and the decision maker is subsequently more likely 

to develop preferences that intelligently respond to the 

opponent’s anticipated choices.  

Note that there is considerable evidence that decision 

makers are able to represent the preferences and beliefs of 

others separately from their own. Although the nature of 

these representations is not typically studied in the context 

of game theoretic deliberation, some experimental work on 

theory of mind in strategic games does support our proposed 

model. Hedden and Zhang (2002), for example, find that 

players in sequential move games have sophisticated beliefs 

about the opponent’s preferences, and that these beliefs are 
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dynamically modified based on the evidence presented to 

the decision maker during the decision process. Goodie et 

al. (2012) also find that players’ beliefs about their 

opponent’s preferences are fairly complex, and are formed 

in response to the players’ own preferences. 

Our approach is also closely related to cognitive decision 

modeling (in non-strategic settings) that uses neural 

networks with recurrent connectivity (Glöckner et al., 2014; 

Holyoak & Simon, 1999). Recurrence in these networks is 

often bidirectional; the activation of cues and decision 

attributes may influence and be influenced by beliefs and 

preferences. The bidirectional feedback in the above models 

and in ours is very similar, implying that our model could be 

adapted for other cognitive decision modeling applications.  

Our bidirectional accumulation model also bears some 

resemblance to models of behavioral game theory, such as 

level-k reasoning and logit quantal response equilibrium 

(McKelvey & Palfrey, 1995; Nagel, 1995). In both our 

model and in level-k reasoning, individuals engage in an 

iterative process of deliberation that terminates before 

reaching a point of self-consistency.  Likewise, in both our 

model and in logit quantal response equilibrium, individuals 

use a stochastic logit response rule to consider responses, 

thereby generating payoff sensitivity.  However, unlike 

these models, our approach implements the deliberation 

process within a well-established psychological framework. 

This allows our model to describe salience effects, while 

also predicting the effects of time pressure and response 

time. Our model also makes more realistic stochastic choice 

predictions than either of these two existing theories: It 

permits trial-to-trial variability in choice, while also 

avoiding the selection of dominated strategies.  

Our approach is also quite parsimonious. There are two 

parameters in our model: the decision time parameter, T, 

and the stochastic sampling parameter, λ. Decision time T 

can be seen as controlling the extent of bidirectional 

processing one can engage in during deliberation and thus 

determining one’s level of strategic sophistication. Quick 

decisions involve fairly limited reasoning, with choices 

responding to simplistic beliefs about the opponent. 

Decisions that are a product of extended deliberation, in 

contrast, generate choices based on a more sophisticated 

theory of mind. As in all accumulator models, decision time 

also influences the amount of variability in the decision.  

The stochastic sampling parameter λ can also be seen as 

affecting the extent of bidirectional processing one engages 

in. When λ is small, strategies are sampled with close to 

uniform probability, and activation in one layer of the 

network has little or no effect on the accumulation of 

activation in the other layer of the network.  As 𝜆 increases, 

the decision maker becomes more and more likely to sample 

the most preferred strategies. When λ is very large, the most 

highly activated strategies are almost deterministically 

sampled, so preferences and beliefs interact more strongly 

during the deliberation.  

Ultimately, the model’s key behavioral properties depend 

critically on its dynamic and stochastic processes.  Many 

scholars have suggested that behavioral theories of decision 

making can, with incorporation of these fundamental 

cognitive processes, describe a wide range of behavior (e.g. 

Busemeyer, 2015). Our results reinforce these claims by 

demonstrating the explanatory power of stochastic sampling 

and dynamic accumulation in strategic choice.   
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Abstract

A question-answering system needs to be able to reason about
unobserved causes in order to answer questions of the sort that
people face in everyday conversations. Recent neural network
models that incorporate explicit memory and attention mecha-
nisms have taken steps towards this capability. However, these
models have not been tested in scenarios for which reasoning
about the unobservable mental states of other agents is nec-
essary to answer a question. We propose a new set of tasks
inspired by the well-known false-belief test to examine how
a recent question-answering model performs in situations that
require reasoning about latent mental states. We find that the
model is only successful when the training and test data bear
substantial similarity, as it memorizes how to answer specific
questions and cannot reason about the causal relationship be-
tween actions and latent mental states. We introduce an ex-
tension to the model that explicitly simulates the mental rep-
resentations of different participants in a reasoning task, and
show that this capacity increases the model’s performance on
our theory of mind test.

Keywords: language understanding, question answering, the-
ory of mind, false-belief test

Introduction
Question answering poses difficulties to artificial intelligence
systems because correctly answering a query often requires
sophisticated reasoning and language understanding capaci-
ties, and so simply memorizing the answer or searching in
a knowledge base is not enough. Despite this challenge,
recent neural network models that make use of attention
mechanisms in combination with an explicit external memory
can successfully answer questions that require more complex
forms of reasoning than before (e.g., Sukhbaatar, Weston,
Fergus, et al., 2015; Henaff, Weston, Szlam, Bordes, & Le-
Cun, 2017). The benchmark dataset for such tasks has be-
come the Facebook bAbi dataset (henceforth, bAbi) (Weston,
Bordes, Chopra, & Mikolov, 2016), which is a collection
of question-answering tasks in the form of simple narrative
episodes – termed stories – that are accompanied by ques-
tions about the state of the world described in the stories. (See
Figure 1 for an example story from this dataset.)

Although bAbi is a start towards enumerating the require-
ments for human-like reasoning capabilities, it lacks tasks for
testing the ability to reason about mental states, which is also
necessary for correctly answering questions of the sort that
humans encounter regularly. Consider the following:

Sally and Ann are in the kitchen.
Sally placed the milk in the pantry.
Sally exited the kitchen.
Ann moved the milk to the fridge.

For a model to correctly answer questions such as Where
would Sally/Ann search for the milk? it need not only rec-
ognize that Sally and Ann have mental representations of the

state of the world but also that these representations are in-
consistent: Sally believes that the milk is in the pantry while
Ann thinks it is in the fridge.

Psychologists have used a task similar to this scenario –
termed the false-belief task – to examine children’s develop-
ment of theory of mind: the capacity to reason about the men-
tal states of oneself and others (Premack & Woodruff, 1978).
Most 3-year-old children, after observing such a scenario, an-
swer that Sally would search for the milk in the fridge because
they cannot infer Sally’s belief about the location of the milk,
which is inconsistent with their own knowledge (e.g., Baron-
Cohen, 1989; Baron-Cohen, Leslie, & Frith, 1985). However,
most older children are able to identify, correctly, that Sally’s
belief is different from theirs in that she thinks that the milk
is the pantry.

To answer questions about situations like those that oc-
cur in a false-belief task, a model needs to use the observed
actions in the scenario to infer the mental states of Sally
and Ann. In this work, we investigate whether the End-to-
End Memory Network (henceforth MemN2N), a recent neu-
ral question-answering model (Sukhbaatar et al., 2015) that
solves most of the bAbi tasks, is able to answer questions
of the same structure as a false-belief task. We formulate sce-
narios to capture different possible causal relations among ac-
tions and beliefs, and examine the performance of the model
therein. We find that the MemN2N model performs well only
in the presence of strong supervision – when the training and
test data share the same casual structure. This result suggests
that the model is able to memorize the training data but is un-
able to learn to reason about mental states and how they cause
and are caused by actions.

Furthermore, to simulate the (perhaps inconsistent) beliefs
of the participants in a story, we extend the MemN2N model
to include a separate memory representation for each partic-
ipant. We show that this extension improves model perfor-
mance, suggesting that explicitly modeling agents’ knowl-
edge in a disentangled manner is in part sufficient for more
human-like reasoning on a false-belief task.

Theory of Mind and the False-Belief Task
A theory of mind is integral for an agent to predict and ex-
plain the behavior that is caused by the mental representations
of other agents, and therefore succeed on tasks such as the
false-belief task. For children, this capacity is acquired grad-
ually over the course of development. In particular, children
undergo several milestones before they develop an adult-like
theory of mind: By age two, they can distinguish between ex-
ternal states of the world and internal mental states possessed
by cognitive agents (e.g., Meltzoff, Gopnik, & Repacholi,

427



Mary got the milk there.
John moved to the bedroom.
Sandra went back to the kitchen.
Mary traveled to the hallway.
Q: Where is the milk? A: hallway

Figure 1: An example task from the bAbi dataset.

1999). By age four, they can distinguish between consistent
and inconsistent mental states (e.g., Perner, Leekam, & Wim-
mer, 1987), which allows them to identify a false belief.

Previous computational works have modeled human per-
formance on the false-belief task. Some focus on modeling
the development of theory of mind by instantiating a model
that initially fails but eventually passes the false-belief test
(Van Overwalle, 2010), while others study the settings in
which a model can succeed on the task by varying the input
data or the model architecture (O’Laughlin & Thagard, 2000;
Triona, Masnick, & Morris, 2002; Goodman et al., 2006).
However, none of these models use natural language sen-
tences, despite the fact that the psychological false-belief task
is usually administered verbally in the form of a natural lan-
guage reasoning problem.

Furthermore, natural language is known to interact with the
development of theory of mind. For example, use of mental
state terms in child-directed speech (e.g., Slaughter & Gop-
nik, 1996), engagement in pretend play (Youngblade & Dunn,
1995), storybook reading (Rosnay & Hughes, 2006), and re-
flection on events in the child’s past (Nelson, 2007) serve to
accelerate its developments, while, in turn, a greater grasp of
theory of mind leads to increased linguistic ability (Milligan,
Astington, & Dack, 2007). In this work, we examine whether
a model can learn from natural language about the causal re-
lationship between actions and beliefs, in order to be able to
answer questions that require reasoning about mental states.

Memory Networks

The MemN2N model of Sukhbaatar et al. (2015) comprises
an external memory cache and mechanisms to read and write
to this memory. The model is trained to write a sequence
of stories into its external memory and to answer questions
about the stories by reading its memory and emitting the cor-
rect vocabulary item. At test time, the model is evaluated by
the extent to which it can correctly answer questions about a
held-out set of test stories.

Formally, the model ingests a sequence of input sentences
(x1, . . . ,xn) and produces, for each input item xi, both a mem-
ory representation mi and a context representation ci, which
are stored in memory. The model is then presented with a
question qk about the story, for which it produces an internal
representation uk. To answer the question, the model com-
putes a normalized association score pik between the question
representation and each of its stored memory representations:

pik =
exp

{
uT

k mi
}

∑ j exp
{

uT
k m j

} . (1)

This weight can be interpreted as an attention mechanism that
defines where in memory the model will look for information
relevant to the given question.

The model then produces an output representation by
way of a linear combination of its context representations,
weighted by the attention computed in Equation (1):

ok = ∑
i

pikci. (2)

The output representation is combined with the query rep-
resentation and decoded by some function f to produce the
predicted answer â:

â = f (ok +uk). (3)

Learning model parameters at training time is done by way
of stochastic gradient descent in cross entropy error.

Simulation 1: MemN2N Model
We evaluate the model introduced in the previous section on
a set of novel textual reasoning tasks inspired by the false-
belief task. Our tasks take the form of a sequence of natural
language sentences – termed a story – and an associated ques-
tion about the story.

Since we aim to create tasks that, for humans to solve, in-
volve reasoning about other agents’ beliefs, we design vari-
ous story templates that simulate how different actions give
rise to different beliefs, and conversely how different beliefs
result in different actions. These stories differ in whether or
not the agent who is the subject of the question has observed
a change in the state of the world (i.e., the agent has a true
belief), or has not (i.e., has a false belief). The stories further
differ in whether the belief is observable (i.e., the story ex-
plicitly contains sentences such as Sally believes the milk is
in the pantry) or whether only actions are observable. When
the agent harbors a false belief, and the model is asked to pre-
dict the action of the agent without explicit reference to the
beliefs of the agent in the story, we recover a simulation of
the classic false-belief task.

With this experimental design, we aim to determine
whether the MemN2N model can reason about how actions
cause beliefs and vice versa, and how much information
needs to be revealed to enable the model to succeed.

Data Generation
To generate stories and corresponding questions, we emulate
the bAbi (Weston et al., 2016) dataset generation procedure.
We define a world of entities, which are the people and ob-
jects described in the stories, and possible predicates that take
entities as subject and, optionally, object. Each entity has
properties that define the predicates of which it can be sub-
ject or object. For example, a world may contain Sally with
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BA AB A(B)A

True
Belief

Anne moved the milk to the fridge. Sally placed the milk in the pantry. Sally placed the milk in the pantry.
Sally believes the milk is in the fridge. Anne moved the milk to the fridge. Anne moved the milk to the fridge.
Q: Where did Sally search for the milk? Q: Where does Sally believe the milk is? Q: Where did Sally search for the milk?
A: fridge A: fridge A: fridge

False
Belief

Sally believes the milk is in the pantry. Sally placed the milk in the pantry. Sally placed the milk in the pantry.
Sally exited the kitchen. Sally exited the kitchen. Sally exited the kitchen.
Anne moved the milk to the fridge. Anne moved the milk to the fridge. Anne moved the milk to the fridge.
Sally entered the kitchen. Sally entered the kitchen. Sally entered the kitchen.
Q: Where did Sally search for the milk? Q: Where does Sally believe the milk is? Q: Where did Sally search for the milk?
A: pantry A: pantry A: pantry

Figure 2: Examples of the training data, with the predicates of interest underlined. Note that the true-belief and false-belief test
tasks are of the same form as the top and bottom items, respectively, in the last column.

the property is agent and apple with the property is object.
Our rules permit Sally to perform the action displace on the
apple.

In this work, we consider a restricted set of action and be-
lief predicates. Our actions define simple interactions of an
agent with the world (e.g., place, move, enter, exit) and our
beliefs correspond to mental state terms (e.g., believe, think),
inspired by the terms that children gradually learn to under-
stand and use correctly over the course of development (e.g.,
Bretherton & Beeghly, 1982; Johnson & Wellman, 1980).
Our templates manipulate the order of action and belief pred-
icates to test how the model reasons about the causal relations
between them.
Experimental Conditions
Story Template We define a set of templates that correspond
to the type of story that we wish to generate. Each template
fixes a sequence of predicates and therefore puts constraints
on the entities that may fill the template. For example, a tem-
plate could be the sequence (drop, pick up, exit). Completion
of the template entails sampling valid entities from the world
to fill the subject and object positions of the predicates, pro-
ducing, for example, the story (Sally dropped the ball, Sally
picked up the ball, Sally exited the room).

We consider three different template types:

• BA: observable beliefs (e.g., Sally believes the milk is in the
pantry) give rise to observable actions (e.g., Sally searches
the pantry);

• AB: observable actions (e.g., Sally places the milk in the
pantry) give rise to observable beliefs (e.g., Sally believes
milk is in the pantry); and

• A(B)A: observable actions (e.g., Sally places the milk in
the pantry) give rise to observable actions (e.g., Sally
searches the pantry) by way of unobserved beliefs (e.g.,
Sally believes the milk is in the pantry).

Note that the AB and A(B)A conditions are different in that
in AB, the question explicitly asks about Sally’s belief; in

A(B)A, on the other hand, the question is about Sally’s action,
which has been brought about by Sally’s unobserved belief.

True vs. False Belief In addition to the type of template, for
each story we manipulate whether the agent about whom the
question is asked (i.e., Sally) has a true belief or a false belief
about the state of the world. In the case that the agent has a
true belief, the agent observes all changes in the state of the
world and thus their beliefs are consistent with the world. On
the other hand, in the case that the agent has a false belief,
the agent does not observe one or more changes in the state
of the world (because, for instance, Sally may exit the room),
and thus has a belief that is inconsistent with the world.

Training Conditions We have six possible story types as a
results of crossing the template types with the true and false
belief story types; examples of each of the story types are
given in Figure 2. We sample from these story types to pro-
duce our training conditions, in the following manner:

• When the training condition is such that p(false belief) =
0 or 1, we sample only stories with true beliefs or false
beliefs, respectively, and when p(false belief) = 0.5, we
sample half of our stories with true beliefs and half with
false beliefs.

• We sample stories from five different possible groups of
templates: BA, AB, AB+BA, A(B)Aand AB+BA+A(B)A.

The AB+BA and AB+BA+A(B)A conditions provide the
model with training data that better approximates the variety
of possible scenarios in the world. In these cases, the model
observes more ways in which actions and beliefs interact, and
thus we would expect it to be able to better generalize to new
scenarios. Moreover, AB+BA provides the model with the
opportunity to learn transitive inference – given that an action
(e.g., placing milk in the pantry) results in a belief (e.g., the
milk is in the pantry), and a belief (e.g., the milk is in the
pantry) can cause an action (e.g., searching for milk in the
pantry), a model that reasons about actions and beliefs could
learn that an action (e.g., searching for milk in the pantry) is
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Figure 3: Accuracy in Simulation 1. Test accuracies for the true-belief (TB) and false-belief (FB) tests across training condi-
tions in Simulation 1. We report results for p(false belief) = 0.5, since varying this parameter did not affect results except in
the few cases discussed in the text.
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Figure 4: Accuracy in Simulation 2. Test accuracies for the true-belief (TB) and false-belief (FB) tests across training condi-
tions in Simulation 2. As in Figure 3, we report results only for p(false belief) = 0.5.
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Figure 5: Attention in Simuation 2. Visualisation of the attention weighting over memory caches for the true-belief (TB)
and false-belief (FB) tests. We omit the visualization for the BA+AB and BA+AB+A(B)A training conditions because the test
accuracy distribution in Simulation 2 for these conditions is very similar to the A(B)A training condition (see Figure 4).

a consequence of an unobservable belief brought about by a
preceding action (e.g., placing milk in the pantry).

Crossing template types BA, AB, A(B)A, AB+BA,
AB+BA+A(B)A with p(false belief) = {0.0, 0.5, 1.0} pro-
duces our 15 training conditions. We run 10 simulations for
each training condition and for each configuration of param-
eter settings of the MemN2N model.1

Test Conditions We aim to evaluate the model on tasks that
require reasoning about latent mental states, in analogy to the
classic false-belief task; however, such a capacity should ap-
ply not only in cases when an agent has a belief that is incon-
sistent with the state of the world (i.e., a false belief) but also
when they have a true belief about the world. We therefore
consider two test conditions: a true-belief (TB) and a false-
belief (FB) task. All examples in both of these test conditions
share the A(B)A template type, but the conditions differ in
that the true-belief task contains only examples with true be-
liefs (i.e., p(false belief) = 0), and the false-belief task con-
tains only false belief examples (i.e., p(false belief) = 1).

1We vary the dimensionality of the memory and word embed-
ding, the number of computational hops (accesses to the memory
cache to answer a single question), the number of training and test-
ing examples (1000 vs. 10000), and the size of the world from which
the dataset of stories is generated (5 vs. 10 vs. 30 entities per entity
type, which correspond to the objects, container, etc. in the story).

Results

As noted by Sukhbaatar et al. (2015), the MemN2N model
exhibits large variance in performance across simulations,
and so we show performance by plotting the distribution of
test accuracies in boxplot format. In Figure 3, we report ac-
curacy on both test conditions (the true-belief (TB) and false-
belief (FB) tasks) across the training conditions, for p(false
belief) = 0.5. The results for p(false belief) ∈ {0,1} were
similar except in the case of the AB story template; we com-
pare this case with the BA condition in Figure 6 and discuss
in the following. Note that success at test time corresponds to
achieving 1.0 accuracy in both the TB and FB test conditions.

Training Condition BA: Beliefs to Actions The model fails
on the TB task in the BA training condition, while succeed-
ing on the FB task. This is true no matter the value of p(false
belief) (as depicted in Figure 6). To understand why this oc-
curs, consider the following example of a BA training story
when the false belief occurs:

Sally believes the milk is in the pantry. Sally exited the
kitchen. Anne moved the milk to the fridge. Sally entered
the kitchen.

Additionally, consider the BA training story when the false
belief does not occur:
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Anne moved the milk to the fridge. Sally believes the milk is
in the fridge.

To answer the training question Where did Sally search for
the milk? the model seems to learn that it should look for the
sentence containing Sally and a container entity (i.e., Sally
believes the milk is in the fridge).

This strategy works for the false-belief test (see Figure 2,
last column, bottom row), because Sally believes that the milk
is in the pantry – the location in which she originally placed
it – and thus the sentence containing Sally and the identity of
a container always proviedes the correct answer. However,
this strategy fails on the true-belief test (again, see Figure 2,
last column, top row), because Sally observes that the milk
has been moved, and so no longer believes that the milk is in
fridge. This suggests that the model is unable to infer that an
observable action changes the mental state of Sally.
Training Condition AB: Actions to Beliefs The model is
unable to achieve good performance on both the TB and FB
tests in the AB condition. When the model performs better, it
is in cases where the test is very similar to the training condi-
tion, i.e., the false-belief test with p(false belief) = 1 in train-
ing and true-belief test with p(false belief) = 0 in training.
Training Condition AB+BA: Transitive Inference The
model fails on both test tasks in the AB+BA training condi-
tion. This is evidence that the model cannot reason about the
causal relationships between actions and beliefs to perform
transitive inference.
Training Condition A(B)A: Equivalent to TB/FB Test The
model achieves best performance on A(B)A in the p(false
belief) = 0.5 condition. This again happens because the test
and training conditions are similar: the model observes exam-
ples of both the FB and TB test tasks in training, and thus re-
ceives supervision to give the correct answer at test. However,
the model performs well only on the TB task in the p(false
belief) = 0, and on the FB task in the p(false belief) = 1 con-
dition. This is because the model does not observe examples
like one or the other test condition at training time.

Notably, the performance is not high even in the p(false
belief) = 0.5 condition (the median is approximately 55% on
both test tasks), despite the fact that the model is given test-
like examples at training time. It is therefore not clear that
the model is robustly able to solve a conditional reasoning
task in which the correct answer is dependent on whether or
not the observer sees the movement of the object and thus
has a false or true belief. This, along with the model’s failure
in the other training scenarios, motivates an extension to the
model, which we consider in the next section.

Simulation 2: Multiple-Observer Model
We now propose a model that is given information about
whether each agent in the story observes each sentence in the
story. In general, this must also be inferred from context, but
here we assume such annotations are available to the model as
we simply attempt to investigate the effect of this information
on the model’s predictions.

(a) ppp(false belief) = 0 in training.
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Figure 6: From Simulation 1. The test accuracy in the AB
condition is dependent on the value of p(false belief), but not
in the BA condition.

Formally, for a story of N input items that describes a sit-
uation with M agents, we provide the model with an N-by-
(M+1) observer annotation matrix S such that Si j = 1 if in-
put item xi is observable to agent j and 0 otherwise, where we
assign the oracle observer (who observes all input items) to
the first index. These annotations are used to mask the input
such that M+1 (possibly different) stories are produced, each
of which corresponds to the story that a particular agent ob-
serves. Memory representations, attention over each memory
cache, and output representations are computed separately
for each observer, and so M + 1 output representations are
computed, each corresponding to the output of a distinct ob-
server’s memory.

The model then computes an attention weighting over each
of the observer memory caches (cf. Equation (1)):

rk` =
exp

{
uT

k ok`
}

∑n exp
{

uT
k okn

} . (4)

This attention over memory caches is used to compute a
weighted combination of the output representations that cor-
respond to the memory cache for each agent (cf. Equa-
tion (3)):

â = f (uk +∑
`

rk`ok`). (5)

Note that the model considered in Simulation 1 is exactly this
model extension with rk0 = 1 and rkm = 0,∀m 6= 0 (i.e., atten-
tion is given only to the oracle memory cache).
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In this extension, the model is given explicit information
about which observations in a story are available to each
agent, by way of the annotation matrix S. However, it must
learn to reason about this information in order to arrive at the
correct answer, as before with how to write to memory and
read from memory, and now with how to select over which
observer’s knowledge of the story is relevant to answer the
question.

Results
We report results of the model extension on the TB and FB
tests in Figure 4, as well as a visualization of the attention
weights in Figure 5. Our simulated data is composed of sce-
narios with only two agents, and therefore the extended model
attends over three memory caches (one for the oracle that
observes everything, one for Anne, and one for Sally, about
whom the question is asked).

The extended model achieves higher accuracy across all
training conditions. Notably, the model performs near
perfectly (i.e., both TB and FB are close to 1) in the
AB+BA+A(B)A case, meaning that the model can learn to
ignore irrelevant training stimuli. This suggests that aware-
ness of agent’s knowledge about the state of the world helps
in a task of reasoning about latent mental states.

Furthermore, the attention plots show that the model learns
to attend to the memory representation of Sally in the FB test,
which contains the information about how to answer ques-
tions about Sally’s actions and beliefs. On the other hand, in
the TB test, the model does not attend differently to the dif-
ferent memory caches, because the observations stored in all
caches are the same.

Conclusions
We investigated whether a recent language learning model
that succeeds on a suite of textual reasoning tasks is able to
succeed in a task that requires reasoning about latent men-
tal states. We found that the model is unable to succeed in
a set of simulated true-belief and false-belief tasks unless it
has observed at training time situations that have the same
structure as the test tasks, even if the diversity of the data is
increased. This strongly suggests that the model is not rea-
soning about the state of the world, nor about mental repre-
sentations thereof, but is simply memorizing its input. As a
consequence, the model will not be able to succeed in a task
of reasoning that differs greatly from the situations that it has
observed at training time. This is in contrast to the the novelty
of situations that people encounter regularly, in which they
must reason about the causal relationship between events in
the world and latent mental states.

However, incorporating a simple mechanism that informs
the model that there may be multiple observers with differ-
ing representations of the story allows the model to achieve
higher performance on the simulated false-belief and true-
belief tasks. Under this modification, the model does not
simply memorize the training data but also learns to use

knowledge that agents have (perhaps conflicting) observa-
tions about the story in order to answer the question. We
could interpret this as analogous to the development of theory
of mind in that, when a child is able to reason about others’
knowledge of and beliefs about the world, the child succeeds
on tests of theory of mind such as the false-belief task. A fur-
ther direction of research could investigate whether manipu-
lating variables in the training data (e.g., frequency of men-
tal state terms) affects the model’s performance in a manner
similar to how a child’s developmental trajectory would be
affected.
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Abstract

Previous studies have suggested that children possess cognitive
representations of multi-word units (MWUs) and that MWUs
can facilitate the acquisition of smaller units contained within
them. We propose that the formation of MWU representations
precedes and facilitates the formation of single-word represen-
tations in children. Using different computational methods,
we extract MWUs from two large corpora of English child-
directed speech. In subsequent regression analyses, we use age
of first production of individual words as the dependent and the
number of MWUs within which each word appears as an in-
dependent variable. We find that early-learned words appear
within many MWUs – an effect which is neither reducible to
frequency or other common co-variates, nor to the number of
context words contained in the MWUs. Our findings support
accounts wherein children acquire linguistic patterns of vary-
ing sizes, moving gradually from the discovery of MWUs to
the acquisition of small-grained linguistic representations.1

Keywords: multi-word units; age of first production; word
learning; language acquisition; computational modeling

Introduction
Frequently co-occurring word combinations have been in-
vestigated in studies examining both child (Bannard &
Matthews, 2008; Arnon & Clark, 2011; McCauley & Chris-
tiansen, 2014) and adult processing (Arnon & Snider, 2010),
with mounting evidence that children and adults represent
such sequences separately from their constituent words. In-
deed, given that many English word sequences have idiosyn-
cratic meanings which cannot be derived from the meaning
of their constituent words (e.g. pay attention to, leave of ab-
sence, you’re welcome), it is reasonable to expect language
users to store such semantically opaque sequences in mem-
ory. Findings from the literature, however, extend beyond
this: in addition to non-compositional constructions, people
are likely to also lexicalize frequent but semantically trans-
parent formulaic sequences (Wray, 2008). Here, we use the
term multi-word unit (MWU) to refer to any sequence of
words – compositional or not – which is likely to be lexical-
ized, and we investigate the role of MWUs in the acquisition
of individual words.

More concretely, we expect a facilitatory interaction be-
tween the acquisition of MWUs and the acquisition of their
constituent words. Provisional evidence for a beneficial im-
pact of MWUs on the acquisition of smaller Linguistic units
was collected by Arnon and Clark (2011), who showed that
children make fewer inflectional errors on known words if

1The code for running our experiments is available online:
https://github.com/RobGrimm/CogSci2017-MultiWordUnits

the words are contained within frequent MWUs. Usage-
based approaches to language acquisition, meanwhile, sug-
gest that children acquire a repertoire of both lexically spe-
cific and more abstract multi-word constructions (Tomasello,
2009; Behrens, 2009). Based on this, we propose that chil-
dren sometimes possess MWU representations before they
form representations of the words contained within them, and
that these MWU representations then facilitate the acquisi-
tion of single-word representations. We dub this the MWU
acquisition hypothesis.

With the availability of a growing number of corpora of
child-caregiver interactions on the one hand (MacWhinney,
2000) and the development of methods for the extraction of
MWUs from corpora on the other hand (McCauley & Chris-
tiansen, 2014; Brooke, Tsang, Hirst, & Shein, 2014), we are
in a position to investigate the kinds of MWUs children are
likely to acquire. Concretely, we extract MWUs from two
large corpora of transcribed child-directed speech, using (a)
a computational model employed by McCauley and Chris-
tiansen (2014) to account for findings from the language ac-
quisition literature and (b) an algorithm, developed by Brooke
et al. (2014), intended to build a comprehensive lexicon of
psychologically plausible MWUs. We view extracted MWUs
as an approximation of the types of MWUs children might
discover and use the number of MWUs within which a given
word is contained as an independent variable.

Throughout, we use the age at which children first produce
words (age of first production / AoFP) as an index of word
learning: if a word is first produced relatively early in de-
velopment, we assume that this is in part because it is easy
to learn when and how to use it. Given the MWU acquisi-
tion hypothesis, we expect a facilitatory effect of the number
of MWUs in which a word appears on its AoFP. This effect,
moreover, should be uniquely attributable to MWUs – and
not to individual word frequency, semantic co-variates, or the
number of context words contained in MWUs. Number of co-
occurring context words has previously been shown to pre-
dict age of acquisition for words (Hills, Maouene, Riordan,
& Smith, 2010); but if our proposal is correct, such an effect
should disappear once MWUs are taken into consideration.

Related Work
Language Acquisition

MWUs have emerged as an important theoretical con-
cept in usage-based approaches to Language Acquisition
(Tomasello, 2009). Within this broad theoretical framework,
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learners’ linguistic representations are conceived of as con-
tinually complexifying entities, with the developed cognitive
system containing both lexically specific and more abstract
patterns. At early stages in development, most representa-
tions are lexically specific, and child language is “(partially)
formulaic and item-based” (Behrens, 2009, p. 393). That is,
child language development is thought to involve representa-
tions which are lexically specific and span multiple words.

Experimental evidence for the existence of children’s
MWU representations comes from Bannard and Matthews
(2008), who presented 2 and 3 year-olds with frequent MWUs
like a drink of tea and matched infrequent MWUs like a drink
of milk that differed in the last word. 2 and 3 year-olds were
faster to repeat frequent MWUs, and 3 year-olds were also
faster to repeat the first three words if they formed a frequent
MWU with the fourth word. Since the final word and the final
bigram (e.g. of tea and of milk) were matched for frequency,
the processing advantage for frequent MWUs can only be at-
tributed to the frequency of the entire MWU, rather than to the
frequencies of its component words, suggesting that children
have access to cognitive representations of MWUs. Bannard
and Matthews (2008) argue, furthermore, that their subjects
were likely familiar with the words comprising the MWUs,
which implies the existence of (partially) independent MWU
and single-word representations.2

In addition, Arnon and Clark (2011) found that MWUs in-
teract with the acquisition of morphemes: 4;6 year-olds pro-
duced more correct irregular plurals after familiar lexically
specific frames than after general questions. Subjects were
presented with depictions of several objects. The object name
was elicited either with a labeling question or with a lexically
specific frame. For example, on one particular trial the ob-
jects were sheep, the lexically specific frame was Count some
–, and the labeling question was What are all these called?
4;6 year-olds were more likely to complete the lexically spe-
cific frame with sheep and would provide relatively more in-
correct plural forms – like the over-regularized sheeps – in
response to the labeling question. This suggests that MWUs
like count some sheep affect the way in which some of the
smaller units contained within them are learned.

Computational Modeling
The above-cited results by Arnon and Clark (2011) and
Bannard and Matthews (2008) have been modeled by
McCauley and Christiansen (2014). In a comprehension
phase, their model segments a corpus of child-directed speech
into MWUs. In a production phase, it generates child-
produced utterances based on stored MWUs. Given a corpus,
MWUs are extracted by comparing the conditional probabil-
ity of the current word given the preceding word to a running
average of all such probabilities, for all words so far encoun-

2The same argument can be made for adults, who are faster to
recognize and produce frequent four-word MWUs in similar experi-
ments (Arnon & Snider, 2010). Such results also support theories of
adult linguistic competence which include MWU-like constituents
(O’Donnell, 2015).

tered one position to the left of the current word. If this back-
ward transitional probability (BTP) is larger than the running
average, the current and preceding word are part of an MWU.
The process continues until the BTP falls below the average,
at which point the current MWU is stored in memory.

Extracted MWUs can then be used to re-construct child-
produced utterances. McCauley and Christiansen (2011)
compared model-derived to child-produced utterances across
13 corpora from the CHILDES database (MacWhinney,
2000). On average, about 60 % of utterances were success-
fully re-produced – illustrating that a purely MWU-based
system can account for a majority of child-produced utter-
ances. Importantly, MWUs discovered by the model can
also be used to model results from Bannard and Matthews
(2008) and Arnon and Clark (2011). In both cases, stim-
uli were sequences of words – constructions like a drink of
tea in the former and count some sheep in the latter study.
McCauley and Christiansen (2014) assigned a chunkedness
score to each stimulus by calculating the product of BTPs
between the MWUs used by the model to re-produce each
stimulus. In each study, differences in scores reflected differ-
ences in subjects’ performance: stimuli with lower reaction
times in Bannard and Matthews (2008)’s study were assigned
a larger chunkedness score, as were stimuli which elicited a
larger proportion of correctly inflected nouns in Arnon and
Clark (2011)’s study.

Natural Language Processing
McCauley and Christiansen’s (2011, 2014) model can be situ-
ated in a tradition that measures association strength between
pairs of words; words are then grouped together if their as-
sociation strength exceeds a particular threshold. McCauley
and Christiansen (2014, 2011) use BTP as the measure of
association. Other options include pointwise mutual infor-
mation or log likelihood (cf. Pecina, 2010, for an overview).
All association-based methods require an arbitrary threshold
for inclusion of words in MWUs. In addition, there is no
consensus on which association measure is best. An alterna-
tive approach is to identify frequent n-grams – called lexical
bundles –, but this requires very high frequency thresholds
(Biber, Conrad, & Cortes, 2004). There is, then, no gener-
ally accepted way of extracting MWUs from corpora, nor is
it common practice to evaluate whether extracted MWUs cor-
respond to psychologically real entities.

Work by Brooke et al. (2014) has recently begun to address
these issues. Their method operates at the token level, iden-
tifies MWUs of varying sizes, and relies on two parameters:
a frequency threshold and a maximum MWU size. Broadly
speaking, the algorithm considers all possible segmentations
of a given sentence into n-grams that meet a pre-specified fre-
quency threshold. Then, that segmentation is selected which
maximizes the predictability of each word within its n-gram.
The stated goal of this work is to develop a method for the ex-
traction of an MWU lexicon that would correspond to knowl-
edge of MWUs possessed by native speakers. The system
has since been refined by Brooke et al. (2015), who also in-
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troduced first steps towards evaluating MWU lexicons.

Hypothesis
According to the MWU acquisition hypothesis, children
sometimes acquire MWU representations before they acquire
representations of the individual words contained in MWUs,
and access to MWU representations then facilitates acquisi-
tion of the words contained in them.3 While this hypothesis
is grounded in the literature, it is not clear via which mech-
anisms MWUs might aid the word learning process. Conse-
quently, our goal is to provide evidence that MWUs uniquely
facilitate word learning, and not how this process unfolds.
Below, we nevertheless sketch two possible scenarios.

One possibility is that children initially acquire MWUs as
unanalyzed units. This could result from an initial underseg-
mentation of the input: words, before their meaning is es-
tablished, need to be identified from a continuous stream of
sound. Early in development, children might sometimes seg-
ment multi-word chunks before they begin to segment indi-
vidual words from within those chunks. Thus, some early
fossilized MWUs are likely to be (partially) undersegmented
chunks. In this scenario, the more initially undersegmented
MWUs contain it, the earlier a given word is going to be seg-
mented. We would then expect this early segmentation to
translate into early induction of meaning.

A second possibility is that children discover some words
before establishing their meaning. They would then go on
to discover MWUs containing those words, at which point
they have access to fully-fledged MWU representations with-
out having access to the meaning of each individual word.
The more MWUs contain a given word, the more words it
is going to be linked to – and the more words will prime
its retrieval, making it more salient for the learner. On av-
erage, a word with many links will be more easily retrieved
than a word with few links. Because of this, we would ex-
pect fewer necessary exposures to establish the meaning of a
word which forms part of relatively many MWUs, compared
to words contained in fewer MWUs.

As mentioned, we do not distinguish between these two
and other such possibilities. Instead, we aim to broadly cor-
roborate the MWU acquisition hypothesis by showing that
MWUs uniquely facilitate word learning: if, all else being
equal, words contained in many MWUs are learned earlier
than other words, this would be indicative of a developmental
pattern which begins with the formation of MWU representa-
tions and then proceeds to the acquisition of individual words.

Method
Our method is the following: first, we extract MWUs from
two corpora of English child-directed speech (CDS) and es-
timate age of first production (AoFP) for the words produced
by the children addressed in the CDS corpora. We then use

3Note that we do not claim that the acquisition of MWUs always
precedes the acquisition of single words, but merely that this hap-
pens often enough to have a measurable impact on word learning.

the number of MWUs within which each target word appears
(#MWUs) as an independent variable – next to several co-
variates – in a linear regression analysis, with AoFP as the de-
pendent variable. If the MWU acquisition hypothesis is true,
we expect a unique facilitatory effect of #MWUs on AoFP.

Child-Directed Speech
We use two corpora of CDS, which both consist of the adult-
produced utterances from several corpora on the CHILDES
database (MacWhinney, 2000). Some corpora are based on
cross-sectional studies, while others are longitudinal. In ad-
dition, subjects vary in age. Regardless, each corpus con-
sists of standardized transcripts, based on recordings of child-
caregiver interactions. In order to maximize the amount of
data, we ignore possible fine-grained differences between age
cohorts and compile a North-American corpus (NA-CDS)
from 45 American English corpora4 and a British English
corpus (BE-CDS) from eight British corpora5. Table 1 sum-
marizes statistics.

Table 1: Relevant corpus statistics.

measure CDS-BE CDS-NA

nr. tokens 4,681,925 6,389,963
nr. types 24,929 37,128
median length of utt. 4 (IQR: 4) 4 (IQR: 4)
nr. adult speakers 201 774
nr. children addressed 134 441
mean child age (months) 33 (SD: 9) 41 (SD: 23)

Extraction of Multi-Word Units
To extract MWUs from the CDS corpora, we use McCauley
and Christiansen’s (2014) model as well as Brooke et al.’s
(2014) method. McCauley and Christiansen’s (2014) model –
called Chunk-Based Learner (CBL) – processes a given cor-
pus utterance by utterance and word by word. Processing an
utterance u is initiated by incrementing the frequency count
of the first word w1 ∈ u by 1 and creating a new MWU with
w1 as its only member. For each subsequent word wi at ut-
terance position 1 < i ≤ length(u), the model keeps track of
the number of times wi has been encountered so far, as well
as how often the immediately preceding word wi−1 has oc-
curred one position to the left of w. The model then calculates
the backward transitional probability (BTP) of wi and wi−1:
p(wi−1|wi). If this probability is larger than the average BTP
across all words which have occurred one position to the left

4Corpora names (see http://childes.talkbank.org/access/ for ref-
erences): Bates, Bernstein, Bliss, Bloom70, Bloom73, Bohan-
non, Braunwald, Brent, Brown, Carterette, Clark, Cornell, Deme-
tras1, Demetras2, ErvinTripp, Evans, Feldman, Garvey, Gathercole,
Gleason, HSLLD, Hall, Higginson, Kuczaj,MacWhinney, McCune,
McMillan, Morisset, Nelson, NewEngland, Peters, Post,Providence,
Rollins, Sachs, Snow, Soderstrom, Sprott, Suppes, Tardif, Valian,
VanHouten, VanKleeck, Warren, Weist

5Belfast, Fletcher, Manchester, Thomas, Tommerdahl, Wells,
Forrester, Lara
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of w in all utterances so far considered, wi is added to the cur-
rent MWU. Else, the current MWU is added to a set M, and
a new MWU is created – again with wi as its only member.
In this way, the model discovers MWUs of size 2 or larger, as
well as single-word units, collected in M. In our analyses, we
use all MWUs which occur at least twice in the input corpus.

As a second model, we use the method from Brooke et al.
(2014)6. We refer to it as Prediction Based Segmenter (PBS),
as it splits utterances into n-grams whose component words
are maximally predictable. The basic idea is that given an
n-gram w1...wn, the conditional probability of any word wi
given the remaining subsequence w1...wi−1,wi+1...wn should
be maximal. In essence, the algorithm splits utterances into n-
grams such that each word’s predictability is maximized, cap-
turing the intuition that words within MWUs are more pre-
dictive of one another than words outside of MWUs – but see
Brooke et al. (2014) for a more in-depth explanation. Spec-
ifying a maximum n-gram length of ten – longer than most
utterances in the corpus – , we use the PBS to segment utter-
ances into either single-word units or MWUs with a minimum
size of two and a maximum size of ten. As with the CBL, we
retain all MWUs which occur at least twice.

Running the models on the two CDS corpora results in four
different sets of MWUs, whose distributions are summarized
in Table 2. The CBL results in a larger number of shorter
MWUs, while the PBS identifies MWUs that are a bit longer.
There are generally more MWU types than word types (com-
pare Table 1).

Table 2: Relevant statistics about the distribution of MWUs.

corpus measure CBL PBS

CDS-
BE

MWU tokens 1,073,037 978,804
MWU types 465,447 387,391
median length 4 (IQR: 3) 5 (IQR: 4)

CDS-
NA

MWU tokens 1,40,8614 1,338,173
MWU types 628,252 492,863
median length 4 (IQR: 3) 5 (IQR: 4)

Age of First Production
To induce AoFP, we start from a corpus of child-produced
utterances, treating a word as having been learned at the ear-
liest developmental stage at which any child within the cor-
pus can produce it. Developmental stage is defined in terms
of mean length of utterance (MLU) – the average child utter-
ance length, in tokens, within a transcript. Since transcripts
have varying lengths, we estimate MLU for each transcript
via statistical bootstrapping, wherein the sampling distribu-
tion of the population is approximated by drawing random
samples from the data (Davison & Hinkley, 1997). Each
bootstrap is based on 1000 random samples with replacement,
with the sample size equal to the number of child utterances

6available online: http://www.cs.toronto.edu/~jbrooke

per transcript. We thus induce MLU rather than AoFP esti-
mates, since MLU is a more robust estimator of development
(Parker & Brorson, 2005): children who are close in age may
nevertheless be far apart in terms of language development.
For simplicity, we still refer to a word’s MLU value as its
AoFP. To induce a value for any word, we calculate the set of
MLUs γ for all transcripts within which the word appears and
assign it the smallest value in γ.

We perform this procedure for each word produced by the
children addressed in the two CDS corpora – once for the NA
data and once for the BE data, meaning that we end up with
two AoFP data sets: 441 children are addressed in the CDS-
NA corpus and together produce 29,188 different words, each
of which is assigned an AoFP value; and 134 children are
addressed in the CDS-BE corpus, producing 14,747 different
words, again each with its own AoFP value.

Regression Analyses
In the regression models, we use AoFP as the dependent vari-
able. The first key independent variable is the number of
different MWUs within which a given target word appears
(#MWUs). For example, assuming our corpus is CDS-NA
and our target words are girl and sit, we count the unique
MWUs which contain these two words. To illustrate this,
Table 3 shows the five most frequent MWUs, in CDS-NA,
containing the two words. Counting all such MWUs, we end
up with 113 (PBS) and 230 MWUs (CBL) for girl, and 253
(PBS) and 488 (CBL) MWUs for sit. The second key in-
dependent variable is the number of unique context words
appearing in all MWUs within which a given target word is
contained (#ctxt). If MWUs aid word learning, we should
see a facilitatory effect of #MWUs on AoFP, and this effect
should not be reducible to #ctxt. If a target word appears
within a large number of MWUs, it will also tend to co-occur
with a large number of context words. We posit, however,
that MWUs – not individual words – are the cognitively rel-
evant units; and we predict, therefore, that it is the number
of MWUs – not the number of co-occurring context words –
which affects learning.

Further, we include the following co-variates: the corpus-
frequency of each target word (freq), number of syllables
(syl), phonological neighborhood density (phon), and con-
creteness ratings (con). Given a target word, phon is defined
as the number of homophones, plus the number of words that
can be derived from the target by either adding, deleting, or
substituting a single phoneme. phon, together with nsyl, is de-
rived from the CMU pronunciation dictionary7. Concreteness
ratings for 40,000 lemmas are taken from Brysbaert, War-
riner, and Kuperman (2014)8, who collected them from over
four thousand participants via Mechanical Turk. Since rat-
ings were collected for lemmas, whereas we work with word
forms, we assigned the lemma rating to all word forms which
correspond to the lemma. Regression analyses are based on

7http://www.speech.cs.cmu.edu/cgi-bin/cmudict
8http://crr.ugent.be/archives/1330
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Table 3: The five most frequent MWUs, found in CDS-NA,
for the target words girl and sit. Frequency counts for the
MWUs are give in parentheses.

word CBL PBS

girl

good girl (410) good girl (440)
little girl (110) little girl (175)
that’s a girl (101) a girl (98)
a girl (68) that’s a good girl (59)
that’s a good girl (57) the little girl (51)

sit

sit down (627) sit down (846)
sit up (88) sit up (141)
sit here (46) you sit (117)
sit over here (46) you wanna sit (87)
sit down please (41) come sit (85)

all words for which phon, syl and con estimates are available:
7,265 words in CDS-BE and 5,724 words in CDS-NA. Table
4 shows three example data points.

To increase the generality of this study’s implications, we
use AoFP from children who were not addressed in the cor-
pus used to estimate #MWUs, #ctxt, and frequency. In other
words, we use AoFP from the children addressed in the CDS-
NA corpus for regression models which include #MWUs,
#ctxt and frequency counts from CDS-BE; and we use AoFP
from the children addressed in CDS-BE for regression mod-
els which include independent variables from CDS-NA.

Table 4: Example data points from the CDS-BE corpus, with
#MWUs and #ctxt estimated via the PBS. The phon and nsyl
predictors are not shown due to space constraints.

word freq con #ctxt #MWUs AoFP

goes 3,183 2.19 430 156 0.51
lunch 1,175 4.31 168 57 1.29
running 853 4.27 86 46 1.16

Results
Table 5 presents results of four linear regression analyses (2
methods for MWU extraction × 2 CDS corpora). All vari-
ables are log-transformed, and #ctxt as well as #MWUs are
increased by 1, in order to avoid problems from zero counts.
The baseline models with all co-variates (second column) ex-
plain between 38 and 44 percent of the variance in AoFP. Freq
and con have facilitatory effects, while there are no statis-
tically significant effects for phon and nsyl. Given that in-
creased frequency of exposure is associated with early word
learning (Ambridge, Kidd, Rowland, & Theakston, 2015), the
effect of freq is not surprising, while the effect of con implies
that words associated with concrete concepts tend to be early-
acquired.

Adding #ctxt to the baseline models (third column) leads to

a significant increase in R2, with a facilitatory effect of #ctxt.
Adding #MWUs to the baseline models (fourth column) also
improves the fit, with a facilitatory effect of #MWUs. Inter-
estingly, the effect of #MWUs is stronger than the effect of
#ctxt. Neither effect is reducible to the frequency of target
words, their concreteness, their phonological complexity, or
the density of their phonological neighborhoods. In models
which include the covariates plus #ctxt and #MWUs (fifth and
sixth columns), #MWUs continues to exert a facilitatory ef-
fect; but importantly, #ctxt now has an inhibitory effect on
AoFP. This pattern suggests that the initial facilitatory effect
of #ctxt is due to collinearity with #MWUs.

Our results imply that it is involvement in a large num-
ber of MWUs – not co-occurrence with a large number of
context words – which drives word learning. Furthermore,
the effect of MWUs may be limited to MWUs consisting of
relatively few words. Hence, when factoring out #MWUs,
co-occurrence with a large number of context words inhibits
acquisition of the target words; and when factoring out the ef-
fect of context words, the positive effect of #MWUs persists.

Conclusions and Future Work
We began this paper with a review of studies which sug-
gest that children acquire representations of MWUs and that
MWUs could facilitate the acquisition of smaller linguistic
units contained within them. Based on this, we proposed
the MWU acquisition hypothesis, according to which the
formation of MWU representations precedes and facilitates
the formation of individual word representations. The fa-
cilitatory effect of #MWUs on AoFP supports this hypothe-
sis. More broadly, it supports accounts of language devel-
opment wherein children acquire linguistic units at various
levels of granularity, transitioning gradually from MWUs to
more small-grained units.

Our results also have implications for a previous finding:
Hills et al. (2010) found that the sum of unique context words
occurring within a window of five words to the left and right
of each target word predicts age of acquisition of the tar-
gets. We also observed a facilitatory effect of #ctxt. However,
an inhibitory effect of #ctxt emerged once #MWUs was con-
trolled for. Thus, given that their measure is similar to #ctxt, it
is possible that Hills et al. (2010)’s result is due to collinearity
with the number of MWUs within which target words appear.

In formulating the hypothesis, we purposefully remained
agnostic with respect to the specific mechanisms involved in
the facilitatory interaction between the acquisition of MWU
and single word representations. Accordingly, our results
support a general class of theories wherein MWUs are ac-
quired before single words. These could be usage based ap-
proaches to language acquisition (Tomasello, 2009), but also
proposals such as Peters’ (1983), according to which early-
acquired MWUs are undersegmented chunks which are grad-
ually segmented into smaller units – units which are them-
selves stored in memory, where they are again subject to seg-
mentation. In future work, we plan to experiment with differ-
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Effect (∆R2 in %)

Data set and corpus
Covariates
baseline Log-#ctxt Log-#MWUs

Log-#ctxt
unique

Log-#MWUs
unique

CBL
CDS-BE 44.85 ∗∗∗ 1.23 ∗∗∗ 1.73 ∗∗∗ 0.34 (I) ∗∗∗ 0.85 ∗∗∗
CDS-NA 38.33 ∗∗∗ 0.87 ∗∗∗ 1.35 ∗∗∗ 0.13 (I) ∗∗∗ 0.61 ∗∗∗

PBS
CDS-BE 44.85 ∗∗∗ 0.78 ∗∗∗ 1.52 ∗∗∗ 0.55 (I) ∗∗∗ 1.29 ∗∗∗
CDS-NA 38.33 ∗∗∗ 0.47 ∗∗∗ 1.09 ∗∗∗ 0.18 (I) ∗∗∗ 0.79 ∗∗∗

Table 5: Effects of log-transformed #ctxt and log-transformed #MWUs. The effects of #ctxt and #MWUs were calculated after
those of the co-variates had been included. Unique effects are those with the indicated variable entered last (i.e. #ctxt after
covariates + #MWUs, or #MWUs after #ctxt + covariates). I = inhibitory effect of indicated variable.

ent operationalizations of MWUs, in order to examine what
types of MWUs have the strongest potential effect on word
learning. This, in turn, may allow us to more closely specify
the mechanisms whereby MWUs facilitate word learning.
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Abstract 

When solving arithmetic problems, semantic factors influence 

the representations built (Gamo, Sander & Richard, 2010). In 

order to specify such interpretative processes, we created 

structurally isomorphic word problems that could be solved 

with two distinct algorithms. We tested whether a distinction 

between cardinal and ordinal quantities would lead solvers, due 

to their daily-life knowledge, to build different representations, 

influencing their strategies as well as the nature of their 

drawings. We compared 5th grade children and adults in order 

to assess the validity of this hypothesis with participants of 

varying arithmetic proficiency. The results confirmed that the 

distinction between cardinal and ordinal situations led to 

different solving strategies and to different drawings among 

both age groups. This study supports the ontological distinction 

of cardinal versus ordinal quantities and calls for the 

consideration of the role of daily-life semantics when 

accounting for arithmetic problem solving processes. 

Keywords: arithmetic problem solving; interpreted 

structure; semantic encoding; strategy choice. 

Introduction 

What are the steps taken from reading an arithmetic word 

problem to implementing a set of mathematical operations, 

and how can they be studied? It is well established, since 

Riley, Greeno and Heller (1983) proposed their typology of 

additive word problems, that different problem statements 

lead to different performances. Yet, the reasoning processes 

and representations accounting for such differences remains 

controversial.  

The schema theory (Kintsch & Greeno, 1985) proposes 

that solving a word problem requires to select and to 

instantiate a schema fitting the problem at hand. For example, 

any comparison problem will require to retrieve the 

corresponding schema and to implement it with the available 

values (Riley et al., 1983). However, it has been argued that 

this approach underestimates interpretative effects. For 

instance, Hudson (1983) showed that young children had 

much more trouble solving a problem stating “there are 5 

birds and 3 worms, how many more birds is there than 

worms?” than they had solving a problem in which the 

question was “how many birds won’t get a worm?”. This 

result shows that two problems which share the same schema 

can lead to different performances.  

A contrasting approach comes from Johnson-Laird’s 

(1983) theory of mental models. It posits that, during reading, 

a mental representation is constructed in working memory, 

and that its structure is analogous to that of the situation 

depicted in the problem statement (Reusser, 1990). This 

representation depicts the meaningful relations between the 

elements of the problem. The idea of a problem-specific 

representation, integrating conceptual information from the 

problem statement, can account for the interpretative effects 

described in the literature. De Corte, Verschaffel and De Win 

(1985) showed that rewording a problem statement by 

making the semantic relations more salient facilitates the 

solving process. Similarly, introducing daily-life situations in 

the cover stories of word problems contributes to better 

performance (Stern & Lehrndorfer, 1992; Vlahović-Štetić, 

1999). The use of specific words or sentences can modify the 

representation constructed by the solvers (Cummins, Kintsch, 

Reusser & Weimer, 1988). In a study challenging the 

predictions of mental model and schema views, Thevenot, 

Devidal, Barrouillet and Fayol (2007) showed that placing 

the question at the beginning instead of at the end of a 

problem statement provided more benefit to the less 

experienced solvers. This result supported the mental model 

theory, whereas the schema theory would have predicted the 

reverse pattern.  

Semantic determinants of problem solving 

The semantic determinants of a solvers’ mental 

representations are an important issue. Bassok, Wu and 

Olseth (1995) showed that the semantic relations which 

connect a problem’s entities influence analogical transfer. 

They contrasted problems where objects were given to people 

(OP) and problems were people were assigned to objects 

(PO). They found that, since in real life objects are usually 

given to people rather than people being assigned to objects, 

OP training examples led to better performance with OP 

transfer problems than PO training examples did with PO 

transfer problems. 
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Along this line, Bassok, Chase and Martin (1998) asked 

participants to create addition or division problems involving 

specific sets of objects that were provided. They showed that 

when the objects shared a functionally asymmetric semantic 

relation (e.g. apples and baskets evoke the contain relation), 

participants tended to create division problems, whereas they 

created addition problems when using functionally 

symmetric sets of objects (such as oranges and apples, that 

belong to the same superordinate fruit category). These biases 

are not driven by arithmetic properties but rather by the world 

semantics. Bassok (2001) developed the semantic alignment 

framework proposing that solvers abstract an interpreted 

structure that depends on their world knowledge about the 

entities described in the problem statement. This interpreted 

structure integrates the structural role of the entities 

mentioned in the problem, and can thus lead to an appropriate 

use of abstract formal knowledge when the relations it 

describes are semantically aligned with the mathematical 

relations of the problem (Bassok et al., 1998; Bassok, 2001). 

Both behavioral (Bassok, Pedigo & Oskarsson, 2008) and 

physiological (Guthormsen et al., 2015) measures confirmed 

that problem solving is easier when daily-life knowledge 

(world semantics) and knowledge about mathematical 

concepts (mathematical semantics) are aligned with each 

other. 

Investigating participants’ representations 

The semantic alignment framework predicts that 

representations abstracted from problem statements influence 

the solver’s solving strategies. Yet, the key semantic 

dimensions influencing the representations and explaining 

the lack of transfer remain to be elucidated in order to 

promote methods to help students overcome the 

incompatibilities posed by a problem.  

In this regard, problems with multiple solving strategies are 

of particular interest to study representations, since the 

selection of one strategy over another is informative about the 

representation constructed by the solvers (De Corte, 

Verschaffel & De Win, 1985). For instance, Thevenot and 

Oakhill (2005) worked on a multiple-step problem solving 

task in which the cognitive load was manipulated through 

values size (large or small). They showed that depending on 

the size of the values, participants used different solving 

algorithms. The issue of the semantic determinants of 

problem representations can be tackled by using such a 

paradigm in which different solving strategies are available, 

and the solver’s ability to pick and use one informs us about 

the abstracted interpreted structures (Hakem, Sander, Labat 

& Richard, 2005). For example, Coquin-Viennot & Moreau 

(2003) showed that the presence of a grouping element in a 

problem statement (such as flowers presented within a 

bouquet instead of separately) could incite participants to use 

a factorizing rather than a development algorithm.  

Another way to study the participants’ mental 

representations is the use of drawings. Vosniadou and Brewer 

(1992) elicited drawings from 3rd and 5th grade children so as 

to study the development of their representations of the earth. 

As for problem solving, studies have highlighted the link 

between problem representations and drawings of the 

situations (Barrios & Martinez, 2014; Edens & Potter, 2007). 

Drawings are thus an accurate way to gather information 

regarding the solvers representations. 

Encoding ordinal and cardinal quantities 

In the following experiment, we will capitalize on problems 

that can be solved with two different strategies. Previous 

studies have suggested that an ontological distinction can be 

drawn between two types of situations involving numerical 

values: cardinal situations, consisting of sets of unordered 

elements, and ordinal situations, where units are 

endogenously ordered and can be represented along an axis, 

such as a timeline (Gamo et al., 2010; Hakem et al., 2005; 

Sander & Richard, 2005). When solving an arithmetic word 

problem, the authors posited that solvers abstract an 

interpreted structure that is aligned with either a cardinal or 

an ordinal representation. 

These two types of representations elicit different solving 

strategies: in ordinal representations, subtractions are seen as 

calculations performed on a one-dimensional ordered scale, 

whereas in cardinal representations they are encoded as a 

difference between a whole and a component part (Hakem et 

al., 2005). Thus, according to Gamo et al.’s hypothesis, a 

subtraction could either be perceived as a comparison or as a 

complementation, depending on the situation described in the 

problem statement. The paradigm developed by Hakem et al. 

consisted in problems that admitted two distinct solving 

strategies implementable for both cardinal (number of 

people) and ordinal (duration) quantities. Problem statements 

1 and 2 below embody this distinction between cardinal 

problems and ordinal problems:  

- Problem 1: “There are 5 people in the Richard family. 

When the Richards go on holiday with the Roberts, they make 

a total of 14 people at the hotel. The Roberts are joined on 

holiday by the Dumas family. In the Dumas family, there are 

3 people less than in the Richard family. The Roberts are 

going on holiday with the Dumas. How many will they be at 

the hotel?” 
- Problem 2: “Antoine took painting classes for 5 years, and 

stopped at the age of 14. Jean started at the same age as 

Antoine, and went to classes 3 years less than him. How old 

was Jean when he stopped attending painting classes?” 

 

 
Figure 1: Structure of the problems. This structure can 

depict both problems and is compatible with both strategies. 
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Problems 1 and 2 are isomorphs sharing the same deep 

structure (Figure 1), and can both be solved using either of 

two strategies: either a 3-step complementation strategy (14 – 

5 = 9; 5 – 3 = 2; 9 + 2 = 11) or a 1-step matching strategy 

(14 – 3 = 11). Yet, the authors hypothesized that (i) because 

the quantities used are different, the interpreted structures are 

too, each problem statement consequently favoring the use of 

one strategy over the other; and that (ii) the unequal 

distribution of strategies used may be accounted for by the 

nature of the abstracted representations: problem 1 encoded 

as a cardinal problem (Figure 2) and problem 2 encoded as 

an ordinal problem (Figure 3).  

 

 
Figure 2: Cardinal representation of problem 1. This 

interpreted structure fosters the calculation of the 

intersection (part 2) between whole 1 and whole 2, thus 

favoring the 3-step complementation strategy. 

 

 
Figure 3: Ordinal representation of problem 2. This 

interpreted structure puts forward the fact that the difference 

between whole 1 and whole 2 is equal to the difference 

between part 1 and part 3. The shorter 1-step comparison 

algorithm thus becomes available to solve the problem. 

 

In accordance with the authors’ hypothesis, the participants 

who were asked to solve the problems using as few 

operations as possible found the 1-step matching strategy on 

problem 1 in less than 5% of the cases. On the other hand, 

problem 2 led to the use of the 1-step matching strategy in 

over 60% of the cases, suggesting that comparisons are 

indeed made salient in ordinal representations. Hakem et al.’s 

(2005) study of the solving strategies showed that the two 

types of problems were underlain by different 

representations. Yet, the claim that ordinal and cardinal 

quantities evoke the corresponding ordinal and cardinal 

representations warrants further empirical support. 

Present study 

Our study builds on the work of Hakem et al. (2005) in order 

to highlight the role of general semantic features on the 

representations abstracted by the solvers and on the 

implemented solving strategies. We aimed at providing 

converging measures of the impact of the cardinal/ordinal 

distinction on the solvers’ ability to solve the problems, and 

to provide the first empirical test of these effects on children 

and adults simultaneously. To this end, 5th graders as well as 

adults were asked to perform two tasks: solving problems 

involving different types of cardinal and ordinal variables 

using as few operations as possible, and making a drawing 

for each problem. 

The goal of the experiment was twofold: first, we intended 

to confirm with both age groups the validity of the ordinal 

versus cardinal distinction with new material including new 

types of quantities and using systematically controlled 

problem statements. This was intended to show that strong 

semantic effects affect both younger and older – more 

proficient – participants in arithmetic problem solving. 

Second, we wanted to show that those effects originate in the 

representations abstracted from the problems, and translate 

into the algorithms implemented by the solvers. We predicted 

that within each group, the mean percentage of the 1-step 

matching strategy would be significantly lower on cardinal 

problems than on ordinal problems, despite the adults 

achieving a globally higher solving performance than the 

children. Also, we predicted that for each age group the 

drawings would reveal a higher ordinal versus cardinal ratio 

of distinctive features for ordinal than for cardinal problems. 

Experiment 

Participants 

We recruited samples from two populations for this study: a 

group of 59 children in 5th grade (27 females, M = 11.00 

years, SD = 0.36), and a group of 52 adults (36 females, M = 

26.86 years, SD = 9.72). All participants were recruited from 

the Paris region and spoke French fluently. None had 

previously participated in any similar experiment. 

Materials and procedure 

Each participant was presented with a set of 12 problems, 6 

using ordinal values (duration, height or number of floors), 

and 6 using cardinal values (number of elements, price or 

weight), according to Hakem et al.’s definition. We 

considered duration, height and number of floors as ordinal 

values because their ordinal component is salient in daily life, 

putting emphasis on successorship relation and on 

comparison. Similarly, number of elements, price and weight 

were used as cardinal values because the world semantics 

attached to such quantities evoke the unordered grouping of 

elements assigned to values and the partition of a whole into 

its component parts.  

All the problems had the same number of sentences. The 

numerical values were provided in the same order and both 

numerical values and problem order were randomized 

between participants. The problems were printed on 13-page 
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booklets with the instructions detailed on the first page. The 

participants were asked (1) to solve the problems using as few 

arithmetic operations as possible, (2) to write down every 

operation they made, even those they solved using mental 

calculation, and (3) to make a drawing for each problem 

statement that could help someone else understand and solve 

the problem. Each page was divided into four parts: problem 

statement, ‘draft’ area, ‘response’ area and ‘drawing’ area. 

The booklets and instructions were strictly identical for both 

age groups. 

Coding 

The successful strategies were categorized either as correct 

1-step matching strategy, or as correct 3-step 

complementation strategy. A problem was considered correct 

when the expected result was obtained and accompanied by 

calculations1. Regarding the drawings, we designed an 8-item 

rating scale evaluating to what extent the drawings possessed 

ordinal versus cardinal characteristics. The scale included 4 

cardinal items (Figure 4.a) and 4 ordinal items (Figure 4.b). 

The items were chosen so that they would either depict 

unordered elements being grouped in sets, or ordered 

elements being described as positions on an axis and 

compared along this axis. 

 

 
 

 
Figure 4: Coding grids for cardinal (a) and 

ordinal (b) features. 

                                                           
1 When a calculation error resulted in a difference of +1 or −1 

compared to the correct value, problems were still considered 

correctly solved. 

Each drawing, including those of failed problems, was scored 

by two independent raters who were not familiar with the 

theories at play and ignored the hypotheses being tested. 

They were asked to rate the drawings according to the 8 items 

scale resulting from the aggregation of Figures 4.a and 4.b. 

After an initial rating phase, the percent agreement between 

the two raters was of 91.87%. An inter-rater reliability 

analysis using Cohen’s Kappa statistic showed substantial 

agreement between raters. (κ = 0.61, SE = 0.14), according to 

Landis & Koch’s typology (1977). After discussion, the 

raters reached 100% agreement. For each drawing, a score 

was then calculated by subtracting the number of cardinal 

items to the number of ordinal items, thus creating a scale 

ranging from −4 (the most cardinal) to +4 (the most ordinal). 

Results 

Our first hypothesis was that problems with ordinal quantities 

should facilitate the use of the matching 1-step strategy 

compared to problems with cardinal quantities.  

 

 
Figure 5: Children’s and adults’ mean rate of use of the two 

solving algorithms depending on the type of quantity used. 

 

Figure 5 details the participants’ use of each strategy 

depending on the type of quantity featured in the problems. 

A paired t-test revealed that the mean rate of use of the 1-step 

matching strategy was higher on ordinal (M = 0.39, SD = 

0.31) than on cardinal (M = 0.08, SD = 0.17) problems 

(t(58) = 8.36, p < 0.001). The same analyses were performed 

for the adults and showed that the mean rate of use of the 1-

step matching strategy was also higher on ordinal (M = 0.457, 

SD = 0.33) than on cardinal (M = 0.253, SD = 0.35) problems 

(t(51) = 4.99, p < 0.001). This confirmed that the choice of a 

solving algorithm is influenced by the cardinal versus ordinal 

nature of the quantities, and that this effect is robust among 

a 

b 
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adults. Additionally, the 1-step algorithm was significantly 

less used by children than by adults on cardinal (t(109) = 

3.48, p < 0.001, unpaired t-test) but not ordinal (t(109) = 1.10, 

p = 0.27, unpaired t-test) problems, meaning that children had 

significantly more difficulty than adults using the 1-step 

strategy on cardinal, but not on ordinal problems. 

To test our second hypothesis, we focused on the drawings 

made by the participants. Figure 6 details the rating of the 

drawings depending on the type of quantity used in the 

problems. The drawing score was significantly lower for 

drawings depicting problems with cardinal quantities (M = –

0.55, SD = 0.78) than for those describing problems with 

ordinal quantities (M = 0.06, SD = 0.87, t(58) = 5.61, p < 

0.001, paired t-test), indicating that problems using ordinal 

quantities led young participants to draw ordinal features 

(axes, intervals, etc.) at a higher ratio over cardinal features 

(sets, groups of elements, etc.) compared to the ordinal 

problems.  

 

 
Figure 6: Children’s and adults’ mean drawing score 

depending on the type of quantity used in the problems. 

Vertical bars denote 0.95-confidence intervals. 

 

Similarly, among adult participants, problems with cardinal 

quantities (M = –1.48, SD = 0.79) led to a significantly lower 

drawing score than problems with ordinal quantities (M = 

0.89, SD = 0.86, t(51) = 12.44, p < 0.001, paired t-test). In 

sum, the presence of ordinal (resp. cardinal) quantities seems 

to result in representations featuring a higher number of 

ordinal (resp. cardinal) features, in both children and adults. 

Of note, drawing score was significantly higher among 

children than among adults on cardinal problems (t(109) = 

6.24, p < 0.001, unpaired t-test) but significantly lower 

among children than among adults on ordinal problems 

(t(109) = 5.00, p < 0.001, unpaired t-test); in other words, 

children included significantly less cardinal features than 

adults while representing cardinal problems, and 

significantly less ordinal features than adults when 

representing ordinal problems. 

Discussion 

The fact that the cardinal versus ordinal distinction in 

problem statements influenced both children’s and adults’ 

solving strategies confirmed the robustness of these 

interpretative effects, even with experienced solvers who 

should not meet any difficulty in solving such simple 

problems. Indeed, children performed about half as well as 

adults, yet the distinction between cardinal and ordinal 

problems remains significant in both populations. 

Additionally, adults’ performances were significantly higher 

on cardinal, but not on ordinal problems, indicating that when 

semantically congruent with the 1-step strategy, world 

semantics help children achieve adult-like performance on 

the task. 

The elicited drawings provided an empirical confirmation 

of the importance of the ordinal versus cardinal distinction in 

both populations. The fact that children produced drawings 

that had significantly fewer ordinal or cardinal features on 

ordinal or cardinal problems, respectively, may be attributed 

to a global lack of details in their drawings, which 

nevertheless did not prevent a significant distinction between 

cardinal and ordinal drawings to be revealed among children. 

Additionally, children may have more difficulties to produce 

a graphic implementation of ordinal situations, which would 

explain their poor ordinal score (0.06) for ordinal problems. 

This calls for further research on the topic. 

Overall, the results of both the drawing and the solving 

tasks show that the participants’ semantic knowledge about 

the quantities used in the problems (i.e. their experience with 

counting the number of apples in a bag, adding the price of 

every item on a bucket list, calculating the arrival time of 

their train or using the elevator) influence the encoding of 

arithmetic word problems. The distinction introduced 

between ordinal and cardinal problem statements was 

reflected in the representations constructed (as shown by the 

drawings made by the participants) and led solvers to use 

different solving algorithms, even when asked specifically to 

use the shorter strategy they could find. Furthermore, the fact 

that those effects could be highlighted both with young pupils 

and adults indicates the robustness of such encoding 

constraints. The ontological distinction hypothesized 

between ordinal and cardinal representations was thus 

confirmed on two complementary tasks. 

The use of a double measure of the influence of the solvers’ 

world knowledge allowed us to gather converging clues 

shedding light both into the abstracted representations and 

into the subsequently implemented algorithms. By focusing 

on the role of semantic properties on the initial encoding of a 

problem, we hope to gain a finer understanding of arithmetic 

problem solving in its whole, and to pave the way for 

accounting for the interactions between world semantics, 

mathematical semantics and algorithms. Understanding the 

determinants of problem representations is a crucial step to 

identify the potential pitfalls and dead ends born from 

semantic incongruence (Gros, Sander & Thibaut, 2016) as 

well as to help develop analogical transfer between 

isomorphic problems by promoting semantic recoding among 
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the learners (Gamo, Sander & Richard, 2010; Gros, Thibaut 

& Sander, 2015). Doubtlessly, the educational opportunities 

resulting from a better understanding of the conditions 

necessary for semantic recoding and analogical transfer 

between problems are promising. 
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Abstract 

In Mandarin Chinese, the space-time word “前 /qian” is 
used to express both the spatial concept of front/forward 
and the temporal concept of early/before (e.g., “前天/qian-
tian”, literally front day, meaning the day before yesterday). 
This is consistent with the fact that Mandarin speakers can 
gesture to the front of the body to refer to a past event, and 
more generally can have past-in-front space-time mappings. 
In Chinese Sign Languages, however, the spatial 
front/forward and the temporal early/before are signed 
differently as the sign for spatial front is only used for the 
spatial concept of forward, and the sign for before/past is 
directed to the back. In this study we investigate whether 
the Mandarin sagittal spatial metaphors for time influence 
Chinese deaf signers’ spatio-temporal reasoning. In two 
experiments, we found that Chinese deaf signers with 
higher Mandarin proficiency were more likely to interpret 
the Mandarin word “前/qian” as the temporal conception of 
past (Study 1), and to perform past-in-front space-time 
mappings (Study 2) as opposed to signers with lower 
Mandarin proficiency. The findings of the study not only 
provide within-culture evidence for the influence of 
language on thought, but also demonstrate that even  cross-
modal space-time metaphors can have an impact on deaf-
signers’ spatio-temporal reasoning.   

Keywords: space and time; Chinese deaf signers; language 
and thought; conceptual metaphor 

 

Introduction 

Across cultures people use spatial representations to think 

about time (Bottini, Crepaldi, Casasanto, Crollen, & 

Collignon, 2015; Boroditsky, 2000; Casasanto & 

Boroditsky, 2008; see reviews Bender & Beller, 2014; 
Núñez, & Cooperrider, 2013). Most Europeans feel that 

the future is in front of them and the past is at their back 

(e.g., Miles, Nind, & Macrae, 2010; Ulrich et al., 2012). 

Such an intuition matches the human’s experience of 

walking in a certain direction, which is usually forwarding 

to the front, so that the passed-by path is the past and the 

place ahead represents the future. Interestingly, the future-

in-front and past-at-back mappings are also expressed as 

such in many languages. For instance, in English, one can 

say “We look forward to the New Year ahead, and look 

back to the hard times behind (e.g., Clark, 1973; Lakoff & 

Johnson, 1980). 

However, the way of conceptualizing the past at the 

back and the future in the front does not generalise to all 

languages. For example, speakers of Aymara exhibit the 

opposite sagittal space-time mappings, with past things in 

front of them, and the future as yet unseen events behind 

them. This conceptual mapping is consistent with the way 

they produce co-speech gestures, and with the spatial 

metaphors in their language, as front year in Aymara has 

the meaning of last year (Núñez & Sweetser, 2006). 

Interestingly, Moroccans also have a strong tendency to 

place past events in front, even though in Arabic the 

front/back time metaphors are similar to most future-in-

front languages such as English. It has been argued that 

the reason for Moroccans’ past-in-front space-time 

mapping is that, in their culture, tradition and old 

generations are more valued. Thus space-time mappings 

in people’s minds are conditioned by their cultural 

attitudes towards time (e.g., with a strong focus on past 

times and old generations). It is claimed that the mental 

space-time mappings are dependent on attentional focus 

and can be independent from the space-time mappings 

expressed in language (de la Fuente, Santiago, Román, 

Dumitrache, & Casasanto, 2014). Moreover, a recent 

study on Mandarin speakers shows that there are both 

long-term effects of cultural attitudes on the spatialization 

of time, and immediate effects of lexical cues to space-

time metaphors which can probe people’s mental 

representations (Gu, Zheng, & Swerts, 2016).  

Despite the fact that a growing number of studies have 

shown that linguistic, cultural and bodily experiences 

have separate influences on people’s spatial representation 

of time (e.g., Boroditsky, 2001; Casasanto, & Bottini, 

2014; Fuhrman & Boroditsky, 2010; Núñez & Sweetser, 

2006; Núñez, Cooperrider, Doan, & Wassmann, 2012; Saj, 

Fuhrman, Vuilleumier, & Boroditsky, 2014; Torralbo, 

Santiago, & Lupáñez, 2006), our knowledge on why some 

communities adopt a future-in-front mapping whereas 

others a past-in-front mapping for time is still incomplete. 

For instance, very few studies have researched deaf 

signers’ spatio-temporal reasoning.  

Sign language speakers also tend to use spatio-temporal 

metaphors to express time. For instance, signers’ bodies 

are often referred to as a deictic reference of now, and the 

future is signed to the front (e.g, the American Sign 

Language, Emmorey, 2001) relative to the signer’s body, 

and the past to the back (e.g., the French Sign Language, 

Maeder & Loncke, 1996; the Spanish Sign Language, 

Pereiro & Soneira, 2004). At first sight, it would seem 

reasonable to assume that the metaphorical timelines in 

those sign languages would agree with the way these are 

used in the corresponding spoken languages.  

Interestingly, there are dramatic differences in the 

deictic sagittal timelines between the Chinese Signed 

Language (CSL) and Mandarin Chinese. In Mandarin 
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Chinese, the sagittal space-time word “前/qian” indicates 

both the spatial concept of forward/front and the temporal 

concept of early/before (Yu, 2012) (e.g., “前天/qian tian”, 

literally: front day, meaning: the day before yesterday). A 

case study on gestural behaviour has shown that Mandarin 

speakers can point to the back or front of their body to 

refer to the conception of before, depending on whether 

the language suggests an ego-moving perspective (e.g., 

We are running to the future ahead.) or a time-moving 

perspective (e.g., The future is coming.) (Chui, 2011). 

Recent quantitative research, on the other hand, finds that 

Mandarin speakers are more likely to gesture the past to 

the front when referring to temporal expressions with the 

sagittal space-time word (前/qian) (Gu, Mol, Hoetjes, & 

Swerts, in prep). Partially due to this lexical effect, some 

Mandarin speakers even explicitly report to believe the 

past to be positioned behind and the future in front of 

them (Gu, Zheng, & Swerts, 2016). 

In CSLs, however, the spatial forward and the temporal 

early/before are signed differently, i.e., the sign of front is 

only used for the spatial concept of forward, whereas the 

concept of before/past is signed towards the back (e.g., 

Zheng, 2009; Wu & Li, 2012). In other words, in their 

lexicon, deaf signers only have the past-at-back space-

time mappings, which is different from Mandarin 

speakers who additionally have past-in-front mappings 

(Table1). As deaf signers learn the spatial concepts earlier 

than the abstract concepts of time, it is plausible that if a 

signer has not acquired the Mandarin space-time word (前
/qian) as a temporal past conception, s/he is likely to 

interpret the word as a spatial concept of forward, which 

is consistent with that in CSL (front in the space). By 

contrast, if a signer has acquired the space-time word as a 

temporal past conception, s/he is likely to map the past to 

the back as suggested by the CLS past-at-back mappings, 

or s/he may also establish new space-time mappings with 

the past in the front, similar to Mandarin speakers. 

 

Table 1: Differences between Mandarin Chinese and 

Standard CSL in sagittal spatio-temporal metaphors. 

 Front (space) 
The day before 

yesterday (time) 

Mandarin  前面 (front surface) 前天 (front day) 

CSL   
One hand with the 

index finger extended, 

point to the very front. 

 
The index and middle 

fingers point to the 

back once. 
Note: The spatial concept of front in Mandarin is consistent with 

that in CSL. Figures of signs are reproduced from the CSL, 2003.  

 

Given the cross-linguistic differences in space-time 

metaphors between Mandarin Chinese and CSL, and 

given that learning a new category of spatial metaphors 

for time may influence one’s mental representation of 

time (Boroditsky, 2001), this paper aims to study (1) 

whether the differences in space-time metaphors between 

Mandarin Chinese and CSL influence Chinese deaf 

signers’ understanding of time; (2) in the context of 

Chinese culture, whether the acquisition of Mandarin 

sagittal spatial metaphors leads Chinese deaf signers to a 

change in space-time mappings. To this end, we have 

conducted two studies: study 1 used a clock question to 

test how Chinese deaf signers interpret the sagittal space-

time word 前/qian (spatial front or temporal before); study 

2 used a temporal diagram task to explicitly examine 

Chinese deaf signers’ space-time mapping. 

Study 1: The Clock Question 

Method 

Participants  

15 deaf signers (F = 8) from Rizhao Special Education 

School participated in the experiment. They were fluent 

users of Standard CSL. They studied in different grades at 

school, ranging from the 4
th

 grade to 9
th

 grade (M = 7.5). 

Their mean age was 17.6 years (SD = 2.9). The average 

hearing loss was moderate-severe, as reported by the 

signers themselves and their teacher (M = 3.8, 1-Slight, 2-

Mild, 3-Moderate, 4-Moderately Severe, 5-Severe, 6-

Profound). Permission was granted to the investigators to 

have access to the participants’ Mandarin Chinese exam 

scores from the record of their last end-term exam.  

 

Materials and Procedure 

Singers were given a questionnaire to fill in personal 

information and family background. The instructions were 

not in sign language but in written Mandarin. In the 

middle of the questionnaire, there was a clock question 

(Table 2). The sagittal space-time word 前/qian (literally 

front/forward or temporally before) in this question is 

somewhat ambiguous in meaning though mainly used as a 

temporal expression. Most Mandarin speakers will 

interpret the question as moving the clock one hour 

before/earlier, thus answering the question as 12 AM (Lai 

& Boroditsky, 2013). However, if deaf signers think of 

the space-time word (前/qian) as a spatial front, then they 

are likely to move the clock one hour forward, thus giving 

2 PM as an answer. It is also assumed that deaf signers of 

higher Mandarin proficiency levels are more likely to 

interpret the space-time word as a temporal past, as 

opposed to signers of lower Mandarin proficiency levels.   

 

Table 2: The clock question in Mandarin and English. 

 

假设          现在           下午           1点， 

Jia-she      xian-zai       xia-wu       yi-dian                     

suppose     now            afternoon   one o’ clock 

suppose now it is 1 PM 

时钟              往前拨             一小时       是       几点？ 

Shi-zhong   wang-qian bo      yixiaoshi    shi       ji-dian                   

clock        forward front         one hour      is     which hour 

what time is it if I would ask you to move the clock one 

hour forward/before (early) 

 

Data Analysis 

Data of two participants were excluded from the analysis, 

as they did not fully complete the questionnaire. As a 

dependent variable, we counted participants’ responses to 

the clock question (answer: 12 AM or 2 PM). 
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We would discuss below how those responses were 

moderated by possible factors. The first and most 

important factor was participants’ Mandarin proficiency 

level. It was mainly measured by the school grade level in 

which a deaf signer was studying (grade), as a deaf signer 

studying in a higher grade was expected to have a higher 

Mandarin proficiency level than a signer studying in a 

lower grade. Second, signers’ Mandarin exam score (exam 

score) was used to supplement the proficiency 

measurement, albeit that the exam papers and intrinsic 

difficulty of tests were different across grades. 

Additionally, given that age can influence individual’s 

sagittal spatial-temporal reasoning (de la Fuente et al., 

2014), we controlled for age as a possible factor. 

Participants’ hearing loss and their parents’ deafness 

(deaf parents) were also considered to be factors that may 

influence participants’ space-time mappings.  

Results and Discussion 

About 70% of participants (9 out of the 13 deaf signers) 

responded according to the spatial understanding of the 

word “前/qian” (forward), giving 2 PM as an answer. In 

comparison to the 13% (3 out of 24) of Mandarin 

monolinguals in Lai & Boroditsky (2013)’s study, 

Chinese deaf signers were significantly more likely to 

give an answer of 2 PM than Mandarin monolinguals 

(Fisher exact test, p = .001, Odds Ratio = 15.75, 95% CI = 

[2.91, 85.22]). Given that these deaf signers have already 

learned Mandarin temporal conceptions in low grades, 

this indicated that participants may still be influenced by 

the spatial sign of front from their CSL.    

Furthermore, we tested whether Mandarin proficiency 

influenced signers’ understanding of the space-time word 

(前/qian). The results showed that the factor grade was 

significant (β = .387, t = 3.01, p = .020, 95% CI = 

[.083, .691]), while controlling for the other factors exam 

score, age, deaf parents and hearing loss (Table 3). This 

indicated that those higher graders were more inclined to 

interpret the space-time word (前/qian) as temporal before 

(12 AM). Assuming that higher graders are likely to have 

higher Mandarin proficiency levels than lower graders, 

the effect of grade suggests that signers’ Mandarin 

proficiency levels play a role in shaping their 

understanding of the conceptions of the space-time word 

(前/qian). A seemingly contradictory finding is that exam 

score was not significant (β = -.0002, t = - .020, p = .985, 

95% CI = [-.019, .019]), keeping all other variables 

constant. This might be due to the fact that there was only 

limited variation in Mandarin proficiency within a grade. 

 

Table 3: Results of the clock question. 

 

Note: * p < .1, ** p < .05 

The fact that signers with lower Mandarin proficiency 

levels were more likely to give an answer of 2 PM may be 

caused by their use of spatial reference of front (primarily 

be triggered by lexical cues), though this does not 

necessarily imply that they also explicitly conceptualise 

the future as in front of them. Study 2 investigated the 

Chinese deaf signers’ sagittal space-time mappings using 

a more explicit temporal diagram task.  

Study 2: A Temporal Diagram Task 

Method  

Participants 

All participants in study 1 took part in study 2.
1
 

 

Materials and Procedure 

Participants performed a temporal diagram task (de la 

Fuente et al., 2014, Experiment 1), which has been 

adapted and used in Gu, Zheng, and Swerts (2016)’s study. 

They sat at a table and saw a toy doll (named Xiaoming) 

with one box behind and one box in front of it. 

Participants and the character faced the same sagittal 

direction (Fig. 1). Participants were provided with a 

written instruction in which they could read that the day 

before yesterday (前天/qian-tian, tr. front day) Xiaoming 

went to visit a friend who liked eating apples, and the day 

after tomorrow (后天/hou-tian, tr. back day) he would be 

going to visit a friend who likes eating pears. Participants 

were given an apple and a pear and were instructed to put 

the apple in the box that corresponded to the past (以前
/yi-qian, tr. to front) and the pear to the box that 

corresponded to the future (今后/jin-hou, tr. now back). 

The mentioning order of the apple and pear and the way 

they were paired with the day before yesterday or the day 

after tomorrow were counterbalanced. Note that there was 

no ambiguity in the interpretation of the space-time words 

in this instruction (cf. study 1), e.g., the concept of the 

space-time expression “前天/qian-tian”, tr. front day can 

only be interpreted as the day before yesterday. 

 

 
Figure 1: Schematic setting up of the Experiment 

reproduced from Gu, Zheng, & Swerts (2016). 

 

Following Gu, Zheng, & Swerts (2016)’s procedure, we 

asked participants to perform the task with real entities 

rather than doing it on paper (cf. de la Fuente et al., 2014). 

                                                   
1 Participants did Study 2 first, followed by the clock question 

(Study 1) that was inserted in the middle of a questionnaire. As 

participants were not given any feedback, no significant 

influence was expected from the first task on the second one. 

clock Coef. t P>t [  95% CI  ] 

grade .387 3.01 .02 ** .083 .691 

exam_score -.0002 -.02 .985 -.019 .019 

age -.029 -0.69 .515 -.129 .071 

deaf_parents -.176 -0.75 .479 -.731 .380 

hearing_loss -.231 -1.84 .108 -.528 .066 

_cons -1.20 -1.76 .122 -2.83 .413 
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This can minimise the potential projection of vertical 

timelines into the sagittal axis (as Chinese can 

conceptualise time vertically, mapping the up and down to 

the time conceptions of early and late, e.g., Boroditsky 

2001; Gu, Mol, Hoetjes, & Swerts, 2017). Participants 

were tested individually in Rizhao, China, and all 

instructions were not in sign language but in written 

Mandarin Chinese. After all tasks, they were given a 

small token of appreciation and signed a consent form.  

 

Data Analysis 

In total, data of fourteen participants were used in the 

analysis (Data from a 4
th

 grader was excluded as she was 

helped during the task). The dependent variable was 

participants’ responses towards space-time mappings 

(past-in-front or past-at-back). 

As was the case with the previous experiment, we again 

controlled for possible factors such as participants’ exam 

score, grade, age, hearing loss and deaf parents. 

Results and Discussion 

42.9% of participants responded according to the past-in-

front mapping, placing the past event in the box in front of 

the character and the future event in the box behind it. 

Although this rate was not significantly different from 

50%, p = .79, Odds Ratio = .75, 95% CI = [.18, .71] (N = 

14), we expect it to be significant with a larger sample 

size. It is unlikely that deaf signers randomly performed 

the space-time mappings by chance, as shown below. 

As we further examined the relationship between 

signers’ Mandarin proficiency and their responses towards 

space-time mappings, controlling for deaf parents, age 

and hearing loss, the results showed that grade and exam 

score were significantly positive (Table 4). Specifically, 

first, higher graders had a stronger tendency to perform 

past-in-front mappings (β = .34, t = 2.61, p = .031, 95% 

CI = [.039, .641]), keeping all other variables constant. 

Second, those who had higher Mandarin exam scores 

were more inclined to respond towards past-in-front 

mappings (β = .008, t = 2.04, p = .075 (two-tailed), 95% 

CI = [-.001, .017]), ceteris paribus. The results indicated 

that Mandarin proficiency has an effect on signers’ space-

time mappings, both between different grades and within 

a grade. In other words, despite the fact that there are only 

past-at-back spatio-temporal signs in CSL, deaf signers 

can gradually establish the Mandarin past-in-front space-

time mappings during their learning process of Mandarin.  

 

Table 4: Results of the temporal diagram task. 

 

pastfront Coef. t P>t [ 95% CI ] 

grade .340 2.61 .031** .0391 .641 

exam_score .008 2.04 .075 * -.001 .017 

age -.047 -1.53 .163 -.119 .024 

deaf_parents -.477 -2.04 .075* -1.015 .062 

hearing_loss -.051 -.37 .724 -.372 .270 

_cons -1.52 -4.38 .002 -2.32 -.722 

Note: * p < .1, ** p < .05 

 

Additionally, those signers whose parents were deaf 

were less likely to perform past-in-front mappings (β = -

.48, t = -2.04, p = .075 (two-tailed), 95% CI = [-

1.015, .062]), ceteris paribus. The results suggested that 

deaf parents may influence deaf children’s space-time 

mappings. This is plausible, as deaf children may often be 

exposed to the past-at-back temporal signs performed by 

their deaf parents. Consequently, they may be more likely 

to have past-at-back space-time mappings than their 

counterparts with non-deaf parents. 

General Discussion  

In study 1, we used a clock experiment to examine how 

Chinese deaf signers interpreted Mandarin spatial 

metaphor of time. We observed effects of both CSL and 

learning Mandarin Chinese on their understanding of time. 

There is a co-activation of signs even in the non-signing 

linguistic contexts, whereas within the signers’ group, 

those with higher Mandarin proficiency levels were more 

likely to interpret the space-time word 前/qian as temporal 

before (like Mandarin speakers). Our results suggest that 

language transfer occurs across modalities (i.e., a spoken 

language and a sign language, cf. bimodal bilinguals, 

Emmorey, Borinstein, Thompson, & Gollan, 2008).   

Alternatively, the results can also be explained in terms 

of differences in time perspective-taking (e.g., Gentner, 

Imai, & Boroditsky, 2002; Moore, 2011; Núñez, Motz, & 

Teuscher, 2006; Walker, Bergen, & Núñez, 2017), which 

would be consistent with claims of a previous study on 

Mandarin-English sequential bilinguals (Lai & Boroditsky, 

2013). Similar as in CSL, in English the spatial front 

usually does not have a meaning of temporal before. That 

study found that Mandarin-English speakers were 

influenced by English when answering the clock question 

in Mandarin, such that Mandarin-English speakers were 

less likely to answer the clock question as 12 AM, in 

comparison with what Mandarin monolinguals did. 

According to Lai and Boroditsky (2013), Mandarin 

speakers mostly take the time-moving perspective (12 

AM), whereas English speakers mostly take the ego-

moving perspective (2 PM). If monolingual signers of 

CSL mainly take the ego-moving time perspective in 

deictic time, it is possible that they gradually gain the 

time-moving perspective after learning Mandarin Chinese. 

In study 2, we used a temporal diagram task to 

explicitly test deaf signers’ sagittal space-time mappings. 

We found that some singers performed past-in-front 

space-time mappings. Given that Mandarin speakers also 

have past-in-front mappings (Gu, Zheng, & Swerts, 2016), 

the pattern of signers’ space-time mappings may be due to 

a characteristic of the Chinese culture, in which people 

give more importance to tradition and focus more on the 

past (Guo, Ji., Spina, & Zhang, 2012), analogous to what 

appears to be true for Moroccans. However, within the 

Chinese culture, we found that the extent to which signers 

performed past-in-front mappings was positively related 

to their Mandarin proficiency. Similar to the results of the 

clock question, we found effects of Mandarin proficiency 

on Chinese signers’ spatio-temporal reasoning, which 

suggests that learning a novel linguistic spatial metaphor 

for time may foster a new way of thinking about time 

(Boroditsky, 2001; Hendricks & Boroditsky, 2015). 
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Future studies can further examine this using a non-

linguistic task (e.g., Fuhrman & Boroditsky, 2010). 

Alternatively, according to the temporal-focus 

hypothesis (de la Fuente et al., 2014), cultural attitudes 

towards time exert an important influence on people’s 

space-time mappings. One may argue that the typical 

Chinese culture is more past-focused than that of the 

Chinese deaf culture, although this needs a further survey. 

Given such an assumption, signers may gradually adjust 

themselves into the mainstream Chinese culture and hence 

become more similar to the Mandarin speakers. Future 

study can additionally control for signers’ temporal-focus 

of attention to corroborate the present findings.  

Note that in Standard CSL, there are no sign metaphors 

that reflect past-in-front space-time mappings but only 

signs for past-at-back mappings. It would therefore be 

ideal if we could supplement the current set of results with 

those obtained from a control group of monolingual deaf 

signers of CSL to provide stronger evidence that deaf 

signers indeed think of the past as being situated at the 

back, though, practically, we can hardly find a group of 

deaf signers who do not know Mandarin Chinese. Future 

research may also study illiterate hearing Mandarin 

speakers to at least examine the effects of written 

Mandarin proficiency on people’s spatial-temporal 

conceptualisations. By contrast, in our study, we found 

that a certain proportion of Chinese deaf signers put the 

entity corresponding to the past in the front. Additionally, 

the effects of exam score and study grade clearly suggest 

that Chinese deaf signers can gradually “learn” to have 

past-in-front mappings as a function of an improved 

Mandarin proficiency. This is an intriguing finding as it 

shows that within the Chinese culture, learning a spatial 

metaphor in a different modality can still influence 

people’s mental representations of time. 

Furthermore, the past-in-front mappings performed by 

the deaf signers in the temporal diagram task can be 

argued to be a consequence of a direct translation of the 

spatial conception of front in the Standard CSL, thus 

characterising the results as merely an effect of language 

interferences without reference to the differences in 

spatio-temporal reasoning. For example, participants may 

simply interpret the sagittal space-time word (前/qian) as 

front in space rather than understanding the concept of 

space-time expression (前天/qian-tian, front day) as the 

past conception of the day before yesterday, though the 

conception of front day is not ambiguous at all. This is, 

however, quite unlikely. First, the instructions were 

checked beforehand by their teacher to ensure that those 

participants have previously learned all the vocabulary 

and would be able to understand the sentences and the 

concept of front day. Second, if deaf signers would have 

done a direct translation, those signers of lower Mandarin 

proficiency levels should be more likely to translate the 

space-time word (前/qian) as front, thus would produce a 

larger proportion of past-in-front mappings. However, 

quite on the contrary, we found that deaf signers of lower 

Mandarin proficiency levels or studying in lower grades 

were actually more inclined to perform past-at-back 

mappings, which was consistent with the CSL where the 

past is signed towards the back. This indicates that 

participants even with a low Mandarin proficiency can 

already understand that front day is a temporal concept. 

Therefore, needless to say for the higher proficient group, 

the tendency of having past-in-front space-time mappings 

likely reflects their spatio-temporal reasoning.  

Moreover, it is possible that deaf signers have to rely 

on their vision heavily as a result of the hearing loss.  

Consequently, this may trigger a stronger effect to 

consider things that they have seen in front of them as the 

past whereas the events that have not seen as the future 

behind them (cf. Aymara speakers, Núñez & Sweetser, 

2006). Apparently, this explanation does not hold for deaf 

people universally, as deaf users of many other sign 

languages (e.g., ASL, FSL) do not exhibit a tendency 

towards past-in-front space-time mappings.  

Additionally, we conducted both studies in Mandarin 

Chinese rather than in CSL. It would be interesting to ask 

the deaf signers to fulfil the temporal diagram task with a 

sign language instruction, the results of which probably 

can also reveal the effect of Mandarin Chinese on deaf 

signers’ spatio-temporal reasoning, even when signers 

think in CSL. Possibly, participants may be visually 

primed by the spatial movements of the signs in the 

instruction, for example, for the clock question the CSL 

will give a strong hint where the clock hand is moving in 

the signs (either a clockwise or an anti-clockwise 

movement). This will not allow us to examine signers’ 

authentic interpretation of the sagittal space-time word. 

Furthermore, the sign for front day (the day before 

yesterday) is signed as two fingers pointing to the back of 

the body, hinting a past-at-back space-time mapping. 

Conclusions 

In the current study we investigate whether the Mandarin 

sagittal space-time metaphors influence Chinese deaf 

signers’ spatio-temporal reasoning. In two experiments, 

we found that signers with higher Mandarin proficiency 

were more likely to interpret the Mandarin space-time 

word (前 /qian) as temporal before (Study 1), and to 

perform past-in-front space-time mappings (Study 2), in 

comparisons to signers with lower Mandarin proficiency. 

These findings not only provide within-culture evidence 

for the influence of language on thought (cf. Boroditsky, 

2001; Hendricks & Boroditsky, 2015), but also 

demonstrate that even cross-modal space-time metaphors 

can have an impact on signers’ spatio-temporal reasoning.   
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Language and Spatial Memory in Japanese and English
Harmen Gudde
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Abstract: Demonstratives are among the most frequent words in all languages, but demonstrative systems vary considerably
between languages. In two experiments, we tested demonstrative use and the influence of demonstratives on spatial memory in
Japanese and English – languages with purportedly very different demonstrative systems. Participants engaged in a ‘memory
game’, tapping their use of demonstratives to describe objects located on a sagittal plane (Experiment 1) and the influence
of demonstratives on memory for object location (Experiment 2). In addition to distance from speaker, the experiments also
manipulated the position of a conspecific (next to or opposite participants). Distance and position of conspecific both affected
demonstrative choice and memory in Japanese, with similar effects in English even though English does not explicitly encode
the position of a conspecific. We discuss possible universals underlying demonstrative systems and the influence of language
on memory.
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Abstract

We present a computational model that can learn event tax-
onomies online from the continuous sensorimotor information
flow perceived by an agent while interacting with its environ-
ment. Our model implements two fundamental learning bi-
ases. First, it learns probabilistic event models as temporal sen-
sorimotor forward models and event transition models, which
predict event model transitions given particular perceptual cir-
cumstances. Second, learning is based on the principle of min-
imizing free energy, which is further biased towards the detec-
tion of free energy transients. As a result, the algorithm forms
conceptual structures that encode events and event boundaries.
We show that event taxonomies can emerge when the algo-
rithm is run on multiple levels of precision. Moreover, we
show that generally any type of forward model can be used,
as long as it learns sufficiently fast. Finally, we show that the
developed structures can be used to hierarchically plan goal-
directed behavior by means of active inference.
Keywords: event models; object interaction; predictive encod-
ing; event segmentation; free energy; active inference; event
taxonomy; concept learning

Introduction
Event segmentation theory (EST) (Zacks & Tversky, 2001;
Zacks, Speer, Swallow, Braver, & Reynolds, 2007) postulates
that humans automatically structure the stream of sensory and
sensorimotor information into meaningful events. Events are
defined as “a segment of time at a given location that is con-
ceived by an observer to have a beginning and an end” (Zacks
& Tversky, 2001, p. 3). This definition is formulated rather
broadly, containing long, abstract events (e.g. ‘going on a
vacation’), more concrete events (e.g. ‘taking a taxi to the
airport’), and very short events (e.g. ‘grasping something’).
Zacks and Tversky (2001) suggest that events can be orga-
nized in event taxonomies, where abstract events consist of
multiple, more concrete events.

In Gumbsch, Kneissler, and Butz (2016) we proposed a
system that learns events and event boundaries from the sen-
sorimotor stream an agent experiences while interacting with
its environment. Following EST, we defined predictive events
(Zacks et al., 2007) as sets of forward models, i.e. inter-
nal models that predict the sensorimotor consequence of an
agent’s actions. Moreover, event boundaries were defined as
the determining features of a situation that typically lead to
a transition between events, that is, between active forward
models (Butz, 2016). Events and event boundaries are en-
coded in a Bayesian fashion, whereby learning and updating
can be closely related to the free energy minimization princi-
ple (Friston, 2009). In addition, though, the detection of event

boundaries, and the consequent possible transition to another
event model, was biased towards the detection of transient
free energy signals. This is closely related to the transient er-
ror principle of Zacks et al. (2007), according to which event
boundaries are characterized by transient increases in the per-
ceptual prediction error. The result is an algorithm that learns
event boundaries from “surprising” perceptions. We have
shown that the algorithm learns a compositional conceptual
structure of the experienced environment. Algorithmically,
the system monitors the current prediction error of the active
forward models and registers surprise when the encountered
prediction error surpasses an adaptive confidence threshold.
As a result, the set of active models is changed, the relevant
features that characterize the encountered event boundary are
identified, the event model transitions are memorized, and
new event models may be learned. We have shown that the
developing model can be used to both predict sensorimotor
changes and plan in a goal-directed manner.

In this paper, we generalize the established mechanism,
making it more noise robust and more generally applicable
beyond linear models and recursive least squares updating.
Moreover, we show that the surprise signal and the noise level
determine the granularity of the event segmentation. As a
result, an event hierarchy can emerge naturally during this
process. Finally, we explicitly derive the goal-directed plan-
ning process from formalizations of active inference (Friston,
2009; Friston et al., 2015), showing that the developing event
and event boundary models are very well-suited for the invo-
cation of inverse, hierarchical, goal-directed behavior.

Architecture
The system architecture S consists of three continuously in-
teracting main components S = {M ,B,P}. The set of event
models M comprises all so-far learned temporal forward
models. At every point in time, a subset of forward models is
active, simulating and predicting the spatiotemporal changes
in the environment. These spatiotemporal simulations are de-
termined in the predicted perceptual space P . Event transi-
tions are detected based on statistical evaluations of the pre-
diction error, detecting free energy transients. They are stored
in the event boundary models B , where each model attempts
to identify the critical sensory features that allow the proba-
bilistic prediction of an event transition.

Figure 1 and Figure 2 show the three components in in-
teraction with the outside environment and the internal moti-
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Figure 1: Illustration of the system during forward model-
ing. An active event model predicts the perception based on
the next action. The predictions are compared with the real
observations and the event model is updated based on the de-
viation. If this deviation exceeds a threshold, a surprise is
detected, the event boundary models are updated, and a tran-
sition in the event models may be triggered. Rewards ex-
perienced during transitions are registered in the motivational
system and are associated with the respective event boundary.

vational system during prediction and during planning mode,
respectively. While interacting with the environment, the ar-
chitecture generates temporal forward predictions and learns
from the registered errors (Figure 1). Inversely, the architec-
ture can generate active inference-driven probabilistic plan-
ning by activating event boundaries as goals and inversely
propagating these goals into P and M , leading to the gen-
eration of goal-directed actions based on the believed knowl-
edge about the environment (Figure 2). Due to the devel-
oping event-based predictive environmental model, hierarchi-
cal, conceptual planning becomes possible.

Model components and functionality
Event models m ∈M are encoded as sets of N forward mod-
els, given an N-dimensional observational space. At a cer-
tain point in time t one event model m(t) is active, with
m(t) = (mν

1,m
ν
2, . . . ,m

ν
N), where mν

i references the currently
active forward model component with respect to a particu-
lar dimension i. Each active forward model mν

i predicts the
changes in one dimension of the sensory observation ∆o′i(t),
given a particular action a(t). After executing a(t), the real
observation o(t +1) is compared with the predicted observa-
tion o′(t +1) = o(t)+∆o′(t). As a result, the active forward
models in m(t) are updated based on the error signal to im-
prove the respective forward models. To maintain minimal
additional statistics, each forward model mν

i stores the mov-
ing average (currently fixed over the last 100 steps) of its pre-
diction error ē(mν

i ), and the moving average of the variance
of that prediction error σ̄2(mν

i ), thus estimating the first three
moments of the model’s predictions.

Event boundaries b ∈ B are represented as top-down gen-
erative predictive models, which probabilistically predict the

perceptual features of the environment that are relevant for
enabling or causing the transition from one particular event ν

to another one µ, i.e. P(o|mν
i → mµ

i ). Thus, the models cur-
rently assume that all relevant information for the occurrence
of an event boundary is observable when an event model tran-
sition occurs. In our current implementation, we model these
event transitions by means of multivariate Gaussians.

As a result, at any point in time t the generative
model of the system is in a particular state s(t) =
{m(t),P(B),o(t),o′(t)}, where m(t) denotes the current vec-
tor of active forward models (winners take all), P(B) denotes
the probability mass over possible event boundaries, and o(t)
and o′(t) denote observation densities.

Simulation and inference-based learning
While interacting with the environment, the system develops
its predictive models M and B , which are updated and im-
proved based on the comparisons between predicted and ac-
tually encountered observations in P (illustrated in Figure 1).
Event models are updated by standard gradient descent tech-
niques, seeing that we face a self-supervised learning prob-
lem. We evaluate recursive least squares as well as delta-rule
based gradient descent-based event models.

Event boundaries are detected by a sudden, significant rise
of the prediction error above the tolerated uncertainty. The
prediction error ei(t) of sensory dimension i at time step t is
considered “surprising” when

ei(t)> ē(mν
i )+θσ̄(mν

i ), (1)

with mν
i denoting the active forward model of dimension i and

θ the confidence-dependent surprise threshold. This thresh-
old essentially determines when an error is considered sig-
nificant depending on the currently estimated standard devia-
tion, i.e. the inverse confidence or precision, of the respective
forward model. It modulates the granularity of the event seg-
mentation performed by our system, which in turn strongly
influences how accurately each ongoing event is predicted.

If a surprise-signal is detected, the system is allowed to
switch the active forward models m(t). The system enters a
searching period during which the next active models are de-
termined. To do so, all existing forward models mi of dimen-
sion i are taken into consideration. For a fixed number of time
steps (10 time steps in our simulations) each model predicts
the change in observation and is updated. After this search
period, if the prediction error is still considered “surprising”
by all existing forward models (determined by Eq. 1), a new
forward model is generated and added to the possible forward
models mi. On the other hand, if the prediction error is not
surprising for at least one existing model, the forward model
mµ

i with the smallest mean error is chosen as the new forward
model for dimension i.

To summarize, our generative model space essentially con-
sists of a set of temporal forward models M and a set of prob-
abilistic transition models B , that is, event boundary models.
To minimize free energy, the validity of each temporal for-
ward model is optimized by gradient descent – maximizing
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Figure 2: Illustration of the system during planning. Based
on the system’s goal, an event boundary is chosen. The re-
quired perception to reach this boundary is compared with the
currently predicted perception and the necessary perceptual
change is computed. If this change can be achieved by the
active event model, a suitable motor command is determined.
Otherwise, a new model to fulfill this change is chosen and
the event boundary to reach this new model is determined,
proceeding recursively.

its predictive accuracy in its applicable subspace. Combined
with its current minimal statistics (first three moments), the
temporal forward models can be viewed as Gaussian den-
sities, which are optimized approximately optimally based
on the incoming sensory feedback (Kneissler, Drugowitsch,
Friston, & Butz, 2015). Additionally, the approach has – as a
structural prior – the assumption that temporal forward mod-
els will be typically applicable during an extended period of
time and that transitions between forward models can be char-
acterized by event boundaries (Butz, 2016). As a result, event
boundaries are optimized such that free energy can be mini-
mized equally well in all subspaces of the environment.

Goal-directed behavior
To invoke goal-directed behavior, we add a simple “motiva-
tional” system to the architecture, which associates model
states with changes in its internal motivational state (Butz,
Shirinov, & Reif, 2010). In the current implementation, we
simplify this part by associating particular motivations with
particular event boundaries, such as the disappearance of food
due to its consumption. Thus, when goal-directed planning is
invoked, a desired event boundary is activated and inversely
propagated through the system’s generative model.

Formally, we can infer the optimal behavioral policy π by
assigning a value to all imaginable policies given the current
beliefs of the model and choosing the best one:

Qτ(π,st) =−Eπ [H(P(oτ|sτ))]−
DKL [P(oτ|sτ)||P(oτ|sG)] , (2)

which is based on (Friston et al., 2015). This formulation es-
sentially states that a policy π, starting at believed situational

system state st , will result in the minimization of free energy
by minimizing (i) predicted uncertainty over the expected un-
folding successive states up to a certain temporal horizon T
into the future τ = {t, t + 1, ...,T} measured by the entropy
H(P(oτ|sτ)) over expected states sτ when pursuing policy π

and (ii) the divergence, formulated as the Kullback-Leibler
divergence DKL, between expected future observations and
desired future observations given a goal state distribution sG,
i.e. P(oτ|sG).

When we fully focus behavior on maximizing reward out-
comes, ignoring uncertainties in our expected progression
through the environment, it is possible to cancel out the term
Eπ [H(P(oτ|sτ))] in DKL, yielding:

Q′τ(π,st) = P(oτ|sτ) lnP(oτ|sG). (3)

As a result, the goal is to maximize the overlap between these
two probability densities.

In our model’s case, P(oτ|sG) will correspond to a particu-
lar model transition mν

g → mµ
g and all other model transitions

will be set to zero for all future points in time τ. As a conse-
quence, the model essentially “wants” to maximize

P(mν
i → mµ

i |sτ), (4)

i.e. the probability of the model transition mν
i → mµ

i . This
corresponds to first maximizing P(mν

i |sτ), that is, being in
model mν

i and then maximizing the likelihood of the transi-
tion, which, in turn, corresponds to maximizing the probabil-
ity of the observation that characterizes the transition, that is,
P(oτ|mν

i → mµ
i ). Thus, given the current state of the model

s(t), the inference process may directly yield motor actions
that attempt to maximize P(oτ|mν

i → mµ
i ) if this seems pos-

sible given the current event model state. However, when
the event model mν

i is currently not active, then a recur-
sive process must start that selects another model transition
P(mν′

i → mν
i ) in order to reach the goal transition by first in-

voking an intermediate transition (illustrated in Figure 2).
As a result, hierarchical, conceptual goal-directed proba-

bilistic inference-based planning is implemented, which in-
vokes event boundaries as subgoals, given the final goal can-
not be reached by the currently available control options. For
example, the model can infer that if it wants to drink out of
a mug but the mug is not in the hands, the mug first needs
to be approached and grasped before it can be transported to
the mouth. Note that the recursive planning procedure, in
principle, can find any sequence of events and event bound-
aries, which are believed to lead to the goal. However, time
and space as well as precision limitations may generally ap-
ply when propagating the active inference signals through the
system architecture S .

Evaluation
To investigate the event segmentation and hierarchical plan-
ning capabilities of our system, we have chosen a testing sce-
nario, in which a simulated agent, operating in continuous
space, can interact with different objects in multiple ways
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Figure 3: The evaluation scenario: Objects (here a sticky ob-
ject) are generated in the white area and vanish when they
enter the black, rectangular mouth area. The blue hand is
able to grasp or attach objects. They are detached from the
hand once they are inside the red “release-area” cube.

(Figure 3). The agent consists of a hand with three shovel-
like fingers and a stationary “mouth”. The hand is able to
move freely through a limited 3-dimensional workspace with
a “release-area”. Three types of differently colored objects
appear in our simulation (two types of “sticky objects” and
one type of “marble”). Sticky objects are big and spiky.
They automatically attach to the hand upon contact. Once
attached they are dragged alongside the hand until they en-
ter the release-area, wherein they detach and drop into the
mouth. We use two types of sticky objects in our simulation:
light objects do not alter the hand movement when attached
to it; heavy ones slow down the hand movement by a factor
of 1

4 . Marbles are small spheres that need to be grasped to be
transported by the hand. To grasp a marble the hand has to
be positioned directly over a marble for a grasping reflex to
activate. The fingers open again when the marble is inside the
release-area. Carrying a marble is usually far more difficult to
predict than dragging a sticky object, since marbles sit loosely
between the fingers and shake while being transported. If an
object is dropped into the mouth, it is consumed and a new
object is generated. In our scenario the system is rewarded
once an object is consumed. Thus, to receive rewards, the
agent has to attach or grasp the present object, transport it to
the release-area, and drop it into the mouth.

In every time step t, a motoric action a(t) is performed
and a sensory observation o(t) is perceived. In particular o(t)
consists of the position of the hand xh,yh,zh ∈ [−100,100],
the position of the object xo,yo,zo ∈ [−100,100], and the po-
sition of the object in a hand-centered frame of reference
xo,h,yo,h,zo,h ∈ [−200,200]. Additionally o(t) contains the
color of the object and boolean information whether the ob-
ject has spikes or not. The motor command a(t) determines
the change in hand position ∆xh,∆yh,∆zh ∈ [−1,1]. Further-
more, a(t) contains the velocity of the object to enable com-
putation of the object’s next position even while it is falling.

To evaluate the system, we investigate how the learning ca-
pabilities depend on the underlying learning rule. Therefore,

we learn the forward models, currently linear prediction mod-
els, both by means of delta rule based gradient descent (learn-
ing rate η = 0.1, momentum term α = 0.9, linear activation
function) as well as by means of recursive least squares (RLS)
(forgetting factor λ = 0.99). RLS essentially implements an
adaptive filter that minimizes the sum of squared residuals re-
cursively in an optimal online fashion. Furthermore, we show
that both the threshold θ and sensory noise influence the gran-
ularity of the determined event segmentations – allowing the
formation of event taxonomies. We performed every simula-
tion 10 times with a different random initialization.

Results
In a first test we analyzed how the underlying learning rule
of the forward models influences the event segmentation and
learning accuracy of the system, comparing stochastic gradi-
ent descent with RLS. During learning, the motoric action
a(t) was determined by an external algorithm, which per-
formed a mixture of random movements and behaviors lead-
ing to a new event. Every simulation consisted of 10 training
and 10 test epochs, during which no forward model updates
took place. In every epoch all three objects were generated
once and manipulated by the agent until they were consumed.

The system was able to identify all existing events in
the simulation (hand moving normally/slowly, object lying,
light/heavy sticky object dragged, marble carried, object
dropped) for both types of forward models used. The average
prediction error of all active forward models for three dif-
ferent events is shown in Figure 4a. For both learning rules
the system improves the prediction accuracy over the train-
ing epochs, but RLS-based learning quickly reaches a much
better prediction. While this result shows that both forward
model learning approaches can be applied, further tests were
conducted using RLS-based learning to speed-up the process.

In a second test we analyzed how the surprise threshold θ

influences the granularity of the event segmentation. Thus
we performed this test with three different surprise thresh-
olds (θ ∈ {10,50,100}). Since we hypothesized that sen-
sory noise also alters the granularity of segmentation, we
additionally varied the amount of Gaussian distributed noise
(σ ∈ {0.001,0.01,0.05,0.1}) that was added to each obser-
vation o(t). Additionally, a small amount of Gaussian dis-
tributed noise (σ = 0.01) was added to each action a(t).

The average prediction error for different events at the low-
est level of noise tested (σ = 0.001) is shown in Figure 4b.
The prediction error of the system greatly varies for the dif-
ferent surprise thresholds. After only a few training epochs,
the prediction accuracy of the active forward models for the
smallest tested surprise threshold is close to the level of sen-
sory noise. In contrast, the mean prediction error of the sys-
tem for the largest threshold is only slightly below 1. For
θ = 50 the prediction error varies among the different events.

To further analyze this difference in prediction accuracy we
examined the number of forward models generated for the
different surprise thresholds and determined which forward
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Figure 4: Mean prediction error of all active forward models
for different events for (a) different forward models without
sensory noise; (b) different surprise thresholds θ using RLS-
based forward models and Gaussian distributed sensory noise
(σ = 0.001). Three events are shown: object lying (♦), light
object dragging (�), and heavy object dragging (◦).

models were most active for which event. In the following,
we first refer to the case with the lowest level of sensory noise
(σ = 0.001). Later, we analyze how a variation in sensory
noise influences the number of event models. All identified
event models are shown taxonomically structured in Figure 5.

For θ = 100 two forward models developed for predicting
object positions. One of these models was active when the
object was lying, the other one was active for the rest of the
time. Thus the system differentiated between a moving and
a still object in terms of object position. For θ = 50 three
models were predicting xo and zo−position. Here the sys-
tem further differentiated between slowly carrying a heavy
object or transporting a light object at normal speed. For
the yo−position one additional model was generated, which
was active when an object was falling. For θ = 10 every
type of transportation was represented by a different forward
model. Hence, for the smallest surprise threshold, the sys-
tem even differentiated between slow and normal hand move-
ments, while for larger values of θ this was not the case.

Sensory noise additionally influences the granularity of the
performed event segmentation. While for low noise levels
(σ = 0.01 and σ = 0.001) the identified events did not dif-
fer, an increase in noise results in a coarser event segmenta-
tion. For σ = 0.05 and θ = 10 the system used one forward
model for every sensory dimension describing hand position
and three forward models to predict changes in object posi-
tion: one for a lying object, one for a transported object, and
one for a falling object. The segmentation further coarsened
for σ = 0.1, where the system only distinguished between
lying and moving objects. If both noise level and surprise
threshold were too large (σ ≥ 0.05, θ ≥ 50) the system did
not detect event transitions at all, such that only one forward
model was generated per sensory dimension.

object moves

object exists

object is
lying

object moves
alongside hand

object moves with
hand normally object is

dragged
slowly

object is
falling

object is
carried

object is
dragged

θ = 10

θ = 10
θ = 100

θ≥ 50
θ≥ 50

θ = 50

θ = 10

Real
Events

Sensory noise levels: σ = 0.1, σ = 0.05, σ≤ 0.01

Figure 5: The event models regarding object position identi-
fied by the system for different surprise thresholds and sen-
sory noise levels. The column on the left states the surprise
threshold θ. The associated sensory noise ∈ [−σ,σ] is illus-
trated by color, as explained by the color legend below the
table. Each row shows the identified event model for this sur-
prise threshold and noise level. The bottom row illustrates the
real, underlying interactions found in our scenario.

In a third test we evaluated the planning capabilities of our
system, using its representation of events and event bound-
aries to generate goal-directed behavior. Furthermore we ana-
lyzed how the granularity of the underlying event representa-
tions influences planning. Thus, we varied granularity by us-
ing three values of the surprise threshold (θ ∈ {10,50,100})
under the low noise condition σ = .001. Every simulation
consisted of 30 training and 30 testing epochs. During each
training epoch one sticky object and one marble were gen-
erated. The goal of the system was to consume the objects.
The system was given a fixed time interval (500 simulation
steps) to interact with each object. If the system failed to re-
move an object in the given time period, an external algorithm
performed the required movements. During testing, we intro-
duced a new object that closely resembled the marble in its
visual characteristics (small, similar color, no spikes). Once
grasped, however, the new object behaved like a sticky object
and attached to the hand. The challenge of successfully in-
teracting with the new object is thus to grasp the object like a
marble (by means of the appropriate event boundary models)
but to then transport the object like a sticky object (with the
help of the appropriate event models).

Already after the first training epoch, the system consumed
50% of the novel objects correctly when a fine-grained event
segmentation was used (θ = 10). From 25 training epochs
onward, the system managed to successfully interact with ev-
ery new object. For θ = 50, the system on average only in-
teracted with 70% of the new objects correctly after all 30
training epochs. For θ = 100, the system did not manage
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to interact with any test object successfully. The difference
in performance can be explained by examining the identified
events (see Figure 5). For θ = 100 the system does not distin-
guish between transporting and dropping an object, such that
the ‘detachment’ event boundary was not learned and thus
could not be used as a subgoal. Similarly, for θ = 50 the sys-
tem does not distinguish between transporting a marble or a
sticky object, such that the ‘grasp’ and ‘attach’ event bound-
aries were mixed – often leading to unsuccessful grasps.

Conclusion
Based on event segmentation theory (Zacks et al., 2007) and
the principle of free energy minimization (Friston, 2009),
we have developed a computational model of hierarchical,
behavior-grounded event segmentation. Our system uses a
strictly statistical measure of “surprise” to segment the sen-
sorimotor stream, which an agent experiences while interact-
ing with its environment, into events encoded by temporal
forward models. In a continuous, noisy simulation, our sys-
tem was able to identify event models characterizing particu-
lar object interactions, e.g. ‘carrying an object’ or ‘dropping
an object’. Furthermore, the environment was structured into
conceptual event and event boundary encodings, which dis-
criminate the critical features that are crucial for the occur-
rence of an event, e.g., ’hand contact’ is required to manipu-
late an object. Due to the event-based architecture, the sys-
tem accomplished to plan hierarchical behavior consisting of
multiple subroutines to reach desired goal states.

We showed that a change in the confidence-threshold,
which determines when a transient free energy signal is con-
sidered “surprising”, affects the granularity of the event seg-
mentation. Depending on this threshold, the system accom-
plished to identify events for concrete object interactions,
e.g. ‘carrying a marble’, or abstract representations of in-
teractions, which subsume several more concrete events, e.g.
‘moving an object’. Similarly, an increase in sensory noise
entailed a coarser segmentation. Thus, based on these simple
statistical principles, a hierarchy can emerge, similar to the
event taxonomy proposed by Zacks and Tversky (2001), in
which abstract events comprise several more concrete events.

The developing hierarchical organization of event models
and consequent event-oriented behavior is closely related to
hierarchical reinforcement learning (Botvinick & Weinstein,
2014; Sutton, Precup, & Singh, 1999). Similar to our event
models, options predict changes in the system’s state when
performing a sequence of behavior without considering low-
level steps. While the composition of options has been shown
to enable the learning of complex behavior when using a pre-
defined set of goals (Kulkarni, Narasimhan, Saeedi, & Tenen-
baum, 2016), our system determines subgoals by itself by the
principle of surprise-detection.

In sum the proposed model offers a general algorithm for
online, hierarchical event segmentation learning given con-
tinuous sensorimotor experiences. Two main learning biases
lead to successful segmentations: first, the partition of the de-

veloping generative model into probabilistic models of events
and transitions between events; second, the focused learning
of event transitions based on transient free energy signals. Be-
sides the emergence of event taxonomies, we also showed that
the developing conceptual structures can be learned to invoke
hierarchical, goal-directed planning and behavioral control.

Our current research aims at integrating boundedly com-
plex, non-linear forwards models and recurrent context in-
formation. Such enhancements will be necessary to handle
non-uniform motion patterns and partially only indirectly ob-
servable causes of event transitions robustly. As a result, we
hope to be able to show the more general and more scalable
applicability of the principles we have introduced herein.
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Abstract

The ability to reason about the difficulty of novel tasks is criti-
cal for many real-world decisions. To decide whether to tackle
a task or how to divide labor across people, we must estimate
the difficulty of the goal in the absence of prior experience.
Here we examine adults’ and preschoolers’ inferences about
the difficulty of simple block-building tasks. Exp.1 first estab-
lished that building time is a useful proxy for difficulty. Exp.2
asked participants to view the initial and final states of various
block-building tasks and judge their relative difficulty. While
adults were near-ceiling on all trials, children showed varying
levels of performance depending on the nature of the dimen-
sions that varied across structures. Exp. 3 replicated the pat-
tern. These results suggest that children can reverse-engineer
the process of goal-directed actions to infer the relative diffi-
culty of novel tasks, although their ability to incorporate more
nuanced factors may continue to develop.

Keywords: Difficulty; Physical reasoning; Social cognition

Introduction

We often think about how easy or difficult it is to achieve
a goal. From a child trying a new jungle gym to a scientist
building a research team, the ability to reason about task diffi-
culty is critical for many real-world decisions; it informs deci-
sions about the self (e.g., deciding whether to tackle a task or
seek help), about others (e.g., understanding who needs help),
and even about groups (e.g., assigning tasks in a collabora-
tive project). Although these decisions might seem “easy”,
they involve more than simply remembering and retrieving
our past experiences; they often require estimates and predic-
tions about novel tasks. Such sophisticated inferences might
be especially challenging for young children, who frequently
face tasks they have never attempted or completed.

Indeed, having this ability does not mean that our estimates
are always accurate. Even as adults, we often under- or over-
estimate the difficulty of certain tasks, failing to meet dead-
lines or suboptimally allocating time and effort. Nevertheless,
our estimates are usually accurate enough to get by, suggest-
ing that even these inaccurate estimates might be generated
in systematic ways. Indeed, our accuracy and precision in
estimating the difficulty of a task might improve with expe-
rience and knowledge about the task. However, the ability
to predict the difficulty of a novel task (i.e., prior to the ac-
tual experience with the task) is crucial for making effective
decisions about planning, learning, and even interacting with
others. What are the cognitive mechanisms that underlie our
ability to predict and estimate difficulty, and how does this
ability develop in early childhood?

An intuitive understanding of difficulty

Judgments about perceived task difficulty, or task-related
effort, have been mostly studied in terms of its effect on
achievement, motivation, and performance attribution in per-
sonality and social psychology (e.g., Atkinson, 1957; Weiner,
1966). Early work has operationalized the notion of diffi-
culty as the subjective probability of success or the introspec-
tive assessment of required effort (e,g., Atkinson, 1957; Hei-
der, 1958), allowing the notion of difficulty to be measured
in quantifiable terms. However, these definitions could eas-
ily be intertwined with other agent-dependent concepts such
as competence, ability, or intelligence. Prior developmen-
tal work has also focused on children’s perception of task
difficulty and its relationship to motivation and performance
in formal educational contexts (Crandall, Katkovsky, & Pre-
ston, 1962; Nicholls, 1978; Nicholls & Miller, 1983). These
studies suggest that although children around age six con-
sider task difficulty in selecting their own goals (Heckhausen,
1967) they still have trouble differentiating objective task dif-
ficulty from agent ability (Nicholls & Miller, 1983).

Some recent work provides indirect support for the idea
that children ages 5 to 6 can differentiate objective diffi-
culty from subjective competence. Given information about
agents’ decisions to pursue goals that vary in costs (i.e.,
climbing a high hill vs. a low hill) and subjective rewards,
children infer agents’ competence (subjective costs) (Jara-
Ettinger, Gweon, Tenenbaum, & Schulz, 2015). Children
also reason about the expected costs for discovering a causal
mechanism, and prefer to teach someone a toy that would be
harder (i.e., require more trial-and-error) for the person to fig-
ure out on her own (Bridgers, Jara-Ettinger, & Gweon, 2016)
even though both toys are equally easy for them. These re-
sults suggest that children may be able to use the properties
of the physical environment to estimate the costs of achieving
a goal even without any prior experience.

Indeed, an intuitive understanding of task difficulty does
not guarantee adult-like inferences. Numerous studies report
children’s failure in planning and problem-solving tasks that
require sequential representation of task space (e.g., Tower
of Hanoi; Klahr & Robinson, 1981). While children may
successfully detect explicit, perceptual cues (e.g., height of
hills, number of buttons on toys), average performance of oth-
ers (Nicholls, 1978), or actual subjective experiences (e.g.,
solving standardized test problems such as Raven’s matrices;
Mueller & Dweck, 1998), they may still fail to infer the dif-
ficulty of novel tasks especially when it requires representing
or simulating possible states of the world that are not readily
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observable. Despite the importance of effort estimation how-
ever, children’s intuitive concept of difficulty has been rarely
studied in its own right. Thus the mechanisms that underlie
our ability to reason about difficulty and how they develop in
early childhood still remain as important open questions.

Current approach Here we explore adults’ and chil-
dren’s ability to estimate the difficulty of novel tasks.
Given the early-emerging understanding of physical events
(Baillargeon, 2004; Spelke, Breinlinger, Macomber, & Jacob-
son, 1992), and the costs of simple goal-directed actions (Liu
& Spelke, 2016; Csibra, 2003), our approach is to ground
the basic source of difficulty in agents’ interventions on the
physical world. We designed a novel task that asked partic-
ipants to estimate the difficulty of simple engineering goals:
building block structures. We explore the idea that humans,
even early in life, can estimate the difficulty of novel tasks by
reasoning about (1) what physical transitions are involved in
the building process, and (2) how an agent might act on the
physical states to cause these transitions.

One challenge with eliciting difficulty estimates is that
there is no standard metric for measuring the actual difficulty.
To establish an objective “ground truth” for our tasks, we used
a variable that is often used to capture the lay notion of dif-
ficulty: time needed to complete a task. In Exp.1 we first
establish that people’s intuitive sense of difficulty is tightly
correlated with their estimates of expected time and the ac-
tual time. In Experiments 2 and 3, we systematically vary
the physical features of the block structures as well as other
factors that influence properties of agents’ actions in order
to examine adults’ and preschoolers’ ability to judge relative
difficulty of various building tasks.

Experiment 1

In Exp.1 we had two basic goals for investigating people’s
ability to estimate task difficulty. First, we wanted to ver-
ify that people’s difficulty estimates systematically reflect a
real-world property of the task that can be measured in stan-
dard metric (i.e., time). We thus recruited separate groups
of participants to get (1) difficulty estimates and (2) building
time estimates of various block structures, as well as their (3)
actual building times, and explored the relationships among
these variables. Next, we used these estimates to verify that
the pairs of block structures (to be used as stimuli in subse-
quent experiments) varied in their relative difficulty.

Methods

Participants Separate groups of adults were recruited for
the Difficulty Estimation task (N=57, Age: 20-56), Time Esti-
mation task (N=60, Age: 21-68), and Build task (N=14, Age:
18-31). The Difficulty Estimation and Time Estimation tasks
were conducted on Amazon’s Mechanical Turk (AMT); we
excluded participants who gave identical responses on all tri-
als (Difficulty, N=3). The Build task was conducted in lab;
one participant was dropped due to technical error.

Materials 28 photos (14 each for initial and final states) of
various block structures were used for the task. Each structure
had a photo of its initial state (e.g., scattered blocks) and fi-
nal state (completed structure). Blocks were 1” plain, yellow,
green, red, or blue wooden cubes. We designed seven pairs
of structures that varied in specific dimensions: (1) Number1
(3 blocks forming a triangle vs. 10 blocks forming a circle),
(2) Number2 (5 blocks forming a small cross vs. 13 blocks
forming a larger cross), (3) Stability1 (10 blocks in a hori-
zontal line vs. 10 blocks stacked vertically), (4) Stability2
(two piles of blocks divided by color (yellow and green) vs. a
castle-like structure with levels of yellow and green blocks),
(5) Number&Stability (2 long green blocks stacked vertically
vs. 10 plain blocks stacked vertically, height matched), (6)
Probability (5 red blocks taken out of a transparent box that
contained approximately 85% red and 15% blue, or 15% red
and 85% blue), and (7) Process (2 towers of 5 blocks from an
initial state that was either near-complete or very incomplete).

Procedure Participants in all three tasks viewed the same
initial and final state photos, but responded to different ques-
tions depending on the task. In the Difficulty Estimation
task, participants were provided examples of very “easy” and
“hard” structures in the beginning to anchor them appropri-
ately on the scale (0 - 100). In each trial, they viewed the
initial and the final state photos of a given block structure on
the screen (with an arrow pointing from the initial to the final
state photo to indicate the physical transition) and answered
the question “How difficult would it be to do this?” with a
sliding bar. In the Time Estimation task, participants saw the
same example structures (presented as structures that take a
short or a long time to make) to anchor them on the scale
(0 - 100 seconds); the question in each trial was “How long
would it take to make this?”. Two structures within a pair
were presented sequentially, but the order of presentation was
counterbalanced both within each pair and across all pairs.

In the Build task, the experimenter laid out blocks in front
of the subject as in the initial state photo in each trial, and
asked to use the blocks to create the structure shown in the
final state photo. We recorded how long the subject spent
building the block structure from start to finish.

Results

First, we asked whether expected building time can be a good
proxy for estimated task difficulty. Even though separate
groups participated in the Difficulty Estimation and Time Es-
timation Tasks, these estimates were highly correlated (Fig.2
Right: r = .923, t = 8.296,d f = 12, p < .001). This sug-
gests that people’s intuitive sense of difficulty can be di-
rectly mapped onto estimates of time, and that actual building
times may be an approximate “ground truth” for difficulty.
Given this result, we then asked how well people’s estimated
building times reflect actual building times. Although peo-
ple generally overestimated the building times (Fig.2 Left:
intercept = 13.647, t = 4.227, p = .001), the correlation was
fairly high (r = .780, t = 4.3167,d f = 12, p = .001). Sec-
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Figure 1: Stimuli used in Expts. 2-3 (final states, except for Process); Exp.1 stimuli did not include agents. Each pair (shown
as columns) had an easier structure and a harder structure. Ratio of difficulty estimates are shown beneath each trial.

ond, we verified that the difficulty of block structures within
a pair was significantly different in all pairs (paired t-tests,
p’s < .002); differences in estimated time and actual build-
ing times were also significant (paired t-tests, p’s < .001).
These graded measures of difficulty also allowed us to calcu-
late the degree to which one structure was “harder” than the
other. We calculated the ratio of estimated difficulty between
the two structures (higher value indicates a larger difference)
and report these in Figure 1.

Collectively these results suggest that adults can make reli-
able difficulty estimates of individual block structures in ways
that systematically reflect some objective, quantifiable aspect
of these tasks (i.e., how long it takes to build the structures).
Furthermore, we were able to verify that within a pair of block
structures, one was clearly more difficult than the other. De-
spite all pairs having a clear “answer”, the magnitude of the
difference between the structures varied across pairs.

Figure 2: Results from Exp.1. Correlation between Actual
Build Time and Estimated Build Time (left); correlation be-
tween Estimated Difficulty and Estimated Build Time (right).

Experiment 2
In Exp. 2, we used the stimuli from Exp. 1 to ask whether
adults and children can infer the relative difficulty of block-
building tasks. Given the results from Exp. 1, we expected
adults to show high accuracy in these binary judgments,
choosing the structure that was verified as “easier(harder)”
in both estimated difficulty and the actual building times.

Our main goal was to examine how children’s performance
might differ from that of adults. Although adults’ estimates
indicated that all 7 pairs had a clearly “harder” structure, they
varied in why the structures varied in difficulty. In Num-
ber and Stability trials, the final structures differed in their
observable perceptual properties (size, height). The Num-
ber&Stability trial was matched on these perceptual cues,
making the number of actions needed to complete the task the
only determining factor for difficulty. To succeed in the Prob-
ability trial, children had to understand that relative difficulty
is influenced by the availability of the required blocks (thus
the ease of acquiring them) even when the final structures are
identical. Success in the Process trial required an understand-
ing that the overall difficulty of a task is easier when one starts
from a partially complete state.

In light of prior work reviewed above (e.g., Nicholls, 1978,
and Liu & Spelke, 2016), we could consider two extreme pos-
sibilities: preschool-aged children might fail to distinguish
relative difficulty across the board, or they might successfully
detect relative difficulty on all trials. However, a more plau-
sible possibility is that children may succeed in some cases,
but selectively fail on other cases. For instance, although it
may be easier to detect the differences when a property of the
block structures are clearly different (e.g., number, stability),
children might struggle in cases where identical structures
were built via different processes. In particular, in Probability
and Process trials, one cannot rely on the number of blocks
used in the structures or their final shapes; one must reason
about the agents’ actions involved in building the structures.
Thus children might struggle selectively in these trials.

Indeed, it is also possible that children have a simple
heuristic that difficulty depends entirely on the structure
alone. Thus in Exp. 2 we added another trial: two identi-
cal sets of towers were built, but one was built by two agents
(one tower each) while the other was built by a single agent.
Success on this task might speak against the possibility that
children fail simply because identical structures were built.
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Methods

Participants Adults (N=45, Age: 21-59) were recruited
on AMT. An additional 13 adults were excluded because
they failed the warm-up task (N=8) or the attention check
questions (N=5). Twenty-five preschoolers (17 female,
Mage(SD) : 4.8(.4), Range: 4.1-5.4) were recruited from a
laboratory preschool. Seven additional children were ex-
cluded due to failure to respond correctly in the warm-up task
(N=6) or experimenter error (N=1).

Materials The materials were almost identical to those in
Exp. 1, except that the photos now showed an agent looking
neutrally at the blocks (initial state) or completed structure
(final state). Children viewed these photos on a 15” Macbook
Pro (using MATLAB and Psychtoolbox) and indicated their
responses by placing their hands on a response pad. Adults
viewed the stimuli on Qualtrics. See Fig.1 for stimuli.

Procedure All children were tested in a quiet room, seated
next to the experimenter. Half of the children were always
asked to indicate the “easier” one, and the other half were
always asked to indicate the “harder” one. A warm-up task
ensured children understood the meaning of the word “eas-
ier(harder)”; children were first presented with two identical
boxes, which the experimenter had them first push and then
lift, and were asked “Which one is easier(harder) to push?”
and “Which one is easier(harder) to lift?” In the main task,
children saw photos of green and yellow blocks presented
side by side on the laptop screen. All children were able to
identify the green (yellow) blocks by placing their left (right)
hand on the response pad. In subsequent test trials, children
were told: “Anne and Sally were playing with blocks to-
day.” as two initial state photos were presented on the screen.
The two final state photos were then revealed below the ini-
tial state photos; the experimenter pointed to each photo and
said, “This is what Anne made, and this is what Sally made.
One of them was easier(harder) to make. Which one was eas-
ier(harder) to make?” Agents differed across trials and unique
names were used for each agent. Trial order and the side of
correct response (L/R) were counterbalanced across trials.

Adults participated in an almost identical task on AMT.
Similarly to children, the initial states were presented first
and then the final states were revealed below these photos.
The only difference was that adults read the questions on the
screen and answered by clicking on the correct answer.

Results

Adults: As expected, adults performed near-ceiling on all tri-
als (p < .001). See Fig.3.

4-5 year-olds: Performance did not differ by question type
(easier/harder) so we collapsed the responses throughout
(χ2=.784, d f = 1, p = .376). Children showed above-chance
performance in 6 of the 8 trials (Number1 (77.3%, p = .017),
Number2 (73.9%, p = .035), Stability1 (81.0%, p = .007),
Stability2 (90.5%, p < .001), NumStab (80.0%, p = .004),
Cooperation (81.0%, p = .007)), while they did not show

Figure 3: Exp. 2 results. Average % correct for each trial
(error bars indicate 95% confidence intervals; ***p <.001,
**p <.01, *p <.05).

above chance performance on the remaining two, Process
(41.7%, p = .541) and Probability (57.1%, p = .664).

We asked whether children’s chance-level performance
was lower than other trials with similar properties. Perfor-
mance on Process trial was lower than the Number trials (χ2

= 14.894, d f = 1, p < .001), suggesting that even though the
two structures differed in the overall number of actions, chil-
dren failed if two identical structures were built from diffrent
starting points. Similarly, children performed significantly
worse in the Probability trial than the Stability trials(χ2 =
20.313, d f = 1, p < .001); even though the two structures
were made of the same number of blocks, children failed
when difficulty judgment relied on the process of sampling.

To examine whether children’s performance improved
with age, we conducted a logistic mixed-effects model with
age and trial as fixed effects and subject as a random ef-
fect. Age and the Process trial predicted children’s accu-
racy (age: β = 1.523,z = 2.463, p = .014; Process: β =
−1.765,z =−2.500, p = .013), suggesting that children’s ac-
curacy improved with age but they struggled in the Process
trial regardless of age. Finally, among trials where chil-
dren were reliably above chance, children performed worse
than adults in Number2 (χ2(1) = 6.98,df= 1, p = .008) Pro-
cess (χ2(1) = 12.57,df= 1, p < .001) and Probability trials
(χ2(1) = 17.36,df= 1, p < .001), and marginally for Num-
ber1 (χ2(1) = 3.51,df= 1, p = .061) and Stability1 (χ2(1) =
3.64,df= 1, p = .057), but not in other trials).

Overall, adults and children were able to judge the relative
difficulty of simple physical tasks from just the initial and the
final states, without any information about the intermediate
processes. It is unlikely that participants had built identical
structures in the past and simply recalled their prior expe-
riences to answer these questions. Furthermore, our results
suggest that participants did not rely on simple heuristics (e.g,
number of blocks, sizes of the structures); their performance
was above-chance even when the number and the shape of
the structures were identical (Stability1) or their shape and
height were matched (Number&Stability). These results sug-
gest that adults and children were able to reason about the
process of the physical transitions between the initial and the
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final states. Children were less accurate than adults on some
but not on all trials; importantly, they showed a marked dif-
fculty to detect the differences when identical structures were
built and the only determining factor was the quality of the
actions involved in the building process.

Experiment 3
Exp.3 replicated Exp. 2 with separate groups of children and
smaller number of trials per child. In addition to successes,
we were interested in replicating the failures in Process and
Probability trials that presumably tested a more nuanced un-
derstanding of the building process.

Participants Thirty-five preschoolers (18 female,
Mage(SD) : 4.7(.4), Range: 4.0 - 5.4) participated in
Number, Stability, and Number&Stability trials (Group1).
Another 35 children (15 female, Mage(SD) : 4.2(.7), Range:
4.0 - 5.8) participated in the Sampling, Process and Cooper-
ation trials (Group2). Across groups, 17 additional children
were dropped due to experimenter error (N=7), sibling
interference (N=1), not speaking English (N=2), failing the
warm-up task (N=6) or not finishing the game (N=1).

Materials & Procedure The task was almost identical to
Exp. 2, except that in the warm-up task children were pre-
sented with simple line drawings and indicated which was
easier(harder) to make, and the photos for Sampling, Process,
Cooperation trials were presented on paper (8.5 x 11”).

Results Children’s performance was highly similar to the
pattern in Exp.2: Again, accuracy was above-chance on the
same 6 of 8 trials (Number1 (77.1%, p = .002), Number2
(68.6%, p = .041), Stability1 (85.7%, p = .001), Stability2
(74.3%, p = .006), Num&Stab (85.7%, p = .001), Coopera-
tion (77.1%, p = .002); children were at chance on Probabil-
ity (62.9%, p = .176) and Process (57.1%, p = .500) trials.

Although age did not predict performance in each group
(Group 1:β = .583,z = 1.271, p = .204, Group 2:β =
.404,z = .952, p = .341), collapsing across groups (similar in
size to Exp.2), we again saw a trending relationship between
age and accuracy (β = .522,z = 1.676, p = .094; collapsing
across all data, age was a significant predictor of accuracy
(β = .693,z = 2.694, p = .007).

General Discussion
In order to investigate the development of the intuitive sense
of difficulty, we designed a concrete, manual activity that
even young children enjoy and easily understand: build-
ing block structures. Across three experiments, we showed
that (1) adults’ intuitive sense of difficulty accurately re-
flects actual measures of difficulty (i.e., building time) in
both graded estimates and binary judgments, (2) preschoolers
show above-chance performance when the pair of structures
varied in the expected number of required actions (due to
number of blocks, stability, or the number of agents), but (3)
they fail on trials in which identical trials were built, which
presumably require them to reason specifically about the pro-

cess of building and the property of actions involved. Collec-
tively, adults and children made systematic judgments about
the difficulty of physical tasks from visually observing their
initial and final states, without prior experience with the exact
building activity or explicit information about the intermedi-
ate processes. However, children are still developing these
skills throughout the preschool years and possibly beyond.

We found that although adults had a tendency to over-
estimate the building time, it was strongly correlated with
the actual build time, suggesting that these estimates sys-
tematically reflected some “ground truth” difficulty of these
tasks. Furthermore, these time estimates were tightly linked
to adults’ difficulty estimates. Indeed, adults’ binary judg-
ments reflected the relative difficulty of pairs of structures, re-
sulting in near-ceiling accuracy. This was in stark contrast to
children’s performance, which was similar to adults in some
trials but at chance on some others.

What develops, and what makes us better? One possibility
is that the accumulated experience of interacting with physi-
cal objects might support a more robust understanding of the
underlying physics, increasing the precision of the simula-
tion that might be necessary for generating these intermedi-
ate processes (Battaglia, Hamrick, & Tenenbaum, 2013). An-
other possibility is that experience improves children’s un-
derstanding of the dynamics between the physical states and
the actions required to cause appropriate transitions between
these states. These are not mutually exclusive, and both
might lead to more accurate representations of the interme-
diate processes and the effort (e.g., physical, mental) asso-
ciated with these transitions. Having self-experience with
objects helps infants understand others’ goal-directed actions
(Sommerville, Woodward, & Needham, 2005); it is possible
that self-experience continues to help adults and children in
making these everyday estimates. Future work may explore
whether direct experience with these building tasks increases
the precision of time and difficulty estimates.

One important question here is how and when children
begin to utilize different dimensions of tasks (e.g., process,
probability) when making judgments about difficulty. De-
spite recent work showing an early-emerging sensitivity to
statistical distributions of objects (Xu & Garcia, 2008) and
the process by which these objects are sampled by an agent
(Gweon & Schulz, 2011), our results suggest that preschool-
ers may still fail to incorporate this understanding in reason-
ing about the relative difficulty of agents’ sampling behaviors.
Children’s failure on Process trials parallels school-aged chil-
dren’s difficulty understanding the relationship between time,
speed, and distance concepts (Siegler & Richards, 1979);
when one train started to travel ahead of another train (but
they travelled at equal speeds and stopped at the same place),
children fail to answer that this train travelled for a shorter
time. These observations are consistent with the possibility
that children may struggle to discern the differences in diffi-
culty when the tasks are highly similar in their physical prop-
erties. While these results suggest the role of a representa-
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tional capacity that allows children to simulate multiple inter-
mediate future states sequentially over time, further research
is needed to understand the exact nature of their difficulty.

On the other hand, children’s robust performance on most
trials points to the possibility that the basic inferential abil-
ity to estimate difficulty may emerge early. Prior work has
found remarkable sophistication in infants’ understanding of
physical events (e.g., Spelke et al., 1992; Stahl & Feigenson,
2015), as well as their understanding of agents’ actions and
interventions on the physical world, both for others (e.g., Liu
& Spelke, 2016; Newman, Lockhart, & Keil, 2010) and their
own (Upshaw & Sommerville, 2015). Thus it is possible that
even younger children have the necessary inferential and rep-
resentational prerequisites for an intuitive sense of difficulty
that may manifest not only in their immediate motor plans
but also in their predictions of future events. Due to the ver-
bal demands (e.g., meaning of the words “easy” and “hard”),
the current paradigm is unlikely to be useful for children un-
der age 3. Future work might exploit building time (a proxy
for difficulty in our tasks) in a predictive looking paradigm
to address this possibility. Indeed, a time-consuming task is
not always judged as harder than a less time-consuming task.
Although here we looked at simple cases in which estimated
difficulty directly maps onto time, it would be interesting to
further investigate how objective and subjective aspects of
physical effort (e.g., height of tower and an agent’s building
competence) as well as mental effort (e.g., careful placement
of blocks) may dissociate time and difficulty estimates.

Difficulty is a difficult concept to investigate scientifically.
The current work is a small step to understanding this intu-
itive yet incredibly complex concept. By first examining how
people reason about simple, concrete tasks we may obtain
clearer insights on how these intuitions arise, and how they
develop into more abstract notions of difficulty that are em-
bedded in people’s lay use of this word.
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Abstract
Although a common assumption in models of perceptual dis-
crimination, most models of categorization do not explicitly
account for uncertainty in stimulus measurement. Such un-
certainty may arise from inherent perceptual noise or external
measurement noise (e.g., a medical test that gives variable re-
sults). In this paper we explore how people decide to gather
information from various stimulus properties when each sam-
ple or measurement is noisy. The participant’s goal is to cor-
rectly classify the given item. Across two experiments we find
support for the idea that people take category structure into
account when selecting information for a classification deci-
sion. In addition, we find some evidence that people are also
sensitive to their own perceptual uncertainty when selecting
information.
Keywords: attention, categorization, information sampling

Categorizing objects or situations into meaningful groups
is a critical cognitive ability. Many existing theories of
categorization share an unrealistic assumption that informa-
tion about the features of a to-be-categorized object can be
directly and precisely observed (Medin & Schaffer, 1978;
Nosofsky, 1986; Smith & Minda, 1998; Love, Medin, &
Gureckis, 2004). But this is often not the case; for exam-
ple, doctors do not always have full access to all the informa-
tion about patient symptoms (i.e., stimulus features) but in-
stead can only rely on a patient’s self-report and medical tests
which are subject to selective reporting and noise (perceptual
or otherwise). If a doctor orders a cholesterol test, they must
take into account that the patient’s true levels are somewhat
different than those reported by the test due to error or noise.
There is often uncertainty not only about the category of an
object but also about its specific dimension or feature values.

If noise and uncertainty are the affliction, then the anti-
dote is the fact that categorizers can often select how fea-
ture or stimulus measurements are made. In many cases, a
good strategy for selecting measurements (e.g., repeating the
same measurement when it is known to be noisy) can sig-
nificantly improve categorization performance. Here we ask
what strategies people use to select stimulus measurements
in the service of categorization. While previous approaches
to this question tend to focus on how people select stimulus
features to view without noise before making a categoriza-
tion decision (e.g., Nelson, McKenzie, Cottrell, & Sejnowski,
2010 or in eye and mouse tracking studies, Rehder & Hoff-
man, 2005; Matsuka & Corter, 2008; Blair, Watson, Walshe,
& Maj, 2009) here we explore the effect of measurement or
perceptual noise on information sampling strategies.

Categorizing in a Noisy World
We begin by presenting an Ideal Actor analysis of catego-
rization under measurement noise which extends the General

Recognition Theory (Ashby & Townsend, 1986). We then
present a series of experiments exploring how people sam-
ple information about category features under conditions of
stimulus noise.

Categorizing without perceptual noise The standard
model of a probabilistic binary categorization task (Medin &
Schaffer, 1978; Nosofsky, 1986; Smith & Minda, 1998) as-
sumes that on a given trial t, a category Ct ∈ {A,B} is drawn
randomly and a stimulus st is generated from the distribution
associated with Ct (see Figure 1a). Subjects are assumed to
either learn the parameters of these distributions through ex-
perience or description. Based on the information in st , sub-
jects guess which category Ct ∈ {A,B} it was generated from.
For example, in our first experiment, the stimuli have two
dimensions, color and orientation, i.e. st = [storientation ,stcolor ]
and the category distributions are bivariate Gaussian distri-
butions N (µµµCt ,ΣΣΣ) where the mean is dependent on the cat-
egory and we can decompose the covariance matrix as ΣΣΣ =[

σ2
orientation ρσorientationσcolor

ρσorientationσcolor σ2
color

]
. The Ideal Observer

decision rule, assuming knowledge of the category distribu-
tions, is to use the log-likelihood ratio

l(st) =
logP(s = st |Ct = A)
logP(s = st |Ct = B)

(1)

This rule responds A when l(st)> 0 and B otherwise (Ashby
& Gott, 1988).

Categorizing with perceptual noise In the 1980s, Ashby
and colleagues developed General Recognition Theory
(GRT), a family of models of multidimensional classifica-
tion that assumed perceptual noise, in contrast to the mod-
els above (Ashby & Townsend, 1986). Here we discuss a
special case of GRT that uses the Ideal Observer decision
rule and makes two critical assumptions about perceptual
noise: that perceptual noise has a normal distribution and
that the noise in perceiving each stimulus dimension is in-
dependent. In this model, on trial t the subject perceives a
percept pt = [ptcolor , ptorientation ] with probability N (pt ;st ,ΣΣΣp)

where ΣΣΣp =
[

σ2
porientation

0
0 σ2

pcolor

]
. ΣΣΣp is diagonal due to the in-

dependent noise assumption and σ2
porientation

and σ2
pcolor

are a
subject’s perceptual noise for orientation and color respec-
tively. When making their categorization decision, subjects
only have access to pt rather than st as before (see Figure 1b).
Therefore, the Ideal Observer’s decision rule is now based
on the log likelihood ratio l(pt) where pt is distributed under
each category as N (pt ;µµµCt ,ΣΣΣ+ΣΣΣp)
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Reducing uncertainty by making measurements One
strategy for dealing with uncertainty in the percept pt is to
exert control over the amount of information collected about
each stimulus dimension. In our task, the categorizer is given
a fixed budget of κ noisy measurements mt of a stimulus
made up of two dimensions. These measurements can be allo-
cated so that there are λorientation measurements of the orienta-
tion dimension and κ−λorientation measurements of color with
λorientation ∈ [0,κ]. Conceptually, this is like a doctor ordering
multiple runs of medical tests and collect more or fewer runs
of some tests over others. As in our experiment, orientation
measurements are each independently distributed with prob-
ability N (storientation ,σmorientation) and similarly for color. Be-
cause these measurements are all normally distributed, the
mean measurement m̄t is distributed as N (st ,ΣΣΣm), where

ΣΣΣm =

σ2
morientation

λorientation
0

0
σ2

mcolor
κ−λorientation

. We now assume that subjects

estimate the mean of several colors or oriented lines with a
constant variance, largely supported by the literature on en-
semble perception (e.g., Maule & Franklin, 2016; Dakin &
Watt, 1997). We assume the same perceptual distribution as
above except p̄t represents a subjects estimate of the mean
measurement and ΣΣΣp represents their noise in estimating that
mean. Let ΣΣΣmp =ΣΣΣ+ΣΣΣm +ΣΣΣp. Therefore,

P(p̄ = p̄t |Ct) = N (p̄t ;µµµCt ,ΣΣΣmp) (2)

The optimal decision rule depends on the log likelihood ratio
l(p̄t) as above.

Optimizing stimulus measurement In our most interest-
ing setting (see Figure 1c), we allow subjects to choose λ

in order to maximize their own categorization performance.
This is akin to the doctor trying to optimize the probability
of a correct diagnosis while trying to keep the cost of run-
ning the medical tests below a budget. To make the depen-
dence on λ explicit, we can rewrite ΣΣΣmp as ΣΣΣmp(λorientation) =[
(σ2

orientation +
σ2

morientation
λorientation

+σ2
porientation

) ρσorientationσcolor

ρσorientationσcolor (σ2
color +

σ2
mcolor

κ−λorientation
+σ2

pcolor
)

]
. The

expected percent correct of an Ideal Observer with a given
λorientation should be (Anderson, 1958):

EC(λorientation) =
1
2

erfc

(
−
√
(µµµA−µµµB)′ΣΣΣmp(λorientation)−1(µµµA−µµµB)

2
√

2

)
(3)

The Ideal Actor should then set λorientation to λ∗orientation =
argmaxλorientation

EC(λorientation).

Theoretical Predictions
In the following experiment, subjects perform a categoriza-
tion task with stimuli that vary on color and orientation di-
mensions. Subjects only receive κ noisy signals of what
the color and orientation of the stimulus are but choose a
number λorientation of signals to receive of the orientation
dimension. By varying the type of category structure (the

s

C

(a)

p

s

C

(b)

p

m λ

s

C

(c)

Figure 1: (a) Graphical model of the standard categorization model
where stimuli s depend on the category C. (b) a model analogous to
General Recognition Theory where stimuli s depend on the category
C but are never directly observable. Instead, the observer has access
to p which itself depends on s but is corrupted with noise. (c) An
active learning model of categorization under uncertainty. Here λ

reflects the number of measurements m made of the stimulus s. The
categorizer has access to p which depends on the category, stimulus,
and the information sampling strategy (m and λ).

two P(s|C) for category A and B) experimentally and us-
ing natural variation in perceptual noise, we can test two
predictions about how subjects should select signals based
on the above Ideal Actor model. We first divide cate-
gory structures into three groups: 1D-color structures where
P(orientation|A) = P(orientation|B), 1D-orientation struc-
tures where P(color|A) = P(color|B) and 2D structures oth-
erwise. We predict:

1. The rank ordering of subjects choice of λorientation should
be 1D-color ≤ 2D ≤ 1D-orientation

2. Within 2D categories, subjects choice of λorientation will be
modulated by the subject’s measured perceptual noise.

Intuition for the two hypotheses can be seen in the Ideal Ac-
tor predictions in Figure 2 which plots expected Ideal Ob-
server percent correct as a function of strategy and category
structure in (a) and perceptual noise in (b). In the 1D-color
situation accuracy is optimized by collecting zero orientation
samples. In the 1D-orientation, accuracy is highest with 10
orientation samples. In the 2-D case, accuracy is optimized
with 5 samples (Figure 2a). Furthermore the peak of these
functions changes with perceptual noise (Figure 2b).

Experiment 1
In order to test these predictions, we used a task divided into
six phases. In the first two phases, we estimated the free pa-
rameters of the Ideal Actor, σ2

porientation
and σ2

pcolor
, the subjects’

noise in estimating the mean of a number of colored dots and
oriented lines using a 2AFC task. In the next three phases,
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(a) (b)

Figure 2: (a) Ideal Observer expected percent correct as a function
of condition (described in Table 1) and strategy. The rank order of
the max of these curves is 1D-color ≤ 2D ≤ 1D-orientation. (b)
Ideal Observer expected percent correct if subjects had no percep-
tual noise (in red). In our experiment, we estimated noise parameters
(σorientation and σcolor) using a 2AFC task. Shown in blue and purple
are Ideal Observers with estimated noise parameters from two dif-
ferent subjects. Perceptual noise has a strong influence on optimal
strategy which is indicated by the arrow

subjects underwent extensive training to learn the category
and measurement distribution parameters (assumed known by
the Ideal Actor). In the final test phase, subjects performed a
categorization task where they could decide how allocate a
fixed budget of samples to the two stimulus dimensions. All
phases were 100 trials except the first category learning phase
which was 200.

Participants Sixty one participants were recruited through
Amazon Mechanical Turk. Participants received $8 for par-
ticipating in the experiment with a performance based bonus
of up to $10. Ten trials were selected at random from the
entire experiment and participants were awarded a bonus of
$0.25 for each trial correct. Participants were randomly as-
signed to the eight conditions described in Table 1.

Stimuli and Procedure All stimuli in the experiment were
generated randomly by drawing samples from the generative
model. To generate the stimuli, each sample corresponded
to either the angle of an oriented line relative to the circle or
the color of a dot where the number was the angle on a cir-
cle of radius 60 in CIE 1976 (L*, a*, b*) color space. The
locations of the colored dots on the screen were determined
by force layout, an algorithm within the d3 javascript visual-
ization library (Bostock, Ogievetsky, & Heer, 2011). Exam-
ples of these stimuli can be seen in (Figure 3). Throughout
the experiment, the “measurement noise” σm = σmorientation =
σmcolor = .6.
Perceptual Noise Estimation Phases. We adapted a 2AFC
task from Jogan and Stocker (2014) designed to estimate sub-
jects’ noise in estimating a property of a stimulus. We con-
ducted this task in two phases, one for orientation and one for
color (with order counterbalanced across subjects). On each
trial of the task, three stimuli s∈ {test, reference1, reference2}
were presented. The subject was asked which of the two ref-
erence stimuli was closer in terms of the property of interest
to the test stimulus and responded by pressing the appropriate
computer key. The specific properties of interest here were
the average orientation of a set of several lines or the aver-

age color of a set of several dots. The stimuli during these
phases looked the same as the stimuli in the later categoriza-
tion phase (Figure 3b) but with just one feature present. On
a given trial t, stimuli were generated by drawing nt samples
from N (µst ,σ

2
m) with nt ∈ [1,10] to keep the range and set

sizes of the stimuli the same as in the later categorization ex-
periment. µst was selected on each trial by a Bayesian adap-
tive procedure (Kontsevich & Tyler, 1999). Using an Ideal
Observer analysis detailed in Jogan and Stocker (2014), we
can estimate the perceptual noise parameters for identifying
the mean of the stimuli based on subjects’ performance in this
task.
Category structures/conditions. Throughout the four catego-
rization phases, stimuli were generated from a single pair of
categories, chosen from a set of eight categories described in
Table 1. For each subject, each dimension was shifted by a
random amount chosen from a uniform on [0,2π] to wash out
any effect of a specific stimulus range.

Condition µµµA µµµB ΣΣΣ

1D-orientation [0, 0] [1, 0]
[
.2 0
0 .2

]
1D-color [0, 1] [0, 0]

[
.2 0
0 .2

]
2D1 [0, 0] [.24, 62]

[
.22 −.2
.2 .22

]
2D2 [.24, 62] [0, 0]

[
.22 −.2
.2 .22

]
Table 1: Category parameters for Experiment 1. There were eight
categories total, with the other 4 being the same but with the en-
tries of µµµA and µµµB swapped. For the main analysis, we collapse the
conditions that share the parameters.

Category Learning Phase. In the category learning phase, a
category was drawn from a uniform distribution and a bivari-
ate sample was drawn from that category’s associated distri-
bution. This sample was converted to the color and orienta-
tion stimulus space using the procedure described above (see
Figure 3a for an example). Subjects responded by hitting the
“Q” key if they thought the stimulus was in category A and
the “P” key if the stimulus was in category B. Subjects then
received feedback on whether they were correct or incorrect
depending on the category structures defined above.
Measurement Noise Learning Phases The measurement noise
learning phases were meant to acclimatize the subject to the
effects of measurement noise on categorization. The stim-
uli were created by sampling from the full generative model
for the task as described in the theory section and converting
samples to the stimulus space as described above. During this
phase, subjects did not get to choose the number of measure-
ments of each dimension. Instead, stimuli in the first phase
included ten measurements of each dimension (κ = 20 and
λorientation = 10) and stimuli in the second included a total of
ten measurements with a random number of them allocated
to orientation (κ = 10 and λorientation ∈ [0,10]) See Figure 3b
for an example of the stimuli in this phase. Note that there
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(a) Category training phase (b) Measurement training
and test phases

Figure 3: Example categorization trials

are multiple lines/dots in this stimulus reflecting the multi-
ple noisy “measurements” made of each dimension. In order
to gain an intuitive understanding of the measurement proce-
dure, subjects were told “we showed the color of the stimulus
to 10 people and the location of the stimulus to 10 different
people. Later each of them had to re-create what they saw
from memory. Your task will be to take their recreations and
try to guess what category you think the original stimulus be-
longed to.” After every trial, subjects would receive feedback
on their categorization judgement as well as feedback about
what the true stimulus st had been on that trial.
Test Phase During this phase, subjects chose on a slider how
many measurements of each dimension they would see on
each trial (λorientation). Stimuli were then generated in the
same manner as in the measurement noise learning phases.
Subjects then performed the classification task as in the pre-
vious training sections.

Results
For each subject, we computed the posterior over the
σ2

porientation
and σ2

pcolor
parameters using the analysis described

in Jogan and Stocker (2014). In order to check that the
Bayesian adaptive procedure converged towards the correct
estimate, Jogan and Stocker use a diagnostic called the
Boundary Index (BI) a measure of the number of trials that
were chosen to be at the boundary of the space. All of our
subjects were below the recommended threshold of 0.9.

Using the perceptual noise posterior, we compute a poste-
rior over Ideal Actor strategies for every subject in our ex-
periment. Since each subject only experienced a single set of
categories in the test phase, the Ideal Actor only uses a single
λorientation parameter for the entire experiment. However, sub-
jects were able to change their choice of λorientation parameter
on every trial and relatively few subjects used just a single
value. In order to compare subjects to the model, we took an
average each subjects’ setting of λorientation. We chose a pri-
ori to average only the second half of test trials to ensure that
subjects had stabilized after having experience with using the
slider. The results turn out to be unchanged even if we use all
of the data from the test phase.

In order to test our first hypothesis we used Kendall’s τ, a

(a) (b)

Figure 4: (a)Scatter plot of subjects strategies vs. the Ideal Actor
(IA) strategy posterior mean. X error bars are +- 1SD of the IA pos-
terior and Y-error bars are standard error of mean subject strategy.
(b)Expected number additional incorrect Ideal Observer (IO) trials
relative to the Ideal Actor (IA). We do not include error bars on the
actual performance since the sampling distribution is over trial se-
quences while the sampling distributions on the Ideal Observers are
over measurement selections averaged over trial sequences.

common non-parametric rank-correlation method. We found
a significant monotonic relationship between category struc-
ture and subjects’ λorientation choice with 1D-color < 2D <
1D-orientation (Kendall τ(59) = 0.52, p < 1e-8).

We also found a significant linear relationship between
subjects’ λorientation parameters and the posterior mean Ideal
Actor (Pearson r(59) = 0.65, p < 1e-8). This result was still
significant using just the data from the 2D structure where dif-
ferences in Ideal Actor strategies are only due to differences
in estimated perceptual noise (Pearson r(30) = 0.38, p = 0.03).
This provides weak evidence for our second hypothesis.

Given that many subjects did not use just a single λorientation
throughout the whole experiment, what was the cost of their
suboptimal choice? Did they know to avoid choices that
would lead to significantly worse performance? To answer
this, we compare the theoretical performance of the Ideal Ac-
tor to what we call the subject Ideal Observer, the theoreti-
cal performance of an Ideal Observer who chose λorientation
on every trial as the subject did. The subject Ideal Observer
performance is of interest because it isolates the expected
decrease in performance solely due to choice of λorientation.
In contrast, differences between subjects’ actual performance
and the Ideal Actor may be for several reasons unrelated to the
information selection strategy. In Figure 4b, we compare the
Ideal Actor to subject Ideal Observer performance (in blue),
subjects’ actual performance (in black) and a baseline where
the Ideal Observer who chose λorientation randomly (in pur-
ple). Only seven out of sixty-one subjects had subject Ideal
Observers that did not perform significantly better than the
baseline suggesting that most subjects were sensitive to the
costs of choosing λorientation incorrectly.

Discussion
We found some preliminary evidence suggesting that peo-
ple take category structure and perceptual noise into account.
While the correlation between the Ideal Actor and subjects
strategies was significant, subjects deviated from the Ideal
Actor in other significant ways. In particular, subjects of-
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ten used multiple λorientation’s throughout the experiment and
actual categorization performance did not match the subject
Ideal Observer – two substantive suboptimalities. There may
be several reasons for this including that subjects might not
use the Ideal Observer rule for categorization or subjects did
not learn the exact category parameters in the time allotted. It
is difficult to assess subject knowledge in this task since the
average subject only had 75% agreement with the Ideal Ob-
server during the last 10 trials of the category learning phase.
Also, a MANOVA found that subjects’ disagreement with the
Ideal Observer and suboptimality was significantly different
across category types (Wilk’s Λ = .62, F(2, 58) = 7.6, p=1e-4).
This suggests that subjects might have significantly different
knowledge about the category across conditions. Finally our
estimates of σ2

porientation
and σ2

pcolor
may not be perfect which

might bias our Ideal Actor model.
Not learning the category parameters is probably the most

serious issue since the Ideal Actor strategy depends heavily
on these parameters. In order to address this, we conducted
a second study involving only binary-valued stimulus fea-
tures. With only a finite number of possible stimuli, we can
easily check whether subjects have “learned” the category in
the sense of having a high agreement with the ideal observer
when selecting the category for a given stimulus.

Experiment 2
Participants Thirty three participants who did not partici-
pate in the previous experiment were recruited through Ama-
zon Mechanical Turk. Payment was the same as in Experi-
ment 1.

Categorization Task Subjects in this task were instructed
that they needed to help a doctor discover how to categorize
patients presenting certain symptoms. Subjects would see the
outcome of two medical tests represented as the color of hor-
izontal and vertical lines (blue if positive and red if negative).
All four of the possible outcomes can be seen in Figure 5
(a). Based on the stimulus, subjects would have to determine
which of two diseases (A or B) the patient had. These dis-
eases (or categories) were defined as bivariate Bernoulli dis-
tributions over possible test outcomes. Let 1 denote a positive
test and 0 denote a negative test. Then let P(|̇D) be a matrix
where each entry with index [v,h] indicates the probability of
the vertical test taking on value v ∈ (0,1) and the horizon-
tal test taking on value h ∈ (0,1) given that the patient has
disease D ∈ A,B. We used category conditions described in
Table 2.

In the first phase of the experiment, subjects simply saw
the stimuli in Figure 5 with the above probabilities and sub-
jects were told that the tests were performed with no mea-
surement noise. In the later phases, subjects were told that
they now would see κ tests on every trial with λhorizontal mea-
surements of the horizontal tests. These tests had Bernoulli
measurement noise, i.e. the probability of the horizontal
test outputting k tests with the true value on each trial was(

λhorizontal
k

)
pk(1− p)(λhorizontal−k). In this experiment, we used

Condition P(|̇A) P(|̇B)

1D-horizontal
[
.5 0
.5 0

] [
0 .5
0 .5

]
1D-vertical

[
.5 .5
0 0

] [
0 0
.5 .5

]
2D

[
.5 0
0 .5

] [
0 .5
.5 0

]
Table 2: Category parameters for Experiment 2. There were six
conditions total, with the other three being the same but with the
category labels swapped. For the main analysis, we collapse the
conditions that share the parameters.

a p of .8. Figure 5 shows an example of a noisy stimulus
(i.e., multiple measurements of the horizontal or vertical line
segment) with it’s true value below. The choice of κ and
λhorizontal in each phase was exactly the same as in Experi-
ment 1 with subjects having a choice of λhorizontal in the last
phase as before. The first three phases of this experiment each
consisted of 200 trials and the last phase had 100. While we
could not derive a general analytic solution to the Ideal Actor
in this case, we can easily compute the strategy by enumer-
ating all of the potential observed measurements. We also
assume that in this case the effects of perceptual noise on per-
formance are minimal.

(a) Discrete-valued stimuli (b) Noisy discrete-valued
stimulus with true value be-
low

Figure 5: Example experiment 2 stimuli

Results
According to hypothesis 1 above, the rank order of the subject
λhorizontal in each category structure should be [1D-vertical ≤
2D ≤ 1D-horizontal]. We again found a significant mono-
tonic relationship between category structure and subjects’
λhorizontal choice in the direction we hypothesized (Kendall
τ(31) = 0.747, p < 1e-9). In addition, we found a significant
linear relationship (Pearson r(31) = 0.855, p < 1e-9) meaning
that the exact number of samples subjects chose were propor-
tionally similar to the Ideal Actor. One interesting feature
of the data was that most of the errors in subjects responses
were in the one-dimensional categories, which may be due
to a general hesitancy to only sample information about one
feature.

We can also perform the same cost analysis as for the pre-
vious experiment. Figure 6b shows that only one subject did
not select measurements significantly better than the random
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(a) (b)

Figure 6: (a)Violin plot of subjects strategies as a function of cat-
egory structure. (b)Expected number of additional incorrect trials
relative to the Ideal Actor

baseline. We can also check whether subjects truly learned
the categories: on average subjects had a 96% agreement with
the Ideal Observer in the second half of the category learning
phase and only 1 subject was below 90%. In addition, based
on a MANOVA, there was no effect of category structure on
suboptimal measurement selection or agreement with Ideal
Observer (Wilk’s Λ = .88, F(2, 30) = .96, p=.43) suggesting
that none of the conditions were more difficult than the others.

Conclusion
We developed a new categorization paradigm in order to
study people’s strategies for information selection. These
tasks allowed us to study human information selection in
categorization tasks with measurement and perceptual noise,
which we argue is the typical situation in everyday catego-
rization. We analytically derived an Ideal Actor model of this
task and from that derived two qualitative predictions for hu-
man behavior: 1) that subjects would be sensitive to the cat-
egory structure and 2) their own perceptual noise. In Exper-
iment 1, the predictions for perceptual noise were not fit to
the selection task but estimated in a separate psychophysics
task. Across two experiments, we demonstrated that most
subjects take into account the category structure. The first ex-
periment provided some evidence that subjects take into ac-
count perceptual noise as well although the evidence is some-
what weaker.

In order to get a better understanding of people’s strategies,
future work could address several additional questions includ-
ing whether people are sensitive to the costs of information
collection (see Meder and Nelson (2012) for some evidence
that they do not) of different costs for correct or incorrect an-
swers. Another direction might be whether people may be
more sensitive to certain features of the categories (such as
differences in the mean) than others (like the feature covari-
ance). Finally, information selection has been proposed to be
important in several other domains. Feature-based perceptual
attention (Scolari, Edward, & Serences, 2014) can be thought
of as a type of information selection and our model has par-
allels with some existing models in that literature (Palmer,
1990). A future experiment could use our model to investi-
gate how people allocate perceptual resources during catego-
rization. Many economists have recently investigated limited

information as an explanation for many economic phenomena
(Caplin, 2015) but have often assumed that people collect in-
formation optimally. Using this model and measurement se-
lection task could allow assessment of how people actually
select information in choice situations.
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Abstract 

Sequential categorization of perceptual stimuli typically 
shows contrast from one trial to the next. Using familiar 
categories of animals and faces, contrast effects were 
dissociated from assimilation effects. Two independent main 
effects were observed: contrast to the preceding stimulus, and 
assimilation to the previous response. It is argued that 
contrast and assimilation may reflect different processes in 
categorization. 

Keywords: categorization, contrast, assimilation 

Introduction 

Learning to categorize stimuli along a perceptual 

dimension (e.g. the pitch of a tone) would appear to require 

the establishment of a criterion value against which each 

stimulus can be judged. Above the criterion stimuli fall in 

one category, and below in the other (Ashby & Gott, 1988). 

However Stewart, Brown, and Chater (2002; 2005) argued 

that people may be unable to keep a consistent criterion in 

mind through the course of a sequence of such decisions. It 

is well known from the literature on absolute identification 

(where each value on the dimension must be identified 

separately) that learning to make such judgments is very 

difficult and prone to bias (Garner, 1953; Baird, Green, & 

Luce, 1980). In the same way, Stewart et al. (2002) argued, 

learning and retaining a given boundary on a perceptual 

dimension such as the pitch of a tone, will also be hard. 

Instead of making a judgment relative to an absolute value 

held in memory, people may instead rely on the difference 

between the current stimulus and the previous one. Since in 

a categorization task, feedback is normally provided on 

every trial, people can use the feedback on the previous 

trial, together with the direction and degree of change 

between the previous and the current stimulus to arrive at a 

reasonably accurate judgment. Stewart et al. referred to this 

way of doing the task as a MAC, or Memory and Contrast, 

strategy. Such strategies can lead to reasonable accuracy in 

the task, without recourse to the representation of absolute 

values in memory. 

In this and subsequent research (Stewart & Brown, 

2004, 2005; Stewart, Brown & Chater, 2005; Stewart & 

Morin, 2007), Stewart and colleagues have shown that the 

use of MAC strategies produces a category contrast effect 

between one trial and the next. If a sequence of ten tone 

stimuli is divided into two categories #1 to #5 as “low” and 

#6 to #10 as “high”, then a given stimulus next to the 

borderline (e.g. #5) will be more likely to be correctly called 

“low” if preceded by a clearly high case (e.g. #10) than by a 

clearly low case (e.g. #1). 

Stewart and Brown (2005) proposed that the category 

contrast effect could be part of a pair of heuristics in which 

the similarity and dissimilarity of a stimulus to the 

preceding stimulus is used to inform its categorization. In 

their Similarity-Dissimilarity (SD-GCM) adaptation of 

Nosofsky’s Generalized Context Model (GCM) (Nosofsky, 

1986), they proposed that categorization takes account not 

only of similarity to the exemplars of a class, as in the 

GCM, but also dissimilarity. Adopting Nosofsky and 

Palmeri’s (1997) proposal that recently classified exemplars 

will have greater influence on the decision, the SD-GCM 

proposes that when a stimulus is very similar to one on the 

preceding trial or trials, then it should tend to be put in the 

same category, while when it is very dissimilar, it will tend 

to be put in the opposite category. The model thus predicts a 

contrast effect that increases with the dissimilarity between 

neighbouring stimuli in a sequence, and turns into an 

assimilation effect as the two become increasingly similar. 

Jones, Love and Maddox (2006) describe this prediction in 

terms of a generalization curve from one trial to the next 

that is positive for similar items (assimilation), but negative 

for highly dissimilar items (suppressing categorization, and 

thus generating contrast). 

Evidence for the SD-GCM was also found in a series of 

studies by Hampton, Estes and Simmons (2005). In their 

paradigm, pairs of ambiguous stimuli were presented 

simultaneously and participants judged whether both, just 

one, just the other, or neither were in a category. A strong 

contrast effect was observed, seen as a bias to judge that just 

one stimulus was in the category, rather than both or neither. 

The aim of the current study is to investigate contrast 

and assimilation in sequential judgments empirically. To 

provide a clear picture of the effect of the previous trial 

however, it is important to be able to separate out the effects 

of the previous stimulus from the previous feedback 

(category membership). Jones et al. (2006) pointed out that 

Stewart et al.’s (2002) procedure of providing correct 

feedback on every trial means that the two effects are 

confounded. To remove this confounding, Jones et al. 

introduced probabilistic category feedback, with the 

likelihood of a stimulus being categorized in a given 

category ranging from 90% to 10% across the range of 

stimuli. With this task, it was possible to separate out the 

effect of the previous stimulus – which they argued would 

be based on perceptual contrast – from the effect of the 

previous feedback, which would be a decisional effect. In 

their study they found that the previous stimulus produced a 

perceptual contrast effect, while the previous feedback 

produced assimilation when stimuli were similar, and 

contrast when they were very different. The heuristics 
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proposed by the SDGCM were therefore supported by the 

decisional contrast and assimilation observed, while in 

addition the effect of one stimulus was shown to lead to 

contrast with the next. Looking at the parametric properties 

of these two effects, they suggested that Stewart et al.’s 

original category contrast effect was probably perceptual in 

origin, since the decisional contrast only appeared at 

extreme distances. 

The present study aimed to extend the method used by 

Jones et al. (2006) by differentiating the effects of the 

stimulus and the prior category in a simpler way. One 

problem with probabilistic category feedback is that 

participants may develop higher order models of the task. 

For example, if the most typical member of Category A is 

actually categorized by feedback as a B on 10% of trials, 

(non-modal feedback) the participant may develop a 

justified belief that the feedback is erratic and sometimes 

gives the wrong answer. They may even believe that the 

stimulus-response mapping has changed (Berg, 1948). Non-

modal feedback is thus likely to cause disturbance to the 

current response strategy. Indeed, the reported results (Jones 

et al., 2006, Figure 5) are consistent with this suggestion. 

When the previous trial gave modal (“correct”) feedback, 

the response curve rose smoothly with position along the 

physical dimension, asymptoting near 0.95 for the last two 

or three stimuli. When the previous trial’s feedback was 

non-modal however, the data showed a pattern of similarity 

based responding, with generalisation of the same category 

response to similar stimuli, but also a tendency to reverse 

categorization for distant stimuli, thus leading to the 

negative generalisation or contrast for large shifts in 

stimulus values.  

Given the possibility of different interpretations of Jones 

et al.’s results, it is therefore important to find other means 

of separating the effects of the prior stimulus and feedback 

to test the generality and reliability of their result. To do 

this, a categorization task was used in which, because the 

categories are well known prior to the experiment, no 

feedback is needed. Hampton, Estes and Simmons (2005) 

used a categorization task in which 7 images were shown 

varying along a dimension in which an image of a cat was 

morphed into that of a dog (see Figure 1). The task was 

simply to categorize the images as cats or not cats. Since 

responses to stimuli in the middle of the range will be 

probabilistic it is possible to break the data down as a 

function not only of the previous stimulus, but also of the 

previous response. While this feedback-free procedure has 

been used in absolute identification (e.g. Mori & Ward, 

1995) it has not been attempted before for categorization. 

Based on the results of Jones et al. (2006), assimilation 

to the previous response/category was predicted, that is, a 

bias to place a stimulus in the same category as the previous 

stimulus. Second, this bias should be stronger when the two 

stimuli are similar, and may even reverse to a contrast effect 

if they are very dissimilar. Third, it was predicted that there 

would be a perceptual contrast effect, such that, holding the 

previous response constant, then a current stimulus would 

be more likely to be placed in the opposite category to the 

previous one.  

Experiment 1 

Method 

Participants. Nineteen students from City University 

London (10 males) took part in the study.  

Materials. Seven images (see Figure 1) were taken from 

Hampton et al. (2005, with thanks to Vladimir Sloutsky). 

They ranged from a clear picture of a kitten (#1) through to 

a clear picture of a puppy (#7), with equal morphed steps in 

between. Each image was 200 x 200 pixels, measuring 6.6 

cm square on the display screen. 

 

 

 
     #1      #2      #3      #4          #5         #6    #7 

Figure 1: Stimuli used in Expt 1 

Apparatus. A Dell PC with a 15-inch CRT was 

programmed in Microsoft Visual Basic.  

Design. A repeated measures factor of Preceding Stimulus 

with 7 levels corresponded to the stimulus (#1 to #7) on the 

preceding trial. For analysis, this was converted to a 

measure of Relative Distance between the current and 

preceding stimulus. A post hoc factor of Response 

differentiated trials on the basis of the response given on the 

previous trial. The trial sequence provided a balanced 

pseudo-random sequence maximizing the number of useful 

trials. There were 6 blocks of 42 trials each. The 3 central 

images (#s 3, 4, and 5) where responding would not be at 

floor or ceiling were taken as “target” stimuli, and even-

numbered trials always featured one of these three. Within a 

block of 42 trials, each target was preceded on odd-

numbered trials by each of the 7 images (including itself and 

the other target stimuli), and the transition from one trial to 

the next was balanced as in Table 1. Note that there were no 

transitions between non-target stimuli. Across blocks, the 

full transition matrix had 6 times as many trials in each cell 

as in Table 1. Self-terminated breaks occurred after the 

second and fourth blocks, and filler trials were introduced at 

the beginning of the experiment and after each break to 

provide the starting context for the next set of trials. 

Procedure. Instructions were displayed below the 7 images 

ranked from #1 to #7. A trial began with the display of an 

image below which appeared two response boxes labeled 

CAT and DOG. The image remained on screen until a 

response was made with the mouse. A centrally located 

NEXT button then appeared and had to be clicked, to reduce 
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response perseveration due to mouse position. On each trial 

the mouse pointer was moved from the same central starting 

location. To reduce image persistence, and hence the 

possibility of detecting small changes from trial to trial, the 

images were displayed alternately to left and right of center. 

 

Table 1: Transition frequency from one trial to the next 

within each of the 6 blocks of 42 trials. The shaded area 

shows the critical trials involving a decision about one of 

the target borderline images. 

 

 

Results 

Preliminary data processing was required to clarify the 

results. First, one participant chose “cat” on only 6 of the 

180 target trials, and was excluded. Next, the rate of 

responding “cat” to each stimulus was calculated to check 

for range effects. The cat/dog boundary was not quite at the 

center of the scale, but lay between #3 and #4 on the CAT 

side of the center. As a result, almost all responses to #5 

were “dog”. Since #5 would therefore show a floor effect, 

this stimulus was not used as a target, leaving #3 and #4 as 

the target stimuli. The proportion of “cat” responses given 

to each of these was calculated as a function of the response 

given on the previous trial, and the relative distance of the 

previous stimulus from the current target. Two participants 

lacked data for just one cell each, and missing values were 

replaced with the relevant mean group. 

Figure 2 shows the proportion of “cat” responses to the 

current target stimulus, averaged over the two target stimuli 

#3 and #4. The top line shows trials where the preceding 

response was “cat”, and the lower shows trials where it was 

“dog”. The horizontal axis shows the relative distance of the 

current target from the previous stimulus. Thus CAT+2 

represents the case where the preceding trial was 2 steps 

more cat-like than the target and DOG+3 shows the case 

where the preceding stimulus was 3 steps more dog-like. 

TARGET represents the case where the preceding stimulus 

was the same as the current target stimulus. Note that no 

data are shown for CAT+3 because target #3 could only 

have a previous stimulus (#1) two steps more cat-like. In 

addition, two other points are missing from the graph 

because there were too few data points to estimate the mean. 

These points corresponded to the prior stimulus three steps 

more dog-like (DOG+3) being called a “cat”, and the prior 

stimulus two steps more cat-like (CAT+2) being called a 

“dog”.  

Figure 2 shows two main effects. First, when the previous 

response was “cat” (the top line), the current target stimulus 

was more likely to be called “cat” than when the previous 

response was “dog” (the lower line). Thus there was an 

assimilation to the previous stimulus showing up as a 

perseveration of the previous response. Regardless of the 

distance on the scale between the current target and the 

previous stimulus, there was a bias to repeat the same 

response. 

Figure 2: Categorization probabilities for Experiment 1 

 

Second, the lines rise from left to right, indicating a 

contrast from the previous stimulus. As the prior stimulus 

became more like a dog (moving from left to right along the 

axis) so the probability of the current target being called 

“cat” increased in a linear fashion. For example, consider 

the lower dotted line in the figure where the previous 

response was “dog”; the same target was called “cat” only 

20% of the time if following the stimulus CAT+1 – a 

stimulus one step more cat-like – but it was called “cat” 

over 50% of the time if following stimulus DOG+3 – where 

the previous stimulus was 3 steps more like a dog.  

The data were submitted to ANOVA with factors of 

Previous Response (Cat, Dog), and Relative Distance of 

previous stimulus (four levels for which full data were 

available: CAT+1, TARGET, DOG+1, DOG+2). Both main 

effects were highly significant: Previous Response, F(1,17) 

= 76.3, p < .001, and Relative Distance, F(3,51) = 5.36, p < 

.005, and there was no interaction (F(3,51) = 1.4, p > .2). 

Relative Distance had a significant linear trend (F(1,17) = 

14.7, p < .001). 

Before discussing the implications of the results, a 

replication will be described using the same procedure but a 

different set of stimuli. 

     Stimulus on Current Trial 

Trial 

Before 

1 2 3 4 5 6 7 Sum 

1   1 1 1   3 

2   1 1 1   3 

3 1 1 2 2 2 1 1 10 

4 1 1 2 2 2 1 1 10 

5 1 1 2 2 2 1 1 10 

6   1 1 1   3 

7   1 1 1   3 

Sum 3 3 10 10 10 3 3 42 
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Experiment 2 

Method 

Participants. Participants were 23 students (3 male) from 

City University, London. 

 

Materials. The stimuli used were a set of morphed images 

created between two celebrity faces, one of Eva Longoria 

and the other of Victoria Beckham (see Figure 3). Pilot 

testing established the necessary gradations to achieve a 

range of ambiguous images. 

 

Apparatus and Procedure. The same apparatus and 

procedure was employed as in Expt 1. In addition, in a first 

phase, participants were shown a sheet of images with 18 

morphs changing from Eva to Victoria, and were asked to 

select the image that they felt was the closest to the 50:50 

boundary between the two end images. This image was then 

used as the central target (#4) in the sequence for that 

participant with stimuli #1 to #7 in equal steps either side. 

The same sequence of trials was presented as in Experiment 

1, with the question “Is this picture more like Eva or 

Victoria?” and a mouse response. Data were scored as the 

probability of categorizing the image as Eva. 

 

 
   #1       #2       #3      #4      #5    #6   #7 

EVA                                                                VICTORIA 

 

Figure 3. Morphed Images of Eva Longoria and Victoria 

Beckham From the Range of 18 Morphs in Experiment 2 

 

Results 
The mean likelihood of responding “Eva” was calculated 

for the three borderline target faces, as a function of the 

relative scale position of the previous face, and the response 

made to the previous trial. As in Experiment 1, there were 

two clear effects on the probability of choosing the “Eva” 

response, over and above the effect of the target face itself. 

First, the previous response had an assimilation effect – 

when the previous response was “Eva” there was an 

increase from 0.40 to 0.61 in the probability of the current 

response being “Eva” regardless of the target or the previous 

stimulus. Second, as in Experiment 1 the effect of the 

previous stimulus was to produce a contrasting shift in the 

response.  

Because the range of borderline faces was narrower than 

in Experiment 1, there were insufficient trials in which an 

ambiguous target followed another ambiguous face. (These 

trials are critical to applying the method of analysis used in 

Study 1).  

A different method of analysis was therefore used. The 

effect of the previous response was calculated for the three 

images in the middle of the scale 3-5, where there were 

sufficient responses of each type. A 2 (Previous response) x 

3 (Previous Image) x 3 (Target face) repeated measures 

ANOVA showed a highly significant effect of the Previous 

Response, (F(1,22) = 32.3, p < .001.) 

To assess the contrast effect, for each participant, target 

face, and previous response, the correlation was calculated 

between response probability of saying “Eva” and the scale 

value of the previous stimulus. For example, for face #4 in 

Figure 3, the rate of responding “Eva” was calculated based 

on which of the 7 faces had been presented on the previous 

trial. A correlation was then calculated to determine whether 

the rate was increasing or decreasing as the previous 

stimulus changed. Six correlations were calculated for each 

participant, based on the 3 target faces (3, 4, 5) and two 

previous response possibilities. 

Positive correlations indicated a contrast effect. A higher 

scale value for the preceding stimulus means it is more like 

Victoria, so that a contrast effect would see a higher 

probability of saying “Eva” following face #7, than 

following face #1. The correlations were transformed to 

Fisher Z and t-tests were run across the participants for each 

of the 3 targets (3, 4, 5) and 2 previous responses. Eva 

responses to Target 3 following an Eva response, and to 

Target 5 following a Victoria response both showed a range 

effect (the first being towards ceiling and the latter at floor). 

For the other four conditions, the average correlation ranged 

from .35 (p < .05) to .49 (p < .002) all showing a strong 

positive contrast effect of the previous stimulus.   

Discussion 

This study set out to separate the effects of the preceding 

response and stimulus by using a set of images with a vague 

borderline region that was wide enough to provide trials 

where a given prior stimulus could be categorized either 

way.  

First, the results clearly demonstrated strong assimilation 

to the previous response, in line with the findings of Jones et 

al. (2006). For the central stimuli where sufficient responses 

of each kind were available, there was a bias of around .20 

to .30 in the probability of a given categorization in the 

direction of the previous response, regardless of the 

previous stimulus. Unlike Jones et al. however there was no 

reduction in the response assimilation effect as the stimuli 

became more different. There are two likely explanations 

for this effect. First, in paradigms where feedback is 

provided, people tend to repeat whatever response was 

reinforced on the previous trial (Jones & Sieck, 2003), 

similar to the situation with probability learning (Edwards, 

1961, Jarvik, 1951), and consistent with theories of 

conditioning (Rescorla & Wagner, 1972). Even though no 

feedback was provided (the participants in the present study 

decided for themselves where the boundary lay) they could 

nonetheless have treated their previous response as an 

anchor on which to base the next. This is what Mori and 
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Ward (1995) reported for an absolute identification task 

when feedback was omitted. A second explanation would be 

in terms of instability in the classification criterion adopted 

by participants over the course of the experiment leading to 

autocorrelation of responses. If the criterion is sometimes 

set low, then most stimuli will be “cats”, and if it then drifts 

high, they will mostly be “dogs”, yielding a greater 

preponderance of repeated category responses than 

expected. (Note that this explanation does not work on the 

basis of participants having different criteria since response 

rates were calculated separately for each participant before 

averaging.) 

The failure to show a reduction in response assimilation as 

the stimuli became less similar may be a function of the 

design. Trials focused on given borderline targets, preceded 

by different context stimuli. Thus there were no transitions 

from one extreme of the scale to the other, which is where 

Jones et al. observed the response-based contrast effect. 

There was little point in including such trials as almost all 

responses to the extreme images were at floor or ceiling. As 

described in the introduction it is uncertain whether the 

decisional contrast effect reported by Jones et al. (2006) is 

genuine evidence for negative generalization of the 

previously reinforced category (as they argue). When non-

modal feedback was provided (i.e. “false” feedback) 

performance on the next trial was disturbed, and this could 

have several alternative explanations. Since the argument 

for negative generalization depends on the use of invalid 

feedback, it must be treated with caution. 

Once the data were analyzed separately depending on both 

the stimulus and the response on the previous trial, a 

contrast effect was also seen, confirming Jones et al.’s 

report of a perceptual contrast effect between neighboring 

stimuli, independent of the previous response (or in their 

case feedback). Unlike Stewart et al.’s (2002) contrast 

effect, the effect here is unlikely to reflect a MAC strategy. 

 In comparison with previous research using simple tones 

or rectangles, participants showed little evidence of noticing 

when a stimulus changed from the previous trial, and if so in 

what direction. Our procedure of shifting the image left and 

right between trials may have made it harder to notice when 

a stimulus had changed from trial to trial and in what 

direction. For example, if participants had recognized that a 

stimulus had been repeated, (the point labeled TARGET in 

Figure 2) then one would naturally expect the previous 

response to also have been repeated, leading to extreme 

response rates of 0 if the previous response was Dog and 1 

if the previous response was Cat. The data in Figure 1 show 

no evidence for this strategy. Similarly, if people noticed the 

direction of change from trial to trial, extreme responding 

should have been found when the direction of change was 

further towards the category previously chosen (the 

Monotonicity Constraint identified by Hampton et al., 

2005). If I have just called something a Cat, and this new 

image is even more cat-like, I would not now call it a dog. 

In that case, for example, in Figure 1, the rightmost two 

points on the top filled line should be at 1, since here the 

participant has said that DOG+1 or DOG+2 looks like a cat, 

and they are now faced with a more cat-like target. This 

type of behavior was not seen in the data. It is striking that 

even though participants appeared to make no use of how 

the stimuli changed from trial to trial, they were still more 

likely to judge the current borderline image as a cat, when 

preceded by a more dog-like image, and vice versa, 

regardless of how they classified that previous image. 

Perceptual contrast effects such as this can be explained as 

adaptation level effects (Hampton et al., 2005; Helson, 

1964; Treisman & Williams, 1984). Treisman and Williams 

proposed a tracking process, whereby category criteria may 

adjust themselves towards the average of the current 

stimulus environment, to maintain maximum sensitivity to 

change, and thus leading to contrast. 

The contrast and assimilation effects built in to Stewart 

and Brown’s (2005) SD-GCM may therefore be operating at 

different levels, something that previous research has not 

considered. Contrast – the tendency to see one stimulus as 

more likely to be in the category opposite to the preceding 

stimulus – comes out as primarily perceptual in the present 

experimental set up, showing up regardless of how the 

previous stimulus was categorized. The fact that pairs of 

trials where a stimulus was repeated showed no increased 

tendency to repeat the previous response is clear evidence 

that participants were not using a MAC strategy in this case. 

Recall that the MAC strategy explains contrast in terms of a 

participant judging the sign (and possibly magnitude) of the 

change in the stimulus presented from one trial to the next. 

A large shift away from the category of the previous 

stimulus will give rise to contrast. 

Assimilation can also have two sources. According to the 

SD-GCM it is the similarity of two sequential stimuli that 

leads to perseverance of the response, and hence to 

assimilation. If you choose to call one stimulus a cat, and 

the next stimulus is hardly any different, then you call the 

next stimulus a cat as well. This type of assimilation should 

then be sensitive to the distance between the two stimuli. 

Only when a pair of stimuli are highly similar should you 

get assimilation.  

The assimilation observed here was quite different in 

character. There was no good evidence in the lines in Figure 

1 of the slope flattening out or becoming negative as the 

previous stimulus approached the target. The large 

assimilation effect was entirely associated with the effect of 

the previous response. Having called one stimulus a cat or 

dog, there was an inertia in the response, leading to a 

constant bias to place the next stimulus in the same 

category, regardless of the distance between them.  
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Abstract 

Tony Chemero advances the radical thesis that 
cognition and consciousness is actually the same 
thing. He draws this conclusion from his understanding 
of cognition as an extended process. I question this 
conclusion because this view expands cognition beyond 
being the sort of natural kind to which one can tie 
phenomenal experience. Moreover, because cognition has 
been radically inflated, despite Chemero’s claim to the 
contrary, embodied cognition does not solve any of the 
hard problems associated with consciousness. 

Keywords: radical embodied cognition; consciousness; 
perception-in-action; the hard problem. 
 

Novel stimuli capture our attention. This well-known 
fact forms the basis for several contemporary theories 
of theories of mind and brain, including Tony 
Chemero’s notion of embodied cognition (Chemero 
2009). Chemero holds that noticing unexpected 
events is key to understanding the larger cognitive 
system of which our brains are one part. He also 
believes that expecting some event to occur in the 
world is somehow tied to our conscious experiences. 

In his book Radical Embodied Cognition (2009; see 
also Silberstein and Chemero 2012, 2015) Chemero 
(along with Michael Silberstein) advance the radical 
thesis that cognition and consciousness is actually the 
same thing. He draws this conclusion from his 
understanding of cognition as a dynamical, non-linear, 
relational, and extended process. I question this 
conclusion. Even if, we are the brain-body-
environment synergies that Chemero and others claim 
we are (e.g., Anderson et al. 2012, Silberstein and 
Chemero 2012, Kello and van Orden 2009, Kelso 
2009), we will not be able to conclude that 
consciousness and cognition are two sides of the 
same coin because this view expands cognition 
beyond being the sort of natural kind to which one 
can tie phenomenal experience. Moreover, contra 
Chemero’s claim that “the problem of qualia does not 
arise in radical embodied cognitive science” (2009, 
Loc 2530/3178), embodied cognition does not solve 
any of the hard problems associated with 
consciousness. Nonetheless, some of Chemero’s 
views do help us understand some aspects of 
conscious experience. 

Radical Embodied Cognitive Science 
Most date the recent embodied movement in cognitive 
science to the work of Rodney Brooks (1991a, 1991b) 
and Francisco Valera, Evan Thompson, and Eleanor 
Rosch’s book The Embodied Mind (1991), though of 
course J.J. Gibson’s ecological theory is its earliest 
contemporary incarnation (Gibson 1962,1966,1979). 
This work was intended to be an antidote for 
computational views of mind, in which perception, 
memory, and thought all become manipulations of 
brain-based mental representations. 

Proponents of embodied cognition hold agents’ 
bodies, and often their local environments, are not 
only physically relevant to cognition, but are also 
causally constitutive. Moreover, cognition is not the 
rational and abstract process that computationalists 
assume, but instead is dedicated to helping our 
bodies move and act upon our environment.  

We evolved as a species to take advantage of our 
environment, and we do so as we solve so-called 
cognitive problems. In many cases, what at first 
appears to be a difficult problem to solve using abstract 
representations and computations divorced from the 
physical world turns out to be much easier to resolve if 
we are allowed to consider our bodies and our 
environment as cognitive resources. It is easy for a 
human to learn to move about on land because 
Mother Nature designed our legs for walking on 
Earthly terrain (Thelen and Smith 1994). In other 
words, instead of using our brain to solve problems, 
we manipulate our bodies and our environments to 
dissolve them. Moreover, in doing this, we can also 
alter our bodies and our environments such that the 
problems we need to solve also change. Gathering 
food presents a different sort of challenge in a 
cultivated field, compared to an unspoiled savannah 
rich with bison. 

Hence, instead of thinking of the agent and its 
environment as two separate entities that occasionally 
touch each other, it is better to see them a single, 
interacting, system. It follows from this perspective 
that cognition is extended into the environment. It also 
follows that any mathematical model of this larger 
system should describe how it unfolds dynamically 
over time, which would require non-linear differential 
equations. 
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What makes Chemero’s views of embodied cognition 
radical is that he claims that dynamical systems 
theory, which we need to be able to model 
cognition, does not presuppose mental 
representations, or indeed any representations at all. 
If brains, bodies, and environment form one unified 
system, then there is no need for one part of the 
system to represent another part of the system for 
everything is always and already connected. Perception, 
action, and thought itself are all non-representational 
and non-computational. Let us accept this view as true 
and see how he might explain consciousness using 
this understanding of human cognition and action. 

Conscious Cognitive Systems 
Silberstein and Chemero (2012) hold that conscious 
experience is “an essential feature of extended brain–
body– environment systems” (p. 36) and that 
phenomenology and cognition are “inseparable and 
complementary aspects of coupled brain-body-
environment systems….Experience is cognition and 
cognition is experiential” (pp.40-41). They each “co-
determine” the other (p. 41). They get there by 
positing that some version of neutral monism must be 
true, if the thesis of radical embodied cognition is true 
(Silberstein and Chemero 2015). They trace this 
metaphysics back to William James, who held that 
there was no actual difference between the so-called 
objective world out there and the subjective 
experience of the world in each of us. “What 
represents and what is represented is here numerically 
the same” (James 1904, p. 484). Both the subjective 
and the objective are defined in opposition to one 
another, and both are ways of understanding the 
world, which is the “more basic neutral ‘stuff’ of 
experience” (Silberstein and Chemero, 2015, p. 186). 
Hence, one cannot have cognition, an objective 
process, without also having at the same time, 
consciousness, the subjective experience. 

Computational theories of mind artificially create a 
problem for consciousness, for they give the impression 
that one can have mental computation without 
concomitant conscious thought. We get the problem 
of consciousness because we can imagine non-
human, apparently unconscious, machines instantiating 
a computational theory of mind. That is, we can 
imagine cognition without consciousness, or so we 
think. 

This is the hard problem of consciousness, a 
challenge that dates back to at least Gottfried Leibniz in 
1714:1 because we can imagine a something that is 

                                                             
1 “Moreover, it must be confessed that perception and that 
which depends upon it are inexplicable on mechanical 
grounds, that is to say, by means of figures and motions. And 
supposing there were a machine, so constructed as to think, 
feel, and have perception, it might be conceived as 

identical to a human’s (or a brain’s) physical 
interactions without also imagining that thing’s 
consciousness, it appears that nothing about any 
physical interaction should give rise to phenomenal 
experience. And yet, we are conscious, nonetheless. 
How can this be? (Leiniz’s answer, like David 
Chalmer’s (1995, 1996) more contemporary one, is to 
posit that consciousness is a fundamental part of the 
ontology of the universe.) 

But if computational theories of mind are false, then 
this particular problem of consciousness does not 
arise. Cognition is a feature of our extended and 
embodied system, as is consciousness. By “[refusing] 
to separate meaningful cognition and 
phenomenology” (2012, p. 41), Silberstein and 
Chemero believe that they have eliminated the so-called 
hard problem of consciousness essentially by 
definitional fiat. They assert that, “neutral monism 
properly conceived really does deflate the hard problem 
once and for all” (2015, p. 182). 

Can they do this? To answer this question, we 
need a more complete picture of what they are 
envisioning an extended phenomenological-cognitive 
system to be. 

Our nervous system has its own spontaneous and 
internally generated dynamics, which in turn create 
transient neural assemblies comprising our 
sensorimotor capabilities. We are coupled to our 
environment via these sensorimotor structures, which 
result in changes to both our internal transient neural 
assemblies via sensory feedback and in the external 
environment via behavioral responses. Over time, we 
become attuned to nuances in the extended brain-body-
environment system that complements our 
sensorimotor sensitivities and external features; this is 
our niche. 

What we perceive in our environment via our 
sensorimotor structures (and probably other related 
neural assemblies) are nothing less than Gibsonian 
affordances, relational features of the brain-body-
environment system used to guide our actions and 
behavior. They are what the environment contains and 
what we can do. Silberstein and Chemero claim that the 
“set of affordances” we perceive in our world, “just is 
the environment as [we] experience it” (2012, p. 43, 
italics theirs). Hence, “cognition and conscious 
experience can be understood as a single phenomenon” 

                                                                                                     
increased in size, while keeping the same proportions, so 
that one might go into it as into a mill. That being so, (we 
should, on examining its interior, find only parts which 
work one upon another, and never anything by which to 
explain a perception. Thus it is in a simple substance, and not 
in a compound or in a machine, that perception must be 
sought for. Further, nothing but this (namely, perceptions 
and their changes) can be found in a simple substance. It 
is also in this alone that all the internal activities of simple 
substances can consist” (Leibniz 1714, section 17). 
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(p. 35). Consciousness “ is inseparable from cognition, 
which is the ongoing activity of a nervous system, 
body, and niche non-linearly coupled to one another” 
(p. 43). 

Just as our neural assemblies are not anatomically 
hardwired – they are “softly” assembled – so too are 
the borders of the brain-body-environment system. How 
far and how much we extend into the environment 
depend a great deal on what we are trying to do and 
what barriers or assistance the environment provides to 
us. The entire system itself then is also a soft assembly 
whose interaction dynamics determine its structure. 

Some call such interaction dominant, softly 
assembled, systems “synergies.” A synergy is a set of 
structural units that temporarily link together to form 
a single cohesive functional system. It is maintained 
or changed on the fly as its dynamics and processes 
ebb and flow over time (Anderson et al. 2012, Kelso 
2009). 

We know that we have a synergy when we can 
measure pink noise associated with it. Pink noise, or 1/f 
noise, refers to a signal in which the power spectrum 
density (energy per Hz) is inversely proportional to the 
frequency. (It is called pink noise because visible 
light with this power spectrum looks pink.) We can 
contrast pink noise with white noise, which has equal 
energy on every frequency. Pink noise is also a 
hallmark of fractal timing and appears to be ubiquitous 
in nature, occurring in everything from cosmic 
background radiation to flooding patterns of the Nile 
River (see also Strogatz 2004 for a popular way into 
these phenomena). It is an indication of nested, self-
similar structures that occur over time. Guy van 
Orden and his colleagues (2003) argue that pink 
noise signifies just the sort of interaction-dominant, 
softly assembled, system we have been discussing as 
a model for cognition. (See also Miyazaki et al. 
2004.) And with this technical idea in hand, scientists 
are now able to manipulate and measure our dynamic 
embodiment experimentally. 

For example, Chemero and his colleagues devised an 
experiment that forces change in our extended 
cognitive synergy (Dotov et al., 2010, 2017). 
Undergraduates engaged in a simple video game, 
using a computer monitor and a mouse. At irregular 
intervals during each trial, the connection between the 
mouse and the monitor was disrupted. Interestingly, 
pink noise is present at the hand- mouse interface 
until the disruption. Once the disruption is over and the 
connection returns to normal, the pink noise returns. 
These measures index changes in the boundary of 
the extended cognitive synergy. During the normal 
phase of the task, the mouse is part of the system. 
During disruption, it is not. 

Most important for our purposes, the measures of 
pink noise correlate with our conscious experiences. 
When we are engaged in the video game, we are 

not aware of the hand-mouse interface per se, but 
once the connection between mouse and monitor is 
altered, then the mouse grabs our attention and we 
become aware of it. The point is, we project ourselves 
into our environment, and in so doing, we experience 
the edges of our extended system. We have long 
known that this is the case, but it is only now that 
psychologists have been able to develop metrics for 
measuring changes in our projections. 

The pink noise of our cognitive synergy indexes our 
phenomenal experience. I think that this is the best 
argument for why the picture Chemero paints might in 
fact be true. We notice and pay attention to, 
experience, things that do not match our predictions or 
expectations. And we experience these things in terms 
of what we could do, or how we could act. Our 
experiences are about or of the relationship we have 
with the world, which is continuously changing and 
evolving. 

These mixes of brain, body, and environment are 
what Gibson called objective-subjective hybrids. And 
that fact, Chemero believes, solves the problem of 
consciousness. For this is how subjectivity exists in an 
objective world–it exists in the on-going relationship 
between an agent and the context of its actions. (The 
relationship itself is neither subjective nor objective. 
This is the neutral substrate that allows us to define 
subjectivity and objectivity as two different aspects of 
the same “monism.”)  

The Hard Problem is Hard 
What is wrong with this story? Essentially, it is that 

the sort of non-linear coupling that links us with our 
environment is found at all sorts of levels of 
organization. Without further analysis, we cannot 
identify which level corresponds to cognition; hence, 
tying consciousness to cognition either means 
consciousness exists at multiple levels of organization, 
which strikes most people as improbable, or more 
work needs to be done to delineate consciousness 
cognition from other synergies. If we need to do more 
work, then the problem of consciousness remains to be 
solved. 

To take one example, we find synergies within the 
brain itself. These are softly assembled, interaction-
dominant, nonlinear dynamical systems whose 
behavior strongly resembles prototypical cognition, 
perception, and action. It is questionable whether these 
systems are also conscious. 

Neuroscientists are now capable of recording 
responses from thousands of neurons simultaneously. 
It is becoming clear that neural correlates for things 
like memory and decision-making are at the 
population level (Abbott 2012). Modeling studies 
show that while the action potentials of individual 
neurons might appear disordered and uncoordinated, 
population level activity is not. 
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We know that neurons and neural circuits have to 
respond quickly and flexibly as contexts change. 
This means that they need to be able to ignore 
irrelevant information while reacting to whatever is 
important to the larger task at hand. Neural responses 
in the frontal eye fields in monkeys were recorded as 
they performed a visual discrimination task using noisy 
stimuli. It turns out that individual neurons 
simultaneously respond to the motion and color of 
stimuli, the context, as well as the target itself. 
However, these signals are separable at the population 
level through linear regression (Mante et al. 2012). 
Importantly, stimuli analysis at the population level 
is integrated with motor choices, just as proponents 
of embodied cognition would have predicted. We see 
similar dynamics in the olfactory system of the fly (Luo 
et al. 2010). 

One important facet of nonlinear dynamical 
systems is that they are nested systems, and their 
components exhibit the same sort of dynamics as the 
system as a whole. Individual neurons and the ion 
channels in neurons also appear to have the same 
dynamical pink noise properties as the activity of 
populations of neurons (White et al. 1998, Yu et al. 
2005). While most are comfortable believing that 
monkeys are conscious, it is less clear that we want to 
assert that flies are, and it is even more problematic to 
assert that parts of monkey brains or fly brains are 
conscious. 

Chemero perhaps could wriggle out of this problem 
with his definition of cognition. That is, these might be 
synergistic systems, but they are not cognitive synergies. 
He defines cognition as “the ongoing, active 
maintenance of a robust animal-environment system, 
achieved by closely coordinated perception and 
action” (2009, loc. 2696/3178). In other words, the 
sorts of dynamically coupled systems I have been 
discussing are necessary but not sufficient for cognition. 
He is restricting consciousness to the brain-body-
environment system’s level, or perhaps even to the 
animal brain-body-environment system. If you move 
inside the head, while there might exist dynamical 
systems modeled in identical ways to an animal 
brain-body-world synergy, there would be no actual 
cognition. And no cognition would mean no 
consciousness either, according to Chemero’s view. 

Of course, this move does not solve the hard 
problem of consciousness, since it does not explain 
what might be special about the animal brain-body-
environment synergy such that it has consciousness 
but the olfactory system of the fly brain does not. 
Indeed, this move echoes the challenge before the 
computationalist: what is it that is special about human 
(or primate or animal or whatever is conscious) 
computations that make them conscious? Prima facie, 
there is nothing about the computations themselves 
that should give rise to conscious experience, and there 

are certainly many computational systems that we 
believe are not conscious. Similarly, we can ask: what 
is it that is special about an animal brain-body-
environment interaction that is cognitive and 
therefore consciousness? Prima facie, there is nothing 
about being an animal synergy that should give rise to 
conscious experience. In particular, there does not 
seem to anything special about an animal brain-
body-environment interaction that an animal brain 
piece-body piece-environment interaction would not 
also share. Put another way: there does not seem any 
reason to believe that the neutral monads that 
comprise our world exist at the level of animal-
environment relations as opposed to animal-part-
environment relations. 

Of course, another alternative is that Chemero could 
bite the bullet here and conclude that fly pieces are 
indeed conscious, in their own sort of fly-ish way. 
Being an interaction-dominant, softly assembled, pink 
noise sort of synergy is both necessary and sufficient 
for cognition and therefore for consciousness as well. 
The right sort of dynamics is all you need for 
cognition; the nested components of the nonlinear 
systems have all the same properties as the mother 
system, and this would include cogitating and 
consciousness. 

Perhaps, though, he would not want to do this, 
since, as Silberstein and he point out, one advantage 
of tying consciousness to cognition is to “[eliminate] 
fruitless philosophical discussion of qualia and the 
so-called hard problem of consciousness” (2012, p. 
35). They want to get rid of the challenge of 
envisioning odd machines as being conscious because 
they are computing over representations by denying 
that conscious systems compute at all. But here we are, 
back discussing an odd machine and whether it has 
experiences. This time, however, we are wondering 
whether the system is cognitive after all. 

The complaint similar to the one Chemero and 
Silberstein lodge against traditional consciousness 
studies can also be lodged against them. While we 
can define cognition as a particular type of synergy, 
and we can believe that cognition just is an extended, 
softly assembled animal brain-body-environment 
synergy, and we can deny that manipulating 
representations has anything to do with humans 
thinking, we still do not escape the fundamental 
problem with explaining consciousness, that is, 
explaining why anything at all is conscious. 

In other words, there is no reason why a neutral 
substrate should be conscious. It is, according to their 
view. But just as we can imagine (or so the story 
goes) things that are functionally identical to humans 
but are not conscious, so too can we envision complex 
brain-body-environment synergies comprised of a 
neutral substrate that is not conscious. The hard 
problem remains. 
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Or, perhaps a more accurate way to describe 
Silberstein and Chemero’s move: consciousness just 
is an inherent aspect of affordances. Like Chalmers, 
they try to eliminate the hard problem by making 
consciousness part of the fundamental structure of the 
world. But just as with dualism, one needs an argument 
or evidence for why subjectivity appears where it 
allegedly does. 

Coda: Consciousness, Projection, and Action 
However, there is at least one important difference 
between the brain-body-environment synergies and the 
human coupling described above that might give us 
some insight into conditions for conscious awareness: 
we do not or cannot project ourselves psychologically 
onto or through the other individuals. Unlike driving a 
car, in which we can “feel” the tires on the road, 
when coupled with another person, we do not “feel” 
the other person’s feet hitting the ground. Whatever 
sort of system or synergy coupled humans are, the 
psychological reality of having an animate object in 
the environment is quite different from having an 
inanimate object. Inanimate object-environment 
synergies are transparent to us; human couplings are 
not. 

There has to be something fundamentally different 
between the two. What is it? I argue that the difference 
lies in how we perceive the respective affordances. 
And insofar as how we perceive affordances is tied to 
how we consciously experience the world, then it could 
be that Chemero is onto something after all. 

For example, there are some odd cases of associative 
agnosia in which patients are unable to recognize or 
name living things (like lions or opossums), but they 
can recognize and name inanimate objects (like forks 
and radios) without a problem (Satori and Job 1988). 
If we take a traditional neuro-reductionist point of 
view, then we should conclude that information 
about living things is stored in a different place in the 
brain than information about inanimate objects. 
Damage to the “living thing” place in the brain 
results in patients with deficits in recognizing living 
things and damage to the “inanimate object” place 
results in patients with deficits in recognizing 
inanimate objects. But interestingly, and perhaps 
counter-intuitively, there are very few cases in which 
a patient cannot recognize inanimate objects, but can 
recognize living things. We don’t get the neat double 
dissociation that neuropsychologists love. 

If there are two separate areas for living and 
inanimate objects, then why would we find brain 
damage possible in one area but not the other? 
Antonio Damasio (1990) suggests that this pattern 
could be due to a difference in how we perceive living 
and inanimate objects. In particular, we manipulate 
inanimate objects, but, for the most part, we do not 
living ones. As a result, we would be activating a 

greater number of brain regions when we perceive 
inanimate objects than when we do living things: in 
both cases, we activate the areas associated with 
visual perception, but in the case of seeing a tool in 
our environment, we also activate kinesthetic and 
motor movement brain regions. (Imaging studies bear 
out Damasio’s conjecture, cf., Gerlach et al. 2002, 
Kellenback et al. 2003.) Hence, it might be the case 
that we do not have different brain areas that respond 
differentially to living versus non-living objects, but 
rather that we just have more regions involved with 
one type of perception over another. With more 
regions activated in response to inanimate objects, 
and therefore more regions that would have to be 
damaged in order to see the related agnosia, it would 
not be surprising that we have a hard time finding 
patients with deficits naming inanimate objects but not 
living ones. 

Here then is the hypothesis: we distinguish objects in 
our environment based on how we (potentially) 
interact with them. We perceive living things by their 
visual features and concomitant affective responses, 
but inanimate objects based on functional properties. 
This, of course, is just another way to look at 
affordances: we see and understand the objects around 
us in terms how we relate to them, and they to us. But 
now we can go further: not only are differences in 
psychological projection between animate and 
inanimate objects tied to perceptual differences, but 
also to action-decisions and consciousness itself. 

I am claiming that we do not project ourselves 
through what we perceive to be other living things in 
our environment. We can only project ourselves through 
objects that we manipulate functionally (I note that 
there might be good exceptions to this general rule; for 
example, when we use a living thing as a tool in our 
environment. A practiced person might project through 
a trained seeing-eye dog to the environment beyond.) 
And, we can only extend our conscious experience 
into whatever psychological space of projection we 
have available to us. One limit on our conscious 
experience is not just the edge of the affordance, so to 
speak, but it is also the type of affordance we perceive. 
Functional objects become psychologically transparent 
to us, such that we project our conscious experiences 
through them. Animate objects do not. 

I conclude: Chemero (and Silberstein) cannot escape 
the hard problem of consciousness by positing neutral 
monism. Nevertheless, there is something right about 
his position. Consciousness is connected to or 
indexed by or co-occurs with or identical to our 
perception of affordances, which is intimately tied to 
how we interact with the objects in our environment. 
We are aware of what we intend to manipulate in our 
environment in order to achieve our behavioral goals. 
Hence, consciousness is not identical to all cognition; 
it is not even identical to all brain-based cognition. 
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Instead, it is deeply linked to one very important part 
of our cognitive processes: perceiving affordances just 
prior to action. 
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Abstract
What cognitive mechanisms support the emergence of linguis-
tic conventions from repeated interaction? We present re-
sults from a large-scale, multi-player replication of the clas-
sic tangrams task, focusing on three foundational properties
of conventions: arbitrariness, stability, and reduction of ut-
terance length over time. These results motivate a theory of
convention-formation where agents, though initially uncertain
about word meanings in context, assume others are using lan-
guage with such knowledge. Thus, agents may learn about
meanings by reasoning about a knowledgeable, informative
partner; if all agents engage in such a process, they success-
fully coordinate their beliefs, giving rise to a conventional
communication system. We formalize this theory in a compu-
tational model of language understanding as social inference
and demonstrate that it produces all three properties in a sim-
plified domain.
Keywords: conventions; pragmatics; communication

Introduction
Just as drivers depend on shared behavioral conventions to
safely navigate traffic, successful communication depends on
a set of shared linguistic conventions. Speakers of different
languages around the world refer to the same object in many
different ways, yet when ordering a coffee in San Francisco,
one can confidently use the English word “coffee” and be un-
derstood. How do these conventions – classically character-
ized by Lewis (1969) as arbitrary but stable solutions to re-
curring coordination problems – form in the first place?

While global conventions adopted and sustained through-
out a large population of speakers may develop over longer
time scales, we also effortlessly coordinate on local con-
ventions – or conceptual pacts (Brennan & Clark, 1996) –
within the span of a single dialogue. For example, when
discussing possible conditions to use in an upcoming experi-
ment, a team of collaborators might begin the meeting using
long descriptions to refer to each condition but end the meet-
ing using conventional terms like “condition A” and “condi-
tion B.” Since global conventions are hypothesized to emerge
through diffuse, repeated interactions of this more local kind
(Garrod & Doherty, 1994), the cognitive mechanisms under-
lying convention-formation in such interactions are of foun-
dational interest.

In a seminal study by Krauss & Weinheimer (1964), pairs
of participants played a cooperative language game where
they were presented with arrays of ambiguous shapes in ran-
domized orders. The players were assigned the roles of di-
rector and matcher and allowed to talk freely. The matcher’s
goal was to rearrange their shapes to match the director’s
board, and the director’s goal was to communicate useful de-
scriptions. Over multiple rounds, descriptions were dramati-
cally shortened: an early description like “upside-down mar-
tini glass in a wire stand,” became simply “martini” by the

end. Later studies (e.g. Clark & Wilkes-Gibbs, 1986) refined
this paradigm, using larger arrays of tangram-like figures
and emphasizing the intricate back-and-forth process through
which speakers and listeners negotiate over references. The
referring expressions generated by participants in these stud-
ies revealed a number of rich qualitative phenomena. Here,
we focus on three that are both prescribed top-down by theo-
ries of convention-formation and also arise bottom-up as ma-
jor axes of variation in our data: arbitrariness, stability, and
the systematic reduction of utterance length over time.

Arbitrariness is a definitional property of conventions
(Lewis, 1969): there must be multiple solutions that would be
equally successful as long as both players “agree” (e.g. driv-
ing on the left vs. right side of the road). By the final round
in a language game, for example, one pair might successfully
use the expression ‘dancer’ to refer to a tangram, while an-
other might use ‘skater’. The other definitional property we
consider is stability: it is in everyone’s best interest to keep
using a convention once established. Finally, reduction is
more specific to the reference game paradigm and refers to
the transformation of longer, complex expressions into sim-
pler expressions over the course of interaction, as Krauss &
Weinheimer (1964) observed. While this broad phenomenon
has been replicated many times, exactly what is reduced re-
mains an open empirical question.

Theories of convention-formation differ primarily in the
extent to which sophisticated social reasoning and common
ground is required. At one extreme, agents use simple heuris-
tic updating rules and do not need to represent or reason about
other agents at all (Barr, 2004; Centola & Baronchelli, 2015;
Young, 2015). Simulations elegantly show how arbitrary sig-
naling systems can spread and come to stably dominate large
populations. However, due to their ‘rich get richer’ dynamic,
it is not clear how simple heuristic updating mechanisms
alone could account for reduction in repeated interaction. At
the other extreme are theories in which agents recursively
track what information is mutual knowledge, often formalized
in a game theoretic setting (Lewis, 1969). Wilkes-Gibbs &
Clark (1992) and others have proposed that agents engage in
a collaborative process of actively establishing mutual knowl-
edge, though the mechanisms allowing conventions to emerge
under such conditions have not been instantiated in a formal
model to our knowledge.

In this paper, we argue for a theoretical position on the
spectrum between these poles: conventions form when uncer-
tain agents treat their partners’ knowledge as ground truth.
In other words, agents assume their partner is knowledgeably
and rationally using some conventional lexicon mapping la-
bels to meanings but are themselves initially unsure of its
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Figure 1: Example trial in experimental interface. Both play-
ers could freely use the chat box, and the matcher could click
and drag the tangram images.

identity. Through observing their partner’s behavior in re-
peated actions, agents learn and adopt that lexicon, though
their partner in fact begins in the same state of ignorance.
When both agents independently adopt such a social learn-
ing strategy, they align to one another, coordinating on and
implicitly creating shared conventions.

To motivate this theory, we first conduct a large-scale repli-
cation of the tangrams task on the web, which has tradition-
ally been limited to relatively small sample sizes in the lab.
We use distributions of lexical and syntactic features in the
text corpus to operationalize arbitrariness, stability, and re-
duction, which have been difficult to analyze at a fine-grained
level due to the sparseness of existing data. Taking these in-
sights into account, we then formalize our theory in a compu-
tational model of communication in repeated reference games
based on recent successes capturing language understanding
as social inference (Goodman & Frank, 2016; Goodman &
Stuhlmller, 2013). Finally, we show that this model qualita-
tively produces all three empirical signatures in a simplified
domain inspired by the tangrams task.

Replication of the Tangrams task
To collect a corpus of reference game dialogue that supports
more detailed analyses of convention-formation, we ported
the tangrams task used in Clark & Wilkes-Gibbs (1986) to a
real-time, multi-player web environment.

Methods
Participants 200 participants were recruited from Ama-
zon’s Mechanical Turk and paired into dyads to play a real-
time communication game using the framework in Hawkins
(2015). We excluded games that terminated before the com-
pletion of 6 rounds and where participants reported a native
language different from English, leaving a corpus of 67 com-
plete games with a total of 9967 utterances.

Stimuli On every trial of the game, both participants were
shown a 6×2 grid containing twelve tangram shapes, repro-
duced from Clark & Wilkes-Gibbs (1986). Cells were labeled
with fixed numbers from one to twelve in order to help par-

ticipants easily refer to locations in the grid (see Fig. 1).

Procedure After passing a short quiz about task instruc-
tions, participants were randomly assigned the role of either
‘director’ or ‘matcher’ and automatically paired into virtual
rooms containing a chat box and grid of stimuli. Both par-
ticipants could freely use the chat box to communicate at any
time. The director’s tangrams were fixed in place, but the
matcher could click and drag the shapes to reorder them. The
director had to send messages about the locations of differ-
ent tangrams on their fixed board; the matcher had to iden-
tify the corresponding tangram shapes and move them to the
correct locations. When the players were satisfied that their
boards matched, the matcher clicked a ‘submit’ button that
gave players feedback on their score (out of 12) and scram-
bled the tangrams for the next round. After six rounds, play-
ers were redirected to a short exit survey. We collected the
raw text of every message sent and every swapping action
taken by the matcher1.

Results
Arbitrariness and stability We begin by examining sig-
natures of arbitrariness and stability in our data. We opera-
tionalize these concepts using the information-theoretic mea-
sure of entropy:

H(W ) = ∑
w

P(w) logP(w)

where P(w) denotes the distribution over frequencies of word
tokens used within a game. Broadly speaking, entropy mea-
sures the predictability of a distribution. It is maximized
when all elements are equally likely and declines as the dis-
tribution becomes more structured, i.e. when the probability
mass is concentrated on a small subset of elements.

To derive predictions, we consider a permutation-test null
model in which utterances on each of the six rounds are
scrambled across games, designed to break any existing struc-
ture in each game’s idiosyncratic word distributions. The
mean empirical entropy should only differ from the null dis-
tribution of entropies generated from this scrambling process
if both arbitrariness and stability hold.

First, note that if stability did not hold, scrambling would
have no effect on the entropy within individual games: a
given speaker would already use different words each round,
and swapping out the identity of those words would not af-
fect the entropy of the word distribution. There would be no
structure to break.

If stability holds but arbitrariness does not, all players
would adopt the single optimal (non-arbitrary) way to refer to
each tangram. Therefore, the entropy of their word distribu-
tions also should not be affected by scrambling: a speaker’s
real words would be swapped out for the same tokens gen-
erated by another speaker. Scrambling wouldn’t break the

1Data are available at https://cocolab.stanford.edu/
datasets/tangrams.html
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#1 #2 #3 #4 #5 #6 #7 #8 #9 #10
unigrams a like looks the one with to of and on

bigrams looks like like a a person is a to the with a the right the left the one a square

Table 1: Top 10 unigrams and bigrams with the highest reduction

# words per tangram # listener messages % adjectival clauses % subordinate clauses
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Figure 2: Reduction phenomena. From left: (1) mean message length in words per tangram, (2) mean number of listener
messages, (3) proportion of utterances containing adjectival clauses, (4) proportion of utterances containing subordinate clauses.
Error bars are bootstrapped 95% CIs.
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Figure 3: Reduction rates for different parts of speech. Error
bars are bootstrapped 95% CIs.

structure of the distribution, because the structure would be
the same for all participants.

Finally, if both arbitrariness and stability hold, then differ-
ent speakers would adopt different referring expressions that
persist from round to round. Hence, scrambling should in-
crease the average game’s entropy from a relatively low level:
each game’s idiosyncratic, concentrated distribution of words
would be mixed together to form more heterogeneous and
therefore high-entropy distributions.

To test this prediction, we computed the average within-
game entropy for 1000 different permutations of speaker ut-
terances. Since this permutation scheme keeps the number of
messages per participant constant and simply swaps out the
content of those messages within each round, it controls for
the fact that some speakers sent more messages than others
and also that speakers in earlier rounds use more words (see
next section). We found that our null distribution lay within
the interval [4.88, 4.91], which is significantly higher than the
true entropy (averaged across games) of 4.36, p< 0.001. This
pattern is consistent only with signatures of both arbitrariness
and stability.
Reduction Next, we turn to a set of analyses examining
reduction in utterance length over the course of the experi-
ment. At the coarsest level, we find that the mean number of

words used by speakers decreases over time (see Fig. 2). This
decrease replicates a highly reliable reduction effect found
throughout the literature on iterated reference games (Bren-
nan & Clark, 1996; Krauss & Weinheimer, 1964). Likely due
to our purely textual (vs. spoken) interface, participants in our
task used significantly fewer words overall than previously
reported (e.g. an average of 20 words on the 1st round, com-
pared to 40 in Clark & Wilkes-Gibbs (1986)) The following
analyses break down this broad reduction into a finer-grained
set of phenomena.

The next level of granularity motivating our model ap-
proach concerns which kinds of words are most likely to be
dropped. Is the speaker adopting a shorthand where they
drop uninformative function words, or are they simplifying
or narrowing their descriptions by omitting meaningful de-
tails (Clark & Wilkes-Gibbs, 1986)? We used the Stanford
CoreNLP part-of-speech tagger (Toutanova, Klein, Manning,
& Singer, 2003) to count the number of words belonging
to each part of speech in each message. Fig. 3 shows the
percent reduction of different parts of speech from the first
round to the sixth round. We find that determiners (‘the’, ‘a’,
‘an’) are the most likely class of words to be dropped with
an 86% reduction rate, on average. Nouns (‘dancer’, ‘rab-
bit’) are the least likely class to be dropped with only an 62%
rate. Closed-class parts of speech are strictly more likely to
be dropped than open-class parts of speech.

While this finding is consistent with the possibility that
speakers adopt a shorthand using more fragments as the game
proceeds, we find a more complex dynamic by examining the
table of unigrams and bigrams most likely to be dropped (see
Table 1). Note that alongside dropped articles (‘a’, ‘the’),
there are a number of words that form conjunctions (‘and’)
and modifiers (‘of’, ‘with’, ‘the right’). In other words, it
may be more likely that when function words are dropped, it
is primarily as part of larger grammatical units that provide
additional information in identifying the target.

We explicitly examined this hypothesis by running the
Stanford constituency parser (Schuster & Manning, 2016),
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tagging the occurrence of subordinate/adverbial clauses (‘sit-
ting facing left’) and adjectival clauses (‘angel that is pray-
ing’) .2 We found that both were reduced over the course
of the game (see Fig. 2), lending additional support for the
hypothesis that whole meaningful clauses are increasingly
omitted. This result prompts a characterization of reduc-
tion where, due to uncertainty at the outset about the use-
fulness of any particular lexical unit, initial phrases pile on
multiple partially redundant modifiers and descriptors. As
the game progresses and ambiguity of reference decreases,
these additional meaningful units become less useful and can
be dropped. We return to this characterization more formally
within the scope of our model below.

Model
Here, we present a probabilistic model of language produc-
tion under uncertainty, which captures several of the signa-
ture properties of conventions shown above. This model be-
longs to the family of Rational Speech Act (RSA) models,
which have been successful in explaining a wide range of lin-
guistic phenomena – including scalar implicature, adjectival
vagueness, overinformativeness, indirect questions, and non-
literal language use – as arising from a process of recursive
social reasoning. Most previous applications of RSA have fo-
cused on the listener’s problem of language comprehension,
but the puzzle of conventionalization is primarily a question
of speaker production. An nth order pragmatic speaker trying
to convey a particular state of affairs s ∈ S assuming lexi-
con L is assumed to select an utterance u ∈U by trading off
its expected informativity (with respect to a rational listener
agent) against its cost, usually based on length (Goodman &
Frank, 2016):

Sn(u|s,L) ∝ exp(α logLn−1(s|u,L)− cost(u))

where α is a soft-max optimality parameter controlling the
extent to which the speaker maximizes over listener infor-
mativity. The listener, in turn, inverts the speaker model to
reason about what underlying state s the speaker is trying to
convey, given their utterance u:

Ln(s|u,L) ∝ P(s)Sn(u|s,L)

This recursion bottoms out in a literal listener who directly
looks up the meaning of the utterance in the lexicon:

L0(s|u,L) ∝ L(u,s) ·P(s)

As in several other recent applications of RSA (Graf, De-
gen, Hawkins, & Goodman, 2016), we use a graded seman-
tics, where utterances are better or worse descriptions of par-
ticular referents. For instance, the utterance “dancer” may ini-
tially be expected to apply to a photorealistic image of a bal-
lerina (L(’dancer’,ballerina) = 0.99) more than an abstract

2Specifically, we used the Universal Dependencies tags csubj,
ccomp, xcomp, and advcl for subordinate clauses and acl for ad-
jectival clauses (Schuster & Manning, 2016)

image of one (L(’dancer’,abstract ballerina) = 0.6), but ap-
ply to both better than a non-category member like an image
of a dog (L(’dancer’,dog) = 0.05).

Our approach to convention-formation begins with the ad-
ditional assumption of lexical uncertainty (Bergen, Levy, &
Goodman, 2016; Smith, Goodman, & Frank, 2013). In other
words, we assume that instead of having perfect knowledge
of L , the listener has uncertainty over the exact meanings of
lexical items in the current context (i.e. it is initially unclear
which of the ambiguous tangram shapes “the dancer” might
refer to). They begin with some prior P(L) about the iden-
tity their partner’s true lexicon, which may be initially biased
toward certain meanings. By conditioning on repeated ob-
servations of their partner’s behavior, they use Bayes rule to
infer this true lexicon:

PLn(L |d) ∝ P(L)∏
i

Sn(si|ui,L)

where d = {si,ui} is a set of observations of si and ui com-
ing from previous exchanges3. The listener marginalizes over
this posterior when interpreting the speaker’s utterance:

Ln(s|u,d) ∝ ∑
L

PLn(L |d)Ln(s|u,L)

The speaker, in turn, considers what utterances would be most
informative for such a listener:

Sn(u|s,d)∝ exp(α log

(
∑
L

PSn(L |d)Ln−1(s|u,L)

)
−cost(u))

where the posterior over lexica PSn(L |d), uses the listener
likelihood Ln−1. For the purposes of this paper, we fix the
depth of recursion at n = 2. This model is implemented in
the probabilistic programming language WebPPL (Goodman
& Stuhlmller, electronic).4 Following Smith et al. (2013),
we begin by showing how a random initial choice is taken to
be evidence for a particular lexicon and becomes the base for
successful communication even though neither party knows
its meaning at the outset.

Results
Arbitrariness and stability Consider an environment with
two abstract shapes ({s1,s2}), where the speaker must choose
between two utterances ({u1,u2}) incurring equal cost. Their
prior P(L) over the meaning of each utterance is given by a
Beta distribution5, so on the first round both utterances are

3There is a broader debate over the timescales at which lexi-
cons and lexicon learning mechanisms operate; here, we assume a
discourse-level structure to the lexicon, where there is uncertainty
over how words are used in the given conversation. See Frank,
Goodman, & Tenenbaum (2009) for a related approach at the scale
of cross-situational word learning.

4All results can be reproduced running our code in the browser
at http://forestdb.org/models/conventions.html

5In our implementation, we enumerate over coarse-grained bins;
preliminary experiments using variational inference on the full con-
tinuous distribution give similar results.
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Figure 4: (A) Probability of speaker using u1 to refer to s1, broken out by initial observation: while players are initially
ambivalent between the two labels (arbitrariness), the initial mapping is likely to persist (stability). (B) Accuracy rises as
speaker and listener align. (C) When conjunctions are introduced into the grammar, utterances get shorter over time (reduction).

equally likely to apply to either shape. If the speaker was try-
ing to get their partner to pick s1, then, since each utterance
is equally (un)informative, they would randomly sample one
(say, u1), and observe the listener’s selection of a shape (say,
s1). On the next round, the speaker uses the observed pair
{u1,s1} to update their beliefs about their partner’s true lex-
icon, uses these beliefs to generate a new utterance, and so
on. To examine expected dynamics over multiple rounds, we
forward sample many possible trajectories.

We observe several important qualitative effects in our sim-
ulations. First, the fact that a knowledgeable listener responds
to utterance u with s provides evidence for lexicons in which
u is a good fit for s, hence the likelihood of the speaker using
u to refer to s increases on subsequent rounds (see Fig.4A). In
other words, the initial symmetry between the meanings can
be broken by initial random choices, leading to completely
arbitrary but stable mappings in future rounds. Second, be-
cause the listener is also learning the lexicon from these ob-
servations under the same set of assumptions, they converge
on a shared set of meanings; hence, expected accuracy rises
on future rounds (see Fig. 4B). Third, because one’s part-
ner is assumed to be pragmatic, agents can also learn about
unheard utterances. Observing d = {u1,s1} also provides ev-
idence that u2 is not a good fit for s1 by Gricean maxims: if u2
were a better fit for s1, the speaker would have used it instead
(Grice, 1975). Finally, failed references lead to conventions
just as effectively as successful references: if the speaker in-
tends s1 and says u1, but then the listener incorrectly picks s2,
the speaker will take this as evidence that u1 actually means
s2 in their partner’s lexicon and become increasingly likely to
use it that way on subsequent rounds.

Reduction in utterance length Finally, we show how our
model explains reduction of utterance length over multiple in-
teractions. For utterances to be reduced, of course, they must
vary in length. Motivated by our empirical observation that
meaningful clauses are the primary unit of reduction, we ex-
tend our grammar to include conjunctions. This is one of the
simplest ways to constructing longer utterances composition-

ally from lexical primitives, using the product rule:

L(ui and u j,o) = L(ui,o)×L(u j,o)

Analogous to our tangram stimuli, which have many am-
biguous features and figurative perspectives that may be
evoked in speaker descriptions, we consider a simplified sce-
nario where speakers can refer to two different features of the
two objects {o1,o2}. The speaker has four primitive words at
their disposal – two words for shape ({us1,us2}) and two for
color {uc1,uc2} – and has uncertainty over the initial mean-
ings of all four.

While we established in the previous section that conven-
tions can emerge over a reference game in the complete ab-
sence of initial preferences, players often bring such prefer-
ences to the table. A player who hears ‘ice skater’ on the
first round of our tangrams task is more likely to select some
objects more than others, even though they still have some
uncertainty over its meaning in the context. To show that our
model can accommodate this fact, we allow the speaker’s ini-
tial prior meanings to be slightly biased. us1 and uc1 are more
likely to mean o1; us2 and uc2 are more likely to mean o2.

We ran 1000 forward samples of 6 rounds of speaker-
listener interaction, and averaged over the utterance length
at each round.6 Our results are shown in Figure 4C: the ex-
pected utterance length decreases systematically over each
round. To illustrate in more detail how this dynamic is
driven by an initial rational preference for redundancy relax-
ing as reference becomes more reliable, we walk step-by-step
through a single trajectory.

Consider a speaker who wants to refer to object o1. They
believe their knowledgeable partner is slightly more likely to
interpret their language using a lexicon in which us1 and uc1
apply to this object, due to their initial bias. However, there
is still a reasonable chance that one or the other alone actu-
ally refers strongly to o2 in the true lexicon. Thus, it is use-
ful to produce the conjunction “us1 and uc1” to hedge against
this possibility, despite its higher cost. Upon observing the

6In our simulations, we used α = 10 and found the basic reduc-
tion effect over a range of different biases
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listener’s response (say, o1), the evidence is indeterminate
about the separate meanings of us1 and uc1 but both become
increasingly likely to refer to o1. In the trade-off between in-
formativity and cost, the shorter utterances remain probable
options. Once the speaker chooses one of them, the symmetry
collapses and that utterance remains most probable in future
rounds. In this way, meaningful sub-phrases are omitted over
time as the speaker becomes more confident about the true
lexicon.

General Discussion
In this paper, we revisited the classic phenomenon of
convention-formation in a large-scale, text-based replication
of the tangrams task. We argued that several key qualitative
patterns in the data – arbitrariness, stability, and the reduc-
tion of utterance length over repeated interactions – can be
explained by our model of informative communication under
lexical uncertainty. This model formalizes a theory where
conventions emerge via uncertain agents who assume their
partner is knowledgably and informatively using some con-
ventional lexicon. Through repeated observations of their
partner’s actions, agents learn this lexicon, thereby coordi-
nating and aligning to one another.

Theories of convention-formation vary in the extent to
which social reasoning about common ground is required.
Our agents lie on a spectrum between the heuristic updating
agents of Barr (2004) and the sophisticated agents of Clark &
Wilkes-Gibbs (1986), who collaboratively build up explicit
representations of mutual knowledge. Speakers and listen-
ers in our model implicitly coordinate their beliefs through
a shared history of observations, which serves as “common
ground” in an informal sense. They make critical use of prag-
matic, social reasoning in order to learn meanings, but do not
explicitly consider the fact that this history is shared, or rep-
resent their partner’s own uncertainty.

By capturing reduction, which purely heuristic theories
have not yet demonstrated, we showed that minimal assump-
tions of social reasoning go a long way in accounting for key
phenomena. Still, our model falls short in some ways. For
instance, because we do not provide a mechanisms for the
listener agent to respond with confirmation, repair, or follow-
up questions, we cannot make explicit predictions about the
reduction in listener messages (as shown in Fig. 2) or the
effect of listener input on the conventionalization process.
These phenomena require our model to deal with planning
over extended dialogues, and more sophisticated speech acts.
Similarly, while our model was explicitly designed with lin-
guistic conventions in mind, it remains to be seen whether the
same formulation generalizes to broader behavioral conven-
tions. For example, the real-time coordination games used in
Hawkins & Goldstone (2016) may not require players to rea-
son about a structured lexicon with noise, but an action policy
representation may play a similar role. While there remain
many complex aspects of convention-formation in communi-
cation games left for future research, our approach nonethe-

less serves as a lower bound on the degree of social reasoning
needed to capture lexical conventions in these games.
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Abstract 

We outline and test a Bayesian model of the effects of evidence 
sampling on property induction. Our model assumes that 
people are sensitive to the effects of different sampling frames 
applied to sampled evidence. Two studies tested the model by 
comparing property generalization following exposure to 
samples selected because they belong to the same taxonomic 
category or because they share a salient property. Both studies 
found that category-based sampling led to broader 
generalization than property-based sampling. In line with 
model predictions, these differences were attenuated when a 
mixture of positive and negative evidence was presented 
(Experiment 1) and when category-property relations were 
probabilistic rather than deterministic (Experiment 2). 

Keywords: Inductive reasoning; Sampling; Hypothesis 
testing; Bayesian models; Categorization 

Introduction 
Inductive reasoning – the ability to make plausible guesses 
given inconclusive evidence – is one of the central topics in 
cognitive science. Much of the traditional work on the topic 
has emphasized the importance of similarity between premise 
and conclusion categories (see Hayes & Heit, 2013, for a 
review). While undoubtedly useful, the similarity-based 
approach overlooks a crucial component of induction: 
people’s inductive inferences are strongly influenced by their 
beliefs about how the evidence was sampled (e.g., Xu & 
Tenenbaum, 2007). This phenomenon is referred to as 
sensitivity to sampling, and there is considerable evidence 
that human reasoners show exactly this sensitivity. 

One form of sampling sensitivity occurs when an argument 
assembled by a knowledgeable and helpful teacher is 
evaluated quite differently than a set of random facts, even if 
– by chance – the random process happens to have sampled 
the same set of facts. In the reasoning literature, this was first 
discussed by Medin, Coley, Storms and Hayes (2003) in their 
relevance theory of induction. They suggested that reasoners 
often make the pragmatic assumption that premise categories 
are selected to highlight a salient relation, which is then used 
to guide inference. For example, on learning that zebras and 
skunks share a novel property, people may infer that the 
property involves “having stripes” and generalize 
accordingly. More recently, the formal foundations for 
pragmatic inference have been established using Bayesian 
pedagogical sampling models, that model human inductive 
reasoning by assuming that helpful teachers select 
informative evidence (Voorspoels, Navarro, Perfors, 
Ransom, & Storms, 2015; Ransom, Perfors & Navarro, 2016; 

Shafto & Bonawitz, 2015). This account is supported by 
empirical work showing that many inductive phenomena 
(e.g., premise non-monotonicity, integration of positive and 
negative evidence) depend on the assumption of a helpful 
teacher (Ransom et al., 2016; Voorspoels, Navarro, Perfors, 
Ransom, & Storms, 2015).  

A second kind of sensitivity arises from the so-called 
“strong versus weak” sampling distinction. Under strong 
sampling, the learner observes a set of exemplars (e.g., 
premise categories) that are constrained to possess property 
p. Under weak sampling, no such constraint exists. Early 
work highlighted the fact that even this simple constraint can 
produce substantial changes to how a Bayesian reasoner 
make inferences (Tenenbaum & Griffiths, 2001), but many 
applications of the strong/weak distinction have tended to 
conflate it with helpful/random sampling (e.g., Xu & 
Tenenbaum, 2007), and those that do not have found mixed 
evidence (e.g., Navarro, Dry & Lee, 2012). Although there 
are good reasons to expect helpfully sampled evidence to be 
similar to strongly-sampled evidence (e.g., Ransom et al., 
2016), it is not obvious whether (or when) people are 
sensitive to sampling assumptions if no helpful teacher is 
available. Perhaps people are capable of taking a hint from a 
helpful teacher, but otherwise are largely insensitive to 
sampling assumptions. Given other evidence that people 
struggle with conditional probability (e.g, Fiedler, 2012) this 
is not an implausible idea. 

How sampling frames shape induction 
In this paper, we approach the problem from a different 

perspective, and consider other ways in which data can be 
sampled in a constrained way. The statistics literature, for 
instance, emphasizes the importance of a sampling frame 
(Jessen, 1978): when designing a survey, the researcher may 
not be able to sample uniformly at random from the entire 
population of interest, but is instead forced to sample from a 
restricted subset. When interpreting such data, those 
properties of the observed data that are attributable to the 
sampling frame do not require theoretical explanation, as they 
are deemed an artifact of the sampling process.  
The effect of a sampling frame can be substantial. Imagine 
that you want to learn what plants make you sneeze. The 
potential search space is large so we apply a sampling frame 
– we first test a particular category of plant (e.g., sunflowers) 
– and find that most sunflowers cause us to sneeze. In this 
situation, the fact that we have never sneezed at a daisy is 
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irrelevant: it can be attributed to the sampling frame. In this 
context, absence of evidence is not evidence of absence.  

 
    Now consider the effect of shifting the sampling frame. 
Suppose instances are selected because they share the 
property of interest (e.g., they give positive result on an 
allergy test). If most of this sample was sunflowers then the 
absence of daisies might be seen as inductively informative: 
it suggests that the allergic reaction is limited to the observed 
category. Despite the fact that neither scenario involves a 
helpful teacher, the mere presence of a sampling frame allows 

the same data to lead to different generalizations (cf. Hsu, 
Horng, Griffiths, & Chater, 2016). 

There is evidence that people are sensitive to the sampling 
frame. Lawson and Kalish (2009) presented participants with 
samples of animals (small birds) that shared a novel property 
(“has plaxium blood”) and manipulated the way exemplars 
were sampled. In the “category sampling” condition they 
were told that items were sampled from a taxonomic category 
(i.e., the frame selects small birds). In the “property 
sampling” condition people were told that exemplars with 
plaxium blood were selected. People in the property sampling 
condition were less likely to generalize the property to other 
animals. Lawson and Kalish (2009) noted that this result was 
inconsistent with similarity-based accounts of induction, but 
they did not explain why the differences occurred. 

As it happens, this pattern of results is exactly what one 
would expect from a probabilistic reasoner who is sensitive 
to the sampling frame. Later we present a formal model, but 
the qualitative intuition is simple. Suppose the learner has 
observed small birds (S) with plaxium blood (P+), and is 
trying to determine whether large birds (L) also possess 
plaxium blood. Subject to the constraint that large and small 
birds both exist, there are six hypotheses consistent with the 
observations, as shown in Figure 1, and three that are not.  

Now consider the plausibility of these six hypotheses under 
different sampling frames, illustrated by the red rectangles in 
Figures 2. In category sampling, it is plausible to assume that 
if any small birds did not have plaxium blood, the SP- case 
would have been observed. The lack of such observations 
strengthens three hypotheses and weakens three others. 
Notably, two remaining hypotheses allow large birds to have 
plaxium blood (LP+). By contrast, in property sampling it is 
reasonable to assume that if any large birds had plaxium 
blood we should have seen the LP+ case. The fact that they 
were not leaves only two viable hypotheses, both of which 
restrict property P to the target category. Accordingly, 
generalization is more restricted under property sampling. 
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Figure 2. The effect of sampling frame. When the data consist solely of small birds with plaxium (SP+), plausible hypotheses 
are those for which only SP+ is allowed by the sampling frame and the hypothesis. Consequently, LP+ is less plausible 
under property sampling and the learner does not generalize beyond the observed SP+ case. 
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Experiment 1 
Our experimental work replicates the findings of Lawson and 
Kalish (2009), and extends them in a way that tests our 
“sampling frames” explanation. In the first experiment, we 
considered the impact of explicit negative evidence. If a 
learner encounters non-target category members that lack 
property P, the differences between the two sampling 
conditions should attenuate. Explicit negative evidence 
should have a large effect in the category sampling condition, 
but only a modest effect under property sampling. We expect 
this difference because property sampling already provides 
implicit negative evidence, so the added value of the explicit 
negative evidence is diminished.  

Experiment 1 tested these predictions by presenting 
participants with identical evidence samples obtained via 
category or property sampling. Half the participants received 
positive evidence about members of a target category, as per 
Lawson and Kalish (2009), and half received additional 
negative evidence about non-target category members. All 
participants were then asked to judge whether the novel 
property generalized to other categories. 

Method 
Participants. 92 UNSW students (63 female), participated 
for course credit or payment. The mean age was 20.9 years. 
Design and Procedure. The experiment used a 2 x 2 between 
subjects design with equal numbers in each condition.  

The procedure for the positive evidence only groups was 
patterned after Lawson and Kalish (2009). Participants were 
told they were investigating the properties of animals on a 
novel island. In the category sampling condition, participants 
were told that only small birds were sampled from the island. 
In the property sampling conditions, they were told that only 
animals with plaxium blood were sampled from the island. 
Exemplars were revealed as follows: on each of 20 trials, 
participants could click on one of a large number of on-screen 
boxes to see an exemplar (each depicted by a unique picture 
of a small bird), and to learn if the animal had plaxium blood. 
In the positive evidence condition, all 20 exemplars sampled 
had plaxium blood.  

For the positive+negative evidence groups the procedure 
was identical, except that there were five trials at the end in 
which “new” samples from the island were presented. Each 
of these revealed a single instance from other animal 
categories (crow, seagull, eagle, squirrel, frog) that did not 
have plaxium blood. These five trials were always presented, 
in random order, at the end of sampling phase. 

After the learning phase, all participants proceeded to a 
generalization test. On each of six trials, participants were 
shown a picture of an animal and asked to estimate the 
number of such animals from a sample of ten that would have 
plaxium blood (0-10). The test categories included a member 
of the same target category that was presented during 
sampling (a novel picture of a sparrow) and five categories 
that varied in similarity to the target (pigeon, owl, ostrich, 
mouse, lizard). Test item order was randomized. 

Results and Discussion 
Generalization scores (out of 10) for all conditions are 

shown in Figure 3. Visual inspection suggests that the 
positive-only condition people generalized more narrowly 
under property sampling (black squares) than under category 
sampling (black circles). Moreover, this difference is less 
pronounced when explicit negative evidence is provided (in 
grey).  

More formally, a mixed effects ANOVA revealed that 
people were less willing to generalize as similarity decreased 
(left to right in Figure 3; linear trend contrast: F(1,84) = 
420.07, p<.001). Generalization to non-target categories was 
greater following category than property sampling, F(1,84) = 
12.36, p =.001, and when only positive evidence was 
encountered during sampling, F(1,84) = 39.54, p<.001. The 
critical finding, however is the interaction:  the difference in 
generalization between category and property sampling was 
larger in the positive evidence only condition than in the 
positive + negative condition, F(1,84) = 5.81, p =.02. 

These results are exactly what we expected: despite the fact 
that participants in the category and property sampling 
groups saw exactly the same information, generalization of 
the novel property was narrower following property 
sampling. This replicates the main finding of Lawson and 
Kalish (2009), showing that people’s inductive inferences are 
sensitive to the sampling frame. Moreover, the data supported 
a novel prediction of our sampling explanation: presentation 
of negative evidence had greater impact on generalization 
following category sampling than property sampling.  
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Experiment 2 
In the next experiment we consider a second manipulation 
that should – according to the sampling account – attenuate 
the difference between category and property sampling: 
ambiguous evidence. In Experiment 1, every member of the 
target category had the novel property. In Experiment 2, we 
considered cases where some of the evidence is ambiguous, 
by including some observations where the plaxium status of 
the entity was unknown. The qualitative intuition here is that 
this should introduce uncertainty about the distribution of the 
property within the target category. Accordingly, the 
evidentiary value of the data should decrease, leading to a less 
pronounced difference between the two sampling conditions. 

Method 
Participants. 80 UNSW students (76 female), participated 
for course credit or payment. The mean age was 19.4 years. 
Design & procedure. The experiment used a 2 x 2 between 
subjects design, with equal numbers in each condition. The 
procedure for the deterministic evidence conditions was 
identical to the positive evidence only conditions in 
Experiment 1. The procedure for the probabilistic evidence 
conditions was similar, except that during the sampling phase 
participants saw an additional five category or property 
sampling trials. On these trials, additional small birds were 
presented whose blood type was unknown due to a “machine 
error”. These trials were randomly interspersed with the other 
trials. The generalization test was the same as Experiment 1. 

Results and Discussion 
Generalization scores are shown in Figure 4. As in 

Experiment 1, generalization of the novel property decreased 
as similarity to the target category decreased (linear trend 
contrast: F(1,76) = 117.94, p<.001. Overall, generalization to 
non-target categories was greater following category than 
property sampling, F(1,76) = 8.88, p=.004. Notably, there 
was a significant interaction between sampling condition and 
evidence certainty, F(1,76) = 5.25, p =.03. Figure 4 shows 
that the differences in generalization between category and 
property sampling were relatively large when the evidence 
was deterministic, but decreased when the observed evidence 
was probabilistic.  

The results for the deterministic evidence condition 
replicate the earlier finding that property sampling leads to 
narrower generalization than category sampling. Consistent 
with the predictions of our model, the difference between 
sampling conditions was reduced when the relationship 
between the target property and category was probabilistic.  

Bayesian reasoning with sampling frames 
The sampling explanation outlined at the start of the paper 
provides an intuitive explanation of our results: in this section 
we provide a more formal account, introducing an inductive 
reasoning model that accommodates the effect of the 
sampling frame within the Bayesian framework introduced 
by Tenenbaum and Griffiths (2001). 

A Bayesian analysis of the inductive problem proceeds as 
follows. The test categories consist of items that belong to 
different taxonomic classes (birds, mammals, reptiles) and 
vary in size (small, medium, large, and huge). Given this, we 
define a hypothesis space H by combining these two 
characteristics. A hypothesis h is admissible if it includes 
only a single taxonomic class (e.g., birds only) or allows all 
animals to possess plaxium. Similarly, it is admissible if it 
specifies a “connected” region on the size dimension (e.g., 
small-or-medium is allowed, but small-or-huge is not). For 
simplicity, the Bayesian model assigns equal prior 
probability P(h) to all hypotheses, with one exception: to 
account for the fact that people are less willing to generalize 
across taxonomic classes than across animal sizes, 
hypotheses that allows all animals to have plaxium blood are 
only 1/5 as plausible as hypotheses restricted to a single class.  

When presented with a set of observations x, the learner 
updates the prior distribution to a posterior via Bayes’ rule:  

 

                   
  

In this expression, the likelihood term P(x|h,f) describes the 
probability of observing the data x if hypothesis h is true and 
the sampling frame f applies. When determining the 
probability that a test item y possesses plaxium blood, a 
Bayesian learner aggregates the posterior probability 
assigned to those hypotheses h that assign the test item y to 
the consequential set: 

P (h|x, f) = P (x|h, f)P (h)P
h02H P (x|h0

, f)P (h0)
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 The critical feature of this model is the fact that the 
likelihood term P(x|h,f) is sensitive to the sampling frame. 
Under category sampling, the fact that all observations 
happen to be small birds is of no evidentiary value: the 
sampling frame f only admits small birds, and no explanation 
for this is required. In this sampling regime, a good 
hypothesis is required to explain the fact that all observations 
are plaxium positive. If we assume a noisy relationship, 
where q >.5 denotes the probability that an animal that falls 
within the relevant category possesses plaxium blood, then 
the likelihood becomes: 
 

   
 

 Under property sampling, this pattern is reversed: the 
sampling frame admits only plaxium positive observations, 
and no explanation for this is required. Instead, the data x that 
the learner must explain is the fact that all the animals are 
small birds. Again assuming a noisy relationship,  
 

   
 

In this expression, the normalizing term |h| denotes the “size” 
of the hypothesis. For a hypothesis that predicts m species to 
be plaxium positive and n species to be plaxium negative, 
 

                                  
 

 Formal details notwithstanding, the main point of these 
equations is to highlight the fact that the different sampling 
frames involved ensures that property sampling imposes a 
size principle (Tenenbaum & Griffiths 2001) and category 
sampling does not. When a size principle applies, Bayesian 
learners will tend to assign more belief to smaller hypotheses, 
and as a consequence will generalize narrowly. This is 
illustrated in the top panel of Figure 5 which plots the 
generalizations made by the Bayesian model when presented 

with 20 plaxium positive small birds, setting q = 0.6. As one 
might expect, the Bayesian model generalizes more narrowly 
under property sampling. 
 In Experiment 1, we found that the difference between the 
two sampling schemes attenuated when participants were 
presented with plaxium negative observations from non-
target categories, and generalizations narrowed in general. As 
shown in the middle panel of Figure 5, this is exactly what 
the Bayesian model does. Regardless of sampling scheme, 
the negative evidence serves to decrease the plausibility of 
larger hypotheses (as they are now somewhat inconsistent 
with the new data), but this has a much smaller effect in the 
property sampling condition simply by virtue of the fact that 
these hypotheses were already judged to be somewhat 
implausible. Accordingly, the Bayesian model produces 
narrower generalizations and the difference between the two 
conditions becomes smaller. 
 In Experiment 2, participants were presented with 
additional “ambiguous” observations (small birds that may or 
may not have been plaxium positive). This manipulation is 
expected to cause people to suspect a noisier relationship 
between the category and the observed plaxium status, which 
we operationalize by setting a lower value for q. When we set 
q = .55, we obtain the generalization gradients shown in the 
right panel of Figure 5. As expected, the Bayesian model 
produces an attenuated effect of sampling.  

General Discussion 
Traditionally, models of property induction (e.g., Osherson et 
al., 1990) have focused on the similarity between the 
categories known to possess a property and other categories 
to which the property might be generalized. Although 
category similarity is undoubtedly an important component 
of induction, the current work highlights the additional 
impact of beliefs about how observed data is sampled. In both 
experiments, identical sets of observations led to very 
different patterns of generalization depending on beliefs 
about how the observations were selected. In the positive 
evidence condition in Experiment 1 and the corresponding 

P (y 2 c|x, f) =
X

h|y2h

P (h|x, f)

P (x|h, f) =
⇢

✓ if x 2 h

1� ✓ otherwise

P (x|h, f) =
⇢

✓/|h| if x 2 h

(1� ✓)/|h| otherwise

|h| = ✓m+ (1� ✓)n

Figure 5. Inductive inferences made by the Bayesian model plotted as a function of test category, sampling condition and 
evidence type. See main text for details. 
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deterministic condition in Experiment 2, evidence sampling 
based on shared category membership led to broader 
generalization of the target property than evidence sampling 
based on a shared property.  

This result shows that people are sensitive to the effects of 
particular constraints or sampling frames that are imposed on 
the observations. In category-based sampling, the absence of 
observations of members of other categories that share a 
target property is not necessarily seen as evidence of absence. 
In property-based sampling, the absence of such observations 
can be seen as evidence that the property does not project 
beyond the target category. This phenomenon is naturally 
accommodated by a Bayesian inductive reasoning model. 
Moreover, this theoretical perspective allowed us to generate 
two novel predictions. The effect of sampling frame 
attenuates when explicit negative evidence is added or when 
ambiguity is introduced to the sample. Both of these effects 
are captured by the Bayesian model. 

Our Bayesian approach suggests additional factors that 
should moderate the impact of sampling frames. For 
example, differences in generalization patterns between types 
of sampling is likely to depend on beliefs about category base 
rates. In property sampling for example, if members of both 
the target category (e.g., small birds) and non-target 
categories (e.g., various types of large birds) are believed to 
be relatively common, then the fact that the sample of animals 
with plaxium blood contains no large birds is highly 
informative. In contrast, if large birds were uncommon, then 
the absence of large birds with plaxium blood does not 
license strong conclusions about property generalization.  

Previous work (Ransom et al., 2015; Shafto & Bonawitz, 
2015) has shown that inductive inferences are sensitive to 
intentional factors associated with sample selection (e.g., 
whether the observations were chosen by a helpful agent to 
illustrate the breadth of a hypothesis). The current work, 
together with that of Lawson and Kalish (2009), highlights 
the importance of a novel factor in induction, namely 
sensitivity to different types of conditionalization or filtering 
of the evidence samples on which inferences are based. While 
this is a new finding in the domain of induction, it bears some 
resemblance to results observed in probability judgment tasks 
(see Fielder, 2012 for a review). Fiedler, Brinkman, Betsch 
and Wild (2000) for example, presented different groups with 
different types of conditionalized samples. One group saw 
instances of women who had received a positive breast scan 
result, and learned whether each woman had breast cancer. 
Another group saw instances of women with breast cancer 
and learned whether they had received a positive breast scan. 
As in the current work, people were sensitive to these 
different types of sample conditionalization, with the two 
groups generating very different estimates of the probability 
that a woman with a positive scan had cancer. In the Fiedler, 
et al. (2000) study however, the different types of 
conditionalization led to differences in the characteristics of 
the instances observed in each sample. The current work goes 
further, by showing that very different patterns of inference 

emerge when identical evidence samples are selected via 
different types of sampling frames. 
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Abstract: Dating back as far as 100 ka, the Blombos ochre and the Diepkloof ostrich egg engravings are considered among the
earliest fossilized evidence of human symbolic behavior. Of special interest to this study is the temporal trajectory spanning
more than 30 thousand years from earlier simpler parallel line patterns to later complex cross-hatchings suggesting adaptive
compositional development. Through a series of three psychophysical experiments we test the hypotheses that the line engrav-
ings at each site evolved to become 1) more salient to the human perceptual system, 2) more discriminable from each other, and
3) increasingly associated with symbolic intent. Our findings suggest that just as instrumental tools have been found to undergo
cumulative refinements in adaptation to their function, the ochre and egg shell engravings evolved adaptively to become more
fit for their cognitive function as signs.
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Abstract

The ability to monitor epistemic uncertainty is critical for self-
directed learning. However, we still know little about young
children’s ability to detect uncertainty in their mental repre-
sentations. Here we asked whether a spontaneous information
gathering behavior – social referencing – is driven by uncer-
tainty during early childhood. Children ages 2-5 completed a
word-learning task in which they were presented with one or
two objects, heard a label, and were asked to put the labeled
object in a bucket. Referential ambiguity was manipulated
through the number of objects present and their familiarity. In
Experiment 1, when there were two novel objects and a novel
label, the referent was ambiguous; when there were two famil-
iar objects, or only one novel or familiar object, the referent
was known or could be inferred. In Experiment 2, there were
either two novel objects, two familiar objects, or one familiar
and one novel object; in the latter case the referent could be in-
ferred by excluding the familiar object. To further manipulate
the availability of referential cues, the experimenter gazed at
either the target or the center of the table while labeling the ob-
ject. In both experiments, children looked at the experimenter
more often while making their response when the referent was
ambiguous. In Experiment 2, children also looked at the ex-
perimenter more when there was one familiar and one novel
object, but only when the experimenter’s gaze during label-
ing was uninformative. These results suggest that children’s
social referencing is a sensitive index of graded epistemic un-
certainty.

Keywords: social referencing; help seeking; word learning;
uncertainty.

Preschoolers quickly learn new concepts, rules, and lan-
guage. They also actively explore and ask questions in ways
that seem targeted to maximize learning (Chouinard, Harris,
& Maratsos, 2007; Schulz & Bonawitz, 2007). However, we
still have an incomplete understanding of young children’s
ability to monitor their own mental states, in particular, their
epistemic uncertainty (Sodian, Thoermer, Kristen, & Perst,
2012). Do preschool-aged children monitor uncertainty and
actively guide their learning behaviors on the basis of this
monitoring, or is early learning better characterized as a pro-
cess of integrating information that is largely generated ex-
ternally, for example, by social partners who act as teachers
(Csibra & Gergely, 2006)?

A hallmark of successful uncertainty monitoring is be-
ing less confident when the probability of accuracy is lower
(Robinson, Johnson, & Herndon, 1997). This ability includes
awareness of complete ignorance, but also of graded evidence
in mental representations, which is considered important for
predicting outcomes and regulating behavior (Lyons & Ze-
lazo, 2011). During adulthood, accurately representing one’s
own learning progress allows for efficient self-directed study
and predicts learning outcomes (Dunlosky & Rawson, 2012).
There is mixed evidence about whether young children can

accomplish this type of self-monitoring. For example, 3-
year-olds report being equally confident about correct and
incorrect responses in memory tasks (Hembacher & Ghetti,
2014). Preschoolers report being less confident when they
are wrong in other tasks, but they are typically overconfi-
dent overall (Coughlin, Hembacher, Lyons, & Ghetti, 2015;
Lipowski, Merriman, & Dunlosky, 2013). However, these
studies may underestimate young children’s uncertainty mon-
itoring, as they typically rely on explicit metacognitive re-
ports. Children may learn to respond appropriately to uncer-
tainty in everyday learning situations before they can bring it
fully into consciousness and report on it.

Several studies have provided evidence that children’s
spontaneous information-seeking behaviors might track un-
certainty. Call and Carpenter (2001) had 2-year-olds choose
between several tubes to find a hidden sticker. They found
that the toddlers were more likely to peek inside a tube be-
fore choosing when they had not seen the baiting of the tubes
compared to when they had, suggesting they were aware of
their ignorance and managed to delay their response until
they were sufficiently confident. In another study, Goupil,
Romand-Monnier, and Kouider (2016) found that 20-month-
olds were more likely to seek help by looking at their par-
ents when they were unable to respond accurately in a mem-
ory task. These spontaneous information-gathering behaviors
may provide a window into early uncertainty monitoring, and
allow us to ask questions about its development.

Here, we focus on the role of uncertainty in guiding so-
cial referencing – one form of information gathering – dur-
ing word learning. Referencing a social partner can provide
several types of disambiguating information. For example,
children can follow a speaker’s gaze direction to infer the ref-
erent of a new word, as people tend to look at objects they
are referring to. By the second year of life infants follow a
speaker’s gaze and map labels to objects on the basis of gaze
direction (Baldwin, 1991). There is also evidence that in-
fants’ propensity for gaze-following predicts later language
development (Carpenter, Nagel, Tomasello, Butterworth, &
Moore, 1998), highlighting the importance of this behavior
for learning. In addition to monitoring gaze direction, chil-
dren may reference a social partner’s emotional reaction to
a stimulus or event, which can help disambiguate the appro-
priateness of a response (Walden & Ogan, 1988). Finally,
looking at a social partner can be taken as a bid for help
(Vredenburgh & Kushnir, 2015), and may result in explicit
instruction.

Social referencing can be an efficient source of disam-
biguating information, but is it driven by uncertainty during
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early childhood? It could be that social referencing is not
costly enough to require selectivity, or that uncertainty signals
are too weak to drive information-seeking behaviors in young
children. Similarly, other learning mechanisms such as the
privileging of social information (Ho, MacGlashan, Littman,
& Cushman, 2017) or tracking of regularities in the environ-
ment (Yurovsky & Frank, 2015) may be sufficiently powerful
to obviate the need for uncertainty monitoring in preschool-
aged children.

The present work asks whether preschoolers reference a
speaker more frequently when the referent of the speech is
ambiguous. This work adapts a paradigm used by Vaish,
Demir and Baldwin (2011) in which 13- to 18-month-olds
sat across from an experimenter who produced a label (e.g.,
“a modi!”) in the presence of one or two novel objects. In-
fants looked towards the experimenter more often when there
were two objects present, suggesting that infants’ social refer-
encing is driven by referential ambiguity. Here we adapt this
procedure for use with preschoolers, who have a richer behav-
ioral repertoire compared to infants, and may not reference
social information based on uncertainty for the reasons dis-
cussed previously. We ask whether preschoolers look more
at a social partner when they are uncertain about the identity
of a referent (Experiment 1) and whether they are sensitive
to graded uncertainty based on the amount of disambiguating
evidence available (Experiment 2).

Figure 1: Study design for Experiments 1 and 2.

Experiment 1
In Experiment 1, we examined whether children would vi-
sually reference a speaker more often when the speaker pro-
duced a referentially ambiguous label compared to an unam-
biguous label. Children sat across from an experimenter who
labeled an object on the table between them (Figure 1). The
experimenter then asked the child to place the named object
in a bucket. Across trials, there were either one or two objects
on the table, which were either familiar or novel to the child.
This design allowed us to test whether merely having more
than one object present is sufficient to increase social refer-
encing (which could not be ruled out by Vaish et al.), or if
referential ambiguity (and thus epistemic uncertainty) is the
underlying factor. If the latter is true, we expected children to
increase their looking to the experimenter only on trials with

two unfamiliar objects, when the object-label mapping was
not known and could not be inferred.

We were interested in the amount of social referencing
children exhibited across the trial. We considered four dif-
ferent phases of each trial based on the notion that children
might expect different social information at different stages
of the task. Specifically, we predicted that children might ex-
pect the speaker’s gaze direction to be informative during the
labeling itself, as speakers tend to look at objects they refer
to. We predicted that later in the trial, as children reached for
an object and placed it in the bucket, they might expect eval-
uative feedback about their choice (e.g., facial expressions of
encouragement or discouragement).

Methods

Participants We recruited a planned sample of 80 children
ages 2-5 years from the Children’s Discovery Museum in San
Jose, California.1 The sample included 20 2-year-olds (mean
age 31.97 months), 20 3-year-olds (mean age 42.65 months),
20 4-year-olds (mean age 55.85 months), and 20 5-year-olds
(mean age 65.21 months). An additional 20 children partic-
ipated but were removed from analyses because they heard
English less than 75% of the time at home (n = 10), because
they were unable to complete at least half of the trials in the
task (n = 4), because of parental interference (n = 1), or due
to experimenter or technical errors (n = 5).

Stimuli and Design Children were presented with one or
two objects, heard a label, and were asked to put the labeled
object in a bucket. Half of the objects were selected to be
familiar to children (e.g., a cow) and half were selected to
be novel (e.g., a nozzle). There were four trial types: one-
familiar, one-novel, two-familiar, and two-novel. There were
three trials of each type, for a total of twelve trials. Trial
types were presented sequentially in an order that was coun-
terbalanced across participants. The assignment of individual
objects to trial types was counterbalanced. On familiar trials,
the familiar label for the target object was used (e.g., “cow”).
On novel trials, a novel label was used (e.g., “dawnoo”).

The critical manipulation was of referential ambiguity; on
one-familiar and two-familiar trials, there was no referential
ambiguity, as children were expected to be certain about the
objects and their labels. Similarly, on one-novel trials, chil-
dren were expected to be certain about the label referent as
there was only one option. However, on two-novel trials, the
referent was ambiguous, as the novel label could apply to ei-
ther novel object.

Throughout the task, the experimenter never gazed at the
object they were labeling, or responded to children’s verbal
or non-verbal bids for help by indicating the correct object.
Thus, children were expected to remain uncertain about the
referent throughout the trial when two novel objects were
present.

1Planned sample size, exclusion criteria, and analysis plan pre-
registered at https://osf.io/y7mvt

496

https://osf.io/y7mvt


Procedure Throughout the study, the child sat at one end
of a large circular table, and the experimenter stood at the
opposite end. Each trial of the task proceeded as follows:
the experimenter placed one or two objects on the sides of
the table, out of reach of the child so that the child could
not interact with the toys during the labeling event. For one-
object trials, the location of the object (left or right) alternated
between trials.

After placing the objects, the experimenter said “Hey look,
there’s a (target) here.” The experimenter gazed at the center
of the table rather than the object they labeled (see rationale
in Stimuli and Design). The experimenter waited approx-
imately two seconds (based on a visual metronome placed
within view) before saying, “Can you put the (target) in the
bucket?” They then pushed the object(s) forward within reach
of the child, and placed a plastic bucket in the center of the
table, also within reach of the child. Prior to the twelve exper-
imental trials, there were two training trials: a one-familiar
trial and a two-familiar trial, to acquaint the child with the
procedure. A camera placed to the side of the experimenter
captured the participant’s face, so that looking behavior could
be coded from video.

Coding procedure Videos were coded using DataVyu soft-
ware (http://datavyu.org). For each participant, we
coded the number of times they referenced the experimenter
across the trial. Because we were interested in the circum-
stances that elicit social referencing in children, we coded the
number of looks that occurred during four phases of the trial:
a label phase, which began at the utterance of the label and
ended when the experimenter began to slide the objects, a
slide phase, in which the experimenter slid the object(s) into
the child’s reach, a planning phase, which began at the end
of the slide and ended when the child touched an object, and
a response phase, which began when the child touched an
object and ended when the child released the object into the
bucket. A second coder independently scored the number of
looks for one third of the trials for each participant to estab-
lish reliability.

Results and Discussion

Results of Experiment 1 are presented in Figure 2. Inter-rater
reliability for the number of looks in each phase was high,
intraclass correlation r = .97, p<.001. To test our prediction
that referential ambiguity (i.e., having two novel objects)
would produce more social referencing, we fit mixed-effects
linear regression models separately for each phase with
the following structure: number of looks ˜ number of
objects * familiarity * age in months + (number
of objects + familiarity | Subject ID). A single
model with phase as a factor did not converge.

We did not find any main or interaction effects of number
of objects, familiarity, or age on number of looks during the
label or slide phases. Thus, mere novelty or the presence of
multiple objects was not enough to increase social referenc-
ing. However, we found an interaction effect of number of

objects and familiarity during the planning (β = 0.21, p <
.001) and response phases (β = 0.6, p < .001), such that 2-
novel trials were associated with more looking. There was
no interaction with age in either phase.2 In summary, chil-
dren looked to the experimenter more often when planning
and executing a response under uncertainty. These results
suggest that children were aware that they did not have suffi-
cient knowledge to answer independently, and referenced the
speaker to resolve this uncertainty.

We did not find the expected effect of referential ambigu-
ity in the label phase. It is possible that children failed to
predict that they would need more information until later in
the trial, when they were actually faced with making a de-
cision. Another possibility is that children’s looking was at
ceiling during the labeling phase, perhaps because children
look at someone who is speaking regardless of the need for
referential disambiguation. A third possibility is that this is an
artifact of our design, in which the experimenter gazed at the
center of the table rather than the referent of the label. Chil-
dren may have realized that the experimenter’s gaze direction
during labeling was not informative. Similarly, children may
have found it strange to interact with an experimenter who
did not gaze at the object they were labeling, which may have
produced unnatural patterns of social referencing. Experi-
ment 2 tests these possibilities and examines whether chil-
dren’s social referencing is sensitive to graded uncertainty.

Experiment 2
Experiment 2 was designed to replicate Experiment 1 and in-
vestigate whether children’s social referencing is sensitive to
uncertainty based on graded evidence about a label’s referent.
Since we did not observe any difference between one-familiar
and one-novel trials, we eliminated single-object trials, leav-
ing the 2-familiar and 2-novel trials. In addition, we added
1-novel-1-familiar trials. For these trials, we expected that
children would be able to infer the referent by excluding the
familiar object as a possibility. For example, when a toy lion
and a novel item were present, they could exclude that the
speaker was referring to the lion as a “blicket” (Markman &
Wachtel, 1988). We predicted that children might be less cer-
tain about their choice on these trials compared to when the
label and referent were familiar to them (2-familiar trials),
but more confident than when there are no cues to reference
(2-novel trials).

In addition, we manipulated between participants whether
or not the experimenter’s gaze during labeling was informa-
tive (they gazed at either the referent of their label or the cen-
ter of the table), allowing us to determine whether children
selectively reference gaze during labeling when gaze is ex-
pected to be informative. The manipulation of informativ-
ity of gaze during labeling also meant that participants in the
referential gaze condition had an additional referential cue,
which might decrease uncertainty for the remainder of the
trial. In Experiment 1, we did not observe an effect of age, so

2https://github.com/emilyfae/socref_uncert
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Figure 2: Results of Experiment 1. Number of looks to the experimenter across phases and conditions. Error bars are 95 percent
confidence intervals.

we restricted the current sample to 3- and 4-year-olds.

Methods

Participants We recruited a planned sample of 80 children
ages 3-4 years from the Children’s Discovery Museum in
San Jose, California.3. The sample included 40 3-year-olds
(mean age 42.89 months) and 40 4-year-olds (mean age 53.47
months). An additional 20 children participated but were re-
moved from analyses because they heard English less than
75% of the time at home (n = 9), because they were unable to
complete at least half of the trials in the task (n = 7), or due
to experimenter or technical errors (n = 4).

Stimuli and Design The stimuli and design were similar to
Experiment 1, except that we eliminated 1-object trials. In-
stead, we included three trial types: 2-familiar, 2-novel, and
1-novel-1-familiar. There were four of each trial type, to-
taling twelve trials. In addition, we manipulated the experi-
menter’s gaze behavior between participants. For half of the
participants, the experimenter looked at the center of the ta-
ble while labeling objects; for the remaining half, they looked
directly at the objects they labeled.

3Planned sample size, exclusion criteria, and analysis plan pre-
registered at https://osf.io/y7mvt/.

Procedure The procedure was identical to Experiment 1,
except that there were three practice trials (two familiar trials
and one novel trial). We included two familiar trials during
the practice so that children would remain motivated to com-
plete the task.

Results and Discussion
Results of Experiment 2 are presented in Figure 3. Inter-rater
reliability for the number of looks in each phase was again
high, intraclass correlation r = .97, p<.001. To quantify the
main and interactive effects of familiarity, gaze informativity,
phase, and age on social referencing, we fit a mixed-effects
linear regression model with the following structure: number
of looks ˜ familiarity * age in months * gaze *
phase + (familiarity | Subject ID). In contrast to
Experiment 1, a model with phase as a predictor converged.

First, do children reference a speaker more often when the
objects and label are novel? Phase interacted with familiar-
ity such that the response phase of novel trials was associated
with significantly more looks (β = 0.51, p < .001). This re-
sult is consistent with our finding from the analysis of the
response phase in Experiment 1. However, in contrast to Ex-
periment 1, we did not observe that looking was significantly
greater for novel trials in the planning phase.

We were also interested in whether mutual exclusivity tri-
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Figure 3: Results of Experiment 2. Number of looks to the experimenter across phases and trial types. Error bars are 95 percent
confidence intervals.

als would elicit an intermediate amount of uncertainty. We
observed a three-way interaction of familiarity, gaze, and
phase, such that the response phase of mutual exclusivity tri-
als in the no-referential-gaze condition was associated with
significantly more looks (β = 0.39, p < .01). Thus, mu-
tual exclusivity trials were associated with greater looking
only when the experimenter did not provide informative gaze.
This finding is intriguing given that children should be able to
solve mutual exclusivity trials without gaze information. In-
stead, they appear to remain relatively uncertain while mak-
ing a decision if excluding the familiar object is their only cue
to reference, but this uncertainty is resolved if the speaker’s
gaze is informative. On the other hand, informative gaze dur-
ing labeling did not lessen social referencing for novel trials,
suggesting that gaze information alone was not sufficient to
reduce uncertainty. Instead, both gaze information and mu-
tual exclusivity provided evidence about a label-object pair-
ing, and children required both types of evidence to feel cer-
tain about their response.

Finally, we observed a four-way interaction such that the
response phase of novel trials in the gaze condition was as-
sociated with more looking with increasing age (β = 0.06, p
< .01), suggesting that children may become more selective
in their social referencing as they get older. It may be that
children improve in their ability to monitor the need for dis-
ambiguating information, or they may become more likely to
recognize that social information can be a source of disam-
biguation.

We did not observe social referencing during the label
phase, even when referential gaze was available. This result

rules out the possibility that children were less selective dur-
ing labeling because they learned that gaze direction was not
informative.

General Discussion
During the preschool years, children are increasingly able to
actively gather information through help-seeking and explo-
ration (Chouinard et al., 2007; Schulz & Bonawitz, 2007).
Do children monitor their own uncertainty to guide these be-
haviors, or are they indiscriminate with regard to underly-
ing knowledge states? Here, we examined whether young
children’s social referencing during a word-learning task was
driven by uncertainty about a label’s referent.

We found that referential ambiguity strongly predicted
children’s social referencing. Specifically, we observed this
selectivity when children were forced to decide which object
the speaker was referring to. We speculate that children ref-
erenced the speaker during the decision process because they
expected evaluative feedback about their choice, either im-
plicitly through the adult’s facial expressions, or through an
explicit response. This idea is consistent with other recent re-
search that has found that preschoolers seek help selectively
when a problem is difficult or they are less skilled (Vreden-
burgh & Kushnir, 2015).

Most intriguingly, we found that children’s looking was
driven by graded referential evidence. In the case of mutual
exclusivity trials, children could solve the problem of refer-
ence by excluding the familiar item (Markman & Wachtel,
1988). Thus, unlike novel trials, they likely had some sig-
nal about the correct object-label mapping. If children sim-
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ply monitored the presence or absence of such signals, they
would have consistently treated mutual exclusivity trials as
familiar trials. Instead, their social referencing depended on a
combination of cues from mutual exclusivity and gaze infor-
mativity, suggesting that they are sensitive to graded evidence
and seek disambiguating information only when uncertainty
is relatively high. Children’s greater social referencing on
trials with only one cue to reference (i.e., mutual exclusiv-
ity trials with no referential gaze and novel trials with refer-
ential gaze) additionally suggests that children may remain
uncertain about a new label-object mapping if they have not
received confirmation of its accuracy, for example, through
explicit feedback or gaze direction.

On the other hand, we found no evidence for selective so-
cial referencing as the object was being labeled. One possi-
bility is that young children do not recognize the need for dis-
ambiguating information until they need to make a decision.
Another possibility is that preschool-aged children sponta-
neously look at a speaker regardless of ambiguity, and ad-
ditional looking was not needed or possible. Notably, Vaish
et al. observed selective referencing during labeling among
infants. Since infants in that study were holding one of
the objects during labeling, referencing the speaker would
have required them to disengage from that object, and may
therefore have been more costly, promoting selectivity. Fu-
ture research with preschoolers that includes a greater reward
trade off between attentional options would help to distin-
guish among these possibilities. Overall, these results pro-
vide evidence that preschool-aged children monitor graded
uncertainty in their mental representations and act on that un-
certainty through spontaneous information-seeking.
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Abstract
We explore how adults learn counterintuitive causal relation-
ships, and whether they discover hypotheses by revising their
beliefs incrementally. We examined how adults learned a novel
and unusual causal rule when presented with data that initially
appeared to conform to a simpler, more salient rule. Adults
watched a video of several blocks placed sequentially on a
blicket detector, and were then asked to determine the under-
lying causal structure. In the near condition the true rule was
complex, but could be found by making incremental improve-
ments to the simple and salient initial hypothesis. The distant
condition was governed by a simpler rule, but to adopt that rule
participants had to set aside their initial beliefs, rather than
revising them incrementally. Adults performed better in the
near condition, despite this rule being more complex, provid-
ing some of the first evidence for an explore-exploit trade-off
in inference, analogous to the trade-off in active learning.
Keywords: causality, Bayesian inference, hypothesis search,
process model

Background
Any time we make plans, predict the future, or attempt to
understand why events occurred in the past, we are rely-
ing on causal knowledge. In acquiring this knowledge, we
must draw conclusions from sparse, noisy, and ambiguous
evidence. We gain the ability to make sense of this limited in-
formation at an early age, with causal thinking showing signs
of emergence even in infancy (Sobel & Kirkham, 2006; 2007;
Walker & Gopnik, 2014). By adulthood, our frameworks for
interpreting causal phenomena become much more complex
and able to accommodate diverse areas of knowledge (Kemp,
Goodman, & Tenenbaum, 2007).

Despite its usefulness, sometimes our ability to generalize
from past causal inferences can lead us astray, as in the case
where we encounter a new causal relationship that is rare or
strange by the standards of our past experience. For instance,
we might expect that either of two switches will turn on a
lamp, when in fact the lamp turns on when the switches are
in matched positions. While our causal learning process is
generally accurate and adaptive (e.g., Griffiths & Tenenbaum,
2005), in the current paper we claim – in the spirit of pre-
vious “rational process” models (e.g. Sanborn, Griffiths, &
Navarro, 2010) – that human causal beliefs are updated in a
limited or local fashion that is efficient but subject to system-
atic failures under certain conditions. This is especially true
when the initial hypothesis is at a local optimum – the best
hypothesis within reach, but not the best overall – and when
the true causal structure is distant from our initial hypothesis

in some hypothesis space. Suppose you break out in a rash
every time you buy your favourite candy bar from a vending
machine. After searching for the proper cause, you would
probably conclude that you are allergic to the candy as soon
as it comes to mind. You may be unlikely to consider that you
are actually reacting to the coins used to purchase the candy
bar, even if this is indeed the case. In this case, discovering
the real cause requires abandoning your working hypothesis,
rather than just incrementally refining it.

Bayesian Models of Causal Inference

Several researchers have attempted to explain learning of
novel causal relationships using hierarchical Bayesian mod-
els of inference (e.g. Griffiths, Sobel, Tenenbaum, & Gopnik,
2011; Griffiths, Kemp, & Tenenbaum, 2008). Recent evi-
dence demonstrates that adults and children can successfully
modify their causal beliefs in light of new and surprising ev-
idence in a manner that suggests Bayesian inference strate-
gies (e.g., Griffiths, Sobel, Tenenbaum, & Gopnik, 2011; Lu-
cas, Bridgers, Griffiths, & Gopnik, 2014). Through this pro-
cess, learners also create and update higher-level models of
how causal relationships operate in general. Regardless of
whether human cognition functions exactly this way, hier-
archical Bayesian models have accurately predicted human
causal learning (Kemp, Goodman, & Tenenbaum, 2007; Lu,
Yuille, Lijeholm, Cheng, & Holyoak, 2006; Lucas & Grif-
fiths, 2010; Ullman, Goodman, & Tenenbaum, 2012).

Although Bayesian models accurately capture many as-
pects of human causal reasoning, they may not fully ac-
count for adults’ relative difficulties in learning more unusual
types of causal relationships. Specifically, Lucas and col-
leagues (2014) found that young children were more likely
than adults to discover an unusual conjunctive causal rela-
tionship. Children and adults were tasked with inferring a
causal principle after viewing a machine that activated when
certain blocks or block combinations were placed on top of
it. Even after viewing evidence that blocks only activated
the machine in specific pairs (and not individually), adults
had more difficulty than children with generalizing this prin-
ciple to new blocks. One possibility for this finding is that
adults are more biased by prior experiences—as they have
observed that conjunctive relationships are relatively rare—
which leads them to demand strong evidence before they in-
fer a conjunctive relationship is present. Indeed, if cogni-
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tion operates via Bayesian principles, there are conceivably
instances in which rigid commitment to a prior may preclude
learners from uncovering the true nature of a causal relation-
ship. However, this may not apply in novel causal situations
with which adults have limited experience. Moreover, adults
are cognitively different than children beyond simply having
more experience, so differences in causal reasoning may in
fact be the by-product of some developmental change.

As an alternative to simply having different priors, adults’
relative difficulty with conjunctive causal relationships may
be explained in terms of the process by which they explore
and weigh new hypotheses in light of their current beliefs.
It is typically impossible to evaluate all potential hypothe-
ses (of which there may be an infinite number). Bayesian
inference is often intractable in practice for complex prob-
lems, so human inferences must sometimes depart from the
Bayesian ideal. Nonetheless, there is evidence that people
may be resource rational observers, making approximately
Bayesian inferences in ways that make efficient use of limited
time and memory (Bonawitz, Denison, Gopnik, & Griffiths,
2014; Sanborn, Griffiths, & Navarro, 2010). As for possi-
ble processes underlying these approximations, some empir-
ical phenomena, such as order effects, offer clues. If learners
make inferences from a complete set of data, as traditional
Bayesian models assume, then they should not be influenced
by the order in which stimuli are presented. Nevertheless, hu-
mans are sensitive to presentation order (Danks & Schwartz,
2006; Sanborn, Griffiths, & Navarro, 2010). One explana-
tion for these order effects is that people arrive at solutions
by considering a small number of hypotheses at any single
moment in time, and updating or replacing them sequentially
with more data – sometimes losing information and leading to
small but systematic errors. More recently, Bayesian process
models have been proposed to explain these patterns of errors
by drawing analogies to Monte Carlo sampling methods that
permit tractable and efficient inference in applied statistics
and machine learning (Abbott, Hamrick, & Griffiths, 2013;
Shi, Griffiths, Feldman, & Sanborn, 2010).

Inference techniques are often modelled using Monte Carlo
methods that update sequentially and incrementally. These
methods allow hypotheses to be revised by sampling from
the posterior, without computing the posterior distribution in
its entirety. Markov chain Monte Carlo sampling is a popu-
lar and efficient subclass of Monte Carlo methods, and it is
marked by a degree of stickiness or inertia, in which people
hew more closely to their initial hypotheses than a truly opti-
mal Bayesian learner would. This family of models predicts
that individuals will tend toward inferences that are similar to
their prior beliefs. For example, one study showed that when
people made inferences about a causal system, they tended
toward solutions that required the fewest single edits to their
initial hypothesis, where a single edit is an addition, subtrac-
tion, or reversal of a causal link (Bramley, Dayan, Griffiths,
& Lagnado, 2017). Therefore, causal process models can ac-
count for multiple limitations on causal learning, and have re-

cently been shown to explain phenomena such as classical an-
choring (Lieder, Griffiths, Huys, & Goodman, 2017). Learn-
ers can be constrained not only by priors, but also the similar-
ity of candidate hypotheses to their current beliefs, perhaps
precluding them from finding too-distant hypotheses.

The Explore-Exploit Trade-off in Inference
These findings could reflect a cognitive tradeoff in develop-
ment that affects how learners search through hypotheses.
When presented with a wide range of possibilities, individ-
uals must often decide whether to employ a general, shallow
search or a narrow, deep one. This decision is analogous to
the explore-exploit tradeoff, whereby decision-makers must
allocate cognitive resources to either exploit previous knowl-
edge or explore alternatives (Sutton & Barto, 1998). Adults
may be more inclined to exploit, by searching nearby solu-
tions extensively—and less likely to explore hypotheses that
require unusual, low-probability edits to the current hypoth-
esis. With limitations on the number of hypotheses a learner
can consider, exploitation-biased adult learners could plausi-
bly benefit from focusing cognitive resources on hypotheses
that are refinements of an initial proposal that is plausible and
informed by long experience. This will increase efficiency
of finding adequate solutions but potentially limit access to
distant alternatives. Conversely, exploration-focused learners
(young children, perhaps) may spread out their search over a
more diverse range of possibilities. Although this approach
sacrifices the ability to efficiently refine already-reasonable
hypotheses, it may grant access to unusual solutions that
would be unreachable with a more conservative search.

Thus, the inferential explore-exploit trade-off may have in-
teresting implications for the process of selecting between
competing hypotheses. This selection process has been mod-
elled using Bayesian algorithms for both children and adults
(Bonawitz, Denison, Gopnik, & Griffiths, 2014; Denison,
Bonawitz, Gopnik, & Griffiths, 2013; Lieder, Griffiths, &
Goodman, 2012; Sanborn, Griffiths, & Navarro, 2010), but
relatively little previous work has examined adults’ poten-
tial tendencies toward exploitation. As one possible exam-
ple of how hypothesis search may reflect an exploitation bias,
Gopnik and colleagues have likened human belief updating to
simulated annealing; just as the heating and gradual cooling
of metal can increase its malleability, so can a gradual “cool-
ing” of an inference method corresponding to an increasingly
conservative search policy lead to better inferences (Gopnik,
Griffiths, & Lucas, 2015; Lucas, Bridgers, Griffiths, & Gop-
nik, 2014). For instance, while young children may use high-
temperature searches, considering a wide range of hypotheses
with relatively equal probability, adults’ searches are “cooler”
and more narrow in scope. Although commitment to priors
may still matter, simulated annealing allows us to examine
which types of hypotheses are considered. High-temperature
searches are more likely to discard adequate hypotheses, but
may allow individuals to escape local optima and discover
unlikely solutions that are potentially better. In contrast, low-
temperature searches can quickly converge to good solutions
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if fewer low-probability edits are required to get there, but
may otherwise get trapped in local optima. With this in mind,
adults may have more difficulty discovering unusual causal
relationships because their search is too focused and too close
to their initial guesses to accommodate distant ideas.

The purpose of our current studies is to test the hypothesis
that belief updating in adults is exploitation-biased. To ac-
complish this, we designed a task encouraging participants to
generate a particular initial hypothesis about a novel causal
relationship. Evidence that contradicted this hypothesis was
then presented, causing participants to modify their beliefs.
The true causal structure took one of two forms correspond-
ing to two experimental conditions. In the near condition, the
correct causal structure was closer to the initial hypothesis but
designed to be relatively complex. In the distant condition,
the correct causal structure was simpler but possibly harder to
reach when making incremental changes from the initial hy-
pothesis, which is a local optimum. Thus, we hoped to deter-
mine the breadth of hypotheses that participants were willing
to entertain. If adults’ search process is more exploitation-
biased, we should expect the near-hypothesis solution would
be more easily found than the distant one, even if both rules
are a priori equally unlikely. However, if adults’ failure to
infer unlikely causal relationships is simply due to the low
prior probability that they place on these relationships, then
they should be equally unlikely to consider either solution.

Experiment 1: Investigating the
Explore-Exploit Tradeoff in Inference

Participants Participants were 90 adult US residents, re-
cruited through Amazon Mechanical Turk and paid a base
rate of $1 for their time. An additional $1 bonus was given
to the top 10% performers as an additional incentive. Partici-
pants were divided randomly among near (n = 45) and distant
(n = 45) conditions. Six participants from the near condition
and seven from the distant condition were excluded due to
failure to correctly answer attention manipulation tasks.

Materials and Procedure The methods used in this study
are similar to those used in previous blicket tasks (e.g. Gop-
nik & Sobel, 2000), except that animated video stimuli were
presented online using Qualtrics survey software (similar to
Buchsbaum et al., 2012). Participants were asked to examine
several blocks and determine which blocks are blickets. They
were informed that blickets are blocks that activate the blicket
detector, and were shown a video of an animated blicket de-
tector activating and not activating. Participants then watched
a five-minute animation depicting 20 blocks being consecu-
tively placed onto the blicket detector. If the block was a
blicket, the detector lit up and a sound played. The blocks
were sorted into blicket/non-blicket categories and left on
screen for participants to study.

Whether a block was a blicket depended on specific aspects
of the block pattern. Each block had a coloured background
(red or blue) and several small red or blue triangles in a fixed
pattern (see Figures 1 and 2). The block pattern was such

Figure 1: Examples of blickets in the near condition (left) and
the distant condition (right).

that the background colour was the most obvious and visu-
ally striking feature. For the first 15 blocks (the initial rule-
consistent blocks), the background colour appeared to deter-
mine whether the blocks activated the machine—i.e. blocks
with one background colour consistently activated the ma-
chine, while the others did not. Inspired by an experimental
manipulation in Williams and Lombrozo (2010; 2013), this
was designed to lead participants to an initial causal hypoth-
esis based on the objects’ most salient feature. The final five
blocks (the initial rule-violating blocks), however, violated
this initial hypothesis; the blocks that did and did not activate
the machine had the opposite background colour as before.
Thus participants needed to modify their initial hypothesis to
capture the optimal solution.

The true rule separating blickets from non-blickets var-
ied based on condition. This true rule determined whether
a block was a blicket 100% of the time. In the near condition,
the background colour was related to whether a block was
a blicket, whereas in the distant condition the background
colour was unrelated. Each block had five binary features
(Figure 1), which could vary by colour on each block (back-
ground, corners, centre-left triangle, centre-right triangle, and
border), giving a total of 32 different colour combinations. In
the near condition, blocks were blickets based on a combina-
tion of the background colour and the colour of two secondary
features. In the distant condition, only the colour of these two
secondary features determined whether a block was a blicket,
while the background colour was irrelevant.

Thus, the five features could be labeled as follows: one
primary feature (A), two relevant secondary features (B and
C), and two irrelevant secondary features (D and E). In the
distant condition, the optimal rule for determining whether a
block is a blicket—that is, the simplest rule that perfectly ex-
plains the data—can be written as R = (B == C), whereas
the optimal rule in the near condition can be written as R =
(A ∩ ¬B) ∪ (¬A ∩ ¬C). These rules were designed to seem
arbitrary to naı̈ve participants and minimize the role of the
participants’ prior knowledge. In the near condition, there is a
consistently-improving path of single edits to transition from
the initial hypothesis, R = A, to the correct rule, where a sin-
gle edit consists of adding or subtracting a variable or chang-
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ing an operator (e.g. changing R = A to R = A ∩ ¬B; Good-
man & Tenenbaum, 2008 use a similar approach for searching
a hypothesis space). In the distant condition, the single-edit
path to the correct rule requires edits that initially worsen the
hypothesis (e.g. removing A as a relevant variable). Partici-
pants must therefore ignore the ineffectiveness of these local
edits and keep exploring to find the correct solution. Thus, if
adults use a Bayesian single-edit search process with an ex-
ploit bias, participants should be less likely to abandon R=A,
and thus should perform more poorly in the distant condition,
where R = A is the local optimum.

The lists of blocks seen by participants in the near and dis-
tant conditions were generated randomly with the following
constraints: a) there were ample block feature combinations
that participants did not see, so that they could be tested on
these blocks later, and b) the rules and edit paths conformed
to the specifications in the previous paragraph. Thus, the fi-
nal sets of blocks were as follows: near condition participants
saw 11 blickets (3 initial rule-violating) and 9 non-blickets (2
initial rule-violating), whereas distant condition participants
saw 10 blickets (2 initial rule-violating) and 10 non-blickets
(3 initial rule-violating). The differences in block numbers
were necessary due to the constraints of the conditions.

Following the presentation of all of the blickets, partici-
pants saw a blicket rating task, in which they were asked
to judge whether a randomized series of eight blocks were
blickets. For each block, participants rated how certain they
were that it was, or was not, a blicket, on a seven-point Lik-
ert scale ranging from “definitely a blicket” to “definitely
not a blicket”. Blocks were balanced by background colour,
blicket/non-blicket status, and whether they had already been
presented in the observation stage. Participants received a
score between -3 and 3 for each block based on accuracy and
certainty, and the sum of these scores determined their final
score for this task. Next, participants completed a forced-
choice task, where they chose which of two blocks was more
likely to activate the blicket detector, for a series of four
pairs. Blocks were selected randomly such that there were
an equal number of initial rule-consistent and initial rule-
violating blocks, and blocks in each pair differed from each
other in background colour and whether they were a blicket.
Participants received a point for each correct block judgment.

Afterwards, the participants were asked to describe the
causal rule they had inferred. They were then told to imagine
that a new rule was suggested by a friend, and asked if they
preferred this rule over their own. This rule always repre-
sented the correct causal structure. The purpose of this ques-
tion was to ensure that any differences between the two condi-
tions were not due to participants finding the near rule inher-
ently more plausible or likely than the distant one. The par-
ticipants’ rule preference was measured using a seven-point
scale. Finally, each participant received questions to test their
task comprehension and an instructional manipulation task
to control for inattention, similar to the one used by Oppen-
heimer, Meyvis, and Davidenko (2009).

Results and Discussion If adults’ hypothesis search strat-
egy is exploitation-biased, participants in the near condi-
tion will perform better on both tasks than those in the
distant condition. The results supported our predictions.
For the forced-choice task, a 2x2 ANOVA was run with
condition (distant/near) and rule consistency (initial rule-
consistent/violating) as factors (see Table 1 for a score sum-
mary). Near condition participants outscored those in the dis-
tant condition, F(1, 84) = 6.46, p = .01, MSE = 0.26. Par-
ticipants also scored higher for initial rule-consistent blocks,
than for rule-violating blocks, F(1, 84) = 226, p < .001, MSE
= 0.34. There was no significant interaction effect, F(1, 84) =
0.154, p > .69, MSE = 0.34.

For the blicket rating task, a 2x2 mixed ANOVA (condition
x rule consistency) was run (see Table 2 for a score summary).
The analysis found that participants were much more likely to
confidently identify initial rule-consistent blocks than initial
rule-violating blocks F(1, 84) = 131, p < .001, MSE = 15.32,
suggesting that the salience manipulation was effective and
participants were influenced by the background colour. Sup-
porting our forced-choice results, there was a marginally sig-
nificant effect of condition, F(1, 84) = 3.77, p = .06, MSE =
11.87, with a mean score of 7.51 for the near condition and
4.63 for the distant condition (scores ranged from -24 to 24).

Intriguingly, and unlike in the forced-choice task, there was
also a significant interaction effect, F(1, 84) = 3.34, p = .04,
MSE = 15.32. This is a result of participants in the near con-
dition performing better than those in the distant condition
on initial rule-consistent blocks, but equally poorly on initial
rule-violating blocks. To assess whether this interaction was
due to differences in confidence for some blocks, an addi-
tional 2x2 mixed ANOVA (condition x rule consistency) was
run to investigate participants’ certainty ratings when evaluat-
ing blocks. The analysis showed no main effect of condition,
F(1, 84) = 2.30, p > .13, MSE = 0.69. Mean confidence rat-
ings were relatively near ceiling in both conditions (greater
than 2 out of 3), which may partially explain the lack of a
main effect. However, participants were more certain of their
answers when rating initial rule-consistent blocks than when
rating rule-violating blocks, F(1, 84) = 22.0, p < .001, MSE
= 0.32. There was also a highly significant interaction effect
between condition and rule-consistency, F(1, 84) = 13.1, p
< .001, MSE = 0.32, driven by participants in the near con-
dition having more certainty for initial rule-consistent blocks
than for rule-inconsistent blocks, suggesting that while partic-
ipants in the near condition were better able to correctly cat-
egorize both initial rule-violating and initial rule-consistent
blocks, they were most confident about the latter.

Additional one-sample t-tests examined whether partici-
pants scored better than would be expected by chance. For
the forced-choice task, participants correctly classified blocks
as blickets and non-blickets significantly better than chance
in the near condition, t(42) = 5.82, p < .001, but not in the
distant condition, t(42) = 1.31, p = 0.20. In the blicket rat-
ing task, however, participants classified blocks better than
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Table 1: Mean scores and SE for forced-choice task. Total
scores range from 0 to 4, and scores for initial rule-consistent
and initial rule-violating blocks range from 0 to 2.

Condition Near Distant
Total score 2.53(±0.10) 2.24(±0.12)
Rule-consistent 1.90(±0.08) 1.82(±0.07)
Rule-violating 0.77(±0.13) 0.42(±0.07)

Table 2: Mean scores and SE for blicket rating task. Total
scores range from -24 to 24, and scores in each sub-category
range from -12 to 12.

Condition Near Distant
Total score 8.00(±1.04) 4.87(±1.26)
Rule-consistent 9.59(±0.51) 6.39(±0.72)
Rule-violating -1.59(±1.01) -1.53(±1.06)

chance in both the near condition, t(42) = 7.69, p < .001, and
the distant condition t(42) = 4.13, p < .001. The at-chance
performance of distant condition participants in the forced-
choice task may simply reflect the low number of trials com-
pared to the blicket rating task.

Finally, we looked at participants’ preference for the cor-
rect rule over their own. Participants in the distant condition
significantly preferred the correct friend’s rule over their own
rule, t(42) = 4.78, p < .001, while participants in the near con-
dition did not, t(42) = 1.55, p = .13. Participants in the distant
condition also preferred the friend’s rule significantly more
than those in the near condition, t(75) = 2.09, p = .04. This
supports our hypothesis that participants in the distant con-
dition had not previously considered the distant rule, rather
than that they considered it, but dismissed it as unlikely.

Experiment 2: A priori rule preference
Although the main study compared the extent to which par-
ticipants preferred the correct rule over their own, it did not
examine the rules in both conditions side-by-side. This study
investigated adults’ a priori preference for either the near or
the distant rule without differentiating data. This was to con-
firm that differences in causal learning and rule preference
between conditions in Experiment 1 were not due to an intu-
itive preference for the near rule before seeing any data.

Participants Participants were 51 adult US residents, re-
cruited through Amazon Mechanical Turk (MTurk) and paid
a base rate of $0.50 for their time.

Materials and Procedure As in the previous study, partic-
ipants were told that blickets were blocks that activated the
blicket detector, and saw an animated blicket detector acti-
vating and not activating. Unlike the previous study, how-
ever, participants only saw one block placed on the machine,
causing it to activate. They were then told the two possible

rules, and that both rules accurately described this block, but
that only one rule was the correct rule for identifying blocks
that activate the machine. Participants were asked to choose
which rule they thought was more likely to be correct. These
rules were identical to the near rule and the distant rule from
the previous study, and the blicket that participants saw was
chosen from a set of blocks that conformed to both rules. Fi-
nally, after selecting a rule, participants explained why they
chose that rule and rated their confidence in their decision,
ranging from 1 (just guessing) to 7 (completely certain). This
confidence rating was turned into a score ranging from -7
(completely certain the near rule is correct) to 7 (completely
certain the distant rule is correct) for statistical analysis.

Results and Discussion Of the 51 participants, 22 pre-
ferred the near rule and 29 preferred the distant rule, p = .41,
exact binomial test. A one-sample t-test demonstrated that
the rule preference scores, M = 0.25, SE = 0.50, did not sig-
nificantly differ from chance, t(49) = 0.71, p = 0.48. Thus,
participants did not prefer one rule over the other, suggesting
that it was not an a priori preference for the near rule driving
the results of Experiment 1.

General Discussion
The findings obtained by these studies lend support to
the exploitation-biased search hypothesis. We expect that
exploitation-biased searches of the hypothesis space will be
more likely to discover rules close to the initial hypothesis,
and less likely to discover more distant rules, even if they are
less complex. As predicted, participants were more accurate
at classifying blocks in the near condition than the distant
condition. This is especially notable given that participants
in Experiment 2 found both rules equally a priori plausible,
which supports that the near rule is at least as complex as
the distant rule. This in turn makes it less likely that the dif-
ferences between conditions can be explained by differently-
weighted prior probabilities. Participants performed better in
the near condition, where the true rule was arguably more
complex, but was comparatively easier to discover from the
salient starting point due to the consistently-improving edit
path, than in the distant condition, where the true rule was
simpler, but where the salient rule was a local optimum. This
suggests that adults are searching through their hypothesis
space in an exploitation-biased manner.

Nevertheless, participants were better able to identify ini-
tial rule-consistent blocks than initial rule-violating ones in
both tasks. This suggests that the strength of one’s priors
may still play a role in conjunction with the exploitation
bias. However, this difference in performance suggests in-
triguing future research avenues—in particular, the finding
in the blicket rating task that participants in the near condi-
tion scored higher than those in the distant condition on ini-
tial rule-consistent but not initial rule-violating blocks. This
seems to be driven largely by participants’ relative certainty
toward initial rule-consistent blocks in the near condition,
rather than their accuracy at categorizing the blocks (as mea-
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sured by the forced choice task). Future studies might assess
how nearness to an initial hypothesis affects the certainty of
judgments of causal relationships.

It is still unclear, however, if these difficulties in discov-
ering certain causal relationships are the result of a devel-
opmental process. Consequently, we plan to expand this
study to directly compare adults with children, to examine
whether children possess these same search-related difficul-
ties. If these findings are the result of a developmental shift
toward exploitation-based search strategies, then exploration-
oriented children could perform just as well—if not better—
than adults in tasks such as those in this study. Children
should also perform equally well in both experimental con-
ditions, or perhaps even better in the distant condition than
in the near one. Particularly, this may be the case if children
see the near rule as a priori less likely. When comparing chil-
dren’s and adults’ performance, it may also be useful to note
differences in time spent on each task, as it might generate
additional insights about their hypothesis search process. Al-
though participants in the current studies had unlimited time
to complete each task, timing data were not recorded.

In the future, it may be useful to develop a more explicit
process model to measure hypothesis distance. Although the
near-hypothesis rule is closer to the salient hypothesis, in that
adding and subtracting particular predicates improves the hy-
pothesis toward the correct rule, this may not accurately rep-
resent how individuals process locality. In other words, we
lack a precise model for how people move between rules, and
thus exactly how far R = (B == C) is from R = A, and how
much harder it is to find R = (A ∩ ¬B) ∪ (¬A ∩ ¬C). In fu-
ture experiments, this process model will need to be clarified.

Overall, our results demonstrating that adults are able to
discover a true causal structure nearer to an initial hypoth-
esis more readily than a distant causal structure of equal or
greater complexity provides compelling initial evidence for
an explore-exploit trade-off in causal inferences. This may
help inform future research on how individuals generate new
hypotheses about everyday causal interactions.
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Abstract
Complex uncertainty expressions such as probably likely and
certainly possible naturally occur in everyday conversations.
However, they received much less attention in the literature
than simple ones. We propose a probabilistic model of the use
and interpretation of complex uncertainty expressions based on
the assumption that their predominant function is to communi-
cate factual information about the world, and that further layers
of uncertainty are pragmatically inferred. We collected empir-
ical data on the use and interpretation of these expressions and
use it for detailed model criticism.
Keywords: uncertainty; probability; experimental pragmatics;
computational modeling

Introduction
One of the main goals of human linguistic interactions is the
exchange of information. However, the information that we
want to exchange can be uncertain: we often talk about things
that we do not know for sure. As a consequence, it should not
surprise us that human languages are equipped with so called
“uncertainty expressions” such as epistemic modals (possi-
ble, might) and probability expressions (probably, likely).

Simple uncertainty expressions have been extensively in-
vestigated in psychology (Beyth-Marom, 1982; Teigen, 1988;
Windschitl & Wells, 1996, 1998) and formal linguistics
(Kratzer, 1991; Yalcin, 2010; Egan & Weatherson, 2011;
Lassiter, 2011), where some consensus has recently emerged
about the advantage of adopting a formal semantics that uses
probability measures (contra the purely qualitative semantics
à la Kratzer). Herbstritt and Franke (2016) empirically in-
vestigated the production of simple uncertainty expressions
(probably, possibly) and propose a pragmatic model of their
production. This paper substantially extends the scope of that
work: here we investigate complex (or nested) expressions
such as probably likely and certainly possible and we model
both their production and interpretation in a conversation.

Complex uncertainty expressions have received much less
attention in the literature.1 Indeed, many foundational issues
arise in the attempt to formalize a model of their use and in-
terpretation. Most pressingly are two interrelated concerns:
(i) what is the semantic meaning of a complex uncertainty
expression? and (ii) what is the communicative goal of a
complex uncertainty expression, i.e. what is the pragmatic
purpose of communication? In this paper we present a first
model that commits itself to what are arguably the most nat-
ural answers to (i) and (ii) from the point of view of formal
semantics (Swanson, 2006; Moss, 2015) and a rational anal-
ysis of communicative practices as efficient transfer of infor-
mation about the world (Anderson, 1990, 1991).

1A recent exception is (Moss, 2015).

This approach enables a straightforward regular and com-
positional treatment of the meaning of uncertainty expres-
sions: simple and complex uncertainty expressions denote
sets of probability distributions over the state space that repre-
sents the possible ways in which the world can be. The mean-
ings of simple expressions are always singleton sets. The
meanings of complex expressions are derived composition-
ally in terms of the simple ones and in general they contain
more than one distribution (see details below). If we model
agents’ uncertain beliefs about the world as (sets of) probabil-
ity distributions over the same state space, then the meaning
of a simple or complex uncertainty expression can be seen as
a collection of ways to update the agents’ beliefs. Figure 1
displays an intuitive representation of this idea.

We incorporate this idea in a probabilistic pragmatic model
of language production and interpretation based on the Ra-
tional Speech Acts (RSA) model (Frank & Goodman, 2012).
In particular our model can be seen as a conservative gen-
eralization of the RSA model proposed by Goodman and
Stuhlmüller (2013). The key innovation of our model is to
treat uncertain beliefs of agents (and thus the communicative
effect of messages) as sets of probability distributions, hence
more fine grained than in the usual approach.

Speaker Listener

s

s

s

It's probably likely!

Figure 1: Listener’s beliefs as complex uncertainty state.
Each probability distribution in the listener’s beliefs is com-
patible with the literal meaning of the received message.

The details of the model are spelled out in the next sec-
tion. In the following section we report on two experiments
designed to collect human data about production and inter-
pretation of complex uncertainty expressions. Finally, the
predictions of the model are evaluated against experimental
data with Bayesian inference and model criticism.

Pragmatic model
Setup We want to model communication in situations of
what we call high-order uncertainty. To illustrate, imagine
an urn containing 10 balls of two different colors (e.g., red
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and blue). The universe of the discourse, the set of possible
states of affairs, can be modeled as the set of natural numbers
S = {0, . . . ,10} where each s ∈ S is a possible quantity of
red balls in the urn. The ratio s/10 expresses the objective
chance that a randomly drawn ball will be red, and represents
first-order uncertainty: even if we know the objective chance,
we are uncertain about the color of a randomly drawn ball.
The second, high-order level of uncertainty comes into play
when we are uncertain about the objective chance too. We
model agents that do not have direct access to the objective
chance. Instead, one agent (the speaker) can draw a certain
number of balls from the urn (referred to as the “access” and
denoted with a) and look at them. The set of possible access
values is A = {1, . . . ,10}. The number of red balls among the
accessed ones is referred to as the “observation” and denoted
o, 0≤ o≤ a. We assume that the communication is about the
content of the urn: after her observation, the speaker puts all
balls back in the urn and makes a prediction about the color
of a randomly drawn ball (see Figure 2). This prediction is
what the speaker will try to communicate.

?
? ?
??

?
?
? ?
? ?
?

?
?

?
??

? ?

? ?
??

?

??
? ?

Figure 2: Partial observation of the content of the urn.

The probability of observing o red balls when the speaker
draws a balls and there are s red balls in the urn is given by
the hypergeometric distribution. Assuming that the agent has
a prior belief distribution over the state space S, we can say
that each pair 〈o,a〉 induces a posterior rational belief distri-
bution over S, computed as the Bayes-inverted hypergeomet-
ric distribution:2

rat.bel(s|o,a) ∝ hypergeom(o;a,s,10)∗prior(s) (1)

On the basis of the rational belief resulting from her observa-
tion, together with the lexical meaning of the available mes-
sages, the speaker chooses the best message to send given her
communicative goal.

Messages and semantics The speaker sends messages of
the form It is [. . . ] that a randomly drawn ball will be red,
choosing from the following 12 expressions to fill the gap:

likely possible unlikely
certainly likely certainly possible certainly unlikely
probably likely probably possible probably unlikely
might be likely might be possible might be unlikely

2For convenience, the prior distribution over states is assumed
to be a symmetric betabinomial distribution between 0 and 10 with
shape parameters α = β free in the model.

Simple messages (likely, possible, unlikely) have a simple
threshold semantics:

Jlikely(p)K = {s ∈ S | s/10 > θlikely}
Jpossible(p)K = {s ∈ S | s/10 > θpossible}
Junlikely(p)K = {s ∈ S | s/10 < 1−θlikely}

The thresholds θlikely and θpossible are free parameters in the
model (more about this below). The variable p can be instan-
tiated with a sentence such as A randomly drawn ball will be
red. For example, this semantics states that the meaning of
It’s possible that a randomly drawn ball will be red is the set
of states where the objective probability of the ball being red
is bigger than a certain threshold θpossible.

The semantics of complex messages is stated in a general
form as follows:

Jmodifier[simple](p)K= {〈o,a〉 | ∑
s∈Jsimple(p)K

rat.bel(s|o,a)> θm}

where θm is the semantic threshold associated with the mod-
ifier.3 Each state in the meaning of the simple message
Jsimple(p)K is associated with a certain probability mass ac-
cording to the rational belief induced in the speaker by each
pair 〈o,a〉; the meaning of the complex message is computed
collecting the pairs 〈o,a〉 where the probability mass of the
states in Jsimple(p)K is greater than the semantic threshold
of the modifier. The semantics of complex messages is rooted
in the literal semantics of the simple ones. The difference be-
tween the two is that while the meanings of simple messages
contain states of affairs, the meanings of complex expressions
contains pairs denoting partial observations, i.e. distributions
over states. Still, both simple and complex expressions can
be linked to sets of probability distributions over world states.
Making use of this allows for a uniform grounding of seman-
tic meaning in a model of rational communication.

Beliefs and expected utility On the basis of the literal
meaning of each message, we compute their effect on the so-
called “literal listener”, a theoretical construct modeling the
interpretation process of a non-pragmatic agent. Each sim-
ple message induces exactly one belief distribution in the lit-
eral listener, whereas each complex message induces a set of
distributions (one for each pair 〈o,a〉 in the meaning of the
expression). This idea is captured in Equation 2, where the
set of distributions lit.bel is defined by cases as a function of
messages.4

3We assume θprobably = θlikely and θmight = θpossible. The thresh-
old of the remaining modifier θcertainly is free in the model.

4The delta function δs∈JmK gives 1 as output if the state s belongs
to the meaning of s, 0 otherwise. The expression rat.bel(.|o,a) refers
to the belief distribution over states induced in a rational agent by the
observation of o red balls out of a.
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lit.bel(m) =

=

{
{P∈∆(S)|∀s∈S :P(s)∝ δs∈JmK ∗prior(s)} m simple

{P∈∆(S)|∃〈o,a〉∈JmK:P=rat.bel(.|o,a)} m complex
(2)

We assume that the communicative goal of the speaker is to
maximize the information transferred to the listener. Here
we formalize this concept as choosing the message which
brings the listener’s factual beliefs as close as possible to
the speaker’s, i.e. which minimizes the distance between the
probability distributions expressing these beliefs. In general
each message is associated with a set of probability distri-
butions over states, according to Equation 2. Idealizing, we
assume that the literal listener would uniformly sample from
this set of uncertain beliefs upon hearing each message. For
this reason the expected utility (EU) of a message m given an
observation 〈o,a〉 is defined as the negative average Hellinger
distance between the speaker’s belief distribution given an
observation and the set of the listener’s distributions given
a message (Equation 3).

EU(m;o,a) =−avg [HD({rat.bel(.|o,a)}, lit.bel(m))] (3)

where HD denotes a function computing pairwise Hellinger
distances between two sets of discrete distributions.5

Production and interpretation Adopting the terminology
of rational choice theory, the speaker’s behavior is to soft-
maximize the EU of each message given her observation:

speaker.prob(m|o,a) ∝ exp(λ∗EU(m;o,a)) (4)

EU is multiplied by a rationality parameter λ (free in the
model) that modulates “how rational” the choice is.6 The dis-
tribution over messages defined in Equation 4 gives rise to the
first half of the set of predictions made by our model, whose
fit to the experimental data is discussed below.

A pragmatic listeners reasons about the received message
and her model of speaker’s behavior in order to infer the
most likely interpretation. The pragmatic listener’s behavior
is modeled as the joint Bayesian inference over the variables
of interest:

listener.prob(s,o,a|m) ∝ speaker.prob(m|o,a)∗priors (5)

We are interested in the interpretation of uncertainty expres-
sions alongside two axes of their communicative effect. One

5Goodman and Stuhlmüller (2013) use Kullback-Leibler diver-
gence as a measure of discrepancy between speaker and listener be-
liefs. We found Hellinger distance a more adequate measure in the
present setting because utilities in terms of KL-divergence lead to
speakers who will never use messages that are semantically false,
whereas HD allows messages to be send if they are “true enough.”
The Hellinger distance between two discrete distributions P and Q

is defined as HD(P,Q) = 1√
2

√
∑i (
√

Pi−
√

Qi)
2.

6As λ→ ∞, the choice approaches perfect rationality.

is the objective state of affairs communicated (i.e., the infer-
ence of s). The other is the subjective, high-order, state of
uncertainty of the speaker (i.e., the inference of 〈o,a〉). The
joint distribution defined in Equation 5 gives rise to the sec-
ond half of the set of predictions made by our model, whose
fit to the experimental data is discussed below.

Experiments
We conducted two experimental studies, a production task
and an interpretation task. The goal of the production task
was to collect human data on the use of simple and com-
plex uncertainty expressions under different high-order un-
certainty conditions. The goal of the interpretation task was
to collect human data on the interpretation of the expressions
in terms of inference of s,o,a.

Participants 252 self reported English native speakers with
USA IP-addresses were recruited via Amazon’s Mechanical
Turk. 102 participants completed the production task, 150
participants completed the interpretation task.

Material Participants in the production task were exposed
to visual stimuli depicting partial observations of the urn. We
asked participants to imagine drawing a number of balls (ac-
cess) and counting the red balls among them (observation).
Then they would put the balls back in the urn, and make a
prediction about the color of another randomly drawn ball
(Figure 2).

The experimental conditions are the different observa-
tion/access configurations displayed to the participants. We
selected 15 such configuration:

high 0/2 1/4 2/4 3/4 2/2
low 0/8 2/8 4/8 6/8 8/8
none 2/10 3/10 5/10 7/10 8/10

Each fraction in the table corresponds to a possible partial ob-
servation, e.g. 3/4 means accessing 4 balls and observing that
3 of them are red. The fractions are grouped according to their
level of high-order uncertainty. Access values smaller than 5
balls are labeled “high” high-order uncertainty, whereas val-
ues greater than 5 correspond to “low” high-order uncertainty,
and values equal to 10 represent no high-order uncertainty
whatsoever.

The set of stimuli for the interpretation task was derived
from the 12 expressions assumed in the model.

Procedure Before the experimental phase, participants
completed a training phase which contained a cover story in-
troducing an interactive game between two players, a sender
and a receiver. Participants in the production task were told
that they would play as senders, and that other players would
receive their messages and try to guess the content of the
urn. Participants in the interpretation task were told that they
would play as receivers. The motivation for this setup was to
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clarify the purpose of the conversation when producing uncer-
tainty expressions and to prompt participants to reason about
the effect of their choices on other agents.

Each participant in the production task completed 12 trials,
one for each of 12 conditions randomly picked from the 15
total conditions. In each trial the participant made the partial
observation of the urn corresponding to the selected condi-
tion and was asked to send a message containing a prediction
about the color of a randomly drawn ball. Crucially, this pre-
diction must be expressed by completing a sentence of the
form It [. . . ] [. . . ] that the next ball will be red, selecting the
most appropriate combination of auxiliary/modifier and un-
certainty expression from two drop-down menus (Figure 3).7

Figure 3: Input menus in the production task.

Each participant in the interpretation task completed 24 tri-
als, 2 for each of the 12 expressions. That is, for each expres-
sion there were 2 kinds of trials, perfectly balanced, in ran-
dom order. Half of the trials (“state” trials) recorded partic-
ipants’ interpretation of the message alongside the objective
axis, i.e. their answer to the question “How many red balls
do you think there are in the urn?”, expressed with a natu-
ral number selected with a slider ranging from 0 to 10. Half
of the trials (“observation” trials) recorded participants’ inter-
pretation of the message alongside the subjective uncertainty
axis, i.e. their answers to the questions “How many balls do
you think the sender has drawn? And how many of them do
you think were red?”, expressed with two natural numbers
selected on sliders ranging from 0 to 10 (Figure 4).

Figure 4: Input sliders in observation trials. The picture on
the right dynamically visualized the current slider selection
in order to provide immediate visual feedback for a selection.

Results Results are visualized in Figures 5 and 6 and will
be discussed in the light of the model’s predictions below.

7The possible choices included not only likely but also probable
in embedded position. However, having not found interesting differ-
ences in the behavior of these two expressions, the results reported
in this paper, the visualization in Figure 5 and the model evaluation
are all based on data in which the counts of participants’ choices of
messages containing probable and likely have been aggregated.

Model evaluation and criticism
Model fit The data collected in the production task and
the interpretation task are respectively counts of expression
choices in each observation condition, and counts of state,
access and observation choices for each expression. We used
the data to compute credible values for the free parameters
of the model, i.e. the semantic thresholds θlikely, θpossible,
θcertainly, the shape parameter of the prior belief distribution
α, the rationality parameter λ. We implemented the compu-
tational model in JAGS (Plummer, 2003) and approximated
the posterior distribution of parameters given the experimen-
tal data. We assumed flat prior distributions over the parame-
ters with support [0;1] for the semantic thresholds and [0;20]
for α and λ. We gathered two chains of 2500 samples af-
ter an initial burn-in of 2500. We checked convergence via R̂
(Gelman & Rubin, 1992). Each sample consists of a vector of
inferred values for each parameter. The following table sum-
marizes the mean values for the threshold parameters together
with their 95% highest density intervals (HDIs):8

θlikely θpossible θcertainly
mean 0.531 0.214 0.979
HDI 0.511-0.551 0.200-0.236 0.965-0.996

Notice that the model recovers plausible values for thresh-
olds given the data without assuming them from the start.

For each sample vector of parameter values our model gen-
erates a set of predictions about speaker’s and listener’s be-
havior. In order to evaluate our model we correlated each
set of predictions with the set of corresponding experimen-
tal count data. The results are collected in vectors of Pear-
son’s correlation scores, whose means and HDIs give us an
indication of the overall performance of the fitted model, as
summarized in the following table:

expression state access observation
mean 0.649 0.862 0.883 0.941
HDI 0.647-0.651 0.857-0.867 0.880-0.886 0.938-0.943

Discussion Correlation scores do not provide detailed in-
formation about what aspects of the data the model can and
cannot explain. To get a better sense of the performance of
the model we compare data and predictions in more detail
with posterior predictive checks (PPCs) (Kruschke, 2014).

We begin with the production task (Figure 5). Visual in-
spection of the plot suggests interesting features of the data.
First, the number of observed red balls seems to have an in-
fluence on the choice of expressions. For example, with the
same access of 8 (middle row of Figure 5), different obser-
vation values (0, 2, 4, 6 and 8) resulted in different distribu-
tions of expressions. This is an intuitive result, and the model
correctly predicts the general pattern. Second, the same pro-
portions of red balls but with different access levels seem to
result in different expression choices. For example, compare
the distributions of expressions observed (and predicted) with

8The other parameters of interest are α: mean= 6.373, HDI:
5.546−7.178; and λ: mean= 5.429, HDI: 5.192−5.659.

510



a proportion of 0 observed red balls and access values equal
to 2 and 8, and similarly with a proportion of 1 and access
values equal to 2 and 8. The distributions are different, and
the model seems to predict the patterns.

However, there are also several discrepancies between ob-
served data and the models PPCs. Discrepancies show in
Figures 5 and 6 whenever the HDIs of the PPCs do not in-
clude the observed frequencies: in these cases the model, be-
ing trained on the data, would still be surprised, so to speak,
by seeing the data points where observations do not fall in
to the HDIs of our PPCs. For example, the model under-
predicts choice frequencies of might be possible in favor of
possible in the high uncertainty conditions and underpredicts
unlikely and likely in the no uncertainty conditions. More in
general, the model almost always overpredicts choice of, e.g.,
certainly possible and might be unlikely. At the same time,
whenever PPCs are off for simple expressions, the model un-
derpredicts their choice frequency. This suggests that a cru-
cial ingredient might be missing from the model, namely a
baseline preference of some expressions over others.

Turning now to the interpretation task (Figure 6), we ob-
serve that in general the patterns displayed in the data seem
to be captured relatively well by the model. However, PPCs
highlight a number of discrepancies. One clear example con-
cerns the state interpretation for unlikely and its nested ver-
sions (left panel, right column): the predictions are visibly
shifted to the right compared to the data. Another feature that
the model fails to predict is the relatively low counts of access
choices of 5 (compared to 4 and 6) for several expressions
(middle panel), although this seems to be a puzzling feature
of the data rather than an obvious shortcoming of the model.

Conclusion
Communication under high-order uncertainty raises a number
of issues for formal semantics and pragmatics. Our work here
is intended as a first but transparent explication of a number
of assumptions that allow the formulation of a computational
model of the use and interpretation of complex uncertainty
expressions. The resulting model captures basic patterns in
the data well enough, suggesting that our basic assumptions
are not entirely off. Still, detailed model criticism also reveals
a number of shortcomings. These point the way to further ex-
ploration; we see our main contribution exactly in this point-
ing. Most importantly, a measure of a differential inclina-
tion to produce messages (e.g., in terms of frequency, length,
salience) should be included. Also, the artificial restriction on
the set of message choices should ideally be relaxed as much
as possible. Moreover, it will be telling to see how partici-
pants react to contextual manipulations such as of the relative
relevance of information about the world state vs. information
about the speaker’s epistemic state.
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Figure 5: Percentages of expression choices in each partial observation condition, together with mean predictions and HDIs.

Figure 6: Counts of state, access and observation choices for each expression, together with mean predictions and HDIs.
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Abstract
Categorization has a large impact on how people perceive the
world, especially when used to make inferences about uncer-
tain features of new objects. While making these inferences,
people tend to draw information from only one possible cate-
gorization of a new object; in addition, people are sensitive to
pre-existing correlations between features. Here, we explain
these trends of feature inference using a priming-based cogni-
tive process model, and show that our model is distinguished
in that it can explain not only these two main trends, but also
cases where people seem to reverse the first trend and base in-
ferences on information from multiple categories.
Keywords: categorization; priming; spreading activation; in-
ductive inference; cognitive models

Introduction
Categorization is a fundamental tool in human cognition. One
of its main functions is to allow people to more easily un-
derstand the world by making inferences about new objects
based on existing knowledge that they already have. If one
sees a furry animal coming towards it and categorizes it a
loose dog, then it would be natural to further infer that the
animal is probably friendly.

Systematic research into how these inferences are made
has shown two major trends in performance (Nosofsky, 2015;
Murphy & Ross, 1994, 2007; Griffiths, Hayes, & Newell,
2012). First, people seem to base inferences on a single iden-
tified category for an object, even if the object’s categoriza-
tion is uncertain (called the single-category view). So, for
example, people would typically infer that the dog is friendly
without considering that it might be a fox, which should be
avoided. Second, people are sensitive to correlations between
features, and are more likely to infer features that are strongly
associated with the observed features of the new object. For
example, people would be further biased towards inferring
the dog is friendly if it were wagging its tail.

While there is a large body of research that supports these
two trends, here we consider a series of experiments per-
formed by Murphy and Ross (1994) that comprehensively
considered several variants and extensions of the basic infer-
ence paradigm. The authors, however, admit that their overall
results challenge many of the formal models of categoriza-
tion and inference (Murphy & Ross, 1994, 2007), with none
fully explaining the results. Recently, Nosofsky (2015) devel-
oped a exemplar model of feature inference that does quali-
tatively capture their results. Notably, however, Nosofsky’s
(2015) analysis does not discuss an important caveat of the
first trend: that responses seem to shift towards a multi-
category view, where more than one possible category is con-
sidered when making the inference, if participants do not ex-
plicitly identify the category before making the feature infer-
ence (Murphy & Ross, 1994; Griffiths et al., 2012).

We present here a priming-based process model of induc-
tive feature inference that explains these two main results,
including this caveat. Situated in the cognitive architecture
ACT-R/E (Trafton et al., 2013), a critical aspect of our model
is that its inferences are based not only on what stimuli have
been seen, but also on what the model is currently thinking
about (i.e., what is in its working memory). We show our
model’s ability to account for feature inferences in four main
experiments that are particularly indicative of the trends of
feature inference: Experiments 1, 5, 6, and 8 from Murphy
and Ross (1994).

Experiments
In the four experiments we consider from Murphy and Ross
(1994), participants were shown category structures with dif-
ferently shaded geometric objects, grouped together and la-
beled with the category they represent (e.g., Figure 1). Par-
ticipants were told that the categories represented different
children who drew the objects, and that the objects were il-
lustrative of a larger set of drawings by each child. Then, the
experimenter told participants about a new drawing, but only
shared one feature of it, such as a triangle; this feature, the
query feature, was typically chosen to be ambiguous in which
child drew it. Participants were then asked what they thought
the other feature of the new drawing was (such as the trian-
gle’s color). Additionally, in some experiments, participants
were asked to categorize the drawing (i.e., say which child
drew it) before they inferred the second feature. The most
likely category for each query is called the target category.

Experiment 1 focused on whether inferences are made us-
ing information from single, or multiple, categories. The cat-
egories are shown in Figure 11. This experiment had two
conditions. In the increasing condition, the query feature was
a triangle. The target category for a triangle is Bob, since Bob
has the most triangles. The target-category feature, or the fea-
ture that would be selected by primarily considering the target
category using a single-category view, is black. This condi-
tion is called increasing because there is additional evidence
outside the target category that the triangle would be black,
since Sam and John also sometimes draw triangles, and they
also sometimes draw black objects.

Now, consider a new drawing that is a square. Here, the tar-
get category is John, and the target-category feature is white.
In this condition, the neutral condition, there is no evidence
outside of the target category that the square would be white;

1While other variations of this category structure were used to
counterbalance features and category locations, they preserved this
same main category structure and so we discuss the experiment in
terms of this one. We do this for the other experiments, as well.
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Bob John

EdSam

Figure 1: Category structure for Experiment 1. In the in-
creasing condition, the query feature is a triangle, the target
category is Bob, and the target-category feature is black. For
the neutral condition, the query feature is a square, the tar-
get category is John and the target-category feature is white.
Adapted from Figure 1 of (Murphy & Ross, 1994).

no other child draws both squares and white objects.
Almost all of the 29 participants selected the target cate-

gory and target-category feature for both the increasing and
neutral conditions, and so ceiling effects prevented them from
being statistically compared. Participants also, however, pro-
vided a probability estimate of their certainty in their re-
sponse. These probability judgments did not have a ceiling
effect, yet provide no evidence of a difference between the
two conditions: the average certainty for each condition was
53%. This parity supports the single-category view of feature
inference by suggesting that, despite the additional evidence
for the target-category feature present in the increasing con-
dition, participants only took the target category into account
when making their inference.

Experiments 5 and 6 used a category structure in which
the single-category view and multiple-category view suggest
different patterns of feature inferences (Figure 2). Further,
they considered how the initial step of identifying the target
category may affect participants’ use of single vs. multiple
categories in their inference. Here, the query feature is a tri-
angle, and the target category is Bob, since he drew more
triangles than the other children. The single-category view
suggests black as the inferred feature; black is thus consid-
ered the target-category feature. A multiple-category view,
however, suggests that black and white are equally likely.

The results of the experiments support both these views,
depending on whether participants were asked to make the
initial categorization step. In Experiment 5, where partici-
pants did not initially categorize the drawings, 58% of the
32 participants chose the target-category feature, black, with
the majority of remaining responses as white. This differ-
ence was not significant, supporting the multiple-category
view. In Experiment 6, however, where participants did cate-
gorize the drawings before predicting the other feature, 82%

Bob Ed

SamJim

Figure 2: Category structure for Experiments 5 and 6. Here,
the query feature is a triangle, the target category is Bob, and
the target-category feature is black. Adapted from Figure 3
of (Murphy & Ross, 1994).

of the 36 participants responded with the target-category fea-
ture. Additionally, 88% of the participants that categorized
the drawing into the target category responded with the target-
category feature. This supports the single-category view and
suggests that participants were biased by the target category
when they identified it before making their inference.

Experiment 8 focused on exploring how feature correla-
tions may affect predictions. Here, the query features in two
conditions were explicitly controlled to have different degrees
of correlation with the target-category features. All partici-
pants were asked to assign the drawing to a category before
responding to the feature queries. Figure 3 shows an exam-
ple category structure. In the correlated condition, the query
and target-category features were perfectly correlated: the
query feature was a circle, the target category was “D” and
the target-category feature was “vertically striped.” In the un-
correlated condition, the features are only weakly correlated,
with a query feature of triangle, a target category of “C” and
a target-category feature of white.

The results show that 95% of the 26 participants selected
the target category across both conditions. More importantly,
more participants selected the target-category feature for the
correlated condition (94%) than for the uncorrelated condi-
tion (90%). This suggests that people are biased towards cor-
related features when they make inferences.

Model
We developed a priming-based process model of feature in-
ference given uncertain categorizations, situated within a
computational cognitive architecture, ACT-R/E, that allows
us to model the processes people undergo as they perform
tasks. In this architecture, concepts that are thought about
at the same time become associated in memory, and then can
prime one another; by using ACT-R/E, we are able to develop
a priming-based account of feature inference that is supported
by the underlying principles of this existing, well-studied the-
ory of cognition. Here, we first describe the general principles

514



A B

DC

Figure 3: Category structure for Experiment 8. For the cor-
related condition, the query feature is a circle, the target cate-
gory is D and the target-category feature is vertically-striped.
For the uncorrelated condition, the query feature is a trian-
gle, the target category is C and the target-category feature is
white. Adapted from Figure 5 of (Murphy & Ross, 1994).

of our model. Then, we give further details of ACT-R/E, and
discuss how our model’s principles interact with the architec-
ture to make specific predictions about feature inference.

The process model has two phases corresponding to the
two phases of the experiment: an initial phase where the
model looks at, encodes, and stores the categories and objects
in memory; and an inference phase where the model makes
the category and feature predictions. During the initial phase,
each of the objects becomes associated with its underlying
features; both the features and objects, in turn, also become
associated with their corresponding category. These associ-
ations mean that the concepts prime one another when the
model is thinking of them.

Then, during the inference phase, to predict the category
of a new object, the model selects the category with the most
priming, including priming from the query feature. Conse-
quently, the model’s category response is heavily influenced
by the presence of the query feature in the category. To per-
form the feature prediction, the model selects the object in
memory that has the most priming, including priming from
the query feature and, when applicable, the selected category.
The second feature of that object is then considered to be
the inferred feature. This means that the predicted feature
is heavily influenced by both the correlation between the two
features, and the prevalence of that feature within the identi-
fied category (when the category is identified).

Model Architecture
The model was developed within the cognitive architecture
ACT-R/E (Trafton et al., 2013), an embodied version of the
ACT-R cognitive architecture (Anderson, 2007). At a high
level, ACT-R/E is an integrated, production-based system,
and models in ACT-R/E capture the core cognitive processes
that people go through as they undergo tasks. At its core are
the contents of its working memory; working memory indi-

cates, for example, what the model is looking at, what it is
thinking, and its current goal. At any given time, there is a
set of productions (if-then rules) that may fire because their
preconditions are satisfied by the current contents of working
memory. From this set, the production with the highest pre-
dicted usefulness is selected to fire. The fired production can
either change the model’s internal state (e.g., by adding some-
thing to working memory) or its physical one (e.g., by press-
ing a key on a keyboard). In our discussion, we abstract over
these productions and instead describe processes at a higher
level (i.e., we say that we look at an object, instead of dis-
cussing the 3-4 productions that must fire to achieve that).

Working memory is represented as a set of limited-capacity
buffers that can contain thoughts or memories. In addition
to the symbolic information (i.e., factual information) rep-
resented as part of these memories, memories have activa-
tion values that represent their relevance to the current sit-
uation, and guide what memories are retrieved from long-
term memory and added to working memory at any given
time. Activation has three components, activation strength-
ening, spreading activation, and activation noise, that together
have shown to be an excellent predictor of human declarative
memory (Anderson, Bothell, Lebiere, & Matessa, 1998; An-
derson, 1983; Schneider & Anderson, 2011; Thomson, Har-
rison, Trafton, & Hiatt, 2017). Noise is a random component
that models the noise of the human brain; since its presence
would not affect our results, we ignore noise in the rest of this
paper. Activation strengthening is learned over time and is a
function of the frequency and recency with which the mem-
ory has been in working memory in the past. The predomi-
nant role of activation strengthening in this experiment relates
to ordering effects, which the experimental stimuli’s counter-
balancing averages out. Therefore, we primarily focus the
rest of our discussion of activation on its third component:
spreading activation, or priming.

Priming is a short-term activation that sources from work-
ing memory, distributing activation along associations be-
tween the contents of working memory and other memo-
ries. Memories become associated when they are in work-
ing memory at the same time. Once established, an associ-
ation from memory j to memory i has a strength value that
affects the degree to which j primes i, and intuitively reflects
the probability that memory i is relevant while thinking of
memory j. This allows spreading activation to capture cor-
respondences between memories that typically co-occur, as
well as memories that are semantically related (such as an
object and its color and shape). Association strengths are cal-
culated in a Bayesian-like way, and are a non-standard adap-
tation of ACT-R’s Bayesian-based priming mechanisms. We
use this adaptation to account for the large numbers of asso-
ciations and objects needed by the experiments we consider
here, which ACT-R’s original formulation is unable to do, as
well as to capitalize upon its theory that priming stems from
working memory; see Hiatt and Trafton (2016) for more in-
formation on our priming mechanisms.
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Figure 4: Priming for Experiment 1, increasing condition, for
the query feature’s categorization (left) and the inferred fea-
ture (right). Thicker arrows indicate more priming; thinner
indicate less. The cumulative priming means that Bob will be
selected as the category and black will be the inferred feature.

ACT-R/E models interact with the world using ACT-R/E’s
built-in functionality. Models can view visual items on a sim-
ulated monitor, and can act on the world by pushing keys on
a simulated keyboard and clicking a simulated mouse. ACT-
R/E models are also inherently tied to physical embodiment
(i.e., executing models on a robot), but we do not use that
functionality in this paper.

Model Details
Our model for feature inference starts out with only the
task knowledge and productions necessary to complete the
tasks. It also assumes prior exposure to the category names,
since they are names participants would have encountered
frequently in their daily lives (i.e., “A”, “John”, etc.). There
are no initial associations; are all learned during the experi-
ment. The model “looks at” the stimuli as the participants did
via its simulated monitor.

During the initial experiment phase when the model is
looking at the categories and objects, it first finds a cate-
gory to look at, encodes it and adds it to working memory.
While continuing to think of the category, the model then
looks at, encodes and adds to working memory each of the
objects in that category, while making note of their color and
shape. Consequently, as it looks at each object: the object
(i.e., “black-triangle”) becomes associated with the category
(i.e., “Bob”); the object’s features (i.e., “black” and “trian-
gle”) become associated with both the object and the cate-
gory; and the features of the object become associated with
each other. When it has finished looking at all objects of a
category, it repeats this process with the other categories until
it has looked at all of the categories and objects on the screen.

During the inference phase, the model first adds the query
feature to working memory as part of the process of inter-
preting the query. When asked to infer the category of an
object, the model retrieves the category from memory with
the highest activation, including both activation strengthen-
ing and spreading activation (i.e., priming), responds with the
retrieved category, and leaves the category in working mem-
ory. For example, Figure 4, left side, shows the priming when
selecting the category for Experiment 1’s increasing condi-
tion. Then, when asked to infer the object’s missing feature,

the model retrieves an object while both the retrieved cate-
gory (when applicable) and the query feature are in working
memory. Again, the object with the highest activation, both
activation strengthening and priming, is retrieved; Figure 4,
right side, shows this for Experiment 1’s increasing condi-
tion. The second feature of the retrieved object is given as the
response to the query.

Model Results
In the original experiments, several versions of the basic cat-
egory structure were created to counterbalance features and
category locations. We varied our category structures accord-
ingly, then used our model to simulate data from 500 partic-
ipants per experiment to allow our results to better converge
on the model’s true predictions; our reported results are the
proportion of the 500 model runs that responded with the tar-
get category, target-category feature, etc., for each query.

The model had the same parameters for each experiment.
The activation strengthening decay parameter was 0.45 in-
stead of its default of 0.5. The associative learning rate was
4.8, representing a moderate rate of learning. There is no real
default value for this parameter. All other parameters were
set to their default values.

The main experiment and model results are shown in Ta-
ble 1. For Experiment 1, the model exhibited perfect perfor-
mance, always selecting the target category, and always se-
lecting the target-category feature for both the increasing and
neutral conditions. This is comparable to the experimental
results, where almost all participants also selected the target
category and target-category features.

In this experiment, however, despite almost all participants
selecting the target-category feature, participants’ probability
judgments of their responses were not as certain, with an aver-
age judgment for each condition of 53% for both the increas-
ing and neutral conditions. While we have no a priori way of
extracting probability judgments from the modeling frame-
work we utilize, our model does informally support these re-
sults. This is because, from our model’s point of view, these
conditions’ structures are the same. Both include two objects
with the query feature and target-category feature in the target
category; one object with just the query feature in the target
category; and two objects with just the query feature outside
of the target category. Thus, in both conditions, while the
black-triangle object (or white-square object) is the highest
activated object, it only receives about half of the total prim-
ing, suggesting a probability judgment of 50%.

For Experiment 5, the model selected the target-category
feature 50% of the time, which moderately reflects the ex-
periment’s results. In Experiment 6, the model very strongly
matched the experimental data, selecting the target-category
feature 80% of the time, as compared to the experiment’s
82%. Additionally, 89% of the model runs that categorized
the drawing into the target category responded with the target-
category feature, compared to the experiment’s 88%.

For Experiment 8, 95% of model runs selected the target
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Table 1: Model Results
Experiment Condition/Participant Group Measurement Exp. Data Model

Exp. 1 increasing probability judgments 53% 50%
neutral probability judgments 53% 50%

Exp. 5 all participants target-cat. feature 58% 50%

Exp. 6 all participants target-cat. feature 82% 80%
target cat. correct only target-cat. feature 88% 89%

Exp. 8
all participants target category 95% 95%

correlated target-cat. feature 94% 100%
uncorrelated target-cat. feature 90% 91%

category, the same as in the experiment. All of the model runs
selected the target-category feature for the correlated condi-
tion, and 91% selected the target-category feature for the un-
correlated condition. Again, this strongly corresponds to the
experimental results, where there was a significant difference
between the two conditions, with 90% of participants select-
ing the target-category feature in the uncorrelated condition
vs. 94% for the correlated condition.

Model Discussion

Recall the two main trends in research on feature inference
for uncertain categorizations that are illustrated by the four
experiments we consider here. First, people are biased to-
wards the single-category view when making feature infer-
ences; the bias seems to be modulated, however, when they
do not categorize the object first. And second, people’s in-
ferences are also sensitive to correlations between features,
selecting correlated features more often than non-correlated.

The model explains both of these trends via priming be-
tween the features, objects and categories. It explains the first
trend, and its caveat, because its predictions are based on the
sources of priming in working memory, and as such are not
inherently based on the consideration of single- or multiple-
categories. When making a feature prediction, the model al-
ways has the query feature in memory, which primes objects
that are associated with it. This serves to provide sugges-
tions compatible with the multiple-category view of what the
predicted feature should be. For example, in Experiment 5,
where triangle is the query feature and there is no categoriza-
tion step, triangle equally primes black-triangle and white-
triangle, because there are equal numbers of them. This leads
to a roughly an equal likelihood (50%) of the predicted fea-
ture being black or white. While this underestimates the 58%
response rate of the experimental data, given the lack of sta-
tistical significance in this experiment, we are comfortable
concluding that our model explains this trend.

In conditions where participants categorize the feature be-
fore making their prediction, priming stems not only from
the query feature but also from the category, which provides
suggestions compatible with the single-category view of what
the inferred feature should be. In Experiment 6, identical to
Experiment 5 but with an added categorization step, when

shown a triangle, the model generally selects Bob as the cate-
gory (i.e., Figure 4). Bob then strongly primes black-triangle,
since it has three of them, and weakly primes white-triangle,
since it has only one of them. Combining this category prim-
ing with the priming from the query feature, black-triangle
overall receives more. Again, this matches the data, where
82% of participants overall selected black as the inferred fea-
ture, and 88% of participants who identified Bob as the target
category selected black as the inferred feature. Overall, then,
the model’s use of priming in memory allows the model to
capture conditions both where participants seem to be biased
towards the single-category view, and where they do not – a
major contribution of the model.

The model also explains the second main trend of feature
prediction, where participants are sensitive to correlations be-
tween features. There are two reasons for this. The first is that
correlated objects, on average, have slightly higher activation
strengthening, since they will be more familiar to participants
than objects with less common feature pairings. The second
reason is that correlated objects will receive much higher lev-
els of priming from their underlying features because that
priming is, in a sense, undiluted by other options. For ex-
ample, in Experiment 8, where the correlated query feature is
circle, the only object primed by circle is vertically-striped-
circle. The target category, D, also spreads a high amount
of activation to vertically-striped-circle, since there are three
of them in that category, further underscoring the correlated
feature as the answer. In contrast, for the uncorrelated query,
both sources of priming (the query feature triangle, and the
target category C) prime white-triangle in addition to strongly
priming the target black-triangle. Thus, the model suggests
that for the correlated condition, the target-category feature
should almost exclusively be selected, whereas in the un-
correlated condition, the target-category feature should just
mostly be selected. These explanations match the data, where
the target-category feature was selected for 94% of correlated,
but only 90% of uncorrelated, structures.

General Discussion
The authors of the experiments that we model here were ul-
timately interested in characterizing people’s inference be-
haviors across different manipulations of categories and fea-
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tures (Murphy & Ross, 1994). Recently, as we mentioned,
Nosofsky (2015) proposed an exemplar model that qualita-
tively accounts for the majority of the results. The model is
based on an equation that calculates the similarity between
feature/category pairs using two parameters: the salience of
the feature, and the salience of the category. The probabil-
ity of inferring the target-category feature is then found by
summing the similarity of the query feature/category pair to
all displayed feature/category pairs with the target-category
feature, and dividing by the summed similarity of the query
feature/category pair to all displayed feature/category pairs
(irrespective of the target-category feature).

Our view of this promising work, however, is that it does
not consider an important result of the experiments: that of
the difference in results between experiments where partici-
pants explicitly identified the target category, and where they
did not (e.g., Experiment 5 vs. Experiment 6). Recall that
when participants were asked to identify the target category
before making their inference, a large and significant major-
ity responded according to the single-category view; when
participants were not asked to identify a target category be-
fore making their inference, however, participants’ responses
greatly shifted towards the multiple-category view. Nosofsky
(2015) do not discuss this difference, and considers the results
of Experiment 5, instead, as weakly supportive of the single-
category view that is more strongly suggested by Experiment
6. Although dynamically adjusting the parameter settings de-
pending on the specific queries of the experiment may lead
to this difference in predictions, there is no intuition for how
this parameter setting change may occur.

Our priming-based process model of feature inference,
however, naturally answers that question as part of its core
theory. Our model indicates that the difference in results is
due to an underlying difference in the way that the experi-
ments are processed by the human mind. It accounts for this
difference because it includes the sources of priming in work-
ing memory to be a key part of its predictions. It suggests that
when a person has explicitly thought about a category, the cat-
egory is included as part of the inference process, biasing the
model towards the single-category view; when a person has
not, the model relies only on priming from the query feature,
biasing the model towards the multiple-category view. Our
model thus explains the same qualitative trends as Nosofsky
(2015) while also accounting for this additional aspect of fea-
ture inference, and quantitatively matching the data.

Another model that has been proposed for explaining fea-
ture inference is the rational model and its associated variants
(Anderson, 1991; Sanborn, Griffiths, & Navarro, 2010). This
model, while also rooted in Bayesian-based reasoning, has
been shown to have trouble accounting for the breadth of the
results we model here (Nosofsky, 2015). A recent promis-
ing version of this model was developed by Konovalova and
Le Mens (2016), whose rational model is sensitive to uncer-
tainty in categorization; our belief, however, is that it also
would have trouble accounting for differences stemming from

the presence or lack of an initial categorization step.
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Abstract

Past theoretical studies on word learning have offered
simple sampling models as a means of explaining real
word learning, with a particular goal of addressing the
speed of word learning: people learn tens of thousands
of words within their first 18 years. The present study
revisits past theoretical claims by considering a more re-
alistic word frequency distribution in which a large num-
ber of words are sampled with extremely small probabil-
ities (e.g., according to Zipf’s law). Our new mathemati-
cal analysis of a recently-proposed simple learning model
suggests that the model is unable to account for word
learning in feasible time when the distribution of word
frequency is Zipfian (i.e., power-law distributed). To
ameliorate the difficulty of learning real-world word fre-
quency distributions, we consider a type of active, self-
directed learning in which the learner can influence the
construction of contexts from which they learn words.
We show that active learners who choose optimal learn-
ing situations can learn words hundreds of times faster
than passive learners faced with randomly-sampled situ-
ations. Thus, in agreement with past empirical studies,
we find theoretical support for the idea that statistical
structure in real-world situations–potentially structured
for learning by both a self-directed learner, and by a
beneficent teacher–is a potential remedy for the patho-
logical case of learning words with Zipf-distributed fre-
quency.

Keywords: cognitive models of language acquisition;
cross-situational word learning; statistical learning

Child word learning
One of the most prominent differences between human
and nonhuman cognition is our language ability. Much
research has been dedicated to understanding the human
capability for language, with a great deal of discussion
focused on the process of language acquisition. A central
debate in this conversation considers whether acquisi-
tion is based on innate and language-specific mechanisms
(Chomsky, 1965; Gleitman, 1990), or bootstrapped from
domain-general mechanisms (Smith, 2000; Kachergis,
2012). From the former perspective, humans become
competent language users–mastering a complex system
of syntax to produce endless semantics–very rapidly, and
with relatively little training.

Word learning has been treated as an indicator of
language development, and has been compared with a
number of other indicators of cognitive abilities, such as
memory (Vlach & Johnson, 2013; Vlach & Sandhofer,
2012). Although there are multiple empirical estimates
of the number of words that children acquire, many stud-
ies agree that child’s word learning is quite fast. Early

word production starts when the child is 12 months old
on average, and by 18 months children can produce 50
words and comprehend 100-150 (Hulit & Howard, 2002).
By 18 years of age, it is estimated we know over 60,000
words (Bloom, 2000). Under the assumption that each
child has 8 hours of word learning opportunity everyday,
these estimates mean the child learns a new word every
learning hour for 18 years of the life.

Given these empirical estimates of word learning, the-
oretical studies have attempted to account for the quan-
titative characteristics of word learning. The first ques-
tion is: What combination of learning mechanisms and
structure in the language environment allows children to
learn at this rate? This question poses a good neces-
sary condition for any account of child word learning,
as it needs to address this quantitative aspect of word
learning.

As a first-order approximation, child learning may be
modeled as an independent sampling process in which
each word is learned independently. To estimate the
fastest possible learning rate, (Blythe, Smith, & Smith,
2010, 2016) proposed an idealized learning model to ad-
dress acquiring a full lexicon in the long term: 60,000
words over 18 years. In their model, each word is
learned with its first sample – known as fast mapping
in the developmental literature. Under the simplifying
assumption that each word is independently learned via
fast-mapping, and its word frequency is distributed uni-
formly, their mathematical analysis of the model showed
that a cross-situational learner is sufficiently fast to learn
all 60,000 words after experiencing a reasonably small
number of spoken words.

Theoretical approach

Blythe et al.’s theoretical estimate has been treated as
a theoretical implication that shows learning via inde-
pendent fast-mapping of words is efficient enough to be
a model of child word learning. In this study, we rein-
spect this theoretical implication by introducing a more
realistic word frequency distribution. Our mathematical
analysis implies that the learning rate of the independent
fast mapping is quite sensitive to the word frequency
distribution. More importantly, even fast mapping–the
most efficient learning, requiring only a single sample,
can be too slow to learn 60,000 words in 18 years, if
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word frequency follows Zipf’s law (Zipf, 1949) or a fat-
tailed distribution which is often found in natural cor-
pora. Thus, our analysis implies that the independent
fast-mapping model cannot be an account for child word
learning, if there are many words sampled less frequently.
This mathematical implication leads to an empirical test
of whether the word distribution in the child-directed
speech is uniform or non-uniform such as a Zipf dis-
tribution. Thus, in the second study, we analyzed the
CHILDES corpora for word distribution in child-directed
speech.

Given this result of the mathematical analysis, we ex-
plore an extension of the word learning mechanism by
additionally assuming that the word learning is more ac-
tive than that is supposed to be traditionally. Typically,
as analyzed in the past studies above (Blythe et al., 2010,
2016), the learning is supposed passive – the learner has
no choice but observing samples words and objects from
a given probability distribution. This is certainly over-
simplified, as actual child word-learners choose when,
where and from whom they would like to learn words.
Thus, our second analysis estimates the impact of a form
of active choice of situations in word learning. Our anal-
ysis shows that active learning is likely to have a suf-
ficiently beneficial impact to make word learning fast
enough to happen on a realistic timescale.

Independent fast-mapping learning

Uniformly distributed word frequency

Blythe, Smith, & Smith (2010) proposed a mathematical
model of word learning, which has a closed-form expres-
sion under a certain simplification. In their recent study,
Blythe, Smith, & Smith (2016) analyzed essentially the
same model, although slightly modified for analytic con-
venience. Here we briefly introduce the most recent form
(2016) of their model.

Blythe et al. originally consider cross-situational word
learning. Suppose there are W words and O objects in
the hypothetical world. Further the numbers of words
and objects are equal, W = O, in their cross-situational
learning scheme, and every object has its name and no
objects have two names. Namely, there are W correct
pairs of words and objects. Without loss of generality,
denote the W pairs by 1, 2, . . . ,W , and suppose kth ob-
ject is paired with the kth word.

Given these pairs being unknown, a word learner is to
infer correct pairs by going through episodes. In each
episode, the learner is exposed to M ≤ W words and
M objects, without any explicit information on which
word is paired with which object. With one episode with
M ≥ 2 objects and words, the learner cannot tell which
of M words should be associated to which of M objects.

The most simple model among a series of extended
ones is called fast-mapping learning model. In the liter-
ature of language development, it is well-known that chil-

dren as young as three years old can quickly generalize
a novel name to objects when they hear the novel name
given to its fast instance. Due to this one-shot nature
of their word learning, it is called fast mapping. Cap-
turing this empirical finding, the fast-mapping learner in
the model is supposed to learn a new pair of word and
object only with the first experience of it. The fast-
mapping learner is equivalent to the cross-situational
learner, if there is one correct pair of object and word in
each episode (M = 1).

As fast-mapping learning is the most efficient scheme
(at least for independent word learning), it gives a good
baseline estimate of the number of samples to learn all
the words in a given list. Blythe et al. (2010) model
a fast-mapping learner acquiring words independently
drawn from a uniform distribution of W words given in
each episode. As every episode has one word with prob-
ability 1/W , this is equivalent to the so-called Coupon
Collector’s Problem (Blom, Holst, & Sandell, 1994). In
this problem, the expected time T to finish sampling all
the words is

E[T ] =

W∑
i=1

E[ti].

where ti is the time to sample a ith new word given (i−1)
words being learned. Thus,

E[T ] = W

W∑
i=1

1/i ≈ W logW. (1)

Setting the number of words W = 60, 000, which is an
empirical estimate of the number of words 18 years old
knows on average, T = 660, 126. This estimate is compa-
rable with the “reasonable” number of samples justified
by Blythe et al. (2010) which individual children can be
exposed to for their 18 years of lives.

Non-uniformly distributed word frequency

Here we extend this analysis on the fast-mapping
learner to the case with word frequency distributed non-
uniformly. Our extended analysis will reveal that the
estimate based on Equation (1) by Blythe et al. is quite
“optimistic”, as an estimate with non-uniform word dis-
tribution is larger than that in general.

Here let us derive the number of episodes T that,
for 0 ≤ ϵ ≤ 1, the (1 − ϵ) of children learned all
the W words listed. Suppose a set of W words in
which each word 1, . . . ,W is drawn from the distribu-
tion p = (p1, . . . , pW ). The proportion of children who
finished learning all the words is (1 − ϵ) for 0 < ϵ < 1
requires the number of episodes T , which is the root of

W∏
i=1

(
1− (1− pi)

T
)
= 1− ϵ. (2)

The left hand side of (2) is the probability that every
word is present at least once in the T episodes.
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Write

fW,ϵ(x) :=
log

(
1− (1− ϵ)1/W

)
log (1− x)

.

For the uniform distribution, pi = 1/W for every i =
1, . . . ,W , the root of (2) is given by

T = fW,ϵ(1/W ). (3)

This T is the number of episodes with which the propor-
tion of children finished learning all the words is (1− ϵ).
Setting ϵ = 1/2 in (3), we obtain the median of T ,
fW,1/2(1/W ), that is comparable with the mean of T
in (1).

Unlike (3) for the uniform distribution, the root T of
Equation (2) in general is not closed-form. Thus, let us
consider the upper and lower bound for the root instead
of the rigorous form of it. For the general word distri-
bution p = (p1, . . . , pW ), the intermediate value theo-
rem states that there exists a unique constant c holding
min p ≤ c ≤ max p, with which the root of (2) is ex-
pressed as

T = fW,ϵ(c).

Equivalently, we have inequality

fW,ϵ(max p) ≤ T ≤ fW,ϵ(min p).

As we are interested in the worst possible estimate of
T , this inequality states that the upper bound T+ :=
fW,ϵ(min p) of T is characterized with the probability to
sample the least frequent word min p.

This extended mathematical analysis implies that the
uniform distribution q = (1/W, . . . , 1/W ) of words gives
the minimal possible upper bound T+ among any fre-
quency distribution of W words, as any distribution
min p of W words holds min p ≤ min q. Therefore, the
expectation of T in the form of (1) with the uniform
distributed words is the most optimistic, which may un-
derestimate the number of episodes required for learning
with a realistic word distribution.

For example, let us consider an alternative case
that the W word follows the Zipf distribution p =
(1−1/HW , 2−1/HW , . . . ,W−1/HW ), where HW is the

harmonic number HW =
∑W

i=1 i
−1. In this case, the

minimal probability is min p ≈ 1.44× 10−6, and the up-
per bound T+ is 1.08 × 107 for ϵ = 0.01. This estimate
means that learning of Zipf-distributed words requires
16.4 times as many samples as learning of uniformly-
distributed words. That means that 206 independent
episodes exposed to a word learner every hour (or three
episodes every minute), assuming 8 hours of learning ev-
eryday of 18 years of life. This estimate cannot possibly
be considered “reasonable” with respect to ordinary life
of children in any culture.

Sensitivity to non-uniformity of word
frequency distribution

To analyze the sensitivity to the non-uniformity, here
we analyze the Zipf distribution with different ex-
ponent parameters. Denote the Zipf distribution
with the exponent parameter a ≥ 0 by p =
(1−a/HW,a, 2

−a/HW,a, . . . ,W
−a/HW,a) where HW,a is

the generalized harmonic number HW,a =
∑W

i=1 i
−a. It

is reduced to the uniform distribution by a = 0. The
larger the exponent a is, the minimal probability min p
is smaller. Thus, here we analyze the upper bound T+

as a function of the exponent parameter a.

Write T+ = fN,ϵ(min p), which gives a reasonable es-
timate of the upper bound of the root T of (2). As a
function of the exponent a, we have

∂ log T+

∂a
=

pmin

(
∂HN,a

∂a /HN,a + logW
)

(1− pmin) log (1− pmin)

and further we have

∂2 log T+

∂a2
≥ 0.

This implies the T+ is a super-exponential monotone
function of the exponent a. It is also numerically con-
firmed in Figure 1, in which the numbers of episodes
are shown as functions of the exponent for W =
10000, 60000. In this plot, a = 0 shows an estimate for
the uniform distribution, and a = 1 shows that of the
standard Zipfian distribution. It is striking that even
the fastest learning such as fast mapping can be quite
slow (exponentially as a function of a) for with distribu-
tions with some item with a very small probability.

Empirical dataset

Given theoretical implication in the previous study, let
us analyze an empirical word distribution, which chil-
dren typically are exposed to. It is difficult to exactly
count “episodes” or “pairs of word and object” in a
real dataset, due to its ambiguity of definition and it
is also up to children’s subjective perspective. Here,
as a proxy of them, we counted the word frequency
based on child-directed speech in the CHILDES corpus
(MacWhinney & Snow, 1990). Figure 2 shows a repre-
sentative word distribution of 51,446 words aggregated
over 4,163 transcripts of all the corpora in CHILDES re-
trieved in December 2007. The minimal word probabil-
ity was 1.089×10−7, which gives the upper bound T+ =
f51446,0.01(1.089 × 10−7) = 1.420 × 108 or the median
estimate T+ = f51446,0.5(1.089 × 10−7) = 1.030 × 108.
These estimates of required samples, an order of mag-
nitude larger than the optimistic theoretical estimate,
suggest that it is difficult to learn these empirical words
with this Zipfian-like frequency distribution.
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Figure 1: For ϵ = 0.01, 0.5, 0.99 (broken and solid lines),
N = 10000, 60000 and the exponent a = 0, 0.25, . . . , 1.5,
the required number of samples M for a generalized Zipf
distribution pk = k−a/

∑N
k=1 k

−a is numerically calcu-
lated by the root of Equation (2).

Active choice of situations

Formulation

The implication of the mathematical analysis above,
which suggested that even fast-mapping may not be effi-
cient enough for non-uniformly distributed words, raises
a controversy between past theoretical analyses and em-
pirical findings of quantitative aspects of word learning.

Here, we explore a possibility to reconcile the discrep-
ancy between theory and empirical findings, by consider-
ing a further relaxation of past theoretical assumptions
about children’s word learning. In the conventional the-
oretical framework, the learner is assumed to be pas-
sive, having no choice but to observe and learn from a
given context: a randomly-sampled set of of objects, of
which a (random) subset are labeled with words. This
assumption of a passive learner simplifies the theory,
but surely underestimates real learners, who have some
choice about which contexts they experience. Here, we
consider a type of active learner who is able to choose
from which situation/context he or she learns words.

Suppose that there areN word-object pairs andM sit-
uations, and that the conditional probability to observe
the ith word-object pair is pij given the jth situation.
Thus, the active learner has a choice of the situation out
of the given M situations from which he or she learns
the word-object pairs. Suppose that the active learner
chooses the jth situation by the probability qj . Let us
denote the N ×M matrix of the conditional probability
by P = {pij}ij and the N × 1 vector of the choice prob-
ability by q = (q1, q2, . . . , qM )T . With this notation, the
marginal probability of word-object pairs is given by the
vector Pq ∈ RN . According to our mathematical anal-
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Figure 2: Word frequency in a corpus aggregated from
the CHILDES transcripts.

ysis in the previous section, the minimal probability of
objects decides the number of samples required to com-
plete the word learning, the best choice for the active
learner is given by the choice probability

q̂ = argmaxq min(Pq).

This minimal probability, min(P q̂), gives the theoret-
ical upper bound for the minimal number of samples
fW,ϵ(min(P q̂)), as P is not known before empirical learn-
ing, and the active leaner also needs to estimate P from
the sample. For a given matrix P , the optimal q̂ can be
computed by the iterated linear programming algorithm
(See also Appendix for the detail).
As a baseline for the passive learner, we consider the

average min(Pq) with the uniform distribution over the
vector q, whose lower bound is given by the Jensen’s
inequality∫

q∈SN
min(Pq)(N − 1)!dq ≥ min(P1N/N),

where the integral is taken over the N − 1 dimensional
unit simplex q ∈ SN . For a sufficiently small x ≪ 1
and y ≪ 1, fW,ϵ(x)/fW,ϵ(y) ≈ y/x. Thus, the rate
R = min(P q̂)/min(P1N/N) gives a good estimate for
the rate of efficiency R, by which the active learning
with the optimal probability q̂ R times faster than the
passive learning with a fixed probability q.

Empirical evaluation

To evaluate the potential impact of the active leaning,
we study the SUN database (Xiao, Hays, Ehinger, Oliva,
& Torralba, 2010) as an empirical object distributions in
an collection of real-life scenes. The SUN database (re-
trieved on September 25th in 2016) has N = 3, 458 ob-
jects and M = 1, 111 scenes in it. This data is supposed
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to give the N ×M matrix P in which each column is the
conditional probability of the objects given each scene.
If the scene choice probability is the uniform distribu-
tion q = 1N/N , the min(Pq) was 8.30 × 10−9. Mean-
while, with the optimal q̂, the min(P q̂) was 1.95× 10−6,
which implies the active learning was approximately
min(P1N/N)/min(P q̂) = 235.3 times faster than the
baseline passive learning. The marginal probability dis-
tributions of objects for the baseline and optimal q are
shown in Figure 3. The difference between the two
marginal distributions is visible at their tails – the tail
for the uniform q decreases like an exponential function,
but that for the optimal q̂ decreases as a power function
(linear in the double log plot). This empirical evaluation
suggests that the active learning of interest can boost the
fast mapping a few orders more efficiently.
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Figure 3: The marginal probability of objects for the
optimal q̂ (line) and its baseline (dots).

Online active learning

The quantification of the efficiency of active learning is
based on the optimal q̂ with the knowledge of P . This
gives an optimistic estimate for the active learner, as
the matrix P is not fully known in reality. Here we
performed a Monte Carlo simulation to quantify the effi-
ciency of an online active leaner who gradually updates
knowledge in the matrix P and estimates q on the basis
of the sample estimate of P . If this online active leaner
is comparable with the optimal active learner with q̂, we
can treat the performance analysis on the optimal active
leaner above (a few orders more efficient) as holding for
the online active leaner. For this purpose, we generated
a N × M matrix P with N = 1000,M = 100, which
has the elements in each column are Zipfian probabili-
ties Pπ(i) ∝ i−a with the random coefficients a ∈ [1, 1.5],
where π : {1, . . . , N} 7→ {1, . . . , N} is a random per-
mutation. The online active learner has the uniform

choice probability q1 = 1N/N . For kth batch of 1000
steps, the online learner samples the objects according
to the probability Pqk, and constructs the sample proba-
bility matrix P̂k according to the sample frequency. Af-
ter the kth sampling step, the online learner estimates
qk := argmaxq min(P̂kq). In each run of this procedure,
we repeat up to 100×1000 samples, and obtain one sam-
ple for the number of required samples to finish learning
all the 1000 objects. With 100 runs, we obtain the Monte
Carlo estimate of the online learner shown in Figure 4.
Figure 4 shows the sample probability distribution of the
number of required samples in the Monte Carlo simula-
tion (circles: histogram, line: smoothed estimate), and
its comparable median estimate for the optimal learner
(green vertical line) and the passive learner with the uni-
form q (red vertical line). This simulation result shows
that the online learner is as fast as the optimal learner,
and is likely to be faster than the passive learner.
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Figure 4: The probability distribution of the number
of required samples to finish learning for passive (red),
optimal (green), and online active learner (blue).

Discussion

This study has provided mathematical analyses of quan-
titative aspects of word learning that provide key con-
straints which any theoretical account for children’s word
learning should satisfy. We reinspected the past theo-
retical claim by Blythe et al. (2010) that learning via
independent fast mapping was efficient enough to ac-
count for the average number of words known by 18-
year-olds. Our new analysis extends their analysis to
fast mapping with non-uniform word frequency distri-
butions, and shows that even learning via fast mapping
is not efficient enough to learn words whose distribu-
tion has rarely sampled words–including the Zipf (i.e.
power-law) distribution, which describes empirical word
frequency distributions from natural language.
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Given that this new analysis implies learning would
be too slow under realistic distributions, we consider
a more efficient learning scheme, in which the learner
can choose preferred situations from which words are
learned. This type of active control over situations or
contexts seems natural with respect to general obser-
vations of children’s behavior, and has been shown to
benefit adult word learners (Kachergis, Yu, & Shiffrin,
2013), but has not been subjected to theoretical analysis
as far as we know. We quantify and evaluate the effect of
this type of self-directed learning in word learning. As
the least probable word in the distribution determines
learning efficiency, we analyzed the active choice for the
situations maximizing this key parameter. Analyzing an
empirical dataset of the words given situations, we esti-
mate that active learning is over two hundred times more
efficient in learning time than passive learning. This
result suggests that active choice in word learning can
resolve the issue that naturalistic non-uniform word dis-
tributions greatly slows passive fast mapping.

Our analyses in this paper utilized one of the simplest
learning schemes, fast mapping, in order to highlight
the effects of varied word frequency distributions, and of
active learning. However, we expect the analytic tech-
niques we employed would also allow analysis of other
learning algorithms, including many proposed variants
of cross-situational learning. In future work, we will re-
port similar analyses for learning schemes with perhaps
greater cognitive plausibility. On this path towards ever
more realistic assumptions about the language environ-
ment and learners’ ability to shape it, we expect to make
progress toward a general theoretical framework span-
ning many proposed word learning schemes.
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Appendix: Iterated linear programming
For a N × M matrix P , write its ith row by Pi. Let
I = {1, 2, . . . , N} be the set of all indices. At the initial
step, define

K0 := ∅, C0 := SM , q0 := e1,

where e1 := (1, 0, . . . , 0)T ∈ RN . Then for 0 < n ≤ N ,
define

kn := argmin
k∈I\Kn−1

Pkqn−1, Kn := Kn−1 ∪ {kn},

Cn :=

{
q ∈ C0|

∧
k∈Kn

(Pkn
− Pk)q ≤ 0

}
,

qn := argmax
q∈Cn

Pknq,

until n = m such that mink∈Km
Pkqm ≤ mink∈I Pkqm.

The algorithm stops the iterative procedure by out-
putting q := qm.
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Reference Systems in Spatial Memory for Vertical Locations
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Abstract: Three experiments investigated the frame of reference used in memory to represent vertical spatial layouts perceiv-
able from a single viewpoint. We tested for the selection of three different reference systems: the body orientation, the visual
vertical of the surrounding room, and the direction of gravity. Participants learned and retrieved differently colored objects on
a vertical board with body and room orientations varying in relation to gravity and each other systematically. Across all three
experiments participants were quicker or more accurate in memory recall when they saw the vertical spatial layout in the same
orientation in relation to their body vertical as during learning, irrespective of the direction of gravity or visual room upright.
These results indicate that spatial long-term memories for small-scale vertical relations are mainly defined in an egocentric
reference system with respect to the body vertical despite the availability of alternative highly salient allocentric reference
directions.
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Abstract

When teaching, people often intentionally intervene on a
learner while it is acting. For instance, a dog owner might
move the dog so it eats out of the right bowl, or a coach might
intervene while a tennis player is practicing to teach a skill.
How do people teach by intervention? And how do these
strategies interact with learning mechanisms? Here, we ex-
amine one global and two local strategies: working backwards
from the end-goal of a task (backwards chaining), placing a
learner in a previous state when an incorrect action was taken
(undoing), or placing a learner in the state they would be in if
they had taken the correct action (correcting). Depending on
how the learner interprets an intervention, different teaching
strategies result in better learning. We also examine how peo-
ple teach by intervention in an interactive experiment and find
a bias for using local strategies like undoing.
Keywords: teaching, intervention, reinforcement learning

Introduction
When attempting to teach another agent, people have many
tools at their disposal. They may choose to explain (Callanan
& Oakes, 1992), give a demonstration (Brugger, Lariviere,
Mumme, & Bushnell, 2007; Buchsbaum, Gopnik, Griffiths,
& Shafto, 2011; Király, Csibra, & Gergely, 2013), or offer
rewards and punishments for taking certain actions (Knox &
Stone, 2015; Ho, Littman, Cushman, & Austerweil, 2015).
Another way in which people teach a learner is by interven-
ing on the learner or the learner’s environment. For example,
if a puppy urinates on the carpet when a person is trying to
teach the puppy to urinate on a pad, a person might move
the puppy to the pad or move the pad to the puppy. When
teaching another person a skill like tennis, a teacher might in-
tervene on the trainee mid-movement and either adjust their
arm to match the target movement or stop them to start over.
The space of possible ways in which a teacher could change
a learner’s situation for pedagogical purposes is large. This
raises several questions: First, what is the effectiveness of
different intervention strategies? Second, how could learners
interpret interventions and how does the interpretation affect
a teaching strategy’s efficacy? And, finally, what teaching
strategies do people tend to use?

In this work, we examine three teaching by intervention
strategies from a reinforcement learning perspective (Sutton

& Barto, 1998). The first, backward chaining, is motivated
by algorithms such as value iteration (Bellman, 1957) that
solve multi-stage decision-problems by propagating informa-
tion about rewards to previous states that lead to those re-
wards. Intuitively, this is akin to teaching a task by “work-
ing backwards”, first ensuring that the learner knows how to
reach a goal from the penultimate state, and then reach the
penultimate state from the antepenultimate state, and so on.
We consider this a global intervention strategy since it in-
volves changing the learner’s state in a manner that reflects
the structure of the entire task, rather than a small part of it.
The second strategy, undoing, is motivated by the intuition
that interventions prevent learners from executing an unde-
sirable action by having them restart from the state they per-
formed the undesirable action. The third strategy, correcting,
intervenes on a learner when she executes an undesirable ac-
tion (like undoing), but places her in the state she would have
gone to if she had taken the desired action. Unlike backwards
chaining, undoing and correcting involve local changes to an
agent’s state.

How could a learner interpret an intervention? In a typi-
cal reinforcement learning setting, an agent takes an action
in a state, and then the environment rewards or punishes her
and moves her to a new state (Figure 1). We formalize four
ways that an intervention can be interpreted. First, the inter-
vention may simply reset the learner in a new location from
which the next action will be taken. Second, the next state
that the learner is moved to could be interpreted as part of a
transition in the environment. Third, the intervention could
be treated as an interruption in a learner’s stream of behavior
such that the undesirable action just taken never happened.
Fourth, the intervention could be treated as a disruption, in
which the intervention is experienced negatively. Each of
these accounts may interact with a teacher’s training strategy
in different ways, meaning that the best teaching strategy may
be dependent on the learner’s intervention interpretation.

The outline of the paper is as follows. First, we review
the reinforcement learning framework. Second, we formalize
four different ways that a reinforcement learning algorithm
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Reset Interrupt

DisruptTransition
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Figure 1: (a) Standard state, action, reward, next state sequence of a Markov Decision Process at a given time step. (b) Four
different interpretations of a teacher intervening to place the learner in state vt in response to a learner’s action at from state st .
When interventions are interpreted as reset, transition, or disrupt, rt is respectively determined by the environmental next state,
s′t , the teacher’s next state, st+1, or the teacher’s intervention, vt . When the the intervention is treated as interrupt, no reward
experienced and no learning occurs for that time step.

could interpret an intervention and three teaching strategies.
Third, we conduct simulations to examine how efficacious
different teaching strategies are depending on how a learner
interprets their interventions. Fourth, we conduct an exper-
iment to investigate how people teach by intervention. We
find that undoing, a local intervention strategy, is often ef-
fective and that people tend to teach most often by undoing,
occasionally correcting, and rarely backward chaining.

Computational Modeling
In this section we present the standard reinforcement learning
(RL) formalism, discuss the four intervention interpretations,
and define the three teaching strategies.

Reinforcement Learning RL describes how an agent inter-
acts with an environment and learns reward-maximizing be-
haviors (Sutton & Barto, 1998). Formally, an RL algorithm
learns to take actions in a Markov Decision Process (MDP),
defined by the tuple < S,A,T,R,γ >: a set of states in the
world S; a set of actions for each state A(s); a transition func-
tion that maps state-action pairs to a probability distribution
over next states, P(s′ | s,a); a reward function that maps states
to scalar rewards, R : S→ R; and a discount factor γ ∈ (0,1].

At each time step t, an RL agent takes an action at from
a state st , which results in moving to next state st+1 and a
reward rt+1 = R(st+1) (Figure 1). Actions are determined
by the agent’s policy π that maps states to distributions over
actions. For a policy π, the value at each state, V π(s), is:

V π(s) = Eπ

[
∞

∑
k=0

γ
krt+k+1 | st = s

]
. (1)

The optimal policy, π∗, is one that maximizes the value func-
tion in every state, V ∗(s) =maxπ V π(s),∀s∈ S. An agent uses
state, action, next state, reward tuples to learn an optimal pol-
icy.

Q-Learning One algorithm for learning an optimal policy
is Q-learning, which is an off-policy temporal difference con-
trol algorithm. Under mild assumptions, Q-learning con-
verges to the true action-value function (Watkins & Dayan,
1992). Moreover, humans and animals both engage in the
type of error-driven reward learning found in Q-learning,
making it a useful model with which to test different human
teaching strategies (Niv, 2009). We use one form of this algo-
rithm, one-step Q-learning, which is defined by the following
update rule given a tuple (s,a,s′,r):

Q(s,a)← Q(s,a)+α[r+ γmax
a′

Q(s′,a′)−Q(s,a)]. (2)

where α is the learning rate. We convert the estimated action-
value function to a policy using the softmax decision-rule
π(a | s) = exp{Q(s,a)/λQ}/∑a′ exp{Q(s,a′)/λQ}, where λQ
is a temperature parameter controlling the probability that an
agent takes the action estimated to yield the largest reward de-
pending on the relative rewards she could get by taking other
actions.

Teaching by Intervention
Interpreting Interventions The standard RL formulation
does not define how interventions should be interpreted.
Thus, we posit four different possible interpretations here,
depicted in Figure 1. The four interpretations are motivated
by formalizing the following two intuitions in different ways.
First, a teacher could be treated as a part of the environment
such that her intervention directly changes the next state of
the learner (possibly stopping the feedback she would have
received had she gone to the next state had the intervention
not happened). Second, a teacher is distinct from the stan-
dard MDP environment, and intervenes as a direct response
to a learner having taken an action and ended up in a next
state.
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Formally, at a time step t, the learner in state st takes an
action at and ends up in new state s′t . If the teacher does not
intervene, st+1 = s′t . Otherwise, a teacher intervenes to place
the learner in state vt ∈ S. For all intervention types, st+1 = vt .
However, if the teacher’s intervention is interpreted as a re-
set, then the learner performs a Q-learning update using the
tuple (st ,at ,s′t ,R(s

′
t)), meaning that she still receives the re-

ward she would have gotten had she reached s′t as the next
state. If it is interpreted as a transition, then the learner up-
dates with (st ,at ,vt ,R(vt)), meaning that she gets the reward
had she taken the action that would move her from st to vt .
If it is an interruption, then the learner does not update the
state-action value function the state-action pair that was in-
tervened on, and she takes her next action in st+1 = vt . If it
is interpreted as a disruption, then the learner updates with
(st ,at ,vt ,−1).

Teaching Strategies We discuss three teaching strategies:
backward chaining, undoing, and correcting. A teacher
using backward chaining has an n-length trajectory J =<
(s1,a1), ...,(sn,an) > that she uses to teach the learner. We
denote the states in the trajectory as SJ = {si : i = 1,2,3...,n}.
The teacher also has a utility function over different inter-
ventions, where initially U0(si) = i for i = 1,2,3, ...,n and
U0(s) = −∞ for s ∈ S \ SJ . On each time step, the teacher’s
utility function is updated as:

Ut+1(st) =

{
Ut(st)−1 if (st ,at) ∈ J
Ut(st) otherwise.

(3)

Teachers only intervene when the agent performs an action
inconsistent with the trajectory (i.e. (st ,at) /∈ J) and place the
agent in a next state according to a softmax decision rule over
their utilities: P(v) ∝ exp{Ut(v)/λ}, where λ is a tempera-
ture parameter. The backward chaining teacher is initially
more likely to move the agent closer to the end of a target
trajectory, but as the agent shows they can perform the target
action in a state the utility of moving the agent to that state de-
creases. Meanwhile, the relative utility of placing the agent
in a slightly earlier stage in the trajectory increases.

A teacher using an undoing strategy has a target policy π∗ :
S→ A that it is attempting to teach. On each time step, if an
agent’s action at 6= π∗(st), then vt = st . That is, when an agent
takes an incorrect action, that action is undone by the teacher
and the agent is placed back in the state she took the incorrect
action. A teacher using a correcting strategy also has a target
policy π∗ that it is attempting to teach. However, if an agent’s
action at 6= π∗(st), then vt = argmaxs T (s | st ,π

∗(st)). That
is, the teacher will move the agent to the state it would have
been in had the agent taken the target action.

Simulations

To understand the interaction of teaching strategy and learner
interpretation, we simulated the performance of a RL agent
for each combination in a gridworld task.

Teacher’s Reward Function

+10

-1

-1-1

-1-1

-1-1

-1

-10

Start

* *

Learner’s Reward Function

+10+10

Start

* *

Experiment Interface

Figure 2: Task used for simulations and experiment. Aster-
isks (*) indicate absorbing states, both providing reward to
the learner, whereas the teacher received reward if the learner
entered the right door, but was punished if the learner entered
the left door. The teacher received a mild punishment when-
ever the learner entered a garden tile.

Task
The task we used is shown in Figure 2. It consists of a 7 ×
4 gridworld where the learning agent always starts a round in
the center tile of the first row. At any given location, a sub-
set of the four cardinal directions is available to the learning
agent (e.g. at the bottom edge, “down” is not available as
an action). On each episode, the learning agent starts in the
bottom-middle tile and the upper-right and upper-left corners
of the gridworld are absorbing states.

In our task, the teacher and learner have different rewards
for the learner’s actions in the MDP. In particular, the two ab-
sorbing states (goals) both have a +10 reward for the learner,
but for the teacher, only one has +10 while the other has−10.
Additionally, there are several non-absorbing tiles that give
the teacher −1 if the learner enters them. These features of
the task are visualized in Figure 2.

All simulations used a Q-learning agent with a tabular rep-
resentation of states (Q0(s,a) = 0∀s,a, α = .9, and γ = .95).
Each simulated teacher interacted with the learner for 12
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Figure 3: Simulated backward chaining, undoing, and correcting results or different intervention interpretations and interven-
tion probabilities (top three rows). Results of learners trained using participant responses on task (bottom). Total teacher payoff
is the net reward of the learner’s behavior based on the teacher’s reward function during the evaluation phase of each episode.

episodes. Each episode was divided into two phases: a teach-
ing phase and an evaluation phase. During the teaching phase,
the simulated teacher interacted with the Q-learner, which se-
lected actions using a softmax rule (λQ = .1) and engaged in
learning. During the evaluation phase, the learner performed
the task without teacher interaction or learning and used a
greedy policy. Additionally, the performance was measured
with respect to the teacher’s payoffs based on her reward
function. Each episode phase ended after 25 time steps.

Teaching Strategies and Interpretations
We tested all combinations of teaching strategy and interven-
tion interpretation ({backwards chaining, undoing, correct-
ing} ×{resetting, transitioning, interrupting, disrupting}). In
natural situations, it is not likely that teachers intervene ev-
ery time a learner takes an incorrect action. Thus, we tested
the performance of the models given different probabilities
of intervening given that the learner performed an incorrect
action: 0.25,0.50,0.75,1.0. This allowed us to evaluate the
robustness of different teaching method and intervention in-
terpretation combinations when feedback is imperfect. Each
combination of teaching strategy, intervention type, and inter-
vention probability were simulated 1000 times and teaching
performance was based on the evaluation phase.

Results and Discussion
Simulation results are plotted in Figure 3. When interaction
probability is high, undoing is most effective. This is be-

cause interventions act as impassable obstacles to the learn-
ing agent, which, combined with a discount rate, makes tak-
ing incorrect actions less beneficial than alternative actions
that change the state and lead to reward. However, an excep-
tion is when the learner interprets interventions as disrupting,
where the average performance of the undoing teaching strat-
egy decreases quickly as intervention probability drops. This
is because the teacher is less likely to serve as an obstacle,
which makes it less likely that the agent will learn that in-
correct actions are less efficacious. Across all interpretations,
undoing outperforms correcting because undoing implicitly
teaches the learner that the garden tiles are negative, whereas,
correcting does not. Undoing also leads to more learning ex-
perience because correcting allows the agent to progress on
the task without actually taking target actions.

When the probability of intervention is high (1.0− 0.75),
the backward chaining strategy performs as well as or worse
than the undoing strategy. Unlike undoing, a global strategy
like backward chaining’s efficacy is robust to less frequent
interventions. This is because these interventions ensure that
the learning agent has mastered a subset of states and ac-
quired an accurate value representation as opposed to acting
as a constraint on transitions in the environment.

The different intervention types also interacted with the
teaching strategies in important ways. First, undoing shows
identical patterns regardless of whether the intervention type
is resetting, transitioning, or interrupting. When it is dis-
rupting, learners reach maximum performance even more
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Figure 4: Experimental results. (a) Boxplot of proportion of correcting, undoing, and other interventions performed by indi-
vidual participants. For many participants, the majority of their interventions were to undo the learner’s action. (b) Graphical
visualization of teacher-learner interaction during an episode (ε = 0.8) illustrating local interventions. Yellow numbers indicate
order of interventions. (c) Graphical visualization of participant interventions for actions taken from the same state. For each
episode, each participant has one pseudo-count that is divided among all of their interventions in that episode. The number in
each tile represents the sum of these pseudo-counts over participants. The intervention probability is the proportion of times
that action was subsequently intervened upon.

quickly. Second, for the backward chaining strategy, all
strategies but transitioning led to learners acquiring policies
that approached the target behavior. This is likely because
the transitioning interpretation results in learners using the
teacher’s interventions as a way to “teleport” to a desirable
location on the grid and not properly learn the task.

Experiment

How do people teach using interventions? Do they use a
global strategy like backwards chaining or a local one like
undoing or correcting? Our simulations suggest that undo-
ing is the best teaching strategy if teachers intervene when
the learner makes a mistake with high probability. However,
backwards chaining works better when the teacher intervenes
infrequently. Alternatively, it seems intuitive to intervene
such that the learner is shown the correct state she should have
gone to, and human teachers might use this strategy despite
its sub-optimality with Q-learners. To explore these possibil-
ities, we had human teachers interact with agents that were
pre-programmed to improve over time. This gave us the op-
portunity to view how people would teach by intervention in-
dependent of the learning mechanism.

Experimental Design

Participants and materials Thirty-five MTurk participants
took a dog training study that used the interface shown in Fig-
ure 2. On each trial, the dog would start at a tile and then walk
to an adjacent tile. If the participant did not click on the dog
at any point during its movement or within 1s of the dog en-
tering the next tile, the next trial would start. If the participant
clicked on the dog, then the dog “paused” and they could drag
it to any tile on the gridworld and drop it. The dog then “un-
paused” and the subsequent trial would then start at that tile.
When the dog reached either “dog bowl,” an animated dog
treat would appear to indicate that the dog had experienced a
reward. Entering either dog bowl tile ended an episode.
Procedure Before the main task, participants completed
training trials that taught them how to intervene on the dog’s
behavior by picking it up. For the main experiment, they were
told that they were trying to train a dog to perform a task on its
own. The task was for the dog to only go to its own dog bowl,
located in the upper-right tile, while avoiding their neighbor’s
dog bowl, located in the upper-left tile, and also avoiding the
two lawns. Thus, the participants’ goal in the task maps onto
the teacher reward function shown in Figure 2. They had 12
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“days” (i.e. episodes) in which they could train the dog, and
they were told that each day ended once the dog became tired
after 25 steps or became satiated by eating a dog treat. Each
trial, the dog was programmed to execute the target policy
with a probability of 1− ε and a random action otherwise. ε

started at 1.0 for the first episode and then decreased by 0.1
each subsequent episode until ε = 0.0. This gave the impres-
sion that the dog was improving over time regardless of the
intervention strategy used.

After the task was completed, participants were asked to
answer several questions regarding their strategy, how well
the dog responded, task difficulty, expected training efficacy,
expected efficacy with a real dog, dog ownership, dog training
experience, and several demographic questions.

Results
Intervening People make relatively sparse, local interven-
tions that match the undoing model. Participants intervened
on learners’ behavior more when the learner performed a non-
target action than when they performed a target action (non-
target: M = 0.66, S.D. = 0.22; target: M = 0.06, S.D. = 0.10;
paired t-test: t(34) = 13.77, p < .001). Additionally, the pro-
portion of non-target actions that were intervened upon was
between 0.5 and 0.75, the regime where backward chaining
and undoing perform comparably. Interventions were also
fairly local and close to the final state that resulted in the
learner’s action (Average Manhattan Distance between next
state and intervention: M = 1.64, S.D. = 0.49). This indicates
that backwards chaining was not often used as a strategy since
that strategy requires making more global interventions. Fi-
nally, as Figure 4a reveals, many participants performed un-
doing interventions in which an agent that took a non-target
action was placed back into its original position (Correcting:
M = 0.15, S.D. = 0.14; Undoing: M = 0.59, S.D. = 0.24;
Other: M = 0.27, S.D. = 0.19; χ2(2) = 335.89, p < .001).

Teaching Q-learners To compare human and model strate-
gies, we used participants’ responses to train Q-learners in the
same task. We approximated how participants would have
taught real learners by sampling from their responses to a
learner’s action in the task whenever a simulated learner took
the same action. If a particular participant never observed an
agent’s take a simulated action, the default response was to
not intervene. These results are plotted in Figure 3 for com-
parison with the simulation results.

Discussion
Our simulations revealed important interactions among teach-
ing strategy, intervention interpretation, and intervention
probability. In particular, undoing, which involves local
changes to an agent’s state, is an especially effective strat-
egy only when interventions are frequent, while backward
chaining, which involves state-changes reflecting the global
structure of the task, is moderately effective regardless of in-
tervention frequency. Incidentally, when people teach by in-
tervention, they typically engage in undoing, but they do it

less often than they should to train Q-learners (66%). Gener-
ally, people make moderately frequent local interventions.

As this is a preliminary investigation into teaching by inter-
vention, this work has limitations. We use Q-learning as the
learner, but other RL algorithms may respond better to human
interventions. And given previous work showing that people
often teach with communicative intent (Shafto, Goodman, &
Griffiths, 2014; Ho et al., 2015), it may be that the standard
RL framework is inadequate for capturing peoples’ relatively
sparse, local interventions. Future work will also need to test
a wider range of MDP tasks. Nonetheless, these simulations
and models are a first step towards understanding the every-
day phenomenon of teaching by intervention in humans.
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Abstract

SOB-CS is an interference-based computational model of
working memory that explains findings from simple and com-
plex span experiments. According to the model’s mechanism
of interference by superposition, high similarity between mem-
ory items and subsequently processed distractors is beneficial
because the more a distractor is similar to an item, the more
they share similar units, leading to less distortion of the mem-
ory item. When time allows, SOB-CS removes interfering dis-
tractors from memory by unbinding them from their context.
The combination of these two mechanisms leads to the predic-
tion that when free time is long enough to remove the distrac-
tors entirely, similarity between items and distractors should
no longer be beneficial to memory performance. The aim of
the present study was to test this prediction. Adult participants
performed a complex-span task in which the free time follow-
ing each distractor and the similarity between items and dis-
tractors were varied. As predicted by the model, we observed
a positive effect of the similarity between items and distrac-
tors, and a negative effect of pace on the mean working mem-
ory performance. However, we did not observe the predicted
interaction. An analysis of the errors produced during recall
showed that longer free time reduced the tendency of distrac-
tors to intrude in recall much less than the model predicted.
The SOB-CS model accounted well for the data after a sub-
stantial reduction of the removal-rate parameter.
Keywords: Working Memory, SOB-CS model; interference
by superposition; removal mechanism

Introduction
Working memory (WM) is the system responsible for hold-
ing information available for ongoing cognition (Baddeley &
Hitch, 1974; Miyake & Shah, 1999). It is often tested with
complex-span tasks (Barrouillet, Bernardin, & Camos, 2004),
which combine an immediate memory test with a concur-
rent processing demand: some items (e.g., letters or words)
are provided one at a time for subsequent recall in order and
several distractors are also presented in-between items. The
concurrent processing of distractors impairs memory, com-
pared to a simple-span task that consists only of the imme-
diate memory test. There has been ongoing debate about the
reasons why distractors affect WM performance. The present
study contributes to this question by testing a prediction of the
interference-based connectionist model SOB-CS (Oberauer,
Lewandowsky, Farrell, Jarrold, & Greaves, 2012).

According to SOB-CS, forgetting is due to interference be-
tween items and distractors. The model is based on a two-

layer connectionist network that associates a distributed item
representations with distributed position markers, for instance
associating the first item of the sequence with position 1,
through Hebbian learning (Anderson, 1995). Each associ-
ation is registered in a two-dimensional weight matrix cod-
ing for the position and the item representations. During
each processing step, SOB-CS assumes that distractors are
encoded in the same way as items and associated to the po-
sition of the preceding item. In other words, SOB-CS sug-
gests that items and distractors are superimposed in the same
weight matrix, leading to a distortion of items by distractors
which in turn causes forgetting. In this way, the model is able
to reproduce interference between items and distractors ac-
cording to their similarity: the more a distractor is similar to
an item, the more feature values they share, leading to less
distortion of the memory item. Therefore, this model pre-
dicts that high similarity between an item and the following
distractor is beneficial to WM performance.

Oberauer, Farrell, Jarrold, Pasiecznik, and Greaves (2012)
reviewed studies that have investigated item-distractor (I-D)
similarity effects. They showed that phonological similar-
ity between items and distractors is beneficial if the material
was pronounceable non-words (non-words were used in or-
der to ensure that participants do not encode stimuli by their
meanings). Oberauer et al. did four experiments in which
participants had to remember a list of four non-words items.
The two distractors intervening after each item were also non-
words and had to be read aloud. The phonological similarity
between the items and the distractors was manipulated. In the
first three experiments, distractors were similar to the preced-
ing item whereas in the fourth experiment distractors were
similar to the following item. The findings of experiments
1, 2 and 3 showed a positive effect of phonological similar-
ity between items and distractors which meshes well with the
mechanism of interference by superposition implemented in
SOB-CS. Moreover, experiment 4 confirmed the hypothesis
of SOB-CS suggesting that distractors are associated to the
preceding item and not to the following item: no beneficial
effect of I-D similarity was observed when similar distractors
preceded, rather than followed, the items to which they were
similar.
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The SOB-CS model also proposes an explanation for the
cognitive load effect (Barrouillet, Portrat, & Camos, 2011).
This effect has been observed in several studies showing that
WM performance depends on the proportion of time during
which distractors capture attention (Barrouillet, Bernardin,
Portrat, Vergauwe, & Camos, 2007; Barrouillet et al., 2004,
2011). According to decay-based theories (Baddeley, 1986;
Towse & Hitch, 1995; Barrouillet et al., 2011), the cognitive-
load effect can be explained as follows: forgetting is mostly
due to the time-based decay of the memory traces when dis-
tractors are processed. In order to avoid forgetting, memory
traces can be reactivated when free time is available between
distractors. A sole interference mechanism cannot account
for such a positive impact of free time on WM performance.
Hence, in SOB-CS, the cognitive load effect is explained as
follows: forgetting is counteracted by a removal mechanism
in such a way that each distractor that has just been encoded
is ”removed” during free time. The removal process consists
of an unbinding, by Hebbian anti-learning, of the association
between each distractor and the study context, thereby render-
ing the context signal more effective as a retrieval cue for the
memoranda. SOB-CS suggests that the strength of removal
exponentially depends on the time devoted to it. This mech-
anism leads to the prediction that the more free time elapses
after each distractor, the more time is available for removing
the interfering distractor that just has been encoded and hence
the better the WM performance.

To sum up, two mechanisms are important in SOB-CS to
specifiy the effect of distractors on WM performance. First,
according to the mechanism of interference by superposition,
distractors which are similar to the preceding item should dis-
tort that item less than dissimilar distractors, leading to better
performance at recall. Second, the mechanism of ”removal”
leads to the prediction that distractors are unbound from WM
during free time in order to clear memory from irrelevant in-
formation. The combination of these two mechanisms gives
rise to an interesting hypothesis which is at the heart of the
present paper: if free time is long enough to entirely unbind
an irrelevant distractor from WM, there is no reason to ob-
serve an effect of I-D similarity as distractors would not be
present in WM anymore.

Overview of the experiment

The aim of our experiment was to test this prediction of
SOB-CS concerning both the removal and the interference
by superposition mechanisms. To do that, our experiment
replicates and extends the second experiment presented in
Oberauer, Farrell, et al. (2012). It consisted of a verbal com-
plex span task in which items and distractors were pronounce-
able non-words (i.e. words without semantic meanings). The
length of the memory list was constant and set to four items.
In the high similarity condition, the similar distractor always
immediately followed the items to which they were similar
and all the items were dissimilar to each other. Then, as mem-
oranda were non-words, serial recall was done by reconstruc-

tion among a candidate set containing the four list items, four
of the distractors and four not presented lures (NPLs). The
NPLs were non-words which had never been seen by partici-
pants in the current experiment.

In their experiment, Oberauer, Farrell, et al. (2012) only
manipulated the similarity between items and distractors. We
extended that experiment by adding the manipulation of the
pace of the distractor presentation to vary the free time avail-
able to remove distractors. We tested participants and the
SOB-CS model with three paces (fast, medium, slow). To
allow comparisons of our findings with Oberauer, Farrell, et
al. (2012), the faster pace of our experiment was the pace
used by Oberauer, Farrell, et al. (2012). This extension al-
lowed to test the special prediction that the positive effect of
I-D similarity decreases as the free time increases.

Simulation 1 with SOB-CS
To test the prediction that the positive effect of I-D similarity
decreases as the free time increases, we reused and adapted
the simulation presented in Oberauer, Farrell, et al. (2012).

Method

The creation of the stimuli was done similarly as in Oberauer,
Farrell, et al. (2012): stimuli were generated and organized in
8 dissimilar sets for each trial, each set containing 10 similar
stimuli. From these sets, items, distractors and non-presented
lures (NPLs) were selected according to the condition of sim-
ilarity (i.e. high vs low). The recall candidate sets were com-
posed of the four items of the trial, four distractors and four
NPLs. The NPLs were added in order to balance the global
attractiveness of the candidate sets between similarity condi-
tions. In the high similarity condition, a distractor is attrac-
tive for two reasons: it has been processed and it was similar
to the items. In the low similarity condition, distractors are
therefore less attractive. In contrast to the distractors, NPLs
were dissimilar to the items in the high similarity condition,
whereas they were similar to the items in the low similarity
condition.

In all the simulations presented in Oberauer, Farrell, et al.
(2012), which reproduced well the behavioral data, the en-
coding duration of the distractor was set to 1000 ms. As the
pace of the processing task of all their experiments is 1000
ms, no free time was available to remove the distractor. This
means that they did not use the removal mechanism in their
simulations. In order to replicate the results in this baseline
condition (which is the condition with the faster pace in our
experiment), we also set the encoding duration of the distrac-
tor to 1000 ms.1 For the moderate (1800 ms) or slow (2600
ms) paces, the removal mechanism was used because there
were 800 ms or 1600 ms available free time.

1The encoding duration of the distractor is an arbitrary value, as
we did not know the exact duration of the attentional capture of the
reading task of non-words, but we were interested on the relative
effect of an additional free time and not on the absolute effect of the
free time in this study.
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We ran 1000 simulated subjects, each one completing five
trials in each condition as in the experiment. Oberauer, Far-
rell, et al. (2012) used the SOB-CS default parameter values
except for the distinctiveness parameter c, which they low-
ered from 1.3 to 0.45 to approximately move the overall ac-
curacy into the range of data. This new value of parameter
c was justified because non-words are less distinctive than
well-known words. In our simulation, we did as Oberauer,
Farrell, et al. (2012) except that we lowered the c parameter
even more from 0.45 to 0.3. The reason is that, in our experi-
ment, we ensured that each non-word, as an item, a distractor
or a NPL, was seen only once by a participant. In contrast,
in Oberauer, Farrell, et al. (2012), 100 trials were performed
using a set of 36 non-words only. One trial required 16 items,
which is almost half the set of non-words. This means that
each participant saw each item more than 40 times during the
test, which would make them familiar with the non-words as
they go along the test. This difference could make their task
easier. This is why, in the simulation, it was justified to set
the distinctiveness parameter c to 0.3 instead of 0.45.

Results: Simulated data
Correct responses Recall responses were scored as correct
when a correct item was chosen in its exact serial position.
Figure 1 (panel B2) presented the percentage of responses
correctly recalled by the model as a function of pace and sim-
ilarity. As expected, the simulation shows an effect of pace
(0.38, 0.75, and 0.77 at fast, moderate and slow pace respec-
tively) and an interaction effect according to which the ben-
eficial effect of similarity disappears as the pace slows down
(i.e. as free time increases). In fact, we can see that at a
fast pace the percentage of correct recall is higher when dis-
tractors are similar (compared to dissimilar), to the preceding
item (0.43 vs. 0.33) whereas at moderate and slow paces, the
difference between similarity conditions is null (0.75 vs. 0.75
and 0.76 vs. 0.78 for moderate and slow paces respectively).

We also analyzed three different kinds of errors. An error
could be an intrusion of distractor, an intrusion of NPL or a
transposition error (an item from the list in a wrong position).

Distractor intrusions Figure 2 (panel B) presents the pro-
portion of distractor intrusions. First, the simulation showed
a strong effect of pace: around 20% of the responses at fast
pace contained distractor intrusions whereas distractor intru-
sions are negligible (less than 2%) at moderate and slow pace.
It appears that distractors are sufficiently removed after 800
ms, for not being recalled. No effect of similarity and no in-
teraction were observed.

NPL intrusions Figure 3 (panel B) presents the proportion
of NPLs intrusions. Even if NPLs are not encoded into WM,
the NPLs can be recalled as they can be confused with the
memoranda. The more the WM is distorted by distractors,

2All the results discussed below are represented by the solid lines
in all panels B, which correspond to the simulation of the model with
the default value (r=1.5) of the removal strength parameter. The
dashed lines will be discussed latter.

the more we should observe confusion errors at recall. We
observed that NPLs intrusion decreased when the free time
increased as WM is less distorted. We also observed an ef-
fect of similarity: there are more NPLs intrusion in the low-
similarity condition as the NPLs are similar to the items in
this condition. This effect is much stronger at fast pace (when
distractors are not removed) than at moderate and slow pace.
In fact, we observed that the differences of intrusion rates be-
tween low-similarity and high-similarity are 0.09, 0.02 and
0.02 for the fast, moderate and slow pace respectively.

Transposition errors Finally, Figure 4 shows the propor-
tion of transposition errors (order errors) for which a small
pace effect was observed. At the fast pace, the proportion
of transposition errors was increased by 8% as compared to
the slow and moderate pace. No effect of similarity and no
interaction were observed.

Summary of the simulation results In summary, the SOB-
CS model with its standard parameters (except the c param-
eter) predicts a beneficial effect of I-D similarity, which is
present only when there is no removal of the distractors (i.e.
in the fast pace condition). As soon as there is free time (800
ms or 1600 ms), the similarity effect disappears. The analy-
sis of the different kind of errors show that as soon as there
is free time, distractor intrusions is negligible. This finding
can explain why we do not observe the similarity effect at a
moderate and slow pace: distractors are totally removed ac-
cording to the SOB-CS model. These predictions will now be
compared with human data.

Experiment

Method

Participants Participants were 34 students from the Uni-
versity of Bristol. They participated voluntarily in 1-hr ses-
sion in exchange for course credit. Each participant per-
formed the 6 conditions: three different paces (slow, mod-
erate, fast) × two similarity conditions (low and high).

Material Participants were presented with four non-words
(e.g ”zaff”) for memorization, each followed by a pair of non-
word distractors. The memoranda were presented in red and
the distractors in black. Participants were asked to read aloud
all the non-words as soon as they appeared but to only mem-
orize the red ones in serial order.

Items and distractors were sampled from a set of non-
words selected from the ARC Nonword Database (Rastle,
Harrington, & Coltheart, 2002). A database of 720 non-words
was used to ensure that participants never saw a non-word
more than once. Each non-word was pronounceable, com-
posed of one syllable and four letters. The 720 non-words
were organized in 240 rhyming groups, each containing three
non-words (e.g., ”baff, daff, haff” was a rhyming group).

The candidate set for recall was constructed such that its
similarity structure was the same for both conditions (low and
high similarity). Whatever the similarity condition, partici-
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Figure 1: Proportion of correct responses. Error bars are 95%
confident intervals for within-subject comparisons.
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Figure 2: Proportion of distractor intrusions. Error bars are
95% confident intervals for within-subject comparisons.

pants saw four items, four stimuli similar to each item and
four stimuli dissimilar to the items. In the high-similarity
condition, the four stimuli similar to each item were the
distractors whereas in the low conditions they were not-
presented lures (NPLs).

In the high similarity condition, one stimulus from four dif-
ferent rhyming groups was chosen at random to be an item,
and the other two stimuli of each rhyming group were used
as the pair of distractors that immediately followed that item,
such that each pair of distractor was similar to their preceding
item. The NPLs, for the recall set candidates, were chosen at
random from 4 other rhyming groups, such that NPLs did not
rhyme with any item or distractors.

In the low similarity condition, four groups were used to
create the list of items and NPLs, such that each NPL was
similar to an item. Two stimuli from each of four other
rhyming groups were chosen at random to serve as distrac-
tors. In this way, no pair of distractors rhymed with any item
on the low-similarity condition.

For all conditions, we ensured that the four to-be-
maintained items were dissimilar to each other.

Procedure A MATLAB program using Psychophysics
Toolbox (Brainard, 1997; Pelli, 1997) coded by Oberauer and
collaborators (2011) was reused with some modifications to
display stimuli and record responses. Each trial started with
a black centered fixation cross presented during 1,500 ms,
followed by a computer-paced presentation of items and dis-
tractors. Items always appeared during 800 ms followed by a
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Figure 3: Proportion of NPLs intrusions. Error bars are 95%
confident intervals for within-subject comparisons.
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Figure 4: Proportion of order errors. Error bars are 95% con-
fident intervals for within-subject comparisons.

400 ms blank. Distractors appeared at the rate of one stimulus
per 1,000 ms (800 ms on, 200 ms off) in the fast condition,
1,800 ms (800 ms on, 1000 ms off) in the moderate condition
and 2,600 ms (800 ms on, 1,800 ms off) in the slow condition.
After the last distractor, 12 recall candidates simultaneously
appeared on the screen in blue, each in a blue frame. They
were displayed at random in a 3 × 4 matrix. Participants se-
lected recall choices by clicking inside the items’ boxes in the
order in which they were presented. A sound indicated that a
response has been recorded. They were asked to guess if they
could not remember an item. Each participant completed 30
trials, 5 in each condition, in a random order. They were also
prompted to take self-paced breaks every six trials. In ad-
dition, there were four practice trials at the start with four
different conditions: similar/fast, dissimilar/moderate, simi-
lar/slow and dissimilar/fast.

Results: human data and comparisons with
simulated data
We ran a two-way ANOVA on the mean proportion of correct
responses and different types of errors over trials with simi-
larity (high and low I-D similarity) and pace (slow, moderate
and fast) as within-subjects factors.

Correct responses Figure 1 (panel A) shows that, as
predicted by the model, there was an effect of similar-
ity [F(1,33) = 31.2, p < .001,η2

p = .48] and an effect of
pace [F(2,33) = 12.6, p < .001,η2

p = .27]. However, con-
trary to SOB-CS predictions, no interaction was observed
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[F(2,33)< 1]. In fact, even at slow pace, we observed a pos-
itive effect of high similarity versus low similarity condition
on recall performance.

Distractor intrusions Figure 2, panel A, shows a small ef-
fect of pace on distractor intrusions [F(2,33) = 3.18, p =
.047,η2

p = .08] with 27%, 26% and 24% of distractor intru-
sions among responses at fast, moderate and slow pace re-
spectively. In contrast, the model predicted a strong effect of
the pace with almost no intrusion of distractors at medium
and slow pace compare to 20% at fast pace. This discrepancy
suggests that participants did not remove distractors as much
as the model did. No similarity effect [F(1,33) = 2.69, p =
.11,η2

p = .07] and no interaction [F(2,33)< 1] was observed
on the distractor intrusion, as predicted by the model.

NPL intrusions We observed a strong effect of similarity
on NPL intrusions [F(1,33)= 77.3, p< .001,η2

p = .70] and a
small pace effect [F(2,33) = 4.5, p= .014,η2

p = .11] (Fig. 3,
panel A). Here again, the model predicted a much stronger
pace effect as compared to the experimental data. No signif-
icant interaction was found [F(2,33) = 2.24, p = .11,η2

p =
.06] suggesting that the effect of similarity on NPLs is con-
stant over the pace whereas the model predicts a stronger ef-
fect of similarity at fast pace.

Transposition errors No similarity and no pace effect on
the transposition errors were found [respectively; F(1,33)<
1 and F(2,33) = 1.27, p = .28,η2

p = .04] (Fig. 4, panel A).
No significant interaction was found [F(2,66) = 1.27, p =
.28,η2

p = .03]. In line with these data, the model predicted no
effect of the similarity on the transposition errors. However,
the model predicted a small effect of pace between the fast
and the two other paces.

Discussion
The present results replicated the observations found in Ex-
periment 2 of Oberauer, Farrell, et al. (2012) suggesting that
forgetting in WM is partly due to interference by superpo-
sition. First, whatever the experimental condition, the mean
proportion of distractor intrusions was higher than the propor-
tion of NPLs (0.25 vs. 0.1 on average). This result demon-
strates that distractors, unlike NPLs, are encoded into WM
which is a necessary prerequisite for studying distractor in-
terference. Moreover, evidence in favor of the interference
by superposition mechanism was provided by replicating the
strong benefit of high over low I-D similarity.

However, we observed a discrepancy between some of the
model predictions and the data. SOB-CS only fits well the
data in the fast condition that is similar to Oberauer, Farrell,
et al. (2012)’s experiment, where no removal was used in the
simulation. As soon as there is free time and hence removal,
the SOB-CS simulation erroneously predicted an interaction
between pace and I-D similarity. The error analyses revealed
that this difference between model and human seems to be
due to an overestimation of the removal strength by the model
compared to the experimental findings.

In the following section, we present the results of a grid
search on the removal parameter r in order to identify a better
r value to reproduce the human data.

Estimation of the removal parameter
Several experiments (Oberauer, 2001, 2002) estimated that
removing part of the contents of working memory takes be-
tween 1 and 2 s. In addition to the time devoted to the re-
moval, the strength of removal depends also on a rate of re-
moval controlled by the free parameter r. The greater the
value of r, the faster associations between the distractor and
its position are removed. Therefore, in SOB-CS, the removal
parameter r was set to 1.5, which implies that the rate of anti-
learning for removal has reached 95% of its asymptote after 2
s. According to the previous experimental analysis, it seems
that distractors are not removed as quickly as in the model.
To search for a value for the r parameter that would better fit
the data, we conducted a grid search on a range between 0
and 1.5 with a step size of 0.1. The Root-Mean-Square Er-
ror (RMSE) was calculated for each parameter value. This
measure represents the discrepancy between the model pre-
diction and human data. The lowest RMSE corresponds to
the best model. We found that the best model is the one with
r equals to 0.1 instead of the standard value 1.5. If r is set
to zero, meaning no removal at all, an important loss of fit is
observed as the model does not predict the pace effect any-
more. The dashed lines of the panel B of all Figures shows
the simulation results with r set to 0.1. First, the pace and
the similarity variables do not interact anymore. Second, the
main effect of pace on accuracy and error rates is about as
large as in the data. Globally, we observed that the propor-
tion of the different error types fits well the human data. Our
result is in contradiction with the conclusion from previous
studies (Oberauer, 2001, 2002) that removal takes only 1 to 2
s, as with this new r parameter, removing completely irrele-
vant information would take about 30 s instead of 2 s.

General Discussion
In this paper, we aimed to contribute to the debate regarding
the reasons why distractors affect working memory perfor-
mance by testing predictions of SOB-CS. More specifically,
we investigated the I-D similarity effect after various amounts
of free time. Human results confirm several predictions of
SOB-CS. First of all, our results show that distractors are ac-
tually encoded in working memory since they were more of-
ten recalled than not-presented lures. Then, experimental data
reproduced the positive effect of a high similarity between
items and distractors originally found by Oberauer, Farrell, et
al. (2012). This finding is predicted by the mechanism of in-
terference by superposition of SOB-CS. Finally, we also ob-
served that memory performance increases at a slower pace
than predicted by the removal mechanism.

However, results disconfirm one prediction from the model
with its standard parameter values: the data show that the I-
D similarity effect does not diminish with longer free time.
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When simulating this experiment with the SOB-CS computa-
tional model, the similarity effect disappears when there is 0.8
s or more of free time available, because the model strongly
removes distractors. In fact, we observed that at moderate
and slow paces, distractors are totally removed according to
SOB-CS. The total removing of the distractors cancels the
recall difference between similar and dissimilar conditions.
Contrary to this expectation, human data still showed distrac-
tor intrusions at moderate and slow pace.

Searching for a removal rate able to reproduce the experi-
mental data resulted in a much lower estimate (r=0.1 instead
of r=1.5), which could reproduce the observed similarity ef-
fect at all three levels of pace. The removal mechanism was
supported, because r=0.1 fit better than r=0. What are the im-
plications of our removal rate estimate, which is much lower
than that in the orignal model? Either, we can consider that
r=0.1 is the parameter value that holds generally, implying
that removal is much slower than thought so far. A way to ver-
ify this option would be to simulate other complex span task
experiments to test whether their results can be reproduced
by SOB-CS with r=0.1. Or, there is something particular to
delete the material of our experiment that would require a low
removal strength. In future research, a comparison of the size
of the pace effect across experiments could shed some light
on that. In fact, the comparaison of the pace effect of our ex-
periment with all the other experiments can help to determine
if our experiment had an exceptional low pace effect or if the
removal strength needs to be lowered.

According to decay-based models of working memory,
such as TBRS (Barrouillet et al., 2007) or TBRS* (Oberauer
& Lewandowsky, 2011), removal does not exist and free time
is used to retrieve and maintain the to-be-remembered items.
The maintenance of memory items can be viewed as the
strengthening of the item-position bindings of the memory
items and also as the strengthening of the representations of
individual non-words themselves (i.e., item memory). Decay-
based models predict the pace effect which has been observed
many times. In fact, the more free time the more opportunity
to maintain memory items. In such a model, the positive ef-
fect of high similarity between items and distractors, that is
not accounted for by decay-based models, can be explained
by the assumption that retrieving an item in order to refresh
it is easier if it is less distorted by distractors. This process
of retrieving would be required whatever the duration of the
free time. The effect of similarity on retrieval therefore would
lead to a beneficial effect of similar distractors whatever the
pace. However, for the moment, decay-based computational
models, such as TBRS* do not implement interference by su-
perposition. In the future, it would be interesting to replace
the removal mechanism by a mechanism of maintenance in
SOB-CS.
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Abstract 
The current study investigated the relationship between 
children’s spatial ability and their scientific knowledge, skills and 
understanding. Children aged 7-11 years (N=123) completed a 
battery of five spatial tasks, based on a model of spatial ability in 
which skills fall along two dimensions: intrinsic-extrinsic; static-
dynamic. Participants also answered science questions from 
standardised assessments, grouped into conceptual topic areas. 
Spatial scaling (extrinsic static spatial ability) and mental folding 
(intrinsic dynamic spatial ability) each emerged as predictors of 
total science scores, with mental folding accounting for more 
variance than spatial scaling. Mental folding predicted both 
physics and biology scores, whereas spatial scaling accounted for 
additional variance only in biology scores. The embedded 
figures task (intrinsic static spatial ability) predicted chemistry 
scores. The pattern was consistent across the age range. These 
findings provide novel evidence for the differential role of 
distinct aspects of spatial ability in relation to children’s science 
performance.  

Keywords: spatial ability; science; STEM; children. 

Introduction 
Large-scale longitudinal studies spanning the past 50 

years provide convincing evidence that spatial ability in 
adolescence predicts later science, technology, engineering 
and mathematics (STEM) achievement; both in academic 
and career outcomes (Wai, Lubinski & Benbow, 2009). As 
well as often cited examples of scientific discoveries 
resulting from creative spatial thought, a growing body of 
research with adults and adolescents highlights a link 
between spatial ability and scientific reasoning (e.g, 
Kozhenikov & Thornton, 2006). However, with a few 
exceptions (e.g Tracy, 1990), the relationship between 

spatial ability and science learning in younger children has 
been largely neglected. This is important to address, given 
that early science learning involves specific areas of 
conceptual understanding, and because knowledge of how 
spatial ability and science relates in younger children has 
implications for early intervention. The focus of this study 
was therefore to investigate the relationship between a range 
of spatial skills and primary-school aged children’s 
scientific knowledge, skills and understanding.  
 
Spatial ability 
Spatial ability, which relates to “the location of objects, 
their shapes, their relation to each other, and the paths they 
take as they move” (Newcombe, 2010, p30), has long been 
recognised as an ability at least partly independent of 
general intelligence, reasoning and verbal ability (Hegarty, 
2014). As well as being apparently distinct from other 
cognitive abilities, spatial thought itself is generally 
conceptualised in a multidimensional fashion, consisting of 
several separate but correlated skills. Two categories of 
multidimensional models have emerged: ones based in the 
psychometric tradition (e.g. Carroll, 1993) and other more 
recent, theoretically driven models (e.g, Uttal et al., 2013).  

Psychometric analyses of spatial ability have often 
resulted in inconsistent findings, with the number of 
identified factors ranging between two and twelve (Hoffler, 
2010). Uttal et al. (2013) argue that some of the 
inconsistencies result from factor analysis models not being 
theory-driven. In contrast, Uttal et al.’s (2013) model is 
based on top-down, theory driven understanding of spatial 
skills, and draws upon developments in cognitive 
neuroscience. They propose that spatial skills can be 
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categorised along two dimensions: static-dynamic and 
intrinsic-extrinsic. Intrinsic spatial abilities and extrinsic 
spatial abilities broadly map onto a within-object and 
between-object classification, respectively. 
Intrinsic/extrinsic skills can be further categorised as either 
static or dynamic abilities; dynamic abilities include 
transformation or movement, whilst static skills do not. 

Intrinsic-static skills involve the processing of objects or 
shapes without further transformation or movement of parts 
of the object or shape. Tasks that measure this skill often 
require this processing to occur amidst distracting 
background information. For example, in disembedding 
tasks, participants search for a specified 2D shape in a larger 
distracting image. Intrinsic-dynamic skills involve the 
processing, and manipulation or transformation of objects or 
shapes. 2D and 3D mental rotation fit into this category.  

   Extrinsic-static skills require the processing and 
encoding of the spatial relations between objects or 
configurations of objects, without further manipulation or 
transformation of these relations. The extrinsic-static 
category includes the ability to find corresponding locations 
between shapes of equal proportion but differing sizes (e.g. 
scaling and map use). Extrinsic-dynamic skills involve the 
apprehension, processing and manipulation of more than 
one object, or the relationship between objects and frames 
of reference. Spatial perspective taking, in which a 
participant visualises what an object would look like from a 
different viewpoint, is an extrinsic-dynamic skill because it 
involves the manipulation of the relationship between an 
object and another frame of reference/viewpoint.  
 
Spatial ability and science 
Spatial skills support understanding and learning of 
conceptual areas that are very spatial in nature (e.g, 
astronomy) yet even apparently non-spatial topics are often 
represented in a spatial format. 

Most prior research with adults point to visualisation 
skills as being related to science learning: the ability to 
mentally transform spatial information about single objects, 
assessed through intrinsic-dynamic skills such as mental 
rotation and mental folding. For example, studies report a 
link between intrinsic-dynamic spatial skills and conceptual 
understanding in aspects of biology (e.g. Garg, Norman, 
Spero & Mashewari, 1999), chemistry (e.g. Stull, Hegarty, 
Dixon & Stieff, 2012) and physics (e.g., Kozhenikov & 
Thornton, 2006). In Stull et al. (2012), for instance, 3D 
visualisation positively correlated with undergraduate 
students’ ability to translate between different diagrammatic 
representations of chemical structures.  

Other spatial skills within Uttal et al.’s (2013) model may 
play a role in science learning. However, this relationship 
has been largely neglected to date; the role of extrinsic-static 
skills such as scaling, for example, has yet to be addressed. 

Spatial ability and science in development 
Research relating spatial ability and science learning in 
younger children is sparse (e.g. Jarvis & Gathercole, 2003; 

Tracy, 1990). Tracy (1990) assessed science performance in 
a sample of 10- and 11-year-old students who were split into 
high and low spatial ability. The study revealed that the high 
spatial ability group outperformed the low spatial ability 
group. However, this study did not include any measure of 
IQ or other cognitive factors, and thus did not discount 
general ability as an alternative explanation. It also used a 
composite spatial measure. 

One unpublished study that compared the role of different 
intrinsic–dynamic spatial ability measures on scientific 
understanding in children, and controlled for verbal ability, 
found that mental folding, but not mental rotation, predicted 
five-year-olds’ performance in a task involving 
understanding of force and motion. However, this was still 
limited to intrinsic-dynamic skills (Harris, 2014). 

There is also some mixed evidence to suggest that spatial 
skills may be more important during the early stages of 
science learning, rather than later stages (Hambrick et al., 
2012). During initial learning a learner may use spatial 
processing to establish mental maps and models or to 
problem solve (Mix et al., 2016). With experience, domain-
specific knowledge may become more important. Such a 
hypothesis is supported in the science literature by the 
finding that visuospatial working memory is less predictive 
of 14-year-old versus 11-year-old students’ science 
performance (Jarvis & Gathercole, 2003), and that mental 
folding ability predicted children’s but not adults’ 
understanding of forces in the previously described study by 
Harris (2014).	The relationship between spatial thinking and 
science performance, and how this varies between the ages 
of 7 and 11, has hitherto remained unclear. 
 
Current Study 
Although prior research indicates that spatial ability predicts 
aspects of science learning in older populations, little 
research has been conducted with younger children. 
Research that has done so, has either focused on visual-
spatial working memory only, used a composite of spatial 
ability measures, or has focused only on single object-based 
manipulation (intrinsic-dynamic spatial skills). Furthermore, 
no research to date has used and compared a cross-sectional 
sample to determine if this relationship varies across 
development.  

The aim of the current study was to examine the 
relationship between 7 and 11-year-olds’ performance in a 
range of spatial ability measures, based on the Uttal et al. 
(2013) model, and their performance in a science 
assessment covering aspects of biology, chemistry and 
physics. 

Methods 

Participants 
The initial sample consisted of 127 participants who were 
recruited from a large, ethnically diverse London primary 
school. Three pupils did not go on to complete the study 
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because they were unsuitable for the study due to having a 
special educational need or an insufficient level of English. 
Due to missing data, four further participants (one 
participant per year group) did not have a full set of scores. 
Three of those participants were missing data from one task 
only, and so their missing scores were estimated by 
calculating the mean for their respective year group. The 
fourth participant, who was missing several variables, was 
excluded from the analysis. Thus, four participants were 
excluded in total. The final sample consisted of 123 
participants in UK Years 3-6: Year 3 (N=32, mean (s.d.) 
age=8.0 (0.28) years), Year 4 (N=31, mean (s.d.) age=9.0 
(0.32) years), Year 5(N= 31, mean (s.d.) age=10.0 (0.33) 
years), Year 6 (N= 30, mean (s.d.) age=11.0 (0.30) years). 
Parental consent was obtained for all participants.   

Measures 
Intrinsic-Dynamic Spatial: Mental Rotation 
In this mental rotation task (based on Broadbent, Farran & 
Tolmie, 2014), children were shown two upright cartoon 
monkeys, above a horizontal line, on a computer screen, and 
one monkey below a line which was rotated by varying 
degrees (0°, 45°, 90°, 135°, 180°). One monkey above the 
horizontal line had a blue left hand and a red right hand, and 
the other monkey had the reverse pattern and was a mirror 
image of the other. Children were asked which of the two 
monkeys at the top of the screen matched the monkey at the 
bottom of the screen, which had been rotated. This task 
began with six practice items, in which the monkey below 
was not rotated (0o trials) and then progressed to 36 
experimental trials (4 x 0o trials, 8 x 45o trials, 8 x 90 o trials, 
8 x 135 o trials and 8 x180 o trials).  
 
Intrinsic-Dynamic Spatial: Mental Folding  
This mental folding task (Harris et al., 2013) required 
children to imagine folds made to a piece of paper, without 
physical representation of the folding action itself (see 
Figure 1). Children were shown a shape at the top of a 
computer screen which contained a dotted line and an 
arrow. The dotted line represented the imaginary fold line 
and the arrow indicated where the paper should be folded to. 
Beneath this item on the screen, children were shown four 
images of how the item at the top might look after being 
folded at the dotted lines, only one of which was correct. 
Children first completed two practice items. Answers to 
practice questions were checked by the researcher, and if a 
child had an incorrect answer, they were given one further 
attempt of that trial. The experimental trials then began, 
where children had 14 novel items to work through. The test 
progressed automatically as the child clicked one of the four 
images at the bottom of the screen. Accuracy and response 
time were recorded. 
 
Intrinsic-Static Spatial: Embedded Figures Task 
The Children’s Embedded Figures Task (CEFT: Witkin et 
al., 1971) consists of complex figures in which a simple 
form is embedded (see Figure 1). Children were shown an 

image constructed of colourful geometric shapes and asked 
to locate either a simple house or tent shape ‘hidden’ within 
the image. Children were shown the house or tent shape as a 
cardboard form; it was kept by the child for the first three 
trials of each block and hidden thereafter. For the first part 
of the test (11 items) children located a triangular tent shape 
within each image, the simpler of the two shapes, and for 
the other half of the test (14 items) children located a house 
shape. Children were given a score of 1 for correctly 
locating the shape hidden within the figure. Accuracy and 
response times were recorded using a laptop computer. 
 
Extrinsic-Static Spatial: Scaling 
Our novel spatial scaling task was based on a similar task by 
Frick and Newcombe (2012). Children were required to find 
equivalent corresponding locations on two grids, when one 
was varied in size relative to the other by a predetermined 
scale factor (see Figure 1). The task was presented to 
children as a game which involved pirates’ treasure maps. 
Treasure maps were printed on yellow paper and mounted in 
a large ring bound pad. Each page contained one yellow 
map with a grid printed in black. Nine (out of 18) items 
contained grids which separated the map into 6 x 6 sections, 
whereas the other nine items contained grids which 
separated the map into 10 x 10 sections. For each trial, one 
target section of the printed grid map was coloured in black 
(the treasure); the target section varied across trials. 
Participants were also presented with four maps on a touch 
screen computer, which each had one black square coloured. 
One computer map contained a black square at a location 
which corresponded to the printed map; the locations of the 
black squares on the other three incorrect computer options 
were systematically chosen. The larger printed maps were 
either unscaled (1:1), or scaled to either 1:4 or 1:8, relative 
to the maps on the computer screen. Participants first 
completed two practice items after which they completed 
the main 18 trials of the test. Six items were presented at 
each scale factor.  
 
Extrinsic-Dynamic Spatial: Perspective Taking Task 
This task was identical to one developed by Frick et al. 
(2014) which involved spatial perspective taking in which 
children were required to visualise what photographs would 
look like when taken from cameras placed at different 
positions and angles relative to their viewpoint. The child 
first completed four practice questions involving actual Play 
Mobil characters, and then one practice question on a 
computer, which showed a character taking a photograph of 
two shapes from the same perspective as the child. The 
child selected the correct option, of four, from below the 
main image, which showed what the photograph would look 
like by pressing a touch screen computer. If a child made an 
error on the practice items, they were given a second 
attempt. On passing the practice questions, the task 
continued with the experimental items, where they again 
chose the correct image out of four options. These varied 
per the number of objects in the layout (one, two or three) 
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and the angular difference between the photographer’s and 
the child’s perspective (0o, 90o or 180o). 
 
Science Assessment 
The science assessment consisted of two paper-based tests, 
which children completed in class groups in two separate 
sessions under the supervision of the researcher. The 
assessment was curriculum-based and all questions were 
taken from an online database of past science UK 
standardised test questions (“Test Base”, 2017, January 31st) 
designed to assess the science curriculum in this age range. 
The test included approximately equal amounts of biology, 
chemistry and physics content from a selection of topics 
appropriate to this curriculum stage. 

Each paper had a total possible score of 50 marks leading 
to a total science mark of 100. The assessment included 
questions which varied in difficulty, which again mapped 
onto curriculum descriptors. Paper one contained questions 
of low to medium cognitive demand, and paper two 
contained questions of high cognitive demand. Questions 
focused on one conceptual sub-topic, e.g., magnetism or 
changing state. Questions were further sub-divided into 
items that were either: factual/recall items (e.g. label a 
diagram; recall a function); problem solving items, which 
drew on conceptual knowledge; or items that were in the 
context of hypothetical experiments, thus drawing on 
procedural skills.  

 
 

   
 
 
 
 
 
 
 
 
 
 

Figure 1: significant spatial predictors (left to right): mental 
folding task, spatial scaling task (1:8, 6x6 trial), embedded 
figures task (locate a triangular ‘tent’ trial). 
 
Control Variables 
The British Picture Vocabulary Scale-III (BPVS-III; Dunn, 
Dunn, Styles, & Sewell, 2009) was included as a measure of 
verbal ability.  

Procedure 
All children first completed the two paper-based science 
assessments, in two sessions administered by the researcher 
in class groups, within the child’s own classroom. Spatial 
ability was then assessed within two separate sessions. 
Children were first tested in a computer-based group session 
of no more than 10 children where they completed the 
mental folding task and the monkey mental rotation task, in 
a counterbalanced order. The BPVS, CEFT, spatial 
perspective taking task and scaling task were then 
completed in an individual testing session with the 
researcher, which lasted approximately 30 minutes per 
child. The order of testing in the individual sessions was 
also counterbalanced to control for fatigue and order effects. 

Results 
A series of multiple regression analyses were conducted to 
determine the amount of variance in science scores that was 
accounted for by each of the spatial ability measures. There 
were no significant gender differences (p>.05 for all); 
therefore, participants were treated as one group in the 
subsequent regression analysis. A separate analysis was run 
for total science score and for each area of science (physics, 
biology, chemistry). In each of the models, the covariates 
(age, BPVS raw score) were added first (steps 1-2). All 
spatial measures were subsequently entered in a single 
block, using forward step-wise entry, to determine the best 
model of spatial ability predictors. Beta values refer to the 
final model with all variables entered. 

Entered in the first step of each model, age in months 
significantly predicted each science total. Age was most 
strongly predictive of physics sub-score, with this initial 
step accounting for 27% of the variance, ∆F(1,121) = 45.52, 
p < .001. Age accounted for 21% of the variance in total 
score, ∆F(1,121) = 31.27, p < .001, 13% of the chemistry 
scores, ∆F(1,121) = 17.75, p < .001 and 8% of biology 
scores, ∆F(1,121) = 11.03, p < .001. In the final overall 
models, after additional variables were entered, age 
remained as a significant predictor of total score (ß = .122, t 
= 2.03, p = .044) and physics score (ß = .320, t = 4.24, p < 
.001), but not biology score (ß = .010, t = .10, p = .916) or 
chemistry score (ß = .102, t =1.23, p = .223). 

BPVS raw score was entered in the second step of each 
model and was a significant predictor. BPVS scores were 
most strongly predictive of total science score, accounting 
for an additional 37.6% of the score variance, ∆F(1,120) = 
106.16, p  < .001, 25% of the biology scores, ∆F(1,120) = 
46, p < .001, 21% of the chemistry scores, ∆F(1,120) = 
36.93, p < .001 and 15% of the physics scores ∆F(1,120) = 
29.78, p < .001. In the final model, BPVS scores remained 
significant predictors of total science score (ß = .567, t = 
8.9, p < .001), biology score (ß = .443, t = 5.38, p < .001), 
chemistry score (ß = .485, t = 5.93, p < .001) and physics 
score (ß = .375, t = 4.85, p < .001). 

The step-wise analysis of spatial measures to predict total 
science score resulted in mental folding being entered in 
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step three and spatial scaling being entered in step four of 
the regression model. Mental folding accounted for an 
additional 6% of the variance in total science score, above 
the previously entered covariates ∆F(1,119) = 20.62, p < 
.001, ß = .211, t=3.54, p = <.005. The scaling task 
accounted for an additional 2% of the variance in total 
science scores, ∆F(1,118) = 6.8, p < .010, ß = .162, t = 2.60, 
p = .010). 

Step-wise entry of spatial measures predicting biology 
scores retained mental folding and the scaling task only, in 
steps three and four. Mental folding accounted for an 
additional 6% of the variance in biology scores, ∆F(1,119) 
= 11.65, p < .001, ß = .195, t = 2.52, p = .013). Spatial 
scaling accounted for an additional 3% of the variance in 
biology scores, above the previously entered covariates 
∆F(1,118) = 5.50, p < .021, ß = .190, t = 2.34, p = .021). 

Only the mental folding task was retained as predictor of 
the physics score (ß = .198, t = 2.8, p = .006) following 
step-wise analysis, and was entered in step three of the 
model. It accounted for an additional 4% of the variance in 
physics scores ∆F(1,119) = 7.82, p = .006). 

The CEFT was the only emerging predictor of chemistry 
scores (ß = .173, t = 2.27, p = .025). It accounted for an 
additional 3% of the variance in chemistry scores ∆F(1,119) 
= 5.130, p = .025). Any remaining spatial tasks not reported 
did not significantly predict any additional unique variance 
in science ability beyond those spatial measures included in 
the above models (p > .05 for all). 

To determine if age interacted with any of the spatial 
ability measures, a further four models were constructed in 
which the covariates were again entered in step 1, followed 
by the spatial ability measures found to be significant for 
that science measure, followed by interaction terms (age in 
months*spatial measure). No significant interactions with 
age were found (p > .05 for all). 

 

Discussion 
This study revealed that spatial ability predicted children’s 
performance in a curriculum-based science assessment. That 
is, after controlling for age, gender and verbal ability, spatial 
ability accounted for 8% additional variance in total science 
scores. This builds upon longitudinal research linking 
spatial ability to STEM outcomes in adults (Wai et al., 
2009) as well as correlational research that has associated 
spatial ability with various aspects of science learning in 
adults (e.g., Kozhevnikov et al., 2006). It also expands upon 
the existing findings from child data (Tracy, 1990; Harris, 
2014) by investigating a broader range of spatial measures 
and science topic areas and, also, comparing a wider age 
range of children within one study. 

Mental folding, an intrinsic-dynamic spatial skill, 
accounted for the most variance in total overall science 
scores, relative to the other spatial tasks. This is likely to be 
due to it being a predictor of both physics and biology 
topics, whereas spatial scaling was not. It is likely that the 
relationship with physics scores is driven, in part, by 

questions on topics such as magnetism, forces and motion, 
which required visualisation of how objects move and 
interact; this suggests that children who are more skilled at 
visualising paper folds are also better at predicting the 
direction of various types of forces acting on objects.  

The role of mental folding in relation to biology scores is 
less likely to be directly related to the visualisation skill, as 
in physics, discussed above. One possibility is that the 
ability to flexibly maintain and manipulate spatial 
information, as measured through the folding task, may also 
be related to mental model construction and use. The mental 
models children possess for the conceptual topics within 
biology may be spatially-based. For example, when 
recalling the function of roots, children may recall a spatial 
mental model of a plant, which is integrated with 
verbal/propositional information.  

Although mental rotation falls into the same category 
(Uttal et al., 2013) as mental folding (which was a strong 
predictor), mental rotation accuracy did not feature in any of 
the final regression models. The two measures correlated 
only moderately (r = .294). This may be because there are 
differences between folding and rotation, despite them both 
being intrinsic/dynamic measures. For example, rotation is a 
rigid, intrinsic transformation and folding is a non-rigid, 
intrinsic transformation (Atit, Shipley & Tikoff, 2013). 
Further research is needed to investigate this distinction. 

Spatial scaling, an extrinsic/static skill, also emerged as a 
predictor of total science scores, although it contributed less 
to this model than folding because it was significant only for 
biology questions. One interpretation of the role of scaling 
is that it predicted performance because children who 
perform well on this task are also more able to determine 
the correspondence between representations of scientific 
concepts at different scales. Children may, for example, in 
the classroom, need to determine the correspondence 
between: an actual plant; scaled-up versions of plant 
diagrams on an interactive whiteboard; or scaled-down, 
abstract printed diagrams.  

The CEFT, an intrinsic-static spatial skill, was a 
significant predictor of chemistry scores, but did not feature 
in the other final regression models. Intrinsic-static spatial 
skills relate to the processing of objects without further 
transformation: the arrangements of parts of the object (sub-
parts) as well as the size and orientation objects. This could 
relate to chemistry items including diagrams which require 
inspection and discrimination between sub-parts of objects 
(e.g, 3 beakers with ice cubes, which either have 1, 2 or 3 
layers of insulation). 

An analysis of age-based interactions revealed that the 
relationships described were steady across development. We 
had predicted that spatial skills would contribute more to 
science performance for younger children, than older 
children, based on prior research (e.g., Hambrick et al., 
2012), which would suggest that as domain-specific 
knowledge increases, spatial abilities play less of a role in 
science. It may be that, although older children are more 
experienced in science, the knowledge they have available 
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for immediate recall may be restricted to topics that they are 
currently covering.  

One limitation of the study was that we only included the 
BPVS as a control for general level of ability. One might 
argue that the spatial tasks are also capturing a more general 
problem solving ability. However, the differential role of 
various spatial skills revealed in the analyses demonstrate 
that spatial ability is having an impact on science 
performance versus it being a general problem solving 
ability proxy. However, further research should include 
other measures of general cognitive ability. Second, the 
nature of the questions, drawn from standardised 
assessments, meant that it is difficult to determine if the 
relationships observed relate to scientific 
knowledge/understanding, or application of knowledge in 
scientific problem solving. Further studies are planned to 
systematically include a range of question types for 
comparison across categories of items. 

In summary, the current study provides evidence for a 
distinctive role for mental folding (intrinsic-dynamic spatial 
ability), spatial scaling (extrinsic-static spatial ability) and 
the CEFT (intrinsic-static spatial ability) in children’s 
science learning. The findings have implications for how we 
can move forward to support children in the science 
classroom through spatial training and interventions.  
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Abstract 

When people move together, as they dance, march or flirt, it 
increases affiliation between them. But what about ‘moving 
together’ produces affiliation: the movements themselves, or 
the social context of moving ‘together’? We instructed pairs of 
participants to listen to music and move their arms or legs 
according to shapes appearing on screen. They either carried 
out the same movements, or when one moved their arms the 
other moved their legs. They either saw shapes on one laptop, 
or each had their own laptop. Surprisingly, participants did not 
like each other more if they carried out the same movements, 
but affiliation did increase if they danced looking at the same 
screen. Rather than their movements, instructions, intentions 
or perceptual experiences, here it is the social context of the 
actions that produces affiliation, a surprising finding that is not 
easily accounted for by the dominant theories of mimicry and 
behavioural synchrony. 

Keywords: synchrony; coordination; mimicry; affiliation; 
joint action 

 

Introduction 
People have danced, marched and moved together across 
cultures and history (McNeill, 1995). One reason, suggested 
by the literature, is that mimicry and synchronous movement 
acts as a form of ‘social glue’, increasing liking when two 
people mimic each other’s gestures (Chartrand & van Baaren, 
2009), walk in step with each other (Wiltermuth, 2012), tap 
in synchrony (Hove & Risen, 2009), or move together to a 
common beat (Reddish, Fischer, & Bulbulia, 2013).  

Dance as one particularly social form of human 
coordination (Dunbar, 2012; Tarr, Launay, Cohen, & 
Dunbar, 2015), usually takes place in a shared social context: 
people in the same room, co-present with others, are listening 
to the same music. Similarly, demonstrations of motor 
mimicry increasing affiliation also take place in the shared 
social context of an experiment. What is the contribution of 
these two factors, a shared social context and similarity in 
movement, in changing affiliation when people dance 
together? From research to date this is not clear, as the two 
factors are confounded in dance as it typically occurs in 
society, and mimicry as it is typically studied in the 
laboratory. Which provide the psychological conditions for 
dancing ‘together’? 

The recent invention of the “silent discos” separates these 
factors and raises an interesting question. At these events, 
each person wears a set of wireless headphones that can be 
connected to different DJs playing different pieces of music. 
So two people next to each other may be engaging in similar, 
synchronised bodily movements, or not. Each person may or 
may not know if the person next to them is listening to the 
same music. What conditions will produce affiliation 
between the dancers: the similarity between their movements, 
or the knowledge that they are dancing together to the same 
music? We created an experimental version of this situation 
to find out. Rather than manipulating shared music, however, 
we manipulated shared social context.  

This question does not just relate to our specific 
understanding of silent discos, of course, but raises much 
broader questions about the function of bodily mimicry for 
the affective states of social relationships. The dominant 
prediction from the psychological literature is that movement 
similarity causes affiliation. One proposed mechanism is that 
action observation activates a representation of a similar 
motor plan in the observer (Chartrand & Bargh, 1999). This 
mirroring has been linked to a particular set of visuo-motor 
neurones in the brain known as the ‘mirror system’ (Di 
Pellegrino, Fadiga, Fogassi, Gallese, & Rizzolatti, 1992; 
Mukamel, Ekstrom, Kaplan, Iacoboni, & Fried, 2010), which 
are claimed to contribute to social cognition and affiliation 
(Gallese & Goldman, 1998; Pineda, 2009). Supported by 
many experimental findings, these theories predict that what 
is required to increase affiliation between two silent disco 
dancers is a match between their bodily movements. 

However, there are two reasons to hypothesize that social 
context may play an important part in the relationship 
between affiliation and mimicry. Firstly, imitation can be 
modulated by social factors such as eye contact (Wang, 
Newport, & Hamilton, 2010), group membership (Yabar, 
Johnston, Miles, & Peace, 2006), or the circumstances under 
which people meet (Miles, Griffiths, Richardson M., & 
Macrae, 2010). Secondly, one lab experiment has shown that 
affiliation can be increased by action contingency alone. 
Catmur and Heyes (2013) asked participants to perform 
either a hand or a foot movement at random. In response, they 
either saw the same action that they had just performed 
onscreen, or the opposite one. The actions onscreen either 
occurred contingently, every time participants acted, or non-
contingently, sometimes appearing and sometimes not. 
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Participants’ pro-social feelings were influenced by the 
contingency of their actions, but not by the match between 
the actions they made and the actions they saw.  

This leads to the prediction that for our two dancers at a 
silent disco, what will increase affiliation is the social context 
that leads them to interpret their actions as linked and 
contingent upon each other – that they are dancing ‘together’. 
In contrast, the prediction from the behavioural coordination 
literature is that affiliation will be higher when the 
participants’ movements are the same. 

To test these predictions, we instructed pairs of participants 
to listen to music on headphones and to perform the same or 
different movements in one of two conditions: in the joint 
social context, participants danced ‘together’ looking at a 
single computer screen that guided their movements. In the 
parallel social context, they each had their own screens, side 
by side, showing the same movement instructions. 
Afterwards, we measured participants’ levels of affiliation to 
tease apart the contribution of social context and movement 
similarity in producing liking. 

Methods 
We performed two experiments manipulating movement 
similarity and social context between pairs of participants. In 
the first experiment, as well as using a single screen, the joint 
social context was additionally established by giving 
participants the task of first untangling their headphone 
cables before plugging into their shared display. In our 
second experiment, we aimed to replicate our methods, but 
with the untangling task removed, so that the joint social 
context was established by the shared display alone. Since the 
experiments and analyses are identical in every other regard, 
we describe them together here. 

Participants 
We estimated an effect size of d = 0.7, following Lumsden, 
Miles and Macrae (2014) for affiliation effects arising from 
mimicry, and an a priori power analysis using G*Power 
(version 3.1.9.2; Faul, Erdfelder, Lang, & Buchner, 2007) 
suggested a sample size of 76 to achieve 85% power (with α 
= 0.05). To be conservative, Experiment 1 tested 80 
participants (58 females; mean age = 24.66 years; SD = 6.84 
years, 29 non-UK nationals) and Experiment 2 tested 82 
participants (62 females; mean age = 21.8, SD = 6.1, 45 non-
UK nationals), recruited from the UCL Psychology Subject 
Pool. No participants were excluded. Participants in both 
studies were compensated through course credit or a 
monetary reward of £4. It was ensured that the members of 
each dyad did not know each other prior to the experiment.  

Ethics Statement 
Ethical approval was obtained from the UCL Research Ethics 
Committee. All participants provided written informed 
consent before the beginning of the study and were fully 
debriefed upon completion. 

Procedure 
Experiments had a 2 x 2 (social context: joint or parallel; 
movements: same or different) between-subjects design with 
pairs randomly assigned to conditions (Figure 1). In 
Experiment 1, participants in the joint condition were first 
given the task of untangling headphone cables together then 
plug them in. In the parallel condition, the headphones were 
already plugged into separate laptops. In Experiment 2, the 
untangling task was not included in either condition.  

Figure 1. (a) In the joint condition, participants’ headphones were plugged into a splitter and they shared a screen. In the 
parallel condition, participants had two separate screens and their headphones were plugged in separately. In response to a 
shape appearing on screen, participants either moved the same limb at the same time as each other, or when one moved a 

hand the other moved a foot (or vice versa). (b) Laboratory layout in the parallel context condition. In the joint condition the 
screen was placed in the middle. 

 

       Same                                  Different 
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Participants wore headphones and stood 1m apart from 
each other, 2.5m away from a table, in a square marked on 
the floor (Figure 1). In the parallel social context, there were 
two screens (diameter: 27cm, diagonal: 33.78cm) 1m apart 
on the table that showed identical stimuli throughout the 
experiment. In the joint social context, there was one screen 
midway between participants.  

In the same movement condition, both participants were 
given same shape-movement instructions (e.g., circle = leg 
movement and triangle = hand movement). In the different 
movement condition, one participant had the mapping 
reversed. Shapes were presented randomly on the left, right 
or middle of the display, indicating the direction that 
participants were to move their limbs. After a practice stage, 
participants danced for 4:50 min to shapes appearing every 
1.2 seconds, matching the tempo of the song ‘I turn my 

camera on’ by Spoon. Participants were then led into 
different rooms. We measured affiliation in two ways. First, 
participants responded to a 15 item subset of the Subject 
Impressions Questionnaire (SIQ) from the Intrinsic 
Motivation Inventory (Ryan, Koestner, & Deci, 1991). 
Second, we measured affiliation with the Inclusion of Other 
in Self (IOS) scale (Aron, Aron, & Smollan, 1992), in which 
participants chose between 7 pairs of differently overlapping 
circles to represent their relationship with the other 
participant. Finally, as a manipulation check, we asked how 
much the participants attended to each other, and if they felt 
like they were dancing ‘together’. The experiment lasted for 
approximately 30 minutes. All measures and manipulations 
have been reported here, and analysis did not begin in each 
experiment until we had collected our target of 80 
participants in each. 

Figure 2. The main effects of social context and movement conditions on two measures of affiliation: SIQ and IOS. There 
were no significant interactions between the effects. Red and blue lines show the distribution of scores in each condition, with 
dotted lines giving mean. Grey lines show the Bayesian estimate of distribution of the difference between conditions; grey 
areas show the 95% credibility intervals. 
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Results 
Across two different measures we found strong evidence that 
affiliation was increased by a joint social context, but was 
unaffected by movement similarity. We employed a Bayesian 
analysis of our results, since in addition to avoiding some of 
the problems of null hypothesis significance testing 
(Kruschke, 2010), these analyses are able to estimate the 
relative strength of evidence for and against null and 
alternative hypotheses (Wagenmakers, Wetzels, Borsboom, 
& van der Maas, 2011). Analyses were conducted in R using 
the BayesFactor package (Morey & Rouder, 2015) and 
default parameter values.  For our analyses, we used the 
default Cauchy prior with a scale of √2 / 2, which is seen as 
appropriate under a broad array of situations (see Rouder, 
Speckman, Sun, Morey & Iverson, 2009), following the 
emerging practice in this application of Bayesian techniques 
(e.g. de Moliere & Harris, 2016), and compared against the 
null hypothesis that the conditions had no effect.  

Figure 2 presents the distribution of SIQ and IOS scores 
across our manipulations and to the right of each plot, 
Bayesian credibility intervals (Kruschke, 2010) for the 
differences between conditions. These analyses suggest that 
between the social context conditions there is difference 
between mean SIQ and ISO scores, but no difference between 
the movement similarity conditions. Since there was no 
evidence in our analyses for an interaction between social 
context and movement conditions, the main effects are 
plotting in Figure 2.  

To quantify the strength of these effects further we 
calculated Bayes factors. On SIQ scores, a Bayesian Type II 
ANOVA found very strong evidence in favour of a main 
effect of social context (Bayes factor: 300:1) over the null 
hypothesis, but evidence against a main effect of movement 
similarity in favour of the null hypothesis (Bayes factor 6:1) 
and against there being a difference between the two 
experiments (Bayes factor 5:1). There was also evidence 
against any interaction effects between conditions (Bayes 
factors between 3 and 4:1). A similar pattern of likelihoods 
was found for IOS scores. There was strong evidence in 
favour of an effect of social context (Bayes factor 101:1), 
evidence against an effect of movement condition (Bayes 
factor 4:1), evidence against a difference between 
experiments (Bayes factor 5:1), and against any interaction 
effects (Bayes factors between 3 and 4:1).  

The conclusions we reached from Bayesian analyses were 
echoed by more orthodox null hypothesis testing. We ran a 2 
(movement condition) x 2 (social context) x 2 (experiment) 
ANOVA. There was a main effect of social context on SIQ 
scores (F(1,154)=16.58; p<.001, hp

2=.1) and on  IOS scores 
F(1,154)= 13.78; p<.001, hp

2=.08). But there was not a 
significant main effect of movement similarity on either 
measure, and no interaction between social context and 
movement conditions (all Fs<1). 

Our manipulation check showed that there is strong 
evidence that participants in the joint social context felt that 
they were ‘dancing together’ more (Bayes factor 900:1), but 
no evidence that this was affected by movement condition 

(Bayes factor 0.68:1). There was weak evidence that joint 
social context resulted in participants paying more attention 
to each other (Bayes factor 3:1), but evidence in favour of the 
null hypothesis and against an effect of movement condition 
on attention (Bayes factor 6:1).  

Why was there no effect of movement similarity? One 
possibility, the ‘attention only’ account, is that participants’ 
movements did not influence their affiliation because they 
simply didn’t pay attention to each other, but if they had, then 
movement similarity would have had an effect. Logically, on 
this account, the more attention participants paid to each 
other’s identical movements, the larger the increase in 
affiliation would be. And the more they paid attention to each 
other’s dissimilar movements, the larger the decrease in 
affiliation would be. However, when we looked at the 
attention participants paid to each other, there was no such 
pattern of results. In fact, an increase in participants’ attention 
to one another did not affect SIQ and increased it for both 
similar and dissimilar movements for ISO. 

In the case of IOS scores, attention was positively related 
to affiliation in both the same movement (Bayes factor 70:1) 
and, crucially, in the different movement condition as well 
(Bayes factor 50:1). Moreover, the evidence was against a 
model for ISO scores with attention, movement condition and 
an interaction between them, over a model that just included 
attention (Bayes factor 12:1). In the SIQ scores, there was no 
evidence that attention to others was related to affiliation 
(Bayes factor 0.35:1), and strong evidence against the 
hypothesis that a model with SIQ scores, movement 
condition and an interaction between them was preferred over 
the null hypothesis (Bayes factor 50:1). 

We ran correlational analyses between our measure of 
‘attending to others’ and the two measures of affiliation 
overall, and splitting the data according to social context and 
movement, to see if those relationships changed between 
conditions. We calculated Zou’s (2007) 95% confidence 
intervals for differences between conditions. In each case, the 
CI encompassed 0, suggesting that the correlations did not 
differ between conditions, supporting the conclusions drawn 
from Bayesian analysis. 

Discussion 
We found two surprising results. Firstly, participants did not 
like each other more if they had been performing the same 
actions, despite the clear prediction from a host of 
behavioural coordination studies in the literature. Secondly, 
they did feel closer to each other if they had been moving 
together in a joint social context. This joint context was 
established merely by attending to a common display. If 
participants moved their bodies in the same way, in the same 
synchronised fashion, but attended to two displays a few 
degrees apart, then they did not feel increased affiliation 
towards each other.  

Standard mimicry and imitation theories cannot account 
for these results. Their prediction is that, ceteris paribus, 
when participants make the same movements, their affiliation 
should be higher than when they are making different or 
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incongruent movements. However, our results did not 
support this prediction, and Baysian analyses strongly 
suggested that the likelihoods were in favour of there being 
no effect of movement similarity at all.  

How can we explain both our finding that affiliation is 
dependent on social context, but also past findings that it is 
caused by motor mimicry? One possibility follows the 
associative sequence learning model, which holds that 
‘mirror systems’ are the byproducts of learning sensorimotor 
contingencies in a social context (Catmur, Walsh, & Heyes, 
2009). From infancy, we perceive and perform the same 
actions as others in the context of rewarding social 
interactions (Heyes, 2001). These contingencies are learnt, 
and in adulthood, they continue to produce mimicry, 
associated with pro-social feelings. Critically, as Cook, 
Dickinson and Heyes (2012) showed, these sensorimotor 
contingencies become tied to the context in which they are 
learned. So, crucially for our results, the sensorimotor 
contingencies learned from multiple social interactions 
would only be re-evoked in a social context. This provides a 
plausible explanation of why only our joint dancing condition 
affected affiliation: only when participants shared a screen, 
they perceived themselves to be in a social situation in which 
their actions were contingent upon one another.  

Elsewhere in the literature, it has been shown that forms of 
joint action and joint attention can have widespread cognitive 
consequences. For example, there is interference between the 
stimulus-response mappings of two people engaged in a 
Simon task together (Sebanz, Knoblich, & Prinz, 2003). 
When someone believes that another person is looking at the 
same stimuli as them, it changes their visual attention 
(Richardson D., Street, Tan, Hoover, & Ghane Cavanaugh, 
2012) and memory encoding (Shteynberg, 2010; He, Lever, 
& Humphreys, 2011). Pro-social feelings are also increased 
when two people attend to the same stimuli (Fridlund, 1991; 
Wolf, Launay, & Dunbar 2015). It seems plausible that our 
participants who shared a screen cognitively framed their 
activity in a particular manner (Huhn, Potts, & Rosenbaum, 
2016), as a shared, joint activity, and from this, changes in 
affiliation were produced.  

The interrelated roles of movement similarity and social 
context cannot be determined from previous results in the 
literature. Past experimental studies have either confounded 
social context with movement similarity, failed to manipulate 
it explicitly, or used reduced, artificial stimulus-response 
tasks. Indeed, our findings suggest that many past results 
linking motor mimicry with affiliation may have occurred, in 
part, because the experimental situation has established a 
social context in which behavioural coordination is 
interpreted as contingent. And we would predict that in a 
silent disco, if two people do not share the same music, and 
do not interpret their actions as shared and contingent, they 
will not become friends as quickly.  
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Abstract

In order to successfully learn the meaning of words such as
bin or pin, language learners must not only perceive relevant
differences in the speech signal but also learn mappings from
words to referents. Prior work in native (Stager & Werker,
1997) and second (Pajak, Creel, & Levy, 2016) language ac-
quisition has found that the ability to perceptually discrimi-
nate between words does not guarantee successful word learn-
ing. Learners fail to utilize knowledge that they can otherwise
use in speech perception. To explore possible mechanisms ac-
counting for this phenomenon, we developed a probabilistic
model that infers both a word’s phonetic form and its asso-
ciated referent. By analyzing different versions of the model
fitted to experimental results from Pajak et al. (2016), we ar-
gue that a mechanism for spoken word learning needs to incor-
porate both perceptual uncertainty as well as additional, task-
specific sources of uncertainty.

Keywords: word learning, rational model, probabilistic infer-
ence, phonological similarity, speech representations

Introduction
From the perspective of a learner of English, successfully
learning the meaning of novel words such as bin or pin
requires the ability to perceptually discriminate between
similar-sounding words. Creating distinct, non-overlapping
representations of the input is necessary because the words
need to be mapped onto different classes of referents. This
requires perceptual sensitivities to the phonological contrasts
critical for the discrimination (Pater, Stager, & Werker, 2004).
In the case of bin and pin this contrast is along the voicing di-
mension (phonemes b and p differ in voice onset time). Stud-
ies in infant native-language (L1) acquisition have shown that
while these perceptual abilities are present in 14 month old in-
fants, they do not guarantee successful word learning (Stager
& Werker, 1997; Pater et al., 2004). In a series of experi-
ments conducted by Stager and Werker (1997), infants that
were able to perceptually discriminate between two similar-
sounding words, such as dih and bih, failed to utilize this
knowledge during word learning (experiment 4). When first
habituated to label/object pairings, infants did not reliably de-
tect when the assignment of words to objects switched (exper-
iment 1) and they failed to notice mispronunciations when an
object that had before been introduced as dih was later re-
ferred to as bih (experiment 2). The authors interpreted their
findings as infants being unable to attend to fine phonetic de-
tail during word learning and argued that it constitutes a fea-
ture of linguistic development.

The same pattern of results has more recently been demon-
strated for second-language (L2) learners. A study by Pajak et
al. (2016) compared the performance of subjects of two dif-
ferent linguistic backgrounds in a perceptual discrimination
and a word learning task. To create a situation paralleling

that of L1 acquisition in infants, the researchers used a minia-
ture language with word pairs at three levels of phonological
similarity whose phonology, modeled after Polish, was novel
and unfamiliar to all participants: Dissimilar words differed
in multiple phonemes (e.g., tala / kenna); similar word pairs
differed in one phoneme (e.g., tala / taja); and highly-similar
words differed only along a single phonetic dimension, ei-
ther in length (short vs. long, e.g., tala / talla) or place of
articulation (alveolopalatal vs. retroflex, e.g., gotCa / gotùa).
In order to examine the role of L1-specific differences in task
performance, Pajak and Levy (2014) collected data from both
Korean speakers, who are sensitive to length contrasts but not
to the alveolopalatal vs. retroflex distinction, and from Man-
darin speakers, who show the opposite pattern. To ensure that
subjects were naive to the stimuli used in the experiment, the
researchers tested separate groups of subjects on the percep-
tual discrimination and the word learning task.

Similarly to results from Stager and Werker (1997), the
study found that the ability to perceptually discriminate
similar-sounding words in the perceptual task did not suc-
cessfully translate to the word learning task on a group level,
nor did subjects’ L1-specific perceptual advantages. Taken
together, these findings suggest that the difficulty in learn-
ing similar-sounding words, especially during early lexical
acquisition, is a general property of learning rather than a
developmental stage (Pajak et al., 2016; Perfors & Dunbar,
2010). At present, little is known about the learning mech-
anisms that give rise to these difficulties. Here we seek to
provide an account of such a mechanism in the form of a
probabilistic model developed with the goal of reproducing
the results from Pajak et al. (2016)’s original study. While
we are not aware of any computational modeling work, the
exists prior work addressing these issues on a conceptual
level. The failure to utilize perceptual knowledge during
word learning has previously been attributed to increased
cognitive load (Werker, Fennell, Corcoran, & Stager, 2002;
Stager & Werker, 1997). While discrimination only requires
storage and comparison of perceptual input in phonological
short-term memory, word learners must additionally attend
to the referent stimulus and integrate label/referent informa-
tion over the course of learning to infer probable associations.
This lowers the resolution of auditory processing (Mattys &
Palmer, 2015), which contributes to the failure of distinctly
representing similar-sounding input. We will explore these
verbal theories by analyzing which of the proposed compo-
nents are necessary to account for the observed effects in the
study by Pajak et al. (2016), which we will briefly describe in
the next section.
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Pajak et al. (2016)’s experiment
In a between-subjects design, ninety subjects, approximately
equally split into speakers of Korean and Mandarin, partici-
pated in either a perceptual discrimination or a word learn-
ing task. Stimuli consisted of 16 bisyllabic consonant-vowel-
consonant-vowel (CVCV) nonce words, split into similarity
classes as described above.1 Perceptual discrimination was
tested in an ABX task. Subjects listened to three consecutive
words, e.g., talla[A], taja[B], and talla[X ], and had to decide
which of the first two words sounded more similar to the last
one. In the word learning task, each of the 16 labels was asso-
ciated with a single referent in the form of a visual image and
participants’ goal was to learn which words were associated
with which referents. The experiment consisted of four train-
ing blocks (each with 128 trials) and four interleaved testing
blocks (each with 64 trials). In each trial, two pictures were
presented side by side, corresponding to the referents for la-
bels A and B. Similarly to the ABX task, subjects then heard
a label X and had to decide which referent it belonged to.
Error feedback was provided to the subjects during the train-
ing phase but not during the test phase. The stimulus triplets
used in the discrimination task and in the test phase of the
word learning task were identical, which made it possible to
compare accuracy for triplets across the two tasks.

Computational Model
A computational analysis of spoken word learning must take
into account the goal of the computation, the information
available to the learner, and show how this information maps
onto appropriate behavioral responses (Anderson, 1990). We
suggest that learning novel words requires the learner to
perform statistical inference on at least two distinct levels.
While the ultimate goal of learning is to infer concepts, or la-
bel/referent associations, from a stream of observations, the
learner must concurrently infer the label’s phonetic form from
the acoustic input, since it is not explicit in the speech sig-
nal. These two layers of inference give rise to a hierarchical
probabilistic model, visually depicted in Figure 1, which we
used to model spoken word learning and, using a variation
of the generative process, model results from the perceptual
discrimination tasks. Model behavior is influenced by three
distinct factors: perceptual noise, which affects both discrimi-
nation and word learning when processing speech input, task-
specific factors that lower the resolution of auditory repre-
sentations of speech sounds during word learning (Mattys &
Palmer, 2015), and overall memory capacity.

Formal characterization of the model
Each word and its corresponding referent define a concept,
denoted c. To simplify our analysis, we assume that the ref-
erent stimulus is observed unambiguously. In our model, ob-
serving the referent stimulus is therefore identical to observ-

1The constraint that words always have four CVCV segments is
a simplification for convenience. In principle, our model should be
applicable to any set of phonemes and syllable structures. See Pajak
et al. (2016) for the complete list of phonemes and stimuli used.

ing the concept directly, because of the one-to-one relation
between referents and concepts. The a priori probability of
choosing any concept is uniform. Corresponding labels are
then sampled from the conditional probability p(l|c), whose
probability mass is uniform across all possible labels in the
language L and zero otherwise.

Pr(l|c) =
{ 1

N if l ∈ L
0 otherwise

(1)

Label l is a sequence of phonemes of the form p1 p2 p3 p4
composed of pre-specified consonant and vowel primitives.
Phonemes are represented mathematically as multivariate
Gaussian distributions in one of two separate (phonetic) fea-
ture spaces, one for consonants and one for vowels. Follow-
ing prior approaches to the representation of speech sounds
(Richter, Feldman, Salgado, & Jansen, 2016; Bailey & Hahn,
2005), the feature dimensions of these phonetic spaces corre-
spond to subsegmental features such as manner, place, length,
and voicing, or to the first two vowel formants. Distributions
are centered around a fixed category mean µ[pi], a vector of
means indexed by the corresponding phoneme. Covariance
matrices Σw[i], one shared across vowels and one across con-
sonants, are indexed by i only (corresponding to whether the
phoneme is of type C or V).

Conditioned on a choice for label l, we can generate a se-
quence of phones s1s2s3s4, which can be seen as its discrete
and noisy realizations of the label’s phonemes:

Pr(si|pi) = N
(
µ[pi],Σw[i]

)
(2)

Pr(s|l) = Pr(s1s2s3s4|p1 p2 p3 p4) (3)
= Pr(s1|p1)Pr(s2|p2)Pr(s3|p3)Pr(s4|p4)

The covariance matrix that determines variability in the re-
alization of speech sounds is specified through the following
scalar-matrix-vector multiplication:

Σtask[i] = αtaskIν[i]population (4)

The scalar αtask allows us to reflect task-specific sources
of uncertainty (word learning vs. discrimination). We note
that the parameter for word learning, αw can be written as
the product of a perceptual ’baseline’ acuity parameter for
the discrimination task times a constant factor: αw = cαd .
Assuming pairwise independence across all feature dimen-
sions, the covariance matrix is fully specified by its diagonal
elements, encoded in the population-specific diagonal vector
ν[i]population. Phonetic acuity along those feature dimensions
is inversely proportional to variance: the higher phonetic acu-
ity, the lower the variance. This allows us to model differ-
ences in L1 background (Korean vs. Mandarin) with respect
to perceptual sensitivities along these feature dimensions. For
example, for Korean speakers:
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Figure 1: Graphical representation of the word learning
model. Circles indicate random variables (variables shaded
in gray are observed during learning); squares indicate fixed
model parameters. To simplify our representation, the model
does not include a referent node, which is deterministically
generated by sampling from the concept.

ν[1]Korean = ν[3]Korean =
(
τF1K

−1
τF2K

−1)T

ν[2]Korean = ν[4]Korean =(
τlengthK

−1
τplaceK

−1
τvoicingK

−1
τmannerK

−1)T

The vowel feature space consists of the first two formants
F1 and F2. Consonant space consists of the dimensions
voicing, place, manner, and length (Bailey & Hahn, 2005).
All acuity parameters are set to 1 (corresponding to a unit
Gaussian variance), except for τlength and τplace, which are
population-specific free parameters in the model. As a sim-
ple approximation, means in µ[pi] are evenly spaced across
perceptual space. Along each phonetic dimension, we de-
fined a number of subsegmental features (e.g., ’voiced’ and
’unvoiced’ along the voicing dimension). Phonetic category
means can then be written as the vectors composed of these
features (the mean of phoneme f, for instance, is represented
as [unvoiced, labial, fricative, short]). Although not fully ac-
curate in its details, the coarse grained nature of this setup is
sufficient with respect to the word pairs used in Pajak et al.
(2016)’s experiment.2

Word learning model In word learning, subjects engage
in consecutive training and test blocks. Each training trial t
consist of an observed label/referent pair {st ,ct}. For sim-
plicity we assume that learners discard the negative, second

2In particular, the distance between dissimilar phonemes in fea-
ture space is large because their means differ in multiple units
across multiple dimensions. The distance between highly-similar
phonemes on the other hand is small since they are only one unit
apart along a single dimension.

exemplar presented to them and only learn from the positive
pairing. The learner’s goal is to infer probable associations
between referents c and labels l, in other words, compute the
posterior probability over labels given the observed stimulus
and referent Pr(lt |st ,ct) according to:

Pr(l|s,c,Σw) =
Pr(s|l,Σw)Pr(l|c)

∑l Pr(s|l,Σw)Pr(l|c)
(5)

The output of this computation is then used as a prior for
the next trial. To model the difficulty of integrating multiple
memory traces over time, one simple approach is to assume
an upper bound on the number of memory traces that can be
integrated, denoted mc. We formalized this intuition by dis-
carding samples from trials t ≥ mc (no further updating of
probabilistic representations occurs).

After computing Pr(l|s1, ...,sT ,c1, ...,cT ,Σw) for the train-
ing block, in the test phase, the learner compares two alter-
native tuples {cA,sX} and {cB,sX} to assess which referent
is more probable under sX . This is achieved by computing
Pr(cA|sX ,Σw) and Pr(cB|sX ,Σw) by integrating over l:

Pr(c|s,Σw) =
∑l Pr(s|l,Σw)Pr(l|c)Pr(c)

∑c ∑l Pr(s|l,Σw)Pr(l|c)Pr(c)
(6)

Discrimination model In the discrimination task, subjects
perceive a stimulus triplet {sA,sB,sX} and decide whether X
is more similar to A or to B. We hypothesize that subjects
use the generative process outlined above to judge similarity,
where they independently determine the likelihood that the
stimuli were sampled from two alternative generative models
(Tenenbaum & Griffiths, 2001), described in the following:

Pr(sA,sB,sX |l1, l2) = (7)

∑
l1

[
Pr(sA|l1)Pr(sX |l1)Pr(l1)

]
∑
l2

[
Pr(sB|l2)Pr(l2)

]
(8)

Pr(sA,sB,sX |l1, l2) =

∑
l1

[
Pr(sA|l1)Pr(l1)

]
∑
l2

[
Pr(sB|l2)Pr(sX |l2)Pr(l2)

]
The likelihood Pr(s|l) is the same as in Equation 3 but with

covariance matrix Σd [i] specific to the perceptual discrimina-
tion task.

Response probability Both experimental paradigms use a
two-alternative forced choice task (2-AFC) to assess subjects’
knowledge. Subject either compare two posterior probabili-
ties over concepts given labels (word learning task) or the
likelihoods that the stimulus triple was generated by one of
two alternative generative models (discrimination task). In
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Figure 2: Comparison of the M+A+ model to experimental results for the L1 Korean population (top) and for the L1 Mandarin
population (bottom). Error bars are standard errors. Accuracy scores are percentage correct in the discrimination task and
during the test phase of the word learning task.

both cases, choices are modeled using a Bernoulli distribu-
tion and the probability of choosing one alternative over the
other is computed using Luce’s choice rule (Luce, 1959). Re-
sponse parameter β controls the stochasticity of responses.

Results
We fitted the model to aggregate subject data from Pajak
et al. (2016)’s word learning and perceptual discrimination
tasks. Free model parameters included task-specific phonetic
acuity for word learning (αw) and for discrimination (αd),
four population-specific acuity parameters (τlengthK , τlengthM ,
τplaceK , τplaceM ), the response parameter (β), as well as the
memory capacity parameter (mc).

Table 1: Results from fitting four versions of our model to
the experimental data. Fits are quantified using the product of
RMSEs to the word learning and discrimination data across
the two speaker populations.

Model n.p. w.l. w.l.b. disc. all
M−A− 6 0.089 0.138 0.179 0.407
M−A+ 7 0.029 0.140 0.017 0.186
M+A− 7 0.076 0.098 0.172 0.347
M+A+ 8 0.025 0.099 0.018 0.142

To assess which model components are necessary to ac-
count for the experimental data, we fitted four alternative ver-

sions of the model that were composed out of two binary fac-
tors: the presence (+) or absence (−) of memory constraints
mc (M) and the presence of task-specific, non-perceptual un-
certainty in the form of separate (+) or shared (−) percep-
tual acuity parameters across tasks (A), where in the case of
shared parameters: αw = αd . We also considered separate
response rule parameters β for word learning and discrimina-
tion but found that the improvements were only minimal.

The models were fitted to the data by minimizing the prod-
uct of six separate error terms. For each group of L1 speakers
(Mandarin vs. Korean), we calculated the root mean squared
error (RMSE) between model predictions and experimental
results, resulting in three separate error terms for (i) overall
discrimination accuracy across trial types [disc.], (ii) overall
word learning accuracy across trial types [w.l.], and (iii) word
learning accuracy across blocks and trial types [w.l.b.]. For
each of the four models, Table 1 shows the RMSE for these
three scores (averaged across Korean and Mandarin speak-
ers) and their sums [all]. Column [n.p.] indicates the fitted
model’s number of free parameters.

The necessity of separate acuity parameters

Pajak et al. (2016)’s main finding was that the difference in
accuracy between tasks was mediated by similarity. In other
words, performance takes a greater hit from increased per-
ceptual similarity in the word learning task compared to dis-
crimination. The study also found that L1-specific perceptual
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Figure 3: Figure (a) shows how the M−A+ model fails to account for the time course of learning. Figure (b) and (c) show
comparisons of the M+A+ model to L1 Korean speakers and L1 Mandarin speakers. Error bars indicate standard errors.
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Figure 4: Results for the M−A− model (top) and for the
M−A+ model (bottom; both Korean only; results are quali-
tatively similar for Mandarin speakers)

advantages that are manifest in the discrimination task can-
not be utilized in word learning. Model variants M−A− and
M+A−, missing the additional acuity parameter αw, were not
able to account for these observations. Figure 4 (top) illus-
trates this point by showing overall results for Korean speak-
ers. One key observation for the M−A− model is that, when
sharing a single perceptual acuity parameter between the two
tasks, the original pattern of findings reverses and the dis-
crimination model performs worse than the word learning
model.3 The reasons for this are twofold. All other things
being equal, there is more uncertainty in the generative pro-
cess for discrimination (see Equation 7 and 8) than there is
in word learning. In discrimination, subjects need to infer
the phonetic form of three auditory stimuli, compared to a

3Depending on how model fits are quantified it may also be pos-
sible to fit the discrimination results very well but overestimate accu-
racy on the word learning task. Critically, however, discrimination
accuracy will always be lower than word learning accuracy in the
M−A− model.

single stimulus in word learning. Moreover, the word learn-
ing model can profit from additional information in the form
of label/referent representations, gradually sharpening over
the course of learning. The fact that perceptual uncertainty
alone (in the form of a shared acuity parameter across mod-
els) cannot account for the superiority of discrimination per-
formance over word learning suggests that word learning is
influenced by additional sources of uncertainty. The bottom
of Figure 4, which depicts results for the M−A− model, illus-
trates that adding an additional phonological acuity parame-
ter that is specific to word learning is sufficient to account for
both discrimination as well as word learning results.

Accounting for the time course of word learning

In Pajak et al. (2016), word learning performance only im-
proved over a certain number of trials, resulting in learning
curves to asymptote after roughly the second learning block.
Reproducing this pattern while simultaneously accounting for
the results presented above was an important aspect of our
modeling efforts. While model M−A+ provides an almost
ideal fit to aggregate results from discrimination and word
learning (see Figure 4), underlining the importance of incor-
porating acuity factor A into the model, it fails to capture the
time course of learning (see Figure 3a).

The only model that fit the entire range of empirical find-
ings was the M+A+ model. Figure 2 shows that the model
is a good fit, both qualitatively as well as quantitatively, to
aggregate accuracy scores for both Korean and Mandarin L1
speakers. In particular, simulated data successfully reproduce
the lack of L1-specific advantages in word learning compared
to discrimination. Figures 3b and 3c show that the added
memory constraint allows the model to better account for the
shape of the learning curve. Models without this component
are not able to reproduce this pattern. Table 1 further shows
that adding such memory constraints also slightly improves
fits to the aggregate word learning data [w.l.] compared to
the same model where they are absent.
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Discussion
Recent work by Pajak et al. (2016) suggests that the difficulty
of learning label/referent associations for similar-sounding
words is a general feature of learning rather than a develop-
mental stage unique to infancy. In working towards a com-
putational theory that could account for this phenomenon,
we developed a probabilistic model capable of learning la-
bel/referent pairs while at the same time inferring the label’s
phonetic form. We fitted and compared four versions of the
model to data from Pajak et al. (2016), contrasting different
factors that are thought to influence performance.

We found that, besides structural differences in the way the
generative models for word learning and for discrimination
are set up, a single multiplicative factor operating on percep-
tual uncertainty was sufficient to account for the major differ-
ences between perceptual discrimination and word learning.
A second additional factor, representing long-term memory
constraints, was only necessary to account for the time course
of learning.

Task-related sources of uncertainty
Conceptually, the acuity factor combines sources of uncer-
tainty unique to the word learning task, such as attention to
the referent stimulus and the encoding of label/referent exem-
plars over the course of learning. An interpretation broadly
consistent with our model and with previous work (Stager
& Werker, 1997; Mattys & Palmer, 2015) is that, although
originating from post-perceptual sources, the locus of this
added uncertainty is perception itself, operating through low-
ering attention to phonetic detail. On this view, the model’s
discrimination acuity parameter can be interpreted as rep-
resenting various sources of perceptual uncertainty, ranging
from the transduction of the speech signal at the periphery
to phoneme recognition. Word learning-specific sources of
uncertainty can be interpreted as a multiplicative factor on
perceptual uncertainty, which, multiplied together, constitute
the model’s word learning acuity parameter. This added fac-
tor also accounts for the finding that L1-specific perceptual
advantages cannot be utilized in word learning. The overlap
of highly-similar word pairs in perceptual feature space is so
large that potential advantages along the length and place fea-
ture dimensions are washed out.

Another important insight comes from models that lack
this separate acuity parameter, which suggest that the dis-
crimination is actually harder than word learning. This makes
sense when considering that the generative model for the dis-
crimination task must infer the phonetic form of three stimuli
instead of a single stimulus. As a consequence, perceptual
uncertainty affects the discrimination task more severely. In
the absence of other factors that independently operate on the
generative model for word learning, this leads to relative per-
formance benefits in the word learning task.

Memory constraints
While distinguishing between two major sources of uncer-
tainty might alone be sufficient to account for time-averaged

results, it is not enough to account for the time course of
learning in Pajak et al. (2016), which showed that learning
stagnates after the second training block. The fact that these
performance deficits are specific to word learning suggests
that they are due to memory-related processes. We found
that incorporating capacity constraints in the form of an up-
per bound on memory was necessary to fully account for the
observed effects.

Conclusion
Our model is a first step in addressing the question of what are
the factors that make the learning of similar-sounding words
hard. In particular, the model is consistent with the original
explanation given by Stager and Werker (1997); Werker et al.
(2002). According to this view, word learning is an inherently
hard information processing problem and the difficulties of
learning similar-sounding words are a consequence of opti-
mally distributing limited resources across the perceptual and
memory-related processes involved in learning.
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Knowledge of Cross-Linguistic Semantic Diversity Reduces Essentialist Beliefs
about Categories

Kevin Holmes
Colorado College

Erin Luby
Colorado College

Sarah Husney
Colorado College

Abstract: The words of different languages partition the world in strikingly different ways. Yet many people are unaware of
such differences, believing that some of the words of their native language pick out discrete categories based in nature. We
investigated whether knowledge of cross-linguistic semantic diversity—putatively inherent to bilingualism—can reduce such
essentialist beliefs. In three experiments, we found (a) that bilinguals were less likely than monolinguals to judge membership
for animal categories in essentialist terms, (b) that explicit exposure to cross-linguistic semantic diversity, independent of
bilingualism, yielded similar effects, and (c) that this manipulation reduced essentialist beliefs about social categories as well.
Together, our findings suggest that learning about how languages differ in their semantic systems—a form of metalinguistic
knowledge—can lead people to think about categories more flexibly. Implications for research on language and thought, and
for ameliorating the negative consequences of social essentialism, are discussed.
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Abstract 

We examined decisions based on verbal probability phrases, 
such as "small chance," "likely," or "doubtful" (we call these 
phrases verbal probabilities). Verbal probabilities have 
communicative functions called directionality and can be 
categorized into positive (e.g., "likely" or "probable") or 
negative (e.g., “unlikely,” “doubtful”) phrases in terms of 
their directionality. Previous studies have shown that the 
directionality of phrases affects decisions. Although such 
decisions seem biased, we argue that they are not. We 
hypothesize that since a speaker has the option to choose the 
directionality used during communication, the selected 
directionality becomes relevant information to a decision 
maker, and is taken into account in making decisions. We 
modeled these processes using the Decision by Belief 
Sampling (DbBS) model. We found that the observed data 
could be well explained by our hypothesis, and that the DbBS 
model could be one of the best potential models for decisions 
based on verbal probability information. 

Keywords: Verbal probabilities; decisions based on verbal 
probabilities; directionality; decision by belief sampling. 

Introduction 
In the research on judgment and decision making, topics 
pertaining to probabilities, such as probability judgment and 
decisions based on probability information, have been some 
of the most studied. In the present study, we shall discuss 
decision making based on different kinds of probability 
information. 

Probability information can be expressed in various forms. 
The most basic of these expressions is numerical probability, 
such as “20%.” Probability information is also expressed 
with verbal phrases such as "it is likely," "it is doubtful," or 
"it is certain."1 In the present study, we examined decisions 
based on verbal probabilities and analyzed how the 
difference in expressions affected cognitive processes. 

Particularly, we focus on the communicative functions of 
verbal probabilities. Teigen and Brun (1995) showed that 
verbal probabilities have communicative functions, called 

                                                             
1  Hereafter, we call verbal probability phrases verbal 

probabilities. 

directionality, which change the listeners' focus. Verbal 
probabilities can be categorized into positive or negative 
phrases in terms of their directionality. Positive phrases (e.g., 
"small chance," "likely," "certain") make listeners focus on 
the occurrence of uncertain events. In contrast, negative 
phrases (e.g., "unlikely," "doubtful," "uncertain") make 
listeners focus on the non-occurrence of uncertain events. 
Previous studies have shown that the directionality affected 
decision making. Here, we introduce one of the most 
intriguing studies, the "Marianne study" (Study 1) in Teigen 
and Brun (1999). This experiment involved a task 
describing the probable effectiveness of a treatment with 
either a positive phrase ("there is some possibility that the 
treatment will be helpful in her case") or a negative phrase 
("it is quite uncertain that the treatment will be helpful in 
her case"). Participants rated how likely they would 
recommend this treatment to a patient (Marianne) based on 
these phrasings, using a 4-point scale (1: absolutely yes, 4: 
absolutely not). Numerical translations for positive and 
negative phrases answered by different participants were 
31.7% and 31.3%. Based on these results, the two phrases 
should have conveyed highly similar degrees of certainty for 
the effectiveness of treatment. However, the participants 
gave highly different decision ratings depending on the 
probability expressions. Mean ratings for positive and 
negative phrases were, 1.78 and 2.78, respectively (when 
scores of 1 or 2 were jointly regarded as "Yes" decisions, 
the proportions of "Yes" decisions for the two phrases were 
90.6% and 32.4%, respectively). 

Ostensibly, the results in Teigen and Brun (1999) may 
have suggested a decision bias produced by the difference in 
probability expression, perhaps another form of the framing 
effect (Teigen & Brun, 2003). In the following sections, we 
shall claim that the effect of different probability 
expressions on decisions is not a decision bias, and that such 
decisions derive from a decision maker's inferences 
regarding background information based on speaker’s 
choice of directionality. Furthermore, we model this 
decision processes using a Decision by Belief Sampling 
model. 
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Speaker’s choice of directionality and listener’s 
inferences in communication 
In communication, speakers will select an expression 
according to situational factors. McKenzie and Nelson 
(2003) and Sher and McKenzie (2006, 2008) argued that a 
speaker's reference point affects her/his choice of expression 
when conveying quantitative information, such as the 
amount of water in a glass (e.g., "half full" or "half empty"). 
In a task examining this phenomenon, it was found when 
the glass (a 500ml capacity) had 250ml of water, 
participants used the description of “half full” when the 
glass had previously 0ml of water more often than when the 
glass had previously 500ml of water. It was also found that 
a listener could infer the speaker's original reference point 
(e.g., the amount of water originally in the glass before 
more was added or removed) based on the selected 
expression. Honda and Yamagishi (2017) found analogous 
tendencies in communication using verbal probabilities. 
Imagine trying to convey that an uncertain event had a 50% 
chance of occurrence using verbal probabilities. Honda and 
Yamagishi (2017) showed that when a speaker’s prior 
expectation of the event occurrence was lower (higher) than 
50%, they tended to prefer positive (negative) phrases. 
Honda and Yamagishi (2017) also found that listeners could 
infer the speaker’s expectation based on the phrases used. 
When a positive phrase was presented, listeners tended to 
infer that speaker's prior expectation of the probability was 
lower than when a negative phrase was presented. 

These findings indicate that the selected phrase implicitly 
conveys important information for decision making. For 
example, given that a speaker follows the above regularity, 
50% conveyed by a positive (negative) phrase implies "good 
(bad)" situation relative to the speaker’s expectation. Thus, 
the findings of Teigen and Brun (1999) (i.e., participants 
tended to recommend a treatment conveyed by a positive 
phrase more than one conveyed by a negative phrase) 
suggest that in making decisions, participants took into 
account the relevant information (i.e., relatively “good” or 
“bad” situations) implied by the directionality chosen.  

Model of decision making based on verbal 
probabilities: Decision by Belief Sampling 
As described above, previous findings suggest that different 
phrases implicitly convey information about the relative 
status of the decision situation, and people utilize this 
information in making decisions. In the present study, we 
model such decision processes based on the Decision by 
Sampling model (DbS, Stewart, 2009; Stewart, Chater, & 
Brown, 2006). In the DbS model, subjective attribute values 
are constructed by a series of binary, ordinal comparisons to 
a sample of attribute values that reflect the immediate 
decision context and real-world distribution. The subjective 
value for a target is calculated as follows: 

 
(1) 

where r (0 ≤ r ≤ 1) denotes the subjective value for a target, 
and R denotes the rank of the target within the decision 

sample of N items. In this model, if the decision sample 
differs, r varies in the relationship between R and the 
decision sample. Imagine the subjective value for 40%. 
When decision samples are 10%, 20%, 30%, 30%, and 50%, 
the subjective value is r = (5-1)/(6-1) = 0.8. In contrast, in 
decision samples of 20%, 30%, 70%, 80%, and 90%, the 
subjective value is r = (3-1)/(6-1) = 0.4. That is, even when 
the target has the same attribute value, the subjective value 
varies depending on decision samples. Previous studies have 
shown that decision samples affect an evaluation of the 
target value and the evaluation for the same target varies 
depending on the samples (e.g., Stewart, Chater, Stott & 
Reimers, 2003; Stewart, Reimers, & Harris, 2014). 

In the present study, we propose a decision model, 
Decision by Belief Sampling (DbBS), based on the DbS 
model. Figure 1 summarizes DbBS. Here, we introduce 

 
Figure 1. Summaries of DbBS. (A) Probabilistic belief 
regarding an uncertain event. This is represented by the 
density function of the beta distribution. (B) Mean of 
belief. (C) Entropy of belief. (D) Skewness of belief. (E) 
Subjective value in DbBS. This is represented with the 
cumulative distribution function of the beta distribution. 
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basic two assumptions: Firstly, the decision maker (DM) 
refers to memory samples in making decisions, and these 
samples represent the DM’s probabilistic belief of event 
occurrence. For example, imagine the probable success rates 
of medical procedures for both a serious disease and 
appendicitis, respectively. Generally, people believe that the 
probability of success in treating a serious disease is low 
compared to the probable success of treating appendicitis 
(Honda & Matsuka, 2014). We assume that the DM refers to 
memory samples according to her/his probabilistic belief. 
We represent these beliefs using beta distributions. Figure 1 
(A) shows four examples of a DM's subjective beliefs 
regarding uncertain events. We can discuss the features of 
probabilistic belief based on its statistical characteristics 
such as mean, entropy (i.e., uncertainties about successes or 
failures), and skewness of beta distributions (see Figure 1 
(B), (C), and (D)). Example 1 represents the belief such that 
an event will occur or not with high uncertainty and without 
skewness. Likewise, in Examples 2 and 4, the DM has the 
belief such that the event will happen with low or high 
probability with relatively low uncertainty and positive or 
negative skewness. Example 3 represents the belief that an 
event has around 50% of occurrence with low uncertainty 
and without skewness. Thus, beta distributions can represent 
extensive kinds of beliefs about uncertain events. Secondly, 
we assume that a subjective value for a target is constructed 
by the comparison between the target value and memory 
samples. Figure 1 (E) shows subjective values calculated by 
the DbBS model (i.e., equation (1)). Given that beta 
distributions represent beliefs about uncertain events, 
subjective values correspond to values in the cumulative 
distribution functions (CDF) of beta distributions. As is 
apparent, depending on the beliefs, the subjective values 
differ even for the same target probability. One of the most 
notable features in the DbS (or DbBS) model is that 
subjective values are highly affected by the skewness of 
distributions in decision (or memory) samples (Brown & 
Matthews, 2011). Therefore, subjective values highly differ 
between beliefs with high probability and those with low 
probability (see Examples 2 and 4 in Figure 1). 

We believe that the DbBS model can clarify the 
following points regarding decisions based on verbal 
probabilities. First, the DbBS model can clarify the implicit 
assumptions (i.e., beliefs about uncertain events) people 
have in making decisions. Although Honda and Yamagishi 
(2017) showed that listeners have different assumptions 
depending on the directionality of verbal probabilities, it 
remains an empirical question whether people have such 
assumptions in making decisions. Using the DbBS model, 
we can examine this question. Second, the DbBS model will 
provide a new perspective on phenomena regarding 
decisions based on verbal probabilities. For example, we 
can discuss whether the influence of directionality on 
decisions reflects decision bias.  

According to previous findings (Honda & Yamagishi, 
2017) and the assumptions of the DbBS model, our 
hypothesis is as follows: DMs refer to different memory 

samples depending on the directionality of verbal 
probabilities because the selected directionality become 
relevant information to DMs. In particular, DMs refer to 
memory samples with lower probability when presented 
with positive phrases than when presented with negative 
phrases. As a result, decision patterns differ between 
positive and negative phrases. For example, even when 
DMs think that a probability of an uncertain event is 30% 
when presented with a verbal probability, the subjective 
value for the probability will be higher when presented with 
a positive phrase than a negative phrase, because DMs have 
lower memory samples (see Examples 2 and 4 in Figure 1 
(A) and (E)).  

Behavioral experiment 
In order to examine the above hypothesis, we conducted 
behavioral experiments about decisions based on verbal 
probabilities. 

Method 
Participants Japanese undergraduates (N = 60) participated 
as part of their course work.  
Tasks, materials, and procedure We conducted two tasks: 
a decision task and a task measuring the membership 
function for verbal probabilities. The decision task was 
based on the Marianne study (Study 1) in Teigen and Brun 
(1999). The cover story was as follows:  

Your friend has periodically been suffering 

 
Table 1. Verbal probabilities used in the experiment. 

Verbal probabilities Mpeak SDpeak 
positive phrases   
It is almost certain that * 0.957 0.037 
There is a good chance that * 0.779 0.126 
It is possible that * 0.418 0.167 
It is likely that * 0.540 0.164 
There is a small possibility that * 0.346 0.129 
There is some possibility that *  0.232 0.116 
There is a slight hope that *  0.121 0.115 
There is a tiny hope that * 0.074 0.097 
negative phrases   
There are minor concerns that * 0.602 0.167 
It is quite doubtful that * 0.494 0.188 
It is not certain that * 0.532 0.165 
It is uncertain whether * 0.466 0.178 
It is quite unlikely that * 0.433 0.141 
There is little hope that * 0.177 0.088 
It is unlikely that * 0.137 0.103 
It is almost impossible that * 0.027 0.038 

*(the treatment will be helpful in that case.) 
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from migraine headaches, and is now 
considering a new method of treatment based 
on acupuncture. The treatment is rather costly 
and long-lasting. The friend asks if you think 
the friend should give it a try. Fortunately, you 
happen to know a physician with good 
knowledge of migraine treatment, whom you 
can ask for advice. 

Participants were presented with a verbal probability by the 
physician (e.g., “It is likely that the treatment will be helpful 
in that case.”). Considering this information, participants 
were asked to rate how much they would recommend that 
their friend try this treatment, using a scale that was labeled 
"do not recommend at all" on the far left and "recommend 
very much" on the far right. This rating scale contained 101 
points (0 - 100)2. 

We also measured membership function of verbal 
probabilities based on Budescu, Karelitz, and Wallsten 
(2003). Participants were presented with a single verbal 
probability and 11 probability values (1%, 10%, 20%, ..., 
90%, and 99%) simultaneously and asked to rate the degree 
(i.e., membership value) to which the verbal probability 
describes each probability, using a scale that was labeled 
"not at all" on the far left and "absolutely" on the far right. 
Therefore, this task measures the degree of certainty 
attributed to a verbal probability. This rating was recorded 
with 101 points (0-100). 

For these two tasks, we used eight positive and eight 
negative phrases based on Honda and Yamagishi (2017). 
Table 1 shows the sixteen phrases used in the experiment.  

We conducted the two tasks individually using a 
computer. In both tasks, a single phrase was randomly 
presented and participants answered the question. In the 
decision task, participants answered the question for each 
phrase once. When measuring membership function, 
participants answered the question for each phrase twice. 

Results and discussion 
Numerical representation of verbal probabilities 
According to Wallsten, Budescu, Rapoport, Zwick, and 
Forsyth (1986), we assumed that the degree of certainty 
attributed to a verbal probability could be represented with a 
membership function. Peak (the probability with the highest 
membership value) is one of the most discriminative 
features of membership functions (Budescu et al., 2003). 
Accordingly, we assumed that the peak of the membership 
function represented the degree of certainty for a verbal 
probability felt by a participant. Since participants rated 
membership values twice for each phrase, the mean of the 
membership values was regarded as the membership value 
for the phrase. Table 1 shows means and SDs of peaks for 
16 phrases. 
Decision ratings for aggregated data First, we examined 
the aggregated data. Figure 2 shows the relationship 

                                                             
2 In the following analyses, the ratings were mapped onto 0-1 

scale. 

between the mean degrees of certainty for phrases (peaks of 
the membership function) and decision ratings for 8 positive 
and 8 negative phrases. As is apparent, even though positive 
and negative phrases were perceived to be analogous in the 
degree of certainty, decision ratings differed such that 
participants tended to answer with higher ratings for 
positive phrases. Therefore, the findings of Teigen and Brun 
(1999) were essentially replicated in the present study. 
Model-based analyses for individual data Next, we 
analyzed the individual data using the DbBS model. In our 
DbBS model, we assumed that subjective value of certainty 
conveyed by a phrase corresponds to the CDF in the beta 
distribution. Therefore, we estimated two parameters (α and 
β) of the beta distribution whose CDF best explains the 
decision ratings. The two parameters were estimated by a 
grid search in the range of 0.1 and 10, with increments of 
0.1. That is, we estimated the parameter using 10000 sets. 
The parameter set with which the model showed the highest 
r2 between model predictions and decision data was 
regarded as the best model. We searched the best parameter 
sets for positive and negative phrases, respectively, for each 
participant. 

We found that the DbBS model generally explained the 
observed decisions well. The medians of r2s between model 
predictions and observed data for 60 participants were 0.77 
and 0.66 for positive and negative phrases, respectively. In 
the following analyses, when the model fittings in both 
positive and negative phrases for a participant showed more 
than 0.3 in r2, we used her/his data. With this criterion, we 
used data from 45 out of 60 participants (75.0%). Figure 3 
shows five examples of decision ratings and model fittings 
for positive and negative phrases. 

 
Figure 2. Relationship between subjective degree of 
certainty for phrases (peak of the membership function) 
and decision rating. 

560



Next, we examined participants' memory samples in 
detail with the following procedures. First, we clustered 
shapes of beta distributions using probability densities. In 
particular, patterns of probability densities3 for 45 (number 

                                                             
3 In this analysis, we used density values for 99 probabilities 

(1%, 2%, 3%, …, 97%, 98%, and 99%). 

of participants) * 2 (positive and negative phrases) = 90 data 
sets were clustered using the K-Means method. We used 
scree plots for the within-cluster sum of squares (WSS) for 
each cluster in order to determine the number of clusters 
(see Figure 4(A)). We adopted three clusters for the 
following two reasons. Firstly, the reduction of WSS was 
relatively sharp with up to three clusters. Secondly, since 

 
Figure 3. Examples of observed decision rating (points) and model fitting (line) for five participants. (A) shows data for 
positive phrases. (B) shows data for negative phrases. 

 

 
Figure 4. Summaries of model-based analyses. (A) Scree plot for within-cluster sum of squares (WSS) in K-Means 
clustering. (B) Three clusters on decision sample. The black line denotes mean of cluster. The grey line denotes individual 
data. (C), (D), and (E) show distributions of statistics (mean, entropy, and skewness) in each cluster. (F) Proportions of 
data in positive and negative phrases that were categorized into each cluster. 
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there were at least 13 data for every cluster, we can assume 
that each cluster does not necessarily represent rare memory 
samples. 

Figure 4 (B) shows three clusters of memory samples. 
The black line denotes mean of cluster, and the grey line 
denotes individual data. Using individual data, we 
calculated the mean, entropy, and skewness. Figure 5 (C), 
(D), and (E) show distributions of these statistics in each 
cluster. Figure 4 (F) shows the proportions of data that were 
categorized into one of the three clusters by positive or 
negative phrase. The decision patterns were explained with 
the different assumption between positive and negative 
phrases. When presented with positive phrases, decision 
patterns were well explained with the assumption that 
participants referred to memory samples with low 
probability (see cluster 1 in Figure 4). In contrast, for the 
negative phrases, decision patterns were explained under the 
assumption that participants referred to samples with high 
probability (see clusters 2 and 3 in Figure 4).  

Taken together, we found that the DbBS model generally 
explained decisions based on verbal probabilities. It was 
also found that decision patterns were well explained under 
the different assumptions between positive and negative 
phrases. For positive (negative) phrases, decision patterns 
were well explained under the assumption that participants 
referred to memory samples with low (high) probability. 
Therefore, our hypothesis was corroborated.  

General discussion 
In the present study, we examined decisions based on verbal 
probabilities. Particularly, we examined whether the DbBS 
model explained the decision processes. We found that the 
DbBS model explained the decision patterns well.  

Observed differences in memory samples were essentially 
in accord with our hypotheses based on previous findings 
about the speaker’s choice of directionality in 
communication (Honda & Yamagishi, 2017). As previously 
noted, decisions affected by directionality seem like 
evidence of decision bias because people make different 
decisions even when positive and negative phrases convey 
analogous probabilities. Our present findings answer the 
question, “Why are people affected by directionality when 
making decisions?” Our answer is: people take into account 
the information conveyed by the selected directionality, and 
as a result refer to different memory samples. Therefore, 
decisions affected by directionality are not examples of 
decision bias, but decisions according to different memory 
samples. 

Acknowledgments 
This research was supported by Grants-in-Aid for Scientific 
Research (A, 16H01725; B, 25280049; B, 16H02835), 
Innovative Areas (26118002; 16H06569), and Young 
Scientists (B, 16K16070). 

References  
Brown, G., & Matthews, W. (2011). Decision by Sampling 

and Memory Distinctiveness: Range Effects from Rank-
Based Models of Judgment and Choice. Frontiers in 
Psychology, 2, 299. 

Budescu, D. V, Karelitz, T. M., & Wallsten, T. S. (2003). 
Predicting the directionality of probability words from 
their membership functions. Journal of Behavioral 
Decision Making, 16, 159–180. 

Honda, H., & Matsuka, T. (2014). On the role of rarity 
information in speakers’ choice of frame. Memory and 
Cognition, 42, 768–779. 

Honda, H., & Yamagishi, K. (2017). Communicative 
functions of directional verbal probabilities: Speaker’s 
choice, listener’s inference, and reference points. The 
Quarterly Journal of Experimental Psychology, 70, 2141-
2158 

McKenzie, C. M., & Nelson, J. (2003). What a speaker’s 
choice of frame reveals: Reference points, frame selection, 
and framing effects. Psychonomic Bulletin & Review, 10, 
596–602. 

Sher, S., & McKenzie, C. R. M. (2006). Information 
leakage from logically equivalent frames. Cognition, 101, 
467–494. 

Sher, S., & McKenzie, C. R. M. (2008). Framing effects and 
rationality. In N. Chater & M. Oaksford (Eds.), The 
probabilistic mind: Prospects for Bayesian cognitive 
science (pp. 79–96). Oxford: Oxford University Press. 

Stewart, N. (2009). Decision by sampling: The role of the 
decision environment in risky choice. The Quarterly 
Journal of Experimental Psychology, 62, 1041–1062. 

Stewart, N., Chater, N., & Brown, G. D. A. (2006). 
Decision by sampling. Cognitive Psychology, 53, 1–26. 

Stewart, N., Chater, N., Stott, H. P., & Reimers, S. (2003). 
Prospect relativity: How choice options influence decision 
under risk. Journal of Experimental Psychology: General, 
132, 23–46. 

Stewart, N., Reimers, S., & Harris, A. J. L. (2014). On the 
origin of utility, weighting, and discounting functions: 
How they get their shapes and how to change their shapes. 
Management Science, 61, 687–705.  

Teigen, K. H., & Brun, W. (1995). Yes, but it is uncertain: 
Direction and communicative intention of verbal 
probabilistic terms. Acta Psychologica, 88, 233–258.  

Teigen, K. H., & Brun, W. (1999). The Directionality of 
Verbal Probability Expressions: Effects on Decisions, 
Predictions, and Probabilistic Reasoning. Organizational 
Behavior and Human Decision Processes, 80, 155–190.  

Teigen, K. H., & Brun, W. (2003). Verbal probabilities: a 
question of frame? Journal of Behavioral Decision 
Making, 16, 53–72. 

Wallsten, T. S., Budescu, D. V, Rapoport, A., Zwick, R., & 
Forsyth, B. (1986). Measuring the vague meanings of 
probability terms. Journal of Experimental Psychology: 
General, 115, 348–365. 

562



Semantic diversity, frequency and learning to read: A mini-mega study with
children

Yaling Hsiao
University of Oxford

Kate Nation
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Abstract: Children who read more tend to be better readers than children who read less. Reading exposure captures not only
the number of times words are experienced but also the breadth of the contexts words appear in. Using a large children’s corpus
of written language, we quantified the former as word frequency and the latter as Semantic Diversity (SemD) (Hoffman et
al., 2013). SemD was indexed using Latent Semantic Analysis to calculate the degree of semantic dissimilarity between the
contexts in which each appeared. We selected 300 words that varied in SemD for a visual lexical decision and naming task with
9-year-old children (N=114). Results showed that both frequency and SemD were associated with performance, independently
accounting for variation in speed and accuracy. Those words high in frequency and high in SemD were read more efficiently.
These findings show that factors beyond frequency are important in determining children’s word reading.
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Abstract 

Attempts to connect individual differences in statistical 
learning with broader aspects of cognition have received 
considerable attention, but have yielded mixed results. A 
possible explanation is that statistical learning is typically 
tested using the two-alternative forced choice (2AFC) task. 
As a meta-cognitive task relying on explicit familiarity 
judgments, 2AFC may not accurately capture implicitly 
formed statistical computations. In this paper, we adapt the 
classic serial-recall memory paradigm to implicitly test 
statistical learning in a statistically-induced chunking recall 
(SICR) task. We hypothesized that artificial language 
exposure would lead subjects to chunk recurring statistical 
patterns, facilitating recall of words from the input. 
Experiment 1 demonstrates that SICR offers more fine-
grained insights into individual differences in statistical 
learning than 2AFC. Experiment 2 shows that SICR has 
higher test-retest reliability than that reported for 2AFC. Thus, 
SICR offers a more sensitive measure of individual 
differences, suggesting that basic chunking abilities may 
explain statistical learning. 
 

Keywords: statistical learning; chunking; language; language 
acquisition; implicit learning; learning; memory, serial recall; 
individual differences 

Introduction 
Statistical learning is understood as the process by which 
individuals implicitly track the distributional regularities in 
an input, leveraging recurring statistical patterns to facilitate 
cognitive processing (see Frost, Armstrong, Siegelman & 
Christiansen, 2015, for a review). In recent years, validating 
the theoretical link between the behavior observed in lab-
based studies of statistical learning and broader aspects of 
cognition—such as working memory, language processing, 
and social learning—has garnered extensive interest. 
However, Romberg and Saffran (2010) noted that although 
typical tests of statistical learning demonstrate that 
individuals appear sensitive to statistical structure, such 
evidence on its own provides little insight into the process 
of learning, and the nature of the representations that 

consequently arise. The lack of a mechanistic understanding 
of statistical learning was further suggested to complicate 
attempts to tie this ability to other aspects of cognition, such 
as language acquisition.  

Indeed, endeavors to relate individual variation in 
statistical learning to other facets of cognitive processing 
have yielded mixed results. For example, whereas some 
findings report that statistical learning abilities significantly 
correlate with verbal working memory and language 
comprehension (Misyak & Christiansen, 2012), others find 
no reliable relationship with language skills (Siegelman & 
Frost, 2015). These conflicting reports could suggest either 
that statistical learning is not meaningfully related to other 
aspects of cognition, or alternatively, that the measures used 
to assess statistical learning may not capture its full extent 
nor the scope of individual variation in this behavior. 

In many studies, statistical learning is typically tested 
using a two-alternative forced-choice task (2AFC), in which 
learners are presented with pairs of stimuli and are asked to 
identify which of the two items were present during 
familiarization. As such, a possible limitation of the 2AFC 
task is that it is inherently meta-cognitive in nature, 
requiring the participant to make an explicit response (a 
button press) based on a “gut feeling” about implicitly 
acquired statistical regularities. Thus, as suggested by 
Franco, Eberlen, Destrebecqz, Cleeremans and Bertels. 
(2015), 2AFC may therefore more accurately reflect explicit 
decision-making processes rather than the actual underlying 
statistical learning mechanisms. Relatedly, although the 
2AFC task is assumed to serve as an accurate proxy for the 
learning of statistical structure, the strategy for successful 
performance on this task may differ from that required for 
successfully detecting statistical regularities in the input 
stream (Siegelman, Bogaerts, Christiansen & Frost, 2017). 
Lastly, even though 2AFC may yield useful mean estimates 
of performance at the group level, the additional cognitive 
complexity associated with 2AFC performance is likely to 
introduce error variance such that individual scores may not 
optimally reflect individual differences in statistical learning 
ability (Siegelman & Frost, 2015).  
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Because of these limitations, a unified theoretical 
framework that situates statistical learning within broader 
cognitive processing has thus far remained out of reach. In 
the current paper, we propose a new measure that implicitly 
tests statistical learning. Our novel task aims to offer more 
direct insights into what is being learned in statistical 
learning-based experiments, while at the same time aligning 
such learning with the wider learning and memory literature. 

Recent theoretical considerations suggest that basic 
abilities for chunking may subserve many aspects of 
learning and memory, particularly within the domain of 
language processing (Christiansen & Chater, 2016). Our 
perspective builds on classic memory studies demonstrating 
that the number of items that can be held in memory 
significantly increases when successfully chunked into 
larger units (Miller, 1956; Cowan, 2001). This underscores 
the potential contribution of chunking processes to the 
successful learning and retention of new material. For 
example, when tasked with remembering the novel 
sequence of letters ailcpaphrtleca, preserving the letters in 
memory poses a considerably greater challenge than 
successfully recalling the same set of letters chunked into 
larger coherent units, such as in the sequence catapplechair. 
Due to our extensive experience with language, the same set 
of letters can be more easily retained by exploiting our 
ability to chunk them into words (i.e. “cat”, “apple”, and 
“chair”), which in turn can subsequently be deconstructed to 
retrieve the individual letters. Our novel task takes 
advantage of similar chunking processes.  

Here, we leverage the general capacity for chunking in a 
statistically-induced chunking recall task (SICR) as a novel 
implicit measure of statistical learning. We refashion a 
central tool in the chunking and memory literature—serial 
recall (e.g., Miller, 1956)—for use in statistical learning-
based tasks. Subjects are exposed to six trisyllabic nonsense 
words using the classic Saffran, Newport and Aslin (1996) 
paradigm. After training, participants are aurally presented 
with syllables from the input and asked to recall them out 
loud. Critically, the experimental items in our task consisted 
of the concatenation of two words from the input language 
(Word A + Word B), and control items consisted of the 
exact same six syllables in a random configuration, like in 
the example above. Our hypothesis is that if subjects have 
statistically chunked the syllables in the input stream into 
words, then recalling a string consisting of two words 
should yield more accurate recall of the presented syllables 
than recalling the same set of syllables in a random order. 
Crucially, our task is scored on a syllable-by-syllable basis 
rather than assigning a binary 0 or 1 score as in the 2AFC 
task, enabling the calculation of subjects’ sensitivity to 
trigrams and serial position. This yields a richer set of 
performance data than the 2AFC task, thus providing a more 
detailed picture of each subject’s individual sensitivity to 
different kinds of information in the input.  

In the current paper, we conducted two experiments to 
determine the efficacy of SICR in capturing statistical 
learning behavior, and the formation of the word-level 

representations from accrued statistics. In Experiment 1, we 
compare 2AFC performance to SICR, showing that the 
latter provides a useful, memory-based measure of implicit 
statistical learning. To be able to relate statistical learning to 
specific aspects of language and cognition through 
individual differences studies requires a performance 
measure that is stable across time. Because recent research 
has cast doubts on the reliability of the 2AFC task in the 
context of the classic Saffran-style paradigm (Siegelman, 
Bogaerts & Frost, 2016), we conducted a test-retest study of 
our SICR task in Experiment 2. We conclude with a 
discussion of the methodological and theoretical 
implications of SICR, and how future use of this task may 
help in establishing a definitive relationship between 
statistical learning and cognition more broadly. 
 

Experiment 1: Comparing statistically-induced 
chunking recall (SICR) with 2AFC 

Experiment 1 investigated whether chunking might account 
for the word-level representations gleaned in statistical 
learning experiments using the classic Saffran et al. (1996) 
paradigm. In addition to these theoretical considerations, we 
also sought to assess the methodological efficacy and 
sensitivity of both the established 2AFC task, and our novel 
SICR task in assessing statistical learning. Through 
exposure to the input, we predict that syllables that regularly 
co-occur in the input will be chunked into words, which 
should yield higher recall accuracy of the chunked words 
than the same syllables heard in a random order. 
 
Method 
Participants 69 native English-speaking undergraduates 
from Cornell University (34 females; age: M=19.78, 
SD=1.62) participated for course credit. 
 
Materials The input language consisted of 18 syllables (bi, 
bu, di, du, ga, ka, ki, la, lo, lu, ma, mo, pa, po, ri, ta, ti, to), 
combined into six trisyllabic words: kibudu, latibi, lomari, 
modipa, tagalu, topoka. Seventy-two randomized blocks of 
the six words were concatenated into a continuous speech 
stream using the MBROLA speech synthesizing software 
(Dutoit et al., 1996). Each syllable was approximately 200 
milliseconds long, separated by 75 milliseconds of silence.  

For the 2AFC task, six additional foil words were pseudo-
randomly generated, avoiding the reuse of transitional 
probabilities from the target words above: dikabi, kigala, 
lopadu, mamoti, polubu, tatori.  

The stimuli for the SICR task consisted of 24 six-syllable 
items. The twelve experimental items were composed of 
two adjacent words from the input (e.g., kibudulatibi), and 
the twelve corresponding foil items consisted of the same 
set of syllables in pseudorandom order (e.g., kibudulatibi → 
tidubibulaki), avoiding preexisting transitional probabilities 
from all other syllable combinations in the experiment. 
Additionally, 12 5-syllable practice items were included, 
which were constructed in the same manner as the 24 items 
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reported above, but using one full word and the first bigram 
of a second word. 

 
Procedure The experiment consisted of three distinct tasks. 
First, subjects were familiarized with the artificial language. 
To ensure active engagement, a cover task based on Arciuli 
& Simpson (2012) was administered. In addition to each of 
the six words in the experiment, three variants of each word 
containing a syllable repetition was included in the training 
stream (e.g., tagalu →  tatagalu, tagagalu, tagalulu). 
Participants were instructed to click the space bar when they 
noticed a repeated syllable. Each of the three variants of the 
words appeared 4 times, yielding 72 repetitions. In total, 
training lasted 11 minutes.  

After training, participants’ knowledge of the artificial 
language was tested using both the standard 2AFC task, and 
our SICR paradigm. The order of these two tasks was 
counterbalanced such that half of the subjects were given 
2AFC first, and half were given SICR first. In the 2AFC 
task, each of the 6 target words were aurally presented with 
one of the 6 2AFC foil words, and subjects were asked to 
report which of the two trigrams had been present during 
training. There were 36 2AFC trials in all, in which each 
target word appeared alongside each foil once.  

In the SICR paradigm, 12 five-syllable practice trials 
were administered prior to the 24 six-syllable items to 
familiarize subjects with the task, and to ensure that the 
amount of post-test exposure to the words would be the 
same regardless of whether subjects did 2AFC first, or SICR 
first. In this task, participants were told that we would be 
gauging their ability to recall the syllables from the 
experiment. Each item was aurally presented, after which 
subjects were prompted to recite back each syllable in the 
sequence to the best of their ability. Importantly, at no point 
in the experiment were subjects informed that they were 
partaking in a language experiment, nor was their attention 
directed to the presence of structure. 

 

Results and Discussion 
The mean accuracy of correctly choosing the word over the 
foil in the 2AFC task was 66% (M=.66, SD=0.13), which is 
significantly greater than chance, t(68)=11.11, p<.001. 
These results are comparable with other studies that utilize 
2AFC to assess statistical learning, which typically report 
performance within the range of 60% (Frost et al., 2015). 

Scoring for the SICR task was done on a syllable-by-
syllable basis, enabling analysis of both the overall strings, 
and the individual words composing the strings. When 
comparing the number of syllables accurately recalled for 
the experimental items (M=42.7, SD=10.68) to the number 
of syllables recalled for random items (M=31.19, 
SD=10.29), participants accurately recalled significantly 
more syllables for the experimental items than the random 
items, t(68)=13.85, p<.0001. A similar pattern was observed 
for trigram performance: participants accurately recalled 
significantly  more of  the  experimental  trigrams  (M=8.68,  

Figure 1: a) Average SICR performance. Participants recall 
significantly more syllables when the test items consist of 
two concatenated input words, and significantly more 
trigrams within the experimental six-syllable items. b) Serial 
position curves for experimental and random items. 
  
SD=4.25) than items consisting of random trigrams 
(M=3.58, SD=3.02), t(68)=13.72, p<.0001 (Figure 1a). 
Additionally, the serial position curves for the experimental 
and random items can be found in Figure 1b. These results 
confirm our hypothesis that through exposure to the 
distributional regularities in the input, individuals appear to 
have successfully chunked co-occurring syllables into larger 
units, and the formation of these word-level representations 
of the input leads to markedly better memory for 
experimental items.  
Interestingly, our analyses revealed no significant 
correlations between 2AFC and any of our SICR measures 
(r(67)=0.21, p=.084 for experimental items, and r(67)=0.18, 
p=.4 for experimental trigrams. For the score distributions 
of the two tasks, see Figure 2). However, this finding 
mirrors recent results by Franco et al. (2015), who also 
found no correlation between 2AFC accuracy and their 
Rapid Serial Auditory Presentation task (RSAP), a detection 
task intended to serve as a more implicit measure of 
auditory statistical learning. Similar to SICR, RSAP works 
by exposing subjects to an artificial speech stream 
composed of trisyllabic words, after which subjects were 
tasked with detecting a target syllable embedded within 
strings of target words from the training corpus. Unlike 
explicit measures like 2AFC, RSAP and SICR are implicit 
measures in which no reference is made to a desired 
discrimination, and thus may be more sensitive to the 
acquired statistical regularities, including information about  

 

 

a) 

b) 
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Figure 2: The distributions of SICR (experimental-random 
items), 2AFC scores as compared to chance, and syllable 
recall for experimental items. 

 
which the participant lacks awareness. Thus, 2AFC and 
SICR may be picking up on different aspects of statistical 
learning – decision-making processes based on learned 
information and underlying mechanisms, respectively – 
which may contribute to the low correlation between the 
two measures.  

Notably, our analyses revealed a strong order effect for 
2AFC performance: individuals who performed SICR prior 
to 2AFC exhibited significantly higher 2AFC scores, t(68) = 
12.06, p<.0001. Compared to the means of those who 
completed 2AFC first, a 7%-point increase in 2AFC 
performance was observed for participants who did SICR 
first. This may account for why our participants on average 
performed higher on 2AFC than the 60% typically reported 
for this type of statistical learning. By contrast, SICR was 
unaffected by the order in which it was performed 
(t(68)=0.22, p=.59 for experimental items, t(68)=-0.22, 
p=.42 for experimental trigrams). The robustness of SICR is 
notable given that in both conditions, the amount of post-
input exposure was kept the same, ruling out exposure 
differences as an explanation for the order effects. That is, 
despite both tasks being granted the same opportunity for 
post-input learning, only 2AFC was affected by the 
additional exposure. 

Taken together, several conclusions can be made from the 
results of Experiment 1. Firstly, our findings support the 
idea that chunking may serve as the mechanism by which 
exposure to statistical regularities lead to representational 
changes in memory. Secondly, our results affirm that SICR 
can serve as a valid means of testing the acquisition of 
sequential regularities, with the additional benefit of 
offering more fine-grained insight into the acquired 
representations. Finally, the lack of correlation between 
2AFC and SICR may represent fundamental differences 
between explicit versus implicit measures of learning 
(Franco et al., 2015). Thirdly, the lack of order effects on 
SICR performance suggests that it may be a more stable 
measure of statistical learning ability than 2AFC. To further 
examine the stability of SICR across time, we assessed its 
test-retest reliability in Experiment 2. 

Experiment 2: Establishing the test-retest 
reliability of SICR 

To date, varying levels of test-retest reliability for different 
measures of statistical learning have been found. For 
instance, using 2AFC as the primary measure, Siegelman 
and Frost (2015) reported adequate test-retest reliability for 
auditory verbal adjacent (r=0.63), and visual nonverbal 
adjacent statistical learning (r=0.58), and relatively low 
reliability for auditory nonverbal adjacent (r=0.23) and 
auditory verbal non-adjacent statistical learning (r=0.31). 
The implications of this are twofold: a) that certain types of 
statistical learning capacities are not stable within 
individuals and/or b) that certain tasks may lack specificity 
as to the behavior they aim to capture (Siegelman et al., 
2017). Thus, the goals of Experiment 2 were to determine 
whether SICR provides a reliable measure of individual 
statistical learning capabilities, and to establish whether the 
associated hypothesis—that chunking abilities can account 
for statistical word learning—would replicate. 

 

Method 
The same general method from Experiment 1 was 
employed, with a few notable exceptions. Subjects were 
exposed to the same input language, after which SICR was 
administered to measure word learning. Unlike the previous 
study, 2AFC was not included in Experiment 2, given 
existing studies assessing its test-retest reliability. Following 
the completion of Session 1, participants returned three 
weeks later and completed the same tasks again in Session 
2, mirroring the timespan between test and retest in 
Siegelman and Frost (2015).  
 
Participants 26 native English-speaking undergraduates 
from Cornell University (15 females; age: M=19.31, 
SD=1.32) participated for course credit. 

 
Materials The same input language from Experiment 1 was 
used. The SICR stimuli consisted of the same 24 six-
syllable items from Experiment 1, half composed of two 
concatenated words from the input, and the other half their 
complementary randomized foils. 
 
Procedure The experiment consisted of two tasks. First, 
subjects were familiarized with the input language, 
including the same cover task as before. In total, training 
lasted 11 minutes. The SICR task was identical to 
Experiment 1, with the exception that participants were 
given a different randomized input and SICR item order in 
each session. 

 
Results and Discussion 
As in Experiment 1, participants performed significantly 
better on the experimental items than on the random items, 
both in Session 1, t(25)= 5.46, p<.0001, and in Session 2, 
t(25)=7.08, p<.0001. The same results were found for 
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performance on the trigrams, with participants recalling 
significantly more experimental trigrams in both Session 1, 
t(25) =6.18, p<.0001, and in Session 2, t(25)=7.67, p<.0001. 
The mean performance on these measures can be found in 
Table 1. Thus, the results from both sessions replicated the 
results from Experiment 1. 

Between the two sessions, the test-retest reliability of 
SICR proved to be very strong. SICR performance was 
highly correlated across the two sessions. Performance on 
the recall of six-syllable experimental items was r(24)=0.81, 
p<.0001 (Figure 2). This exceeds the correlation coefficient 
of 0.63 reported for 2AFC in an auditory statistical learning 
task by Siegelman and Frost (2015). Recall performance on 
the six-syllable random items was also highly stable, 
r(24)=0.85, p<.0001. Performance on experimental trigrams 
r(24)=0.73, p<.0001 and random trigrams r(24)=0.82, 
p<.0001 was also consistent across the two sessions. 
However, the correlations of the differences scores 
(performance on experimental minus random items) were 
slightly lower, yielding r(24)=0.46 p=.0192 for six-syllable 
recall, and r(24)=0.53 p=.0053 for trigram recall. These 
results suggest that performance on the experimental items 
may be a better measure of individual differences in 
statistical learning than the difference scores. 

In all, the results of Experiment 2 corroborate our findings 
from Experiment 1, in which experimental items yield 
significantly  better   recall.    Our  results  also  confirm  the 

Figure 3: Correlation between Sessions 1 and 2 recall scores 
for statistically experimental items. 

stability of SICR. Taken together, these findings suggest 
that SICR proves to be both a theoretically valid and 
methodologically sound measure of statistical learning. 

General discussion 
In this paper, we introduced a novel chunk-based method to 
implicitly test statistical learning—the SICR task—as an 
alternative to the standard 2AFC task. The results of our 
experiments demonstrate that through exposure, subjects’ 
implicit chunking of the distributional regularities in the 
input significantly amplified their baseline working memory 
abilities (as captured by performance on the random items), 
and that the formation of multi-syllabic chunked 
representations of the input markedly boosted recall. 
Furthermore, these results appear to be strikingly stable over 
time and are less subject to order effects than 2AFC, which 
underscores the promise of SICR as a reliable and 
multifaceted measure of statistical learning faculties. 

SICR offers several methodological benefits that 
circumvent a variety of issues inherent to 2AFC. Because 
2AFC relies on overt decision-making processes about the 
familiarity of stimuli, it is unclear as to whether 2AFC may 
thus only be reflective of the more explicit meta-cognitive 
aspects of statistical learning. 2AFC appears to provide 
more limited sensitivity to individual differences, as it tends 
to rely on a binary all-or-nothing score. This lack of 
granularity in the scoring also makes it more difficult to 
accurately assess the precise extent of learning.  

One important difference between explicit tasks like 
2AFC and implicit tasks such as SICR is that they may be 
respectively characterized as ‘direct’ versus ‘indirect’ 
measures of learning (Franco et al, 2015). Whereas direct 
measures steer participants’ attention toward the relevant 
discriminations they are expected to make, indirect 
measures that circumvent the need for explicit instruction 
may be more sensitive to any knowledge the subject has 
acquired, including material below the threshold of 
conscious awareness. That is, although direct and indirect 
measures should exhibit equal sensitivity to consciously 
known information, direct measures may not be as adept at 
capturing the accretion of information of which the learner 
is not yet fully aware. Furthermore, unlike 2AFC and 
reaction time tasks, SICR requires both immediate 
comprehension and production on the part of the learner. 
The task thus provides the means to capture how exposure 
to statistical regularities can facilitate memory abilities via 
improved chunking abilities, which in turn may help the 
learner to overcome the processing pressures deriving from 
the Now-or-Never bottleneck (Christiansen & Chater, 
2016). As such, SICR may be seen as an ecological measure 
of the impact of accrued statistics on the online memory 
processes used to track verbal input, without the need for 
participants to rely on explicit decision-making. 

Whereas 2AFC relies on a binary scoring method, SICR 
offers a more granular approach by performing scoring on a 
syllable-by-syllable basis, allowing the evaluation of 
sensitivity to trigrams and serial position. The richness of 

Table 1: Means and standard deviations of SICR scores 
 

Session 1 Session 2 
 M SD M SD 
6-syllable 
experimental 

36.42 12.48 40.15 12.73 

6-syllable 
random 

27.04 10.71 28.0 10.38 

Trigrams 
experimental 

6.89 4.41 8.31 4.46 

Trigrams 
random 

3.0 2.65 2.96 2.60 
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this dataset may also lend itself to acoustic measurements of 
production durations and analysis of prosody. Because of 
the sensitivity of SICR to a number of different individual 
capacities, and findings suggesting that chunking ability 
serves as a strong predictor of online language processing 
skills (McCauley & Christiansen, 2015), SICR may also be 
employed compare how individual differences in statistical 
learning may predict other language learning abilities. 
Indeed, preliminary results from an ongoing study with 5-6-
year-old children (N=73) indicate that performance on the 
experimental items in the SICR task correlates significantly 
with language skill (r=0.41, p<.001), whereas 2AFC 
performance does not (r=0.20, p=.096). 

More generally, the basic recall methodology upon which 
SICR piggy-backs has a long pedigree in the domain-
general memory literature, including serial recall (e.g., 
Miller, 1956). Of particular importance is the related work 
on nonword repetition, which has been established as one of 
the primary predictors of language ability (e.g., Gathercole 
et al., 1994). Our SICR measure may be seen as a statistical 
learning-based variation on a nonword repetition task, in 
which we manipulate the distributional support for the items 
to be recalled via artificial language exposure. This 
interpretation of the SICR task dovetails with evidence that 
nonwords constructed from phoneme sequences that occur 
frequently in natural language are repeated more accurately 
than nonwords based on infrequent phoneme strings 
(Majerus, van der Linden, Mulder & Peters, 2004). In a 
similar vein, recall of random digit sequences has also been 
shown to reflect natural language statistics (Jones & 
Macken, 2015). 

In addition to the methodological advantages afforded by 
this novel method, SICR also points toward a theoretical 
answer to Romberg and Saffran’s (2010) concern about the 
lack of connection between measures of statistical learning 
and potential underlying processes and representation. Our 
proposition, given the efficacy of SICR in capturing 
statistical learning behavior, is that chunking may be seen as 
the process by which encountered statistics are used to form 
concrete, discrete units, thereby effectively segmenting a 
continuous stream into individual words. As such, the 
output of statistical learning may thus be seen as individual 
chunks of varying sizes. This notion is corroborated by 
previous research suggesting that chunking-based processes 
enable the recoding of incoming information into gradually 
higher levels of abstraction, from acoustic input, to words, 
to multiword units and beyond (Christiansen & Chater, 
2016). Thus, SICR provides both a compelling tool to 
effectively and ecologically appraise statistical learning, and 
strives to bridge the statistical learning and chunking 
memory literatures. 
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Abstract

When we reason about others’ behavior, there are often many
equally-plausible explanations. If Bob climbs a tree to get an
apple, we may be unsure if Bob found climbing difficult but
really wanted an apple; if he found climbing easy and was not
particularly excited about the apple; or if he found climbing
intrinsically fun and just got the apple because it was conve-
nient. Past research suggests that we solve this problem by
obtaining repeated observations about the agent and about the
world. Here we argue that, beyond allowing us to sharpen our
inferences about agents and the world, covariation data also
enables us to do one-shot inferences about novel agents. We
show that given minimal covariation data, people can infer ob-
jective and subjective properties of a new agent from a single
event. We show that a model that assumes that agents maxi-
mize utilities matches participant judgments with quantitative
precision.
Keywords: theory of mind; social cognition; computational
modeling

Introduction
In our everyday social interactions, we easily learn aspects of
people that are directly observable. We hear people’s names,
see what they look like, and recognize their jobs. But get-
ting to know someone means much more: what they like,
what they’re good at, and even what they think of themselves.
We invest much of our social interactions gathering observ-
able evidence about these unobservable qualities of others,
and even plan opportunities that serve specifically this pur-
pose such as interviews with applicants or dates with poten-
tial partners.

A growing set of studies suggest that when we reason about
others we assume that they act to maximize the rewards that
they obtain relative to the costs that they incur (see Lucas et
al. 2014 and Jara-Ettinger et al. 2016 for review). If, for in-
stance, we watch an agent walk straight to a coffee shop, we
can infer that getting coffee is rewarding (explaining why the
agent went there) and that walking is costly (explaining why
she took the shortest path). Despite its simplicity, this abil-
ity to reason about behavior in terms of costs and rewards,
called a Naı̈ve Utility Calculus, supports rich explanations,
enabling observers to distinguish between highly motivated
agents (high rewards) and poorly motivated agents (low re-
wards), and supporting reasoning about agents who ignore
goals because of a lack of competence (costs are too high)
and because of a lack of motivation (rewards are not high
enough).

Decomposing behavior into costs and rewards, however,
means that action-understanding is usually confounded, even
in the simplest scenarios. If, for example, an agent jumps over
an obstacle to reach an object on the other side, her behavior

can be explained equally well by appealing to different com-
binations of costs and rewards. The agent may have found
jumping very costly, but the outcome even more rewarding.
Alternatively, she may have found jumping relatively easy,
and the outcome not particularly rewarding. Or she may have
even found jumping rewarding, and not cared about the ob-
ject. To complicate matters further, agents not only incur
costs and obtain rewards, but they also have beliefs about their
own costs and rewards, and these beliefs guide their behavior.
Imagine, for instance, watching a girl pull out a sword from
a stone. While it is trivial to see that her goal was to get the
sword (and that it was therefore rewarding), it is difficult to
determine how much she wanted the sword (was the reward
high or low?), how strong she is (is the cost low for her?),
how difficult it is to pull the sword out (is the cost high in
general?), or what she thought about her own strength before
trying (what did she believe about her own costs?).

The problem of confounded explanations is most obvious
when we only have access to a single event. But in more re-
alistic situations, we often watch different people pursue the
same goal, and we watch the same person pursue different
goals (see, e.g., Figure 1). This covariation most directly al-
lows us to learn about the agent we are observing (Kelley
& Michela, 1980). However, it may also enable us to make
stronger inferences about new agents. Returning to the ex-
ample above, what if you knew that several other people had
already tried to pull the sword out and failed, and that the girl
decided to try anyway? Even though the information about
the girl is the same, you might be more confident about your
inferences in this second case: the girl probably really wanted
the sword (she probably believes that the cost is in general
high), she thought she’d be strong enough to succeed (she be-
lieves that the cost may be lower for her specifically), and she
was right (our observation of her success suggests the cost
was indeed lower for her)!

Here we propose that minimal covariation data about the
outcomes of agents’ goal-directed actions, combined with our
commonsense psychology, enable us to make richer infer-
ences about novel agents. We show that even from a brief
history of actions, people can make powerful joint inferences
about a new agent’s desire, competence, and even beliefs
about their own competence, all from a single action. Below
we briefly review research that motivates our proposal, we
present our theory instantiated as a computational model in
a Bayesian framework, and we then present two experiments
that test our model predictions.
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Agent-dependent and agent-invariant dimensions of
costs and rewards
Costs and rewards are partially objective and agent-invariant
(e.g., a high hill is more costly to climb than a low hill, and
three cookies are more rewarding than one), and partially sub-
jective and agent-dependent (e.g., some are better than oth-
ers at hill-climbing, and some like cookies more than others).
Thus, to effectively explain an event, we not only need to
infer the underlying costs and rewards, but we must also un-
cover what aspects of the costs and rewards are specific to the
agent and what aspects of the costs and rewards are properties
of the world and apply to all agents. Decomposing costs and
rewards into agent-dependent and agent-independent dimen-
sions not only helps us understand the event better. It also
helps us understand new events more easily. If we know what
costs and rewards are specific to an agent, then we can use
this knowledge to explain the agent’s behavior in new events
(e.g. if learn that someone is strong, this helps us interpret
their successes and failures in new events). If we know what
aspects of costs and rewards are properties of the environ-
ment, then we can use this knowledge to make sense of new
agents acting in this familiar situation (e.g. if we learn that a
box is heavy, this helps us interpret the success or failure of
new agents when trying to lift the box).

One-shot learning from covariation information
with a Naı̈ve Utility Calculus
Based on these intuitions, we propose that people rely on co-
variation information to break down costs and rewards into
their agent-dependent and agent-independent components,
and that, with this decomposition at hand, people rely on their
Naı̈ve Utility Calculus to make rich inferences from single
events. Returning to the example above, if we already un-
derstand that getting the sword is difficult to pull out because
many have failed, then, if we a new agent succeed, we can be
sure that it was not because the sword was easy to pull out, but
because the person was strong; an inference that would have
been impossible to make the first time we saw this. Simi-
larly, if the successful agent had already watched others try
and fail, we can assume that she also knew the sword as diffi-
cult to lift, and so she probably thought she has strong enough
to succeed; otherwise, she would not have bothered trying. If
she succeeds, then we can also be certain that she really was
strong.

Recent work suggests that even infants can use covariation
information to infer properties of the world and properties of
agents. When one agent successfully activated a toy twice
but the other failed twice (suggesting one is more competent
than the other), infants attributed their own failure with the
toy to their incompetence and sought help from others; con-
versely, when each agent succeeded twice and failed twice
on the toy, infants attributed their failure to the toy, seeking a
different one instead (Gweon & Schulz, 2011). Furthermore,
older children (4- and 6-year-olds) use covariation informa-
tion between characters and activities to generate different

causal explanations for their behaviors (Seiver, Gopnik, &
Goodman, 2012). For instance, if Sally and Anne both tried
activity A but not B, children were more likely to appeal to
the properties of the activities to explain their actions (e.g.,
A is more fun than B); but when Sally tried both A and B
but Anne tried neither, children appealed more to the char-
acters’ attributes (e.g., Sally is older). Furthermore, children
generalized these explanations to predict whether the charac-
ters would try a new activity, or what another character would
do on the same activities. These results suggest that humans,
even early in life, are sensitive to the covariation informa-
tion embedded in others’ actions: they infer both the relevant
properties of people and the physical world (e.g., toys, activ-
ities) and readily use it to explain their actions.

Similarly, children have a Naı̈ve Utility Calculus by age
five, with some form of it tracing back to infancy. Even in-
fants have some expectation that agents navigate efficiently
(Csibra, 2003) and that this expectation reflects some under-
standing of cost minimization (Liu & Spelke, 2016). Also be-
fore their second birthday, children understand that both com-
petence and rewards vary across agents (Repacholi & Gopnik,
1997; Jara-Ettinger, Tenenbaum, & Schulz, 2015). And by
age five, children can explicitly explain behavior by inferring
the unobservable costs or rewards, given partial information
(Jara-Ettinger, Gweon, Schulz, & Tenenbaum, 2016).

As reviewed above, the two main accounts that our pro-
posal relies on -understanding covariation, and having a
Naı̈ve Utility Calculus- are both available early in life. Al-
though our goal here is to explore this possibility with adults,
the developmental research suggests that the abilities our ac-
count requires are likely central to social reasoning as they
can be traced to our first years of life. The next section de-
scribes our computational model that formalizes these intu-
itions. We use the model to obtain quantitative predictions
and compare them against empirical data across two experi-
ments. In Experiment 1 we test if our account explains how
we jointly infer properties about agents and the world us-
ing covariation information, and how this past information,
in turn, supports one-shot learning of objective and subjec-
tive properties of novel agents. Because participants in Ex-
periment 1 explicitly make judgments about the covariation
in formation, in Experiment 2 we test if this step is critical
for people to integrate this information when reasoning about
new agents.

Computational modeling
In order to test our predictions more formally, we imple-
mented a computational model of our account and a simple
alternative model that ignores the covariation data when in-
ferring properties of the new agent. The principles of our
model apply to any situation in which the outcome of events
depend jointly on properties of agents and properties of the
world; here, we describe it in the context of our experimental
paradigm (see Procedure section in Experiment 1 and Figure
1), where agents with different levels of strength attempt to
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lift boxes of different weighs in order to obtain rewards.

Naive Utility Calculus model
Our implementation is a simplified variation of the Naı̈ve
Utility Calculus model (Jara-Ettinger, Schulz, & Tenenbaum,
2015). Whereas the past models were designed to reason
about agents navigating in two-dimensional environments,
this model is adapted for reasoning about agents making
choices without any spatial information (along the lines of
(Lucas et al., 2014)). For a single event, the agent’s strength
and the box’s weight are inferred using Bayesian inference:

p(W,S|O) ∝ p(O|W,S)p(W )p(S) (1)

where W is the weight of the box, S is the strength of the
actor, and O is the observed outcome (success or failure). For
simplicity, we use a deterministic likelihood function where
agents can successfully lift a box only when their strength is
higher than the box’s weight. As such, we represent strength
and weight using a common scale, using real values ranging
from 0 to 1.

By providing covariation information, where agents in-
teract with different boxes, Equation 1 enables observers
to break down events into agent-dependent (strenght) and
agent-invariant (weight) components. With this information
at hand, when we watch a single event from a new agent
(henceforth the one-shot agent), we compute her preference
by relying on the assumption that she is attempting to max-
imize her subjective utilities (see Introduction). An agent’s
expected utility for any given box is given by the reward as-
sociated with the box times the probability that the agent will
be able to retrieve it. As such, an agent’s choice reflects a
trade-off between the magnitude of the reward, and the prob-
ability that the agent will be able to get it if she tried. Given
a choice C, the posterior probability of the agent’s underlying
preferences is given by

p(P|C) ∝ p(C|P)p(P) (2)

where P represents the rewards associated with each op-
tion. For simplicity, we assume that the observer has a uni-
form prior over the agent’s preferences (p(P)), and we com-
pute p(C|P) by integrating the observer’s prior belief over the
actor’s strength:

p(C|P) =
∫

S
p(C|P,S)p(S), (3)

where S is the agent’s strength, and C is the agent’s choice.
This intermediate term, p(C|P,S), integrates the assumption
that the agent is attempting to make choices that maximize
her utilities. Finally, the one-shot agent’s objective strength
is also computed using equation 1.

Alternative model
To test the role of the past covariation information in the final
(one-shot) trial, we implemented a simple alternative model.
In this baseline model we assume that participants ignore the

covariation information and make all judgments about the
one-shot agent using that event alone. As such, this model
is computationally equivalent to the main model, as it relies
on Equations 1-3 to reason about the agent, but it does not use
the covariation data to sharpen its estimates.

Experiment 1
To test our hypothesis that people can use past observations
of multiple agents to make one-shot inferences about a novel
agent, we designed a behavioral experiment where partici-
pants received covariation data about three agents, each of
whom attempted to lift four different boxes (see Figure 1).
Next, participants watched a single agent choose one of the
boxes and either succeed or fail to lift it. After this single
event, participants were asked to infer three properties of the
agent: her preference, her beliefs about her own strength, and
her true strength.

Methods
Participants 100 adults participants (mean age = 35.95;
range: 19-70) from the US (as determined by their IP address)
were recruited using Amazon’s Mechanical Turk framework.
Participants were randomly assigned to one of 10 conditions
(see Procedure).

Procedure Participants read a brief story that consisted of
two parts. In the first part (Part 1 in Fig.1), participants
learned about a game where, if players could successfully lift
a box, they were allowed to keep its contents. Next, partic-
ipants learned about three players (Circle, Rhombus, Trian-
gle) who played with different boxes. There were five boxes,
but the agents only had four coins and interacted with just
the first four (Candy, Teddy Bear, Rubber Duck, and Base-
ball boxes); no one interacted with the fifth box (Yoyo box)
and no mention was made about it other than stating that it
was an option. For each action of each agent, participants
learned whether the agent succeeded or failed; the first agent
(Circle) sequentially tried the four boxes (in fixed order as
shown in Figure 1), followed by the second (Rhombus), and
then the third (Triangle). After each attempt, the cumulative
outcomes were summarized visually as in Figure 1. After ob-
serving this covariation data, participants were asked to de-
termine how heavy each box was and how strong each agent
was. Both types of questions were answered on a numerical
scale ranging from 0 to 9. In the weight questions, 0 indicated
very light, 5 indicated average, and 9 indicated very heavy. In
the strength questions, 0 indicated very weak, 5 indicated av-
erage, and 9 indicated very strong.

In the second part of the task (Part 2), participants learned
about a fourth agent (Square) who had also watched the other
three agents. Participants learned that this final agent only
had enough money to play the game just once. Participants
were then shown which box (of the five) the agent selected,
and whether she succeeded or failed in lifting it. Crossing
agent’s choice (5 boxes) and outcome (success or failure) pro-
duced 10 conditions, to which participants were randomly as-
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Part 2

Figure 1: Visual summary of the experiment. Participants
were introduced to four agents and five boxes. The first three
agents (the square, rhombus, and triangle) interacted with the
first four boxes (but not the fifth box). In Experiment 1, af-
ter observing these trials (and before seeing the final agent),
participants were asked to rate the relative strength of these
three agents, and the relative weight of the four boxes. In
the second part of the experiment, the final agent (the square)
chose one of the five boxes and either succeeded or failed
to lift it (producing a total of 10 conditions that we tested
across participants). Participants were then asked to deter-
mine this agent’s preference, strength, and beliefs about her
own strength when she made her choice.

signed (see Part 2 in Figure 1). Participants were then asked
three questions in the following order. First, participants were
asked to rate how much the agent wanted the object in the box
using a scale from 0 (”not at all”) to 9 (”very much”); Pref-
erence. Second, they were asked to rate the agents strength
on a scale from 0 (”very weak”) to 9 (”very strong”); True
Strength. Third, participants were asked to rate the agent’s
beliefs about their own strength on a scale using an identi-
cal scale to the one used in the second question (Perceived
Strength).

Results
Participants’ responses from the experiment were z-scored
within response type (preference inferences, weight infer-
ences, and strength inferences) and then averaged across par-
ticipants.

First, we looked at people’s use of covariation data by
looking at their inferences about agents’ strength and boxes’
weights from Part 1. The model provided very high quan-
titative fits (Figure 2). On the joint inference over strength
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Figure 2: Overall results from Experiment 1. The x-axis
shows the model predictions and the y-axis shows participant
judgments. The left plot shows inferences obtained from the
covariation data (see Figure 1). The right plot shows infer-
ences made from the one shot event.

and preference for the first set of agents (see Part 1 in Figure
1), the model showed a correlation of r=0.99 with participant
data (95% CI: 0.99-1.00).

Having verified that participants attended to the covariation
data in Part 1 and accurately inferred the boxes’ weight and
the agents’ strength, we then looked at whether participants
made used this information when interpreting the event from
the one-shot agent in Part 2.

Qualitatively, the results from the one-shot learning trial
were as expected (see Figure 3). Participants judgments about
the agents true strength varied both as a function of the box
that she chose, and the outcome. Similarly, inferences about
the agent’s beliefs about her own strength also varied as a
function of the box that she chose to lift.

On the joint inferences about the final agents preference,
true strength, and perceived strength (Part 2), participant
judgments showed a correlation of r=0.86 with participant
data (95% CI: 0.67-0.94).

By contrast, our alternative model, which used the same
computations but did not learn from the covariation data,
failed to predict the one-shot inferences participants made
about the novel agent. Because the model ignores the co-
variation data, it does not make any predictions about the first
set of agents; thus we only report the fit between the alterna-
tive model and people’s responses in Part 2, about the target
agent. The model showed a correlation of r=0.40 (95% CI:
-0.06,0.71) against participant judgments.

Experiment 2
Experiment 1 established that, when given covariation data,
people can infer a novel agent’s preference, strength, and per-
ceived strength from a single event. In this experiment par-
ticipants were explicitly asked to think about the covariation
data and judge the strength of each agent and the weight of
each box. It is possible that people do not naturally decom-
pose preferences and competence into agent-dependent and
agent-independent features, and this only happens when par-
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Figure 3: Results from Part 2 of Experiment 1. The x-axis
shows the box that the protagonist shows and the y-axis shows
participant’s ratings for the agent’s perceived strength and the
agent’s true strength. Red bars show the conditions where the
agent failed to lift the box, green bars show the conditions
where the agent successfully lifted the box, and the grey bars
show the agent’s self-perceived strength. Judgments are z-
scored within participants and averaged and the vertical bars
represent 95% confidence intervals. People inferred lower
strength when the agent failed relative to when the agent suc-
ceeded, and these inferences depended on the box that the
agent chose.

ticipant’s attention is drawn to the information they can use.
We test this possibility in Experiment 2. Experiment 2 was
identical to Experiment 1 with the exception that participants
were not asked about the covariation data and were just asked
to rate the one-shot agents preference, true strength, and per-
ceived strength.

Methods
Participants 100 adult participants (mean age = 35.51;
range: 20-70) from the US (as determined by their IP address)
were recruited using Amazons Mechanical Turk framework.

Procedure The procedure was identical to Experiment 1
with the exception that people were not asked to judge the
weight of each box or the strength of any of the agents in the
first part of the story (shown in Figure 1).

Results
As in Experiment 1, results from the experiment were z-
scored within response type (preference inferences, weight
inferences, and strength inferences) and then averaged across
participants.

Figure 4 shows the results from the experiment. As in Ex-
periment 1, the model fit participant judgments with high ac-
curacy (Figure 4a). On the joint inferences about the one-
shot agent’s preference, true strength, and perceived strength,
participant judgments showed a correlation of 0.88 with par-
ticipant data (95% CI: 0.72-0.95). Consistent with this, par-
ticipant responses in Experiment 2 resembled the responses
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Figure 4: Results from Experiment 2. (a) Model predictions
plotted against participant judgments. (b) Comparison of re-
sults from Experiment 1 and Experiment 2.

from Experiment 1. Figure 4b shows the comparison between
the results in Experiment 1 and the results in Experiment 2.
The two sets of data showed a correlation of r=0.92 (95% CI:
0.80-0.97).

General Discussion
Inferences about unobservable qualities of others from single
observations are often ambiguous. Across two experiments,
we showed that people can rely on past knowledge to make
strong inferences about new agents from a single action. Con-
sistent with previous research, Part 1 of Experiment 1 showed
that people can decompose ambiguous events into properties
of agents and properties of the world by relying on the covari-
ation structure in the data (Kelley & Michela, 1980; Gweon
& Schulz, 2011; Seiver et al., 2012). We also showed that
these representations about the agents and the physical world
support powerful one-shot inferences in future events. People
accurately inferred an agent’s preferences, their true strength
(competence), and the agent’s beliefs about her own strength,
all from a single event. In Experiment 2, we replicated these
results and showed that people spontaneously make use of
covariation data in new events. Even when people were not
asked to explicitly reason about the covariation in events, they
made the same inferences about the novel agent as the partic-
ipants in Experiment 1.

To test our proposal, we presented a computational model
that jointly infers properties of agents through Bayesian in-
ference over a model of utility maximization. This model
enabled us to generate quantitative predictions and test par-
ticipants’ relative judgments holistically. Overall, we found
that our formalization predicted participant judgments with
high accuracy. In our experiment, inferences about the final
agent were tested across participants. As such, each partici-
pant only watched a single event. Thus, the graded inferences
about the properties of the novel agent (see Figure 3) are not
judgments that are relative to each other, but rather absolute
estimates relative to past experiences.

In our experiments we clarified that the one-shot agent -
the square (see Figure 1)- had seen all other agents. This
assumption is critical for our model, as its inferences about
the agent’s mental states -her preference and her perceived
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strength- rely on the assumption that the agent herself had
some rational estimate of the weight of the boxes.

Intuitively, if the one-shot agent had not seen the covaria-
tion information (and was therefore ignorant about the possi-
ble weight of the boxes or the strength of the other agents),
then her choice would not be as revealing with respect to
the strenght of her preference or her beliefs about her own
strength. Consistent with this intuition, our model predicts
that if the agent did not see the other agents interact with the
boxes, participants should continue to infer the agent’s true
strength as a function of the selected box and the outcome,
but they should now infer the same preference independent
of the agent’s choice, and they should be unable to infer her
beliefs about her own strength. Future work may explore this.

Here we focused on cases where participants bring their
knowledge about the world (e.g., weight of boxes) to infer
properties of a new agent. As discussed in the introduction,
people may also bring knowledge about agents they know to
infer new properties of the world. Imagine in our paradigm,
for example, if people saw the covariation data in Part 1 first,
and then in Part 2, one of the agents from Part 1 interacted
with a new box. In this case, our account predicts that people
should be able to infer the agent’s belief about the weight
of the box as well as the true weight of the box from that
event. Our paradigm can be flexibly adapted to explore this
possibility, and future work might test this prediction.

In our experiment, some participants observed the one-shot
agent interact with a new box that no one had tried lifting
before (the yoyo box). Participants’ inferences suggest that
they did not have any prior expectations about the weight of
this box (see Figure 3). In our experiment, we were clear
that all the covariation agents selected the boxes in a fixed
order and they only had four coins, explaining why they never
tried to lift the yoyo box. If the agents from the covariation
stage had freely chosen which box to play with, then their
choices would suggest that the yoyo box has a low reward,
or that they thought it was too heavy. In future work we may
integrate choice reasoning into the covariation stage to test
if people can also integrate this information when reasoning
about agents.

One open question is whether the type of account that we
proposed here is specific to the social domain. Although our
model relies on the assumption that agents maximize utilities,
much of the model relies on general principles of Bayesian in-
ferences and inductive generalization. The logic behind these
inferences -finding the causes of confounded events, and then
using this knowledge to infer hidden causes of new events-
is likely to be common in non-social tasks as well (Kemp &
Tenenbaum, 2009).

In sum, our current work provides a window into the rich-
ness and the complexity of how people reason about others.
Developmental work on Theory of Mind (Wellman & Cross,
2001), and even tests of Theory of Mind used with adults
(Baron-Cohen, Wheelwright, Hill, Raste, & Plumb, 2001),
often rely on inferences about a single, isolated event. How-

ever, it is important to keep in mind that we are constantly
observing others’ actions and their outcomes in the physical
world, and reason about other people who act on the same (or
similar) physical world. Exploring the social-cognitive mech-
anisms that underlie our ability to learn from others to learn
better about others is an exciting direction for future research.
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Abstract

The development of the ubiquitous logical connectives and and
or provides a window into the role of semantics and pragmat-
ics in children’s linguistic development. Previous research has
suggested that adults and children might differ in their interpre-
tation of or in two ways. First, unlike adults, children might
interpret or as logical conjunction, akin to and. Second, chil-
dren might interpret or as inclusive disjunction while adults
interpret it as exclusive. We report experimental studies that
probe interpretations of and and or in adults and children us-
ing truth value judgements as well as children’s spontaneous
linguistic feedback. Both truth judgements and linguistic feed-
back showed that four-year-olds do not interpret or as and.
While children’s truth judgments suggested that they did not
derive exclusivity implicatures, however, their corrective feed-
back showed signs of sensitivity to the implicature, suggesting
that the truth value judgement task could have underestimated
children’s pragmatic competence. More generally, four-year-
olds’ interpretation of logical connectives may not be as differ-
ent from adults as previously supposed.
Keywords: language development; semantics; pragmatics;
logical connectives; disjunction; conjunction.

Introduction
An airport sign reads “If you see something, say something.”
Taken literally, this is a trivial request, but readers infer an
interpretation that goes far beyond the literal meanings of the
words. How much of what we interpret is due to literal mean-
ing (semantics) and how much due to our general-purpose in-
ferential abilities (pragmatics)? In this paper, we address this
question by investigating adults’ and children’s interpretation
of the logical words and and or.

Despite their simple appearance, and and or have been a
major source of insight into the contributions of semantics
and pragmatics to language interpretation. The meaning of
and has always been unambiguously associated with logical
conjunction. For example, “There is a cat and a dog in the
house.” is true when the house has both a cat and a dog but
false if only one or neither. The meaning of or, however, has
two interpretations: inclusive disjunction and exclusive dis-
junction. The inclusive interpretation suggests the house has
either a cat, a dog, or both. The exclusive one suggests only
a cat or dog, not both. Until Grice (1975), it was generally
assumed that or is ambiguous between these two meanings.

Grice (1975) argued against this ambiguity account. He
maintained that the core meaning of or is inclusive disjunc-
tion but we often derive an exclusive interpretation (exclusiv-
ity implicature) by reasoning about what the speaker could
have said. If the speaker meant to communicate that both
a cat and a dog are in the house, s/he could have used the
connective and. S/he chose or instead, so s/he did not mean

to communicate that both animals are in the house. In the
Gricean account, the exclusivity implicature is not part of or’s
meaning, but rather the result of our reasoning on speaker’s
connective choice.

The advent of Gricean pragmatics shifted the focus of re-
search in child language to the differences between adults and
children in semantic vs. pragmatic aspects of interpretation.
In a series of influential studies, Stephen Crain and colleagues
argued that unlike adults who have an implicature-rich exclu-
sive interpretation of or, children as young as three years old,
interpret the meaning of or as inclusive disjunction (Chier-
chia, Crain, Guasti, Gualmini, & Meroni, 2001; Crain, 2012).
They argued that children develop the semantics of or be-
fore its pragmatics: they interpret or as inclusive disjunction
but fail to enrich it with the exclusivity implicature the way
adults do. Therefore, the main difference between children
and adults is that children interpret or as inclusive, but adults
interpret it as exclusive.

Recent investigations have added a new level of complex-
ity to this line of research. Tieu et al. (2017) and Singh et
al. (2016) argued that a large group of children in their stud-
ies (30-40% of the participants) interpreted or as logical con-
junction. In other words, these children did not differentiate
between and and or. They argue that this conjunctive inter-
pretation of or is due to non-adult-like pragmatic reasoning:
children interpret A or B as A or B or both, but not only A,
and not only B; therefore both A and B.

The current paper seeks to fill two gaps in the current liter-
ature. First, previous research has focused on children’s inter-
pretation of and and or in complex sentences – for example
with other logical words such as quantifiers every and none.
In this paper we test children and adults’ understanding of
and and or in simple existential sentences like “There is a cat
or a dog.” Second, previous research has tested children and
adults using the binary truth value judgment task (Crain &
Thornton, 1998). In such tasks participants are asked whether
a puppet’s statement is right or wrong. In this study, we allow
participants to make use of three options: wrong, kinda right,
and right. Katsos & Bishop (2011) argued that ternary judg-
ment tasks are better suited for assessing children’s pragmatic
competence.

This paper addresses two main questions. First, do chil-
dren interpret or as logical conjunction (similar to and)? Sec-
ond, do children understand or as inclusive disjunction, or
exclusive disjunction? We conduct two experiments to an-
swer these questions. Experiment 1 tests adults’ interpreta-

576



tions and sets the benchmark for our child study. Experiment
2 investigates children’s truth value judgments in a guessing
game as well as their spontaneous linguistic feedback in the
same task. Considering the first question, neither children’s
truth value judgement nor their linguistic feedback support
the hypothesis that a large group of them interpret or as log-
ical conjunction. For the second question, children’s judg-
ments suggest that unlike adults, they do not derive exclu-
sivity implicatures and interpret or as inclusive disjunction.
However, children’s spontaneous linguistic feedback shows
signs of sensitivity to the exclusivity implicature of or.

The next two sections present experiments 1 and 2 and the
last section discusses the implications of these findings for
theories of semantic and pragmatic development. For further
details of the methods as well as the data and statistical anal-
yses, please visit the paper’s online repository.1

Experiment 1: Adults
Methods
Participants We recruited 52 English speaking adults on-
line using Amazon’s Mechanical Turk (MTurk).

Materials and Design The experimental game included
several cards with cartoon images of either one or two ani-
mals. The animals included a cat, a dog, and an elephant.
Figure 1 shows two example cards. The game also used three
types of guesses: simple (e.g. There is a cat), conjunctive
(e.g. There is a cat and a dog), and disjunctive (e.g. There is
a cat or a dog). Pairing the cards with the guesses resulted in
6 types of card-guess scenarios. Figure 1 shows examples for
four critical scenarios. Overall, the animal labels used in the
guess and the animal images on the card may have no overlap
(e.g. Image: dog, Guess: There is a cat or an elephant), par-
tial overlap (e.g. Image: Cat, Guess: There is a cat or an ele-
phant), or total overlap (e.g. Image: cat and elephant, Guess:
There is a cat or an elephant). Crossing the number of ani-
mals on the card, the type of guess, and the overlap between
the guess and the card resulted in 12 different trial types.

Procedure The experiment had three phases: introduction,
instruction, and test. In the introduction, participants saw six
sample cards and read that they will play a guessing game
with them. Then a blindfolded cartoon character named Bob
appeared on the screen and they were told that in each round
of the game, they will see a card and Bob is going to guess
what animal is on it. We emphasized that Bob cannot see any-
thing. We asked participants to judge whether Bob’s guess is
wrong, kinda right, or right. In the instruction phase, par-
ticipants saw a card with the image of a dog and were told
that Bob guessed There is a cat on the card. All participants
(correctly) responded with wrong.

In the test phase, participants saw one trial per trial type
for the total of 12 trials. Within each trial type, the specific
card-guess scenario was chosen at random. The order of trial
types was also randomized.

1https://github.com/jasbi/cogsci2017

Figure 1: Critical trials with example cards.

Results
Here we focus on the results of the critical trial types, pic-
tured in Figure 1.2 We identify these trials using two fea-
tures: 1. the connective used for guessing (AND vs. OR) 2.
the number of true conjuncts/disjuncts, which corresponds to
the number of animals on the card. When only one animal
is on the card, only 1 conjunct/disjunct is true (1T) and when
two animals are on the card, both conjunct/disjuncts are true
(2T).

Adult responses differed both by the connective used and
the number of true conjuncts/disjuncts (Figure 2). First, the
response pattern in AND trials is different from the one in
OR trials. For AND, the responses were on the extremes
of right and wrong while for OR, they were distributed on
kinda right and right. This pattern suggests that adults in-
terpret and and or differently. Second, the responses were
different between the trials where one disjunct/conjunct was
true (1T) and those where both disjuncts/conjuncts were true
(2T). This difference was greater for conjunction than dis-
junction. Adults showed a small preference for the use of
disjunction when only one disjunct was true. This pattern
suggests a small preference for an exclusive interpretation of
or in the guessing game.

Individual Responses In order to understand how partici-
pants interpret disjunction, Tieu et al. (2017) and Singh et
al. (2016) categorized participants as a function of their re-
sponses to the disjunctive trials. Here we perform a similar
analysis. In this study, none of the adults considered a dis-
junctive guess wrong when one or both of the animals were
on the card. However, the participants’ kinda right and right
responses divided them into four categories.

The largest group of participants (23 out of 52) considered
the disjunctive guess right when one animal was on the card

2For the data, full results including non-critical trials, and statis-
tical analyses visit the paper’s online repository.
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Figure 2: Adult judgments in critical trials of Experiment 1.
Error bars represent 95% confidence intervals.

(1T), but kinda right with both animals were present (2T).
This pattern is consistent with an interpretation of “or” with
an exclusivity implicature. The use of disjunction when both
disjuncts are true is not wrong but it is nevertheless infelici-
tous and not completely right. For these participants, kinda
right captures the violation of such a pragmatic expectation.

The other 29 participants divided almost equally into three
groups. Ten participants rated disjunctive guesses as right in
both scenarios where one or two animals were on the card.
This pattern is consistent with an inclusive interpretation of
or, in which adults do not derive an exclusivity implicature.
It is also compatible with some adults being tolerant towards
violations of the exclusivity implicature.

Nine other participants rated disjunctive guesses as only
kinda right in both one-animal and two-animal trials. In other
words, disjunctive guesses were dispreferred regardless of the
outcome. This response pattern is consistent with the vio-
lation of another pragmatic expectation in the context of a
guessing game: the guesser must choose the most specific
guess possible. Under this expectation, guesses that cover
several possible outcomes are punished. A disjunctive guess
never picks a specific outcome and it is possible that for these
participants, kinda right captures the violation of this speci-
ficity expectation.

Finally, nine participants (17% of participants) reported a
disjunctive guess as right when both animals were on the
card, but only kinda right when only one of the animals was
on the card. In other words, these participants preferred the
guess when both disjuncts where true rather than only one. It
is possible to interpret such a response profile as some adults
interpreting or as logical conjunction. However, it is also pos-
sible that these adults considered the goal of the game to be
choosing the right animals and did not think the choice of
the connective should matter for the purposes of the guessing
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Figure 3: Children’s judgments for critical trials in Experi-
ment 2. Error bars represent 95% confidence intervals.

game. In other words, they may have interpreted a right guess
as one that picks the correct animals out of the possible set of
animals in the game, regardless of the connective used.

The analysis of individual response profiles shows that
there is a good deal of variability in the response profiles of
adults. However, since we have not systematically manip-
ulated the possible interpretations mentioned above and ac-
counted for noise and chance variation, we remain cautious
in our interpretation of participants’ response profiles here.

Discussion

In this study, we tested adult interpretations of the connective
words and and or in the context of a guessing game. Adult
participants interpreted these words differently and depend-
ing on how many disjuncts/conjuncts were satisfied. Overall,
a guess with and was considered right if both conjuncts were
true and wrong if only one was true. A guess with or was not
wrong in either case, yet adults were more likely to consider it
as right when only one of the disjuncts was true. Grouping in-
dividuals based on their response profiles, we found that some
participants dispreferred disjunctive guesses whether one or
both disjuncts were true, some considered them better when
both disjuncts where true, and some others considered them
right in either case.

The results are consistent with the dominant view on the
division of labor between semantics and pragmatics in the in-
terpretation of connective words. The semantics of and is
captured by logical conjunction and or by inclusive disjunc-
tion. And is true when both conjuncts are true and false when
only one is true. Or is true in both cases but is not the best
option as a connective when both disjuncts are true. In Ex-
periment 2 we examine preschool children’s interpretation of
these connectives in the context of the same guessing game.
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Experiment 2: Children
Methods
Participants We recruited 42 English speaking children
from the Bing Nursery School at Stanford University. Chil-
dren were between 3;02 and 5;02 years old (Mean = 4;04).

Materials and Design We used the same set of cards and
linguistic stimuli as the ones in Experiment 1. The study
used 8 trial types and 2 trials per trial type for a total of 16
trials. The trials were balanced to include the same num-
ber of one-animal and two-animal cards, the same number
of simple and connective guesses, and the same number of
expected true vs. false judgments. However, we made a few
changes to make the design more suitable for children. In-
stead of Bob, a puppet named Jazzy played the game with
the children. Jazzy wanted to guess what animals were on
the cards without seeing them. So he had a sleeping mask
on his eyes during the game. Children knew that Jazzy likes
guessing but they did not know why Jazzy would choose to
guess the way he does; namely, sometimes with simple sen-
tences and sometimes with conjunctions or disjunctions. To
introduce a three-valued reward scale similar to the verbal re-
sponses wrong, kinda right, and right, we placed a set of red
circles, small blue stars, and big blue stars in front of the chil-
dren. These tokens were used to reward the puppet after each
guess.

Procedure The experiment was carried out in a quiet room
and the sessions were videotaped. There was a small table
and two chairs in the room. Children sat on one side of the
table and the experimenter and the puppet on the other side
facing the child. The groups of circles, small stars, and big
stars were placed in front of the child from left to right. A
deck of six cards was in front of the experimenter. Similar to
the adult study, participants sat through three phases: intro-
duction, instruction, and test.

The goal of the introduction phase was to show the animal
cards to children and make sure they recognize the animals
and know their names. The experimenter showed the cards to
the children and asked them to label the animals. All children
recognized the animals and could label them correctly. In the
instruction phase, children went through three example trials.
The experimenter explained that he is going to play with the
puppet first so that the child can learn the game. He removed
the six introduction cards and placed a deck of three cards
face-down on the table. From top to bottom (first to last), the
cards had the following images: a cat, an elephant, a cat and a
dog. He put the sleeping mask on Jazzy’s eyes and explained
that Jazzy is going to guess what is on these cards. He then
picked the first card and asked the puppet: “What do you think
is on this card?” Jazzy replied with “There is a dog”. The
experimenter showed the cat-card to the child and explained
that when Jazzy is not right he gets a circle. He then asked
the child to give the puppet a circle. Rewards were collected
by the experimenter and placed under the table to not distract
the child. The second trial followed the same pattern except

that the puppet guessed right and the experimenter invited the
child to give the puppet a big star. In the final trial, the puppet
guessed that there is a cat on the card when the card had a cat
and a dog on it. The experimenter said that the puppet was a
little right and asked the child to give him a little star.

In the test phase, the experimenter removed the three in-
struction cards and placed a deck of 16 randomized cards
face-down on the table. In all trials of the study, the face
of the card was shown to the child after the puppet’s guess.
The experimenter explained that it was the child’s turn to play
with the puppet.

Offline Coding of Linguistic Feedback We also coded
children’s spontaneous linguistic feedback to the puppet
when they saw the card. There were four types of feedback:
1. None, 2. Judgments, 3. Descriptions, and 4. Correc-
tions. None refers to cases where children did not provide any
linguistic feedback. Judgments refers to linguistic feedback
such as you are right!, yes, nope, you winned. Such feedback
expresses whether the puppet was right or not. Descriptions
were cases that the child simply mentioned what was on the
card with no added lexical item or prosodic stress: cat!, dog
and elephant!, There is a cat and a dog! etc. Finally, correc-
tions referred to feedback that provided corrections to what
the puppet had said using extra words or prosodic stress. Ex-
amples include: cat AND dog (with emphasis placed on and),
Both!, The two are!, Just a cat!, Only cat.

Results

Figure 3 shows the results for the critical conditions in Ex-
periment 2. Comparing the AND and OR trials (Figure 3
rows), we see that children distinguish between and and or
in cases where one animal is on the card but not when both
are. Given that the one-animal conjunction trials (top left)
and the one-animal disjunction trials (bottom left) differ in
truth conditions, the difference in response patterns suggests
that children at this age have a different semantic knowledge
for and and or. The two-animal conjunction and two-animal
disjunction trials (top right and bottom right) do not differ in
truth values, and the responses also show no difference.

In the one-animal and two-animal trials, children show dif-
ferent response patterns when the guess contains the conjunc-
tion word and (top right vs. top left) but not when or is used
(bottom right vs. bottom left). Since the truth values of one-
animal and two-animal trials differ for conjunctive guesses
but not disjunctive ones, the results suggest that children have
different semantic knowledge for and and or. The similarity
of the disjunctive guesses in one-animal and two-animal trials
(bottom right vs. bottom left) can be interpreted as a lack of
exclusivity implicatures in children.

Statistical Modeling We used the R package {rstan} for
Bayesian statistical modeling. We fit separate ordinal mixed-
effects logistic models for children’s and adults’ judgments.
The response variable had three ordered levels: wrong, kinda
right, and right. The trial types One-Animals-OR, Two-
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Figure 4: Coefficients capturing the relevant comparisons
across conditions across the two experiments (see text). Error
bars represent 99% regions of highest posterior density.

Animals-OR, One-Animal-AND constituted the (dummy-
coded) fixed effects of the model with Two-Animal-AND set
as the intercept. The model also included by-subject random
intercepts. The priors over trial types and the random inter-
cepts were set to N (0,10). We also included parameters C1
and C2, the two cutpoints delimiting the logistic for 1) wrong
and kinda right and 2) kinda right and right responses, drawn
with the prior N (0,1).3 All four chains converged after 3000
samples (with a burn-in period of 1500 samples)

We make inferences based on the highest-posterior den-
sity (HPD) intervals for the coefficients estimated from each
model. Because predictors are dummy-coded, we can exam-
ine contrasts of interest by computing the difference between
coefficients for pairs of conditions we wish to contrast (Fig-
ure 4). Overall, adults’ and children’s estimated coefficients
are similar in sign to one another, though adults are more ex-
treme. The one notable exception to this pattern is for the con-
trast or, 1T vs. 2T, which shows the comparison between the
disjunctive trials: both disjuncts are true vs. only one disjunct
is true. On average, children are more positive for disjunction
on two-animal trials, while adults are more negative. These
estimates reflect the exclusivity implicature that adults com-
pute, leading them to judge two-animal trials as more kinda
right.

Individual Responses Children showed a wide variety of
response profiles for disjunction trials. This was partly be-
cause each child responded to two trials per trial type: two
one-animal disjunction trials and two two-animal disjunction
trials. The largest group (10 out of 42) responded with right
to all four trials. Six children responded with right to all trials
except one one-animal trial that they responded to with kinda
right. Six other children responded with kinda right to both
one-animal trials and right to both two-animal trials.

However, the main goal of analyzing the response profiles

3We used a tight prior in this case to decrease posterior correla-
tions between cutpoints and intercept.

was to find children that demonstrated conjunctive readings
of or. In order to find such children, we adopted a (lenient)
measure: any preference for or when both disjuncts were true
was considered a conjunctive profile. More specifically, ei-
ther the child responded with wrong when one disjunct was
true but kinda right or right when both were true; or, the child
responded with kinda right when one disjuncts was true but
right when both were true. We found 10 children (24% of par-
ticipants) that matched this profile. In Experiment 1 we found
nine adults (17% of participants) who matched such a pro-
file. Furthermore, as explained earlier, such a response profile
is also compatible with a different construal of the guessing
game in which the goal is to pick the right animals regardless
of the logical connective. Therefore, we conclude that the
analysis of participants’ response profiles did not provide any
evidence for the hypothesis that a large group of four-year-old
children interpret or as logical conjunction.

Linguistic Feedback We next examined children’s linguis-
tic feedback to the puppet (Figure 5). In all critical trials, we
found similar proportions of None responses: no comment on
the puppet’s guess and only rewarding the puppet. However,
the proportions of other feedback categories differed between
trial types. We performed chi-squared tests of homogeneity
to compare the feedback distributions.

In the AND trials, a comparison of the feedback distribu-
tion in one-animal and two-animal conditions was statisti-
cally significant (χ(3, 167) = 35.99, p < .0001), indicating
different feedback for true vs. false sentences. In the OR
trials, we find a similar significant difference between one-
animal and two-animal trials, suggesting children’s sensitiv-
ity to the exclusivity implicature of or (χ(3, 166) = 11.11, p =
0.01). In both cases, children’s corrective feedback increases
for false (AND - one animal) and infelicitous trials (OR - two
animals). There was no significant difference between these
false and infelicitous trials (χ(3, 166) = 3.19, p = 0.36).

The one-animal disjunctive trials (bottom left) showed the
highest proportion of Descriptions. These are trials in which
the guess is correct but not specific enough: it leaves two
possibilities open. These trials were significantly different
than the one-animal trials for conjunction (χ(3, 166) = 24.29,
p < .0001). Finally, the two-animal conjunctive trials (top
right) showed the highest proportion of Judgments such as
you are right!. This is not surprising given that in these trials
represent the most optimal guessing scenario. These trials
had a significantly different feedback distribution from the
matching disjunction trials (χ(3, 167) = 42.37, p < .0001).

Discussion

This study did not find evidence for the hypothesis that a large
group of four-year-old children interpret the disjunction word
or similar to its conjunctive counterpart and. To the con-
trary, both children’s judgments and their linguistic feedback
suggested that they differentiate these two connectives. In-
stead, children’s judgments largely mirrored those of adults.
We take this as a sign of children’s adult-like semantics for
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Figure 5: Children’s Linguistic Feedback to Conjunction and
Disjunction Trials. Error bars represent 95% confidence in-
tervals.

and and or. Considering pragmatic inferences with or, chil-
dren’s truth value judgments did not differentiate between tri-
als where one disjunct was true and those where both were
true. However, their linguistic feedback to the puppet did
differentiate these two trial types. Children provided more
corrective feedback when both disjuncts were true, indicating
sensitivity to the exclusivity implicature of or.

General Discussion
We began with two questions. First, do adults/children dif-
ferentiate or from and? Second, do adults/children interpret
or as inclusive disjunction or exclusive disjunction? We pre-
sented two studies to address these questions.

For the first question, we reported truth value judgement
results as well as results from children’s linguistic feedback
that suggested both adults and children differentiate or from
and. Crucially, children showed different judgments for false
vs. true guesses, suggesting that they understand the core se-
mantics of these connectives.

For the second question, adult truth value judgments of or
were split between an inclusive and an exclusive interpreta-
tion in the guessing game, with a slight advantage for the ex-
clusive interpretation. Children’s judgments suggested that
they interpret or as inclusive disjunction and do not derive
an exclusivity implicature. However, children’s spontaneous
linguistic feedback in the same task showed signs of sensitiv-
ity to the exclusivity implicature of or. In other words, when
both disjuncts were true children considered the guess right
but corrected the puppet with utterances such as cat AND dog,
both!, the two are!.

Based on the truth value judgement results, it is possible
to conclude that children, unlike adults, do not derive an ex-
clusivity implicature for or. However, children’s spontaneous

linguistic feedback raises another possibility: while the truth
value judgement task reflected children’s semantic knowl-
edge well, it could have underestimated children’s pragmatic
competence. We would like to explore this possibility more
systematically in a future study.

Overall, our results point to the importance of assessing
the semantics and pragmatics that children assign to connec-
tives across a wide variety of contexts and using different
measures. Although individual experimental trial types can
appear consistent with multiple interpretations, the profile of
responses across trial types can be revealing of the underlying
representations. More broadly, the investigation of how chil-
dren acquire semantic representations for logical connectives
– and in particular, how they infer an inclusive semantics for
or – is an important puzzle for future investigations of early
word learning.
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Abstract 

Research into risk communication has commonly highlighted 

the disparity between the meaning intended by the 

communicator and what is understood by the recipient.  Such 

miscommunications will have implications for perceived trust 

and expertise of the communicator, but it is not known whether 

this differs according to the communication format. We 

examined the effect of using verbal, numerical and mixed 

communication formats on perceptions of credibility and 

correctness, as well as whether they influenced a decision to 

evacuate, both before and after an ‘erroneous’ prediction (i.e. 

an ‘unlikely’ event occurs, or a ‘likely’ event does not occur). 

We observed no effect of communication format on any of the 

measures pre-outcome, but found the numerical format was 

perceived as less incorrect, as well as more credible than the 

other formats after an ‘erroneous’ prediction, but only when 

low probability expressions were used. Our findings suggest 

numbers should be used in consequential risk communications. 

 

Keywords: verbal probability expressions; numerical 

probabilities; risk communication; trust; expertise; credibility 

Introduction 

Science is suffering from a ‘crisis of trust’ (House of Lords, 

2000); preserving and cultivating the public’s trust has never 

been more important for the scientific community (Nature, 

2010). Uncertainty is an inescapable part of any scientific 

endeavour, but the presence of it creates doubt in the minds 

of the public and it is often used as a reason to delay taking 

action (Lewandowsky, Ballard, & Pancost, 2015).  

Effectively communicating information regarding risk and 

uncertainty thus represents a significant problem for 

scientists.  

Methods for communicating risk and uncertainty include 

using verbal probability expressions (VPEs; e.g. ‘possible’, 

‘likely’), numerical expressions (e.g. ‘20% likelihood’), or 

mixed expressions (e.g. ‘unlikely [20% likelihood]’). 

Budescu and Wallsten (1995) proposed that the choice of 

format for communicating likelihood information should be 

governed by the congruence principle: the precision of the 

communication should be consistent with the degree of 

certainty that can reasonably be expected for estimates about 

the event described. Much research has investigated the 

pitfalls of using VPEs to communicate uncertainty using the 

‘how likely’ translation approach, whereby people are asked 

to translate a VPE to a corresponding numerical probability 

This has highlighted the variability in people’s usage and 

interpretations (e.g., Budescu & Wallsten, 1985), as well as 

the influence of other contextual and cultural factors (e.g., 

Bonnefon & Villejoubert, 2006; Harris & Corner, 2011; 

Harris, Corner, Xu, & Du, 2013; Teigen & Brun, 1999, 2003; 

Weber & Hilton, 1990). Such variability clearly highlights 

the potential for a reduction in perceived credibility of the 

communicator, if there is a disparity between the meaning 

intended by the communicator and that which is understood 

by the recipient. 

A commonly suggested solution to the problems of 

miscommunication is to use a dual-scale, mixed format 

expression to communicate risk and uncertainty, for example 

‘It is unlikely (less than 33%)’ (e.g., Budescu, Broomell, & 

Por, 2009; Budescu, Por, Broomell, & Smithson, 2014; 

Harris & Corner, 2011; Harris et al., 2013; Patt & Dessai, 

2005; Witteman & Renooij, 2003). Using such a ‘verbal-

numerical’ (V-N) format was found to increase 

correspondence between people’s interpretations and the 

IPCC guidelines, an effect that replicated across 24 countries 

(Budescu et al., 2014). However, when shown a histogram of 

potential outcomes and asked to complete probability 

statements (e.g., “It is unlikely that the lava flow will extend 

to a distance of __km”), the so-called ‘which outcome’ 

approach to studying VPEs (e.g.,  Teigen, Juanchich, & 

Riege, 2013), participants tended to complete the sentence 

with a distance that exceeded any represented in the 

histogram, both for ‘unlikely’ and ‘unlikely (20% chance)’ 

(Jenkins, Harris, & Lark, 2016; see also Juanchich & Sirota, 

2016). If such phrases are seen as appropriate for 

communicating an outcome with a 0% chance of occurring, 

the mismatch between this and an intended communication 

of ‘20% likelihood’ could adversely affect confidence in 

subsequent communications. 

Aside from the terms used, a further problem arises from 

people’s general understanding of uncertainty and 

probability. Uncertainty is often perceived by the public as an 

‘indicator of ignorance’, when in fact it should be seen as a 

source of actionable knowledge (Lewandowsky et al., 2015). 

Scientific forecasts are probabilistic (at best) and thus it is, 

for example, not possible to predict with certainty the 

probability of a volcanic eruption on a given day. Even if an 

event is predicted to be ‘likely’ to occur, the very fact it is not 

certain means that it might still not happen. In the same vein, 

even if an event is predicted as ‘unlikely’ to occur (e.g. 20% 

likelihood; Theil, 2002), it does not mean the event will 
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definitely not occur, given that one in five times it will (on a 

frequentist interpretation of probability). The expectation of 

what will happen is largely driven by the directionality of the 

expression (Teigen & Brun, 1995, 1999); in that phrases 

which have negative directionality (e.g. ‘unlikely’) focus 

one’s attention on the non-occurrence of the event, whereas 

those with positive directionality (e.g. ‘likely’) focus on the 

occurrence of the event. If the outcome is ‘opposite’ to what 

was predicted, the predictions are often seen as ‘erroneous’, 

which could have a knock-on effect on perceived credibility.  

Despite recent calls to use a dual-scale communication 

format, research has yet to explore the effect of using mixed 

expressions on the perceived credibility of the communicator. 

Neither, perhaps more importantly, has it investigated the 

consequences of ‘erroneous’ predictions on credibility. Given 
a major function of risk communication is providing 

trustworthy information, confidence in the source of the 

information is key (Kasperson, 2014).  After all, even if the 

information is understood as intended, it is of no use if the 

communicator is not perceived as credible and thus is not 

trusted enough to inspire action on the basis of the 

communication. Indeed, credibility has been found to 

influence risk perceptions. Trust is negatively associated with 

perceived risk (Sjöberg, 2001), as well as directly affecting 

behaviour (Wachinger, Renn, Begg, & Kuhlicke, 2013). 

Longman, Turner, King, & McCaffery (2012) explored the 

effect of numerical formats on accuracy of understanding, 

perceived risk, and source credibility judgements for two 

different sources of risk information (clinician / 

pharmaceutical company). The risk estimate was presented 

either as a either a point (20 out of 100), small range (16 – 24 

out of 100) or large range (8 – 32 out of 100). Range 

information resulted in reduced understanding and the large 

range was perceived as more risky compared to a point 

estimate. Experts using point estimates were viewed as more 

credible. Gurmankin, Baron and Armstrong (2004) 

investigated the effect of verbal and numerical statements of 

risk (percentage / fraction) on trust and comfort in a physician 

in a hypothetical medical communication. They found 

subjects were more trusting of, and more comfortable with, 

numerical versions of the information, though this effect 

decreased with lowering levels of numeracy, highlighting the 

importance of including a numeracy measure in the current 

study.  

The importance of investigating the credibility of the 

communicator cannot be understated. Whilst an accurate 

understanding of information is clearly desirable, it is 

people’s actions (on the basis of the communication) which 

matter, given they will have the most consequences for the 

individual. Therefore an investigation into the effects of 

communication format should also consider the effect of 

communication format on people’s actions.  Doyle, McClure, 

Paton, & Johnston (2014) found that fewer people suggested 

evacuating when the risk of a volcanic eruption was described 

using verbal terms than when using numerically equivalent 

terms, suggested to be a result of the fact that VPEs are  

viewed as more ambiguous, though again the study did not 

consider mixed-formats, or the influence of ‘erroneous’ 

predictions.  

Although previous research has demonstrated the V-N 

format aids understanding in risk communications (Budescu 

et al., 2014), it may not be the preferred format for the 

recipient. Indeed, there may be a discrepancy between what 

people favour (for instance the preference for receiving 

information in numerical form, Erev & Cohen, 1990) and 

what experts can suitably provide. Using a numerical point 

estimate (e.g. 15%) to describe the chance of a natural hazard 

(which are, by nature, highly uncertain) might be perceived 

as overly precise according to the congruence principle 

(Budescu & Wallsten, 1995) and thus not credible. 

A deeper understanding of the effects of using different 

communication formats and the consequences of ‘erroneous’ 

predictions is therefore clearly required, such that the public’s 

trust in science can be built and maintained. We thus sought 

to examine whether initial perceptions of credibility in the 

communicator differed according to communication format 

over two studies featuring low and high probability events. 

We also investigated whether these perceptions changed after 

an ‘erroneous’ prediction (i.e. the ‘unlikely’ outcome 

occurred, in Study 1, or the ‘likely’ outcome did not occur, in 

Study 2). Ascertaining the effect of these factors is instructive 

for developing effective risk communication strategies. 

Study 1 

Method 

Participants 

300 Native English speakers (146 male) aged between 18 – 

72 (Mdn= 33.5) were recruited from Prolific Academic (PA; 

www.prolific.ac). Participants received £0.75 for 

participating.  

Design 

A 4 × 2 mixed design was used. Communication format was 

in the low probability domain and had four levels, 

manipulated between participants: verbal- “unlikely”, 

numerical- “20% likelihood”, V-N- “unlikely (20% 

likelihood)” and N-V- “20% likelihood (unlikely).” Outcome 

(pre/post) was a within-participants variable.  

Perceptions of trust, expertise, correctness and decision to 

evacuate were rated on five-point scales. Expertise was 

operationalised as ‘How knowledgeable does the expert 

seem?’ from 1 – ‘Not at all knowledgeable’ to 5 – ‘Extremely 

knowledgeable’. Trust was operationalised as ‘How much do 

you trust that the expert is giving you complete and unbiased 

information?’ (Dieckmann, Slovic, & Peters, 2009), from 1 – 

‘Not at all’ to 5 – ‘A great deal’. Decision to evacuate, based 

on Doyle et al. (2014), was rated from 1– ‘Definitely should 

evacuate today’ to 5 – ‘Definitely should not evacuate today’. 

Participants also then had to indicate why they made that 

decision. Correctness was rated from 1 – ‘Not at all correct’ 

to 5 – ‘Completely correct’.  
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Materials and Procedure 

After consenting to participate, participants indicated their 

age, gender and Prolific ID before reading the introductory 

text. The introductory text informed participants that they 

would see a geological scenario and be asked to make a series 

of judgements about this. On the next screen, participants 

read a vignette about a current volcanic eruption, in which 

lava flows were expected. A volcanologist presented a 

communication about the probability of the lava flows 

travelling a certain distance: 

“Mount Ablon has a history of explosive eruptions that 

have produced lava flows. An eruption is currently 

underway and lava flows are expected. Volcanologists 

from Ablon Geological Centre are communicating 

information about the volcano. A volcanologist has 

suggested that, given the volcano’s recent history, there 

is a 20% likelihood (unlikely) that the lava flow will 

extend 3.5km from the point of eruption.” 

Participants then provided initial ratings of expertise and 

trust in the expert’s prediction of events. On the subsequent 

screen, participants were informed that the capital city was at 

risk of the volcanic eruption and asked to rate whether to 

evacuate the city today or not (Doyle et al., 2014). A mass 

evacuation was described as being ‘very expensive and 

extremely disruptive to residents’. 

    Participants were then informed on the following screen 

that the unlikely outcome did in fact occur. They were asked 

to provide further trust and expertise ratings, as well as rating 

how correct the volcanologist’s prediction was in light of the 

outcome. The next screen then showed a similar 

communication by a volcanologist about Mount Ablon, set 

two years on, with participants asked the two evacuation 

questions, as before.  

Finally participants completed a numeracy scale (Lipkus, 

Samsa, & Rimer, 2001), with two additional questions from 

the Berlin Numeracy Test (Cokely, Galesic, Schulz, Ghazal, 

& Garcia-Retamero, 2012) included to increase variability in 

scores, given previous studies using PA have found it to be a 

highly numerate sample. After completing the study, 

participants were given a code to claim their reward, thanked 

and debriefed. 

Results 

There was a significant correlation between trust and 

expertise ratings, both pre-outcome, r = .69, p < .001 and 

post-outcome, r = .74, p < .001. For ease of exposition, we 

averaged the measures to create a single measure of 

credibility. The data were entered into a 4 (communication 

format) × 2 (outcome) × 2 (numeracy) ANOVA, unless stated 

otherwise. 

Given the highly skewed distribution of responses, 

participants with scores of eight or under were classed as low 

numeracy and those with nine or above classed as high 

numeracy. However, given there was only one effect of (or 

interaction involving) numeracy across Studies 1 and 2, this 

variable is only considered further in that single instance. 

Credibility Ratings 

Mean credibility ratings, by communication format, are 

plotted in Figure 1, which suggests that pre-outcome there 

was little difference between formats. All communication 

formats suffered from a loss of perceived credibility post-

outcome, but there was less of a reduction in the numerical 

format. Correspondingly, there was a main effect of outcome, 

F (1, 292) = 218.60, p < .001, η𝑝
2= .43, and format, F (3, 292) 

= 5.77, p < .01, η𝑝
2= .06, but this was qualified by a significant 

interaction between outcome and format, F (3, 292) = 6.87, p 

< .001, η𝑝
2= .07. Simple effects analyses confirmed no effect 

of format pre-outcome F (3, 296) = 0.38, p =.77, and a 

significant effect of format post-outcome F (3, 292) = 8.02, p 

< .001. It is worth noting, however, that the reduction in 

credibility was still significant even in the numerical 

condition, t(73)= 3.66, p < .001, d= 0.43.  

 

 
 

Figure 1. Effect of Communication Format on Perceptions 

of Credibility Before and After an ‘Erroneous’ Prediction 

(Error Bars Represent 1−
+ SE) – Study 1 – Low Probability. 

Decision to Evacuate 

Mean evacuation ratings both pre- and post-outcome, by 

communication format, are displayed in Table 1, which 

shows a slight difference between communication formats 

prior to the outcome. Post-outcome, there was a shift to being 

more certain about evacuating today. There was a main effect 

of outcome, F (1, 292) = 98.19, p < .001, η𝑝
2= .25 and format, 

F (3, 292) = 5.59, p < .01, η𝑝
2= .05. Participants were more 

certain about evacuating today in the verbal condition and 

least certain decision in the N-V condition. There were no 

significant interactions (all ps > .12). 

 

Correctness Ratings 

A one-way ANOVA revealed a significant effect of 

communication format on correctness ratings, F (3, 292) = 

26.32, p < .001, η𝑝
2= .22, corresponding to the differences in 

the credibility ratings. From Table 1, the numerical format 

was seen as ‘least incorrect’ and the verbal format seen as 

most incorrect.  
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Study 2 

Method 

Participants 

299 Native English speakers were recruited from Amazon 

MTurk. 17 cases were removed for failing the attention 

check, leaving a final sample of 281 participants (138 male) 

aged between 18 – 74 (Mdn= 32). Participants received 

$0.60 for participating. 

Design, Materials and Procedure 

As in Study 1, except communication format was set in the 

high probability domain: verbal – “likely”, numerical – “80% 

likelihood”, V-N – “likely (80% likelihood)” and N-V– “80% 

likelihood (likely)”. In addition, post-outcome, the likely 

event did not occur. 

Results 

Trust and expertise ratings were again correlated (pre-

outcome: r = .60, p < .001; post-outcome: r = .74, p < .001). 

We combined the two measures as in Study 1. The data were 

analysed as in Study 1. 

Credibility Ratings 

Mean credibility ratings, by communication format, are 

plotted in Figure 2, which shows before the outcome there 

was little difference between formats, as in Study 1. Post-

outcome, all communication formats suffered from a loss of 

perceived credibility, with no notable difference between 

formats. The outcome and format interaction of Study 1 was 

not replicated, F (3, 273) = 2.53, p = .06. The main effect of 

outcome was significant, F (1, 273) = 221.23, p < .001, η𝑝
2= 

.45, and the effect of format was marginally significant, F (3, 

273) = 2.59, p = .053, η𝑝
2= .03. A post-hoc Gabriel test 

revealed there were no significant differences between 

formats (all ps > .08). Highest perceptions of credibility were 

in the numerical condition (M= 3.91, SE= 0.08), and the 

lowest were in the verbal condition (M= 3.63, SE= 0.08). 

Decision to Evacuate 

Mean evacuation ratings for both pre and post-outcome (by 

communication format) are displayed in Table 1, which 

shows little difference between formats both pre and post-

outcome. Indeed, there was no significant effect of outcome 

(p = .07) nor format (p = .20) on the decision to evacuate. 

There was a significant effect of numeracy, F (1, 273) = 5.08, 

p < .05, η𝑝
2= .02, with the high numeracy group more certain 

about evacuating (M= 2.08, SE= 0.10), compared to the low 

numeracy group (M= 2.39, SE= 0.10). There were no 

significant interactions (all ps > .15). 

Correctness Ratings 

Again there was a significant effect of communication format 

on correctness ratings F (3, 273) = 4.90, p < .01, η2
p= .05. As 

in Study 1, the numerical format was seen as ‘least incorrect’ 

and the verbal format seen as most incorrect (see Table 1). 

 

 

Figure 2. Effect of Communication Format on Perceptions of 

Credibility Before and After an ‘Erroneous’ Prediction- 

(Error Bars Represent 1−
+ SE) – Study 2 – High Probability. 

General Discussion 

Pre-outcome, people did not perceive any of the 

volcanologists to be more credible than others using different 

communication formats, nor was there an effect of format on 

decision to evacuate. However, post-outcome, credibility was 

sensitive to an ‘erroneous’ prediction, with lower ratings in 

all formats. In Study 1 (low probability), the numerical 

format was affected least by this, and there was a trend for 

numerical-led communications (numerical and N-V) to be 

least affected in Study 2. 

It is surprising that there was no initial difference between 

communication formats on perceptions of credibility in either 

probability domain, given the findings of Longman et al. 

(2012) that an expert who used a point estimate was seen as 

more credible. We would have expected numerical 

communications to have been rated as more credible, as the 

decision to use a precise numerical estimate could be thought 

to reflect a level of confidence and certainty in the prediction. 

Indeed, people expect experts to provide their knowledge in 

a precise manner (Shanteau, 1992).  

In Study 1, the finding of most interest was the presence of 

a format × outcome interaction, whereby the numerical 

format lost least credibility following the occurrence of the 

unlikely event. These findings could be partly attributed to 

the directionality of the expression (Teigen & Brun, 1995, 

1999). Although both V-N and N-V formats featured a 

negatively directional expression (‘unlikely’), it was 

accompanied by the positively directional phrase ‘20% 

likelihood’, which may have cancelled out the effect of the 

negative directionality. Although no significant interaction 

was observed with high probability expressions, the results 

followed a similar trend, with numerical and N-V expressions 

least affected. 

    We were surprised not to replicate Doyle et al.’s (2014) 

findings that more people chose to evacuate when given a risk 

communication featuring a numerical expression as opposed 

to a VPE. Although we found an effect of format in Study 1, 

it was in the opposite direction to the original study. A large 

number of responses to the question of ‘why’ people made 

their evacuation decision mentioned themes such as ‘better to 
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be safe than sorry’. There was little cost to the participant to 

adopt this approach, which could have been a factor in the 

high proportion of people choosing to evacuate immediately. 

Whilst Doyle et al. (2014) attributed their results to the 

ambiguity of VPEs, we argue that our results could also be 

explained using this reasoning. Participants may have felt that 

the choice to use a VPE in the risk communication reflected 

a level of uncertainty in the outcome, with the communicator 

‘hedging their bets’, and thus felt that it was better to adopt a 

conservative stance and evacuate, ‘just in case’. Indeed, this 

is in line with the appropriate response of increased 

uncertainty providing an impetus to be concerned and an even 

greater reason to act (Lewandowsky et al., 2015). 

Additionally, if an ‘unlikely’ event were to occur, it would be 

far more consequential than if a ‘likely’ event did not occur. 

The lack of an influence of numeracy on nearly all of our 

measures was somewhat unexpected, given the fact that 

numeracy has been demonstrated to influence effects of 

communication format (Gurmankin et al., 2004), and 

information format (e.g. frequencies versus percentages, 

Reyna, Nelson, Han, & Dieckmann, 2010).  

Further research should seek to explore the effect of the 

precision of the communication format. Chess, Hance & 

Sandman (1988) claimed being open about levels of 

uncertainty would lead to enhanced credibility and 

trustworthiness. The current study only explored point 

numerical estimates (e.g. ‘20% likelihood’), rather than more 

specific point estimates (e.g. ‘23% likelihood’). Including 

range estimates (both small and large) would allow for a 

better understanding of the benefits of including numbers in 

risk communications. Whilst Longman et al.’s (2014) 

findings suggest that range estimates will have a negative 

effect on understanding and perceived credibility, others have 

found that range estimates are perceived as more useful and 

more honest (Dieckmann, Mauro, & Slovic, 2010; Johnson & 

Slovic, 1995). 

Conclusion 

This study provides a different perspective to examining the 

effectiveness of risk and uncertainty communications, 

moving away from merely how the information is 

understood. Trust is fundamental to improving these 

communications (Slovic, 1993), and our work contributes to 

this somewhat neglected area of research.  

 

 

 

 

 

The present research provided a systematic comparison of 

the effect of differing communication formats on the 

credibility of the communicator in the context of geological 

risk communications. Identifying instances in which the 

communication format has a significant impact on the 

audience’s perceptions of the communicator is key to 

building and maintaining public trust in science, as well as 

improving the effectiveness of risk communication. Our 

findings show that the numerical format is viewed as more 

correct and is most robust against reductions in credibility 

following an ‘erroneous’ prediction. The present results thus 

suggest numbers should be included in these communications 

wherever possible. 
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Abstract
The problem of stability has long been a limiting factor in de-
veloping neural networks that can grow in size and complex-
ity. Outside of particular, narrow parameter ranges, changes
in activity can easily result in total loss of control. Human
cognition must have reliable means of acting to stay within
the stable ranges of sensitivity and activation. Learning is one
such mechanism, and population dynamics are another. Here,
we focus on another, often overlooked stability mechanism:
cellular homeostasis through metabolism dynamics. We ran a
visual change detection experiment designed to strain network
stability while minimizing any learnable patterns. We fit the
data using models with and without cellular energy levels as a
factor, finding that the model influenced by its past history of
energy use was a closer fit to the human data.
Keywords: Homeostasis; attention; visual change detection;
neural modeling

Introduction
The stability of learning and development depends partly on
the stability of the learner’s underlying cognitive machinery.
A system that is not tethered to a baseline level of activ-
ity is vulnerable to being excited out of control or perishing
through complete inaction. A number of mechanisms have
been uncovered that promote basic stability in neural systems
across multiple timescales. For instance, neurons coupled to
one another via patterns of local excitation and lateral inhibi-
tion, can interact over fractions of a second to stably form and
maintain “peaks” of activation around a core value of interest
(e.g. Thelen, Schöner, Scheier, and Smith, 2001). As patterns
in the short term persist, memory traces can be formed that
are able to project the influence of these patterns over much
longer timescales, leading to overall stability across similar
situations.

Stability can also be driven at a level even below that
of populations of neurons. Cellular metabolic processes al-
low individual neural units to contribute to the stability of
a population coded representation by, observing and acting
on their own changes in activity, and doing so at multiple
timescales. The Hebbian rule, relating changes in correla-
tions in the activity of neurons to their degree of co-activation,
under-specifies the adjustment mechanisms needed for higher
order stability. Oja (1982) derives an additional term, that, if
included in the instantaneous rate of Hebbian weight change,
will remain within some stable range of activity while main-
taining the correlation. It was suggested that this term could

be thought of as a form of intrinsic “leakage” rate, η, of the
materials available to the synapse.

This initial modification to the Hebbian rule was largely
abstracted, however, from the precise biological interpreta-
tion. The cellular mechanism would need to toggle the adap-
tation of a neural unit between “labile” and “stable” dispo-
sitions toward changing connection strengths (Bienenstock,
Cooper, & Munro, 1982). One suggested candidate for this
process is brain-derived neurotrophic factor (BDNF) (Glaser
& Joublin, 2011). Using Calcium levels as a proxy for the
instantaneous levels of change at a synapse, neural units cod-
ing for changes in the level of BDNF can dynamically alter
the underlying synaptic excitation/inhibition levels of cells.
For instance, blocking input channels to the retina using a
tetrodotoxin can affect cellular activity in ways that suggest
homeostatic forces (Turrigiano, 2011). Strong excitatory in-
puts, when blocked, allow for a period of higher than nor-
mal activity once unblocked; likewise, the opposite is shown
when inhibitory inputs are blocked. More generally, energy
stores build up in the blocked neurons when receiving lower
than normal input (and thus experiencing lower than normal
activity themselves), or when allowed to fire higher than nor-
mal, stores are depleted. When a baseline level of energy
is restored, normal conditions are eventually achieved again,
but the effect in the meantime is one of an internal, cellular
homeostatic force.

In the present study, we use a visual change detection
paradigm to explore the capacity of the cognitive system to
adapt to changes in task demands. Our model of the data are
more detailed than that described by Oja (1982), but more ab-
stract than a chemically detailed BDNF explanation. Our goal
was to create perturbations of cognitive homeostasis that can
produce interesting behavioral level data suitable for mod-
eling effects beyond those observable in cellular recordings.
The specifics of two computational models are then intro-
duced for capturing the new behavioral effects. Simulations
show that the model with a cellular energy term outperforms
a version without one. We conclude with a discussion on
the merits of including energy terms in basic neural models
as a part of establishing a common language of conservation
across the brain, even when exploring cognition at the level
of behavior.
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Change Detection
The change detection paradigm is a useful way of studying
the cognitive operations necessary for several processes rele-
vant to homeostasis. A typical trial in a change detection task
consists of a sample set of items to remember, followed by
a test set of items and a response prompt. The paradigm is
simple yet challenging to model (Johnson, Spencer, Luck, &
Schöner, 2009); so we opted for a highly simplified version
with only one feature dimension of change: color. By chang-
ing anywhere from zero to six colors per trial, however, we
still allowed for a straightforward manipulation of homeosta-
sis across trials, disturbing the balance of expectation, ability,
and adaptation constantly throughout our task.

Experiment
We designed a change detection experiment with the intention
of placing participants in situations of rapidly changing corti-
cal energy levels as might be consistent with a BDNF home-
ostatic response. The task was also designed as a situation
where homeostatic control would potentially be beneficial to
task performance. Two presentations of colored squares were
given to participants per trial, and the number of changes be-
tween presentations was reported, changing from zero to six
changes unpredictably trial by trial. No overall learnable trial-
to-trial pattern was available to participants that would aid
them in answering correctly, so that there was no advantage
to adopting complex expectations.

Method
Participants were recruited from the Simon Fraser Univer-
sity psychology department subject pool, where they received
course credit for 30 minutes of participation. We asked partic-
ipants to think of 6 color patches as alien creatures that would
change form over the course of a trial. The job of the partic-
ipant was to correctly classify the number of changes as part
of a national effort to better understand these aliens. Of the
33 subjects, 30 were retained for analysis. Three participants
were dropped for failing to complete 106 trials of the task.

Each trial involved a masked presentation sequence de-
signed to eliminate any relevance of spatial position of stim-
uli, so that color alone was the sole feature dimension of
change detection. Subjects were instructed to view a fixation
cross for two seconds at the start of each trial. A set of six
colors was then presented for four seconds, long enough to
ensure an ability to briefly encode the colors in memory. The
screen was then masked to block effects of afterimages for
two seconds, and a second set of colors was presented. The
orientation of the colors was a vertical 2x3 grid rather than
the horizontal 3x2 grid in the first presentation, to remove
any clear or objective correspondence between spatial loca-
tions in the first and second presentations. All colors were
also scrambled in positions, in addition to the display posi-
tions being rotated.

The second color display was left on the screen for either
2.5, 3.0, 3.5, or 4.0 seconds (counterbalanced across trials

per participant) to allow for different amounts of time for any
homeostatic system to adjust cellular activity rates now that
the changes, if any, were visible. The intention of the time
manipulation was that there would not be sufficient time to
make a homeostatic adjustment in one timeframe, but enough
in another, and thus that the required time for homeostatic
adjustment could be identified by changes in accuracy.

A second mask was then presented for two seconds, where-
after the participant was given any amount of time to report
the number of changes on a number line on screen. Partici-
pants were given explicit feedback about their answer in the
form of a blue mark for the correct answer in addition to the
red mark indicating the chosen response. Figure 1 depicts a
graphical representation of the task procedure.

Twelve perceptually equidistant colors were assigned to
each participant, offset from each other by a random amount.
Color coordinates were obtained from a slice of CIEL*a*b*
color space, with luminance set to a constant L = 75. Only
coordinates in this color space that have a representation in
RGB can be displayed on a monitor, so all but the largest cir-
cular portion of the color space satisfying this constraint was
removed (Johnson et al., 2009; Lehky & Sejnowski, 1999).
These twelve colors were then used consistently for a par-
ticipant’s entire experiment. Every trial randomly sampled
from the participant’s set of twelve colors as needed. A “zero
changes” trial, for example, only required six colors (the same
set of six twice), whereas a “six changes” trial required all
twelve colors (two different sets of six).

Trials were counterbalanced with a customized Latin
square in order to equally distribute the number of times each
possible number of changes in colors (0-6) was the correct
answer, while also equally distributing the number of one-
back differences between correct answers on the current and
previous trial. Figure 2 shows the actual number of total tri-
als across participants of each combination of these variables.
The four possible display times for the second color array
were evenly distributed within each of these trial types (i.e.,
within each bar in Figure 2. Display times not shown in Fig-
ure).

The partial Latin square was necessary due to mathemat-
ical constraints in designing a distribution of trials that at-
tempted to fit both criteria. Each trial is part of a one-back
link to its previous trial but also to the next trial, so any change
has a cascade of consequences for the options on other trials.
Also, certain one-back differences are impossible; for exam-
ple, if the number of changed colors on a trial is three, then
the one-back difference cannot possibly be 6, because that
would mean the correct answer on the previous trial was “-
3 changes” which is not possible. There were 9 impossible
combinations like this overall, forming a triangle of missing
bars in Figure 2 (upper right portion of figure).

Trial orders were generated by a Monte Carlo algorithm
that simulated many solutions to the overall trial order prob-
lem. The algorithm respected the constraints described
above, while also introducing randomness in order to limit
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Figure 1: The presentation sequence of a trial. A fixation cross appears for 2 seconds. A sample set of 6 colors to be remembered
is then presented for 4 seconds. A diffuse colored mask intended to cancel out sensory correlation with the subsequent test
array is then presented for 2 seconds followed by a set of 6 color patches rotated by 90◦ (and completely scrambled with
no correlations in positions before vs. after masking). A final colour mask is then presented for 1 second in advance of the
unconstrained response phase. Subjects would click on a value for their estimate of the number of changes, marked in red, and
the correct value marked by blue.

trial order confounds between participants. A unique solu-
tion was found for each participant. Solutions were defined as
trial orders where the total number of trials was nearly equal
for each of the seven possible correct answers (so as many
trials have an answer of “4” as have an answer of “2”), and
where the number of trials was also nearly equal for each of
the seven possible one-back changes in correct answer. The
shape depicted in Figure 2 was the algorithm’s consistent so-
lution to this problem, with only very minor differences and
asymmetries between participants.

Experiment Results
The average error across all trials and all subjects was 1.5
units (number of color changes, out of 6). A mixed effects
model with subject as a grouping factor showed no signifi-
cant improvement in change detection over the course of the
experiment (t = 1.6, p = 0.11). In accordance with our goal
of exploring sensitivity to swings in cognitive energy and ac-
tivation over time, we also checked for a lag-one correlation
in responding over the course of the experiment. Lag-one
in this case is being measured as the correlation between re-
sponses on trial t and responding on trial t-1, i.e. the cor-
relation between the list of responses and itself shifted one
trial sooner. When this correlation is positive, it suggests
that answers were given in long “runs” where a high answer
would be followed by more high answers and similarly for
low. When the lag-one correlation is negative, it suggests a
degree of “ping-ponging” back and forth between high and
low (number of changes) successive answers more often than
would be expected by chance. A lag-one of zero suggests no
particular persistent carryover effects of responding from one
trial to the next.

For this analysis, it was necessary to control for any lag-
one correlation that may have been inherent to the trial or-
der itself. Figure 2 shows how, despite equal distribution of
changes and differences in changes in colors across trials, pat-
terns exist between these two variables. To control for such
patterns during the analysis, we looked for lag-one correla-
tion only in those trials we knew had a symmetric pattern
of changes compared to previous trials: ones where the an-
swer was exactly three changes (“Correct Answer = 3” set of

bars in Figure 2). Within this restricted data set, we found
a positive correlation (β = 0.11, t = 2.74, p < 0.01) in the
responses between trials, indicating a minor preference for
repeated “runs” of responding that was not related to any ex-
perimental design.

Timing differences in the second color presentation phase
of the task did not correspond to significant differences in per-
formance. Differences were expected, but any homeostatic
effects may simply be too rapid (or too slow / occurring by
memory only during the answering phase) to be distinguished
by the difference between 2.5 and 4 seconds of presentation.

Model

We tested two models against our behavioral data: one bio-
logically inspired model (in line with with the BDNF princi-
ples discussed by Glaser and Joublin, 2011) capturing cellu-
lar homeostatic principles, and the same model but with the
cellular homeostatic term removed. Each was simulated in
Matlab using the exact order and content of trials and color
values seen by each of the 30 participants in turn. These
models provide continuous real number outputs between 0
to 6, but were forced to choose exact whole number answers
for number of changes, as the humans were. Especially for
the model that accounted for the C.H. model, the effect of
feedback could have contributed differently to the next trial’s
behavior if whole number answers were not required, so to
ensure the most human-like between-trial patterns, model an-
swers were also rounded.

Since our goal was to capture the levels of errors and inac-
curacy in human behavior, and the difficulties of the task be-
ing between-trial consistency, we fed the signal for the num-
ber of changes on a trial to the models directly, so that the
target measure of the fit was focused on the specific pattern
of errors made by each human on each of their trials. Each
model was fit to human responses using the method described
below, which tested enough detail to capture these homeosta-
sis straining effects over time, as well as patterns of variance
in errors.
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Figure 2: Histogram of different trial types in the experiment.
Every trial had a correct answer, and all but the first trial had
a one-back difference between its correct answer and the cor-
rect answer on the previous trial. Some of these combinations
were impossible (see text). The shape seen here equally dis-
tributes correct answers overall, and also equally distributes
changes between trials overall, while avoiding the impossible
trial types. Bars are not perfectly symmetrical due to par-
tial randomization between participants to avoid trial order
effects. Some small asymmetries between bars are visible
due to the necessity of using a Monte Carlo algorithm for this
task.

Cellular Homeostasis Model
The primary model of interest displayed homeostasis as a re-
sult of cellular energy resisting extreme response rates by be-
coming depleted after heavy use or energized after low use.
The neuron’s energy reserves were its only way of tracking
information across trials. Its output on a trial is given by:

Ot = astEt +b+ εn
where st is the stimulus on the trial (the number of changed

colors), ε is normally distributed noise, a, b, and n are freely
fitted coefficients, and E is cellular energy, calculated per trial
as:

Et = Et−1 +
(Ot−1−3)c

τ
− (Et−1−1) c

3
τ

The fourth free parameter of the model is c in the energy
equation above. τ was not parameterized and was always set
to a constant value of 10. The Ot−1 − 3 represents the fact
that three was the most central response out of options 0-6,
so any values below this were considered “low” answers that
helped relatively gain cellular energy, and any values above
this were “high” answers that relatively depleted energy re-
serves. The third term represents relaxation of the system to
neutral energy over time, but 1/3 slower than the rate of en-
ergy change from responding (Toyoizumi, Kaneko, Stryker,
& Miller, 2014). Setting Et−1 − 1 causes energy to relax to-
ward a neutral value of 1, where it would have no effect on the
cell’s output. All model answers were rounded to the nearest
integer from 0-6 - the only valid answers in this task - on a
per-trial basis. This was also true of the mathematical model

variant below.
The energy term mimics the predictions of the BDNF

chemical cell model, with as much abstraction as necessary
to allow for easy application to typical cognitive behavioral
data. As in the BDNF model, a decision neuron firing at a rel-
atively low rate (0-2 changes in this task) builds up energy and
fires faster than normal for a brief period in response, while
a neuron firing relatively energetically (4-6 changes in this
task) will progressively deplete energy and fire more slowly
for a time in response.

Simple Mathematical Model
The second model had no biological motivation, but serves as
a baseline comparison with the C.H. model. It replicates the
C.H. model in structure, but with the energy term removed.
This model had no means by which to account for previous
trials, as the model had no form of memory/hysteresis. It did,
however, still have all of the information needed to perform
perfectly at the task according to task instructions (rather than
fit to human answers). A perfect score could be achieved
with parameter values a = 1, b = 0, and n = 0. Thus, lower
performance by this model at fitting human data would be due
to a lesser ability to capture human sources of error and trial
to trial effects (theoretically irrelevant and distracting from
optimal performance) only. The model is given by:

Ot = ast +b+ εn

Fitting Method
We created three dimensional histograms of responses for hu-
mans and models to fit and compare results. Every trial across
subjects was sorted into histogram bins according to the cor-
rect answer on that trial (0 to 6), the difference between the
correct answer on that and the correct answer on the previ-
ous trial (-6 to 6), and the participant’s (real or simulated)
response (0 to 6). This produced 7 x 13 x 7 set of possibili-
ties (637 histogram bins). The first two dimensions represent
objective trial types (ones built into the design and based on
actual stimuli) and since these were not perfectly evenly dis-
tributed due to mathematical constraints (see Figure 2), we
weighted the importance of cells from the combinations that
had more more data points, using weighted least squares:

Fit =
√

1
637 ∑s,d,r(∑s,d(NHs,d )(Hs,d,r,model −Hs,d,r,human)2)

where H is the histogram, and s, d, r are stimuli at time
of response (t); difference in stimuli(t) – stimuli(t-1); and re-
sponse, respectively. This method captures information about
trial to trial effects, main effects, interactions, general task ac-
curacy, and patterns of variance, all in one measure.

This histogram method was chosen for the objective func-
tion to avoid the problem that fitting averaged descriptives
like accuracy or standard deviation of responses, which could
lead to degenerate model patterns: a mean might be fitted by
100% of model answers at exactly the mean without realistic
variance, for example. Fitting the entire histogram of all rele-
vant measures allowed for the model with the richest detailed
pattern of fits across every measure.

591



Figure 3: Change responses versus change responses on the
previous trial, where the current trial had 3 changes. C.H. is
the Cellular Homeostatic Model.

The models have differing numbers of free parameters (4
vs. 3), yet due to the dynamical nature of the cellular energy
model, its maximum likelihood cannot be easily calculated,
and simulations take non-trivial time to perform. Ultimately,
the main concern of an overly complex model is failure to
generalize, so instead of scoring parsimony, we ruled out
over-fitting directly using cross-validation. For each model,
we split the subject pool in half, and separately fit each half.
We then recorded the fits for each half using only the best pa-
rameters found from fitting the other half. All results reported
below are exclusively these generalization results, removing
our concerns about hidden differences in generalization abil-
ity between the three and four parameter models.

We fit a 7 value range for each parameter in a grid covering
all of reasonable parameter space for the task, separately for
each half of participants as above. We then focused more
closely near each best fit at higher precision until precision
increases stopped yielding better fits.

Model fitting results
The best fitting parameters for the cellular homeostasis model
were a = −0.4, b = 3.5, c = 0.92, and n = 1.4. The best
fitting parameters for the simple mathematical model were
a =−0.45, b = 3.5, and n = 1.5.

The average cross-validation weighted least squares error
for the cellular homeostasis model was 8.335, while the aver-
age cross-validation weighted least squares error for the sim-
ple mathematical model was 9.436. Since these values al-
ready account for the greater potential for over-fitting with
four versus three parameters, they can be compared at face
value: the energy term meaningfully accounts for human be-
haviors above and beyond slope, intercept, and noise terms.

Although the magnitude of the effect is somewhat modest,

it is noteworthy to point out again that the simple mathemati-
cal model was able to achieve 100% objective accuracy at the
task as per the task instructions by simply fitting parameters
a = 1, b = 0, and n = 0, a combination that was within the
tested range of reasonable parameters during fitting. Thus,
the lower performance of the simpler model is purely a re-
sult of more poorly fitted patterns of human error, possibly
error in response to patterns of trials that threw off home-
ostatic neutrality, since the better fitting energy term in the
homeostasis model varies by activity on previous trials.

Ultimately, the exact cause of the better fits of the cellular
homeostasis model are unclear. Analysis of the full three-
dimensional fitting histogram suggested noticeable differ-
ences between the two models and between models and hu-
man data, but these differences were too diffuse and opaque
to easily interpret.

Lag-one correlations on trials with three color changes
also fit human data better in the homeostasis model than
in the simple mathematical model. Where βhuman = 0.11,
βcellular model = 0.05 and βsimple model = 0 (see Figure 3).
These correlations highlight the lag-one effects in particular,
but lag-one effects are also built into the 3-dimensional his-
tograms used for the main fitting results.

Discussion
Behavioral stability is often approached from the perspec-
tives of neural population dynamics or higher-level verbal or
executive control theories. Stability is also attainable, how-
ever, through more microscopic means, at an intra-cellular or
synaptic level. This source of homeostasis in cognition and
behavior is, by itself, simple. Activity is most likely stabilized
around a static resting level, at least within the timescales af-
forded by a particular task. This does not necessarily match
the flexibility or possible sophistication of higher level stabi-
lizing mechanisms.

Cellular homeostasis is, however, an appreciable effect,
especially when studied in a task that eliminates distracting
forces and pushes the boundaries of a system’s homeostasis.
Even in less specialized situations, however, cellular effects
are likely continuing to function and can contribute toward
an understanding of behavior. This form of homeostasis may
generally be playing a silent and under-appreciated role in a
wide variety of cognitive activities, providing a small but im-
portant level of baseline stability that can act as a foundation
for more targeted systems like learning mechanisms to ex-
plore more freely without risk of losing control of a system.

Our findings require significant further investigation to es-
tablish an exact pattern of behavior that is being captured by
the cellular energy term of our model, and followup experi-
ments are necessary to confirm those mechanisms once iden-
tified. In the meantime, we suggest cognitive modelers more
often consider including cellular energy terms in neural mod-
els of not only cellular-level effects, but behavioral effects as
well. All cognitive processes involve neurons, so even mod-
est effects of such a cellular system may be of great impor-
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tance collectively, for a range of effects at different levels of
complexity and abstraction.
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Abstract 

Bounded and unbounded events differ in whether they include 
an inherent endpoint (Bach, 1986). Even though this 
distinction can be important for the way events are identified 
and processed, the literature on event cognition has not 
focused on such abstract aspects of event structure. In the 
present study, we asked whether viewers are sensitive to the 
distinction between bounded and unbounded events in a 
category learning task. Our results show that people were 
more successful in forming the category of bounded events 
than that of unbounded events. We discuss implications of 
this finding for event cognition. 

Keywords: event structure; endpoint; boundedness 

Introduction 

Our experience of the world is intrinsically dynamic. To 

make sense of the complex flow of changes in our 

environment, we break continuous streams of experience 

into separate entities and classify such entities into different 

types. 

Much work has focused on how people segment 

continuous experience into discrete units, i.e. events. The 

term “event” refers broadly to a temporal segment that has 

“a beginning and an ending” (Zacks & Tversky, 2001). 

People identify the boundaries of an event through tracking 

changes in perceptual features such as direction, location, or 

speed of action (e.g. an arrow hitting a target); more 

importantly, people encode events based on conceptual 

features, especially the goal-directedness or causal structure 

of the corresponding experience (e.g. a person on diet 

hitting a target; Zacks & Swallow, 2007). Event boundaries 

have a privileged status in memory and provide anchors for 

later learning and describing (Swallow, Zacks, & Abrams, 

2009). In particular, the endpoint is conceptualized as a 

critical event component. For instance, when comparing two 

events, the resultant state (e.g. whether a ball knocked over 

the whole tower or just a few blocks) has more 

psychological weight than other perceptual features (e.g. the 

moving direction of the ball) (He & Arunachalam, 2016). In 

the well-studied domain of motion events, the goal of 

motion is more accurately encoded in both language and 

memory as opposed to other components such as the source 

(Lakusta & Landau, 2005, 2012; Papafragou, 2010; Regier 

& Zheng, 2007; Wagner, 2009). In addition, people tend to 

fill the gap between successive events within a causal chain 

by generating rapid inferences about the endpoint of the first 

event. In a study by Strickland and Keil (2011), after 

watching videos of someone launching an object (e.g. 

kicking a soccer ball) followed by the object’s directed 

motion (e.g. the ball flying into the goal), participants 

mistakenly reported that they saw the moment of contact, i.e. 

the endpoint of the launching event, even when it was 

actually omitted from the display. 

Despite the richness of the literature on event 

segmentation and the salience of endpoints in event 

perception, the nature of event endpoints has been less 

discussed. In most event-segmentation studies, the stimuli 

are actions by an intentional actor (e.g. a person putting up a 

tent) and the endpoint is taken to be obvious and well- 

defined (e.g. the moment the tent is put up). In studies of 

motion events, the endpoint appears similarly self-evident 

(and is typically the moment that a moving entity reaches 

the goal). However, across a broad range of events, the 

notion of endpoint is not always straightforward. Consider 

the following situations described by the two sentences in 

(1): 

(1) a. The child played the Moonlight Sonata. 

b. The child played the piano. 

There is subtle difference between (1a) and (1b). The event 

in (1a) comes to an end when the last note of the sonata was 

played. In contrast, it is hard to specify how or when the 

situation in (1b) ends — the child could stop playing at any 

point. The endpoint is inherent in the former event but is 

arbitrary in the latter. Such contrasts have been discussed 

extensively in the linguistic literature on aspect (i.e., the 

linguistic encoding of the internal temporal profile of 

events). In this literature, the distinction between the two 

sentences in (1) is captured by assuming that (1a) encodes 

an experience as a “bounded” event but (1b) encodes it as an 

“unbounded” event (Bach, 1986; Harley, 2003; Jackendoff, 

1991). Bounded events have an internal structure with a 

“built-in terminal point” (Comrie, 1976), “climax” (Vendler, 

1957) or “culmination” (Parsons, 1990), while unbounded 

events are homogenous, lacking internal development 

(Krifka, 1998). This linguistic distinction presumably has a 

non-linguistic counterpart in the way events are perceived 

and understood but to date, this connection has not been 

explored in detail. 

Inspired by the rich linguistic research on how event 

endpoints are encoded in language (see Filip, 2004; Krifka, 

1998, etc.), one can further identify two major types of 

consideration that determine whether an event is bounded or 
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not. First, intuitions about boundedness may be due to the 

nature of the action. In particular, some actions lead to a 

change of state in the affected object, such that the endpoint 

is the resultant state (bounded events); other actions do not 

affect the object in a perceptible way or the change lacks a 

well-defined resultant state (unbounded events). The 

contrast is shown in the following example: 

(2) a. The child dressed the teddy bear. 

b. The child patted the teddy bear. 

(2a) describes a bounded event—the teddy bear was dressed 

when the child finished. (2b) describes an unbounded 

event—no predictable result followed from the child’s 

patting. Although both events involve the same object, the 

difference in actions leads to the contrast in boundedness. 

Second, intuitions about boundedness may be due to the 

nature of the affected object. Sometimes, there is a 

homomorphism between the affected object and the time 

course of the event (Dowty, 1991; Krifka, 1989), such that 

the changes in the object track or “measure out” the way the 

event develops (Tenny, 1987). When the object itself is 

quantified, the event is bounded. The contrast can be 

illustrated by the example below: 

(3) a. The child ate a pretzel. 

b. The child ate cheerios. 

(3a) depicts a bounded event— the event unfolds as the 

pretzel changes and it ends at the moment when the pretzel 

is gone. (3b) depicts an unbounded event that lacks an 

inherent endpoint—the child could stop at any time.  

To sum up, bounded and unbounded events differ in 

whether they have an inherent endpoint. Two major 

components, i.e. the nature of the action and the affected 

object, might determine whether an inherent endpoint is 

available. So far the literature on event perception has not 

explored the role of boundedness in determining event 

boundaries, and little is known about whether viewers are 

sensitive to such abstract aspects of event cognition. One 

suggestive piece of evidence comes from work focusing on 

how events are counted. Bounded events are naturally 

counted in terms of how many inherent endpoints have been 

achieved. Lacking an inherent endpoint, unbounded events 

are counted according to spatio-temporal criteria. Returning 

to the example in (1), imagine that the child paused for a 

break and then resumed her playing in both situations. The 

event of playing the Moonlight Sonata still occurred once, 

but the child played the piano twice. When counting events 

like (1a), adults look for the inherent endpoint regardless of 

the pauses (Barner, Wagner & Snedeker, 2008) but 3-to-5-

year-olds tend to over-generalize spatio-temporal criteria 

and count the number of pauses (Wagner, 2006; Wagner & 

Carey, 2003).  

In the present paper, we explore viewers’ sensitivity to 

the distinction between bounded and unbounded events 

(defined in terms of the availability of an inherent endpoint, 

as in (2) and (3) above). Specifically, we ask whether 

viewers can group events into the bounded vs. unbounded 

category in a category learning task. Drawing on the 

linguistic literature in which the category of unbounded 

events is definitionally dependent on the category of 

bounded events (such that boundedness and unboundedness 

form a positive-negative pair), we ask whether there is an 

asymmetric relation between the two types of event in non-

linguistic cognition. If so, the category of bounded events 

might be learned by observers more easily compared to that 

of unbounded events. 

Experiment 1 

Experiment 1 was a category learning task. Participants 

were exposed to minimal pairs of bounded and unbounded 

events (defined by the availability of an inherent endpoint) 

and had to extract what was shared by different events of the 

same category and extend this information to new events. 

Method 

Participants Forty adults participated in the experiment. All 

were undergraduates at the University of Delaware and 

received course credit for participation. Data from an 

additional group of 2 adults were collected but excluded 

because these adults were color-blind and failed to identify 

an important test feature (a red frame) consistently. 

 

Stimuli Twenty pairs of videos were created, such that each 

pair showed a bounded and an unbounded event (see Table 

1). Within each pair, the videos had the same duration 

(range: 4.5s-13s; M = 7.98s) and involved the same actor 

but differed minimally from each other in one of two ways 

that involved boundedness. For half of the pairs, the 

bounded and unbounded events within a pair involved the 

same object but differed in terms of the nature of the action 

performed on the object: the bounded event displayed an 

action that caused a clear and temporally demarcated change 

of state in the object (e.g. fold up a handkerchief) while its 

unbounded counterpart did not involve such a change (e.g. 

wave a handkerchief). For the other half of the pairs, the 

bounded and unbounded events within a pair involved the 

same action but differed in terms of the nature of the 

affected object: the bounded event involved a single object 

(e.g. draw a circle) but its unbounded counterpart involved 

either an unspecified plurality of objects or a mass quantity 

(e.g. draw circles).  

To ensure that all video stimuli would illustrate the 

contrast in boundedness presented in Table 1, a new group 

of 18 adults from the same population was asked to watch a 

subset of the clips and describe what happened in a full 

English sentence. For this norming task, the events in Table 

1 were split into 2 lists, such that each list included only one 

member of each pair and an equal number of bounded and 

unbounded events. Each of the 18 participants was 

randomly assigned to one of the two lists. Their descriptions 

were coded for the verb used to describe the action and the 

noun phrase used to describe the affected object(s). As 

expected, differences in boundedness within a pair that were 

due to the nature of the action were reflected in verb choices: 

bounded stimuli elicited verbs of change of state (e.g. “dress 

a teddy bear”) 98.3% of the time and unbounded stimuli 
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elicited verbs denoting activities (e.g. “pat a teddy bear”) 

93.1% of the time. Similarly, differences in boundedness 

within a pair that were due to the nature of the object were 

reflected in noun phrase choices: bounded events elicited 

count nouns with definite or indefinite articles (e.g. “eat 

the/a pretzel”) 98% of the time and unbounded events 

elicited bare plurals, mass nouns, or related devices (e.g. 

“eat cheerios”) 92.4% of the time. 

For purposes of Experiment 1, the video stimuli were 

arranged into three basic lists corresponding to the three 

phases of the experiment (see Table 1). For the initial 

learning phase, we selected 8 pairs of events (4 in which 

boundedness was due to the Action and 4 in which 

boundedness was due to the Affected Object) and arranged 

them into a pseudorandomized presentation list in which a 

single video was played in the center of the screen and the 

two videos within a pair appeared in immediate succession 

(the order of bounded-unbounded events within pairs was 

counterbalanced within the list).  

For the later testing phase, we arranged 8 of the 

remaining pairs of videos (see Table 1) into 2 lists. Each list 

contained one video from each pair. We counterbalanced 

whether the event was bounded or unbounded and whether 

source of boundedness was the action or the object across 

lists.  

For the final (short) surprise testing phase, we used the 

last 4 pairs of videos, arranged into 2 lists. The same 

counterbalancing was used as in the (main) testing phase. 

 

Table 1: Videos used in Experiment 1. 

 

 

Procedure Participants were randomly assigned to one of 

two conditions. In the Bounded condition, the videos of 

bounded events shown in the learning phase were given a 

red frame while their unbounded counterparts were given a 

black frame. In the Unbounded condition, the reverse 

assignment occurred.  

In the learning phase for both conditions, participants 

were asked to watch a few videos and to pay attention to 

those appearing within a red frame. Their task was to figure 

out what kind of videos were given the red frame and to 

decide whether a new video could have the red frame or not.  

In the testing phase, participants saw a new set of videos 

and for each one they were asked: “Could the video have a 

red frame or not?” (test question) In the surprise testing 

phase, participants were unexpectedly asked: “Could the 

video have a black frame or not?” (surprise question) This 

question was included to probe whether participants formed 

any hypothesis about the secondary event category present 

within the experiment, even though it was not the target of 

the study.  

After the end of the session, participants were asked to 

write down what kind of videos could have a red frame. 

This was used as an additional source of information about 

the category that participants had just formed. 

Phase Boundedness Source No. Bounded Events Unbounded Events 

Learning 

Nature of Action 

1 fold up a handkerchief wave a handkerchief 

2 put up one’s hair scratch one’s hair 

3 pile up a deck of cards shuffle a deck of cards 

4 group pawns based on color mix pawns of two colors 

Nature of Affected 

Object 

5 draw a balloon draw circles 

6 tie a knot tie knots 

7 eat a pretzel eat cereal 

8 flip a postcard flip pages 

Testing 

Nature of Action 

9 dress a teddy bear pat a teddy bear 

10 roll up a towel twist a towel 

11 fill a glass with milk shake a bottle of milk 

12 scoop up yogurt stir yogurt 

Nature of Affected 

Object 

13 peel a banana crack peanuts 

14 blow a balloon blow bubbles 

15 tear a paper towel tear slices off paper towels 

16 paint a star paint stuff 

Surprise 

Testing 

Nature of Action 
17 close a fan use a fan for oneself 

18 crack an egg beat an egg 

Nature of Affected 

Object 

19 cut a ribbon in half cut ribbon from roll (into many pieces) 

20 stick a sticker stick stickers 
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Results 

An ANOVA was performed on the proportion of correct 

responses to all questions with Source of Boundedness (i.e. 

Nature of Action vs. Nature of the Affected Object) as a 

within-subjects factor. No significant difference was found 

(F (1, 39) = .042, p = .838). Therefore, answers to questions 

targeting the two sources of boundedness were collapsed for 

further analysis. 

Results from Experiment 1 are shown in Figure 1. The 

proportion of correct responses to test questions was 

significantly higher in the Bounded (M = 92.50%) than in 

the Unbounded condition (M = 76.25%) (t (38) = 3.563, p 

= .001). No significant difference in the proportion of 

correct responses to the surprise questions in the two 

conditions was found (t (38) = -.831, p = .411).  

An ANOVA was conducted on the proportion of correct 

responses with Question Type (Test vs. Surprise) as a 

within-subjects factor and Condition (Bounded vs. 

Unbounded) as a between-subjects factor. There was a 

significant effect of Question Type (F (1, 38) = 19.795, p < 

0.0001), no significant effect of Condition (F (1, 38) = 

2.247, p = .142), and an interaction between the two factors 

(F (1, 38) = 7.833, p = .008). The participants were more 

accurate in test questions than in the surprise questions in 

the Bounded condition (t (19) = 6.114, p < .00001) but not 

in the Unbounded condition (t (19) = 1.022, p = .320). 
 

 
 

Figure 1: Proportion of correct responses in Experiment 1. 

Error bars represent standard error. 

 

Answers to the last open question asking about the target 

category focused on 3 aspects of the stimuli—organization, 

neatness and intention. Organization was the most frequent 

hypothesis (29 out of the 40 answers). Specifically, 

modifiers such as “organized”, or “structured” were used to 

describe bounded events while “unorganized”, or “lacking 

structure” were given for unbounded events. Neatness was 

the second most frequent hypothesis (15 out of the 40 

answers). Words used for bounded events included “neat”, 

“tidy” and “clean” while those for unbounded events 

included “messy” and “untidy”. Lastly, intention was 

mentioned in 9 out of the 40 answers. Bounded events were 

depicted as aiming “to achieve a goal”, or being “on 

purpose” while unbounded events were “lacking an end or 

purpose”, “random”. 

Discussion 

Performance in test questions directly showed that, given 

the same contrastive examples in the learning phase, the 

participants were better at forming the category of bounded 

events compared to that of unbounded events. Furthermore, 

in the Bounded condition, learning was focused, with 

participants being less successful in the surprise compared 

to the test questions; however, no such asymmetry was 

found in the Unbounded condition. Further intuitions about 

boundedness were found in answers to the last open 

question about the nature of the target (red-frame) stimuli. 

The most frequent hypotheses referred to the organization of 

the stimuli. This suggests that participants attended to the 

internal structure of events when forming hypotheses about 

the meaning of the to-be-acquired category. 

Experiment 2 

In Experiment 1, participants might have benefited from the 

presentation of paired videos in the learning phase. By 

showing 2 successive videos with minimal differences, the 

contrast between bounded and unbounded events was 

highlighted. Experiment 2 asked whether the category of 

bounded or unbounded events could be efficiently extracted 

in a less supportive learning context. 

Method 

Participants A new group of forty undergraduates at the 

University of Delaware were recruited. Data from an 

additional adult were collected but excluded because he 

failed to understand the task and did not finish all the 

questions. 

 

Stimuli and Procedure The stimuli and procedure were 

identical to those in Experiment 1 with one exception. In the 

learning phase, the sequence of the 16 videos was pseudo-

randomized such that any 2 videos within a pair were 

separated by at least 5 other videos. This made it impossible 

to detect the contrast between bounded and unbounded 

events by simply comparing 2 consecutive videos. 

Results 

As in Experiment 1, no difference in the proportion of 

correct responses was found between the two sources of 

boundedness (F (1, 39) = 1.595, p = .214). The answers 

were thus collapsed in the following analysis. 

Results from Experiment 2 are shown in Figure 2. Test 

questions elicited a significantly higher proportion of 

correct responses in the Bounded (M = 84.38%) than in the 

Unbounded condition (M = 68.13%) (t (38) = 3.365, p 

= .002). There was no significant difference between the 

two conditions in the proportion of correct responses to the 

surprise questions (t (38) = -1.129, p = .266).  
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An ANOVA conducted with Question Type as a within-

subjects factor and Condition as a between-subjects factor 

showed a significant effect of Question Type (F (1, 38) = 

7.095, p = .011), no significant effect of Condition (F (1, 38) 

= .646, p = .427), and an interaction between Question Type 

and Condition (F (1, 38) = 7.839, p = .008). The participants 

performed better in test questions than in surprise questions 

in the Bounded condition (t (19) = 4.174, p = .001), but not 

in the Unbounded condition (t (19) = -.093, p = .927). 
 

 
 

Figure 2: Proportion of correct responses in Experiment 2. 

Error Bars represent standard error. 

 

Answers to the open question about the nature of the 

target category still mainly referred to organization, 

neatness and intention. These were mentioned in 16, 8 and 7 

out of the 40 answers respectively. In addition, repetition 

was used to describe unbounded events in 5 answers. 

Completion appeared in 3 answers about bounded events. 

As is clear from Figures 1-2, performance on the test 

questions was better in Experiment 1 than in Experiment 2. 

This was confirmed in an ANOVA that used the proportion 

of correct responses on the test questions as the dependent 

measure, and included Condition (Bounded vs. Unbounded) 

and Experiment (1 vs. 2) as between-subjects factors. The 

analysis showed main effects of Condition, (F (1, 76) = 

23.940, p < .0001), and Experiment (F (1, 76) = 5.986, p 

= .017), and no interaction between the two factors (F (1, 76) 

= .000, p = 1.000). (Results were similar when accuracy on 

both test and surprise questions was used as the dependent 

measure.) 

Discussion 

Results from Experiment 2 showed a learning advantage for 

the category of bounded compared to unbounded events. 

This pattern was similar to Experiment 1, even though 

performance in Experiment 2 was worse compared to the 

earlier study, presumably because of the lack of direct 

contrast between bounded and unbounded events during the 

learning phase. 

General Discussion 

Our findings provide direct evidence for viewers’ sensitivity 

to the abstract feature of boundedness in event cognition. In 

that sense, the present data go beyond prior work on how 

bounded and unbounded events are individuated and 

counted (Barner, Wagner & Snedeker, 2008; Wagner, 2006; 

Wagner & Carey, 2003). Furthermore, our results 

demonstrate that there is an asymmetry between bounded 

and unbounded events, such that it is easier to form the 

category of bounded compared to unbounded events. Our 

results raise the possibility that unboundedness is 

asymmetrically dependent on boundedness during event 

perception and apprehension, and that bounded - but not 

unbounded - events form a natural class.  

The present data leave several directions open for further 

research. An important direction concerns the exact nature 

of the conjectures underlying participants’ groupings of 

events into boundedness categories. The notion of 

boundedness is broad and can be subject to more abstract 

considerations than the present discussion has suggested. 

For instance, the inherent endpoint that defines bounded 

events can provided by a salient intention (Depraetere, 

2007). To take an isolated example, even though the action 

of warming a soup does not have a clearly defined endpoint, 

it is often construed as culminating at the point at which the 

soup has reached someone’s favorite temperature. In our 

study, it seems unlikely that intentionality was the feature 

responsible for participants’ success in the Bounded 

condition. We asked a new group of 10 people to rate the 

degree of intentionality for all the videos used in the 

experiments on a scale from 1 (totally unintentional) to 7 

(intentional). There was no significant difference between 

scores for bounded events (M = 5.829) and unbounded 

events (M = 5.704) (t (9) = 1.059, p = .330). 

Finally, a number of researchers has drawn close parallels 

between object and event systems from a semantic 

perspective, such that the property of boundedness in the 

domain of events has been linked to the issue of 

quantification in the domain of objects (Bach, 1986; 

Jackendoff, 1991). In our study, the quantification of the 

affected object served as a cue for distinguishing bounded 

events from unbounded ones. It is possible that viewers are 

better at forming the category of bounded events because it 

is easier to track a single object compared with an 

unindividuated substance or objects of a variable number. 

An interesting further question is whether there is a 

common notion of boundedness underlying cognitive 

representations of both events and objects (see Wellwood, 

Hespos & Rips, in press) and how distinctions in one 

domain might generalize to the other. 
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Abstract 

Deep understanding of mathematical equivalence is critical 
for later mathematical understandings. However, research 
studies and national test results have repeatedly demonstrated 
that many students fail to develop adequate understanding of 
equivalence. Recent work from McNeil and colleagues 
proposes that this failure is partly due to the format of 
traditional instruction and practice with highly similar 
problems. Specifically, the change-resistance account 
(McNeil & Alibali, 2005) proposes that students struggle with 
equivalence because they have developed overgeneralized 
“rules” that affect how they process and approach math 
problems, (e.g., the operators are always on the left side, the 
equal sign means to “do something” or “give the answer”) 
and fail to see equations having two separate sides that are 
being related to one another. Extensive practice with 
problems in a similar format (e.g., those that present all 
arithmetic operations on the left side of the equal sign) 
encourages students to develop ineffective mental models of 
problem types. We replicate and extend prior work that brings 
cognitive science research to the classroom. Our findings 
indicate that applying research-based design principles to 
arithmetic practice improves student understanding of 
mathematical equivalence enough to support transfer to novel 
problem types. 

Keywords: Mathematical representations; relational 
reasoning; mathematics education; randomized control trial 

Introduction 
Can a research-based, early elementary intervention help 

students learn key concepts that may prevent later struggles 
in algebra? Research suggests that understanding 
mathematical equivalence is a critical component of 
algebraic reasoning (Carpenter, Franke, & Levi, 2003; 
Charles, 2005; Knuth, Stephens, McNeil, & Alibali, 2006). 
However, the majority of US students fail to reason with 
and apply concepts of equivalence (McNeil & Alibali, 
2005), making encoding errors when remembering 
mathematical equations (e.g., McNeil & Alibali, 2004), and 
interpreting the equal sign to mean “calculate the total” 

rather than “two amounts are the same” (e.g., Behr, 
Erlwanger, & Nichols, 1980).  

Why do so many students lack a relational understanding 
of the equal sign? McNeil and Alibali (2005) proposed a 
change-resistance account: traditional arithmetic instruction 
that focuses on procedures (i.e., solving problems such as  
3 + 4 = _) promotes a misconception of the equal sign as a 
request for an answer and interferes with the development of 
relational understanding. The majority of examples of 
arithmetic problems in early elementary math curricula 
show operations (e.g., addition and subtraction) on the left 
of the equal sign and the “answer” on the right (Seo & 
Ginsburg, 2003). Children detect and extract patterns from 
these examples and ultimately construct long-term memory 
representations. Although default representations typically 
speed computation in the problem-solving contexts that 
children encounter most frequently, these representations 
may lead to difficulties when patterns are mistakenly 
transferred to similar, but non-applicable, problem types 
(e.g., Bruner, 1957).  

McNeil and Alibali characterize the representations that 
develop in early mathematics as “operational patterns” as 
they reflect an understanding of arithmetic that focuses on 
the operators (e.g., +, –, ×, ÷) rather than the relational 
nature of mathematical equations. Research has identified 
three types of operational patterns that represent a distorted 
view of arithmetic and hinder conceptual understanding of 
the underlying mathematics. First, children learn to expect 
math problems to have all operations on the left side of the 
equal sign, with the equal sign immediately before the 
answer blank on the right, an “operations = answer” 
problem format (McNeil & Alibali, 2004). Second, children 
learn to interpret the equal sign operationally as a symbol to 
do something (Baroody & Ginsburg, 1983; Behr et al., 
1980). Third, children learn to perform operations on all 
given numbers in a math problem (e.g., add up all the 
numbers in an addition problem, McNeil & Alibali, 2005).  
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Once entrenched, children rely on these potentially 
misleading patterns when encoding, interpreting, and 
solving novel mathematics problems. Students that expect 
all problems to have operations on the left fail to correctly 
encode the problem being asked. For instance, after briefly 
viewing the problem “7 + 4 + 5 = 7 + __” many children 
rely on their knowledge of the “operations = answer” 
problem format and erroneously remember the problem as  
“7 + 4 + 5 + 7 = __” (McNeil & Alibali, 2004). Students 
also struggle to interpret what a mathematical problem is 
asking. When asked to define the equal sign—even in the 
context of a mathematical equivalence problem—many 
children treat it like an arithmetic operator (like + or –) that 
means they should calculate the total (McNeil & Alibali, 
2005). Finally, entrenched patterns mislead students to solve 
the problem “7 + 4 + 5 = 7 + __” by performing all given 
operations on all given numbers and put 23 (instead of 9) in 
the blank (McNeil, 2007; Rittle-Johnson, 2006). These 
findings support the idea that children’s difficulties with 
mathematical equivalence are partially due to inappropriate 
knowledge derived from overly narrow experience with 
traditional arithmetic.  

The ICUE Intervention 
Current math practice seems to promote the development 

of faulty representations, and the change-resistance 
account’s focus on “operational patterns” offers design 
principles for instruction to improve students’ understanding 
of equivalence. Initially, researchers hypothesized that 
greater exposure to “non-traditional” arithmetic practice 
(e.g., presenting operations on the right side of the equation, 
“__ = 2 + 4,” [McNeil et al., 2011], organizing practice by 
equivalent sums [McNeil et al., 2012], and using relational 
phrases such as “is equal to” instead of the equal sign in 
problems [Chesney, McNeil, Petersen, & Dunwiddie, 
2012]). may prevent students from developing operational 
patterns. Though practice with non-traditional arithmetic in 
a classroom intervention led to improved outcomes over 
traditional instruction, a number of students failed to reach 
proficiency (McNeil, Fyfe, & Dunwiddie, 2015). 

To further promote mastery of equivalence, McNeil and 
colleagues added additional design features beyond non-
traditional arithmetic practice. The current version of the 
materials, dubbed Improving Children’s Understanding of 
Equivalence (ICUE), consists of second grade student 
activities that reduce reliance on operational patterns and 
promote deep understanding of mathematical equivalence 
through four key components that have independently been 
shown to be effective:  

 
1. Non-traditional arithmetic practice (Chesney et al., 

2012; McNeil et al., 2012, 2015, 2011); 
2. Lessons that first introduce the equal sign outside of 

arithmetic contexts (e.g., “28 = 28”) before 
introducing arithmetic expressions (e.g., Baroody & 
Ginsburg, 1983; McNeil, 2008); 

3. Concreteness fading exercises in which concrete, 
real-world, relational contexts (e.g., sharing stickers, 

balancing a scale) are gradually faded into the 
corresponding abstract mathematical symbols (e.g., 
Fyfe, McNeil, Son, & Goldstone, 2014); and 

4. Activities that require students to compare and 
explain different problem formats and problem-
solving strategies (e.g., Carpenter et al., 2003; Rittle-
Johnson, 2006). 

The Current Study: Improving Children’s 
Understanding of Equivalence 

A pilot study found the ICUE intervention was successful 
in improving student understanding of mathematical 
equivalence (Byrd, McNeil et al. 2015; McNeil, Hornburg, 
Brletic-Shipley, & Matthews, under review). The current 
study sought to replicate the findings with a new population 
of students and additionally investigate whether the learning 
transferred to the mathematical practice of generating 
explanations.  

To replicate Byrd et al.’s (2015) pilot study, we compared 
the full ICUE intervention to a control condition consisting 
solely of non-traditional mathematical practice and 
measured students’ ability to encode equations, solve 
problems, and define the relational function of the equal 
sign. 

To test whether the learning transferred to the ability of 
students to generate mathematical explanations related to 
arithmetic problems, we gave students performance tasks 
from the Silicon Valley Mathematics Initiative’s (SVMI) 
Mathematics Assessment Collaborative (MAC). MAC 
partners with the Mathematics Assessment Resource 
Service (MARS) to develop tasks that assess core 
mathematical ideas and practices taught in each grade level. 
Tasks require students to solve complex math problems as 
well as give open-ended explanations of their reasoning. For 
each task, MARS provides scoring rubrics and scorer 
training procedures, student performance statistics, and 
examples of common student errors (Foster & Noyce, 
2004).  

Our research questions were: 
1. Does ICUE promote measurable gains in 

children’s understanding of equivalence?  
2. Do the benefits of ICUE activities transfer to 

generating mathematical explanations?  

Method 

Design 
We used a cluster-randomized control trial design to 

examine the efficacy and generalizability of the ICUE 
intervention relative to an active control program. Teachers 
were randomly assigned to use the either the ICUE 
intervention or Active Control materials. The active control 
consisted of workbook activities to control for time on task. 
The active control contained non-traditional arithmetic 
practice but not the additional components present in ICUE, 
described above. 
 

601



Participants. Five second-grade teachers (three treatment, 
two control) from three California schools used the 
activities in their classrooms. Class sizes ranged from 21 to 
32, and we analyzed data from 81 students who completed 
the ICUE activities and measures and 49 students who 
completed the Active Control activities and measures.  

Procedure and Materials 
The procedure for ICUE Treatment and Active Control 

conditions were identical, differing only in the content of 
the materials used by teachers and students. Each teacher 
received training on the study purpose, features of the 
activities, and strategies for integrating the activities into 
their typical mathematics curriculum.  

Prior to starting the study, participating teachers 
completed online surveys assessing their mathematics 
teaching experience and classroom structure and dynamics.  

After administering a pretest, teachers used the study 
materials for approximately 15 minutes twice each week for 
16 weeks. In both conditions, teachers were asked to use the 
study materials to supplement, rather than replace, current 
instruction, and to limit session duration to 20 minutes.  

After completing the 32 sessions, teachers administered 
the same pretest measure of mathematical equivalence, a 
proximal transfer measure, two measures of transfer to 
mathematical explanations, and the Math Concepts subtest 
of the Iowa Test of Basic Skills. 

 
Active Control. Teachers in the Active Control condition 
received a set of student workbooks (see Figure 1) and a 
teacher guide. 
 

 
 

Figure 1. Sample workbook page from the Active Control 
condition materials featuring non-traditional math practice. 

 
ICUE. Teachers in the ICUE Treatment condition received 
a set of student workbooks (see Figure 2), a teacher guide, 
and a set of classroom manipulatives including balance 
scales and flashcards. 

Measures 
Pre- and post-test measures of mathematical 
equivalence. We assessed children’s understanding of 

mathematical equivalence before and after the interventions 
using similar measures of equation encoding, equation 
solving, and defining the equal sign used in previous work 
by McNeil and colleagues (Byrd et al., 2015; McNeil & 
Alibali, 2005; McNeil et al., 2015). 

 

 
 

Figure 2. Sample workbook page from the ICUE Treatment 
condition materials featuring a concreteness fading exercise. 

  
Equation encoding. The encoding measure consisted of 

recalling four mathematical equivalence problems (e.g., 5 + 
4 = 3 + __) presented one at a time. Each equation was 
visible for five seconds and students were instructed to 
remember and write down exactly what they saw after the 
equation was hidden from view. Responses were coded as 
correct if the student wrote the equation exactly as shown 
(i.e., the correct numbers and symbols in the correct order). 

Equation solving. The equation solving measure 
consisted of eight equations with operations on both sides of 
the equal sign (e.g., 3 + 5 + 6 = 3 + __).   

Defining the equal sign. The defining the equal sign 
measure prompted students to write responses to three 
questions about the equal sign symbol (=): 1) What is the 
name of this math symbol? 2) What does this math symbol 
mean? And, 3) Can it mean anything else? Teachers read 
each question aloud and waited for students to write their 
responses before moving on to the next question. Responses 
were coded as relational if the response defined the equal 
sign as relating two sides of the equation (e.g., two amounts 
are the same, something is equivalent to another thing).1  
 
Measures of knowledge transfer. 

Proximal transfer measure. The proximal transfer 
measure, used by Byrd et al. (2015), consisted of nine more 
advanced problems of mathematical equivalence, not strictly 
aligned with the ICUE intervention. The transfer questions 
included equations with operations on both sides of the 
equal sign involving subtraction (e.g., 2 + 5 + 3 = 14 – __), 

                                                             
1 Although many students in this age range have poor spelling, 

coders did not have trouble determining what a given child had 
written, even when words were misspelled (e.g., “the toltal”, “write 
the anser next”). Inter-rater agreement between coders on whether 
a given definition was relational ranged from 95-100%. 
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larger numbers (e.g., 13 + 18 = __ + 19), “word problem” 
items featuring story-to-equation translation, and an 
“explaining equivalence” problem, which asked students to 
decide whether the same number should appear in two 
equations and explain their reasoning.  

Distal transfer to mathematical explanations. We 
selected two MARS items that tested students’ 
understanding of mathematical equivalence, described 
below. Items were scored by project staff following scorer 
training, calibration, and reliability procedures established 
by MARS (Foster & Noyce, 2004). 

Incredible Equations. In this task, students are asked to 
fill in the missing parts of equations such as “__ + 8 + __ = 
16” and “11 + 5 = __ + 8.” Students are asked to explain 
how they know their answer is correct. When 6,305 students 
took the task in 2007, the mean score was 6.08 out of 10 
with a standard deviation of 2.5 (MARS, 2007). 

Agree or Disagree? In this task, students are asked if they 
agree or disagree with two number sentences: 
“8 + 5 = 5 + 8” and “6 – 4 = 4 – 6”. Students are asked to 
explain their answers using words, numbers, or pictures. 
MARS administered this task to 4,585 second graders in 
2004 and found the mean score was 3.10 out of 6 with a 
standard deviation of 1.94 (MARS, 2004). 

 
Iowa Test of Basic Skills. To make sure any gains in 
understanding of equivalence do not come at the expense of 
problem-solving fluency, students completed the Math 
Concepts subtest of Level 8 of the Iowa Tests of Basic 
Skills (ITBS), which served as a measure of general 
mathematical reasoning. Participation in the ICUE 
Treatment neither helped nor hurt students’ performance on 
this measure, relative to the Active Control group 
(t(83)=1.48, ns), establishing that the intervention does not 
improve understanding of equivalence at the expense of 
general computational fluency.  

Results 

Does ICUE promote measurable gains in children’s 
understanding of equivalence, relative to an Active 
Control? 

We assessed three critical abilities identified by McNeil 
and colleagues as necessary for success in reasoning about 
equivalence (Byrd et al., 2015; McNeil et al., under review):  

1. Equation encoding: the ability to accurately encode 
and recreate an equation after seeing it briefly;  

2. Equation solving: the ability to solve equations that 
feature operations on both sides of the equal sign; and 

3. Defining the equal sign (=): the ability to identify “=” 
as a symbol that signals a relation between two equal 
numbers or quantities. 

 
Specifically, we examined students’ gains in performance 

on identical pre-intervention and post-intervention tests that 
assessed the three abilities above. For each of the target 
abilities, we compared the gains made by students in the 

ICUE Treatment condition to those of students in the Active 
Control condition (Figure 3).  

There were no reliable differences between pretest scores 
for each group, and students in the ICUE Treatment 
condition made substantially greater gains during the 
intervention than students in the Active Control condition. 
The proportion of correct responses for Equation solving 
items increased by 0.65 for ICUE students, compared to 
only 0.065 for Active Control students (t(119)=48.8, 
p<.001; Cohen’s d > 3); the proportion of correct responses 
for Equation encoding items increased by 0.34 for ICUE 
compared to 0.26 for Active Control (t(52)=5.31, p<.001; 
Cohen’s d > 3); and the proportion of correct definitions of 
the equal sign increased by 0.38 for ICUE compared to 0.02 
for Active Control (t(125)=8.42, p<.001; Cohen’s d > 3). 
These results suggest that the ICUE Treatment intervention 
leads to systematic and measureable gains in children’s 
understanding of and reasoning about mathematical 
equivalence.  

 
Figure 3. Mean performance gains from pre- to post-test for 

children in the ICUE and Active Control groups. 

Do the benefits of ICUE activities transfer to more 
challenging material and generating mathematical 
explanations? 

We explored whether the knowledge that children gained 
from the intervention activities transferred to problem-
solving tasks that were not strictly aligned with the content 
and goals of the ICUE or Active Control interventions. We 
first examined performance on a proximal researcher-
developed measure that included a series of complex 
equation solving items, word problem items that required 
translating story content into mathematical equations, and 
an explaining equivalence item that required students to 
justify why two sides of an equation were equal (i.e., “Is the 
number that goes in the � the same number in the following 
two equations? Explain your reasoning.”). We compared the 
performance of ICUE and Active Control students on the 
measure, which was administered after each group 
completed all intervention activities (Figure 4). 
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Figure 4. Mean ICUE and Active Control group 

performance for researcher-developed transfer items. 
 
Students in the ICUE condition scored reliably higher, on 

average, than students in the Active Control condition on 
both complex equation solving items (t(81)=3.44, p<.01; 
Cohen’s d = 1.5) and word problem items (t(129)=5.31, 
p<.001; Cohen’s d = 2.5). However, the groups did not 
differ in their mean performance on the explaining 
equivalence item (t(81)=0.15, ns). 

We also examined transfer to the MARS items. We 
measured post-intervention performance on the “Incredible 
Equations” task (scored out of a possible 10 points) and the 
“Agree or Disagree?” task (scored out of a possible 6 
points). As before, we compared performance by students in 
the ICUE and Active Control conditions, shown in Figure 5. 
As one teacher from each condition failed to return the 
MARS posttest materials, results are reported from two 
treatment teachers and one control teacher. 

Students in the ICUE condition performed reliably better 
than Active Control students on both the Incredible 
Equations (t(54)=2.83, p<.05; Cohen’s d = 0.32) and Agree 
or Disagree? tasks (t(47)=2.36, p<.05; Cohen’s d = 0.43). 

Conclusions   
A deep understanding of mathematical equivalence is a 

key building block for later mathematical understandings. 
However, research studies and national test results have 
repeatedly demonstrated that many students fail to develop 
this understanding. The change-resistance account suggests 
that traditional instruction that relies on extensive practice 
with problems in a single format may be contributing to 
students’ difficulties by encouraging students to develop 
ineffective mental models of problem types. 

In the current study, we sought to replicate and extend 
prior work that brings research from the lab into the 
classroom. The change-resistance account proposes that 
students struggle with equivalence because they have 
developed overgeneralized “rules” that affect how they 
process and approach math problems, (e.g., the operators are 
always on the left side, the equal sign means to “do 
something” or “give the answer”) and fail to see equations 
having two separate sides that are being related to one 
another.  

 
Figure 5. Mean ICUE and Active Control group 

performance for MARS transfer items. 
 

Overall, our findings indicate that applying research-
based design principles in the form of multiple types of 
practice improved student understanding of the critical 
concept of mathematical equivalence. 

Our findings replicate Byrd et al. (2015), who found that 
activities that include the use of the equal sign outside of 
arithmetic contexts, that start with concrete examples and 
fade to extractions, and that explicitly prompt students to 
compare and explain different problem formats and 
strategies improve student understanding of mathematical 
equivalence beyond non-traditional arithmetic practice 
alone.   

Students receiving the ICUE materials demonstrated 
improved performance in equation solving, equation 
encoding, and providing relational definitions of the equal 
sign. These improvements did not come at the expense of 
arithmetic problem-solving fluency, as measured by the 
ITBS. Further, the learning in ICUE transferred to greater 
student abilities to solve complex equations and word 
problems.  

Students in both conditions struggled with the researcher-
developed item that required students to explain 
equivalence. Their poor performance may reflect confusion 
with equivalence that persists for more complicated 
problems with multiple “terms” and different types of 
operators (both addition and subtraction), a confusion that 
was reflected in students’ explanations of their answers. 

The robust improvements on the MARS items supports 
the possibility that the lack of transfer in the equivalence 
explanation question was due to confusion regarding 
multiple terms and operators rather than the ability to 
generate the explanation. These established items, 
developed externally, also asked students to explain 
equivalence, but used blanks, rather than variables, to reflect 
the unknown entities. On both items, students in the ICUE 
condition outperformed the students in the active control 
condition. These findings suggest that the additional 
practice comparing and explaining different problem 
formats helped students gain a deeper understanding of not 
only whether different examples were equivalent, but also 
why or why not. 
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Why is it important to test the synergistic effect of 
research-based design principles? Instructional designers 
face a large number of decisions in selecting appropriate 
activities and tasks for students. Though much research 
seeks to identify how different facets work independently, if 
research in cognitive science is to extend meaningfully to 
practice the cumulative effects of using multiple strategies 
must be tested. Our small-scale cluster-randomized trial 
suggests that the multi-component ICUE intervention was 
more effective than an active control of non-traditional 
arithmetic practice (which in prior work was also more 
effective than traditional instruction).  

Future work, in progress, will test the efficacy of the 
ICUE intervention in a large-scale cluster-randomized trial 
with diverse students across the state of California. This 
work demonstrates how findings in the lab can be 
successfully implemented in authentic classroom settings to 
improve student learning outcomes.  
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Abstract 

People often prefer simpler explanations because they have 
higher prior probability. However, simpler explanations are 
not always normatively superior because they often do not 
fit the data as well as complex explanations. How do 
people negotiate this trade-off between prior probability 
(favoring simplicity) and goodness-of-fit (favoring 
complexity)? Here, we argue that people use opponent 
heuristics—relying on simplicity as a cue to prior 
probability but complexity as a cue to goodness-of-fit 
(Study 1). We also examine factors that lead one or the 
other heuristic to predominate in a given context. Study 2 
finds that people have a stronger simplicity preference in 
deterministic rather than stochastic contexts, while Study 3 
finds that people have a stronger simplicity preference for 
physical rather than social causal systems. Together, we 
argue that these cues and contextual moderators act as 
powerful constraints that help to specify otherwise ill-
defined hypothesis comparison problems. 

Keywords: Causal reasoning; explanation; probabilistic 
reasoning; heuristics; judgment under uncertainty. 

 

Introduction 
The principle of parsimony has a long and venerable 
pedigree. It has been discussed since at least Aristotle, 
who wrote in his Physics that “nature operates in the 
shortest way possible,” and it has since become one of the 
core tools in our argumentative arsenal as scientists. Of 
course, this principle was given its most famous 
formulation given by William of Occam, who advised 
against “multiplying entities beyond necessity.” 

Simplicity is not only a core notion in science and 
philosophy, but may well be an organizing principle of 
cognition (Chater & Vitányi, 2003). People prefer simpler 
causal explanations (Lombrozo, 2007), category 
assignments (Pothos & Chater, 2002), and perceptual 
organizations (van der Helm & Leeuwenberg, 1996), and 
more easily learn simple concepts (Feldman, 2000). 

This principle is not arbitrary. Other things equal, 
simpler explanations are more likely to be true because 
they have higher prior probability. Consistent with this 
analysis, Lombrozo (2007) found that people use 
simplicity as a heuristic for estimating prior probabilities. 
In her experiments, participants performing simulated 
medical diagnoses would not accept a complex 
explanation over a simple one unless the prior 
probabilities favored the complex explanation by a factor 
of 4. Further, participants who had a simplicity bias had 
distorted memories of the disease base rates, recalling the 
simpler explanations as having had higher prior 

probabilities than they in fact did. Thus, people’s 
preference for simple explanations, though sometimes 
stronger than normatively warranted, appears to track the 
probabilistic logic favoring simpler explanations. 

Yet, simplicity has its limits because a simple and a 
complex explanation do not always fit the data equally 
well. There is generally a U-shaped curve in how simple 
an explanation ought to be. Too complex, and the 
explanation has a lower prior probability and overfits the 
data; too simple, and it does not account for the nuance of 
the phenomenon (Forster & Sober, 1994). How, if at all, 
does cognition perform this trade-off? 

We propose that people use opponent heuristics to 
compare a simpler versus a more complex explanation. 
This view incorporates Lombrozo’s (2007) insight that 
people use simplicity to estimate prior probability—the 
P(Hi) terms in Bayesian hypothesis comparison—but 
couples it with the idea that people also use complexity to 
estimate likelihoods—the P(E|Hi) terms that measure the 
goodness-of-fit of the evidence to the data. 

For example, if a patient is sneezing and has a stomach 
ache, the patient could have a cold. This explanation is 
simple, but fits the data imperfectly. If we took a random 
sample of the population, a reasonably large fraction 
would have a cold at any given time—so this explanation 
has high prior probability. But among those people who 
have a cold, how many of them would both be sneezing 
and have a stomach ache? The facts here are complex, 
and this simple explanation does not fit very well. 

In contrast, the patient could have both allergies and a 
stomach virus. This explanation is more complex, but fits 
the data neatly. In a random sample of the population, a 
fairly small number would have both allergies and a 
stomach virus. Yet, many of those who do have both 
diseases would likely be suffering from both sneezing and 
a stomach ache. Even though the prior probability of this 
complex explanation is low, it fits the data very well. 

In this case, simplicity seems to be associated with our 
estimate of prior probability and complexity seems to be 
associated with our estimate of likelihood. Of course, this 
explanation was engineered to produce these intuitions by 
relying on specific beliefs we have about these diseases. 
The opponent heuristic account proposes that people also 
use simplicity and complexity as cues in cases where they 
cannot estimate probabilities directly from background 
knowledge. Study 1 tests this possibility. 

Initial evidence for this idea comes from studies of 
intuitive curve-fitting—a superficially distinct but deeply 
related problem to causal explanation. For any set of 
scatterplot data, many different trend curves can be drawn 
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to explain the data, but statistical theory can tell us which 
curve has the best predictive power, fitting as much of the 
underlying signal as possible while fitting little of the 
noise. Yet, people tend to choose curves that are more 
complex than they normatively should be, rather than 
curves that are too simple (Johnson, Jin, & Keil, 2014), as 
one would expect if people only have a simplicity 
heuristic but no complexity heuristic. Indeed, these curve-
fitting studies uncovered direct evidence of a complexity 
bias, because participants judged the more complex to be 
literally closer fits to the data, even when the actual fit 
was held constant. This finding is also consistent with 
naturalistic studies of everyday verbal explanations drawn 
from an Internet corpus, for which the best explanations 
actually tend to be fairly complex (Zemla et al., 2017).   

Why is this pair of heuristics useful? Simplicity is just 
the absence of complexity. How, then, can a pair of 
heuristics accomplish any more than a single heuristic, 
when these two heuristics rely on the same cue? While it 
may seem more parsimonious to assume that people 
merely use one cue in a U-shaped manner, it is difficult to 
specify, for any given problem, where the bend in this U 
should be. Contextual factors (along with background 
knowledge) must work to calibrate the strength of these 
two heuristics, in order to produce a unique solution in 
any given case. Although there is no reason to think that a 
context-sensitive dual heuristic solution will give an 
optimal answer, there is reason to think that it may bring 
the reasoned closer to the right part of the hypothesis 
space, compared to either heuristic working alone or to 
any cookie-cutter U-shaped response to simplicity that is 
not calibrated to the explanatory problem. The current 
studies look at two possible contextual factors that might 
modulate the strength of the two heuristics. 

First, we consider the determinism of the causal system. 
In previous studies of simplicity (Lombrozo, 2007), 
explanations have been produced for deterministic causal 
systems. In such systems, it is rational to prefer simple 
explanations. If disease A always causes symptoms X and 
Y, while disease B always causes symptom X and disease 
C always causes symptom Y, the issue of likelihoods or 
goodness-of-fit simply does not come up: Disease A 
perfectly explains the evidence, and so do Diseases B and 
C together. The only issue is which explanation has the 
higher prior probability, and the simplicity heuristic tells 
us that, absent any other information, the answer is 
Disease A. Therefore, there is no reason to invoke a 
complexity heuristic to countervail against the 
presumption of a simple explanation. 

In contrast, when the causal system is stochastic, the 
likelihoods become a more crucial part of the 
computation. If disease A sometimes causes X and 
sometimes causes Y, while disease B sometimes causes X 
and disease C sometimes causes Y, it is difficult to 
evaluate whether the evidence (symptoms X and Y) are 
made likelier by disease A or by diseases B and C 
combined: It depends on the nature of “sometimes.” Yet, 

in the real world, it is the exception rather than the rule to 
have precise quantitative information about these 
likelihoods in stochastic systems. If people rely on a 
complexity heuristic in such cases, they would judge the 
likelihood of the evidence to be higher for an individual 
with two diseases than for an individual with one disease. 
Study 2 tests whether stochastic contexts therefore lead to 
a weaker simplicity preference. 

Second, we consider the content domain of a causal 
system. People seem to have different beliefs about the 
causal textures of different domains. Whereas people tend 
to identify physical events as having relatively few 
causes, social events are often thought to have many 
causes (Strickland, Silver, & Keil, 2016). This suggests 
that people may calibrate their prior expectations to more 
complex explanations in the social domain, compared to 
the physical domain. Furthermore, people may even 
deploy different causal concepts across domains 
(Lombrozo, 2010). Whereas causal claims about physical 
systems appear to be evaluated in terms of transference 
and contact, social causal claims appear to be evaluated 
counterfactually. This too may reinforce the intuition that 
physical events typically result from highly specified 
causal factors, whereas social events result from more 
complex configurations of counterfactual conditions. 
Since such complex conditions can seldom be known, 
social systems are often highly unpredictable. 

As a consequence of these domain-specific beliefs, 
people may rely on simplicity as a cue to prior probability 
to a differing degree across domains. Whereas simplicity 
is likely to be a potent heuristic for evaluating 
explanations of physical causation, it may be a weaker 
cue for evaluating explanations of social causation, if 
people have a meta-theory that assigns higher prior 
probabilities to complex social causal explanations, as 
compared to physical causal explanations. In addition, if 
social causal systems are seen as more stochastic, this 
would increase the importance of the complexity heuristic 
for evaluating explanations of social causation, as 
compared to physical causation. With a weaker simplicity 
heuristic and stronger complexity heuristic, people may 
have a less pronounced bias toward simple explanations 
in the social domain. Study 3 tests this idea. 

Study 1 
To a Bayesian, the key quantities required to compare 

two hypotheses are the relative prior probabilities of the 
hypotheses (the prior odds), and the relative fit of each 
explanation to the data (the likelihood ratio). Study 1 tests 
whether people use simplicity to estimate these quantities. 

Study 1A seeks converging evidence for Lombrozo’s 
(2007) claim that people assign higher prior probabilities 
to simple hypotheses. Study 1B tests whether this 
heuristic favoring simple explanations might be opposed 
by a heuristic that assigns higher likelihoods to more 
complex explanations: Do people believe that complex 
explanations are better fits to the data? 
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Method 
Participants in all studies were recruited from Amazon 
Mechanical Turk. Each study included a series of check 
questions at the end, and participants were excluded from 
analysis if they answered more than 33% incorrectly. 

Participants (N = 80, 9 excluded) were randomly 
assigned to Study 1A (making judgments about priors 
probabilities) or to Study 1B (making judgments about 
likelihoods). In both studies, participants completed four 
items about diseases, similar to the following problem: 

 

There is a population of elves that lives at Gelfert’s Glacier. 
Sometimes the elves have medical problems such as feverish 
muffets or wrinkled ears. 
 

A Yewlie infection can cause feverish muffets. 
A Yewlie infection can cause wrinkled ears. 
Hepz’s disease can cause feverish muffets. 
Aeona’s syndrome can cause wrinkled ears. 
 

Nothing else is known to cause an elf’s muffets to be feverish of 
the development of wrinkled ears.   

On the same screen, participants completed a series of 
10 true/false questions to ensure comprehension. 

Participants in Study 1A were then asked to judge the 
relative prior probabilities (“Imagine that we randomly 
select an elf from Gelfert’s Glacier. Which of the 
following types of elves do you think we are more likely 
to have selected?”) on a 10-point scale, with one end 
corresponding to the simple explanation (“An elf who has 
a Yewlie infection only”) and one end to the complex 
explanation (“An elf who has both Hepz’s disease and 
Aeona’s syndrome”). Participants in Study 1B were asked 
to judge the likelihoods (“Imagine an elf who has a 
Yewlie infection only, and another elf who has both 
Hepz’s disease and Aeona’s syndrome. Which elf do you 
think is more likely to develop both feverish muffets and 
wrinkled ears?”) on the same scale. 

Results and Discussion 
Data for all studies were recoded so that negative 
numbers correspond to the simple explanation and 
positive numbers to the complex explanation.  

Participants in Study 1A used a simplicity heuristic, 
indicating that a randomly selected elf was more likely to 
have one disease than two diseases [M = –2.19, SD = 
1.78; t(33) = 7.19, p < .001, d = 1.23]. This is consistent 
with Lombrozo’s (2007) studies, where overwhelming 
prior odds were required before participants would favor a 
complex over a simple explanation in deterministic cases. 

However, the story was different for judgments of 
likelihoods or goodness-of-fit. Here, participants favored 
the complex explanation [M = 1.41, SD = 2.35; t(36) = 
3.65, p = .001, d = 0.60]. This complexity bias in 
estimating likelihoods was substantial in magnitude (d = 
0.60), though smaller than the simplicity bias in 
estimating priors (d = 1.23), at least for these stimuli.  

These results shows that people do not blindly prefer 
simple explanations, but instead calibrate their 

preferences according to the question asked. Even though 
the problem did not include any probability information, 
participants used simplicity and complexity to estimate 
different probabilistic quantities in opposing ways.  

Study 2 
In any causal system where there is uncertainty about 
which explanation is correct, the prior probabilities of 
each explanation must be less than 1, since otherwise 
there is no reason to observe any data (as it will fail to 
move the posteriors). However, the likelihoods differ 
across deterministic and stochastic systems. In 
deterministic systems, the evidence is always produced 
with probability 1 by its causes, whereas in stochastic 
systems, these likelihoods are less than 1. 

If explanatory heuristics exist in part because degrees of 
uncertainty are difficult to estimate and to use in 
computations, then a simplicity heuristic will always be a 
useful tool for estimating priors, since they are always 
uncertain. However, a complexity heuristic is only useful 
in stochastic systems, where the likelihoods are uncertain. 
Thus, both heuristics should be at work in stochastic 
systems (a simplicity heuristic pushing toward simpler 
explanations and a complexity heuristic pushing toward 
more complex explanations), whereas only the simplicity 
heuristic applies in deterministic systems (pushing toward 
simpler explanations, without an opposing force pushing 
toward more complex explanations). This leads to the 
prediction that people should especially favor simple 
explanations for deterministic systems. 

Method 
Participants (N = 80, 14 excluded) completed four items 
corresponding to the cover stories used in Study 1. For 
one of these items—in the 100% condition—the causal 
system was described as deterministic, in that the diseases 
always led to their symptoms (100% likelihood): 

 
 

Tritchet’s syndrome always (100% of the time) causes both 
sore minttels and purple spots. 
 

Morad’s disaease always (100% of the time) causes sore 
minttels, but the disease never (0% of the time) causes purple 
spots. 
 

When an alien has a Humel infection, that alien will always 
(100% of the time) develop purple spots, but the infection will 
never (0% of the time) cause sore minttels. 
 

The other three items corresponded to the 90%, 80%, 
and 70% conditions, which differed only in the causal 
system being described as stochastic: 

 

Tritchet’s syndrome often ([80/65/50]% of the time) causes 
both sore minttels and purple spots. 
 

Morad’s disaease often (([90/80/70]% of the time) causes sore 
minttels, but the disease never (0% of the time) causes purple 
spots. 
 

When an alien has a Humel infection, that alien will often 
(([90/80/70]% of the time) develop purple spots, but the 
infection will never (0% of the time) cause sore minttels. 
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After reading this information, participants were asked 
about their favored explanation (“Which do you think is 
the most satisfying explanation for Treda’s symptoms?”) 
on a scale from 0 (Tritchet’s syndrome only) to 10 (both 
Morad’s disease and a Humel infection). The conditions 
were balanced across the cover stories using a Latin 
square, and items were completed in a random order. 

Results and Discussion 
Participants strongly preferred the simple explanation [M 
= –3.81, SD = 1.95; t(65) = 15.84, p < .001, d = –1.95] 
given deterministic (100%) likelihoods. This replicates 
Lombrozo’s (2007) finding that people strongly favor 
simple explanations in deterministic causal systems.  

The key question is whether this preference would 
differ in the stochastic conditions, where a complexity 
heuristic would be more likely at play for understanding 
the likelihoods. To keep the likelihood ratio objectively 
identical across conditions, the likelihood for the simple 
explanation must equal the product of the likelihoods for 
the components of the complex explanation (i.e., 90% ´ 
90% » 80%, 80% ´ 80% » 65%, and 70% ´ 70% » 50%). 
This calculation assumes that people believe diseases to 
cause their symptoms independently—an assumption that 
Lombrozo (2007) validated for her very similar stimuli. 

As predicted by the opponent heuristic account, the 
simplicity bias was weaker in each of the three stochastic 
conditions, although participants still had a robust 
simplicity preference in each of them [M = –3.00, SD = 
2.68,  t(65) = 9.09, p < .001, d = 1.12 for the 90% 
condition; M  = –2.50, SD  = 2.58, t(65) = 7.86, p < .001, 
d = 0.97 for the 80% condition; M = –2.48, SD = 2.45, 
t(65) = 8.24, p < .001, d = 1.01 for the 70% condition]. 
The simplicity bias in the stochastic conditions, while 
large (d from 0.97 to 1.12), was smaller compared to the 
deterministic condition (d = 1.95; ps > .012), as predicted. 

However, this design is subject to concerns about 
demand characteristics and difficulties with probabilities 
that are unrelated to the proposed mechanisms. In 
particular, the deterministic condition set all likelihoods to 
100%, whereas the stochastic condition had to set 
different likelihoods for the simple explanation and for 
each component of the complex explanation. Could 
people have relied on a strategy such as comparing these 
numerical likelihoods (100% vs. 100% and 90% vs. 80% 
for complex vs. simple), favoring the complex 
explanation in the stochastic conditions merely because it 
was superficially associated with higher numbers? 

If this were the case, people should be increasingly less 
biased toward the simple explanation as the difference 
between the simple and complex likelihoods increased. 
This difference increases not only between the 
deterministic and stochastic conditions, but also across 
the stochastic conditions (90% vs. 80%, 80% vs. 65%, 
and 70% vs. 50%). Thus, on this deflationary account 
there should be large gaps not only between the 
deterministic and stochastic conditions, but also among 

the stochastic conditions. In contrast, the opponent 
heuristic account predicts a qualitative shift between the 
deterministic condition and the stochastic conditions that 
introduce uncertainty into the likelihoods. 

The data are more consistent with the latter prediction, 
as suggested by the similar effect sizes of the simplicity 
bias across the three stochastic conditions. There is a 
significant difference between the 100% and 90% 
conditions, where we shift from deterministic to 
stochastic [t(65) =  2.61, p = .011, d = 0.32]. However, the 
difference between the 90% and 80% conditions reaches 
only marginal significance [t(65) = 1.88, p = .064, d = 
0.23] and the difference between the 80% and 70% 
conditions is nowhere near significant [t(65) = 0.04, p = 
.97, d = 0.01]. The deflationary account would predict 
equally large differences across these sets of conditions. 

Thus, determinism may play a role in striking the 
balance between the simplicity and complexity heuristics. 
These results also resolve a puzzle about Lombrozo’s 
(2007) findings. Given that people are reasonably well-
calibrated in evaluating explanations in the real world, it 
is surprising to see such a striking simplicity bias as one 
finds in her studies, with prior odds of 4-to-1 required to 
override a simplicity preference when the evidence is 
perfectly consistent with either hypothesis. Study 2 found 
that in more ecologically realistic conditions, where the 
evidence is not perfectly predicted by any explanation, 
people are more likely to hedge their bets. People may 
thus make more accurate explanatory inferences in 
realistic, stochastic environments. 

Study 3 
A second contextual factor that may influence preferences 
of simple and complex explanations is a system’s content 
domain. People believe that physical events have fewer 
causes than social events (Strickland, Silver, & Keil, 
2016) and use causal concepts relying on physical 
transference for physical systems but complex 
counterfactual conditions for social systems (Lombrozo, 
2010). Thus, Study 3 tests the possibility that people 
would use these expectations to calibrate their 
explanatory inferences, favoring simpler explanations in 
physical causal systems compared to social systems. 

Method 
Participants (N = 479, 89 excluded) read 12 items across 
four content domains (physics, biology, artifact, and 
social), which were deterministic for half of participants 
and stochastic for the other half. These items had the 
same format as the items used in Study 2, but the content 
was replaced with various items in physical (ultraviolet 
waves, subatomic particles), biological (disease, 
agriculture, dieting), artifact (robots, clocks, toys), and 
social (team dynamics, child behavior, and romantic 
attraction) causal systems. Participants then made 
explanatory judgments on the same scale as Study 2. 
Items were completed in a random order. 
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 Deterministic Stochastic 

Physical –2.76 (2.10) –2.15 (2.40) 
Biological –2.59 (2.19) –2.15 (2.28) 
Artifact –2.32 (2.41) –1.81 (2.53) 
Social –1.81 (2.71) –1.22 (2.59) 

Table 1: Means (SDs) in Study 3. 

Results and Discussion 
Table 1 shows the effects of both moderators (negative 
scores reflecting an overall simplicity preference). First, 
as in Study 2, participants favored the simple explanations 
more strongly for deterministic than for stochastic 
systems [t(388) = 2.52, p = .012, d = 0.26]. Thus, the shift 
seen in Study 2 was not unique to unfamiliar stimuli, or 
specific to reasoning about diseases. Rather, it is a general 
pattern used across many content domains. 

Second, the ordering of the means across domains was 
consistent with predictions. Critically, participants had a 
much stronger simplicity preference in the physical than 
in the social domain [t(389) = 8.62, p < .001, d = 0.38]. 
The biological and artifact domains fell in between, with 
the strongest preference for the physical, followed by the 
biological, artifact, then social domains. (Keil, Lockhart, 
& Schlegel, 2010 find similar patterns in a different task.) 

Together, the results of Studies 2 and 3 help to resolve 
the puzzle of how people could rely on a single cue—an 
explanation’s simplicity—to do two logically independent 
jobs: estimating the prior and likelihood of an 
explanation. If contextual moderators can influence the 
weighting of the simplicity and complexity heuristics, 
then a reasoner could reach different conclusions about 
simplicity and complexity in different contexts, in ways 
which are broadly adaptive. 

However, there are lingering puzzles about what 
determines the strength and even direction of simplicity 
and complexity preferences. For example, one might have 
expected inferences to more strongly favor the simple 
explanations than they did here, given the strong 
simplicity preferences found for the artificial items in 
Study 2. The more moderate inferences here may have 
occurred because the items were seen as more reflective 
of the real world—where true determinism is rare—
leading participants to hedge their bets. Alternatively, 
participants here could be recruiting background 
knowledge, relying more on memory rather than 
reasoning. In that case, the strong simplicity preferences 
found for artificial items in Studies 1 and 2 may better 
reflect the underlying reasoning processes. 

General Discussion 
We set out to understand how people use simplicity to 
constrain their evaluation of explanations, making 
tractable an otherwise ill-defined computational problem. 
Usually, simplicity is a good cue for an explanation’s 

prior probability (intuitively, simple causes require fewer 
stars to align in order to occur) while complexity is a 
good cue for an explanation’s likelihood or fit to the 
evidence (since complex causes have more opportunities 
to cause each aspect of the evidence). Study 1 found 
direct evidence for both of these opponent heuristics, 
directly asking about participants’ priors and likelihoods. 

However, our explanatory strategies must be definite 
enough to provide both a unique answer for a given 
explanatory problem, but also flexible enough to provide 
different answers to different problems. The opponent 
heuristics strategy solves this dilemma by modulating the 
inference depending on context. Study 2 showed that 
people shift toward complex explanations in stochastic 
contexts (because such contexts render a complexity 
heuristic more computationally relevant), and Study 3 
showed that people favor simple explanations to varying 
degrees across domains, in ways that track people’s 
general expectations about the causal textures of these 
domains: People believe that physical systems are more 
linear, whereas social systems are more subject to 
branching, and people correspondingly favor simple 
explanations to a greater degree for physical systems. 

Explanatory Logic. We view these opponent heuristics 
as one part of a broader explanatory logic—a set of 
heuristics and strategies that people use for evaluating 
explanatory hypotheses across a variety of processes in 
light of our cognitive and informational limitations 
(Johnson, 2017). Here, we focused on causal explanation 
and previous work has found similar effects in visual 
curve-fitting (Johnson, Jin, & Keil, 2014), both tasks 
requiring people to evaluate competing hypotheses 
(causes, trend lines) for available data (effects, data 
points). However, many other processes also take this 
form, including categorization (which category best 
explains the features?), theory-of-mind (which mental 
state best explains the behaviors?), language (which 
meaning best explains the utterance?), and memory 
(which past events best explain the details I recall?). 

In ongoing work, we have been looking at simplicity 
heuristics in some of these other processes. For example, 
people can belong to several categories simultaneously—
you can be a feminist bank teller, a Jewish woman, or a 
gay cognitive scientist. When explaining particular traits, 
people tend to favor social categorizations that invoke 
fewer categories simultaneously, but this bias is weaker 
when the categories are more loosely (i.e., stochastically) 
associated with the relevant features (Johnson, Kim, & 
Keil, 2016). Similarly, people favor mental-state 
explanations that invoke relatively fewer goals to explain 
a particular behavior, but this simplicity preference is 
weaker when the goals are more stochastically associated 
with the behaviors (Johnson, 2017). Thus, opponent 
simplicity heuristics appear to pervade cognition. 

The Adaptive Value of Opponent Heuristics. Our 
empirical argument for opponent heuristics has required 
us to engineer situations where people make errors. 
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Nonetheless, we maintain that under more ecologically 
realistic conditions, these heuristics often serve us well 
and help to make explanatory reasoning possible. 

If you have a well-specified prior distribution and 
likelihood function, then you can do no better than 
normative Bayesian inference. Our participants fell short 
of this standard, making inferences that were 
unreasonably biased toward simple explanations and 
influenced by normatively irrelevant factors. 

Yet, in the real world, we often lack access to 
substantial information about probability distributions. 
We often are confronted with novel situations in which 
we cannot calculate but must simply guess, based on what 
little we can glean from the immediate problem and what 
minimal cues we can bring to bear from our previous 
experience. It may be true that people seldom encounter 
cases where they must diagnose an elf, deciding among 
unfamiliar diseases on the basis of make-believe 
symptoms, but it is true in real-world medical decision-
making that we are often faced with highly limited 
information. Doctors have built up a corpus of statistical 
knowledge about some familiar diseases, and medical 
scientists may have some evidence to bring to bear on less 
familiar ones. Yet, no one has joint probability 
information about all combinations of diseases and 
symptoms. We must rely on iffy assumptions and fallible 
heuristics to make any real progress, even in a highly 
constrained problem domain such as medical diagnosis. 

In other cases, probabilities may be even less evident. 
When making geopolitical forecasts, assessing the reasons 
for a friend’s odd decision, or debating philosophical 
conundrums, there may be little relevant prior 
information, and it may be impossible to model the 
probabilities with any degree of confidence. This is 
known as radical uncertainty or Knightian uncertainty 
(Knight, 1921), and some thinkers argue that many 
sources of uncertainty are not quantifiable using 
probabilities (e.g., Levi, 1974; Mises, 2008/1949). In 
cases of Knightian uncertainty, the best we can do is to 
adopt rules that work reasonably well most of the time, 
much as David Hume has argued that our inductive habits 
are justified by habit rather than logic (Hume, 
1977/1748). The use of simplicity and other explanatory 
heuristics appears to be one such adaptive habit.  

This is not to claim that our explanatory habits are 
untethered to the world. On the contrary, simplicity is 
usually an excellent principle to use because there are 
often multiple explanations, varying in complexity, which 
fit the data equally well. In such cases, the priors 
generally do favor simple explanations, so a simplicity 
heuristic is reasonable. But when the explanations vary in 
likelihood, simplicity will lead us astray, as complex 
explanations are often better fits to the data. Opponent 
heuristics allow us to harness both of these general facts 
to our advantage, while avoiding computations that may 
be intractable and, in Knightian cases, even impossible. 
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Abstract 

Mathematics is critical for making sense of the world. Yet, 
little is known about how people evaluate mathematical 
explanations. Here, we use an explanatory reasoning task 
to investigate the intuitive structure of mathematics. We 
show that people evaluate arithmetic explanations by 
building mental proofs over the conceptual structure of 
intuitive arithmetic, evaluating those proofs using criteria 
similar to those of professional mathematicians. 
Specifically, we find that people prefer explanations 
consistent with the conceptual order of the operations 
(“9÷3=3 because 3´3=9” rather than “3´3=9 because 
9÷3=3”), and corresponding to simpler proofs (“9÷3=3 
because 3´3=9” rather than “9÷3=3 because 3+3+3=9”). 
Implications for mathematics cognition and education are 
discussed. 

Keywords: Mathematics cognition; philosophy of 
mathematics; explanation; reasoning; concepts and 
categories. 

Introduction 
People track statistical regularities and use these 
regularities to make sense of the world. Some statistical 
learning abilities emerge early: Infants use statistics to 
extract complex visual features (Fiser & Aslin, 2002) and 
form categories (Gómez & Lakusta, 2004). Statistical 
generalizations are also critical for sense-making in 
higher cognition. For example, adults and children prefer 
simpler causal explanations in part because they have 
higher prior probabilities (Bonawitz & Lombrozo, 2012; 
Johnson, Valenti, & Keil, 2017; Lombrozo, 2007). 

Yet, we also seem to track other truths that do not rely 
on statistical regularities—Platonic, logically necessary 
regularities such as mathematical truths. From early on, 
people use mathematical truths to make sense of the 
world: Even young infants know that if two puppets 
venture behind a screen, and one comes out, then only one 
puppet remains behind (Wynn, 1992). Without an 
understanding of mathematics (i.e., 2–1=1), this event—
and many others—would be inexplicable. Mathematical 
explanation grows even more essential in adulthood, as 
consumers must account for their spending, programmers 
must understand the logic of their code, and CEOs must 
explain their bottom line. For this reason, educators 
increasingly emphasize the explanatory function of 
mathematics (Schoenfeld, 1992). For example, the 
Common Core Standards (2010) state that “one hallmark 
of mathematical understanding is the ability to 
justify…why a particular mathematical statement is true 
or where a mathematical rule comes from” (p. 4). 

But to what extent, and by what mechanisms, can 

people track such mathematical regularities? Here, we 
claim that people use a sophisticated set of mechanisms to 
evaluate mathematical explanations. We argue that people 
(1) are sensitive to the conceptual structure of arithmetic, 
(2) construct mental proofs over this structure, and (3) 
evaluate those proofs using principles that mirror the 
history, philosophy, and practice of mathematics. 

Just as there are intricate connections among concepts 
in physics and biology, so are mathematical concepts 
richly structured (Whitehead & Russell, 1910). For 
example, geometric facts are grounded in facts about 
analysis (Bolzano, 1817), and arithmetic facts in set 
theory (Frege, 1974/1884). More basically, subtraction 
can be viewed as grounded in addition, multiplication in 
addition, division in multiplication, and so on (Figure 1; 
see also Dedekind, 1995/1888; Tao, 2016). Although 
these concepts need not be viewed asymmetrically, these 
asymmetries may be psychologically natural. For 
example, people may follow the principle that more 
fundamental operations begin with small things and 
assemble larger things, rather than vice versa. This would 
make addition more fundamental than subtraction (which 
breaks larger things into smaller pieces). 

We explored the intuitive conceptual structure of 
mathematics using a simple method—asking people to 
evaluate mathematical explanations. Consider the 
explanation “9÷3=3 because 3+3+3=9.” In one sense, this 
is a terrible explanation because it is tautological—both 
facts are necessarily true and logically equivalent. 
However, we propose that people are willing to evaluate 
explanations of this sort, and do so as if constructing a 
mental proof of the explanatory target (here, “9÷3=3”) 
from the putative explanation (“3+3+3=9”), over the 
conceptual structure in Figure 1. For example, to evaluate 
“9÷3=3 because 3+3+3=9,” one would first derive a 
multiplication fact (“3´3=9”) from the addition fact, and 
then derive the division fact from that intermediate 
multiplication fact. We test two principles that people 
might use for evaluating implicit mental proofs. 

First, people may be sensitive to the asymmetric nature 
of mathematical explanation (Bolzano, 1817; Kitcher, 
1975). For example, consider the explanation “4-2=2 
because 2+2=4.” Although tautological, if this 
explanation respects a perceived conceptual order, it may 
be seen as superior to an explanation that does not, such 
as “2+2=4 because 4-2=2.” That is, a statement may be 
explained in terms of a logically equivalent statement, if 
that explanation helps to highlight the more conceptually 
primitive facts grounding it. 
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Figure 1: Proposed intuitive structure of arithmetic. 

Note. Numbers correspond to the proof rules in Table 1, with 
forward proof rules flowing in the direction of the arrows and 
reverse proof rules flowing against the direction of the arrows. 
 

Rule Input Output 
Addition/Subtraction Conversion 

1F X + Y = Z Z - X = Y 
1R Z - X = Y X + Y = Z 

Addition/Multiplication Conversion 
2F SY X = Z X ´ Y = Z 
2R X ´ Y = Z SY X= Z 

Multiplication/Division Conversion 
3F X ´ Y = Z Z ÷ X = Y 
3R Z ÷ X = Y X ´ Y = Z 

Multiplication/Exponent Conversion 
4F X ´ X = Z X2 = Z 
4R X2 = Z X ´ X = Z 

Exponent/Root Conversion 
5F X2 = Z ÖZ = X 
5R ÖZ = X X2 = Z 

Table 1: Hypothesized rules for mental proofs. 
 
Second, people may prefer explanations that involve 

fewer steps because such proofs more readily confer 
understanding (Descartes, 1954/1684; Hardy, 2004/1940; 
Kitcher, 1983) and are less prone to error (Hume, 
1978/1738). For example, “9÷3=3 because 3+3+3=9” 
might be seen as a worse explanation than “9÷3=3 
because 3´3=9,” since the proof for the former 
explanation requires two steps (addition to multiplication, 
multiplication to division) whereas the latter requires only 
one step (multiplication to division), even though both 
proofs proceed in the same conceptual order. We test 
whether people scale their explanatory judgments to proof 
complexity. If so, this would be evidence not only that 
people use complexity as a criterion to judge explanatory 

quality, but also that people spontaneously construct 
proofs over the conceptual structure depicted in Figure 1. 

Our model assumes that people evaluate these 
explanations by constructing and evaluating a proof of the 
explanatory target from the base, using the transformation 
rules given in Table 1. These correspond to the forward 
(F) and reverse (R) version of each arrow in Figure 1 (see 
Rips, 1983 for a related idea in propositional reasoning). 
Proofs are evaluated by assuming a rule cost is incurred 
for applying each rule, and that the total proof cost is the 
sum of the costs of the individual rules invoked in the 
proof. If people are sensitive to proof complexity, then 
they should prefer proofs with smaller costs. To capture 
the idea that people prefer explanations consonant with 
the conceptual order, our model allows forward and 
reverse rules to have different costs: We predict that 
reverse rules carry a higher cost than forward rules. That 
is, a proof has a higher cost to the extent that it uses more 
rules in general, and more reverse rules in particular. 
Equivalently, short proofs flowing with Figure 1’s arrows 
would correspond to better explanations than long proofs 
flowing against the arrows (see examples below). 

Method 
We recruited 97 participants from Amazon Mechanical 
Turk in exchange for a small payment (50.5% female, 
Mage = 34.0). Participants were excluded from data 
analysis if they gave inappropriate answers to the check 
questions (N = 6; see below for details). 

Participants rated a series of 30 mathematical 
explanations. For each explanation, participants were 
asked “How satisfying do you find this explanation?” on a 
scale from 0 (“not at all satisfying”) to 10 (“very 
satisfying”). These explanations consisted of all possible 
pairings of addition, subtraction, multiplication, division, 
exponent, and root operations, where the constituents 
were 3s; examples are given in Table 2 in the Appendix. 
For example, across different blocks, participants 
completed a pair of multiplication/exponent items: 

32 = 9 because 3 ´ 3 = 9 [forward] 
3 ´ 3 = 9 because 32 = 9 [reverse] 

Because there are 15 ways of pairing these 6 operations 
with each other, and two orders (forward and reverse), 
participants completed a total of 30 items. The forward 
and reverse items were presented in separate blocks, with 
the order of the items randomized within each block. The 
order of the blocks was also randomized. 

Check questions were included after the test questions 
to detect participants who were responding randomly. 
These always included two items for which one of the 
equations was false (e.g., “4+3=7 because 4+3=2” or 
“743+259=1,002 because 743+259=713”) and two items 
for which the numbers differed between the two equations 
(e.g., “26´47=1222 because 678-234=444”). Participants 
with average answers to these questions that were above 
the scale midpoint were excluded from data analysis. 
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Results 
Participants were sensitive to both criteria of conceptual 

order and proof complexity. We first describe the results 
relative to the qualitative predictions of the model in order 
to explain how the model works, and then assess the 
quantitative fit at both the group and individual levels. 

Qualitative model predictions. We anticipated that 
people would penalize explanations to the extent that the 
most direct proof requires applying a large number of 
rules (see Tables 1 and 2), and that application of 
‘reverse’ rules would correspond to a greater penalty. 
These two principles are captured by (1) computing the 
shortest distance between the two operations in Figure 1, 
and (2) penalizing the explanation for each arrow along 
that shortest path, with arrows in the ‘reverse’ direction 
receiving a larger penalty (we call this penalty R) than 
arrows in the ‘forward’ direction (a smaller penalty of F). 

For example, consider explaining a root formula in 
terms of division (e.g., “Ö9=3 because 9÷3=3”). 
According to our model, people would rate this 
explanation by producing a mental proof of ‘Ö9=3’ from 
‘9÷3=3’. As noted in Table 2, this requires the application 
of three rules: 3R (to derive ‘3´3=9’ from ‘9÷3=3’), 4F 
(to derive ‘32=9’), and finally 5F (to derive ‘Ö9=3’). Two 
of these rules are forward and one is backward, so the 
total penalty is 2F + 1R—since this is a relatively high 
penalty, we would expect this explanation to be rated 
poorly. In contrast, addition would be seen as an excellent 
explanation of subtraction, because a subtraction formula 
(e.g., ‘9–3–3=3’) can be derived from addition 
(‘3+3+3=9’) using only one forward rule (1F), leading to 
a penalty of only 1F. The penalty scores for several of the 
explanations are given in Table 2 in the Appendix, along 
with the rules required to perform these proofs. 

This model captures several patterns in the means 
(Table 3 in the Appendix). First, for each operation, we 
can consider which explanation was rated highest (i.e., the 
highest mean in each row of Table 3). For the addition 
operation, which is not conceptually dependent on any of 
the other operations, its highest rated explanations were 
subtraction and multiplication—the closest downstream 
operations. For both subtraction and multiplication, 
addition is the highest rated explanation, consistent with 
the topology of Figure 1, wherein both operations depend 
directly on addition. Similarly, for explaining division and 
exponentiation, multiplication is highest rated, consistent 
with Figure 1, in that both operations depend directly on 
multiplication. Finally, for roots, exponentiation was seen 
as the best explanation, again consistent with the direct 
dependence of roots on exponents.   

More generally, our model predicts a central role of 
multiplication and a peripheral role of subtraction. As 
Figure 1 shows, multiplication is a central node in the 
conceptual structure of arithmetic—most roads lead to (or 
from) multiplication—but subtraction is on the periphery. 
This prediction is borne out by the data. Multiplication is 
both the most easily explained operation (i.e., the highest 

mean in the rightmost column of Table 3) and the 
operation that explains the most (i.e., the highest mean in 
the bottom row of Table 3). In contrast, subtraction is 
least easily explained and explains the least.  

Group-level model fitting. We model the results in 
terms of the sum of the rule costs, shown in Table 2. This 
analysis assumes that the cost of each rule is determined 
only by whether it is a forward or reverse rule. Thus, one 
free parameter R/F is used, reflecting the extent to which 
R rules were penalized more heavily than F rules. 

We modeled the explanation ratings in terms of the 
summed rule costs, where only the R/F parameter was 
free to vary. These scores were good predictors of the 
explanation ratings, r(28) = –.86, p < .001. The best 
fitting value for the R/F parameter was 1.18, indicating 
that the explanatory cost of applying reverse rules that go 
against the conceptual grain of mathematics is 18% higher 
than the explanatory cost of applying forward rules. This 
supports our conjecture that forward explanations (e.g., 
explaining subtraction in terms of addition) are preferred 
to their logically equivalent reverse explanations (e.g., 
explaining addition in terms of subtraction). 

This asymmetry between forward and reverse rules is 
also evident from looking at the means in Table 3. For 
example, explanations of subtraction in terms of addition 
were rated more satisfying than explanations of addition 
in subtraction, since the former grounds an operation in a 
more psychologically basic operation whereas the latter 
does the opposite. Since there are five rules in Table 1, 
there are five directly reversible pairs, as well as four 
pairs of operations (addition/division, addition/ 
exponentiation, addition/root, and multiplication/root) that 
are connected by applying two or more rules in the same 
direction (see Proof column in Table 2). Averaging across 
these pairs, the forward explanations were seen as more 
satisfying than the reverse, t(90) = 3.90, p < .001.  

Individual-level model fitting. Our model also 
captures individual participants’ explanatory judgments. 
To test the proof complexity factor, we calculated, for 
each participant, the correlation between the explanatory 
judgment for each of the 30 items and the number of rules 
required for that item’s proof (i.e., the sum of the F and R 
columns in Table 2). This parameter-free model captured 
a substantial amount of the variance within each 
participant’s response pattern, with a mean correlation of 
–.46 between number of rules and explanatory judgment 
(Fisher-transformed to a z-score before averaging, and 
inverse-transformed back to a correlation). Furthermore, 
almost all participants (95.6%) had a negative correlation, 
demonstrating that the excellent model fit at the group 
level is not due to a small subset of participants, but 
instead generalizes across almost all participants. 

Although this parameter-free model is useful in 
showing that considerable within-subject variability can 
be explained via proof complexity, it is less useful for 
testing asymmetries between the forward and backward 
rules, since this requires estimating the relative penalties 
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associated with each rule. To do so, we conducted a linear 
regression for each participant, using ten dummy-coded 
variables to represent whether each of the ten rules figures 
in each item’s proof. For example, for the item explaining 
division in terms of subtraction, the dummy variables for 
rules 1R, 2F, and 3F were set to 1, and all others set to 0. 
For each participant, we calculated the regression weights 
for each rule, reflecting the relative penalty associated 
with each rule (thus, all regression weights would be 
expected to be negative), and these weights (averaged 
across participants) are depicted in Figure 2. 

 
 

Figure 2: Regression coefficients on each rule. 
Note. These coefficients represent the explanatory ‘cost’ of a 
given rule appearing in the proof of the explanation. Error bars 
represent 95% confidence intervals, calculated over participants. 

 
Mirroring the group-level findings, Figure 2 reveals 

higher costs for reverse rules than for forward rules, 
leading to more negative regression coefficients for the 
reverse rules. This was true for rules 1F and 1R (95% CI 
[0.28, 1.15] for the difference in regression coefficients), 
rules 3F and 3R (95% CI [0.13, 0.81]), rules 4F and 4R 
(95% CI [-0.02, 0.58]; marginally significant), and rules 
5F and 5R (95% CI [0.17, 0.85]). This difference was not 
significant for the addition/multiplication rules 2F and 2R 
(95% CI [-0.41, 0.39]), perhaps because repeated addition 
of the same addends is uncommon except in the context 
of multiplication. Overall, these findings are consistent 
with the best-fitting value of the R/F parameter of 1.18 in 
the group-level analysis, indicating a higher explanatory 
cost for reverse rules than for forward rules. 

Discussion 
Mathematical knowledge is critical for explaining patterns 
in both the physical and symbolic worlds, and for building 
an understanding conceptually dependent mathematical 
facts. Here, we proposed that people evaluate 
mathematical explanations (e.g., “9–3–3=3 because 
3+3+3=9”) by building a proof from the explanatory base 
(“3+3+3=9”) to the explanatory target (“9–3–3=3”) using 
a set of transformation rules (e.g., deriving subtraction 
from addition). Supporting this idea, participants 

preferred explanations that obeyed the conceptual order of 
mathematics and which required fewer derivational steps. 

Where might these intuitions come from? One 
possibility is that they are rooted in a more basic 
understanding of the natural numbers (e.g., Carey, 2009; 
Dehaene, 1997; Rips, Bloomfield, & Asmuth, 2008) that 
begins to emerge early in development. For example, 
addition and subtraction are intimately related to 
counting, both in development (Rips et al., 2008) and in 
mathematics (Tao, 2016). This is because the natural 
numbers are constructed by using the successor function 
(e.g., 9 is the successor to 8). Such psychologically and 
mathematically primitive mechanisms may underlie later-
emerging explanatory intuitions. 

Alternatively, could it be possible that people simply 
parroted explanations as introduced in school? This 
possibility is unlikely for two reasons. First, 
multiplication was strongly preferred over subtraction as 
an explanation. This pattern is consistent with our claims 
about conceptual structure but conflicts with this 
alternative account, since subtraction is typically learned 
before multiplication. Second, we doubt most people have 
ever heard (for example) division explained in terms of 
addition, exponential, roots, etc., so differences across 
these explanations must be due to a chaining mechanism 
of the type we proposed.  

Might analogous results hold beyond arithmetic 
explanations? Indeed, people have a rich intuitive 
understanding of other mathematical domains such as 
geometry (Dillon, Huang, & Spelke, 2013), suggesting 
that people have intuitive theories of Platonic regularities 
across a variety of domains. Moreover, the proof 
construction and evaluation principles may be the same 
used in more general deductive reasoning processes (Rips, 
1994; but see Johnson-Laird & Byrne, 1991), in which 
case our method may generalize. Our studies focused on 
simple arithmetic operations (e.g., Ashcraft, 1992), but 
future work could extend this inquiry to other areas of 
mathematics (such as geometry), populations (such as 
children or expert mathematicians), or domains (such as 
dependencies among physics concepts or among mental 
states) to further map our intuitive theories. 

The ontological implications of this work are within the 
domain of philosophy. For now, we merely contrast two 
possible views. According to the dominant Platonist view 
(e.g., Frege, 1974/1884), mathematical truths are ‘out 
there’ in the world. On the Platonist view, our results 
reflect aspects of mathematical structure that have been 
internalized from the world. However, others with 
Kantian views argue that mathematical cognition reflects 
structure imposed on the world by our minds rather than 
anything intrinsic in the world (Kant, 1998/1781; Mill, 
2002/1843; see Lakoff & Núñez, 2000). On the Kantian 
view, our results reflect the intrinsic structure of our 
minds themselves, which we impose on the world. 

As for the instructional implications of these findings, 
we believe mathematics educators are best-positioned to 
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make the assessment. However, we do make some 
tentative suggestions. First, mathematical proof may not 
be intrinsically unintuitive—it may instead be the level of 
abstraction of many proofs that masks intuitive 
understanding. If so, introducing simple deductive proofs 
of simple arithmetic relationships at an earlier educational 
stage could lay an intuitive foundation for more formal 
proofs later on (see Carpenter, Franke, & Levi, 2003). 
Second, people use the conceptual structure of 
mathematics to understand derivative concepts in terms of 
more basic ones. Educators may wish to emphasize these 
abstract connections, in conjunction with more concrete 
applications, in order to tap into this intuitive 
understanding; for example, explaining division both as a 
way to divide resources and as the inverse of 
multiplication. Finally, our methodology might be used to 
assess the explanatory trade-offs between different kinds 
of examples. Studying explanatory preferences in adults 
may provide a simple laboratory for testing out 
explanatory methods that might be used in educational 
settings, prior to undertaking expensive and risky 
intervention studies. This method could be used not only 
to illuminate mathematical understanding, but also the 
conceptual structure of other domains. 
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Appendix 
 

Operation 
Explained 

Operation Used 
to Explain Stimuli Proof F R 

Addition Subtraction 3 + 3 + 3 = 9 because 9 - 3 - 3 = 3 1R 0 1 
 Multiplication 3 + 3 + 3 = 9 because 3 ´ 3 = 9 2R 0 1 
 Division 3 + 3 + 3 = 9 because 9 ÷ 3 = 3 3R, 2R 0 2 
 Exponent 3 + 3 + 3 = 9 because 32 = 9 4R, 2R 0 2 
 Root 3 + 3 + 3 = 9 because Ö9 = 3 5R, 4R, 2R 0 3 
Subtraction Addition 9 - 3 - 3 = 3 because 3 + 3 + 3 = 9 1F 1 0 
 Multiplication 9 - 3 - 3 = 3 because 3 ´ 3 = 9 2R, 1F 1 1 
 Division 9 - 3 - 3 = 3 because 9 ÷ 3 = 3 3R, 2R, 1F 1 2 
 Exponent 9 - 3 - 3 = 3 because 32 = 9 4R, 2R, 1F 1 2 
 Root 9 - 3 - 3 = 3 because Ö9 = 3 5R, 4R, 2R, 1F 1 3 
Multiplication Addition 3 ´ 3 = 9 because 3 + 3 + 3 = 9 2F 1 0 
 Subtraction 3 ´ 3 = 9 because 9 - 3 - 3 = 3 1R, 2F 1 1 
 Division 3 ´ 3 = 9 because 9 ÷ 3 = 3 3R 0 1 
 Exponent 3 ´ 3 = 9 because 32 = 9 4R 0 1 
 Root 3 ´ 3 = 9 because Ö9 = 3 5R, 4R 0 2 
Division Addition 9 ÷ 3 = 3 because 3 + 3 + 3 = 9 2F, 3F 2 0 
 Subtraction 9 ÷ 3 = 3 because 9 - 3 - 3 = 3 1R, 2F, 3F 2 1 
 Multiplication 9 ÷ 3 = 3 because 3 ´ 3 = 9 3F 1 0 
 Exponent 9 ÷ 3 = 3 because 32 = 9 4R, 3F 1 1 
 Root 9 ÷ 3 = 3 because Ö9 = 3 5R, 4R, 3F 1 2 
Exponent Addition 32 = 9 because 3 + 3 + 3 = 9 4F, 2F 2 0 
 Subtraction 32 = 9 because 9 - 3 - 3 = 3 4F, 2F, 1R 2 1 
 Multiplication 32 = 9 because 3 ´ 3 = 9 4F 1 0 
 Division 32 = 9 because 9 ÷ 3 = 3 4F, 3R 1 1 
 Root 32 = 9 because Ö9 = 3 5R 0 1 
Root Addition Ö9 = 3 because 3 + 3 + 3 = 9 5F, 4F, 2F 3 0 
 Subtraction Ö9 = 3 because 9 - 3 - 3 = 3 5F, 4F, 2F, 1R 3 1 
 Multiplication Ö9 = 3 because 3 ´ 3 = 9 5F, 4F 2 0 
 Division Ö9 = 3 because 9 ÷ 3 = 3 5F, 4F, 3R 2 1 
 Exponent Ö9 = 3 because 32 = 9 5F 1 0 

Table 2: Mental proofs and penalty scores for all explanations. 

 
 

  Operation Used to Explain 
  Addition Subtraction Multiplication Division Exponent Root Average 

O
pe

ra
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n 
E
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la

in
ed

 Addition — 6.37 7.96 5.70 5.69 4.47 6.04 

Subtraction 7.14 — 4.45 4.93 4.01 3.82 4.87 

Multiplication 8.11 4.20 — 7.12 8.02 6.01 6.69 

Division 5.76 4.65 7.46 — 5.70 5.45 5.80 

Exponent 6.12 3.65 8.75 5.26 — 6.49 6.05 

Root 5.27 3.43 7.11 5.45 7.44 — 5.74 

Average 6.48 4.46 7.15 5.69 6.17 5.25  

Table 3: Explanatory ratings for each pair of operations. 
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Abstract 

People use a variety of strategies for evaluating causal 
claims, including mechanistic strategies (seeking a step-by-
step explanation for how a cause would bring about its 
effect) and statistical strategies (examining patterns of co-
occurrence). Two studies examine factors leading one or 
the other of these strategies to predominate. First, general 
causal claims (e.g., “Smoking causes cancer”) are 
evaluated predominantly using statistical evidence, 
whereas statistics is less preferred for specific claims (e.g., 
“Smoking caused Jack’s cancer”). Second, social and 
biological causal claims are evaluated primarily through 
statistical evidence, whereas statistical evidence is deemed 
less relevant for evaluating physical causal claims. We 
argue for a pluralistic view of causal learning on which a 
multiplicity of causal concepts lead to distinct strategies for 
learning about causation. 

Keywords: Causal reasoning; concepts and categories; 
information evaluation; statistical reasoning. 

Introduction 
Causal knowledge is crucial for understanding and 
controlling the world, and strategies for evaluating causal 
claims are central to gatekeeping that crucial knowledge. 
Humans seem especially prone to two strategies—a 
mechanism strategy, on which we consider potential 
mediating causal links as evidence favoring a causal 
connection; and a statistical strategy, on which we look 
for correlations between a cause and effect. For example, 
Jack is assessing the risk that smoking causes cancer. He 
can assess this claim mechanistically by considering the 
plausibility of potential mediating mechanisms that 
explain relationship between smoking and cancer. Or he 
can assess the claim statistically by observing whether the 
frequency of cancer is higher in a population that smokes 
compared to a population that does not. 

There is ample evidence that people use both of these 
strategies, though different theoretical approaches to 
causal cognition emphasize different types of information. 

According to mechanism-based approaches to causal 
cognition, we learn about causal relations primarily by 
searching for generative mechanisms through which 
causes can produce their effects. Several convergent lines 
of evidence are consistent with causal relations being 
represented in terms of underlying mechanisms (see 
Johnson & Ahn, in press). Knowledge of underlying 
mechanisms affects whether discounting or conjunction 
effects occur in causal attribution (Ahn & Bailenson, 
1996), whether the Markov principle is applied to causal 
networks (Park & Sloman, 2013), and whether causal 
chains are judged to be transitive (Johnson & Ahn, 2015). 

If we learn about causation by searching for plausible 

mechanisms, then people would seek out evidence of 
underlying mechanisms when determining whether one 
thing causes another. Indeed, people do sometimes assess 
causal hypotheses by forming a mechanistic narrative that 
would lead from X to Y and assessing the plausibility of 
that narrative (e.g., Fernbach, Darlow, & Sloman, 2011; 
Kahneman & Tversky, 1982; Taleb, 2007). For example, 
Jack might imagine some physiological mechanism by 
which smoking and lung cancer could be connected, then 
evaluate the plausibility of these steps. Moreover, people 
prefer mechanism evidence overwhelmingly in causal 
attribution—that is, in determining which cause to assign 
to an effect (Ahn, Kalish, Medin, & Gelman, 1995). 

In contrast, statistics-based approaches to causal 
learning emphasize the role of statistical knowledge in 
inferring causal relationships. These theories hold that 
causal relationships are primarily discovered through 
information about the co-occurrence of the cause and 
effect, although individual theories differ in the details of 
how these inferences work (e.g., Cheng, 1997; Gopnik et 
al., 2004; Griffiths & Tenenbaum, 2005). These theories 
do not necessarily claim that causal relations are 
represented in terms of statistical patterns, but often hold 
that causal relations are represented in terms of abstract 
causal powers underlying the connection between cause 
and effect, which are then inferred through statistical 
means (Cheng, 1997; Pearl, 2000). Nonetheless, statistical 
approaches do claim that causal relations are primarily 
learned through co-occurrence information, and there is 
abundant evidence that people are often able to learn from 
statistical evidence (e.g., Gopnik et al., 2004; Steyvers, 
Tenenbaum, Wagenmakers, & Blum, 2003). 

Moreover, statistical evidence could be an antidote to 
the shallowness of people’s knowledge of causal 
mechanisms: Even though people do use mechanism 
knowledge in evaluating causal relationships when it is 
available, we do not seem to have extensive knowledge of 
mechanisms. People greatly overestimate their knowledge 
of how everyday devices such as flush toilets work, 
revealing misconceptions and pervasive gaps in 
understanding (Rozenblit & Keil, 2002). People’s beliefs 
in mechanisms underlying causal relationships are more 
likely to take the form of generic or highly unspecified 
‘placeholders’, akin to our beliefs in abstract category 
essences (Medin & Ortony, 1989). Such skeletal 
representations are difficult to square with a strong 
mechanism view on which people seek a detailed 
understanding of how causal relationships work and use 
that understanding to guide inference, but they might 
seem to be more consistent with statistical approaches to 
causal thinking on which covariation is used to infer the 
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existence of abstract underlying mechanisms without 
being committed to particular mechanistic details. 

The mechanism and the statistical approaches, however, 
need not be in conflict and can be mutually compatible 
with a third approach known as causal pluralism 
(Cartwright, 2004; Danks, 2005; Hitchcock, 2003; 
Lombrozo, 2010; Waldmann & Mayrhofer, 2016). 
According to this approach, people might use a 
multiplicity of causal concepts and a concordant variety 
of learning strategies in systematic, context-dependent 
ways. Some prima facie support for the pluralistic 
position comes from experiments where people used 
mechanism and statistical evidence in an interactive 
manner (Fugelsang & Thompson, 2000; Spellman, 1996). 

Yet, little is known about contextual factors that lead 
each type of evidence to predominate. Here, we look at 
two dimensions along which causal relations can vary—in 
its level of abstraction and its domain. Because people 
seem to use different sorts of causal concepts for 
representing these relations, we anticipated that people 
may also use different strategies to learn about these 
relations. If you need to decide whether something is a 
banana, the best question to ask would be about its shape, 
whereas if you need to decide whether something is a 
peach, the best question would be about its texture. And 
just as we must consult our concept of ‘banana’ when 
deciding whether something is a banana and our concept 
of ‘peach’ when deciding whether something is a peach, 
we must consult our concept of ‘cause’ when deciding 
whether a relationship is causal. When we deploy 
different causal concepts across contexts, this can lead to 
different learning strategies. 

General and Specific Causation. General causal 
claims refer to generic causal patterns (“Smoking causes a 
person to get lung cancer”), whereas specific claims refer 
to concrete occasions when a pattern was instantiated 
(“Smoking caused Jack to get lung cancer”). The 
inferences supported by general and particular claims 
differ in several ways. General claims are associated with 
more essentialist inferences (Cimpian & Erickson, 2012) 
and, in the domain of human behavior, with more 
neuroscientific rather than psychosocial explanations 
(Kim, Ahn, Johnson, & Knobe, 2016). Might these claims 
also differ in the evidence used for their evaluation? 

General claims refer to an entire category of causal 
relationships (i.e., a set of event pairs), whereas specific 
claims refer to an instance of that category (one single 
event pair in that set). Thus, general claims necessarily 
quantify over multiple instances and intrinsically carry 
statistical content, whereas specific claims do not. We 
suggest that this conceptual difference could lead 
statistical evidence to be privileged more for general 
rather than specific causal claims. 

This pattern of evidence preferences can lead to non-
normative behavior. If we are not privy to the particulars 
of Jack’s case, the only strategy for evaluating a token-
causal claim will be to look for a more general causal 

pattern between smoking and cancer—to evaluate the 
general claim. Thus, evidence relevant for evaluating the 
general claim would be equally relevant for evaluating the 
specific claim. Imagine that a tobacco company is being 
sued under one of two different circumstances: (1) a class 
action suit (the plaintiffs’ lawyers arguing that “Smoking 
causes a person to get lung cancer”), or (2) Jack’s single 
party action (his lawyers arguing that “Smoking caused 
Jack to get lung cancer”). In both cases, jurors might be 
confronted with mechanism evidence, such as a 
biologist’s testimony concerning biochemical 
mechanisms, or with statistical evidence, such as an 
epidemiologist’s testimony comparing cancer rates across 
populations. It seems difficult to justify a difference 
between these two cases in jurors’ relative weighing of 
mechanistic and statistical testimony. Yet, if people rely 
on different processes for evaluating general and specific 
claims, then the jurors may well behave differently. 

Causation across Domains. People use different 
intuitive theories of causality across domains. Whereas 
physical causation is typically conceptualized in terms of 
force propagating down branching causal chains, social 
and biological causation are thought of as webs of 
interconnected influences. People tend to identify 
physical events as having one cause but many effects, 
whereas social events are seen as having many causes and 
many effects (Strickland, Silver, & Keil, 2016; see also 
Johnson, Valenti, & Keil, 2017). Likewise, even young 
children seem to view biological systems as causally 
interacting parts in homeostatic balance (Keil, 1989). 
Thus, the simple, linear causal pathways thought to be at 
play in the physical world give way to more complex 
causal structures in the social and biological domains. 

Similarly, social (e.g., psychological or economic) 
causation is often goal-directed (Lombrozo & Carey, 
2006) or equipotential (Heider, 1958)—the same ends can 
often be brought about through many different means. For 
this reason, people’s causal theories of social (and likely 
biological) systems often focus on counterfactual 
dependence (Lombrozo, 2010), whereas their theories of 
physical systems are characterized more by ideas about 
physical force and transference of conserved quantities. 

Given the relatively linear and force-based conceptions 
of physical causation, and the relatively web-like and 
dependence-based conceptions of causality in biological 
and social causation, people may use a more deterministic 
concept of physical causation and a more stochastic 
concept of social and biological causation (Johnson, 
Valenti, & Keil, 2017). Thus, people may rely more on 
mechanistic strategies when learning about physical 
systems and more on statistical strategies when learning 
about biological and social systems. 

Overview of Studies. Two studies test differences in 
evidence-seeking between general and specific causal 
claims, with the studies differing in the framing of the 
claims. After testing this hypothesis about general versus 
specific causation, we present an analysis of evidence-
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seeking preferences across domains, aggregating across 
studies. In the General Discussion, we assess the 
prospects for a pluralistic view of causal learning. 

Experiment 1 
In Experiment 1, we tested what kind of information 
people thought most relevant for assessing general causal 
claims (e.g., “Eating polar bear liver causes a person to 
become dizzy”) and specific causal claims (“Eating polar 
bear liver caused Bill to become dizzy”). The mechanism 
view holds that we learn about causal relationships 
primarily by searching for underlying mechanisms, 
leading to a preference for mechanism evidence, whereas 
the statistical view holds that we learn about causal 
relationships primarily through contingency information, 
leading to a preference for statistical evidence. In contrast 
to both positions, we predicted that, whatever people’s 
baseline preferences for one or the other type of evidence, 
the preference for statistical evidence would be stronger 
when evaluating general rather than specific claims. 

Method 
We recruited 80 participants from Mechanical Turk, and 
excluded 5 from data analysis because they incorrectly 
answered more than 33% of the check questions. 

Participants saw either the general or specific version of 
each of 24 causal claims, presented in a box. For each 
item, participants were asked “Which of the following 
types of evidence would be most helpful to you in 
determining whether the statement in the box is true?” as 
a forced-choice. For the polar bear item, the options read: 

Statistical: “Measurements of the frequency of 
dizziness of many people after they eat or do not eat 
polar bear liver.” 

Mechanism: “An explanation of why eating polar bear 
liver would cause a person to become dizzy.” 

Anecdotal: “Knowing whether there is another occasion 
on which a person ate polar bear liver and then they 
felt dizzy.” 

We assumed that few people would choose the weak 
anecdotal evidence, and used this option to assess the 
degree to which participants used poor causal reasoning. 
The order of the options was randomized for each item, 
and the items were presented in a random order. 

Results and Discussion 
As shown in Table 1, statistical evidence was chosen 
more frequently when evaluating general compared to 
specific claims. Due to non-normality, Mann-Whitney U-
tests were used to compare the number of items for which 
participants chose each evidence type in each condition.  

These tests showed that statistical evidence was chosen 
for more items when evaluating general claims than when 
evaluating specific claims [U = 496.5, p = .028, r = .25]. 
This corresponded to relatively fewer mechanism 
responses for the general claims than for the specific 
claims and fewer anecdotal responses for the general 

claims than for the specific claims. Thus, responses 
shifted relatively more toward statistical evidence for the 
general than for the specific claims. 

This result indicates that people use pluralistic causal 
learning strategies. Specifically, it appears that the 
conceptual differences between general and specific 
claims had downstream consequences for evidence-
seeking preferences: Because general claims quantify 
over instances, statistical evidence is seen as more 
relevant to evaluating such claims, compared to specific 
claims, and mechanism evidence is seen as less relevant. 

 
Table 1: Results of Experiments 1 and 2 

 

 Statistical Mechanism Anecdotal 
Exp. 1    
   General 55.3% 36.8% 7.9% 
   Specific 41.6% 47.5% 11.0% 
Exp. 2    
   General 62.0% 30.4% 7.6% 
   Specific 47.6% 41.4% 11.0% 
Domain Analysis    
   Physical 47.5% 46.6% 5.9% 
   Biological 53.6% 38.9% 7.5% 
   Psychological 51.6% 36.0% 12.4% 
   Economic 53.7% 34.7% 11.6% 

Note. Entries indicate the proportion of choices of each evidence 
type in each experiment. For the domain analysis, the proportion 
of participants choosing each evidence type was calculated for 
each item in Experiments 1 and 2, and those proportions were 
averaged across all items in each domain. 

Experiment 2 
Experiment 2 sought to generalize the effect of general 
versus specific causation to contexts where it is known 
that the events in the specific causal relationship actually 
occurred. That is, participants in Experiment 1 evaluated 
claims such as “Smoking cigarettes caused Jack to get 
lung cancer” without knowing whether or not Jack in fact 
smoked and whether or not he had cancer. In such 
contexts, both statistical and mechanism information may 
seem irrelevant, since a crucial part of evaluating this 
claim is establishing first that the cause and effect both 
occurred. In contrast, Experiment 2 examined contexts 
where it is known that both cause and effect occurred 
(e.g., by prefacing the causal claim with the statement 
“Jack smoked cigarettes, and then Jack got lung cancer”), 
where the primary concern is distinguishing causation 
from coincidence (see Cartwright, 2017) and where the 
available evidence would be seen as more relevant. 

Method 
We recruited 80 participants from Mechanical Turk, and 
excluded 5 from data analysis because they incorrectly 
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answered more than 33% of the check questions. 
Participants responded to a new set of 24 causal claims. 

The format of these items differed from Experiment 1 in 
that contextual information was given for each claim, 
establishing that the cause and effect occurred. This 
information was printed above the box containing the 
claim. For example, one general item read (background 
information in regular typeface, claim in italics): 

Researchers sometimes observe that a person consumes 
large amounts of meat, and then that the person 
develops kidney stones. 

Consuming large amounts of meat causes a person to 
develop kidney stones. 

The specific version of that item read: 
Researchers observed that Tom consumed large 

amounts of meat, and then that Tom developed 
kidney stones. 

Consuming large amounts of meat caused Tom to 
develop kidney stones. 

The procedure was otherwise identical to Experiment 1. 

Results and Discussion 
Although participants preferred statistical information 
overall, this preference was far stronger when evaluating 
general than when evaluating specific claims [U = 481.5, 
p = .019, r = .27], consistent with Experiment 1. They 
correspondingly chose mechanism evidence less 
frequently for general than for specific claims and 
anecdotal evidence less frequently for general than for 
specific claims, as shown in Table 1. 

These two experiments together are consistent with the 
idea that people use different learning strategies 
depending on what causal concept they are consulting. 
However, there are other differences between general and 
specific causation that could plausibly account for some 
of the variance. First, the reference class from which the 
statistical evidence is drawn may be more relevant for the 
general than the specific claim, and second, plurality may 
have been more salient for the general than for the 
specific claims. We conducted an additional experiment 
with artificial stimuli to rule out these two alternative 
explanations, in which both the general and specific 
claims were prefaced by a statement about the reference 
class (e.g., “There is a group of 100 Garbotrons”), with 
the general claim then made about the entire group and 
the specific claim about an arbitrary member of that 
group. This equated the reference class and the salience of 
plurality, yet produced a similar shift across conditions. 

These experiments do not fully tease apart whether the 
difference is due to a statistics preference for general 
claims or a mechanism preference for specific claims. We 
conducted two additional studies to answer this question, 
one in which participants answered an open-ended 
question about what evidence they would want to use, and 
another in which participants rated the two types of 
evidence on independent scales. Consistent with our claim 
that these differences arise due to more stochastic 

representations of general causation, the condition 
differences were significant for statistical evidence but 
not for mechanism evidence in both cases. 

Domain Differences 
In Experiments 1 and 2, we drew our causal claims from 
four domains—physical, biological, psychological, and 
economic—across which causal representations are likely 
to differ. People typically conceptualize physical 
causation as flowing in branches, with each event having 
few causes but many effects, and social (and perhaps 
biological) causal systems as interconnected webs, in 
which events have many causes and many effects 
(Strickland et al., 2016). Similarly, people may use more 
transference-based (or mechanistic) causal concepts in 
the physical domain, and more dependence-based 
(counterfactual or statistical) causal concepts in the social 
domain (Lombrozo, 2010). Thus, physical systems may 
be seen as more deterministic and social systems as more 
stochastic. According to the pluralistic position, these 
conceptual differences across domains could translate into 
different learning strategies: We would expect relatively 
greater reliance on statistical information for social and 
biological systems and less for physical systems. 

We tested this possibility by comparing preferences for 
statistical evidence across all 48 items used in 
Experiments 1 and 2, collapsing across the general and 
specific versions. For each item, a statistics preference 
score was computed by taking the difference between the 
proportion of participants choosing statistical evidence for 
that item and the proportion choosing mechanism 
evidence for that item. An ANOVA on these scores with 
domain (physical, biological, psychological, or economic) 
as a between-items variable uncovered a marginally 
significant main effect of domain [F(3,44) = 2.22, p = 
.099, ηp

2 = .13], with the preference for statistics evidence 
smallest for the physical items [M = 0.01, SD = 0.17], 
followed by the biological [M = 0.15, SD = 0.19], 
psychological [M = 0.16, SD = 0.21], and economic [M = 
0.19, SD = 0.17] items. Independent-samples t-tests 
revealed that items from the physical domain had a 
smaller statistics preference than did items from the 
combined other domains [t(46) = -2.56, p = .014, d = 
0.85], while the biological, psychological, and economic 
domains did not differ from one another [ts < 1, ps > .50]. 

This result further supports the pluralistic position, 
suggesting that differences in causal concepts used across 
domains translated into different learning strategies. 

General Discussion 
Cognition requires us to attend to and integrate various 
sources of information into coherent representations of 
the world. Our representations of causal systems are 
particularly critical because they allow us to predict and 
understand events, and to plan interventions on the world 
to achieve goals. Humans use two distinct strategies for 
making inferences about causal claims—evaluating the 
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plausibility of mediating causal mechanisms, and 
evaluating statistical evidence for contingencies between 
cause and effect. What factors lead people to favor one 
strategy over the other? 

First, general causal statements, which refer to a 
category of causal events, are seen as more compatible 
with statistical evidence than are specific causal 
statements, which refer to only an individual causal event. 
We hypothesized that this would occur because 
representations of general claims intrinsically include 
statistical content, and people would seek evidence that 
conforms to their representation of the causal concept. 

Second, statistics were seen as more relevant for 
biological and social systems than for physical systems, 
whereas mechanistic evidence was more important for 
physical systems. We predicted this effect because causal 
representations vary across domains. Whereas physical 
systems are seen as more linear and force-based, social 
and biological systems are seen as more branching and 
counterfactual-based (Lombrozo, 2010; Strickland et al., 
2016). Thus, concepts of biological and social causation 
would be more stochastic than concepts of physical 
causation, leading people to favor statistical evidence. 

Causal Pluralism. Our causal representations subserve 
a variety of cognitive functions, and exhibit a concordant 
variety of properties that sometimes appear contradictory 
(Johnson & Ahn, in press). For instance, causal 
representations seem to have many of the properties of 
associations (Shanks, 1987), yet causal inferences exhibit 
directional biases that are inconsistent with symmetric 
associative representations (Waldmann & Holyoak, 
1992). These shortcomings of associative theories have 
led to the suggestion of causal models or Bayesian 
networks as the representation over which causal 
reasoning operates (e.g., Pearl, 2000; Sloman, 2005). Yet, 
other evidence suggests that people often fail to make the 
transitive inferences predicted by Bayesian networks (i.e., 
that A causes C, given that A causes B and B causes C), 
and that these failures occur when the connection between 
A and C is not seen as a coherent, schematized 
mechanism (e.g., sex causes pregnancy, which causes 
nausea, but sex does not cause nausea; Johnson & Ahn, 
2015). Thus, causal representations appear to have some 
association-like properties, some network-like properties, 
and some schema-like properties. Add to this evidence 
that causal relations are represented with some properties 
of forces (Wolff, 2007), icons that support mental 
simulation (Hegarty, 2004), and metacognitive place-
holders (Rozenblit & Keil, 2002), and it becomes clear 
that people do not represent causation using one unified 
representation (see Markman & Dietrich, 2000). 

Despite the overwhelming evidence for representational 
pluralism, it does not follow that people use distinct 
strategies for learning about different varieties of causal 
concepts. People may not tailor their learning strategies to 
the representation at hand, but could instead apply a 
single learning strategy across all types of causal systems, 

such as statistical learning algorithms (Pearl, 2000). 
However, the current experiments demonstrate learning 

patterns that are not only pluralistic, but appear to be 
tailored to the underlying representation. In the cases of 
specific causation we used, there is no prior knowledge, 
so the only option is to learn about the general causal 
relation anew. If the best strategy for learning about the 
general claim is statistics, then the best strategy for 
learning about the specific relation is also statistics. Yet, 
participants shifted dramatically from statistics when 
learning about specific claims—a signal that they had 
applied a heuristic, matching statistical  representations of 
general claims to statistical information. Therefore, any 
view of causal learning and representation that focuses on 
a single representation or learning mechanism will fail to 
capture important aspects of our causal thinking. 

In addition to clarifying the debate between mechanism 
and statistical views of causation, causal pluralism may 
also be a helpful framework for thinking about debates 
over causal semantics. Theories of causal semantics 
embrace diverse accounts based on physical forces 
(Wolff, 2007), on probability (Good, 1961), and on logic 
(Lewis, 1973). Teasing these accounts apart has been 
difficult because they often make similar empirical 
predictions (Barbey & Wolff, 2007; Goldvarg & Johnson-
Laird, 2001; Sloman, Barbey, & Hotaling, 2009). 

However, in a pluralistic framework, it may not only be 
difficult but in fact impossible to capture all of causal 
semantics using a single representational format. Our 
causal representations differ not only in reference (general 
or specific) and domain (physical, biological, social), but 
along many other dimensions as well, in potentially 
interconnected ways—among deterministic, chaotic, and 
indeterministic systems; among the past, present, and 
future; between observed, unobserved, and unobservable 
causes and effects; between categorically or continuously 
valued causes and effects; and among various potential 
causal structures. A useful strategy going forward may be 
to investigate the manner in which such variation in 
causal meaning propagates to causal learning processes. 
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Touch Screen Text Entry as Cognitively Bounded Rationality
Jussi Jokinen

Aalto University, Espoo, Finland

Abstract: Typing on a smartphone is an everyday activity that involves various cognitive and behavioural processes. This paper
models touch screen text entry as cognitively bounded rationality. The model aims to maximise error-free text throughput, while
being constrained by its architecture and task environment. Empirical data are used to calibrate the model, which demonstrates
adequate fit. The model is used to explore how strategic choices under given constraints affect text entry performance. The
preliminary model presented here serves as a confirmation that touch screen text entry can be modelled as cognitively bounded
rationality. Future extensions by integration into richer cognitive architectures are outlined.
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Abstract 

Much research effort has been expended improving police 
lineup procedures used in collecting eyewitness identification 
evidence. Sequential presentation of lineup members, in 
contrast to simultaneous presentation, has been posited to 
increase witness accuracy, though analyses based in Signal 
Detection Theory (SDT) have challenged these claims. A 
possible way to clarify the effect of presentation format on 
witness accuracy is to develop SDT-based measurement 
models, which characterise decision performance in terms of 
psychologically-relevant parameters, particularly discrimin-
ability and response bias. A model of the sequential lineup 
task was developed with a “first-above-criterion” decision 
rule, alongside a simultaneous model with a “maximum 
familiarity” decision rule. These models were fit to a corpus 
of data comparing simultaneous and sequential lineup 
performance. Results showed no difference in 
discriminability between the procedures and more 
conservative responding for the sequential lineup. Future 
work will examine criterion setting in the sequential lineup 
and model alternative decision rules.  

Keywords: Eyewitness identification; Signal Detection; 
memory 

Introduction 

Typical six-person lineups used in police investigations 

consist of one suspect, whom police believe may be guilty 

of a crime, and five known-innocents called variously 

“fillers’ or “foils”, selected to resemble the suspect in 

specified ways (Clark, 2012). A witness may identify (ID) a 

person from the lineup or reject the lineup (“the person I 

saw is not here”), and may provide a confidence rating for 

their choice. In experimental mock-crime studies, a lineup is 

referred to as target-present (TP) if it includes the person 

observed by the witness at encoding (the “culprit”) or target-

absent (TA) if it is composed entirely of fillers.  

Possible decision outcomes are expressed as rates or 

proportions over a series of trials. From a TP lineup, 

witnesses may correctly ID the culprit, incorrectly ID a foil 

or incorrectly reject the lineup. From a TA lineup, witnesses 

may correctly reject the lineup or incorrectly ID a foil, 

known as a false alarm.  

The members of a lineup may be presented 

simultaneously, where the witness makes a single decision, 

or sequentially, where the witness makes a yes/no decision 

for each member before seeing the next. In experimental 

studies, the sequential procedure terminates once an ID is 

made, although variations of the procedure are used in 

applied settings (Horry, Palmer & Brewer, 2012). Whether 

presentation format affects witness accuracy has received 

significant research attention (Steblay, Dysart & Wells, 

2011). Initial work by Lindsay and Wells (1985) found that 

the sequential procedure produced a marked reduction in 

false ID rate, a desirable outcome, and a slight reduction in 

correct ID rate compared to the simultaneous procedure. 

Numerous subsequent studies and two meta-analyses 

(Steblay et al., 2011) have supported this pattern of results 

and, although the effect has not always been found (Dobolyi 

& Dodson, 2013) and seems to have weakened with time 

(Moreland & Clark, 2016), evidence for sequential 

superiority has been persuasive enough for the procedure to 

be adopted in the United Kingdom and in many jurisdictions 

in the United States (Clark, 2012).  

Signal Detection Theory Advantage 

Recently, researchers have advocated the use of analyses 

based in Signal Detection Theory (SDT) to evaluate lineup 

procedures (Mickes, Flowe & Wixted, 2012). SDT is an 

approach used to analyse decision performance in a wide 

variety of areas in which a target, such as an enemy jet on 

radar or a tumor on an x-ray, must be discriminated from 

similar non-targets under conditions of uncertainty. In its 

most basic form, it characterises decision performance as 

resulting from two sources; discriminability (d’), related to 

how well a witness can distinguish targets from non-targets, 

and response bias or criterion (c), related to overall 

willingness to make a decision (MacMillan & Creelman, 

2005). Claims of superior performance for the sequential 

procedure have been based on findings of a higher ratio of 

correct ID rates to false ID rates – the so called 

“diagnosticity ratio” – compared to the simultaneous 

procedure (Steblay et al., 2011). However, Mickes et al. 
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(2012) have shown that diagnosticity confounds 

discriminability and response bias. In fact, analysis of lineup 

data using SDT reveals that there are a range of different 

diagnosticity ratios associated with the same lineup 

procedure and that, necessarily, the ratio increases as 

response bias becomes more conservative, i.e. as people 

reject more frequently (Wixted & Mickes, 2012). SDT 

avoids this problem by computing all empirical or 

hypothetical correct ID/false ID pairs, which can then be 

plotted and analysed. Further, formal modelling of the task 

allows estimation of the entire response curve from 

estimated parameters – allowing tests of hypotheses about 

the impact of system variables such as lineup member 

similarity on theoretically relevant parameters. 

Measurement Models  

A measurement model uses theoretically-derived 

mathematical functions to link observed behavioural data to 

psychological constructs. Psychologically meaningful 

model parameters are estimated by fitting the model to 

observed data (Farrell & Lewandowsky, 2010).  

 Palmer and Brewer (2012) sought to address the need for 

formal modelling of the lineup task by fitting a SDT 

compound detection model (SDT-CD; Duncan, 2006) to a 

corpus of studies that compared simultaneous and sequential 

lineup data. The ‘compound’ aspect of SDT-CD refers to 

the fact that a lineup can be decomposed into two decision 

tasks; target detection (is the target present?) and target 

identification (if the target is present, which member is the 

target?). Results showed that the simultaneous and 

sequential lineups did not significantly differ in terms of 

discriminability but that the sequential procedure led to 

more conservative responding.  

However, there were critical aspects of the analyses 

conducted by Palmer and Brewer (2012) that may have 

affected their results. First, the SDT-CD model was 

developed to account for simultaneous presentation of 

stimuli – it does not directly model the sequential procedure. 

For this reason, we develop and apply a formal model of the 

sequential procedure. Second, the best-fitting parameter 

values reported by Palmer and Brewer (2012) may not have 

been optimal as they appear not to have been estimated by 

an optimization procedure. For this reason, we fit the two 

models using a computational optimization routine. Third, 

given distinct models of simultaneous and sequential 

procedures, it is important to explore the dependence of 

each task on the criterion that is set by the witness. Previous 

research (Horry et al. 2012) has highlighted the 

vulnerability of the sequential task to criterion setting so we 

compare the simultaneous and sequential models in terms of 

their dependence on the decision criteria. 

New Models 

Both the simultaneous and sequential models assume an 

underlying unequal variance SDT model based on prior 

recognition memory research (Mickes, Wixted & Wais, 

2007). Figure 1 illustrates this model for a single person 

lineup.  Each member of a lineup is associated with a 

particular value of memory strength or familiarity. Foil 

familiarity on both TP and TA trials is modelled as a 

random draw from a normal distribution (dashed line in 

Figure 1) with mean zero and standard deviation one. Target 

familiarity is modeled as a random draw from a normal 

distribution (solid line in Figure 1), with a mean d’ and 

standard deviation s.  

A decision is made in relation to a decision criterion, c. 

This functions as a ‘choice threshold’ and reflects response 

bias. If familiarity is greater than c, the witness will identify 

the lineup member as the culprit. Otherwise, they reject the 

lineup. The greater the value of c, the more conservative is 

the decision and the less likely that an ID is made.  

The following functions define the hit rate (h) and false 

alarm rate (f), where Φ(.) is the normal cumulative 

distribution function: 

h(c) = 1 – Φ((c – d’)/s) 

f (c) = 1 – Φ (c) 

For an n=1 lineup, h is the correct ID rate and f is the false 

ID rate. 

 

Figure1: Basic representation of the unequal variance 

signal detection model 

 
 

Simultaneous Model (SDT-SIM). In a simultaneous 

lineup, there are n > 1 members where typically, n = 6. Let 

x1, …, xn be the familiarity values of each member of the 

lineup and let m the maximum of these values. The SDT-

SIM model implements the decision rule to choose member 

k if m > c and m = xk, otherwise to reject the lineup. For a 

TP lineup, if a choice is made and member k is the target, a 

correct ID has been made, otherwise, a foil ID has been 

made. Any selection on a TA lineup is a false alarm.  

 

Sequential Model (SDT-SEQ). In a sequential lineup, the 

witness makes a decision for each member, presented in a 

fixed order labelled by indices, from 1 to n. Let K be a 

subset of these indices, such that xi > c for all i  K. If K is 

empty then the lineup is rejected, otherwise the witness 
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chooses member k where k is the smallest (i.e. the first) 

element in K. For a TP lineup, if a choice is made and 

member k is the target then a correct ID has been made, 

otherwise an incorrect ID is made. Any selection on a TA 

lineup is a false alarm.  

  

Summary & Aims 

Despite recent efforts to apply SDT to eyewitness 

identification, there has been no attempt to model the 

sequential lineup task taking account of the differences in 

the decision rule and the importance of criterion setting for 

response probabilities. We offer, to our knowledge, the first 

formal measurement model of the sequential lineup. 

Further, previous research did not use optimization routines 

to find the best fitting parameters for the data, and thus the 

conclusions may be different. Finally, the application of 

formal models in the eyewitness identification domain 

highlights the most important factors likely to impact on the 

rates of false identifications of innocent people and failure 

to detect the presence of a guilty suspect. In summary, the 

aims of the present study are: 

1.  To implement a formal model of the sequential 

lineup procedure (SDT-SEQ). 

2.  To reanalyse the data reported by Palmer and Brewer 

(2012), fitting SDT-SIM to the simultaneous lineup 

results and SDT-SEQ to the sequential lineup 

results. 

3.  To compare SDT-SIM and SDT-SEQ in terms of 

their dependence on parameter values, particularly 

decision criterion.  

 

Method 
Studies Analysed 

A corpus of 22 studies (N = 3871) assembled by Palmer and 

Brewer (2012) that directly compared simultaneous and 

sequential presentation, making 44 data sets in all, was 

reanalysed. Following Steblay, et al.’s (2011) ‘full 

diagnostic design’ inclusion criteria the studies all a) 

manipulated both presentation format and target 

presence/absence, b) showed ID performance above chance 

levels and c) involved only adult participants.  

Statistical Analyses 

SDT-SIM and SDT-SEQ were fit using optimization of 

maximum likelihood (implemented using Matlab 

FMINCON function). This searches parameter space for 

values of d’ and c that best characterise observed decision 

performance. We report goodness-of-fit in terms of the G2 

statistic which is a function of the maximum likelihood and 

distributed as chi-squared. 

 

Statistical Considerations. Due to a lack of confidence 

rating data in many of the studies analysed, the standard 

deviation of the target distribution (s) was not estimated. 

Instead, the value of s was fixed to one. This is a plausible 

assumption in the eyewitness paradigm where each 

participant encodes a single study item (the culprit). The 

greater variance of the target distribution observed in 

recognition memory research may be attributed to encoding 

variability across a range of study items (Mickes et al., 

2007).  

Additionally, Palmer and Brewer (2012), following 

Duncan (2006), used a relative measure of criterion value 

with the zero point positioned between the target and lure 

distributions, i.e. C = c  d’/2. Both absolute (c) and relative 

(C) criteria are reported here. 

Results 

The new models fit the data well; SDT-SIM could not be 

rejected for 19 of 22 simultaneous data sets, as indicated by 

non-significant values of G2. The model was rejected for 

data from Carlson, Gronlund and Clark (2008; Experiment 

2), Lindsay and Wells (1985), and Rose, Bull and Vrij 

(2005). SDT-SEQ was also not rejected for 19 of 22 

sequential data sets but was rejected for data from Carlson 

et al. (2008; Experiment 2),  Lindsay and Wells (1985), and 

Pozzulo and Marciniak (2006). The SDT-CD model was 

also rejected for data from Carlson et al. (2008; Experiment 

2), Lindsay and Wells (1985) and Pozzulo and Marciniak 

(2006), in addition to Greathouse and Kovera (2009).  

 Taking the parameter values estimated for each dataset, 

average values of d’, c and C were calculated over the 

corpus of data, weighted according to sample size. Table 1 

displays the summary results obtained by Palmer and 

Brewer (2012) obtained from fitting the SDT-CD model 

(equivalent to the SDT-SIM model) to data from both 

simultaneous and sequential lineups, compared to the 

summary results obtained by fitting the SDT-SIM model to 

data from both simultaneous and sequential lineups, and 

fitting the SDT-SEQ model to data from sequential lineups. 

  

Table 1: Mean weighted parameter values from SDT-CD, 

SDT-SIM and SDT-SEQ 

 

SDT-CD d' c C 

Simultaneous 1.64 -.06 -.89 

Sequential  1.74 .44 -.43 

SDT-SIM    

Simultaneous 1.37 1.21 .53 

Sequential 1.33 1.53 .87 

SDT-SEQ    

Sequential 1.40 1.55 .85 

 

The first step in our analysis was to fit SDT-SIM to both 

simultaneous and sequential datasets, attempting to recover 

a similar pattern of results to those obtained by Palmer and 

Brewer (2012). Fitting SDT-SIM to all datasets produced a 

similar pattern of estimates to SDT-CD, with a significantly 

higher mean weighted C value for the sequential datasets, as 

indicated by a Welch two-sample weighted t-test, t(36.42) = 

-3.89, p<.05, and no significant difference in mean 
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weighted d’ values between simultaneous and sequential 

datasets, t(41.67) = .34, p = .73.  

The second step was to compare the parameter values 

recovered by fitting SDT-CD and SDT-SIM/SEQ. Figures 2 

and 3 plot the estimated parameter values recovered for each 

data set when fitting SDT-CD to both simultaneous and 

sequential datasets and SDT-SIM and SDT-SEQ to their 

respective datasets. 

 

Figure 2. C vs d’ estimates for all datasets SDT-CD 

 

 
Figure 3. C vs d’ estimates for all datasets SDT-SIM/SEQ 

 

 
 

The difference in y-axis range between Figure 2 and 

Figure 3 indicate that fitting SDT-SIM and SDT-SEQ to 

their respective datasets produced higher criterion estimates 

compared to SDT-CD. Welch two-sample weighted t-tests 

indicated that mean weighted C was significantly higher for 

SDT-SIM, t(36.74) = -16.41, p<.05, and SDT-SEQ, t(38.91) 

=  -9.87, p<.05, compared to mean weighted C from SDT-

CD for simultaneous and sequential datasets respectively. 

There was no difference in mean weighted d’ for SDT-SIM 

compared to SDT-CD as fit to simultaneous datasets, 

t(40.33) = 1.89, p = .06, however mean weighted d’ for 

SDT-SEQ was significantly lower than SDT-CD as fit to 

sequential datasets t(33.76) = 2.11, p<0.5.  

The final stage of the analysis was to compare C and d’ 

values generated by fitting SDT-SIM and SDT-SEQ to their 

respective data types, as displayed in Figure 3. Examining 

Figure 3 reveals a cluster of sequential datasets with higher 

C values than the cluster of simultaneous datasets. A Welch 

two-sample weighted t-test, t(35.03) = -3.53, p<.05, 

indicated that the mean weighted C value of the sequential 

datasets as estimated by SDT-SEQ was significantly higher 

than that of the simultaneous datasets as estimated by SDT-

SIM.  

There are no such patterns evident relative to the 

horizontal axis, with d’ values for most of the datasets 

clustered from approximately 1 to 2. No significant 

difference between the mean weighted d’ values for the 

simultaneous and sequential datasets was found, t(41.54) = -

.28, p = .81. 

Discussion 

The present study developed and fit two SDT-based formal 

measurement models of the simultaneous (SDT-SIM) and 

sequential (SDT-SEQ) eyewitness lineup task to a corpus of 

data collected by Palmer and Brewer (2012) using an 

optimization procedure, and compared the model’s 

dependence on the parameters discriminability (d’) and 

response bias (c) in order to better understand decision 

performance on the lineup task.  

Fitting SDT-SIM to both simultaneous and sequential 

data, following Palmer and Brewer (2012), produced similar 

parameter estimates to those generated by fitting SDT-CD, 

with results suggesting that the sequential procedure 

encourages more conservative responding but does not 

differ in discriminability. Fitting SDT-SIM and SDT-SEQ 

to their respective data types further reinforced this pattern 

of results, supporting the conclusions reached by Palmer 

and Brewer (2012). 

Compared to SDT-CD, SDT-SIM and SDT-SEQ 

produced higher criterion estimates for their respective data 

types while, while SDT-SEQ also produced lower 

discriminability estimates. The difference in parameter 

values between Palmer and Brewer (2012) and the results 

here is likely due to the task and fitting the models using an 

efficient optimization procedure rather than grid search.  

While no discriminability differences were reported here 

or in Palmer and Brewer (2012), previous studies using 

ROC analysis to calculate observed discriminability from 

rating data have shown a discriminability advantage for the 

simultaneous lineup (Dobolyi & Dodson, 2013; Mickes et 

al., 2012). Results here do not necessarily contradict these 

findings, as simulations can generate different shaped ROC 

curves from different ID procedures despite holding 

theoretical d’ constant between them (Rotello & Chen, 

2016). The relationship between theoretical d’ as estimated 

by SDT-SIM and SDT-SEQ and observed “Area Under the 

Curve” measures of d’, as used in ROC analysis, will likely 

be investigated in future work with new data that includes 
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confidence ratings. Regarding theoretical discriminability, 

these results challenge the diagnostic feature detection 

model (Wixted & Mickes, 2014) that proposes a 

discriminability advantage for the simultaneous lineup 

arising from witnesses’ ability to identify diagnostic 

features between lineup members.   

The more conservative decision criterion observed on the 

sequential lineup can be explained by differences between 

its “first-above-criterion” identification rule of SDT-SEQ 

and the “maximum familiarity” rule of SDT-SIM. This 

difference becomes evident as the decision criterion is made 

more lenient. In the limit, the most liberal decision criterion 

(i.e. always choose) in the sequential lineup results in 

selection of the first lineup member, leading to chance 

performance; a correct ID rate of 1/6 for TP lineups and a 

false alarm rate of 1/6 for TA lineups. In contrast, the 

“maximum familiarity” rule of SDT-SIM means that, for the 

most liberal decision criterion, the witness always chooses 

the most familiar lineup member. If d’ > 0, the lineup 

member with maximum familiarity in TP lineups is more 

likely than other members to be the target, leading to a 

correct ID rate greater than 1/6, while for TA lineups the 

false ID rate remains at 1/6. The effect of this difference is 

that in order for ID performance to be comparable between 

simultaneous and sequential lineups, the latter requires a 

more conservative decision criterion.  

Based on the present findings, any performance advantage 

attributed to the sequential procedure is likely due to a 

stricter decision criterion, not improved discriminability. 

This suggests that changes in lineup procedure do not alter 

underlying memory strength. Rather, the quality of memory 

information available to a witness is largely determined at 

encoding by factors such as distance, lighting and exposure 

time (Maclin, Maclin & Malpass, 2001).  The present 

findings also do not support of the proposal that 

performance differences are the result of procedural effects 

on retrieval or reconstructive memory processes taking 

place during a lineup decision as these are likely to affect 

discriminability (Ebbesen & Flowe, 2002). 

Wells (2014) acknowledged the mounting body of 

evidence showing that any perceived sequential lineup 

advantage is the result of a more conservative decision 

criterion but contends that it is more useful in applied 

settings no matter the source of any performance difference. 

As other researchers have noted (e.g. Clark, 2012), 

conservative responding reduces both false IDs and correct 

IDs. If policy makers consider conservative responding in 

the lineup task desirable, such an affect could be achieved 

by simpler means than retraining police to administer 

lineups sequentially, such as instructing witnesses to be very 

careful in their choosing or by only counting IDs made at 

high confidence (Wixted & Mickes, 2012). 

Limitations 

Decision Strategy. The present work uses an absolute 

decision strategy for both the simultaneous and sequential 

models, despite the simultaneous lineup’s long association 

with the so-called relative judgement strategy (Wells, 1984). 

Wells (1984) proposed that the increased innocent suspect 

ID rate of the simultaneous procedure may be due to the 

tendency for witnesses to compare across lineup members, 

selecting the one that most resembles their memory of the 

perpetrator relative to the other members, rather than 

comparing each lineup member directly to their memory of 

the perpetrator as in the absolute decision strategy (cf. 

Wixted & Mickes, 2014). The absolute vs. relative 

distinction has gained some traction in the literature and has 

received some empirical investigation, although the 

superiority of one strategy over the other has not been 

demonstrated (Fife, Perry & Gronlund, 2014). In line with 

our present approach, formal modelling of the relative 

decision strategy could clarify the utility of the 

absolute/relative distinction to understanding lineup 

performance.   

One option for implementing relative judgement is to use 

the difference in familiarity between the lineup member 

with maximum familiarity (m) and the next-most-familiar 

lineup member, which seems to accord with Wells’ (1984) 

description. The rule would be; if this difference score 

exceeds a criterion, then choose the lineup member with 

maximum familiarity, otherwise reject the lineup. We are 

currently developing a formal model based on this rule. 

Future Directions 

Criterion Shift in Sequential Lineup. The present work 

demonstrates that the sequential lineup decisions are 

critically affected by the placement of the decision criterion. 

A further question is whether the decision criterion may 

change over the course of the lineup. In an attempt to 

forestall such changes, Horry, Palmer and Brewer (2012) 

investigated the efficacy of “backloading”, telling the 

witness that they will be viewing more photos than there are 

lineup members. The results indicated that the more 

photographs the witness was told to expect, the more 

conservative were their decision criteria. On non-

backloaded lineups, foil choices increased in the later lineup 

positions. Because Horry, Palmer and Brewer (2012) fit 

SDT-CD to the data to generate parameter estimates, future 

research could explore whether these conclusions remain 

valid after fitting the SDT-SEQ model to these data.  

Conclusion 

This study presents two formal measurement models of the 

simultaneous and sequential lineup tasks, which were fit to a 

large corpus of data using computational optimization. The 

development of a sequential model is particularly 

noteworthy, it being, to our knowledge, the first of its kind 

in the eyewitness literature. Results show no difference in 

discriminability between the two procedures and a more 

conservative decision criterion in the sequential procedure. 

The models offer a means to investigate the effects of 

system variables on eyewitness performance in terms of 

theoretically relevant underlying parameters, demonstrating 

the value of formal modelling in applied research.   
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Abstract

The semantic fluency task has been used to understand the ef-
fects of semantic relationships on human memory search. A
variety of computational models have been proposed that ex-
plain human behavioral data, yet it remains unclear how mil-
lions of spiking neurons work in unison to realize the cogni-
tive processes involved in memory search. In this paper, we
present a biologically constrained neural network model that
performs the task in a fashion similar to humans. The model
reproduces experimentally observed response timing effects,
as well as similarity trends within and across semantic cate-
gories derived from responses. Three different sources of the
association data have been tested by embedding associations
in neural connections, with free association norms providing
the best match.
Keywords: semantic memory; associations; semantic search;
spiking neural network; neural engineering framework

Introduction
The semantic memory system plays an important role in a
variety of cognitive functions. It is essential for language
comprehension and understanding, and has been referred to
as a mental thesaurus, storing knowledge about words, their
meaning and relationships among them (Tulving, 1983).

The advent of neuroimaging techniques and observations
from brain lesion studies have allowed more specific localiza-
tion of the brain regions and networks responsible for seman-
tic representation and processing (Huth, de Heer, Griffiths,
Theunissen, & Gallant, 2016; Quiroga, 2012). In particu-
lar, the medial temporal lobe and portions of anterior lobes
have been identified as essential to the function of seman-
tic memory. Purely computational semantic network models
have successfully explained behavioral data (Collins & Quil-
lian, 1969; Collins & Loftus, 1975) and have been purported
to reveal principles guiding language formation and organi-
zation (Steyvers & Tenenbaum, 2005). Yet, they have been
severely limited in their ability to account for the neural re-
alization of such processes. Our understanding of how net-
works of millions of neurons perform the computations that
underly semantic processing is still extremely limited.

We propose a network of simulated spiking neurons that is
able to perform the semantic fluency task in a manner simi-
lar to humans. While providing a good match with behavioral
data, the model also proposes specific neural mechanisms that
may be involved in semantic processes. The components of
the model are discussed in terms of functionally and neuro-
logically plausible counterparts found in the human brain.

Search in the Semantic Space
The semantic fluency task has been used to understand how
humans search memory when asked to retrieve items se-

mantically related to a given cue (Thurstone, 1938; Bous-
field & Sedgewick, 1944). In a typical trial, a person is in-
structed to generate members of a category within a given
time limit. One common version of the task requires an in-
dividual to list all animals they can think of within a fixed
timespan of one or more minutes. Response analysis shows
they tend to be grouped into clusters corresponding to sub-
categories (Troyer, Moscovitch, & Winocur, 1997), such as
pets or farm animals. For example, responses might start with
the animals an individual is most familiar with, such as cat,
dog, rabbit and then continue with a list of farm animals such
as cow, chicken and turkey.

To explain the clustering trend observed in the responses,
Hills, Jones, and Todd (2012) suggested that individuals
generate responses according to the optimal foraging pol-
icy (Charnov, 1976). Animals use such a strategy when
searching for food in natural environments: after resources
in one area have been depleted, animals continue their search
for food in a new patch. In the context of the semantic fluency
task, an individual listing animals in a specific sub-category
would stop listing animals from that category after being un-
able to generate new items at a certain rate. Search behav-
ior suggestive of optimal foraging has been reproduced with
several different representations and algorithms, including a
random walk on a semantic network constructed from free
association norms (Abbott, Austerweil, & Griffiths, 2015).
Jones, Hills, and Todd (2015) attribute the simplicity of this
particular algorithm to the association norms being a direct
result of an experimental design that is very similar to the se-
mantic fluency task. They argue that the fundamental mem-
ory retrieval processes and representations are obscured by
the data underlying the model and the behaviors that are be-
ing explained. However, association data from sources other
than association norms, like data learned from natural lan-
guage, have successfully been used to reproduce human re-
sponse patterns with random walks (Nematzadeh, Miscevic,
& Stevenson, 2016).

Here, we take a first step towards explaining how the mem-
ory retrieval processes and representations described above
can be realized by a biologically constrained neural network.
The proposed model performs the search based on associative
weights encoded within connections between neurons, re-
sembling aspects of a random walk while still conforming to
constraints of neural computation. The noise resulting from
spiking neurons and the diversity in neuron parameter values
lead to the response variability. We show that the search pat-
terns observed in the model responses are consistent with the
optimal foraging theory and match human behavioral data.
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Figure 1: A: Architecture of the neural network model performing the semantic fluency task. Each box represents a population
of spiking neurons. B: Neuronal spiking activity in the model recorded from the population cue. Some neurons are actively
spiking when representing words dog, cat and donkey (highlighted area 1), while others only spike when representing words
dog and cat (highlighted area 2). The similarity between these spikes and the ideal spike pattern for each word is shown above.

Biologically Constrained Representation
Brain imaging studies provide evidence in support of seman-
tic representations distributed across networks of neurons in
various brain regions (Huth et al., 2016; Rissman & Wagner,
2012). While many neurons jointly contribute to representa-
tions, single neurons can still exhibit preference for certain
input stimuli. For example, neurons in the medial temporal
lobe show selective responses for higher-level semantic con-
cepts such as places or people (Quiroga, 2012).

Consistent with the notion of a distributed representation,
we employ vector-based representations that can be imple-
mented in a network of spiking neurons by means of the
Neural Engineering Framework (NEF; Eliasmith & Ander-
son, 2003). In the NEF, connection weights between neurons
can be analytically computed such that the neural network
approximates a desired function.

Given an n-dimensional vector representing a preferred
stimulus eee and some time-varying input xxx, the activity of a
single neuron ai can be expressed as

ai = Gi

[
αieee>i xxx+ Jbias

i

]
(1)

where G represents a spiking neuron model, in this case
the Leaky Integrate-and-Fire (LIF) model. The parameter α

scales the input and converts the unit of the variable (xxx) to
units of current, and Jbias represents background currents.

As a result, if a neuron is driven by an input xxx that is similar
to its preferred direction eee, the dot product eee>xxx is larger (eee>

is a transposed vector eee). For a LIF neuron, this translates to a
higher input current that drives the neuron to produce a more
rapid series of spikes that is transmitted to another neuron.
In biological systems, spikes are transmitted across synaptic
connections and transformed to post-synaptic current at the
site of a receiving neuron. It is important to note that the
inputs to the neuron do not have to be characterized as scalar
values, as Equation 1 holds for vector inputs.

We can recover the value represented by populations of

neurons by filtering spike trains with a filter h(t) and scaling
with decoding weights dddi:

x̂xx = ∑
i

ai ∗ [dddih] . (2)

The linear filter h(t) = τ−1
syn exp(−t/τsyn) models the post-

synaptic current. The symbol ∗ denotes convolution, an op-
eration that places such filter at every position where a spike
occurs, and sums the result. The decoding weights dddi can be
analytically computed by a least-squares minimization of the
error term E =‖xxx− x̂xx‖.

To perform a computation, these decoding weights are cou-
pled with the encoding weights eee of the receiving neurons.
This gives observable connection weights between two neural
populations. Specifically, the connections between neurons
in the pre-synaptic population ai and the post-synaptic pop-
ulation b j are computed as w ji = α jeee>j dddi. The group of re-
ceiving neurons can also represent a transformed value f (xxx),
where f can be a non-linear function. The same optimiza-
tion method can be used in this case to compute alternative
decoding weights ddd f

i to estimate the function.

Representing Words and Associations
In our model, the vectors xxx in Equation 1 are 256-dimensional
unit vectors that represent animal words. The vectors are gen-
erated randomly such that similarity between any two vec-
tors is generally less than 0.1. This ensures almost orthogo-
nal vectors, with some overlap in representation, meaning the
same neurons will be involved in the representation of differ-
ent words. An example of this representational overlap can
be seen in the spike raster plot in Figure 1B, where some neu-
rons fire for all words and some only for a subset. The NEF
methods allow us to decode the spiking activity in terms of
the words being represented by the neurons with Equation 2
as shown in the upper part of Figure 1B.

Associative relationships between words are represented as
linear transformations implemented in the connections be-
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Table 1: Utility calculations for different goals and the corresponding actions.

Goal Utility calculation Action

1. Start goal · start Set cue to animal, set goal to think
2. Think goal · think+ response magnitude−1 Copy response to cue, add response to responses, set goal to think
3. Default 0.4 Set cue to animal, set goal to think

tween two groups of neurons. Word vectors are collected
row-wise into a single matrix VVV , and associations between
pairs of words are encoded into a matrix AAA such that Ai j is the
association strength from word i to word j. We can then ex-
press a new matrix ÃAA = VVV>AAA>VVV to implement a transforma-
tion that multiplies the vector represented by the first group
of neurons by the matrix ÃAA and transmits the result to the sec-
ond group. This operation results in a weighted linear com-
bination of vectors that represents words associated with the
word represented in the first group of neurons. This method
of representing associations is embedded in a large recurrent
network to perform the semantic fluency task.

Association Matrices To construct three different associ-
ation matrices AAA, we use three different sources of associa-
tive data: Free Association Norms (FAN; Nelson, McEvoy,
& Schreiber, 2004), BEAGLE (Jones & Mewhort, 2007) and
Google Ngrams (Michel et al., 2011).

The FAN data set has been derived empirically in a free
association experiment, where individuals were asked to gen-
erate the first word which comes to their mind for given a cue.
The data was normed over all participants to yield asymmet-
ric association strengths for over 5,000 words. The Ngram
data set contains co-occurrences of sequences of n words ex-
tracted from the Google Books Ngram Viewer dataset (Ver-
sion 2 from July 2012, Michel et al., 2011). This dataset pro-
vides occurrence frequencies of n-grams across over 5 million
books published up to 2008. We use occurrences of bi-grams
to construct an asymmetric association matrix. The BEAGLE
dataset has been trained on a 400M-word Wikipedia corpus,
yielding unique vector representations for each word. In this
data set, similarity between pairs of vectors is computed as
cosine similarity, providing a symmetric measure of associa-
tion strength. We use pre-computed similarities between pairs
of animal word-vectors as in Hills et al. (2012).

We take human responses as a reference for the set of an-
imal words and consider only words that are present in all
datasets, amounting to 157 animals. The FAN data set con-
tains the smallest vocabulary and is the most restrictive set.

Proposed Neural Network Model
Using the NEF implemented in the Nengo simulation envi-
ronment (Bekolay et al., 2014), we constructed a model con-
sisting of approximately 62,000 LIF neurons organized in
functional subgroups performing the semantic fluency task.1

1The model and data analysis source code are available at
https://github.com/ctn-archive/kajic-cogsci2017.

The architecture in Figure 1A shows how networks of neu-
rons are organized and connected to perform the task. The
model can be divided into two components: the semantic sys-
tem and the action selection system. In terms of their biologi-
cal correlates, the semantic system can be mapped to areas of
the medial temporal cortex, and the action selection system to
the basal ganglia and the thalamus. The action selection sys-
tem maintains two possible phases: initializing the task and
performing the task.

The initialization phase is active only at the beginning of
a simulation, where external input is used to drive the goal2

population of neurons to represent the vector start. The sec-
ond phase consists of performing the task itself, and occurs
once a cue is provided.

After the task has been initialized, the action selection sys-
tem (consisting of the basal ganglia BG and thalamus THAL
populations) switches to the process of generating word re-
sponses within the semantic system. The recurrent action se-
lection system maintains word generation by simultaneously
evaluating utilities of actions and selecting the action with
the highest utility value. Table 1 shows the mapping between
utility calculations and actions utilized by the action selection
system. Since the external input initially sets the goal to start,
the action selection system will select the first action due to
its high utility value. This action will feed the vector animal
as input to the population cue, and set the representation in
the goal population to think. This action can be interpreted
as the instruction “start listing animals”.

Next, the semantic system begins to generate associations
of the word animal within the association network. The con-
nection between cue and the association network implements
the transformation ÃAA, as described in the previous section.

The association network then represents a vector which is
a linear combination of word-vectors associated with animal.
For example, there might be a representation corresponding
to the vector: 0.5*cat + 0.4*dog + 0.1*fish. Coefficients
represent association strengths between each individual word
and the word animal, as derived from the association matrix
AAA. A winner-take-all (WTA) mechanism within the network
selects the vector with the largest coefficient, and projects it to
the response population. In this example, the response popu-

2We use italics to refer to the name of a population of neurons
or the vector that is represented by that population, which is to be
inferred from the context. The bold font is used to refer to labels
assigned to vectors representing a word. For example, cue · animal
refers to the dot product between the vector represented by the pop-
ulation of neurons labeled “cue” and the vector corresponding to the
word “animal”.
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lation would now represent the vector cat.
When a response has been generated, the action selection

system selects the second action (see Table 1) due to its high
utility value. This action projects the word represented in re-
sponse (e.g., cat) to cue, simultaneously adding it to the rep-
resentations stored in response memory. The goal continues
to be think.

This process within the semantic system continues, with
the action selection system selecting the second action most
of the time. To prevent the same responses from re-appearing
immediately, response memory is implemented as a neural
integrator population. It projects inhibitory connections to
association network in order to suppress representations of
words previously generated as responses.

The last action with a fixed utility value of 0.4 is selected
if utilities of all previous actions have evaluated to a lower
value. This occurs when the system is unable to come up with
a new response (e.g., the WTA mechanism takes too long to
decide between two words). While rare, when this situation
occurs, the action selection system sets cue to represent the
input animal and the goal is set to think.

Network Parameters
Most parameters in the model have been left at their default
values provided by the simulation software Nengo (Bekolay
et al., 2014). Table 2 lists the major parameters in the model.
Some parameter values (e.g., maximal firing rates) are se-
lected randomly. Each time the model is run, a new set of
such parameters are chosen. Such diversity in parameter set-
tings is a first approximation of differences in cognitive pro-
cessing that may occur across cortical regions of different in-
dividuals.

Results
We ran 141 simulations of the model for each of the three
association matrices (Beagle, Ngram, and FAN) and com-
pared them to human data. The number of simulations corre-
sponds to the number of participants in the study by Hills et
al. (2012). The simulations were run until the average num-
ber of responses produced matched the average number of
responses given by human subjects within three minutes.

For each simulation run, we recorded word responses as
decoded vector representations in the response population,
and inter-item response times (IRT) as times between the on-
set of the current response and the previous response. Here
we consider only relative timings (i.e., the time differences
between responses), as mapping to absolute timing (i.e., ex-
act duration of the experiment) would require consideration
of the time it takes for other processes to occur, such as vi-
sual perception and motor responses, which are not part of
this model.

The model responses were evaluated using the same scripts
developed for the analysis of the human data, provided in
Hills et al. (2012). Each response is assigned an animal cate-
gory, and the clusters are identified as sequences of responses

within the same category. An animal that could be assigned
to two clusters is assigned to both.3

The first analysis compares the pairwise similarity of a
word and the words preceding it within a cluster (Figure 2A).
The similarity is computed as a dot product between two
BEAGLE vectors corresponding to the two words in a word
pair (Hills et al., 2012). The experimental results in Figure 2A
show that the word most similar to the recent word in the
patch is the one preceding it, supporting the theory of locality
in a memory structure. For the model, this trend is observed
with the Ngram and the FAN association matrices, and less
so with the BEAGLE association matrix, for which the simi-
larity appears to have a flat trend independent of the position
in the cluster.

The second analysis compares the pairwise similarity of
subsequent items relative to the position of an item in the
cluster (Figure 2B). Human data shows that the lowest pair-
wise similarity occurs at the cluster transition points, indi-
cated by ‘1’ on the x-axis in the figure. That point shows
the similarities between the first word in a cluster and the last
word in the preceding cluster. For humans, the mean simi-
larity µ at the cluster switch is µ = 0.92 with standard devi-
ation σµ = 0.01. The model using FAN data shows compa-
rable results (µ = 0.93,σµ = 0.01). For the Ngram and the
BEAGLE association matrices this effect is weakly observ-
able (µ = 1.00,σµ = 0.01 and µ = 1.01,σµ = 0.01, respec-
tively), as the word similarity at the transition point remains
above the subject’s average.

The third analysis concerns the position of a word item
within a cluster and the speed of generating a word. The
ratio between the average IRT for an item and the partici-
pant’s mean IRT over the entire task is shown in Figure 2C.
Human participants take the most time to produce the first
word in a new cluster (reported t(140) = 13.14, p < .001)
and least time to produce the second word in a new clus-
ter (reported t(140) = 11.92, p < .001). This observation is
the hallmark prediction of the optimal foraging strategy, sug-
gesting that cluster switches occur when the current IRT in-
creases over the mean IRT value. Figure 2C also shows that
the model using the FAN association matrix exhibits the same
effects as observed with human responses. It takes signifi-
cantly more time to generate the first words in a new cluster
(t(140) = 4.78, p < .001), compared to the second words in
the cluster (t(140) = 4.78, p < .001).

Discussion
We have proposed a spiking neural network model that per-
forms the semantic fluency task and shows a good match with
human behavioral data. In particular, we embed association
data in connections between neurons within a large recurrent
network and investigate which source of association informa-
tion provides the closest match to human performance. Our
focus is on identifying plausible, causal neural mechanisms

3See Troyer et al. (1997) for more detailed description of the
categorization procedure.
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Table 2: List of model parameters

Name Value (unit) Explanation

d 256 Dimensionality of word vectors
assoc th 0.3 (or 0.25) Default WTA input threshold (Ngram, BEAGLE threshold)

ccs 3 Cue to association network connection strength
cfs 0.2 Cue feedback connection strength
cinh −5 Response memory to association network inhibitory connection strength
τsyn 0.1 ms Synaptic time constant between association network and response
τsyn 0.005 ms Synaptic time constant (default)

max rate 200–400 Hz Range for maximal neural firing rates (default)
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Figure 2: Comparison between model responses for FAN, Ngram and BEAGLE association matrices (blue) and human re-
sponses (yellow, reproduced from Hills et al., 2012). A: Pairwise similarity between a word and the words preceding it within
the same categorical cluster. B: Pairwise similarity between subsequent words. For example, the bars above ‘1’ indicate the
relative pairwise similarities between the first item in a cluster, and the last item in the previous cluster. C: Inter-item response
times (IRT) between subsequent words. Standard errors of the mean are shown with error bars in all plots.

for performing such tasks. To that end, we have identified
computational requirements in terms of processes and rele-
vant neural parameters, and here we discuss how they affect
the model’s behavior.

The model produces responses in a way that is consistent
with predictions made by optimal foraging theory proposed
to be used by humans (Hills et al., 2012). It is more likely
to switch animal categories when the average similarity of
subsequent responses drops below, or gets close to, the over-
all mean similarity. This effect was observed with all three
association matrices, but is most pronounced with the FAN

matrix.
However, the analysis of timing effects allowed us to

clearly distinguish between the three matrices. The model us-
ing FAN exhibited the same timing effects as observed with
human responses. This timing effect was not observed with
other association matrices (see Figure 2C). The similarity be-
tween cognitive processes involved in free association task
and in the semantic fluency task (Jones et al., 2015) is a likely
candidate to explain the effectiveness of free norms in match-
ing the experimental data. However, this result could also
be seen as support for the plausibility of the proposed neu-
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ral mechanisms, as they are able to generate behaviors in
accordance with these underlying associations. We expect
that a better understanding of cognitive processes involved
in free associations could aid understanding of the processes
underlying semantic fluency. Our model may prove useful
in exploring a variety of possible ways that such associations
are neurally realized, as the direct embedding in connection
weights as done here is only one possibility.

When building biologically constrained neural models,
timing is a highly constrained property of a model. Here, the
timing of responses is sensitive to both neural time constants
and our characterization of concept representation. This is
in contrast to previous models that directly use semantic net-
works, where timing is a separate and independent parameter.
For instance, we identified that a longer synaptic time con-
stant was needed between the association network and the re-
sponse populations to stabilize the representation. This leads
to the prediction that this network will be rich with NMDA re-
ceptors in the biological system. These receptors have signif-
icantly longer time constants than the more common AMPA
receptors. Also, NMDA receptors can be found in the hip-
pocampus, a brain structure located in the medial temporal
lobe, whose function has been implicated in semantic and
episodic memory.

Our characterization of neural concept representation also
has an effect on the timing responses. Specifically, we have
observed that the dimensionality of employed vector repre-
sentations needed to be sufficiently large to achieve experi-
mentally observed timing effects. While we find that d = 256
suffices for this purpose, a systematic search of dimension-
ality effects on the performance is needed to see how it af-
fects the behavior. We have tested this model with lower val-
ues (e.g., d = 64) and it produced results in support of local
search strategy, yet it failed to provide a good match with the
timing data. In other work, we have suggested that d ≈ 500
is necessary for representing human-scale conceptual struc-
tures (Eliasmith, 2013), which is consistent with this newer
observation.
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Abstract 

Serial stay-or-search problems are ubiquitous across many 
domains, including employment, internet search, mate search, 
and animal foraging. For instance, in patch foraging 
problems, animals must decide whether to stick with a 
depleting reward vs search for a new source. The optimal 
strategy in patch foraging problems, described by the 
Marginal Value Theorem (MVT; Charnov, 1976), is to leave 
the depleting patch when the local reward rate within a patch 
matches the overall long-run reward rate. Many species of 
animals, ranging from birds to rodents, monkeys, and 
humans, adhere to this policy in important respects, but tend 
to overharvest, or stick with the depleting resource too long. 
Here we attempt to determine the cognitive biases that 
underlie overharvesting in one of these species (the rat). We 
characterized rat behavior in response to two basic 
manipulations in patch foraging tasks: to travel time between 
patches and depletion rate, and two novel manipulations to 
the foraging environment: the size of reward and length of 
delays, and placement of delays (pre- vs. post-reward). In 
response to the basic manipulations, rats qualitatively 
followed predictions of MVT, but stayed in patches for longer 
than is predicted. In the latter two manipulations, rats deviated 
from predictions of MVT, exhibiting changes in behavior not 
predicted by MVT. We formally tested whether four separate 
cognitive biases – subjective costs, decreasing marginal utility 
for reward discounting of future reward, and ignoring post-
reward delays – could explain overharvesting in the former 
two manipulations and deviations from MVT in the latter two. 
All of the biases tested explained overharvesting behavior in 
the former contexts, but only one bias – in which rats ignore 
post-reward delays – also explained deviations from MVT 
due to larger rewards with longer delays and due to 
introduction of a pre-reward delay. Our results show that 
multiple biases can explain certain aspects of overharvesting 
behavior, and, while foraging behavior may be the result of 
the use of multiple biases, inaccurate estimation of post-
reward delays likely contributes to overharvesting. 

Keywords: foraging; decision-making, subjective utility; 
delay discounting 

Introduction 
Patch foraging refers to situations in which one must decide 
when to leave a depleting resource patch to search for a 

new, likely richer one, that comes at the cost of time and/or 
effort. The optimal solution in patch foraging is given by the 
Marginal Value Theorem (MVT; Charnov, 1976): leave 
when the local reward rate within a patch depletes below the 
global reward rate across all patches – the average reward 
rate for the environment. MVT makes two main predictions: 
i) in patches that contain more reward than average, stay 
longer to exploit such reward, and ii) when the cost of 
searching for a new patch is greater (e.g. the time or effort 
required to travel to a new patch is greater), stay longer in 
all patches. Many animals, ranging from invertebrates to 
birds to mammals, qualitatively follow predictions of MVT 
(Stephens & Krebs, 1986). However, in most tests, animals, 
including rats, monkeys, and humans, tend to stay in patches 
longer than is predicted by MVT (Constantino & Daw, 
2015; Hayden, Pearson, & Platt, 2011; Nonacs, 1991; 
Stephens & Krebs, 1986). 

Hypotheses to explain overharvesting include common 
biases in intertemporal choice, such as i) subjective costs, 
such as an aversion to leaving the patch (Carter & Redish, 
2016; Wikenheiser, Stephens, & Redish, 2013); ii) 
decreasing marginal utility in which large rewards available 
in a new patch are not viewed as proportionally larger than 
the smaller, depleted rewards available in the current patch 
(Constantino & Daw, 2015);  iii) discounting future 
rewards, in which the value of large rewards available in a 
new patch are discounted by virtue of being available later, 
above and beyond the time it takes to travel to the new patch 
(Blanchard, Pearson, & Hayden, 2013; Carter & Redish, 
2016; Constantino & Daw, 2015); and iv) ignoring post-
reward delays, which causes overestimation of reward rate 
within the patch due to inaccurate estimation of the time 
taken to obtain reward (Bateson & Kacelnik, 1996; 
Blanchard et al., 2013; Carter & Redish, 2016; Gallistel & 
Gibbon, 2000; Kacelnik, 1997). Although overharvesting is 
widely observed, there have been few direct investigations 
into the underlying mechanisms. In this paper, we directly 
test these hypotheses to rat foraging behavior in an operant 
chamber based patch foraging task. 

First, we characterized rat foraging behavior in response 
to four manipulations to the foraging environment: to travel 
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time between patches, rate of reward depletion within 
patches, scale of reward size and length of delay, and 
placement of delays (pre- vs. post-reward). Next, we fit 
formal models representing the four hypotheses to rats’ 
behavior to examine how well each hypothesis explained 
foraging behavior across all manipulations. 

 

Methods 

Animals 
Adult Long-Evans rats were used (Charles River, Kingston, 
NY; n = 8). Rats were housed on a reverse 12 h/12 h 
light/dark cycle (lights off at 7 A.M.). All behavioral testing 
was conducted during the dark period. Throughout 
behavioral testing, rats were food restricted to maintain a 
weight of 85-90% ad-lib feeding weight, and were given ad-
lib access to water. All procedures were approved by the 
Princeton University Institutional Animal Care and Use 
Committee. 

Operant Foraging Task 
This task simulated foraging in a patchy environment, 

resembling the task used with monkeys by Hayden et al 
(2011). On a series of trials performed in a standard operant 
chamber (Med Associates, St. Albans, VT), rats had to 
repeatedly decide to stay in a patch to continue harvesting a 
depleting reward source or leave the patch to travel to a 
new, full patch, incurring a cost of time to travel to a new 
patch. Rats’ decided to harvest from a patch by pressing an 
activated lever on one side of the front of the chamber, or to 
travel to a new, full patch by nosepoking at the back of the 
chamber and then returning to a newly activated lever on the 
other side of the front of the chamber. To cue the beginning 
of a trial, lights above the activated lever and the nosepoke 
illuminated, indicating that the rat could decide to harvest 
reward from the activated patch (lever press) or to travel to a 
new patch (nosepoke). The time from start of trial to the 
decision was recorded as decision time (DT). If the rat 
pressed the lever to harvest from the activated patch, a cue 
light turned on in the reward magazine next to the lever 
following a short handling time delay (HT), and liquid 
sucrose was delivered when the rat’s head entered the 
magazine. An intertrial interval (ITI) began as soon as the 
rat entered the reward magazine. To control the reward rate 
within the patch, the length of the ITI was adjusted based on 
the DT of the current trial, such that the length of all lever 
press trials was equivalent. If the rat nosepoked to leave the 
patch, the lever retracted for a delay period, simulating the 
travel time, after which, the lever on the opposite side of the 
chamber extended, representing a new patch from which the 
rat could harvest. 

Each manipulation (travel time, depletion rate, scale, and 
delay placement) was conducted in separate experiments, 
with two conditions in each experiment. Rats were trained 
on each condition for 5 days, and tested for a subsequent 5 
days. Conditions within each experiment were 

counterbalanced. Details regarding reward size and timing 
for each experiment can be found in Figure 1. T-tests or 
ANOVA with repeated measures were used to compare the 
number of harvests per patch, a proxy for time in the patch, 
across conditions. 

Models 
All models were constructed as Markov Decision Processes. 
States were represented as trials within patches. A decision 
to stay in the patch (i.e. harvest from the patch) provided 
reward for staying in state s, rstay,s, and caused transition to 
state s + 1. A decision to leave the patch resulted in travel 
time delay, t, followed by the first reward in the next patch, 
rleave, and associated ITI following the reward, ITIleave. We 
fit three models based on MVT: a model incorporating a 
constant subjective cost (subjective cost), a model that 
accounted for diminishing marginal returns for larger 
rewards (subjective utility), and a model ignoring post-
reward delays, as well as a delay discounting model. 

For each of the MVT models, we calculated the value of 
staying in the patch in state s, Vstay,s, as the reward rate 
within the patch, 

 
!"#$%," = 	)!"#$%," + +! + ,!,"#$%,"  ,	

!"#$%," =
("#$%,"
)"#$%,"

 
 , 

and the value of leaving the patch in state s, Vleave,s, as the 
cumulative reward rate across patches, 
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   , 
where Rs and Ts was the average reward and average time 
for state s,  pstay,s was the probability of choosing to stay in 
state s, and ps was the probability of being in state s. 
Optimal behavior was to leave the patch when Vleave >= Vstay 
(i.e. when the long-run average reward rate is greater than 
the local reward rate in the patch). To model rats’ behavior, 
patch leaving distributions were assumed to be normally 
distributed with respect to Vleave - Vstay, with mean µ = 0 (i.e. 
Vleave = Vstay) and variance s2, a free parameter.  

To account for subjective costs, a constant, c, representing 
an aversion to leaving the patch, was added to the model, 
such that the patch leaving distribution was normally 
distributed with respect to Vleave,s – Vstay,s – c. 

For the subjective utility model, the utility for taking 
action a in state s increased monotonically, but sublinear to 
the size of the reward, according to a power utility function, 
dependent on a free parameter, !  , 
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For the ignoring post-reward delays model, delays that 
occur after receiving reward, but before a decision was 
made on the next trial (e.g. ITI after reward and DT prior to 
making next decision), Tpost, were treated differently than 
time delays that occured between the decision and receiving 
a reward (e.g. handling time delay between lever press and 
reward, or travel time delay between nosepoke and first 
reward in the next patch). We tested multiple functions for 
how post-reward delays might have been treated, all in 
which the increase in perceived time increased 
monotonically, but sublinear to actual time, including a 
linear function with slope < 1, a power function, and an 
exponential function. The exponential function provided the 
best fit across all experiments, and was used for further 
testing: 
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Whereas MVT optimizes all future reward, the delay 
discounting model, a hyperbolic discounting model, 
optimizes discounted future reward (i.e. it similarly 
optimizes future reward, but with less weight to rewards that 
occur further in the future): 
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where d(t,k) was the hyperbolic discount function of time t, 
with a free parameter, k. p(s’|a, s) was the conditional 
probability of being in future state s’ given action a was 
taken in state s, pa,s’ was the probability of taking action a in 
future state s’, and Va,s’ was the value of for taking action a 
in future state s’. 

As the discount parameter, k, approached zero (no 
discounting of future reward), this model converged to 
MVT; that is, it sought to maximize all future reward. As k 
increases, future rewards are discounted, such that i) the 
value of large rewards in a new patch are discounted above 
and beyond the travel time between patches, and ii) the 
model sought to maximize reward into the future, but over 
shorter periods of time. 

For all models, one set of parameters was fit to each 
animal per experiment, to maximize the likelihood of the 
data from both conditions in that experiment. To test 
whether the model could explain rat overharvesting 
behavior in each experiment, we generated predicted patch 
leaving distributions from the best fit parameters for each 

model, then perform a repeated measures ANOVA, to test 
whether there is an interaction between model predictions 
and observed behavior (i.e. whether the effect of each 
experimental manipulation was different between model 
predictions and observed behavior). 

Results 

Foraging Behavior 
Rats were first tested on a manipulation of travel time. With 
longer travel time, the long-run average reward rate is 
lower, thus MVT predicts rats should stay in patches longer. 
Within behavioral sessions, rats encountered three different 
patch types, which started with varying amount of reward 
(60, 90, or 120 µL) and depleted by the same rate (8 µL). 
Between sessions, rats were tested on either a 10 s or 30 s 
travel time delay following their decision to leave the patch. 
As predicted by MVT, rats stayed longer in patch types that 
started with larger reward volume, indicated by more 
harvests per patch, F(2, 14) = 3145, p < .001, and rats stayed 
longer in all patches with longer travel time, F(1, 7) = 71.4, 
p < .001. However, rats overharvested, staying longer in all 
patches than is predicted by MVT (Figure 1A). 

Next, rats were tested on a manipulation of depletion rate. 
Quicker reward depletion causes the local reward rate to 
deplete to the long-run average reward rate quicker, such 
that MVT predicts earlier patch leaving. Within sessions, 
rats encountered a single patch type (starting volume of 90 
µL), which depleted at a rate of either 8 or 16 µL/trial, 
tested between sessions. As predicted by MVT, rats left 
patches earlier when they depleted more quickly, t(7) = 
15.835, p < .001. But, again, rats stayed in patches longer 
than is predicted by MVT (Figure 1B). 

Rats were then tested on a manipulation of the scale of 
rewards and time. In one condition, the size of rewards and 
length of delays was twice that of the other: patches started 
with 90 or 180 µL of reward, depleted at a rate of 8 or 16 
µL/trial, and travel time between patches was 10 or 20 s. 
Both reward rate within the patch and reward rate across 
patches were equivalent in the two conditions; thus, MVT 
predicts no change in behavior. Contrary to predictions of 
MVT, rats stayed in patches significantly longer when given 
larger rewards with longer delays, t(7) = 10.039, p < .001. 
And, again, rats overharvested in both conditions (Figure 
1C).  

Lastly, rats were tested on a manipulation of the 
placement of delays. In one condition, rats experienced no 
pre-reward delay, and a long post-reward delay (ITI ~ 10 s, 
adjusted based on DT). In the other condition, rats 
experienced a 3 s pre-reward delay, and shorter post-reward 
delay (ITI ~ 7 s). The duration of each trial did not change, 
so both the local reward rate within the patch and long-run 
average reward rate across patches were equivalent between 
the conditions, and MVT predicts no change in behavior. 
Rats overharvested in both conditions, but they left patches 
earlier when part of the delay occurred prior to the reward, 
t(7) = 7.453, p < .001 (Figure 1D). 
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Figure 1: Diagram of each foraging experiment and 

behavioral data. In diagrams, black boxes represent the start 
of a trial, at which a decision to lever press or nosepoke 
must be made. DT = decision time, HT = handling time, ITI 
= intertrial interval. In graphs, black points and lines 
represent rat data, and red points and lines the optimal 
behavior predicted by MVT. A) Points represent the mean 
number of lever presses in each patch from each animal, 
error bars representing standard error are obstructed by the 
points. B-D) Each point is the mean number of lever presses 
in each patch for a single rat, with lines connecting each rats 
behavior in the two conditions. 

Models of overharvesting 
We first tested a model that includes a subjective cost to 

foraging – a constant that represents a bias towards staying 
in the patch. Predictions from the model, fit to each rat, are 
presented in Figure 2. Qualitatively, this model explained 
rat behavior on the travel time and depletion rate 
experiments well, producing a predicted number of harvests 
per patch similar to that exhibited by the rats. However, 
there was a significant interaction between travel time and 
predicted vs. observed behavior, F(1, 7) = 7.391, p = .030, 
indicating a difference between how the model vs. the rats 
responded to the change in travel time. This is likely driven 
by the model predicting slightly earlier patch leaving in the 
30 s travel time relative to rats’ behavior. The interaction 
between depletion rate and predicted vs. observed behavior 
was not significant, F(1, 7) = .124, p = .735. 

As this model only allows for a constant change in the 
reward rate threshold to leave patches, it is unlikely to 
account for behavior in which rats select a different 
threshold between conditions. When rats were given longer 
rewards with longer delays, they stayed in patches longer, 
allowing patches to deplete to a lower reward rate before 
leaving. Similarly, when a pre-reward delay was introduced, 
rats left patches earlier, at a higher reward rate. The model 
failed to account for both of these effects (interaction 
between scale x predicted vs. observed behavior, F(1, 7) = 
58.43, p < .001; delay x predicted vs. observed behavior, 
F(1, 7) = 48.79, p < .001). 

 

- -
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Figure 2: Predictions of the subjective cost model for the 
A) travel time, B) depletion rate, C) scale, and D) pre- vs. 
post-reward delay experiments. Black points and errorbars 
represent the mean number of harvests per patch ± standard 
error. Colored lines represent the average model predicted 
number of harvests. The width of the colored line represents 
the standard error of the predicted number of harvests. 
There were significant interactions between model 
predictions and observed behavior in the travel time (A), 
scale (C), and pre vs. post-reward delay (D) experiments. 

 
We next tested whether diminishing marginal returns 

could explain overharvesting (Figure 3). Under this 
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hypothesis, large rewards in a new patch were not valued as 
proportionally larger to smaller rewards in the current, 
depleting patch. Predictions from the subjective utility 
model are presented in Figure 3. As did the subjective cost 
model, the subjective utility model qualitatively explained 
overharvesting behavior in the travel time and depletion rate 
experiments. This was supported by the lack of a significant 
interaction between travel time and predicted vs. observed 
behavior, F(1, 7) = 4.501, p = .072, although there was a 
significant interaction between depletion rate and predicted 
vs. observed, F(1, 7) = 14.12), p = .007. 

In the scale experiment, the subjective utility model 
should estimate a lower reward rate in the environment with 
larger rewards, and thus predict later patch leaving. 
However, this model could not explain both general 
overharvesting, as well as the change in behavior due to 
scale, F(1, 7) = 112, p < .001. Additionally, this model is 
insensitive to the placement of delays, and failed to predict 
that rats would leave patches earlier when a pre-reward 
delay was introduced, F(1, 7) = 77.22 , p < .001). 

A

C D

B

 
Figure 3: Predictions of the subjective utility model for 

the A) travel time, B) depletion rate, C) scale, and D) pre- 
vs. post-reward delay experiments. There were significant 
interactions between model predictions and observed 
behavior in the depletion rate (B), scale (C), and pre- vs. 
post-reward delay (D) experiments.  

 
Next, we tested whether a delay discounting model that 

considers future rewards could account for rat 
overharvesting behavior (Figure 4). As rewards are 
discounted into the future, the value of the first reward in a 
new patch was discounted due to the travel time between 
patches, and the model sought to maximize future rewards 
over a shorter period of time. The discounting model 
accurately predicted overharvesting behavior in both travel 
times; interaction between travel time and predicted vs. 
observed behavior was not significant, F(1, 7) = .050, p = 
.830. This model also predicted earlier patch leaving when 
reward in the patch depleted quicker, but there was 
significant interaction between depletion rate and predicted 
vs. observed behavior, F(1, 7) = 16.780, p = .005, indicating 
that the model-predicted change in behavior is different 

from the change in behavior exhibited by rats. 
In the scale experiment, when comparing larger rewards 

with longer delays to smaller rewards with shorter delays, 
the larger rewards would be discounted to a greater extent. 
Thus, in this model, the estimate of the overall reward rate 
would be lower in the environment with larger rewards, 
predicting that rats would stay longer in this environment. 
Indeed, this model did predict that rats would stay in patches 
longer when given larger rewards with longer delays, and 
the interaction between scale and predicted vs. observed 
behavior was not significant, F(1, 7) = .482, p = .510. This 
model also should place lower value on rewards in the patch 
when there is a longer delay between decision to harvest and 
obtaining reward. However, there was a significant 
interaction between pre- vs. post-reward delay conditions 
and predicted vs. observed behavior, F(1, 7) = 34.650, p < 
.001. 
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Figure 4: Predictions of the delay discounting model for 

the A) travel time, B) depletion rate, C) scale, and D) pre- 
vs. post-reward delay experiments. There were significant 
interactions between model predictions and observed 
behavior in the depletion rate (B) and pre- vs. post-reward 
delay (D) experiments. 

 
Lastly, we tested whether ignoring post-reward delays 

could explain rats’ overharvesting behavior. In this model, 
time delays that occur after receiving reward, before a 
decision is made on the next trial (e.g. ITI after reward and 
DT prior to making next decision), were treated differently 
than time delays that occur between making a decision and 
receiving a reward (e.g. handling time delay between lever 
press and reward, or travel time delay between nosepoke 
and first reward in the next patch). Time delays that occur 
after the reward, and before the next decision are assumed to 
increase monotonically, but sublinear relative to actual time, 
according to an exponential function. In this model, 
underestimation of the ITI would cause overestimation of 
reward rate, and overharvesting. Additionally, in the scale 
experiment, longer delays would cause greater 
overestimation of reward rate, and would predict that rats 
should stay in patches longer when given larger rewards 
with longer delays. In the pre- vs. post-reward delay 
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experiment, when the pre-reward delay was introduced, 
post-reward delays were shorter. In this model, shorter post-
reward delays would lead to less overestimation of reward 
rate, and earlier patch leaving. 

This model qualitatively explained overharvesting in all 
four experiments. Additionally, there were no significant 
interactions between task manipulations and predicted vs. 
observed behavior (travel time, F(1, 7) = .416, p = .539; 
depletion rate, F(1, 7) = 4.691, p = .067; scale of reward and 
time, F(1, 7) = .047, p = .835; pre- vs. post-reward delay, 
F(1, 7) = 1.985, p = .202), indicating that there were no 
differences between rats change in behavior due to 
experimental manipulation and model predicted change in 
behavior in all four experiments.  
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Figure 5: Predictions of the ignore post-reward delays 

model for the A) travel time, B) depletion rate, C) scale, and 
D) pre- vs. post-reward delay experiments. Interactions 
between model predictions and observed behavior were not 
significant in any of the four experiments. 

Discussion 
We characterized patch foraging behavior of one of these 
species, rats, in a variety of foraging environments, and 
examined the computational mechanisms of overharvesting. 
We found that rats, like humans (Constantino & Daw, 
2015), followed the primary qualitative predictions of MVT, 
leaving patches earlier when the rate of depletion was 
quicker, and staying longer in patches when travel time was 
longer. However, as has consistently been observed in other 
species, they overharvested (or stayed longer in patches than 
is predicted by MVT). Furthermore, rats deviated from 
predictions of MVT in other ways, staying longer in patches 
that provided larger rewards with longer delays, and leaving 
patches earlier when delays occurred between the decision 
to harvest from the patch and receiving reward. To examine 
the cognitive biases that underlie overharvesting, we fit four 
models to rats foraging behavior in each context: a model 
including subjective costs, diminishing marginal returns for 
larger rewards, discounting of future reward, and ignoring 
post-reward delays, and tested whether predictions of these 
models were different from rats’ behavior. All four models 
could qualitatively explain rat foraging behavior in response 

to a change in travel time and patch depletion rate, but only 
the ‘ignore post-reward delays’ model, in which post reward 
delays are perceived to be shorter than they actually are, 
could predict both later patch leaving when given larger 
rewards with longer delays, and earlier patch leaving when a 
pre-reward delay was introduced. These results suggest that 
there are multiple cognitive biases that can explain 
overharvesting in certain contexts, and that foraging 
behavior may be the result of the use of multiple biases. 
However, inaccurate estimation of post-reward delays likely 
contributes to overharvesting. 
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Abstract

Zipf (1935) observed that word length is inversely proportional
to word frequency in the lexicon. He hypothesised that this
cross-linguistically universal feature was due to the Principle
of Least Effort: language-users align form-meaning mappings
in such a way that the lexicon is optimally coded for efficient
information transfer. However, word frequency is not the only
reliable predictor of word length: Piantadosi, Tily, and Gib-
son (2011) show that a word’s predictability in context is in
fact more strongly correlated with word length than word fre-
quency. Here, we present an artificial language learning study
aimed at investigating the mechanisms that could give rise to
such a distribution at the level of the lexicon. We find that
participants are more likely to use an ambiguous short form in
predictive contexts, and distinct long forms in surprising con-
texts, only when they are subject to the competing pressures to
communicate accurately and efficiently. These results support
the hypothesis that language-users are driven by a least-effort
principle to restructure their input in order to align word length
with information content, and this mechanism could therefore
explain the global pattern observed at the level of the lexicon.
Keywords: Information theory; Efficient communication; Ar-
tificial language learning; Uniform Information Density

Introduction
Zipf (1935) observed that word length tends to be inversely
proportional to word frequency in the lexicon. He hypoth-
esised that this widespread cross-linguistic pattern was due
to the Principle of Least Effort: language-users align form-
meaning mappings in such a way that effort is minimised
while expressivity is still maintained. However, word fre-
quency is not the only reliable predictor of word length. Us-
ing corpora from 11 different languages, Piantadosi et al.
(2011) show that a word’s predictability in context (where
they define context as the two words preceding the target
word) is even more strongly correlated with word length than
frequency is: words that are, on average, more predictable in
context tend to be shorter.

Measuring how predictable or unpredictable a word is in a
particular context gives us a way of defining the information
content of a word. For example, consider the two sentences:

(1) The early bird catches the worm.
(2) Our early bird special today is a baked-apple worm.

In sentence (1), a well-known proverb, the word worm is en-
tirely predicted by the preceding words. The word itself thus
gives us practically no new information, and so it has low in-
formation content. In sentence (2), the same word is highly
unlikely given the preceding words, and thus we find it sur-
prising. This element of surprise is associated with high in-
formation content.

Using these concepts, we can apply Zipf’s Principle of
Least Effort to hypothesise that a speaker’s drive to reduce
effort will be directed towards words that are already highly
predictable given the context, i.e. have low information con-
tent. Words that are more surprising in a particular context
will be less likely to be reduced, or more likely to be length-
ened. The resulting state in which low-information words are
shorter than high-information words, and thus the length of a
word is roughly proportional to the amount of information as-
sociated with the word, is consistent with the Uniform Infor-
mation Density (UID) principle (Jaeger, 2010) or the Smooth
Signal Redundancy (SSR) hypothesis (Aylett & Turk, 2004),
which state that information is distributed roughly evenly
across words in an utterance.

There are many ways to operationalise the information
content of a word. One way is to use the N-gram proba-
bility of a word, i.e. its probability conditioned on a win-
dow of N preceding or following words. This is the method
used by Piantadosi et al. (2011). Zipf’s word frequency mea-
sure is in fact just a limiting case of this N-gram probability,
where N=0. Other measures include syntactic probability, a
word’s probability of appearing in a particular syntactic struc-
ture (Jaeger, 2010, e.g.), and givenness, a word’s predictabil-
ity given the semantic context (Aylett & Turk, 2004).

Both corpus studies and controlled behavioural experi-
ments have linked low information content, operationalised
in these different ways, to various types of linguistic reduc-
tion. Lieberman (1963); Aylett and Turk (2004); Gahl and
Garnsey (2004); Tily et al. (2009); Kuperman and Bresnan
(2012), and Seyfarth (2014) show that words with low infor-
mation content are more likely to undergo various types of
phonetic reduction. Bell, Brenier, Gregory, Girand, and Ju-
rafsky (2009) show that each of the four different measures of
information content mentioned above may in fact contribute
separately to the phonetic duration of a word. Fedzechkina,
Jaeger, and Newport (2012) show that case markers are more
likely to be omitted on nouns in more probable syntactic
roles. Jaeger (2010) shows that that-complementisers are
more often dropped when the following word is less surpris-
ing in context.

If predictability in context can lead to phonetic reduction,
as well as deletion of morphemes and entire words, then these
effects might make their way to the overall distribution of
form-meaning mappings in the lexicon. However, there is rel-
atively little work directed at understanding how predictabil-
ity affects this widely observed pattern at the level of the lex-
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icon.
One way of investigating the issue is by tracking language-

users’ online choices when producing words that are part of
a ‘clipped pair’, i.e. when both a long form and an abbrevi-
ated or ‘clipped’ form exist that have the same or very simi-
lar meanings (Mahowald, Fedorenko, Piantadosi, & Gibson,
2013). E.g. in English, info/information is a clipped pair. Ma-
howald et al. presented participants with sentences containing
a blank and asked them to complete the sentence with either
the long or the clipped form corresponding to the relevant
meaning. They found that participants were more likely to
choose the short form in predictive contexts, which is con-
sistent with the hypothesis that the lexicon-level patterns ob-
served by Piantadosi et al. (2011) may be due in part to a
least-effort mechanism, in which speakers balance commu-
nicative efficacy with efficiency.

However, because this study uses English sentence frames
and target words, we cannot rule out potentially confound-
ing contributions from register, prosody, and participants’
learned preferences to their word choice in particular in-
stances. Moreover, we cannot assess whether the effect is
really driven by the competing pressures for communicative
accuracy and efficiency without manipulating the presence or
absence of these different communicative pressures. For in-
stance, in Mahowald et al.’s task, it seems participants clicked
on a word rather than typing it in, and thus there was no dif-
ference in effort between choosing the long or short form. In
addition, participants were told to choose a word based on
“which sounded more natural”, rather than being directly en-
gaged in a task requiring successful communication.

Here, we present a new artificial language learning study
investigating the question of whether language-users align
word length with information content when communicat-
ing. Our results are consistent with previous findings that
language-users tend to use shorter forms in more predictive
contexts. Furthermore, the behaviour we observe across dif-
ferent experimental conditions supports the hypothesis that
this effect is driven at least in part by a least-effort principle,
in which language-users balance the competing pressures for
communicative accuracy and efficiency to reshape the lexicon
into one where word length is roughly proportional to average
information content.

Method
Artificial language learning studies have previously been used
to shed light on the cognitive mechanisms and environmen-
tal pressures that shape large-scale linguistic structure. In
this paradigm, participants learn an artificial language, and
then we observe how they reshape their input as they use the
language, in this case to communicate with a partner (e.g.,
Winters, Kirby, & Smith, 2015; Kirby, Tamariz, Cornish, &
Smith, 2015; Fehér, Wonnacott, & Smith, 2016).

Participants
120 participants (53 females, 66 males; one did not report
their gender) were recruited and remunerated via Amazon

Mechanical Turk. 108 of these reported themselves as native
English speakers, of which 96 were monolingual. A range of
other languages were represented across the remaining par-
ticipants. Ages ranged from 18 to 70 (mean=32.9, SD=9.5).

The Training Language
The study was run online. Participants were trained on two
names for each of two plant-like alien objects, by repeatedly
being shown pictures of the objects labeled with a simple sen-
tence. The sentence consisted of a framing word followed by
the object’s name. There were two possible frames, bix and
gat. Overall there were 64 training trials, with each object
appearing 32 times and each frame appearing 32 times. Cru-
cially, one object appeared seven times more frequently with
the frame bix than gat (28 and 4 times, respectively), while
the other object appeared seven times more frequently with
the frame gat than bix (again, 28 and 4 times, respectively).
This meant that each object appeared in both a predictive con-
text and a surprising context; which frame signified which of
these contexts was flipped between the two objects.

Furthermore, the object name appeared half the time in its
full form, a 7-letter word, and half the time in shortened form,
a 3-letter word derived by clipping the last two syllables off
the long name. These short and long forms were evenly dis-
tributed across both predictive and surprising contexts, ensur-
ing that the input language contained no inbuilt bias towards
using one form in any particular context.1 A schematic dia-
gram of the object frequencies and labels is provided in Fig.
1A.

In natural languages, shorter words are subject to greater
confusability for a number of reasons: shorter forms have
less space for signal redundacy and thus are more likely
to be completely lost in noisy signal transmission; and be-
cause languages have a finite phoneme inventory, there are
more unique possible long strings than short strings, and thus
word shortening often results in ambiguity. Indeed, shorter
words are more likely to be polysemous and homophonous
(Piantadosi, Tily, & Gibson, 2012). To model this fact in
our miniature lexicon, we designed the names such that the
short name for both objects was identical (zop), while the long
names were unique (zopekil and zopudon).

Procedure
Participants were assigned to one of four conditions, where
we manipulated the presence of pressures to communicate
accurately and quickly in a between-subjects 2x2 design
(Kanwal, Smith, Culbertson, & Kirby, 2017). Each experi-
ment consisted of two phases: training and testing. The train-
ing phase was uniform across conditions, while the testing
phase varied by condition.

1Which object (the blue fruit or the red stalk) appeared more fre-
quently with which frame, as well as which object was paired with
which long name, were both counterbalanced between participants,
giving a total of 4 possible object-frame-name pairings which a par-
ticipant might be trained on. This ensured that potential factors such
as sound symbolism, or higher saliency or learnability of any spe-
cific object-word pairing, could not systematically bias our results.
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Figure 1: (A) The input frequencies of the objects and framing
sentences presented during training trials in all four experimental
conditions. (B) A sample training trial. (C) A sample director trial
in the Combined condition (top) and a matcher trial followed by
feedback (bottom).

Training phase On each training trial, an object was pre-
sented on screen alone for 700ms. The appropriate sentence
then appeared beneath the object for a further 3000ms, yield-
ing a total trial duration of 3700ms. A blank screen showed
for 500ms between trials. The 64 training trials were pre-
sented in a different randomised order for each participant.

Testing phase After the training phase, testing procedures
varied depending on the experimental condition. In the Com-
bined condition, participants were under a pressure to com-
municate accurately and efficiently, as according to the Prin-
ciple of Least Effort, it is balancing these competing pressures
that leads language-users to distribute word length inversely
to word predictability. The remaining three conditions re-
moved one or both of these accuracy and time pressures.

Condition 1: Combined In the testing phase of this con-
dition, participants were paired with a partner to play a com-
munication game, using the method developed for running
two-player online experiments in Kanwal et al. (2017). On

each trial, the ‘director’ was shown an object on the screen
with a framing word followed by a blank. The director was
instructed to choose a name for the object to complete the
sentence, and once the name was entered, the sentence would
be transmitted to the ‘matcher’. The director could choose
one of two options to complete the sentence: the unique long
name for the object or the (ambiguous) short name. Once the
chosen name was selected by clicking on the appropriately
labeled button, it had to be entered into the blank space by
pressing and holding the mouse as each letter appeared one
after the other at 1200 ms intervals. Only after all the letters
in the name had appeared in the box was the completed sen-
tence transmitted to the matcher. This belaboured method of
production, in which the long name was significantly slower
to produce than the short name, was introduced to model the
difference in effort and speed associated with producing long
versus short utterances.

Once the director completed their description, it was trans-
mitted to the matcher, who was asked to choose which of the
two objects they thought the director was referring to. Both
players were then given feedback as to whether the matcher’s
choice was correct.

The players alternated roles after every trial, with the
matcher becoming the director and the director becoming
the matcher, until both completed 32 director trials and 32
matcher trials. The proportion of times each object appeared
with each frame in each player’s director trials matched those
of the training proportions: one object appeared seven times
more frequently with the frame gat than bix, and the other
appeared seven times more frequently with bix than gat. The
order of each participant’s 32 director trials was randomly
shuffled.

To model the pressures in spoken communication to be
both efficient and accurate, pairs were told at the beginning
that they would be rewarded a bonus payment of $1 if they
were the pair to complete the game in the quickest time with
the highest number of correct match trials. Time was only
counted when the director was entering a name into the blank,
and the total time count was displayed next to the blank dur-
ing this process, to emphasise the time pressure. Screenshots
of sample director and matcher trials are shown in Fig. 1C.

In this condition, with pressures to be speedy yet accurate,
we expected participants to converge on an optimal strategy
in which the short name is used for an object when it appears
in its predictive context, and the long name otherwise. In
predictive contexts, the framing word already provides a lot
of information to the matcher about which object is likely
under discussion, and thus participants can minimise effort
by using the short form. Conversely, in surprising contexts,
the full object name is required to ensure disambiguation.

In order to establish a causal link between these purported
mechanisms and the behaviour we observe, we included three
further experimental conditions, described below, for a full
2x2 manipulation of the pressures for accuracy and efficiency.
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Condition 2: Accuracy In this condition, participants were
paired to play a communication game as described above, but
in the director trials, there was no intermediate step between
the director choosing a name to complete the sentence and
the matcher receiving the sentence; the names were entered
instantaneously, thus removing any difference in effort be-
tween producing long or short names. Pairs were told that
the goal of the game was simply to have their partner make as
many correct guesses as possible. No bonus prize was offered
in this condition, as we expected many pairs to hit ceiling as
they did in Kanwal et al. (2017)—however, fewer than ex-
pected actually did so here.

In this condition, we predicted that participants would be
more likely to use the long names for both objects across all
contexts, as the long names are less confusable, and without
a pressure to be efficient, there is little reason to shorten.
Condition 3: Time In this condition, communication was
taken out of the game entirely; participants played a one-
player game consisting of 64 director trials. In each trial,
participants completed the sentence with either the long or
short name for the object shown, but there was no subsequent
communicative task. The name was simply entered as in the
Combined condition, by pressing and holding the mouse in
the blank space, with each letter appearing at 1200 ms inter-
vals, while a timer displayed the total time count. The next
trial began once all the letters had appeared in the box. Partic-
ipants were told at the beginning of the game that they would
be rewarded a bonus payment of $1 if they were the player
with the shortest total time count.

Here, we expected participants to use the short name for
both objects across all contexts: with no communicative pur-
pose attached to the transmissions, and an incentive to be as
quick as possible, using the short name in every trial is the
best strategy.
Condition 4: Neither The fourth and last condition con-
tained neither a pressure for efficiency nor a pressure for ac-
curacy. As in the Time condition, participants played a one-
player game with no explicit communicative element. Addi-
tionally, there was no time difference associated with trans-
mission; once a label was chosen to complete a sentence, it
was instantaneously recorded and the player advanced to the
next trial. We included this condition to provide a baseline for
participants’ behaviour from which to assess the effects of the
accuracy and time pressures in the other three conditions.

In this condition we expected that participants would ei-
ther probability-match—i.e. use the long and short forms for
both objects with equal frequency, as in the training trials
(Hudson Kam & Newport, 2005)—or their behaviour would
reveal prior biases language users bring to the task, such as
a preference against using ambiguous forms, as observed in
Kanwal et al. (2017).

Results
Fig. 2 shows the proportion of trials in which the short name
was produced by each participant or pair of participants in
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Figure 2: The proportion of trials in which the short name was
used in predictive contexts versus the proportion of trials in which
it was used in surprising contexts. For the Combined and Accuracy
condition, each data point combines a pair of communicating play-
ers, representing the sum of their director trial productions. For the
Time and Neither condition, each data point corresponds to an indi-
vidual player’s productions. The size of the circles is perceptually
scaled (Tanimura et al., 2006) to reflect the number of data points
coinciding at each value. Data from only the second half of testing
trials is shown here, as participants were more likely to have con-
verged on a stable mapping by this time. These results demonstrate
that behaviour consistent with the principles of UID or SSR—using
short forms in predictive contexts and long forms in surprising con-
texts, generating systems that fall in the bottom right corner of each
graph—only reliably arises in the Combined condition.

predictive versus surprising contexts. Our predictions were
borne out by the results in all four conditions. In the criti-
cal Combined condition, in which participants were subject
to the combined pressures for accuracy and efficiency, pairs
of communicating participants produced systems in which the
short name was used in predictive contexts and the long name
in surprising contexts. Crucially, only when both pressures
were present did participants reliably produce systems where
word length was conditioned on context in this way. In the
Accuracy condition, participants tended to use the long name
for both objects regardless of context, and in the Time con-
dition, they used the short name for both objects regardless
of context. In the Neither condition, some participants stuck
with the long name or the short name throughout the trials
regardless of context, as in the Accuracy or Time conditions;
however, most participants probability-matched.

A logistic regression model was fit to the full dataset in R
using the lme4 package, with short name use (as contrasted
with long name use) as the binary dependent variable; con-
text (predictive or not), experimental condition, and their in-
teraction as fixed effects; and by-participant random slopes
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Figure 3: This figure shows the extent to which participants’
name choices are conditioned on context (lefthand graph) and object
(righthand graph). The dotted line in the lefthand graph represents
the mutual information (MIc) associated with the ‘optimal’ language
in least-effort terms—the language in which the short form is used
only in predictive contexts, and the long form only in surprising con-
texts. MIc=0 for the input language. In the righthand graph, mutual
information (MIo) can range from 0 (same name fixed for both ob-
jects) to 1 (distinct names fixed for each object). MIo=0.5 for the
input language, marked by the dotted line. Data from only the sec-
ond half of testing trials is shown in this figure, as participants were
more likely to have converged on a stable mapping by this time.

and intercepts for context. The model was sum coded, set-
ting the grand mean as the intercept, to which each level
was then compared. The results yielded a significant posi-
tive interaction of context in the critical Combined condition
(β = 0.619,SE = 0.158, p < 0.001), indicating that in this
condition, participants were significantly more likely to use
the short name in predictive contexts. The only other signifi-
cant effects found were as follows: a positive overall effect in
the Time condition (β = 2.187,SE = 0.292, p < 0.001), indi-
cating that participants were more likely to use the short form
in this condition regardless of context; a negative overall ef-
fect in the Accuracy condition (β =−1.470,SE = 0.233, p <
0.001), indicating that participants were less likely to use the
short form in this condition regardless of context; and finally
a negative interaction effect of context in the Accuracy condi-
tion (β = −0.490,SE = 0.161, p = 0.002), indicating that in
fact participants were even less likely to use the short form in
the predictive context in this condition.

An analysis of how participants conditioned the variation
in their name usage sheds further light on the differing pat-
terns of behaviour seen across conditions. We calculated the
average mutual information between name produced and con-
text (predictive or not) in each participant’s output language
(MIc). The more reliably participants are conditioning their
use of the long and short names on context, the higher we
would expect the value of MIc to be. The distributions for all
four conditions are plotted on the lefthand graph of Fig. 3.

We also calculated the average mutual information be-
tween name produced and object (the blue fruit or the red
stalk) in each participant’s output language (MIo). This mea-
sure allows us to determine whether some participants are us-

ing fixed names for each object, regardless of context. The
results are plotted by condition in the righthand graph of Fig.
3. If participants are using a distinct name for each object,
MIo will be close to 1; if they are using the same name for
both objects, MIo will be close to 0. The former pattern is
what we see in the Accuracy condition: most participants use
the unique long name for each object, regardless of context.
The latter pattern is what we see in the Time condition: most
participants use the ambiguous short form for both objects,
regardless of context.

In the Combined and Neither conditions, MIo hovers
around that of the input language. Based on this graph alone,
participants may be probability matching in both these con-
ditions, or perhaps reliably conditioning their output on other
factors. Looking back at MIc disambiguates: it is signifi-
cantly higher in the Combined condition than in any other
condition. A linear regression on MIc with condition as pre-
dictor variable (fit to the second half of testing trials, as in Fig.
3) yielded a significant negative effect of the Accuracy (β =
−0.081,SE = 0.033, p = 0.016), Time (β = −0.184,SE =
0.041, p < 0.001), and Neither (β =−0.128,SE = 0.041, p =
0.002) conditions, with the Combined condition set as the in-
tercept. This result is consistent with what we saw in Fig. 2:
in the Combined condition, many participants are optimally
conditioning their responses on context, generating systems
that fall in the bottom right corner of the graph; in the other
conditions, almost no data points fall in this region.

Discussion
There is mounting evidence that utterance length is linked to
information content (Lieberman, 1963; Aylett & Turk, 2004;
Gahl & Garnsey, 2004; Tily et al., 2009; Bell et al., 2009;
Jaeger, 2010; Piantadosi et al., 2011; Kuperman & Bres-
nan, 2012; Fedzechkina et al., 2012; Seyfarth, 2014). The
explanation put forth in much of this previous work is that
speakers are driven by pressures much like those outlined in
Zipf’s Principle of Least Effort: the competing demands for
accurate and efficient communication lead speakers to con-
verge on an optimal system in which information content
is spread roughly uniformly across the utterance, resulting
in low-information units being shorter than high-information
units. This resultant effect appears to have made its way into
the structure of the lexicon as a whole: shorter words ap-
pear on average in more predictive contexts than longer words
(Piantadosi et al., 2011). But is this effect really due to the
proposed mechanism? Can speaker choice lead to the reshap-
ing of a lexicon to align it with the principles of Uniform
Information Density and Smooth Signal Redundancy?

Here, we presented the first study that concretely addresses
these questions. Previous studies either lacked a manipula-
tion of the communicative pressures operating in the task, or
lacked a communicative element entirely. In our study, by
observing participants’ online behaviour in a task in which
the pressures to communicate accurately and efficiently were
manipulated across four experimental conditions, we have
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shown that participants use shorter words in more predic-
tive contexts only when both competing pressures were act-
ing on them. When these pressures were isolated or removed
entirely, participants failed to reliably condition their word
choices on context.

Furthermore, because our study employed an artificial lan-
guage learning paradigm, our findings avoid potential con-
founds from factors such as register, prosody, and partici-
pants’ learned preferences in their native or second languages.
Our results are nevertheless consistent with previous findings
that language-users tend to use shorter forms in more predic-
tive contexts when using their native language.

Our results serve as a proof of concept that the lexicon-
level effect observed by Piantadosi et al. (2011) could be
driven at least in part by a least-effort principle in which
language-users balance the competing pressures for commu-
nicative accuracy and efficiency to reshape the lexicon into
one where word length is roughly proportional to informa-
tion content. However, there is a crucial step between what
we have observed here—language-users alternating between
long and short variants for a single meaning depending on
context—and what Piantadosi et al. (2011) observed in the
lexicon of different languages, where most meanings don’t
correspond to both a long and a clipped variant, but rather
map to a single fixed form. For these cases, which make up
the majority of the lexicon, the length of the form is strongly
correlated with the average predictability-in-context of the
meaning, across all its different occurrences. We can hypoth-
esise a link between these two phenomena: as a word appears
in increasingly more predictive contexts, a reduced variant
may come into use. If speakers use the reduced variant in
predictive contexts, then this reduced form will consequently
become much more frequent than the long form, leading to
the long form eventually dying out altogether. This would end
in a scenario where a short word, with no alternative variants
currently in use, appears on average in a high number of pre-
dictive contexts, and thus has a low average information con-
tent. Though this story sounds reasonable, a precise mech-
anistic explanation of how this preference for short forms in
more predictive contexts leads to permanent shifts in form-
meaning mappings has yet to be thoroughly investigated. We
hope this topic is given more attention in future work.
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Preparatory Effects of Problem Posing on Learning from Instruction
Manu Kapur

ETH Zurich, Switzerland

Abstract: A randomized-controlled study compared the preparatory effects of problem-posing on learning from subsequent
instruction. Students engaged in problem-posing either with solution generation (where they generated problems and solutions
to a novel situation) or problem-posing without solution generation (where they generated only problems) prior to learning a
novel math concept. Problem-posing with solution generation prior to instruction resulted in significantly better conceptual
knowledge, without any significant difference in procedural knowledge and transfer. These findings suggest that although
solution generation prior to instruction plays a critical role in the development of conceptual understanding, and generating
problems can further enhance transfer.
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Abstract: Collaborative spatial problem solving is an important yet not thoroughly examined task. Participants navigated
individually and in dyads through virtual cities of varying complexity. They only saw the environment part visible from their
current location from a bird’s eye view map perspective. We recorded missed target locations, overall trajectory length and
search time per person until self-indicating whole coverage. Our results show a general increase in missed locations, trajectory
length, and search time with the complexity of the environment. These increases differed due to individual and collaborative
search. For complex, but not for simple environments individual participants navigated shorter distances, finished earlier, but
also missed more target locations than when searching the same environments in collaboration. These results indicate that in
complex environments collaborative search is less error prone than individual search, but takes longer. Such initial findings will
constrain future theorizing about collaborative spatial problem solving.
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Abstract 

Experimental studies of the cultural evolution of language 
have focused on how constraints on learning and 
communication drive emergence of linguistic structure. Yet 
language is typically transmitted by experts who adjust the 
input in ways that facilitates learning by novices, e.g. through 
child-directed speech. Using iterated language learning of 
binary auditory sequences, we explored how language change 
is affected by experts’ intention to teach the language to 
novices. Comparison between teaching chains and simple 
transmission chains revealed that teaching was associated 
with a greater rate of innovation which led to emergence of 
more expressive languages consisting of shorter signals. This 
is the first study to show that during cultural transmission, 
teaching can modify, and potentially optimise, functional 
characteristics of language. 

Keywords: Teaching; iterated language learning; cultural 
transmission; algorithmic complexity; compositional 
structure; combinatorial structure 

Introduction 
Cultural transmission of knowledge proceeds via the social 
learning mechanisms of imitation, emulation and teaching 
Boyd & Richerson, 1985; Richerson & Boyd, 2005). Of 
these, the adaptive value of teaching has recently received 
increased attention (Cavalli-Sforza & Feldman, 1981; Kline 
et al. 2013; Kline, 2015; Csibra & Gergely, 2009), 
highlighting in particular the ostensive use of language in 
the transmission of technological knowledge required for 
production of tools and other cultural artifacts (Caldwell & 
Millen, 2009; Morgan, Uomini, Rendell, Chouinard-Thuly 
et al., 2015). In its most general sense, teaching can be 
defined as any kind of behaviour, intentional or not, that 
promotes learning by narrowing the range of inferences or 
behavioural options that another individual can pursue 
(Kline, 2015). Teaching is especially important for 
transmission of cognitively opaque cultural traits and 
traditions, i.e. those whose function is not immediately 
obvious, thereby contributing to cumulative culture 
(Mesoudi 2011). While transmission of simpler cultural 
traits may not benefit from additional teaching (Caldwell & 
Millen, 2009), once culture becomes more complex, 
teaching delivers additional benefits for the transmission 
process (Morgan et al., 2015).                                  

In contrast, studies of the cultural transmission of 
language have mainly researched how constraints that 

operate on observational learning drive the emergence of 
structural features like learnability, expressivity (i.e. lack of 
ambiguity), combinatorial and compositional structure, that 
support effective communication (Kirby, Cornish and 
Smith, 2008; Kirby, Tamariz, Cornish & Smith; 2015; 
Verhoef, Kirby & de Boer, 2014). These studies use the 
iterated language learning method whereby the result of 
learning in one generation of learners serves as input for the 
next generation. The picture that emerges from these studies 
is that cognitive capacity constraints in human learners 
promote compressibility of individual signals and entire 
languages, and that the requirements of efficient 
communication drive languages to be expressive. In tandem, 
these constraints – the need for transmission efficiency and 
for referential efficiency – lead to emergence of 
combinatorial linguistic structure, i.e. systematic 
associations of components of the signal with dimension of 
meaning (Kirby et al., 2015).  

However, research on language development in children 
has presented substantial evidence that child language 
learners receive input that is specifically tailored to support 
learning, in the form of child-directed speech (e.g. 
Burnham, Kitamura, & Vollmer-Conna, 2002; Kempe & 
Brooks, 2005; Soderstrom, 2007). While there is 
considerable debate about whether child-directed speech is 
universal (e.g. Broesch & Bryant, 2013; Falk, 2004; 
Schieffelin, 1985), whether it constitutes intentional 
teaching or whether it predominantly supports affective 
bonding and emotion regulation (e.g. Singh, Morgan & 
Best, 2002; Uther, Knoll & Burnham, 2007), functionally it 
qualifies as a behaviour that not only provides local 
enhancement by directing the learner’s attention to relevant 
information (Kline, 2015) but also pre-samples the input in 
a way that can support correct learner inferences about 
language (Eaves, Feldman, Griffiths & Shafto, 2016). For 
learning to occur, no ostensive cues or direct feedback are 
required as long as the statistical properties of the modified 
input ensure improved learning. In this study, we explore 
how tailoring the input in such a way for the learner shapes 
language structure over the course of language transmission.  

If teaching leads to modification of the input that promote 
correct inferences about language then we can make 
predictions about the directions in which iterated teaching 
will change the structure of the emerging system, compared 
to simple transmission that is only constrained by cognitive 
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limitations of the learner. Previous iterated language 
learning studies have highlighted a number of structural 
features that emerge because languages need to be both 
learnable and communicatively efficient. We predict that 
emergence of these features should be facilitated under 
conditions of teaching: First, if teaching accommodates 
learnability constraints one would expect transmission 
fidelity to improve even faster in chains where teaching 
takes place, compared to simple transmission. Second, as 
languages evolve to be efficient signalling systems 
individual signals acquire combinatorial structure by which 
smaller meaningless subcomponents are recombined to 
improve signal discriminability, a feature that improves 
transmission across noisy channels (Verhoef, 2012; Verhoef 
et al., 2014; Roberts, Lewandowski & Galantucci, 2015) 
and should be enhanced through teaching. Third, in order to 
be communicatively efficient, languages also need to 
maintain expressivity by avoiding under-specification and 
ambiguity, another feature we expect to emerge faster under 
conditions of teaching. Fourth, languages become more 
systematic and self-similar, a property that, akin to 
phonotactic rules, supports learnability by reducing 
combinatorial freedom. This feature should also be 
enhanced by teaching. Finally, emerging compositional 
structure serves to systematically link meaningless 
components of signals to underlying dimensions of their 
meanings. Although compositional structure requires 
communicative pressure in addition to language 
transmission (Kirby et al., 2015; Nowak & Baggio, 2016), 
to isolate the effect of teaching, and in the interest of 
feasibility, we decided to start our exploration with a simple 
transmission study that did not impose communicative 
pressure on learners. Despite the lack of communicative 
pressure, it is still conceivable that teachers modify the input 
so as to enhance compositional structure in order to 
highlight this functional aspect of language. 

Method 
The present experiment compares transmission of an ‘alien’ 
language along chains of learners where each learner’s 
output generated during testing is faithfully represented as 
input to the learner in the next generation (Simple 
Transmission condition) with transmission of the language 
through chains of learners who, after training, are asked to 
teach the language to the learner in the next generation 
(Teaching condition). Teaching in this set-up constitutes 
demonstration of the language to the next learner without 
any verbal explanation or instruction. The crucial question is 
whether teachers modify the input when presenting the 
language to the next learner in a way that goes beyond those 
modifications that are due to constraints on learning and 
reproduction. 
 

Participants: Sixty undergraduate students were 
recruited at the University library for participation in a 
transmission chain study. Participants were assigned 
numbers corresponding to their slot in one of six chains, and 

were called into the test area when the previous participant 
had finished the training phase. Performance of these 
participants was compared to that of sixty other participants 
who had been tested in a different simple transmission study 
conducted earlier (Kempe, Gauvrit, Gibson & Jamieson, 
submitted). The ‘alien’ language used in this experiment 
consisted of high and low tones assembled into 6 or 8-tone 
sequences. This signalling system was developed to 
eliminate any familiarity with signals that could bias 
learners towards preferences for specific aspects of 
combinatorial structure. 

 
Materials: Two 500 ms sine-wave tones (high: 440 Hz  = 

musical note a; low: 293.7 Hz  = musical note d) were 
synthesised and recorded onto differently coloured answer 
buzzer of 9 cm diameter each. The fixed tone duration made 
it impossible to modify the length of the tones if pressing 
the buzzers for longer periods of time thus eliminating 
duration as a property of the signals. Seed languages 
consisted of random sequences of high vs. low tones, which 
were either six or eight tones long. These binary sequences 
instantiating the ‘words’ in the ‘alien language’ were paired 
with eight coloured objects differing in shape (spiky ‘kiki’-
type vs. fluffy ‘bouba’-type), size (2 x 2 cm vs. 4 x 4 cm) 
and brightness (25% vs 75% saturation) (see Figure 1), 
which were printed on laminated cards sized 5 x 8 cm. All 
objects also had unique properties due to differences in 
specific shapes and hues.  
 

 
 
Figure 1: Meanings associated with the signals (binary 
sequences) in the ‘alien buzzer language’. 
 

Procedure: After signing a consent form, participants in 
both conditions were told they would learn an ‘alien’ 
language used by a species of aliens that had no mouth and 
therefore used buzzers for communication. Participants were 
then shown six of the eight cards one at a time to familiarise 
them with the ‘alien’ objects. Training proceeded in an 
incremental fashion: In the Simple Transmission condition, 
participants were given a demonstration of the binary buzzer 
sequence for each card, and were asked to repeat it. 
Demonstration and practice were then immediately repeated 
resulting in incremental training consisting of two 
consecutive trials per card, before proceeding to the next 
card. Order of cards was randomised for each participant by 
shuffling the cards. After training, participants were shown 
the cards one at a time, and asked to produce the ‘alien 
buzzer words’ to the best of their abilities. Their responses 
were videotaped, coded and then presented unaltered to the 
next participant. To prevent the languages from 
degenerating, a ‘homonymy filter’ (Kirby et al., 2008) was 
applied by which up to two identical sequences (i.e. 
homonyms) were withheld and only six items were 
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presented during training. In case of no homonyms, two 
cards were withheld at random; in case of just one pair of 
homonyms, the card corresponding to one of the homonyms 
was withheld at random along with one other randomly 
chosen card. This manipulation was used to encourage 
productivity and to prevent languages from degenerating 
into ambiguous systems. 

In the Teaching condition, chains were also seeded with 
six out of eight cards, to maintain compatibility with the 
Simple Transmission condition. In Generation 1, training 
proceeded in exactly the same way as in the simple 
transmission condition. However, from Generation 1 
onwards, after training, participants were asked to ‘teach’ 
the language to the next participant in the chain who was 
called into the testing area at that time. When teaching, 
participants were instructed not to provide any verbal 
comments or instructions but to simply demonstrate the 
buzzer sequences twice to the next participant, allowing 
them to repeat the sequence after each demonstration. 

Results 
Participant buzzer responses were videotaped and coded for 
further analyses. Inter-coder reliability, determined for 17% 
of trials, was 94%. All dependent variables were analyzed 
using Growth Curve Analyses (GCA).  To see whether 
trends were linear or tended to level off we included a 
quadratic term of Generation following Beckner, 
Pierrehumbert & Hay (2017). Thus, our model contained 
fixed effects of Condition (Simple Transmission vs. 
Teaching) and linear and quadratic effects of Generation, 
and random intercepts of Chains as well as random slopes of 
Generation (Winter & Wieling, 2016), resulting in a model 
of the structure Condition + Generation + Generation2 + 
Condition*Generation + Condition*Generation2 + 
(1|Chain) + (0+Generation|Chain) + 
(0+Generation2|Chain). In all cases, the quadratic model 
provided a better or the same fit to the data compared to the 
linear model as determined by likelihood-ratio tests. 

Expressivity: Languages in the teaching condition 
contained fewer homonyms than languages in the simple 
transmission condition. The outputs in the transmission 
condition were more prone to degenerate into 
underspecified, more ambiguous languages, as indicated by 
an interaction of Condition with the linear, β = -0.44, t = 
2.50, p < .05, and the quadratic effect of Generation, β = 
0.05, t = 2.78, p < .01. These findings are depicted in Figure 
2. Note that in this and all subsequent figures error bars 
correspond to one S.E.M. 

 

 
Figure 2: Number of unique sequences (out of 8) in 

Simple Transmission and Teaching chains. 
 

Transmission Accuracy: We used length-normalised 
Levenshtein edit distance (LED) as an inverse measure of 
transmission accuracy. LED decreased faster in the Simple 
Transmission condition (Figure 3), as evidenced by a 
significant interaction between Condition and the linear 
effect of Generation, β = -0.03, t = -2.13, p < .05. In other 
words, when participants were asked to teach they 
introduced more innovations than when they simply tried to 
reproduce the binary sequences.  

 

 
Figure 3: Mean length-normalised Levenshtein edit 

distance in Simple Transmission and Teaching chains. 
 
Self-similarity: Average pairwise length-normalised LED 

between all pairs of sequences in a language served as an 
inverse measure of within-language similarity. This self-
similarity increased (i.e. LED decreased) overall as 
indicated by a main effect of Generation, β = -0.06, t = -
3.80, p < .001. The significant quadratic term suggests that 
increase of self-similarity was mainly due to the drop from 
the seed language and levelled off in subsequent generations 
(Figure 4).  
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Figure 4: Mean inverse self-similarity (within-language 

LED) in Simple Transmission and Teaching chains. 
 

Length: Sequences had started out with an average length 
of 7 tones in the seed language at Generation 0. In the 
Teaching condition, sequences remained of roughly the 
same length, which was significantly shorter than in the 
Simple Transmission condition, β = -0.81, t = -2.60, p < .05. 
The interaction between Condition and the linear effect of 
Generation, β = 0.66, t = 2.46, p < .05, confirmed that 
sequence length increased only during simple transmission 
(Figure 5).  

 

 
Figure 5: Mean sequence length in Simple Transmission 

and Teaching chains. 
 

Combinatorial structure: Structure of individual signals 
was operationalised as algorithmic complexity, using an 
estimate developed for short binary strings based on the 
coding theorem method (Gauvrit, Soler-Toscano, Zenil & 
Delahaye, 2014; Zenil, Soler-Toscano, Delahaye & Gauvrit, 
2015). This measure provides an inverse estimate for the 
amount of structure of a given sequence relative to the 
variation in structure possible for all sequences of the same 
length (Figure 6). It captures the intuition that sequences 
like adadadad or aaaadddd, where a represents the high and 

d represents the low note, are more structured than 
sequences like aadaddda. GCA did not yield any significant 
effects although the interaction between Condition and the 
linear effect of Generation, β = -0.13, t = -1.82, p = .08, fell 
short of significance, suggesting that there may have been a 
trend for algorithmic complexity to decrease somewhat 
during simple transmission.  

 

 
Figure 6: Mean length-normalised algorithmic complexity 

in Simple Transmission and Teaching chains. 
 

Compositional Structure: To determine compositional 
structure for each language, we calculated the Pearson 
product-moment correlations between differences in the 
three meaning dimensions of all meaning pairs and 
differences between associated signals pairs within each 
language, using 10,000 iterations of a Monte Carlo process 
to obtain a standardised score. This measure remained 
below the value associated with p = .05, and did not differ 
between conditions and generations indicating that no 
compositional structure had emerged (Figure 7).  

 

 
Figure 7: Mean compositional structure in Simple 

Transmission and Teaching chains. The horizontal line 
indicates z = 1.96, p = .05. 
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Discussion 
We compared six teaching chains with six simple 
transmission chains to explore the effect of teaching during 
cultural transmission of language. As this was an 
exploratory study, we did not include a requirement to 
engage in referential communication. Thus, it was not 
unexpected that compositional structure did not emerge 
(Kirby et al., 2015), and we found no evidence that teachers 
would introduce it spontaneously.  

What we found was that although transmission accuracy 
increased overall, it was significantly lower in the Teaching 
condition, counter to our expectations. Thus, considerably 
more innovations were introduced into the signals when 
participants were asked to teach rather than just to reproduce 
what they had learned. We suggest that these innovations 
served to stabilise certain features of the languages that the 
teachers considered crucial. The most notable change from 
Simple Transmission performance achieved through 
innovation in the Teaching condition was to maintain 
expressivity of the language: The number of different 
sequences within the taught languages remained high thus 
preventing these languages from degenerating by 
accumulating homonyms. This is an interesting result 
because previous research had demonstrated that without a 
strong incentive to communicate, capacity constraints of the 
learners drive languages towards under-specification and 
ambiguity (Kirby et al., 2015). What our findings suggest is 
that teaching can override this tendency, presumably due to 
strong biases about the functional destination of language, 
which is to be expressive, i.e. referentially efficient.  It is 
noteworthy that the expressivity advantage in the Teaching 
condition arose even though we applied a homonymy-filter 
in the Simple Transmission condition to prevent the 
languages from degenerating. Without this filter, languages 
in the Simple Transmission condition would have 
accumulated even more homonyms (Kirby et al., 2008), 
presumably further deviating from the Teaching condition.  

Another feature that remained stable in the Teaching 
condition was sequence length: Teachers managed to 
maintain sequence length at around the original 7 tones 
while in the Simple Transmission condition, sequence 
length increased dramatically. Stabilising or even reducing 
length is a strategy that can ensure learnability and 
transmission accuracy by keeping the form of signals within 
the limits imposed by working memory constraints. As this 
brevity constraint operated only in the Teaching condition it 
may reflect a cooperative adjustment on the part of the 
teacher designed to aid the learner. 

We observed little further increase of self-similarity of 
languages beyond an initial gain following exposure to the 
initial random binary sequences. Self-similarity can be 
thought of as a measure of systematicity that is somewhat 
akin to phonotactic rules. If teachers attempted to resolve 
the trade-off between expressivity of the language and 
brevity of the signals, they would be more likely to use the 
full space of distinct binary sequences of shorter lengths, 
which restricts opportunity to achieve self-similarity. In line 

with this conjecture, the trend towards self-similarity was 
less pronounced in the Teaching condition, although the 
difference between conditions did not reach statistical 
significance. 

We also had hypothesised that teaching would lead to a 
faster increase in combinatorial structure to improve 
transmission efficiency. For the binary sequences used as 
signals in this study, introducing combinatorial structure 
would entail establishing subcomponents (e.g. ad or aad) 
that can be recombined using operations like repetition or 
mirroring, as in strings like adadad (-0.75 [numbers in 
parentheses are the associated values of length-normalised 
algorithmic complexity) or aadaadaad (-1.43). In contrast, 
complex strings like ddaaad (1.43) or ddaaaadda (2.02) do 
not contain combinations of discernible subcomponents. 
According to our hypothesis, the Teaching condition should 
have given rise to more sequences of the former than the 
latter type.  However, our data showed exactly the opposite 
trend: Although not significantly so, length-normalised 
algorithmic complexity tended to be higher in the Teaching 
condition, indicating less combinatorial structure than in the 
Simple Transmission condition. One possible explanation 
for this finding is that when trying to produce as many 
different sequences as possible while maintaining brevity of 
the signals, teachers sample more densely from the 
distribution of shorter sequences thereby inevitably utilising 
more sequences of higher complexity. On the other hand, 
when the brevity constraint is relaxed, learners in the Simple 
Transmission condition may produce longer sequences yet 
processing capacity limitations will force them to settle for 
more structured ones, which are made up of a limited 
repertoire of subcomponents. 

This pattern of results shows that when teaching, which in 
this study entailed knowingly serving as input-generating 
models, participants changed their behaviour to adjust the 
input so as to constrain learner hypotheses in accordance 
with their own tacit knowledge about how languages 
function. Specifically, they were negotiating a trade-off 
between referential efficiency and transmission efficiency 
by introducing innovations that allowed them to generate 
unique sequences for each meaning, to prevent languages 
from degenerating into under-specified systems, while at the 
same time facilitating transmission fidelity by stabilizing the 
length of these sequences. It can be argued that the biases 
that shaped this teaching behaviour reflect participants’ 
knowledge about the functionality of language as it was 
acquired through their native language use and, thus, these 
biases may not be informative about of the role teaching 
may have played in language evolution. However, learners 
in the simple transmission condition had access to exactly 
the same knowledge yet without the motivation to teach 
those biases were overridden by the drive towards 
compressibility. Thus, whatever the origins of the 
knowledge about the functionality of language are, our 
findings suggest that this knowledge affects teaching.  

To summarise, the results of this study support the idea 
that teachers modify the input to learners in ways that reflect 
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their biases about the functional utility of a cultural trait. 
Applying this idea to the study of the cultural evolution of 
language means that theories of language transmission need 
to include teaching into the suite of transmission 
mechanisms under consideration. We hope that our findings 
will inspire more detailed explorations of the role of 
teaching in the cultural evolution of language in the future.                                                                                                
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Abstract 

The generative capacity of language entails an ability to 
flexibly combine concepts with each other. Conceptual 
combination can occur either by using an attribute of one 
concept to describe another (attributive combination) or by 
forming some relation between two concepts to create a new 
one (relational combination). Prior research has addressed 
whether common or distinct processes support these two 
putatively different types of combinations. We turn the 
question around and ask whether the consequences of these 
combination types on our conceptual system might differ, by 
comparing semantic memory networks before and after 
participants perform either attributive or relational conceptual 
combinations. We find a general effect on the semantic 
networks: the structure of network decreases after participants 
conceptually combine some of the concepts in the network. 
However, the relational combination manipulation has a 
greater effect. Furthermore, only the relational combination 
manipulation leads to an increase in the network’s 
connectivity. 

Keywords: Conceptual combinations; Semantic Networks 

Introduction 

Language generation involves the ability to combine 

concepts into novel combinations (Boylan, Trueswell, & 

Thompson-Schill, 2017). Investigating how individuals 

combine concepts can shed unique light on different aspects 

of conceptual knowledge, including the cognitive 

mechanisms that enable the generative and flexible use of 

language. For example, consider the noun-noun 

combination robin hawk: while some interpret this 

combination as “a red-breasted hawk”, applying the 

attribute “red-breast” of the robin to the hawk; others 

interpret this combination as “a hawk that preys on robins”, 

applying a thematic, relational role between robins and 

hawks (Wisniewski, 1996). While these two types of 

conceptual combination mechanisms—attributive and 

relational—are studied via behavioral and neurocognitive 

means (Boylan et al., 2017; Estes, 2003), whether these two 

mechanisms are similar or distinct remain an open question. 

Furthermore, the effect of these mechanisms on semantic 

memory structure has not yet been studied. In this paper, we 

apply a computational network science methodology to 

examine the effects of attributive and relational mechanisms 

on semantic memory structure. Specifically, we will focus 

on conceptual combinations in noun-noun compounds. 

     Noun-noun compounds contain a modifier noun 

followed by a head noun. The modifier noun can be either 

“attributive” (as in zebra clam, where zebra denotes the 

attribute “striped”) or “relational” (as in mountain lake, 

where “mountain” is an object bearing a spatial relation with 

“lake”). An attributive based conceptual combination 

involves applying an attribute from the modifier noun to 

describe the head noun, such as zebra clam (“a clam that has 

stripes”) A relational based conceptual combination, 

however, cannot be paraphrased this way -  tennis ball is not 

“a ball that is tennis”, but rather “a ball for playing tennis” 

(Downing, 1977; Gagné & Shoben, 1997). 

     An open theoretical issue is whether attributive and 

relational mechanisms are similar or distinct; and if distinct, 

how these mechanisms are applied (Estes, 2003; Gagné, 

2000; Gagné & Shoben, 1997; Rogers & McClelland, 

2004). We address this issue from a novel perspective: we 

apply a network science methodology to represent and 

compare semantic memory networks before and after 

participants conceptually combine some of the concepts in 

the network with other concepts in either an attributive or a 
relational manner. Such an approach allows us to examine, 

for the first time, in what way conceptual combinations 

affect semantic memory structure, and how it differs based 

on attributive or relational mechanisms. We posit that such a 

conceptual combination manipulation will have 

restructuring effects on the semantic network, by changing 

or creating new connections between concepts in the 

network. 

     Recent studies have used computational network science 

to represent the structure of semantic memory (memory for 

knowledge and facts, Jones, Willits, & Dennis, 2015), using 

network science tools, as a semantic network and analyze its 

properties (for a review, see Borge-Holthoefer & Arenas, 

2010). A semantic network comprises a set of nodes and 

edges, where nodes correspond to words or concepts and 

edges connect pairs of nodes and signify some sense of 

relations between the connected nodes. Of the various 

network models developed in network science theory, the 

network model that has been widely used to examine 

complex systems is the Small World Network (SWN) 

model. A SWN is a network that is characterized by both 

high local connectivity and short global distances between 

nodes, allowing for efficient transfer of information. This 

network type is known as a small world network because 

every node is relatively close to other nodes. Analyses of 

different languages have consistently shown how different 

linguistic systems exhibit such SWN characteristics, 

characteristics which are now considered fundamental in 

facilitating efficient and quick retrieval of linguistic 

information (Borge-Holthoefer & Arenas, 2010). Common 

parameters of network structure include - the networks 

657

mailto:yoedk@sas.upenn.edu)
mailto:sschill@psych.upenn.edu


clustering coefficient (CC), the average shortest path length 

(ASPL), and the modularity index (Q). 

     The CC measures the network’s connectivity. It refers to 

the probability that two neighbors of a node will themselves 

be neighbors (i.e., a neighbor is a node i that is connected 

through an edge to node j). The ASPL and Q index measure 

the global structure of the network. The ASPL measure 

refers to the average shortest number of steps needed to be 

taken between any two pair of nodes. The Q measure 

examines how a network breaks apart (or partitions) into 

smaller sub-networks. The larger the modularity measure, 

the more the network comprised of sub-networks (Newman, 

2006). A SWN is characterized by having a high CC and a 

short ASPL. To examine whether a specific network is a 

SWN, the statistical properties of empirical data are 

compared to those of a random null network with the same 

number of nodes and edges. 

     Previous work has conducted such analysis to examine 

cognitive phenomena such as language development, 

bilingualism, memory search and retrieval, and creative 

ability (Borge-Holthoefer & Arenas, 2010). For example, 

Kenett et al. (2014) found that low and high creative 

individuals show different semantic network structure. The 

semantic network of high creative individuals exhibited 

lower ASPL and Q values, and higher CC values compared 

to that of the low creative individuals. This was the case 

despite both networks having an equal number of nodes, 

edges and average number of edges per node. Thus, 

semantic networks analysis can be applied to examine 

differences in semantic memory structure related to different 

conditions such as attributive or relational combinations.  

     Some current theories of semantic memory posit that 

conceptual representations are not invariable across people 

or across time, but rather dynamically change contingent on 

context (e.g., task demand, stimulus modality) and 

individual differences (e.g., processing preferences), with 

short- and long-term effects on the structure of semantic 

memory (Yee & Thompson-Schill, 2016). Such a dynamic 

perspective describes an experienced-based, distributed, 

semantic memory system that allows for flexible, generative 

language. We apply semantic network analysis to examine 

how the process of combining concepts changes the 

semantic network and whether such effects depend on the 

different mechanisms (attributive or relational) applied in 

such combinations (see also Schilling, 2005). 

     Here, we present preliminary results of an on-going 

study where we examine and compare the structure of 

semantic memory networks before and after an attributive or 

relational conceptual combinations task. We operationalize 

the effects of the different conceptual combination 

mechanisms on semantic memory structure as differences in 

quantitative measures of the semantic network before and 

after the conceptual combination task. Specifically, we 

focus on global measures of the network’s structure (ASPL 

and Q) and connectivity (CC). We predict that any possible 

differences between these two mechanisms will be 

manifested in the post-manipulation networks. 

Materials & Methods 

Participants 

Participants (N = 26) were recruited from the University of 

Pennsylvania as part of a larger on-going research study on 

conceptual combinations and semantic memory structure. 

Participants were 55% female, average age of 22.6 years 

(SD = 3.9) and with an average 16.4 years of education (SD 

= 3). Participants were randomly assigned to the attributive 

combinations (AC) or relational combinations (RC) 

conditions (N = 13 in each group). This study was approved 

by the University of Pennsylvania Institutional Review 

Board. 

Design Overview 

We characterized the semantic network of participants using 

their free association responses obtained twice, before and 

after completing a conceptual combination task that was 

biased (using both detailed instructions and a priming 

manipulation) to elicit either attributive or relational 

interpretations. With this procedure, we were able to assess 

the main effect, within subjects, of conceptual combination 

(by comparing the structure of the semantic networks at 

both time points) as well as the interaction, between 

subjects, of the type of conceptual combination on network 

change. We also collected a number of measures of 

cognitive ability that will be used in planned analyses of 

individual differences in these effects. We will first describe 

the conceptual combination task we used to manipulate the 

type of combination process (attributive or relational). We 

will then describe the method we applied to represent the 

semantic networks (before and after the conceptual 

combination task). 

Conceptual Combination Task 

Participants were presented with 25 noun-noun 

combinations and were required to come up with an 

interpretation for each combination (Wisniewski & Love, 

1998). They were also asked to indicate how familiar they 

were with each combination and how hard it was for them to 

retrieve the interpretation they gave. In order to examine the 

effect of attributional and relational combination 

mechanisms on semantic memory, we used ambiguous 

noun-noun combinations—combinations that can either 

have an attributive or relational interpretation—and we 

primed the participants to generate either attributional or 

relational interpretations. This was achieved both by an 

instruction manipulation and by an initial noun-noun 

combination priming phase (Wisniewski, 1996). Our task 

comprised the following parts: instruction manipulation, 

priming phase, and ambiguous conceptual combination task. 

Participants performed this task between two sessions of 

semantic network estimation (a week apart; see Semantic 

Network Estimation). This allowed us to examine the effect 

of the different conceptual combination mechanisms on 

semantic memory structure. 
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     During the instructions stage, both participant groups 

received the same general description of the task. They were 

then told that there are different strategies that people use to 

combine concepts together and were given either 

attributional or relational instructions. In the attributional 

instructions, participants were told that one such strategy 

entails applying one dominant attribute of one word to 

explain the other. In the relational instructions, participants 

were told that one such strategy entails relating both words 

in some way. Participants read three ambiguous noun-noun 

combinations in which the specific required interpretation 

was emphasized. For example, participants read ant apple. 

In the attributive instructions participants were told that this 

could mean ‘a small apple’ but not ‘apple with ants on it’. In 

the relational instructions participants were told that this 

could mean ‘apple with ants on it’ but not ‘a small apple’. 

     In order to increase the difference between the two 

experimental conditions, we followed these instructions 

with an attributive or relational priming phase in the 

conceptual combination task, following from Wisniewski 

(1996), which showed that noun-noun combinations can be 

primed to generate either attributive or relational 

interpretations. We presented participants with ten modifier-

head noun-noun combinations, where the head noun 

remained constant but the modifier noun either primed an 

attributive combination or a relational combination (e.g. 

razor insult for the attributive combination condition vs. 

girlfriend insult for the relational combination condition). 

     Finally, participants completed the ambiguous noun-

noun conceptual combination task for 25 word-pairs. In 

order to select stimuli not only that were ambiguous (in that 

they elicited attributive and relational interpretations across 

subjects) but also that were flexible (in that the percentage 

of attributive and relational interpretations could be affected 

by an instructional manipulation), we conducted a norming 

study via Amazon’s Mechanical Turk (AMT). The AMT 

surveys were conducted on a larger pool of 50 noun-noun 

pairs, divided into two surveys of 25 noun-noun pairs each. 

We conducted three different variations of these surveys 

with 20 AMT participants in each survey. In the first 

variation (baseline condition), participants were presented 

with the noun-noun pairs and asked to generate an 

interpretation to it. These interpretations were then 

classified as either attributive or relational by two 

independent judges (inter-rater agreement > .8). This 

variation allowed identifying ambiguous noun-noun pairs, 

classified as pairs that ranged from 30%/70% to 50%/50% 

interpretations. The second and third AMT variations 

 

Figure 1: 2D visualization of the pre- and post- AC and RC semantic networks 
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(biased conditions) manipulated task instruction, as 

described above, to examine how much these noun-noun 

pairs could be “pushed” into one type of interpretation. 

These interpretations were similarly rated as attributive or 

relational by two independent judges (inter rater agreement 

> .8). Finally, we examined the effect of the instruction 

manipulation on biasing the interpretations. We calculated a 

percent signal change, which quantified the percentage 

change in interpretations of an ambiguous word-pair from 

the baseline condition to the biased interpretation condition. 

This was calculated for both types of interpretations for all 

noun-noun combinations. 

     Based on the AMT surveys, 25 noun-noun combinations 

were chosen. These combinations were chosen so that the 

modifier-nouns were comprised from five different semantic 

categories (animals, fruits and vegetables, nature, food, and 

home). All of the modifier nouns, and none of the head 

nouns, were included in the semantic network analysis as 

described below. The average ambiguity of these word pairs 

was 54%/46% attributive/relational interpretations. Percent 

signal change from baseline to biased attributive 

interpretations was 28% and biased relational interpretations 

was 42%. No significant differences were found between 

the percent signal change for attributive vs. relational 

interpretations (p < .4). 

Semantic Network Estimation 

The semantic networks of the AC and RC groups were 

computed using the computational approach developed by 

Kenett et al. (2011). Participants in both groups performed a 

continuous free association task twice, once before and once 

after the conceptual combination task. Participants were 

presented with a cue word and had one minute to generate 

as many associative responses they could for that cue word. 

Participants generated free associations to a list of 50 cue 

words. These 50 cue words consisted of five categories used 

in the conceptual combination task, including the five 

modifier nouns for each category and five other category 

members. Thus, the a priori structure of the semantic 

network consists of five (category) communities. 

  The semantic network of these 50 cue words was 

computed and compared between the pre- and post- AC and 

RC conditions: First, the data were preprocessed to 

standardize responses and fix any spelling mistakes. Second, 

the associative correlation between any pair of cue words 

was calculated using Pearson’s correlation. This resulted in 

a 50 x 50 matrix where each cell denotes the association 

correlation between node i and node j. Finally, the planar 

maximally filtered graph filter was used to remove spurious 

correlations (Kenett et al., 2014). This produced an 

adjacency (connectivity) matrix that represents the 

associative correlations between any pair of nodes. As our 

focus is on the structure of the networks, the association 

correlations were binarized to equal one. Thus, the resulting 

semantic networks are unweighted (all weights equal one) 

and undirected (symmetrical relations). Constructing 

semantic networks for different groups (pre- and post- AC 

and RC) that are comprised from the same nodes (50 cue 

words) and with an equal number of edges (288 edges) 

allows comparing between them. Furthermore, the average 

degree, the average amount of edges per node in all 

networks was equal (average of 5.76 edges per node). 

     Analyses were performed with the Brain Connectivity 

Toolbox for Matlab (Rubinov & Sporns, 2010). The 

clustering coefficient (CC; measuring network connectivity) 

and the average shortest path length (ASPL; measuring 

global distances) were calculated (Boccaletti, Latora, 

Moreno, Chavez, & Hwang, 2006). The network’s CC and 

ASPL were evaluated qualitatively against the equivalent 

parameters in a random network with the same number of 

nodes and edges (CCrand and ASPLrand, respectively). Lastly, 

the modularity (Q) index was calculated (Newman, 2006). 

In order to assess the reliability (i.e., statistical significance) 

of observed differences across time points and across 

subject groups, we used a bootstrap method (Efron, 1979) to 

simulate and then compare partial networks for each of the 

conditions. We reasoned that if the networks differed from 

each other, then any partial network consisting of the same 

nodes in the networks should also be different. Furthermore, 

the bootstrap method makes it possible to generate many 

simulated partial semantic networks, allowing for statistical 

examination of the difference between them. The 

bootstrapping procedure involves random selection of half 

of the nodes comprising the networks. Partial networks were 

constructed for each condition (pre- and post- AC and RC) 

separately for these selected nodes. This method is known 

as the without-replacement bootstrap method (Bertail, 

1997). Finally, for each partial network, the CC, ASPL, and 

the Q index were computed. This procedure was simulated 

with 10,000 realizations. The difference between the 

bootstrapped partial networks on each network parameter 

was then tested using a mixed model analysis of variance 

(group [AC, RC] x time [pre, post]). 

Procedure 

Participants completed all tasks using the Qualtrics software 

on two different sessions a week apart. In the first session, 

participants completed the free-association task. In the 

second session, participants first completed the conceptual 

combination task and then the free association task. In the 

free association task, participants were instructed to 

generate, in one minute, as many different responses they 

could think of to a cue word. In each trial, the cue word was 

presented in the center of the screen with a response box 

below it, where participants typed their responses. Below 

the response box appeared a timer, counting down from 60 

seconds. After 60 seconds elapsed, a new trial immediately 

began. Cue words were presented randomly and after 25 cue 

words participants had a short break. In the conceptual 

combination task, participants were first instructed on the 

task with the task manipulation instruction (attributive or 

relational). Next, a short practice was conducted with the 

experimenter, who gave feedback on the participant’s 

interpretations. Stimuli used in the practice were not used in 
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the task itself. In each trial the noun-noun combination 

appeared in the center of the screen with a response box 

below it. Participants were instructed to write their 

interpretations in the response box. Underneath the response 

box the participant had to choose how familiar s/he was 

with the noun-noun compound on a five point Likert scale 

(ranging from extremely familiar to not familiar at all) and 

how easy it was for them to generate the interpretation on a 

seven point Likert scale (ranging from extremely easy to 

extremely difficult). Participants were randomly assigned to 

the attributive and relational conditions. The stimuli were 

randomly presented. 

Results 

We computed the semantic networks for the pre- and post- 

AC and RC conditions based on the procedure outlined 

above. Next, we computed and compared the different 

network measures for all four networks (Table 1). To 

visualize the networks, we used the force-directed layout of 

the Cytoscape software (Shannon et al., 2003) to plot the 

graphs (Figure 1). In these 2D visualizations, nodes (cue 

words) are represented as circles and links between them are 

represented by lines. Since these networks are unweighted 

and undirected, the links merely convey symmetrical 

relations between two nodes. The grayscale of the nodes 

relate to the five semantic categories used in our study. 

     The network analysis revealed both general and specific 

differences between the pre- and post- AC and RC 

networks. In regard to structural properties of the networks, 

ASPL and Q, the post session led to lower ASPL and Q 

values, which was stronger for the RC network. In regard to 

connectivity property of the network, CC, the post session 

led to different effects in the AC and RC networks: while 

the AC network had a lower CC value, the RC network had 

a higher CC value, compared to the first session (Table 1). 

 

Table 1: Network measures for the pre- and post- AC and 

RC networks 

 

 AC-Pre AC-Post RC-Pre RC-Post 

CC .702 .699 .697 .701 

ASPL 2.930 2.814 3.223 3.034 

Q .578 .565 .583 .560 

CCrand .103 .125 .131 .176 

ASPLrand 2.331 2.341 2.339 2.338 

 

The bootstrapping analysis revealed a significant main 

effect of time (pre, post) for ASPL and Q, due to decreased 

values for the post-session (all p’s < .001). This analysis 

also revealed for all measures a significant interaction 

between group and time (all p’s < .001). For ASPL and Q, 

this effect resulted from a stronger effect for the RC group 

(all p’s < .001) and for the CC resulted from an increase in 

CC for the RC group and a decrease in CC for the AC group 

in the post-session (all p’s < .001).  

Discussion 

In this work, we applied a computational network science 

approach to examine the dynamic effects of conceptual 

combination mechanisms on the structure of semantic 

memory. We found general and specific effects on the 

network: In both groups, the post manipulation network 

exhibited lower structural properties of global distances and 

modularity, which was more pronounced in the RC group. 

Furthermore, while the AC post-manipulation network 

exhibited lower connectivity, the RC post-manipulation 

network exhibited higher connectivity. Thus, our results 

indicate that the relational combination manipulation has a 

greater effect on semantic memory structure than an 

attributive combination manipulation.  

    Notably, both networks have the same nodes, amount of 

edges, and average degree (number of edges per node). 

Thus, these differences reflect both a global task-induced 

effect on semantic networks and a local effect of relational 

combination manipulation on semantic memory structure. 

Both lower ASPL and Q have been related to higher 

creative ability (Kenett et al., 2014), thus indicating the 

creative effect of conceptual combinations on semantic 

memory. This stronger effect, combined with higher CC, in 

the RC group, suggests that relational combinations may 

demand the generation of novel contexts in which both 

nouns relate to each other, thus leading to higher re-

structuring of the network. More fine grained examination is 

needed in order to test specific effects on these networks. 

     Our findings are in line with current theories of semantic 

memory, which view it as a dynamic system (Schilling, 

2005; Yee & Thompson-Schill, 2016). Such theories argue 

that both context (task demands) and individual differences 

(processing style) lead to short- and long-term changes in 

semantic memory structure. Our current study applies 

semantic network analysis to examine how a conceptual 

combination task affects the structure of semantic memory 

and whether it is affected differently based on a specific 

conceptual combination mechanism. We show how 

manipulating concepts in the semantic network (through a 

conceptual combination manipulation) changes the structure 

of the network. We will also examine how individual 

differences affect the structure of semantic memory, based 

on the behavioral measures we are collecting in our on-

going study. Our findings are also related to recent studies 

investigating how relational versus attributive based 

categories differentially effect cognitive processing, such as 

typicality effects and learning (Asmuth & Gentner, 2017; 

Gentner & Kurtz, 2005; Rein, Goldwater, & Markman, 

2010). For example, Asmuth and Gentner (2017) show how 

relational nouns are more “mutable” (affected by context) in 

memory than entity nouns. Thus, our approach offers a 

quantitative method to examine such behavioral findings.  

    Finally, there are a few limitations to this study. First, our 

study currently has a small sample size, which can affect the 

reliability of our results. We are currently continuing to 

collect data to conduct these analyses with a larger sample 

size in each group to strengthen our results. Furthermore, 
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our research computed semantic networks aggregated at the 

group-level. It is possible that within these aggregated 

group-based networks there are further individual 

differences that relate to semantic memory structure and 

conceptual combinations. Future research needs to examine 

the effects of conceptual combinations on semantic memory 

structure at the individual-level (Benedek et al., 2017). 

     In conclusion, the work reported here is a first step at 

harnessing computational network science to investigate the 

effects of different conceptual combination mechanisms on 

semantic memory structure. We plan to continue and 

increase sample size and examine how our findings relate to 

various behavioral measures we are also collecting, such as 

creative ability, intelligence and personality traits. Overall, 

our results demonstrate that semantic networks can be 

applied to study group-level effects of different conceptual 

combination mechanisms and contribute to the growing 

body of literature demonstrating their efficacy in 

understanding high-level cognition. 
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Abstract 

People reason about possibilities routinely, and reasoners can 
infer “modal” conclusions, i.e., conclusions that concern what 
is possible or necessary, from premises that make no mention 
of modality. For instance, given that Cullen was born in New 
York or Kentucky, it is intuitive to infer that it’s possible that 
Cullen was born in New York, and a recent set of studies on 
modal reasoning bear out these intuitions (Hinterecker, 
Knauff, & Johnson-Laird, 2016). What explains the tendency 
to make modal inferences? Conventional logic does not apply 
to modal reasoning, and so logicians invented many 
alternative systems of modal logic to capture valid modal 
inferences. But, none of those systems can explain the 
inference above. We posit a novel theory based on the idea 
that reasoners build mental models, i.e., iconic simulations of 
possibilities, when they reason about sentential connectives 
such as and, if, and or (Johnson-Laird, 2006). The theory 
posits that reasoners represent a set of conjunctive 
possibilities to capture the meanings of compound assertions. 
It is implemented in a new computational process model of 
sentential reasoning that can draw modal conclusions from 
non-modal premises. We describe the theory and 
computational model, and show how its performance matches 
reasoners’ inferences in two studies by Hinterecker et al. 
(2016). We conclude by discussing the model-based theory in 
light of alternative accounts of reasoning. 

Keywords: mental models, modal reasoning, possibilities, 
reasoning, probability logic 

Introduction 
The word “possibility” is fraught with ambiguity, because 

philosophers distinguish between different sorts of 
possibility. An “alethic” possibility is any description that is 
not self-contradictory. “Deontic” possibilities are those that 
are permissible (e.g., instances of drinking alcohol when 
over the legal age restriction), and impossibilities are those 
that are prohibited (e.g., drinking while under the age 
restriction). Deontic possibilities can be violated, whereas 
alethic possibilities cannot (cf., Bucciarelli & Johnson-
Laird, 2005; Bucciarelli, Khemlani, & Johnson-Laird, 
2008). The present paper focuses on a different notion of 
possibility: “epistemic” possibilities concern possibilities 
that are consistent with a reasoner’s personal knowledge. 
Reasoning based on possibilities is referred to as “modal” 
reasoning, because when you assert that something is 
“possible”, you qualify its occurrence. Conventional 
systems of logic cannot take into account the logical 
properties of modals to draw conclusions, because they 

concern unqualified propositions that are either true or else 
false. Consider these two assertions: 

 
1a. Sarah is Egyptian. 
  b. Possibly, Sarah is Egyptian. 

 
Assertion (1a) is unqualified: it asserts a fact about Sarah. If 
it is true then Sarah is indeed an Egyptian, and if it is false, 
she is not an Egyptian. Assertion (1b) is subtler. In addition 
to facts and their negations, it introduces possibilities. 
Logicians have historically analyzed modal assertions as 
referring to a set of “possible words” (see Kneale & Kneale, 
1962; Portner, 2009). To say that something is possibly the 
case is to say that it is true in at least one possible world, 
and to say that something is necessarily the case is to say 
that it is true in all possible worlds. 

Many different systems of modal logic exist (Kaufmann, 
Condoravi, & Harizanov, 2006). Each adopts a different set 
of axioms that affect which inferences can be proved. 
Different axiom systems affect which modal inferences are 
valid and which are not (see, e.g., Kripke, 1963). An 
inference is valid if it yields a conclusion that is true in 
every case in which the premises are true (Jeffrey, 1981, p. 
1). In principle, an infinite number of modal logics exists, 
but logicians tend to focus on the axioms themselves, which 
run in parallel with semantic assumptions about the 
accessibility of one possibile world from another (Kripke, 
1963). For instance, the axiom: 

 
□A → A 

 
where ‘□’ is a symbol that stands for the logical notion of 
necessity, A is any proposition whatsoever, and ‘→’ denotes 
material implication. The axiom asserts that the necessity of 
A material implies A. The axiom does not hold in the modal 
logic “system K” (for “Kripke”), but it does hold another 
logic, “system T”, and it corresponds to the assumption that 
accessibility is reflexive, i.e., if a proposition is necessary in 
a world then it holds in that world. 

Here is a set of inferences that are invalid in all systems of 
modal logic: 
 

2a. A or B or both. 
  b. Therefore, possibly A. 
  c. Therefore, possibly B. 
  d. Therefore, possibly A and B. 
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These inferences seem intuitively reasonable, but the 
conclusions (2b-d) are invalid in any modal logic. Suppose 
that A is impossible but B is true. In logic, the premise is 
true, but (2b) is false. So, the inference is invalid. Similar 
suppositions show that all the inferences are invalid, and so, 
no modal logic permits them. Why, then, are the inferences 
compelling – almost “obvious” – for humans?  

Despite some investigations into reasoning about 
possibilities (e.g., Bell & Johnson-Laird, 1998; Byrnes & 
Beilin, 1991; Goldvarg & Johnson-Laird, 2000; Inhelder & 
Piaget, 1958; Piéraut-Le Bonniec, 1980; Osherson, 1976; 
Sophian & Somerville, 1988), no comprehensive theory of 
human reasoning exists that explains how humans integrate 
reasoning about facts with reasoning about possibilities. The 
fundamental mystery is: where do the possibilities come 
from? Anecdotally, some researchers find that when 
participants are allowed to write or type out their own 
responses to a set of reasoning problems, they 
spontaneously qualify their inferences, e.g., by noting that a 
conclusion “is possible” or “could be true” or “might 
follow.” These responses are, of course, different ways of 
expressing modal conclusions. Other research finds that 
reasoners are capable of carrying out various modal 
reasoning tasks systematically, e.g., given a set of premises, 
they are able to determine whether a conclusion is necessary 
or possible (e.g., Bell & Johnson-Laird, 1998; Khemlani, 
Lotstein, Trafton, & Johnson-Laird, 2015; Newstead & 
Griggs, 1983). But only recently have researchers examined 
reasoners’ tendency to endorse modal conclusions from 
non-modal premises. Hinterecker and colleagues (2016) 
gave participants a battery of problems in which participants 
had to endorse or reject different conclusions from modal 
premises. Contrast this inference: 
 

  3. A or B or both. 
      Therefore, possibly A and B. 

 
with this one: 
 

  4. A or B, but not both. 
      Therefore, possibly A and B. 

 
Reasoners responded sensibly: they accepted (3) most of the 
time (82% of trials) but they accepted (4) on only a small 
minority of trials (10%; see Hinterecker et al., 2016, 
Experiment 1). But, both (3) and (4) are invalid in logic. 

Probabilistic logic 
Can Hinterecker and colleagues’ findings be explained by 

an alternative theory? The two inferences above may be 
treated more sensibly in probabilistic logic, hereafter, “p-
logic”, which is a formal system devised by Adams (1975; 
1988). P-logic reinterprets validity on probabilistic terms: a 
conclusion is probabilistically valid (p-valid) only if in any 
consistent assignment of probabilities its conclusion is at 
least as probable as its premises. Hence, in (3), the 
conclusion, possibly(A and B), does not rule out any cases, 

i.e., it can be true independent of whether A or B are true. 
The premise, A or B or both, in contrast, rules out the 
situation in which both A and B are false. And so, the 
conclusion has a probability greater than that of the premise 
in (3), and it is p-valid. In a similar vein, (4) is p-invalid 
because the probability of the conclusion, possibly(A and 
B), is 0 given the premise. And so, no matter what 
probability is assigned to the premise, the inference is p-
invalid. P-logic is central to recent probabilistic accounts of 
human reasoning known colloquially as the “new paradigm” 
(see, e.g., Evans, 2012; Oaksford & Chater, 2007; Over, 
2009; Johnson-Laird, Khemlani, & Goodwin, 2015). 

But, p-logic does not always make sensible predictions. 
For instance, it predicts that the following inference is p-
valid: 
 

  5. A or B, but not both. 
      Therefore, A or B, or both. 

 
The probability of the conclusion in (5) is greater than or 
equal to that of the premise, and so p-logic predicts that 
reasoners should make it. (The inference is always valid in 
logic.) Yet, participants rejected it on 97% of trials in the 
aforementioned study by Hinterecker and colleagues. 
Perhaps a deeper problem with probabilistic accounts is that 
they do not explain the provenance of modal conclusions, 
e.g., “possibly A”, from non-modal premises. Hence, an 
alternative account of reasoning is needed to explain modal 
inferences. 

A model-based theory of modal inference 
The mental model theory of reasoning – hereafter, the 

“model theory” – posits that reasoners draw conclusions by 
building and scanning iconic representations of possibilities, 
i.e., mental models (Johnson-Laird, 2006; Johnson-Laird & 
Byrne, 1991). The theory assumes that interpreting 
compound assertions such as those linked by the 
connectives and, or, and if, yields a set of discrete 
possibilities. Models mimic the structure of what they 
represent, i.e., they are iconic (Peirce, 1931-1958, Vol. 4). 
But, they can also contain abstract tokens, such as symbols 
denoting negations (Khemlani, Orenes, & Johnson-Laird, 
2012). They can represent temporal sequences of events as 
multiple models unfold in time the way events do 
(Bucciarelli, Mackiewicz, Khemlani, & Johnson-Laird, 
under review; Khemlani, Mackiewicz, Bucciarelli, & 
Johnson-Laird, 2013). 

The theory posits two primary systems for reasoning (see, 
e.g., Johnson-Laird & Steedman, 1978): a fast system builds 
mental models and scans them without the use of working 
memory. A slower system revises models and fleshes them 
out to yield a set of fully-explicit models. It also searches for 
alternative models consistent with the premises. It can 
correct the errors and biases that the fast system yields, but 
it is subject to the limitations of working memory. The 
difference between mental models and fully-explicit models 
is clear when reasoning about disjunctions, e.g., He has the 
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soup or the salad or both. Mental models abide by a 
“principle of truth”, i.e., they represent what is true in a 
compound clause, and not what is false. They can flesh out 
the initial mental models to yield a set of fully-explicit 
models, i.e., possibilities that specify both what is true and 
what is false. The mental models of the disjunction above 
can be depicted in the following schematic diagram: 

 

   soup   
     salad 
  soup  salad 
 

Each row in the diagram denotes a different possibility. 
Hence, the first row denotes the possibility in which he has 
the soup. In contrast, a fully-explicit model represents both 
what is true in each possibility, as well as what is false: 
 

  soup ¬ salad 
 ¬ soup  salad 
  soup  salad 
 

Three primary findings support the model theory. First, 
inferences from one model are easier than inferences from 
multiple models (e.g., Johnson-Laird, Byrne, & Schaeken, 
1992). Second, because reasoners tend to build mental 
models instead of fully-explicit models, they are prone to 
systematic errors (see Khemlani & Johnson-Laird, 2017, for 
a review). Third, reasoners rely on counterexamples to 
correct erroneous inferences (e.g., Johnson-Laird & Hasson, 
2003). 

But, the theory has at least two serious shortcomings. 
First, it does not integrate facts and possibilities. As a result, 
it cannot explain the “obvious” inferences in example (2) 
above. Indeed, no theory of reasoning adequately integrates 
facts and modal reasoning, but the problem is particularly 
acute for the model theory, as the theory is based on the 
representation of possibilities, and so modal reasoning is 
within its purview. And second, its various computer 
implementations do not make quantitative predictions 
(Johnson-Laird & Yang, 2008). To rectify these 
shortcomings, we describe a novel assumption about the 
representation of mental models below, and then we present 
a new computational model capable of delivering 
quantitative predictions by varying how models are built 
and revised. 

The principle of conjunctive possibilities 
We amend the model theory to explain where possibilities 

come from in inferences that make no mention of them with 
the following principle: 

 
 

The principle of conjunctive possibilities: By 
default, compound assertions between clauses refer 
to conjunctions of possibilities. A clause can be 
evaluated as possible if it is affirmed in at least one 
possibility of the conjunctive set. It can be 
evaluated as necessary if it can be affirmed in all 
possibilities. And it is deemed factual if it is 
affirmed in a set of only one possibility. 

 

The principle posits that a disjunction, He has the soup or 
the salad or both, refers to a set of possibilities, i.e.: 
    

    possible( soup & ¬salad ) & 
    possible(¬soup &  salad ) & 
    possible( soup &  salad ) 
 

The addition of the principle solves two mysteries of modal 
reasoning: first, it explains why reasoners are apt to make 
modal inferences from non-modal assertions. If compound 
assertions refer to possibilities, then reasoning about 
possibilities is the default instead of an extension to more 
basic reasoning patterns (cf. Inhelder & Piaget, 1958). 
Second, because the principle is that possibilities are related 
through conjunction, it allows reasoners to conclude that 
any of the separate possibilities can be concluded as 
possible. An immediate consequence of the assumption is 
that modal inferences are the default, and reasoning about 
facts is a special case of reasoning about possibilities. 

The principle is presaged by recent ideas due to 
Zimmerman (2000), who proposed that disjunctions refer to 
lists of alternatives in a “possible worlds” semantics, and 
Geurts (2005) who extended the idea to disjunctions that 
concern facts. The principle we propose, however, applies to 
all sorts of sentential connectives, including disjunctions, 
conjunctions, conditionals, and even causal relations, e.g., 
causes, enables, and prevents (Johnson-Laird & Khemlani, 
in press; Khemlani, Barbey, & Johnson-Laird, 2014). 

The principle maintains the separation between mental 
models and fully-explicit models. Hence, it makes all of the 
same predictions as previous versions of the model theory. 
It also predicts that reasoners should deem (5) invalid, 
which we repeat here: 
 

  5. A or B, but not both. 
      Therefore, A or B, or both. 

 

Both a truth-functional analysis in logic and the notion of p-
validity in p-logic treats (5) as valid. But, if reasoners 
represent the exclusive disjunction as a conjunction of 
possibilities, i.e.: 
 

    possible( soup & ¬salad ) & 
    possible(¬soup &  salad ) 
 

then the conclusion does not follow from the representation, 
because nothing yields the possibility in which both cases 
hold. 

Nevertheless, the previous predictions are qualitative, not 
quantitative. A veridical simulation of human reasoning 
needs to provide a quantitative simulation of the extant data. 
To do so, we developed a novel computational 
implementation of the model theory, and we tested it against 
two experiments by Hinterecker et al. (2016). We now 
describe the computational model and its simulation of data. 

A computational implementation 
of the model theory 

We developed a computational theory of sentential 
reasoning  that  integrates  reasoning  about  facts  and  reas- 
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Build fully explicit
models

Null 
model?

Working 
memory

Linguistic

 
 
Figure 1. A schematic diagram of the computational model of 
reasoning. The system operates by parsing premises in natural 
language, constructing mental models and scanning them to 
formulate initial conclusions (system 1), and then searching for 
counterexamples and building fully-explicit models to interrogate 
initial inferences (system 2). 
 
oning about possibilities. It implements the principles of the 
mental model theory of reasoning (see, e.g., Khemlani &   
Johnson-Laird, 2013) and the principle of conjunctive 
possibilities introduced here. Figure 1 provides a schematic 
of the program. The computational model is structured 
around three general systems: 
a) A linguistic system uses a grammar and lexicon to parse 

verbal assertions. 
b) An intuitive system (System 1) uses the parse to 

construct an initial mental model, i.e., a conjunction of 
possibilities. It also scans the model to formulate initial 
inferences. 

c) A deliberative system (System 2) can flesh out the 
mental model and search for alternative models. This 
system can manipulate and update the representations 
created in System 1, and it can modify conclusions, but it 
too can fail when a problem calls for more working 
memory than it has (Khemlani & Johnson-Laird, 2017). 

In the computational model, system 1 does not have access 
to working memory, and so it can construct only one mental 
model at a time. It can flesh out the mental model to make it 
explicit. The probability of doing so is governed by a 
parameter, φ. System 2, however, has access to working 
memory. As a result, the operations of system 1 are faster 
and more prone to err than system 2. System 2 can operate 
on multiple models at a time, search for counterexamples, 
and construct a set of fully explicit models. The probability 
of calling system 2 is governed by a separate parameter, s. 
In principle, the size of working memory could also be 
governed by a parameter in order to model individual 
differences in reasoning.  

The system is capable of carrying out a number of 
inferential tasks, but for brevity, we consider just two: 

assessing that a given conclusion is possible, and assessing 
that it is necessary. In order to assess an inference, the 
computer model checks that each possibility in the 
conjunction corresponding to the conclusion is supported by 
the premises. If they all are, then the conclusion follows of 
necessity, and if at least one is, then the conclusion is a 
possibility. The concept of necessity may vary from 
participant to participant and from problem to problem: 
some problems may encourage reasoners to check that the 
models of the premises hold in all models of the conclusion 
(a strong notion of validity), and some problems may 
encourage reasoners to check only that all the possibilities to 
which the conclusions refer hold in the premises (a weaker 
notion of validity). Consider how you might respond to 
problems such as this one: 

 
  6. Suppose that: A or B, or both. 
      Does it follow that: A or B, but not both? 

 
The conjunctive possibilities to which the first premise 
refers are: 
 
    possible( A & ¬B ) & 
    possible(¬A &  B ) & 
    possible( A &  B ) 
 
And the possibilities to which the second premise refers are: 
 
    possible( A & ¬B ) & 
    possible(¬A &  B ) 
 
Reasoners with a strong notion of validity should judge that 
(6) is invalid, because the models of the premise do not all 
hold in the models of the conclusion. Reasoners with a 
weaker notion of validity should assess that (6) is valid, 
since the models of the conclusion hold in all the models of 
the premises. To simulate this non-determinism of human 
reasoning, we built a third and final parameter into the 
system, g, that denotes the probability of the system 
adopting a weak version of validity. 

We applied the computational model to simulate recent 
data on modal reasoning. The simulations show a close fit 
between the predictions of the system and humans’ 
inferential behavior after conservative parameter searching.  

Simulations of Hinterecker et al. (2016) 
We sought to use the computational implementation of the 
model theory to simulate participants’ performance in 
Experiments 1 and 3 in Hinterecker et al. (2016), as those 
two studies are directly pertinent to how reasoners draw 
modal conclusions from non-modal premises. In 
Experiment 1, Hinterecker and colleagues gave participants 
a battery of diagnostic problems that involve disjunctions. 
Two of those problems tested the tendency to draw modal 
conclusions from disjunctions that make no mention of 
possibilities, and two tested the ability to infer an inclusive 
disjunction   from   an   exclusive   one,   and   an   exclusive  
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Figure 2. Observed (histograms) data and predicted (circles) 
proportions of accepting the conclusion for different inferences. 
Top panel: inferences from Hinterecker et al. (2016, Experiment 
1). Bottom panel: inferences from Hinterecker et al. (2016, 
Experiment 2). For each of the problems, the assertion on top 
denotes the premise and the assertion on the bottom denotes the 
conclusion. 
 
disjunction from an inclusive one. Figure 2 summarizes the 
proportion of participants to accept the varying conclusions 
given the single premise. 

The only parameter that could have affected the system’s 
simulations on the problems in Experiment 1 was the g 
parameter, which dictates how probable it is for participants 
to make use of a weak notion of validity. An exhaustive 
exploration of the parameter space yielded an optimal g 
value of .75, i.e., the system optimally modeled the data 
when it stochastically applied weak validity to 75% of 
simulated problems. We generated synthetic data by running 
1000 simulations of the four inferences in Experiment 1. 
Figure 2 (top panel) shows the proportion of correct 
responses in the observations (histograms) and predictions 
(circles) in the study as a function of the inference. The 

computer model matched the participants’ performance in 
the experiment well (r = .99, RMSE = .10). The predictions 
of the computer model were in the 99th percentile relative to 
hypothetical datasets (Khemlani & Trafton, 2013). 

Hinterecker’s et al. (2016) Experiment 3 was a more 
stringent test of reasoners’ ability to infer modal conclusions 
from an inclusive disjunction, A or B or both. For each 
problem in the experiment, participants assessed the 
disjunction and then accepted or rejected the one of the 
following four conclusions: possibly A and B, possibly A, 
possibly B, possibly not-A and not-B. None of these 
inferences is valid in any known logic, but as Figure 2 
(bottom panel) shows, reasoners endorsed three of the four 
conclusions. We disabled all of the parameters to see how 
the computer model matched the participants’ performance; 
it did so extremely well (r = .99, RMSE = .12), and 
additional parameter manipulations would have resulted in 
only nominal changes to the fit. 

In sum, the computational model implementing the model 
theory and the principle of conjunctive possibilities yielded 
a close fit to the data from Hinterecker et al. (2016). 

General discussion 
Reasoners have no difficulty drawing modal conclusions 

from compound assertions that make no mention of 
modality. The ability to do so often seems “obvious”; only 
experts are likely to realize that this inference is invalid in 
logic: 

 

7. A or B or both. 
    Therefore, possibly A. 

 

No known logical system designed to deal with modalities, 
i.e., a modal logic concerning what is possible or necessary, 
permits the inference above. Reasoners naive to logic may 
also be surprised to find that both orthodox logic and 
probabilistic logic render the following inference valid: 
 

8. A or B, but not both. 
    Therefore, A or B, or both. 

 

On our account, reasoners are justified in feeling that the 
invalidity of (7) and the validity of (8) are counterintuitive 
and incorrect. The model theory of reasoning, which is 
based on possibilities (Johnson-Laird, 2006), treats 
compound assertions, such as conjunctions, conditionals, 
and the disjunctions in (7) and (8), as conjunctions of 
possibilities. Hence, reasoning about possibilities is 
fundamental. Reasoners represent possibilities directly, and 
so modal reasoning is a natural consequence of the way 
people represent assertions. 

The principle of conjunctive possibilities characterizes the 
inferences in (6) and (7) more intuitively: it predicts that (6) 
should be deemed valid and (7) should be deemed invalid. 
And a computational implementation of the principle makes 
identical predictions, which are validated by recent 
experiments on modal reasoning by Hinterecker et al. 
(2016). 
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At present, no alternative theory of reasoning, whether 
based on mental logic (e.g., Rips, 1994) or on the 
probability calculus (e.g., Oaksford & Chater, 2007), can 
explain these phenomena of modal reasoning. Moreover, no 
computational model of reasoning, whether in psychology, 
artificial intelligence, or logic, characterizes the inferences 
in the same manner as the system we outlined above. The 
reason, as we argue, is that everyday reasoning is based on 
possibilities, not probabilities or truth-functions. 
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Numerical and Non-numerical Magnitude Estimation
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Abstract: Despite a heated debate regarding a cognitive mechanism of magnitude representation, little has been done to di-
rectly compare numerical and non-numerical estimation and provide a unified account of the two processes. In the current study,
we examined estimation of numerical and non-numerical quantities on a continuum using various psychophysical functions.
Inconsistent with the proportion reasoning and measurement skills accounts, estimates of both numerical and non-numerical
quantities were better predicted by the logarithmic-linear model than by cyclic power models. Furthermore, individual dif-
ferences in the degree of logarithmic compression was highly correlated over tasks, whereas bias measures from competing
models did not show such associations. These findings suggest that estimation of both numerical and non-numerical magnitude
is processed via shared representation systems that are logarithmically or linearly constructed.
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Abstract 

Selective sustained attention (SSA) is an important       
cognitive process that enables everyday functioning and task        
performance by allowing us to: 1) choose components of our          
environment to process at the exclusion of others and 2)          
maintain focus on those components over time. Although        
SSA is known to undergo rapid and marked changes during          
the preschool and early primary school children years, there         
has been a paucity of behavioral data on these years of           
development due to a lack of child-appropriate testing        
paradigms. TrackIt is a paradigm that was recently developed         
to fill the previously existing measurement gap for SSA in          
these years. In this study, we analyzed errors that children          
(aged 3-7) make when performing TrackIt, to better        
understand what factors drive improvement in their       
performance over age. In addition, we manipulated       
parameters within TrackIt to place varying levels of demand         
on children’s SSA, and measured behavioral performance       
over age, with the goal of measuring and characterizing         
developmental trends during these years. Since TrackIt is still         
a recent paradigm, our results also help suggest appropriate         
parameter settings for calibrating the task to different age         
groups. 
 

Keywords: selective sustained attention; TrackIt 
 

Introduction 
Selective sustained attention (SSA) is an important       
cognitive process that enables everyday functioning and task        
performance by allowing us to: 1) choose components of         
our environment to process at the exclusion of others and 2)           
maintain focus on those components over time. SSA is         
known to rely on both endogenous factors (e.g., internal         
goals) as well as exogenous factors (e.g., stimulus salience)         
(O’Connor & Manley, 2004) -- studying specifically how        
these factors interact and work together in guiding attention         
contributes to a growing understanding of SSA’s       

mechanisms. Task paradigms that allow simultaneous      
investigation of both exogenous and endogenous factors of        
SSA have been available for adults and infants but not for           
preschool and early primary school children (~3-7 years)        
until recently (for review, see Fisher & Kloos, 2016). These          
years are particularly important from a research standpoint        
because data from infants and adults suggests that SSA         
develops significantly during these intermediate years      
(Oakes, Kannass, & Shaddy, 2002). TrackIt, a paradigm        
developed specifically to fill this measurement gap, is        
designed to be appropriately challenging for a range of         
developmental years including the preschool years, with       
varying parameters for adjustment of difficulty across ages        
(Fisher et al., 2013). 

Prior studies with TrackIt demonstrated that children       
improve on the task between 3 and 5 years of age (Fisher et             
al., 2013, Erickson et al., 2015), consistent with the overall          
developmental pattern of improvement in SSA with age. In         
order to investigate this improvement more closely, the        
current study looked at 1) what factors tend to drive the           
failures (errors), and what, of those, consequently improve        
to drive the overall performance improvement (see “Factors        
driving improvement” below), and 2) what the behavioral        
trajectories representing this improvement look like across       
an expanded age range. To delve into this issue, we          
manipulated parameters of TrackIt to place varying levels of         
demand on children’s selective sustained attention to       
achieve a coarse mapping of behavioral performance in        
several parameter combinations over ages 3 to 7. In contrast          
to prior studies using TrackIt that focused on the analysis of           
correct responses (Fisher et al., 2013; Erickson et al., 2015),          
this study also examined the patterns of errors as a function           
of task difficulty and age. 
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Factors Driving Improvement 
This study introduces a new addition to the TrackIt         
program: error analysis. This functionality (a software       
update that is now part of the TrackIt program that is freely            
available to interested researchers) adds, to the behavioral        
output, information on the types of errors that participants         
make. Analyzing the types of errors that children make over          
development may provide greater insight into what factors        
constitute the overall improvements that we see in        
children’s SSA performance. For example, some error types        
help to distinguish between behavioral errors due to failure         
of SSA and those due to insufficient visuo-spatial        
resolution. Also, finding that a significant proportion of        
errors can be related to failure of SSA would help validate           
TrackIt as a task assessing attention. Thus, the first goal of           
this study was to present preliminary analyses of error type          
breakdown over age and difficulty. 
 
Behavioral Trajectories 
Mapping out age-related changes in performance within the        
multi-dimensional parametric space of variables (i.e.,      
number of distractors, grid size, speed of objects, type of          
distractors) involved in visual attention serves two important        
purposes: 1) it begins to fill in the empirical gap in           
characterizing children’s visual SSA development within a       
single consistent measurement framework, and 2) it       
suggests initial parameter selection ranges for age groups, to         
guide researchers using TrackIt (Doebel et al., 2015).        
Hence, the second goal of this study is to present          
preliminary findings on parameter space mappings. 

 
Method 

Participants 
Participants were 144 typically developing children (71       
female, Mage= 5.08 years) recruited from local preschools,        
day care centers, and elementary schools in Pittsburgh, PA.         
See Table 2 below for a breakdown of participant age          
statistics. 
 
Materials and Apparatus 
Stimuli were presented on a Lenovo touchscreen laptop with         
physical screen dimensions 19.1 cm x 34.2 cm and pixel          
dimensions 1920x1080 pixels. Participants were seated at a        
desk facing the screen with their heads about 2 feet away           
from the screen.  

 
TrackIt Task 
In this task (freely available for download at        
http://www.psy.cmu.edu/~trackit/), participants were asked    
to visually track a single target object as it moved on a grid             
among moving distractor objects. For each trial, the target         
and distractor objects were randomly picked without       
replacement from a set of unique objects spanning 9         

different shapes with 9 different color possibilities (81        
objects in total).  See Figure 1 for examples. 1

At the beginning of each trial, the objects appeared on          
the grid, centered in distinct grid cells, and the target object           
was indicated by a red circle around it. The initial positions           
of the objects were randomized. The experimenter started        
each trial with a button press after ensuring the participant          
was ready to begin.  

Upon starting the trial, the red circle disappeared, and         
the objects began to move in linear trajectories from grid          
cell to grid cell at a constant speed. At the end of each trial,              
all objects disappeared from the screen, and the participants         
were asked to indicate with their finger (on the touch          
screen) which grid cell the target object was last in before it            
disappeared.  

The sequence of positions in the path of each objects was           
randomized, with one restriction for just the target: the         
target had to be in the center of a grid cell at the end of a                
trial, to reduce ambiguity for the participant in determining         
its final location. Due to this restriction, the length of trials           
was not fixed, but varied slightly from trial to trial (to allow            
the target to reach the center of a grid cell. The minimum            
trial length was set to 10 seconds. The parameters -- grid           
size, number of distractors, and speed of objects in pixels          
per second -- were determined from prior testing in TrackIt          
with a separate group of 3- to 5-year old children (Fisher et            
al., 2013), and organized according to participant age and         
difficulty level as seen in Table 1. Object motion display          
was set to 30 frames per second. 

 
Table 1: TrackIt parameter combination used in each 

difficulty level. 
 

Difficulty 

Age 
Group 
(years) 

Grid 
Size 

# of 
Distractors 

Object 
Speed 
(pix/s) 

Level 1 3-5 4x4 4 500 
Level 2 4-6 6x6 6 500 
Level 3 7 6x6 8 800 
Note: pix/s = pixels/second. 
 
We assessed three different difficulty levels,      

administered to different age groups, as shown in Table 1.          
Separate groups of participants were tested in each difficulty         
level. The sample size per age and difficulty level is          
presented in Table 2. It should be noted that, ultimately, we           
aim to obtain a large-scale representative sample of        

1Children also participated in a homogeneous condition, in which 
all distractors are identical (but distinct from the target). This 
condition is designed to require less SSA because target tracking is 
supported exogenously by increased salience of the target. We did 
not analyze this condition as distinguishing exogenous vs. 
endogenous effects was not of interest for this study. 
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participants at each age and difficulty level; the present         
paper reports the initial findings from this study. 
 
Memory Check At the conclusion of each trial, children         
were presented with 4 shapes that could have served as          
target objects in this task (one of which was actually the           
target) and asked to point to the shape they had been           
tracking (see Figure 1). The responses to memory check         
questions were recorded by the children’s touch screen        
responses. The memory checks were introduced to help        
discriminate between two possible reasons why a participant        
may fail to correctly report the location where the target          
object disappears. The first possibility is that encoding of         
the identity of the target object may be insufficiently strong          
to persist through an entire trial – this would indicate an           
encoding failure. The second possibility is that a child may          
track distractors for a part of the trial despite remembering          
which object was supposed to be watched – this would          
indicate the failure of selective sustained attention. The        
target was colored as in the trial, while the remaining 3           
shapes and their colors were sampled without replacement        
from the remaining 8 shapes and colors. 
 
Design and Procedure 
The experimenter administered the TrackIt task to       
participants in a quiet room or hallway. At the beginning of           
the task, participants were told that: 1) the objects will start           
moving around the grid when the experimenter presses a         
button; 2) the goal is to follow the target object with their            
eyes; 3) at some point the objects will suddenly disappear,          
and their job is to point to where the target object was when             
it disappeared. Each trial was followed by a baseline screen          
displaying a smiley face, a memory check screen, and a          
second smiley face baseline (in that order). Participants        
were told that the smile did not indicate a correct answer           
and rather meant we were happy they were playing our          
game. See Figure 1 for a diagram of the task sequence. 

Participants completed 11 trials of the task. The first trial          
was a practice trial and was completed with assistance from          
the experimenter who traced the moving target with their         
index finger. The first trial was accordingly omitted from         
analysis. Participants were then told that they would need to          
complete the rest of the task by themselves, tracking the          
target with their eyes only.  

 

 
Figure 1. The TrackIt task pipeline. A single trial, 

followed by smiley face, memory check, and smiley face. 
 

Error Analysis Next, we were interested in better        
understanding what types of tracking errors participants  
were making. Tracking errors were any answers in the main          
TrackIt task that weren’t the correct cell that the target          
ended in. Tracking errors were thus further classified based         
on the incorrect grid cell response indicated by the         
participant, in relation to the final positions of the target and           
distractors on the grid. Specifically, in addition to a correct          
response, we considered 5 types of errors: 

Spatial Resolution: The response was a cell adjacent to         
the correct grid cell, but was not also adjacent to a           
distractor. 

Distractor: The response was a cell that contained a         
distractor. 

Distractor Spatial Resolution: The response was a cell        
that did not contain a distractor, was adjacent to a cell that            
contained a distractor, and was not also adjacent to the          
correct grid cell. 
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Uncategorizable: The response was a cell that did not         
contain a distractor, and was adjacent to both the correct          
grid cell and a cell that contained a distractor. 

Other: None of the above. That is, the response was a           
cell that did not contain a distractor, and was adjacent to           
neither the correct grid cell, nor a cell that contained a           
distractor. 

In the above, “adjacent” cells are defined as those within          
one horizontal, vertical, or diagonal step of a given cell.          
(Cells are not considered adjacent to themselves.) For        
example, corner cells have 3 adjacent cells, edge cells have          
5 adjacent cells, and other cells have 8 adjacent cells.  

Note that finding that a significant proportion of errors         
are distractor-related errors (distractor, distractor spatial      
resolution, or uncategorizable) would help to validate       
TrackIt as a task assessing attention; if we find that kids           
make many spatial resolution errors, it may indicate that the          
performance is limited by kids’ visuo-spatial acuity. In        
contrast, if we find that kids make predominantly “other”         
errors, it could suggest that they lose interest in the task           
entirely or do not understand the task and respond         
randomly.  
 

Results 
Memory Check 
Responses to individual memory check questions (i.e.,       
which object were you supposed to watch?) were averaged         
over the 10 experimental trials to yield a Memory Accuracy          
score for each participant. Memory Accuracy data are        
presented in Figure 2.  

 
Figure 2. Tracking accuracies for each age and difficulty 

level, both with and without memory-incorrect trials.  
 
In all conditions and age groups Memory Accuracy was         
above chance (25% given four response options, all        
one-sample ts>6.2, ps<0.0001). To investigate possible      
effects of age and difficulty, memory accuracy scores were         
submitted to a 2-way ANOVA with both age as difficulty          
level as between-subject factors. This analysis indicated a        

main effect of age (F (2, 128)= 32.2, p<0.0001). There was           2

no effect of difficulty and no age-by-difficulty interaction        
(both Fs<1.34, ps>0.24). Therefore, any differences in       
object tracking accuracy between difficulty levels were       
unlikely to stem from differences in the strength of encoding          
of the target objects. 

 
Error Analysis 
For this analysis, we excluded trials in which the participant          
failed the memory check, as encoding errors were a separate          
type of error that we analyzed separately. We compared the          
rate of each error type to chance, assuming that the          
participant response was randomly distributed over the       
incorrect squares of the grid. Chance was estimated by         
simulating final states of 10,000 TrackIt trials for each level.          
Chance levels are given in Table 3.  
 

Table 3: Chance probability of each error type 
assuming the participant response is uniformly 

distributed over the grid. 
 

Error Type Level 1 Level 2 Level 3 

Correct 0.0625 0.0278 0.0278 
Spatial Resolution 0.0434 0.0426 0.0277 

DSR 0.3606 0.1514 0.4814 
Distractor 0.2131 0.4449 0.1962 

Uncategorizable 0.2114 0.1004 0.1084 
Other 0.109 0.2329 0.1585 

Note: DSR = Distractor Spatial Resolution. 
 
Given that the participant made a tracking error, the average          
portions of error that were distractor errors was consistently         
significantly above chance in Level 1 (3-year olds:        
one-sample t=3.352, p<0.005; 4-year olds: t=4.117,      
p<0.001; 5-year olds: t=4.756, p<0.0001), Level 2 (4-year        
olds: t=4.831, p<0.0001; 5-year olds: t=3.805, p<0.001;       
6-year olds: t=9.869, p<0.0001), and Level 3 (7-year olds:         
t=14.065, p<0.0001. 

In order to understand how error types change with         
increasing age, we regressed each error type proportion over         
age. The 𝛽 coefficients and F- and p-values for each error           
type and difficulty level are given in Table 4. In particular,           
note that only the Distractor, Distractor Spatial Resolution,        
and Uncategorizable errors in Level 1 show significant        
decreases with age.  
 
Tracking Accuracy 

2 We omitted difficulty level 3, as only one age group (7 year olds) 
completed it. 
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For analyzing tracking accuracy, we included all trials (even         
those for which the memory check was failed), because we          
are interested in the true performance of subjects in order to           
calibrate TrackIt. Furthermore, as shown by a plot of         
tracking accuracy both including and excluding incorrect  

 
Table 4: Linear regression results from regressing 

error type proportions over age 
 

Difficulty Level 1 
Error Type 𝛽 F(1,66) p 

Spatial Resolution -0.0203 1.33 0.253 

DSR -0.0706 6.96 0.010* 

Distractor -0.0653 7.54 0.0078** 

Uncategorizable -0.0444 4.81 0.0318* 
Other -0.0101 0.977 0.327 

Difficulty Level 2 
Error Type 𝛽 F(1,65) p 

Spatial Resolution -0.00915 1.07 0.304 

DSR 0.0125 0.185 0.669 

Distractor -0.0229 0.644 0.425 

Uncategorizable -0.0320 1.63 0.206 

Other -0.0142 0.540 0.465 
Note: DSR = Distractor Spatial Resolution. 
* p<0.05.  ** p<0.01 

 
memory response trials (see Figure 3), filtering by memory         
check had little effect on the tracking accuracy scores. For          
all difficulty levels in all age groups, tracking accuracy was          
significantly above chance (chance is 1/16 for Level 1 and          
1/36 for Levels 2 and 3, ts>3.9, ps<0.0005). 

For each of the first two difficulty levels, we saw a           
significant upward trend effect by an F-test on linear         
regression (𝛽=0.2302, F=38.33, p<0.0001 for Level 1 and        
𝛽=0.1427, F=7.605, p<0.01 for Level 2). We could not         
assess a trend for difficulty Level 3 because we only had           
one age group for that level. 

 

 

Figure 3. Tracking accuracies for each age and difficulty 
level, both with and without memory-incorrect trials. 

 
For difficulty Level 1, tracking accuracy of 3-year olds         

was significantly below that of 4-year olds (two-sample        
t=-5.05, p<0.0001), but tracking accuracy of 4-year olds was         
not significantly below that of 5-year olds (two-sample        
t=-1.02, p=0.315). Similarly, for difficulty Level 2, tracking        
accuracy of 4-year olds was significantly below that of         
5-year olds (two-sample t=-2.18, p<0.033), but tracking       
accuracy of 5-year olds was not significantly below that of          
6-year olds (two-sample t=-0.88, p=0.382). 

In the two age groups that performed two difficulty         
levels (4-5 year olds), two-sample t-tests revealed that        
performance differences between difficulty levels were not       
significant (ts<1.11, ps>0.11). 
 

Discussion 
The first purpose of this study was to gain insight into the            
factors driving improvement by investigating the types of        
errors made by children. A second purpose was to explore          
the multidimensional parameter space available within      
TrackIt, with the goal of identifying both developmental        
milestones in terms of TrackIt performance as well as         
appropriate settings for use with children. 
 
Memory Accuracy 
Memory accuracy results indicate that encoding error is        
more prominent in younger children and improves       
significantly over age. On the other hand, memory accuracy         
did not differ significantly across difficulty levels, nor was         
there an age-difficulty interaction effect. Both of these        
results are encouraging because they suggest that encoding        
error does not become a confound when using TrackIt with          
different difficulties across age groups. 
 
Error Analysis 
As discussed above, the proportion of distractor errors was         
consistently significantly above chance in every age group        
and difficulty. In Level 1 difficulty, distractor, distractor        
spatial resolution, and uncategorizable errors (all      
distractor-related errors) significantly decreased over age.      
Noting that uncategorizable errors indicate a combination of        
spatial and distractor spatial resolution errors, these together        
suggest that distractors’ effect on performance decreases       
with increasing age. 

On the other hand, the reduction in both spatial and          
distractor spatial resolution errors may also stem from a         
reduction in errors due to visuospatial resolution. While this         
was a known confound when analyzing the improvement in         
tracking accuracy over age, our analysis enables us to         
partially isolate these two sources of improvement by        
showing more specifically that distractor errors decrease       
over time. Since distractor errors are associated only with         
SSA, and not spatial resolution, this provides a stronger         
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suggestion (as compared to previous results showing only        
improvement in TrackIt performance) that the improvement       
in TrackIt performance over age indeed reflects SSA        
development. 

As with previous analyses, we found greatest       
improvements in performance between 3- and 4-year olds        
(see Figure 3), which may explain why the significant         
change in distractor, spatial resolution, and distractor spatial        
resolution errors was observed only in difficulty Level 1, the          
only difficulty level at which we tested 3-year olds. We          
hypothesize that one possible cause of these results, given         
that changes in the proportion of distractor-related errors        
occur primarily between ages 3 and 4, is that these ages may            
be an especially critical period of rapid SSA development. 
 
Tracking Accuracy 
In our tracking accuracy results, we observed significant        
developmental upward trends with age in difficulty Levels 1         
and 2, as shown in Figure 3. However, more specific          
analyses of each difficulty level revealed ceiling effects.        
These suggest that the parameter combinations for Level 1         
and Level 2 may be appropriate settings for assessing 3- and           
4-year olds, respectively, insofar as they avoid ceiling        
effects, but more difficult parameter combinations may be        
necessary for sensitive measurement with older children. 

Since performance of 4- and 5-year olds did not drop          
significantly from Level 1 to Level 2, a linear increase in           
number of distractors and grid size with age does not seem           
to be enough to preserve difficulty across age groups. 
 
Limitations and future directions 
Our study did not include 2 year-olds and had limited          
samples of 6- and 7-year olds. Since significant        
improvement was observed between 3 and 4 years of age, it           
may be important to look at 2-year olds also. 

The behavioral output of TrackIt is limited in that it          
records only the participant’s response at the end of the trial.           
In particular, we do not know if participants are         
continuously attentive to the target throughout the trial (on         
correct trials) or when participants cease to attend to the          
target (on incorrect trials). Currently, studies are being run         
in the lab which combine eye-tracking technology with        
TrackIt and make this information accessible, potentially       
giving us a more complete picture of how participants         
behave during the TrackIt task. 
 

Conclusion 
The findings of this study lay the foundation for further          
work using TrackIt to study SSA development over a range          
of ages by a) identifying parameter combinations       
appropriate for certain age groups, b) discounting reduction        
in encoding errors as a confounding source of performance         
improvement over age, and c) enriching the behavioral        
output of TrackIt with information about the types of errors          
children make, and hence the sources of their performance         

improvements over time. Because of its parametric       
flexibility, TrackIt can assess SSA across a wide range of          
ages in the same basic task, lowering the risk that changes           
measured across age are due to different tasks. Additionally,         
TrackIt has good psychometric properties in general       
(test-retest reliability, predictive validity, and now a       
moderate degree of mapping of parametric space). TrackIt        
thus provides a practical and novel way of measuring         
attention in an age-range where we know rapid changes         
occur, but which we haven't had a task to assess with any            
degree of sensitivity. 
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Abstract
Successful and repeated cooperation requires fairly sharing
the spoils of joint endeavors. Fair distribution is often done
according to preferences for equitable outcomes even though
strictly equitable outcomes can lead to inefficient waste. In ad-
dition to preferences about the outcome itself, decision makers
are also sensitive to the attributions others might make about
them as a result of their choice. We develop a novel mathemat-
ical model where decision makers turn their capacity to infer
latent desires and beliefs from the behavior of others (theory-
of-mind) towards themselves, anticipating the judgments oth-
ers will make about them. Using this model we can construct a
preference to be seen as impartial and integrate it with prefer-
ences for equitable and efficient outcomes. We test this model
in two studies where the anticipated attribution of impartiality
is ambiguous: when one agent is more deserving than the other
and when unbiased procedures for distribution are made avail-
able. This model explains both participants’ judgments about
the partiality of others and their hypothetical decisions. Our
model argues that people avoid inequity not only because they
find it inherently undesirable, they also want to avoid being
judged as partial.
Keywords: fairness, social cognition, theory-of-mind, deci-
sion making, Bayesian models

Introduction
From the distribution of wealth across society to the distri-
bution of dessert at the end of a dinner party, humans seem
uniquely capable of enlarging the size of the pie and sharing it
fairly (Tomasello, 2014). We make these decisions guided by
normative principles such as efficiency, which says to maxi-
mize the total utility of the group and fairness, which says in
part that distributions should be both equitable and impartial.
We also use these principles intuitively when judging whether
others’ decisions are fair when considered from an impartial
or objective perspective (Rawls, 1971; Nagel, 1986).

In the real world where resources aren’t perfectly divisible,
these principles can often come into conflict. It is well known
that efficient allocations of resources are often inequitable and
equitable allocations of resources are often inefficient – they
leave some of the pie on the table. For example, if Alice has
one apple and Bob has none and we take Alice’s apple and
throw it out, Alice and Bob are in a more equitable state but
the total welfare (efficiency) is reduced. This is called inef-
ficient equity. Even young children prefer inefficient equity:
they prefer to destroy a resource rather than distribute it in-
equitably (Blake & McAuliffe, 2011; Shaw & Olson, 2012).
Preferences for equity and efficiency are often captured quan-
titatively by directly deriving them from the outcomes. For
instance, efficiency might correspond to the total or average
outcome among a group of agents and inequity might corre-
spond to the differences between the outcomes of different
agents (Adams, 1965; Fehr & Schmidt, 1999).

While early work focused on whether a given outcome is
perceived as fair (Adams, 1965; Fehr & Schmidt, 1999), there
is now growing evidence that decision makers are sensitive to
what their choice signals about themselves. Specifically, in-
equity created without showing partiality can be fair. If both
Alice and Bob are equally deserving but there is only one ap-
ple, a decision maker might avoid giving it to either one in
order to avoid an outcome that is neither equitable nor im-
partial. For instance, if the decision maker decided to give
the apple to Alice an observer would infer that the decision
maker is partial to Alice. However, if the decision maker
can flip a coin or access another source of randomness and
use the chance outcome to determine who should get the ap-
ple, the decision maker can create inequity but without wor-
rying about others attributing partiality (Shaw & Olson, 2014;
Choshen-Hillel, Shaw, & Caruso, 2015).

Both adults and children adjust their distributional prefer-
ences depending on whether they are the ones choosing or
not. For instance, people are usually dissatisfied with re-
ceiving less than an equally worthy counterpart, but when
they created the inequity themselves they were more likely to
find this acceptable (Choshen-Hillel & Yaniv, 2011). Adults
and children are willing to create inequity that disadvantages
themselves but are less willing to create inequity that could be
interpreted as favoritism or nepotistic preferences (Choshen-
Hillel et al., 2015). These results are incompatible with ex-
planations of social preferences that only consider an aversion
to inequitable outcomes or other preferences that are directly
derived from outcomes. Understanding how to combine these
conflicting perspectives (efficiency vs. equity and equity vs.
impartiality) is a challenge that we can address with computa-
tional modeling. Specifically, how might a flexible preference
for these normative values be integrated together and flexibly
applied?

Computationally, preferences like impartiality are signifi-
cantly more sophisticated than just evaluating expected out-
comes. We propose that an aversion to partiality is an aver-
sion to having ones actions appear partial to others. Thus to
evaluate whether an action will appear partial requires antic-
ipating how one’s actions will be interpreted by others. This
requires a mentalistic theory-of-mind: the capacity to inter-
pret behavior as being driven by beliefs, desires and inten-
tions (Dennett, 1989). The same choice made in a different
context or from a different set of alternatives might be eval-
uated differently as it will carry different information about
the underlying goals and desires that drove the choice. For
instance, if a decision maker can choose to give his colleague
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Figure 1: An influence diagram (ID) is a directed acyclic graph over three types of nodes: state nodes (circles), decision nodes (rectangles),
and utility nodes (diamonds). Directed edges between nodes determine causal dependencies. State and utility nodes take values that depend
on the values of their parent nodes. The total utility to the decision maker is the sum over the utility nodes. Green and red utility nodes
correspond to rewards and costs respectively. The value of decision nodes is freely chosen by the decision making agent according to
equation (4). (a) ID of the Base Decision Maker. Merit corresponds to γγγ and the Inequity and Efficiency nodes corresponds to the first and
second components of equation (3) (b) ID of the Judge which infers whether a base decision maker was partial given an observation of her
action, P(partial|a). (c) The Constructed Social Preference recursively builds on the Base Decision Maker adding an aversion to appearing
partial (UP). (d) Simulated results when the decision maker can allocate $1,000 to one agent and $100 to another or the value on the x-axis to
both agents when both agents are equally meritorious. The Constructed Social Preference is more likely to select the wasteful equal option
to avoid an attribution of partiality.

either $100 or $1,000 and chooses to give him $1,000 we
might infer that he likes his colleague. However if his choices
were to give either $1,000 or $2,000, giving $1,000 signals a
dislikes for his colleague. Thus the same action requires a dif-
ferent interpretation depending on the unchosen option. Fur-
thermore, the capacity for theory-of-mind can affect distribu-
tional preferences: previous work found that children with a
more developed theory-of-mind were more likely to give fair
offers in the ultimatum game (Takagishi, Kameshima, Schug,
Koizumi, & Yamagishi, 2010).

In this work, we propose that preferences over the beliefs
others will form are constructed by turning theory-of-mind
inward, anticipating the evaluations others will make about
the actions one might take. With the knowledge of how one’s
actions will be judged before deciding, a decision maker can
calibrate her actions to send the right signals (Baumeister,
1982; Bénabou & Tirole, 2011). We note that we do not
believe agents to be necessarily intentionally signaling im-
partiality to others. Instead agents may strive to maintain a
desired image of themselves from an objective viewpoint or
“self-signal” (Nagel, 1986; Bodner & Prelec, 2003; Bénabou
& Tirole, 2011).

In this paper we develop a computational framework for
capturing the above intuitions. We use influence diagrams as
a structural representation of a rational actor and Bayesian in-
ference over influence diagrams to enable theory-of-mind in-
ferences about whether an action will be perceived as partial.
While the framework we will present is a general way of con-
structing preferences from the anticipated judgments of oth-
ers, we focus specifically on constructing distributional pref-
erences with the desire to be perceived as impartial (Shaw,
2013; Shaw & Olson, 2014; Dungan, Waytz, & Young, 2014;

DeScioli, 2016). We first present a mathematical model that
integrates preferences for efficient and equitable outcomes
with an aversion to appear partial. We then test our model
empirically in two parameterized allocation games with many
conditions that allow us to test some of the fine-grained pre-
dictions of the model. Finally, we conclude by sketching how
our model can be extended to capture other social desires con-
structed from a decision maker’s preference to appear posi-
tively in the minds of others.

Computational Analysis
In this work we aim to model both the way participants act in
resource allocation games as well the judgments they make
about the resource allocations of others. We start from the
simpler preferences for efficiency and equity which are based
on outcomes and build towards constructing a social prefer-
ences for impartiality which are implicitly intentional.

We define a resource allocation game as follows. Let A
be the set of actions available to the decision maker. For each
action a∈A there is a probabilistic transition function P(R|a)
which maps an action to a vector of rewards R where each
ri ∈ R is the amount of reward given to agent i. In a resource
allocation game, the decision maker picks an action (a) such
that the expected reward to the other agents (R) achieves the
desires of the decision maker.

We now define the desires of the Base Decision Maker as
components of a utility function. These desires will deter-
mine how Base Decision Maker distributes resources. We
consider two base desires. The first is a relative preference
over the rewards received by specific agents. To realize this
preference, we include the reward received by each of the
other agents as weighted components of the decision maker’s
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own utility. Depending on the value of these weights, an
agent might impartially value others or might be partial to-
wards certain individuals. Formally, let αi ∈ ααα be the weight
that the decision maker places on the reward given to agent
i. When αi > 0, the decision maker gains utility proportional
to the reward received by i, when αi < 0 the decision maker
loses utility proportional to the reward received by i and when
α = 0 the decision maker is indifferent to the reward received
by i. By expressing different α over different agents the de-
cision maker can express partiality (or aversion) towards spe-
cific agents. Including the rewards received by all others as
positive elements (α > 0) in the decision maker’s own utility
creates a preference for Pareto efficient allocations, a form of
efficiency where the reward distributed cannot be increased
by taking other actions without making one of the receiving
agents worse off.

The second base desire implements a form of proportional
equity, the idea that those who contribute more to a joint
endeavor should reap a larger share of the rewards or “just-
desserts”. A well studied way to capture proportional equity
quantitatively is to constrain the relative reward (ri) given to
each agent to be proportional to their relative effort or merit
(γi) (Adams, 1965):

r1

γ1
=

r2

γ2
= . . .=

rN

γN
(1)

We transform these constraints into a measurement of in-
equity:

I(R,γγγ) = ∑
i∈N

∑
j∈N
j>i

|γ jri− γir j| (2)

With a notion of efficiency and equity in place, we can de-
fine the allocation preferences for the Base Decision Maker.
The expected utility (EU) to the decision maker of choosing
a is:

EUbase[a] =−αIAEa[I(R,γγγ)]+ ∑
i∈N

αiEa[ri] (3)

where Ea[I(R,γγγ)] is the expected amount of inequity created
by action a and αIA ∈ ααα is the weight the decision maker
places on inequity aversion. Ea[ri] = ∑ri riP(ri|a) is the ex-
pected reward for i when the decision maker takes action a.
Decision making follows probabilistically by sampling from
the soft-max of expected utility:

P(a|ααα) ∝ exp(β∗EU[a]) (4)

with higher values of β leading to a higher probability of se-
lecting the action with the highest expected utility.

Influence diagrams are a natural choice for structurally rep-
resenting this model since they can flexibly capture decision
problems with multiple factors and recursive sources of value.
Furthermore, they can be used to reason about the latent men-
tal states of a decision maker from just a sparse and noisy ob-
servation of behavior (Jern & Kemp, 2015; Kleiman-Weiner,
Gerstenberg, Levine, & Tenenbaum, 2015). The utility of the

Base Decision Maker which is defined in equation (3) can be
expressed graphically as the influence diagram shown in Fig-
ure 1a. The first term of equation (3) corresponds to the UI
node and the second term corresponds to the UE node.

We now consider a Judge who makes inferences and judg-
ments about the underlying preferences of the Base Decision
Maker following an observation of behavior. Specifically,
in the Base Decision Maker the ααα encode the preferences
of the agent and so for the Judge these ααα become the tar-
get of inference. For our purposes, the Judge is interested
in the extent that the Base Decision Maker is partial to one
or more agents. The Judge’s prior is that the Base Decision
Maker is partial (a binary variable) with probability 0.5. If
partial, one of the αi =αpartial (i chosen uniformly at ran-
dom) and the other α−i =−αpartial. Otherwise, if the agent
is not partial, all α1...N = 1. The Judge also has some prior
uncertainty on the degree that the Base Decision Maker cares
about inequity so αIA ∼ Exponential(λ). With these priors
over the types of preferences a Base Decision Maker might
have, a Judge can use Bayesian inference to compute the ex-
tent that an agent was partial based on just a single observed
allocation:

P(partial,ααα|a) ∝ P(a|ααα)P(ααα|partial)P(partial) (5)

where P(a|ααα) is the model of action shown in equation (4)
and the ααα are then marginalized out to obtain a posterior on
P(partial|a). Figure 1b shows how the judge does infer-
ence over the parameters of the influence diagram represent-
ing the Base Decision Maker.

A Constructed Social Preference inherits from and recur-
sively builds upon both the Base Decision Maker and the
Judge. In particular, the Constructed Social Preference has
an additional preference to appear impartial. Since this is
a preference over the beliefs others will form as a result of
her decision, the preference to appear impartial is a prefer-
ence over the posterior P(partial|a). The Constructed So-
cial Preference integrates these belief based preferences with
the preferences for equity and efficiency of the Base Decision
Maker:

EUconstructed[a] = EUbase[a]−αPAP(partial|a) (6)

where αPA is the extent that the Constructed Social Prefer-
ence cares about whether other agents view her as impartial
or not. This equation and the influence diagram in Figure 1c
show how the Constructed Social Preference is built on top
of the Judge and Base Decision Maker.

The Constructed Social Preference goes beyond prefer-
ences over outcomes like those in the Base Decision Maker.
Instead, it anticipates the inferences other agents will make
about its actions and optimizes its actions so that others have
desirable beliefs. Figure 1d shows a simulated example where
a decision maker had to choose between allocating either
$1,000 to one agent and $100 to another equally meritorious
agent or giving a smaller but equal value to both. The Con-
structed Social Preference is more likely to select the equal
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Figure 2: Empirical results and model predictions of (a) choices and
(b) judgments of partiality for the trials in experiment 1 where both
of the agents were equally meritorious. Trials with no gray bar indi-
cate the model predicted near 0. Error bars are the standard error of
the mean.

option since it implies lower partiality even though both the
Base Decision Maker and the Constructed Social Preference
care equally about avoiding inequity.

In order to compare the model with human participants,
we used maximum-likelihood estimation to optimize the free
parameters to human judgments. The five parameters used
for all simulations were: β = 0.003, αpartial = 6, λ = 0.7,
αPA = 1350. If agent i was more meritorious than agent j
then γi

γ j
= 4. Importantly, the parameters used to model the

partiality data were constrained to be the same as those used
to model participants’ decisions.

Experiments and Results
We test the predictions of this model in two parametric be-
havioral experiments that measure participants’ decisions in
a hypothetical resource allocation game as well as judgments
about the partiality of another agent who made an allocation.
Both experiments were run on Amazon Mechanical Turk. For
each condition we compare the average responses with the
predictions of the model.

Experiment 1: Proportionality and Impartiality
In experiment 1 we investigate how equity and merit affect
choices in an allocation game. We presented two groups of
participants with the following vignette which describes an
allocation game that took place in an everyday office setting:

Alex and Josh are both employees at a large company. Their
coworker Max has been asked to decide how to assign bonuses
to Alex and Josh. Due to company policy, Max can either: give
$1,000 to one employee and $100 to the other or give [$0 /
$100 / $500 / $1000 / $1,100] to both. Alex and Josh currently
make the same amount each year, do the same job, [and have
received identical work evaluations / but Alex has received a
better work evaluation].
Participant group 1: What would you do? (Give Alex the
$1,000 bonus and Josh the $100 bonus / Give Josh the $1,000

bonus and Alex the $100 bonus / Give them both a bonus of
[$0 / $100 / $500 / $1000 / $1,100])

Participant group 2: Max decides to [give Alex the $1,000
bonus and Josh the $100 bonus / give Josh the $1,000 bonus
and Alex the $100 bonus / give them both a bonus of ($0 /
$100 / $500 / $1000 / $1,100)]. Who do you think Max likes
better? (Definitely Alex = -1, Equal = 0, Definitely Josh = 1)

The bold text shows the different variants of the vignettes.
On different trials the value of the equal option varied be-
tween $0 and $1,100. On some trials both employees received
equal work evaluations and on some trials one employee re-
ceived a better work evaluation. The names of the employees
changed on each trial but were always a high frequency male
name.

We first report the results for when both employees were
equally meritorious (Figure 2). We found high rates of in-
equity aversion that led to highly wasteful bonus allocations
(Choices: N = 89; Judgments: N = 104). When the equal
sized bonus was $0, almost 50% of participants chose to allo-
cate nothing, wasting a total of $1,100 ($1,000 + $100) rather
than allocating unequal bonuses. When the bonus was $100,
over 75% of participants wasted the $1,000 bonus in favor
of two equal $100 bonuses. These allocations were highly
wasteful and were Pareto dominated since the unequal allo-
cation would have made at least one of the employees better
off without making the other employee worse off.

The partiality judgments made by a second set of partic-
ipants is consistent with the idea that the aversion to creat-
ing unequal outcomes stems in part from a desire to appear
impartial. We transformed judgments of liking into a par-
tiality index by measuring absolute difference from 0. Even
when the alternative equal allocation required wasting the
entire bonus, a person who allocated the large but unequal
bonus was judged as highly partial (towards the person who
received the higher bonus). Our computational model corrob-
orates this interpretation and captures both participants’ judg-
ments of partiality and then uses those judgments to explain
the strong aversion to an unequal outcome. The full model
closely follows the pattern of decision making.

We now turn to the trials where one of the two employ-
ees received a better evaluation at work than the other and
was thus more meritorious (Choices: N = 89; Judgments: N
= 104). Figure 3 shows that this difference was sufficient to
drive participant choices away from the wasteful equal bonus
towards giving the large but unequal bonus to the employee
who was more meritorious. This shift is consistent with eq-
uity (the more deserving employee got a greater share of the
rewards). However, this also resulted in a novel type of waste-
ful decision making: the option to allocate $1,000 or more
to both employees was forgone over 70% of the time by the
Pareto dominated unequal option that maintains equity based
on merit.

Surprisingly, participants attributed the lowest partiality to
employees who selected the equal bonus even though one of
the receiving employees was more deserving than the other.
This points to a possible difficulty in achieving equitable dis-
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Figure 3: Empirical results and model predictions of (a) choices and (b) judgments of partiality for the trials in experiment 1 where one of
the agents was more meritorious than the other. Trials with no gray bar indicate the model predicted near 0. A “fair bonus” was when the
decision maker gave the large bonus to the agent with more merit. An “unfair bonus” was when the decision maker gave the large bonus to
the agent with less merit. Error bars are the standard error of the mean.

tributions. Even when some agents might be more deserv-
ing than others, inferences of partiality are still readily made
when observing an unequal distribution. Here equity and im-
partiality work against each other. Since the equal bonus led
to a lower attribution of partially, as the size of the equal
bonus grows, the model slowly shifts to the efficient equal
bonus.

Experiment 2: Procedural Fairness and Impartiality
In a second experiment we repeated the equal merit condi-
tion of experiment 1 but also included the possibility that the
employee making the decision could flip a fair coin to de-
cide who gets $1,000 and who gets $100 (Choices: N = 54;
Judgments: N = 158). Besides the addition of this coin the
vignette was identical to the vignette in experiment 1. This is
a key test of the impartiality hypothesis since when the size
of the equal bonus is low, an inequitable but efficient alloca-
tion can be given without signaling partiality towards either
of the employees by flipping a coin (Shaw & Olson, 2014;
Choshen-Hillel et al., 2015).

Consistent with the model predictions shown in Figure 4,
participants did not judge employees who flipped the coin to
be partial towards either of the employees. When the value
of the equal bonus was low (≤ $100) participants no longer
wasted resources like they did in experiment 1. Instead they
flipped the coin in order to allocate the full bonus without
signaling partiality.

Combining the two experiments, we quantify the overall
model performance across all of the conditions in the two ex-
periments. Figure 5 shows the quantitative correlation of the
model predictions with the average judgments of participants.
Overall, participant judgments and decisions were highly cor-
related (R2 = 0.94) with the model predictions. This suggests
that the model is capturing some of the fine grained structure
of how people attribute both partiality and use it to make al-
locations of welfare.

Finally, we compare the full model presented here against
a lesioned model that includes inequity aversion but does not
reason about partiality and hence corresponds to the Base
Decision Maker (i.e., αPA = 0). The parameters in the le-
sioned model were directly fit to the choice data and were
not constrained to fit the judgments. This model fit the data
less well than the full model (R2 = 0.82). However, this le-
sioned model has less parameters than the full model. To test

for the possibility that the full model is overfitting the data
we performed cross-validation using randomly chosen sub-
sets of half the data to fit the free parameters and then tested
against the held-out half. The held-out cross-validation cor-
relation between the model and participants was R2 = 0.93
which suggests that the full model is robust and is not overfit-
ting. In contrast, the lesioned model performed much worse
(R2 = 0.74) under cross-validation. When the full model was
applied only to the choice data it captured nearly all of the
variance (R2 = 0.97) and was still robust when evaluated on
only held-out trials (R2 = 0.96).

Discussion
We introduced a new computational model for constructing
preferences by modeling rational agents which care about
what others will infer about them from their actions. In this
model, the machinery of theory-of-mind is turned inward to
simulate how an action will likely be perceived or judged by
others. Agents then use the perceptions and judgments they
anticipate others will form to construct rich preferences over
socially desirable traits such as impartiality. We tested key
components of the model in two behavioral experiments that
were designed to contain conflict between efficiency, equity
and partiality and measured both participants’ hypothetical
resource allocations and the judgments they made about the
partiality of others who had acted. The predictions of the
model were closely correlated with both allocation decisions
as well as partiality judgments. Finally, we note the best fit
parameters had a high value for αPA which suggests that par-
tiality aversion was playing an important role in the model fit
for predicting choices. A lesioned model that did not con-
tain this parameter failed to predict participants’ judgments
in both experiments.

We now briefly describe qualitatively some of the other
predictions this model can make without any structural ex-
tension. Our model predicts that when the decision maker
and one of the agents have a previous relationship (such as old
friends or a reciprocal relationship in a different context) there
will be a greater probability of inferring partiality since this
previous relationships will manifest itself on the prior over
partial. With a greater probability of others inferring par-
tiality a decision maker will be even less likely to give their
friend a larger reward than another person. This reasoning
might explain why nepotism and cronyism is judged as unfair
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the standard error of the mean.
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Figure 5: Quantification of model performance. Each point rep-
resents the model prediction and participant judgment for a single
condition. For better fitting models the points will lie close to the
y = x diagonal. (left) The full model compared including both de-
cision and judgment data. (middle) The full model compared only
on the decision data. (right) Lesioned model that did not include
partiality compared only on the decision data.

and avoided (Dungan et al., 2014). Other procedural tools
such as the delegation of the decision to a third party may
also be important to avoid the attribution of partiality. Under
the model we have presented, if an attribution of partiality can
be made less likely, the decision maker might be more likely
to participate in nepotism and favoritism.

In future work we would like to investigate how other
forms of social preferences can be constructed by placing
preferences over anticipated judgments. For instance, people
might desire to appear as trustworthy and generous or avoid
appearing selfish or envious. Ultimately we suspect that an
agent who carefully manipulates their image so that all others
think she is a great person – will end up behaving quite simi-
lar to a person who is truly good. However, her behavior will
be less robust – when she suspects her actions are unobserved
or can only be interpreted ambiguously, the constructed social
preferences disappears along with the altruistic or fair behav-
ior (Dana, Weber, & Kuang, 2007). By constructing social
preferences such as impartiality, a key component of fairness,
from the anticipated judgments of others, we quantitatively
predict the fine-grained structure of both participants’ deci-
sions concerning the allocation of resources and participants’
judgments about those who make distribution decisions. Our
model makes clear that the power of theory-of-mind is not
necessarily limited to understanding the beliefs and desires
of other intentional agents. It can also be pointed inward to
strategically shape beliefs and desires in others.
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Abstract

When learners explain to themselves as they encounter new in-
formation, they recruit a suite of processes that influence sub-
sequent learning. One consequence is that learners are more
likely to discover exceptionless rules that underlie what they
are trying to explain. Here we investigate what it is about ex-
ceptionless rules that satisfies the demands of explanation. Are
exceptions unwelcome because they lower predictive accuracy,
or because they challenge some other explanatory ideal, such
as simplicity and breadth? To compare these alternatives, we
introduce a causally rich property explanation task in which
exceptions to a general rule are either arbitrary or predictable
(i.e., exceptions share a common feature that supports a “rule
plus exception” structure). If predictive accuracy is sufficient
to satisfy the demands of explanation, the introduction of a rule
plus exception that supports perfect prediction should block
the discovery of a more subtle but exceptionless rule. Across
two experiments, we find that effects of explanation go beyond
attaining perfect prediction.
Keywords: explanation; learning; causal reasoning

Introduction

“The great tragedy of science - the slaying of a beautiful
hypothesis by an ugly fact.” T. H. Huxley (1870)

The best explanations account for all the data we invoke them
to explain. But in science and in life, explanations often have
exceptions. Even when exceptions fail to “slay” our explana-
tory hypotheses, they certainly diminish them. What is it
about exceptions that threatens the quality of explanations?

One possibility is that exceptions are threatening because
they offer evidence against the truth of the explanation in
question. To the extent our explanation fails to predict an
anomalous observation, we might hold out for a better alter-
native – one that predicts the observation with greater prob-
ability, such that the observation provides greater evidential
support for that alternative explanation.

A second possibility is that exceptions diminish the qual-
ity of explanations not because they reveal predictive fail-
ures, but because they reveal that an explanation is deficient
with respect to some other explanatory ideal. Across philos-
ophy and science, we praise explanations for their simplic-
ity, breadth, generality, and ability to unify a diverse range of
phenomena. Exceptions may diminish the quality of explana-
tions because they threaten these ideals.

In the current experiments, we test these alternatives by
investigating how the process of explaining affects learning
(for reviews, see Fonseca & Chi, 2011; Lombrozo, 2012).
Prior work has found that when learners are prompted to ex-
plain, they’re more likely to discover regularities that sup-
port “good” explanations (Lombrozo, 2016). In particular,
Williams and Lombrozo (2010) found that when learning to
classify robots from novel categories, those participants who

were prompted to explain why each exemplar might belong to
its respective category were significantly more likely to dis-
cover a subtle classification rule that accounted for all eight
items (the 100% rule), as opposed to settling for a more
salient classification rule that only accounted for six (“the
75% rule”), leaving two exceptions.

The results of Williams and Lombrozo (2010) support the
idea that explaining encourages learners to find an exception-
less pattern, but do not reveal what it is about exceptions that
makes the 75% rule less good than the 100% rule. If ex-
plaining drives learners away from exceptions because they
decrease predictive accuracy, then a rule with non-arbitrary
exception – that is, with exceptions that can be reliably iden-
tified a priori, such that predictive accuracy can reach 100%
– should rival an exceptionless rule. In contrast, if exceptions
are undesirable because they threaten some other explanatory
virtue, such as simplicity or breadth, then even a rule with
non-arbitrary exceptions should be dominated by a 100% rule
that classifies all items in a unified way.

To test these predictions, we had participants learn novel
relationships while prompted to explain or write down their
thoughts, and where the exceptions to the 75% rule were ei-
ther arbitrary (as in prior work) or meaningful (in the sense
that they supported perfect prediction by representing a “rule
plus exception” on the basis of two features). If prompting
learners to explain pushes them to find a simple, exceptionless
pattern, then the two conditions should yield similar results,
whether or not the exceptions are meaningful. On the other
hand, if explainers are satisfied by a rule that supports per-
fect prediction, then discovery of the relatively salient 75%
rule with meaningful exceptions should block discovery of
the more subtle 100% rule. We test these competing predic-
tions in Experiment 1 using a sequential training procedure,
and in Experiment 2 using a prediction task.

Our task and stimuli go beyond prior work in a second
way, as well. Instead of using a classification task in which
participants explain category membership by appeal to arbi-
trary features, we use a causally-rich property explanation
task. Prior work suggests a preference for exceptionless,
single-feature rules in classification (e.g., Norenzayan et al.,
2002; but see Murphy, Bosch, & Kim, 2016); explanation
could simply heighten this classification-based preference. In
the current studies, rather than explaining category member-
ship, participants explain why novel creatures eat flies or eat
crabs, where both the 75% and 100% rules reflect plausible
causal explanations. If prompting learners to explain still pro-
motes discovery of a 100% rule with these modified stimuli,
it would suggest that previously-documented effects of expla-
nation on learning are not restricted to classification tasks (see
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Arbitrary
Exception

Meaningful
Exception Both sets Both sets Both sets

Figure 1: All Stimuli. The top row creatures all eat flies, and the bottom row eat crabs. For the arbitrary exception exception-
type, participants saw the creatures in the first column, and for the meaningful exception exception-type, they saw the creatures
in the second column. Both stimulus sets included creatures in columns three through five.

also Walker et al., 2017). This finding would also help bridge
the gap between laboratory studies involving artificial mate-
rials and educational materials such as biology texts, where
effects of explanation have been documented and inform cur-
ricula (Fonseca & Chi, 2011).

Experiment 1

Experiment 1 investigates whether engaging in explanation
encourages learners to seek simple, exceptionless rules, or
to instead find rules that allow for perfect predictive accu-
racy. To test this, we created two stimulus sets: one with
a “meaningful exception rule” (a 75% rule with exceptions
identifiable by the presence of a second feature), and another
with an “arbitrary exception rule” (a 75% rule with excep-
tions that do not share a common feature). The meaningful
exception rule was relatively easy to discover and supported
perfect prediction, but not on the basis of a single feature. If
prompting learners to explain makes them persist in seeking
an exceptionless single-feature rule, we would predict com-
parable results for the meaningful exception stimuli and the
arbitrary exception stimuli, with learners prompted to explain
significantly more likely than those in a control condition to
discover the more subtle 100% rule. On the other hand, if per-
fect predictive accuracy satisfies the demands of explanation,
we would expect discovery of the more salient meaningful
exception rule to block discovery of the 100% rule, yielding
an attenuated effect of explanation on 100% rule discovery,
and a boost in discovery of the meaningful exception rule.

Method

Participants Participants were 443 adults recruited from
the Amazon Mechanical Turk marketplace. Of these, 124
failed attention or memory checks (described below) or left
questions blank and were therefore excluded from analyses.
The statistical significance of results are unchanged when
these participants are included.

Materials The stimuli consisted of two sets of eight “crea-
tures” each, four of which ate flies and four of which ate
crabs (see Figure 1). For each set, participants could use
two possible rules to determine whether a creature ate flies
or crabs. The first accounted perfectly for all eight creatures
(the “100% rule”): all four creatures that ate flies had snouts
pointing up; all four creatures that ate crabs had snouts point-
ing down. The second rule accounted for six of the eight
creatures (the “75% rule”): three of four creatures that ate
flies were on land; three of four creatures that ate crabs were
underwater. Importantly, both features of interest (snout di-
rection and habitat) supported plausible causal explanations
for why a creature eats flies versus crabs, e.g., “It eats flies
because its snout is pointed up, so it can reach flies” or “It
eats flies because it lives on land, where flies are found.”

The two stimulus sets differed in the nature of the excep-
tions to the 75% rule. For participants in the arbitrary excep-
tions condition, the exceptions to the 75% rule did not share
a meaningful, plausible characteristic on the basis of which
they could be identified as exceptions. For participants in the
meaningful exceptions condition, the exceptions to the 75%
rule were “newborns”– they were green and shown with eggs
in a nest. We refer to this manipulation as “exception-type.”

Procedure The task consisted of a study phase followed by
a reporting phase and a rule rating phase.

At the start of the study phase, participants were randomly
assigned to one of four conditions, which were created by
crossing two prompt-types, Explain or Write Thoughts, with
two exception-types, arbitrary or meaningful.

In the study phase, all participants were told to study the
creatures, and that after the study phase they would be asked
questions about how to determine which food a creature eats.
To provide context and help participants interpret the im-
ages, they were told that the creatures were: “from the planet
ZARN: the adults of all of these creatures eat either flies
or crabs. Newborn creatures look exactly like their adult
forms except that they are green because they photosynthe-
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size. There are different subspecies of this animal with dif-
ferent properties. However, they all have a mouth on an in-
flexible snout, and an ear that sticks up. They are all tailless,
born from eggs and have a 4-chambered heart.” Participants
were presented with a randomized array of the eight crea-
tures corresponding to their condition’s exception-type (arbi-
trary or meaningful). They were then prompted to focus their
attention on each creature, individually, in a random order,
with a prompt determined by the experimental condition to
which they were randomly assigned. Participants in the ex-
plain conditions were told to “try to explain why creature X
eats flies/crabs.” Participants in the write thoughts conditions
were told to “Write out your thoughts as you learn that crea-
ture X eats flies/crabs.” Participants were given 50 seconds to
respond to each prompt, at which time their responses were
recorded and the prompt for the next item appeared.

In the reporting phase, participants were told that “we’re
interested in any patterns that you noticed that might help dif-
ferentiate creatures that eat flies and creatures that eat crabs.
For example, did most or all of the fly-eaters you studied tend
to have one property, and most or all of the crab-eaters you
studied have another property? We’re going to ask you to list
all of the patterns (differences between fly-eaters and crab-
eaters) that you noticed, one at a time. PLEASE REPORT
ANY PATTERNS THAT YOU NOTICED, EVEN IF THEY
WEREN’T PERFECT AND EVEN IF YOU DON’T THINK
THEY’RE IMPORTANT.” This language, adapted from Ed-
wards, Williams, and Lombrozo (2013), was employed to
encourage participants to report the 75% rule even if they
thought it was incidental or superseded by the 100% rule.
In addition to describing the rule they discovered in a free-
response box, participants were asked how many of the eight
items followed the rule.

After finishing the reporting phase, participants were again
presented with all eight creatures as well as four candidate
explanations (presented in a random order) for “why creatures
A-D eat flies (as opposed to crabs).” They were forced to stay
on the page for at least 15 seconds to ensure that they read the
explanations (there was no upper time limit). Along with an
inaccurate explanation included as a control, the explanations
provided for rating were:

• 100% rule: “Because creatures A-D have snouts that point
up, and creatures E-H have snouts that point down.”

• 75% rule: “Because creatures A-D live on land, and crea-
tures E-H live in the water.”

• 75% rule + exception associated with their exception-type:

– with arbitrary exceptions: “Because creatures A-D live
on land, and creatures E-H live in the water (with some
exceptions).”

– with meaningful exceptions: “Because creatures A-D
live on land, and creatures E-H live in the water (with
the exception of newly-hatched creatures, who are born
in the opposite environment).”

Ratings were collected on a 7-point scale with anchors at 1
(“Very Poor Explanation”) and 7 (“Excellent Explanation”).

Before concluding the experiment, participants completed
an attention and memory check question that served as the
basis for participant exclusion. They were asked to “look at
the following images and select the one that you have stud-
ied in previous questions. In the text box next to that im-
age, please also type in whether you think that it eats flies or
crabs. It is important for us to know whether our participants
are paying attention and are reading all of the instructions,
so if you are reading this, what we actually want you to do
is to select “None of these objects look familiar,” and in the
corresponding text box to write in whether the image you rec-
ognize from the other options eats flies or crabs.” By select-
ing the instructed button, participants indicated they had been
reading instructions, and by correctly reporting the diet of the
creature they recognized, participants indicated that they at-
tended to the stimuli in the primary task.

Results

Overall, participants reported finding an average of 1.25 pat-
terns (SD = 0.96, min = 0, max = 4) that they reported ac-
counted for an average of 5.94 exemplars (SD = 1.8, min = 0,
max = 8). Reported patterns were coded for mention of the
100% rule and/or the 75% rule.

100% rule reporting: To test whether explanation
prompts affected 100% rule discovery, and whether effects
differed across exception-type, we conducted a logistic re-
gression predicting whether participants discovered 100%
rule (yes vs. no) by prompt-type (explain vs. write thoughts)
⇥ exception-type (arbitrary vs meaningful). This revealed
a significant effect of prompt-type on reporting the 100%
rule, collapsed over exception-types (c2 = 6.64, p = 0.01;
see Figure 2). The interaction term between prompt-type and
exception-type was not significant (c2 = 0.28, p = 0.6).
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Figure 2: Proportion of Participants Reporting the 100% Rule
in Experiment 1
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The results of this analysis are consistent with the hypoth-
esis that what people seek when explaining are rules high in
explanatory virtues such as simplicity and breadth: the oppor-
tunity to employ a rule + meaningful exception (which was
both easy to discover and afforded perfect prediction) did not
block participants in the explain condition from seeking an
alternative that accounted for all items with a single feature.
However, this conclusion should be accepted with some cau-
tion: when analyzed alone, there was not a significant effect
of prompt-type within the meaningful exceptions conditions
(c2 = 1.93, p = 0.16), but there was in the arbitrary excep-
tions condition (c2 = 5, p = 0.03).

75% rule reporting: Previous studies have found that
prompting participants to explain can decrease 75% rule
reporting relative to a control condition (e.g., Edwards
et al., 2013; Williams & Lombrozo, 2010, 2013). In
this study, the proportions of participants reporting the
75% rule were: 51% for explain/arbitrary; 46% for write
thoughts/arbitrary; 69% for explain/meaningful; and 63% for
write thoughts/meaningful.

To analyze these data we ran another logistic regression:
discovered 75% rule (yes vs. no) by prompt-type (explain vs.
write thoughts) × exception-type (arbitrary vs. meaningful).
The effect of prompt-type was not significant (c2 = 1.15, p
= 0.28). The effect of exception-type was significant (c2 =
10.08, p < 0.01). However, the interaction between prompt-
type and exception-type was not significant (c2 =0.02, p =
0.9). So while people were more likely to report the 75%
rule when the exceptions were meaningful, this effect was
not moderated by prompt-type. Few participants reported
both the 100% and 75% rules: 16% for explain/arbitrary; 9%
for write thoughts/arbitrary; 23% for explain/meaningful; and
17% for write thoughts/meaningful.

Rule Rating: To confirm that the manipulation of
exception-type had some effect on perceived explanation
quality, we compared explanation ratings for the 75% rule
+ exception as a function of exception type. Indeed, a t-test
revealed higher ratings when the exception was meaningful
t(309) = -4.3, p < 0.01 (see Table 1 for all mean ratings).

Table 1: Average Rule Rating by Exception-type

Condition 100% rule 75% rule
75% rule +
exception

Bad Rule

Arbitrary
Exceptions

5.50(2.23) 3.11 (1.95) 4.87 (2.05) 1.81 (1.54)

Meaningful
Exceptions

5.19 (2.4) 3.97 (1.92) 5.80(1.79) 1.55 (1.16)

Discussion

On balance, the results from Experiment 1 support the idea
that when it comes to the effects of explanation on learning,

an explanation that supports perfect prediction can still be de-
ficient if it fails to account for all observations in a unified
way. The experiment also suggests that the original effects
reported in Williams and Lombrozo (2010) are not restricted
to explicit classification tasks with arbitrary features: we suc-
cessfully reproduced effects of explanation in a property ex-
planation task where explanations were causally meaningful.

Introducing a rule with meaningful exceptions did have
significant effects: participants were more likely to report
discovering the 75% rule when the exceptions were meaning-
ful (regardless of prompt), and they evaluated the explana-
tion containing a 75% rule to be more satisfactory when the
exceptions were meaningful. However, introducing the 75%
rule with meaningful exceptions did not block participants
prompted to explain from discovering the 100% rule: they
seemed to persevere in looking for an exceptionless, single-
feature rule rather than settling for a rule that supported per-
fect prediction on the basis of multiple features. This con-
clusion is supported by the significant effect of prompt-type
on 100% rule discovery, which was not qualified by a further
interaction with exception-type. At the same time, we note
that when restricting analysis to the meaningful exceptions
condition, the effect of explanation was not significant. The
results of Experiment 1 are therefore somewhat inconclusive,
and we revisit the contrast between arbitrary and meaningful
exceptions in Experiment 2.

Experiment 2

Because the results from Experiment 1 were somewhat incon-
clusive, we ran a new variant of the task. The task used in Ex-
periment 2 was designed to heighten the value of perfect pre-
diction: rather than receiving labelled exemplars at each step,
participants attempt to predict the food that each creature eats,
receiving feedback as they proceeded. If explanatory judg-
ments track perfect prediction, then participants prompted to
explain in this task should be satisfied with a 75% rule when
it involves meaningful exceptions, thereby supporting perfect
prediction and blocking or attenuating the effect of explana-
tion on 100% rule discovery.

Method

Participants For this study, 164 adults were recruited from
the Amazon Mechanical Turk marketplace. Of these, 61
failed the attention and memory checks described above. We
note any cases in which relaxing these exclusion criteria af-
fected conclusions regarding statistical significance.

Materials Stimuli were the same as in Experiment 1.

Procedure This task consisted of a study phase and a re-
porting phase. As in Experiment 1, participants were ran-
domly assigned to one of four conditions, which were created
by crossing two prompt-types, Explain or Write Thoughts,
with two exception-types, arbitrary or meaningful.

In the study phase, participants were presented with the
same introductory text as in Experiment 1. They were then
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given 5 seconds to look over all eight creatures together be-
fore being shown the creatures individually in a random order.

When presented with each of the eight creatures individu-
ally, participants were asked to determine whether the crea-
ture eats crabs or flies. Based on the accuracy of their re-
sponse, they were then taken to a screen that said either
“CORRECT This item does eat flies/crabs” or “INCORRECT
This item eats flies/crabs.” They were then given 45 seconds
to respond to their condition-specific prompt; either “This
creature eats flies/crabs. Try to explain why this creature
eats flies/crabs.” or “This creature eats flies/crabs. Write
down whatever you are thinking.” After cycling through all
eight creatures, participants went through them a second time,
again in a random order, with 30 seconds to respond.

The reporting phase was identical to that of Experiment 1.

Results

Overall, participants reported finding an average of 0.95 pat-
terns (SD = 0.96, min = 0, max = 6) which they reported
accounted for an average of 6.35 exemplars (SD = 1.53, min
= 0, max = 8). Reported patterns were coded for mention of
the 100% rule and/or the 75% rule.

100% rule reporting: To analyze 100% rule discov-
ery (see Figure 3), we ran a logistic regression of discov-
ered 100% rule (yes vs. no) by prompt-type (explain vs.
write thoughts) ⇥ exception-type (with arbitrary exceptions
vs. with meaningful exceptions). The interaction between
prompt-type and exception-type was not significant (c2 =
0.23, p = 0.63).

However, there was a significant effect of explanation (col-
lapsed across the two stimulus sets) (c2 = 4.15, p = 0.04)1.
These findings suggest that the presence of a salient rule that
supported perfect prediction in the meaningful exceptions
condition was insufficient to block discovery of the 100%
rule, and therefore support the proposal that explainers pref-
erentially seek simple, exceptionless patterns, not merely per-
fect predictability.

Again, to see whether the effect of explanation held within
the meaningful exceptions condition, we ran a logistic regres-
sion predicting discovered 100% rule (yes vs. no) by prompt-
type (explain vs. write thoughts) using only the results from
the meaningful exceptions condition. We found that there
was again no significant effect of explanation when restricting
analysis in this way, (c2 = 2.94, p = 0.09).

75% rule reporting: The proportions of participants re-
porting the 75% rule were: 36% for explain/arbitrary; 32%
for write thoughts/arbitrary; 61% for explain/meaningful; and
59% for write thoughts/meaningful.

To analyze these data we ran a logistic regression predict-
ing discovered 75% rule (yes vs. no) by prompt-type (explain
vs. write thoughts) × exception-type (arbitrary vs. mean-
ingful). Again, the effect of prompt-type was not signifi-
cant (c2 = 0.06, p = 0.8), the effect of exception-type was

1Without exclusion criteria, (c2 = 1.87, p = 0.17)
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Figure 3: Proportion of Participants Reporting the 100% rule
in Experiment 2

significant: (c2 = 7.11, p = 0.01), and the interaction be-
tween prompt-type and exception-type was not significant
(c2 = 0.02, p = 0.9). Few participants reported both the
100% and 75% rules: 4% for explain/arbitrary; 0% for write
thoughts/arbitrary; 4% for explain/meaningful; and 4% for
write thoughts/meaningful.

Prediction Performance: As a check to ensure that the
75% rule with a meaningful exception indeed improved pre-
dictability, we additionally analyzed prediction performance
in the second block of the task. Specifically, we compared the
proportion of exception items that were correctly classified
(of 2) as a function of exception-type (arbitrary vs. meaning-
ful) for the 45 participants who reported discovering the 75%
rule, but not the 100% rule. A t-test revealed that prediction
accuracy was indeed higher when exceptions were meaning-
ful (M = 1.39, SD = 0.83) than when they were not (M = 0.53,
SD = 0.72), t(38) = -3.68, p < 0.01.

Discussion

The results of Experiment 2 support the proposal that explain-
ers strive for simple, exceptionless patterns rather than set-
tling for perfect predictability. Even though the presence of
meaningful exceptions did improve performance on the pre-
diction task, it did not decrease discovery of the 100% rule
differently for participants who explained and for participants
who wrote their thoughts.

Discussion

Across two experiments, we find support for the proposal that
when explaining, people prefer rules that are high in explana-
tory virtues (such as simplicity and breadth) over alternative
rules that allow for perfect prediction, but that are deficient
in these virtues. The threat posed by exceptions therefore ap-
pears to be rooted in their disruption of explanatory ideals and
not only predictive accuracy. This result is consistent with the
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observation from science and philosophy that the most pre-
dictive models are often not the most explanatory. Addition-
ally, by using a causally-rich property explanation task rather
than an arbitrary categorization task, we find support for the
claim that effects of explanation on the discovery of excep-
tionless patterns are not restricted to classification contexts.

Despite these promising results, many questions remain
open. First, we found a weaker effect of explanation on 100%
rule discovery in the meaningful exceptions conditions than
in the arbitrary exceptions condition. This suggests that the
presence of a 75% rule that afforded perfect prediction at-
tenuated 100% rule discovery. However, the three-way in-
teraction between 100% rule discovery, prompt type, and ex-
ception type did not reach significance, even when pooling
results across studies. It thus remains a possibility that in-
troducing meaningful exceptions has a small but real effect
on 100% rule discovery; this is worth revisiting with a larger
sample and more varied stimuli and learning tasks. Second,
our results speak to the consequences of engaging in expla-
nation, but not to the mechanisms by which explaining gen-
erates these consequences. The possibility we have advanced
is that by virtue of explaining, participants are more likely to
reject working hypotheses as they encounter exceptions, and
therefore persevere in looking for a pattern that supports a
good explanation, where a “good” explanation goes beyond
predictive accuracy. Given that participants approach these
problems with a host of prior beliefs, future studies should
investigate this process more directly, including how learn-
ers go about generating hypothesis, seeking information, and
updating their beliefs in light of new information.

The fact that explaining can be beneficial in learning is
influencing educational systems from online learning envi-
ronments (e.g. Williams et al., 2014) to college chemistry
courses (Teichert & Stacy, 2002). However, as demonstrated
here, explanation privileges rules that are simple and excep-
tionless, and not all learning contexts involve this kind of
structure. In fact, previous work has found that prompting
learners to explain is sometimes detrimental (e.g. Berthold et.
al., 2011; Kuhn & Katz, 2009; Rittle-Johnson & Loehr, 2016;
Williams & Lombrozo, 2013; see also Nokes et al., 2011).
This underscores the importance of understanding when and
why engaging in explanation will and will not promote par-
ticular learning outcomes; our current findings provide an ad-
ditional step towards achieving this understanding.
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Abstract
People often perceive their in-groups as more heterogeneous
than their out-groups. We propose an information sampling
explanation for this in-group heterogeneity effect. We analyze
a model in which an agent forms beliefs and attitudes about
social groups from her experience. Consistent with robust evi-
dence from the social sciences, we assume that people are more
likely to interact again with in-group members than with out-
group members. This implies that people obtain larger sam-
ples of information about in-groups than about out-groups. Be-
cause estimators of variability tend to be right-skewed, but less
so when sample size is large, sampled in-group variability will
tend to be higher than sampled out-group variability. This im-
plies that even agents that process information correctly – even
if they are naive intuitive statisticians – will be subject to the
in-group heterogeneity effect. Our sampling mechanism com-
plements existing explanations that rely on how information
about in-group and out-group members is processed.

Keywords: Information Sampling, Judgment Bias, Perception
of Variability.

Introduction
A large amount of research has shown that people frequently
perceive their groups as more heterogeneous than groups to
which they do not belong (Boldry, Gaertner, & Quinn, 2007;
Rubin & Badea, 2012; Ostrom & Sedikides, 1992). For ex-
ample, Park and Judd (1990) found that students majoring
in one subject judged students with other major as less vari-
able on such characteristics as extroversion, impulsiveness,
and how analytical and reserved they are. This “in-group
heterogeneity effect” has received several classes of explana-
tions. One class of existing explanations rely on differences in
how information about in-groups and out-groups is processed
(Ostrom & Sedikides, 1992; Ostrom, Carpenter, Sedikides,
& Li, 1993; Park & Rothbart, 1982) or encoded (Linville,
Fischer, & Salovey, 1989; Linville & Fischer, 1998; Judd &
Park, 1988; Park & Judd, 1990). Another explanation takes
as a premise that heterogeneity is seen as a positive feature of
social groups and that people want to have a positive view
of their in-groups (this is the much studied “in-group out-
group bias”, see Hewstone, Rubin, and Willis (2002)). People
would thus be motivated to see in-groups as more heteroge-
neous than out-groups (Ostrom & Sedikides, 1992; Rubin &
Badea, 2012).

Here, we propose a distinct, sampling-based, explanation
for the in-group heterogeneity effect. We note that people
tend to obtain larger samples of information about in-groups
than about out-groups. For example, people can avoid inter-
acting again with an out-group if they had a bad experience

with members of this group. By contrast, people have to keep
interacting frequently with members of the in-group even if
they had negative experiences with those. Avoidance of the
in-group is thus less likely (there is a large literature on this
differential ‘adaptive sampling’ behavior, see Denrell, 2005;
Fazio, Eiser, & Shook, 2004; Fiedler & Juslin, 2006).

The second premise of our explanation is that the variabil-
ity of samples of information tends to increase with the size
of the sample. Consider for example the variance of a sample
of k independent standard normal variables (with mean µ = 0
and variance σ = 1 both unknown). This is a random variable
that can be written σ̂k = Q/(k− 1) where Q is a distributed
according to a chi-squared distribution with k− 1 degrees of
freedom χ2

k−1. The mean of Q is k− 1. Two features of chi-
squared distribution are noteworthy: Q is right-skewed (the
probability that the sample variance is lower than the mean
is higher than 50%) and the skewness is decreasing in k (the
skewness is equal to

√
8/(k−1)). Overall this means that

the sample variance tends to underestimate the true variance
(σ = 1) and that the extent of the underestimation decreases
as the sample size increases.

These two premises jointly imply that the experienced vari-
ability of in-groups will tend to be higher than the experi-
enced variability of out-groups. Under the assumption that
people’s subjective perception of group variability is closely
related to the variance of the sample of information they ob-
tained about this group (Kareev, Arnon, & Horwitz-Zeliger,
2002; Weber, Shafir, & Blais, 2004; see Boldry et al., 2007
for a review), this implies that people will tend to perceive
in-groups as more variable than out-groups.

This explanation for the in-group heterogeneity effect op-
erates at a different level than existing explanations. Whereas
existing explanations focus on how the mind processes infor-
mation, our explanation focuses on the properties of the sam-
ples of information to which the mind has access. We em-
phasize how the structure of the environment can lead to sys-
tematic sampling asymmetries, which in turn imply system-
atic judgment asymmetries. As such, our explanation fits in
the ‘sampling approach’ to human judgment (Denrell, 2005;
Fazio et al., 2004; Fiedler & Juslin, 2006; Le Mens & Den-
rell, 2011).

Model
Consider a setting where one agent forms attitudes and be-
liefs about two groups (g = in,out). The agent belongs to one
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of the two groups – the in-group. In this simple model, we as-
sume that the agent observes two dimensions of the groups:
an attitudinal dimension, A and another dimension X . Here
we assume that the dimension X is not stereotypical in the
sense that it does not serve as the basis for categorization. In
each period, the agent samples the group or not. When the
agent samples a group she observes both dimensions A and X
of one of its members.

Belief Updating Let At,g denote attitude of the agent to-
ward group g at the end of period t. If she samples the group
in period t, two things happen.

• She updates are attitude toward the group. Her new attitude
is a weighted average of her previous attitude and the new
observation at,g:

At,g = (1−b)At−1,g +bat,g, (1)

where b ∈ [0,1]. We assume that at,g is normally dis-
tributed (with mean 0 and variance 1). This attitude updat-
ing rule has been found to provide good fit to experimental
data on sequential choice under uncertainty (see Denrell,
2005 for a review).

• She obtains an observation xt,g of the non-attitudinal di-
mension. We assume that xt,g is normally distributed (with
mean 0 and variance 1)

If the agent does not sample the group, her attitude does not
change (At,g = At−1,g) and she does not obtain any additional
observation of the X dimension.

Perception of Variability Consistent with the sampling ap-
proach tradition, we assume that the agent processes sampled
information correctly. Let Vt,g denote the perceived variabil-
ity on dimension X at the end of period t. Here, we assume
that this is given by the standard unbiased sample variance
estimator. (In the next section, we consider other estimators
of variability.)

Vt,g =
1

nt,g−1

t

∑
k=1

(xk,g− x̄t,g)
2Ik,g, (2)

where Ik,g is an indicator variable equal 1 if group g is sam-
pled in period k (and equal to 0 otherwise), nt,g is the number
of samples (nt,g = ∑k Ik,g), x̄t,g is the mean of the sampled ob-
servations on the X dimension at the end of period t, and xk,g
is the observation in period k.

Sampling Rule To ensure that variability estimates exist for
both groups, we assume that the agent has sampled 2 obser-
vations from each group before the first period. In the subse-
quent periods, the sampling rule follows that used in Denrell
(2005). In each period the agent samples the in-group or the
out-group based on the current attitude towards that group.
Note that sampling rule does not depend on observations on

Figure 1: Model with unbiased variance estimator: Likeli-
hood that the estimate of in-group variability is higher than
the estimate of out-group variability (P(Vt,in > Vt,out)) as a
function of time. Each point is based on 105 simulations with
b = 0.5,r = 0.5,s = 3.

dimension X . The probability that the agent samples the in-
group is given by the exponential version of the Luce choice
rule (Denrell, 2005):

Pt+1,in = r+(1− r)
esAt,in

esAt,in + esAt,out
, (3)

Here s is a parameter that regulates the sensitivity of the
sampling probability to the current attitude, and r ∈ [0,1] is
a parameter that corresponds to the sampling ‘bias’ in favor
of the in-group. The higher r is, the higher is the baseline
probability that the agent will sample the in-group. When r
is high, the agent is likely to frequently sample the in-group
even if she has a negative attitude toward it (At,in is low). This
sampling ‘bias’ in favor of the in-group implies that the agent
will gather larger samples of information about the in-group
than about the out-group.

Analysis
We ran computer simulations of the above model. The param-
eter values that were used in all simulations are b = 0.5,r =
0.5,s = 3. These values are similar to estimated parameter
values in sequential choice experiments (Denrell, 2005).

Figure 1 displays the likelihood that the estimate of the in-
group variability is higher than the estimate of the out-group
variability, P(Vt,in > Vt,out), as a function of the number of
periods. It is higher than 0.5 for all periods after period 1. In
other words, the in-group tends to be perceived as more vari-
able than the out-group. The likelihood that the in-group is
perceived as more variable than the out-group first increases
quickly and then decreases very slowly with the number of
periods. It is equal to 0.54 after 50 periods and 0.53 after 100
periods. This suggests that this asymmetry persists even after
many periods.
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Figure 2: Model with unbiased variance estimator. Distribu-
tion of the sample sizes of the two groups after 15 periods.
Based on 105 simulations with b = 0.5,r = 0.5,s = 3.

To develop an intuition for this result, we focus on the
end of period 15. First note that the in-group is sampled
more times than the out-group (Figure 2). This is because
of the assumed sampling advantage of the in-group (eq. 3).
Second, note that the distributions of sampled variabilities
for the two groups are right skewed but to a different ex-
tent (see Figure 3). The distribution of the sampled vari-
ability for the in-group V15,in is less skewed than the distri-
bution of the sampled variability for the out-group, V15,out .
By contrast, the mean sample variabilities are the same:1

E(V15,in) = E(V15,out) = σ2 = 1. Overall, this implies that
V15,in tends to be larger than V15,out .

More generally, the distribution of variability estimates for
a group is skewed, but the skewness decreases with sample
size. If Vt,g is based on n observations, it is a random vari-
able with a χ2 distribution with n−1 degrees of freedom (the
mean is assumed to be unknown to the agent). The χ2 dis-
tribution is skewed to the right, therefore the probability that
the variance estimate is lower than the true variance (σ2 = 1)
is higher than 0.5. Consider the probability mass below 1 for
sample sizes 5, 10, 15, 20 and 50. The probability masses are
0.59, 0.56, 0.55, 0.54, and 0.53, respectively. In all cases, it
is higher than 50%, but it goes down as sample size increases
and converges to 0.50 as the sample size becomes large. Be-
cause our assumptions about the sampling process imply that
the sample collected about the in-group tends to be larger than
the sample collected about the out-group, the distribution of
Vt,in is likely less skewed than the distribution of Vt,out . This
implies that Vt,in is likely larger than Vt,out . In other words, an
in-group heterogeneity effect emerges.

1This is because the variance estimator we used is statistically
unbiased, see eq. 2.

Figure 3: Model with unbiased variance estimator. Distri-
butions of the variability estimates (according to eq. 2) V15,in
and V15,out after 15 periods. Black vertical line denotes the
true variance on the X dimension (σ = 1). Based on 105 sim-
ulations with b = 0.5,r = 0.5,s = 3.

Other Estimators of Variability
A Bayesian Estimator of Variability An alternative im-
plementation of our assumption that information is processed
‘correctly’ is to assume that the agent is a Bayesian proces-
sor of information, with correct priors about the true variance.
For simplicity, we assume that the mean on the X dimension
is known and equal to 0.2 The true variance is drawn from
an inverse gamma distribution with parameters α and β. The
inverse gamma distribution is a conjugate distribution: the
posterior also follows an inverse gamma distribution.

f (σ̂2
t,g)∼ IG

(
α+

∑
t
k=1 Ik,g

2
,β+

∑
t
k=1(xk,g− x̄t,g)

2Ik,g

2
)

(4)

We simulated the model by assuming the same attitude up-
dating rule and sampling rule as before, but with the Bayesian
estimator of variability in equation 4. We assumed α = 15/2
and β = α.3

Figure 4 displays the evolution of P(Vt,in > Vt,out). In this
Bayesian setting as well, the in-group tends to be perceived
as more variable than the out-group. This result is impor-
tant, because it demonstrates that even a rational processor of
information will tend to perceive the in-group as more vari-
able than the out-group in settings where the in-group is more
likely to be sampled again (i.e. r > 0). A similar pattern
would emerge if the agent were also updating her attitudes
(At,g) using Bayes’ rule, provided that the sampling rule im-
plies that larger samples are obtained about the in-group than
about the out-group.

2Similar results hold if the mean is unknown, but the formulas
are much more complicated.

3The prior hyperparameters were chosen to match the setup of
the example discussed above (N(0,1) payoff distribution and t =
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Figure 4: Model with Bayesian estimator of variability. Like-
lihood that the posterior estimate of in-group variability is
higher than the posterior estimate of out-group variability
(P(Vt,in > Vt,out)) as a function of time. Based on 105 sim-
ulations with b = 0.5,r = 0.5,s = 3,α = 15/2,β = α.

Sample Variance In the main analysis, we assumed that
the agent estimated the group variabilities using a statistically
unbiased estimator (eq. 2). We did so because we wanted to
demonstrate that an asymmetry in the perception of variabil-
ity could emerge even in this case. Several papers have as-
sumed that people use the standard sample variance estimator
(e.g. Juslin, Winman, & Hansson, 2007; Kareev et al., 2002):

Vt,g =
1

nt,g

t

∑
k=1

(xk,g− x̄t,g)
2Ik,g, (5)

This estimator is biased for small samples, and the size of
the bias is stronger for smaller samples. Unsurprisingly, sim-
ulations based on this estimator lead to a stronger asymme-
try than in the above analyses. For example, after 15 pe-
riods, the likelihood that the estimate of in-group variabil-
ity is higher than the estimate of out-group variability is
P(V15,in > V15,out) = 0.62. This number was 0.56 when the
unbiased variance estimator was used.

We did not find empirical evidence that suggests that peo-
ple’s intuitive variability estimates are closer to the unbiased
or the biased estimators. Qualitatively, this is not an issue for
our argument, because the asymmetry in perception of group-
variability emerges in both cases. Further work should inves-
tigate this issue. This would allow for quantitative predictions
about the size of the in-group heterogeneity effect.

Relation to Existing Literature on In-group
Heterogeneity

Most prior explanations of the in-group heterogeneity effect
have invoked differences in how information about in-group
and out-group is processed. Here we discuss how our ex-

15). The interpretation of the parameters is that the prior is based on
a sample of size 2α = 15 with variance β/α = 1.

planation differs from this prior work (we use a taxonomy
similar to Ostrom and Sedikides (1992)).

Several explanations rely on motivated cognition (Kunda,
1990). The first mechanism invokes people’s desires for pos-
itive identities. Those who want a positive social identity
are motivated to view their in-groups more positively than
other groups (Tajfel, 1982). At the same time, heterogeneity
is frequently perceived as a positive feature of social groups
(Ostrom & Sedikides, 1992). Therefore, people are moti-
vated to perceive the in-group as more heterogeneous than
out-groups. A related mechanism invokes people’s desire for
distinct identities. A more heterogeneous in-group allows
people to see themselves as unique within the in-group. Thus,
people are motivated to see their in-groups as heterogeneous
(Pickett & Brewer, 2001). Yet another explanation based on
motivated cognition notes that it is easier to dehumanize more
homogeneous groups (Haslam, 2006; Brewer, 1999). There-
fore, if the out-group is perceived as less variable than the in-
group, it is easier to justify negative attitudes and even cruel
actions towards out-group members.

Another explanation notes that people tend to have prior
beliefs that the out-group is more homogeneous. Park and
Hastie (1987) showed that if participants first observed ex-
emplars from a group followed by a description of its gen-
eral characteristics, they perceived this group as more vari-
able compared to when they observed that information in re-
versed order. This suggests that the prior about homogeneity
affects how information is encoded. This finding implies an
in-group heterogeneity effect under a (reasonable) assump-
tion that people often learn descriptions of out-groups before
interacting with some of their members (e.g. through stereo-
types communicated by others in their environment) whereas
they learn about natural in-groups by direct observations.

A third class of explanations notes that the self is part of
the in-group (Park & Judd, 1990). Since the self is often per-
ceived as particularly differentiated and unique, this would
contribute to an impression that the in-group is more het-
erogenous than the out-group.

A fourth class of explanations suggests that information
about different groups is encoded and retrieved in different
fashions. For example, Ostrom et al. (1993) found that infor-
mation about in-group members is stored in categories related
to individual information whereas the information about the
out-group members is stored in categories related to stereo-
typical attributes. Therefore, when the information is re-
called, the in-group tends to be associated with more indi-
viduating information compared to stereotype based homo-
geneous information about the out-group. In terms of re-
call, Park and Judd (1990) suggested that participants re-
call more extreme exemplars about in-groups than about out-
groups. This suggests that memory search processes might
differ across in-group and out-group.

These four classes of explanations emphasize features of
information processing. By contrast, our explanation focuses
properties of the sample of information on which the mind
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operates. Because our explanation focuses on a different
level than explanations that focus on information processing,
it does not contradict these. Rather, it complements them.
Our analyses and the experimental findings discussed above
suggest that both types of mechanisms likely play a role in
explaining why people see their in-groups as more heteroge-
neous than their out-groups.

The most closely related paper to ours is a paper by Linville
et al. (1989). It analyzes an exemplar model that describes
how information about groups is encoded, stored and re-
called. The authors argue that higher familiarity with the
in-group than with the out-group is the cause of the bias.
Familiarity in this case is the number of exemplars of each
group a person has encountered. They model the encoding,
storage and recall of the information using a set of param-
eters and show that the strength of the bias depends on the
information processing. They also consider the case of per-
fect memory (perfect encoding, no forgetting, and perfect re-
call). They find an asymmetry in expected variability esti-
mates (E(Vin) > E(Vout)). Their argument is similar to the
logic of our model, but their analysis focuses on the asymme-
try produced by reliance on the biased variance estimator we
discussed above (see eq. 5). Our results differ, because they
demonstrate that a systematic tendency to perceive the in-
group as more heterogeneous can emerge even when people
use an unbiased estimator of variability. In some sense, our
result is stronger because the asymmetry in expected variabil-
ity implied by the biased variance estimator goes down very
quickly with sample size. The asymmetry based on the skew-
ness of the distribution of estimators of variability persists
even as sample size becomes somewhat large (although it dis-
appears for very large samples). Another difference is that our
model focuses on sampling from the environment whereas
this prior paper focused on sampling within the mind.

Discussion
Sensitivity Analysis
The magnitude of the in-group heterogeneity effect produced
by our model depends on the model parameters.

The baseline probability of sampling the in-group (r in
eq. 3) has a large effect on the magnitude of the bias. For
r values close to zero, the likelihood that the in-group is per-
ceived as more variable becomes close to 0.5 (e.g., 0.51 for
r = 0.05), but when the advantage of the in-group is high
(r = 0.9), the likelihood that the in-group is perceived as more
variable can be as high as 0.64 (see Figure 5). The baseline
probability of sampling from the in-group reflects the diffi-
culty of obtaining information about the members of the out-
group. Its value depends on the empirical setting. For exam-
ple, depending on the social group and socioeconomic struc-
ture of a country, the probability can range from small values
(for fairly international and integrates societies) to very high
values (in isolated homogeneous societies).

The other parameters, b (the weight of the new attitude,
see eq. 1) and s (the slope parameter in the sampling rule, see

Figure 5: Model with unbiased variance estimator: Likeli-
hood that the estimate of in-group variability is higher than
the estimate of out-group variability (P(Vt,in > Vt,out)) af-
ter 15 periods, as a function of the baseline probability of
sampling the in-group (r). Based on 105 simulations with
b = 0.5,s = 3.

eq. 3) have a positive effect on the strength of the in-group
heterogeneity effect, but the effect is not strong.

A different but related model to ours would not assume an
inherent sampling advantage for the in-group (take r = 0).
In this case, our model does not predict any in-group hetero-
geneity effect if the groups are equally attractive (i.e., at,in
and at,out are drawn from the same distribution). But suppose
that the in-group is more attractive. It is possible to model
this by assuming that the mean of the distribution of at,in is
higher than the mean of the distribution of at,out (for simplic-
ity, we assume the variances are equal). In this case, the agent
will obtain larger samples about the in-group than about the
out-group and an in-group heterogeneity effect will emerge if
s and b are high enough.

In-Group Homogeneity
Several papers have documented instances of an in-group ho-
mogeneity effect that seems to contradict the dominant find-
ing of an in-group heterogeneity effect (Simon & Pettigrew,
1990; Rubin & Badea, 2007). Our sampling mechanism can
acomodate some of these findings.

An in-group homogeneity effect has been found when the
feature under consideration is used as a basis for categoriza-
tion. That is, the value of that feature defines whether the per-
son is categorized into the in- or out-group (Rubin & Badea,
2007). In this case, the true variability of the in-group might
be smaller than the variability of the out-group on the focal
feature. Our model can be adapted to this setting by relaxing
the assumption that the true variances are the same for the
two groups. We can assume instead σ2

in < σ2
out . Our model

implies that the variabilities of both groups will tend to be
underestimated, but that the in-group variability will be un-
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derestimated to a lower extent than the out-group variability.
If the difference in the extent of underestimation is smaller
than the difference in true variabilities, our model implies the
emergence of an in-group homogeneity effect, in line with the
true difference in variabilities. But if the difference in true
variabilities is small, our model can lead to the emergence of
an in-group heterogeneity effect.

Although most prior research conceptualized the ‘in-
group’ and the ‘out-group’ as specific groups, some papers
have conceptualized the out-group as ‘everyone but the in-
group’ (e.g. Alves, Koch, & Unkelbach, 2016). In this case,
the true variability of the out-group is likely much larger than
the true variability of the in-group. This setting is a special
case of the setting discussed in the previous paragraph.

Finally, there is some evidence that when the in-group is
a minority it tends to be judged as more homogeneous than
the out-group (Simon & Pettigrew, 1990). Our model can be
adapted to this setting as well. Consider a situation where the
in-group is smaller than the out-group and, furthermore, the
number of in-group members is smaller than the number of
periods. The agent will sample all the in-group members but
the sample size will remain small (bounded by the number
of members). To illustrate this, let us return to our example
where the number of periods is t = 15 and let us also assume
that the sizes of the in-group and out-group are 5 and at least
10, respectively. Then the sample size for the in-group will
not exceed 5 whereas the size of the out-group members sam-
ple will be at least 10. This sample size asymmetry in favor
of the out-group implies an in-group homogeneity effect.

Conclusion
People frequently obtain larger samples of information about
in-groups than about out-groups. Because estimators of vari-
ability tend to be more strongly right-skewed when samples
are smaller, this implies that people will be likely to perceive
in-groups as more variable than out-groups. In this paper, we
showed that this in-group heterogeneity effect emerges even
when people process information correctly – even if they are
naive intuitive statisticians. Our theory complements existing
explanations that proposed that information about in-group
and out-group members was processed in different fashions.
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Abstract

Previous research on the effects of probability and delay on
decision-making has focused on examining each dimension
separately, and hence little is known about when these dimen-
sions are combined into a single choice option. Importantly,
we know little about the psychological processes underlying
choice behavior with rewards that are both delayed and proba-
bilistic. Using a process-tracing experimental design, we mon-
itored information acquisition patterns and processing strate-
gies. We found that probability and delay are processed se-
quentially and evaluations of risky delayed prospects are de-
pendent on the sequence of information acquisition. Among
choice strategies, directly comparing the values of each dimen-
sion (i.e., dimension-wise processing) appears to be most fa-
vored by participants. Our results provide insights into the psy-
chological plausibility of existing computational models and
make suggestions for the development of a process model for
risky intertemporal choice.

Keywords: Risky Intertemporal Choice; Process Tracing;
Path Dependency; Sequential Processing; Decision Strategies

Introduction
While research on risky choice and intertemporal choice have
separately provided significant insights into the effects of
probability and delay, decisions which involve both elements
have received less scrutiny. Two unresolved questions are
whether probability and delay are processed sequentially (and
if yes, which dimension is considered first), and whether eval-
uation of risky delayed prospects is path dependent. Öncüler
and Onay (2009) found that the order in which participants
processed risky delayed prospects affected the final evalua-
tions of these prospects. Using a process-tracing design, they
found that amount-related (i.e., money) information was ac-
quired first most often, followed by information about delay
and then probability. Interestingly, when participants were re-
quired to process delay first, they provided higher evaluations
of the same prospect compared to when they processed prob-
ability first, supporting the view of path dependency in risky
intertemporal choice.

Despite being central to the characterization of choice be-
havior, no other studies have utilized process-tracing meth-
ods in the domain of risky intertemporal choice. Process-
tracing methods can provide insightful observations about the
processes that take place before the actual decision, such as
search, integration, and processing of available information
(e.g., Reisen, Hoffrage, & Mast, 2008). In risky intertemporal
choice they can provide information about the order in which
participants integrate amount, delay, and probability informa-
tion as well as choice strategies adopted. Accordingly, pro-
cess data can set the foundations for the development of com-

putational models and offer testable predictions regarding the
choice process.

The experimental results relating to path dependency and
sequential evaluation are not readily explained by traditional
expected discounted utility models. These models focus on
predicting choice outcomes (descriptive as-if models), hence
arguably not accounting for the underlying psychological
processes that are responsible for choice behavior, or sim-
plifying strategies (e.g., heuristics) that people may employ
in their decision-making. For instance, some expected util-
ity models assume that people integrate probability and de-
lay information into a common metric of psychological dis-
tance (e.g., Baucells & Heukamp, 2012; Vanderveldt, Green,
& Myerson, 2015). However, Öncüler and Onay (2009) ob-
served in their process data that this strategy was not favored
(i.e., transitions between probability and delay information
were the least frequent), thus rendering the “common psycho-
logical distance” account less likely among competing expla-
nations.

The main purpose of the current work is to extend Öncüler
and Onay’s (2009) investigation from a pricing task, in which
participants had to indicate the present certainty equivalent
or pCE of a risky delayed prospect (the minimum amount of
money that one is willing to accept instead of a delayed gam-
ble) to a choice task in which participants choose between
two risky delayed prospects. We then examine the predic-
tions for path dependency and sequential evaluation in both
tasks. This comparison allows us to ask whether choice is
also characterized by path dependency and whether the char-
acteristics of this dependency are similar between choice and
pricing. The identification of such characteristics and pro-
cessing strategies can also inform the development of mod-
els that rely on psychologically plausible accounts of choice
behavior (i.e., psychological process models). Such models
have become increasingly popular in many areas of decision-
making (e.g., Koop & Johnson, 2013), and often assume that
decision-making follows simple rules of information process-
ing, such as dimension-wise evaluation, sequential process-
ing, and partial integration of available information (see e.g.,
Brandstätter, Gigerenzer, & Hertwig, 2006).

Method
Participants
We tested a total of 63 undergraduate students (42 female;
Age: M = 19.02, SD = 1.56) at the University of New South
Wales who participated in return for course credit.
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Figure 1: Schematic representation of the experimental design in the pricing (A) and choice (B) tasks. In the pricing task,
participants could open as many boxes as they wanted before they gave the pCE of the delayed lottery. There was no limit about
the time inspecting a box. The position of each dimension on the screen (Amount, Probability, and Delay) was randomized
across trials. The association between colored boxes and dimensions remained invariant throughout each experimental session
but was randomized across participants. The design was identical in the choice task and participants had to choose between two
delayed lotteries. In this screenshot, the mouse opens an Amount box in the pricing task (i.e., $120) and a Delay box of Option
1 in the choice task (i.e., 13 months).

Task and design

We used a process-tracing design (i.e., similar to a MouseLab
information board; see Payne, Bettman, & Johnson, 1993)
to monitor information acquisition strategies and processing
steps. The experiment consisted of two parts: the first part
was a pricing task, where participants had to indicate the pCE
of 68 delayed lotteries (presented sequentially and in random
order). For each delayed lottery, there were 3 colored boxes in
the center of the screen, each containing the numerical value
of each lottery’s dimensions: Amount of money (in $), Proba-
bility (in %), and Delay (in months; see Figure 1A). However,
this information was hidden and revealed only upon clicking
on each corresponding box. When participants clicked on a
box, it stayed active (i.e., showing its value) as long as the
mouse cursor was within the borders of the box. When they
moved the mouse out of the box, it returned to its default state
(i.e., hidden). There was no limit in the amount of clicks or
the time inspecting a box. In addition, participants could re-
turn to an already seen box if they wanted to. The position of
each box was randomized across trials.

The second part was a choice task (Figure 1B), which al-
ways followed the pricing task and involved a choice between
two delayed lotteries. Unbeknownst to the participants, the
choice dyads were formed using pairs of prospects from the
pricing task (34 choice pairs from 68 delayed lotteries). The
procedure of acquiring information about each delayed lot-
tery was identical to the pricing task.

Procedure

Participants sat in front of a computer screen and were given
instructions about the task (e.g., details about the informa-
tion acquisition in the pricing task and what pCE represents).
There was also a practice stage prior to the main task where

participants could familiarize themselves with the process-
tracing character of the task. For the pricing task, there was
a box where they could type in their evaluation (Figure 1A).
For the choice task, they were told that the task is exactly the
same as before, with the only differences being that there was
an extra option on the screen and they had to choose between
the two, by clicking on the corresponding option label (Figure
1B).

Results

Pricing Task

All participants completed the experiment. We excluded
one participant because they never acquired probability and
delay-related information. Our initial objective was to ex-
plore the basic properties of information acquisition in the
pricing task (see Figure 2): the frequency that each dimen-
sion was inspected, the frequency that each dimension was
inspected first (i.e., at the beginning of each trial), last (i.e.,
before participants provided the pCE value), and intermedi-
ate (i.e., excluding first and last inspection items), and the
mean inspection time for each dimension. For the analysis
of frequency data, we used a linear multilevel model with di-
mension as fixed-effect and random intercepts for each par-
ticipant. We applied a square root transformation for the
frequency data.1 As Figure 2A suggests, participants ac-
quired more amount-related information, followed by proba-
bility and delay, and this pattern was present in all categories
of interest (All: χ2(2) = 269.07, p < .001; First: χ2(2) =
60.67, p < .001; Intermediate: χ2(2) = 77.69, p < .001; Last:

1This analysis is equivalent to a chi-squared test of indepen-
dence, but it accounts for individual heterogeneity in the data (see
Willemsen & Johnson, 2011).
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χ2(2) = 96.18, p < .001).2 The same pattern is observed in
the mean inspection time (Figure 2B): participants spent more
time looking at amount information, followed by probability
and delay (χ2(2) = 67.20, p < .001; significant differences
between each dimension). Also, the relative preference for
inspecting each dimension does not seem to change over time
as can be seen in Figure 2C: block × dimension interaction,
χ2(6) = 1.19, p = 0.98.
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Figure 2: Graphical representation of information acquisi-
tion in the pricing task: A) Relative frequencies of opened
boxes of each dimension (All: Overall; First & Last: First and
Last boxes opened in a trial; Intermediate: Excluding First
and Last boxes). B) Mean inspection time for each dimen-
sion. C) Pattern of acquisition items across blocks of trials
(17 trials/lotteries each).

The next step in our analysis was to inspect transitions be-
tween consecutive (n↔ n+1) information items. This anal-
ysis can provide us with information about the sequential na-
ture of risky intertemporal choice. For example, based on
the adjacency principle (“information used in temporal prox-
imity should be acquired in close proximity”; see Johnson,
Schulte-Mecklenbeck, & Willemsen, 2008, p. 264), if the
Amount↔ Probability transition occurs more often and tem-
porally precedes the Amount ↔ Delay transition, it means
that participants pay more attention to the amount and proba-
bility aspects of the prospect and probability discounting (or
processing of probability) occurs prior to delay discounting
(or processing of delay). Table 1 suggests that the Amount
↔ Probability transition not only occurs more often than any
other transition (All column), but it seems to precede any
other transition (First column), and be considered more often
before the final evaluation of the lottery (Last column). The
relatively low proportion of Delay ↔ Probability transitions

2All pairwise contrasts were significant, p < .05, apart from the
contrast between probability and delay regarding the last item, and
the contrast between amount and probability regarding intermediate
items.

suggests that participants are not attempting to create a com-
mon metric of psychological distance by integrating these two
dimensions (cf. Öncüler & Onay, 2009).

Table 1: Transitions between dimensions in Experiment 1.
The ↔ symbol indicates all transitions from one dimension
to the other.

Transition All: N All: % First: % Last: %

Amount↔ Probability 8,834 0.46 0.47 0.50
Delay↔ Amount 5,117 0.27 0.28 0.27
Delay↔ Probability 4,335 0.23 0.22 0.19

Note: Relative frequencies do not add up to 1 because transitions
between the same dimension (e.g., Amount↔ Amount) are not in-
cluded in the table.

We then explored the concept of path dependency as sug-
gested by Öncüler and Onay (2009) by comparing the fi-
nal evaluations of lotteries when Amount ↔ Probability or
Amount↔ Delay was the first occurring transition. Öncüler
and Onay found that when participants followed the Amount
↔ Delay path they gave higher evaluations of the same
prospect compared to the Amount ↔ Probability path. Our
results replicate this effect: when examination of delay pre-
ceded that of probability, participants gave higher evaluations
for the majority of trials (70%). However, it is not clear how
subsequent transitions in our experiment might have affected
the final evaluation of the prospect. We try to address this
issue along with the issue of imbalance in transitions (which
emerges due to the higher frequency of Amount↔ Probabil-
ity transitions) in a following experiment.

Choice Task
Figure 3 presents information acquisition for each dimension
in the choice task, aggregated across the two choice options.
The pattern of results looks similar to the pricing task with
a few exceptions: First, looking at the overall trend of di-
mension inspection, there is no difference between amount
and probability (Figure 3A; b = −0.01, t = −0.84, p = .40),
but both differ with respect to delay (pairwise contrasts, p <
.001). A similar pattern is observed in the intermediate in-
spection items (no difference between amount and probabil-
ity, b = 0.07, t = 0.34, p = .73, but they both differ from de-
lay, p < .001). This presents a difference between the two
methods of preference elicitation, indicating that in a choice
setting amount and probability may have the same degree of
influence on choice. As in the pricing task, the first dimen-
sion considered followed the amount > probability > delay
scheme, χ2(2) = 37.23, p < .001, but there was no differ-
ence between dimensions regarding the last information item,
χ2(2) = 2.68, p = .26. The mean time spent at each dimen-
sion (Figure 3B) was not different between amount and prob-
ability (p = .95), but both were higher than delay (p < .001).
Regarding selection of each dimension across time, Figure
3C suggests that it does not change between the two halves of
the choice task, χ2(2) = 2.67, p < .001.
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Figure 3: Graphical representation of information acquisi-
tion in the choice task, aggregated across the two options:
A) Relative frequencies of opened boxes of each dimension
(All: Overall; First & Last: First and Last boxes opened in a
trial; Intermediate: Excluding first and last). B) Mean inspec-
tion time for each dimension. C) Pattern of acquisition items
across blocks of trials (17 trials/choices each).

Next, we examined transitions between consecutive in-
formation items (n ↔ n + 1) which are informative of the
strategies that participants use. Assuming a 2× 3 informa-
tion board/grid where rows represent choice alternatives and
columns dimensions (as in Figure 1B), transitions between
items can be categorized as dimension-wise (or intradimen-
sional: when the transition examines the same dimension be-
tween the two choice options, e.g., Amount in Option 1 ↔
Amount in Option 2), alternative-wise (or interdimensional:
when the transition moves between different dimensions of
the same option, e.g., Amount in Option 1 ↔ Delay in Op-
tion 1), diagonal (i.e., when the transition moves from one
dimension of one option to a different dimension of the other
option, e.g., Probability in Option 2 ↔ Delay in Option 1),
and same (i.e., two consecutive inspections of the same di-
mension in the same option, e.g., Probability in Option 1↔
Probability in Option 1). Table 2 presents the frequency of
each of the categories of transitions in the choice task: a first
inspection of all transitions (All column) suggests that par-
ticipants equally combined dimension and alternative-wise
strategies. One of the most commonly used strategy indices
(SI; Payne, 1976) suggests that participants equally used both
strategies to make decisions. The SI is a ratio of the differ-
ence between alternative and dimension-wise transitions and
it is defined as SI = (ra− rd)/(ra + rd), where ra is the total
number of alternative-wise transitions and rd is the total num-
ber of dimension-wise transitions. It ranges between −1 to
+1, with negative numbers suggesting more dimension-wise
processing and positive numbers suggesting more alternative-
wise processing. For our data, the SI equaled 0.06, indicating

roughly equal use of both strategies.

Table 2: Categories of transitions in the choice task. Arrows
indicate the direction of the transition within the information
board (see Figure 1B).

Transition All: N All: % First: % Last: %

Dimension ↑↓ 7,115 0.39 0.58 0.54
Alternative � 8,072 0.44 0.39 0.39
Diagonal ↗↙ 3,117 0.17 0 0.07
Same – 146 0.01 0.02 0.01

However, Böckenholt and Hynan (1994) argued that the
SI is a biased measure of strategy use when there is a dif-
ferent number of alternatives and dimensions. Specifically,
if the number of dimensions is larger than the number of the
alternatives3, then a positive SI is to be expected, indicating
more alternative-wise processing. Böckenholt and Hynan de-
veloped an index (strategy measure; SM) which takes into
account all possible transitions (e.g., including Diagonal and
Same in Table 2):

SM =

√
N[(AD

N )(ra− rd)− (D−A)]√
A2(D−1)+D2(A−1)

(1)

where N is the total number of all types of transitions, A is the
number of alternatives, D is the number of dimensions, and ra
and rd denote frequency for alternative-wise and dimension-
wise transitions, respectively. As with the SI, negative values
of the SM indicate more dimension-wise processing, as can
be seen in Figure 4. Specifically, dimension-wise processing
becomes more prevalent as time progresses, as indicated by
the linear decrease of the SM value.
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Figure 4: Strategy measure (SM) averaged across partici-
pants for each trial/choice of the task.

Experiment 1B: Constrained sequential search
Method The purpose of this experiment was to examine in
detail the effect of path dependency observed in the pricing
task. Participants (N = 40, Mage = 19.08) provided the pCE
of risky delayed prospects sequentially (i.e., in two stages;

3This is the case in our experiment. In fact, it is twice as likely
for an alternative-wise transition to occur (6 transitions) compared
to a dimension-wise (3 transitions).
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see also upper panel in Figure 6): in the first stage, they could
see either probability or delay (amount was always visible on
the screen), and give the present value of the prospect (if de-
lay was presented first), or the certainty equivalent value (if
probability was presented first). The value they provided in
the first stage appeared in the second stage along with the
numerical value of the unseen dimension, and participants
had to provide a second and final value for the prospect. We
manipulated (three experimental parts) the way that partici-
pants acquired probability and delay-related information: a)
a free search part where participants could select to see either
probability or delay in the first stage, and b) two constrained
search parts where either probability or delay was presented
to participants first. Hence, participants were presented with
the same risky delayed prospect three times.

Results We first examined search patterns in the free search
part of the experiment: we found that in 68.50% of all trials,
participants chose to see probability first, replicating the ef-
fect we observed in the pricing and choice tasks, that is a pref-
erence for inspecting and integrating probability information
before delay information. We also examined search patterns
as a function of the amount offered (amount was always visi-
ble on the screen). Figure 5 presents an interesting pattern:
participants’ tendency to inspect the probability dimension
first increases as amount increases. Despite the overall prefer-
ence for acquiring probability first (even in the lowest amount
category, [50, 175), it is 64.38%) the difference between the
lowest and highest amount categories is about 10% (74.16%
in the last category).
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Figure 5: Proportion of trials in which participants chose to
see probability first as a function of Amount (in $; binned in
five equal categories).

Regarding path dependency, we examined the final pCEs
in the constrained search parts of the task. Figure 6 shows
the proportion of participants that gave a higher final evalu-
ation when they were constrained to inspect probability first
(as compared to delay first) as a function of the numerical
values of each gamble’s probability (lower panel A) and de-
lay (lower panel B). For example, the leftmost data-point in
Figure 6A indicates that for the same risky delayed prospect
(which has a probability of 2%) about 40% of all partici-
pants gave a higher final pCE when they were presented with
probability information first than when they were presented

with delay information first (see also the table in the upper
panel). Even though Figure 6 essentially ignores interactions
between each dimension and collapses across all amount,
probability, and delay values, it shows some interesting pat-
terns. First, as the probability in a prospect increases, the
proportion of participants who gave a higher evaluation when
they were presented with probability first increases, as shown
by a multilevel logit regression with probability as fixed ef-
fect and participant-specific random intercepts (standardized
b = 0.40,z = 4.44, p < .001). Second, there is a similar trend
in the delay panel (as temporal distance increases, the pro-
portion of participants that gave a higher evaluation of the
same gamble when they were presented with probability first
increases) but it is not as pronounced as in the probability
panel (standardized b = 0.24,z = 2.70, p = .007). Interest-
ingly, this pattern seems to apply to small values of probabil-
ity and delay, as when we constrain our analysis in the upper
half of both scales (i.e., 50% to 90% for probability; 16 to 24
months for delay) the effect disappears (both multilevel logit
regressions, p > .05). Overall, our results replicate the path
dependency patterns in Öncüler and Onay (2009) and sug-
gest that path dependency is not stable, but is moderated by
the numerical values of each dimension.

Probability First Delay First

Stage 1 $450 2 %→ XPF $450 21 M→ XDF
Stage 2 XPF 21 M→ YPF > XDF 2 %→ YDF
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Figure 6: Upper panel: Representation of the task (M:
Months). Lower panel: Proportion of participants who gave a
higher final pCE (i.e., YPF > YDF ) for the same gamble when
they were presented with information about probability first
across Probability (A) and Delay levels (B).

Discussion
We set out to uncover the strategies and information acqui-
sition patterns that people use when they evaluate and make
decisions about risky delayed prospects. Using three differ-
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ent process-tracing tasks to elicit preferences, we observed
systematic patterns relating to search, integration, processing,
and strategy-use. First, participants acquired more amount-
related information, followed by probability and delay in the
pricing task, whereas in the choice task amount and proba-
bility appeared to have the same degree of influence on de-
termining choice. Our results are in accordance with recent
studies in intertemporal risky choice which found that proba-
bility might play a more important role than delay (e.g., Kon-
stantinidis, van Ravenzwaaij, Güney, & Newell, 2017; Van-
derveldt et al., 2015), but are at odds with Öncüler and Onay
(2009) who found that participants preferred to acquire de-
lay information before and more frequently than probability
information.

Second, Amount↔ Probability transitions were more fre-
quent and preceded any other transition in the pricing task.
This pattern of results suggests that evaluation of risky de-
layed prospects is subject to sequential processing. Also, the
integration of probability and delay into a common psycho-
logical distance measure seems less likely as the Probability
↔ Delay transition occurs less frequently and temporally fol-
lows other types of transitions.

Third, regarding path dependency and sequential process-
ing, our constrained search experiment revealed that the final
evaluation of risky delayed prospects is not only dependent
on the path taken (i.e., integrating probability information be-
fore delay information, and vice-versa), but on the numerical
values of each dimension. For example, when participants
were first presented with low probability values, they largely
discounted the final value of the same prospect as compared
to when they saw delay-related information first about the
same prospect. We found that the effect of path dependency
observed in Öncüler and Onay (2009), that is, the Delay →
Probability path generating higher values than the Probability
→ Delay path, is only observed with small probabilities.

Fourth, examination of transitions in the choice task reveals
that participants employ dimension-wise strategies more fre-
quently than alternative-wise strategies to make decisions in
risky intertemporal choice settings. Even though there was no
reliable difference between dimension and alternative-wise
processing regarding the total number of transitions, taking
into account different measures of strategy use (e.g., search
indices, overall, first and last inspection items, and transi-
tions between items), we found that dimension-wise process-
ing may be more prevalent among participants, supporting re-
cent studies which found that dimension-wise models in the
domains of risky choice and intertemporal choice outperform
their alternative-wise counterparts (e.g., Dai & Busemeyer,
2014).

Lastly, even though individual information acquisition pat-
terns might reflect noisy and idiosyncratic use of strategies,
we identified systematic processing strategies and informa-
tion acquisition patterns that a process model (or any other
type of model) in the field of risky intertemporal choice
should take into account. Our results also provide testable

grounds for psychological assumptions in models of risky in-
tertemporal choice: we found little evidence that participants
treat probability and delay as representing a common factor
of psychological distance, or that probability can be translated
into delay, and vice-versa.
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Abstract
A growing body of evidence supports the hypothesis that hu-
mans infer future states of perceived physical situations by
propagating noisy representations forward in time using ratio-
nal (approximate) physics. In the present study, we examine
whether humans are able to predict (1) the resting geometry
of sand pouring from a funnel and (2) the dynamics of three
substances—liquid, sand, and rigid balls—flowing past obsta-
cles into two basins. Participants’ judgments in each experi-
ment are consistent with simulation results from the intuitive
substance engine (ISE) model, which employs a Material Point
Method (MPM) simulator with noisy inputs. The ISE outper-
forms ground-truth physical models in each situation, as well
as two data-driven models. The results reported herein expand
on previous work proposing human use of mental simulation in
physical reasoning and demonstrate human proficiency in pre-
dicting the dynamics of sand, a substance that is less common
in daily life than liquid or rigid objects.
Keywords: Intuitive physics; mental simulation; substance
representation; prediction

Introduction
Consider KerPlunk, a children’s game in which marbles are
suspended in the air by a lattice of straws within a cylindrical
tube. The goal of the game is for each player to take turns re-
moving straws while minimizing the number of marbles that
fall through the lattice. The task requires players to reason
about the interaction between rigid bodies and obstacles in
3D space. But what if the marbles were replaced by balls of
liquid or sand? Could humans predict how those substances
would move? Would those predictions agree with a genera-
tive model based on ground-truth, Newtonian physics?

Recent computational evidence has demonstrated that hu-
man predictions do agree with Newtonian physics, given
noisy perception and prior beliefs about spatially represented
variables: i.e., the noisy Newton hypothesis (Bates, Yildirim,
Tenenbaum, & Battaglia, 2015; Battaglia, Hamrick, & Tenen-
baum, 2013; Gerstenberg, Goodman, Lagnado, & Tenen-
baum, 2015; Hamrick, Battaglia, Griffiths, & Tenenbaum,
2016; Kubricht et al., 2016; Sanborn, 2014; Sanborn, Mans-
inghka, & Griffiths, 2013; K. Smith, Battaglia, & Vul, 2013).
The hypothesis suggests that humans rationally infer the val-
ues of physical variables and utilize normative conservation
principles (approximately) to make predictions about future
scene states. Computationally, this is achieved by sampling
the initial locations, motions from noisy sensory input, and
sampling physical attributes in a physical scene, propagating
these variables forward in time according to approximated
physical principles, and aggregating queries on the final scene
states to form predicted response distributions.

Bates et al. (2015) extended the noisy Newton framework
from block tower judgments (Battaglia et al., 2013) to liq-
uid dynamics using an intuitive fluid engine (IFE). In their
IFE, ground-truth physics was approximated using smoothed
particle hydrodynamics (SPH (Monaghan, 1992), a particle-
based computational method for simulating non-solid dy-
namics. Their model predictions matched human judgments
about future fluid states and outperformed alternative mod-
els that did not employ probabilistic simulation or account
for physical uncertainty. Furthermore, the authors found that
their participants’ predictions were sensitive to latent fluid
attributes (stickiness and viscosity), suggesting that humans
have rich knowledge about the intrinsic properties of liquid.

The present study argues for the same general class of
model as Bates et al.’s (2015) IFE and extends their work
by examining (1) whether human predictions about future
states of multiple substances (i.e., rigid balls, liquid, and
sand) differ, and (2) whether those differences can be consis-
tently modeled using approximate, probabilistic simulation
based on a hybrid particle/grid simulator adapted from previ-
ous work (Kubricht et al., 2016). Although granular materials
(e.g., sand) are encountered in everyday life, they are far less
common than liquid; can humans accurately predict how sand
will interact with obstacles and support surfaces? We present
two experiments exploring the human capacity to predict the
dynamics of substances varying in familiarity and physical
properties, examining how human judgments and model pre-
dictions vary for different substances. Experiment 1 examines
human predictions about the resting composition of sand af-
ter pouring from a funnel. In Experiment 2, participants make
predictions about the flow of liquid, sand, and rigid balls past
obstacles using a design similar to Bates et al.’s (2015) study.

Computational Models
MPM Physical Simulator
The Material Point Method (MPM) (Sulsky, Zhou, &
Schreyer, 1995) is commonly used in computer graphics to
simulate the behavior of solids and fluids. The MPM has pro-
duced physically accurate and visually realistic simulations
of the dynamics of liquid (Jiang, Schroeder, Selle, Teran, &
Stomakhin, 2015) and sand (Klár et al., 2016), in addition
to general continuum materials such as stiff elastic objects
(Jiang, Schroeder, Teran, Stomakhin, & Selle, 2016).

The Appendix presents a mathematical overview of our
MPM simulator, which provides a unified, particle-based
simulation framework that handles rigid balls, liquid, and
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sand with essentially the same numerical algorithm, albeit
with appropriately differing material parameters. The MPM
method is physically accurate, numerically stable, and com-
putationally efficient, enabling us to synthesize a large set of
stimuli in a short amount of time by simply varying material
parameters and the locations of the initial objects and col-
liding geometries. Running all the simulations in the same
framework for the purposes of the present study also enables
fair comparisons among the three types of substances, since
we avoid potential inconsistencies in the numerical accura-
cies of multiple simulators specialized to particular materials.

Intuitive Substance Engine
Although the MPM simulator provides accurate and stable
kinematics and dynamics for liquid, sand, and rigid balls us-
ing a unified framework, this high-precision, deterministic
process does not account for the variability of human judg-
ments in various intuitive physics tasks. Inspired by previous
implementations of the noisy Newton framework (e.g., Bates
et al., 2015; Battaglia et al., 2013), we combined our MPM
simulator with noisy inputs, yielding an Intuitive Substance
Engine (ISE) that accounts for uncertainty in human percep-
tion and reasoning in physical situations involving the three
substances examined in this study. Details on how noisy per-
ceptual inputs are defined and sampled are provided in the
Model Results section of each experiment.

It is important to note that our ISE (employing MPM simu-
lation) is roughly equivalent to Bates et al.’s (2015) IFE (em-
ploying SPH simulation) in that both models apply the noisy
Newton framework to substance dynamics. Indeed, SPH is a
viable method for simulating the dynamics of both granular
materials and liquids, although MPM provides a more effi-
cient and accurate means of doing so. We do not envision
that the predictions of the two methods would differ substan-
tially from one another when applied to a given set of stimuli.

Data-Driven Models
Two data-driven models based on statistical learning meth-
ods were constructed as competing models—the generalized
linear model (GLM) (McCullagh, 1984) and Extreme Gradi-
ent Boosting (XGBoost) (Chen & Guestrin, 2016). GLM is
a classic machine learning method, commonly expressed by
Y = XB+U, where X is the feature input matrix, B is the pa-
rameter matrix (learned using a training dataset), and U is the
error between the ground truth matrix Y and prediction XB.

XGBoost is a recently-published machine learning method
which has been utilized by multiple research teams to achieve
outstanding performance in several Kaggle competitions. Es-
sentially, it is a type of tree ensemble model: i.e., a set of
classification and regression trees (CART). Formally, ŷi =
∑

K
k=1 fk(xi), where K is the number of trees, fk is a func-

tion in the functional space F comprising the set of all pos-
sible CARTS. The objective function is defined as R(θ) =
∑

n
i=1 l(yi, ŷi) +∑

K
k=1 Ω( fk), where θ includes the model pa-

rameters to be learned during training, l is the loss function,
which measures the cost between ground truth yi and predic-
tion ŷi, and ∑

K
k=1 Ω( fk) is a regularization term that prevents

the model from over-fitting the training data.

Figure 1: Intermediate frames from the demonstration video
in Experiment 1 from the (A) zoomed-out and (B) zoomed-in
perspective. (C) Sand pile choices in Experiment 1’s judg-
ment task.

Experiment 1
The first experiment was designed to determine whether hu-
mans are able to predict the resting geometry of sand after it
is poured from a funnel onto a surface, and whether dynamic
visualizations of the pouring behavior facilitate mental simu-
lation of sand-surface interactions.

Participants
A total of 108 undergraduate students (81 females), of mean
age = 20.2 years, were recruited from the University of Cali-
fornia, Los Angeles (UCLA), Department of Psychology sub-
ject pool and were compensated with course credit.

Materials and Procedure
Participants first viewed a demonstration video of sand falling
from a funnel suspended 10 cm above a level surface. The
pouring event was viewed three times from a zoomed-out
perspective (Fig. 1A) and then a zoomed-in perspective
(Fig. 1B). The duration of the video was 29 sec. After view-
ing the demonstration video, participants were presented with
a sand-filled funnel suspended 1/2, 1, 2, and 4 cm above the
surface in a randomized order.

Forty-three participants were assigned to the Static Con-
dition and viewed a static image (zoomed-out) in which
the funnel was positioned at a particular height. Sixty-five
were assigned to the Dynamic Condition and viewed a video
(zoomed in and out; looped three times; 35 sec duration) of
sand pouring from a funnel that was positioned at different
heights above the surface. In the Dynamic Condition, the re-
gion of the surface where the sand fell was occluded by a gray
rectangle.

After viewing each situation, participants were asked to in-
dicate which of four sand piles would result from the sand
pouring from the funnel at the indicated height (Fig. 1C).
For each trial, the stimulus images (for the Static Condition)
and final video frames (Dynamic Condition) remained on the
screen until a response was made. The pile choices were
shown from the zoomed-in perspective and represented the
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Figure 2: Model prediction results compared to human judg-
ments. (Upper) Static Condition. (Lower) Dynamic Condi-
tion. Each bar, 1, 2, 3, and 4, corresponds to testing trials
with funnel height 1/2, 1, 2, and 4 cm, respectively.

ground-truth resting geometries resulting from each situation:
i.e., Piles 1, 2, 3, and 4 correspond with the pile resulting from
funnels suspended 1/2, 1, 2, and 4 cm above the surface, re-
spectively. The experiment consisted of 4 trials. The stimulus
videos can be viewed at https://vimeo.com/216585992.

Human Results
At each funnel height, the proportion of participants choos-
ing each sand pile did not differ between the Dynamic and
Static Conditions: χ2(3) = 2.21, 2.34, 2.41, and 1.13 for fun-
nel heights of 1/2, 1, 2, and 4 cm, respectively. These results
suggest that dynamic visualizations of sand pouring from
the funnel in each situation did not alter participants’ judg-
ments about the sand’s resting geometry. However, the par-
ticipants’ pile choices did vary across different heights (χ2(9)
= 176.54), indicating that funnel height influenced their pre-
dictions on the resting geometry of falling sand.

As shown in Fig. 2, participants’ pile choices shifted
toward higher-numbered, flatter piles as funnel height in-
creased. These results indicate that participants’ predictions
were sensitive to funnel height, but inconsistent with ground-
truth resting states. In the next section, predictions from the
three computational models (ISE, GLM, and XGBoost) are
compared to human performance to determine whether the
noisy Newton framework can account for participants’ devi-
ations from ground-truth judgments.

Model Results
ISE Predictions: The input variables for our ISE in Exper-
iment 1 were funnel height (i.e., initial sand height) with per-
ceptual uncertainty and sand friction angle with mental sim-
ulation uncertainty. Given the ground-truth values of initial
funnel height and friction angle (HiT ,θiT ), N = 10,000 noisy
samples {(Hi,θi), i = 1, ...,N} were generated and passed
to our MPM simulator, which returned the final height of the

sand pile for each sample. Instead of choosing from 4 piles
(i.e., the task presented to the participants), the MPM simula-
tor compares the estimated height of the final sand pile, for-
mally D(Hi,θi) = Hp ∈ R > 0, with the heights of the 4 pile
options given to human participants. The pile option with
the minimum height difference was chosen as the predicted
judgment for each sample. Finally, by aggregating predic-
tions across the 10,000 samples, our ISE outputs a predicted
response distribution for each trial.

To model physical uncertainty in participants’ mental sim-
ulations, our ISE sampled funnel heights and friction angles
from noisy distributions. Gaussian noise (0 mean, σ2

H vari-
ance) was added to the ground-truth funnel height in each
situation. Gaussian noise was also added to the ground-truth
friction angle θiT , but in logarithmic space (see Sanborn et al.,
2013): θi = f−1( f (θiT )+ ε), where θiT is the ground truth
value of the initial sand height, f (θiT ) = log(ω ·θiT +k), and
ε represents Gaussian noise with 0 mean and σ2

ε variance. The
results reported herein used the following model parameters:
σH = 0.12HiT , σε = 0.6, ω = 0.8 and k = 1.5.
Data-Driven Predictions: To predict human judgments,
both GLM and XGBoost were tested on the ith pile (i =
1,2,3,4) and trained on the remaining three piles. During
training, 10,000 samples were drawn for each remaining pile
(30,000 samples) and passed to our MPM simulator. Sam-
ples were generated using the sampling method described in
the previous section. After training on the 30,000 samples,
both data-driven models were tested on another 10,000 sam-
ples generated from noisy input based on the configuration of
pile i. The final distribution was formed by aggregating the
predictions across the 10,000 samples.

Table 1: Root-mean-square deviation (RMSD) values for the
ground-truth (GT), ISE, GLM, and XGBoost models for Ex-
periments 1 and 2. Lower values of RMSD indicate better
model fits.

GT ISE XGBoost GLM
Experiment 1 (Static) 0.458 0.101 0.267 0.171
Experiment 1 (Dynamic) 0.445 0.104 0.237 0.148
Experiment 2 (Liquid) 0.145 0.081 1.382 0.077
Experiment 2 (Sand) 0.170 0.080 1.422 0.120
Experiment 2 (Balls) 0.186 0.102 2.067 0.191

Model Comparisons: Fig. 2 depicts the predictions of the
ISE, XGBoost, and GLM models compared to human judg-
ments. All four models achieved high correlations with hu-
man performance (Static: r(12) = 0.91, 0.84, and 0.27; Dy-
namic: r(12) = 0.88, 0.88, and 0.30 for ISE, XGBoost, and
GLM, respectively). Human performance was much less cor-
related with ground-truth predictions (Static: r(12) = 0.17;
Dynamic: r(12) = 0.19). The ISE model predictions were
more correlated with the human data than the competing data-
driven model predictions in the Static condition but were
only slightly more correlated than XGBoost predictions in
the Dynamic condition. Hence, this paper uses The root-
mean-square deviation (RMSD) between human responses
and model results to compare the model fits. We found that
RMSD between human responses and ISE predictions for the
4 judgment trials was less than that between ground-truth pre-
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dictions in both Static and Dynamic Conditions (see Table 1).
We also examined modeling performance using the Bayesian
information criterion (BIC) to account for the different num-
ber of free parameters in each model. We found that the
ISE provides a better fit to the human data than the ground-
truth and data-driven models in both conditions. For ground-
truth, ISE, XGBoost, and GLM models, Static BIC =−25.0,
−62.3, −31.2, −45.4, and Dynamic BIC = −25.9,−61.3,
−35.0, −50.0, respectively. The model with the lowest BIC
value is preferred.

Although XGBoost captures most of the trends in the hu-
man judgments, it appears to over-fit the data in some cases.
In the Static Condition, XGBoost’s predicted response pro-
portion for Pile 1 in the Trial 1 (1/2 cm funnel height) is
greater than the proportion in Trial 2 (1 cm funnel height),
which is consistent with human judgments. In the Dynamic
Condition, however, XGBoost’s predicted response propor-
tion for Pile 1 is greater in Trial 1 than in Trial 2, which is in-
consistent with trends in human performance. Alternatively,
GLM showed very poor performance, predicting an increas-
ing probability of Pile 1 choices for larger funnel heights.
This trend is in the opposite direction of that observed in the
human data, most likely due to the small number of training
trials used to make each prediction.

Experiment 2
Our results from the first experiment indicate that humans are
able to predict the resting geometry of sand piles, even though
they may not have very rich experience interacting with sand
in daily-life. The second experiment was conducted to deter-
mine 1) whether humans can reason about complex interac-
tions between sand and rigid obstacles and 2) whether their
predictions about the resting state of sand in novel situations
differ from predictions about other substances, such as liquid
and rigid balls.

Participants
A total of 90 undergraduate students (66 females), mean age
20.9, were recruited from the UCLA Department of Psychol-
ogy subject pool, and were compensated with course credit.

Materials and Procedure
The procedure in Experiment 2 was similar to the design in
Bates et al.’s (2015) experiment: i.e., participants viewed a
volume of a substance suspended in the air above obstacles
and were asked to predict the proportion that would fall into
two basins separated by a vertical divider below (Fig. 3). The
present experiment differed from previous work in that par-
ticipants reasoned about the resting state of one of three dif-
ferent substances: liquid, sand, or sets of rigid balls. Also,
whereas the previous study used polygonal obstacles, those in
the present study were circles varying in size. Depth informa-
tion was also not present in the rendered situations. The stim-
ulus videos can be viewed at https://vimeo.com/216585992.

Situations were generated by sampling between 2 and 5
obstacle locations from a uniform distribution bounded by the
width and height of the chamber. The diameter, d, of each ob-
stacle was sampled from a uniform distribution bounded by
[0.15,0.85] relative to the randomly-generated center points.

Figure 3: Initial (top) and final (bottom) state of liquid (left),
sand (middle), and a set of rigid balls (right) for a testing trial
in Experiment 2 with 5 obstacles. The percentages indicate
the amount of each substance that fell into the left and right
basins. Only the initial state of each substance was shown in
the testing trials.

The center points were generated by uniformly sampling the
entire space. If the generated obstacles were placed outside
the boundary, the configuration was rejected and re-sampled.
Our MPM simulator was used to determine the ground-truth
proportion of each substance in the left and right basins for
each of the generated situations. For each substance, forty
testing trials (10 trials with 2, 3, 4, and 5 obstacles) were cho-
sen from the generated set such that the ground-truth propor-
tion of substance in the left basin was approximately uniform
across trials. The testing trials were the same for each sub-
stance.

Participants were randomly assigned to either the liquid,
sand, or rigid balls condition. Thirty participants were as-
signed to each condition in a between-subjects experimental
design. Prior to the testing trials, participants completed five
practice trials with two obstacles in each situation in a ran-
domized order. After answering 1) which basin the major-
ity of the substance would fall into and 2) the expected pro-
portion that would fall into the indicated basin, participants
viewed a video (13 second duration) of the situation unfold-
ing and were told the resulting proportion in the ground-truth
simulation. After completing the practice trials, participants
completed 40 testing trials in a randomized order by answer-
ing the same two questions in each trial. No feedback was
given following the completion of each testing trial.

Human Results
Participants’ predicted proportions in the testing trials were
strongly correlated with ground-truth predictions in the liq-
uid, sand, and rigid balls conditions (r(38)=0.86, 0.82, and
0.88; RMSD = 0.145, 0.170, 0.186, respectively). The devi-
ation for each trial was calculated by subtracting the ground-
truth proportion from each participant’s proportion response.
The deviation differed significantly between the three sub-
stance conditions (F(2) = 3.64, p = 0.03), indicating that
the difference between human predictions and the ground-
truth status varied according to the substance type. To de-
termine whether participants’ response proportions differed
between substances, a random factor ANOVA was conducted
for a chosen set of trials. The chosen set excluded those trials
where the majority of each substance fell into the same basin
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Figure 4: Model prediction results compared to human pre-
dictions. From left to right: Ground-truth (GT), ISE, GLM,
and XGBoost.

(left or right) according to the ground-truth simulation. We
found that the response proportions showed significant differ-
ences depending on substance type (F(2) = 8.43, p < 0.01).
The next section examines whether an ISE and two data-
driven models can capture differences in human performance
between the three substances.

Model Results
ISE Predictions: In Experiment 2, the observable input
variables for our ISE for each substance were 1) the ini-
tial, horizontal position of the substance, and 2) the posi-
tions of the circular obstacles in each situation. The latent
substance attributes accepted by the engine were viscosity,
friction angle, and restitution coefficient for liquid, sand, and
the rigid balls, respectively. Gaussian noise was added to the
substance’s (ground-truth) horizontal position (0 mean, 0.35
variance) and the obstacles’ (ground-truth) positions in 2D
space (0 mean, 0.4 variance). Logarithmic Gaussian noise
was added to each substance’s ground-truth attribute value
via the logarithmic transformation specified in Experiment 1.
The results reported here utilized the following model param-
eters for all three substances: σε = 0.5, ω= 0.8, k = 1.2. Two
thousand samples (40 situations × 50 noisy samples) were
used for each substance.
Data-Driven Predictions: Similar to Experiment 1, both
GLM and XGBoost were tested. The training data were ran-
domly generated situations with basin proportions calculated
using resting state output from our MPM simulator. Input
features were the collection of both the observable input vari-
ables and latent substance attributes used in the ISE predic-
tion. In total, 6000 samples were used for training.
Model Comparisons: Fig. 4 depicts the comparison be-
tween human and model basin predictions from the ground-
truth (GT), ISE, GLM, and XGBoost models, and Table
1 depicts the root-mean-square deviation (RMSD) of each
model’s predictions from human ones. The human data were
highly consistent with ISE predictions (r(38) = 0.93, 0.93,
0.93; RMSD = 0.081, 0.080, 0.102 for liquid, sand, and rigid
balls, respectively). The ISE model predictions deviated from
the human data to a lesser degree than the GT model predic-
tions (r(38) = 0.87, 0.85, 0.88; RMSD = 0.145, 0.170, 0.186
for liquid, sand, and rigid balls, respectively), indicating a
superior account of human predictions across a range of sub-
stances. In comparison, GLM and XGBoost predictions were

less consistent with human predictions (GLM: r(38) = 0.77,
0.78, 0.65, RMSD = 0.077, 0.120, 0.191; XGBoost: r(38) =
0.67, 0.74, 0.71, RMSD = 1.382, 1.422, 2.067 for liquid,
sand and rigid balls, respectively). As in the previous exper-
iment, we compared each model’s BIC measure in each con-
dition to account for the number of free parameters in each
model. We found that the BIC values for the ground-truth,
GLM, and XGBoost models (GT: BIC = −154.5, −141.8,
−134.6; GLM: BIC = −194.0, −158.6, −121.4; XGBoost:
BIC = 36.9, 39.2, 69.2 for liquid, sand, and rigid balls, re-
spectively) were consistently greater than the values for the
ISE model (BIC = −190.0, −191.0, −171.6 for liquid, sand,
and rigid balls, respectively), further reinforcing the superior
performance of our simulation-based model.

It is worth noting that our ISE achieved consistent perfor-
mance across all three substances, whereas GLM and XG-
Boost were less capable of predicting human judgments about
rigid balls and liquid. In addition, our ISE used only one
third of the training samples that XGBoost and GLM needed,
demonstrating that a generative physical model with noisy
perceptual inputs is capable of learning with a smaller num-
ber of samples than data-driven methods.

Discussion
Results from Experiments 1 and 2 provide converging evi-
dence that humans can predict outcomes of novel physical
situations by propagating approximate spatial representations
forward in time using mental simulation. This stands in con-
trast to early research in rigid-body collisions suggesting that
human physical predictions do not obey ground-truth physics,
instead relying on heuristics (e.g., Gilden & Proffitt, 1994;
Runeson, Juslin, & Olsson, 2000). ISE predictions entailing
the noisy Newton framework outperformed both ground-truth
and data-driven models in both experiments, further confirm-
ing the role of perceptual noise and physical dynamics in hu-
man intuitive physical predictions.

Previous work has demonstrated that humans sponta-
neously employ mental simulation strategies when reason-
ing about novel physical situations (Clement, 1994; Hegarty,
2004; Schwartz & Black, 1996). Recent fMRI results sug-
gest that intuitive physical inferences are made using an inter-
nal physics engine encoded in the brain’s “multiple demand”
network (Fischer, Mikhael, Tenenbaum, & Kanwisher, 2016).
Although our ISE employed herein accounted for percep-
tual uncertainty in each situation, the simulations themselves
closely approximated normative physical principles. Adding
“stochastic noise” to physical dynamics, however, has been
shown to increase model performance when predicting hu-
man responses in simple physical situations (K. A. Smith
& Vul, 2013). While dynamic uncertainty can easily be
built into rigid-body collisions, employing this strategy in the
present physical simulations would preclude stable numerical
evaluation. Thus, future computational work should explore
methods for adding dynamic uncertainty into complex physi-
cal simulations while preserving their accuracy and stability.

Results from the present study demonstrate that human
predictions about substance dynamics can be accurately pre-
dicted by a unified simulation method with uncertainty im-
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plemented into underlying physical variables. It is unlikely,
however, that the human brain numerically evaluates partial
differential equations to discern whether physical quantities
(e.g., mass and momentum) are conserved, nor is it likely that
the brain stores the locations of vast numbers of particles to
form physical predictions and judgments. Instead, our results
provide evidence that humans approximate the dynamics of
substances in a manner consistent with ground-truth physics
but succumb to biases invoked by perceptual noise when in-
ferring future environmental states. It remains unclear, how-
ever, whether the dynamics of rigid objects, liquids, and gran-
ular materials are approximated using separable mechanisms
or a single cognitive architecture with different assumptions
and constraints. The success of our unified simulation model
across different substance-types supports the latter perspec-
tive.
Acknowledgments Support for the present study was
provided by a NSF Graduate Research Fellowship, NSF
grant BCS-1353391, DARPA XAI grant N66001-17-2-4029,
DARPA SIMPLEX grant N66001-15-C-4035, ONR MURI
grant N00014-16-1-2007, and DoD CASIT grant W81XWH-
15-1-0147.

Appendix: Details of Our MPM Simulator
The governing partial differential equations utilize the principles of
conservation of mass and momentum:

Dρ

Dt
+ρ∇ ·v = 0,

Dv
Dt

= ∇ ·σ+ρg, (1)

where σ is the stress imparted on a particle, g is the gravitational ac-
celeration, and D

Dt is the material derivative with respect to time. The
equations are discretized spatially and temporally with a collection
of Lagrangian particles (or material points) and a background Eule-
rian grid. The material type of the simulated substances is naturally
specified from the constitutive model, which defines how a material
exerts internal stress (or forces) as a result of deformation.

Rigid balls are simulated as highly stiff elastic objects with the
neo-Hookean hyperelasticity model, described through the elastic
energy density function

Ψ(F) =
µ
2
(tr(FT F)−d)−µ log(J)+

λ

2
log2(J), (2)

where d is the dimension (2 or 3), F is the deformation gradient (i.e.,
the gradient of the deformation from undeformed space to deformed
space), J is the determinant of F, and µ and λ are Lamé parameters
that describe the material’s stiffness.

Liquid is modeled as a nearly incompressible fluid, with its state
governed by the Tait equation (Batchelor, 2000):

p = k
[(

ρ0

ρ

)γ

−1
]
, (3)

where p is the pressure, ρ and ρ0 are the current and original densi-
ties of the particles, γ = 7 for water, and k is the bulk modulus (i.e.,
how incompressible the fluid is). Through this Equation-of-State
(EOS), the stress inside a non-viscous fluid is given by σ = −pI,
where I is the identity matrix. We further adopt the Affine Particle-
In-Cell method (APIC) (Jiang et al., 2015) to greatly reduce numer-
ical error and artificial damping. This enables us to simulate flu-
ids with better accuracy compared to alternative computer graphics
methods.

The motion of dry sand is largely determined by the frictional
contact between grains. In the theory of elastoplasticity, the mod-
eling of large deformation (e.g., frictional contact) can be based on
a constitutive law that follows the Mohr-Coulomb friction theory.
Following (Klár et al., 2016), we simulate dry sand based on the
Saint Venant Kirchhoff (StVK) elasticity model combined with a
Drucker-Prager non-associated flow rule. Plasticity models the ma-
terial response as a constraint projection problem, where the feasible

region (or yield surface) of the final material stress is restricted to be
inside

tr(σ)cF +

∥∥∥∥σ− tr(σ)
d

∥∥∥∥
F
≤ 0, (4)

where d is the dimension and cF is the coefficient of internal friction
between sand grains. The stress (and thus deformation gradient) of
each sand particle is projected onto the yield surface so as to satisfy
the second law of thermodynamics.
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Abstract 

Team cognition can be defined as the ability that humans have 
to coordinate with others through a complex environment. 
Sports offer exquisite examples of this dynamic interplay 
requiring decision making and other perceptual-cognitive 
skills to adjust individual decisions to the team self-
organization and vice-versa. Considering players of a team as 
periodic phase oscillators, synchrony analyses can be used to 
model the coordination of a team. Nonetheless, a main 
limitation of current models is that collective behavior is 
context independent. In other words, players of a team can be 
highly synchronized without this corresponding to a 
meaningful coordination dynamics relevant to the context of 
the game.  Considering these issues, the aim of this study was 
to develop a method of analysis sensitive to the context for 
evidence-based measures of team cognition. 
 
Keywords: Team Cognition; Synchronization; Ecological 
Dynamics; 
 

Introduction 
Central to the definition of a team are the interactions 
amongst its components (McNeese, Cooke, Fedel & Gray, 
2016). When players cooperate together as a team, the 
resulting collective behaviors rarely are expressed in terms of 
the simple summation of the individuals’ activities. That is, 
the team’s activity emerges from the coordination of actions 
and often nonlinear interactions of its players. For example, 
to be successful in European football (soccer), players must 
coordinate their actions with others across many different 
spatial and temporal scales. While recent research has 
focused on elucidating the mechanisms that facilitate such 
large-scale coordination, the identification of the 
fundamental, self-organizing principles that underlie team 
dynamics remains an unresolved matter (see e.g., Memmert, 
Lemmink & Sampaio, 2016; Folgado, Duarte, Fernandes & 
Sampaio, 2014). Indeed, techniques to measure collective 

emergent behavior are still in an early stage of development 
(Araujo, Silva & Ramos, 2014), while many attempts to 
measure team work have typically focused on measuring 
outcome performance rather than team dynamics. However, 
recent attempts to study the dynamics of multi-agent activity 
have benefitted from concepts and tools from Dynamical 
Systems Theory (DST) (e.g., Duarte, Araújo, Correia, 
Davids, Marques, & Richardson, 2013). While DST provides 
suitable techniques for modeling living systems, it makes no 
direct claims about their status nor provides a theoretical 
basis for understanding goal directed behavior. Amongst the 
broad range of DST tools, one of the most common 
approaches used by students of perception, action and 
cognition is the study of synchronization. 
 
Measuring Synchronization  
Measures of synchrony are used for describing phenomena 
that obey recurrent, dynamical laws; and have been applied 
for a wide range of phenomena coming from substantially 
different fields of study as natural sciences, engineering or 
even social life (Pikovsky, Rosenblum & Kurths, 2001).
 Whereas in physical, nonliving systems synchrony is often 
mediated via mechanical coupling (e.g., Huygens famous 
observations regarding the synchronization of two clock 
pendulums, (1673/1986), psychological and social systems 
often synchronize via informational (e.g., visual) coupling 
(Schmidt, Carello & Turvey, 1990). Although most research 
on the synchrony and coupling between actors has focused on 
dyads, a recently developed method, cluster phase analysis 
(CPA, Frank & Richardson, 2010), has been used to extend 
synchrony measures to groups larger than two people. CPA 
has been used, for example, to assess the degree to which a 
group of people successfully synchronized their intentional, 
oscillatory rhythmic movements with rocking chairs; with 
synchrony measured using an adaptation of the Kuramoto 

706



order parameter (aka cluster amplitude, 𝑟 where high 
synchronization = 1). Similar methods have been used to 
characterize teams’ phase synchrony in football (see e.g., 
Duarte et al., 2013; Duarte, Travassos, Araujo & Richardson, 
2014). Here, separate measures of team synchrony are 
derived using players’ displacements along either the 
latitudinal or longitudinal axis, where a common result is that 
synchrony is higher in longitudinal displacements than in 
lateral displacements (Duarte, et al., 2013). Using this 
method, researchers have also noted that the observed degree 
of synchrony was not subject to possession of the ball (see 
e.g., Pinto, 2014; Duarte, et al. 2013), presumably one of the 
key factors of team organization during the match. However, 
it may be argued that the technical aspects of this 
methodological approach do not consider relevant contextual 
features of the game that are key to self-organizing principles 
in team sports. This lack of situational context is a 
consequence of 1) the behavioral variable submitted to the 
model and 2) the constraints that presents the mathematical 
model. Behavior is measured in a time-series of 
displacements along one dimension; however, the Kuramoto 
model requires phase angles as its input. To overcome this 
incompatibility, the displacement time-series are transformed 
to instantaneous phase angles by using the Hilbert Transform 
(see Pikovsky, et al. 2001 for details). However, this method 
is limited in that high synchrony can be a consequence of the 
players simply being very close to each other within that one-
dimensional space (e.g., x-dimension), whereas, conversely 
if players are far apart within that dimension, synchrony 
would be low.  
 Considering these issues (technical and contextual) we 
aimed to further extend the use of CPA by using insights from 
a recently developed framework that applies the ecological-
dynamics approach to perception and action in football 
(López-Felip, 2014). Our model parameters were defined by 
two situational variables of the game: such as players’ 
orientation-to and distance-from the goal of interest (i.e. the 
goal being actively attacked by the offense and defended by 
the defense). Our main hypothesis was that when accounting 
for these two contextual variables, team synchrony would be 
dependent on ball possession. This result would suggest the 
need for further exploring context dependent analyses for 
evidence-based measures of team cognition. 
 

Method 
 
Participants 
Twenty-two male elite football players from two European 
clubs played a friendly game during the pre-season 2016-
2017. Participants ranged in age from 17 years to 34 years 
(average 26.5 ±0.4	years). At the time of data collection, 
neither of the teams had initiated their regular competitions, 
however, the away team was a member of what is typically           
considered to be a superior league. The entire first half of the 
match was registered with no injuries or substitutions.  
  

Instruments  
Player position data were collected via GPS (sampling rate of 
15 Hz) for an entire half of forty-five minutes plus extra time. 
These GPS monitors could reliably capture positional raw 
data (2D) based on the latitude and longitude positions of all 
players throughout the match. 
 
Procedures 
The positional raw data were subsequently matched to 
corresponding events throughout the competition (captured 
via video). This allowed us to asses when during each time-
series a team was in possession of the ball (i.e. attacking role), 
as well as identify any prolonged periods of stoppage 
 (e.g., from injury assistance, goals, etc.) to remove from 
analysis. The criteria for determining ball possession was 
based on Reis, Duarte, Araújo, Folgado, & Frias (2013).  
 
Data Analysis   
Starting with the positional raw data, exocentric coordinates 
were used to define the state space in which trajectories of 
players were captured. Then, the goals were represented as 
specific variables of this state space to create a new variable, 
angle of the direction to the goal (θ(): 

(Eq. 1) 
 

θ( = tan-. /0123-/432567	8
90123-9432567	8

 
 

This measure provided a metric of each player’s orientation 
with respect to the goal. Relative angles were submitted to 
CPA, creating a time-series of Kuramoto parameter values 
describing each team’s synchrony at every time step.  
 

 (Eq. 2) 

𝑟	 𝑡; =
1
𝑛
	 exp	(𝑖𝜃D 𝑡; )
F

DG.

 

To account for the distance of a team to the goal of interest, 
each team’s center of mass was assessed at each time step. 
Distance of the center of mass (dCOM) was measured as the 
mean longitudinal position of all team members over time.  
 

(Eq. 3) 

𝐶𝑂𝑀 = 	
1
𝑁 𝑥MNOPQR

F

MNOPQRG.

 

                                    
To simplify our analysis, dCOM values were categorized into 
four quadrants each spanning 25 m; where Q1 contained 
distances closest to the goal of interest and Q4 contained 
distances furthest away (see Figure 1). 
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Figure 1: Black disc represents the attacking team and black 
triangles represent the defending team. Dashed lines 

represent each player’s goal angle. Vertical black lines 
divide the field in 4 equidistant quadrants. Q1 is the 

quadrant closest to the active goal and Q4 the furthest.  
Then, x-y axes represent the longitude and latitude 

coordinates from where positional raw data were collected.   
 
Then, provided our research question, we assessed changes 
in each team’s synchrony as 1) a function of ball possession 
(whether teams were attacking or defending) and 2) the 
distance between the team’s center of mass to the goal of 
interest, dCOM. To do so, each point in the time series of 
Kuramoto parameter values was independently evaluated as 
a function of the corresponding dCOM quadrant. The resulting 
mean values for each quadrant were submitted to further 
analysis, resulting in values reported in Figure 2. 
 

Results 
As determined using the cluster amplitude analysis the 
overall degree of synchronization of teams were between 
0.55 and 0.99. When phase synchrony was assessed for each 
team as a function of the playing role in the game (i.e., 
attacking or defending) and the dCOM to the goal of interest, 
synchronization differed. Figure 2 shows how the mean 
tendency of synchrony varies as a context of where and when 
a team is attacking or defending. That is, mean synchrony 
decays as teams’ dCOM approaches Q1.  

 
Table 1: Mean synchrony of each team as a function of 

playing role and dCOM. 

Overall, synchrony increased as the teams moved farther 
from the goal of interest. At the same time differences in 
synchrony depending on the team’s role became more 
pronounced as the teams moved closer to the goal of interest. 
A similar pattern of effects [role: F(1, 15488) = 31, p < .001; 
quadrant: F(3, 15488) = 6484, p < .001; role × quadrant: F(3, 
15488) = 622, p < .001] was observed for the home team 
(note that the dCOM of the home team never entered Q1 when 
attacking or Q4 when defending; likely due to the away teams 
dominance of the match). 
 

 
 

Figure 2: Mean synchrony of each team based on field 
location and role. 

 
Discussion 

The purpose of this study was to develop a method of 
analyzing team coordination that is sensitive to the context in 
which team actions unfold over the course of a game. It was 
hypothesized that by using a measure of phase synchrony 
sensitive to the contextual circumstances of ball possession, 
synchrony of a team would change. To test this, two variables 
that were relevant to the context of the game such as 
footballer’s angle relative to the direction of the active goal 
and COM of each team on the field were used.  
 With respect to the experimental hypothesis, a linear 
effects mixed model showed that team synchrony is 
dependent on team role and distance from the active goal. 
Significant effects were found for role and quadrant, qualified 
by a role × quadrant interaction in both teams.   
 Measures of team synchrony showed higher mean values 
when a team was in defense. These data suggest that 
individuals tend to coordinate their movements together 
relative to the goal more in those instances in which they are 
defending, than the ones in which they are attacking. At the 
same time, lower synchrony values were found in those 
instances in which a team was closer to the opponent’s goal. 
This is not surprising for the attacking team, because 
behavior of a football team when attacking is to spread out 
and create as many open spaces as possible to the opponent 
team. Interestingly, the team in defense showed also low 
values of synchronization in Q1. One possibility is that this 

Team Quadrants 𝑟 = Attacking 𝑟	= Defending 
Home 
Away 

Q1 
Q1 

𝑁𝐴 
0.84 

0.86 
0.89 

Home 
Away 

Q2 
Q2 

0.92 
0.93 

0.95 
0.97 

Home 
Away 

Q3 
Q3 

0.97 
0.97 

0.98 
0.98 

Home 
Away 

Q4 
Q4 

0.99 
0.99 

𝑁𝐴 
0.99 
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may be due to the driving-driver effect (Step & Turvey, 
2010). According to this, the team in defense would try to 
anticipate the actions of the team in possession of the ball, 
reflected in the drop of mean synchrony of the defense team 
in Q1. This conjecture remains an open question. 
 Although these data showed differences of synchrony in 
terms of ball possession, the levels of whole team synchrony 
were, overall, high. All the mean values of cluster amplitude 
for the angle to the direction of the active goal ranged 
between 0.84 and 0.99. These values are similar to those 
found in football (Duarte et al., 2013) or in intentional 
oscillatory rhythmic movements of rocking chairs (Frank & 
Richardson, 2010). 
 
Implications for Measuring Synchronization 
Based on the approach of previous studies, the present work 
assessed synchrony by means of an adaptation of the 
Kuramoto Order Parameter. As explained in the introduction 
section, when using time-series of displacements in the x, y 
or z axes to assess synchronization, there is the need to 
calculate the instantaneous phase angle of the time-series 
(usually done by the Hilbert Transform). By following these 
steps, synchrony may remain high and unchanged due to the 
limitations of the methodology as explained earlier in the 
introduction. 
 Hence, the present work, approaches the assessment of 
synchrony via an alternative methodology. First, we 
considered that we could explore the possibility of using an 
angle that was not limited to a one-dimensional plane. Simply 
because representing dynamics of collective behavior at one 
dimension did not seem to lead us to our purposes (i.e., 
provide contextual meaning to assessments of collective 
behavior). Second, based on previous research, 
displacements from a time-series have not been able to 
discriminate between synchrony levels and ball possession 
during the game. Thus, our approach attempted to link a 
behavioral variable to the final target that a team aims (i.e., 
scoring a goal).  For example, in models of steering and 
obstacle avoidance (see e.g., Fajen & Warren, 2003; Warren, 
2006), one of the variables taken in their assessments is the 
relative angle of the performer’s position relative to the goal 
or obstacle.  Here, using a similar variable and clustering the 
angle of each player relative to the active goal, allowed us to 
model team dynamics at a 2-dimensional plane and do it 
relative to the final purpose of the game.  
 Taking this approach to using the Kuramoto, is not a final 
model. This is just a preliminary step towards developing a 
more robust model of synchronization in collective behavior 
that aims to be sensitive to the context in which team activity 
occurs.  
 

Conclusions   
This study investigated the degree to which ball possession 
impacts team synchrony as a function of the team’s dCOM. 
López-Felip and Porter (2015) argued that both variables 
were proposed as proper parameters to include when 

modeling football team behavior as a dynamical system. Our 
finding suggest that appropriately modeling team behavior 
must take into account variables that capture the meaningful 
current state of affairs of the game—such as players’ 
orientation and location relative to key points of interest. 
Future research in this domain should seek to identify and 
incorporate additional, meaningful aspects (e.g., tactics) to 
addressing team coordination. 
 More broadly, these findings may be understood in the 
claim that efforts to model living systems and their actions 
should account for context. Understanding the functional, 
context dependent relationship that exists between organism-
environment and situation could serve to guide and constrain 
future dynamical analyses and mathematical modeling of 
team systems (Turvey, 1992; Turvey & Shaw, 1995). 
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More Siblings Means Lower Input Quality in Early Language Development
Catherine Laing
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Abstract: Previous research has suggested that first-born infants acquire words faster than their later-born peers (Berglund et
al., 2005), but may have some disadvantages in other aspects of syntactic and socio-communicative development (e.g. Hoff,
2006). Here we analyzed infants’ early lexical development alongside their caregiver input from 6-18 months, in relation to how
many siblings they have. We find that having more siblings (rather than being first- or later-born) has a gradient and negative
relationship with infants’ language development. This affect appears to be manifested in caregiver input: across three different
measures of input quality/quantity, disadvantages were found for infants with more siblings. Having a larger number of siblings
diminished the quality of the input and led to slower overall lexical development. Implications for language development and
learning within dyadic and multi-member contexts are discussed.
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Abstract

Visual memory can be understood as an inferential process that
combines noisy information about the world with knowledge
drawn from experience. Biases can arise during encoding of
information from the outside world into internal representa-
tions, or during retrieval. In this work, we use the method
of serial reproduction, in which information is passed along a
chain of participants who try to recreate what they observed.
We apply this method to the study of visual perception in the
context of spatial memory biases for the remembered position
of dots inside different geometric shapes. We present the re-
sults of non-parametric kernel density estimation of the end re-
sult of serial reproduction to model visual biases. We confirm
previous findings, and show that memory biases revealed with
our method are often more intricate and complex than what
had previously been reported, suggesting that serial reproduc-
tion can be effective for studying perceptual priors.
Keywords: Vision; spatial memory; inductive biases; serial
reproduction; iterated learning;

Introduction
Retrieving detailed visual information from memory requires
efficient representations of often complex and noisy visual
scenes. In Bayesian accounts of reconstruction from vi-
sual memory, the memory system integrates sensory infor-
mation with knowledge acquired from previous experience
(“priors”). Effective use of this information may reduce vari-
ability in visual memory and improve overall reconstruction
accuracy (Weiss et al., 2002). Using priors is usually advanta-
geous because they capture regularities in the structure of the
world that are innate or observed over our lifetimes. How-
ever, this can lead to substantial biases during reconstruction.
This is because prior information may deviate significantly
from our observations, especially when a visual scene is un-
expected given previous experience.

In many cases, visual priors are categorical (or proto-
typical), represented in memory as schematic or simplified
objects (Huttenlocher et al., 1991). In one experimental
paradigm that reveals categorical effects, participants are
asked to remember the location of a dot presented within a
circle or other bounding shape. After a brief presentation and
a delay, participants reproduce the dot’s location by placing

it in the recalled position (see Figure 1). Huttenlocher et al.
(1991) found that participants tend to misplace dots toward
a central (prototypical) location in each of the quadrants of
a circle. Following these results, Wedell et al. (2007) tried
to predict prototypical positions in spatial memory for dots
presented inside a variety of geometric shapes (circle, square,
triangle, vertical oval, horizontal oval, and pentagon). In the
study, participants were shown thirty-two dots aligned along
two concentric circles within each shape. A parametric model
with four components (prototypes) was fitted to the remem-
bered positions of the dots, confirming that visual memory of
these shapes shows substantial categorical effects.

The approach to characterizing categorical biases used in
Huttenlocher et al. (1991) has a number of limitations—
specifically, a relatively small number of to-be-remembered
locations (32) and a weak measurement of the biases, result-
ing in limited resolution for capturing the locations of the cat-
egories. In addition, Wedell et al. (2007) used a parametric
model with a fixed number of categories. The choice of the
model, and the number of categories that were used were not
fully justified, requiring certain a priori assumptions. Here,
we propose to use a paradigm based on serial reproduction to
characterize visual memory biases without needing to rely on
parametric modeling and with substantially better resolution
and accuracy.

The method of serial reproduction
Serial reproduction has a long history in experimental psy-
chology, where it has been used to study how various biases
distort information when it is transmitted from person to per-
son (Bartlett, 1932). Figure 2 shows a schematic illustration
of the experimental paradigm: a participant views a stimu-
lus, such as a dot presented within a bounding shape, and is
then asked to reproduce the stimulus as accurately as possi-
ble from memory. Critically, the reproduction created by the
first participant is used as the stimulus for the second partici-
pant, who is then asked to do the same. At each iteration, the
reconstruction produced by the previous participant becomes
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Figure 1: Illustration of prototype effects in memory for
points in a circle. The red crosses represent prototypes, and
the small points are typically misremembered as being closer
to those prototypes.

the stimulus for the next participant to reproduce. Famous
early results include the transformation of an owl-like Egyp-
tian hieroglyph into a small cat after ten iterations of a serial-
reproduction drawing task (Bartlett, 1932). This result was
interpreted in terms of inductive biases in memory: as veridi-
cal information from the input becomes degraded following
successive iterations, the reconstruction of the ambiguous im-
age is pulled towards a prototypical object with similar visual
properties.

Serial-reproduction experiments have long been used to
simulate phenomena in cultural transmission, evolutionary
biology, anthropology, and cognitive science (Kirby et al.,
2008; Claidière et al., 2014), but it wasn’t until recently that
a rational analysis of serial reproduction considered how in-
formation should change as it is transmitted along a chain of
rational agents (Xu & Griffiths, 2010). Under a rational anal-
ysis, reconstruction from memory is defined as the problem
of inferring the most accurate state of the world from noisy
data, such as an imperfect memory trace and perceptual noise
during encoding of the image. This problem is modeled using
the framework of Bayesian statistics. Previous experience is
captured by a prior distribution over possible states (a hypoth-
esis space of world states). A posterior is computed, based on
the likelihood, which indicates the probability of observing
that information, given some hypothesis about the true state
of the world. Xu & Griffiths (2010) examined the predictions
of this Bayesian account of reconstruction from memory for
serial reproduction. They found that serial reproduction by
Bayesian agents defines a Markov chain with the following
transition probabilities:

p(xn+1 | xn) =
∫

p(xn+1 | µ)p(µ | xn)dµ,

where x is a noisy stimulus (such as an imperfect memory
trace) and µ is the true state of the world that generated that
stimulus (in this case, the veridical image that impinged on
the visual system). This Markov chain captures the probabil-
ity of a new stimulus xn+1 being created as a reconstruction of
a previously seen stimulus xn in each iteration in the serial re-
production chain, and has a stationary distribution, called the

prior predictive distribution, which defines the probability of
observing a stimulus x when µ is sampled from the prior:

p(x) =
∫

p(x | µ)p(µ)dµ.

This process approximates a Gibbs sampler for the joint dis-
tribution on x and µ defined by multiplying p(x | µ) and p(µ).
This finding is significant because it provides a mathematical
formalism for describing the consequences of serial repro-
duction: assuming that participants share common inductive
biases, the transmission chain will converge to a sample from
their shared prior.

In this paper, we explore spatial memory priors in a task
where participants were asked to remember the position of
a small black dot inside a variety of geometric shapes. Op-
erating under the assumption that people share the same in-
ductive biases, or spatial memory priors, we show that serial
reproduction appears to converge on these priors remarkably
quickly, revealing patterns that are consistent with some es-
tablished findings, although in many cases revealing new and
intricate patterns that were previously unknown. Finally, we
demonstrate the advantages of using a non-parametric kernel
density estimation procedure to characterize the prior.

Methods
Participants
Participants were recruited online using Amazon Mechanical
Turk. All gave informed consent. The experimental protocol
was approved by The Committee for the Protection of Human
Subjects (CPHS) at the University of California, Berkeley.
Each experiment required approximately 70-100 participants.
A total of 570 participants took part in Experiment 1 and an
additional 590 took part in Experiment 2.

Stimuli
All images were approximately 400×400 pixels in size. Each
shape was a 6-pixel-wide black outline over a white back-
ground. The sizes and colors of the backgrounds for the im-
ages were intended to ensure that the images would be clearly
visible in any standard browser window (unlikely to become
occluded), and such that the boundaries of the images would
be invisible.

Procedure
We carried out a series of serial reproduction experiments.
Participants were presented with timed displays (a shape out-
line with a dot initialized somewhere within the boundaries
of the shape), and were instructed to reproduce the exact lo-
cation of the dot inside of the shape. Once complete, their re-
sponse was sent to another worker (again, as a timed display),
who was instructed to reconstruct this display from memory,
and so on. A total of ten iterations were completed for each
chain. See Figure 2 for a schematic diagram of the serial re-
production procedure.
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Practice trials. Participants completed ten practice trials in
order to become familiar with the user interface. During these
practice trials, they were presented with a circle (a black out-
line of a circle over a white screen), with a dot initialized
somewhere within its boundaries. This display was presented
for 4000 ms, followed by a blank screen lasting 1000 ms.
Next, the circle was presented without the dot and remained
on the screen until the participant positioned the dot in the
location that they remembered. As soon as the participant
clicked, the dot appeared under the mouse cursor. Partici-
pants could reposition the dot as many times as they needed.
Once done, they pressed a button to proceed to the next trial.

Experimental trials. Following the ten practice trials with
the circle, there were ninety-five experimental trials with ex-
actly one of the shapes. In Experiment 1, the shape could
be a circle, triangle, square, vertical oval, horizontal oval, or
a pentagon. In Experiment 2, the shape could be a regular
polygon with more than five vertices. For each of the 95 ex-
perimental trials, the presentation time was reduced to 1000
ms. As with the practice trials, the position of the shape on
the screen was randomized somewhere inside a larger can-
vas in order to control for participants resorting to tracking
the position of the dot by trivially marking its absolute posi-
tion on their computer screens. In addition, participants were
given trial-by-trial feedback regarding their accuracy. If their
responses were within eight percent of the width and height
subtended by the shape on the screen, they were told that their
response was accurate (a message in green font: “This was
accurate”), and received a small monetary bonus. If not, they
received no bonus beyond the basic payment for the HIT, in
addition to any bonuses accrued from the previous trials, and
were presented with a red message (“this was not accurate”).
These trials were discarded from the experiment. Participants
could not provide multiple responses within a chain.

Experiment 1: We used the same six shapes as Wedell et
al. (2007): A circle, equilateral triangle, square, vertical and
horizontal ovals, and a regular pentagon. For each shape, we
initialized the position of five hundred dots within its bound-
aries (for the circle, we initialized four hundred dots).

Experiment 2: Because our method revealed a variable
number of peaks (prototypes) in the prior for the angular
shapes in Experiment 1, and that these appeared to be due in
large part to the number of vertices in the polygons (all were
regular polygons—an equilateral triangle, square, and pen-
tagon), we wanted to determine the point at which the pro-
totypes begin to merge into the four prototypes in the prior
for the circle. We did this by conducting the same experiment
with polygons containing increasingly more vertices (approx-
imating a circle more closely as vertices were added).

Results
Our results are presented in two parts. First, we present all our
results for Experiment 1, in which we used the same shapes as
Wedell et al. (2007). We demonstrate that using a serial repro-
duction paradigm, as well as non-parametric kernel density

Standard Memory Paradigm

Presentation Retention Response

1st 

Iteration

. . .

2nd 

Iteration

3rd 

Iteration

Subject 

Response

4th Iteration

Subject 

Response

Subject 

Response

Figure 2: Serial reproduction chain for one trial in the mem-
ory task, illustrating the iterative process for a single dot be-
ing remembered. The trial in black represents a standard
memory paradigm. In red are additional iterations of the task
using the result from the previous iteration as the new stimu-
lus, which form the nodes in the serial reproduction process.

estimation, replicates some (but not all) of their key findings.
In particular, we find four prototypes arranged in the centers
of the four quadrants of the circle, as well as the horizontal
and vertical oval shapes, as they did. However, we also show
new and intricate patterns in the priors for the angular shapes
(triangle, square, and pentagon). We evaluate the predictions
of the model by Wedell et al. (2007) on the data we obtained
following one iteration, for all the shapes, and compare them
to predictions that we obtain from our estimates of the prior
following all ten iterations. In addition, we show quantitative
evaluations of the change in copying accuracy for the equi-
lateral triangle. Second, we show the results for Experiment
2, where we illustrate the effect of adding vertices to regular
polygons on the prior, revealing hitherto unknown grouping
effects of the prototypes in spatial memory that occur as reg-
ular polygons begin to approximate a circle.

Measuring spatial memory priors

Serial reproduction results. Figure 3 shows visualizations
of the estimates that we obtained following ten iterations of
the serial reproduction experiment using four hundred initial
seeds for the circle. Each panel shows the results for each of
the ten iterations, including the initial seeds. Notice that the
prototypes begin to emerge in as early as the fourth iteration.
For the panel showing the results of the tenth iteration, we
show an estimate of the prior using our non-parametric kernel
density estimate in lieu of plotting the points. Figure 4 shows
the results that we obtained for the equilateral triangle. Notice
the emergence of bimodal peaks near each of the vertices.
This finding suggests that for this shape, there are a total of
six prototypes in the prior, grouped in pairs at each corner.
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Figure 3: Serial reproduction of 400 dots presented in a cir-
cle, for ten generations (iterations) of the process. The top
left scatterplot shows the positions of the original seeds (sam-
pled from a uniform distribution) inside the circle shape. The
remaining subplots show scatterplots of the results of the se-
rial reproduction chain for iterations 1-10. The subplot of the
tenth iteration, in the bottom right, also shows the kernel den-
sity estimate. Note that from one iteration to the next, points
that were originally scattered uniformally within the circle
boundary begin to converge on each of the nearest prototypes
at the center of each of the four quadrants in the circle. By
the tenth iteration of the process, four clusters are clearly dis-
cernable.

Simple shapes. In Figure 5 (panels B and D), we show the
kernel density estimates that we obtained for all the shapes.
In the case of the circle, vertical oval, and horizontal oval,
our results are consistent with past findings (shown in panels
A and C). However, we discover bimodal peaks in the ver-
tices of the angular shapes (prototype pairs clustered at each
of the corners). This result is particularly striking for the tri-
angle and the square shapes. The same result is present for
the pentagon shape, although unlike the peaks in the prior for
the triangle and square, those in the pentagon are not quite ro-
tationally invariant, although all three geometric shapes are,
suggesting that the shapes and orientations of the modes in
the priors are not a simple function of the presence of edges,
or the angles at these edges.

Convergence analysis. For the triangle results, we com-
pleted a convergence analysis (See Figure 4, panels B and
C), using the Jensen-Shannon divergence (JSD). To estimate
the variability of these JSDs, we generated 100 bootstrapped
data sets sampled from the original data (with replacement).
For each one, we computed the JSDs of consecutive itera-
tions (see panel B). The JSD between the initial distribution
and iteration 1 was significantly larger than that between the
two final iterations (p = 0.02) and there were no significant
differences between the distance between iterations 9 and 10
compared with iterations 8 and 9 (p = 0.43).

Figure 4: Results we obtained for each iteration in the chain
for the triangle shape. A. Kernel Density Estimate (KDE)
for the initial distribution and the 10 iterations. B. Conver-
gence analysis using the Jensen-Shannon divergence (JSD)
between consecutive iterations. C. JSD between all iterations
and the last iteration. Note that both measures decrease with
the number of iterations, and suggest that convergence occurs
at or near the tenth iteration in the serial reproduction chain.

As another measure of convergence, we also computed the
JSD between all iterations and the last iteration (Jacoby &
McDermott, 2017) (see panel C). The distance between the
last two iterations was significantly smaller than the distances
between iteration 10 and each of the remaining iterations (0
through 8). The distance between iteration 10 and 9 was
marginally larger than the distance between iteration 10 and 8
(p = 0.041). These analyses suggest that convergence occurs
at or near the tenth iteration. To test if the responses of par-
ticipants became more "prototypical" over the course of the
experiment (as they progressed through their trials), we used
the estimate of the prior from the final iteration to measure the
average log-likelihood of their responses. We used data from
the 83% of the participants who performed more than 80% of
the trials within the accepted criteria (responses within 8% of
the height and width of the shape on the screen). We found
that the log-likelihood significantly improved when compar-
ing the first and second half of their responses (t(49) = -2.47,
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p = 0.008), and when comparing the first 10 trials to the last
10 trials of each of the subjects (t(49) = -2.04, p = 0.046).

Figure 5: Kernel density estimates for the priors were esti-
mated for all six shapes using the tenth iteration of the serial
reproduction chain. A. & C. Original result by Wedell et al.
(2007). B & D. Kernel density estimates with serial reproduc-
tion. E. Boxplots showing model comparisons. We computed
the log likelihood difference for the two models as explained
in the main text. In all cases the serial reproduction model
was significantly better (p < 0.01 for all shapes except verti-
cal oval (p = 0.03) resulting in positive log-likelihood ratios.

Model comparisons. Using a combination of non-
parametric kernel density estimation and serial reproduction
lets us uncover intricacies in the prior for angular shapes (in-
cluding bimodal peaks at the vertices) that paint a nuanced
picture of human spatial memory priors. In addition, our ap-
proach enables us to obtain more than just point estimates of
the locations of prototypes in spatial memory. Nevertheless,
we provide a comparison between point estimates obtained
from our method to those obtained from the model by Wedell
et al. (2007), for each shape, using the same number of pa-

rameters. The model describes the remembered position for
a dot i (a response vector

#»
Ri) as a weighted average of the

actual location at which the dot was presented, which they
refer to as the “fine-grain memory representation”, and the
weighted sum of the prototype locations, using the following
equations:

#»
Ri = w

#»
S i +(1−w)

4

∑
j=1

vi j
#»
P j (1)

vi j =
e−c‖ #»

S i−
#»
P j‖

∑
4
k=1 e−c‖ #»

S i−
#»
Pk‖

(2)

where
#»
S i and

#»
Ri are vectors in R2 containing the x and y

coordinates for each point i in the stimulus phase (iteration 0),
and in the first response phase (iteration 1), respectively. The
#»
P j terms correspond to the four prototype vector coordinates
being estimated by the model, in addition to weights w that
correspond to the relative strength of the veridical memory
(as opposed to the strength of a prototype in the prior).The vi j
capture the relevance weight of each of the four j prototypes
for each point i. In other words, the strength of the influence
of prototype j for each point i. The parameter c corresponds
to a “sensitivity” parameter that models the sharpness of the
prototype boundaries.

We generated 100 split-half samples of the points for it-
eration 0 (inital seeds), iteration 1, and iteration 10. Next,
for each sample, we obtained estimates of the prototype lo-
cations for four prototypes (the same number used by Wedell
et al.) by running their model using the training half of iter-
ation 0 and the same points in iteration 1. In order to ensure
a fair comparison, we sampled four points under local max-
ima from the Kernel Density Estimate (KDE) fit to the same
points in iteration 10. This gave us four prototype estimates
from the Wedell et al. (2007) model, and four points corre-
sponding to local maxima in the KDE we fit to the points in
the training half of iteration 10 (which can only be obtained
from our paradigm), for each training split half. We evaluated
the accuracy of these two sets of four prototype estimates by
computing the sum of the negative-log-likelihood values from
a KDE that we fit to the remaining points in the testing half of
iteration 10. Next, we computed the log likelihood difference
for the two models, for each of the shapes. In all cases, the
serial reproduction model performed significantly better (p <
0.01 for all shapes except the vertical oval (p = 0.03) result-
ing in positive log-likelihood differences. Boxplots showing
all the results are displayed in Figure 5E.

Grouping of prototypes. The apparent increase in peaks
in the prior for more complex regular shapes afforded the
opportunity to consider changes to the prior in the limit, as
the shapes begin to approximate a circle. We computed the
entropy of the obtained KDEs to quantify their complex-
ity. Complexity increased with the number of vertices (going
from a triangle to a heptadecagon, or seventeen-sided regular
polygon). However, the prior for a icosihenagon (twenty-one
sided regular polygon) begins to reveal the transformation of

716



the corner peaks into one of the quadrant peaks. Entropy fur-
ther decreases for the icosipentagon (p < 0.001), revealing a
prior that appears nearly identical to the prior for a circle, and
with similar entropy (p = 0.68) (see Figure 6).

Figure 6: Grouping, and complexity of prior estimates. A.
KDEs for regular polygons of increasing complexity. B. En-
tropy of the last iteration computed for all shapes. Entropy
increases steadily with shape complexity (3 to 17 vertices).
After the number of vertices exceeds 21, entropy stabilizes,
and peaks start grouping toward the nearest quadrant center
(as with the circle). We used the Bonferroni correction for
multiple comparisons.

Discussion
In this paper, we made a preliminary foray into exploring
spatial memory priors using serial reproduction: a process
in which information being transmitted through successive
participants leaves behind only a signature of the transforma-
tion process itself: the perceptual and reconstructive biases of
those participants. This iterative process provides an effective
tool for greatly amplifying biases in perception and memory.

We used a serial reproduction paradigm in the context of
a spatial memory task. KDEs of the dots’ final positions re-
vealed detailed structure in priors over location. We found
that the priors for circles and ovals show peaks at the cen-
ter of each of their four quadrants, but also discovered that
angular shapes show bi-modal peaks at the vertices in the
prior. The modes appear on either side of each vertex, and
do not seem to be a simple function of the angle at each
vertex, since they are not rotationally invariant in all cases.
We provided quantitative comparisons between the perfor-
mance of a parametric model, and point estimates derived
from the KDEs we obtained following ten iterations of the
chain. These comparisons demonstrated that our estimates
were significantly better than those obtained from the para-
metric model (we used the same number of parameters—four
prototype estimates, even though our method yields kernel
density estimates that clearly reveal more than four in some
cases). In future work, we intend to determine if priors dif-
fer across individuals, by repeating the experiments so that
each participant completes a subset of chains in their entirety

(within-subject design). While some studies show differences
between within and between-subject designs (Claidière et al.,
2014), most studies showed high agreement between these
versions (Xu & Griffiths, 2010; Jacoby & McDermott, 2017).

Our results suggest that our approach may provide an op-
portunity to uncover complex priors for a wide range of per-
ceptual phenomena that would otherwise elude traditional ex-
perimental approaches, and parametric models. We plan to
use it to measure memory biases when there is more than one
point to be remembered (Lew & Vul, 2015), and to probe
for structured priors in memory for local orientation (Wei &
Stocker, 2016). Finally, we intend to uncover perceptual bi-
ases in spatial memory using natural complex images, and
maps, to explore the effect of higher-order visual features and
semantic content on spatial memory biases, and to probe for
the emergence of geographic landmarks.
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Abstract 

When it comes to decision making, the dominant view 
suggests that engaging in a detailed analytical thought process 
is more beneficial than deciding based on one’s feelings. 
However, there seems to be a tradeoff, as the complexity and 
amount of elements on which to base the decision increases, 
decisions based on affect seem to be more accurate than 
decisions based on a thorough analytical process in specific 
contexts. In those last cases, an affective modulation of 
memory may help to make better decisions in complex tasks 
that exceed human’s limited cognitive capacities. Some dual 
process accounts, ‘‘deliberation-without-attention’’ 
hypothesis (Dijksterhuis et al., 2006), oppose a cognitive (i.e., 
conscious) route to an affective (i.e., unconscious) route.  
Since most dual process accounts suggest one type of process 
is better than the other, the interaction and integration of 
affective and more conscious analytical processes in decision 
making have been understudied. To address this issue, we 
propose an explanation of the dynamics and interaction of 
cognitive (i.e., explicit) and affective (i.e., implicit) encoding 
and retrieval of elements in memory, using a unified theory 
based on core affect (Russell, 2003), in the shape of a 
cognitive model in the ACT-R cognitive architecture.  
 
Keywords: Core affect; ACT-R; decision making; dual 
process theory; memory modulation; implicit strategy 

Introduction 
In a set of experiments, Dijksterhuis et al. (2006) and 

Mikels et al. (2011) show how being focused on the details 
of provided information, rather than feelings, affects 
accuracy in a decision making task. According to these 
results, being feeling focused in a more complex, memory-
overloading task proves to lead to better performance.  

Until recently, the influence of emotion has been 
neglected in the judgment and decision making literature, 
with the focus initially being put on the biases emotions 
enable (Kahneman & Tversky 1979). Gradually, the focus 
has shifted toward the positive role of emotions in decision 
making, as suggested by neurological evidence (Damasio, 
1994; Bechara, Damasio, & Damasio, 2000). In parallel, 
core affect theory (Russell, 2003) in emotion research, and 
the somatic marker hypothesis (Damasio, 1994) in decision 
making research, have emerged to explain how emotion can 
guide behavior towards a positive outcome. 

In this paper we suggest that the results from  Dijksterhuis 
et al. (2006) and Mikels et al. (2011) (i.e., being feeling-
focused in a more complex task leads to better performance) 
can be explained with a core-affect model. Core affect 
(Russell, 2009) is a neurophysiological state accessible to 
consciousness as a simple non-reflective feeling and can be 

described through the valence (i.e., negative or positive) and 
arousal (i.e., intensity) values. Our hypothesis here is that 
core affect modulates memory. The modulation would place 
emphasis on the objective value of an attribute (i.e., good or 
bad) rather than details (e.g., higher than average gas 
mileage), simplifying the information and allowing for more 
efficient use of cognitive resources. The core affect 
experienced by participants while implicitly considering 
options cumulates and later leads to a decision illustrating 
the emotion-cognition interaction. This, we think, proves to 
be a better strategy when the limit of memory capacity is 
reached (e.g., complex task). This hypothesis was tested 
using a cognitive architecture based on a unified theory of 
cognition, ACT-R. We previously used this core affect 
model to explain the impact of affective valence and arousal 
on memory and memory decay using participant’s memory 
of negative and positive emotion words after different time 
periods (Juvina & Larue, 2016). However, here the focus is 
on the role of affect in decision making. This allows for an 
explanation of how core affect and cognitive mechanisms 
are meshed.   

Background 
The concept of emotion has been a subject of interest for 

quite some time. However, theories have only recently 
attempted to explain their role in cognitive processes using 
empirical research. Appraisal theories (Lazarus & Folkman, 
1984; Ortony, Clore and Collins, 1990) have emerged as the 
dominant approach to emotions in the last few decades. 
Appraisal has been defined as the personal meaning and 
significance to well-being that is constructed from 
evaluations of situational factors and knowledge. While this 
trend of theories clarifies the route by which humans 
evaluate their environments (e.g., in a bottom-up way), they 
do not clarify how ongoing affect influences the encoding 
and retrieval of information in an implicit manner.  

In response to this incompleteness, core affect theory 
(Russell, 2003), “feeling is for doing” (Zeelenberg & 
Pieters, 2006), and the somatic marker hypothesis 
(Damasio, 1994) have attempted to bridge the gap between 
emotion and behavior. The latter particularly addresses the 
domain of decision making.  
Russell (2009) believes that most phenomena attributed to 
emotions can be explained in more simple terms (e.g., core 
affect) without the need for emotion. Core affect is a 
visceral state that happens before the emotion is consciously 
identified: feeling good or bad, lethargic or energized 
(Russell, 2009). Russell’s core affect theory suggests 
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underlying values for valence and arousal are more 
important than emotion, which he believes is socially 
constructed. The core affect is the central notion of this 
theory. Previous events change the core affect, which can 
occur before the event is actually consciously perceived by 
the subject and persists during the episode. It also influences 
the other elements of the emotional episode.  
In the domain of decision making, some researchers 
(Gigerenzer & Selton, 2002) view heuristics, not only 
affective ones, as strategies that lead to sufficient decisions. 
Implicit strategies for decision making have previously been 
studied in ACT-R with Instance Based Learning (Gonzalez, 
Lerch & Lebiere, 2003). In this paper, another type 
of implicit strategy involved in decision making – an 
affective strategy – is investigated. 

Existing computational models of affect and emotion are 
based on appraisal theories and tend to be pre-programmed 
and hardwired based on the specifications of a particular 
theory (e.g., Marsella & Gratch, 2009; Marinier, Laird, & 
Lewis, 2009). Previous attempts have been made in ACT-R 
to add biological roots of emotions (Dancy et al., 2015) 
effect of emotion on learning and decision making 
(Belavkin, 2003) and stress (Ritter, Reifers, Klein, & 
Schoelles, 2007) by overlaying the architecture.  

Since core affect is implicit, more primitive, and more 
general than the construct of emotion (Russell & Feldmann 
Barrett, 1999; Russell, 2009), it could be particularly 
adapted to be included in a cognitive architecture. When 
meshed with existing cognitive mechanisms, it could add to 
existing unified theories of cognition. The resulting model 
would increase the explanatory power of the core affect 
theory by clarifying different aspects of the emotion–
cognition interaction.  

Core affect and memory: theory and 
implementation 

ACT-R and memory 
To capture the core affect modulation of memory and its 

impact on decision making, we support our model with 
ACT-R (Adaptive Control of Thought – Rational; 
Anderson, 2007), a unified theory of human cognition. 
ACT-R is also a cognitive architecture that is used to 
develop computational models of various cognitive tasks. 
ACT-R is composed of various modules: goal, imaginal, 
visual, aural, manual, vocal, and two memory modules: 
declarative memory (i.e., facts) and procedural memory 
(i.e., how to do things). The declarative memory module, 
which stores facts (i.e., know-what), is the one the core 
affect directly modulates. Declarative memory includes both 
symbolic structures (i.e., memory chunks) and sub-symbolic 
quantities that control the operation of the symbolic 
structures in the equations. The valuation and arousal 
values, which help to define the core affect, are sub-
symbolic quantities added to the current sub-symbolic 
equations of ACT-R.  

Core affect and memory 
We present a summarized version of the core affect 

mechanism to facilitate the understanding of our model. An 
extended version of the core affect mechanism can be found 
in Juvina and Larue (2016). The original equation 
(Anderson, 2007) that computes the activation of a 
declarative memory chunk is:  

Ai = Bi + Si + Pi + εi                                                   (1) 

• Ai is the activation of the chunk i. 
• Bi is the base-level term and reflects the recency and 

frequency of use of chunk i.  
• Si is the spreading term and reflects the effect of the 

context on the retrieval of chunk i. 
• Pi is the partial matching term and reflects the degree to 

which the chunk i matches the specification of the 
retrieval request. 

• εi is a noise or variability component. 
 

Activation of a chunk reflects its use, and decays over 
time if the chunk is not used. Retrieval time and the retrieval 
probability of a chunk are determined by activation (e.g., 
chunks under a certain retrieval threshold cannot be 
retrieved). However, the selection process is impacted by 
noise. The chunk with the highest activation has the highest 
probability of being selected, but other chunks get the 
opportunity as well allowing some exploration behavior in 
ACT-R.  
In the current ACT-R architecture, reward based learning 
affects procedural memory. However, subjective values 
(e.g., pleasant or unpleasant) might actually be carried by 
declarative memory as affectively charged representations, 
which are easier/harder to retrieve according to these values 
(Smith, Most, Newsome, & Zald, 2006).  A new ACT-R 
module called “Valuation” was developed to add valuation 
and core affect capabilities into ACT-R. In theory, core 
affect is a diffuse affective state that is not necessarily 
linked to any specific event and is characterized as a point in 
a two-dimensional space, where the two underlying 
dimensions are valence (i.e., pleasure-displeasure) and 
arousal (Russell, 2009). In our implementation, core affect 
is defined as two accumulators called core-affect-valuation 
(Valuation) and core-affect-arousal (Arousal), which are 
sub-symbolic quantities computed by the “Valuation” 
module. It also maintains the parameters and history 
information that are needed for these computations. Both 
values affect the probability that a chunk can be retrieved 
from declarative memory. Valuation is an indicator of the 
affective valence of a particular stimulus or fact learned 
through interaction with the environment. Arousal is an 
indicator of the importance or priority that is given to a 
particular stimulus or fact; it is the absolute value of 
valuation. Relying on the existing memory mechanisms 
from the ACT-R theory, valuation and arousal are just two 
separate terms added to the general activation equation 
previously introduced: 
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Ai = Bi + Si + Pi + Vi + Ari + εi             (2) 

• Vi is the valuation term and reflects the rewards 
received by the model after referencing chunk i.     

• Ari is the arousal term which reflects the importance of 
chunk i and is computed as the absolute magnitude of 
the valuation term.  
 

The learning of valuations occurs when a reward is 
triggered: the valuations of all chunks that been referenced 
within a time window are updated. This is compatible with 
findings of overlapping neural substrates between the 
attribution of subjective value to stimuli and reward-based 
learning (Paton, Belova, Morrison, & Salzman, 2006). The 
effective reward of a chunk i is the reward value received at 
time n minus the time since the last reference of chunk i. 

The learning of valuations for a chunk i is controlled by 
the following equation:  

 
Vi(n) = Vi(n-1) + αv[Ri(n) – Vi(n-1)]            (3) 

 
• Vi(n) is the valuation of chunk i after its nth update.  
• Vi(n-1) is the valuation of chunk i prior to its nth 

update. 
• αv is the learning rate for valuations.  
• Ri(n) is the effective reward value received by chunk i 

before its nth valuation update.     
• Vi(0) is determined based on initial parameter settings. 
Reward signals allow the model to learn valuation and 
arousal values for elements according to what is presented 
in the environment. 
Additional parameters make it possible to weight valuation 
and arousal independently in the equation. Values used in 
this paper can be seen in Table 1:   
• Valuation weight (:vw) is a scale parameter for the 

valuation term in the general activation equation.  
• Arousal weight (:aw) is a scale parameter for the 

arousal term in the general activation equation. 
• Valuation time window (:vtw) is a time window over 

which to update the valuations. It determines how many 
chunks are updated. 
 

In the architecture, core affect is the weighted 
accumulation of valuation and arousal values for all 
retrievable chunks, and weights are probabilities of retrieval 
reflecting chunk activations.  This value is implicitly 
maintained by the architecture. 

In this implementation, affect phenomena are not 
hardwired in the cognitive architecture but learned from the 
interaction among various architectural components and 
between architecture and environment. Only primitive 
affective mechanisms: valuation (i.e., valence obtained 
through interactions) and arousal, were included in the 
cognitive architecture. Valuation and arousal are added as 
terms in the general activation equation and influence the 
probability of a chunk to be retrieved. This is consistent 

with the core affect theory (Russell & Feldmann Barrett, 
1999; Russell, 2009).  

Our hypothesis is that this is all that is necessary to 
include at the architectural level to model the interaction 
between cognition and affect. 

Model 

Conditions 
The procedure used here was derived from an experiment by 
Dijksterhuis et al. (2006) and replicated by Mikels et al. 
(2011). During these experiments, participants were given 
information about four different car options (i.e., Car A, Car 
B, Car C, and Car D) and were instructed to choose which 
car they believed to be the best choice. Simple attributes, 
framed as either positive or negative (e.g., this car gets 
good/bad gas mileage), were provided one at a time for each 
car option. The best choice was defined as the car with the 
most positive attributes. The best choice had 75% positive 
attributes, two cars had 50% positive attributes, and one car 
had 25% positive attributes. The design consisted of one 
dependent variable (i.e., car choice) and two independent 
variables (i.e., focus and complexity). 

 
Figure 1. Experiment procedure and memory 

representations across task in detail-focus vs feeling-focus 
conditions 

Participants were split into four conditions based on the 
two independent variables (i.e., feeling-focus simple, 
feeling-focus complex, detail-focus simple, and detail-focus 
complex). Those in the feeling-focus conditions were 
instructed to rate how they felt about each attribute and 
make their choice while focusing on their feelings. In the 
detail-focus conditions, participants were instructed to rate 
how well they were remembering the attributes and make 
their decision based on the details of the attributes. Simple 
conditions had four attributes for each car option, whereas 
complex conditions had 12 attributes per car option.  

All conditions completed a memory recall task at the end 
of the trial. Results from a chi-square analysis indicated that 
participants in the detail-focus simple condition performed 
better than participants in the feeling-focus simple 
condition, although this difference did not reach 
significance. However, participants in the feeling-focus 
complex condition significantly outperformed those in the 
detail-focus complex condition. There was no difference 
between focus conditions for memory recall, but there was a 
difference between simple and complex conditions. Both 
Dijksterhuis et al. (2006) and Mikels et al. (2011) concluded 
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that focusing on your feelings leads to better complex 
decisions compared to more deliberate thinking.  

Table 1. Model parameters 
 

:rt  -2.4 
:vw 1.0 
:aw  2.0 
:av  0.2 
:vtw  0.5 

Encoding across conditions 
Encoding mechanisms used are the same, but: 
• In the detail-focus, the strategy used makes you 

consider all features and ratings associated to those 
features. 

• In the feeling-focus condition, the strategy used gives 
more value to the ratings (i.e., good/bad) than their 
features.. 

 
Table 2. Model strategy in the detail-focus condition 

 
Detail-focus condition (Table 2). Stimuli consisting of 
three elements (car – feature - rating) are presented one at a 
time to the model The model looks at each element 
separately and encodes them as a memory chunk of the 
following association: car – feature – rating. Car is also a 
memory chunk (Presentation phase in “Detail-focus” in 
Figure 1).  

When all stimuli have been presented to the model, it 
proceeds to the evaluation through a tallying heuristic 
(Gigerenzer, 2016): by interrogating its memory on features 
for each car, counting all chunks for which it can retrieve an 
association with a “good” rating for a feature. The car with 
the highest overall number of “good” rating-feature-car 
associations that could be retrieved is the one that is named 

by the model as the best car choice (Evaluation phase in 
“Detail-focus” in Figure 1). The significantly higher number 
of reasoning steps in the detail-focus condition (Table 2) 
results from the thorough analytical process that participants 
were assumed to engage in during this condition. 

 
Table 3. Strategy in the feeling-focus condition 

 
Feeling-focus condition (Table 3). The same stimuli are 
presented to the model randomly; but the model is going to 
follow a different strategy. It only looks at the car and 
rating, as shown in Table 3 (Presentation phase in “Feeling-
focus” in Figure 1). The model retrieves the car chunk 
associated with the presented car, and according to the 
rating “good” or “bad”, sends a reward signal. This reward 
affects the valuation of this specific car without it being 
necessary to encode all the features of the car. When the 
reward signal is sent, all the valuations of chunks that were 
retrieved in this time window are updated. Recall the 
explanation in the previous section (detail-focus condition) 
that the memory representation includes the car chunks. 
Thus, if the car to which this rating was attached is in the 
time window, it gets a valuation update.  

When all stimuli have been presented to the model, it 
proceeds to the evaluation by retrieving one of the 
previously presented cars (Evaluation phase in “Feeling- 
focus” in Figure 1). The retrieved car is the one with the 
highest activation, which likely has the highest rating 
because valuation was updated positively during the first 
stage of car presentations. 

Results and Discussion 
Results in Figure 2 are shown for 50 runs of the model 
(stable performance, based on cumulative standard 
deviation, was reached after 43 runs). 
There was a significant difference in accuracy between the 
two feeling focus conditions (i.e., simple and complex), 
t(97.89) = 2.67, p < 0.01. A significant difference in 
accuracy was also found between the detail-focus complex 
condition and feeling-focus complex condition, t(83.1) = 
6.001, p < .001. These same differences were observed in 
the original experiments. 

Step Strategy in the detail-focus condition 
Presentation phase 

1 “Car-feature-value” triplet is displayed 
2 See car 
3 Encode  car 
4 See feature 
5 Encode feature 
6 See value 
7 Encode value 
8 Clear imaginal (enter chunk in declarative 

memory)  
9 Go back to step 1 until all cars have been 

displayed 
Evaluation phase 

10 Pick a car that has not been evaluated yet 
11 Retrieve triplet (car-feature-value) with a “good” 

judgment  
12 Count the positive values for this car 
13 Go back to step 10 until there are no cars left 
14 Decide the car with the highest count 

Step Strategy in the feeling-focus condition 
Presentation phase 

1  “Car-feature-value” triplet is displayed 
2  See car 
3  Retrieve chunk car 
4  See value 
5  Trigger reward depending on value 
6  Update valuations 
7  Go back to step 1 until all cars have been displayed 

Evaluation phase 
8  Retrieve car with highest activation 
9  Decide (highest valuation car is the one with the 

most “good” features) 
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The model also captured participant’s better performance in 
the detail-focus simple condition compared to the feeling-
focus simple condition (difference is not significant like in 
the original results). However, while still within the 
standard error range, the detail-focus complex condition 
appears lower than in the original experiments. This could 
be explained by something that is not captured in the 
strategy of our model. When uncertain, human participants 
could have guessed more accurately (compared to random 
guesses by the model) based on prior knowledge. For 
instance, a participant may have eliminated options based on 
memory that certain options had fewer positive attributes.  

 
Figure 2. Accuracy in feeling-focus vs. detail-focus in 

complex and simple conditions for the original experiments 
and our model 

Model dynamics in detail-focus condition 
In the simple condition, the model has a performance close 
to the feeling-focus condition. However, in the complex 
condition more features are memorized for each car. In this 
condition, more words are forgotten as the experiment is 
longer and there are more words to remember. Activation of 
those unused chunks decay over time. Therefore, when 
going through all the cars and remembering the features, 
there are more chances of memory retrieval failures.  

The forgetting time is also amplified by the length of the 
recall strategy, contributing to future retrieval failures. The 
model may be forgetting features of the next car while 
listing the elements of the current car. This explains the 
poorer performance of the model in the complex condition. 
It is important to note that the model does not account for 
possible confusions in the car and feature-rating 
associations. 

Model dynamics in feeling-focus condition 
The model performs better in the complex condition than in 
the simple condition. In the complex condition, while the 
proportion of good features is the same, the overall number 
of features per cars is higher. This gives the model more 
opportunity for rewards. In the simple condition, there are 

fewer features and less reward opportunities. The activation 
equation has a noise parameter. Due to this noise the chunk 
with the highest valuation might not be the one with the 
highest activation (thus, not the one retrieved). Therefore, 
when retrieval from memory is initiated, decay and noise 
might make the activation number obtained through the 
activation equation close but higher for another car than the 
one who received the highest rating. This happens more 
often in the simple condition where you will have chunks of 
very close valuations. Figure 3 illustrates the differences in 
valuation between the chunk representations of the car 
options. The gap in valuation between options is more 
visible in the complex condition. 

In contrast to the detail-focus condition, retrieving the 
highest rated car in the Feeling-condition is a very simple 
and fast process. It only requires one retrieval of the car 
with the highest activation (no features retrieval involved), 
therefore there is less decay of activation for the chunks and 
therefore less ground for retrieval mistakes. 

 
 

Figure 3. Evolution of the chunk valuation of each cars in 
feeling-focus condition across rounds, simple vs complex 

conditions   

General Discussion and Conclusion 
In this paper we presented a mechanism for core affect in 

ACT-R. This mechanism specifies how affect modulates 
memory (e.g., reducing information or emphasizing the 
positive or negative value) compared to attempting to 
remember the entire set of attributes in the detail-focus 
condition (i.e., high memory load). It also shows that 
implicit decisions might lead to better decisions than 
explicit decisions in certain contexts. 

We model affect in a cognitive architecture as a 
phenomenon, which emerges from the dimensions of the 
core affect theory (i.e., valence and arousal) and is learned 
through the interaction with the environment. We interpret 
valence as valuation. Valuation is a sub-symbolic quantity 
for chunks learned through interactions with the world. 
Arousal is the absolute value of valuation. Core affect is the 
weighted accumulation of valuation and arousal values for 
all retrievable chunks, and weights are probabilities of 
retrieval reflecting chunk activations. Parameters given to 
the ACT-R architecture, existing reward mechanism of the 
architecture, and usage information about the chunks are 
used to compute valuation and arousal values.  The core 
affect values are implicitly maintained by the architecture. 
Valuation and arousal are added as terms in the general 
activation equation and influence the probability of a chunk 
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to be retrieved. We rely on the existing general activation 
equation of ACT-R to integrate our model in a unified 
theory of cognition. 

While the core affect theory has been present in theories 
of emotion, and the role of emotions has been considered in 
the domain of decision making, very little has been done to 
connect the work on core affect theory to decision making.  

We hypothesized and demonstrated that those 
mechanisms that allow for an affect phenomenon to emerge, 
were sufficient to account for the behavior encountered in 
Mikels et al. (2011)’s experiment. Engaging in a detailed 
analytical thought process might be as beneficial as deciding 
based on your feelings in a simple environment (i.e., low 
cognitive load). However, there is a tradeoff. As the amount 
of elements on which to base your decision increases, 
exerting a high load on your declarative memory, decisions 
based on affect seem to be more accurate than decisions 
based on a thorough analytical process in those complex 
environments. We demonstrated that an affective 
modulation of memory by core affect, which simplifies the 
amount and complexity of information, could explain this 
phenomenon. Therefore, core affect may help individuals 
make better decisions in complex tasks, which exceed 
limited cognitive capacities by reducing the need to 
memorize each element included in the decision. Instead, 
the interaction with the elements a decision is supposed to 
be based on, can be implicitly processed in conjunction with 
affect, and the resulting decision can be based on those 
affects. Furthermore, we showed that an implicit mechanism 
(core affect) allows us to make an efficient decision.  
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Abstract 

In this study, we focused on the Generic Overgeneralisation 
(GOG) effect (Leslie, Khemlani, and Glucksberg 2011) and 
tested the relevance of context and an explanation based on 
quantifier domain restriction for the pattern of judgement data 
observed. Participants judged generic majority characteristic 
statements like tigers have stripes or statements with 
universal quantifiers that have different sensitivity to context 
(‘all’, ‘all the’, ‘each’) preceded by one of three levels of 
context: a) neutral, where the information in the context does 
not interact with the truth value of the critical statement, b) 
contradictory, where it presents an exception which should 
rule out a universally quantified statement, and c) supportive. 
Our results suggest that proponents of the generics-as-default 
view ruled out context prematurely and that in fact context is 
a viable alternative explanation for much of the so-called 
GOG effect. 

Keywords: context; generalisation; genericity; quantification; 
quantifier domain restriction  

Introduction 
Quantificational generalisations, as in (1), are expressed in 
quantitative, statistical terms, while generic generalisations, 
as in (2)-(3), make general claims about kinds of entities 
and refer to a property that is characteristic of the kind in 
question, but not necessarily statistically prevalent, as in (3): 

 
(1) Some lions live in cages. 
(2) Lions roar. 
(3) Lions have manes. 

 
Generic generalisations have long been studied in formal 

semantics, within which genericity is frequently viewed as a 
species of quantification. Even though generics have been 
studied since the seventies (see Dahl 1975; Carlson 1977), 
how to characterise their semantic interpretation and how to 
model their truth conditions remains a controversial topic 
(see discussion in Mari, Beyssade, and del Prete 2013). 
Within formal semantics, modal logic and probabilistic 
approaches are most prominent, both of which treat 
genericity as akin to quantification. According to the modal 
approach, which is the most widely adopted formal analysis 

of genericity, generic meaning is obtained as the effect of an 
underlying operator or quantifier dubbed ‘GEN’, which is 
not phonologically realised but which is active in the 
composition of the sentence meaning and is an unselective 
variable binding operator similar to adverbs of 
quantification like usually, typically, always, as analysed in 
Lewis (1975). This operator is sentential and is represented 
by a tripartite structure as in (4) (Krifka et al. 1995). Thus, 
the logical form of (2) may be given as follows in (5): 

 
(4) GEN  [restrictor] [matrix] 
(5) GENx [Lions (x)] [Roar (x)] 

 
Generic generalisations can be made using a wide range of 
different grammatical means, including definite and 
indefinite singulars and bare plurals in English, but no 
language has a unique, unambiguous marker of genericity 
equivalent to a quantifier or determiner. It is important to 
note that none of the analyses that posit a ‘GEN’ operator 
offer an explanation for this, a point that a recent 
psychological approach to generics, capitalises upon.  

This growing body of experimental and developmental 
psychological work on the topic proposes that genericity is 
categorically different from (and significantly simpler than) 
quantification (Leslie 2007, 2008, Gelman 2010). This latter 
hypothesis, called the Generics-as-Default view (GaD view 
henceforth), treats generics as an innate and default mode of 
thinking. This idea is linked to the 2-system view of 
cognition argued for by Kahneman and Frederick (2002) 
among others, which includes a distinction between System 
1, a fast, automatic, effortless lower-level system, and 
System 2, a slower, more effortful higher-level rule-
governed system. According to this view, the fact that no 
language has a dedicated overt ‘GEN’ operator does not 
come as a surprise: given that generics are the most 
primitive default generalisations, children do not need to 
learn anything in order to acquire them. 

The GaD approach argues that the fact that there is no 
overt generic operator in any known language is because 
generics are the unmarked, System 1, case. On this view, 
only effortful, non-default quantificational generalisations 
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require overt linguistic exponence. However, while 
assigning generics to a more basic, unmarked System 1, 
mode of thinking may sound intuitive at some level, it rests 
on a vague and undefined notion of markedness. Leslie 
refers to Chomsky (2000), but she gives no definition of 
markedness. Intuitively, it seems that what is at stake is 
surface level overt realisation (third notion of markedness of 
Haspelmath 2006). 

A challenge for both types of approach is to determine 
which properties can be used in generic statements. Generic 
generalisations range from definitional statements that do 
not tolerate any exceptions (triangles have three sides) to 
statements that involve characteristic properties and are true 
of the majority of the kind with only a few exceptions 
(tigers have stripes) - which are called ‘majority 
characteristic’ by Leslie et al. (2011) - through statements 
that are true of a minority of the kind yet are characteristic 
(ducks lay eggs) - which are called ‘minority characteristic’- 
to statements that have low prevalence but involve a 
property that is noteworthy in some way (sharks attack 
people) - which are called ‘striking’. A further complication 
is that statistical prevalence is neither a necessary nor a 
sufficient condition to license generic generalisations, as 
statements like books are paperbacks may be true of the 
majority of the kind, but are typically judged as false and 
thus fail as generic generalisations (‘false generalisations’). 

In Lazaridou-Chatzigoga, Katsos and Stockall (2015) we 
juxtaposed the linguistic approach to genericity and the 
experimental research investigating the GaD hypothesis and 
we highlighted the significant challenges for each approach. 
We concluded that interdisciplinary work, integrating the 
tools and perspectives of both strands of investigation, is 
needed in order to advance our understanding of genericity. 

In Lazaridou-Chatzigoga, Stockall and Katsos (2017) we 
focused on the effect called ‘Generic Overgeneralisation’ 
(GOG) (Leslie et al. 2011), which has been used to support 
the GaD view on generics. The Generic Overgeneralisation 
(henceforth ‘GOG’) effect is “the tendency to 
overgeneralise the truth of a generic to the truth of the 
corresponding universal statement” (Leslie et al. 2011:17). 
In that paper, we discuss a set of four non-mutually 
exclusive explanations for the GOG effect: a) ignorance of 
the relevant facts, b) subkind (taxonomic) interpretation, c) 
the atypical behaviour of all and d) Quantifier Domain 
Restriction (QDR), which will be explained in more detail 
in the next section. We proposed that all these factors play a 
role in explaining the attested behaviour by adults. These 
factors are independently attested and known to interact 
with the interpretation of generic and quantified statements. 
We suggested that even the name of the GOG effect might 
be misleading. The effect mainly tries to capture the 
behaviour observed with the quantifier all, which 
supposedly gets a generic interpretation as a result of an 
overgeneralisation bias. Thus, perhaps a better name for that 
effect would be ‘Quantifier Reanalysis’ effect, because this 
term would direct the focus where we believe it belongs: on 
the interpretation of all, or more generally of quantifiers, 

rather than the interpretation of generic statements. The 
overall aim in that paper was to showcase the role of 
linguistic factors (both semantic and pragmatic) in the 
interpretation of generic and quantified statements, and to 
underscore the relevance of linguistically motivated 
explanations.  

In this paper, we address the effect of context on generic 
and universally quantified generalisations empirically. 

The GOG effect 
The first detailed investigation of the GOG effect is found in 
Leslie et al. (2011). In their experiment 1, participants 
performed a truth-value judgement task on sentences that 
were presented in one of three forms: generic, universal 
(all), or existential (some). The statements involved 
different kinds of properties: quasi-definitional (triangles 
have three sides), majority characteristic (tigers have 
stripes), minority characteristic (ducks lay eggs), majority 
non-characteristic (cars have radios), striking (pit bulls 
maul children), and false generalisations (Canadians are 
right-handed). The authors report that adults sometimes 
judge universal statements as true, despite knowing that 
they are truth-conditionally false. For example, participants 
judged a quantified statement like all tigers have stripes as 
true, even though they know it is false given that there are 
albino tigers. The authors claim that the participants made 
this ‘error’ because they relied on the corresponding generic 
statement, which is true. They find that the GOG effect is 
restricted to characteristic properties and that it occurs in 
more than half the trials: 78% for majority characteristic and 
51% for minority characteristic statements. 

The authors argue that these elevated acceptance rates are 
due to participants interpreting the ‘false’ universally 
quantified statements as if they were their ‘true’ generic 
counterparts, and are thus a clear case of GOG. Before 
reaching that conclusion, the authors acknowledge three 
alternative explanations, which they argue are ruled out with 
subsequent experiments: a) ignorance of the relevant facts, 
namely, that participants do not know that male ducks do 
not lay eggs, which they ruled out by administering a 
knowledge test that confirmed knowledge of the relevant 
facts (their experiment 3), b) subkind interpretation, 
namely, that participants interpret all ducks lay eggs as ‘all 
kinds/types of ducks lay eggs’, which is a true statement, 
which they discarded through a paraphrase task (their 
experiment 2b), where only 1% of the paraphrases explicitly 
mentioned subkinds, and c) Quantifier Domain Restriction 
(henceforth QDR), to which we turn in the next paragraph. 

Under an explanation based on QDR participants might 
interpret a statement like all ducks lay eggs as applying only 
to a relevant subset of ducks, namely the mature fertile 
female ducks. Quantified statements are interpreted within a 
context, which may restrict the scope of the quantifier (see 
Stanley and Szabó 2000). Thus, the reason why people 
accept the all statement is because (they believe) it is true 
once the quantifier has been restricted to the relevant subset 
of ducks. The authors addressed this alternative explanation 
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in their experiment 2a, where they provided the participants 
with a background context, which was presented before 
each statement. These contexts included artificial population 
estimates of the following form:  

 
(6) ‘‘Suppose the following is true: there are 431 

million ducks in the world. Do you agree with 
the following: all ducks lay eggs.’' 

 
This information was supposed to prime quantification 

over every individual duck in the world, and thereby make it 
difficult/impossible to interpret all as restricted to only the 
ducks that are presupposed by lay eggs. If acceptance of all 
ducks lay eggs in the first experiment was driven by QDR 
the authors predicted that it would disappear in the context 
of population information of the kind above. However, the 
GOG effect still occurred on a substantial portion of trials 
for statements with all, with a 60% acceptance rate for 
majority characteristic statements and 30% for minority 
characteristic statements - less than when the statements 
appeared with no preceding context (78% and 51% 
respectively), but still a high percentage. The authors thus 
concluded that domain restriction could not be the sole 
explanation for the GOG effect.  

On the above grounds, Leslie et al. (2011) rejected all 
three alternative explanations and argued they had found 
evidence for a strong generic bias, according to which 
people sometimes treat universally quantified statements as 
if they were generic.  

Overview of the present study 
In the present study, we addressed QDR as an explanation 
for the GOG effect building on a design used by Lazaridou-
Chatzigoga and Stockall (2013). We chose to focus on the 
relevance of context and QDR given that the latter is a 
pervasive phenomenon affecting quantifiers and their 
interpretation within a context, and is routinely invoked in 
quantification (Heim 1991). According to QDR, the domain 
of a universal quantifier can be restricted in the following 
sense: in a discourse like ‘There was rhubarb pie for 
dessert, Everyone developed a rash’ (example modified 
from von Fintel 1994) a quantifier like everyone does not 
quantify over all the individuals in the world, but rather over 
the contextually restricted set of individuals. Furthermore, 
listeners are known to be charitable (Grice 1975). Thus, in a 
conversation one assumes that speakers take the most 
sensible positions and make the most plausible assertions. 
Under this view, interpreting everyone as quantifying over 
all the individuals in the world seems a rather unlikely 
intended interpretation and moreover one that is not 
charitable to the speaker because it renders her utterance 
false, whereas interpreting everyone with respect to the 
available set of individuals is not only plausible but also 
charitable to the speaker.  

We hypothesised that if we could show that the amount of 
GOG behaviour can be altered by carefully manipulating 
different levels of contextual information preceding the 

critical utterance, we would have evidence that the observed 
tendency to accept universally quantified statements as true 
can be explained through independently motivated 
mechanisms and that there is no need to appeal to GOG.  

Rather than the population statistics contexts used by 
Leslie et al. (2011), which only had a moderate effect on 
participant behaviour, we decided to use three different 
types of contexts. Furthermore, because of the design we 
adopted, we decided to focus only on majority characteristic 
statements (‘tigers have stripes’) leaving minority 
characteristic statements (‘ducks lay eggs’) for future 
investigation. We varied the context preceding the critical 
utterance as follows: a) neutral, where the information in the 
context does not interact with the truth value of the critical 
statement; b) contradictory, where exceptions which should 
rule out a universally quantified statement are made salient, 
and c) supportive, where a paraphrase of the critical 
property is given, which makes its generality salient. Two of 
the three context types (contradictory and supportive) made 
the relevant domain for QDR salient, while the neutral 
context served as a baseline measure. The contradictory and 
supportive contexts turned the implicit restriction to ‘all 
normal’ individuals to an explicit one by either highlighting 
some abnormal individuals (contradictory) or by stating that 
the relevant individuals had the relevant property, i.e. they 
were normal individuals (supportive). 

In addition to manipulating context, however, a 
compelling test of the QDR view also requires testing 
whether the GOG effect is observed only with all or 
whether different universal quantifiers would show such an 
effect. There are reasons to believe that all should not be 
treated as a representative universal quantifier. It has been 
argued to a) participate in fallacious reasoning (Jönsson and 
Hampton 2006), b) be prone to hyperbolic/loose use similar 
to ‘almost all’ (Claridge 2011), and c) be ambiguous 
between distributive and collective interpretation (Beghelli 
and Stowell 1997). Thus, using different types of universal 
quantifiers is essential to test the scope of the GOG effect. 
Furthermore, a study that specifically addresses the 
relevance of QDR should include universal quantifiers with 
different sensitivity to QDR. More specifically, QDR is less 
likely if the universal quantifier used does not require 
linking with a set under discussion, as is the case with all, 
compared to each and all the, which have to be interpreted 
as D(iscourse)-linked (Partee 1995, Pesetsky 1987). 

To recapitulate, (a) the contextual manipulations used 
were expected to make the implicit domain restriction 
explicit and salient to the participants and (b) this 
manipulation was expected to influence truth-value 
judgements by showing a decrease in acceptance rates in the 
contradictory condition and an increase in acceptance rates 
in the supportive condition. 

Method 
Participants and procedure 
120 volunteers (49 male, 70 female, 1 other; aged 19-67; 
mean age 37.28; SD 13.06) participated in the experiment 
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over the Internet. Participants were recruited through 
Amazon’s Mechanical Turk system for human interface 
tasks. All spoke English as their first language and lived in 
the United States. The study was presented in the online 
platform Qualtrics. Each trial consisted of three displays. In 
the first display participants read a background context, in 
the second display they read a statement and in the third 
display they were asked to judge whether they agreed with 
the statement they just read. Their response was recorded by 
selecting keyboard keys (‘A’ for yes and ‘K’ for no). 
 
Materials and design 
Participants were presented with 84 statements, including 48 
fillers presented in a randomised order. The 12 test items 
consisted of majority characteristic statements like tigers 
have stripes and horses have four legs. We included 26 
control items, 12 definitional statements like ants are 
insects and 12 false generalisations like books are 
paperbacks to get baseline measures and to (semi)-
counterbalance the percentage of expected True/False 
responses. All the contexts and items were normed 
beforehand by English native speakers, who did not take 
part in the experiment. This was done to make sure that the 
context manipulations worked as intended. Most of the 
experimental items used are a subset of the items used by 
Leslie et al. (2011). The two conditions we manipulated for 
the majority characteristic items were: a) determiner type: 
bare plural generic/all/all the/each, and b) context type: 
neutral/contradictory/supportive. The statements were 
presented in one of the determiner forms and were preceded 
by one of three types of context: a) neutral, b) contradictory, 
or c) supportive, examples of which are given below: 
 

(7)  
a. neutral context: Linton Zoo is home to three tigers, 
Tibor, Baginda and Kaytlin, whose playful games visitors 
love to watch and photograph. 
b. contradictory context: Linton Zoo is home to three 
tigers, Tibor, Baginda and Kaytlin, whose fur is all white 
due to a recessive gene that controls coat colour. 
c. supportive context: Linton Zoo is home to three tigers, 
Tibor, Baginda and Kaytlin, whose black and orange coats 
visitors love to photograph. 
 
Given the 4 determiners (generic/all/all the/each) we 
created 4 lists with 3 sublists each that varied with respect to 
the pairing of the items with context type, which gave us 12 
lists in total. There were 10 participants in each sublist, who 
were assigned randomly. Here is a sample of a trial of a 
statement with all after a neutral context: 
 

(8)  
DISPLAY 1: 
Background: 
Linton Zoo is home to three tigers, Tibor, Baginda and 
Kaytlin, whose playful games visitors love to watch and 
photograph. 

DISPLAY 2: 
Statement: All tigers have stripes. 
DISPLAY 3:  
Do you agree with the statement? 
o Yes (A)   o No (K) 
 
The definitional and false generalisations were in the 
generic form in all lists. Fillers served to ensure the 
percentage of expected True/False responses was similar. 
The definitional and false generalisations, as well as the 
fillers, were preceded by a context that did not vary across 
conditions. The materials can be viewed at 
http://www.dimitra-lazaridou-chatzigoga.com/cogsci-paper/ 

Results and discussion 
The final model used included 116 out of the 120 
participants. 4 participants were excluded based on their 
responses to definitional statements; we excluded subjects 
that responded correctly at fewer than 10 out of 12 items.  
 
Acceptance rates  
Table 1 summarises the proportion of ‘TRUE’ responses to 
the TVJ question for the test items (majority characteristic 
statements) in each condition. We report proportion of 
‘TRUE’ responses rather than the actual number of 
responses to facilitate comparison with Leslie et al.’s (2011) 
results. 
 

Table 1: Mean Proportion (SE) of ‘TRUE’ responses as a 
function of context and determiner type. 

 
 Context 
 neutral  contradictory supportive 
determiner    
GEN (ø) 99.14 (3.12) 87.07 (0.86) 100 (0) 
all  80.56 (3.82) 48.15 (4.83) 87.96 (3.14) 
all the  78.33 (3.78) 37.50 (4.43) 90 (2.76) 
each  79.17 (3.72) 30.83 (4.23) 85.83 (3.2) 
 
As we see above, generics were accepted at higher rates 
overall than universals, as expected, given that we had 
chosen items that were true in generic form. Both in the 
neutral and the supportive condition acceptance rates for 
generics were at ceiling (99% and 100% respectively) and 
were only lower in the contradictory condition (87%). With 
universals, the picture is more complicated. All three 
universals (all, all the, each) were accepted at similar rates 
in both the neutral and the supportive condition, showing 
only a small increase in the supportive condition. In the 
neutral condition, all-statements were accepted 81% of the 
time, all the-statements 78% of the time and each-
statements 79% of the time. In the supportive condition, all-
statements were accepted 88% of the time, all the-
statements 90% of the time and each-statements 86% of the 
time. Universals after a contradictory context yielded fewer 
acceptances overall, as expected: all-statements were 
accepted 48% of the time, all the-statements 38% of the 
time and each-statements 31% of the time. Acceptance rates 
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for both generics and universals differed significantly 
between the neutral and the contradictory condition. 

On the surface, we do get many ‘TRUE’ responses to 
universal quantifiers, as in the GaD literature, which might 
look like a GOG effect. We predicted that contradictory 
context should decrease acceptances across the board, while 
supportive context should increase them. We expected a 
smaller effect for generics because the generic statements 
were constructed so as to be true and because of their 
resistance to contextual restriction (i.e. we expected ceiling 
effects) and we predicted differences between the universal 
Qs depending on their sensitivity to QDR/D-linking. 
Nevertheless, we had specific predictions about the relative 
rates depending on the level of context, which according to 
Leslie et al. should not differ. In order to appreciate the 
relative effect of context on acceptance rates, we subtracted 
the average means of the contradictory condition from the 
average means of the neutral condition, as well as the 
average means of the supportive condition from the average 
means of the neutral. We took acceptance rates in the 
neutral condition as our baseline plotted at 0. Negative 
values mean fewer acceptances and positive values mean 
more acceptances. We interpreted the rates obtained as the 
relative effect of context on acceptance rates plotted in 
figure 1 below. 

 
Figure 1: The relative effect of context. 

 
We get the effect for the contradictory context exactly as 

predicted for the universal Qs. The relative effect is bigger 
for those quantifiers that require QDR because of their 
semantics (all the, each) than for the one that allows but 
does not require QDR to the relevant subset (all). We also 
find that context does affect GEN in the contradictory 
context.  

The prediction about the supportive context was not borne 
out because of ceiling effects in the neutral condition. 
Adding explicit information supporting the statement hardly 
mattered, as acceptance rates did not rise significantly. The 
ceiling effect might be due to participants being charitable 
and/or exceptions not being immediately salient.  
 

We used R (R Core Team, 2012) and the lme4 package 
(Bates et al. 2015) to perform a generalised mixed-effects 
linear analysis of the relationship between determiner and 
context, specifying a binomial family. Responses were 
treated as a dummy coded categorical variable and were 
modelled with glmer. First, we fitted a full model with 
det.type and context.type as fixed effects (with an 
interaction term) and with random intercepts for subjects 
and items. We performed a likelihood ratio test of the full 
model with an interaction term against a model without the 
interaction term and the comparison proved non-significant 
(χ2(6) = 8.3455, p = 0.2139). Thus, including an interaction 
term did not improve model fit, so we used the model 
without the interaction term for all subsequent 
analyses/comparisons. 

We then fitted versions of the full model, in which a single 
effect was removed and we compared the reduced model to 
the model without interaction. To test the main effect of 
context, we removed context. A likelihood ratio test of the 
model without interaction against the model without context 
proved highly significant (χ2(2) = 311.81, p < 2.2e-16). 
Thus, we concluded that there was a main effect of context. 
To test the main effect of determiner, we removed 
determiner. A likelihood ratio test of the model without 
interaction against the model without determiner proved 
highly significant (χ2(3) = 58.183, p = 1.436e-12). Thus, we 
concluded that there was a main effect of determiner. 

General Discussion 
We set out to explore one of the alternative explanations for 
the judgement data that concern universally quantified 
statements, which have been used as evidence of a GOG 
effect. The study presented here provides experimental 
evidence for the relevance of a QDR-based explanation of 
the purported GOG effect. In our study, context did not only 
affect acceptance rates for all and other universal quantifiers 
(all the, each), but it further predicted the levels of QDR 
depending on the level of context. The effect of context was 
greater for all the and each, two quantifiers that require 
QDR, while it was smaller for all, whose domain is only 
optionally restricted. Leslie et al. had ruled out the relevance 
of context and hence predicted no differences in acceptances 
across contexts for all. Furthermore, even though they only 
discuss all they make general claims about (universal) 
quantification being prone to the GOG effect. We argue that 
drawing conclusions about universal quantification (and by 
extension about genericity) requires more subtle 
manipulations. The differences we found between the 
different universal quantifiers are predicted according to the 
QDR view advanced here, but ought to be inconsistent with 
the GaD view, were they to discuss them.  

We also find that context matters for generics too, a fact 
that bears further investigation, but is in line with recent 
work that claims that generics display some context 
sensitivity (Sterken 2015). This might be more consistent 
with an analysis in which GEN also involves (some form of) 
quantification rather than one that treats GEN as 
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categorically/ontologically different from universal 
quantifiers. 

Overall, we argue that there exist alternative explanations 
for big portions of the supposed GOG effect. The study 
discussed here did not address all the alternatives, but so far 
in the literature it has been shown that at least pure error, 
ignorance and now context all significantly affect 
acceptance rates. In work in progress, we address cross-
linguistic variation in the realisation of generic and 
universal generalisations. The general thrust of this work is 
that, rather than being under the influence of a default bias, 
adults are simply sensitive to the subtle interplay of 
quantifier semantics and pragmatics on the one hand, and 
context on the other. This approach has the advantage of 
accounting for data without postulating ad-hoc mechanisms 
such as GOG just for generics. 
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Abstract 

Using real-time eye-movement measures, we asked how a 

fantastical discourse context competes with stored representations 

of semantic and world knowledge to influence children's and 

adults' moment-by-moment interpretation of a story. Seven-year-

olds were less effective at bypassing stored semantic and world 

knowledge during real-time interpretation than adults. 

Nevertheless, an effect of discourse context on comprehension was 

still apparent. 

Keywords: discourse; children; sentence comprehension; eye-
tracking; semantics; cognition; fantastical fiction 

 

Real-time interpretation of fantastic fiction  

Linguistic processing requires listeners to identify relevant 

thematic relationships between the entities and events 

evoked in a sentence. Studies of visually-situated language 

processing have shown that comprehenders use such 

relations to predict upcoming linguistic input, and in turn 

direct their attention to compatible referents in the visual 

world (e.g., Altmann & Kamide, 1999; Kamide, Altmann, & 

Haywood, 2003). For example, when hearing the sentence 

‘The boy eats the big cake’ while looking at a scene 

containing a cake and a bird, adults and children as young as 

2 years of age look to the cake while ‘eats’ is unfolding 

(Mani & Huettig, 2012). Children as young as 3 years of 

age can also use their prior knowledge of the relationships 

between actions and agents to generate more sophisticated 

predictions, e.g. anticipating 'bone' upon hearing "The dog 

hides" (Borovsky, Elman, & Fernald, 2012). 

In adults, comprehension is also rapidly influenced by 

higher-order meaning created by physical, functional and 

situational relations between entities and events (Chambers 

& San Juan, 2008; Sedivy, 2003; Tanenhaus, Spivey-

Knowlton, Eberhard, & Sedivy, 1995). Situation-specific 

factors, including a fictional context, can in fact override 

lexical and semantic relationships based on stored 

knowledge (Cook & O’Brien, 2014; Filik, 2008; Nieuwland 

& Van Berkum, 2006). However, prior research with grade 

school children has shown that they tend to privilege lexical 

information over situation-specific knowledge (Snedeker & 

Trueswell, 2004; Trueswell, Sekerina, Hill, & Logrip, 

1999). Children may therefore find it difficult to rely on a 

fictional context to inform real-time language processing, 

particularly in fantastical fiction where described events 

(e.g., a person flying) strongly depend on information in the 

narrative, and are at odds with the nature of the real world. 

Conversely, it is possible that the incongruent actions and 

salient contrast between the real and narrative worlds 

involved in a fantastical narrative may strengthen children’s 

mental simulation of story information, and thus support 

their ability to rely upon contextual information to anticipate 

upcoming language input. Preschool children are already 

becoming competent comprehenders of discourse; they 

become sensitive to its causal structure (Lynch et al., 2008) 

and begin to make inferences connecting the events evoked 

in narrative with world knowledge (Barnes, Dennis, & 

Haefele-Kalvaitis, 1996).  Preschool children also 

understand that events in fiction can contradict their 

knowledge of the real world, and involve systematic rules 

governing what can and cannot happen within the context of 

that world (Sharon & Woolley, 2004; Van de Vondervoort 

& Friedman, 2014).  

Thus, is not clear how effectively young children can use 

fantastical facts introduced in a narrative to interpret the 

story as it unfolds. Notably little work has investigated the 
real-time processes and underlying mechanisms involved in 

children’s interpretation of fictional discourse. Most 

investigations of children’s narrative comprehension have 

instead relied on offline measures, such as the verbal 

production of story elements (e.g. Paris & Paris, 2003). By 

using implicit measures such as eye movements we can gain 

additional insights into children’s moment-by-moment and 

automatic consideration of possible referents as language 

unfolds in real time.  

In the current study, we investigate children’s real-time 

language processing in discourse contexts that present 

fantastical protagonists and improbable events, using a 

spoken language eye tracking methodology. The goal of the 

study is to compare children’s and adults’ use of fictional 
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information that contradicts lexical and world knowledge to 

constrain predictions about upcoming language input. Can 

young children rely upon fantastical facts introduced in the 

prior discourse to predict upcoming referents, and what is 

the time course of this process? In other words, how does a 

fantastical discourse context compete with information in 

children’s stored representations of semantic and world 

knowledge to constrain their understanding of the situations 

being described? The competition between semantic and 

real-world knowledge and discourse information that 

violates that knowledge can be explored by presenting 

children with a discourse-final sentence in which the 

protagonist acts on an object in an unusual way (e.g., 

wearing boxes on her feet). By examining eye movements 

in the window of time between the onset of a verb that 

semantically constrains the referent (e.g., ‘putting on’) and 

the onset of the following noun, we can gain insights into 

children’s interpretation of the unfolding sentence.   If 

children rely upon the fantastical discourse to interpret the 

sentence, we would expect them to demonstrate more 

anticipatory eye movement to objects that are congruent 

with the discourse than to objects that are congruent with 

stored event semantics and world knowledge, but 

incongruent with the discourse.  

We also explore the relationship of predictive language 

processing in fantastical contexts with other mental 

functions. Anticipation of events consistent with a 

fantastical fictional world is likely to require the suppression 

of stored knowledge based on the stable semantic 

relationships of the real world. We might therefore expect it 

to be positively predicted by inhibitory control and 

negatively predicted by receptive vocabulary and semantic 

fluency, which reflect strong, well-defined networks of 

semantic relationships. Constraints on working memory 

may also limit children’s performance by limiting the ability 

to maintain concurrent interpretations. Studies measuring 

event-related potentials (ERPs) have shown working 

memory to predict adults’ ability to use rich contextual 

information to build a message-level representation of 

linguistic input (Huettig & Janse, 2016; Wlotko & 

Federmeier, 2012), perhaps because it binds knowledge to 

linguistic and semantic knowledge in space and time.  

 

Method 

Participants 

Sixty-four 7-year-old children (range: 7;0-7;11, Mage: 

7;4) and 68 adults (range: 18-35 years; Mage: 25) 

participated in the current experiment. Seven-year-olds were 

chosen because they are highly experienced with narratives; 

because younger (3-5-year-old) children are more often 

willing to attribute unconventional behaviour to humans 

(Boerger, 2011); and because pilot testing revealed that they 

could attend through 16 consecutive eye-tracking trials, and 

complete the full one-hour procedure without signs of 

fatigue. Inclusionary criteria were normal or corrected-to-

normal vision and no history of diagnosis or treatment of 

cognitive, speech, language, hearing, or attentional issues. 

Children heard English spoken at home more than 75% of 

the time. Adults were native speakers of English. Data from 

27 additional participants were collected, but not used due 

to: unsuccessful calibration (3 adults, 1 child), no trials that 

captured eye movements more than 50% of the time (7 

adults, 5 children), failed pre-test (3 children), lack of 

attention (2 adults, 3 children), and misunderstanding the 

task (1 adult, 2 children).  

 

Materials  

Cartoon images were taken from open-source resources, and 

the displays accompanying each narrative depicted agents 

and objects against a white background. Sentences were pre-

recorded by a female, native Canadian-English speaker. 

 

Norming of stimuli 

Offline tasks with a separate group of 4- and 5-year-old 

participants were conducted to establish that even younger 

children could recognize the objects and used the verbs to 

identify referents in the expected manner. Children were 

tested at the Ontario Science Centre. The experimenter 

showed the child a four-object display, provided a label, and 

asked her to identify the relevant object. 100% of children 

recognized all the images presented during the critical 

sentences (N = 8 per target image). Children were then 

introduced to pictures of agents (e.g. ‘This is Chloe the 

fairy’), following which they were presented with a four-

object display, and asked (e.g.) ‘What will Chloe eat?’ Four- 

and 5-year-olds selected the only referent that was 

semantically plausible following the verb over 90% of the 

time across trials (N = 16 per target image).  

 

 
 
 

 

 

 

 

 

 

 

 

 

Figure 1. Example of stimuli used for the sentence 

comprehension task. 

 

Procedure 

 

Sentence comprehension task Participants sat in a 

stationary chair in front of a computer with a 1920x1200 

LCD display. Eye movements were recorded using a Tobii 

X120 eye-tracker. A nine-point calibration procedure was 

used to set up tracking of both eyes. In the description phase 

of the experimental condition (N=32 7-year-olds and N=34 

731



adults), participants saw a centrally presented picture of a 

fantastical agent (e.g., a superhero or monster), and 

simultaneously heard a story. Story sentences contained 

referents that were semantically congruent with a preceding 

verb, and referents that were unusual patients of the 

preceding verb. For instance: ‘Chloe the fairy doesn’t have 

cake for her snack. She has snow for her snack! And Chloe 

doesn’t wear shoes on her feet. She wears boxes on her feet! 

What is Chloe going to do?’ Participants then saw a central 

fixation cross. In a subsequent test phase, participants saw a 

display comprising the four mentioned items (e.g. cake, 

snow, shoes, and box), one placed in each corner of the 

screen, and heard the critical sentence. In 4 of the 8 

experimental trials, the verb in the critical sentence was 

semantically constraining (e.g., ‘Chloe is eating up the 

snow’). Thus, the verb narrowed to 1 the number of 

referents in the display that were coherent with children’s 

stored semantic knowledge (henceforth, semantically 

congruent referent, or SCR: e.g., cake) as well as the 

number of referents that were coherent with the story 

information (discourse-congruent referent, or DCR: e.g., 

snow). In the other 4 experimental trials, the verb did not 

constrain the referent: e.g. ‘Chloe is looking at the snow’. 

Half of the participants heard a critical sentence based on 

the first part of the story (e.g., Chloe eating up the snow), 

and half heard a story based on the second part of the story 

(e.g., Chloe putting on the box). In 8 filler trials, participants 

heard that agents ‘sometimes’ performed expected actions 

and ‘sometimes’ performed actions that violated world 

knowledge, breaking up the pattern in the content and 

outcomes of the stories and reducing the risk of strategic 

adjustments. Counterbalancing was in place for the portion 

of the story that was referenced during the critical sentence, 

the order in which typical and atypical verb patients were 

mentioned, the pairing of stories with constraining and 

neutral verbs, and the location of the DCR on the screen. 

The location of other objects was randomized. 

To confirm that children could recall simple discourse of 

the type used in the experiment, the sentence comprehension 

task was preceded by two offline pre-trials in which children 

were asked a comprehension question in place of the critical 

sentence. For instance, children heard ‘Gordon the gnome 

doesn’t bang on a drum. He bangs on a pillow! And Gordon 

doesn’t dig with a shovel. He digs with a toothbrush!’ Once 

the array of possible referents was displayed, children were 

asked ‘What does Gordon bang on?’ Only three children 

failed to identify the target during one or both of the two 

comprehension trials, and were excluded from the analysis.  

A separate set of 32 7-year-olds and 34 adults 

participated in a control condition in which no story 

discourse preceded the critical sentence. In this condition, 

during the description phrase participants saw the picture of 

the agent, but in place of the story they only heard (e.g.) 

‘This is Chloe the fairy’, followed by the critical sentence.  

Following the sentence comprehension task participants 

completed several individual difference measures. These 

were drawn largely from the National Institutes of Health 

Toolbox (NIH TB) Cognition Battery (McDonald, 2014), 

which is administered in a computerized adaptive format. 

Each of the tasks in the Toolbox has been normed and 

validated for ages 3-85. 

 

Inhibitory control The inhibitory control measure was the 

NIH TB Flanker Inhibitory Control and Attention Test. The 

test requires participants to focus on a specific stimulus 

while inhibiting attention to other stimuli flanking it. 

Sometimes the middle stimulus is congruent (pointing in the 

same direction as the flankers) and sometimes incongruent 

(pointing in the opposite direction). Scores reflect both 

accuracy and reaction time.  

 

Working memory Working memory was measured using 

the NIH TB List Sorting Working Memory Test, which 

involves both storage and manipulation of items in memory.  

Images of animals and foods are displayed with 

accompanying audio and written text (e.g., “horse”). The 

participant is asked to repeat back the items in size order 

from smallest to largest, within a single dimension (either 

animals or foods: 1-List) and then on 2 dimensions (foods, 

then animals: 2-List). The score is equal to the number of 

items that are both recalled and sequenced correctly.  

 

Receptive vocabulary The receptive vocabulary measure 

was the NIH TB Picture Vocabulary Test. Participants hear 

a word and simultaneously see four photographic images on 

the computer screen. Participants were asked to point to the 

picture that most closely matches the meaning of the word.  

 

Semantic fluency Semantic fluency was measured using 

two components of the NEPSY word generation task 

(Korkman, Kirk, & Kemp, 2007). Participants were given 

one minute to produce as many members of a semantic 

category as they were able. Categories were ‘animals’ and 

‘foods and drinks’. Participants received one point for every 

correct item. Incorrect words and repetitions were excluded. 

 

Data scoring and analysis 

The proportion of time that participants spent looking to 

each referent was calculated separately for three time-

windows corresponding to different speech landmarks, 

namely the pre-naming window (1000 ms prior to verb 

onset to verb onset), verb window (1280 ms prior to noun 

onset to noun onset) and noun window (233 ms after noun 

onset to 2000 ms after noun onset). Average looking time 

within these windows was calculated separately for 

constraining and neutral verb trials, based on gaze position 

measures assessed every 50 ms.  

Raw scores for receptive vocabulary, inhibitory control 

and attention, and working memory were downloaded from 

the NIH Toolbox Assessment Center. Two coders viewed 

video recordings of the semantic fluency (word generation) 

task. There was excellent agreement between coders’ 

judgments, r(126) = 1, p = < .001. Disagreements were 

resolved by a third coder. 
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Looking time data failed to fit a normal distribution 

following log and empirical logit transformations (Barr, 

2008.) Therefore, all analyses were bootstrapped in SPSS 

21, using 1000 case resamples with replacement from the 

original dataset and a 95% percentile confidence interval. 

 

 

Results 

Control condition In the control condition with no story, 

both children and adults looked at chance to the DCR (p 

>.05), and above chance to the SCR (children: t(27) =5.61, p 

= .001, adults: t(29)=4.64, p = .001), as expected (Figure 2). 

 

Constraining verb trials Recall that the displays 

contained two distractor objects in addition to the DCR and 

SCR. We first ascertained whether participants looked 

preferentially to the DCR and SCR. Both adults and 

children did so at a rate significantly above chance 

(children: t(31)=8.1, p = .001; adults: t(33)= 7.82, p = .001). 

A one-way ANOVA demonstrated that adults’ and 

children’s looking behaviour was similar (F(1,65) = .00, p 

>.05.) Thus, both children and adults discounted distractors 

from their interpretation of the unfolding sentence following 

verb onset, as seen in Figure 3.  

In order to discover how hearing a constraining verb 

influenced children’s and adults’ anticipatory processing, 

we then examined the proportion of time that participants 

spent looking to the DCR and SCR before and after verb 

onset. Since constraining and neutral verb trials were 

identically structured prior to verb onset, we collapsed 

looking time in the pre-verb window across trial types 

(constraining and neutral) for this analysis. Paired t-tests 

demonstrated that upon hearing a constraining verb, the 

proportion of both children’s and adults’ looking time to the 

semantically congruent referent rose relative to its pre-verb 

baseline (children: t(31)=-3.54, p = .005); adults: t(32) =-

2.16, p =.04). The proportion of adults’ looking time to the 

discourse-congruent referent also rose following the onset of 

the constraining verb (t(32)=-3.32, p = 002); the proportion 

of children’s looking time did not (p > .05). Thus, hearing a 

constraining verb caused adults, but not children, to increase 

their consideration of the discourse-congruent referent.  

We then examined fixation patterns within the verb 

window separately for the DCR and SCR to determine 

whether children’s and adults’ proportions of looking time 

to these referents differed. They did not significantly differ 

for either referent (both p >.05), nor did proportion of 

looking time to the SCR differ between children and adults 

in the no-story control condition (p >.05). Next, we 

examined children’s and adults’ rates of looking against 

chance, calculated at .2 to account for looks to blank space 

on the screen, to establish whether both semantic coherence 

and discourse context influenced participants’ 

interpretations of the sentence prior to hearing the noun. 

Both children and adults looked to the DCR at a rate above 

chance during the verb window, suggesting that both age 

groups relied to some extent on the discourse context to 

interpret an unfolding sentence (children: t(31)=2.59, p = 

.024; adults: t(33)=3.81, p = .002). Children, but not adults, 

also looked to the SCR at a rate above chance (t(31)=4.75, p 

= .001). Thus, taking the verb window as a whole, both 

children and adults anticipated the DCR as the patient of the 

constraining verb, while only children anticipated the SCR.  

 

 

 
Figures 2&3. Time-course plots of proportion of looking 

time to potential referents on experimental trials 

containing constraining verbs (Figure 2), and on control 

trials with no discourse context containing constraining 

verbs (Figure 3). 

Neutral verb trials 

Recall that neutral verb trials did not contain semantically 

congruent objects because the verb (e.g., "look at" was by 

definition compatible with all display objects. They instead 

contained two "discourse-congruent" objects in the sense 

that each story presented the character carrying out two 

unusual actions. For neutral verb trials, we therefore 

collapsed the proportion of looking time to both DCRs. As 

predicted, neither children nor adults made anticipatory 

looks to the DCRs during the verb window of the critical 

sentence. Adults and children looked similarly to the DCRs, 

and neither adults nor children looked to the DCRs at a rate 

above chance (all p >.05). This confirmed that patterns in 

the constraining verb conditions were not simply due to 
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attentional capture or interest in the images used as the SCR 

and DCR.  
 

Individual differences 

Pearson correlations between individual difference measures 

and proportion of looking time to the DCR and SCR in the 

verb window were examined separately for adults and 

children. On control trials containing no story, none of the 

correlations were significant for children or adults (all p 

>.05). On experimental trials, none were significant for 

adults on constraining or neutral verb trials, nor for children 

on neutral verb trials (all p >.05). Children’s looking time 

on constraining verb trials was not correlated with inhibitory 

control, nor with semantic fluency (both p >.05). Contrary 

to expectation, children’s working memory was negatively 

correlated with their looking time to the DCR (r(30) = 

−.50, p = .004), and children’s receptive vocabulary was 

positively correlated with their looking time to the SCR 

(r(30) = .46, p = .011). 

Linear regressions were conducted on the proportion of 

children’s looks to DCR and SCR in the verb window. 

Working memory significantly predicted children’s looking 

time to the DCR, b = −.343, t(1,28) = -3.11, p = .004, and 

explained approximately 26% of variance in children’s 

looking time to the DCR, R2=.256, F(1,28) = 9.57, p = .004. 

Receptive vocabulary significantly predicted children’s 

looking time to the SCR, b = −.031, t(1,30) = 2.82, p = .004, 

and explained approximately 21% of variance in children’s 

looking time to the SCR, R2=.210, F(1,30) = 7.99, p = .004. 

 

Discussion 

This study demonstrates that while 7-year-old listeners to 

fantastical fiction find it difficult to override semantic 

congruence in favour of discourse congruence, the discourse 

context nevertheless competes with semantic relationships 

based on stored knowledge to direct their interpretation of 

fantastical fictional events. The results also demonstrate that 

the importance of different types of predictive information 

appears to change between grade school and adulthood. 

In the absence of a story, children as well as adults 

generated expectations for the object that served as the most 

typical patient of an immediately preceding verb, as 

expected (e.g. Mani & Huettig, 2012). Given a fantastical 

story, however, both children and adults used the discourse 

context to guide their appraisal of appropriate verb patients: 

they anticipated the DCR, which was congruent both with 

the discourse and with a constraining verb. However, 

children’s anticipation of the discourse-congruent referent 

diminished over the time course of the verb phrase, whereas 

adults’ anticipation of this object increased over the same 

time window, suggesting that children began to discount the 

early expectations that had been generated for a discourse-

congruent noun. 

Seven-year-olds had difficulty overriding an 

interpretation of the critical sentence based on stored 

semantic relationships and real-world knowledge, 

generating expectations for the referent that was congruent 

with their semantic and world knowledge. Adults did not, 

although some late consideration of the semantically 

congruent referent is clearly apparent from an examination 

of the latter half of the verb window in Figure 2. This is not 

unexpected, as active prediction is often accompanied by a 

certain degree of thematic priming even when these effects 

are incongruent with sentence and discourse information 

(Kukona, Fang, Aicher, Chen, & Magnuson, 2011). 

Children with strong pre-existing networks of semantic 

relationships, as indexed by receptive vocabulary, found it 

difficult to override these networks in favour of the 

discourse context. On average, they showed less 

consideration of the discourse-congruent referent than did 

children with smaller receptive vocabularies.  It is also 

possible that children who possess a large vocabulary have a 

well-developed sense of the need for a clear conceptual 

basis for any new semantic relationship. In future research, 

we will ask whether longer and more causally rich stories 

than those presented in the current study may improve such 

children’s performance. However, on a different measure of 

semantic network strength (semantic fluency), there was no 

relationship with the extent to which the DCR was 

considered. This may be because this kind of word 

generation task also places demands on executive control: 

the inhibition of irrelevant information, and the deployment 

of strategic planning. Given that we did not find a 

relationship between our measure of inhibitory control and 

children’s looking behaviour, it is possible that in this task, 

the process of suppressing semantic knowledge may not 

require inhibition of the prepotent semantically congruent 

interpretation. Rather, it may involve maintaining 

representations of both the semantically congruent and 

discourse-congruent interpretation, and discounting the 

latter relative to the former.  

Contrary to expectation, the poorer children’s working 

memory, the more they relied on the discourse-congruent 

referent to interpret the unfolding critical sentence. If this 

finding can be replicated, several possible explanations 

should be explored in future research. It is possible that 

weak representations of the discourse entail relatively more 

attention to the discourse-congruent referent in attempt to 

support effort towards recall of the role of the object in the 

story. It is also possible that the stronger the discourse 

information in children’s working memory, the greater the 

co-activation in memory of stored semantic information, 

which then remains relatively highly activated in children in 

comparison to adults. 

The real-time processing of fantastical discourse speaks 

to the interaction of several abilities and knowledge types – 

stored semantic knowledge, vocabulary, working memory, 

and the moment-by-moment identification of thematic 

relationships – all of which influence children’s mental 

representations of the events they hear about. This topic 

provides a rich opportunity to characterize the information 

processing skills underlying children’s language 

comprehension at the discourse level.  
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Abstract 

We replicate and extend work demonstrating that choice and 
probability estimation can be dissociated through the coexistence 
of contradictory reactions to rare events. In the context of 
experience-based risky choice, we find the simultaneous 
underweighting of rare events in choice and their overestimation 
in probability judgement. This tendency persisted in the presence 
of accurate descriptions of rare event occurrence (Experiment 1), 
but was attenuated by incentivizing accurate probability 
estimates (Experiment 2). The implications of these results for 
popular models of risky choice are briefly discussed. 

Keywords: Decisions from experience; probability estimation; 
risky choice; underweighting.  

Introduction 
Decision-making research often uses a description format to 
present risk information. In the experimental context of 
monetary gambles, participants are (usually) presented with  
two options. One option is deemed “safe” as it provides a sure 
payoff (e.g., a loss of $3 with certainty), while the other option 
(e.g., a loss of $4 with 0.8 probability; no loss otherwise) is 
deemed “risky” as it bears the risk of a rare event (i.e., the 0.2 
probability of no loss). In the description format, the 
participant is explicitly given this risk information and makes a 
single choice between the two options. For the aforementioned 
gamble, Kahneman and Tversky (1979) found that participants 
preferred the risky option. This has been explained by 
assuming that participants choose as though they subjectively 
overweight the probability of the rare event. When the same 
gamble is presented in the gain domain, participants prefer the 
safe option ($3 with certainty), consistent with the explanation 
of overweighting the 20% chance of receiving nothing.  

In experience-based tasks, participants are presented with the 
same two choices without the aid of written descriptions. In 
order to learn about the outcome distributions, participants 
must repeatedly choose between the two options and observe 
the outcomes over successive rounds of choices. When risk 
information is presented in this format, choice preferences are 
consistent with underweighting the rare event. That is, 
participants prefer the safe option in the above example 
because the probability of the rare event (0.2 probability of no 
loss) is subjectively underweighted.  

Probability judgement and underweighting 
Fox and Hadar (2006) first proposed that erroneous probability 
judgements could be responsible for underweighting in 
experience-based choice. If participants judged the probability 

of the rare event to be lower than the objective probability, then 
underweighting in choice would reflect this erroneous 
judgement. To examine this judgement error hypothesis, a 
number of studies have asked participants to estimate the 
probability of the rare event at the end of the experiment (e.g., 
Hau, Plesak, Kiefer, & Hertwig, 2008). Using this retrospective 
method, studies have generally found probability estimates of 
the rare event to be accurate.   

However, retrospective probes of this nature can create 
disparities between the information used during the task and 
judgements formed at the end of the task. Camilleri and Newell 
(2009) found that retrospectively generated probability 
estimates failed to predict participant choices during the 
experiment. One remedy for this is to prompt judgement probes 
throughout the task. In studies assessing awareness, Newell and 
Shanks (2014) suggested that assessments should be made as 
immediately as possible as to avoid forgetting and interference 
from other cognitive processes. This immediacy criterion can 
be applied to probability judgements as the large number of 
trials in experience-based tasks (e.g., 50 trials in Hau et al., 
2008) may exacerbate any differences between retrospectively 
and immediately generated judgements.  
 
The Coexistence Hypothesis 
Barron and Yechiam (2009) used a novel trial-by-trial design 
to examine probability judgements in an experience-based task. 
In their Experiment 1, participants were repeatedly presented 
with a choice between a safe option (-3 points with certainty) 
and a risky option (-20 points with 15% probability; 0 points 
otherwise). Note that the expected value of both options was 
equal so a preference for the risky option would be indicative 
of underweighting the rare event. After an initial phase of 
choices alone, participants were prompted to estimate the 
probability of the rare event for the next trial following each 
choice.  

Barron and Yechiam (2009) found that while participants 
preferred the risky option in their choices, consistent with 
underweighting the rare event, they overestimated the 
probability of the rare event (i.e., the probability of the -20 
outcome). This inconsistency occurred at the individual level 
such that the majority of the participants (15/24) 
simultaneously demonstrated underweighting and 
overestimation of the rare event; a result that was named the 
coexistence hypothesis.  

Barron and Yechiam (2009) also found evidence of opposing 
recency effects on choices and probability estimates. Following 
the observation of a rare event, participants were less likely to 
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select the risky option. In these same trials though, probability 
estimates of the rare event were lower, demonstrating a 
reasoning process akin to the gambler’s fallacy. This 
paradoxical result was called the contingent recency effect.  

 The coexistence hypothesis and the contingent recency 
effect are problematic for traditional decision models, such as 
the Two-Stage Choice Model (Fox & Tversky, 1998), because 
they present a dissociation between probability judgements and 
behavior. Most decision models like the Two-Stage model 
predict that choices can be mapped onto subjective 
representations of probability following a transformation 
according to the weighting function of Prospect Theory 
(Kahneman & Tversky, 1979). This makes the coexistence 
hypothesis an interesting anomaly given that overestimation is 
inconsistent with underweighting in choices.  

 
Descriptions in decisions from experience 
The existing literature separately compares decisions from 
experience to decisions from description. However, everyday 
decision making often utilizes a combination of both 
information sources (e.g., a doctor informed by both her 
clinical experience and empirical findings). 

The limited number of studies examining decisions from 
experience in the presence of descriptions have produced 
inconsistent results. While some have found that the presence 
of descriptions influence choice in decisions from experience 
(Jessup, Bishara, & Busemeyer, 2008) others have contended 
that the descriptions are neglected (Lejarraga & Gonzalez, 
2011). Aiming to resolve these contradictory accounts, Weiss-
Cohen et al. (2016) found that participants predominantly 
relied upon experience to inform their choices but could be 
influenced by descriptions that provided novel information. 
This dovetails with the recent finding that the additional 
presence of descriptive summaries increased underweighting 
behavior in experience based tasks (Yechiam, Rakow, & 
Newell, 2015).  

Taken together, these studies demonstrate that descriptions 
that explicitly provide probability information can influence 
choice in an experience-based task. However, less is known 
about how participants represent probability information when 
both sources of information are available. Given that risky 
choices are informed by probability judgements when each 
information source is presented separately, it is important to 
examine how individuals reconcile probability information in 
the presence of both descriptions and experience.  

 Experiment 1 examined the relationship between probability 
judgement and risky choice. We presented descriptions in an 
experience-based task that prompted trial by trial probability 
estimates similar to Barron and Yechiam (2009). We expected 
that participants given experience alone would show behavior 
consistent with the coexistence hypothesis (underweighting in 
choice and overestimation in judgement). Given that the 
descriptions explicitly stated the veridically experienced rate of 
rare events, we expected participants given description and 
experience to accurately estimate the rare event. However, as 
experience is primarily relied upon to inform choice patterns, 
we expected underweighting in choice would still emerge.  

Experiment 1 
Method 
Participants Eighty undergraduate students (Mage = 18.90 
years; SD = 1.66, 53 females, 1 other) from UNSW 
participated in exchange for course credit, and an incentive 
payment contingent on the participant’s choices during the task 
(M = $3.21 AUD, SD = 0.18).  
 
Materials Participants were presented with two options 
associated with either a safe (S) or risky (R) distribution as 
follows:  

Safe (S): -3 points with certainty 
Risky (R): -20 points with probability 0.15; 0 points 

otherwise 
The expected values were matched, and so a preference for the 
risky option would be indicative of underweighting. The risky 
distribution used random sequences of 120 outcomes, of which 
exactly 15% (18 outcomes) were rare events. Each sequence 
was presented to one participant in each condition.  
 
Design Experiment 1 used a between-subjects design with 2 
risk information conditions (n = 40). The description-
experience (DE) condition completed the repeated choice task 
with descriptions that stated the outcome distribution of each 
option. For example, the description for the risky option read 
“15% chance of -20; 85% chance of 0”. These descriptions 
remained visible for the duration of the experiment. The 
experience-only condition (E) completed the task without 
descriptions1. 
 
Procedure Participants were randomly assigned to the E or DE 
condition and presented with instructions on a computer 
screen. Participants were told their show-up payment of $5.00 
AUD had been converted into 1000 points and that their task 
was to retain as many points as possible. They were prompted 
to make a choice between the S and R options on the screen 
(the locations of which were counterbalanced). Following each 
choice, full feedback for both the selected and forgone option 
was provided, which remained visible until participants 
proceeded to the next trial.  

After 40 choice-only trials, participants completed an 
additional probability estimation task following each choice. 
Specifically, they were asked “What is the probability that –20 
will appear in the next round?”, and inputted an integer 
between 0-100 representing a percentage. Feedback for the 
current trial remained visible during the estimation task. This 
choice-then-estimation pattern was repeated for the remaining 
80 trials after which the participants were debriefed and paid 
according to the rate of 2 points = $0.01.  
 
Results  
Coexistence Hypothesis We found evidence of 
underweighting in choice in both the DE and E conditions. 

                                                           
1A third condition with misleading descriptions called the 

conflicting descriptions experience condition has not been included 
here as it was not relevant to our current investigation. 
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Overall, participants preferred the risky option as indicated by 
mean PR rates (the proportion of risky choices per block) being 
significantly greater than 0.5 in E condition, M = 0.70, t(39) = 
6.50, p < .001, and the DE condition, M = 0.71, t(39) = 6.79, p 
< .001. As the expected values of the options were equal, this 
preference for the risky option (i.e., PR rates > 0.5) 
demonstrates that participants underweighted the rare event 
(Figure 1A, left panel).   

We examined for differences between the conditions using a 
2 x 12 mixed ANOVA with condition as the between factor 
and block (of 10 trials) as the within factor2. The main effect of 
condition was not significant, F(1,78) = .42, p = .84. This 
result indicates that we failed to find a significant difference in 
PR-rates between the experience-only condition and experience 
with explicitly stated descriptions.  

Given that probability information was explicitly available, 
we expected that participants would accurately estimate the 
rare event. However, we found evidence of overestimation. 
Mean probability estimates were significantly greater than the 
objective probability of 0.15 in the E condition, M = 0.30, t(39) 
= 6.64, p < .001, and the DE condition, M = 0.28, t(39) = 5.65, 
p < .001. The effect of condition was non-significant, F(1,78) = 
.22, p = .64 (Figure 1A right panel).  

Taken together, these results show the coexistence of 
inconsistent reactions to rare events in choice and probability 
judgement even in the presence of accurate descriptive 
information. Whilst underweighting suggests the rare event had 
less subjective impact than warranted on choices, 
overestimation suggests oversensitivity to the rare events’ 
appearance. Moreover, the majority of participants (27/40 in 

                                                           
2 In cases where the sphericity assumption has been violated, the 

Greenhouse-Geisser correction to df has been used.   

the E condition, 28/40 in the DE condition) exhibited this 
inconsistent pattern.  
 
Contingent Recency Effect We separated participant 
responses into trials following a rare event (-20 outcome) and 
trials following a common event (0 outcome). This allowed us 
to assess for the impact of the most recently observed outcome, 
using a 2 x 2 mixed ANOVA with the outcome of the 
preceding trial as the within factor and condition as the 
between factor for both choices and probability estimates.  

For choices, we found a significant interaction effect, F(1, 
78) = 4.41, p = .04 (Figure 1B). This was qualified by a simple 
effects analysis which revealed a significant effect of preceding 
trial outcome for the E condition, F(1,39) = 8.25, p = .01, with 
a non-significant effect for the DE condition, F(1, 39) = .10, p 
= .76. This result shows that in the E condition people were 
less likely to select the risky option after observing a rare event 
compared to the common event (PR|-20 = .60 and PR|0 = .72), 
whereas in the DE condition this effect was not significant 
(PR|-20 = .70 and PR|0 = .71).  

For probability estimates (PE), we found a significant effect 
of preceding trial outcome, F(1,78) = 22.98, p < .001 (Figure 
1C). Averaged over conditions, participants estimated the 
probability of rare event to be lower following a rare event 
compared to following a common event (PE|-20 = .20 and PE|0 
= .30). This is evidence of negative recency, which suggests 
that participants believed the chances of rare events in 
succession were unlikely. The effect of condition was not 
significant, F(1, 78) = 1.00, p = 0.32.  

Taken together, these two results demonstrate an inconsistent 
reaction to the appearance of the rare event at least in the E 
condition. On the trials following a rare event, participants 
were less likely to select the risky option. However, 

 

 
Figure 1. Risky choice and probability estimates data in Experiment 1. Error bars represent ± 1 SEM. 

(A) Mean PR rates (left) and probability estimates (right) by block of 10 trials. 
(B) PR rates as a function of preceding trial outcome. 

(C) Violin plots of the mean probability estimates in each condition as a function of preceding trial outcome. 
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participants simultaneously estimated the rare event to be less 
likely to occur. This contradictory pattern demonstrates a 
dissociation between choices and probability estimates, which 
replicates and extends the pattern observed by Barron and 
Yechiam (2009). (Note however, that Figure 1C shows 
different bimodalities in responding – a pattern that awaits 
further examination). 

 
Experiment 2 

The novel contribution of Experiment 1 is evidence of 
overestimation even in the presence of descriptions that 
explicitly state the probability of rare events. This suggests that 
overestimation emerges from factors related to experience.    

Experiment 2 examined two hypotheses about the emergence 
of overestimation in experience-based choice. The first is that 
overestimation of the rare event is due to the anticipation of the 
loss of points. In Experiment 1, participants were incentivized 
on the outcomes of their choices and so each observation of the 
rare event was paired with a tangible loss of their incentive 
payment. This aversive experience may have led participants to 
overweigh rare events in memory. If this is the case then 
accuracy might improve if probability estimation was 
decoupled from experiencing the consequential outcome.  

The second hypothesis is that overestimation arises from 
psychophysical limitations with probability processing. The 
suggestion here is that although individuals may be proficient 
in tracking the frequency of events (e.g., Hasher & Zacks, 
1979), they may have difficulties in expressing this information 
as probabilities (cf. Gigerenzer & Hoffrage, 1995). This 
explanation would predict that overestimation is not affected 
by consequential outcomes but arises due to an inherent 
incapability of accurately estimating probabilities. Therefore, 
even if risky choices were divorced from any loss of points, 
overestimation would still occur.  

We tested these hypotheses by separating consequential 
choices from probability estimation using different incentive 
schemes. Specifically, participants were incentivized on i) 
choices only, ii) only the accuracy of probability estimates, or 
iii) both choices and the accuracy of probability estimates. 

 
Method 
Participants In Experiment 2, 132 students (Mage= 19.52 
years; SD = 1.64, 100 females) participated in exchange for 
course credit, and a performance-based incentive payment. 
 
Materials As in Experiment 1.  
 
Design Experiment 2 used a between subjects design with 3 
groups (n = 44) differing in incentive structure.  

The choice-incentive group was incentivized on the 
outcomes of their choices, replicating the E condition from 
Experiment 1. The probability-incentive condition was 
incentivized on the accuracy of their probability estimates. In 
this condition, participants did not choose between the options 
but instead pressed a separate button that revealed the 
outcomes from both options simultaneously. The outcomes 
were financially inconsequential and their task was to track the 

outcomes in order to accurately estimate the rare event. 
Accuracy was calculated as the percentage point deviation 
from the experienced probability of rare events on each trial. 
These deviations were tallied at the end of the experiment 
rather than during the experiment. This was done to avoid 
giving any feedback about the accuracy of the estimates which 
could have influenced responses during the probability 
estimation task. In the dual-incentive condition, participants 
were incentivized on both the outcomes of their choices and the 
accuracy of their probability estimates.  

 
Procedure Participants were provided with instructions on a 
screen that explained the incentive scheme and the objectives 
of their respective conditions. Across conditions, participants 
were given a $5.00 show-up payment from which an amount 
would be deducted contingent on their performance in the task.  

In the initial stage, participants in the choice-incentive and 
dual-incentive conditions made repeated choices while those in 
the probability-incentive condition tracked the outcomes of 
both options. After 40 trials, all participants also completed the 
probability estimation task on each trial. Participants were then 
debriefed and paid accordingly. Choice incentive participants 
converted their remaining points at a rate of 2 points = $0.01 
(M = $3.19, SD = .19). Probability-incentive participants were 
penalized 0.05 cents per percentage point deviation (M = 
$4.44, SD = .31). For the dual-incentive participants, their 
show-up payment was divided in half with each half paid 
according to different incentive structures. The “choice” half of 
the payment was calculated by converting their remaining 
points at a rate of 1 point = 0.5 cents. The “probability 
estimate” half was penalized at 0.025 cents per percentage 
point deviation.  
 
Results  
Coexistence hypothesis PR-rates were again significantly 
greater than .5 in the choice-incentive condition, M = .72, t(43) 
= 7.28, p < 0.001, and the dual incentive condition, M = .76, 
t(43) = 12.98, p < 0.001 (Figure 2A, left panel). This suggests 
participants underweighted the rare event in their choices. A 
mixed 2 x 12 ANOVA, with condition as the between and 
block as the within factor, found that the effect of condition 
was not significant, F(1, 86) = 1.46, p = .23.  

Participants overestimated the rare event in the choice-
incentive, M = 0.33, t(43) = 8.99, p < .001, and dual-incentive 
conditions, M = 0.26, t(43) = 4.50, p < .001, shown by mean 
probability estimates significantly greater than the objective 
probability of 0.15 (Figure 2A, right panel). By comparison, 
mean estimates in the probability-incentive condition did not 
differ significantly from the objective probability of 0.15, M = 
0.16, t(43) = 1.09, p = .28). Using a 3 x 12 mixed ANOVA, we 
found a significant main effect of condition, F(2, 129) = 17.51, 
p < 0.001. Post-hoc Scheffé comparisons showed that all 
groups significantly differed from each other. The interaction 
effect was not significant, F (10.85, 699.63) = 1.14, p = .33. 

In summary, mean probability estimates were highest in the 
choice-incentive condition where participants were 
incentivized for the outcomes of their choices alone. However, 
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if participants were additionally incentivized for accuracy as in 
the dual-incentive condition, estimate accuracy was improved. 
Mean probability estimates were most accurate when 
consequential outcomes were removed all together.  

 Taken together, these results replicate the coexistence 
hypothesis of underweighting in choice and overestimation in 
probability judgement. We found that 34/44 participants in the 
choice-incentive condition, and 26/44 participants in the dual-
incentive condition demonstrated this pattern of responding.  
 
Contingent Recency Effects A 2 x 2 mixed ANOVA found a 
significant effect of preceding trial outcome for risky choices 
(Figure 2B). This showed that averaged over conditions, PR-
rates were lower following a rare outcome than following a 
common outcome (PR|-20 = .66 and PR|0 = .76), F(1, 86) = 
18.91, p < .001. 

The mean probability estimates contingent on the preceding 
trial outcome are presented in Figure 2C. We used a 3 x 2 
mixed ANOVA with preceding trial outcome as the within 
factor to examine for recency effects. A significant effect of 
preceding trial outcome was found, F(1, 129) = 4.42, p = .04, 
which was qualified by a significant interaction between 
condition and preceding trial outcome, F (2, 129) = 5.34, p = 
.01. Simple effects analysis revealed probability estimates in 
the choice-incentive condition were lower after observing a 
rare outcome than after observing a common event (PE|-20 = 
.25 and PE|0 = .34), F (1,129) = 13.33, p < 0.001.  

By comparison, the effect of preceding trial outcome was not 
observed in the probability-incentive condition (PE|-20 = .18 
and PE|0 = .16), F (1,129) = 0.90, p = 0.35, or the dual-
incentive condition (PE|-20 = .23 and PE|0 = 0.25), F (1,129) = 

0.88, p = 0.35. Taken together, the negative recency effect of 
preceding trial outcome was only found when participants were 
not incentivized to estimate accurately. (Note again however, 
that Figure 2C shows bimodality in responding – clustered 
around 50 and 0 – a pattern that awaits further examination). 

 
General Discussion 

Across two experiments, we found the coexistence of 
underweighting in choice and overestimation in probability 
judgements at the individual level. Furthermore, inconsistency 
is evident in the trials immediately following rare events. 
Experiment 1 replicated the coexistence hypothesis in the 
presence of accurate descriptions. We failed to find a 
difference in choices and probability estimates between 
participants that received descriptions and those that did not. 
Experiment 2 used incentive schemes to show that 
overestimation emerges in the presence of consequential 
outcomes. We postulate that attention to the probabilities 
attenuated the degree of overestimation.  

The results of our experiment suggest consequential 
outcomes biased attention away from probability tracking. 
Kahneman (1973) defined attention as a limited resource that is 
allocated according to the demands of the task. Overestimation 
may have occurred in anticipation of the loss of points 
associated with the rare event, driving attention towards the 
outcomes themselves. With respect to the dual-incentive 
condition, the presence of consequential outcomes in the 
choice task meant fewer attentional resources could be 
allocated to probability tracking. This competition for 
attentional resources between the two tasks would explain why 

 
Figure 2. Risky choice and probability estimate data in Experiment 2. Error bars represent ± 1 SEM. 

(A) PR rates (left) and probability estimates (right) by block of 10 trials. 
(B) PR rates as a function of preceding trial outcome. 

(C) Violin plots of the mean probability estimates in each condition as a function of preceding trial outcome. 
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the degree of overestimation was attenuated, but still remained 
in the presence of consequential outcomes.  

Our overestimation results are incompatible with the 
judgement error hypothesis (Fox & Hadar, 2006). Therefore, 
the coexistence of overestimation and underweighting suggests 
that probability judgement and choice may reflect separate 
cognitive processes. The distinction between choice and 
judgement resembles the comparison between online and 
memory-based strategies. Hastie and Park (1986) distinguished 
between two types of strategies based on how information is 
processed to form a judgement. Online strategies involve step-
by-step information processing whereby a judgement is 
continually updated with new information. By comparison a 
memory-based strategy involves a discrete instance in which 
all relevant information is recalled from memory to form a 
judgement (Haberstroh & Betsch, 2002).  

We propose that the choice process resembles an online 
strategy that involves continually updating a small mental 
sample of outcomes with recently observed outcomes. This is 
compatible with the explanation that underweighting emerges 
from small mental samples of outcomes (i.e., calculating the 
expected value of the last 5 observed outcomes, cf. Erev & 
Roth, 2014). Concurrently, probability judgements resemble a 
memory-based strategy where aversive rare events are 
overweighted in memory, resulting in overestimation (e.g., 
Tversky & Kahneman, 1973).  

Separate processes for choice and judgement would be 
consistent with our findings of the contingent recency effects. 
In trials following the rare event, participants were less likely 
to choose the risky outcome yet, they paradoxically estimated a 
lower probability of the occurrence of the rare event. An online 
strategy for choices would involve a trial-by-trial updating 
process that incorporates each newly observed outcome into 
the decision process. Whilst the risky option usually provided 
the more attractive outcome (i.e., no loss of points), the 
occasional appearance of the rare event meant that the small 
sample from the risky option was momentarily less attractive 
than the safe option. This explains the reduced tendency to 
select the risky option after observing a rare event. In these 
very trials, a memory-based strategy that employs the 
gambler’s fallacy would explain the lower probability 
estimates. Given a rare event on the preceding trial, 
participants may have reasoned that “lightning does not strike 
twice”. Therefore, the gambler’s fallacy may have served as a 
memory heuristic to simplify the more cognitively demanding 
memory-based estimation process.  

In summary, we have shown the impact of descriptions and 
incentives on the simultaneous overestimation and 
underweighting of rare events.  
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Abstract

What is the optimal way to make a decision given that your
time is limited and your cognitive resources are bounded? To
answer this question, we formalized the bounded optimal de-
cision process as the solution to a meta-level Markov deci-
sion process whose actions are costly computations. We ap-
proximated the optimal solution and evaluated its predictions
against human choice behavior in the Mouselab paradigm,
which is widely used to study decision strategies. Our compu-
tational method rediscovered well-known heuristic strategies
and the conditions under which they are used, as well as novel
heuristics. A Mouselab experiment confirmed our model’s
main predictions. These findings are a proof-of-concept that
optimal cognitive strategies can be automatically derived as the
rational use of finite time and bounded cognitive resources.

Keywords: Decision-Making; Heuristics; Bounded Rational-
ity; Strategy Selection; Rational Metareasoning

Introduction
Some situations require us to decide quickly whereas others
call for careful consideration of all available options and po-
tential consequences. People seem to master this challenge
by choosing adaptively from a toolbox of diverse decision
strategies (Payne, Bettman, & Johnson, 1988; Gigerenzer &
Selten, 2002). This toolbox is assumed to include fast-and-
frugal heuristics (Gigerenzer & Goldstein, 1996) as well as
slower and more effortful strategies. Fast-and-frugal heuris-
tics include Take-The-Best (TTB), which chooses the alterna-
tive that is favored by the most predictive attribute and ignores
all other attributes, satisficing (SAT) (Simon, 1956), which
chooses the first alternative whose expected value exceeds
some threshold, and random choice; slower strategies include
the Weighted-Additive Strategy (WADD), which computes
all gambles’ expected values based on all possible payoffs.
Except for WADD, all of these strategies are heuristics: they
solve some problems very efficiently but err on others.

The systematic errors that result from people’s use of
heuristics are inconsistent with classic notions of rationality
such as logic, probability theory, and expected utility theory
(Tversky & Kahneman, 1974). Making good decisions is re-
markably constrained: decisions have to be made in a finite
amount of time, people’s cognitive resources are limited, and
maximizing expected utility entails intractable computational
problems. This makes expected utility theory an unrealisti-
cally high bar for human rationality. According to a more
realistic normative standard, people should decide in a way
that makes the best possible use of their limited cognitive re-
sources (Griffiths, Lieder, & Goodman, 2015). Previous re-
search has applied this resource-rational approach to numer-

ical estimation (Lieder, Griffiths, & Goodman, 2012), avail-
ability biases (Lieder, Hsu, & Griffiths, 2014), and strategy
selection (Lieder, Plunkett, et al., 2014). However, this ap-
proach has not been applied to the domain in which heuristics
have perhaps been studied in greatest detail: multi-alternative
risky choice. Work on risky choice suggests that people adap-
tively switch between multiple different strategies depend-
ing on how much time is available and whether one of the
outcomes is much more likely than the others (Payne et al.,
1988). Yet, it remains unclear how people’s decision pro-
cesses compare to resource-rational behavior.

To answer these questions, we model the decision process
as a sequence of costly computations and formalize the opti-
mal decision process as the solution to a meta-level Markov
decision process. We combine this theory with an algorithm
for approximating the optimal solution to create a computa-
tional method that can automatically derive optimal cogni-
tive strategies. These rational heuristics can be interpreted
as a fair normative standard for human decision making that
takes into account that people’s time is costly and that their
cognitive resources are bounded. We are optimistic that this
novel approach will lead to new insights about how decision-
makers cope with limited time and bounded computational
resources, and advance the debate about human rationality.

We illustrate our approach in multi-alternative risky choice
and test its predictions using the Mouselab paradigm that
is widely used to study decision strategies (Johnson, Payne,
Bettman, & Schkade, 1989). Two known heuristics, TTB
and random choice, emerged from our theory as resource-
rational strategies for low-stakes decisions with high and low
dispersion of their outcome probabilities, respectively. In ad-
dition, our computational method discovered a novel heuristic
that combines TTB with satisficing. Our experiment demon-
strated that people do indeed use the newly discovered heuris-
tic and confirmed our rational model’s predictions of when
people use which strategy: people used simple heuristics
more frequently when the stakes were low, employed fast-
and-frugal heuristics less frequently when all outcomes were
almost equally likely (low dispersion), and invested more
time and effort when the stakes were high. This is the first
demonstration that rational meta-reasoning can be used to au-
tomatically discover decision strategies used by people.

Background
We will formulate our theory using the mathematical frame-
works of Markov decision processes, bounded optimality, and
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rational metareasoning, introduced in this section.

Markov Decision Processes
Each sequential decision problem can be modeled as a
Markov Decision Process (MDP)

M = (S ,A ,T,γ,r,P0) , (1)

where S is the set of states, A is the set of actions, T (s,a,s′)
is the probability that the agent will transition from state s to
state s′ if it takes action a, 0 ≤ γ ≤ 1 is the discount factor
on future rewards, r(s,a,s′) is the reward generated by this
transition, and P0 is the probability distribution of the initial
state S0 (Sutton & Barto, 1998). A policy π : S 7→ A speci-
fies which action to take in each of the states. The expected
sum of discounted rewards that a policy π will generate in the
MDP M starting from a state s is known as its value function

V π
M(s) = E

[
∞

∑
t=0

γ
t · r (St ,π(St),St+1)

]
. (2)

The optimal policy π?
M maximizes the expected sum of dis-

counted rewards, that is

π
?
M = argmax

π
E

[
∞

∑
t=0

γ
t · r (St ,π(St),St+1)

]
. (3)

Bounded optimality and rational metareasoning
People and robots have to make decisions in a limited amount
of time and with bounded cognitive resources. Given that
these resources are scarce, which strategy should a decision-
maker employ to use its resources most effectively? The
theory of bounded optimality and rational metareasoning
(Russell & Wefald, 1991; Russell & Subramanian, 1995) was
developed to answer this question for rational agents with
limited performance hardware. It frames this problem as se-
lecting computations so as to maximize the sum of the re-
wards of resulting decisions minus the costs of the computa-
tions involved.

Concretely, the problem of choosing computations opti-
mally can be formulated as a meta-level MDP (Hay, Russell,
Tolpin, & Shimony, 2012). A meta-level MDP

Mmeta = (B,C ,Tmeta,rmeta) (4)

is a Markov decision process whose actions C are cognitive
operations, its states B represent the agent’s probabilistic be-
liefs, and the transition function Tmeta models how cognitive
operations change the agent’s beliefs. In addition to a set
of computations C that update the agent’s belief, the cog-
nitive operations also include the meta-level action ⊥ that
terminates deliberation and translates the current belief into
action. The meta-level state bt encodes the agent’s proba-
bilistic beliefs about the domain it is reasoning about.The
meta-level reward function rmeta captures the cost of think-
ing (Shugan, 1980) and the reward r the agent expects to re-
ceive from the environment when it stops deliberating and

takes action. The computations C do not yield any external
reward. Their only effect is to update the agent’s beliefs.
Hence, the meta-level reward for performing a computation
c ∈C is rmeta(bt ,c) =−cost(c). By contrast, terminating de-
liberation and taking action (⊥) does not update the agent’s
belief. Instead, its value lies in the anticipated reward for tak-
ing action, that is

rmeta(bt ,⊥) = argmaxab(µ)t (a), (5)

where b(µ)t (a) is the expected reward of taking action a ac-
cording to the belief bt .

Adaptive strategy selection in risky choice
Consistent with rational metareasoning, people flexibly adapt
their decision processes to the structure of the problem they
face. Concretely, Payne et al. (1988) found that people use
fast-and-frugal heuristics, like TTB, more frequently when
they are under time pressure and when one outcome is much
more likely than the others. In this research, participants were
given the choice between gambles g1, · · · ,gn. Each gamble
was defined by the payoffs it assigns to each of four possible
outcome whose probabilities are known (P(O)). Participants
could inspect a payoff matrix Vo,g with one row for each out-
come o and one column for each gamble g. Critically, each
payoff is only revealed when the participant clicks on the cor-
responding cell of the payoff matrix using a mouse; this task
is hence referred to as the Mouselab paradigm (see Figure 1).

The adaptiveness of people’s strategy choices in the
Mouselab paradigm suggests that their decision processes are
efficient and effective. But it is difficult to test whether they
are optimal, because it is unclear what it means to decide op-
timally when one’s time is valuable and one’s cognitive re-
sources are limited. To clarify this, the following section de-
velops a normative theory of resource-bounded decision mak-
ing in the Mouselab paradigm.

Boundedly-optimal decision-making
To model the meta-decision problem posed by the Mouse-
lab task, we characterize the decision-maker’s belief state
bt by probability distributions on the expected values
e1 = E[vO,g1 ], · · ·en = E[vO,gn ] of the n available gambles
g1, · · · ,gn. Furthermore, we assume that for each element vo,g
of the payoff matrix V there is one computation co,g that in-
spects the payoff vo,g and updates the agent’s belief about the
expected value of the inspected gamble according to Bayesian
inference. Since the entries of the payoff matrix are drawn
from the normal distribution N (v̄,σ2

v), the resulting posterior
distributions are also Gaussian. Hence, the decision-maker’s
belief state bt can be represented by bt = (bt,1, · · · ,bt,n) with

bt,g =
(

b(µ)t,g ,b
(σ2)
t,g

)
, (6)

where b(µ)t,g and b(σ
2)

t,g are the mean and the variance of the
probability distribution on the expected value of gamble g of
the belief state bt .
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Given the set Ot of the indices (k(1)o ,k(1)g ), · · · ,(k(t)o ,k(t)g ) of
the t observations made so far, the means and variances char-
acterizing the decision-maker’s beliefs are given by

b(µ)t,g = ∑
(o,g)∈O

p(o) · vo,g + ∑
(o,g)/∈O

p(o) · v̄ (7)

b(σ
2)

t,g = ∑
(o,g)/∈O

p(o)2 ·σ2
v . (8)

The meta-level transition function T (bt ,co,g,bt+1) encodes
the probability distribution on what the updated means and
variances will be given the observation of a payoff value Vo,g
sampled from N (v̄,σ2

v). The meta-level reward for perform-
ing the computation co,g ∈C encodes that acquiring and pro-
cessing an additional piece of information is costly. We as-
sume that the cost of all such computations is an unknown
constant λ. The meta-level reward for terminating delibera-
tion and taking action is rmeta(bt ,⊥) = maxg b(µ)t (g).

Approximating the optimal meta-level policy:
Bayesian value function approximation
Unfortunately, computing the optimal policy for the meta-
level MDP defined above is intractable. However, it can be
approximated using methods from reinforcement learning.
We initially used the semi-gradient SARSA algorithm (Sutton
& Barto, 1998) with limited success. We therefore developed
a new algorithm that replaces the gradient descent component
of that algorithm by Bayesian linear regression.

Our algorithm learns a linear approximation to the meta-
level Q-function

Qmeta(b,c)≈∑
k

wk · fk(b,c), (9)

whose features f include a constant, features of the belief
state bt , and features of the computation ct . The features
of the belief state were the expected value of the maximum
of the gambles’ expected values (E [maxg Eg|bt ]) and the
decision-maker’s uncertainty about it (

√
Var[maxg Eg|bt ]).

The largest posterior mean (maxg b(µ)t,g ) and its associated

uncertainty (
√

µ(σ
2)

t,g? where g? = argmaxg b(µ)t,g ), the second
largest posterior mean and the decision-maker’s uncertainty
about it, and the expected regret E [regret(g)|bt ] that the
decision-maker would experience if they chose based on
their current belief (where regret(g) = maxg Eg −maxg b(µ)t,g

for Ei ∼ N (b(µ)t,i ,b
(σ)
t,i ) for all gambles i). The features of

the computation co,g were its myopic value of computation
(VOC(bt ,co,g); see Russell & Wefald, 1991), the current un-
certainty about the expected value of the inspected gamble
(b(σ)t,g ), the probability of the inspected outcome, the differ-
ence between the largest posterior mean and the posterior
mean of the inspected outcome, a binary variable indicat-
ing whether the computation acquired new information, and
the expected reduction in the expected regret ER(b) minus its
cost (i.e. E [ER(Bt+1)|bt ,c]−ER(bt)−λ, where Bt+1 is the

unknown belief state resulting from performing computation
c in belief state bt and ER(bt) = E[regret(argmaxg b(µ)t,g )|bt ]).

The weights w are learned by Bayesian linear regression of
the bootstrap estimate Q̂(b,c) of the meta-level value function
onto the features f. The bootstrap estimator is

Q̂(bt ,ct) = rmeta(bt ,ct)+ ŵ′t · f(bt+1,ct+1), (10)

where ŵt is the posterior mean on the weights w given the ob-
servations from the first t trials, and f(bt+1,ct+1) is the feature
vector characterizing the subsequent belief state bt+1 and the
computation ct+1 that will be selected in it.

Given the learned posterior distribution on the feature
weights w, the next computation c is selected by contextual
Thompson sampling (Agrawal & Goyal, 2013). Specifically,
to make the t th meta-decision, a weight vector w̃ is sampled
from the posterior distribution of the weights given the series
of meta-level states, selected computations, and the resulting
value estimates experienced so far, that is

w̃∼ P(w|(b1,c1, Q̂(b1,c1)), · · · ,(bk−1,ck−1, Q̂(bk−1,ck−1))).

The sampled weight vector w̃ is then used to predict the
Q-values of each available computation c ∈ C according to
Equation 9. Finally, the computation with the highest pre-
dicted Q-value is selected.

Application to Mouselab experiment
As a proof of concept, we applied our approach to the Mouse-
lab experiment described below. The experiment comprises
50% high-stakes problems and 50% low-stakes problems.
Since participants are informed about the stakes, we learned
two separate policies for high-stakes and low-stakes prob-
lems, respectively. Half of each of those problems had nearly
uniform outcome probabilities (“low dispersion”) and for the
other half one outcome was much more likely than all others
combined (“high dispersion”). The parameters of the simu-
lated environment were exactly equal to those of the experi-
ment described below. Our model assumed that people play
each game as if they receive the payoff of the selected gam-
ble. We estimated the cost per click to be about λ = 3 cents.
This value was selected to roughly match the average number
of acquisitions observed in the experiment.

To approximate the optimal meta-decision policy for this
task, we ran our feature-based value function approximation
method for 4000 low-stakes training trials and 4000 high-
stakes training trials, respectively.

Model predictions
The meta-level MDP described above formalizes the costs
and benefits of acquiring and processing additional pieces of
information: acquiring additional information can improve
the decision that will be taken later on but also incurs an
immediate cost. Hence, the optimal solution approximated
by our computational method executes a cognitive operation
or sequence of operations if and only if the resulting im-
provement in decision quality is larger than cost of those
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Figure 1: The Mouselab paradigm, showing an example se-
quence of clicks generated by the SAT-TTB strategy, which
was discovered through approximate rational metareasoning.

operations. Intuitively, this means that the decision process
prescribed by our model achieves the optimal tradeoff be-
tween decision quality versus decision time and mental ef-
fort. This tradeoff depends on the stakes of the decision such
that higher stakes usually warrant more deliberation. Like-
wise, since processing probable outcomes is more likely to
improve the quality of the resulting decision than process-
ing improbable outcomes, we expect our model to prioritize
probable outcomes over less probable outcomes—especially
in high-dispersion trials.

Our computational method automatically discovered
strategies that people are known to use in the Mouselab
paradigm as well as a novel strategy that has not been re-
ported yet. Our method rediscovered TTB, WADD, and the
random choice strategy. In addition, it discovered a new hy-
brid strategy that combines TTB with satisficing (SAT-TTB).
Like TTB, SAT-TTB inspects only the payoffs for the most
probable outcome. But unlike TTB and like SAT, SAT-TTB
terminates as soon as it finds a gamble whose payoff for the
most probable outcome is high enough. On average, this
value was about $0.15 when the payoffs ranged from $0.01 to
$0.25 (i.e., low-stakes trials). Figure 1 illustrates this strategy.

Furthermore, our model makes intuitive predictions about
the contingency of people’s choice processes on stakes and
outcome probabilities. First, our model predicts that people
should use fast-and-frugal heuristics more frequently in high-
dispersion trials. This is intuitively rational because high dis-
persion means that one outcome is much more likely than
all others and fast-and-frugal heuristics ignore all outcomes
except for the most probable one(s). Concretely, our model
generated TTB as the strategy of choice for 100% of the high-
dispersion problems with low-stakes, but for low-dispersion
problems with low-stakes the model considered the random
choice strategy to be optimal in the majority (56%) of cases;
it used the SAT-TTB hybrid strategy for 24% of such trials,
and it indicated the TTB strategy only for the remaining 20%.

Second, our model predicts that people should use simple
heuristics, like TTB, SAT-TTB, and random choice, primar-
ily when the stakes are low. This, too, is intuitively rational
because fast and frugal heuristics tend to be faster but less ac-

curate than more effortful strategies. Our model used these
heuristics for 100% of the low-stakes problems. But for high-
stakes problems, the model never used any of these or other
frugal strategies. Instead, the model typically inspected the
vast majority of all cells (24.8/28 for low-dispersion prob-
lems and 23.7/28 for high-dispersion problems). The few
cells that it did not inspect were mostly the payoffs of less-
likely outcomes of the best gamble when its inspected payoffs
for the most likely outcome(s) were high enough to guarantee
that it would be optimal.

Third, our model predicts that when the stakes are high
people should invest more time and effort (F(1,396) =
9886.8, p < 0.0001) to reap a higher fraction of the highest
possible expected payoff (F(1,339) = 135.24, p < 0.0001).
This, too, is consistent with the rational speed-accuracy trade-
off inherent in our theory. When the stakes were low the
model inspected only 4.3 payoffs on average and reaped only
87% of the possible reward; but when the stakes were high the
model inspected 24.3 of the 28 possible payoffs and reaped
99% of the best expected payoff on average. In 97% of these
trials, the model achieved this near-maximal performance
while being more efficient and more frugal than the WADD
strategy which it employed for only 3% of these problems.

Experimental test of novel predictions
To test the predictions of our model, we conducted a new
Mouselab experiment that manipulated the stakes and disper-
sion of outcome probabilities within subjects in an identical
manner to the model simulations.

Methods
Participants We recruited 200 participants on Amazon
Mechanical Turk. The experiment took about 30min. Partic-
ipants received a base pay of $1.50, and one of their twenty
winnings was selected at random and awarded as a bonus to
motivate them to take each trial seriously (avg. bonus $3.53).

Procedure Participants performed a variation of the
Mouselab task (Payne et al., 1988). Participants played a se-
ries of 20 games divided into two blocks. Figure 1 shows
a screenshot of one game. Every game began with a 4× 7
grid of occluded payoffs: there were seven gambles to choose
from (columns) and four possible outcomes (rows). The oc-
cluded value in each cell specified how much the gamble indi-
cated by its column would pay if the outcome indicated by its
row occurred. The outcome probabilities were described by
the number of balls of a given color in a bin of 100 balls, from
which the outcome would be drawn. For each trial, partici-
pants were free to inspect any number of cells before select-
ing a gamble, with no time limit. The value of each inspected
cell remained visible onscreen for the duration of the trial.
Upon selecting a gamble, the resulting reward was displayed.

Experimental design The experiment used a 2× 2 within
subjects design. Each block of ten trials was either low-stakes
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or high-stakes, with block order randomly counterbalanced
across participants. In games with low-stakes, the possible
outcomes ranged from $0.01 to $0.25, while in high-stakes
games, outcomes ranged from $0.01 to $9.99. The payoffs
were drawn from a truncated normal distribution with mean
rmax+rmin

2 and standard deviation 0.3 · (rmax− rmin). Within
each block, there were five low-dispersion trials and five high-
dispersion, ordered randomly. In low-dispersion trials, the
probability of each of the four outcomes ranged from 0.1 to
0.4, whereas in high-dispersion trials, the probability of the
most likely outcome ranged from 0.85 to 0.97.

Strategy identification We identified six different decision
strategies, in humans and in simulations, using the follow-
ing definitions: TTB was defined as inspecting all cells in the
row corresponding to the most probable outcome and nothing
else. SAT occurs when one gamble’s payoffs are inspected
for all four outcomes, potentially followed by the inspection
of all outcomes of another gamble, and so on, but leaving
at least one gamble unexamined. The hybrid strategy, SAT-
TTB, was defined as inspecting the payoffs of 1 to 6 gambles
for the most probable outcome and not inspecting payoffs for
any other outcome. TTB2 was defined as inspecting all four-
teen cells of the two most probable outcomes, and nothing
else. WADD was defined as inspecting all 28 cells column by
column.Random decisions mean zero samples were taken.

Results
Our process tracing data confirmed that people do indeed
use the SAT-TTB strategy discovered by our model. Table
1 shows the frequency of various decision strategies, for each
of the four different types of trials. Out of 4000 trials across
all participants, TTB was the most common strategy overall,
accounting for 25.3% of all trials. SAT-TTB was the sec-
ond most common strategy among those we examined: par-
ticipants employed this strategy on 10.7% of all trials. In
8.0% of trials participants chose randomly without making
any observations—mostly during low-stakes games. Interest-
ingly, we also observed a second novel strategy that we call
Take-The-Best-Two (TTB2). This strategy inspects all gam-
bles’ payoffs for the two most probable outcomes, and was
used in 6.3% of trials. The WADD strategy occurred in 4.5%
of trials. Finally, the SAT strategy was used in 3.1% of games.

Consistent with our model’s first prediction, people used
TTB more frequently when the dispersion was high (χ2(1) =
897.9, p < 0.0001). Consistent with our model’s second pre-
diction, participants used simple heuristics more frequently
when the stakes were low: the frequency of the random
choice—the simplest heuristic—increased significantly from
4.2% on high-stakes problems to 19.9% on low-stakes prob-
lems (χ2(1) = 88.2, p < 0.0001), and so did the frequency of
the second simplest heuristic, SAT-TTB (χ2(1) = 86.3, p <
0.0001), and the third simplest heuristic, TTB (χ2(1) =
20.0, p < 0.0001). The frequency of SAT also increased
from high- to low-stakes games (χ2(1) = 3.4, p < 0.05, one-

Frequency
Strategy Total HS-HD HS-LD LS-HD LS-LD
TTB 1012 392 64 449 107
SAT-TTB 412 68 54 140 150
Random 320 41 42 111 126
TTB2 251 34 94 25 98
WADD 178 33 84 19 42
SAT 89 14 22 23 30

HS-HD = High-stakes, high-dispersion HS-LD = High-stakes, low-dispersion
LS-HD = Low-stakes, high-dispersion LS-LD = Low-stakes, low-dispersion

Table 1: Frequency of strategy types for each type of trial.

tailed). Finally, consistent with our model’s third prediction,
the frequency of the most effortful and most accurate strategy,
WADD, increased with the stakes (χ2(1) = 19.3, p< 0.0001).

Together, the strategies reported in Table 1 account for only
about half (48.6%) of all trials.To test our model’s predictions
on all of the trials, we quantified people’s decision style by
four metrics introduced by Payne et al. (1988): the number of
inspected cells (acquisitions), the proportion of those inspec-
tions that pertained to the most probable outcome (prioritiza-
tion), the degree to which subsequent acquisitions inspected
the payoffs of different gambles for the same outcome ver-
sus the payoffs of the same gamble for different outcomes
(outcome-based processing:

nsame outcome−nsame gamble
nsame outcome+nsame gamble

), and

the average ratio of the expected value of the chosen gamble
over the expected value of the optimal choice (relative per-
formance). To further test our model’s predictions, we ran a
2-way mixed-effects ANOVA for each of these four metrics.

As shown in Figure 2, the effects of the stakes and out-
come probabilities on the four metrics confirmed the model’s
predictions. Our model’s first prediction that high dispersion
promotes the use of fast-and-frugal heuristics was confirmed
by a decrease in the number of acquisitions (F(1,3798) =
78.24, p < 0.0001) in conjunction with an increases in
outcome-based processing (F(1,3432) = 68.31, p < 0.0001)
and prioritization ((F(1,3478) = 280.1, p < 0.0001)). The
increase in prioritization was especially striking: while only
40.4% of participants’ clicks inspected the most probable
outcome when dispersion was low, they focused 70.6% of
their acquisitions on the most probable outcome when dis-
persion was high. Our model’s second prediction that the
higher stakes should decrease people’s reliance on fast-and-
frugal heuristics was confirmed by a significant increases
in the number of acquisitions (F(1,3798) = 281.47, p <
0.0001) which was accompanied by a decrease in prioritiza-
tion (F(1,3478) = 62.42, p < 0.0001) and an increase in rel-
ative performance (F(1,3798) = 47.62, p < 0.0001). Consis-
tent with the model’s third prediction, the average outcome-
based processing metric was lower for high stakes but this ef-
fect was not statistically significant (F(1,3432) = 2.45, p =
0.06, one-tailed). Our model’s third prediction that high-
stakes increases time, effort, and performance, was con-
firmed by a significant increases in the number of acquisitions
(F(1,3798) = 281.47, p < 0.0001) and relative performance
(F(1,3798) = 47.62, p < 0.0001) with high stakes.

746



Figure 2: People’s decision style by stakes and dispersion of
the outcome probabilities.

Despite these qualitative agreements, there were quantita-
tive differences. Most notably, our model predicted a more
pronounced effect of the stakes on the number of acquisitions
than we observed in people (+19.6 vs. +3.4); the smaller
effect in people might reflect their concave utility function.

Discussion
In summary, our resource-rational theory of multi-alternative
risky choice predicted some of the main strategies people use
in the Mouselab paradigm and the conditions under which
they are selected. In addition to automatically discovering
known strategies and contingencies, our computational ap-
proach also discovered a novel, previously unknown heuris-
tic that integrates TTB with satisficing (SAT-TTB), and our
experiment confirmed that people do indeed use SAT-TTB on
a non-negligible fraction of problems—especially when the
stakes are low.

Tajima, Drugowitsch, and Pouget (2016) solved meta-level
MDPs to derive boundedly optimal drift-diffusion models.
The strategy discovery method presented here generalizes this
approach to more complex decision mechanisms that can pro-
cess and generate evidence in many different ways.

One limitation of the current work is that we do not know
how closely our algorithm approximated the optimal pol-
icy, and it is possible that a more accurate approximation
would yield somewhat different predictions. Future work
will systematically evaluate the accuracy of our approxima-
tion method on smaller problems for which the optimal meta-
level policy can be computed exactly. Another limitation of
the present work is that the cost of computation had to be fit to
the participants’ responses. Future work will control the cost
per click and measure it independently. This will enable a di-
rect comparison of the time and effort people invest against
the optimal amount of deliberation. However, a thorough an-
swer to this question will require a more detailed model of
people’s cognitive architecture including a model of working
memory. Another direction for future work is to characterize

the decision strategies the model employed on the vast major-
ity of high-stakes problems where it did not use WADD.

Our proof-of-concept study suggests that formulating the
problem of making optimal use of finite time and limited
cognitive resources as a meta-level MDP is a promising ap-
proach to discovering cognitive strategies. This approach can
be leveraged to develop more realistic normative standards
of human rationality. This might enable future work to sys-
tematically evaluate the extent to which people are resource-
rational. In the long term, our approach could be used to im-
prove human reasoning and decision-making by discovering
rational heuristics and teaching them to people.
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Abstract

The distinction between integral and separable dimensions is
of central importance to understanding how humans integrate
information from multiple stimulus sources. One approach to
characterizing stimulus integrality is through a set of speeded
categorization tasks most closely associated with the work of
Wendell Garner. These tasks demonstrate that integral dimen-
sions result in marked speed up or slow down in responding
when there is correlated or irrelevant variation, respectively,
compared with a baseline task. Little, Wang & Nosofsky
(2016) recently found that the slow down or interference can
be largely explained by a reduction in the number of direct rep-
etitions in a modified Garner filtering task. In this paper, we
examine a large sample of subjects tested on either separable or
integral dimensions to determine the extent of and individual
differences in the overall and sequential effects in the standard

Garner tasks.

Keywords: Categorization; Response Times; Sequential
Effects

Introduction

In the study of perceptual decision-making, it is fundamen-
tal to understand the distinction between integrality and sep-

arability, as different processing architectures appear to un-
derlie performance with integral and separable dimensions.
Information from integral dimensions, which cannot easily
be selectively attended to, is best explained as a pooling of
information into a single, coactive processing channel (Lit-
tle et al., 2013). On the other hand, separable dimensions,
which can be easily selectively attended to, have been shown
to be processed independently in serial or parallel (Fifić et al.,
2010). Hence, the notion of integrality and separability must
be taken into account in the formal model of categorization
and decision making more broadly.

Garner’s (1974) Speeded-Categorization Tasks

One classic approach to understanding integrality is Garner’s
(1974) set of speeded-categorization tasks (see also Algom &
Fitousi, 2016, for a review). In these tasks, participants cate-
gorize stimuli into two categories as quickly and accurately as
possible on each trial. Category membership in these tasks is
determined by the stimulus’ value on a single relevant dimen-
sion. The three major task conditions –control, correlated,
and filtering – vary in the structure of the stimulus space, as
shown in Figure 1.

Figure 1. Garner’s (1974) control, correlated, and filtering
conditions

In the control condition, there are two stimuli which only
vary along the single relevant dimension (i.e., dimension X
in Figure 1). In the correlated condition, there are two stim-
uli which vary along both the relevant dimension and a sec-
ond irrelevant dimension. In the filtering condition, there are
four stimuli with all possible combinations of relevant and
irrelevant dimension values. In all conditions, participants
should attend primarily to the relevant dimension while ignor-
ing variation in the irrelevant dimension in order to perform
the categorization task accurately and quickly.

For integral dimensions, a robust finding is that subjects
have shortest response times (RTs) in the correlated task
and the longest RTs in the filtering task. This suggests a
correlated-facilitation and filtering- or Garner-interference ef-
fect, respectively (Garner, 1974). However, for separable di-
mensions, RTs across control, correlated, and filtering tasks
are relatively invariant (Garner, 1974).

These patterns of RTs arise due to a difference in the abil-
ity to selectively attend and process information for integral
and separable dimensions (Garner, 1974). When dimensions
are separable, participants are easily able to selectively at-
tend to relevant dimension, and as a result, the psycholog-
ical representation of the stimulus space in all three condi-
tions are collapsed to the single relevant dimension such that
the correlated and filtering conditions are isomorphic to the
control condition. However, when integral dimensions are
used, participants are unable to selectively attend to the rele-
vant dimension, and thus have different psychological repre-
sentations of the stimulus space for each condition. For in-
stance, as the stimuli vary along both dimensions in the cor-
related task, when the information from these dimensions are
pooled and processed in a single channel, psychological dis-
criminability between stimuli may be increased compared to
when the stimuli only vary along one dimension in the control
condition. With increased discriminability between stimuli,
categorization becomes easier and more efficient resulting in
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shorter RTs in the correlated task – the correlated-facilitation
effect. There are several potential explanations for Garner in-
terference. For one, there are more items in the filtering task
than in the control task which may encourage more conser-
vative responding, especially if the stimuli are highly con-
fusable. Alternatively, the increase in the number of items
might increase the perceived variability which would act to
slow RTs (Nosofsky & Palmeri, 1997).

In a recent paper using a modified version of the Garner
task (see Figure 2), Little et al. (2016) showed that one ex-
planation for filtering interference was the reduction of direct
sequential repetitions in the filtering condition. That is, with
more items, the probability of any one item repeating is re-
duced compared to the control condition. Repetitions have
been show to produce very fast RTs; consequently, the re-
duction in repetitions results in slower responding (Fletcher
& Rabbitt, 1978; Krueger & Shapiro, 1981). Investigations
of decomposition (i.e., into sequential effects) of the stan-
dard Garner effects (Burns, 2016; Dyson & Quinlan, 2010)
have concluded that repetition effects can not be the sole ex-
planation for Garner interference. However, two limitations
of these papers are that only a small number of participants
was tested (N = 16; Dyson & Quinlan (2010); N = 30; Burns
(2016)) and there was no comparison to sequential effects in
separable dimension stimuli in either case. Given that the se-
quential effects in our modified task were highly pronounced
(Little et al., 2016), were also present for separable dimen-
sions in the same modified task (Lin & Little, 2017), and that
we found considerable individual variability in our modified
task, we sought in the present paper to conduct a larger repli-
cation of the standard Garner task to examine this decompo-
sition using both integral and separable dimensions.

Sequential Effects
Sequential effects arise due to a reliance on a relative com-
parison of the current stimulus to the preceding stimulus (or
stimuli). These types of effects have been observed in a large
variety of categorization tasks (Stewart et al., 2002, see e.g.,)
but also in identification (Brown et al., 2007, see e.g.,) and
simple choice tasks (Luce, 1986; Jones et al., 2013). One
such effect that has been widely studied is the repetition ef-
fect, where subjects have higher accuracy and shorter RTs
when the current stimulus is identical to the immediately pre-
ceding stimulus (Felfoldy, 1974; Lockhead et al., 1978). In
their modified task, using integral dimensions, Little et al.
(2016) showed that there are complex sequential effects that
arise across the control, correlated, and filtering conditions.

1. Repetition Effect: Items which were adjacent to cate-
gory boundary were categorized faster and more accurately
when preceded by the same item than when preceded by
another item.

2. Far same category pushing effect: When the near boundary
item was preceded by a far item from the same category,
RTs were slower and errors higher than when the near item
was preceded by another item.

Figure 2. Schematic diagram of the modified Garner-task
paradigm using stimuli varying on integral dimensions -
brightness and saturation - where the relevant dimension is
brightness.

3. Adjacent opposite category pulling effect: When the near
boundary item was preceded by an adjacent item from the
opposite category, RTs were slower and errors higher than
when the near item was preceded by another item.

4. Irrelevant dimension change: Finally, in the filtering task,
the repetition effect was attenuated and the pushing and
pulling effects were enhanced when the irrelevant dimen-
sion changed (i.e., when there was only repetition of the
relevant but not the irrelevant dimension value). This effect
emphasizes the role of previous item distance (i.e., from the
current item) in determining the magnitude of the sequen-
tial effects. This was also evident in the attenuated pushing
and pulling effects in the correlated condition (i.e., since
the between category items are further apart in that cate-
gory).

We have recently demonstrated with separable dimensions
that the same repetition, pushing, and pulling effects arise
even when there was no overall average RT difference be-
tween conditions (Lin & Little, 2017). There is no effect of
changing the irrelevant dimension in the filtering task with
separable dimensions consistent with the notion that attention
acts to collapse the separable conditions across the irrelevant
dimension.

While there have been some investigations of sequential ef-
fects in the standard Garner task (Felfoldy, 1974; Lockhead
et al., 1978), there have been few comparisons of sequential
effects between integral and separable dimensions. Addition-
ally, there is value in collecting a large replication sample in
the standard Garner task, as the magnitude and variability of
the standard Garner effects and sequential effect are currently
unclear. For instance, not all subjects showed the standard
Garner ordering (i.e., correlated RT ¡ control RT ¡ filtering
RT) in a modified Garner task. Thus, the present study seeks
to quantify the size and variability of the standard Garner ef-
fects and several decompositions of those effects (including
sequential effects; from Dyson & Quinlan, 2010) using a hi-
erarchical Bayesian analysis.
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Method
Two sets of experiments following the general procedure out-
lined in Garner (1974) were conducted. Experiment 1 used
integral dimensions; Experiment 2 used separable dimen-
sions.

Participants In Exp 1, 100 University of Melbourne under-
graduates were randomly assigned to either the brightness (N
= 50) group or saturation (N=50).1 One saturation participant
was excluded due to an overwritten data file. In Exp 2, 99
students were randomly assigned to either the saturation (N
= 49) or line-position (N = 50) group. All received course
credit for participation.

Exp 1: Integral Stimuli Stimuli were color squares (100
⇥ 100 pixels each; Munsell hue 5R) that varied in brightness
(value) and saturation (chroma). The set of four stimuli was
created by combining two levels of brightness (values 5, 6)
and two levels of saturation (chroma 6, 8). The stimuli were
presented on a monitor resolution of 1280 ⇥ 1024.

Exp 2: Separable Stimuli Stimuli were colored rectangles
(170 ⇥ 255 pixels) with a black outline and with a small inset
black vertical line positioned along the base of the rectan-
gle. The color was selected from the Munsell hue 5R with
a brightness value of 5 while the saturation was varied. The
line varied by position along the base of the rectangle from
the left side of the rectangle. The full set of stimuli was cre-
ated by combining two levels of saturation (chroma 8, 10) and
two line positions (60, 80 pixels from the left). The stimuli
were presented on a monitor resolution of 1280 ⇥ 1024.

General Procedure
In both experiments, participants each completed a one-hour
categorization task. At the outset, participants were pre-
sented with an instruction screen with examples of the stimuli
and were told to categorize each stimulus as accurately and
quickly as possible. Participants then completed 5 blocks of
24 practice trials followed by 120 experimental trials, and a
6th block of 120 experimental trials.

The control task and correlated tasks were presented over
two blocks. In both tasks, only two stimuli of the full set were
presented to the participant on each trial. For the subsequent
block of the control task, the irrelevant dimension value was
switched. For the subsequent block of the correlated task, the
relevant and irrelevant dimension values of the two stimuli
were both switched.

The filtering task was presented over two consecutive
blocks without practice trials for the second block. The
blocks of tasks were counterbalanced and the order of pre-
sentation of individual stimuli on each trial was randomized
anew within each block.

On each trial, a fixation cross was presented for 1500ms,
followed by the stimulus. The participant then decided

1A programming error meant that all participants in Experiment
1 completed the brightness-relevant task.

whether the stimulus belonged to category A or B. Response
choice and response time (RT) were recorded via button press
of a customized RT box Li et al. (2010). The stimulus re-
mained on screen until a button press was made or until
the 5000ms response deadline. Full feedback (i.e., “right”,
“wrong”) was provided for the 24 practice trials; only in-
correct response feedback was provided for experimental tri-
als. If a response was not made before the response deadline,
feedback “too slow” was given. The feedback remained on
screen for 2000ms.

Data Analysis
We applied two hierarchical Bayesian models. For the first
model, we found the posteriors for a single group distribution
for each of the items in the control, correlated, and filtering
task in each of the integral and separable experiments. For
the second model, we found the posteriors for distributions
of each sequential order for each condition across both ex-
periments. That is, we estimated the posterior for when the
relevant dimension value repeated and the irrelevant dimen-
sion value repeated (hereafter, RR), for when the relevant di-
mension changed but the irrelevant dimension repeated (CR),
when the relevant dimension repeated but the irrelevant di-
mension change (RC), and for when both the relevant and
irrelevant dimensions changed (CC). The control task only
contains the RR and CR conditions, the correlated task con-
tains the RR and CC conditions, and the filtering task contains
all four conditions.

For each experiment i, each subject j, and each task (or
sequence condition) k, we estimated the rt as a lognormal
distribution, rt
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⇠ U(.5,100), where U(x,y) is a uniform
distribution over the range [x,y]. The models were imple-
mented in JAGS (Plummer, 2003) for which we collected
1000 samples after 1000 burn-in samples from two MCMC
chains. Plots of these chains indicated good convergence.

Results
The estimated rt means and variances are on a logarithmic
scale and not the scale of the original RT data. Hence, to
summarize the effects, we converted the posterior group log-
Normal distribution means, M, and standard deviation, to the
RT scale using the following transformation:
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Overall Condition Analysis
We first analysed the overall difference between condition by
taking the difference between the Control and Correlated pos-
terior estimates (left panel, Figure 3) and between the Control
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Figure 3. Posterior distributions for the difference between
control and correlated overall mean RTs (left panel), and the
difference between between control and filtering overall mean
RTs (right panel). The solid line shows the distribution for the
integral posterior and the dotted line shows the posterior for
the separable condition.

task and the filtering task (right panel, Figure 3). We note that
there were no strong qualitative individual differences; only
quantitative variation.

For the comparisons to the correlated condition, positive
values would indicate shorter RTs in the correlated condition
than the control condition. Analogously, for the comparison
to the filtering condition, negative values indicate longer RTs
in the filtering condition than in the control condition. As
shown in Figure 3, the posterior distributions for the separa-
ble conditions have substantial density over 0 indicating no
overall effect of condition. For the integral conditions, the
distributions had the most density over positive and negative
difference values for the correlated and filtering comparisons,
respectively. Hence, we’ve replicated the standard Garner re-
sult and have shown that all subjects in our experiment show
this pattern of results.

Sequential Item Analysis

Figure 4 shows the posterior distributions for each of the item
conditions. For the separable dimensions condition, poste-
rior distributions for item conditions appear to be relatively
invariant across the control, correlated, and filtering tasks, in-
dicating little or no sequential effects. The posterior distri-
butions for the integral dimension condition reveals a more
complex pattern of item condition effects. In the control task,
the posterior distributions for RR and CC indicate no sequen-
tial effects. In the correlated task, the posterior distribution
for RR lies slightly lower than CC, suggesting a repetition
effect. In the filtering condition, posterior RTs are markedly
slower for irrelevant dimension changes (i.e., RC and CC),
and quickest when the stimulus is repeated (i.e., RR).
We summarized these distribution by computing several ef-
fect decompositions derived by Dyson & Quinlan (2010).

Filtering interference Note that overall filtering interfer-
ence can be decomposed into sequential components as:
[RR

f ilt

+ RC

f ilt

+ CR

f ilt

+ CC

f ilt

]/4 � [RR

cont

+ CR

cont

]/2,

Figure 4. Posterior distributions for the transformed logNor-
mal groups means for the Control condition (RR & CR; Left
panel), Correlated condition (RR & CC; Middle panel), and
Filtering condition (CC, CR, RC, CC; Right panel)

Figure 5. Posteriors distributions for irrelevant feature varia-
tion (left panel) and stimulus uncertainty (right panel) compo-
nents of filtering interference for both integral and separable
dimensions.

which “filt” refers to the filtering condition and “cont” to the
control condition. This overall measure can be further de-
composed into the following two components:

1. A measure of irrelevant feature variation, which is positive
if there is a cost when the irrelevant dimension changes:
[RR

f ilt

+RC

f ilt

+CR

f ilt

+CC

f ilt

]/4� [RR

f ilt

+CR

f ilt

]/2

2. A measure of stimulus uncertainty, which is positive if
there is a cost associated with having more stimuli in the
filtering condition controlling for changes in the irrelevant
dimension: [RR

f ilt

+CR

f ilt

]/2� [RR

cont

+CR

cont

]/2

These two effects are shown in Figure 5. For these figures,
negative values indicate RT benefits (i.e., shorter RT) while
positive values indicate RT costs (i.e., longer RT) for the re-
spective effect. The posterior distribution for both effects for
separable dimensions have substantial density over zero, indi-
cating no irrelevant feature variation or stimulus uncertainty
effects. In contrast, the posterior distributions for integral di-
mensions have substantial density over positive values, indi-
cating RT costs as a result of irrelevant variation and stimu-
lus uncertainty. Furthermore, stimulus uncertainty appears to
contribute to filtering interference more than irrelevant varia-
tion for the integral dimensions condition.

Correlated benefit In the correlated condition we con-
ducted a corresponding decomposition (again following
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Figure 6. Posterior distributions for redundancy repetition
(left panel) and redundancy change (right panel) components
of correlated facilitation for both integral and separable di-
mensions.

Dyson & Quinlan 2010) as: [RR

corr

+CR

corr

]/2� [RR

cont

+
CR

cont

]/2.
This overall measure can be further decomposed into:

1. The effect of redundancy repetition, which indexes the ef-
fect of changing both dimensions: [RR

corr

�RR

cont

]/2

2. The effect of redundancy change, which indexes the ef-
fect of additional irrelevant dimension variation in the
correlated condition compared to the control condition:
[CC

corr

�CR

cont

]/2.

These effects are shown in Figure 6. For separable dimen-
sions, the posterior distributions for both redundancy repe-
tition and redundancy change have substantial density over
zero, indicating no overall correlated facilitation effect. For
integral dimensions, both redundancy repetition and redun-
dancy change have substantial value over negative values, in-
dicating RT benefits. In addition, the components appear to
contribute approximately equally to the overall correlated fa-
cilitation effect.

Repetition Effect Finally, for all three conditions we com-
puted the effect repeating an item compared to switching an
item (i.e., in the control and correlated conditions; in the fil-
tering condition, we compared repetition to the average of the
other three item RTs). 2 This repetition measure is computed
as:

Control Repetition = RR

cont

�CR

cont

Correlated Repetition = RR

corr

�CC

corr

Filtering Repetition = RR

f ilt

� [CR

f ilt

+RC

f ilt

+CC

f ilt

]/3

This measure can also be interpreted to indicate a repetition
effect (i.e., shorter RTs as a result of repetition in both dimen-
sions). A negative value indicates a repetition effect

In the control condition, the distributions for both integral
and separable dimensions are centered around zero, suggest-

2For the correlated condition, this provides an index of the by-

pass strategy (Dyson & Quinlan, 2010). The bypass strategy de-
scribes a strategy whereby participants monitor only the trial-by-trial
sequences making the same response as on the previous trial when
the stimulus is the same as the previous trial and switching responses
when the stimulus changes.

Figure 7. Posterior distributions for the repetition effect in
control, correlated, and filtering tasks for both integral and
separable dimensions.

ing no repetition effect. In the correlated condition, the poste-
rior distributions for both integral and separable dimensions
have a substantial density over negative values, indicating a
slight repetition effect. The repetition effect for integral di-
mensions also appears to be marginally stronger than for sep-
arable dimensions; though even here, both distributions have
95% highest posterior density intervals which overlap 0. In
the filtering condition, the distribution for separable dimen-
sions has substantial density over zero, indicating no repeti-
tion effect. However, the distribution for integral dimensions
lies mainly over negative values, indicating the presence of a
strong repetition effect.

Discussion
Overall, the hierarchical Bayesian approach in the present
study revealed reliably strong standard Garner effects, show-
ing correlated facilitation and filtering interference with in-
tegral dimensions but not with separable dimensions. A fur-
ther decomposition of the Garner effects into sequential item
conditions, following Dyson & Quinlan (2010), provide fur-
ther insight into the underlying mechanisms of perceptual
decision-making. Notably, we found little evidence for any
individual differences.

One notable finding is that no sequential effects were found
with separable dimensions in the standard Garner task. This
result is in contrast to the sequential effects found with sep-
arable dimensions in the modified Garner task (Lin & Little,
2017). One potential explanation could be that the presence
and magnitude of sequential effects depends on task complex-
ity. For example, Bentin & McCarthy (1994) found that im-
mediate repetition provides a relatively larger advantage in
lexical decision and face recognition tasks compared to sim-
pler discrimination tasks, as it eliminated the need for more
complex processes such as accessing semantic memory. Sim-
ilarly, as the standard Garner task has a much smaller stim-
ulus space compared to the modified Garner task, repetitions
may provide a large benefit for the modified task but a much
smaller or no RT benefit, and as a result, no sequential effects
arise in the standard task. On the other hand, we have only
examined the effects of a single preceding item; in simple RT
tasks (i.e., with two stimuli), there are complex sequential ef-
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fects extending up to five items back reflecting the influence
of repetitions and alternations (Jones et al., 2013).

Another important result is that stimulus uncertainty con-
tributes to filtering-interference more than irrelevant feature
variation. An explanation could be that the lack of inter-
ference from irrelevant feature variation can be attributed to
the integrality of dimensions. If dimensions are less integral
and easier to selectively attend to, then the irrelevant varia-
tion would not contribute to interference, for example, in the
separable dimensions case. It should also be noted that it is
difficult to isolate stimulus uncertainty and irrelevant feature
variation in the standard Garner task, as an increase in the
number of irrelevant dimensions is associated with a larger
number of stimuli. Even though these measures attempt to
isolate trials where only stimulus uncertainty or irrelevant
variation changes, it is unclear whether the larger context of
the task has no impact. Burns (2016) attempted to disentangle
these two components by introducing a 3-dimensional Garner
task where irrelevant variation could be increased without af-
fecting stimulus uncertainty, and demonstrated that irrelevant
variation alone can increase interference substantially. In or-
der to further evaluate the components underlying filtering-
interference, promising avenues for future work might be to
measure these decomposition effects with a variety of dif-
ferent dimensions varying on integrality or to carefully ma-
nipulate stimulus uncertainty and irrelevant variation within
Burns’s (2016) 3-dimensional Garner task.
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Abstract 

Children and adults are guided by verb-specific syntactic like-
lihoods, or verb bias, in language comprehension and produc-
tion. Recent reports showed that verb bias can be altered by 
new linguistic experience. We investigated the mechanisms 
underlying this verb bias learning or adaptation. Specifically, 
we asked whether verb bias learning, like abstract syntactic 
priming, is driven by error-based implicit learning. We report 
three experiments in which we altered the biases of familiar 
dative verbs in children’s and adults’ sentence production, via 
training trials that induced participants to produce each verb 
consistently in either double-object or prepositional-object da-
tive structures. Participants’ syntactic choices in later test trials 
reflected the expected adaptation of verb bias to the training 
experience. In addition, the magnitude of the training effect 
varied with the likelihood of each sentence structure and with 
pre-existing verb bias: Unexpected verb-structure combina-
tions resulted in larger training effects, suggesting the opera-
tion of error-based implicit learning.  

Keywords: language acquisition; verb bias; implicit learning; 
error-based learning; surprisal 

Introduction 
Verbs are choosy about the sentence structures they occur 

in. Transitive but not intransitive verbs can appear in transi-
tive sentences, with two noun-phrase arguments (She saw 
Sue; *She slept Sue); only certain verbs permit dative struc-
tures, with three arguments (She showed the book to Sue; 
*She saw the book to Sue). In addition to these all-or-none 
licensing restrictions, the linking of verbs with syntax is con-
strained by syntactic likelihoods. Most verbs license multiple 
structures, but may occur much more often in one structure 
than another. To illustrate, many dative verbs license both the 
prepositional-object (PO: He showed/passed the book to her) 
and the double-object dative structure (DO: He 
showed/passed her the book), but the verb show occurs much 
more often in the DO structure than does pass. These verb-
specific likelihoods are known as verb bias. Verb bias 
knowledge guides language processing in children and in 
adults, affecting how we link verbs and syntax in production, 
and online expectations about likely sentence structures in 
comprehension (e.g., Peter et al., 2015; Snedeker & True-
swell, 2004).  

Verb bias effects emerge early in acquisition (Peter et al., 
2015; Tomasello, 1992), but continually adapt to ongoing lin-
guistic experience in children and adults. Recent reports show 
that the biases of even well-known verbs can be altered by 

new linguistic experience (Coyle & Kaschak, 2008; Lin & 
Fisher, 2016; Qi, Yuan & Fisher, 2011; Ryskin, Qi, Duff & 
Brown-Schmidt, 2016). For instance, Lin and Fisher (2016) 
asked children and adults to describe videos by repeating and 
completing sentence stems provided by an experimenter. 
Training stems (10 per verb) induced participants to produce 
one verb only in DO structures (Dora gave Boots___), and 
another verb only in PO structures (Minnie showed the 
clock___). Test stems ended at the verb, allowing participants 
to choose either dative structure (Piglet gave___; The teacher 
showed___). This brief training changed the biases of a wide 
range of familiar verbs in adults’ and 4-year-olds’ sentence 
production. In unconstrained test trials, participants produced 
more DO descriptions with verbs trained in DO than in PO 
structures. Similar verb-bias training effects have been found 
in children’s and adults’ comprehension of sentences with a 
prepositional phrase attachment ambiguity (e.g., 
Tickle/choose the frog with the feather; Qi et al., 2011; 
Ryskin et al., 2016). These findings tell us that learners keep 
track of the statistics of verb-structure combinations in the 
linguistic environment, and adapt their language-processing 
systems accordingly.  

In the present study, we explored error-based learning as a 
potential mechanism for verb bias learning. To do so, we ex-
plored parallels between verb bias learning and abstract syn-
tactic priming. Syntactic priming is the tendency to reuse a 
previously encountered syntactic structure. For example, a 
talker who has recently read a sentence in the DO structure 
(The governess made the princess a pot of tea) is more likely 
to choose the same structure to describe an unrelated picture 
(The boy is handing the singer a guitar; Bock, 1986). Syntac-
tic priming is abstract—it spans different verbs, as in the ex-
ample just given. Syntactic priming can be measured in chil-
dren and adults, and in comprehension and production (Row-
land et al., 2012; Thothathiri & Snedeker, 2008). The priming 
effects are long-lasting (Bock & Griffin, 2000), suggesting 
that they reflect long-term learning about abstract syntax. 
Taken together, the literature on syntactic priming, and recent 
reports of verb-bias learning, suggest that learners adapt to 
the statistics both of abstract syntactic structures, and of verb-
structure combinations (e.g., Wonnacott, Newport, & Tanen-
haus, 2008).     

Of particular interest here, syntactic priming shows ‘in-
verse preference’ or ‘surprisal’ effects (e.g., Bernolet & 
Hartsuiker, 2010; Jaeger & Snider, 2013; Peter et al., 2015). 
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That is, priming effects are larger if the structure of the prime 
sentence is unexpected. To illustrate, Bernolet and Hartsuiker 
(2010), in a study of adult sentence production, reported that 
(a) DO prime sentences exerted a larger priming effect (rela-
tive to baseline) than did prime sentences in the more fre-
quent PO structure, and (b) the magnitude of syntactic prim-
ing depended on verb bias: The effect of a DO prime was 
larger if a PO-biased verb (one that rarely appears in this 
structure) appeared in the prime sentence. Children show 
similar effects of verb bias on the magnitude of syntactic 
priming (Peter et al., 2015). This pattern points to error-based 
implicit learning as a mechanism for syntactic priming: We 
expect likely structures, and thus learn more from the unex-
pected, continuously adapting the language-processing sys-
tem to a changing linguistic environment (Chang, Dell, & 
Bock, 2006; Jaeger & Snider, 2013). 

Could verb bias learning result from the same error-based 
learning mechanisms that support syntactic priming? If so, 
then verb bias training effects should vary with training-sen-
tence surprisal. We tested this prediction by adapting the ma-
terials of Lin and Fisher (2016) to vary both training structure 
(DO- vs. PO-training) and pre-existing verb bias (DO-biased 
vs. PO-biased verbs). 

In three experiments, participants watched videos depict-
ing simple transfer events, and were prompted to describe 
each one by repeating and completing a sentence stem pro-
vided by an experimenter (Fig-1). As before, each participant 
received training trials that induced them to produce DO 
structures with one verb (DO-training), and PO structures 
with a second verb (PO-training). Crucially, one of the re-
stricted verbs was chosen to be already DO-biased (e.g., 
show), while the other was PO-biased (e.g., pass). The as-
signment of verbs to training conditions varied between sub-
jects, resulting in two list conditions: In the with-bias list, 
both verbs were trained in the structure that matched their 
pre-existing biases (e.g., PO-training for PO-biased pass, 
DO-training for DO-biased show). In the contra-bias list, both 
verbs were trained in the structure that mismatched their pre-
existing biases (PO-training for DO-biased show, DO-train-
ing for PO-biased pass). Following this training, participants 
received test trials in which the sentence stems to be com-
pleted ended at the verb. Participants’ structural choices in 
these unconstrained test trials provided our measure of verb 

bias learning. 
We work through our predictions for test-trial performance 

in Fig-2. Each panel shows the expected rate of DO-structure 
responses (as a proportion of DO and PO responses) under 
different experimental outcomes, plotted by within-subjects 
training condition (PO-training vs. DO-training) and be-
tween-subjects list condition (with-bias vs. contra-bias).  

Based on previous results we expected pre-existing verb 
bias to affect the rate of DO responses at test. Fig-2a shows 
the data pattern that would result from baseline verb bias 
alone: DO responses should be much more common for the 
DO-biased than for the PO-biased verb. Assuming no train-
ing effect, the difference between the two verbs (indicated by 
the equal-sized arrows in Fig-2a) would not vary with train-
ing condition. 

We also expected to find a training effect. Fig-2b shows the 
data pattern that would result if a uniform verb-bias training 
effect, one that does not vary with training-sentence surprisal, 
were added to the effect of pre-existing verb bias. As Fig-2b 
shows, PO-training would decrease the rate of DO respond-
ing (relative to baseline), and DO-training would increase the 
rate of DO responses. Given a uniform training effect, the 
difference between the two verbs, reflecting pre-existing verb 
bias, would again remain unchanged. 

 Fig-2c shows the predicted data pattern if verb bias train-
ing effects vary with training-sentence surprisal. Training-
sentence surprisal should reflect both the likelihood of the 
training structure itself, and its fit with the pre-existing bias 
of the verb. We expected DO-training to exert a larger effect 
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than PO-training, because the DO structure is a non-canoni-
cal structure. For example, the DO structure imposes dis-
course constraints on its use: It is typically used to place dis-
course-given recipients in post-verbal position (Show her the 
picture; Stephens, 2015). The PO structure, in contrast, has 
no strong discourse constraints (Brown, Savova, & Gibson, 
2008). In our task, without a discourse set-up establishing the 
recipient as given, the DO structure should be an unexpected 
choice. We also expected the training effect to vary with pre-
existing verb bias: the effect of DO-training should be strong-
est for PO-biased verbs, those that rarely occur in the DO. 

Accordingly, as shown in Fig-2c, DO-training should con-
siderably increase the rate of DO responses for the PO-biased 
verb (e.g., pass), but should have relatively little effect on the 
rate of DO responses for an already DO-biased verb (e.g., 
show). In the PO-training condition, we should see relatively 
little change due to training for either verb, preserving the 
large difference between verbs that reflects their baseline bi-
ases. Notice the key difference between Fig-2b and Fig-2c: A 
training effect that varies with training-sentence surprisal 
should reduce the difference between the two verbs in the 
DO-training condition relative to the PO-training condition. 

We tested this prediction with 4- and 5-year-olds in Exper-
iments 1a and 1b, and with adults in Experiment 2.  

Experiment 1a 

Methods 

Participants Forty-eight four- and five-year-old children 
(Mean = 4;8; Range = 4;0-5;11) participated; all were native 
speakers of English. Data from 4 additional children were ex-
cluded due to low training compliance (see below). 

Materials and Procedures The materials were 46 5-s ani-
mated video clips depicting transfer events designed to be de-
scribed by dative verbs, and 49 filler videos that did not de-
pict transfer events. Children watched and described all 95 
(critical and filler) videos by repeating and completing a sen-
tence stem (Fig-1). The task was adapted from Lin and Fisher 
(2016), described in the Introduction. The task took about 30 
to 40 minutes, and was made engaging for children by em-
bedding it in a scavenger hunt for which game-tokens were 
discovered at intervals. 

The task included a training and a testing block, with no 
boundary between them from the child’s perspective. The key 
manipulation involved artificially restricting particular verbs 
to particular dative structures (only DO or PO) in training. As 
shown in Fig-1, training stems ended with a post-verbal noun, 
biasing children to produce either a DO or a PO sentence. 
Test stems ended at the verb. Show and pass were the two 
verbs that were restricted in training. These verbs differ in 
their pre-existing biases, as revealed in a separate norming 
study. Show is used more often in the DO, and pass in the PO 
dative structure. Children were randomly assigned to the 
with-bias or the contra-bias condition. Recall that in the with-
bias condition, both verbs were trained in the structure that 
matched their pre-existing bias, whereas in the contra-bias 

condition, both verbs were trained in the structure that mis-
matched their pre-existing bias. 

A third dative verb, give, was unrestricted, appearing 
equally often in the DO and PO structures during training. 
Unrestricted give (a DO-biased verb) was included to in-
crease children’s baseline rate of DO responses in the task; 
note that children tend to prefer the PO structure in tasks like 
ours (Peter et al., 2015; Stephens, 2015). 

Children received 10 training trials per verb (30 training 
trials total) in the training block. In the test block children 
received 4 unconstrained test trials per restricted verb (show, 
pass), and 8 test trials for the unrestricted verb give. The three 
verbs were interleaved in training and test, and each child 
heard equal numbers of DO and PO training stems across 
verbs, ensuring that any effect of training reflected verb-bias 
learning rather than abstract syntactic priming.   

The main task was preceded by a naming game in which 
children named the familiar characters and objects involved 
in the events. The video-description task then began with two 
filler trials to demonstrate the task.  

Children’s responses were transcribed and coded as DO, 
PO, or Other, following Rowland et al.’s (2012) criteria. Chil-
dren who produced fewer than 80% training-compliant re-
sponses in each training condition (e.g., 80% DO responses 
for their DO-trained verb) were replaced. The 48 included 
children showed a compliance rate of 94% in training. 

Our main analyses concerned the responses in the 8 test 
trials with experimentally restricted verbs. Of the 384 test re-
sponses, 8 were Other responses, leaving 376. The dependent 
measure was the proportion of DO responses (out of DO and 
PO responses only), compared across the training and list 
conditions.  

Results and Discussion 
Fig-3a shows children’s proportion of DO responses in the 

test trials with restricted verbs, by within-subjects training 
condition (PO- vs. DO-Training) and between-subjects list 
condition (with- vs. contra-bias). As predicted, children 
showed a training effect, producing more DO responses in the 
DO-training condition (38%) than in the PO-training condi-
tion (27%). They also showed a clear effect of pre-existing 
verb bias, producing more DO responses with the DO-biased 
verb show (43%) than with the PO-biased verb pass (22%), 
averaged across training conditions.  

Crucially, the effect of training varied with the likelihood 
of the training structure and its fit with pre-existing verb bias. 
Fig-3a shows that DO-training dramatically increased the 
rate of DO responses for the PO-biased verb pass, but had 
little effect on the rate of DO responses for the already DO-
biased verb show. This asymmetrical training effect reduced 
the difference between the two verbs in the DO-training con-
dition relative to the PO-training condition. In the PO-train-
ing condition, Fig-3a shows a large difference in the rate of 
DO responses for the PO-biased verb pass, versus the DO-
biased verb show; this difference straightforwardly reflects 
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the verbs’ baseline verb biases. The effect of training was 
larger for DO- than for PO-training, reflecting the likelihood 
of each structure; the effect of DO-training was larger for a 
PO-biased verb, reflecting the likelihood of verb-structure 
combinations. This pattern of responses closely resembles the 
predictions shown in Fig-1c, suggesting both an effect of 
training and an influence of training-sentence surprisal on the 
magnitude of the training effect.  

This pattern was supported by a two-way mixed-model 
ANOVA on the proportion of DO responses (arcsine trans-
formed) that revealed a main effect of training (F(1,46) = 
5.24, p <. 05), and an interaction of training and list (F(1,46) 
= 12.22, p < .01). Separate t-tests revealed that the difference 
between the two verbs was significant in the PO-training con-
dition (t(47) = 3.32, p < .01) but not in the DO-training con-
dition (t(47) < 1), consistent with our surprisal predictions.  

In Experiment 1a we reproduced the verb-bias training ef-
fect in young children’s language production documented in 
prior work (Lin & Fisher, 2016). Experience producing a verb 
repeatedly in one syntactic structure modified the structural 
biases of that verb, rendering children more likely to use the 
verb in the same structure in later sentences. We also found 
the first evidence that the magnitude of this training effect 
depends on the likelihood of the training sentences. In Exper-
iment 1b we sought to extend this effect to different verb sets, 
exploring the robustness of the surprisal effect. 

Experiment 1b 

Methods 

Participants A new group of forty-eight four- and five-year-
old children (Mean = 4;7; Range = 4;0-5;8) participated, all 
native English speakers. Data from 4 additional children were 
excluded due to low training compliance (3), or too few da-
tive responses in the test trials (1). 

Materials and Procedures Materials and procedures were 
identical to those of Experiment 1a, except that send was the 
PO-biased verb for half of the children and throw for the other 
half. We chose send and throw, two other PO-biased verbs, 
to seek evidence of surprisal effects with different verb sets. 
We retained show as the DO-biased verb to avoid reducing 

the verb-bias difference between our restricted verbs in Ex-
periment 1b: Given children’s overall preference for the PO 
structure, our norming study with children identified few 
strongly DO-biased verbs. As in Experiment 1a, each partic-
ipant was randomly assigned to the with- or contra-bias list. 

Children who produced fewer than 80% training-compliant 
responses in each training condition were replaced. We also 
excluded one child who did not produce at least one dative 
response in the test block for each restricted verb. The in-
cluded children produced training-compliant responses in 
95% of training trials. Of the 384 possible responses in the 
test trials with restricted verbs, 7 were coded as Other trials, 
leaving 377 DO and PO responses. 

Results and Discussion  
Fig-3b shows children’s proportion of DO responses in the 

restricted-verb test trials, by within-subjects training condi-
tion (PO- vs. DO-Training) and between-subjects list condi-
tion (with- vs. contra-bias). The pattern of responses closely 
resembles that found in Experiment 1a. Children showed a 
training effect, producing more DO responses in the DO-
training condition (35%) than in the PO-training condition 
(20%), and an effect of pre-existing verb bias, producing 
more DO responses for the DO-biased verb show (34%) than 
for the PO-biased verbs (21%).  

As before, the effect of training varied with the likelihood 
of the training structure and its fit with the pre-existing bias. 
In Fig-3b, DO-training greatly boosted the rate of DO re-
sponses for the PO-biased verbs, but had little effect on rate 
of DO responses for the DO-biased verb show. As a result, 
the difference between the two verbs in the DO-training con-
dition was much smaller than in the PO-training condition. In 
the PO-training condition, Fig-3b shows a large difference in 
the rate of DO responses for the PO-biased verbs versus the 
DO-biased verb, reflecting these verbs’ pre-existing verb bi-
ases. Therefore, as before, the data bear out our surprisal pre-
dictions: the effect of training was larger for DO- than for 
PO-training, reflecting the likelihood of each structure, and 
the effect of DO-training was larger for a PO-biased than for 
a DO-biased verb. The same pattern emerged for both verb 
sets (not shown in the figure). 

These observations were borne out by an ANOVA on the 
proportion of DO responses (arcsine-transformed) that again 
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revealed a main effect of training (F(1,46) = 8.16; p < .01) 
and an interaction of training and list (F(1,46) = 5.83; p < 
.05). Separate t-tests revealed that children produced signifi-
cantly more DO responses for the DO-biased verb show than 
for the PO-biased verbs send or throw in PO-training (t(47) = 
2.7, p < .01) but not in DO-training (t(47) < 1).  

Experiment 1b thus reproduced the key findings of Exper-
iment 1a, varying the verb sets. Again, the pattern of results 
suggested that the magnitude of verb-bias training depended 
on training-sentence surprisal. In Experiment 2 we sought ev-
idence of the same surprisal effect in adults, again varying the 
verb sets. 

Experiment 2 

Methods 

Participants Forty-eight college-aged adults participated, all 
native English speakers. Data from 2 additional adults were 
excluded due to low training compliance (1), or too few da-
tive responses in the test block (1). 

Materials and Procedures Materials and procedures were 
identical to those of Experiment 1a, except that send and hand 
were the restricted verbs for half of the participants and pass 
and show were the restricted verbs for the other half. Send 
and pass were both PO-biased verbs in our norming data; 
hand and show were both DO-biased. As in Experiment 1a, 
each participant was randomly assigned to either the with-
bias or the contra-bias list condition. 

Adults who produced fewer than 80% training-compliant 
responses in each training condition were replaced. We also 
excluded one adult who did not produce at least one dative 
response in the test block for each restricted verb. The in-
cluded participants produced training-compliant responses in 
99% of training trials. Of the 384 possible responses in the 
test trials with restricted verbs, 8 were coded as Other re-
sponses, leaving 376 DO and PO responses. 

Results and Discussion 
Fig-3c shows adults’ proportion of DO responses in the re-

stricted-verb test trials, by within-subjects training condition 
(PO- vs. DO-Training) and between-subjects list (with- vs. 
contra-bias). Adults, like children, showed an effect of train-
ing, producing more DO responses in the DO-training condi-
tion (54%) than in the PO-training condition (34%). They 
also showed effects of pre-existing verb bias, producing more 
DO responses with the DO-biased verbs (53%) than with the 
PO-biased verbs (35%), averaged across training conditions.  

The pattern of data shown in Fig-3c again suggests that the 
effect of training varied with the likelihood of the training 
structure and its fit with the pre-existing verb bias. The dif-
ference between the (pre-experimentally) PO- vs. DO-biased 
verbs was reduced in the DO-training condition relative to the 
PO-training condition. This is just what we would predict 
based on training-sentence surprisal: DO-training strongly in-
creased the rate of DO responding for the PO-biased verbs. 

As in Experiment 1b, the same pattern emerged for both verb 
sets (not shown in the figure).  

This pattern was supported by an ANOVA on the propor-
tion of DO responses (arcsine transformed) that revealed a 
main effect of training (F(1,46) = 16.73, p < .001) and an in-
teraction of training and list (F(1,46) = 12.92, p < .01). Sep-
arate t-tests revealed that the difference between the two 
verbs was significant in the PO-training condition (t(47) = 
2.35, p < .05) but not in the DO-training condition (t(47) < 
1), consistent with the surprisal predictions. 

General Discussion 
In three experiments, we found that children and adults 

produced more double-object (DO) sentences for verbs 
trained in the DO structure than for verbs trained in the PO 
structure. This difference between training conditions repli-
cates previous reports that the biases of familiar verbs can be 
altered by new verb-structure patterns in the input (Coyle & 
Kaschak, 2008; Lin & Fisher, 2016).  

We also found the first evidence that the magnitude of the 
verb-bias training effect depended on the prior likelihood of 
the training sentences. The key result was that, as predicted, 
DO-training reduced the difference in DO responses between 
pre-experimentally DO- and PO-biased verbs. After DO-
training, a familiar PO-biased verb such as pass became al-
most as likely to be used in the DO structure as a familiar 
DO-biased verb such as show. In contrast, after PO-training, 
DO-biased verbs were still used much more often in the DO 
structure than were PO-biased verbs. This pattern supports 
the hypothesis that training-sentence surprisal affects verb-
bias learning. PO-training, which linked verbs with what is 
arguably the default dative structure, produced little change 
in the rate of DO responses relative to the verbs’ pre-existing 
biases; DO-training, which linked verbs with a less canonical 
structure, led to sizable increases in the rate of DO responses, 
but did so mostly for PO-biased verbs, reducing the differ-
ence between the PO- and DO-biased verbs. This pattern was 
observed with 4-year-olds (Experiments 1a and 1b) and with 
adults (Experiment 2).  

These findings highlight a strong parallel between verb 
bias learning and syntactic priming. Prior evidence shows 
that the magnitude of syntactic priming depends on prime 
sentence surprisal: The largest priming effects are found 
when the prime structure is uncommon, or is unexpected 
given the verb in the prime sentence (Bernoulet & Hartsuiker, 
2010; Jaeger & Snider, 2013; Peter et al., 2015). Here we saw 
strikingly similar effects for verb-bias learning. In both syn-
tactic priming and verb-bias learning, children and adults 
learn more from unexpected sentences. This similarity sug-
gests that syntactic priming, which involves learning about 
abstract syntactic structure, and verb bias learning, which in-
volves linking verbs to syntax, depend on similar learning 
mechanisms and representations.  

This conjecture fits well with the predictions of Chang, 
Dell and Bock’s (2006) Dual-Path model of syntax learning. 
The model learns to link syntax and semantics without pre-
defined syntactic representations, in a system that yokes a 
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syntactic sequencing system to a separate message system 
representing the meaning of input sentences. A key feature of 
the model is that the syntactic sequencing system is linked to 
abstract event-role slots in the message system, but not to the 
word-meanings bound to those event roles. This “Dual-Path” 
architecture keeps lexical semantics out of the syntax, ensur-
ing that the model creates abstract syntactic representations. 
Accordingly, the model creates syntactic representations that 
support abstract syntactic priming, but the model can also 
learn about the syntactic biases of particular verbs under 
some circumstances (Chang, Janciauskas, & Fitz, 2012). Be-
cause the model learns via error-based learning, it learns the 
most from input sentences that are unexpected given the 
model’s prior experience. This model therefore provides one 
possible account of our findings—sentence surprisal affects 
verb bias learning as well as syntactic priming because the 
same error-based implicit learning mechanism underlies 
learning about abstract syntax and verb bias.  

Our results leave open many questions for future research 
about the nature of the representations that were modified by 
verb-bias training. For example, participants could have 
strengthened the link between each verb and an abstract rep-
resentation of sentence structure or between a verb and a the-
matic role ordering (Twomey, Chang, & Ambridge, 2016). 
Training could have also highlighted the semantic difference 
between caused possession and caused motion, changing the 
prominence of recipient vs. theme. Note, though, that adapt-
ing the syntax and meanings of verbs are not mutually exclu-
sive (Gleitman et al., 2005). 

The verb bias learning studies reported here shed new light 
on a fundamental question in language acquisition: How do 
we coordinate abstract syntactic knowledge with our intricate 
knowledge of words? Our results suggest error-based implicit 
learning mechanisms help us track the likelihood of both ab-
stract syntactic structures and the linking of those structures 
with particular verbs. The same learning mechanisms may 
underlie learning at both levels, creating both abstract and 
verb-specific syntactic knowledge throughout development.  
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Abstract

Previous research has shown that repeated interactions can
cause iconicity in signals to reduce. However, data from sev-
eral recent studies has shown the opposite trend: an increase in
iconicity as the result of repeated interactions. Here, we dis-
cuss whether signals may become less or more iconic as a re-
sult of the modality used to produce them. We review several
recent experimental results before presenting new data from
multi-modal signals, where visual input creates audio feed-
back. Our results show that the growth in iconicity present
in the audio information may come at a cost to iconicity in
the visual information. Our results have implications for how
we think about and measure iconicity in artificial signalling
experiments. Further, we discuss how iconicity in real world
speech may stem from auditory, kinetic or visual information,
but iconicity in these different modalities may conflict.
Keywords: Iconicity; Modality; Artificial Language Experi-
ment; Communication; Conventionalisation

Introduction
Roughly 7000 languages are spoken around the world, and
dozens more are signed. Over the course of human history,
according to one rough estimate, hundreds of thousands of
languages may have passed in and out of existence (Pagel,
2000). The number of words that have cycled through human
languages, then, is enormous, perhaps in the order of billions.
Imagine that we could trace these symbols back to their ori-
gins. How did people create the first words and signs?

One hypothesis is that the first words were created us-
ing iconicity (Fay, Ellison, & Garrod, 2014; Imai & Kita,
2014; Perlman, Dale, & Lupyan, 2015; Perniss, Thompson,
& Vigliocco, 2010). Iconicity is a quality of a signal that,
regardless of modality or medium, exhibits a degree of re-
semblance between its form and its meaning. For example,
a person can communicate the idea of a ‘rounded’ shape by
drawing a picture that resembles it, by molding their hands
to reflect the shape, or by vocalising a ‘round’ word like
“bouba”. Iconicity can function to jump-start a new commu-
nication system because it enables a communicator to create
new signals that are, to some extent, understandable to a part-
ner without a shared system of conventional symbols.

The hypothesis that the first words were iconic improvisa-
tions is supported by evidence from natural signing systems.
Traces of iconic creation are apparent in many of the signs of
signed languages, and when signers lack a name for a refer-
ent, they tend to create an iconic sign for it (Klima & Bellugi,
1979). Further, when deaf children are raised without na-
tive signers and deaf peers, they create iconic gestures that
ground the development of home sign systems that they use
with hearing adults (Goldin-Meadow, 2003). Experimental

studies where participants communicate using unfamiliar sig-
nalling systems also demonstrate extensive use of iconicity to
ground novel signals, for example with drawing (Garrod, Fay,
Lee, Oberlander, & MacLeod, 2007), slide whistles (Verhoef,
Roberts, & Dingemanse, 2015), and non-linguistic vocalisa-
tions (Perlman et al., 2015).

In comparison to signed languages, the role of iconicity
in the creation of spoken languages is obscure. It is widely
assumed that spoken languages have markedly less iconicity
than signed languages. Yet, it is unclear why this is the case.
One widely argued reason is that the vocal-auditory modal-
ity affords little iconicity to represent a rich array of mean-
ings (Armstrong & Wilcox, 2007). This argument is sup-
ported mainly by comparing impressions of the iconicity of
gesture and sign with vocalisations and speech, and also by
experimental studies finding that gestures were more effec-
tive than non-linguistic vocalisations at communicating dif-
ferent meanings (Fay, Arbib, & Garrod, 2013; Fay, Lister,
Ellison, & Goldin-Meadow, 2014). A second possible rea-
son that spoken languages have so little iconicity is their ex-
tremely ancient origins. Over so many generations, the origi-
nal iconicity of spoken languages has mostly degraded. This
alternative assumes a process of conventionalisation in which
the high level of iconicity characteristic of novel signals de-
cays uni-directionally over time until it eventually disappears.

Iconicity and conventionalisation
Is it actually the case that the iconicity of novel signals nec-
essarily decays over time as the signal becomes convention-
alised? In signed languages, the iconicity of signs does ap-
pear to fade over time as the forms become more regularised
and systematic (Frishberg, 1975). Although mature signed
languages are still iconic to a large extent, they are never-
theless much younger than spoken languages, and we do not
know what might happen to their iconicity with further devel-
opment. Graphic systems may provide a clearer case of how
iconicity diminishes over time. For example, early records of
written Sumerian, early Egyptian and ancient Chinese show
that they originated from more detailed, iconic depictions that
have became conventionalised into an increasingly abstract
code (Gelb, 1952; Sampson, 1985; Vaccari & Vaccari, 1964).
A smaller-scale, but comparable, process for graphic systems
has been demonstrated in the laboratory where drawings lose
their iconicity and become more symbolic and arbitrary over
repeated interactions (Caldwell & Smith, 2012; Garrod et al.,
2007; Theisen, Oberlander, & Kirby, 2010).

However, recent experimental studies have found that sig-
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nals may sometimes gain iconicity over repeated interactions,
even as they otherwise show evidence of conventionalisation.
In Perlman et al. (2015), pairs of participants took turns over
ten rounds creating non-linguistic vocalisations for different
meanings (e.g. big, rough, up). Accuracy within the game in-
creased to ceiling, and vocalisations showed signs of conven-
tionalisation, becoming shorter in duration and more stable
in form. To measure how iconicity changed over this process,
they tested the ability of naı̈ve listeners to guess the meaning
of vocalisations from rounds 1, 5, and 10. Vocalisations from
round 1 were guessed with the lowest accuracy, suggesting
they were the least iconic, but in later rounds, vocalisations
were guessed with higher accuracy. Verhoef, Kirby, and de
Boer (2014) also found that signals increased in iconicity over
repeated interactions and iterations. Participants used digital
slide whistles to communicate different left or right facing
animals. The results showed that participants only encoded
the direction of these animals after 2 or 3 generations in an
iterated chain.

On the surface, these findings may seem at odds with the
idea that the function of iconicity is to bootstrap the formation
of a conventional signal. How can signals become initially
more iconic and then maintain their iconicity over time, even
as they became more conventionalised? One explanation for
this result is that the creation of iconic signals in vocalisation
is more challenging than in modalities like drawing or ges-
ture. Thus, partners may initially need to explore the signal
space and negotiate their shared intuition for a meaningful vo-
calisation. Over interactions, as signals become streamlined,
the strongly iconic features that are found to be effective in
distinguishing its meaning tend to be enhanced, while more
idiosyncratic features are shed.

Experiments
Stimuli
Stimuli for the experiments presented in this paper come from
a previous experiment (Little, Eryılmaz, & de Boer, in press).
In this experiment, participants produced signals for mean-
ings varying in shape, colour, and texture, which were de-
signed to have no shared features (explained in Little et al.,
in press). Figure 1 shows the 15 meanings used in the ex-
periment. Theremin-like signals were created using a “Leap
Motion” controller: an infrared sensor that detects hand posi-
tion (see Eryılmaz & Little, 2016 for details of the paradigm).
Participant’s hand position determined the pitch of audio sig-
nals. Left to right hand-positions created low to high pitches
respectively with a non-linear, exponential relationship be-
tween hand-position and pitch. Participants were given this
audio feedback in real-time as they produced the signals and
participants could not see each other as they produced sig-
nals. These signals were used because they share some quali-
ties with speech: they are auditory, continuous and restrict the
use of iconicity. At the same time, they are non-linguistic and
so minimise possible interference from pre-existing linguistic
knowledge and conventions.

Figure 1: The meanings used in the experiment.

The stimuli were created in two experimental conditions:
an ‘individual’ condition, where one person produced signals
and received their own signals in batches of 5, and a ‘com-
munication’ condition where two participants took it in turns
to produce and receive signals. When receiving signals, par-
ticipants were asked to identify their referent from an array
of 4 meanings. Feedback was given on the correct answer
immediately after each response in both conditions.

The meaning space expanded throughout the experiment:
by 5 meanings at a time in every block in the individual condi-
tion, and by 2 meanings at a time in the communication con-
dition. In the communication condition, the meaning space
only expanded once the participants had agreed on signals for
existing meanings (by communicating them correctly twice).

For the experiments in this paper, signals from “early” in
the individual condition were taken from the first phase (5
signals) and “late” signals were taken from the last phase (15
signals). In the communication condition, no pair managed
to finish the experiment before time ran out, and so all of
the data from the “last phase” in the current paper is refer-
ring to the last phase participants got to in their particular ex-
periment. “Early” signals from the communication condition
were for the first 2 meanings seen.

Experiment 1: Audio playback experiment

We conducted a playback experiment to examine how the
iconicity of signals changed over repeated interactions in the
experiment above. Naı̈ve listeners, without knowledge of a
signal’s development, guessed the meanings of the signals
produced in the individual and communication conditions at
both the beginning and end of the game. We took listeners’
ability to match the signal with its intended referents as a
measure of iconicity. This method for measuring iconicity
has been used previously in a number of studies (e.g. Garrod
et al., 2007; Perlman et al., 2015). The experiment tested two
hypotheses, though it should be noted that both hypotheses
could work in tandem, or represent different stages of emer-
gence of a communication system.

Hypothesis 1 The first hypothesis is that in the communica-
tion condition, repeated interaction between two participants
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will lead to initial signals that are high in iconicity, but then
become less iconic over interactions. This would follow the
results of experiments such as Garrod et al. (2007), that used
drawings. Their results also suggest that we should not see a
loss of iconicity in the individual condition as conventionali-
sation requires interaction between communicators.

Hypothesis 2 The second hypothesis is that iconicity will
go up in the communication condition, in line with the find-
ings of Perlman et al. (2015). If iconicity is not present from
the beginning, or is very idiosyncratic, then interaction may
act as a way for signals to adapt to be more transparently
iconic. However, without an interlocutor, one would not ex-
pect there to be a pressure for transparency in any iconicity
present, meaning signals in the individual condition should
also not increase in iconicity under this hypothesis.

Method
Procedure 391 participants were recruited on social media.
Each participant was sent to a webpage which redirected ran-
domly to one of several signal sets on its own webpage. A
signal set was typically 15 signals. Signals were mp3 files
which were playable by the participants by clicking on them.
Under each mp3 file was a set of 4 images of possible mean-
ings including the correct referent and 3 others chosen at ran-
dom. Participants were asked to click on the meaning of the
four that “you think the sound refers to”. They could change
their mind as many times as they liked, and their responses
were only recorded after they pressed “submit” at the bottom
of the page.

Results and Discussion
The following results are all produced using a linear mixed
effects analysis, from accuracy data that had been binnned by
meaning. We included time phase (early or late) and con-
dition (individual or communication) of production as fixed
effects. The intended image was controlled for as a random
effect with by-meaning random slopes for the effect of time
phase and condition. Likelihood ratio tests were used to com-
pare the model against a null model that did not include the
variable of interest. The condition in which the signals were
produced – individual or communication – did not appear to
affect the iconicity of the signals (χ2(1) = 0.1, p = 0.74).
Listeners correctly matched signals with their referents with
nearly the same level of accuracy in both conditions (around
35%). The time phase in which the signal was produced also
did not significantly affect guessing accuracy (χ2(1) = 2.3,
p = 0.13). However, there was a significant interaction be-
tween condition and time produced (χ2(1) = 5.9, p = 0.015).
In the graph (Figure 2), we show that naı̈ve listeners were
much better at matching signals that were produced later in
the communication condition. In the individual condition, the
signals went down slightly in their iconicity, though this dif-
ference was not significant.

The results from the audio playback experiment suggest
that the iconicity of signals created at the start of the original

Communication

Individual

Time of Production

First Phase Last Phase

Percent 
Correctly 
Matched

Figure 2: The percentage of signals correctly matched with
their meanings by naı̈ve listeners. The percentage for be-
haviour at chance levels is 25%.

communication game is nearly the same in both the individ-
ual and communication conditions. Naı̈ve listeners were able
to guess their meanings with nearly equal accuracy. This is
not indicative of participants not attempting to be iconic (in-
deed, accuracy was above chance), but it may be that their
attempts to be iconic start as being relatively idiosyncratic. In
further support of this account, in the individual condition, the
iconicity of signals did not change from the early to the late
phase of the communication game. It may be that with an in-
dividual participant, there is no selection pressure to enhance
the strongly iconic features of signals or to discard more id-
iosyncratic ones.

In contrast to the individual condition, we found that
in the communication condition iconicity increased signifi-
cantly from the early to the late phase, confirming hypothesis
2. In media that afford less iconicity, the presence of another
person might cause ongoing pressure to enhance the iconic-
ity of signals, making them increasingly transparent to naı̈ve
listeners. However, because of the multi-modal nature of the
signals in the initial experiment (i.e. gesture generating audio
signals), it is also a possibility that participants were just be-
coming accustomed to being iconic using the audio feedback
(the only thing transmitted between participants), rather than
using iconicity in the visual modality.

In the original study, Little et al. (in press) found that sig-
nals in the individual condition became longer and more com-
plex over the course of the experiment. However, there was
no evidence of signals changing in complexity in the commu-
nication condition. Within the experiment, participants were
better at correctly matching signals with their correct referent
in the individual condition (85.6% correct) than in the com-
munication condition (74.4% correct). In the individual con-
dition, participants improved at recognising the signals cor-
rectly throughout the experiment, but they got worse in the
communication condition.
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Experiment 2: Visual playback experiment
In this experiment, we look for evidence that participants
were distinctly adapting the iconicity of their signals to be
optimal for the communication modality. Many people’s first
instinct is to draw the shapes in the air, but this did not nec-
essarily translate to an optimally iconic signal with respect
to the auditory feedback that was generated. This auditory
representation was the only information transmitted between
participants as they could not see each other. Therefore, par-
ticipants might have adapted their signals to be more iconic
by sound, while at the same time discarding distracting fea-
tures that turned out to be less iconic.

To examine more specifically how participants in the com-
munication condition adapted their signals over the course of
the experiment, we ran a second playback experiment where
participants matched visual representations of the signals, in-
stead of auditory ones. If signallers adapted their signals to
enhance iconicity for the communication medium, but shed
features that are less iconic, then naive guessing accuracy
with the visual signals should not increase as it did for the
auditory signals. Alternatively – as the visual signals in-
clude exactly that same information as the auditory signals,
just mapped onto a spatial dimension – visual iconicity might
increase along with auditory iconicity.

Method
Stimuli The stimuli were the same signals used in the au-
dio playback experiment for the communication condition but
transformed into visual representations. Signals were small
(200x200px) videos of the hand trajectory used to produce
the audio signals. A black square moves left and right in
real time with how participants’ hands moved to produce the
signals. These videos were produced using only information
from the x-axis of the hand trajectory. We only used informa-
tion from the x-axis because only the x-axis affected the pitch
of signals. This gave the naı̈ve participants in the visual play-
back experiment the same amount of information as in the
audio experiment, making them more directly comparable.

Procedure 97 participants were recruited on social media.
Again, each participant was linked to a webpage that redi-
rected them to a webpage with one of several possible signal
sets. The procedure was the same as in Experiment 1, except
that the stimuli were presented as videos instead of as audio
files. Participants were asked to watch 15 videos each and
choose the meaning that “you think the video refers to” for
each signal.

Results and Discussion
We compared the results of the visual playback with the re-
sults from audio playback in Experiment 1. Again, these re-
sults are produced using a linear mixed effects analysis using
data binned by meaning. For this experiment, time produced
(early or late) and modality (audio or visual) were the fixed
effects in the model. Meaning was controlled for as a random
effect and the model had by-meaning random slopes for the

effect of time phase and modality. Likelihood ratio tests were
used to compare the model against a null model that did not
include the variable of interest.

Guessing accuracy in both modalities is shown in figure
3. The modality of the signals – visual or auditory – did
not affect the overall accuracy of selecting the correct image
(χ2(1) = 1.17, p = 0.28). The time phase in which the signal
was produced also did not significantly affect guessing ac-
curacy across modalities (χ2(1) = 1.4, p = 0.24). However,
there was a significant interaction between modality and time
phase (χ2(1) = 5.9, p = 0.015). In the early phase, guess-
ing accuracy was statistically equivalent in both modalities.
However, in the later phase, while accuracy increased in the
auditory condition, in the visual condition it dipped slightly
(but not significantly).

Early Late

Percentage 
matched 

correctly by 
naive 

participants

Visual

Audio

Figure 3: The percentage of both visual and audio signals
from the communication game matched with their meanings
by naı̈ve participants. The percentage for behaviour at chance
levels is 25%.

The results from the visual playback experiment demon-
strate that signals produced at the beginning of the communi-
cation game exhibited a comparable level of iconicity in the
auditory representations and the visual representations of the
signals. However, as the iconicity appears to have increased
in the auditory signals over the phases of the game, the iconic-
ity of the visual transformations did not. This was the case
even though the visual signals included the same information
as the auditory signals. These results suggest that signallers
in the communication game adapted their signals to be more
iconic in ways that were particularly suited to the auditory
communication channel. Features that may have been more
iconic in a visual medium were not enhanced.

General Discussion
In the first playback experiment, we found that naı̈ve listen-
ers were more accurate at guessing the meanings of signals
produced in the later phases of the experiment, but only in
the communication condition. The pressure to became more
iconic was only present when signals were being negotiated
in interaction between individuals. One possible confound
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here was that the meaning space expanding more quickly in
the individual condition. Given that the signal space has only
a limited amount of information to iconically encode mean-
ings without ambiguity, it may be the the expansion meant a
loss of iconic information across the whole meaning space.
However, this consideration does not account for the fact that
the meaning space also expanded in the communication con-
dition where iconicity rose.

In a second playback experiment, we found that iconicity
appeared to be enhanced particularly for the auditory com-
munication medium, for which participants may have had
weaker intuitions for iconicity compared to a visual medium.
Together our findings demonstrate how, under certain condi-
tions, the iconicity of signals can increase over repeated inter-
actions, perhaps especially in a modality that affords less po-
tential for iconicity. This may happen as partners initially ex-
plore the signal space and negotiate their shared intuition for
a meaningful signal. Over interactions, as signals becomes
streamlined with conventionalisation, the strongly iconic fea-
tures may be agreed upon and enhanced, while more idiosyn-
cratic features are back-grounded. This may only be an initial
step in grounding a communication system, in running the ex-
periment for longer, the signals may very well tend towards
losing their iconicity again.

The results of this study have implications for semiotics ex-
periments using artificial communication modalities and how
iconicity is understood and measured in these studies. Many
studies now use continuous auditory feedback as a result of
some kinetic input, such as slide whistles (Verhoef, Kirby,
& Boer, 2015), digital slide whistles (Verhoef, Roberts, &
Dingemanse, 2015) and the Leap Motion paradigm (Eryılmaz
& Little, 2016). Iconicity has been measured in signals gen-
erated from all of these paradigms, but not always in the
same way. In Verhoef, Roberts, and Dingemanse (2015), the
iconicity is measured by correlating the direction of stimuli
(left or right facing animals) with the direction of pitch in a
signal. Little, Eryılmaz, and de Boer (2015) measures iconic-
ity by comparing the similarities between meanings with the
similarities between signals, using information from the hand
positions, rather than transformed values representing the au-
ditory feedback. Verhoef, Kirby, and Boer (2015) asked naı̈ve
participants to rate how well signals “fit” the meanings they
were paired with using auditory information alone. Impor-
tantly, none of these studies incorporate information from
both the auditory and visual aspects of the signal in their
measures for iconicity. Of course, there is a perfect cor-
relation between movement and auditory feedback in all of
these paradigms, but the results we present here suggest that
iconicity may be perceived in very different ways depending
on either the visual or auditory information. Some experi-
ments using artificial continuous signal spaces do not have
auditory feedback and are purely visual in nature (Galantucci,
2005; Verhoef, Walker, & Marghetis, 2016). These visual sig-
nals are treated as a proxy for a human communication sys-
tems in the same way that the paradigms with auditory feed-

back above are. However, it may be important to examine
whether the results from such paradigms may, in some cases,
be modality-specific.

Of course, caution is required in considering how our find-
ings might generalise to languages and other natural commu-
nication systems. There are several reasons for reservation:
the linguistic knowledge of our participants, the constrained
signal and semantic space, the limited nature of the interac-
tion, and the short time-scale of the experiment. Neverthe-
less, one interesting point of comparison may be the multi-
modality of our signals. In real-world communication, multi-
modality comes not only in the combination of speech and
gesture, but also in the auditory and visual information that is
conveyed by speech alone (Massaro, 1998; McGurk & Mac-
Donald, 1976). This multi-modal nature of speech may im-
pact how iconicity is encoded in speech. For instance, one
common example of iconicity in spoken language is the /i/
phone for diminutive, as in words like teeny, itty-bitty (Ohala,
1994). This association has been found reliably across lan-
guages (Blasi, Wichmann, Hammarström, Stadler, & Chris-
tiansen, 2016). But what features of the /i/ make it iconic? Is
it that the high pitch of the second and third formants corre-
sponds with the high-pitched vocalisations of small animals?
Is it the kinesthetic feel of articulating the sound, which is
produced by contracting the oral cavity? Or might it be the
visual features of the vowel, such as the speaker’s retracted
lips which resemble a submissive facial expression? These
are difficult questions to answer, but future experiments might
examine multi-modal signals and how iconicity is differen-
tially informative across different modalities.

Further Work
The main reason for running the playback experiment with
visual signals was the observation that participants were in-
clined to draw in the air as a starting point for novel signals.
However, it is possible that this form of iconicity would only
be evident from information from both the x- and y- axes.
Though the y-axis did not affect the auditory feedback in any
way, there was nothing to stop participants moving their hand
vertically in the experiment. As a next step, we plan to create
videos of participant’s movements on both the x- and y- axes
to see if such representations would exhibit a higher level of
iconicity as a starting point, which might then decay.

Conclusion
In conclusion, we would like to challenge the oft-cited no-
tion that languages consistently lose their iconicity over time.
The work presented here and elsewhere (Perlman et al., 2015;
Verhoef, Roberts, & Dingemanse, 2015) demonstrates the
dynamic nature of iconicity in the evolution of symbol sys-
tems, which may adapt to the communication modality and
the context in which it is used. Thus the multitude of mor-
phemes cycling through languages may not always be drift-
ing towards arbitrariness. In some cases, words and signs
may become more iconic with time. The lexicons of nat-
ural languages, whether spoken or signed, exist in a bal-
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ance between iconicity and arbitrariness (Dingemanse, Blasi,
Lupyan, Christiansen, & Monaghan, 2015; Perniss et al.,
2010).
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What’s worth the effort: Ten-month-old infants infer the value of goals from the
costs of actions
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Abstract: Infants understand that people act in order to achieve their goals, but how can they tell what goals people find
worthwhile? Here, we explore the thesis that human infants solve this problem by building a mental model of action planning,
taking into account the costs of acting and the rewards actions bring. Consistent with this thesis, we found that 10-month-old
infants, after viewing an agent approach two objects equally often, inferred that the agent preferred the object whose attainment
required a costlier action. Infants’ responses generalized across changes in perceptual variables that distinguished one action
from another (e.g. path length, angle of incline), suggesting that an abstract cost metric based on force or effort supported their
judgments. These findings suggest that infants’ knowledge about agents may be expressed as a generative model for action
planning, which can then be inverted to identify the probable hidden causes for observed actions.
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Abstract
Algorithms for approximate Bayesian inference, such as
Monte Carlo methods, provide one source of models of how
people may deal with uncertainty in spite of limited cognitive
resources. Here, we model learning as a process of sequential
sampling, or ‘particle filtering’, and suggest that an individ-
ual’s working memory capacity (WMC) may be usefully mod-
elled in terms of the number of samples, or ‘particles’, that are
available for inference. The model qualitatively captures two
distinct effects reported recently, namely that individuals with
higher WMC are better able to (i) learn novel categories, and
(ii) flexibly switch between different categorization strategies.
Keywords: Bayesian inference; particle filter; working mem-
ory; category learning; knowledge restructuring

Introduction
Humans often behave in a manner consistent with Bayesian
principles (Chater & Oaksford, 2008) yet how they achieve
this is unclear. Though simple in principle, exact Bayesian
calculations are frequently intractable in real-world settings,
leading to a need for approximations. In statistics and com-
puter science, this challenge has been met through the de-
velopment of powerful, general-purpose techniques for ap-
proximate Bayesian inference, such as Monte Carlo meth-
ods, which allow practical application of Bayesian methods
in complex domains. The practical success of these tech-
niques has naturally prompted an interest in whether people
deal with uncertainty in an analogous manner (Griffiths, Vul,
& Sanborn, 2012). Importantly, such algorithms can approx-
imate probabilistic inference arbitrarily well when sufficient
time and memory are available, thereby providing a bench-
mark for ideal performance, but also display systematic de-
viations from the normative solution when resources are lim-
ited. These latter ‘qualitative fingerprints’ may be particu-
larly illuminating when considering human cognition, where
constraints on information-processing capacity are typically
assumed. A salient example is provided by limits on work-
ing memory capacity (WMC; Cowan, 2001). While the exact
nature of these limits remain the subject of debate, one promi-
nent conception is that they reflect a limited resource which is

shared across representations and processes in working mem-
ory (e.g., Just & Carpenter, 1992).

In the current work, we consider WMC limits within the
context of Bayesian inference, asking whether WMC may be
usefully modelled as a constraint on inferential resources. In
particular, we model the learning process as one of particle
filtering, in which a series of probability distributions is rep-
resented by a limited set of samples (‘particles’) which are
sequentially updated over time (Griffiths et al., 2012). Higher
WMC is then assumed to be implemented as a greater num-
ber of particles. This approach is applied to two recent exper-
iments which indicate positive effects of higher WMC on two
distinct aspects of categorization: (i) the facility with which
novel categories are learned (Lewandowsky, 2011); and (ii)
the ability to flexibly switch between different category rep-
resentations or response strategies, referred to as knowledge
restructuring (Sewell & Lewandowsky, 2012). We show that
both of these effects are qualitatively captured by a single
model in which WMC is equated with the number of parti-
cles available for inference — i.e., the number of hypotheses
about category structure that an individual can concurrently
entertain.

WMC and Category Learning

Lewandowsky (2011) measured participants’ WMC before
testing category learning performance on the six classical
problem types of Shepard, Hovland, and Jenkins (1961)
(henceforth ‘SHJ’). Each involves learning to assign a set
of stimuli to category A or B based on their values on bi-
nary dimensions, but the problem types vary in the number of
stimulus dimensions required to correctly perform classifica-
tion. Consistent with the classical results, participants gener-
ally learned the Type I problem fastest, Type VI the slowest,
and Types II-V at an intermediate rate. Crucially, WMC score
was found to be positively correlated with category learning
performance: higher WMC individuals tended to make fewer
errors across all problem types.
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WMC and Knowledge Restructuring

Sewell and Lewandowsky (2012) assessed the relationship
between WMC and performance in a knowledge restructur-
ing (KR) task. Participants were guided to use one particular
categorization strategy in a binary classification task before
being instructed to switch to an alternative, equally-effective
strategy (Fig 1A). The stimuli, rectangles of varying height
with a vertical bar located at different locations along their
base, belonged to category A or B depending on their position
in category space (Fig 1B). Crucially, training stimuli (filled
circles) were clustered into two separate regions of category
space (as indicated by different colours), with categories ar-
ranged so that partial category boundaries (solid lines) could
not be integrated in a coherent manner; neither partial bound-
ary could be extended so as to allow accurate classification
of all stimuli in the other cluster. A third, binary ‘context’
dimension was systematically mapped onto the two training
clusters so that stimuli belonging to distinct clusters appeared
in different colours (see example stimuli, lower Fig 1B).

At the task outset, participants were given information de-
signed to guide them towards using one of two different
strategies for co-ordinating partial categorization rules: (1)
a knowledge partitioning (KP) strategy was encouraged by
imparting that the context variable (colour) could be used to
determine which dimension to use (rectangle height or bar po-
sition) for categorization; (2) a context-insensitive (CI) strat-
egy was instead encouraged by highlighting that bar position
could be used to determine which partial boundary to apply
(i.e., regardless of context). Both strategies could support per-
fect performance but predicted different patterns of general-
ization when applied to new stimuli (open squares, Fig 1B)
in a transfer test, thereby revealing which strategy was in use
(Fig 1C). A summary ‘context sensitivity’ (CS) measure was
applied to participants’ test patterns to quantify the degree to
which they generalized in a manner consistent with the KP
(high CS) or CI (low CS) strategy (Fig 1D).

Critically, Sewell and Lewandowsky found evidence that
individuals with higher WMC were more adept at switch-
ing between these different categorization strategies when in-
structed to do so, as measured by how much their CS scores
changed between tests. This was interpreted in terms of
greater ‘knowledge restructuring’, i.e., ability to coordinate
different category representations or response requirements.

Modelling Approach

Our model comprises three parts: 1) assumptions about how
participants represent categories, specified in terms of an ex-
plicit generative process; 2) a procedure by which participants
are assumed to infer categories in light of prior assumptions
and experimental stimuli; and 3) a means for translating par-
ticipants’ beliefs into choice (i.e., a predicted category label).
Our description focuses on how the modelling approach is
applied to the KR task; the SHJ tasks are simpler and easily
modelled with only minor modifications.

Train
Strategy

Session 1

Transfer
Test 1

Transfer
Test 2

“switch”

A B

C D

bar position

re
ct

an
gl

e 
he

ig
ht

context 1 context 2

CI

KP

A B

A
B

Train
Strategy

Session 2

Transfer
Test 3

Transfer
Test 4

“switch”

0

0.5

1
CI-�rst condition
KP-�rst condition

Transfer Test
1 2 3 4

Co
nt

ex
t S

en
si

tiv
ity

1

2

Figure 1: (A) Knowledge restructuring (KR) task design. (B)
Experimental stimuli, depicted in category space: position of
a vertically-oriented bar (x-axis) vs. height of rectangle (y-
axis). Filled circles denote training stimuli; open squares de-
note test stimuli; solid lines indicate the partial rule bound-
aries. Two example stimuli are shown underneath. (C) ‘Ideal’
predicted response profiles given exclusive use of a context-
insensitive (CI; top row) or knowledge-partitioning (KP; bot-
tom row) strategy during test. Darker shading indicates a
higher probability of classifying as category A. (D) Aver-
age context-sensitivity (CS) scores across participants during
transfer tests, indicating use of CI (low) or KP (high) strategy.
Figures B–D adapted from Sewell and Lewandowsky (2012).

Category Representation

A number of representational formats for categories have
been discussed in the literature. Here, we opted to use classi-
fication and regression tree (CART) models (Breiman, Fried-
man, Olshen, & Stone, 1984). Firstly, these are well-suited
to cases in which categories are readily described in terms
of simple rules, particularly if an ordering on these rules
is suggested (as in the KR task). Secondly, the classifica-
tion boundaries generated by CART models lead naturally to
‘axis-aligned’ generalization patterns like those observed in
the KR task (participants’ response profiles were very similar
to those shown in Fig 1C), whereas producing this behaviour
is non-trivial for other category models.

Briefly, CART models provide a flexible method for spec-
ifying the conditional distribution of a binary category la-
bel y given a p-dimensional stimulus feature vector x =
(x1,x2, . . . ,xp). In the KR task, for a given stimulus on
trial t, we have yt ∈ {A,B} and a 3-dimensional input xt =
(xt,1 = bar positiont ∈R, xt,2 = heightt ∈R, xt,3 = contextt ∈
{0,1}). The models work by recursively partitioning the
input space into axis-aligned cuboids (similar to the partial
boundaries in Fig 1B) and applying a simple conditional
model to each region (e.g., probability that category label =
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A). The sequence of partitions can be represented as a binary
tree (Fig 2).

Formally, a binary tree structure T consists of a hierar-
chy of nodes η ∈ T. Nodes with children are internal nodes,
while nodes without children are leaf nodes (Fig 2A). Each
node is associated with a block B(η)⊆ Rp of the input space
as follows: the root node is associated with the entire input
space, while each further internal node splits its block into
two halves by selecting a single dimension κ(η) = {1, . . . , p}
and location τ(η) on which to split (Fig 2B). The block of
input space associated with a node η is determined by the
ranges on each dimension j which it covers, and we denote
the corresponding range Rη

j = [Rη,−
j ,Rη,+

j ]. We call the tuple
T = (T,κ,τ) the decision tree.

η

ηL ηR

Internal node

Leaf nodes
Dimension 1

Dimension 2 B(η  ) B(η  )L R

τ(η)

A B Β(η)

Figure 2: (A) Simple binary tree with (internal) root node
η which splits into two ‘leaf’ nodes, ηL and ηR. (B) Cor-
responding split of a two-dimensional input space. The root
node η is associated with the full input space, B(η). Here,
node η is split on dimension 1, κ(η) = 1, at a location τ(η).
This splits the input space into two blocks, B(ηL) and B(ηR),
associated with the leaf nodes ηL and ηR.

In addition to a decision tree T with K leaf nodes, a parameter
Θ = (θ1,θ2, . . . ,θK) associates parameter value θk with the
kth leaf node. If a stimulus x lies in the region of the kth leaf
node, then y|x has distribution f (y|θk) for some parametric
family f . It is typically assumed that, conditional on (Θ,T ), y
values within a leaf node are i.i.d. and that y values across leaf
nodes are independent. Thus, letting nk denote the number
of observations assigned to the kth leaf node and letting yk,i
denote the ith observation of y assigned to leaf k,

p(y1:n|x1:n,Θ,T ) =
K

∏
k=1

nk

∏
i=1

f (yk,i|θk), (1)

where n = ∑
K
k=1 nk is the total number of observations.

Prior beliefs about category structure can be formalized as
a prior distribution on decision trees, specified via a stochastic
generative process. Following Chipman, George, and McCul-
loch (1998), we set the prior probability of a node η in tree
structure T being split into children nodes to

pSPLIT(η,T) =
α

(1+dη)β
, (2)

where dη denotes the depth of the node, and α < 1 and β ≥
0 are parameters controlling expected tree size. Under this
specification, the probability pSPLIT is a decreasing function
of node depth, and decreases more steeply for large β.

In addition to this prior on tree structure T, we generally

assume that the probability of splitting on each dimension is
equal,

p(κ(η) = j) = 1/p, j = 1, . . . , p, (3)

and that split location is then drawn uniformly from the
node’s range,

τ(η)|κ(η) = j ∼U(Rη,−
j ,Rη,+

j ). (4)

However, in the KR task, participants were guided towards
a particular strategy by being told in the first instance that
stimulus colour (KP-first condition) or bar position (CI-first
condition) reliably indicated whether height or bar position
was diagnostic of stimulus category. To incorporate this ad-
ditional information, we assume a bias term b ≤ 1 which as-
signs higher probability to splitting the root node η0 on the
dimension j∗ highlighted by instruction:

p(κ(η0)) =

{
b if κ(η0) = j∗,
1−b

2 otherwise.
(5)

The generative model is completed by the conditional
probabilities of stimulus labels given the tree structure,
p(y1:t |x1:t ,T ). We assume that the kth leaf node has an as-
sociated probability θk of generating label A,

p(yt |θk,xt) = θ
yt
k (1−θk)

1−yt , (6)

and that this probability is an i.i.d. draw from a Beta distri-
bution, θk

iid∼ Beta(a0,b0). Standard analytical simplification
then yields the marginal likelihood

p(y1:t |T ,x1:t) =

(
Γ(a0 +b0)

Γ(a0)Γ(b0)

)K K

∏
k=1

Γ(nt
kA +a0)Γ(nt

k·−nt
kA +b0)

Γ(nt
k·+a0 +b0)

,

(7)

where nt
kA and nt

k· are respectively the number of instances of
category A and the total number of data points in the partition
of leaf k up to trial t. Note that for a given tree, this likeli-
hood is higher for leaves assigned observations with homoge-
nous labels, and these are exactly the partitions that constitute
‘good’ solutions to the categorization problem.

Inference
Participants are assumed to approximate the sequence of pos-
terior distributions {p(T |x1:t ,y1:t)}T

t=1 over trials. Given the
implausibility of enumerating all possible trees, participants
are assumed to represent a relatively small number of sam-
ples, i.e. hypotheses, from these posterior distributions which
can be updated over time. In other words, we assume partici-
pants perform particle filtering.

Two aspects of the inference process which we now de-
scribe draw parallels with working memory. Firstly, simi-
lar to the idea of a limit on the number of items that can be
held in working memory (Cowan, 2001), we assume there is
a bounded number of hypotheses about category structure —
in this case, the particles which correspond to specific tree
structures — that can be entertained at a given time. Sec-
ondly, similar to the notion that working memory is active
(Baddeley, 1992), involving manipulation rather than merely
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passive storage of items, we assume that inference involves
a continual process whereby local transformations to current
hypotheses are proposed, and which may be accepted or re-
jected. The latter process promotes diversity in the hypothesis
set and continuous exploration of the hypothesis space.

In detail, we assume that on trial t, a participant’s beliefs
are represented by a small set of L possible trees {T (l)}L

l=1

with associated importance weights {w(l)
t }L

l=1. This set of
trees constitutes the limited set of hypotheses putatively
maintained in a working memory of capacity L. With the ob-
servation of the stimulus and category label on the next trial
t +1, a proper reweighting of the lth tree is given by the fol-
lowing update (Chopin, 2002):

w(l)
t+1 ∝ w(l)

t p(yt+1|T (l),xt+1,y1:t). (8)

As standard within particle filtering methods, this reweight-
ing process is alternated with a resampling stage in which
very unlikely trees, i.e., those with very low weights, are dis-
carded and replaced by replicates of more probable trees. A
simple way of doing this is to sample L times with replace-
ment from the set {T (l)} with probabilities proportional to
the updated weights {w(l)

t+1}L
l=1 (Gordon, Salmond, & Smith,

1993). Following this resampling step, all particle weights
are equalized to 1/L.

Additionally, this resampled particle set can then be re-
juvinated (Chopin, 2002), reintroducing diversity and allow-
ing continuous exploration of alternative solutions. This is the
‘active’ step which, we suggest, recalls conceptions of work-
ing memory as involving active manipulation of currently-
stored items. Specifically, we may, without altering the tar-
geted posterior distribution, propose transformations of trees
from a Markov chain transition kernel qt+1(·|T (l)) with ap-
propriate stationary distribution p(T |x1:t+1,y1:t+1). Closely
following the transition kernel suggested by Chipman et al.
(1998), we consider the scheme where for each tree {T (l)},
a new tree T (l)∗ is proposed by randomly choosing among
3 possible transformations: (1) grow: randomly select a leaf
node, then draw a splitting dimension and location from the
prior; (2) prune: randomly select an internal node, then turn it
into a leaf node by deleting all nodes below it; or (3) change:
randomly select an internal node, then reassign it a splitting
dimension and location by a draw from the prior. The pro-
posed tree T (l)∗ is then accepted with probability

α(T (l),T (l)∗) = min

{
p(T (l)∗|x1:t+1,y1:t+1)/qt+1(T (l)∗|T (l))

p(T (l)|x1:t+1,y1:t+1)/qt+1(T (l)|T (l)∗)

}
,

as per the standard Metropolis-Hastings algorithm.
We also need to model the effect of an instruction to switch

categorization strategy. We assume that the effect is to change
the prior distribution over trees, which is then combined with
past observations to produce an updated posterior distribu-
tion. This update can be implemented via a simple reweight-
ing operation on the set of trees.

To see how this works, consider the specific example where
a participant has initially been guided to use the CI strategy

and after t training sessions has in mind the set of weighted
trees {T (l),w(l)

t }L
l=1 approximating the target distribution un-

der the prior appropriate to the CI strategy. We denote this
target distribution pCI(T |x1:t ,y1:t). The experimenter then
instructs the participant to change to using the KP strategy.
Assuming that the set of trees remains fixed, the associated
tree weights now need to be changed to reflect the new tar-
get distribution pKP(T |x1:t ,y1:t). This can be achieved by
an importance weighting step, treating pCI(T |x1:t ,y1:t) as the
importance distribution. In particular, denoting a particle’s
weight before and after the instruction to switch as w(l)−

t and
w(l)+

t , respectively, the relevant reweighting is

w(l)+
t ∝ w(l)−

t
pKP(T (l)|x1:t ,y1:t)

pCI(T (l)|x1:t ,y1:t)
. (9)

To switch in the reverse direction — from the KP to CI
strategy — the appropriate reweighting instead uses the ra-
tio pCI(T (l)|x1:t ,y1:t)/pKP(T (l)|x1:t ,y1:t).

Choice
Participants are assumed to predict category labels based on
their current hypotheses. Assuming a newly-resampled par-
ticle set with equal weights 1/L, a sample-based approxima-
tion to the predictive probability that a stimulus xt+1 has label
yt+1 = A is given by

p(yt+1 = A|x1:t+1,y1:t)≈
1
L

L

∑
l=1

p(yt+1 = A|x1:t+1,y1:t ,T (l))

=
1
L

L

∑
l=1

E
θk|x1:t+1,y1:t ,T (l) [θk]. (10)

Thus, an approximation to the predictive probability is given
by an unweighted average of posterior means for θk, where k
for the lth particle is the index of the leaf node relevant to the
input xt+1 in T (l). In our case, the posterior mean is

E
θk|x1:t+1,y1:t ,T (l) [θk] =

nt
kA +a0

nt
k·+a0 +b0

. (11)

Results
Rate of Learning
Lewandowsky (2011) found that WMC was positively corre-
lated with category learning performance. We hypothesized
that a greater number of particles, i.e. increasing L, would
have a similar effect since, on average, one might expect the
search for a ‘good’ (i.e., more probable) category structure to
progress faster, and with less chance of getting stuck in local
maxima, with a higher number of particles.

Figure 3 displays average simulated learning curves for the
SHJ tasks when the number of particles is increased from 1
(Fig 3A) to 100 (Fig 3B). Though the effect is subtle, there is
a general steepening of learning curves and a downward shift
in initial error rate for problem Type I. A more systematic
gauge of the effect is obtained by fitting exponential func-
tions to such learning curves and comparing the size of the
fitted coefficients as the number of particles is increased (a
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Figure 3: Increasing the number of particles leads to faster
category learning. Simulated learning curves for (A) 1 parti-
cle, and (B) 100 particles. Learning curves are averages over
100 simulations with other model parameters fixed (a0 = b0 =
1; α= 0.95,β= 1). (C) Learning rate as a function of number
of particles. For each setting, the model is run 100 times and
exponential curves fit to each individual learning curve. The
resulting coefficients are averaged over both simulation runs
and problem types to yield an aggregate ‘learning rate’.

larger coefficient indicates a steeper learning curve). Figure
3C shows that the learning rate does increase with more par-
ticles, though the effect is small beyond ≈ 20 particles.

Note that even without fitting the model parameters, the
basic SHJ pattern of results — Type I easiest, Type VI hard-
est, and Types II-V clustered in between — is reproduced.
Briefly, this results from the preference for simpler, or more
parsimonious, hypotheses that arises naturally within the
Bayesian framework. An advantage for the Type II problem
relative to types III-V is not produced by the model here, but
we note that any such advantage was extremely marginal in
Lewandowsky (2011), and that the effect may arise only un-
der specific conditions (cf. Kurtz, Levering, Stanton, Romero,
& Morris, 2013).

Knowledge Restructuring
Sewell and Lewandowsky (2012) found a positive association
between WMC and knowledge restructuring. In the model,
increasing the number of particles also has a beneficial effect
on the average degree of knowledge restructuring (Fig 4A),
with an increased probability of being able to successfully
switch strategy (Fig 4B).

This result arises from an enhanced ability to accurately
represent the posterior distribution with a greater number of
particles. Recall that strategy-switching was modelled by a
change in posterior distribution, driven by the different priors
underlying the distinct strategies; a simple way to track this
change was by reweighting particles according to the new dis-
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Figure 4: (A) In both the context-sensitive (CI)-first (left) and
knowledge-partitioning (KP)-first (right) conditions, increas-
ing the number of particles L leads to a greater change in
context sensitivity (CS) score on average when prompted to
change strategy (1500 simulation runs per condition). (B)
This is due to an increased probability P(switch) of a suc-
cessful switch (∆CS > 0.5). Lower inset: with fewer particles
(L = 20), it will frequently occur that the model completely
fails to switch (∆CS = 0). Upper inset: with more particles
(L = 100), such failures are unlikely (3000 simulation runs;
b = 0.9,a0 = b0 = 1,α = 0.95,β = 1).

tribution (Eq. (9)). However, the success of this will depend
on how well the particle set covers the support of the updated
distribution. With a sufficiently large number of particles, at
least some should be allocated to (previously) lower probabil-
ity regions; if the new strategy corresponds to such a region,
then appropriate reweighting can be applied. However, with
a decreasing number of particles, representation of the pos-
terior distribution may be so impoverished that such regions
of low probability may not contain any particles at all, and so
switching is not immediately possible.

Discussion
Experiments suggest that higher WMC benefits learning of
novel categories (Lewandowsky, 2011) and the ability to co-
ordinate different category representations or response strate-
gies (Sewell & Lewandowsky, 2012). We framed such tasks
in terms of inference, where individuals seek to infer the most
probable category structure(s) given their prior assumptions
and experimental observations/instructions. Further, we as-
sumed that individuals approximate inference by represent-
ing and manipulating in working memory a relatively small
number of hypotheses — samples, or ‘particles’ — about
possible category structures. Our principal hypothesis was
that by linking WMC with the number of such particles, we
would observe similarly positive effects of higher WMC on
performance. Simulation results were consistent with this hy-
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pothesis: more particles in the model enhanced both category
learning performance and the ability to switch between dif-
ferent categorization strategies.

These effects respectively arise due to increased search ef-
ficiency and what we might call ‘representational adequacy’.
Conceptualized in terms of search for more probable cate-
gories, the more resources (i.e., particles) available to search
this space — i.e., the greater the number of hypotheses that
one can entertain and manipulate within working memory
— then the more likely it is that one will quickly discover
good solutions, a process which draws natural parallels with
the broader topic of problem-solving (Hambrick & Engle,
2003; Newell & Simon, 1972). Furthermore, a greater num-
ber of particles generally means that the posterior distribution
over categories is more accurately represented — including
those assigned lower probability — and this pluralism means
that the model can more easily express alternative hypothe-
ses when instructed to switch strategy, as operationalized by
a reweighting of particles. This source of flexibility may also
be relevant to so-called ‘insight’ problem-solving (Murray &
Byrne, 2005; Ohlsson, 1992).

The current work is preceded by a number of related lines
of research. The HyGene model (Dougherty, Thomas, &
Lange, 2010; Thomas, Dougherty, Sprenger, & Harbison,
2008), which emphasizes the importance of hypothesis gen-
eration and testing, includes the assumption that the number
of hypotheses that can be entertained at a given time is lim-
ited by working memory constraints. Similarly, in their study
of ‘garden path’ effects in sentence processing, Levy, Reali,
and Griffiths (2008) suggested that difficulties in parsing such
sentences correctly may be explained by constraints on the
resources (i.e., number of particles) available for incremental
parsing; their demonstration that a decreasing number of par-
ticles increases the probability of parse failure is exactly anal-
ogous to the mechanism suggested here in relation strategy-
switching.

There are a number of avenues for future investigation.
We have focused on qualitative effects here, but fitting the
model to individual participants will be necessary for a more
quantitative assessment; the obvious prediction is that high-
WMC individuals should tend to be fit best by a larger num-
ber of particles. Decomposing the relative contributions of
particular features of the model, such as resampling, should
also be explored, and quality of fit directly compared with
‘single-particle’ approaches (e.g., Bramley, Dayan, Griffiths,
& Lagnado, 2017). How the approach fares in domains be-
yond category learning is also of clear interest. More gener-
ally, Monte Carlo methods provide a rich source of ideas for
psychological models — exploring how such methods may
succeed or fail to illuminate aspects of human cognition is a
substantial task for future research.
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Social Network Limits Language Complexity
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Abstract: Natural languages vary widely in the degree to which they make use of hierarchical composition in their grammars,
in particular, the degree to which syntactic versus morphologi- cal means of composition are utilized. Languages historically
spoken in small communities develop much deeper levels of morphological embedding than those spoken by larger groups, an
observation confirmed by a statistical analysis of the World Atlas of Language Structures. However, beyond population alone,
social networks change in topological structure as they grow, and it may be the pattern of connectivity rather than number
of speakers driving these differences. To examine mechanistically this connection between social and linguistic structure, we
propose an agent-based model of grammatical change using complex network methods. We identify global transitivity as
a physical parameter of social networks critical for developing morphological structure, and hubs associated with scale-free
networks as inhibitory, encouraging syntactic composition instead.
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Abstract 

The cognitive system readily extracts regularities in terms of 
object co-occurrences over space and time through statistical 
learning. However, how does learning such relationships 
influence the memory representations of individual objects? 
Here we used a false memory paradigm to examine the impact 
of statistical learning on memory representations of individual 
objects. Observers were exposed to a temporal sequence 
(Experiment 1) or spatial arrays (Experiment 2) of objects 
which contained object pairs (e.g., A-B). In a subsequent 
recognition phase, observers viewed a sequence or an array 
containing only one member of the original pair, and judged 
whether either the presented object or the missing object in the 
original pair was present. We found that statistical learning not 
only sharpened the detection of the presented object, but also 
induced a false memory of the missing object. This reveals a 
novel consequence of statistical learning: learning of 
regularities can create illusory memories. 

Keywords: Statistical learning; false memory; implicit 
learning; regularities; 

Introduction 

A remarkable ability of the cognitive system is to detect and 

learn the relationships among objects in the environment. 

Statistical learning is one mechanism that extracts the 

statistical relationships between individual objects in terms of 

object co-occurrences over space and time (Fiser & Aslin, 

2001; Saffran, Aslin, & Newport, 1996). This process occurs 

incidentally, without conscious intent or explicit awareness, 

produces knowledge about object associations that people are 

not explicitly aware of (Turk Browne, Jungé, & Scholl, 2005; 

Turk-Browne, Scholl, Chun & Johnson, 2009), and can 

operate in multiple sensory modalities and feature 

dimensions (Conway & Christiansen, 2005; Fiser & Aslin, 

2001; Saffran et al., 1996; Turk-Browne, Isola, Scholl, & 

Treat, 2008). In addition, several cognitive consequences of 

statistical learning have been identified, such as the 

compressing of information (Brady, Konkle, & Alvarez, 

2009; Zhao & Yu, 2016), attentional prioritization of co-

occurring objects (Yu & Zhao, 2015; Zhao, Al-Aidroos, & 

Turk-Browne, 2013; Zhao & Luo, 2017), and enhanced 

memory representation (Kim, Lewis-Peacock, Norman, & 

Turk-Browne, 2014; Otsuka & Saiki, 2016). 

One important but unexplored question is: how does 

learning statistical associations influence the representation 

of individual objects? Initial evidence comes from studies on 

false memories of semantically related objects. One pioneer 

work by Roediger and McDermott (1995) shows that after 

memorizing a list of words (e.g., nurse, sick, medicine, etc.) 

that are highly related to a target word that was never present 

(e.g., doctor), people falsely remember seeing the target 

word, and label it as an “old” word of the list in the 

recognition task. This finding was replicated using a visual 

paradigm, where participants viewed a stereotypical scene 

(e.g., classroom), and falsely recalled and recognized a target 

object that was never present (e.g., chalkboard, Miller & 

Gazzaniga, 1998). One explanation for this phenomenon is 

that seeing one object can automatically activate other 

associated objects based on semantic memory (Roediger, 

Balota, & Watson, 2001).  

Here, we provide a new explanation behind this old 

phenomenon which focuses on a simpler mechanism: 

learning the co-occurrences of objects can create the false 

memories of non-present object when only its partner is 

present. We propose that the mere statistical co-occurrence of 

two objects can produce false memory, independent of 

semantic associations. Thus, the goal of the current study was 

to examine whether statistical learning alters the 

representations of individual objects. 

Experiment 1 

This experiment examined how statistical learning alters the 

representations of individual objects in a temporal context, by 

first exposing participants to a sequence of paired objects and 

then testing them on whether seeing an individual object in 

the pair can produce the false memory of the non-present 

object in the pair. 

Participants  

A total of 120 undergraduates (96 female; mean age=20.6 

years, SD=2.8) from University of British Columbia (UBC) 

participated in the experiment for course credit. Participants 

reported normal or corrected-to-normal visual acuity and 

provided informed consent. The protocol was approved by 

the UBC Research Ethics Board. 

Stimuli 

The stimuli consisted of eight real-world objects (Fig.1a) 

which were selected from a stimulus set in a previous study 
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(Brady, Konkle, Alvarez, & Oliva, 2008). All objects were 

converted to grayscale, and were adjusted to a mean 

brightness of 84. Each object subtended 2.8° of visual angle. 

The eights objects were randomly assigned into four pairs for 

each participant and remained constant throughout the 

experiment (Fig.1a). In each pair, the first object was always 

followed by the second object. The random assignment of 

objects into pairs ensured that there was no systematic 

semantic relation between two objects in a pair, but rather the 

two objects were associated with co-occurrences. Each pair 

was repeated 50 times to form a single continuous temporal 

sequence of objects in a pseudorandom order with a 

constraint where no single pair could repeat back-to-back. 

Apparatus 

Participants in all experiments were seated 50cm from a 

computer monitor (refresh rate=60 Hz). Stimuli were 

presented using MATLAB and PsychophysicsToolbox 

(http://psychtoolbox.org). 

Procedure 

The experiment consisted of two conditions. In the structured 

condition, the eight objects were grouped into four pairs. In 

the random condition, the eight objects appeared in a random 

order in the sequence. Participants were randomly assigned 

to one of the two conditions (N=60 in each). The experiment 

contained three phases: exposure phase, recognition phase, 

and test phase. During the exposure phase, one object 

appeared at the center of the screen for 500ms followed by a 

500ms inter-stimulus interval (ISI) in each trial (Fig.1b). 

Participants performed a 1-back task where they judged as 

quickly and accurately as possible whether the current object 

was the same as or different from the previous object (by 

pressing the “/” or “z” key for same or different, respectively, 

key assignment counterbalanced). For the 1-back task, each 

object had a 20% chance of repeating the previous object, 

producing 480 trials in total. This 1-back task served as a 

cover task which was irrelevant to learning the object pairs, 

in order to conceal the true purpose of the study. This ensured 

that learning of the object pairs was incidental. Participants 

were not told anything about the object pairs. 

After exposure, participants performed a recognition phase 

(Fig.1c). In each trial, participants viewed a continuous 

sequence of objects first and then judged whether a certain 

object was present in the sequence. In the structured 

condition, there were three types of trials. The first type was 

missing trials: the sequence contained all four pairs, except 

for one pair, one member was missing, and observers judged 

whether the missing member was present in the sequence. 

The missing trials measured the false alarm rate for the 

missing object. The second type was presented trials: the 

sequence contained all four pairs, except for one pair, one 

member was missing, but this time observers judged whether 

the presented member was present in the sequence. The 

presented trials measured the hit rate for the presented object. 

The third type was baseline trials: the sequence contained all 

four pairs, and observers judged whether one member in a 

pair was present in the sequence. The baseline trials measured 

the hit rate for the presented object. In the missing trials, each 

member of an original pair was missing for once, resulting in 

8 trials. In the presented trials, the presented object of an 

original pair was tested once, resulting in 8 trials. In the 

baseline trials, each member of a pair was tested once, 

resulting in 8 trials. The 24 trials were repeated twice, 

producing 48 trials in total (order of the trials was 

randomized). In the random condition, the trials were the 

same, except the objects in the sequence appeared in a 

random order, so the sequence contained no pairs. Each 

object was presented for 500ms followed by a 500ms ISI. 

After the sequence was presented, a 3000ms blank screen 

followed. After the blank screen, an object was presented on 

the screen as a probe, and participants judged whether the 

object was presented in the previous sequence (by pressing 

the “1” or “0” key for “yes” or “no”, respectively). The object 

remained on the screen until response.  

 

 
 
Figure 1. Experiment 1. (a) Four object pairs (e.g., A-B). (b) 

Exposure phase: 1-back task. (c) Recognition phase: missing trials, 

presented trials, and baseline trials. (d) Test phase: two-alternative 

forced-choice task. 

(a) Pairs

(b) Exposure phase: 1-back task over a sequence of pairs

Time
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To examine whether they had successfully learned the 

object pairs, participants in the structured condition 

completed a surprise two-alternative forced choice test phase 

following the recognition phase (Fig.1d). In each trial, 

participants viewed two sequences of objects. Each object 

appeared for 500ms followed by a 500ms ISI, and each 

sequence was separated by a 1000ms pause. Participants 

judged whether the first or second sequence looked more 

familiar based on what they saw in the exposure phase (by 

pressing the “1” or “0” key for “first sequence” or “second 

sequence”, respectively). One sequence was a pair (e.g., A-

B), and the other was a “foil” (e.g., A-D) composed of one 

object from an original pair (e.g., A-B), and the other from a 

different pair (e.g., C-D), while preserving the temporal 

positions in the pairs (Fig. 1d). Each pair was tested against 

each foil twice, which resulted in 16 trials in total (4 pairs × 

2 foils × 2 repetitions). Importantly, each pair and foil were 

presented the same number of times at test. Thus, to 

discriminate the pair from the foil, participants needed to 

know which two specific objects followed each other. The 

order of the trials was randomized, and whether the pair or 

foil appeared first was counterbalanced across trials. 

Participants in the random condition was not tested, since 

there were no pairs in the sequence. 

A debriefing session was conducted at the end of the 

experiment, where participants were asked if they had noticed 

any objects that appeared one after another. For those who 

responded yes, we further asked them to specify which 

objects followed each other. 

Results and Discussion 

At the test phase, pairs were chosen over foils on 60.0% 

(SD=19.3%) of the time, which was reliably above chance 

(50%) [t(59)=4.01, p<.001, d=0.52]. Thus, learning of the 

object pairs was successful. During debriefing, 12 

participants reported noticing the pairs, but none could 

correctly report which specific objects followed each other. 

This suggests that participants had no explicit awareness of 

the object pairs. 

The false alarm rate (FA) and the hit rate in the recognition 

phase were presented in Fig.2 and analyzed with a 2 

(condition: structured vs. random; between-subjects) × 3 

(trial type: missing vs. presented vs. baseline; within-

subjects) mixed-effects ANOVA. 

There was a main effect of condition [F(1,118)=12.38, 

p<.001, ηp
2=.09] and trial type [F(2,236)=425.06, p<.001, 

ηp
2=.78], but no reliable interaction between condition and 

trial type [F(2,236)=0.73, p=.48, ηp
2=.006]. Tukey’s HSD 

post-hoc test showed that the FA rate of the missing trials was 

reliably higher in structured condition (27.9%) than in 

random condition (20.4%), p=.03; the hit rate of the presented 

trials was reliably higher in structured condition (72.5%) than 

in random condition (62.60%), p<.001; and a marginal 

difference in the hit rate of baseline trials between structured 

(72.5%) and random condition (65.9%), p=.09. 

These findings suggest that statistical learning not only 

sharpens the memory of the object within the pairs, but also 

induces the false memory of the missing object. 

 

 
Figure 2: The false alarm (FA) rate and the hit rate in recognition 

phase (error bars reflect ±1 SEM; †p<.1, *p<.05, ***p<.001). 

 

To examine the relationship between statistical learning 

and recognition performance, we found that there were no 

correlations between learning of the pairs at the test phase and 

the FA rate or the hit rate. However, in structured condition 

there was a weak correlation between the FA rate in the 

missing trials and the hit rate in the presented trials. There 

was a moderate correlation between the FA rate in the 

missing trials and the hit rate in the baseline trials, but no 

correlations in random condition (Table 1). 

 

Table 1: Correlations between learning of the pairs at the 

test phase and the false alarm rate or the hit rate 
Condition Correlation Correlation results 

Structured Learning vs. missing r(58)=-.15, p=.26 

(N=60) Learning vs. presented  r(58)=.21, p=.11 

 Learning vs. baseline r(58)=-.03, p=.79 

 Missing vs. presented r(58)=.28, p=.03 

Missing vs. baseline r(58)=.31, p=.02 

Presented vs. baseline r(58)=.48, p<.001 

Random 

(N=60) 

Missing vs. presented r(58)=.17, p=.21 

Missing vs. baseline r(58)=.20, p=.12 

Presented vs. baseline r(58)=.63, p<.001 

Experiment 2 

This experiment aimed to generalize the findings in 

Experiment 1 from the temporal context to a spatial context. 

Participants 

A new group of 68 undergraduates (51 female, mean 

age=20.2 years, SD=2.4) from UBC participated in the 

experiment for course credit. 
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Stimuli  

The stimuli were identical to those in Experiment 1, except 

that in structured condition the four pairs were grouped into 

horizontal, vertical, and diagonal spatial configurations 

(Fig.3a). Each array contained all four pairs, and was placed 

on an invisible 4 × 4 grid (subtending 8.2° × 8.2°) with the 

constraint that one pair was adjacent to at least another pair. 

This was to prevent participants from learning the pairs based 

on spatial segmentation cues other than object co-

occurrences. In random condition, the eight objects were 

randomly assigned to one of cell on the grid, with the 

constraint that each object neighbored at least one other 

object. Thus, the only difference between structured and 

random condition was the presence or absence of the pairs. 

Procedure 

As in Experiment 1, there were two conditions (i.e., 

structured vs. random, N=34 in each) and three phases (i.e., 

exposure, recognition, and test). In the exposure phase, 

participants in both conditions viewed arrays of objects, and 

performed a duplicate detection task where they judged as 

quickly and accurately as possible whether there were two 

identical objects in a single array (by pressing the “/” or “z” 

key for yes or no, respectively, key assignment 

counterbalanced, Fig. 3b). This duplicate detection task 

served as a cover task irrelevant to statistical learning, to 

ensure that learning of the object pairs was incidental. 

Participants were not told anything about the object pairs. 

Each array was presented on the screen for 1000ms followed 

by a 1000ms ISI in each trial. There were 480 trials in total, 

and 20% of the trials (80 trials) contained a duplicate object 

in the array.  

The recognition phase was identical to that in Experiment 

1, except that objects were presented all at once on the screen. 

In each trial, participants viewed an array for 800ms followed 

by a 3000ms pause, and judged whether the probe object was 

presented in the array. The display time was increased to 

800ms, as it required more time for participants to view all 

eight objects at once. As before, there were three types of 

trials: (1) missing trials, where one member in the pair was 

missing, and the missing object was tested; (2) presented 

trials, where one member in the pair was missing, but the 

presented object in the pair was tested; and (3) baseline trials, 

where all pairs were presented, and one object was tested 

(Fig. 3c). 

After the recognition phase, participants in the structured 

condition completed the surprise two-alternative forced 

choice test phase to see whether they had successfully learned 

the object pairs (Fig. 3d). In each trial, one set of objects was 

presented on the left and another on the right side of the 

screen for 1000ms. Participants judged whether the left or 

right set of objects looked more familiar based on what they 

saw in the exposure phase (by pressing the “1” or “0” key for 

“left” or “right”, respectively). The foils were created 

following the same logic as in Experiment 1. Participants in 

the random condition was not tested, since there were no pairs 

in the array during exposure.  

A debriefing session was conducted after test, where 

participants were asked if they had noticed any objects that 

appeared with one another. For those who responded yes, we 

further asked them to specify which objects appeared 

adjacent to each other. 

Results and Discussion 

At the test phase, pairs were chosen over foils on 52.2% 

(SD=10.3%) of the time, which was not reliably above 

chance (50%) [t(33)=1.25, p=.22, d=0.21]. This suggests that 

participants failed to learn the spatial co-occurrences between 

the two objects in the pairs. During debriefing, four 

participants reported noticing the pairs, but none could 

correctly report which specific objects appeared with each 

other. This suggests that participants had no explicit 

awareness of the pairs. 

 

 
 
Figure 3. Experiment 2: (a) Four pairs in four different spatial 

configurations. (b) Exposure phase: duplicate detection task. (c) 

Recognition phase: missing trials, presented trials, and baseline 

trials. (d) Test phase: two-alternative forced-choice task. 

 

The FA rate and the hit rate in the recognition phase were 

analyzed with a 2 (condition: structured vs. random; between-
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subjects) × 3 (trial type: missing vs. presented vs. baseline; 

within-subjects) mixed-effects ANOVA. There was a main 

effect of trial type [F(2,132)=137.32, p<.001, ηp
2=.68], but no 

main effect of condition [F(1,66)=0.004, p=.95, ηp
2=.00] and 

no significant interaction between condition and trial type 

[F(2,132)=0.45, p=.63, ηp
2=.007]. Tukey’s HSD post-hoc test 

showed that the FA rate of the missing trials was not different 

between the structured condition (30.7%) and the random 

condition (30.5%), p=.99, the hit rate of the presented trials 

was not different between the structured condition (57.5%) 

and the random condition (59.4%), p=.99, and no difference 

in the hit rate of baseline trials between the structured 

(66.7%) and the random conditions (64.3%), p=.97 (Fig. 4). 

 
Figure 4: The false alarm rate and the hit rate in recognition phase 

(error bars reflect ±1 SEM). 

 

We found no correlation between learning of the pairs at 

the test phase and the FA rate or the hit rate. But in both the 

structured and random condition, there was a correlation 

between the FA rate, and the hit rate in the presented trials 

and in the baseline trials (Table 2). 

 

Table 2: Correlations between learning of the pairs at the 

test phase and the false alarm rate or the hit rate 
Condition Correlation Correlation results 

Structured Learning vs. missing r(32)=.24, p=.17 

(N=34) Learning vs. presented r(32)=.22, p=.22 

 Learning vs. baseline r(32)=.16, p=.35 

 Missing vs. presented r(32)=.66, p<.001 

Missing vs. baseline r(32)=.57, p<.001 

Presented vs. baseline r(32)=.40, p=.02 

Random 

(N=34) 

Missing vs. presented r(32)=.44, p=.009 

Missing vs. baseline r(32)=.53, p<.001 

Presented vs. baseline r(32)=.62, p<.001 

 

The lack of memory difference between the structured 

condition and the random condition could be due to the lack 

of learning of object pairs in the spatial context. 

To further explore whether learning of spatial pairs 

changed the representation of individual objects in the pairs, 

we separated participants who successfully learned the pairs 

(those who chose pairs over foil above chance, N=15), and 

those who failed to learn the pairs (those who chose pairs over 

foil at or below chance, N=19) in the structured condition. 

Among participants who showed learning, pairs were chosen 

over foils on 61.2% (SD=6.8%) of the time, which was 

reliably above chance (50%) [t(14)=6.44, p<.001, d=1.66]. 

Only one participant reported noticing the pairs, but could not 

correctly report which specific objects appeared with each 

other. A 2 (group: learners vs. non-learners; between-

subjects) × 3 (trial type: missing vs. presented vs. baseline; 

within-subjects) mixed-effects ANOVA revealed a main 

effect of trial type [F(2,64)=68.40, p<.001, ηp
2=.68], but no 

main effect of group [F(1,32)=1.25, p=.27, ηp
2=.04] and no 

significant interaction between group and trial type 

[F(2,64)=0.42, p=.66, ηp
2=.01]. Although the results were not 

reliably different between the two groups, the learners 

consistently showed numerically greater FA rate and hit rate 

than the non-learners (Fig.5), a pattern that was consistent 

with the findings in Experiment 1. 

 
Figure 5: The false alarm rate and the hit rate of learners and non-

learners in recognition phase in the structured condition (error bars 

reflect ±1 SEM). 

General Discussion  

The goal of this experiment was to examine whether 

statistical learning alters the memory representations of 

individual objects. We found that after learning the temporal 

co-occurrences of objects, participants showed a reliably 

higher false alarm rate of seeing a missing object, and a 

reliably higher hit rate of seeing a presented object 

(Experiment 1). When the objects co-occurred over space, 

participants did not successfully express learning of pairs, 

and therefore did not show differential false alarm and hit 

rates (Experiment 2). However, with a more detailed analysis, 

participants who successfully learned the spatial pairs 

showed numerically higher false alarm rate of the missing 

object and numerically higher hit rate of the presented object 

than those who failed to learn the pairs. The current findings 

suggest that statistical learning not only sharpens the 
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detection of the objects within the pairs, but also induces a 

false memory of the missing object. 

Induced false memory of the missing object can be 

explained by the automatic statistical association between the 

missing object and the presented object in the pair. Once the 

pairs were learned over repeated exposures even implicitly, 

one member in the pair could serve as a cue to signal the 

presence of its partner (Turk-Browne, et al., 2009). Thus, 

participants may have automatically brought the missing 

object to mind when seeing its partner in the sequence, thus 

false recalling that the missing object was present. This 

suggests that the automatic activation of the missing object 

was possible by merely co-occurring with its partner 

previously. 

Alternatively, the two co-occurring objects may be unitized 

after learning. Previous studies have demonstrated that 

regularities compress information (Brady et al., 2009) and 

reduce perceived numerosity of the objects (Zhao & Yu, 

2016), which suggests that the co-occurring objects could be 

grouped and encoded as one single unit. Seeing a member of 

the unit could trigger the illusion that the entire unit was 

presented, and therefore inducing the false memory of the 

missing partner. 

The enhanced hit rate of the presented member in the pair 

could be due to the possibility that statistical regularities 

automatically draw attention (Zhao et al., 2013). Given that 

attention plays an important factor in the recognition task, 

participants in the structured condition may have prioritized 

processing of the paired objects, and therefore showed a 

better hit rate compared to the random condition. 

Another account for the enhanced memory is that it may be 

easier to memorize the objects that were present in the 

sequence, because statistical learning increases the working 

memory capacity to encode objects (Brady et al., 2009). The 

better memory performance of the paired objects in the 

baseline condition was consistent with previous finding that 

statistical learning enhances memory of structured objects 

(Otsuka & Saiki, 2016). 

In conclusion, we discovered a novel consequence of 

statistical learning: it not only enhances the detection of the 

object within the regularities, but also creates a false memory 

of the missing object. 
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Abstract

Language comprehension in grounded contexts involves in-
tegrating visual and linguistic information through decisions
about visual fixation. But when the visual signal also con-
tains information about the language source – as in the case
of written text or sign language – how do we decide where to
look? Here, we hypothesize that eye movements during lan-
guage comprehension represent an adaptive response. Using
two case studies, we show that, compared to English-learners,
young signers delayed their gaze shifts away from a language
source, were more accurate with these shifts, and produced a
smaller proportion of nonlanguage-driven shifts (E1). Next,
we present a well-controlled, confirmatory experiment, show-
ing that English-speaking adults produced fewer nonlanguage-
driven shifts when processing printed text compared to spoken
language (E2). Together, these data suggest that people adapt
to the value of seeking different information in order to in-
crease the chance of rapid and accurate language understand-
ing.

Keywords: eye movements; language processing;
information-seeking; American Sign Language

Introduction
The study of eye movements during language comprehen-
sion has provided fundamental insights into the interaction
between conceptual representations of the world and the in-
coming linguistic signal. For example, research shows that
adults and children will rapidly shift visual attention upon
hearing the name of an object in the visual scene, with a
high proportion of shifts occurring prior to the offset of the
word (Allopenna, Magnuson, & Tanenhaus, 1998; Tanen-
haus, Spivey-Knowlton, Eberhard, & Sedivy, 1995). More-
over, researchers have found that conceptual representations
activated by fixations to the visual world can modulate subse-
quent eye movements during language processing (Altmann
& Kamide, 2007).

The majority of this work has used eye movements as a
measure of the output of the underlying language comprehen-
sion process, often using linguistic stimuli that come from a
disembodied voice. But in real world contexts, people also
gather information about the linguistic signal by fixating on
the language source. Consider a speaker who asks you to
“Pass the salt” but you are in a noisy room, making it difficult
to understand the request. Here, comprehension can be facil-
itated by gathering information via (a) fixations to the nonlin-
guistic visual world (i.e., encoding the objects that are present
in the scene) or (b) fixations to the speaker (i.e., reading lips
or perhaps the direction of gaze).

But, this situation creates a tradeoff where the listener must
decide what kind of information to gather and at what time.

How do we decide where to look? We propose that people
modulate their eye movements during language comprehen-
sion in response to tradeoffs in the value of gathering different
kinds of information. We test this adaptive tradeoff account
using two case studies that manipulate the value of different
fixation locations for language understanding: a) a compari-
son of processing sign vs. spoken language in children (E1),
and b) a comparison of processing printed text vs. spoken lan-
guage in adults (E2). Our key prediction is that competition
for visual attention will make gaze shifts away from the lan-
guage source less valuable than fixating the source of the lin-
guistic signal, leading people to generate fewer exploratory,
nonlanguage-driven eye movements.

Experiment 1
E1 provides an initial test of our adaptive tradeoffs account.
We compared eye movements of children learning ASL to
children learning a spoken language using parallel real-time
language comprehension tasks where children processed fa-
miliar sentences (e.g., “Where’s the ball?”) while looking at a
simplified visual world with 3 fixation targets (a center stim-
ulus that varied by condition, a target picture, and a distracter
picture; see Fig 1). The spoken language data are a reanalysis
of three unpublished data sets, and the ASL data are reported
in MacDonald et al. (under review). We predicted that, com-
pared to spoken language processing, processing ASL would
increase the value of fixating on the language source and
decrease the value of generating exploratory, nonlanguage-
driven shifts even after the target linguistic item began un-
folding in time.

To test this prediction, we present traditional behavioral
analyses of first shift Accuracy and RT. We also present
two model-based analyses. First, we use an exponentially
weighted moving average (EWMA) method (Vandekerck-
hove & Tuerlinckx, 2007) to categorize participants’ gaze
shifts as language-driven or random. In contrast to the stan-
dard RT/Accuracy analysis, the EMWA allows us to quan-
tify differences in the accuracy of gaze shifts as a function of
when that shift occurred in time. Next, we use drift-diffusion
models (DDMs) (Ratcliff & Childers, 2015) to quantify dif-
ferences in the underlying psychological variables that might
drive behavioral differences in Accuracy and RT. For exam-
ple, the DDM uses the shape of both the correct and incorrect
RT distributions to provide a quantiative estimate of whether
higher accuracy is driven by more cautious responding or by
more efficient information processing.
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Figure 1: Stimuli for E1 and E2. Panel A shows the layout of
the fixation locations for all tasks: the center stimulus, the tar-
get, and the distracter. Panel B shows the five center stimulus
items: a static geometric shape (Bullseye), a static image of
a familiar object (Object), a person speaking (Face), a person
signing (ASL), and printed text (Text).

Method

Participants Table 1 contains details about the age distri-
butions of children in all of four samples.

Spoken English samples. Participants were 80 native,
monolingual English-learning children divided across three
samples. Participants had no reported history of developmen-
tal or language delay.

ASL sample. Participants were 30 native, monolingual
ASL-learning children (18 deaf, 12 hearing). All children,
regardless of hearing status, were exposed to ASL from birth
through extensive interaction with at least one caregiver fluent
in ASL and were reported to experience at least 80% ASL in
their daily lives. The ASL sample included a wider age range
compared to the spoken English samples because this is a rare
population.

Stimuli ASL linguistic stimuli. We recorded two sets of
ASL stimuli, using two valid ASL sentence structures for
questions: 1) Sentence-initial wh-phrase: “HEY! WHERE
[target noun]?” and 2) Sentence-final wh-phrase: “HEY! [tar-
get noun] WHERE?” Two female native ASL users recorded
several tokens of each sentence in a child-directed regis-
ter. Before each sentence, the signer produced a common
attention-getting gesture. Mean sign length was 1.25 sec,
ranging from 0.69 sec to 1.98 sec.

Task Mean Age Min Age Max Age n
ASL 27.90 16 53 30
Face 26.00 25 26 24
Object 31.90 26 39 40
Bullseye 26.10 26 27 16

Table 1: Age distributions of children in Experiment 1. All
ages are reported in months.

English linguistic stimuli. All three tasks (Object, Bulls-
eye, and Face) featured the same female speaker who used
natural child-directed speech and said: “Look! Where’s the
(target word)?” The target words were: ball, banana, book,
cookie, juice, and shoe. For the Face task, a female native
English speaker was video-recorded as she looked straight
ahead and said, “Look! Where’s the (target word)?” Mean
word length was 0.79 sec, ranging from 0.6 sec to 0.94 sec.

ASL and English visual stimuli. The image set consisted
of colorful digitized pictures of objects presented in fixed
pairs with no phonological overlap (ASL task: cat—bird,
car—book, bear—doll, ball—shoe; English tasks: book-
shoe, juice-banana, cookie-ball). Side of target picture was
counterbalanced across trials.

Design and procedure Children sat on their caregiver’s lap
and viewed the task on a screen while their gaze was recorded
using a digital camcorder. On each trial, children saw two im-
ages of familiar objects on the screen for two seconds before
the center stimulus appeared (see Fig 1). Then they processed
the target sentence – which consisted of a carrier phrase, a tar-
get noun, and a question – followed by two seconds without
language to allow for a response. Participants saw 32 test tri-
als with several filler trials interspersed to maintain interest.

Coding. Participants’ gaze patterns were coded (33-ms res-
olution) as being fixated on either the center stimulus, one
of the images, shifting between pictures, or away. To as-
sess inter-coder reliability, 25% of the videos were re-coded.
Agreement was scored at the level of individual frames of
video and averaged 98% on these reliability assessments.

Results and Discussion
Analysis plan First, we present behavioral analyses of First
shift accuracy and Reaction Time (RT). RT corresponds to
the latency to shift away from the central stimulus to either
picture measured from target-noun onset. Accuracy was the
mean proportion of first gaze shifts that landed on the tar-
get picture out of the total number of shifts. We log trans-
formed all RTs and used the lme4 R package (Bates, Maech-
ler, Bolker, & Walker, 2013) to fit mixed-effects regression
models that included a random intercept for each participant
and item. Since children’s age varied across conditions, we
included age in months as a covariate in all models. All analy-
sis code can be found in the online repository for this project:
https://github.com/kemacdonald/speed-acc.

Next, we present two exploratory model-based analyses to
quantify differences in eye movements across the four sam-
ples. First, we use an EWMA method to model changes in
accuracy as a function of increases in RT. For each RT, the
model generates two values: a “control statistic” (CS, which
captures the running average accuracy of first shifts) and an
“upper control limit” (UCL, which captures the pre-defined
limit of when accuracy would be categorized as above chance
level). Here, the CS is an expectation of random shifting to
either the target or the distracter image (nonlanguage-driven
shifts), or a Bernoulli process with probability of success 0.5.
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Figure 2: First shift accuracy and RTs from E1. Panel A
shows a boxplot representing the distribution of RTs for cor-
rect (orange) and incorrect (blue) shifts for each center stim-
ulus type. Panel B shows the distribution of mean first shift
accuracy scores for each center stimulus type. The solid lines
represent median values, the boundaries of the box show the
upper and lower quartiles, and the whiskers show the full
range of the data excluding outliers.

As the RTs get longer, we assume that participants have gath-
ered more information and should become more accurate, or
a Bernoulli process with probability success > 0.5. Using
this model, we can quantify and compare: a) the cutoff point
when the CS exceeds the UCL, indicating that participants
started to generate language-driven shifts and b) the propor-
tion of shifts that the model categorizes as language-driven
vs. nonlanguage-driven.

Finally, we took the shifts that were categorized as
language-driven by the EWMA and fit a hierarchical
Bayesian drift-diffusion model (HDDM) to quantify differ-
ences in the speed and accuracy of language-driven eye move-
ments. We chose to implement a hierarchical Bayesian ver-
sion of the DDM using the HDDM Python package (Wiecki,
Sofer, & Frank, 2013) since we had relatively few trials from
child participants and recent simulation studies have shown
that the HDDM approach was better than other DDM fit-
ting methods for small data sets (Ratcliff & Childers, 2015).
The model assumes that people accumulate noisy evidence
in favor of one alternative with a response generated when
the evidence crosses a pre-defined decision threshold. Here
we focus on two parameters of interest that map onto mean-
ingful psychological variables: boundary separation, which
indexes the amount of evidence gathered before a response
(higher values suggest more cautious responding) and drift
rate, which indexes the amount of evidence accumulated per
unit time (higher values suggest more efficient processing).

Behavioral analyses RT. Visual inspection of the Fig 2,
panel A suggests that there was a speed accuracy trade-
off in the ASL, Face, and Bullseye conditions, with incor-
rect shifts tending to be faster than correct shifts. To quan-
tify differences across the groups, we fit a linear mixed-
effects regression predicting first shift RT as a function
of center stimulus type, controlling for age, and including
user-defined contrasts to test specific comparisons of inter-
est: Log(RT) ∼ center stimulus type + age + (1 |
subject) + (1 | item). We found that (a) ASL learners
generated slower RTs compared to all of the spoken English
samples (β = -0.97, p < .001), (b) ASL learners’ shifts were
slower compared directly to participants in the Face task (β =
-0.42, p < .001), and (c) participants in the Face task shifted
slower compared to participants in the Object and Bullseye
tasks (β = -0.73, p < .001).

Accuracy. Next we compared the accuracy of first shifts
across the different tasks by fitting a mixed-effects logistic
regression with the same specifications and contrasts as the
RT model. We found that (a) ASL learners were more ac-
curate compared to all of the spoken English samples (β =
-0.78, p < .001), (b) ASL learners were more accurate when
directly compared to participants in the Face task (β = -0.62,
p = 0.001), and (c) participants in the Face task were numer-
ically more accurate compared to participants in the Object
and Bullseye tasks (β = -0.73) but this effect was not signifi-
cant (p = 0.089).
Model-based analyses EWMA. Figure 3 shows changes in
the control statistic (CS) and the upper control limit (UCL)
as a function of participants’ RTs. Each CS starts at chance
performance and below the UCL. In the ASL and Face tasks,
the CS value begins to increase with RTs around 0.7 seconds
after noun onset and eventually crosses the UCL, indicat-
ing that responses > 0.7 sec were on average above chance
levels. In contrast, the CS in the Object and Bullseye tasks
never crossed the UCL, indicating that children’s shifts were
equally likely to land on the target or the distracter, regard-
less of when they were initiated. This result suggests that first
shifts in the Bullseye/Object tasks were not language-driven
and may instead have reflected a different process such as
gathering more information about the referents in the visual
world.

Next, we compared the EWMA output for participants in
the ASL and Face tasks. We found that ASL learners gener-
ated fewer shifts when the CS was below the UCL (β = -1.61,
p < .001), indicating that a larger proportion of their initial
shifts away were language-driven (see the differences in the
red shaded area in Fig 3). We did not find evidence for a dif-
ference in the timing of when the CS crossed the UCL (β =
-0.04, p = 0.387), indicating that both groups began to gen-
erate language-driven shifts about the same time after noun
onset.

HDDM. Using the output of the EWMA, we compared the
timing and accuracy of language-driven shifts for participants
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in the ASL and Face tasks.1 We found that ASL learners had
a higher estimate for the boundary separation parameter com-
pared to the Face participants (ASL boundary = 1.77, HDI =
[1.64, 1.9]; Face boundary = 1.35, HDI = [1.21, 1.49]), with
no overlap in the credible values (see Fig 4). This suggests
that ASL learners accumulated more evidence about the lin-
guistic signal before generating an eye movement. We found
high overlap for estimates of the drift rate parameter, indicat-
ing that both groups processed the linguistic information with
similar efficiency (ASL drift = 0.64, HDI = [0.44, 0.83]; Face
drift = 0.57, HDI = [0.33, 0.83]).

Taken together, the behavioral analyses and the
EWMA/HDDM results provide converging support that
ASL learners were sensitive to the value of eye movements,
producing fewer nonlanguage-driven shifts and prioritizing
accuracy over speed, but accumulating information at
roughly the same rate. This behavior seems reasonable since
the potential for missing subsequent linguistic information
is high if ASL users shifted prior to gathering sufficient
information. It is important to point out that these were
exploratory findings and that there were several, potentially
important differences between the stimuli, apparatus, and
populations. In E2, we set out to perform a well-controlled,
confirmatory test of our adaptive tradeoffs account.

Experiment 2
In E2, we attempt to replicate a key finding from E1:
that increasing the competition between fixating the lan-
guage source and the nonlinguistic visual world reduces
nonlanguage-driven eye movements. Moreover, we con-
ducted a confirmatory test of our hypothesis that also con-
trolled for the population differences present in E1. We
tested a sample of English-speaking adults using a within-
participants manipulation of the center stimulus type. We
used the Face and Bullseye stimulus sets from E1 and added
two new conditions: Text, where the verbal language in-
formation was accompanied by a word-by-word display of
printed text (see Fig 1), and Text-no-audio, where the spoken
language stimulus was removed. We chose text processing
since, like sign language comprehension, the linguistic infor-
mation is gathered via fixations to the visual world.

Our key behavioral prediction is that participants in the
Text conditions should produce a higher proportion of
language-driven shifts as indexed by the EWMA model out-
put. We did not have strong predictions for the DDM pa-
rameter fits since the goal of the Text manipulation was to
modulate participants’ strategic allocation of visual attention
and not the accuracy/efficiency of information processing.

Method

1We report the mean and the 95% highest density interval (HDI)
of the posterior distributions for each parameter. The HDI represents
the range of credible values given the model specification and the
data. We chose not to interpret the DDM fits for the Bullseye/Face
tasks since there was no suggestion of any non-guessing signal.

Figure 3: Output for the EWMA guessing model in E1. The
black curve represents the evolution of the control statistic
(CS) as a function of reaction time. The grey curve represents
the upper control limit (UCL). The vertical dashed line is the
median cutoff value (point when the control process shifts
out of a guessing state). The grey shaded area represents the
95% confidence interval around the estimate of the median
cutoff point. And the shaded areas represents the proprotion
of responses that were flagged as guesses (red) and language-
driven (green).

Participants 25 Stanford undergraduates participated (5
male, 20 females) for course credit. All participants were
monolingual, native English speakers and had normal vision.

Stimuli Audio and visual stimuli were identical to the Face
and Bullseye tasks in E1. We included a new center fixation
stimulus type: printed text. The text was displayed in a white
font on a black background and was programmed such that
only a single word appeared on the screen, with each word
appearing for the same duration as the corresponding word in
the spoken language stimuli.

Design and procedure The design was nearly identical to
E1, with the exception of a change to a within-subjects ma-
nipulation where each participant completed all four tasks
(Bullseye, Face, Text, and Text-no-audio). In the Text con-
dition, spoken language accompanied the printed text. In the
Text-no-audio condition, the spoken language stimulus was
removed. Participants saw a total of 128 trials while their eye
movements were tracked using automated eye-tracking soft-
ware.

Results and Discussion

Behavioral analyses RT. Visual inspection of Figure 5,
panel A suggests that there was a speed-accuracy tradeoff for
all conditions: incorrect gaze shifts tended to be faster than
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Figure 4: Posterior distributions for the boundary and drift
rate parameters for children in E1 (Panel A) and adults in E2
(Panel B).

correct shifts. We fit a linear mixed-effects regression with
the same specification as in E1, but we added by-subject in-
tercepts and slopes for each center stimulus type to account
for our within-subjects manipulation. We did not find evi-
dence that RTs were different across conditions (all p > .05).

Accuracy. Next, we modeled accuracy using a mixed-
effects logistic regression with the same specifications (see
Panel B of Fig 5). We found that adults’ first shifts were
highly accurate, and, in contrast to the children in E1, their re-
sponses were above chance level even in the Bullseye condi-
tion when the center stimulus was not salient or informative.
We also found that participants tended to be less accurate in
the Text conditions compared to conditions without text (β
= 1.18, p = 0.002). We did find not any other statistically
significant differences.
Model-based analyses EWMA. For all four conditions, the
CS crossed the UCL (see Fig 6), suggesting that for all tasks
some proportion of adults’ shifts were language-driven. Inter-
estingly, we found a graded effect of condition (see the shift
in the vertical dashed lines in Fig 5) on the point when the CS
crossed the UCL such that the Text-no-audio condition oc-
curred earliest (Mtext−no−audio = 0.39), followed by the Text
and Face conditions that were not different from one another
(Mtext = 0.44, M f ace = 0.45, p > .05), and finally the Bullseye
condition (Mbullseye = 0.54). We also found the same graded
difference in the proportion of shifts that occurred while the
CS was below the UCL (see the red vs. green shaded area
in Fig 5), indicating a higher proportion of first shifts were
language-driven in the Text conditions, with the highest pro-
portion in the Text-no-audio condition when tested against
the three other conditions (Mtext−no−audio = 3.88, β = 1.74, p
< .001). These results provide strong evidence for our key
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Figure 5: Behavioral results from E2. All plotting conven-
tions are the same as in Figure 2.

prediction: that increasing the value of fixating the language
source reduces exploratory gaze shifts to the nonlinguistic vi-
sual world.

HDDM. Using the output of the EWMA, we fit the same
HDDM as in E1. There was high overlap of the posterior dis-
tributions for the drift rate parameters (see Fig 4, panel B),
suggesting that participants gathered the linguistic informa-
tion with similar efficiency. We also found high overlap in
the distribution of credible boundary separation estimates for
the Bullseye, Text, and Text-no-audio conditions. Interest-
ingly, we found some evidence for a higher boundary separa-
tion in the Face condition compared to the other three center
stimulus types (Face boundary = 1.72, HDI = [1.47, 1.97];
Bullseye boundary = 1.42, HDI = [1.21, 1.65]; Text boundary
= 1.38, HDI = [1.16, 1.6]; Text-no-audio boundary = 1.36,
HDI = [1.15, 1.58]), suggesting that adults higher accuracy in
this condition was driven by accumulating more information
before generating a response.

Together, these results suggest that adults were sensitive to
the tradeoff between gathering different kinds of information.
When processing text, people generated fewer nonlanguage-
driven shifts (EWMA results) but their processing efficiency
of the linguistic signal itself did not change (HDDM results).
Interestingly, we found a graded difference in the EWMA re-
sults between the Text and Text-no-audio conditions, with the
lowest proportion of early, nonlanguage-driven shifts occur-
ring while processing text without the verbal stimuli. This
behavior makes sense; if the adults could rely on the auditory
channel to gather the linguistic information, then the value of
fixating the text display decreases. In contrast to the children
in E1, adults were highly accurate in the Bullseye condition,
perhaps because they construed the Bullseye as a center fix-
ation that they should fixate, or perhaps they had better en-
coded the location/identity of the two referents prior to the
start of the target sentence.
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Figure 6: EWMA model output for E2. All plotting conven-
tions are the same as Figure 3.

General Discussion
Language comprehension can be facilitated by fixating on
relevant features of the nonlinguistic visual world or on the
speaker. But how do we decide where to look? We pro-
pose that eye movements during language processing reflect
a sensitivity to the tradeoffs of gathering different kinds of
information. We found that young ASL-learners generated
slower but more accurate shifts away from a language source
and produced a smaller proportion of nonlanguage-driven
shifts compared to spoken language learners. We found the
same pattern of behavior within a sample of English-speaking
adults processing displays of printed text compared to spoken
language. These results suggest that as the value of fixating
on a location to gather information about the linguistic sig-
nal increases, eye movements to the rest of the visual world
become less useful and occur less often.

Our work here attempts to synthesize results from differ-
ent populations and stimuli in a single framework, but it has
several limitations that we hope will pave the way for future
work. First, we have not performed a confirmatory test of
the DDM findings: both ASL-learners (E1) and adults pro-
cessing language from a person (E2) prioritize accuracy over
speed. So these findings, while interesting, are preliminary.
Second, we do not know what might be driving the popula-
tion differences in E1. It could be that ASL-learners’ massive
experience dealing with competition for visual attention leads
to changes in the deployment of eye movements during lan-
guage comprehension. Or, it could be that the in-the-moment
constraints of processing a visual language cause different
fixation behaviors. Finally, we used a very simple visual
world, with only three places to look, and very simple linguis-
tic stimuli, especially for the adults in E2. Thus it remains an
open question how these results might scale up to more com-

plex language information and visual environments.
This work attempts to integrate top-down, goal-based

models of vision (Hayhoe & Ballard, 2005) with work on
language-driven eye movements (Allopenna et al., 1998).
While we chose to start with two case studies – ASL and
text processing – we think the account is more general and
that there are many real world situations where people must
negotiate the tradeoff between gathering more information
about language or about the world: e.g., processing spoken
language in noisy environments or at a distance; or early in
language learning when children are acquiring new words and
often rely on nonlinguistic cues to reference such as point-
ing or eye gaze. Overall, we hope this work contributes to
a broader account of eye movements during language com-
prehension that can explain fixation behaviors across a wider
variety of populations, processing contexts, and during differ-
ent stages of language learning.
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Abstract	
	

In cooperative activities, all parties have a shared goal 
but may not have the same set of skills. The current 
study considers whether preschoolers are sensitive to 
probable differences in individuals’ competence when 
allocating roles. We found that 3.5- to 5.5-year-olds use 
relative competence, as indexed by the age of their 
intended partner, to determine who should do the harder 
and easier of two tasks in a cooperative interaction. A 
second experiment demonstrated that children allocate 
roles differently in a competitive context. Young 
children infer differences in others’ ability and can 
divide labor efficiently to achieve their goals.	
 	
Keywords: cooperation; self/other knowledge; 
planning.	

	
Introduction	

	
Cooperation is a foundation of human culture, observed 
in activities as diverse as governing, hunting, fishing, 
building, and playing (Tomasello, 1999).  Young 
children begin cooperating in problem-solving tasks 
and social games by their first birthday, and the 
sophistication of their cooperative interactions increases 
over the first few years of life (Brownell & Carriger, 
1990; Cooper, 1980; Warneken, Chen, & Tomasello, 
2006). Children cooperate by sharing food and toys 
(Brownell, Svetlova, & Nichols, 2009; Hay, 1979), 
pointing to inform others (Liszkowski, Carpenter, 
Striano, & Tomasello, 2006; Liszkowski, Carpenter, & 
Tomasello 2008), and assisting in goal-directed actions 
(Warneken & Tomasello, 2007). Children also appear 
to expect cooperation: when adults disengage from 
cooperative interactions, they protest (Ross & Lollis, 
1987).  

Across species, the most sophisticated forms of 
cooperation involve collaboration: cases in which 
individuals flexibly adjust their behavior to accomplish 
a goal – as in when some individuals pursue prey and 
others block its escape (Boesch & Boesch, 1989).  In 
laboratory tasks, children as young as 3.5 engage in this 
kind of collaboration, flexibly dividing labor, reversing 
roles when necessary, and coordinating on tasks 
involving different sub-goals (e.g., as when one child 
lifts a lever and another pulls a handle to achieve a joint 
goal; Ashley & Tomasello, 1998; Fletcher, Warneken, 
& Tomasello, 2012). Moreover, older preschoolers 
divide labor appropriately with respect to available  

 
resources: when the participant has both the tools 
needed to achieve a joint goal while their partner has 
only one, five-year-olds (though not 3-year-olds) 
appropriately delegate to their partner the task 
corresponding to their partner’s tool (Warneken, 
Steinwender, Hamann, & Tomasello, 2014).  
Preschoolers also collaborate to achieve goals by 
considering what action the other partner has already 
selected (Warneken et al., 2014).  

Critically, previous research has focused on cases in 
which both partners are, in principle, equally capable of 
performing both roles.  However, people differ not just 
with respect to the availability of external resources, but 
also with respect to their physical, cognitive, and 
emotional resources. This is advantageous for living in 
social groups, given that collaboration among 
individuals with different skills might lead to more 
efficient and effective actions, and better problem-
solving (e.g., Azmitia, 1988; Dyer & Singh, 1998).  
However, to capitalize on diverse skills, role allocation 
should correspond to individuals’ differing capabilities.   

Dividing labor in this way requires integrating 
several pieces of information. Even in simple two-
participant scenarios, the individual must represent both 
her own and her partner’s ability to perform the 
different tasks or components of the task, compare the 
two, and allocate roles so the person relatively more 
capable of each task performs it. Thus an adept 
collaborator should take on a relatively easier task when 
partnered with someone she regards as more capable 
than she is, and a relatively more difficult task when 
partnered with someone she believes is less capable 
than she is. Here we ask whether preschoolers 
effectively allocate roles in collaborative tasks by 
considering their own abilities relative to a partner’s. 

Previous research, in addition to the work reviewed 
above, provides grounds for believing that children 
might succeed at this kind of division of labor. Three 
and four-year-olds acknowledge and comment on the 
fact that different people have different abilities 
(Mostache & Bragonier, 1981), and are sensitive to 
differences in others’ knowledge, competence and 
reliability (e.g., Jara-Ettinger, Tenenbaum, & Schulz, 
2015; Koenig, Clément, & Harris, 2004; Sobel & 
Kushnir, 2013). Such evaluations influence children’s 
helping behavior; children as young as 3 who master a 
problem-solving task spontaneously tutor learners they 
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know are naïve (Johnson, Pynn & Nisbet, 2002). 
Preschoolers’ ability to accurately represent their 

own strengths and weaknesses is somewhat more 
controversial. Some work suggests that preschoolers are 
(excessively) optimistic about their abilities (Cimpian, 
2010; Smiley & Dweck, 1994; Schneider, 1998), and 
thus resilient in the face of negative feedback 
(Boseovski, 2010; Droege & Stipek, 1993; Ruble, 
Parsons, & Ross, 1976).  To the degree that children 
misjudge their own abilities, they would be relatively 
incapable of efficient division of labor.   

However, other work suggests that children begin to 
regard themselves as good or bad at tasks even in very 
early childhood (e.g., Gunderson et al., 2013; Heyman, 
Dweck, & Cain, 1992; Smiley & Dweck, 1994). 
Moreover, children begin to evaluate their own 
performance relative to their peers as young as 3 
(Butler, 1988; Cimpian, 2010; Magid & Schulz, 2015; 
Rhodes & Brickman, 2008).  For the current purposes, 
note that even if children are relatively poor judges of 
their abilities in an absolute sense, they might be able to 
judge whether one task is easier for them than another, 
and whether they are more or less capable than a peer. 
If so, children might recognize that they should take the 
easier task if they believe their partner is more capable 
than they are, and the harder task if they believe their 
partner is less capable.   

 
Experiment 1 

 
In the current study, we test this by introducing 

children to two carnival style games: a ring toss and 
ball toss. Each game had an easy and a hard version. 
(See Figure 1.) Any individual child got the easy 
version of one game and the hard version of the other 
(counterbalanced across participants). Children were 
not told that one game was “easy” and the other was 
“hard” but they were allowed to try each game four 
times to get a sense of their own ability to succeed on 
each task. Children were then told that another child 
was going to come to play with them. They were told 
that they should choose one game for their partner, and 
one game for themselves, and that if they both 
succeeded – so that a ring went on a pole and a ball 
went in the box— a special machine would light up. 

How might children infer others’ capabilities on a 
novel task?  Considerable work suggests that children 
play differently with peers of different ages (Brody, 
Stoneman, & MacKinnon, 1982; Edwards & Lewis, 
1979; French, 1984) thus here we manipulated the age 
of the (fictitious) peer to see whether children would 
use this to infer their peers’ competence relative to their 
own and allocate roles accordingly. In one condition, 
children were told that the partner would be younger 
(Younger Other condition); in the other condition they 
were told that their partner would be older than the 

participant (Older Other condition). 
There are a number of possible results. If children are 

poor judges of task difficulty, they should choose at 
chance. If children judge the tasks accurately, but try 
only to maximize their own chances of success (and 
ignore the joint, collaborative nature of the task) they 
should always choose the easy task for themselves and 
the hard task for their partner.  Alternatively, if children 
tend to overestimate themselves (or underestimate their 
partners) they should always choose the hard task for 
themselves and the easy task for their partner.  
However, if children’s role allocation in cooperative 
tasks is sensitive to relative ability (as indexed by age), 
they should choose the easier game for their partner if 
their partner is younger, and the easier game to 
themselves if their partner is older.  
	

Figure 1: Each participant saw only one setup (top or 
bottom). Participants practiced each game before 
allocating roles. 	
	
Method 
	
Participants and Materials.	 All procedures and the 
analysis plan for this study were pre-registered on the 
Open Science Framework (osf.io/aq246). Assuming a 
large effect size (Cramer’s V=.50), a power analysis 
indicated that 44 participants were required to reach a 
power of .90. All participants were recruited from an 
urban children’s museum and randomly assigned to one 
of two conditions: Younger Other or Older Other. 
Forty-four children (mean age = 54 months; range 43-
66 months) were included in the final sample (n=22 per 
condition). Ten additional children did not pass the 
inclusion criteria. (See Procedure for details). An 
additional five children were tested but excluded due to 
parental interference (n=3) or failing to provide a 
response to the test question (n=2).	

Hard Rings 

Easy Balls 
Machine 

Easy Rings 

Hard Balls 
Machine 
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A felt mat (132x94 cm) was placed on the floor for 
game play. The mat was marked with three tape Xs and 
a line (16cm in front of the Xs) to indicate where 
participants should stand. Participants stood on the left 
and right Xs to play games and the center X to answer 
questions. Children played two games: a ring toss and a 
ball toss. Each game had two versions—one easier 
(Easy Rings, Easy Balls) and one harder (Hard Rings, 
Hard Balls). The ring toss used a plastic pole on a black 
circular plastic base. The easier version used a shorter 
pole (22cm with a 5cm red tip) and was closer to the 
tape line (13 cm away); and the harder version used a 
taller pole (40cm with a 5cm red tip) and was farther 
from the tape line (65cm away). The ring toss game 
was played with blue rings (16cm diameter). Each ball 
toss game used a gray fabric box placed on top of a blue 
plastic crate (24x24x41cm) and was played with yellow 
plastic balls (26cm circumference). The easier version 
used a larger box (29x14x10cm) with a cardboard 
backboard (17x28cm) and was placed at the front of the 
crate, closer to the tape line (53cm). The harder version 
used a smaller box (14x14x10cm) elevated on a black 
box of the same size, and was placed at the back of the 
crate, farther from the tape line (77cm). Half the 
participants played the Easy Rings and Hard Balls; half 
the Hard Rings and Easy Balls. Laminated cards 
(23x6cm) showed photographs of Older Other or 
Younger Other children. Children depicted in the 
photographs were either two-year-olds (10cm tall) or 
six-year-olds (15cm tall), based on the condition. A 
laminated card of the same size had the word “YOU” 
printed in the center and was used to represent the 
participant. A remote-controlled LED light machine 
(12x13x12cm) was used for the joint task. 	

	
Procedure.	All children were tested individually in a 
quiet room at a children’s museum. Children were 
shown two games (either Easy Rings and Hard Balls, or 
Hard Rings and Easy Balls) and given the chance to 
practice each game four times. The game played first 
(rings or balls), the location of each game (right or left), 
and the version of each game (easy or hard) were 
counterbalanced across children. After children 
practiced, the experimenter introduced the light 
machine and explained that players of the two games 
could work together to achieve a single joint goal: if the 
ball went in the box and a ring went on the pole at the 
same time, then the machine would light up. The 
experimenter introduced the participant to the fictional 
Other child, named Jamie, by explaining that she had 
talked with the other child earlier that day and that s/he 
wanted to come play the games together with the 
participant. The experimenter then showed children a 
card with a picture of the Other child and said that they 
were either a toddler (Younger Other) or a first-grader 
(Older Other). The experimenter then asked children 

their own age, specifying that the Other child was 
younger or older, by condition. The Other child was 
matched by gender to the participant. For each category 
(Younger boy, Older boy, Younger girl, Older girl) two 
pictures were used to reduce the possibility that 
ancillary features of any picture might influence 
children’s choices or perceptions of the Other child’s 
abilities. The photographs represented a diversity of 
races and ethnicities. The experimenter then asked 
children to allocate roles by choosing which game the 
Other child should play, placing the Other child’s 
picture next to the game chosen for them and a card 
with “YOU” written on it next to the game the 
participant chose for themselves. One game was 
designed to be easier than the other, however 
differences in motor skills or experience might lead 
different children to different conclusions, thus to 
ensure that the role allocation matched children’s 
judgment of the relative difficulty of the two games, we 
asked children “Which game was easier?” As a follow-
up, children were asked why they chose the game they 
picked for the Other child. Finally, we asked children if 
the Other child was older or younger to ensure that they 
had understood the task. This last question was used as 
an inclusion criterion: children who did not answer 
correctly were not included in the analysis.1 Following 
these questions, the experimenter left the room briefly 
(15-30 seconds) and returned saying that she couldn’t 
find the Other child. The experimenter then played the 
games with the child to turn on the light machine.	

 
Results	

	
In response to, “Which game was easier?” 37 of the 44 
children (84%) responded that the game we had 
designed to be easier was easier for them. Children’s 
self-reported judgment was used in all analyses 
(consistent with the pre-registered design). 	

As predicted, children’s role assignments differed by 
condition χ2(1)=7.62, p=.006, V=.462. In the Younger 
Other condition, 64% of children assigned their partner 
the Easy Game. In the Older Other condition, only 18% 
of children assigned their partner the Easy Game.  
Collapsing across conditions, 73% of children assigned 
roles in a way corresponding to the difficulty of 
fulfilling each role in the joint task, p=.004 by binomial 
																																																								
1 It might seem surprising that any children failed to 
remember whether the Other child was older or 
younger. However, recall that the photos of the Other 
child used in the study reflected a range of ethnicities.  
Anecdotally (given the small number of excluded 
children) children who missed this question tended to 
miscategorize the age of a photo of a child of another 
race than themselves, possibly reflecting an own-race 
bias in processing faces (Anastasi & Rhodes, 2005).   	
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test. Children allocated roles in a way most likely to 
their joint success.	Given previous work showing that 
five-year-olds, but not 3-year-olds allocate roles based 
on available resources (Warneken et al., 2014), we also 
asked whether the likelihood of participants allocating 
roles based on ability increased with age. We found no 
evidence of an age effect in the present task, β=-
.004(.75), p=.995, suggesting that even children as 
young as 3.5 years can allocate roles in a cooperative 
interaction given inferred differences in ability. 	

Although there was no significant difference in 
children’s ability to allocate roles effectively in each 
condition, Fisher’s Exact Test, p=.31, it is intriguing 
that twice as many children (eight) in the Younger 
Other condition misallocated the hard game to the 
toddler whereas only four children in the Older Other 
condition misallocated the hard game to themselves. 
Both the Easy Game and the Hard Game were fairly 
difficult for the preschoolers. Children scored a zero out 
of four practice trials 32% of the time across both 
games. As such, the decision of some children in the 
Younger Other condition to allocate the Easy Game to 
themselves may make sense: given that a toddler is 
unlikely to do better, and the joint goal may thus seem 
out of reach, it is reasonable for children to choose the 
game at which they themselves are more likely to 
succeed. Indeed, when partnered with a younger child, 
the majority of preschoolers opted for a game that, 
while increasing the probability of achieving the joint 
goal, decreased the probability of their own success.   
	

Discussion 	
	

Results from Experiment 1 suggest that children 
appropriately consider their own and their partner’s 
relative abilities in allocating roles in a cooperative 
interaction. However, the results raise questions about 
the extent to which preschoolers simply assign harder 
games to older children and easier games to younger 
children without regard for context in which they are 
making this decision. Here children’s explanations 
provide some insight. Recall that we asked children 
why they chose one of the games for the Other child 
and the other for themselves. Nine children did not 
answer, and eleven gave uninformative answers. 
However, 24 children referred to the difficulty of the 
activities and/or alluded to relative ability (e.g., “She is 
older and can get the balls in”; “Because it’s easier for 
him (in context, this meant “than the other game” rather 
than “easier for him than me”). Anecdotally, children’s 
spontaneous behavior also provided some evidence that 
children think about role allocation dynamically: one 
child in the Younger Other condition who had assigned 
the Easy game to her partner asked to switch roles when 
she learned that the Experimenter, not a toddler, would 
be her partner in the interaction.  

 
Figure 2: Proportion of children who chose the Easy  
Game or Hard Game for their partner by condition in 
Experiment 1: Joint Goal Context.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Proportion of children who chose the Easy 
Game or Hard Game for their partner by condition in 
Experiment 2: Competitive Context.  
	
Experiment 2 
	
Testing the sophistication of children’s role allocation 
requires seeing if children allocate the roles differently 
if they are not in a cooperative context.  In Experiment 
2, we tested children in a competitive condition: in this 
context, children should assign their partner the harder 
game regardless of the other child’s ability. 	
	
Method 
 
All participants were recruited from an urban children’s 
museum and randomly assigned to one of two 
conditions: Younger Other or Older Other. Forty-four 
children (mean age = 54 months; range 42-65 months) 
were included in the final sample (n=22 per condition). 
Seven additional children did not pass the inclusion 
criteria. (See Experiment 1 for details). Two additional 
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children were tested but excluded due to parental 
interference. Materials were the same as Experiment 1.  	

Children were introduced to and practiced the two 
games as in Experiment 1. After children practiced, the 
experimenter introduced the light machine and 
explained that the person who gets a ball in the box or a 
ring on the pole before the other person wins and gets 
to turn on the machine to establish a competitive 
context. The introduction of other child, Jamie, and the 
questions (asking children which game Jamie should 
play, which game was easier, and how old Jamie is) 
were identical to Experiment 1. 	
	
Results	
	
In response to, “Which game was easier?” 34 of the 44 
children (77%) responded that the game we had 
designed to be easier was easier for them. As predicted, 
children’s role assignments did not differ by condition 
χ2(1)=1.03, p=.31, V=.204. In the Younger Other 
condition, 64% of children assigned their partner the 
Hard Game, see Figure 3. In the Older Other condition, 
only 82% of children assigned their partner the Hard 
Game.  Collapsing across conditions, 73% of children 
assigned the harder game to the Other child, p=.004 by 
binomial test. These results suggest that children do not 
allocate the harder game to the older child and the 
easier game to the younger child independent of 
context. Instead, participants took into account the 
competitive context of the interaction and assigned 
roles accordingly. 	
	

Conclusions	
	

In the current study we found that young children 
allocate roles appropriately in 1) a cooperative 
interaction, deciding that the less competent partner 
should take on the easier task while the more competent 
partner takes on the harder task and 2) a competitive 
interaction, deciding that the partner should take on the 
harder task. Note that we did not label the tasks as easy 
or difficult prior to when children allocated roles. 	

Past work looking at children’s ability to use social 
comparison information has focused on how children 
compare themselves to others to evaluate their abilities, 
or to plan future actions (Butler, 1998; Magid & 
Schulz, 2015; Rhodes & Brickman 2008; Ruble, et al., 
1994). The current study shows that relative ability 
appraisals are also involved in planning joint 
interactions. Although one could imagine that 
preschoolers would simply choose which games to play 
based on how much they like playing each game, these 
results suggest they consider the games as sub-goals in 
a cooperative task and consider their own and others’ 
competence in allocating roles.	In future work, we plan 

to ask how other contexts affect role allocation. 
Consider for instance that one goal of an interaction 
might be to allow the other partner to develop her skills. 
In this case, less competent, and younger individuals 
might be asked to do harder parts of a task. Note also 
that the current study asks a single child to allocate 
roles for herself and one other child, and to plan for a 
task occurring immediately. How children allocate roles 
among multiple individuals, in real time requires 
negotiating myriad other factors that influence 
successful cooperation. Additionally, we note that age 
is a coarse proxy of ability: younger individuals can be 
more skilled than older ones and in some contexts, most 
likely are. Moreover, individuals of exactly the same 
age may have special competencies and expertise in 
particular areas. Studies suggest that children are 
sensitive to these differences in ability and know who 
to ask for help for particular kinds of tasks (Koenig & 
Jaswal, 2011; Kushnir, Vredenburgh, & Schneider, 
2013; Lutz & Keil, 2002). Future work might ask 
whether children also use such knowledge to allocate 
roles appropriately. However, these results suggest that 
at least some of the core skills underlying teamwork 
and collaborative problem-solving are in place in early 
childhood. 	
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Intuitive psychophysics: Children’s exploratory play quantitatively tracks the
discriminability of alternative hypotheses
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Abstract: Studies suggest that children’s exploratory behavior is sensitive to uncertainty; however, few have approached this
with sufficient precision to model quantitatively. Across three experiments, children (mean age=70 months) were asked to shake
a box to identify which of two sets of marbles, differing in numerosity, were hidden inside. The sets’ numerosities varied in their
discriminability indices – the degree to which listeners can distinguish the sets based on the acoustic information generated.
The time children spent shaking the box varied systematically with the discriminability of the alternative hypotheses they were
asked to distinguish, even though they heard only one set for each contrast. This suggests that children represent the uncertainty
in their own perceptual discrimination abilities (an ability we refer to as an intuitive psychophysics) and their exploratory
behavior is precisely calibrated to their degree of uncertainty about alternative hypotheses that might explain unobserved causes
of perceptual data.
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Abstract 

Averaging the estimates of a number of individuals has been 
shown to produce an estimate that is generally more accurate 
than those of the individuals themselves. Similarly, averaging 
responses from a single individual can also lead to a more 
accurate answer. How can we best combine estimates within 
and between individuals to create an accurate group estimate? 
We report empirical results from a general knowledge rank-
ordering experiment and demonstrate that individuals that 
provide more consistent answers across repeated elicitations 
are also more accurate. We develop a consistency weighting 
heuristic and show that repeated elicitations within an 
individual can be used to improve group accuracy. We also 
develop a Thurstonian cognitive model which assumes a 
direct link between the process that explains the accuracy of 
an individual and response consistency and show how the 
model can infer accurate group answers. 

Keywords: Bayesian Modeling; Rank Ordering; Knowledge; 
Recall; Wisdom of Crowds; Within; Expertise; Uncertainty; 
Coherence; Consistency. 

Introduction 
There has been a lot of interest recently regarding how the 

judgments of individuals can best be combined to make 
group estimates that are as accurate as possible. When there 
is a ground truth – one single, verifiable correct answer – 
the group average is often more accurate than most or all of 
its constituent individual judgments (Davis-Stober, 
Budescu, & Broomell, 2014; Wallsten, Budescu, Erev, & 
Diederich, 1997; Yaniv & Foster, 1997) even if the correct 
answer is unknowable at the time of questioning (Lee, 
Steyvers, de Young, & Miller, 2012). When repeated 
judgments are averaged within one individual as opposed to 
across individuals, a similar phenomenon occurs. For 
example, when a single person produces two estimates for 
the same underlying quantity, the average of the two 
estimates is generally less erroneous than the individual 
estimates (Vul & Pashler, 2008; Herzog & Hertwig, 2009; 
Ariely et al. 2000). A standard explanation for these 
averaging benefits is that random error associated with 
probabilistic mental representations and processes partially 
cancel out in the average. A larger averaging benefit is 
typically found when averaging judgments across as 
opposed to within subjects (Rauhaut & Lorenz, 2011; 

Müller-Trede, 2011) presumably because differences in 
mental representations and associated random error is larger 
across individuals. 

In order to improve the accuracy of the group average, 
many approaches have been developed to identify and 
upweight more expert or accurate judgments in the group 
average, including performance or contributor weighting 
(Budescu and Chen; Cooke, 1991; Bedford & Cooke, 2001; 
Aspinal, 2010), consensus (Shanteau et al. 2002; Wang et al. 
2011; Batchelder & Romney, 1988; Batchelder & Anders, 
2012; Lee, Steyvers, de Young & Miller, 2012; Lee, 
Steyvers, & Miller, 2014) as well as subjective confidence 
and metacognitive judgments (Koriat, 2012; Prelec, 2004).  

We will focus on the role of response agreement within 
subjects as an indicator for expert judgment. Previous 
research has shown that expert judgments tend to be more 
consistent over time (Einhorn, 1972, 1974) and that intra-
subject reliability can be used as a proxy for expertise 
(Shanteau, Weiss, Thomas, & Pounds, 2002; Weiss & 
Shanteau, 2003; Weiss, Brennan, Thomas, Kirlik, & Miller, 
2009). This work has focused on the idea of highly 
specialized expertise and across-question consistency for 
tasks such as perception and categorization (Weiss & 
Shanteau, 2003; Weiss, Brennan, Thomas, Kirlik, & Miller, 
2009). As opposed to previous research, we focus on tasks 
where expertise may be question-specific; subjects may 
have knowledge for some questions, but not for others, 
making their question level consistency more informative 
about their expertise than the overall domain consistency. 

One challenge for using intra-subject consistency as an 
indicator for expert judgment is that other factors can 
contribute to response agreement, including decision 
strategies and episodic recall (Vul & Pashler, 2008; 
Hourihan & Benjamin, 2010). For example, in Vul and 
Pashler's experiment, subjects were prompted for a second 
estimate either in the same experimental session or after a 
delay of three weeks. The intra-subject averages were most 
accurate after a delay of three weeks, suggesting that 
subjects were less likely to simply recall the first answer 
after a long delay. The requirement of a long temporal delay 
between repeated questions to avoid episodic recall might 
not be practical in scenarios where subject judgments need 
to be aggregated over a short interval.  
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In this paper, we focus on rank-ordering questions where 
the task is to rank-order a set items such as Presidents by 
terms in office or US cities by population size (Miller, 
Hemmer, Steyvers, Lee, 2009; Lee et al. 2012; Lee, 
Steyvers, Miller, 2014). In contrast to simple yes/no or 
percentage estimation question involving single quantities, 
rank-ordering questions involve the retrieval and 
coordination of many pieces of information, making it less 
likely that a subject can explicitly remember a previous 
response. In the absence of easily available episodic 
strategies, subjects can be asked for a second response 
almost immediately after their first, eliminating the need for 
multiple conditions and removing any question anchoring 
effects.  

Our contribution in this paper is threefold. First, we show 
that the crowd within an individual effect observed by Vul 
and Pashler exists for rank-ordering tasks, indicating that 
there is a degree of statistical independence between 
repeated elicitations for rank-ordering judgments. Second, 
we demonstrate that the agreement between the first and 
second response is related to each subjects’ response 
accuracy. We present a simple consistency weighting 
heuristic where rank-ordering judgments from individuals 
that are consistent across repeated questions are given larger 
weight in the group average. We demonstrate that this 
consistency weighting heuristic significantly improves 
group accuracy. Finally, we introduce a new repeated-
elicitation variant of a Thurstonian model for rank-ordering 
that has been explored elsewhere (see Steyvers et al., 2009 
& Lee et al., 2012). We compare the performance of the 
repeated-elicitation model and the original variant, and 
demonstrate that accounting for the variance in an 
individual’s responses improves overall group aggregation 
performance 

Experiment 

Method 
The experiment was composed of 8 rank ordering questions, 
and an additional 3 distracter questions; the distracter 
questions were included to increase the delay between 
subject responses. Increased delay between responses has 
been shown previously to increase response independence 
and effect size (see Vul & Pashler, 2008). Subjects were 120 
undergraduate students between the ages of 18 and 22 at the 
University of California, Irvine who were compensated with 
course credit. 

Selection for the non-distracter questions was based on 
difficulty, as determined by the accuracy of subjects in 
previous experiments (Steyvers et al., 2009; Miller et al., 
2011). Approximately one third of questions were selected 
for being easier (U.S. Holidays, U.S. Presidents, Book 
Release Dates), three for being moderately difficult 
(Country Landmasses, U.S. Cities, European Cities), and 
one two for being particularly difficult (10 Amendments, 
World Cities).  All were general knowledge questions that 
subjects were likely to have had exposure to. For the 

distracter questions, subjects were asked to rank teams for 
the NFL and NBA based on what they thought their final 
season standing would be. 

Subjects were given the eight knowledge questions in a 
random order, and items for each question were initially 
placed in random positions. Subjects were then given the 
distracter questions. Subjects were then prompted to give 
responses for the eight questions again, in the same order 
they appeared in the first elicitation, but with a new random 
initial placement of the items for each question. 

All questions had a ground truth obtained from Pocket 
World in Figures and various online sources. An interactive 
interface was presented via a web browser on computer 
screens. Subjects were instructed to order the presented 
items (e.g., “Order these books by their first release date, 
earliest to most recent”), and responded by dragging the 
individual items on the screen using the computer mouse 
and “snapping” them into the desired locations in the 
ordering, as in previous experiments. Transitions between 
question blocks were marked by a holding page reminding 
subjects of the instructions for the tasks. At no point were 
subjects informed that they would be answering the same 
questions twice. 

Results 
Assessing Accuracy Performance was measured relative to 
the ground truth using Kendall’s tau distance τ. This metric 
is used to count the number of pair-wise disagreements 
between the reconstructed and correct ordering (lower is 
better). The larger the distance, the more dissimilar the two 
orderings are. Values of τ range from: 0 ≤ τ ≤ N(N-1)/2, 
where N is the number of items in the order (ten for all of 
our questions). A value of zero means the ordering is 
exactly right, a value of one means that the ordering is 
correct except for two neighboring items being transposed, 
and so on up to the maximum possible value of forty-five 
(indicating that the list is completely reversed). An average 
score of 22.5 is expected for random performance. 
Averaged Responses We first evaluated whether or not 
averaging the responses within each individual reduced the 
error relative to the individual responses, indicating 
statistically independent error of the sort observed in the 
simple recall tasks of Vul and Pashler (2008). Table 1 
shows the median Kendall’s tau distance for individual 
rank-ordering problems for the first and second response as 
well as the combined first and second response using the 
Borda aggregation method (see modeling section for Borda 
details). Subjects’ error on the first and second responses 
were not significantly different, on average, and varied 
according to question difficulty. The averaged first and 
second responses of each subject (combined column in 
Table 1) was less erroneous than the first and second 
responses – t(120)=2.16, p<.05 and t(120)=2.87, p<.01 
respectively – replicating the findings of Vul and Pashler 
(2008) for rank ordering tasks.  
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Response Consistency and Accuracy If subject response 
consistency is correlated to the precision of an individual’s 
knowledge, then multiple independent responses should be 
further apart from each other the less knowledgeable a 
subject is. We quantified (inverse) response consistency as 
the Kendall’s tau distance between subjects’ responses. 
Subjects with a larger distance between their first and 
second judgment should show a higher tau distance to the 
ground truth. Figure 1 illustrates this relationship separately 
for the first and second response. The correlation between 
each subject’s response disagreement, and the error of their 
first and second responses, is ρ=.51 and ρ=.55 respectively.  
This correlation is observed not only across all questions, 
but also for each individual question. The correlation 
between response disagreement and accuracy appears to 
scale linearly with overall subject accuracy for the problem.  

Modeling 
While averaging across a given individual’s responses 
yields answers that are more accurate, the improvement is 
far smaller than averaging two responses across subjects 
(Miller et al., 2011). Given a large number of subjects, it is 
unclear whether repeated elicitations would improve group 
responses aggregation if they are merely treated as extra 
subjects. Can within-subject response consistency be 
integrated into a between-subject aggregation model to 
improve overall accuracy? To test this, we evaluate two 
models – a heuristic approach based on Borda aggregation 
method and a Thurstonian cognitive model of subject 
behavior. 

Borda Aggregation 
In order to assess if incorporating within-subject response 
consistency can improve between-subject estimates for rank 
ordering tasks, we used a modified version of Borda count 
aggregation that incorporates subject weighting. Borda 
aggregation is a representative aggregation heuristic that has 
been used widely elsewhere (see Miller et al., 2009). In 
traditional Borda count aggregation, all items are assigned 

points based upon their location in a given response: 1 point 
for being in position 1, 2 points for being in position 2, up to 
10 points for a list of 10 items. In a standard Borda 
aggregation method, the points are added across all rank-
orderings provided by subjects and the items are ordered 
according to the sum totals for each item. In our modified 
Borda aggregation method, we add a weighting factor for 
each individual subject in order to upweight subjects that are 
more consistent. Specifically, we calculate the point total 

for each item ∈ 1,… , } by: 

,  

where ,  is the rank of item k for subject j∈ 1,… , }, and  
 is the weight given to subject j. As in a standard Borda 

method, the sums of these points for each item are then 
ranked from smallest to largest to determine the final Borda 
aggregate rank ordering  

For an unweighted aggregate rank-ordering, the subject 
weights were set to the same value for all participants. We 
used this as the baseline for comparison. For the aggregate 
rank-ordering weighted by response consistency, we use the 
inverse of the tau disagreement between the first and second 
rank-ordering:  

1 1⁄  
where we add one to the distance in order to avoid zero 
division. Therefore, the rank-orderings of participants with 
larger response consistency have a stronger influence on the 
aggregate rank ordering. 

Figure 2 shows the aggregation results. As we found 
previously (Miller et al., 2009), unweighted Borda 

Table 1: Subject response error (Kendall’s tau) 
across individual rank-ordering problems. 

Problems 1st 2nd Combined 

Landmass 9 10 8 

Holidays 7 8 7 

Presidents 7 7 6 

Books 11 11 10 

Euro Cities 15 16 14 

US Cities 16 14 14 

World Cities 21 21 20 

10 Amendments 16 15 15 

AVERAGE 12.5 12.7 11.9 

 
 
Figure 1: Correlation between response disagreement 
and accuracy for the first answer (top panel) and 
second answer (lower panel).  
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aggregation outperforms the average subject for all eight 
questions. Additionally, the weighted Borda model performs 
as well as or better than the unweighted model for all but 
two of the questions. The weighted Borda model performed 
worse for the Presidents question because most subjects 
performed so well that weighting over-penalized the many 
subjects with near-correct responses. Similarly, the model 
performed poorly on the European Cities question because 
there were so few subjects that performed well. Aggregation 
for the unweighted Borda model was performed across both 
trials so as not to give the weighted model the advantage of 
extra subject responses. This superior performance in 
reconstructing the ground truth ordering demonstrates that 
response consistency can be used to improve group 
accuracy for rank ordering tasks. Next we explore whether a 
cognitive model of the rank-ordering task can better 
describe subject behavior and more accurately reconstruct 
the ground truth.  

Thurstonian Model 
Given that subject response consistency is clearly related to 
accuracy in rank-ordering tasks, what kind of mechanism 
might be responsible for this observed behavior? We 
developed a probabilistic model based upon a Thurstonian 
approach. In a Thurstonian representation, the latent ground 
truth ordering for a specific problem is represented by 
coordinates on an interval scale. As Figure 3a illustrates, 
each item k is represented as a latent coordinate k on an 
interval dimension. Note that this represents not the actual 
ground truth but the latent truth as perceived by a group of 
individuals. The one-dimensional representation of items is 
appropriate as all problems in our study involve one-
dimensional relative judgments (e.g. the size of items and 
the timing of events).  

Each individual i is assumed to have access to all of the 
ground truth latent coordinates , but without precise 
knowledge about their exact locations. This uncertainty is 
represented with normal distributions that are centered on 
the shared latent ground truth locations and with a subject-
level i that represents the uncertainty of the individual 
about the item locations. Note that for a given subject, all 
items have the same standard deviation which is a strong 
assumption but simplifies the model considerably.  

As Figure 3b shows, the subject draws mental samples 
from these item distributions. Repeated elicitations are 
modeled simply by repeating the sampling process which 
leads to a new set of samples. The rank-ordering produced 
by a subject is then based on the order of the mental 
samples.  

As illustrated in Figure 3c, different subjects can have 
different uncertainty i, and this influences not only the 
response accuracy but also the response consistency. For 
example, the larger uncertainty associated with the subject 
illustrated in Figure 3c leads to more transposition errors in 
the mental samples associated with a given response – it 
becomes more likely that samples of nearby distributions 
are out of order (relative to the latent ground truth) which 

lowers accuracy. In addition, the larger uncertainty also 
leads to increased differences in orderings between different 
responses. Therefore, the model assumes an inherent 
connection between response consistency and accuracy – 
they are both driven by a latent parameter i that represents 
the (inverse) expertise level of a subject for a particular 

 
 

Figure 2: Aggregation performance of unweighted and 
weighted Borda aggregation across first and second 
responses, compared to the average subject 
performance.

 

 
 
Figure 3: Illustration of the Thurstonian Model for 
repeated elicitations. (a) The latent ground truth is 
represented as a set of coordinates on an interval scale 
(b) Uncertainty about the latent ground truth is 
represented by Gaussian noise and responses are created 
by sampling latent values from each item distribution (c) 
Example of a subject with larger uncertainty about the 
ground truth and larger variability in the item samples 
across the first and second response 
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question.  
 This multiple-elicitation model is different from previous 

Thurstonian models that we have presented, where subjects 
only give a single response per question (Steyvers et al., 
2009; Miller & Steyvers, 2011). This extended model 
allows us to examine whether accuracy and response 
consistency can be described with the same underlying 
mechanism.   

We apply Bayesian estimation techniques to infer the 
group representation from individual orderings. Figure 4 
shows the Thurstonian model for a single question across 
subjects using graphical model notation (see Koller, 
Friedman, Getoor, & Taskar, 2007; Shiffrin, Lee, Kim, & 
Wagenmakers, 2008, for statistical and psychological 
introductions). Each node represents a model variable, and 
the graph structure is used to indicate the conditional 
dependencies between these variables. Stochastic and 
deterministic variables are indicated by single-and double-
bordered nodes (, , x and y respectively), and observed 
data are represented by a shaded node (y). The plate 
represents independent replications of the graph structure, 
which corresponds to multiple elicitations from each 
individual i and across individuals for each question j.  

To explain how these data are generated, the model 
begins with the underlying ground truth location of the 
items, given by the vector . The latent ground truth  is 
given a flat prior such that all item locations are equally 
likely a priori. Each individual has an associated uncertainty 
parameter j ~ Gamma(0, 1/) where  is a hyper-
parameter that determines the variability of the expertise 
levels across individuals. We set  = 3 in the current model. 

To determine the order of items for the ith repetition, the 
jth individual samples a location xijk for each item k where 
xijk ~ Normal(k,j). The sample xijk represents the realized 
mental representation for the individual at that particular 
time. The ordering for each individual is determined by the 

ordering of all of their mental samples yij = Rank(xij).    
While the generative model is relatively straightforward, 

the inference is challenging because the observed data yij is 
a deterministic ranking. We utilized MCMC procedures 
originally developed by Yao and Böckenholt (1999), which 
allowed us to estimate the posterior distribution over the 
latent variables xijk, j, and  given the observed orderings 
yij. We use Gibbs sampling to update the mental samples xijk, 
and Metropolis-Hastings updates for j and . 

Figure 5 shows the accuracy of three aggregation models, 
and demonstrates that the repeated elicitation Thurstonian 
model performed best overall. It outperformed the weighted 
Borda model and also outperformed a Thurstonian model 
that is given both the first and second response of 
participants but treats the second responses as coming from 
a new set of participants. Additionally, the repeated 
elicitation Thurstonian model matched or exceeded other 
models’ performance for each individual question. 

The advantage of the repeated elicitation Thurstonian 
model over the Thurstonian model where the first and 
second responses are not linked to the same subject is not 
due to the fact that it has access to additional response 
information (it uses the same set of subject responses), but 
because the model simultaneously infers a subject’s 
uncertainty based upon their disagreement with other 
subjects and their disagreement with themselves. In this 
way, we have some confidence in the Thurstonian 
representation of individual-level uncertainty for subject 
item recall, both as a generative model and as a means of 
yielding more accurate group estimates for rank ordering 
tasks.  

Conclusions 
In this paper, we have shown that repeated elicitations for 
general knowledge rank-ordering tasks exhibit statistically 
independent error, and the variance of that error is 
correlated to the accuracy of subject responses for easy and 
difficult questions. Additionally, we have shown that this 
response consistency can be used to improve group 

 
 
Figure 5: Aggregation performance of weighted Borda, 
traditional Thurstonian, and repeated Thurstonian 
models. 

 
 
Figure 4: Graphical model of the Thurstonian model for 
repeated elicitations. 
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aggregate accuracy in reconstructing the ground truth 
answer for rank ordering knowledge tasks. These findings 
might also be applicable to tasks that do not have a known 
ground truth, as we have discussed elsewhere (Lee et al., 
2012). Finally, we introduced a cognitive model of rank-
order judgement wherein a subject-level uncertainty 
parameter accounted for both subject response accuracy and 
response consistency, and found that it was best able to 
capture subject behavior and reconstruct the original ground 
truth ordering for each of our questions. This lends credence 
to the idea of a combined probabilistic mechanism for 
consistency and accuracy underlying the subject behavior 
observed in these complex knowledge recall tasks. 
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Abstract

A widely observed phenomenon in children’s word-extensions
and generalizations is the characteristic-to-defining shift,
whereby young children initially generalize words based on
typical properties and gradually transition into generalizing
words using abstract, logical information. In this paper, we
propose a statistically principled model of conceptual devel-
opment grounded in the trade-off between simplicity and fit to
the data. We run our model based on informant-provided fam-
ily trees and the real-life characteristic features of people on
those trees. We demonstrate that the characteristic-to-defining
shift does not necessarily depend on discrete change in rep-
resentation or processes. Instead, the shift could fall out nat-
urally from statistical inference over conceptual hypotheses.
Our model finds that the shift occurs even when abstract logical
relations are present from the outset of learning as long as char-
acteristic features are informative but imperfect in their ability
to capture the underlying concept to be learned—a property of
our elicited features.

Keywords: characteristic-to-defining shift; concept learning;
development; computational modeling

Introduction
Children can often comprehend a word and use a word with-
out having a full grasp of its meaning. Consider the fol-
lowing scenario from Keil and Batterman (1984, pp. 226):
“This smelly, mean old man with a gun in his pocket came to
your house one day and took your colored television set be-
cause your parents didn’t want it anymore and told him that
he could have it.” While adults have a strong sense that the
man in the scenario is not a robber, young children are willing
to label the man a robber. Across multiple domains, young
children have been shown to initially privilege perceptually-
observable, characteristic information in concept learning.
Eventually, children transition to more abstract, conceptually-
aligned-upon meanings. This phenomena has been termed
the characteristic-to-defining shift (Keil & Batterman, 1984).

Previous research has suggested that perceptual similar-
ity (e.g., shape) plays a strong role in young children’s early
word-concept mappings (e.g. Landau, Smith, & Jones, 1988).
As children age, they begin to use deeper, relational prop-
erties for concept learning (Imai, Gentner, & Uchida, 1994;
Keil & Batterman, 1984). For example, Keil and Batterman
(1984) probed kindergartners’, second graders’, and fourth
graders’ definitions for several words using a scenario task.
In some scenarios, characteristic features of a term were pre-
sented without the defining features of the term; whereas,
other scenarios provided the defining features of the term
without the typical characteristic features associated with the
term. Younger children extended a word’s meaning to more
scenarios lacking defining features—but possessing many
characteristic features—than older children.

While the characteristic-to-defining shift is commonly ob-
served in concept acquisition, the process by which this oc-
curs is unclear. One possibility is that the characteristic-to-
defining shift is a stage-like transition that occurs in the rep-
resentational system (Werner, 1948; Bruner, Olver, Green-
field, et al., 1966). For example, the shift could be explained
by a transition from representing concepts wholistically—
i.e., using all the features of objects, to representing con-
cepts analytically—i.e., narrowing in specific relevant fea-
tures of objects (Kemler, 1983). Neural network models
of conceptual classification inherently capitalize on this idea
when demonstrating a shift (e.g., Shultz, Thivierge, & Lau-
rin, 2008). Another possibility is that there is a change in the
mechanism by which one learns concepts. For example, con-
cept learning might change from storing exemplars to con-
structing prototype or rule-based representations. These hy-
pothetical changes in representation or processing might be
maturational in nature, such as the development of abstraction
(Piaget & Inhelder, 1969). Alternately, they may be driven
by inductive inference mechanisms operating over observed
data, a la rational constructivism (Xu, 2007).

From the outset we can narrow down this space of hy-
potheses. The conceptual to defining shift is most likely a
function of data, not maturation (Keil, 1983). One predic-
tion of a maturational-shift is that at a single time-point, chil-
dren should represent all words using characteristic features
or defining features, whereas a data-driven shift predicts that
both adults and children should have more exemplar-based
representations in unfamiliar domains, and more rule-based
representations in familiar domains. The former does not ex-
plain children’s behavior—children seem to possess charac-
teristic representations and defining representations of differ-
ent words at a single time point. The prediction of the latter—
that individuals have more exemplar-based representations in
unfamiliar domains and more rule-based representations in
familiar domains, is observed in adults (Chi, Feltovich, &
Glaser, 1981) and in children (Chi, 1985).

All of the aforementioned hypotheses require a discrete
shift in representation or process. However, it is un-
clear whether a representational or mechanistic shift is en-
tirely warranted. To date, no model has tested whether a
characteristic-to-defining shift could be a natural by-product
of the continuous data-driven construction of concepts. We
evaluate this proposal in the task of learning kinship concepts.
While “mommy” and “daddy” are some of a child’s earliest
produced words, children actually spend many years master-
ing kin relations (e.g. Haviland & Clark, 1974; Benson &
Anglin, 1987; Keil & Batterman, 1984). For example, 7- and
8-year-olds are still unable to provide adequate definitions for
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a number of kinship terms (Haviland & Clark, 1974).

The Acquisition of Kin Terms
Kinship is an ideal domain for studying the characteristic-to-
defining shift because it easily lends to logical representations
(e.g. Kemp & Regier, 2012); the domain of kinship is fa-
miliar to young children; and the characteristic and defining
features behind kinship terms are fairly intuitive and straight-
forward. Furthermore, several semi-structured interviews at-
tempting to uncover children’s knowledge of kinship demon-
strate considerable variation in children’s definitions. For ex-
ample, the following is an interview with a six-year-old from
Benson and Anglin (1987, p. 48):

I: What is an uncle?
S: A man that’s related to ya.
I: Tell me everything you know about an uncle.
S: He knew you when you were a baby...Sometimes they work
to build houses... Sometimes they join in for the army.
I: Can you tell me anything else about an uncle?
S: They help you. That’s all I know.
I: What kind of a thing is an uncle?
S: A man that’s related to you.

Based on children’s definitions, researchers have proposed
theories weighing the importance of conceptual simplicity
(Haviland & Clark, 1974) and the role of sufficient data
(Benson & Anglin, 1987) in the acquisition of kinship terms.
To explain the order of acquisition of kinship terms, Haviland
and Clark (1974) proposed a semantic complexity hypothe-
sis. In this account, the simplicity of a concept is defined
as the fewest number of base relations (e.g., up one node on
the family tree) required to explain a relationship on a kin-
ship tree with a penalty on the variety of base relations used.
Children use these base relations to build concepts in a piece-
wise fashion. By this logic, adult-like kinship concepts are
acquired for semantically simpler terms before semantically
complex terms. Haviland and Clark (1974)’s original hypoth-
esis is a learning model whereby children first develop per-
ceptual features to construct a concept and only over time de-
velop abstract, relational features. This formalism is entirely
consistent with the formalisms used in Mollica and Pianta-
dosi (2015), which we also adopt and describe below. Fur-
thermore, simplicity, in general, is an empirically grounded
principle underlying concept construction (Feldman, 2000).
More specifically, the role of simplicity and communicative
efficiency in kinship terms has been demonstrated across a
variety of the world’s languages (Kemp & Regier, 2012).

In addition to simplicity, researchers have proposed that
the amount and quality of the observed data drive word learn-
ing and conceptual development both in kinship (Benson &
Anglin, 1987; Danziger, 1957) and in other domains (e.g.,
Weisleder & Fernald, 2013). For example, Benson and An-
glin (1987) found that the order of acquisition of kinship
terms was best predicted by children’s experience with their
relatives. In his rejection of stage theories, Danziger (1957)
proposed that conceptual development is primarily driven by
opportunities provided by the environment. To account for
the influence of data, we incorporate assumptions about plau-
sible data distributions in our model. Further, we trade off

the influence of data with semantic complexity by placing a
simplicity weighted prior against a data-driven likelihood.

Our Approach
We approach this problem at the computational level of anal-
ysis (Marr, 1982) to demonstrate how an ideal learner would
manifest a characteristic-to-defining shift. We start with the
model of Mollica and Piantadosi (2015), which demonstrates
how a learner could use cross-situational word-referent occur-
rences to infer the concept that licenses how a word should be
extended. We extend the Probabilistic Context-Free Gram-
mar (PCFG) in their model to construct both characteristic
and defining hypotheses for kinship terms. We then col-
lected data about the characteristic and logical relationships
from two naive informants’ own family trees. This is im-
portant because the characteristic and logical relationships of
real people allows us to test if natural data will contain per-
ceptual and experiential features informative enough to ob-
serve a characteristic to defining shift. We ran the model on
the informant-provided trees and a simulated tree to generate
possible characteristic and defining hypotheses for four kin-
ship concepts: BROTHER, GRANDMA, MOTHER and UNCLE.
These hypotheses were then scored using Mollica and Pianta-
dosi (2015)’s Bayesian model according to their simplicity
and ability to explain simulated word-referent data. We ana-
lyzed (1) whether an ideal learner is most likely to entertain
characteristic or defining hypothesis given an amount of data
and (2) the accuracy of the hypotheses in explaining the data
as a function of the amount of data observed.

We expect that an ideal learner (without any maturational
factors) should demonstrate a characteristic-to-defining shift
only if the elicited features (both perceptual and experiential)
are informative but imperfect in their ability to capture the
underlying concept. If the elicited features accurately capture
a concept, an ideal learner should never shift from generat-
ing characteristic hypotheses to defining hypotheses. On the
contrary, if the elicited features are uninformative, and thus
poor at capturing a concept, an ideal learner might predomi-
nately generate defining hypotheses, predicting either no shift
or an implausibly rapid shift from characteristic to defining
hypotheses. Therefore, it is crucial that we collect data about
the characteristic and logical relationships of real people to
test if natural data will contain features within the range of
informativity that will show a characteristic-to-defining shift.

Data Collection
To simulate data for the learning model, two informants, who
were blind to the experiment, drew their family tree, ranked
each member in terms of how frequently they interacted with
them as a child (e.g., see Figure 1), and provided ten one-
word adjectives for each family member. For each informant,
the unique adjectives were used to construct a binary feature
matrix (adjective by family member; e.g., see Figure 2). Each
informant was presented with the feature matrix and asked to
indicate if each feature applied to each family member. In-
formants made a response to every cell of the matrix: zero if
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Figure 1: Distance-ranked family tree from Informant One.

START→ CHAR START→ DEF
CHAR→ union(CHAR, CHAR) DEF→ union(DEF, DEF)
CHAR→ intersection(CHAR, CHAR) DEF→ intersection(DEF, DEF)
CHAR→ set difference(CHAR, CHAR) DEF→ set difference(DEF, DEF)
CHAR→ complement(CHAR) DEF→ complement(DEF)
CHAR→ feature(VAL) DEF→ up node(DEF)
VAL→ {Yes, No} DEF→ down node(DEF)

DEF→ lateral node(DEF)
DEF→ male(DEF)
DEF→ female(DEF)
DEF→ X (i.e., the speaker)

Table 1: The Probabilistic Context Free Grammar used to
generate kinship concepts

the feature did not apply; one if the feature did apply. The
informants provided 109 and 88 unique features respectively
including both experiential features (e.g., strict) and percep-
tually observable features (e.g., blonde). Additionally, we
simulated data from the extended family tree used in Mollica
and Piantadosi (2015). To sample from the extended tree, we
ranked distance using Euclidean distance and constructed a
feature matrix for the tree based on 29 perceptually observ-
able features following the principles of Mendelian genetics1.

Extending the model
The model incorporates a PCFG prior with uniform rule prob-
abilities to measure the simplicity of any composition of log-
ical or perceptual features. In the PCFG (see Table 1), we
include set theoretical primitives—i.e., union, intersection,
set difference and complement—for both characteristic and
defining hypotheses. For defining hypotheses, we include
gender primitives—i.e., male and female—and graph theo-
retical primitives that mimic the abstract primitives proposed
by Haviland and Clark (1974): up node, down node and lat-
eral node. The terminal for a defining hypothesis is an argu-
ment for the speaker X , as we assume that the kinship term
should be processed relative to the speaker. For characteris-
tic hypotheses, we include a primitive for each feature, which
takes a binary indicator variable and returns the set of fam-
ily members with or without that feature. Using a PCFG as
a prior penalizes complex hypothetical meanings and, thus,
builds in a simplicity bias as discussed above. It is important
to note that our PCFG generates characteristic hypotheses—
i.e., only containing characteristic information, and defining
hypotheses—i.e., only containing logical information (and
gender). We leave the exploration of a hybrid characteristic-
defining hypothesis space for future research.

Data for the learning model was noisily sampled from a

1All family trees, feature matrices (and code) can be found at
https://github.com/MollicaF/LogicalWordLearning

family tree such that 90% of the time the data reflected ac-
curate use of the true concept and 10% of the time the data
was entirely random. To construct a data point, which took
the form of a speaker-referent pair {s,r}, we first sampled
a speaker s from a Zipfian distribution over all members of
the family tree ordered by reported distance from the learner.
Consequently, data from speakers ranked closer in distance
to the learner were more likely to be sampled than data from
speakers ranked distant to the learner, which is in line with
the intuition that most input a child receives comes from her
immediate family. We then sampled a referent r from the Zip-
fian distribution conditioned on the speaker and word. Given
all possible referents the speaker could be correctly referring
to when using the word, referents that are closer to the learner
are more likely to be talked about than the learner’s more dis-
tant relations. This reflects the intuition that a child is more
likely to hear about her immediate family than distant rela-
tives. Both intuitions are supported by Benson and Anglin
(1987)’s survey of children’s experience with kinship terms
and relations. During learning, we compute the likelihood of
the data under the same model used to simulate the data.

Together the prior and the likelihood specify a model for
all possible hypotheses constructed from the PCFG:

P(h|{s,r}N
i ) ∝

N

∏
i

P(ri|si,h) ·P(h) (1)

With this model we can score the probability of a hypoth-
esis conditioned on simulated data. We then investigate the
conditions under which a characteristic-to-defining “shift”
will naturally emerge as children learn kinship concepts with-
out positing discrete change.

Methods
Discovering the most likely hypotheses considered by an
ideal learner according to Equation 1 is a complex inference
problem because the PCFG specifies an infinite set of possi-
ble hypotheses. We solved this problem with Markov-Chain
Monte-Carlo (MCMC) methods, which provided us with
samples from the posterior distribution by walking around the
space of hypotheses. In the limit these walks provably draw
samples from the true posterior distribution P(h|{s,r}N

i ). We
implement our model using LOTlib (Piantadosi, 2014).

At different amounts of data, we expected an ideal learner
to favor different hypotheses. Therefore, we explored the
space varying the amount of data between 10 data points and
250 data points by 10 point increments. At each increment of
data, we ran eight chains per hypothesis type for one million
steps. We stored the top 1000 hypotheses from each chain and
combined the hypotheses discovered across chains to form a
finite hypothesis space representing the posterior distribution
over hypotheses. We normalized all hypotheses by calculat-
ing the likelihood over the same set of 1000 data points gen-
erated using the same procedure used to generate data for in-
dividual chains. We then divided this value by the amount of
data (i.e., 1000) to get a measure of each hypothesis’ average
log likelihood per data point.
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Results
The upper panels of Figure 4 show the posterior probability
of entertaining either a characteristic or defining hypothesis
(y-axis) as a function of the amount of data observed (x-axis).
For all of the words, we observe the characteristic-to-defining
shift–i.e., the probability of entertaining a characteristic hy-
pothesis is initially greater than the probability of entertaining
a defining hypothesis. This means that a simple conceptual
learning model shows a characteristic-to-defining shift when
given real data about logical relations and characteristic fea-
tures.

The lower panels of Figure 4 show the posterior weighted
F1 score conditioned on hypothesis type (characteristic or
defining). The F1 score is the harmonic mean of precision
(i.e., the pressure to extend without over-extending) and recall
(i.e., the pressure to extend to all the correct referents). An F1
score of 1 reflects perfect performance. Notably in Figure
4, the model successfully learns BROTHER, GRANDMOTHER,
and MOTHER—i.e., posterior weighted F1 scores all reach 1.
With 250 data points, the model does not successfully learn
UNCLE yet there still is a shift from characteristic to defin-
ing hypotheses on a larger timescale2 (Note the x-axis in the
upper panels).

To help build intuitions about how the model works, Fig-
ure 3 presents the three most likely hypotheses an ideal
learner trained on Informant One’s data would consider for
GRANDMA at three time points. Before observing data, an
ideal learner should prefer the simplest hypotheses, which of-
ten generalize to many referents. In this example the three
most likely hypotheses are defining hypotheses that select the
speaker X , a male speaker and everybody but the speaker.
After observing three data points, the hypotheses considered
become much more plausible and shift to characteristic fea-
tures. At this time, the three best hypotheses for grandma are
that grandmas are either outgoing, nosy or small. In general
the model is shifting from simple hypotheses that general-
ize broadly to hypotheses that narrow in a bit more, yet still
over-extend. Immediately post-shift (i.e., 13 data points), we
observe a mixture of characteristic and defining hypotheses.
The best hypothesis is the speaker’s parents’ parents, which
misses the female component of GRANDMA. The next best
hypothesis is that grandmas are outgoing. The third best hy-
pothesis is actually the definition of a GRANDMA—i.e., the
female parents of the speaker’s parents. This glimpse at the
hypotheses just after the shift illustrates that without a suffi-
cient amount of data, even the correct hypothesis is unlikely
because it is more complex in the prior. As we observe more
data, the imprecision of the two leading hypotheses decreases

2This may be due to data sparsity for UNCLE in the trees. As
UNCLE is the most complex concept learned here, it may be that
UNCLE requires more unique data points to be learned. Under our
Zipfian data sampling, the model receives data for less than half of
the unique uncles in the trees. When you relax the sampling assump-
tion to uniform, the model does learn UNCLE and having the correct
hypothesis in the space alters the time scale of the shift (to around
30 data points).

their posterior probability relative to the correct hypothesis,
which will make the correct hypothesis the maximum a pos-
teriori (MAP).

The range of hypotheses are similar between the different
trees. Across all trees, characteristic hypotheses have very
low posterior weighted F1 scores compared to the defining
hypotheses. In other words, characteristic hypotheses mis-
label referents more than defining hypotheses. Yet, the pos-
terior probability of characteristic hypotheses suggests that
characteristic hypotheses are clearly favored at low amounts
of data. Given the perspective that the emergence of defin-
ing hypotheses is delayed due to the development of abstrac-
tion, it is particularly important to note that even in a model
with abstraction available from the beginning, we observe a
characteristic-to-defining shift. Further, compared to a neu-
ral network model where all features are initially considered
(Shultz et al., 2008), a characteristic-to-defining shift is still
observed in our model where it is initially more likely to only
consider only a few features.

Taken together, this pattern of results demonstrates that
the characteristic-to-defining shift could naturally fall out of
a single statistical inference process with a single represen-
tational language3. It is not necessary to propose a dis-
crete change in representation or processing. Characteris-
tic hypotheses are favored early because with little data the
prior dominates inference–they generalize well to small data
amounts and are comparatively less complex in the prior than
the best defining hypotheses. Only when there is enough
data to warrant additional complexity will defining hypothe-
ses come to dominate inference.

Discussion
In this paper, we tested whether a characteristic-to-defining
shift would emerge naturally in a statistically principled
learning model without positing a discrete mechanistic or rep-
resentational shift. In general, the model successfully learns
kinship terms and demonstrates a characteristic-to-defining
shift using a single representational language of thought and
a single statistical inference mechanism. Therefore, while a
discrete shift in mechanism or process is possible, it is not
necessary to observe a characteristic-to-defining shift during
concept learning.

In our model, kinship concepts are developed through sta-
tistical inference over word-referent data and observed kin-
ship structures, which could plausibly be developed from
statistical learning of structure (Katz, Goodman, Kersting,
Kemp, & Tenenbaum, 2008; Kemp & Tenenbaum, 2008).
When an ideal learner only observes data about a few ref-
erents, there are simple characteristic hypotheses based on
perceptual observations that will explain the data; however,
as more data is observed, these hypotheses fail to adequately
fit the data and warrant a prior-likelihood trade-off, such that
more complicated defining hypotheses (which are unlikely

3This pattern holds if the data distribution is uniform or becomes
more peaked—i.e., a Zipfian exponent of 0, 1 or 2.
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Informant One
(109 features; 31 family members)
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Informant Two
(88 features; 21 family members)

brother grandma mother uncle

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 200 400 600

0.00

0.25

0.50

0.75

1.00

Number of Data Points

P
o

s
te

ri
o

r 
P

ro
b

a
b

ili
ty

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 200 400 600

0.00

0.25

0.50

0.75

1.00

Number of Data Points

P
o

s
te

ri
o

r 
W

e
ig

h
te

d
 F

1

Simulated Tree
(29 features; 37 family members)
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Figure 2: Feature matrix (adjective by family
member) supplied by Informant One.

Before seeing data
X (i.e., the speaker) −0.0861777
male(X) −4.7775256
complement(X) −4.7775256

After seeing 3 data points
outgoing −19.69045
nosy −20.49538
small −21.56817

One data point after shift
parents(parents(X)) −67.18689
outgoing −67.31635
female(parents(parents(X))) −68.14575

Figure 3: Best hypotheses at three different
time points and their log posterior probability
for Informant One learning GRANDMA.

Figure 4: For each tree, the top panel displays the posterior probability of using a characteristic (solid line) or a defining
(dashed line) hypothesis as a function of the amount of data observed. The bottom panel displays the posterior weighted F1
score conditioned on hypothesis type (characteristic as solid line, defining as dashed line) as a function of data.
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in the prior) are substantially more likely in explaining the
data and thus come to dominate the posterior. Put simply, the
characteristic-to-defining shift can be a by-product of data-
driven learning.

There are two interesting implications/predictions of our
model. First, our model predicts that the ideal learner will
shift from characteristic to defining hypotheses even when
she is capable of using abstraction from the outset of learn-
ing. This suggests that characteristic hypotheses may be use-
ful, and that the observation that children accept and generate
characteristic hypotheses at a young age does not preclude
their ability to use abstraction or generate logical/defining
hypotheses. Second, our model predicts that if there is a
characteristic-to-defining shift, the relevant characteristic fea-
tures should not capture a concept as well as defining features
capture the concept; however, in order for a characteristic-
to-defining shift to occur, the characteristic features must be
informative to a certain degree. If characteristic features are
completely uninformative, defining hypotheses should domi-
nate across all amounts of data.

In our initial stab at the problem, we have made several
simplifications. For one, the grammar generated hypotheses
to be purely characteristic or purely defining. This simpli-
fication is reasonable given how adults would extend a kin-
ship term. For example, if you meet a friend’s family for
the first time at a neighborhood BBQ, you would presum-
ably extend the term uncle to their parent’s male siblings and
not the neighbors, who might share several characteristic fea-
tures with your friend’s uncles. This is not to say that compe-
tent adult speakers do not maintain characteristic information
about kinship terms (e.g., grandmothers are typically nice,
old ladies). In the same vein, our characteristic and defin-
ing features did not share the same formalism (i.e., feature
matrices vs. graph-theoretical functions). A future version
of the model should permit characteristic and defining primi-
tives within the same hypothesis and possibly within the same
formalism (e.g., a feature matrix containing both characteris-
tic and defining features). This model should also be extended
beyond the kinship domain. Lastly, the model is sensitive to
the structure of the PCFG in determining the prior. Further
research should characterise the robustness of the model to
variation in the prior.

Conclusion
In summary, the widely observed characteristic-to-defining
shift falls out naturally from a rational data-driven process.
Our simulations show that a data-driven inference mecha-
nism (1) demonstrates a characteristic-to-defining shift in the
task of concept learning without positing a change in cogni-
tive representations or processes and (2) succeeds at learning
most kinship words from a data distribution based on natural
language statistics. We find that an ideal learner will demon-
strate a shift even when more accurate abstract/logical rep-
resentations are possible from the onset of learning provided
that characteristic features are informative but imperfect in

their ability to capture the underlying concept. While we ad-
dress the problem of concept learning within the kinship do-
main, the model framework can be extended to explain con-
cept learning across multiple domains using different repre-
sentational formalisms.
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Abstract

People have the capability to process text three times faster
than they would naturally read it, yet many current theories of
sentence processing rely on natural reading times as a proxy
for processing difficulty. How can people read material so
quickly in spite of information processing limitations sug-
gested by sentence processing theories? One possibility is that
surprisal effects on reading time, the hallmark of processing
difficulty under sentence processing theories, might arise from
perceptual processing, implying no relation between surprisal
and sentence processing difficulty. In this paper, we conducted
a novel self-paced rapid serial visual presentation (RSVP) ex-
periment, which controlled perceptual processes to probe for
sentence processing related surprisal effects. We further tested
how readers might compensate for information processing lim-
its during RSVP. We find support for sentence processing re-
lated surprisal effects, the pattern of which is consistent with a
First-In, First-Out (FIFO) buffer model.

Keywords: language processing; linguistic memory; RSVP

Introduction
One of the remarkable feats of language processing is the
quick pace at which various forms of information are seam-
lessly integrated (e.g., Tanenhaus, Spivey-Knowlton, Eber-
hard, & Sedivy, 1995). Researchers have noticed that lan-
guage can be processed much faster than how we naturally
engage with it (e.g., Potter, 1984). For example, by presenting
text faster than the human eye would naturally fixate, people
are able to read a story 3−4 times faster than natural. These
observations have led to several apps training people how
to read faster—although the efficacy of these apps has been
contested (see Rayner, Schotter, Masson, Potter, & Treiman,
2016). Even though researchers have noted that information
processing in reading is faster than people’s natural reading
pace, psycholinguistics has relied upon the assumption that
natural reading times are a reflection of processing difficulty.
Using reading time as an index of processing difficulty has
provided the data behind several theories in sentence process-
ing (e.g., Grodner & Gibson, 2005; Levy, 2008). Recently,
this assumption has been formalized in terms of information
theory: words that carry more information tend to increase
reading times relative to words that contain less information,
suggesting a fixed processing rate that is measured in bits of
information per unit time (e.g., Hale, 2001; Levy, 2008). The
amount of information conveyed by a word, colloquially re-
ferred to as surprisal, is equal to the negative log probability
of the word given its context.

Given the importance of reading times as a measure of pro-
cessing difficulty, it is surprising that people can read several
times faster than they naturally would and it poses a very
important question: Are the effects of surprisal observed in
reading times reflective of linguistic information processing

limitations, or do they arise from some alternate perceptual
process? We conducted a novel rapid serial visual presenta-
tion (RSVP) experiment in which we controlled perceptual
processing to test if surprisal effects reflect language process-
ing. Our experiment was also designed to probe how readers
might be compensating for linguistic information processing
limits when faced with rapidly presented text. Specifically,
we consider two hypotheses that would reconcile information
processing limits with rapid presentation of text. First, lan-
guage users might suspend incremental information process-
ing to store information in a buffer, until it can be processed.
Given the quick response times in RSVP experiments, this
would suggest fast rates of information processing, giving
us real reason to check our assumption that reading time is
a valid measure of sentence processing difficulty. Second,
language users might compensate for RSVP by utilizing an
incremental First-In, First-Out (FIFO) memory buffer, where
information is immediately copied into a buffer and processed
out of the buffer at a fixed rate. Many researchers using
the RSVP paradigm have proposed the use of a buffer (e.g.,
Mitchell, 1984); however, buffer models have never been for-
malized in terms of information processing. In the remainder
of the introduction, we motivate the perceptual and linguistic
sources of surprisal effects and our buffer models.

Perceptual Information Maintenance

When the reader manages visual presentation time, it is un-
clear if we see surprisal effects because readers maintain the
visual input while they are syntactically processing the word
or if we see surprisal effects for perceptual processing rea-
sons. For example, both Bayesian models of word iden-
tification (Norris, 2006) and rational models of eye move-
ments in reading (Bicknell & Levy, 2012) posit that read-
ers maintain information until they reach a level of confi-
dence in a word’s identity, resulting in log effects of word
predictability—i.e., numerically the same value as surprisal.
This hypothesis is corroborated by work on individual dif-
ferences in eye-tracked reading that demonstrate a relation-
ship between word-identification ability and reading speed
(Kuperman & Van Dyke, 2011). In our experiment, we con-
trol for a perceptual explanation of surprisal effects by us-
ing RSVP, which prohibits readers from influencing presenta-
tion time. Importantly, the same processes underlying natural
reading are still thought to be at play in RSVP (Potter, 1984).
Therefore, if surprisal effects were a result of readers main-
taining the visual input until they were confident in the word’s
identity or had finished syntactically processing the word, we
would expect that RSVP would eliminate all surprisal effects.
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Figure 1: In 5-RSVP, each word is presented for 147 ms and im-
mediately masked by the next word. The last word in each 5 word
chunk is masked with random lowercase letters remaining until the
participant presses a button to continue.

Linguistic Information Processing Limits
One of the foundational questions in sentence processing re-
search is how do people construct the correct syntactic parse
for a sentence. As mentioned above, the primary method for
teasing apart sentence processing theories is making predic-
tions about processing difficulty for the constituent words of
a sentence. Information theory has provided one way to for-
malize the amount of processing required for each word in a
sentence. Hale (2001) first noticed that word reading times
are proportional to the total probability of all syntactic struc-
tures that are no longer possible after observing a word, which
happens to be the word’s surprisal. Levy (2008) showed that
surprisal can be given an alternative interpretation in terms of
parallel-resource allocation. As each new word is processed,
the syntactic parses under consideration are re-ranked and re-
sources are allocated accordingly. The processing difficulty
of that word is reflected in the amount of re-ranking required
as measured by Kullback-Leibler divergence, which simpli-
fies to the word’s surprisal. Either way, a word’s surprisal is
a measure of the amount of processing, and surprisal effects
in reading suggest processing difficulty caused by informa-
tion processing limits. In our experiment, we have controlled
for a perceptual origin of surprisal effects so that if we still
see surprisal effects, we can be more confident in interpreting
them as stemming from language processing.

If surprisal effects reflect information processing limits,
the contradiction between readers being capable of reading
rapidly presented text but possessing hard information pro-
cessing limits still remains. Our novel five word self-paced
RSVP task presents text in five word RSVP chunks for each
button press (see Figure 1), allowing us to consider two hy-
potheses that would reconcile these observations. First, read-
ers might focus on buffering linguistic information during
rapid presentation and delay processing until the perceptual
barrage has ended. Under this account, we would expect a
small uniform profile of surprisal weights for each of the five
words presented together (see middle panel of Figure 2). In
RSVP tasks, readers only require a one second break between
sentences to perform as well as control groups in recall tasks
(Potter, 1984), which suggests an information processing rate
roughly 100 bits/second1. This rate is too fast to predict sur-

1We assumed each word conveys on average 10 bits, which is
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Figure 2: Predicted surprisal weights (beta values for surprisal) in
the 5-RSVP task as a function of word position for our hypotheses.

prisal effects at naturalistic reading paces, which makes this
an important hypothesis to rule out for expectation based sen-
tence processing theories.

Second, readers might incrementally process linguistic in-
formation, but perception and language processing might not
be as tightly coupled as previously thought. Perception might
quickly place information into a buffer, where language pro-
cessing then removes that information at a slower rate, but
still very quickly. This allows perception to move ahead while
language processing is ongoing. In this FIFO buffer model,
the expected profile of surprisal weights depends on the rate
of information processing. Roughly, the model yields three
different profiles of surprisal weights (see Figure 3). At slow
rates of information processing, multiple words will be seen
before the processing of the initial word has ended. As a
result, the majority of processing time for all of the words
is reflected in reading time post visual presentation, which
gives rise to a large uniform profile of surprisal weights. At
rates of information processing closer to the average amount
of information conveyed in a word, sometimes a word is com-
pletely processed before the next word appears and some-
times a word’s processing briefly carries over to when the
next word appears. As a result, early words contribute less
to post-presentation reading time than later words, and the
profile of surprisal weights increases with a word’s presenta-
tion position. At fast rates of information processing, each
word is completely processed before the next word appears.
Therefore, there should be no influence of surprisal on post-
presentation reading time, corresponding to a uniform zero
profile of surprisal weights. Our a-priori prediction for the
FIFO buffer assumed a rate of processing near the average
amount of information (see right panel of Figure 2).

It is important to note that the FIFO buffer model shows
the traditional surprisal effect with the rate of information
processing parameter. The profile of surprisal weights in the
FIFO buffer model do not necessarily reflect processing dif-
ficulty as in the typical surprisal effect; rather, the surprisal
weights reflect each word’s contribution to the information
remaining in the buffer post-presentation.

Experiment
Our plan of attack is to see if surprisal effects are present in
a masked word-by-word self-paced reading (mSP) task and a
novel 5-word chunk self-paced RSVP task (5-RSVP), which
holds perceptual information constant but allows the reader
unlimited time to process their input. As a result of the per-

true of our stimuli, and an average sentence length of 10 words.
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buffer model for each word position (w1-w5) as a function of in-
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surprisal effect. At very fast rates, there is no effect of surprisal. In
the middle, surprisal weights increase as a function of their position
in a chunk.

ceptual controls, we can interpret an effect of surprisal as re-
flecting linguistic information processing limits. Further, if
there is an effect of surprisal, the profile of surprisal weights
for each word in the 5-RSVP condition can distinguish be-
tween two hypotheses reconciling readers’ ability to read
rapidly presented text in spite of incremental processing lim-
its (see Figure 2). Specifically, a uniform profile of surprisal
weights would suggest a buffer model in which readers sus-
pend incremental linguistic processing until after presentation
ends. Whereas, a profile of surprisal weights that increases as
a function of a word’s position in the five word chunk would
suggest a a FIFO buffer model (formalized below). In addi-
tion, participants completed a self-paced reading task (SP) to
replicate the standard surprisal effect with our materials. Par-
ticipants also read an additional story at their natural pace to
provide a baseline accuracy and reading rate, which ensured
our presentation rate was faster than our participants natural
reading rate.

Participants. Sixty-four participants were recruited from
the University of Rochester community. Participants were
compensated for their participation, which lasted approxi-
mately 45 minutes. All participants were screened for nor-
mal or corrected-to-normal vision, and English as their native
language.

Materials and Design2. Participants read four excerpts
from articles published in 2008 issues of The New Yorker. To
equate the length of the excerpts while preserving the natu-
ralness of the reading material, articles were truncated to end
with the paragraph containing the 1000th word of the arti-
cle. Word frequency and bigram probabilities with Laplace
smoothing (α = 0.1) were estimated using ZS (Smith, n.d.)
to access Google N-grams (Michel et al., 2011). For each
story, ten yes-no questions were constructed (5-yes, 5-no) to
serve as a comprehension check. Four lists were constructed
such that each list contained a story in every presentation con-

2All code and data are available at:
github.com/mollicaf/speedread

dition (Baseline, SP, mSP and 5-RSVP) and across lists each
story occurred with every condition. To ensure precise pre-
sentation timing, stimuli were presented using a monitor with
a 144 Hz refresh rate. Responses and reading times were col-
lected using the keyboard. Stimulus presentation and timing
and response collection was controlled by Psychopy (Peirce,
2007).

Procedure. Sixteen participants were randomly assigned
to each list. Participants were told that they would be reading
and answering questions about four short stories. All partic-
ipants began the experiment with the baseline reading condi-
tion. In the baseline condition, the full body of text for one
story was displayed on the screen in 17.5 point Free Sans
Bold font. Participants could scroll through the text using the
up and down arrow keys. Participants were instructed to press
the space bar when they had finished reading the text, which
started the comprehension check.

Following the baseline reading task, participants were in-
troduced to the mSP condition with three practice trials. On
the first trial, each word was presented in the center of the
screen for 245 ms and then immediately masked with a ran-
dom string of 14 lower-case letters. Participants were in-
structed to press the space-bar to reveal the next word. For
the next two practice trials, the presentation duration of each
word was decreased to 196 ms and 175 ms, respectively. Be-
fore each trial and story, a fixation cross appeared for 147
ms to orient the participant to the center of the screen. After
the practice trials, the order of the remaining conditions was
randomized for each participant.

In the SP condition, text was presented similar to the prac-
tice trials with one exception: each word was not masked
and remained visible to the participant until they pressed the
space-bar to advance. In the mSP condition, text was pre-
sented similar to the practice trials, except the duration for
each word was set at 147 ms. In the 5-RSVP condition, each
button press triggered the presentation of the next five words
in the text. Each word was flashed on the screen for 147 ms.
The first four words were masked by the next word’s appear-
ance. The fifth word was masked by a 14 character lowercase
letter string.

After each story, the comprehension check for that story
began immediately. For each of the ten questions, partici-
pants registered their answer by pressing the Y (yes) or N (no)
key on the keyboard, which prompted the next question. The
order of the questions was randomized for each participant.
After the comprehension check, participants were instructed
to find their experimenter to advance to the next story. Par-
ticipants were strongly encouraged to take breaks in between
stories and often did. In line with our experience and intu-
itions, our participants reported that reading in these presen-
tation conditions is taxing3.

3We set our presentation rate at 147 ms/word even though pre-
vious tasks have gone as fast as 84 ms/word because we were con-
cerned about enervating participants after one story.
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Figure 4: A. Average participant accuracy across presentation conditions. B. Surprisal weights from a linear mixed-effect regression of
reading time in the SP, mSP and 5-RSVP conditions (as a function of each word’s order in the 5-RSVP condition). Red diamonds represent
the FIFO buffer model predictions with a best fit rate of 123 bits/sec. All intervals reflect 95% bootstrapped confidence intervals.

Results

To check that our presentation rate of 147 ms/word was less
than participant’s natural reading rate, we calculated each par-
ticipant’s average reading time per word in the baseline con-
dition. The mean and median natural reading rate was 300
ms/word (SEM=11). Three participants had average natu-
ral reading rates faster than 147 ms/word, we retained their
data in the remainder of the analysis4. Accuracy data was
analysed using a mixed effect logistic regression with ran-
dom intercepts for participants, item, story and list. Across all
conditions, participant accuracy was on average greater than
chance5 (see Figure 4A). The baseline accuracy was 74%
suggesting there was no ceiling effect. In the mSP and 5-
RSVP conditions, accuracy was significantly lower than base-
line; however, the effect size is small (mSP OR = 0.70, 5-
RSVP OR = 0.48). To account for spurious button presses
and abnormally long reading times, we removed the top and
bottom 2.5% of the reading time data for each participant,
resulting in a 5% data loss overall.

We analysed the reading times for each condition sepa-
rately. With the SP condition, we aimed to replicate the ef-
fect of surprisal reported in the literature when presentation
is central and perceptual information management is still in
the reader’s hands. Reading times were analysed using a
mixed effect linear regression with surprisal, log frequency,
zero-centered length, and position as fixed effects and ran-
dom intercepts for participant and story. Replicating the prior
literature, there was a significant increase in reading time as
surprisal increased (β = 0.54, t = 4.60, p < 0.05).

With the mSP condition, we aimed to test if there would
be an effect of surprisal when perceptual information man-
agement is no longer in control of the reader. Reading times
were analysed using a mixed effect linear regression with the
same effect structure as in the SP condition. Even though
perceptual control was removed from the reader, there was
a significant increase in reading time as surprisal increased
(β = 1.24, t = 8.60, p < 0.05), suggesting that there are sen-
tence processing related surprisal effects without perceptual

4Analyses excluding their data do not significantly alter the re-
sults we present here.

5We did not have an exclusionary cut-off for participant accu-
racy because we designed our questions to be difficult and inspire
engagement with the text.

control.
Having observed a surprisal effect in mSP, we analyzed

the 5-RSVP condition to tease apart whether readers com-
pensate for information processing limits during rapid pre-
sentation by buffering information and suspending informa-
tion processing entirely—resulting in a uniform non-zero pro-
file of surprisal weights, or by incrementally buffering and
processing linguistic information—resulting in an increasing
profile of surprisal weights across subsequent words. To test
these hypotheses, we fit two mixed effect linear models: one
with a single beta weight for surprisal and one with a unique
beta weight for each word’s surprisal. Both models contained
random intercepts for participant and story and fixed effects
for zero-centered length, position and a frequency term for
each of the five words presented in a chunk. We find a sig-
nificant surprisal effect in both models (single beta model:
β = 0.73, t = 3.93, p < 0.05), which suggests that the ob-
served surprisal effects are reflective of language processing.
As can be seen in the profile of the individual beta weights
for surprisal in Figure 4B, the profile is more consistent with
a non-uniform profile of weights than the uniform profile
(χ2(4) = 11.7, p < 0.05).

First-In, First-Out (FIFO) Buffer Model
To further explore the idea of an incremental linguistic infor-
mation buffer, we formalize a FIFO buffer model with one
free parameter, i.e., the rate of information processing, and
fit the model to our data to provide us an estimate of the
rate parameter. Our model operates in five 147 ms windows
matching our presentation duration for each of the five words.
In each window, the new word’s information is added to the
buffer, and the amount of information that could be processed
in that window according to our rate parameter is removed
from the buffer. As a result, if a word could not be com-
pletely processed in one window, its processing carries over
to the next window. If all the information in the buffer is pro-
cessed, the buffer is empty when the next word appears. The
information left in the buffer after the fifth word’s window
is the information whose processing should contribute to our
measured reading time. We use the rate of information pro-
cessing to predict the expected reading time for that five word
chunk. We repeat this process for every chunk in our stories.
To arrive at predictions for the surprisal weights, we analyse
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our expected reading times using linear regression with sep-
arate surprisal weights for each of the five words. We do not
include an intercept value as we expect the entire reading time
to be a function of each chunk’s surprisal values. Predicted
surprisal weights for a variety of processing rate parameters
are shown in Figure 3. Our a-priori prediction was that sur-
prisal weights should increase across word positions, as early
words will tend to be fully processed so that later words have
a larger effect on post-presentation reading time. As can be
seen in Figure 3, our a-priori prediction holds true for a large
range of plausible rate parameters.

We fit our buffer model to the observed pattern of surprisal
weights using gradient descent to minimize squared error. We
find that the best fit rate of information processing is 121
bits/second. The best model fit profile of surprisal weights
is illustrated in Figure 4B as the red diamonds.

Discussion
To address the apparent contradiction between the speed at
which readers can comprehend text and the information pro-
cessing limits proposed by sentence processing theories, we
suggested that surprisal effects observed in reading tasks
might actually be a result of perceptual processing (e.g., Nor-
ris, 2006) rather than linguistic information processing. If this
were the case, we would expect to see no surprisal effects in
the mSP and 5-RSVP conditions, where perceptual control
was stripped from the reader. Instead, we found effects of
surprisal, suggesting that surprisal effects in RSVP reading
have a language processing origin.

Having established the existence of an information pro-
cessing bottleneck in RSVP, we proposed two possible al-
ternatives6 that reconcile information processing limits and
rapid text comprehension. First, readers may compensate
for RSVP by postponing information processing until pre-
sentation has ended to ensure all the input is copied into a
buffer. Under this account, we would expect a small uni-
form profile of surprisal weights in our 5-RSVP condition.
Second, readers may compensate for RSVP by incrementally
buffering and processing linguistic information, allowing per-
ceptual processing and information processing to occur on
quick but separate timescales. Our a-priori prediction for
the FIFO buffer, in line with the best fit prediction from our
model, was that early words should contribute less to the post-
presentation reading time than later words, resulting in an in-
creasing profile of surprisal weights in our 5-RSVP condition.
As can be seen in Figure 4B, the data are more consistent
with the predictions of a FIFO incremental buffer model, sug-
gesting that surprisal effects are present in RSVP and readers
compensate for the rapid presentation of text by incremen-
tally buffering and processing linguistic information.

While our experiment was designed to control for a per-
ceptual origin of surprisal effects, it also rules out two deci-

6Although, it is clear that there are several alternative propos-
als to be explored in the future including parallel processing and
retrieval accounts (e.g., Lewis & Vasishth, 2005).

sion/motor origins. First, surprisal effects would be expected
under Hick (1952)’s law if for each word, readers were choos-
ing the identity of the word from multiple alternatives. Pre-
sumably, such decision processes would be disrupted by our
5-SP-RSVP condition. Second, the programming of saccadic
eye movements is related to the log predictability of the tar-
get (Carpenter & Williams, 1995). RSVP and central pre-
sentation would not require eye movements nor provide suf-
ficient time to plan them. It is unclear if our experiment rules
out the optimal preparation model of Smith and Levy (2008),
which predicts surprisal effects. To summarise their argu-
ment, people respond faster to expected events and slower to
unexpected events, suggesting that they are preparing for fu-
ture events according to their predictability. If this finding
holds true for all levels of linguistic processing—i.e., under a
scale free assumption, the effect of predictability must be on
a log scale so as to satisfy the multiplicative nature of joint
probabilities with the additive nature of reaction times. As
a result, if a word is optimally prepared for, its processing
time should be a multiple of its surprisal. Unfortunately, the
model does not specify if there is a time cost to preparation
or minimum required preparation time. If there is a cost to
optimal preparation, our experiment might not have provided
sufficient time to prepare. Similarly, the predictions of Smith
and Levy (2013)’s highly incremental processing account of
surprisal are unclear for our experiment.

Our results have several implications for sentence process-
ing research. First, even with a linguistic information buffer
the best fitting rate of information processing is large—i.e.,
121 bits/sec, which corresponds to a word processing rate of
12 words/sec. This rate is consistent with the upper limit on
comprehension in RSVP tasks (Potter, 1984). Interestingly,
even under the suspended processing buffer model the rate of
information would be large7. So if readers are processing in-
formation at such a fast rate, why do surprisal effects show
up at all in natural reading tasks? One possibility is that even
though readers can process information at these rates, they
might prefer to maintain the information they are processing
before proceeding. Whether this processing is perceptual—
i.e., waiting for some level of certainty in the percept of the
word, linguistic—e.g., parallel resource allocation in syntac-
tic parsing, or optimal preparation is still an open question,
with the important implication that surprisal effects in natural
reading times might not be a measure of syntactic processing
difficulty. Another important possibility is that rate of infor-
mation processing is not consistent across different tasks. In
our opinion, RSVP is a demanding task and as such the rate
of information processing might differ from natural rates of
processing. In this case, surprisal effects in natural reading
could reflect a real processing bottleneck, inspiring the new
question, why don’t we adjust our processing rates to allevi-
ate the bottleneck?

7Average reading time 516 ms (SEM=2.25) and average bits per
five word chunk 50 bits (SEM=0.5) give an information processing
rate around 100 bits/sec.
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Second, our buffer model suggests that there is a decou-
pling of perceptual and linguistic information processing8,
which is potentially relevant for two sentence processing phe-
nomenon: spill-over effects and right context effects. In self-
paced reading and eye-tracking data (e.g., Smith & Levy,
2013; Shvartsman, Lewis, & Singh, 2014), researchers some-
times discover spill-over effects—i.e., properties of previ-
ously fixated/presented words are reflected in the reading
time of the current fixated/presented word. Usually spill-
over effects are realized as increased reading times following
a word thought to be difficult to process (or conveying a large
amount of information). Spill-over effects could be explained
as perceptual processes continuing to advance through the
sensory input while being sensitive to the information pro-
cessing slightly lagging behind in a buffer. For example, if a
buffer had a fixed capacity, perceptual processing might stall
on words further in the input than is currently being processed
until the buffer has room for more information.

Right context effects occur when information further in the
sensory input influences previously perceived information.
This plays out differently depending on modality. Readers
maintain perceptual uncertainty about word identities (Levy,
Bicknell, Slattery, & Rayner, 2009) and their regressive eye
movements can be linked to future input increasing uncer-
tainty about past input (Bicknell & Levy, 2010). Eavesdrop-
pers, on the other hand, do not have the luxury of playback.
In speech processing, listeners maintain uncertainty about
words (Bicknell, Tanenhaus, & Jaeger, 2015) and have to
hope that the future context will disambiguate the signal for
them. The current proposal is that the processing of a seg-
ment of speech operates beyond the duration of the speech
segment (Dahan, 2010). Arguably, the maintenance of un-
processed information implicates a linguistic buffer. Future
research should look into using buffer models to account for
these phenomenon.

Our results, in line with previous RSVP studies, show that
readers can process text faster than they would process text
naturally. Both the surprisal effect in our mSP condition and
the information processing rate parameter in our model of the
5-RSVP condition are the first pieces of evidence for surprisal
effects in RSVP. Our data are consistent with a FIFO buffer
model suggesting that when readers are quickly bombarded
with information, they store linguistic information in a buffer
and immediately begin processing that information serially
at a fixed rate. Our buffer model suggests a looser temporal
coupling between perceptual processing and linguistic pro-
cessing than had previously been theorized. Our initial anal-
yses using a FIFO buffer model prompt further research on
the nature of the buffer and how the buffer may be implicated
in other sentence processing phenomena.
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Abstract 

Learning to read has a substantial effect on the representations 
of spoken and meaning forms of words. In this paper we 
assess literacy effects beyond representational changes, 
focusing on adaptations to the architecture of the reading 
system that maps between these representations. We present a 
connectionist model of reading that predicted distinct 
processing of pre- and post-literacy acquired words. For 
reading for meaning, words learned prior to literacy were 
processed more indirectly via phonological representations, 
whereas for post-literacy acquired words, processing was 
more direct along the orthography to semantics pathway. This 
more computationally intensive route was prioritised because 
indirect phonology to semantics mappings were unavailable. 
Such an effect was less apparent for naming, because learning 
direct orthography to phonology mappings is less 
computationally intensive. These results were confirmed in an 
analysis of naming and lexical decision behavioural data. The 
effect of literacy onset remains an observable artefact in adult 
reading. 

Keywords: literacy; age of acquisition; language 
development; reading fluency; reading comprehension; 
computational modelling. 

Effects of literacy on reading 
There are multiple influences on readers’ speed and 
accuracy of reading, and these have been extensively 
documented in the literature over the last 50 years of reading 
research. For instance, higher-frequency words tend to be 
accessed more quickly and accurately than lower-frequency 
words, and early-acquired words tend to be responded to 
faster and more accurately than later-acquired words, 
referred to as an “age of acquisition” (AoA) effect 
(Brysbaert, & Ghyselinck, 2006; Cortese & Khanna, 2007; 
Juhasz, 2005; Monaghan & Ellis, 2002). 

Theories of the origin of the AoA effect on reading are 
two-fold. One view is that early acquired words result in 
prioritised lexical semantic representations, because they 
enter first of all into the lexical semantic associative 
network, and subsequently learned words are then connected 
to previously acquired words (Brysbaert & Ghyselinck, 
2006). Analyses of semantic associations by Steyvers and 
Tenenbaum (2005) confirmed that early acquired words do 
have more words associated with them than later acquired 
words, and they demonstrated that small-scale illustrative 
versions of this growing semantic associative network could 
prioritise early acquired words in semantic processing.  

An alternative perspective is that AoA effects are instead 
found in the mappings between representations, rather than 
the representations themselves (Monaghan & Ellis, 2010). 

Early acquired words are learned when the neural network 
supporting the mappings among print, sound and meaning is 
plastic and able to acquire mappings effectively. Mappings 
for later acquired words are required to fit around the 
previously learned mappings, when the neural network has 
lower plasticity, resulting in prioritisation for early over later 
acquired words. Such AoA effects are predicted to be 
greater for arbitrary mappings, such as between meaning 
and sound, rather than for (quasi-)regular mappings such as 
between print and sound, because learning arbitrary 
mappings is more computationally intensive and therefore 
affected more by reduced plasticity (Lambon Ralph & 
Ehsan, 2006). However, AoA effects ought still to be 
observed even for regular mappings because of the smaller, 
but still present, effect of reducing plasticity in learning the 
mappings. 

These predictions have been supported by meta-analyses 
of behavioural studies (Brysbaert & Ghyselinck, 2006) 
which have investigated AoA effects for naming and for 
lexical decision. It is generally assumed that for naming, 
semantic representations of words are minimally involved in 
producing the phonological form of a word from its 
orthographic form (Harm & Seidenberg, 1999). However, 
lexical decision appears to implicate semantic 
representations to a greater degree (Chang et al., 2016; 
Plaut, 1997), in that semantic properties of words, such as 
imageability or concreteness, account for more variance in 
lexical decision or picture naming responses and little for 
written word naming (Balota et al., 2004; Catling & 
Johnston, 2009). Brysbaert and Ghyselinck (2006) showed 
that AoA effects were much greater for tasks involving 
semantics, including lexical decision, than for tasks 
involving production of phonology (see also Cortese & 
Khanna, 2007). However, the fact that AoA does still 
account for some variance in naming indicates the effects of 
plasticity in the quasi-regular print to sound mapping for 
English (see Lambon Ralph and Ellis, 2000, and Monaghan 
and Ellis, 2010, for computational illustrations of this). 

Conversely, the size of the AoA effect can be used to 
indicate the extent to which the pathways to and from 
lexical semantics in the reading system are involved in 
reading. If the AoA effect is large, then semantics is likely 
to be involved, if the effect is small then semantics is less 
likely to be involved. Chang et al. (2016) implemented a 
triangle computational model of single word reading, and 
varied the point at which words were presented to the 
model, to simulate different AoA of words. For simulations 
of naming, AoA had a significant effect, but for simulations 
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of lexical decision, AoA accounted for a substantially larger 
proportion of variance. 

One absence from these theoretical and implemented 
models of reading, however, is the role not only of AoA but 
also of different modes by which words are acquired. 
Literacy is known to have profound effects on language 
processing, resulting in changes to phonological awareness 
(Hulme, Bowyer-Crane, Carroll, Duff, & Snowling, 2012; 
Morais, Cary, Alegria & Bertelson, 1979), changes to 
phonological processing of words (Smith, Monaghan, & 
Huettig, 2014), as well as semantic fluency (Kosmides, 
Tsapkini, Folia, Vlahou, & Kiosseoglou, 2004), and even 
visual processing (Szwed, Ventura, Querido, Cohen, & 
Dehaene, 2012). 

However, less studied are the potential effects of literacy 
on the architecture of the reading system in terms of 
pathways employed between different representations of 
words. Prior to literacy, the learner acquires mappings 
between sound and meaning representations of words, 
through listening and comprehending words, and speaking 
words for others’ comprehension. However, once the child 
begins to learn to read for these already known words, 
mappings will be generated from print to the stored sound 
and meaning representations. But for new words, the print 
form will be mapped onto newly acquired sound and 
meaning representations, where the mappings between 
sound and meaning are not available in advance. 

In terms of the operation of the reading system, this 
difference between pre-literacy and post-literacy acquired 
words is likely to be profound. In the triangle model of 
reading (Seidenberg & McClelland, 1989) there are two 
routes by which a printed word can be pronounced. This can 
occur directly, through learned mappings between print and 
sound, or indirectly from print via semantics to sound (see 
Figure 1). Similarly, for reading comprehension, the 
mapping from print can be directly to meaning, or indirectly, 
from print to sound to meaning. For pre-literacy acquired 
words, the indirect route is more likely to be available, 
because the sound to meaning routes are already acquired, 
whereas for post-literacy words, the indirect route requires 
two mappings to be acquired. 

Furthermore, the properties of the mappings from print to 
sound and meaning will also contribute to the extent to 
which direct and indirect mappings are utilised. Regular 
mappings, such as between print and sound in English, are 
easier to acquire than arbitrary mappings, such as between 
print and meaning. Thus, the direct route is more likely to be 
prioritised for print to sound mappings than the indirect 
route, and the indirect route is more likely to be prioritised 
for print to meaning mappings than the direct route, because 
the indirect route is more easily acquired, at least for words 
acquired pre-literacy, where the sound to meaning mapping 
is already in place in the language processing system. 

Based on this theory, we predict that there is likely to be a 
distinction between pre-literacy and post-literacy processing 
of words’ print to meaning mappings, as in lexical decision. 
Pre-literacy, the indirect route is more likely to have a 

greater influence on processing. Post-literacy, the direct 
route is likely to have a greater influence. Whereas for print 
to sound mappings, as in word naming, we predict no 
difference between pre- and post-literacy processing, 
because both will be mapped via fast-acquired direct print to 
sound mappings, which will have an equal influence on 
reading. 

In this paper, we first provide a computational test of the 
extent to which the triangle model of reading predicts 
different processing routes for words pre- and post-literacy. 
We then test whether the predictions of the model are 
observed in behavioural data on word naming and lexical 
decision response times. For both the simulation and the 
behavioural data, we use the size of the AoA effect as an 
index of the extent to which direct mappings from 
orthography to semantics are implicated in the reading 
system. For naming, a larger AoA effect indicates greater 
use of indirect mappings via semantics for reading tasks, for 
lexical decision a larger AoA effect indicates greater use of 
direct mappings from orthography, where arbitrary 
mappings between orthography and semantics are 
implicated. A smaller AoA effect for lexical decision 
indicates that the indirect quasi-regular mapping from 
orthography to phonology is being prioritised. It is the case 
that mappings between phonology and semantics are also 
arbitrary, but these mappings would exert a smaller AoA 
effect than that observed for the newly acquired mappings 
because they are intensively trained, and acquired earlier in 
acquisition, thus reducing distinctions between words due to 
greater plasticity of resources for early-learned mappings 
(see e.g., Ellis & Lambon Ralph, 2000; Monaghan, Chang, 
Welbourne, & Brysbaert, 2017). 

  
Figure 1. The architecture of the triangle model of reading. 

 

A computational model of literacy effects on 
reading processes 

Method 
Network Architecture 

The model is based on the connectionist triangle model of 
reading (Harm & Seidenberg, 2004; Seidenberg & 
McClelland, 1989), as shown in Figure 1. The critical 
property of the model is that it incorporates three 
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representations of single words – print, sound, and meaning. 
Each of these representations is interconnected by sets of 
hidden units that permit the mappings between 
representations to be acquired as a consequence of exposure. 
The sound and meaning layers were also each connected to 
a set of attractor units that enable the model to develop high-
fidelity phonological and semantic representations of words. 

Also included was a context layer to enable 
disambiguation of the meaning of homonyms (e.g., /beIs/ as 
the instrument bass and as the location base, see Chang et 
al., 2016, for more details). 

 

Representations 
The representations of words were derived from Harm 

and Seidenberg’s (2004) version of the triangle model. 
Printed words were represented across 14 letter slots, with 
each letter slot comprising 26 units relating to one letter of 
the alphabet. If a letter was present in a slot, then the unit 
corresponding to the letter had activity 1, otherwise the units 
were inactive. Spoken words were represented in terms of 
segmental phonological features, across 8 phoneme slots of 
25 binary phonological feature units, with distinct phonemes 
represented in terms of overlapping subsets of the units 
representing the features. Finally, lexical meaning 
representations were constructed from semantic features in 
WordNet (Miller, 1990). Each word activated a subset of the 
2446 semantic features in the semantic layer of the model, 
with activity 1 if the semantic feature was associated with 
the word. 

The model was eventually trained to read 6229 
monosyllabic words, which were presented during reading 
training according to log-compressed frequency, where 
frequency was taken from the Wall Street Journal corpus 
(Marcus, Santorini, & Marcinkiewicz, 1993), to be 
consistent with Harm and Seidenberg’s (2004) 
implementation of the triangle model. 
 

Training Procedures 
The training process had two phases: a pre-literacy and a 

post-literacy phase. In the pre-literacy training, the model 
learned to map between phonology and semantics on a 
subset of words from the entire training set, that children are 
more likely to have learned before beginning reading. In the 
post-literacy phase, the model was trained to learn to map all 
words from orthographic forms onto phonology and 
semantics. 

In pre-literacy training, the model was trained on oral 
language tasks, including a speaking task (mapping from 
semantic to phonological representations), a hearing task 
(mapping from phonological to semantic representations), as 
well as tasks that assisted in developing stable attractors at 
phonology and semantics (mapping from phonological to 
phonological representations, and from semantic to semantic 
representations). For the speaking task, the semantic input 
pattern for a selected word was clamped for eight time steps, 
then in the last two time steps, the model was required to 
reproduce the phonological form for the word. The 
difference between the model’s actual production and the 
target phonological production was backpropagated through 

the network and connections were adjusted to reduce error.  
Similarly, for the hearing task, the phonological input and 
the context were clamped for 8 time steps, and the model 
was required to produce the target semantic form at the 
output. For the stable attractor tasks, the input was presented 
then activation cycled for 6 time steps, before the model was 
required to reproduce the originally inputted phonological or 
semantic representation. For pre-literacy training, the four 
tasks were interleaved, with 40% of trials each for the 
speaking and hearing tasks, and 10% each for the 
phonological and semantic attractor trials. There were 
600,000 trials altogether. 

For pre-literacy training, the model was exposed to 2,973 
monosyllabic words, which were selected to be the most 
common words occurring in reading materials before age 
18, and therefore those words most likely that children come 
across prior to literacy onset. Words were presented 
randomly, but selected according to their frequency. The 
model was trained with a learning rate of 0.05 using back-
propagation through time, and cross-entropy error was 
computed. No adjustments to weights were made if the 
model was within 0.1 of the target for each output unit. 

In the post-literacy training, the model was given printed 
word forms, and required to learn to map onto phonological 
and semantic representations. Words were presented to the 
model incrementally, according to the reading-age at which 
words occurred. Similar to Monaghan and Ellis (2010), 
reading developed cumulatively, over 14 reading stages 
reflecting reading materials experienced from age 5 to 18, 
determined from the educator’s word frequency guide (Zeno 
et al., 1995), see Chang et al. (2016) for more details.  

For each word, the model cycled for 12 time steps of 
activation after which the model had to generate the 
phonological and semantic representations of the word. 
These reading trials were interleaved with hearing and 
speaking trials, and phonological and semantic attractor 
trials, to ensure that the pre-literacy mappings were 
maintained during reading training. There were 1.74 million 
post-literacy training trials altogether. 

Critically, by the end of training, the model had been 
exposed to all words, but some of these had been acquired 
prior to literacy onset, and others were acquired from print. 
We refer to these words as pre- and post-literacy words. 

 

Testing Procedures 
To measure pre-literacy oral language skills, the model 

was tested on its productions for the speaking and hearing 
tasks. For semantics, if the model was closer to the target 
word than any other word, then it was judged to be accurate. 
For phonology, if the model was closer to the target 
phoneme at each phoneme slot then it was judged to be 
correct. 

For the analysis of reading performance, we interpreted 
orthographic to phonological representations to be 
analogous to behavioural naming responses (Chang, Furber, 
& Welbourne, 2012), and orthographic to semantic 
mappings to relate to lexical decision responses (see, e.g., 
polarity measure in Plaut, 1997, and Chang et al., 2016). 

813



Results 
At the end of pre-literacy training, of the words to which 

the model had been exposed prior to onset of literacy, the 
model was able to speak 90.7%, and comprehend 91.7% 
correctly. After reading training, the model was accurate for 
99.4% of phonology and 93.3% of semantics for the reading 
task. 

To assess whether literacy changed patterns of processing 
in the model, multiple regression analyses were conducted 
for the model’s simulations of word naming and lexical 
decision tasks. The mean square error of the model’s 
productions was taken as the dependent variable, and a set 
of psycholinguistic variables were included as predictors, to 
relate to previous regression analyses of behavioural data 
(e.g., Balota et al., 2004; Cortese & Khanna, 2007). These 
variables were cumulative frequency (CF), orthographic 
neighbourhood size (OrthN) (Coltheart, 1977), word length 
(Len), consistency (Cons) (which was the proportion of 
words with the same pronunciation of the orthographic rime, 
e.g., “gave/save” versus “have”), and AoA, which was the 
reading stage during training for the model. Error scores 
were log transformed and all the predictor variables were 
centred. 

To examine the effect of literacy onset on the model’s 
performance, hierarchical regression analyses were 
conducted. At step 1, all psycholinguistic variables were 
entered, then at step 2 whether the word appeared pre- or 
post-literacy was entered as a variable interacting with AoA. 
If processing changes from pre- to post-literacy, then the 
effect of AoA at the point of literacy onset should change, as 
an index of the involvement of semantics – reflected in a 
significant interaction. It was not possible to include literacy 
onset as a separate variable because it is highly correlated 
with the interaction term. The results for naming and lexical 
decision are shown in Table 1. 
 
Table 1. Results from the regression analysis for naming and 
for lexical decision in the computational model. 
 

  Naming Lexical Decision 

  β β 

Step 1 CF -0.179*** -0.107*** 

 OrthN -0.256** 0.012 

 Cons -0.247*** -0.016 

 Len -0.071*** -0.127*** 

 AoA 0.198*** 0.452*** 

Step 2 AoA x 
Literacy 

onset 

0.219*** 
ΔR2 = 0.37%  

0.501*** 

ΔR2 = 1.96% 

***p<.001; **p<.01; β is a standardized beta value.  
 

Literacy onset was a significant predictor of changes in 
the model’s performance – at the point of literacy onset, the 
regression gradient for the AoA effect changed, such that 
words acquired pre-literacy demonstrated a smaller change 
in response times associated with increasing AoA compared 
to words acquired post-literacy. This effect was substantially 
larger for lexical decision than for naming responses, 
suggesting that processing for pre-literacy acquired words 
used the indirect route from orthography to semantics via 
phonology, whereas the post-literacy acquired words used 
the direct orthography to semantics route. 

We next tested whether a similar change in processing 
was associated with literacy onset in naming and lexical 
decision behaviour. 

Testing the literacy effect in word processing 

Method 
The data were a subset of responses from the English 

Lexicon Project (Balota et al., 2007), comprising naming 
and lexical decision response times from a set of 816 young 
adult participants from a range of universities. We acquired 
data for 2,536 monosyllabic words, for which all the 
psycholinguistic variables could be generated. 
    Word-form frequency, orthographic neighbourhood size, 
and word length were taken from the CELEX database 
(Baayen, Pipenbrock, & Gulikers, 2005). These three 
measures were taken from the same dataset to ensure 
consistency across these measures. AoA was taken from 
Kuperman, Stadthagen-Gonzalez, and Brysbaert (2012). 
Consistency of words was determined in the same way as 
for the computational simulation. 

Results 
We first aimed to replicate the results of Balota et al. 

(2004, 2007) in determining the role of frequency, word 
length, neighbourhood size, consistency, and AoA in a 
linear regression on naming response times and lexical 
decision response times.  

Then, we measured whether there was an effect of onset 
of literacy in the behavioural data through adding an 
interaction between AoA and literacy onset. Age of literacy 
onset could not be included a priori as with the simulation, 
however, we assumed that if there is an effect of onset of 
literacy, then this should occur somewhere close to the age 
of 5. Onset of literacy was thus determined iteratively 
between the age of 3, 4, 5, 6, and 7 years in order to assess 
whether there is a discontinuity in response times predicted 
by AoA that changes around the age children begin formal 
literacy. We took as an indicator of discontinuity a 
significant interaction between AoA and literacy onset, 
though see Baayen, Feldman, and Schreuder (2006) for an 
alternative means of measuring discontinuities (note they 
were unable to test AoA because of small sample size). 

For naming and lexical decision response times, the 
results of the multiple regression are shown in Table 2. For 
naming, adding the interaction between onset of literacy and 
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AoA for any of the ages 3 to 7 did not significantly improve 
the model fit (Bonferroni corrected). 

For lexical decision response times, there were significant 
effects of literacy onset found at ages 5, 6, and 7, with the 
largest effect for age 6. Figure 2 shows the effect of this 
discontinuity in predicting response times for lexical 
decision when the onset of literacy is implemented at age 6. 
The same Figure illustrates no statistically significant 
discontinuity effect for naming response times. 
 
Table 2. Results from the regression analysis for naming and 
for lexical decision in the behavioural data. 
 

  Naming Lexical 
Decision 

 
 β β 

Step 1 Log-frequency -0.156*** -0.305*** 

 OrthN -0.255*** -0.001 

 Cons -0.115*** -0.032* 

 Len 0.165*** -0.062*** 

 AoA 0.174*** 0.440*** 

Step 2 AoA x Literacy 
onset age 3 -3.220  1.572 

 AoA x Literacy 
onset age 4 -0.653 0.369 

 AoA x Literacy 
onset age 5 0.150 0.387* 

 AoA x Literacy 
onset age 6 0.151 0.348*** 

 AoA x Literacy 
onset age 7 0.154 0.310*** 

***p<.001; **p<.01; *p<.05; β is standardized beta value  

General Discussion 
Onset of literacy has a profound effect on cognition, but 

generally these effects have been assessed on the 
representations involved in reading, rather than the 
pathways involved in mapping between these 
representations (Hulme et al., 2012; Morais et al., 1979; 
Smith et al., 2014). In this paper, we show that onset of 
literacy likely has a long-standing impact on the architecture 
of the reading system. For words that are in the learner’s 
vocabulary prior to onset of literacy, reading can proceed 
via two routes – directly, by newly learned mappings from 
orthography to semantics, or orthography to phonology, or 
can instead exploit indirect pathways that incorporate 
learned mappings between phonology and semantics that the 
learner already has cemented in their language system. 

 

 
Figure 2. Interaction between AoA and onset of literacy at 

age 6 in lexical decision but not in naming responses. 
 
For naming tasks, the use of this prior semantics to 

phonology knowledge has a minimal effect, because the 
quasi-regularity of orthography to phonology mappings is 
relatively easy to acquire. The greater difficulty of learning 
an arbitrary mapping from orthography to semantics, then 
using this semantic representation to activate the previously 
acquired phonological representation for the known word, 
means that this indirect processing is unlikely to be involved 
differentially for words learned pre- versus post-literacy. 

For lexical decision, or other tasks involving activation of 
semantic representations, the role of literacy onset appears 
to be quite different. The computational model predicted 
that when prior knowledge about phonological and semantic 
associations is available, as it is for pre-literacy acquired 
words, then an indirect route is likely to be involved in 
mapping from orthographic to semantic representations. For 
words learned post-literacy, this prior knowledge is not 
available, and so the reading system has to proceed via 
generating either a new mapping from orthography to 
semantics, or a new mapping from phonology to semantics. 
Thus, a distinct pattern of response is likely to be observed 
for lexical decision of pre- and post-literacy words. 

The behavioural results provide support for the 
computational predictions of different pathways used in 
reading pre- versus post-literacy. Even though literacy onset 
was several years before the participants in the lexical 
decision study were tested, the vestiges of literacy onset 
appear to be still observable in reading behaviour. We 
acknowledge that literacy onset is not a sudden change, as 
some new words will still be acquired aurally even after 
reading training has commenced, and proficient reading is 
not immediate, but requires extensive, sometimes strenuous, 
training (e.g., Seidenberg, 2017). Nevertheless, we have 
shown that literacy onset changes the use that the reader 
makes of the language system, and this differential use of 
the system survives to be observed in behavioural responses 
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even after decades of reading practice. 
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Abstract 

Learning how words refer to aspects of the environment is a 
complex task, but one that is supported by numerous cues 
within the environment which constrain the possibilities for 
matching words to their intended referents. In this paper we 
tested the predictions of a computational model of multiple 
cue integration for word learning, that predicted variation in 
the presence of cues provides an optimal learning situation. In 
a cross-situational learning task with adult participants, we 
varied the reliability of presence of distributional, prosodic, 
and gestural cues. We found that the best learning occurred 
when cues were often present, but not always. The effect of 
variability increased the salience of individual cues for the 
learner, but resulted in robust learning that was not vulnerable 
to individual cues’ presence or absence. Thus, variability of 
multiple cues in the language-learning environment provided 
the optimal circumstances for word learning. 

Keywords: word learning; multiple cues; strategies; gesture; 
prosody; cross-situational learning. 

Cues for word learning 
Learning how words relate to objects, actions, properties, or 
relations in the world is a complex task. One of the key 
difficulties is that word learning provides few explicit 
constraints on which words can relate to particular aspects 
of the environment (Quine, 1960). Thus, in acquiring 
vocabulary, children must resolve a many-to-many (possibly 
even an infinite-to-infinite) mapping between words in 
utterances and elements of the environment around them. So 
how do children solve this task?  

There are two proposals for how learning word-referent 
mappings can be constrained. The first is that children have 
internal biases that apply to language learning situations that 
limit possible referents to words (Markman, 1994). For 
instance, mutual exclusivity refers to the assumption in word 
learning situations that each referent has only one name, 
leading children to pair an unnamed object with a novel 
word (Markman & Wachtel, 1998). In terms of limiting 
referents, children seem to be biased to linking a word with 
a whole object rather than a part of an object (Macnamara, 
1982), and may more readily form categories of objects with 
similar shape which are referred to by the same word 
(Baldwin, 1992). 

The alternative proposal for resolving the many-to-many 
mapping problem in word learning is that the environment, 
rather than the learner, contains many properties that assist 

in constraining possible mappings (MacWhinney, 1991). 
Though a single learning situation contains many possible 
words and many possible referents for those words, over 
multiple situations, children may observe that there are co-
occurrences between particular words and particular 
elements of the environment. Yu and Smith (2007) showed 
that learners are able to exploit such cross-situational 
statistical relations between words and referents. However, 
the statistical associations are noisy in real-world child-
directed speech settings (Yu & Ballard, 2007), and so 
additional cues in the environment are likely to assist further 
in constraining learning. 

One possibility is distributional information in terms of 
co-occurrences between words. In English child-directed 
speech, determiners reliably precede nouns in complex 
utterances (Monaghan & Mattock, 2012), and these 
distributional cues can assist the child in knowing which 
potential words in an utterance are likely to refer to objects 
in their environment (Fitneva, Christiansen, & Monaghan, 
2009). Other distributional cues that are readily available to 
children can also provide information about verb categories, 
and function versus content word distinctions (Childers, 
2011; Christiansen & Monaghan, 2016).  

Prosodic information is another cue to assist in reducing 
the many-to-many mapping problem, not only providing 
information about different grammatical categories 
(Christiansen & Monaghan, 2016) but also indicating 
speaker focus in a learning situation: Messer (1981) found 
that approximately 50% of child-directed utterances with a 
learning goal had the referring word reaching the highest 
amplitude. 

For further reducing the possibilities for the intended 
referent, gestural cues provide additional cues to constrain 
word learning, with 15% of child-directed speech utterances 
accompanied by gestures that guided the child to the object 
being referred to (Iverson, Capirci, Longobardi, & Caselli, 
1999). 

Combining cues for word learning 
Individually, then, cues appear to be noisy but informative 

sources of information about intended referents. Thus, 
combining cues is likely to result in yet more robust and 
faster learning. There are several models for how multiple 
cues may interact for word learning. 
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First, cues may be additive, such that more information 
provides cumulative evidence about word-referent 
mappings. For instance, in a computational model, Yu and 
Ballard (2007) demonstrated that mapping accuracy 
improved with the addition of distributional cues.  

However, an alternative model for how multiple cues may 
support learning is provided by Bahrick, Lickliter, and 
Flom’s (2004) intersensory redundancy hypothesis. In this 
theoretical model, multiple cues that indicate the same 
structure in language (such as multiple cues indicating the 
word-referent mapping, for instance) enable the learner to 
realise that this relation is not random, but carries 
information about the stimuli. Consequently, cues that are 
correlated increase in saliency and are attended to more as 
learning proceeds. 

However, this view of increased saliency from redundant 
cues only applies when there are overlapping cues to 
structure, and the distribution of cues in the learning 
environment may be very different. Monaghan et al. (2007) 
examined cues to grammatical categories of words across a 
range of languages. They found that distributional 
information provided, unsurprisingly, valuable information 
about the role of words in each language – for instance, in 
English words that belonged to the verb category tended to 
succeed “you” and precede “the”, whereas words that 
belonged to the category of nouns tended to succeed “the”, 
and precede “to”. But, in addition, Monaghan et al. (2007) 
also found that phonological coherence also applied to these 
grammatical categories – though there is substantial 
variation, nouns tend to sound like other nouns and verbs 
tend to sound like other verbs, in terms of a range of 
phonological and prosodic properties.  

Yet, it was the interplay of these cues that was striking: 
when distributional information was a weak indicator of 
grammatical category, Monaghan et al. (2007) found that 
phonological cues were more reliable, and vice versa. Thus, 
there was not so much a redundant overlap of cues, but 
rather a serendipitous arrangement of cues across situations 
to provide useful information (Christiansen & Monaghan, 
2016).  

An alternative perspective, then, is that multiple cues for 
language structure enable robust learning, but not due to 
intersensory redundancy, but rather due to providing a safety 
net that is resistant to variation of their presence in the 
environment. In Monaghan (2017) this idea of degeneracy 
was implemented in a connectionist model that took as input 
multiple information sources to support learning of cross-
situational statistical regularities between an object in vision 
and a word in auditory input, when both the object and the 
word occurred alongside others. The model was able to 
learn the cross-situational statistical regularities, but this 
learning was boosted when additional cues were added to 
the model’s learning environment. One was distributional 
information (where the referring word was preceded by a 
marker word, such as “the” preceding a noun). Another was 
a prosodic cue, where the referring word in the utterance 
was emphasised in the auditory input. The final cue was a 

gestural cue, where attention was drawn to the object that 
was being referred to in the utterance. In each case, adding 
the cue improved the model’s learning. Furthermore, adding 
all the cues improved performance still further. 

The second set of simulations in Monaghan (2017) tested 
what effect individually unreliable cues would have on 
learning. The presence of each of the three cues varied 
between 33% and 100% of the time, but note that in most 
learning situations, at least one of the cues was likely to be 
present. The reduction of reliability of multiple cues reduced 
the speed of learning, however, following training, the 
ability of the model to respond correctly to word-object 
mappings when they were presented with no additional cues 
in the environment was more robust when cues were 
individually unreliable. The presence of noise in the 
environment, when that environment provides an unreliable 
constellation of individual cues, meant that the model was 
better able to recognise words when the environment was 
momentarily impoverished. Consider a language instructor 
who always pointed to the object to which they were 
referring. That is likely to be helpful for constraining the 
potential referents for words that the learner hears. But what 
would happen when the instructor is distracted – or a new 
instructor with different habits arrives – and does not 
provide the gestural cue? If the cue was previously 100% 
reliable, then this would become a crutch that was relied 
upon for determining the speaker’s intention, and the 
referent would not be identifiable if not gestured towards.  

A computational approach with a similar outcome is 
Srivastava et al.’s (2014) dropout model, where hidden units 
in a model are stochastically deactivated to prevent the 
model overlearning one aspect of the input – to resist relying 
only on the most reliable information stream in the 
environment, and consequently preventing effective 
generalisation. This switching off meant that the model 
maximised use of information from the environment. 
However, critically for our purposes, the learning system 
does not selectively prevent attention to environmental 
information. The noise in the language environment 
provides this function. Far from being a problem for 
learning, environmental noise enabled effective, reliable, 
and robust learning to take place, providing a positive 
perspective on poverty of the stimulus (Chomsky, 2005). 
Indeed, stimulus poverty resulted in rich learning. 

However, the benefit of multiple, noisy cues is a 
prediction of the degeneracy model (Monaghan, 2017) but 
has not yet been tested empirically. Here, we provide a 
behavioural test of whether the presence of multiple, 
variable cues promotes robust word-referent learning. We 
constructed a cross-situational learning task, with each 
situation presenting learners with two objects and a set of 
words (see Monaghan & Mattock, 2012, for similar outline 
of the cross-situational word learning design). One of the 
words always referred to one of the objects, but the other 
object and the other words varied. Over multiple trials, 
participants may come to recognise that certain words and 
objects always co-occurred. We measured the extent to 
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which additional cues in the environment assisted in 
learning – implementing gestural, distributional, and 
prosodic cues to support learning, but we varied the extent 
to which these cues were present. The degeneracy model 
predicted that (very) noisy cues should slow learning, but 
that there may be an optimal level of variability at which 
learning is more accurate than perfect information 
conditions when all cues are present. We examined three 
levels of variability as well as no variability, where cues 
were present 25%, 50%, 75%, or 100% of the time. We 
measured performance during training exposure, and we 
also measured whether learning was robust to omission of 
cues – by testing participants after learning on trials where 
no cues were present. Based on the predictions of the 
degeneracy model (Monaghan, 2017), we anticipated that 
learning would be resistant to omission of cues in all 
conditions, but that omission of cues may be least affected 
when those cues were variable during exposure. 

Figure 1. Example of a learning trial, containing 
distributional, prosodic (i.e., fintoom is emphasised in the 

speech), and gestural cues. 

Testing the effect of multiple, variable cues for 
word learning 

Method 
Participants 

Participants were 72 native English speaking adults, mean 
age = 19.8 years (SD = 2.46), who were students at 
Lancaster University. Participants were paid £3.50 for 
participating, or received course credit. Participants were 
assigned to one of four conditions (N = 18 per condition) 
which varied the extent to which cues were reliably present 
during training (25%, 50%, 75%, or 100% of the time). 

 

Materials 
The materials comprised a set of abstract objects and a set 

of novel words with which the objects were paired during 
learning. We took 10 arbitrary shape pictures from Fiser and 
Aslin (2002) (see Figure 1 for examples). For the speech, we 
generated 22 nonsense words. Ten of the words each 
referred to one of the object shapes. An additional 10 words 
did not refer to any shape. A final two words were also 
generated to act as distributional marker words. Words were 
read by a female native English speaker in monotone, and 

were also read in emphasized form, with the speaker 
imagining they were speaking the word to a child. 
Emphasised words had higher mean pitch, greater pitch 
variation, longer duration, and greater intensity than 
monotone words (all t(19) > 8.98, p < .001). 

Each learning trial comprised an utterance containing a 
referring word and a non-referring word. When the 
distributional cue was present, the two words were preceded 
by marker words that distinguished the referring and non-
referring word. When the prosodic cue was present the 
referring word was emphasised, otherwise both words were 
monotonic. When the gestural cue was present, a finger 
pointed to the intended referent. In the example trial shown 
in Figure 1, “tha” indicates the following word is the 
referring word and “fintoom” refers to one of the pictures 
(in this case, the picture on the left). Cues were randomly 
selected individually according to the variability condition 
(e.g., for the 25% cue, there was a ¼ chance that each cue 
was present or absent, such that there were trials where 3, 2, 
1, or no cues were present). 

An additional training block was constructed from 6 novel 
shapes and 12 novel words, but these new training data are 
not reported further here. 
Procedure 

Participants were instructed to try to learn which object 
was referred to by the speech. There were 6 blocks of 
training, each of which contained 30 trials, where for each 
trial an utterance was played through headphones and two 
objects were presented on a computer screen simultaneously. 
One of the objects was the target and always co-occurred 
with the referring word, the other object was selected from 
the remaining nine objects. Within each block of training, 
objects appeared an equal number of times as target and as 
foil, and were counterbalanced for appearing on the left or 
the right of the screen. Presence or absence of cues was 
manipulated between conditions by randomly selecting 
whether each cue was present or absent in 25%, 50%, 75%, 
or 100% of trials.  

Participants responded by pressing “1” or “2” for left 
object or right object, respectively, on a computer keyboard. 
No feedback was provided on accuracy of performance.  

After training, participants were tested for their 
knowledge of word-referent mappings when all cues were 
absent, to determine whether learning was robust, or 
required presence of cues for accurate performance. 

Results 
We conducted four separate analyses exploring how 

learning was affected by the variability of cues. In each 
analysis, a series of generalized linear mixed-effects models 
(GLMER) were performed, predicting the dependent 
variable of response accuracy (correct or incorrect). The 
models were built up incrementally, adding in fixed effects 
and performing likelihood ratio tests after the addition of 
each new fixed effect term (following Barr, Levy, Scheepers 
& Tily, 2013). Random effects of participant and 
experiment version were included in all reported analyses. 
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First, we analysed learning during training. The effect of 
block (1-6) significantly improved model fit (χ2(1) = 314.1, 
p < .001), indicating that over the course of training, there 
was a significant increase in participant’s response accuracy. 
Including variability condition (25%, 50%, 75% and 100%) 
also significantly improved model fit (χ2(3) = 21.259, p < 
.001). Crucially, there was a significant improvement to 
model fit when the interaction term of block x condition was 
added (χ2(3) = 71.113, p < .001), indicating that 
performance over the course of training varied by reliability 
condition. See Table 1 for the final model summary, which 
indicates that the 75% condition resulted in more rapid 
learning than the other conditions (see Figure 2). 

 

 
Figure 2. Learning trajectories for the word-object mapping 
cross-situational learning task with multiple cues of different 

reliabilities. 
 
Table 1. GLMER model summary predicting accuracy from 

training data. 
Fixed effects est. SE z p 

(Intercept) .47 .21 2.24 .025 
Block .30 .03 10.96 <.001 
Condition (25%-100%) -.39 .29 -1.36 .175 
Condition (50%-100%) -.17 .29 -0.58 .559 
Condition (75%-100%) -.10 .29 -0.33 .739 
Block*Condition(25%-100%) -.17 .04 -4.81 <.001 
Block*Condition(50%-100%) -.17 .04 -4.65 <.001 
Block*Condition(75%-100%) .09 .04 2.11 .035 

 
For the second analysis, we investigated the effect that 

variability of cues had on sensitivity to the individual cues 
during training, by measuring the effect of presence of 
individual cues on learning. In this analysis, only trials 
where at least one cue was present were included (see 
Figure 3). 

The addition of variability condition significantly 
improved model fit (χ2(3) = 16.199, p = .001), indicating 
that there was a difference in overall accuracy across 
conditions, with performance in the 100% condition being 
significantly greater than the 25% and 50% conditions (both 
p < .01), but not the 75% condition (p > .05). Next, the 
addition of cue type also significantly improved model fit 
(χ2(2) = 32.083, p < .001). This result indicates that there 
was a significant increase in accuracy when gesture cues 
were present, compared with when distributional and 

prosodic cues were present, both p < .001. Importantly, there 
was a significant improvement to model fit when the 
interaction term of variability condition x cue type was 
added (χ2(6) = 23.665, p < .001). See Table 2 for the final 
model summary, which indicates that when variability is at 
75%, the salience of gesture cues was increased compared to 
the 100% condition, when cues were always present. 
Variability had the effect of emphasising the contribution of 
gesture. The benefit of gesture over the other cues was also 
present for 25% and 50% cues, but only when variability 
was at 75% was accuracy greater than the 100% condition. 

 

 
Figure 3. Performance during training trials by variability 

condition and cue type. 
 
 

Table 2. GLMER model summary predicting accuracy from 
trials when at least one cue was present. 

Fixed effects est. SE z p 
(Intercept) .01 .01 7.08 <.001 
Condition (25%-100%) .01 .01 -2.99 .003 
Condition (50%-100%) .01 .01 -2.52 .012 
Condition (75%-100%) .01 .01 0.69 .491 
Cue(dist-gesture) .01 .01 0.00 .99 
Cue(dist-prosody) .01 .01 0.00 .99 
Cue(dist-gesture)*Condition(25-100%) .01 .01 3.53 <.001 
Cue(dist-gesture)*Condition(50-100%) .01 .01 3.23 .001 
Cue(dist-gesture)*Condition(75-100%) .01 .01 2.98 .003 
Cue(dist-prosody)*Condition(25%-100%) .01 .01 0.01 .898 
Cue(dist-prosody)*Condition(50%-100%) .01 .01 0.62 .535 
Cue(dist-prosody)*Condition(75%-100%) .01 .01 0.39 .696 

 
During the training trials, the number of cues available to 

the learner varied from 0 to 3 in the variability conditions. In 
order to determine the effect of number of cues present, we 
tested the number of cues present in terms of improvement 
to model fit. We found that they did (χ2(1) = 66.342, p < 
.001), indicating that as the number of cues present 
increased, accuracy improved (see Figure 4). Further, the 
interaction of number of cues x variability condition also 
improved model fit (χ2(2) = 14.309, p < .001). 

In order to determine how variability affected use of cues, 
we examined accuracy when all cues were present, 
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comparing across variability conditions. Importantly, when 
all three cues were present, accuracy in the 75% condition 
was significantly greater than the 100% condition (estimate 
= .86, SE = .41, z = 2.11, p = .035). Thus, 75% variability 
improved the accuracy of performance when all cues were 
present.  

Finally, we determined whether learning was robust under 
conditions of cue variability, and how variability affected 
performance during the test trials when none of the cues 
were present. The addition of variability condition 
significantly improved model fit (χ2(3) = 11.357, p = .010), 
with significant differences between the 100% condition 
when compared to the 25% and 50% conditions (both p < 
.05), but no significant difference between the 100% and 
75% conditions (p = .556). Importantly, this reflects the 
pattern of results found in the final block of training (see 
Figure 2), where performance improved as reliability of cues 
increased. See Figure 5 for results. Thus, in all conditions 
learning was robust to absence of cues. 

 

 
Figure 4. Test of performance for different number of cues 

present during training. 
 

 

 
Figure 5. Performance on all words after training for test 

trials, when no cue was present. 
 

Discussion 
The main aim of this study was to test the effect of 

variation of multiple cues in the language environment for 
supporting word learning. We predicted, based on the 
degeneracy model of learning (Monaghan, 2017), that 
optimal performance would be a consequence of variable 
presence of multiple cues that aid learning. This was 
because the learner can exploit multiple information sources, 
without relying on any one cue, or coming to ignore the 
contribution of other highly correlated cues. 

The results of the behavioural study of learning word-
referent mappings supported the degeneracy model, in that 
learning was faster and more accurate when distributional, 
prosodic, and gestural cues occurred in 75% of trials during 
training, than when cues were present 100% of the time.  

However, greater variability – 25% and 50% occurrence 
of individual cues – reduced accuracy compared to the 75% 
condition, indicating that, for learning a small number of 
words, the optimal conditions were with cues present more 
than half the time, but not all the time. In natural language 
learning situations, reliability of individual cues to support 
word learning seems to be substantially lower. For instance, 
the prosodic cue of highest amplitude as an indicator of the 
referring word occurs in 50% of learning situations (Messer, 
1981), and explicit gestural cues occur substantially less 
often – even as low as 15% of learning situations (Iverson et 
al, 1999). However, these are situations where the 
vocabulary is much greater than the 10 word-object 
mappings of the current learning situation, and additional 
cues to word-referent mappings when the possibilities for 
those mappings are exponentially higher may have a greater 
effect even when they occur more rarely. For instance, the 
model of Monaghan (2017) was trained on 100 words, and 
under those circumstances 50% variability was found to be 
optimal for learning. Scaling up the current language to 
larger vocabularies will be an important further test of the 
principles of variation in multiple environmental cues.  

Analysis of the trials where individual cues were present 
or absent indicated that the benefit of variability in presence 
of cues was greatest for the gestural cue, with variability 
enhancing the use made of this cue when it occurred (Figure 
3). Such a result is consistent not only with the degeneracy 
model of multiple cues, but also with the intersensory 
redundancy hypothesis (Bahrick et al, 2004), such that 
correlated cues increase in salience, but with the exception 
that the redundancy should not be absolute: if cues are 
perfectly correlated then their salience does not increase, as 
in the 100% condition. 

The results from analyses of different numbers of cues 
present showed that combining cues boosted learning 
(Figure 4), indicating that the learner was exploiting 
information present from each of the individual cues. It was 
not the case, for instance, that participants learned to only 
attend to particular cues, as their confluence resulted in 
greater improvement. Indeed, when those cues were variable 
but all present, performance was best of all – again, the 75% 
variability condition outperformed the 100% condition when 
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all three cues were available in the trial. 
In all variability conditions, learning was shown to be 

robust to absence of individual cues. This is an important 
result, because it demonstrates that though cues can support 
learning, they do not over-shadow the cross-situational 
statistical relations between particular words and objects co-
occurring. This was the case even when cues were always 
present, thus, even if multiple cues are always present they 
do not result in brittle learning of statistical relations. It may 
be that individual cues, if occurring with high reliability 
could interfere with robust learning (e.g., Srivastava, 2014), 
and this is a topic for future investigation. 

We know that the language environment is noisy, but 
replete with numerous multimodal cues that point in 
different ways to the same language structures (Whitacre, 
2010; Winter, 2014; Yurovsky, Smith, & Yu, 2013). We 
have shown that learners are able to exploit these multiple 
cues, and also their variability, to support word learning. 
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Abstract 

In everyday life, before deciding what to do, one has to think 
about what could be done. We investigate option generation 
from a developmental perspective, testing the predictions of the 
Take-The-First-heuristic (TTF). Moreover, we examine the 
influence of time limitation on decision-making processes. 
Using soccer as a testbed, 6- to 13-year-old children (N = 97) 
were tested in a video-based option-generation paradigm. 
Children’s performance was aligned with predictions of TTF: 
Children generated a mean of 2.21 options, did so in a 
meaningful way and selected the first as final option in 74%. 
With shorter time, children generated fewer and higher quality 
options, selected better options and more often the first option 
as final decision. Further, with age, an increase of the number 
of options generated and an increase in quality of the final 
decisions emerged. This age effect was more pronounced with 
shorter time. Implications for real-life decision-making are 
discussed. 

Keywords: option generation; decision making; heuristics; 
ecological rationality; development. 

Introduction 

Imagine being a young, talented soccer player. You are 

running, alone, through the middle field towards the goal, 

dribbling one opponent after the other. You are now 20 

meters from the goal, facing the opposing defense rapidly 

closing on you. What should you do? Maybe you should try 

to dribble the defense, get closer to the goal and shoot from a 

shorter distance? Should you try to shoot at goal from where 

you are now? Or should you pass to one of your team 

members – maybe Jack, approaching from the right? Or 

Mike, right behind you?  

Most of the time, in everyday life, before deciding what to 

do, one has to think about what could be done. In this paper, 

we investigate option generation from a developmental 

perspective using sport as a testbed. Moreover, we examine 

the influence of time limitation on option-generation and 

decision-making processes. 

Option generation  

A decision-making strategy usually consists of a search, a 

stopping, and a decision rule, all together defining how and 

how much information has to be collected before being able 

to make a decision (Gigerenzer & Todd, 1999). However, 

most real-world situations require us to generate alternative 

options before making a decision, rather than selecting one 

from a set of options pre-defined and generated by an 

experimenter (Payne, Bettmann, & Johnson, 1988).  

Very little is known about how people generate options (for 

an exception see e.g., Johnson & Raab, 2003), as most 

research on decision-making focuses on the other three 

building blocks of decision making. The Take-The-First 

heuristic (TTF) is a cognitive model that captures option 

generation and decision making in familiar, yet ill-defined 

tasks (Johnson & Raab, 2003; Raab, 2012; Raab & Johnson, 

2007). In the TTF the building blocks are formally defined as 

follows: A search rule, suggesting that alternative options are 

generated in order of validity meaning that subjectively better 

options are generated earlier; A stopping rule, according to 

which the generation phase should stop after two to three 

options have been generated; A decision rule, assuming that 

people should choose one of the initial options generated 

(Johnson & Raab, 2003). In this sense, people would generate 

a few options and select one of those, rather than exhaustively 

generating and processing all possible options. However, 

because those options were generated in order of validity, the 

decision, although fast and frugal, would tend to be accurate. 

Studies with adults and adolescents testing the predictions 

of the TTF model have previously been conducted in sports 

(Belling, Suss, & Ward, 2015; Raab, 2012; Ward, Ericsson, 

Williams, & Williams, 2013). Indeed, because of its naturally 

occurring dynamics (e.g., decisions to be made under time 

pressure; many potential alternative actions to be 

considered), sport is the ideal domain to test whether people 

use fast-and-frugal decision-making heuristics, such as TTF. 

These studies show that the performance of experienced 

handball, basketball, and soccer players is pretty accurately 

predicted by the TTF model: Players tended to generate 
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alternative options (e.g., shoot at the goal or pass to their 

teammate) in order of validity and selected as their final 

decision the first option they had generated.  

As for adults, most decision-making research with children 

focused on information search (see Davidson, 1991, 1996; 

Gregan-Paxton & Roedder John, 1995, 1997; Howse, Best, 

& Stone, 2003; Ruggeri & Katsikopoulos, 2013; Ruggeri, 

Olsson, & Katsikopoulos, 2015) or investigated cue-based 

decision strategies (Horn, Ruggeri, & Pachur, 2016; Mata, 

von Helversen, & Rieskamp, 2011). However, to our 

knowledge, option generation in children has never been 

studied before.  

Time-limitation effects on option generation and 

decision making  

According to the ecological rationality framework (Todd, 

Gigerenzer, & ABC Research Group, 2012), no strategy is 

always optimal, because the efficiency of a strategy depends 

on the environmental structure. In this sense, people should 

be adaptive and modify their strategies depending on how 

effective they are in a given environment (de Oliveira, 

Lobinger, & Raab, 2014). In many real-life situations, as in 

sports, decisions have to be taken under limited time, and we 

know that adults adapt to time limitation by using faster and 

simpler strategies (Ben Zur & Breznitz, 1981; Payne et al., 

1988). In particular, previous studies examining the effects of 

time limitation on decision-making processes have found 

that, under pressure, adults tend to increase their information 

processing speed (e.g., Ben Zur & Breznitz, 1981; Payne et 

al., 1988) and use more non-compensatory strategies (e.g., 

Payne et al., 1988). On the same line, in a study with adult 

soccer players, Belling and colleagues (2015) found that time 

limitation reduced the number of task-relevant options 

generated, although it did not impact the quality of players’ 

decisions. 

What about the effects of time limitation on children’s 

decision-making? We know that children are ecological 

learners, able to adapt their learning strategies to the 

characteristics (e.g., the statistical structure) of the task at 

hand (Horn et al., 2016; Nelson, Divjak, Gudmundsdottir, 

Martignon, & Meder, 2014; Ruggeri & Lombrozo, 2015), 

and they do so already by age four (Ruggeri, Sim, & Xu, 

2017). However, Davidson (1996) investigated the influence 

of time limitation on children’s (7- to 10-year-olds) 

information search behavior and found that time pressure 

promoted faster, but generally not more selective searching. 

In this sense, it is unclear whether children would adapt their 

option generation and subsequent decision-making strategies 

depending on the time available. 

The present study 

In the present study we use soccer as a testbed for a dynamic, 

real-life decision-making situation children have experience 

with. In particular, we extend previous research in two ways. 

First, we investigate for the first time children’s (6- to 13-

year-olds) option generation process, testing the predictions 

of the TTF model. In general, children have been shown to 

use simple, non-compensatory information-search strategies 

(Davidson, 1991; Ruggeri & Katsikopoulos, 2013), and 

specifically adolescent handball players have been shown to 

act according to TTF (Johnson & Raab, 2003), we expect 

children to make use of the TTF heuristic. Moreover, in line 

with studies that investigated decision-making from a 

developmental perspective and showed an increase of 

selective, non-compensatory strategy use with age 

(Davidson, 1991, 1996), we further expect older children to 

rely more on the TTF heuristic than younger children.  

Second, we explore whether and how time limitation 

influences the option generation and decision making of 

children. In particular, based on prior research, it is unclear 

whether children would adapt their option generation and 

decision-making strategies under time limitation.  

Method 

Participants 

Ninety-seven children, all male, participated in this study 

(Mage = 10.49 years, SD = 1.98 years; ranging from 6.67 to 

13.50 years). All participants were recruited from a 

professional soccer academy in Germany. Prior to beginning 

the study, written informed parental consent, and local ethical 

review board approval of the study protocol, were obtained. 

Materials 

We used 21 video scenes of live soccer match footage (three 

for the practice trials, 18 for the test trials). After a short 

display of buildup play, the scenes suddenly stopped right 

before the player in possession of the ball had to make a 

decision. The duration of the video scenes ranged between 

seven and eleven seconds, and video duration was unrelated 

to the study variables (all p > .05). We adopted the same task 

and materials as in Belling et al. (2015) with one difference: 

Instead of using an occlusion image that displayed field lines 

and the location of the ball on a blank white screen, we used 

real play footage that ended in a frozen frame such that all 

players are visible and the player with the ball needs to decide 

(see Figure 1). We chose to end the video with a frozen frame 

to provide participants with a constant, non-memory based 

game situation allowing the same condition during the entire 

option-generation test. Materials were presented to children 

on a touchpad (size: 8.9’’).  
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Figure 1: Decision-making test procedure. a) The video 

stopped right before the player in possession of the ball had 

to make a decision and ended with a frozen frame. b) The 

option generation phase in which children generated 

options. c) Option selection phase in which children saw 

their generated options and subsequently selected the option 

they thought was the best. 

Design and Procedure 

The task was administered collectively in groups of five to 

nine same-aged children. Within one age group, children 

were randomly assigned to the testing sessions. Children 

were asked to sit at individual desks where a tablet was 

positioned. They were then introduced to the task procedure 

via a standardized instructional video (duration: 2:51 min) 

showing a person conducting the decision-making test for 

one exemplary soccer scene. The instructional video showed 

exactly which steps children were required to do on their 

tablets throughout the testing procedure.  

The test proceeded as follows: After viewing each of the 

21 videos (see above), videos stopped and held on with a 

frozen-frame, which gave the children time to generate a 

maximum of six options directly marking them onto the field 

via touch-pad (see Figure 1 a, b). The first three videos were 

practice trials, used to familiarize participants with the test. 

During this familiarization phase children could ask 

clarifying questions to the experimenter. The other 18 video 

scenes were used as test trials and were randomly assigned to 

either the short-time (9 videos) or the long-time (9 videos) 

condition. In the long-time trials, children were given 30sec 

to generate options, whereas in the short-time trials 

participants were given 7.5sec to generate. The order of 

presentation of the test videos was randomized, irrespectively 

of to which condition they were assigned. Afterwards, 

participants were asked to select among the options they had 

generated the one they thought was the best (see Figure 1 c). 

Results 

Results were analyzed with respect to developmental 

differences on four outcomes: (1) the mean number of options 

generated across all 18 tests; (2) quality of the generated 

options; (3) quality of the selected options; (4) participants’ 

dynamic inconsistency, which is the rate at which children 

selected as the best option the one they had generated at first. 

Dynamic inconsistency rates were computed as the relative 

frequency that the first option was not selected by players to 

be their final decision: Number of videos minus the frequency 

of the first generated option being the final decision divided 

by the total number of videos. Finally, we tested the effect of 

the time limitation manipulation on above-mentioned 

outcome variables.  

To assess the quality of (2) the options generated and (3) 

option selected, two experienced youth soccer coaches 

independently generated options for the 18 test videos 

presented and rated the quality of each option they had 

generated on a 10-point scale (from 0, ‘not at all good’, to 10 

‘very good’). Overall, coaches generated a total of 104 

options for the 18 test videos. That is, a total of 52 options 

were generated by each coach (M = 2.89 options per coach 

per video). Of the 52 options generated independently, 42 

identical options were generated by both coaches indicating 

an 81% overlap between coaches. The quality of the options 

generated only by one coach or not generated by the coaches 

at all was scored with 0 ‘not at all good’. Based on the 

moderate inter-rater agreement for the quality of all options 

generated (ICC = .52, p = .01), quality scores for each option 

were calculated by averaging coaches’ quality ratings.  
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Option Generation, Decision Making, and 

Developmental Effects 

Children generated a mean of 2.21 options (SD = 0.65). 

Overall, the mean quality of the first option children 

generated was 4.72 (SD = 0.99). We conducted a repeated 

measures MANOVA with the within-subject factor serial 

position of option (1-6) and quality as a dependent variable. 

This analysis revealed that children generated options in a 

meaningful way indicated by a significant decline of option 

quality across the serial position, Greenhouse-Geisser 

corrected F(2.70, 259.43) = 859.56, p < .001, ηp² = .90.  

The mean quality of the option selected as the best was 4.45 

(SD = 1.06). Most importantly, children selected the first 

generated option as the best one in 74% of the cases (SD = 

18.59). Compared to options generated at later serial 

positions, the first option generated was selected to be the 

final decision more frequently, χ² (5) = 4411.70, p < .001. 

This was reflected in a dynamic inconsistency rate (i.e., the 

mismatch between the first option generated and final 

decision) of 0.26 (SD = .19). This is a relatively low value, 

considering that a random selection would have resulted in a 

dynamic inconsistency rate of 0.55, resulting from: 1 – (1 / 

2.21). The more options children generated, the higher was 

the dynamic inconsistency of their decisions, r = .555, p < 

.001. 

Separate linear regression analyses revealed that children’s 

age was a significant positive predictor of all option-

generation and most decision-making variables, except for 

dynamic inconsistency (R² = .02, p = .138). The older the 

children, the more options they generated (R² = .06, p = .019, 

β = .24), and the higher was the quality of the first option 

generated (R² = .19, p < .001, β = .44) as well as that of the 

option selected as the best (R² = .10, p = .002, β = .31). 

Time Limitation Effects 

To explore whether and how time limitation influenced the 

option generation and decision making of children, we 

performed a multivariate analysis of variance (MANOVA) 

with one within subject factor time limitation (short-time vs. 

long-time condition) and four dependent variables (number 

of options generated, quality of the first option, quality of 

selected option and dynamic inconsistency). The repeated-

measures MANOVA showed a significant multivariate 

effect, Wilks’s Lambda λ = .20, F(5, 92) = 34.50, p < .001, 

ηp² = .62. Follow-up univariate effects were further inspected 

for each decision-making variable separately. 

In the short-time condition, as compared to the long-time 

condition, children generated fewer options, F(1, 96) = 

127.51, p < .001, ηp² = .57, generated first options with higher 

quality, F(1, 96) = 15.19, p < .001, ηp² = .14, and selected 

options of higher quality as their final, best decisions, F(1, 

96) = 16.55, p < .001, ηp² = .15. With shorter time, dynamic 

inconsistency was less apparent than in the long-time 

condition, F(1, 96) = 14.39, p < .001, ηp² = .13.  

 

 

Table 1: Effect of time limitation on the considered option 

generation and decision making variables. 

 

 Short-time 

condition 

Long-time  

condition 

 M SD M SD 

Total number of options 1.84 0.56 2.59 0.86 

Quality of first option 4.99 1.32 4.45 1.09 

Quality of final decision 4.75 1.34 4.16 1.21 

Dynamic inconsistency  0.22 0.20 0.29 0.21 

 

Children generated their first option in a meaningful way: 

in the short-time condition, Greenhouse-Geisser corrected 

F(2.35, 225.77) = 567.40, p <.001, ηp² =.86, and in the long-

time condition, F(3.09, 296.81) = 489.89, p <.001, ηp² =.84, 

a significant decline of option quality across the serial 

position was apparent. Most importantly, children selected 

their first option to be the final decision in 71.1% (n = 621) 

of the decisions in the long-time condition and significantly 

more often in 77.8% (n = 679) of the decisions in the short-

time condition, χ²(1, N = 97) = 11.60, p = .001, r = .16.  

In both conditions, the first option generated was selected 

to be the final decision more frequently, in the short-time, 

χ²(5, N = 97) = 1982.61, p < .001, v = .67, and in the long-

time condition, χ²(5, N = 97) = 2444.15, p < .001, v = .75. For 

both time-limitation conditions, children’s decision making 

was more dynamically inconsistent the more options they 

generated (short-time condition: r = .448, no time limitation: 

r = .581). Further, separate linear regression analyses were 

conducted for each time-limitation condition. Results 

revealed that the total number of options children generated 

predicted the degree of dynamic inconsistency in both 

conditions: The more options children generated in the short-

time, β = .58, t(95) = 6.95, p < .001, R² = .33, or in the long-

time condition, β = .45, t(95) = 4.88, p < .001, R² = .19, the 

more dynamic inconsistent were their decisions.  

We tested further whether age was differentially predictive 

when time is limited. In the short-time condition, children’s 

age was a significant positive predictor of all option-

generation and most decision-making variables, except for 

dynamic inconsistency (R² = .01, p = .245, β = .12). With time 

limitation, the older the children, the more options they 

generated (R² = .11, p = .001, β = .33) and the higher the 

quality of the first option generated (R² = .13, p < .001, β = 

.36) as well as that of the option selected as best (R² = .10, p 

= .002, β = .31). For the long-time condition, no age effect 

was found on the number of options generated (R² = .02, p = 

.153, β = .15), the quality of the final option selected as best 

(R² = .04, p = .057, β = .19) and on dynamic inconsistency 

(R² = .02, p = .130, β = .16), but the older the children the 

higher the quality of the first option in the short-time 

condition (R² = .13, p < .001, β = .36).  

Discussion 

Little, if anything, is known about how children generate 

options about which actions can be taken in real-life 

situations. To address this question, we tested the option 
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generation and decision making of children based on the 

predictions of the TTF heuristic. In addition, the influence of 

time limitation on option generation and decision making was 

explored. This allowed deepening our understanding of the 

adaptive relation between time limitation as one relevant 

environmental factor and the decision-making process 

predicted by TTF heuristic as argued from an ecological 

rationality perspective. In an experiment, children between 

the age of six and 13 years were tested in a video-based soccer 

decision-making task involving a within-subject time-

limitation manipulation. 

First, we investigated children’s (6- to 13-year-olds) option 

generation process for the first time. Testing the TTF model 

revealed that predictions of the TTF heuristic also hold for 

children. In the option generation phase, as expected, children 

generated between two and three options, did so in a 

meaningful, non-random way and selected their first option 

as the final decision in more than 50% of the cases. Further, 

children’s option generation influenced their decisions 

making: the more options children generated, the more 

dynamically inconsistent they decided. The pattern of results 

in children mainly matches option-generation and decision-

making processes that have previously been demonstrated in 

adolescents and adults (Belling et al., 2015; Johnson & Raab, 

2003). The results are also consistent with findings showing 

that already schoolchildren use decision heuristics that match 

the task at hand (e.g., Horn et al., 2016). 

Second, we explored whether and how time limitation 

influenced the option generation and decision making of 

children. Because of its naturally occurring dynamics, the 

sports domain is the ideal testbed to investigate situational, 

real life influence like time limitation. Our results revealed 

that time limitation affected all decision-making variables. In 

response to limited time, children generated fewer options, 

were less inconsistent in their decisions, generated higher 

quality first options and selected higher quality options as 

final decisions. This last result differs from what found with 

adult soccer players, whose quality of option generation and 

selection was not enhanced in response to time limitation 

(Belling et al., 2015). However, the positive effect of time 

limitation on children’s option quality demonstrated in the 

present study theoretically matches predictions of the TTF 

heuristic and fits with the ecological rationality perspective 

(Johnson & Raab, 2003; Todd et al., 2012). Compatible with 

the notion of “less-is-more”, the time constraint prompted the 

generation of fewer but better options. Our results are also 

consistent with studies demonstrating that children are indeed 

ecological learners and speak for an adaptation of strategy use 

to the situation or task at hand (Horn et al., 2016; Ruggeri & 

Lombrozo, 2015).  

Finally, we found consistent developmental effects on both 

option generation and decision making: The number of 

options generated increased with age, but only in the short-

time condition. This short-time specific age effect hints at a 

developmental advantage for older children. With increasing 

age, children seem to adapt to time limitation by speeding up 

their generation to still produce a valid amount of options 

they can choose from (M(SD)time limitation = 2.00 (0.46)), 

whereas younger children do not (M(SD)time limitation = 

1.67(0.60)). In addition, older children seem to focus more on 

relevant, high-quality options early in the generation, 

irrespective of time limitation. This was indicated by the 

quality of the first option generated increasing with children’s 

age irrespective of time limitation. In line with results 

showing that the information-search behavior of younger 

children (7- to 10-year-olds) was not more selective 

(Davidson, 1996), this study showed that selectivity for high-

quality information during generation seems to emerge later 

in childhood. For the quality of the final decision, as for the 

number of options, an increase with age was only apparent 

under limited time. This could be interpreted as a stronger 

adaption to time limitation by applying a strict, selective 

decision rule or applying it, according to the TTF heuristic, 

more accurately (Johnson & Raab, 2003). Summing up, we 

showed that children adapted to the situational demands of 

time limitation by relying more on the simple TTF heuristic. 

In conclusion, the present study shows that in familiar 

situations children tend to use simple, intuitive option 

generation and decision-making strategies. In particular, 

results support that TTF as a cognitive model can account for 

the option generation and decision making of children 

between the age of six and 13 years. Further, the study 

indicates that time limitation was an important situational 

factor impacting children’s decision-making processes. 

Future studies should, therefore, explore other potentially 

relevant situational factors. Deepening our understanding of 

environmental or situational influences would also provide a 

concrete anchor for interventions targeting children’s options 

and choices. Dynamic decision environments could, for 

example, be manipulated by the speed, distance or amount of 

stimuli provided. In particular, effects of situational factors 

on children’s decision-making processes could be integrated 

into computer-based or real-life interventions and tested in a 

randomized control trial. Based on that, knowledge should be 

incorporated into prevention (e.g. traffic education) and 

training (e.g., sports, physical education) programs in a 

second step.  
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Abstract

One of the most salient and well-recognized features of human
goal-directed behavior is our limited ability to conduct mul-
tiple demanding tasks at once. Previous work has identified
overlap between task processing pathways as a limiting fac-
tor for multitasking performance in neural architectures. This
raises an important question: insofar as shared representation
between tasks introduces the risk of cross-talk and thereby lim-
itations in multitasking, why would the brain prefer shared task
representations over separate representations across tasks? We
seek to answer this question by introducing formal considera-
tions and neural network simulations in which we contrast the
multitasking limitations that shared task representations incur
with their benefits for task learning. Our results suggest that
neural network architectures face a fundamental tradeoff be-
tween learning efficiency and multitasking performance in en-
vironments with shared structure between tasks.

Keywords: multitasking; cognitive control; capacity con-
straint; learning; neural networks

Introduction
Our limited capability to execute multiple tasks at the same
time highlights one of the most fundamental puzzles con-
cerning human processing, which must be addressed by any
general theory of cognition (Shenhav, Botvinick, & Cohen,
2013; Kurzban, Duckworth, Kable, & Myers, 2013; Ander-
son, 2013): Why, for some tasks, is the human mind capa-
ble of a remarkable degree of parallelism (e.g., navigating a
crowded sidewalk while talking to a friend), while for others
its capacity for parallelism is radically limited (e.g., conduct
mental arithmetic while constructing a grocery list)?

Early theories of cognition, that have continued to be
highly influential, assert that the ability to multitask – that is,
to carry out a set of tasks concurrently1 – can be understood
in terms of a fundamental distinction between automatic and
controlled processing, with the former relying on parallel pro-
cessing mechanisms (that can support multitasking) and the
latter assumed to rely on a serial processing mechanism with
limited capacity (Posner & Snyder, 1975; Shiffrin & Schnei-
der, 1977) that can only support processing of a single task at

1Multitasking can, in some situations, be achieved by rapid se-
quential processing (e.g., switching between asynchronous serial
processes, as is common in computers), rather than through true
synchronous processing. Here, our focus is on forms of multitask-
ing that reflect truly concurrent processing, sometimes referred to as
perfect timesharing or pure parallelism.

a time. In this view, the constraints on the number of control-
dependent tasks that can be executed at one time reflect an
intrinsic property of the control system itself. However, alter-
native (“multiple-resource“) accounts (Allport, 1980; Meyer
& Kieras, 1997; Navon & Gopher, 1979; Salvucci & Taat-
gen, 2008) have suggested that multitasking limitations arise
from local processing bottlenecks. That is, if two tasks share
the same local resources (i.e. representations required to per-
form the tasks), then executing them simultaneously can lead
to cross-talk and degraded performance. It has been argued
that the very purpose of cognitive control is to prevent such
cross-talk by limiting the number of active task processes
engaged (Cohen, Dunbar, & McClelland, 1990; Botvinick,
Braver, Barch, Carter, & Cohen, 2001). In this view, con-
straints in multitasking reflect the consequences of control
doing its job, rather than limitations intrinsic to the mecha-
nisms of control itself. This line of argument suggests that,
to better understand the conditions under which multitasking
is and is not possible, it is necessary to understand the extent
to which the task processes involved share representations,
and are thus subject to potential interference and the inter-
vention of control to limit processing. This, in turn, raises
the question of whether there are general principles of neural
architectures that determine the use of shared representation,
and how these interact with learning and processing.

One may argue that the constraints that shared represen-
tations impose on multitasking are negligibly small in a pro-
cessing system as large as the human brain. However, simula-
tion studies (Feng, Schwemmer, Gershman, & Cohen, 2014),
followed by analytic work (Musslick et al., 2016) have found
that the multitasking capability of a network can drop precip-
itously as a function of overlap between task processes (i.e.
number of shared representations), and that this effect is rel-
atively insensitive to the size of the network.

The findings above suggest that maximal parallel process-
ing performance is achieved through the segregation of task
pathways, by separating the representations on which they
rely. This raises an important question: insofar as shared rep-
resentation introduces the risk of cross-talk and thereby lim-
itations in parallel processing performance, why would the
brain prefer shared task representations over separate ones?
Insights gained from the study of learning and representation
in neural networks provide a direct answer to this question:
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Shared representations across tasks can support inference and
generalization (Caruana, 1997). These benefits are strongly
linked to the ability of neural networks to carry out “inter-
active parallelism“, that is, the ability to learn and to pro-
cess complex representations by simultaneously taking into
account a large number of interrelated and interacting con-
straints (McClelland, Rumelhart, & Hinton, 1986).

In this study, we examine the tension between interactive
parallelism that promotes learning efficiency through use of
shared representations, on the one hand, and “independent
parallelism“ (i.e. the ability to carry out multiple processes
independently), on the other hand. That is, we are interested
in studying biases that promote shared representations over
multitasking performance. We first demonstrate that the well-
recognized (and valued) emergence of shared representations
(Hinton, 1986) in response to extrinsic biases (i.e. shared
structure in the task environment) leads to constraints in mul-
titasking performance. In the second part, we introduce a
formal characterization of a tradeoff between learning effi-
ciency and multitasking performance and examine how in-
trinsic biases of the network toward the use of shared rep-
resentations can expose this tradeoff in neural network sim-
ulations. The source code for all simulations is available at
github.com/musslick/CogSci-2017.

Neural Network Model
For the simulations described in the paper we focus on a net-
work architecture that has been used to simulate a wide array
of empirical findings concerning human performance (e.g.
Cohen et al., 1990; Botvinick et al., 2001), including recent
work on limitations in multitasking (Musslick et al., 2016).
In this section we lay out the architecture of this network, its
processing, as well as the task environments used to train it.

Network Architecture and Processing

The network consists of two input layers, one of which repre-
sents the stimulus presented to the network and another that
encodes the task that the network is instructed to perform on
the stimulus. Stimulus input features can take any real value
between 0 and 1 and can be grouped into stimulus dimen-
sions that are relevant for a particular task. The network is
instructed to perform a single task by clamping the corre-
sponding task unit in the task layer to 1 while all other task
units are set to 0. These stimulus and task input values are
multiplied by a matrix of connection weights from the re-
spective input layer to a shared associative layer, and then
passed through a logistic function to determine the pattern of
activity over the units in the associative layer. This pattern is
then used (together with a set of direct projections from the
task layer) to determine the pattern of activity over the output
layer. The latter provides a response pattern that is evaluated
by computing its mean squared error (MSE) with respect to
the correct (task-determined) output pattern. Similar to stim-
ulus features, output units can be grouped into response di-
mensions that are relevant for a particular task. Note that the

weight projections from each task unit can act as control sig-
nals that bias processing towards task-relevant stimulus infor-
mation represented at the associative and output layer.

In order to represent the task environment described below,
the stimulus layer is compromised of 45 input units (features)
and the task layer of nine task units. The output layer con-
sists of 15 units and is organized into three response dimen-
sions (with five units per response dimension.). The number
of units in the associative layer is set to 100.

Associative (Hidden)

Stimulus

Output

…

…

neth = whsxs +
s
∑ whtxt

t
∑ +θh

neto = wohyh +
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∑ wotxt
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∑ +θo yo =

1
1+ e−neto

whs

yh =
1

1+ e−neth

woh
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Task

wht

who

yh

yo

…

Network

Figure 1: Feedforward neural network used in simulations.
The input layer is composed of stimulus vector −→xs and task
vector −→xt . The activity of each element in the associative
layer yh ∈−→yh is determined by all elements xs and xt and their
respective weights whs and wht to yh. Similarly, the activity
of each output unit yo ∈ −→yo is determined by all elements yh
and xt and their respective weights woh and wot to yo. A bias
of θ = −2 is added to the net input of all units yh and yo.
Blue shades in the input and output units (circles) correspond
to unit values of > 0 and illustrate an example input pattern
with its respective output pattern: The second task requires
the network to map the vector of values in the first five stim-
ulus input units to one out of five output units (yellow shade).

Task Environment
Each task is defined as a mapping between a subspace of five
stimulus features (referred to as a task-relevant stimulus di-
mension) onto five output units of a task-specific response
dimension, so that only one of the five relevant output units is
permitted to be active (see Fig. 1). The value of each stimu-
lus feature is drawn from a uniform distribution U [0,1]. The
rule by which 5 relevant stimulus features of any task-relevant
stimulus dimension are mapped onto one of the 5 output units
of the task-relevant response dimension corresponds to a non-
linear function that was randomly generated2 with a sepa-
rate “teacher“ network (cf. Seung, Sompolinsky, & Tishby,
1992), and is the same across tasks. However, tasks are con-
sidered to be independent in that they differ which stimulus
dimension is linked to which response dimension.

The task environment across all simulations encompasses
nine tasks. As illustrated in Fig. 2 groups of three tasks map

2Note that it is ensured that, for the uniform distribution U [0,1]
of stimulus unit activations in the task-relevant set of input units, ev-
ery relevant output unit is equally likely to be required for execution.
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onto the same response dimension. However, similarity be-
tween tasks could be varied by manipulating the overlap be-
tween their relevant stimulus dimensions. At the extremes,
task environments can be generated such that tasks of differ-
ent response dimensions relate to separate stimulus features
(no feature overlap, Fig. 2a), or the same stimulus features
(full feature overlap, e.g. tasks 1-3 in Fig. 2b).
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Stimulus Features

Response Units

Stimulus Features

Response Units

Figure 2: Task environments. For each task, the network was
trained to map a subset of 5 stimulus features onto a subset of
5 output units. At the extremes tasks that were mapped onto
different response dimensions (e.g. tasks 1-3) could either (a)
rely on separate stimulus features or (b) completely overlap
in terms of their relevant stimulus features.

Networks are initialized with a set of small random weights
and then trained on all tasks using the backpropagation algo-
rithm3 (Rumelhart & Geoffrey E. Hinton, 1986) to produce
the task-specified response for each stimulus.

Multitasking Limitations Due to Shared
Structure in the Task Environment

A key feature of neural networks is their ability to discover
latent structure in the task environment, exploiting similarity
between stimulus features in the form of shared representa-
tions (Hinton, 1986; Saxe, McClelland, & Ganguli, 2013).
In this section we explore how the emergence of shared rep-
resentations as a function of structural similarities between
tasks can impact the multitasking performance of a network.

Simulation Experiment 1: Shared Task
Representations as a Function of Feature Overlap
In order to investigate the effect of structural similarities be-
tween tasks we generated task environments with varying
overlap between task-relevant stimulus features. We define
feature overlap as the number of relevant stimulus features
that are shared between any pair of tasks linked to different
response dimensions (see Fig. 3a). That is, two tasks in-
volving two different response dimensions could either share

3All reported results were obtained using gradient decent to min-
imize the MSE of each training pattern. However, we observed the
same qualitative effects using the cross-entropy loss function.

no relevant stimulus features (cf. Fig. 2a), all five stimu-
lus features (cf. Fig. 2b) or any whole number of features
in between, resulting in 6 different task environments. We
trained 100 networks in each of the environments. The net-
works were trained on all nine tasks with the same set of 50
stimulus samples until the network achieved an MSE of 0.01.
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Figure 3: Effects of task similarity. (a) Networks were trained
in task environments with varying degrees of feature overlap.
Yellow and red shades highlight task-relevant stimulus fea-
tures for two tasks involving different response dimensions.
(b) Final multitasking accuracy of the network as a function
of the learned similarity between tasks involving different
response dimensions. Colors indicate the degree of feature
overlap present in the task environment as illustrated in (a).

In order to assess the similarity of learned task representa-
tions we focus our analysis on the weights from the task units
to the associative layer, insofar as these reflect the compu-
tations carried out by the network required to perform each
task. For a given pair of tasks we compute the learned repre-
sentational similarity between them as the Pearson correlation
of their weight vectors to the associative layer.

We measured multitasking performance for pairs of tasks
(of different stimulus and response dimensions) by activating
two task units at the same time and evaluating the concurrent
processing performance in the response dimensions relevant
to the two tasks. The accuracy of a single task ASingle can be
computed as

Asingle =
ac

∑
5
i=1 ai

(1)

where ai is the activation of the ith output unit of the task-
relevant response dimension and ac is the activation of the
correct output unit. The multitasking accuracy is simply the
mean accuracy of both engaged single tasks.

The simulation results confirm well-known explorations in
neural networks (Hinton, 1986; McClelland & Rogers, 2003;
Saxe et al., 2013) that task similarities in the environment
can translate into similarities between learned task represen-
tations. Critically, this extrinsic bias toward the learning of
shared representations negatively affected multitasking per-
formance (Fig. 3b). To illustrate this, consider the simultane-
ous execution of tasks 1 and 5 in an environment as depicted
in Fig. 2b. If the network learns similar representations at the
associative layer for tasks 1 and 2 (note that both tasks rely on
the same stimulus features), then executing task 1 will implic-
itly engage the representation of task 2 which in turn causes
interference via its link to the response dimension of task 5.
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Multitasking Limitations due to Intrinsic
Learning Biases

In addition to environmental biases that shape the learning of
shared task representations there may be factors intrinsic to
the neural system that can regulate the degree to which such
representations are exploited in learning. In this section we
introduce a formal analysis of how such biases can affect the
tradeoff between learning efficiency and multitasking perfor-
mance. We then use weight initialization as a learning bias
in simulations to establish a causal relationship between the
use of shared representations on the one hand, and resulting
effects on learning and multitasking, on the other hand.

Formal Intuitions on the Tradeoff between Learning
Efficiency and Multitasking Capability
To gain formal intuition into the tradeoff between multitask-
ing ability and learning speed, we consider a stripped-down
version of the introduced network model that is amenable to
analysis. In the full model, nonlinear interactions between
the task units and the stimulus units occur in the associative
layer. Here we assume a gating model in which these non-
linear interactions are carried out through gating signals that
can zero out parts of the activity in the associative and output
layers, or pass it through unchanged. The choice of which
parts of each layer are gated through on each input is left to
the designer (not learned, as in the full model).

We study the scheme depicted in Fig. 4 consisting of M
input and response dimensions with full feature overlap (cf.
Fig. 2b). For the output layer, we assume that the gating
variables automatically zero all but the task-relevant response
dimensions. For the associative layer, we separate the hid-
den units into dimensions, one for each input dimension, and
make the gating variables zero all representations except the
one coming from the task-relevant input dimension (Fig. 4a).

Crucially, when the gating structure is known on a specific
example, the output of the network is a linear function of the
neurons that are on. Given this setting, the learning dynamics
can be solved exactly using methods developed by Saxe, Mc-
Clelland, and Ganguli (2014). The key advantage afforded by
the gating scheme is depicted in Fig. 4a: the input-to-hidden
weights for one input dimension can be shared by all tasks
that rely on that input dimension. This leads to a factor

√
M

speedup in learning relative to learning a single task by itself
(proof omitted due to space constraints).

However, with this gating system, multitasking is not pos-
sible: gating another task through to the output will lead to
interference. To counteract this, the gating scheme must be
changed: response dimensions can be divided into Q groups,
each with a dedicated set of hidden units (Fig. 4b). This al-
lows tasks that use response dimensions in different output
groups to be performed simultaneously. Hence a maximum
of Q tasks can be performed simultaneously, but weight shar-
ing is reduced across tasks by a factor Q, slowing learning.

This analysis provides, at least in a simplified system, a
quantitative expression of the fundamental tradeoff between

Associative
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(a)

Figure 4: Gating model used for formal analysis. (a) Task
information directly switches on or off task-relevant dimen-
sions in the output and associative layers. This allows input-
to-hidden weights to be shared across the M different tasks
corresponding to different response dimensions, increasing
learning speed by a factor

√
M. However, two tasks that rely

on different input dimensions cannot be multitasked due to
crosstalk at the output (convergent red and green arrows). (b)
Multitasking ability can be improved by separating response
dimensions into Q groups, each with a dedicated set of units
in the associative layer. Gating now permits one task from
each group to operate concurrently (red and green arrows no
longer converge). However, weight sharing is limited to the
group, yielding a learning speed of

√
M/Q.

learning speed and multitasking ability. Let t be the number
of iterations required to learn all tasks, Q the maximum num-
ber of concurrently executable tasks, and M the number of
input/response response dimensions. Then

t2
∝ Q/M (2)

where the proportionality constant is related to the statisti-
cal strength of the input-output association for one task, the
learning rate, and the error cut-off used to decide when learn-
ing is complete (Saxe, Musslick, & Cohen, 2017).

Due to the tradeoff in Eqn. (2), gating schemes that share
more structure will learn more quickly. Hence generic, ran-
domly initialized nonlinear networks will tend to favor shared
representations, as shown in Simulation Experiment 1.

Simulation Experiment 2: Effects of Learning
Biases for Shared Representations
In Simulation 2 we focus on a bias intrinsic to the neural sys-
tem, i.e. the initialization of the weights from the task layer.
We use this factor to systematically examine how the use of
shared representations facilitates the discovery of similarity
structure while diminishing multitasking performance. To do
so, we focus initially on a training environment in which tasks
are maximally similar, as this is the condition in which there
is most opportunity for exploiting shared representations. We
then examine environments with 80% and 0% feature overlap
between tasks, to test the generality of the observed effects.
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To manipulate the bias towards shared task representations,
we initialized the weights from the task units to the associa-
tive layer, varying the similarity among the weight vectors
across tasks with the rationale that greater similarity should
produce a greater bias toward the use of shared representa-
tions in the associative layer. Weight vectors for tasks relying
on the same stimulus input dimensions were randomly ini-
tialized to yield a correlation coefficient of value r. The cor-
relation value r was varied from 0 to 0.975 in steps of 0.025
and was used to constrain initial weight similarities for 100
simulated networks per initial condition. The weight vectors
for tasks of non-overlapping stimulus dimensions were un-
correlated. Finally, all task weights to the associative layer
were scaled by a factor of 5 to enhance the effects of different
initial task similarities. The networks were trained using the
same parameters as reported for Simulation Experiment 1.

Simulation results indicate that networks with a higher
similarity bias tend to develop more similar representations
at the associative layer for those tasks (in terms of their fi-
nal weight vector correlations), whereas a lower similarity
bias leads to more distinct task representations at this layer.
In environments with high feature overlap between tasks,
stronger initial biases toward shared representations lead to
increased learning speed (i.e. less iterations required to train
the network), as similarities between tasks can be exploited
(Fig. 5a). Critically, this comes at the cost of multitasking
performance. Learning benefits gained from shared represen-
tations are less prevalent in environments with less feature
overlap between tasks. However, effects of weight similarity
biases on multitasking impairments remain (Fig. 5b).

Learning Speed &
 Generalization

(a) (b)100% Feature Overlap Effects Across Task Environments
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Figure 5: Effects of weight similarity bias. Mean multitask-
ing accuracy (for two tasks simultaneously) plotted against
the mean number of iterations required to train the network.
Data points represent the mean measures across networks ini-
tialized with the same task similarity (constrained by task
weight vector correlation) for tasks relying on the same stim-
ulus dimensions. Effects are shown for (a) environments with
100% feature overlap between tasks, as well as (b) across
environments with different feature overlap. Different data
point clusters correspond to different training environments.

General Discussion and Conclusion
The limited ability to perform multiple control-dependent
tasks at the same time is one of the most salient character-
istics of human cognition, and is universally considered a
defining feature of cognitive control. Despite these facts, the

sources of this capacity constraint associated with control re-
main largely unexplored. Here, we build upon the observation
that multitasking limitations can arise from shared representa-
tions between tasks (Feng et al., 2014; Musslick et al., 2016),
and use a combination of formal analysis and neural network
simulations to examine biases towards shared representations
that incur such costs in multitasking.

In the first part of this study, we build upon early insights of
connectionism that shared representations emerge as a func-
tion of task similarities in the environment and demonstrate
the deleterious consequences for multitasking performance.
It has been shown that networks are capable of extracting sim-
ilarities from a hierarchically structured input space (Hinton,
1986). Recent analytic and empirical work in the domain of
semantic cognition paints a similar picture: neural systems
may gradually discover shared structure in the task environ-
ment with a bias towards the initial formation of shared, low-
dimensional representations (Saxe et al., 2013; McClelland &
Rogers, 2003). Our simulation results are in line with these
observations showing that shared task representations emerge
as a function of high stimulus feature overlap between tasks
and furthered the insight that such similarities in the task en-
vironment lead to multitasking limitations.

In the second part, we examined how intrinsic learning bi-
ases towards shared or separate representations (by means
of weight initialization) can be used to expose a tradeoff
between learning efficiency and multitasking performance.
Early work in machine learning suggests that learning bi-
ases towards a particular representation can be understood
as biases of the learner’s hypothesis space (Baxter, 1995),
that is, the set of all hypotheses a learner may use to ac-
quire new tasks. We formalized this hypothesis space in terms
of the amount of shared representations between tasks and
showed how this mediates an inverse relationship between
learning efficiency and interference-free multitasking. Our
neural network simulations confirmed these analytical predic-
tions, showing that a weight initialization bias towards shared
representations enables faster learning if shared structure in
the environment can be exploited, but incurs a cost for multi-
tasking. A promising direction for future research may be to
explore another prediction: our formalism suggests a role for
such biases in regularizing the representational complexity of
the network, thereby promoting generalization performance.

Our analyses indicate that neural learning systems, whether
natural or artificial, are subject to a tension between “in-
teractive parallelism“ on the one hand, which exploits the
fine grained structure of representations and similarity in the
service of learning, and “independent parallelism“ that sup-
ports concurrent processing of distinct tasks, on the other
hand. A similar tension can be found in the domain of learn-
ing and memory. The complementary learning systems hy-
pothesis proposes two separate learning systems, one system
that relies on shared representations to support inference, as
well as another system that uses separate representations to
support independent encoding and retrieval of information
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(McClelland, McNaughton, & O’Reilly, 1995). The latter
system supports a form of independent parallelism for asso-
ciational processes that is similar to the form of independent
parallelism for executional processes described in this paper.

Altogether our results suggest that the brain may be con-
fronted with balancing multitasking capability against extrin-
sic and intrinsic biases towards shared representations. A ma-
jor goal for the development of artificial systems may be to
systematically configure the balance between interactive and
independent parallelism, as well as to exploit the relative ad-
vantages of each. Most efforts in complex neural architec-
tures have focused predominantly on the discovery of shared
representations for the purpose of inference and generaliza-
tion (Bengio, Courville, & Vincent, 2013). However, one of
the future challenges will be to explore the tension between
learning efficiency and multitasking in networks with higher
complexity (i.e. deep networks), as well as in more natu-
ralistic task environments. We hope that this work will help
inspire a proliferation of efforts to further explore this area.
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Abstract

Analogical and causal reasoning theories both seek to explain
patterns of inductive inference. Researchers have claimed that
reasoning scenarios incorporating aspects of both analogical
comparison and causal thinking necessitate a new model of in-
ductive inference (Holyoak, Lee, & Lu, 2010; Lee & Holyoak,
2008). This paper takes an opposing position, arguing that fea-
tures of analogical models make correct claims about infer-
ence patterns found among causal analogies, including analo-
gies with both generative and preventative relations. Experi-
ment 1 demonstrates that analogical inferences for these kinds
of causal systems can be explained by alignment of relational
structure, including higher-order relations. Experiment 2 fur-
ther demonstrates that inferences strengthened by matching
higher-order relations are not guided by the transfer of prob-
abilistic information about a cause from base to target. We
conclude that causal analogies behave like analogies in gen-
eral—analogical mapping provides candidate inferences which
can then be reasoned about in the target.
Keywords: analogy; causality; structure mapping theory; in-
ductive inferences

Introduction
The current paper challenges recent claims that standard the-
ories of analogy (such as structure-mapping theory; Gentner,
1983, 1989) cannot explain analogical inferences that incor-
porate causal relations. Holyoak and colleagues (Holyoak et
al., 2010; Lee & Holyoak, 2008) contend that causal analo-
gies require a different kind of process from typical analo-
gies. Specifically, they claim that structure-mapping the-
ory (SMT)—and more broadly, all extant models of anal-
ogy—fail to predict people’s inferences for causal analogies
that involve both generative and preventative causal relations.
In their view, causal analogies require models of analogy
that incorporate the basic elements of causal models (Lee &
Holyoak, 2008).

We maintain that in causal analogies, the mapping between
analogs is done by the same structure-mapping processes as
in other domains. Assuming that the mapping yields can-
didate inferences in the target, normal causal reasoning pro-
cesses then occur in the target to arrive at further conclusions.
Specifically, we show that this division of labor holds for the
kinds of materials used by Holyoak and colleagues (Holyoak
et al., 2010; Lee & Holyoak, 2008): analogical processes in-
form the construction of causal models in the target analog,
after which causal reasoning processes are used to draw fur-
ther inferences in the target. We believe our account provides
a better explanation of people’s reasoning at the level of rep-
resentation and, more broadly, offers a more parsimonious

description of analogical reasoning.

Inference and Similarity
Similarity plays an important role in SMT. While simple
physical or property-based similarities can serve as cues to
engage in analogical comparison, relational matches are more
central to the content of analogical inferences (Gentner &
Markman, 1997). Relational similarity is assessed by a pro-
cess of structural alignment in which components of the
two analogs are placed in correspondence based on a max-
imal (or near-maximal) match in relational structure. Align-
ments with deeply embedded relational structures—in which
higher-order constraining relations govern lower-order rela-
tions—are perceived as more similar than those with shal-
low structures (Gentner, Rattermann, & Forbus, 1993) and
provide a better basis for candidate inferences to the target
(Clement & Gentner, 1991). Thus, the perceived structural
similarity and inferential strength between two analogs typi-
cally exhibit a positive correlation.

Figure 1: The causal systems in Lee & Holyoak (2008). G
and P represent generative and preventative causes. The ef-
fect is the outcome feature. Dotted elements in the targets
represent information not given. In descending order, sim-
ilarity ratings between base and target was G1G2P1, G1G2,
and G1P1. The order of inductive strength ratings was G1G2,
G1G2P1, and G1P1.

However, Lee and Holyoak (2008) found that these mea-
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sures can be disassociated. In Experiment 1, they presented
participants with a description of a fictional animal with four
notable features. Three of the four features were described
as causally related to the fourth: two were generative causes
while the other was a preventative cause (G1, G2, and P1).
This animal served as the base analog (see Figure 1). Partic-
ipants were further given a description of a secondary target
animal that possessed one of three combinations of the an-
tecedent features described in the base (i.e., G1G2P1, G1G2,
and G1P1); however, they were given no information about
how those features affected the outcome. The base animal
(Animal A) and target animal (Animal B) were described in
the following manner:

Animal A has dry flaky skin, muscular forearms, a weak
immune system, and blocked oil glands.

For Animal A, dry flaky skin, tends to PRODUCE
blocked oil glands; muscular forearms tend to PRO-
DUCE blocked oil glands; a weak immune system tend
to PREVENT blocked oil glands.

Animal B has dry flaky skin, muscular forearms, and a
weak immune system.

Participants’ task was to either rate the similarity of the
base and target, or to estimate the likelihood that the effect
would occur in the target. Lee and Holyoak reported that
while participants’ similarity ratings roughly corresponded
with the number of structural relations shared by base and
target (G1G2P1 was highest), their inferences did not. In
descending order, the observed strength of the effect infer-
ence in the target was G1G2, G1G2P1, and G1P1. The au-
thors contend that these results are problematic for SMT and
other models of analogy, for two reasons. First, SMT can-
not account for the systematic non-correspondence observed
between similarity and inference strength; and second, SMT
cannot account for the transfer of probabilistic information
from the base because it does not permit the transfer of non-
relational properties of the higher-order relations1.

In response to the first issue, Colhoun and Gentner (2009)
note that the measure of inductive strength used in the pre-
vious experiment focused on a single variable: people’s be-
lief about the likelihood of the effect. This ignores a large
number of other inferences that must be made between the
analogs. Participants are told only that certain factors (e.g.,
G1, dry flaky skin) exist in the target, but they are not told
that these factors are causally connected to the effect E; these
causal links must all be inferred from the base.

1Holyoak and colleagues (Holyoak et al., 2010; Lee & Holyoak,
2008) at points extend this claim even further, suggesting that SMT
establishes analogical inferences “solely on the logical form of rep-
resentations and not on their meaning” (Lee & Holyoak, 2008 p
1120). This however would suggest that SMT is insensitive to the
content of the higher-order relations that bind predicates. This is
incorrect. SMT distinguishes higher-order constraining relations
that confer systematicity (such as cause and prevent) from non-
constraining relations (such as and), which do not. (Falkenhainer,
Forbus, & Gentner, 1989; Gentner, 1983). Here we focus on the as-
pects of their argument that would prove challenging for the theory.

Arguing that the inductive strength of an analogy should be
measured by all of its candidate inferences, and not solely a
single effect inference, Colhoun and Gentner (2009) used Lee
and Holyoak (2008) original stimuli and asked participants to
rate their confidence in each of the required inferences in the
target (G1 tends to produce E, etc.). The result was that the
ordering of inductive strength ratings for inferences within
the target closely matched the ordering of perceived similar-
ity. In sum, this experiment showed that when the appropriate
inferential questions are asked, there is no conflict between
perceived similarity and perceived inferential strength.

Inference and Structure
The second claim against SMT is that it would require the
transfer of non-relational properties of higher-order relations,
such as propensities for causal antecedents to produce or pre-
vent an effect (as in G1 tends to produce E). Lee and Holyoak
(2008) claim that avoiding such a violation of systematicity
would require a model to incorporate a kind of mapping pro-
cess in which degrees of belief in the inferred property of a
target are mutually informed by both analogical mapping pro-
cedures and causal strength assessments.

However, Colhoun and Gentner (2009) proposed an alter-
native solution. They suggest that the pattern of relations in
the base allows people to infer that the pattern of G1, G2 and
P1 is sufficient to produce E. Specifically, participants are
told that the base contains G1, G2, and P1, that G1 and G2
both tend to produce E, that P1 tends to prevent E, and that E
is present. Thus in encoding the base, the presence of the ef-
fect E allows people to infer that the combined causal strength
of G1 and G2 exceeds that of P1. To test this, in Experiment
2, they presented participants with a base analog consisting
of generative and preventive causes (G1 tends to produce E,
etc.), but varied whether the effect E was actually stated to
be present in the base. Participants’ task was to generate ef-
fect inferences for different targets. The result was that par-
ticipants gave stronger effect inferences in the target when
given a base analog in which the effect was clearly stated to
be present than when given a base in which the effect might
or might not be present.

Colhoun and Gentner (2009) argue that the presence of an
effect in the base provides evidence of the relative strength of
the antecedent causes. In other words, people are attending
to and transferring a higher-order qualitative relation—that
G1 and G2 are causally stronger than P1. This suggests that,
as in other areas of analogical reasoning, encoding processes
occur in the base, followed by structure-mapping processes
that align the base relational structure with that of the target
and project candidate inferences to the target. Once these
new inferences are projected, causal reasoning processes in
the target can produce further inferences.

But there is an alternative account. Perhaps, consistent
with the idea that causal propensities are intertwined with
the analogical mapping process (Holyoak et al., 2010), the
differences in observed inference ratings might simply have
been the consequence of a probability calculation computed
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in the base and subsequently mapped to a matching target.
For example, people may have derived a series of proba-
bilistic propensities for the causal antecedents to bring about
the effect. Participants would then project those probabilistic
properties of the higher-order predicate relations onto the tar-
get (e.g., predicates related by CAUSE-10%, CAUSE-50%,
CAUSE-93%, etc.). We explore this possibility in the follow-
ing two studies.

Figure 2: Base and target systems for Experiment 1 (Panel
A) and Experiment 2 (Panel B). G and P represent generative
and preventative causes. The experimental manipulations for
Experiment 1 and 2 were the bases and targets, respectively.

Experiment 1
Hypothetically, there are two ways people may calculate
probabilistic likelihoods for an effect in a base analog: a
global posterior calculation, in which all causal antecedents
are factored into a probabilistic estimate; and a local posterior
calculation, in which only those antecedent causes that occur
in the target are analyzed in the base. Experiment 1 exam-
ines a scenario where predictions for global or local posterior
calculations are pitted against predictions made by standard
mapping theory. Figure 2A illustrates the scenario used in
this experiment. In this study, we varied the causal struc-
ture in the base, keeping the target (G1P1) constant in both
conditions. Further, in both conditions, participants are told
that the effect E occurs in the base. If participants gener-
ate a global posterior calculation for the effect in either the
G1G2P1 condition [i.e., P(Effect | G1G2P1)] or the G1P1P2
condition [P(Effect | G1P1P2)], then we should see no differ-
ence in inference ratings between conditions. Since people’s
probability estimates are calculated conditionally on the ag-
gregate influence of all causal antecedents, there is no unitary
piece of information that can inform them as to how likely the
effect will be when transferred to a G1P1 target2.

2One alternative way participants could implement a global strat-
egy would be to generate a posterior probability for the system of
base relations, and either increase or decrease their estimate con-
tingent upon which cause is absent in the target. For example, if
participants are given G1P1P2 as a base and G1P1 as a target, drop-
ping a preventative relation (e.g., P2) may lead them to boost their
probability estimate. However, while this is certainly possible, we

But suppose instead that participants use the base to gen-
erate a local posterior calculation (considering only the rela-
tions that match with those in the target)—e.g., P(Effect —
G1P1 ). In this case, they have no basis for a difference in
inference ratings between G1G2P1 and G1P1P2. Because the
strength of the individual causal antecedents is unknown, they
would have no information about the degree to which the un-
mapped cause in the base either prevents (P2) or contributes
(G2) to the effect. Therefore there is no reason to expect that
a systematic difference in effect strength estimates between
the two conditions.

In contrast, suppose participants utilize the type of encod-
ing and structure-mapping techniques as described above. In
this case, when given the G1P1P2 → E base, participants
should recognize that the effect of G1 is stronger than that of
both P1P2 and is therefore stronger than either of them alone.
This relative strength relation is a higher-order relation which
takes the causal relations as arguments. When this system is
projected to the target (G1P1), participants should assume that
the effect E will occur. In contrast, when given the other base,
G1G2P1 → E, participants have no reason to infer that either
G1 or G2 is stronger than P1 (since generative relations out-
number preventative relations). Thus the prediction is that the
effect inference will be stronger for G1P1P2 than for G1G2P1
bases.

Methods
Participants 40 undergraduate students from Northwestern
University participated in the study for course credit. One stu-
dent was excluded because of missing data points and seven
were excluded for failing a comprehension check. In all, 32
participants were analyzed in this study.

Materials and Procedure The animal features and struc-
tures were those used in Experiment 1 by Lee and Holyoak
(2008). Participants were given information about the two an-
imals, a G1G2P1 animal and a G1P1P2 animal, which served
as the different bases. They were also given a target, a G1P1
animal (Figure 2A). The bases were described using differ-
ent sets of features, and therefore the target’s features were
unique to the given base. In both conditions, participants
rated the likelihood of the effect in the target. Inferences
were framed as suppositional queries asking participants to
predict the number of animals that would exhibit the effect
given 100 instances of the target. Furthermore, for the sake of
completeness, similarity ratings between base and target were
also obtained. These were assessed on a scale of zero to ten,
with zero indicating “completely different” and ten indicat-
ing “identical”. Similarity ratings always preceded inference
ratings.

The experiment was conducted on a PC using the software
program Qualtrics. Each participant received both G1G2P1
and G1P1P2 conditions. The order of the two base conditions
were counterbalanced. Participants were first given the de-

believe that such an explanation is far less parsimonious than an ac-
count based on higher-order relational mapping (i.e., G1>P1P2).
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scription of a single base and the target animal. Similarity and
inference question were placed directly below the description
on the same page. Once participants had recorded an answer,
they were prompted to continue to the next page. After leav-
ing the page, participants were unable to review the content
and answers from the previous page.

Figure 3: Mean outcome (effect) inferences and similarity
ratings between target and base. The base categories repre-
sent the type of causes each cause had. Error bars represent 1
standard error of the mean.

All participants in Experiment 1 also participated in Ex-
periment 2, which directly proceeded Experiment 1. At the
end of the Experiment 2, all participants were given a multi-
ple choice comprehension test that consisted of two questions
about the content of stories they were given. If either question
was answered incorrectly, that participant’s data was removed
from analysis for both experiments.

Results and Discussion
The mean results for both similarity and inference ratings can
be seen in Figure 3. The analysis consisted of a paired-sample
t-test for each rating type. There was a significant difference
in mean inference ratings between the conditions: the tar-
get in the G1P1P2 condition (M=62.28, SD=19.84) was rated
as significantly more likely to exhibit the effect E compared
to the target in the G1G2P1 condition (M=47.28, SD=17.49),
t(31)=3.44, p<.005. This suggests that participants’ infer-
ences were informed by the higher-order relation observed in
the G1P1P2 base. There was no significant difference in sim-
ilarity ratings between the G1P1P2 (M=6.25, SD=1.59) and
the G1G2P1 (M=5.78, SD=1.75) condition t(31)=1.54, p=.13.
However, the relative similarity ratings were in the same di-
rection as ratings for inferential strength.

These results show that if we assume that people inferred
a higher-order relation of relative strength among the causal
relations while encoding the base analog, then this relation
will be mapped to the target, where it can be used to make
causal inferences about the effect E. As previously discussed,
this pattern of results would be highly unlikely if participants
were mapping either a global or local posterior calculation
from the base to target. Thus, a higher-order relationship be-
tween the generative and preventative causes in the G1P1P2

base gave information about the relative strength of G1 in
the G1P1 target. This was not the case for the G1G2P1 base.
In conjunction with the findings of Colhoun and Gentner
(2009), our results suggest that mapping of relational struc-
ture, including higher-order relations computed in the base,
can account for inferential strength ratings made among ana-
log causal systems.

Experiment 2
The previous study leaves open another possibility. Perhaps
when given the base G1P1P2 → E, participants recognized
that G1 was stronger than the combined P1P2, but simply in-
ferred the absolute strength of G1. That is, they inferred that
G1 was extremely likely to produce effect E. To test this,
we use the same G1P1P2 → E base condition that had pre-
viously elicited increased inference ratings in Experiment 1.
However, this time, the base is constant while the targets vary
(see Figure 2B). In both conditions, participants receive the
same generative cause (i.e., G1) observed in the base analog,
but also an additional preventative cause that differs by con-
dition. In the Familiar P condition (G1P1), they receive the
same P1 feature found in the base. In contrast, in the Novel
P condition (G1P3), they receive a novel preventative feature
(i.e., P3) that has no corresponding relation in the base. If par-
ticipants simply infer extremely strong causal strength for G1
(i.e., G1 overpowers the preventative causes), then we should
observe no difference between the two conditions. However,
if participants are transferring a higher-order relational struc-
ture from the base to target, then we should find that people
rate the effect to be more probable in the Familiar P condition
compared to the Novel P condition.

Method
Participants The same 40 Northwestern students who par-
ticipated in Experiment 1 also participated in Experiment 2.
Furthermore, the same eight participants whose data was re-
moved from analysis were likewise removed for Experiment
2. A total of 32 participants were therefore analyzed.

Materials and Procedures The animal features for Exper-
iment 2 were taken from Colhoun and Gentner (2009). All
participants were run in both the Familiar P and Novel P
conditions; order was counterbalanced between participants.
They were given the same similarity and inference tasks as in
Experiment 1. As before, similarity queries always preceded
inference ratings. Participants began the experiment immedi-
ately after finishing Experiment 1.

Results and Discussion
Figure 4 shows the mean inference and similarity ratings. As
before, a paired-sample t-test was conducted for both mea-
sures. Consistent with the hypothesis, mean inference ratings
for the likelihood of effect E were significantly greater in the
Familiar P condition (M=62.31, SD=21.18) than in the Novel
P condition (M=48.59, SD=17.59), t(31)=3.71, p<.001. In-
deed, in the Novel P target, the estimates of likelihood of E
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Figure 4: Mean outcome (effect) and similarity ratings be-
tween target and base. The target categories represent the
type of preventative cause present in the target. Error bars
represent 1 standard error of the mean.

did not differ from chance (50%). Similarity ratings were also
significantly greater for the Familiar P condition (M=6.44,
SD=1.54) than for the Novel P condition (M=4.19, SD=1.67),
t(31)=6.95, p<.001. This is to be expected, because in the Fa-
miliar P condition, there are two shared factors (G1 and P1),
while in the Novel P condition only one factor is shared (G1).

These findings run contrary to the idea that participants are
simply transferring absolute information about the strength of
G1 from the base to target. Had people simply transferred the
strength of the generative relation, the effect inference would
have been equally strong in both targets. Instead, participants
only inferred that the effect occurs in the target when they
could map higher-order relative strength relations from the
base to the target. In sum, these findings suggest that partici-
pants’ inferential strength ratings for the effect in a target can
be accounted for by standard analogical mapping models.

General Discussion
Holyoak and colleagues (Holyoak et al., 2010; Lee &
Holyoak, 2008) argue that causal analogies cannot be mod-
eled in the same way as other analogies and instead require
the creation of a specialized system. Specifically, they believe
that most existing models, including SMT, cannot accom-
modate the probabilistic dynamics of causal systems. The
evidence provided here suggests otherwise. Across two ex-
periments, we demonstrate that the pattern of analogical in-
ferences observed among various causal systems correspond
with predictions made by SMT. Experiment 1 found that
stronger effect inferences occurred when the causal relations
in the base were united by a higher-order relation that took
causes as arguments. In Experiment 2, we tested whether the
results could be predicted by assuming the transfer of the in-
dividual causal strength of the generative relation from the
base to target. On the contrary, the results suggest that a con-
sistent relational structure is required in order for people to
infer the effect in the target.

There has been immense progress in analogy research in
the last few decades. The evidence suggests that analogy is

a domain-general process that applies across physical causal-
ity (Goldwater & Gentner, 2015), mathematics (Mix, 2008;
Rittle-Johnson & Star, 2007), politics (Spellman & Holyoak,
1992), spatial scenes (Doumas & Hummel, 2013; Kurtz &
Gentner, 1993; Richland, Morrison, & Holyoak, 2006; Rich-
land et al., 2006; Markman & Gentner, 1993; Sagi, Gentner,
& Lovett, 2012), and scientific reasoning (Gentner, 2002;
Pearl, 1992). Our findings here support the idea that anal-
ogy is a domain-general process that supports alignment and
inference both within and across domains.
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Abstract 

Research in analogical transfer suggests a simple type of 
transfer that occurs due to the activation of key relational 
concepts. Analysis on mental structured representations 
indicates that this transfer may act differently depending upon 
structural and perceptual features of the priming task. Two 
hundred eight participants were assigned to three 
experimental groups where they received a structure-priming, 
tested once and afterwards they received a perceptual-priming 
and tested again. As predicted, the effect of structure-priming 
was found across conditions whereas the effect of perceptual-
priming (a six-second animation) was detected only in 
subjects with high levels of cognitive reflectiveness. These 
individual differences are interpreted as evidence that only 
highly reflective subjects were able to process visuospatial 
cues in the animation and to extract their structural features, 
hence activating relational concepts that influenced their 
interpretations of subsequent tasks. 
Keywords: Analogy, transfer, priming, cognitive reflection.  

Introduction 

In the fields of problem solving and analogy research, 

certain transfer effects have been linked to the low level 

cognitive process of priming. In one study, subjects were 

confronted with a biochemistry problem and learned that an 

inhibitory enzyme decreased virus reproduction (Schunn & 

Dunbar, 1996). The next day, the same subjects confronted 

a genetics problem involving the concept of an inhibitory 

gene. Although the two problems were not analogous, 

subjects exposed to the key concept of inhibition in the first 

session were more likely than control subjects to develop a 

solution based on the concept of inhibition for the transfer 

problem. Similarly, Day and Goldstone (2011) showed that 

subjects familiarized with a simulated physical system of 

motion were able to transfer the notion of “oscillatory 

motion” to interpret transfer tasks posed in a context of 

urban planning. This transfer arises not from a systematic 

mapping from source to target, but it is due to the activation 

of one or more key concepts (i.e. priming) and thus it has 

been called a “piecemeal transfer” (Holyoak, 2012, p. 246). 

Similar effects were observed by Burns (1996) when 

researching transfer between episodes of analogical 

reasoning. The experimental tasks involved four-term letter-

string analogies such as the one depicted in Figure 1. Burns 

had participants justify a given answer to a first analogy 

prior to having them propose solutions to a second (non-

analogous) one. Half of the subjects had the two analogical 

problems presented in the reversed order, and the differences 

between the two groups on the relative frequencies of all 

defensible solutions suggest order effects that are consistent 

with the hypothesis that concepts activated during the first 

episode effectively biased the solution strategies followed 

by participants during the second episode. Burns explained 

these order effects as the formation of analogical mappings 

during the first analogical episode which afterwards are 

transferred to the second analogical episode. 

However, Burns’ theoretical explanation cannot account 

for the “piecemeal transfer” observed in the aforementioned 

studies because the referred problems are not analogical 

episodes: Within the biochemistry problem, there are no 

analogical mappings that can be transferred to the genetics 

problem. Similarly, no analogical mappings in the physical 

system can be transferred to the domain of urban planning. 

Hence, this study adopts the view that the activation of key 

concepts (i.e. priming) helps subjects to spontaneously 

interpret subsequent tasks according to the primed concept. 

The research presented here contributes by identifying 

differences among two kinds of priming referred here as 

structural priming and perceptual priming. The former 

being akin to the effect documented by Burns whereas the 

latter more akin to the one observed by Day & Goldstone.  

A proper outline of the method and predictions for this 

study requires an analysis of the mental representations 

underlying tasks such as the one in Figure 1. The next 

section provides such analysis and proposes mechanisms by 

which priming may affect the interpretation of these tasks. 

 

Representations of Four-term Analogies 
Four term analogy problems have the form A : B :: C : ? 

where A and B comprise the source of the analogy whilst C 

along with the unknown constitute the target of the analogy. 

To solve this problem, one must interpret the source domain 

and then look for a solution D such that the relations 

between A and B can be mapped to the relations between C 

and D. This kind of problems promote the identification of 

the source’s structure (Indurkhya, 1989) and thus they will 

be used in the present study to induce structural priming. 

Additionally, these tasks will be used here as a manner 

to measure the priming effect by assessing the interpretation 

given to the source domain when solving these problems. 

This is possible because four term analogies in letter-strings 

(see Figure 2) can be represented by propositions (Burns, 

1996). For example, the “append” concept may be 

represented by the schema “+” in a way that “+(ab, cd)” 

represents “abcd”. And certain notion of reflection can be 

represented by the schema “mirror” so that “mirror(xyzw)” 

becomes a representation of “wzyx”. 

Relational schemas (such as the ones mentioned above) 

play an important role in cognitive research because there is 

abc : abd :: xyz : ??? 
Figure 1: This analogical problem can be stated as "if you changed 

abc to abd, how would you change xyz in the same way?” 
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evidence that they allow encoding structural knowledge as a 

combination of schemas and primitive elements (Halford, 

Bain, Maybery, & Andrews, 1998). For example, the string 

“aab12aab” can be seen as emerging from two primitive 

elements, namely “aab” and “12”. And the source domain of 

the problem in Figure 2 (i.e. the first two terms) can be 

represented as it is depicted at the top of Figure 3. In such 

case, dominant theories of analogical mapping (Gentner, 

1983; Holyoak & Thagard, 1989) predict that “cde12edc” 

would be the response to this analogical problem. 

However, the structure depicted in Figure 3 is not the only 

one that fits the problem, since the base analog could be 

alternatively conceptualized by a “shift” schema, namely an 

operation that takes the last letter and moves it to the first 

position (e.g. shift(xyzw) = wxyz). Although shift and 

mirror schemas represent different concepts, they sometimes 

cannot be differentiated from their action on one particular 

instance. As an illustration, notice that  

mirror(aab) = shift(aab) = baa. 

This makes the analogy in Figure 2 an ambiguous 

problem: replacing all the “mirror” occurrences in Figure 3 

by “shift” leads to another structured representation which 

predicts a different answer, namely “cde12ecd”. This 

provides a basis to detect the priming effect by assessing the 

interpretation used by subjects in resolving the problem: if 

they conceptualized it through the mirror schema, they 

would prefer “cde12edc” as an answer, whereas if they used 

the shift schema, they would rather prefer “cde12ecd”. 

The present study tests the hypothesis that tasks requiring 

the generation of structured representations can prime a 

schema in a different manner than those tasks that do not 

require such structured representations. Several studies from 

analogical transfer research emphasize differences between 

abstract, structural aspects of an episode and its perceptual, 

concrete aspects. The evidence indicates that both aspects 

influence analogical transfer but that structural aspects have 

a greater impact than perceptual ones (Blanchette & Dunbar, 

2000; Holyoak & Koh, 1987). Structural and perceptual 

features of a priming task may influence transfer as follows: 

a structure-based task (e.g. the one in Figure 2) might force 

subjects to create structured representations, thus activating 

the involved relational schemas. In contrast, a perception-

based task (e.g. describing a dynamic visual stimulus) may 

evoke structured representations only in specific individuals, 

thus leaving open the possibility that schemas remain 

deactivated while performing the task. More precisely, these 

individuals may extract structural features from visuospatial 

cues in the perception-based tasks thus activating relational 

schemas that influence their interpretations of subsequent 

tasks. To address for this possibility, the cognitive reflection 

test (CRT, Frederick, 2005) was taken into account because 

research in decision making has shown that people who 

score highly on this test are more likely to engage in 

rational, analytic thinking (Shah, Michal, Ibrahim, Rhodes, 

& Rodriguez, 2017) whereas subjects with lower scores are 

less sensitive to notice abstract aspects of a task (Toplak, 

West, & Stanovich, 2011). 

Summarizing, structural-tasks should force the generation of 

structured representations, meaning that the effect of this 

structural-priming on interpreting a subsequent episode is 

independent of participant’s cognitive reflection. In contrast, 

perceptual-tasks may evoke structured representations only 

in subjects with high cognitive reflectiveness, meaning that 

the effect of perceptual-priming on interpreting subsequent 

episodes is expected to be effectively modulated by 

participant’s cognitive reflection. 

Method 

Participants 

An initial sample of 231 undergraduate students at a Chilean 

university (Age range 19-29 years, M = 20.6 SD = 2.1) 

participated in the study for course credits. They were 

randomly assigned to one of three conditions: two priming 

conditions and one control condition.  

Procedure and Design 

Subjects in the “first mirror then shift” condition (M-S) 

received a structure-priming favoring a “mirror” schema and 

were presented with a first test. Afterwards they received a 

perceptual-priming favoring the “shift” schema and were 

presented with a second test. Similarly, subjects in the “first 

shift then mirror” condition (S-M) received a structure-

priming favoring the “shift” schema and were presented 

with the first test. Afterwards they received a perceptual-

priming favoring the “mirror” schema and were presented 

with the second test. This design (detailed below) permits 

assessing the desired effect of priming on interpreting a 

transfer episode as follows: the effect of structure-priming 

can be assessed by comparing the experimental groups in 

terms of the scores collected in the first test. The effect of 

perceptual-priming will be assessed through comparing the 

change of scores (from the first test to the second test) 

experienced by each experimental group. The no-priming 

condition (NP) was taken as a control condition: subjects in 

this condition were primed to activate different schemas 

than the mirror and shift ones. 

The experiment was administered in small groups at the 

computer laboratory of the university, with each participant 

working individually at her own pace. Participants took 

aab12aab : aab12baa :: cde12cde : ???????? 

 

 
Figure 2: An ambiguous four term analogy problem 

    +(aab +(12, aab))   :   +(aab +(12, mirror(aab)) 

   +(cde  +(12, cde))   :   +(cde +(12, mirror(cde)) 

 

 

 

Figure 3: (Top) The domain “aab12aab : aab12baa” is represented as a 

combination of schemas—“append” and “mirror”—and primitive 

elements—“aab” and “12”. (Bottom) The answer “cde12edc” for the 

problem in Figure 2 results from applying the same combination of 

schemas to the target domain by mapping primitive elements. 
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between 15-20 min (M = 17.6; SD = 4.6) to complete the 

experiment. The Qualtrics online platform was used to 

build a questionnaire comprising the following phases: (1) 

Introduction, (2) Structure priming, (3) Test 1, (4) Cognitive 

Reflection Test, (5) Perceptual priming, (6) Test 2 and (7) 

Test 3 (a hinted repetition of Test 2). As noted above, the 

between-subjects manipulation was restricted to phases 2 

and 5; the other phases were identical across conditions. A 

detailed description of each phase is provided now. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Introduction: In order to familiarize participants with 4-term 

analogies, the computer screen presented the analogy 

“Chile:Santiago::Argentina:???”, along with its meaning i.e. 

“Chile is related to Santiago in the same way that Argentina 

is related to which city?”. Three alternative answers were 

given (Buenos Aires, Mendoza and Paris) each one coupled 

with a sliding bar ranging from 1 to 100 (see Figure 4). A 

text below explained that the three scores must add up to 

100, and that they should reflect how good each answer 

seemed to be. The options were preset at scores of 90, 9 and 

1, respectively, with an accompanying text stating that while 

Mendoza might be a plausible answer (score of 9) because 

the fact that it belongs to Argentina parallels the fact that 

Santiago belongs to Chile, a much better answer should be 

Buenos Aires (score of 90), because its being the capital of 

Argentina matches the "capital of" relation that holds 

between Santiago and Chile. Finally, the instructional text 

stated that Paris is not a good answer (score of 1) because it 

is hard to find a relation between Paris and Argentina that 

parallels some relation between Santiago and Chile. 

Structure-priming: This phase was intended to activate 

particular schemas in participants' minds through a priming 

method similar to the one presented in Burns (1996). 

Participants in the M-S condition received the mno678 : 

onm876 :: def234 : ??? problem. According to my 

analysis, this problem allows only one acceptable solution 

that involves projecting onto the rightward term of the 

analogy the mirroring operations that transform the base 

structures “mno” and “678” into “onm” and “876”, 

respectively. The above transformations could only be 

conceptualized in terms of mirroring operations, and thus it 

was expected participants to massively assign high scores to 

fed432 (derivable via mirroring) and low scores to both 

edf324 and 4def23 (not derivable via such operation). This 

should lead to an increased activation of the mirror-schema 

in relation to other possible transformations. Participants in 

the S-M condition received the mno678: omn867 :: def234 

: ??? problem, an analogy whose only acceptable solution 

involved applying the "shift" operation that transform the 

base structures “mno” and “678” into “omn” and “867”, 

respectively. We expected participants in this group to 

assign high scores to fde423, and low scores to both edf324 

and 4def23 alternatives. Participants in the NP condition 

received the human:lungs::fish:??? analogy, followed by 

the alternatives "gills", "spine" and "fins". Given that this 

analogy should be solved by evoking the relation "X 

breathes through Y", we expected this control condition to 

prime neither a mirroring nor a shifting operation. In these 

and all subsequent analogical problems, three competing 

solutions were presented in random order, with their 

corresponding sliding bars preset to one. 

 

Test 1 To assess whether the structure-priming received in 

the previous phase can bias subsequent processing, 

participants of all conditions received the ambiguous 

problem aab12aab : baa12baa :: cde12cde : ???. This 

analogy is solvable by applying either mirroring or shifting 

operations (options edc12edc and ecd12ecd, respectively). 

The remaining option (dec12dec) could not be derived from 

the leftward term of the analogy, and thus was expected to 

receive low scores regardless of condition. 

 

Cognitive Reflection Test (CRT) This stage was presented 

to participants as a problem solving section. It comprised 

three algebra problems whose correct solution does not 

require complex calculations, but requires participants to 

suppress an "impulsive" solution that easily comes to mind
1
. 

As an example, the first item of the CRT consisted of the 

following problem: "A bat and a ball cost $1.10. The bat costs 

$1.00 more than the ball. How much does the ball cost?" 

Participants had no time limit to answer the problems. No 

particular criterion was taken into account in order to place 

the CRT here (between the two main measurement stages). 

After completing the third item, a yes/no question queried 

participants about whether they were familiar with any of 

the problems prior to the experimental session.  

Perceptual priming: After being presented with a web 

video player, participants were asked to run a (six seconds) 

                                                           
1 CRT is correlated with cognitive ability (Frederick, 2005; 

Toplak, West, & Stanovich, 2011), but can still predict rational 

thinking and performance on heuristics and biases tasks after 

controlling for the variance associated with assessments of 

intelligence, thinking dispositions, executive functions and 

cognitive skills. Thus, people who score highly on the CRT can be 

categorized as being more likely to engage in rational, analytic 

thinking (Shah, Michal, Ibrahim, Rhodes, & Rodriguez, 2017). 

 
Figure 4: Display for the acquisition of preference scores. 
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video animation. They were told that they would be able to 

watch the animation just once, and that they should pay 

careful attention in order to answer one brief question about 

the animation (answer limited to 200 characters). This 

question was aimed to provide a control mechanism to 

assess whether participants attended to the animation. 

Depending on the condition, the animation displayed a 

geometrical array whose dynamic movement was either 

compatible with a mirroring operation (S-M), with a shift 

operation (M-S) or unrelated to both (NP).  

For the S-M condition, the animation showed how a 

transparent panel containing three horizontally arranged card 

figures performed a 180º turn along the middle vertical axis
2
. 

As the left-to-right order of the figures changed from “club, 

diamond, heart” to “heart, diamond, club”, this animation 

was a visuospatial representation of the “mirror” operation. 

Participants were asked about how the spatial configuration 

of the club changed during the animation.  

For the M-S condition, the animation showed a hammer 

imparting a rightward motion to the leftmost of three 

horizontally arranged geometrical figures; this rightward 

motion was transmitted to the middle figure and ultimately 

transmitted to the rightmost figure, making it slide-off 

through a circular circuit that ended up relocating it in the 

leftmost position
3
. As the left-to-right order of the figures 

changed from “circle, square, rhombus” to “rhombus, circle, 

square”, this animation was intended to convey a 

visuospatial representation of the "shift" operation. 

Participants were asked about how the spatial configuration 

of the rhombus changed during the animation. 

For the NP condition, the animation displayed a 

transparent rectangle containing three horizontally-arranged 

card figures (club, diamond and heart) which performed a 

360º turn along its middle horizontal axis, thus leaving the 

left-to-right ordering of the figures unchanged
4
. As this 

rotational movement was unrelated to either the mirror or 

shift operations, it was intended to avoid the activation of 

the mental representations associated to the two crucial 

operations. Subjects were asked how the spatial 

configuration of the club changed during the animation. 

 

Test 2 To assess whether the visuospatial animations 

received during the previous phase altered subsequent 

processing, participants of all conditions received the 

ambiguous problem pq89pq : qp89qp :: xyz89xyz : ???. 

According to our analysis, this analogy is solvable by 

applying either mirroring or shifting operations (options 

zyx89zyx and zxy89zxy, respectively). As in Test 1, the 

remaining option (xyz89xyz) could not be derived from the 

leftward term of the analogy, and thus was expected to 

receive low scores regardless of condition. Upon assigning 

scores to each of the presented alternatives, subjects were 

asked to answer a yes/no question about whether the 

watched video had spontaneously popped up into their 

                                                           
2 See https://www.youtube.com/watch?v=n2gRewFVssY 
3 See https://www.youtube.com/watch?v=d56jnzPwBOU 
4 See https://www.youtube.com/watch?v=ALris6B4yj4 

minds while reading the analogy and/or evaluating the 

presented alternatives. 

 

Test 3 This is a control measure aimed to assess the extent 

to which participants were potentially able to use the 

information contained in the animation for solving the 

problem presented in Test 2. Participants received the 

analogy and the same solution options as in Test 2, but it 

was preceded by an explicit hint, namely, to take into 

account the animation for assigning scores to the presented 

alternatives.  

Data Analysis 

Participants were classified as having low cognitive 

reflection if their CRT score was equal to zero, and as 

having high cognitive reflection in the other cases. Since 

this study is based on priming effects, I discarded data from 

23 participants (4 in the M-S condition and 19 in the S-M 

condition) who failed to assign high scores (>= 80) to the 

only defensible solution to the unambiguous problem of 

phase 2, which was meant to operate as a structure-priming 

for the following phase. A preliminary analysis of the data 

revealed that a non-negligible proportion of participants in the 

control condition assigned high scores to the “incorrect” 

solution for the ambiguous problem presented during Test 1, 

thus lessening preferences for the meaningful alternatives. To 

prevent this unanticipated behavior of the NP group from 

engendering spurious correlations, raw preference scores 

were converted to normalized scores which reflect the 

proportion of preference assigned to the mirror-alternative in 

relation to the total amount of preference assigned to the two 

competing and meaningful alternatives: 

 
100* m

m s

P
NSPM

P P




 

As an example, if a subject assigned a preference of 10 to 

the mirror-alternative, 40 to the shift-alternative and 50 to 

the incorrect alternative, its NSPM would be 20%, reflecting 

that one fifth of the total amount of (the relevant) preference 

was assigned to the mirror-alternative whereas the 

remaining 80% was assigned to the shift-alternative. Due to 

the ratio form of NSPM scores
5
, I report geometric means 

(GM) obtained by computing arithmetic means on the 

logarithm of NSPM scores (see Table 1). 

                                                           
5 A possible drawback of normalized scores (such as the NSPM) 

is that they are prone to overestimations. An extreme example can 

illustrate this situation: If a participant assigned a preference of 2 

to the mirror-alternative and 1 to the shift-alternative, her NSPM 

score would be 66.6%, thus having a strong additive effect in 

computing averages, even though the mirror-alternative was 

ranked as negligible. This can be controlled by using geometric 

means: when a score is a ratio such as Xi/Yi, the geometric mean is 

the only mean with the property GM(Xi/Yi) =GM(Xi)/GM(Yi) i.e. it 

"normalizes" the ranges being averaged in such a way that no range 

dominates the weighting (Fleming & Wallace, 1986). 
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Table 1: The rows of the table report the (within-subjects) change of NSPM 

scores across the three measurement phases. The effect of structural 
priming is reported in the columns associated to Test 1. The column T2/T1 

reports the ratio of geometric means associated to Test 1 and Test 2 and 

suggests a between-groups change of preferences detected only in subjects 
with higher levels of cognitive reflectiveness. 

Results 

Structure-priming A two-way ANOVA was conducted to 

examine the effect of condition (S-M, M-S and NP) and 

CRT level (low vs. high) on the NSPM scores collected 

during Test 1. Main effects emerged for condition F(2, 203) 

= 10.09, ηp
2
 = .085, p < .0001. Cognitive reflection does not 

affect the interpretation of the problem in Test 1 since the 

main effect of cognitive reflection, F(1,203) = .0001, ηp
2 

= 

0, p = .99 and the interaction condition x cognitive 

reflection, F(2,203) = 2.3, ηp
2 

= .022, p = .10 were not 

statistically significant. Planned comparisons confirmed 

differences on NSPM scores between the two competing 

conditions in each one of the two CRT levels. For high-CRT 

participants, the S-M condition produced significantly lower 

NSPM scores (GM = 13.85) than those of the M-S condition 

(GM = 52.41), t(47.16) = 3.31, p = .0017, d = .58. For low-

CRT participants, the S-M condition produced significantly 

lower NSPM scores (GM = 24.18) than the M-S condition 

(GM = 54.09), t(50.99) = 2.32, p = .024, d = .19. As a base 

line for comparison, NSPM scores of subjects in the control 

condition (NP) are reported in Table 1. These results are 

consistent with those obtained by Burns (1996), and extend 

those findings by confirming that the effect of structural-

priming on interpreting subsequent analogical tasks takes 

place regardless of whether participants exhibit (or not) a 

natural propensity to engage in rational, analytic thinking.  

 

Perceptual-priming In order to detect possible small 

effects of perceptual priming, this experiment was designed 

to measure the extent to which a perceptual-priming can 

counteract the effect of a prior structure-priming. Therefore, 

participants whose structure-priming favored the mirror 

scheme later received a perceptual-priming favoring the 

shifting schema, and vice-versa. The eventual effect of 

perceptual-priming was assessed by analyzing the change of 

NSPM scores within subjects (from Test 1 to Test 2) i.e. the 

change of subject’s appraisal for the mirror-compatible 

solution. To investigate this change of preferences at the 

level of individual participants, a 3x2x2 ANOVA was 

conducted with condition (S-M, M-S and NP) and cognitive 

reflection (High vs. Low) as between-subjects factors and 

session (Test 1 vs. Test 2) as a within-subjects factor. Main 

effects emerged for condition F(2, 197) = 42.42, ηp
2
= .069, 

p < .0001, but neither for cognitive reflection F(1,197) = 

0.32, ηp
2 

< .001, p = .57 nor for session F(1,197) = 3.152, 

ηp
2
= .0011, p = .077. As expected, the three-way interaction 

was significant F(2, 197) = 3.06, ηp
2 

= .017, p = .045. To 

further understand this interaction, planned comparisons in 

each CRT-level were conducted. In the high-CRT group, the 

change of mirror-preferences was in agreement with the 

perceptual-priming: changes in the M-S condition (-7%) 

were significantly different from the change experienced in 

the S-M condition (23.2%), t(63.36) = -2.63, p = .011, d = 

0.644. In contrast, the low-CRT group presented changes of 

mirror-preferences incompatible with the perceptual-

priming: changes in the M-S condition (14.3%) were not 

significantly different from the changes in the S-M 

condition (-2.7%), t(48.31) = .75, p = .46, d = .177. Data in 

Table 1 suggests that the control group increased its 

appraisal for the mirror-alternative from Test 1 to Test 2, 

which indicates an inherent bias in the experimental design. 

Still, the results are consistent with the expectations: within 

participants with high reflectiveness, those who watched the 

visuospatial representation of the shift-scheme tended to 

lower their appraisal for the mirror-alternative and those 

who watched the visuospatial representation of the mirror-

scheme increased their appraisal for the mirror-alternative. 

This is in line with the idea that participants with high 

reflectiveness were able to process the visuospatial priming-

task and extract its relational features thus activating a 

schema that lessened the effect of the one activated in the 

previous structure-priming phase. In contrast, participants 

with low reflectiveness completed the visuospatial priming-

task without noticing its structural features, thus not 

activating any schema and leaving “untouched” the effect of 

the schema activated in the structure-priming phase. 

The differential effect of visuospatial representations 

between the two experimental groups was not due to the 

relative proportions of subjects consciously recalling the 

animations: A chi-squared test showed that the low-CRT 

and high-CRT groups had similar proportions of 

participants stating to recall the video while solving the 

analogy presented during Test 2 (21.5% vs. 28.3%, 

respectively), χ
2
 (1, N = 146) = 0.58, p = .45. Only a minor 

proportion of participants spontaneously recalled the 

animation while solving the analogy in Test 2. This 

evidences that such stimuli have primed—rather than 

consciously induced—participants' appraisal of the mirror-

alternative since a lack of conscious awareness represents a 

definitional feature of priming. 

As cognitive reflection is correlated with general 

intellectual abilities (Frederick, 2005), an alternative 

interpretation for why participants with lower levels of 

cognitive reflection were not sensible to perceptual priming 

is that they are intrinsically less capable of translating the 

perceptual content of the animations to the more structured 

domain of letter-string problems. To assess this possibility, 

preferences on the two experimental groups was 

investigated when subjects were explicitly asked to recall 

Table 1

NSPM scores at each stage of this study

Test 1 Test 2 Test 3 T2/T1T3/T1  

Condition N M SD M SD M SD GM GM GM

Low CRT

NP 34 3,52 1,59 3,82 1,48 3,45 1,57 32,8 44,6 30,5 1,36 0,93

M-S 47 4,01 1,15 4,24 0,71 2,5 2,15 54,1 68,4 11,2 1,26 0,21

S-M 32 3,23 1,66 3,12 1,89 3,54 1,83 24,3 21,6 33,5 0,89 1,38

High CRT

NP 28 4,09 1,21 4,18 1,01 3,95 1,43 58,7 64,4 50,9 1,10 0,87

M-S 35 3,98 1,06 3,84 1,28 1,86 2,12 52,5 45,5 5,4 0,87 0,10

S-M 32 2,71 1,94 3,64 1,31 3,91 1,38 13,9 37,1 48,4 2,67 3,49

Geometric Means GM Ratios

Test 1 Test 2 Test 3

Log of NSPM scores
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the videos and use them into solving the analogy problem 

presented in Test 3 (same problem presented in Test 2). A 

two-way ANOVA was conducted to examine the effect of 

condition (S-M, M-S and NP) and cognitive reflection (low 

vs. high) on NSPM scores collected during Test 3. Main 

effects emerged for condition F(2, 203) =17.88, ηp
2
 = .147, 

p < .0001; but neither for cognitive reflection  F(1,203) = 

.08, ηp
2 

= 0, p = .77, nor for the condition x cognitive 

reflection interaction, F(2,203) = 2.21, ηp
2 

= .021, p = .11. This 

confirms that the uneven effect of perceptual animations as 

a function of cognitive reflection did not originate in a 

higher intrinsic ability of the higher cognitive reflection 

group to understand the correspondences between the 

visuospatial animation and the subsequent analogical activity. 

General Discussion 

Theoretical analyses suggest a simple mechanism whereby 

transfer mediated by conceptual priming may occur, namely 

the activation of relational schemas—organized in 

structured representations—that influence the interpretation 

of subsequent tasks. The fact that analogical transfer is 

influenced both by structural and superficial features 

suggests that transfer mediated by priming should be also 

subjected to these two aspects: I expected differences of 

priming effects among tasks requiring structured 

representations and tasks requiring perceptual descriptions 

of visuospatial animations. The results confirm this 

hypothesis and link the disparity of effects to individual 

differences of subjects: structure-priming effects were found 

across conditions, whereas only those subjects with higher 

propensity to engage in analytical thinking were sensitive to 

perceptual-priming. These individual differences cannot be 

accounted for by group differences in neither the proportion 

of subjects consciously recalling the visual stimulus nor the 

ability to understand the correspondences between the 

visuospatial prime and the transfer task. Hence, the rationale 

is that highly reflective subjects unconsciously extract 

structural features from visuospatial cues thus activating 

relational schemas that influence their interpretations of 

subsequent tasks. 

    This seems to be consistent with certain evidence in 

literature. For example, students were asked to solve 

algebraic equations superimposed on a vertically oriented 

grating continuously moving either to the left or to the right 

(Goldstone, Landy, & Son, 2010). This was meant to 

investigate the effect of these background motions on the 

“spatial transposition strategy” e.g. moving the number 8 

from the left to the right of the equality in 4*y+8 = 24. The 

study found that the compatibility of the background motion 

and the motion of numbers implicated by the spatial 

transposition strategy affects accuracy. The analysis and 

results presented here indicate that participants with higher 

propensity to engage in analytical thinking should be more 

affected by this compatibility because they are more likely 

to activate a motion-schema from the background motion 

which, depending on the condition, either conflicts or agrees 

with the “spatial transposition strategy”. Interestingly, the 

aforementioned study reported that participants who have 

taken advanced courses of mathematics were indeed more 

affected by the compatibility between the two motions.  

    The results presented in this study are in line with claims 

in literature suggesting that deep structural aspects are more 

influential than perceptual-concrete aspects in achieving 

learning and transfer. But although these results must be 

viewed as preliminary given the specificity of this study’s 

materials and scope, they open a question for further 

research: Can this general dichotomy between perceptual 

and structural aspects be linked to individual differences 

between subjects?  
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Abstract

How does the process of information transmission affect the
cultural products that emerge from that process? This question
is often studied experimentally and computationally via iter-
ated learning, in which participants learn from previous partic-
ipants in a chain. Much research in this area builds on math-
ematical analyses suggesting that iterated learning chains con-
verge to people’s priors. We present three simulation studies
suggesting that when the population of learners is heteroge-
neous, the behavior of the chain is systematically distorted by
the learners with the most extreme biases. We discuss implica-
tions for the use of iterated learning as a methodological tool
and for the processes that might have shaped cultural products
in the real world.
Keywords: Iterated learning; language evolution; cultural
evolution; inductive biases; Bayesian cognition

Which aspects of our language or culture are shaped by the
inductive biases possessed by people, and which aspects are
shaped by the process of transmission from one learner to the
next? A key framework for thinking about and disentangling
these factors is known as iterated learning, shown schemat-
ically in Figure 1. Iterated learning is a particular kind of
cultural transmission in which behavior arises in one individ-
ual (or generation) by learning from the observations of the
previous person (generation), forming a chain of learners.

An appealing characteristic of iterated learning is that the
behavior of iterated learning chains can be characterized
mathematically: under certain assumptions, iterated learn-
ing chains with Bayesian learners will converge to a distri-
bution that depends on the learners’ priors and the size of the
bottleneck (Griffiths & Kalish, 2007; Rafferty, Griffiths, &
Klein, 2014). These results have allowed researchers to ex-
plore inductive biases in different tasks, including function
learning (Kalish, Griffiths, & Lewandowsky, 2007), visual
working memory (Lew & Vul, 2015), reasoning about every-
day events (Lewandowsky, Griffiths, & Kalish, 2009), and
category learning (Canini, Griffiths, Vanpaemel, & Kalish,
2014). They have been especially useful in studying language
evolution (Kirby, Griffiths, & Smith, 2014).

Figure 1: Schematic illustration of a typical iterated learning
paradigm, which assumes that learner n learns on the basis of the
data provided by learner n−1.

Importantly, the theoretical proofs about how iterated
learning chains converge depend critically on the assump-
tions made. For example, if learners select the hypothesis
with the highest posterior probability rather than sample from
their posterior, an iterated learning chain will tend to exag-
gerate the prior (Kirby, Dowman, & Griffiths, 2007). Simi-
larly, we use language to talk about things and events in the
world. If one changes the mathematical assumptions to re-
flect this insight, then the stationary distribution of the chain
more closely resembles the posterior distribution (Perfors &
Navarro, 2014). In this paper we consider the role played
by individual differences. Such differences are robustly ob-
served in many areas of cognition, yet theoretical results typ-
ically assume that all learners share the same biases.

When individual differences exist, what should we expect
to observe? One possibility is that the chain converges to a
distribution that reflects the “average prior belief” in some
sense. For instance, if 10% strongly believe in hypothesis
A and 90% of people strongly believe in hypothesis B, one
might hope that an iterated learning chain reflects 10% A and
90% B hypotheses. Alternatively, perhaps the chain will pro-
duce some other reasonable compromise between A and B
that weights each learner in equal proportion. Our findings
indicate that neither of these situations necessarily occurs: if
people do not share the same priors, iterated learning is not
guaranteed to converge to the prior in any meaningful sense.
Instead, the distribution to which it does converge is dispro-
portionately influenced by the most biased learners. We illus-
trate this using three simulation studies.
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Case study 1: Language evolution
Do all learners have equal influence on the process of lan-
guage evolution? Consider the pressures on a language to in-
corporate a particular grammatical rule or not. Some learners
may have STRONG opinions about a particular rule or con-
struction, whereas others might have WEAK opinions. Ex-
actly who has which might might vary with the particular lin-
guistic context and construction involved: for instance, chil-
dren may to have a bias for regularization that adults do not
share (Hudson Kam & Newport, 2005), but adult second-
language learners may have biases based on transfer from
their first language while children do not (Ellis, 2015). We are
fairly agnostic at this point about what such biases might be;
all that matters for the present purposes is that it is plausible
that there are individual differences in at least some language
learning biases. Our question is what effect this might have
on the nature of the evolved language.

To study this, consider the following experimental design.
Participants are presented with sentences in an artificial lan-
guage that may incorporate a construction (e.g., pluralization
rule, morphological marking, etc). After training, participants
are asked to produce new sentences, which are presented as
the input to the next learner in the chain. This is a relatively
typical design, and a simple Bayesian model for this learning
problem can be constructed as follows.

If θ denotes the probability that the grammatical rule
should be followed, a Bayesian learner specifies a prior distri-
bution P(θ). For simplicity we assume a Beta(a,b) distribu-
tion in which P(θ) ∝ θa−1(1− θ)b−1. In our simulations we
assume that some learners enter with a STRONG bias about the
grammatical rule, formalized via a Beta(1,10) prior. In con-
trast, a WEAK learner might have the opposite bias, but not a
strong one, which can be formalized with a Beta(2,1) prior.
Regardless of the biases the learner possesses, it is assumed
that belief updating follows Bayes’ rule. After a training ses-
sion in which x of n sentences follow the rule, the posterior
distribution P(θ |x) is

P(θ |x) ∝ P(x |θ)P(θ) (1)

where P(x |θ) ∝ θx(1− θ)n−x is the probability of observ-
ing x out of n rule-consistent cases if the true probability
is θ. Under these assumptions, the posterior over θ is a
Beta(a+ x,b+ n− x) distribution. When asked to generate
a novel sentence, a Bayesian learner might sample a value
of θ from their posterior, and their output satisfies the rule
with probability θ. The number of rule-consistent sentences
y generated by the learner is thus sampled from the posterior
predictive distribution P(y|x):

P(y|x) =
∫ 1

0
P(y|θ)P(θ|x)dθ (2)

This kind of model is often used to study regularization in
iterated learning designs (Ferdinand, Thompson, Kirby, &
Smith, 2013; Reali & Griffiths, 2009).
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Figure 2: Simulating an iterated learning investigation of language
evolution. When the learners all share the same bias (left and mid-
dle columns) the average proportion of responses converges to the
prior mean (top row), and the distribution of responses converges to
the prior distribution (bottom row). When the chain is a mixture of
STRONG and WEAK learners, the average proportion of responses
does not correspond to the average prior expectation, nor does the
distribution converge to the average prior in the population.

Simulation

We simulate the results of three different kinds of iterated
learning experiments. In all cases, the first person is taught
ten sentences in an artificial language, five consistent with a
grammatical rule; they then generate ten sentences used as in-
put to the next learner. In the first experiment all learners have
a STRONG bias about the rule, and in the second experiment
all of them have a WEAK bias in the opposite direction. In
the third experiment, half of the learners have STRONG biases
and half have WEAK opposing ones. In each case results are
aggregated across 100,000 simulated iterated learning chains.

The results are shown in Figure 2. As predicted by previ-
ous work, in both of the homogeneous cases iterated learning
experiment transparently reveals the learner biases: the chain
converges to the prior. However, when we consider the iter-
ated learning experiment conducted with a mixed population
(right panels of Figure 2) we observe a strikingly different re-
sult. In this situation – where half of the learners are STRONG
and half are WEAK – the average bias in the population is to
expect 38% of sentences to be rule-consistent. Yet, as the
top right panel shows, the iterated learning chain converges
to a smaller number, with only 27% of responses following
the rule. More importantly, as the bottom right panel reveals,
the distribution of responses bears very little resemblance to
the underlying population biases. One might have hoped that,
when learners bring different priors to an iterated learning ex-
periment, the chain would converge to a weighted average of
their priors. In this case, this weighted average would be a
50-50 mixture of the priors of STRONG learners and WEAK
learners (plotted as a histogram). As the figure illustrates, the
iterated learning chain (lines) does not converge to anything
even remotely similar to this mixture distribution.
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Figure 3: Distribution of responses in a mixed chain plotted as a
function of the type of learner generating the response.

Discussion
Why does the iterated learning procedure behave this way
when the population is heterogeneous? The answer can
be found by separating the responses on the last iteration
by learner type, shown in Figure 3. As is clear from in-
spection, the WEAK bias learners (left) are greatly influ-
enced by the STRONG bias learners: their responses are rule-
consistent 36% of the time, rather than 67% as one might
expect given their Beta(2,1) prior, and the distribution of
responses (lines) deviates markedly from their prior (his-
togram). The opposite effect occurs too (right panel), but it is
much smaller: the STRONG bias learners increase the propor-
tion of rule-consistent responses from the 9% rate implied by
the Beta(1,10) prior to 17.5% in the iterated learning chain.
Similarly, their distribution of responses is not markedly dif-
ferent from their prior.

As this example illustrates, when individual differences ex-
ist an iterated learning procedure is not guaranteed to reveal
the inductive biases of the learner. The STRONG learners ap-
ply a strong inductive bias, and these learners require a lot of
evidence before they are willing (or able) to apply the gram-
matical rule in question. As a consequence, data generated
by a WEAK learner will have minimal ability to sway such a
person. The reverse does not hold: the WEAK learners in this
scenario are very responsive to external input. As a result, a
WEAK bias participant makes a much larger adjustment from
the prior than does a STRONG bias one, with the consequence
that the overall behavior of the mixed chain is much more
heavily driven by the group with the strongest bias.

Case study 2: Group decision making
Groups of people often arrive at beliefs that seem to lack any
evidentiary basis, famously described by the “groupthink”
phenomenon (Janis, 1982). How do these false beliefs arise?
Do they necessarily reflect a bias shared by all reasoners, or
can an entire community be misled by a small number of
highly biased learners?

To examine this question, we consider a scenario in which
a jury of 12 people begin their deliberations with a straw poll.
A notepad is passed around the room, with each person writ-
ing down whether they would decide in favor of the plaintiff
before removing their sheet of paper and passing the pad to
the next juror. Unfortunately, each juror can read the inden-

tations left by the previous one, forming an iterated learning
chain. A Bayesian juror might reason about this by consider-
ing two hypotheses, namely that the evidence favors the plain-
tiff (e = 1) or the defendant (e = 0). The trial evidence sets
the juror’s prior belief that P(e = 1) = θ, which is updated
when the vote v of the preceding juror is revealed. The juror
unconsciously assigns a reliability value r to this information,
such that P(v = 1|e = 1) = P(v = 0|e = 0) = r. If the preced-
ing juror voted for the plaintiff, the juror’s posterior degree of
belief that the verdict should favor the plaintiff becomes

P(e = 1 |v = 1) =
rθ

rθ+(1− r)(1−θ)
(3)

and the posteriors are calculated similarly when the earlier
vote favored the defendant. For simplicity, we assume that
jurors generate their vote probabilistically by sampling from
the posterior.

As these equations illustrate, when r = 0.5 the current juror
completely ignores the vote provided by the previous one and
the posterior probability is identical to the prior. This arises
naturally when the current juror is confident that their exist-
ing beliefs incorporate all relevant information about the case,
and as such the opinions of other jurors can have no influence
upon their own beliefs. We refer to such a juror as a GOAT –
someone who forms their own view and is not led to conclu-
sions by the opinions of others. In contrast, suppose the juror
is underconfident or unsure about their beliefs, perhaps sus-
pecting that other jurors have access to different information.
Such a juror will set r > 0.5, because they attribute eviden-
tiary value to the opinions of others. We refer to this kind of a
juror as a SHEEP because they are more likely to adjust their
vote to agree with the votes of others.

Simulations with homogeneous chains
We consider three scenarios. In the first scenario all jurors are
GOATS who set r = 0.5 and have a modest opinion in favor of
the defendant (θ = 0.4). In the second scenario all jurors are
SHEEP who set r = 0.95 and have a modest opinion favoring
the plaintiff (θ = 0.6). Finally we consider a situation where
half of the jurors are SHEEP and the other half are GOATS. To
illustrate what happens in these situations we simulated each
scenario 100,000 times. The results are plotted in Figure 4.
Not surprisingly, because the GOAT jurors ignore the input
and generate responses directly from their own prior beliefs,
the “chain” starts at their prior (on average, 40% of jurors
vote for the plaintiff) and the total number of votes in favor of
the plaintiff follows a binomial distribution.

What should we expect to see if all jurors are SHEEP? One
reading of the literature suggests that, since iterated learning
chains of Bayesian learners converge to the prior, and since
the first SHEEP samples from their own prior, we should see
a result not dissimilar to the one we see for GOATS. That
is – while we might expect to see non-independence among
successive jurors – we should find that on average a SHEEP
juror should vote for the plaintiff 60% of the time, in accor-
dance with their priors. However, as the middle column of
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Figure 4: The jury straw poll. The top row plots the probability that
each juror votes for the plaintiff, as a function of their position in
the chain (the dashed line plots the population average prior), and
the bottom row plots the distribution of votes for the plaintiff. The
left and middle plots show juries composed entirely of GOATS and
SHEEP respectively. The plots on the right depict a scenario when
50% of jurors are SHEEP and 50% are GOATS.

Figure 4 illustrates, this is not what happens. The first ju-
ror votes in accordance with their priors, but by the time the
12th juror is polled, the probability of voting for the plain-
tiff has risen to 67%. Moreover, it is simple to prove that
this reflects the true stationary distribution of the chain. To
see this, let p = P(vi = 1|vi−1 = 0) denote the probability
that the ith juror in the chain votes for the plaintiff given that
the previous juror voted for the defendant, and similarly let
d = P(vi = 0|vi−1 = 1) denote the probability that the ith ju-
ror switches the other direction. The transition matrix for the
strawpoll is thus

TTT =

[
1− p p

d 1−d

]
(4)

A chain with this transition matrix converges to a stationary
distribution πππ in which the (marginal) probability of voting
for the defendant and plaintiff is proportional to d and p re-
spectively. To verify this, note that

πππTTT ∝ [d, p]
[

1− p p
d 1−d

]
= [d(1− p)+ pd,d p+ p(1−d)]

= [d, p] ∝ πππ (5)

For a SHEEP juror, the probability of switching the vote from
the plaintiff to the defendant is d = (.1× .4)/(.1× .4+ .9×
.6) = .069, and similarly the probability of switching the vote
towards the plaintiff is p=(.1× .6)/(.1× .6+ .9× .4)= .142.
In the long run, a chain of SHEEP converges to a 67% prob-
ability of voting for the plaintiff even though each individual
SHEEP only assigns a 60% prior probability to the plaintiff.

On the surface, the SHEEP result seems at odds with the
convergence proof in Kalish et al. (2007) - Bayesian learners
sampling from their posterior do not (in this instance) con-
verge to the prior. To that end, it is useful to note that the

SHEEP chain violates the assumptions of the original proof,
because the SHEEP jurors use the wrong likelihood function
for the learning problem. The SHEEP juror assigns eviden-
tiary value to the opinions of other jurors when they should
not, because all jurors have seen the same facts at trial. This
miscalibration creates the “groupthink” behavior: the SHEEP
jurors “double count” the evidence, and the iterated learning
chain exaggerates their prior bias.

Simulations with mixed chains
Now consider what happens when SHEEP and GOATS are
mixed together in equal proportions (Figure 4, right). The
SHEEP assign prior probability of 0.6 to the plaintiff, whereas
the GOATS assign prior 0.4, so the population average prior is
0.5. Alternatively, if we consider the behavior of the two ho-
mogeneous iterated learning chains, the SHEEP on their own
would be expected to converge to 0.67 and the GOATS would
converge to 0.4, so the average of these two long run proba-
bilities is 0.54. If one did not know the detail of the models,
it would be reasonable to expect a mixed chain to produce
an average probability of voting for the plaintiff somewhere
between 50% and 54%. Unsurprisingly, it does nothing of
the sort. Because GOATS are insensitive to the opinions of
others and SHEEP are highly sensitive, the GOATS dominate
the mixed chain, and the long run behavior converges to a
43% probability of voting for the plaintiff. That is, the SHEEP
“learn” to mimic GOATS but the GOATS make no such accom-
modation.

Discussion
The implications of the jury scenario are twofold. First, the
SHEEP-only chain illustrates that it is possible for an iter-
ated learning chain to exaggerate biases even when Bayesian
learners sample hypotheses from the posterior. The result
complements an earlier result by Perfors and Navarro (2014),
which showed that the convergence of iterated learning chains
is affected when there is an additional input to the chain (i.e.,
the world passes new information to learners). In the SHEEP
chain we find that convergence is even influenced when learn-
ers mistakenly believe there is additional information being
passed into the chain. This miscalibration drives a kind of
groupthink, in which a collection of individually underconfi-
dent learners becomes overconfident as a group.

Second, the behavior of a heterogenous chain is not easily
predicted by considering the behavior of the corresponding
homogeneous chains, or the priors of individual learners. The
mixed chain of SHEEP and GOATS is mostly driven by the
GOATS, even though a homogenous chain of GOATS produces
a much less extreme outcome than the a chain of pure SHEEP.
The reason for this is obvious when we consider the decision
making strategies used by the two learner types, but we rarely
have access to such information in real life.

Case study 3: Categorization
Our third case study considers a categorization problem with
non-Bayesian learners. We consider stimuli that vary along
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Figure 5: Categorization with eight items that vary along one di-
mension (top panel). Items can be organized into categories that are
coherent (left panel) or incoherent (right panel).

a single dimension, with 8 exemplars spaced evenly across
the range (i.e., at x = 1, . . . ,8): an example is shown at the
top of Figure 5. Each stimulus can be assigned to one of two
categories (A or B), and we are interested in the inductive
biases that people bring to this categorization problem.

An iterated learning design can be used to explore these bi-
ases. During category learning, each learner is shown training
items that consist of four exemplars and their category labels,
selected randomly subject to the constraint that there must
be one exemplar of each category in the training set. During
the test phase the learner must classify the remaining four ex-
emplars. An iterated learning chain is constructed by using
a random subset of responses from one learner as the train-
ing data for the next, again subject to the constraint that the
learner must be shown at least one example of each category.

In our simulations we assume each participant applies the
Generalized Context Model (GCM: Nosofsky, 1986). In the
GCM, the probability of assigning a test item located at y to
category A, given training items xxx = (x1, . . . ,xn) with labels
lll = (l1, . . . , ln) is proportional to the summed similarities be-
tween y and the category A exemplars:

P(y ∈ A |xxx, lll) =
∑i|li=A S(xi,y)

∑i|li=A S(xi,y)+∑i|li=B S(xi,y)
(6)

where similarity decays exponentially with distance, S(x,y)=
exp(−λ|x−y|). This model has one free parameter: the speci-
ficity parameter λ that describes how rapidly similarity de-
cays. When λ is large, similarity falls away very quickly with
distance, and when λ is small it diminishes more slowly.

Category coherence bias
Although not framed as a Bayesian model, the GCM imposes
biases on how learners categorize, and these biases depend
on λ. For instance, the GCM prefers “coherent” categories
that assign similar items to the same category. A simple mea-
sure of “coherence” counts the number of times that adjacent
items are assigned to the same category: the categories on
the left of Figure 5 have maximal coherence of six, whereas
the incoherent categories on the right have coherence zero.
To investigate GCM biases, we simulated the iterated learn-
ing experiment described above 100,000 times using differ-
ent values of λ, assuming that all learners in a chain have the
same λ. The results (Figure 6, left) show that the GCM bias
for coherent categories is strongest for large values of λ.

Given that individual differences in categorization exist,
we ran a second simulation study (Figure 6, right). This time
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Figure 6: Exploring the “category coherence” bias using iterated
learning. The y axis plots category coherence (defined in main text).
Left panel: Category coherence assuming all participants share the
same prior (λ). Here there are three chains each reflecting one of
the three λ values. As λ grows higher, iterated learning produces
more coherent categories. The grey dashed line reflects the average
of the three chains on iteration 15. Right panel: When there are
individual differences within participants, the learners all become
somewhat more similar to one another but the effect is small.

we mixed learners that varied in their λ values (sampling uni-
formly at random from 0.1, 1 and 10) into a single chain
to investigate the effect heterogeneity has on each learner
type. Unlike our previous simulations, the heterogeneity of
the chain did not distort any of the three GCM learner types
to a large extent: the right hand side of Figure 6 is not too dis-
similar to the left. Based on this, one might conclude that the
heterogeneity of the population has done very little to distort
the categorization schemes produced by the various different
learners. Unfortunately, this conclusion is unwarranted.

Category size bias

Categorization is complex, and even this simple problem in-
volves multiple biases. A preference for coherent categories
is one kind of bias that a learner might express, but one might
be just as interested in exploring the extent to which learners
prefer categories to be of similar size. Does the GCM have a
bias to split items evenly or unevenly? Does it depend on λ?

To that end, we counted the number of exemplars assigned
to the smaller category in our previous simulations. Figure 7
plots this for the three homogeneous chains (left) and the sin-
gle heterogeneous chain (right). The left panel shows that the
GCM has a bias to prefer unevenly sized categories: this bias
is weak when the learner generalizes narrowly (λ = 10), and
strong when the learner generalizes widely (λ = 0.1). Unfor-
tunately, almost none of this differentiation is evident when
we look at the heterogeneous chains: the average response is
substantially different from when the three learner types were
taken separately, and there are almost no individual differ-
ences to be found, with all three learner types producing sim-
ilar responses. With respect to the category size bias, mixing
different learners into the iterated learning chain has almost
completely erased their differences.
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Figure 7: Exploring the “category size” bias using iterated learn-
ing. The y axis plots the number of items assigned to the smaller
category. Left panel: Homogenous iterated learning chains when
all learners use the same value of λ. The three plots in the figure
are quite dissimilar: when λ is small the GCM strongly prefers an
unequal allocation of items to categories, but when λ is large the
preference is weak. The grey dashed line reflects the average of the
three chains on iteration 15. Right panel: When the same GCM
learners are mixed into a heterogenous iterated learning chain, most
of this variation is suppressed (the curves are close to each other),
and the average size of the smaller category (grey dashed line) has
substantially decreased.

General discussion
The three case studies all display the same pattern. When
all learners bring the same inductive bias to the problem, it-
erated learning behaves in the way that previous theoretical
proofs suggest it should (Griffiths & Kalish, 2007). In par-
ticular, when learners are Bayesians with identical priors and
correctly specified likelihoods, iterated learning reveals those
priors. For a non-Bayesian learner an analogous inductive
bias is uncovered. However, when learners bring different bi-
ases to the problem there is no guarantee that the responses of
any one participant genuinely reflects their prior biases, nor is
there any guarantee that the average responses reflect the av-
erage bias in the population. To the contrary, our case studies
suggest that those learners with the most extreme biases exert
a disproportionate influence on the chain. We briefly consider
the implications if this pattern holds more generally.

Iterated learning leads a double life within the psychologi-
cal literature. As a theoretical tool, the underlying dynamics
of the chain provide valuable insights into how cultural and
linguistic evolution works. From that perspective, our results
open up new questions: for instance, does language evolution
reflect the cognitive biases of all speakers, or do some sub-
populations (e.g., children) exert stronger influences on the
process? Similarly, learners with the most confidence in their
own beliefs will exert a disproportionate influence on others,
providing a justification for expressing overconfidence: if the
goal is to have cultural influence rather than be correct, strong
biases are better than weak ones. Regardless, the effect of het-
erogeneity in this context need not be a reason for concern so
much as a reason to ask new questions.

On the methodological side, iterated learning has often

been used as a tool for exploring the inductive biases of in-
dividuals. Based on formal results suggesting that the sta-
tionary distribution of an iterated learning chain is the prior,
researchers in cognitive science have sometimes used these
designs as a form of elicitation task, in which the (between-
subject) distribution of responses is taken to be reflective
of some (within-subject) latent mental representation of the
world. In this context, our results suggest that some care is
required. When people bring different priors to a task, there
is no inherent reason to think that the stationary distribution
of an iterated learning chain reveals those priors. The distor-
tions are both systematic and difficult to predict. The latter
point is especially troublesome from a methodological per-
spective. In our third case study, it was not obvious to us that
heterogeneity among category learners would produce a large
distortion of “category size” biases, but almost no distortion
to the bias for “coherent” categories. In this context, we sug-
gest that the interpretation of iterated learning experiments is
difficult when individual differences exist.
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Abstract

Children can use the statistical regularities of their environ-
ment to learn word meanings, a mechanism known as cross-
situational learning. We take a computational approach to in-
vestigate how the information present during each observation
in a cross-situational framework can affect the overall acqui-
sition of word meanings. We do so by formulating various
in-the-moment learning mechanisms that are sensitive to dif-
ferent statistics of the environment, such as counts and con-
ditional probabilities. Each mechanism introduces a unique
source of competition or mutual exclusivity bias to the model;
the mechanism that maximally uses the model’s knowledge of
word meanings performs the best. Moreover, the gap between
this mechanism and others is amplified in more challenging
learning scenarios, such as learning from few examples. Key-
words: cross-situational word learning; computational model-
ing; word learning biases

Introduction
How do people acquire the meanings of words as they be-
gin to learn a language? A well-supported proposal is cross-
situational learning (e.g., Pinker, 1989), which suggests that
people are sensitive to the regularities that repeat in different
situations, and use such evidence to identify the commonal-
ities, from which they can infer word meanings. As an ex-
ample, when a child hears what a cute kitty, be nice to the
kitty, etc., she/he could infer that the word kitty refers to the
common referent in all these situations, i.e., a cat. Recent
word learning experiments confirm that both adults and in-
fants keep track of cross-situational statistics across learning
trials, and infer the correct word–meaning mappings even in
highly ambiguous conditions (e.g., Yu & Smith, 2007; Smith
& Yu, 2008; Yurovsky, Fricker, Yu, & Smith, 2014).

Despite empirical evidence for statistical cross-situational
learning, the exact mechanisms in play are still not fully un-
derstood. In this paper, we focus on the first step of a cross-
situational framework – the learning that occurs on each ob-
servation of a word, which we call in-the-moment learning.
Given the words in an utterance and their potential meanings
in the accompanying situation, there are many possible ways
to associate words and meanings, but only some of these as-
sociations are correct. We refer to these in-the-moment as-
sociations of words and meanings as alignments, and con-
sider different strategies for assessing the strength of these
alignments, drawing on the evolving knowledge of word
meanings. We note that previous research has considered
“hard” (or binary) in-the-moment learning strategies, where
an alignment is either considered by the learner or not (e.g.,
Trueswell, Medina, Hafri, & Gleitman, 2013); we instead ex-
amine “soft” strategies where alignments have strengths be-
tween zero and one.

We formulate various in-the-moment learning mechanisms
that introduce different kinds of competition – i.e., the way
in which the strength of a word–meaning alignment depends
on and interacts with other possible alignments. Each mech-
anism corresponds to certain statistics of the word learning
input, such as the weighted frequency of word–meaning pairs
or their conditional probabilities. We show that the different
types of competition lead to various kinds of mutual exclu-
sivity behaviours. Mutual exclusivity has been proposed as
an explicit bias, in which children assume each word has a
single meaning (e.g., Markman, 1987; Markman & Wachtel,
1988). Here, mutual exclusivity of words and/or meanings
arises from competition in a way that focuses learning.

We take a computational modeling approach to investigate
the effectiveness of these mechanisms in overall acquisition
of word meanings in various long-term word learning scenar-
ios. Using a computational model enables us to explore the
impact of different learning mechanisms in a variety of con-
ditions, and to examine the role of one factor (e.g., frequency)
while controlling for another one (e.g., utterance length). We
find that the mechanism that maximizes the use of the accu-
mulated knowledge of learned meanings performs the best.
Interestingly, the performance gap between this mechanism
and others is most significant in more difficult learning con-
ditions, such as learning of low frequency words given long
utterances. This shows that using conditional probabilities
(as opposed to counts) and introducing competition (leading
to a mutual exclusivity bias) improves overall word learning
and might be necessary to guide learning in the presence of
ambiguity or little data.

A Cross-situational Word Learning Framework

There has been an increased interest in the last decade in de-
veloping computational models as tools to study word learn-
ing in people. Of particular interest are cross-situational
learners that are incremental (e.g., Siskind, 1996; Fazly, Al-
ishahi, & Stevenson, 2010; Kachergis, Yu, & Shiffrin, 2012),
which is necessary in studying developmental learning pat-
terns. Notably, the model of Fazly et al. (2008; 2010) (hence-
forth FAS) is the first probabilistic model that robustly pre-
dicts a range of observed behavior in child word learning.
Moreover, this model has been adopted and extended by a se-
ries of successive work (e.g., Nematzadeh, Fazly, & Steven-
son, 2012a; Grant, Nematzadeh, & Stevenson, 2016), demon-
strating its robustness in accounting for empirical data. We
adopt the FAS word learning framework to examine various
in-the-moment learning mechanisms.
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The FAS Model
Word learning input and output. The model’s input is a
sequence of utterance–scene pairs simulating what the child
hears and perceives, respectively. Each utterance is a set of
words (ignoring their order), and the corresponding scene is
a set of semantic features that represents possible meanings
of words in the utterance (see Ex. 1). Word meanings are
represented by multiple features, which exposes the model to
naturalistic commonalities among the words.

Utterance: { Joel, eats }
Scene: { PERSON, JOEL, ACT, CONSUME, ... } (1)

The output of the model, at each step in learning, is the cur-
rent representation of the meaning of each word w as a proba-
bility distribution, p(·|w), over all possible semantic features
f that the model has observed in the input scenes.
The word learning problem. Given a corpus of utterance–
scene pairs, the goal of the model is to learn the meaning
probability distribution, p(·|w), for all words w. Prior to re-
ceiving any input, all features f are equally likely for a word.
As the model processes each input pair, the probability is ad-
justed to reflect the cross-situational evidence in the corpus,
in two steps: (a) in-the-moment learning on this input pair
and (b) update of the word meaning probabilities using the
accumulated evidence over all inputs.

In-the-moment learning. Given an utterance and a scene,
which features in the scene are part of a word’s meaning?
There are different possible ways to determine whether a se-
mantic feature is associated with a word in the input pair, and
the corresponding strength of that association. FAS assumes
that each feature f in scene St at time t, independently of the
other features, is aligned to all the words w in the utterance
Ut with a particular strength (see Figure 1a):

at(w|f ) =
pt(f |w)

∑
w′∈Ut

pt(f |w′)
(2)

The alignment strength between a feature f and word w de-
pends on the current probability that f is part of the meaning
of w – i.e., pt( f |w) – as well as the probabilities that f is part
of the meaning of other words in the utterance (the denomi-
nator above).

In this way, Eqn. (2) has words in the utterance “com-
pete” to be associated with a given feature: a higher align-
ment strength of one word with a feature necessarily results
in a lower alignment strength for other words with that fea-
ture. This can be interpreted as a directional mutual exclu-
sivity bias: the alignment formulation limits the number of
words a feature can be strongly associated with, but does not
directly limit the number of features a word can be associated
with.

Updating the word meanings. How is the information
learned from an input pair incorporated into a learner’s long-
term knowledge of word meanings? The learner incremen-
tally accumulates the alignment strengths between each w

and f in an overall association score assoc(w, f ), which is
updated at each time t that w and f co-occur in an input pair:

assoct(w, f ) = assoct−1(w, f )+at( f |w) (3)

where assoct−1(w, f ) = 0 if w and f have not co-occurred
prior to t.

After updating the association scores, the meaning proba-
bility p(·|w) of each word w in the current input is adjusted
using a smoothed version of this formula:

pt+1(f |w) =
assoct(f , w)

∑
fj∈M

assoct(fj, w)
(4)

where M is the set of all features observed up to time t.
In Eqn. (4), the probability of a feature given a word is a

normalization of their association score over all possible fea-
tures, which introduces another source of competition, this
time, among features for a given word. This competition can
be thought of as a mutual exclusivity bias in the reversed di-
rection of the alignment score in Eqn. (2); here a word can
only be strongly associated to a limited number of features.

Using Sets of Features as Referents
In FAS, an input scene is the set union of all meaning features
for all words in the corresponding utterance. This represen-
tation lacks information that would be apparent to a child,
namely that each set of meaning features belongs to a sin-
gle entity or event – e.g., PERSON and JOEL, or ACT and
CONSUME in Ex. 1. However, replacing such sets of fea-
tures with a single symbol corresponding to the word mean-
ing would prevent the model from learning semantic similar-
ities among the words (e.g., Nematzadeh, Fazly, & Steven-
son, 2012b). Instead, following Alishahi, Fazly, Koehne, and
Crocker (2012), we simply maintain each set of semantic fea-
tures corresponding to the meaning of each word in the utter-
ance, and we call these sets of features referents, as in Ex. 5:1

Utterance { Joel, eats, an, apple }
Scene: { {PERSON, JOEL}, {ACT, CONSUME, ...},
{SINGULAR, INDEFINITE, DETERMINER, ... },
{APPLE, FRUIT, FOOD, ...} }

(5)

A scene is now a set of referents, each of which is a set
of semantic features corresponding to the meaning of a word.
In the FAS model, calculation of alignment strength between
a word w and feature f at time t uses the meaning proba-
bility pt( f |w). Now, aligning words with referents (as in 5)
requires consideration of strength of alignment of a word with
a set of features. In calculating alignment strength for a word
w and a referent r at time t, we change the FAS model to
consider sim(vt(w), v(r)), the cosine similarity between the
word’s current meaning representation and the representation
of the referent, where v(r) and vt(w) are vectors in which
the elements are meaning features. For vt(w), the value for

1We use the term referent to denote anything referred to by a
word – an object or event, or set of semantic properties (e.g., { IN-
DEFINITE, SINGULAR } for an).
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each component feature f is pt( f |w). (I.e, vt(w) is a vector
corresponding to pt(·|w).) For v(r), the element values are 1
for features present in the definition of r and 0 otherwise. In
this way, alignment strength for word w and referent r is in-
fluenced by the strength of the meaning probabilities p( f |w)
for all features f that are part of the representation of r. In
the remainder of the paper, we explore variations in how the
alignment process actually does this, in ways that implement
different types of mutual exclusivity biases.

In-the-Moment Learning Mechanisms

Competition in the model. We observed above that the
alignment strength calculation in Eqn. (2) instantiates a form
of mutual exclusivity bias, because words are competing to be
strongly associated with a feature during this in-the-moment
learning process. With the change of aligning words to ref-
erents instead of to features, we have the opportunity to ex-
plore various ways to formulate competition in determining
the strength of alignments. The three alignment formulations
explored here implement (1) no competition among words
or referents, (2) competition of referents for a word (as in
Alishahi et al., 2012), and (3) competition of words for a ref-
erent (analogous to the competition of words for a feature in
FAS). Each of these ways of viewing competition implements
a different approach to mutual exclusivity in the model, and
we will explore the resulting impact on word learning in the
results.
No competition. The no-competition mechanism (hence-
forth, no-comp) serves as a baseline for comparison to the
other two. It assumes no mutual exclusivity bias – all the
alignments between words and referents are calculated inde-
pendently, and the value of one alignment does not effect any
of the others (see Figure 1b). We formulate such an alignment
between a word w and a referent r as simply the similarity be-
tween vt(w) and v(r) as described above:

at(w, r) = sim(vt(w), v(r)) (6)

This formulation can be seen as a simple weighted count,
where each feature relevant to r (valued 1 in v(r)) contributes
to the overall alignment strength proportionally to the model’s
prior knowledge of its meaning probability with that word.
Referent competition. Here we adopt the alignment formu-
lation of Alishahi et al. (2012), which we call “ref-comp”
because referents compete for alignment with a word. This
mechanism implements a directed mutual exclusivity bias in
which each word has a preference to be strongly associated
with one referent. In other words, referents in the scene com-
pete for a given word, while the alignments of words are in-
dependent of each other (see Figure 1c). This preference can
be implemented by normalizing the sim(vt(w), v(r)) over all
the referents in the scene:

at(r|w) =
sim(vt(w), v(r))

∑
r′∈St

sim(vt(w), v(r′))
(7)

By normalizing the weighted count of sim(vt(w), v(r)), this
alignment formulation can be interpreted as the conditional
probability of r given w, rather than a simple count.
Word competition. Here, we consider a competition that is
instead analogous to the competition of words for a feature in
FAS; “word-comp” is the reverse of ref-comp, because here
words compete for a referent. This leads to a directed mu-
tual exclusivity bias, but in the opposite direction to ref-comp.
The word-comp mechanism asserts a preference for each ref-
erent to be strongly associated with a single word, by having
words compete for a referent, while the alignments of refer-
ents are independent of each other (see Figure 1d). This bias
is formulated by normalizing the sim(vt(w), v(r)) over the
words in the utterance (as FAS did):

at(w|r) =
sim(vt(w), v(r))

∑
w′∈Ut

sim(vt(w′), v(r))
(8)

This formulation also yields a conditional probability, but
here of w given r.
The association score. We note one final change to the FAS
model to deal with referents: We must modify Eqn. (3) to
keep track of associations between a word w and all the fea-
tures of a referent r. Since a feature f can occur in more than
one referent in scene S, which can have multiple alignment
scores, we use the maximum alignment score of a referent
that contains the feature in updating the feature’s association
score:

assoct(w, f ) = assoct−1(w, f )+ max
r′∈S: f∈r′

at(w, r′) (9)

The meaning probabilities in the model continue to be cal-
culated between individual features and a word. Recall that
the meaning probability distribution p(·|w), as a conditional
probability over semantic features, enforces a competition
among them for the probability mass.

Experiments
Set-up
The utterances in the input are child-directed speech taken
from the Manchester corpus (Theakston, Lieven, Pine, &
Rowland, 2001) in CHILDES (MacWhinney, 2000). To cre-
ate the associated scene representations, each word in the cor-
pus is entered into a gold-standard lexicon with a set of se-
mantic features representing its gold-standard meaning, fol-
lowing the procedure of Fazly et al. (2008). The referents
shown in Ex. 5 correspond to the gold-standard meanings of
each of those words. (The word–mapping in the lexicon is
only used to generate scenes, and is not seen by the model.)
The model is trained on 20K utterance–scene pairs, at which
point behaviour is stable.

In the following experiments, we examine the quality of
the individual learned word representations in two ways: the
average acquisition score of all words observed by the model,
and the proportion of observed words that is learned. The
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(a) FAS. (b) No competition. (c) Referent competition. (d) Word competition.

Figure 1: Types of alignment mechanisms. Lines of the same color/style compete simultaneously. Thickness indicates varying
strength of alignment during a competition.

(a) Average acquisition score
over time.

(b) Proportion of learned words
over time.

Figure 2: Developmental plots

acquisition score of each word w is obtained by comparing
the word meaning representation v(w) with a gold standard
representation of the word gold(w) using cosine similarity:

acq(w) = sim(v(w),gold(w)) (10)

where gold(w) is a vector over all semantic features, with
value 1 for features part of the gold-standard meaning of w
and 0 otherwise. An observed word counts as “learned” if
its acq score is higher than some threshold θ, here set to 0.7
based on the experiments of Fazly et al. (2010).

Results

Overall Learning Patterns
Over time, all models converge to high average acq scores

(Figure 2a) and proportions of words learned (Figure 2b), but
with substantial differences between them. Notably, we find
that on the average acq score, the word-comp formulation
performs better than the original FAS (.96 vs. .86), while the
ref-comp and no-comp models do not learn the representa-
tions as well (both .83).

Two factors may underlie the varying performance of the
models: the semantic grouping of features into referents (dis-
tinguishing our models from FAS), and the type of in-the-
moment competition (and resulting type of mutual exclusiv-
ity). For the first factor, the word-comp mechanism provides
the most direct comparison to FAS: it uses the same direction
of bias – in which words compete to align with the elements
of the scene – but using referents instead of features. The
grouping into referents appears to improve learning. When

aligning features individually as in FAS, the correct features
for a word may be aligned more or less strongly (depending
on competition for each from other words), so that the over-
all meaning probability vector may not converge as easily to
the full set of correct features. By contrast, when a word has
a strong alignment with the correct referent – which corre-
sponds to the gold-standard meaning of the word – all fea-
tures of the referent are boosted in the meaning probability
of the word, yielding improved learning in word-comp over
FAS.

Second, we find an interesting asymmetry between the two
mechanisms involving competition between the words for a
referent (word-comp) and between the referents for a word
(ref-comp). Each imposes a conditional probability formu-
lation of competition, but word-comp performs much better,
with ref-comp behaving no better than the no-comp model.
In fact, the advantage of using referents instead of individual
features is completely eliminated in both the no-comp and the
ref-comp mechanisms, as both perform worse than FAS.

The source of this asymmetry, we believe, is the deploy-
ment of learned knowledge by the model. In both the no-
comp and the ref-comp model (Figure 1(b), (c)), a learned
word meaning is compared to the referents in isolation from
the learned meanings of the other words in the utterance. In
this set-up, the knowledge of other word meanings cannot
help to guide the model to determine how good a word’s
alignment to some referent is. By contrast, the word-comp
model (Figure 1(d)) tunes the alignments by comparing how
similar various learned word meanings are to a referent.

One might expect that mutual exclusivity in the reverse di-
rection (as in the ref-comp model) would achieve the same
effects: Tuning the similarity between a word meaning and a
referent by the similarity between that word meaning and all
other referents should guide the model to correct associations
more quickly than not doing so. However, we do not find this
effect. We will return to the reason for this lack of effect in
the section on the role of frequency.

Competition is clearly important in focusing alignments
and facilitating learning, but only in the context of appro-
priately constraining information: the most effective learning
occurs when the competition draws on the maximal amount
of learned knowledge in the model, in the form of the devel-
oping meaning probabilities. In what follows, we consider
the impact of increased ambiguity in forming alignments, or
decreased knowledge about words, to see how these factors
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Figure 3: Average acquisition score after 20K input items.

impact these various mechanisms. Because the proportion of
words learned shows similar relative behaviours to the acq
score, in the remaining analysis we focus on comparing acq
scores of each of the models after 20K inputs.

The Role of Frequency
Children are able to learn word meanings in various condi-

tions, sometimes after only a few observations. Previous re-
search suggests that children use biases such as mutual exclu-
sivity to guide their learning. Learning low-frequency words
is also a challenge for computational models, and understand-
ing the mechanisms that improve learning from little evidence
can shed light on how children address this issue. The type of
competition in our various models plays an important role in
their performance on low-frequency words. Figure 3a shows
that for the two models with competition over words – the
FAS and word-comp models – there is no decrease in perfor-
mance for words of low frequency (< 5) compared to high
frequency (> 10), while for the other two models, no-comp
and ref-comp, there is a dramatic drop off in learning.

Specifically, the competition among words in the FAS and
word-comp models – which maximizes the use of learned
knowledge in focusing alignments – appears to play a crucial
role in enabling these models to learn low-frequency words.
Comparing the alignments in Figure 1c and Figure 1d in the
face of a novel word and its novel referent (as an extreme
case of low frequency) will clarify the utility of the learned
meaning probabilities. In the word-comp model (Figure 1d),
the meaning probabilities of previously-seen words compet-
ing for a new referent will not have a very good match to the
feature vector for the new referent (since their probabilities
will have been adjusted to better fit referents they have been
seen with). The novel word will have uniform meaning prob-
abilities that will enable it to better match the new referent,
and thus will have a stronger alignment than previously-seen
words. By contrast, in the ref-comp model (Figure 1c), the
uniform probabilities of the new word will equally match all
the referents competing for it, whether they have been seen
before or not. There is no prior knowledge in the model in
this competition that indicates the previously-seen referents
have a better fit with other words. Thus a competition among
words works well for novel or low-frequency words by draw-
ing on the fact that previously-seen words will not compete
as strongly for a new(er) referent. In short: a new word can

in principle go equally well with any referent in the situation,
but a new referent not equally well with any word in the ut-
terance.

The Role of Utterance Length
Above, we found that the different types of competition

gave more pronounced results for low-frequency words than
for high-frequency ones. Similarly, we can explore whether
there is a differential impact of utterance length on the dif-
ferent models. To simulate this, we manipulated the input
generation procedure so that the model was trained only on
utterances of length 5 or higher (long-corpus), or 3 and lower
(short-corpus). Looking at Figure 3b, we observe that the
acquisition scores are globally lower when the models are
trained on long sentences only, likely due to the fact that there
is more uncertainty about which words and which referents
belong together.

Here we see that the word-comp model is the only one
to not substantially decline in performance when compar-
ing learning on the short-corpus and long-corpus. While the
competition over words seems to help the FAS and word-
comp models equally in dealing with low-frequency words,
here the bundling of features into referents as in word-comp
is also necessary for performance to be robust to the added
ambiguity of long utterances. The FAS model cannot “scale
up” to deal with the very long unstructured lists of features in
the long-corpus input. This also explains why the model of
Alishahi et al. (2012) (the ref-comp approach) worked well
in their experiments but not here: the utterances they used
all had two words, unlike the naturalistic data we train on
above, indicating that ref-comp also cannot scale effectively.
Interestingly, as shown in Figure 3c, the word-comp model is
particularly robust to the challenge of learning low-frequency
words in the corpus of longer utterances, with a very small
decrease in performance compared to the other models.

The Role of Referential Uncertainty
To explore the impact of referential uncertainty – the occur-

rence of many more potential referents in a scene than there
are words – we create a subcorpus that uses every ith utterance
from our full corpus, and uses the utterances in between those
to generate “extra” referents in the scenes for utterances in the
subcorpus. Here we report results on 20K inputs with refer-
ents added to each scene Si from 0, 1, or 2 utterances in ad-
dition to referents taken from utterance Ui. Figure 4 presents
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Figure 4: Average acquisition score after 20K input items,
split over different amounts of referential uncertainty.

the results for no referential uncertainty, along with the two
added levels of uncertainty. As we expect, the learning per-
formance of all models degrades with higher referential un-
certainty. However, in contrast to our previous results, here
there is little benefit from either word-based competition or
feature bundling. The high degree of ambiguity introduced
by these levels of referential uncertainty may be better dealt
with by attentional mechanisms that focus joint attention on
a likely subset of relevant referents prior to alignment.

Conclusions and Future Work
Previous research shows that children are sensitive to the
cross-situational statistics of their environment: i.e., they can
use the regularities across different situations to learn word
meanings. However, the detailed mechanisms responsible for
cross-situational word learning are still not fully understood,
such as precisely what information is used from each ob-
servation in identifying the correct word meaning, and how
this information is incorporated in the accumulated knowl-
edge about a word. Moreover, children are good at learning
word meanings in a variety of situations: they can learn a
novel word from a few example and also acquire words from
ambiguous/noisy conditions. Previous research has suggested
that children are equipped with biases that guide them in word
learning by reducing the difficulty/ambiguity of a learning sit-
uation. The necessity of these biases in children, and whether
they are innate or learnable, are issues that have been debated
among cognitive scientists.

Here, we show that one such bias – the mutual exclusiv-
ity bias that limits the number of meanings a word takes –
can be modeled as a competition mechanism during in-the-
moment learning. The competition exists when the model
assesses possible word and referent associations with condi-
tional probabilities as opposed to counts. In other words, the
bias or competition is a learning mechanism that is able to
condition in-the-moment learning to the learned knowledge
of word meanings. We observe that the role of the bias is par-
ticularly significant when the learning is more challenging:
for example, for learning low-frequency words or from longer
utterances. Previous research has investigated how cognitive
processes such as memory and attention interact with cross-
situational word learning (e.g., Nematzadeh et al., 2012a).
Future work should study how these cognitive processes af-
fect the in-moment-learning.
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Abstract

Vector-space models of semantics represent words as
continuously-valued vectors and measure similarity based on
the distance or angle between those vectors. Such representa-
tions have become increasingly popular due to the recent de-
velopment of methods that allow them to be efficiently esti-
mated from very large amounts of data. However, the idea
of relating similarity to distance in a spatial representation
has been criticized by cognitive scientists, as human similar-
ity judgments have many properties that are inconsistent with
the geometric constraints that a distance metric must obey. We
show that two popular vector-space models, Word2Vec and
GloVe, are unable to capture certain critical aspects of human
word association data as a consequence of these constraints.
However, a probabilistic topic model estimated from a rela-
tively small curated corpus qualitatively reproduces the asym-
metric patterns seen in the human data. We also demonstrate
that a simple co-occurrence frequency performs similarly to
reduced-dimensionality vector-space models on medium-size
corpora, at least for relatively frequent words.
Keywords: word representations; vector-space models; word
associations

Introduction
Finding good representations of the meaning of words is a
fundamental problem in cognitive science and related disci-
plines. Vector-space models of semantics represent words as
points in an N -dimensional Euclidean space where words
with similar meanings are expected to be close together.
These models have been successful in both modeling human
semantic processing (e.g., Landauer and Dumais, 1997) and
natural language processing applications (for a review, see
Turney and Pantel, 2010). However, relating the similarity
between words to their distance in a vector space means that
these representations are subject to certain geometric con-
straints. Previous research has criticized this property of spa-
tial representations because aspects of human semantic pro-
cessing do not conform to these same constraints (e.g., Tver-
sky, 1977). For example, people’s interpretation of semantic
similarity does not always obey the triangle inequality, i.e.,
the words w1 and w3 are not necessarily similar when both
pairs of (w1, w2) and (w2, w3) are similar. While “asteroid”
is very similar to “belt” and “belt” is very similar to “buckle”,
“asteroid” and “buckle” are not similar (Griffiths et al., 2007).

Recent work has resulted in significant advances in vector-
space models of semantics, making it possible to train mod-
els on extremely large datasets (Mikolov et al., 2013a; Pen-
nington et al., 2014). The resulting vector-space models—
Word2Vec and GloVe—achieve state-of-the-art results for a
wide range of tasks requiring machine representations of
word meanings. However, the similarity between words in
these models is typically measured using the cosine of the

angle between word vectors (e.g., Mikolov et al., 2013b; Pen-
nington et al., 2014).

In this paper, we examine whether these constraints im-
ply that Word2Vec and GloVe representations suffer from the
same difficulty as previous vector-space models in capturing
human similarity judgments. To this end, we evaluate these
representations on a set of tasks adopted from Griffiths et al.
(2007) in which the authors showed that the representations
learned by another well-known vector-space model, Latent
Semantic Analysis (Landauer and Dumais, 1997), were in-
consistent with patterns of semantic similarity demonstrated
in human word association data. We show that Word2Vec and
GloVe suffer from similar problems. Recent probabilistic in-
terpretations of Word2Vec (Levy and Goldberg, 2014; Arora
et al., 2015) provide a way to construct a conditional prob-
ability from vector-space representations, although we show
that this does not result in a significant improvement in per-
formance over cosine similarity.

A probabilistic topic model performs less well than these
vector-space models in predicting overall associations, but
provides a better fit to human data on tasks where vector-
spaced models are subject to geometric constraints. However,
two advantages of the recent models are that they can produce
word representations for very large vocabularies (millions of
types) and can be trained on very large corpora (hundreds
of billions of tokens). We investigate whether the perfor-
mance of co-occurrence frequency—easily obtainable from
large corpora—is comparable to the recent models. We find
that vectors of simple co-occurrence frequency provide com-
parable performance to the above models, suggesting that di-
mensionality reduction may not be necessary feature for ma-
chine representations of words.

Vector-Space Models
We first provide high-level descriptions of two recent vector-
space models that have received significant attention in the
machine learning, natural language processing, information
retrieval, and cognitive science communities.

Word2Vec
Word2Vec (Mikolov et al., 2013b) is a shallow neural net-
work model with a single hidden layer that learns similar vec-
tor representations for words with similar distributional prop-
erties. They present two variants: continuous bag of words
or CBOW, in which a word token is predicted from its un-
ordered context, and skipgram, in which a given word token
is used to predict words in its context. Both variants perform
well predicting associations, analogies, and can be used to
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identify idiomatic multi-word phrases. We focus here on the
skipgram formulation given its higher obtained performance
in a variety of natural language processing tasks.

The objective of a Word2Vec model is to maximize the av-
erage log probability of each word’s context following

J =
1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j |wt), (1)

where T is the number of training words and c is the number
of context words. p(wt+j |wt) is given by the softmax func-
tion,

p(wo|wi) =
exp(v

′>
wo
vwi

)∑W
w=1 exp(v

′>
w vwi

)
, (2)

where W is the number of unique words (type) in the corpus
w1 . . . wT , and vw and v′w are the input and output vector
representations of word w.

Computing the normalizing term in the softmax is pro-
hibitively expensive for large datasets in that the cost of the
computation is proportional toW (which may be in millions),
thus an approximation is obtained through hierarchical soft-
max (Morin and Bengio, 2005), Noise Contrastive Estima-
tion (Gutmann and Hyvärinen, 2012), or a related novel tech-
nique they introduce, negative sampling. In negative sam-
pling, the model updates the representations of a small num-
ber of words such that the network predicts an observed “pos-
itive” word pair (e.g., chicken salad), and does not predict
any of a number of “negative” pairs that are unlikely to be
observed in the text (e.g. chicken battleship or chicken advan-
tageously). The negative pairs are drawn from an explicitly
specified noise distribution, typically a unigram model. Be-
cause a small number of negative samples are used—usually
fewer than 20—a relatively small number of weights need to
be adjusted each time the model updates the representation of
a word. Mikolov et al. find additional performance gains by
sampling less from high frequency words.

Performance of Word2Vec model thus depends on the
number of hidden units (typically 50-600), the size of the con-
text window, the degree to which frequent words are under-
sampled, and the choice of approximation to the full softmax;
if negative sampling is used then the number of negative sam-
ples can have a significant effect on performance.

GloVe
GloVe (Pennington et al., 2014) is a weighted bilinear regres-
sion model that uses global co-occurrence statistics to de-
rive a real-valued vector representation of each word. Like
Word2Vec, GloVe learns similar vector representations for
words that appear in similar contexts, however the latter
model differs significantly in that it fits co-occurrence fre-
quencies from an entire corpus rather than iterating through
local context windows. GloVe exhibits particularly strong
performance in analogy tasks, but also performs well on sim-
ilarity tasks and named entity recognition (NER).

In GloVe, the best word representations W and W̃ are
found by minimizing a least squares objective:

J =

V∑
i,j=1

f(Xij)(w
T
i w̃j + bi + b̃j − logXij)

2 (3)

where V is the vocabulary, i and j pick out words in the vo-
cabulary, f(Xij) is a weighting term (explicated below), wi
is the representation of the ith word, w̃ is the representation
of the jth word, bi and b̃j are bias terms, and logXij is the
co-occurrence count of words i and j. If X is symmetric, W
and W̃ are equivalent (differing only according to their ran-
dom initialization). GloVe additionally introduces a weight-
ing into the cost function of the model to avoid log 0 errors
and to dampen the effect of high frequency co-occurrences:

f(x) =

{
(x/xmax)

α if x < xmax

1 otherwise
(4)

where x is the co-occurrence count, and α allows for an expo-
nential weighting of for counts between 0 and the threshold
Xmax. The performance of a GloVe model thus depends on
the dimensionality of the word vector (typically 50 - 300),
Xmax, α , and the size of the window used to compute co-
occurrence statistics around each word.

Co-occurrence Frequency
We also consider a baseline model that simply uses normal-
ized co-occurrence frequencies of words to measure their
similarity. In other words, given sufficient data, is a term-by-
term matrix sufficient to predict human association norms?
We note that this baseline is used by previous work to model
human semantic and syntactic processing, as well as in in-
fomration retrieval (e.g., Burgess and Lund, 1997; Azzopardi,
2005).

Shortcomings of Spatial Models
Similarity between two words in a vector-space model is usu-
ally computed using the cosine of the angle or the Euclidean
distance between the vectors representing the words. While
intuitive, this approach has at least one significant shortcom-
ing: cosine and Euclidean distance cannot capture the ob-
served asymmetries in human similarity judgments because
they are inherently symmetric measures. Tversky (1977) fa-
mously argued that spatial representations cannot capture hu-
man similarity judgments because the latter often violate the
metric axioms. For example, elicited word (or phrase) sim-
ilarity is asymmetric: when queried, most participants con-
sidered “North Korea” to be very similar to “China,” while
the reverse relationship was rated as significantly less strong
(“China” is not very similar to ”North Korea”).

Griffiths et al. (2007) extended this argument to spatial
representations of the semantic relationships between words,
showing that similar violations of the metric axioms can be
demonstrated for vector-space representations. We now re-
visit these analyses, examining the extent to which they are
problematic for new vector-space models.
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One of the properties of metric spaces is that the distance
between each 3-word tuple must satisfy the triangle inequal-
ity: given three points x, y, and z, d(x, z) ≤ d(x, y)+d(y, z),
where d() is a distance function. This inequality constrains
the possible distance values among the vector representations
for each of the three words: if distances between the words
in two of the pairs are very small, the distance between the
words in the third pair is also expected to be small.

After demonstrating that cosine—as a monotonic function
of the angle between two vectors—satisfies an analogue of
the triangle inequality Griffiths et al. (2007) studied to what
extent this is true among the cue–target pairs in the Nelson
norms. For the words w1, w2, and w3, they plot the distri-
bution of p(w3|w1) when both p(w2|w1) and p(w3|w2) are
greater than a given threshold τ . They observe that even
for large values of τ , there are a lot of very small values of
p(w3|w1). Consistent with the intuition that human similar-
ity judgments are not always transitive, they find many cases
where two of the pairs (w2–w1 and w3–w2) in a tuple (w1,
w2, and w3) are highly similar, but the words in the third pair
(w1 and w3) are not.

As a result, by using cosine (or any distance measure more
generally) on vector-space representations, we cannot repli-
cate the asymmetric patterns of similarities observed in hu-
man judgments. To enable word representations derived with
vector space models to account for a greater range of phenom-
ena, we propose an elaborated, non-metric similarity measure
for vector-space representations. Following recent work that
provides a probabilistic interpretation of Word2Vec (Levy
and Goldberg, 2014; Arora et al., 2015) we calculate the con-
ditional probability for a given pair of words w1 and w2 using
a softmax function:

p(w2|w1) =
exp(w2.w1)∑
wj

exp(wj.w1)
(5)

where wj is the vector representation of wj and w2.w1 is the
dot product of the two vectors. Using this probabilistic mea-
sure, we can now examine how well Word2Vec and GloVe
representations perform on tasks that do not satisfy the geo-
metric constraints, i.e., triangle inequality and asymmetries in
similarity judgments.

Evaluating Vector-Space Representations
In this section, we describe the evaluation data and explain
the tasks that we use to examine how well vector-space rep-
resentations predict human word associations.

Data: Nelson Association Norms
Following Griffiths et al. (2007), we use the association
norms from Nelson et al. (1998) as our gold-standard eval-
uation data. Nelson et al. (1998) performed an extensive free
association experiment where they asked 6000 participants to
record the first word they can think of given a cue word. The
experiment resulted in a set of 5018 cues, the target words
produced in response of each cue (associates), and the prob-
ability of producing each target word for a given cue. Ap-

proximately 45% of the target words are present as cues in
the dataset. The Nelson norms are well-suited for the evalua-
tion of semantic similarity because unlike most gold-standard
similarity lexicons (e.g., Hill et al., 2015), word associations
obtained in this way potentially encode asymmetric relations:
the Nelson association norms encode for many words both
how likely people are to produce w1 when cued with w2, as
well as w2 when cued with w1.

Evaluation Tasks
We evaluate the word representations found by these mod-
els on four tasks to assess whether they capture empirical
phenomena of interest in the Nelson norms. The first two,
coefficient of correlation and median rank of associates, test
whether these representations capture the strength of associ-
ations between each cue–target pair. The remaining two, the
triangle inequality and ratio of asymmetries specifically test
whether these representations can account for human behav-
ior on tasks with asymmetric associations.
Coefficient of correlation. Computing the correlation be-
tween two list of scores is a standard way for measuring
their similarity (Budanitsky and Hirst, 2006). We created
a gold-standard list of similarity scores that, for each cue–
target pair in the norms, includes p(target|cue). We then re-
trieved a list of similarities for the same cue–target pairs from
the representations under study, measuring similarity as ei-
ther cosine(wtarget,wcue) or p(wtarget|wcue), where wx is
the vector representation of x. To assess the extent to which
these representations can predict human similarity judgments
of semantic associations, we calculated the Spearman’s rank
correlation coefficient (ρassoc) between these two lists.
Median rank of associates. We also assess the quality of
the representations by checking whether they produce similar
rankings of target words (associates) for each cue in the Nel-
son norms. For each cue, we rank all its associates based on
their conditional probabilities (given the cue) from the Nel-
son norms, and also get a similar ranking for each cue in the
model. For the first associate of each cue, i.e., the one with the
highest probability per the Nelson norms ranking, we check
its rank in the model list. We take the median rank of the
first associate across all the cues from the Nelson norms, and
repeat this process for second and third associates.
Triangle inequality. We extend the analysis in Griffiths et al.
(2007) to the evaluate whether word representations satisfy
the triangle inequality. For every w1, w2, and w3 such that
similarity of w1–w2 and w2–w3 are greater than a threshold
τ , we plot the distribution of similarity values of w1–w3. For
the Nelson norms, similarity of words in a pair is their condi-
tional probability; for other models similarity is given by the
cosine or conditional probability. We select thresholds (τ )
such that for each threshold, the number of pairs selected for
each model is similar to that of the Nelson norms; The thresh-
olds for the norms are taken from Griffiths et al. (2007).
Asymmetry ratio. Griffiths et al. (2007) show that the sim-
ilarity of more than 85% of cue-target pairs in Nelson norms
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are asymmetric by the criterion of at least an order of mag-
nitude difference between p(w2|w1) and p(w1|w2). How-
ever, distance measures are inherently symmetric and for any
distance function d(), we have d(w1, w2) = d(w2, w1). To
measure the performance of vector-space representations in
predicting the asymmetries, for each cue–target pair in the
Nelson norms, we calculate the ratio of asymmetry as fol-
lows:

asym(w1, w2) =
p(w2|w1)

p(w1|w2)
(6)

We then calculate the Spearman’s rank correlation coefficient
between the asymmetry scores of these similarities and those
from the Nelson norms.

Corpora and Model Training
To support comparison with Griffiths et al. (2007) we trained
GloVe, Word2Vec skipgram, and collected co-occurence fre-
quencies on TASA, the Touchstone Applied Sciences Corpus
(Landauer and Dumais, 1997). This corpus consists of ap-
proximated 8M tokens taken from reading materials appropri-
ate for a high school English students. In addition to TASA,
we trained Word2Vec skipgram and GloVe, and collected co-
occurrence frequencies on English Wikipedia (3.91B tokens).
This corpus is too large for training a Latent Dirichlet Allo-
cation (LDA) topic model using Gibbs Sampling. While we
tried to replicate the LDA results for TASA with more scal-
able variational methods (Hoffman et al., 2010), the result-
ing topics produced associations that were significantly worse
than those obtained through Gibbs sampling or either of the
vector space models.

Preprocessing was matched to the extent possible across
model inputs. All words were translated to their nearest low-
ercase ASCII equivalent. For both TASA and Wikipedia
we discarded function words using the Python stopwords
package. For TASA we removed the same set of low-
information words and enforced the same frequency cutoff
as Griffiths et al. (2007). For Wikipedia, we removed words
that appeared on too many pages or too few, and retained only
the top 100k most frequent remaining words.

To evaluate the performance of the Word2Vec skipgram
model we trained 20 models across a range of hyperparam-
eter settings, varying the size of the embedding vector (50,
100, 200, 300 or 400 hidden units), the choice of optimiza-
tion method (hierarchical softmax or negative sampling), and
for models with negative sampling the number of negative
examples (5, 10, 15). Words with unigram probability higher
than .001 are downsampled following Mikolov et al. (2013b).

Because of an implementation error, we were unable to ex-
plore a large parameter space with GloVe, and report only the
results with the default parameters (Xmax = 10, α = .75,
50-dimensional vectors, and a 7-word symmetric window on
either side of the target word). This leaves open the possi-
bility that GloVe may exhibit even higher performance on
TASA and Wikipedia with appropriate parameter settings.

We also compute association using the LDA results (sampled
document-topic and topic-word assignments) from Griffiths
et al. (2007).

Finally, we used large-scale pre-trained models distributed
by the authors of Word2Vec and GloVe. These largest-
available models often exhibit best-in-class performance be-
cause they reflect extensive parameter search, proprietary cor-
pora, and distributed implementations that can handle more
training data than publicly-distributed single-machine im-
plementations. For Word2Vec we used a pre-trained 300-
dimensional model obtained by using the continuous bag of
words architecture (CBOW) on a corpus of 100 billion words
from Google News. For GloVe we used a 300-dimensional
model trained by Pennington et al. (2014) using a 2014 ex-
port of Wikipedia and the Gigaword 5 corpus, consisting of
approximately 6 billion tokens in total.1

Results
Overall associations. We first look at the coefficient of corre-
lation that shows how the various models perform in predict-
ing the overall associations. We find that using conditional
probability in place of cosine results in slightly better perfor-
mance in predicting the semantic associations when the mod-
els are trained on medium or large corpora (see cosine (“cos.”)
and conditional probability (“cond. pr.”) columns in Table 1).
We also observe that given small and medium corpora (first
and second row of Table 1), the Word2Vec skip-gram has the
highest correlation with human word associations; but, given
the largest corpora, GloVe performs slightly better than the
Word2Vec model. Interestingly, given the small and medium
corpora, simple co-occurrence frequencies perform similarly
to or better than the Word2Vec CBOW and GloVe represen-
tations. Looking at the second measure of associations, the
median rank of the associates (Table 2), we observe that the
LDAmodel and co-occurrence frequencies perform similar to
Word2Vec on TASA and Wikipedia; both models exhibit bet-
ter performance than GloVe. The representations of the pre-
trained GLoVe model (on the largest corpus) have the lowest
(best) median ranks.
Geometric constraints. The results for the triangle inequal-
ity analysis using the conditional probability measure are
shown in Figure 1 (cosine results are omitted as they cannot
produce the pattern). We observe the expected pattern for the
Nelson norms, the LDA model, and co-occurrence frequency
(see Figure 1 a-c): even for large values of τ , there are a lot
of pairs that have probabilities close to zero. However, as
shown in Figure 1 d-f, we do not see pairs with very small
values of similarity when examining large thresholds for any
of the recent vector-space representations. Our results reveal
that even with a probabilistic measure, Word2Vec represen-
tations cannot predict the triangle inequality: for very high
thresholds on the similarity of w1–w2 and w2–w3, there are

1The pre-trained Word2Vec model is available at
https://code.google.com/archive/p/word2vec/;
The pre-trained GloVe model is available at http://
nlp.stanford.edu/projects/glove/
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Table 1: The Spearman’s rank correlation coefficient (ρassoc) between gold-standard association scores from Nelson norms and
different models of word representations. “cos.” and “cond. pr.” refer to cosine and conditional probability, respectively. [*]
Data unavailable or infeasible to compute given current resources.

Word2Vec CBOW Word2Vec skip-gram GloVe
cos. cond. pr. cos. cond. pr. cos. cond. pr. LDA Co-occurrence

Small (TASA) .22 .21 .25 .25 .21 .20 .20 .21
Medium (Wikipedia) .22 .22 .23 .24 .16 .19 [*] .20

Largest available .25 .26 [*] [*] .24 .27 [*] [*]

Table 2: The median rank of first, second, and third associates (1st/2nd/3rd) for different models of word representation using
conditional probabilities. The number of possible targets is 3951 for all corpora.[*] Data unavailable or infeasible to compute
given current resources.

Word2Vec CBOW Word2Vec skip-gram GloVe LDA Co-occurrence
Small (TASA) 48/112/160 26/72/106 56/138/215 23/69/103.5 21/58/122

Medium (Wikipedia) 23/48/75 21/46/74 52/92/129 [*] 23/48/70
Largest available 13/29/47 [*] 11/25/40.5 [*] [*]

no w1–w3 pairs with low similarity. These results suggest
that using a probabilistic measure do not address the limita-
tions of the vector-space models with respect to the triangle
inequality.

Finally, we examine whether the representations capture
the observed asymmetry in human similarity judgements as
calculated in Eqn. (6). Note that we can only use conditional
probabilities in this analysis because the cosine measure is
symmetric. This probabilistic measure of similarities in both
Word2Vec and GloVe to some extent predicts the asymmet-
ric patterns of similarity observed in the Nelson norms (Ta-
ble 3). We observe that the performance of the LDA model
is comparable to the GloVe representations trained the largest
corpora. The GloVe models performs significantly better than
the Word2Vec models, which we believe is a result of its ob-
jective function—it uses the ratio of conditional probabilities
of word pairs in training.

Table 3: The Spearman’s rank correlation coefficient (ρasym)
between asymmetry scores of Nelson norms and representa-
tions from the models. In our data, there are 7096 cue–target
pairs for which target–cue also exits. [*] Data unavailable or
infeasible to compute given current resources.

Word2Vec Word2Vec
CBOW Skipgram GloVe LDA

Small .18 .01 .32 .49
Medium .20 .19 .43 [*]

Largest avail. .20 [*] .48 [*]

Discussion
The selection of models, corpora, and tasks presented above
suggests that LDA and co-occurrence frequencies have cer-
tain advantages when compared with the vector-space repre-
sentations produced by Word2Vec and GloVe. We expound
on a few key points below to contextualize our results and set
the stage for future research.

Most of the targets and queues analyzed here are of rel-

atively high frequency rank. In future work we would like
to investigate exactly how robust each of these models are
to sparsity to test the hypothesis that reduced-dimensionality
models are better at generalizing, such that they better predict
associations for low frequency words.

The two vector-space models investigated here were both
developed with the explicit objective of capturing meaningful
linguistic difference in the linear substructure of the model
(e.g., the vector produced by king - man + woman is closest
to queen). As such, these models show strong performance
on analogy tasks, while LDA typically fairs poorly. One ques-
tion is thus whether a single representation could predict word
associations, while preserving linear substructure.

Conclusion
We show that representations from two new vector-space
models, Word2Vec and GloVe, suffer from the same geo-
metric constraints as predecessors, and are consequently un-
able to predict some of the characteristics of human similarity
judgments, such as asymmetric similarity relations between
two words or triangle inequality. Besides performing well in
the above task, word representations derived from LDA topic
modeling show remarkable predictive power with respect to
human judgments given that they are learned from a dataset
two orders of magnitude smaller than comparably performing
vector-space models.
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Abstract 
Human communication has a remarkable capacity to 
describe events that occurred elsewhere and at other 
times. In particular, when describing complex narratives, 
speakers must communicate temporal structure using a 
mixture of words (e.g., “after”), gestures (e.g., pointing 
rightward for a later event), and discourse structure (e.g., 
mentioning earlier events first). How do listeners 
integrate these sources of temporal information to make 
sense of complex narratives? In two experiments, we 
systematically manipulated gesture, speech, and order-
of-mention to investigate their respective impacts on 
comprehension of temporal structure. Gesture had a 
significant effect on interpretations of temporal order. 
This influence of gesture, however, was weaker than the 
influence of both speech and order-of-mention. Indeed, 
in some cases, order-of-mention trumped explicit 
descriptions in speech; for instance, if ‘earlier’ events 
were mentioned second, they were sometimes thought to 
have occurred second. Listeners integrate multiple 
sources of information to interpret what happened when. 
 
Keywords: time; gesture; iconicity; multimodal 
communication; memory. 

Introduction 
Human communication stands out among naturally 
occurring communication systems in  its ability to 
convey information about events occurring in other 
places and at other times, a feature known as 
displacement (Hockett, 1960). This includes the concrete 
details of displaced events—who did what to whom—
but also when things occurred. If you observed a woman 
receiving the winning lottery ticket and also getting her 
purse stolen, then you would want to be clear about 
which event occurred first. While temporal order is an 
abstract feature of a complex event, it is often critical for 
communicative success. 

To communicate about temporal order (and to 
communicate in general), speakers have several 

strategies to deploy. The first and most obvious is in their 
choice of words, like “before” or “after,” “earlier” or 
“later.” Second, speakers also communicate about 
temporal order using visible and systematic motion of 
their bodies (Cooperrider & Nunez, 2009; Casasanto & 
Jasmin, 2012). Spontaneous co-speech gestures 
produced by North-American native English speakers 
often indicate relative temporal order by locating events 
along an imagined spatial timeline, with earlier events 
placed to the left and later events placed to the right. 
Finally, speakers encode temporal order in the structure 
of their larger discourse. Earlier events are typically 
expressed earlier in an utterance, while later events are 
expressed later (“order-of-mention,” a.k.a. temporal 
iconicity, Jakobson, 1971). For instance, if somebody 
first went to the gym and then stopped for coffee, it 
would be most natural for them to say, “I went to the gym 
and stopped for coffee,” rather than the reverse; the order 
in which the events are mentioned can stand in for the 
order in which they occurred.  

During real-world communication, all three of these 
strategies can be deployed at the same time, 
complementing each other. For instance, if a speaker 
were to describe a series of events that occurred on a 
recent vacation, they might use expressions like “first,” 
“and then,” and “finally” to express explicitly, using 
lexical resources, the temporal order of events. In 
coordination with these expressions, they might point 
along the left-to-right spatial axis to convey the temporal 
order of the events. And, at the same time, they might 
choose to describe the events in the same order in which 
they actually occurred.  

While we know that speakers do this, less is known 
about whether listeners actually care. Temporal terms are 
notoriously hard for children to acquire (Tilman et al., 
2017; Shatz et al., 2010); the words “before” and “after,” 
for instance, continue to be confused by most children 
until they are five years old (Clark, 1971). Listeners are 
also known to rely on order-of-mention to infer the order 
in which events occurred (Jakobson, 1971), although 
past work has focused primarily on contexts where 
temporal order is ambiguous in speech and gesture. 
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It’s also currently unknown whether listeners rely on 
temporal gestures to make inferences about the abstract 
concept of temporal order. By contrast, listeners are 
demonstrably sensitive to concrete information 
expressed in gesture. For example, concrete, iconic 
gestures boost comprehension (Thompson, Driscoll & 
Markson 1998) and can even add information not 
otherwise present in speech (Church et al. 2007; Singer 
& Goldin-Meadow 2005). Less is known, however, 
about the communicative impact of gesture on the 
interpretation of temporal structure. Speakers use gesture 
to express a range of information about time, including 
duration and sequential order (Cooperrider & Núñez, 
2009). There is mixed evidence that, when speech is 
ambiguous (e.g., ‘the meeting was moved forward,’ 
which can mean earlier or later), observers use gesture to 
determine how the speaker’s metaphorical 
conceptualization of time (Jamalian & Tversky, 2012), 
although perhaps only when communication is co-
present and not computer-mediated (Lewis & Stickles, 
2016).  As far as we know, no previous research has 
investigated whether gestures about temporal order are 
actually communicative.    

What about when these sources of information are not 
aligned but contradictory? Sometimes, we mention a 
later event first, perhaps because of the event’s salience. 
When this occurs, the conflict is reflected in the listener’s 
neural response to the sentence as they resolve the 
conflict (Münte et al, 1998). Previous research has 
assumed that, in cases of conflict, speakers will default 
to the information expressed lexically, overriding the 
temporal order suggested by order-of-mention. 
However, discourse comprehension involves 
probabilistic judgments about how best to integrate 
potentially contradictory information (e.g., Gibson et al, 
2014). Under some circumstances, therefore, speakers 
are likely to rely on order-of-mention, overriding or 
ignoring the temporal order conveyed explicitly in 
speech.   

To investigate the communication of complex 
temporal structure during multimodal discourse, we 
conducted two studies in which we systematically 
manipulated how information about temporal order was 
expressed in speech, gesture, and order-of-mention. 
Participants viewed brief videos in which a speaker 
described a complex series of events. Descriptions varied 
in the use of explicit temporal terms (e.g. “earlier” or 
“later”)  and temporal gesture (e.g., a leftward pointing 
gesture to indicate an earlier event) to order the events in 
the sequence. Within these descriptions, moreover, pairs 
of events were sometimes mentioned in the same order 
as they occurred, so that order-of-mention was a helpful 
guide to temporal order, but other times the order-of-
mention did not align with their actual temporal order. 
All three sources of information—temporal terms, 

temporal gesture, and order-of-mention—were thus fully 
crossed within subjects.  

We foresaw a number of possible outcomes. On the 
one hand, temporal terms are so explicit and 
unambiguous that they may overwhelm information 
from any other source, including gesture and order-of-
mention. On the other hand, a complex situation can 
involve multiple interrelated events, outstripping the 
relatively simple binary distinctions that are most 
common in speech (before/after, earlier/later). Under 
these circumstances, temporal gestures may be 
especially beneficial, as they allow a listener to track the 
relative ordering of multiple events. A series of three 
gestures, for instance, can use relative spatial location to 
order events without any of the ambiguity that can 
plague speech. Lastly, order-of-mention may sometimes 
trump both speech and gesture. First, it uses time (of 
mention) to represent time (of occurrence)—a direct 
mapping that may be difficult for a listener to ignore 
when constructing their discourse model. Second, we 
know that memory for specific words isn’t great as a 
delay period increases (Sachs, 1967)—when listeners are 
trying to reconstruct the order of events after the fact, the 
may be more likely to recall the order in which they were 
mentioned than the specific words used to describe their 
order. Thus, there are good reasons to predict that all 
three sources of information may dominate listener’s 
interpretations of multimodal communication about 
temporal order.    

Experiment 1 
The main purpose of Experiment 1 was to investigate 
how participants use the temporal information available 
in multiple communicative resources to construct a 
temporal narrative of events. We were especially 
interested in how individuals reconcile situations in 
which different sources provide conflicting temporal 
information. And finally, because of past work 
suggesting that gesture effects on comprehension are 
amplified over a delay (Church et al. 2007), we added a 
Memory Condition (Immediate or Delayed) to 
investigate whether the temporal resources participants 
use to order a sequence of events changes over a delay. 

Methods 
Participants: Forty undergraduate students (N = 31 
female) participated in this study in exchange for course 
credit. Sample size was determined in advance on the 
basis of similar studies of gesture (e.g., N = 45 in Church 
et al. 2007).  
 
Materials: We filmed 16 vignettes in which a woman 
narrated a brief story consisting of four events. The 
events in a given sequence had all already occurred or all 
were going to occur. That is, half of the vignettes 
discussed future events (i.e. planning a hiking trip, 
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preparing to go camping) while the other half of the 
videos discussed a sequence of events that had already 
occurred (i.e. recalling a vacation, recapping a day at 
work).  

Videos were filmed from the neck downwards, ending 
at the top of the narrator’s legs, with the arms clearly 
visible. Because we manipulated whether or not 
temporal information is delivered through explicit 
temporal terms in speech, we cut the narrator’s head and 
neck out of the frame to avoid giving participants visual 
clues (i.e. voice box movements) from which to draw 
temporal information. All of the video stimuli were 
generated originally and contained arbitrarily related 
events to ensure that participants could not determine the 
temporal order of events by relying on causal or 
canonical relationships (i.e. hiking up a cliff generally 
precedes jumping down a waterfall). 

Procedure: Participants watched short video clips that 
described a four-event vignette. For example, a 
participant could hear, about an upcoming climb up 
Mount Everest, that “I should probably replace my old 
hiking boots and then pick up some snow gear for 
encountering snowy conditions. I also cannot forget to 
first get a hiking permit and then purchase an airline 
ticket to Nepal.” In this case, most of the clauses contain 
explicit temporal terms that disambiguate the actual 
temporal order. Within each sentence, order of mention 
also indicates the correct temporal order (e.g., the 
narrator intends to get a hiking permit before purchasing 
an airline ticket to Nepal); by contrast, the two sentences’ 
order of mention conflict with the order in which the 
events occurred. There were sixteen different vignettes 
in total. The videos of each vignette were randomly 
presented, and participants saw each of the unique 
vignettes one time. The video of each vignette, however, 
was played twice, back to back, to the participant. 

Participants also completed a set of seven 
comprehension questions after viewing a video stimulus. 
For half of the vignettes, participants received the 
comprehension task immediately following the 
presentation of that particular vignette video (our 
Immediate memory condition). For the other half of the 
vignettes, participants received the corresponding set of 
comprehension questions following a 10 minute delay 
(our Delayed memory condition). During this 10 minute 
delay, participants completed multiplication and long 
division problems. 

Each comprehension question was presented in 2AFC 
format (i.e. “Do I need to buy more winter gear before or 
after getting an airline ticket?”) with a 10 second 
response window. Four of these seven questions tested 
the temporal relationship of events in the story (target 
questions). The remaining three questions in the 
comprehension set were unrelated to temporal content 
and probed the basic content of each video (filler 
questions). Question order was randomized for each 

video and for each participant. At the end of the 
experiment, participants filled out a debrief 
questionnaire.  

Analysis 
Before analyzing the data, we removed filler 

questions, trials with a response time faster than 200 ms, 
and trials that were two and a half standard deviations 
faster or slower than each participant’s mean response 
time on each vignette. We excluded participants whose 
accuracy on the comprehension task was below 50% 
(chance) when considering trials where temporal term, 
gesture information, or both were present, as these 
individuals were below chance performance even when 
explicit ordering information was available to them. We 
also excluded responses for participants who failed our 
debrief point-of-view item. In this question participants 
were asked, “Which of the following gestures would the 
narrator use to accompany the word ‘earlier’?” They 
were given two short video clips, one with the narrator 
making a rightward (from her point of view) gesture 
stroke, and one with her making a leftward gesture stroke 
from which to respond. Participants who chose the 
rightward gesture stroke–which appears as a leftward 
stroke from their mirrored perspective–as accompanying 
the word “earlier,” were considered to have failed the 
debrief and were excluded from this analysis since we 
wanted to ensure they were interpreting the gestures in 
the videos the way we intended. 

Our primary dependent measure was participants’ 
response (before vs. after), as a function of the 
information expressed in order-of-mention, speech, or 
gesture (before, nothing, or after). When neither speech 
nor gesture include explicit temporal information, there 
is no ‘ground truth’ about the order of events. Each 
resource was dummy coded for its temporal information 
(“before” = -1, no info = 0, “after” = 1). All analyses used 
generalized mixed-effects models with a logistic link 
function, with centered predictors and the maximal 
converging effects structure justified by the design (Barr 
et al, 2013).  

Results 
Effects of language, gesture, and order-of-mention 

We first examined how comprehension of temporal 
sequences is affected by temporal terms in speech, 
temporal gesture, and order-of-mention. All three 
sources of information had a significant effect. Temporal 
terms reliably influenced participants’ interpretation of 
temporal order (b = 0.95 ± 0.17 SEM, z = 5.45, p < 
0.001), with more before interpretations after the use of 
the word “before” (M = 77%) but more after 
interpretations after the use of the word “after” (M = 
72%).  Similarly, order-of-mention had a significant, if 
smaller, impact (b = 0.72 ± 0.15 SEM, z = 4.94, p < 
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0.001), with more before interpretations when the event 
was mentioned first, but more after interpretation when 
the event was mentioned second. And temporal gestures, 
too, had a significant impact (b = 0.48 ± 0.12 SEM, z = 
3.94, p < 0.001), with more before responses after 
leftward “past” gestures (M = 63%), and more after 
responses are rightward “after” gestures (M = 67%). 
Participants thus were sensitive to all three of the 
semiotic resources available during multimodal 
comprehension, with larger influences of temporal terms 
and order-of-mention, and a smaller but significant 
influence of gesture. 

The only other significant effect we observed was an 
interaction between temporal terms and temporal gesture 
(b = -0.38 ± 0.16 SEM, z = -2.21, p = 0.0271). This was 
driven by a large effect of gesture when temporal terms 
were absent entirely from speech (b = 0.54 ± 0.17 SEM, 
z = 3.19, p = 0.0014), but a much smaller effect of gesture 
when accompanied by explicit temporal terms (b = 0.72 
± 0.21 SEM, z = 3.47, p = 0.00541).   
 
Effects of recall 

We were also interested in the effect a delay period 
would have on participants’ comprehension of temporal 
events. Specifically, we wondered whether we would see 
the effects of particular resources (i.e. temporal gesture) 
strengthen over time, as previous research with iconic 
gesture has found (Church et al., 2007). Our results 
indicated that participants actually performed the same 
on the comprehension task regardless of whether it was 
completed immediately following the video vignette or 
after a 10 minute delay period. We did not find evidence 
of interactions between any of the resources and our 
memory condition factor.  

Discussion 
Our study aimed to investigate how people draw on 

and integrate multiple sources of temporal information 
during comprehension of complex temporal sequences. 
We found that participants are independently influenced 
by the information available through temporal terms, 
gesture, and order-of-mention.  

The presence of temporal terms and temporal gesture 
each influences participants to respond according to the 
order presented through these resources perhaps in 
explicitly conveying temporal order. Order-of-mention 
is also largely influential as a listener builds a temporal 
narrative, perhaps because of the salience of the 
iconicity (i.e. letting the order events are uttered in 
speech stand in for the order events occur in time).  

Interestingly, we found an interaction between 
temporal terms and gesture, mediated by whether or not 
information from temporal speech is present—when 
ordering information from temporal terms is already 

present, we see less of an impact of temporal gesture 
than when it is absent.  

We were additionally surprised to not detect an effect 
of memory condition given our predictions that the 
effects of gesture are strengthened over time. Perhaps 
our delay was not long enough to elicit a difficult recall 
situation, in which temporal ordering information 
would decay over time. Creating that kind of recall 
situation is important to reveal any effects that our 
temporal resources may selectively provide over time.  

 
Experiment 2 

Experiment 2 was designed to replicate and extend 
slightly the results of Experiment 1. The slight extension 
was to address our unexpected finding that the relative 
impact of gesture did not differ after a delay. This 
appeared to contradict previous evidence that the impact 
of gesture increases with the passage of time (Church et 
al, 2007). Based on this, we predicted that, as more time 
passed after observing an utterance, the relative 
contributions of explicit terms, gesture, and order-of-
mention should change—with, in particular, an 
increased reliance on gesture. 

However, participants’ recall was not severely 
impacted after the delay, suggesting that this delay may 
not have been sufficiently long enough to observe a shift 
in importance between temporal terms, temporal gesture, 
and order-of-mention. We thus increased this delay from 
10 minutes to 30 minutes. 
Methods 
Participants: Adults  (N = 50, 33 women) participated 
in exchange for partial course credit.  
Materials: The same as in Experiment 1. 
Procedure: The same as in Experiment 1, except that we 
extended the delay period from 10 to 30 minutes.  

Analysis 
All exclusionary criteria and data cleaning procedures 
used in Experiment 1 were also applied for Experiment 
2. Analyses again used logistic mixed-effects models, 
with centered predictors and the maximal converging 
effects structure justified by the design (Barr et al, 2013).  

Results 
Effects of language, gesture, and order-of-mention 
Experiment 2 replicated the main findings of Experiment 
1. Participants reliably drew on information presented 
through temporal terms (b = 0.86 ± 015 SEM, z = 5.68, 
p < 0.001), with more before interpretations after the use 
of the word “before” (M = 72%) but more after 
interpretations after the use of the word “after” (M = 
71%). They also use the information available via order-
of-mention (b = 0.62 ± 0.12 SEM, z = 5.00, p < 0.001), 
with more before interpretations when the event was 
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mentioned first, but more after interpretation when the 
event was mentioned second. And similarly, participants 
also rely on the information present in temporal gesture 
(b = 0.28 ± 0.14, z = 2.00, p < 0.05), with more before 
responses after leftward “past” gestures (M = 62%) but 
more after responses are rightward “after” gestures (M = 
59%). These findings replicate the results of our previous 
experiment: participants are sensitive to the information 
from temporal terms and order-of-mention in particular, 
and less reliably applying the information gleaned from 
gesture (Fig. 1).  

We did not, however, replicate the interaction of 
temporal terms and temporal gesture (b = -0.10 ± 0.14, z 
= -0.77, p = 0.44).  
 
Effects of recall 
We next turned our attention to the effect of the delay 
period, and how the available temporal resources would 
be deployed over time. Our results did not reveal an 
effect in line with our prediction that the impact of 
gesture would increase over time (Gesture x Memory 
Condition, b = 0.27 ± 0.17 SEM, z = 1.47, p = 0.14), even 
with a longer delay period.  

 
Figure 1. Impact of each resource on participants’ 
response. Color indicates the log-odds of interpreting 
an event to have occurred after (vs. before). All three 
resources had an impact. As gesture went from 
expressing ‘before’ to ‘after’ (i.e., moving rightward), 
‘after’ responses increased (i.e., shift from red to blue). 
Similarly, as speech went from ‘before’ to ‘after’ (ie., 
bottom to the top), ‘after’ responses increased. And 
when order-of-mention suggested that the event 
occurred after (i.e., right panel), there was a higher 
proportion of ‘after’ responses (i.e., shift toward 
blue).   

Discussion 
Experiment 2 replicated the main findings of Experiment 
1. We found that in multimodal communication, 
participants reliably glean information from explicit 
temporal terms in the utterance, order-of-mention, and to 
a lesser extent temporal gesture. The only effect that did 
not replicate was the interaction between gesture and 
temporal terms, which suggests that this effect is either 
small and fickle or potentially a false-positive from 
Experiment 1.  

Even with a 30-minute delay, the benefits of these 
metaphorical temporal gestures did not increase with the 
passage of time, unlike past findings for concrete 
representational gestures (Church et al., 2007). One 
explanation is that 30 minutes is insufficient to elicit the 
selective benefits of gesture.   

General Discussion  
We set out to investigate how we communicate about the 
temporal structure of complex events. Multimodal 
communication offers a range of resources for 
expressing temporal order: words, gestures, discourse 
structure. Across both studies, we found that listeners 
made use of all three of these sources of information, 
integrating them to make sense of the temporal structure 
of complex narratives. 

The ephemeral and spatial nature of gesture  
A central finding of these studies is that gestures that 

encode temporal order are genuinely communicative. 
Gestures are ephemeral, disappearing as soon as they are 
produced, and are only intermittently interjected into the 
the speech stream. Despite this, listeners made reliable 
use of gesture to interpret complex narratives.   

Perhaps temporal gesture is especially useful in that it 
can help create a schematic “bird’s eye” view of a 
complex event by laying out all of the events in their 
temporal order. A single temporal gesture can depict a 
pairwise relation between two events by placing them in 
space — but a sequence of gestures can construct a 
schematic representation of an entire narrative, including 
multiple subevents. By enacting a spatial timeline, 
temporal gestures supply an object for joint 
attention,  available to both speaker and listener.  

The utility of gesture may depend on the listener’s 
perspective on the speaker. Because time recruits lateral 
space, assigning meaning to the right (future) and left 
(past) sides of space, interlocutors who face each other 
are confronted with an added challenge: adopting the 
perspective of their partner. The fact that participants in 
our study were able to interpret the speaker’s lateral 
temporal gestures — despite the fact that the speaker was 
both head-on and video recorded — is a testament to the 
centrality of gesture to human communication. 
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Integrating the complementary and 
contradictory  

While we began by considering reasons that one 
source of information might dominate listeners’ 
comprehension of temporal order, both studies found 
that all three sources of information make independent 
and reliable contributions. While the impact of gesture 
was less pronounced than that of speech or discourse 
structure, it was nonetheless robust across both studies. 
All three sources of information appear to make 
independent contributions to the interpretation of 
temporal structure. 

One avenue for future research is whether there are 
individual differences in the reliance on these sources of 
information. Are some listeners especially sensitive to 
when an event is mentioned in the discourse, while others 
are more sensitive to how that event is gestured relative 
to others? If such individual differences exist, and we 
suspect they do, then these may lead to radically different 
interpretations when different sources of temporal 
information come into conflict — when the first event 
mentioned actually occurred last, or when the speaker 
gestures left but accidently says ‘and then afterward….’ 
Understanding these dynamics will help us understand 
how miscommunications occur — and are repaired. 

Similarly, these three sources of information may have 
differential impacts in different communicative settings 
or under different task demands. For instance, Lewis and 
Stickles (2016) reported that gestures expressing 
metaphors for time were communicative—but only 
when the speaker was co-present with the listener, rather 
than appearing on video. Gestures expressing temporal 
order may also decrease in importance during video-
mediated communication, with speech and order-of-
mention weighted more heavily. This may account for 
gesture’s relatively smaller effect size in the current 
studies.   

Conclusion  
We began by asking how listeners understand the 
temporal structure of complex narratives by integrating 
information from various sources: words, gesture, order-
of-mention. We found that each of these resources made 
independent contributions to the comprehension of 
temporal order. In particular, these results demonstrate 
that metaphorical gestures can communicate complex 
temporal relations. The power of human communication 
may lie in its use of multiple strategies to communicate 
abstract information. 

Acknowledgments 
Thanks to R. Núñez and M. Kutas for helpful feedback.  

References 
Barr, D. J. (2013). Random effects structure for testing 

interactions in linear mixed-effects models. 
Frontiers in psychology, 4, 328. 

de Hevia, M. D., Izard, V., Coubart, A., Spelke, E. S., & 
Streri, A. (2014). Representations of space, time, 
and number in neonates. PNAS, 111, 4809-4813. 

Casasanto, D., & Jasmin, K. (2012). The hands of time: 
Temporal gestures in English speakers. 

Church, R., Garber, P.,  Rogawlski, K. (2007). The role 
of gesture in communication and social memory. 
Gesture, 7(2), 137-158. 

Clark, E. V. (1971). On the acquisition of the meaning of 
before and after. Journal of verbal learning and 
verbal behavior, 10, 266-275. 

Cooperrider, K., & Núñez, R. (2009). Across time, 
across the body: Transversal temporal gestures. 
Gesture, 9(2), 181-206. 

Gibson E., Bergen & Piantadosi (2013). Rational 
integration of noisy evidence and prior semantic 
expectations in sentence interpretation. PNAS, 110, 
8051-8056. 

Hockett, C. D. (1960). The origin of speech. Freeman. 
Jakobson, R. (1971). Language in relation to other 

communication systems. Selected writings, 2, 570-
579. 

Jamalian, A., & Tversky, B. (2012). Gestures alter 
thinking about time. Proceedings of the 34th Annual 
Conference of the Cognitive Science Society. 

Lewis, T. N., & Stickles, E. Gestural modality and 
addressee perspective influence how we reason 
about time. Cognitive Linguistics. 

Münte, T., Schiltz, K., & Kutas, M. (1998). When 
temporal terms belie conceptual order. Nature, 395, 
71-73. 

Sachs, J. S. (1967). Recogpition memory for syntactic 
and semantic aspects of connected discourse. 
Attention, Perception, & Psychophysics, 2(9), 437-
442. 

Shatz, M., Tare, M., Nguyen, S. P., & Young, T. (2010). 
Acquiring non-object terms: The case for time 
words. Journal of Cognition and Development, 
11(1), 16-36. 

Singer, M. A., & Goldin-Meadow, S. (2005). Children 
learn when their teacher's gestures and speech differ. 
Psychological Science, 16(2), 85-89. 

Tillman, K. Marghetis, T., Barner, D., & Srinivasan, M. 
(in press). Today is tomorrow’s yesterday: 
Children’s acquisition of deictic time words. 
Cognitive Psychology. 

Thompson, L. A., Driscoll, D., & Markson, L. (1998). 
Memory for visual-spoken language in children and 
adults. Journal of Nonverbal Behavior, 22(3), 167-
187. 

	

870



Dynamics of Affordance Actualization 
 

Patric C. Nordbeck (nordbepc@mail.uc.edu) 
Department of Psychology, 47 Corry Boulevard, Edwards Center 1 

Cincinnati, OH 45221 USA 

 

Laura K. Soter (soterl@carleton.edu) 
Department of Philosophy, Carleton College 

Northfield, MN 55057 USA 

 

Rachel W. Kallen (kallenrl@ucmail.uc.edu) 
Department of Psychology, University of Cincinnati 

Cincinnati, OH 45221 USA 

 

Anthony P. Chemero (chemeray@ucmail.uc.edu) 
Departments of Philosophy and Psychology, University of Cincinnati 

Cincinnati, OH 45221 USA 

 

Michael J. Richardson (richamo@ucmail.uc.edu) 
Department of Psychology, University of Cincinnati 

Cincinnati, OH 45221 USA 

 

 

Abstract 

The actualization of affordances can often be accomplished in 
numerous, equifinal ways. For instance, an individual could 
discard an item in a rubbish bin by walking over and dropping 
it, or by throwing it from a distance. The aim of the current 
study was to investigate the behavioral dynamics associated 
with such metastability using a ball-to-bin transportation task. 
Using time-interval between sequential ball-presentation as a 
control parameter, participants transported balls from a 
pickup location to a drop-off bin 9m away. A high degree of 
variability in task-actualization was expected and found, and 
the Cusp Catatrophe model was used to understand how this 
behavioral variability emerged as a function of hard (time 
interval) and soft (e.g. motivation) task dynamic constraints. 
Simulations demonstrated that this two parameter state 
manifold could capture the wide range of participant 
behaviors, and explain how these behaviors naturally emerge 
in an under-constrained task context. 

Keywords: affordances; dynamic systems; cusp catastrophe; 
dynamic modeling; simulations; constraints; 

Introduction 

Reorganizing one’s activity in relation to changing task 

demands is a ubiquitous aspect of everyday life and is often 

required to ensure task success. In order to solve everyday 

perception-action tasks, human (and animal) behavior is 

functionally (re)organized in relation to the affordances that 

define a given task context. Here, the term affordance 

simply refers to the action possibilities that characterize a 

given agent-environment system (Gibson, 1979).  

Starting with Warren’s (1984) seminal work on the 

perception of climb-ability, affordance perception research 

has demonstrated that affordances are defined by 

dimensionless ratios (termed pi-numbers) that capture the 

intrinsic, or body-scaled “fit” between the relevant aspects 

of an environmental surface or object and an intentional 

agent’s perception-action capabilities (i.e. effectivities). For 

instance, a stair riser is perceived to afford (comfortable) 

climbing if the ratio of the perceivers leg-length with respect 

to the height of the riser is less than approximately π = .85.  

Similar body-scaled ratios are known to define a wide 

range of action possibilities, from the stand-ability and sit-

ability of surfaces (e.g., Fitzpatrick, Carello, Schmidt & 

Corey, 1994; Mark, 1987), to the pass-through-ability of 

apertures (Warren & Whang, 1987), and the reach-ability 

and grasp-ability of objects (e.g., Carello, Grosofsky, 

Reichel & Solomon, 1989; Cesari & Newell, 1999; 

Richardson, Marsh & Baron, 2007). In each case, this 

research has demonstrated how individuals correctly detect 

affordance boundaries (i.e., the boundary between when an 

action is or is not possible) by means of intrinsic body-

scaled information (e.g., eye-height information) and 

organize or reorganize their behavioral activity accordingly 

(Carello et al., 1989). For instance, individuals are able to 

correctly perceive when an object is reach-able or not by 

extending their arm when seated, or by bending their torso 

and extending their arm, or by standing up and walking over 

to the object and organize their behavior accordingly.  

It is important to appreciate, however, that in most task 

contexts the different ways in which an affordance can be 

actualized are not organizationally discrete, but overlap. For 

instance, an object that is reachable by extending the arm, is 

also often reachable by bending the torso and extending the 

arm. Similarly, an object that is graspable with one hand, is 

also likely graspable with two hands. Furthermore, a small, 

light ball could be gripped with the fingers or grasped with 

the whole hand, and then carried or thrown to its final 

destination. In this sense, afforded task goals often entail a 

nested structure of multiply realizable action possibilities. 
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In dynamical systems terms, a nested affordance structure 

corresponds to a multi-stable system, whereby two or more 

states or modes of behavioral order are simultaneously 

stable (and could be actualized). Regarding the perception 

and actualization of nested affordances, a sign of multi-

stability is hysteresis (Kelso, 1995; Turvey, 1990). This 

occurs when an individual transitions between two different 

behavioral modes or states at different body-scaled ratios 

depending on its history of previous performance. For 

example, an individual will typically transition from one-

hand to two-hand grasping at a larger arm-span/object-size 

ratio (i.e., π = .8) as object size is increased, compared to 

when transitioning from two-hand to one-hand grasping 

(i.e., π = .65) as object size is decreased (e.g., Frank, 

Richardson, Lopresti-Goodman & Turvey, 2009; van der 

Kamp, Savelsbergh & Davis, 1998). Although hysteresis 

has been observed in numerous affordance studies, other 

dynamic patterns of behavior have also been observed. For 

instance, in many task contexts individuals exhibit a fixed or 

critical point transition between different affordances or 

modes of affordance actualization. That is, individuals 

exhibit a nonlinear phase transition between different 

affordances or behavioral modes at the same body-scaled 

ratio irrespective of whether it is scaled up or down 

(Richardson et al., 2007; van der Kamp, et al., 1998). 

Enhanced contrast or negative hysteresis has also been 

observed and is defined by individuals transitioning 

between different behavioral modes in a prospective or 

anticipatory manner (Richardson et al., 2007; Lopresti-

Goodman et al. 2013). While these transitions show distinct 

changes in the actualization of an affordance over time, they 

are still stable solutions in terms of the task goal, or 

metastable. For example, in order to successfully grasp 

planks as plank size is increased, a transition (that varies 

inter-individually) between one-handed and two-handed 

grasping is necessary to maintain the task goal. Of course, 

fixed state behavior has also been observed, whereby an 

individual will enact the same affordance even if other 

behavioral modes are more effective or stable. For example, 

in an object grasping task a pair of individuals may choose 

to pick up objects together, even when it is more efficient 

and stable to pick up smaller objects separately (Richardson 

et al., 2007). 

Of particular relevance here, is that the varied manner in 

which individuals are known to actualize a given affordance 

or transition between different affordances implies that 

affordance actualization is not determined by body-scaled 

ratios alone, but rather is determined by a more complex set 

of behavioral and contextual constraints. For example, the 

amount of time an individual has to perform a given task, an 

individual’s motivation, and an individual’s perceived 

ability for achieving task success are known to play a 

determining role in how a particular affordance is actualized 

(e.g., Lopresti-Goodman, Richardson, Marsh, Carello, & 

Baron, 2007; Wilson, Weightman, Bingham, & Zhu, 2016).  

In an attempt to better understand how differing task 

constraints influence affordance actualization, Fajen (2007) 

has proposed a distinction between hard versus soft 

constraints.  Briefly stated, hard constraints are constraints 

that define a clear line between task success and failure. For 

example, when driving there is a minimum distance in 

which a driver would need to start braking in order to avoid 

colliding into a car stopped in front of them. The boundary 

between stopping and colliding thus corresponds to a hard 

task constraint, and if crossed will result in rather dramatic 

and potentially deadly task failure. However, even in this 

situation, successfully stopping could entail breaking close 

to this hard constraint or well before it. Of course, what 

determines which successful type of breaking behavior a 

driver chooses to actualize will depend on many different 

factors, such as the time of day, mood, or the degree to 

which a given driver prefers a large or small margin of 

safety. It is these kinds of latter constraints that correspond 

to soft constraints (Fajen, 2007; also see Harrison, Turvey & 

Frank, 2016). 

Current study 

The aim of the current study was to examine and model 

the effects of hard and soft constraints on affordance 

actualization, for a ball-to-bin transportation task. Of 

particular interest was the role that temporal constraints play 

on shaping the behavioral dynamics of an under- or softly-

constrained affordance actualization task. To achieve this, 

individuals were instructed to transport balls from a starting 

location to a target bin located 9 meters away. The interval 

between sequentially presented balls was manipulated by 

increasing or decreasing number of seconds between 2 and 

14 (or vice versa) in 1 second steps every fourth ball. 

Importantly, individuals could complete the ball-to-bin 

transportation task in any way they wished; by 

walking/running and dropping the balls into the target bin or 

by throwing the balls into the bin from whatever distance 

they liked. Of interest was the distance that individuals 

chose to move prior to releasing the ball and the degree to 

which time-interval, as a control parameter, operated as a 

constraint on the observed behavioral dynamics. 

Given the under-constrained nature of the task and the 

fact that it was impossible for individuals to achieve 

complete task success, the expectation was to observe a 

variety of behavioral dynamics. More specifically, using 

distance moved prior to attempting to throw the ball into the 

bin as the dependent variable, the expectation was that 

participants would exhibit one of four general classes of 

behavior as time-interval was increased or decreased across 

a continuous sequence of 52 balls: (I) fixed large distance 

moved (essentially always walking or running nearly the 

complete distance to the target bin);  (II) fixed small 

distance moved (essentially always throwing from the ball 

pickup location); (II) gradual transition from large to small 

distance moved (or vice versa); and (IV) a non-linear 

transition between large and small distance moved. 

It was also expected that the variation in the behavioral 

dynamics observed could be modeled using a two 

parameter, bifurcation or catastrophe model (namely, the 
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cusp catastrophe), in which the first parameter was 

represented by time interval and the second represented the 

collective approximation of the unknown soft constraints 

that influenced a given individual’s behavioral dynamics. 

Before explicating this modeling endeavor however, the 

method and data analysis employed for the experimental 

study is detailed. 

Method 

Participants 

Sixty-nine undergraduates from the University of Cincinnati 

participated in the experiment for partial course credit. 

Materials 

At the starting area, seven-inch plastic playpen balls were 

put through an angled PVC pipe (marked ‘4’ in Figure 1) 

that protruded into the pick-up area located on a wooden 

table (marked ‘3’, dimensions: 40cm wide, and 26.5cm 

deep). The mouth of the PVC pipe extended back through 

an opaque curtain (marked ‘2’) and a large wooden bin 

(marked ‘1’, dimensions: 110cm wide, 55cm deep, and 

120cm high) was positioned at nine meters from the back 

edge of the ball pickup area. A computer program was used 

to visually signal an experimenter (‘E’) positioned behind 

the pickup location curtain (2) when to release the balls (one 

by one). A video-camera was used to record participants’ 

(‘P’) movements and actions throughout the experiment. 

 
Figure 1: General experimental setup. 

Task and Procedure 

Participants were told that the task involved transporting 

plastic playpen balls from a pickup area to a wooden bin 

located on the other side of the laboratory room. They were 

instructed they could only use one ball at a time and that the 

task was to get the balls into the bin, while at the same time 

not letting multiple balls stack up at the pickup location. 

They were told that the time between ball presentations 

would change from fast to slow or slow to fast (depending 

on sequence condition). They were also told that if they 

drop a ball accidentally then it could be picked up, however, 

if there was an attempt to get the ball into the bin but they 

missed, then they should ignore it and move on to the next 

one. Finally, they were instructed to solve the task in any 

way they liked as long as they followed the rules. (There 

were no consequences if rules were broken, and no 

incentive was given for performance). 

Participants completed two trial series, with each series 

including the sequential presentation of fifty-two balls. 

Thirty-five participants started their first series at an 

increasing rate: beginning with a 14 second interval of ball 

presentation, this interval was decreased by 1 second after 

four balls down to 2 seconds (i.e., four balls were presented 

sequentially at each time interval). A small break was 

provided and then the second series began with the control 

parameter scaled in the reverse direction (i.e., from 2 to 14 

seconds). The other thirty-four participants completed these 

same two trial sequences in the reverse order (i.e., 2 to 14 

second sequence, followed by the 14 to 2 second sequence).  

Data Analysis and Behavioral Classification 

The distance that participants moved prior to releasing 

(throwing or dropping) the ball was determined from the 

video recordings, along with task success (i.e., whether 

participants successfully got the ball into the bin or not). 

Although not reported here, the number of balls left within 

the pickup area at the time that the participant was 

attempting to get their current ball in was also recorded.   

The movement distances were analyzed using Matlab 

2016a (MathWorks, MA), with the behavior exhibited by 

participants in each temporal series (i.e., 2 to 14 second and 

14 to 2 second series) graphically classified into one of four 

different types of dynamics (see below for more details). 

Prior to classification, the movement distances were 

averaged over each change in time interval, i.e. the average 

distance moved prior to releasing the ball was calculated 

over the four balls that had a fourteen second interval, then 

the average distance moved prior to releasing the ball was 

calculated over the four balls within thirteen second 

intervals, etc. This resulted in thirteen averaged movement 

distances for each 52-ball sequence. From these behavioral 

time-series, two descriptive statistics, namely mean distance 

moved (Dm) and largest change in distance moved across a 

change in time interval (ΔD; i.e. the maximum of the 

differentiated 13-point behavioral time-series) were used to 

classify each behavioral time series as follows: 

 

• Stable (fixed) small distance (stDsmall) moved, whereby 

participants essentially always throw the ball from the 

pickup location or near the pickup location. More 

specifically, Dm < 4.8 meters and ΔD < 1.58 meters. 

• Stable (fixed) large distance (stDlarge) moved, whereby 

participants essentially always moved across nearly the 

complete distance to the target bin prior to releasing the 

ball. More specifically, Dm > 4.8 meters and ΔD < 1.58 

meters. 

• Gradual change (phase transition) in distance (ptDgradual) 

moved, whereby participants gradually increased or 

decreased the distance as time interval decreased or 

increased, respectively (i.e., an inverse relationship 

between distance moved and time interval). More 

specifically, 1.58 < ΔD < 3.8 meters. 

•  Nonlinear change (phase transition) in distance 

(ptDnonlinear) moved whereby participants exhibited a large 
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or nonlinear change in distance moved across a small 

change in interval. More specifically, ΔD > 3.8 meters. 

 

Example time-series of each behavioral type are provided in 

Figure 2 for both increasing and decreasing interval 

sequences. 

 

Figure 2: Two examples each of participant (full line, square 

markers) and simulated (dotted line, triangle markers) 

trajectories: stDsmall trajectories (top), stDlarge (second), 

ptDgradual (third) and ptDnonlinear (bottom). 

Modeling and Simulation 

The possible emergence of the above four types of 

behavioral dynamics was modeled using a two-parameter 

task manifold defined by the Cusp Catastrophe (Thom, 

1975) equation 

ẋ = a + bx - x3 (1) 

 

where x represented that state or dependent variable, i.e., the 

distance (rescaled) moved prior to releasing or throwing the 

ball, the parameter a represented (normalized) time interval 

from (-2.5 = 2 seconds to +2.5 = 14 seconds), and the 

parameter b represented the collective state of (unknown) 

soft constraints that might be influencing a participant’s 

behavior at any point during the task (i.e., motivation, 

intention, perceived ability, learned helplessness, etc.). The 

manifold in Figure 3 represents the fixed points of x, for 

different parameter settings of a and b. That is, each point 

on the manifold can be understood as representing the 

distance moved prior to releasing the ball for each (a,b) 

setting, where x is rescaled (normalized) as a function of b 

(e.g., from -2 = 0 meters moved to +2 = 9 meters walked 

when b = 2.8 and from -1 = 0 meters moved to +1 = 9 

meters walked when b = -1.8). 

As can be seen in Figure 3, this manifold includes both 

mono-stable and bi-stable (multi-stable) regions and 

predicts the same four patterns of behavioral dynamics 

defined above depending on the values of a and b. More 

specifically, as a is scaled up or down, larger values of b can 

result in behavioral trajectories qualitatively consistent with 

stDlarge and stDsmall, depending on the initial condition of x. 

For -.5 < b < 3, however, the manifold predicts varying 

degrees of ptDnonlinear type behavior as a (time interval) is 

scaled up or down. Finally, when b < -.5 the manifold 

predicts ptDgradual as a (time interval) is scaled up or down.  

It is worth noting at this point that Eq. (1) or the Cusp 

Catastrophe model has been employed to abstractly capture 

a wide range of natural bifurcation phenomena, including 

human anxiety and performance, organizational order, 

decision-making and dating behavior (e.g., Guastello, 1995; 

Hardy, 1996; Hardy & Fazey, 1987; Richardson, Dale & 

Marsh, 2014; Tesser, 1980). Typically, the b parameter is 

fixed and the different behaviors that Eq. (1) can produce 

are explored by scaling a. In fact, this is how the exemplar 

trajectories plotted on the manifold in Figure 3 were 

generated (i.e., by fixing the value of b and then scaling a 

for a given initial condition x0).  In the current task context, 

this would be equivalent to assuming that although the soft 

constraints that influence a participant’s behavior might 

change across trial sequences, they remain fixed over a ball 

sequence. However, there is no reason to assume that this is 

the case for the current task, rather it seems more likely that 

the various soft constraints that influence participant 

behavior change both during and across sequences. For 

instance, an individual’s motivation or goal intention may 

have been continuously modulated during the task. Thus, at 

each interval change (or individual ball), the resulting 

distance moved may reflect a continuous (or discrete) 

change in both a and b. 

With the latter point in mind, a range of behavioral 

trajectories were simulated along the cusp catastrophe 

manifold by scaling a in interval steps consistent with the 

time interval steps employed in the experimental study (i.e., 

from 2.5 to -2.5 in 13 steps), as well as scaling b recursively 

by adding a number from a unimodal random distribution, 

with a mean of -.6 (when increasing interval, +.6 when 

decreasing) and a standard deviation of 1.65. The mean of 

±.6 was employed as the experimental data revealed that 

participants had a preference for higher movement (see 

results section for details). Two sets of 70 trajectories were 

simulated, with the initial condition x0 set at +2 for 

simulation set one and a normal distribution with 50% 

chance of being above 0 for simulation set two (again 

inspired by participant behavior). The simulated data that 

resulted was rescaled to the distances of the real (human) 

experimental data (~.75 meters to ~8.75 meters). 
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Figure 3: Cusp Catastrophe Model manifold. Blue points 

represent an exemplar ptDgradual behavioral trajectory. Red 

points represent two exemplar ptDnonlinear behavioral 

trajectories. The black and green points represent exemplar 

stDlarge and stDsmall behavioral trajectories, respectively. 

Results 

As can be seen from an inspection of Figures 2 and 4, and 

Table 1, participants produced all four of the behavioral 

dynamics expected. The variability within and across 

participants and ball sequences is most easily discerned 

from an inspection of Figure 4, in which the behavioral 

dynamics classification is plotted as a function of mean 

distance moved (Dm) and maximum change in distance 

moved across a change in time-interval (ΔD). 

 

Table 1: Distribution of trajectories per type of data. 

 

Trajectory Simulated Actual 

stDsmall   8.57%   9.42% 

stDlarge 33.57% 35.51% 

ptDgradual 22.14% 23.91% 

ptDnonlinear 35.71% 31.16% 

 

The simulated trajectories also produced a comparable set of 

behavioral trajectories and classifications. Again, this can be 

seen from an inspection of Figures 2 and 4 and Table 1. The 

classification system was verified using a K-means Nearest 

Neighbor (KNN) classifier (in Matlab, with ten number of 

neighbors, Euclidian distance and squared inverse distance 

weights) finding 99.28% correspondence between initial 

classification and KNN classification of real data. 

 A curve estimation analysis was conducted on the total 

frequencies of each distance across all data-points, revealing 

a linear increase in frequency as distance increased (β = .85, 

t(34) = 9.43, p < .01, where x = distance moved). A two-

tailed, bivariate correlation analysis was run to investigate 

the relationship between distance moved and success (hit) 

versus failure (miss), revealing a positive association (r = 

.64, p < .01) in that, as distance moved increased so did the 

probability of success. 

 

 
 

Figure 4: Participant (top) and simulated data (bottom) 

behavioral classification as a function of mean distance 

moved (Dm) and maximum change in distance (ΔD). 

Discussion 

The current study was designed to explore the effects of 

hard and soft constraints on the manner in which a task goal 

was actualized. As expected, a variable range of behavioral 

dynamics was observed, reflecting the under-constrained 

nature of the task goal. Furthermore, simulations using a 

two-parameter Cusp Catastrophe manifold illustrated how 

the wide range of participant behaviors observed naturally 

emerged due to an under- or softly-constrained task context. 

That is, by the continuous modulation of soft constraints 

during ongoing task performance. 

The significance of the current findings with regard to 

understanding human, affordance-based behavior is twofold. 

First, the current results highlight how both steady state 

linear and nonlinear behavioral patterns, as well as 

metastable and transient behavioral patterns, can all result 

from the same task dynamic, further emphasizing how 

complex and context sensitive determinism underlies the 

emergent (re)organization of ongoing human behavior. 

Second, the current results illustrate the need for 

appropriately identifying what and how soft constraints 

modulate the actualization of nested affordances or multi-

stable behavioral modes. While there was no attempt to 

specifically identify what soft constraints guided task 

performance in the current study, the experimental and 

modeling methodology developed here could be employed 
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to identify these constraints in future research. Different 

hard constraints could be imposed or manipulated, or the 

saliency of soft constraints within the task context could be 

explicitly defined. For example, one could introduce the 

hard (goal) constraint that a participant would fail 

completely (and need to redo the task) if there is ever more 

than one ball in the pickup area. This would likely see the 

elimination of stDlarge behavior. Furthermore, if the salience 

of a soft constraint were also increased, say by adding 

motivation in terms of a points or monetary reward system 

that empathized getting balls in the bin, then one would also 

predict the (near) elimination of stDsmall, with participants 

predominately producing ptDgradual or ptDnonlinear behavior. 

It is also possible that task success or failure on each ball 

throw could have modulated the collective motivational 

state of participants. The general relationship between 

longer distance and higher success rate speaks to this point, 

although it does not apply as motivation to all participants 

equally. (If this were applicable on an individual basis, there 

would likely be no stDsmall trajectories.) However, a 

confounding variable here is the general preference across 

the entire dataset for longer distances. The interaction of this 

preference with the individually different effect of time-

interval on distance moved, needs to be examined further in 

future research. 
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Abstract 

Within the literature of psychological and decision sciences, 
there is a critical difference in the way recognition is defined 
and studied experimentally. To address this difference, the 
current experiment examines and attempts to disentangle the 
influence of two recognition judgment sources (from within 
an experiment and from an individual’s prior life experiences) 
upon two different recognition judgments. By presenting 
participants with a set of related stimuli that vary naturally in 
environmental occurrence and by manipulating exposure 
within an experimental context, this experiment allows for a 
broader and more ecologically valid assessment of 
recognition memory. Contrasting with the typical word-
frequency effect, the results reveal an overall bias to judge 
high-frequency items as studied on an episodic recognition 
test. Additionally, the results underscore the role of context 
by showing that a single study exposure increases the 
probability that individuals will judge stimuli as presented 
outside the laboratory. 

Keywords: Recognition memory; decision-making; 
ecological validity  

Recognizing the Difference between 

Recognition and Recognition  

In general, recognition refers to the experience wherein 

upon encountering a stimulus an individual has a sense that 

she has encountered that stimulus before. A recognition 

judgement, in turn, is when an individual explicitly claims 

that a stimulus was previously encountered. Within the 

literatures of psychological and decision sciences, there is a 

critical difference in the way recognition is studied 

experimentally. While one set of research focuses on an 

individual’s capacity to recognize stimuli presented 

previously within an experimental episode (episodic 

recognition memory), the other set focuses on an 

individual’s capacity to recognize stimuli as previously 

encountered during the individual’s prior life experiences 

before beginning an experiment (pre-experimental 

recognition memory). Although these types of recognition 

are typically studied independently, the sources of 

experience related to both are inherently interconnected. 

Indeed, the experience of recognition is influenced by an 

individual’s prior life experiences as well as by the 

experiences she has during an experiment. The current work 

provides a framework for studying recognition memory in a 

way that more readily relates to these two intertwined 

factors. 

In what follows, we first broadly describe the lines of 

research related to both types of recognition judgements, 

including prior work that has examined their interconnected 

nature. Within this review, we note criticisms of each line of 

research. Following this, we (1) describe a research 

methodology that draws upon both lines of work to address 

these concerns, (2) present the results of an experiment 

adopting this approach, and (3) discuss implications of these 

results and considerations for future work.  

Episodic Recognition in Memory Research 

Recognition memory has been studied extensively with list-

learning experiments. Here, stimuli, such as words or 

pictures, are presented individually in the form of a study 

list. After a delay ranging from a few seconds to multiple 

days, participants are presented with a recognition memory 

test list, and are asked to discriminate targets (stimuli from 

the study list) from foils (new items). Episodic recognition 

memory has been the focus of decades of extensive research 

and has been noted as an increasingly prevalent research 

paradigm (e.g., Hintzman, 2011).  

A major strength of the episodic recognition memory line 

of research is experimental control. This is, in part, achieved 

by minimizing the role of individual stimuli, such as by 

presenting mixed lists of unrelated and uncommon concrete 

nouns. This approach follows in the footsteps of pioneering 

memory researcher Ebbinghaus (1885), who used nonsense 

stimuli to avoid the influence of everyday exposure.  

The advantage of striving for experimental control in this 

way is also a disadvantage when it comes to understanding 

how memory judgments operate within everyday decision-

making. For example, Neisser (1976) argued that memory 

research should strive toward ecological validity.  Drawing 

upon work in perception by Brunswik (1957) and Gibson 

(1979), ecological validity refers to applicability outside the 

laboratory. The importance of ecological validity is 

underscored by research on eyewitness testimony. For 

instance, when participants study mixed lists of unrelated 

words, a positive relationship between accuracy and 

confidence is typically found (e.g., Dallenbach, 1913; 

Dunlosky & Metcalfe, 2009). This intuitive finding 

dovetails with the 1972 and 1976 U.S. Supreme Court 

rulings suggesting that highly confident eyewitness 

identification is likely accurate. This pattern, however, does 

not hold for lists of similar material (i.e., categorized lists, 

see e.g., DeSoto & Roediger, 2014), such as description 

details of suspects presented to an eyewitness (e.g., Smith, 

Kassin, & Ellsworth, 1989). It is disconcerting to consider 

how other memory research findings might also be 

misleading due to a similar lack of ecological validity.  
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Departing from the convention of presenting participants 

with mixed lists of uncommon, unrelated stimuli would 

inherently introduce an additional factor, which might 

interact with or overshadow other experimental 

manipulations. Specifically, a by-product of presenting 

participants with a more ecologically valid set of related 

stimuli is that the individual items will vary based on how 

often each occurs outside the laboratory. The influence of 

environmental frequency upon episodic recognition 

judgements has been the focus of extensive research (e.g., 

Dennis & Humphreys, 2001; Estes, 1994; Glanzer & 

Adams, 1985; Lohnas & Kahana, 2013; McClelland & 

Chappell, 1998; Shiffrin & Steyvers, 1997). In these 

experiments, study and test lists are composed of unrelated 

words that are sampled randomly from a range of low 

linguistic frequency words and high linguistic frequency 

words. The typical word-frequency finding on an episodic 

recognition memory test is that low-frequency target words 

are more accurately judged to be “old” than high-frequency 

target words and low-frequency foil words are more 

accurately judged to be “new” than high-frequency foils. 

Although this line of research does begin to reintroduce the 

influence of pre-experimental exposure into a laboratory 

setting, these experiments still tend to favor experimental 

control over ecological validity in numerous ways. First, the 

study lists in these experiments are typically composed of 

stimuli that are sampled from opposite poles along a 

continuum of environmental frequency—either extremely 

low-frequency or extremely high-frequency (but see Lohnas 

& Kahana, 2013, for an exception), essentially transforming 

the naturally continuous variable of environmental 

frequency into a dichotomized factor. Second, the study and 

test lists used in these experiments are often composed of 

unrelated words. That is, the stimuli belong to many 

disparate categories and, thus, do not related to one another 

regarding any real-world inferences, such as person details 

in relation to culpability.  

It may be the case that, similar to experiments 

investigating the word-frequency effect (e.g., Glanzer & 

Adams, 1985), a mnemonic advantage for low-frequency 

items emerges if participants are tested with a related set of 

stimuli sampled with varying degrees of environmental 

frequency. There is some evidence, however, suggesting 

that this pattern of superior recognition accuracy for low-

frequency items might not persist. Specifically, in an 

experiment by Jacoby, Woloshyn, and Kelley (1989), which 

investigated the influence of environmental frequency by 

composing study and test lists of famous and nonfamous 

names, the results of an episodic recognition test revealed 

that famous names (i.e., high-frequency items) were more 

likely to be judged as presented on the study list than 

nonfamous ones (i.e., low-frequency items), regardless of 

whether or not they were actually studied. Thus, it may turn 

out that the low-frequency item advantage, borne out of 

memory research favoring experimental control over 

ecological validity, may not hold when participants are 

tested with sets of related stimuli. 

Pre-Experimental Recognition in Decision-Making 

Research 

Numerous researchers have investigated how individuals 

use pre-experimental recognition, a sense of prior exposure 

to a stimulus outside the laboratory, during decision-making 

(e.g., Dougherty, Gettys, & Ogden, 1999; Erdfelder, 

Küpper-Tetzel, & Mattern, 2011; Goldstein & Gigerenzer, 

2002; Hertwig, Herzog, Schooler, & Reimer, 2008; 

Marewski & Schooler, 2011).  A sense of pre-experimental 

recognition has been shown to influence a wide array of 

judgments, including about population size (e.g., Marewski 

& Schooler, 2011), fame (Jacoby, Woloshyn, & Kelley, 

1989), and company revenue (Hertwig, et al., 2008), to 

name but a few. This work has shown that the frequency of 

occurrence for a given stimulus in the environment (which 

can be estimated by counting how often a stimulus, say a 

city name, occurs on the Internet or in the print media), 

allows for modeling how likely and how quickly the 

stimulus is to be recognized (e.g., Hertwig et al., 2008). 

Overall, this body of research underscores the intuitive 

notion that a sense of recognition is paramount for making 

many everyday decisions.  

The influence of pre-experimental recognition upon 

decision-making is typically studied within probabilistic 

inference experiments, in which individuals are assumed to 

use known attributes of a stimulus as cues to make 

inferences about an unknown or future criterion. These 

experiments typically include a recognition task and a 

paired-comparison inference task. In the recognition task, 

participants are shown a list of related stimuli, such as city 

names, and asked to judge if they recognize each item from 

their prior life experience. Additionally, some experiments 

ask individuals to report if they have additional knowledge 

beyond a sense of pre-experimental recognition for each 

object. Reponses from this task and their respective 

response times are later used, to predict judgments on the 

paired-comparison inference task. In the paired-comparison 

inference task, individuals are shown two items at a time 

from a related set of stimuli and asked to infer which 

alternative is higher or lower on some judgement criterion, 

such as which of two cities has a larger population size.  

In part because of its rigid simplicity, one decision 

strategy in particular, the recognition heuristic (Goldstein & 

Gigerenzer, 2002), has been the focus of much research and 

debate. This strategy assumes that, stemming from an 

existing relationship in the world between environmental 

occurrence and a given criterion (e.g., population size), a 

sense of pre-experimental recognition can readily guide 

decisions in a straightforward way. Specifically, the 

recognition heuristic assumes that on a paired-comparison 

inference task, if one decision alternative is recognized and 

the other is not, individuals will judge the recognized 

alternative to have a higher value on the criterion.  

In general, this line of research is aptly commended for 

showcasing and exploring how memory is employed for 

everyday decisions. One major criticism of this research, 

however, is that the assumptions about recognition memory 
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fail to appropriately draw upon theory from the abundance 

of related recognition memory research (e.g., Dougherty, 

Franco-Watkins, & Thomas, 2008; Newell & Fernandez, 

2006). It appears that much of the work on recognition-

based decision-making assumes that pre-experimental 

recognition is a fixed commodity, whereas research 

concerning episodic recognition memory has revealed many 

ways in which a sense of recognition is influenced by 

contextual conditions. For example, Jacoby et al. (1989) 

found that presenting nonfamous names within an 

experiment study phase increased the likelihood that these 

nonfamous names would be incorrectly judged as famous 

later (see also Hertwig et al., 2008). Related to this, Pohl 

and colleagues (Pohl, Erdfelder, Michalkiewicz, Castela, & 

Hilbig, 2016), point out two typical experimental procedure 

choices that fail to consider how a sense of pre-experimental 

recognition might be influenced by experimental conditions. 

Both entail how participants, during an earlier part of the 

experiments, are often exposed to the stimuli that they are 

later asked to consider during a paired-comparison inference 

task. First, to obtain a large number of paired-comparison 

inference trials, items are often paired repeatedly with 

different items, such that each item appears numerous times 

during the task. Additionally, the order of the two tasks is 

often counterbalanced across participants, such that some 

participants have the recognition task first and others have 

the paired-comparison inference task first. These two typical 

methodology choices may influence the sense of pre-

experimental recognition and respective recognition speed 

that individuals might use during decision-making. 

Although Pohl and colleagues (2016) focused on 

recognition speed specifically in relation to these 

methodology concerns, context conditions such as exposure 

within an experiment might also influence the probability 

that participants will judge stimuli as recognized from 

outside the laboratory. This is one of the concerns the 

current approach addresses. 

Experiment 

The purpose of the current experiment is to investigate the 

influence of two fundamental sources of experience, one 

stemming a person’s prior life experiences before entering 

the laboratory and another stemming from the experiences 

within an experimental context, upon recognition 

judgements. Specifically, the memory source related to the 

experimental context here is a single study exposure and the 

memory source related to prior life experiences is pre-

experimental exposure (estimated with web frequencies). 

The influence of both sources is examined for both episodic 

recognition (e.g., “Was this city name presented earlier 

during the experiment?”) and pre-experimental recognition 

(e.g., “Have you ever heard of this city name before 

beginning the experiment?”). In line with ecological 

validity, instead of informing participants that stimuli 

presented during the study phase would be presented during 

a later memory test, incidental study exposure was adapted 

from Hertwig et al. (2008).  

In relation to previous work, the current experiment also 

addresses the following two questions. First, does the 

typical low-frequency item advantage for episodic 

recognition memory (e.g., Glanzer & Adams, 1985) occur 

when individuals are tested with a more ecologically valid 

set of stimuli (i.e., stimuli from a related set that vary based 

on their natural occurrence outside the laboratory)? Second, 

to what extend does a single incidental study exposure 

influence judgements of pre-experimental recognition, and, 

if so, does this influence depend on the environmental 

frequency of stimuli?  

Method 

Participants A total of 63 individuals (mean age = 21.5 

years, 56% female) recruited from the University of 

Lausanne were paid roughly 26 Swiss francs each 

(depending on performance) for participating in the 

experiment. They were tested individually.  

Design The study was conducted as a within-subjects design 

with one independent variable, study status, one pseudo-

independent variable, environmental frequency, and two 

dependent variables (measured using within-subjects 

blocks), episodic recognition judgements and pre-

experimental recognition judgements. Study status was 

manipulated within-subjects by presenting half of the to-be-

tested stimuli within a preceding study phase. Pre-

experimental frequency was estimated for each stimulus 

using Wikipedia page occurrences as a proxy for 

environmental occurrence.  

Stimuli The stimuli presented during the experiment were 

from a set of 200 city names from North American and 

Western European countries (Canada, England, France, 

Germany, Italy, Spain, and USA). Additionally, eight extra 

city names were used at the beginning and end of the study 

task to minimize primacy and recency study effects. The 

city names used in the experiment were sampled such that 

the entire set would include cities from each country that 

varied in both population size (population statistics obtained 

from www.citypopulation.de) and environmental occurrence 

(as approximated by Wikipedia page occurrences) and 

excluded capital cities. All stimuli were counterbalanced 

such that each occurred roughly equally often in all study 

and test conditions. 

Procedure The experiment was conducted on a computer 

using E-Prime experimental software (Psychology Software 

Tools). Participants were informed that there would be three 

separate tasks and payment would depend of their 

performance in each task. First, all participants had an 

incidental study task, in which half of the city names (100) 

were presented. Specifically, participants were shown each 

city name individually and asked to count the number of 

vowels in each city name. At the beginning of each trial a 

fixation cross (+) appeared on the screen for 2 s along with a 

reminder of the task. Participants were informed that the 

fixation cross would occur immediately before each city 

name was presented to help them prepare to respond. 

Afterwards, a city name replaced the fixation cross and 
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participants were prompted to press the appropriate number 

key on the keyboard corresponding to the number of vowels 

in the city name. Participants were given up to 4 s to make 

their response and a blank screen was presented for 2 s 

between trials.  

The following test phase consisted of two separate tasks, 

an episodic recognition task (“Was this city name presented 

during the vowel counting task”) and a pre-experimental 

recognition task (“Have you ever heard of this city name 

before beginning the experiment?”). Participants were asked 

to respond with one of two keyboard keys to respond “yes” 

or “no” for each test trial. Participants were given as long as 

needed to make their response in both tasks. Each task block 

consisted of 100 trials, which included half studied and half 

unstudied city names. Importantly, city names were not 

repeated across test tasks, but were counterbalanced 

between-subjects such that each city name would occur 

roughly equally often in each test phase. The order of test 

tasks was counterbalanced between-subjects. Similar to the 

study phase, each trial began with a 2 s fixation cross and 

was followed by a 2 s intertrial interval during both 

recognition tasks.  

Results 

The data from all 63 participants was analyzed, excluding 

trials for one city name due to a clerical error. Wikipedia 

page occurrence values were log transformed to 

approximate a linear relationship across city names (e.g., 

Marewski & Schooler, 2011). Given the two binary 

dependent variables, separate logistic regressions were 

planned for both episodic recognition and pre-experimental 

recognition judgments. 
 

Episodic Recognition Results from the episodic recognition 

task are presented in Figure 1. From visual inspection of 

Figure 1, two patterns are apparent. First, the probability 

that participants judged city names as presented during the 

study phase was higher for studied city names than for 

unstudied city names. Second, the probability of judging 

city names as studied increased as a function of 

environmental frequency. Moreover, the difference in 

recognition probabilities between studied and unstudied city 

names did not seem to vary as a function of environmental 

frequency. To test the influence of both factors (study status 

and environmental frequency), a multilevel logistic 

regression analysis was conducted to fit the episodic 

recognition data. A test of the model against a constant only 

model indicated that the predictors as a set provided an 

improved fit (χ
2 

= 980, df = 2, p < .001, Nagelkerke’s R
2
 = 

.20). The Wald criterion demonstrated both factors, study 

status (z = 5.38) and environmental frequency (z = 6.82), 

contributed to the model fit (p < .001 for both). 

Additionally, by comparing the model to another which 

included an additional interaction term of the two factors, 

evidence of an interaction between study status and 

environmental frequency was not found (χ
2 
= .27, df = 1, p = 

.61). To control for the variance associated with the random 

factor of repeated measurements from individual 

participants, follow-up generalized linear mixed models 

were conducted. The same pattern emerged: both factors of 

study status (z = 5.22, p < .001) and environmental 

frequency (z = 6.77, p < .001) contributed to the model fit, 

and there was no evidence of an interaction between the two 

found (χ
2 
= .78, df = 1, p = .38). 

 

 
Figure 1: Mean episodic recognition rates. The left side depicts the 

mean influence of study exposure for all city names with standard 

error bars. The right side depicts the influence of both study 

exposure and environmental frequency for each city name with a 

moving average for both studied and unstudied city names across 

environmental frequency. 
 

Comparison to previous results The results from the 

episodic recognition task contrast with the typical word-

frequency effect (e.g., Glanzer & Adams, 1985), which 

reveal an interaction between study and environmental 

frequency, such that low-frequency targets are recognized 

more accurately (i.e., higher hit rate and lower false alarm 

rate) than high-frequency targets and low-frequency lures 

are correctly rejected more accurately than high-frequency 

lures (e.g., Lohnas & Kahana, 2013). Instead, the current 

results show that when participants are tested with a set of 

related stimuli, high-frequency items are more likely to be 

judged as studied regardless of if they were studied or 

unstudied (i.e., higher hit and false alarm rates for high-

frequency items). Why did this pattern of results differ from 

the typical word-frequency effect? Although further work is 

required to better address this question, we can provide 

some speculation. The potentially stronger association with 

the experiment context for low-frequency items, perhaps 

due to item distinctiveness, may have been relatively diluted 

in the current experiment for a number of reasons. First, one 

important difference to remark upon is the overall low 

episodic recognition accuracy from the current experiment 

compared to previous word-frequency experiments (e.g., 

Lohnas & Kahana, 2013). We suspect this difference can be 

attributed to the difficulty inherent in testing sets of related 

stimuli and stemming from incidental study (e.g., Criss & 

Shiffrin, 2004). This increased task difficulty may have led 

participants be more influenced by the pre-existing 

associations for high-frequency items, since these 
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associations are less contingent upon the study conditions 

than the associations between the context and studied items.   
 

Pre-Experimental Recognition Results from the pre-

experimental recognition task are presented in Figure 2. 

From visual inspection of Figure 2, two patterns are 

apparent. First, the probability of judging city names as 

recognized from outside the laboratory increased as a 

function of environmental frequency. Second, the 

probability that participants judged city names as 

recognized from outside the laboratory was slightly higher 

for studied city names than for unstudied city names. 

Additionally, it appears that the influence of a study 

exposure was relatively consistent across varying degrees of 

environmental frequency. To test the influence of both 

factors (study status and environmental frequency), a 

multilevel logistic regression analysis was conducted to fit 

pre-experimental recognition judgements using study status 

and environmental frequency as predictors. A test of the 

model against a constant only model indicated that both 

predictors as a set provided an improved fit (χ
2 

= 1739, df = 

2, p < .001, Nagelkerke’s R
2
 = .323). The Wald criterion 

demonstrated both factors, study status (z = 4) and 

environmental frequency (z = 32), contributed to the model 

fit (p < .001 for both). Additionally, by comparing the 

model to another which included an additional interaction 

term for the two factors, evidence of an interaction between 

study status and environmental frequency was not found (χ
2 

= .621, df = 1, p = .431). Evidence for the same pattern was 

suggested by a generalized linear mixed model with the 

categorical variable of participant included as a random 

factor.  
 

Comparison to previous results Similar to previous work 

(e.g., Marewski & Schooler, 2011), the current results 

support the use of web frequencies as a reasonable predictor 

of pre-experimental recognition. The results from the pre-

experimental recognition task also converge with previous 

work showing that an experimental exposure increases the 

probability of inferring an item to be higher on a criterion 

related to pre-experimental exposure, such as the fame of 

individuals (Jacoby et al., 1989) or population size of cities 

(Hertwig et al., 2008). Unlike previous work, however, the 

current experiment examines the relationship of a single 

incidental study exposure across items varying in 

environmental frequency continuously from extremely 

infrequent to extremely frequent. Importantly, the current 

work examines pre-experimental recognition instead of 

inference judgments, which are assumed to be influenced by 

a sense of pre-experimental recognition. By focusing on this 

more basic memory judgment, the current approach and 

respective data reveal that the presentation of stimuli within 

an experimental context influences a sense of pre-

experimental recognition that is core to much research on 

memory-based decision research (e.g., Goldstein & 

Gigerenzer, 2002). One novel finding is that, because of the 

lack of an interaction between study and environmental 

frequency, it appears a single study exposure results in a 

relatively constant increase in the probability of pre-

experimental recognition across all items, regardless of 

environmental frequency.  

 

 
Figure 2: Mean pre-experimental recognition rates. The left side 

bar graph depicts the mean influence of study exposure for all city 

names with standard error bars. The right side depicts the influence 

of both study exposure and environmental frequency for each city 

name with a moving average for both studied and unstudied city 

names across environmental frequency. 

Discussion 

The main purpose of the current work is to showcase a 

broad approach to studying recognition memory—one that 

considers how different types of recognition emerge as a 

function of the interconnected factors of (1) an individual’s 

prior life experiences and (2) an individuals’ recent and 

current experiences within an experimental context. This 

approach was designed to better translate results from 

memory experiments into real-world situations. This was 

achieved by testing recognition judgements for related 

stimuli, which, in turn, we assume more readily relate to 

everyday recognition judgments and memory-based 

inferences. For instance, one might be asked to identify or 

corroborate which colleagues were present at a company 

meeting or holiday party. This would entail gauging 

exposure within a context for a related set of stimuli (e.g., 

co-workers) that vary based on their environmental 

frequency (i.e., some are more well-known than others). 

This kind of everyday memory task contrasts sharply with 

the typical kind of recognition memory task used in 

psychology experiments, in which stimuli are unrelated and 

environmental occurrence is either constrained or 

dichotomized into highly disparate factor levels (extremely 

low and high-frequency bins).  

The importance of adopting a broader and more 

ecologically valid approach to understanding recognition 

memory is underscored by the current experiment results. In 

contrast to the typical word frequency effect (increased 

episodic recognition accuracy for low-frequency items) 

found in many previous experiments, (e.g., Glanzer & 

Adams, 1985; Lohnas & Kahana, 2013), the current 
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experiment results showed an increased tendency to judge 

high-frequency items from a set of related stimuli as 

studied.  

The current experiment results also provide evidence 

suggesting that context conditions, such as a single 

incidental study exposure, influence pre-experimental 

recognition judgements. This finding suggests that 

researchers examining memory-based inferences should 

strongly consider how often and in what manner stimuli are 

presented within an experiment. Related to this concern, 

although separate sets of stimuli were presented during both 

recognition test phases (episodic and pre-experimental) of 

the current experiment, we reanalyzed both sets of data with 

the inclusion of test task order as a factor to help rule out the 

influence of task demands upon the results. For both 

recognition tasks, the same main effects (study exposure 

and environmental frequency) and lack of interaction were 

supported. Importantly, these results did not interact with 

task order and a main effect of task order was not found.  

There are numerous possible extensions of the current 

work. One is to incorporate the influence of context factors 

into models of memory-based decision-making. 

Additionally, the influence of list composition (e.g., 

Malmberg & Murnane, 2002) upon both episodic and pre-

experimental recognition can be explored with sets of 

related stimuli, such as city names. Although the current 

experiment included related stimuli that varied widely on 

environmental frequency and the stimulus set was somewhat 

balanced, in that half of the city names were typically 

recognized, it remains largely unexplored to what degree a 

sense of recognition is influenced by the composition of 

study and test lists of related sets of stimuli. Similar to list 

composition effects, testing other stimulus materials, such 

as eyewitness-related description details, may help reveal 

the influence of varying environmental occurrence patterns.  
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Abstract

A recent meta-analysis (Khemlani & Johnson-Laird, 2012)
about psychological experiments of syllogistic reasoning
demonstrates that the conclusions drawn by human reasoners
strongly deviate from conclusions of classical logic. Moreover,
none of the current cognitive theories predictions fit reliably
the empirical data. In this paper, we show how human
syllogistic reasoning can be modeled under a new cognitive
theory, the Weak Completion Semantics. Our analysis based
on computational logics identifies seven principles necessary
to draw the inferences. Hence, this work contributes to a
computational foundation of cognitive reasoning processes.
Keywords: Human Reasoning; Syllogistic Reasoning; Logic
Programming; Three-valued Łukasiewicz Logic; Abduction

Introduction
The way of how humans ought to reason correctly about
syllogisms has already been investigated by Aristotle (Smith,
1989). A syllogism consists of two premises and a
conclusion. Each of them is a quantified statement using
one of the four quantifiers all (A), no (E), some (I), and some
are not (O)2 about sets of entities which we denote in the
following by a, b, and c. An example of a syllogism is:

Some b are a (IE4)
No b are c

In experiments, participants are normally expected to
complete the syllogism by drawing a logical consequence
from the first two premises, e.g. in this example ‘some a are
not c’. The response of the participant – the conclusion – is
evaluated as true if it can be derived in classical first-order
logic (FOL), otherwise as false. The four quantifiers and
their formalization in FOL are given in Table 1. The entities
can appear in four different orders called figures as shown in
Table 2. Hence, a problem can be completely specified by the
quantifiers of the first and second premise and the figure. The
example discussed above is denoted by IE4.

Altogether, there are 64 syllogisms and, if formalized
in FOL, we can compute their logical consequence in
classical logic. However, a meta-analysis by Khemlani
and Johnson-Laird (2012) based on six experiments has
shown that humans do not only systematically deviate
from the predictions of FOL but from any other of 12
cognitive theories. In the case of IE4, besides the above
mentioned logical consequence, a significant number of
humans answered ‘no valid conclusion’, which does not
follow from IE4 in FOL, as ‘some a are not c’ follows from
IE4 as can be seen in the Venn diagram in Figure 1: X has the
property a but not the property c.

1The authors are mentioned in alphabetical order.
2We are using the classical abbreviations.

Table 1: The four moods and their logical formalization.

Mood Natural language First-order logic Short

affirmative universal all a are b ∀X(a(X)→ b(X)) Aab
affirmative existential some a are b ∃X(a(X)∧b(X)) Iab
negative universal no a are b ∀X(a(X)→¬b(X)) Eab
negative existential some a are not b ∃X(a(X)∧¬b(X)) Oab

Table 2: The four figures used in syllogistic reasoning.

Figure 1 Figure 2 Figure 3 Figure 4

First Premise a-b b-a a-b b-a
Second Premise b-c c-b c-b b-c

c

b a
X

Figure 1: ‘some a are
not c’ follows from IE4.

Recently, a new cognitive
theory based on the Weak
Completion Semantics (WCS)
has been developed (Hölldobler,
2015). It has its roots in the
ideas first expressed by Stenning
and van Lambalgen (2008),
which unfortunately had some
technical mistakes. These were
corrected by Hölldobler and
Kencana Ramli (2009a), by

using the three-valued Łukasiewicz (1920) logic. WCS
has been successfully applied – among others – to the
suppression task (Dietz, Hölldobler, & Ragni, 2012), the
selection task (Dietz, Hölldobler, & Ragni, 2013), the
belief-bias effect (Pereira, Dietz, & Hölldobler, 2014a,
2014b; Dietz, 2017), to reasoning about conditionals (Dietz
& Hölldobler, 2015; Dietz, Hölldobler, & Pereira, 2015)
and to spatial reasoning (Dietz, Hölldobler, & Höps, 2015).
Hence, it was natural to ask whether WCS can also model
syllogistic reasoning.

We introduce seven principles motivated by findings made
in Cognitive Science and Computational Logic, and show
how syllogisms together with these principles can be encoded
in logic programs. After that we compare the predictions
under WCS with the results of FOL, the syntactic rule
based theory PSYCOP (Rips, 1994), the Verbal Model
Theory (Polk & Newell, 1995) and the Mental Model
Theory (Johnson-Laird, 1983).3 The two model-based
theories performed best in the meta-analysis (Khemlani &
Johnson-Laird, 2012).

The predictions of the theories FOL, PSYCOP, Verbal,
and Mental Models for the syllogisms OA4, IE4, and IA2
and those of a significant percentage of the participants
are depicted in Table 3, where the participants were 156

3http://mentalmodels.princeton.edu/models/mreasoner/
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Table 3: Conclusions drawn by a significant percentage of
participants are highlighted in gray and compared to the
predictions of FOL, PSYCOP, Verbal, and Mental Models
theory for OA4, IE4 and IA2. NVC denotes no valid
conclusion.

Participtants FOL PSYCOP Verbal Models Mental Models

OA4 Oca Oca Oca, Oca, Oca,

Ica, Iac NVC Oac, NVC

IE4 Oac, Oac Oac, NVC, Oac, NVC

NVC Iac, Ica Oac Eac, Eca, Oca

IA2 Iac, Ica NVC NVC NVC, Ica Iac, Ica, NVC

high school or university students. A conclusion is drawn
by a significant number of participants, if the number of
participants chosing this particular conclusion is statistically
too high for the conclusion to be chosen at random. The
interested reader is referred to Khemlani and Johnson-Laird
(2012) for more details.

FOL and the other three cognitive theories make different
predictions. Each theory provides at least one prediction
which is correct with respect to FOL and provides an
additional prediction which is false with respect to FOL.
Currently, the best results are achieved by the Verbal Models
Theory which predicts 84% of the participants responses,
closely followed by the Mental Model Theory with 83%,
whereas PSYCOP predicts 77% of the participants responses.

Weak Completion Semantics
Logic Programs
A (logic) program P is a finite set of clauses of the form
A ← >, A ← ⊥ or A ← B1 ∧ . . .∧ Bn, n > 0, where A is
an atom, Bi, 1 ≤ i ≤ n, are literals, and > and ⊥ denote
truth and falsehood, respectively. Clauses are assumed to
be universally closed. A is called head and >, ⊥ as well
as B1 ∧ . . .∧Bn are called body of the corresponding clause.
Clauses of the form A←> and A←⊥ are called facts and
assumptions, respectively.4 ¬A is assumed in P iff P contains
an assumption with head A and no other clause with head A
occurs in P . We restrict terms to be constants and variables.
We assume for each program P that the underlying alphabet
consists precisely of the symbols occurring in P and that
non-propositional programs contain at least one constant.

gP denotes the set of all ground instances of clauses
occurring in P , where a ground instance of clause C is
obtained from C by replacing each variable occurring in C by
a constant. A ground atom A is defined in gP iff gP contains
a clause whose head is A; otherwise A is said to be undefined.
def (A,P ) = {A←Body |A←Body∈ gP} is called definition
of A in P . To clarify the definitions, consider Pex:

p(X)← q(X)∧¬r(X)∧ s(X). q(a)←>. r(a)←⊥.
4A← ⊥ is called an assumption because it can be overwritten

under the Weak Completion Semantics, as we will discuss later.

Table 4: The truth tables for the connectives under
three-valued Łukasiewicz logic. Note that for the unknown
holds: (U← U) =>.

F ¬F

> ⊥
⊥ >
U U

∧ > U ⊥
> > U ⊥
U U U ⊥
⊥ ⊥ ⊥ ⊥

← > U ⊥
> > > >
U U > >
⊥ ⊥ U >

The second and the third clause is a fact and an assumption,
respectively. gPex is as follows:

p(a)← q(a)∧¬r(a)∧ s(a). q(a)←>. r(a)←⊥.
p(a),q(a), r(a) are defined and s(a) is undefined in gPex.
Classical logic and logic programs are discussed in detail in
e.g. (Hölldober, 2009; Lloyd, 1984).

Three-Valued Łukasiewicz Logic
We consider the three-valued Łukasiewicz (1920) logic for
which the corresponding truth values are true (>), false
(⊥) and unknown (U). A three-valued interpretation I is a
mapping from the set of formulas to the set {>,⊥,U}. The
truth value of a given formula under I is determined according
to the truth tables in Table 4. We represent an interpretation as
a pair I = 〈I>, I⊥〉 of disjoint sets of ground atoms, where I>

is the set of all atoms that are mapped to > by I, and I⊥ is the
set of all atoms that are mapped to ⊥ by I. Atoms which do
not occur in I> ∪ I⊥ are mapped to U. Let I = 〈I>, I⊥〉 and
J = 〈J>,J⊥〉 be two interpretations: I ⊆ J iff I> ⊆ J> and
I⊥ ⊆ J⊥. I(F) = > means that formula F is mapped to true
under I. M is a model of P if it is an interpretation, which
maps each clause occurring in gP to >. I is the least model
of P iff for any other model J of P it holds that I ⊆ J.

Least Models under the Weak Completion
For a given program P , consider the following
transformation: (1) For each ground atom A which
is defined in gP , replace all clauses of the form
A ← Body1, . . . ,A ← Bodym occurring in gP by
A ← Body1 ∨ . . . ∨ Bodym. (2) Replace all occurrences
of ← by ↔. The obtained set of formulas is called weak
completion of P or wcP .5

It has been shown by Hölldobler and Kencana Ramli
(2009b) that programs as well as their weak completions
admit a least model under three-valued Łukasiewicz logic.
Moreover, the least model of wcP can be obtained as the
least fixed point of the semantic operator Φ, which is due to
Stenning and van Lambalgen (2008). Let I = 〈I>, I⊥〉 be an
interpretation, then ΦP (I) = 〈J>,J⊥〉, is defined by:

J> = {A | A← Body ∈ def (A,P ) and I(Body) =>},
J⊥ = {A | def (A,P ) 6= /0 and

I(Body) =⊥ for all A← Body ∈ def (A,P )}.

Weak Completion Semantics (WCS) is the approach to
consider weakly completed programs, to compute their least

5If P = {A← ⊥,A← >} then wcP = {A↔ ⊥∨>}. This is
semantically equivalent to wcP = {A↔>}. A←⊥ is overwritten.
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models, and to reason with respect to these models.

We write P |=wcs F iff formula F holds in the least model
of wcP . Consider again Pex. Starting with 〈 /0, /0〉, we obtain:

ΦPex
(〈 /0, /0〉) = 〈{q(a)},{r(a)}〉 = I1 = ΦPex

(I1).

I1 is the least model of wcPex.

Integrity Constraints
An integrity constraint is an expression of the form U ←
Body, where Body is a conjunction of literals and U
denotes the unknown. An interpretation I maps an integrity
constraint U← Body to > iff I(Body) ⊆ {⊥,U}. Given an
interpretation I and a finite set IC of integrity constraints, I
satisfies IC iff all clauses occurring in IC are true under I.

Abductive Logic Programming
In Logic Programming, abduction is the reasoning process
of searching for explanations given a program and some
observations, which do not follow from the program (Peirce,
Hartshorne, & Weiss, 1974). Explanations are usually
restricted to certain formulas called abducibles. Let P be a
ground program. The set of abducibles of P is

AP = {A←> | A is undefined or ¬A is assumed in P}
∪ {A←⊥ | A is undefined in P}.

An abductive framework consists of a program P , a finite
set A of abducibles, a finite set IC of integrity constraints, and
an entailment relation. Let 〈P ,A , IC, |=wcs〉 be an abductive
framework, E ⊆ A , and O a non-empty set of literals called
observation. An observation O = {o1, . . . ,on} is explained
by E given P and IC iff P ∪ E |=wcs o1 ∧ . . . ∧ on and
P ∪ E |=wcs IC. O is explained given P and IC iff there
exists an E such that O is explained by E given P and IC.
We prefer subset-minimal explanations. An explanation E is
minimal iff there is no explanation E ′ such that E ′ ⊂ E .

Consider the program P = {w ← g, w ← s, g ← r}.6
Suppose we observe O = {w}. Because the least model of
wcP is 〈 /0, /0〉 the observation does not follow. However, O
can be explained by E = {s←>}. Starting with the empty
interpretation we obtain:

ΦP∪E (〈 /0, /0〉) = 〈{s}, /0〉
ΦP∪E (〈{s}, /0〉) = 〈{s,w}, /0〉 = ΦP∪E (〈{s,w}, /0〉).

〈{s,w}, /0〉 is the least model of wc(P ∪E). It entails O. E is
minimal, whereas E ′ = {s←>,r←>} is not.

Seven Principles in Reasoning with Quantifiers
We will apply seven principles in developing a logical form
for the representation of syllogisms.

Licenses for Inferences (licenses)
Stenning and van Lambalgen (2008) propose to formalize
conditionals by licenses for inferences. For example, the
conditional for all X, if p(X) then q(X) is represented by
the program {q(X)← p(X)∧¬ab(X), ab(X)←⊥}. Its first

6The wheels of a lawnmower are wet if the gras is wet; the
wheels are wet if the sprinkler is on; the gras is wet if it is raining.

clause states that for all X , q(X) holds if p(X) and ¬ab(X)
holds, i.e. nothing abnormal for X is known. This in turn
is stated by the second clause. Clauses are assumed to be
universally closed and, hence, the universal quantifier can be
omitted.

Existential Import and Gricean Implicature (import)
Humans seem to understand quantifiers differently due to
a pragmatic understanding of language. For instance, in
natural language we normally do not quantify over things
that do not exist. Consequently, for all implies there exists.
This appears to be in line with human reasoning and has
been called the Gricean Implicature (Grice, 1975). Several
theories like the theory of mental models (Johnson-Laird,
1983) or mental logic (Rips, 1994) assume that the sets
we quantify over are not empty. Likewise, Stenning and
van Lambalgen (2008) have shown that humans require
existential import for a conditional to be true. Furthermore,
as mentioned in Khemlani and Johnson-Laird (2012), the
quantifier ‘some a are b’ often implies that ‘some a are not
b’, which again can be explained by assuming the Gricean
Implicature: Someone would not state ‘some a are b’ if that
person knew that ‘all a are b’. As the person does not say ‘all
a are b’ but instead ‘some a are b’, we have to assume that
‘not all a are b’, which in turn implies ‘some a are not b’.

Unknown Generalization (unknownGen)
Humans seem to distinguish between ‘some y are z’ and
‘all y are z’, as we have already explained in the previous
paragraph. Accordingly, if we observe that an object o
belongs to y and z then we do not want to conclude both,
‘some y are z’ and ‘all y are z’. In order to prevent such
unwanted conclusions we introduce the following principle:
if we know that ‘some y are z’ then there must not only be an
object o1 which belongs to y and z (by Gricean implicature)
but there must be another object o2 which belongs to y and
for which it is unknown whether it belongs to z.

Converse Interpretation (converse)
Although there appears to be some evidence that humans
seem to distinguish between ‘some y are z’ and ‘some z are y’
(see the results reported in Khemlani & Johnson-Laird, 2012)
we propose that premises of the form Iab imply Iba and vice
versa. If there is an object which belongs to y and z, then
there is also an object which belongs to z and y.

Block Conclusions by Double Negation (doubleNeg)
Consider the following two negative sentences (i.e. including
negation) and the positive one: ‘ If not a, then b. If
not b then c. a is true.’ The program representing these
sentences is P = {b←¬a, c←¬b, a←>}. The weak
completion of P is wcP = {b↔¬a, c↔¬b, a↔>}. Its
least model is 〈{a,c},{b}〉, and thus a and c are true: a
is true because it is a fact and c is true by the negation
of b. b is derived to be false because the negation
of a is false. This example shows that under WCS, a
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positive conclusion (c being true) can be derived from two
clauses, which include negation. Considering the results of
the participants’ responses in (Khemlani & Johnson-Laird,
2012), they seem not to draw conclusions through double
negation. Accordingly, we block them through abnormalities.

Search Alternative Conclusions to NVC (abduction)
Our hypothesis is that when participants are faced with a
NVC conclusion (‘no valid conclusion’), they might not want
to accept this conclusion and proceed to check whether
there exists unknown information that is relevant. This
information may be explanations to facts in our program,
and we model such repair mechanism using abduction. Facts
in our programs come either from an existential import or
from unknown generalization. We use only the first as source
for observations, since they are used directly to infer new
information.

Negation by Transformation (transformation)
A negative literal cannot be the head of a clause
in a program. In order to represent a negative
conclusion ¬p(X) an auxiliary atom p′(X) is introduced
together with a clause p(X)←¬p′(X) and the integrity
constraint U← p(X)∧ p′(X). This is a widely used
technique in logic programming. Together with the
principle licences for inferences, the additional clause is
p(X)←¬p′(X)∧¬ab(X).

Representation of Quantified Statements
Based on the principles presented in the previous section, we
discuss the representation of three examples.

OA4 The two syllogistic premises of OA4 are as follows:

Some b are not a. (Oba) all b are c. (Abc)

The program POA4 representing OA4 consists of:
a′(X)← b(X)∧¬abbna(X). (transformation &licenses)
abbna(o1)←⊥. (unknownGen & licenses)
a(X)←¬a′(X)∧¬abnaa(X). (transformation & licenses)
b(o1)←>. (import)
b(o2)←>. (unknownGen)
abnaa(o1)←⊥. (doubleNeg & licenses)
abnaa(o2)←⊥. (doubleNeg & licenses)

c(X)← b(X)∧¬abbc(X). (licenses)
abbc(X)←⊥. (licenses)
b(o3)←>. (import)

In addition, we have the following integrity constraint:

U← a(X)∧a′(X). (transformation)

IE4 The two syllogistic premises of IE4 are as follows:

Some b are a. (Iba) no b are c. (Ebc)

The program PIE4 representing IE4 consists of:
a(X)← b(X)∧¬abba(X). (licenses)
abba(o1)←⊥. (licenses&unknownGen)
b(o1)←>. (import)
b(o2)←>. (unknownGen)

b(X)← a(X)∧¬abab(X). (converse&licenses)
abab(o3)←⊥. (converse&licenses&unknownGen)
a(o3)←>. (converse&import)
a(o4)←>. (converse&unknownGen)

c′(X)← b(X)∧¬abbnc(X). (transformation &licenses)
abbnc(X)←⊥. (licenses)
c(X)←¬c′(X)∧¬abncc(X). (transformation &licenses)
b(o5)←>. (import)
abncc(o5)←⊥. (licenses&doubleNeg)

In addition, we have the following integrity constraint:

U← c(X)∧ c′(X). (transformation)

IA2 The two syllogistic premises of IA2 are as follows:

Some b are a. (Iba) all c are b. (Acb)

Program PIA2 consists of the following clauses:
a(X)← b(X)∧¬abba(X). (licenses)
abba(o1)←⊥. (licenses&unknownGen)
b(o1)←>. (import)
b(o2)←>. (unknownGen)

b(X)← a(X)∧¬abab(X). (converse&licenses)
abab(o3)←⊥. (converse&licenses&unknownGen)
a(o3)←>. (converse&import)
a(o4)←>. (converse&unknownGen)

b(X)← c(X)∧¬abcb(X). (licenses)
abcb(X)←⊥. (licenses&unknownGen)
c(o5)←>. (import)

Entailment of Syllogisms
Khemlani and Johnson-Laird (2012) do not report a formal
definition for the entailment of syllogisms. They use FOL
as a normative theory and test if the conclusions drawn
by the participants are correct with respect to a first-order
representation of a syllogism. In FOL, a set of formulas
K entails a formula F (K |= F) if all interpretations which
map K to true map F to true as well. We believe that the
entailment relation should reflect the principles on which
the representation is based. In the following, an entailment
relation regarding WCS is presented, where yz is to be
replaced by ac or ca.

• P |= Ayz iff there exists an object o such that P |=wcs y(o)
and for all o we find that if P |=wcs y(o) then P |=wcs z(o).

• P |= Eyz iff there exists an object o such that P |=wcs z(o)
and for all o we find that if P |=wcs z(o) then P |=wcs ¬y(o).

• P |= Iyz iff there exists an object o1 such that
P |=wcs y(o1)∧ z(o1) and there exists an object o2 such that
P |=wcs y(o2) and P 6|=wcs z(o2) and there exists an object
o3 such that P |=wcs z(o3) and P 6|=wcs y(o3).

• P |= Oyz iff there exists an object o1 such that
P |=wcs y(o1)∧¬z(o1) and there exists an object o2 such
that P |=wcs y(o2) and P 6|=wcs ¬z(o2).

In case we can not conclude any of these moods, then no valid
conclusion is entailed, denoted as P |= NVC.

886



Accuracy of Predictions
We evaluate our approach the same way as the other theories
have been evaluated (Khemlani & Johnson-Laird, 2012):
There are nine different answers for each of the 64 syllogisms
that can be ordered in a list: Aac, Eac, Iac, Oac, Aca, Eca,
Ica, Oca, and NVC. We consider two lists: a list for WCS
predictions and a list for participants’ answers. In the WCS
list, we assign 1 to an answer if it is predicted under WCS;
else we assign 0. In the list with the participants’ answers
we use a threshold function and assign 1 to answers that were
drawn by more than 16% of the participants; else we assign 0.
Both lists can then be compared for their congruence as
follows, where i is the ith element of both lists:

COMP(i) =
{

1 if both have the same value for ith element,
0 otherwise.

The matching percentage of this syllogism is then computed
by ∑

9
i=1 COMP(i)/9. Note that the percentage of the match

does not only take into account when WCS correctly predicts
a conclusion, but also whenever it correctly rejected a
conclusion. The average percentage of accuracy is then the
average of the matching percentage of all 64 syllogisms.

OA4 - Perfect Match (100%)
Consider POA4. The least model of wcPOA4, I = 〈I>, I⊥〉, is:

I>= {b(o1), b(o2), b(o3), abca(o1), a′(o1), c(o1), c(o2), c(o3)},
I⊥= {abbna(o1), abnaa(o1), abbc(o1), abbc(o2), abbc(o3), a(o1)}.
This model entails only the conclusion ‘some c are not
a’ (Oca): There exists an object, viz. o1, such that
POA4 |=wcs c(o1)∧¬a(o1) and there exists another object,
viz. o2, such that POA4 |=wcs c(o2) and POA4 6|=wcs ¬a(o2).

IE4 - Partial Match (89%)
Consider PIE4. The least model of wcPIE4, I = 〈I>, I⊥〉, is

I>= {a(oi) | i ∈ {1,3,4}}∪{b(oi) | i ∈ {1,2,3,5}}
∪ {c′(oi) | i ∈ {1,2,3,5}}

I⊥= {abba(o1),abab(o3),abncc(o5),abbnc(o5)}
∪ {abbnc(oi) | i ∈ {1,2,3,4,5}}∪{c(oi) | i ∈ {1,2,3,5}}.

This model entails only ‘Some a are not c’ (Oac).

IA2 - Explain NVC: Perfect Match (100%)
Consider PIA2. The least model of wcPIA2, I = 〈I>, I⊥〉, is

I>= {a(o1),a(o3),a(o4),b(o1),b(o2),b(o3),b(o5),c(o5)},
I⊥= {abba(o1),abab(o3)}∪{abcb(oi) | i ∈ {1,2,3,4,5}}.

This model entails ‘no valid conclusion’ (NVC). However, a
significant percentage of participants answered Iac and Ica,
despite IA2 being an invalid syllogism in classical FOL.
According to the sixth principle, abduction, we believe
that these participants might have searched for alternatives
to NVC. We model this by applying skeptical abductive
reasoning.

Each head of an existential import generates a single
observation. We apply abduction sequentially to each of
them. To prevent empty explanations we remove from
the current program the fact that generated the observation.

For each observation and each of its minimal explanations
we compute the least model of the weak completion of
the program extended with the explanation and collect all
entailed syllogistic conclusions. Observations that cannot
be explained are filtered out. The set Answers consists
of all entailed conclusions for the observations left. For
the final conclusions, we apply skeptical reasoning, i.e.,
the final answer to the current syllogism is given by
FinalAnswer =

⋂
A∈Answers A. In the case that FinalAnswer

is empty, we entail the NVC conclusion.
Reconsider IA2, where the observations are O1 = {b(o1)},

O2 = {a(o3)} and O3 = {c(o5)}. If we examine Oi = { o }
with i ∈ {1,2,3}, then we will try to find an explanation for
Oi with respect to PIA2 \{o←>}.7 The set of abducibles is:

APIA2 = {abba(oi)←>, abba(oi)←⊥ | i ∈ {2,3,4,5}}
∪ {abab(oi)←>, abab(oi)←⊥ | i ∈ {1,2,4,5}}
∪ {c(oi)←>, c(oi)←⊥ | i ∈ {1,2,3,4}}
∪ {abcb(o5)←> | i ∈ {1,2,3,4,5}}
∪ {abba(o1)←>, abab(o3)←> }.

E1 = {c(o1)←>} and E2 = {c(o3)←>,abba(o3)←⊥}
are the minimal explanations for O1 and O2, respectively.
Note that for O3 there is no explanation.

Consider the observation O1 = {b(o1)} and the program
P 1

IA2 =(PIA2 \{b(o1)←>})∪E1. The least model of wcP 1
IA2

is 〈I> ∪ {c(o1)}, I⊥〉 where 〈I>, I⊥〉 is the least model
of wcPIA2, as defined before. Thus, c(o1) is newly entailed
to be true after applying abduction. This model entails
what participants concluded, namely Iac and Ica. Iac
is entailed as there exists an object, viz. o1, such that
P 1

IA2 |=wcs a(o1)∧ c(o1) and there exists another object, viz.
o4, such that P 1

IA2 |=wcs a(o4) and P 1
IA2 6|=wcs c(o4), and there

exists another object ,viz. o5, such that P 1
IA2 |=wcs c(o5) and

P 1
IA2 6|=wcs a(o5). Analogously, ‘some c are a’ (Ica) holds.
For the observation O2 = {a(o3)}we consider the program

P 2
IA2 = (PIA2 \{a(o3)←>})∪E2. The least model of P 2

IA2
also entails the conclusions Iac and Ica.

Answers(PIA2) = {{Iac, Ica} , {Iac, Ica}} is the collection
of all conclusions. FinalAnswer(PIA2) = {Iac, Ica} consists of
the skeptically entailed conclusions, i.e. it is the intersection
of all conclusions, which in this case are ‘some a are c’ (Iac)
and ‘some c are a’ (Ica).

Overall Accuracy of 89%
The results of the three examples formalized under WCS
are summarized and compared to FOL, PSYCOP, the Verbal,
and the Mental Model Theory in Table 5. For some
syllogisms the conclusions drawn by the participants and
WCS are identical and for some syllogisms the conclusions
drawn by the participants and WCS overlap. Combining the
syllogistic premises representation and entailment rules for
all 64 syllogistic premises and applying abduction when NVC
was entailed (which happened in 43 cases), we accomplished
an average of 89% accuracy in our predictions. In 18 cases
we have a perfect match, in 30 cases the match is 89%, in 13

7We remove the fact from the program that generated the
observation, because otherwise the explanation would be empty.
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Table 5: The conclusions drawn by a significant percentage
of participants are highlighted in gray and compared to the
predictions of the theories FOL, PSYCOP, Verbal, and Mental
Models as well as WCS for the syllogisms OA4, IE4, and IA2.

Part. FOL PSYCOP Verbal Models Mental Models WCS

OA4 Oca Oca Oca, Oca, Oca, Oca

Ica, Iac NVC Oac, NVC

IE4 Oac, Oac Oac, Oac, Oac, NVC Oac

NVC Iac, Ica NVC Eac, Eca, Oca

IA2 Iac, NVC NVC Ica Iac, Ica, Iac

Ica NVC NVC Ica

cases the match is 78%, and in the remaining three cases the
match is 67%. We achieve the best performance compared to
the other state-of-the-art cognitive theories with the current
best performance of 84 % (Verbal Model Theory).

Conclusions
We developed seven principles for modeling a logical form
for the representation of quantified statements in human
reasoning, mostly motivated from findings in Cognitive
Science. We show how these principles can be encoded
within a computational logic approach, the Weak Completion
Semantics. After that we discuss the predictions of three
examples under WCS and compare them to the conclusions
humans draw from in (Khemlani & Johnson-Laird, 2012).
The result with respect to all 64 syllogistic premises under
WCS shows that we achieve the best results with a prediction
of 89%, compared to the results of other cognitive theories.
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Filozoficzny, 5, 169–171.

Peirce, C., Hartshorne, C., & Weiss, P. (1974). Collected
papers of charles sanders peirce. Belknap Press of
Harvard University Press.

Pereira, L. M., Dietz, E.-A., & Hölldobler, S. (2014a).
An abductive reasoning approach to the belief-bias
effect. In C. Baral, G. D. Giacomo, & T. Eiter (Eds.),
Principles of knowledge representation and reasoning:
Proc. of the 14th int. conference (p. 653-656). AAAI
Press.

Pereira, L. M., Dietz, E.-A., & Hölldobler, S. (2014b).
Contextual abductive reasoning with side-effects. In
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Abstract 

Sign languages stand out in that there is high prevalence of 
conventionalised linguistic forms that map directly to their 
referent (i.e., iconic). Hearing adults show low performance 
when asked to guess the meaning of iconic signs suggesting 
that their iconic features are largely inaccessible to them. 
However, it has not been investigated whether speakers’ 
gestures, which also share the property of iconicity, may 
assist non-signers in guessing the meaning of signs. Results 
from a pantomime generation task (Study 1) show that 
speakers’ gestures exhibit a high degree of systematicity, and 
share different degrees of form overlap with signs (full, 
partial, and no overlap). Study 2 shows that signs with full 
and partial overlap are more accurately guessed and are 
assigned higher iconicity ratings than signs with no overlap. 
Deaf and hearing adults converge in their iconic depictions 
for some concepts due to the shared conceptual knowledge 
and manual-visual modality. 

Keywords: iconicity; gesture; sign language; embodied 
cognition 

Introduction 
A question that has puzzled psychologists and linguists for 
decades is to what extent sign iconicity is accessible to 
individuals with no knowledge of a sign language. Iconicity, 
defined as the direct relationship between a linguistic form 
and its referent, is a ubiquitous property of sign languages 
observable at many of their linguistic levels of organisation 
(Cuxac, 1999; Perniss, Thompson, & Vigliocco, 2010; 
Pietrandrea, 2002). Sign-naïve adults can accurately guess 
the meaning of only a small proportion of signs (Griffith, 
Robinson, & Panagos, 1981; Grosso, 1993; Klima & 
Bellugi, 1979; Pizzuto & Volterra, 2000), but it has been 
hard to establish what factors allow them to map certain 
features of a sign to its correct referent. In an attempt to 
shed light on this question, we look at the iconic gestures 
produced by hearing non-signers. Given that iconic gestures 
are expressed through the same (manual-visual) modality, 
and importantly, they also share the property of iconicity 
(Kendon, 2004; McNeill, 1992), we entertain the hypothesis 
that non-signers may rely on their own gestural repertoire to 
make form-meaning judgements about signs. 
 
Iconicity in gesture and sign 
Gestures are a fundamental aspect of human communication 
and are present in all ages and cultures (Kendon, 2004; 
McNeill, 1992). Gestures are holistic units highly integrated 
with speech that together convey unified semantic 
information of a multimodal utterance (Kelly, Creigh, & 

Bartolotti, 2010; McNeill, 1992). Sign languages, in 
contrast, occur independently from speech, and critically, 
they have the same levels of linguistic organisation as those 
reported in spoken languages (Sandler & Lillo-Martin, 
2006). 

One point of intersection between sign and gesture is 
iconicity. Speakers can depict through iconic gestures the 
visual form of a concept and integrate them with speech as 
part of a multimodal message. For instance, when a speaker 
says ‘I’ll be outside’ while producing the gesture of smoking 
it is clear to the interlocutor that she is going for a cigarette. 
On the other hand, a large proportion of a signed lexicon has 
iconic motivation (Pietrandrea, 2002), and crucially, signs 
may have overlapping structures as gestures (e.g., the sign 
TO-SMOKE depicts a person smoking a cigarette). 

The similarities between sign and gesture were 
overlooked for many decades, but in recent years scholars 
have begun systematically comparing both modes of manual 
communication to shed light on their differences and 
similarities (e.g., Cormier, Schembri, & Woll, 2013; 
Goldin-Meadow & Brentari, 2015; Perniss, Özyürek, & 
Morgan, 2015; Quinto-Pozos & Parrill, 2015). Given the 
growing body of evidence showing that gestures and signs 
share more forms and functions than previously assumed 
(arguably due to the shared manual-visual modality) 
(Perniss et al., 2015), we investigate whether non-signing 
adults fall back on their own gestural repertoire to make 
judgements about conventionalised signs. The aim of the 
present study is therefore to investigate whether the overlap 
in form between signs (i.e., linguistic structure) and gestures 
(i.e., iconic depictions) predicts non-signers’ ability to guess 
the meaning of signs and assign iconicity ratings. 

Perception of sign iconicity 
Iconicity and the extent to which sign-naïve adults can 
understand the meaning of iconic signs has been a central 
focus of attention in sign research. The first investigations 
on the topic demonstrated that iconicity is not easily 
accessible to non-signers and that the meaning of signs is 
very difficult to access. In their seminal study, Klima and 
Bellugi (1979) asked hearing adults without any knowledge 
of a sign language to guess the meaning of a set of signs. 
When signs were presented in isolation and when they had 
to select the correct meaning out of five plausible 
candidates, participants showed a very low success rate (less 
than 10%). They showed significant improvement, however, 
when they were presented the sign along with its English 
translation, and were asked to explain the iconic relationship 
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between the sign and its meaning. Participants showed 
overall agreement in that they were able to accurately 
describe the iconic motivation of more than 50% of the 
signs (e.g., most participants agreed that the sign VOTE 
depicted a person putting a ballot in a box). This study set a 
benchmark in sign language research and convincingly 
argued that iconicity is difficult to access by hearing non-
signers and that the notion of iconicity is better understood 
as a property that lies in a continuum with the meaning of 
some signs being more transparent than others. 

Another study highlights the possibility that similarities 
between signs and the gestures used by the hearing 
community may assist sign-naïve participants in guessing 
the meaning of signs. Grosso (1993) showed a set of iconic 
and arbitrary signs in Italian Sign Language (LIS) to hearing 
non-signing adults and asked them to guess their meaning. 
Participants could not provide a correct response for a large 
proportion of signs (76%) but they were very accurate for a 
considerable number of items on the list (24%). A detailed 
analysis of the correctly guessed items revealed that these 
signs resemble the emblems commonly used by Italian 
speakers (e.g., the sign GOOD has the same form and 
meaning as the emblem used by hearing Italians). Emblems 
have a conventionalised, culture-specific form and meaning 
(Kendon, 1995, 2004) so when non-signing adults are 
confronted by signs that overlap in structures, they rightly 
assume that they also share the same meaning. This study is 
one of the first to suggest that non-signers’ ability to guess 
the meaning of signs is based on the structural similarities 
between conventionalised (linguistic) signs and the gestures 
produced by the surrounding speaking community. 

A limitation of this study is that it presupposes that only 
emblems facilitate the accurate guessing of the meaning of 
signs but does not say how other types of gestures may also 
be recruited. Emblems have highly conventionalised hand 
configurations, are used for specific pragmatic purposes 
(Kendon, 1995, 2004), and have mental representations akin 
to those of abstract words (Gunter & Bach, 2004), so they 
are retrievable gestural entities that can be compared with 
convetionsalised signs. However, other types of iconic 
gestures may also be used as a basis to make judgments 
about the meaning of signs. In this study, we turn to the 
systematic iconic gestures shared in a community of 
speakers to investigate how overlap in form with 
conventionalised signs influences meaning-based 
judgements about signs. 

 
Systematicity in iconic gestures 
The form of iconic gestures has been assumed to be 
variable, with their structure depending on the context in 
which they are used, the interlocutor, and the 
communicative intent of the speaker. It has been assumed 
that individuals tailor their gestures to the main focus of a 
conversation and as a result they vary in form and meaning 
from one conversation to the next (Müller, 2013). However, 
recent studies have found that contrary to this received 
knowledge, the iconic gestures produced by hearing adults 
exhibit a high degree of systematicity, and tend to represent 
very similar forms across individuals. 

For instance, it has been found that the iconic co-speech 
gestures used in object descriptions are highly systematic 
and their form depends on the physical properties of the 
referent (Masson-Carro, Goudbeek, & Krahmer, 2015). 
Objects that can be manipulated with the hands (e.g., a pen) 
are represented with gestures mimicking how the object is 
held; while objects with low manipulability affordances 
(e.g., a sink) are represented through gestures outlining their 
shape. A striking degree of systematicity has also been 
reported in elicited silent gestures (i.e., pantomimes). When 
asked to express concepts in pantomime, participants tend to 
systematically differentiate actions from tools through 
distinct gestural forms (i.e., re-enactment of bodily 
movements for verbs and handshapes representing the form 
of objects for nouns) (Padden et al., 2013; Padden, Hwang, 
Lepic, & Seegers, 2015). More recently, high degree of 
systematicity in the structure of pantomimes has also been 
found across different semantic domains and for 
geographically unrelated cultures. Ortega and Özyürek 
(2016) elicited pantomimes from Dutch and Mexican adults 
and found that both groups employ remarkably similar 
strategies to depict referents. Through the implementation of 
specific types of iconic representations and their 
combinations, participants systematically represent concepts 
across different semantic domains. These pantomimes bare 
strong resemblance with the structures of recently 
discovered sign languages (Safar & Petatillo, in 
preparation), so it has been argued that pantomimes reveal 
some of the cognitive dispositions that give rise to a signed 
lexicon in emerging sign languages.  

The relevance of these studies is two-fold: first, they 
demonstrate that iconic gestural depictions are not as 
variable as previously assumed, but rather are deployed 
systematically to represent concrete concepts within specific 
semantic domains. Second, such systematicity results in 
shared knowledge about some manual forms across a 
community of speakers. As a consequence, individuals are 
likely to have expectations of how a concept should be 
represented in the manual-visual modality – at least for a set 
of referents. This has important implications for the 
perception of sign iconicity by non-signers. Non-signing 
adults confronted by conventionalised signs for the first 
time will not make judgements about their meaning in a 
vacuum. Rather, they are likely to fall back on their gestural 
knowledge to make judgments about the meaning of iconic 
signs. 

The Present Study 
Based on evidence that many iconic gestures are highly 
systematic across individuals (Masson-Carro et al., 2015; 
Ortega & Özyürek, 2016; Padden et al., 2013, 2015; van 
Nispen, van de Sandt-Koenderman, Mol, & Krahmer, 2014) 
it is possible to assume that non-signing adults have at their 
disposal a cohort of shared gestures with specific forms and 
meanings on which they may base their judgment about 
signs. In order to test this hypothesis, we carried out two 
studies. In Study 1 we elicited pantomimes from non-
signing adults to determine which gestures were the most 
systematic across participants. Once these pantomimes were 
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selected, we compared them to signs from Sign Language of 
the Netherlands (NGT) and looked for signs that overlapped 
in form to different degrees (full, partial, or no overlap). 
These signs served as stimulus materials for Study 2. In this 
study, a different group of participants were presented with 
the signs and were asked, first, to guess their meaning. After 
they gave their response, they were given the correct 
translation, and then were asked to give iconicity ratings. 
The prediction is that when signs map directly to their 
gesture non-signing adults will be more accurate at guessing 
their meaning and will assign higher iconicity ratings (e.g., 
the gesture and the NGT sign TO-SMOKE represent a 
person smoking a cigarette so participants are likely to be 
very accurate and give high iconicity ratings). The expected 
results will lend credence to the hypothesis that sign-naïve 
adults base their responses not only on their emblems 
(Grosso, 1993), but also on other types of (iconic) gestures 
that are systematic within a community. 

Methodology 
Study 1: Pantomime generation task 
Participants 
Twenty native speakers of Dutch (10 females, age range: 
21-46, mean: 27 years) living in the area of Nijmegen, the 
Netherlands, took part in the study. 
 
Procedure 
Participants were seated in front of a computer and were 
asked to produce a gesture that conveyed exactly the same 
meaning as the word on the screen. They were explicitly 
told that it was not allowed to speak or to point to any object 
in the room and that they could say ‘pass’ if they were 
unable to generate a pantomime. Two cameras were 
positioned on each side of the participant to record their 
gestural productions. Trials started with a fixation cross 
(500 ms) followed by the target word (4000 ms) time during 
which they had to produce their gesture. After the 4000 ms 
ended, the next trial began. The motivation behind this strict 
timing was to elicit participants’ most intuitive response. 
Participants were presented a total of 273 words. 

Pantomimes were coded according to the description 
parameters proposed by Bressem (2013), which are based 
on the phonological parameters handshape, location, and 
movement of sign languages. Based on these features, we 
looked at the gestures that exhibited the same structure 
across a large number of participants. If the same gesture 
was produced by at least 12 out of 20 participants, it was 
considered the default gesture for that concept. These 
resulted in a total of 119 pantomimes that were consistent 
across a large proportion of the pool of participants (mean 
number of participants producing the same pantomime: 
15.14). 

These default gestures were compared to their NGT 
translation on each phonological parameter (i.e., handshape, 
location and movement) to select items with different 
degrees of form overlap. This comparison resulted in three 
categories of signs. 1) Full overlap (N=36): gesture-sign 
pairs did not differ in any parameter (Figure 1A). 2) Partial 
overlap (N=56): this category includes signs in which only 

one parameter differed from the gesture (Figure 1B). 3) No 
overlap (N=54): signs in which two or more parameters 
differed. This category consisted of 27 signs that did not 
overlap at all with the elicited gesture, plus an additional 27 
signs for which no default gesture could be established 
(Figure 1C). These three groups of NGT signs (N=146) 
were the stimuli for Study 2. 

Study 2: Open-cloze and iconicity rating 
Participants 
The participants of this study were a different group of 20 
hearing native speakers of Dutch (14 female, mean age = 
21.8 years) with no knowledge of NGT or any other sign 
language. None of them took part in the pantomime 
generation task. 
 
Stimuli 
The stimuli consisted of videos of the 146 NGT selected 
from Study 1 (i.e., signs with full, partial, and no overlap 
with gesture). Videos were produced by a deaf signer with 
neutral face and without mouthings to avoid giving away 
cues about the meanings of the signs. 

       

 
Figure 1: Examples of sign-gesture pairs with different 

degrees of overlap. A) TO-CUT shares all the components 
(handshape, location, movement) between sign and gesture. 
B) TO-SAW differs in only one parameter (handshape). C) 

In LAPTOP, sign and gesture have no overlap. 
  
Procedure 
At the beginning of each trial, an NGT sign in citation form 
was presented. After the video had played in full and 
disappeared from the screen, a new screen was presented 
instructing participants to guess the meaning of the sign and 
write its meaning in one word (typed). Participants were 
required to type in an answer for every item but they were 
also allowed to skip items if they could not come up with a 
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meaning. After participants had entered an answer, a new 
screen of instructions came up. Here participants were given 
the actual meaning of the sign and were asked to judge how 
well the sign represented its meaning. The sentence read: 
‘The meaning of the sign is [translation equivalent]. How 
much does the sign look like its meaning?’ The screen 
displayed a 7-point Likert and participants were required to 
type in their rating (1 representing the lowest similarity and 
7 the highest). 
 
Analysis 
Participants gave a response for a large proportion of the 
signs with passes representing only 6.5% of responses. 
Despite being instructed to write only one word, many 
responses were phrases, but they were still included in the 
analysis. Based on the Dutch version of the Boston Naming 
Task (Roomer, Hoogerwerf, & Linn, 2011), answers were 
coded as correct and incorrect. Answers were coded as 
correct if they matched exactly the expected answer (e.g., 
sign: TO-PULL; response: to pull) or if they were synonyms 
of each other (e.g., sign: TO-PHONE; response: to ring). 
This category also included answers that were not the same 
part of speech as the target sign, but where the answer was 
specific to the target concept (e.g., sign: TO-PHONE; 
response: telephone)1. We also included phrases containing 
a verb and the correct argument depicted in the sign (e.g., 
sign: BANANA; response: to peel a banana). Responses 
that did not fit into any of these categories were classed as 
incorrect answers. 

Incorrect answers were subdivided into responses that 
were semantically related and unrelated to the sign. 
Semantically related answers included responses that 
belonged to the same semantic domain (e.g., sign: DUCK; 
response: penguin); as well as answers that were lacking the 
appropriate abstraction to the target concept (e.g., the sign 
MONKEY, which re-enacts how a primate scratches the 
sides of its torso, was often labelled as scratching). 

The semantically unrelated category included responses 
that were plainly wrong, or answers derived from visual 
information of the sign, but that had no relationship with the 
concept (e.g., the sign MOUNTAIN describes the outline of 
two horizontal bumps, but it was often interpreted as a 
camel). 

For the open cloze, the proportions of correct, 
semantically related, and semantically unrelated answers 
were calculated for every item, thereby collapsing across 
participants' answers. Missing answers were discarded for 
this analysis and did not contribute to the proportions. For 
the iconicity ratings, all values were averaged across 
participants to obtain the mean ratings for each of the 146 
signs. 

                                                           
1 In Dutch, verb/noun distinctions are differentiated through 

affixes to the root. For example, telefoneren (to phone) is a verb 
and telefoon (telephone) is a noun. The English translations do not 
reflect that participants responded with a single word.  

Results 
Performance on the open cloze was highly variable across 
participants and items. While only nine items (6.2%) were 
correctly identified by all participants, half of the signs (73 
signs) were correctly identified by at least 25% of 
participants. For 26 items (17.8%), all answers were 
semantically related to the target meaning, suggesting that 
participants were able to correctly identify some aspect of 
the sign but did not make the full abstraction to the target 
meaning (e.g., sign: TO-FLY; response: bird). Regarding 
the iconicity ratings, participants were able to give a 
response for all items. In order to establish to what extent 
sign-gesture overlap contributes to guessing the meaning of 
a sign and assign iconicity ratings, we considered the 
following variables in the statistical analysis. 
Independent variable: Degree of overlap (full, partial, and 
no overlap) 
 
Dependent variables:  
i. Proportion of correct answers (open cloze) 

ii. Proportion of semantically related answers (open cloze) 
iii. Proportion of semantically unrelated answers (open 

cloze) 
iv. Mean iconicity rating 

A multivariate ANOVA was run to determine the 
relationship between type of gestural overlap (full, partial 
and, no overlap) and the dependent variables of the open 
cloze and the iconicity ratings. Using Pillai's Trace we 
found a significant overall effect of the degree of overlap, V 
= 0.541, F(6,230)=14.205, η2= .27, p < .001. The following 
sections will describe the between-subjects effects for each 
dependent variable. 

i) Turning to the proportion of correct answers in the 
open cloze, tests of between-subjects revealed a significant 
effect of degree of overlap, F(2,116)=24.168, η2= .194, p < 
.001. Planned contrasts revealed an increase of correct 
answers from no overlap items (M = 0.12, SE = .03) to 
partial overlap (M = 0.46, SE = .05, Δ = -0.31, SEΔ = .06, p 
<.001, BCa 95% CI [-0.45, -0.18]), but no significant 
difference between partial and full overlap (M = 0.61, SE = 
.06, p = .209). The proportion of correctly identified items 
was thus higher for items with full and partial overlap than 
for those with no overlap (Figure 2). 

ii) Regarding the proportion of incorrect answers that 
were semantically related to the sign, a test of between-
subjects effects revealed no significant effect of the degree 
of overlap between gestures and signs, p = .305. That is, 
wrong answers in the open cloze were equally distributed 
across the three types of signs (full, partial, and no overlap). 

iii) Turning to the proportion of incorrect answers that 
were semantically unrelated to the target concept, tests of 
between-subjects effects revealed a significant effect of the 
degree of overlap, F(2,116)=26.909, η2= .317, p < .001. 
Signs with no overlap were significantly less likely to be 
guessed correctly (M =0.75, SE = .05) than those with 
partial overlap (M = 0.41, SE = .05, Δ = 0.34, BCa 95% CI 
[0.21, 0.47], p < .001). Signs with full overlap were 

892



significantly more likely to be guessed accurately than signs 
with partial overlap (M = 0.21, SE = .04, Δ = 0.192, BCa 
95% CI [0.05, 0.33], p =.009). In other words, the less 
similar a sign is from a gesture, the more likely it is to be 
guessed inaccurately. 

iv) When we look at iconicity ratings, we found an 
association with the degree of overlap between sign and 
gesture F(2,111.836)=54.13, η2=.483, p < .001. Planned 
contrasts revealed a significant increase of mean iconicity 
ratings from no overlap (M = 3.18, SE = 0.22) to partial 
overlap (M = 5.34, SE = .17, Δ = -2.13, BCa 95% CI [-
2.617, -1.642], p < .001) but not from partial to full overlap 
(M = 5.92, SE = .15, p = .07). These results suggest that 
when signs have greater overlap in form with their gestures 
they perceive signs as more iconic (see Figure 3). 

 

 
Figure 2: Mean proportion of correctly guessed answers 
as a function of gesture overlap with the target sign 

 
 

 
Figure 3: Mean iconicity ratings as a function of gesture 

overlap with the target sign 

Discussion 
These data expands on previous research by showing that 
the gestural repertoire of non-signing adults is recruited to 
make judgments about the meaning of lexical signs. We 
showed that signs that overlap in form with their gestures 
are guessed more accurately and are judged as more iconic. 
The proportion of correct answers and iconicity ratings were 
higher for signs that overlapped in form with gestures, but 
there was no additional improvement between full and 

partial overlap. This suggests that despite their slight 
structural differences, these two types of signs bear enough 
resemblance to participants’ gestures to make an association 
between them. 

Signs and gestures share the same physical constraints to 
express a concept in the manual modality, with the referent 
shaping to some extent the features than can be expressed 
with the hands (Masson-Carro et al., 2015). It is therefore 
not surprising that signs and gestures converge in the 
strategies to depict the visual characteristics of many 
concepts. If signs and gestures have similar structures for 
some concepts, it means that deaf and hearing adults share 
conceptual knowledge about these concepts (i.e., visual, 
semantic, perceptual, sensorimotor representations). When 
there is sufficient overlap between signs and gesture, non-
signing adults may tap into these schemas to make 
judgements about the meaning of signs. These findings also 
relate to research showing that humans – as well as other 
primates – understand and evaluate the correctness of 
others’ actions through the activation of brain regions 
engaged when they perform the same actions themselves 
(Koelewijn, van Schie, Bekkering, Oostenveld, & Jensen, 
2008; Rizzolatti, Fadiga, Gallese, & Fogassi, 1996). 

The errors produced by participants, however, clearly 
show that if gesture and sign mismatch, or if the meaning of 
signs departs slightly from the features they depict, 
participants are unable to estimate accurately the meaning of 
a sign. As a result, they will also rate the sign as less iconic. 
Non-signers have a very limited scope to assign meanings to 
signs and seem to be inclined to describe only what is 
directly encoded in them. While they are capable of 
extracting some visual information from the signs they often 
fail to respond with the correct metonymic associate (e.g., 
they respond scratch instead of monkey). This goes to show 
that despite their similarities, sign languages have 
established linguistic conventions not shared with gestures 
and thus are inaccessible to non-signing adults. 

 This study adds to the body of research investigating how 
modality shapes linguistic/communicative structures 
(Perniss et al., 2015). 
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Abstract

This paper introduces a formal method to model the level of de-
mand on control when executing cognitive processes. The cost
of cognitive control is parsed into an intensity cost which en-
capsulates how much additional input information is required
so as to get the specified response, and an interaction cost
which encapsulates the level of interference between individ-
ual processes in a network. We develop a formal relationship
between the probability of successful execution of desired pro-
cesses and the control signals (additive control biases). This
relationship is also used to specify optimal control policies to
achieve a desired probability of activation for processes. We
observe that there are boundary cases when finding such con-
trol policies which leads us to introduce the interaction cost.
We show that the interaction cost is influenced by the relative
strengths of individual processes, as well as the directionality
of the underlying competition between processes.

Keywords: cognitive control; multi-tasking; intensity; iden-
tity

Introduction
A long standing focus in cognitive research has been to-
wards understanding the ability to execute tasks/processes1

that demand cognitive control. In this context, cognitive con-
trol is defined as the set of mechanisms required to pursue
a goal, especially when distraction or strong competing re-
sponses (interferences) must be overcome (Posner & Sny-
der, 1975; Shiffrin & Schneider, 1977; Cohen, Dunbar, &
McClelland, 1990). Earlier work (Posner & Snyder, 1975;
Shiffrin & Schneider, 1977; Cohen et al., 1990; Botvinick &
Cohen, 2014) has argued that the processes demanding con-
trol can be distinguished from automatic processes in terms
of the strength of the associations in the pathways underlying
processing: automatic processes are characterized by path-
ways with associations strong enough to resist interference
from competing processes, whereas controlled processes are
weaker, and therefore rely on input from control mechanisms
to support their execution against interference.

Another longstanding observation is that the allocation of
cognitive control is costly (often discussed in terms of “men-
tal effort” (Posner & Snyder, 1975; Botvinick & Braver,
2015; Shenhav et al., 2017)). This cost has been interpreted in
physical terms (such as metabolic demands (Muraven, Tice,

1A task/process/input-output mapping is defined as a unique
mapping from all possible vectors in the input subspace to corre-
sponding vectors in the output subspace, that is independent of the
mappings for all other combinations of input and output components
in the network.

& Baumeister, 1998)) or in terms of an opportunity cost re-
flecting the allocation of a limited resource (Kurzban, Duck-
worth, Kable, & Myers, 2013). Elsewhere (Feng, Schwem-
mer, Gershman, & Cohen, 2014; Musslick et al., 2016), we
have proposed that limitations in the capacity for control-
dependent processing reflect the purpose of control to di-
minish interference rather than any intrinsic limitation in the
mechanism responsible for control. This view suggests that
the architecture of the processing system as a whole con-
strains the opportunities for control-dependent processing, re-
sulting in opportunity costs associated with allocating control
to any particular task(s).

Here, we build on a closely related proposal, by Koechlin
and Summerfield (2007), to define the cost of control in terms
of internal representational requirements to insure that a given
stimulus (or a set of stimuli) produces the desired response
(or a set of responses), given the intrinsic architecture of the
system. Their work focused on a single task. Here, we ex-
tend this to consider an arbitrary number of tasks and thus
accommodate their possibility for, and costs of, multitasking
(i.e.parallel processing of task pathways). To do so, we follow
the framework proposed by Shenhav, Botvinick, and Cohen
(2013) that distinguishes two components of control signals:
intensity and identity. Specifically, Shenhav et al. (2013) de-
fined the intensity of a control signal as the strength of the sig-
nal needed to insure performance of a particular task, and the
identity as which control signal should be selected to achieve
a desired objective given environmental conditions. Here we
build on that distinction to define two corresponding com-
ponents of the cognitive control costs - a cost associated with
intensity, and a cost associated with interaction. Furthermore,
we define the interaction cost to capture the level of interfer-
ence between the processes in a network.

In this paper, we begin by introducing formal constructs
for intensity and interaction costs by using the graph theoretic
representation of a neural network and terms/notions adopted
from probability theory. We describe an intensity cost that
represents the control signals (as biases infused into a neural
network), above and beyond the specified strength of the sig-
nal (stimulus) itself. This is achieved by developing a formal
relationship between the probability of successful execution
of desired processes and the control signals. In turn, this de-
fines an optimization problem, which can then be solved to
find optimal control signals that achieve a specified activa-
tion for desired processes. However, we observe that there
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Figure 1: Illustration of a single-layered, feed-forward network
with 3-input and 3-output layer components, wherein the individual
features are scalar in nature.

are boundary cases in which this optimization problem can
not be solved. These cases reflect situations in which the si-
multaneous execution of the processes is not feasible due to
interference. Hence, interaction cost analysis motivates an
additional investigation towards finding a proper metric that
continuously measures the level of interference between pro-
cesses. To achieve this we introduce the definition of inter-
action cost associated with process mappings in a network
configuration. Specifically, it measures the level of interfer-
ence introduced by competing processes that interfere with
the tasks of interest. In their study, Koechlin and Summer-
field (2007) have already used information theoretic terms to
measure cognitive control. However, in order to apply these
metrics to neural networks while considering parallelism, we
augment some of these measures, and through simulations we
will demonstrate how interaction cost can be used to predict
interference in neural network architectures. Finally, we will
discuss general research directions revealed by the analysis
presented here.

Intensity: the cost of control
Cognitive control is defined as the underlying mechanism
that biases the processing of a task in order to maximize the
reward (Botvinick, Braver, Barch, Carter, & Cohen, 2001;
Botvinick, Cohen, & Carter, 2004; Bogacz, Brown, Moehlis,
Holmes, & Cohen, 2006; Botvinick, 2007). Here, we adapt
the notion of intensity cost from Shenhav et al. (2013) as a
function of the amount of control bias that cognitive con-
trol applies to the system. However, Shenhav et al. (2013)
described this function in qualitative rather than quantitative
terms. In this work we provide an explicit characterization
of the cost of cognitive effort in terms of a set of physically
meaningful parameters, which allow the manipulation of the
response of a cognitive architecture.

Following earlier works (Feng et al., 2014; Musslick et al.,

2016), we consider a single-layered, feed-forward network
with N input and M output layer components to formalize the
notion of intensity cost in a cognitive control context (Fig. 1
shows a simple example of such a network). In this frame-
work, each component represents an input/stimulus or out-
put/response dimension (vector subspace), and the connec-
tion from an input to an output component constitutes the
processing pathway for a given task. This allows us to de-
fine an abstraction of the network as a directed bipartite graph
GB = (V ,E), wherein the set of vertices V can be partitioned
into two disjoint sets Vin and Vout , representing the input and
output layer components respectively. Moreover, a directed
edge (i, j) ∈E ⊆Vin×Vout represents a connection from the
vertex i in the input layer to vertex j in the output layer (i.e.,
a task). In this setting, we represent the processing pathway
by introducing a weight matrix W with elements wi j. As we
will see later, this abstraction plays an important role in for-
malizing the interaction cost of cognitive control.

In this setting, we assume that control signals bias the pro-
cessing of a stimulus towards a specified response at two
different levels, i.e. gi and b j, which we refer to as pre-
interaction and post-interaction control biases, respectively.
This complies with early computational models of cognitive
control in which control signals act as an increase in gain of
non-linear processing units (Cohen et al., 1990; Botvinick et
al., 2001) and allows us to treat such control biases as key
contributing factors towards the intensity cost for cognitive
control. It is worth noting here that for simplicity the only
sources of nonlinearity in this setting are the logistic2 acti-
vation functions which act upon the linearized output vec-
tor ỹ = [Ỹ1,Ỹ2, . . . ,ỸM]. Without loss of generality, in what
follows we consider the individual features to be scalar, and
carry out a formal investigation on how these control biases
g = [g1, . . . ,gN ] and b = [b1, . . . ,bM] influence the response
from this cognitive architecture. In our formulation, the cor-
responding magnitude, i.e. ‖g‖2 + ‖b‖2, can be treated as a
measure of control intensity applied to the system, and there-
fore the cost for cognitive control.

We begin our analysis by assuming the vector of fea-
tures s = [S1,S2, . . . ,SN ] to be an N-dimensional multivariate
Gaussian random variable with mean µS and covariance ΣS.
(The assumption of Gaussianity is motivated by the technical
tractability). With this assumption, the vector [X1,X2, . . . ,XN ]
becomes an N-dimensional multivariate Gaussian random
variable with a shifted mean and same covariance. Further-
more, as all the transformations (before the nonlinear logis-
tic activation function) are linear in nature, [Y1,Y2, . . . ,YN ]
also remains a multivariate Gaussian random variable whose
mean and covariance are given by µY =W (µS +g) and ΣY =
WΣSW T , respectively. Similarly, the vector of linearized out-
puts [Ỹ1,Ỹ2, . . . ,ỸN ] is also a multivariate Gaussian, with a
shifted mean and the same covariance.

2Although we are restricting ourselves to logistic functions with
unit steepness, in a more general setting one can use the steepness
as another design parameter.
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Hence, each individual linearized output Ỹi is itself a Gaus-
sian random variable with

mean: µỸ
i =

N

∑
j=1

w ji(µ j +g j)+bi

and variance: σ
Ỹ
ii =

N

∑
j=1

N

∑
k=1

w jiwkiσk j,

where µ j is the mean of stimulus Sk and σk j is the covariance
between stimuli Sk and S j. As a consequence, the correspond-
ing output (response) will have a logit-normal distribution,
and this leads us to our key result in this section.

As outlined by Shenhav et al. (2013), the response Oi
should overcome a specified threshold in order to execute
the corresponding process (task). Then, by letting αi ∈ (0,1)
represent this activation threshold associated with output Oi,
the corresponding probability of task execution (probability
of the output Oi surpassing the threshold αi) is expressed as

P[Oi≥αi] =
1
2
− 1

2
erf


log
(

αi
1−αi

)
−bi−

N
∑
j=1

w ji(µ j +g j)√
2

N
∑
j=1

N
∑

k=1
w jiwkiσk j


︸ ︷︷ ︸

f (αi,bi,w,µ,g,ΣS)

.

Here we have exploited the monotonicity of the logistic func-
tion to compute its inverse. Then the result follows from the
cumulative distribution function of Ỹi.

We characterized the activation probability of a given net-
work in terms of the pre-interaction and post-interaction con-
trol biases. This is crucial because it provides new directions
to incorporate the cost of control into the design of a cognitive
network architecture. For example, the problem of allocating
a limited amount of cognitive control into different compo-
nents of the network to maximize the associated probability
of activation can be formulated as an optimization problem in
which the goal becomes minimizing f (αi,bi,w,µ,g,ΣS) over

g and b subject to the constraints
N
∑

i=1
g2

i ≤Cg and
M
∑

i=1
b2

i ≤Cb,

where Cg and Cb define the maximum amount of control that
can be applied. Alternatively, in this setting, we can also ap-
proach the problem of minimizing the cost of control, while
still maintaining a desired value of probability of activation.

One can consider the joint distribution of the processes of
interest to incorporate the effects of interaction between tasks.
To be consistent with (Feng et al., 2014; Musslick et al.,
2016), it is reasonable to begin with a focus narrowed to the
situation where the choice of interaction weights and the prior
distribution of the stimuli render the interactions undesirable.
Then the effect of multitasking can measured by introducing
a suitable distance metric (for example, the Kullback-Leibler
divergence (Ortega & Braun, 2013)) between the joint distri-
butions of relevant processes and the product of correspond-
ing marginals, and one can attempt to minimize this distance

at the expense of a limited amount of cognitive control. How-
ever, as one might expect, this optimization problem can have
an empty solution set under certain values of the interaction
weights and activation thresholds, meaning that certain net-
work configurations strictly prohibit successful multitasking
performance (Musslick et al., 2016). Before approaching this
computation in detail, it would be beneficial to investigate
how the interaction structure influences the solution space,
and that leads us to our next section wherein we introduce the
notion of interaction cost.

Interaction: the cost of mapping
In this section, we will introduce a detailed formalism of the
interaction cost associated with process mappings in a net-
work configuration to accommodate the possibility for multi-
tasking. In our earlier work (Musslick et al., 2016), we have
formalized three distinct types of interference (Fig. 2).

Convergent interference (Fig. 2a) occurs when two in-
puts/stimuli (e.g. S1 and S2) compete to determine a common
output (e.g. O1). We also consider divergent interference in
our analysis (Fig. 2b). Although this does not pose an im-
pediment to performance, i.e. it is possible to generate two
distinct outputs (e.g. O1 and O2) to the same input (e.g. S1),
it represents a restriction on the number of independent stim-
uli (and therefore the number of tasks) that the system can
process at once, and thus was treated formally as a type of
interference due to this dependency in our analysis of paral-
lel processing capability. Finally, we consider a third, indi-
rect interference that supervenes on the first two (shown in
Fig. 2c and Fig. 2d). In this case, the two tasks with strengths
w11 and w22 in question do not directly interfere with one
another. However, their simultaneous execution would nec-
essarily engage a third task with strength w21 (also possibly
a fourth task with strength w12) that would produce interfer-
ence in output O1 (and O2). While Musslick et al. (2016)
treated these three types of interference identically in terms
of their effect on the overall parallel processing capability of
a network, the proposed interaction cost will also distinguish
between these three types of interference.

In interaction cost analysis, we will assume that a stimulus
is of value 1 when it is active, and 0 otherwise. Moreover, to
increase tractability, we will consider linear activation at the
output level, which also implies that without loss of general-
ity the pre- and post-interaction biases can be assumed to be
zero. A more detailed version of the interaction cost analysis,
involving the strength of stimuli, as well as the nonlinear acti-
vation function, will be discussed in subsequent publications.

To introduce the interaction cost, we take an approach sim-
ilar to the one adopted by Koechlin and Summerfield (2007).
In their work, Koechlin and Summerfield (2007) proposed a
metric for selecting a single action among multiple alterna-
tives. Here, we will refine this metric to introduce the inter-
action cost for neural network architectures. Towards this ob-
jective, we first leverage the assumptions discussed earlier in
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Figure 2: The illustration of convergent, divergent, asymmetric,
and symmetric interference.

the section, and abstract out the network configurations pre-
sented in Fig. 2 from the network shown in Fig. 1. We also
assume that the strength of a task i j from stimulus Si to output
O j is represented by its non-negative weight wi j ≥ 0.

Let us first consider the case shown in Fig. 2a. It is obvious
that the response in the output component O j is completely
determined by the stimulus if either S1 or S2 is activated in
the network (executing a single process). However, activating
both stimuli S1 and S2 simultaneously creates a conflict, since
the output can not respond to two distinct stimuli simultane-
ously (as the activations are linear, the network will always
have a response in the output level). In order to measure the
level of this competition between stimuli, we define a random
variable a1 associated with the output O1 such that a1 ∈ {1,2}
(Fig. 2a). This implies that a1 = 1 or a1 = 2 when the out-
put O1 is driven completely by S1 or S2, respectively. Since a
stronger task will have a higher probability of being selected
to generate the response, we consider the relative strengths of
the task pathways (with associated strengths w11 and w21) in
order to define the probability of the possible outcomes, i.e.
the probability of a1 = 1 and a1 = 2 when both S1 and S2
activated. Hence, we compute the probability as

P[a1 = 1] =
w11

w11 +w21
, and, P[a1 = 2] =

w21

w11 +w21
.

Next, we extend this framework to consider networks
with N stimuli and M outputs, wherein an output O j, j ∈
{1, . . . ,M} responds to a set of stimuli. Let us assume that
there are n ≤ N incoming edges to a particular output O j,
and each edge is originated from a distinct stimulus Si, i =
i1, . . . , in, where ik ∈ {1, . . . ,N}. Then the probability of the
event that output O j is responding to stimulus Si is given by,

P[a j = i] =
wi j1(Si)

n
∑

k=1
wik j1(Sik)

, (1)

where 1(Si) is the indicator function that represents the ac-
tivation of stimulus Si such that 1(Si) = 1 if stimulus Si is
active and 1(Si) = 0, otherwise. Then, by building upon the
ideas proposed by (Koechlin & Summerfield, 2007), we de-
fine the interaction cost as

Ψ(a j = i) =− log(P[a j = i]), (2)

where the logarithm is with respect to base 2.

Equation 1 implies the P[a j = i] = 1 when only the rel-
evant stimulus Si associated with task i j is activated in the
network. Hence the interaction cost is computed as Ψ(a j =
i) = 0 which implies that there is no interaction cost. More-
over, when multiple processes are competing due to the ac-
tivation of multiple stimuli, P[a j = i] → 0 as the compe-
tition increases, and as a consequence the interaction cost
Ψ(a j = i)→ ∞.

We further extend equation 1, to encapsulate the proba-
bility associated with parallel processing of task pathways
in the network. Thus, we introduce the joint probability
of distinct output components responding to a set of stim-
uli. For instance, let us consider the parallel processing of
tasks with strength w11 and w21 in Fig. 2a, and calculate
P[a1 = 1,a1 = 2]. This is the probability of output compo-
nent O1 responding to both S1 and S2, and by definition we
know that this probability is zero. For the case illustrated in
Fig. 2b, the joint probability P[a1 = 1,a2 = 1] = 1 since ac-
tivation of S1 will activate both processes with strengths w11
and w12, and there is no competition in outputs O1 and O2.
This result is parallel to the observation made by (Musslick
et al., 2016), who stated that divergent interference is not ac-
tually an interference but a dependency on the stimuli.

Now let us consider the case introduced in Fig. 2c which
can be thought of as the composition of the two cases pre-
sented in Fig. 2a-b. We compute the interaction cost of paral-
lel processing the tasks with strengths w11 and w22. This re-
quires simultaneous activation of S1 and S2, which indirectly
engages the task with strength w21, and initiates a competition
in the output O1. Thus, the interaction cost of parallelism be-
tween tasks represented by w11 and w22 is given by

Ψ1(a1 = 1,a2 = 2) =− log(P[a2 = 2] ·P[a1 = 1|a2 = 2])

=− log
(

1 · w11

w11 +w21

)
.

Here P[a2 = 2] = 1 since task with weight w22 is not compet-
ing with any other process in the output O2. The competition,
however, takes place in O1, and the interaction cost associ-
ated with w11 for this case has already been computed when
we discussed the case in Fig. 2a.

In a similar way, we can compute the interaction cost
of parallelism between tasks represented by w11 and w22 in
Fig. 2d, and we have

Ψ2(a1 = 1,a2 = 2) =− log(P[a2 = 2] ·P[a1 = 1|a2 = 2])

=− log
(

w11

w11 +w21
· w22

w22 +w12

)
.

In this case, simultaneous activation of S1 and S2 causes com-
petition in both outputs O1 and O2. Thus, by revealing further
insight about the strength and directionality of interference,
the interaction cost serves as an extension of the interference
definition presented by (Musslick et al., 2016). For instance,
for the same values of w11,w21,w22 ≥ 0 in both configura-
tions in Fig. 2c-d, and given w12 ≥ 0 for the configuration in
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Fig. 2d, it is obvious that

Ψ1(a1 = 1,a2 = 2)≤Ψ2(a1 = 1,a2 = 2).

Neural Network Simulation
In order to investigate the effect of directionality for the third
indirect interference during parallel processing, we imple-
mented a synthetic neural network simulation3 identical to
our earlier work (Musslick et al., 2016). The neural net-
work used for this simulation maps stimulus input encoded
at a stimulus layer via a non-linear associative layer to non-
linear response layer. A separate task input layer encodes
the current task to be performed with respect to that stimulus
and projects to both the associative layer and response layer.
Units in the stimulus layer were grouped into six stimulus di-
mensions with three units per dimension. Similarly, units in
the response layer was grouped into six response dimensions
with three units per dimension. The network was trained on
12 tasks, where each task corresponds to a one-to-one map-
ping between a subset of three input features in a stimulus
layer to a subset of three response units in an output layer.

We then used the methods described in Musslick et al.
(2016) to extract a bipartite task graph from single represen-
tations encoded at the associative layer. The representations
associated with each task can be characterized by calculating,
for each unit in the associative and output layers, the mean of
its activity over all of the stimuli for a given task; this mean
pattern of activity can then be used as a representation of the
task. Correlating these patterns of activity across tasks yields
a task similarity matrix that can be examined separately for
the associative and output layers of the network. This can
then be used to assess the extent to which different tasks rely
on similar or different representation within each layer of the
network. Tasks that have similar representations over the as-
sociative layer can be inferred to rely on the same input di-
mension that is, they share an input component in the bipar-
tite graph representation of the network and tasks that are
similar at the output layer can be inferred to share an output
component. Accordingly, a bipartite graph can be constructed
by measuring the patterns of activity observed in the network
while it performs each individual task.

The extracted bipartite graph can be used to extract inter-
ference patterns between pairs of tasks (cf. Fig. 2). We use
this to extract all possible learned task-pairs involving no in-
terference case (Fig. 3a), and two distinct cases of interfer-
ence as shown in Fig. 3b and Fig. 3c from single-task repre-
sentations. Fig. 3 shows the activation patterns of the output
units for the simultaneous execution of two tasks, averaged
across the patterns of all task pairs for a given interference
structure. That is, no interference (Fig. 3a) leads to very ac-
curate response patterns (i.e. the current activation shown in
orange) is very close to the desired activation pattern shown
in grey). For the case in Fig. 3b, the response pattern of task
(S1 : O1) is primarily impaired due to the interference aris-

3Simulation details are omitted due to space constraints.

ing from task (S2 : O1). However, for the case of interfer-
ence illustrated in Fig. 3c, the response patterns for both tasks
(S1 : O1) and (S2 : O2) are impaired as observed by the activa-
tion patterns. These simulation results reflect the influence of
the directionality of interference between tasks as predicted
by the proposed interaction cost.

Figure 3: This figure illustrates the performance of a task-pair for a
given interference pattern. Each tasks maps a subset of three stimu-
lus input units onto three response units (see text). The orange color
in the bar plots indicates unit activation of response units relevant to
the depicted tasks, while gray indicates desired response pattern of
those units.

General Discussion and Conclusion
In this study, we have introduced two new measures to de-
termine costs associated with intensity and interaction for the
demand on control. First, we quantify the intensity cost as
a function of the amount of control bias that is supplemen-
tary to stimulus-specific processing in order to achieve a de-
sired response from the network. Doing so, we formalize
the probability of achieving a desired task given the stim-
ulus, weights and biases infused to the network. Since the
stimuli and weights are considered as network properties, the
intensity cost to achieve desired response is defined as the
amount (value) of control biases required to be injected to the
input and output components of the network. The detailed
analysis of intensity cost revealed an interesting optimization
problem to maximize the probability of surpassing a speci-
fied activation for a given budget of resources (i.e. an upper
bound on the control biases). The existence of a solution of
this optimization problem implicitly reveals whether the de-
sired objective is feasible. However, as it can be foreseen that
under certain circumstances the solution does not exist due to
interference between the involved processes. Such boundary
conditions motivated the second metric introduced in our pa-
per in which we formalize the interaction cost to measure the
level of interactions/interference between processes by means
of their type of connections and weights.

With the introduced characterization of intensity and inter-
action costs, it is possible to formally define whether a pro-
cess is considered a reflex, automatic or controlled. Con-
cretely, a process is considered a reflex if the underlying
weight guarantees a successful execution. In other words, a
reflex can be successfully executed without any intensity or
interaction costs. We assume that the execution of both con-
trolled and automatic processes carries with it an intensity
cost as some amount of control bias is needed to elicit a re-
sponse. However, unlike the former, controlled processes are
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subject to interference and thus yield interaction costs large
than zero.

The metrics proposed here can also be used towards fur-
ther understanding cognitive effort as well as synthetic neu-
ral networks designed to achieve goal-driven tasks. By using
the intensity cost, which reveals the interrelationship between
control bias and probability of achieving a desired objective,
we will investigate the limitations of any given neural net-
work architecture by allocating a budget of control bias. The
intensity cost can also be used to investigate the feasibility of
achieving a desired objective defined by the set of processes
of interest in a network.

In the interaction cost analysis, we have assumed that there
exist a response in the output for any stimulus activation and
this may not be the case for a nonlinear activation in the out-
put components. Hence, one major research direction is the
detailed analysis for the classification of processes with non-
linear activation in output. Another possible direction for fu-
ture work is to further analyze the interaction cost in order to
capture the properties of the overall network (not only a sub-
set of tasks of interest). This will allow one to use the inter-
action cost as an objective function for network training. An-
other possible direction is to explore the interrelationship be-
tween intensity and interaction cost. In our work (Musslick et
al., 2016), we noticed a fundamental trade-off between shared
representations in a network and its parallel processing ca-
pability (separated representations). Intuitively, we envision
this separation will decrease interaction cost while increasing
the likelihood of successful execution for a given budget of
control bias.
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Abstract

Frequent words tend to be short, and many researchers have
proposed that this relationship reflects a tendency towards ef-
ficient communication. Recent work has sought to formalize
this observation in the context of information theory, which es-
tablishes a limit on communicative efficiency called the chan-
nel capacity. In this paper, I first show that the compositional
structure of natural language prevents natural language com-
munication from getting close to the channel capacity, but that
a different limit, which incorporates probability in context,
may be achievable. Next, I present two corpus studies in three
typologically-diverse languages that provide evidence that lan-
guages change over time towards the achievable limit. These
results suggest that natural language optimizes for efficiency
over time, and does so in a way that is appopriate for compo-
sitional codes.

Keywords: Communicative efficiency; Uniform Information
Density; Smooth Signal Hypothesis; Noisy channel

Introduction
Natural language researchers have long been interested in
the prospect that natural language is organized for efficient
communication: frequent words tend to be shorter than rare
words, allowing talkers to produce shorter word-forms on av-
erage. More recent work (Plotkin & Nowak, 2000; Genzel &
Charniak, 2002; Aylett & Turk, 2004; Levy & Jaeger, 2007;
Jaeger, 2010; Piantadosi, Tily, & Gibson, 2011; Seyfarth,
2014) has sought to formalize this work in the context of in-
formation theory by proposing that natural language commu-
nicates information close to a limit called the channel capac-
ity, although it has left open the question of how closely the
limit is approached.

In this paper, I first show that it is not possible for a com-
positional code like natural language to transmit information
close to the channel capacity. Specifically, average signal
lengths must exceed the entropy of the distribution over mes-
sages by at least the Kullback-Leibler divergence of the true
probability distribution over messages from a fully-factorized
probability distribution in which every component of the mes-
sage is statistically independent. Natural language commu-
nication must then underperform the channel capacity by at
least this Kulback-Leibler divergence.

However, in light of recent work (Piantadosi et al., 2011)
that showed a stronger relationship between a word’s length
and its average probability in context than its unigram proba-
bility, I investigate the possibility that language changes over
time so that the optimal length of a word, as computed from
its average probability in context, better matches its actual
length. I present two corpus studies over 350 years in Amer-
ican English, Spanish, and Mandarin Chinese that compare

actual word lengths to optimal word lengths in context and in
isolation. The first ‘backward-looking’ study computes opti-
mal word lengths using modern-day language data, and finds
that the mismatch between optimal and actual word lengths
is smaller for older words. Moreover, the mismatch drops
more rapidly, as a function of word age, when the optimal
word length is computed relative to a context-sensitive tri-
gram model than when it is relative to a unigram model.

The second ‘forward-looking’ study divides the 350-year
period into 25-year partitions, uses language data from each
partition to compute optimal word lengths for each partition,
and trains a regression model to predict whether the word-
form appears in the next 25-year partition as a function of the
mismatch between the word’s actual length and its optimal
length. This study finds that words with larger mismatches
are less likely to ‘survive’ to the next partition, and moreover
finds a stronger effect of mismatch relative to the context-
sensitive trigram model than relative to the unigram model.
Together, these two studies provide evidence that natural lan-
guage lexicons change over time in a way that reflects com-
municative efficiency pressures on a compositional code.

I start by presenting previous work on information-
theoretic approaches to language production, along with the
minimal technical background necessary for this paper. I then
show why natural language does not approach information-
theoretic bounds, and use this result to suggest a new bound
for compositional codes that may be achievable by consid-
ering probability in context. Finally, I present two corpus
studies that find evidence that three typologically-diverse lan-
guages have changed to approach this new bound.

Background
Linguists have proposed that language is adapted for commu-
nication in a general sense for decades. Zipf (1949) proposed
the ‘Principle of Least Effort’ to explain the observation that
frequent words tend to be short: frequent words tend to be
short so that talkers usually only have to say short words.
Lindblom (1990) proposed Hyper- & Hypo-articulation the-
ory to explain the observation that vowels in careful speech
tend to be less centralized in formant space: talkers provide
more distinct vowels when they believe errors are more likely.

Plotkin and Nowak (2000) proposed an explicit model of
word formation over the course of language change in an
information-theoretic framework, and showed, analytically
and via simulation, that it approached information-theoretic
bounds as the vocabulary size increases. However, their
model considered words in isolation, but natural language ut-
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terances consist of sequences of words. This paper will show
that codes with the compositional structure that characterizes
natural language cannot approach these information-theoretic
bounds, and focus on optimizing sentence lengths.

Subsequent work has mainly consisted of corpus studies
that show that synchronic samples of natural language ex-
hibit the correlations on would expect, under an information-
theoretic account, between different measures of word length
or distinctiveness and word probability, both overall and in
context (Aylett & Turk, 2004; Frank & Jaeger, 2008; Bell,
Brenier, Gregory, Girand, & Jurafsky, 2009). Piantadosi et
al. (2011) revisited Zipfian distributions, and compared both
log word probability and average log word probability in con-
text, operationalized as a trigram model, with word lengths,
operationalized as the length of the word’s spelling in letters.
They found that, of the two probability measures, average log
probability in context exhibited a stronger correlation with
word lengths. At first glance, this result would seem to con-
tradict an information-theoretic approach: the optimal length
of a word in isolation simply is its negative log probability,
with an appropriate choice of base for the logarithm. How-
ever, I soon show that average probability in context is a more
appropriate measure for optimizing sentence lengths.

In this paper, I return to Plotkin and Nowak’s (2000) pro-
posal that language adapts towards these bounds over time,
using a corpus-based methodology and an emphasis on the
relationship between words and their sentential contexts.

Information theory
In the information-theoretic framing of language, a talker has
a message m that is a sequence of message characters mi from
some alphabet of message characters M . For example, M
may be the set of lexical entries or, as in CCG, a set of (syn-
tactic category, semantic category) pairs. The message cannot
be transmitted directly, so the talker encodes it into a signal s
that is a sequence of signal characters si from some alphabet
of signal characters S .1 For example, S may be the inventory
of syllables or phonemes of the language.

An efficient code has two properties. First, it is short: the
number of signal characters per message character, on aver-
age, is low. Second, it is robust: the probability that the lis-
tener fails to identify the correct message is low. The length
of the shortest possible code depends only on the probability
distribution over messages P(mmm), and is given by the entropy
of that distribution:

H(mmm) = ∑
m∈mmm

P(m) logb

(
1

P(m)

)
(1)

where mmm=M + is the set of all messages (i.e. all sequences of
message characters). The log term is called the Shannon in-
formation of m, and the entropy is just the expected Shannon
information under the probability distribution P(m). If we set

1All the results follow straightforwardly for structured messages
as long as there is a deterministic linearization, such as reverse Pol-
ish notation for tree-structured messages.

b to be the size of the signal alphabet |S |, then the Shannon
information of m is the optimal signal length in signal char-
acters for message m. Adjusting signal lengths to match the
Shannon entropy, called source coding eliminates redundancy
in the code, and achieves property 1: short codes.

Listeners may encounter noise in real-world situations, due
to slips of the tongue on the part of the talker, distraction or
cognitive overload on the part of the listener, dialect differ-
ences, environmental noise, or other sources of noise. Noise
can be countered by adding redundancy to the signal. For
example, a word may differ from all other words by several
phonemes, allowing the listener to recover the intended word
even if some phonemes are mis-perceived or masked by en-
vironmental noise. While the resulting code is more robust,
it is also longer, and we might worry that signals will have to
become arbitrarily long to drive the error rate toward zero.

The Noisy Channel theorem shows that an arbitrarily low
error rate can be achieved with signals that are not arbitrar-
ily long, as long as they do not exceed the channel capac-
ity (Shannon, 1948). The channel capacity depends on both
H(mmm) and the uncertainty about the intended signal, given
the received signal. Adding redundancy, such as pronounc-
ing words more slowly, that anticipates likely noise is called
channel coding, and makes signals robust but still short.

For our purposes, the crucial observation is that it is not
possible to get arbitrarily close to the channel capacity if it is
not possible to obtain a source code that is arbitrarily close
to the entropy of the distribution over messages. The next
section shows that, for compositional codes like natural lan-
guage, optimal source coding is not possible.2

Compositional codes and optimality
This section shows that optimal source coding is not possi-
ble for a compositional code like natural language. If a code
is optimal and compositional, then it follows that the com-
ponents of every message are statistically independent. How-
ever, this is not true for natural language, since, e.g., transitive
verbs tend to appear with at least two noun phrases.

By ‘compositional,’ I mean only that natural language mes-
sages consist of components that are realized the same way
across different messages, and that the length of the signal
for a message is the total length of the signal for each com-
ponent of that message. Setting lm to be the length of the
signal for message m and lmi to be the length of the signal for
component mi, compositionality provides:

lm =
|m|

∑
i=1

lmi (2)

For example, if a message is a sequence of lexical entries, and
a signal is a sequence of phones, then Equation 2 says that
the length of a sentence in phones is the sum of the lengths

2I here consider only discrete signals and messages. The contin-
uous case requires either a limit on the power of the signal or for
source and channel coding to be considered simultaneously.
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of the phonological forms of the lexical entries in that sen-
tence.3 Equation 2 is not trivial. Arithmetic codes, for exam-
ple, encode each message as a number between 0 and 1 that
is determined by the conditional probability of each message
character given the previous message characters; an individ-
ual message character is not directly expressed in any part of
the signal, and lmi is not even defined.

Now assume that the length of the sentence lm for each
message m is optimal. Because the optimal signal length for a
message m is − logb(P(m)), the probability distribution over
messages Pmmm can be recovered from lm by exponentiating:

Pmmm(m) = b−lm (3)

Since only sentence lengths are assumed to be optimal, com-
ponent signal lengths lmi may not be negative log probabil-
ities. They do, however, assume an implicit distribution for
which they are least sub-optimal (MacKay, 2003, Ch. 5):

Qm(mi) =
b−lmi

z
; z = ∑

mi∈M
b−lmi (4)

Equations 2, 3, and 4 imply that each message component
is statistically independent:

Pmmm(m) = b−lm = b∑
|m|
i=1−lmi = b∑

|m|
i=1 logb(zQm(mi)) (5)

= z|m|
|m|

∏
i=1

Qm(mi)
def
= Qmmm(m) (6)

There does not seem to be any notion of message in natu-
ral language that allows for statistically independent message
components. For example, messages may be high-level event
representations, but such messages that include transfer tend
to include at least three entities (a giver, a receiver, and a
thing being transferred), and such messages that include edi-
ble entities tend to include entities that can eat. Alternatively,
messages may be syntactic analyses, but such messages with
a determiner tend to have at least one noun, and such mes-
sages with a complementizer tend to have at least two main
verbs. While other framings are possible, they do not appear
to satisfy the independence assumption above. Thus, natural
language is not information-theoretically optimal.

More specifically, the average signal length of the best
compositional source code must exceed the entropy of the
true distribution over messages Pmmm by at least the Kullback-
Leibler divergence of the fully factorized distribution Qmmm
from the true distribution:

H(Pmmm)+KL(Pmmm||Qmmm) (7)

Intuitively, language uses at least an extra KL(Pmmm||Qmmm) sig-
nal characters per message character because it incorrectly
assumes the message characters are statistically independent.

3Composition operations that involve copying, such as Suffixauf-
nahme in Old Georgian (Michaelis & Kracht, 1996), present an in-
teresting wrinkle. If they can be handled by introducing an integer
coefficient for each lmi , the ultimate independence result of this sec-
tion still holds. In any case, they make the signal longer, so they
should not present a more efficient bound than Equation 7.

Optimizing towards the new bound
While the bound in Equation 7 shows that natural language
does not approach the channel capacity, natural languages
may still adapt over time for communicative efficiency to-
wards the less efficient bound. In fact, the findings of
Piantadosi et al. (2011) suggest that languages adapt to mini-
mize KL(Pmmm||Qmmm). Piantadosi et al. examined how a word’s
length (in orthographic letters) relates to its unigram prob-
ability and its probability in context (operationalized as a
smoothed trigram model). Across all eleven languages they
examined, word lengths had a stronger relationship with av-
erage probability in context than unigram probability.

I propose the following interpretation of their result. Mes-
sage characters are lexical entries, signal characters are ortho-
graphic letters, and probability in context is Pmmm. While Qmmm is
determined by word lengths, Pmmm is determined by a stochas-
tic grammar and lexicon together with typical real-world sit-
uations. Their results suggest that, as a speech community
gains experience with the use of lexical entries in real-world
situations, the grammar, including the lexicon, adapts so that
Pmmm is better approximated by Qmmm. This adaptation could be
achieved by adjusting the grammar, narrowing or broadening
word meanings, or deleting lexical entries whose length often
differs substantially from their optimal in-context length.

The next two sections present corpus studies that look at
adaptation of this sort over centuries in three languages.

Corpus studies
I now present two corpus studies that find evidence of opti-
mization relative to probability in context over time for En-
glish, Spanish, and Mandarin Chinese. The first ‘backwards-
looking’ study relates a word’s mismatch with its optimal
length to its age. If the lexicon evolves over time for effi-
cient communication, the lengths of oldest words should most
closely match their optimal lengths. Moreover, to the extent
that efficiency pressures respect sentence length, there should
be a stronger relationship between a word’s age and its mis-
match with optimal lengths under a trigram model than be-
tween a word’s age and its mismatch under a unigram model.

The ‘forwards-looking’ study uses a sequence of language
models, estimated in 25-year partitions, to predict whether
a word appears in the next partition based on how well its
length matches its optimal length under each language model.
If language change reflects efficiency pressures, words with
many extra characters should be less likely to remain in use;
and if efficiency pressures respect sentence lengths, the effect
of mismatches under trigram models should be stronger.

Corpus study 1 – Looking backwards
In this study, I used a large dataset containing texts from about
1990 to about 2010 for each of the three languages to compute
synchronic unigram and trigram language models for each
language. The language models are used to compute optimal
lengths for each word in and out of context by subtracting the
optimal lengths from the actual lengths to quantify extra char-
acters. I used Google books, a dataset of scanned books, to
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Table 1: Study 1 dataset sizes

Language Model Regression
Dataset Tokens Unigrams Trigrams
English 71,531,906 81,742 24,965,851
Spanish 279,744,284 545,708 74,144,973
Chinese 26,800,660 3,182 13,642,166

Figure 1: Heatmaps of actual length minus optimal word
length for trigram (left) and unigram (right) models, as a func-
tion of the word’s earliest appearance in Google books. The
blue line is a GAM fit.

estimate when each word of the synchronic time slice first ap-
peared, and perform a regression of the extra character mea-
sure against year of first appearance, probability model type,
and their interaction, to identify how word length inefficiency
varies as a function of word recency and probability model
type. A positive coefficient for year of appearance will indi-
cate that more recent words are longer than they should be,
and a negative coefficient for the interaction will indicate a
stronger relationship between year of appearance and ineffi-
ciency relative to a trigram model than between year of ap-
pearance and inefficiency in isolation.

Data I approximated a word’s year of first appearance as
the first year that it appeared in the Google Books unigram
records in each language (Michel et al., 2010).

To estimate the American English language models, I used
the spoken portion of the Corpus of Contemporary Amer-
ican English (CoCA) (Davies, 2008), which contains news
broadcasts from 1990 to 2012. To estimate the Spanish and

Chinese language models, I used ‘story’ documents from the
3rd edition of the Spanish Gigaword dataset of newswire text
from 1993 to 2010 (Ângelo Mendonça, Jaquette, Graff, &
DiPersio, 2011) and the Tagged Chinese Gigaword version
2.0 dataset of newswire text from 1991 to 2004 (Ren Huang,
2009), respectively. While written Chinese does not separate
words with whitespace, this dataset is segmented into words.

For each language, I discarded punctuation and words that
contained a symbol that was not part of the usual character set
for that language, estimated unsmoothed trigram and unigram
probabilities. The datasets for regression were obtained by
discarding words that did not appear in Google Books after
1650, producing datasets with sizes as reported in Table 1.

These particular languages were chosen because they ap-
peared in Google Books, allowing us to obtain an estimate of
word age, and because they use words in very different ways.
Spanish has relatively rich derivational and inflectional mor-
phology, with agreement for person and number for verbs and
number and gender for adjectives. While English also has rel-
atively rich derivational morphology, it has little inflectional
morphology with few agreement constraints. Mandarin Chi-
nese occupies a morphological extreme, with no inflectional
morphology or agreement.

Method For each word token in CoCA and Gigaword
datasets, I computed the optimal length of the word under its
unigram probability and probability in context, operational-
ized as its trigram probability. The numbers of ‘extra’ letters
relative to each model euni and etri are then the actual length
minus the optimal length:

euni(w) = l(w)− (− logb(P(w)))

etri(wi|wi−2,wi−1) = l(wi)− (− logb(P(wi|wi−2,wi−1)))

where b is the size of the signal alphabet. English and Spanish
both have a mostly alphabetic orthography, with roughly one
letter per sound, so I simply set b to the number of distinct let-
ters in these datasets. For English b = 27 (a-z plus hyphen),
and for Spanish, b = 33 (with some additional accented let-
ters). Chinese orthography has one character per syllable, and
so similarly provides a good indication of word length, but
the alphabet size is more complicated. The strict phonotac-
tics of spoken Chinese lead to a syllabic inventory of about
1,500 syllables, but our Chinese dataset contained 6,780 dis-
tinct characters (many characters are homophonous). I set
b= 1,518, the number of distinct syllables in the CEDict pro-
nouncing dictionary, to reflect the size of the ‘syllable alpha-
bet’ for spoken Chinese (CC-CEDICT , 2016).4

I performed linear regressions of extra letters against the
word’s year of first appearance, probability model type, and
an interaction between the word’s first appearance and proba-
bility model type. To make the regressions easier to interpret,
I subtracted 1650 from the year of first appearance, so that the
oldest words had a year of first appearance of zero.

4I obtained similar results when using b = 6,780, the number of
distinct characters.
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Table 2: Coefficients of one linear regression each for American English, Mandarin, and Spanish, of extra letters (English,
Spanish) or extra characters (Mandarin) against first appearance, a main effect of probability model type (with unigram coded
as 1), and an interaction between first appearance and probability model. All coefficients are significant (p < 0.01).

Am. English Spanish Mandarin
Intercept 3.289 4.408 1.067
Year of first appearance (since 1650) 0.006481 0.007399 0.00214
Which language model -0.491 -2.506 -1.288
Years of first appearance (since 1650) ×Which language model -0.001465 -0.001438 -0.000349

Results Figure 1 presents hexagram-binned heatmaps with
a Generalized Additive Model fit for each language of extra
letters against year of first appearance, separated by language
model. All cases show a broad trend where older words have
fewer extra letters. The trend is roughly linear except for the
latest decades; information-theoretic pressures may be differ-
ent for recently-coined words.

Table 2 presents coefficients from the three regressions of
extra characters against a word’s year of first appearance, the
probability model used, and their interaction. Each intercept
expresses the number of predicted extra letters or characters
under the trigram model for words that first appeared in 1650.
Adding the ‘Which Language Model’ coefficient to the inter-
cept obtains the predicted extra letters or characters under the
unigram model for words that first appeared in 1650.

The ‘Year of first appearance’ coefficient expresses how
many extra characters we expect a word to have for each year
that it is younger than the oldest words. For all three lan-
guages, this coefficient is positive, indicating that younger
words tend to be longer, than older words, relative to their
ideal length under the trigram model. Dividing this coeffi-
cient into 1 obtains how old we expect a word to be before
an additional letter or character has been ‘optimized’ away.
American English optimizes one letter every 154 years, Span-
ish optimizes one letter every 135 years, and Mandarin Chi-
nese optimizes one character every 467 years.5

Finally, the interaction between year of first appearance
and model type expresses the effect of a word’s year of ap-
pearance under the unigram model minus the effect of a
word’s year of appearance under the trigram model. The
coefficients are negative but smaller in absolute magnitude
than ‘Year of first appearance,’ which indicates that first ap-
pearance still has a lengthening effect relative to the unigram
model, but a weaker one. American English optimizes an ex-
tra letter relative to the unigram model only every 199 years,
Spanish optimizes an extra letter only every 168 years, and
Mandarin optimizes an extra character only every 558 years.

These results show that words that first appeared in
books recently tend to be further from their information-
theoretically optimal lengths than words that first appeared
in books several decades ago, and so provide evidence of op-
timization of the lexicon towards efficiency bounds.

5As the CEDict pronouncing dictionary has an average length
of about 3.1 non-tone pinyin letters, or 2.8 phonemes, per character
type, the optimization rate of Mandarin is similar to the others.

Moreover, the extra characters relative to the trigram model
decreased faster than the extra characters relative to the uni-
gram model. This is a remarkable finding, since it is much
harder to optimize for the trigram model – there are many
trigram contexts but only one unigram ‘context,’ and, un-
der this operationalization of ‘word,’ a word has only one
length. However, as previously discussed, there are good
reasons to optimize towards a context-sensitive probability
model. Communicative efficiency ultimately depends on sen-
tence lengths, not word lengths directly, so considering con-
text can make sentences shorter even if it does not minimize
the typical length of individual words.

Corpus study 2 – Looking forwards
This corpus study looks for evidence that a word is less likely
to remain in use if it has more extra characters. For each
language, I divided the 350 years of Google Books data de-
scribed above into 14 partitions of 25 years each, and esti-
mated a unigram and a trigram language model for each of the
first 13 partitions to compute extra characters for each word
and trigram in each partition under each probability model.
To guard against OCR errors in Google Books, I computed
extra characters only for words that also appeared in the lan-
guage model datasets from Study 1. I then performed a logis-
tic regression that predicted whether each word that appeared
in partition n also appeared in partition n+ 1 using the extra
characters measure, probability model type, and an interac-
tion between extra characters and the probability model type.

Results Table 3 presents strikingly consistent regression re-
sults across the three languages. The large intercepts indicate
that most words carry over from one partition to the next. As
the unigram model is again coded as 1, the negative main ef-
fect of extra characters indicates that words with more extra
letters relative to a given partition’s trigram model are less
likely to persist in the next 25-year partition. Moreover, the
positive coefficient of the interaction indicates that the effect
of extra letters relative to the unigram model is weaker: the
coefficients suggest the effect of unigram mismatch is about
half the effect of trigram mismatch in English, two-thirds in
Spanish, and about one-third in Mandarin.

Conclusion
This paper has answered an important question about nat-
ural language communication, whether talkers approach
information-theoretic limits on efficiency, in the negative. Be-
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Table 3: Coefficients of a logistic regression each for American English, Mandarin, and Spanish, of appearance in the next 25-
year partition against extra letters or characters, a main effect of probability model type (unigram coded as 1), and an interaction
between extra characters and probability model. All coefficients are significant (p < 0.01).

Am. English Spanish Mandarin
Intercept 11.772 7.477 10.415
Extra letters or characters -0.316 -0.320 -2.360
Which language model -1.015 -0.852 -2.415
Extra characters ×Which language model 0.165 0.101 1.713

cause language is compositional and natural language mes-
sages are highly interdependent, natural language cannot ap-
proach information-theoretic limits on efficiency. I have used
this result to propose a new bound that appreciates probabil-
ity in context, and interpreted a previous result as evidence
that languages optimize for this more appropriate bound.

I then performed two corpus studies that examined how
the mismatch between a word’s actual length and its optimal
length relates to its preservation over the course of language
change. The first ‘backwards-looking’ study found, using op-
timal lengths computed using fairly homogenous modern-day
corpus data, that present-day words more closely match their
optimal lengths if the word has been in use for a long time.
Moreover, this first study found that the mismatch according
to probability in context decreased more rapidly as words age.
The second ‘forwards-looking’ study found that if a word’s
length more closely matches its optimal length under a lan-
guage model computed in one 25-year partition, it is more
likely to be retained in the next 25-year partition. Moreover,
extra letters relative to probability in context was a stronger
predictor than extra letters relative to a unigram model. To-
gether, these results indicate that natural language lexicons
develop over time towards an information-theoretic efficiency
bound that is appropriate for compositional codes.
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Abstract 

A key goal in both education and higher-order cognition 
research is to understand how relational concepts are best 
learned. In the current work, we present a novel approach for 
learning complex relational categories – a low-support, 
interactive discovery interface. The platform, which allows 
learners to make modifications to exemplars and see the 
corresponding effects on membership, holds the potential to 
augment relational learning by facilitating self-directed, 
alignably-different comparisons that explore what the learner 
does not yet understand. We compared interactive learning to an 
identification learning task. Participants were assessed on their 
ability to generalize category knowledge to novel exemplars 
from the same domain. Although identification learners were 
provided with seven times as many positive examples of the 
category during training, interactive learners demonstrated 
enhanced generalization accuracy and knowledge of specific 
membership constraints. Moreover, the data suggest that 
identification learners tended to overgeneralize category 
knowledge to non-members – a problem that interactive learners 
exhibited to a significantly lesser degree. Overall, the results 
show interactive training to be a powerful tool for 
supplementing relational category learning, with particular 
utility for refining category knowledge. We conclude with 
implications of these findings and promising future directions. 

Keywords: relational categories; structural alignment; 
discovery learning; category learning; generalization 

Introduction 
A key aim of higher-order cognition research is to 
understand the mechanisms that undergird the ability for 
humans to acquire and use abstract, complex categories. The 
literature in concepts and categories research has primarily 
been devoted to the study of attribute categories – 
categories whose members possess a set of independent 
features by which they can be classified. Research on 
attribute category learning has unequivocally advanced our 
understanding of human concept acquisition and its many 
facets. 

However, much of the category knowledge we possess is 
not reducible to knowledge of specific attributes – myriad 
concepts such as positive feedback loop are abstract, 
attribute-agnostic, and dependent on relationships rather 
than features. Fittingly, an increasing amount of empirical 
attention has been granted to the study of relational 
categories (Gentner & Kurtz, 2005; Markman & Stilwell, 
2001). Relational categories are rule-like categories whose 
members share a common relational structure characterized 
by extrinsic relationships between objects and/or attributes 
(e.g., protection, sibling, reciprocity). Because relational 

categories need only share a relational structure to belong, 
members of a category can be quite featurally disparate 
(e.g., your sibling and your dog’s sibling hopefully don’t 
look alike). In this way, relational category members share 
analogical similarity. It should be noted that relational 
categories are not an idiosyncratic facet of category learning 
- roughly half of the 100 highest frequency nouns are 
relational (Asmuth & Gentner, in press). Thus, to 
understand human category learning generally, it is critical 
to understand relational category learning. 

A question that bears both theoretical and applied import 
is: how do we come to acquire relational category 
knowledge? Previous research has explored the potential for 
comparison to promote relational discovery and transfer. 
This work follows from a large body of research showing 
the benefits of comparison to analogical transfer (Gick & 
Holyoak, 1983; Loewenstein, Thompson, & Gentner, 1999; 
see also Alfieri, Nokes-Malach, & Schunn, 2013 for a meta-
analysis and review). Studies of comparison with relational 
categories have largely corroborated findings from the 
analogical transfer literature; presenting same-category pairs 
(Patterson & Kurtz, 2015) or a mixture of same- and 
different-category pairs (Kurtz, Boukrina, & Gentner, 2013) 
during training leads to enhanced learning and transfer over 
sequential item presentations. The power of comparison can 
be understood through a process of structural alignment 
(Markman & Gentner, 1993). Comparing instances 
facilitates the alignment of their parallel relational 
predicates. This serves to highlight common relational 
structure that is not salient when either instance is 
considered in isolation. Additionally, comparison facilitates 
abstraction, which promotes later analogical retrieval and 
transfer. 

As many of the core concepts taught in educational 
settings are relational in nature (e.g., evolution by natural 
selection, Newton’s laws), relational categories represent a 
key bridge between cognitive and educational research 
(Goldwater & Schalk, 2016). Thus, investigating how 
relational categories are best learned can both palpably 
advance educational techniques and further basic, 
theoretical understandings. In the present work, we draw on 
an innovative area of education research that serves as a 
promising avenue for enhancing relational category 
learning: discovery learning. Discovery learning generally 
refers to unsupported learning where the learner actively 
constructs their understanding of some target information 
using only a set of materials or a task environment. Though 
many flavors of discovery have been the subject of study, a 
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common theme in the literature is that completely unassisted 
discovery approaches are not effective for learning (Mayer, 
2004; for a meta-analysis see Alfieri, Brooks, Aldrich, & 
Tenenbaum, 2011). Among other reasons, the large 
cognitive load incurred by needing to generate and explore 
hypotheses (Sweller, 1988) while metacognitively 
maintaining an idea of what is known and what needs to be 
known (Kirschner, Sweller, & Clark, 2006) can present 
challenges for the approach. However, when some guidance 
is introduced (such as direct instruction – e.g., Chen & 
Klahr, 1999), discovery learning can be a highly effective 
tool (Alfieri et al., 2011). 

Discovery learning has the clear potential to augment the 
learning of complex relational concepts in educational 
settings – particularly when the target category is abstract or 
when classroom instruction is subpar. With a basic 
understanding of the target category, an interactive 
environment that enables learners to freely create or modify 
category exemplars and receive dynamic category 
membership feedback ought to enhance category 
knowledge, notably through three mechanisms. First, it 
would allow learners to engage in self-directed exploration 
that is specifically catered to what they do not understand or 
need further clarification on. The opportunity to select 
exemplars for study has been shown to confer benefits on 
rule-based category learning (e.g., Markant & Gureckis, 
2014). Second, the dynamic membership feedback provided 
by the task interface would implicitly encourage 
explanations about the causes underlying the effects of 
learners’ modifications. Such self-explanation has been 
demonstrated to be a powerful facilitator of concept 
acquisition (e.g., Chi, de Leeuw, Chiu, & LaVancher, 1994). 
Third, critically, a learning environment such as this should 
strongly engage analogical processing faculties. In 
modifying an exemplar and receiving membership feedback, 
the learner effectively creates a temporally juxtaposed 
comparison between the item’s new state (s) and s-1. 
Modifications that do not break membership create 
alignably-different, same-category comparisons. These 
comparisons should promote highlighting of common 
relational structure and facilitate abstraction. Conversely, 
modifications that do break membership create alignably-
different different-category comparisons, which critically 
should serve to highlight membership-relevant relations. 

In the present work, we explore the efficacy of a low-
support, interactive discovery learning tool to promote the 
learning of complex relational categories. To avoid effects 
of domain knowledge, we created an artificial, multi-
constraint category that served as the target of learning. 
Advised by the discovery learning literature and pilot data, 
we gave participants some support to reduce cognitive load. 
This support was a clear, but quite abstract, definition of the 
category that was given to all learners immediately prior to 
the learning phase. In the interactive condition, participants 
were given a computerized interface where they could 
engage in self-directed exploration of three examples of the 
category. We contrasted interactive training with an 

identification learning control in which learners were 
exposed to a larger number of exemplars in the context of a 
member identification task. To evaluate the effectiveness of 
the interactive learning mode, we compared the two learning 
conditions on their ability to generalize category knowledge 
to novel exemplars. We predicted interactive learning would 
lead to enhanced generalization performance. 

Method  
Participants 
Seventy undergraduates from Binghamton University 
participated to partially fulfill a course requirement.   
 
Materials 

The training and generalization stimuli consisted of 
arrangements of blocks that varied in their size (small, 
medium, or large), color (white, gray, or dark brown), 
border color (black or distinctive blue), and spatial location 
(see Figure 1 for examples). The ‘matched containment’ 
concept instantiated by these blocks was quite complex. 
Category members were characterized by the presence of 
three or more blocks that obeyed all of the following 
constraints: (1) the blocks were aligned vertically or 
horizontally, (2) two of the involved blocks were special by 
sharing a distinctive blue border color, (3) the special blocks 
were exactly matched in their attributes, (4) the special 
blocks contained/flanked at least one additional ‘normal-
bordered’ block in the lineup, and (5) all of the contained, 
normal blocks matched the special blocks on at least one 
attribute (i.e., color, size, or both).  

Twenty-one category members and 21 non-members were 
used as the stimuli for the identification condition. All 
members contained the category-defining core – constituted 
by either three (Length 3 [Len3]; two flanking, one flanked) 
or four (Length 4 [Len4]; two flanking, two flanked) objects 
– and one additional distracter block, such that all examples 
had length + 1 blocks. The category core and distracter 
block were varied in their attributes (i.e., orientation of core 
[vertical, horizontal], spatial location, color, size) across 
examples to ensure an attribute-based solution was not 
available. 
    The members were comprised of six item types, each 
which instantiated the special-normal match constraint in a 
unique way. For both Len3 and Len4 stimuli, there were 
items whose flanked object(s) matched based on (1) color, 
(2) size, (3) or both color and size. For Len4 stimuli there 
were also items whose flanked objects consisted of (4) one 
color and one size match, (5) one both and one color match, 
or (6) one both and one size match. The item breakdown can 
be seen in Table 1. Since the Len4 stimuli included 
matching types that were distinct from those present in the 
Len3 stimuli, the Len4 examples were weighted on types 4-
6 to ensure comprehensive coverage of the category for 
identification learners. The non-member set used was 
programmatically generated by randomly sampling and 
arranging blocks, with the constraint that two of the blocks 
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had to possess the distinctive border. Number of blocks was 
matched between the members and non-members. The 
interactive condition was given considerably fewer 
examples: one Len3 color match and two Len4 examples, 
each which had one color match and one size match.  

To evaluate participants’ ability to generalize their 
knowledge, a distinct set of 30 members and 30 non-
members was created. The members were sampled from 
several match types. Critically, non-members consisted of 
items that violated the constraints of membership in several 
focal ways (see Table 2 for generalization item breakdown). 
As knowledge of the specific constraint that was violated 
was necessary to get each of these items correct, they served 
as a stringent test of category knowledge.  

 

 
 

Figure 1: Eight example stimuli from the training 
(identification) and generalization phases. 

Design and Procedure 
Participants were randomly assigned to either identification 
(n = 39) or interactive (n = 31) learning conditions in a 
between-subjects design. Due to a spreadsheet error, 
condition assignments were slightly imbalanced.  

In the pre-training instructions, all subjects were first 
informed they would be learning about something called a 
‘Togging situation’ – the arbitrary category label – before 
being provided with an abstract definition of the category: 
“A Togging situation occurs when (1) there are two 
matching special objects with other objects in the space 
between them; and (2) all the objects in the space between 
have at least one thing in common with the special objects.” 
Subjects were then told they were to gain a full and clear 
understanding of Togging situations by engaging in the 
upcoming learning experience. 

 
Table 1: Number of category members by length and type 

for identification training. 
 

 

Condition-specific instructions for the interactive group 
informed learners they would receive (1) an ‘exploration 
zone’ that would tell them if the objects inside were 
currently in a Togging situation and (2) a set of ‘exploration 
tools’ that could be used to modify the objects/attributes in 
informative ways. They were then told they could gain an 
understanding by paying attention to modifications that 
break the Togging situation and by trying to create novel 
Togging situations. To combat confirmation bias – as 
piloting revealed this to be a considerable impediment to 
learning – subjects were also told to try to prove their ideas 
about Togging wrong by fully testing them. Lastly, subjects 
were informed they would be tested later and that they 
would have seven minutes with the learning task. Following 
these general task instructions, interactive learners then read 
a brief tutorial that described the ways they could modify 
the examples with the exploration tools. 

 
Table 2: Number of exemplars by length, type, and 

membership in the generalization assessment. 
 

 
 

Instructions in the identification condition informed 
learners they would receive a series of frames with objects 
inside, some of which would have a Togging situation. They 
were told they could gain an understanding by paying 
attention to the frames and feedback they received and by 
learning to identify which frames contained a Togging 
situation. The identification learners also received an 
analogous instruction to try to prove their ideas about 
Togging wrong by fully considering the frames and 
feedback on each trial. Finally, identification learners were 
informed of the upcoming test. 

To remind participants, and guide learning, both 
conditions were again given the abstract category definition 
immediately prior to the learning task.  

Training – Interactive Condition The training interface 
can be seen in Figure 2. In the center of the interface was an 
‘exploration zone’ that dynamically checked whether the 
constraints of category membership were met by the objects 
inside. The zone’s border color turned green if the 
constraints were met, and red if not. A textual notification 
above the zone regarding membership mirrored the color 
feedback. The exploration zone started with a positive 
example of the category, randomly selected from the three 
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positive examples that were provided to the interactive 
group.  

Participants could freely engage the training interface in 
five distinct ways. First, clicking the ‘new’ button cycled 
through the three positive examples. The button allowed 
learners to reset the exploration zone to a positive example 
if they became lost with their current discovery path and 
also get experience with the three different instantiations of 
the category. Second, double clicking a block would change 
its color – cycling in order through the three colors with 
each double click. Third, clicking and dragging the bottom 
right corner of a block diagonally allowed participants to 
stretch or shrink it to one of the three discrete sizes. Fourth, 
clicking and dragging elsewhere on a block allowed 
participants to change its spatial location. Lastly, 
participants could add or remove objects from the 
exploration zone. To the left of the zone was a space 
containing additional normal blocks that varied in their size 
and color. Participants could bring additional blocks into the 
exploration zone or remove any of the blocks from the zone 
to this space. This allowed participants to: (1) swap blocks 
to change attributes, (2) simplify the example in the 
exploration zone, and (3) create more elaborate examples of 
the category that involved more objects. 

 
 

Figure 2: Visual of the interactive workspace. 
 
Since there were many ways participants could interact 

with the interface, they were provided with a ‘how to’ cheat-
sheet to the right of the exploration zone. During the task, 
participants had seven minutes for self-directed 
investigation of the category. A timer in the upper left 
corner of the interface showed how much time remained. To 
encourage participants to stay on task, a query was 
presented below the text notification of membership. The 
query corresponded to the current state of the objects in the 
exploration zone. When category constraints were met, the 
query asked participants if they could, “find a way to break 
the Togging situation.” When the constraints were not met, 
it asked if they could “find a way to make a Togging 
situation again.” Besides this general query, no additional 
direction was given during the task. 

Training – Identification Condition Learners in the 
identification group were directly provided with 21 

examples of the category – seven times as many as were 
provided to interactive learners. These 21 positive cases 
were combined with the 21 negative cases in a random order 
for each participant. Participants made one pass through the 
set. On each trial, the participant was presented with an item 
and two response buttons (“Togging situation”, “Not a 
Togging situation”). The amount of time to study the 
example and make a response was unconstrained. 
Participants selected their response using the mouse and 
were given feedback indicating if they were (in)correct and 
whether the item was (not) an example of a Togging 
situation. Feedback was presented for 2.5s before moving 
on to the next trial. 

Generalization Assessment Following the learning phase, 
all participants were given a generalization assessment to 
assay their ability to both identify category members and 
correctly reject near-miss non-members. The 60 
generalization items were presented in a randomized order 
for each participant. The trial structure of the generalization 
phase was identical to that of identification training, except 
no feedback was given.  

Results 
Training 
All except three learners in the identification condition (M = 
.83, SE = .02) performed reliably above chance. Data from 
these non-learners were retained in the subsequent analyses 
for two reasons: (1) the general pattern of results did not 
change when their data were excluded, and (2) there was not 
a comparable basis for excluding interactive learners. 
Identification training took 3-8 minutes (M = 3.89 minutes, 
SE = .14). Though there was a wide range, time spent during 
training did not predict generalization accuracy in a trial-
wise logistic regression (β = -0.005, SE = 0.01, Z = -.44, p = 
.66).  

Interactive learners made between 151 and 321 
manipulations (M = 227.21, SE = 6.60). Number of 
manipulations, however, did not predict generalization 
accuracy (β = -0.0001, SE = 0.001, Z = -.12, p = .91), 
suggesting that the quantity of manipulations was not 
critical. However, higher rates of crossover – the proportion 
of the manipulations that switched the state from member to 
non-member (or vice versa) – were associated with higher 
generalization accuracy (β = 3.05, SE = 0.86, Z = 3.54, p < 
.001), suggesting that generating alignably-different 
different-category comparisons is key for getting the most 
out of the platform. 
 
Generalization Accuracy 
Trial-wise accuracy data were modeled with logistic 
regressions. Using condition as the lone predictor, the main 
analysis yielded the key finding that interactive learning (M 
= .73, SE = .01) significantly augmented generalizable 
category knowledge over identification learning (M = .67, 
SE = .01); β = 0.29, SE = 0.07, Z = 4.27, p < .001. 
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To further probe the effect of condition, we conducted a 
follow-up analysis to see how each condition performed on 
members and non-members. To this end, we used condition, 
item membership (1, 0), and their interaction as predictors. 
Interestingly, the regression revealed a highly reliable cross-
over interaction between condition and item membership 
(see Figure 3; β = 1.35, SE = 0.18, Z = 7.70, p < .001). The 
interaction was marked by a reliable enhancement for the 
identification group on category members  (identification: M 
= .93, SE = .01; interactive: M = .87, SE = .01; β = -0.63, SE 
= 0.15, Z = -4.20, p < .001), but a reliable enhancement for 
the interactive group on non-members (identification: M = 
.41, SE = .01; interactive: M = .59, SE = .02; β = 0.72, SE = 
0.09, Z = 8.01, p < .001). It should be noted that average 
accuracy on non-members was generally low. This is 
directly attributable to their more challenging nature. 
Contrasted with the member set, on which it was possible to 
successfully identify all items using knowledge of any 
single relational constraint, the non-member set consisted of 
items that each focally violated a constraint of membership. 
To perform successfully on these, participants required 
knowledge of the specific constraint that was violated in 
each instance. Thus, performance on the non-members 
serves as a proxy for learners’ understanding of the 
category’s composite constraints. While learners still had 
much to learn about the category, low means should not be 
interpreted to mean that performance was at chance or 
random in nature. Rather, the high accuracy observed for 
members suggests that learners took a limited understanding 
of the constraints of membership and overgeneralized it to 
non-members.  

Given the curious reversal in the effect of condition 
between levels of item membership, we were prompted to 
explore the possibility that identification learners were more 
likely to overgeneralize category knowledge, which 
ostensibly would explain this pattern of results. We used 
two signal detection theory measures to this end: d’ and β. 
d’ is a measure of sensitivity to the signal when present that 
reflects hit rate on signal trials while adjusting for false 
alarm rate on noise trials. A higher d’ indicates a greater 
sensitivity to the underlying signal (category members). β is 
a likelihood ratio that reflects response bias. A β of 1 
indicates learners were neither biased towards nor against 
extending the category label, whereas β below or above 1 
indicates a bias towards extending or not extending the 
label, respectively. d’ and β were computed for each subject 
and the values for each were then predicted by condition in 
separate linear regressions. Despite showing increased 
accuracy for members, identification learners were not more 
sensitive, owing to a significantly increased false alarm rate 
(identification: M = 0.58, SE = .04; interactive: M = 0.41, 
SE = .04; β = -0.17, SE = 0.05, t(68) = -3.19, p < .01). In 
fact, a numerical advantage in d’ favored interactive learners 
but did not reach significance (identification: M = 1.46, SE 
= .09; interactive: M = 1.71, SE = .21; β = 0.24, SE = 0.21, 
t(68) = 1.16, p = .25). Additionally, identification learners 
were found to be significantly more biased towards 

endorsing items as members – showing lower β than their 
interactive counterparts (identification: M = 0.34, SE = .06; 
interactive: M = 0.61, SE = .09; β = 0.27, SE = 0.11, t(68) = 
2.50, p < .05). Collectively, these measures indicate that the 
identification group’s enhanced accuracy for members was 
not the result of greater sensitivity. Instead, it appears to be 
a byproduct of a liberal extension of a limited understanding 
of the category, relative to interactive learners. 

 

 
 

Figure 3: Generalization performance by condition and item 
membership. Error bars represent +/- 1 SE. 

Discussion 
The primary goal of this study was to evaluate the potential 
for a novel, interactive discovery platform to facilitate the 
acquisition of a complex relational concept. Consistent with 
our hypothesis, our findings resolutely show that interactive 
training is an effective way to affect relational category 
knowledge. Compared to identification training – a learning 
mode organic to both category learning experiments as well 
as common educational practices – interactive learners 
exhibited an enhanced ability to generalize and enriched 
knowledge of specific membership constraints.  

The results of this study inform both basic and applied 
interests. Our data suggest that our interactive platform can 
aptly supplement learning when complex, abstract relational 
categories are the target of learning. On an intriguing note, 
this paradigm appears to possess a distinct utility for 
combating overgeneralization by helping learners to explore 
and refine the boundaries of membership. It should be noted 
these advantages accrued despite the minimalistic support 
that was given (compared to other guided discovery 
approaches; e.g., Chen & Klahr, 1999), the short amount of 
time allotted for learning, and the transfer appropriate 
processing advantage granted to identification learners in 
the shared task between training and test. 

A limitation of this study is the use of randomly generated 
non-members in the identification training condition. As a 
function of the random generation, they tended to be slightly 
more entropic than the positive examples. This exposes a 
possible deflationary account of these findings – that 
identification learners may have simply learned to 
differentiate more and less entropic examples from each 

*** 

*** 
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other, which might explain poorer generalization 
performance. However, this account is unlikely for two 
main reasons. First, learners were provided a definition of 
the relational concept not once, but twice, prior to training. 
A basic understanding of the category should have guided 
learners to seek information that extended that 
understanding, not part with it altogether. Second, if learners 
acquired and used an entropy strategy during training, the 
effects of this should have been notable in the generalization 
data. Unlike the training set, non-members in the 
generalization phase were orderly. If learners adopted an 
entropy strategy, they would likely use it before realizing, 
later in the generalization phase, that there were not any 
entropic cases – at which point they might shift to the 
principle-relevant knowledge they acquired through the 
definition and learning experience. If this occurred, we 
should expect better performance later in the generalization 
phase. To investigate this possibility, we compared 
performance on the first 30 trials to the second 30 trials of 
generalization for identification learners. The difference was 
non-significant (p = .81), suggesting identification learners 
engaged the task the way we intended. Nevertheless, 
planned research using yoked controls will provide more 
definitive evidence.  

Further work will be necessary to specify the cognitive 
processes behind the benefits of interaction in relational 
category learning. Consistent with Markant & Gureckis 
(2014), the effect of actively selecting modifications that 
supplement one’s current understanding is likely to be 
critical. However, our next main pursuit in developing this 
platform is to more deeply explore the potential for analogy 
and comparison to serve as the engine for interactive 
relational category learning. Much of the power of this 
learning paradigm likely follows from its facilitation of 
informative, user-created comparisons with alignable 
differences – a possibility echoed by the higher 
generalization accuracy associated with higher rates of 
category crossover. To the extent that this underlies its 
utility, providing learners with co-presented exemplars that 
are dynamically linked in their manipulations should 
promote enhanced generalization and transfer, and possibly 
serve to shorten acquisition time. Contrasting this 
interactive approach with static comparisons and other 
educational tools, such as the explicit elicitation of self-
explanations, will be integral to the evaluation of this tool’s 
potency in upcoming research. 
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Abstract 

This paper examines the use of iconic words in early 
conversations between children and caregivers. The 
longitudinal data include a span of six observations of 35 
children-parent dyads in the same semi-structured activity. 
Our findings show that children’s speech initially has a high 
proportion of iconic words, and over time, these words 
become diluted by an increase of arbitrary words. Parents’ 
speech is also initially high in iconic words, with a decrease 
in the proportion of iconic words over time – in this case 
driven by the use of fewer iconic words. The level and 
development of iconicity are related to individual differences 
in the children’s cognitive skills. Our findings fit with the 
hypothesis that iconicity facilitates early word learning and 
may play an important role in learning to produce new words. 
 
Keywords: iconicity; vocabulary development; child-directed 
speech; sound symbolism 

Introduction 
How do young children learn to understand and use their 
first words? Philosophers have pointed out the inductive 
challenge of learning to associate the sound of a word with 
its meaning (Quine, 1960), and developmental psychologists 
observe that this challenge is compounded for an infant 
(Imai & Kita, 2014). Not only must infants isolate the 
meaning of a word from a noisy, complex environment and 
learn to generalize it to new contexts, they must grasp the 
very concept of a symbol in the first place.  

One cue infants may utilize to facilitate early word 
learning is iconicity – a degree of resemblance between the 
form of a signal and its meaning. For example, a person 
might represent ‘small size’ with an index finger-to-thumb 
pinching gesture, or in speech, by raising the pitch of their 
voice as they articulate the small-sounding word “itty-bitty”. 
One proposal for how iconicity can help early word learning 
in spoken languages is the sound symbolism bootstrapping 
hypothesis (Imai and Kita, 2014). (The term “sound 
symbolism” is often used to refer to iconicity in spoken 
words.) On this idea, children are biologically endowed with 
a bias to recognize various cross-modal correspondences 
between sound and phenomena of the other senses – for 
example, between pitch and size or brightness, or between 

the duration of a sound and the visual extension of a line 
(see Spence, 2011 for a review of crossmodal 
correspondences). These biases, which may also be learned 
by experience, might bootstrap children into the connection 
between the sounds of iconic words and their corresponding 
meanings (Imai & Kita, 2014; Perniss & Vigliocco, 2014). 
The sound of a word could help children identify its 
intended referent from a complex scene, recognize the 
invariance of its meaning across contexts, and apply it 
productively to new contexts. By helping children connect 
spoken words with their meanings, iconicity may help 
children gain the “referential insight” that speech sounds 
refer to entities and properties in the world. 

 
Laboratory studies of iconicity in word learning 
Laboratory studies show that young children are indeed 
sensitive to iconicity in spoken words, and some studies 
suggest further that this iconicity can facilitate word 
learning. Maurer et al. (2006) found that 2.5-year-old 
children were more likely to match nonsense words 
containing rounded vowels (e.g. bouba) with rounded 
shapes, and words containing unrounded vowels (kiki) with 
pointed shapes. Another study, using a preferential looking 
paradigm, found that infants as young as four months are 
sensitive to this bouba-kiki-type iconicity (Ozturk et al., 
2012). There is also evidence that sound-shape 
correspondence can more directly facilitate word learning in 
infants (Imai et al., 2015). 14-month-old infants were 
habituated to combinations of a novel word and a picture of 
an object, in either an iconically matching or mismatching 
condition. When the children were then presented with the 
novel words along with a picture of the correct object and a 
distractor, they looked more at the correct object when its 
sound and shape were matching. 

The sensitivity of infants to sound-shape iconicity has 
also been demonstrated using electroencephalography 
(Asano et al., 2015). Event related potentials were measured 
as 11-month-old infants were presented with pictures of 
shapes followed by novel words that matched or 
mismatched the shape in iconicity. With mismatching word-
shape pairs, subjects showed a response similar to the N400 
effect, typically an index of difficulty with semantic 
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integration. Analysis of brain oscillations found an increase 
in early γ-band oscillations in the matching condition, which 
might indicate increased cross-modal integration between 
the sound of the word and its visual referent.  

Importantly, children can benefit from iconicity in 
learning to associate sounds and meanings in domains 
outside of shape. Imai et al. (2008) presented 25-month-old 
Japanese toddlers with novel words along with two video 
clips of people performing two different manners of 
walking. Norming with adult Japanese and English speakers 
had determined that one of the videos, but not the other, was 
iconically congruent with the verb. Similarly, when the 
children were asked to select the manner of walking to 
which they thought the word referred, they were more likely 
to choose the one that matched the verb. A subsequent 
experiment found that 3-year-old Japanese children were 
able to correctly generalize the iconic verbs to new agents, 
but were unable to generalize non-iconic verbs. Further 
work replicated the finding with 3-year-old English learners, 
indicating at least some level of universality in the iconicity 
of the sound-referent pairings (Kantarzis et al., 2011). A 
study by Yoshida (2012) found similar results with 
Japanese- and English-speaking toddlers. 
 
Iconicity in natural word learning 
These laboratory studies show that young children are 
sensitive to certain forms of iconicity in spoken words, and 
under some conditions, they can learn iconic words faster 
than non-iconic words. However, if iconicity does play an 
important role in early word learning in the wild, then there 
should be evidence of this in natural language learning. In 
particular, children should learn more iconic words earlier, 
and caregivers should be more inclined to use iconic words 
with early learners.  
 A recent study of English and Spanish found that children 
do tend to learn more iconic words earlier (Perry et al., 
2015). Perry et al. collected native speaker iconicity ratings 
of roughly 600 English and Spanish words that are learned 
earliest by children according to the respective MacArthur-
Bates Developmental Inventories (MCDIs). They asked 
participants to rate the degree to which the words “sound 
like what they mean”. The age of acquisition (AoA) of 
words was indexed by the proportion of children using the 
word at 30 months according to the MCDI database. Over 
multiple experiments in both languages, the results showed 
that words rated as more iconic were acquired earlier by 
children.  
 Notably, this relationship held after controlling for the 
systematicity of words as measured by Monaghan et al. 
(2014). Systematicity is an index of the degree to which 
similar meanings have similar forms in the lexicon of a 
language. Monaghan et al. found that, from the age of 2 to 
13+ years, children tended to learn more systematic words 
earlier. According to Monaghan et al., in theory, iconicity 
and systematicity are orthogonal properties. Words can be 
systematic but not iconic – a point they illustrate with the 
English consonant cluster sl- (e.g. slime, slow, slur, slum), 

which systematically refers to negative or repellent 
properties, but bears no clear resemblance to this meaning. 
Yet, it is questioned whether spoken languages afford 
sufficient articulatory freedom for words to be iconic but not 
systematic. For instance, Monaghan et al. offers the example 
of onomatopoeic words for the calls of small animals (e.g. 
peep, cheep) compared to calls of big animals (roar, grrr), 
which both iconically and systematically reflect the animals’ 
size. However, Perry et al.’s (2015) finding that the 
iconicity-AoA relationship held after controlling for 
systematicity shows some limited support for the 
independence of these properties in English – at least for the 
roughly 300 words for which these measures overlapped. In 
further support for their independence, Winter et al. (in 
press) examined the relationship between iconicity ratings 
and Monaghan et al.’s systematicity index for 1,104 words, 
and found only a weak correlation of r = 0.06.  
 Following the study of Perry et al. (2015), a couple of 
subsequent studies have found comparable results. Massaro 
and Perlman (2017) used the same procedure to collect new 
iconicity ratings for the English MCDI words. They used 
these to examine the relationship between iconicity and the 
frequency with which children used the words from 6 to 47 
months of age. The study found a gradual decrease in the 
influence of iconicity on children’s production vocabulary 
with increasing age. An analysis of children’s receptive and 
productive vocabularies with respect to increasing 
vocabulary size showed that the average iconicity of their 
vocabulary declined with increasing size. 
 Massaro and Perlman (2017) observed that the very first 
words that children produced were especially high in 
iconicity and included a relatively high number of 
onomatopoeic words. This observation is consistent with 
some other studies of early vocabulary, which indicate that a 
high proportion of children’s first words are onomatopoeic 
or mimetic words. As reported by Laing (2015), a study of 
children’s first five words across various languages found 
that about 20% were onomatopoeic (Menn & Vihman, 
2011). Another study found that 3-year-olds used more 
mimetics to describe motion events than 5-year olds (Kita et 
al., 2010). 
 In addition to the high level of iconicity in children’s 
early spoken words, Perry et al. (in press) examined whether 
parents use more iconic words in child-directed speech. The 
study included iconicity ratings for approximately 2000 
English words including Perry et al.’s (2015) prior ratings. 
First, the study replicated the finding of a relationship 
between the iconicity of words and their age of acquisition, 
which was indexed by norms based on adults’ subjective 
ratings (Kuperman et al., 2012). Second, the study examined 
how iconicity influenced the frequency of words used in 
children’s speech, as well as in the child-directed and adult-
directed speech of adults. Word frequencies in child-
produced and child-directed speech were calculated from 
the Child Language Data Exchange System (CHILDES), 
and word frequencies of adult-adult speech were from the 
American National Corpus. The results showed that younger 
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children tended to use higher iconicity words more 
frequently, but with age, they increasingly favored lower 
iconicity words. Analyses of adult speech found that adults 
used higher-iconicity words more frequently when talking to 
children, but used lower iconicity words more frequently 
with adults. Thus, as children became older and their 
vocabulary grew in size, their speech became more adult-
like in the use of iconic words.  
 The finding that parents used more iconic words in child 
directed speech fits with some previous observations of 
Japanese-speaking parents. Imai and Kita (2014) described 
two studies published in Japanese that found that caretakers 
used more mimetics and onomatopoeia with younger 
children, but used these words less frequently as children 
became more language proficient (Saji & Imai, 2013; 
Suzuki, 2013). However, caution should be applied in 
generalizing across languages: Japanese-speaking parents 
have been shown to use more onomatopoeia and mimetics 
than English speaking parents, who nevertheless do use 
some onomatopoeia and especially sound effects (Fernald & 
Morikawa, 1993; Yoshida, 2012). 
 
Current study 
In the current study, we examined how the use of iconic 
words in early conversations between children and 
caregivers develops within individual children-parent dyads, 
while controlling for production setting and individual 
differences in the children’s verbal and nonverbal skills. The 
longitudinal data include about six observations for each of 
35 dyads within the same semi-structured activity across 
children and ages. We examine the change in the use of 
iconic words in children’s speech in comparison to the 
speech of their parents, allowing us to investigate how 
parents adapt their level of iconicity to their children’s 
language proficiency. We also explore how individual 
differences of the children (verbal and nonverbal IQ) relate 
to the use of iconic words by children and parents over 
development.  

Methods 

Participants 
As part of an ongoing longitudinal study investigating 
language acquisition in young children with autism 
spectrum disorder (Goodwin, Fein, & Naigles, 2012; Tek, 
Mesite, Fein, & Naigles, 2014), we recruited 35 typically 
developing children (6 girls, mean age at onset = 20.27 
months, 95% CIs: 19.78 20.93). All children were 
monolingual English learners. Their average verbal IQ at 
visit 1 (as measured by MSEL-EL, cf. below) was 19.89 
(95% CIs: 18.4 21.76) and perceptual IQ at visit 1  (as 
measured by MSEL-VR, cf. below) 26 (95% CIs: 24.83 
27.09).  
 
Iconicity, systematicity, and concreteness 
Iconicity ratings were taken from two previous studies, 
which collected ratings for 3001 English words (Perry et al., 

2015; Winter et al., in press). Approximately 600 of the 
words were selected from the MCDI (Fenson et al., 1994), 
and additional words were chosen to maximize coverage 
with relevant psycholinguistic datasets of age of acquisition 
and concreteness norms. Complete methodological details 
can be found in Perry et al. Native English speakers on 
Amazon Mechanical Turk rated the iconicity of the words 
on a scale from -5 to 5, where 5 indicated that a word was 
highly iconic and sounds like what it means, -5 that it 
sounds like the opposite of its meaning, and 0 that it is 
completely arbitrary.  The words “slurp” and “teeny” were 
suggested as examples of highly iconic words, “cat” and 
“dog” as arbitrary words (Pinker & Bloom, 1989), and 
“whale” and “microorganism” as opposite-sounding words 
(Hockett, 1960). Each word was rated by at least 10 
participants. The average iconicity rating across all words 
was 0.92 (SD = 1.13). 

Systematicity measures were taken from Monaghan et al. 
(2014). This study computed systematicity for a large set of 
monosyllabic English words by measuring the overall 
correlation between the degree of similarity between the 
forms of any two words in the set, and the degree of 
similarity between their corresponding meanings. Ratings 
for individual words consisted of their contribution to the 
overall form-meaning correlation across all the words. 
Concreteness ratings were taken from Brysbaert et al. 
(2014), which were collected for 40 thousand English words 
and short phrases via Amazon Mechanical Turk. Words 
were rated 1 ‘abstract’ to 5 ‘concrete’.  
 
Speech data 
The data were collected across six home visits, each 
separated by 4 months. For six children, data at one visit 
were missing. This generated a total of 204 visits. During 
each visit, children engaged in a 30-min semi-structured 
parent–child play session. All sessions were transcribed at 
the word-level. The 204 transcripts analyzed consisted of 
465,474 words (99,210 of children’s speech, CS) and 4143 
unique words (2185 in CS). 1334 unique iconicity-rated 
words were found (899 in CS), covering 32% of all unique 
words used (41% in CS) and 78% of all used words (72% in 
CS). The systematicity coding covered 699 employed 
unique words (515 in CS): 17% of all employed unique 
words (12% in CS) and 26% of all employed words (24% in 
CS). Altogether, the iconicity, systematicity, and 
concreteness coding covered 698 employed unique words 
(514 in CS): 17% of all employed unique words (12% in 
CS) and 26% of all employed words (24% in CS). 
 
Analysis 
Separately for child-produced and child-directed speech, we 
produced mixed effects growth curve models assessing the 
development of iconicity over time in 4 steps. First we used 
iconicity as outcome measure, visit (linear and squared) as 
fixed factor, and child ID as random effect, including visit 
as random slope. Second, we controlled whether the results 
were preserved when controlling for measures of word 
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concreteness and systematicity by adding to the first model 
these measures as fixed effects. Third, we controlled for 
effects of verbal and nonverbal initial IQ: to the first model 
we added MSEL-EL and MSEL-VR at visit 1, both as main 
effects and as interactions with visit. Due to the high co-
linearity between verbal and nonverbal IQ (r=-0.712), high 
caution should employed in interpreting the results. Finally, 
we tested whether significant changes of iconicity over time 
were due to changes in iconic or in arbitrary words. Iconic 
words were defined as words with an iconicity score above 
1 (531 unique words), arbitrary as words with a score 
between -0.5 and 0.5 (421 unique words). We employed a 
mixed effects Poisson regression with number of iconic 
words as outcome, visit (linear and squared) as fixed factor, 
overall number of words produced by the speaker as offset 
and child ID as random factor including visit as random 
slope. This analysis was repeated for unique iconic words 
and for overall and unique arbitrary words. All analyses 
were run employing R 3.3.2, RStudio 1.0.136, lme4 1.1-12 
and tidyverse 1.1.0 (Bates et al., 2014; RCoreTeam, 2016; 
RStudioTeam, 2016; Wickham, 2017). 

Results 
Children’s speech 
First, we analyzed whether the iconicity in children’s speech 
changed over the six visits. We found that iconicity 
decreases significantly over time (linear: b=-0.63, SE=0.11, 
p<0.001; quadratic: b=0.43, SE=0.09, p< 0.001), cf. Figure 
1. When controlling for systematicity and concreteness, we 
still observed analogous results. Iconicity decreases over 
time (linear: b=-0.19, SE=0.05, p<0.001; quadratic: b=0.14, 
SE=0.04, p<0.001). Concreteness is a significant predictor 
of iconicity (b=0.06, SE=0.007, p<0.001), but not 
systematicity (b=0.004, SE=0.007, p=0.565).  

Next, we examined whether individual cognitive skills 
play a role in the iconicity of children’s speech. When 
verbal and nonverbal IQ were added to the model, we 
observed analogous effects, but modulated by these 
individual variables. Iconicity decreases over time (linear: 
b=-0.63, SE=0.1, p<0.001; quadratic b=0.44, SE=0.09, 
p<0.001). The higher the verbal IQ, the lower the iconicity 
(b=-0.11, SE=0.03, p<0.001), with only a marginal 
interaction with visit (linear: b=0.23, SE=0.12, p=0.07; 
quadratic: b=-0.11, SE=0.11, p=0.3). Nonverbal IQ did not 
have a main effect on iconicity (b=-0.002, SE=0.03, 
p=0.95), and it marginally modulated the effect of time: the 
higher the nonverbal IQ, the bigger the linear iconicity 
decrease (b=-0.22, SE=0.12, p=0.07) and the bigger the 
quadratic slowdown (b=0.19, SE=0.11, p=0.08). 

Finally, we examined whether the decrease in iconicity 
over time resulted from a decrease in the use of iconic 
words or an increase in the use of more arbitrary words. We 
observed no significant change over time in the frequency of 
iconic words used, either overall uses or by unique tokens 
(p’s>0.17). However, there was a significant increase over 
time in the overall use of arbitrary words (b=1.07, SE=0.1, 

p<0.001), though not in unique arbitrary words used 
(b=0.15, SE=0.09, p=0.08), cf. Figure 2. 

 
Adults’ speech 
Next we examined how iconicity in parents’ speech changed 
over the six visits. Similar to children’s speech, we found 
that iconicity decreased significantly over time (linear: b=-
0.05, SE=0.03, p=0.002; quadratic: b=0.03, SE=0.02, 
p=0.08), cf. Figure 1. When controlling for systematicity 
and concreteness, we still observed analogous results. 
Iconicity decreases over time (linear: b=-0.07, SE=0.02, 
p<0.001; quadratic: b=0.04, SE=0.02, p<0.001). Like with 
children’s speech, concreteness is a significant predictor of 
iconicity (b=0.1, SE=0.003, p<0.001). However, unlike 
children’s speech, systematicity is also a significant 
predictor of iconicity (b=-0.06, SE=0.003, p<0.001).  

Next, we examined the role of children’s individual 
cognitive skills in the iconicity of parents’ speech. With 
verbal and nonverbal IQ added to the model, we observed 
analogous effects, but modulated by the children’s 
individual cognitive skills. Iconicity decreases over time 
(linear: b=-0.06, SE=0.009, p<0.001; quadratic: (b=0.03, 
SE=0.009, p=0.001). Verbal IQ did not affect the general 
level of iconicity (b=-0.004, SE=0.005, p=0.44), but it 
interacted significantly with time: the higher the verbal IQ, 
the stronger the linear decrease in iconicity (b=-0.03, 
SE=0.01, p=0.02) and the smaller the slowdown (b=0.03, 
SE=0.01, p=0.004). Nonverbal IQ did not seem to affect 
iconicity (p’s>0.4). 

 

 
 

Figure 1 – Average iconicity across visits in children and 
adults’ speech 

 
 

Figure 2 – Frequency across visits of highly iconic and 
arbitrary words in children and adults’ speech 
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Finally, different from children, we observed a significant 

decrease over time in the overall frequency of iconic words 
(b=-0.7, SE=0.03, p=0.012), and a marginal decrease in the 
number of unique iconic words used (b=-0.09, SE=0.05, 
p=0.058), with no significant quadratic components 
(p’s>0.3). In contrast, we observed no significant change 
over time in the frequency of arbitrary words, either overall 
or by number of unique tokens (p’s >0.195), cf. Figure 2.  

Table 1 shows words with iconicity ratings of 1.5 or 
higher from the 100 most frequent words used by children 
and parents during visits 1 and 6. Children produced 28 
high-iconicity words during visit 1 and 18 during visit 6. 
Parents produced 13 such words during visit 1 and 10 
during visit 6. 

 
Table 1. Most frequent high-iconicity words. 

Group Visit Words 
Children 1 no (2.8), baby (2.2), bye (1.6), one (1.8), vroom 

(3.5), cup (1.5), snake (2.0), balloon (1.7), help 
(1.5), pop (4.1), my (1.5), block (2.4), roar (3.9), 
beep (4.4), boom (3.8), fall (1.5), dump (2.9), shake 
(2.6), three (1.6), bowl (1.5), hello (2.1), mine (1.5), 
star (1.6),  yes (2.2), yum (2.8), crash (3.7), look 
(1.8), bee (1.5) 

 6 no (2.8), one (1.8), three (1.6), snake (2.0), baby 
(2.2), my (1.5), look (1.8), elephant (2.1), yes (2.2), 
vroom (3.5), balloon (1.7),  beep (4.4), knock (3.1), 
stop (2.5),  pop (4.1), home (2), hiss (4.2), off (1.9) 

Parents 1 look (1.8),  one (1.8), baby (2.2), no (2.8), push 
(2.3), bye (1.6), block (2.4), snake (2.0), work (1.7), 
knock (3.1), vroom (3.5), help (1.5), hello (2.1) 

 6 look (1.8), one (1.4), no (2.8), baby (2.2), my (1.5), 
elephant (2.1), work (1.7), help (1.5), knock (3.1), 
block (2.4) 

Note. Words ranked in order of frequency. Iconicity ratings in parentheses. 
Underlined words among the most frequent for that group during the 
particular visit, but not for the other group. Italicized words among the 
most frequent during that visit for the particular group, but not for the other 
visit. E.g. “yum” was used frequently by children during visit 1, but not by 
parents during that visit, nor by children during visit 6. 

Discussion & Conclusion 
Developmental psychologists have proposed that iconicity 
may facilitate early word learning, helping children to 
bridge the sounds of words with their meanings. To 
investigate this hypothesis, we used iconicity ratings for a 
large set of English words to examine iconicity in the 
speech of children and parents.  

We found that iconicity decreases over language 
development in both child-produced and child-directed 
speech. These patterns held after controlling for 
concreteness and systematicity of the words. In children, the 
overall decrease in iconicity is driven by an increase in the 
use of more arbitrary words, rather than a decrease in iconic 
words. This contrasted to parents, who decreased their use 
of iconic words, but maintained the frequency of arbitrary 
words. Our analysis of individual verbal and nonverbal IQ 
showed that children’s level of cognitive ability modulated 
their transition to the more frequent use of arbitrary words. 
The results also suggest that parents may adapt their 

iconicity more to the children’ actual cognitive skills than to 
their age. 

These findings, along with several other studies, show a 
robust relationship between the iconicity of spoken words as 
garnered from native speaker ratings, and their prevalence in 
early communication between children and caregivers 
(Massaro & Perlman, 2017; Perry et al., 2015; Perry et al., 
in press; also see Thompson et al., 2012 for similar results 
with British Sign Language). They support the hypothesis 
that iconicity plays a role in facilitating early vocabulary 
learning. Additionally, they highlight the possible role of 
iconicity in children’s production. Iconicity of words may 
not just facilitate comprehension of their meaning, but also 
foster “thinking for speaking” during the beginning phases 
of learning to produce meaningful words (cf. Slobin, 2006). 
However, it is also important to note that young children 
and their parents clearly use a high proportion of arbitrary 
words too, even as they show a relatively higher inclination 
to use iconic words. 

Our findings suggest several directions for future research 
on iconicity in early word learning. One important question 
is whether iconic words actually help children gain the 
referential insight, which would then ease the way for 
learning more arbitrary words. Alternatively, iconic words 
might simply be more readily acquired and put to use, which 
potentially could still facilitate subsequent word learning by 
bolstering early vocabulary. A second direction for future 
research is to investigate the more fine-grained temporal 
dynamics of iconicity in the unfolding interaction. Do 
parents and children adapt to each other’s level of iconicity, 
and if so, do they do that on a turn-by-turn base, or at a 
more general level? Finally, future research might examine 
how iconic words are used with other iconic devices, such 
as prosody and iconic gesturing. For example, parents might 
modulate the prosody of their speech in iconic ways, which 
could help children with comprehension and word learning 
(Nygaard et al., 2009). 

The current study adds to accumulating research showing 
iconicity in the lexicons and grammars of spoken and signed 
languages alike (Dingemanse et al., 2015; Perniss et al., 
2010). This research suggests that iconicity is a fundamental 
property of languages – a complement to arbitrariness. Our 
findings show how iconicity may play an important role in 
children’s earliest conversations, even in a spoken language 
like English that lacks a large inventory of widely 
recognized iconic words. 
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Abstract
Shepard’s Universal Law of Generalization offered a com-
pelling case for the first physics-like law in cognitive science
that should hold for all intelligent agents in the universe. Shep-
ard’s account is based on a rational Bayesian model of general-
ization, providing an answer to the question of why such a law
should emerge. Extending this account to explain how humans
use multiple examples to make better generalizations requires
an additional assumption, called the size principle: hypotheses
that pick out fewer objects should make a larger contribution
to generalization. The degree to which this principle warrants
similarly law-like status is far from conclusive. Typically, eval-
uating this principle has not been straightforward, requiring
additional assumptions. We present a new method for evaluat-
ing the size principle that is more direct, and apply this method
to a diverse array of datasets. Our results provide support for
the broad applicability of the size principle.
Keywords: size principle; generalization; similarity; percep-
tion

Introduction
In the seminal work of Shepard (1987), the notion of stimu-
lus similarity was made concrete through its interpretation as
stimulus generalization. It was shown that, across species (in-
cluding humans), generalization probabilities follow an ex-
ponential law with respect to an internal psychological space.
Specifically, the probability that y is in some set C that con-
tains x (what Shepard terms a “consequential subset”) is an
exponentially decreasing function of distance (d) in psycho-
logical space:

sxy = e−d(x,y). (1)

Shepard termed this phenomenon the Universal Law of Gen-
eralization, in that it should apply to any intelligent agent,
anywhere in the universe. This result has been used in nu-
merous cognitive models that invoke similarity (e.g., Nosof-
sky, 1986; Kruschke, 1992).

In spite of this, one could argue that generalization from
a single stimulus to another does not adequately describe the
full scope of human behavior. Indeed, in a concept learning
task, people are asked to generalize from multiple examples
of a concept. To capture this, Tenenbaum and Griffiths (2001)
extended Shepard’s original Bayesian derivation of the law to
rationally integrate information about multiple instances. The
resulting model defines the probability of generalization (that
y is in C) as a sum of the probabilities of all hypotheses h
about the true set C that include both x and y,

p(y ∈C | x) = ∑
h:y∈h

p(h | x). (2)

The posterior probability of each hypothesis is given by
Bayes’ rule,

p(h | x) = p(x | h)p(h)
p(x)

. (3)

The prior p(h) represents the learner’s knowledge about the
consequential region before observing x. The likelihood
p(x | h) depends on our assumptions about how the process
that generated x relates to the set h. The key innovation over
Shepard’s model is the use of the likelihood function

p(x | h) =
{ 1
|h| x ∈ h
0 otherwise

(4)

where |h| is the number of objects in the set picked out by h.
The motivation for this choice of likelihood function is the
size principle, which uses the assumption of random sam-
pling to justify the idea that smaller hypotheses should be
given greater weight (see Tenenbaum and Griffiths, 2001, for
a demonstration of this when x represents multiple examples).

The value of the size principle lies in the fact that it allows
for the benefit of multiple examples of a concept to influence
generalization. Assuming samples are drawn independently,
the likelihood of a hypothesis for n samples is simply the like-
lihood of that hypothesis for a single sample to the power of
n. From this, it can be shown that generalization tightens
as the number of examples increases, consistent with human
judgments (see Tenenbaum & Griffiths, 2001).

The size principle thus plays an important role in under-
standing generalization, placing equal importance on deter-
mining whether it actually describes human similarity judg-
ments in a wide range of settings. If the size principle is dis-
confirmed, an alternative augmentation of Shepard’s model
is needed to explain generalization from multiple instances.
If it can be confirmed to hold broadly, it is a good candidate
for a second law of generalization, or an amendment of the
original law. In this paper we build on previous work evalu-
ating the evidence for the size principle (Navarro & Perfors,
2010), providing a novel and more direct methodology and
a broader empirical evaluation that includes rich perceptual
feature spaces.

Evaluating the Size Principle
In this section we describe previous work evaluating the size
principle and provide the details of our approach.

Previous work
Navarro and Perfors (2010) made three important contribu-
tions towards understanding the scope of the size principle.
First, they made explicit a link between the Bayesian model
of generalization and a classic model of similarity judgment.
The similarities between a set of objects can be summarized
in a similarity matrix S, where the entry in the ith row and
jth column gives the similarity si j between objects i and j.
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Size Principle Prediction

Best Fitting Line

Figure 1: Feature Size/Weight Relationships in Semantic Dataset Group 1.

The additive clustering model (Shepard & Arabie, 1979) de-
composes such a similarity matrix into the matrix product of
a feature-by-object matrix F, its transpose, and a diagonal
weight matrix W,

S = FWFT . (5)

The feature matrix F is binary and can represent any of a
broad set of structures including partitions, hierarchies, and
overlapping clusters, and can either be inferred by a number
of different models or generated directly by participants. The
individual entries of S are defined as

si j =
N f

∑
k=1

wk fik f jk. (6)

Navarro and Perfors (2010) pointed out that each feature
could be taken as a single hypothesis h, as it likewise picks
out a set of objects with a common property. Having made
this link, the degree of generalization between objects i and
j predicted by the Bayesian model can be put in the same
format as Equation 6: a weighted sum of common features
(a similar point was made by Tenenbaum & Griffiths, 2001).
The equivalence can be seen if we let wk represent the pos-
terior p(h | x) and fk be the kth hypothesis (hk), since fik f jk
selects only the features that contain both objects. If the prior
probabilities of the different hypotheses are similar, the like-
lihood (and the size principle) will dominate and

wk ∝
1
|hk|

. (7)

Using the link between hypotheses and features, Navarro
and Perfors (2010) made their second contribution: an alter-
native derivation showing that the relationship predicted by
the size principle can hold even in the absence of random
sampling. They argued that learners encode the similarity
structure of the world by learning a set of features F that effi-
ciently approximate that structure. Under this view, a “coher-
ent” feature is said to be one for which all objects that possess
that feature exhibit high similarity. If a learner seeks a set of
features that are high in coherence, the size principle emerges
even in the absence of sampling since the variability in the
distribution of similarities between objects sharing a feature
is a function of |hk|.

The third contribution that Navarro and Perfors (2010)
made was to evaluate this prediction using data from the
Leuven Natural Concept Database (LNCD; De Deyne et al.,
2008). This database consists of human-generated feature
matrices for a large number of objects, as well as pair-wise
similarity ratings for those objects. Navarro and Perfors
(2010) observed that, under some simplifying assumptions,
the size principle predicts that the similarity between objects
that share a feature will be inversely related to the size of that
feature. They showed that this prediction was borne out in 11
different domains analyzed in the LNCD.

Directly testing the size principle
The method adopted by Navarro and Perfors (2010) depends
on the derived relationship between the similarity of objects
that share a feature and the number of those objects. However,
the link that they established between Bayesian clustering and
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Figure 2: Feature Size/Weight Relationships in Semantic Dataset Group 2.

the additive clustering model (Equations 5-7) can also be used
to directly test the size principle. Since both models take the
same mathematical form, we can directly test the size princi-
ple by estimating the weights wk for a set of features F and
verifying that Equation 7 holds. If we take the logarithm of
both sides of this equation, we obtain the linear relationship

logwk =− log |hk|+ c (8)

which can be evaluated by correlating wk with the number of
objects that possess feature k. Given a feature matrix F and
similarity matrix S, the weights wk can be obtained through
linear regression (Peterson, Abbott, & Griffiths, 2016). In ad-
ditive clustering the weights are often constrained to be non-
negative. To obtain such weights, we employ a non-negative
least squares algorithm (Lawson & Hanson, 1995). We can
thus directly test the size principle in any domain where a fea-
ture matrix and a corresponding similarity matrix are avail-
able. In the remainder of the paper we consider two different
sources of such matrices: semantic feature norms and percep-
tual neural networks.

Semantic Hypothesis Spaces
We first evaluate evidence for the size principle using two
groups of datasets in which people judge the similarity of
words. Both datasets contain human similarity ratings of
noun pairs corresponding to concrete objects (e.g., “zebra”
and “lion”) and lists of binary feature labels associated with
each object that can be filtered by frequency of mention. We

call these features “semantic” because they are linguistic de-
scriptions of general concepts that exclude perceptual-level
information associated with actual instances of that concept
or brought to mind when the instance is perceived.

Semantic Dataset Group 1
Following Navarro and Perfors (2010), the first evaluation
dataset is comprised of similarity and feature matrices from
the Leuven Natural Concept Database (De Deyne et al.,
2008). It includes data for 15 categories (Kitchen Uten-
sils, Clothing, Vegetables, Professions, Fish, Sports, Birds,
Fruit, Reptiles, Insects, Tools, Vehicles, Musical Instruments,
Mammals, and Weapons), each containing ∼20− 30 exem-
plars. Binary feature matrices for each category contain
∼200− 300 unique features each. The feature descriptions
are much broader than merely visually apparent features (e.g.,
“has wings”, “eats fruit”, “is attracted by shiny objects”).

Semantic Dataset Group 2
The second dataset group consisted of 17 similarity ma-
trices from a variety of sources throughout the literature.
The experimental contexts and methodologies differed con-
siderably compared to the those in group 1. All but one
of these datasets (SIMLEX) were taken from the simi-
larity data repository on the website of Dr. Michael Lee
(http://faculty.sites.uci.edu/mdlee/similarity-data/). SIMLEX
was taken from a larger word similarity dataset (Hill, Re-
ichart, & Korhonen, 2016). The majority of the datasets
(Birds, Clothing1, Clothing2, Fish, Fruit1, Fruit2, Furniture1,
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Furniture2, Tools, Vegetables1, Vegetables2, Weapons1, and
Weapons2) are from Romney, Brewer, and Batchelder (1993).
For dataset pairs such as (Vegetables1, Vegetables2), the first
contains more prototypical items than the second. Since none
of these datasets contain corresponding object-feature data,
we matched objects from each set to the feature norms re-
ported in McRae, Cree, Seidenberg, and McNorgan (2005).

Analysis & Results
For each dataset, we computed the element-wise multiplica-
tion of each pair of rows in F and used non-negative least
squares to regress this matrix onto the corresponding empir-
ical similarity values. We then computed the log of all non-
zero weights, as well as the log of the feature sizes (column
sums of the F matrix for which there was a corresponding
non-zero weight). The resulting log weights and log feature
sizes are z-score normalized and plotted in Figures 1 and 2 for
each category in each subgroup. Red lines indicate perfect -1
slopes as predicted by the size principle, whereas black lines
are best fitting lines to the actual data. The corresponding cor-
relation coefficients are reported in Tables 1 and 2 along with
a number of other statistics to be discussed.

Average Pearson and Spearman correlations were -0.43
and -0.47, respectively for group 1, and -0.63 and -0.61 for
group2. For nearly all individual datasets in all groups, coef-
ficients are consistently negative, with the exception of Ani-
mals11 in group 2, which along with Animals5 are the only
datasets with no published method. Correlations were gen-
erally stronger for group 2. All correlations in group 1 were
significant at the α = 0.05 level except for the Reptiles and
Mammals datasets. In contrast, virtually no correlations were
significant in group 2 given the small number of features
with non-zero coefficients, however one-sample t-tests con-
firmed that the mean slopes were significantly less than 0
for both Pearson (t(16) =−7.65, p < 0.0001) and Spearman
(t(16) =−7.65, p < 0.0001) correlations.

The FR (feature ratio) column indicates how many coeffi-
cients were positive out of the total possible. Although there
were many more features overall in group 1, the average per-
centage of features with non-zero weights was comparable
(28% and 23% respectively).

Finally, model performance in predicting similarity (R2) is
reported in the R2

MP column, and indicates the degree to which
the feature sets are sufficient to accurately predict human sim-
ilarity judgments. (R2) values for group 1 are markedly higher
than group 2 (which have many fewer features) and match re-
liability ceilings reported in the original experiments.

Perceptual Hypothesis Spaces
While evidence for the size principle seems apparent from
studies of semantic hypothesis spaces, there has been no work
attempting to verify the operation of the principle for con-
crete objects, especially with complex, real-world instances
of these objects such as natural images. The featural repre-
sentations of such instances are complex and include innu-
merable details not contained in semantic descriptions of the

general case, rendering explicit feature descriptions difficult.
Here, we offer a method to overcome this challenge by lever-
aging representations learned from deep neural networks.

Perceptual Features
Recent work (Peterson et al., 2016) has provided evidence
that deep image feature spaces can be used to approximate
human similarity judgments for complex natural stimuli. For
our analysis, we extracted image features from an augmented
version of Alexnet with a binarized final hidden layer (Wu,
Lin, & Tang, 2015). This allows for a comparison both to non-

Table 1: Correlations between feature size and feature weight
(Semantic Datasets Group 1)

Set Pearson Spearman FFFRRR RRR2
MP

K. Utensils -0.64 -0.67 94/328 0.84
Clothing -0.42 -0.47 84/258 0.71
Vegetables -0.41 -0.43 91/291 0.68
Professions -0.48 -0.51 73/370 0.76
Fish -0.48 -0.49 43/156 0.80
Sports -0.58 -0.65 85/382 0.81
Birds -0.36 -0.37 72/225 0.75
Fruit -0.23 -0.37 78/233 0.74
Reptiles -0.23 -0.20 45/179 0.94
Insects -0.49 -0.52 52/214 0.73
Tools -0.61 -0.61 62/285 0.74
Vehicles -0.52 -0.57 97/322 0.93
M. Instruments -0.50 -0.56 72/218 0.90
Mammals -0.19 -0.22 84/288 0.85
Weapons -0.36 -0.38 49/181 0.88

Table 2: Correlations between feature size and feature weight
(Semantic Datasets Group 2)

Set Pearson Spearman FFFRRR RRR2
MP

Animals11 0.01 0 7/37 0.31
Animals5 -0.15 -0.08 8/37 0.35
Birds -0.94 -0.95 4/24 0.10
Clothing1 -0.68 -0.78 6/28 0.10
Clothing2 -0.42 -0.53 12/35 0.11
Fish -1.00 -1.00 2/17 0.18
Fruit1 -0.24 -0.29 12/38 0.19
Fruit2 -0.53 -0.43 4/42 0.14
Fruit3 -0.52 -0.64 11/42 0.25
SIMLEX -0.99 -1.00 3/151 0.24
Tools -0.95 -0.87 5/13 0.18
Vegetables1 -0.20 -0.08 9/31 0.31
Vegetables2 -0.46 -0.57 9/31 0.26
Vehicles1 -0.97 -0.71 5/24 0.06
Vehicles2 -0.87 -0.82 5/23 0.03
Weapons1 -0.85 -0.87 8/32 0.16
Weapons2 -0.96 -0.74 4/30 0.03
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Figure 3: Feature Size/Weight Relationships for Convolutional Neural Network Representations.

Animals Fruit Furniture Vegetables Automobiles

Figure 4: Examples of stimuli from each of the 5 natural im-
age categories

perceptual binary feature sets (i.e., features from the previous
section) and non-binary perceptual feature sets (i.e., previous
work on similarity prediction).

Stimuli & Data Collection
We obtained pairwise image similarity ratings for 5 sets of
120 images (animals, fruits, furniture, vegetables, vehicles)
using Amazon Mechanical Turk, following Peterson et al.
(2016). Examples of images in each dataset are given in Fig-
ure 4. The image sets represent basic level categories, with
20-40 subordinate categories in each.

Subjects rated at least 4 unique pairs of images and we re-
quired that at least 10 unique subjects rate each possible pair.
Each experiment yielded a 120×120 similarity matrix.

Analysis & Results
As before, we computed the pairwise multiplication of each
pair of rows in F (120 images× 4096 neural features) and re-
gressed this matrix onto the corresponding empirical similar-
ity values. The resulting weights and feature sizes are plotted
in Figure 3 for each category, and the corresponding correla-
tions are reported in Table 3.

Like the previous semantic datasets, only a small portion
of the total features obtained non-zero weights, although the
average percentage was much smaller (∼ 4%). Given that the

Table 3: Correlations between feature size and feature weight
(Perceptual Dataset)

Set Pearson Spearman FFFRRR RRR2
MP

Animals -0.32 -0.34 122/4096 0.56
Fruits -0.43 -0.44 302/4096 0.41
Furniture -0.48 -0.51 170/4096 0.38
Vegetables -0.41 -0.34 295/4096 0.45
Automobiles -0.46 -0.49 125/4096 0.31

full feature set is meant to characterize 1000 mostly qualita-
tively distinct categories from which they were learned (Deng
et al., 2009), whereas features from the semantic datasets
were relevant only to the objects in each group, this discrep-
ancy is to be expected.

In all five datasets, correlation coefficients are moderate,
negative, and significant at the α= 0.001 level. Average Pear-
son and Spearman correlation was 0.42 in both cases. Vari-
ance explained in similarity matrices was comparable to pre-
vious work on predicting similarity from deep features, but
was generally reduced given the constraint of binary features
and non-negative weights.

Discussion
We have attempted to provide a direct evaluation of the size
principle in both semantic and perceptual hypothesis spaces.
In some cases, the correlations we report using our method
are weaker overall than those reported in past work (Navarro
& Perfors, 2010), but are consistently negative nonetheless.
If anything, this discrepancy serves as a caution to trusting a
single method for evaluating the size principle.

Across all datasets, variance explained in similarity judg-
ments ranged from .03 to .94, however these fluctuations
don’t appear to vary systematically with the magnitude of the
size principle effect, This may indicate that the size principle
should emerge with respect to both “good” and “bad” feature
sets, so long as they are related to the objects and vary in their
inclusiveness.

Furthermore, it appears that the size principle can be shown
to operate in more ecologically valid stimulus comparisons
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such as visual image pairs. In cases such as these, the specific
visual details of the image are relevant, and our feature sets
derived from convolutional neural networks included only
these features. There may be hundreds of small visual details
that are only present in novel instantiations of familiar objects
that we encounter on a daily basis and that actually represent
the more abstract concepts used in semantic datasets. These
results may also have implications for the method of estimat-
ing human psychological representations recently proposed
by Peterson et al. (2016). In this work, it was shown that hu-
man similarity judgments for natural images can be estimated
by a linear transformation of deep network features, and the
current results imply that this transformation is perhaps partly
accounted for by the size principle. This finding may lead to
better methods for approximating complex human represen-
tations based on psychological theories.

It is apparent from the FR columns of each table that few
of the total features were used in the actual models. This may
be due in part to useless features, or features associated with
too many or too few objects. It may also be due to multi-
collinearity in our feature matrices (some columns are linear
combinations of others). These are unique consequences of
using a regression model. For this reason, our method may be
less susceptible to over-representing certain features that are
redundant. On the other hand, the size principle is meant to
address the problem of redundant hypotheses directly, and it
may be an undesirable property of our model that these hy-
potheses are eliminated through other means, which is per-
haps the cost of direct estimation of the weights in the addi-
tive clustering framework. In any case, this variability in the
amount of non-redundant features does not appear to co-vary
with the size principle in any systematic way.

The only notable discrepancy between our results and the
predictions of the size principle is the variation in the magni-
tude of the negative slopes obtained, which does not appear
to depend on model performance, number of features, or even
aspects of the dataset groups or individual datasets. Semantic
dataset group 2 had more large slopes (e.g., SIMLEX) than
group 1, but also had many small slopes. Similar datasets
from group 1 (e.g., Fruit and Vegetables) had fairly dissim-
ilar slopes, and nearly identical datasets from group 2 (e.g.,
Fruit1 and Fruit2) had widely varying slopes. Prototypicality
doesn’t seem to matter either, since Fruit1 and Vegetables1
have smaller slopes than Fruit2 and Vegetables2, but Cloth-
ing1 and Vehicles1 have larger slopes than Clothing 2 and
Vehicles2. Furthermore, we can find examples of both natural
and artificial stimuli with comparable slopes. For these rea-
sons, it is unclear what the source of these deviations could
be. It is possible that certain experimental contexts encour-
age a focus on certain featural comparisons that can be rep-
resented by a weighting of our feature sets, and so still allow
for good model fit. Alternatively, it may be an artifact of the
weight estimation algorithm, in which case it will be useful
to compare alternative methods.

Our results provide broad evidence for the size principle

regardless of the assumptions that are employed to derive it.
Thus, the size principle is a good candidate for a second uni-
versal law of generalization, and can be motivated both by
rational theories based on strong sampling and feature learn-
ing. Further, a 1

|h| law can provide a solid basis for generaliz-
ing from multiple instances, a behavior that we should expect
to find in any intelligent agent, anywhere in the universe.
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Abstract

We present a formal measure of argument strength, which
combines the ideas that conclusions of strong arguments are (i)
highly probable and (ii) their uncertainty is relatively precise.
Likewise, arguments are weak when their conclusion proba-
bility is low or when it is highly imprecise. We show how
the proposed measure provides a new model of the Ellsberg
paradox. Moreover, we further substantiate the psychologi-
cal plausibility of our approach by an experiment (N = 60).
The data show that the proposed measure predicts human in-
ferences in the original Ellsberg task and in corresponding ar-
gument strength tasks. Finally, we report qualitative data taken
from structured interviews on folk psychological conceptions
on what argument strength means.

Keywords: argument strength; coherence; Ellsberg paradox;
probability logic

Introduction

Measuring Argument Strength

Probabilistic models of argumentation became popular in

cognitive science and its subfields including psychology, phi-

losophy, and computer science in recent years (see, e.g., Hahn

& Oaksford, 2006; Haenni, 2009; Zenker, 2013). Like logic-

based nonmonotonic approaches for defeasible argumenta-

tion (see, e.g. Prakken & Vreeswijk, 2002), probabilistic

approaches allow for dealing with exceptions and retracting

conclusions in the light of new evidence. However, in con-

trast to qualitative logical approaches, probability allows for

managing degrees of belief in the sentences involved in com-

mon sense argumentation. Moreover, degrees of belief can

be used to model the strength of arguments (Hahn & Oaks-

ford, 2006; Oaksford & Hahn, 2007; Pfeifer & Kleiter, 2006;

Pfeifer, 2007, 2013b).

The concept “argument” is ambiguous. In logic, it denotes

a triple consisting of a (possibly empty) premise set, a

conclusion indicator, and a conclusion set. Consider, for

example, the following argument, which is an instance of

modus ponens:
(P1) If I take the train at five (T ), I’ll be home at six (H).

(P2) I take the train at five (T ).

(C) Therefore, I’ll be home at six (H).
Here, (P1) and (P2) are the premises, “Therefore” the con-

clusion indicator and the sentence “I’ll be home at six” is the

conclusion. In argumentative contexts, “argument” may also

denote a premise which speaks for or against a conclusion.

For example “The train conductors are on strike”, can serve

as an argument for concluding that it is better to take the bus.

In what follows, however, we will focus on arguments in the

logical sense only.

How can we measure the strength of an argument? There

are at least two formal approaches to study (probabilistic) ar-

gument strength. In the first approach argument strength is

based on uncertain consequence relations, i.e., by presup-

posing that the conclusion follows to some degree from the

premises. Usually, this is modeled by a conditional prob-

ability of “the conclusion given (some combination of) the

premises” of the argument (see, e.g. Hahn & Oaksford, 2006;

Oaksford & Hahn, 2007). As pointed out by Osherson, Smith,

Wilkie, López, and Shafir (1990), measures of confirmation

can serve as models for argument strength (for an overview

of measures of confirmation see Crupi, Tentori, & Gonza-

les, 2007). Measures of confirmation and previous attempts

to model argument strength by uncertain consequence rela-

tions are problematic when arguments involve conditionals,

like the modus ponens above (see premise (P1)): it is far

from clear to give a precise meaning of conditionalizing on

a combination of premises, when the premise set contains

conditional events. There is ample formal and experimental

evidence that uncertain conditionals are best modeled by con-

ditional probabilities (see, e.g., Evans & Over, 2004; Oaks-

ford & Chater, 2007; Over & Cruz, in press; Pfeifer, 2014,

2013a). Therefore, conditionals should be modeled by condi-

tional probabilities. However, this requirement would imply

to measure the uncertainty of a conclusion given (some com-

bination of) the premises. Unfortunately, satisfactory seman-

tics of expressions like

conclusion
︷︸︸︷

C |

premises
︷ ︸︸ ︷

(A and (C|A)) do not exist

yet. Such semantics would, however, be necessary to cap-

ture the underlying logical structure of the modus ponens (for

an approach which deals with nested conditionals and which

avoids Lewis’ triviality results, see Gilio, Over, Pfeifer, &

Sanfilippo, 2017; Sanfilippo, Pfeifer, & Gilio, 2017). Modus

ponens is just a relatively simple example here: there are,

of course, many other argument forms involving condition-

als. The inability to deal with conditionals seems to us to be

one of the main reasons, why currently no formally satisfac-

tory measure of argument strength exists within the first ap-

proach: measures based on uncertain consequence relations

do not seem to be able to deal with the logical form of the

argument.

In this paper, we advocate the second approach to argu-

ment strength. It satisfies the requirement of doing justice to

the logical form of arguments involving conditionals (Pfeifer,

2007, 2013b). Specifically, we define argument strength

based on the following ideas: (i) keep the consequence re-

lation deductive, (ii) assign probabilities to the premises, and
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then (iii) define the measure of argument strength based on

the propagated coherent lower and upper probability bounds

on the conclusion (Pfeifer, 2007, 2013b). Probability prop-

agation from the premises to the conclusion is governed by

coherence based probability logic (see, e.g. Coletti & Scoz-

zafava, 2002; Pfeifer & Kleiter, 2009; Gilio, Pfeifer, & San-

filippo, 2016). The coherence approach to probability was

originated by Bruno de Finetti (de Finetti, 1970/1974). It

conceives probabilities as subjective degrees of belief. Con-

ditional probabilities (p(C|A)) are primitive. This allows for

zero probabilities of the conditioning event (A). Note that

in standard approaches to probability, p(C|A) is undefined

if p(A) = 0, which is problematic in many argument forms

(see, e.g. Pfeifer, 2014; Gilio et al., 2016). Moreover, coher-

ence allows for managing imprecise probabilities (set-valued

probabilities involving lower and upper probability bounds),

which is relevant for formalising arguments under incomplete

probabilistic knowledge. The above mentioned modus po-

nens, for example, is formalised as follows (see, e.g. Pfeifer

& Kleiter, 2009, Example 1, p. 209):
(P1’) p(H|T ) = x

(P2’) p(T ) = y

(C’) Therefore, z′ ≤ p(H) ≤ z′′, where z′ = xy and

z′′ = xy+1−y are the best possible coherent prob-

ability bounds on the conclusion.
Following Pfeifer (2013b), we define the measure of argu-

ment strength s on an argument A as follows:

Let z′ and z′′ denote the coherent lower and upper prob-

ability bounds, respectively, on the conclusion of argu-

ment A . Then,

s(A) =def.

precision
︷ ︸︸ ︷

(1− (z′′− z′))×

location
︷ ︸︸ ︷

z′+ z′′

2
. (1)

Intuitively, measure s combines the precision and the location

of the coherent conclusion probability interval. Specifically,

strong arguments are arguments with low imprecision of the

conclusion probability (measured by the one-complement of

the distance between the upper and the lower probability

bounds, 1− (z′′− z′)) and with conclusion probabilities close

to one (measured by the mean of the lower and upper proba-

bility bound, (z′+ z′′)/2). Weak arguments are characterized

by a large conclusion interval (i.e., high imprecision) or by a

low-probability conclusion (i.e., the center point of the con-

clusion interval is close to 0). For a discussion of how logical

validity relates to whether the degree of belief in the conclu-

sion is constrained by the assessment of the premises see, e.g.,

Pfeifer and Kleiter (2009). Of course, precision and location

could be modeled differently (e.g., by using the geometric or

the harmonic mean instead of the arithmetic mean). More-

over, in contexts where the location is more important than

the precision of the conclusion probability interval (or vice

versa), adding suitable weights to formula (1) can adjust the

measure for such cases. However, for the purpose of our pa-

per it is sufficient to keep the measure as simple as possible.

Measure s has a number of plausible consequences: it

ranges always from zero to one (i.e., 0 ≤ s ≤ 1, since z′ and

z′′ are probability values, which are also in the unit interval,

[0,1]). The extreme “0” denotes weak arguments and “1” de-

notes strong arguments. Arguments with conclusion prob-

ability 1, are strong arguments, since s = 1 if z′ = z′′ = 1.

Arguments with conclusion probability 0 (i.e., z′ = z′′ = 0)

are weak arguments, since s = 0. Likewise, probabilistically

non-informative arguments (i.e., z′ = 0 and z′′ = 1) are weak

arguments, since s= 0.

Interestingly, measure s also provides a new solution to the

Ellsberg paradox (Ellsberg, 1961),1 which we describe in the

next section.

Modeling the Ellsberg Paradox by Measure s

Ellsberg described the following situation (Ellsberg, 1961):

An urn contains 90 balls, of which 30 are red (R) and 60

are black or yellow. The ratio of the black and yellow

balls is unknown—there might be anything between 0 to

60 black (or yellow) balls. One ball is drawn at random

from the urn and you are asked to choose a bet between

two bets. If you take Bet 1, you will win $100, if the

ball drawn from the urn is red. If you take Bet 2, you

will win $100, if the ball drawn from the urn is black.

Ellsberg predicted that most people choose Bet 1 when asked

to decide which of the two bets they prefer. Then, considering

again the same urn, Ellsberg predicted that people will choose

Bet 4, when they are asked to decide between the following

two alternative bets:

If you take Bet 3, you will win $100, if the ball drawn

from the urn is red or yellow. If you take Bet 4, you

will win $100, if the ball drawn from the urn is black or

yellow.

Ellsberg’s predictions create a well-known paradox as they

violate the independence axiom of rational choice (see, e.g.,

Briggs, 2016). Moreover, Ellsberg’s predictions were ex-

perimentally confirmed in many studies (see, e.g., Becker &

Brownson, 1964; Slovic & Tversky, 1974; MacCrimmon &

Larsson, 1979).

We propose to frame the Ellsberg paradox in terms of prob-

ability logical arguments. Specifically, the premises repre-

sent the probabilistic information given in the description of

the urn, and the conclusions represent the respective bets in-

volved in the Ellsberg paradox. Thus, we obtain four argu-

ments. Each argument speaks for choosing the corresponding

bet. The associated argument to Bet 2, for example, is argu-

ment A2 (where “∨” denotes disjunction (“or”) and R, B and

Y are mutually exclusive):

p(R) = .33

p(B∨Y ) = .67

Therefore, 0 ≤ p(B)≤ .67 is coherent.

1We thank Kevin T. Kelly for pointing us to the Ellsberg paradox.
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The strength of this argument is denoted by s(A2) and by

applying equation (1) equal to .11 (i.e., s(A2) = .11). Ta-

ble 1 lists the conclusions and the argument strengths s for

each argument for the corresponding four bets involved in the

Ellsberg paradox.

Table 1: Conclusions and normative strengths (s) of Argu-

ments A1, . . . ,A4 associated with the four bets involved in the

Ellsberg paradox. The premises are always p(R) = .33 and

p(B∨Y ) = .67.

Conclusion Argument strength

Bet 1 p(R) = .33 s(A1) = .33

Bet 2 0 ≤ p(B)≤ .67 s(A2) = .11

Bet 3 .33 ≤ p(R∨Y )≤ 1 s(A3) = .22

Bet 4 p(B∨Y ) = .67 s(A4) = .67

The four argument strength values in Table 1 induce the

following preference orders in the classical Ellsberg task: Bet

1 ≻ Bet 2, since s(A1) = .33 > s(A2) = .11, and Bet 4 ≻
Bet 3, since s(A4) = .67 > s(A3) = .22 (where X ≻ Y de-

notes X is preferred over Y ). This preference order corre-

sponds to Ellsberg’s predictions and matches the data (see,

e.g., Becker & Brownson, 1964; Slovic & Tversky, 1974;

MacCrimmon & Larsson, 1979). The functions of the four

arguments can be understood in an epistemic and in a persua-

sive sense. The epistemic function of the arguments is to gain

knowledge about which bet should be preferred. The persua-

sive function of the arguments is to convince someone which

bet should be preferred.

In the following section we further investigate the psycho-

logical plausibility of s by an experiment.

Method

Participants

In this experiment 60 university students (mean age 25.9

years (SD = 5.6), 48 females, 12 males) participated for a

compensation of 15¤. All of the participants were Finnish

native speakers and none of them had studied psychology,

mathematics, statistics or philosophy as their major.

Design and Materials

We used three target task types: argument ranking tasks, ar-

gument rating tasks, and the (original) Ellsberg tasks. The ar-

gument ranking tasks first instructed the participants to rank

the strength of arguments A1 and A2 (see Table 1). Second,

the participants were instructed to rank the strength of argu-

ments A3 and A4. The argument rating tasks instructed the

participants to rate the strength of each of the four arguments.

In the original version of the Ellsberg task, participants had to

rank which bets they preferred as described in the Introduc-

tion. We investigated the following questions which relate

argument strength to the Ellsberg problem:

• Do the results of the argument strength rating tasks predict

the responses in the Ellsberg tasks?

• Do the results of the argument strength rating tasks predict

the responses in the argument strength ranking tasks?

Moreover, we explored empirically, whether argument

strength formulated in epistemic or in persuasive terms im-

pacts participants’ reasoning. Finally, we systematically ma-

nipulated the information conveyed in the argument rating

and in the argument ranking tasks by the following indepen-

dent variables: (i) only the uncertainty of the conclusion was

presented, (ii) only the uncertainties of the premises were pre-

sented, and (iii) uncertainties of the premises and the con-

clusion were presented. The instructions introduced the fol-

lowing symbol for marking not conveyed information in the

respective conditions which correspond the variables (i) and

(ii): . By using a 2×3 between-participant design we fully

crossed epistemic versus persuasive formulations and the ma-

nipulated information conveyed in the arguments. In the epis-

temic booklets we used knowledge-oriented phrasings like

“Which argument is stronger to know which bet to choose?”,

whereas in the persuasive booklets we used according phras-

ings like “Which argument convinces stronger which bet to

choose?”. The experimental conditions are explained in Ta-

ble 2.

Table 2: Experimental conditions (Cd 1–Cd 6; N = 60).

Presented probabilities Epistemic Persuasive

Premise & conclusion Cd 1 (n1 = 10) Cd 2 (n2 = 10)

Conclusion only Cd 3 (n3 = 10) Cd 4 (n4 = 10)

Premise only Cd 5 (n5 = 10) Cd 6 (n6 = 10)

Argument ranking tasks In these tasks, the participants

were instructed to imagine two friends arguing about which

bet the participant should choose. Then, argument A1 for

Bet 1, and argument A2 for Bet 2 were presented to the par-

ticipant, e.g.:

Argument 2 for Bet 2

I am % sure that the ball drawn from the urn is red.

I am % sure that the ball drawn from the urn is black

or yellow.

Therefore, I am at least 0 % and at most 67 % sure that

the ball drawn from the urn is black.

The participants were then presented with the question

“Which argument is stronger to know which bet to choose?”

(Kumpi argumentti on vahvempi sen tietämiseen, kumpi veto

kannattaisi valita?) in the epistemic condition. In the per-

suasive condition, they were asked “Which argument con-

vinces you stronger which bet to choose?” (Kumpi argument-

ti vakuuttaa sinut vahvemmin siitä, kumpi veto kannattaisi

valita?). Then, the participants were instructed to indicate

927



their choice by ticking the respective box for Argument 1 (i.e.,

A1) or Argument 2 (i.e., A2). Finally, the participants ranked

Argument 3 (i.e., A3) and Argument 4 (i.e., A4).

Argument rating tasks In these tasks participants were

presented with the same four arguments as in the argument

ranking tasks. They were asked to carefully reconsider each.

Instead of using forced choice response formats, each argu-

ment was followed by a question, e.g., “How strong is Argu-

ment 2 for choosing Bet 2?” (Kuinka vahva Argumentti 2 on

Vedon 2 valitsemiseksi?; original epistemic formulation) or

“How strong is Argument 2 for convincing to choose Bet 2?”

(Kuinka vahva Argumentti 2 on vakuuttamaan Vedon 2 va-

litsemisesta?; original persuasive formulation). The partici-

pants were asked to mark their responses on a ten point rating

scale (see Figure 1).

Figure 1: Answer scale used in the argument rating tasks.

Ellsberg tasks Here, as explained in the introduction, the

participants had to choose which rankings among bets they

preferred (Bet 1 or Bet 2 and Bet 3 or Bet 4). All participants

were presented with the same Ellsberg tasks.

Procedures

Participants completed the booklets individually in a quiet

room. At the beginning of the testing, participants were in-

formed to take as much time as needed for completing the

tasks. Furthermore, they were instructed not to look back on

their previous responses. After reading the introduction the

participants worked on tasks which differed from the Ells-

berg problem (and which are not in the scope of the present

paper). After that, the target tasks were presented in the fol-

lowing order: (i) argument ranking tasks, (ii) argument rating

tasks, and (iii) the Ellsberg tasks. The easier argument rank-

ing tasks (rankings require less cognitive effort than ratings)

appeared prior to the argument rating tasks to further help

participants to familiarize themselves with the task materials.

To avoid any influences of the Ellsberg tasks on the argument

strength tasks and to see whether our samples replicate the

findings in the literature, the Ellsberg tasks were presented

at the end of the booklet. Then, the participants filled in de-

mographic data and rated the difficulty and clearness of the

tasks. Participants used 9.6 minutes (SD = 2.8) on the aver-

age to work on the booklets. Each session concluded by an

interview to further explore argument strength from a qual-

itative point of view: we asked how the participants solved

Table 3: Percentages of argument preferences in the argument

ranking tasks (rnk(A)) and in the Ellsberg tasks (N = 60).

% rnk(A) Ellsberg % rnk(A) Ellsberg

Bet1 73,3 93,3 Bet3 25,0 23,3

Bet2 26,7 6,7 Bet4 75,0 76,7

the tasks and what they thought determined the strength of an

argument.

Results and Discussion

We performed Fisher’s exact tests to compare the impact of

the different booklets on the response frequencies in the ar-

gument ranking tasks and in the Ellsberg tasks. Moreover,

we tested influences of the different conditions in the argu-

ment rating tasks by analyses of variance. After performing

Holm-Bonferroni corrections we did not observe any signif-

icant differences. We therefore pooled the data for further

analysis (N = 60).

Ellsberg’s predictions The majority of responses in all

three types of tasks (i.e., argument ranking, argument rat-

ing and Ellsberg task) are consistent with Ellsberg’s predic-

tions. Our findings also replicate empirical findings reported

in the literature (see, e.g., Becker & Brownson, 1964; Slovic

& Tversky, 1974; MacCrimmon & Larsson, 1979). More-

over, our data suggest that classical findings in Ellsberg tasks

carry over to (isomorphic) problems formulated in terms of

argument strength.

Table 3 shows how the participants ranked the arguments

in the argument ranking tasks and how they ranked the bets

in the Ellsberg tasks. Bet 1 (resp., argument A1 supporting

Bet 1) is more frequently chosen than Bet 2 (resp., A2 sup-

porting Bet 2). Likewise, Bet 4 (resp., argument A4 support-

ing Bet 4) is more frequently chosen than Bet 3 (resp., A3

supporting Bet 3).

Moreover, we constructed the underlying preference orders

of the argument strengths and the bets from the participants’

responses in all the three task types. This allows one to see

which choice strategies were most commonly used. In all

tasks, strategies consistent with the independence axioms of

rational choice were less frequently preferred, as can be seen

in Table 4. For constructing the preference orders based on

the responses in the argument strength ratings tasks, we made

the following assumption: if the strength of an argument Ax

was rated higher than the strength of an argument Ay, then

the corresponding Bet x is preferred over Bet y. Again, our

findings replicate the predictions of Ellsberg and the previ-

ous empirical findings (see, e.g., Becker & Brownson, 1964;

Slovic & Tversky, 1974; MacCrimmon & Larsson, 1979).

Table 5 shows the mean argument strength rating re-

sponses. As predicted by measure s, the mean argu-

ment strength ratings reflect the Ellsberg predictions, i.e.,
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Table 4: Percentages of responses consistent with Ellsberg’s

predictions (E), the independence axiom of rational choice

(I). The preference order R can be interpreted as a reversed

version of E. “(x,y)≻ (u,v)” means “arguments (resp. bets)

x and y are preferred over arguments (resp. bets) u and v”.

Preference order responses consistent with s are in bold.

Preference Tasks (N = 60)

Order A Ranking Ellsberg A Rating

(1,4)≻ (2,3)E 56.67 71.67 56.10

(2,3)≻ (1,4)R 8.33 1.67 4.88

(1,3)≻ (2,4)I 16.67 21.67 21.95

(2,4)≻ (1,3)I 18.33 5.00 17.07

mean rating(A1) > mean rating(A2) and mean rating(A4) >
mean rating(A3).

Table 5: Means and standard deviations (SD) of the argument

strength ratings on a scale from 0 (“extremely weak”) to 10

(“extremely strong”; N = 60).

A1 A2 A3 A4

Mean 5,20 3,98 5,77 6,95

SD 2,64 2,58 1,74 1,87

Consistency among the data Based on the argument

strength ratings, we predicted the participants’ choices in the

ranking and in the Ellsberg tasks. The data support our pre-

dictions: the argument strength rating responses predict the

ranking responses in the Ellsberg tasks. The rating responses

also predict the responses in the argument strength ranking

tasks (see Table 6 and Table 7).

As some participants had rated the arguments for the bets

equally strong, no predictions could be derived in these cases.

When taking into account only those cases, in which making

predictions was possible, the responses of roughly 3/4 of the

participants were consistent with their responses in the rank-

ing tasks. In the argument strength ranking tasks, 77.3 % of

the participants chose as predicted between the first two bets

and 75.0 % chose as predicted between the second two bets.

For the Ellsberg tasks, we observed similarly high percent-

ages (i.e., 75.0 % and 70.8 % of the participants, for the first

and the second bet rankings, respectively). This is again ex-

perimental support for the psychological plausibility of mea-

sure s.

Finally, we discuss qualitative data taken from structured

interviews on folk psychological conceptions on what argu-

ment strength means.

Interview results After the participants completed the pa-

per and pencil tasks, we collected folk psychological con-

ceptions on what “argument strength” (argumentin vahvuus)

Table 6: Predictions of bet rankings in Ellsberg tasks based

on responses in the argument strength rating tasks (N = 60).

Ranking

% Bet 1 vs. Bet 2 Bet 3 vs. Bet 4

Chose as predicted 55.00 56.67

Did not choose as predicted 18.33 23.33

No prediction made 26.67 20.00

Table 7: Predictions of argument strength rankings based on

the responses in argument strength rating tasks (N = 60).

Ranking

% A1 vs. A2 A3 vs. A4

Chose as predicted 56.67 60.00

Did not choose as predicted 16.67 20.00

No prediction made 26.67 20.00

means by structured interviews. We asked the participants

how they would define argument strength in their own words.

Participants who had received the persuasive booklets, we hy-

pothesized, mentioned persuasive aspects (like how convinc-

ing arguments are) more frequently than those of the epis-

temic condition. Moreover, participants who had received the

epistemic booklets focused more on epistemic aspects (like

truth and knowledge) than those of the persuasive condition.

However, the interview responses do not confirm these hy-

potheses.

The responses to the interview question concerning the

meaning of “argument strength” reflected features of our

measure s. Specifically, the location of the coherent conclu-

sion probability interval was referred to by almost all of the

participants. For many participants the location seemed to be

more important than the precision of the coherent conclusion

probability interval. They had, for example, focused solely

on the lower probability bound of the interval and ignored the

upper bound or responded based on the mean value of the

interval.

However, a few participants also referred to the precision

of the coherent conclusion probability interval by sentences

like:

“The size of this gap between 33 [%] and 100 [%] is

so big that it increases the uncertainty.” (Epävarmuutta

lisää se, että väli 33:n ja 100:n välillä on niin suuri)

Some participants also talked about the truth or correctness of

the probability bounds of the conclusion. For them, the argu-

ments were strong, when the probabilities in the conclusions

were correct, almost regardless of the values in them.

The interview responses provide folk psychological evi-

dence for using location and precision of conclusion proba-

bility intervals for evaluating the strength of uncertain argu-
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ments. Location and precision are the key ingredients of our

argument strength measure s.

Finally, we note that Bet 1 is usually not compared directly

against Bet 3 in the traditional Ellsberg task. The correspond-

ing s(A1) is a bit higher compared to s(A3): epistemically,

this makes sense since the conclusion of A3 is highly im-

precise while the conclusion of A1 is perfectly precise (see

Table 1 above). However, it seems plausible to assume that

people would prefer Bet 3 over Bet 1. To accommodate s for

this prediction, one could reduce the impact of the precision

by adding suitable weights to the definition of s.

Concluding Remarks

Based on the location and the precision of the conclusion’s

probability interval, we proposed a formal measure of argu-

ment strength s and showed how s predicts responses in Ells-

berg tasks. Specifically, we framed choices among bets in

terms of probability logical argument forms. Our data sup-

port the hypothesis that Ellsbergs predictions can be justified

by argument strength rankings and argument strength ratings.

Since the proposed measure exploits tools available in

coherence-based probability logic and since it is based on a

deductive consequence relation, it allows for dealing with ar-

guments involving conditionals. The proposed measure has

many plausible consequences, which calls for future formal-

normative and experimental research for modeling also other

argument types, like the conditional syllogisms.

Understanding argument strength is important for theo-

ries about reasoning and argumentation in general. Our pa-

per sheds formal and experimental light on what argument

strength can mean.

Acknowledgments DFG project PF740/2-2 (SPP1516).
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Abstract
Causal judgments are well-known to be sensitive to violations
of both prescriptive moral and descriptive statistical norms.
There is ongoing discussion as to whether both effects are
best explained through changes in the relevance of counter-
factual possibilities, or if moral norm violations should be in-
dependently explained through a potential polysemy whereby
‘cause’ may simply mean ‘is morally responsible for’. In
support of the latter view, recent work has pointed out that
moral norm violations affect judgments of agents, but not inan-
imate objects, and that these effects are moderated by agents’
knowledge states. We advance this debate by demonstrating
that judgments of counterfactual relevance exhibit precisely
the same patterns, and that judgments of inanimate objects are
actually highly sensitive to whether the object violated a pre-
scriptive norm by malfunctioning. The latter finding is difficult
to account for through polysemy, but is predicted by changes in
the relevance of counterfactual alternatives. Finally, we show
that direct (non-moral) interventions on the the relevance of
counterfactual alternatives affect causal judgments in precisely
the same way as functional and moral norm violations.
Keywords: causation; norms; counterfactuals; morality; tele-
ology

Introduction
A central question in research on causal cognition concerns
the role of norms. It is well-known that both descriptive
norms (e.g., the probability of an event occurring) and pre-
scriptive norms (e.g., the morality of an event occurring) in-
fluence judgments of actual causation, that is, a judgment that
some event, e, was the cause of some outcome, o (Alicke,
2000; Gerstenberg & Tenenbaum, in press; Hitchcock &
Knobe, 2009; Kominsky, Phillips, Gerstenberg, Lagnado, &
Knobe, 2015). Specifically, people are more inclined to judge
that e was the cause of o if e was either very unlikely to hap-
pen or morally prohibited. Despite widespread agreement on
the existence of the phenomenon, there has been little cor-
responding agreement on how these effects should be ex-
plained.

Most researchers take the impact of descriptive statistical
norms to reveal part of the basic underlying processes that
support causal reasoning (e.g., Gerstenberg & Tenenbaum,
in press; Icard, Kominsky, & Knobe, in press; Samland &
Waldmann, 2016). They differ, however, in whether they treat
the impact of prescriptive moral norms similarly, or argue that
it arises from a fundamentally different set of processes.

On one side, researchers have argued that the impact of
both descriptive and prescriptive norms is best explained
by changes in the relevance of counterfactual possibilities.
These accounts propose that when a norm violation occurs, it
increases the relevance of counterfactual alternatives wherein
the norm violations are replaced by norm-conforming events
(e.g., Halpern & Hitchcock, 2015; Kominsky et al., 2015;
Bello, 2016). In support of this account, recent work demon-
strated that norm violations affect explicit assessments of

counterfactual relevance in precisely the same way that they
affect causal judgments (Phillips, Luguri, & Knobe, 2015).

On the other side, other researchers have argued for sep-
arate explanations of the two effects. The most recent ap-
proach has suggested that the term ‘cause’ is polysemous: It
can be used to talk about whether an agent is morally respon-
sible for an outcome, or it can be used to talk about whether
some event causally contributed to an outcome (Samland &
Waldmann, 2016). On this approach, the impact of violations
of moral norms can instead be accounted for by arguing that
participants are more likely to interpret the word ‘cause’ as
being about moral responsibility in cases where moral norms
have been violated.

Advancing this debate, Samland and Waldmann (2016)
(S&W hereafter) reported two important new data points:
First, the violation of moral norms selectively influences
causal judgments about whether agents caused an outcome,
but not causal judgments of whether inanimate objects used
by the same agents caused the outcome. Second, factors that
affect the moral responsibility of the norm violator (such as
their knowledge states) also affect causal judgments (see also
Samland, Josephs, Waldmann, & Rakoczy, 2016). S&W sug-
gest that these findings are best accounted for by assuming
that participants were interpreting the causal question to be
about moral responsibility when asked about an agent, but
about simple causal contribution when asked about an object.

In arguing that these results provide evidence against a uni-
fied counterfactual account, S&W rely on the assumption that
when a norm violation occurs, people consider counterfactual
alternatives to the event in its entirety. That is, they consider
a counterfactual alternative that involves both the agent who
violated a norm and the inanimate object used by that agent.
If this assumption is correct, then a polysemy account seems
to better capture S&W’s results, since a unified counterfac-
tual account would predict that causal judgments of the agent
and the inanimate object would both be affected.

At the same time, though, it is possible that the counter-
factual alternatives people represent are more granular. That
is, when a moral norm violation occurs, people may consider
a counterfactual alternative that involves the norm-violating
agent, but not the inanimate object used by that agent. If this
turns out to be correct, then S&W’s findings should be under-
stood as perfectly compatible with a unified counterfactual
explanation, as this accounts would then predict that causal
judgments of the agent, but not the object, would be affected.

To distinguish these possibilities, we begin by asking
whether the effects uncovered by S&W also arise in par-
ticipants’ assessments of which counterfactuals are relevant.
One possibility is that, because moral norms apply to agents
but not inanimate objects, participants will regard counter-
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factual alternatives to what the agent did as relevant, but not
alternatives to what the inanimate object did. If so, it would
suggest that they are represented somewhat independently of
one another. Furthermore, changes to agents’ mental states
may affect both the agent’s moral responsibility and similarly
whether it is relevant to consider counterfactual alternatives to
their actions, which may help explain why changes to agents’
mental states affect causal judgments (see, e.g., Lombrozo,
2010 on how intentions affect causal judgments in double-
prevention scenarios).

Experiment 1
Methods
Participants. 610 participants (Mage = 37.28, SDage =
12.14; 338 females, 1 unreported) from Amazon Mechan-
ical Turk participated for a $0.25 compensation. Par-
ticipant recruitment was automated through TurkPrime
(www.turkprime.com) to prevent repeat participation and
limit recruitment to participants with a high approval rating.

Stimuli and procedure. This experiment was nearly iden-
tical to S&W’s Experiment 4, but with an additional DV. The
overall design was 4 (norm condition) x 3 (question) and
administered fully between-subjects. Participants read one
of four vignettes (see Supplementary Materials available at
https://github.com/phillipsjs/stillRelevant). In
all conditions, Tom owns a garden and has two gardeners,
Alex and Benni, who each take care of 1/3 of the plants on
their own, and jointly tend to the remaining 1/3. Addition-
ally, Alex and Benni always use two fertilizers “A-X200 R©”
and “B-Y33 R©”. Tom reads that fertilizers are good for plants,
but using more than one kind of fertilizer could damage his
plants, so Tom decides he wants both gardeners to use only
fertilizer A-X200. In all cases, however, Alex applies fer-
tilizer A-X200 and Benni applies fertilizer B-Y33, and the
plants cared for by both of them are damaged.

The four conditions varied the reason that Benni used B-
Y33. In the Standard norm-violation condition, Benni sim-
ply decides to use B-Y33; in the Unintended norm-violation
condition, Benni believed he was applying A-X200, but acci-
dentally applied B-Y33; in the Ignorant norm-violation con-
dition, Tom neglects to tell Benni to use only A-X200, and
he uses B-Y33 instead; and in the Deceived norm-violation
condition, Alex deliberately lies to Benni about which fertil-
izer he is supposed to use to get him in trouble. We addi-
tionally varied the focus of the questions. Participants were
either asked questions that focused on the two agents (“Alex”
and “Benni”), the two actions (“the application of fertilizer by
Alex” and “the application of fertilizer by Benni”), or the two
chemicals (“the application of chemical A-X200” and “the
application of chemical B-Y33”).

After reading the vignette, participants were asked whether
it was relevant to consider counterfactual alternatives to some
aspect of the event, following Phillips et al., (2015). For
example, in the Agent condition, participants indicated both
whether they thought it was relevant or irrelevant to consider

what Alex could have done differently and also whether it was
relevant or irrelevant to consider what Benni could have done
differently. Subsequently, as in S&W, participants were asked
to judge who or what caused the plants to dry up (again de-
pending on the Question condition). In the Agent condition,
participants indicated both whether they thought Alex was a
cause and also whether they thought Benni was a cause. Be-
cause the causal question was simply a replication of S&W
(who did not include a counterfactual question), the coun-
terfactual question was always presented first and mirrored
S&W’s causal question as closely as possible.

Following these question, participants received two check
questions that tested their understanding of which chemicals
were applied by which gardener, and which chemicals Tom
wanted each gardener to use. Following S&W, they were
also asked to estimate the proportion of the flowers that dried
when (1) only fertilizer A-X200 was applied, (2) only fertil-
izer B-Y33 was applied, and (3) both were applied.

Results
We excluded participants who did not answer both of the
check questions correctly, and analyzed the remaining 439
participants’ judgments. (Note that here and throughout the
following experiments, all of the key results remain when
these exclusion criteria are relaxed.) To examine the effects of
our manipulation on both causation and relevance judgments,
we categorized participants’ responses as assigning causal
responsibility (or counterfactual relevance) to (1) only the
norm-violating agent, (2) both agents, or (3) only the norm-
conforming agent, and then subjected both kinds of judg-
ments to a proportional odds logistic regression using the pro-
bit function in the MASS package in R. For causal judgments,
we observed an effect of the norm-condition (LRT = 20.49
[d f = 3], p < .001), an effect of question (LRT = 44.53
[d f = 2], p < .001), and critically, a norm-condition × ques-
tion interaction effect (LRT = 19.94 [d f = 6], p= .003). This
precisely replicates the pattern of data observed in S&W (the
complete information on the replication of the key statistical
tests reported in S&W is available in the Supplementary Ma-
terials). Importantly, this direct replication of S&W provides
evidence that answering the counterfactual question first did
not unduly influence participants’ causal judgments.

We next analyzed participants’ relevance judgments, and
observed a highly similar pattern of results: an effect of
norm-condition (LRT = 13.93 [d f = 3], p = .003), an ef-
fect of question (LRT = 73.34 [d f = 2], p < .001), and a
norm-condition × question interaction effect (LRT = 14.15
[d f = 6], p = .028. Critically, because participants answered
this question first, the observed pattern cannot have been in-
fluenced by participants’ causal judgments. All the same,
at the level of each participants’ responses, judgments of
the causal responsibility were highly correlated with judg-
ments of whether it was relevant to consider alternatives to
the agents’ actions. This was true both for judgment of
the norm-violating agent/action/object, (Pearson’s r = 0.553,
p < .001), and for the norm-conforming agent/action/object
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(Pearson’s r = 0.406, p < .001), and moreover, held whether
participants were making judgments about agents (Pearson’s
r = 0.651, p < .001), actions (Pearson’s r = 0.262, p <
.001), or simply inanimate objects (Pearson’s r = 0.280, p <
.001).The similarity in the overall pattern of these judgments
across all of the conditions can be seen in Figure 1.

Figure 1: Depiction of the relationship between participants’
causal ratings and relevance ratings. Judgments related to the
norm-conforming agent are marked with a ‘C’; Judgments
related to the norm-violating agent are marked with a ‘V’.

Discussion
In sum, we replicated S&W’s causal judgments, and found
a corresponding pattern for which counterfactual alternatives
participants regarded as relevant. These findings mirror those
in observed in Phillips et al. (2015), which used a continuous
rather than dichotomous measure of counterfactual relevance,
and more importantly are predicted by a unified counterfac-
tual account of the impact of norms on causal judgments.

Experiment 2
We next investigated whether causal judgments of inanimate
objects are sensitive to violations of prescriptive norms of
proper functioning (e.g., a machine malfunctioning). Ac-
cording to a unified counterfactual account, when a machine
malfunctions, it should become more relevant to consider
the counterfactual possibility that the machine could have in-
stead functioned as intended, and thus the machine should
be judged as more causal. Polysemy accounts do not pre-
dict such an effect, as participants should not interpret the
word ’cause’ to mean ’morally responsible’ when discussing
an inanimate object. We test these two predictions.

Methods
Participants. 403 participants (Mage = 34.96, SDage =
11.90; 205 females, 1 unreported) from Amazon Mechani-
cal Turk participated for a $0.25 compensation. Participant
recruitment was again automated through TurkPrime.

Stimuli and procedure. This experiment used a 3 (Norm
violation; norm-conforming vs. moral violation vs. malfunc-
tion) x 2 (Question: agent vs. object) design, administered
fully between-subjects.

Participants read one of three vignettes involving a vending
machine in an academic department. In every condition, the
machine has three levers (red, black, and white): two produce
pencils and one produces an eraser but frequently malfunc-
tions and also produces a broken pencil. There were also two
agents: an administrative assistant, and Professor Smith (a re-
cent hire who did not know about the malfunctioning lever).
Prof. Smith always pulls the red lever, and the assistant al-
ways pulls the black lever. This later results in a problem for
a student who needs a pencil to take a test but cannot get one.

In the norm-conforming condition, the red lever and black
lever both produce pencils, and the white lever produces
erasers (but also consistently malfunctions). Additionally,
both administrators and faculty were allowed to take pen-
cils from the machine. Both agents request pencils using
the black and red levers, which both function appropriately.
The moral violation condition was identical to the norm-
conforming condition, except that the faculty are not allowed
to get pencils from the machine (but administrative assis-
tants are allowed), and this rule was known by Prof. Smith.
Lastly, the malfunction condition was identical to the norm-
conforming condition except that it was the red lever that pro-
duced erasers (and malfunctioned), and Prof. Smith wanted
an eraser, so Prof. Smith pulled the red lever and got an eraser
and a broken pencil.

Participants were then asked a question about the relevance
of counterfactual alternatives and a causal question in ran-
dom order on separate pages. The relevance of alternatives
question was worded and presented the same way as Exper-
iment 1, and either focused on the agents (Prof. Smith, ad-
ministrative assistant) or the objects (red lever, black lever).
The causal question similarly asked either who caused the
problem (agent condition) or what caused the problem (ob-
ject condition), and participants could select one or both.

These were followed by three comprehension check ques-
tions and two additional manipulation-check questions. The
comprehension questions ensured that participants under-
stood the key facts about the levers, agents, and outcome
of the scenario. Additionally, participants rated, on a 0-
100 scale, how likely the malfunction was to occur, in or-
der to verify that participants did not think the malfunction
also violated a descriptive (statistical) norm. Finally, partici-
pants rated their agreement with the statement “It was morally
wrong for Prof. Smith to pull the red lever” on a 7-point Lik-
ert scale, with the expectation that ratings should be higher in
the moral violation condition than the other two conditions,
which should not differ from each other. The predictions
for both manipulation-check questions were overwhelmingly
confirmed (see Supplementary Materials). Thus, any effect
of the functional norm violation cannot be explained by ap-
pealing to statistical or moral norms.
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Results

We excluded participants who did not answer all three of the
check questions correctly, and analyzed the remaining 258
participants’ judgments. To facilitate comparison of partic-
ipants’ judgments, we computed a measure of participants’
preference for selecting the norm-violating event as a cause.
Participants who selected only the norm-violating event as a
cause were assigned a score of 1; participants who selected
both or neither events as causes were assigned score of 0; and
participants who selected only the norm-conforming event
were assigned a score of -1. We then analyzed participants’
causal preference scores with a 2 (Causal Question: Agent
vs. Object) × 3 (Norm condition: Immoral vs. Malfunc-
tion vs. Normal) proportional odds logistic regression, as in
Study 1. This analysis revealed a main effect of Norm con-
dition, (LRT = 71.49 [d f = 2], p < .001), no main effect of
Causal question (LRT = 0.045 [d f = 1], p = .832), and crit-
ically a Norm condition × Causal question interaction effect
(LRT = 31.42 [d f = 2], p < .001).

We decomposed this interaction effect by separately ana-
lyzing participants’ causal preference scores for each of the
different conditions. When the relevant norm was moral
and thus applied to the agent but not the object, participants
tended to prefer the norm-violating agent as a cause, but
did not similarly prefer the norm-violating object as a cause
(LRT = 15.33 [d f = 1], p < .001). When the relevant norm
was functional, and thus the norm applied to the object but
not the agent, this pattern was reversed: participants tended to
prefer the norm-violating object as a cause, but did not simi-
larly prefer the norm-violating agent as a cause (LRT = 12.36
[d f = 1], p < .001). When there was no norm that applied
to either the agent or the object, there was small and non-
significant preference for the norm-conforming agent but not
the object (LRT = 1.13 [d f = 1], p = .288).

We next analyzed participants’ judgments of the relevance
of counterfactual alternatives in exactly the same way. Just
as with participants’ causal judgments, we observed a main
effect of Norm condition, (LRT = 40.53 [d f = 2], p < .001),
no main effect of Relevance question (LRT = 0.10 [d f = 1],
p= .747), and critically a Norm condition × Relevance ques-
tion interaction effect (LRT = 33.70 [d f = 2], p < .001). We
decomposed this interaction effect by separately analyzing
participants’ counterfactual preference scores for each of the
different conditions. When a moral norm was salient, par-
ticipants tended to prefer counterfactuals for the agent, but
not the object (LRT = 16.63 [d f = 1], p < .001). When the
relevant norm was functional, this pattern was reversed: par-
ticipants preferred counterfactuals for the object, but not the
agent (LRT = 11.20 [d f = 1], p < .001). When there was no
norm violation that applied to either the agent or the object,
there was a small and significant preference for the norm-
conforming agent, but not the object (LRT = 4.48 [d f = 1],
p = .034). A similar pattern is found when only participants’
first responses are analyzed, allowing for a between-subjects
analysis (see Supplementary Materials).

Figure 2: Average preference score for the norm-violating
event in causal judgments (top) and counterfactual relevance
judgments (bottom), as a function of which norms were rel-
evant (split into panels). Grey bars depict responses to ques-
tions about agents; Red bars depict responses to questions
about inanimate objects. Error bars depict +/- 1 SEM.

Discussion

Experiment 2 found that judgments of inanimate objects are
sensitive to violations of prescriptive norms of proper func-
tioning, even though they are not sensitive to violations of
moral norms. Specifically, we found that when an inanimate
object violated a functional norm, participants’ thought it was
relevant to consider counterfactual alternatives to that mal-
function, and that this effect was mirrored by a correspond-
ing change in participants’ causal judgments. This pattern is
uniquely predicted by a unified counterfactual accounts of the
impact of norms on causal judgments, and is not predicted by
an account on which the term ‘cause’ is polysemous.
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Experiment 3
Previous research (Phillips et al., 2015) has demonstrated that
causal judgments are also sensitive to more direct counterfac-
tual manipulations: participants tend to judge an event to be
more causal after they generate relevant alternative ways that
the event could have occurred. In Experiment 3, we extend
this method by asking participants to generate alternatives to
one particular aspect of the causal structure that contributes
to the outcome (i.e., to the agent or to the inanimate object).
We then measure how their causal judgments are affected by
this manipulation. This allows us to test a precise prediction
of a unified counterfactual account: participants causal judg-
ments should be affected by the generation of counterfactual
alternatives primarily for the part of the causal structure that
the counterfactual alternative focused on.

Methods
Participants. 601 participants (Mage = 35.96, SDage =
15.58; 304 females, 2 unreported) from Amazon Mechani-
cal Turk participated for $0.35 in compensation. Participant
recruitment was again automated through TurkPrime.

Stimuli and procedure. This experiment used a 3 (Agent-
Counterfactual vs Object-Counterfactual vs No Counterfac-
tual) × 2 (Agent Question vs Object Question) design. Coun-
terfactual condition was manipulated between-subjects and
Question was manipulated within-subjects.

All participants read the norm-conforming condition from
Experiment 2, where the red lever and black lever both pro-
duce pencils, and the white lever produces erasers (but also
consistently malfunctions). In this scenario, both the ad-
ministrators and the faculty are allowed to take pencils from
the machine, both the administrative assistant and Professor
smith request pencils using the black and red levers respec-
tively, and both levers function appropriately to produce pen-
cils. A problem then arises from a lack of pencils.

After reading the vignette, participants underwent the
counterfactual manipulation. In the Agent-Counterfactual
condition, for example, participants were asked to think about
Professor Smith’s decision to take a pencil from the vending
machine, and then to consider and describe one relevant way
that things could have gone differently such that the profes-
sor would not have taken one of the pencils from the vend-
ing machine. In the Object-Counterfactual condition, by con-
trast, participants were instead asked to consider and describe
a relevant way in which the red lever could have functioned
differently such that it didn’t produce a pencil from the vend-
ing machine. In the No Counterfactual condition, participants
were simply asked to describe the story they read.

After completing this task, they rated their agreement (on
a scale from 0 (‘Completely disagree’) to 100 (‘Completely
agree’) with a statement that the Professor caused the prob-
lem, and separately with a statement that the red lever caused
the problem. The statements were presented in counterbal-
anced order and on separate pages. Participants then com-
pleted a series of control questions that asked them about

Figure 3: Agreement with the causal statement concerning
the agent (left bars) and the object (right bars) as a function
of Counterfactual condition). Error bars depict +/- 1 SEM.

which levers were actually pulled and about who actually re-
ceived a pencil in the original story.

Results

We excluded participants who did not answer both of the
check questions correctly, and analyzed the remaining 423
participants’ judgments. First, we analyzed the agreement
with the two causal statements by comparing a series of
linear mixed-effects models using the lme4 package in R
(Bates, Maechler, Bolker, Walker, et al., 2014). This anal-
ysis revealed a main effect of Question (χ2(1) = 53.135,
p < .001) and a main effect of Condition (χ2(2) = 13.492,
p = .001). Critically, however, these were qualified by a
significant Question × Condition interaction (χ2(2) = 23.04,
p < .001). We decomposed this interaction using a series
of planned comparisons. These analyses revealed that par-
ticipants strongly agreed that Professor Smith was a cause
of the problem when they considered alternatives to Profes-
sor Smith’s action (M = 32.99, SD = 33.33), but in compar-
ison, agreed significantly less both when they did not con-
sider counterfactual alternatives (M = 18.22, SD = 27.28),
t(282.48) = 4.12, p < .001, d = 0.482, and when they only
considered alternatives to the way the lever functioned (M =
24.43, SD = 29.12), t(279) = 2.27, p = .024, d = 0.272.

We also observed a corresponding pattern in participants’
agreement with the statement that the red lever caused the
problem: participants agreed that the lever was more of a
cause when they considered alternatives to the way the lever
functioned (M = 20.11, SD = 33.34), than when they did not
generate any relevant counterfactual alternatives, (M = 8.62,
SD = 19.64), t(211.21) = 3.42, p < .001, d = 0.421, or
when they considered alternatives to what Professor Smith
did (M = 10.05, SD = 20.59), t(213.65) = 2.99, p = .003,
d = 0.367.
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Discussion
In short, we found that directly manipulating the relevance of
counterfactual alternatives affected participants’ causal judg-
ments. Moreover, in line with the predictions of a unified
counterfactual account, we found this effect was specific to
the factor that was altered in the counterfactual alternative.

General Discussion
The results of these three experiments favor a counterfactual
relevance account of the impact of norms on causal judg-
ments. Experiment 1 replicated S&W’s finding that moral
norm violations primarily affect causal judgments of inten-
tional agents and not inanimate objects. Experiment 2 fur-
ther found that violations of norms of proper functioning pri-
marily affect judgments of inanimate objects but not inten-
tional agents. In both experiments, judgments of counterfac-
tual relevance tracked the impact of different norm violations
on causal judgments for both intentional agents and inani-
mate objects. Finally, Experiment 3 demonstrated that non-
normative manipulations of counterfactual relevance produce
an analogous pattern in participants’ causal judgments. These
results support work on causal cognition that provides a cen-
tral role for counterfactuals (Gerstenberg & Tenenbaum, in
press; Kominsky et al., 2015; Icard et al., in press).

The extant literature on causal judgment now provides
evidence for three distinct types of norms that all show
similar effects: descriptive statistical norm violations (e.g.,
Kominsky et al., 2015), prescriptive moral norm violations
(e.g., Hitchcock & Knobe, 2009), and prescriptive functional
norm violations (demonstrated here). The demonstration of
additional norms that have similar a impact on causal judg-
ments makes a parsimonious explanation increasingly desir-
able. To extend the polysemy account, for example, one
would now have to propose three independent explanations
for three qualitatively similar effects. By contrast, an account
that appeals to the relevance of counterfactual alternatives
provides a unified explanation and predicts that these various
norms should all have a qualitatively similar impact.

At the same time, many aspects of the relationship be-
tween counterfactual representation and causal cognition re-
main poorly understood. For example, a critical insight which
arises in both S&W and in the current studies is that norms
have a highly specific effect on causal judgments: they pref-
erentially affect causal judgments of the entities to which the
norm applies and typically do not extend to other aspects of
the same event. Across three experiments, we find a similar
pattern in participants’ reasoning about counterfactual alter-
natives. Collectively, these findings suggest that, rather than
representing a counterfactual alternative to an event in its en-
tirety, participants’ causal and counterfactual cognition rep-
resents events more granularly.

Not only does this shape our interpretation of S&W’s orig-
inal result, it opens an exciting new frontier in the study of
causal cognition. How events are represented in causal and
counterfactual cognition, and which aspects of an event are

represented as distinct variables, are almost completely unex-
plored topics (e.g. Halpern & Hitchcock, 2015 explicitly ac-
knowledge this issue). However, as emerging research makes
clear, it will be difficult to make precise predictions about the
impact of norms without a more well worked-out theory of
how events are represented in causal reasoning.

This opportunity cuts in both directions. These results are,
to our knowledge, the first empirical investigation of which
events are represented as distinct variables. Yet, as much as
we need to build precise theories of how these events are rep-
resented in order to understand how norms will affect causal
judgments, we can also use the effect of norms on causal
judgments to determine which causes are distinct. We look
forward to exploring these questions in future work.
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Abstract

Increasingly, cognitive scientists have demonstrated interest in
applying tools from deep learning. One use for deep learning is
in language acquisition where it is useful to know if a linguistic
phenomenon can be learned through domain-general means.
To assess whether unsupervised deep learning is appropriate,
we first pose a smaller question: Can unsupervised neural net-
works apply linguistic rules productively, using them in novel
situations? We draw from the literature on determiner/noun
productivity by training an unsupervised, autoencoder network
measuring its ability to combine nouns with determiners. Our
simple autoencoder creates combinations it has not previously
encountered and produces a degree of overlap matching adults.
While this preliminary work does not provide conclusive evi-
dence for productivity, it warrants further investigation with
more complex models. Further, this work helps lay the foun-
dations for future collaboration between the deep learning and
cognitive science communities.

Keywords: Deep Learning; Language Acquisition; Linguistic
Productivity; Unsupervised Learning; Determiners

Introduction
Computational modeling has long played a significant role
within cognitive science, allowing researchers to explore
the implications of cognitive theories and to discover what
properties are necessary to account for particular phenom-
ena (J. L. McClelland, 2009). Over time, a variety of mod-
eling traditions have seen their usage rise and fall. While the
1980s saw the rise in popularity of connectionism (Thomas &
McClelland, 2008), more recently symbolic Bayesian mod-
els have risen to prominence (Chater & Oaksford, 2008; Lee,
2011). While the goals of cognitive modelers have largely
remained the same, increases in computational power and ar-
chitectures have played a role in these shifts (J. L. McClel-
land, 2009). Following this pattern, recent advances in the
area of deep learning (DL) have led to a rise in interest from
the cognitive science community as demonstrated by a num-
ber of recent workshops dedicated to DL (Saxe, 2014; J. Mc-
Clelland, Hansen, & Saxe, 2016; J. McClelland, Frank, &
Mirman, 2016).

As with any modeling technique, DL can be thought of
as a tool which is best suited to answering particular types
of questions. One such question is that of learnability,
whether an output behavior could ever be learned from the
types of input given to a learner. These types of ques-
tions play an integral role in the field of language acquisi-
tion where researchers have argued over whether particular
aspects of language could ever be learned by a child with-
out the use of innate, language-specific mechanisms (Smith,
1999; C. D. Yang, 2004; Chater & Christiansen, 2010; Pearl,

2014). The success of a domain general learner does not nec-
essarily imply that human learners acquire the phenomenon
in a similar fashion, but it does open the possibility that we
need not posit innate, domain-specific knowledge.

The crux of these learning problems typically lies in mak-
ing a particular generalization which goes beyond the input
data. One major type of generalization that DL models would
need to capture is known as linguistic productivity. A gram-
matical rule is considered productive when it can be applied
in novel situations. For example, as a speaker of English you
may never have encountered the phrase a gavagai before, but
you now know that gavagai must be a noun and can therefore
combine with other determiners to produce a phrase such as
the gavagai. Before DL might be applied to larger questions
within language acquisition, the issue of productivity must
first be addressed. If DL models are not capable of produc-
tivity, then they cannot possibly serve to model the cognitive
process of language acquisition. On the other hand, if DL
models demonstrate basic linguistic productivity, we must ex-
plore what aspects of the models allow for this productivity.

The Special Case of Determiners
For decades, debate has raged regarding the status of produc-
tive rules among children acquiring their native language. On
the one hand, some have argued that children seem hardwired
to apply rules productively and demonstrate this in their ear-
liest speech (Valian, Solt, & Stewart, 2009; C. Yang, 2011).
On the other, researchers have argued that productivity ap-
pears to be learned, with children’s early speech either lack-
ing productivity entirely or increasing with age (Pine & Mar-
tindale, 1996; Pine, Freudenthal, Krajewski, & Gobet, 2013;
Meylan, Frank, Roy, & Levy, 2017). Of particular interest
to this debate has been the special case of English determin-
ers. In question is whether or not English-learning children
have acquired the specific linguistic rule which allows them
to create a noun phrase (NP) from a determiner (DET) and
noun (N) or if they have simply memorized the combinations
that they have previously encountered. This linguistic rule,
NP→ DET N, is productive in two senses. First, it can be
applied to novel nouns, e.g. a gavagai. Second, consider the
determiners a and the. If a singular noun can combine with
one of these determiners, it may also combine with the other,
e.g. the wug.

This type of rule seems to be acquired quite early in acqui-
sition, making it appropriate to questions of early productiv-
ity, and provides an easy benchmark for a DL model. Yet
answering such a simple question first requires addressing
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how one might measure productivity. Most attempts to mea-
sure productivity have relied on what is known as an overlap
score, intuitively what percentage of nouns occur with both a
and the (C. Yang, 2011). This simple measure has been the
source of some controversy. C. Yang (2011) argues that early
attempts failed to take into account the way in which word
frequencies affect the chance for a word to “overlap”. Be-
cause word frequency follows a Zipfian distribution, with a
long tail of many infrequent words, many nouns are unlikely
to ever appear with both determiners. He proposes a method
to calculate an expected level of overlap which takes into ac-
count these facts. Alternatively, Meylan et al. (2017) propose
a Bayesian measure of productivity which they claim takes
into account the fact that certain nouns tend to prefer one de-
terminer over another. For instance, while one is more likely
to hear a bath than the phrase the bath, the opposite is true of
the noun bathroom which shows a preference for the deter-
miner the (Meylan et al., 2017).

The literature is quite mixed regarding whether or not chil-
dren show early productivity. Differences in pre-processing
have lead researchers to draw opposite conclusions from sim-
ilar data, making interpretation quite difficult (C. Yang, 2011;
Pine et al., 2013). Indeed, most corpora involving individual
children are small enough that Meylan et al. (2017) argue it is
impossible to make a statistically significant claim as to child
productivity. For analyzing whether or not text generated by
a DL model is productive or not, we thankfully do not need
to fully address the problem of inferring child productivity.
Ideally, the model would demonstrate a similar level of over-
lap to the data it was exposed to. We make use of the overlap
statistic from Yang because it is more easily comparable to
other works and has been better studied than the more recent
Bayesian metric of Meylan et al. (2017).

Deep Learning for Language Acquisition
Deep learning, or deep neural networks, are an extension of
traditional artificial neural networks (ANN) used in connec-
tionist architectures. A “shallow” ANN is one that posits a
single hidden layer of neurons between the input and out-
put layers. Deep networks incorporate multiple hidden lay-
ers allowing these networks in practice to learn more com-
plex functions. The model parameters can be trained through
the use of the backpropogation algorithm. The addition of
multiple hidden layers opens up quite a number of possible
architectures, not all of which are necessarily applicable to
problems in cognitive science or language acquisition more
specifically.

While the most common neural networks are discrimina-
tive, i.e. categorizing data into specific classes, a variety of
techniques have been proposed to allow for truly generative
neural networks. These generative networks are able to take
in input data and generate complex outputs such as images or
text which makes them ideal for modeling human behavior.
We focus on one generative architecture in particular known
as a deep autoencoder (AE) (Hinton & Salakhutdinov, 2006).

While AEs have been used for a variety of input data types,

most prominently images, we describe their use here primar-
ily for text. The first half, the encoder, takes in sentences
and transforms them into a condensed representation. This
condensed representation is small enough that the neural net-
work cannot simply memorize each sentence and instead is
forced to encode only the aspects of the sentence it believes
to be most important. The second half, the decoder, learns to
take this condensed representation and transform it back into
the original sentence. Backpropogation is used to train model
weights to reduce the loss between the original input and the
reconstructed output. Although backpropagation is more typ-
ically applied to supervised learning problems, the process is
in fact unsupervised because the model is only given input
examples and is given no external feedback.

AEs have been shown to successfully capture text repre-
sentations in areas such as paragraph generation (Li, Luong,
& Jurafsky, 2015), part-of-speech induction (Vishnubhotla,
Fernandez, & Ramabhadran, 2010), bilingual word represen-
tations (Chandar et al., 2014), and sentiment analysis (Socher,
Pennington, Huang, Ng, & Manning, 2011), but have not
been applied to modeling language acquisition. While any
number of DL architectures could be used to model language
acquisition, the differences between ANNs and actual neu-
rons in the brain make any algorithmic claims difficult. In-
stead, DL models might be used to address computational-
level questions, for instance regarding whether or not a piece
of knowledge is learnable from the data encountered by chil-
dren. Before this can be done, however, it remains to be seen
whether DL models are even capable of creating productive
representations. If they cannot, then they do not represent
useful models of language acquisition. This work attempts to
address this not by creating a model of how children acquire
language, but by using methods from the psychological liter-
ature on productivity to assess the capability of DL to learn
productive rules.

Methods
Corpora
To train our neural network, we make use of child-directed
speech taken from multiple American-English corpora in
the CHILDES database (MacWhinney, 2000). In particu-
lar, we make use of the CDS utterances in the Bloom 1970,
Brent, Brown, Kuczaj, Providence, Sachs, and Suppes cor-
pora (Bloom, 1970; Brent & Siskind, 2001; Brown, 1973;
Kuczaj, 1977; Demuth & McCullough, 2009; Sachs, 1983;
Suppes, 1974). The combined corpora contain almost 1 mil-
lion utterances and span a wide age range, including speech
directed to children as young as 6 months and as old as 5
years. Relevant information about the used corpora can be
found in Table 1.

Because we are interested in seeing what the AE can learn
from data similar to that encountered by children, we train
the model only on child-directed utterances. These can be
produced by any adult in the dataset, including parents and
researchers. Although a comparison with child-produced text
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Figure 1: Visual representation of the autoencoder model.

holds great interest, it is not clear whether child-produced
speech is rich enough to support robust language learning on
its own. It therefore provides a poor basis upon which to train
the AE.

Text from the various corpora is processed as a single docu-
ment. Child-directed utterances are cleaned from the raw files
using the CHILDESCorpusReader function of the Python
Natural Language Toolkit (NLTK). Utterances from all non-
children speakers are included and not limited just to the pri-
mary caregiver. Each utterance is split into words according
to the available CHILDES transcription and then made low-
ercase. The model represents only the most frequent 3000
words, while the remainder are represented as a single out-
of-vocabulary (OOV) token. This step is taken both to re-
duce computational complexity but also to mimic the fact that
young children are unlikely to store detailed representations
of all vocabulary items encountered. Because the neural net-
works require each input to be of the same length, sentences
are padded to a maximum length of 10 words. Sentences that
are longer than this are truncated, while short sentences are
prepended with a special PAD token.

Corpora Age Range N. Utterances
Bloom 1970 1;9 - 3;2 62,756
Brent 0;6 - 1;0 142,639
Brown 1;6 - 5;1 176,856
Kuczaj 2;4 - 4;1 57,719
Providence 1;0 - 3;0 394,800
Sachs 1;1 - 5;1 28,200
Suppes 1;11 - 3;3 67,614
Overall 0;6 - 5;1 930,584

Table 1: Descriptive statistics of CHILDES corpora. Ages
are given in (year;month) format and indicate the age of the
child during corpus collection.

Neural Network Architecture
Our autoencoder model was implemented using Keras and
Tensorflow. The words in each sentence are input to the
model as a one-hot vector, a vector of 0s with a single 1 whose
placement indicates the presence of a particular word. This is

an inefficient representation because it assumes all words are
equally similar, e.g. that dog is equally similar to dogs as
it is to truck. To deal with this, the model passes the one-
hot vector to an embedding layer. Neural word embeddings,
as popularized by the word2vec algorithm (Mikolov, Chen,
Corrado, & Dean, 2013), are a way to represent words in
a low-dimensional space without requiring outside supervi-
sion. Words are placed within the space such that words that
are predictive of neighboring words are placed closer to one
another. Because our training data is relatively small, we keep
the embedding dimensionality low, at only 30. Standard em-
beddings trained on much larger NLP corpora tend to use 100
or 200 dimensions.

Once each word has been transformed into a 30-
dimensional embedding vector, the sequence of words is
passed into a gated-recurrent unit (GRU) layer (Cho et al.,
2014). The GRU is a type of recurrent (RNN) layer which
we choose because it can be more easily trained. RNN lay-
ers read in their inputs sequentially and make use of hidden
“memory” units that pass information about previous inputs
to later inputs, making them ideal for sequence tasks such as
language. As such, the model creates a representation of the
sentence which it passes from word to word. The final repre-
sentation is the output of the encoder, a latent representation
of the full sentence.

This 20-dimensional latent vector serves as the input to the
decoder unit. The first layer of the decoder is a GRU layer of
the same shape as in the encoder. For each timestep, we feed
into the GRU the latent vector, similar to the model proposed
in Cho et al. (2014). Rather than producing a single output,
as in the encoder, the decoder’s GRU layer outputs a vector at
each timestep. Each of these vectors is fed into a shared dense
softmax layer which produces a probability distribution over
vocabulary items. The model then outputs the most likely
word for each timestep.

The model loss is calculated based on the model’s ability to
reconstruct the original sentence through categorical crossen-
tropy. Model weights are trained using the Adam optimzer
over 10 epochs. During each epoch the model sees the entire
training corpus, updating its weights after seeing a batch of 64
utterances. While this process does not reflect that used by a
child learner, it is a necessary component of training the neu-
ral network on such a small amount of data. If the network
had access to the full set of speech that a child encounters
such a measure likely would not be necessary. Future work
might also investigate whether optimizing the dimensionality
of the network might lead to better text generation with higher
levels of productivity.

Baseline Models
Because the AE is learning to reproduce its input data, one
might wonder whether similar results might be achieved by a
simpler, distributional model. To assess this, we also mea-
sure the performance of an n-gram language model. We
train bigram and trigram language models using the modi-
fied Kneser-Ney smoothing (Heafield, Pouzyrevsky, Clark,
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& Koehn, 2013) implemented in the KenLM model toolkit
to estimate the distributional statistics of the training corpus.
Sentences are generated from the n-gram language model by
picking a seed word and then sampling a new word from the
set of possible n-grams. The smoothing process allows for
the model to generate previously unseen n-grams. Sampling
of new words continues for each utterance until the end-of-
sentence token is generated or a maximum of 10 tokens is
reached (the same maximum size as for the AE).

Since the AE is able to generate sentences from a latent
representation, it would be inappropriate to generate n-gram
sentences from random seed words. Instead, for every sen-
tence in the test set we begin the n-gram model with the first
word of the utterance. While this allows the model to always
generate its first token correctly, this does not directly impact
our measure of productivity as it relies on combinations of
tokens.

Productivity Measures
We measure the productivity of our autoencoders through the
overlap score described in C. Yang (2011). Words both in
the child-directed corpus and the autoencoder-generated out-
put are tagged using the default part-of-speech tagger from
NLTK. The empirical overlap scores are simply calculated
as a percentage of unique nouns that appear immediately af-
ter both the determiners a and the. The expected overlap
score is calculated based off of three numbers from the cor-
pus under consideration, the number of unique nouns N, the
number of unique determiners D, and the total number of
noun/determiner pairs S. The expected overlap is defined as
in Equation 1:

O(N,D,S) =
1
N

N

∑
r=1

O(r,N,D,S) (1)

where O(r,N,D,S) is the expected overlap of the noun at
frequency rank r:

O(r,N,D,S) = 1+(D−1)(1− pr)
S−

D

∑
i=1

[(di pr +1− pr)
S]

(2)
di represents the probability of encountering determiner i,

for which we use the relative frequencies of a and the cal-
culated from the training corpus (39.3% and 60.7%, respec-
tively). The probability pr represents the probability assigned
to a particular word rank. The Zipfian distribution takes
a shape parameter, a which C. Yang (2011) set equal to 1
and which we optimize over the training corpus using least
squares estimation and set at 1.06:

pr =
1/ra

∑
N
n=1(

1
na )

(3)

It should be noted that Zipfian distributions are not perfect
models of word frequencies (Piantadosi, 2014), but assigning
empirically-motivated values to the determiner probabilities

and Zipfian parameter a represents an improvement upon the
original measure.

Results
We analyze our overlap measures for the adult-generated (i.e.
child-directed) as well as the autoencoder and n-gram model-
generated text and present these results in Figure 2. We ana-
lyze overlap scores across 10 training epochs with three lev-
els of dropout, 10%, 20%, and 30%. Dropout is typically
included in neural models to encourage the model to better
generalize. We hypothesized that a certain level of dropout
would encourage the model to generate novel combinations
of words that might lead to higher overlap scores. We find
that with only two training epochs the AEs have already be-
gun to near their maximum overlap performance. The 30%
dropout AE achieves the highest level of performance, match-
ing the empirical overlap score of the original corpus. The
10% and 20% dropout models perform somewhat worse sug-
gesting that high levels of dropout may be necessary for good
text generation.

In Table 2, we present the results for the final epoch of
the AE models as well as for the adult-generated and n-
gram generated text. We note that the expected overlap mea-
sure consistently overestimates the productivity of all learn-
ers, including the adult-generated text. It is unclear why
this should be the case, but could be a result of capping the
model vocabularies, resulting in lower N values. In particu-
lar, the autoencoders tend to produce a relatively limited set
of nouns. Looking at empirical overlap measures, the worst-
performing models are the bigram and trigram models with
overlap scores below 30%. The AEs fair much better all pro-
ducing overlap scores over 50%. The 30% dropout AE is
actually able to match the overlap score of the original adult-
generated corpus (59.4% vs. 59.3%).

Looking at the number of unique nouns following a de-
terminer (N) and the total number of determiner-noun pairs
(S), it becomes clear there are large differences between the
n-gram and AE models. The n-gram models tend to pro-
duce very few determiner-noun pairs (low S) but are likely to
choose from any of the nouns in the corpus, leading to high
N. This fact accounts for the low overlap scores that they
achieve. In contrast, the AEs follow a pattern which mir-
rors the adult corpus with few unique nouns but a large num-
ber of noun-determiner pairs. In all cases, however, the AEs
produce both fewer unique nouns and fewer noun-determiner
pairs than the original corpus.

One possible problem for calculating the expected over-
laps comes from the difficulty of part-of-speech tagging text
generated by the neural network. Whereas adult-generated
speech follows set patterns that machine taggers are built to
recognize, the neural network does not necessarily generate
well-formed language. Examples of AE-generated text can
be found in Table 3. In some cases, the tagger treats items
that occur after a determiner as a noun regardless of its typ-
ical usage. For example, in the generated sentence let put
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Figure 2: Empirical overlap scores. Adult-generated speech
is marked by the solid black line while autoencoder-generated
speech is marked by the dashed colored lines. Results are
presented for three levels of dropout, 10%, 20%, and 30%.
The x-axis represents the training epoch of the model.

N S Exp. Over. Emp. Over.
Adult 1,390 34,138 77.5% 59.3%
AE 10% 861 29,497 88.4% 53.3%
AE 20% 870 28,817 87.6% 53.4%
AE 30% 816 31,181 90.8% 59.4%
Bigram 1,780 5,177 17.6% 28.6%
Trigram 2,506 4,595 11.2% 22.1%

Table 2: Expected and empirical overlap scores for adult-
and autoencoder-generated language with varying levels of
dropout. Expected overlap scores were calculated as in Yang
(2011). Empirical overlap was calculated as the percent of
unique nouns that appeared immediately following both a and
the.

put the over over here, the phrase the over is tagged as a
DET+N pair. These type of errors are further evidenced by
the fact that the trigram language model produces a larger set
of words tagged as nouns than the original adult-generated
corpus (2,506 vs. 1,390).

Another explanation for the difference between expected
and empirical overlaps may come from deviation from a true
Zipfian distribution of word frequencies. If word frequencies
are Zipfian, we should expect a perfect correlation between
log ranks and log counts. C. Yang (2011) report a correla-
tion of 0.97, while our larger corpus deviates from this with
r2 = 0.86. Although we attempt to take this into account by
fitting the Zipfian distribution’s shape parameter, this diver-
gence clearly indicates that further work is needed.

The success of the AE model in generating productive
text serves as a confirmation that unsupervised neural models
might be used in future work to investigate other cognitive
phenomena. This work does not directly address the ques-
tion of how infants might learn to produce productive speech,
it does represent one possible approach. AEs can, for in-
stance, be thought of as information compression algorithms
which learn to represent high-dimensional data into a low-

dimensional latent space (Hinton & Salakhutdinov, 2006). If
the brain likewise attempts to find efficient representations of
the stimuli it encounters then it may prove fruitful to investi-
gate how these representations compare to one another.

Adult Autoencoder
falling down down down
you’re playing with you’re playing with
your bus the head
why did OOV say what’s what what you say say
wrong with these apples say with the dada

Table 3: Example adult and AE-generated language. The AE-
generated text is from the final epoch of the AE with 20%
dropout. In bold is a DET+N combination that does not ap-
pear in the AEs input.

Conclusion
While there is great interest regarding the inclusion of deep
learning methods into cognitive modeling, a number of ma-
jor hurdles remain. For the area of language acquisition,
deep learning is poised to help answer questions regarding
the learnability of complex linguistic phenomena without ac-
cess to innate, linguistic knowledge. Yet it remains unclear
whether unsupervised versions of deep learning models are
capable of capturing even simple linguistic phenomena. In
this preliminary study, we find that a simple autoencoder with
sufficient levels of dropout is able to mirror the productivity
of its training data, although it is unclear whether this proves
productivity in and of itself.

Future work will need to investigate whether more com-
plex models might be able to generate text with higher pro-
ductivity as well as further investigating how particular model
choices impact performance. It would also be worthwhile to
compare AEs against simpler models such as a basic LSTM
language model. While additional work needs to be done to
motivate the use of deep learning models as representations of
how children might learn, this preliminary work shows how
one might combine techniques from deep learning and devel-
opmental psychology.
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Abstract 

In online networks, the polarization of opinions (e.g., 
regarding presidential elections or referenda) has been 
associated with the creation of “echo-chambers” of like-
minded peers, secluded from those of contrary viewpoints. 
Previous work has commonly attributed such phenomena to 
self-regarding preferences (e.g., confirmation bias), individual 
differences, and the pre-dispositions of users, with clusters 
forming over repeated interactions. 
The present work provides a proof of concept Agent-Based 
Model that demonstrates online networks are susceptible to 
echo-chambers from a single opinion cascade, due to the 
spatiotemporal order induced by lateral transmission. This 
susceptibility is found to vary as a function of degree of 
interconnectivity and opinion strength. Critically, such effects 
are found despite globally proportionate levels of opinions, 
equally rational agents (i.e. absent conformity, confirmation 
bias or pre-disposition architecture), and prior to cyclical 
interactions.  
The assumptions and implications of this work, including the 
value of Agent-Based Modelling to cognitive psychology, are 
discussed. 

Keywords: Information cascades; opinion dynamics; belief 
updating; Agent-Based Models 

Introduction 

As online networks, such as social media, have developed 

and increased in popularity, research regarding the spread of 

false information, the polarization of opinions (Dandekar, 

Goel, & Lee, 2013), and echo-chamber phenomena (Del et 

al., 2016) have become increasingly pertinent topics. Such 

phenomena pose a problem to society, and democracy as a 

whole, given the average user’s exposure to only the 

information and opinions of their local (i.e. direct) network, 

leading to a break-down in informed debate and consensus. 

Recently, questions regarding how individuals on a 

network receive new information and form or adopt 

opinions has come to the fore. Whether on topics of national 

referenda, deciding between presidential candidates, or 

interpreting news events (e.g., who is at fault in the 

annexation of Crimea, the shooting down of passenger 

aircraft, the political correctness of a reported comment or 

behavior), it has become more and more common for such 

information to be ascertained via social media
1
. In this way, 

an agent’s source of information comes through a filter of 

network-acquaintances, presenting an unprecedented degree 

                                                           
1 In 2016 a PewResearch poll found the majority (62%) of US 

adults get their news through social media. Source: 

http://www.journalism.org/2016/05/26/news-use-across-social-

media-platforms-2016/  

of lateral, peer-to-peer dissemination of information. Such 

peer-to-peer transference of information, in a time where the 

information itself (whether “fake news”, political memes, or 

posted opinion) carries a bias in its view of the world, 

presents a problem that psychology and multi-agent 

modelling is well-placed to answer. 

The purpose of the present paper is two-fold: Firstly, this 

work provides a novel demonstration of the dangers of 

lateral propagation of opinions in online networks, based 

solely on the level of interconnectivity and the inherent way 

in which interpreted events (i.e. opinions) travel through 

them. This results in high levels of false consensuses and 

echo-chambers on a local level within the network. 

Critically, such localized clustering is shown to occur before 

any repeated interaction behaviors, and is robust to both 

different opinion strengths and propensities to communicate. 

Secondly, this work presents an argument that cognitive 

science is readily placed to lend insight into these 

interactive, societal level phenomena, and the super-

aggregate behaviors. Such insight can be lent by the ready 

application of cognitive models taken from individual-based 

empirical work and theory, to multi-agent simulations, 

known as Agent-Based Models (ABMs), so as to uncover 

and explain phenomena beyond the scope of individual-

based experiments. 

Cascades and Opinions 

How information is communicated between individuals on a 

societal (or multi-agent) scale, and its consequences, has 

been formally approached in two main areas; information 

cascades and opinion dynamics. 

Research in information cascades has focused on the way 

in which information is spread through a system. This has 

included how networks may be resistant to cascading 

influence, such as the spread of cultural fads (Watts, 2002). 

Such work has typically characterized “information” as a 

singular, memetic entity that is propagated or hindered by 

either the properties of individuals within the network (such 

as the proportion of “easily influenced individuals”, see 

Watts & Dodds, 2007), or the structure of the network itself 

(e.g., hierarchical influencers; see Watts, 2002). This work 

has illustrated power law effects in information propagation 

across networks, an effect akin to percolation theory in 

physics (for a review, see Essam, 1980), wherein the 

clustered structure of a system leads to a critical singularity 

event (i.e. cascade). These cascades result in cluster size 

distribution effects, where smaller, more numerous clusters 
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occur as systems become more interconnected (Amar & 

Family, 1995; Meakin, Vicsek, & Family, 1985). 

Research in opinion dynamics has instead focused on the 

cyclical interactions of individuals within a network. In 

particular, it has looked at the ways in which individuals and 

groups interact so as to either reach a consensus (Acemoglu 

& Ozdaglar, 2011; Hegselmann & Krause, 2002) or 

segregate into polarized sub-groups of homogenous 

opinion-holders (Dandekar et al., 2013; Duggins, 2016; 

Zanette & Gil, 2006). Critically, this research has focused 

on groups of pre-existing opinion-holders. This work has 

yielded insights into belief-updating via repeated interaction 

(such as through the use of the Bounded Confidence Model; 

Deffuant, Neau, Amblard, & Weisbuch, 2000), along with 

psychologically based models of behaviors including 

network pruning (Ngampruetikorn & Stephens, 2015), 

which provides a plausible pruning mechanism of network 

contacts, based on a confirmation bias (self-regarding) 

principle. 

The present paper interweaves elements of these two lines 

of literature, in conjunction with cognitive architecture 

brought forth from models of learning and communication 

in cognitive psychology. In particular, agents are encoded 

with three pieces of cognitive machinery: attention 

(detecting the public declarations of others); learning 

(incorporating a communication into a belief-state, and 

evaluating it against evidence); and decision-making (each 

choosing whether to make their opinion public based on a 

decision rule). In this way, all agents within the network are 

equally rational. 

By focusing on universal cognitive architecture on the 

part of agents (and instead introducing stochasticity to the 

evidence against which an opinion is evaluated), this work 

argues that echo-chambers may result solely from the way 

in which networks are structured, and the spatiotemporal 

order of lateral opinion transference (i.e. an opinion 

cascade). 

The semi-random way in which networks are structured 

(my relational position to the global network is random, but 

my method of forming my proximal (direct) connections is 

rule-based (those whom I know)), runs parallel to work on 

“small-worlds” (Watts & Strogatz, 1998), which have 

shown susceptibility to cascades and synchronizability. As 

such, echo-chambers may occur without reliance on 

repeated interaction (Acemoglu & Ozdaglar, 2011; Duggins, 

2016), or individual differences encoded in agents, such as 

differences in susceptibility, or pre-dispositions towards an 

opinion (Watts & Dodds, 2007) or hierarchy (see 

Quattrociocchi, Caldarelli, & Scala, 2014). 

Agent-Based Modeling 

ABMs are multi-agent, dynamic simulations which use 

combinations of three central components; agents, patches, 

and links. Agents are the individual actors within a model, 

and in the present paper, represent individuals within a 

network. Agents may be encoded cognitive rules (e.g., 

learning models), simple behaviors (e.g., signaling to 

neighboring agents, movement), and values (e.g., prior 

beliefs, physical positioning). Agents are ascribed various 

forms of heterogeneity (such as occupying different 

positions within a network), as multiple agents are generated 

within the system. As the simulation runs, agents enact 

behaviors and update their values according to the specific 

rules ascribed to them, interacting with other agents and the 

environment accordingly.  

Similarly, both links, which represent connections 

between agents, and patches, which represent the 

environment, may be encoded with behaviors and values, 

and the capacity to dynamically interact and update as the 

simulation runs. In the present paper, links are used to 

represent the connections between individuals within a 

network, and are thus used for signaling between agents. 

Given the network representation (requiring only agents and 

the links between them), the present model does not require 

the use of patches. 

ABMs have been used to explore and assess how 

behaviors on an individual level, when placed within a 

dynamic, multi-agent, heterogeneous system, can lead to 

societal level, super-aggregate behaviors (Epstein, 1999, 

2006; Schelling, 2006). For example, by encoding a 

preference in individuals to be neighbors with others who 

are similar (whether, on racial, socio-economic, or cultural 

lines), and assuming some stochasticity in signaling such 

similarity, Thomas Schelling (1971) was able to show the 

evolution of segregation on a community, and even city-

wide level. In a similar manner, the previously mentioned 

research on information cascades  and opinion dynamics 

(Duggins, 2016) has used this technique to demonstrate a 

number of phenomena, with relatively few assumptions, that 

are difficult with traditional, equation-based cognitive 

modelling. 

A Model of Opinion Cascades 

The aim of the current model is to provide a proof that the 

inherent structure of an online network is susceptible to high 

degrees of opinion segregation (i.e. false consensuses or 

echo-chambers). Critically, this segregation does not require 

repeated interaction, and can instead occur as a consequence 

of a single “cascade” across a network of rational agents 

(i.e. assuming no individual differences in cognitive 

architecture), despite equal proportions of opinion-holders 

on a global level. 

A network of agents is created whereby agents are 

randomly assigned an XY coordinate, and each outfitted 

with the cognitive architecture and values outlined below. 

Each agent then forms links with its neighbors based on 

proximity in terms of Euclidean distance – representative of 

relational proximity in online networks (see Duggins, 2016). 

The number of links agents form is manipulated, and based 

on the percentage of the total number of agents in the 

system, from .5%, to 50%. This is calculated by dividing the 

number of links per agent by the total number of agents in 

the network. Thus, given a population of 1000 agents, for an 

interconnectivity of .5%, all agents form links with their 
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nearest 5 neighbors; for 10%, the nearest 100 agents, and so 

on. Accordingly, given a fixed population size across 

simulations, interconnectivity is manipulated via the number 

of links each agent possesses. In a similar manner, a neutral 

“event” node is placed in the geographical center of the 

simulation, and connected to the nearest agents according to 

the above rules for interconnectivity. Thus, increasing 

interconnectivity beyond 50% serves no purpose, given that 

every other agent will have been exposed to the neutral 

event (i.e. is 1
st
 generation), and thus no cascade can occur 

beyond two time points. Similarly, in the current model, 

interconnectivity below .5% (i.e. 5 links per Agent) starts to 

risk fracturing the network into separate entities. 

Cognitive Architecture 

Each agent is outfitted with simple cognitive architecture 

that can be classified into three branches: attention, learning, 

and propagation. 

All agents within the network attend to their linked-

neighbors, in that they are sensitive to the first of their 

neighbors to “declare” an opinion. Having seen such a 

declaration, the agent then moves into a learning phase to 

evaluate it.  

The communicated opinion thus forms a prior for the 

evaluating agent. As mentioned previously, the opinions in 

the model are categorized into a binary division (Opinion A, 

Opinion B). Thus, from a neutral prior (.5), moving towards 

Opinion A is assigned a positive direction, whilst moving 

towards Opinion B a negative direction. In this way, a prior 

indicating Opinion A should shift the neutral recipient agent 

positively (e.g., 0.5 + 0.1 = 0.6), and negatively for Opinion 

B. The strength of this shift is accordingly manipulated as a 

proxy of opinion strength / influence. 

To represent the relationship between the strength of an 

opinion and the likelihood of a recipient adhering to that 

opinion, a learning model is used that allows agents to 

evaluate the opinion against stochastic evidence. 

Specifically, a reinforcement learning model is used 

(Rescorla & Wagner, 1972), in which agents evaluate an 

opinion in light of new evidence, such that the prediction 

error (δ), multiplied by the learning parameter (β), is added 

to the value associated with the opinion (prior) for the 

current trial (Q(t)), leading to an updated opinion value (Q(t 

+ 1)). 

𝑄(𝑡 + 1) =  𝑄(𝑡) +  𝛽𝛿(𝑡)        (1) 

 

Such models have been adapted (with added complexity) 

successfully to model the impact of instruction in 

reinforcement learning (Doll, Jacobs, Sanfey, & Frank, 

2009; Staudinger & Büchel, 2013) and are thus considered a 

suitable placeholder for the proof of concept model. To 

evaluate the belief, agents then experience a number of 

evidence trials (arbitrarily set to 10), where evidence values 

are binary {0, 1}, and are drawn with equal likelihood (i.e. 

P(E=1) = .5). To reiterate, the learning process herein serves 

as a representation for the relationship between prior 

strength, and its likelihood of acceptance/rejection. Thus, if 

the communicated opinion is represented by a weaker prior, 

it is more likely to be rejected by the learning / evaluation 

process. Similarly, increasing the amount of available 

evidence has the equivalent effect of converging the agent to 

the .5 (neutral) true state of the event (i.e. reducing the 

likelihood of passing on the original opinion). In this way, 

stronger opinions make the cascade more deterministic. 

Further, using a stochastic sampling process to dictate 

opinion uptake serves as a useful baseline model, to which 

complexity may be added directly to learning processes. 

Having evaluated, agents declare for one of the two 

opinions, based on a decision rule: if Q(posterior) > .5, hold 

Opinion A; if < .5, hold Opinion B. This declaration is then 

made public (and thus may act as a prior to attending linked-

neighbors) with a probability that is manipulated between 

systems. For example, a P(Declaration) of 1 means all 

agents will make their opinions public, whilst a 

P(Declaration) of .1 means there is a 10% probability of 

agents making their opinion public. This P(Declaration) 

bears a parallel to Watts and Dodds (2007) “individual 

threshold”, found to impact spreading phenomena. 

Dynamics 

Given the above architecture has been established, 

simulations commence with the initial, neutral “event” 

being witnessed by a portion of the network (based on 

manipulated interconnectivity). These agents (termed 1
st
 

generation) start with a neutral prior, and so, based on the 

stochastic nature of the evidence, half should arrive at each 

opinion post-evaluation. From this point, if an agent of the 

1
st
 generation makes their opinion public (based on 

manipulated P(Declaration)), their attentive (presently 

neutral) linked-neighbors (2
nd

 generation) then take this 

opinion as a prior, and evaluate it according to the procedure 

above. This 2
nd

 generation agents, having come to a 

decision, then similarly each choose whether to make their 

opinion public (based on P(Declaration)), and thus the 3
rd

 

generation is exposed. This process continues until there has 

been no change in the number opinion-holders (of either 

type) for two consecutive time periods (i.e. if no one has 

made an opinion public, and thus the opinions have “died 

out”, or if the network is now completely saturated). 

Importantly, for the proof of concept model, having 

decided upon an opinion, an agent is no longer attentive to 

further information. This is purposeful to prevent cyclical 

effects beyond an initial cascade, as the goal of the present 

paper is to show the susceptibility of interconnected neutral 

agents to an opinion cascade, without resorting to 

explanations of homophily (Dandekar et al., 2013) and 

localized consensus reaching (Ngampruetikorn & Stephens, 

2015). 

For the purpose of the present paper, the behaviors of 

interest are constrained to two, related measures. Firstly, the 

global proportion of opinions across the system (i.e. the 

proportion of agents with Opinion A, and the proportion 

with Opinion B) is of interest before inferring anything 

about localized clustering. For example, whether localized 
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clustering is simply a by-product of a dominant, network-

wide opinion. This leads to the second measure: the average 

percentage of likeminded neighbors an agent possesses. In 

other words, of an agent’s visible network, what percentage 

are in agreement with the agent (e.g., 50% indicates agents 

directly linked to equal proportions of each opinion-type).  

The manipulated variables are summarized in table 1 below: 

 

Table 1. System variables 

 

 

Central Findings 

The above model was implemented in NetLogo (5.2.1). 

Each system specification (Interconnectivity (100) x 

Opinion Strength (3) x P(Declaration) (3)) was run 

independently 100 times, taking an average set of values for 

each specification. The total number of agents in each 

simulation was set to 1000. 

Figs. 1a & 1b show example outcomes of opinion cascades 

(A in red, B in blue) across a sparsely connected (1% 

interconnectivity) and a more densely connected (10% 

interconnectivity) system, respectively. 

  

a   b 

 

Figures 1a and 1b: Sparsely and densely connected 

networks, post cascade (grey represents unused links). 

 

Importantly, as Fig. 2 illustrates, irrespective of opinion 

strength, P(Declaration), or interconnectivity, the global 

proportion of different opinion holders consistently 

approximates 50/50.  

 

 
 

Figure 2: Proportion of opinion holders across network 

 
 

Figure 3: Degree of Clustering. Calculated as the average 

percentage of like-minded neighbors an agent possesses 

(panels represent P(Declaration) conditions). 

 

The degree of clustering (Fig. 3) can be broken down into 

several key findings. First, and central to the present paper, 

localized clustering increases as a function of decreasing 

interconnectivity and opinion strength, with stronger 

opinions and low interconnectivity (<1%) resulting in the 

local (directly visible) networks of agents consisting of 

>90% likeminded individuals
2
. Second, this effect occurs 

irrespective of the propensity for individuals within the 

network to make their opinions public
3
. In other words, 

whether P(Declaration) is at 100% or 10%, localized 

clustering occurs regardless. 

Finally, localized clustering is mitigated by the degree of 

stochasticity (i.e. as opinion strength moves towards neutral, 

thus having no communicative impact) and increasing 

interconnectivity. However, it is important to note that to 

prevent local clustering requires either no opinion impact or 

moving towards high (and arguably unrealistic) levels of 

interconnectivity.  

Discussion 

The central finding of the present paper is that the 

fundamental way in which networks are constructed, when 

combined with the temporal dynamics of how information 

travels through them, and the cognitive representation of 

opinions as a prior, inherently leads to false consensus 

effects and echo-chambers. Thus, the more deterministic 

peer-to-peer communications are (i.e. how likely is a 

recipient to adopt the opinion of a sender), and the lower the 

relative density of connections within the network, the 

greater the impact of the spatiotemporal order (i.e. the larger 

the cascade sequence) on clustering.
4
 

                                                           
2 Further simulations in which total network size has been 

varied, but density has been kept constant at 1% (i.e. 10 agent-links 

for 1000 agents, 50 links for 5000 agents) have shown clustering 

effects remain constant (i.e. depend on relational, not absolute 

links / network size). 
3 Mathematically, P(Declaration) starts to have an impact when 

it effectively reduces the average number of “functional” links to a 

point below the absolute threshold for a singular cohesive network 

(i.e. if it reduces the average number of active links below 4 in the 

present model; left-hand panel of Fig. 3). 
4 The present model demonstrates this with fixed, neutral (0.5) 

priors for all agents. If variance in priors is included, such that SD 

Variable Description Levels

Interconnectivity (%) (Links per Agent / Total 

Agents in Network) * 100

0.5, 1, 1.5, 

... 50

Opinion Strength Added to (or subtracted from) 

neutral agent prior (P(H) = .5)

0, 0.1, 0.2

P(Declaration) Probability of making opinion 

public

0.1, 0.5, 1
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Critically, this effect occurs prior to any repeated 

interactions between agents, separating the present work 

from opinion dynamic literatures (Acemoglu & Ozdaglar, 

2011; Allahverdyan & Galstyan, 2014), and without 

assuming individual differences on the part of agents (e.g., 

differences in susceptibility) or singular information types, 

common to information cascade literatures (Watts, 2002). 

Further, work in these areas including social network 

pruning (Ngampruetikorn & Stephens, 2015) and 

polarization effects (Dandekar et al., 2013; Duggins, 2016), 

when looking at cyclical interactions, illustrate that repeated 

interaction is likely to only exacerbate the already high 

levels of localized clustering. 

False Consensus and Echo-chambers 

The effects described in the present work are found to be 

broadly independent of the propensity to communicate, and 

robust across the degree of interconnectivity (requiring 

approximately 50% interconnective density to negate, 

something unfeasible in online networks approaching 

billions). Putting this into concrete terms, Facebook has an 

estimated 1.79 billion active users
5
. The average (median) 

number of “friends” or links is approximately 200
6
, meaning 

the average user is connected to .000011% of the overall 

network. To fully negate the effects demonstrated here 

would require either the severance of lateral transmissions 

(or decreasing the deterministic capacity of communications 

sufficiently), or having each user share direct connections 

with approximately 900 million other users. 

The formation of echo-chambers and the polarization of 

opinions is typically attributed to repeated interaction with a 

self-regarding preference (Ngampruetikorn & Stephens, 

2015) or a signaling of like-mindedness (e.g., trust; see Li, 

Scaglione, Swami, & Zhao, 2013). This work instead shows 

that the structure of the network, and the way in which 

opinions emanate across it, are sufficient to result in false 

consensus effects and echo-chambers. To put this in more 

pragmatic terms; regardless of who you know, why you 

know them, or how you have repeatedly interacted / pruned 

your network, the fact that you do not, and arguably cannot 

know enough people, no matter who they are, is sufficient to 

leave you highly susceptible to echo-chambers. 

It should be noted that this proof of concept model carries 

with it several assumptions. Most notably, opinions are 

classified in a binary fashion, so as to replicate the target 

                                                                                                  
> opinion strength, then clustering severity is reduced. However, 

this relies on the strong assumption that there is independence of 

opinions across a self-selecting network. If one incorporates 

instead a degree of dependence in neighbouring opinion-holders, 

then one has in effect shifted echo-chamber formation to precede 

opinion transmission, and have thus “baked-in” the result.  
5 Figure taken from monthly active users as of the 3rd quarter of 

2016. Source: https://www.statista.com/statistics/264810/number-

of-monthly-active-facebook-users-worldwide/  
6 Figure taken from Pew Research Center survey of Facebook 

users in 2014. Source: http://www.pewresearch.org/fact-

tank/2014/02/03/6-new-facts-about-facebook/  

opinion types under investigation, and associated with echo-

chambers (e.g., referenda, or political campaigns). Future 

work is proposed to incorporate variance as they move 

across a network (i.e. do they dissipate, or become stronger). 

Secondly, agents attend and evaluate based on the first 

exposure to an opinion in their immediate network (i.e. 

those they are directly connected to). Although future work 

is suggested to incorporate the influence of multiple sources 

(e.g., via social conformity), such architecture is initially 

precluded to avoid “baking in” localized clustering effects. 

Finally, the present model assumes a flat hierarchy of 

individuals. Although the argument can be made that fixing 

the level of interconnectivity for all individuals in a network 

is an artificial constraint, in terms of the degree of 

interconnectivity in target systems (e.g., Facebook) the 

functional difference in interconnectivity among users is 

between approximately .000011% (200 friends) and 

.00028% (5000 friends; Facebook user limit). Although 

structural hierarchy, such as media influencers, may have an 

impact on dissemination (along with their own motives, 

such as following pre-existing opinion trends; see 

Quattrociocchi et al., 2014), the present work serves to 

illustrate that localized clustering can result from the 

spatiotemporal order of lateral transmission across a 

network. 

Further Work 

The present work, in serving as a proof of concept for an 

increasingly important phenomenon, and providing some 

initial assumptions to illustrate the effects in a 

straightforward manner, leaves the door open for further, 

more psychologically informed modelling opportunities. 

Further work should start to incorporate additional 

complexity on the part of agent (cognitive) architecture, 

such as the inclusion of social conformity (Latané, 1981), 

which is predicted to increase clustering tendencies (and 

feasibly increase the strength of opinions as they spread 

throughout the system. Similarly, work on confirmation bias 

suggests a similarly exacerbating role (Allahverdyan & 

Galstyan, 2014; Doll et al., 2009; Nickerson, 1998; 

Staudinger & Büchel, 2013). Finally, the inclusion of 

Bayesian models of source credibility (Harris & Hahn, 

2009; Harris, Hahn, Madsen, & Hsu, 2015; Madsen, 2016) 

are of interest  (Bayesian models of social learning have 

already started being applied to opinion dynamics; see 

Acemoglu & Ozdaglar, 2011), given the way in which 

people form networks (i.e. we tend to select those we know / 

trust / like when forming our “direct” network). These 

suggestions are by no means exhaustive, but serve as 

examples of the promising (and readily applied) further 

additions to the framework laid out in the present work. 

The present work purposefully precludes such 

psychological elements, which are expected to exacerbate 

the effects illustrated in this proof of concept model. This 

choice was made both for reasons of parsimony, and to 

provide a demonstration that the effects herein do not rely 

on such processes or explanations. 
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In conclusion, the present paper demonstrates that rational 

agents (i.e. absent special functionality of cognition or 

individual differences), through the way in which online 

networks are structured, are intrinsically susceptible to high 

levels of localized clustering (i.e. echo-chambers) when 

opinions are transmitted laterally. Further, it is hoped that 

the present paper serves as an example of how 

psychological principles taken from the individual level may 

be applied to a societal level through the use of Agent-

Based Models. 
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Make-or-break: chasing risky goals or settling for safe rewards?
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Abstract: Humans regularly invest time towards activities characterized by dramatic success or failure outcomes, where 
criti-cally, the outcome is uncertain ex-ante. How should people allocate time between such make-or-break activities and 
other safe alternatives, where rewards are more predictable (e.g., linear) functions of time? We present a formal framework 
for studying time allocation between these two types of activities, and explore (optimal) behavior in both one-shot and 
dynamic versions of the problem. In the one-shot version, we illustrate the striking discontinuous relation between peoples 
skill and optimal time allocation to the make-or-break task. In the dynamic version, we formulate both fully rational and 
boundedly rational strategies, both defined by a giving up threshold, which adaptively dictates when one should cease 
pursuit of the make- or-break goal. Comparing strategies across environments, we investigate the cost of sidestepping the 
computational burden of full rationality.
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Abstract

Change in motion discrimination was assessed after seven
days training on a rapid serial visual presentation train-
ing task, which included exposure to below-threshold co-
herent motion that was irrelevant to the task the partici-
pant was involved in. Post-training, participants had im-
proved sensitivity for supra-threshold motion discrimina-
tion, which was specific to the direction exposed during
training. A computational decomposition of the effect
shows that the improvement is a combination of (i) an in-
crease in rate at which participants accumulate evidence
for the direction to which they were exposed and (ii) a
decrease in their criterion for a response. Together with
these differences (consistent across participants) other
cognitive processes vary non-systematically between the
pre-test and the post-test session making an analysis only
based on accuracy or reaction times potentially mislead-
ing. Our analysis shows the benefits of isolating the dif-
ferent processes that are involved in perceptual decision
making and are affected by perceptual learning.
Keywords: task-irrelevant perceptual learning; drift dif-
fusion model; speed-accuracy trade-off

Introduction
During task-irrelevant perceptual learning (TIPL), par-
ticipants learn to better discriminate stimuli to which
they are merely exposed but that are irrelevant to the
purpose of the experiment (Watanabe et al., 2001; Seitz
& Watanabe, 2008). The first example of TIPL comes
from Watanabe et al. (2001), in which authors, after
testing participants on a motion discrimination task, ex-
posed participants to many days of a rapid serial visual
presentation (RSVP) task, on the background of which
was presented a random-field motion stimulus with a be-
low threshold coherence in a constant direction across all
days of training. Watanabe et al. (2001) found that par-
ticipants showed an improvement in a post-test motion
discrimination task, only for the supra-threshold coher-
ence level in the direction to which they were exposed.
Results from TIPL research suggest that the brain, even
in the presence of subliminal exposure, adapts to specific
features of the environment. As discussed in Watanabe
et al. (2001), this result has important implications for
modern everyday life in which we are constantly sub-
ject to high amounts of information that we try to ig-
nore. TIPL research suggests that such ignored informa-
tion could still affect our behaviour.

Focusing only on RT or accuracy for a perceptual task
has some limitations, since different components con-
tribute to those aspects of the decision which can be eas-

ily measured, RT and accuracy: (1) the difficulty of the
decision, (2) the decision criteria adopted by the partici-
pant, which can be more or less conservative, (3) the non-
decision time, which includes time to encode the stimu-
lus and to execute the motor response, (4) the bias to-
wards a response, (5) across trials variation in the above
mentioned mechanisms. If the participant is performing
a task on many different days, since the experimenter is
interested in the effect of learning over different sessions,
it is reasonable to expect that all the above mechanisms
could also vary across different days on the basis of fac-
tors not related to the experiment (e.g., on one day the
participant could be more tired or less collaborative). In
some cases, an approach focusing only on RTs or ac-
curacy has even been misleading in generating theories
from data (for a discussion and examples, see Ratcliff &
McKoon, 2008).

Here, we use the Drift Diffusion Model (DDM; Rat-
cliff & McKoon, 2008) as a tool to isolate different com-
ponents of the processes that contribute to a decision.
The DDM (Ratcliff & McKoon, 2008) is a computational
model of decision making that, over the years, has been
applied in a wide variety of tasks (for a review see Rat-
cliff & McKoon, 2008). In the DDM the decision maker
accumulates evidence supporting two alternatives until a
threshold for a decision is reached. In its arguably most
used formulation (Ratcliff & McKoon, 2008), the DDM
is composed of seven parameters. The first, denoted by
a, is the boundary separation and it describes the distance
between the two decision boundaries. This parameter is
related to the speed-accuracy trade-off. When the bound-
aries are near, the decision is faster but less accurate;
conversely, when the distance between the two bound-
aries increases, the decision is slower but more accurate.
The rate at which noisy information is accumulated over
time within a trial is defined by the drift rate, v. This
parameter reflects the difficulty of the task with respect
to the sensitivity of the observer, with easier conditions
(and/or more sensitive observers) resulting in faster and
more accurate decisions. When the decision maker starts
to integrate difference in evidence at an equal distance
from the two decision boundaries, the process is defined
as unbiased. However, the decision maker can start to in-
tegrate evidence nearer one of the two boundaries so that
a third parameter affect the decision, the starting point
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of evidence accumulation, z. When the decision maker
is biased towards one of the two boundaries, fast RTs
for that boundary but slow RTs for the opposite bound-
ary are predicted, and at the same time the decision is
more likely to end at the nearer boundary. The decision
time is the time required to cross one of the two bound-
aries; however, for each reaction time it is present also a
component that incorporates the non-decision time com-
ponent of a decision, ter, which is the time to encode the
stimulus and execute the motor response (e.g., pressing
a button on the keyboard). Three further parameters of
the DDM are: inter-trial variability in drift rate defined
as eta, in the starting point, sz, and in the non-decision
time, st.

Despite widespread success in other domains, the
DDM has not been consistently applied in the domain
of perceptual learning. In Petrov et al. (2011), the au-
thors performed a DDM decomposition of a fine motion
discrimination task. In their study, authors found that
perceptual learning was best explained by an increase in
drift rate, a decrease in boundary separation and a de-
crease in both the non-decision time component and its
inter-trial variability. In Liu & Watanabe (2012), partic-
ipants performed a three day perceptual learning coher-
ent motion direction task (i.e., is the random dot kine-
matogram all noise or is there some signal?) and authors
found an improvement in drift rate but with boundary
separation decreasing across the days of training. In Du-
tilh et al. (2009), participants performed a 5 days lexical
decision task and authors found that the learning led to
an increase in drift rate, a decrease in boundary sepa-
ration, as well as a significant decrease in non-decision
time. As it is clear from these investigations, RTs and ac-
curacy alone cannot give a full description of the cogni-
tive processes that are most likely to have generated the
data. Considering both measures and their distribution
can lead to a better understanding of the cognitive pro-
cesses involved in such tasks. In particular, if perceptual
learning is associated with a decrease in the boundary
separation, as other studies of task-relevant perceptual
learning have found, then assessing perceptual learning
via measurement of accuracy will systematically under-
estimate the true size of perceptual learning (since de-
creased boundary separation will tend to decrease accu-
racy, all other things being equal).

Although task-relevant perceptual learning has been
decomposed by using the DDM, to our knowledge, no
studies have focused on a DDM decomposition of TIPL.
In our study, we ran an experiment similar to that pre-
sented in Watanabe et al. (2001), and we performed a
DDM decomposition of TIPL. Because of the aforemen-
tioned multi-component nature of perceptual decision-
making, our expectation is that use of the DDM will
allow a more accurate assessment of perceptual learn-

ing than attention to solely RT or accuracy. Further,
the DDM allows us to isolate the component of decision
making that reflects a true change to stimulus sensitivity
- a change in the drift rate parameter. Because of the po-
tential for non-stimulus related parameters to alter across
sessions due to non-experimentally caused factors (such
as fatigue or motivation) and because, by their nature,
perceptual learning experiments involve testing partici-
pants on different days or even weeks, we isolate per-
ceptual learning as an increase in the drift rate for the
exposed stimulus (for one participant also the drift of
the not exposed direction increased but the increase was
greater for the exposed stimulus than for the not exposed
stimulus). In this way, we use each participant as their
own control, testing them for changes in perceptual de-
cision making for both exposed and not exposed stimuli
and thus accommodating non-training related changes in
decision parameters.

Material and methods
Participants Four right-handed healthy university stu-
dents (2 females, ages: 30, 21, 20, 22 years), with no
history of neurological or psychiatric disorders, with nor-
mal vision and naı̈ve to the purpose of the study partici-
pated voluntarily in the experiment and received a com-
pensation of £50 for their participation. The experiment
was approved by the University of Sheffield, Department
of Psychology Ethics Sub-Committee, and carried out in
accordance with the University and British Psychologi-
cal Society ethics guidelines. Participants gave their in-
formed consent.

Apparatus The stimuli were generated on a personal
computer using PsychoPy (Peirce, 2009). During the
whole experiment, participants had to put their head on
a chin rest at a viewing distance of 57 cm from a SONY
Multiscan CPD-200ES 17” monitor with a resolution of
1280 x 1024 pixels at a refresh rate of 60 Hz. The experi-
ment was conducted under binocular viewing conditions
and participants used a keyboard to make a response.

Motion-Direction Stimuli We used stimuli similar to
those adopted by other studies on task-irrelevant percep-
tual learning (Watanabe et al., 2001; Seitz & Watanabe,
2008): on a grey background, within a black annulus
aperture of 1◦ - 10◦, white dots with a size of 2x2 pixels
were moving with a speed of 6◦/s and a density of 16.7
dots/deg2/s on a black background. Signal dots were
randomly chosen in each frame, and on each frame, noise
dots had a random position. Dots had a limited lifetime
of three frames after which they were redrawn in random
locations. If any of the signal dots were to move out of
the annulus, they were replaced randomly in the stimu-
lus field. The stimuli were generated in real time and two
non-cardinal directions were employed in this study, 45◦
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and 135◦.

Procedure The experiment consisted of nine sessions;
a pre-test to measure sensitivity for various strengths of
motion coherence in the two directions, then seven train-
ing sessions consisting of a RSVP task with on the back-
ground a random dot motion, and finally a post-test that
measured sensitivity for various coherence levels in the
two directions, that was equal to the pre-test. Participants
came on different days for each session, and could take a
maximum of three-days break between sessions.

Pre/post Motion-Direction Sensitivity Tests Partici-
pants were instructed to pay attention to the stimulus that
would be presented for 500 ms and then report as quickly
and accurately as possible if the coherent motion was to-
wards up-left (45◦ on the left with respect to an imagi-
nary vertical reference line) or up-right (45◦ on the right
with respect to a imaginary vertical reference line) by
button press. They were instructed to use their right hand
index finger to press left on the keyboard for ‘up-left’,
and their middle finger to choose ‘up-right’. Participants
were instructed that there was always a correct response
and were required to fixate the cross at the centre of the
screen during the whole task and minimise as much as
possible eye movements. In each trial, a fixation cross in
the central circle was presented for 333 ms, followed by
the presentation of moving dots for 500 ms, followed by
two arrows showing the possible direction of the dots and
the text ‘Answer:’ presented on top of the screen until
participants made a response. Each test stage consisted
of 10 blocks x 2 directions (45◦ and 135◦) x 10 motion
coherence levels (5%, 10%, 20%, 30%, 40%, 50%, 60%,
70%, 80%, 90%) x 9 repetitions for a total of 1800 tri-
als and took about 1 hour to complete. Coherence levels
were chosen so that for each direction we would have ac-
curacy levels that range from chance to ceiling based on
the results of previous pilot studies. During each block
the order of presentation of trials was randomised and no
accuracy feedback was given to the participants. After a
block of 180 consecutive trials participants were required
to take a self-paced break to rest before continuing with
this task.

Training sessions In the training sessions, participants
performed a RSVP character identification task and were
asked to report in order of presentation two white capi-
tal letters (height about .9◦) in a sequence of 10 capital
letters presented in the central circle. All letters of the al-
phabet were used. Distractors consisted of eight capital
black letters. The first and second white letters were pre-
sented in one of the first five serial positions and in one of
the second five serial positions, respectively. They were
determined randomly in each trial. Within the annulus
aperture of 1◦ - 10◦ participants were presented a mo-

tion stimulus in one of the two directions, constant across
all training sessions, at a coherence level 5% below their
chance level at pre-test, in order to ensure a level reason-
ably below threshold. For each participant, we computed
the motion strength at 50% accuracy by interpolating the
psychometric curve predicted by the model free estima-
tion of the psychometric curve described in Zchaluk &
Foster (2009), and using MATLAB scripts made avail-
able by those authors. In each trial, a fixation cross in
the central circle was presented for 333 ms followed by
the presentation of the stimulus for 500 ms followed by
a grey screen and the text ‘Type in the two white let-
ters’ presented on top of the screen until participants re-
sponded. Each test stage consisted of 10 blocks x 108
repetitions for a total of 1080 trials and took about 45
minutes to complete. No accuracy feedback was given to
the participants. After a block of 108 consecutive trials,
participants were required to take a self-paced break to
rest before continuing with this task.

Results
Behavioural analyses
The performance of participants in the RSVP was mostly
stable across the seven days of training. We did not per-
form any analysis on the RSVP task as our interest is in
the TIPL, hence in the change in performance between
pre-test and post-test for the exposed and not exposed di-
rections.

For all analyses, both behavioural analyses and model
fitting, we removed, for each participant, the 2.5% of
slowest responses, given that a first inspection of data
showed the presence of extremely slow outliers. In the
following analyses, each subject is analysed separately.
Participants 1 and 2 were exposed to 45◦ while partici-
pants 3 and 4 were exposed to 135◦. T-tests were con-
ducted to investigate overall differences for each partic-
ipant between the pre-test and the post-test in mean RT
and accuracy levels for the exposed and the not exposed
directions. Bonferroni corrections were applied on the
p-values.

All subjects had a significant decrease in RTs between
the pre-test and post-test, for the exposed and the not ex-
posed direction (p < .001 in all cases). Participant 1 did
not have a change in accuracy for the exposed direction
between the pre-test and post-test (t(9) = -0.34, p = 1)
while all other participants had a significant increase (p
<.001 in all cases). Regarding accuracy of the not ex-
posed direction, there was not a significant change be-
tween pre-test and post-test for any subject (p >.07 in all
cases).

Model fitting
For fitting the diffusion model to RT distributions and
proportion of correct and incorrect responses, we used
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the Diffusion Model Analysis Toolbox (DMAT; Vandek-
erckhove & Tuerlinckx, 2007) for MATLAB. Parameters
were estimated by using as the objective function a multi-
nomial likelihood function, which expresses the likeli-
hood of observing a certain proportion of responses in a
given number of RT bins and is maximised in order to
find the parameter estimates. We decided to represent
the reaction time distributions of responses in terms of
the classical .1,.3,.5,.7 and .9 quantiles that divide the RT
distribution. For each participant we fitted a model in
which the drift rates were free to vary across all condi-
tions while all other parameters were fixed across condi-
tions within the pre-test and the post-test but could vary
between pre-test and post-test. In this way, for each ses-
sion, a model with 26 parameters was fitted for each indi-
vidual. However, the high number of parameters, rather
than over-fitting, reflects the high number of conditions
of this experiment. In fact, the only stimulus-contingent
parameter allowed to vary is the drift, which varies ac-
cording to the difficulty of each coherence level and ac-
cording to the direction (exposed vs not exposed). Since
participants were presented with trials in random order
they could not adjust their boundary separation or their
starting point of evidence accumulation before the pre-
sentation of each trial, hence the assumption of constant
boundary and starting point parameters within each ses-
sion is reasonable, together with stimulus-independent
variability in starting point across trials. We assumed as
constant the non-decision time component (i.e., stimu-
lus encoding and motor response) between the two direc-
tions since it is unlikely that subject would have higher
non-decision time (e.g., pressing a button on the key-
board) for one direction compared to the other. DMAT
allows to calculate estimates of the parameters’ standard
errors. For each participant, we performed Wald tests for
the difference in parameters between pre-test and post-
test using the parameter estimates and their standard er-
rors. Also here, results are presented by participant,
Figure 1. Here we focus on within-subjects variation,
hence for visibility we do not report consistent scaling
and range across the same parameters fitted to different
subjects.

Participant 1 had a significant decrease in boundary
separation (Z = -7.38, p<.001), in non decision time
(Z = -11.46, p<.001) and in starting point (Z = -10.36,
p<.001). Regarding drift rates, t-tests showed an in-
crease in drift for the exposed direction (t(9) = -2.75,
p= .045), while the drift of the not exposed direction did
not vary between pre-test and post-test (t(9) = -.42, p=
1). Participant 2 had a significant decrease in boundary
separation (Z = -13.14, p<.001), non-decision time (Z =
-6.64, p<.001) and starting point (Z = -7.15, p<.001).
This subject had an increase in drift for the exposed di-
rection (t(9) = -3.36, p= .02), while the drift of the not

exposed direction did not vary significantly between the
pre-test and the post-test (t(9) = -1.15, p= .56). Partici-
pant 3 had a significant decrease in boundary separation
(Z = -9.18, p<.001), an increase in non-decision time (Z
= 1.98, p = .02) and a decrease in starting point (Z = -
5.46, p<.001). Between the pre-test and the post-test,
the drift of the exposed direction increased significantly
(t(9) = -4.83, p= .002) while the drift of the not exposed
direction stayed the same (t(9) = -1.61, p= .28). Par-
ticipant 4 had a significant decrease in boundary (Z =
-5.81, p<.001), an increase in non decision time (Z =
2.33, p=.01) and a decrease in starting point. (Z = -1.37,
p=.08). The drift of the exposed direction increased sig-
nificantly (t(9) = -6.25, p= <.001) as well as the drift
of the not exposed direction (t(9) = -3.85, p= .01). Al-
though the drift rates for both directions increased be-
tween pre-test and post-test, the relative change between
pre-test and post-test for the exposed direction was sig-
nificantly higher than the relative change between pre-
test and post-test for the not exposed direction (t(9) =
3.72, p= .01). None of the participants had a significant
change between the two sessions in the parameters cap-
turing across trials variability in drift, starting point or
non-decision time. The goodness of fit of the model was
assessed graphically through quantile-probability plots
(not shown for brevity). The quantile probability plots
showed that the model on which our analyses are based
fits the data well and without mismatches.

Discussion
Here, using the DDM (Ratcliff & McKoon, 2008), we
have modelled for the first time the processes underlying
TIPL in healthy individuals. The results indicate that:
(i) TIPL affects the drift rate at which participants accu-
mulate evidence for the exposed direction meaning that
their sensitivity for the exposed direction is increased,
(ii) TIPL affects the conservativeness of participants’ re-
sponse (iii) non-systematic variations (i.e., the direction
of the change varied between subjects) in parameters be-
tween the two sessions (e.g., variations in non-decision
time, variations in starting point) do not allow a direct
comparison of the decision process only based on accu-
racy and/or RT.

These findings have important implications for the
interpretation of perceptual learning data, both task-
relevant and task irrelevant, and, we hope, for the analy-
sis of data collected on different days or for which learn-
ing is involved. First, every decision is a mixture of dif-
ferent cognitive processes that can be isolated by this
analysis for a more principled interpretation of results.
Interpreting learning in terms of latent cognitive vari-
ables allows for a more precise investigation of its effect
and gives a proper measure of ‘true’ perceptual learning
- change in the drift rate which is related to the qual-
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Figure 1: DDM parameters for each participant: top-left (Participant 1), top-right (Participant 2), bottom-left (Partici-
pant 3), bottom-right (Participant 4). For each participant, in order from top left to bottom right: boundary separation
(a), non decision time (ter), starting point (z) and drift rates (v). The x-axis for the drift rate reports, for both the
exposed and the not exposed directions, the 10 coherence levels by decreasing difficulty. Bars are standard errors of
parameters’ estimates.

ity of input information - while weighting for systematic
or random variations in other parameters. In particular,
caution should be exercised when comparing data across
different sessions. As in previous studies of perceptual
learning, participants in our study showed evidence of a
change in their speed-accuracy trade-off. Not taking this
factor into account can lead to wrong conclusions from
data. In theory, decreased boundary should result in de-
creasing accuracy for the not exposed direction. In our
investigation, participants had to view the stimuli for 500
ms before giving their response; given this constraint,
participants had a relatively long time window to make a
decision and as a consequence this might have obscured
a decrease in accuracy between the pre-test and the post-
test that should result from a decreased boundary. For
future investigation, we recommend using a shorter pre-
sentation of the stimuli (e.g., 200 ms) that is more likely
to reveal stronger variations in accuracy and RTs of the
not exposed direction between the pre-test and the post-
test.

Our results show the risk of directly comparing ses-
sions performed on different days without considering
the role of each single parameter. Take for example par-
ticipant 1: by testing for differences in accuracy, a re-
searcher may be tempted to conclude that this subject
did not have any TIPL since there is not a difference be-

tween the accuracy of the first and second session both
for the exposed and the not exposed direction. However,
the model fitting shows that this participant had higher
drift rates for the exposed direction, which is likely to
be the signature of TIPL, which is accompanied by a de-
crease in boundary and variations in the bias towards a
response. An increase in drift (faster and more accu-
rate responses) accompanied by a decrease in boundary
(faster and less accurate responses) can have as output
that accuracy levels stay the same.

Previous studies have shown that perceptual learn-
ing is associated with a decrease in boundary separation
(Petrov et al., 2011; Liu & Watanabe, 2012; Dutilh et al.,
2009) and we replicated this result also here for TIPL
showing consistency across four participants. It has been
proposed (Liu & Watanabe, 2012) that this decrease in
boundary separation is due to the fact that participants
are trying to maximise their reward rate, operatlionalised
as the proportion of correct responses divided by the av-
erage time between them. In other words, if the qual-
ity of information increases (i.e., hence the task becomes
‘easier’) participants can decrease the time spent on each
decision in order to finish the task sooner without sacri-
ficing accuracy too much given the increase in drift rate.
To the best of our knowledge, this is the first study to re-
port a DDM decomposition of TIPL and the first study
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to show the systematic parameter variations associated
with TIPL. Regarding other parameters there is not con-
sistency in the literature regarding the effects of learning,
and also here we do not observe a clear pattern across
participants. For example, regarding the non-decision
time component, in previous studies investigating per-
ceptual learning, Petrov et al. (2011) and Dutilh et al.
(2009) found a decrease associated with learning, while
Liu & Watanabe (2012) found that, although not sig-
nificant overall, some participants showed an improve-
ment. Here we did not find a consistently decreasing
non-decision time component between the two sessions,
given that only two out of four participants have a de-
crease in non-decision time. Our only consistent result is
that of decreasing boundary related to learning and an ef-
fect on the drift; result that shares some similarities with
that by Liu & Watanabe (2012). Regarding the drift, we
show that there is an increase in the drift of the exposed
direction, compared to the pre-test, and compared to the
drift of the not exposed direction of the post-test when
the drift of the not exposed direction increases as well
in the post-test. Ideally, we would expect that the drift
of the not exposed direction would not vary between pre
and post-test. For one participant however the drift of
the not exposed direction varies as well; this is unlikely
to be an effect of TIPL but rather a random variation in
participants’ performance that further highlights the im-
portance of a DDM decomposition of learning data.

Although the sample size (N = 4) is low, this is in line
with similar studies that have performed a DDM decom-
position of learning data (e.g., Dutilh et al., 2009), and it
is common practice in perceptual learning research. Fur-
thermore the consistency in results across participants re-
assures us about our conclusions. It is to be mentioned
that the training that our participants performed is rela-
tively ‘short’ if compared with the usual TIPL training
of about 20 days, during which TIPL reaches its asymp-
totic level (Watanabe et al., 2001). Future work, em-
ploying more participants and longer training regimes is
clearly warranted in order to quantify the rate at which
each component is affected by learning, and to quantify
the distortion that focusing only on accuracy could lead
to; if the days of training increase, the effect on bound-
ary and drift reported here might increase and have even
stronger consequences on accuracy and RT.

Here we used the DDM as a model of decision mak-
ing and in order to analyse our data, but it is to be men-
tioned that other models of decision making could have
been applied (Bogacz et al., 2006). However, given the
model mimicry between models of decision making (Bo-
gacz et al., 2006), we predict that our results are likely to
be replicated if another model is applied.

Overall, a consideration of the different components in
decision making shows that the two components which

are found to vary systematically all have independent ef-
fects on speed and/or accuracy. Whilst increased drift
will tend to increase speed and accuracy, decreased
boundary separation will tend to decrease both. For these
reasons, a decomposition of decision making from these
observed variables allows us not only to focus on the dif-
ferent effects of perceptual learning individually, but al-
lows us a more accurate assessment of the extent of in-
creased stimulus sensitivity in perceptual learning. Our
study is the first to show this increased sensitivity in task-
irrelevant perceptual learning, and does so demonstrat-
ing that the other components of decision making are af-
fected in a similar way to as in task-relevant perceptual
learning.
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Abstract 

A key challenge for cognitive neuroscience is to decipher the 
representational schemes of the brain. A recent class of decoding 
algorithms for fMRI data, stimulus-feature-based encoding 
models, is becoming increasingly popular for inferring the 
dimensions of neural representational spaces from stimulus-
feature spaces. We argue that such inferences are not always valid, 
because decoding can occur even if the neural representational 
space and the stimulus-feature space use different representational 
schemes. This can happen when there is a systematic mapping 
between them. In a simulation, we successfully decoded the binary 
representation of numbers from their decimal features. Since 
binary and decimal number systems use different representations, 
we cannot conclude that the binary representation encodes decimal 
features. The same argument applies to the decoding of neural 
patterns from stimulus-feature spaces and we urge caution in 
inferring the nature of the neural code from such methods. We 
discuss ways to overcome these inferential limitations. 

Introduction 
A key challenge for cognitive neuroscience is to decipher the 
representational schemes of the brain, to understand the neural 
code that underlies the encoding and representation of sensory, 
motor, spatial, emotional, semantic and other types of 
information. To address these issues researchers often employ 
neuroimaging techniques like functional magnetic resonance 
imaging (fMRI), which measures the blood oxygenation level-
dependent (BOLD) activation in the brain that is elicited when 
participants engage with different stimuli. A common 
assumption has been that the underlying neural representation of 
each stimulus has measurable but complex effects on the BOLD 
activation patterns. In order to understand what those patterns of 
activity can tell us about how the brain processes and represents 
information, researchers have used various analytical tools such 
as univariate subtraction methods, multivariate pattern (MVP) 
classification, representational similarity analysis (RSA) and, 
recently, explicit stimulus-feature-based encoding and decoding 
models (for reviews, see Davis & Poldrack, 2013, Haxby, 
Connolly, & Guntupalli, 2014, or Naselaris, Kay, Nishimoto, & 
Gallant, 2011). Despite their differences, these methods aim to 
quantify how changes in task conditions and the properties of the 
stimuli relate to changes in BOLD activation and vice versa. 
Where these methods differ is in how they achieve that mapping 
and in what inferences they allow us to draw. 

In this article, we review some of the known inferential 
limitations of existing fMRI analysis methods and we highlight 
a previously unrecognized issue in interpreting results from 
stimulus-feature-based encoding and decoding models. The 
latter are steadily becoming the de facto gold standard for 
investigating neural representational spaces (Haxby et al. 2014, 
Naselaris & Kay, 2015). 

Univariate vs. multivariate analysis 
Before the advent of the more advanced techniques we review 
below, the main fMRI analysis tool was based on comparing 
how activity in a single voxel or averaged activity in a 
contiguous area of voxels differs between task conditions or 
stimuli. These univariate subtraction methods have been 
informative about the relative engagement of certain brain areas 
in specific tasks. Unfortunately, the coarse nature of this method 
precludes fine-grained inferences about the underlying 
representational content and computations that give rise to the 
observed BOLD signal. By ignoring the possibility that 
information might be represented in a distributed manner across 
voxels, the assumptions underlying univariate subtraction 
methods limit their use in understanding neural representations. 
In addition, these methods cannot tell us whether changes in 
activation are due to representational preferences, processing 
differences, or attentional variation among conditions 
(Coutanche, 2013). 

In contrast, multivoxel pattern analysis (MVPA) techniques 
have attempted to overcome this limitation by looking at how 
various categories of stimuli or task conditions lead to 
differences (i.e. MVP classification) or similarities (i.e.  RSA) in 
distributed patterns of activity over multiple voxels. These 
methods have become popular because they allow researchers to 
study neural representational spaces with increasing sensitivity 
and resolution. For example, a seminal study by Haxby et al. 
(2001) found that visual object categories can be classified based 
on the pattern of activation that their exemplars elicited in the 
ventral temporal cortex. The classification was successful 
despite the lack of overall activation differences in that region. 
Similar methods have been used to show that concepts have 
language-invariant representations in the anterior temporal lobe 
(Correia et al., 2014), that very similar visual scenes can be 
discriminated in the hippocampus (Bonnici et al., 2012) and that 
during their retrieval from memory, the shape, color and identity 
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of visual objects can be differentially decoded across several 
cortical areas (Coutanche & Thompson-Schill, 2015).  

Despite early enthusiasm that MVPA methods could be used 
to understand the structure of the neural code and the nature of 
the underlying representations (Norman, Polyn, Detre, & Haxby, 
2006), conventional MVP classification and RSA techniques 
share one of the same fundamental inferential limitations of 
univariate methods. Successful classification or careful 
inspection of confusions/similarity matrices can indicate that 
some relevant information about the stimulus class is present in 
the population of analyzed voxels, but it cannot identify exactly 
what that information is, or how it is represented and organized 
(Naselaris & Kay, 2015; Poldrack, 2011; Tong & Pratte, 2012). 
Because neural data is correlational, many different properties of 
the stimuli might lead to successful classification of the stimulus 
category, the task condition, or the brain state in question. For 
example, successfully categorizing whether a word represents an 
animate or an inanimate object does not necessarily mean that 
the region of interest encodes that category distinction. There are 
many differences between animate and inanimate objects, such 
as differences in their sensory and functional features (Farah & 
McClelland, 1991) that could be responsible for the successful 
classification. 

Another limitation of conventional MVP classifiers is that 
they cannot generalize and predict behavioral responses to novel 
types of stimuli or task conditions. To understand why, we can 
conceptualize classifiers in terms of types and tokens. An MVP 
classifier is usually trained on stimuli that are tokens from 
several types. For example, the stimuli tokens might be different 
category exemplars, and the classifier is trained to predict the 
type of category to which they belong. Alternatively, the tokens 
might be multiple presentations of the same word in different 
modalities or languages and the types are the unique words 
themselves. In the first case, the classifier can only be used to 
predict category membership of words that belong to one of the 
categories on which it was trained. In the second case even 
though the classifier could be used to predict exemplars in novel 
languages or modalities, it is again restricted only to exemplars 
of the words on which it was trained in the first place. In general, 
while the tokens being tested might be novel, they will be 
potentially decoded only if they are exemplars of a type that has 
already been trained on.  

For example, if one trains a classifier to predict the color of 
objects and trains it on yellow and orange objects (Coutanche & 
Thompson-Schill, 2015), one will not be able to predict the color 
of novel objects that are green. This methodological limitation is 
important - just as understanding how the decimal system 
represents numbers allows people to understand and manipulate 
numbers they have never seen before, a complete understanding 
of any neural representational system should allow researchers 
to use the neural pattern associated with novel stimuli to predict 
their identity, even if those stimuli are not exemplars of the types 
on which a particular model was trained on. 

 
 

Stimulus-feature-based encoding models 
To overcome this limitation many researchers are turning to a 
novel analysis method that is known by a few different names – 
voxelwise modelling (Naselaris & Kay, 2015), stimulus-model 
based encoding and decoding (Haxby et al., 2014), voxel-based 
encoding and decoding models (Naselaris et al., 2011), and 
forward models (Brouwer & Heeger, 2009; Fernandino, 
Humphries, Conant, Seidenberg, & Binder, 2016). This 
approach can decode the identity of novel types of stimuli from 
neural activity by predicting activity not for the stimuli 
themselves, but for a set of simpler features into which they can 
be decomposed. In a seminal study, Mitchell et al. (2008) 
predicted the neural activity associated with individual novel 
words based only on the activation of other words. To achieve 
that, they decomposed each word into a vector of weights on 25 
sensory-motor semantic features (verbs such as “eat”, “taste”, 
“run”, “fear”, etc.). The weights were estimated from co-
occurrence statistics of the word with each verb feature in a large 
corpus. They trained a classifier to predict the neural activity 
associated with each constituent feature of a training set of 
words, which resulted in separate neural activation maps for 
each feature. Neural activity for novel test words was then 
predicted highly accurately as a linear combination of the 
semantic feature activation maps weighted by the association of 
the word with each feature. Based on these results, Mitchell et 
al. (2008) concluded that the neural representation of concrete 
nouns might be based on sensory-motor features. 

Similar approaches have been used to predict the neural 
response to novel natural images using Gabor filter features 
(Kay, Naselaris, Prenger, & Gallant, 2008), to novel colors based 
on color tuning curve features (Brouwer & Heeger, 2009), to 
novel music clips based on acoustic timbre features (Casey, 
Thompson, Kang, Raizada, & Wheatley, 2012), to natural 
sounds based on frequency, spectral and temporal modulations 
(Santoro et al., 2014), to novel faces based on a PCA 
decomposition of face features (Lee & Kuhl, 2016), to novel 
words based on subjective sensory-motor ratings (Fernandino et 
al., 2016). The motivating question behind the majority of these 
studies has been about the nature of the representations used by 
the brain in encoding the experimental stimuli, and the results 
have been used to argue that the neural representation is based 
on the constituent features of the stimuli used in the model. 

To summarize, stimulus-feature encoding models generally 
use the following analysis procedure: 1) Specify a set of features 
and dimensions that hypothetically underlie the representation of 
a stimulus set in brain. 2) Decompose a set of stimuli into vectors 
of weights for each feature. 3) Select a region of interest (ROI) 
in the brain from which to analyze neural activation. 4) Train a 
model to predict activity in each voxel for a training set of 
stimuli, using the weights of their features as predictors. 5) 
Derive activation pattern maps (e.g. regression coefficients) 
associated with each feature. 6) Predict neural activity in the ROI 
for novel stimuli, based on their feature weights and the 
activation pattern maps for each feature. 7) Compare predicted 
neural activity for each novel stimulus with their observed neural 
activity and derive a measure of fit and accuracy. In essence, 
stimulus-feature-based encoding models attempt to map a 
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stimulus feature representational space, where each feature is a 
separate dimension, and each stimulus is a point in that space, to 
a neural activation space, where each voxel is a separate 
dimension, and the activation pattern elicited by each stimulus is 
a point in that space. 

What can we infer about neural representations? 
What can a successful mapping between a stimulus feature space 
and a neural activation space tell us about the nature of the 
representation used by the brain? A common inference in these 
studies has been that if you can predict the identity of novel 
stimuli based on that mapping, then the neural representation is 
likely based on the feature set used by the model. Put formally, 
the inferential claim goes as follows:  

1) We can represent certain stimuli as a combination of 
lower-level features 

2) We can show that it is possible to predict the neural pattern 
caused by a novel stimulus in brain area A from an 
encoding model based on these features 

3) Therefore, brain area A encodes those features and uses a 
representational scheme based on them.  

This claim has been made to different degrees both in 
theoretical and methodological papers reviewing the 
approach (e.g., Haxby et al., 2014; Naselaris & Kay, 2015; 
Naselaris et al., 2011; Norman et al., 2006; Tong & Pratte, 
2012), as well as in empirical studies that use it to address 
representational questions (Fernandino et al., 2016; Kay et 
al., 2008; Mitchell et al., 2008; Santoro et al., 2014; although 
some are more cautionary, e.g. Lee & Kuhl, 2016). If this 
inference is valid, then encoding models could be an 
extremely powerful tool for understanding the nature of 
neural representations. 

A useful illustrative example of this inference in practice 
comes from a recent study by Fernandino et al. (2016). The 
authors wanted to understand how conceptual information is 
represented in a set of higher-order non-modality-specific brain 
regions in General Semantic Network (Binder, Desai, Graves, & 
Conant, 2009). An encoding model based on subjective ratings 
for 5 sensory-motor features of training words (“color”, 
“motion”, “sound”, “shape”, “action”) was used to predict 
activation patterns related to novel individual words. The model 
successfully predicted above chance the brain activity patterns 
for concrete words in the semantic network regions (61% mean 
accuracy), but not in a set of control regions associated with 
visual word form processing. Based on this finding, Fernandino 
et al. (2016) suggested that “the brain represents concepts as 
multimodal combinations of sensory and motor representations” 
and that “heteromodal areas involved in semantic processing 
encode information about the relative importance of different 
sensory-motor attributes of concepts, possibly by storing 
particular combinations of sensory and motor features”. 

 

                                                           
1 this problem is similar, but not identical, to the problem of 
reverse inference (Poldrack, 2006) 
2 Whereas a minor degree of systematicity does seem to exist 

Here lies the problem – this inference is not formally valid. 
We need to consider what the data would have looked like if the 
underlying neural representation was actually different (Mahon, 
2015). In this example, the successful decoding of conceptual 
identity in the GSN based on an encoding model of sensory-
motor features does not necessitate the representational format 
in the GSN to be sensory-motor in nature. The results might be 
obtained even if the GSN uses amodal representations, as long 
as there is a non-arbitrary mapping between representations in 
the GSN and sensory-motor features. To illustrate, let us 
hypothetically assume that the GSN literally encodes word co-
occurrence statistics. As co-occurrence statistics correlate with 
sensory-motor feature ratings, it would be possible to predict 
GSN activity patterns based on these features, even if they are 
not driving the activity patterns. In contrast, successful decoding 
would be impossible if the mapping between the GSN 
representations and sensory-motor features was arbitrary. Thus, 
Fernandino et al.'s (2016) results constitute evidence against the 
possibility that conceptual representations in heteromodal areas 
bear an arbitrary relation to sensory-motor features, as has been 
argued by some proponents of symbolic systems (Fodor & 
Pylyshyn, 1988), but should not be taken as conclusive evidence 
that the GSN encodes multimodal sensory-motor information. 

This issue is not limited to the specific study discussed above. 
To put the claim more generally, we argue that information in 
one representational system might be decoded based on features 
from another, even if they use different representational 
schemes, as long as there is at least a partially systematic 
mapping between them. Specifically, while such encoding 
models should be able to predict the neural activation from the 
features of a stimulus if the brain uses a representational scheme 
based on those features, the reverse is not guaranteed1. A 
successful prediction can also occur when the stimulus feature 
space is systematically related to the features that underlie the 
neural representational scheme. However, that relationship need 
not be one of equivalence. There are at least three ways in which 
mappings between representational systems can be made and 
successful prediction can occur in two of those cases. 

Types of mappings 
Arbitrary mappings between representations. First, items 
from two representational systems might be related in an entirely 
arbitrary way. For example, the meaning of words is mostly 
unrelated to their orthographic features2, and the geographic 
locations of countries are not predictive of their names, etc. More 
generally, consider two unordered sets of items, =
{ , , … , } and = { , , … , }. An arbitrary mapping 
between these two sets exists when the mapping from a specific 
item in set A to a corresponding item in set B is unrelated to the 
mappings between the remaining items in the sets. In the context 
of encoding models and the brain, decoding of novel items from 
one set would be impossible based on a feature model from the 
other set, if these two sets are arbitrarily related.  

in this domain (e.g., Monaghan et al., 2014), word meanings 
cannot be systematically predicted based on their 
orthography and vice versa. 
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Sets that use the same representational format. In contrast, a 
successful prediction can occur if the two sets use the same 
representational format. Consider the set of multi-digit numbers 
in the decimal system, = {10,11, … ,427, … }, and the set of 
10 digits in the decimal system, = {0,1,2,3,4,5,6,7,8,9,10}. 
These sets use the same representational format to represent 
quantities (the decimal system), and there is a systematic linear 
mapping from the features (the digits), to the multi-digit 
numbers, such that: 

… =  ( × 10 ) 

3491 = 3 × 1000 + 4 × 100 + 9 × 10 + 1 × 1 

When we have such systematic mappings between systems 
that use the same representational format, knowing the mapping 
function allows us to decompose any item from set A as a 
combination of features from set B. An example of such a 
mapping would be Fernandino et al.’s (2016) suggestion that the 
general semantic network encodes multimodal combinations of 
sensory-motor features by integrating information from 
modality-specific sensory-motor areas. If this were true, then 
you could predict the neural pattern of novel items from their 
featural representations, which is what that study found as well. 

Sets that use different but systematically related 
representational formats. However, there is an alternative, 
which would also allow you to make a successful prediction 
from encoding models. Two sets can use different 
representational schemes, while maintaining a systematic 
mapping between themselves that allows us to predict the 
mapping of any one pair of items from knowledge of the 
mapping function. Within the context of conceptual 
representations in the brain, higher-level heteromodal areas 
might use a representational code that is different from the one 
used by sensory-motor cortices, but there might be a systematic 
mapping between representations in each system3. 

For a simplified example, consider the relation between the 
decimal and the binary systems for representing numeric values. 
A binary represented value can be transformed into a decimal 
number by applying the following formula: 

 

                                                           
3What makes representational codes different is a 

surprisingly difficult question to answer. Due to space 

… →  ( × 2 )  

10011 → 1 × 2 + 0 × 2 + 0 × 2 + 1 × 2 + 1 × 2
= 16 + 2 + 1 = 19  

Clearly, there is a systematic but non-linear mapping between 
the decimal and the binary system, and yet, these two systems 
use different codes to represent numbers. If our argument is 
correct then it should be possible to predict the binary 
representation of a number based on a decimal feature encoding 
model. Below we present a simulation that achieves this by 
applying the encoding model approach often used in 
neuroimaging studies. Within the simulation, binary vectors are 
analogous to voxel activation patterns, and the encoding model 
is based on decimal representations (Table 1). 

Simulation: Decoding binary representations 
with a decimal feature encoding model 

As detailed previously, encoding models predict stimulus 
identity from brain activation by modelling the relationship 
between the constituent features of the training stimuli and their 
corresponding BOLD activation in a group of voxels. Then they 
use that relationship to estimate the expected neural activation 
patterns for novel test items based on their feature 
representations. The predicted activation pattern for each 
stimulus is compared to the observed patterns for all test stimuli. 
For the following simulation, let us consider the numbers from 
0 to 99 999 as our stimulus set. They can be decomposed into 5-
dimensional feature vectors where each feature is a decimal digit 
(e.g., 3497 can be decomposed as [0 3 4 9 7]. These features can 
be considered analogous to the 5 sensory-motor relevance 
ratings of words used by Fernandino et al. (2016) or to the co-
occurrence statistics with sensory-motor verbs used by Mitchell 
et al. (2008). Further, let us consider the binary representation 
numbers as 17-dimensional vectors (e.g. [0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 1 0 0 1], to be analogous to the 
BOLD activation pattern in a set of 17 voxels in an ROI under 
investigation. The correspondence between these patterns and 
actual neuroimaging studies using this approach is demonstrated 
in Table 1. 

We trained an encoding model to predict the binary activation 
pattern for a given number, based on its 5-dimensional decimal 

limitations we will briefly cover this issue in the general 
discussion, but a more in-depth treatment is needed 

Table 1 Examples of studies that use feature encoding models  

Source Item Features Response vector 

Mitchell et al., (2008) Concrete words (dog) Co-occurrence statistics with 
25 sensory-motor verbs 

Pattern of activation in all cortical 
voxels 

Fernandino et al., (2016) Concrete words (dog) 5 sensory-motor relevance 
ratings 

Pattern of activation in the GSN 
(Binder et al., 2009) 

Current simulation Numbers (3497) 5 decimal digits [0 3 4 9 7] 17 binary digits [0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 1 0 0 1] 
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feature representation. The modelling followed 4 steps: 1) 
splitting the stimuli into a training (90%) and a test (10%) set, 2) 
fitting multiple linear regression models on the training set with 
the 17 binary features as response variables, and the 5 decimal 
features as predictors, 3) calculating predicted activation pattern 
(predicted maps, PMs) for each test item from its decimal 
features and the multivariate regression model, 4) comparing the 
PMs with the actual binary patterns for all test items (observed 
maps, OMs). In the comparison stage, we computed the 
Euclidean distance between each PM and the OMs for all test 
items, and we calculated the percentile rank of the similarity 
between the PM and the OM of each item. For example, if the 
PM for the number 29782 were most similar to OM for that 
number, then the percentile rank for it would be 10 000/10 000 
= 1. However, if it were more similar to the OMs of 1 000 other 
items, then its percentile rank would be 9 000/10 000 = 0.9. 

The encoding model was successful in decoding the binary 
representation of untrained items based only on their decimal 
features. The prediction accuracy of the linear regression model 
was 0.7 (SD = 0.24) and a wilcoxon signed rank test showed that 
it was above chance (p < .0001). Since by definition binary and 
decimal number systems use different representational formats, 
we cannot conclude that the representation of binary numbers 
encodes decimal features. By analogy, the successful decoding 
of patterns of neural activation based on a stimulus feature space, 
cannot be used to infer that the brain encodes information about 
these features or that its neural representational space is 
organized along the dimensions of that feature space. 

Discussion 
Stimulus-feature based encoding models (Haxby et al., 2014, 

Naselaris et al., 2011) are a powerful new tool for studying how 
the constituent features of stimuli relate to the neural activation 
patterns elicited by these stimuli. They represent a significant 
methodological advance over more traditional MVPA methods 
because they allow us to predict neural activation for novel items 
and because they can be used to decode the identity of such items 
from neural data alone. While this is an impressive feat and an 
incredibly useful tool, we have to be cautious in interpreting 
what such successes mean for our understanding of the 
representational system of the brain. Both theorists (e.g., Haxby 
et al., 2014; Naselaris & Kay, 2015; Naselaris et al., 2011; 
Norman et al., 2006; Tong & Pratte, 2012) and practitioners (e.g. 
Fernandino et al., 2016; Kay et al., 2008; Mitchell et al., 2008; 
Santoro et al., 2014) have suggested that we can infer that the 
brain uses a certain set of features to encode information, if we 
can successfully decode the activity of novel items from such 
features. However, as we have argued here, this inference is not 
formally valid. Successful decoding might be the result of a 
systematic relationship between the representational system of 
the brain and the stimulus feature set, even if those utilize 
different representational schemes. 

How do we know whether two representational systems are 
truly different? It could be argued that in our example, both 

                                                           
4 in fact, because of that linear one-to-one relationship, 

replicating our simulation with these two examples leads to 

binary and decimal number systems share many properties, and 
that they are merely different implementations of the same 
fundamental representation. For example, both systems use the 
position of a digit to encode its magnitude, and as a result, all 
arithmetic procedures that can be performed with decimal 
numbers can be applied to binary numbers as well. We propose 
that the key issue in determining whether two representations are 
the same is whether you can establish a one-to-one mapping 
relation between features at different levels of representation in 
each system. For example, if you substitute each decimal digit 
with a unique letter, the resulting system would appear different 
from the decimal system only on the surface, but the relation 
between multi-digit numbers and their features would be the 
same in both cases4 In contrast, decimal and binary features have 
a qualitatively different relation to the numbers they represent. 
Despite this, binary representations can be decoded based on 
decimal features, illustrating the inferential problem of encoding 
models we address here.  

It is important to clarify that the “one-to-one” mapping is an 
abstract requirement. We are not claiming that to establish 
representational equivalence between the brain and a certain set 
of features that it is necessary to find a one-to-one mapping 
between the basic feature components of stimuli and activation 
in individual voxels or groups of voxels. The brain does not 
compute and represent information at the voxel level – voxel 
activations are the result of averaged activity over hundreds of 
thousands of neurons. The general lack of access to large-scale 
neural level activity in the living human brain makes it even 
more important to not only discover analytical tools that helps us 
relate voxel activation to possible representations, but also to 
understand the limitations of those tools and what they can and 
cannot tell us. 

An important question that naturally arises from the caveats 
we discussed is how one can maximize confidence in the 
outcome of a forward encoding model approach, or conversely, 
guard oneself against unjustified inferences. We propose that it 
is crucial to compare the performance of several possible 
encoding models. To that aim, it is not sufficient to use a 
"baseline model" that is unrelated to the domain of interest (i.e., 
compare a semantic feature model to a low-level visual word 
form model). Instead, one or several alternative representational 
models should be tested that are derived from competing 
theories (i.e., semantic model A vs. semantic model B). To 
illustrate, an elegant comparison of a sensory-based vs. non-
sensory-based semantic model was achieved by Anderson et al. 
(2015). These authors contrasted a visual model with a word co-
occurrence model to investigate which brain regions represent 
modality-specific visual features, and which do not (using 
differential correlation in RSA rather than an encoding model). 
The relative superiority of a particular model at predicting 
activation patterns in a brain region makes it more likely that the 
brain is using the representational scheme of the better 
performing model rather than the alternative. However, it is 
important to keep in mind that such comparisons only provide 

perfect decoding accuracy; compare that to the 0.7 decoding 
accuracy for the decimal-to-binary model 
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evidence for the relative likelihood of each model, but, due to the 
limitations discussed above, still do not allow us to infer that the 
winning model is the “true” model. 

For that reason, besides the assessment of relative model 
performance based on model comparison, a second crucial step 
is to evaluate absolute prediction performance. In particular, the 
observed decoding accuracy can be compared to the “noise 
ceiling”, or to the “upper limit of prediction accuracy” (Naselaris 
et al., 2011), reflecting the maximal performance that can be 
feasibly achieved given the noise present in the signal. The gap 
between the two can be thought of as the variance that is not 
explained by the current model, which should motivate and 
guide the search for an improved or alternative version of the 
model. Until such maximal performance is obtained, we should 
be careful in making strong representational inferences about the 
brain from the currently available analytic methods. 

Ultimately, many of these inferential caveats exist because 
fMRI data is correlational. Comparing alternative models and 
evaluating absolute prediction performance might eventually 
converge on the true underlying feature model, but this is not 
guaranteed. We propose that an even better way to test 
representational hypotheses might be to introduce experimental 
manipulations that affect the hypothesized representational 
dimensions. For example, one could prime participants to weight 
some features of the stimuli more than others. If that leads to 
changes in the performance of a classifier based on the primed 
features, this would constitute much stronger evidence that these 
features underlie the neural representational scheme in question. 
This proposal is logical but it has not been experimentally tested 
yet, and we look forward to seeing how it will fare in practice. 
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The Relational Luring Effect: False Recognition via Relational Similarity
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Abstract: We present evidence for a novel relational luring effect (RLE) in recognition memory. Participants performed
a continuous associative recognition task in which they had to discriminate between new, old and recombined word pairs.
Participants made more false alarms and responded more slowly to lures (TABLE CLOTH) that were relationally similar
to studied pairs (FLOOR CARPET). RTs and false alarms for lures increased linearly as the number of previously studied
different exemplars of the relation increased (e.g., 0 to 4 previous exemplars). The RLE effect was stronger for relations that
were represented by exemplars that were more typical of the relation. These results suggest that semantic relations exist as
independent representations in LTM, and that during associative recognition these representations can be a spurious source of
familiarity. The RLE has implications for models of semantic and episodic memory, unitization in associative recognition,
analogical reasoning, and constructive memory research.
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Abstract 

We found an unexpected positive effect of target-to-distractor 
similarity (TD) in a visual search task, despite overwhelming 
evidence in the literature that TD similarity hurts visual search 
performance. Participants with no prior knowledge of Chinese 
performed 12 hour-long sessions over 4 weeks, where they had 
to find a briefly presented target character among a set of 
distractors. At the beginning of the experiment, TD similarity 
hurt performance, but the effect reversed during the first 
session and remained positive throughout the remaining 
sessions. We present a simple connectionist model that 
accounts for that reversal of TD similarity effects on visual 
search and we discuss possible theoretical explanations. 

Keywords: visual search; learning; similarity; connectionist 
model; neural network 

Introduction 
Intuitively, the more similar two objects are to each other, 

the more difficult it should be to say whether they are the 
same object or not. Research with the visual search task has 
confirmed this intuition repeatedly – when a target is more 
similar to distractors in the search array accuracy decreases 
and response times (RTs) increase (Treisman & Gormican, 
1988; Duncan & Humphreys, 1989; Treisman, 1991), and 
more errant saccades are made to the highly similar 
distractors (Bichot & Schall, 1999). Despite the ubiquity of 
this negative target-to-distractor (TD) similarity effect, in a 
recent experiment that explored how frequency of exposure 
affects a variety of tasks, including a visual search task, we 
discovered by accident a positive TD similarity effect in 
visual search (Reder, Xiaonan, Keinath & Popov, 2016). We 
found that greater TD similarity eventually lead to greater 
accuracy and faster RTs. 

The visual search task was performed with Chinese 
characters over 12 hour-long sessions and the participants 
were US undergraduates with no previous knowledge of 
Chinese characters. Interestingly, during the initial stages of 
the visual search task we observed a negative TD similarity 
effect, as is expected from prior research, but this effect 
reversed quickly. After a single training session, higher TD 
similarity lead to better performance. Since this result was not 
reported in Reder et al. (2016), we will first describe the 
experiment and the key results with respect to frequency and 
similarity.  

                                                           
1 We thank Xiaonan Liu for pointing us to these representations 

Method 
Participants 
Twenty U.S. college students with no prior experience 
learning Chinese participated in this experiment. 

Materials 
The stimuli for the visual search task were 64 Chinese 
characters. We grouped the characters based on their visual 
similarity in 16 sets of four characters. Characters within a 
set had a higher similarity with each other compared to 
characters from other sets. This was determined by a native 
Chinese speaker and was subsequently confirmed by 
analyzing orthographic vector representations of the 
characters (Xing et al, 2004; Yang et al 2009)1. We used 
highly similar distractors in order to force participants to 
encode the entire character rather than a subset of diagnostic 
features. For each participant, half of the sets were randomly 
assigned to the high-frequency condition and were presented 
20 times more often during the visual search task. 

Procedure 
The visual search task was performed over 12 sessions. There 
were three session per week and each lasted for about 1 hour. 
Each trial began with a sample character presented in the 
middle of the screen for 2 seconds. The sample character was 
followed by a display of 3 to 5 characters. On half of the 
trials, the display included the target character and 
participants were to respond whether the target was present. 
Three of the characters were from the same similarity set as 
the target character. Additionally, 0-2 characters from 
different sets of the same frequency class as the target were 
also present as distractors. After participants made their 
response, they received immediate accuracy feedback. 

Results and Discussion 
We analyzed the accuracy data via logistic mixed-effects 
regressions and RTs via linear mixed-effects regressions, 
both with participants and items2 as random intercept effects. 
All effects discussed below were significant (p < .05) as 
determined by likelihood ratio tests that compared 
alternative regression models with and without each effect. 
Most results concerned with effects of frequency are 
described in Reder et al. (2016; see also Reder et al., 2007); 
here we focus primarily on the role of similarity.  

2 i.e., trials with the same target regardless of distractors 
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Fig 1. Accuracy and RTs to search the display as a function 
of target presence or absence, week of training and frequency 
of exposure.  
 

Figure 1 shows the effect of frequency of exposure on 
accuracy and RTs for finding the target character. Overall, 
accuracy was greater and RTs faster for characters from high 
frequency sets. There was a two-way interaction between 
frequency and whether the target was present or absent. For 
accuracy, the effect of frequency was evident only when the 
target was absent. In Reder et al. (2015), we proposed that 
frequent exposure facilitates the development of unitized 
representations of each character. That is, a character seen 
less often has a weaker chunk representation and is more 
likely to be encoded as a configuration of some of its features 
rather than as a single higher-level unit. Thus, when a 
participant is searching for a LF character the probability of 
partially matching some of the target’s features with features 
of the distractors is much greater compared to HF characters. 
This leads to more false alarms in the absent condition, but 
does not affect the present condition. The interaction was 
also evident in RTs, although there was still a small effect of 
frequency in the present trials, likely reflecting the 
differential efficiency of encoding high and low frequency 
characters. 

A number of previous versions of this experiment had 
failed to show the hypothesized frequency effects. In those 
experiments, the distractors in each search array were chosen 
at random and thus were not very similar to the targets on 
each trial. In contrast, in the current experiment we ensured 
that targets were paired with highly similar distractors. We 
believe that the discrimination required in the prior versions 
of our visual search task was too easy and as a result, 
participants were able to perform the task by noting and 
remembering individual features that distinguish the target 
from its distractors. As a result, participants did not have to 
develop stable chunks for each character.  

If that is the correct interpretation, then we expected to see 
an analogous effect within this experiment based on the 
discriminability (similarity) of the target character to its 
distractors in the search array. We should see that greater TD 
similarity leads to a better performance over time, because 
the increased difficulty in discriminating the target from the 
distractors forces people to develop stronger and more stable 
representations of each character as a whole unit/chunk. Note 
that this prediction is contrary to an intuitive and classic 
result in the visual search literature – usually, the more 
similar a target to its distractors, the more difficult it is to 
perform the task (Duncan & Humphreys, 1989). 

TD similarity was calculated based on vector 
representations obtained from Yang et al. (2009). Each 
character was represented as a vector of 270 binary features 
for five dimensions – simple features, shapes, structure, 
position and strokes. These vector representations are based 
on an orthographic analysis of the characters and prior 
behavioral work (Xing et al, 2004). These representations 
have been already used successfully to model print-to-sound 
mappings in Chinese (Yang et al, 2009) with a connectionist 
model similar to those used in modeling English print-to-
sound mappings (Harm & Seidenberg, 1999). For each 
search array, we calculated the mean Euclidean distance 
between the target and each distractor. Low and high 
similarity groups were defined as being below or above one 
SD around the mean similarity of all search arrays. 

Figure 2 shows that our prediction was confirmed. During 
the first session, initially greater TD similarity lead to slower 
RTs. However, by the end of the first session the effect had 
reversed and throughout the remaining sessions high 
similarity between the target and distractors lead to faster 
RTs and greater accuracy.  

 

 
 
Fig 2. Accuracy and RTs for visual search as a function of 

similarity of target to distractors within the search array. 
Right panel shows performance over time during the first 
session. Left panel shows performance over all 12 sessions. 
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Contrary to our findings, visual search tasks usually show 
that high TD similarity leads to lower accuracy and slower 
response times. Why is it that we found exactly the opposite? 
A trivial explanation would be that TD similarity in our study 
was confounded with distractor-to-distractor similarity. The 
latter consistently shows positive similarity effects. We 
discounted this explanation by showing that the positive 
effect of target-to-distractor similarity remained even after 
controlling for distractor-to-distractor similarity in the 
regression model. 

A theoretical explanation is that most visual search studies 
use simple stimuli that have pre-existing representations in 
long-term memory and no additional learning is required. Our 
study instead used Chinese characters, which are a complex 
configuration of features for participants who do not know 
Chinese. Since these characters did not have preexisting 
representations, participants had to develop them while doing 
the visual search task. We suggest that those representations 
were influenced by the demands of the task – to make highly 
similar patterns more distinct from one another so as to be 
better suited to support future performance. In essence, we 
argue that over time when the target is presented along highly 
similar distractors, the cognitive system builds more 
distinctive and stable representations of these targets.  

Additional support from this argument comes from the fact 
that (as it was with frequency) the similarity effect is mostly 
observed in the absent condition (Figure 3, left panel). That 
is, the benefit from gaining more distinct and stable 
representations is mostly to prevent the partial matching of 
shared features between the target and distractors on absent 
trials. 

 

 
Fig. 3. Effect of TD similarity on visual search accuracy as a 
function of training session and whether the target was absent 
(left panel) or present (right panel). 

A connectionist model 
The reversal of the similarity effect is something of a 

challenge from a modeling perspective. How exactly are 
more distinct representations built over time and what 
mechanism drives that differentiation?  

In order to capture the reversal of similarity effects, we 
decided to apply a novel connectionist model that will be able 
to perform a visual search task while continuously modifying 
its internal representations of the stimuli. Connectionist 

models that represent stimuli as distributed patterns of 
activity are well suited for exploring the time-dependent 
changes in the structure of conceptual representations that 
consist of multiple features. In line with our theoretical 
interpretation of the data, we expected that in the beginning 
of training, the model will behave similarly to our human 
participants and will make more errors for highly similar 
distractors. However, since this initial behavior would lead 
to more errors, over time the error-dependent learning might 
cause the model to alter its internal representations of each 
stimulus so as to make them more distinct from one another.  

In this way, the problem that a connectionist model of this 
task has to solve is akin to the XOR problem. Specifically, 
how should the representation of the input patterns be 
transformed so that similarity is reversed through the 
transformation? One possibility is for our model to have at 
least one layer that intervenes between the input layer and a 
layer that computes similarity between patterns. After a 
number of failed attempts using a single hidden layer we tried 
two separate hidden layers, which allowed the network to 
more gradually change the similarity structure in the input. 

The visual search task here requires that participants are 
able to initially encode the sample character and keep it 
active in short term memory while comparing it in turn with 
each candidate character in the search array. To model the 
task as fully as possible, a model was implemented with a 
single input layer that can send activation through two 
different pathways – either to a working memory (WM) 
module (implemented as a kind of a long short-term memory 
module), or directly to the comparison layer. This dual 
pathway represents two ways to use information coming 
through the senses. One pathway can store the representation 
of the target in short-term memory and then manipulate it in 
the absence of the stimulus itself. The other pathway can 
directly use the incoming information (i.e. the candidates for 
comparison in the search array). 

We assumed that the visual search is performed serially, 
because the RTs increased linearly with the search array size, 
and because the slope in the absent condition was twice as 
large as the slope in the present condition (Treisman & 
Gelade, 1980). As a simplification, the model presented 
below will deal only with this serial search case. 

Architecture 
The network consisted of the following layers (the 
architecture is presented in Figure 4): 

 Input: 20 units 
 Hidden1: 15 sigmoid units 
 Hidden2: 10 sigmoid units 
 LSTM module 1 

o LSTM_Input: 10 linear units 
o LSTM_Buffer: 10 linear units 
o LSTM_Context: 10 linear units 
o LSTM_Output: 10 linear units 
o LSTM_Input_gate: 1 input unit 
o LSTM_Context_gate: 1 input unit 
o LSTM_Output_gate: 1 input unit 
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 Direct_output: 10 linear units 
 Direct_output_gate: 1 linear unit 
 Comaprison: 20 units 
 Response: 2 softmax units (output layer) 

 
The input was connected in a feedforward manner to 

hidden1, which in turn was connected to hidden2. We 
expected the two hidden layers to progressively extract 
higher order features of the input. Initial weights between 
these layers were randomized with a mean of 0 and sd of 0.5. 
Each unit of the hidden2 layer was connected with the 
corresponding unit in the input layer of the LSTM module, as 
well as with the direct_output layer with a frozen weight of 
1. The same applied to the connections from LSTM_Input to 
LSTM_Buffer and from LSTM_Buffer to LSTM_Output. 
Thus, the output of the hidden2 layer was copied forward to 
the output layer of the LSTM module, and to the 
direct_output layer. The LSTM module also had a recurrent 
context layer that was connected bi-directionally to the 
LSTM_Buffer layer. 

The purpose of the four gates was to control the flow of 
activation through these two modules. There was a fixed 
negative bias of -1 to the LSTM_input and LSTM_output 
layers, and a fixed positive connection of 1 with their 
corresponding gates. Since they were all linear units that were 
cropped at 0 and 1, when a gate was off, no activity was 
copied to corresponding and subsequent layers. When a gate 
was on, it negated the bias and the layer copied the output of 
the preceding layer and passed it forward.  

Network functioning 
Each example trial was composed of four events (i.e., 

presenting different input patterns): 
1. Presentation of the target 
2. First candidate from the search array 
3. Second candidate from the search array 
4. Final candidate from the search array 

When the target was presented to the input, only the 
LSTM_input gate was on. Thus, the activity in hidden2 layer 
that corresponds to the sample input was copied to the 
LSTM1_input, LSTM_buffer and LSTM1_context layer. All 
other gates were off, thus preventing the sample input from 
transferring to the direct_output layer.  

When each candidate from the search array appeared, the 
LSTM_input gate was off, preventing the candidate 
representation from entering LSTM module. All the other 
gates were on. This meant several things happened. The 
candidate representation on hidden2 was copied to the 
direct_output layer. The representation of the sample that was 
encoded in the LSTM_context layer on the previous time step 
was transfered back on to the LSTM_buffer, and from there 
it was transfered to the LSTM_output. At this point, the 
network had the hidden2 representation of the sample 
instantiated on the LSTM_output layer, while the hidden2 
representation of the first candidate was active on the 
direct_output layer. 

Both the LSTM_output and the direct_output layers were 
connected with free random weights with sd 0.1 to the 
comparison layer, which integrated the representations of the 
sample and the first candidate input. The comparison layer 
was connected to the response layer, which consisted of two 
units - 1 for responding that the two representations are the 
same, and the other for responding that they are different. 

 

Fig 4. The network architecture. Arrows with stars (*) 
represent copy connections, where each unit in the sending 
layer is connected with a single connection with fixed 
strength 1 to the corresponding unit in the receiving layer.  

Training 
To mimic the experiment’s stimuli, 64 input patterns of 

length 20 were created with binary values that were grouped 
into 16 sets, which had greater similarity within sets than 
between sets. On average, 50% of the features in each input 
vector were “on”. The randomization and conditions were 
equivalent to those in the experiment. 

Mean similarity in a set was calculated using Euclidean 
distance. The groups in the lower 25% quantile of the 
distance distribution were designated as “Low distance / High 
similarity” sets, while groups in the higher 25% quantile were 
designated as “High distance / Low similarity” sets.  
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When a distractor was present, the network was trained to 
activate the “mismatch” response unit, while when a target 
was present it was trained to activate the “match” response 
unit. Therefore, the goal of the network was to discover a 
suitable combined representation in the comparison layer 
such that it will be able to discriminate when the 
LSTM_output and the direct_output layers had the same or 
different patterns of activation. 

We used a back-propagation training algorithm with a 
learning rate of 0.01 and a momentum descent with a 
momentum rate of 0.9. The network was trained for 4000 
passes through the training set and the weights were updated 
at the end of each pass. After every 100 updates, we recorded 
the output activation of the hidden1, hidden2 and the 
response layer. 

Results and discussion 
Frequency effects. The main results of the simulation are 
presented in Figures 5 and 6, which show the activation of 
the “match” response unit over training time. Since the 
response layer had softmax units this value can be directly 
interpreted as the proportion of “match” responses the 
network would give in response to a pattern. In Figure 5 we 
can see that the training patterns that were presented more 
often lead to greater accuracy. 
 

 

Fig 5. Activation of the Match output unit as a function of 
training time, stimulus type and frequency of the input 
pattern. 
 

Several things should be noted about this pattern. We can 
see that initially the network deactivated the match response 
unit for both types of stimuli. We can also see that overall the 
effect of frequency was much greater on target stimuli 
compared to distractor stimuli, which is exactly the opposite 
effect than the one we found in the behavioral data. This was 
probably because there were 5 times more distractor items 
than target items (3 in absent conditions, 2 in the present 
conditions). In the actual experiment, this too was the case, 
but participants got feedback only for their final response, 
thus they had equal amounts of “present” and “absent” 
feedbacks. On the other hand, the network was trained as if 
each individual comparison required a response, which 
causes the discrepancy between distractor and target stimuli. 

Thus, while the network captures the overall effect of 
frequency, its training regimen causes it to miss the specific 
pattern of frequency for different types of stimuli. This could 

possibly be solved by considering the current response layer 
to be an internal response, reflecting whether there is a match 
or not. Then a secondary motor response layer can be added 
which outputs a ‘present’ response if the internal match 
response is higher than a threshold, or stays inactive until all 
candidates have been compared. If by the last one none of 
them had elicited a match response, it produces an ‘absent’ 
response. In this way the network would reflect the actual 
behavior more closely, and weight updating would be 
affected only by the final response in each example. 

Similarity effects. As can be seen from Figure 6, initially the 
network performance is better for input stimuli that are less 
similar to their distractors.  This is a normal behavior of 
connectionist networks, and it is also what is expected by 
previous behavioral data from the visual search paradigm 
(Duncan & Humphreys, 1989). However, after about 2300 
weight updates the effect reverses and stimuli that are closer 
to each other in the input space lead to better performance. 
Importantly, this reversal happens very shortly after the 
behavior of the network starts to approximate the behavioral 
result levels (~70% accuracy), which is exactly the pattern we 
have seen from the behavioral session - greater similarity 
impairs performance during the first session of training, but 
the effect reverses by the end of that session. Indeed, if we 
limit our attention to the window between updates 2200 and 
3000, which is immediately after the pre-training, and before 
the performance saturates at ceiling, there is a close 
correspondence between the network performance both in 
terms of frequency and similarity structure. 

 
Fig 6. Activation of the ’Match’ output unit as a function 

of training time, type of stimulus and Euclidean distance 
between the target and distractor input in each array. 

 
What could be causing this reversal of the 

distance/similarity effect? A possible answer comes from 
examining the input-output mappings, as well as the hidden 
representations the network develops during training. 

If we split the candidate input patterns into targets, similar 
distractors and dissimilar distractors, then the network is 
supposed to produce the following outputs. For targets, which 
are identical to the sample item (thus 0 distance or perfect 
correlation) the network has to produce a match response, but 
for distractors that are highly similar as well, it has to produce 
mismatch responses. Thus, a major conflict during training 
comes from the fact that when distance is high, the network 
has to produce only one type of response, but when it is low, 
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it has to either respond with a match or a mismatch. One way 
to achieve these contradictory goals would be to develop such 
hidden representations of the input that cause highly similar 
patterns to be represented as less similar to each other. 

To test this explanation we looked at the distance between 
the sample item and its distractors in activation patterns in 
each of the two hidden layers, split by the distance in the input 
layer. In right panel of Figure 7, we can see that in the first 
hidden layer the distance structure in the input has been 
preserved. In the second hidden layer, however, in the 
beginning there is no difference in distance due to the two 
layers of random weights and the sigmoid nature of the 
stimuli. As training progresses, stimuli that were low in 
distance in the input and the first hidden layer become more 
distant to one another, compared to stimuli that were highly 
distinct to begin with. 
 

 
 

Fig 7. Distance between the hidden layers representations 
of the target and the distractors in each training set as a 
function of training time. Left panel shows distance in the 
first hidden layer, right panel shows the second hidden layer. 

General Discussion 
The current paper present preliminary data on a novel 

counter-intuitive finding that the usual target-to-distractor 
similarity effect in visual search reverses after a short training 
with previously unfamiliar Chinese characters. Namely, 
while targets that are highly similar to distractors in a search 
array are usually more difficult to detect, when the stimuli are 
complex visual objects, this effect reverses after about 20 
repetitions of each object as a target. We propose that visual 
discrimination and learning interact in such a way that greater 
difficulty in discriminating the stimuli causes the 
development of more distinct and stable representations. 

To test this idea of differentiation in the character 
representation over time, we fit a novel connectionist model. 
When it comes to frequency, the network successfully 
captured the overall effect that more frequently exposed 
stimuli led to better performance (although see the preceding 
discussion for some limitations). Theoretically, this was 
presumably because low frequency made it more likely that 
people depend on representing the characters as a 
configuration of features, rather than on its weak chunked 
representation. This caused them to be more likely to partial 
match constituent features and confuse distractors with 
targets. In contrast, the network showed exactly the opposite 

effect, because distractors were present 5 times more than 
targets and had a greater influence over the weight updates.  

The most interesting aspect of the model is that it was able 
to successfully capture the reversal of the similarity effect on 
visual search performance. It achieved this by transforming 
the input through multiple hidden layers, which allowed it to 
change the similarity structure in the input so that highly 
similar distractors became more and more differentiated in 
the second hidden layer as training progressed.  

This explanation was further supported by a model that 
involved direct connections from the input to the comparison 
layer without hidden layer representations (not shown here). 
This model did not show the similarity reversal effect. This 
model is analogous to performing the task without having to 
develop novel representations. One novel prediction from the 
comparison of these two models and task versions would be 
that people who learned the Chinese characters under a visual 
search task would rate highly similar characters as less 
similar after the training. 

Finally, while we simulated the input patterns in this model 
to resemble as closely as possible how our stimuli were 
structured, the simulation results might be specific to the 
interaction between the model architecture and the generated 
stimuli. Initial modeling results using the actual 270-length 
vector representations of the Chinese characters show the 
same pattern as the simplified model presented here. 
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Abstract 

Newen and Vetter (2016) argue that cognitive penetration (CP) of 
perceptual experience is the most possible account of the evidence. 
They target both the weak impenetrability thesis that only some early 
visual processes are cognitively impenetrable (CI), and the strong 
impenetrability thesis that all perceptual processes are CI. Since I 
agree that perceptual processing as a whole is CP, I will concentrate 
on their arguments against the weak CI thesis. In attacking weak CI, 
the authors take aim at Raftopoulos’ arguments supporting the CI of 
early vision. Their main argument comes from studies that, Newen 
and Vetter think, show that early vision is CP by demonstrating the 
existence of cognitive effects on early vision. I examine the same 
empirical evidence that Newen and Vatter discuss and argue this 
same evidence strongly supports the view that early vision is CI. 
 

1. Introduction 
Newen and Vetter (2016) argue that the CP of perceptual 
experience is the most possible account of the available 
evidence. They target both the weak impenetrability thesis that 
only some early visual processes are CI, and the strong 
impenetrability thesis that all perceptual processes are CI. 
Since I agree that perceptual processing, as a whole, is CP, I 
concentrate on weak CI. The authors criticize Raftopoulos’ 
(2001, 2014) arguments in support of the view that early 
vision, defined by temporal criteria, is CI. They maintain that 
top-down influences from higher-level cognitive areas to early 
visual cortex occur very early. Thus, it is unjustified to 
conclude from an early timing of a visual process that it is 
unaffected by top-down cognitive influences.  

The authors’ main argument against weak CI, given that 
weak CI holds that during the timing of early vision no direct 
cognitive effects modulate the ongoing perceptual processes, 
comes from studies that, Newen and Vetter think, demonstrate 
the existence of cognitive effects on visual processing that 
occur within the time frame of early vision.  

Furthermore, Newen & Vetter (2016, 5) argue that even if 
it exists a stage of perceptual processing that is unaffected by 
cognition, it lasts for so few ms that it could not be a plausible 
candidate for a perceptual module and it would be of almost 
no importance to philosophical discussions about the CP of 
perception. In other words, even if such a CI stage exists, the 
information it processes and outputs would be too poor to be 
categorized as a properly speaking perceptual content. 

Here, I concentrate on Newen and Vetter’s arguments from 
temporal processing. The main reason is that if it turns out that 
this evidence does not support the CP of early vision, the rest 
of the arguments against weak CI are moot.  

I argue that the evidence Newen and Vetter adduce if 
properly examined strongly supports weak CI. The evidence 
that emerges from these studies shows that all visual brain 
areas at some time are affected by top-down cognitive signals 
that usually drive spatial or object/feature based attention. 
They also show that within the time frame of early vision 
there is a confluence of top-down, lateral, and bottom up 
interactions. These interactions, however, do not involve any 
cognitive signals. These studies do not show that during the 
first 120-140 ms of perceptual processing there are direct 
cognitive top-down effects on early vision. What Newen and 
Vetter consider as evidence for top-down cognitive effects on 
early vision is, in effect, evidence for top-down and bottom up 
interactions that do not involve any cognitive effects. 

In the first section, I define early vision and examine most 
of the studies cited by Newen and Vetter (2016) and argue that 
they do not show that early vision is CP. I also take up Newen 
and Vetter’s claim that even if a CI stage of visual processing 
exists it is too impoverished to be deemed a perceptual stage 
and claim that the output of early vision has a rich structure. In 
the second section, I examine the rest of the evidence used by 
Newen and Vatter and argue that in effect it supports the claim 
that early vision is CI. All recurrent processing during early 
vision is restricted within the visual areas of the brain and 
does not involve any causal influences from cognitive states.  
 

2. Early Vision and why it is CI, Part 1. 
Early vision includes a feed forward sweep (FFS) in which 
signals are transmitted bottom-up. In visual areas (from LGN 
to FEF) FFS lasts for about 100ms. Early vision also includes 
a stage at which lateral and recurrent processes that are 
restricted within the visual areas and do not involve signals 
from cognitive centers occur. Recurrent processing starts at 
80–100 ms and culminates at 120–150 ms. Lamme (2003) 
calls it local recurrent processing (LRP). The unconscious FFS 
extracts high-level information that leads to categorization, 
and results in some initial feature detection. LRP produces 
further binding and segregation. The LRP is needed because, 
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owing to the small receptive fields of the neurons in V1 and 
V2, only local information can be coded at this level. The 
segmentation and recognition of the objects in a visual scene 
requires a more global analysis of the visual scene that can be 
achieved in higher areas, such as V4 or MT/V5, where the 
neurons’ receptive fields o are larger and integrate information 
across longer distances in the visual field.  

The feedback projections provide this global analysis that 
allows object segmentation, figure/ground separation, and 
object recognition. In the case of the MT/V5 feedback to V1, 
there is evidence (Pomp et al, 2015) that this feedback 
increases the responsiveness of the neurons in V1 especially 
for low-salience, small signals, which means that the recurrent 
signals from MT/V5 may serve to disambiguate sub-optimal 
visual input with respect both to the spatial location and 
motion of the sub-optimal signals and to their content. In 
addition, the feedback signals may be used to inform V1 
where a change has happened in the visual scene. By not 
involving signals from the cognitive areas of the brain, FFS 
and LRP are cognitively impenetrable since the transmission 
of signals within the visual system is not affected by top-down 
signals produced in cognitive areas.  

The processes of early vision retrieve from the 
environment information that allows the perception of a visual 
scene with as much accuracy as possible. To do so, early 
vision gradually constructs representations of increasing 
complexity (from variations in light intensities it extracts 
edges, from edges blobs, from blobs it extracts two-
dimensional surfaces, and from these the 21/2 sketch). The 
output of early vision consists in the dynamic structural 
description of a visual scene corresponding to Marr’s 21/2 
sketch to which one could add the affordances of objects.  

Current research on predictive coding sheds light on the 
nature of the processes implicated in vision. Applying this to 
early vision, one gets the following. The top-down and lateral 
effects in early vision aim to test hypotheses concerning the 
putative distal causes of the sensory data encoded in the 
hierarchically lower neuronal assemblies. In this testing, 
predictions made on the basis of hypotheses about the sensory 
information that the lower levels should encode assuming that 
the hypotheses are correct, are tested against the actual 
sensory information encoded at the lower levels. The 
hypothesis that best matches the sensory data is selected. 

To form hypotheses concerning the probable cause of the 
sensory data at a certain level, at a specific spatial, and 
temporal scale, the neuronal assembly at the next level uses 
information not only about the sensory data at the previous 
level (or, to be precise, information regarding its prediction 
error) that is transmitted bottom-up, but also higher-level 
information that is transmitted either laterally, that is, from 
neuronal assemblies at the same level (neurons in V1 
processing wave-lengths inform other neurons in V1 
processing shape information), or top-down from levels higher 

in the hierarchy (neurons in V4 are informed about the color 
of incoming information from neurons in IT). This lateral and 
top-down processing provides the context in which each 
neuronal assembly constructs the most probable hypothesis 
that would explain the sensory data at the lower level.  

Since 90% of the information transmitted by neurons is 
transmitted within the first 100 ms of the neurons’ activation 
as a response to a stimulus, information to neurons transmitted 
from other assemblies can affect their activity only if it arrives 
within the 100 ms time frame (Bullier 2001, 98). In order for 
the recurrent signals to modulate the activity at the reentered 
sites, they should reenter them during these crucial 100ms. 
Thus, for some signal from V4 or MT/V5, which receive 
feedforward signals from V1, to reenter V1 in time to 
influence the activation of the V1’s neurons, the loop 
consisting of feedforward signals from V1 to V4 or MT/V5 
and the recurrent signals from V4 or MT/V5 back to V1 must 
have been completed in less than 100ms.  

To put things into perspective, let us revisit Bullier’s 
(2001) ‘reintroinjection’ view as it pertains to early vision and 
involves MT/V5 and its interaction with the lower visual areas 
V1 and V2. Low spatial frequency (LSF) signals precede high 
spatial frequency (HSF) signals. LSF information is 
transmitted through fast magnocellular pathways, while HSF 
information is transmitted through slower parvocellular 
pathways; the information transmitted through M-channels 
reaches V1 from LGN 20 ms earlier than the information 
transmitted from LGN to V1 through P-channels.  

The mean activation latency of the neurons in MT/V5 of 
the brain is 75 ms after stimulus presentation respectively. 
Signals arrive at these areas at about the same time as, or a bit 
later than, they arrive in V1 (50-80 ms) and V2 (85 ms) and 
much earlier than they arrive in V4 despite the fact that 
MT/V5 is anatomically higher than V4 (Bullier (2001, 98). 
MT/V5 (and FEF) are parts of the ‘fast brain’ and belong to 
the dorsal system. MT/V5 is situated in the parietal cortex. 
Signals from V1 can reach the MT/V5 at about the same time 
they reach V2, that is, within 1-2 ms. It takes less than 20 ms 
for the recurrent signals from MT/V5 to affect the activation 
of neurons in V1 and V2. So, when HSF information 
transmitted through the P-channels reaches V1, 20 ms after 
LSF information transmitted through M-channels had reached 
V1, the responses of the V1 neurons have been modified as a 
result of the top-down signals from MT/V5 that had received 
earlier LSF information. In addition to the fast transmission of 
signals through the M-channels, MT/V5 also receives fast 
signals directly from LGN bypassing V1 through the 
koniocellular pathway. Thus, under certain conditions, MT/V5 
could be activated earlier that V1 (Foxe & Simpson 2002).  

Bullier (2001, 100) concludes “the first wave of activity 
that invades the visual cortex following a visual stimulus 
appearing in the visual scene is carried by the M channel . . . 
the characteristics of the M channel are well suited for such a 
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first-pass analysis of the visual scene.” This entails that even 
the earliest ERP component, C1, which is elicited between 40-
60 ms, is not an indice of the activity of V1 alone but also 
likely reflects top-down influences to V1 from areas as high as 
MT/V5. These bottom-up and top-down interactions take 
place within early vision (they have latencies up to 140 ms), 
but all these studies bear evidence to the existence of top-
down flow of information within early vision that involves 
stimulus driven signals reprocessed in higher visual areas and 
no evidence for cognitive effects in early vision.  

The reason that the picture described thus far bears no 
evidence to support the existence of cognitive influences at 
these early latencies is that the top-down signals are 
transmitted from MT/V5 and are part of the processing along 
the dorsal system. The picture presented thus far posits early 
latencies of the signals arriving to MT/V5 from LGN either 
directly or through V1, that is, it dictates a bottom-up early 
activation of MT/V5 that, in turn, sends feedback to V1 
affecting the activations of the neurons there. At these 
latencies there are no top-down cognitive signals to MT/V5 
and, therefore, there are no cognitive signals affecting V1. 

This conclusion is reinforced by the results of a study by 
Plomp et al (2015). The researchers combined EEG source-
imaging and Granger-causal modeling with high temporal 
resolution to “investigate whether recurrent and top-down 
interactions between visual and attentional brain areas can be 
identified and distinguished at short latencies in humans.” 
Their results confirm the fast interaction between V1 and 
MT/V5 reported by Bullier (2001). Their results also show 
that the C1 ERP waveform (50 ms (onset)-80/90 ms (peak)) 
reflects both V1 activity and also activity in highly distributed 
areas situates at the occipital, parietal, and frontal lobes (FEF 
is in the pre-frontal lobe in an area where the dorsal pathway 
projects). This activity reflects the early bottom-up and top-
down interactions described by Bullier that includes the 
V1/MT feedback loop. In contradistinction to this early 
recurrent activity, the parietal cortex and FEF (the later cycle 
of activity there), which are known to modulate perceptual 
processing so as to help adapt behavior to the demands of a 
task and context, affect posterior activity around the latency of 
N1 (170 ms after stimulus onset). Thus, top-down interactions 
that reflect task-specific processing of the stimuli arise at 
longer latencies after stimulus onset. Pomp et al. (2015, 4-5) 
synopsize their results as follows “at the N1 latency, driving 
from MT no longer showed a stimulus effect, indicating that 
stimulus-specific driving from MT is confined to earlier 
latencies, in line with its fast response properties.” 

As Plomp et al., (2016, 1) write “stimulus-evoked 
activity at latencies before 100 ms is traditionally considered a 
bottom-up process. Even at these short latencies, however, 
there is mounting evidence of fast recurrent interactions 
between visual areas, obtained from direct recordings of 
neural activity in animal models.” This agrees with Bulier’s 

conclusion that during the early interaction between MT/V5 
and V1 (latencies earlier than 100 ms) the signals are stimulus 
driven (since the signals entering MT and processed there 
originate from the stimulus only), while only in the later 
interactions that involve cognitively driven attention, whose 
commands are issued according to the task demands, do 
cognitive factors modulate the activation of neurons in V1.  

Suppose that early vision is CI. Newen and Vetter could be 
right that the perceptual processes within this narrow time 
frame produce states with such poor contents that they are not 
properly speaking perceptual states; they could be at most 
sensory states. As we have seen, however, FFS and local RP 
allow, in about 120-140 ms after stimulus onset, the 
construction of fairly complex representations of stimuli. 
There is some form of perceptual organization, which 
certainly includes information regarding the presence of 
discrete objects in a scene, their orientations, sizes, shapes or 
forms, motions; these features determine the structural 
description of objects. Thus, the output of early vision consists 
of information about spatio-temporal and surface properties, 
3D shape viewed from the perspective of the viewer, color, 
texture, orientation, motion, and affordances of objects, in 
addition to the representations of objects as bounded, solid 
entities that persist in space and time (Raftopoulos 2014). I 
disagree, thus, with Newen and Vetter that the content of CI 
perceptual states is related to the perception of impoverished 
black and white pictures. Early vision retrieves from the visual 
scene an extensive range of information. 
 

3. Timing the Cognitive Effects: Why Early 
Vision is CI, Part 2 

Let us examine the evidence that Newen & Vetter employ to 
substantiate their claim.  

Time-resolving electrophysiological evidence showed 
that visual cortex is activated within 50 ms and pre-
frontal areas within 80 ms after visual stimulus onset. 
This leaves plenty of time for iterative top-down 
processing between ‘‘cognitive”, e.g. frontal and 
parietal, areas and sensory, e.g. occipital, areas, within 
the first 100–200 ms after visual stimulation (Foxe & 
Simpson, 2002). Thus, complex high level and 
reiterative processing can happen very fast and can 
influence visual processing very early on (. . . Plomp, 
Hervais-Adelman, Astolfi, & Michel, 2015). (Newen 
&Vetter 2016, 4-5) 

Newen and Vetter talk about recurrent signals that involve 
cognitive activity affecting visual areas at latencies 100-200 
ms. Thus, they accept that the available evidence suggests that 
cognitive effects on visual areas are registered after 100 ms 
post stimulus. We discussed Plomp et al. (2015) work and 
their conclusion that the recurrent early activity (before the 
elicitation of N1) is restricted within visual areas and only 
after that latency does recurrent activity involving cognitive 
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centers register in visual areas. Thus, the early recurrent 
activity (up to about 170 ms) does not involve cognitive 
signals and this supports the view that the processes of early 
vision (that lasts up to about 120-140 ms) are not affected by 
cognitive signals. Thus, when Newen and Vetter conclude 
“complex high level and reiterative processing can happen 
very fast and can influence visual processing very early on”, 
this very early on is not early enough to be within early vision. 

Indeed, as Foxe and Simpson (2002, 139) state 
There is clearly sufficient time for multiple iterations 
of interactive processing between sensory, parietal, 
and frontal areas during brief (e.g., 200 ms) periods of 
information processing preceding motor output . . . 
These data strongly suggest that activity represented in 
the “early” ERP components such as P1 and N1 (and 
possibly even C1) is likely to reflect relatively late 
processing, after the initial volley of sensory afference 
through the visual system and involving topdown 
influences from parietal and frontal regions. 

Notice, first, that the reference is to the time frame up to 
200ms and that the recurrent interactions at earlier latencies 
that Foxe & Simpson report concern interactions within visual 
areas. In addition, the top-down signals that are generated in 
the higher visual areas and reenter the early visual areas within 
these earlier latencies result from the processing of sensory 
signals that arrive very quickly, through PM-channels or the 
koniocellular pathway, to the higher areas; “The rapid 
activation of prefrontal cortex following initial visual 
activation (within 30 ms) suggests that this input is mediated 
through the faster dorsal visual stream” (Foxe & Simpson 
2002,147-148). This is in line with Bullier’s views that we 
examined earlier. All these suggest that the higher areas at 
these latencies have not received as yet any signals from 
cognitive areas and, in this sense the signals that constitute the 
feedback loop are bottom-up sensory signals and top-down 
reprocessed and modified sensory signals. In fact, it could 
hardly be otherwise; since all this very early recurrent activity 
involves the dorsal system, there is up to date no evidence to 
support the existence of any cognitive effects on the dorsal 
system when it functions on line to support fast action. 

Furthermore, and in reference to Foxe and Simpson’s 
mention of parietal and frontal regions involved in the early 
recurrent processing, which may be taken as evidence for the 
existence of cognitive influences, MT/V5 is in the parietal 
cortex and FEF is in the prefrontal cortex. Our discussion 
concerning the role of MT/V5 shows that there are no 
cognitive effects in the early latencies we discuss and, as our 
examination of the role of FEF will show, neither are such 
cognitive effects found in the early activation of FEF and in its 
role in the early stages of perceptual processing. Foxe and 
Simpson (2002, 146) confirm this analysis by concluding that 
“multiple visual areas begin to contribute substantially to the 
surface potential and C1 begins to reflect contributions from a 

number of visual areas other than, but is likely also to include 
V1 (emphasis added).” Moreover, Foxe and Simpson (2002, 
147), after their claim that “that sustained activation patterns 
within cortical areas are consistent with feedback modulation 
of ‘lower’ visual areas by ‘higher’ areas, as well as local 
intrinsic processing”, add that their findings conform with the 
findings of Lamme (1995) and Lamme et. al. (1998) about the 
time frame of feedback modulation in figure-ground 
segregation studies with monkeys. It is well known that these 
studies confirm that the recurrent processes that occur at early 
latencies do not involve cognitive signals.  

Newen and Vetter (2016, 5) argue that in the visual system 
there is strong evidence for fast top-down processing within 
the first 50 ms after stimulus onset, certainly between motion 
area V5 and primary visual cortex V1 during motion 
perception (Silvanto, et al., 2005). The reference to the 
interaction between V5 and V1 during motor perception 
brings into mind the foregoing discussion of LRP that is 
restricted within the visual areas. Let use examine these 
studies to see if this assumption is substantiated. 

Silvanto et al., (2005) studied the role of V1 in the visual 
awareness of motion. Their experiments show that back-
projections from extrastriate cortex influence the activations 
of neurons in V1 and that it is the activation in V1 that 
determines which information reaches awareness. Since our 
interest is in the latencies at which the back projections affect 
V1 and the sites of origin of the top-down signals, I will 
ignore the findings concerning motion awareness. Silvanto et 
al., (2005) applied TMS on V1 and V5 at different times to 
examine the perception of phosphenes. When subthreshold 
TMS (that is, TMS producing no phosphene on its own) was 
applied over V5 followed by a subthreshold pulse to V1, 
subjects did not report any phosphene. When a subthreshold 
pulse was applied over V5 followed 10–40 ms later by a 
suprathreshold pulse over V1, subjects reported a phosphene, 
which was not merely the suprathreshold V1 phosphene. 
Instead, it acquired features of a suprathreshold V5 phosphene 
since subjects reported the perception of movement, and the 
shape and size of their percept was a mixture of V1 and V5 
phosphenes. This shows that activity in V5, which on its own 
is insufficient to induce a moving percept, can produce such a 
percept if the level of induced activity in V1 is high enough.  

Silvanto et al. (2005, 143) conclude that the fact “that 
moving phosphenes are perceived only when suprathreshold 
V1 stimulation follows, but not precedes, subthreshold V5 
stimulation, together with the gradual increase in motion 
perception from the 10–50 ms period, precludes a simple feed-
forward summation account and points instead to a critical 
time of backprojection arrival in V1.” They also note that the 
narrow time window for V5–V1 interaction (10–50 ms) is 
consistent with previous reports of extrastriate-striate feedback 
interactions in motion during this time interval. Indeed, this 
accords with Bullier’s (2001) and Plomp et al. (2016) finding 

977



that there is an early (up to 100 ms) phase of recurrent activity 
between V1 and MT/V5, but as in these studies, so in Silvanto 
et al. (2005) report, there is no evidence to suggest top-down 
cognitive effects at these early latencies, because the recurrent 
signals from MT/V5 are stimulus driven, or, to use Plomp et 
al. (2016) term, they are a stimulus-evoked activity. 

Next, Newen and Vetter (2016, 5) examine the 
interaction between FEF and V1.  

[T]he frontal eye fields (FEF), a higher-level area in 
frontal cortex involved in motor planning of eye 
movements, exerts its influence to V5 within 30 ms 
(Silvanto, Lavie, & Walsh, 2006). Therefore, a 
feedback loop from a frontal region to an early 
occipital region can take as little as 80 ms or less . . . 
when the task requires face recognition, FEF signals 
are sent to face-sensitive regions and when the task 
requires motion discrimination, FEF signals are sent to 
motion area V5, both within a time frame of 20–40 ms 
after FEF activity (Morishima et al., 2009). 

FEF is situated in the prefrontal cortex at a site that is 
heavily interconnected with the parietal cortex and is 
considered a part of the dorsal system. The mean activation 
latency of the neurons in FEF is 70 ms after stimulus 
presentation. Signals arrive at FEF with a slight time delay 
time with respect to the signals arriving at V1 (50-80 ms) and 
V2 (85 ms) and much earlier than they arrive at V4 despite the 
fact that FEF is anatomically higher than V4 (Taylor and 
Nobre 2007). FEF TMS affects the detection of targets in 
arrays of distractors and these effects are apparent when 
pulses are applied early (40 and 80 ms) after presentation of 
the visual array (O’Shea et al. 2004). HSF signals from V1 
can reach FEF in 50-100 ms.  

FEF contains visual and movement neurons. Studies (see 
O’Shea et al. (2004, 1060) for a discussion) show that there 
are two dissociated processing operations in FEF; the target 
selection by FEF visual neurons and saccade programming by 
movement neurons. Studies (O’Shea et al., 2016; Silvanto et 
al., 2006; Taylor & Nobre 2007) show that some FEF 
responses are independent of saccades to targets and respond 
to the visual stimuli. Some of the FEF feedback signals play a 
role in the perception of a visual scene by affecting in a top-
down manner the earlier visual areas. FEF plays a crucial role 
in visual target discrimination that is independent of saccade 
programming, as TMS applied to FEF impairs performance in 
target discrimination tasks if applied between 40-80 ms after 
stimulus onset (O’Shea et al. 2004). In addition, these visual 
neurons of FEF are thought to be associated with top-down or 
endogenous attention (Taylor and Nobre 2007).  

Accepting O’Shea et al. (2004) early latencies of FEF 
neurons in discriminating targets from non targets (100-120 
ms), in view of the fact that, as Newen and Vetter (2016, 5) 
also accept, FEF exerts its influence to V5 within 30 ms and, 
therefore, a feedback loop from FEF to an early occipital 

region can take as little as 80 ms or less, the total time it takes 
for the FEF neurons that have distinguished the targets from 
non targets to affect via top-down feedback projections the 
early visual areas is about 180-200 ms, considering that the 
target discrimination in FEF reported by O’Shea t al. (2004) 
occurs at 100-120 ms.  This means that the FEF effects the 
activation of the neurons in early visual areas with a latency 
that places these effects outside early vision.  

Concerning the finding that FEF neurons effectively 
discriminate targets from non targets as early as 100-120 ms 
after stimulus onset, one could argue that since this 
discrimination is task relevant and involves cognitive factors, 
cognition affects a visual area, FEF, within the timing of early 
vision. O’Shea et al. (2004), think it very likely that the early 
latency they report is the result of feature pre cueing, which 
means that the early activity in FEF occurs as the result of a 
cognitive demand issued before the appearance of the 
stimulus. I have argued (Raftopoulos 2014) that the cognitive 
effects on perception through pre-cueing are not cases of CP 
because they do not affect directly early vision and do not 
affect its epistemic role in grounding empirical beliefs. 

Silvanto et al., (2006), whose study is cited by Newen and 
Vetter (2016) as showing that early vision is CP, found that 
stimulation applied to FEF 20-40 ms prior to the stimulation 
of MT/V5 decreases the intensity of the MT/V5 stimulation 
required to elicit phosphenes, which entails that the activity of 
MT/V5 is modulated by the activity in FEF. FEF has also been 
found to modulate top-down V4. Silvanto et al (2006, 944) 
claim that the content of to-down control may be either spatial 
or feature related, which means that they think that FEF 
affects the control of top-down attention; “an area involved in 
control would be expected to be active early and by 
responding to target features, the FEF could increase the 
sensitivity of extrastriate neurons to task relevant parameters.” 
(Silvanto et al. 206, 944) With regards to how FEF exerts top-
down control, it is possible that FEF activity occurs prior to 
sensory stimulation as opposed to rapid responses to visual 
stimuli since FEF neurons may also play a role in visual 
priming (Silvanto et al. 2006, 944). Thus, as Taylor and Nobre 
(2007), so Silvanto et al., (2006) think that FEF controls the 
allocation of top-down attention prior to stimulus presentation.  

The discrimination between targets and non-targets 
depends on the task at hand and is cognitively driven. Thus, 
the top-down effects that result from this discrimination are 
also cognitively-driven and the visual processes that are thus 
affected are clearly CP. Accepting O’Shea et al. (2004) early 
latencies of FEF neurons in discriminating targets from non 
targets, since FEF exerts its influence to V5 within 30 ms and, 
therefore, a feedback loop from FEF to an early occipital 
region can take as little as 80 ms, the total time it takes for the 
FEF neurons that have distinguished the targets from non 
targets to affect via top-down feedback projections MT/V5 is 
130-150 ms, and the effects on the early visual areas is about 
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180-200 ms, considering that the target discrimination in FEF 
in O’Shea t al. (2004) occurs at 100-120 ms. All of these are 
outside the timing of early vision and do not entail its CP. 

Finally, Newen and Vetter (2016, 5), appeal to a study by 
Drewes et al. (2016) that shows that object recognition 
involves recurrent processing with a time constant of 60 ms. 
Drewes et al. (2016) examine the view that since the visual 
system extracts from object information, for example, the 
shape of objects, very fast this entails that the underlying 
cortical processing should be strictly feedforward. Against 
this, their study suggests that in shape perception there is a 
recurrent circuit, which is not an attentional cueing effect but 
reflects “the time course of feedback processing underlying 
the rapid organization of shape.” (Drewes et al. 2016, 185) 

In their introduction, they mention work by Heinen et al. 
(2005) suggesting that the figure-ground segregation requires 
two distinct periods of information processing in the early 
visual areas, an early one around 130-160 ms and a later one 
around 250-280 ms after stimulus onset, and by Wokke et al. 
(2012) showings that recurrent processing engages the early 
visual areas (V1/V2) to participate in more complex visual 
tasks. In an early time window (96–119 msec), detection of 
figure stimuli and of neural correlates of figure border 
detection and border ownership occurs. Later (236–259 msec) 
V1 and V2 participate in surface segregation. Drewes et al. 
(2016) accept these latencies as a general framework.  

Drewes et al. (2016, 190) claim that “the extent of 
facilitation between two shape stimuli depends non-
monotonically on the delay between their presentations, 
peaking at a delay of 60 ms.” This suggests a recurrent circuit 
underlying shape processing in the cortical object pathway. 
They remark that in Wokke’s et al. (2012) study TMS was 
applied to the occipital pole to disrupt processing in V1/V2 or 
to the lateral occipital lobe to disrupt processing in the LOC. 
TMS disrupted performance at both locations but at different 
latencies. In LOC, TMS disrupted processing when the pulse 
occurred 100–122 ms post stimulus, while in V1/V2, 
processing was disrupted when the pulse was applied 160–182 
ms post stimulus. This shows a feedback process in the 
grouping of contour fragments to form shape with a one-way 
feedback time constant (LOC to V1/V2) of 40–80 ms. Given 
the 60 ms time constant, the top-down signals reenter V1 and 
V2 at latencies outside early vision. 
 

4. Conclusion 
I examined the evidence Newen and Vetter (2016) adduce to 
support the claim that early vision is CP. None of it supports 
the existence of direct cognitive effects on early vision. 
Finally, concerning the claim that a stage of visual processing 
that is CI is so impoverished that it would not be worthy to be 
called a stage of perception, I claimed that early vision 
delivers a rich structure. 
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Abstract 

In Wason’s selection task, participants select whichever of 
four cards could provide evidence about the truth or falsity of 
a conditional rule. As our meta-analysis of hundreds of ex-
periments corroborates, participants tend to overlook one of 
the cards that could falsify the rule. 15 distinct theories aim 
to explain this phenomenon and others, but many of them 
presuppose that cards are selected independently of one an-
other. We show that this assumption is false: Shannon’s en-
tropy for selections is reliably redundant in comparison with 
those of 10,000 simulated experiments using the same four 
individual probabilities for each real experiment. This result 
rules out those theories presupposing independent selections. 
Of the remaining theories, only two predict the frequencies 
of selections, one (due to Johnson-Laird & Wason, 1970a) 
provides a better fit to the experimental data than the other 
(due to Klauer et al., 2007). We discuss the implications of 
these results.  

Keywords: Conditional reasoning; Entropy; Falsity, Selec-
tion task; Mental models. 

Introduction 
Human beings are able to evaluate whether assertions are 

true, and to select evidence relevant to such evaluations. 
The late Peter Wason (1968) carried out a paradigmatic 
study to test whether naive individuals grasped the rele-
vance of falsification. In his original “selection” task, the 
experimenter explains to the participants that there is a pack 
of cards in which each card has a letter on one side and a 
number on the other side. Four cards are taken at random 
from the pack, and placed in front of the participant (see 
Fig. 1). The experimenter then presents the rule: 

If there is a D on one side of a card, then there is a 3 on  
the other side. 

The participants’ task is to select just those cards that, if 
turned over, would show whether or not the rule is true or 
false of the four cards. The task is a demonstration, not an 
experiment, because it has no independent variable. 
 Participants tend to select the D card alone, or the D and 
3 cards, but rarely the D and 7 cards. Yet, if the 7 has D on 
its other side, the rule would be false. This failure to falsify 
was shocking. Perhaps as a consequence more than 300 
experiments investigating the task have been published 
over the last 50 years. 
  In order to try to understand performance, psychologists 
developed various versions of the task. They explored rules 
of  different  sorts,  such  as  disjunctions  and  rules framed  

Figure 1. The four cards in Wason’s selection task. Each 
has a number on one side and a letter on the other side. The 
participants’ task is to select just those cards that, if turned 

over, would show whether or not the rule shown above 
holds for the four cards. The letters p, q, etc. are added for 
illustrative purposes as the rule is of the sort, if p then q. 

 
with “every” in place of “if” (Wason & Johnson-Laird, 
1969; Wason & Shapiro, 1971), cards with all the infor-
mation on one side but partly masked, choices of just two 
cards (e.g., Johnson-Laird & Wason, 1970b), or choices of 
multiple cards, with repetitions of one or more cards (e.g., 
Oaksford & Chater, 1994). But, two main versions elicited 
better performance than abstract rules, such as the one in 
Fig. 1. One version used everyday rules, such as one about 
destinations and modes of transport (Wason & Shapiro, 
1971). The other version switched the task around so that 
participants had to select those cards representing individu-
als who might be violating a deontic rule (e.g., Griggs & 
Cox, 1982), such as:  

If a person is drinking beer, then the person must be 
over 19 years of age. 

The efficacy of some deontic rules, such as one about the 
amount of postage on letters (Johnson-Laird, Legrenzi, & 
Legrenzi, 1972), depended on the participants’ familiarity 
with them, but not all do so. 

As the number of experimental studies grew, so too did 
the number of theories. By our reckoning, there are at least 
15 distinct theories of the selection task including ones 
based on the meaning of conditionals, on formal rules of 
inference for them, on heuristics such as “matching” in 
which participants merely select those cards referred to in 
the rule (Evans, 1977), on content-specific rules of infer-
ence, and on the probabilities with which the various items 
on the cards occur in reality (Oaksford & Chater, 1994). 
Given that the selection task has been under investigation 
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for half a century, the existence of 15 theories about it is 
embarrassing for cognitive science. Our aim in what fol-
lows is therefore to describe meta-analyses of the experi-
ments that aimed to eliminate as many theories as possible.  
 

Meta-analyses 
The reliability of the results 

We searched the literature for experiments on the selec-
tion task with the proviso that they used a conditional rule 
of the sort: if p then q, and that they reported at least the 
frequencies of the four canonical selections of p, pq, 
pqq, and pq, which the early studies had reported. Hence-
forth, we abbreviate selections in the preceding way, stating 
which of the 4 cards they included, e.g., pq denotes a selec-
tion of the p and q cards (see Fig. 1). We divided the result-
ing experiments into three categories according to the na-
ture of the rule they used: abstract, everyday, or deontic. 
We also classified them according to whether they reported 
the frequencies of only the 4 canonical selections and a 
category of “other” selections, or the frequencies of all 16 
possible selections. The studies can be found at 
http://www.cc.uni-freiburg.de/data. 

Because the first studies were carried out half century 
ago and subsequent ones in many countries, their results 
might be too heterogeneous for an informative test of the 
theories. We assessed the overall homogeneity of the re-
sults for the three categories of task from the reliability of 
the rank orders of the frequencies of their canonical selec-
tions. Table 1 reports Kendall’s coefficient of concordance, 
W, which ranges from 0 for no consensus to 1 for perfect 
consensus, for the three categories of task. The results show 
a reasonable and robust consensus over the experiments. 
Table 2 presents the overall percentages of each of the four 
canonical selections for the three sorts of selection task. It 
shows why the deontic task yielded a greater concordance, 
W: the majority of participants selected cards denoting po-
tential violations of the rule.  
 

Table 1. The concordance across different experiments 
examining the three main sorts of selection tasks as as-

sessed with Kendall’s coefficient of concordance, W, and 
stating its χ2 and p values. 

 
Three sorts of 
selection task 

Number of 
experiments 

Kendall’s  χ2  and p value 

Abstract  104 W = .34 107, p < .001 
Everyday   44 W = .25   33, p < .001 
Deontic  80 W= .54   29, p < .001 

 
The redundancy of the selections 

Many studies of the selection task report only the four 
separate probabilities with which participants selected each 
of the cards (e.g., Evans, 1977). These results, however, 
make sense only if the selection of each card is independent 
of the others. Some investigations have reported this inde-
pendence (e.g., Evans, 1977). But, others have refuted it by 
establishing correlations  between  the  selections (Pollard,  

1985; Oaksford & Chater, 1994). Correlations, however, 
are only among pairs of cards in selections. A better as-
sessment would take into account each selection as a whole 

 
Table 2. The percentages of each of the four canonical se-

lections for the three sorts of selection task 
 

  The canonical selections 
p pq pqq pq 

Abstract 36 39 5 19 
Everyday  23 37 11 29 
Deontic 13 19 4 64 

 
and all the selections made in an experiment. We therefore 
introduced a new procedure that combines Shannon’s 
measure of entropy (or informativeness) with the computer 
simulation of thousands of experiments. The underlying 
intuition is straightforward. Suppose the selections in an 
experiment are more redundant – more predictable – than a 
prediction made solely from the frequencies of selecting 
each of the four individual cards in the experiment. It fol-
lows that the cards in selections are, not independent of one 
another, but interdependent. And some aspect in the pro-
cess of selecting cards yields the redundancy. 

 The first step in our procedure is to compute the amount 
of information in the selections in an experiment, i.e., the 
difficulty of predicting them. We use Shannon’s measure of 
entropy: 

H = - Σ Pi log2Pi 
for the set of selections, where Pi denotes the probability of 
the i-th selection, and log2 denotes a logarithm to the base 
2. In general, the greater the number of different selections, 
and the more evenly distributed the frequencies over them, 
so the value of H increases, and it is harder to predict the 
selections. If participants chose each card independently of 
the others, the value of H for the experiment would not 
differ reliably from its value for selections derived from 
sampling according to the four probabilities for selecting 
each card. But, if the value of H for the selections in the 
experiment is reliably smaller than this theoretical value, 
then we can reject the null hypothesis of independent selec-
tions. In other words, the redundancy reflected in a smaller 
value of H reflects interdependence in the selections. 

 As an illustrative example, consider the selections in 
Experiment 2 of Stahl et al. (2008), which we choose be-
cause of its large number of participants: 351. Here are the 
frequencies of the selections, in which 6 participants select-
ed none of the cards:  

p 92, pq 99, pqq 2, pq 20, ppqq 19, pq 6, ppq 2,  
pqq 2, q 18, pq 22, pp 7, qq 6, p 7, q 43, none 6. 

They show that the probabilities of selecting each of the 
four cards were as follows:  

 p 0.69, q 0.49, q 0.26, p 0.19. 
The value of H for the selections in the experiment is 2.8 
bits. Could this value have occurred by chance? We used a 
resampling procedure to find out its chance probability 
(see, e.g., Good, 2001). We ran a computer program to car-
ry out 10,000 simulated experiments based both on the 
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number of participants in the original study and on its prob-
abilities above of selecting the four individual cards. The 
resulting mean value of H was 3.13, which shows that the 
observed selections in the experiment have a redundancy of 
0.33. More important, however, is that not one of the simu-
lated experiments yielded an entropy as low as 2.8 bits, and 
so the difference is statistically significant (p < .0001). The 
redundancy in the original experiment did not occur by 
chance. In summary, a statistically significant degree of 
redundancy in selections in an experiment is evidence for 
their interdependence.  

We programmed an algorithm based on the same idea. Its 
key difference from our analysis of Stahl’s data above is 
that it concerns only the four canonical selections. This 
constraint is necessary because so many experimental re-
ports state the results only for them. Four selections have a 
maximum entropy of 2 bits if they are each equiprobable. 
The mean over the 228 experiments (in Table 1) is 1.27 bits 
(with a standard deviation of 0.48). The input to the pro-
gram states the number of participants and the frequencies 
of the four selections for each experiment in the set. Its 
main steps are as follows. For each experiment: 

 
1. Compute N, the number of participants, and the 

probabilities with which each of the 4 cards oc-
curred in the experiment’s selections.	

2. Compute Shannon’s entropy H for the experiment.	
3. Carry out 10,000 simulated experiments based on  

the probabilities of selecting each card, assigning a 
selection to each of the N participants.	

4. Return the number of simulated experiments with a 
higher entropy than the actual experiment and the 
number of them with the same or a lower entropy.	

 
Table 3. The mean entropies (in bits) of 228 experiments 

on three sorts of selection task, the mean entropies of sets 
of 10,000 simulations of each experiment, and Wilcoxon’s 
tests (W, and its p-value) of the difference between them. 

 
The three 
sorts of selec-
tion task 

Mean entropy  
of experiments  

Mean entropy 
of sets of 
simulations 

Wilcoxon’s 
W and p-value 

Abstract 1.32 1.42 W = 469, p < .001 
Everyday   1.51 1.66 W =  28, p < .001 
Deontic 1.06 1.21 W =  68, p < .001 

 
Table 3 presents the mean entropies of the 228 experi-

ments investigating the three sorts of selection task, the 
mean entropies of each of their 10,000 simulations, and the 
results of Wilcoxon’s W test and its p-value comparing the 
pairs of means. These results allow us to reject the null hy-
pothesis of independent selections. The redundancy shown 
in the smaller entropies of real experiments over simulated 
ones shows that the cards in selections are not selected in-
dependently of one another. They are selected in an inter-
dependent way. This result eliminates any theory that pre-
dicts that selections are independent.  

 
 

Theories of the selection task 
Some theories of the selection task are informal and 

make only qualitative predictions about selections (e.g., 
Wason, 1968). Some predict only whether the correlations 
between selecting the possible pairs of cards are positive or 
negative (Oaksford & Chater, 1994). Some predict only the 
probabilities of selecting each of the four cards (Evans, 
1977; Hattori, 2002; Oaksford & Wakefield, 2003). We 
discount all of these theories as insufficiently powerful to 
make quantitative predictions about the frequencies of the 
canonical selections, let alone all 16 possible selections. 
There remain just two theories, which we now outline. 
 
The insight model  

The first algorithms to model the mental processes under-
lying the selection task were due to Johnson-Laird and Wa-
son (1970a). Their principal algorithm posits three levels of 
insight into the importance of falsification: no insight, 
which implies that reasoners select only cards referred to in 
the rule – an anticipation of “matching” bias (Evans, 1972); 
partial insight, which implies that reasoners consider all the 
cards, adding any further cards that verify the rule, or, fail-
ing that, that falsify the rule; and complete insight, which 
implies that reasoners select only cards that can falsify the 
rule. The algorithm was published as a flow chart, but not 
implemented, because of a lack of access to a main-frame 
computer. We recently programmed it, replacing its use of 
truth tables with mental models and fully explicit models, 
simplifying its processes, but keeping its original function-
ality so the program makes the identical predictions to the 
original version. 
  Given a rule of the sort if p then q, the program begins by 
compiling a list of cards to select, and its first step is to 
scan its mental model of the conditional, and as a result to 
put p on this list. If the program also scans the model in the 
opposite direction, it adds q to the list. With no insight into 
the task, these selections verify the rule. However, the pro-
gram implements two interrelated levels of insight. Partial 
insight is to assess all the cards, and to add any further card 
that verifies the rule, or, if none does, to add any that falsi-
fies the rule. So, if q is already in the list, partial insight 
adds q, because it can falsify the rule, yielding the selection 
pqq. Complete insight is to select only cards that can falsify 
the rule, and yields the selection pq. Complete insight oc-
curs only if all the cards are examined. An explicit bicondi-
tional as an input yields a selection of all four cards in cer-
tain cases, e.g., when it scans its model in both directions 
with partial insight.  
 Fig. 2 presents, not the algorithm, but a tree diagram 
summarizing its parameters and its predictions for condi-
tionals and biconditionals. As it illustrates, the algorithm 
produces the same selections as a result of different pro-
cesses, and it is not deterministic, i.e., nothing in the algo-
rithm determines the level of insight (pace Evans, 1977, 
who took the algorithm to be deterministic). The predic-
tions in Fig. 2 explain why selections should be interde-
pendent, e.g., verifying cards include q only if they include 
p and falsifying cards include q if and only if they include 
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p. The only exceptions to the algorithm’s outputs should be 
the result of guessing or haphazard errors.  In fact, these 
exceptions occur at a rate less than chance in the 288 exper-
iments. 

 
Figure 2. The predictions of the insight model (Johnson-

Laird & Wason, 1970a) as a binary decision tree. Each de-
cision is controlled in its recent implementation by a pa-

rameter (see text). Participants with no insight select only 
cards referred to in the rule. Those with partial insight con-
sider all cards, selecting any further card that can verify the 

rule, or, failing that, that can falsify it. Participants with 
complete insight select only cards that can falsify the rule. 

 
 Our implementation of the algorithm contains three 
probabilistic parameters in the unit interval from 0 to 1. The 
first parameter, c, is the probability of scanning the model 
in both directions as opposed to scanning in only one direc-
tion. The second parameter, e, is the probability of examin-
ing all four cards, and if the result fails to add any card that 
verifies the rule, adding any card that falsifies it. This cor-
responds to partial insight. The third parameter, f, is the 
probability of complete insight, which makes only a falsify-
ing selection.  
 
The inference-guessing model 

 Klauer et al. (2007) proposed a set of related theories, 
including one with a heuristic component allowing for 
guessing, and an inferential component. There is no algo-
rithm the implements the theory’s underlying processes, but 
its predictions were modeled in a binary tree.  This model 
has 10 parameters, which are each the probability that one 
sort of process occurs rather than another, and so each is in 
the unit interval from 0 to 1. The model’s first parameter is 
the probability that the inference governs the selection as 
opposed to guessing. The guessing component makes inde-
pendent selections of each of the four cards according to 
four parameters that are the respective probabilities of se-
lecting each of them independently as a result of guessing 
or any heuristic factor such as “matching” (Evans, 1977). 
The theory assumes that selections are governed, not by the 
meaning of the rule, but by inferences from the rule. The 
particular inferences depends on five parameters:   

1. The probability that the rule, if p then q, is interpreted 
as a conditional as opposed to a biconditional. 

2. The probability that the inference is forwards from the 
if-clause: modus ponens (MP) or denial of the antecedent 
(DA), as opposed to backwards from the then-clause: mo-
dus tollens (MT) or affirmation of the consequent (AC).  

3. Given the biconditional interpretation, the probability 
that the interpretation is bidirectional, if p then q & if q then 
p, as opposed to a case distinction, if p then q & if not-p 
then not-q. With the bidirectional interpretation, the distinc-
tion between forwards and backwards inferences does not 
apply – both are made, but with a case distinction interpre-
tation, the distinction still applies. 

4. The probability that an inference from a conditional or 
a bidirectional biconditional is a sufficient one as opposed 
to a necessary one. Normally, p is judged sufficient to infer 
q from if p then q, but sometimes p is judged necessary to 
infer q, as when the conditional is interpreted as stating an 
enabling condition akin to only if p then q. A forward suffi-
cient inference is MP, whereas a forward necessary infer-
ence is DA; and a backward sufficient inference is AC, 
whereas a backward necessary inference is MT.  

5. The probability that inferences are made only about 
the visible sides of cards as opposed to the invisible sides of 
cards too, i.e., individuals can envisage items on them.  

The model contains 10 parameters but the data are the 
frequencies of the four canonical selections. Hence, to en-
sure that the process of fitting model to data converges and 
does not overfit the data, we  implemented a restricted in-
ference-guessing model that makes the four canonical se-
lections. Fig. 3 summarizes the predictions of this restricted 
inference-guessing model. The reasoning component in the 
original model makes no more than two inferences on a 
trial, and so it cannot make the canonical selection of three 
cards: pqq.  We therefore changed the original guessing 
component to make this selection. 

 
Figure 3. A restricted version of the binary decision tree of 
the inference-guessing model (Klauer et al., 2007) for the 4 
canonical selections. Each decision is controlled by a pa-

rameter (see text). 
 

The two models are based on the only theories that we 
could find in the literature that can be programmed with 
parameters that fit data about the frequencies of selections.  
 

An evaluation of the two models 
We evaluated the insight model with 3 parameters (John-

son-Laird & Wason, 1970a) and the restricted inference-
guessing model with 4 parameters (cf. Klauer et al., 2007).  
Their respective predictions can be represented as trees of 
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binary decisions (see Fig. 2 and Fig. 3). Both models in-
voke alternative sequences of processes depending either 
on three decisions in the insight model or four decisions in 
the inference-guessing model. Because each model’s pre-
dictions correspond to a tree of decisions, we evaluated 
each of them as a multinomial processing tree (MPT) in 
which the probability of a particular cognitive state is esti-
mated from the observed frequencies of selections (Riefer 
& Batchelder, 1988). A program fitted each of the two 
models to the frequencies of the canonical selections of the 
three sorts of selection task: 104 experiments with the ab-
stract task, 44 experiments with everyday task, and 80 ex-
periments with deontic task (see Tables 1-3 above). We 
used the maximum-likelihood method from the R-package 
for multinomial processing trees (the MPTinR of Singmann 
& Kellen, 2012). We calculated three measures to compare 
the goodness of fits of the two theories:- 
 
• The root mean square errors (RMSEs) of the fits. 
 
• The Bayesian information criterion (BIC), which indicates 
how much information is lost when a model represents the 
process that generates the data, taking into account both its 
goodness of fit and its number of parameters. It penalizes 
models according to the number of their parameters, and 
the smaller its value, the better the fit between a model and 
the data. 
 
• The Bayes factor (BF; Schwarz, 1978), which is a Bayesi-
an method to compare different models. It uses an approx-
imation of the difference between the BIC value of model 1 
and BIC value of model 2 as computed by MPTinR. The 
higher its value between 30 and 100, the stronger the sup-
port for model 1 over model 2 (Wagenmakers et al., 2011). 
 

Table 4 presents the three measures for each of the two 
models. As it shows, the insight model with three parame-
ters has a closer fits, and lower BIC values, than the re-
stricted inference-guessing model. The Bayesian factor 
likewise shows stronger evidence for the insight model than 
for the restricted inference-guessing model. The insight 
model has the advantage of fewer parameters.  As a theory, 
it is simpler because it relies on the meaning of the rule 
rather than inferences from it, and because it has no ma-
chinery to account for selections that occur at a rate less 
than chance. But, it is not a paragon, and we explain why 
below.  
 

General Discussion 
Half a century of research and over 300 articles should 

have led to a single unique theory of a cognitive task rather 
than to 15 different theories. That was the situation for Wa-
son’s selection task. The present research, however, has 
eliminated all but one theory. And it did so using the fol-
lowing strategy. It established a large but representative set 
of experiments investigating rules of the sort if p then q that 
had a reliable  concordance  in  their  results (Table 1). 
These results established the rarity of falsifying selections, 

pq, except when they violate a deontic rule Table 2). The 
four canonical selections (p, pq, pqq, and pq) are reliably 
redundant in most experiments in comparisons of each ex-
periment’s entropy (informativeness) with the entropy of its 

 
Table 4. The insight model’s and the restricted inference-

guessing model’s goodness of fit with the individual canon-
ical selections for 288 experiments overall and for the three 
sorts of selection task: the root mean square errors (RMSE) 

for their predictions, their Bayesian information criteria 
(BIC), and the Bayes factors for the better-fitting model. 

 
10,000 simulations based on its four probabilities of select-
ing each card (Table 3). Not all experiments yield redun-
dant selections, but the vast majority do. This result ruled 
out theories that imply that selections of cards are inde-
pendent of one another. Above all, theories therefore need 
to predict the frequencies of the canonical selections. Per-
haps surprisingly, this criterion rules out nearly all the re-
maining theories.  Klauer et al. (2007) had programmed an 
MPT of their inference-guessing model using 10 parame-
ters to make predictions for the frequencies of all 16 possi-
ble selections – most of which do not occur more often than 
chance. More than twice as many experiments reported the 
frequencies only of the four canonical selections than re-
ported them for all 16 selections. Hence, we produced an 
MPT for a restricted version of the model that used four 
parameters to predict the frequencies of the canonical selec-
tions. To do so, we reduced the original parameters for 
guessing to one, which made a selection of three cards, 
otherwise impossible for the model to select. For the insight 
model, we programmed an algorithm that carried out its 
processes (Johnson-Laird & Wason, 1970a), and we used it 
to construct an MPT model with three parameters.  The 
insight model yielded a better fit with fewer parameters 
(Table 4).  
 The story of the selection task does not end here. But, the 
success of the insight theory tells us that we have returned 
to how it was conceived after only a handful of studies. 
Naive individuals focus on those cards mentioned in the 
rule, and select them if they can verify the rule. With a little 
bit of insight, they consider all the cards, and may select 
additional cards. With complete insight, they select only 
cards that can falsify the rule (Johnson-Laird & Wason, 

The 3 sorts 
of the sele-
ction task 

Cognitive  
model RMSE 

Bayesian 
 Information 

Criterion (BIC) 

Bayes 
factor 

Overall Insight 2.69 27.7 
99.5 Inference-  

guessing 
19.35 37.0 

Abstract Insight 1.97 25.7 
73.7 Inference-

guessing 
3.28 34.3 

Everyday 
   

Insight 1.7 23.2 
47 Inference-

guessing 
2.18 30.9 

Deontic Insight 0.8 23.5 
49.4 Inference-

guessing 
1.05 31.4 
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1970a). We now know that various factors – the compe-
tence of participants, the contents of the rule, and the fram-
ing of the task – can all enhance insight. An account along 
these lines seems to be correct, except perhaps when exper-
iments implicate probabilities in their contents or framing 
(e.g., Oaksford & Chater, 1994).  

The excellent fit of the insight model must be viewed 
with caution. The number of parameters in a model is a 
measure of our ignorance. Those for guessing seem to be 
dispensable. Indeed, some selections are very odd, as we 
saw earlier in our analysis of the results from Stahl et al. 
(2008). They are so odd that they must count as irrational 
on any criterion: the participants erred or guessed. Introduc-
ing parameters to model guessing has no theoretical value 
other than to index the difficulty of a task. The insight theo-
ry has three essential parameters, and the original infer-
ence-guessing model has five. The difference reflects an 
crucial distinction: whether people determine the truth val-
ue of an assertion based on its meaning (the insight model) 
or based on inferences from it (the inference-guessing 
model). Therein may lie the advantage of the insight model. 
But, we are bound to ask what mechanisms might replace 
its parameters. We now know that the insight to make falsi-
fying selections depends on various factors, including intel-
lectual ability (e.g., Stanovich & West, 1998). Hence, it 
may be feasible to replace the parameter for the probability 
of complete insight with a measure of ability. It is even 
conceivable that the parameter of partial insight might re-
flect a lesser but above average intellect. The parameter for 
scanning a model of the conditional in both directions is 
more problematic. It may depend on the processing capaci-
ty of working memory. These speculations in no way rule 
out the possibility of some quite different theory of the se-
lection task outperforming the insight model. 

If our research has any general moral, it is an old one: 
cognitive theories should be effective procedures (Johnson-
Laird, 1983, p. 6). They should be programmable. 
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Abstract

Words frequently acquire new senses, but the mental process
that underlies the historical emergence of these senses is often
opaque. Many have suggested that word meanings develop in
non-arbitrary ways, but no attempt has been made to formalize
these proposals and test them against historical data at scale.
We propose that word meaning extension should reflect a drive
towards cognitive economy. We test this proposal by exploring
a family of computational models that predict the evolution of
word senses, evaluated against a large digitized lexicon that
dates back 1000 years in English language history. Our find-
ings suggest that word meanings not only extend in predictable
ways, but also that they do so following an historical path that
tends to minimize cognitive cost - through a process of nearest-
neighbor chaining. Our work contributes a formal approach to
reverse-engineering mental algorithms of the human lexicon.
Keywords: Word meaning; semantic change; polysemy;
chaining; nearest neighbor algorithm; lexicon

Over history, words have frequently acquired new senses,
and become polysemous (Bréal, 1897). But the mental pro-
cess that underlies the historical emergence of word senses
is often opaque. Wittgenstein’s notion of family resemblance
(Wittgenstein, 1953, p31-32) highlights the challenge for re-
searchers, showing that the many senses of the word game
form “a complicated network of similarities overlapping and
criss-crossing” with nothing identifiably in common (as for
board games, card games, ball games, Olympic games, and
so on). The network is presumably a reflection of the com-
plex path the word game took in the historical development
of its meaning. Decades of research have suggested possi-
ble ways that word meanings might be mentally structured
or extended over time, but none has been tested formally
against historical data at scale. We propose that word mean-
ings should develop historically in ways that minimize cog-
nitive effort, hence reflecting a drive towards cognitive econ-
omy (Zipf, 1949; Rosch, 1975). We test this proposal by for-
malizing previous theories in computational models that pre-
dict how word senses might emerge over time, contributing a
principled approach to reverse-engineering mental algorithms
of the human lexicon.

Our starting point is a set of influential ideas from cogni-
tive science and linguistics suggesting that word meanings or
categories might be structured in non-arbitrary ways. For ex-
ample, pioneering work by Rosch (Rosch, 1975) showed that
common semantic categories signified by words such as bird
and furniture tend to exhibit a prototype structure, such that
certain members of a category are more representative than
others (e.g., robins and sparrows are more representative as
birds than penguins or bats are). Although this theory has
since been adapted to describe how word meanings might be
structured (Lakoff, 1987) or extended over time (Geeraerts,
1997), it has not been computationally specified or evalu-
ated broadly in accounting for historical patterns in how word
senses emerge. A prominent alternative proposal is exem-
plar theory (e.g., Medin & Schaffer, 1978; Nosofsky, 1986),
which suggests that all encountered members of the category
are stored and used in categorization judgments, although dif-
ferent members may be weighted differently. This proposal
has also been used to describe how language might change
over time, particularly concerning phonological and seman-
tic representation (Bybee, 2006). To our knowledge, how-
ever, there has been no formal comparison of prototype and
exemplar theories with respect to their ability to explain the
historical emergence of word senses.

A critical addition to this theoretical terrain is the idea of
chaining - popularized by Lakoff and other scholars (Lakoff,
1987; Malt, Sloman, Gennari, Shi, & Wang, 1999) - as a
possible mechanism that constrains word meaning extension.
Chaining operates by linking an emerging idea (an incipi-
ent word sense) to a highly-related, already lexicalized word
sense. When this process repeats over time, a chained struc-
ture in meaning space results. Recent work by Xu et al.
(2016) has explored a preliminary version of this proposal
via a nearest-neighbor model in a single semantic domain
– household containers – but no systematic formalization or
evaluation of chaining has been applied to explain the his-
torical emergence of word senses more broadly. Further, al-
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though chaining seems plausible as a mechanism, its theoret-
ical value has been limited in two respects: 1) No work has
formally specified why chaining might be a preferred mech-
anism for the development of word meanings; 2) No large-
scale assessment of chaining vs. alternative mechanisms has
been performed against historical records of word sense ex-
tension, leaving open how chaining fares with respect to alter-
natives. These issues leave open the question of whether the
evolution of word meanings follows a cognitively predictable
path, and if so, what principles explain this process.

In the current work, we hypothesize that the emergence
of word meanings should follow an historical path that min-
imizes collective cognitive effort. In particular, we propose
that chaining should be a preferred algorithm for extending
word meanings across history because it tends to minimize
the cognitive cost of linking novel ideas with existing ones
- a critical property not previously considered with regard to
historical sense extension. To test the validity of this argu-
ment, we motivate nearest-neighbor chaining with tree-based
computer algorithms that minimize edge lengths in a graph.
We then formalize the process of chaining as a cognitively
economical strategy for encoding novel ideas into an existing
lexicon (cf. Xu, Malt, & Srinivasan, 2016).

We critically assess our proposal by developing a family
of computational algorithms of word meaning extension - in-
spired by the previous literature that described above - and
evaluate them against a large historical database of word-
meaning records in English, spanning over 1,000 years. Our
research extends a growing body of work which suggests
that structures of language conform to efficient design princi-
ples (Zipf, 1949; Rosch, 1975; Piantadosi, Tily, & Gibson,
2011; Kemp & Regier, 2012; Kirby, Tamariz, Cornish, &
Smith, 2015), by bringing the perspective of cognitive econ-
omy to bear on the evolution of polysemy.

Modeling the emergence of word meanings
Computational formulation
We present here a formulation of five cognitive algorithms
that might predict the historical emergence of word mean-
ings, along with a null model. Given the initial, progeni-
tor meaning of a word, each non-null algorithm postulates
a distinct chaining mechanism by which novel word senses
might emerge over time by “attaching to” existing meanings.
Each algorithm generates a prediction of the historical or-
der through which the meanings for any given word should
emerge, which we then test against the historical record. In
effect, we reverse-engineer the mental mechanisms of sense
extension.

Table 1 summarizes the full set of proposed algorithms.
Here m stands for meaning or word sense, and t stands for
time. Each algorithm infers the word sense that emerges at
time t + 1 (mt+1), based on existing senses of a word up to
time t (m1, ...,mt ). The inferred sense is drawn from the can-
didate pool of senses (denoted by m∗) that appear after t for
a given word. A perfect model would fully recapitulate the

Table 1: Proposed models of word meaning extension.

Name Description
Random (null) mt+1 ∼ random draw m∗

Exemplar mt+1 ∼ Emi [sim(m∗,mi)]
Prototype mt+1 ∼ sim(m∗, prototype(m1, ...,mt))
Progenitor mt+1 ∼ sim(m∗,m1)
Local mt+1 ∼ sim(m∗,mt)
Chaining mt+1 ∼maxt

i=1 sim(m∗,mi)

historical emerging order of all senses of a word. All of our
models are parameter-free and thus make minimal assump-
tions in the computational formulation.

1. The random algorithm – or null model – predicts the
historical emergence of a word’s senses to be random. This
would only be plausible if word senses emerge purely based
on immediate communicative needs with no further cognitive
constraints.

2. The exemplar algorithm adapts from work by Nosofsky
(1986), whereby the emerging sense at t + 1 is predicted to
be the one that bears the highest semantic similarity on av-
erage (or the highest sum of semantic similarities, which is
equivalent in our case) with existing senses of a word at time
t. We define semantic similarity identically in all algorithms,
and we defer its formal definition to a later section.

3. The prototype algorithm is adapted from work by Rosch
(1975) and Geeraerts (1997) and predicts the emerging sense
at t +1 to be the one that bears the highest semantic similar-
ity with the prototypical sense at time t. The prototype at t
is defined as the sense that bears the highest semantic simi-
larity with existing senses of a word prototype(m1, ...,mt)←
maxi ∑ j 6=i sim(m j,mi). Thus, this algorithm allows the most
representative sense of a word to change as a function of time,
as more word senses develop.

4. The progenitor algorithm is a variant of the prototype
model that assumes a fixed prototype that is always the ini-
tial, progenitor word sense (i.e., the earliest sense recorded in
history). It predicts the emerging sense at t +1 to be the one
that bears the highest semantic similarity (among all candi-
date senses) with respect to the progenitor sense.

5. The local algorithm assumes that word meanings
emerge in a temporal linear chain, where the emerging sense
at t + 1 is the one that bears the highest semantic similarity
with the sense that appears at time t. Critically, senses that
appear prior to t have no influence on the emerging sense
at t + 1 on this model. This algorithm posits that sense ex-
tension will yield minimal cost locally between consecutive
time points, as opposed to yielding globally minimal cost (de-
scribed below).

6. The chaining (or nearest-neighbor) algorithm is closely
related to Prim’s algorithm for constructing a minimal span-
ning tree (Prim, 1957) - but with a fixed (as opposed to ran-
dom) starting point, i.e., it always begins with the progeni-
tor sense of a word. In essence, this algorithm predicts the
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Figure 1: Simulation of the proposed algorithms of word
sense extension. The solid red circle symbolizes the progeni-
tor sense of a word. The blue circles represent emerging word
senses, and the arrows indicate the predicted path that each
algorithm makes about order of emergence. The time labels
indicate the predicted sequence of emergence. The cost is the
aggregated Euclidean distances traversed by the arrows.

emerging sense at t+1 to be the one that bears the highest se-
mantic similarity to any of the existing senses up to t, hence
rendering a chain that connects nearest-neighboring senses
over time. In contrast with the other algorithms described
above, this chaining algorithm is also similar to single link-
age clustering (Gower & Ross, 1969) which tends to yield a
tree (i.e., each tree node is a sense in this case) with mini-
mal edge lengths among nodes of a graph (i.e., the graph is
a network of senses of a word, developed in history). Due
to this property, the chaining algorithm assumes the least cu-
mulative historical cognitive effort for the extension of word
senses (where effort is inverse to the degree of association be-
tween emerging and existing senses of a word), providing the
computational implementation of our hypothesis.

Simulation of sense extension algorithms
To illustrate how nearest-neighbor chaining would yield a
near-minimal-cost historical path, we provide a simulation for
the proposed algorithms of sense extension as follows.

We generated 15 randomly placed points in a two-
dimensional plane that represents the meaning space for a hy-
pothetical word (see Figure 1). We took Euclidean distance
between-points as a proxy for semantic distance (or inverse
semantic similarity) between two senses. We also designated
the bottom-right point in the space as the progenitor sense,
i.e., it is the earliest seeding sense for the word that is a given
to any algorithm. We then applied the family of sense exten-
sion algorithms to the remaining data points and visualized
the path of emerging senses predicted by each algorithm. Fig-
ure 1 shows that these algorithms yield distinct typologies and
paths in the simulated meaning space. Specifically, the exem-
plar algorithm links novels senses to all existing senses based
on average distances between them (illustrated by chains that
develop from spaces between senses as opposed to those that

stem off directly from senses). The prototype algorithm pre-
dicts a dynamic radial structure (Lakoff, 1987), where tem-
poral chains are established by linking novel senses to pro-
totype senses, while allowing the prototype to change over
time. The progenitor algorithm predicts a strict radial struc-
ture where all senses stem from the earliest progenitor mean-
ing. The local algorithm predicts a linear temporal chain of
senses by attaching each emerging sense to the existing sense
that appears one time point earlier. Finally, the chaining al-
gorithm renders a tree structure that branches off as needed
to preserve nearest-neighbor relations between emerging and
existing senses. Importantly, the chaining algorithm yields
the minimal aggregated edge lengths, hence rendering a min-
imal cost in semantic space. This result is robust to variations
in simulation parameters and is a consequence of the close
link between the nearest-neighbor chaining algorithm and the
concept of a minimal spanning tree.

Below, we test the extent to which these algorithms can
recapitulate the emergence of word senses, as recorded in a
large historical lexicon of English.

Treatment of data
Historical lexicon
To evaluate our proposed algorithms, we used the Histor-
ical Thesaurus of English (HTE) (Kay, Roberts, Samuels,
Wotherspoon, & Alexander, 2015) - a unique large-scale
historical lexicon constructed from the Oxford English
Dictionary. This database includes approximately 800,000
word forms and their senses, dated and recorded over a span
of over 1,000 years - from Old English to the present day.
Each word sense in the HTE is annotated with the date of
its emergence (and, where applicable, obsolescence) and
part of speech, and is structured in a fine-grained semantic
hierarchy that features about a quarter of a million concepts.
Consecutive tiers of the hierarchy typically follow a IsA or
PartOf relation. For example, one sense of the word game
under the HTE code “01.07.04.04” is defined in terms of a
four-tier hierarchy: The world (01)→Food and drink
(01.07)→Hunting (01.07.04)→Thing hunted/game
(01.07.04.04).

Measure and validation of semantic similarity
To quantify similarity between word senses, we defined a
measure using the semantic hierarchy in the HTE and then
validated it against human judgments. Specifically, we ap-
proximated psychological similarity between a pair of word
senses sim(mi,m j) by a common measure of similarity used
in psychology that is bounded in the range of (0,1) (Nosofsky,
1986; Shepard, 1987):

sim(mi,m j) = e−d(mi,m j). (1)

Here d(mi,m j) represents thesaurus-based conceptual dis-
tance between two meanings, which we defined by the inverse
of a conceptual similarity measure (s(·, ·)), commonly used in
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natural language processing (Wu & Palmer, 1994; Jurafsky &
Martin, 2009):

d(mi,m j) = 1− s(mi,m j) = 1− 2×|p|
l(mi)+ l(m j)

. (2)

Here |p| is the number of parent tiers shared by senses mi
and m j, and l(·) is the depth of a meaning in the semantic
hierarchy. This measure gives 1 if two meanings are identical,
and 0 if they have nothing in common. Table 2 illustrates the
calculation of this measure with a concrete example.

Table 2: Illustration of conceptual similarity based on two
senses of game recorded in the HTE. Since the two senses
share two parent tiers (i.e., The social world→Leisure) in the
hierarchy, the conceptual similarity is s(•,?) = 2×2

5+6 = 4
11 .

Description of sense HTE code Symbol
Celebratory social event 03.13.02.02|04 •
Ancient match/competition 03.13.04.01|02.02 ?

03:The Social World •?

01:Community · · · 13:Leisure •?

02:Social Event•

02:Large/Public Event•

04:Celebratory games•

04:Sports?

01:Match/Competition?

02:Series of (as public spectacle)?

02:Greek & Roman Antiquity?

· · ·

We validated this measure of semantic similarity via stan-
dard techniques in natural language processing, by evaluating
its performance in predicting human judgments of word sim-
ilarities. Following Resnik (1995), we approximated word
similarity by using the pair of senses for the two words
that results in maximum sense similarity, defined as follows:
wordsim(wi,w j) = maxmi∈senses(wi),m j∈senses(w j) s(mi,m j).

Our measure of semantic similarity yielded a Spearman’s
correlation of 0.43 (p < 0.001) on Lex-999 (Hill, Reichart,
& Korhonen, 2015), which provides a well-known data set
of human word similarity judgments. The performance of
our measure of semantic similarity is better than the corpus-
based skipgram (Word2Vec) model, which has been trained
on 1 billion words of Wikipedia text (Mikolov, Chen, Cor-
rado, & Dean, 2013) and roughly on par with the same model
trained on 300 billion words (Faruqui & Dyer, 2015). In ad-
dition, our measure of semantic similarity obtained a Spear-
man’s correlation of 0.52 (p < .001) on Sim-353 (Finkelstein
et al., 2001), another common data set of human word relat-
edness judgments, which is comparable to the state-of-the-art

GLOVE word vector model, which has been trained on 6 bil-
lion words (Faruqui & Dyer, 2015; Pennington, Socher, &
Manning, 2014).

Having validated our measure of semantic similarity, we
used it to assess the mental algorithms described above.

Choices of words
We focused our analyses on explaining word sense extension
in a set of the most common English words. Specifically,
we worked with the most frequent 6318 words in the British
National Corpus (BNC). Some of the word forms are dupli-
cated in this set because one word can function in multiple
part-of-speech categories. However, our results were robust
regardless of whether we collapsed these words by form or
distinguished them by part-of-speech.

Model evaluation and results
We used model likelihood to assess the performance of each
proposed algorithm.1 We defined likelihood as a probability
function that specifies the degree to which a model accounts
for the entire sequence of senses that historically emerged
for a given word. To be concrete, for a sequencce of senses
m1,m2,m3, ...,mt , the likelihood L is the joint probability of
observing such a sequence under a certain model M :

LM = p(m1)p(m2|m1)p(m3|m1,m2)...p(mt |m1, ...,mt−1).
(3)

We assumed that the progenitor sense is always given, so
p(m1) = 1. For all remaining emerging senses, the set of
algorithms can be evaluated by calculating likelihood based
on their specifications in Table 1. For example, the progenitor
model would yield a likelihood for the emerging sense at t = 2
(conditioned on that appeared at t = 1) as follows:

p(m2|m1) =
sim(m∗,m1)

∑m∗∈{m2,...,mt} sim(m∗,m1)
. (4)

The algorithm then steps through each point in time and
the likelihood correspondingly calculates the degree to which
the algorithm predicts the true emerging sense at that point,
among a candidate pool of senses that appear after.

Because our null hypothesis is that there exists no pre-
dictability in how word senses develop in history, we eval-
uated each cognitive algorithm against the random null algo-
rithm, using the log likelihood ratio (LLR) - a standard metric
for model comparison in statistics: LLR = log(LM /Lnull).
This quantity should be greater than 0 if a given model ac-
counts for word sense extension better than the null, and the
converse if the null does better. For any given word, the likeli-
hood function of the null can be determined theoretically, and
it is simply the inverse of factorial of N− 1 for a word with
N senses: Lnull = 1× 1

N−1 ×
1

N−2 × ...× 1
1 = 1

(N−1)! . Thus the
log likelihood ratio indicates whether a model predicts the se-
quence of emerging word senses better than chance.

1Because each of the models we examined is parameter-free,
metrics that take into account model complexity such as the
Bayesian Information Criterion would give identical results to those
only taking into account likelihood.
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Figure 2: Summary of model performances against the null.
“0.0” on the y-axis indicates performance of the null model.
Bar height indicates the mean log likelihood ratio averaged
over the entire pool of most common words from the BNC
corpus. Error bars indicate 95% confidence intervals.

Figure 2 summarizes the results. The bar plot shows that
each of the proposed algorithms accounts for the historical
data that we examined significantly better chance (p < 0.001
from 1-tailed t-tests), reflected in the positive log likelihood
ratios. This observation suggests that the null hypothesis can
be rejected: The emerging order of word senses in the English
lexicon is not purely random.

Critically, the nearest-neighbor chaining algorithm yielded
the highest overall likelihood among all models, and this re-
sult was statistically significant according to paired t-tests be-
tween the chaining model and each of the remaining models
(p < 0.001 in all four comparisons). This observation pro-
vides evidence that word senses emerge in cognitively effi-
cient ways by approximating a minimal spanning tree over
the course of history. As such, these data support our hypoth-
esis about nearest-neighbor chaining as the dominant mental
algorithm for the historical emergence of word senses.

To illustrate the nearest-neighbor chaining process, we vi-
sualized the predicted chaining path for the English word
game. Figure 3 shows a low-dimensional projection (via
multi-dimensional scaling with a random starting point) of
all senses of game as a noun, taken from the HTE database.
As can be seen, the chaining algorithm forms a minimal span-
ning tree among the senses of game, by linking neighboring
nodes that are semantically close. Importantly, this process of
meaning extension tends to support branching and the forma-
tion of local clusters, identified roughly in this case by the
three sense groups of “hunting game” (upper-left cluster),
“scheme” (middle cluster), and “sports and entertainment”
(upper-right cluster) in Figure 3. This offers a computational
basis for family resemblance (Wittgenstein, 1953) and poly-
semy, by allowing words to develop both related and distinct

senses over time.

Conclusions
We presented the first large-scale computational investigation
of the mental algorithms that determine how words evolve
new senses over time. We found that the historical emer-
gence of word senses in English is not arbitrary; Instead, it
has exhibited a high degree of predictability over the past
millennium. Our findings indicate that the order in which
word senses emerge can be best accounted for by a process of
nearest-neighbor chaining, which supports the view that the
historical development of the lexicon follows a trajectory that
tends to minimize cognitive effort. Our current analysis fo-
cuses on sense extension within individual word forms, but it
would be useful to extend our analysis to examine how dif-
ferent words compete to express novel meanings. Our explo-
ration of the mental algorithms that underlie historical sense
extension opens new, interdisciplinary venues for reverse en-
gineering the evolution of the human lexicon.
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Abstract

When the interests of interlocutors are not aligned, either party
may wish to avoid truthful disclosure. A sender wishing to
conceal the truth from a receiver may lie by providing false
information, mislead by actively encouraging the receiver to
reach a false conclusion, or simply be uninformative by provid-
ing little or no relevant information. Lying entails moral and
other hazards, such as detection and its consequences, and is
thus often avoided. We focus here on the latter two strategies,
arguably more pernicious and prevalent, but not without their
own drawbacks. We argue and show in two studies that when
choosing between these options, senders consider the level of
suspicion likely to be exercised on the part of the receiver and
how much truth must be revealed in order to mislead. Extend-
ing Bayesian models of cooperative communication to include
higher level inference regarding the helpfulness of the sender
leads to insight into the strategies employed in non-cooperative
contexts.

Keywords: deception; Inductive inference; communication;
pragmatics

Introduction
“You can tell he’s lying because his lips are moving.”

If only detecting lies were that simple! Despite its impor-
tance, people generally perform at chance when classifying
liars and truth tellers (C. Bond & DePaulo, 2006). Indeed,
most verbal and nonverbal cues have only marginal diagnos-
tic value (DePaulo et al., 2003). Instead of focusing on cues
to deception, a promising new approach considers how the
cognitive processes involved in deception may differ from
telling the truth. It has been suggested, for example, that de-
ception imposes higher cognitive demands on liars, who may
find it more difficult to furnish details when interviewed (Vrij
& Granhag, 2012). A good understanding of the cognitive
mechanisms underlying deception, taking into account the
complexities of the strategies employed, would be a tremen-
dous asset (G. D. Bond, 2012; Blandon-Gitlin, Fenn, Masip,
& Yoo, 2014).

In the present research we analyse the challenge faced by
would-be deceivers seeking to conceal the truth. We begin
with a brief analysis of the deceiver’s perspective, identifying
the main deceptive strategies, and outline a preliminary study
which illustrates people’s preferences for these strategies. We
then present two studies where we ask people to conceal the

truth, manipulating the level of suspicion of the hypothetical
receiver and the information content of the available message
options.

How to deceive in ten steps (with pictures)
Communication relies on principles of cooperation (Grice,
1989). The intended meaning of a sender rarely coincides
perfectly with the “literal” content of a message, but by mak-
ing assumptions about why the sender chose that particular
message, the receiver may infer the intended meaning. By
assuming that a sender is cooperative and produces messages
that follow the Gricean maxims (described below), a receiver
can increase the speed and strength of the inferences they
draw from those messages (Horn, 2004).

But what if the sender is not trying to be cooperative? In
that case, there are three main strategies the sender can rely
on, each corresponding to different violations of the Gricean
maxims. Consider the following scenario: You shot your
neighbour’s hamster with your shotgun while she was away
for the weekend. Obviously, you’d prefer that she didn’t learn
the truth. However, you were given the key to her house to
take care of her pet, so you are definitely a person of interest
in her investigation. How can you conceal the truth from her?

• Lying: You might try an outright lie: “I did not shoot your ham-
ster”. Lying involves communicating a proposition to the receiver
with the full knowledge that it is false. From a Gricean perspec-
tive, lying is a violation of the supermaxim of quality, stating that
your contribution should be true.

• Being uninformative: It seems very sensible to be uninforma-
tive. Neighbour: “Did you shoot my hamster?” You:“Have you
heard the new Justin Bieber album? It’s fantastic!”1 With this
kind of utterance, it would seem that the receiver can infer noth-
ing beyond her prior beliefs. But this violates the Gricean maxims
of relevance and quantity, and these violations can themselves be
informative about the sender’s intentions even if not the actual
facts of the matter.

• Misleading: A third option is to mislead your neighbour by im-
plicature. “I was not at home when your hamster was shot!” You
tell her a truth very relevant to the issue at hand, but from which
you believe a false conclusion will be drawn (you were not at
home when you shot the hamster; you took it with you to a nearby
park for target practice). Misleading involves covertly violating
the maxims of quantity, but may be harder to detect.

1Admittedly, this could well be considered a bald-faced lie.
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In a preliminary study, we asked 96 first year psychology
students (87 women) at the University of Leuven to imagine
seven different scenarios like the following:

A man arrives home after a weekend in Vegas, during which
he won $2000 playing Poker, but lost $500 at the slot ma-
chines and $4000 on Blackjack. When he returns, he does
not know how to tell his wife. His wife knows that he has had
gambling problems in the past, but is convinced that they are
resolved. Their relationship is currently strained, so the man
would rather not cause any additional problems. His wife asks
him directly if he has gambled. Which of these answers would
you give if you were in his situation?

Participants selected a response from seven options com-
prised of two lies (e.g. “I didn’t gamble”), two uninformative
statements (e.g. “there were a lot of people gambling”), two
misleading statements (e.g. “I won $2000 playing Poker”),
and the truth. Figure 1 presents the preference of the par-
ticipants (collapsed across scenarios and equivalent response
options).

Figure 1: When choosing how to communicate in a variety of differ-
ent scenarios with a clear motivation to deceive, participants showed
a strong tendency to mislead rather than be uninformative.

Two important conclusions emerge from Figure 1. Firstly,
people were uncomfortable with deception: 37% of responses
involved telling the full truth and only 10% were outright lies:
a surprising number perhaps given that each scenario pro-
vided a clear motivation to deceive. However, this finding
is consistent with previous research showing that in general
people avoid lying through concerns regarding self-image,
guilt, and anxiety (Aquino & Reed, 2002). Of more relevance
to our present purposes, we found that among those who
chose not to tell the truth, people showed a clear preference
for misleading over lying or being uninformative (37%, 10%
and 15% respectively). This finding is consistent with earlier
work on the topic (Montague, Navarro, Perfors, Warner, &
Shafto, 2011; Rogers, Zeckhauser, Gino, Schweitzer, & Nor-
ton, 2014).

Balancing suspicion and information
So, why do people seem to prefer to actively mislead rather
than be entirely uninformative? At first glance, it seems ra-
tional to be as uninformative as possible: the receiver cannot
revise her beliefs on the basis of your utterances. Mislead-
ing on the other hand, involves salting your statements with a
grain of truth – something which the receiver may build upon
to infer the whole truth.

An important motivation for choosing a misleading utter-
ance over a strictly uninformative one is because the latter

raises suspicion. Consider the likely response of choosing to
be uninformative, as in the Las Vegas scenario:

Spouse: Did you gamble?
Gambler: Where shall we go for dinner? I’m hungry.
Spouse: You lost money didn’t you?
Gambler: Some of the guys won big.
Spouse: How much did you lose?

As Sperber et al. (2010) points out, people have a toolbox
of cognitive mechanisms for epistemic vigilance that reduce
the risk of being deceived. One such tool supports tracking
the cooperation of others; as a result, obvious departures from
that cooperation are noted (e.g., Mills, 2013). Responding in
an uninformative way violates the principle of cooperation so
blatantly that the deception is revealed.

A deceiver, sensitive to the epistemic vigilance of his coun-
terpart may prefer instead to provide truthful but misleading
utterances, but in doing so faces a delicate trade-off. Cho-
sen well, such utterances may not only allay the receiver’s
suspicion, but by virtue of the inferential boost accorded to
cooperative speakers, the receiver may be led to a false con-
clusion, terminating the search for further information. Yet if
suspicion is already raised, the receiver is unlikely to fall for
the false implicature, which relies on her assumption of co-
operation (Dynel, 2011), and may use the information to get
closer to the truth.

This analysis points to two opposite forces, balanced in
the selection of one strategy over another. On one hand, the
knowledge that the receiver may engage in inference about
the helpfulness of the statement may lead the sender to opt for
a misleading yet informative statement. On the other hand, if
the sender considers that the receiver will be suspicious a pri-
ori, he may resort to being uninformative. We examine these
factors in two experiments.

Experiment 1: The deception game
As the basis for our empirical investigation, we use a simple
two person communication game in which the interests of the
sender and receiver are opposed. In the game, the sender (cast
in the role of a pirate) and the receiver (cast as an explorer)
see four alternative maps, only one of which is genuine. Each
map purports to show the true extent of a contiguous region
where treasure is buried. The pirate, who knows the identity
of the genuine map and must seek to protect it, is required to
provide a hint to the explorer in the form of a small number of
locations that lie within the region. The explorer must use this
information to guess the identity of the genuine map. Both
players know that lying is not allowed; so the pirate can only
reveal locations where treasure is actually buried.

An example trial faced by participants, who took the role
of the pirate in this experiment, is shown in Figure 2. Figure
2(a) illustrates the four maps shown to the pirate and (hypo-
thetical) explorer for an example trial. In providing a hint
to the explorer, participants were restricted in their choice to
one of three kinds of hints : one uninformative, one mislead-
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(a) Four maps provided to the pirate and explorer.

(b) The pirate chooses one of three hints.

Figure 2: Experiment 1: The deception game.(a) Both the pirate
and explorer see the same four maps; the shaded area marks the
region where treasure be buried. Only one of the four maps is gen-
uine: the pirate seeks to conceal its identity, the explorer seeks to
discover it. (b) The pirate must provide a hint to the explorer, and is
given three hints from which to choose: a MISLEADING, UNINFOR-
MATIVE, or HELPFUL hint. Each hint marks a subset of locations
where treasure is buried (blue dots). Since lying is not permitted all
marked points lie within the shaded area when overlaid on the gen-
uine map. The hints vary in their potential to drive inference. The
MISLEADING hint appears to clearly point out the wrong map, de-
spite being consistent with all of them. The UNINFORMATIVE hint
neither points to nor excludes any of the maps. The HELPFUL hint
excludes all of the maps except the genuine one.

ing, and one genuinely helpful. Figure 2(b) shows examples
of the three options, and illustrates the likely effect that each
hint would have on the inference of a trusting explorer.

The informativeness of a hint was manipulated by varying
the number of treasure maps (out of four) that were excluded
by the hint. When maximally informative (HELPFUL), a hint
excludes all treasure maps, except the true one (bottom row of
Figure 2b). When maximally UNINFORMATIVE, it excludes
no treasure maps (middle row). The MISLEADING hints were
designed to closely resemble one of the three false maps (top
row), and to exclude none (as in the example shown), one or
two of the treasure maps.

People’s beliefs about the suspicion level of the receiver
(the hypothetical explorer) were manipulated by changing the
proportion of deceivers in the population that were suppos-
edly providing information. Participants were told that they
were part of a crew of six sailors providing a hint to the ex-
plorer. Participants were also told that the explorer knew that
the hint came from an unknown (but randomly selected) crew
member and knew the proportion of deceptive crew members.
Varying the number of deceivers in the crew from one to five
was intended to raise the perceived suspicion level of the ex-
plorer. Our question was whether the pirate would track and
use this information when providing hints, being more likely
to mislead when the suspicion level was lower. When facing

a trusting receiver, we expect people to be more inclined to
mislead, provided that the amount of information disclosed is
acceptable. But if the receiver is likely to be suspicious or too
much information would otherwise be revealed, we expect
people to be uninformative.

Participants were 120 undergraduates from the University
of Leuven (86% female, ages 18-24, median 18) participating
for course credit. Participants faced 30 trials in all: six sets
of four maps were presented in conjunction with each of five
crew configurations.

Results and discussion

Our first question was whether people’s decision to mislead
or not depended on how much information the misleading
option gave away. To address this, we examined whether
the proportion of participants choosing each kind of hint de-
pended on the number of treasure maps that were excluded
by the MISLEADING one. A chi-square test confirmed the
dependency shown in Figure 3 (χ2(4,3600) = 93.31, p <
0.001): as the amount of information revealed by the MIS-
LEADING hint increased, people were less willing to select
it, preferring instead to choose the UNINFORMATIVE option.
Indeed, in contrast to the pilot data in Figure 1, the UNIN-
FORMATIVE option was the most favoured in this task. This
is unsurprising perhaps, since a hint that excludes even one of
four maps is extremely informative.

Figure 3: Experiment 1: Informativeness. The y-axis shows the
number of times each type of hint (given by column label) was se-
lected as a function of the number of treasure maps excluded by the
misleading hint (x-axis): 0% means none were excluded, 25% means
one was, and 50% means that two were. People were sensitive to
informativeness: when the misleading hint was more informative,
people were less likely to mislead.

Our second question was whether people’s decision was
affected by their estimate of how suspicious the receiver (the
hypothetical explorer) was likely to be. In light of this, we
examined the relationship between participants’ choice of
hints and the number of deceptive crew members providing
hints for the explorer. Curiously, as Figure 4 illustrates, there
was no evidence for a relation between the level of suspicion
and the type of hint selected (χ2(8,3600) = 12.96, p = 0.11).
Even when people knew that the explorer thought that five
out of the six possible senders was acting deceptively, they
did not alter their selection of hints.
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Figure 4: Experiment 1: Suspiciousness. The y-axis shows the
number of times each type of hint (given by column label) was se-
lected as a function of the implied suspicion level of the explorer.
The numbers on the x-axis represent the number of deceptive mem-
bers in the crew that provides the explorer with a hint (more mem-
bers suggests that the explorer should be more suspicious). There
was no dependency between choice of hint and number of deceptive
crew members.

Experiment 2: Increasing suspicion
Experiment 1 found convincing evidence for the influence of
informativeness on the decision to mislead. If too much in-
formation would be revealed with a true but misleading state-
ment, people are more inclined to be uninformative. Surpris-
ingly, we did not find an effect of suspicion. What might be
going on here?

One possible explanation is simply that our manipulation
was ineffective. Perhaps changing the number of deceptive
crew members was not salient enough or required too much
effort for participants to interpret or keep in mind.

Experiment 2 was identical to Experiment 1, but rather than
have people infer how suspicious the explorer might be from
the composition of the crew, we instead gave participants ex-
plicit information about the explorer’s beliefs. In the LOW
SUSPICION condition, participants were told that the explorer
suspected that the hint came from a teammate, whereas in
the HIGH SUSPICION the explorer suspected the hint came
from an opponent. The experiment was similar in all other
respects except for a control condition in which participants
were asked to help the explorer (used to identify participants
who were not trying or did not understand the task). There
were also a number of filler items in which there was no ob-
viously misleading option.

Participants were 98 adults recruited via Amazon Mechan-
ical Turk and paid $1.25USD for 15 minutes participation.
Data from 22 participants who failed to demonstrate a suffi-
cient understanding of the experiment were excluded from
subsequent analysis.2 The remaining 76 participants were
46% female and aged 20-63 (median age 28.5). Participants
faced 30 trials in all: 10 map sets (six experimental, four
fillers) were presented in each of the three condition blocks.

2These exclusions were of participants who failed to select the
HELPFUL message in a CONTROL condition (where the goal was to
help) on at least 40% of trials. We also excluded those who selected
the HELPFUL message in the LOW SUSPICION condition on 40% or
more trials (where the goal was to hinder, and double bluffing was
unreasonable). There was no difference in the significance of our
findings if these people were included..

Figure 5: Experiment 2: Informativeness. The y-axis shows the
number of times each type of hint (given by column label) was se-
lected as a function of the number of treasure maps excluded by the
misleading hint (x-axis). As in Experiment 1, people were sensitive
to informativeness: when the misleading hint was more informative,
people were less likely to mislead. Data from the control condition
are excluded.

Figure 6: Experiment 2: Suspiciousness. The y-axis shows the
number of times each type of hint (given by the column label) was
selected as a function of the implied suspicion level of the explorer.
The x-axis reflects whether people were told that the explorer was
expecting a hint from a member of another team (the HIGH SUSPI-
CION condition) or from a teammate (the LOW SUSPICION condi-
tion). When participants knew that the explorer was apt to be sus-
picious of them, they were less inclined to be misleading, opting
instead to be uninformative.

Results and discussion
As before, our first question was whether people were sensi-
tive to informativeness when choosing which hint to provide.
Once again, there was a significant effect of informativeness
(χ2(4,912) = 18.04, p= 0.001). As Figure 5 shows, the more
maps the misleading option excluded, the less inclined people
were to select it, favouring instead the uninformative option.

In light of the null effect in Experiment 1, a perhaps more
interesting question is whether people were sensitive to the
suspicion level of the explorer when deciding what to tell
them. As Figure 6 reflects, when the suspicion level of the ex-
plorer is made more obvious, people are indeed sensitive to it.
Although the UNINFORMATIVE hint was still the most pop-
ular overall, the MISLEADING option was chosen far more
when the explorer was expecting a hint from a trusted team-
mate (χ2(2,912) = 85.95, p< 0.001). This suggests that peo-
ple acting as senders are indeed attentive to the level of trust
presumed by the receiver; although, taken together with the
results from Experiment 1, tracking suspicion may be too
cognitively challenging where it is not especially salient.

Towards a computational model
Experiments 1 and 2 manipulated two important factors: the
information content of the messages that deceivers could
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choose and their beliefs about the degree of suspicion with
which their messages would be received. Taken together, our
results show that both factors were important considerations.
In this section we present a computational model whose goal
is to aid our understanding of these results and generate new
testable predictions. While an in-depth analysis of the model
is beyond the scope of this paper, here we briefly describe the
relevant features.

A convenient starting point for a model of the deception
game employed here – and for communication in general –
is rational inference (e.g., Goodman & Frank, 2016). In this
framework, a receiver faces the challenge of updating her be-
liefs on the basis of information disclosed by a sender. The
sender, for his part, selects information designed (according
to his goal) to help or hinder the receiver in her efforts.

We first evaluate things from the perspective of the re-
ceiver, who is confronted with a hint x (or, more generally,
an utterance). The receiver is assumed to update her beliefs h
according to:

PRECEIVER(h |x) ∝ ∑
s∈S

PSENDER(x |h,s)P(h)P(s) (1)

where s represents a sampling strategy employed by the
sender and S represents the range of such strategies consid-
ered. As a simplifying assumption, we assume that the re-
ceiver considers the sender’s sampling strategy to be inde-
pendent of the true hypothesis.

This inference thus depends on the sender, who selects in-
formation according to a sampling strategy:

PSENDER(x |h) ∝ (PRECEIVER(h |x))α (2)

where α reflects the goals of the sender, and PRECEIVER(h|x)
the sender’s assumptions about how the receiver updates her
beliefs. A sender who wishes to reveal the truth to the re-
ceiver (i.e., to increase the receiver’s posterior probability for
the correct hypothesis h) will have an α with a positive value;
one who wishes to conceal the truth has a negative α; one
who behaves somewhat randomly has an α = 0. There are
other ways to capture conflicting goals, like assigning sepa-
rate utility functions for the sender and receiver with regard
to truth-predicated action, but we chose this for its relative
simplicity.

To capture the patterns observed in our deception game,
both equations have to be considered simultaneously. That
is, both sender and receiver must recursively consider the
assumptions and strategies used by the other party. Impor-
tantly, from the receiver’s perspective the inferential potential
of a message depends not only on the information as such,
but also on the “sampling strategy” of the sender, which re-
flects the sender’s goals and assumptions about the receiver.
For example, sampling procedures that follow the principle of
cooperation and the Gricean maxims have a stronger inferen-
tial potential (e.g., Bergstrom, Moehlmann, & Boyer, 2006;
Shafto, Goodman, & Griffiths, 2014; Voorspoels, Navarro,
Perfors, Ransom, & Storms, 2015). Crucially, the receiver

Figure 7: Model predictions for sender actions. Model predic-
tions for the preference of a sender in the deception game for the
misleading, uninformative and helpful message options. From left
to right, the panels present scenarios with increasingly suspicious
receivers (modelled through different kinds of inference about the
sender’s goals and assumptions). The x-axes indicate how informa-
tive the misleading option is (in terms of the proportion of hypothe-
ses excluded by it). The model predicts a decrease in preference
for the misleading option as it becomes increasingly informative, as
well as an increase in preference for misleading when the receiver is
less suspicious.

not only updates her beliefs about what is true, but simulta-
neously makes inferences about the sender’s sampling strat-
egy: learning whether the sender is helpful and knowledge-
able play a critical role in epistemic vigilance, and has a sub-
stantial impact on how rational agents reason (e.g., Shafto,
Eaves, Navarro, & Perfors, 2012).

In Equations (1) and (2), the universe of sampling strate-
gies S evaluated by the receiver is defined in terms of two
things that she presumes about the sender: what does the
sender assume about her (reflected by PRECEIVER(h|x)), and
what are his goals (reflected in α). Many scenarios may be
modelled in this way, but here we consider three. If the re-
ceiver is TRUSTING, this means that she is performing infer-
ence over two possibilities: either the sender is trying to be
helpful (α = 1), or he is inattentive and thus not selecting in-
formation with care (α = 0). If the receiver is UNTRUSTING,
this means that she believes that the sender is trying to con-
ceal the truth from her (α =−1), under the mistaken assump-
tion that he is trusted. Lastly, if the receiver is SUSPICIOUS,
this means that she is performing inference over whether to
be trusting or untrusting.

How well does this approach capture the main qualitative
patterns in the deception game? To answer this, we simu-
late outcomes for the three scenarios we have outlined. In the
leftmost panel of Figure 7, the receiver trusts the sender, but
is not sure how attentive he is: he may be acting helpfully
(α = 1) or he may be providing poor but not actively mis-
leading data, perhaps due to lack of motivation, attention, or
information (α = 0).

If the receiver updates her beliefs (concerning the true trea-
sure map) at the same time as her assumptions about the help-
fulness of the information received (α) then there is reason
for the sender to choose a hint that seems informative. That
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the message appears informative supports the receiver’s as-
sumption that it has been carefully selected, which further
fuels inference. This recursive process may lead the receiver
to draw a misleading conclusion if the sender is not actually
helpful (as in our experiments). However, as the information
content of the hint increases, so too does the risk that the re-
ceiver will inadvertently arrive at the truth. Consequently, the
model captures the fact that the sender’s preference for the
misleading hint declines with its information content.

In the rightmost panel of Figure 7, in contrast, the receiver
is certain that the sender is not to be trusted. If the sender is
aware of this, there is little to be gained by attempting to mis-
lead, and so the uninformative hint is preferred. The extent of
this preference is, once again, moderated by the information
content of the misleading option.

In many situations, a receiver will not be predisposed to
regard the sender with complete trust, nor complete distrust,
but rather will remain open to either possibility. We model
this case by assuming that the receiver is performing infer-
ence about whether the sender should be trusted (α = 1 or 0)
or not (α = −1). The preferences of an antagonistic sender
facing a Suspicious receiver are shown in the center panel of
Figure 7. The two conflicting forces are most pronounced
here, dividing the sender’s preference between the two strate-
gies. On the one hand, the sender may convince the receiver
that he is actually trying to help by appearing informative, yet
the (real) information can be used by the receiver to rule out
previously plausible (but false) hypotheses.

Overall, there are two clear patterns that were found in our
experiments and were also predicted by our model. Firstly, as
the information content of the misleading option increases,
there is an increasing preference for choosing the uninforma-
tive hint. Secondly, the more trusting the receiver is assumed
to be, the more popular the misleading option becomes. This
pattern of results is consistent with the idea that people may
be performing some kind of recursive inference over how sus-
picious their interlocutor is when deciding how to deceive.
Furthermore, our results are consistent with the notion posited
here and elsewhere (e.g., Goodman & Frank, 2016; Shafto
et al., 2012), that receivers (from the sender’s perspective at
least) perform joint inference over the goals of the sender and
the truth of the matter at hand given the information received.

Conclusion
“There is nothing more deceptive than an obvious fact.”

— Arthur Conan Doyle

In two studies we have demonstrated that people’s preference
for a deceptive strategy hinges on their assumption of whether
cooperative norms are expected to apply. In situations where
high levels of trust and cooperation are warranted, deceivers
are more inclined to actively mislead than to simply withhold
information. In this scenario, the deceiver seeks to leverage
the inferential boost of cooperative communication. In con-
trast, when the deceiver believes the false implication will not

be inferred — when the receiver is already suspicious — then
preference shifts towards limiting the information disclosed.
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Abstract 

The exaggerated intonation and special rhythmic properties of 
infant-directed speech (IDS) have been hypothesized to attract 
infant’s attention to the speech stream. However, studies 
investigating IDS in the context of models of attention are 
few. A number of such models suggest that surprising or 
novel perceptual inputs attract attention, where novelty can be 
operationalized as the statistical predictability of the stimulus 
in a context. Since prosodic patterns such as F0 contours are 
accessible to young infants who are also adept statistical 
learners, the present paper investigates a hypothesis that pitch 
contours in IDS are less predictable than those in adult-
directed speech (ADS), thereby efficiently tapping into the 
basic attentional mechanisms of the listeners. Results from 
analyses with naturalistic IDS and ADS speech show that IDS 
has lower overall predictability of intonation across 
neighboring syllables even when the F0 contours in both 
speaking styles are normalized to the same frequency range. 

Keywords: language acquisition; infant-directed speech; 
statistical learning; attention; stimulus predictability 

Introduction 
Infant-directed speech (IDS) is a speaking style that talkers 
often use when interacting with young infants. In contrast to 
adult-directed speech (ADS), IDS tends to have exaggerated 
intonational contours with higher fundamental frequency 
(F0) and larger frequency range (e.g., Grieser & Kuhl, 
1988), hyperarticulated vowels (Kuhl et al., 1997; but see 
also Martin et al., 2015), and shorter utterances with a 
higher token/type ratio (Phillips, 1973). In addition to 
serving as language input tuned to the developmental stage 
of the listener (Snow, 1977), one hypothesized role of the 
exaggerated nature of IDS is that it may engage infants’ 
attention to the speech stream more efficiently than ADS 
(e.g., Garnica, 1977; Fernald, 1989; see Soderstrom, 2007, 
for an overview), thereby facilitating language learning 
from speech.  

Although the exaggerated intonation of IDS is often 
implicitly assumed to be the cause for higher attentional 
attractiveness, according to our knowledge, no study has 
systematically evaluated properties of IDS in the context of 
what is known about perceptual mechanisms for stimulus-
driven attention. Instead, the evidence for higher attentional 
capture of IDS largely comes from behavioral studies that 
show that infants prefer to listen to IDS over ADS (Fernald, 

1985; Cooper & Aslin, 1990; Pegg, Werker & McLeod, 
1992). In addition, based on acoustic analyses and their 
perceptual correlates, IDS is often characterized as more 
salient or prominent than ADS, therefore also potentially 
being more interesting to the listeners  (e.g., Garnica, 1977; 
Fernald, 1989). Since stimulus-driven attention and 
prominence of the perceived speech input seem both to be 
driven by unpredictability of the stimuli in the given context 
(see the next sub-section; but see also Kidd et al., 2012), the 
existing knowledge suggests that IDS might be more 
attractive to the listeners simply because it has different 
predictability properties over time than ADS. For instance, 
larger variability of F0 in IDS already implies, but does not 
guarantee1, higher uncertainty regarding the realization of 
the intonation at any moment in time. However, no study 
has systematically compared the prosodic predictability of 
IDS and ADS from a statistical learning point of view, even 
though infants are known to be sensitive to statistical 
regularities in their perceptual experience (c.f., Saffran et 
al., 1996; Soderstrom et al., 2009, and references therein) 
and to the prosodic structure of their native language 
already from an early age (e.g., Nazzi et al., 1998).  

In the present paper, a quantitative investigation is carried 
out in order to test whether IDS is indeed not just more 
variable, but also less predictable than ADS, thereby being 
in line with the recent predictability-based accounts of 
perceptual attention. Importantly, we assume that the 
listener is able to learn the typical behavior of intonational 
contours from speech experience and this creates the basis 
for prosodic expectations for new speech input. In order to 
do this, a straightforward computational model of statistical 
learning is applied to F0 trajectories of naturalistic IDS and 
ADS and tested in its ability to predict intonational contours 
on speech utterances from both speaking styles.  

Stimulus-driven attention and statistical learning 
A number of models for stimulus-driven perceptual 
attention suggest that attention is drawn to stimuli that are 
low-probability, or unpredictable, in the given context (Itti 
& Baldi, 2009; Zhang et al., 2008; Tsuchida & Cottrell, 

                                                             
1 Unless speech is assumed to be a normally distributed IID 

process without temporal contiguity, a larger F0 range does not 
guarantee lower temporal predictability (c.f., e.g., a sine wave).  
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2012; Zarcone et al., 2016), basically enabling the 
perceptual system to focus on aspects of the environment 
with the highest information content (Shannon, 1948), i.e., 
input that is not yet learned and thereby accurately predicted 
by the brain. However, infants are also known to prefer 
stimuli that are surprising or novel only as long as the input 
is not too unlikely in the given context, also known as the 
Goldilocks effect (Kidd et al., 2012). This suggests that the 
input should still be structured enough to support learning, 
thereby providing the basis for statistical expectations and 
evaluation of the relative information value of the inputs. 

Earlier work with prosody perception suggests that low-
probability intonation patterns in the context of otherwise 
predictable prosody are associated with higher perceptual 
prominence of the concurrent words (Kakouros & Räsänen, 
2016a) and alter semantic processing of speech (e.g., Magne 
et al., 2005), having the same consequences as low-
probability words in the given context (see Kakouros et al., 
submitted, for a discussion). Recent evidence also suggests 
that adult listeners are sensitive, and rapidly adapt, to 
changing statistical properties of the intonation patterns, 
leading to experience-based expectations for prosody whose 
violations give rise to the subjective impression of 
prominence (Kakouros & Räsänen, 2016b; Kakouros et al., 
submitted). Overall, the earlier research indicates that 
auditory attention and perceptual prominence are connected 
to the predictability of the prosodic patterns, and this may 
play a role also in the perception of IDS.  

Importantly, the concept of predictability necessitates 
some type of mechanism for learning regularities from 
experience, thus connecting attention and prominence with 
the concept of statistical learning. The most parsimonious 
assumption would be that the prosodic learning utilizes the 
same statistical learning mechanisms hypothesized to play a 
role in other aspects of language acquisition, but now 
operating at the level of prosodic features such as F0 
contours and energy envelopes instead of the phonemic 
units of the language. Since infants are known to be adept 
statistical learners, and since prosodic cues are perceptually 
accessible to them (e.g., Hawthorne, Mazuka & Gerken, 
2016), it is likely that infants are sensitive to statistical 
regularities present at the prosodic level similarly to adults.  

If predictability of the stimulus in a given context is a 
major factor in controlling stimulus-driven attentional 
orientation, as also exemplified by the widely used 
preferential head-turn or looking-time paradigms to probe 
infants’ learning, we would expect IDS to have different 
predictability properties than ADS. In the present study, we 
will look into one specific aspect of IDS, namely, 
intonation, and test how well F0 contours can be predicted 
over time for the two speaking styles in question.  

Data 
The speech material used in the present experiments comes 
from the ManyBabies study that aims to replicate IDS 
preference across a large number of labs (The ManyBabies 
Consortium, 2017). In the context of that study, naturalistic 

speech from female caregivers to their infants or from 
caregivers to other adults was recorded in central Canada 
and Northeastern US. All caregivers had infants aged 122–
250 days. The recordings were carried out in an infant-
friendly greeting area/testing room using lapel clip-on 
microphones connected to smartphones. The task involved 
describing a closed set of labeled objects by asking the 
mother to take each object out of a bag one at a time and 
talk about it to her baby (IDS) or to an experimenter (ADS). 
In addition, there were two types of objects: those 
supposedly familiar to the infants (e.g., a ball or a block) 
and those considered as novel (e.g., a sieve or a whisk). 
After rough manual segmentation of the recordings into 
utterances, the utterances were also classified into three 
categories: utterances containing the familiar object word, 
those containing the unfamiliar object word, and utterances 
without naming of the object. 

In the present study, we used the Canadian section of the 
recordings, containing speech from a total of 11 mothers. 
The US recordings (4 mothers) were excluded due the 
significant presence of room reverberations that could have 
impacted automatic F0 estimation. All utterances shorter 
than 1 s or with less than five syllables (see Methods) were 
discarded, leading to a total of N = 882 utterances (504 IDS, 
378 ADS) with an average of 80.2 ± 29.9 utterances per 
talker. Average utterance length was 4.0 ± 2.5 seconds (3.1 
± 1.1 for IDS, 5.2 ± 3.1 s for ADS). 

Methods 
The overall goal of the analysis was to compare 
predictability of F0 trajectories in the IDS and ADS 
utterances using a statistical model. This was done by first 
syllabifying and estimating F0 trajectories for all speech, 
parametrizing F0 trajectories during each syllable, clustering 
the syllable-specific parameters into a finite number of 
categories (“F0 shapes”) in an unsupervised manner, and 
then modeling the temporal evolution of these F0 states 
across time. By training the predictive model from a set of 
utterances and then computing the likelihoods of F0 
trajectories on a set of held-out utterances, measures of F0 
predictability can be estimated from the data. Fig. 1 shows a 
schematic picture of the processing pipeline for an 
individual utterance. All experiments were conducted in 
MATLAB unless mentioned otherwise. 

Pre-processing of F0 trajectories 
F0 trajectories were estimated at a 100-Hz sampling rate 
with YAAPT-algorithm  (Zahorian & Hu, 2008; version 
4.0), constraining F0 estimates to the range of 100–600 Hz 
and using YAAPT’s ptch_fix() tool for post-processing of 
the pitch tracks for potential estimation errors and for 
interpolation of the trajectories across unvoiced regions. For 
the predictability analysis, utterance-level F0 tracks were z-
score normalized to zero mean and unit variance in order to 
focus on temporal behavior instead of the absolute mean or 
range of the pitch.  In addition, the original non-normalized 
F0 contours were used as baseline features in the analyses. 
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Figure 1: A schematic view of the F0 predictability analysis. 
The output is the probability of F0 in syllable s given the 
observed F0 in m preceding syllables (after training the 
statistical model on a number of training utterances). 
 

All utterances were syllabified using a sonority envelope-
based automatic syllabifier described in Räsänen, Doyle and 
Frank (submitted; see also Räsänen, Doyle & Frank, 2015, 
for an earlier but similar version). All syllables without any 
frames with reliable voicing (as determined by YAAPT) and 
syllables shorter than 50-ms were merged with the 
neighboring syllables, leading to a total of 8056 syllables in 
the data set. Note that although this type of acoustic 
syllabification is not perfectly accurate in terms of the 
phonological rules of the language, it still provides 
systematic chunking of speech into syllable-like units with 
each unit consisting of a sonorous peak surrounded by less-
sonorous onsets and coda (see also, e.g., Villing, Ward & 
Timoney, 2006, and references therein). Importantly, such 
acoustic-signal based chunking can be argued to better 
match the syllabification capabilities of pre-linguistic 
infants that also must rely on non-phonological acoustic 
cues in their perception of speech before they master the 
sound system of their native language (Räsänen et al., 
submitted).  

Following the syllabification, F0 trajectories during each 
syllable were parametrized by fitting a second order 
polynomial to the trajectory in time (Fig. 2) and using the 
polynomial coefficients without the constant term as a 
parametric description of the F0 during the syllable. 
Parameters across all syllables in the data were then vector 
quantized into Q discrete categories using standard k-means 
clustering with random initialization. In practice, these Q 
shapes correspond to different F0 patterns with varying 
curvature and rate of change as a function of time, larger Q 
simply meaning more fine-grained distinction between F0 
patterns that occur during the syllables. 

Temporal modeling of F0 state sequences 
As a result of the pre-processing, the F0 trajectory of each 
utterance was described as a sequence of discrete states qs ∈ 
Q, one state per syllable s. In order to quantify the 
predictability of F0, a mixed-order Markov chain model, or 
MOCM, was trained for the sequences (Saul & Pereira, 
1997). Instead of computing n-gram statistics for different 
n-gram orders and then choosing and/or merging the models 
with best predictive capability, MOCM allows modeling of 
varying order Markov chains with a single set of model 
parameters. In MOCM, the probability of an F0 shape qs in 
syllable s, given the preceding m syllables, is calculated as 
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Figure 2: An example of syllable-wise 2nd order polynomial 
approximation of the F0 trajectory. Top: The original 
speech waveform. Bottom: YAAPT-estimated and z-score 
normalized F0 trajectory with interpolation across unvoiced 
segments (blue solid line) and the corresponding 2nd order 
polynomial least-squares fit for F0 during each syllable. 
Syllable boundaries are shown with vertical lines. 
 

P(qs | qs−1,...,qs−m ) =

λk
k=1

m

∑ (qs−k )Mk (qs−k,qs ) [1−
j=1

k−1

∏ λ j (qs− j )]
   (1) 

where lag-specific transition matrices M and transition 
weights λ  are estimated from training data using the 
Expectation Maximization (EM) algorithm (Saul & Pereira, 
1997). In the context of the present study, Mk describes the 
transition probabilities between syllabic F0 contours at 
different lags k while λ  weighs these probabilities from 
different distances based on the reliability of the probability 
estimates in the context of the observed shapes. 

In the experiments, a third order (m = 3) MOCM model 
was trained using the syllabic F0 sequences from 90% of the 
combined pool of IDS and ADS utterances. This was 
followed by syllable-by-syllable estimation of F0 
likelihoods on the remaining held-out utterances using Eq. 
(1). The procedure was repeated in a 10-fold manner until 
all utterances had been used in the training and test sets. The 
division of utterances into training and testing sets was 
purely random, and therefore both contained speech from 
the same 11 unique talkers. We decided not to use speaker-
specific models for F0 due to the modest number of 
utterances per talker that would have caused data sparsity 
issues in the model estimation. As a result, the obtained 
probability estimates describe how expected is the F0 
behavior in the given context given a preceding exposure to 
a large number of F0 trajectories, low probability reflecting 
unexpected and thereby attention capturing intonation. 

Note that the choice of Q, the number of quantization 
levels for the F0 shapes, contains an inherent tradeoff 
between the resolution of the F0 trajectory modeling and the 
amount of data required for model estimation. Although 
there is no a priori reason to consider any Q specifically 
favoring IDS or ADS due to the z-score normalization of all 
F0 values, we wanted to minimize the impact of Q in our 
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findings. Therefore the simulation was conducted for Q = 6, 
12, and 24 with syllable-specific likelihood estimates 
averaged across all these runs. In addition, all likelihoods 
were averaged across five runs of the entire experiment to 
diminish variation caused by random initialization of the k-
means clustering process, even though the k-means 
clustering results for the two dimensional features were 
found to be highly consistent across individual runs. 

Data analysis 
Five utterance-level statistical descriptors, namely, the 
mean, SD, min, max, and range (max−min) were calculated 
for the F0 likelihoods across all syllables and for the 
original F0 trajectories in Hz in each utterance. Talker and 
style-specific (IDS vs ADS) means for the descriptors were 
then averaged across all the utterances from the given 
talkers. Before any statistical analysis, the statistical 
descriptors for F0 likelihoods were corrected for the 
variable amount of matching training data for the speaker 
and speaking style in question. This was done by first fitting 
a speaker-independent linear regression model from the 
number of matching training samples to the statistical 
descriptors, and then subtracting the prediction from the 
original values, basically decorrelating the measures with 
respect to the amount of training data.  

In order to test differences between IDS and ADS, the 
normalized descriptors for F0 predictability and descriptors 
for the original F0 values were then compared between the 
IDS and ADS conditions using the paired t-test with 
significance level of p < 0.05 (Holm-Bonferroni corrected 
for the ten comparisons and df = 10 for all reported stats). 

Results 
Fig. 3 shows a summary of the results together with markers 
and t-statistics for significant differences between IDS and 
ADS. As expected, the mean frequency of F0 in the 
utterances is higher in IDS (210.9 Hz ± 29.0 Hz) than in 
ADS (189.9 ± 23.9 Hz). In addition, the average utterance-
level maximum and minimum F0 are significantly higher in 
IDS, but the overall variability and absolute range (in Hz) 
are not different between the speaking styles.  

As for the predictability, the mean predictability of F0 in 
IDS was significantly lower than in ADS (t(10) = 4.82, 
Cohen’s d = 1.93). In addition, maximum predictability 
during each utterance was also lower (t(10) = 5.46, d = 2.10) 
and so was the range of predictability values across the 
syllables in the utterances (t(10) = 5.19, d = 1.88). In 
contrast, variability of predictability across the utterances 
was not different between IDS and ADS. Notably, the 
average F0 probabilities are within a similar range to what 
was found to be optimal stimulus complexity for attentional 
capture in the visual perception experiments of Kidd et al. 
(2012) and significantly above chance-level (p = 0.0972). 
This suggests that the F0 trajectories might be in a suitable 
complexity region for triggering novelty preference, 
enabling predictive learning but also leaving room for 
unpredictable patterns and events.  
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Figure 3: Top: Utterance-level statistical descriptors of F0 
predictability, averaged across all ADS/IDS utterances. 
Middle: F0 predictability after controlling for the amount of 
matching training data (speaker & style) for each utterance. 
Bottom: Utterance-level descriptors of original F0 in Hz, 
averaged across all utterances. Error bars denote ±1 SE 
across all talkers. Significant differences between IDS and 
ADS are denoted with asterisks and related t-values (paired 
t-test, df = 10, and using significance level p < 0.05 with 
Holm-Bonferroni correction for the ten comparisons).  
 

We also repeated the entire analysis but now using linear 
instead of the 2nd order model for the syllabic F0 contours 
(i.e., encoding only the average direction and rate of change 
in F0 during the syllable). This replicated all the main 
findings (significantly lower mean, max, and range for the 
predictability of F0 in IDS; not shown separately). We also 
tested whether there were differences in the predictability 
descriptors between the three sentence types (familiar 
object, unfamiliar object, no labeling) but none of the tests 
were significant after controlling for multiple comparisons. 
In addition, the predictability difference is not simply due to 
a larger quantization error for IDS parameters, since the 
reported pattern of results persists also if only the IDS data 
are used for the k-means codebook creation leading to lower 
quantization errors (RMSE) for the IDS F0 trajectories.  

Overall, the main result confirms the hypothesis that the 
intonation contours in IDS are less predictable than in ADS, 
at least for the present data set in question. 

As a follow-up validation of the findings, we also ran 
binary logistic regression to classify all the individual 
utterances into IDS or ADS classes using the utterance-level 
descriptors for probabilities and raw F0 values as features 
and using likelihood ratio as the criterion for forward 
stepwise feature selection (using SPSS version 23.0, IBM 
Corp., Armonk, NY). The resulting model achieved 
IDS/ADS utterance classification rate of 74.8% using a final 
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set of four features: SD of likelihood (Wald statistic = 
31.28, p < 0.001; df = 1 for all features), mean likelihood (W 
= 23.08, p < 0.001), likelihood range (W = 88.34, p < 
0.001), together with max of original F0 in Hz (W = 66.24, p 
< 0.001). This further shows that the predictability 
differences of intonation in IDS and ADS do not simply 
appear as aggregate measures across a large number of 
utterances, but can be also used to effectively classify 
individual utterances into ADS or IDS. 

Finally, a subset of the utterances used in the present 
study had been previously rated for their IDS-likeness using 
a low-pass version of the recordings as part of the 
ManyBabies project (see The ManyBabies Consortium, 
2017, for details). These utterances were rated on a 7-point 
Likert scale by several naïve raters recruited from Amazon’s 
mechanical Turk. We therefore calculated the correlation 
between all the utterance-level F0 descriptors and the 
human IDS-likeness ratings for all the IDS utterances with 
ratings (N = 442). The human judgments of IDS-likeness 
correlated with the mean (Spearman’s r = 0.25, p < 0.001), 
SD (r = 0.31, p < 0.001), min (r = 0.154, p = 0.002), max (r 
= 0.35, p < 0.001), and range (r = 0.32, p < 0.001) of the 
original F0 values, i.e., with all of them. Surprisingly, all the 
descriptors of F0 trajectory likelihoods were uncorrelated 
with the human ratings (p > 0.05 for all comparisons).  

Since predictability was nonetheless a reliable cue in our 
classification of utterances into IDS and ADS based on the 
original study labels, the finding with the naïve ratings data 
suggests a dissociation between perceptual correlates of 
IDS-like speech in naïve listeners (e.g., high and variable 
pitch) and the lower predictability of intonation in IDS as a 
potential attractor of listeners’ attention. Notably, an earlier 
study by Singh, Morgan & Best (2002) has also reported 
that higher and more variable pitch alone was not sufficient 
to capture infants’ attention when pitted against affective 
speech. This suggests that the properties that make an 
utterance sound IDS-like to a naïve listener may be 
unrelated to those that lower the predictability of IDS. How 
those properties relate to the attentional attractiveness of 
IDS is currently unclear and requires further investigation.  

Discussion and conclusions 
This study aimed to test whether the exaggerated intonation 
in IDS also translates into less predictable prosody over 
time. The results support this idea, even when the actual 
mean and range of F0 values in the predictive analysis was 
normalized between the IDS and ADS utterances. In 
addition, while IDS intonation is less predictable than ADS, 
it is still relatively structured as indicated by the mean 
predictability that is significantly above the chance-level 
given the analyzed quantization levels. These findings 
provide initial support to the idea that IDS may be more 
attentionally attractive simply because it is more surprising 
without being too chaotic (c.f., Kidd et al., 2012), thereby 
tapping to the basic attentional mechanisms causing 
orientation towards unfamiliar inputs. 

In addition, some evidence for a dissociation between 
human ratings of IDS-likeness and predictability of the 
utterances was also discovered, warranting further research 
in the issue. In fact, a dissociation between F0 variability 
and F0 predictability is expected on the basis of 
predictability-based accounts to prominence and attention in 
speech. More specifically, it has been argued that the 
perceptual system should allocate processing resources to 
the aspects of the input that are not yet predicted by the 
brain independently of the physical magnitude or other 
absolute property of the input. In contrast, highly 
predictable inputs, by definition, have low information 
value and are therefore low priority targets for sensing and 
learning even if they have large magnitude on some scale 
such as loudness or pitch (e.g., Kakouros & Räsänen, 
2016b; Kakouros et al., submitted; see also, e.g., Friston & 
Kiebel, 2009). In the context of speech, the talker can 
control the listener’s attention by freely using non-canonical 
prosodic forms on any word or words of choice without 
changing the literal meaning of the utterance (Kakouros et 
al., 2016b; Kakouros et al., submitted). The present study 
suggests that caregivers may (implicitly) utilize a similar 
strategy to maintain infants’ attention on the speech stream 
or highlighting certain segments of speech.  

However, the present work only provides an initial 
investigation into the predictability aspects of IDS using a 
certain modeling approach. Much more work is needed to 
understand the underpinnings of IDS and how it relates to 
learning and attention mechanisms of the human cognition. 
This also includes the need to replicate the present 
investigation on different speech data and also preferably 
with alternative approaches to quantifying suprasegmental 
statistical structure. In addition, prosody is much more than 
F0 trajectories, and therefore aspects such as timing, 
utterance duration, and intensity should be investigated from 
the predictability point of view independently and in 
conjunction with F0.   
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Abstract 

A proof by mathematical induction demonstrates that a 
general theorem is necessarily true for all natural numbers. It 
has been suggested that some theorems may also be proven 
by a ‘visual proof by induction’ (Brown, 2010), despite the 
fact that the image only displays particular cases of the 
general theorem. In this study we examine the nature of the 
conclusions drawn from a visual proof by induction. We find 
that, while most university-educated viewers demonstrate a 
willingness to generalize the statement to nearby cases not 
depicted in the image, only viewers who have been trained in 
formal proof strategies show significantly higher resistance to 
the suggestion of large-magnitude counterexamples to the 
theorem. We conclude that for most university-educated 
adults without proof-training the image serves as the basis of 
a standard inductive generalization and does not provide the 
degree of certainty required for mathematical proof.   

Keywords: mathematical reasoning; proof; mathematical 
induction; visual proof; induction; generalization 

Introduction 
Mathematics has been defined as “the science which draws 
necessary conclusions” (Peirce, 1881). To this end, proofs 
are indispensible to formal mathematics. A mathematical 
proof uses deductive logic to establish the truth of a general 
theorem – for instance, that a property holds for all 
triangles, or all natural numbers. Relative to the logical 
system being used, the conclusion of the proof is certain; if 
the premises are true, then the conclusion is necessarily true 
as well. The certainty of results obtained through formal, 
deductive proof is a defining feature of mathematics.  

Mathematical induction, despite what its name suggests, 
is a well-established deductive proof method that can be 
used to prove that a theorem holds for all natural numbers. It 
has been suggested that some general theorems that can be 
formally proved using mathematical induction may also be 
proved using specially designed images known as ‘visual 
proofs’ (Brown, 2010). The claim that a ‘visual proof by 
induction’ can prove a general theorem is an interesting one, 
since any image is necessarily finite and thus can only 
display a particular set of cases of the theorem. Case-based 
argumentation falls under the umbrella of inductive 
reasoning, which does not provide certain conclusions and 
is not accepted in formal mathematical justification. 
However, visual proofs contain additional structure that 
could be leveraged to demonstrate that a theorem 
necessarily holds in all cases, even those not depicted in the 
image. Thus, it is possible that a visual proof, despite 
displaying only a finite number of cases, could serve a 
proof-like function for some viewers.  

Although the status of visual proofs is at the center of a 
debate in the philosophy of mathematics (see, e.g., Brown, 
2010; Doyle,	   Kutler,	   Miller,	   &	   Schueller,	   2014;	   Folina,	  
1999), they have been largely ignored within Cognitive 
Science and little is known about the nature of reasoning 
with these images. How do viewers reason with a visual 
proof by induction? Do they consider the conclusions to be 
certain, as in mathematical induction, or only likely, as in 
standard inductive reasoning?	  

Induction in Mathematics,             
Mathematical Induction, and Visual Proofs 

The distinction between certain, necessary conclusions and 
probable or likely conclusions is of central concern in 
mathematics. Proofs – deductive arguments which provide 
certain conclusions – are exalted. The writing of proofs, 
however, comprises only a small part of mathematical 
practice, and it is widely acknowledged that inductive 
reasoning plays an important role in mathematics (see 
Polya, 1954 for an account of induction in mathematics). A 
commonly held view is that inductive reasoning is an 
essential part of mathematical discovery, while deduction is 
required for formal mathematical justification (i.e., proof).  

Consider the expressions in Figure 1(a). One might notice 
a pattern in these examples, namely, that when one adds 
consecutive odd numbers starting at 1, the resulting sum 
seems to be the square of the number of terms being added. 
We might guess that this pattern holds for other numbers; 
for example, we might predict that the sum of the first 8 odd 
numbers is 64. However, while these six examples allowed 
us to discover a possible relationship, the examples 
themselves do not prove that the general theorem is true for 
all natural numbers. Without a formal proof, any conjecture 
we have is uncertain and remains open to the possibility of 
counterexamples. A formal proof of our theorem using 
mathematical induction is given in Figure 1(b).  

Figure 1(c) shows a visual proof of the same theorem 
(from Brown, 1997). In the image, consecutive odd numbers 
of dots are arranged in layers, beginning with 1 in the lower 
left-hand corner. When the dots in the first n layers are 
considered together the resulting array forms a square, and 
so the total number of dots in the array is given by n2. While 
the image displays only the first six cases of the general 
theorem, a viewer might be inclined to guess that the pattern 
will continue to hold as more layers are added, and therefore 
be convinced that the general theorem is true. Indeed, 
images such as these have been described as “rapidly and 
deeply convincing” (Doyle et al., 2014). 
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Figure 1: Varying forms of evidence for a general theorem. (a) Specific cases suggest, but do not prove, the general theorem. 

(b) Formal proof of the general theorem by mathematical induction. (c) Visual proof (from Brown, 1997). 
 

It is unclear, however, the exact nature of the conclusions 
drawn from the visual proof. As many have pointed out, any 
image is necessarily finite and thus can only display 
particular cases of a general theorem (Doyle et al., 2014; 
Rips & Asmuth, 2007). This would suggest that the image 
in Figure 1(c), like the cases presented in 1(a), would serve 
as the basis for a standard inductive generalization – the 
image might convince the viewer that the theorem likely 
holds for all natural numbers, but cannot provide certainty. 
On the other hand, the image contains structure that is not 
available in the same cases presented numerically, and 
which could be exploited in order to demonstrate that the 
property would necessarily continue to hold for values not 
depicted in the image. Such an argument would need to 
demonstrate that the square shape is preserved if and only if 
the next layer contains the next consecutive odd number of 
dots. For example, if we start with an n x n square, the (n + 
1)st layer could be constructed by copying the nth layer and 
translating the copy up one unit and right one unit (Figure 
2a, b). This results in two vacant positions that must be 
filled in order to maintain the square shape (Figure 2c, d). 
Thus, every layer must contain exactly two more dots than 
its predecessor. Since the difference between any two 
consecutive odd numbers is 2, we can conclude that the new 
layer must contain the next consecutive odd number of dots.  

 

 
  (a)        (b) 

 
  (c)         (d) 
Figure 2: Rigorous image-based argument for the general 

theorem 
 

Though not a traditional deductive proof, it could be 
argued that an argument such as this does establish the truth  
of the general theorem for all natural numbers, and that this 
conclusion meets the level of certainty required for 
mathematical proof. It is unknown how accessible such 
arguments are to viewers, and, more generally, how closely 
the conclusions drawn from the visual proof resemble the 
conclusions drawn from a formal proof. In this study we 
seek to assess the extent to which a visual proof may serve a 
proof-like function. Specifically, we ask two key questions: 
(1) Given the visual proof, do viewers generalize the 
theorem to cases not depicted in the image? (2) If so, is that 
conclusion considered certain, as in mathematical induction, 
or only likely, as in standard inductive reasoning?  

Finally, to properly address these questions we consider 
who is viewing the image and in what context the image is 
viewed. In this study we compare two groups of viewers, 
one drawn from the general population of university 
students and one drawn from a group that has received 
university-level training in formal proofs, including 
mathematical induction. Additionally, to address the key 
theoretical difference in mathematics between discovery (in 
which inductive reasoning is acceptable) and justification 
(in which it is not), we manipulate the context in which the 
image is viewed by varying the amount of information 
provided to the viewer. 

Method 

Participants 
Two groups were drawn from distinct populations. The first 
group (n = 25) was recruited through the university subject 
pool. None of these participants had taken a university-level 
course on mathematical proofs, and so we refer to this group 
as “proof-untrained” (PU). The second group (n = 24) was 
recruited through the mathematics department and consisted 
of individuals who had received at least a B- in 
“Mathematical Reasoning”, a university-level mathematics 
course on formal proof strategies including mathematical 
induction. We refer to this group as “proof-trained” (PT). 
PT participants had taken significantly more university-level 
math classes than had PU participants (mean PT = 6.67, 

Theorem: The sum of the first n odd numbers is equal to n2. 
(a) Six cases 
 

1 = 12 
1 + 3 = 4 = 22 
1 + 3 + 5 = 9 = 32 
1 + 3 + 5 + 7 = 16 = 42 
1 + 3 + 5 + 7 + 9 = 25 = 52 
1 + 3 + 5 + 7 + 9 + 11 = 36 = 62 

 

(b) Proof by mathematical induction 
Theorem: 1 + 3 + … + (2n – 1) = n2 
Base case: n = 1 à 1 = 12 
Inductive step: Assume 1 + 3 + …+ (2k – 1) = k2, 
for some fixed number k. Adding the next odd 
number 2k + 1 to both sides of the equation, we 
have: 1 + 3 + … + (2k – 1) + (2k + 1) = k2 + (2k +1) 
Re-writing the last odd term and factoring the right 
side gives us:  

1 + 3 + …+ (2k – 1) + [2(k+1) – 1] = (k + 1)2, QED 

(c) Visual Proof  
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mean PU = 2.8, t = 6.58, df = 44.63, p < 0.001). No PU 
participants had taken the “Math Reasoning” course on 
proofs (but four of the 25 indicated familiarity with 
mathematical induction).    

Materials 
Each participant received one of three tasks. All three tasks 
included the visual proof in Figure 1(c), which was designed 
to prove the target statement “The sum of the first n odd 
numbers is equal to n2”, but varied in the amount of 
information that was provided to the reader.  
Condition A – Justification: The participant was given the 
full target statement and the visual proof. They were asked 
to explain how the picture shows that the statement is true.  
Condition B – Supported Discovery: The participant was 
given the visual proof and a fill-in-the-blank version of the 
target statement (“The sum of the first n odd numbers is 
equal to ______.”). They were asked to fill in the blank and 
explain how they got their answer.  
Condition C – Full Discovery: The participant was given the 
visual proof and told that a mathematician drew the picture 
while trying to prove a statement about the sum of odd 
numbers. They were asked to guess what the mathematician 
was trying to prove and explain their answer. 

Additionally, participants completed a background 
questionnaire in which they provided the number and names 
of university math courses they had taken and their level of 
familiarity with mathematical induction. 

Procedure 
Each participant received one of the three task sheets, and 
the researcher explained that their ultimate task was to 
create a short tutorial video in which they would explain 
their response as clearly as possible to potential third-party 
viewers.  A camera was set up directly above the 
participant’s workspace, recording their writing, speech, and 
manual gestures (Figure 3). Before filming their video each 
participant was given as much time as they needed to think 
and plan their response. During this time participants had 
access to pencils, highlighters, and blank paper, and were 
free to add any markings to the sheet that might be helpful 
in explaining their response. The participant indicated they 
 

  
 

Figure 3: Screenshot from video footage of a participant’s 
workspace 

were ready to start their tutorial video by placing a sign 
under the camera, and then filmed their explanation. The 
planning and filming were entirely self-paced and occurred 
without the researcher present.  

When the participant indicated that they had finished their 
tutorial video, the researcher returned to the room and 
conducted a semi-structured interview with the participant. 
To assess whether the participant had generalized the target 
statement to cases not depicted in the image, any participant 
who demonstrated understanding of the target statement was 
asked two questions: “Do you think the statement is true in 
all cases?” (Q1) and  “What would be the sum of the first 8 
odd numbers?” (Q2). If the participant indicated 
generalization to nearby cases (by answering “yes” and 
“64”, respectively), the researcher raised the possibility that 
large-magnitude counterexamples to the statement may exist 
and asked the participant what they thought about that 
suggestion. Any participant who resisted the suggestion of 
counterexamples was asked how they would argue against 
such a possibility. After the interview all participants 
completed the background questionnaire.  

Analysis 
Two coders scored each video for six distinct outcomes. The 
participant’s tutorial video received three scores: 
(a) Mathematical Statement: Rated whether the participant 
demonstrated understanding of the target statement.  
(b) Explanation Strategy:  Rated whether the participant 
gave a case-based explanation (using the image to show 
particular cases of the statement), or a pattern-based 
explanation (describing a general pattern in the image).  
(c) Relevant Features of Image: Reflected which features of 
the image the participant identified as relevant, including 
odd numbers in layers, square shape, possibility of pattern 
extension, and necessity of pattern extension.  

An additional three scores were given based on the 
interview portion of the study.  
(d) Generalization: Rated whether the participant 
demonstrated generalization of the target statement to 
nearby cases as assessed by questions Q1 and Q2.  
(e) Resistance to Counterexamples: Rated the participant’s 
resistance to the possibility of large-magnitude 
counterexamples, ranging from no resistance (0) to 
complete rejection (5).  
(f) Image-Based Argument: Rated whether the participant 
provided a rigorous image-based argument comparable to 
the argument represented in Figure 2. 

For nominal criteria (a)-(d) and (f), the two coders 
showed 96.2% agreement (Cohen’s Kappa=0.96). Criterion 
(e) was was scored on 1-5 scale and also showed high 
reliability between coders (Krippendorff’s alpha = 0.894). 

Results 
The two groups differed with respect to the ability to 
demonstrate understanding of the target statement across 
conditions. While proof-trained (PT) participants 
systematically demonstrated such understanding, proof-
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untrained (PU) participants’ ability to do so varied 
significantly across conditions (Fisher Exact test, p = 0.012; 
Figure 4). All PU participants showed understanding of the 
target statement when it was provided (Condition A), but 
only 6/8 participants provided the target response of n2 in 
Condition B, and 3/9 participants generated the complete 
target statement in Condition C. PT participants, on the 
other hand, did not significantly vary in their likelihood to 
demonstrate understanding of the target statement across 
conditions (Fisher Exact test, p = 0.3; Figure 4).  
 

 
 

Figure 4: Proportion of participants who demonstrated 
understanding of target statement.  

 
Of the 17 total PU participants across all conditions who 

demonstrated understanding of the target statement, 10 
(59%) used case-based explanations in their tutorial video 
(Figure 5); notably, none of these 10 participants referred to 
the square shape as a relevant feature of the image during 
their explanation. Explanation strategy varied significantly 
across conditions, with participants in Condition A showing 
a stronger preference for case-based strategies, while 
participants in Condition C were more likely to generate 
pattern-based explanations (Fisher Exact test, p = 0.026) and 
more likely to mention the square shape (p = 0.026). As we 
found no other significant effects of task context, in the 
following analysis we group participants across all 
conditions who demonstrated understanding of the target 
statement, keeping PU and PT groups separate.  

 

 
 

Figure 5: Explanation Strategy: PU participants were 
significantly more likely than PT participants to give case-

based (rather than pattern-based) explanations. 
 
Proof-Untrained (PU) Group In the interview, 16 of 
the 17 (94.1%) PU participants who demonstrated 
understanding of the target statement indicated a willingness 
to generalize the statement to nearby cases (Figure 6a). Only 
5 (31%) of these participants indicated a high degree of 

resistance to large-magnitude counterexamples 
(characterized by a resistance score of 4 or higher), and only 
one stated that counterexamples were impossible (Figure 
6b). Notably, questionnaire responses revealed that three of 
the five PU participants who showed high resistance were 
familiar with mathematical induction. When asked for an 
argument against counterexamples, only two PU 
participants were able to generate a rigorous argument based 
on the image. PU participants had taken significantly fewer 
university-level math courses than had PT participants; 
however, number of math courses was not significantly 
correlated to any study outcomes for the PU group.  
 
Proof-Trained (PT) Group Across all conditions there 
were 22 PT participants who demonstrated understanding of 
the target statement. These participants were significantly 
more likely than PU participants to provide pattern-based 
explanations  (Fisher Exact test, p = 0.026), with only 2/22 
(9%) relying on case-based strategies (Figure 5). PT 
participants were significantly more likely than PU 
participants to mention the square shape as a relevant 
feature of the image (21/22; Fisher Exact test p < 0.001). In 
the interview, all 22 PT participants who demonstrated 
understanding of the target statement indicated a willingness 
to generalize the statement to nearby cases not depicted in 
the image. The likelihood to generalize did not differ 
between PT and PU participants (Figure 6a); however, PT 
individuals were significantly more likely to indicate a high 
degree of resistance to the suggestion of large-magnitude 
counterexamples (17/22; Fisher Exact test, p = 0.008; Figure 
6b). When considering all participants who demonstrated 
understanding of the target statement, PT participants were 
significantly more likely to provide a rigorous image-based 
argument against counterexamples than PU participants 
(8/22; Fisher Exact test, p = 0.035).  
 

 
 

Figure 6: (a) Participants in both groups generalized the 
target statement to nearby cases. (b) However, PT 

participants showed significantly higher resistance to large-
magnitude counterexamples than did PU participants. 
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Discussion 
The present study explored the conditions in which a visual 
proof by induction may serve a proof-like function, 
characterized by generalization to all natural numbers and a 
belief that this conclusion is necessarily true. Our findings 
reveal significantly different outcomes for the proof-trained 
and proof-untrained participants. Specifically, while both 
groups demonstrated a willingness to generalize to nearby 
cases, the PU participants showed relatively low resistance 
to the suggestion that large-magnitude counterexamples 
may exist. This suggests that for these viewers the visual 
proof serves as the basis for a standard inductive 
generalization, and does not provide certainty. Further 
evidence for this analysis comes from the observation that 
PU participants were significantly more likely to provide 
case-based explanations, using the image to demonstrate 
one or more particular cases of the general theorem. PT 
participants, on the other hand, showed higher resistance to 
counterexamples and were more likely than PU participants 
to provide a rigorous argument using the image. Thus, it 
seems that the image can serve a proof-like function for 
viewers who have been trained in formal proof methods. 
The significant differences between the PT and PU groups 
contradict claims that visual proofs by induction are equally 
convincing to all viewers regardless of their knowledge of 
mathematical induction (Brown, 2010), or that interpreting 
the image as a proof requires only “basic secondary school 
knowledge of mathematics” (Jamnik, 2001).  

We were surprised to find that the PU participants – 
highly educated adults enrolled at a prestigious university – 
often overlooked key features of the visual proof. Less than 
60% of the PU participants who demonstrated 
understanding of the target statement mentioned the square 
shape as a relevant feature of the image. Furthermore, many 
participants who re-drew the image during their explanation 
did so in a way that violated the row-column structure of the 
square array (Figure 7), indicating that they were truly 
unaware of its importance. However, failure to notice the 
relevance of the square shape does not explain the PU 
group’s low resistance to counterexamples, as mentioning 
the square shape was not significantly related to high 
resistance (Fisher Exact test, p = 0.59) within this group. 
 

      

 
 
Figure 7: Work of PU participants who re-drew the image 

in a way that violated the row-column structure and square 
shape of the array 

 

There were 5 PU participants who expressed a high 
degree of resistance to the suggestion of large-magnitude 
counterexamples, two of whom were unfamiliar with 
mathematical induction.  We cannot conclude, however, that 
the image was serving a proof-like function for these 
viewers. Prior research has shown that adults do not reliably 
distinguish between inductive and deductive mathematical 
arguments and often accept case-based arguments as valid 
proofs of statements about infinite sets (Eliaser, 2000; 
Martin & Harel, 1989). Thus, even if the image functions as 
a basis for a standard inductive generalization, we would 
nonetheless expect to see a group of participants who find it 
highly convincing.  

PT participants were more likely than PU participants to 
show high resistance to counterexamples, and subsequently 
more likely to provide a rigorous image-based argument for 
the general theorem. What accounts for these differences? 
One possibility is that PT participants had been exposed to 
significantly more university-level mathematics than PU 
participants. However, the number of university math 
classes taken prior to participation in the study was not 
related to any outcome for either group. This suggests that 
the differences between the two groups cannot be explained 
simply based on differing amounts of exposure to general 
mathematics. Instead, it seems that training in proof-writing 
– a specific and highly technical mathematical practice – 
may make viewers more likely to draw certain conclusions 
from the image.  

Based on our data, exposure to proof-writing could make 
certain conclusions more likely in at least three ways (not 
mutually exclusive). First, it could be that some aspect of 
the task reminds PT participants of the specific proof-
method of mathematical induction (indeed, 75% of PT 
participants mentioned mathematical induction at least once 
during their video and/or interview). These viewers might 
then recognize that they could use mathematical induction 
to prove the target statement, and perhaps even complete the 
proof (as did 25% of our PT participants). Thus, knowledge 
of the formal proof could provide an alternate means of 
acquiring certainty about the conclusion; once achieving 
this certainty, participants may be more likely to attempt to 
generate an alternate argument based on the image. 
However, it cannot be the case that knowledge of 
mathematical induction is a necessary condition for such an 
argument, as we observed one participant who was not 
familiar with mathematical induction produce a rigorous 
image-based justification of the general theorem. 

Second, in addition to gaining familiarity with 
mathematical induction, training in proof-writing would 
also expose individuals to a set of general mathematical 
norms which may lead these participants to demonstrate a 
higher degree of certainty. All participants who 
demonstrated understanding of the target statement were 
asked if they believed the statement to be “true in all cases”; 
however, the two groups likely interpreted this question 
differently. For PT participants, “all” (when used in a 
mathematical context) is a technical term, which by 
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definition implies the impossibility of counterexamples. PU 
participants may have been operating with an everyday use 
of “all”, in which the term is considered synonymous to 
“generally” or “usually” (e.g.,  “All Californians love the 
beach.”). In this light, the two groups’ differing responses to 
the suggestion of counterexamples may be revealing of their 
different conceptualizations of the term “all”.  

 Finally, in the practice of writing proofs one learns 
standard ways of representing general mathematical objects, 
and these representations may be useful in interpreting 
visual proofs. We observed that PT participants often 
invoked the fact that odd numbers are of the form (2n + 1) 
to explain how they knew that the layers (symmetric legs 
extending from a single corner dot) would always contain 
an odd number of dots. Fewer PU participants offered this 
argument, perhaps because they were not familiar with 
algebraic representations of parity. Future studies are 
necessary to determine whether knowledge of algebraic 
representations of parity allow viewers to exploit structure 
available in an image. 

We also explored how conclusions drawn from the image 
differed between contexts of justification (Condition A) and 
discovery (Conditions B/C). We observed only three effects 
of task context. First, PU participants’ ability to demonstrate 
understanding of the target statement varied significantly 
between conditions. Specifically, PU participants – while 
perfectly capable of understanding the target statement 
when it was provided – were highly unlikely to “discover” 
the full target statement based only on the image (with only 
25% able to do so in Condition C). These results suggest 
that, even for most highly-educated viewers, the image must 
be accompanied by the statement it is intended to prove (or 
at least a substantial hint, as in Condition B). Next, we 
observed that PU participants in contexts of full discovery 
(Condition C) who generated the target statement were more 
likely to provide pattern-based justifications and more likely 
to mention the square shape than PU participants who were 
given the full target statement. This is not surprising, since 
the target statement was unknown to these participants at 
the outset of the task and was only discovered if the 
participant noticed a pattern in the image.  

We find it interesting that these three results were the only 
effects of task context for either group. All participants who 
demonstrated understanding of the target statement were 
likely to generalize it to nearby cases, regardless of the 
justification/discovery context in which they had seen the 
visual proof. Subsequent resistance to large-magnitude 
counterexamples – relatively low for PU participants, and 
high for PT participants – did not vary significantly between 
task contexts. This suggests that certainty of the conclusion 
has more to do with the viewer’s exposure to mathematical 
proof-writing than with the justification/discovery context in 
which the image is viewed. The lack of any effect of task 
context for PT participants suggests that the sharp 
distinction between justification and discovery, of such 
theoretical importance in mathematics, is less prevalent in 
advanced mathematical practice.  

Conclusion 
In this study we investigated the reasoning underlying a 
visual proof by induction and the nature of the conclusions 
drawn from the image. A visual proof by induction displays 
a particular set of cases of a general theorem, yet it also 
contains structure that could be used to construct a rigorous 
argument that the theorem is necessarily true for all natural 
numbers. We found that, while most viewers are willing to 
generalize the theorem to nearby cases not displayed in the 
image, viewers who have been exposed to formal proof 
methods (including mathematical induction) show 
significantly higher resistance to the suggestion that large-
magnitude counterexamples to the theorem are possible, and 
are significantly more likely to provide a rigorous image-
based argument against counterexamples. For participants 
without proof-training, conclusions drawn from a visual 
proof resemble a standard inductive generalization and do 
not display the level of certainty associated with 
mathematical proof. These results are consistent between 
contexts of justification and discovery, indicating that the 
certainty of conclusions drawn from a visual proof by 
induction are primarily dependent on the viewer’s exposure 
to proof-writing, rather than the viewing context. 
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Abstract 

This paper proposes a Bayesian account of asymmetries 
found in speech perception: In many languages, listeners 
show greater sensitivity if a non-coronal sound (/b/, /p/, /g/, 
/k/) is changed to coronal sounds (/d/, /t/) than vice versa. The 
currently predominant explanation for these asymmetries is 
that they reflect innate constraints from Universal Grammar. 
Alternatively, we propose that the asymmetries could simply 
arise from optimal inference given the statistical properties of 
different speech categories of the listener’s native language. 
In the framework of Bayesian inference, we examined two 
statistical parameters of coronal and non-coronal sounds: 
frequencies of occurrence and variance in articulation. In the 
languages in which perceptual asymmetries have been found, 
coronal sounds are either more frequent or more variable than 
non-coronal sounds. Given such differences, an ideal observer 
is more likely to perceive a non-coronal speech signal as a 
coronal segment than vice versa. Thus, the perceptual 
asymmetries can be explained as a natural consequence of 
probabilistic inference. The coronal/non-coronal asymmetry 
is similar to asymmetries observed in many other cognitive 
domains. Thus, we argue that it is more parsimonious to 
explain this asymmetry as one of many similar asymmetries 
found in cognitive processing, rather than a linguistic-
specific, innate constraint.  

Keywords: speech perceptual asymmetry; Bayesian 
inference; natural statistics; category variability; nature vs. 
nurture; domain-general vs. domain-specific 

Introduction 
Listeners from a variety of language backgrounds have 

shown asymmetric sensitivity to different directions of 
sound changes in speech perception. We focus on one 
particular asymmetry: consonants with a coronal place of 
articulation (/d/, /t/, /n/, /l/) are more tolerant to changes or 
mispronunciations than consonants with non-coronal places 
of articulation (/g/, /k/, /b/, /p/). For example, the German 
word for “railway”, bahn primed the word for “train” when 
mispronounced as bahm. However, the word for “tree”, 
baum, did not prime the word for “bush” when 
mispronounced as baun (Lahiri & van Coillie, 1999). This 
indicates that listeners can accept a labial sound as the 
correct form of a coronal sound but not vice versa. ERP 
findings corroborate this phenomenon: At temporally early 
stages of speech perception, German-speaking adults 
displayed asymmetric discrimination for mispronunciations 
of familiar words with coronal vs. non-coronal onsets 
(Friedrich, Lahiri, & Eulitz, 2008) and internal consonants 

(Friedrich, Eulitz, & Lahiri, 2006; Cornell, Lahiri & Eulitz, 
2013). Similar effects have also been observed with 
English-speaking (Roberts, Wetterlin & Lahiri, 2013) and 
Bengali-speaking adults (Lahiri & Marslen-Wilson, 1991).  

To explain this asymmetric bias in speech perception, the 
predominant hypotheses have been derived from 
phonological theories (Kiparsky, 1982) in the framework of 
Universal Grammar (UG). In particular, the Featurally 
Underspecified Lexicon (FUL) model (Lahiri & Marslen-
Wilson, 1991; Lahiri & Reetz, 2002) suggested that the 
place of articulation for coronal consonants (/d/ in duck) is 
not stored (underspecified) in phonological representations. 
Consequently, mispronunciations in the onset of duck, such 
as guck, are still compatible with the representation of duck, 
and such mispronunciations should have minimal effects on 
the lexical activation of the word duck. By contrast, the 
place of articulation for a non-coronal consonant is fully 
stored (specified) in the phonological representation (the 
place of articulation of /ɡ/ in goose is stored as [+velar]), so 
mispronunciations of the onset of goose, such as doose, will 
be incompatible with the representation of goose and thus 
will disrupt lexical activation of the word goose.   

Studies with infants and toddlers also support predictions 
of the FUL model. 6-month-old Dutch-learning infants were 
habituated to repeated taan or paan tokens and then tested 
on their ability to discriminate trials in which the stimulus 
repeated versus trials in which the two stimuli alternated. 
Whereas infants habituated to paan discriminated the two 
types of trials, infants habituated to taan did not (Dijkstra & 
Fikkert, 2011). The findings were interpreted as support for 
the FUL model: When the standard of comparison was taan, 
the place of articulation of the onset /t/ was not specified, so 
both taan and paan were compatible with the standard. But 
when the standard of comparison was paan, place of 
articulation of the onset /p/ was specified, so only paan was 
compatible with the standard, and paan and taan were 
discriminable. 4- and 6-month-old Dutch- and Japanese-
learning infants were also tested using the same procedure 
on their discrimination of labial (omba) and coronal (onta) 
sounds (Tsuji, Mazuka, Christia, & Fikkert, 2015). Infants 
habituated to the labial sound omba discriminated the two 
types of trials, but infants habituated to the coronal sound 
onta did not, regardless of their language background. 

Linguistic hypotheses, such as underspecification, provide 
one source of explanations for the observed asymmetry in 
speech perception. Consistent with the FUL model, Fennel 
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(2007) showed that infants detected a labial-to-coronal 
switch but failed to detect a coronal-to-labial switch. 
However, inconsistent with this hypothesis, a follow-up 
study (Fennell, van der Feest, & Spring, 2010) showed that 
14-month-olds were better able to detect a coronal-to-velar 
switch than a velar-to-coronal switch. To explain such 
discrepancy, they analyzed the onset formant frequencies of 
all the /b/, /d/ and /g/ tokens in their experimental stimuli, 
and discovered that /b/</d/</g/ in acoustic variability. Thus, 
the authors concluded that the asymmetries they observed 
might be better explained by acoustic variability than 
phonological specification.  

We examine the same asymmetries in speech perception 
in the framework of Bayesian inference: Asymmetric 
perception of coronal and non-coronal places of articulation 
may arise from differences in the statistical properties of the 
coronal category and the non-coronal category in 
competition (e.g. within word minimal pairs). As presented 
later, coronal consonants as a category are more frequent 
and/or variable than non-coronal consonants in languages 
where asymmetric perceptions have been found. These 
statistical properties yield an asymmetric posterior 
distribution: Given a speech signal equidistant from a 
prototypical coronal and noncoronal articulation, the signal 
is more likely to be a coronal consonant. 

The Model 

Theoretical Overview  
Following the tradition of categorical perception of speech 
sounds by Liberman et. al. (1957), Clayard et. al. (2008) and 
Feldman, Griffiths, and Morgan (2009), we interpret the 
asymmetry as the result of statistical inference of speech 
categories from a noisy speech signal. Listeners utilize 
available information from a variety of sources to achieve 
such a goal, including their prior knowledge of native 
speech categories and the acoustic properties of the speech 
signal.  

A speech category is defined in the model as a 
distribution over acoustic dimensions. According to the 
model, when speakers articulate a sound, they first choose a 
speech category and then articulate a sound exemplar from 
that category. Each sound exemplar of the speech category 
varies from one another due to many factors, such as co-
articulation, affect, focus and grammatical intonation. 
Although speaker’s articulation over acoustic dimensions is 
multidimensional, for mathematical simplicity we assume 
articulations of a speech category can be reduced to a 
Gaussian distribution over a single acoustic dimension. 
Thus, the inventory of native speech categories is 
represented as a set of Gaussian distributions in the model. 
Different speech categories differ in the location of their 
means and in how much their articulation varies over the 
acoustic dimension (variance). In addition, categories may 
differ in frequency of occurrence with some categories used 
more frequently than others. The frequency of occurrence of 
each category is represented by its prior probability. 

Listeners assume that the perceived signal was generated 
by a speech category that is masked by noise, including 
environmental noise and perceptual errors. The listeners’ 
task is to recover the speech category that is most likely to 
have produced the speech signal. If there are two categories 
that could have generated the speech signal, listeners should 
take into account of both categories by weighing the 
statistical properties of each category. Suppose that in a 
hypothetical language, coronal and non-coronal categories 
have equal variance and equal frequency of occurrence.  
Then each of the two categories has an equal posterior 
probability to have generated a speech signal equidistant 
from the mean of the coronal and non-coronal distributions. 
However, in real languages, the coronal category is often 
higher in variances and/or frequencies of occurrence (the tip 
and blade of the tongue are more flexible and more 
variable). An ideal observer should take these factors into 
account, which may result in the posterior probability of the 
equidistant speech signal to be larger for the coronal than 
the non-coronal category. 

Mathematical Formulation 
Here we formulate a Bayesian model of speech perception. 
Although we apply the model to the asymmetric perception 
of coronal and non-coronal consonants, the model may 
apply to any domain where a person observes a noisy signal 
from categories, with each category’s exemplars being 
approximately Gaussian distributed1. 

We consider speech perception as probabilistic 
inference. Listeners infer the category membership Ci of a 
noisy signal S, as denoted by the conditional probability p(S 
|Ci). We denote i = 1 for coronal membership and i = 2 for 
non-coronal membership. The posterior probability 𝑝 𝐶! 𝑆  
that an observed noisy signal S is a coronal sound can be 
obtained by Bayes’ Rule: 

 

𝑃 𝐶! 𝑆 =
𝑝 𝑆  𝐶! 𝑃(𝐶!)

𝑝 𝑆  𝐶! 𝑃 𝐶! + 𝑝 𝑆  𝐶! 𝑃 𝐶!
                (1) 

 
P(C1) in Equation 1 is the prior probability of the coronal 
category and p(S |C1) is the likelihood of observing stimulus 
S given it was generated by a coronal category.  

Now we derive a closed form solution to the posterior 
probability that a signal S is coronal, P(C1 | S). Suppose that 
the speaker articulates an exemplar E of the coronal 
category C1 and E is Gaussian distributed with mean 𝜇!!, 
the prototype of the coronal category C1. Exemplars within 
a category vary with variance σc1

2. Therefore,  
 

E | C = C1   ~   N(𝜇!!,σc1
2) 

 

The speaker’s articulation, the speech signal passing 
through the environment, and the perceptual system of the 
listener all add noise to the exemplar. These sources of noise 

                                                             
1  The model may also account for other asymmetries in speech 

production. We plan to pursue this in future work. 
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combined into σS
2. Therefore, the conditional distribution of 

S | E is 
 

S | E ~ N(E, σS
2) 

 

where σS
2 represents the random noise that is not due to 

within-category variability σc1
2. Due to conjugacy, E can be 

marginalized out to form the likelihood p(S | C1), which is 
Gaussian distributed: 

 

S | C1 ~ N(𝜇!!, σc1
2 +  σS

2)    (2) 
 

The likelihood’s variance is the sum of two components: the 
category variance σc1

2, and random, environmental, and 
perceptual noise σs

2. Plugging in the parameter values into a 
Normal distribution, Equation 2 can be written as: 

 

𝑝 𝑆  𝐶! =
1

2𝜋 𝜎!!! +  𝜎!!
𝑒𝑥𝑝 −

𝑆 − 𝜇!! !

2 𝜎!!! +  𝜎!!
             (3) 

 
Following the same logic, the likelihood of the non-coronal 
category p(S | C2) is 

 

𝑝 𝑆  𝐶! =
1

2𝜋 𝜎!!! +  𝜎!!
𝑒𝑥𝑝 −

𝑆 − 𝜇!! !

2 𝜎!!! +  𝜎!!
             (4) 

 
Plugging Equations 3 and 4 into Bayes Rule (Equation 1), 

we can rewrite the posterior probability of the coronal 
category given the perceived speech signal S as 

 

𝑃 𝐶!  𝑆 = !

!!!! !"# !!!!! !!!!! ∗! !!
! !!

         (5) 
where 

𝛽! =
𝜎!!! +  𝜎!!

𝜎!!! +  𝜎!!
, 𝛽! =

𝜎!!! − 𝜎!!!

2 𝜎!!! +  𝜎!! ∗ 𝜎!!! +  𝜎!!
 

 

𝛽! =
−2 𝜇!! 𝜎!!! +  𝜎!! − 𝜇!! 𝜎!!! +  𝜎!!

2 𝜎!!! +  𝜎!! ∗ 𝜎!!! +  𝜎!!
 

 

The closed form solution for the posterior is given by 
Equation 5. We explore how the relative differences in 
variability and frequency between coronals and non-
coronals affect the posterior probability of coronals 
𝑃 𝐶!  𝑆 . Then, we analyze the natural statistics of coronals 
and non-coronals to determine whether perceptual 
asymmetries would arise from them in an ideal observer. 

Quantitative Evaluation 
Suppose that in a hypothetical language, the coronal 
category and the non-coronal category are equally frequent 
– have equal priors, P(C1) = P(C2). Also suppose that the 
categories are equally variable, as encoded by σc1

2 = σc2
2. In 

these circumstances, Figure 1 depicts the posterior 
probability for a noisy speech signal to be perceived as a 
coronal sound, P(C1 | S).  

Given equal variance and equal frequency of occurrence, 
the category boundary divides the perceptual space into two 
equal parts. This indicates that a noisy signal equidistant 

from the category prototypes has an equal probability of 
being perceived as a coronal or a non-coronal. We now 
examine how heterogeneity of category variances (i.e. if σc1

2 
≠ σc2

2) and unequal frequency (i.e., if P(C1) ≠ P(C2)) affect 
the posterior probability of the coronal category P(C1 | S). 

 

 
 

Figure 1: Posterior Probability (category boundary) of the 
coronal category given equal variance and equal frequency 

 
Effect of Category Variance In many languages where 
perceptual asymmetries are found, exemplars of the coronal 
category are more variable than exemplars of the non-
coronal category. For example, using a modified 
Levenshtein distance metric, Cohen-Priva (2012) aligned 
the underlying (dictionary) forms and phonetic realizations 
in the Buckeye Natural Speech Corpus (Pitt, Johnson, 
Raymond, Hume & Fosler-Lussier, 2007). He created an 
articulatory confusion matrix for English segments in the 
corpus. Of the 43,915 coronal stop tokens, 21,576 (49%) 
were pronounced either as allophonic variants or as some 
other phonemes, whereas of the 64,288 noncoronal stop 
tokens, only 2,997 (5%) were pronounced as allophonic 
variants or as an alternative phoneme. Such analyses 
indicate that coronal stops are about 10 times more variable 
than noncoronal stops. Moreover, coronals (9% of all 
coronal segments; 20% of coronal stops were deleted) were 
also more likely to be deleted than noncoronals (5% of all 
noncoronal segments, 4% of noncoronal stops were 
deleted).   

The differences in natural language statistics of the 
within-category variances between coronal and non-coronal 
categories in the Buckeye corpus provide the following 
constraint: σc1

2 > σc2
2. Suppose that σc1

2 = 5σc2
2 

(approximately the difference in the segment deletion rates 
for the English data in the Buckeye corpus), the posterior 
probability for a noisy speech signal to be perceived as a 
coronal sound is displayed in Figure 2 (with the case where 
the within-category variances are equal for reference).  

As the red dashed curve shows in Figure 2, the category 
boundary has shifted towards the non-coronal category, 
leaving a larger posterior probability for a noisy signal 
equidistant between the categories to be perceived as a 
coronal sound. Suppose that the posterior probability for the 
speech signal [g] to be perceived as a coronal sound /d/ is 
0.1 given equal variance (blue curve). The shift of category 
boundary (dashed red line) leads to an increase in the 
posterior probability for [g] to be perceived as /d/ (to a value 
around 0.2). Thus, due to the higher variance of the coronal 
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category, an ideal listener is more likely to perceive /g/ as an 
exemplar of the /d/ category. Now we examine the reversed 
direction, i.e. a coronal ([d]) signal is changed to a non-
coronal sound (/g/) given unequal variance. 

 

 
 

Figure 2: Posterior probability (category boundary) of the 
coronal category as a result of unequal variance. 

 

 
 

Figure 3: Posterior probability (category boundary) of the 
non-coronal category as a result of unequal variance. 

 
Figure 3 shows the posterior probability for a speech 

signal to be perceived as non-coronal. The blue curve in 
Figure 3 depicts the posterior probability given equal 
within-category variances. The red dashed curve shows the 
posterior probability given that the coronal category has 
larger variance. As the red dashed curve in Figure 3 shows, 
the category boundary has shifted towards the non-coronal 
category, producing a smaller posterior probability for a 
noisy signal to be perceived as a non-coronal sound. 
Suppose that the posterior probability for the speech signal 
[d] to be perceived as a non-coronal sound /g/ is 0.1 given 
equal within-category variances (blue curve). The shift of 
category boundary (red dashed curve) leads to a decrease in 
the posterior probability for [d] to be perceived as /g/ (to a 
value of approximately 0).  

To summarize Figures 2 and 3, increasing the variance of 
the coronal category causes an ideal listener to be more 
likely to perceive a non-coronal signal ([g]) as an exemplar 
of the coronal category (/d/), and less likely to perceive a 
coronal signal ([d]) as an exemplar of the non-coronal 
category (/g/). [g] can be a /d/ but [d] cannot be a /g/.  

 
Effect of Frequency of Occurrence Coronals also occur 
more often in natural speech than non-coronals. Table 1 
(adapted from Ren, Cohen-Priva & Morgan, under review) 
shows the frequencies of occurrence of the coronal category 
in three languages from typologically distinctive families. 

Coronal segments in these languages are at least twice as 
frequent as either labial or velar segments (Japanese velar 
stops are exceptional and we will discuss this case later).  

Frequency is represented by prior probabilities in the 
model. P(C1) and P(C2) are the prior probabilities of the 
coronal category and the non-coronal category, respectively. 
Suppose that P(C1) = 2P(C2) (approximately the relative 
frequency in Table 1).  

 
Table 1: Frequencies of segments in CALLHOME 

transcripts by place of articulation 
 Consonant Labial Coronal Velar 

Language Segments    
Arabic All  91,409 222,774 94,624 

 Stops 25,592 54,279 38,544 
Japanese All  57,513 236,813 99,760 

 Stops 15,854 62,241 79,117 
Spanish All  101,717 320,167 53,483 

 Stops 44,366 62,961 43,005 
 

Figures 4 and 5 show the posterior probability of the 
coronal category P(C1|S) and the non-coronal category 
P(C2|S), respectively. The category boundary (green dashed 
curve) has shifted towards the non-coronal category due to 
the larger prior probability of the coronal category. For 
comparison, the posterior probability given equal prior 
probabilities of coronals and non-coronals is plotted as the 
blue curve. This results in a larger posterior probability for a 
noisy non-coronal signal ([g]) to be perceived as a coronal 
sound (/d/) (Figure 4) and a smaller posterior probability for 
a noisy coronal signal ([d]) to be perceived as a non-coronal 
sound (/g/) (Figure 5). 

 

 
 

Figure 4: Posterior probability (category boundary) of the 
coronal category as a result of unequal frequency 

 

 
 

Figure 5: Posterior probability (category boundary) of the 
non-coronal category as a result of unequal frequency 
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Thus, similar to the effect of variance, larger frequency of 
occurrence of the coronal category also causes an ideal 
listener to be more likely to accept that the noisy signal [g] 
is an exemplar of the /d/ category but not vice versa, 
predicting the same pattern of asymmetry.  

Japanese velar sounds provides an interesting test for an 
ideal listener model. As Table 1 shows, velar stops (/k/ and 
/ky/) occur more often than coronal stops (/t/) in Japanese. 
Our model predicts that assuming equal variance, the pattern 
of asymmetries should be reversed for Japanese listeners–
they should be less sensitive to sound changes from non-
coronal to coronal than vice versa. Japanese studies (see 
Tsuji et. al, 2015) so far have only tested infant listeners 
with labial (omba) and coronal (onta) but not velar (/k/ and 
/ky/) phonemes. Future experimental studies should examine 
this prediction with these velar and coronal phonemes. 

 
Effect of Variance and Frequency In many languages both 
the prior distribution and the variance of the coronal 
category are larger than those of the non-coronal category. 
Here we examine how prior and variance interact.  
 

 
 

Figure 6: Posterior probabilities of the coronal category as 
a result of unequal frequency and/or unequal variance 

 

 
 

Figure 7: Posterior probabilities of the non-coronal category   
  as a result of unequal frequency and/or unequal variance 

 
Figure 6 shows the posterior probabilities of acoustic 

signals to be perceived as a coronal sound and Figure 7 
shows the posterior probabilities of acoustic signals to be 
perceived as a non-coronal sound with differing 
assumptions regarding the relative frequency and variance 
of coronal and non-coronal sounds. The grey line shows 
category boundary shift as the result of both the larger prior 
and variance of the coronal category. As shown in both 
figures, the pattern of asymmetry remains the same, but 
there is an even larger posterior probability for a non-
coronal signal to be perceived as a coronal (Figure 6), and 

an even smaller posterior probability obtained for a non-
coronal signal to be perceived as a coronal sound (Figure 7).  
Thus, with larger variance and larger frequency of 
occurrence, an ideal listener is even more likely to perceive 
a non-coronal signal ([g]) as a coronal sound (/d/), but even 
less likely to perceive a coronal signal ([d]) as a non-coronal 
sound (/g/). 

General Discussion 
We presented an alternative account for the asymmetry in 

perceiving coronal and non-coronal consonants in speech 
processing: They arise due to Bayesian inference given the 
natural statistics of coronals and non-coronals. Listeners 
make use of their represented category frequency and 
variance to make inference about the category membership 
of a perceived signal. Asymmetry occurs when the two 
speech categories in competition (e.g. within a word 
minimal pair) are not equal in variance and/or frequency of 
occurrence.  

Our approach diverges from the currently predominant 
approach in linguistics, which explains the asymmetric 
perception as due to underspecification of the coronal place 
of articulation. This theory relies on the special 
phonological status of coronal sounds only. Conversely, our 
approach accounts for the asymmetry as due to the relative 
statistical properties of different speech categories. The 
underspecification hypothesis is a language-specific, innate 
constraint, whereas our account is experience- (learning-) 
based and domain-general. For example, Quinn, Eimas & 
Rosencrantz (1993) found that 4-month-olds habituated to 
pictures of cat faces could easily detect a change to a picture 
of a dog face. However, infants habituated to dog faces 
failed to detect a change to a cat face. A series of follow-up 
studies investigating this asymmetry confirmed that dog 
stimuli are more variable in appearance and that when 
variability was equated across categories the asymmetry 
disappeared (Eimas, Quinn & Cowan, 1994; Mareschal, 
French & Quinn, 2000). In music perception, Delbé, Bigand 
& French (2006) examined effects of variability by training 
non-musician adults with two distributions of pitch 
sequences differing in variability and then testing them on 
sensitivities to the two directions of changes. Results 
indicated that changes from the less variable category to the 
more variable category are more detectable than vice versa. 

Our account derives predictions to test in future work. 
First, category frequencies and within-category variances 
are learned from early language exposure. In languages 
where non-coronals are more frequent and/or vary more 
within-category, the model predicts that the asymmetry 
should be reversed. Second, at any developmental stage 
when listeners have stable representations of the 
corresponding frequency of occurrence and variance of two 
competing categories, perceptual asymmetries may occur in 
speech processing. Third, frequency and variance should 
have independent effects on speech processing. Further, for 
mathematical simplicity we assumed that a speech category 
is a Gaussian distribution over a single acoustic dimension. 
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Thus, the model does not differentiate between different 
sources/dimensions of variability (e.g., contextual effect, 
Ganong, 1980). Assuming we can control these factors 
experimentally and test the posterior probability of coronal 
and non-coronals in a fine-grained manner, the model makes 
quantitative predictions as to the precise form of the 
asymmetry. None of these predictions arises from UG but 
from the statistics of speech input exposure.  

It is also worth noting that not all asymmetries in speech 
or other cognitive domains are caused by category natural 
statistics. Findings on vowel (Polka & Bohn, 2003) and face 
(Corneille, Goldstone, Queller & Potter, 2006) perception, 
for example, have suggested that similar asymmetric 
patterns could also be due to stimulus saliency and 
experimental training. Future studies may examine how 
these factors interact with frequency of occurrence and 
variances in category perception.  

In conclusion, we have provided a novel explanation for 
the asymmetry between coronal and non-coronal sounds in 
speech perception. Whereas phonological specification as a 
hypothesis could be useful for linguistic purposes, it is not 
necessary to account for asymmetries in speech perception. 
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Abstract
Natural language dialogue between multiple participants re-
quires conversational grounding, a process whereby interlocu-
tors achieve a shared understanding. However, the mecha-
nisms involved in the grounding process are under dispute.
Two prominent models of dialogue between multiple partici-
pants are: interactive alignment, a simpler model that relies
on automatic priming processes within individuals, and in-
terpersonal synergy, a more complicated model emphasizing
coordinated interaction across participants. Using recurrence
analysis methods, Fusaroli and Tylén (2016) simultaneously
evaluated both models and showed that alignment is an insuf-
ficient explanation for grounding or for the teams’ task per-
formance. However, their task and resulting dialogues lack
the typical complexity of conversations or teamwork. Further-
more, the interpersonal synergy model was not clearly differ-
entiated from other coordination-focused models of grounding
with explicit foundations in strategy and intentionality (i.e., au-
dience design, joint activity, perspective taking). Here we test
recurrence-based models in a collaborative task that stressed
the grounding process. Results support a coordination model
of dialogue over the alignment model as a predictor of perfor-
mance. Content-based mediation analyses showed that the co-
ordination recurrence model includes critical aspects of strate-
gic design and is not purely interpersonal synergy.
Keywords: Communication; Dialogue; Conversational
Grounding; Multi-person Cognitive Models

Introduction
The grounding process is a key focus of human dialogue
research (Clark & Wilkes-Gibbs, 1986; Clark & Brennan,
1991; Branigan, Pickering, & Cleland, 2000; Pickering &
Garrod, 2004). Conversational grounding is the process
whereby interlocutors determine that they have understood
one another, and results in additions to shared knowledge and
understanding. Grounding underlies successful collaboration
by developing a shared context, supporting immediate feed-
back of actions, and allowing for incremental progress in con-
veying intent (Brennan, 1998). Grounding processes influ-
ence communication effectiveness and resulting performance
metrics such as laboratory task completion time (Clark &
Wilkes-Gibbs, 1986; Clark & Krych, 2004; Reitter & Moore,
2014), due in part to the requirements for shared understand-
ing in collaborative tasks.

The proposed models of dialogue use multiple conversa-
tional participants as the unit of analysis, but suggest differ-

ent mechanisms for grounding processes (Horton & Gerrig,
2005; Louwerse, Dale, Bard, & Jeuniax, 2012; Schober &
Brennan, 2003). One prominent model is interactive align-
ment (Pickering & Garrod, 2004). Alignment (also entrain-
ment, convergence or imitation) refers to the increasing sim-
ilarity of the interlocutors through adoption of each other’s
phonetic, prosodic, lexical, or syntactic content (Branigan et
al., 2000). Alignment credits this to priming, an automatic,
covert mechanism by which recent experiences influence the
likelihood of future contributions. Alignment at lower lin-
guistic levels presumably propagates to the semantic level and
the situation model of the interlocutors, which forms the ba-
sis of a shared understanding of each other and of the world.
Thus alignment provides an appealing, conceptually straight-
forward explanation of grounding phenomena.

Some researchers question the sufficiency of alignment to
explain common ground and grounding of new material. The
prominent alternative models of human grounding processes
emphasize coordination and complementarity such as adja-
cency pairs in the interaction, rather than similarity. Coor-
dination models separate into two categories: strategic de-
sign and interpersonal synergy. In strategic design, speak-
ers appear to design utterances in light of their audience’s
knowledge. The knowledge may concern the audience’s cul-
ture, group membership, spatial perspective, or previous con-
versational interactions (Clark & Marshall, 1981; Schober,
1993). Strategic design is marked by intentionality—goal-
directed conversational behavior that seeks and displays ev-
idence of understanding. These goals invoke an additional
layer of exchange concerning the collaborative management
of the conversation, called Track 2 dialogue (Clark, 1996).
Track 2 dialogue includes: acknowledgements of understand-
ing, displays of non-understanding, and requests for clarifica-
tion. Interpersonal synergy is a recent and relatively less ex-
amined theory. The coordination from interpersonal synergy
either does not require intentionality (Fusaroli, Raczaszek-
Leonardi, & Tylén, 2014), or redefines it (see also Gallagher
& Miyahara, 2012). Interlocutor coordination emerges from
a complex dynamical system achieving stability in a specific
context, and becomes cemented in interaction routines. The
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introduction of new interlocutors into established interaction
routines disrupts communication (Fusaroli et al., 2014).

Quantification of Recurrence

Separate bodies of research have investigated interactive
alignment and coordination models, but to the authors’
knowledge only one study has attempted to examine the two
theories with competing models for the same performance
data (Fusaroli & Tylén, 2016). Recent advancements in
the analysis of dyadic dialogue utilize the non-linear analy-
sis methods of recurrence quantification analysis (RQA) and
cross recurrence quantification analysis (CRQA). RQA and
CRQA originated from the study of dynamic systems and
were developed to examine recurrence in chaotic systems,
i.e., repetition of states in time series data. RQA seeks recur-
rence within one time series (analogous to autocorrelation)
and CRQA seeks recurrence between two time series (analo-
gous to cross-correlation). These methods reveal and quantify
order and organization that is not readily apparent. Originally
built for continuous data, these methods have been adapted
for categorical data and used in the analysis of lexical content
(e.g., Orsucci et al., 2013) and syntax (e.g., Dale & Spivey,
2006).

Grounding Process Models

Fusaroli and Tylén (2016) created models for alignment and
coordination using recurrence analyses, and discriminated
between these models by their relationship to task perfor-
mance. They argued that the coordination recurrence model
specifically represented interpersonal synergy, though strate-
gic design is an unexamined alternative. Their approach is
illustrated in Figure 1. The same time series contents appear
in each panel but different outlined patterns reflect the dif-
ferent recurrence sensitivities. The alignment model detects
patterns transferred from one speaker to the other, such as
‘XYY’ from speaker A to speaker B (though not illustrated,
patterns that go from B to A will also be detected). The coor-
dination model detects speaker-independent patterns, includ-
ing patterns across speakers such as adjacency pairs. For in-
stance, the pattern ‘YXZXY’ occurs between A and B and
later B and A. In the self-consistency baseline model, recur-
rence of patterns within A and within B were tested separately
selecting for analysis whoever had the higher recurrence rate.

The dialogue in Fusaroli and Tylén (2016) resulted from
two participants performing a visual detection task. Each par-
ticipant made an independent judgment of whether the target
signal appeared in the first interval or the second interval of
the stimulus. Dialogue only occurred when their judgment
disagreed—they discussed the stimulus and came to a col-
laborative judgment. Collaborative benefit was computed as
the ratio between joint performance and the highest individ-
ual’s performance, where ratio values greater than 1 indicated
a benefit from the joint decision. Recurrence values for lexi-
cal choice, pauses, and prosody were calculated according to
each theory and then used as predictors in separate regression

models with collaborative benefit as the outcome, thereby re-
lating each grounding model to task performance.

Both the alignment and coordination models were related
to task performance, but coordination was a better predic-
tor of performance for the lexical level and the speech/pause
level. The two models were similar for the prosodic level.

This quantitative approach provides a promising beginning
to the direct comparison between grounding models. How-
ever, the task and dialogue content was very limited. The
task used simple visual psychophysics stimuli and required
a simple choice between two intervals. The vocabulary and
conceptualizations that appeared in the dialogues, though not
reported, were most likely very limited. The importance of
these results for more complex dialogues in a more compli-
cated task setting was not established. In addition, the anal-
ysis failed to differentiate between interpersonal synergy and
strategic design. Although similar in their emphasis on co-
ordination, these models maintain important distinctions re-
garding the characterization of cognitive mechanisms. Inten-
tionality (and goal-directed behavior) is one way to differ-
entiate between the two models but their correspondence to
the coordination recurrence model is not intuitive. Additional
analyses must distinguish between synergy on the one hand
and design and intentionality on the other.

Current Study
The current study examined a team task that stressed the
grounding process and applied the RQA and CRQA models
for coordination and alignment on two lexical levels: the mor-
pheme level used in Fusaroli and Tylén (2016) and the word
level. As discussed below, word-level analysis facilitated
an additional mediation analysis of recurrence model results.
The task and resulting team dialogue resulted in rich, long di-
alogue with numerous and diverse content to stress grounding
processes. Consistent with Fusaroli and Tylén, we hypothe-
sized that the recurrence metrics calculated based on the coor-
dination model would have a stronger relationship to perfor-
mance than the alignment model. In addition, we sought to
investigate what the coordination recurrence model is mea-
suring, and its relationship to the strategic design model of
grounding. We created a lexicon of Track 2 dialogue (de-
scribed below) and tested if the coordination model statisti-
cally mediates the relationship between Track 2 dialogue and
performance. Mediation can identify a process that underlies
an observed relationship (Baron & Kenny, 1986). We used
mediation to see if the variance in performance explained by
Track 2 dialogue is reduced by the coordination model. Such
mediation demonstrates that the recurrence model for coordi-
nation captures aspects of strategic design in addition to, or
possibly instead of, interpersonal synergy.

Methods
Uncertainty Elicitation Task Corpus
We used materials from the Uncertainty Elicitation Task
corpus (Romigh, Rothwell, Greenwell, & Newman, 2016).
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Figure 1: Illustration of the recurrence tests for alignment, coordination, and baseline (adapted from Fusaroli & Tylén, 2016).
Alignment models were sensitive to patterns transferred between speakers. Coordination models were sensitive to patterns
independent of speaker, which included patterns across speakers as illustrated here. Baseline models were sensitive to patterns
within one speaker (i.e., self-consistency). (Figure used with permission from John Wiley and Sons).

Like Fusaroli and Tylén (2016), this was a symmetric di-
alogue task—no one speaker had the answer, so the con-
versational dynamics were flexible and negotiable. Partners
had many unlabeled pictures of various real world scenes
from both an overhead perspective and street-level perspec-
tives, that they had to match with each other. This led to
conceptually complex and diverse dialogues. Partners dis-
cussed: house features (e.g., siding, roof, windows, garage,
porch, columns, 1 or 2-story), lot features (e.g., trees, yard,
fence, driveway, garden, sidewalk, corner lot, playground,
pool), street/neighborhood features (e.g., presence of stop-
sign, power lines, presence of alleyways, nearby parks),
and car features (e.g., number of cars, type of vehicle:
truck/van/sedan, color).

On each trial, two people sat in separate rooms and worked
together to locate street-level pictures of different houses on
an overhead map (Figure 2). Street-level images and satellite
images were obtained from Google Maps with labels (e.g.,
street names) removed. The overhead map was the same for
both participants and had 12 numbered buildings (1-12). The
participants each had street-level pictures of 6 of those build-
ings on the right hand side of their screens. The participants
were given street-level images from different points of view
and they had to determine that they were discussing the same
building. Their task was to relate the street-level views to
the overhead map by labeling the street-level with a number
1-12, and the trial ended when all street-level images had cor-
rect number labels.1 As accuracy was held constant, com-
pletion time was the performance metric (shorter times indi-
cated better performance). Performance in the task was ex-
pected to be related to conversational grounding because par-
ticipants needed to communicate effectively—make definite
references to unlabeled street-level views of houses, share
the information from their unique street-level views, and dis-
cuss the similarity between street-level and overhead imagery.
Five teams of 2 people and each team completed 8 trials for a
total of 40 trials.2

1Other experimental manipulations in the original corpus were
not the focus of our analysis.

2To address the within-subjects nature of the data, we removed
variance due to teams in a secondary analysis (summarized below)

Figure 2: Screen shot from the Uncertainty Elicitation Task.
Building numbers appear on the overhead map and partici-
pants labeled street-level images using the drop-down boxes
centered on each row of images.

Recurrence Analyses
Our analysis examines recurrence at two lexical levels (the
word level and the morpheme level) in search of the model
that best predicts task-specific performance.

Prior to calculating the recurrence plot, RQA and CRQA
require a number of parameters. We used values keeping
with Fusaroli and Tylén (2016) and other categorical analy-
ses of transcript data (Orsucci et al., 2013). The radius value
was set to 0, meaning only an exact match would be counted
as a recurrence, which is appropriate for nominal data. For
example, for the word-level analysis each word was given an
arbitrary unique numerical identifier. The threshold for a line
(i.e., recurrence patterns that are parallel to the positive diag-
onal) was set at 2. Time delay was set to 1. The word-level
analysis used single words as the unit of analysis, which was
specified by an embed value of 1. The morpheme level3 used
a 3-letter unit of analysis (i.e., a letter trigram), which was
specified by an embed value of 3.

and found a similar pattern of results. We did not test for order
effects or learning, but if learning has occurred it would increase the
performance variability in the dataset.

3Fusaroli & Tylén’s lexical choices
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The three models in Figure 1 were tested. The alignment
model was represented by CRQA of a time series of Speaker
A with a time series of Speaker B. To preserve the time se-
quence and phase information of the entire dialogue, added
codes in each time series replaced the other speaker’s contri-
butions. The coordination model was represented by RQA
of the time series for the entire block (Speakers A & B). A
baseline self-consistency model was represented by perform-
ing RQA of each speaker’s time series with his/herself and
using the recurrence plot with the highest recurrence rate.

The three separate recurrence models output separate re-
currence metrics for different regression models, in order to
assess the relationship of each recurrence model to task per-
formance. This analysis process differs from a typical regres-
sion procedure where predictors are added or removed from
a single regression model. Here, three different regression
models with the same four predictors were based on differ-
ent recurrence calculations. Individual recurrence metrics of
recurrence rate, determinism, average line length, and line en-
tropy were calculated for each of the three models (i.e., align-
ment, coordination, baseline), for each trial in the Uncertainty
Elicitation Task corpus. The recurrence metrics quantify how
much recurrence occurs (Recurrence Rate, RR), the propor-
tion of recurrence that appears in longer sequences (Deter-
minism, DET), the average length of recurrence sequences
(Line Length, L), and the variety in recurrence lengths (Line
Entropy, ENT). Recurrence metrics then functioned as predic-
tors for a linear regression model of the performance scores
(i.e., completion times) for each trial. Linear models were
evaluated using AdjR2 values. These models follow the analy-
sis procedures from Fusaroli and Tylén (2016) assuming data
from a between-subjects design. Subsequent tests address
the repeated measures (i.e., within team) nature of our data.
Analyses were performed in R, using the crqa package (Coco
& Dale, 2014).

We also created a lexicon (i.e., word list) for Track 2 di-
alogue using the Linguistic Inquiry and Word Count 2015
(LIWC) text analysis program (Pennebaker, Boyd, Jordan,
& Blackburn, 2015). Our analysis relied on two separate
lexicons that may capture Track 2 issues of dialogue man-
agement: Assent (e.g., agree, OK, yes) and Certainty (e.g.,
indeed, always, never). We reasoned that Assent may cap-
ture an addressee’s acceptance of a speaker’s installment and
Certainty may capture confusion regarding an installment.
We tested how well the LIWC categories accounted for per-
formance by using the LIWC counts (frequencies of words
in the Assent and Certainty lists) for each trial as predictors
of performance. We then tested if the parameters from the
coordination recurrence model statistically mediated the rela-
tionship between the LIWC categories and performance, fol-
lowing the ‘Causal Steps’ procedure (Baron & Kenny, 1986).
This involved three “Steps” where the LIWC categories were
treated as independent variables (IVs) and the recurrence pa-
rameters were treated as mediators (Ms): 1) the IVs and per-
formance, 2) the IVs and the Ms, and 3) the (IVs + Ms) and

performance. Multiple linear regression was used for Steps 1
and 3 while MANOVA was used for Step 2 in order to test for
a relationship between multiple LIWC categories and multi-
ple recurrence-parameter mediators.

Results
First we show that the observed recurrence was not due
to chance. Next we show that the coordination model has
stronger relationships to task performance than the alignment
model for both the word-level and the morpheme-level analy-
ses. Moreover, the coordination model accounts for variance
in performance after controlling for team differences whereas
the alignment model does not. Mediation analysis shows that
the coordination model reflects aspects of Track 2 dialogue.

Chance Analysis

The structure of recurrence represented by these metrics was
not due to chance. We compared the outputs of the recurrence
analyses of the data to outputs using a shuffled time series
(i.e., randomly ordering the words in the time series).

Paired t-tests indicated that recurrence structure is signif-
icantly different from shuffled controls for all models for all
values (all = p < .0001), except for word-level recurrence
rate. For the word-level test, the recurrence rates are exactly
the same because shuffling does not add or remove words.

Word-Level Analyses

The linear regression models for word-level analyses are
shown on the left side of Table 1. The coordination model ac-
counted for more of the variance in completion times (AdjR2

= 0.66) than the alignment model and the baseline model
(AdjR2 = 0.14 & 0.51, respectively). The baseline model ac-
counted for more variance than the alignment model.

Morpheme-Level Analyses

The linear regression models for morpheme-level analyses
are shown on the right side of Table 1. The pattern of re-
sults was the same as the word level. The coordination model
accounted for more of the variance in performance (AdjR2 =
0.76) than the alignment model or the baseline model (AdjR2

= 0.32 & 0.64, respectively). The baseline model accounted
for more variance than the alignment model as well.

Controlling for Team Differences

Space precludes a complete presentation, but controlling for
team differences was necessary for the within-subjects design
and Team ID was a significant predictor of performance (F(4,
35) = 6.04, p < .001, Ad jR2 = 0.34). Using statistical con-
trols that removed the variance between teams, we tested if
each recurrence model could explain the residual variance.
The alignment model did not (F(4, 31) = 0.53, p = .72, ∆R2

= 0.04) whereas the coordination model did (F(4, 31) = 8.21,
p < .001, ∆R2 = 0.30).
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Table 1: Word-level analyses (left) and Morpheme-level analyses (right)—linear regression models for alignment, perspective
taking, and baseline. Predictors were recurrence rate (RR), determinism (DET), average line length (L), and line entropy
(ENTR). (*p < .05, **p < .01, ***p < .001)

Word-Level Morpheme-Level
Theory Contents p-value Contents p-value Contents p-value Contents p-value

Alignment* AdjR2 = 0.14 0.051 AdjR2 = 0.32 < .01
RRA 0.53 LA* < .05 RRA 0.21 LA* < .05
DETA 0.13 ENTRA** < .01 DETA*** < .001 ENTRA* < .05

Coordination*** AdjR2 = 0.66 < .001 AdjR2 = 0.76 < .001
RRS** < .01 LS*** < .001 RRS 0.26 LS*** < .001
DETS 0.48 ENTRS 0.07 DETS*** < .001 ENTRS*** < .001

Baseline*** AdjR2 = 0.51 < .001 AdjR2 = 0.64 < .001
RRB 0.17 LB 0.15 RRB*** < .001 LB*** < .001
DETB** < .01 ENTRB 0.52 DETB* < .05 ENTRB** < .01

Mediation Analysis
Linear regression results for the LIWC categories Assent and
Certainty appear at the top of Table 2. These categories sig-
nificantly predicted task completion times (AdjR2 = 0.43).
The coefficients for Assent and Certainty were both negative.
More instances of these words resulted in faster completion
times (i.e., better performance). Additional mediation tests
used the word-level coordination model’s recurrence param-
eters. The MANOVA in Step 2 showed that the LIWC lists
were related to these recurrence parameters (F(4, 34) = 6.62,
p < 0.001, and F(4, 34) = 9.70, p <0.001, respectively). Step
3 showed that the recurrence parameters mediated the rela-
tionship between task completion times and LIWC categories
(Table 2 bottom portion) by eliminating their significance.

Table 2: Mediation analysis for LIWC—See text for details.
(*p < .05, **p < .01, ***p < .001)

Step 1— LIWC’s relation to performance
Assent*** < .001 Certainty** < .01

Step 2— LIWC’s relation to Coordination
Assent*** < .001 Certainty*** < .001

Step 3—LIWC’s & Coordination’s relation to
performance

Assent 0.30 Certainty 0.89
RRS* < .05 LS** < .01
DETS 0.32 ENTRS 0.32

Discussion
Findings clearly supported the coordination model over the
alignment model for both levels of analysis. At the word
level, coordination accounted for 52% more of the variance in
task completion times than alignment, and 44% more at the
morpheme level. Although the baseline model performed bet-
ter than Fusaroli and Tylén (2016), the pattern of findings for

alignment and coordination was similar. Moreover, the rela-
tionships between coordination and performance found here
were larger than those shown by Fusaroli and Tylén, despite
the longer, more complex dialogues. While the coordination
model accounted for performance above team differences, the
alignment model did not.

Recent research agrees with these findings that commu-
nication processes are more complicated than priming-based
alignment. Rather than repeating content, interlocutors’ con-
tributions provide new content that compliments past con-
tributions (Tenbrink, Andonova, & Coventry, 2008). Many
studies of alignment do not include performance outcomes
(e.g., Branigan et al., 2000) and therefore may not identify
these insufficiencies. Alignment may still occur over longer
time scales, which has been shown to predict task perfor-
mance (Reitter & Moore, 2014). The alignment recurrence
model used here did not distinguish between short-term and
long-term alignment, so it is possible that long-term align-
ment is responsible for the relationship between alignment
and performance.

Beyond support for a general coordination model, the co-
ordination recurrence model appears to contain aspects of
strategic design. Indeed, Track 2 dialogue alone accounted
for more variance in performance than alignment did at both
the word level and morpheme level (AdjR2 = 0.43 vs. 0.14 &
0.34, respectively). Recent research supports the importance
of design—utterances often reflect different perspectives and
interlocutors appear to keep track of multiple perspectives at
the same time (Brennan, Schuhmann, & Batres, 2013).

Conclusion
In this paper, we quantitatively modeled conversational
grounding processes between two interlocutors. We tested
two models for this process, alignment and coordination, in
a complex collaborative grounding task. The results clearly
discount an alignment model as a sufficient model of the con-
versational grounding process. Results also indicated that the
coordination recurrence model is closely related to Track 2

1020



dialogue and therefore strategic design models of the conver-
sational grounding process must be considered. Our future
research will examine whether strategic design accounts for
these findings in addition to or to the exclusion of interper-
sonal synergy.
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Comprehenders Model the Nature of Noise in the Environment
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Abstract: Recent work suggests that language understanding is the result of rational inference over a noisy channel. Upon
perceiving a sentence, listeners decode the speaker’s intended sentence from the prior probability that a speaker would say that
sentence and the probability that it would be corrupted to the perceived sentence by noise. Here we examine the listener’s
noise model. Readers were asked to correct sentences if they thought they contained an error. We manipulated context such
that participants corrected exposure sentences containing either deletion, insertion, swap, mixed, or no errors (e.g., swap: A
bystander was rescued by the fireman in the time of nick.). Test sentences were syntactically licensed but implausible (e.g., The
bat swung the player). On test sentences, participants’ corrections differed by exposure condition. This suggests participants
track the type of errors that have a higher likelihood and make inferences about the intentions of the speaker accordingly.
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Abstract

Human languages contain very little unconditioned variation.
In contexts where language learners are exposed to input that
contains inconsistencies, they tend to regularise it, either by
eliminating competing variants, or conditioning variant use on
the context. In the present study we compare regularisation
behaviour across linguistic levels, looking at how adult learn-
ers respond to variability in morphology and word order. Our
results suggest similar strengths in regularisation between lin-
guistic levels given input languages whose complexity is com-
parable.
Keywords: artificial language learning; statistical learning;
regularisation; variation; complexity; morphology; word order

Introduction
While languages exhibit variation at all linguistic levels, in
the form of paraphrases, synonyms, allomorphs and allo-
phones, that variation tends to be predictable: the choice
of variant is (at least partially) conditioned by some aspect
of the social or linguistic context. Occasionally, language
learners are exposed to input that involves inconsistencies,
for instance, when new variants are introduced into an es-
tablished system, or when conventions are still not estab-
lished, as in emerging languages (Senghas & Coppola, 2001;
Siegel, 2004). Learners under those circumstances tend to
reduce or remove such inconsistencies, i.e. they regularise
their input. This can be achieved either by removing com-
peting variants, or conditioning variant choice on the context
(Ferdinand, Kirby, & Smith, 2017).

Regularisation has been documented extensively across
linguistic levels (i.e. phonology, morphology, syntax and
the lexicon) in natural language; e.g. in language acquisi-
tion, language change, and in emerging languages (Senghas
& Coppola, 2001; Siegel, 2004; van Trijp, 2013). Experimen-
tal studies involving artificial language learning and statisti-
cal learning techniques report regularisation behaviour during
the learning and production of probabilistic unconditioned
variation in different linguistic units, across different linguis-
tic levels (Culbertson, Smolensky, & Legendre, 2012; Fehér,
Wonnacott, & Smith, 2016; Hudson Kam & Newport, 2005,
2009; Wonnacott & Newport, 2005). Nevertheless, it still
remains an open question whether regularisation behaviour
applies with uniform strength across linguistic levels and to
what extent level-specific biases interact with regularisation
during language learning and use.

Level-specific effects in regularisation behaviour
Research in second language acquisition and pidgin and cre-
ole studies has highlighted different developmental paths
for morphology and syntax cross-linguistically (Good, 2015;
Slabakova, 2013). Studies in pidginisation suggest that, in

periods when pidgins are highly inconsistent, linguistic lev-
els might behave differently: morphologically complex traits
such as inflectional morphology seem to be highly simpli-
fied whilst syntactic traits such as word order tend to repro-
duce the input complexity more closely (Good, 2015; Siegel,
2004). Good (2015) argues that this asymmetry is given by a
break in transmission from source languages for morphologi-
cal traits, which are only successfully transmitted if an entire
contrasting paradigm is available to the learner, which is not
the case in periods of linguistic instability. However, word or-
der variation can be contrastive as well (e.g. S-Aux inversion
to distinguish illocutionary forces). Alternatively, a more par-
simonious hypothesis we could entertain is that a general ten-
dency for pidgins to comprise highly simplified morpholog-
ical traits and more conservative word order is rooted in the
differing complexity of these traits in the source languages;
Hudson Kam and Newport (2009) show that learners are more
likely to regularise complex systems of variation.

Recent experimental studies have separately explored the
effect of learning biases on typological asymmetries found in
morphology and word order respectively. In morphology for
example, St Clair, Monaghan, and Ramscar (2009) provide
evidence of a preference for suffixing over prefixing, mir-
roring the cross-linguistic preference for suffixing. In word
order, Culbertson et al. (2012) show that learners prefer con-
sistent harmonic word order patterns (i.e. all modifiers either
pre-nominal or post-nominal), also found more commonly in
the world’s languages. Moreover, Culbertson et al. (2012)
show that this bias leads to different regularisation behaviour
for different word order patterns. Nevertheless, no study has
hitherto tried to systematically compare regularisation be-
haviour across linguistic levels. Uncovering differences in
regularisation behaviour across linguistic levels could shed
light on the intriguing asymmetry found in pidgin languages:
morphological paradigms seem to be highly simplified whilst
input complexity is more closely reproduced in word order.

In the present study we combine artificial language learn-
ing and statistical learning techniques to systematically com-
pare the strength of regularisation of inflectional morphology
and word order, controlling for asymmetries in the complex-
ity and variability of the input languages.

Experiment 1
We utilise the methodology developed in Culbertson et al.
(2012); Hudson Kam and Newport (2005). Adult learners
are exposed to a miniature artificial language featuring an
inconsistent mixture of synonymous variants. We are inter-
ested in how learners restructure the probabilistic uncondi-
tioned variation in the input languages, and to what extent that
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restructuring is comparable across linguistic levels (specifi-
cally, morphology and word order).

Method

Participants Fifty-six native-English speakers (aged be-
tween 18 and 41, mean = 23.2) were recruited from the Uni-
versity of Edinburgh’s Careers Service database of vacancies.
Each was compensated £6. Twenty-six participants were as-
signed to the Morphology condition, and 26 to the Word Or-
der condition; the data from a further 4 participants (all in the
morphology condition) were excluded as they either failed to
learn the noun lexicon or failed to learn the associations be-
tween phrases and pictures.

Input languages We designed two novel languages which
contained probabilistic unconditioned variation either in mor-
phology or word order. Their respective probabilistic gram-
mars are shown in Table 1. Both languages were used to
describe simple pictures featuring one of two objects. Each
object appeared either singly or in a pair; and could appear
either in greyscale or coloured in blue. Descriptions were
noun phrases composed of a Noun plus a Num(eral) and/or
Adj(ective) modifier, which were presented orthographically
and aurally to participants during the experiment.

All lexical items were 5 graphemes/phonemes long and had
a neighbourhood density of 0 in the English lexicon. Nouns
and modifiers differed in their syllabic structure; while all
were bisyllabic, nouns (i.e. “mokte” and “jelpa”) conformed
to a CVC.CV pattern, and modifiers to CV.CCV (based on
English phonotactics and the Maximal Onset Principle).

Procedure Participants worked through a six-stage training
and testing regime.

Stage 1, noun familiarisation Participants were trained on
the two bare nouns that corresponded to pictures of the two
different objects in the artificial language. During this phase,
participants underwent a block of training consisting of 6 ex-
posure trials and 4 picture-selection comprehension trials (in
that order) —each noun-picture pair appeared 5 times (order
randomised). Common to all training blocks to follow, on
each exposure trial participants were presented with a picture
(in this block always of a single object in grey-scale) and a
corresponding description in the language (in this block, a
bare noun), displayed both visually and aurally. On compre-
hension trials, participants were asked to select a picture out
of an array of four (in this stage, the two objects seen during
training plus two distractors) that corresponded to the dis-
played description in the alien language, and received feed-
back on their accuracy.

Stage 2, one-modifier training In Stage 2 participants
were trained on one-modifier NPs, i.e. a Noun plus either
Num or Adj only. Pictures contained any of the two objects
presented either in blue and singly (Adj only) or in greyscale
and in pairs (Num only). For each picture, a variant was
selected randomly from the grammar assigned to the partic-
ipant. Both grammars contained majority variants with an

Table 1: Probabilistic input languages in the Morphology and
Word order conditions. Languages contain probabilistic un-
conditioned variation in inflectional morphology or word or-
der respectively. All morphological variation resides in the
suffixation of the modifiers. All word order variants conform
to constituent structure [Num [Adj N]]. There are three types
of NPs: Num Only (single Num modifier) refer to objects in
pairs and in grey-scale, Adj Only (single Adj modifier) refer
to a single object coloured in blue, and two-Mod(ifier) NPs
(with both Num and Adj modifiers) correspond to objects in
pairs coloured in blue. Languages include two different nouns
(each corresponding to a different object) and thus comprise
a total of 16 NPs (8 per noun) that correspond to a total of 6
pictures (1 per NP type, 3 per object).

NP TYPE MORPHOLOGY CONDITION WORD ORDER CONDITION

NUM
ONLY

ADJ
ONLY

TWO
MOD

0.6 NP→ N nefri

0.4 NP→ N nezno

0.6 NP→ N kogla

0.4 NP→ N kospu

0.6 NP→ N kogla nefri

0.13̄ NP→ N kogla nezno

0.13̄ NP→ N kospu nefri

0.13̄ NP→ N kospu nezno

0.6 NP→ N nefri

0.4 NP→ nefri N

0.6 NP→ N kogla

0.4 NP→ kogla N

0.6 NP→ N kogla nefri

0.13̄ NP→ nefri kogla N

0.13̄ NP→ nefri N kogla

0.13̄ NP→ kogla N nefri

empirical probability of P = 0.6, and minority variants with
P = 0.4, as shown in Table 1. This phase comprised 40 trials
in total, divided in 2 blocks of 20 trials; each block consisted
of 15 exposure trials followed by 5 picture-selection trials.
Participants saw each of the four different one-modifier pic-
tures 5 times per block (order randomised).

Stage 3, one-modifier testing Stage 3 of the experiment
tested the participants’ knowledge of the language. They saw
the same pictures used in Stage 2 without accompanying text
or audio and were asked to type in an appropiate description.
They had to describe 20 pictures in total; each of the four dif-
ferent one-modifier pictures was presented 5 times in random
order.

Stage 4, full training In Stage 4 participants were trained
on a mix of one-modifier (a noun plus Adj or Num) and two-
modifier NPs (a noun plus both Num and Adj). Two-modifier
NPs were used to describe pairs of blue objects. For one-
modifier phrases, variants were chosen in the same way as
in Stage 2. For two-modifier phrases, variants were also se-
lected randomly from the grammars assigned, with empirical
probabilities of P = 0.6 and P = 0.13̄ for the majority and
the three minority variants respectively (see Table 1). This
stage comprised 100 trials (20 Num Only, 20 Adj Only and
60 two-Mod), divided into 4 block of 25 (15 exposure train-
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ing trials followed by 10 picture-selection trials). Participants
saw each of the four one-modifier pictures 10 times, and each
of the two two-modifier pictures 30 times.

Stage 5, full testing Stage 5 tested participants’ knowledge
of the whole language. They saw all pictures they had been
trained on and were asked to type in appropriate descriptions.
They had to describe 52 pictures in total: 10 Adj Only (5
per object), 10 Num Only (5 per object), 30 two-modifier (15
per object), and additionally, 2 pictures of bare objects by
themselves and in grey-scale (1 per object).

Results
Output variability Figure 1 shows the entropy of partici-
pants’ production systems for both the Morphology and Word
Order conditions. Analyses are run on Stage 5’s testing ex-
clusively, i.e. participants’ final production sets. Words in the
productions were corrected for typos (and only typos). Shan-
non entropy measures how variable participants’ productions
are; the higher the scores, the more variable and the lower the
scores, the more regular. The Shannon entropy (H) of phrase
use for participant is given by

H(X) =−
n

∑
i=1

P(xi)log2P(xi) (1)

where the sum is over the different variants, and P(xi) is the
empirical probability of variant xi in the set of a participant’s
productions, X . We treated the two nouns for the different
objects as the same variant when we calculated the entropy
of the phrase variants such that no variability is introduced
by the correct use of the different nouns. Entropy lower- and
upper- bounds will vary depending on the number of required
and possible variants as well as on the number of production
trials. The most regular expressive language contains only
one-to-one picture-phrase mappings and therefore only three
different variants, one Num Only (e.g. N nefri), one Adj Only
(e.g. N kogla) and one two-modifier (e.g. N kogla nefri). The
final production phase consisted of 50 trials (excluding the
two bare noun trials), divided up into 20 one-modifier trials
(half Num Only and half Adj Only) and 30 two-modifier tri-
als: the entropy lower bound for the language overall is thus
1.37 bits, and 0 bits for each of the NP types.

Figure 1 shows the entropy scores for the set of all partici-
pants’ productions (i.e. the overall language), as well as those
for the production sets for specific NP types in isolation: one-
modifier Num (Num Only), one-modifier Adj (Adj Only),
and two-modifier (two-Mod) NPs. Entropy lower bounds and
input entropies are represented as solid and dotted vertical
lines respectively. A visual inspection of the Morphology
and Word Order conditions in Figure 1 suggests that in many
cases participants failed to reproduce the full variability of the
input languages; entropy scores are generally lower.

We used the stats and lme4 packages developed in R
(Bates, Mächler, Bolker, & Walker, 2015; R Core Team,
2015) to run a linear mixed effects regression model (which
we will call Model 1) to explore the effect of condition on

Table 2: Central tendencies of the proportion of majority in-
put variants in production by condition and NP type. From
left to right, the mean, median and mode(s).

Proportion Majority Input Variant in Production
mean median mode(s)

Num Only 0.704 0.8 0.919
Morphology Adj Only 0.669 0.7 0.916

two-Mod 0.609 0.65 0.843
Num Only 0.580 0.65 0.094 & 0.96

Word Order Adj Only 0.585 0.7 0.104 & 0.947
two-Mod 0.442 0.33 0.089 & 0.92

regularisation behaviour (dependent variable: entropy). As
fixed effects we entered Condition (two levels: Morphology
as reference, and Word Order), NP Type (reverse Helmert
coded with the 3 ordered levels: Num Only, Adj Only and
two-Mod) and System (two levels: Input as reference, and
Output). We also entered all interactions between fixed ef-
fects. As random effects, we included intercepts for Subject
as well as by-Subject slopes for the effects of NP Type and
System type. P-values were obtained through the lmerTest
package (Kuznetsova, Bruun Brockhoff, & Haubo Bojesen
Christensen, 2015). Results show a significant effect of Sys-
tem (β = −0.346, SE = 0.085, p < .001), suggesting that
participants did indeed regularise their input in their output
productions. We also found a significant interaction between
System and Condition (β = −0.284, SE = 0.119, p = .021),
suggesting that participants regularised their input signifi-
cantly more in the Word Order condition. Results show the
expected effect of higher input entropies in two-Mod NPs
(β = 0.21, SE = 0.024, p =< .001), and no significant in-
teractions between NP Type and System (largest: β = 0.027,
SE = 0.028, p= .324) or between NP Type, System and Con-
dition (largest: β = −0.041, SE = 0.039, p = .299). These
results suggest that participants regularised their input sys-
tems across conditions and NP types, and that participants in
the Word Order condition regularised them more than those
in the Morphology condition.
Variant production Table 2 provides the central tenden-
cies for proportion use of the majority input variant for each
NP type. We observe that all distributions in the Word Or-
der condition are bimodal, with modes of the distributions of
majority variant use at P≤ 0.1 and P > 0.9 across NP types,
suggesting two opposite trends amongst participants: one to-
wards the over-production of the majority input word order
variants and another, towards their under-production.

Participants under-producing the majority word order vari-
ant in one-modifier NPs are necessarily producing modifiers
pre-nominally. Figure 2 shows the overall proportions of the
variants produced for two-Mod NPs by all participants. The
input proportions are represented by the yellow vertical lines.
The word order produced the most is the majority input vari-
ant N Adj Num. Although the three remaining input vari-
ants (below the grey solid line division) were equally frequent
in the input language, the Num Adj N word order is overall
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Figure 1: Entropy scores of participants’ production systems. From top to bottom, scores for the Morphology (green) and Word
Order (red) conditions in Experiment 1 and for the NoL1 Word Order condition (orange) in Experiment 2. From left to right,
entropies of participants’ full production sets as well as entropies by NP type: one-modifier Num (Num Only), one-modifier
Adj (Adj Only), and two-modifier (two-Mod) NPs. Input entropy scores are indicated by dashed vertical lines. Minimum
entropy scores are indicated by solid vertical lines. Minimum entropy is always 0 for each NP type in isolation but 1.37 for the
overall system as it necessitates a minimum of 3 variants, one per NP type.
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Figure 2: Box plot displaying the output proportions of two-
modifier variants in the Word Order condition with individual
participants’ data points overlaid. Seen (bottom) and unseen
(top) variants during training are divided by a solid grey line.
Vertical yellow lines indicate input proportions.

more frequently used (although only by a minority as indi-
cated by the median value 0). Only 30% of participants pro-
duced systems with both harmonic variants (Num Adj N and
N Adj Num) —and only 19% produced both variants more
than once, suggesting that although both harmonic orders are
preferred overall, they do not generally coexist within the pro-
ductions of a single participant.

We ran a logistic regression model, which we will call
Model 2, to explore the average difference between the pro-
portions of Num Adj N variants in input and output linguistic
systems. We entered System (two levels: Input as reference,
and Output) as the only fixed effect. Random intercepts for
Subject as well as by-Subject random slopes for the effect of
System were also included. Results show that the Num Adj N
variant is produced significantly less in output languages than
in the input language (β = −7.641, SE = 1.943, p < .001).
Only a minority of participants overproduced this variant, the
majority of participants were in fact under-producing it. On
top of the observed preference for harmonic order, these re-
sults confirm a tendency to avoid systems with two opposite
N-peripheral variants, i.e. N Adj Num and Num Adj N.

Discussion of Experiment 1
Our results provide evidence that learners regularise proba-
bilistic unconditioned variation in both morphology and word
order. Regularisation behaviour is in line with an overarching
simplicity bias argued to be at play in language learning and
use (Culbertson & Kirby, 2016). Though the input languages
were similar in terms of overall system complexity, regulari-
sation behaviour was slightly stronger in the Word Order con-
dition than in the Morphology condition. A close analysis of
the variant usage in the Word Order condition suggests that
this difference is driven by a bias in favour of harmonic N
Adj Num and Num Adj N variants but against their coexis-
tence within a system. This bias could be the result of L1
transfer; participants may have overproduced the Num Adj
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Table 3: Probabilistic input language in the NoL1 Word order
condition in contrast to the Word Order condition in Experi-
ment 1. Changes in the variant set are indicated with boxes.

NP TYPE WORD ORDER NOL1 WORD ORDER

NUM
ONLY

ADJ
ONLY

TWO
MOD

0.6 NP→ N nefri

0.4 NP→ nefri N

0.6 NP→ N kogla

0.4 NP→ kogla N

0.6 NP→ N kogla nefri

0.13̄ NP→ nefri kogla N

0.13̄ NP→ nefri N kogla

0.13̄ NP→ kogla N nefri

0.6 NP→ N nefri

0.4 NP→ nefri N

0.6 NP→ N kogla

0.4 NP→ kogla N

0.6 NP→ N kogla nefri

0.13̄ NP→ N nefri kogla

0.13̄ NP→ nefri N kogla

0.13̄ NP→ kogla N nefri

N word order because it is the most common order in their
L1 grammar. To minimise the possible effects of this level-
specific word order bias, Experiment 2 investigated learning
in a second word order condition, removing the English-like
two-modifier harmonic pattern from the input.

Experiment 2
Experiment 2 follows the same design as the Word Order con-
dition described in Experiment 1, with one difference: the set
of two-modifier NP input variants. As illustrated in Table 3,
we replaced the Num Adj N variant with the N Num Adj pat-
tern, maintaining the number of harmonic word orders (two,
i.e. N Adj Num and N Num Adj) but eliminating the L1 vari-
ant and the presence of opposite N-peripheral patterns. For
ease of reference, we call Experiment 2 the NoL1 Word Or-
der condition. We expect the change in the input language to
mitigate the effect of L1 transfer and to increase the coexis-
tence of both harmonic patterns.

Participants Twenty-eight native-English speakers (aged
between 18 and 35, mean = 24.8) were recruited via the
University of Edinburgh’s Careers Service advertisement
database. Participants received £6. Only the data from 26 par-
ticipants were fit for analysis as two participants either failed
to learn the noun lexicon or failed to learn the associations
between phrases and pictures.

Results
Entropy scores obtained in the NoL1 Word Order condition
are shown in Figure 1 (coloured in orange). We ran a linear
mixed effects model as in Experiment 1 to explore the effect
of condition on regularisation behaviour (dependent variable:
entropy), including the conditions in Experiment 1 plus NoL1
Word Order. The mixed-effects structure was the same as
in the Model 1 but with reverse Helmert coding of Condi-

I

I

I

I

I

I

N Adj Num

N Num Adj

Num N Adj

Adj N Num

Num Adj N

Adj Num N

0.00 0.25 0.50 0.75 1.00
overall output proportions (NoL1 Word Order)

Figure 3: Box plot displaying the output proportions of two-
modifier variants in the NoL1 Word Order condition with
individual participants’ data points overlaid. Divided by a
solid grey line, seen (bottom) and unseen (top) variants dur-
ing training. Vertical light brown lines indicate input propor-
tions.

tion such that NoL1 Word Order was directly compared to
the Morphology condition from Experiment 1, and the Word
Order condition was compared to the average of the Morphol-
ogy and NoL1 Word Order conditions. Results show a signif-
icant effect of System (β = −0.483, SE = 0.051, p < .001)
and a significant interaction between Word Order and System
(β = −0.073, SE = 0.036, p = .046), ratifying the results in
Model 1. However, we did not find a significant interaction
between NoL1 Word Order and System (β = −0.063, SE =
0.063, p= .317), suggesting that participants in the Morphol-
ogy and the NoL1 Word Order conditions regularised their
input to similar degrees, and on average they regularised it
less than participants in the Word Order condition in Exper-
iment 1. As in Model 1, we did not find significant inter-
actions between NP Type and System (largest: β = 0.016,
SE = 0.015, p= .288) or between NP Type, System and Con-
dition (largest: β=−0.015, SE = 0.011, p= .168). These re-
sults suggest that participants regularised their input systems
across conditions and NP types, and that whilst participants
in the Word Order condition regularised more than those in
the Morphology condition, participants in the Morphology
and the NoL1 Word Order conditions regularised their input
to similar degrees. Excluding the Num Adj N variant in the
input language thus eliminated the difference between levels.
In other words, participants do not regularise probabilistic un-
conditioned variation in word order more than in morphology.

Figure 3 shows the overall proportions of the variants pro-
duced for two-Mod NPs in the NoL1 Word Order condition.
We observe that the most produced word order is the major-
ity input variant N Adj Num, and that the harmonic N Num
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Adj word order is overall more frequent than any other mi-
nority input variant. Unlike in the Word Order condition
where systems with both Num Adj N and N Adj Num pat-
terns were not common, 65% of participants produced sys-
tems with both N Adj Num and N Num Adj harmonic vari-
ants in the NoL1 Word Order condition. We ran a logistic
regression model to test the difference between the propor-
tions of N Num Adj variants in input and output linguistic
systems across participants. We used the same mixed-effects
structure as in Model 2. Results suggest that the proportion
of N Num Adj variants in the output languages is not signifi-
cantly different from the input proportion across participants
(β =−0.594, SE = 0.546, p = .277).

Discussion
Our experimental results reveal regularisation behaviour in
the production of complex systems of variation in morphol-
ogy and word order. They also suggest that regularisation
behaviour is of similar strength between these linguistic lev-
els given input languages with comparable initial complex-
ities. In Experiment 1 we found higher levels of regulari-
sation in word order than in morphology, apparently due to
the specific properties of the set of variants in the input lan-
guages. When both harmonic pre-nominal and post-nominal
two-modifier variants were included, the coexistence of both
variants in a single production system was rare. Although a
preference for harmonic order and consistent head position
may have been at play, the interference of L1 transfer can-
not be categorically rejected. Indeed previous research sug-
gests that L2 learners tend to access their L1 knowledge if it
matches the novel input (Weber, Christiansen, Petersson, In-
defrey, & Hagoort, 2016). In Experiment 2, we showed that
eliminating opposite N-peripheral positions in the subset of
two-modifier variants by replacing Num Adj N with N Num
Adj eliminates the difference in regularisation between lev-
els. Our results do not suggest general level-specific learn-
ing biases that could straightforwardly predict a typological
asymmetry between the strength and speed of regularisation
in morphology and word order hinted at in pidgin and creole
studies (Good, 2015). Instead, they suggest that asymme-
tries in regularisation processes in language formation ought
to be sought in asymmetries in the input complexity of traits
across levels, also taking into account the overlap of features
between contributing languages.

Conclusion
Our results suggest similar strengths of regularisation be-
tween linguistic levels given input languages with compara-
ble initial complexities. Nevertheless, preferences for cer-
tain patterns within a linguistic level might in fact vary the
strength of regularisation behaviour within a given level.
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Abstract

Humans are not only adept in recognizing what class an in-
put instance belongs to (i.e., classification task), but perhaps
more remarkably, they can imagine (i.e., generate) plausible
instances of a desired class with ease, when prompted. Inspired
by this, we propose a framework which allows transforming
Cascade-Correlation Neural Networks (CCNNs) into proba-
bilistic generative models, thereby enabling CCNNs to gen-
erate samples from a category of interest. CCNNs are a well-
known class of deterministic, discriminative NNs, which au-
tonomously construct their topology, and have been successful
in accounting for a variety of psychological phenomena. Our
proposed framework is based on a Markov Chain Monte Carlo
(MCMC) method, called the Metropolis-adjusted Langevin al-
gorithm, which capitalizes on the gradient information of the
target distribution to direct its explorations towards regions
of high probability, thereby achieving good mixing proper-
ties. Through extensive simulations, we demonstrate the effi-
cacy of our proposed framework. Importantly, our framework
bridges computational, algorithmic, and implementational lev-
els of analysis.

Keywords: Deterministic Discriminative Neural Networks;
Probabilistic Generative Models; Markov Chain Monte Carlo

1 Introduction
A green-striped elephant! Probably no one has seen such a
thing—no surprise. But what is a surprise is our ability to
easily imagine one. Humans are not only adept in recogniz-
ing what class an input instance belongs to (i.e., classification
task), but more remarkably, they can imagine (i.e., generate)
plausible instances of a desired class, when prompted. In fact,
humans can generate instances of a desired class, say, ele-
phant, that they have never encountered before, like, a green-
striped elephant.1 In this sense, humans’ generative capacity
goes beyond merely retrieving from memory. In computa-
tional terms, the notion of generating examples from a de-
sired class can be formalized in terms of sampling from some
underlying probability distribution, and has been extensively
studied in machine learning under the rubric of probabilistic
generative models.

Cascade-Correlation Neural Networks (CCNNs) (Fahlman
& Lebiere, 1989) are a well-known class of discriminative
(as opposed to generative) models that have been success-
ful in simulating a variety of phenomena in the developmen-
tal literature, e.g., infant learning of word-stress patterns in
artificial languages (Shultz & Bale, 2006), syllable bound-
aries (Shultz & Bale, 2006), visual concepts (Shultz, 2006),

1In counterfactual terms: Had a human seen a green-striped ele-
phant, s/he would have yet recognized it as an elephant. Geoffrey
Hinton once told a similar story about a pink elephant!

and have also been successful in capturing important devel-
opmental regularities in a variety of tasks, e.g., the balance-
scale task (Shultz, Mareschal, & Schmidt, 1994; Shultz &
Takane, 2007), transitivity (Shultz & Vogel, 2004), conserva-
tion (Shultz, 1998), and seriation (Mareschal & Shultz, 1999).
Also, CCNNs exhibit several similarities with known brain
functions: distributed representation, self-organization of net-
work topology, layered hierarchical topologies, both cas-
caded and direct pathways, an S-shaped activation function,
activation modulation via integration of neural inputs, long-
term potentiation, growth at the newer end of the network via
synaptogenesis or neurogenesis, pruning, and weight freezing
(Westermann, Sirois, Shultz, & Mareschal, 2006). Nonethe-
less, in virtue of being deterministic and discriminative, CC-
NNs have so far lacked the capacity to probabilistically gen-
erate examples from a category of interest.

In this work, we propose a framework which allows
transforming CCNNs into probabilistic generative models,
thereby enabling CCNNs to generate samples from a cat-
egory. Our proposed framework is based on a Markov
Chain Monte Carlo (MCMC) method, called the Metropolis-
Adjusted Langevin (MAL) algorithm, which employs the gra-
dient of the target distribution to guide its explorations to-
wards regions of high probability, thereby significantly reduc-
ing the undesirable random walk often observed at the begin-
ning of an MCMC run (a.k.a. the burn-in period). MCMC
methods are a family of algorithms for sampling from a de-
sired probability distribution, and have been successful in
simulating important aspects of a wide range of cognitive
phenomena, e.g., temporal dynamics of multistable percep-
tion (Gershman, Vul, & Tenenbaum, 2012; Moreno-Bote,
Knill, & Pouget, 2011), developmental changes in cognition
(Bonawitz, Denison, Griffiths, & Gopnik, 2014), category
learning (Sanborn, Griffiths, & Navarro, 2010), causal rea-
soning in children (Bonawitz, Denison, Gopnik, & Griffiths,
2014), and accounting for many cognitive biases (Dasgupta,
Schulz, & Gershman, 2016).

Furthermore, work in theoretical neuroscience has shed
light on possible mechanisms according to which MCMC
methods could be realized in generic cortical circuits
(Buesing, Bill, Nessler, & Maass, 2011; Moreno-Bote et al.,
2011; Pecevski, Buesing, & Maass, 2011; Gershman & Beck,
2016). In particular, Moreno-Bote et al. (2011) showed how
an attractor neural network implementing MAL can account
for multistable perception of drifting gratings, and Savin and
Deneve (2014) showed how a network of leaky integrate-and-
fire neurons can implement MAL in a biologically-realistic
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manner.

2 Cascade-Correlation Neural Networks
CCNNs are a special class of deterministic artificial neural
networks, which construct their topology in an autonomous
fashion—an appealing property simulating developmental
phenomena (Westermann et al., 2006) and other cases where
networks need to be constructed. CCNN training starts with
a two-layer network (i.e., the input and the output layer) with
no hidden units, and proceeds by recruiting hidden units one
at a time, as needed. Each new hidden unit is trained to max-
imally correlate with residual error in the network built so
far, and is recruited into a hidden layer of its own, giving rise
to a deep network with as many hidden layers as the num-
ber of recruited hidden units. CCNNs use sum-of-squared
error as an objective function, and typically use symmetric
sigmoidal activation functions with range −0.5 to +0.5 for
hidden and output units.2 Some variants have been proposed:
Sibling-Descendant Cascade-Correlation (SDCC) (Baluja &
Fahlman, 1994) and Knowledge-Based Cascade-Correlation
(KBCC) (Shultz & Rivest, 2001). Although in this work we
focus on standard CCNNs, our proposed framework can han-
dle SDCC and KBCC as well.

3 The Metropolis-Adjusted Langevin
Algorithm

MAL (Roberts & Tweedie, 1996) is a special type of MCMC
method, which employs the gradient of the target distribution
to guide its explorations towards regions of high probability,
thereby reducing the burn-in period. More specifically, MAL
combines the two concepts of Langevin dynamics (a random
walk guided by the gradient of the target distribution), and the
Metropolis-Hastings algorithm (an accept/reject mechanism
for generating a sequence of samples the distribution of which
asymptotically converges to the target distribution).

We denote random variables with small bold-faced letters,
random vectors by capital bold-faced letters, and their corre-
sponding realizations by non-bold-faced letter. The MAL al-
gorithm is outlined in Algorithm 1 wherein π(X) denotes the
target probability distribution, τ is a positive real-valued pa-
rameter specifying the time-step used in the Euler-Maruyama
approximation of the underlying Langevin dynamics, N de-
notes the number of samples generated by the MAL algo-
rithm, q denotes the proposal distribution (a.k.a. transition
kernel), N (µ,Σ) denotes the multivariate normal distribu-
tion with mean vector µ and covariance matrix Σ, and I de-
notes the identity matrix. The sequence of samples generated
by the MAL algorithm, X(0),X(1), . . ., is guaranteed to con-
verge in distribution to π(X) (Robert & Casella, 2013). It is
worth noting that work in theoretical neuroscience has shown
that MAL, outlined in Algorithm 1, can be implemented in a

2Fahlman and Lebiere (1989) also suggest linear, Gaussian, and
asymmetric sigmoidal (with range 0 to +1) activation functions
as alternatives. Our proposed framework can be straightforwardly
adapted to handle all such activation functions.

Algorithm 1 The Metropolis-Adjusted Langevin Algorithm

Input: Target distribution π(X), parameter τ ∈R+, num-
ber of samples N.
Output: Samples X(0), . . . ,X(N−1).

1: Pick X(0) arbitrarily.
2: for i = 0, . . . ,N−1 do
3: Sample u∼ Uniform[0,1]
4: Sample X∗ ∼ q(X∗|X(i)) = N (X(i)+ τ∇ logπ(X(i)),2τI)

5: if u < min{1, π(X∗)q(X(i)|X∗)
π(X(i))q(X∗|X(i))

} then

6: X(i+1)← X∗
7: else
8: X(i+1)← X(i)

9: end if
10: end for
11: return X(0), . . . ,X(N−1)

neurally-plausible manner (Savin & Deneve, 2014; Moreno-
Bote et al., 2011).3 In the following section, we propose a
target distribution π(X), allowing CCNNs to generate sam-
ples from a category of interest.

4 The Proposed Framework
In what follows, we propose a framework which transforms
CCNNs into probabilistic generative models, thereby en-
abling them to generate samples from a category of inter-
est. The proposed framework is based on the MAL algorithm
given in Sec. 3. Let f (X ;W ∗) denote the input-output map-
ping learned by a CCNN, and W ∗ denote the set of weights for
a CCNN after training.4 Upon termination of training, pre-
sented with input X , a CCNN outputs f (X ;W ∗). Note that,
in case a CCNN possesses multiple output units, f (X ;W ∗)
will be a vector rather than a scalar. To convert a CCNN into
a probabilistic generative model, we use the MAL algorithm
with its target distribution π(X) being set as follows:

π̃(X) , p(X|Y = L j)

=
1
Z

exp(−β||L j− f (X;W ∗)||22), (1)

where || · ||2 denotes the l2-norm, β∈R+ is a damping factor,
Z is the normalizing constant, and L j is a vector whose ele-
ment corresponding to the desired class is +0.5 (i.e., its jth

element) and the rest of its elements are −0.5s. The intuition
behind Eq. (1) can be articulated as follows: For an input in-
stance X = X belonging to the desired class j,5 the output of

3More precisely, it has been shown how the continuous-time
version of MAL, Langevin dynamics, can be implemented in a
neurally-plausible manner. But note that MAL amounts to sampling
from the underlying Langevin dynamics.

4Formally, f (·;W ∗) : ∏
n
i=1 Di → ∏

m
j=1 R j where Di and R j de-

note the set of values that input unit i and output unit j can take on,
respectively.

5In counterfactual terms, this is equivalent to saying: Had input
instance X been presented to the network, it would have classified X
in class j.
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the network f (X ;W ∗) is expected to be close to L j in l2-norm
sense. In this light, Eq. (1) is adjusting the likelihood of input
instance X to be inversely proportional to the base-e exponent
of the said l2 distance.

For a reader familiar with probabilistic graphical models,
the expression in Eq. (1) looks similar to the expression for
the joint probability distribution of Markov random fields and
probabilistic energy-based models, e.g., Restricted Boltzman
Machines and Deep Boltzman Machines. However, there is
a crucial distinction: The normalizing constant Z, the com-
putation of which is intractable in general, renders learning
in those models computationally intractable.6 The appropri-
ate way to interpret Eq. (1) is to see it as a Gibbs distribution
for a non-probabilistic energy-based model whose energy is
defined as the square of the prediction error (LeCun, Chopra,
Hadsell, Ranzato, & Huang, 2006). Section 1.3 of (LeCun et
al., 2006) discusses the topic of Gibbs distribution for non-
probabilistic energy-based models in the context of discrim-
initive learning, computationally modeled by p(Y|X) (i.e., to
predict a class given an input), and raises the same issue that
we highlighted above regarding the intractability of comput-
ing the normalizing constant Z in general. In sharp contrast
to (LeCun et al., 2006), our framework is proposed for the
purpose of generating examples from a desired class, as ev-
idenced by Eq. (1) being defined in terms of p(X|Y). Also
crucially, the intractability of computing Z raises no issue for
our proposed framework due to an intriguing property of the
MAL algorithm according to which the normalizing constant
Z need not be computed at all.7

Due to Line 4 of Algorithm 1, MAL’s proposal distribu-
tion q requires the computation of ∇ log π̃(X(i)), which essen-
tially involves computing ∇ f (X(i);W ∗) (note that the gradi-
ent is operating on X(i), and W ∗ is treated as a set of fixed
parameters). The multi-layer structure of CCNN ensures that
∇ f (X(i);W ∗) can be efficiently computed using Backprop-
agation. Alternatively, in settings where CCNNs recruit a
small number of input units (hence, the cardinality of X(i) is
small), ∇ f (X(i);W ∗) can be obtained by introducing negligi-
ble perturbation to a component of input signal X(i), dividing
the resulting change in the network’s outputs by the intro-
duced perturbation, and repeating this process for all compo-
nents of input signal X(i). It is worth noting that although the
idea of computing gradients through introducing small pertur-
bations would lead to a computationally inefficient approach
for learning CCNNs, it leads to a computationally efficient
approach for generation, as the number of input units are typ-
ically much fewer than the number of weights in CCNNs (and
artificial neural networks in general). It is crucial to note that
the normalizing constant Z plays no role in the computation
of ∇ log π̃(X(i)).

6More specifically, Z renders the computation of the gradient of
the log-likelihood for those models intractable.

7The MAL algorithm inherits this property from the Metropolis-
Hasting algorithm, which it uses as a subroutine.

5 Simulations
In this section we demonstrate the efficacy of our proposed
framework through simulations. We particularly focus on
learning which can be accomplished by two input and one
output units. This permits visualization of the input-output
space, which lies in R3. Note that our proposed framework
can handle arbitrary number of input and output units; this
restriction is solely for ease of visualization.

5.1 Continuous-XOR Problem
In this section, we show how our proposed framework allows
a CCNN, trained on the continuous-XOR classification task,
to generate examples from a category of interest. The out-
put unit has a symmetric sigmoidal activation function with
range −0.5 and +0.5. The training set consists of 100 sam-
ples in the unit-square [0,1]2, paired with their correspond-
ing labels. More specifically, the training set is comprised
of all the ordered-pairs starting from (0.1,0.1) and going up
to (1,1) with equal steps of size 0.1, paired with their cor-
responding labels (i.e., +0.5 for positive samples and −0.5
for negative samples); see Fig. 1(top-left). After training, a
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Figure 1: A CCNN trained on the continuous-XOR classifica-
tion task. Top-left: Training patterns. All the patterns in the
gray quadrants are negative examples with label −0.5, and
all the patterns in the white quadrants are positive examples
with label +0.5. Red dotted lines depict the boundaries. Top-
right: The input-output mapping, f (x1,x2;W ∗), learned by a
CCNN, along with a colorbar. Bottom: The top-down view
of the curve depicted in top-right, along with a colorbar.

CCNN with 6 hidden layers is obtained whose input-output
mapping, f (x1,x2;W ∗), is shown in Fig. 1(top-right).8

8Due to the inherent randomness in CCNN construction, training
could lead to networks with different structures. However, since in
this work we are solely concerned with generating examples using
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Figure 2: Generating example for the positive category, under various choices for MAL parameter τ and damping factor
β. Contour-plot of the learned mapping, f (x1,x2;W ∗), along with its corresponding colorbar is shown in each sub-figure.
Generated samples are depicted by red dots. N denotes the total number of samples generated by MAL, and AR denotes the
corresponding acceptance rate. (a) τ = 5×10−5 leads to a very slow exploration of the input space. (b) τ = 5×10−3 leads to
an adequate exploration of the input space, however, β = 1 is not penalizing undesirable input regions severely enough. (c) A
desirable performance is achieved by τ = 5×10−3 and β = 10.

Fig. 2 shows the efficacy of our proposed framework in
enabling CCNNs to generate samples from a category of in-
terest, under various choices for MAL parameter τ (see Al-
gorithm 1) and damping factor β (see Eq. (1)); generated
samples are depicted by red dots. For the results shown in
Fig. 2, the category of interest is the category of positive ex-
amples, i.e., the category of input patterns which, upon being
presented to the (learned) network, would be classified as pos-
itive by the network. Because τ controls the amount of jump
between consecutive proposals made by MAL, the follow-
ing behavior is expected: For small τ (Fig. 2(a)) consecutive
proposals are very close to one another, leading to a slow ex-
ploration of the input domain. As τ increases, bigger jumps
are made by MAL (Fig. 2(b)).9 Parameter β controls how
severely deviations from the desired class label (here, +0.5)
are penalized. The larger the parameter β, the more severely
such deviations are penalized and the less likely MAL moves
toward such regions of input space. Acceptance Rate (AR),
defined as the number of accepted moves divided by the total
number of suggested moves, is also presented for the results
shown in Fig. 2. Fig. 2(c) shows that for τ = 5× 10−3 and
β = 10, our proposed framework demonstrates desirable per-
formance: virtually all of the generated samples fall within
the desired input regions (i.e., the regions associated with hot
colors, signaling the closeness of network’s output to +0.5 in
those regions; see Fig. 1(bottom)) and the desired regions are
adequately explored (i.e., all hot-colored input regions being
visited and almost evenly explored).

Fig. 2 depicts all the first N = 2000 samples generated

CCNNs rather than how well CCNNs could learn a given discrim-
initive task, we arbitrarily pick a learned network. Note that our
proposed framework can handle CCNNs with arbitrary structures;
in that light, the choice of network is without loss of generality.

9Yet, too large a β is not good either, leading to a sparse and
coarse-grained exploration of the input space. Some measures have
been proposed in computational statistics for properly choosing τ;
cf. (Roberts & Rosenthal, 1998).

by MAL, without excluding the so-called burn-in period. In
that light, the result shown in Fig. 2(c) nicely demonstrates
how MAL—by directing its suggestions toward the direction
of gradient and therefore moving toward regions with high
likelihood—could alleviate the need for discarding a (poten-
tially large) number of samples generated at the beginning
of an MCMC which are assumed to be unrepresentative of
equilibrium state, a.k.a. the burn-in period. Fig. 3 shows
the performance of our framework in enabling the learned
CCNN to generate from the category of negative examples,
with τ = 5×10−3 and β = 10.
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Figure 3: Generating example for the negative category, with
τ = 5×10−3,β = 10. Generated samples are shown by blue
dots. Total number of samples generated is N = 2000, with
AR = 65.13%.

5.2 Two-Spirals Problem
Next, we show how our proposed framework allows a CCNN,
trained on the famously difficult two-spirals classification
task (Fig. 4), to generate examples from a category of inter-
est. The output unit has a symmetric sigmoidal activation
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function with range −0.5 and +0.5. The training set con-
sists of 194 samples (97 samples per spiral), in the square
[−6.5,6.5]2, paired with their corresponding labels (+0.5 and
−0.5 for positive and negative samples, respectively). The
training patterns are shown in Fig. 4(top-left); cf. (Chalup &
Wiklendt, 2007) for details. After training, a CCNN with
14 hidden layers is obtained whose input-output mapping,
f (x1,x2;W ∗), is depicted in Fig. 4(top-right).
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Figure 4: A CCNN trained on the two-spirals classification
task. Top-left: Training patterns. Positive patterns (associ-
ated with label +0.5) are shown by hollow circles, and neg-
ative patterns (associated with label −0.5) by black circles.
Positive spiral is depicted by a dashed line, and negative spi-
ral by a dotted line. Top-right: The input-output mapping,
f (x1,x2;W ∗), learned by a CCNN, along with a colorbar.
Bottom: The top-down view of the curve depicted in top-
right, along with a colorbar.

Fig. 5(top) and Fig. 5(bottom) show the efficacy of our pro-
posed framework in enabling CCNNs to generate samples
from the positive and negative categories, respectively. Al-
though similar patterns of behavior observed in Sec. 5.1 due
to increasing/decreasing β and τ are observed here as well,
due to the lack of space such results are omitted. The results
in Fig. 5 depict all the first N = 15000 samples generated
by MAL, without excluding the burn-in period. In that light,
these results again demonstrate the efficacy of MAL in alle-
viating the need for discarding a (potentially large) number
samples generated at the beginning of an MCMC run.

Interestingly, our proposed framework also allows CCNNs
to generate samples subject to some forms of constraints. For
example, Fig. 6 demonstrates how our proposed framework
enables a CCNN, trained on the continuous-XOR classifi-
cation task (see Sec. 5.1), to generate examples from the
positive category, under the following constraint: Generated
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Figure 5: Generating example for the positive and negative
categories, with β = 20 and τ = 0.7. Contour-plot of the
learned mapping, f (x1,x2;W ∗), along with its correspond-
ing colorbar is shown in each sub-figure. N denotes the to-
tal number of samples generated by MAL, and AR denotes
the corresponding acceptance rate. Top: Generated example
for the positive category, with N = 15000 and AR = 40.69%;
generated samples are depicted by red dots. Bottom: Gener-
ated example for the negative category, with N = 15000 and
AR = 40.28%; generated samples are depicted by blue dots.

samples must lie on the curve x2 = 0.25sin(8πx1)+ 0.5. To
generate samples from the positive category while satisfying
this constraint, MAL adopts our proposed target distribution
given in Eq. (1), and treats x1 as an independent and x2 as a
dependent variable.

6 General Discussion
Although we discussed our proposed framework in the con-
text of CCNNs, it can be straightforwardly extended to han-
dle some other kinds of artificial neural networks, e.g. Multi-
layer Perceptron and Deep Convolutional Neural Networks.
Furthermore, our proposed framework, together with recent
work in theoretical neuroscience showing possible neurally-
plausible implementations of MAL (Savin & Deneve, 2014;
Moreno-Bote et al., 2011), suggests an intriguing modular
hypothesis according to which generation could result from
two separate modules interacting with each other (in our case,
a CCNN and a neural network implementing MAL). This
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Figure 6: Generating examples for the positive category, un-
der constraint x2 = 0.25sin(8πx1)+ 0.5 (dash-dotted curve),
with N = 5000 and AR= 39.82%. Contour-plot of the learned
mapping, f (x1,x2;W ∗), along with its corresponding colorbar
is depicted. Generated samples are shown by red dots, which
appear mainly as solid red curves due to high density.

hypothesis yields the following prediction: There should be
some brain impairments which lead to a marked decline in
a subject’s performance in generative tasks (i.e., tasks in-
volving imagery, or imaginative tasks in general) but leave
the subject’s learning abilities (nearly) intact. Studies on
learning and imaginative abilities of hippocampal amnesic
patients already provide some supporting evidence for this
idea (Hassabis, Kumaran, Vann, & Maguire, 2007; Spiers,
Maguire, & Burgess, 2001; Brooks & Baddeley, 1976).

According to Line 4 of Algorithm 1, to generate the ith

sample, MAL requires access to a fine-tuned, Gaussian noise
with mean X(i) + τ∇ logπ(X(i)) for its proposal distribution
q. Recently Savin and Deneve (2014) showed how a network
of leaky integrate-and-fire neurons can implement MAL in a
neurally-plausible manner. However, as Gershman and Beck
(2016) point out, Savin and Deneve leave unanswered what
the source of that fine-tuned Gaussian noise could be. Our
proposed framework may provide an explanation, not for the
source of Gaussian noise, but for its fine-tuned mean value.
According to our modular account, the main component of
the mean value, which is ∇ logπ(X(i)), may come from an-
other module (in our case, a CCNN) which has learned some
input-output mapping f (X ;W ∗), based on which the target
distribution π(X(i)) is defined (see Eq. (1)).

The idea of sample generation under constraints could be
an interesting line of future work. Humans clearly have
the capacity to engage in imaginative tasks under a vari-
ety of constraints, e.g., when given incomplete sentences or
fragments of a picture people can generate possible comple-
tions (Sanborn & Chater, 2016). Also, our proposed frame-
work can be used to let a CCNN generate samples from
a category of interest at any stage during CCNN construc-
tion. In that light, our proposed framework, along with a
neurally-plausible implementation of MAL, gives rise to a
self-organized generative model: a generative model pos-
sessing the self-constructive property of CCNNs. Such self-

organized generative models could provide a wealth of devel-
opmental hypotheses as to how the imaginative capacities of
children change over development, and models with quanti-
tative predictions to compare against. We see our work as a
step towards such models. Last but not least, our framework
strongly suggests that, contrary to conventional wisdom, the
boundary between discriminative and generative models is
blurry—perhaps they are just two sides of the same coin!
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Abstract

Human behavior is frequently guided by social and moral
norms; in fact, no societies, no social groups could exist with-
out norms. However, there are few cognitive science ap-
proaches to this central phenomenon of norms. While there
has been some progress in developing formal representations
of norm systems (e.g., deontological approaches), we do not
yet know basic properties of human norms: how they are
represented, activated, and learned. Further, what computa-
tional models can capture these properties, and what algo-
rithms could learn them? In this paper we describe initial ex-
periments on human norm representations in which the context
specificity of norms features prominently. We then provide a
formal representation of norms using Dempster-Shafer Theory
that allows a machine learning algorithm to learn norms un-
der uncertainty from these human data, while preserving their
context specificity.

Keywords: social cognition, moral psychology, computa-
tional modeling, machine learning

Introduction and Motivation
Someone’s cell phone begins to ring in the library. The person
quickly answers it by whispering “hold on,” then leaves the
library and takes the call in a normal voice outside. The per-
son understands that taking a phone call in the library is not
socially acceptable, though briefly whispering is. Somehow,
the situation activated a set of norms in this person’s mind,
including: “when someone calls you, you should answer the
phone”; “when in a library, you must not talk on the phone”;
“when in a library, you may briefly whisper.”

Humans living in social communities function more ef-
fectively and peacefully when their actions are guided by
a shared set of norms (Bicchieri, 2006; Ullmann-Margalit,
1977). The ability to represent and follow norms has many
advantages: Norm-consistent actions increase multi-party co-
ordination and cooperation and thus benefit the community
as a whole. Norms also simplify people’s action selection
and standardize behaviors across time and generations. And
norm-consistent actions are more predictable and understand-
able (Malle, Scheutz, & Austerweil, 2017).

But how does the human mind represent norms, and how
are they activated and learned? Surprisingly, there are few
cognitive science approaches to the central phenomenon of
norms. Logical and specifically deontological approaches
have been proposed to formally represent a system of norms
(Bringsjord, Arkoudas, & Bello, 2006; Scheutz & Malle,
2014; Pereira & Saptawijaya, 2009; Beller, 2010). These are
important starting points, but their formalizations do not nec-
essarily correspond to how norms are represented in the hu-
man mind. By contrast, a cognitive science approach would
aim at an account of how norms are cognitively represented,
how they are activated in relevant situations, and how they
are learned in the first place. Here we take a first step to-
ward such an account, following a recent theoretical pro-
posal (Malle et al., 2017). We introduce a basic formal rep-
resentation of norms that allows us to examine the mentioned
cognitive properties of norms (representation, activation, and
learning), and we ask what computational models can capture
these properties, and what algorithms could learn norms.

Our paper has three main parts. In the first, we present
a novel belief-theoretic norm representation format that ex-
plicitly captures the context-specificity of norms and incorpo-
rates uncertainty associated with norm representations, using
Dempster-Shafer Theory (Shafer, 1976). In the second part,
we introduce experimental data on human norm representa-
tion and activation that underscore the context-specificity of
norms and community members’ strong but imperfect agree-
ment (uncertainty) over norm applications. In the third part
we use our formal norm representation to ask how such im-
perfect norms systems can be learned by a computational al-
gorithm that honors several of the critical features of norms,
including their context specificity and uncertainty.

Part 1: A Representation Format for Norms
We begin by briefly outlining our norm representation for-
mat in first-order logic and provide some intuitions as to how
context and uncertainty are accounted for in the format. The
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purpose is to introduce some terminology and a minimal de-
gree of formalism in the proposed approach, which will later
be useful in developing an algorithm that can learn norms.

Consider a first-order alphabet L , in which we have all the
standard symbols (variables, predicates, functors) and logical
connectives. In a deontic alphabet, we further include O,F,P
that denote modal operators (generally, D) for obligatory, for-
bidden and permissible, respectively. In this alphabet, we de-
fine a norm, as follows:

Definition 1 (Norm). A norm is an expression of the form:

N :=C1, . . . ,Cn =⇒ (¬)D(A1, . . . ,Am),

where C represents context conditions and A represents ac-
tions or states. The norm expression states that when the con-
textual atoms Ci are true then the Actions or States A j are
either obligatory, forbidden or permissible, or their negation.

This type of norm definition follows an approach to nor-
mative reasoning and norm formalism that some of us have
taken previously (Malle et al., 2017; Bringsjord et al., 2006;
Scheutz & Malle, 2014).

In this paper, we expand the above representation format
by explicitly accounting for uncertainty of a norm as follows:

Definition 2 (Belief-Theoretic Norm). A belief-theoretic
norm is an expression of the form:

N := [α,β] :: C1, . . . ,Cn =⇒ (¬)D(A1, . . . ,Am),

where [α,β] represents a Dempster-Shafer uncertainty in-
terval, with 0≤ α≤ β≤ 1.

Example 1 Consider an example of an agent reasoning
about actions it can perform or states it can enter in a li-
brary. We can represent this scenario as a Belief-Theoretic
Norm System, T , as follows:

N1 := [0.9,1] :: in(library,X) =⇒ O state(X ,quiet)
N2 := [0.8,0.95] :: in(library,X) =⇒ P action(X ,reading)
N3 := [0.9,1] :: in(library,X) =⇒ F action(X ,yelling)
N4 := [0,0.3] :: in(library,X) =⇒ O action(X , talking)
N5 := [0.3,0.6] :: in(library,X) =⇒ F action(X , talking)

The norms in this example have intuitive semantics.
They generally state that when agent X is in the li-
brary (i.e., in(library,X)), then the norm is activated
and the agent is obligated to enter a certain state (e.g.,
state(X ,quiet)) or prohibited from performing a certain ac-
tion (e.g., action(X , talking). The location of the center of
the uncertainty interval generally suggests the degree of truth
of the norm applying and the width of the interval generally
suggests the level of support or evidence for that norm. So
norms N1, N2, and N3 have tight uncertainty intervals close
to 1 indicating a confident support for their truth. Norm N4
states that the action of “talking” is obligatory in libraries. Al-
though the uncertainty interval for this norm is tight, the cen-
ter is closer to zero indicating confident support for the falsity

of the norm. Finally, in rule N5 the question of whether talk-
ing is forbidden in a library may be more uncertain, generat-
ing a wider interval centered close to 0.5, indicating support
for both truth and falsity, but a general lack of confidence in
the evidence.1

A belief-theoretic norm system of this form allows the sep-
aration of evidence from the norms themselves. The evidence
may come in different forms across different modalities and
from different sources. The norm system, however, displays
the agent’s current level of belief about a set of norms that are
influenced by the evidence.

In any given situation, the agent may not be reasoning with
every norm in a norm system. Instead, the agent may consider
a subset of the system, perhaps including only norms that are
applicable to the current situation. We capture this intuition
in a norm frame, defined below.

Definition 3 (Norm Frame). A norm frame N Θ

k is a set of k
norms, k > 0, in which every norm has the same set of con-
text predicates and corresponds to the same deontic operator.
Thus, in Example 1, norms N3 and N5 would constitute a
norm frame.

We define a norm frame in this way because it allows for
cognitive modeling in a situated manner—that is, reasoning
about behavior relevant to a specific situation. This context-
specificity provides a convenient constraint that can help sim-
plify computation and better capture human norm representa-
tions, as introduced next.

Part 2: Norm Representation and Activation in
Human Data

We are currently engaged in an empirical research program
that tests a number of novel hypotheses about the cognitive
properties of norms (Malle et al., 2017). Here we summa-
rize two experiments that illustrate some of these properties
and provide the learning data for the norm learning algorithm
we introduce in Part 3. In the first experiment, participants
generated norms relevant to a variety of contexts; in the sec-
ond experiment, participants detected norms relevant to those
contexts.

Methodology
In the generation experiment (Kenett, Allaham, Austerweil,
& Malle, 2016), participants (n = 100 recruited from Ama-
zon Mechanical Turk, AMT) inspected four pictures, one at
a time, that depicted an everyday scene (e.g., library, jog-
ging path; see Figure 1 for examples). While inspecting
each picture, they had 60 seconds to type as many actions as
came to mind that one is “allowed” to perform in this scene

1The use of deontic logic for normative reasoning is the subject
of active debate. Although further discussion of this debate is out-
side the scope of this paper, we note that our proposed approach does
not require using deontic operators. We can still reason about norms
and learn them using the schema described in Definitions 2 and 3.
We would simply need to replace the deontic operators and modify
the predicates slightly. Norm N5 in example 1 would become:
N5 := [0.3,0.6] :: in(library,X) =⇒ forbidden(X , talking)
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(Permissions), or is “not allowed” to perform (Prohibitions),
or is ”supposed” to perform (Prescriptions). This between-
subjects manipulation of norm type was constant across pic-
tures so that each participant answered the same question
(e.g., “What are you permitted to do here?”) for all four pic-
tures they encountered.

Figure 1: Four sample scene pictures used to elicit norms

To increase generalizability at the stimulus level, the total
number of scenes used in the experiment was in fact eight,
four that previous participants had tended to describe as lo-
cations (e.g., library, cave), and four that they had tended
to describe as activities (e.g., jogging outdoors, serving in a
restaurant). Each participant was randomly assigned to re-
ceive either the “location” set or the “activity” set. Item set
made no difference in the results.

The resulting verbal responses were lightly cleaned for
spelling and grammatical errors and responses identical in
meaning were assigned the same response code, using a con-
servative criterion so that variants such as “listening” and “lis-
tening to music” were counted as distinct. The resulting data
structures were then analyzed for consensus (i.e., how many
people generated a given response for a given scene) and con-
text distinctiveness (i.e., whether a response generated for one
scene was also generated in a different scene).

In the detection experiment, we presented participants (n
= 360 recruited from AMT) with the same pictures, four per
participant. Along with each picture, we presented 14 actions
(randomly ordered, one at a time) that a person might perform
in this context. Any given participant’s task was the same for
each of their four pictures: to consider the particular scene
and judge whether each of the 14 actions is either permitted,
or prescribed, or prohibited. This norm type factor was again
a between-subjects manipulation and hence constant across
pictures. In addition, to increase generalizability, we used
two different formulations for each norm type, summarized
in Table 1. Formulation made no difference in the results.

The 14 actions assigned to a given scene under a given
norm type (e.g., Library/permitted) consisted of seven “lo-
cal” and seven “imported” actions. Local actions were the

Table 1: Eliciting Probes for Three Norm Types

Norm Type Probe formulations
Permission Are you allowed to do this here?

Are you permitted to do this here?
Prohibition Are you not allowed to do this here?

Are you forbidden to do this here?
Prescription Are you supposed to do this here?

Should you do this here?

seven most frequently generated actions for the given scene
and norm type in the above generation experiment—for ex-
ample, the seven actions most frequently mentioned to be per-
mitted in the library. Imported actions were comprised of
top-seven actions generated for other scenes (but under the
same norm type). Thus, imported actions were still frequent
responses to the same norm probe, but in different contexts.2

Table 2 provides an illustration of this selection process.

Table 2: Origin of Selected Actions for Library Scene

Action Origin
Local, permitted
reading from top 7 of Library
studying from top 7 of Library
sitting from top 7 of Library
checking out a book from top 7 of Library
learning from top 7 of Library
being quiet from top 7 of Library
using computers from top 7 of Library
Imported, permitted
eating from top 7 of Beach
walking from top 7 of Cave
listening from top 7 of Boardroom
filling boxes from top 7 of Harvesting
washing hands from top 7 of Public Bathroom
running from top 7 of Jogging
talking from top 7 of Restaurant

Experimental Results
We begin by highlighting three findings from the generation
experiment.3 First, even though people were entirely uncon-
strained in their norm-guided actions, they showed a great
deal of consensus on the most central norms for each sce-
nario. Table 3 displays (in column Consensus) the seven most
frequently mentioned permission norms in two representative
scenarios, Library and Jogging, with consensus computed as
the percentage of participants who mentioned the particular

2We ensured that the imported actions were physically plausible
in the given scene/context.

3We focus here on permissions. Prescriptions and prohibitions
show very similar patterns overall, but prohibitions differ from the
other two norm types in interesting ways (e.g., less consensus,
slower activation) that will be treated in a separate investigation.
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action as permitted in the scenario. (The patterns are con-
sistent across other scenarios.) Second, the most consensual
norms are mentioned early on; in other words, what comes to
mind first is likely to be a consensual norm. Table 3 shows (in
column Position) the average rank position (1 = first, 2 = sec-
ond, etc.) at which each action was generated, whereby the
expected position under a random distribution would be 4.2
for Library and 4.6 for Jogging. Third, the norms generated
for the eight scenarios showed remarkable context specificity.
Not only do the two illustrated scenes have no norm in com-
mon among their top seven, but of the 56 permitted actions
that were mentioned in the top-7 in each of the 8 scenes, only
5 appeared in more than one scene.

Table 3: Permission Norms for Library and Jogging Scenes
in the Norm Generation Experiment

Library
Permitted Action Consensus Position
reading 84% 2.1
studying 68% 1.8
sitting 47% 3.1
checking out books 47% 4.4
using computers 32% 5.3
learning 32% 6.0
being quiet 32% 7.5
Jogging
walking 87% 1.4
running 87% 1.9
jogging 53% 4.8
talking 53% 5.1
listening to music 33% 4.3
biking 27% 4.7
looking at birds 27% 6.2

Two main results stand out from the detection experiment.
First, people showed very high consensus in affirming the
permissibility of the seven local actions for their respective
scenes. For both Library and Jogging, this rate was 99%;
and across all scenes, the number was 97.2%. That is, even
though some of these local actions were actively generated
as “permissible” by only a third or half of previous partici-
pants (see Table 3), when directly confronted with these ac-
tions, people almost uniformly recognized their permissibil-
ity. (Moreover, this recognition was fast, taking only about
1100 ms on average.)

Second, participants clearly distinguished between the lo-
cal and the imported actions, accepting the latter as permis-
sible at a significantly lower rate. For Library, this rate was
43%; for Jogging, it was 75%; and across all scenes, it was
66.1% (all statistical comparisons to local actions p < .001,
signal detection discrimination parameter d’ = 1.49). That is,
for a given context on average, 34% of presented actions were
judged to be not permitted even though they were explicitly
deemed permissible in other contexts.

These results suggest that norms can be activated by static

photographs, and people show high agreement in explicitly
recounting these norms (generation experiment). In a more
implicit setup (detection experiment), people are fast and al-
most unanimous in affirming the most important norms of a
given context and differentiate them well from norms origi-
nating from a different context. Thus, both explicit and im-
plicit judgments show substantial context sensitivity. If these
are some of the properties of human social and moral norms,
how can they possibly be learned, by humans and machines?

Part 3: Learning Norms
How Do People Learn Norms?
In learning social and moral norms, people deal with multi-
ple different norm types (permissions, prescriptions, prohibi-
tions), using many different learning mechanisms, and taking
input from many different sources. Here we focus on the pro-
cess of learning permission norms from simple observation,
using responses from a sample of community members de-
scribed earlier in the detection experiment. Our main goal is
to put our proposed computational framework to a test. In the
future we will develop further applications (e.g., learning of
obligations or learning from instruction)

Consider a person who has never spent time in a library.
Upon entering one for the first time, he observes several peo-
ple reading, studying, and a few whispering. Some sit at
computers, one is eating while sitting in an armchair, al-
though there is a sign that says ”No food or drink in the li-
brary.” Our observer also sees several people at the check-out
counter, subsequently exiting the library, where another sign
says ”Don’t forget to check out.” Briefly, a younger person
runs alongside the stacks but then sits down next to an adult.

The number of people performing each behavior, their age,
expertise, appearance, perhaps responses from others, and the
meaning and force of various physical symbols will all con-
tribute to the speed and confidence with which our protago-
nist learns the norms of a library. Below we offer a data rep-
resentational format that incorporates these and other prop-
erties of the norm learning process, a format that can also
accommodate partial information and unknown prior proba-
bility distributions and that can be extended to other learning
mechanisms, such as verbal instruction or trial and error.

Data Representation Format of Norm Learning
Consider a set S = {s1, . . . ,sn} of n evidence sources. For ex-
ample, an evidence source si could be a student in the library,
the librarian, or a sign at the entrance. To simplify, we are
interested in learning about a norm frame N Θ

k comprising k
norms (out of a larger possible set) that all share the same de-
ontic type (here, permissions) and the same general context
precondition (here, library).

Let an endorsement ei, j be the ith data source’s endorse-
ment of the jth norm, where e ∈ {0,1,ε}. The value ei, j is a
form of truth assignment, indicating whether the source en-
dorses the norm to be true (1), false (0) or unknown (ε). For
example, an observation that a student is reading can be in-
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terpreted as showing that this student endorses the norm N2
to be true in this context, hence ei,N2

= 1. The set Φsi rep-
resents a given source’s finite set of endorsements within a
given norm frame, such that |Φsi |= k.

Informally, for a set of norms in a given context and for
a particular source, we can learn about that source’s endorse-
ment of each norm; if we also assign a weight (e.g., reliability,
expertise) to the source, we form a data instance. Multiple
data instances (i.e., evidence from multiple sources) form a
data set. More formally:

Definition 4 (Data Instance). A data instance d =
(N Θ

k ,si,Φsi ,msi) is a tuple comprising a norm frame N Θ

k ,
a specific source si, a set of endorsements Φsi provided by
that source, and a mass assignment msi corresponding to the
amount of consideration or reliability placed on source si.

Definition 5 (Dataset). A dataset D is a finite set of n data
instances {d1, . . . ,dn}.

Some of the desirable properties of the proposed data
representation format are that we can accommodate various
types of sources (e.g., behavior, verbal responses, signs and
symbols), differential source reliability (mass), order effects
(updates can be tuned, if necessary, to the order of received
data), missing and imprecise information (we use ε to repre-
sent ignorance), lacking prior probability distributions (we do
not require any priors), and varying norm dependencies (e.g.,
we can capture a correlation between the prohibition to yell
and the prohibition to talk).

Algorithmic Learning of Experimental Data
We can now apply this representation format to the detec-
tion data we introduced earlier. The detection experiment
featured, for each scene, a norm frame N Θ

k with k = 14 poten-
tially permissible actions, where half of the potential actions
had been specifically identified as permitted in this scene and
the other half as permitted in other scenes (see Table 2). Each
participant, si, indicated whether each of 14 actions was in
fact allowed in this scene, providing responses of yes (1) or
no (0) or no response (ε), thus forming a set of endorsements
Φsi , with |Φ|= 14. In this particular case we treat all sources
as equally reliable, hence carrying identical msi weights.

With these representations in hand we can formally define
the norm learning problem within our framework and set the
stage for an algorithm to analyze evidence and derive a norm
structure for a given context in a given community. We re-
mind the reader that, according to Definition 2, any norm
(e.g., with respect to reading in a library) has an uncertainty
interval [α1,β1] associated with it, which reflects the quality
and consistency of the evidence for a given norm to hold. The
learning problem thus becomes a parameter learning problem
for discovering the values of the uncertainty interval for each
norm in a norm frame:

Definition 6 (Norm Learning Problem). For a norm
frame N Θ

k and dataset D , compute the parameters
α1, . . . ,αk,β1, . . . ,βk of that norm frame.

As noted earlier, each data instance d represents a po-
tential arrangement of true and false values for each of the
norms in a frame. Setting aside the possibility that ei, j = ε,
each data instance thus provides a k-length string of 1s and
0s (a given participant’s response string in the detection ex-
periment). This string is a sample of the normative endorse-
ments in the given community. The norm learning algorithm
represents each string as a hypothesis in a set of hypotheses
(termed Frame of Discernment in Dempster-Shafer theory)
and assigns uncertainty parameters to each norm, updating
those values as it considers each new data instance. Algo-
rithm 1, displayed below, achieves this form of norm learn-
ing from a human dataset.

Algorithm 1 getParameters(D,N Θ

k )
1: D = {d1, . . . ,dn}: Dataset containing n data instances for a

norm frame
2: N Θ

k : An unspecified norm frame containing k norms N
3: Initialize DS Frame Θ = {θ1, . . . ,θ2k}
4: m(Θ) = 1
5: for all d ∈D do
6: for all N ∈N Θ

k do
7: Set learning parameters p1 and p2

8: Bel(N |d) = Bel(N ∩d)
Bel(N ∩d)+Pl(d\N )

9: Pl(N |d) = Pl(N ∩d)
Pl(N ∩d)+Bel(d\N )

10: Bel(N )new = p1 ·Bel(N )prev + p2 ·Bel(N |d)
11: Pl(N )new = p1 ·Pl(N )prev + p2 ·Pl(N |d)
12: end for
13: Set frame Θ with Bel(N )new and Pl(N )new
14: end for
15: for all N ∈N Θ

k do
16: αN ← Bel(N )

17: βN ← Pl(N )
18: end for
19: return α1, . . . ,αk,β1, . . . ,βk

The algorithm iterates though each data instance in the data
set (line 6) and, per instance, through each norm in the norm
frame (line 7). For each iteration, we first set the hyper-
parameters p1 and p2 (line 8) that specify how much weight
the algorithm will place on previous learned knowledge (p1)
and on each new data instance (p2). These hyper-parameters
are then used to compute a conditional belief and plausibil-
ity for a norm given that particular instance of data (lines
9,10). The conditional beliefs and probabilities then yield
an updated belief and plausibility for each norm (lines 11,
12). Finally, the algorithm updates the uncertainty interval
for each norm with the new belief and plausibility values.

The result is a set of belief-theoretic norms (norms accom-
panied with uncertainty intervals), where the width of the un-
certainty interval indicates the amount of support for the norm
(which may vary, for example, as a function of number of re-
spondents in the human data sample) and the center position
of the interval should correspond to the level of agreement in
the human respondents’ endorsement of the norm.

To put this algorithm to the test, we selected, from our de-
tection experiment, a norm frame of 6 (out of 14) actions for
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the context of Library and a frame of 6 (out of 14) actions for
the context of Jogging Path. However, we wanted to capture
the context specificity of norms and constructed the frames
such that 4 actions (running, sitting, walking, and washing
hands) were the same in each frame, albeit differentially en-
dorsed in the two contexts (e.g., running was clearly not per-
missible in Library but very much permissible in Jogging).
Thus, the algorithm had to track the norm value of a given
action not in general, but conditional on the specific context.
If the algorithm succeeds it should recognize which actions
people consider permissible and which ones they consider im-
permissible, for each of the two contexts, and even for those
actions that occur in both contexts.

Figure 2 illustrates this success. We display single runs of
the algorithm across the dataset. In the single runs, the algo-
rithm considers each data instance (each of 30 participants’
judgments) in each context once (in a fixed order), leading to
wide uncertainty intervals at first, but narrower ones as the
number of data instances increases (up to the maximum of
30) . We also performed iterative runs (not shown), in which
the algorithm considers the dataset multiple times, each time
randomly selecting a possible order of instances, and con-
verging on an optimal estimate of the norm endorsements in
the given community. These estimates are highly comparable
to the end points of single runs after 30 data instances.

Figure 2: Single run of learning across two contexts. The
narrowing shaded regions indicate converging uncertainty
intervals as new data instances are processed. Filled cir-
cles represent the descriptive statistics from the experimen-
tal data, indicating actual norm endorsement averages among
participants—the proportion of participants who answered
yes to the question: “Is this action allowed here?” The algo-
rithm displays convergence towards the descriptive statistics
(which it was not given), while maintaining a level of uncer-
tainty reflecting the imperfect agreement within the data.

Conclusion
In this paper we presented a formal representation of norms
using first-order logic and Dempster-Shafer theory. The rep-
resentation captures the context specificity of norms that our
experimental data suggest are strongly present in humans.
Using a data representation format that incorporates several
properties of human norm representation and learning, we
then developed a novel algorithm for automatically learning
context-sensitive norms from the human data. Because the
data format is highly generalizable, norms could be learned
from different types of evidence sources in different con-
texts, and explicitly captures uncertainty due to variations in
the source’s reliability and the quality of the evidence. The
proposed representation and learning techniques provide a
promising platform for studying, computationally, a wide ar-
ray of cognitive properties of norms.
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Abstract 

The outcomes of intertemporal choices indicate that people 
discount rewards by their delay. These outcomes are well 
described by discounting functions. However, to fully 
understand the decision process one needs models describing 
how the process of decision-making unfolds dynamically over 
time. Here, we validate a recently published attractor model 
that extends discounting functions through a description of 
the dynamics leading to a final choice outcome within and 
across trials. We focus on the decision dynamics across trials. 
We derive qualitative predictions for the inter-trial dynamics 
of sequences of decisions that are unique to this type of 
model. We test these predictions in a delay discounting game 
where we sequentially manipulated subjective values of 
options across all attribute dimensions. Results confirm the 
model’s predictions. We discuss future challenges on 
integrating attractor models towards a general attractor model 
of delay discounting to enhance our understanding of the 
processes underlying delay discounting decisions. 

Keywords: decision making; delay discounting; process 
dynamics, attractor dynamics; hysteresis; neural attractor 
model 

 

Introduction 

Many everyday choices involve options that pose a conflict 

between immediate, but small gains, and delayed, but larger 

or more beneficial gains. This conflict occurs on many time 

scales. For example, you might wonder whether to enjoy 

spending your money now or saving it for a pension. Or you 

might be tempted to take the tasty pizza – which is 

immediately very tasty – instead of the light salad – which 

might be better for your cardiovascular system in the long-

term. In such intertemporal choices (for a review, see 

Frederick, Loewenstein, & O’Donoghue, 2002), humans 

discount the offered gain by the delay of delivery. This 

delay discounting is well described by utility discounting 

models which assume that the greater the delay in delivery 

of a reward, the more the utility of a reward is discounted. 

Hence, these discounting models represent the subjective 

value of a reward as a function of its delay (see Doyle, 2013 

for an overview). While these mathematical models offer a 

good description of the average outcome of the decision 

process – the final choice – they mostly leave open how the 

exact decision process unfolds in time. Decoding this 

process, though, is necessary in order to fully understand the 

way decisions are made. To fill this gap, recent 

developments aim to uncover the process dynamics leading 

to a final decision in delay discounting (Dai & Busemeyer, 

2014; Rodriguez, Turner, & McClure, 2014; Scherbaum et 

al., 2016). Specifically, the attractor model approach  

(Figure 1) has recently been proved useful to uncover the 

process dynamics leading to a final choice outcome on 

different time scales, that is within and across sequential 

intertemporal choices (Scherbaum et al., 2016).  

In this study, we will use the attractor model and the 

experimental paradigm as proposed by Scherbaum et al. 

(2016) to derive and validate qualitative predictions on the 

inter-trial dynamics of sequences of intertemporal decisions. 

More detailed, the attractor model of decision making in 

 

Figure 1: Sketch of possible attractor layouts given different 

values of the control parameter c. This parameter depends 

on the relative difference in subjective value (attractiveness) 

of the options for a subject and hence configures the system 

for each potential combination of SS and LL: An increase in 

attractiveness for the LL option results in a negative control 

parameter which, in turn, increases the depth of the attractor 

representing the LL option (left panel). In contrast, an 

increase in attractiveness for the SS option results in a 

positive control parameter which, in turn, increases the 

depth for the attractor representing the SS option (right 

panel). Inherently, the control parameter c is primarily 

dependent on the values and delays of the presented 

options, but also on a subject’s tendency to discount. Within 

this potential landscape, the current system state (marked by 

a red dot) tends to move to the bottom of the potential wells 

and travels through all intermediate states on its way to a 

stable final choice.  
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delay discounting assumes that the depth of the attractors 

and hence the stability of its end-states is determined by a 

combination of each option’s reward value and delay. By 

varying either both or one of those properties, the depth of 

the attractors can be manipulated. To that end, the depth of 

the attractors represents the relative attractiveness of each 

option, and that is, the respective subjective (discounted) 

value, within the attractor model (Figure 1). Hence, the 

difference in relative attractiveness between the two options 

determines the systems preference towards either option and 

is summarized by the control parameter, which we will call 

c. Figure 1 depicts three kinds of possible attractor layouts 

given three prototypical specifications of c. The attractors 

itself picture stable neural representations of the available 

options. So, the left and right panel of Figure 1 reflect 

almost exclusive activation of one option’s representation, 

and hence illustrate configurations of the system with a 

preference towards one option (c ≠ 0). Accordingly, the 

special case where c = 0 (Figure 1 middle panel) reflects 

varying amounts of concurrent activation in which the 

system has not settled into a decision yet, and hence 

represents a decision in which both options receive an 

identical input and are thus equally attractive. In this special 

case scenario, a neutral starting state would keep the system 

indifferent until slight differences in input (or random noise) 

tips the system to one side or the other, resulting in a more 

or less arbitrary decision which was not driven by the 

systems preference. A major advantage of attractor models 

is that the decision is not only determined by the current 

attractor layout, which is in turn determined by the currently 

offered options, but also through the history of the system’s 

previous decisions (Scherbaum, Dshemuchadse, & Kalis, 

2008; Townsend & Busemeyer, 1989). This is due to the 

genuine assumption that the attractors are formed by the 

offered options and, hence, these attractors are not present 

between trials. The inertia of neural systems causes the 

system to temporally recline in the area where it ended up 

previously—in the vicinity of the vanished attractor 

representing the recent choice—and to relax only slowly to 

the neutral start state under no input. For example, if the 

model chose one option in a first decision trial, it would 

remain in the vicinity of this option’s attractor in the inter 

trial interval. In a second decision trial, it would hence start 

the decision with a bias to the previously chosen option, 

even if this trial comprises the other option being more 

attractive (see Figure 2).  

Scherbaum et al. (2016) used this premise to predict and 

validate hysteresis effects (Tuller, Case, Ding, & Kelso, 

1994), which are also known as path-dependence, in 

intertemporal choice. Hysteresis or path-dependence occur, 

when the decision for one option biases the next decision in 

favor of the same option (see Figure 2). Hence, in a series of 

choices in which the initially unchosen option becomes 

increasingly more attractive (i.e. sequential manipulation of 

the difference in the relative attractiveness), people stick to 

the initially chosen option and switch to the now more 

attractive option much later than they would if their choices 

were unbiased. However, the sequential manipulation of the 

difference in the relative attractiveness was merely 

operationalized by variation of the delay, though the 

attractor model predicts the same hysteresis effects when the 

manipulation is realized through a variation of the reward 

value or even a combination of delay and value. We hence 

hypothesized that the emergence of hysteresis effects is 

independent from the attribute dimension which is used to 

sequentially manipulate the difference in the relative 

attractiveness between both options (intervals, value 

difference, or both together). 

To provide an insight into hysteresis effects in delay 

discounting, we applied the same non-verbal delay 

discounting task as used in the original study. This task 

redresses the problem that in standard intertemporal choice 

tasks the sequential manipulation of reward values or delays 

is simply too obvious (Scherbaum et al., 2016; Scherbaum, 

Dshemuchadse, Leiberg, & Goschke, 2013). In this task, 

subjects collect coins of different reward values with an 

avatar which they move on a checkered playing field by 

clicking with the computer mouse (Figure 3). The playing 

field stays constant across trials—except the options which 

change from trial to trial—and the avatar started each trial 

from the position of the previously chosen option. The goal 

is to collect as much reward as possible in the allotted 

amount of time. In each trial of the task, subjects have to 

choose between two reward options of different magnitude 

(small vs. large) at different distances (near vs. far fields). 

Therefore, this task translates delays into distances, which 

allows for a more implicit sequential manipulation of the 

relative attractiveness of options.  

To implement the sequential manipulation of different 

attributes, we used this task in a modified, two-step 

procedure: In the first part, we measured the individual 

amount of discounting (the measurement block). Based on 

this amount of discounting, we created individually tailored 

sequences of decision to study hysteresis in the following 

part (the manipulation block). We expected the hysteresis 

effect to be present in all variants of sequential 

manipulations.  

 

Figure 2: Inter-trial dynamics in the attractor model. 

Choosing the LL option in a first trial leads to a bias in a 

second trial due to slow relaxation (e.g. inertia) of the system 

state during the inter trial interval (ITI, in this study 1.3 

seconds). 
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Methods 

Subjects 

43 students (65% female, mean age = 22.98 years) of the 

Technische Universität Dresden took part in the experiment 

that lasted approximately 50 minutes. All subjects had 

normal or corrected to normal vision. Three out of 43 

subjects were excluded from any subsequent analysis due to 

individual discounting behavior in the measurement block 

not allowing for a sufficient hysteresis manipulation in the 

manipulation block. Subjects gave informed consent to the 

study and received a 2.50 € show-up fee and the money they 

collected within the experiment (Mean = 3.17, SD = 0.39). 

Apparatus and Stimuli 

The experiment was presented on a 17-inch screen (1280 x 

1024 pixels, 85 Hz). As presentation software, we used 

Psychophysics Toolbox 3 (Brainard, 1997; Pelli, 1997) in 

Matlab 2010b (the Mathworks Inc.), running on a Windows 

XP SP2 personal computer. Responses were carried out by 

moving a high precision computer mouse (Logitech Laser 

Mouse USB). 

Subjects moved an avatar on a playing field divided into 

20 x 20 fields (Figure 3). To move the avatar, subjects 

clicked with the mouse in one of four horizontally or 

vertically adjacent movement fields, as signaled by a white 

border surrounding the fields. On each trial two reward 

options were presented as coins on fields marked with a red 

border: One reward was near but small, the other reward 

was far but large. The two options’ positions were always 

chosen so that the first move into one direction decreased 

the distance to one option but increased the distance to the 

other option. This way, the first move of the avatar already 

represented a clear preliminary decision for one option and 

against the other option.  

For both options, a number posed within each coin 

represented the reward value and the horizontal and vertical 

distance of the reward field to the field of the avatar 

represented the distance of the option. Reward values 

ranged from 1 to 99 credits and distances ranged from two 

to fifteen fields. For better comprehensiveness in the context 

of intertemporal choice, we maintain in the following the 

standard description of the time dimension using “soon”, 

“late”, “delay”, and “interval”, although in our scenario time 

delay is represented by spatial distance. The relation 

between the two reward values can be characterized as the 

ratio of the higher and smaller reward value and will be 

denoted by “difference”. 

Above the avatar (Figure 3) subjects could see the 

remaining time within one block, as well as below the 

collected credits in Euro (1 credit = 1/10 € cent), but only in 

the very moment when either reward was collected. 

Procedure 

Subjects’ task was to collect as much reward as possible 

within the allotted time limit. In each trial, they had to 

choose between two reward options (one soon but small, SS, 

one late but large, LL; see design). They collected the 

selected reward by moving their avatar with the mouse 

across the playing field.  

A trial started with an inter trial interval (ITI) of 1.3 

seconds. Within this interval, the mouse cursor was locked 

in the center of the field containing the avatar. After the ITI, 

the two options were presented. As soon as the two options 

appeared, participants could click on the adjacent movement 

fields to move their avatar towards the chosen option 

(Figure 3). When the avatar reached one option, both 

options disappeared, the value of the selected option was 

added on the collected credits, and the next trial started. 

The experiment consisted of four blocks, with one block 

lasting eight minutes. Between blocks, subjects were 

informed about the credits collected and were instructed to 

rest briefly before the self-paced start of the next block.  

Before the start of the experimental blocks, subjects 

worked through a test block of two minutes to get used to 

the virtual environment, handling of the mouse, as well as 

the range of spatial distances and reward values. 

Design 

The experiment consisted of four blocks with the first block 

(measurement block) being conceptually different from the 

three subsequent blocks as its aim was to measure the 

subjects’ individual discounting behavior. In each of the 

three subsequent blocks (manipulation blocks) we realized a 

unique adaptive hysteresis manipulation constituting an 

interval block, a value block, and a combined block. Each 

subject’s session started with the measurement block 

followed by the manipulation blocks. The sequential 

arrangement of the manipulation blocks was fully varied 

and balanced between subjects. 

In the measurement block, reward values ranged from 11 

to 99 and distances from three to 15. That was given by 

orthogonally varying the intervals (1, 4, 8, and 12 fields), 

the differences (20, 50, 70, 80, 88, 93, 97, and 99%), and the 

delay of the sooner option (2 and 3 fields). Additionally, the 

reward values of the late option were randomly chosen from 

a discrete uniform distribution between 55 and 99 credits. 

The combination of 8 differences, 2 distances of the SS 

options and 4 intervals between the SS and the LL option 

yielded a complete set of 64 trials. We generated 5 such 

 

Figure 3: Detail of the dynamic delay discounting 

paradigm. 
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sets, with a randomized order of trials within each set. The 

measurement block’s time limit ensured that subjects could 

work through the complete design matrix, that is one of 

those 5 sets, at least one time.  

To realize the adaptive hysteresis manipulation, we 

calculated the subjects’ individual discounting curve from 

which we adaptively derived trials compatible to the 

respective hysteresis manipulation (see Results). The 

structure of an adaptive hysteresis manipulation is to 

sequentially change subjects’ preference from the SS 

towards the LL option, or vice versa. In our adaptive trial 

sequences, we aimed to change subjects’ preference in 12 

steps as indicated by the differences between the subjective 

value ratio (SS/LL) in the trials and the indifference points 

(-0.3000, -0.2455, -0.1909, -0.1364, -0.0818, -0.0273, 

0.0273, 0.0818, 0.1364, 0.1909, 0.2455, 0.3000), that is the 

manipulation points.1 It is imperative that a negative 

manipulation point indicates a preference for the LL option 

and a positive manipulation point a preference for the SS 

option. Furthermore, it applies that the higher the absolute 

manipulation point, the more distinct are the relative 

attractiveness of both options. Hence, a manipulation point 

of zero represents no preference, that is the indifference 

point. Please note that the interpretation of the manipulation 

point is analog to the interpretation of the control parameter.  

We then applied this manipulation in three different sub-

blocks. First, in the interval block we consecutively 

increased or decreased the delay of the LL option to the 

avatar while keeping all other factors constant within the 

sequence. For each sequence the delay of the sooner option 

and the reward value of the late option were randomly 

chosen from discrete uniform distributions between 2 and 3 

fields, and 55 and 99 credits, respectively. The reward value 

of the sooner option was randomly drawn from the uniform 

distribution between subjects’ two indifference points at the 

intervals 6 and 7. Furthermore, we varied the direction of 

these sequences (direction = ascending or descending) and 

created eight sequences for each direction. This resulted in 

16 possible sequences, and hence 192 trials. 

Second, in the value block we consecutively increased or 

decreased the reward value of SS option while keeping all 

other factors constant within the sequence. Again, for each 

sequence, the delay of the sooner option and the reward 

value of the late option were randomly chosen. The delay of 

the LL option to the avatar was drawn randomly between all 

intervals at which subjects’ indifference point was 

positioned in such a way that all 12 manipulation points 

were valid, that is, did not exceed 1 or fall below a value of 

0. For each trial within the sequence, the reward values of 

the SS option were then calculated.  Again, we also varied 

the direction of these sequences and created eight sequences 

                                                           
1 For instance, a subject’s indifference point at interval 1 is 0.8 

(see Figure 4). Given a manipulation point of -0.3, the respective 

manipulated trial must yield a subjective value ratio (SS/LL) of 0.5 

at an interval of 1. The same logic applies over all manipulation 

points and intervals.  

for each direction. This resulted in 16 possible sequences, 

and hence 192 trials.  

Third, in the combined block we consolidated the former 

manipulations and varied both the delay of the LL option to 

the avatar and the reward value of the SS option in such a 

way that the manipulation points consecutively increased or 

decreased within the sequence. Again, for each sequence the 

delay of the sooner option and the reward value of the late 

option were randomly chosen. For each trial within the 

sequence, the delay of the LL option was randomly chosen 

from the set of intervals in which the respective 

manipulation point was valid. The reward values of the SS 

option were then calculated.  Again, we also varied the 

direction of these sequences and created eight sequences for 

each direction. This resulted in 16 possible sequences, and 

hence 192 trials. 

In sum, we applied a 2 (direction: ascending, descending) 

x 3 (manipulation type: interval, value, combined) full 

factorial within-subjects design.  

Results 

On average, subjects completed 134 trials (SD = 23) in the 

measurement block. Hence, subjects ran through at least two 

out of five sets of 64 trials. The aim of the measurement 

block was to measure subjects’ individual discounting 

behavior indicated by subjects’ indifference points as 

depicted by Figure 4. As an estimate of the indifference 

point, the point of inflection of a logistic function was fitted 

to the individual choices as a function of increasing value 

 

Figure 4: Subjects’ indifference points in the measurement 

block, depicting the decrease in subjective value of the late-

large option as a function of intervals between the two 

options. Indifference points are the subjective value ratio 

(SS/LL) at which subjects chose indifferently between the 

two options, i.e., the probability of choosing LL over SS is 

50%. Note: Error bars indicate standard errors. The curve 

displays the fitted hyperbolic functions. 
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differences was determined.2 To evaluate subjects’ 

discounting behavior in one parameter, we extracted the k-

parameter by fitting a hyperbolic function to each subject’s 

indifference points over the different intervals. Data 

revealed an average k-parameter of the hyperbolic 

discounting curve with M(SD) = 0.23(0.19), bootstrapped 

95% CI = [0.18, 0.30], indicating a very strong discounting 

behavior. The hyperbolic model had a good fitting 

                                                           
2  The fitting of the logistic regression model was 

performed using the StixBox mathematical toolbox by Anders 

Holtsberg (http://www.maths.lth.se/matstat/stixbox/). The fit was 

based on the model log [
𝑝

1−𝑝
] = 𝑋𝑏, where p is the probability that 

the choice is 1 (SS) and not 0 (LL), X represents value differences, 

and b represents the point estimates for the logistic function. 

performance over all subjects, indicated by a high average 

R², M(SD) = .87(.10).3 

In the manipulation blocks, subjects completed 387 trials 

(SD = 67) on average. Hence, on average, subjects ran 

through 32 hysteresis sequences (SD = 6), consisting 16 

ascending (SD = 3) and 16 descending (SD = 3) sequences. 

The SS option was chosen in 48.37% (SD = 22.19) of the 

trials, indicating only a slight decision bias which was not 

predicted by the model. 

The core prediction of the model was that subjects show 

identical hysteresis effects irrespective of the specific 

hysteresis manipulation, that is, whether the sequential 

manipulation of the attractiveness of both options was 

realized through varying intervals, differences or a 

combination of both. Figure 5 depicts the hysteresis effect 

for each manipulation type. The plots indicate that the 

hysteresis effects are very similar between manipulation 

types, but show the qualitatively best pattern for the interval 

manipulation (Figure 5, panel a). In order to test model’s 

predictions, we conducted a two-factorial Repeated 

Measures ANOVA (direction x manipulation type) on 

subjects’ mean choice. As expected, we solely found a main 

effect of direction (F(1,39) = 17.44, p < .001, η²= 0.31), 

indicating that hysteresis emerged irrespectively of 

manipulation types. Thus, neither the main effect of 

manipulation type (F(2,78) = 3.03, p = .054, η² = 0.07) nor 

the interaction (F(2,78) = 1.22, p = .302, η² = 0.03) were 

statistically significant. In order to focus the analysis on the 

hysteresis effect, that is, eliminating the variance of the 

absolute level of LL choices, we summarized hysteresis 

effects into one hysteresis parameter. The hysteresis 

parameter was given by calculating the differences between 

subjects’ mean choice in ascending and descending 

hysteresis sequences for each manipulation type. An 

additional one-factorial Bayesian Repeated Measures 

ANOVA on the hysteresis parameter revealed that the data 

show substantial evidence in favor of the null hypothesis 

(BF01 = 4.64) claiming that the hysteresis effect does not 

vary systematically between all three manipulation types. 

Therefore, we consider the predictions of the model as 

confirmed.  

Discussion 

In this study, we tested predictions of the attractor model of 

delay discounting in a recent developed non-verbal delay 

discounting paradigm. Our results validated the model in 

such a way that its predictions concerning hysteresis effect 

in delay discounting were confirmed. Specifically, when 

sequentially varying the attractiveness of both options from 

a very strong preference towards the SS option to a very 

strong preference towards the LL option, and vice versa, 

hysteresis effects occur irrespectively of how the 

                                                           
3 The fit of the hyperbolic function was based on minimizing the 

summed squared errors (SSE). R² is defined as the ratio of the sum 

of squares of the regression (SSR) and the total sum of squares 

(SST). Since SST is defined as SSR+SSE, R² is defines by 1-

SSE/SST.  

 

Figure 5: Average hysteresis plots between manipulation 

types. Plots depict subjects’ mean response pattern over 

intervals (panel a) or manipulation points generated by 

variation of rewards only (panel b) and a combination of 

rewards and intervals (panel c).  Note: Error bars indicate 

standard errors. The separate colors indicate whether mean 

responses were derived from ascending or descending 

sequences. The blue line represents descending sequences 

(LLSS). The red line represents ascending sequences 

(SSLL). 
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attractiveness of any option is varied within the sequence. 

Therefore, the current study both replicated and added 

empirical evidence for the validity of the attractor model of 

delay discounting.  

One might object that the predictions of the model were 

merely derived through a qualitative, argumentative manner. 

This is obviously true, but not a weakness of the current 

study. First, concerning the interval manipulation, it was 

already shown that the exact same predictions can be 

derived by means of computational simulation based on a 

competitive neural-network (Scherbaum et al., 2016), hence 

running a computational simulation with the same model 

would not provide any new information. Second, and this 

point is genuine, the model does not allow for reasonable 

separate simulations of all manipulation types. This is due to 

the fact that the model merely uses subjective values for 

each option. The emergence of those subjective values, 

however, is not covered within the model.  

Leaving the emergence of subjective values open the 

model proves to be useful for predicting intra- and inter-trial 

dynamics in delay discounting, when a specific discounting 

function is already given, but it does not explain the 

emergence of discounting functions. This gap has also been 

argued for recently by others, reasoning that intertemporal 

choice consists of two processes (Rodriguez et al., 2014): 

First, the process of delay discounting, and second, the 

process of choice. This gap between the two processes could 

be closed by connectionist models, which have already been 

used to explain how different discounting functions emerge 

by linking discounting behavior with aspects of self-control 

(Scherbaum, Dshemuchadse, & Goschke, 2012).  

The two models provide insights into the dynamics of 

delay discounting and the dynamics of choice, respectively. 

Integrating these two models into one general connectionist 

model of delay discounting could provide insights into the 

interacting process dynamics of preference (delay 

discounting) and choice. Such an integration could therefore 

enhance our understanding of the processes underlying 

delay discounting decisions and, hence, complement our 

knowledge about decision outcomes. 
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Abstract

How do people explore in order to gain rewards in uncer-
tain dynamical systems? Within a reinforcement learning
paradigm, control normally involves trading off between ex-
ploration (i.e. trying out actions in order to gain more knowl-
edge about the system) and exploitation (i.e. using current
knowledge of the system to maximize reward). We study a
novel control task in which participants must steer a boat on
a grid, aiming to follow a path of high reward whilst learning
how their actions affect the boat’s position. We find that partic-
ipants explore strategically yet conservatively, exploring more
when mistakes are less costly and practicing actions that will
be required later on.
Keywords: Reinforcement Learning, Strategic Exploration,
Control, Exploration-Exploitation

Introduction
Deciding how to act under uncertainty is a core problem for
cognition. Cognitive agents must be able to navigate a world
whose dynamics are initially unknown and generally uncer-
tain, learning to generate rewards as they go along. In the
context of reinforcement learning, we can think of control as
a trade-off between exploration (i.e. trying out actions to gain
more knowledge about the underlying system) and exploita-
tion (i.e. using current knowledge of the system to maximize
reward). However, whether and how human explorative con-
trol reflects future goals and current uncertainty is still unclear
(Wilson, Geana, White, Ludvig, & Cohen, 2014). Are human
explorative actions strategic and goal-directed? Or are they
rather passive, for instance involving a simple “exploration
bonus” that treats uncertainty equally across all actions?

Traditionally, reinforcement learning models have ad-
dressed exploration rather implicitly, letting the agent learn
about the underlying system en passant via outcomes pro-
duced while high rewards are chased (Rescorla, Wagner et al.,
1972). Exploration, according to this definition, is what hap-
pens when an agent optimizes noisily. We will refer to this
kind of exploration as passive exploration.

More recently, exploration has been incorporated into rein-
forcement learning models more explicitly via an exploration
bonus (Schulz, Konstantinidis, & Speekenbrink, 2016; Wu,
Schulz, Speekenbrink, Nelson, & Meder, 2017). An explo-
ration bonus assigns additional utility to less explored actions
and thereby assumes that the agent values uncertainty equally
across all actions. Exploration, according to this definition, is
what happens when expectations are inflated by their attached
uncertainties. We will refer to this kind of exploration as ag-
nostic exploration.

Another line of research tries to redefine exploration as
goal-directed behavior (e.g., Thrun, 1992). The idea behind

this approach is that not all uncertainty should be treated
equally but rather that exploration should be driven by both
the current knowledge of the system and the agent’s overall
goal. Exploration, according to this definition, is a strategic
action. We will refer to this kind of exploration as strategic
exploration.

Many real-world control scenarios are non-episodic, such
that there are no “second chances” and one may be unable
to return to known states. In such situations, one must treat
exploration strategically and with great caution to avoid acci-
dents (Klenske & Hennig, 2015). Imagine visiting a country
with left-hand traffic from a country with right-hand traffic.
Strategically exploring in order to learn how to drive on the
left side could allow you to make your mistakes on the quiet
roads first before hitting the highway. Moreover, as turning
right will be more difficult than you are used to, practicing
how to turn right is more important than practicing how to
turn left and therefore should be exercised more frequently.

In machine learning, problems of planning under uncer-
tainty have been approached via Bayesian reinforcement
learning (BRL; Poupart, 2010), which assigns probabilistic
beliefs over the dynamics of a system and the costs of states
and actions in order to reason about potential changes to be-
liefs from future observations, and their influence on future
decisions (Duff, 2002). BRL provides a useful framework
for assessing strategic exploration behavior as we do here.
More specifically, we will make use of the duality between
reinforcement learning and control, that is tasks in which an
agent has to keep a system at a certain state in order to gener-
ate rewards (Feldbaum, 1960; Klenske & Hennig, 2015).

In what follows, we will assess how participants exert con-
trol within a novel control paradigm. Therein, strategic explo-
ration allows them to produce greater long-term rewards —
formally, within a non-episodic, finite-horizon system with
initially unknown dynamics. We will build on recent work by
Klenske & Hennig (2015) and assess behavior in two tasks:
one in which, due to time-varying state costs, exploration can
be delayed until it is more opportune; and one in which the
learning agent can distinguish between more and less impor-
tant exploration of directional actions. We first discuss in
more detail the task and the three perspectives on exploration
in control theory passive,agnostic and strategic exploration.
We then assess qualitative predictions derived from these in
two experiments. We find participants’ behavior to be more
in line with predictions derived by strategic exploration.

1047



Control task
In a simple computer game, participants have to navigate a
boat as it crosses a sea towards regions in which they can
earn a higher bonus. The boat moves incrementally from left
to right and by changing its current angle of direction (see
Figure 1), participants could attempt to steer the boat up or
down, so as to remain in calm waters (blue) and avoid perilous
rough seas (red). The overall goal of the game was to min-

Figure 1: Example path in Experiment 1, Free Late condition. Star
= starting position at t = 0, circles = subsequent positions. On each
trial, the gray arrow shows contribution of underlying current and
black arrow contribution of control angle. At t = 0 the participant
takes a control angle of 0 and drifts upward. On the 10 subsequent
trials they attempt to counteract this upward drift by setting a nega-
tive angle. During the free exploration stage they use wider angles
to explore the variation in the strength of the current at different y
positions. This allows them to discover that strength of the current is
strongest in the center, approaching zero toward the top, constantly
pulling the boat upwards.

imize the “cost” of the voyage while simultaneously learn-
ing both how to control their boat and about an underlying
position-dependent “current” that drags the boat off course.
In some periods, the area of low cost was very narrow, while
in other periods, the area was very wide. Analogous to real
sailing, participants had to learn to control the boat through
experience, by trying different angles and observing the ef-
fect on the boat’s position. This exploration is costly when
the low-cost region is narrow, whilst exploration is almost
“free” when the low-cost region is very wide.

Our control task is adapted from Klenske & Hennig (2015).
Therein, the boat is influenced by two factors, its current
position x1 and an underlying current x2. This means that
where the boat will end up on the next trial is influenced
by the chosen angle, its current position, and the underly-
ing current which is determined by an unknown nonlinear
function. Within our experiments, the underlying current de-
creased from its full strength in the middle of the sea to zero
at the upper and lower edges, and constantly pulled the boat
upwards. For example, if participants entered the angle of 0
in the center of the sea, the boat would be pulled upwards

more than if they entered the same angle at another position
further up. Formally, at each time t, the (vertical) position of
the boat, yt , depends on a two-dimensional latent state vari-
able xt and independent random noise γt as

yt = Cxt + γt γt ∼N (0,σγ). (1)

The latent state depends through a nonlinear function on the
previous latent state, the controller input (i.e., the chosen an-
gle) ut , and additional noise ξt , as:

xt+1 = Aφ(xt)+But +ξt ξt ∼N (0,Σξ), (2)

where

Aφ(xt) =

[
1 0.4
0 1

][
x1,t
x2,t

]
+

[
0 0
θ1 θ2

][ 1
1+ex1,t+5

1
1+e−x1,t+5

]
, (3)

θ = [0.8,0.4]>, and B = [0,1]>. The underlying drift is deter-
mined by the shifted sigmoid functions on the right-hand side
of Equation 3. Given a finite-time horizon with terminal time
T , the following quadratic cost function was used:

L(x,u) =
T

∑
t=0

(xt − rt)
>Wt(xt − rt) (4)

where r = [r0, . . . ,rT ] is the target trajectory and Wt the time-
varying state cost. The goal of the controller is to find the
action sequence u = [u0, . . . ,uT ] that minimizes the expected
cost (and thereby maximizes the expected reward) to the hori-
zon T .

Control strategies
Controlling a system as defined in Eqs. (1) – (3) is difficult,
as the state dynamics are nonlinear with an unknown function
φ and parameters A and B. The controller then not only needs
to control the states in accordance to the reference path r, but
also learn the parameters (and functions) in order to derive a
good control strategy u. Thus, the controller not only needs
to control the states, but also control her knowledge about the
model, hence the term dual control.

We will now provide a description of the three different
forms of exploration mentioned earlier, and their qualitative
predictions in the present control task. The predictions are
shown graphically in Figure 2 for the variants of the task used
in Experiment 1, which tests whether participants will post-
pone exploration until it is most opportune, and Experiment
2, which tests whether participants perform strategic (direc-
tional) exploration.

Passive exploration by certainty equivalence
A certainty equivalence controller completely ignores uncer-
tainty about the dynamics and derives a control strategy as
if the current (mean) estimates of the system are accurate and
knowledge about the system is perfect. Effectively, any learn-
ing about the system happens passively, as the control strat-
egy does not focus on minimizing uncertainty. As no active
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A B C

Figure 2: Control environments and qualitative model predictions for Experiment 1 and 2. The agent moves one step right each time point
(trials are delimited by white vertical lines) and can control the angle upwards/downwards in which a boat is steering. The background color
represent the cost function; the more red, the lower the score; dark blue areas mark free exploration trials. Qualitative model predictions taken
from Klenske & Hennig (2015) are represented by horizontal line called ’predictive regions’. Black lines represent the predictive region for
passive exploration, white lines for agnostic exploration, and purple lines for strategic exploration. The more space between the horizontal
lines at a trial, the wider the region and the higher the expected variance of the controller’s actions.
A: Strategic exploration holds off exploration until it comes at lower cost (broader trust region during the dark blue patch) and consequently
performs better than passive exploration later on (narrower trust region).
B: If free exploration phase is moved to the end, strategic exploration explores less overall and expedites exploration to earlier, more costly
stages, thereby reducing performance early on in order to achieve the best performance later on.
C: Instead of agnostically exploring both directions in the same way, strategic exploration uses the free exploration phase to try to move in a
trajectory which is rewarding in the future, thereby performing better later on.

exploration is encoded into this model, it might miss out on
important information that could be beneficial to produce bet-
ter rewards later on. This form of control predicts no explo-
ration, even when exploration is ‘free’ and beneficial to future
rewards.

Agnostic exploration by exploration bonus
To promote exploration, a straightforward adaptation of the
certainty equivalent controller is to introduce a Bayesian ex-
ploration bonus. Effectively, this means adapting the cost
function so that the costs of actions which reduce uncer-
tainty in the model of the control dynamics–as measured by
the standard deviation of the posterior distribution over the
parameters at each observation point–is temporarily reduced
(cf. Srinivas, Krause, Kakade, & Seeger, 2009). This model
is still myopic as it only considers uncertainty at the current
control step. Moreover, exploration is not strategic, as all
uncertainty is treated equally and it does not take into ac-
count what knowledge might be most important later on. Un-
der agnostic exploration, the expected behavior would be the
attempt to identify all uncertain components, irrespective of
their future usefulness.

Strategic exploration as dual control
BRL involves reasoning about the effect of actions on future
rewards and beliefs. Where an exploration bonus renders re-
ducing uncertainty rewarding in itself, in BRL, reducing un-
certainty is only attractive insofar as it is expected to result in
an increase in future rewards. Optimal BRL requires deter-
mining the consequences of strengthening beliefs on future
rewards, thereby finding the optimal balance between explo-
ration and exploitation. Unfortunately, the optimal solution
to the dual control problem of simultaneously controlling the

system as well as possible given current knowledge (exploita-
tion) and learning about the system through experimentation
in order to control it better later on (exploration), is known to
be intractable.

Approximate dual control involves three conceptual steps
which together yield what, from a contemporary perspec-
tive, amounts to an approximate solution to Bayesian RL:
First, determine the optimal trajectory under the current mean
model of the system (as in certainty equivalent control). Sec-
ond, construct a local quadratic expansion around the nom-
inal trajectory that approximates the effects of future obser-
vations. Third, within the current time step t, perform the
prediction for an arbitrary control input ut and optimize ut nu-
merically by repeated computation of steps 1 and 2 at varying
uk to minimize the approximate cost (see Klenske & Hennig,
2015, for implementation). Approximate dual control does
not treat all exploration equally but rather explores strategi-
cally by, for example, holding off exploration until it is less
costly or by exploring actions that will become important
later on.

Experiment 1: Holding off exploration
Our first experiment was designed to test passive exploration
against both agnostic and strategic exploration by including a
low-cost period which was either introduced relatively early
(“Free Early” condition) or at the end of the task (“Free Late”
condition). When a low-cost period is introduced early, con-
trollers can make good use of it to explore and better their
performance in later periods, while exploring in a low-cost
period at the end of the task is not beneficial as there are no
later rewards to reap.

Both conditions experienced an initial stage of medium
state costs (see Figure 2). However, whereas for the Free
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Early condition that stage is followed by a stage of free ex-
ploration (no costs of errors) which then leads to a stage of
very high cost, the Free Late condition experiences the stage
with high state costs first before then experiencing the stage
with no costs (the two stages are swapped).

We expected participants to behave as strategic controllers
and to initially hold off exploration in the Free Early condi-
tion until it comes at no cost in the low-cost period, allowing
them to be prepared for the most difficult final stages. In con-
trast, participants in the Free Late condition were expected
to explore more in the initial period, in order to be prepared
for the second, most difficult stage. In addition, we expected
participants in the Free Late condition to explore less in the
low-cost period compared to those in the Free Early condi-
tion, as late exploration no longer brings benefits if the task
is nearly over. Finally, we expected participants in the Free
Early condition to generally perform better than participants
in the Free Late group, as early exploration would enhance
their knowledge of the system for the remainder of the task.

Design
The manipulation involved changing the order of the refer-
ence trajectory (the state values that would produce the high-
est rewards) and state weightings.

In the Free Early-condition the reference trajectory and
state weightings were:

r1:22 =

[
0
0

]
r23:28 =

[
7
0

]
r29:30 =

[
0
0

]
r31:36 =

[
−7
0

]
r37:40 =

[
0
0

]
and

W1:10 =

[
1 0
0 0

]
W11:20 =

[
0 0
0 0

]
W21:40 =

[
10 0
0 0

]

In the Free Late condition, these were:

r1:12 =

[
0
0

]
r13:18 =

[
7
0

]
r19:20 =

[
0
0

]
r21:26 =

[
−7
0

]
r27:40 =

[
0
0

]
and

W1:10 =

[
1 0
0 0

]
W11:30 =

[
10 0
0 0

]
W31:40 =

[
0 0
0 0

]

Materials
Participants were told that they had to navigate a boat through
the sea in a sailing competition. On every trial, their boat was
at a current position (yt ) and they had to determine an angle
(ut , between -180◦ and 180◦) in which they wanted to sail.

Additionally, they had different target areas (rt ) on each trial
marked by dark blue colors and how far they were off from
the target area was penalized differently (based on Wt ). An
example trial from the task (for the Free Early condition) is
depicted in Figure 1.

The cost function was shown to participants through the
color of each position in the sea. Participants could earn be-
tween 0 (positions with a red background) and 100 points (po-
sitions with a blue background) per trial.

Participants
Sixty-one participants were recruited via Amazon Mechani-
cal Turk and received $1 and a bonus of up to $1. Thirty-nine
participants were male and the mean age was 31.3±8.4.

Results
The distribution of boat position, as well as average chosen
angles, are depicted in Figure 3. We can see that, overall,
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Figure 3: Boat positions by condition in Experiment 1. The heat map
reflects number of participants who were at that position on a given
trial. Error bars represent the standard error of the average position
per trial. Arrows indicate the average chosen angle. Black dots mark
the target trajectory and periods with different state weights are de-
limited by vertical lines.

participants managed to steer the boat reasonably well. A
linear regression of condition, cost function weights (coded
as dummy variables), and trial number onto participants’
scores (see Table 1) showed that, unsurprisingly, cost function

1050



weights had the largest effect on participants’ scores. More-
over, performance increased significantly over trials. Impor-
tantly, condition affected overall performance, such that par-
ticipants in the Free Early condition performed better than
participants in the Free Late condition. This confirms the hy-
pothesis that participants would benefit from early free explo-
ration.

Table 1: Regression estimates for Experiment 1. r2 = 0.38.

Estimate Std. Err. t value Pr(>|t|)
Intercept 99.9 2.76 36.2 0.000

Condition -3.04 1.07 -2.84 0.004
Med. cost: 1 -15.7 2.13 -7.39 0.000

High cost: 10 -47.3 1.30 -36.3 0.000
Trial 0.18 0.07 2.61 0.009

Another hypothesis was that participants in the Free Early
condition would explore more during the free exploration
stage than participants in the Free Late condition. Confirming
this hypothesis, the participant-wise variance of chosen an-
gles during the free exploration stage was significantly larger
for the Free Early condition than for the Free Late condi-
tion (t(59) = 2.62, p < 0.01). As such, participants indeed
seemed to strategically adapt their exploration behavior to the
underlying cost function.

While we expected participants in the Free Late condition
to explore more in the initial stage of medium difficulty than
those in the Free Early condition, a similar test to the one
above did not confirm this (t(59) = 0.63, p > 0.5). As such,
there is no clear evidence that participants in the Free Late
condition used the medium difficulty period to explore in or-
der to perform better in the high-difficulty period.

Overall, participants in Experiment 1 showed hallmarks of
strategic exploration. However, they did not explore as vigor-
ously as approximate dual control predicted, often only doing
so during completely free exploration periods. As soon as ex-
ploration is somewhat costly, participants seem to shift focus
back to normal (perhaps certainty-equivalence based) control,
thereby more conservatively trading off between exploration
and exploitation.

Experiment 2: Directional exploration
The second experiment was designed to distinguish between
agnostic and strategic exploration, involving the explicit ex-
ploration of directional actions. The design was again based
on ideas put forward by Klenske & Hennig (2015). In both
conditions, a free exploration phase was followed by a high
difficulty period, in which controllers either had to move the
boat first up then down again (Up-Down condition) or first
down and then up again (Down-Up condition).

If exploration is indeed strategic rather than agnostic and
simply based on an exploration bonus, then participants in the
Up-Down condition should focus exploration in the free ex-
ploration phase on first learning to travel precise increments

upwards and then precise increments downwards, whereas
participants in the Down-Up condition should explore to do
the opposite, as knowledge about these actions will be useful
later on. Note that mimicking the later target trajectory dur-
ing the free exploration phase is better then trying upwards
and downwards movements at one position as the current, and
with that the effect of a chosen angle on the position, varies
nonlinearly depending on the boat’s position.

Design
The underlying dynamics were exactly the same as in Ex-
periment 1. The manipulation solely concerned the reference
trajectory, which for the Up-Down condition was:

r1:23 =

[
0
0

]
r24:26 =

[
3
0

]
r27:29 =

[
5
0

]
r30:32 =

[
7
0

]
r33:35 =

[
5
0

]
r36:38 =

[
3
0

]
r39:40 =

[
0
0

]
And for the Down-Up condition, the reference trajectory was:

r =−r

The state weighting was the same for both groups:

W1:2 =

[
1 0
0 0

]
W3:21 =

[
0 0
0 0

]
W22:40 =

[
10 0
0 0

]

Materials
Participants were again told that they were taking part in a
sailing contest. Participants in the Up-Down condition were
then shown the control environment sketched out in Figure 2
(right panel), whereas participants in the Down-Up condition
experienced the same control environment but flipped around
the center horizontal axis.

Participants
Forty-six participants were recruited via Amazon Mechanical
Turk and received $1 and a bonus of up to $1. 16 participants
were female and the mean age was 34.32±11.17.

Results
Figure 4 shows participants’ boat position by group. Again,
participants seemed to be able to learn how to steer the boat
towards its targets in both groups. As before, we performed
a linear regression of the weights, trials and condition onto
participants’ score (see Table 2).

The weights had again the largest effect on participants’
scores and participants’ scores improved over time. There
was no significant difference between the scores of the two
conditions.

Strategic exploration is visible in the Up-Down condition
as participants’ mean position goes up and then down again,
thereby showing clear signs of practicing the route to come.
This can also be found by testing the difference between con-
dition’s average position during times of free exploration,
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Figure 4: Boat positions by condition for Experiment 2. See legend
of Figure 3 for further details.

Table 2: Regression estimates for Experiment 2. r2 = 0.45.

Estimate Std. Err. t-value Pr(>|t|)
Intercept 97.8 2.72 35.9 0.000

Condition 0.23 1.75 0.13 0.89
Med. cost: 1 -11.3 1.69 -6.56 0.000

High cost: 10 -26.6 1.37 -19.4 0.000
Trial 0.16 0.06 2.41 0.01

which was significantly higher for the Up-Down condition
(t(44) = 3.21, p < 0.01). Strategic exploration was not as
pronounced in the Down-Up condition, as the mean position
seems closer to a straight line than the later target trajectory.
Since the prevailing current would nudge any passive partic-
ipants who aimed straight ahead upward, a bias toward the
upper half is to be expected in both conditions. There is no
evidence that participants in the Down-Up condition explored
less, as there was no difference in the variance of chosen in-
puts during the free exploration phase between the conditions
(t(44) =−0.32, p > 0.75). Participants in the Down-Up con-
dition chose angles which were on average more downwards
during the first 10 trials (t(44) = −3.17, p < 0.01). Thus,
perhaps participants in the Down-Up condition also explored
strategically, but were less able to steer the boat in a clear and
consistent “practice run” of the desired future route.

Discussion and Conclusion
Scenarios in which we have to explore to effectively exploit
dynamical systems are ubiquitous in daily life. We introduced
a novel control task and assessed to what extent people’s ex-
ploration can be seen as a strategic, opportunistic, and goal-
directed behavior.

We found that participants displayed hallmarks of strate-
gic exploration, exploring differently depending on the cost
function and, in some cases, practicing part trajectories which
would become important later on. However, strategic explo-
ration seemed more conservative than that of an idealized ap-
proximate dual control strategy. During periods of medium
cost, participants seemed reluctant to explore in order to ben-
efit their performance during a following high-cost period in
Experiment 1. For controllers who learn and choose actions
more noisily than statistical algorithms, perhaps the future
benefits of this costly exploration did not outweigh the imme-
diate costs. Participants also did not always play out strate-
gies of future importance during free exploration trials as in-
dicated by Experiment 2. As participants in the Up-Down
condition could easily follow the underlying upward-current,
participants in the Down-Up condition had to go against the
current in order to explore strategically. Therefore, the dif-
ference in exploration behavior could imply that, for humans,
serendipity still plays a part in discovery of effective explo-
ration strategies.

As strategic exploration requires considerable planning,
even when dual control is approximate, it is likely to require
considerable mental effort. Future research could look into
possible heuristics which approximate strategic exploration
whilst further reducing computational costs.
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Abstract 

To make inferences about the frequency of events in the 
world (e.g., the prevalence of diseases or the popularity of 
consumer products), people often exploit observations of 
relevant instances sampled from their personal social network. 
How does this ability to infer event frequencies by searching 
and relying on personal instance knowledge develop from 
childhood to adulthood? To address this question, we 
conducted a study in which children (age 8–11 years) and 
adults (age 19–34 years) judged the relative frequencies of 
first names in Germany. Based on the recalled instances of the 
names in participants’ social networks, we modeled their 
frequency judgments and the underlying search process with a 
Bayesian hierarchical latent-mixture approach encompassing 
different computational models. We found developmental 
differences in the inference strategies that children and adults 
used. Whereas the judgments of most adults were best 
described by a noncompensatory strategy that assumes limited 
and sequentially ordered search (social-circle model), the 
judgments of most children were best described by a 
compensatory strategy that assumes exhaustive search and 
information aggregation (availability-by-recall). Our results 
highlight that already children use instance knowledge to infer 
event frequencies but they appear to search more exhaustively 
for instances than adults. One interpretation of these results is 
that the ability to conduct ordered and focused search is a 
central aspect in the development of noncompensatory 
instance-based inference. 

Keywords: child development; sampling; probabilistic 
inference; heuristics; availability 

Introduction 

The relative frequency of events in the world is an important 

ecological characteristic that impacts many actions and 

decisions. For instance, the relative frequency of other 

people’s behaviors hints at social norms that should be 

followed; the number of people having bought different 

products may indicate differences in product quality that 

influence consumer choice; and the prevalence of diseases 

hints at health risks that may guide precautionary actions. 

Decision makers commonly do not have access to summary 

tables of these frequency statistics but need to infer them. 

An easily accessible but informative indicator for event 

frequencies in the population is their occurrence among the 

people one knows personally. That is, by searching for 

relevant instances in their personal social network people 

can collect a variety of information about the frequency of 

events in the world, and use this information to form 

subjective frequency judgments. In this paper, we examine 

how this ability to search proximate social spaces to judge 

the relative frequency of events develops from childhood to 

adulthood.  

Previous work has garnered much insight into how adults 

make instance-based inferences. Most prominently, 

according to Tversky and Kahneman’s (1973) availability 

heuristic, adults judge the frequency of events by assessing 

the ease with which instances of the events can be brought 

to mind. More recent research has elaborated the specific 

mechanisms guiding this search in and retrieval from 

mnemonic sample spaces. For instance, it has been shown 

that adults often restrict search to directly experienced 

instances in their social circles and that these social circles 

are searched sequentially (e.g., Hertwig, Pachur, & 

Kurzenhäuser, 2005; Pachur, Hertwig, & Rieskamp, 2013). 

Yet, currently only little is known about how search for 

information in proximate social spaces develops 

ontogenetically. Do already children exploit their social 

memories to draw inferences about the frequency of events 

in the world? And if so, how much do they sample, in which 

order do they consult social circles, and how do they 

integrate the information to draw inferences? Existing 

developmental work on judgment and decision making is 

consistent with opposing predictions. On the one hand, 

working memory limitations may confine young children to 

using information-frugal strategies because processing and 

integrating large amounts of evidence may be difficult (e.g., 

Bereby-Meyer, Assor, & Katz, 2004). On the other hand, 

limitations in the ability to selectively focus attention on 

relevant information may lead young children to use more 

exhaustive but unsystematic search strategies (e.g., 

Davidson, 1991; Mata, von Helversen, & Rieskamp, 2011).  

To disentangle these opposing predictions, we first 

introduce the social-circle model, a cognitive process model 

that parameterizes key components of the inference 

process—including search order, evidence threshold, and 

response noise. Second, we take a Bayesian hierarchical 

mixture approach to modeling the inferences of children and 

adults in a task in which they made judgments about the 

relative frequency of common first names in Germany. 

The Social-Circle Model 

To model people’s inferences based on recalled instances, 

Pachur et al. (2013) proposed that people search 
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sequentially through the circles of their social network—

defined as self, family, friends, and acquaintances—and 

stop search as soon as the instance evidence in a circle 

allows them to make an inference. It is thus assumed that 

people’s search for relevant instances is guided by the well-

documented hierarchical structure in the ordering of discrete 

social groups that make up a person’s social network (e.g., 

Hill & Dunbar, 2003; Milardo, 1992), which has also been 

shown to be important for search in social memory (e.g., 

Hills & Pachur, 2012). Adults’ frequency judgments have 

been found to be equally well described by a model that 

assumes such a noncompensatory strategy and by a more 

exhaustive, compensatory search strategy (Pachur et al., 

2013). Here, we formalize and extend the assumptions in 

Pachur et al.’s (2013) analysis and propose a generalized 

social-circle model (SCM) that allows for variability in the 

order in which circles are inspected and for probabilistic 

aspects in the search, stopping, and decision stages of 

inference.  

The SCM assumes that in order to judge which of two 

events, A or B, is more frequent in the population, decision 

makers search distinct social circles, defined as self, family, 

friends, and acquaintances. At each inspected circle i the 

evidence, ei, is represented as the difference in the number 

of instances recalled for each event, expressed as a 

proportion:  

�� = ���
�������

− ���
�������

.  (1) 

Search Rule 

The order in which the circles are inspected is represented 

by circle-weight parameters, one for each circle (wi; 

constrained by ∑ �� = 1; see Bergert & Nosofsky, 2007), 

that can be estimated from the data. These weights represent 

the probability that a circle is inspected as 

�������	�������� = ��
∑ ��

�
.  (2) 

Once a circle has been inspected, it is not considered further 

(i.e., the denominator is calculated only over circles that 

have not yet been inspected). Note that search is thus 

assumed to be probabilistic. The probability of following a 

particular search order �������� is given by the product of 

the individual probabilities of circle inspection, 

�������� = ∏ �������	��������� . (3) 

Stopping Rule 

In the SCM it is assumed that the proportional evidence 

obtained from each circle is compared against a decision 

threshold, d. If the evidence from the recalled instances 

reaches or exceeds the threshold, a choice is made; if it is 

lower than the threshold, the next circle is inspected. The 

SCM implements a probabilistic version of this stopping 

rule by assuming normally distributed error for each circle, 

denoted as εi, generated from a normal distribution with 

mean zero and standard deviation σ. Specifically, it is 

assumed that, if the evidence in a given circle (with added 

error) meets or exceeds d, then the decision maker selects 

option A (i.e., |�� + "�| ≥ �); if the evidence meets −d, then 

the decision maker selects option B (i.e., |�� + "�| ≤ −�). 

Thus, the probability of making a choice after inspection of 

circle i is given by 

���ℎ����� = 	�|�� + "�| ≥ ���  

                  	= 	��� + "� ≥ ��� + ��� + "� ≤ −��� 

                   = Φ '(�)*�
+ , + Φ ')(�)*�

+ ,,        (4) 

where Φ(·) is the standard normal cumulative distribution 

function.  

Decision Rule 

The probability of selecting option A based on a particular 

order, ��-|-.�, follows from combining the choice 

probabilities resulting from circle inspection in that order 

(cf. Rieskamp, 2008). For example, for the order j = 1,2,3,4: 

�/0,2,3,4�-|-.� = 0�-|-.� + 51 − 0��ℎ�����6 × 

							2�-|-.� + 51 − 0��ℎ�����6 × 51 − 2��ℎ�����6 × 

							3�-|-.� + 51 − 0��ℎ�����6 × 51 − 2��ℎ�����6 × 

						51 − 3��ℎ�����6 × 4�-|-.�.          (5) 

The total probability of selecting option A is defined as the 

sum of all ��-|-.�, each weighted by the probability of 

the decision maker following the order (see Equation 3): 

�-|-.� = ∑ ��-|-.� × ��������8!
�/0 .  (6)  

In sum, the SCM parameterizes three key components of 

instance-based inference: the decision maker’s preferred 

search order (circle weight parameters, wi), evidence 

threshold (d), and response noise (σ). Thus, depending on its 

parametrization, the model can capture various 

noncompensatory inference processes. In what follows, we 

apply the SCM to inference data from an experiment in 

which children and adults were asked to judge the relative 

frequency of common first names in Germany, and examine 

how well it accounts for participants’ inferences compared 

to a compensatory strategy and a guessing strategy.  

Experiment 

Method 

Participants Forty children (age 8–11 years; 18 female) and 

40 adults (age 19–34 years; 19 female) who were recruited 

via the subject pool of the Max Planck Institute for Human 

Development participated in the experiment. The data of 

five additional children were excluded from the analysis 

because the children showed insufficient reading-

comprehension (two children aged 7 years); did not recall 

any or only one instance for each name in the same social 

circle, yielding a guessing prediction for instance-based 

models on every trial (two children); or terminated the 

experiment prematurely (one child). Participants received a 

performance-based payment (earning 0.04 EUR for each 
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correct inference but losing the same amount for each 

incorrect inference; 1 EUR ≈ 1.12 USD at the time of the 

experiment), and an additional flat fee of 10 EUR. 

Materials Table 1 lists the 22 first names (11 female) that 

were used in the experiment. Because no census data about 

the frequency and distribution of first names in Germany 

was available, we approximated a frequency ranking by 

weighting popular baby names between 1911 and 2010 

(Bielefeld, 2016) with each cohort’s proportion in the 

population to date (Statistisches Bundesamt, 2014).
1
 We 

constructed a set of all possible 231 paired comparisons of 

the names, and informed participants that the accuracy of 

their inferences was judged on the basis of the available 

data. Participants were instructed to ignore the particular 

spelling of each name and to judge the relative frequency of 

names by taking possible variants of a name into account. 

Procedure The experiment consisted of two tasks, an 

inference and a retrieval task, that were completed by all 

participants in this order. In the inference task, participants 

were asked to judge which of two first names is more 

frequent in Germany for each of the 231 name pairs. The 

pairs were presented sequentially on a computer screen in 

blocks of 23 pairs (24 pairs in the final block). The order in 

which name pairs were presented was randomized across 

participants; the order of names in each pair was 

predetermined so that correct and incorrect inferences 

(according to our statistics) were distributed equally across 

the two response alternatives. Each trial started with the 

display of a fixation cross at the center of the screen, 

followed by the presentation of two black silhouettes (either 

male or female) which were labeled with the respective 

names in the comparison (see Figure 1A). Participants made 

a selection by pressing one of two designated keys on the 

keyboard. After each choice, the selected name’s silhouette 

was shown on a podium at the center of the screen to 

confirm the selection to the participant. There was no trial-

by-trial feedback about the accuracy of decisions. 

Participants were encouraged to make as many correct 

judgments as possible. There was a self-paced pause after 

each block and participants completed two training trials 

with fictitious names before the start of the inference task. 

In the retrieval task, participants were asked to recall how 

                                                           
1 We scored the top 30 male and top 30 female first names 

between 1911 and 2010 in Germany (Bielefeld, 2016) on a scale 

from 30 (for the most popular male/female name in a year) to zero 

(for names not listed during a year). These scores were then 

weighted, for each gender separately, by the proportion of people 

in the German population who belong to the cohort (Statistisches 

Bundesamt, 2014). We selected the most popular male and female 

name in each decade based on the summed raw scores each name 

received across these ten-year periods. In addition to these 20 most 

popular names from each decade, we selected the most frequent 

male and female name in the population (that was not already in 

the list) based on the total sum of the weighted scores across all 

years. Finally, the 22 selected names were ranked based on the 

sum of their weighted scores across all years. 

Table 1: The 22 first names used in the experiment, their 

approximated frequency rank in Germany, and the total 

number of instances children and adults recalled from their 

own social networks. 

 

Name Gender Rank 

Total number of recalled 

instances 

Children Adults 

Michael m 1 35 66 

Thomas m 2 34 72 

Peter m 3 29 45 

Andreas m 4 34 65 

Jan m 5 40 67 

Hans m 6 22 26 

Christian m 7 29 76 

Karin f 8 14 24 

Ursula f 9 4 15 

Julia f 10 34 78 

Anna f 11 41 70 

Sabine f 12 29 44 

Stefanie f 13 24 58 

Renate f 14 19 20 

Helga f 15 18 17 

Günter m 16 11 16 

Tim m 17 40 43 

Horst m 18 11 17 

Angelika f 19 16 27 

Lukas m 20 39 46 

Hannah f 21 42 44 

Gertrud f 22 6 9 

 

many people with each of the 22 names shown in Table 1 

they knew personally. For each name, participants counted 

each person among their family, friends, and acquaintances 

with that name by dragging and dropping pictorial 

representations of family members, friends, and 

acquaintances on a black silhouette labeled with the 

respective name (see Figure 1B). Following the retrieval of 

a person, participants were also asked to indicate their 

contact frequency with that person on a scale from one (less 

than once every six months) to five (multiple times per 

week). Additionally, participants could allocate a pictorial 

person labeled “self” to indicate the shown name was their 

own. Each recalled person was listed on the screen and 

counted toward an overall tally of persons with a particular 

name also shown on the screen. Before the start of the 

retrieval task, a training trial familiarized participants with 

the controls of this task. At the end of the experiment, 

participants were informed about their overall accuracy on 

the inference task and paid in cash by the experimenter. 

Bayesian Hierarchical Mixture Modeling Based on the 

instances of names that each participant recalled from their 

social network in the retrieval task, we modeled each 

participant’s decisions in the inference task with a Bayesian 

latent-mixture approach (see, e.g., Bartlema, Lee, Wetzels, 

& Vanpaemel, 2014). Hierarchical mixture modeling allows 
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Figure 1: Illustration of the task screen and controls used 

during the inference task (A) and retrieval task (B). 

 

us to simultaneously estimate discrete classes of participants 

who use categorically different inference strategies and to 

robustly model variation within each group of strategy-

users, thus combining the advantages of pooling continuous 

individual differences hierarchically and assuming discrete 

differences among groups of individuals. We assumed three 

latent subgroups of participants, each using a different 

inference strategy: (a) the social-circle model, (b) 

availability-by-recall, which assumes a compensatory 

process (Hertwig et al., 2005; Pachur, Hertwig, & 

Steinmann, 2012), and (c) a random guessing strategy. 

According to availability-by-recall, all instances of an 

event are tallied across the entire social network and the 

option with the larger summed instance-evidence is chosen. 

For comparability, we applied the same response noise 

mechanism as for the SCM, which gives the probability of 

choosing option A as  

:;<�-|-.� = Φ '��)��
+ ,,  (7) 

where nA denotes the number of instances recalled for event 

A across all circles and σ is a response noise parameter. For 

the guessing strategy, we assumed that participants 

randomly selected one of the two names in each pair with 

probability .50. With this approach, we can estimate the 

proportion of participants using each strategy based on 

inference and recall data while taking into account the 

uncertainty surrounding such a classification. We modeled 

participants’ inferences for all paired comparisons on which 

a participant’s instance knowledge allowed each strategy to 

make an unambiguous prediction. The two instance-based 

strategies did not make a prediction, if a participant recalled 

no or equal numbers of instances for both names in a 

comparison. The posterior distributions of model parameters 

were estimated via Gibbs sampling methods implemented in 

JAGS (Plummer, 2003). We used reasonably uninformative 

priors: For the wi and d parameters of the SCM we assumed 

uniform priors on the group-level mean (beta distributions 

with shape parameters of 1) and gamma priors (with a shape 

parameter of 1.1051 and a scale parameter of 0.01051; see 

Bartlema et al., 2014) on the group-level precision. For the σ 

parameters of the SCM and availability-by-recall we 

assumed uniform distributions constrained between 0.01–40 

on the group-level mode and standard deviation. For the 

latent-mixture indicator variable we assumed a categorical 

prior that assigned equal weight to each strategy.
2
 To ensure 

efficient mixing, we used pseudo-priors that approximate 

the posterior density for the individual-level parameters. 

These pseudo-priors were obtained from an initial Bayesian 

hierarchical estimation procedure that was performed 

separately for each model (without a mixture component). 

In the model estimation, 16 chains each with 50,000 

samples drawn from the posterior distributions were run 

after an initial burn-in period of 2000 samples. Gelman–

Rubin statistics and visual inspections of the four chains 

indicated adequate chain convergence. 

Results 

Behavioral Data We found differences between the age 

groups in inferential accuracy, t(78) = 5.17, p < .001, 

d = 1.16, BF10 = 8362, and in reported instance knowledge, 

t(60.00) = 4.68, p < .001, d = 1.05, BF10 = 1456. On 

average, adults picked the more frequent first name more 

often than children (M = .64 vs. M = .57) and recalled more 

people with any of the 22 first names in their social network 

(M = 23.63 vs. M = 14.28; see also Table 1). One possible 

reason for children’s lower inferential accuracy is that the 

instances they reported were less valid indicators of the 

actual frequency distribution of first names in the population 

(possibly because they recalled fewer instances overall). 

That is, for adults, there was a significant rank correlation 

between reported instances and actual frequency ranks, 

rS(20) = .524, p = .012, BF10 = 4.99. For children, however, 

no such correlation was found, rS(20) = .203, p = .364, 

BF10 = 0.39.
3
 

                                                           
2 For few participants, this resulted in the mixture collapsing on 

the SCM. For these participants, we used a prior that assigned low 

initial weight to the SCM (e.g., .001) and equal weight to the other 

two strategies. To ensure unbiased estimation of latent group-

membership, these unequal priors were taken into account in the 

calculation of membership probabilities. 
3 Yet children’s inferences were well calibrated to their cohort’s 

instances. Evaluating inferences based on a ranking derived from 

children’s reported number of instances, flips the accuracy pattern 

such that children significantly outperform adults, t(78) = −2.40, 

p = .019, d = −.536, BF10 = 2.70. 
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Figure 2: Allocation of adult and children participants to three latent subgroups of strategy users. 

 

Computational Modeling Figure 2 shows the membership 

probability of each adult (left panel) and each child (right 

panel) in each group of strategy-users, as derived from the 

posterior distribution of the latent-mixture variable. The 

figure shows that the judgments of most adults were best 

described by the SCM (55% of adults compared to 38% of 

children). By contrast, the judgments of most children were 

best described by availability-by-recall (48% of children 

compared to 40% of adults). Only few participants were 

best described by the guessing strategy. Overall, there was 

greater uncertainty in the classification of children to latent 

groups than in the classification of adults. This was partly 

due to the lower number of instances children recalled 

resulting in poorer discriminability between the models. 

Next, we compared children’s and adults’ search and 

decision processes by evaluating their group-level SCM 

parameter estimates. As shown in Figure 3, children and 

adults weighted the different circles in their social network 

similarly (although adults showed greater inter-individual 

variability in the weighting of different circles), applied 

similar decision thresholds, and did not differ on the 

response noise parameter (for all parameters, 95% HDIs 

overlapped). Children’s lower inferential accuracy was thus 

not due to a more error prone execution of an instance-based 

inference strategy. This also held for inferences described 

by availability-by-recall. 

Discussion  

Our results suggest that already children systematically 

exploit their instance knowledge to make inferences about 

the frequency of events in the world. However, they do so 

differently than adults. Whereas the judgments of most 

adults were best described by a strategy that assumes limited 

information search, the judgments of most children were 

best accounted for by a strategy that assumes exhaustive 

search. This finding echoes previous research on multi-

attribute choice and cue-based inference which has found 

young children to use more exhaustive but unsystematic 

search strategies (e.g., Davidson, 1991; Mata et al., 2011). A 

possible explanation for why children use more information-

intensive strategies is that they have difficulties to 

selectively attend to relevant and diagnostic information (cf. 

Betsch, Lehmann, Lindow, Lang, & Schoemann, 2016). In 

young children, this inability to effectively focus search may 

be driven by the required executive control functions being 

not yet fully developed (see Best & Miller, 2010). In light of  

 

 
 

Figure 3: Posterior distributions of the group-level 

parameters of the SCM. Small circles and diamonds below 

the density plots show the posterior means for adults and 

children, respectively; lines show 95% HDIs. 
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children’s more limited and less ecologically valid instance 

knowledge, their greater tendency to adopt exhaustive 

sampling strategies might represent an adaptive response to 

these limiting factors. However, it should also be noted that, 

due to children’s lower instance knowledge, the 

discriminability between models was lower, which might 

have contributed to the more balanced strategy classification 

in children as well. 

Our results extend previous research that has found 

children to use availability as a cue for judging the relative 

frequency of and their own memory for names (Davies & 

White, 1994; Geurten, Willems, Germain, & Meulemans, 

2015). This prior work, however, did not use cognitive 

modeling to formalize and quantitatively analyze the 

development and use of instance-base inference strategies. 

By taking a formal computational modeling-based approach, 

our analysis enabled us to simultaneously detect 

developmental differences in the use of discrete strategies 

and parameterize the specific mechanisms underlying search 

for instances in memory. This approach highlighted that 

children search for instances more exhaustively but weight 

the subgroups in their social network similarly as do adults. 

The analysis also revealed substantial individual differences 

in the process of search for instances in memory among 

both age groups. In this respect, the social-circle model that 

we applied provides an advantage over previously proposed 

models of instance-based inference (e.g., Tversky & 

Kahneman, 1973), which are silent regarding the specific 

mechanisms and order of instance sampling. 

We conclude that the social-circle model provides an 

effective tool for capturing and illuminating individual and 

group differences in the cognitive processes that underlie 

instance-based inference. The insights gained with this 

model are consistent with the finding that search in social 

memory is guided by factors such as social proximity (Hills 

& Pachur, 2012) and suggest that one important factor in the 

development of information-frugal strategies for judging 

frequencies is the ability to limit and selectively focus 

search on relevant instance knowledge. 
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Prior Expectations in Linguistic Learning: A Stochastic Model of Individual
Differences

R. Alexander Schumacher
Northwestern University

Janet Pierrehumbert
University of Oxford

Abstract: When learners are exposed to inconsistent input, do they reproduce the probabilities in the input (probability match-
ing), or produce some variants disproportionately often (regularization)? Laboratory results and computational models of
artificial language learning both argue that the learning mechanism is basically probability matching, with regularization aris-
ing from additional factors. However, these models were fit to aggregated experimental data, which can exhibit probability
matching even if all individuals regularize. To assess whether learning can be accurately characterized as basically probability
matching or systematizing at the individual level, we ran a large-scale experiment. We found substantial individual variation.
The structure of this variation is not predicted by recent beta-binomial models. We introduce a new model, the Double Scaling
Sigmoid (DSS) model, fit its parameters on a by-participant basis, and show that it captures the patterns in the data. Prior
expectations in the DSS are abstract, and do not entirely represent previous experience.
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Abstract 

Can grammatical gender influence how people conceptualize 
the referents of nouns? Using an implicit measure, we 
investigated whether such an effect could be found in a task 
where neither grammatical nor biological gender is 
highlighted. In the current study, conducted in English, 
speakers of French, German and Romanian with knowledge 
of English were asked to generate adjectives they associate 
with referents of nouns. Afterwards, the gender valence of the 
adjectives was measured. The results showed that participants 
generated more feminine adjectives for nouns with majority 
feminine translations compared to nouns with majority 
masculine translations. We found a stronger effect of 
grammatical gender for some semantic categories than for 
others. Significant effects of grammatical gender were present 
starting with the 2nd adjective generated by participants 
(effects were stronger for adjectives generated 2nd and 3rd by 
participants, as opposed to the 1st adjective). 

Keywords: grammatical gender; conceptualization; 
categorization; semantic features; representation 

Introduction 

Can the structure of the language you speak affect how you 

perceive and conceptualize the world around you? Although 

the question has a long history (see Koerner (1992) for an 

overview), the last two decades have seen an especially 

large increase in the amount of empirical work examining 

and testing the predictions that the different answers to it 

imply. This has lead to an accumulation of results showing 

that there are cases where differences in seemingly non-
linguistic aspects of cognition between speakers of different 

languages arise due to specific differences between the 

structures of those languages (see Wolff & Holmes (2011) 

for a survey). Nonetheless, the jury is still out on a number 

of questions aiming to flesh out the details of how, when 

and why linguistic differences can lead to differences in the 

operation of cognitive processes.  

One question that is not conclusively resolved is what 

types of effects language could have on cognition. Research 

supports, for example, the existence of effects of language 

that play a large role in the operation of some specific 
cognitive domains. Frank et al. (2012) shows that number 

words are a cognitive tool that, when suppressed, impairs 

Western college educated people’s ability to encode exact 

numerical values. Thus number vocabulary plays an 

important role in numerical cognition. Other work indicates 

that language also has some early effects on cognition. A 

body of research has shown that color vocabulary has an 

effect on categorical color perception (see Regier et al. 

(2010) for a review). There are also other types of effects 
and research indicates that cognitive differences between 

speakers of different languages arise due to the metaphors 

they use for talking about time, their frequency of use of a 

particular spatial frame of reference and knowledge of 

constructions for talking about mental states, among other 

differences (Wolff & Holmes, 2011). 

One unresolved issue is whether language could have 

broad or pervasive effects. Are effects of language only 

restricted to specific domains (e.g. specific color 

distinctions, numbers, orientation in space)? Or can 

differences in the structure of languages lead to broadly 
distributed effects across a wide range of contexts? For this 

question, it is worth examining grammatical features that 

apply to say all nouns (e.g., gender) or all verbs (e.g., tense). 

In this paper we consider the role of grammatical gender in 

shaping the way people think about things that are named by 

nouns – a very broad potential scope of influence. 

Grammatical Gender 

Grammatical gender is a system of categorizing nouns into 

distinct classes, i.e. genders, which manifests itself via 

morphologically marking what gender the noun belongs to 

on some of the words that that noun is morphosyntactically 
related to (Corbett, 1991). 

The forms that gender systems take vary. The ones that 

have garnered the interest in the research on the effects of 

language on cognition, however, usually share several 

properties. First, these systems have masculine and feminine 

genders, i.e. for nouns with human referents the assignment 

is fully semantic and dependent on biological sex, bar a 

small number of isolated exceptions in some languages. 

Second, the majority of nouns with non-human referents fall 

into the semantic residue, i.e. the category for which the 

assignment is based on the word’s phonological or 

morphological, but not semantic properties. Third, a number 
of words in the semantic residue is assigned to either 

masculine or feminine gender. Languages with such systems 

provide the opportunity to ask: can the conceptualization of 
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a noun’s referent accrue gendered properties because of the 

noun’s grammatical gender assignment? If so, grammatical 

gender could exhibit a broad and pervasive effect on 

concept formation, since, by having a gender system, a 

language requires all nouns to be assigned to one of the 

gender categories. This could result in a broad range of 
concepts acquiring gendered properties that would be absent 

otherwise. 

Why might we expect entities without biological sex to 

acquire stereotypically masculine or feminine properties as a 

result of being assigned to a grammatical gender category? 

As we mentioned, grammatical gender can be considered to 

be a system of noun categorization. Biological sex, in that 

case, is a highly diagnostic feature for determining the 

category assignment of nouns for humans. As the research 

on categorization indicates, diagnostic features better suited 

for differentiating between members and non-members of a 

category draw more attention to themselves (Tversky, 
1977). In addition, category features could develop or 

become accentuated in response to the requirements that 

tasks involving categorization impose (Schyns & Rodet, 

1997; Medin et al., 1993). This could mean that nouns 

belonging to a grammatical gender strongly associated with 

humans of a particular sex might acquire gendered 

properties just by virtue of being in those genders. Intuitions 

of native speakers of languages with grammatical gender for 

why nouns get assigned to their respective genders in their 

language supports this view (Basetti, 2011). 

Prior Research and the Goals of the Current Study 

A body of prior work supports the idea that grammatical 

gender influences conceptualization of objects and animals 

(Basetti & Nicoladis, 2016). For example, Konishi (1993) 

asked native speakers of German and Spanish to rate nouns 

on a variety of semantic differential scales in their native 

language. The words were either feminine in German and 

masculine in Spanish or vice versa. Subjects tended to give 

higher ratings on scales associated with potency for words 

that were masculine in their native language. In another set 

of experiments by Sera et al. (1994), Spanish and English 

speaking adults and children were asked to either give 
human names or assign male or female voices to pictures of 

objects. The results showed that older Spanish speakers 

tended to assign names and voices in these tasks in a 

grammatical gender-congruent fashion, which was not the 

case for English speakers or Spanish preschoolers.  Phillips 

and Boroditsky (2003) investigated the effects of 

grammatical gender by teaching native speakers of English1 

an artificial language with grammatical gender and analyzed 

whether it influenced their performance on a similarity-

rating task. The results indicated that participants rated 

pictures of humans and objects as more similar when they 

were in the same grammatical gender.  
However, other studies suggest that there are limitations 

                                                        
1  English does have pronominal gender, but not a full-fledged 

grammatical gender system. 

on when and how grammatical gender could have an effect 

on conceptualization. For example, Vigliocco et al. (2005) 

found an effect of animal name grammatical gender on 

similarity in a triad similarity judgment task when the 

stimuli were names of animals, but not when the stimuli 

were pictures of animals. Furthermore, the effect was not 
found for either names or pictures of artifacts. In another 

experiment, Kousta et al. (2008) asked participants to name 

pictures that appeared at a random location on the screen, 

and afterwards analyzed cases where participants’ produced 

an incorrect word. The subjects were either Italian or 

English monolinguals, or Italian-English bilinguals. The 

monolinguals responded in their native language, whereas 

the bilinguals participated in the experiment in both Italian 

and English. The results showed that the grammatical 

gender of the Italian noun describing the picture tended to 

affect the responses of Italian monolinguals - they preserved 

the grammatical gender of the target word almost twice as 
often as English monolinguals. The responses of Italian-

English bilinguals followed a pattern similar to Italian 

monolingual pattern when they were tested in Italian. When 

they were tested in English, however, their pattern of errors 

was similar to the one exhibited by English monolinguals. 

Ramos and Roberson (2010) examined how speakers of 

Portuguese conceptualize inanimate objects in a series of 

experiments using different methodologies and compared 

their responses to the responses of an English-speaking 

group. The authors found that the grammatical gender of an 

object’s name strongly influenced whether the Portuguese 
speakers assigned a male or a female voice to it, but had a 

smaller influence on the participant’s responses in word 

similarity rating task, or in a triad similarity judgment task, 

especially when the stimuli were pictures, and not words. 

These findings raise several issues. One alternative 

interpretation of the previously obtained effects is that they 

are by-products of task demands or of the particular stimuli 

that were used in the study. For example, when people are 

asked to give a name to an object, they might consciously or 

unconsciously understand that gendered information is 

important for this task. This seems especially likely when 

participants come from cultures where sets of male and 
female names have very little overlap, or when they are 

asked to give the name to something that can be very easily 

anthropomorphized, e.g. an animal. This then could lead to a 

pattern of responses that suggests an effect of grammatical 

gender on ingrained features of concepts, but that actually 

arose due to the demands of a particular context. Similar 

arguments could be made for other methodologies. 

Another possibility is that some of the results arise 

because of the influence of information contained in the 

experimental stimuli. Given a set of words, the ones that are 

more similar phonologically or morphologically are more 
likely to prime each other (Kinoshita & Lupker, 2004), and 

words in the semantic residue are assigned to a grammatical 

gender specifically based on their phonology or 

morphology. When a speaker of Spanish is participating in a 

semantic differential scale task and reads a masculine noun 
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ending in “o”, this weakly activates other words of similar 

morphology and phonology. That, supported by the 

experimental context, could lead to higher activation of 

frequently used words for human males and their properties. 

It, in turn, could lead to participants giving higher ratings to 

masculine words on scales associated with masculinity. 
The experiment described below aims to address these 

issues. Three groups of non-native English speakers whose 

native languages have grammatical gender systems were 

asked to generate adjectives for English nouns. The 

adjectives were then scored on how feminine or masculine 

they were, and adjectives generated for nouns differing in 

grammatical gender between the languages were examined. 

This design addresses the issues discussed above in the 

following ways. The manipulation is implicit - there is no 

way for participants to guess that gender is of interest in the 

study – they are simply given a list of nouns and asked to 

generate adjectives that describe the referent. The adjectives 
are generated for English words, which eliminates the 

possibility of phonetic or morphological similarity between 

words driving the effect.  

Methods 

Participants 

A total of 273 participants completed the study. Out of 

them, 99 were Romanian-English bilinguals (69 female; 

mean age = 24.03, SD = 6.83; mean English proficiency = 
4.38/5, SD = 0.62), 90 were German-English bilinguals (53 

female; mean age = 24.37, SD = 5.91; mean English 

proficiency = 4.08/5, SD = 0.80) and 84 were French-

English bilinguals (51 female; mean age = 28.96, SD = 

11.52; mean English proficiency = 4.38/5, SD = 0.64). 

Materials 

A total of 225 nouns served as stimuli. Out of them, 200 

were the most frequently used nouns in the English 

language based on the data from the Corpus of 

Contemporary American English (Davies, 2008). These 

words were used for several reasons. First, it decreases the 
possibility of an effect arising due to an unconscious 

experimenter bias in the choice of items. Second, these 

words are often encountered in written and spoken 

language, so their meaning is unlikely to be misunderstood 

by the participants. Lastly, the procedure allows for an 

easier selection of items in future experiments using a 

similar methodology, but examining speakers of languages 

other than the ones used in this experiment.  

We were also interested in examining whether the 

semantic category of the noun modulates what adjectives 

are generated for it, as previous work in the field has shown 
that the semantic category of the noun affects participants’ 

responses (e.g. Vigliocco et al., 2005). Because the list 

described above lacked nouns with animal referents, 25 such 

words were added to the stimuli.  

 

 

Procedure 

All of the instructions in the experiment were given in 

English. At the very beginning participants were asked to 

verify their native language proficiency by translating an 

English sentence.  

After this, the participants were informed that in the next 

part of the study they would see a list of nouns one by one, 

and that they would need to list the properties that they 

associate with their referents. For each noun the participants 

had to list three adjectives. Half of the participants were 

instructed to personify the nouns, i.e. imagine them as 
humans, and generate adjectives that would best suit those 

personifications, whereas the other half was not given 

personification instructions (and were instructed simply to 

produce adjectives). This was done in order to establish 

whether explicit invitations to personify (as when assigning 

names or voices) are necessary to induce effects of 

grammatical gender.  

Next, the participants continued onto the adjective 

generation portion of the experiment. This part of the study 

consisted of 225 trials. During each trial the participants saw 

an English noun from the stimulus set and were asked to 

generate three adjectives for it. The participants were 
presented with all of the items shown in a random order. 

After this, the participants were asked to translate all of 

the nouns they had encountered previously into their native 

language. At the end of the experiment, the participants 

filled in a questionnaire about their language background, 

education and residency.  

Post-Processing 

Grammatical Gender of Translations Some of the nouns 

were translated by the participants in multiple ways. For 

example, German participants translated English 

“difference” both as “(der) Unterschied” (masculine) and 
“(die) Differenz” (feminine).  

Due to this, we first established the grammatical gender 

for each of the translations generated by the participants.  

Afterwards, the number of translations belonging to each of 

the grammatical genders was calculated for each noun in 

each language. We call the most common grammatical 

gender among the noun’s translations in a particular 

language its most common gender (MCG) in that language. 
 

Noun Semantic Categories In order to analyze the effect of 

noun’s semantic category, each noun was categorized as 

being either an abstract noun, a noun denoting an animal, a 

body part or a concrete object by two coders. 

 

Noun Selection After the most common grammatical 

genders of the nouns were established, only the nouns that 

had most common masculine gender in one of the 

experimental languages, and feminine in one of the others 

were left for analysis, leaving a total of 68 nouns. In cases 

where the noun’s MCG in the third language was neuter, 
only adjectives generated by participants speaking the other 
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two languages were analyzed. 39 denoted abstract concepts, 

13 - animals, 4 - body parts and 12 - other concrete objects. 

 

Adjective Gender Valence Our next task was to 

operationalize how masculine or feminine the generated 

adjectives were. The participants generated a total of 45972 
adjective tokens for the nouns remaining in the sample. Out 

of them, 36426 were also generated for nouns for humans (i) 

whose referent was clearly biologically male or female (e.g. 

“man”, “woman”) or (ii) that differed in translation 

depending on the sex of the referent (e.g. English “friend” = 

French “ami” (masc) or “amie” (fem)). For each of those 

adjectives, we calculated its token frequency among 

adjectives generated for males (a total of 12564) and 

adjectives generated for females (a total of 3681 tokens). 

After that, we subtracted the frequency of each adjective 

among adjectives generated for biological females from its 

frequency among those generated for biological males. We 
consider this to reflect adjectives’ relative gender valence: 

relatively more positive values indicate more masculine 

connotations, relatively more negative values indicate more 

feminine connotations. 

 

Results 

The data were analyzed with linear mixed-effects models 

using the lme4 and multcomp packages for R (Bates et al., 

2015; Hothorn et al., 2016). The most common gender 

(MCG) of the noun in the participant’s native language, the 

noun’s semantic category, personification condition, i.e. 

whether the participant was asked to personify the nouns, 

and the order of the adjective were modeled as fixed effects, 

whereas subject IDs and items were modeled as random 
effects. 

As a manipulation check, we examined whether the 

biological gender of the referent for nouns denoting humans 

predicted what adjectives would be generated for it. As can 

be seen on figure 1, nouns for males on average received 

more masculine adjectives (M = 0.001) compared to nouns 

for females (M = -0.005). We compared mixed-effect 

models with gender valence of the adjective as the 
dependent variable, random intercept for subject and by-

subject random slope for MCG of the noun, and a random 

intercept for noun. The model with MCG of the noun fit the 

data significantly better (χ2 = 21.871, p < 0.001). 

Following that, we analyzed the data from nouns for non-

humans. Only comparisons between adjectives generated for 

nouns that had either masculine or feminine MCG are 

reported. Besides the specified fixed effects, all of the 

models below contain random intercept for subject and by-

subject random slope for MCG, as well as random intercept 
for noun and by-noun random slope for personification. 

Adjectives generated by the participants for nouns with 

majority masculine translations had higher gender valence 

ratings (M = 0.0007) than adjectives generated for nouns 

with majority feminine translations (M = 0.0002), as figure 

2 shows. To investigate whether the difference is 

significant, we compared mixed-effect models with 

personification, noun’s semantic category, order of the 

adjective, as well as all of their interactions as fixed effects. 

Comparison of the models with and without MCG as a fixed 

effect revealed that it significantly improves the fit of the 

model (χ2 = 14.988, p < 0.01).  

The effect, however, could potentially arise due only to 
the adjectives generated by participants who were asked to 

personify the noun’s referent. To examine that possibility, 

we compared mixed-effect models with and without an 

interaction between personification and MCG. The models 

contained all other possible main effects and interactions 

between them. Model comparison revealed no significant 

differences between them (χ2 = 2.3089, p = 0.13). 
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Figure 1: Gender valence of adjectives for humans. 
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Figure 2: Gender valence of adjectives for non-humans. 

 
Comparison of models with and without an interaction 

between noun category and MCG revealed a significant 

difference between them (χ2 = 9.1268, p < 0.05). Further 

multiple comparisons analysis showed a significant 

difference of the gender valences of adjectives for animal 

nouns (z-value = 3.713, p < 0.01) and a marginally 

significant difference for abstract nouns (z-value = 2.929, p 

= 0.078) in the expected gender-congruent directions, but no 

significant differences in gender valence for nouns for body 

parts or concrete objects (see fig. 3). We note however that 

the categories of body parts and concrete objects contained 
very low numbers of items (4 and 12 respectively). Further, 
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our design does not license us to generalize the results found 

for these specific items to their respective semantic 

categories as a whole.   

.
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Figure 3: Gender valence of adjectives belonging to 

different semantic categories. 
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Figure 4: Gender valence of first, second and third 

adjectives generated by participants for non-human nouns. 

 

Last, we examined when the effects of grammatical 

gender emerge by looking separately at adjectives generated 
first, second, and third for each noun. Comparison of 

models with fixed effects of MCG, personification and noun 

category, as well as all of their interactions, but differing in 

having or not having a fixed effect of adjective order, 

revealed a highly significant difference in their fit (χ2 = 

23.465, p < 0.001). Additionally, a comparison of models 

with and without an interaction between MCG and adjective 

order was conducted. The models included all other possible 

main effects and interactions between them. The 

comparison revealed that the model with the interaction fit 

the data significantly better (χ2 = 10.413, p < 0.01). 

Multiple comparisons analysis showed that adjectives 
generated first did not differ significantly depending on the 

MCG of the noun they were generated for (z-value = -0.163, 

p = 1.00). However, the difference in average gender 

valence was significant for second (z-value = 3.643, p < 

0.01) and third (z-value = 4.054, p < 0.001) adjectives 

generated for nouns with different MCG. 

 

Discussion 

What do the results tell us? We see that the grammatical 

gender of a noun in a particular language influences what 

adjectives are generated for it: feminine nouns tend to elicit 

relatively more feminine adjectives compared to masculine 

nouns. 

The effect appeared even though the task was conducted 

in English and did not invite participants to think about 
biological or grammatical gender. This removes two 

possibilities for why it arose. The first possibility that can be 

ruled out is that phonological or morphological properties of 

the nouns used in the experiment made the grammatical 

gender more salient to the participants, since English nouns 

do not contain in themselves any information related to 

grammatical gender. Thus operations situated solely at the 

lexical level of processing could not explain the effect. 

Second, gender was not highlighted in the experimental 

context for the participants who received no instructions to 

personify. Additionally, the selection procedure for the 

items minimized the possibility that the stimuli set would 
implicitly push the participants towards thinking about 

gender when participating in the experiment. This suggests 

that the results could be taken as evidence for the existence 

of effects of grammatical gender on how referents of nouns 

are conceptualized. The exact mechanism through which 

this effect takes place is a question for future work, but the 

current study provides some suggestions. Similarly to some 

prior work (e.g. Vigliocco et al., 2005) grammatical gender 

had the most effect on adjectives for nouns denoting 

animals.  The interaction between the noun’s semantic 

category and the gender of the noun found in the current 
study provides some support for the hypothesis that 

anthropomorphization of the noun referent is the mechanism 

through which the effect comes into being.  

Cross-linguistically nouns often constitute the most 

frequently occurring word class in a language (Liang & Liu, 

2013), and they are also used in everyday language for 

reference to humans, animals, objects, relations, categories 

and other types of entities. Because of this, the effect we 

found could have a broad and pervasive influence, affecting 

a wide range of processes relying on how referents of nouns 

are conceptualized. 

The data also indicate that the effect did not emerge solely 
due to an invitation to personify the nouns that half of the 

participants received. Both participants who received 

instructions to personify and those who did not, showed 

effects of grammatical gender. It appears that an explicit 

invitation to personify (as when assigning names or voices 

in prior studies) is not necessary to induce effects of 

grammatical gender.  

Of course, it is possible that participants personified the 

nouns even without being given the instruction to do so. For 

those who did not receive this instruction, the experiment 

did not make any suggestions for the participants to 
anthropomorphize the nouns’ referents. If participants did 

engage in such unprompted personification, it seems likely 

that the effect would be observed outside of the context of 

this experimental task as well. 

Last, we found that significant grammatical-gender 
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effects emerged starting with the second adjective 

participants generated for a given noun.  This suggests that 

gender information is quite central in people’s mental 

representations. There was however, no significant effect 

observed at the very first adjective. 

This has the possibility of explaining why some studies 
using tasks where participants need to respond rapidly fail to 

observe effects of grammatical gender (e.g. Vigliocco et al., 

2005; Kousta et al., 2008). The effect of grammatical gender 

is small in comparison to some other effects, for example 

the effect of cultural associations (Beller et al., 2015). It has 

also been suggested that more abstract pictures induce more 

schematic ways of conceptualizing what they depict and that 

verbal description of the less abstract pictures induces a 

similar effect (Holmes & Wolff, 2010). This allows one to 

hypothesize that the strength of the gender effect in 

combination with its temporal development could leave it 

unnoticeable in conditions where the participants need to 
respond rapidly and where other perceptual or conceptual 

features of the stimulus are highly activated due to task 

demands or stimuli properties. 

Conclusion 

The results obtained in this study support the view that 

grammatical gender affects object conceptualization. The 

effect was obtained in absence of any phonological or 

morphological aspects of the word carrying information 
about grammatical gender. Additionally, the effect was 

obtained without participants being invited to think about 

gender by any experimental instructions or demands (and 

participants could not have guessed that gender was of 

interest in the study). Finally, effects of grammatical gender 

emerged starting with the second adjective participants 

generated for a given noun.  This suggests that gender 

information is quite central in people’s mental 

representations (but did not emerge on the very first 

adjective). Furthermore, it is possible that the effect is quite 

pervasive, as it has the potential to affect anything that could 

be named by a noun. 
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Abstract

People are adept at perceiving interactions from movements
of simple shapes but the underlying mechanism remains un-
known. Previous studies have often used object movements
defined by experimenters. The present study used aerial videos
recorded by drones in a real-life environment to generate de-
contextualized motion stimuli. Motion trajectories of dis-
played elements were the only visual input. We measured
human judgments of interactiveness between two moving el-
ements, and the dynamic change of such judgments over time.
A hierarchical model was developed to account for human per-
formance in this task, which represents interactivity using la-
tent variables, and learns the distribution of critical movement
features that signal potential interactivity. The model provides
a good fit to human judgments and can also be generalized to
the original Heider-Simmel animations (1944). The model can
also synthesize decontextualized animations with controlled
degree of interactiveness, providing a viable tool for studying
animacy and social perception.

Keywords: social interaction; motion; decontextualized ani-
mation; hierarchical model; action understanding

Introduction
People are adept at perceiving goal-directed action and infer-
ring social interaction from movements of simple objects. In
their pioneering work, Heider and Simmel (1944) presented
video clips showing three simple geometrical shapes mov-
ing around, and asked human observers to describe what they
saw. Almost all observers described the object movements
in an anthropomorphic way, reporting a reliable impression
of animacy and meaningful social interaction among the geo-
metric shapes displayed in the decontextualized animation.

Later studies (Dittrich & Lea, 1994; Scholl & Tremoulet,
2000; Tremoulet & Feldman, 2000, 2006; Gao, Newman, &
Scholl, 2009; Gao, McCarthy, & Scholl, 2010) used more
controlled stimuli and systematically examined what factors
can impact the perception of goal-directed actions in a decon-
textualized animation. The results provided converging evi-
dence that the perception of human-like interactions relies on
some critical low-level motion cues, such as speed and mo-
tion direction. However, it remains unclear how the human
visual system combines motion cues from different objects to
infer interpersonal interactivity in the absence of any context
cues.

To address this fundamental question, Baker, Saxe, and
Tenenbaum (2009) developed a Bayesian model to reason
about the intentions of an agent when moving in maze-like
environments of the sort used by Heider and Simmel (1944).
Other studies (Baker, Goodman, & Tenenbaum, 2008; Ull-
man et al., 2009; Baker, 2012) developed similar models that
could be generalized to situations with multiple agents and

∗These two authors contributed equally.

Figure 1: Stimulus illustration. (Left) An example frame of an aerial
video recorded by a drone. Two people were being tracked (framed
by red and green boxes). (Right) A sample frame of an experimental
trial. The two people being tracked in the aerial video are presented
as two dots, one in red and one in green, in a black background. A
video demonstration can be viewed on the project website: http://
www.stat.ucla.edu/˜tianmin.shu/HeiderSimmel/CogSci17

different contexts. These modeling studies illustrate the po-
tential fruitfulness of using a Bayesian approach as a princi-
pled framework for modeling human interaction shown in de-
contextualized animations. However, these models have been
limited to experimenter-defined movements, and by compu-
tational constraints imposed by the modelers for particular
application domains.

The present study aims to generate Heider-Simmel-type
decontextualized animations using real-life videos of visual
scenes. As a naturalistic example, imagine that you are
watching a surveillance video recorded by a drone from a
bird’s eye view, as shown in Fig. 1. In such aerial videos,
changes in human body postures can barely be seen, and the
primary visual cues are the noisy movement trajectories of
each person in the scene. This situation is analogous to the ex-
perimental stimuli used in Heider and Simmel’s studies, but
the trajectories of each entity are directly based on real-life
human movements.

In the present study, we first used real-life aerial videos to
generate decontextualized animations and to assess how hu-
man judgments of interactivity emerge over time. We devel-
oped a hierarchical model to account for human performance.
One advantage of using aerial videos to generate decontex-
tualized animations is that the technique provides sufficient
training stimuli to enable the learning of a hierarchical model
with hidden layers, which could illuminate the representa-
tions of critical movement patterns that signal potential inter-
activity between agents. Furthermore, we assessed whether
the learning component in the model can be generalized to
the original animations by Heider and Simmel (1944).

Computational Model
We designed a hierarchical model with three layers. As
shown in Fig. 2, the first layer (the X layer) estimates spa-
tiotemporal motion patterns within a short period of time.
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Figure 2: Illustration of the hierarchical generative model. The solid
nodes are observations of motion trajectories of two agents, and the
remaining nodes are latent variables constituting the symbolic rep-
resentation of an interaction, i.e., the original trajectories are coded
as a sequence of sub-interactions S and interaction labels Y .

The second layer (the S layer) captures the involvement of
various motion fields at different stages of interactivity over a
long period by temporally decomposing interactivity with la-
tent sub-interactions. The last layer (the Y layer) indicates the
presence or absence of interactiveness between two agents.

The inputs to the model are motion trajectories of two
agents, denoted as Γa = {xt

a}t=0,··· ,T , a = 1,2. The position
of agent a (a = 1,2) at time t is xt

a = (x,y). The total length
of the trajectory is T . Using the input of motion trajecto-
ries, we can readily compute the velocity sequence of agent a
(a = 1,2), i.e., Va = {vt

a}t=1,··· ,T , where vt
a = xt

a−xt−1
a .

To capture the interactivity between two agents based on
the observed trajectories of movements, the model builds on
two basic components. (1) Interactivity between two agents
can be represented by a sequence of latent motion fields, each
capturing the relative motion between the two agents who
perform meaningful social interactions. (2) Latent motion
fields can vary over time, capturing the behavioral change of
the agents over a long period of time. The details for quanti-
fying the two key components are presented in the next two
subsections.

Conditional Interactive Fields

As illustrated in Fig. 3, we use conditional interactive fields
(CIFs) to model how an agent moves with respect to a refer-
ence agent. We randomly select an agent to be the reference
agent, and then model the partner agent’s movement by esti-
mating a vector field of the relative motion conditioned on a
specific distribution of the reference agent’s motion.

To ensure that the fields are orientation invariant, we per-
form a coordinate transformation as Fig. 3 illustrates. At each
time point t, the transformed position of the reference agent
is always located at (0,0), and its transformed velocity di-
rection is always pointed to the norm of the upward vertical
direction. Consequently, the position and velocity of the sec-
ond agent after the transformation, i.e., Γ̃ = {x̃t}t=0,··· ,T and
Ṽ = {ṽt}t=1,··· ,T , can be used to model the relative motion.

For a sub-interaction s (interactivity in a relatively short
time sharing consistent motion patterns, e.g., approaching,
walking together, standing together), we define its CIF as a

(0,0)

(0,0)

Coordinate
Transformation =

Ref. Agent
Condition Interactive Field

+
xt

2

vt
2

ṽt

x̃t

Figure 3: Illustration of a conditional interactive field (CIF): after
a coordinate transformation w.r.t. the reference agent, we model
the expected relative motion pattern x̃t and ṽt conditioned on the
reference agent’s motion.

S ⌧1 ⌧2 ⌧3
t

+ + +CIFs

Traj.
X

Y

Figure 4: Temporal parsing by S (middle). The top demonstrates
the change of CIFs in sub-interactions as the interaction proceeds.
The bottom indicates the change of interactive behaviors in terms of
motion trajectories. The colored bars in the middle depict the types
of the sub-interactions.

linear dynamic system:

ṽt ∼N (Asx̃t +Bs,Σs), (1)

where As, Bs, and Σs = diag(σ2
s1,σ

2
s2) are the parameters

of the Gaussian distribution to be learned for each sub-
interaction s. Asx̃t + Bs can be interpreted as the expected
motion at location x̃ in the field.

Temporal Parsing by Latent Sub-Interactions
We assume that a long interactive sequence can be decom-
posed into several distinct sub-interactions each with a dif-
ferent CIF. For example, when observing that two people
walk towards each other, shake hands and walk together,
we can decompose this interactive sequence into three sub-
interactions. We represent meaningful interactivity as a se-
quence of latent sub-interactions S = {sk}k=1,...,K , where a
latent sub-interaction determines the category of the CIF in-
volved in a time interval Tk = {t : t1

k ≤ t ≤ t2
k }, such that

st = sk, ∀t ∈ Tk. sk is the sub-interaction label in the k-th in-
terval representing the consistent interactivity of two agents
in the interval. Fig. 4 illustrates the temporal parsing.

In each interval k, we define an interaction label yk ∈ {0,1}
to indicate the absence or presence of interactivity between
the two agents. The interaction labels also constitute a se-
quence Y = {yt}t=1,··· ,T . We have yt = yk, ∀t ∈ Tk, where yk
is the interaction label in interval Tk.

Model Formulation
Given the input of motion trajectories Γ, the model infers the
posterior distribution of the latent variables S and Y ,

p(S,Y |Γ) ∝ P(Γ | S,Y )︸ ︷︷ ︸
likelihood

· P(S | Y )︸ ︷︷ ︸
sub int. prior

· P(Y )︸︷︷︸
int. prior

. (2)
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The likelihood assesses how well the motion fields under
corresponding CIFs of sub-interactions can account for rela-
tive motion observed in the video input, the spatial density of
the relative position and the observed motion of the reference
agent:

p(Γ | S,Y ) =
K

∏
k=1

∏
t∈Tk

p(ṽt , x̃t ,vt
1 | st = sk,yt = yk), (3)

where

p(ṽt , x̃t ,vt
1 | st = sk,yt = yk)

= p(ṽt | x̃t ,sk,yk)︸ ︷︷ ︸
rel. motion

· p(x̃t | sk,yk)︸ ︷︷ ︸
rel. spatial density

· p(||vt
1|| | sk,yk)︸ ︷︷ ︸

ref. motion

. (4)

Note that vt
1 is the reference agent’s velocity. When yk = 1,

the first term is defined in equation (1), the second term is
learned by Gaussian kernel density estimation, and the third
term is defined as a Weibull distribution, which is suitable for
learning a long-tail distribution of a non-negative variable.
When yk = 0, the first term is defined as a Gaussian distri-
bution N ([0,0]>,Σ0 = diag(σ2

0,σ
2
0)), and the remaining two

terms are uniform distributions in quantized spaces.
We model the prior term of sub-interactions P(S|Y ) using

two independent components, i) the duration of each sub-
interaction, and ii) the transition probability between two con-
secutive sub-interactions, as follows:

p(S | Y ) =
K

∏
k=1

p(|Tk||sk,yk)︸ ︷︷ ︸
duration

K

∏
k=2

p(sk|sk−1,yk)︸ ︷︷ ︸
transition

. (5)

When yk = 1, the two terms follow a log-normal distribution
and a multinomial distribution respectively; when yk = 0, uni-
form distributions are used for the two terms instead.

Finally, we use a Bernoulli distribution to model the prior
term of interactions P(Y ),

p(Y ) =
K

∏
k=1

∏
t∈Tk

p(yt = yk) =
K

∏
k=1

∏
t∈Tk

ρ
yt
(1−ρ)1−yt

. (6)

Inference and Prediction
The model infers the current status of latent variables and pro-
duces an online prediction of future trajectories. Inference
and prediction are performed for each time point from 1 to
T sequentially (rather than offline prediction, which gives the
labels after watching the entire video).

We denote trajectories from 0 to t as Γ0:t , and the sub-
interactions from 1 to t − 1 as S1:t−1. Without loss of gen-
erality, we assume there are K sub-interactions in S1:t−1 with
TK being the last interval and st−1 = sK . We first infer st under
the assumption of interaction (i.e., yt = 1) by maximizing

p(st | Γ0:t ,S1:t−1,yt) ∝ p(ṽt , x̃t ,vt
1 | st)p(st | S1:t−1,yt),

(7)

where,

p(st | S1:t−1,yt)

=

{
p(τ≥ |Tk|+1 | st = st−1,yt) if st = st−1

p(τ≥ 1 | st ,yt)p(st |st−1) otherwise
. (8)

Then the posterior probability of yt = 1 given st ∈ S is de-
fined as

p(yt | st ,Γ0:t ,S1:t−1) ∝ p(st | Γ0:t ,S1:t−1,yt)p(yt), (9)

This computation makes it possible to perform the follow-
ing inferences and online prediction: i) we maximize (7) to
obtain the optimal st ; ii) we use (9) to compute the posterior
probability of two agents being interactive at t under the CIF
of st as an approximation of the judgment of interaction/non-
interaction provided by human observers; iii) the model can
synthesize new trajectories using the following computation,

st+1 ∼ p(st+1 | S1:t ,yt+1), (10)

xt+1
1 ,xt+1

2 ∼ p(xt+1
1 ,xt+1

2 |xt
1,x

t
2,s

t+1,yt+1)

= p(ṽt+1, x̃t+1,vt+1
1 | st+1,yt+1)

, (11)

where ṽt+1, x̃t+1, and vt+1
1 are given by xt

1, xt+1
1 , xt

2 and xt+1
2 ,

and the last term is defined in (4). By setting yt+1 = 1 or
yt+1 = 0 in (10) and (11).

Learning
Algorithm
To train the model, we used Gibbs sampling to find the S that
maximizes the joint probability P(Y,S,Γ). The implementa-
tion details are summarized below:

• Step 0: To initialize S, we first construct a feature vec-
tor for each time t, i.e., [||vt

1||, x̃t , ṽt ]>. A K-means clus-
tering is then conducted to obtain the initial {st}, which
also gives us the sub-interaction parsing S after merging
the same consecutive st .

• Step 1: At each time point t of every training video, we
update its sub-interaction label st by

st ∼ p(Γ | S−t ∪{st},Y )p(S−t ∪{st} | Y ), (12)

where S−t is the sub-interaction temporal parsing exclud-
ing time t, and S−t ∪{st} is a new sub-interaction sequence
after adding the sub-interaction at t. Note that Y is always
fixed in the procedure; thus we do not need p(Y ) term for
sampling purpose.

• Step 2: If S does not change anymore, go to next step;
otherwise, repeat step 1.

• Step 3: Since we do not include the non-interactive videos
in the training set, we selected 22 videos in the first human
experiment (a mixture of interactive and non-interactive
videos) as a validation set to estimate ρ and σ0 by maxi-
mizing the correlation between the model prediction of (9)
and the average human responses in the validation set.
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Model Simulation Results
We tested the model using two sets of training data. The first
dataset is a UCLA aerial event dataset collected by Shu et al.
(2015), in which about 20 people performed some group ac-
tivities in two scenes (a park or a parking lot), such as group
touring, queuing in front of a vending machine or playing fris-
bee. People’s trajectories and their activities are manually an-
notated. The dataset is available at http://www.stat.ucla
.edu/˜tianmin.shu/AerialVideo/AerialVideo.html

We selected training videos including interactivity from the
database, so that the two agents always interact with each
other in all training stimuli. Thus, for any training video,
yt = 1, ∀t = 1, · · · ,T . During the training phase, we excluded
the examples used in human experiments. In total, there were
131 training instances.

In the implementation, we manually define the maximum
number of sub-interaction categories to be 15 in our full
model (i.e., |S | = 15), which is over-complete for our train-
ing data according to learning (low frequency in the tail of
Fig. 6). With simulated annealing (Kirkpatrick, Gelatt, &
Vecchi, 1983), Gibbs sampling converges within 20 sweeps
(where a sweep is defined as all the latent sub-interaction la-
bels have been updated once). The frequencies of the top 15
CIFs are highly unbalanced. In fact, the top 10 CIFs account
for 83.8% of the sub-interactions in the training data. The
first row of Fig. 5 provides a visualization of the top 5 CIFs.

The second dataset was created from the original Heider-
Simmel animation (i.e., two triangles and one circle). We
extracted the trajectories of the three shapes, and thus ob-
tained 3 pairs of two-agent interactions. We truncated the
movie into short clips (about 10 seconds) to generate a to-
tal of 27 videos. The same algorithm was used to train the
model with 15 types of CIFs. The most frequent five CIFs
are visualized in the second row of Fig. 5. Clearly, the richer
behavior in the Heider-Simmel animation yielded a variety
of CIFs with distinct patterns compared to the CIFs learned
from aerial videos. The frequencies of CIFs are also more
distributed in this dataset, as shown in Fig. 6.

We observed a few critical CIFs that signal common in-
teractions from the two simulation results. For instance, in
aerial videos, we observed i) approaching, e.g., CIF 1 and ii)
walking in parallel, or following, e.g., the lower part of CIF
2; the Heider-Simmel animation revealed additional patterns
such as i) orbiting, e.g., CIF 1, ii) walking-by, e.g., CIF 5, and
iii) leaving, e.g., CIF 4.

Experiment
Stimuli
24 interactive stimuli were generated from different pairs of
human interactions in aerial videos. We selected two people
interacting with each other in each aerial video. We then gen-
erated the decontextualized animations by depicting the two
people as dots with different colors. The dots’ coordinates
were first extracted from the aerial videos by human annota-
tors. Note that the two dots were first re-centered to localize

the midpoint at the center of the screen in the first frame. The
coordinates were temporally smoothed by averaging across
the adjacent 5 frames.

24 non-interactive stimuli were generated by interchanging
motion trajectories of two people selected from two irrelevant
interactive videos (e.g., the motion of one dot in video 1 re-
combined with the motion of a dot in video 2). The starting
distances between two dots in non-interactive stimuli were
kept the same as in the corresponding interactive stimuli.

The duration of stimuli varied from 239 frames to 500
frames (mean frame = 404), corresponding to 15.9 to 33.3
seconds, with a recording refresh rate of 15 frames per sec-
ond. The diameters of dots were 1◦ of visual angle. One
dot was displayed in red (1.8 cd/m2) and the other in green
(30 cd/m2) on a black background (0 cd/m2). Among the 48
pairs of stimuli, four pairs of actions (two interactive and two
non-interactive) were used as practice.

Participants
33 participants (mean age = 20.4; 18 female) were enrolled
from the subject pool at the University of California, Los An-
geles (UCLA) Department of Psychology. They were com-
pensated with course credit. All participants had normal or
corrected-to-normal vision.

Procedures
Participants were seated 35 cm in front of a screen, which
had a resolution of 1024×768 and a 60 Hz refresh rate. First,
participants were given a cover story: “Imagine that you are
working for a company to infer whether two people carry out
a social interaction based on their body locations measured by
GPS signals. Based on the GPS signal, we generated two dots
to indicate the location of the two people being tracked.” The
task was to determine when the two dots were interacting with
each other and when they were not. Participants were asked
to make continuous responses across the entire duration of
the stimuli. They were to press and hold the left-arrow or
right-arrow button for interactive or non-interactive moments
respectively, and to press and hold the down-arrow button if
they were unsure. If no button was pressed for more than one
second, participants received a 500 Hz beep as a warning.

Participants were presented with four trials of practice at
the beginning of the session to familiarize them with the task.
Next, 44 trials of test stimuli were presented. The order of
trials was randomized for each participant. No feedback was
presented on any of the trials. The experiment lasted for about
30 minutes in total.

Results
Interactive, unsure and non-interactive responses were coded
as 1, 0.5, and 0, respectively. Frames with no responses were
removed from the comparison. Human responses were shown
in Fig. 8 (left). A paired-sample t-test revealed that the aver-
age ratings of non-interactive actions (M = 0.34, SD = 0.13)
were significantly lower than interactive actions (M = 0.75,
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Figure 5: Interactive fields of the top five frequent CIFs learned from aerial videos (top) and Heider-Simmel movie (bottom) respectively.
In each field, the reference agent (red dot) is at the center of a field i.e., (0,0), moving towards north; the arrows represent the mean relative
motion at different locations and the intensities of the arrows indicate the relative spatial density which increases from light to dark.
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Figure 6: The frequencies of learned CIFs with the training data
generated from aerial videos (top) and the Heider-Simmel movie
(bottom). The numbers on the x axis indicate the IDs of CIFs, ranked
according to the occurrence frequency in the training data.

Method HMM One-Interaction Hierarchical Model
|S |= 5 |S |= 10 |S |= 15

r 0.739 0.855 0.882 0.911 0.921
RMSE 0.277 0.165 0.158 0.139 0.134

Table 1: The quantitative results of all methods in experiment 1 us-
ing aerial videos as training data.

SD = 0.13), t(32) = 13.29, p < 0.001. This finding indi-
cates that human observers are able to discriminate interac-
tivity based on decontextualized animations generated from
the real-life aerial videos.

To compare the model predictions with human continuous
judgments, we computed the average human ratings, and ran
the model to simulate online predictions of sub-interaction
and interaction labels on the testing videos (excluding the
ones in the validation set). Specifically, we used (9) to com-
pute the probability of two agents being interactive with each
other at any time point t. The model simulation used the
hyper-parameters ρ = 10−11 and σ0 = 1.26.

Table 1 summarizes the Pearson correlation coefficient r
and root-mean-square error (RMSE) between the model pre-
dictions and the human ratings using aerial videos as train-
ing data. We compare our hierarchical model with two base-
line models: i) Hidden Markov Model (HMM), where the
latent variables st and yt only depend on their preceding vari-
ables st−1 and yt−1; ii) a model with only one type of sub-
interaction. Both models yielded poorer fits to human judg-
ments (i.e., lower correlation and higher RMSE) than the hi-
erarchical model. In addition, we changed the number of sub-
interaction categories to examine how sensitive our model is

to this parameter. The results clearly show that i) only using
one type of sub-interaction provides reasonably good results,
r = .855, and ii) by increasing the number of sub-interactions
|S |, the fits to human ratings were further improved until
reaching a plateau with a sufficiently large number of sub-
interactions.

Fig. 7 shows results for a few videos, with both model pre-
dictions and human ratings. The model predictions accounted
for human ratings quite well in most cases. However, the
model predictions were slightly higher than the average hu-
man ratings, which may be due to the lack of negative exam-
ples in the training phase. We also observed high standard
deviations in human responses, indicating the large variabil-
ity of the online prediction task for every single frame in a
dynamic animation. In general, the difference between our
model’s predictions and human responses are seldom larger
than one standard deviation of human responses.

We also tested the model trained from the Heider-Simmel
movie on the same testing set (generated from the aerial
videos), yielding a correlation of 0.640 and RMSE of 0.227.
The reduced fitting result indicates the discrepancy between
two types of videos. The CIFs learned from one dataset may
be limited in generalization to the other dataset.

One advantage of developing a generative model is that it
enables the synthesis of new videos by (10) and (11), based
on randomly sampled initial positions of the two agents (x0

1,
x0

2) and the first sub-interaction s1. By setting the interaction
labels to be 1 or 0, the synthesized stimuli can be controlled
to vary the degree of interactiveness. We ran a second experi-
ment using model synthesized animations (10 interactive and
10 non-interactive clips). These synthesized videos were pre-
sented to human observers in random orders and the interac-
tive ratings were recorded. The interactiveness between the
two agents in the synthesized videos was judged accurately
by human observers (mean rating of 0.85 for synthesized in-
teractive clips, and 0.15 for non-interactive clips), suggesting
that the model effectively captured the visual features that sig-
nal potential interactivity between agents.
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Figure 7: Comparison of online predictions by our full model (|S |= 15) (orange) and humans (blue) over time (in seconds) on testing videos.
The shaded areas show the standard deviations of human responses at each moment.
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Figure 8: Mean ratings of the interactive versus non-interactive ac-
tions in the experiment. Error bars indicate +/- 1 SEM.

Conclusion
In this paper, we examined human perception of social in-
teractions using decontextualized animations based on move-
ment trajectories recorded in aerial videos of a real-life en-
vironment, as well as Heider-Simmel-type animations. The
proposed hierarchical model built on two key components:
conditional interactive fields of sub-interactions, and tem-
poral parsing of interactivity. The model fit human judg-
ments of interactiveness well, and suggests potential mech-
anisms underlying our understanding of meaningful human
interactions. Human interactions can be decomposed into
sub-interactions such as approaching, walking in parallel, or
standing still in close proximity. Based on the transition prob-
abilities and the duration of sub-components, humans are able
to make inferences about how likely the two people are inter-
acting.

The model could be extended to be applied to the field of
behavioral recognition. While previous work has focused
on actions of individuals based on detecting local spatial-
temporal features embedded in videos (Dollár, Rabaud, Cot-
trell, & Belongie, 2005), the current work can deal with multi-
agent interaction. Understanding of the relation between
agents could facilitate the recognition of individual behav-
iors by putting single actions into meaningful social contexts.
In addition, the current model is only based on visual motion
cues. The model could be enhanced by incorporating a cogni-
tive mechanism (e.g., a theory-of-mind framework) to enable
explicit inference of intentions.
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Abstract

Comparison supports the development of children’s analogical
reasoning. The evidence for this claim comes from labora-
tory studies. We describe spontaneous comparisons produced
by 24 typically developing children from 26 to 58 months.
Children tend to express similarity before expressing differ-
ence. They compare objects from the same category before
objects from different categories, make global comparisons be-
fore specific comparisons, and specify perceptual features of
similarity/difference before non-perceptual features. We then
investigate how a theoretically interesting subset of children’s
comparisons – those expressing a specific feature of similar-
ity or difference – relates to analogical reasoning as measured
by verbal and non-verbal tests in 6th grade. The number of
specific comparisons children produce before 58 months pre-
dicts their scores on both tests, controlling for vocabulary at
54 months. The results provide naturalistic support for experi-
mental findings on comparison development, and demonstrate
a strong relationship between children’s early comparisons and
their later analogical reasoning.

Keywords: comparison; similarity; language development;
analogy

Introduction
Comparison – the process of jointly examining two objects
or events and assessing their similarities and differences – is
crucial in the development of children’s word learning, cat-
egorization, and analogical reasoning skills (Namy & Gen-
tner, 2002; Gentner & Namy, 2006; Gentner, Anggoro, &
Klibanoff, 2011; Richland & Simms, 2015). Comparison
is an effective learning tool because it promotes structural
alignment: the mapping of two representations in a way
that enables the recognition of relational commonalities and
alignable differences. A large body of experimental work
shows that inviting children to compare exemplars helps them
to move beyond overall or global similarity to more specific
kinds of similarity, including similarity based on relational
commonalities, as in analogical reasoning (Loewenstein &
Gentner, 2001; Christie & Gentner, 2014; Gentner et al.,

2016). However, to get a full picture of the role of com-
parison in the development of children’s analogical reason-
ing skills, it is important to relate this experimental work
to children’s spontaneous behavior in a naturalistic environ-
ment. Previous work has shown that children spontaneously
produce comparative utterances from early in their language
development: for example, children spontaneously generate
metaphors from the age of around 2 (Winner, 1979) and are
able to explain them in terms of similarity (Billow, 1981).
However, the nature of the comparisons children produce is
not static over time, but follows a developmental trajectory.
Özçalışkan, Goldin-Meadow, Gentner, and Mylander (2009)
found that while children’s earliest comparisons tended to be
between objects that were similar to each other in many fea-
tures, the acquisition of the word ‘like’ was associated with
an increase in the number of comparisons between objects
that only shared a single feature. These specific comparisons
are argued to be a more sophisticated stage in the develop-
ment of children’s understanding of similarity than are global
comparisons (Smith, 1989; Gentner & Rattermann, 1991).
As such, the prevalence of specific comparisons in children’s
early speech could potentially be an index of their later ana-
logical reasoning skill.

The current work has two aims: 1) a descriptive aim, to
characterize common patterns in the development of chil-
dren’s spontaneous comparisons produced in naturalistic con-
texts in the home; 2) an inferential aim, to test the hypothe-
sis that variation in children’s production of specific, single-
feature comparisons predicts variation in their scores on tests
of analogical ability given much later, in 6th grade.

Methods
Participants
24 children and their primary caregivers were drawn from a
larger sample of 64 families who participated in a longitudi-
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nal study of language development (the same sample drawn
on by Özçalışkan et al., 2009). Families were recruited via
direct mailings to targeted zip codes and an advertisement in
a free monthly parenting magazine. Parents who responded
were interviewed regarding background characteristics, and
the final sample was selected to be representative of the
greater Chicago area in terms of race, ethnicity and income.
The sub-sample of 24 families in the current study was se-
lected randomly, within the constraints of preserving the de-
mographic spread of the original sample. Of the 24 children,
11 were male and 13 female; 18 were white (of whom 3 were
Hispanic), 3 were Black or African-American, and 3 were of
two or more races. The distribution of socio-economic status
across the 24 families was similar to that of the original sam-
ple, ranging from families with an income of under $15,000
where the primary caregiver had some high school education,
to families with an income of over $100,000 where the pri-
mary caregiver had an advanced degree.

Procedure

Parents and children were visited in their homes and video-
taped engaging in their normal daily activities for 90 min-
utes. Home visits began when the children were 14 months
old and continued at 4-month intervals, ending when the chil-
dren were 58 months old (12 sessions in total).1 All child
speech, and all parent speech directed to the child, was tran-
scribed. Transcription reliability was established by having a
second individual transcribe 20% of each transcriber’s tapes.
Reliability was at or above 95%.

Coding

Comparisons were coded from the transcripts of child speech
during the 12 sessions. The criterion for a comparison was
that the child expressed a similarity or difference between an
identifiable source and target. Sources and targets could be
objects or events. In cases where the source and target of
the comparison were unclear from the transcript alone, the
original video was consulted. For each identified comparison,
we coded the following:

Word. The word that made the utterance a comparison; e.g.
‘I’m a funny one like you’ would be coded as ‘like’.

Word category. Comparative words were classified into six
categories: like (the words ‘like’ and ‘alike’), same/different
(the words ‘same’ and ‘different’), comparative/superlative
(any comparative or superlative adjective, e.g., ‘bigger’,
‘best’), too (used either in contexts like ‘too big’ or con-
texts like ‘I’m dancing too’), match (e.g., ‘these match each
other’), and other.

Object or event. Comparisons were coded for whether the
Source and Target were objects (e.g., ‘this [rug] look like a
skirt’) or events (e.g., ‘I win too’).

1Since no comparisons were produced before session 4 (26
months), graphs & analyses focus on sessions 5-12 (26-58 months).

Expressing similarity or difference. Comparisons were
coded for whether they expressed similarity (e.g. ‘go like a
elephant’) or difference (e.g. ‘I’m bigger than everybody!’).

Global or specific comparison. Comparisons were coded
for whether they expressed global similarity/difference (e.g.,
for Objects, ‘I have toys just like yours’; for Events, ‘they
both win’), or specific similarity/difference (e.g., for Objects,
‘red like the ladybug’; for Events, ‘I go a lot faster than when I
was three’). Comparisons could be specific even if the objects
compared were overall similar, e.g., ‘this [tree] is the tallest
[tree]’. We expect global comparisons to appear earlier than
specific comparisons (Smith, 1989; Gentner & Rattermann,
1991).

Feature specified. Where a feature of similarity or differ-
ence was specified, this feature was coded. Features were
classified into 6 categories: Spatial (e.g., size, shape, dis-
tance, speed), Sensory (e.g., color, weight, taste, smell), Eval-
uative (e.g., goodness, prettiness, badness), Emotion (e.g., be-
ing tired, mad, scared), Preference (e.g., liking one thing bet-
ter than another thing),2 and Other. Features were also clas-
sified as Perceptual (based on a readily perceptible attribute,
e.g. color, size) or Non-Perceptual (based on a more abstract,
not directly perceptible feature, e.g., preference, goodness).

Within or between-category comparison. Comparisons
were coded for whether the objects compared were from the
same or different superordinate categories. Superordinate
categories were taken from Özçalışkan et al. (2009), with
three additions to accommodate new data (in italics): peo-
ple, animals, body parts, vehicles, clothing, furniture, ap-
pliances, kitchen utensils, tools, musical instruments, food,
plants, activity toys, places, decorations/crafts, words/letters,
and shapes.

In the case of events, the objects of interest were those
with corresponding roles in the two events. For example, if
the parent said she was going to use some yellow paint, and
the child said ‘think I’ll do yellow too’, the objects in corre-
sponding roles (parent/child, and yellow paint/yellow paint)
are in the same superordinate categories (people and decora-
tions/crafts, respectively). This would therefore be coded as
a within-category comparison. If the child said ‘I’m going to
act like a bee’, the objects in corresponding roles (child and
bee) are in different superordinate categories (people and an-
imals); this would therefore be coded as a between-category
comparison. If children initially rely on overall similarity,
then within-category comparisons should emerge earlier than
between-category comparisons.

A total of 532 comparisons were codable under these
guidelines.

Later outcomes
The same children were followed longitudinally as part of
an ongoing language development project. When the chil-

2Utterances using the word ‘favorite’ were not coded, since it
was not clear that children understood its meaning as comparative.
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Figure 1: Frequencies of word categories across sessions.

dren were in 6th grade (aged around 13 years), we admin-
istered two tests of analogical reasoning: the Verbal Analo-
gies subtest of the Woodcock-Johnson Tests of Cognitive
Abilities (Woodcock, McGrew, & Mather, 2001), and a non-
verbal test, Raven’s Progressive Matrices (Raven, 1938). The
Woodcock-Johnson Verbal Analogies is an orally adminis-
tered test that consists of sets of paired items. The participant
has to fill in the missing item by abstracting the relation that
holds between the first pair. For example, the participant is
given the prompt ‘mother is to father, as sister is to...’, and
expected to fill in the missing term ‘brother’. Raven’s Pro-
gressive Matrices consists of a series of geometric analogy
problems. The participant is presented with a matrix that has
one entry missing and must select the correct entry from an
array of 6-8 choices. These two measures were taken as out-
comes in our analyses.

Results

Onset and prevalence of comparisons

Children varied in the age at which they produced their first
comparison. For the purpose of this analysis, age of onset was
defined as children’s age during the session where they pro-
duced at least one comparison and also produced at least one
comparison during the immediately following session. Un-
der this criterion, the earliest onset was at 26 months, and the
latest was at 50 months. The average age of onset was 36
months, with a standard deviation of 6 months. Comparisons
were relatively infrequent: they ranged from 0% to 2.2% of
a child’s utterances in a given session. However, the fact that
we reliably find comparisons even in short 90-minute sessions
suggest they are a robust feature of children’s early talk.
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Figure 2: Frequencies of comparisons expressing similarity
and difference across sessions.

Comparison words
The most commonly used comparison word was ‘like’, fol-
lowed by ‘too’, ‘bigger’, ‘same’, and ‘better’. Together, these
words accounted for 73% of the comparisons the children ex-
pressed. Table 1 shows counts and percentages for the word
categories detailed in the Methods.

Table 1: Word categories.

Word category Number of uses Percent
like 219 41%
comparative/superlative 142 27%
too 76 14%
same/different 45 8%
other 34 6%
match 16 3%

Figure 1 shows the frequencies of the 4 most prevalent
word categories over sessions. ‘Like’ is the first word
category to reliably emerge. While ‘like’ and compara-
tives/superlatives are overall more frequent, all word cate-
gories generally show an increase in use across sessions.

Expressing similarity and difference
Figure 2 shows the trend over sessions for expressing simi-
larity versus difference. Similarity comparisons were more
numerous overall (346 to 186). The general trend was for
similarity comparisons to emerge earlier than difference com-
parisons, and to remain more numerous until the final session.
On a by-individual level, 20 out of 24 children produced a
similarity comparison before they produced a difference com-
parison; 1 produced a difference comparison before produc-
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Figure 3: Frequencies of global and specific comparisons
across sessions.

ing a similarity comparison; and 3 produced examples of both
simultaneously. This trend for similarities to precede differ-
ences was significant, χ2 = 27.25, p < .001.

Objects and events
While object comparisons were more numerous in general
(358 compared to 174 event comparisons), the overall trend
was for object and event comparisons to emerge at around the
same time. 11 out of 24 children produced an object compar-
ison before they produced an event comparison; 8 produced
an event comparison before they produced an object compar-
ison; and 5 produced examples of both simultaneously. The
trend in ordering was not significant, χ2 = 2.25, p= .32. Thus
it appears that from comparison onset, children are capable of
expressing comparisons between events as well as compar-
isons between objects.

Global and specific comparisons
The numbers of global and specific comparisons were
broadly equivalent: 249 global to 283 specific. Figure 3
shows the trend over sessions. Global comparisons appear
to be more numerous than specific comparisons in the first
two sessions; in subsequent sessions they are at equivalent
levels, until the final two sessions when specific comparisons
are higher. By individuals, as predicted, global comparisons
tended to precede specific comparisons: 14 of 24 children
produced a global comparison before they produced a spe-
cific comparison, while 5 produced a specific comparison be-
fore they produced a global comparison, and 5 produced both
in the same session. While not as strong as the tendency for
similarity to precede difference, this trend in ordering was
significant, χ2 = 6.75, p = .034.

Features specified
The most frequently specified features were spatial or sen-
sory; together, these accounted for 70% of the specific com-
parisons the children expressed. Table 2 shows overall counts
and percentages.

Table 2: Feature categories.

Feature category Number of uses Percent
Spatial 136 48%
Sensory 62 22%
Evaluative 49 17%
Other 30 11%
Emotion 4 1%
Preference 3 1%

More perceptual features (202) were specified than non-
perceptual features (80). The overall trend was for percep-
tual features to be specified earlier: by individual, 16 chil-
dren specified perceptual features before they specified non-
perceptual features, 4 specified non-perceptual features be-
fore they specified perceptual features, and 4 did both in one
session. The trend for perceptual features to be specified first
was significant, χ2 = 12, p = .002.

Within- and between-category comparisons
Comparisons between objects in the same superordinate cate-
gory (or between events involving objects in the same super-
ordinate categories) were more numerous than comparisons
between different superordinate categories (421 compared to
133). As predicted, comparisons between objects in the same
category generally tended to precede comparisons between
objects in different categories. 14 of 24 children produced a
within-category comparison before a between-category com-
parison. 5 produced a between-category comparison first, and
5 children did both in one session. This trend in ordering was
significantly different from chance, χ2 = 6.75, p = .034.

Comparison type interactions
We also examined interactions between comparison types.

Firstly, we asked whether the children’s comparisons ex-
pressing similarity were more likely to specify a feature than
their comparisons expressing difference, or vice versa. 118
(34%) of similarity comparisons specified a feature of simi-
larity, while 165 (89%) of difference comparisons specified a
feature of difference. Given their marginal totals, similarity
comparisons were less likely than expected to specify fea-
tures, and difference comparisons were more likely than ex-
pected to specify features. This difference was significant,
χ2 = 145.38, p < .001.

We then asked whether comparisons involving objects in
the same superordinate category were more likely to express
similarity or difference, as opposed to comparisons involving
objects in different superordinate categories. Comparisons of
within-category objects, or events involving within-category
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Figure 4: Scatterplot showing number of specific compar-
isons produced from 26-58 months (x axis) and score in Ver-
bal Analogies test in 6th grade (y axis).

objects, were broadly as likely to express similarity as differ-
ence: 240 (60%) of these expressed similarity. On the other
hand, comparisons of between-category objects, or events in-
volving between-category objects, were more likely to ex-
press similarity (105, or 80%) than difference. This trend was
significant, χ2 = 15.32, p < .001.

Relation to later outcomes
We then tested the hypothesis motivated in the Introduction,
that the number of specific comparisons (expressing a single
feature of similarity or difference) that children made during
the 12 observational sessions would predict their performance
on tests of analogical reasoning in 6th grade.

Our outcome measures were the two analogy tests de-
scribed in the Methods: the Woodcock-Johnson Verbal
Analogies test, and Raven’s Progressive Matrices. Both
a verbal and a non-verbal test were administered in order
to address the potential confound of language skill, which
could influence both children’s comparison production and
their verbal analogy test scores. To further account for lan-
guage proficiency, we controlled for the child’s score on the
Peabody Picture Vocabulary Test (PPVT-III; Dunn & Dunn,
1997) at 54 months (the penultimate session of the 12 during
which comparisons were collected).

Figures 4 and 5 show scatterplots of the relationship be-
tween the number of specific comparisons the children pro-
duced during the pre-school observation sessions and their
6th grade scores on the Verbal Analogies and Raven’s Pro-
gressive Matrices tests, respectively.

Table 3 shows the results of the statistical model predicting
Verbal Analogies score from specific comparison count and
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Figure 5: Scatterplot showing number of specific compar-
isons produced from 26-58 months (x axis) and score in
Raven’s Progressive Matrices test in 6th grade (y axis).

PPVT at 54 months. Specific comparisons remained a sig-
nificant predictor after controlling for PPVT, although PPVT
had a larger effect. The adjusted R2 for the model was .64,
indicating that these two variables together explain around
two-thirds of the variance in Verbal Analogies score.

Table 3: Verbal Analogies model

Predictor Standardized β t p
# specific comparisons 0.37 2.44 .024
PPVT at 54 months 0.55 3.60 .002

Table 4: Raven’s Progressive Matrices model

Predictor Standardized β t p
# specific comparisons 0.67 4.27 < .001

Table 4 shows the results of the model predicting Raven’s
Progressive Matrices score from specific comparison count.
In this case, a likelihood ratio test showed that adding PPVT
did not improve the model, F(1) = 1.05, p = .318. The ad-
justed R2 for the model was .43, indicating that specific com-
parison count alone explains around 40% of the variance in
Raven’s Progressive Matrices scores.

Discussion
Children’s earliest comparisons tend to express global simi-
larity between objects or events within the same superordi-

1076



nate category. Later in development, children begin to ex-
press difference, to specify features of comparison, and to
compare objects and events from different superordinate cat-
egories. Turning to the content of these comparisons, chil-
dren are particularly motivated to comment first on similari-
ties and differences in perceptual features such as size, color,
and speed, and later on evaluative features such as goodness,
prettiness, and their opposites.

While children are more likely to express global similarity
than specific similarity, most difference comparisons are spe-
cific rather than global. This finding suggests that children
are less motivated to comment on overall dissimilarity than
on overall similarity: differences are only interesting insofar
as they are specific. We also find that comparisons involving
objects in different superordinate categories tend to dispro-
portionately express similarity, rather than difference, despite
these objects being a priori less similar to each other. This
seemingly counter-intuitive result backs up existing theory:
more similar objects are more likely to have salient, alignable
differences than objects which are dissimilar (Markman &
Gentner, 1993; Gelman, Raman, & Gentner, 2009).

The relationship we find between children’s early com-
parisons and their later analogical reasoning skill can poten-
tially be interpreted in a number of ways. One possibility is
that children who make more specific comparisons gain more
practice in identifying dimensions of similarity or difference:
thus, making these comparisons directly helps build their ana-
logical skills in ways that persist through later development.
Another possibility is that both our predictor variable (the
prevalence of specific comparisons in the pre-school years)
and our outcome variable (performance on verbal and non-
verbal analogy tests in 6th grade) can be traced back to an
underlying variable such as intelligence. The current work
cannot tease these explanations apart. However, in future
work, we aim to code the comparisons parents produce dur-
ing the sessions before their children start producing compar-
isons themselves. It will then be possible to use causal model-
ing to investigate the extent to which parent comparison input
predicts child comparison production, controlling for parent
IQ. If parent comparison input influences child production of
comparisons beyond a heritable IQ effect, this outcome could
potentially open the door for interventions aimed at boosting
children’s comparison production in the home by providing
them with particularly helpful kinds of input.
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Abstract 

It is commonly believed that children are able to learn through 
play. Recent studies have found that children are able to learn 
causal rules through free play (Sim & Xu, in press). One such 
study found that children learned how to correctly activate 
machines, using either a block that was the same shape or the 
same color as the machine, when given five minutes to play 
with them. However, would children be able to learn a more 
complex causal rule through free play as well and would their 
performance be comparable to children who were didactically 
taught the same causal rule? In the current study, we show that 
children are able to learn more complex causal rules through 
free play. We also show that children perform significantly 
better when learning these rules through free play or by first 
engaging in free play and then observing, as opposed to solely 
through observation.  

Keywords: free play; causal learning; generalization 

Introduction 

It is widely accepted that play is important for young 

children. Most elementary schools have a designated play 

time, where children are free to play and socialize with their 

peers. Studies have shown that on average children spend 51 

hours a week, or 30% of their week, engaging in free play 

(Hofferth & Sandberg, 2001). Play is also commonly 

encouraged by parents and educators, and access to play has 

been recognized by the United Nations Convention on the 

Rights of the Child (UNCRC) as a fundamental human right 

(Davey & Lundy, 2011). It is evident that children spend a lot 

of time playing and are encouraged to do so, but it remains 

unclear why this is the case. Why do children spend such a 

large portion of their time playing, and why do adults actively 

encourage play behavior? 

One explanation is that play has the potential to result in 

better learning than direction instruction because play 

provides learners with the opportunity to choose what they 

want to do (Whitebread, Coltman, Jameson, & Lander, 2009; 

Weisberg, Hirsh-Pasek, & Golinkoff, 2013; Weisberg, Hirsh-

Pasek, Golinkoff, & McCandliss, 2014). By doing so, 

learners may better encode new information in their memory 

(Metcalfe & Kornell, 2005); process the problem structure 

more deeply (Sobel & Kushnir, 2006); they may pay more 

attention and are more motivated (Corno & Mandinach, 

1983); or they may be able to focus on acquiring data that can 

address gaps in their knowledge (Markant & Gureckis, 2013). 

There is some empirical evidence that adults benefit from the 

opportunity to select the information that they want to learn. 

In fact, research has shown that adults learn better when they 

engage in active hypothesis testing, where they are able to 

select the data they observe to test their hypotheses, as 

compared to those who engaged in reception learning, where 

they observed data generated by another adult (Castro et al., 

2009; Markant & Gureckis, 2014; Sobel & Kushnir, 2006).   

For example, in one study, adults were shown a spectrum 

of sixteen “alien eggs” on a computer that went from spiky to 

smooth. Students were told that spiky eggs most likely 

hatched into alien snakes while smooth eggs most likely 

hatched into alien birds. They were asked to determine the 

boundary between the two types of eggs, so they had to 

determine the point at which the eggs shifted from hatching 

one species to the other species. To do this, subjects either 

selected a sequence of eggs to see which animal hatched from 

them (active learning condition) or observed randomly 

selected eggs being hatched (random condition). The study 

found that participants in the active learning condition 

generally performed better than those in the random 

condition (Castro et. al, 2009), which suggests that adults 

experience benefits in learning when they play an active role 

in gathering information. 

Within the developmental literature, several studies have 

established that children learn successfully when they have 

the opportunity to choose what they want to do as well. For 

example, researchers have found that children as young as 

five years were able to use self-generated evidence to learn 

about an ambiguous causal system (McCormack, Bramley, 

Frosch, Patrick, & Lagnado, 2016; Schulz, Gopnik, & 

Glymour, 2007). In another study, Sim and Xu (in press) 

found that three-year-olds were capable of forming higher-

order generalizations about a causal system after a short play 

period. In this study, children were presented with a causal 

learning task in which blocks would activate machines either 

based on a shape-rule (a block that matched the machine in 

shape activated the machine), or a color-rule (a block that 

matched the machine in color activated the machine). 

Children were randomly assigned to a didactic condition, 

such that an experimenter showed the children how to 

activate the machines, or a free play condition, such that the 

children were given the opportunity to play freely with these 

machines and blocks. The children were then tested using a 

first-order and a second-order generalization task. In the first-

order generalization task, children were asked to activate a 

familiar machine, and in the second-order generalization 

task, children were asked to activate a novel machine. The 

study found that both groups performed at levels well above 

chance, and there was no significant difference between the 

accuracy between the two conditions (Sim & Xu, in press). 
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Similarly, Smith and Dutton (1979) compared the 

performance of children in a play condition to both a training 

condition, where children were taught to use the materials by 

an experimenter, as well as a control condition, where 

children were neither taught by an experimenter nor played 

with the materials. Although children in the play and training 

condition performed significantly better in a problem-solving 

task compared to the control condition, there was no 

significant difference between the play and training 

conditions. 

 Although all of these studies suggest that children are able 

to learn through free play, there is as yet little evidence that 

young children’s learning and generalizations under free play 

conditions would actually differ from those in didactic 

conditions. Learning in the free play condition has repeatedly 

been found to be comparable to a didactic condition, but has 

not been found to be different from a didactic condition.  

Are there conditions under which young children may 

benefit more from the free play that they engage in 

independently, as compared to a training that is directed by 

an adult? In the current study, we examined this question by 

presenting children with a causal learning task in which the 

generalization to be acquired was more complicated than that 

examined in Sim and Xu (in press). To do so, machines in our 

study were activated when either two blocks that were the 

same shape as the machine, or two blocks that were the same 

color as the machine, were placed on the machine. Prior 

research have indicated that young children can learn causal 

rules of a similar form: Walker and Gopnik (2014) showed 

that after a short demonstration by an experimenter, 18- to 

24-month-olds were able to learn a “same” or “different” 

causal rule, i.e. that a machine was activated only by placing 

two identical blocks on the machine, or that a machine was 

activated only by placing two dissimilar blocks on the 

machine. Given that the rule used in the current study is of a 

more complex form – the two blocks had to match each other 

and the machine on a specific dimension (i.e., shape or color) 

– we chose to test 3- and 4-year-olds in the current study.  

Children were randomly assigned to a free play condition, 

where they were presented with six machines (three 

categories of machines, with two identical machines within 

each category) and twelve blocks to play with for 

approximately 10 minutes, or the didactic condition, where 

they observed an experimenter activate each machine once. 

To further examine any potential benefits of play, children 

who did not activate the machines at least once in the free 

play condition were placed in a third condition, the free-play-

first condition, where they observed the experimenter 

showing them how to activate the machines after they played 

by themselves for approximately 10 minutes. Similar to the 

study by Sim and Xu (in press), the children’s ability to learn 

the correct rule was measured using a first- and second-order 

generalization test, where they were asked to activate both a 

familiar and a novel machine respectively. 

Method 

Participants 

Sixty-one three- to five-year-old English-speaking children 

(29 boys and 32 girls) with the mean age of 48.4 months 

(range= 36.3 months to 59.1months) were tested. All were 

recruited from Berkeley, California and its surrounding 

communities. Children were tested either in a small testing 

room at our lab or in a small quiet room in a preschool. Each 

child was randomly assigned to the didactic (N=24) or free 

play condition (N=22). Children assigned to the free play 

condition but did not activate the machines at least once 

during the free play phase were placed in the free play first 

condition (N=15). The mean ages in the didactic, free play, 

and free play first condition were 48.1 months, 49.7 months, 

and 47.1 months respectively. An additional 9 children were 

tested but were excluded due to parent interference (N=5) and 

experimenter error (N=4).   

Materials 

Five different types of machines were constructed for this 

experiment. Each type of machine made a distinct sound 

when activated. This activation was completed using a foot 

pedal connected to a remote that activated a doorbell that was 

placed inside the machines. There were two blue rectangle 

machines, two red triangle machines, two green circle 

machines, and one orange L-shaped machine. In addition, 

there was a colorful felt-covered plus-shaped machine 

(demonstration machine) that looked considerably different 

from the other four types of machines. Each machine was 

approximately 20cm x 12cm x 10cm. 

A variety of small blocks (approximately 7cm x 5cm x 

1cm) were used to activate the machines. The activator 

blocks were of different shapes and colors. Some matched the 

machines in shape but not in color, or in color but not in 

shape, while other distractor blocks matched in neither shape 

nor color. In total, twenty-two blocks were used. 

Procedure 

Each child was tested individually. For children tested in our 

lab, parents sat next to the child during the procedure and 

were asked not to interact with their child. For children tested 

at preschools, an observer watched the procedure through a 

one-way mirror.  

Both the didactic and free play conditions consisted of 

three phases: a demonstration phase, a training/free play 

phase, and a testing phase. For half the children, each 

machine was activated by placing two blocks on the machine 

that matched the machine in shape (shape rule). For the other 

half, each machine was activated by placing two blocks on 

the machine that matched the machine in color (color rule). 

Children in the free play condition who did not activate the 

machines at least once during the free play phase formed a 

separate group: the free-play-first condition. This condition 

consisted four phases: a demonstration phase, a free play 

phase, a training phase, and a testing phase. In other words, 

children who did not activate any machines during free play 
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were then trained by the experimenter using the procedure of 

the didactic condition. For four of these children, machines 

were activated by the shape rule, and for eleven children 

machines were activated by the color rule. 
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Figure 1: Schematic of materials and procedure. 

 

Didactic Condition For the didactic condition, the 

children sat at a small table across from an experimenter. The 

demonstration phase began with the experimenter showing 

the child 12 blocks and pointing out that the blocks had 

different shapes and different colors. The blocks were then 

removed and the demonstration machine was placed on the 

table along with one block. The experimenter then showed 

the child how to make the machine go by placing the block 

on the machine and pressing down. After the machine made 

a sound, the experimenter noted that the blocks made the 

machine go and then allowed the child to try. Two new blocks 

were then placed in front of the child. The child activated the 

machine by pressing down with these two blocks and the 

experimenter stated that the blocks made the machine go. 

This was repeated next with three new blocks. The blocks and 

machine were then removed, ending the demonstration 

phase. The duration of this phase was around four minutes. 

The experimenter then told the child that she had some new 

machines to show them. She also emphasized that these new 

machines were much pickier than the demonstration 

machine, so only some blocks would make them go. 

The training phase that followed began with the 

experimenter presenting the first machine (e.g., blue 

rectangle machine). The experimenter placed four activator 

blocks on the table next to the machine (e.g., the red, green, 

yellow, and purple rectangle blocks if the machine was 

activated by the shape rule; the blue triangle, blue circle, blue 

heart, and blue star blocks if the machine was activated by 

the color rule). The experimenter then stated, “Let me show 

you how to make this machine go,” and placed two of the four 

activator blocks (e.g., purple rectangle block and yellow 

rectangle block, or blue circle block and blue star block) on 

the machine and pressed both blocks down, activating the 

machine. She then exclaimed, “The machine made a sound! 

It played music!” The experimenter then told the child that 

she had another machine that was identical to the one in front 

of them. This machine was placed on the table, and the other 

two activator blocks were now placed on the new machine, 

activating it. The machines and blocks were then removed 

and the process was repeated with the remaining two sets of 

machines. Once the child had seen all six machines activated 

one time each, the training phase was complete. The order of 

the presentation for the types of machines was 

counterbalanced. The duration of the training phase was 

approximately five minutes. 

The testing phase consisted of both a first-order 

generalization test and a second-order generalization test. 

The order of the tests was counterbalanced. For the first-order 

test, the children were first presented with six separate 

blocks: two blocks that matched the machine in shape, two 

blocks that matched the machine in color, and two distractor 

blocks that did not match the machine in shape or color (see 

Figure 1). The experimenter presented the blue rectangle 

machine from the training phase, and said, “Remember this 

machine? Remember that I made this machine go just now? 

Can you show me how to make this machine go?” If the child 

placed the correct blocks on to the machine, the machine 

activated and the experimenter neutrally stated that the 

machine made a sound. If the child did not place the correct 

blocks, the machine did not activate and the experimenter 

neutrally stated that the machine did not make a sound. For 

the second-order generalization, the child was presented once 

more with six new blocks (see Figure 1). The child was then 

shown a novel machine (the orange L-shaped machine) and 

told that the machine “was a picky machine too”. The 

experimenter then asked the child, “Can you show me how to 

make this machine go?” Once again, the experimenter 

neutrally stated that the machine made a sound if the child 

was correct, or did not make a sound if the child was 

incorrect. 

Free Play Condition For the free play condition, the 

children sat on a blanket on the floor. The demonstration 

phase in the free play condition was identical to that in the 

didactic condition. 

The free play phase began with the experimenter saying 

that she needed to check that all the machines worked (pilot 

testing suggested that this step was necessary in order to 

encourage children to keep playing even if they did not active 

any machines after a few attempts). The machines were taken 

behind a table and activated so that the child could hear them 
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activate by the sound they made, but could not see how they 

were activated. The experimenter then placed all six 

machines (two blue rectangle machines, two red triangle 

machines, and two green circle machines) in front of the child 

and noted that these machines were pickier and that only 

some blocks made them go. The twelve activator blocks 

shown in the demonstration phase were placed in front of the 

child as well. The experimenter then told the child, “I just 

remembered I have to do some work now, but while I work, 

you can play with these machines and these blocks.” The 

children were given approximately ten minutes to play with 

the machines and blocks. If the child did not make any 

attempt to activate the machines for one minute, the 

experimenter prompted the child by saying, “Why don’t you 

try to make the machines go?” After ten minutes, the blocks 

and machines were removed, ending the free play phase.  

The testing phase was identical to that of the didactic 

condition.  

Free-Play-First Condition For the free-play-first 

condition, the children sat on a blanket on the floor. The 

demonstration phase and free play phase were identical to 

that in the free play condition. Children were then moved to 

a table and the training phase was identical to the training 

phase in the didactic condition. The testing phase was 

identical to that of the didactic and free play conditions.  

Coding 

For children exposed to the shape rule, selecting the two 

blocks that matched the machine in shape was scored as one 

point. On the other hand, for children exposed to the color 

rule, selecting the two blocks that matched the machine in 

color was scored as one point. Since each child completed 

two tests, the maximum score that a child could receive was 

two points. 

Results 

We analyzed effects on children’s responses with generalized 

linear mixed effects models in R, using an alpha level of 0.05 

for all analyses. Children’s responses were coded as a binary 

variable where correct responses were coded as 1 and 

incorrect responses were coded as 0. In the model, subjects 

were specified as a random factor since this was a repeated 

measures task; each subject gave two responses. Although 

children in the didactic condition and the free play first 

condition all saw a total of six activations, the same cannot 

be said for children in the free play condition. In the free play 

condition, the total number of activations (M= 17.6, SD= 

12.6) each child saw as well as the amount of time that each 

child played for (M= 7.91, SD= 2.34) varied. Although the 

didactic condition did not receive any negative evidence (i.e., 

observing unsuccessful activations), this was not the case for 

both the free play condition and the free-play-first condition. 

The amount of negative evidence generated by each child in 

the free play condition varied (M= 29.5, SD= 21.8). Children 

in the free-play-first condition also generated a varied amount 

of negative evidence (M= 28.1, SD= 16.1). Preliminary 

analysis showed no significant effect of age, sex, or 

presentation order of the machines and testing phases. 

Additionally, there was no significant difference in the 

children’s performance between first-order and second-order 

generalization tests in each of the three conditions. 

 

 
Figure 2: Percent accuracy for the conditions. Dashed line 

represents a conservative calculation of chance. Error bars 

represent standard error. 

 

There was, however, a statistically significant difference 

between the performance of children who were in the free 

play condition (M= 0.4318, SD= 0.4168) and children who 

were in the didactic condition (M= 0.10, SD=0.21), as shown 

in Figure 2. More specifically, our analysis showed that the 

free play condition performed significantly better than the 

didactic condition (= 2.259, SE= 0.787, p= 0.004). Analysis 

of the exponentiated coefficients revealed that being in the 

free play condition increased the children’s odds of being 

correct by 856%. The free-play-first condition (M= 0.4333, 

SD= 0.4169) also performed significantly better than the 

didactic condition (= 2.267, SE= 0.840, p= 0.007), and 

being in the free play first condition increased the children’s 

odds of being correct by 865%. However, there was no 

significant difference between the performance of children in 

the free-play-first condition and the free play condition. In 

addition, we analyzed whether the amount of negative 

evidence received was predictive of performance in the free 

play and free-play-first conditions. It was found that the 

amount of negative evidence did not have a significant effect 

on performance (= -0.005, SE= 0.018, p= 0.787), indicating 

that the extent to which children received negative evidence 

during play did not influence their performance during the 

generalization test trials.  

The best fit model was also found by comparing various 

models that included potential predictors of performance 

such as condition, sex, age, rule, and amount of negative and 

positive feedback. Through model comparisons, it was found 

that the best fit model predicted accuracy from condition (2= 

13.72, df= 2, p= 0.001). This model outperformed all other 

models, including the null model. 

A conservative value for chance was also calculated by 

considering all possible two block combinations that could be 

placed on the machine and then calculating the probability of 
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placing the correct blocks. This resulted in a value of 0.067 

for chance performance. Children in the free play condition 

were significantly more likely to choose the correct blocks 

compared to chance, t(43)= 4.834, p= 0.00002, as were 

children in the free-play-first condition, t(29)= 3.985, p= 

0.0004. Children in the didactic condition, however, were not 

significantly more likely to choose the correct blocks over 

chance, t(47)=  0.842, p= 0.404. 

Discussion 

In the current study, we demonstrate that 3- and 4-year-old 

children can successfully acquire fairly complex causal 

generalizations through free play. They independently 

generated evidence that allowed them to understand the 

causal system that they were presented with, and they formed 

higher-order generalizations at a level above chance. More 

strikingly, children’s learning in the free play condition and 

the free-play-first condition was superior to that of children 

in the didactic condition. Just as in the study by Sim and Xu 

(in press), children were equally successful in learning first-

order and second-order generalizations during the course of 

free play, and there was no difference in their performance 

when it came to learning the shape or the color rule. It is 

interesting to note that there were more children in the free-

play-first condition who had been exposed to the color rule 

rather than the shape rule, which may indicate the potential 

influence of a shape bias. However, we did not find an overall 

difference in performance between children who were 

exposed to the color rule vs. the shape rule.  

We also sought to determine if there were scenarios in 

which children benefited more from learning through free 

play than through direction instruction by an experimenter. 

We found that children who engaged in free play performed 

significantly better at test than children in the didactic 

condition. Even children who were unable to activate the 

machines during play but who later observed an experimenter 

doing so performed significantly better than those assigned to 

the didactic condition, suggesting that the former group also 

benefited from engaging in free play. To the best of our 

knowledge, this study presents the first evidence that children 

can learn about a causal system more effectively through play 

than through training. So why was learning more effective 

under free play? 

One possible reason for this difference between the two 

conditions is that children in the free play condition were able 

to engage actively with the materials, whereas children in the 

didactic condition played a passive role in learning about the 

machines, observing an experimenter activate them but never 

activating the machines themselves. Sobel and Sommerville 

(2010) found that four-year-old children learned a causal 

structure more accurately when they were given some time to 

engage with a causal system. Likewise, McCormack et al. 

(2016) showed that children who acted out interventions on a 

causal system following specific directions from an 

experimenter performed better than children who witnessed 

the same interventions but watched as the interventions were 

performed by an experimenter. Together, these studies 

suggest that children may benefit more from intervening on a 

causal system, rather than observing an experimenter do so. 

This may explain why the free-play-first condition performed 

significantly better than the didactic condition, even though 

the children never successfully activated the machines while 

playing. 

It is also possible that the children in the didactic condition 

struggled because they had different hypotheses about how 

the machines worked which were not contradicted by the 

evidence they witnessed (e.g., they may have thought that 

each of the two blocks would activate the machine by itself). 

Children in the free play condition and in the free-play-first 

condition, in contrast, had the opportunity to carefully test 

their own hypotheses, particularly through the generation of 

negative evidence. In other words, children in these 

conditions were able to see which combinations of blocks 

would make the machine go, as well as which combinations 

of blocks would not make the machine go. However, we did 

not find in our additional analyses that the amount of negative 

evidence that children generated was predictive of their 

performance at test, suggesting that there was something 

more to the evidence that the children saw during free play 

that assisted them in forming the correct generalizations. 

Further research is still necessary to understand the 

differences we found between the free play and didactic 

condition in our study. One worthwhile direction is to 

conduct an additional “yoked” didactic condition, where the 

experimenter presents children with evidence that was 

generated by children from the free play condition. This 

additional condition will clarify whether the differences 

found in the present study can be attributed solely to the 

difference in the quality of evidence between conditions.  

We note that the current findings also appear to differ from 

those of other studies comparing the performance of children 

in free play and training/didactic conditions for other kinds of 

tasks. For example, Klahr and Nigam (2004) compared 

discovery learning, which they defined as learning that 

children engaged in by themselves without the assistance or 

feedback from a teacher, to direct instruction in third- and 

fourth-grade children for designing unconfounded 

experiments, which are experiments that clearly reveal the 

effect of a particular variable. The researchers found that 

children in the direct instruction condition performed 

significantly better than children in the discovery learning 

condition. However, in this particular study, children in the 

direct instruction condition were engaged in designing and 

manipulating variables during training as well, while children 

in the didactic condition in the current study engaged with the 

materials more passively, observing as an experimenter 

taught them how the machines worked. Another difference 

between the two studies is that in the study by Klahr and 

Nigam (2004), children in the discovery learning condition 

were given time to explore the ramp and marbles and design 

experiments, however they were not provided with any 

negative or positive feedback. In our study, on the other hand, 

children in the free play condition were provided with both 

negative and positive evidence, since the machine only made 
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a sound when activated correctly. Although the finding from 

Klahr and Nigam (2004) is sometimes used as evidence for 

the benefits of direct instruction for teaching children science, 

our study suggests that children have the potential to learn 

causal systems effectively through play when provided with 

useful feedback, even if the feedback does not come from an 

instructor. 

Previous work has demonstrated that children attending 

child-centered preschools, where free play and child initiative 

are highly encouraged, were more motivated to learn, showed 

more pride in their accomplishments, and claimed to be less 

worried than children attending didactic, highly academic 

preschools (Stipek, Feiler, Daniels, & Milburn, 1995). The 

current study extends these results by showing that children 

can learn effectively through free play, and under some 

conditions, learning within a free play context may be better 

than learning in a didactic context. However, it is important 

to note that free play is just one aspect of the child-centered 

instructional approach in preschools, and our results cannot 

speak directly to any potential learning differences between 

the two instructional approaches.  

In summary, the present study provides evidence that 

young children can learn effectively through free play, and 

this learning might be better than the learning achieved 

through direct demonstration. Our results provide one source 

of empirical evidence on why play is important for children 

and why unstructured play should be incorporated into school 

curriculums. This study also suggests that there is merit to 

child-centered learning in preschools, as it appears that 

children are able to learn through play and that they are able 

to successfully engage in active learning. 
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Abstract 

In this manuscript we study individual variation in the 
interpretation of conditionals by establishing individual 
profiles of the participants based on their behavioral respon-
ses and reflective attitudes. To investigate the participants’ 
reflective attitudes we introduce a new experimental paradigm 
called the Scorekeeping Task, and a Bayesian mixture model 
tailored to analyze the data. The goal is thereby to identify the 
participants who follow the Suppositional Theory of condi-
tionals and Inferentialism and to investigate their performance 
on the uncertain and-to-if inference task.  
  

Keywords: conditionals; individual variation; and-to-if; 
norms; the Equation; inferentialism  

Introduction 
According to a popular theory in the psychology of reason-
ning (the Suppositional Theory, or ‘ST’), the probability of 
an indicative conditional (e.g. ‘If I forget to pay the rent, 
then my landlord will complaint’) is evaluated by a mental 
algorithm known as the Ramsey test (Evans & Over, 2004; 
Oaksford & Chater, 2007; Baratgin, Over, and Politzer, 
2013). 

THE RAMSEY TEST: to evaluate P(if A, then C) the 
participants add the antecedent to their background 
beliefs, make minimal adjustments to secure consistency, 
and evaluate the probability of the consequent on the basis 
of this temporarily augmented set of beliefs.  

Quantitatively, this introduces the following prediction, 
which is known as “the Equation”:  

PRED1: P(if A, then C) = P(C|A) 

Given that P(C|A) ≥ P(A,C) follows from the axioms of 
probability theory (an inequality referred to as probabilistic 
coherence; PCh), ST also predicts that: 

PRED2: P(if A, then C) ≥ P(A,C) 

Accordingly, the participants are predicted to conform to the 
following inequality in the so-called uncertain and-to-if 
inference (UAI), where they are presented with ‘A and C’ as 
a premise and ‘if A, then C’ as a conclusion and asked to 
assign probabilities to each: 

PRED2A: P(Conclusion) ≥ P(Premise) 
Cruz, Baratgin, Oaksford, and Over (2015) found that the 
participants conformed to PRED2A at above chance levels. 
This has been taken as indirect evidence in favor of ST. 

There is presently a considerable interest in and-to-if 
inferences, because recently a theory known as ‘inferentia-
lism’ made its appearance into the psychology of reasoning, 
which posits that indicate conditionals express inferential 
relations. In the truth-conditional version of inferentialism, 
it rejects the validity of the and-to-if inference ‘A∧C ⊨ if A, 
then C’ (Douven, 2015). Truth-conditional inferentialism 
rejects the validity of this argument scheme, because the 
indicative conditional is viewed as expressing a reason 
relation and the mere truth of A and C does not ensure that 
they are inferentially connected. Rejecting the validity of the 
and-to-inference is a distinguishing feature of this approach 
that separates it from other popular semantics of condi-
tionals like Stalnaker’s possible worlds semantics or the de 
Finetti truth table endorsed by proponents of ST.  

In Skovgaard-Olsen, Singmann, and Klauer (2016a) a 
weaker probabilistic implementation of inferentialism was 
given in the form of the Default and Penalty Hypothesis 
(DP), which employs the following explication of the reason 
relation: 

PO: A is positively relevant for C (and a reason for C) iff 
P(C|A) > P(C|∼A)  
NE: A is negatively relevant for C (and a reason      
against C) iff P(C|A) < P(C|∼A) 
IR: A is irrelevant for C iff P(C|A) = P(C|∼A) 

DP posits that the participants have the goal of evaluating 
whether a sufficient reason relation obtains when evaluating 
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P(if A, then C). According to Spohn’s (2012: ch. 6) 
explication of the reason relation given above, this requires 
at least two things: (a) assessing whether A is positively 
relevant for C, and (b) assessing the sufficiency of A as a 
reason for C by means of P(C|A). DP moreover postulates 
that the participants follow the heuristic, when processing 
natural language conditionals, of making the default 
assumption that (a) is satisfied, which reduces their task of 
assessing P(if A, then C) to assessing P(C|A). However, 
once the participants are negatively surprised by a violation 
of this default assumption, such as when they are presented 
with stimulus materials implementing the NE or IR 
category, they apply a penalty to P(if A, then C) to express 
the conditional’s failure to express that A is a reason for C. 
An example would be the conditional ‘If Oxford is in 
England, then Napoleon is dead’ which sounds defective to 
the extent that the antecedent is obviously irrelevant for the 
consequent. 

In support of DP, it was found in Skovgaard-Olsen et al. 
(2016a) that PRED1 only holds when A is positively 
relevant for C in virtue of raising its probability. When A is 
negatively relevant by lowering C’s probability, and when A 
is irrelevant for C by leaving its probability unchanged, 
violations of PRED1 occur. Consistent with these findings, it 
was found in Skovgaard-Olsen et al. (2016b) that the above-
chance level of conformity to PRED2A reported in Cruz et 
al. (2015) only holds for PO. In NE and IR the participants 
are performing below chance levels. Further-more, this is a 
pattern that is not reflected in their conformity to the 
theorem P(C|A) ≥ P(A,C) across relevance levels, in spite of 
the fact the participants are supposed to conform to P(if A, 
then C) = P(C|A), according to ST. 

It is presently unclear whether this finding of lack of 
conformity to PRED2A in the NE and IR conditions indicates 
that the participants are making a reasoning error (by 
following ST) or whether they are not making a reasoning 
error but simply basing their performance on a different 
interpretation of conditionals (by following DP). The goal 
of the present study is to address this question. 

In the present experiment, we seek to establish individual 
profiles of the participants based on their behavioral 
responses and reflective attitudes. In order to study their 
reflective attitudes we implemented a novel experimental 
paradigm – the  Scorekeeping Task – suggested in 
Skovgaard-Olsen (2015), as well as a Bayesian mixture 
model tailored to classify the data coming from it (both are 
discussed in detail below). Based on this novel task and the 
associated data-analytic method, we were able to investigate 
two key questions: First, whether participants classified as 
ST accord with ST’s PRED2A prediction for the UAI across 
a relevance manipulation. Second, whether participants 
classified as DP accord with DP’s prediction that PRED2A 
only holds in the PO condition. In the IR condition, DP 
participants are expected to apply a penalty to conditionals 
in the conclusion of the UAI, such that P(if A, then C) < 
P(C|A) can occur, effectively dismissing PRED2A. 

Experiment 

Method 
Participants  
A total of 354 people from the USA, UK, Canada, and 
Australia completed the experiment, which was launched 
over the Internet (via Mechanical Turk) to obtain a large and 
demographically diverse sample. Participants were paid a 
small amount of money for their participation.   

The following exclusion criteria were used: not having 
English as native language (6 participants), completing the 
experiment in less than 300 seconds (2 participants), failing 
to answer two simple SAT comprehension questions 
correctly in a warm-up phase (89 participants), and answer-
ring ‘not serious at all’ to the question how serious they 
would take their participation at the beginning of the study 
(zero participants). Since some of these exclusion criteria 
were overlapping, the final sample consisted of 261 
participants. Mean age was 36.53 years, ranging from 20 to 
75, 66% were female, 66% indicated that the highest level 
of education that they had completed was an undergraduate 
degree or higher. 
 
Design  
The experiment implemented a within-subject design with 
two factors varied within participants: relevance (with two 
levels: PO, IR) and priors (with four levels: HH, HL, LH, 
LL, meaning, for example, that P(A) = low and P(C) = high 
for LH). 

 
Materials and Procedure 
We used a slightly modified version of 12 of the scenarios 
presented in Skovgaard-Olsen et al. (2016b). For each 
scenario we had 8 conditions according to our design (i.e., 4 
conditions for PO [i.e., HH, HL, LH, LL], 4 conditions for 
IR). Each participant worked on one randomly selected 
(without replacement) scenario for each of the 8 within-
subjects conditions such that each participant saw a different 
scenario for each condition. Following the recommendations 
of Reips (2002), to reduce dropout rates, we presented two 
SAT comprehension questions as an initial high hurdle in a 
warm-up phase (in addition to using them for excluding 
participants). The experiment was split into four phases and 
on average took ca. 23 minutes to complete. Here we focus 
on conveying the underlying conceptual ideas.  
 
Phase 1, Behavioral Responses 
The first phase contained eight blocks, one for each within-
subjects condition. The order of the blocks was randomized 
anew for each participant and there were no breaks. Within 
each block, the participants were presented with four pages. 
On the first page, the participants were shown a scenario 
text like the following: 

Scott was just out playing with his friends in the snow. He 
has now gone inside but is still freezing and takes a bath. 
As both he and his clothes are very dirty, he is likely to 
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make a mess in the process, which he knows his mother 
dislikes. 

The idea was to use brief scenario texts concerning basic 
causal, functional, or behavioral information that uniformly 
activates stereotypical assumptions about the relevance and 
prior probabilities of the antecedent and the consequent of 8 
conditionals that implement our experimental conditions for 
each scenario. So to introduce the 8 within-subjects condi-
tions for the scenario above we, inter alia, exploited the fact 
that the participants would assume that Scott’s turning on 
the warm water would raise the probability of Scott being 
warm soon (PO) and that Scott’s friends being roughly the 
same age as Scott would be irrelevant for whether Scott will 
turn on the warm water (IR).  

This scenario text was repeated on each of the following 
three pages, which measured P(A and C), P(C|A), and P(if 
A, then C) in random order. Throughout the experiment, the 
participants gave their probability assignments using sliders 
with values between 0 and 100%. To measure P(C|A), the 
participants might thus be presented with the following 
question in an IR condition: 

Suppose Scott’s friends are roughly the same age as Scott. 
Under this assumption, how probable is it that the 
following sentence is true on a scale from 0 to 100%: 
Scott will turn on the warm water. 

 
Phase 2, the Scorekeeping Task 
In this phase the participants were first presented with a new 
IRHH item to be rated in the same way as the items in phase 
one. Then the participants were presented with the following 
instruction:  

When given the task you just completed, John and Robert 
responded very differently to some of the scenarios as 
outlined below.   

And it was explained that John and Robert responded in the 
following way to the “if-then sentence” and the “suppose-
sentence” (where the “suppose-sentence” had been identi-
fied for the participants as the type of question quoted above 
for measuring P(C|A)):  

John assigned 99% to the suppose-sentence and 1% to the 
if_then sentence.  
Robert assigned 90% to the suppose-sentence and 90% to 
the if_then sentence. 

Note that although John and Robert are fictive participants, 
these values were based on actual data provided by other 
participants in response to the IRHH item in previous 
experiments. In order to reduce the processing demands, 
these values were repeated on each of the following four 
pages along with the IRHH item, which John and Robert 
allegedly had responded to. The conditional took the 
following form, and it was evaluated in the context of a 
dating scenario describing Stephen’s preparations for a date 
with Sara: ‘If Stephen’s neighbour prefers to put milk on his 
cornflakes, then Stephen will wear some of his best clothes 
on the date’.  

As part of the scorekeeping task, the participants were 
instructed to apply a sanction to John or Robert’s response 
based on its adequacy. Given their large divergence, the 
participants were instructed that at most one of John or 
Robert’s responses could be approved as adequate. 

Since the experiment was run on Mechanical Turk we 
exploited the fact that an ecologically valid sanction for the 
participants would be not to have a task (a “HIT”) approved. 
Since the approval of HITs on Mechanical Turk determines 
whether the participants are paid for a completed task (and 
moreover counts towards their reputation on Mechanical 
Turk, which determines whether they can participate in 
future HITs) it is our experience that the participants care a 
lot about the approval of their HITs. We therefore expected 
that applying the sanction of not approving either John or 
Robert’s HIT based on its adequacy would be a contextually 
salient sanction, which the participants would be highly 
motivated to reason with. 

Next the participants were asked to state the reasons that 
they could think of which could be given for or against John 
and Robert’s responses in an open entry question, which 
was included in the experiment for exploratory purposes.  

On the two pages that followed, the participants were 
presented with John’s criticism of Robert and Robert’s 
criticism of John in random order. Robert made the 
following complaint about John’s response: 

Robert's no difference justification: “There is no        
difference between the two questions. So why do you give 
a lower probability to:  
'IF Stephen’s neighbour prefers to put milk on his 
cornflakes, THEN Stephen will wear some of his best 
clothes on the date’  
than you gave to: 'Stephen will wear some of his best 
clothes on the date' under the assumption that 'Stephen’s 
neighbour prefers to put milk on his cornflakes'?  
This makes no sense!” 

John in turn made the following complaint about Robert’s 
response:  

John's irrelevance justification: “Whether 'Stephen’s 
neighbour prefers to put milk on his cornflakes' or not is 
irrelevant for whether 'Stephen will wear some of his best 
clothes on the date'.  
So why do you give such a high probability to: ‘IF 
Stephen’s neighbour prefers to put milk on his cornflakes, 
THEN Stephen will wear some of his best clothes on the 
date'? This makes no sense!” 

In each case, the participants were asked to indicate (yes/no) 
whether they agreed with the following statements: 

John’s irrelevance justification [/Robert’s no difference 
justification] shows that Robert's [/John’s] response is 
wrong. 
Robert [/John] needs to come up with a very good 
response to John's [/Robert’s] criticism, if his HIT is to be 
approved. 

Finally, after having seen the justifications from both sides, 
the participants were asked which justification they found 
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most convincing by choosing between the following 
options, presented in random order:  

The two justifications are equally convincing 
John’s irrelevance justification 
Robert’s no difference justification 

The participants then had to indicate who’s HIT deserved to 
be approved based on their justifications by selecting one of 
the options below, presented in random order: 

None of their HITs should be approved 
Robert’s HIT should be approved 
John’s HIT should be approved 
 

Phase 3, the Uncertain And-to-If Inference 
This phase tested the participants’ performance on the UAI 
under relevance manipulations. Phase 3 was used to 
measure whether the participants displayed a consistent 
behavior on the UAI with the interpretation of the 
conditional that they had been classified according based on 
their responses in phase 1 and phase 2. 

Phase 3 contained 8 blocks implementing the same within-
subjects conditions as phase 1. For each participant, the 
same permutations of scenarios and within-subject condi-
tions that had been randomly generated in phase 1 was disp-
layed again in random order. First the participants were 
instructed that they would be presented with a scenario text 
as earlier and a short argument based on the scenario text. 
They were told that the premise and the conclusion of this 
argument could be uncertain and that it was their task to 
evaluate the probabilities of the premise and conclusion. 
Each block contained one page. On the top of the page the 
scenario text was placed as a reminder. Below the 
participants were instructed to read an argument containing 
the conjunction as a premise and the conditional as a 
conclusion, employing sentences that they assigned 
probabilities to in phase 1. Furthermore, the actual value of 
the probability that they had assigned to the premise in 
phase 1 was displayed to the participants in a salient blue 
color. We here illustrate it using the example from above 
from phase 1 of a POHH item: 

Premise: Scott’s turns on the warm water AND Scott will 
be warm soon. 
Conclusion: IF Scott’s turns on the warm water, THEN 
Scott will be warm soon. 
You have estimated the probability of the premise as: 
90%. Please rate the probability of the statement in the 
conclusion on a scale from 0 to 100%.  

In Phase 4, we tested the participants’ interpretation of the 
probabilities (Hertwig & Gigerenzer, 1999). These results 
are beyond the scope of the present manuscript and 
therefore not reported here. 

Bayesian Mixture Modeling 
In order to investigate the participants’ interpretation of the 
conditional, the probability judgments they produced in 
Phase 1 were classified as coming from one of two latent 
classes using an indicator variable w. This classification was 

achieved by means of a Bayesian Mixture model (for a 
similar approach, see Lee, 2016). In the PO condition, 
where both ST and DP make the same predictions (see the 
left panel of Figure 1), the mixture model assumed that 
responses from an individual i were generated by ST/DP 
(𝑤𝑤𝑖𝑖

𝑃𝑃𝑃𝑃 = 1), or by an unclassifiable response-generation 
mechanism (𝑤𝑤𝑖𝑖

𝑃𝑃𝑃𝑃 = 0), for an item-pair j: 

𝑃𝑃(𝑖𝑖𝑖𝑖 𝐴𝐴, 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝐶𝐶)𝑖𝑖,𝑗𝑗 =  �
𝛽𝛽𝑖𝑖,𝑗𝑗 +  𝜀𝜀𝑖𝑖,𝑗𝑗,    𝑤𝑤𝑖𝑖

𝑃𝑃𝑃𝑃 = 0,

𝑃𝑃(𝐶𝐶| 𝐴𝐴)𝑖𝑖,𝑗𝑗 +  𝜀𝜀𝑖𝑖,𝑗𝑗,    𝑤𝑤𝑖𝑖
𝑃𝑃𝑃𝑃 = 1,

 

where 0 ≤ 𝛽𝛽𝑖𝑖,𝑗𝑗 ≤ 100. 
When an individual follows ST/DP, the generated P(if A, 
then C) are expected to follow P(C|A) along with some 
truncated Gaussian noise term εi,j with mean 0 and variance 
σ² (see the left panel of Figure 1). This noise captures the 
variability that is commonly observed in probability 
judgments across the [0%, 100%] interval (see Costello & 
Watts, 2016).  When an individual follows an unclassified 
pattern, their responses were captured by a saturated model, 
which established a β parameter per data point (predicting 
the latter perfectly).1  

In the IR condition, the model only considered 
participants that were classified as ST/DP in the PO 
condition (i.e., the PO condition served as a filter for the IR 
condition). Here, both ST (𝑤𝑤𝑖𝑖

𝐼𝐼𝐼𝐼 = 0) and DP (𝑤𝑤𝑖𝑖
𝐼𝐼𝐼𝐼 = 1) 

make distinct predictions: 

𝑃𝑃(𝑖𝑖𝑖𝑖 𝐴𝐴, 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝐶𝐶)𝑖𝑖,𝑗𝑗 =  �
𝑃𝑃(𝐶𝐶| 𝐴𝐴)𝑖𝑖,𝑗𝑗 +  𝜀𝜀𝑖𝑖,𝑗𝑗,    𝑤𝑤𝑖𝑖

𝐼𝐼𝐼𝐼 = 0,
𝜃𝜃𝑖𝑖𝑃𝑃(𝐶𝐶| 𝐴𝐴)𝑖𝑖,𝑗𝑗 +  𝜀𝜀𝑖𝑖,𝑗𝑗,    𝑤𝑤𝑖𝑖

𝐼𝐼𝐼𝐼 = 1,
 

with 0 ≤ θi ≤ 1. 
When individuals follow ST, the generated P(if A, then 

C) are again expected to follow P(C|A). In contrast, when 
individuals follow DP, P(if A, then C) follows a penalized 
version of P(C|A) (with the penalty being determined by θ). 

Note that when θ=1, the ST and DP models coincide, 
although the implied predictions are not really in accordance 
with the gist of DP. However, this point turns out not to be 
of practical import, because since ST is more parsimonious 
it will be preferred when θ=1 (see Lee, 2016).   

 

 
Figure 1. Predictions from both theoretical accounts 

(including some moderate degree of truncated noise). 

                                                           
1 To make the saturated model identifiable, we constrained σ² to 

be the same for both latent classes. 
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 The key parameters of interest in this analysis are the 
posterior probabilities of wi =1 obtained in the PO and IR 
conditions. In the PO condition, when the mean of this 
posterior probability was estimated to be below or equal to 
.50, the individual was classified as following the saturated 
model. When the mean is estimated to be larger than .50, the 
individual was classified as following ST/DP. In the IR 
condition, these same ranges of values led to the ST and DP 
classifications, respectively.  

The individual classifications jointly obtained for PO and 
IR were used to characterize the conformity of individuals’ 
responses to theoretically-meaningful inequalities, namely 
UAI and PCh. For participant i, the probability that her 
response to a given item-pair j conformed to a given 
inequality is given by Φ(Δi + Ki,j), with Φ() being the 
probability function of the standard Normal distribution. 
Parameter Ki,j is a correction term for participant i and item-
pair j such that Φ(Ki,j) corresponds to the probability that the 
responses to a given item-pair were inequality-conforming 
by chance alone (Singmann, Klauer, & Over, 2014). 
Parameter Δi corresponds to that individual’s displacement 
from chance (i.e., when Δi is positive, that individual 
produces inequality-conforming responses at an above-
chance rate). Using a hierarchical framework, these 
individual parameters were assumed to come from a Normal 
group-level distribution, with mean µΔ and standard 
deviation σΔ. If individuals in general conform to the UAI or 
PCh, then their respective µΔ should be consistently above 0 
(i.e., the probability of µΔ being below 0 should be very 
small). These parameters were estimated separately for 
individuals classified as ST and DP in the IR condition. 

A very similar hierarchical approach was used to model 
the relative probability of an individual judging the no-
difference justification (in line with ST) as most convincing 
after having seen both sides, as well as the relative 
probability attributing the HIT to such justification. 

Results 
The posterior-parameter distributions of mixture model 
were estimated via Gibbs sampling using the general-
purpose software JAGS (Plummer, 2003). Chain 
convergence was confirmed via the R-hat statistic and visual 
inspection. The individual-level classifications shown in 
Figure 2 show that the probabilities generated by the 
majority (225 out of 261) of individuals in the PO condition 
were in line with ST/DP. In contrast, only a very small 
group of individuals were in line with ST in the IR 
condition (39 out of 225); most followed the predictions of 
DP. The individual data shown in Figure 1 shows that the 
data classified as ST/DP in the PO condition as well as ST 
and DP in the IR condition were in line with the model 
predictions. To address the worry that participants 
belonging to ST were misclassified as DP, we visually 
inspected the responses of every participant individually. 

The classifications lead to clear differences in both UAI 
and PCh, as well as in the probability of judging the no-
difference justification as most convincing. As shown in 
Table 1, for UAI the posterior µΔ estimates in the IR 
condition for individuals classified as ST are systematically 
above 0, but systematically below 0 for individuals 
classified as DP. In the case of PCh, the posterior µΔ 
estimates were systematically above 0, as expected. The 
latter result was less clear for ST, but this is expected given 
the small number of participants classified as being in line 
with ST. 

Finally, the relative probabilities of judging the no-
difference justification (consistent with ST) as most 
convincing and attributing the HIT were drastically different 
for individuals classified as following ST and DP. These 
posterior probabilities were considerably larger for ST (see 
Table 1). Note that these were conditional probabilities of 
finding the ST justification most convincing, and accepting 
the ST HIT, given the participants expressed preferences for 
either ST or DP in phase 2.  

Figure 2. Individual associated to the different Phase 1 classifications, and their 
respective posterior individual-level classifications (note that in the IR condition, 
only participants classified as ST/DP in the PO condition were considered). 
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 ST Followers (N=39) DP Followers (N=186) 

 𝜇𝜇𝛥𝛥 𝜇𝜇𝛥𝛥 
 UAI  0.61 [0.16, 1.11]  (72%) -0.46 [-0.65 -0.28] (47%) 
 PCh  0.21 [-0.07, 0.51] (68%)  0.14 [ 0.02,  0.27] (66%) 
 P(ST mc) 
 P(ST HIT) 

.94 [.78, 1] 
.92[.77, 1] 

         .15 [.09, .22] 
.21 [.15, .28] 

 
Table 1. Median group-level posterior parameter estimates (and 

their respective 95% credibility intervals) obtained in the IR 
condition. Percentages of responses conforming to UAI and PCh 
are given in parentheses. The estimates associated to 𝜇𝜇𝛥𝛥 in the PO 
condition (where participants were classified as ST/DP) were 1.66 
[1.14, 2.24] and 1.19 [0.82, 1.61] for UAI and PCh, respectively. 
‘P(ST mc)’ = P(ST most convincing | ST or DP most convincing). 
‘P(ST HIT)’ = P(ST receive HIT | ST or DP receive HIT). 

Discussion 
In this paper we have presented a novel experimental design 
to study the reflective attitudes of the participants and an 
accompanying Bayesian mixture model to study individual 
variation. We have seen that it is possible to classify the 
participants according to whether they follow the 
Suppositional Theory of Conditionals or the Default and 
Penalty Hypothesis. We then used these classifications to 
study the participants’ performance on the uncertain and-to-
if inference task to examine whether the participants 
consistently followed the assigned interpretation of the 
conditional in an inference task.    

This experimental design gives us a very rich data set that 
we have not exhausted in this brief note. Nevertheless, the 
data we did analyze show a very clear pattern. In the PO 
condition of phase 1, 86% of the participants followed the 
Equation (PRED1), whereas only 39 of these participants 
followed the Equation in the IR condition. The remaining 
186 participants showed a clear tendency in the IR condition 
to assign lower probabilities than if they had treated the P(if 
A, then C) as a conditional probability. For the 39 ST 
participants from phase 1 there was a .94 probability that 
they find the ST character to be most convincing one, 
conditional on the fact that they had a preference. Of the 
186 DP participants in phase 1, this conditional probability 
was .85, this time in favor of the DP character.    

Finally, the participants’ performance on the uncertain 
and-to-if inference task in phase 3 indicated that the 
participants acted consistently with their assigned 
interpretation of the conditional. As a theorem of probability 
theory, the PCh inequality (P(C|A) ≥ P(A,C)) remains valid 
for both groups, so they should conform to it at above 
chance levels irrespectively of the relevance condition. In 
contrast, whether the participants should conform to the 
UAI inequality (P(Conclusion) ≥ P(Premise)) in the IR 
condition, depends on whether they interpret the conditional 
in the conclusion as a conditional probability.  

In the PO condition both groups were above chance levels 
for conformity to both the UAI and PCh inequalities. For 
the ST participants, a tendency was found to continue to 
conform to the UAI and PCh inequalities in the IR condition 
at above chance levels. (However, the estimates were 

connected with uncertainty given the modest size of the ST 
group.) In contrast, for the DP participants an interaction 
was revealed between relevance and type of inequality in 
that these participants continued to display conformity to 
PCh at above chance levels in the IR condition while 
ceasing to conform to the UAI inequality at above chance 
levels. The results thus indicate that it was possible to 
separate two individual profiles in the participants’ 
interpretation of the conditional. For each profile, the 
participants were shown to behave consistently with their 
interpretation of the conditional in the uncertain and-to-if 
inference.  

In Skovgaard-Olsen et al. (2016b), it was found that the 
above-chance level conformity to UAI, which Cruz et al. 
(2015) did not generalize to the IR condition. However, 
since these results were analyzed at the group level, it was 
hard to tell whether they indicated that the participants were 
incoherent or whether they followed DP instead. With the 
present results we have a first indicator that two groups can 
be identified at the individual level that consistently follow 
their assigned interpretation of the conditional in the 
uncertain and-to-if inference. 
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Abstract 

Turn-taking in conversation is a cognitively demanding process 

that proceeds rapidly due to interlocutors utilizing a range of cues 

to aid prediction. In the present study we set out to test recent 

claims that content question words (also called wh-words) sound 

similar within languages as an adaptation to help listeners predict 

that a question is about to be asked. We test whether upcoming 

questions can be predicted based on the first phoneme of a turn and 

the prior context. We analyze the Switchboard corpus of English 

by means of a decision tree to test whether /w/ and /h/ are good 

statistical cues of upcoming questions in conversation. Based on 

the results, we perform a controlled experiment to test whether 

people really use these cues to recognize questions.  In both studies 

we show that both the initial phoneme and the sequential context 

help predict questions. This contributes converging evidence that 

elements of languages adapt to pragmatic pressures applied during 

conversation.  

Keywords: questions; wh-words; question words; turn-
taking; speech-act recognition; question prediction 

Introduction 

People spend an average of 2-3 hours every day in 

conversation, producing around 1200 turns (Levinson, 

2016). The structure of conversation, far from being chaotic, 

places specific constraints on speakers (Sacks, Schegloff & 

Jefferson, 1974).  Recently, it has been recognized that these 

constraints have implications for processing and therefore 

for the way languages evolve (see Levinson, 2016).  In this 

paper we explore a phenomenon at the interface of 

conversation, processing and cultural evolution. 

Conversation progresses through exchanging bursts of 

information – mostly through use of language – that are 

orchestrated in consecutive turns produced by the speakers 

(Sacks et al., 1974). The surprising aspect of turn-taking is 

that it is orchestrated in a remarkably tight manner. 

Speakers strive to minimize gaps and overlaps between 

turns (Sacks et al., 1974), with the average gap length being 

only 200ms cross-culturally (Stivers et al., 2009; Kendrick 

& Torreira, 2015; Levinson & Torreira, 2015). Thus, while 

languages themselves differ, the pressure for rapid turn-

taking is the same. 

The surprising fact that turns are produced in such a tight 

window of time becomes even more puzzling if we take into 

account that it takes a minimum of 600ms to plan and begin 

uttering a single word (Schriefers, Meyer, Levelt, 1990; 

Levelt, 1993). In this context, one has to ask a question – 

how is it possible that the gap between turns is shorter than 

the planning of the response? The obvious answer is 

prediction (Sacks, Schegloff & Jefferson, 1974; Levinson, 

2013). Listeners project what the current speaker will say 

and when their turn will end (Holler and Kendrick, 2015; 

Bögels & Torreira, 2015). Thus, the next speaker can start 

preparing their turn in advance so that it can be delivered on 

time. 

Predicting the specific type of a speech act is extremely 

important as different speech acts have different social and 

cognitive pressures on speakers. For example, when we are 

greeted, the greeter expects a greeting in response. Or when 

we are asked a question, we are socially obliged to give an 

answer, and hesitations can lead to inferences about the 

intent of the responder (Kendrick & Torreira, 2015). Thus, 

social constraints put pressure on cognition to respond 

rapidly in interactive conversation. We suggest that 

languages should evolve to provide listeners with early cues 

that facilitate this process.  Perhaps the context in which this 

would be most evident is in recognizing questions, to which 

we now turn.  

Answering questions is a complex process involving 

understanding the question, retrieving or calculating the 

relevant answer and planning the response.  Previous 

research suggests that the planning of the response starts as 

soon as an answer can be retrieved (Bögels, Magyari & 

Levinson, 2015; Bögels, Casillas, & Levinson, 2016; 

Barthel, Meyer & Levinson, 2017). However, even before 

planning their answers, speakers first have to recognize that 

they are being asked a question.  

Gisladottir, Chwilla, & Levinson (2015) show that people 

can recognize the type of a speech act at an early stage if the 

preceding turns sufficiently constrain the context.  For 

example, if I have just produced an initiating turn (like a 

greeting or asking a question), my interlocutor is most likely 

to produce a responding action (like an answer), rather than 

ask a question of their own.  Therefore, one early cue as to 

whether a question will appear is the prior context. 

Beyond that, there are also early cues in the question 

itself, before the turn can be identified as a question 

syntactically or semantically.  Levinson (2013) suggests that 

question recognition is possible due to front-loading of the 

cues at the beginning of a turn. For example, questions can 
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be recognized by early cues in intonation (Levinson, 2013), 

pitch (Sicoli et al. 2014) and eye-gaze (Rossano, Brown & 

Levinson, 2009; Rossano, 2012). Moreover, shifting 

question words to the initial position of the utterance (e.g., 

wh-movement in English) appears to be one of the most 

evident examples of front-loading (Levinson, 2013). Even 

when wh-movement is not permitted in the formal grammar 

of many languages, it is often evident in colloquial 

interactions (e.g. in Japanese, Levinson, 2013). Surprisingly, 

though, there is no quantitative research investigating 

whether this feature actually helps in question recognition. 

Slonimska & Roberts (accepted) were the first to 

quantitatively assess whether question words, also called 

wh-words, are plausible candidates as a cue to content 

question recognition. They suggest that a systematic 

phonetic similarity between question words within a 

language could provide a cue for that. In other words, if 

question words tend to sound similar, it would be easier for 

the addressee to predict that a question is about to be asked, 

and they can prepare themselves accordingly.  For example, 

in English many question words begin with /w/ (what, why, 

where, when), and in Latvian many begin with /k/ (kas, kad, 

kur, kurš, kas, kāpēc). 

Even though there is some qualitative research arguing 

that there is no systematicity in question words (Cysouw, 

2004), Slonimska & Roberts (accepted) show that there is a 

statistical tendency for question words to sound similar 

within languages. When they analyzed 266 languages the 

authors found that there is a higher similarity between the 

first phoneme of question words (within languages) than 

would be expected by chance, than other sets of words and 

also when controlling for historical factors. Accordingly, 

Slonimska & Roberts argue that this phenomenon 

constitutes a product of cultural evolution that is selected for 

due to its benefit in interaction – i.e., rapid question 

recognition. Their study, however, is based purely on 

observational data of word forms.  This leaves several issues 

to be addressed before their claim can be supported. First, 

are phonological regularities in question words actually 

statistically good predictors of questions in conversation?  

Secondly, do people actually use these cues to recognize 

questions?  Finally, what is the relationship between the use 

of these cues and the prior conversational context?   

We address these issues by means of two studies. First, 

we explore a large corpus of natural conversations and 

subsequently use the insights from the corpus study to 

design an experiment in which we test the hypotheses in a 

controlled setting by using stimuli from the same corpus. 

As such, the present project not only informs the 

theoretical field in regard to question recognition, but it also 

makes a case for a new approach to research – namely, by 

creating a synergy between ecologically valid corpus 

analysis and experimentally controlled quantitative insights 

into the phenomenon. 

Corpus study 

Method 

To assess whether we can gain support for our hypotheses, 

we first carried out an exploratory corpus analysis of 

naturalistic data – i.e., spoken conversations. We addressed 

this by means of the method of binary decision trees, also 

known as recursive partitioning (Strobl, Malley, and Tutz, 

2009). A binary decision tree represents the optimal series 

of yes-no questions that a rational agent would ask about 

predictor variables in order to estimate an outcome variable 

(see Roberts et al., 2015). 

In the current study we are interested in whether the first 

phoneme of the turn (first predictor) and context of the 

previous turn (second predictor) would help in recognizing 

an incoming turn as a content question (outcome variable). 

Namely, we predicted that the data would be clustered in 

such way that specific first phoneme (/w/, /h/ versus other 

phonemes in English) of the current turn and specific type 

of previous turn (non-initiating turn versus initiating turn) 

would help identify whether the current turn was a question. 

Unlike regression frameworks, the predictor variables that a 

binary decision tree uses are not set by the researchers, but 

chosen by an algorithm in order to maximize performance 

and parsimony.  It could pick any combination of phonemes 

as identifying factors if suggested by the data. Therefore, 

our prediction of the form of the tree is a strong one. 

 

Materials and design. We used the Switchboard corpus 

(Calhoun et al., 2010) that consists of telephone 

conversations in American English. This corpus is 

transcribed and annotated in detail, including a division of 

utterances into sequential turns by Roberts et al. (2015). The 

data was prepared for the analysis in R and later analyzed by 

means of the package “party” (Hothorn, Hornik & Zeileis, 

2006). 

Each observation consisted of a transition between two 

turns between speaker A and speaker B. We specified the 

outcome variable – question – according to whether B’s turn 

(i.e., current turn) was a question (content/open question) or 

not, according to the dialogue act annotation. We used the 

last speech act of A’s turn (i.e., previous turn) for the second 

predictor variable specifying whether this turn was initiating 

or non-initiating (see Roberts et al., 2015). For example, B’s 

turn was “What kind do you like to watch” - this was a turn 

that was a question and that started with /w/. The turn that 

preceded this question (i.e., A’s turn) was “and uh you know 

there so there only a few that i that i like to watch routinely” 

– this was a statement (i.e., non-initiating turn). 

We excluded the following fillers from the B’s turn: ahm, 

er, ah, hmm, oh, uh, aa, um, ow. Then, the first phoneme 

from B’s turns was extracted to create the predictor variable 

phoneme. This variable consisted of 34 unique phonemes 

(coded according to the transcription convention of 

Switchboard). Finally, we excluded all turns for which B’s 

turn was a backchannel, considering that backchannel serves 

a monitoring rather than an informing function. 
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The final data included 9185 turns in total out of which 

226 turns were content or open questions. Out of all turns, 

1456 were initiating and 7729 were non-initiating turns. 

1562 current urns (17%) started with /w/ or /h/. 

For the analysis we had 2 predictor variables: context 

from the A’s turn (initiating or non-initiating) and first 

phoneme of the B’s turn (34 unique phonemes). The 

outcome variable was whether the current turn (i.e., B’s 

turn) was a content/open question. 

Results 

The decision tree divides the data at each node of the tree 

starting from the top of the figure. Leaves of the tree at the 

bottom of the figure show the proportion of turns that are 

questions (see Fig.1). 

The decision tree splits the data first based on the first 

phoneme of the turn. The exact division of the phonemes is 

as follows: /w/ and /h/ versus all the other phonemes, with 

the proportion of questions being higher for turns starting 

with /w/ and /h/. Thus, the decision tree, which is blind to 

our predictions, splits the data exactly in line with our 

predictions.  

Following the branch that clusters the data on the right 

(/w/, /h/), the data is further clustered according to the type 

of the previous turn. If the previous turn was an initiating 

turn the proportion of question turns is considerably lower 

than if previous turn was not an initiating turn. If the 

previous turn is not initiating, the data is further split into 

whether the phoneme of the current turn is /h/ or /w/. Note 

that proportion of questions is higher in /h/ (22%) leaf than 

in /w/ (13%). This may be because “well …”, is often used 

as a filler at the beginning of a turn and thus decreases the 

overall proportion of questions in /w/ leaf. Moreover, there 

are more turns overall that start with /w/ than with /h/, 

therefore the proportion in /w/ leaf is also lower. 

In regard to the data clusters on the left (turns starting 

with phonemes other than /w/ and /h/), it is evident that the 

proportion of question turns is extremely low in all leaves of 

the tree.  

Overall, the analysis confirmed our initial hypotheses. 

Furthermore, based on the analysis we can also expect that 

the probability of a turn being a question will be 

additionally boosted if both cues are present – namely, if an 

incoming turn starts with /w/ or /h/ and the previous turn is 

non-initiating. 

Experimental study 

The corpus study suggested that the prior context and the 

initial phoneme of a turn helps identify questions 

statistically.  The experimental study tests whether real 

people actually make use of these cues.  

Method 

 

Participants. For the experiment 25 participants (14 male, 

11 female) were recruited. Participants’ age ranged from 21 

– 70 years (M = 32, SD = 11). All participants were native 

speakers of English but had various nationalities (e.g., 

American, British, Canadian, Australian, Indian, Latvian).  

 

Materials and design. In this experiment participants 

listened to series of audio samples extracted from the 

Switchboard corpus. Each sample consisted of a context 

turn (initiating or non-initiating) produced by the first 

speaker and a response produced by the second speaker.  

The context turn type could be either initiating (yes/no 

questions and wh-questions) or non-initiating (statements). 

The response turn type could be either content questions or 

non-questions.  Each response turn was clipped to contain 

only the first phoneme, which could either be a wh phoneme 

(/w/ or /h/) or another phoneme.  We therefore had the 

following fully crossed 2 x 2 x 2 design:  context type 

(initiating/non-initiating) x response type (content 

question/other) x response phoneme (wh/other).  In 

addition, the response turn could be blank (no audio, with 

context being initiating or non-initiating).  This resulted in 

10 conditions. 

Figure 1: The decision tree of question turns split according 

to the sequential type of the previous turn and the first 

phoneme of the current turn. Non-IN: non-initiating turn, IN: 

initiating turn, phoneme transcription conventions come from 

the Switchboard corpus. 
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Context type was manipulated to test the effect of context 

and response phoneme was manipulated to test the effect of 

the first phoneme. Response type was manipulated so that 

we could assess whether the other question cues (e.g., raised 

pitch at the beginning of the question word) contribute in 

question prediction.  The blank turn was added to establish a 

baseline for predicting an upcoming question without an 

initial phoneme. 

We used the software Praat (Boersma & Weenink, 2014) 

to cut and concatenate each first turn with each second turn 

(e.g., (first turn: statement) + (second turn: /w/ from wh-

question)). Subsequently, each turn pair was processed in 

the software Audacity (Mazzoni & Dannenberg, 2000) by 

adjusting a gap between the turns, so that the gap between 

first and second turn was 250ms. 

We created 25 samples for each of the 10 conditions, 

resulting in 250 unique audio samples.  These were split 

into 5 groups of 50 samples so that each context sample or 

response sample only appeared once inside each group.  

 

Procedure. The experiment was presented via the online 

software Qualtrics (Snow & Mann, 2010). In each trial, a 

participant clicked a button to listen to a sample through 

headphones.  Then they were asked to determine whether 

the second person would ask a question or not by means of 

completing a sentence “The Second turn is ____” on the 

screen by pressing one of two buttons: “not a question” or 

“a question”. The experiment began with 2 practice trials 

ensuring that participants understood the task.  Participants 

were assigned to an audio sample group and heard the 

samples from that group in a random order. 

Results 

We excluded 1 participant from the analysis due to the 

fact that this participant took 3 times longer than other 

participants to complete the experiment (38 minutes 

compared to an average of 12 minutes). 

A logistic mixed model was used to predict whether the 

participant thought the response turn was a question (binary 

decision, yes or no, using the R package lme4, Bates et al, 

2015). The predictor variables were context (initiating/non-

initiating) and phoneme (wh, other, none). These predictors 

were coded as fixed effects and compared to a baseline 

model which included fixed effect of trial, random effect of 

context sample and phoneme sample, random effect of 

participant and random slopes for context and phoneme by 

participant.  

There was a significant main effect of context (χ2(1) = 

45.74, p < .001). Participants were more likely to rate the 

turn as a question when preceded by a non-initiating context 

than an initiating context (see Fig.2). 

There was a significant main effect of phoneme (χ2(2) = 

13.83, p < .001). Turns that started with wh phonemes were  

more likely to be rated as questions in comparison to turns 

starting with other phonemes or without the response from 

the second speaker. The model estimated that the probability 

of considering a turn a question was 90% for wh phonemes 

compared to 71% for other and 70% for none in non-

initiating context. In initiating context this was 9% 

compared to 4% for other and 2% for none. There was no 

significant difference in question prediction between other 

phoneme and no response. Considering that there was only 

one variant of /h/ responses present in our stimuli, we ran 

analysis with these trials removed. There was no difference 

in the results with or without these trials. 

Importantly, we also assessed whether participants could 

differentiate between the type of the response sample (a 

question or not) from which the phoneme was extracted. We 

found no effect of the response type (χ2(1) = 0.11, p = .75). 

Table 1: Example of a 10 conditions consisting of 2 types of context turn (initiating/non - initiating)  

and 5 types of response turn. 

 

Context turn Response turn 

  /w/ Other Blank 

  /w/ ques. /w/ not quest. not /w/  quest. not /w/ non-quest. 
no 2nd 

turn 

Not 

initial 
I do enjoy playing Wh[at is your…] W[ell I wish…] D[o you have…] Q[uite a while…] - 

Initial And how did it go Wh[at is your…] W[ell I wish…] D[o you have…] Q[uite a while…] - 

 

Figure 2: Raw proportions of participants answering 

that an incoming turn is a question based on the previous 

context and the first phoneme of the incoming turn. 

Error bars indicate 95% CI of observations grouped 

within participants. 
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Thus, participants answered comparably to the phoneme 

samples that actually were questions and samples that were 

not questions. Most importantly, there was no interaction 

between response phoneme and the type of the response 

(χ2= 0.008, p = 0.93). Thus, participants treated wh 

phonemes from real questions comparably to wh phonemes 

from other speech acts. These results suggest that 

participants are responding to the phoneme, not any other 

acoustic cue in the sample. 

There was no significant interaction between context and 

phoneme (χ2(2) = 1.34, p = .51), although the trend was in 

the predicted direction. 

Discussion and conclusions 

In the present paper we set out to explore whether the first 

phoneme of a turn and the prior context can serve as a cue to 

question recognition. We found that both of these features 

contribute to this process. Although an effect of context was 

clearly expected, it was less certain whether there would be 

an effect of the first phoneme. This is the first experimental 

study supporting the claim of Slonimska & Roberts 

(accepted) that the first phoneme of question words can be 

used to predict an upcoming question.  

We approached this topic from two different but mutually 

enhancing perspectives. We first assessed the hypothesis by 

analyzing natural conversations. Thus, we could look for 

patterns in ecologically valid data. The fact that the decision 

tree generated the same predictions as our hypothesis served 

as a sound basis for an experimental testing.  Indeed, the 

samples from the corpus were used as experimental 

materials and the design was partly informed by the 

interaction between the two factors that the corpus study 

suggested. The hypotheses were also confirmed in the 

experiment, but there were two minor differences. First, the 

initial phoneme had a stronger effect than context in corpus 

study and vice versa in the experiment.  Secondly, the 

corpus study predicted an interaction between initial 

phoneme and context, which was not found in the 

experiment. This may be because the probability of 

occurrence of various combinations is different in the 

corpus compared to the experiment, the experiment did not 

have enough statistical power, or more generally there is a 

difference between cues that are present in the data and ones 

that are actually used by people. 

Another obvious difference between the two studies is 

that the speakers in the corpus had more prior context 

information than participants in the experimental study. 

Future experimental studies could include more extensive 

contextual information for the participants to be able to 

make predictions about the incoming turn.  

Furthermore, the experimental participants were only 

passive listeners of the audio samples and their responses 

were not on-line.  Future studies could take advantage of 

new paradigms to make it possible to combine interactive 

conversation with the use of controlled audio samples (e.g. 

Bögels, Magyari & Levinson, 2015). 

Slonimska & Roberts (accepted) argue that question 

words tend to sound similar at the beginning of the word 

within a language to trigger question recognition. This leads 

to a prediction that /w/ should be a better cue than /h/, 

considering that there are more question words starting with 

/w/ than /h/. We found support for this in the corpus study. 

However, there was only one instance of /h/ phoneme in the 

experimental samples. We ran analyses with /h/ samples 

excluded and found no difference in the results.  Therefore, 

although /w/ appears to boost question recognition, 

generalization to wh phonemes in English may not be 

warranted. Future studies could consider the differences 

between hearing /w/ and /h/ at the beginning of a turn in 

regard to question recognition. 

It could be argued that the effect sizes in either study are 

too small to cause an evolutionary change in the language.  

However, we point out that even a small pressure would 

exert itself many times even in one conversation, and across 

cultural evolutionary time, small changes can accumulate to 

cause substantial changes. 

Importantly, we advocate the virtuous cycle of looking for 

the phenomena in natural data, testing it in a controlled way 

and referring back to the real world. It can raise new 

questions and, most importantly, research can proceed in a 

more valid way than by using a single approach. This is 

clearly evident in our study - two approaches used in our 

study revealed differences that are important to account for, 

and which a single approach would have missed.  

The findings in this paper are limited to English language 

and future research should continue exploring this cue in 

other languages, as well as diachronically. Only in this way 

can we be certain that this is not a single-language 

phenomenon or based on some idiosyncrasy of English but 

is actually a universal tendency. However, the puzzle 

remains - why else would question words sound so similar 

within so many languages (given that Slonimska & Roberts 

account for historical factors in their study and still find 

significant similarities)? 

To summarize, by using different approaches in exploring 

the same topic we now have converging evidence for the 

question word similarity hypothesis: first, question words 

tend to sound similar within languages (Slonimska & 

Roberts, accepted); also, this phonetic cue can help in 

predicting questions in real conversations as shown in the 

corpus analysis; and finally people actually use this cue to 

predict questions when presented in a semi-natural setting. 

Thus, we suggest that the tendency for question words to 

sound similar is not a random occurrence, but might have 

evolved under a selective pressure to act as one of the early 

cues for question recognition in interactive conversation. 
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Abstract

Humans make complex inferences on faces, ranging from ob-
jective properties (gender, ethnicity, expression, age, identity,
etc) to subjective judgments (facial attractiveness, trustworthi-
ness, sociability, friendliness, etc). While the objective as-
pects of face perception have been extensively studied, rela-
tively fewer computational models have been developed for
the social impressions of faces. Bridging this gap, we de-
velop a method to predict human impressions of faces in 40
subjective social dimensions, using deep representations from
state-of-the-art neural networks. We find that model perfor-
mance grows as the human consensus on a face trait increases,
and that model predictions outperform human groups in cor-
relation with human averages. This illustrates the learnability
of subjective social perception of faces, especially when there
is high human consensus. Our system can be used to decide
which photographs from a personal collection will make the
best impression. The results are significant for the field of so-
cial robotics, demonstrating that robots can learn the subjective
judgments defining the underlying fabric of human interaction.
Keywords: social impression; deep learning; face perception

Introduction
With the huge success of deep learning techniques, current
state-of-the-art computer vision algorithms have approached
or exceeded human ability in recognizing a face (Taigman,
Yang, Ranzato, & Wolf, 2014; Stewart, Andriluka, & Ng,
2016) and identifying the objective properties of a face, such
as age and gender estimation, (Guo, Fu, Dyer, & Huang,
2008). However, humans not only read objective properties
from a face, like expression, age, and identity, but also form
subjective impressions of social aspects of a face (Todorov,
Olivola, Dotsch, & Mende-Siedlecki, 2015) at first sight,
such as facial attractiveness (Thornhill & Gangestad, 1999),
friendliness, trustworthiness (Todorov, Baron, & Oosterhof,
2008), sociability, dominance (Mignault & Chaudhuri, 2003),
and typicality. In spite of the subjective nature of social per-
ceptions, there is often a consensus among human in how
they perceive attractiveness, trustworthiness, and dominance

†These authors contributed equally.

in faces (Falvello, Vinson, Ferrari, & Todorov, 2015; Eisen-
thal, Dror, & Ruppin, 2006). This indicates that faces contain
high-level visual cues for social inferences, therefore making
it possible to model the inference process computationally.
Social judgments, as an important part of people’s daily inter-
actions, have a significant impact on social outcomes, ranging
from electoral success to sentencing decisions (Oosterhof &
Todorov, 2008; Willis & Todorov, 2006).

Are deep learning models, which are successful in vari-
ous visual tasks, also capable of predicting subjective social
impressions of faces? Even before the advent of deep learn-
ing, there have been models using traditional computer vi-
sion algorithms and simulated faces to model the perception
of facial attractiveness (Thornhill & Gangestad, 1999; Eisen-
thal et al., 2006; Kagian et al., 2008; Gray, Yu, Xu, & Gong,
2010), trustworthiness (Falvello et al., 2015; Todorov, Baron,
& Oosterhof, 2008), sociability, aggressiveness (Mignault
& Chaudhuri, 2003), familiarity (Peskin & Newell, 2004),
and memorability (Bainbridge, Isola, & Oliva, 2013; Khosla,
Bainbridge, Torralba, & Oliva, 2013). Recently, there has
been work on modeling the “big five ” personality traits per-
ceived by humans when viewing another person in video clips
(Escalera et al., 2016).

In this paper, we examine human social perceptions of
faces in 40 dimensions extensively and systematically. We
evaluate the human consistency and correlation in 40 social
features (20 relevant pairs) that are typically studied by social
psychologists (Todorov, Said, Engell, & Oosterhof, 2008),
and relevant to social interactions (Todorov et al., 2015;
Oosterhof & Todorov, 2008), and use state-of-the-art deep
learning algorithms to model all 40 of them. Using the in-
ternal representations learned from the deep learning models,
our model can successfully predict human social perception
whenever human have a consensus. We further visualize the
key features defining different social attributes to facilitate a
understanding of what makes a face salient in a certain social
dimension.
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Methods
Dataset
To predict human social impressions of faces, we use a public
dataset (Bainbridge et al., 2013) consisting of 2,222 face im-
ages and annotations for 40 social attributes. Each attribute
is rated on a scale of 1-9 by 15 subjects. We take the aver-
age rating from all raters as a collective estimation of human
judgment for the social features of each face.

The 40 social attributes consist of 20 pairs of related traits:
(attractive, unattractive), (happy, unhappy), (friendly, un-
friendly), etc. Some of these traits are highly correlated and
predictable from others, especially within the trait pairs. To
understand the human-perceived correlations between these
traits, we compute the Spearman’s rank correlation between
the average human ratings of every pair of social features and
show their correlations in a heatmap (Figure 1(a)). We order
traits in the map based on similarity and positive or nega-
tive connotation. From the figure, we see that negative social
features such as untrustworthy, aggressive, cold, introverted,
and irresponsible form a correlated block. Likewise, the most
positive features such as attractive, sociable, caring, friendly,
happy, intelligent, interesting, and confident are highly cor-
related with each other. Although we choose 20 pairs of op-
posite features, they are not completely complementary and
redundant. Principal Component Analysis of the covariance
matrix shows that it takes 24 principal components to cover
95% of the variance.

Regression Model for Social Attributes
After averaging human ratings, each face receives a continu-
ous score from 1 to 9 in all social dimensions. We model these
social scores with a regression model. We propose a ridge
regression model on either features from deep convolutional
neural networks (CNN) or traditional face geometry based
features, and present results from both feature sets. Such vi-
sual features are usually high-dimensional, so we first per-
form Principal Component Analysis (PCA) on the extracted
features of the training set to reduce dimensionality. The PCA
dimensionality is chosen by cross-validation on a validation
set, separately for each trait. The PCA weights are saved and
further used in fine-tuning our CNN-regression model.

Regression on Geometric Features
Past studies have found that facial attractiveness can be in-
ferred from the geometric ratios and configurations of a face
(Eisenthal et al., 2006; Kagian et al., 2008). We suggest that
other social attributes can also be inferred from geometric
features. We compute 29 geometric features based on defi-
nitions described in (Ma, Correll, & Wittenbrink, 2015), and
further extract a ’smoothness’ feature and ’skin color’ feature
according to the procedure in (Eisenthal et al., 2006; Kagian
et al., 2008). The smoothness of a face was evaluated by ap-
plying a Canny edge detector to regions from the cheek and
forehead areas (Eisenthal et al., 2006). The more edges de-
tected, the less smooth the skin is. The regions we chose

to compute smoothness and skin color are highlighted in the
right subplot of Figure 2. The skin color feature is extracted
from the same region as smoothness, converted from RGB
to HSV. However, regressing on these handcrafted features
alone is not enough to capture the richness of geometric de-
tails in a face. We therefore use a computer vision library
(dlib, C++) to automatically label 68 face landmarks (see Fig-
ure 2) for each face, and then compute distances and slopes
between any two landmarks. Combining 29 handcrafted geo-
metric features, smoothness, color and the distance-slope fea-
tures, we obtain 4592 features in total. Since the features are
highly correlated, we apply PCA to reduce dimensionality.
Again, the PCA dimensionality is chosen by cross-validating
on the hold out set separately for each facial attribute. Then
a ridge regression model is applied to predict social attribute
ratings of a face. The hyper-parameter of ridge regression is
selected by leave-one-out validation within the training set.

Regression on CNN Features
Previous studies have shown that pretrained deep learning
models can provide feature representations versatile for re-
lated tasks. We therefore extract image features from pre-
trained neural networks, choosing from six architectures with
different original training goals: (1) VGG16, trained for ob-
ject recognition (Simonyan & Zisserman, 2014), (2) VGG-
Face, trained for face identification (Simonyan & Zisser-
man, 2014), (3) AlexNet, trained for object classification
(Krizhevsky, Sutskever, & Hinton, 2012), (4) Inception from
Google, trained for object recognition (Szegedy et al., 2015),
(5) a shallow Siamese neural network that we train from
scratch to cluster faces by identity, (6) a state of the art
VGG-derived network (Face-LandmarkNN) trained for the
face landmark localization task.

To find the best CNN features among the six networks, we
first find the best-performing feature layers of each network
in the ridge regression prediction task. Before the ridge re-
gression, we perform PCA and pick the PCA dimensionality
that gives best results on the validation set. Then, we compare
the results among networks to select the best features overall.

Results
After comparing all 6 networks, we find that the conv5 2
layer of VGG16 (trained for object classification) lead to the
best results. This set of features significantly outperforms
the three networks trained solely on faces, while also slightly
outperforming AlexNet and Inception networks. These best-
performing CNN features also exceed the prediction corre-
lation of the geometric features in most attributes. Figure 3
compares prediction performance of the CNN model and the
geometric feature model.

We speculate that the poor performance from the face
recognition networks can be attributed to their optimization
for specific facial tasks. Learning face landmark configura-
tions and differences between faces that define identity may
not correlate well with the task at hand, which looks for com-
monalities behind certain social features beyond identity. The
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(a) (b)

Figure 1: Correlation heatmaps among social features. (a): human; (b): CNN-based model.

Figure 2: 68 face landmarks labeled by dlib software auto-
matically. The gray regions are used for computing smooth-
ness and skin color.

landmark networks should presumably give results similar to
the geometric features, but did not learn features correspond-
ing to all of the features we manually extracted.

We also try fine-tuning the best performing CNN model
with back propagation but do not observe further improve-
ment in performance. Hence our reported results are without
fine-tuning.

To evaluate model performance, we did a random
train/validation/test split 50 times, with a ratio of 64/16/20 re-
spectively. The prediction performance of our model is eval-
uated using Pearson’s correlation with the average human rat-
ings on the test set. For each social attribute, we also compute
human group consistency as an index of the strength of learn-
ing signal.

Among the social attributes, human subjects agree most
about ’happy’ and disagree most about ’unfamiliar.’ For both
regression models (CNN based regression and geometric fea-

ture based regression), model performance grows as the con-
sensus on a social trait increases.

Since a change in expression would produce a change in
landmark locations, it is not surprising that landmark-based
geometric features achieve comparable or slightly higher cor-
relation with the CNN model when predicting social at-
tributes which are highly related to expressions (such as
’happy’, ’unhappy’, ’cold’ and ’friendly’ etc). For other so-
cial attributes, the CNN model performs better, by about 0.04
higher in correlation on average. This implies that CNN fea-
tures encode much more information than landmark-based
features. It is useful to visualize such features to understand
what aspects make them powerful enough to predict social
attributes.

Evaluating Against Human Consensus
An important gauge of model success is quantitative com-
parison between the subjective social features predicted by
our best performing model and those perceived by humans.
We take our model predictions, compute the Spearman cor-
relation between every pair of traits, and display them in a
heatmap (see Figure 1 (b)). The resulting heatmap shares
similar patterns with the figure generated from average hu-
man ratings (see the left panel in Figure 1). Pearson Correla-
tion between the upper triangle of the two similarity matrices
(human and model prediction) is 0.9836. This suggests that
our model successfully preserves human-perceived relation-
ships between traits.

Since these social impressions are subjective ratings, it is
informative to examine the extent with which people agree
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Figure 3: Model comparison on 40 social features.

with each other on these judgments. To calculate human
group consistency, we perform the following procedure 50
times for each attribute and then average the results: (1) For
each face, we randomly split the 15 raters into two groups of
7 and 8. (Note: The raters assigned to each face are generally
different sets). (2) We calculate the two groups’ average rat-
ings for each face, obtaining two vectors of length 2,222 (the
number of faces in the dataset). (3) Finally, we calculate the
Pearson correlation between the two vectors. We find that hu-
man agreements covary with model performance and observe
an extremely high correlation, as illustrated in Figure 4.

Figure 4: Human within group consistency vs. model’s cor-
relation with human average. Pearson correlation ρ = 0.98,
p < 10−5

Feature Visualization
Here, we visualize features from our model which are impor-
tant for social perceptions. We choose facial attractiveness as

an example, but the same method can be applied to the other
social features.

To identify visual features that ignite attractiveness percep-
tion, we find the top 9 units of highest influence on attractive-
ness at conv5 2 as follows. First, we compute a product of
three terms: (1) A unit’s activation from conv5 2, (2) that
unit’s weight to the following fc PCA layer, (3) the fc PCA
unit’s weight to the output unit. We then sort all conv5 2
units’ average products of these three terms and identify the
top 9 neurons that contribute to the output neuron for the cor-
responding social feature. Then we employ the method de-
scribed in (Yosinski, Clune, Nguyen, Fuchs, & Lipson, 2015;
Zeiler & Fergus, 2014) to find top-9 input images that cause
high activations in each of the top-9 conv5 2 neurons. Also
we use deconvolution to create an image of the features acti-
vating that unit for each face, with varying levels of success.

Figure 5 captures the features that are important for pre-
dicting the attractiveness of a face. The feature importance
descends from left to right and top to bottom. The impor-
tant features identified by our model are related to eyes, hair
with bangs, high nose-bridges, high cheeks, dark eyebrows,
strong commanding jawlines, chins, and red lips. Note that
among the 9 cropped input image patches, not all the faces
are perceived as attractive overall; despite having a feature
that contributes to attractiveness. An attractive face needs to
activate more than one of these features in order to be consid-
ered attractive. This observation agrees with our intuition that
attractiveness is a holistic judgment, requiring a combination
of multiple features.

It also seems that several attractiveness features include re-
lationships between different facial features. For example,
while the first feature in the upper left of the figure empha-
sizes the eye, it also includes the nose. This is also true of
the upper right feature. Additionally, smiling is important in
perceived attractiveness, as emphasized by the feature in the
lower left of the figure.
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Figure 5: Visualization of features in the pretrained-VGG16 regression network. For conv5 2 layer, we show the top 9 acti-
vations of the top 9 neurons that maximally activate the attractiveness neuron across the training data, projected down to pixel
space using the deconvolutional network approach (Zeiler & Fergus, 2014) and their corresponding cropped image patches.
Best viewed in electronic form, and zoomed in.

Conclusion
We have shown that a deep network can be used to predict
human social perception of faces, achieving high correlation
with the average human ratings. As far as we know, this is
the widest exploration of social judgment predictions, show-
ing human-like perceptions on 40 social dimensions. Reflect-
ing previous work in recognizing facial expressions, where
happiness is the easiest to recognize, our highest correlation
is on the happy feature. However, previous work in this area
tends to classify a face as happy or not, rather than the degree
of rated happiness. By predicting this as a continuous value,
rather than categorical data, the subjective nature of human
judgment is modeled smoothly, along with the subjective face
trait landscape.

We find that, for attributes which are recognized via facial
actions, such as happy, unhappy, or aggressive (probably as-
sociated with anger) or lack of facial action, such as cold or
unemotional, a simple regression model based on the place-
ment of facial landmarks works well, although the deep net-
work performs nearly as well.

Of greater significance is our model’s correlations with hu-
man judgments for traits such as trustworthiness, responsible-
ness, confidence, and intelligence, which correspond to more
static features of the face. In this area, the deep network,
which responds to facial textures and shape, has superior per-
formance. While these judgments do not correspond to the
traditional notion of “ground truth”, they are descriptions for
which humans have a fair amount of agreement, suggesting

the presence of a signal to be recognized.
Furthermore, we have shown, yet again, that a machine can

recognize attractiveness. For this dataset, our deep network
correlates with average human ratings at 0.75. This provides
a new benchmark for this dataset. This is one of a few areas
where the deep network significantly outperforms the geo-
metric features, as skin texture is likely to matter.

Many of these features are redundant. For example,
friendly and happy are highly correlated (see Figure 1, and
the red block indexed by happy and friendly). Similarly, ag-
gressive and mean are highly correlated, which presumably
requires not smiling. Meanwhile, it is also noteworthy that
some traits considered to be “opposite” in this list are not sim-
ply the inverse of one another. For example, there is a large
difference in human agreements on “sociable” (0.74) versus
“introverted” (0.50), suggesting they are not opposites.

We also examined some of the features from the deep net-
work. It is notable that these are difficult to verbalize, which
is quite different from geometric features.

These results are significant for the field of social robotics.
While a robot should not purely judge a human on appear-
ance, much of human interaction is dictated by the underlying
fabric of social impressions. Thus, it is important for a robot
to be aware of this subjective social fabric, opening the door
to useful knowledge such as whether humans might judge a
person to be trustworthy. These judgments may happen sub-
consciously for humans, while a robot can be more objective,
predicting these judgments and objectively choosing when to
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consider them in a decision. A robot need not treat an attrac-
tive or unattractive person differently for its own purposes,
but this knowledge could affect how interactions are made for
the sake of the human, knowing in advance how that person
may feel that they fit into the social landscape.

Expansions on this work may include investigating the
image properties that determine high level social features,
beyond the attractiveness features we display in Figure 5.
Additionally, social trait prediction may benefit from a sin-
gle model with a shared representation, while this paper ap-
proaches each attribute as a separate regression task.

For future work, we aim to develop a generative model
which can automatically modify a face’s attributes (either ob-
jective or subjective) while preserving its realism and iden-
tity. Practically speaking, such a model could improve a
face’s perceived social features in positive ways (e.g. make
a face look more sociable, trustworthy). More importantly, it
would enable psychologists to quantify human biases during
the formation of social impression in a precise and systematic
manner. Psychologists could generate variants of a real face
differing in age, gender, race, and explore how various factors
separately and jointly affect the social impressions of faces.
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Abstract
Existing theories of stereotype change have often made use of
categorisation principles in order to provide qualitative expla-
nations for both the revision and maintenance of stereotypical
beliefs. The present paper examines the quantitative methods
underlying these explanations, contrasting both rational and
heuristic models of stereotype change using participant data
and model fits. In a comparison of three models each simulat-
ing existing descriptions of stereotype change, both empirical
data and model fits suggest that stereotypes are updated using
rational categorisation processes. This presents stereotype use
as a more rational behaviour than may commonly be assumed,
and provides new avenues of encouraging stereotype change
according to rational principles.
Keywords: Stereotypes; Categorisation; Rational Behaviour

Introduction
Stereotypes have often been found to be resistant to change,
with beliefs and expectations regarding a group often per-
sisting even when faced with directly contradictory infor-
mation (Hilton & von Hippel, 1996). This presents a prob-
lem when trying to combat stereotypes underlying prejudice
or discrimination through out-group exposure as has often
been suggested by theories such as the Contact Hypothesis
(Allport, 1954), as there is no assurance that simply demon-
strating the inaccuracy of these beliefs will be effective in
encouraging revision. It is therefore necessary to examine
the processes by which stereotypes are updated with experi-
ence, and, in cases of stereotype persistence, determine how
counter-stereotypical information can be disregarded in order
to develop better methods to encourage change.

Past research into this field has offered three possible pro-
cesses of stereotype revision: book-keeping, in which the
stereotype is slowly adjusted with each relevant observation;
conversion, in which the stereotype can undergo sudden and
drastic changes in response to particularly notable contradic-
tory exemplars; and subtyping, in which counter-stereotypical
evidence is isolated from the rest of the category in a dis-
tinct subgroup, ignored when making category judgements.
This presents three potential explanations for stereotype per-
sistence: stereotype-incongruent exemplars may be noted via
book-keeping but remain out-weighed by prior stereotypical
beliefs; these exemplars may not have been sufficiently sig-
nificant to evoke change via conversion; or these exemplars
may have been excluded entirely via subtyping.

This distinction was examined by Weber and Crocker
(1983) by manipulating the presentation format of counter-
stereotypical evidence in summaries of lawyers: equal

amounts of stereotype-incongruent evidence were either con-
centrated into only a few exemplars, or dispersed across many
exemplars. This generates three competing expectations be-
tween the three models: conversion suggests that these con-
centrated exemplars would act as extreme disconfirmers, en-
couraging significant revision to the stereotype. Conversely,
subtyping would suggest that concentrating incongruent ev-
idence should make it easier to isolate, thereby preserving
existing stereotypical beliefs. Book-keeping, meanwhile, fo-
cuses only on the amount of data rather than the presen-
tation format, and so suggests no difference between these
conditions. Measures of the strength of stereotypical be-
liefs following exposure to these exemplars were found to be
stronger in the concentrated condition, supporting the subtyp-
ing model, an effect that has since been replicated in a num-
ber of studies (Bott & Murphy, 2007; Johnston & Hewstone,
1992).

This depicts stereotype persistence as an issue of categori-
sation, occurring where counter-stereotypical group members
are placed in a distinct subgroup rather than integrated into
existing structures. The mechanisms underlying stereotype
revision could then be well described by existing models
of categorisation, particularly those which perform a similar
process of partitioning a category into lower-order subgroups.
One key example of such a model is the Rational Model of
Categorisation (RMC) developed by Anderson (1991), which
organises a category into ‘clusters’ of exemplars based on
similarities in observed features. The organisation of these
clusters then determines the impact of stored data on subse-
quent judgements, with larger clusters tending to have more
influence on expectations of given traits appearing in the cat-
egory.

The subtyping effect could therefore be seen as the result
of standard categorisation processes creating partitions of the
category based on observed data patterns which determine
the impact of incongruent information on later judgements:
isolating this information leads to subtyping, diminishing its
impact, while integration of congruent and incongruent in-
formation leads to book-keeping, and so greater stereotype
revision. If so, subtyping may not be the result of a bias to-
wards ignoring counter-stereotypical data in order to preserve
stereotypical beliefs, but a rational incorporation of all avail-
able data under certain data patterns which happens to miti-
gate the influence of stereotype-incongruent information. As
such, subtyping could be considered a more rational process
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than it may initially seem, and so could be fought using simi-
larly rational mechanisms to encourage stereotype change.

The present study therefore presents a rational approach
to stereotype use; in the following paper, we develop several
candidate models to approximate the existing depictions of
stereotype revision, contrast the predictions of these models
with participant data to assess their accuracy, and use these
findings to offer some insight into the process of stereotype
change.

Model Details
We began by developing an edited version of the RMC in
order to examine the categorical explanation proposed for the
subtyping effect. This made use of the standard version of
the RMC using discrete exemplar dimensions as defined by
Anderson (1991), chosen for its reasonable level of simplicity
and ease of application to the design of Weber and Crocker
(1983). The RMC assigns exemplars sequentially to a cluster
based on similarities in observed features using a Bayesian
model to approximate the ideal partition:

p(k| f ) = p(k)p( f |k)
∑k p(k)p( f |k)

(1)

where k is the cluster and f is the feature set of the exemplar
under consideration. This posterior probability is calculated
for all existing clusters as well as a new potential cluster, with
the highest probability determining assignment. Following
Anderson (1991), the prior probability was defined as:

p(k) =


cnk

(1− c)+ cn
if k is old

(1− c)
(1− c)+ cn

if k is new
(2)

where nk is the number of exemplars in cluster k, n is the total
number of members assigned to the partition, and c is a cou-
pling parameter describing the probability of two exemplars
being grouped together independent of any observations.

The likelihood also followed the format of Anderson
(1991):

p( f |k) = ∏
i

pi( j|k) (3)

where the exemplar’s features are divided into dimensions i
holding values j. As stated above, the discrete form of this
probability was used, in keeping with the exemplar structure
used by Weber and Crocker (1983):

pi( j|k) =
n j +α j

nk +α0
(4)

where n j is the number of exemplars in cluster k showing trait
value j on dimension i, nk is the number of cluster members
showing a value on that dimension and α j is a parameter re-
flecting the prior expectation of the occurrence of that value,
while α0 is the sum of these alpha values.

Once a partition has been generated, the model is then able
to calculate a probability value measuring the likelihood of a

new group member exhibiting a congruent trait value on any
dimension. This is done by taking an average of the rate of
congruent traits in each cluster weighted by the probability of
that cluster:

p(con) = ∑
k

p(k)p(con|k) (5)

where p(con|k) follows the format of Equation 4, focussing
on congruent trait values. This explains how isolating incon-
gruent data in a distinct subtype mitigates its impact: smaller
clusters provide less evidence to outweigh prior expectations,
here represented by the α parameter. As such, there is less
confidence that future members of the incongruent cluster
will demonstrate similar trait values, while the larger con-
gruent cluster carries more certainty. To illustrate, consider
a case in which 30 exemplars, 20 congruent and 10 incon-
gruent, are either integrated or segregated. For the purposes
of this illustration, α = 1 for both congruent and incongruent
traits, and c = 1, meaning no new cluster is considered:

As this shows, stereotype-congruency is estimated to be
more probable in the segregated case because the α values
are more impactful in the smaller cluster, offsetting the actual
ratio of traits to a greater degree.

Stereotypes as Prior Clusters
As the category in question is a familiar social group with
which participants are likely to have previous experience, the
model included a cluster of exemplars added to the partition
before exposure to the main exemplar set in order to simulate
this prior knowledge. This also provided a more valid de-
piction of the origins of the group stereotype by making the
members of this prior cluster stereotype-congruent, as well
as allowing for potential interactions between prior knowl-
edge and new information, as have been observed in other
categorical modelling studies (Heit, Briggs, & Bott, 2004).
Exemplars in the prior cluster therefore displayed stereotype-
congruent values on all stereotypical dimensions, as well as
group membership on a separate dimension, while the num-
ber of cluster members was added as an additional model pa-
rameter.

Alternative Models
While the above demonstration does show that the RMC
is able to predict a subtyping effect, in order to determine
whether this is truly the result of a rational process, the RMC
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must be compared with a more heuristic depiction of the sub-
typing mechanism. A second model was therefore developed
in which the segregated incongruent data is ignored rather
than simply mitigated, essentially redrawing category bound-
aries to exclude counter-stereotypical information. This was
achieved by restricting the clusters considered when mak-
ing probability estimates to only the cluster with the highest
posterior probability. This restriction was based on the find-
ings of Murphy and Ross (1994), which suggested that par-
ticipants often only considered the most likely cluster when
making probability estimates rather than all generated clus-
ters. This creates an additional candidate model for assess-
ment, labelled the Restricted Rational Model of Categorisa-
tion (RRMC).

In addition, as a counterpoint to this ‘extreme subtyping’
model, a third model was developed in which book-keeping
was enforced; this was achieved by limiting the RMC to us-
ing only a single cluster by fixing the c parameter at 1, forcing
all exemplars to be grouped together despite any differences
in features. This ‘Single Cluster Model’ (SCM) therefore re-
moves the possibility of segregating incongruent data, elimi-
nating any influence of data format and focussing entirely on
the ratio of traits in the partition.

These three models therefore present three different mech-
anisms of stereotype revision: while both the RMC and
RRMC use a partition that flexibly adapts to observed data
patterns, the RRMC subsequently simplifies this partition by
focussing on only one cluster, heightening any effects this
representation may have generated, while the RMC remains
more moderate. Conversely, the SCM focuses on trait ratios
rather than data pattern, thereby dismissing any effects that
may be predicted by the other candidate models.

There is, however, a key distinction between these rational
and heuristic models which can be used to determine their va-
lidity: in the RMC, the subtyping effect is dependent on the
smaller size of the subtype cluster, meaning that increasing
the size of the subtype by adding more incongruent members
should reduce and ultimately eliminate this effect. In contrast,
the RRMC will continue to ignore the subtype regardless of
its size unless the subtype becomes so large that it is se-
lected as the most likely cluster, at which point estimates will
change drastically to reflect the subtype’s much lower rate of
congruency. This could essentially reverse the subtyping ef-
fect at higher volumes of incongruent evidence, focussing on
counter-stereotypical rather than stereotypical clusters, and
so bearing a closer resemblance to the conversion-effect de-
scribed above. The SCM, meanwhile, is unable to exclude
incongruent data at all, and therefore predicts no subtyping
effect at any volume of incongruent information.

The accuracy of these models can therefore be contrasted
according to the change in the subtyping effect with further
exposure to stereotype-incongruent evidence: the RMC pre-
dicts a reduction in subtyping at higher volumes of counter-
stereotypical data; the RRMC predicts a stable subtyping ef-
fect until a sudden reversal; and the SCM predicts no sub-

typing effect at any point. The following experiment there-
fore set out to compare these model predictions by extend-
ing the concentration design of Weber and Crocker (1983)
across a higher total volume of evidence and taking measures
of stereotypical beliefs throughout exposure. This also pro-
vided direct behavioural data for use in assessing the fit of
the candidate models for a more complete test of these pre-
dictions.

Experimental Data
Method
Participants One-hundred-and-sixteen participants were
selected from a University of Warwick undergraduate psy-
chology class as part of a course requirement. The sample in-
cluded 102 females and 14 males, while age ranged between
18 and 27 years, with a mean of 19.

Design and Materials The experiment followed the con-
centration design of Weber and Crocker (1983) with an ad-
ditional within-subjects manipulation of data volume: mea-
sures of stereotypical beliefs were taken at fixed intervals dur-
ing the observation of a set of exemplar descriptions where
stereotype-incongruent information was either concentrated
in a subset of exemplars or dispersed across all exemplars.
Two exemplar sets were therefore created for use in the ex-
periment, each containing 90 total exemplars displaying four
trait dimensions: the first dimension described the occupa-
tional label, and so was identical for all exemplars, while
the remaining three dimensions described personality traits
with three possible values (stereotype-congruent, stereotype-
incongruent or neutral). In both sets, two-thirds of the 270
total traits were incongruent, one-sixth were congruent and
one-sixth were neutral; incongruent traits made up the major-
ity in order to allow for a potential incongruent cluster to be
larger than any other in the category. In the concentrated ex-
emplar set, these incongruent traits were concentrated such
that 60 exemplars each displayed incongruent traits on all
three personality dimensions, with the congruent and neutral
traits being distributed equally between the remaining exem-
plars. In the dispersed exemplar set, all traits were distributed
as equally as possible.

As in Weber and Crocker (1983), exemplars were said to
come from the category of lawyers; exemplars were there-
fore transformed into member summaries for use in the ex-
periment by assigning each value on the three personality di-
mensions a unique trait label. Sixteen total labels were used:
5 congruent (Intelligent, Industrious, Neat, Out-going and
Well-dressed), 5 incongruent (Incompetent, Lazy, Messy, Shy
and Slovenly) and 6 neutral (Warm, Religious, Jovial, Ob-
noxious, Reserved and Meditative). These labels were taken
from Weber and Crocker (1983), being based on pilot tests
determining stereotypical and counter-stereotypical traits for
the target category of lawyers. Three labels of each trait type
were randomly selected at the start of each run of the exper-
iment for use in exemplar summaries. Summaries were also
assigned randomly selected names to assist in individuation.
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Procedure Upon arriving at the lab, participants were first
randomly assigned to one of the two concentration condi-
tions, determining which set of exemplars would be viewed;
this was balanced to provide equal numbers, meaning 58
participants were allocated to each condition. Participants
were told the experiment tested how perceptions of a group
changed with experience, involving both viewing summaries
of group members and answering questions about the traits of
the group in general.

The experiment began by asking participants to estimate
the likelihood of certain traits appearing in the category of
lawyers according to the number of members in a sample of
100 lawyers displaying that trait. Estimates were requested
for all 16 possible personality traits, though only 9 were used
in the subsequent member summaries. This first question
block therefore provided a measure of baseline beliefs before
any experimental exemplars were viewed.

After providing estimates for all traits, participants began a
presentation block in which member summaries were shown
on screen for the participants to examine. In order to maintain
attention on this information, participants were asked to rate
the pleasantness of each group member on a scale of 1-10,
though this measure was not used during analysis.

At set intervals of presentation, the test block was repeated,
and participants were again asked to estimate the likelihood
of each of the 16 traits appearing in the category to measure
any changes in expectation. This occurred after viewing 6,
18, 36, 60 and 90 total exemplars, with the ratio of traits
within each interval being consistent with that of the com-
plete exemplar set. At the start of each test block, partici-
pants were informed that though some of the questions had
been asked before, they should answer based on how they felt
at that point in time.

After viewing all 90 lawyer summaries and completing the
final test block, the experiment ended, and participants were
debriefed as to the aims and expectations of the study.

Results
Data Analysis
The results of the experiment were analysed using a mixed
linear regression model including the factors of evidence vol-
ume, concentration condition and trait type. As the first test
block was intended to provide a baseline, being unaffected by
either volume or concentration, ratings from this round were
not included in the regression model. This was confirmed us-
ing independent t-tests, finding no significant difference be-
tween conditions in either congruent ratings (t(114) = .190, p
= .850) or incongruent ratings (t(114) = .296, p = .768) in the
first test block.

The regression model showed significant effects for vol-
ume in both congruent (β = -2.23, t(5086) = 6.41, p < .001)
and incongruent ratings (β = 6.49, t(5086) = 15.6, p < .001),
with congruent ratings decreasing and incongruent ratings in-
creasing over the task. Similarly, condition is shown to be
a significant predictor for both congruent (β = -6.36, t(114)

= 2.50, p = .014) and incongruent ratings (β = 12.6, t(114)
= 3.19, p = .001), with congruent ratings being higher and
incongruent ratings lower in the concentrated condition. Fi-
nally, the interaction between concentration and volume was
found to significantly differ between congruent and incongru-
ent ratings (β = -2.21, t(5086) = 3.76, p < .001), potentially
indicating differences in the level of the subtyping effect over
the task.

This was investigated further using two additional mixed
linear regression models for each trait type, both including
the factors of condition and evidence volume. Coefficient es-
timates from the congruent ratings model suggested evidence
volume to be a significant predictor (β = -3.11, t(1620) = 6.63,
p < .001), but concentration condition to be non-significant
(β = -3.63, t(114) = 1.24, p = .218), with no significant in-
teraction between these factors (β = .58, t(1620) = .88, p =
.379). Conversely, the incongruent ratings model suggested
a significant effect of volume (β = 4.48, t(1620) = 7.79, p <
.001) and condition (β = 7.40, t(114) = 2.40, p = .018), with
a near-significant interaction (β = -1.52, t(1620) = 1.87, p =
.062). The findings of the general model are therefore most
evident in the incongruent ratings when the two trait types are
separated, while congruent ratings do not display such strong
effects.

Model Comparison
Participant data was compared with model predictions made
by the three candidate models to determine which provided
the most accurate depiction of behaviour in the task. This
used a grid search function across the three parameters, with
the considered values being: for c, 0.01 to 0.99 in steps of
0.01; for α, 0.1, 0.2, 0.3, 0.5, 1, 2, 3, 5, 10, 15, 20, 25 and 30;
and for membership frequency of the prior cluster, 0 to 50 in
steps of 1. The models were run through the same exemplar
sets given to participants at each combination of parameter

Figure 1: Trait ratings for both trait types in both concentra-
tion conditions across the 6 test blocks. Error bars show 95%
CI.
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values to generate estimates of the probability of both con-
gruency and incongruency in new category members at each
of the six exemplar intervals. These values were then used
to calculate model likelihoods assuming identical parameter
values for all participants in order to allow the model to fit
both conditions simultaneously. Likelihoods were calculated
in each of the six test blocks according to the product of the
probability of all participant ratings for that trait type in that
test block; these probabilities were defined according to a
normal distribution using the model probability estimate as
a mean and variance fit to maximise the final product. These
values were then transformed into log likelihoods before be-
ing summed across test blocks and concentration conditions
to create a single model log likelihood for all participants at
that set of parameter values. Maximum log likelihoods from
each model were then used to calculate BIC values for com-
parison. The RMC was found to have the lowest BIC score
(11926, α = 0.5, c = 0.01, prior membership = 21), indicating
this model had a better fit to the experimental data than either
the RRMC (11937, α = 10, c = 0.09, prior membership = 50)
or the SCM (11929, α = 10, prior membership = 50).

Interestingly, when the predictions for this best fit for the
RMC are examined, probability estimates for both measures
are in fact identical between conditions; this is because all
experimental exemplars were assigned to separate, single-
member clusters despite any similarities in features, mitigat-
ing all exemplars equally in both sets. This suggests that the
differences observed in participant ratings between concen-
tration conditions were sufficiently small such that the data
could be best fit by identical behaviour in both conditions. As
previously described, this is in fact a tenet of the SCM, which
ignores the concentration of data via full integration of all ex-
emplars; however, the SCM shows a steeper curve in both
measures compared to the RMC, therefore predicting greater
stereotype revision. As such, the scattering behaviour of the
RMC better corresponds with the greater degree of mainte-
nance observed in the data.

It is also notable that the best fit of the RRMC matches that
of the SCM, as the maximum likelihood of the RRMC was
found when all exemplars were grouped in a single cluster.

Figure 2: Trait probability estimates from the best fits of the
three candidate models. Due to equality in estimates between
conditions for all models, only one line is used for each mea-
sure.

As such, the RRMC also predicts greater revision than was
observed in the experiment; however, because the SCM does
not use a coupling parameter, the SCM holds a lower BIC
value than the RRMC despite equal log likelihoods. It should
be noted however that this comparison reveals only the best
fit of the three candidate models rather than an absolute de-
scription of behaviour in the task; more complex models may
therefore be needed to reflect the subtle differences observed
in the participant data.

Discussion
The results of the experiment provide three key findings:
firstly, ratings of trait likelihood for both congruent and in-
congruent traits became less stereotypical over the course of
the experiment, indicating that higher volumes of incongruent
evidence were effective in evoking greater revision of stereo-
typical beliefs. Secondly, ratings were more stereotypical in
the concentrated condition compared to the dispersed condi-
tion, as would be expected by subtyping. Thirdly, this con-
centration effect differed somewhat in size across the task,
showing smaller differences between groups at higher vol-
umes of evidence. When the trait types are separated, these
findings are seen to be stronger in the incongruent ratings,
while congruent ratings did not demonstrate the condition or
interaction effects.

In general, these results appear to partially correspond with
previous depictions of the subtyping effect: beliefs are more
stereotypical where incongruent information is more easily
segregated from existing category structures, whereas data
patterns aiding integration demonstrate greater stereotype re-
vision. This also matches with the categorical explanations
for subtyping offered by both the RMC and RRMC, as both
suggest that category partitions which place incongruent data
in a separate cluster diminish the impact of this data on sub-
sequent probability estimates, thereby leading to more stereo-
typical expectations.

There is, however, an additional aspect to the subtyping ef-
fect observed in this task which distinguishes between these
models: the interaction between volume and concentration,
while not quite reaching a significant effect in the separated
regression models, does suggest that the subtyping effect did
not remain entirely consistent across the task, but in fact
dropped off in later test blocks, with incongruent trait ratings
in particular appearing to converge between the two condi-
tions. This finding corresponds with the predictions of the
RMC made in the introduction to this study: because the sub-
typing effect in the RMC is the result of greater uncertainty
in the data pattern of the subtype cluster due to its smaller
size, increasing the size of this cluster attenuates the subtyp-
ing effect by providing more confidence in this pattern. This
is in contrast to the RRMC’s hypothesised cross-over from
subtyping to conversion at higher volumes of incongruent ev-
idence where the subtype becomes the most likely cluster due
to its size, an effect which was not observed in the data.

The RMC therefore appears to provide the most accurate
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theoretical account of the observed results, suggesting partic-
ipants were most likely using a rational categorisation pro-
cess to guide their judgements in this task. This suggestion
is further supported by the RMC having the best fit to the
behavioural data in the above model comparison, though it
is notable that this best fit did not accurately capture the ob-
served differences between concentration conditions. Even
so, the RMC does still provide a better fit to the experimental
results than either the RRMC or SCM, potentially suggest-
ing the present findings are more likely to be due to standard
rational processes than these more extreme depictions.

Implications
The present study therefore provides evidence from both be-
havioural data and model fits that the maintenance of stereo-
typical beliefs generated by subtyping does appear to be the
result of a rational incorporation of all available data rather
than a heuristic strategy of stereotype preservation: isolating
incongruent data in a distinct subtype does not completely
exclude this information from consideration during category
judgements, but instead mediates its impact according to the
size of the subtype.

As such, the subtyping effect could be considered to be a
normal aspect of standard categorisation processes operating
on social groups, occurring where a particular data pattern
inadvertently diminishes the impact of counter-stereotypical
data. If so, stereotype change could be encouraged by using
similarly rational techniques to circumvent subtyping, pri-
marily by aiding the integration of incongruent data into pre-
existing clusters. More broadly, this finding provides a basis
for a rational system underlying stereotyping, allowing for
the generation of further predictions regarding stereotype use
based on the principles of such rational models to be tested in
future studies; such tests would be valuable in further devel-
oping the current model to provide a more complete depiction
of rational stereotype use.

The current data also demonstrates that stereotype change
can be drawn from even slight encounters with incongruent
evidence in sufficient volume, with the effects observed in the
experiment being based solely on the observation of member
summaries rather than any significant interaction with actual
counter-stereotypical group members. This is in contrast to
past theories such as the Contact Hypothesis which often re-
quire intensive, long-term interaction with out-group mem-
bers to generate a reduction in stereotypical beliefs (Allport,
1954). This is not to say that prior expectations have been
completely overcome: revision still does not reach the level
suggested by conversion (or indeed the actual ratio of evi-
dence in the experimental data sets); even so, this does still
provide limited evidence that stereotype maintenance can be
counteracted through increased exposure to incongruent data.

The current design may therefore present a more economic
path to combating prejudice, requiring less time and effort
than some existing methodologies. What is more, the effects
observed in this study could in fact be greater at more signif-
icant forms of encounter, potentially counteracting subtyping

at even lower volumes of incongruent data. It is not clear how
the significance of an encounter should be represented within
the current version of the model, but one basic option would
be to represent a significant encounter as multiple observa-
tions in the partition, essentially viewing that individual as
providing more data than a single exemplar. This suggestion
should, however, be pilot tested to determine the validity of
this representation before being incorporated into the model.

Conclusion
The present study provides the starting point for a rational ap-
proach to stereotype use, providing both theoretical and em-
pirical evidence that a rational model of stereotype change,
while not universally accurate, does provide a reasonable ac-
count of behaviour both in this experiment and previous stud-
ies into stereotype maintenance. We therefore hope that this
study can act as a foundation for continued work in this field,
allowing subsequent research to further refine the presented
models to provide a more accurate depiction of behaviour.
This will serve to provide greater clarity regarding the opera-
tions underlying stereotype maintenance, and so aid in finding
more potential methods for encouraging stereotype change.
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Abstract

There are a number of claims regarding why linguistic com-
plexity varies, for example: i) different types of societal
structure (e.g. Wray & Grace, 2007), ii) population size (e.g.
Lupyan & Dale, 2010), and iii) the proportion of child vs. adult
learners (e.g. Trudgill, 2011). This simple model of interact-
ing agents, capable of learning and innovation, partially sup-
ports all these accounts. However, several subtle points arise.
Firstly, differences in the capacity or opportunity to learn deter-
mine how much complexity can remain stable. Secondly, small
populations are susceptible to large amounts of drift and sub-
sequent loss, unless innovation is frequent. Conversely, large
populations remain resilient to change unless there is too much
innovation, which leads to a collapse in complexity. Next, if
adult learners are prevalent, we can instead expect less sus-
tained complexity in large populations. Finally, creolisation
does not imply simplification in smaller populations.

Keywords: linguistic complexity; language variation; innova-
tion; social networks; agent-based models; cultural evolution.

Introduction
Languages vary in complexity. This was a controversial idea
for much of the last century, but a growing body of empir-
ical evidence has led to a new consensus in its favour (see
Joseph & Newmeyer, 2012). More intriguingly, the most
complex languages in the world are often the ones with the
least speakers, spoken by remote, inaccessible, and some-
times non-literate societies. The Archi language, for exam-
ple, “spoken by a thousand people in one village 2,300 me-
tres above sea level in the Caucasus” (Nichols, 2009, p.3),
features verbs with around 1.5 million inflected forms. At
the other end of the spectrum, some languages are notable
for their apparent simplicity; often creoles (e.g. McWhorter,
2001), but not exclusively so (e.g. Gil, 2001).

There are several lines of thought regarding the origin of
this variation in complexity. Trudgill (2011) proposes that
when a language community includes a large proportion of
adult second-language learners, it leads to a corresponding
reduction in that language’s complexity, but that, when ‘left
alone’, languages tend towards greater complexity: i.e. there
is a directionality to such language change. In a somewhat re-
lated idea, Wray & Grace (2007) argue that esoteric societies
(where intra-group communication dominates) lead to further
complexification, while simplification occurs in exoteric soci-
eties (where people frequently interact with strangers). Nettle
(2012) indicates a link between population size and grammat-
ical complexity, citing empirical support from Lupyan & Dale
(2010), who found a (negative) correlation between popula-
tion size and morphological complexity: similarly to Trudg-
ill, they argue that complex features of language undergo neg-
ative selection in large populations with many second lan-
guage learners, but further conjecture that the high morpho-

logical complexity found in languages spoken by small com-
munities assists in child language acquisition. Finally, au-
thors such as McWhorter (2001) point to the youthfulness of
creole languages as the explanation for their simplicity: they
haven’t been around long enough to build up the diachronic
“ornamentation” found in older, more complex languages.

These claims require empirical validation. However, it
is notable that despite the increasing availability of cross-
linguistic documentation (e.g. WALS, Dryer & Haspelmath,
2013), no uncontroversial, universally applicable measure of
linguistic complexity has arisen. Information-theoretic mea-
sures of complexity (e.g. Juola, 2008) can be hard to interpret
(the various dimensions of complexity, such as the size of the
lexicon and segmental inventory, and paradigmatic vs. syn-
tagmatic complexity are conflated in such measures, and fur-
thermore do not distinguish between descriptive complexity
and structural complexity, see Crutchfield, 1994). The alter-
native would be to employ traditional linguistic analysis, but
as pointed out by Nichols (2009, p.111), “measuring the total
complexity of a language in cross-linguistically comparable
and quantifiable terms would be a massive task and unrea-
sonably costly in time and effort”, and moreover any such
result would be theory-dependent, and as such subject to ac-
cusations of false equivalence (e.g. Haspelmath, 2010) and
subjectivity (e.g. Martin, 2011).

As an alternative to empirical analysis, formal tools would
seem a good way of — at the very least — assessing the
internal consistency of the claims in question. Indeed, two
such models have been produced, the first by Lupyan & Dale
(2010) and the second by Reali et al. (2014). Lupyan & Dale
argue that population size correlates with the proportion of
L2 learners, and their model suggests that it is this which re-
duces complexity; Reali et al. show a more direct effect of
population size. The model presented here represents an at-
tempt to synthesize and extend these results in a more general
format. Results suggest that three factors determine the com-
plexity of a language. Firstly, a population’s effective size.
Secondly, the amount of linguistic regularisation: this can
be determined by a number of factors, including the num-
ber of learning experiences, the memory limitations of indi-
vidual agents, and any cognitive bias for regularity. Finally,
linguistic innovation is crucial, as the same amount of innova-
tion can sometimes support greater complexity, while at other
times leads to a collapse in complexity, depending on the size
and nature of the population.

Previous Models
Lupyan & Dale (2010) present a mathematical model in their
supplementary materials which is analysed in terms of the
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evolutionary fitness of languages depending on the propor-
tion of L1/L2 learners. They find that, under various assump-
tions, a high proportion of L2 learners implies that simple
languages are maximally fit. However, neither interaction nor
social structure are taken into consideration.

Reali et al. (2014) explicitly investigate population size in a
model where agent interactions are governed by Gilbert ran-
dom graphs. Agents produce token-like conventions which
can be either easy or hard. Crucially, easy tokens can be re-
produced by another agent after a single exposure, while hard
tokens require two exposures. Finally, new conventions are
occasionally produced according to a Chinese restaurant pro-
cess, and agents have a hard limit on the number of tokens
they can store, i.e. a limited memory. The finding is that,
in smaller groups, significantly more hard tokens are able to
establish themselves across the entire population than is the
case with larger groups. Reali et al. suggest that language,
and indeed all culture, might become preferentially simpler
as societies increase in size and social connectivity.

These models support two of the hypotheses found in the
literature: both the type of language learner (child or adult)
and the population size are arguably factors behind the vari-
ation found in linguistic complexity. However, we are left
with a number of questions: 1) Can we reconcile these two
predictions; 2) How do we incorporate ideas such as that of
Wray & Grace (2007) about esoteric and exoteric cultures,
and McWhorter (2001) regarding creoles; 3) How robust are
the previous models across different parameter settings and
instantiations? To investigate these questions, we need to sys-
tematically vary not just the population size, but also i) the
type of social network, ii) the amount of linguistic regulari-
sation, iii) the amount of linguistic innovation, iv) the initial
state of the population, and v) whether intergenerational lan-
guage acquisition is included or not. This is the target of the
model presented here.

Model description
Agents produce and store tokens representing conventions,
but there is no distinction between different types of token,
e.g. easy vs. hard. Instead, the complexity of a conventional
system is assessed by counting the number of population-
wide shared types. This casts the complexity of a given popu-
lation’s language in terms of the total amount of information
required to acquire that shared system, abstracting away from
the details of how that system is stored, used, or acquired.
A complex language, then, is when all agents share a large
number of conventional types, while a very simple language
is when almost no conventional types are shared throughout
the population. Note that this does not imply that individual
agents do not store a large number of types, or even that many
conventions are not shared by sub-populations. Another way
this might be conceptualised in terms of Reali et al.’s 2014
model is that this model deals only in hard-to-learn conven-
tions, while easily-learned conventions are simply assumed
to be learnt independently, in a way which does not interfere

with hard ones.
Conventions c j are drawn from an infinite set C =

{c1, ...,cn, ...}. There is no distinction between different
types of convention, for example easy or difficult, and all
are equally weighted as Wc = 1. There are n agents ai ∈
A = {a1, ...,an}, which are modelled as variants on Hoppe
urns (Hoppe, 1984), after the models of innovative signalling
found in Skyrms (2010, see p.124), and similar to the learn-
ing agents described by Reali et al. (2014). Depending on the
starting condition, an agent is initially composed of t conven-
tion tokens, where t ≥ 0, and a single ‘innovation token’ with
weight Wv ≥ 0. The number of tokens of convention type c j
possessed by agent ai is denoted Ni j.

The initial state of the population is either homogeneous,
sampled, or heterogeneous. Homogeneous populations con-
sist of agents with exactly the same 50 types of token. Sam-
pled populations initiate by sampling from a set of 100 initial
tokens, meaning that initially no type is likely to be found
in every individual in larger populations. Finally, heteroge-
neous populations consist of agents with entirely different ini-
tial sets of tokens.

When an agent ai ‘speaks’, it selects a particular conven-
tion type c j with probability Pi j given by:

Pi j =
Ni j

Wv +∑k∈C Nik
(1)

Alternatively, the agent may produce an entirely new con-
vention, with probability Piv = 1−∑k∈C Pik =

Wv
Wv+∑k∈C Nik

. If
x conventions have been created by the population to date, the
new convention is denoted cx+1.

An interaction between two agents is simple: one is de-
noted ’sender’, and another ’receiver’. The speaker chooses
a convention according to the distributions given above, and
the receiver adds exactly one new token of that type. When
the learning capacity is cast as a memory limit, each agent
has a hard limit of m tokens: if the number of stored tokens
exceeds m, then one of the tokens is selected for deletion with
a probability proportional to Ni j, but excluding the innovation
token (which is never selected for deletion). Put another way,
conventional types which are more strongly represented via
their association with more memory tokens are correspond-
ingly more likely to be selected for deletion, and vice versa.

Population structure is defined by the non-directed graph
G. Three types of graph structure are investigated: 1) Fully-
connected graphs, in which every agent node connects with
every other, 2) Erdős-Rényi random graphs G(n, p), gener-
ated by assigning a probability p = 0.4 that any agent node
connects with another, and finally 3) Newman-Watts-Strogatz
small-world graphs G(n,k = 2, p = 0.4): agents are first con-
nected in a ring-structure, then to each neighbour two nodes
away, and then to another randomly-selected node with prob-
ability p. Small-world networks capture the property of real-
life social networks in that while any one person may not be
connected to many others, the number of nodes which must
be traversed between any two people is typically small, e.g.
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Figure 1: Results are robust across many individual simula-
tions. The complexity (number of population-wide shared to-
kens) over time as measured over 10 simulations of 1 million
interactions each for different populations sizes (5, 25, and
100: line colours) and network structures (fully-connected,
random and small-world: line dashes), with ’sampled’ initial
states, learning capacity of 100, and an innovation rate of 0.1.
Error bars represent 1 standard deviation from the mean for
individual simulations. Also note that network structure has
no apparent long-term effect.

the concept of ‘six degrees of separation’.
Interactions proceed by selecting, with uniform probabil-

ity, an agent to be sender. The receiver is then chosen from the
set of agents which connect to the sender, also with uniform
probability. The agents interact, and the simulation continues
by reiterating the process.

Population turnover, when instantiated, is ‘gradual’: it pro-
ceeds by choosing an agent at random and replacing them
with a new agent, who then is exposed to a given number
of tokens from connected agents, representing the number of
learning experiences. In this way, fewer learning experiences
are taken to represent more adult-like learners, and more ex-
periences to be child-like.

As outlined before, the method of analysis is to count the
number of population-wide shared types.

Results
The parameters adjusted in relation to each other were i) pop-
ulation size: 5, 25 or 100 agents; ii) population structure:
fully-connected vs. random vs. small-world; iii) popula-
tion dynamic: static vs. gradual turnover; iv) initial com-
position: homogeneous vs. sampled vs. heterogeneous. v)
learning capacity: 100, 500, or 1000 tokens; vi) innovation
rate: WV = 0.1,1,10,or100. The main results are as follows:

1. Long-term complexity is robustly determined.

Figure 2: Both population size and learning capacity deter-
mine stability. The complexity (number of population-wide
shared tokens) over time as measured over 10 simulations of
1 million interactions each for different population sizes (5,
25 and 100: line colours) and learning capacities (100, 500,
and 1000: line dashes), with small-world networks, homoge-
neous initial conditions and an innovation rate of 0.1. Note
that a small learning capacity always leads to a collapse in
complexity, while even a large learning capacity is unable to
prevent drift and loss in small populations.

Although simulations were stochastic, results were robust
as regards long-term complexity. That is to say, the type
of population (as determined by the parameters above) re-
liably determines a stable level of complexity which is ro-
bust across i) individual simulations and ii) time: see Fig-
ure 1. This level of complexity is determined by multiple
factors (which are outlined shortly), but the existence of a
‘steady state’ (which may take some time to reach) is im-
portant. Differently understood, this means that (given our
assumptions) complexity will not remain in constant flux
unless some new factor comes into play, e.g. a change in
population size.

2. Learning capacity and population size determine sta-
bility.
Across all conditions, the learning capacity of individual
agents determines how complex the population-wide lan-
guage can be. When memory or learning experiences are
limited in number, the effect of linguistic drift increases:
see Figure 2. This leads to certain variants being lost and
a decrease in complexity. Population size plays a simi-
lar role, for as the number of individuals increases, the
less of an effect drift can play. In essence, either the in-
dividual or the population must act as a ‘reservoir’ to avoid
loss. In the case of individuals, this requires a large mem-
ory and/or many instances of learning; for populations, a
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Figure 3: Innovation can maintain, increase or decrease com-
plexity. The complexity (number of population-wide shared
tokens) over time as measured over 10 simulations of 1 mil-
lion interactions each for different population sizes (5, 25 and
100: line colours) and innovation rates (1, 10 and 100: line
dashes) with fully-connected networks, homogeneous initial
state and an learning capacity of 1000. Note that high levels
of innovation lead to very high levels of complexity in small
populations, but to a collapse in complexity in larger popula-
tions.

smaller learning capacity is required because individual to-
kens will likely be shared across many individuals and are
thus robust to loss in any one individual. However, when
learning is not sufficient, complexity will collapse even in
large populations.

3. Innovation can maintain, increase, and decrease com-
plexity depending on population size.
For smaller populations, only high rates of innovation can
counteract linguistic drift. When they do, however, this
can push levels of complexity much higher than would be
possible for adult learners with similar learning capacities:
see Figure 3. Low levels of innovation lead to catastrophic
collapses in complexity for small populations, even when
learning capacities are high. Contrasting with this, large
populations — which easily maintain a given level of com-
plexity — are overwhelmed by large amounts of innova-
tion: in this case, too much innovation leads to less overall
complexity.

4. Adult learners reduce complexity
When we include gradual population turnover, decreasing
the number of learning exposure leads to decreased com-
plexity: see Figure 4. The rate of innovation is less im-
portant, as we see different rates of innovation pattern to-
gether. However, learning capacity is more important than

Figure 4: Intergenerational learning and innovation in large
populations. The complexity (number of population-wide
shared tokens) over time as measured over 10 simulations of
5000 replacements with 1000 learning interactions each for
populations of 100 agents with gradual turnover and differ-
ent numbers of learning exposures (100, 500, and 1000: line
colours) and rates of innovation (0.1, and 1: line dashes), with
small-world networks and a heterogeneous initial state of 50
tokens. This shows that complexity is less stable in large pop-
ulations of learners than is the case with interacting popula-
tions.

in static populations: when learning exposures are anything
else than quite high, we can expect a decrease in complex-
ity. As such, the maintenance of high levels of complexity
requires child-like learners.

5. Creoles: complexity in small populations, simplicity in
large populations
When a common language already exists, the level of com-
plexity will either remain stable, or will be affected by the
factors mentioned above: see Figure 5. On the other hand,
when there is no common language, such as with the ex-
treme state of interpersonal variation modelled by the ‘het-
erogeneous’ parameter, we see an interesting effect. When
initial populations are large, these mixed societies never
develop systems of any complexity. However, small groups
with a similar composition lead to very high levels of com-
plexity.

6. Social network structure has little effect:
Social network structure has a relatively small role to play
in the development and maintenance of linguistic complex-
ity. As long as networks have a small-world property, i.e.
as long as the average path-length between any two people
remains small (which is the case in all of the network types
surveyed here), diffusion across the network is sufficiently
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Figure 5: Creolisation does not necessarily imply simplicity.
The complexity (number of population-wide shared tokens)
over time as measured over 10 simulations of 1 million in-
teractions each for different population sizes (5, 25, and 100:
line colours) and innovation rates (0.1 and 1: line dashes),
with a heterogeneous initial state, small-world networks, and
a learning capacity of 1000 tokens. When populations sizes
are large, no complexity develops, but when population sizes
are smaller then complexity is able to fixate.

large to ensure that the other results presented here remain
valid.

Analysis
Long-term complexity is reasonably deterministic given a set
of assumptions about population size and structure, the rate of
innovation and so on. All things remaining equal, then, pop-
ulation size and the nature of learning and innovation should
have a predictable impact on linguistic complexity. On the
other hand, it is worth noting that real-world populations are
unlikely to remain static in regards to many of these assump-
tions: population sizes will rise and fall, societal pressures
driving innovation will vary, and the nature of cultural inte-
gration between different social and linguistic groupings can
drastically change over short periods of time. In the absence
of more detailed case-specific analysis, however, these results
should add weight to the theories discussed in the introduc-
tion.

Next, we can consider these findings in the light of well-
established results from population genetics (e.g. the Wright-
Fisher and Moran models of genetic drift) which show that i)
small populations are highly susceptible to loss via drift while
large populations are conservative, and that ii) fixation of new
variants is much more likely in small populations than large
ones. Taking these in turn:

1. The susceptibility of small populations to drift is in line

with the results which predict that maintaining high levels
of complexity in small populations requires large amounts
of innovation. Bromham et al. (2015), also citing the par-
allels between language change and evolutionary models,
show that there is significantly more frequent word loss
in smaller populations, so it seems reasonable to expect a
similar process to occur at other levels of linguistic struc-
ture besides the lexicon. Perhaps a more pressing con-
cern is that the model presented here is equivalent to a
‘neutral model’ of evolution. This runs against assump-
tions which are sometimes made in the literature regard-
ing the directionality of linguistic complexification. Trudg-
ill (2011) challenges previous assumptions that simplifica-
tion is the natural direction of language change, arguing
instead that when “left alone”(p.325), languages will grad-
ually complexify, and that only external pressures such as
a large proportion of second-language learners will lead to
reduced complexity. This can be analysed in two ways:
either that humans have something akin to a cognitive
anti-regularisation bias which prevents drift-like processes
from occurring, or that Trudgill simply perceives the nat-
ural state of linguistic development to take place in small
groups with child learners. If the former, then recent work
suggests that the opposite is the case: Ferdinand et al.
(2013) identify a linguistic domain-specific bias in favour
of regularisation. If the latter, then the model here corrob-
orates with Trudgill’s theories only if we can assume that
the rate of innovation is very high.

2. Large populations are resistant to fixation or new variants,
just as they are to the establishment of complexity. There
are two factors behind this: firstly, when innovation rates
are low, the probability of any new variant fixating within
the population becomes very small. On the other hand,
when there is too much innovation we see a collapse in
overall complexity. This is in line with empirical results
such as Lupyan & Dale (2010), but the explanation dif-
fers. They argue that adult learners reduce complexity and
child learners foster it: on the contrary, it appears that any
more than an extremely sparse sampling by adult learn-
ers suffices to preserve population-wide complexity, due to
the ‘reservoir’ like effect that large populations have. This,
then, supports Trudgill (2011), but acts to constrain his the-
ory: not just adult learners are necessary, but adult learners
with extremely restricted exposure or learning capacities.
The other condition in which we can expect adult learners
to drive simplification is when they also contribute large
amounts of innovation: this is an unexpected result, and is
in need of empirical validation.

The results for large populations which tend towards ei-
ther stability (when learning capacity is medium or high), or
simplification (when learning capacity is very low), assume
a static population where most change and innovation takes
place in individual interactions. However, change and inno-
vation also occur intergenerationally. Whether one or both of
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these factors predominate had been a subject of perennial de-
bate, but the results here make a solid prediction about what to
expect if either is the case. That is, if interaction is at least one
of the main factors, we should expect very little in the way
of increasing complexification. If intergenerational change is
the main factor, however, we should expect large populations
of anything else than child learners to lead to dramatic sim-
plification; if not, then we should expect simplification only
when most learners have extremely sparse input. Whether
this is or is not the case is a target for future empirical work.

Finally, the results indicate that creoles can attain com-
plexity given reasonably small population sizes. In fact, this
stands to reason given the previous results: given an initial
pool of extremely wide variation, many variants are able to
fixate in small populations, but very few to none in large pop-
ulations. The take-home message from this is not that we
should expect complexity in small mixed populations — as
the assumptions made by this configuration of the model are
particularly unlikely — but rather that we cannot assume that
creolisation should automatically entail simplicity: we can
expect it to appear under some circumstances.

Conclusion
The relationship between linguistic complexity and social de-
terminants is more nuanced than has been sometimes been
assumed. At the very least, we need to consider not just the
effective size of the population in question, but also give some
thought to how learning proceeds — whether this is in terms
of memory or learning exposures — and the nature of linguis-
tic innovation. However, as previously observed, all of these
factors can be difficult to accurately observe and/or measure,
and undergo constant flux. In particular, linguistic innova-
tion can be subject to a myriad of intrapersonal, interpersonal
or larger cultural pressures and variations. Furthermore, the
results presented here are from a highly idealised model of
cultural learning and transmission: it may well be the case
that including more detailed and realistic mechanisms, par-
ticularly as pertains to human language, will impact on some
of the conclusions presented here. Even if this is the case,
the model allows us to both draw several disparate theoretical
claims together, while at the same time sharpening the predic-
tions we can make regarding how social structure, population
size, and the details of learning and innovation should impact
linguistic complexity.
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Abstract

Rational accounts of decision-making are incompatible with
the prevalence and success of ubiquitous marketing strategies.
In this paper, we demonstrate, using computational experi-
ments, how an ideal Bayesian observer model of preference
learning is compatible with the manipulation of purchasing
decisions via a number of well-known marketing techniques.
The ability of this model to predict the effects of both famil-
iar and novel marketing interventions suggests it as a plausible
candidate theory of consumer marketing. Simultaneously, by
clarifying the logic underneath the interplay between environ-
mental exposure and preference distortions seen in economic
decisions, this model rationalizes the seemingly irrational sus-
ceptibility of consumers to marketing.
Keywords: decision-making; preference learning; advertris-
ing; marketing; rational analysis

Introduction
Marketing constitutes a genre of economic activity that is
mysterious to existing formal accounts of consumers’ deci-
sion process. While such formal theories require consumers
to be economically rational, doing so would make them im-
pervious to marketing techniques. In fact, the very existence
of marketing as a viable genre of activity violates the predic-
tions of current formal accounts of consumer behavior. What
possible new information can the 43rd viewing of an insur-
ance company’s ad give a consumer? Clearly, consumers re-
ceive a lot more information about products than just their
‘utility’ through such repeated interactions. Such associa-
tive influences have been difficult to document and incorpo-
rate into formal theorizing - hence have historically been ig-
nored in marketing research - save as unspecified exogenous
influences to be parametrized in econometric analyses.”Now
that online activity can be meticulously logged across content
platforms, we argue that the sort of side information that was
treated as noise in earlier generations of marketing theories
can be incorporated to construct computational models that
can make testable predictions about the efficacy of marketing
interventions. This is the goal we pursue in this paper.

We do so by developing a psychological model of pref-
erence formation that can quantitatively relate manipulations
of marketing variables to consumer demand. Our approach
diverges from existing accounts of consumer/buyer behav-
ior in several key aspects. First, unlike classic (Belk, 1975)
and modern (Malhotra, 1988) integrated models of consumer
behavior, our model can offer constrained quantitative pre-
dictions by virtue of relying on only observable variables
(such as price distributions, exposure frequency, and trans-
action history), rather than relying on unobservable and im-
measurable consumer valuations and beliefs. Second, unlike
current quantitative models of consumer psychology behav-
ior that consider choice mechanisms in very narrow settings

(e.g., reference price models; (Winer, 1986)), we attempt
to provide a general account that can capture the effects of
many marketing interventions. Finally, unlike classical ap-
proaches designed for brick-and-mortar retail that have re-
lied on population-level market and consumption variables,
our approach considers frequency distributions of individual
observers’ transactions, which are increasingly more measur-
able and relevant in internet commerce.

Existing models of consumer behavior
In the absence of formal theory, existing quantitative models
of marketing are primarily econometric - they regress multi-
ple available variables against outcomes of interest, use focus
groups or deductive arguments to suggest that such variables
can be changed by particular marketing interventions, then
extrapolate these changes to the consumer base to predict how
much the underlying outcomes will change.

Econometric models of marketing interventions are funda-
mentally data analytic models that impose microeconomic
constraints on estimated parameters. Thus while they are
good at retrospectively estimating the effects of marketing
interventions on demand curves, they can only make predic-
tions about such effects by extrapolating parameters. Perhaps
the most rigorous models of consumer behavior are in the do-
main of pricing. Price sensitivity has been shown to follow a
Weber law, such that consumers are sensitive to proportional
price changes (Monroe, 1973). Moreover, consumers seem
to evaluate prices relative to a ”reference”” price range that
varies across products and categories (Kalyanaram & Winer,
1995), appears to be learned from transaction history (Emery,
1969), and may be influenced by brand strength (Biswas,
1992). These models are typically used to explain and moti-
vate narrow experimental manipulations, and while they hold
promise for predicting changes in aggregate demand curves
from transaction history, they have not been applied in this
way; perhaps largely due to the fact that they do not inte-
grate the effects of long-term marketing strategies. Although
these models can capture the effects of long-term marketing
strategies on demand curves via free parameters to account
for changes in reference price with branding, advertising, etc.,
they do not offer a predictive account of how marketing ac-
tions will influence the reference price, and thus can only ret-
rospectively describe their effects on demand curves.

In contrast, theories of consumer behavior that aim to
explain the psychological mechanisms of a broad range
of marketing interventions rely on qualitative, verbal ac-
counts of psychological processes and invoke unobservable,
and immeasurable, latent traits and beliefs of consumers
(e.g., (Bettman, 1979)). While these theories offer pithy qual-
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itative summaries of marketing researchers’ intuitions about
the psychology of consumers, they are neither designed to,
nor capable of, offering quantitative predictions.

The account we present in this paper aims to capitalize
on the strengths of these different approaches: First, by con-
structing a model at the level of individual choices, we cap-
ture intuitions about the psychology underlying consumer be-
havior. Second, by basing the individual choice on histor-
ically observed price distributions and transactions, we ac-
commodate known relative price-range effects. Finally, by
relying on only externally observable quantities as the inputs
to the individual choice model, we make our theory empiri-
cally identifiable in the same manner as standard econometric
models.

A cognitive model of consumer psychology
Ultimately, population demand curves are created from ag-
gregating individuals’ buy/don’t buy decisions, therefore any
formal analysis of the efficacy of marketing techniques must
model how they influence individual purchasing choices.
Framed this way, the question such an analysis must ask is
‘how do prices and other market signals influence purchase
decision?’

The standard way of addressing this question is to treat
choices as the outcomes of utility maximization. On this
view, whatever choices an observer makes can be attributed
to some underlying hedonic calculation which shows a higher
evaluation for the chosen option. While this is a mathemat-
ically elegant way of describing the choice outcome, it is
a very poor description of the process underpinning these
choices. Prior research has demonstrated that consumers’
price estimates of products tend to be drastically altered by
presentation formats (Tversky & Kahneman, 1981), the set of
available options (Huber & Puto, 1983), as well as a variety of
seemingly irrelevant psychological primes (Ariely, Loewen-
stein, & Prelec, 2006).

The success of various marketing strategies in increas-
ing consumer preference for the same underlying prod-
uct (Kirmani & Rao, 2000) lends credence to a less opti-
mistic view of consumer preferences: choices are based on
dynamic, context-dependent comparisons between options,
rather than reliable hedonic value judgments (Ariely et al.,
2006). Consumers are likely to make any particular deci-
sion by drawing upon past experiences with choices among
similar options (Gilboa & Schmeidler, 1995). Given variabil-
ity in experiences, variability in recall, and variability in the
comparison process used to generate preferences, the result-
ing preferences will be considerably uncertain.Our theory is
that marketing strategies capitalize on this uncertainty by ma-
nipulating the information available to observers at interme-
diate steps of the preference-construction process to influence
preferences.

The principal contribution of our work is demonstrating
how Bayes-optimal combination of prior choice-relevant ob-
servations yields an interpretable, simple, testable, and parsi-

monious account of marketing psychology. In particular this
account predicts the efficacy of a number of interesting mar-
keting strategies on several important consumer choice out-
comes by virtue of their influence on a small, factored repre-
sentation of consumer price history and knowledge.

Consumer representation
What are the observable building blocks of a theory of mar-
keting psychology? An intuitive simplification of a typical
economic transaction is that a buyer decides that the price
for a particular product is fair in a particular context. Thus
the observable units of individual transactions are consumers,
prices, products, choices, and auxiliary contextual informa-
tion (e.g. physical location, web portal, company brand,
etc). Of these units marketers cannot directly influence con-
sumers’ choices (b), but they can affect prices (m), prod-
ucts (x), contexts (c), and critically, the frequency and co-
occurrence statistics with which consumers encounter each.

Although the full set of experiences of an observer can
be described as a joint distribution of p(b,c,x,m), there are
several reasons to consider the agent’s representation not as
this complete joint distribution, but instead a factored set of
several conditional distributions. First, it seems implausible
for humans to keep track of the full joint distribution given
the extreme sparsity of observations therein. Second, an ar-
gument from introspection suggests that not all conditional
probabilities are equally easy to access as we would expect if
they were all calculated form the same joint distribution: e.g.,
p(m|x,c) (how much does yogurt cost at Safeway?) seems
intuitive while p(x|m,c) (what costs $5 at Safeway?) seems
to require an awkward explicit search. Third, by factoring
the joint distribution, a consumer can learn about the distri-
bution of goods and prices from observing the transactions
of others independently of tracking her own choices. Finally,
a fourth, practical, reason to factor the joint distribution in a
consumer choice model is that it makes it usable for predict-
ing consumption behavior; whereas a model based on the full
joint distribution would be inestimable to marketers who do
not have access to the full set of experiences of a particular
consumer.

Thus, to retain psychological plausibility, and practical us-
ability, we assume that individuals represent the important
elements of only some conditional and marginal probabili-
ties from the joint distribution of purchasing decisions, prod-
ucts, prices, and contexts. Specifically, we assume consumers
learn the following distributions from observations of the
world around them:

• p(c) - what contexts populate a consumer’s daily life?

• p(x|c) - what products are available in this context?

• p(m|x,c) - how much does this product cost in this context?

And from their own experience, they keep track of:

• p(b|m,x,c) - how often do I purchase a particular good in
a particular context, at a particular price?
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Consumer choices
These tracked conditional distributions can be combined via
the rules of probability to estimate the joint distribution over
consumption choices, products, prices and contexts; and thus
any conditional distribution of interest. Of particular inter-
est in our case are the conditional distributions that observers
must use to make consumer decisions:

• p(b|x) - do I want to buy product x? (preference)

• p(m|b,x) - what price am I willing to pay to buy x? (valu-
ation)

• p(b|m,x) - how does willingness to buy change with price?
(demand curve)

• p(b|c) - will I make a purchase in a given context?

• p(c|b,x) - if I am going to buy x, in which context will I do
so? (brand/retailer selection)

Each of these distributions capturing key aspects of con-
sumer behavior can be predicted by marginalizing and con-
ditioning the joint distribution obtained via p(b,m,x,c) =
p(b|m,x,c)p(m|x,c)p(x|c)p(c).

On our account, consumers determine their propensity
for buying particular goods using accumulated evidence of
previous purchases:

p(b|x̂) = ∑c,m p(b|m, x̂,c)p(m|x̂,c)p(x̂|c)p(c)

∑c,m p(m|x̂,c)p(x̂|c)p(c)
. (1)

What is more interesting to a firm, though, is finding the
greatest price a consumer would be willing to pay to purchase
a product. Prior research has suggested that people typically
generate a range of prices that they would be willing to pay
for a product (Mazumdar, Raj, & Sinha, 2005). We formalize
this intuition by casting this as a distribution over possible
prices,

p(m|b = 1, x̂) =
∑c p(b = 1|m, x̂,c)p(m|x̂,c)p(x̂|c)p(c)

∑c,m p(b = 1|m, x̂,c)p(m|x̂,c)p(x̂|c)p(c)
,

(2)
which directly gives us the distribution of prices at which con-
sumers are willing to purchase a good.

With only a slight reformulation, this yields the relation-
ship needed to obtain classical demand curves: purchase
propensity as a function of price:

p(b|m=ma, x̂)=
∑c p(b|m = ma, x̂,c)p(m = ma|x̂,c)p(x̂|c)p(c)

∑c p(m = ma|x̂,c)p(x̂|c)p(c)
,

(3)
Of particular interest to a retailer, is the propensity of con-

sumers to purchase while in their store,

p(b|ĉ) = ∑x,m p(b|m,x, ĉ)p(m|x, ĉ)p(x|ĉ)p(ĉ)

∑x,m p(m|x, ĉ)p(x|ĉ)p(ĉ)
. (4)

Finally, brands and retailers alike are interested in the like-
lihood that a consumer will choose their store or brand when
making a purchase of a particular product:

p(c|b = 1, x̂) =
∑m p(b = 1|m, x̂,c)p(m|x̂,c)p(x̂|c)p(c)

∑c,m p(b = 1|m, x̂,c)p(m|x̂,c)p(x̂|c)p(c)
.

(5)
Critically, each of these key facets of consumer choice and

behavior will change in predictable ways under various mar-
keting interventions designed to alter the conditional distribu-
tions that consumers keep track of. Thus, this formal setup,
while sparse, allows us to test the influence of manipulating
prices and context information on consumer demand curves.

Model predictions
To substantiate our intuitions about marketing-based distor-
tions of consumer preferences, we simulated a small test mar-
ket, containing three purchase contexts, two goods, and five
price labels where a consumer’s purchases were generated
via the following generative model. A purchase context was
sampled from a random seed distribution p(c), a product was
sampled from a discrete random seed probability p(x|c) for
this context, a price label was sampled from a random seed
probability p(m|x,c) for the already sampled tuple {x,c}. Fi-
nally, this observation was flagged as a purchase decision
with a small probability (p = 0.2), and within the samples
thus flagged, purchase decisions were randomly generated
while maintaining an inverse relationship with price.

Using this generative procedure, we sampled 10000 events
to obtain baseline empirical estimates for each of the con-
ditional distributions implicated in our account. The exper-
imental results we report in succeeding sections were con-
structed by appending this baseline event history with manip-
ulated event sequences corresponding to various marketing
interventions.

Rationalizing product-brand associations
The most obvious form of marketing is advertising by dis-
playing the product and its associated brand. This form of
advertising could be rationalized as providing information
to potential consumers. It is harder to make a similar ar-
gument for event sponsorships and brand awareness cam-
paigns, wherein companies advertise only brands, not prod-
ucts. What rational purpose is served by simply presenting
the company’s logo to a consumer, disconnected from prod-
uct information? Also, why belabor people with redundant
and uninformative visuals over and over again? Surely once
or a couple of occasions would be enough to convey any in-
formation? Why are “tip of tongue” (Mowen & Gaeth, 1992)
and brand recognition metrics (Munoz & Kumar, 2004) so
popular, influential, and desirable? The answer, of course, is
that firms aim to increase the rate at which consumers think
of their brand. But why would increasing the ease with which
consumers think about the brand change consumer purchas-
ing decisions?
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Figure 1: (Left) The effects of increasing the baserate of a particular brand context (p(c)) via advertising without aiming to
associate the brand with particular products: Increasing the baserate of c increases how often observers would choose brand
c when they are buying something (p(c|b)), but does not increase their propensity to purchase given exposure to the brand
(p(b|c)). (Middle) In contrast, if increased brand exposure coincides with increasing the association of that brand with desirable
goods (p(x|c)), consumers will also be more likely to purchase goods given that brand (p(b|c) increases). (Right) This increase
in propensity to purchase goods by brand c coincides with an increment in the marginal demand curve for brand c: p(b|m,c) is
elevated after such targeted promotions.

On our account, changing brand recall and recognition
amounts to changing the context probability p(c) for that
brand (Figure 1 left). The immediate effect of increasing
brand recognition and recall is an increase in p(c|b,x): given
that a consumer has decided to buy a product, which brand
will she choose? So long as the brand is associated strongly
with products a particular product x (p(x|c)) an increase in
p(c) will yield an increase in p(c|b,x); in other words con-
sumers will be more likely to choose brand c when asking
themselves “I want to buy an x, which brand/retailer should I
choose?”.

However, our model also predicts that simply increasing
p(c) will have no effect on the consumers’ eagerness to buy
its specific products p(b|x) or increase their eagerness to buy
the brand p(b|c). Our account suggests one immediate strat-
egy for increasing consumers’ eagerness to buy the brand:
selectively increasing p(x|c) for xs with high p(b|x) – in
other words, strategically associating the brand with desir-
able goods. If the advertising that increases p(c) also strate-
gically increases p(x|c) in this manner, then not only are con-
sumers more likely to choose brand c when making a pur-
chase (p(c|b)), but they will overall be more likely to pur-
chase the brand (p(b|c)). Moreover, this increase in propen-
sity to buy the brand yields a uniform increase to the demand
curve for the brand (p(b|m,c); Figure 1 right), showing just
how effective a carefully selected increase in brand-product
association can be.

Another interesting theoretical prediction from our model
concerns the overuse of promotions presenting that brand
without an associated product; this may be counterproduc-
tive as it might result in product-brand delinking. This could
occur if, for instance, a company overemphasizes event spon-
sorships over product ads, such that the linking probability
p(x|c) is diluted by frequent observations of brand c without

associated products x. Since such dilution will be accompa-
nied by p(c) gains, this will be a risk primarily for already
familiar brands, for which p(c) improvements are showing
diminishing returns. In such situations consumers will show
high brand awareness p(c), but this will not translate into
changes in consumption behavior p(b|c).

This account also reaffirms other important elements of
brand competition. In particular, it emphasizes product dif-
ferentiation (Dickson & Ginter, 1987), frequently cited as one
of the major causes of ad campaign failures. If the prod-
uct (x) that a brand is associated with is considered to be
a unique entity (e.g., ”a Diet Coke”) rather than a generic
category (e.g., ”a diet cola beverage”), then the gains of in-
creased brand recognition will translate directly to increased
demand for that brand’s product. However, when a market
is over-crowded, product differentiation becomes harder and
costlier, thus gains in p(c) will be lost because p(x|c) does
not adequately pick out the product of that particular brand,
thereby reducing the potential gains from a higher p(c). Fur-
thermore, this account emphasizes the arms race nature of
branding campaigns – the advantage is determined by relative
frequency, rather than absolute frequency of brand exposure,
which naturally imposes barriers to entry in existing competi-
tive markets, as suggested previously by (Schmalensee, 1982)
using empirical data.

Rationalizing loss-leader strategies

Classically, the economic tension between the retailer and
consumers’ incentives maintains a price equilibrium. One po-
tential advantage for the retailer is the relatively high costs of
searching for low prices for every product, which motivates
consumers to generalize about price (dis)advantages of retail-
ers in aggregate, rather than for isolated products. Thus, in-
sofar as consumers use aggregate price advantages to predict
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Table 1: Predicted direction of effect of various marketing strategies on distributions stored by consumers. Direction of arrow
shows whether effect is predicted to be positive (⇑) or negative (⇓) from the marketer’s perspective. Citations given present
evidence favoring the predicted direction.Arrows in both directions represent ambiguity about the effect of the intervention.

Strategies p(b|x,m,c) p(m|x,c) p(x|c) p(c)
Event sponsorships - (Dean, 1999) - ⇓ ⇑ (Mazodier & Rezaee, 2013)

Advertisements ⇑⇓ - ⇑ (Simon & Sullivan, 1993) ⇑ (Simon & Sullivan, 1993)
Endorsements ⇑ (Dean, 1999) - ⇑ (Dean, 1999) ⇑ (Dean, 1999)

Product placement - - ⇑ (Morton & Friedman, 2002) ⇑ (Morton & Friedman, 2002)
Sales/discounts - ⇑ (Kalwani & Yim, 1992) - -

Cash back - - ⇑ ⇑
Promotions - - ⇑⇓ ⇑

prices for new products, there is an opportunity to offer some
carefully chosen products at a discount, and thus distort the
aggregate inference: p(m|c) = ∑x p(m|x,c)p(x|c).

Specifically, by choosing to offer price reductions on
salient products (high p(x|c)), promoters can skew the con-
sumers’ estimates of the overall priciness of brand c. Figure
2A-B shows this strategy in action. Reducing prices on highly
observed items reduces observers’ estimates of how pricy a
particular retail outlet might be p(m|c) which informs their
propensity to make purchases in such contexts p(b|c).

Although exploiting salient products to distort consumers’
estimates of overall price tendencies may seem exotic, it is not
original to this paper. Amazon adopts this very policy by un-
dercutting competitors on their most popular products, while
increasing prices on less salient goods (Del Rey, 2015). This
strategy makes perfect sense under our account: with a keen
enough understanding of p(x|c) (which we expect Amazon’s
Big Data provides) it may even be possible to increase overall
prices while simultaneously decreasing consumers’ estimates
of the prices offered by the brand.

Rationalizing money-losing brand extensions
The principal way in which manufacturers can benefit from
brand ‘equity’ is by extending the repertoire of products as-
sociated with it. The problem lies in the possibility of dilution
of the brand’s association with individual products by virtue
of exposure alongside multiple products. In the simple ac-
count of brand extensions, manufacturers bring new products
to market to increase profits at the expense of brand equity.
Our analysis, however, reveals the possibility of an inversion
of this basic process - a manufacturer could potentially im-
prove brand equity by bringing a low-priced new product to
market - trading off profits (or even losses) for brand equity.

In this situation, a company would manufacture a new
product that sells for low prices at high volumes, and is in-
delibly associated with the company’s brand. Such a sce-
nario would most likely play out for companies whose pri-
mary products are big-ticket, low volume items, e.g. cars,
vacations etc, and that are looking to improve their visibility.
Availabilty of the product at sufficiently low prices will raise

p(b|x,m,c), which will in turn increase not just p(b|x) for this
low-price and likely low margin product, but also p(b|c) and
p(c|b), thus increasing brand equity at fairly low cost.

To test this possibility, we added exposure to a new good
specific to a particular context to the baseline event history
in our simulation, available at the bottom two price labels
in a ‘cheap’ condition and at the top two price labels in a
‘pricey’ condition. We measured gain in brand equity as rel-
ative change in p(r|c) from that measured in the baseline
condition for this context. Figure 2C, which plots the rel-
ative gain in p(r|c) for 100 model simulations from differ-
ent initializations, shows how brand equity improves through
adding a loss-leader, and drops through adding a relatively
expensive product to the product line. The latter is more prof-
itable, so this simulation demonstrates the existence of a com-
petitive tension between brand equity and capital - companies
could potentially trade one off against the other sequentially,
modulo diminishing returns from product-line overcrowding.

Conclusion
Beginning with the intuition that marketing strategies influ-
ence consumers’ preference formation processes via associa-
tive influences within the preference construction process, we
have created a theory of consumer preference formation that
is grounded strongly in observable correlates for marketing
variables. With a series of computational experiments, we
have substantiated various predictions that this model makes
about the impact of both existing and novel marketing strate-
gies, thus rationalizing several lines of consumer research
findings via a simple inductive explanation of how consump-
tion preferences are formed. The model opens up a large
space of possible experiments testing the effect of each of the
variables we have defined on consumer behavior. Table 1 sug-
gests a number of directional hypotheses derived within our
framework. We expect the strong observability of our model,
in combination with its novel predictions, will benefit both
theory and practice of marketing and consumer research, par-
ticularly in online retail settings, where the conditional distri-
butions implicated in our account are easy to access.
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Figure 2: Predictions for advanced and speculative marketing strategies (Left) Flooding retail displays with cheap or discounted
goods reduces observers’ internal estimates of the price distribution p(m|c), (middle) which promotes their propensity to make
purchases in the retailer’s chosen context. (Right) Similarly, the introduction of a cheap brand extension to the market can result
in an increase in p(b|c) – a measure of brand equity. All changes are measured from baselines estimated on the initial event
history. Histograms show results for 100 simulations each.
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Abstract 

Spatial language is often used metaphorically to describe 
other domains, including time (a long sound) and pitch (a 
high sound). How does experience with these metaphors 
shape the associations we make across disparate domains? 
Here, we tested 3- to 6-year-old English-speaking children 
and adults with a cross-domain matching task that assessed 
space-time and space-pitch mappings. We tested spatial 
relations that are expressed in English metaphors for time and 
pitch, as well as metaphors that are unfamiliar to English 
speakers, but expressed in other languages. Participants 
performed a perceptual matching task, in which they matched 
pictures and sounds, and a linguistic matching task, in which 
they matched pictures or sounds to verbal labels. Adults 
readily matched between space and time and between space 
and pitch, using relations expressed by both familiar and 
unfamiliar metaphors. Children showed an advantage for 
linguistic matching compared to perceptual matching, but 
their performance was similarly unaffected by metaphor 
familiarity. Together, these results suggest that spatial 
language promotes the development of cross-domain 
associations, and that experience with particular spatial 
metaphors is not required to produce this benefit. 

Keywords: metaphor theory; linguistic relativity; cross-
modal matching 

Introduction 

Across languages and cultures, spatial language is 

frequently co-opted to describe other domains. In English, 

for example, we describe temporal duration as long or short, 

numbers as big or small, and auditory pitch as high or low. 

What can the prevalence of these spatial metaphors tell us 

about how we represent and reason about these other non-

spatial domains? Previous work has demonstrated that 

spatial metaphors are not simply a communicative tool. 

Instead, they reflect our mental representations of non-

spatial domains (Boroditsky, 2001; Casasanto & 

Boroditsky, 2008; Dolscheid, Shayan, Majid, & Casasanto, 

2013). Here, we test how experience with spatial metaphors 

over development influences children’s cross-domain 

associations.  

Although spatial metaphors are common across 

languages, there is also variety in the exact spatial relations 

invoked. This cross-linguistic variation can be used to test 

hypotheses about the role of linguistic experience in the 

development of cross-domain associations. For example, in 

English, temporal durations are described in terms of two-

dimensional length, whereas languages including Greek and 

Spanish use three-dimensional spatial terms. Likewise, 

though English describes pitch in terms of height, languages 

including Turkish and Farsi use terms related to thickness 

(i.e., such that thicker sounds are lower in pitch). 

Linguistic experience is not required to recognize cross-

domain associations. Many studies have demonstrated that 

prelinguistic infants are already sensitive to many types of 

these correspondences (de Hevia & Spelke, 2010; Lourenco 

& Longo, 2010; Mondloch & Maurer, 2004; Srinivasan & 

Carey, 2010; Walker et al., 2010). Even neonates, for 

example, associate longer spatial lengths with longer 

temporal durations and larger numerical magnitudes (de 

Hevia, Izard, Coubart, Spelke, & Streri, 2014). With regards 

to associations between pitch and space, infants appear to 

recognize both height-pitch and thickness-pitch mappings, 

even when only one of these associations is encoded in the 

language they are learning (Dolscheid, Hunnius, Casasanto, 

& Majid, 2014; Walker et al., 2010; but see Lewkowicz & 

Minar, 2014).  

However, according to one recent study, young children 

may be less flexible than infants (Shayan, Ozturk, & 

Bowerman, 2014). This study investigated thickness-pitch 
mappings in 2- to 5-year-old children who spoke either 

German, Farsi, or Turkish, and found that while Turkish and 

Farsi speaking children (who speak languages that employ a 

thickness metaphor for pitch) can reliably map thickness to 

pitch, German-speaking children (who speak a language that 

does not employ a thickness-pitch metaphor) cannot. This 

finding suggests that maintenance of cross-domain 

associations between space and pitch may be dependent on 

the type of metaphorical mappings reinforced by language, 

at least during childhood.  

In explicit matching tasks, adults appear to be more 

flexible than children. Adults can match pitch to both 

thickness and height, for example, and more generally can 

form mappings across innumerable domains, regardless of 

whether their language employs the relevant metaphors 

(Marks, 1978; Shayan et al., 2014) However, experience 

with linguistic metaphors does appear to influence the 

automaticity with which cross-domain associations are 

processed in adults. In one study, adult speakers of Dutch 

readily matched pitch to thickness in an explicit task, but 

their representations of pitch were only biased by irrelevant 

spatial height information and not by irrelevant thickness 

information (Dolscheid et al., 2013). This suggests that 

Dutch-speaking adults automatically process a height-pitch 

mapping but not a thickness-pitch mapping. The reverse 

pattern of results – a biasing effect of thickness but not 

height on pitch representations – occurs for Farsi speakers, 

consistent with the idea that experience with language-

specific spatial metaphors influences the automaticity with 

which cross-domain associations are accessed. A parallel 

pattern of results for the case of space-time mappings has 

been reported from English and Greek-speaking adults. In 
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this study, temporal duration judgments in English-speaking 

adults were biased by only irrelevant variation in spatial 

length (and not irrelevant volumetric information), and 

duration judgments in Greek-speaking adults were biased 

only by irrelevant volumetric information (and not irrelevant 

spatial length; Casasanto, 2008).  

In sum, prior research suggests that experience with one’s 

own language’s spatial metaphors affects children’s explicit 

cross-domain associations, as well as adults’ implicit cross-

domain associations. This suggests that experience with 

spatial metaphors may have a persistent influence on cross-

domain associations throughout the lifespan. Here, we 

expand on previous studies of the development of cross-

domain associations by testing both space-time and space-

pitch associations, and by directly comparing the effects of 

familiar versus novel metaphors in the same population. In 

addition, we test a large number of children between the 

ages of three and six years to gain insight into the fine-

grained developmental trajectory of cross-domain 

associations.  We test how children’s experience with spatial 

metaphors influences their cross-domain associations by 

focusing on three critical factors.  

First, we contrast cross-domain associations between 

space and time compared to associations between space and 

pitch. We focus on associations with time and pitch because 

while both time and pitch are frequently described using 

spatial language, they have different dimensional structures. 

Time, like spatial extent, is a prothetic dimension, meaning 

that it can be represented by an ordered continuum of 

increasing amount (Stevens, 1957). Differences in temporal 

duration and spatial extent are therefore quantitative. Pitch, 

on the other hand, is a metathetic dimension, meaning that 

differences in pitch are qualitative – pitches vary in 

frequency rather than amount. Therefore, it is possible that 

the shared ordinal structure of space and time may provide a 

specific advantage for cross-domain space-time mappings 

that does not extend to space-pitch mappings. 

Second, we investigate the effect of experience with 

specific spatial metaphors by testing whether English-

speaking children are better able to match domains in ways 

that reflect familiar spatial metaphors compared to 

unfamiliar metaphors. For time, we compared children’s 

ability to map between sounds that varied in temporal 

durations and images that varied in either length (long vs. 

short; familiar relation) or in overall size (big vs. small; 

unfamiliar relation). For pitch, we compared children’s 

ability to map between sounds that varied in auditory pitch 

and images that varied in either height (high vs. low; 

familiar relation) or thickness (thin vs. thick; unfamiliar 

relation). If experience with specific spatial metaphors 

constrains children’s cross-domain associations, then 

matching performance should be higher for the familiar 

relations compared to the unfamiliar relations. In addition, 

the difference in performance between familiar and 

unfamiliar relations may increase with age, as children gain 

more experience with their language-specific spatial 

metaphors. 

Finally, we probe whether children are better at matching 

across domains when the spatial metaphors are verbally 

labeled – even when the metaphors are unfamiliar – 

compared to when the task is purely perceptual. Previous 

research suggests that verbal labels may help children 

organize their representations of perceptual domains by 

providing cues as to how to align the endpoints of disparate 

domains (Smith & Sera, 1992). For example, if children 

understand that the word long in a spatial context refers to 

greater spatial extent, this may provide a cue for 

understanding that long in a temporal context refers to a 

greater temporal duration. Therefore, children’s non-

linguistic ability to successfully map across domains (as 

measured by a perceptual matching task) may be enhanced 

by the presence of verbal spatial labels (as measured by a 

linguistic matching task).  

Methods 

Participants 

80 children aged 3 to 6 years (mean age: 4.89 years, range: 

3.13-6.98 years) and 16 adults (mean age: 21.25 years, 

range: 18.63-27.59 years) participated in this study. All 

participants were native English language speakers who 

were not regularly exposed to or fluent in a second 

language. Data from an additional 17 children and 6 adults 

were excluded from analyses due to proficiency with 

another language (9 children, 5 adults), failure to complete 

the experiment (5 children), inattention (3 children), or 

performance more than 3 standard deviations below the 

group mean (1 adult).  

Materials 

Spatial stimuli consisted of pictures of cartoon aliens that 

varied in length (familiar space-time metaphor), overall size 

(unfamiliar space-time metaphor), vertical position (familiar 

space-pitch metaphor), or thickness (unfamiliar space-pitch 

metaphor). Temporal stimuli consisted of monotonic tones 

that varied in either duration or auditory pitch. Tones that 

varied in duration had a constant pitch of 384 Hz and were 

either 1 second or 3 seconds in length. Tones that varied in 

pitch had a constant duration of 2 seconds and a pitch of 

either 256 Hz or 512 Hz. All stimuli were presented using a 

laptop computer. 

Procedure 

Participants’ cross-domain matching ability was tested for 

both space-time and space-pitch pairings. Adult participants 

completed both the familiar (long/short for space-time and 

high/low for space-pitch) and unfamiliar (big/small for 

space-time and thin/thick for space-pitch) pairings. The 

order of the space-time and space-pitch blocks was 

counterbalanced across subjects, and the unfamiliar pairing 

always preceded the familiar pairing within each block. 

Child participants completed one block of space-time 

pairings and one block of space-pitch pairings, with the 
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order of the blocks and assignment to the familiar versus 

unfamiliar pairings counterbalanced across participants.  

All experimental sessions began with the familiarization 

trials. At the beginning of each block, participants were first 

shown pictures of both relevant aliens and listened to both 

types of sounds. Within each block, the perceptual matching 

task always preceded the linguistic matching task so as to 

not bias participants’ responses. Adults performed 8 trials of 

each task type, and children performed 4 trials of each task 

type. 

Familiarization Trials 

The familiarization trials were designed to have the same 

structure as the test trials and involved matching pictures of 

animals to the appropriate sounds. In the first two trials, two 

animals were displayed on the screen. An animal sound was 

then played, and the participant was instructed to point to 

the animal that makes that sound. In the second two trials, 

one animal appeared centrally on the screen in front of two 

trees. The participant was told that the animal was looking 

for another animal just like it that was hiding in the jungle. 

The experimenter said that the animal was hiding behind 

one of the trees, and played a sound from each tree. The 

participant was instructed to point to the side where the 

animal sound that matched the visible animal was heard. 

Test Trials 

Perceptual Matching Task In the perceptual matching 

task, participants matched pictures of aliens to the types of 

sounds they make. Critically, in these trials verbal labels 

were never used to describe the stimuli. There were two trial 

types: space as source (the referent is a spatial dimension 

and participants chose the sound that matched in pitch or 

duration) or space as target (the referent is a sound that 

varies in pitch or duration and participants chose the alien 

with a matching spatial attribute). For the space as source 

trials, a single alien was presented in front of two trees and 

the experimenter said that the alien was looking for another 

alien just like it. The experimenter said that the alien could 

be hiding behind either tree, and pointed to each tree as the 

sound of the alien hiding behind it was played. The 

participant was asked to point to the tree that had an alien 

behind it that was just like the visible alien. For the space as 

target trials, two aliens were presented on the screen and a 

single sound was played. The participant was instructed to 

choose which of the aliens is the one that makes that sound. 

 

Linguistic Matching Task In the linguistic matching task, 

a verbal label was used to describe either the appearance of 

an alien or the type of sound made by an alien, and the 

participant matched this label to one of two exemplars in the 

opposite dimension. In the space as source trials, the spatial 

dimension was described and participants chose one of two 

auditory matches (e.g., the participant is told that a long 

alien is looking for another long alien just like it, and the 

long alien is hiding behind one of two trees; the two sounds 

are played and the participant chooses the sound that a long 

alien makes). In the space as target trials, the type of sound 

was described and participants chose which of two visually 

presented aliens makes that type of sound (e.g., the 

experimenter asks the participant which of two aliens makes 

a long sound).  

Results 

Accuracy for all matches was scored as correct if the match 

was in the direction reflected by spatial metaphors in 

language (e.g., matching the long or big alien to the long 

tone and the short or small alien to the short tone). 

Children’s performance was analyzed using a repeated 

measures ANOVA with match type (perceptual or 

linguistic) and match direction (space as source or space as 

target) as within-subjects factors and dimension (space-time 

or space-pitch), familiarity (familiar or unfamiliar), and age 

as between-subjects factors. This model yielded a 

significant main effect of age (F(3, 144) = 5.35, p < .005; 

Figure 1A) and a significant main effect of match type (F(1, 

144) = 17.14, p < .001; Figure 1B). Interestingly, neither the 

main effect of dimension nor familiarity was significant, 

indicating that overall children were equally proficient at 

matching across space and time compared to space and 

pitch, and they performed just as well for spatial relations 

employed by English-language metaphors compared to 

unfamiliar space relations.  

 

 
Figure 1: Children's cross-domain matching performance by 

age group (A) and by match type (B). Error bars indicate 

SEM. 

 

Planned post-hoc comparisons revealed that 3-year-olds 

performed worse than the older age groups, all of whom 

performed at similar levels (3-year-olds: M = 54.08, SEM = 

2.67; 4-year-olds: M = 70.24, SEM = 2.68; 5-year-olds: M = 

72.70, SEM = 3.16, 6-year-olds = 73.9, SEM = 3.42; all ts 

for 3-year-olds vs. older children > 3.9, ps < .001; all ts 

between 4-, 5-, and 6-year-olds < .7, ps > .5). In addition, 

performance was better for the linguistic matching trials 

compared to the perceptual matching trials (linguistic 

matching: 72.34, SEM: 2.09; perceptual matching: 61.56, 

SEM: 2.13, t = 3.12, p = .002). 

This analysis also revealed a significant interaction 

between match type and match direction (F(1, 144) = 5.17, 
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p < .05) and significant three-way interactions between age, 

match direction, and match type (F(3, 144) = 3.62, p < .05), 

and between age, match direction, and familiarity (F(3, 144) 

= 3.12, p < .05). We analyzed the three-way interaction 

between age, match direction, and match type with separate 

ANOVAs for the linguistic and perceptual match trials 

(Figure 2). For the linguistic matching trials, the effects of 

both age and match direction were significant (Fs > 5.6, ps 

< .05). Overall, three-year-olds performed worse than older 

children, and performance was higher when space was the 

target dimension compared to the when space was the 

source dimension. For the perceptual matching trials, the 

main effect of age and the interaction between age and 

match direction were significant (Fs > 2.8, ps < .05), 

indicating that older children outperformed younger 

children, and particularly so when space was the target 

dimension. 

We analyzed the three-way interaction between age, 

match direction, and familiarity with separate ANOVAs for 

familiar versus unfamiliar metaphors (Figure 3). For 

familiar metaphors, there was a significant main effect of 

age and a significant interaction between age and match 

direction (Fs > 3.6, ps < .05), indicating that older children 

performed better than younger children, and the age effect 

was particularly pronounced when space was the source 

dimensions. For unfamiliar metaphor trials, there were no 

significant main effects, but the interaction between age and 

match direction was significant (F(3, 54) = 3.11, p < .05), 

suggesting that the effect of age was more pronounced when 

space was the target dimension. 

Adults’ performance across all conditions was near 

ceiling (mean = 96.19, SEM = .51). Performance was 

analyzed using a repeated measures ANOVA with 

dimension (space-time or space-pitch), familiarity (familiar 

or unfamiliar), match type (perceptual or linguistic) and 

match direction (space as source or space as target) as  

within-subject factors. This analysis revealed no significant 

effects (Fs < 2.2, ps > .16), nor any significant interactions 

(Fs < 3.1, ps > .1). Therefore, adults performed equally well 

in all conditions. 

General Discussion 

The present work explored cross-domain associations 

between space and time and between space and pitch, and 

the role that experience with spatial metaphors may play in 

shaping these representations. English-speaking children 

Figure 2: Children’s matching performance on the linguistic and perceptual matching tasks, 

grouped by age and match direction. Error bars indicate SEM. 

 

Figure 3. Children’s matching performance for familiar and unfamiliar metaphors, grouped 

by age and match direction. Error bars indicate SEM. 
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and adults performed perceptual and linguistic cross-domain 

matching tasks for pairs of stimuli that varied in spatial 

extent and either temporal duration or auditory pitch. For 

both types of cross-domain pairings, we assessed matching 

performance for pairs that reflected familiar English-

language spatial metaphors (length for time, height for 

pitch) or that reflected novel spatial metaphors not used in 

English  (size for time, thickness for pitch). Consistent with 

previous work (e.g., Marks, 1978; Shayan et al., 2014), we 

found that adults readily matched time and pitch to both 

familiar and unfamiliar spatial attributes. Children’s 

matching performance, however, revealed a nuanced 

developmental trajectory for these cross-domain 

associations, which we describe below.  

Most notably, children’s cross-domain matching 

performance was better for the linguistic matching task 

compared to the perceptual matching task. In the linguistic 

task, participants were provided with a verbal label that 

described a stimulus in terms of its spatial attributes, 

auditory pitch, or temporal duration, and needed to choose 

an exemplar from the other domain to match it. By 

comparison, in the perceptual matching task, participants 

matched the exemplars in the absence of a verbal label. This 

suggests that the presence of a verbal label conferred an 

advantage for cross-domain matching above and beyond 

matching the exemplars themselves.  

Strikingly, we found that the verbal label provided an 

advantage even when it labeled a spatial relation not 

employed by English-language metaphors. In contrast to 

previous work (Shayan et al., 2014; but see Dolscheid, 

Hunnius, & Majid, 2015), we found no significant effect of 

metaphor familiarity on children’s matching performance. 

Children were equally proficient at matching spatial 

relations across domains that reflected both familiar and 

novel metaphors. Although English-speaking children 

presumably have little experience with thickness metaphors 

for pitch, they matched thickness onto pitch just as readily 

as they matched vertical height onto pitch. Likewise, they 

matched overall size onto duration just as readily as they 

matched spatial length onto duration. Given that previous 

findings have provided mixed results as to whether 

familiarity with specific spatial metaphors is required for 

children’s success in space-pitch matching tasks, it is 

unclear whether these contrasting outcomes should be 

ascribed to differences in procedure or population. In 

addition, familiarity in the present experiment was defined 

based on the presence or absence of specific spatial 

metaphors in the English language. Therefore, it is possible 

that individual differences in children’s experience with 

these metaphors may influence their matching performance. 

Regardless, the present results suggest that young children, 

like infants and adults, can flexibly map abstract domains 

onto multiple spatial reference frames. We also found no 

significant effect of dimension on children’s mapping 

performance, which indicates that the shared ordinal 

structure between space and time did not confer an 

advantage for mapping between these dimensions compared 

to mapping between space and pitch.  

We found that verbal labels were most likely to improve 

performance for the youngest children when space was the 

target domain. On these trials, children were presented with 

two aliens and were asked to choose which one made a 

labeled sound (e.g., which alien makes a thick sound). 

Therefore, to match correctly, children could simply choose 

the alien whose visual appearance matched the label (e.g., a 

thick alien), without needing to represent the labeled sound 

(e.g., a thick sound). These were the trials on which three-

year-olds performed the best, suggesting that understanding 

the spatial meaning of these words precedes understanding 

of the metaphorical meaning. Indeed, with regards to spatial 

metaphors for time, children typically produce the spatial 

meaning of the word earlier than the temporal meaning 

(Clark, 1973). However, for older children the performance 

benefit for linguistic trials held both when space was the 

target domain and when space the source domain. 

Therefore, it was not solely the trials on which children 

could match a label to a spatial attribute that drive this effect 

because there was also improved performance when 

children mapped the label to a sound. Instead, it seems that 

the presence of labels themselves improves children’s cross-

domain matching performance. 

The finding that children perform better on the linguistic 

matching task compared to the perceptual matching task is 

consistent with previous work suggesting that language is a 

facilitating factor in the development of cross-domain 

associations. This work suggests that children may initially 

form mappings between the labels for two domains, such 

that the association between the labels then drives the 

perceptual mapping. For example, when forming an 

association between size and auditory volume, children may 

initially map the word big onto the word loud and the word 

small onto the word quiet, and this linguistic association 

may lead children to think of loud as being more than quiet 

and lead to an association between the perceptions of size 

and volume (Smith & Sera, 1992). This explanation can be 

logically extended to associations between space and time 

as well, with the common labels of long and short providing 

ordinal cues to children as to how to align and map these 

domains. However, it is less clear how this explanation 

applies to pitch, as the spatial metaphors used to describe 

pitch seemingly ascribe opposite ordinal anchors to the 

spectrum of pitch: both thick and low refer to low-frequency 

pitches, yet thick typically corresponds to more whereas low 

typically corresponds to less. Therefore, it seems that in the 

present task, labels must be providing an additional cue 

beyond an ordinal reference frame. 

Another advantage that labels may provide is by 

clarifying what is otherwise an ambiguous task. When 

children are initially mapping between the pictures and the 

sounds, they may not spontaneously focus on the spatial 

attributes that are varying. However, labeling a particular 

dimension likely makes that dimension more salient, thus 

clarifying the goal of the task. For example, when shown a 
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thick alien and asked which of two sounds that type of alien 

would make, children may not immediately recognize that 

they could consider the width of the alien when making 

their choice. However, when asked which of two sounds a 

thick alien makes, children may perceive thickness as a 

relevant attribute. Therefore, the act of labeling itself may 

provide an additional cue for mapping that is not present in 

the perceptual matching task.  

Although our results suggest that children’s matching 

performance increases with age, the largest change in 

performance occurred between ages three and four. Overall, 

three-year-olds performed at chance, whereas four-, five-, 

and six-year-olds all performed at similar levels above 

chance. From the present data it is difficult to determine 

whether this jump in performance reflects improvements in 

cross-domain mapping ability, or whether the demands of 

our matching task may be too taxing for three-year-olds. 

Given that cross-domain associations have been 

demonstrated in infants using more implicit tasks, additional 

work is needed to trace the development of these 

associations between infancy and early childhood. Further, 

the present study involved making explicit matches between 

domains. Although adults can form explicit mappings across 

a multitude of domains (Stevens, 1957), there are 

constraints on the types of cross-domain associations that 

occur implicitly (e.g., Casasanto, 2008; Dolscheid et al., 

2013; Srinivasan & Carey, 2010). Therefore, it remains an 

open question whether children spontaneously associate 

space and time and space and pitch, and whether experience 

with particular spatial metaphors may influence the 

automaticity with which these associations are accessed. 

Reaction time measures may be useful for addressing this 

question, because implicit matching processes should 

proceed more rapidly than explicit matching processes. 

Taken together, these findings suggest that spatial 

language promotes cross-domain associations in early 

childhood. Critically, this process appears to be equally 

accessible for spatial metaphors that are both familiar and 

novel, suggesting that experience with specific spatial 

metaphors is not necessary for forming these associations. 

Instead, spatial language may promote the perceptual 

organization of other domains by providing a reference 

frame for aligning these domains, as well as by highlighting 

relevant spatial attributes.  
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Abstract

Causal queries about singular cases are ubiquitous, yet the
question of how we assess whether a particular outcome was
actually caused by a specific potential cause turns out to be
difficult to answer. Relying on the causal power approach,
Cheng and Novick (2005) proposed a model of causal attribu-
tion intended to help answering this question. We challenge
this model, both conceptually and empirically. The central
problem of this model is that it treats the presence of sufficient
causes as necessarily causal in singular causation, and thus ne-
glects that causes can be preempted in their efficacy. Also, the
model does not take into account that reasoners incorporate
uncertainty about the underlying causal structure and strength
of causes when making causal inferences. We propose a new
measure of causal attribution and embed it into our structure in-
duction model of singular causation (SISC). Two experiments
support the model.

Keywords: singular causation; causal attribution; preemption;
causal reasoning; Bayesian modeling; computational modeling

Introduction
Most people hold the belief that smoking causes lung can-

cer. Now, imagine that you learn that Peter, a passionate
smoker, has contracted lung cancer. How strongly would you
be willing to say that it was Peter’s smoking that was causally
responsible for his disease?

This example illustrates a scenario in which we seek an an-
swer to a causal query about a singular case. Queries about
singular causation are prevalent in everyday life and profes-
sional contexts, such as the law or medicine. How do peo-
ple derive causal judgments about singular cases? Of course,
the mere fact that two factors C and E are generally causally
connected (e.g., smoking often causing lung cancer) does not
necessarily imply that a singular or token co-occurrence of
these events (e.g., Peter’s smoking and his lung cancer) man-
ifests a causal relationship – a singular co-occurrence might
be a mere coincidence. On the other hand, as causality is not
directly observable in the world, to what else than our general
causal knowledge could we turn to obtain answers?

We are going to present a theory that builds on the idea, first
formalized by Cheng and Novick (2005), that the notion of
unobservable causal powers (Cheng, 1997) plays an essential
role in singular causation judgments. Yet, we will demon-
strate that Cheng and Novick’s (2005) power PC model of
causal attribution (CN model) makes assumptions that are
not always plausible. Generally, the CN model is intended
to provide a normative answer to the question how we can
determine whether an observed outcome was actually caused
by a potential cause factor. For example, for cases like the one
above about Peter in which a potential cause c and an effect
e have been observed, the CN model delivers the probability

P(c→ e|c,e) with the arrow denoting a causal relation. We
argue that the key problem of the model is that it treats target
causes as singular causes whenever they are sufficient for the
effect in a specific situation. This appears to be at first sight
a reasonable assumption, yet it ignores that the exact points
in time at which different causes exert their powers play an
important role in singular causation judgments (see Danks,
2017): crucially, sufficient causal powers can be preempted
by others, and in such cases they should not be held causally
responsible for the occurrence of the outcome. We will argue
that preemption of causes by background factors frequently
occurs in singular causation scenarios, and therefore presents
a problem for the CN model.

Another problem of the CN model is that it does not take
into account uncertainty about both the underlying causal
structure and the causal parameters (e.g., the size of the causal
powers). To incorporate uncertainty about the causal parame-
ters, Holyoak, Lee, and Lu (2010) have proposed a Bayesian
version of the CN model that uses probability distributions
over the parameters instead of point estimates. However, their
model also neglects uncertainty about the underlying causal
structure. Both sources of uncertainty have been demon-
strated to influence causal learning and reasoning (Griffiths &
Tenenbaum, 2005; Meder, Mayrhofer, & Waldmann, 2014).
For this reason, Stephan and Waldmann (2016) proposed the
structure induction model of singular causation (SISC) that
incorporates both types of uncertainty. Although three exper-
iments (Stephan & Waldmann, 2016) showed that SISC better
accounted for the results than the standard power PC model
of causal attribution, one shortcoming of the initial version
of SISC was that it used the CN conceptualization of causal
attribution that we are going to criticize in the present paper.

We will start with a theoretical section in which we defend
a new measure of causal attribution as a component of SISC
that is sensitive to preemption. We then present the results
of two experiments. Experiment 1a confirmed that singular
causation judgments deviate systematically from the predic-
tions of the CN model in line with our revised causal attribu-
tion equation. Experiment 1b assessed participants’ notion of
preemption. In Experiment 2 we used a larger set of contin-
gencies to compare the revised SISC with the CN and other
models. The results of this experiment showed that both a re-
vision of the causal attribution equation and the consideration
of statistical uncertainty are crucial to explain the findings.

The Power PC Model of Causal Attribution
According to Cheng’s (1997) power PC theory, causal

power (or causal strength) is a hypothetical, unobservable en-
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tity that represents the strength of causes. Mathematically,
causal power is (in the generative case) expressed as the prob-
ability with which a target cause brings about its effect in a
hypothetical world in which all alternative observed and un-
observed causes of the effect are absent. Because of the pos-
sibility of unobserved alternative causes, causal power can-
not be assessed directly but must be inferred based on the
observed covariation and background assumptions. For gen-
erative causes, the following equation can be used to estimate
the causal power wc of a target cause C:

wc =
P(e|c)−P(e|¬c)

1−P(e|¬c)
=

∆P
1−wa

(1)

In this equation, wa represents the aggregate causal power
of all alternative causes A of the effect, which are assumed to
exert their influence independently of C.

Under the causal Bayes net framework, the causal power of
C, wc, corresponds to the probabilistic weight of the causal ar-
row that connects C with its effect E in a common effect struc-
ture in which the target cause C and the alternative causes A
combine in a noisy-OR gate (see S1 in Figure 2). Likewise,
wa corresponds to the weight of node A.

The CN Measure of Causal Attribution
Cheng and Novick (2005) proposed several measures of

causal attribution that apply to different cases. The mea-
sure of causal attribution for cases in which both c and e are
present, as in the example above about Peter, utilizes the con-
cept of causal power in the following way to deliver the con-
ditional probability P(c → e|c,e):

P(c→ e|c,e) = wc

P(e|c)
=

wc

wc +wa−wc ·wa
. (2)

Equation 2 shows that the CN model defines the probabil-
ity with which c is causally responsible for e given that both
have co-occurred by the fraction of the causal power of C
and the conditional probability of the effect in the presence
of C. Since the power PC theory assumes that C and A exert
their causal powers independently of each other, P(e|c) can
be rewritten as the sum of both causal powers minus their in-
tersection (see second step of Equation 2). Hence, what the
CN model delivers is an estimation of the relative frequency
of cases among all co-occurrences of C and E in which C’s
causal power is sufficient for the production of the effect. Our
key criticism is that this relative frequency, because it neglects
the possibility of preemption, frequently overestimates the
true proportion of cases in which we should actually causally
attribute E’s occurrence to C.

To illustrate the problem, let us consider the results of the
fictitious experiment shown in Figure 1 in which the influ-
ence of a chemical substance on the expression of a gene
was investigated. As it is the case that all mice in the test
group (P[e|c] = 1) but only one half in the control group
(P[e|¬c] = .5, the base rate) exhibit the gene, the results pro-
vide strong evidence for the existence of a strong effect of the
chemical. In fact, by applying Equation 1 one can see that

Control group: not treated with chemical Test group: treated with chemical 

= Gene 
expressed

= Gene not 
expressed

Figure 1: Illustration of a hypothetical study testing the effect of a
chemical on the expression of a gene. The control group is shown
on the left and the test group treated with the chemical substance on
the right. Mice having the gene expressed are depicted in blue.

the causal power of the substance equals 1. Crucially, so does
P(c → e|c,e). What the CN model therefore prescribes is
that we should attribute causal responsibility to the chemical
whenever the chemical and the gene are both present. But
should we really be maximally confident that the expression
of the gene in, for instance, Mouse # 25 must be causally at-
tributed to the causal power of the chemical? If you have
doubts, you were probably led by a prior assumption about
the point in space and time at which the causal background
factors A produced the observed base rate of fifty percent: in
the given scenario it seems likely that these factors (e.g., tran-
scription factors) already produced their effects prior to the
introduction of the chemical. Under this assumption, how-
ever, it seems likely that not only fifty percent of the mice
in the control condition but also in the test group already pos-
sessed the gene prior to the study. Consequently, in those fifty
percent of the mice it cannot be the chemical that is causally
responsible for the effect because its causal efficacy has been
preempted by the background factors.

A New Measure of Causal Attribution
In the example it seems appropriate to say that the expres-

sion of the gene is caused by the chemical in only about half
of the observed cases in which C and E have co-occurred.
This conclusion is based on the assumption that in roughly
half of the cases the causal power of the chemical has been
preempted by the causal power of the background factors A.
We propose a new measure of causal attribution that captures
this intuition by refining Equation 2 so that all cases among
the joint occurrences of C and E for which the effect of C is
assumed to be preempted by A are partialed out. This refined
measure is given by:

P(c
singular−−−−→ e|c,e) = wc · (1−α ·wa)

wc +wa−wc ·wa
, (3)

in which we introduce α as a discounting parameter that rep-
resents the assumed probability with which A is a preemptive
cause of the effect. For illustration, if we assume that A has
caused the observed base rate of 0.5 prior to the application of
the chemical, and if we assume further that A’s causal power
has produced roughly equal proportions of the effect in both
groups, α takes on a value of 1. In this case, the point estimate

for P(c
sing.−−→ e|c,e) is about .5 instead of 1.0 that is predicted
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Figure 2: The two causal structures considered by the structure in-
duction model of singular causation as mutually exclusive explana-
tions for observed patterns of covariation. C is a general cause of
E under S1 whereas all co-occurrences of C and E are coinciden-
tal under S0. The parameters wc and wa denote the causal powers
of the observed cause C and the unobserved background causes A,
respectively; bc denotes the base rate of C.

by Equation 2. The difference between the two measures is
that under the CN model the presence of two sufficient causal
powers (wc and wa) is invariably conceptualized as a case of
“symmetric overdetermination”, whereas the possibility that
causes can preempt each other is neglected. Equation 3 takes
into account the possibility of preemption and thus delivers
an estimation of the relative frequency of singular cases in
which the target cause has actually been successful in gen-
erating the effect. In our view, preemption of C by a previ-
ously present background factor A seems to be prevalent in
the cover stories typically reported in the literature (see e.g.,
Griffiths & Tenenbaum, 2005). However, the discounting pa-
rameter α can be set to capture other cases. For example,
cases of overdetermination or cases in which A is preempted
by C could be modeled by setting α to 0. In these cases, our
model and the CN model make identical predictions because
Equation 3 reduces to Equation 2.

SISC: The Structure Induction Model of
Singular Causation

Apart from the fact that the CN model does not take into
account the possibility that preempted causes should not be
classified as singular causes, a further problem of the CN
model is that it is insensitive to statistical uncertainty about
both the underlying causal structure and the size of the causal
parameters. SISC (Stephan & Waldmann, 2016) is sensitive
to both types of uncertainty.

SISC was developed in the framework of causal Bayesian
inference models; it takes observed data as evidence to update
prior probabilities of mutually exclusive hypotheses. Under
SISC, these competing hypotheses represent two causal struc-
tures that can account for a particular observed pattern of co-
variation. The two causal structures, S0 and S1, are depicted
graphically in Figure 2. While there exists a causal arrow
from C to E in S1, which indicates that C is a general cause
of E, there is no causal arrow between C and E in S0. Both
models assume a background cause A.

The core principle of SISC can be illustrated with Figure 1.
Assume someone suggests that S0 is the causal structure that
underlies the results. Under this hypothesis all observed co-
occurrences of C and E would be mere coincidences. Yet,
since the observed distribution of the events appears very
unlikely to be coincidental, S0 is weakened as an explana-
tion while the alternative hypothesis, S1, is proportionally
strengthened. In fact, the probability computed by SISC for

S1 for the data shown in Figure 1 (i.e., the posterior probabil-
ity of S1) is almost 1. Now, imagine the same study had been
conducted with a sample of merely eight mice but that P(e|c)
and P(e|¬c) remain the same. In this case, it seems less
certain that S1 underlies these results. Smaller samples not
only increase uncertainty about the underlying causal struc-
ture, they also impede the reliable estimation of the size of
parameters. SISC is sensitive to both types of uncertainty

when estimating P(c
sing.−−→ e|c,e).

SISC implements different steps. First, it derives the pos-
terior probabilities for each causal structure illustrated in Fig-
ure 2. Applying Bayes’ rule, the posterior probability for a
causal structure is proportional to the likelihood of the data
given the causal structure, weighted by the structure’s prior
probability:

P(Si|D) ∝ P(D|Si) ·P(Si). (4)

P(D|Si) is the likelihood of the data given a particular
structure, which is the integral over the likelihood function
of the parameter values under the particular structure. P(Si)
represents a structure’s prior probability. The model initially
assumes that both structures are equally likely, that is, P(Si)
= 1/2. When data become available, the posterior for each
causal structure varies systematically with the observed con-
tingency: the higher the contingency, the more likely S1 be-
comes.

Next, the model estimates the parameters bc, wc, and wa,
for each causal structure. To express parameter uncertainty,
distributions rather than point estimates are inferred. The pos-
terior probability distributions for the parameters, P(w|D),
are proportional to the likelihood of the data given the set of
parameters w, weighted by the prior probability distributions
of the parameters:

P(w|D) ∝ P(D|w) ·P(w). (5)

P(D|w) is the likelihood of the data given the parameter val-
ues for bc, wc, and wa. P(w) is the prior joint probability
of the parameters. The prior distributions of the parameters
are independently set to flat, uninformative beta(1,1) distri-
butions. Since C does not cause E under S0, wc is held fixed
at 0 for this causal structure.

In the last step, SISC computes P(c
sing.−−→ e|c,e) for each

parameterized structure. The new discounting parameter al-
pha is set based on background assumptions about the target
scenario. For the scenarios we used in the present experi-
ments it is set to 1 because preemption seems to be highly
probable. As all co-occurrences of c and e are coincidences

under S0, P(c
sing.−−→ e|c,e) is set to 0 for S0. For S1, Equation 3

is applied. The final output of SISC is a single estimate for

P(c
sing.−−→ e|c,e), which is obtained through integrating out the

two causal structures by summing over the derived values of

P(c
sing.−−→ e|c,e) for each structure weighted by its posterior

probability:

P(c
sing.−−→ e|c,e;D) = ∑

i
P(c

sing.−−→ e|c,e;Si) ·P(Si|D). (6)
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Experiment 1a
The goal of Experiment 1a was to test SISC against the

CN model of causal attribution for data sets with a suffi-
cient cause, i.e., P(e|c) = wc = 1, but varying base rates
of the effect. Whereas the CN model predicts maximal con-
fidence in singular causation assessments for any observed
co-occurrence of C and E in this case, SISC predicts an inter-
action with the base rate under the assumption that A’s causal
power generally preempts the effect of C. The goal of Ex-
periment 1a was to demonstrate that this predicted deviation
from the CN model is expected for the conceptual reasons
discussed above. To rule out uncertainty as an explanation,
we used sample sizes in our data sets for which the posterior
probabilities of S1 computed by SISC are close to 1. The pre-
dictions of the models are shown in Figure 3. We set α in
Equation 3 to 1, which represents complete preemption of C
by A. We also considered a Bayesian variant of the CN model
that has been proposed by Holyoak et al. (2010). This model
is sensitive to parameter uncertainty; it uses probability dis-
tributions over the parameters instead of point estimates. As
Figure 3 shows, the predictions of both variants of the CN
model converge for large sample sizes because the influence
of parameter uncertainty decreases.

Methods
Participants 90 participants (Mage = 33.24, SDage = 12.50,
35 female) were recruited via Prolific Academic (www
.prolific.ac) and received a monetary compensation of
£ 0.60.
Design, Materials, and Procedure Three contingencies (see
Figure 3) were manipulated between subjects with each par-
ticipant responding to two causal test queries (general causa-
tion vs. singular causation). We included the general causa-
tion query to establish that uncertainty cannot account for the
predicted pattern of singular causation ratings. The task was
a standard elemental causal induction task. As cover story
we used the gene expression scenario (cf. Griffiths & Tenen-
baum, 2005) mentioned above: subjects were asked to as-
sume that they were biologists who are interested in whether a
particular chemical causes the expression of a particular gene
in mice. Subjects read that they will be asked to conduct an
experiment on the computer screen in which they will treat
a random sample of mice with the substance while a control
sample will remain untreated. It was mentioned that the con-
trol sample is important as some individuals may show the
gene expression for other reasons.

Participants were presented with an interactive animation
showing the two samples arranged as in Figure 1, and a
pipette containing a reddish chemical substance. All mice
had gray color in this animation. Participants then dropped
the substance into the test group area, whereupon the back-
ground color changed to a light red. On the next screen, sub-
jects checked the results of the experimental manipulation by
dragging a small magnifying glass over all the mice. Mice
with the gene then became blue and those without became
yellow. The final state of the animation looked like Figure 1.

P(e|c)
P(e|¬c)

Figure 3: Model predictions and results of Experiments 1a and b.
The results show mean ratings and 95% bootstrapped CIs. Dark bars
show general causation judgments; light bars singular judgments.

Subsequently, participants responded to two test questions.
The general causation query referred to the causal structure.
Participants were asked to indicate on a slider how confident
they were that the chemical has an effect on the expression of
the gene (from “very certain that the chemical has no effect”
to “very certain that the chemical has an effect”). The singular
causation query asked subjects about Mouse #25 from the test
group. Participants were asked to indicate on a slider how
confident they were that it was the chemical substance that
caused the expression of the gene in this single case (from
“very certain that it was not the chemical” to “very certain
that it was the chemical”).

Results and Discussion
Figure 3 shows the results. The prediction for general

causation responses corresponds to the posterior probabil-
ity of S1 computed by SISC. As predicted by the posterior
probability of S1, all general causation ratings were high,
indicating very little uncertainty about the general causal
structure. The singular causation ratings, by contrast, de-
creased with an increasing base rate of the effect, as pre-
dicted by SISC but not by the two CN models. The results
of a multilevel model analysis revealed significant main ef-
fects for type of causal query, χ2(1)= 32.45, p < .001, as
well as contingency, χ2(1)= 12.63, p < .01. General cau-
sation ratings were, on average, higher than singular cau-
sation ratings. Figure 3 shows that the main effect of con-
tingency is driven by the decrease in singular causation rat-
ings. Planned contrasts revealed that the general causation
ratings neither differed between the first and second contin-
gency, t(80) = 0.60, nor between the second and third con-
tingency, t(80) = 0.13. Consequently, the interaction effect
of query × contingency was also significant χ2(1)= 13.10,
p < .01. Planned contrasts breaking down this interaction ef-
fect showed that the difference between general and singular
causation ratings was higher for the second than for the first
contingency, t(80)= 2.10, p < .05, r = .23, and also higher for
the third compared to the second contingency, t(80)= 3.70,
p < .001, r = .38. In sum, both the trends for general as well
as for singular causation ratings are captured well by SISC.
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The observed trend for the singular causation judgments is,
however, neither predicted by the CN model using point esti-
mates nor by the Bayesian extension incorporating parameter
uncertainty.

Experiment 1b
The goal of Experiment 1b was to assess how likely par-

ticipants think it is that a particular individual from the test
group already exhibited the effect caused by the background
factors prior to the occurrence of the cause. Thus, instead of
singular causation judgments for a particular individual, we
asked subjects to provide a probability judgment. Crucially,
responses to this query provide us with an estimate of the α

value in Equation 3 that participants assumed.

Methods
Participants 88 participants (Mage = 31.22, SDage = 10.84,
42 female) participated in this only study and received a mon-
etary compensation of £ 0.60.
Design, Materials, and Procedure The study design and the
materials were the same as in Experiment 1a. The only dif-
ference was that, instead of a singular causation judgment for
Mouse #25, we asked participants how likely they think it is
that this individual already had the gene expressed prior to the
experiment. The general causation query remained the same.

Results and Discussion
Figure 3 shows that we replicated the pattern for general

causation judgments found in Experiment 1a. Planned con-
trasts revealed that these ratings did not differ (all t values
< 1). However, the probability judgments about the presence
of the effect prior to the application of the chemical in the sin-
gle case showed the opposite trend as the singular causation
judgments in Experiment 1a. This finding supports our hy-
pothesis that assumptions about preemption influence singu-
lar causation judgments, as predicted by Equation 3. Planned
contrasts confirmed that ratings increased from the first to the
second, t(71) = 2.67, p < .01, r = .30, and also from the sec-
ond to the third contingency, t(71) = 3.16, p < .01, r = .35.
Furthermore, the results indicate that participants indeed as-
sumed high α values.

Experiment 2
Experiment 1a showed that singular causation ratings for

sufficient causes deviate systematically from the predictions
of the CN models. This deviation is predicted as a conse-
quence of assumptions about preemption relations between
C and A. Experiment 2 pursued two main goals: first, we
aimed to test SISC using a larger set of contingencies with a
combination of different levels of P(e|c) and P(e|¬c). Sec-
ond, we wanted to demonstrate that parameter and structure
uncertainty indeed influence general and singular cause judg-
ments. We used the set of contingencies studied in Buehner,
Cheng, and Clifford (2003) but excluded the one contingency
from the set in which the effect never occurs. It does not make
sense to ask for singular causation if the effect is absent. The
data sets and model predictions are shown in Figure 4. We set

(a)

(b)

(c)

(d)

(e)

(f)

(g)

P(e|c)
P(e|¬c)

(h)

Figure 4: Predictions of different models and results (means and
within-subjects adjusted 95% CIs) of Experiment 2. Graphs (a) and
(b) refer to general causation assessments. All other graphs refer to
singular causation assessments.

the discount parameter α to 1 again.

Methods
Participants 82 participants (Mage = 34.41, SDage = 10.42,
31 female) participated in this online study and were paid
£ 1.00 for their participation.
Design, Materials, and Procedure The causal query (gen-
eral causation vs. singular causation) was manipulated be-
tween subjects, whereas contingency was varied within sub-
ject. The fourteen contingency data sets were presented in
random order. We used the same cover story as in Experi-
ment 1, except that subjects read that they will investigate the
effects of fourteen different chemicals on fourteen different
genes in fourteen different samples. We pointed out that the
results of the studies are independent of each other. The as-
signment of mice to the cells of the contingency tables was
randomly determined. Also the test mouse for the singular
query showing both c and e was randomly chosen prior to the
experiment.

Results and Discussion
Figure 4 shows the results and the predictions of the differ-

ent models: (a) and (b) display the predictions of SISC for
general causation and the mean general causation responses.
Panels (c) and (d) show the predictions of SISC and the re-
sults regarding the singular causation queries. Predictions of
the standard CN model and its Bayesian variant are displayed
in (e) and (f). Graph (g) shows predictions of SISC when α

is set to zero but both structure and parameter uncertainty are
incorporated. Finally, (h) shows point estimates of Equation 3
while neglecting statistical uncertainty.

Table 1: Model comparisons for singular causation judgments in
Experiment 2. ∆P refers to the different contingency levels (.00,
.25, .75, 1.00) within the whole data set; r∆P expresses the model
fits for these levels. N/A represents undefined values.

Fit measure SISC CN Model Bayesian CN Model SISC CN Model Point Est. Eq. 3

r∆P=.00 .72 N/A -.78 -.68 N/A
r∆P=.25 1.00 .21 .38 -.61 .98
r∆P=.50 .88 .68 .79 .44 .85
r∆P=.75 1.00 N/A 1.00 -1.00 1.00
Mr ∆P .90 .44 .35 -.46 .94
roverall .94 .88 .93 .90 .90

R2 .88 .77 .87 .82 .82
RMSE .11 .27 .09 .14 .22
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The overall pattern for both general and singular causation
ratings was captured best by the revised version of SISC. As
in our previous research, the results show that participants dif-
ferentiated between general and singular queries. Moreover,
the responses to the general causation query replicate those
found in Griffiths and Tenenbaum (2005). Most importantly,
the singular causation assessments were captured best by the
revised SISC. The other models, by contrast, struggled to ac-
count for the local trends observed within the subsections of
the contingency set in which ∆P is constant. The difference
between the singular causation ratings and the point estimates
for the revised causal attribution measure (Equation 3) im-
plies that participants were sensitive to structure and parame-
ter uncertainty.

A multilevel model analysis confirmed the main effect
of contingency, χ2(13)= 1010.04, p < .001, as well as the
interaction between contingency × query, χ2(13)= 49.39,
p < .001, that is shown in Figure 4. To test the different mod-
els, we computed different fit measures shown in Table 1. As
can be seen there, SISC achieved a good fit in the overall fit
measures (bottom part of the table). It explained most vari-
ance, with R2 = .88, and yielded the second smallest RMSE
of .11. Yet, all models obtained relatively high values on the
global measures. Even the CN model with the lowest overall
fit accounted for 77 percent of the variance. The similarity
between the models is not unexpected, however, as all mod-
els are sensitive to ∆P. More interesting are the fit measures
for the subsections of the contingency set in which ∆P is kept
constant. The upper part of Table 1 shows that SISC yielded
high fit values there, too, and hence accounted well for these
local trends, whereas the Bayesian CN model, which yielded
the smallest RSME, even showed negative correlations here.

General Discussion
We addressed two different problems that the power PC

framework of causal attribution (Cheng & Novick, 2005)
faces: first, the CN model attributes causal responsibility for
the occurrence of a particular effect e to a present singular
event c whenever its causal power is sufficient to bring about
the effect. We have argued that this conceptualization fails
to take into account that people make assumptions about the
point in time at which different causal powers exert their in-
fluences. Not every manifestation of a sufficient cause c needs
to be causally responsible for an observed outcome; it might
be the case that a competing cause (e.g., a) preempts it. This
problem of redundant causation, which occurs whenever two
causes are individually sufficient for the effect, is widely ac-
knowledged in the philosophical literature as a challenge for
models of causation (see, e.g., Paul & Hall, 2013). To account
for the possibility of preemption we have modified the equa-
tion developed by Cheng and Novick (2005) as an account
of causal attribution. The revised equation includes the dis-
count parameter α that can be set to express domain-related
assumptions about the temporal relations between the alter-
native causal factors. A second shortcoming of the standard
causal attribution model (Cheng & Novick, 2005) is that it

does not take into account statistical uncertainty about struc-
ture and causal parameters (cf. Griffiths & Tenenbaum, 2005;
Meder et al., 2014). Our model SISC remedies both short-
comings. It is sensitive to both the temporal relations between
the alternative causes and to statistical uncertainty. Our ex-
periments showed that both aspects are important to account
for subjects’ judgments about singular causation.

We have set the discount parameter α to 1 in Equation 3
which implies a complete preemption relation between A and
C whenever A’s causal power is sufficient in a situation. Bet-
ter fits might be possible by estimating the size of α for
each individual subject separately. We avoided this strat-
egy to demonstrate that model improvements can already be
achieved with very general assumptions. The goal of future
experiments will be to manipulate the size of α by manipu-
lating domain assumptions about the temporal relations be-
tween C and A. Cases in which α is 1 are situations in which
A always preempts C. The cover stories used in the present
experiments are an example in which it is plausible to assume
that A represents a temporally stable factor that has already
been efficacious prior to the manipulation of C. Although
preemption seems to be the default situation in most singular
causation scenarios, there might be rare cases in which other
assumptions need to be made. Consider cases of symmetric
overdetermination that have also been discussed in the litera-
ture (see Paul & Hall, 2013): in the famous firing squad sce-
nario, for example, in which each shooter is a sufficient cause
for the death of the target, a possible intuition is that each
shooter should be counted as a singular cause of the death of
the victim. In this case, alpha would have to be set to zero.
Similarly, alpha would have to be set to zero if C preempts A
so that A cannot manifest its potential causal power. Cases of
temporal variability between C and A might also be an inter-
esting topic for future studies.
Acknowledgments We thank Jonas Nagel and Ralf Mayrhofer for
helpful discussions.
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Abstract

Consider the following causal explanation: The ball went
through the goal because the defender didn’t block it. There
are at least two problems with citing omissions as causal ex-
planations. First, how do we choose the relevant candidate
omission (e.g. why the defender and not the goalkeeper). Sec-
ond, how do we determine what would have happened in the
relevant counterfactual situation (i.e. maybe the shot would
still have gone through the goal even if it had been blocked).
In this paper, we extend the counterfactual simulation model
(CSM) of causal judgment (Gerstenberg, Goodman, Lagnado,
& Tenenbaum, 2014) to handle the second problem. In two ex-
periments, we show how people’s causal model of the situation
affects their causal judgments via influencing what counterfac-
tuals they consider. Omissions are considered causes to the
extent that the outcome in the relevant counterfactual situation
would have been different from what it actually was.
Keywords: causality; counterfactuals; causation by omission;
causal attribution; mental simulation.

Introduction
Billy is on his way home. He is driving on a lonely country

road, when he notices a damaged car next to the road. The
car seems to have collided with a tree, and the driver appears
unconscious. Billy decides not to stop and keeps driving. A
few days later, Billy reads in the newspaper that the driver
died because he had not received any medical attention.

Many people would concur that Billy’s not having stopped
was causally relevant for the driver’s death. However, there
are two fundamental problems with citing omissions (i.e.,
events that did not happen) as causes. First, there is the
problem of causal selection. Why cite Billy’s not stopping
as causally relevant for the driver’s death? Why not cite the
Queen of England? Second, there is the problem of under-
specification. Assuming that Billy would have stopped to
check on the driver, what would he have done? Would Billy’s
acting have prevented the driver’s death, or would she have
died anyway?

In this paper, we show how the counterfactual simulation
model (CSM) of causal judgment developed in Gerstenberg,
Goodman, Lagnado, and Tenenbaum (2012) (see also Ger-
stenberg et al., 2014; Gerstenberg, Goodman, Lagnado, &
Tenenbaum, 2015) provides a natural solution to the under-
specification problem. The CSM predicts that an omission
is a cause when the positive event that is chosen as its re-
placement would have changed the outcome of interest. More
specifically, we show how people’s causal model of a sit-
uation guides their selection of the relevant counterfactual
which subsequently determines their judgment about whether
the omission made a difference to the outcome.

The paper is organized as follows: We first describe the
causal selection and the underspecification problem in more
detail. We then propose an extension to the CSM as a solution
to the underspecification problem. Thereafter, we present and
discuss the results of two experiments which test the CSM.

The Causal Selection Problem
Many philosophers argue that counterfactual approaches to

causation are too inclusive when it comes to omissions (e.g.
McGrath, 2005). If Billy had stopped and checked on the
unconscious driver, the driver would not have died. Conse-
quently, the driver died because Billy did not stop. How-
ever, following this logic, the same counterfactual seems to
be true for the Queen of England. If the Queen of England
had stopped, the driver would not have died either. However,
intuitively, it is Billy’s omission that was causally relevant,
and not the Queen’s. The problem of causal selection has
been intensively discussed in both philosophy and empirical
studies (e.g. Hesslow, 1988). Interestingly, while the causal
selection problem presents a challenge to certain philosophi-
cal theories of causation, laypeople do not have any difficulty
in selecting the cause of the driver’s death. Based on evidence
from research on causal cognition, it has been suggested that
the concept of causation is not a purely descriptive one, but
that it depends on reasoners’ expectations (Willemsen, 2016).
While we would have expected Billy to stop and help, we
didn’t entertain any such expectation for the Queen.

The Underspecification Problem
When it comes to omissive causation a fundamental prob-

lem is how to define the relevant counterfactual contrast (cf.
Schaffer, 2005). For positive events (“something happened”),
the counterfactual contrast (“it didn’t happen”) is often well-
defined. However, replacing a negative event with a positive
event seems more problematic because there are a infinitely
many ways in which events can come about. If Billy actually
helped the driver, it seems to be pretty clear what would have
happened if he had not helped (he would just have continued
to drive on). However, if Billy did not help, it is unclear what
would have happened if he had helped (would he have helped
in a competent manner to prevent the driver’s death, or would
he have been too nervous and screwed things up?).

While the causal selection problem has received much at-
tention in the literature (e.g., Henne, Pinillos, & De Brigard,
2015; Livengood & Machery, 2007), the underspecification
problem has not. One exception is the account by Wolff,
Barbey, and Hausknecht (2010) that addresses both problems.
The general idea proposed by Wolff et al. (2010) is that cau-
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sation by omission is linked to the removal of an actual (or
anticipated) force that previously prevented a certain outcome
from occurring. One problem of this account, however, is that
it appears too restrictive in that it cannot account for cases in
which no (apparent) force is removed. Imagine, for instance,
sentences like “The lack of rain caused the drought in Soma-
lia”. Here, it would be a stretch to think of a the lack of rain
as the removal of a force.

The extension of the CSM that we propose in this paper
provides a different solution to the underspecification prob-
lem. Previous research has suggested that the extent to which
a certain counterfactual is relevant is a function of both how
likely we are to consider it, and how likely it would have
changed the outcome of interest (Petrocelli, Percy, Sherman,
& Tormala, 2011). However, while this research has shown
that these counterfactual probabilities affect people’s causal
judgments, it doesn’t explain how we come up with the rele-
vant probabilities in the first place. Here, we will show how
the CSM provides a natural solution to determine whether an
omission made a difference to the outcome.

Counterfactual Simulation and Omission
The CSM predicts that people make causal judgments by

comparing what actually happened with the outcome of a
counterfactual simulation. So far, the model has been applied
to capturing participants’ judgments about events that actu-
ally happened (Gerstenberg et al., 2012, 2014, 2015). Con-
sider the situation shown in Figure 1b (bottom) illustrated as
the ideal path. Here, A collides with B and B subsequently
goes through the gate. The CSM says that ball A’s colliding
with ball B caused ball B to go through the gate in this case,
because it is obvious that ball B would have missed the gate
but for the collision with A. More generally, the CSM pre-
dicts that causal judgments are a function of the reasoner’s
subjective degree of belief that the candidate cause made a
difference to the outcome. More formally, we can express the
degree of belief that x caused y as

P(x. y) = P(y′ 6= y|S ,do(x′)), (1)

in which x denotes the event of ball A hitting ball B, and the
outcome y captures the event of ball B going through the gate.
We first condition on what actually happened S (i.e., the mo-
tion paths of each ball, the position of the walls, etc.). We then
intervene to set the candidate cause event x to be different
from what it was in the actual situation, do(x′). Finally, we
evaluate the probability that the outcome in this counterfac-
tual situation y′ would have been different from the outcome
y that actually happened. The results of several experiments
(cf. Gerstenberg et al., 2012, 2014, 2015) have revealed that
there exists a tight relationship between the counterfactual
judgments of one group of participants (about what would
have happened if the candidate cause had been absent), and
the causal judgments of another group of participants.

To model causal judgments about positive events, the CSM
considers counterfactuals in which the positive event (ball A
colliding with B) is simply removed from the scene (indicated
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(a) Did B go through the gate because
A did not hit B?
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(b) Did B miss the gate because A did
not hit B?

Figure 1: Illustration of what actually happened (top) and the coun-
terfactual simulation model (bottom). The diagrams illustrate the
actual path that ball B took, as well as an ideal path for (a) A pre-
venting B from going through the gate, or (b) A causing B to go
through the gate. The sampled paths show example simulations that
result from applying implementation noise to the ideal path. Note:
In (a), A would have prevented B from going through the gate for
both sampled paths. In (b), A would have caused B go through the
gate in one sample but not so in the other in which B would still have
missed even though A hit B.

by do(x′) in Equation1). Things become more intricate, how-
ever, when we want to model omissions as causes. As dis-
cussed above, it is often straightforward to replace an event
with a non-event (e.g., a collision with no collision), but it
is less clear how to replace a non-event with an event. Con-
sider the situation shown in Figure 1a. Did ball B go through
the gate because ball A did not hit it? The problem is that
there are infinitely many ways for ball A to collide with ball
B. Which of these events are we to consider? The collision
event is severely underspecified. We will now show how the
CSM can be extended to yield predictions about omissions as
causes, and thereby provide a solution to the underspecifica-
tion problem.

Modeling Omissions
We assume that people solve the underspecification prob-

lem by sampling counterfactual possibilities based on their
intuitive understanding of the situation (cf. Kahneman &
Tversky, 1982). The extent to which the omission is viewed
as a cause of the outcome is assumed to be a function of the
proportion of samples in which the outcome would have been
different from what actually happened, assuming that the type
of counterfactual event of interest was realized. Let us illus-
trate how the model works by example of the situation de-
picted in Figure 1a. In the actual situation, ball A did not
move and ball B went right through the middle of the gate.
We want to determine to what extent A’s not hitting ball B
was a cause of B’s going through the gate. To do so, we sim-
ulate what would have happened if ball A had collided with
B. More specifically, we need to determine the time t at which
A would have started to move, the direction d in which ball
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A would have moved, and the velocity v. Once we have de-
termined these quantities, we can simulate what would have
happened. For many combinations of values for t, d, and v
ball A would not have collided with ball B. We can discard
all such situations since we are interested in evaluating what
would have happened if ball A had hit ball B. For each situ-
ation in which the two balls collide, we record what the out-
come would have been – would B have missed the gate, or
would it still have gone through the gate? We can now obtain
the probability that ball A’s not hitting ball B was a cause of
ball B’s going through the gate (cf. Equation 1) by looking at
the proportion of samples in which B would have missed the
gate instead of going through.

But how do we determine what values to take for t, d, and
v which jointly determine what counterfactual situation we
consider? We predict that prior expectations guide the coun-
terfactuals we consider. In Experiment 1 below, we contrast
situations in which participants don’t have any expectations
about what normally happens, with situations in which par-
ticipants have statistical, or social expectations. We will now
discuss how the model incorporates these expectations.

Expectations Shape Counterfactual Simulations
No Expectations Let us first assume a situation in which
an observer does not have any strong expectations concern-
ing how the balls typically move in the given context. When
asked whether A’s not hitting B caused B to go through the
gate, we have to generate situations in which A would have hit
B. This already considerably constrains what kinds of situa-
tions we consider. For example, it would be futile to consider
situations in which A only starts moving after B already went
through the gate, or in which A moved toward the right.

We generated counterfactual samples in the following way:
We first discretized the space for the time at which A starts
moving t, the direction in which it moves d, and its velocity
v. For t, we considered all values from 0 to toutcome where 0
corresponds to the time at which B starts moving and toutcome
to the time at which ball B went through the gate (or hit the
wall). For d, we considered the full range from A going
straight to the left to going straight up. For v, we consid-
ered a reasonable range from A moving slowly to A moving
fast. For each generated world, we noted whether A and B
collided, and whether B went through the gate or missed the
gate. We then discarded all situations in which the two balls
did not collide, and recorded the proportion of situations in
which B would have gone through the gate if the balls had
collided.

The model makes the following predictions: For the situa-
tion in which B is on a path toward the gate (Figure1a), there
is a good chance that B would have missed the gate if ball
A had hit it. The model predictions are shown in Figure2.
As can be seen in the left panel, the CSM concludes that the
probability that B would have missed the gate had A hit it is
just as high as the probability that B would have passed the
gate. By contrast, when B is on a path away from the gate
(“missed” in Figure 2, cf. Figure 1b top right) there is only a

relatively small chance that ball B would have gone through
the gate if ball A had hit it. Thus, the CSM predicts that peo-
ple will be more likely to agree that ball B went through the
gate because ball A did not hit it than they will be to agree
that ball B missed the gate because ball A did not hit it.

Social Expectations When nothing particular is known
about how A and B typically move, the space of counter-
factuals from which the CSM samples is relatively wide. It
seems plausible, however, that what counterfactual possibili-
ties are considered will be affected by different forms of prior
expectations. Imagine, for example, that you learn that two
players play a marble game. Player B wants to get her mar-
ble into the goal, while Player A wants to make sure that this
does not happen. On a particular trial, Player A did not pay
attention and forgot to flick his marble. Did Player B’s mar-
ble go through the gate because Player A’s marble did not hit
it? When knowing that it is a player’s job to prevent a mar-
ble from going through the gate, people may expect that this
player would not have just flicked her marble randomly. In-
stead, she can be expected to try her best to make sure that
the other marble does not go through the gate. Similarly, con-
sider a situation in which Player A also wants that Player B’s
marble goes through the gate. In that case, it seems likely that
Player A will try to flick his marble so that it makes sure that
B’s marble will go through the gate.

Figure 1 illustrates how the CSM incorporates how prior
expectations constrain the space of counterfactual situations.
We assume that the player would first determine a time t at
which to flick her marble. For any given point t, the player
then determines an optimal d and v conditional on the player’s
goals. For a player who wants to prevent ball B from going
through the gate, the player’s goal is to maximize the distance
between B’s position and the middle of the gate. For a player
who wants to cause B to go through the gate, the player’s goal
is to minimize the distance between B’s position and the mid-
dle of the gate (i.e., she wants B to go right through the middle
of the gate). For simplicity, we assume that players can plan
their action optimally, but that they have some implementa-
tion noise. The CSM models this implementation noise by
introducing a small perturbation to the ideal path on which
A moves. As is illustrated in Figure1, the CSM incorporates
implementation noise by slightly perturbing the “ideal path”
vector.

Figure 1 shows the actual path that ball B took, the ideal
paths that player A “wanted” the marbles to take, and two
examples for paths that ball B actually took after subjecting
A’s ideal plan to some implementation noise. Notice that the
implementation noise has a larger effect in Figure 1b where
it leads to a situation in which ball B would have missed the
gate even though ball A hit it. In contrast, in Figure 1a the im-
plementation noise has less of an effect. Here, ball B would
reliably miss the gate even if we apply some implementation
noise to player A’s intended plan. Accordingly, the CSM pre-
dicts that it is more likely that A’s hitting B would have re-
sulted in B missing the gate (when B actually went through,
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Figure 1a) than it would have resulted in B going through the
gate (when B actually missed, Figure 1b). Since the sam-
ple of considered situations is biased toward optimal actions,
the CSM predicts that judgments will overall be higher than
when an observer does not have any prior expectations. The
predictions for this situation are shown in the middle panel in
Figure 2.
Statistical Expectations Now imagine that instead of learn-
ing anything about agents playing a game you get to see a few
situations first that shape your expectations about what tends
to happen. We incorporate such “statistical” expectations into
the model in the same way in which we handled social expec-
tations. However, we allow for the implementation noise to
be different between these situations. Specifically, the size of
the implementation noise parameter will depend on the kind
of evidence that participants have seen. For example, if one
has witnessed a series of trials in which A always hit B in
such a way that B went straight through the gate, this would
suggest a smaller implementation noise compared to one that
is suggested by trials in which A hit B in such a way that B
went through the gate in, for example, merely two third of the
cases. The predictions for this situation are shown in the right
panel in Figure 2.

Experiment 1
Experiment 1 tests whether the CSM accurately predicts

people’s causal judgments for omissions in dynamic phys-
ical scenes. We look at causal judgments about situations
in which ball A failed to hit ball B, and ball B either went
through or missed the gate (see Figure 1). In line with the
CSM, we predict that the degree to which people judge ball
A’s not hitting ball B as causally relevant to the outcome
would be tightly coupled with the results of a mental sim-
ulation about what would have happened if a collision had
occurred. Furthermore, we test the hypothesis that different
types of expectations (social or statistical) influence people’s
causal judgments by affecting what counterfactual situations
people consider.

Methods
Participants and Materials 476 participants (239 female,
MAge = 33.83 years, SDAge = 12.03 years) were recruited
via Prolific Academic (www.prolific.ac) and participated
in this experiment for a monetary compensation of £ 0.25.
The clips were created in Adobe Flash CS5 using the physics
engine Box2D.
Design and Procedure All factors were manipulated be-
tween subjects. We manipulated what actually happened (ac-
tual outcome: missed vs. went through), and the expecta-
tions of participants about what will happen (expectation: no
expectations, statistical expectation, social expectation). Fi-
nally, we varied whether participants answered a causal ques-
tion, or a (counterfactual) probability question (question: cau-
sation vs. probability).

In the “no expectations” condition, subjects simply read
that they will see an animation in which a stage with solid
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Figure 2: Experiment 1. Mean causal and probability judgments
together with the predictions of the CSM. Note: Error bars indicate
95% bootstrapped CIs.

walls, two balls A and B, and a gate will be displayed. All
subjects were shown a graphical illustration of the stimuli.
Participants in the “statistical expectation” condition were
presented four primer clips in which ball B actually collided
with A. One group of subjects saw that the collision always
caused B to go through the gate, while the other half always
saw that A prevented B from going through the gate (see Fig-
ure 1). In the “social expectation” condition, subjects were
instructed that the video clip (which was the same as in the
“no expectations”) shows what happened during a game of
marbles played by two agents, Andy and Ben. We manipu-
lated whether subjects believed that Andy wants to help Ben
to flip his marble through the gate or whether he wants to
hinder Ben from doing so.

Participants in the “causation” condition indicated how
much they agreed with the claim that B missed the gate be-
cause A did not hit it, or that B went through the gate because
A did not hit it, depending on the outcome. Participants in
the “probability” condition gave a corresponding probability
judgment: they indicated what they believed the chances were
that B would have gone through / missed the gate if ball A
had hit ball B. Participants indicated their ratings on a sliding
scale.

Which outcome participants saw depended on the expec-
tation condition: In the “social expectation” condition, par-
ticipants who expected the agent to help saw that B actually
missed the gate, and participants who expected the agent to
hinder saw that B went through the gate. In the “statistical
expectations” condition, participants who had seen the cau-
sation clips saw that B missed the gate, whereas those who
had seen the prevention clips saw that B went through the
gate.

Results and Discussion
Figure 2 shows participants’ mean causal ratings (white

bars), probability ratings (gray bars), as well as the predic-
tions of the CSM (black bars). The CSM correctly predicts a
difference in agreement ratings for both the causal and proba-
bility condition as a function of the outcome (went through
vs. missed). A global 2 (question) × 6 (combination of
expectation and outcome) factorial ANOVA shows a main
effect of outcome, F(5,464) = 14.51, p < .001, η2

G = .61
but no main effect of question, F(1,464) < 1. The in-
teraction between question and expectation was significant,
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F(5,464) = 2.74, p < .05 but the effect is small, η2
G = .03.

Importantly, participants saw A’s not hitting ball B as more
causal when B went through the gate compared to when it
missed. This pattern was predicted by the CSM and indicates
that participants’ counterfactual simulations and their causal
inferences were sensitive to the constraints imposed by the
virtual physical environment. Because the displayed gate was
relatively small, the probability that a collision would change
the outcome is higher if B actually went though, than when it
missed. Planned contrasts confirmed that the observed differ-
ences between “went through” and “missed” were significant
in all conditions, with t(464) = 3.21, p < .01, r = .15 in the
“no expectations” condition, t(464) = 2.13, p < .05, r = .10
in the “statistical expectation” condition, and t(464) = 3.53,
p < .001, r = .16 in the “social expectation” condition.

Besides the asymmetry between “went through” and
“missed”, we also expected to see higher causality ratings in
the “statistical” and “social expectation” conditions than in
the “no expectation” condition. This difference was predicted
because we incorporated an ideal path in these situation that
was then perturbed by imposing some implementation noise.
As Figure 2 shows, we did indeed observe this pattern. A
planned contrast confirmed that this difference was signifi-
cant, t(464) = 5.98, p < .001, r = .27.

Concerning the probability ratings, planned contrasts
showed that the difference between “went through” and
“missed” was significant in the “no expectations condition”,
t(464) = 2.33, p < .05, r = .11, and the “statistical expec-
tation” condition, t(464) = 1.73, p < .05, r = .08, but not
in the “social expectation” condition, t(464) < 1. Concern-
ing the predicted difference between the “no expectations”
condition and the other two expectation conditions, Figure 2
shows that we obtained a similar pattern as for the causal-
ity judgments. In line with our expectations, the probability
ratings for the “statistical expectation” and the “social expec-
tation” condition were higher than the ratings for the “no ex-
pectation” condition, t(464) = 2.82, p < .01, though this
effect was smaller than the effect for the causality judgments,
r = .13.

The results of Experiment 1 show that participants’ causal
judgments are qualitatively well accounted for by the CSM.
The CSM also does a good job in accounting for the pattern
quantitatively, as evidenced by a high correlation between
model predictions and counterfactual probability judgments
(r = .97,RMSE = 14.00), as well as between model predic-
tions and causal judgments (r = .97,RMSE = 6.06). The fact
that the model accounts slightly less well for the counterfac-
tual probability judgments is mainly due to the relatively large
difference between model predictions and probability judg-
ments in the “no expectations” condition.

A key finding in Experiment 1 is the asymmetry in partici-
pants’ causal judgments as a function of whether ball B went
through or missed the gate. The CSM predicts this pattern be-
cause it is more likely that A’s hitting B would prevent B from
going through the gate (cf. Figure 1a) than that it would cause

(a) Did the ball go through the gate
because the wall did not move?
(M = 87.51, ±95% CI = 7.67)

(b) Did the ball miss the gate because
the wall did not move?

(M = 89.00, ±95% CI = 8.37)

Figure 3: Illustration of the materials used in Experiment 2. Solid
arrows indicate the actual path of the ball; dashed arrows show the
hypothetical path of the wall. Graph (a) shows the “went through”
and (b) the “missed” condition. The results for both conditions are
included in brackets.

B to go through (cf. Figure 1b). One possibility, however,
that Experiment 1 cannot rule out is that people are in general
more likely to regard omissions as causes when the relevant
counterfactual involves preventing compared to causing. In
Experiment 2, we investigate whether there is such a general
asymmetry between omissive causation and prevention.

Experiment 2
The goal of Experiment 2 was to rule out that the observed

difference between “went through” and “missed” in Exper-
iment 1 came about because people generally treat omissive
causation and omissive prevention differently. The CSM only
predicts an asymmetry between two situations when the pos-
itive event of interest was more likely to make a difference
in one situation compared to the other. Hence, our strategy
in Experiment 2 was to hold this probability constant. To
achieve this goal, we simply replaced ball A with a wall that
had exactly the size of the gate. To model “missed” and “went
through”, we varied whether the wall blocked the gate or not,
while a displayed ball always headed toward the gate (see
Figure 3). Participants rated how much they agree that “the
ball” missed the gate (or went through the gate) because the
wall did not move. There is no ambiguity about the relevant
counterfactual in this case – it is clear that the outcome would
have been different, had the wall moved. Accordingly, the
CSM predicts that participants’ judgments should be high for
both cases, no matter whether the ball went through the gate
or missed the gate because of the omission.

Method
Participants 65 participants (40 female, Mage = 32.86,
SDage = 12.84) who were again recruited via Prolific Aca-
demic completed this online experiment and received a mon-
etary compensation of £ 0.25.
Design, Materials, and Procedure The final outcome, that
is, whether the ball went through or missed the gate (see Fig-
ure 3) was manipulated between subjects. The instructions
were similar those used in the “no expectations” condition in
Experiment 1. Further, participants were presented an illus-
tration showing the materials in which it was made clear that
the wall can only be in two different positions, either right
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in front of the gate or in the upper left corner of the stage
(see Figure 3). Having read the instructions, participants were
shown the respective video clip and provided the causal rating
after the clip was finished.

Results and Discussion
As expected, participants gave very high causal ratings

for “went through” (M = 87.51, SD = 21.62) and “missed”
(M = 89.00, SD = 23.21). As predicted by the CSM, the
ratings were not different from each other, t(63) < 1. The
probability that the outcome would have been different in the
relevant counterfactual, is close to maximal in both condi-
tions.

The results of Experiment 2 are in line with the CSM. Fur-
ther, the fact that the causality ratings were both very high
and not different from each other rules out the potential alter-
native explanation that people might generally treat omissive
causation and omissive prevention differently.

General Discussion
We developed an extension of the Counterfactual Simula-

tion Model to account for causation by omission. Based on
previous research by Gerstenberg et al. (2014), we reasoned
that people’s causal judgments are closely linked to their sub-
jective degree of belief that the outcome would have been dif-
ferent had the candidate cause been replaced. We argued that
this replacement by a counterfactual contrast is particularly
difficult in cases of omissions. The counterfactual contrast to
“did not hit” is clearly “had hit”, but it remains unclear what
would have happened if “hitting” had taken place.

In two experiments we shed light on how to tackle the
underspecification problem. We predicted that prior expec-
tations would constrain what counterfactual contrasts people
consider relevant to the scenario. Experiment 1 revealed an
asymmetry: A’s not hitting B was judged less causal when
B missed the gate compared to when B went through the
gate. This is what the CSM predicts, and the results thus
lend additional support to the hypothesis that causal judg-
ments are grounded in counterfactually simulated probabil-
ities. Adding expectations increased both people’s causal
judgments as well as their subjective degree of belief that a
counterfactual collision would changed the outcome. This ef-
fect was particularly strong for social expectations, which the
CSM explains by assuming that knowledge about intentions
of agents limits the range of counterfactuals that are consid-
ered. Our results thus add to previous research indicating that
intentional actions signal higher causal stability compared to
unintentional ones (Lombrozo, 2010), and that causal stabil-
ity is indeed a relevant dimension that affects causal reason-
ing (Nagel & Stephan, 2016).

It might be objected that the asymmetry in causal attri-
bution for “went through” and “missed” in Experiment 1 is
not due to a difference in what would have happened in the
relevant counterfactual simulations, but rather due to an in-
herent asymmetry between omissions that prevent and omis-
sions that cause. Experiment 2 addressed this possible con-

found by looking at situations in which the relevant coun-
terfactual event was clear (a wall that could only move in
one direction), as well as what would have happened in case
that event had happened. Just as predicted, we found that
causal ratings were equally high irrespective of whether the
ball “went through” and “missed” in this case. Instead of a
general asymmetry between prevention and causation, partic-
ipants judge omissions to be causal the more certain they are
that the omission made a difference to the outcome.

As our introductory example demonstrates, omissions are
particularly relevant in human interaction, especially so in
morally or legally charged situations when we had clear ex-
pectations about what a person should have done. In this
paper, we have shown how the CSM accounts for people’s
causal judgments of omissions in situations in a physical do-
main in which the relevant counterfactuals are relatively well
constrained. However, we believe that the CSM has the po-
tential to capture causal judgments about omissions of social
agents as well. For example, the extent to which we blame
someone for not having helped depends on how easy it would
have been for the agent to help (cf. Jara-Ettinger, Tenenbaum,
& Schulz, 2015). In future research, we will explore the CSM
in a richer social setup.
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Abstract 

When asked to assess the deductive validity of an argument, 
people are influenced by their prior knowledge of the content. 
Recently, two competing explanations for this belief bias 
effect have been proposed, each based on signal detection 
theory. Under a response bias explanation, people set more 
lenient decision criteria for believable than for unbelievable 
arguments. Alternatively, believable and unbelievable 
arguments may differ in subjective argument strength for both 
valid and invalid items. Two experiments tested these 
accounts by asking participants to assess the validity of 
categorical syllogisms and rate their confidence. Conclusion-
believability was manipulated either within- or between-
groups. A two-step signal detection model was applied to 
examine the effects on the relative location of the decision 
threshold and the distributions of argument strength. 
Equivalent belief bias effects were found when believability 
was manipulated within- and between-groups, supporting the 
view that the belief bias effect is due to response bias.  

Keywords: belief bias; deductive reasoning; signal detection 
theory; response bias 

Introduction 

An important phenomenon for theories of reasoning is that 

people show a belief bias when asked to assess the logical 

validity of arguments. The tendency to accept or reject a 

conclusion as valid is not based purely on logical structure 

but is also swayed by its compatibility with prior knowledge 

(e.g., Evans, Newstead, & Byrne, 1993; Markovits & 

Nantel, 1989; Shynkaruk & Thompson, 2006). Table 1 

shows typical stimuli – categorical syllogisms – in which 

the validity of the argument is crossed with the believability 

of the conclusion. In the validity discrimination task, 

participants are asked to judge whether the conclusion 

below the line necessarily follows from the premises above 

the line. Key findings based on arguments like these are that 

people are more likely to endorse valid than invalid 

arguments, but they are also more likely to endorse 

arguments with believable than with unbelievable 

conclusions. In many cases these factors also interact; for 

example, the difference between the acceptance rates of 

valid and invalid arguments is often greater for unbelievable 

than for believable arguments (e.g., Dube, Rotello, & Heit, 

2010; Evans, Barston, & Pollard, 1983; Newstead, Pollard, 

Evans, & Allen, 1992; Roberts & Sykes, 2003). 

 

Table 1: Sample syllogisms. 
 

 Believable  Unbelievable 

Valid No beers are krabbers.  No drinks are krabbers. 

 

Some krabbers are 

drinks. 

 Some krabbers are 

beers. 

 

Some drinks are not 

beers. 

 Some beers are not 

drinks. 

Invalid No drinks are krabbers. 
 

No beers are krabbers. 

 

Some krabbers are 

beers. 

 Some krabbers are 

drinks. 

 

Some drinks are not 

beers. 

 Some beers are not 

drinks. 

 

Such effects are often seen as evidence that believability 

affects the quality of deductive reasoning – people’s ability 

to distinguish valid from invalid arguments (see Dube et al., 

2010 for a review). Theoretical accounts such as the 

selective scrutiny model (Evans et al., 1983), misinterpreted 

necessity model (e.g., Markovits & Nantel, 1989; Newstead 

et al., 1992) or the mental models approach (e.g., Oakhill, 

Johnson-Laird, & Garnham, 1989) propose explanations in 

which believability affects how validity is evaluated.  

However, deciding whether an argument is valid also 

involves response bias – the willingness to endorse the 

argument, regardless of one’s ability to discriminate valid 

and invalid forms. Controversially, recent work has used 

confidence ratings and signal detection theory to show that 

belief bias only reflects changes in response bias. That is, 

people are more willing to respond “valid” for believable 

arguments (Dube et al., 2010; Trippas et al., 2014). In this 

view, believability does not change one’s subjective 

evaluation of argument validity. 

In reaction to this response bias account, it has been 

suggested that data patterns consistent with changes in 

response bias can also be explained by believability 

affecting the subjective strength of both valid and invalid 

arguments (Klauer & Kellen, 2011; Singmann & Kellen, 

2014). Under this alternative argument strength account, if 

an argument has a believable conclusion (whether valid or 
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invalid) then it will be viewed as more logically valid and 

thus garner more endorsements. 

In adjudicating between these accounts, a key 

consideration is that believability is usually manipulated 

within a single experimental session. The argument strength 

account is consistent with evidence that response bias is 

unlikely to change from trial to trial (e.g., Stretch & Wixted, 

1998). However, to our knowledge it is currently unknown 

how believability affects performance if instead it is 

manipulated between different groups of participants, where 

response bias is free to differ. As we explain below, we 

hypothesized that if the response bias account is correct then 

the same belief bias effects on model parameters should 

appear when believability is manipulated within groups and 

between groups (i.e., equivalent ordinal effects on response 

bias and no effects on discriminability).  

Given the important implications for theories of 

reasoning, we aimed to extend the investigation of response 

bias in deductive reasoning. We took three key steps. First, 

we sought to replicate the within-group findings of Dube et 

al. (2010) – including confidence ratings – that they used to 

support the response bias account. Second, we applied an 

extended signal detection model that was specifically 

tailored to the two-step task in which participants first make 

a binary valid/invalid decision, then rate their confidence. 

Our goal was to confirm whether such a model would still 

suggest that believability does not affect accuracy, but that 

the response bias or argument strength accounts are 

required. Third, to avoid the issue of whether response bias 

can change trial-by-trial, in a second experiment we 

manipulated believability between groups. Our goal was to 

examine whether the key effects generalized to this design, 

which would support the response bias account. 

To this end, in the following sections, we outline (a) how 

signal detection theory can be applied to deductive 

reasoning, (b) the novel two-step signal detection model, 

and (c) two experiments that manipulate believability within 

or between groups, to which we apply the model. 

Signal Detection Theory and Belief Bias 

Signal detection theory (SDT) is a useful framework to 

examine belief bias because it allows us to separate changes 

in discriminability (i.e., differentiating valid and invalid 

arguments) versus response bias (i.e., the “decision stage”; 

cf. Dube et al., 2010; Rotello & Heit, 2009). In this 

framework, arguments fall along a continuum of subjective 

argument strength, with distinct Gaussian distributions for 

valid and invalid arguments, as shown in Figure 1. The 

distance between the means of these distributions reflects 

how well people can distinguish valid and invalid 

arguments. People also set a response threshold along the 

continuum, endorsing any argument that exceeds it in 

strength (i.e., the tallest “Invalid”/”Valid” threshold in the 

figure). Thus the hit rate (endorsement rate for valid 

arguments) is given by the area under the valid distribution 

to the right of the threshold, and the false alarm rate 

(endorsement rate for invalid arguments) is given by the 

area under the invalid distribution to the right of the 

threshold. Two important ways that performance can change 

is by the threshold shifting (i.e., changes in response bias), 

and/or the valid distribution shifting relative to the invalid 

distribution (i.e., changes in discriminability or sensitivity).  
 

 
 

Figure 1: Standard signal detection model. 

 

Adding confidence judgments to the validity 

discrimination task allows for a more fine-grained analysis 

of changes in signal detection parameters. It is assumed that 

people set a response threshold for n-1 response options on 

the confidence scale – five are shown in Figure 1 for a six-

point confidence scale. Performance can then be examined 

using receiver operating characteristic (ROC) curves, which 

plot hit rates against false alarm rates at different confidence 

levels (see examples in Figure 2). Evidence for a difference 

in the discriminability of valid and invalid arguments would 

be suggested by points from two conditions falling on 

different curves. Better discrimination is suggested by ROC 

curves that fall further from the diagonal, towards the upper 

left – hit rates are higher relative to false alarm rates. In 

contrast, conventional evidence for a difference in response 

bias is suggested by points from two conditions falling on 

different positions along the same curve. A more lenient 

threshold is suggested by points sitting further towards the 

right, corresponding to both higher hit rates and higher false 

alarm rates. Signal detection models can be fit to ROC 

curves to test for changes in argument discrimination or 

response bias, which would be supported by reductions in fit 

due to constraining either the relative location of the valid 

distribution or the criteria, respectively. 
 

 
 

Figure 2: ROC curves from Dube et al. (2010). 
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An important but controversial result was reported by 

Dube et al. (2010), who compared and fit ROC curves for 

believable and unbelievable syllogisms like those in Table 

1. Their ROC model fitting showed that argument 

believability affected response bias but did not affect 

discriminability. Participants were simply more willing to 

endorse believable arguments (see Figure 2). This response 

bias account of belief bias is illustrated in the top panel of 

Figure 3. Here there are two distributions – one for invalid 

and one for valid arguments – but two sets of decision 

thresholds – a more lenient set for believable arguments, 

and a more conservative set for unbelievable arguments 

(only three criteria per set are shown, to avoid clutter). A 

similar account has been proposed for belief bias in causal 

conditional arguments such as modus ponens (Trippas et al., 

2014). 

However, this is not the only way to interpret overlapping 

ROC curves. The response bias interpretation has been 

contested because an alternative argument strength account 

is possible, as illustrated in the bottom panel of Figure 3 

(Klauer & Kellen, 2011; Singmann & Kellen, 2014). This 

approach assumes a single fixed set of decision thresholds, 

but four different distributions – distinct invalid and valid 

distributions for both unbelievable and believable 

arguments. Discriminability is assumed to be the same for 

believable and unbelievable arguments, but the believable-

valid AND believable-invalid distributions are shifted to the 

right (i.e., they are stronger on average). 

 
Figure 3: (a) The response bias account. There are fixed 

invalid (I) and valid (V) distributions. Criteria are shifted to 

the left for believable arguments (black lines) relative to 

unbelievable arguments (grey lines). (b) The argument 

strength account. There are fixed criteria. Invalid-believable 

(IB) and valid-believable (VB) distributions are shifted to 

the right, relative to the invalid-unbelievable (IU) and valid-

unbelievable (VU) distributions. 

Resolving this debate has been difficult because in many 

of the key studies (e.g., Dube et al., 2010; Trippas et al., 

2014), believability has been manipulated within a block of 

arguments. The response bias account assumes that people 

will shift their criteria on a trial-by-trial basis, depending on 

whether an argument is believable or unbelievable. 

However, this assumption is controversial. In the 

recognition memory literature, although trial-by-trial shifts 

in criteria are possible, it appears that often this does not 

occur (Rotello & Macmillan, 2007; Starns & Olchowski, 

2015; Stretch & Wixted, 1998). One way to address this 

issue is to manipulate believability between participants. 

Uncontroversially, different groups are then free to set 

different response criteria.  

In order to resolve whether belief bias is driven by 

changes in response bias or argument strength, we carried 

out two experiments and tested a new signal detection 

model of reasoning. Experiment 1 confirmed that we could 

replicate the ROC shifts found by Dube et al. (2010), with 

believability manipulated within-participants. In Experiment 

2, we investigated whether the same effects appeared when 

believability was manipulated between groups. If the 

response bias account is correct, then the same distributions 

of response strength for valid and invalid arguments should 

apply to those seeing only believable or unbelievable 

arguments (because there are only two distributions), but the 

groups will differ in response criteria. Therefore, we would 

see different hit rates and false alarm rates for the believable 

and unbelievable argument groups, replicating the Dube et 

al. (2010) ROC shifts and differences in the response 

criterion parameter based on model fitting.  

Alternatively, if the argument strength account is correct, 

then the pair of invalid and valid distributions would be in 

different locations for believable and unbelievable groups. 

However, each group would be free to set criteria relative to 

the locations of their invalid and valid distributions – each 

group has no reason to adopt criteria that are in different 

locations relative to their distributions. Therefore, we would 

see the same hit and false alarm rates for both groups, with 

no ROC shifts nor differences in the criterion parameter. 

Accurately testing the competing accounts of belief bias 

requires model fitting with a model that properly captures 

the task. Therefore, we extended the signal detection model 

developed by Dube et al (2010), to treat the valid/invalid 

decision and confidence judgments as two separate steps. 

As outlined below, this kind of model is more appropriate 

for the two-step task than a traditional signal detection 

model (Moran, Teodorescu, & Usher, 2015). We first 

present the model. We then report experiments using 

within- and between-participant manipulations of 

conclusion believability and fit the model to these data.  

Two-Step Signal Detection Model 

In the two-step validity discrimination task that we use, 

participants make a “valid”/”invalid” decision, and then rate 

their confidence. Despite the sequential nature of these 

judgments, in the standard procedure for generating 
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empirical ROC curves, data from the response categories are 

recoded to form a single scale with judgments that range 

from high-confidence “valid” to low-confidence “valid”, 

then low-confidence “invalid” to high-confidence “invalid” 

(e.g., Dube et al., 2010; Trippas et al., 2014). Typically, 

these ROC curves are then fit using the standard single-step 

SDT model that we outlined above, with a criterion 

parameter separating each adjacent pair of recoded 

confidence levels. However, visual inspection of these 

empirical ROC curves suggests that they differ from the 

smooth concave curve typically found – they instead exhibit 

a “hinge” or “elbow” where valid and invalid response 

categories join, as apparent in Figure 2, particularly for the 

unbelievable-ROC. In order to successfully model this 

feature, the standard SDT model was extended to 

incorporate changes in evidence accumulation and 

variability in the period between the initial validity 

judgment and the subsequent confidence judgment.   

The two-step SDT model is similar to a standard SDT 

model with the exception that confidence judgments are 

based on a noisy version of the evidence value on which the  
 

validity judgment was made. Let 
 ~ ,x N  

 be the 

strength of given argument. Let c be a decision criterion 

such that if x c , respond “valid”, else respond “invalid”. 

We propose that a confidence judgment is based on x*, a 

noisy memory trace of argument strength, x. That is,  
 

*x x x  , for 
 ~ ,x N  

. If 0   then additional 

argument strength is accumulated in the interval between 

the two decisions (cf., Moran et al., 2015). Suppose, there 

are k confidence categories labeled, in sequence, from most 

confident to least confident. Then, associated with these 

category labels is set of points on the strength continuum, 
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 then respond with the ith category label.  

The hypotheses of interest were primarily tested by 

comparing the fits of nested versions of this model using the 

likelihood ratio test. Although the response bias and 

argument strength accounts are formally identical for a 

traditional signal detection model, this is not strictly true for 

the two-step model. Therefore, both accounts can be tested 

when believability is manipulated within-participants. 

Experiments 

In two experiments, participants evaluated the validity of 

categorical syllogisms, which included logically valid and 

invalid arguments with believable or unbelievable 

conclusions in a 2x2 design. Experiments 1 and 2 

manipulated believability within- and between-groups, 

respectively. 

Method 

Participants. One-hundred-and-seventeen students (30 

males) at the University of New South Wales, Sydney, 

participated for course credit. Mean age was 18.8 years (SD 

= 2.3). Participants were randomly allocated to Experiment 

1 (N = 38) or one of the groups in Experiment 2 (believable 

N = 40, unbelievable N = 39).  

 

Stimuli. In Experiment 1, participants evaluated 64 

arguments across two blocks of 32 trials, with 16 believable 

and 16 unbelievable arguments per block – half of which 

were valid in each case. In Experiment 2, participants 

evaluated either 32 believable or 32 unbelievable arguments 

(half valid). 

Example stimuli are shown in Table 1. The arguments 

were based on those of Experiment 2 by Dube et al. (2010), 

and were constructed using their 16 syllogistic problem 

frames (e.g., All X are Y; Some Z are not Y; Therefore some 

Z are not X). Half were valid and half were invalid. Each 

problem frame had the conclusion structure, Some Z are not 

X (or Some X are not Z), and was assigned content involving 

a category-exemplar relationship (e.g., drinks-beers, dogs-

poodles, plants-weeds).  

Conclusion believability was manipulated by simply 

reversing the order of the category and exemplar (e.g., Some 

drinks are not beers vs. Some beers are not drinks). We 

verified the believability of the conclusion statements in a 

separate study by 34 people drawn from a similar population 

to the main experiments. Based on ratings on a 5-point scale 

(1 = unbelievable, 3 = neutral, 5 = believable), the 32 

statement pairs with the most extreme average ratings were 

selected from a set of 38 pairs (Believable: M = 4.95, SD = 

0.09; Unbelievable: M = 1.59, SD = 0.35). To minimize the 

effects of premise believability, the premises included a 

nonsense term (e.g., krabbers, junids). 

The semantic content was split into four subsets of eight 

category-exemplar pairs, so the content could be assigned to 

all four believability-by-validity conditions, 

counterbalanced across participants. Experiment 1 

participants (believable and unbelievable within-

participants) saw the category-exemplar content once per 

block and the 16 problem frames twice per block (once as 

believable and once as unbelievable versions), forming the 

64 arguments over two blocks. Content assignment was 

controlled for this group so that in the second block, each 

participant saw the same content in the same problem 

structures as in their first block, but with conclusion 

believability reversed. At the start of the second block, these 

participants were warned that there would be similar content 

but the specific arguments would be different. Experiment 2 

participants (believable-only and unbelievable-only groups) 

saw each category-exemplar content once and the 16 

problem frames twice, forming the 32 arguments.  

Before beginning the experiment, all participants received 

two valid and two invalid practice problems with abstract 

content (e.g., “All M are P…”) and different structures that 

were not included in the main task. 
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Procedure. Participants were shown the set of arguments in 

random order, presented one-by-one on a computer, with a 

line separating the conclusion from the premises. The 

instructions asked participants to assume that the premises 

were true and assess whether the conclusion logically 

followed from them. Valid arguments were defined as those 

for which the sentence below the line was necessarily true, 

given that the information above the line was true (and 

invalid = not necessarily true). Participants were told that 

the arguments would contain a nonsense word. A trial 

counter was presented at the top left corner of the screen. 

Participants clicked on either the “Valid” or “Invalid” 

button presented underneath a given argument, then rated 

their confidence on a scale that appeared, ranging from 50 

(Guessing) to 100 (Certain) in increments of ten.  

Results 

Both experiments replicated previously observed argument 

endorsement patterns and belief bias effects (see Table 2; 

e.g., Dube et al., 2010; Evans et al., 1983; Newstead et al., 

1992). Analysis of variance (ANOVA) revealed that 

participants endorsed (i.e., responded “valid”) valid 

arguments more often than invalid arguments: Experiment 

1, F(1, 37) = 64.28, p < .001, η2 = .35; Experiment 2, F(1, 

77) = 127.24, p < .001, η2 = .40. Participants endorsed 

believable arguments more often than unbelievable 

arguments: Experiment 1, F(1, 37) = 38.59, p < .001, η2 = 

.12; Experiment 2, F(1, 77) = 19.92, p < .001, η2 = .13. 

Notably, as shown in the Table, there was a larger 

difference between the acceptance rates of valid and invalid 

arguments for unbelievable than for believable arguments: 

Experiment 1, F(1, 37) = 5.50, p = .02, η2 = .01; Experiment 

2, F(1, 77) = 9.81, p = .002, η2 = .05.  

 

Table 2: Performance in Experiments 1 and 2. Hit rate is 

p(“Valid”|Valid); False alarm rate is p(“Valid”|Invalid). 
 

Experiment Condition Hit rate False alarm rate 

1 Believeable 0.83 0.56 

 Unbelievable 0.71 0.37 

2 Believeable 0.82 0.58 

 Unbelievable 0.75 0.34 

 

The ROC curves for each experiment are presented in 

Figure 4 (unfilled points). Both show effects that are 

consistent with shifts in response criteria and comparable to 

Dube et al. (2010; cf. Figure 2), although we used more 

confidence response options. In each experiment, the points 

for believable and unbelievable arguments fall on similar 

curves, though the believable points are shifted further to 

the top-right corner than the unbelievable points.  

We first fit an unconstrained two-step signal detection 

model to each experiment. As shown by the filled points in 

Figure 4, the predicted ROC points correspond reasonably 

well with the empirical results for both experiments, though 

there are some small departures for Experiment 1: 

Experiment 1, G2(12) = 22.54, p = .03; Experiment 2, 

G2(12) = 15.83, p = .20.  

 
 

 
 

Figure 4: Observed ROC curves (Obs) and expected scores 

from the unconstrained model (Exp), for Experiments 1 and 

2 (panels a and b, respectively). 

 

We compared this unconstrained model against two 

nested models: a constant discriminability model and a 

constant criterion model in which (respectively) 

discriminability or the “valid”/”invalid” decision criterion 

for the initial binary judgment was constrained across 

believable and unbelievable conditions. For both 

experiments, the fit of the constant discriminability model 

did not significantly differ from that of the unconstrained 

model: Experiment 1, G2(1) = 0.23, p = .63; Experiment 2, 

G2(1) = 0.001, p = .97. This shows that, in line with Dube et 

al. (2010), discriminability did not differ between 

believability conditions.  

The constant criterion model led to a reduction in fit 

compared to the unconstrained model: Experiment 1, G2(1) 

= 47.89, p < .001; Experiment 2, G2(1) = 77.75, p < .001. 

This indicates that, in line with the response bias account, 

the “valid”/“invalid” decision threshold differed between 

believability conditions. Importantly, this was true both 

when believability was manipulated within-groups 

(Experiment 1) and between-groups (Experiment 2). 

When a (non-nested) variant of the two-step model was 

applied to Experiment 1 that allowed the believable 

distributions to shift (i.e., the argument strength account), 

we found that it also provided a satisfactory fit to the data: 

G2(20) = 30.18, p = 0.07. In other words, an argument 
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strength account of belief bias could also explain the 

Experiment 1 data. Such a model cannot sensibly be applied 

to Experiment 2. Nevertheless, as we argued above, the 

response bias account can more readily explain belief bias 

effects that occur between-groups. 

Discussion 

We investigated whether belief bias effects in deductive 

reasoning could be explained as a response bias effect. 

Experiment 1 replicated the belief bias effects of Dube et al. 

(2010), with conclusion believability manipulated within-

block. We applied a new two-step signal detection model to 

better suit the two-step task, and confirmed that belief bias 

effects are consistent with a shift in response bias, rather 

than discriminability. Experiment 2 extended the same 

results to an equivalent task with believability manipulated 

between-groups. 

Under the response bias account (Dube et al., 2010; 

Trippas et al., 2014), this pattern is explained by a shift in 

decision threshold, such that there is a more lenient criterion 

for believable conclusions. Under the argument strength 

account (Klauer & Kellen, 2011; Singmann & Kellen, 

2014), the belief bias effect reflects higher mean strength for 

believable-valid and believable-invalid arguments than for 

unbelievable-valid and unbelievable-invalid arguments. 

It could be argued that participants in Experiment 1 were 

unlikely to change their criteria trial-to-trial for different 

levels of believability, favoring the argument strength 

account. However, this account would have difficulty with 

Experiment 2, where participants saw only believable or 

only unbelievable arguments. There, the two groups had no 

reason to position their criteria in different locations relative 

to their distributions. Thus if belief bias primarily reflects a 

change in argument strength, the belief bias effects should 

have disappeared. The fact that they did not suggests that 

the most plausible explanation of belief bias in the current 

data sets is a change in response bias.  

Therefore, addressing the debate between response bias 

and argument strength accounts of belief bias, we agree that 

believable conclusions are most likely to affect the decision 

stage, lowering the decision threshold rather than appearing 

more logically valid. Just as people may require stronger 

evidence to endorse that an unusual event occurred (Starns 

& Olchowski, 2015), it seems that people also require 

stronger evidence to endorse a syllogism with an 

unbelievable conclusion. As Dube et al. (2010) concluded, 

this is problematic for theories of reasoning that propose 

that believability affects the process of evaluating validity 

(e.g., Evans et al., 1983; Markovits & Nantel, 1989; 

Newstead et al., 1992; Oakhill et al., 1989). Future work 

should address whether the same findings generalize to 

other reasoning problems such as causal conditionals. 
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Abstract

Speakers can be taken to be committed to utterance con-
tent even when that content is contributed in the scope of
an entailment-canceling operator, like negation (e.g., Chier-
chia & McConnell-Ginet, 1990). We develop a probabilistic
model of this phenomenon, called ‘projection’, that relies on
the prosodic realization of utterances. We synthesize exist-
ing theoretical claims about prosody, information structure and
projection into a model that assumes a rational speaker (Frank
& Goodman, 2012) who produces utterances with prosodic
melodies that can signal which utterance content she is com-
mitted to. Predictions of the probabilistic model are compared
to the responses of an experiment designed to test the effect of
prosody on projection in manner adverb utterances. Key be-
haviors of the model are borne out empirically, and the quan-
titative fit is surprisingly good given that the model has only
one free parameter. Our findings lend support to analyses of
projection that are sensitive to the information structure of ut-
terances (e.g., Simons, Beaver, Roberts, & Tonhauser, 2017).
Keywords: Projection; prosody; information structure; proba-
bilistic pragmatics; rational speech acts; manner adverbs

Introduction
Projective content is utterance content that the speaker may be
taken to be committed to even when the content is introduced
by an expression in the scope of an entailment-canceling op-
erator (e.g., Chierchia & McConnell-Ginet, 1990). A speaker
who utters (1a) is taken to be committed to the content φ that
Sam is ill and to the content that Jo discovered φ. A speaker
who utters the negated variant in (1b) or the polar question
in (1c) is not taken to be committed to Jo having discovered
φ (rather, Jo’s discovery is negated or asked about), but the
speaker may still be taken to be committed to φ, that Sam is
ill. Hence, φ is projective content.

(1) a. Jo discovered that Sam is ill.
b. Jo didn’t discover that Sam is ill.
c. Did Jo discover that Sam is ill?

Simons et al. (2017) develop a question-based analysis of
the projection of the content of the complement of predicates
like discover according to which the speaker can be taken to
be committed to the content of the complement if it is entailed
by the Question Under Discussion (Roberts, 2012) that the
utterance is taken to address. This analysis correctly predicts
that whether the speaker is taken to be committed to the con-
tent of the complement depends on the prosodic realization of
the utterance (see Tonhauser, 2016, for empirical evidence).
For instance, if (1c) is uttered with prosodic prominence on
discover, as in (2a), where capital letters indicate prosodic
prominence, then the speaker is more likely to be taken to be
committed to the content of the complement than if (1c) is
uttered with prosodic prominence on ill, as in (2b).

(2) a. Did Jo DISCOVER that Sam is ill?

b. Did Jo discover that Sam is ILL?

This paper provides conceptual and empirical support for
the question-based analysis of projection from a novel em-
pirical domain: utterances with manner adverbs, like Masha
didn’t run quickly. To formalize the link between prosody,
information structure and projection hypothesized in Simons
et al. 2017, we develop a Rational Speech Act (RSA) model
(Bergen & Goodman, 2015; Frank & Goodman, 2012, and
many others) that predicts the projectivity of the so-called
prejacent (that Masha ran) from the prosodic realization of
manner adverb utterances. The model is evaluated based on
empirical observations about the projectivity of the prejacent.

Projective content in manner adverb utterances
In a manner adverb sentence, e.g., (3), a manner adverb like
quickly, beautifully or easily modifies the activity-denoting
verb. (3) entails that Masha ran (the prejacent). It has been
long observed that the prejacent can project and that the pro-
jectivity of the prejacent depends on the prosody of the utter-
ance (e.g., Abrusán, 2013; Simons, 2001). For instance, the
speaker of (4a), with quickly prosodically prominent, may be
taken to be committed to the prejacent even though the sen-
tence is negated. On the other hand, the speaker of (4b),
with Masha prosodically prominent, is not typically taken
to be committed to the prejacent, i.e., the prejacent does not
project. The speaker of (4b) may be committed to a different
content, namely that somebody ran quickly. For reasons of
space we only consider the prejacent here, though the formal
proposal extends to the projectivity of other content.

(3) Masha ran quickly.
(4) a. Masha didn’t run QUICKLY.

b. MASHA didn’t run quickly.

Simons et al.’s (2017) question-based analysis of projec-
tion accounts for the dependence of the projectivity of the
prejacent on prosody based on two independently made em-
pirical observations. The first observation is that information-
structural focus can be prosodically indicated in American
English (e.g., Eady & Cooper, 1986). Compared to non-
focused expressions in the same intonational phrase, focused
expressions are more likely to be realized with pitch accents,
a longer duration, an expanded pitch range and/or greater
intensity. Thus, the two manner adverb utterances in (4)
are compatible with different expressions being focused, as
shown in (5), where focus is marked by angle brackets sub-
scripted with ‘F’:

(5) a. Masha didn’t run [QUICKLY]F.
b. [MASHA]F didn’t run quickly.
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The focused expression is used to calculate the focus alter-
natives set of an utterance: following Rooth 1992, a focus
alternatives set of (5a) is the set of propositions of the form
‘Masha didn’t run x’, with x a modifier, and a focus alterna-
tives set of (5b) is the set of propositions of the form ‘x didn’t
run quickly’, with x an entity. Following Beaver and Clark
2008, we assume that alternatives can also be calculated un-
der negation: thus, another focus alternatives set of (5a) is the
set of propositions of the form ‘Masha ran x’, with x a mod-
ifier, and another focus alternatives set of (5b) is the set of
propositions of the form ‘x ran quickly’, with x an entity.

Importantly, the prosody of utterances merely constrains
what is focused but does not determine it. Thus, although the
prosodic realization of (4a) is not typically compatible with
the focus marking indicated in (5b), it is compatible with a
larger expression of the sentence being focused, as in (6).

(6) Masha didn’t [run QUICKLY]F.

The second empirical observation is that answer utterances
are congruent with the interrogative utterances they address
(e.g., Paul, 1880; Rooth, 1992; von Stechow, 1990). Con-
sider B’s utterance in (7a), and assume that B’s utterance is
realized with the so-called rise-fall-rise contour, which con-
sists of a rising pitch accent on quickly (L+H* in the ToBI an-
notation scheme, Beckman & Ayers, 1997) and a rising end
contour (L-H% in ToBI notation). When B’s utterance in (7a)
is realized with the rise-fall-rise contour, it is congruent with,
i.e., judged to be acceptable in response to, A’s interrogative
utterance in (7a). However, because of the placement of the
pitch accent on quickly, it is not congruent with A’s interrog-
ative utterance in (7b). Likewise, when B’s utterance in (7b)
is realized with the rise-fall-rise contour, it is congruent with
A’s utterance in (7b), but not with A’s utterance in (7a).

(7) a. A: How did Masha run?
B: Masha didn’t run [QUICKLY]F.

b. A: Who ran quickly?
B: [MASHA]F didn’t run quickly.

When B’s utterances are realized with the rise-fall-rise con-
tour, B indicates that their utterance does not provide a com-
plete answer to the question (see e.g., Wagner, 2012); instead,
B’s utterance only eliminates a possible true answer to the
question. A prosodically motivated model of projection must
take these contributions of contours into account.

In alternative semantics, question-answer congruence is
accounted for by assuming that a focus alternatives set of
a congruent answer includes the denotation of the question,
which is a contextually restricted set of propositions. For in-
stance, B’s answer in (7a) is congruent with A’s interroga-
tive utterance since the focus alternatives set ‘Masha ran x’
includes the set of propositions denoted by A’s utterance (a
subset of propositions of the form ‘Masha ran x’), but B’s an-
swer is not congruent with A’s interrogative utterance in (7b)
since the focus alternatives set ‘Masha ran x’ does not include
the set of propositions denoted by A’s utterance (a subset of
propositions of the form ‘x ran quickly’).

Importantly, in naturally occurring discourse, many ut-
terances are not made in response to an interrogative utter-
ance (an explicit question). Simons et al. (2017) assume that
such utterances address an implicit question: given question-
answer congruence, the focus marking of an utterance that
addresses an implicit question provides a cue to the ques-
tion that the utterance addresses (e.g., Halliday, 1967; Most
& Saltz, 1979; Roberts, 2012). The potentially implicit ques-
tion that is addressed by an utterance is called the Question
Under Discussion (QUD). It follows that the prosodic real-
ization of a manner adverb utterance provides listeners with
a cue to the focus of the utterance, which in turn provides a
cue to the QUD that the speaker was intending to address.
Thus, (5a) can be taken to address the QUD ‘How did Masha
run?’ and (5b) can be taken to address the QUD ‘Who ran
quickly?’:

(8) a. Possible QUD of (5a): {Masha ran quickly,
Masha ran slowly, Masha ran clumsily,. . .}

b. Possible QUD of (5b): {Masha ran quickly, Jack
ran quickly, Sue ran quickly,. . . }

To predict projection, Simons et al. (2017) make the fol-
lowing assumption:

(9) Projection under the question-based analysis:
Content φ of utterance U projects if φ is entailed by
each alternative in the QUD addressed by U .

The question-based analysis predicts that the prejacent is
more likely to project from (4a) than from (4b). If a speaker
utters (4a), with prosodic prominence on the manner adverb,
and the utterance is taken to have the focus shown in (5a),
then she can be taken by the listener to intend her utterance
to address the QUD ‘How did Masha run?’ in (8a). Since
each alternative in the QUD has the form ‘Masha ran x’, each
entails that Masha ran and so the prejacent is predicted by
(9) to project. On the other hand, if a speaker utters (4b),
with prosodic prominence on the subject, and the utterance is
taken to have the focus shown in (5b), she can be taken by
the listener to intend her utterance to address the QUD ‘Who
ran quickly?’ in (8b). Since each alternative in the QUD has
the form ‘x ran quickly’, the QUD entails that somebody ran
quickly, but not the prejacent, that Masha ran. Thus, the preja-
cent is not predicted by (9) to project from (4b). Importantly,
since prosody does not determine focus, but merely provides
listeners with a cue, and since focus does not determine the
QUD, but merely provides listeners with a cue, the question-
based analysis does not predict categorical (non-)projection
of the prejacent from (4a) and (4b), but merely that the preja-
cent is more likely to project from (4a) than (4b).

Modeling projection
For the purpose of modeling the link between prosody and
projection, we consider an utterance to be a sentence with a
melody. For the utterances considered here, a melody is the
combination of a single pitch accent (L+H*, H*, L*), aligned
with the stressed syllable of the accented word, and an end
contour (L-H%, H-L%, L-L%). Our model considers pitch
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accent positions either on the adverb, the verb, the negated
auxiliary or the subject of the sentence. For example, L+H*
L-H%, with the L+H* realized on the first syllable of quickly
may be the melody of the manner adverb utterance in (4a).
We develop a probabilistic model of projection based on the
assumption of a ‘rational speaker’, who chooses a melody
for a given sentence to most effectively signal the identity
of the QUD that an utterance of the sentence is intended to
address. Following the basic framework of the RSA model,
we begin by developing a notion of speaker utility, which is
taken to be the ‘usefulness’ of a melody for a given sentence
as a signal of which QUD is being addressed by the speaker’s
utterance. More concretely, the utility of a melody M for a
given sentence and a target QUD Q, is the probability that
a hearer would randomly select Q, given that the sentence
was uttered with melody M, and given what the hearer knows
about the compatibility between M and possible QUDs. We
define this utility as follows, where QM is the set of possible
QUDs addressed by the given sentence that are compatible
with M:

(10) U(Q,M) = 1
|QM | if Q ∈ QM , else 0

To define what it means for a melody for a given sentence to
be compatible with a QUD, we draw on the following inde-
pendently motivated sets of assumptions from the prosody-
pragmatics literature:
• Assumption A – Compatibility of pitch accent with focus:

A pitch accent on expression X is compatible with focus
on X or a constituent that contains X and an immediately
adjacent expression (e.g., Selkirk, 1996).

• Assumption B – Compatibility of focus with QUD:
The QUD that is addressed by the utterance must be con-
gruent with the focus marking of the utterance (Beaver &
Clark, 2008, 45).

• Set of assumptions C – Compatibility of pitch contour with
QUD:

1. Pitch contours that lack a final fall (L-L%) and con-
tain either an L+H* pitch accent or a continuation
rise (L-H%)—H* L-H%, L+H* L-H%, L* L-H% and
L+H* H-L%—are only compatible with incomplete an-
swers to the QUD, i.e., answers that do not pick out a
single true alternative (see e.g. Lai, 2012; Wagner, 2012,
for evidence that L+H* and L-H% signal that the QUD
has not been completely answered).

2. Pitch contours that either (i) have a final fall, or (ii)
have neither an L+H* pitch accent nor continuation rise
to suggest incompleteness—H* L-L%, L+H* L-L%,
L* L-L%, H* H-L% and L* H-L%—are only compat-
ible with complete answers to the QUD.

For any melody-QUD pair 〈M,Q〉 for a given sentence, these
assumptions can be used to generate the set QM and therefore
determine the utility of using M to signal Q.

Adopting an RSA-based view, we posit a rational speaker
who chooses melodies to maximize utility, i.e., maximize
the chance that listeners retrieve the QUD intended by the

speaker, though the maximization is approximate, i.e., there
still remains some probability of choosing a non-rational
(non-utility-maximizing) melody. This is accomplished by
setting the probability PS of the speaker producing a melody
M given a QUD Q equal to a soft max function of U(Q,M).
The soft max function approximates utility maximization us-
ing a rationality parameter, λ, where higher values of λ re-
sult in lower probability of a non-rational melody being cho-
sen. Thus, in cases where there is a single utility-maximizing
melody, the probability of selecting that melody will ap-
proach 1 as λ increases. The formula for PS is given below,
where M′ is any member of the set of possible melodies the
speaker could use:

(11) PS(M|Q) = eλU(Q,M)

∑

M′
eλU(Q,M′)

We use Bayes’ rule to determine the probability PH of the
hearer deciding that the QUD is Q given that she has heard
the sentence uttered with melody M:

(12) PH(Q|M) = PS(M|Q)×P(Q)
∑

Q′
PS(M|Q′)×P(Q′)

The denominator in this equation is a sum of probabilities
over all possible QUDs Q′, i.e., the set of QUDs that are
compatible with any of the melodies we assume could have
been used to utter the sentence. For instance, given the sen-
tence Masha didn’t run quickly, the set of all QUDs compat-
ible with some melody for that sentence includes ‘Who ran
quickly?’, ‘Did Masha run quickly?’, ‘What did Masha do?’,
‘What did Masha do quickly?’ and ‘How did Masha run?’, as
well as the corresponding QUDs with negation (‘Who didn’t
run quickly’, etc.). For current purposes we assume a uniform
prior probability distribution over QUDs.

We use PH to calculate the probability that the prejacent
of a manner adverb sentence uttered with melody M projects,
i.e., that the speaker is taken to be committed to the prejacent.
Recall that under assumption (9) from Simons et al. 2017,
content projects if it is entailed by the QUD. For manner ad-
verb sentences, the only QUD that entails the prejacent is the
set of alternatives obtained by abstracting over the manner ad-
verb (e.g., {Masha ran x | x is a modifier} entails that Masha
ran, as discussed above). We call the prejacent φ, and the
prejacent-entailing QUD Qφ. The probability of φ projecting,
given melody M, is the probability of the hearer assuming Qφ

given M:

(13) P(PROJECT(φ)|M) = PH(Qφ|M)

The link between Qφ and projection is not probabilistic—it is
a categorical consequence of the theory set forth in Simons
et al. 2017 (see (9)). The probabilistic character of the model
results from the fuzzy link between prosodic melodies and
the implicit questions that utterances with those melodies are
taken to address. The hearer must determine how likely it
is that Qφ is the intended QUD, based on how the speaker
selects melodies to convey the QUD she intends to address.
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This model operates over the possible melodies that the
speaker could use and considers those possibilities when cal-
culating the probability of the projection of the prejacent. To
test the model, we examine the model’s predictions for two
particular melodies and compare those predictions to experi-
mental results. The next section provides information on the
two melodies and how their effect on the projection of the
prejacent was assessed experimentally.

Experiment methodology
Using the method of Tonhauser 2016, participants listened
to audio recordings of manner adverb utterances and judged
whether the speaker was certain of the prejacent.

Participants. We recruited 100 self-reported native speak-
ers of American English on Amazon’s Mechanical Turk plat-
form.

Stimuli. Each participant listened to 16 utterances—10 target
utterances and 6 fillers. The target sentences were all of the
form, “subject didn’t verb adverb”, where each adverb was a
manner adverb, and where each subject was a proper name.
The target sentences were:

(14) a. Amanda didn’t clap loudly.
b. Jennifer didn’t drive carelessly.
c. Elizabeth didn’t leave silently.
d. Linda didn’t write neatly.
e. Susan didn’t sing beautifully.
f. Jerry didn’t knock frantically.
g. Justin didn’t smile cheerfully.
h. Alexander didn’t sneeze softly.
i. Tyler didn’t lie deliberately.
j. Dennis didn’t win easily.

The filler items were:

(15) a. Sandy wasn’t invited to the party.
b. Did Mario bring a chocolate cake?
c. Who knows if Maggie is at the party?
d. Mike forgot to bring the ketchup.
e. Paul loves that pie!
f. Mandy was out gardening in the yard.

Each target sentence was uttered with one of two possible
melodies, L+H* L-H% with the pitch accent on the adverb
(the LH-Adverb condition), or L+H* L-H% with the pitch
accent on the proper name subject (the LH-Name condition).
Fillers were pronounced with pitch accents on words other
than the subject noun, and contained a variety of pitch accent
and end tone types not used in the target utterances.

In addition to exposing participants to melodies other than
the ones used for the target items, filler utterance-question
pairs tested whether participants comprehended direct con-
sequences of an action described by the speaker. For exam-
ple, the utterance, Mike forgot to bring the ketchup was fol-
lowed by the question, ‘Is Debby certain that Mike brought
the ketchup?’. Given that Debby’s utterance implies that
Mike forgot the ketchup, participants were expected to rate
the speaker as “not certain”, but to reliably respond in this

Figure 1: A screenshot of one experimental item.

way requires attention to the meaning of the utterance as well
as its component words.

Each participant was assigned to one of two lists, where
the two lists contained the same sentences but were counter-
balanced for prosodic condition. The same 6 fillers occurred
on both lists.

Procedure. Participants were instructed to imagine them-
selves at a party, where they overhear Debby, the host, ut-
ter various sentences to somebody else. For each of the 16
utterances, the participant was asked to rate on a 7-point Lik-
ert scale labeled at 4 points (1/“No, not certain”, 3/“Possibly
not certain”, 5/“Possibly certain”, 7/“Yes, certain”) whether
Debby was certain of some content based on what she said
and how she said it. On each trial, participants were presented
with a display as in Fig. 1, clicked the audio icon, heard an ut-
terance, read the related question, clicked on the radio button
that corresponded to their chosen response, and clicked the
‘continue’ button to proceed to the next trial. For the target
item shown in Fig. 1, the utterance was Amanda didn’t clap
LOUDLY, and the participant was asked to rate the speaker’s
certainty about the prejacent, i.e., ‘Amanda clapped’.

Data exclusion. If participants answered more than one filler
incorrectly (an answer greater than 3 on the Likert scale for
something that Debby would be uncertain about or an answer
smaller than 5 for something that she would be certain about),
their responses were excluded from analysis. We excluded 28
participants on these grounds, leaving 72 participants whose
responses we analyzed. Whether these participants are ex-
cluded does not change the main effect of condition on re-
sponse.

Model predictions
If participants take Debby to be committed to the truth of φ,
we expect them to respond that Debby is certain that φ. If
Debby is not taken to be committed to the truth of φ, we ex-
pect participants to respond that Debby is not certain that φ.
However, we do not expect mean responses at the extreme
ends of the 7-point Likert scale, because it is possible for par-
ticipants to exhibit uncertainty about whether Debby is com-
mitted to φ. Participants can therefore give a response in the
mid-range of the scale. To directly compare our model’s pre-
dictions to the experimental results, we use the model to pre-
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Figure 2: Model predictions about the extent to which listen-
ers take the speaker to be certain of the prejacent, given the
two melodies. The x-axis represents the λ-parameter, which
encodes the degree to which the predictions reflect utility-
maximizing reasoning. The y-axis is mapped to a 7-point
scale to parallel the experimental task.

dict participants’ probabilistic evaluation of whether Debby
is certain that φ. The probability P(φ|M) is the probability
that Debby is certain that φ, given M. This is expected to be
1 when the participant takes φ to project based on M—which
occurs with probability P(PROJECT(φ)|M). When the partic-
ipant does not take φ to project based on M, we expect some
baseline uncertainty about whether Debby is committed to φ,
which we encode as a prior probability P(φ). We thus define
P(φ|M) as follows:

(16) P(φ|M) =P(PROJECT(φ)|M)×1
+P(¬PROJECT(φ)|M)×P(φ)

To account for the fact that our stimuli do not provide any
prior evidence (i.e., evidence apart from the manipulated
prosody) for whether the speaker is committed to φ, we take
P(φ) to be uniform, i.e., equal to 0.5. Assuming a uniform
prior over φ maintains a model with only one free parameter,
the rationality parameter λ, and makes the model more infor-
mative by limiting the range of predictions that it can make.

Fig. 2 shows the model predictions1 as λ increases to 10
(a relatively high value given ones used in the literature).
We see that the modeled participant responses in the two
prosodic conditions LH-Adverb and LH-Name diverge rather
shallowly, predicting significantly higher certainty in the LH-
Adverb condition, but not by a huge margin. The model
predicts that projection in the LH-Adverb condition, though
higher, will not be at ceiling. This is because utterances in
the LH-Adverb condition are not only compatible with the
prejacent-entailing QUDs but also with QUDs that do not en-
tail the prejacent, and thus the probability of projection never
exceeds fifty percent (4 on the Likert scale), even for high
values of λ.2

1Model-generated probabilities are mapped onto a 7-point scale
with the following formula: RATING = 1+6∗P(φ|M).

2The Python code used to implement the model can be down-
loaded at https://github.com/jonscottstevens/Prosody-Projection.
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Figure 3: Responses by prosodic condition. Violin plots show
frequency of participant means. Bar plots show overall means
with 95% bootstrap confidence intervals.

Experiment results
The experimental results are shown in Fig. 3. Mean Likert
scale response in the LH-Adverb condition was 5.7, com-
pared to 4.8 in the LH-Name condition. This difference is
in the expected direction: participants rated Debby as being
less certain of the prejacent when the pitch accent was on the
subject than when it was on the manner adverb. A mixed-
effects ordinal regression model with random intercepts for
participant and item and random slope for participant shows
responses to be significantly lower in the LH-Name condi-
tion than in the LH-Adverb condition (β=−1.13, SE = 0.24,
z =−4.68, p < 0.0001).

The model predictions in Fig. 2 are in line with the experi-
mental results shown in Fig. 3 in three key ways:

1. The model correctly predicts a significant difference in
mean responses between the two conditions, with the LH-
Adverb items showing higher certainty ratings.

2. The model correctly predicts the magnitude of this differ-
ence to be rather small (within about one point on the Lik-
ert scale).

3. The model correctly predicts that even in the LH-Adverb
condition, where projection is expected, the ratings are not
at ceiling.

Thus, three qualitative experimental behaviors are accounted
for by our RSA model, which builds on existing theoretical
assumptions about the links between prosody, the QUD and
projection, and incorporates those assumptions into a proba-
bilistic pragmatic model.

The quantitative match with the model’s predictions is
not exact—certainty is a bit higher across the board than
predicted—but as we see in Fig. 4, it is not far off, either.
We would expect a more exact match if we experimentally
obtained priors over the hearer’s evaluation of the speaker’s
certainty for the various sentences used (instead of assuming
a uniform prior of 0.5), a possible task for future research.

Discussion
This paper showed that the question-based analysis of pro-
jection developed in Simons et al. 2017 can be extended to
manner adverb utterances and formalized in an RSA model.
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Figure 4: Model predictions by λ value (blue), along with the
experimentally observed means (black).

The experimental findings empirically support the predictions
of the model and, hence, the question-based analysis of pro-
jection. They also add to the growing empirical evidence that
formal analyses of projection, including conventional trigger-
ing analyses (e.g., Heim, 1983; van der Sandt, 1992), need
to be sensitive to information structure (e.g., Beaver, Roberts,
Simons, & Tonhauser, 2017; Tonhauser, 2016). Finally, the
RSA model demonstrates the feasibility of formal pragmatic
analyses of projection.

Future research needs to investigate the predictions of the
model for other projective contents of manner adverb utter-
ances, other prosodic realizations of such utterances, and the
projective contents of other utterances. We also observed that
the influence of prosody on the projectivity of the prejacent
was heterogeneous across items. This observation suggests
enriching the model with information about listeners’ prior
expectations about the prejacent, e.g., about how likely some-
body is to smile given that they didn’t smile cheerfully.
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Abstract

Finger  gnosis (the ability to identify which finger  has been
touched) and magnitude comparison (the ability to determine
which of two numbers is larger) are surprisingly correlated.
We present a spiking neuron model of a common component
that could be used in both tasks: an array of pointers.  We
show that if the model's single tuned parameter is set to match
human accuracy performance in one task, then it also matches
on the other task (with the exception of one data point).  This
provides a novel explanation of the relation, and proposes a
common component that could be used across cognitive tasks.

Keywords: finger  gnosis;  magnitude  comparison;  spiking
neurons; neural engineering framework, numerical cognition

Introduction

Finger gnosis, the ability to differentiate which finger has
been touched,  in absence of visual feedback,  is  related to
math  performance  (Fayol,  Barrouillet  &  Marinthe,  1998;
Noël, 2005; Penner-Wilger et al., 2007, 2009, 2014, 2015).
Finger  gnosis  is  commonly  measured  using  a  finger
localization  task  (Baron,  2004;  Noël,  2005),  wherein  the
participant’s  hand  is  occluded  from  their  view  while  a
finger, or two fingers, are touched. The participant is then
asked  to  indicate  the  touched  finger(s).  Performance  is
measured in terms of number of fingers correctly identified. 

Finger gnosis ability predicts performance on a variety of
math  measures  in  children,  both  concurrently  and
longitudinally (β’s range from .22 to .36; Fayol et al., 1998;
Noël,  2005;  Penner-Wilger  et  al.,  2007,  2009).  Finger
gnosis ability also predicts performance on a variety of math
measures  in  adults  (β’s  range  from  .21  to  .30;  Penner-
Wilger  et  al.,  2014,  2015).  The  relation  between  finger
gnosis and math skill is reproducible across labs, different
samples,  age  groups,  and measures  of  math skill,  despite
controlling  for  many  other  variables  (e.g.,  visuo-spatial
working memory, finger agility, processing speed, and non-
verbal IQ).

The  relation  between  finger  gnosis  and  math  skill  is
partially  mediated  by  symbolic  number  comparison
performance  (Penner-Wilger  et  al.,  2009,  in  prep.).  In
symbolic number comparison tasks, participants are shown
two digits (e.g., 2  3) and asked to indicate which number is

more (or in some variants asked to compare a target digit to
a standard). One robust finding in number comparison is the
distance  effect  – performance is faster  and more accurate
when numbers are father apart in magnitude (e.g., 2  7) than
when  they  are  closer  together  (e.g.,  2   3;  Moyer  &
Landauer, 1967). The distance effect is proposed to reflect
mapping between numerals and their associated magnitude,
with  greater  distance  effects  reflecting  noisier  mappings
(Dehaene,  Dehaene-Lambertz  & Cohen,  1998;  cf.  Lyons,
Nuerk  & Ansari,  2015).  Children  who  perform  better  in
finger  gnosis,  reflecting  a  more  precise  finger
representation, also demonstrate smaller distance effects in
number  comparison,  reflecting  a  more  precise  number
representation (Penner-Wilger et al., 2009).  

Why are finger gnosis and math performance, specifically
a  task  indexing  the  precision/strength  of  number
representations, related? On the redeployment view (Penner-
Wilger  &  Anderson,  2008,  2013),  the  relation  between
finger gnosis and number representation arises because the
two tasks use overlapping neural substrates. On this view,
the relation is an example of  neural reuse, the use of local
regions  of  the  brain  to  support  multiple  tasks  across
domains (Anderson, 2010, 2014). Neural reuse is a dynamic
process, impacting the functional organization of the brain
across both evolutionary and developmental time, whereby
individual regions of the brain contribute to multiple high-
level  uses  (e.g.,  finger  representation  and  number
representation).  There  are  two  forms  of  neural  reuse:
redeployment  and  neuromodulation.  In  redeployment,  the
same  brain  region  supports  multiple  uses,  across
evolutionary and/or developmental time, while maintaining
the same operation (Anderson, 2014).  In neuromodulation,
the same brain region supports multiple uses, at any given
point in developmental time, without maintaining the same
operation – its operation is modulated as a result of internal
or  external  variables  (Anderson,  2014;  Bargmann,  2012;
Marder,  2012).  The  redeployment  view  posits  that  the
behavioural link between finger and number representations
is at least partially explained by neural reuse, and that the
specific  type  of  neural  reuse  involved  is  redeployment.
Thus, one (or more) local brain regions, over evolutionary
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and/or developmental time, has come to perform the same
operation in support of both uses.

In support of the redeployment view, regions associated
with finger gnosis are activated during tasks requiring the
representation  of  number  (Andres,  Michaux  &  Pesenti,
2012; Dehaene et al., 1996; Zago et al., 2001), rTMS and
direct  cortical  stimulation  disrupt  both  finger  gnosis  and
tasks  requiring  the  representation  of  number  (Rusconi,
Walsh, & Butterworth, 2005; Roux et al., 2003), and there is
interference between tasks involving finger gnosis and tasks
requiring  the  representation  of  number  (Brozzoli  et  al.,
2008).   Zago et al. (2001) pinpointed a region of overlap
between  finger  and  number  representation  in  the  left-
precentral gyrus (-42, 0, 38). Penner-Wilger and Anderson
(2011)  conducted  a  meta-analysis  of  imaging  data  to
determine the full complement of tasks, across domains, that
this  ROI was  implicated  in,  with  the  goal  of  identifying
common requirements across tasks/uses to guide structure-
function  mapping.  In  addition  to  number  and  finger
representation tasks, the ROI was implicated in generation,
inhibition and order  tasks.   Common requirements  across
these  uses  were  identified,  including  ordered  storage  and
mapping,  and  a  candidate  working  that  could  implement
both  these  requirements  was  proposed  –  an  array  of
pointers.  An  array  is  an  ordered  group,  meeting  the
requirements  for  ordered  storage,  and  a  pointer  is  a  data
structure that designates a memory location and can indicate
different data types.  Thus, an array of pointers allows for
storage and access of ordered elements, which are able to
point to—or index—representations or locations in memory,
allowing  for  mapping  between  different  representational
forms. 

The  neural  overlap  between  finger  and  number
representation could reflect redeployment, wherein the brain
region  is  reused  in  both  tasks  while  retaining  the  same
operation.  Alternatively,  the  overlap  could  reflect
neuromodulation,  wherein  the  operation  of  the  region  is
modulated.  In  the  current  paper,  we  use  computational
modelling as a means of demonstrating whether  the same
proposed working –an array of pointers— could contribute
to both number and finger representation. The goals of the
current research are to evaluate the redeployment view and
proposed shared  working by (1)  providing an in-principal
demonstration  that  the  same  working  could  contribute  to
both uses, (2) determining the psychological plausibility of
the model by comparing it to human performance on finger
gnosis and number comparison tasks, and (3) differentiating
between  support  for  redeployment  (same  ROI,  same
working)  over  neuromodulation  (same  ROI,  but  different
working). 

Common Component: A Cognitive Pointer

The core theoretical claim here is that both finger gnosis and
magnitude comparison could plausibly make use of a neural
system that is able to store a list of items, and each of those
items  can  be  used  to  indicate  other  information.   For
example, these items could mean a particular number (e.g.

ONE  or  THREE)  or  they  could  mean  any  other  known
concept.  For the purposes of this paper,  we choose these
vectors  randomly,  but  we  could  use  other  vector-based
representation methods such as LSA or word2vec.

To be explicit about what we mean by such a system, let
us define it mathematically.  First, we need a (small) set of
numerical values which are our “pointers”: p1, p2, p3, p4, and
p5.  For the purposes of this paper, we keep the size of this
set to 5 (the number of fingers on a hand).  Each of these
pointers is a numerical vector, and different values can have
different meanings.  For example, there could be one value
that  means  the  number  ONE,  with  other  values  meaning
other concepts like DOG.

In the absence of input, these pointers should not change
their value.  However, we also need some way of changing
their value when needed.  For this, we need two things: a
new  input  value  x and  a  way  to  indicate  which  pointer
should be set to the new value.  This input control we call a
mask m and it is a list of values indicating which pointer
should be set.  For example, if m=[0,1,0,0,0], then the input
x will be set to the second pointer p2.

Mathematically,  we  can  write  this  as  follows,  where  i
indexes the different pointers:

(1)
We postulate  that  the  two tasks  use  this  component  as

follows.  For the finger gnosis task, consider what happens
if  two fingers  are  touched,  the  index  finger  and the  ring
finger.  We can treat each pointer as a separate finger, and
load  in  a  vector  that  means  TOUCHED  into  the  correct
pointers by setting x=TOUCHED and m=[0,1,0,1,0].

For  the  magnitude  comparison  task,  we  load  the  first
value  into  the  first  pointer  and  the  second  value  in  the
second pointer.   For  the  case  of  comparing  5  and 7  this
means  setting  x=FIVE  and  m=[1,0,0,0,0],  and  afterwards
setting  x=SEVEN  and  m=[0,1,0,0,0].   Over  time,  this
process proceeds stepwise as follows, and maintains its state
as shown:
Finger Gnosis Task

x m p1 p2 p3 p4 p5
-- 00000 -- -- -- -- --

TOUCHED 01010 -- TOUCHED -- TOUCHED --
-- 00000 -- TOUCHED -- TOUCHED --

Magnitude Comparison Task

x m p1 p2 p3 p4 p5
-- 00000 -- -- -- -- --

FIVE 10000 FIVE -- -- -- --
SEVEN 01000 FIVE SEVEN -- -- --

-- 00000 FIVE SEVEN -- -- --

Neural Implementation

While  the  above  algorithm  gives  us  a  conceptual
understanding of this array of cognitive  pointers,  we also
want to determine how neurons could implement such an
algorithm.  By examining this neural  mechanism, we can
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gain  insights  into  how  accurate  it  would  be  in  different
conditions,  and  hopefully  gain  insight  into  individual
differences and cognitive deficits.

For our neurons, we use standard leaky-integrate-and-fire
(LIF) neurons.  These increase in voltage given their input,
and  emit  a  spike  and  reset  when  the  voltage  reaches  a
threshold.  These spikes are transmitted to all neurons that
the spiking neuron is connected to, with synaptic weights
controlling  how much  current  is  added  to  (or  subtracted
from)  the  target  neuron  each  time a  spike  occurs.   Each
connection  also  has  a  post-synaptic  time  constant  that
controls the time it takes for a spike's effect to decay away.

Figure 1: Neural implementation of an array of pointers.
Only two pointers are shown.

Figure 1 shows the basic approach used to implement this
functionality.  The groups of neurons on the right store the
individual pointer values  p1,  p2,  etc.  They are recurrently
connected such that they will have stable firing patterns over
time (i.e. whatever pattern of firing is present right now will
cause a similar firing pattern in the near future).

The  connections  from  x to  the  channels  and  from  the
channels  to  the  pointers  are  all  set  such that  the neurons
simply pass along the value without altering it.  That is, if
we input a particular  value  x,  this will  cause a particular
(and  unique)  firing  pattern  in  channel  1  and  channel  2.
These in turn will cause particular firing patterns in pointer
1 and pointer 2.  If  x is removed (i.e. set to zero), then the
pointer  patterns  will  stay  as  they  were.   Thus,  they
implement a memory of previously presented patterns.

However, we also want to be able to selectively set one or
the other pointer.   For this reason, we also include the  m
(mask)  input.   This  can  selectively  inhibit  the  channel
neurons.  If these are inhibited, then they do not fire, and so
do not affect the pointer neurons.  So, if we want to set the
value in pointer 2 only (and not change whatever is stored in
pointer 1), then we inhibit channel 1 when inputting x.

To  actually  create  this  network,  we  use  the  Neural
Engineering Framework (Eliasmith & Anderson, 2003) and
the software toolkit Nengo (Bekolay et al., 2014).  In this
approach,  we  assume  that  x is  a  vector  of  some
dimensionality that is smaller than the number of neurons in
a group.  This means that there is redundancy in the neural
code,  and  the  value  x is  distributed  across  the  neural
population.   Here,  for  simplicity,  we  assume  x is  an  8-
dimensional vector.  Previous work (Crawford, Gingerich &
Eliasmith, 2013) has shown that 512-dimensions should be
sufficient for high-level  reasoning applications,  but that is
not needed for the tasks considered here.

Within each group of 400 neurons, each individual neuron
has  a  randomly  chosen  preferred  vector.   That  is,  each
neuron will have some particular  x value for which it fires
the fastest.  This is a generalization of the standard preferred
direction  vectors  observed  throughout  cortex  (e.g.
Georgopoulos et al., 1986).

To generate the actual connections between neurons, the
NEF uses least-squares  minimization to  directly solve for
the optimal synaptic connection weights that will do the best
job of transferring a value  x from one group to the next.
This  same  process  is  used  to  generate  the  recurrent
connections for the pointers.

The synaptic time constants were set to 10ms for the feed-
forward  connections  (based  on  the  fast  AMPA  synapses
found in cortex) and 100ms for  the recurrent  connections
(based on the slower NMDA synapses  found in recurrent
connections in cortex).

It should be noted that there is nothing in the model so far
that  is  fit  to  a  particular  task.   The  optimization  of  the
connection  weights  is  over  all  possible  x values,  not  the
particular x values that mean ONE or TWO or TOUCHED
in  the  magnitude  comparison  and  finger  gnosis  tasks
themselves.  This is meant to be a generic component, not
one that is specialized for exactly these tasks.

Figure 2: Spiking activity for an example magnitude
comparison task.  Top row shows input to the model.  Other

rows show spiking neuron activity over time.  The text
indicates which vector x is represented by the pattern of
activity.  Note that pointer 1 and pointer 2 maintain their
pattern (approximately) after the input has been removed.

Figure  2  shows  the  neural  activity  when  this  array  of
pointers is used to store two numbers.  Initially, both pointer
1 and pointer 2 are  firing with some random background
firing rate.  At t=0.2s, we set the input x to be the vector for
FIVE (randomly chosen) and set the mask such that channel
1 is  the  only group  not  being  inhibited.   This  drives  the
neurons in pointer 1 to also fire with the pattern for FIVE.
At t=0.4s, we change the input to SEVEN and change the
mask so that channel 2 is not inhibited.  This drives pointer
2 to represent SEVEN.  Importantly, after x is removed, the
neurons in pointer 1 and pointer 2 retain their firing pattern.
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While  the  system  described  above  behaves  as  desired,
note that it  is not perfect.   The neurons in channel 1 and
channel 2 are not perfectly inhibited. Also, the neurons in
pointer 1 and pointer 2 do not perfectly maintain exactly the
desired firing pattern.  This is as expected, as neurons only
approximate  the  desired  functions.    We  can  now  test
whether the resulting model can still perform the two tasks,
and  whether  the  errors  made  by  the  model  due  to  these
imperfections are comparable to the errors made by people.

Task 1: Magnitude Comparison

The first  task believed to make use of  this component  is
magnitude  comparison.   Two  single-digit  numbers  are
presented, and the system must decide which is larger.  

To implement this task neurally, we add two new neural
groups.  First, a comparison group, which takes as input the
vectors in the first two pointer populations.  This means that
the comparison group has a 16-dimensional input, with the
value from p1 as the first 8 dimensions and the value from p2

as  the  second  8  dimensions.   Second,  we  have  an
accumulator.   This  takes  as  input  a  single  number  which
should be positive if the first number is larger, and should
be  negative  if  the  second  number  is  larger.   This  is
recurrently connected to itself, so that even for small inputs,
it  will  eventually  build  up  until  it  reaches  a  threshold,
making  it  a  standard  accumulate-to-threshold  decision-
making system.

Figure 3: The magnitude comparison model.  The dotted
area indicates the array of pointers.

 

The connection  between the comparison  and accumulator
neurons  needs  to  convert  from  16  dimensions  (the  two
numbers being presented) to 1 dimension (which number to
choose).   We implement this function by generating 2000
training examples of randomly chosen digits, along with the
correct answer of +1 if the first number is larger, and -1 if
the second number is larger.  We then used Nengo to find
the optimal  connection  weights  between these neurons  to
best approximate this mapping.

To evaluate this model,  we collected human participant
data from 88 undergraduate  students at  King’s  University
College  who received  course-credit  for  their  participation
(age: M=21.28 years, SD=3.8 years; 64 female).  Two single
digit  numbers  (ranging  from  1  to  9)  were  presented
simultaneously on an iPad screen. Participants were asked
to  choose  the  numerically  larger  number  as  fast  as  they
could without making any errors. Stimuli remained on the
screen for 7800ms or until  the participant made a choice,
and  the  time  between  trials  was  1000ms.  Participants
performed  a  total  of  72  trials.  Dependent  measures  were
reaction time and percent error.

Figure 4: Results from participants and from the model.
Standard errors of the mean are shown.

 

The  participant  data  (Figure  4)  displays  the  expected
distance  effect:  as  the  difference  between  the  digits
increases,  accuracies  improve  and  reaction  times  are
quicker.   For confirmation,  a  repeated  measures  ANOVA
with  a  Greenhouse-Geisser  correction  revealed  that  mean
RTs  differed  significantly  between  distances,  F(4.41,
383.91)  =  46.96,  p  <  .01.  A  second  repeated-measures
ANOVA  revealed  that  mean  percent  error  also  differed
significantly between distances, F(7, 609) = 21.37, p < .01.

Importantly, the model data shows the same effects.  To
achieve the quantitative fit for the accuracy measure (Figure
4, left side), we only fit one parameter: the strength of the
inhibition m.  That is, rather than having it always be strong
enough to completely stop all neurons in the channel from
firing (sinhibition=1.0),  we allowed this  value  to  be reduced.
This causes  some “leakage”,  where  values  meant  for  one
pointer  slightly  affect  the  other  pointers,  since  the  other
channels are not perfectly inhibited.  If there are more than 2
pointers, we assume that the inhibition gets proportionally
stronger for pointers farther from the target pointer.  For the
data shown above, sinhibition=0.875.  Surprisingly, this distance
effect occurs even though the neural activity pattern for each
digit is randomly chosen.  See (Stewart & Penner-Wilger,
2017) for further analysis.

For  the  reaction  time  data  (Figure  4,  right  side),  two
additional  parameters  were  fit.   First,  we  added  a  fixed
reaction-time  value  (i.e.  the  amount  of  time  needed  for
perception and the motor action) Tfixed. Second, we allowed a
scaling  factor  on  the  connection  from  the  comparison
neurons to the accumulator neurons.  This controls the rate
of evidence accumulation sevidence.  This is a common feature
of decision-making models.  After fitting,  Tfixed=290ms and
sevidence=5.9.  All other parameters in the model were left at
their default values.

Task 2: Finger Gnosis

In  the  finger  gnosis  task,  two fingers  are  touched on the
participant's  hand  while  that  hand is  occluded  from their
view.  They must then report which fingers were touched.

To implement this task, we use the same array of pointers,
but connect it to a different set of neurons, as depicted in
Figure 5.  The first group of neurons takes the input from all
the pointers and combines them together as one vector.  The
second  group  stores  the  reported  answer.  As  with  the
previous task, we use Nengo to find the connection weights
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that best approximate the function between the combination
neurons  and  the  answer  neurons.   In  this  case,  however,
rather than determining which value is larger,  here we do
not need to perform any complex operation as we just need
to  extract  the  information  that  is  already  encoded  in  the
neurons.   Thus,  here  we  use  Nengo  to  approximate  the
identity function, where the output is the same as the input.

Figure 5: The finger gnosis model.  Only 2 pointers are
shown, but the full model uses 5 pointers.

Importantly,  if this same array of pointers is to be used in
two different tasks, a flexible neural routing system would
be needed, so that the output of the pointer array can be sent
to this  combination system when doing the  finger  gnosis
task,  and  sent  to  the  comparison  system  when  doing
magnitude comparison.  We have previously shown how to
implement  such  a  routing  system  using  a  model  of  the
cortex-basal  ganglia-thalamus  loop  (Stewart,  Choo,  &
Eliasmith, 2010), and so do not consider that here.

To  evaluate  this  model,  we  used  the  same  88
undergraduates  as  for  the  first  task.   Participants  first
performed the magnitude comparison task, followed by the
finger gnosis task as part of a larger study.  As shown in
Figure 6, a repeated-measures ANOVA revealed that mean
percent error differed significantly between distances, F(3,
261) = 6.88, p < .01.

Figure 6 also shows the model performance.  Importantly,
no parameters were tuned to achieve this result.  We used
sinhibition=0.875, as that was the best fit value in the first task,
and all other parameters were left as they were.  The model
is statistically significantly different at a distance of 1, but
does not statistically differ for distances 2, 3, and 4.

Figure 6: Results from participants and model for the finger
gnosis task.  Standard errors of the mean are shown.

Since the only tuned parameter in the model is  sinhibition, we
also examined how the model's performance changes on the
two tasks as this parameter is varied (Figure 7).  From this,
we  note  that  the  error  rates  on  these  two  tasks  change
drastically,  given  small  changes  in  this  parameter.   This
indicates  a  strong  connection  between  the  model's

performance on one task and on the other.  The fact that a
similar parameter value is needed in each task in order to fit
the  human  data  lends  support  to  the  idea  that  there  is  a
shared working that is redeployed for these two tasks.

Figure 7: Effects of changing sinhibition in both tasks.

Conclusions

On  the  redeployment  view  (Penner-Wilger  &  Anderson,
2008,  2013),  finger  gnosis  and  math  ability  are  linked
because at  least  one local  brain region,  over evolutionary
and/or developmental time, has come to perform the same
operation  in  support  of  both  finger  and  number
representation.  The  goal  of  the  current  research  was  to
evaluate  the  redeployment  view and  the  proposed  shared
operation  –  an  array  of  pointers  (Penner-Wilger  &
Anderson,  2011).  To  this  end,  we  built  a  computational
model  to  perform  both  the  standard  finger  gnosis  and
number  comparison  tasks.  We  then  compared  the
performance of this model to human performance data (RT
and accuracy) and showed a close match on both tasks with
one parameter (sinhibition) tuned to a common value.

First,  our  work  provides  an  in-principal  demonstration
that  the  same  working  –  an  array  of  pointers  –  could
contribute to multiple uses, as the same system successfully
performed two different tasks. Our previous meta-analysis
(Penner-Wilger  &  Anderson,  2011)  also  indicates  this
region may be involved in a variety of other tasks, which we
intend to include in future research.

Second, given that the model could successfully perform
both  tasks  using  the  same  operation,  and  that  the  model
performance  mirrored  that  of  human  participants,  it  is  a
psychologically plausible explanation, which lends support
for the view that the observed neural overlap between finger
and  number  representation  reflects  redeployment (same
ROI,  same  working)  rather  than  neuromodulation (same
ROI, different working).  It follows that damage to the ROI
should  impact  performance  on  both  finger  gnosis  and
number comparison tasks. We are currently testing this in
our computational  model and it could be tested in human
participants  using  rTMS  applied  to  our  ROI  in  the  left
precentral gyrus. Previous work using rTMS applied to the
left  angular  gyrus  has  already  been  shown  to  disrupt
performance on both tasks (Rusconi et al., 2005).

Third, by offering another concrete instance of the reuse
of a basic operation in a high-level, abstract cognitive task,
the model does not just bolster the neural reuse framework,
but also serves the goal of enhancing our understanding of
the nature of and processes involved in numerical cognition.
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Finally, modeling efforts like this potentially enhance our
efforts  to  map  the  functional  structure  of  the  brain.  We
currently  lack  the  capacity  to  determine  in  vivo  when
neuromodulation has changed the underlying configuration
of  a  local  neural  network,  which  hinders  our  ability  to
attribute function  to  structure.  This  approach  offers  some
first steps toward developing reliable methods for detecting
changes  to  the  underlying  operation  a  given  local  region
supports, thereby refining our efforts to describe what the
brain is actually doing at any given time.
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Flexible integration of a navigable, clustered environment
Marianne Strickrodt

Max Planck Institute for Biological Cybernetics

Heinrich H. Bülthoff
Max Planck Institute for Biological Cybernetics

Tobias Meilinger
Max Planck Institute for Biological Cybernetics

Abstract: The representation of navigable space, consisting of multiple interconnected spaces, yet is not well understood. We
examined different levels of integration within memory (local, regional, global). Participants learned two distinctive regions of
a virtual environment that converged at a common transition-point. Subsequently, we tested their memory with a pointing task,
varying body alignment during pointing, corridor distance to and regional belonging of the target. Pointing latency increased
with increasing distance to the target and when pointing into the other region. Further, alignment with local, regional and global
reference frames were found to facilitate pointing latency. These findings suggest that participants memorized local corridors,
clustered corridors into regions, and also formed global reference frames, thus, represented the environment on multiple levels
of integration. They are inconsistent with conceptions of spatial memory for navigable environments based either on exclusive
representation within a single reference frame or exclusive reliance on local reference frames.
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Abstract 

Child-directed speech (CDS) is a talking style adopted by 

caregivers when they talk to toddlers (Snow, 1995). We 

consider the role of distributional semantic features of CDS 

in language acquisition. We view semantic structure as a 

manifold on which words lie. We compare the semantic 

structure of verbs in CDS to the semantic structure of child 

speech (CS) and adult-directed speech (ADS) by measuring 

how easy it is to align the manifolds. We find that it is easier 

to align verbs in CS to CDS than to align CS to ADS, 

suggesting that the semantic structure of CDS is reflected in 

child productions. We also find, by measuring verbs vertex 

degrees in a semantic graph, that a mixed initialized set of 

verbs with high degrees and medium degrees has the best 

performance among all alignments, suggesting that both 

semantic generality and diversity may be important for 

developing semantic representations.  

Keywords: child-directed speech; lexical development; 
manifold learning; distributional semantics; graph theory 

Introduction 

One of the biggest puzzles in cognitive science is how 

children learn language from language input, namely child-

directed speech. Child-directed speech is characterized by 

simplified sentence structures, restricted vocabulary, 

exaggerated intonation, and hyperarticulation, and previous 

work has proposed that these features facilitate language 

acquisition (Golinkoff and Alioto, 1995; Snow, 1995; 

Thiessen, Hill, and Saffran, 2005). Here, we compare the 

semantic spaces of child speech, child-directed speech and 

adult-directed speech, spanned by verbs, using state-of-the-

art computational tools.  

The contributions of this paper are both theoretical and 

methodological. Theoretically, we explore various proposals 

about roles of verbs meanings in CDS, represented using a 

state-of-the-art distributional semantics approach. 

Distributional methods map each word to a point in high-

dimensional space so that words with similar meanings are 

near each other. We view the semantic structure of the 

vocabulary as a high-dimensional surface in this space, called 

a manifold, and compare manifolds estimated from CDS to 

manifolds estimated from child speech (CS) and adult-

directed speech (ADS). Young children often broaden the use 

of nouns and verbs and we model such differences in word 

meaning as a mismatch of data points in a semantic space.  

Methodologically, we adapt a novel semi-supervised 

manifold alignment algorithm to compare semantic spaces 

(Ham et al, 2005), which maps two manifolds into a common 

subspace to measure the similarity of these manifolds. This 

algorithm takes as input a subset of initial points that must be 

aligned (i.e., pairs of points, one on each manifold, that 

correspond to the same verb), and produces an alignment for 

the rest of the verbs. We then measure the similarity of the 

manifolds in terms of the accuracy of the alignment: how 

often a verb is mapped to the same region of the common 

subspace. 

We find that alignment between the CS and CDS is more 

accurate than the alignment between CS and ADS. 

Additionally, we obtain more accurate alignments when 

using verbs with many nearest neighbors (which have 

broader meanings) as the initial points than verbs with few 

near neighbors. Together, these results indicate that the 

semantic structure of CS reflects the semantic structure of 

CDS, and verbs with broad meanings may provide useful 

cues to children in acquiring the overall semantic structure of 

verbs. On the one hand, what children can learn from CDS 

deviates semantically from unfamiliar conversations in ADS, 

which suggests that further learning is required. On the other 

hand, caregivers might align their semantic spaces to 

children’s semantic spaces, which lies within the general 

framework of conversational alignment (Pickering & Garod, 

2004). 

Model Setting 

We combine models from two different traditions into a 

general framework of semantic representation. To compare 

the semantic spaces of CS, CDS and ADS, we use a manifold-

based algorithm. The similarities between semantic spaces 

are measured by how easy it is to map one semantic space to 

another. We represent the meaning of each verb by using the 

global vector model (Pennington, Socher & Manning, 2014) 

to embed words into a 50-dimensional space, which we call 

a semantic space. . Following the associationist tradition in 

psychology (Anderson, 1973), we represent the meaning 

structure of the verbal lexicon as a whole by considering how 

a collection of verbs is situated in this space, as expressed by 

a neighborhood graph (Steyvers & Tenenbaum, 2005). 

1157



Estimating verb meanings from different datasets produces 

different semantic spaces, and we compare the spaces using 

a semisupervised manifold alignment algorithm (Ham et al., 

2005). This algorithm maps verbal semantic graphs into a 

common semantic space and discovers the data point 

correspondences by finding pairs of points with the smallest 

Euclidean distances.  

Lexical Semantic Representation 

The past three decades saw efforts to model the mental 

representation of concepts (Launder & Dumais, 1997). The 

inspiration for recent computational work on lexical 

semantics dates back to Harris’s (1954) hypothesis that 

synonymous words appear in similar contexts.  

One of the most successful semantic representation models 

is proposed by Launder & Dumais (1997), known as Latent 

Semantic Analysis (LSA), which uses word-context co-

occurrence matrices  to produce a low-dimensional 

representation by singular value decomposition. The lexical 

semantic representation model used in this paper is based on 

a state-of-the-art algorithm, GloVe (Pennington, Socher & 

Manning, 2014), which is an extension of LSA. Instead of 

explicitly decomposing a word-context co-occurrence 

matrix, GloVe implicitly decomposes a word-context log-

frequency matrix. GloVe uses a weighted regression 

objective function to reconstruct a log word-context count 

matrix log( X ) with bias terms, as shown in Equation (1), 

where w and b are bias vectors,  X is the co-occurrence matrix 

and f is a heuristic weighting function. The optimization 

problem is iteratively solved using AdaGrad (Duchi, Hazan 

& Singer, 2011). 

 

𝐽 =  ∑ 𝑓(𝑋𝑖𝑗)(𝑤𝑖
𝑇�̃�𝑗 + 𝑏𝑖 + �̃�𝑗 − log𝑋𝑖𝑗)2𝑉

𝑖,𝑗=1      (1) 
 

Even though GloVe has better performance than traditional 

singular-value-decomposition-based LSA, careful analysis of 

the objective function suggests that GloVe is fundamentally 

probabilistic matrix factorizations (Levy & Goldberg, 2014).  

Semantic Graphs 

The manifold alignment algorithm we use approximates the 

underlying manifold by constructing a similarity graph G = 

(V, E), where the vertex set V is the set of verbs and the edge 

set E is a set of pairs of verbs that are near to each other. The 

weight of an edge is set to the cosine similarity between the 

verbs associated by the edge. The degree of a vertex is the 

sum of weights of all the edges linking to the vertex. In 

semantic networks, vertex degrees can be interpreted as 

contextual diversity. There are several ways to build such a 

similarity graph. Ozaki et al (2011) found that undirected 

mutual k nearest neighbor (mkNN) graphs give good 

performance for alignment of natural language data, so we 

use mkNN graphs. An mkNN graph has an edge (𝑣1 , 𝑣2 ) if 

either 𝑣1 or 𝑣2 is within the k nearest neighbors of the other. 

We set k to 15 for the first experiment. In the second 

experiment, we increase k to 20 to better investigate the 

degree effects. The unnormalized graph Laplacian (L) of 

graph W is defined in Equation (2). D is the degree matrix, a 

diagonal matrix with vertex degrees on the diagonal. 
 

𝐿 = 𝑊 − 𝐷 (2) 
 

We use a symmetric graph Laplacian normalized by vertex 

degree (Shi & Malik, 2000), as 
 

𝐿𝑠𝑦𝑚 = 𝐷−1 2⁄ 𝐿𝐷−1 2⁄ = 𝐼 − 𝐷−1 2⁄ 𝑊𝐷1 2⁄     (3) 

Aligning Semantic Spaces 

We compare the semantic spaces of CS, CDS and ADS using 

the semisupervised manifold alignment algorithm. A 

manifold is defined as a topological structure with every local 

point with a neighborhood similar to a Euclidean space. The 

goal of the manifold alignment algorithm is to pair up data 

points from two high-dimensional data sets. For example, the 

algorithm aims to match give in CS to give in CDS. A 

semisupervised algorithm, using both labeled and unlabeled 

data as input, combines the strength of supervised and 

unsupervised learning. The general goal of manifold 

alignment is to map two high-dimensional data sets to a 

common low-dimensional space simultaneously (Ham et al., 

2005), which essentially is an extension of manifold-based 

nonlinear dimensionality reduction (Belkin & Niyogi, 2003). 

Manifold-based methods are based on the geometric 

assumption that data in high dimensional space lie in low-

dimension manifolds.  

Ham et al.'s algorithm defines a function f that maps the first 

manifold to a common space, and a function g that maps the 

second manifold to a common subspace. These functions 

strike a tradeoff between mapping labeled pairs to the same 

point in the common space, and respecting local structure on 

the original manifolds as expressed by the graph 

Laplacian Lx for the first space and Ly for the second space. 

As we have both labeled (l) and unlabeled (u) 

points, Lx and Ly are block matrices: 

 

𝐿𝑥 = [
𝐿𝑙𝑢

𝑥 𝐿𝑢𝑙
𝑥

𝐿𝑙𝑢
𝑥 𝐿𝑢𝑢

𝑥 ]         (4) 

 

The cost of the mapping is then: 

 

�̃�(𝒇, 𝒈) =
𝐶(𝒇,𝒈)

𝒇𝑇𝒇+ 𝒈𝑇𝒈
         (5) 

 

where μ expresses the tradeoff between mapping points 

exactly and preserving local structure on the original 

manifolds. The first term is the sum of distances between 

paired data points in the common space, and the second two 

terms represent faithfulness to the graph Laplacian. Ham et 

al. point out that Equation 4 is unsuitable for optimization, 

since it ignores simultaneous scaling of f and g, and so 

instead minimize the Rayleigh quotient: 
 

𝐶(𝒇, 𝒈) = μ ∑ |𝑓𝑖 − 𝑔𝑖|2
𝑖 + 𝒇𝑇𝐿𝑥𝒇 + 𝒈𝑇𝐿𝑦𝒈    (6) 

 

We set μ to positive infinity to impose a hard constraint 

for labeled pairs to be mapped directly on top of each other. 
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The analytic solution to the optimization is then given by the 

generalized graph Laplacian Lz in Equation 7. 

 

𝐿𝑧 = [

𝐿𝑙𝑙
𝑥 + 𝐿𝑙𝑙

𝑦
𝐿𝑙𝑢

𝑥 𝐿𝑙𝑢
𝑦

𝐿𝑢𝑙
𝑥 𝐿𝑢𝑢

𝑥 0

𝐿𝑢𝑙
𝑦

0 𝐿𝑢𝑢
𝑦

]         (7) 

 
The semisupervised manifold alignment algorithm adopted 

from Ham et al. 2005 is described in Algorithm 1.  

 

Algorithm 1: Semisupervised Manifold Alignment 

Algorithm (Ham et al., 2005) 

 

Input: data points from two data sets, with N initially 

aligned data point pairs 

Output: a matching of data points 

1. Construct similarity graphs G1, G2, for both data sets 

respectively, using mkNN 

2. Compute the symmetric graph Laplacians of G1 and 

G2, Lx and Ly, using Equation (3) 

3. Compute a graph Laplacian for a joint graph Lz using 

Equations (6) and (7) 

4. Compute the eigenvectors of Lz and take eigenvectors 

corresponding to the smallest non-zero eigenvalues, the 

results of which are the vectors in a lower-dimensional 

space 

5. Find the data points with smallest Euclidean distance 

weighted by the inverse of their respective eigenvalues 

 

Experiment Setup 

Corpora 

The training set for CDS and CS is a combined data set from 

CHILDES (MacWhinney, 2000), which consists of all the 

data on American English-speaking monolingual 3 to 7 year-

old children with typical language and cognitive 

development, excluding diary studies. To simplify data 

collection, only utterances annotated as child are considered 

child speech and only utterances annotated as mother and 

father are considered as child-directed speech. The CS and 

CDS corpora contain 5 million and 9 million word tokens, 

respectively. To prevent the CS from being similar to CDS 

purely due to priming effects, we divided the data into two 

halves so that the CDS and CS data were not drawn from the 

same contexts  

Our ADS data is drawn from the spoken portion of the 

Corpus of Contemporary American English (COCA, Davies, 

2008). Although this data may differ from more casual 

conversations, it provides a large amount of spontaneous 

speech in the form of unscripted conversations from 150 

television and radio programs.  

Materials 

The target words used in this model are all verbs, which are 

understudied in the literature. We included the first 100 

English verbs acquired by infants (Fenson et al., 1994), the 

most frequent 200 English verbs in adult language 

productions (Davies, 2008) and verbs that appear in three 

common constructions (Levin, 1993).  

The classes of verbs are the ones that appear in 3 

constructions: the ditransitive (John gave Mary a book), the 

locative (The man loaded hay onto a truck) and the conative 

(The police shot at the criminal). Since CHILDES suffers 

from data sparcity, verbs missing in either CS or CDS were 

excluded from analysis. We end up with 811 data points for 

CS, CDS and spoken COCA respectively. 

Data Preprocessing 

The adult-directed speech data from spoken COCA and the 

child speech and child-directed speech data from CHILDES 

data were preprocessed using regular expressions. Verbs in 

different inflectional forms were treated as separate verb 

types.  

Model Training 

Global Vector Training We used the implementation of 

GloVe from the Stanford NLP website to train 50-

dimensional vectors for each of our three datasets 

(Pennington, Socher & Manning, 2014). We trained each set 

of vectors for 50 epochs with a context window size of 10, 

used a frequency cut-off of 2 for the CS and CDS datasets 

and a cut-off of 10 for the ADS dataset. 

Similarity Graph Construction We construct mkNN 

graphs consistently throughout this paper. In the first 

simulations, we fix the number of mutual nearest neighbors 

to 15. In the second simulation, we test the effect of vertex 

degrees and we set the number of mutual nearest neighbors 

to 20 to increase the range of vertex degree.  

Manifold Alignment The parameters that we need to 

specify in the manifold alignment module include the initial 

labeled alignments and the dimensionality of the manifold. 

In addition to the number of labeled data, the identity of the 

labeled data can also influence the quality of alignment. The 

dimensionality of the manifold controls the abstraction of 

semantic information contained in the word vectors. The 

lower the dimension, the more abstract the representation.  

Evaluation 

Because the alignment algorithm pairs up labeled data points 

exactly, we only evaluate alignments on unlabeled data. We 

use a random alignment averaged over 5 times as the baseline 

condition. Ideally, corresponding data points from two data 

sets should be mutual nearest neighbor in the lower 

dimensional space. We relax the evaluation requirements by 

giving every alignment a k-nearest neighborhood evaluation 

radius. If one data point is one of the k-nearest neighbors of 

the corresponding point, we take it as a hit. When the 

evaluation neighborhood radius equals 1, the measures 

quantify the exact alignment.  
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Simulation 1: Mapping CS to CDS and COCA 

In this section, we demonstrate that CS-CDS alignment is a 

less demanding task than CS-COCA alignment even when 

potential priming effects from linguistic and non-linguistic 

contexts are removed. We also predict that with the increase 

of labeled data, the alignment accuracy also increases. 

Method 

We performed verb semantic graph alignments of CS to CDS 

and to ADS for alignment spaces of dimensionality from 5 to 

30. The unlabeled precisions are evaluated by the window-

size at 1 and at 20, as demonstrated in the contour heat maps 

in Figure 1. The colors of different areas in the contours 

indicate different levels of unlabeled accuracy and the data 

points with the same unlabeled accuracy are connected by the 

isolines in the maps. 

 

 
Figure 1 Accuracies of mapping CS to CDS and COCA 

Results 

The general trend is that the highest unlabeled precisions are 

found in the upper right corners of the contour maps whereas 

the lowest unlabeled precisions tend to lie close to the x-axis. 

The dimensionality of the embedding space can be 

interpreted as the granularity of children’s representations.  

The result of the alignments is demonstrated graphically in 

Figures 1 and 2. In the alignments from CS to CDS and CS 

to COCA, the CS-COCA alignment achieves only 50% to 

60% of the unlabeled precision of the CS-CDS alignment. 

The unlabeled precision of the CS-CDS alignment is 

consistently higher than the unlabeled precision of the CS-

COCA alignment across all conditions. Both alignments have 

much larger unlabeled accuracy than the random baseline.  

The CS data are aligned to both the spoken COCA and 

CDS corpora. The CS-CDS alignment precision wins over 

the CS-COCA precision across all conditions. In other words, 

child speech is much easier to map to child-directed speech 

than to spoken COCA. This easier alignment can be 

interpreted as similarity in semantic spaces across corpora.  

Since the CS and the CDS word vectors are trained on 

speech data from different experiments, the relative similarity 

between CS and CDS lexical semantics, this similarity does 

not reflect mere priming effects. There are two possible 

interpretations for this result. First, the result can be viewed 

as an imitation effect in which children mirror child-directed 

speech semantically. Second, adult caregivers might adapt 

their mental representations to children’s when they talk to 

children, which sits well with the conversational alignment 

theory (Pickering & Garrod, 2004). The big semantic gap 

between initial language input and adult-to-adult 

conversations on TV shows or radios suggests that learning 

from CDS alone is not sufficient for real world language 

processing. Adapting to TV or radio conversations constitute 

one part of further learning, which supports a continuous 

theory of language development.  

Simulation 2: Semantic generality 

In Simulation 2, we use a fixed list of labeled data to 

investigate the effect of initialization in alignment, instead of 

random initialization. The motivation is that language 

scientists argue for the importance of a few important “path-

breaking” word exemplars in language learning (Ninio, 1999; 

Goldberg, Casenhiser & Sethuraman, 2004). Some words 

attract more vertices than others, which is known as 

preferential attachment in network growth (Steyvers & 

Tenenbaum, 2005). We evaluate the proposal that 

semantically general verbs are better starting points for 

language learning than semantically specific verbs, by 

measuring the vertex degrees.  

 
Figure 2 Unlabeled accuracies of CS-CDS and CS-COCA 

alignments with a random alignment as the baseline 

 

The degree of a vertex measures the association between a 

vertex and its neighboring vertices. The prediction is that 

vertices with large degree are better labeled data than vertices 

with small degree. Cognitively, the verbs with high degree 

are semantically general verbs whereas the verbs with low 

degree are the ones with less general meanings.  

Method 

Verbs are ranked based on their vertex degree in a semantic 

network. As shown in Table 1, what we use as labeled data is 

100 verbs with the largest degrees, 100 with the smallest 

degrees, and medium-degree verbs with degree rank of 201 
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to 300. We also mixed half of high degree verbs with half of 

medium degree verbs in the mixed condition. The baseline 

condition is averaged over 5 random initializations. We set 

the number of mutual nearest neighbors, the evaluation 

radius and the dimensionality all to 20. 

Results 

The alignment precisions shown in Figure 3 show a clear 

advantage of high-degree and medium degree conditions 

over the low degree condition, but both high-degree and low-

degree have below random performances. We can also see an 

advantage of medium degree initialization, which is parallel 

to the basic level categorization theories. When we use a 

mixed set of high-degree and medium-degree verbs, we get 

the best results on all the conditions, which suggests that a 

diverse-degree initialization facilitates semantic space 

alignment.  

 

Table 1: Verbs with the largest, medium and smallest 

vertex degrees in ADS 

 

largest medium smallest 

get 

go 

want 

put 

think 

giving 

tearing 

taken 

poured 

tipping 

tickles 

points 

shooting 

design 

tapping 

General Discussion 

In Simulation 1, we demonstrate that CS has semantic 

properties very similar to CDS in comparison to ADS. This 

result supports a usage-based approach to language 

acquisition: children imitate their caregivers. The results can 

be interpreted in multiple perspectives. First, the result 

suggests that child speech is built upon restricted linguistic 

contexts. One of the biggest characteristics of human memory 

is context-dependency. Early language experience is built 

upon restricted contexts and usages requires further learning 

to achieve the adult form. Second, child-directed speech is 

used in young children’s living environments. Children seem 

to use words highly consistent with their caregivers. Third, 

talking to children in child-directed speech is a double-edged 

sword. On the one hand, children might have an easier time 

initializing their language capacities at an early language 

development stage because their hypothesis space is 

restricted by child-directed speech. On the other hand, the 

mismatch between child-directed speech and adult-directed 

speech requires children to shift their semantic 

representations at later development stages.  

In Simulation 2, we show empirically that semantically 

moderately general verbs are better starting points for 

language development. Our simulations show mixed results 

for the “path-breaking” argument that semantically generic 

verbs are important for language learning (Ninio, 1999). Our 

results suggest that both semantic generality and semantic 

diversity play a role here. Although semantically general 

verbs help in general, verbs that are semantically too general 

may not be that helpful.  

 

 
Figure 3 Unlabeled accuracies of alignments with high-

degree, medium-degree, low degree, mixed-degree and 

random initializations 

Speaker Normalization by Manifold Alignment 

In speech recognition and perception, speaker normalization 

is the task of automatically adjusting to acoustic differences 

between different speakers. Our work is inspired by Plummer 

et al. (2010), who proposed manifold alignment as an account 

for how young children learn to handle phonetic variability 

in vowel production during language acquisition. 

Aside from working with semantic, rather than acoustic, 

representations, our work differs from theirs in two respects. 

First, they used synthesized data as input, while we used 

naturalistic corpus data. Second, since two token 

pronunciations of vowels will never be the same, they 

imposed only a soft alignment constraint that labeled pairs be 

aligned, while we imposed a hard constraint. 

Crosslinguistic Alignment of Polysemous Words 

Youn et al. (2016) investigated semantic universals by 

constructing networks of corresponding polysemous nouns 

from 81 languages sampled from different language families. 

Using an approach reminiscent of thesaurus-based synonym 

induction, they established semantic correspondences 

between nouns using bilingual dictionaries. The target 

polysemous words were selected from the Swadesh 200 basic 

vocabulary list. The procedure described in this paper is 

automatic and takes into consideration the matching of 

semantic spaces in one language, whereas Youn and 

colleagues manually establishes semantic correspondences 

for a few basic words in bilingual data.  

Conclusions 

The contribution of this paper is a novel integrated 

framework that compares semantic spaces of children and 

their caregivers based on naturalistic language productions. 

We combined methods from three traditions, distributed 

semantic representations, graph theory, and manifold 
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alignment, into one framework for approaching the semantic 

structure of the lexicon. We used naturalistic language 

productions from CHILDES to compare the semantic spaces 

spanned by verbs and demonstrated that (i) that CDS is more 

similar to ADS than CS in terms the semantic spaces spanned 

by verbs and that (ii) verbs with relatively large and diverse 

degrees are especially useful for aligning semantic structures.  

While the general computational framework proposed in 

this paper does not provide an account of how children might 

exploit this manifold-based and graph-theoretic information, 

it does suggest that useful information about the structure of 

the adult lexicon is available to children. Even though our 

framework is on the computational level, using Marr’s 

terminology (1982), it is very likely that semantic manifold 

alignment plays a role in children’s semantic development. 

Additionally, this framework may be of use to other fields 

that are interested in the semantic structure of different 

lexicons. For example, this approach may be useful for 

performing semantic comparisons between 

languages or across time over the course of language 

change, and understanding the semantic organization of 

bilingual lexicons. 
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Abstract 

Digital-tablets distribute cognition through visual, auditory 
and haptic interactivity. We designed a tutor-game that 
explored how narratives ((S)trong/(W)eak) and gestures 
((I)conic/(D)eictic) could be combined to situate embodied 
learning.  Students played seven levels of a fractions game 
designed to teach them how to create and compare fractions.  
One hundred thirty-one students  (N=131, age x̄=8.78 yrs, 
52.6% Female) were randomly assigned to one of four groups 
(SI, SD, WI, WD) in a 2x2 factorial experiment.  Students 
completed pre/post direct and transfer assessments and tutor-
game log data was mined to explore characteristics of 
students learning.  Results revealed a significant interaction 
between narrative and gesture moderated by student 
proficiency.  In effect, students new to fractions performed 
better in an abstract environment using deictic (pointing) 
gestures.  However, as students' proficiencies improved, they 
learned better using iconically enactive gestures in strong 
narrative with setting, characters and a plot.  This has 
important implications for designing adaptive learning 
platforms and curricula for teaching fractions.  

Keywords: embodied, situated, grounded cognition; 
narrative, gestures; design-based research; DBR; data-mining; 
adaptive learning. 

Introduction 
Tutor-games provide learners with dynamic experiences that 
channel their visual (sight), aural (sound) and haptic (touch) 
perceptions into their cognitions (Baddeley, 1986; Ricker, 
AuBuschon & Cowan, 2010).  As virtual portals, digital 
tablets allow educators to situate learning in various 
contexts that scaffold the processes that connect concepts 
(Barab et al., 2007; Brown, Collins & Duguid, 1989; Saxe, 
1988; Lave, 1988; Schwartz & Bransford, 1999).  The 
touch-based gestural interface of digital tablets accesses the 
haptic channel as a means for embodying concepts (Varela, 
Thompson, & Rosch, 1990; Barsalou, 1999; Glenberg & 
Kaschak, 2002; Lakoff & Johnson, 1980).  The multi-modal 
ecology of digital tablets allows researchers to scaffold 
experiences that afford (Gibson, 1979) students freedom to 
explore with feedback that guides their learning (Dewey, 
1938/1963).    

Theoretical Background 
 Developing Narrative. Developing an effective narrative 
invests the audience in the continuity of the characters, 

locations, objects, actions and themes and invests them into 
the plot’s trajectory (Graesser, Singer & Trabasso, 1994).  
These details (microstructure) are the access points to a 
larger interactive narrative (macrostructure) that situates the 
concepts (van Dijk & Kintsch, 1983).  Thus, designers must 
create assets that engage players in problem spaces through 
the processes that foster correct mental model constructions 
(Johnson-Laird, 1980).   Black and Bower (1980) found that 
the structure of stories, with actors, settings, problems and 
solutions, aided in participants inference making and recall.  
In effect, the coherence of narrative schemas helps 
participants chunk details into mental models (Black, Turner 
& Bower, 1979) and ideally, the audiences’ investment in 
the narrative can motivate player’s explorations of the 
processes for creating and comparing fractions in a problem 
space conducive for discovery (Brown, Collins & Duguid, 
1989).  
 
Developing Gestural Mechanics. Goldin-Meadow, Cook 
and Mitchell (2009) demonstrated that a pairing gesture 
(i.e., two fingers to identify two numbers as a pairing) 
facilitated elementary students strategies for arithmetic 
problems and demonstrates how gestures as abstractions are 
still rooted in relation to the body.  In the cognitive science 
literature, gestures have been typically defined as 
spontaneous co-articulations with speech (Kendon, 1972; 
McNeill, 1992), but in the digital age, the physicality of 
gestures has been co-opted into gestural mechanics as an 
interface with touch and motion based digital technologies.  
Educators can leverage the mechanics of gestures as 
communications of concepts and strategies by simulating 
perceptual states to activate learners’ understandings 
(Goldin-Meadow, 1999).  
     Exploratory studies (Swart et al., 2014) revealed types of 
gestures learners used when explaining fractions. Echoing 
Hostetter’s and Alibali’s  (2008) Gestures as Simulated 
Action, students 
majoritively used either 
iconic gestures (I) 
(metaphorical, enactive, 
symbolic) that enact their 
understandings or deictic 
(D) gestures (pointing) 
that identify them (Fig. 1).   

Fig. 1: Iconic & Deictic Gestures 
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The Tutor-Game: Mobile Movement Mathematics (M3).      
       The human ability to think mathematically manifests 
from the endowments of our perceptual systems.  It includes 
our abilities to estimate the magnitudes of spaces and 
durations of time as well as enumerate objects by 
differentiating the intensities of stimuli in our surroundings 
(Dehaene, 1997).  These experiences ground the embodied 
metaphors of mathematical thinking  (Lakoff & Núñez, 
2001; see Fig 2) and we recognize that fractions originate in 
the processes of fracturing wholes into parts.  Thus, we 
chose to use object fracturing as the metaphor for 
developing a situatively embodied curriculum. 

 
     The tutor-game consisted of 7 levels of 5 fractions that 
were situated in either a strong (S) or weak (W) narrative.   
The strong narrative had a setting, characters and plot based 
on the PBS series Cyberchase, and was compared to a weak, 
non-descript environment without narrative elements (see 
Fig. 3).  We characterized it as “weak” in lieu of “no” 
narrative to account for researchers inability to control for 
any internal narratives that students might devise.  

 
  To play, students used either iconic or deictic gestures in a 
2-part tutor-game: [Part 1] Players estimated, denominated, 
numerated and re-estimated using the fractivator (a hybrid 
of a rectangular area model and a number line (Siegler & 
Opfer, 2003); [Part 2] Players determined equivalency 
between fractions by ordering them, magnifying their height 
and delineating each onto a vertical number line (Fig. 4).   

The Experiment 
     In order to isolate for the impact of gesture (I vs. D) and 
narrative (S vs. W) on learning, we devised, designed and 
developed 4 versions of the digital tablet tutor-game (M3) 
that resulted in the following experimental conditions: SI, 
SD, WI, and WD, and all other factors (curriculum, assets, 
instructions, feedback, and scaffolding) were held constant.     
     Under the gesture hypothesis (embodied), iconic gestures 
with richer perceptual affordances (Black, Segal, Vitale and 
Fadjo, 2012) should help learners embody mathematical 
concepts better than deictic gestures.  We predicted that 
iconic gestures, by grounding concepts in real-world 
actions, connect internal processes of our cognition and 
affect better than deictic gestures. 
     For the narrative hypothesis (situated), contextualizing 
problem spaces (via setting, characters and plot) helps 
learners engage in the construction of their own conceptual 
models.  By situating learning, we predicted that the strong 
(S) narrative will produce higher levels of engagement and 
motivation and higher levels of learning compared to a weak 
(W) narrative. 
     The third hypothesis arises from the interplay of design 
and how independent factors will interact.  The interaction 
hypothesis suggests that combinations of narrative types (S 
vs. W) and gesture types (I vs. D) will create learning 
environments that vary in their efficiency for the learner.  In 
favor of the situated and embodied condition, we predicted 
that the SI condition would perform better than SD and or 
WI conditions, while the WD condition would perform 
better than SD and or WI.   
     The fourth hypothesis stems from our classroom 
observations of students’ play and the prospect for 
differential efficiencies between SI and WD.  The 
proficiency hypothesis suggests that learners' existing 
proficiencies at fractions will moderate how they play and 
learn.  In favor of the situated and embodied condition, we 
predicted that students with lower proficiencies would 
benefit more from the situated embodied experience of the 
SI condition while students with higher proficiencies would 
benefit from the abstractions of the WI condition. 
 

 Methods 
 

Participants. One hundred thirty-one participants from 
grades 3 (N=131; x̄age=8.78 years [1.36], 52.6% female) at 
afterschool programs in New York City obtained parental 
consent to participate in the program. 

Procedure. Researchers formally tested a total of 131 
students in specially designated classrooms where 
researchers and monitors proctored over the sessions, 
administered assessments, collected observational and video 
record the sessions.  In a 2x2 randomized factorial, students 
were assigned to play one of four game-based environments 
(Strong-Iconic (SI, nsi = 35), Strong-Deictic (SD, nsd = 27), 
Weak-Iconic (WI, nwi = 34), Weak-Diectic (WD, nwd = 
35)). Each student completed 3 one-hour sessions that in 
total included pre-tests, game play, post-tests and exit- 

 
Fig. 2: Embodied Experiences of Mathematical Fractions  

Fig. 3. Strong Narrative (L) & Weak Narrative (R)  

      

 

 
Fig. 4. Part 1 (Obj. Fracturing) & Part 2: Obj. Equivalency  
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surveys (see Fig. 5). Students’ sessions were run in separate 
groups of 10 (5/condition) with a total of 2 sessions per day 
(total of 20 students/day; 5 per condition) for 3 days each 
week, extended over multiple weeks and some students 
participated in an optional 4th-day clinical interview.  

 
Materials 

 
Assessments. 
Direct Pre/Post Test: Parallel Forms A & B of fraction 

problems directly from the game curriculum. 
Representations of fractions were similar to static versions 
of what students saw in the game, including estimation, 
denomination, numeration and determining equivalency 
between fractions (40 items). 

General Pre/Post Test: Parallel Forms C & D of general 
fraction assessment that included problems using objects, 
collections of objects, number lines, numerical fractions, 
arithmetic, and word problems. Questions included items 
asking students to estimate, denominate, numerate and 
determine equivalency between fractions (43 items). 

 
M3: Digital Tablet Tutor-Game.  
Log Data: The backend of the game was designed to 

deliver user log data (i.e., telemetry data) to helps 
researchers create profiles of students’ learning by tracking 
players’ time, accuracy/error, attempts and strategies 
during tutor-game play.  

 
Equipment. 
iPad Air & Sony MDR-ZX100 Headphones: A class set of 

10 each; Flip Video UltraHD Camcorder: 2 camcorders w/ 
Tripods for Video. 

 
Results 

 
Formal Assessments 
Direct Assessments.  ANOVA revealed a significant 

interaction between gesture and narrative on Direct 
Assessment Total Difference scores (post - pre), F(1,126) = 
7.324, p < .008, d = .482, (1- β) = .766 (Figure 59). The 
significance of this interaction supports the both the 
narrative and gesture hypotheses that each can impact 
learning.  Since the interaction is significant, the main 
effects of gesture or narrative are unclear.  However, Fig. 6 
clearly depicts the interaction and illustrates how students in 
the SI and WD groups show significantly higher rates of 
learning across amongst all the M3 groups. 

T-tests for independence revealed differences between 
conditions for Direct Assessment Total Difference scores, 
with students in the SI group (x̄pre = .208, SD = 0.143) 
scoring higher than students in the SD group (x̄D = .143, SD 

= 0.138), t(60) = 1.79, p < .079, d = .451 and significantly 
higher than students in the WI group (x̄D = .129, SD = 
0.147), t(67) = 2.25, p < .028, d = .526) while the WD group 
(x̄D = .215, SD = 0.194) scored higher than SD, t(60) = 1.79, 
p < .107 and significantly higher than WI, t(67) = 2.069, p < 
.041, d =.486.   
     Preliminarily, this suggests that the strong narrative 
combined with iconic gestures as well as the deictic gestures 
combined with weak narrative both provide a learning 
experience significantly more efficient than either the 
strong-deictic or weak-iconic pairings.  
      
     Transfer Assessment. ANOVA revealed no significant 
main effects of gesture or interaction between gesture and 
narrative for Transfer Assessment Numeration Difference 
scores F(1,128) = 1.70, p < .195, d = .229, (1- β) = .254.  
Though t-tests for independence of the difference scores 
(post – pre) were not significant between groups, the pattern 

of results in Fig. 7 show that students in the SI group (x̄pre = 
.147, SD = .192) scored higher than students in SD (x̄D = 
.084, SD = 0.180), t(60) = 1.296, p < .20, d = .330, higher 
than students in WI (x̄D = 0.07, SD = 0.246), t(67) = 1.272, p 
< .305, d = .394, and higher than students in the WD 
condition (x̄D = .061, SD = 0.194), t(68) = 1.857, p < .068, d 
= .443.   
     A one-way contrast showed that the SI group performed 

         

Fig. 6. ANOVA revealed a significant interaction between 
gesture and narrative on Direct Assess total scores. 

 

Fig. 7. ANOVA revealed a significant interaction between gesture 
and narrative on Direct Assess total score.s  

 

 
Fig. 5. 2x2 Randomize Factorial w Repeated Measures 
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significantly better than the other three groups t (127) = 
1.763, SE = .122, p < .080.  Unlike the direct assessment 
interaction, results from the transfer assessment suggested 
that the situated and embodied condition (SI) contributed to 
better transfer.  Simply, enacting the processes of fracturing 
objects while situated in a narratively contextualized 
problem space seems to contribute to better transfer.  

 
Tutor-game Log Data  

Mediation with a Covariate Models.  The next series of 
analyses looked principally at how condition and tutor-game 
play account for the variance in students’ post-test scores 
while controlling for pre-test scores.  Fig. 8 depicts the 
conceptual path model used for the stepwise construction of 
the Hierarchical Linear Regressions (HLR) predicting the 
variance in the assessment scores.   
     The path model depicts how the variance in dependent 
variable (Y, post-test assessment score) is accounted for by 
the independent variable (X, condition – SI, SD, WI, WD), 
while controlling for a covariate (COV, pre-test assessment 
score) and mediated by students’ tutor-game play (ME, 
telemetry data).   

 
Direct Assessment Total Post-Test.  The first HLR 

regresses condition, pre-test scores and tutor-game play on 
direct assessment total scores. The complete meditational 
covariate model significantly predicted the outcome of 
students Direct Assessment Post-Test scores R = .645, F(7, 

4577) = 543.80, p < .001.  With the covariance of pre-test 
controlled, tutor-game play predicted a significant amount 
of the variance in Direct Post-Test Assessment scores (B = 
.623, SEB = 0.012, β = .607, p < .001, 95% CI [.599, .646]).  

 
Transfer Assessment: Total Score.  The complete model 

significantly predicted the outcome of students Transfer 
Assessment Total Post-Test scores R = .632, F(8, 4576) = 
379.80, p < .001. With the covariance of pre-test controlled, 
tutor-game play predicted a significant amount of the 
variance in direct post-test assessment scores   R = .626, 
F(3,4580) = 35.47, p < .001..  

 
Moderated Mediation Models.  With solid evidence that 

both the SI and WD conditions were efficient environments 
for learning, it was important to clarify the nature of the 

interaction between narrative and gesture  and determine if 
the situated embodied approach (SI) was better for low 
proficiency students (i.e., early learning is situationally 
embodied) or those with higher proficiencies.   The second 
path model determines if students’ initial proficiencies 
(MOi, pre-test score) moderated how students played (MEi, 
telemetry data) and improved on formal assessments (Yi).   

In Fig. 10, we 
can see that there 
are two distinct 
slopes for the SI 
(R2 = .474) and 
WD (R2 = .183) 
conditions, 
indicating two 
distinct trajectories 
of improvement 
from pretest (x-
axis) to post-test 
(y-axis) scores. 
The dashed red 
boxes indicate the 
median split between low and high initial proficiencies.  
Visual inspection suggests that the WD group shows better 
learning when their initial proficiencies are lower while the 
SI group seems to show better learning when their initial 
proficiencies are higher. 
     The moderated meditational model of the proficiency 
hypothesis confirmed that student performances in the game 
on formal assessments were significantly moderated by their 
existing proficiencies with fractions.  Fig. 11 (top) shows 
the moderated mediation of direct assessment scores by 
condition and proficiency R = .630, MSE = 122.36, F(5, 2444) 
= 353.72, p < .0001.  Students with lowest proficiencies 
(10th percentile (xpre =11.50; B = -9.32, SEB = .832, t(2443) = -
11.20, p < .0001, 95% CI [-10.95, -7.68]), benefitted the 
most if they were in the WD condition (β < 0) condition 
compared to the SI (β > 0), but as proficiency improved, 
students began to benefit more in the SI condition (90th 
percentile (xpre=46.00; B = 5.29, SEB = .645, t(2443) = 8.21, p 
< .0001, 95% CI [4.03, 6.56]).  We see a similar transition 
for low to high proficiencies from WD to SI for the transfer 
assessment (see Fig. 11, bottom).  In this case, the 

 
Fig. 8. HLR model regressing PreTest, Telemetry Data and 
Condition on PostTest scores. Direct Effect of X on Y; Indirect 
Effect of X on Y via MEi = (ai)(bi); COV on Y= ci  

. 

 
Fig. 9. HLR model of PreTest, Telemetry Data and Condition 
on PostTest scores. Direct Effect of X on Y; Indirect Effect of 
X on Y via MEi = (ai)(bi); MOi on X à Y= ci and MEi à Y  

. 

 
Fig. 10. Scatterplot of Pre-Test (X axis) 
and Post-Test (Y Axis) scores by 
groups (SI; WD).  

. 
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transition from the WD to the SI condition takes place at 
lower initial proficiencies for transfer of learning.    

 
Discussion 

 
The Gesture, Narrative & Interactions Hypotheses. The 

significant interaction between gesture and narrative on the 
direct assessment of the M3 curriculum shows that types of 
gestures may be conceptualized differently depending on the 
contexts in which they are embedded.  It calls into question 
our original theoretical assumptions that situating cognition 
through narrative and embodying procedural learning 
through iconic gestures would produce better learning.  

The HLRs on students direct and transfer 
assessment total scores showed that students tutor-game 
play, including their accuracy denominating, numerating 
and estimating significantly predicted learning, supporting 
the position that the act of splitting objects is central to 
learning fractions (Steffe, 2004; Norton & Wilkins, 2009).   
Improvement on transfer assessment seems to suggest that 
the procedural and conceptual knowledge that players are 
developing is robust enough that the curriculum prepared 

them for future learning (Schwartz & Bransford, 1998) of 
near transfer representations and new domains for fraction.  

 
     The Efficiency Principle.  Although our initial 
hypotheses predicted the superlative performances by the SI 
conditions for both assessments, the significant interaction 
between gesture and narrative suggests that both the SI and 
WD conditions are both efficient platforms for learning.   
Schwartz, Bransford and Sears (2005) note that efficiency 
often means rapid retrieval with accurate appropriation and 
application of knowledge and skills for understanding, 
solving and explaining a problem. Though the situated 
embodied SI environment provided a perceptually rich 
experience (Black et al., 2012) that promoted better transfer, 
students using deictic gestures in the weak narrative (i.e., 
without seductive details, Harp & Mayer, 1998; Adams et 
al., 2012) also showed significantly better learning.  Might 
the minimal and abstracted environment of the WD 
condition make procedures and concepts easily salient?  

 
     The Proficiency Principle.  Students with low initial 
proficiencies benefitted more from playing in the WD 
version of the game, while students with higher initial 
proficiencies benefitted more in the SI environment.  This 
finding was contrary to our hypothesis and the principle of 
concreteness fading (i.e., start concrete and fade to abstract; 
Fyfe, McNeil, Son & Goldstone, 2014).  Still to be 
determined is how these results fit with The Expertise 
Reversal Effect (i.e., experts require reduced guidance; 
Sweller, Ayres, Kalyuga, & Chandler, 2003).  Does the 
presence of the strong narrative make instruction and 
guidance invasive (i.e., reduced)?  Nonetheless, the current 
results support findings from a study by Kaminski, Sloutsky 
and Heckler (2006; 2008) that found that students learned 
division with remainders better using abstract symbols 
rather than concrete real world depictions.      

 
Significance 

 
The current research demonstrated that combinations of 

different narratives and gestures produced differential 
learning. Ribbons and Malliet (2010) advocate for 
simulational realism in gaming.  They argue that there must 
be balance between the rules that govern gaming 
experiences (e.g., gestures) and their relevance to the 
situated environment (e.g., the interactive narrative). This 
research suggests that when educators are designing 
pedagogy and curricula for mathematical fractions, students 
should begin working with abstractions and as their 
proficiency improves the learning platform should adapt to 
concrete experiences. 

Acknowledgments 
Supported by NSF Cyberlearning Grant 1217093. Thank you: 
Sandra Sheppard and Kristin DiQuallo at WNET-13; Jan & Nic at 
Curious Media. 

 

 

 
Fig. 11a & 11b. Moderated Mediation of formative assessment scores by 
the interaction between condition and existing fractions proficiency.  
Scores on the pre-test are stratified by percentiles along the x-axis (10th, 
25th, 50th, 75th, 90th %), and values on the y-axis are the weights of the B 
coefficients for changes in Direct Assessment Post-Test scores.  Coefficient 
values below the zero line on the y-axis indicate that the WD improved 
more on post-test at that percentile and coefficient values above the zero 
line indicate that students in the SI group improved more.  
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Abstract 

Educational software based on teachable agents has 
repeatedly proven to have positive effects on students’ 
learning outcomes. The strongest effects have been shown for 
low-performers. A number of mechanisms have been 
proposed to explore this outcome, in particular mechanisms 
that involve attributions of social agency to teachable agents. 
Our study examined whether an expression of high versus 
low self-efficacy in a teachable agent would affect low-
performing students with respect to their learning outcomes 
and with respect to a potential change in their own self-
efficacy. The learning domain was mathematics, specifically 
the base-ten system. Results were that the learning outcomes 
of low-performers who taught a low self-efficacy agent were 
significantly better than the learning outcomes of low-
performers who taught a high self-efficacy agent. There were 
no effects from the manipulation of self-efficacy expressed by 
the teachable agent on changes of the low-performing 
students’ own self-efficacy. 
Keywords: social agency; educational software; teachable 
agent; math self-efficacy; math performance 

Introduction 

A teachable agent (TA) is a graphical computer character in 

a tutee role. The basic idea is that the student instructs and 

guides the TA (Brophy, Biswas, Katzlberger, Bransford, & 

Schwartz, 1999). In essence, TA-based educational software 

implements the pedagogical approach learning by teaching, 

(Bargh & Schul, 1980). 

To date a set of TA-based learning games targeting the 

STEM areas have been developed and evaluated, and 

repeatedly proven to have positive effects on students’ 

learning outcomes. Some studies have compared effects of 

TA-based software with ordinary teaching (regular 

classroom practice) (Pareto, Haake, Lindström, Sjödén, & 

Gulz, 2012; Chin, Dohmen, & Schwartz, 2013). Others have 

compared educational software versions with and without a 

teachable agent included (Chase, Chin, Oppezzo, & 

Schwartz, 2009; Pareto, Schwartz, & Svensson, 2009). 

An observation from several of the studies is how readily 

the metaphor of the computer figure as a tutee (digital tutee) 

is accepted by students. They express engagement for the 

task of teaching the character, although it is in fact nothing 

but a computer artifact (Chase et al., 2009; Lindström, Gulz, 

Haake, & Sjödén, 2011.) They also make more effort to 

learn in order to teach their digital tutee than to learn for 

themselves (Chase et al., 2009). In effect, students attribute 

mental states and responsibility to the digital tutee as if it 

were a social agent (Chase et al., 2009; Lindström et al., 

2011). They see the agent as a socio-cognitive actor that can 

learn (respond to being taught by them) and that can be 

ascribed traits such as ‘brave’, ‘slow’, ‘smart’, ‘forgetful’ 

etc. 

TA-systems and Low-Performing Students 

Several studies show that the students who benefit most by 

educational software with teachable agents – whether 

compared to equivalent software without TA or compared to 

ordinary classroom teaching – are the low-performing 

students. When comparing eleven year olds who used an 

educational game in biology with or without TA, the former 

spent more time on learning activities and also learned 

more, with the effects most pronounced for lower 

performing students (Chase et al., 2009). In a study by 

Sjödén and Gulz (2015), 9-10 year-olds used a TA-based 

educational math game in school over a period of eight 

weeks. Thereafter, the students were divided into two 

groups, matched according to their pretest scores, and 

randomly assigned to a post-test with or without the TA 

present (the TA did not act in order to influence the test but 

was merely present). Results showed that low-performers 

(according to the pretest) improved significantly more than 

high-performers but only when tested with the TA. Pareto et 

al. (2009), likewise found a considerably stronger 

improvement for low ability students than for high ability 

students when they used a math game with a TA feature 

compared to the math game without the TA. 

Mechanisms in TA-Systems that may Support 
Low-Performing Students 

A number of explanations for the pedagogical power of TA-

based games have been proposed, including some that also 

provide possible rationales for why the effect is often larger 

for low-performers. 

First, in a TA-based game, the student is positioned as the 

one that is most able, the one who can teach someone else 

that knows less. This experience – being someone who is 
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capable, who knows more than someone else – can 

potentially affect a student’s view on her own competence 

in a positive way. This will likely benefit low-performers 

more than high-performers, since the latter are more likely 

to already have experienced the role of ‘teaching someone 

else’ and ‘knowing more’. High-performers are more likely 

than low-performers to spontaneously take a teacher role (or 

be assigned this role in class). Acting teacher can potentially 

strengthen the student’s belief in her own capability in the 

domain in question, and this may in turn have effects on 

performance. 

Second, a teachable agent can be a model of learning 

behaviors (Blair, Schwartz, Biswas, & Leelawong, 2007). A 

TA is often designed to model fruitful and productive 

student behaviors, such as being curious, asking questions, 

reasoning, being explicit about parts of ‘knowledge’. It is, 

however, more likely that high-performing students already 

have such behaviors on their repertoire compared to low-

performing students, and that the latter therefore are more 

helped by being inspired by productive learning behavior in 

a TA. 

Thirdly and crucially a TA is teachable. More specifically 

a TA models someone who from the beginning has little or 

no knowledge but learns incrementally or step-by-step. In 

other words, a teachable agent (re)presents or models an 

incrementalist theory of competence in contrast to an entity 

theory of competence according to which some individuals 

are held to be gifted and others non-gifted. This latter view 

is quite common among students (Dweck, 2006). 

Specifically it holds in the domain of mathematics, where it 

has also been shown that teachers to a larger extent than for 

other subjects used terms such as ‘talented’ and ‘not 

talented’ (Rattan, Good, & Dweck, 2012). In principle both 

high- and low-performing students can have an entity view 

of competence, and potentially benefit from viewing 

competence (in this study competence in math) as 

something that can be changed with effort. However, it is 

more likely that low-achievers with an entity view of 

competence are trapped in a circle, where they don’t think 

they are talented and see no meaning in making an effort; 

therefore make little effort; therefore don’t achieve and thus 

confirm they are not talented. In other words, they create a 

self-fulfilling prophecy. 

Fourthly, Chase et al. (2009), propose a mechanism 

named ego-protective buffer. In TA-system it is the TA that 

is tested for its knowledge. When the TA fails at a test, the 

failure or non-success does not come as close onto the 

student as when she takes a test herself. Even if students are 

aware that the TA’s knowledge reflects how the TA has 

been taught by themselves, the responsibility for failing is 

not only theirs. Instead of bearing the full burden of a 

failure, the responsibility of failure can be shared between 

the TA and student. Even though this may benefit high-

performers as well, low-performers are more used at failing 

at school and thus the ego-protective buffer mechanism may 

explain why in particular low-achieving students perform 

better when working with a TA. 

In sum, there is a set of proposed mechanisms that may 

explain why low-performers benefit more than high-

performers from using teachable agents. All mechanisms 

involve the tendency of students to attribute social 

characteristics and agency to the agent, and interact 

intellectually and socially with it. For instance, to view the 

TA as someone that it is possible to share a failure with; to 

view the TA as someone who can accomplish a task (or 

not), as someone whose knowledge is different from mine 

and that I can influence by teaching it; to view that TA as 

someone that can learn – and as learner be slow, quick, 

smart, forgetful, etc. 

In view of the above, we found it plausible that students 

would also tend to attribute high or low self-efficacy to an 

agent, if designed in an adequate manner. Spelled out, they 

would tend to attribute to an agent high or low belief in its 

own capability to learn and be successful – in our case with 

respect to math and base ten problems. The present study 

thus approaches the trait of self-efficacy, which to our 

knowledge has not been studied before in teachable agents. 

Does TA Self-Efficacy Matter for Student Progress 

Having an ability to learn, i.e. being teachable, is the very 

essence of a digital tutee or teachable agent. However, 

whether other kinds of properties are attributed to a TA 

depends in the first place on how the TA is designed and 

implemented, and also on the student interacting with the 

TA. For instance, depending on how it is implemented, a 

TA can be (perceived as) a quick learner or a learner that 

needs many rehearsals. A TA can be (perceived as) more or 

less challenging or questioning (Kirkegaard, 2016). 

In our study the TA was designed to express either high 

or low belief in its own capacity to learn and perform in a 

math game. We will soon present our predictions but first 

discuss the phenomenon of self-efficacy in real human 

students. For human learners we know that there is a 

relation between self-efficacy and actual performance 

(Bandura, 1997) in that self-efficacy predicts subsequent 

performance. Low self-efficacy predicts low performance, 

and high self-efficacy predicts high performance. Proposed 

mechanisms are that student’s self-efficacy influences how 

much effort she puts into a task, her tendency to persist, how 

high she sets her aspirations and her tendency to persevere 

when being challenged by the task. Individuals with high 

self-efficacy often achieve more in intellectual terms 

(Bandura, 1997). Importantly, however, the relations are 

correlational and on a group level. There are no causal or 

absolute relations between individual’s self-efficacy and her 

performance; students may over-estimate as well as under-

estimate their own capacity. 

We now return to self-efficacy in teachable agents. The 

central research question in the present study was whether a 

teachable agent expressing low or high self-efficacy, 
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respectively, would have different impact on low-

performing students in terms of their learning and progress. 

In addition we explored whether there would be any effects 

on students’ own self-efficacy in either of the conditions. 

Research Questions and Predictions 

Research Question 1 (RQ1) Will learning and progress 

differ between low-performing students who teach a TA 

expressing low self-efficacy (lowSE-TA) and low-

performing students who teach a TA expressing high self-

efficacy (highSE-TA)? 

As a basis for our predictions we used two different 

theories: (i) role-modeling theory by Bandura (1977) and 

(ii) the theory of the TA protégée effect by Chase et al. 

(2009). This resulted in two alternative predictions that 

point in opposite directions. As such this is not surprising 

since the predictions are generated from theories not related 

to one another. 

The first, alternative, prediction in line with Bandura´s 

idea of role modeling focuses on teachable agents as 

behavioral models, as discussed in the introduction. A 

highSE-TA models a learner with a strong belief in her own 

abilities to learn, a willingness to persist and not give up, 

etc. Together with the TA:s incremental progression (given 

that it is reasonably taught by the student) this is likely to be 

a positive model for low-performers, that often themselves 

have low self-efficacy. Thus we predict that low-performers 

will make larger progress if they teach a highSE-TA than if 

they teach a lowSE-TA. 

The second, alternative, prediction is based on the 

protégée-effect mentioned above: in general, students seem 

to take responsibility for a TA and make an effort to teach it. 

Now, a lowSE-TA expresses uncertainty in its own 

capacity, and seems in considerable need for support and 

engagement from the teacher (i.e. student), whereas a 

highSE-TA expresses confidence in its own capability to 

learn and manage and seems in less need for help from the 

teacher. Therefore low-performers may be more motivated 

to take responsibility and make an effort to teach a lowSE-

TA compared to a highSE-TA. Consequently they will also 

themselves make more progress. Thus we predict that low-

performers will make larger progress if they teach a lowSE-

TA than if they teach a highSE-TA. 

There is also third possible result, namely that whether 

the TA expresses low or high self-efficacy will not matter 

for low-performers progress. 

Research Question 2 (RQ2) Will a potential change in self-

efficacy in low-performing students differ between those 

students who teach a TA expressing low self-efficacy and 

those who teach a TA expressing high self-efficacy? 

If the TA functions as a behavioral model with respect to 

self-efficacy, low-performers are more likely to increase 

their own self-efficacy if they teach a highSE-TA than if 

they teach a lowSE-TA. The reason is that they may be 

inspired to model the TA along the line “If this character, 

my digital tutee, believes strongly in its capability, why 

shouldn’t its teacher, that is me, do so too?” 

From the protégée effect no straightforward prediction 

can be derived on potential self-efficacy change in students, 

depending on TA self-efficacy. As discussed under RQ1, if 

the protégée effect is at work, participants will put 

particularly large effort into teaching a lowSE-TA, since 

such a TA signals a greater need of help and support than a 

highSE-TA that signals that can learn on its own. But 

whether students that take more responsibility and make a 

larger effort to teach their TA also change their belief in 

their own capacity to learn is not obvious. On the one hand, 

an interplay between performance and self-efficacy is likely 

but such influences may take time. 

Again there is a third possible result, namely that whether 

the TA expresses low or high self-efficacy does not matter 

with respect to low-performers potential self-efficacy 

change. 

To sum up, the present study made use of a learning game 

in math including a TA, where we manipulated the TA:s 

expressed belief in its own capability to perform and learn 

math as expected in the game. Our two research questions 

were: RQ1: Would the manipulation of TA self-efficacy 

have an effect on low-performing students’ progress in the 

game (i.e. their learning math)? RQ2: Would the 

manipulation of TA self-efficacy have an effect on potential 

change in self-efficacy in the low-performing students?  

Method 

Participants 

Participants were 166 students (83 girls and 83 boys) aged 

10-11 years from 4 schools and 9 classes in Southern 

Sweden from areas with relatively low socio-economic 

status and school performance below average. Students 

were randomly assigned one of the conditions: teaching a 

digital tutee that expressed high self-efficacy (highSE-TA) 

or teaching a digital tutee that expressed low self-efficacy 

(lowSE-TA). Out of the initial set of participants, 24 were 

excluded due to missing data points or low attendance. 

Next, out of the 142 remaining students, the 62 students 

who performed below the median on a math performance 

test were selected for further analysis. The math test was 

based on a representative part of the national tests in 

mathematics and consisted of 21 problems relating to place 

value. Thus, in the final data set, there were 28 students in 

the lowSE-TA condition and 34 in the highSE-TA 

condition. 

The Educational Game 

The TA math game, developed by Lena Pareto (Pareto, 

2014), targets basic arithmetic skills related to the place 

value system, where the student teaches a digital tutee 

1171



named Lo, so that Lo can compete against other students’ 

digital tutees or against a computer actor in different digital 

board games. Lo’s knowledge – based on the system’s 

knowledge domain (Pareto, 2014) – develops entirely on the 

basis of what the student teaches her (and if taught wrong, 

Lo will learn wrong). 

A central part of the student’s teaching consists of 

answering questions from the digital tutee about the math 

content, specifically regarding place value, via multiple-

choice for answering (see figure 1). The other main 

interaction between student and digital tutee takes place via 

a free text chat (Silvervarg & Jönsson, 2011). This is also 

where Lo, the TA, expresses her self-efficacy (see figure 1). 

 

Figure 1: The math game with multiple choice conversation 

and ‘free text chat’ conversation (overlay). 

Self-Efficacy in the Teachable Agent 

High or low self-efficacy in or study was defined as high or 

low belief in ones capability to make progress and perform 

well in the math game. In turn, this requires making 

adequate moves and answering questions regarding the 

place value system correctly. The definition can be 

compared to a more general definition of self-efficacy in 

mathematics as the belief in ones capability to successfully 

learn mathematics (Bandura, 1997). 

After each round of the game where Lo (the TA) has been 

active – observing and posing questions to the student or 

being guided by student – the chat conversation starts. The 

chat begins with Lo commenting on the previous round 

saying for example: “Awesome! We won! I have a good grip 

now of tens and hundreds and all that you teach me.” 

(reflecting high self-efficacy), “Oh I won, did I? Nice. But I 

feel very uncertain about how to play well.” (reflecting low 

self-efficacy). 

The chat conversation also contains other comments and 

reflections from Lo on her own learning, for instance: “I´m 

learning the rules in the math game slowly. I´m not a very 

brilliant student.” (reflecting low self-efficacy), “It’s going 

to get better and better. I have so quickly learned so many 

things about how to play the game.” (expressing high self-

efficacy), and “I am not sure I can learn these things.” 

(expressing low self-efficacy). 

The chat always ended with a sentence from Lo regarding 

her thoughts about the upcoming round, for example: “I 

have a feeling that the next round will go really well. Let’s 

play!” (expressing high self-efficacy) or “It doesn’t seem 

like I understand much really, but let’s play another round.” 

(expressing low self-efficacy). 

Lo’s utterances had previously been evaluated with regard 

to whether they sounded as uttered by someone who was 

confident, not confident, or neither nor in her ability to learn 

and perform. The evaluators were 22 fourth graders from a 

school not participating in the study. The evaluation resulted 

in the removal of a few sentences and slight modifications 

of others, resulting in a set of 136 sentences, 68 reflecting a 

digital tutee with high self-efficacy and 68 reflecting a 

digital tutee with low self-efficacy. 

In addition the manipulation – low and high self-efficacy 

in the TA – was validated within the present study by 

participating students. At the end of the last study session 

they were asked to evaluate Lo’s belief in her/his own 

capability to play the math game on a Likert scale. A Mann-

Whitney test showed a significant difference (Z = -4.85, p < 

.001, r = .39) between the low SE-TA and the high SE-TA, 

confirming that the manipulation had intended effects on the 

perception of the TAs self-efficacy. 

Procedure 

All study sessions took place in ordinary classrooms and 

lasted about 30 minutes. At the pre-test session, students 

completed a math pre-test targeting the place value system, 

and a pre-questionnaire targeting their self-efficacy in math 

with respect to the place value system. The students’ math 

pre-test scores were used to identify the target group for this 

study’s research questions, i.e. low-performers (in math). 

Thereafter students participated during seven game-

playing sessions, once a week. At the post-session, students 

again filled out the questionnaire targeting their self-efficacy 

in math and the place value system and were debriefed 

about the two different types of digital tutees and the 

purpose of the study. 

Measurements 

Performance During Game Play Students’ performance 

while teaching the digital tutee is a reflection on how well 

they perform themselves. In line with this we calculated a 

performance score for each student on the basis of the data-

logging. Through the game the digital tutee poses questions 

to the student that concerns the conceptual model and 

principles of the place value system. For instance: “How 

many orange square boxes are there in the 2 yellow square 

boxes on the game board?” and “How many red square 

boxes are needed to fill a yellow square box?” The tutee 
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posed three such questions during each game session, and 

the student had to choose one out of four alternative answers 

(one correct, two incorrect and the alternative “I don’t 

know.”). The performance score was calculated as the 

percentage of correct answers minus the percentage of 

incorrect answers. Additionally, a study by Pareto (2014) 

showed that in-game performance in this math game 

correlated with standard paper-and-pencil tests on the place-

value system. 

Self-Efficacy Change To measure this we used a self-

efficacy pre- and post-questionnaire based on Bandura, 

Barbaranelli, Caprara, and Pastorelli (1996); for this study 

translated into Swedish 

The seven items targeted the students’ self-efficacy with 

regard to the place value system and the question “How 

good are you at solving this type of task?” Item one to five 

regarded calculation tasks such as “1136 + 346”, and item 

six and seven targeted place value concepts, such as: 

“Which digit has the highest place value in the number 

6275?” All items were graded in five steps from “Not good 

at all” to “Very good at”. 

Results 

Statistical analyses were conducted in R v3.2.4 (R Core 

Team, 2016). Of the 142 participants with complete data, 

the 62 performing below the median on the pre-test in math 

were included in the analysis. 

Effects TA Self-Efficacy on Low-Performing 
Students’ Performance During Game Play 

An unmatched two sample t-test showed a significant 

difference (t(60) = 3.40, p = .0012, Cohen’s d = 0.87) of TA 

self-efficacy on student performance with the students in the 

lowSE-TA condition (M = 54.8, SD = 13.7) outperforming 

the students in the highSE-TA condition (M = 43.7, SD = 

12.0). 

Effects of TA Self-Efficacy on Low-Performing 
Students’ Self-Efficacy Change 

An unmatched two sample t-test showed no significant 

difference (t(60) = 0.35, p = .73) of TA self-efficacy on 

student self-efficacy change between the students in the 

lowSE-TA condition (M = 1.18, SD = 3.81) and the students 

in the highSE-TA condition (M = 1.53, SD = 4.00). 

Discussion 

Teaching a lowSE-TA compared to teaching a highSE-TA 

made the participants perform significantly better, as 

measured by their in-game performance scores. But the two 

conditions did not differ with respect to whether the 

participants changed their own self-efficacy. Changes were 

small and did not differ between the conditions. 

These results contribute to our knowledge about 

mechanisms in a TA-based educational game with respect to 

why low-performers tend to benefit more than high-

performers from these games. First, we showed that a 

manipulation of expressed self-efficacy in a TA can 

influence performance for low-performers: a TA that 

expressed low self-efficacy was more beneficial than a TA 

that expressed high self-efficacy. The effect as such, 

regardless of direction, confirms that at least some of the 

pedagogical power in a TA-based game derives from 

attributions of social agency to TA:s, in this case attributing 

to the TA a weak or strong belief in its own capability. 

Consequently this is one of the traits that a TA designer 

ought to be aware of; a trait that can explain why low-

performers benefit more than high-performers from TA-

based games. 

With respect to student performance, we based our 

predictions on two different theoretical models: role 

modeling according to which a highSE-TA should have the 

most positive influence on the performance of low-

performers, and the protégée effect according to which a 

lowSE-TA should have the most positive influence on the 

low-performers performance. The latter theory was 

supported and can be further elaborated on by means of the 

results of our study. According to the protégée-effect 

students tend to make more effort and take more 

responsibility for the task of teaching a TA than for the task 

of learning for themselves (Chase et al., 2009). In our study 

the outcome was better when low-performers taught a 

lowSE-TA compared to a highSE-TA. It is near at hand 

that they made an even larger effort and took even more 

responsibility for a TA with low self-efficacy since this TA 

expresses a low trust in her own ability to learn, and likely 

comes across as someone who is more in need of help than a 

TA with high self-efficacy. A highSE-TA, on the other 

hand, indicates that s/he is capable to learn and perform, and 

is in less need of help. 

The lacking effect on students self-efficacy change, 

depending on high or low self-efficacy in the TA, means 

that the role-modeling hypothesis proposed above was not 

supported. Students were not inspired by a highSE-TA as a 

model to increase their own self-efficacy. Neither did 

teaching a lowSE-TA lead to an increase in the students’ 

self-efficacy. However, it did lead to an increase in their 

performance, and we can thus conclude that the increased 

performance was not caused by an increased self-efficacy, at 

least not as measured in our study. It should also be pointed 

out that an increase in self-efficacy is not always desirable, 

in particular not for students who overestimate their 

capabilities. At the same time, given the interactions 

between self-efficacy and performance, it is often a good 

thing when students with low self-efficacy in a domain gain 

more confidence in their abilities to make progress. What is 

desirable in general is that as many students as possible 

have an incrementalist rather than an entity view of 

intellectual capabilities – something that the use of TA-
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based educational games may contribute to (Chase et al., 

2009). 

Limitations of the Study and Future Research 

The study should be seen as a first examination about how 

the manipulation of self-efficacy in a digital tutee can 

influence student performance. Some limitations should be 

kept in mind when interpreting the results. One is that there 

was no group of students who taught a digital tutee that 

expressed a neutral mode of self-efficacy. In future research 

such a condition should be included. Furthermore, rather 

than aiming to be conclusive, the present study opens up for 

associated studies. For instance, one relevant question is 

whether the results will replicate or not with other age 

groups than 10-11 year olds. Another interesting line of 

research could be to explore a TA with adaptive self-

efficacy that reflects the rate at which it actually learns, 

which in turn reflects the proficiency of the student that is 

teaching it. 
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Abstract

The current study manipulated how frequently different prob-
lems were practiced during a first day of practice, with the
more frequent items being more closely spaced. Fitting the
data to a skill acquisition model, we find that greater spac-
ing between items is associated with an increased probability
of transitioning to more efficient phases of performance, but
with a shallower speedup within each phase. Three days after
training, we find that performance is predicted not by the prac-
tice frequency during training, but rather by the phase of skill
acquisition attained during training. Thus, it is type of pro-
cessing achieved not the amount and spacing of practice, that
determines retention. Spacing, however, promotes learning by
driving changes in cognitive processing.
Keywords: Skill acquisition; Practice frequency; Spacing ef-
fect; Learning; Retention

Introduction
A widely held observation, labeled the ’Spacing Effect’,
shows that increasing the time between practice opportunities
improves retention. In contrast, massing practice opportuni-
ties together improves performance during training but nega-
tively impacts retention. However, when the amount of time
available for practice is limited spacing practice results in
fewer total practice opportunities which may negatively im-
pact learning (Anderson, 1982). Given the importance of the
trade-off between spacing and amount of practice in under-
standing how humans learn, along with the clear educational
benefits to improving retention, these effects have been stud-
ied extensively over the past 100 years. Explanation of both
the effects of spacing and practice is critical for understanding
skill acquisition. In this paper, we apply a model of skill ac-
quisition (Tenison & Anderson, 2016) to a spaced-practiced
data set to explore how spacing and the amount practice im-
pacts the type of cognitive processes and affects the speed at
which those processes are used to complete a task.

To capture the spacing effect, theories must explain both
the short-term effects of practice frequency on skill acquisi-
tion and the long-term effects of spacing on retention. While
several theories explain the locus of the spacing effect, we
consider two qualitatively distinct sets of theories that study
the processes occurring during practice that contribute to the
spacing effect (Bjork & Allen, 1970). The set of deficit-
processing theories focuses on the role of attention in the en-
coding of each practice opportunity. These theories hypoth-
esize that, when practice opportunities are massed together,
information used to encode and recall items is stored in work-
ing memory and little attention is needed to maintain these
features. When practiced opportunities are spaced apart, fea-
tures relevant to encoding are not stored in working memory

and greater attentional resources must be applied to the main-
tenance and retrieval of memorized associations (Cuddy &
Jacoby, 1982).

The second set of theories attributes the spacing effect
to variation in encoding. These theories hypothesize that
spacing between practice opportunities increases variability
in contextual information used in the encoding of the item.
When the item is seen again, the degree to which the item
is encoded and associated with prior exposures is mediated
by the time and number of items viewed between exposures
(Landauer, 1969; Raaijmakers, 2003). This work explains
why the benefit of spaced practice becomes apparent when
retention is tested after a long period. An interesting phe-
nomenon discussed and modeled by many encoding variabil-
ity models investigates the increase in probability of recall-
ing two different items, which have been seen only once,
when those items were spaced further apart during training
(Raaijmakers, 2003; Lohnas, Polyn, & Kahana, 2011). In this
case, as with spacing, the probability of recalling both items
at a much later time increases the more separated those items
were when first seen.

The two types of theories view learning in terms of
strengthening a memory rather than acquiring a skill. While
this view may be sufficient for paired-associates task, it po-
tentially over-simplifies the learning processes of more com-
plex procedures. Given that the spacing effect has been ob-
served across domains, including the learning of complex
procedures (Shea, Lai, Black, & Park, 2000) and motor tasks
(Shea et al., 2000), we stand to benefit from a closer consid-
eration of how spacing and practice frequency influence pro-
cedural skill acquisition. Recent work by Tenison and Ander-
son (2016) suggests that skill acquisition is best described by
both distinct changes in the cognitive processes used to per-
form a task, as well as quantitative improvements in the speed
with which those cognitive processes are executed. With evi-
dence from both behavioral and neuroimaging data, Tenison,
Fincham, and Anderson (2016) suggest that these shifts fol-
low the three phases of skill acquisition proposed by Fitts and
Posner (1967). In the first phase, the Cognitive Phase, people
must execute a series of procedures to perform a task. By the
second phase, the Associative Phase, the response has been
memorized and the task involves a single retrieval from mem-
ory. The third phase, the Autonomous Phase, the retrieval is
dropped and the skill becomes a stimulus-response process.
While this model has been operationalized in the ACT-R cog-
nitive architecture (Anderson, 1982), prior work modeling the
spacing effect within ACT-R predominantly accounts for the
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role of forgetting and memory rather than tracking changes in
cognitive processing (Pavlik & Anderson, 2005). While this
computational model has successfully modeled the impact of
spacing on learning and retention, it is unclear how forgetting
may interfere with skill acquisition.

In the current study, we apply an unsupervised learning
approach developed to detect the phases of skill acquisition
(Tenison & Anderson, 2016) to the problem solving latency
generated in a spaced-practice task. In this task, partici-
pants are introduced to a novel mathematics operation and
practice a set of problems. Different items receive different
amounts of practice within the same learning period, resulting
in greater spacing for the less frequently practiced items and
less spacing between more frequently practiced items. Using
a within-subjects design, participants were each exposed to 4
practice frequency conditions. We look at the effects of this
different practice frequency manipulations on both learning
during the task and retention three days later. We hypothesize
that our manipulation will affect both the rate of achieving
more advanced phases and the rate at which problem solving
speeds up within a phase. We were interested in determining
whether the phase of skill acquisition achieved during study
and amount of practice within a phase would predict reten-
tion.

Methods
We ran our experiment on Amazon Mechanical Turk
(MTurk). Participants signed up for two sessions, separated
by a 66-72 hour period. On Day 1, participants were intro-
duced to a novel math operator and practiced solving a fixed
set of repeated problems. On Day 2 of the study, participants
returned to complete the test including the items seen on Day
1 and answer questions about the strategies they used to solve
the problems.

Participants
43 participants (15 female) completed both days of our ex-
periment. All participants were from the United States. Par-
ticipants represented a diverse age range, 20 to 53 years
(M=30.9, SD=6.3), and education levels (highest level: 5
high school, 30 college, 8 graduate school). Reviewing the
problem solving strategies participants had reported on Day
2, we excluded 8 participants who had used external aids
on either day to solve problems. Our final sample included
35 participants. Participants were paid 2 cents for correctly
solved problems (up to $8.60 on Day 1 and $3.60 on Day 2),
as well as a $2 base pay for Day 1 and a $10 bonus for com-
pleting both days. This study was approved by the university
internal review board and all participants gave informed con-
sent for participation.

Materials and procedure
Participants learned a novel type of mathematics called a
Pyramid problem. Pyramid problems follow the form of
Base$Height, where the base indicates the first term in the
additive sequence, and the height determines the number of

terms to be added together (e.g., 8$4 = 8+7+6+5). Prob-
lem sets included heights of 3, 4, 5, and 6. The bases of our
problem set varied from 4 to 11 with the restriction that the
minimum base for a given height was height plus one. Be-
cause height determines the number of terms to sum, we use
this as a means of manipulating problem difficulty. A total of
36 unique problems were used in the experiment. This study,
however, will focus on only the 16 unique problems that were
practiced on Day 1. For each problem, we recorded the accu-
racy and problem solving latency.

Day 1 After giving consent and completing a demographic
information questionnaire, participants were introduced to
the pyramid operation and given two blocks of 36 unique
items to solve. Each item was presented on the screen in the
form ’8$4= ’. Following each input, we displayed corrective
feedback by showing the expanded calculation and correct
answer in the form ’8+7+6+5 = 26’. After these pre-test
blocks, participants then completed 10 practice blocks, which
included 40 items each. During the practice period, partici-
pants practiced 16 unique problems. Practiced problems were
divided into four Practice Frequency (PF) groups. Items in
Practice Frequency-1 (PF-1) were seen once per block; in
PF-2, twice per block; in PF-3, three times per block; and,
in PF-4, four times per block. We included problems of four
different heights (3-6) in each PF group, so that each block
included 40 items total and 16 unique problems. By the end
of Day 1, PF-1 items were seen 10 times, whereas PF-4 items
were seen 40 times, as a result, our analyses are sensitive to
both the effects of spacing and of general practice. Partici-
pants were given 4 hours to complete the tasks in Day 1.

Day 2 Participants were emailed a link to the retention test
66 hours after the initial completion of their Day 1 session.
After the link was sent, participants had a total of 12 hours to
begin the experiment (once started participants were limited
to 2 hours to complete the experiment). Similar to the pre-test
collected during the first two-blocks of Day 1, the retention
test consisted of 10 blocks of 36 unique problems. This in-
cluded 20 items that were only seen during the pretest on Day
1, and 16 problems from the four PF groups.

Results
The aim of this study is to explore the impact of spacing on
the acquisition and retention of procedural skills. We divide
our results into three sections. First, we report the general
impact of spacing and practice frequency on learning and re-
tention. We next fit the Tenison and Anderson (2016) to the
data to generate parameter estimates and phase labels. Fi-
nally, we use mixed-effects modeling to explore the relation-
ship between experimental condition and phase of skill ac-
quisition.

Descriptive statistics
Before fitting a model to the data to identify learning phases,
we examined the effect of spacing on the speed and accu-
racy of problem solving. A repeated measures analysis of
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Figure 1: Problem solving latency for items averaged within each experimental block. Separate means are calculated for items
of each practice frequency group. (a) indicates performance on Day 1 (b) indicates performance on Day 2. Error bars represent
standard error

variance (ANOVA) run on mean, log transformed latency
data revealed a significant main effect of practice frequency
group (F(9,306)=68.6, p<.001) and block (F(3,102)=34.2,
p<.001), and a significant interaction between PF and block
(F(27,918)=2.3, p<.01). Figure 1 shows that response la-
tency decreased across blocks and appears lower for higher-
PF groups than lower-PF groups. The significant interaction
suggests that the impact of block on speedup differs between
PF groups. The average accuracy of items within the differ-
ent PF groups also increases from PF-1 (M=92%, SD=.7%)
to PF4 (M=97%, SD=.2%). A repeated measures ANOVA
on accuracy data finds a significant main effect of PF group
(F(3,102)=8.7, p<.001) such that PF-4 items were more accu-
rate than lower practice frequencies, but the impact of block
(F(9,306)=.9, p=.5) and the interaction between block and PF
group (F(27,918)=1.2, p=.3) are not significant.

From the last items practiced on Day 1 to the first item
practiced on Day 2, we see average decreases in accuracy
from 95.6% (.5%) to 94 % (1.0%), and decreases in re-
action time from 2.8 (.01 s) to 5.4 (.02 s). We will fo-
cus on latency for Day 2, which shows the large effect. A
repeated measures ANOVA showed a significant main ef-
fect of practice frequency group (F(3,102)=3.4, p<.05) and
problem difficulty (F(3,102)=5.4, p<.005) but no interaction
(F(9,306)=1.2, p=.3). The effect of problem difficulty present
in all groups suggested that on Day 2 many of these problems
were solved rather than retrieved. Furthermore, the mean re-
sponse times for these items indicated that items in the higher
practice frequency groups were solved more quickly. These
analyses show that while the effects present in Day 1 remain
on Day 2, they are quite attenuated. However, as we will see
this is because of the mixing of items that have reached dif-
ferent phases of learning on Day 1.

Model fitting

We fit the Tenison and Anderson (2016) power-law skill ac-
quisition model to the response latencies for the items solved
during the 10 practice blocks completed on Day 1. This

model (refer to Tenison and Anderson (2016) for a detailed
description) uses a Hidden Markov model (HMM) to track
both the participants learning phase for any given problem
and the number of practice opportunities a participant has
had within a given phase. Using the within-phase tracking,
we estimated parameters for a power-law function to describe
speedup in the execution of the cognitive processes specific
to each of the phases. However, according to the model,
larger, abrupt changes are caused by transitioning to a more
advanced phase of processing. We fit our model to each PF
group separately. The model was fit separately for each item
solved by a participant, but used trends across all participants
solving items within a PF group in order to generate parame-
ter estimates. We considered the number of phases that best
fit the data by fitting HMMs with 1 through 5 possible phase
transitions. Thus, we fit a total of 20 models (1 to 5 phases
fit for each PF group). We used two measures to evaluate
which model best fit the data: Bayesian Information Crite-
rion, which penalizes models for added parameters, and log
likelihood generated from a leave-one-subject-out cross vali-
dation. We best fit a 3-phase model for all 4 PF groups, repli-
cating the result from our earlier studies. Once we determined
the number of phases best fit by a model, we refit it to all the
data and labeled each item with the phase the model identifies
as most probable.

Because models are fit separately for each practice group,
we first needed to establish that the 3 Phases identified by
each model were in fact the same cognitive processes. In
prior work, we found evidence that participants used calcula-
tion strategies in the first learning Phase and retrieval strate-
gies in Phase 2 and 3 (Tenison & Anderson, 2016; Tenison
et al., 2016). Because height determines the number of items
participants sum together, we used the four different heights
present in each PF group as a stand-in for problem difficulty.
We would expect this effect of difficulty to disappear when
participants use the retrieval strategies of Phase 2 and Phase
3. In Figure 2, each quadrant illustrates for each PF-group
the effect of problem difficulty for the items in each Phase.
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Figure 2: Mean problem solving latency for problems of dif-
ferent heights (i.e. difficulty levels) Each quadrant represents
a different practice frequency group. Error bars represent
standard error

We fit a mixed effects model to participants log latency data
(Kliegl, Masson, & Richter, 2010) with random intercepts for
each participant. Our model included an interaction between
height and learning phase, along with a fixed-effect for train-
ing. We initially fit a maximal model in which we considered
a random-effect for each fixed-effect in our model, and then
used BIC to test whether or not removing those random ef-
fects improved the model fit (Barr, Levy, Scheepers, & Tily,
2013). Using this approach, we found our model was im-
proved by inclusion of a random-effect for Phase, suggesting
some variation across individuals in the impact of Phase on
latency. We used the Kenward-Rodger (Kenward & Roger,
1997) approximation for degrees of freedom . In our final
model, we could account for a significant amount of the vari-
ance in response time, with a fixed effect for the PF group
of the item (F(3,1194.8)=22.2, p<.001) , problem difficulty
(F(3,1203.7)=43.9, p<.001) and Phase (F(2,44.9)=487.5,
p<.001), and a significant interaction between problem dif-
ficulty and Phase (F(6,1200.3)=34.5, p<.001). This analysis,
as evident in Figure 2, shows that for all 4 practice frequency
groups there is an effect of problem difficulty present in Phase
1, but not in Phase 2 or 3. The main effect of PF group, while
difficult to discern from Figure 2, suggests a slight tendency
for the more frequent items to be faster.

Interpreting model parameters
We gain insight into these effects by looking at the parame-
ters of the 3-stage models that were estimated separately for
each practice level. In this model, we fit a power function
to each stage to reflect the within-stage practice. This is a
3-parameter function:

µret = I +βn−α (1)

Where µret is the time it takes to retrieve the answer, I is

the asymptotic latency (i.e., the fastest possible time), β is the
amount of latency that can be reduced with practice, n is the
number of practice opportunities, and α is the learning rate.
Asymptotic latency,I, and learning rate, α, parameters were
estimated across all three Phases, and β was estimated sepa-
rately for each Phase. These parameters capture the speed up
within a Phase while our transition parameters, T12 and T23,
describe the probability of transitioning from one Phase to
the next. Table 1 shows these parameters. Across models of
the different practice-frequency groups the intercepts are es-
sentially zero, implying that practice will always reduce the
latency to some degree. The learning rate is controlled by
the parameter a, which is small, indicating relatively small
within-phase speedup. The parameters are remarkably simi-
lar across practice groups. There is a tendency for the speed
up parameter to be greater for the higher-practice groups par-
tially accounting for the faster within-phase times in Figure
1.

Table 1: Parameters for the three phase model of
skill acquisition for each practice frequency group.

I α βp1 βp2 βp3 T12 T23
PF-1 3.7e-8 -.07 7.8 3.2 1.6 .17 .15
PF-2 9.5e-8 -.10 8.3 3.5 1.7 .13 .09
PF-3 3.5e-7 -.11 8.2 3.3 1.6 .07 .06
PF-4 5.9e-9 -.12 8.1 3.3 1.6 .06 .06

Because the number of practice opportunities vary between
PF groups, the number of problems that reach Phase 3 is sig-
nificantly different between the four groups (F(3,102)=6.6,
p<.001), with 55.7% (6.7) of PF-4 problems reaching phase
3, 47.1% of PF-3 (6.1), 50% of PF-2 (5.7), and 35.6% of PF-
1(6.7). However, the transition parameters, T12 (Phase 1 to
2) and T23 (Phase 2 to 3), are smaller for the high frequency
group indicating that high frequency items spend more time
in a phase before transitioning into the next Phase. On aver-
age, PF-4 items are seen 14.3 (1.1) times before transitioning
to Phase 2 and 12.9 (1.0) before Phase 3, whereas PF-1 items
are seen 4.7 (.29) times before Phase 2 and 3.6 (.25) times
before Phase 3.

Retention after three days
To understand how the performance on Day 2 was impacted
by practice on Day 1, we fit a mixed-effects model to the
log latency of the first observation of each problem on Day
2. We explored fixed effects for practice frequency, Phase
reached on Day 1, time spent within that Phase on Day 1,
and problem difficulty. Fitting a maximal model with all fac-
tors and random effects, we systematically removed factors
that did not account for variance within the model (see Barr
et al. (2013) for method). In fitting our model, we found no
improvement justifying the inclusion of random effects; and,
we found that neither the practice frequency group nor the
amount of practice within the last phase reached accounted
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Figure 3: (a) To the left of the vertical line, mean problem solving latency for items in experimental blocks on Day 1; line types
distinguish the mean latency for items in each Phase. To the right of the vertical line, mean problem solving latencies for items
grouped by last Phase reached on Day 1 (b) Mean latency of first block of Day 2. Line type indicates Phase item reached on
Day 1. Error bars represent standard error

for enough variance in response latency to justify either fixed
effect. Our final model indicated a significant effect of prob-
lem difficulty (F(3,515.8)=5.5, p<.001), Phase reached on
Day 1 (F(2,542.5)=20.2, p<.001), and a significant interac-
tion between Difficulty and Phase (F(6,519.1)=2.4, p<.05).
Figure 3a shows the mean effect of phase. It is striking that
the items that were still in Phase 1 show little change in speed,
while the items in Phases 2 and 3 slow down from Day 1 to
Day 2. Figure 3b shows the mean response latencies for the
first items solved on Day 2. The effect of problem difficulty
appears to be present for both items that reached Phase 1 and
2 on Day 1, but less of an observable effect for items that
reached Phase 3 on Day 1. Our interpretation of these results
is that items in Phase 1 on Day 1 stay in Phase 1 and therefore
show no changes in their latency patterns. However, some of
the items in Phases 2 and 3 slip back a phase over the reten-
tion interval and therefore slow down. Items that slip back
to Phase 1 will show a problem difficulty effect, possibly ex-
plaining the presence of a problem difficulty effect for items
in Phase 2 (Figure 3b).

Discussion
Anderson and Milson (1989) suggest that memory phe-
nomenon represent a joint function between general proper-
ties of memory and the strategies individuals use to process
information. Our findings are aligned with prior studies that
consider the impact of the spacing and practice frequency per-
formance during training. Higher frequency in practice con-
tributes to greater improvements in accuracy and response la-
tency during training (e.g. Cepeda, Pashler, Vul, Wixted, &
Rohrer, 2006). The application of the skill acquisition model
gives us insight into how problem solving strategies change in
response to practice. We find the problem-solving latency ad-
vantage of massed trials is concentrated in the speedup within
a phase rather than the transition between phases. This could
be envisioned as ‘rich get richer’ process (Simon, 1955), in
which learning strengthens both the probability of applying

the previously used strategy and the speed with which the
sub-procedures of that strategy are executed. Items that are
spaced further apart exhibit shallower learning rates, which
may make the search for a more efficient strategy more re-
warding than the learning of problem solving sub-procedures.
While theories of deficit processing or contextual variability
could provide a mechanism for the differences in within phase
speed up, the shift between phases of skill acquisition may be
driven by a different mechanism.

Unlike prior work, which largely uses accuracy to measure
the impact of spacing on retention, in our study we use re-
sponse latency and the effect of problem difficulty. When we
include information about what phase each item reached on
the first day of training, we find that practice frequency no
longer accounts for significant variance in problem solving
latency at the retention test. Analyzing the speed of prob-
lem solving on Day 2, it appears that problems that items that
reach Phase 2 and 3 on Day 1 are solved more quickly than
items that remain in Phase 1. Additionally, the significant in-
teraction between Phase and problem difficulty suggests that
Phase 3 items may still be retrieved on Day 2, while Phase
1 and 2 items are calculated. This work is consistent with
findings of Sisti, Glass, and Shors (2007) who found that the
survival of neurons in the dentate gyrus and the strength of
memory in an animal model was predicted not by whether or
not practice was spaced or massed, but by how well the ani-
mals learned the task. While this study provides a biological
mechanism for memory preservation, it is unclear computa-
tionally what memory process would explain the impact of
phase on retention, but not on spacing nor general practice. In
future work, we will explore how phase impacts retention by
incorporating forgetting into our computational model of skill
acquisition. In incorporating this capability, we will consider
forgetting both in terms of regressing to a prior phase, and as
regression within a phase. Additionally, including regression
into the model will allow us to explore how spacing and skill
acquisition on Day 1 impacts relearning on Day 2. In this
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future work we will limit the practice of more frequent items
so to dissociate the effects of spacing from those of practice
frequency. This work, while in an early stage, suggests that
without considering the impact of skill acquisition on prob-
lem solving strategies, our models of the spacing effect, and
memory more generally, are incomplete.
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Abstract
Speakers often refer to context only implicitly when using lan-
guage. The utterance “it’s warm outside” could signal it’s
warm relative to other days of the year or just relative to the
current season (e.g., it’s warm for winter). Warm vaguely con-
veys that the temperature is high relative to some contextual
comparison class, but little is known about how a listener de-
cides upon such a standard of comparison. Here, we formalize
how world knowledge and listeners’ internal models of speech
production can drive the resolution of a comparison class in
context. We introduce a Rational Speech Act model and de-
rive two novel predictions from it, which we validate using a
paraphrase experiment to measure listeners’ beliefs about the
likely comparison class used by a speaker. Our model makes
quantitative predictions given prior world knowledge for the
domains in question. We triangulate this knowledge with a
follow-up language task in the same domains, using Bayesian
data analysis to infer priors from both data sets.
Keywords: comparison class; pragmatics; Rational Speech
Act; Bayesian cognitive model; Bayesian data analysis

If it’s 75 ◦F (24 ◦C) outside, you could say “it’s warm.” If
it’s 60 ◦F (16 ◦C), you might not consider it warm. Unless
it’s January; it could be warm for January. Warm is relative,
and its felicity depends upon what the speaker uses as a basis
of comparison—the comparison class (e.g., other days of the
year or other days in January). Comparison classes are neces-
sary for understanding adjectives and, in fact, any part of lan-
guage whose meaning must be pragmatically reconstructed
from context, including vague quantifiers (e.g., “He ate a lot
of burgers.”; Scholler & Franke, 2015) and generic language
(e.g., “Dogs are friendly”; Tessler & Goodman, 2016a). The
challenge for listeners is that the comparison class often goes
unsaid (e.g., in “It’s warm outside.”).

The existence of comparison classes for understanding
vague language is uncontroversial (Bale, 2011; Solt, 2009).
Four-year-olds categorize novel creatures (pimwits) as either
“tall” or “short” depending on the distribution of heights of
pimwits and not the heights of creatures that are not called
pimwits, suggesting the comparison class in that context is
other pimwits (Barner & Snedeker, 2008). Adult judgments
of the felicity for adjectives like “dark” or “tall” similarly de-
pend upon fine-grained details of the statistics of the com-
parison class (Qing & Franke, 2014b; Schmidt, Goodman,
Barner, & Tenenbaum, 2009; Solt & Gotzner, 2012).

Any particular object of discourse, however, can be con-
ceptualized or categorized in multiple ways, giving rise to
multiple possible comparison classes. A day in January is
also a day of the year; if it’s warm, it could be warm for win-
ter or warm for the year. Why should one comparison class
be preferred over another? To our knowledge, this question
has not been addressed formally or empirically.1 We pro-

1Theoretical work in semantics has instead focused on how in-

pose that listeners actively combine category knowledge with
pragmatic considerations to infer the comparison class im-
plicitly used by the speaker. We introduce a minimal exten-
sion to the Rational Speech Act (RSA) model for gradable
adjectives (Lassiter & Goodman, 2013) to allow it to flexibly
reason about the implicit comparison class.

We derive two novel qualitative predictions from this
model. Saying “it’s warm” in winter should signal it’s warm
for winter (as opposed to for the year) more so than saying
“it’s cold”. The opposite relationship should hold in summer,
where “it’s cold” should signal it’s cold for summer more so
than “it’s warm”. This prediction is driven by the a priori
probability that the adjective could apply to the class (e.g.,
the probability that a given day in winter is warm; Predic-
tion 1). In addition, regardless of the season and the adjective
form (e.g., “warm” or “cold”), listeners who expect speakers
to be informative will prefer classes that are relatively specific
(e.g., relative to the current season as opposed to the whole
year), as they carry more information content (Prediction 2).
We test these predictions by eliciting the comparison class
using a paraphrase dependent measure (Expt. 1).

As with any Bayesian cognitive model, explicitly speci-
fying relevant prior knowledge (e.g., beliefs about tempera-
tures) is necessary for the model to make quantitative pre-
dictions. The current methodological standard is to measure
beliefs by having participants estimate quantities or give like-
lihood judgments (Franke et al., 2016). We pursue a different
methodology. The RSA model captures a productive frag-
ment of natural language; thus, it makes predictions about a
related natural language task (Expt. 2). Critically, we can use
the model to predict natural language judgments that require
the same prior knowledge as in Expt. 1 and use Bayesian
data analysis to jointly infer the shared priors. This approach
harnesses the productivity of language into experiment de-
sign and allows us to reconstruct priors without having par-
ticipants engage in challenging numerical estimation tasks.

Understanding comparison classes
Adjectives like warm and cold are vague descriptions of an
underlying quantitative scale (e.g., temperature). The vague-
ness and context-sensitivity of these adjectival utterances can
be modeled using threshold semantics ([[u]] = x > θ, for ut-
terance u, scalar degree x, and threshold θ), where the thresh-
old is probabilistically set with respect to a comparison class
c via pragmatic reasoning (Lassiter & Goodman, 2013; see
also Qing & Franke, 2014a):

formation from a comparison class is used and what representations
might be preferred (Bale, 2011; Solt, 2009).
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L1(x,θ | u) ∝ S1(u | x,θ) ·Pc(x) ·P(θ) (1)
S1(u | x,θ) ∝ exp(α1 · lnL0(x | u,θ)) (2)
L0(x | u,θ) ∝ δ[[u]](x,θ) ·Pc(x) (3)

This is a Rational Speech Act (RSA) model, a recursive
Bayesian model where speaker S and listener L coordinate on
an intended meaning (for a review, see Goodman & Frank,
2016). In this framework, the pragmatic listener L1 tries to
resolve the state of the world x (e.g., the temperature) from
the utterance she heard u (e.g., “it’s warm”). She imagines
the utterance came from an approximately rational Bayesian
speaker S1 trying to inform a naive listener L0, who in turn
updates her prior beliefs Pc(x) via an utterance’s literal mean-
ing [[u]](x). Lassiter & Goodman (2013) introduced into RSA
uncertainty over a semantic variable: the truth-functional
threshold θ (Eq. 1). θ comes from an uninformed prior and
is resolved by the listener by reasoning about the likely states
of the world Pc(x) (e.g., possible temperatures) and the likeli-
hood that a speaker would say the adjective given a state and a
threshold S(u | x,θ). The prior distribution over world-states
Pc(x) is always relative to some comparison class c (Eqs. 1 &
3) but where does the comparison class come from?

When a listener hears only that “it’s warm outside” without
an explicit comparison class (e.g., “. . . for the season”), we
posit the listener infers the comparison class using her world
knowledge of what worlds are plausible given different com-
parison classes P(x | c), what comparison classes are likely
to be talked about P(c), and how a rational speaker would
behave in a given world and comparison class S1(u | x,c,θ)
(Eq. 4). As a first test of this idea, we consider an idealized
case where the comparison class can be either a relatively spe-
cific (subordinate) or relatively general (superordinate) cate-
gorization (e.g., warm relative to days in winter or relative
to days of the year). Crucially in this situation, the listener
is aware that the target entity is a member of the subordinate
class (e.g., aware that it is winter) and draws likely values of
the degree (e.g., temperature) from the subordinate class prior
P(x | csub). With these assumptions, the model becomes:

L1(x,c,θ | u) ∝ S1(u | x,c,θ) ·P(x | csub) ·P(c) ·P(θ) (4)
S1(u | x,c,θ) ∝ exp(α1 · lnL0(x | u,c,θ)) (5)
L0(x | u,c,θ) ∝ δ[[u]](x,θ) ·P(x | c) (6)

We are interested in the behavior of the model with the un-
derspecified utterance (e.g., “It’s warm”), and we assume the
speaker has two alternative utterances in which the compari-
son class is explicit (e.g., “It’s warm relative to other days in
winter.” and “It’s warm relative to other days of the year.”).
The predictions of this model depend on the details of the lis-
tener’s knowledge of the subordinate and superordinate cate-
gories: P(x | csub) and P(x | csuper), as well as the prior distri-
bution on comparison classes P(c) in Eq. 4.

Comparison class prior P(c) reflects listeners’ expecta-
tions of what classes are likely to be discussed. As a proxy

for comparison class usage frequency, we use empirical fre-
quency f̂ estimated from the Google WebGram corpus2, and
scale it by a free parameter β such that P(c) ∝ exp(β · log f̂ ).

Degree priors (World knowledge) Only the relative val-
ues for P(x | csub) and P(x | csuper) affect model predictions.
Hence we fix each superordinate distribution to be a stan-
dard normal distribution P(x | csuper) = N (0,1) and the sub-
ordinate priors to also be Gaussian distributions P(x | csub) =
N (µsub,σsub); the subordinate priors thus have standardized
units. We will eventually infer the parameters of the subordi-
nate priors from experimental data.

0

1

−2 0 2

Degree

P
ro

ba
bi

lit
y 

de
ns

ity

low medium high

0.0

0.5

1.0

low medium high

Subordinate prior mean

S
ub

or
di

na
te

 in
te

rp
re

ta
tio

n

negative positive

Figure 1: Left: Three hypothetical subordinate class prior
distributions over a degree (fixing the superordinate class to
be a unit-normal distribution, in grey). Right: Predicted lis-
tener inferences for an intended subordinate class interpreta-
tion given positive and negative form adjectives with different
subordinate degree priors.

Qualitative model predictions Figure 1 (left) shows
schematic superordinate and subordinate priors; e.g., tem-
peratures over the whole year (super), in winter (low), fall
(medium), and summer (high). The subordinate distributions
have lower variance than the superordinate, and the “low” and
“high” distributions have different means (e.g., temperatures
in winter are expected to be lower and have lower variance
than temperatures over the whole year).

Two intuitions explain the inferences of the pragmatic lis-
tener model (shown in Figure 1 right). First, certain classes
are more or less likely to have an adjective felicitously apply.
For example, any given day in winter is less likely to be warm
than cold. Thus, hearing “it’s warm” (a positive-form adjec-
tive) in winter (low prior) will signal it’s warm for winter (the
subordinate class) more so than hearing “it’s cold” (negative-
form), because it’s more likely to be true (Prediction 1).

2Corpus accessed via https://corpora.linguistik.
uni-erlangen.de/cgi-bin/demos/Web1T5/Web1T5_freq.
perl. Due to potential polysemy and idiosyncracies of our exper-
imental materials (Table 1), we made the following substitutions
when querying the database for emprical frequency: produce →
“fruits and vegetables”; things you watch online→ “online videos”;
days in {season} → “{season} days”; dishwashers→ “dishwashing
machines”; videos of cute animals→ “animal videos”.
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Scale (adjectives) Subordinate classes Superordinate
Height (tall, short) (professional) gymnast, soccer player, basketball player people
Price (expensive, cheap) bottle opener, toaster, dishwasher kitchen appliances
Temperature (warm, cold) winter, fall, summer (day in Maryland) days in the year
Time (long, short) video of a cute animal, music video, movie things you watch online
Weight (heavy, light) grape, apple, watermelon produce

Table 1: Items used in Experiments 1 and 2. Subordinate categories were designed to fall near the low end, high end, and
somewhere in the middle of the degree scale

Second, the amount of information conveyed by a vague ut-
terance depends upon the variability in the comparison class.
Comparison classes that have higher variance will result in
relatively less information gain by the listener. All else be-
ing equal, listeners will prefer lower variance (e.g., subordi-
nate) comparison classes because they are more informative
(Prediction 2). Figure 1 (right) shows that subordinate class
interpretations are above baseline regardless of the adjective
polarity (positive or negative) or the mean of the subordinate
prior (low, medium, high).

In sum, we see two predictions: The pragmatic listener
overall prefers subordinate comparison classes, though the
extent of this preference is modulated by the a priori prob-
ability that the adjective is true of the subordinate category.
We test these two predictions in our first experiment.

Overview of data analytic approach As described above,
specifying the relevant prior knowledge yields two free pa-
rameters per subordinate class. We will put priors over these
parameters and infer their likely values using Bayesian data
analysis. The data from the comparison class experiment
(Expt. 1) would be insufficient, however, to reliably estimate
all of the parameters of this data analytic model. To allevi-
ate this, we use the same RSA model to predict additional
data about related language use in the same domains (Expt.
2). Specifically, we gather judgments about adjectives when
the comparison class is explicit: whether or not an adjective
would apply to a subordinate member explicitly relative to the
superordinate category (e.g., Is a day in winter warm relative
to other days of the year?).

To model Expt. 2 data, we remove comparison class un-
certainty by setting P(csuper) = 1, since the sentences provide
an explicit comparison to the superordinate class. We model
sentence endorsement using a pragmatic speaker (following
Qing & Franke, 2014a; Tessler & Goodman, 2016a, 2016b):

S2(u | csub) ∝ exp(α2 ·Ex∼Pcsub
lnL1(x | u)) (7)

Note that L1(x | u) is defined from Eq. 4 by marginalization.
Eqs. 4 and 7 define models for the data we will gather from

Expts. 1 and 2, and depend on the same background knowl-
edge P(x | c). We can thus use data from both experiments
to jointly reconstruct the shared prior knowledge and gener-
ate predictions for the two data sets. Experimental paradigms,
computational models, preregistration report, and data for this
paper can be found at https://mhtess.github.io.

Behavioral experiments
Experiment 1 tests the qualitative predictions of the model.
Experiment 2 collects further data about adjective usage in
order to constrain the quantitative predictions of the RSA
model, which will be used to predict data from both exper-
iments. The materials and much of the design of the two ex-
periments are shared. Participants were recruited from Ama-
zon’s Mechanical Turk and were restricted to those with U.S.
IP addresses with at least a 95% work approval rating. Each
experiment took about 5 minutes and participants were com-
pensated $0.50 for their work.

Materials We used positive- and negative-form gradable
adjectives describing five scales (Table 1). Each scale was
paired with a superordinate category, and for each superor-
dinate category, we used three subordinate categories that
aimed to be situated near the high-end, low-end, and inter-
mediate part of the degree scale (as in Figure 1 left). This
resulted in 30 unique items ({3 subordinate categories} x {5
scales} x {2 adjective forms}). Each participant saw 15 tri-
als: one for each subordinate category paired with either the
positive or negative form of its corresponding adjective. Par-
ticipants never judged the same subordinate category for both
adjective forms (e.g., cold and warm winter days) and back-
to-back trials involved different scales to avoid fatigue.

Experiment 1: Comparison class inference
In this experiment, we gather human judgments of compari-
son classes in ambiguous contexts, testing the two predictions
described in Qualitative Model Predictions.

Participants and procedure We recruited 264 participants
and 2 were excluded for failing an attention check. On each
trial, participants were given a context sentence to introduce
the subordinate category (e.g., Tanya lives in Maryland and
steps outside in winter.). This was followed by an adjec-
tive sentence, which predicated either a positive- or negative-
form gradable adjective over the item (e.g., Tanya says to
her friend, “It’s warm.”). Participants were asked “What do
you think Tanya meant?” and given a two-alternative forced-
choice to rephrase the adjective sentence with either an ex-
plicit subordinate or superordinate comparison class:

{She / He / It} is ADJECTIVE (e.g., warm) relative to
other SUBORDINATES (e.g., days in winter) or SUPER-
ORDINATES (e.g., days of the year)
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Figure 2: Empirical comparison class data, inferred world priors, and empirically derived comparison class priors. Top: Ex-
periment 1 results. Comparison class judgments in terms of proportion judgments in favor of subordinate comparison class.
Middle: Inferred prior distributions of world knowledge used to model Experiment 1 and 2 data. Bottom: Inferred prior prob-
ability of the subordinate comparison classes based on Google WebGram frequencies. Error bars correspond to 95% Bayesian
credible intervals (for bottom plot, derived from the posterior on the β scale parameter).

In addition to all of the above design parameters, half of
our participants completed trials where an additional sentence
introduced the superordinate category at the beginning (e.g.,
Tanya lives in Maryland and checks the weather every day.),
with the intention of making the superordinate paraphrase
more salient.

Results We observed no systematic differences between
participants’ responses when the superordinate category was
previously mentioned in the context and those when it was
not; thus, we collapse across these two conditions for all
analyses. Figure 2 (top) shows the proportion of participants
choosing the subordinate paraphrase for each item, reveal-
ing considerable variability both within- and across- scales.
The predicted effects are visually apparent within each scale
(compare with Figure 1 right).

Our qualitative predictions are confirmed using a general-
ized linear mixed effects model with main effects of adjective
form (positive vs. negative) and the a priori judgment by the
first author of whether the sub-category was expected to be

low or high on the degree scale, and of critical theoretical
interest, the interaction between these two variables. In addi-
tion, we included by-participant random effects of intercept
and by-subordinate category random effects of intercept and
iteraction between form and strength3. Confirming our two
qualitative model predictions, there was an interaction be-
tween form and strength (β =−3.75; SE = 0.58; z =−6.49)
and there was an overall preference for subordinate category
paraphrases (β = 1.21; SE = 0.37; z = 3.27). The main ef-
fects of form and strength were not significant.

We then test the simple effects. For items low on the degree
scale (e.g., temperatures in winter), positive form adjectives
were significantly more likely to imply subordinate compar-
ison classes (β = 1.41; SE = 0.15; z = 9.43), while the op-
posite is true for items high on the scale (e.g., summer days;
β =−2.5; SE = 0.19; z =−13.15). Participants reason prag-
matically to resolve the comparison class, combining world
knowledge with informativity as predicted by our model.

3This was the maximal mixed-effects structure that converged.
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Figure 3: Human endorsement of subordinate comparison class paraphrases (middle; Expt. 1) and adjective sentences (left;
Expt. 2) as a function of listener model L1 and speaker model S2 predictions, respectively. The right facet displays a subset
of the paraphrase data (Expt. 1) to reveal good quantitative fit even in a small dynamic range. Error bars correspond to 95%
Bayesian credible intervals.

Experiment 2: Adjective endorsement
In this experiment, we collected data about adjective endorse-
ment that would require the same prior knowledge relevant
for Expt. 1. We use this data to further constrain the RSA
model’s quantitative predictions.

Participants and procedure We recruited 100 participants
and 5 were excluded for failing an attention check. On each
trial, participants were given a sentence introducing the sub-
ordinate category (e.g., Alicia lives in Maryland and steps
outside in winter.). This was followed by a question asking if
the participant would endorse an adjective explicitly relative
to the superordinate category (e.g., Do you think the day in
winter would be warm relative to other days of the year?).

Results The judgments in this experiment were consistent
with the a priori ordering of the subordinate categories on
the degree scale. On the y-axis of Figure 3 (left), we see
that the endorsement of adjectival phrases in these domains
is markedly more categorical than the comparison class infer-
ence task (compare vertical spread of left and middle facets).

Full model analysis and results
The RSA listener (Eq. 4) and speaker (Eq. 7) models make
quantitative predictions about comparison class interpretation
and adjective endorsement, respectively. We construct a sin-
gle data-analytic model with each of these RSA components
as sub-models in order to make quantitative predictions about
the data from both of our experiments.

The listener and speaker sub-models share their prior world
knowledge P(x | c) (e.g., temperatures in winter), described
in the Degree Priors section. We put the same priors
over the parameters of each subordinate distribution: µ ∼
Uniform(−3,3), σ ∼ Uniform(0,5), since they have stan-
dardized units. The comparison class prior P(c) in Eq. 4

scales the empirical frequency f̂ by a free parameter, which
we give the following prior: β∼ Uniform(0,3).

The full model has three additional parameters not of direct
theoretical interest: the speaker optimality parameters α

expt
i ,

which can vary across the two tasks. The pragmatic listener
L1 model (Eq. 4) has one speaker optimality: α1

1. The prag-
matic speaker S2 model (Eq. 7) has two speaker optimality
parameters: {α2

1,α
2
2}. We use priors consistent with the pre-

vious literature: α1 ∼ Uniform(0,20), α2 ∼ Uniform(0,5)
We implemented the RSA and Bayesian data analysis

models in the probabilistic programming language WebPPL
(Goodman & Stuhlmuller, 2014). To learn about the credible
values of the parameters, we collecting 2 chains of 50k itera-
tions (after 25k burn-in) using an incrementalized version of
MCMC (Ritchie, Stuhlmuller, & Goodman, 2016).

Results The full model’s posterior over the RSA and data-
analytic parameters were consistent with prior literature and
intuition. The maximum a-posteriori (MAP) estimate and
95% highest probability density (HPD) intervals for model
parameters specific to the L1 model used for Expt. 1 were
α1

1 = 1.6[1.1,2.5], β = 0.13[0.11,0.19]. Model parameters
specific to the S2 model used for Expt. 2: α2

1 = 3.5[0.6,13.2],
α2

2 = 3.2[2.6,3.8]. The inferred distributions corresponding
to subordinate class priors were consistent with the a pri-
ori ordering of these subordinate classes (low, medium, high)
used in these tasks (Figure 2 middle).

Finally, the full model’s posterior predictive distribution
does an excellent job at capturing the quantitative variabil-
ity in responses for Expt. 1: r2(30) = 0.965, and Expt. 2:
r2(30) = 0.985 (Figure 3). Because of the overall preference
for the subordinate comparison class, many of the data points
are distributed above 0.5. Even for these fine-grained differ-
ences, the model does a good job at explaining the quantita-
tive variability in participants’ data (Figure 3 right).
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Discussion
The words we say are often too vague to have a single, precise
meaning and only make sense in context. Context, however,
can also be underspecified, as there are many possible dimen-
sions or categories that a speaker might be implicitly referring
to or comparing against. Here, we investigate the flexibility in
the class against which an entity can be implicitly compared.

We introduced a minimal extension to an adjective inter-
pretation Rational Speech Act model to allow it to flexibly
reason about the comparison class. This model made two
novel predictions about how listeners should prioritize one
class over another. It also made quantitative predictions about
how background knowledge about the degree scale should in-
form this inference in a graded fashion. Both qualitative pre-
dictions of the model were borne out in our first experiment,
and the quantitative predictions were confirmed using a novel
data analytic technique. To our knowledge, this is the first ex-
periment to demonstrate how reference classes for adjective
interpretation can adjust based on world knowledge.

We observe in our modeling results for Expt. 1 that a uni-
form prior distribution over the experimentally supplied com-
parison class alternatives is unlikely (Figure 2 bottom). For
example, the comparison class of “people” for heights of indi-
viduals is relatively more salient than the class of “produce”
for the weights of fruits and vegetables. We used the fre-
quency of the class in a corpus as a proxy for their prior prob-
ability P(c), which was sufficient to account for differences
in baseline class probability both between- and within-scales.

Corpus frequency is a composite measurement of factors
relevant for speech production. Its utility in this model sug-
gests that utterances without an explicit comparison class
(e.g., “It’s warm outside”) may in fact be incomplete sen-
tences, in a way analogous to sentence fragments studied
in noisy-channel models of production and comprehension
(Bergen & Goodman, 2015). Another (non-mutually exclu-
sive) possibility is that the comparison class prior reflects
basic-level effects in categorization (Rosch & Mervis, 1975).
Future work should attempt to understand these factors to
construct a more complete theory of the comparison class
prior.

The second contribution of this paper is a novel data-
analytic approach, where prior knowledge used in the
Bayesian language model is reconstructed from converging
evidence gathered from related language experiments. In pre-
vious work, we have attempted to measure prior knowledge
by decomposing what would be a single, implicitly multi-
layered, numerical estimation question into multiple simpler
questions. Then, we construct a Bayesian data analytic model
to back out the prior knowledge (Tessler & Goodman, 2016a,
2016b). We extend this approach by using the same core RSA
model to model behavior across two language experiments.
The major feature of this method is that participants respond
only to simple, natural language questions rather than esti-
mating numerical quantities for which complicated linking
functions must be designed (e.g., Franke et al., 2016). The

fully Bayesian language approach we pioneer here also pro-
vides a further constraint on the language model, which must
predict data from two similar but distinct language experi-
ments. The productivity of natural language can thus be har-
nessed to productively design experiments that further con-
strain and test computational models of language and cogni-
tion.
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Abstract

It is well known that, all things being equal, the accuracy of
mammalian timing and memory decays gradually with the pas-
sage of time. The gradual decay of temporal accuracy is also
observed in single-unit neural recordings. Here we review re-
cent modeling work describing a specific mechanism for tim-
ing and memory and relevant neural data. The model describes
a neural mechanism that can give rise to a logarithmically com-
pressed representation of the recent past. We examine the spe-
cific predictions of the model, in particular that the elapse of
time is represented by sequentially activated cells which fire
for a circumscribed period of time. Such cells, called time
cells, have been observed in neural recordings from several
brain regions in multiple species. As predicted by the model,
the cells show accuracy that decreases with time.

Keywords: scale-invariance, memory, interval timing, time
cells.

Introduction
Behavioral experiments on humans and other animals have
demonstrated that the accuracy in estimating the duration of
a time interval decays gradually with the interval duration it-
self. More specifically, the variability of the response is pro-
portional to the interval duration (Rakitin et al., 1998; Ivry &
Hazeltine, 1995). For instance, in interval timing the response
distributions appear to be scale-invariant: distributions corre-
sponding to different interval durations overlap when linearly
scaled (Roberts, 1981; Smith, 1968). Furthermore, animal lit-
erature suggests that in conditioning paradigms, the number
of trials needed for an animal to learn the association between
conditioned and unconditioned stimuli scales with a ratio of
the reinforcement latency and intertrial interval (Gallistel &
Gibbon, 2000), indicating again the scale-invariance in the
animals’ behavior (Balsam & Gallistel, 2009; Shankar &
Howard, 2012; Gibbon, 1977).

In addition to timing, scale-invariance has been argued to
be one of the key properties of memory. Gradual decay of
memory without a characteristic scale has been observed in
a number of behavioral experiments (Anderson & Schooler,
1991; Chater & Brown, 2008; Wixted & Ebbesen, 1991) and
it was often refereed to as power-law of forgetting. For ex-
ample, Donkin and Nosofsky (2012) reported that in item
recognition task the strength of the memory was decaying
as a power law function of the lag between studied items
and a test probe. It has been argued that scale-invariance
should be thought of as universal law of cognition (Chater
& Brown, 1999). A number of cognitive models have been

constructed to account for these properties (Brown, Neath, &
Chater, 2007; Howard, Shankar, Aue, & Criss, 2015; Donkin
& Nosofsky, 2012).

Neural mechanisms that could support the scale-invariance
of time and memory are still unclear. It has been argued
that working memory is represented with persistent neural
activity observed in different areas of the prefrontal cortex
(PFC) during for instance a delayed match to sample task
(P. S. Goldman-Rakic, 1991; P. Goldman-Rakic, 1995). Even
though such persistent activity can account well for the de-
mands of a particular task, it is not clear how it could account
for a gradual decay of the memory representation. More re-
cent studies have found that in some behavioral tasks a subset
of neurons activates sequentially, tiling the task relevant inter-
val, typically lasting for several seconds (see e.g. Pastalkova,
Itskov, Amarasingham, and Buzsaki (2008); MacDonald,
Lepage, Eden, and Eichenbaum (2011) for the first reports
of such activity). These neurons that fire sequentially, each
during a circumscribed period of time, are called time cells
(Howard & Eichenbaum, 2015; Eichenbaum, 2013). It has
been argued that time cells play important role in timing and
memory (MacDonald, Fortin, Sakata, & Meck, 2014; Howard
et al., 2014; Eichenbaum, 2014).

Time cells provide a direct readout of when the delay in-
terval has started: there is no need for population decoding in
a classical sense (Murray et al., 2016; Stokes, 2015). This is
because time cells activate sequentially effectively providing
temporal basis functions and constituting an internal time-
line. As we will discuss later, this timeline is compressed,
such that the temporal resolution gradually decays with the
elapsed time, just as expected given the behavioral findings
on memory and timing we mentioned above. It is unclear,
however, what are the neural mechanisms that could give rise
to such a compressed timeline.

Here we utilize a computational model for compressed
scale-invariant dynamical memory representation introduced
in Shankar and Howard (2012). We compare specific pre-
dictions of the model with the neural recordings of sequen-
tially activated time cells. The model provides a unique solu-
tion to constructing a scale-invariant memory representation
(Shankar, 2015). The model has been used to account for
results of various timing and memory experiments including
judgment of recency and serial scanning in long and short
term memory (Howard, Shankar, Aue, & Criss, 2015). Here
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Figure 1: Examples of sequentially activated neurons from tetrode recordings in rat hippocampus (plot a.) and PFC (plot b.). On
both plots each row on the heatplot corresponds to a single cell and displays normalized firing rate averaged across trials during a delay interval
of a behavioral experiment. Red corresponds to high firing rate, while blue corresponds to low firing rate. The cells are sorted with respect
to their peak time. Despite the fact that both recordings are done during a rather different behavioral experiment, they both show similar
qualitative properties. In particular we point to two features related to the temporal accuracy: 1) time fields later in the delay are more broad
than time fields earlier in the delay (the central ridge is widening as the peak moves to the right); 2) peak times of the time cells are not evenly
distributed across the delay, with later time periods represented by fewer cells than early time periods (this is apparent from the curvature
of the central ridge; a uniform distribution of time fields would manifest as a straight line). a. Hippocampal CA1 neurons recorded during
object-delay-odor sequence task (reprint from MacDonald et al. (2011)). In order to obtain a reward the animals had to memorize the identity
of the stimulus during the delay interval and match it to the appropriate odor. b. PFC neurons recorded during a temporal discrimination task
(reprint from Tiganj et al. (2016), original data first reported in (Kim et al., 2013)). In order to obtain a reward the animals had to estimate
whether the presented delay interval was larger than some baseline duration and make a left or right turn accordingly following the delay.

we focus on the neural side, looking into specific predictions
about individual neural activity that can be derived from the
model.

Sequential activation as a neural correlate of
timing and memory

Starting with a report from Pastalkova et al. (2008), a number
of studies have reported sequential neural activation in dif-
ferent timing and memory tasks from different brain regions:
hippocampus (MacDonald et al., 2011; Salz et al., 2016; Gill,
Mizumori, & Smith, 2011; Kraus, Robinson, White, Eichen-
baum, & Hasselmo, 2013; MacDonald, Carrow, Place, &
Eichenbaum, 2013; Modi, Ashesh, & Bhalla, 2014; Naya
& Suzuki, 2011), PFC (Tiganj et al., 2016) and the striatum
(Mello, Soares, & Paton, 2015; Adler et al., 2012) in a vari-
ety of behavioral tasks. This activity has been hypothesized
to be a neural basis for representation of memory and elapsed
time in a gradually decaying fashion (Howard, Shankar, Aue,
& Criss, 2015; Howard & Eichenbaum, 2015; Eichenbaum,
2014, 2013). The studies were done on different animals,
including rats (MacDonald et al., 2011; Salz et al., 2016;
Gill et al., 2011; Kraus et al., 2013; MacDonald et al., 2013;
Pastalkova et al., 2008; Mello et al., 2015; Tiganj et al., 2016),
mice (Modi et al., 2014) and monkeys (Naya & Suzuki, 2011;
Adler et al., 2012). Even though the majority of studies used
tetrode recordings, Modi et al. (2014) used two-photon cal-
cium imaging minimizing the probability that the results were
observed due to some sort of recording artifact. Most of the
studies were done on animals that were allowed to move, but

some were done on head-fixed animals (MacDonald et al.,
2013; Modi et al., 2014; Naya & Suzuki, 2011; Adler et
al., 2012) confirming that the results were not coming from
position-related artifacts.

It is worth noting that sequentially activated time cells were
observed in these studies despite the different cognitive de-
mands on the animals, which included temporal discrimina-
tion (e.g. Tiganj et al. (2016)) or memory demands (e.g. Salz
et al. (2016); MacDonald et al. (2011)). The duration of the
intervals where such cells were measured was ranging from a
couple of seconds up to 60 s (Mello et al., 2015).

Several studies have observed decreasing temporal accu-
racy as a function of delay, due to spread in time field width
(Howard et al., 2014; MacDonald et al., 2011; Mello et al.,
2015; Adler et al., 2012; Kraus et al., 2013; Salz et al., 2016;
Tiganj et al., 2016) and/or due to a non-uniform distribution
of time fields (Kraus et al., 2013; Salz et al., 2016; Mello et
al., 2015; Tiganj et al., 2016). Two examples of neural repre-
sentation with decreasing temporal accuracy are provided in
Figure 1.

Computational model for compressed
scale-invariant dynamical memory

representation
The computational model reviewed here was initially intro-
duced in (Shankar & Howard, 2012). It consists of a two-
layer feedforward neural network with analytically derived
weights. Here we briefly describe the model and then focus
on its predictions regarding neural activity. Notice that below
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we define the model as a model of memory, as it was initially
introduced in (Shankar & Howard, 2012). Its application in
timing is restricted to the stimulus that initiates the delay in-
terval, as the only stimulus that needs to be remembered.

We first define an input vector f consisting of N elements
such that each of its elements corresponds to a unique stimu-
lus. Thus observing for example stimulus A makes an element
in f that corresponds to stimulus A, fA, equal to one for the
time A is presented and zero otherwise. Each element of the
input vector f has a two-layer dynamical compressed memory
representation. The first layer of the network implements an
approximation of an integral transform of the input (Laplace
transform, but as a function of a real rather than a complex
variable). This means that nodes in the first layer, F(t,

∗
t), act

as leaky integrators (first order low-pass filters) with a spec-
trum of time constant defined with k/

∗
t , where k is positive

integer (Figure 2):

F(t,
∗
t)

dt
=−k

∗
t

F(t,
∗
t)+ f(t). (1)

Leaky integrators project to the second layer, f̃, through
fixed weights that implement an approximation of the inverse
of the transform by applying a kth order derivative with re-
spect to k/

∗
t , denoted as F(k)(t,

∗
t) (the inverse is derived based

on Post’s inversion formula (Post, 1930), see Shankar and
Howard (2012, 2013) for further details on the derivation):

f̃(t,
∗
t) =Ck

(
k
∗
t

)k+1

F(k)(t,
∗
t), (2)

where Ck is a constant that depends only on k. The cells in
the second layer constitute a dynamical memory representa-
tion of the input signal. To understand the properties of the
memory representation we consider an impulse response of a
cell in f̃. For fA(τ) = δ(τ = 0) the corresponding activation
of the cells in the second layer is:

f̃A(t,
∗
t) =Ck

1
∗
t

(
t
∗
t

)k

e
−k t
∗
t , (3)

where Ck here is a different constant that depends only on k.
The activity of each node in f̃A(t,

∗
t) is the product of an in-

creasing power term
(

t
∗
t

)k
and a decreasing exponential term

e
−k t
∗
t . Consequently, each node in f̃A(t,

∗
t) has a peak that cor-

responds to the
∗
t value of that node: d f̃A(t,

∗
t)

dt = 0⇒ t =
∗
t .

Thus, following a transient input, cells in f̃A activate sequen-
tially in time constituting a dynamical memory representation
of the input A (Figure 3).

This memory representation has perfect accuracy in the
limit when k→ ∞. In a realistic biological or artificial neural
network, where k is finite and

∗
t is a discrete variable sup-

*

**

*
*

*

Figure 2: Constructing a scale-invariant compressed memory
representation through an integral transform and its inverse.
A transient input stimulus f(t) (top row) is presented twice

and feeds into a layer of leaky integrators F(t,
∗
t) with a spec-

trum of time constants
∗
t constituting a discrete approximation

of an integral transform (middle row). The transform is de-
noted as L since it is equivalent to the real part of the Laplace
transform. Only three nodes in F(t,

∗
t) are shown. Each leaky

integrator is characterized with its time constant,
∗
t . F projects

onto f̃(t,
∗
t) through a set of weights defined with the opera-

tor denoted as L−1
k which implements an approximation of

the inverse of the Laplace transform. Nodes in f̃(t,
∗
t) acti-

vate sequentially following the stimulus presentation creat-
ing a memory representation. The width of the activation of
each node scales with the peak time determined by the cor-
responding

∗
t , making the memory scale-invariant. Logarith-

mic spacing of the
∗
t assures that the memory representation

is compressed.

ported with a limited number of nodes, the memory repre-
sentation becomes an approximation of the past. The ap-
proximation is scale-invariant (Figure 4) since the width of
the activation of each node scales with the peak time (this is
scale-invariant since rescaling the temporal axis rescales the
width of the activation by the same amount). In other words,
the accuracy of the memory representation decreases with the
elapse of time since the stimulus presentation. With appropri-
ately distributed

∗
t the representation can be made logarithmi-

cally compressed.
To establish biological plausibility of the model we have

shown that leaky integrators with a spectrum of time con-
stants are biologically realistic (Tiganj, Hasselmo, & Howard,
2015; Tiganj, Shankar, & Howard, 2013). In addition, taking
derivatives with respect to k/

∗
t amounts to lateral inhibition,

making it biologically plausible as well (Howard et al., 2014).
To implement the derivative it is required that each neurons
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Figure 3: Activity of the cells in the compressed memory
representation generated by the model. Analogous to the
heatmaps in Figure 1, each row corresponds to a single cell
and displays its normalized activity across time. The cells are
sorted with respect to the peak time defined by their value of
∗
t . The two features observed in Figure 1 are fully captured
by the model: the time fields later in the delay were more
broad than the time fields earlier in the delay and the density
of time fields decreased as a function of time (

∗
t was logar-

tihmically spaced). This illustrates that the model can indeed
account for the firing dynamics of the sequentially activated
time cells that form a compressed representation of time. The
two plots, a and b, show the activity of the cell ensemble
for two different values of parameter k. Increasing k makes
the firing fields more narrow and the memory representation
more precise. Notice that, from the biological perspective,
larger k is more difficult to obtain, since it requires higher or-
der of derivative with respect to k/

∗
t . This requires broader

connectivity between the two layers.

of the first layer only projects to the k neighboring neurons of
the second layer. The connectivity pattern is the same across
the entire projection, since it always implements a derivative
with respect to k/

∗
t . In addition, qualitative alignment of the

model with the sequential neural activity as shown in Figure 3
further supports its biological plausibility.

Discussion
We reviewed the predictions from a computational model
for compressed scale-invariant memory representation and
compared them to the results from recently-published neural
recordings. The model maintains a dynamical representation
of the recent past through a set of sequentially activated neu-
rons. Such sequential activation appears qualitatively similar
to the data published in multiple studies over the past several
years including different regions of the brain including the
hippocampus, PFC and striatum.

Several of the studies align with the model exhibiting com-
pressed memory representation. In particular, the width of the
time fields increased with the peak time and more cells had
time fields earlier than later in the delay interval (notice the
common trend in the plots in Figure 1 and Figure 3). These
findings suggest that the model can indeed account for the
neural representation of the elapsed time.

The model makes specific prediction on the scale-

invariance of the memory representation which was inspired
by the behavioral experiments on timing and memory. Exist-
ing neural data were thus far not sufficient to explicitly test
that prediction. However, the qualitative observations made
here are consistent with the scale-invaraince prediction, but
they are not sufficient to quantitatively verify it.

In addition to the model described here, several other com-
putational models predict the qualitative properties found in
the data. The common aspect of most of such models is the
functional form that gives rise to time fields: as in the model
described here, the activity increase is governed by a power-
law and then later attenuated by a damping exponential. In
particular, Grossberg and Schmajuk (1989); De Vries and
Principe (1992); Machado (1997) propose different mecha-
nistic solutions for achieving such form. However, unlike
in the model described here, rescaling the time axis in these
models would change the functional form of the representa-
tion. Others (for instance Tank and Hopfield (1987); Ludvig,
Sutton, and Kehoe (2012)) directly used the functional form
that provides spreading temporal basis functions as seen here.

Experimental data allowed us thus far to verify some of the
predictions computational models make regarding the com-
pressed representation of time. However, the model described
here makes specific predictions regarding how memory is
maintained in general. Here we assumed that the stimulus that
marks the onset of the delay interval is the only one that has
the memory representation. The model is designed to capture
a variety of stimuli and maintain an independent compressed
memory representation for each of them. In fact, associations
between the independent representations allowed us to test
the model on a variety of memory tasks (Howard, Shankar,
Aue, & Criss, 2015). It is to be tested whether the neu-
ral representation indeed supports such independent, stimu-
lus specific compressed memory representations (see Tiganj,
Cromer, Roy, Miller, and Howard (2017) for recent evidence
of this).

Maintaining temporal information through sequential acti-
vation has a critical computational property in that it provides
a direct readout of the elapsed time. Notice that cells in the
first layer of the model (leaky integrators) contain the same
amount of temporal information as the cells in the second
layer (sequentially activated neurons). Thus one could ap-
ply population decoding techniques and extract the temporal
information from the first layer directly. In fact, this is ex-
actly what the inverse transform is doing. However, instead
of training a classifier, which would be a common decoding
procedure, it provides a simple form of linear readout using
a mechanism analogous to lateral inhibition, which is known
to exist in the nervous system. An additional advantage of
having such a mechanism is that it provides access to the real-
value Laplace domain, where computations that are otherwise
hard to achieve in a neural network become straightforward.
These in particular include addition and subtraction of prob-
ability distributions as well as temporal translation (Howard,
Shankar, & Tiganj, 2015; Shankar, Singh, & Howard, 2016).
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Figure 4: Illustration of scale-invariance in the compressed memory representation generated by the model. Scaling the number
of cells and the temporal duration by the same factor results in identical memory representation (plots a. to d. appear identical

despite the fact that both x and y axes are rescaled on each plot). This property follows from Equations (3) since
∗
t and t appear only as a ratio

(except for the scaling factor in front that does not influence the functional form). Scale-invariance is consistent with behavioral experiments,
but it remains unclear whether neural data exhibits this property as well, even though the results shown in Figure 1 are consistent with
scale-invariance.

Conclusion
We showed that a computational model for constructing com-
pressed dynamical representations of the recent past aligns
well with recent neural data showing sequential neural ac-
tivation. The sequential activation constitutes a compressed
supported timeline, providing a mechanism for representing
the elapse of time and potentially a mechanism for maintain-
ing a dynamical memory representation.
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Abstract 

English-speaking adults recruit a left-to-right “mental      
timeline” (MTL) when thinking about time. The origins of the          
MTL are debated, with some arguing that it is a cultural           
construct and others arguing that it is rooted in innate          
associations between time and space. Here we ask whether         
preschoolers, with limited experience with cultural practices       
thought to shape the MTL, prefer conventional linear        
representations of temporal events. English-speaking     
preschoolers and adults were told stories and asked to choose          
which of two visual representations best illustrated the story.         
As expected, adults overwhelmingly preferred images that       
were linearly ordered from left-to-right. Five-year-olds also       
preferred left-to-right to right-to-left series, but were equally        
likely choose left-to-right and top-to-bottom. By contrast,       
3-year-olds chose at random, apparently insensitive to the        
spatial ordering of event-denoting images. These results       
suggest that attention to the ordinal structure of visual         
representations of time increases across early childhood, and        
that adults’ preference for horizontal space-time mappings       
results from increased cultural conditioning. 

Keywords: time; space; mental timeline; events; abstract       
concepts 

1. Introduction 
Time and space are deeply interwoven in human        

experience and culture. For example, diverse societies use        
spatial tools to depict, measure, and track time; languages         
often use the same words to refer to both time and space            
(e.g., long and short); and readers repeatedly experience        
temporal narratives unfolding in a particular spatial       
direction across the page. Behavioral and neuroscientific       
studies suggest that adults have implicit linear associations        
between specific locations in time and positions in space         
(for a review, Bonato et al., 2012). The nature of the           
relationship between this “mental timeline” (MTL) and       
cultural practices that link time and space is debated. On the           
one hand, systematic cross-cultural differences in the       
direction of the MTL (e.g., Boroditsky, 2011; Bergen &         
Lau, 2012) suggest that it is learned. On the other hand,           
evidence of space-time mappings in infants (e.g., de Hevia         
et al., 2014; Lourenco & Longo, 2010; Srinivasan & Carey,          
2010), and the ubiquity of spatial artifacts and metaphors         
across cultures (Haspelmath, 1997) suggest that some form        
of MTL may be intrinsic to human cognition. Do cultural          
tools linking time and space create mental associations        
across domains, or do they simply capitalize on a low-level,          

biological predisposition to think about time spatially?       
Understanding the development of space-time associations      
in children who cannot yet read or use spatial artifacts for           
time could shed light on this question. Here, we test whether           
3- to 5-year-old preschoolers show adult-like preferences for        
linear representations of events. 

Cross-cultural comparisons involving adults and     
school-aged children have revealed reliable differences in       
the orientation and direction of ordinal space-time mappings        
(e.g., Tversky, Kugelmass, & Winter, 1991). The       
left-to-right (LR) mental timeline is robust in speakers of         
English and many other languages using an LR orthography,         
but speakers of languages that are written from right-to-left         
(RL), often construe of time in an RL line (e.g., Ouellet et            
al. 2010; Tversky, Kugelmass, & Winter, 1991). Vertical        
associations between time and space have also been found         
in speakers of Chinese, which can be written top-to-bottom         
(TB) and also contains vertical time-space metaphors (e.g.,        
Boroditsky, 2011). Many cultural and environmental      
sources of the MTL (and the analogous “mental        
number-line,” MNL) have been posited. These include:       
reading/writing direction, space-time metaphor in language,      
exposure to artifacts such as calendars, counting-related       
practices, early visual experiences, and simply growing up        
in a community with existing space-time associations. 

In contrast to purely cultural accounts, some theories        
contend that we have an innate predisposition to associate         
space and time. One such theory posits that space, time, and           
number rely on a single system for magnitude representation         
(Walsh, 2003). Consistent with the idea that language and         
social cues are not the sole sources of the MTL, infants and            
even neonates appear to make implicit associations between        
duration and spatial length (e.g., de Hevia et al., 2014;          
Srinivasan & Carey, 2010). Going beyond a general        
magnitude account, others have argued that the ordinal        
structure of the MTL/MNL also has a neurophysiological        
and evolutionary basis, and may be LR by default         
(Chatterjee, 2001; Rugani et al., 2015).  

Importantly, cross-cultural differences in the direction of       
the adult MTL indicate that, even if innate ordinal         
space-time mappings exist, they can be modulated by        
reading-writing behavior or other types of cultural       
conditioning. It is therefore difficult to pinpoint the        
developmental origins of the MTL, or to disentangle its         
potential biological or environmental causes, in adults       
populations with many relevant types of cultural knowledge.        
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Here, we explore when and how time-space mappings        
develop in a population whose exposure to cultural input is          
more limited: children. Because formal instruction in       
reading/writing and spatial tools for time often begins in the          
early school years, evidence of linear space-time       
associations in younger children might suggest these       
abilities are not critical to the formation of the MTL. The           
purpose of the current study is to test whether preschoolers          
already have a preference for visual representations of        
events depicted in conventional ordered lines. If so, this         
might suggest that the tendency to form mental mappings         
between time and space is not entirely culturally        
constructed.  

Several prior studies argue that directional space-number       
associations are present in preliterate preschoolers (see       
Nuerk et al., 2015). For instance, English-speaking       
preschoolers spontaneously count objects from LR, while       
Hebrew speakers count from RL. Biases on purely spatial         
tasks such as line-bisection have also been observed in         
preschoolers. These effects are generally stronger in older        
children and adults. To the extent that both the MNL and           
MTL draw on similar spatial representations, we might        
expect to observe similarly early biases toward LR        
representations of time in English-speaking preschoolers. 

Relatively few studies have investigated space-time      
mappings in preschoolers. Timeline tasks indicate that       
4-year-olds can place events on an LR line more accurately          
than chance, but that this ability improves considerably over         
the next 3+ years (e.g., Hudson & Mayhew, 2011; Tillman          
et al., 2017). Importantly, tasks in which a single type of           
timeline is provided for children to use cannot address         
whether they privilege particular spatial orientations or       
directions. However, even without a template, a majority of         
school-aged children place stickers representing events in       
ordered lines with a culture-specific direction (e.g., LR for         
English-speakers; Tversky, Kugelmass, & Winter, 1991).  

In contrast to older children, preschoolers rarely place        
event-denoting stickers in lines spontaneously, and those       
who do so show a much more modest, if any, bias toward            
LR lines (Tillman, Tulagan, & Barner, 2015). Similarly,        
older children, but not preschoolers, produce spatial       
representations of single events in which the agent, object,         
and recipient are linearly ordered in a       
culturally-conventional direction (Dobel, Diesendrunk, &     
Bolte, 2007). Together, these studies suggest that the        
automatic deployment and the direction-specificity of the       
MTL develop slowly in early childhood, and may rely on          
literacy and/or formal schooling to become fully engrained.  

Critically, tasks like those discussed above either require        
children to use sophisticated artifacts or to create visual         
representations of time, and therefore may require       

significant visuospatial, motor, and working-memory skills.      
For instance, the sticker-placement task requires an ability        
to use non-iconic stickers symbolically, sufficient motor       
control to put them in specific spatial locations, and memory          
of what previously-used stickers represent. It is therefore        
possible that the difficulty of these tasks could have masked          
existing associations between time and space in       
preschoolers. To address this concern, the present study        
employs a forced-choice task with minimal response       
demands to test whether English-speaking preschoolers      
prefer conventional linear representations of time.      
Preschoolers were told brief stories describing three-step       
event sequences, given a choice between two spatial        
depictions of each story, and asked which of the two was           
better. In Experiment 1, to test whether children have         
direction preferences, they chose between (conventional)      
LR, RL, TB, and bottom-to-top (BT) representations of        
events. In Experiment 2, to test whether children were         
sensitive to the ordinality of the images, they chose between          
ordered and unordered sequences.  

2. Experiment 1 

2.1 Methods 
2.1.1 Participants. Participants included 62 3-year-old      
children (M age = 3;6), 60 5-year-old children (M age =           
5;5), and 85 adult controls. They were pseudo-randomly        
assigned to one of 3 conditions: Horizontal (n = 21 3YO; 21            
5YO; 29 adults), Vertical (n = 20 3YO; 20 5YO; 29 adults),            
and Mixed (n = 21 3YO; 20 5YO; 27 adults). Children were            
recruited from museums and daycares in the San Diego, CA,          
area, and adults were workers on Amazon Mechanical Turk.         
All participants spoke English as their primary language,        
and none spoke a secondary language with non-LR        
orthography. Adults and parents of children gave informed        
consent to participate. Children were awarded a small prize,         
and adults were compensated $1. An additional 9 children         
were tested but excluded from analysis because either        
English was not their primary language (n = 3), they spoke a            
second language with a non-LR orthography (n = 2), they          
failed to complete the task (n = 2), developmental delay (n =            
1), or clerical error (n = 1). Five adults were excluded from            
analysis due to speaking a language with non-LR        
orthography (n = 2) and lack of attention to the task, as            
indexed by failing a “catch” trial (n = 3). 
 
2.1.2 Procedure. On each of 8 trials, children heard a story           
involving 3 steps (see Table 1). The experimenter placed         
two cards on the table in front of the child, and asked:            
“Which card shows that story? Which one is better?”  
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After the child pointed to their choice, the cards were          
removed, and the next trial began.  

Participants in the Horizontal condition always chose       
between one card with three pictures depicting the story in          
order from left-to-right (LR; see Table 1 and Fig 1A) and           
another with the same 3 pictures ordered from right-to-left         
(Fig. 1B). Participants in the Vertical condition chose        
between cards with images arranged from top-to-bottom       
(Fig 1C) vs. bottom-to-top (Fig 1D), and, in the Mixed          
condition, between LR and TB lines (Fig. 1A vs. 1C). The           
two cards were placed side-by-side in the Vertical and         
Mixed conditions, but were positioned one above the other         
in the Horizontal condition. Every child heard the Egg story          
first. Half the children heard the remaining stories in the          
order listed in Table 1, and half heard them in the reverse            
order. The positioning of the two cards was counterbalanced         
across subjects and items. Adults read the stories on a          
computer, and clicked the image they thought was better.         
Data analysis was done using R and the lme4 package. 

2.2 Results 
2.2.1 Horizontal condition. Participants in the Horizontal       
condition chose between LR and RL sets of images (e.g.,          
Fig. 1A vs. 1B). To test for direction preferences, we          
calculated the percentage of trials on which each subject         
chose the LR card. As expected, virtually all adults (n = 28            
of 29) chose the LR card on every trial (Fig 2A). In contrast,             
the median percentage of LR choices for 5-year-olds was         
lower, at 75%, and these children were less consistent across          
trials than were adults (see Fig 2A). The median percentage          
of LR picks by 3-year-olds was 50%. Exact Wilcoxon         
signed-rank tests confirmed that 3-year-olds’ performance      
was consistent with random guessing (V = 24.5, p = 0.5),           
but five-year-olds selected the LR card significantly more        
often than chance (V = 126.5, p = 0.02). 

 
Figure 1: Example picture cards. The three images on each          
card depict the three stages in the Egg story (see Table 1).            
Cards used in Experiment 1: (A) LR, left-to-right, (B) RL,          
right-to-left, (C) TB, top-to-bottom, and (D) BT,       
bottom-to-top. Additional cards used in Experiment 2: (E)        
Scrambled Horizontal and (F) Scrambled Vertical. 
 
2.2.2 Vertical condition. Participants in the Vertical       
condition chose between TB and BT images (Fig 1C vs.          
1D). As shown in Figure 2B, 90% of adults (n = 26 of 29)              
chose the TB card on every trial. A subset of 5-year-olds  
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Figure 2: Direction and orientation preferences.      
Histograms showing the number of subjects who picked the         
more conventional representation of time at each degree of         
consistency.  
 
(n = 9 of 20) also showed a strong preference for TB cards,             
bringing the group median to 63.5%, significantly higher        
than chance (Exact Wilcoxon signed-rank test, V = 111, p =           
0.02). The median response among 3-year-olds was 50%        
TB, consistent with random guessing (Exact Wilcoxon       
signed-rank test, V = 54, p = 0.3). 

We next asked whether children’s directional biases were        
stronger along one spatial axis than the other. In other          
words, did children have a significantly stronger preference        
for LR in the Horizontal condition than they had for TB in            
the Vertical condition? We used mixed-effects logistic       
regression to model the likelihood of a “conventional”        
choice (i.e., LR in the Horizontal condition; TB in Vertical)          
as a function of Age Group (3-year-olds vs. 5-year-olds) and          
Condition (Horizontal vs. Vertical). The model included the        
interaction of fixed effects as well as a random effect of           
subjects . Examining this model, we found only a main         1

effect of Age Group (β = 0.65, p = 0.01; χ2(1) = 10.1, p =               
0.002). The effect of Condition did not reach significance (β          
= 0.15, p = 0.6; χ2(1) = 0.4, p = 0.5). Thus, the results              

1 The addition of random intercepts and slopes involving Items          
(Egg, Rose, etc) did not improve the fit of these models.  

indicate that children have equally strong (or weak)        
directional preferences within the horizontal and vertical       
axes. 
 
2.2.3 Mixed condition. Participants in the Mixed condition        
chose between (horizontal) LR- and (vertical) TB-ordered       
images (Fig. 1A vs. 1C). In contrast to their near-perfect          
consistency in the other conditions, only about half the adult          
sample (n = 12 of 27) chose the LR card on every trial (n =               
12), resulting in a median response of 87.5% LR (Fig. 2C).           
In contrast, the median percentages of LR picks for both 3-           
and 5-year-olds were 50%, consistent with random guessing        
(Exact Wilcoxon signed rank tests, p’s > 0.05). 

Next, we asked whether children’s likelihood of choosing        
the LR card was impacted by the orientation of the          
comparison set of images, by fitting a mixed-effects logistic         
model to data from the Horizontal and Mixed conditions. As          
predictors, we entered Age Group and Condition, their        
interaction, and a random effect of subjects. Examining the         
model, we found significant main effects of both Age Group          
(β = 0.69, p = 0.01; χ2(1) = 9.9, p = 0.01) and Condition (β               
= -0.51, p = 0.02; χ2(1) = 5.1, p = 0.02), with no interaction.              
In other words, when given a choice, children chose LR          
more often than RL, but not more often than TB.  

Together, the results of Experiment 1 suggest that        
directional linear associations of time emerge between 3 and         
5 years of age, and that children’s biases within spatial axes           
develop earlier than biases across  axes.  

 3. Experiment 2.  
When given choices between two ordinal representations       

of a story that had different directions, the majority of          
3-year-olds in Experiment 1 did not demonstrate a        
preference. One explanation for this behavior is that, for         
3-year-olds, all ordered series of images are equally        
compelling illustrations of stories. An alternative      
explanation is that 3-year-olds simply did not attend to the          
relative ordering of the images on the cards. Experiment 2          
tests this hypothesis.  

Rather than choosing between two ordered sets varying in         
direction, children in Experiment 2 chose between one        
ordered set (either LR or TB) and one unordered set with           
the same orientation (horizontal or vertical). If children are         
sensitive to the ordinal relations among images, we would         
expect them to choose cards showing ordered temporal        
sequences (e.g., caterpillar-cocoon-butterfly) more often     
than cards showing scrambled sequences (e.g.,      
caterpillar-butterfly-cocoon). On the other hand, if      
3-year-olds do not attend to the order of the pictures (in           
relation to the order of events in the story), we would expect            
the same pattern of results found in Experiment 1.  

3.1 Methods. 
3.1.1 Participants. Thirty-eight 3-year-olds (M age = 3;7)        
were recruited from daycares and museums in the Comox         
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valley, BC, and San Diego, CA, areas. Nineteen were         
assigned to the Scrambled Horizontal condition and 19 to         
the Scrambled Vertical condition. An additional 4 children        
were excluded because English was not their primary        
language (n = 1), they spoke a second language with a           
non-LR orthography (n = 2), and experimenter error (n = 1). 
 
3.1.2 Materials and procedures were identical to those        
used in the Horizontal and Vertical conditions of        
Experiment 1, except that each RL card was replaced with a           
Scrambled Horizontal card (Fig. 1E), and each BT card was          
replaced with a Scrambled Vertical card (Fig. 1F).  

3.2 Results and Discussion.  
3.2.1 Horizontal Scrambled condition. Figure 3A plots the        
distribution of children who chose the ordered (LR) card         
with each level of consistency across trials. The median         
percentage of LR choices was 50%, again consistent with         
random guessing (Exact Wilcoxon signed-rank test, V =        
52.5, p = 0.3).  

 
Figure 3. Spatial ordinality preferences. Histograms      
showing the number of 3-year-olds who picked the ordinal         
representation of time over an unordered one, at each degree          
of consistency.  
 
To compare 3-year-olds’ performance on the Horizontal       
Scrambled (Exp. 2) and unscrambled Horizontal (Exp. 1)        
conditions, we used a mixed-effects logistic model       
predicting the likelihood of an LR choice as a function of           
Condition (Horizontal vs. Horizontal Scrambled), with a       
random effect of subjects. The Condition factor did not         
improve the fit of the model over a null model (β = 0.23, p =               
0.3; χ2(1) = 1.0, p = 0.3). Children were no better at            
choosing the LR card over an unordered sequence than they          
were at choosing LR over RL or TB in Experiment 1. 
 
3.2.2 Vertical Scrambled condition. Results from the       
Vertical Scrambled condition are shown in Fig 3B. As in the           
Horizontal Scrambled condition, most 3-year-olds picked      
the TB card on 50% of trials, consistent with chance (Exact           
Wilcoxon signed-rank test, V = 44, p = 0.4) and the addition            
of Condition (Vertical vs. Vertical Scrambled) as a factor         
did not significantly improve the fit of a model predicting          
children’s likelihood of choosing the TB card (β = 0.36, p =            
0.1; χ2(1) = 2.5, p = 0.1).  

Together, the results of Experiment 2 suggest that        
3-year-olds are insensitive to the ordinal relationships       
among images depicting temporal events. 

4. General Discussion 
We explored the development of mental associations       

between time and space, by asking whether preschoolers        
prefer visual representations of events that have a        
conventional linear structure (i.e., left-to-right for English       
speakers). Consistent with conventions in their culture, we        
found that 5-year-olds prefered depictions of events ordered        
from left-to-right to those ordered right-to-left. Furthermore,       
even though vertical artifacts for time are rare in their          
culture, 5-year-olds prefered top-to-bottom representations     
of events to bottom-to-top ones. However, unlike adults,        
5-year-olds showed no preference for horizontal (LR) over        
vertical (TB) depictions of events. Furthermore, younger       
preschoolers, 3-year-olds, not only appeared to lack       
direction or orientation preferences for ordered sequences,       
but also did not prefer ordered sets of pictures to unordered           
ones. Together, these findings suggest that children may not         
initially attend to the ordinal structure of event-depicting        
images, and that the “mental timeline” is constructed        
gradually in early childhood.  

A substantial body of cross-cultural evidence indicates        
that the direction of mature linear mappings between time         
and space varies according to factors such as writing         
direction (e.g., Ouellet et al., 2015). A smaller number of          
studies indicate that these differences may emerge in        
childhood (Dobel, Diesendrunk, & Bolte, 2007; Tillman,       
Tulagan, & Barner, 2015; Tversky et al., 1991). The present          
study adds to this existing literature, by providing new         
evidence that cultural factors shape the direction of the         
mental timeline during childhood. Specifically, we found       
that preliterate 3-year-olds did not privilege conventional       
LR representations of time, and that LR biases appeared         
around age 5, when literacy often begins to emerge . Going          2

beyond prior work, the current study also suggests that         
preliterate 3-year-olds may not map sequential temporal       
events to ordinal lines at all, regardless of the direction of           
those lines. If so, this suggests that both the directionality          
and the ordinal structure of the “mental timeline” are         
constructed during childhood, in response to increased       
environmental input. 

The task used here was designed to give children more          
scaffolding for the formation of space-time mappings than        
previous studies have provided, while also making fewer        
response demands. In contrast to the classic       
sticker-placement task (Tversky, Kugelmass, & Winter,      
1991), for example, the present task did not require children          
to produce a spatial representation, or to recruit an implicit          
mental timeline “from scratch.” Our task provided both the         

2 While we did not assess children’s emergent literacy skills          
here, ongoing studies are employing parent surveys to do so.  
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temporal stimulus (a verbal story) and the spatial stimulus         
(images in lines) to be associated. The child simply needed          
to compare the two alternative mappings afforded by the         
two cards, and to pick the best match of temporal structure           
to spatial structure. However, given that 3-year-olds’       
performance in both experiments did not differ from chance,         
we cannot rule out the possibility that their failure stemmed          
from some less theoretically interesting incomprehension of       
the task. For example, it is possible that these children may           
have failed to recognize the images, or to remember the          
ordering of the three parts of the story. We are currently           
conducting a new experiment to test these possibilities.  

Our findings are inconsistent with theories suggesting the        
LR direction of the MTL is a biological default that must be            
over-ridden to achieve an RL or TB mental timeline         
(Chatterjee, 2001; Rugani, 2015). Our findings also suggest        
that perceptual mappings between duration and length       
observed in infants cannot account for the ordinal MTL         
observed in adults and older children, in which positions in          
space (e.g., on the left) represent locations in time (e.g., in           
the past, see Winter, Marghetis, & Matlock, 2015, for         
discussion). Several studies indicate that, if presented with a         
stimulus that is spatially “long” (e.g., a visual line) and          
temporally “long” (e.g., an auditory tone), prelinguistic       
infants associate these two dimensions automatically, and       
can detect mismatches between duration and length (de        
Hevia et al, 2014; Srinivasan and Carey). In contrast,         
preschoolers in the present study did not appear to align          
3-part temporal sequences and analogous 3-part spatial       
representations. It is therefore possible that space-time       
associations in infancy apply only to temporal properties of         
single events, not to event sequences.  

Our findings in 5-year-olds may also provide a hint into          
the process by which linear space-time mappings are        
shaped. In particular, we observed a developmental       
trajectory in which within-axis direction preferences (LR >        
RL; TB > BT) emerged prior to a preference for one axis            
over the other. Can a literacy-based theory of        
MTL-acquisition account for this? In considering this       
question, it is interesting to note that English orthography         
has both a horizontal and a vertical component, with text          
progressing rightward across lines and downward through       
the page. Indeed, the vertical component of text may be          
more salient in children’s books, which have fewer words         
per line than books for adults. Additional research will be          
needed to directly test whether children with more print         
exposure are more likely to make linear mappings between         
time and space — whether horizontal, vertical, or both. 
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Abstract 

Research on lexical development in Down syndrome (DS) has 
emphasized a dissociation between language comprehension 
and production abilities, with production of words being 
relatively more impaired than comprehension. Current 
theories stress the role of associative learning on lexical 
development. However, there have been no attempts to 
explain the atypical lexical development in DS based on 
atypical associative learning. The long-term potentiation 
(LTP) and long-term depression (LTD) of synapses, 
underlying associative learning, are altered in DS. Here we 
present a neural network model that instantiates notions from 
neurophysiological studies to account for the disparities 
between lexical comprehension and production in DS. Our 
simulations show that an atypical LTP/LTD balance affects 
comprehension and production differently in an associative 
model of lexical development. 
 
Keywords: Down syndrome; lexical development; 
associative learning; comprehension/production asymmetries; 
neurocomputational model. 

 

Down syndrome (DS) is the most common genetic cause 

of intellectual disability. There has been extensive research 

in behavioral and neurophysiological sciences to understand 

how DS affects cognitive development. 

One of the behavioral domains that has attracted 

particular attention in DS is language development, and 

specifically, lexical development. This is interesting because 

lexical development has been argued to be based on 

associative learning mechanisms (McMurray, Horst, & 

Samuelson, 2012), while studies on the neurophysiology of 

DS have consistently described an altered mechanism for 

synaptic adaptation (Begenisic et al., 2014; Scott-McKean 

& Costa, 2011) which lies at the core of associative 

learning. Nevertheless, the role of atypical associative 

learning in lexical development in DS has not been 

explored.  

In this paper, we address this gap by describing a 

neurobiologically informed computational model that 

implements an altered associative learning mechanism 

described in DS to account for the atypical lexical 

development in DS. Our focus is on explaining an apparent 

dissociation between lexical comprehension and production 

in DS. We want to address to what extent this observed 

dissociation is based on general atypical associative learning 

mechanisms. Our hypothesis is that interactions between 

experience and the neurophysiological constraints of DS are 

sufficient to account for the differences in performance 

between lexical comprehension and production in this 

population. 

This hypothesis is in accordance with a domain-general 

view of cognitive development, where the process of 

associative learning is affected overall, but depending on the 

demands of the task (i.e., comprehension or production) the 

observed outcomes are qualitatively different. We test this 

hypothesis in our computational model of lexical 

development. Therefore, a second aim of this paper is to 

provide a computational model of atypical lexical 

acquisition, biologically informed. 

Lexical development in Down Syndrome (The 

Process) 

Language development in DS, as in other developmental 

disorders, has attracted considerable attention for both 

theoretical and practical reasons. On the one hand, 

descriptions emphasizing a relatively greater impairment in 

language abilities in DS (Chapman & Hesketh, 2000; Rice, 

Warren, & Betz, 2005; Vicari et al., 2004) have motivated 

theoretical debate on the nature of language as a process 

resulting from a cognitive system with domain specific vs. 

domain general components (Marcus & Rabagliati, 2006; 

Stojanovik, 2014; Thomas & Karmiloff-Smith, 2005). On 

the other hand, there is interest in understanding atypical 

language trajectories in DS to develop better interventions 

and minimize dysfunction in these patients. Among the 

different domains of language development, in this review 

we focus on lexical development. 

Lexical acquisition is traditionally studied through the 

number of words produced and number of words 

comprehended in a certain age range. These numbers are 

lower in DS when compared to typically developing 

children (TD) of the same chronological age, but the 

discrepancy between DS and TD diminishes when DS 

individuals are compared with TD children of the same 

mental age (i.e., level of non-verbal cognitive ability) 

(Galeote, Soto, Sebastián, Rey, & Checa, 2012).  

In DS it is commonly reported that language 

comprehension abilities exceed language production 

abilities (Galeote et al., 2012; Kay-Raining Bird, Chapman, 

& Schwartz, 2004; Vicari et al., 2004). This pattern 

replicates a canonical finding in research of lexical 

development in TD: the number of words comprehended 

initially exceeds the number of words produced (McMurray 
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et al., 2012). However, critically, a number of studies have 

found that the discrepancy between the comprehension and 

production of words in DS is greater than expected on the 

basis of mental age, with comprehension at or near mental-

age-typical levels, but production selectively impaired 

(Kay-Raining Bird et al., 2004; Vicari et al., 2004). 

Some studies also suggest that production and 

comprehension of words in DS follow qualitatively different 

developmental trajectories (Chapman, Hesketh, & Kistler, 

2002; Galeote et al., 2012), with one study reporting that 

comprehension of words in DS even exceeded the level of 

non-verbal mental age (Glenn & Cunningham, 2005). 

However, in contrast to these results, other evidence has 

suggested that in DS both expressive and receptive language 

are significantly more impaired than what is expected on the 

basis of mental age (Bello, Onofrio, & Caselli, 2014). 

Due to conflicting results it has been difficult to 

characterize a unique profile of cognitive and linguistic 

abilities in DS. High inter-individual variability in the DS 

population (Karmiloff-Smith et al., 2016), along with 

methodological constraints including small sample size and 

the use of different measures and procedures, may explain 

some disparities between studies. In an effort to analyze a 

larger sample of DS individuals in verbal skills, Næss and 

colleagues (2011) meta-analyzed data reported by different 

research groups between 1988 and 2009, and found that 

performance of children with DS is in line with TD 

children, matched by mental age, in receptive vocabulary 

but is significantly impaired in measures of expressive 

vocabulary. 

A number of questions arise from this apparently uneven 

profile between lexical comprehension and production, and 

its failed predictability from the overall level of cognitive 

development: is lexical development in DS only delayed or 

deviated from the TD pattern? Is there a dissociation 

between lexical comprehension and production in DS? Is it 

possible to account for these results with a domain general 

approach? 

Lexical Acquisition and Associative Learning (The 

Theory) 

There is a vast literature on lexical acquisition and the study 

of word learning is at the core of this field. Word learning is 

viewed as the process by which we learn to link a 

phonological representation with a category of objects. 

Word learning involves a sequence of complex processes; 

the learner faces the challenge of selecting discrete 

phonological representations, picking a specific object in a 

cluttered visual scene, and creating meaningful 

representations linking the sounds and the visual objects. 

Attempts to explain how the cognitive system deals with 

such a complexity have been based on three theoretical 

accounts. First, under the lexical constraints account, word 

learning is guided by a set of default assumptions (i.e., 

constraints) on hypotheses (Woodward & Markman, 1998). 

For example, the mutual exclusivity constraint describes the 

process of inferring which word corresponds with which 

object on the basis of knowing already the names of the 

other objects present in the visual scene. 

Second, the social-pragmatic account argues that children 

use cues such as the speaker’s (e.g., caregiver) gaze or 

intention to learn the correspondences between sounds and 

objects (see Ambridge & Lieven, 2011). Third, the 

associative learning account explains word learning as a 

process governed by the domain-general rules of learning. 

The focus is on the linkages created between sounds and 

objects without appealing to any other prerequisites such as 

lexical constraints or social cues, even when these can exert 

a modulatory role on word learning. In recent years, this 

account has been formalized and tested through 

computational models (Mayor & Plunkett, 2010; McMurray 

et al., 2012, Westermann & Mareschal, 2014). 

Computational simulations have provided precise 

descriptions on how the qualitative properties of lexical 

development, empirically observed, as is the initial 

asymmetry between comprehension and production, the 

vocabulary spurt, and mutual exclusivity, emerge in a 

system that operates by establishing associations with 

language-like inputs (e.g., McMurray et al., 2012). 

In this paper, we focus on analyzing the disruptive effects 

that atypical mechanisms of associative learning have on 

word learning for the DS population. For this reason, our 

approach is based on the model proposed by McMurray, 

Horst and Samuelson (2012), we call this the MHS model 

from here on. We selected this model for the following 

reasons: first, the theoretical account underlying this model 

distils the process to its basic computational components 

and develops an approach focused on the role of associative 

learning, and this is convenient for our purpose of analyzing 

atypical forms of associative learning on lexical 

development. Second, the architecture of this model is well 

suited to incorporating our computational formalization of 

biological descriptions of atypical learning in DS. Third, by 

building on previous work, we extend this previous and well 

accepted model to account for atypical behavior and in this 

extension (in terms of behavior, and populations) additional 

evidence is provided for the associative account of word 

learning. 

Associative Learning in Down Syndrome (The 

Underlying Mechanism) 

From a neurobiological perspective, associative learning 

results from the adaptation of synaptic connections between 

neurons. Such adaptations are activity dependent; following 

Hebbian descriptions high co-activation between pre- and 

post-synaptic neurons lead to a strengthening of the synaptic 

connection. Complementary to the Hebbian account, 

empirical research has shown that decays in the efficacy of 

synaptic connections are also triggered by the co-activation 

between the pre- and post-synaptic units. A co-activation 

threshold is assumed to exist (Bienenstock, Cooper, & 

Munro, 1982) so that below-threshold co-activation values 

produce decays in the synaptic efficacy (i.e. long-term 

depression or LTD) and above-threshold co-activation 
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values lead to increase the synaptic efficacy (i.e., long-term 

potentiation or LTP). 

A vast literature on the biological bases of associative 

learning in DS has described an atypical balance between 

LTP and LTD in different mouse models of this syndrome. 

When compared with euploid control mice, LTP is limited 

and LTD is increased in DS (Begenisic et al., 2014; Scott-

McKean & Costa, 2011; Siarey, Villar, Epstein, & 

Galdzicki, 2005). This pattern of synaptic adaptation 

functionally corresponds with an increased co-activation 

threshold, where the same level of stimulation produces 

limited gains and increased decays in the connection 

strengths in DS relative to TD. An increased co-activation 

threshold has been proposed for other populations that show 

cognitive impairment (Meredith & Mansvelder, 2010). 

While considerable progress has been made in the study 

of LTP/LTD in DS, with an emphasis on the design of 

pharmacological interventions (e.g., Begenisic et al., 2014), 

building the bridge from the basic level of altered 

neurophysiology to the high level of cognitive function has 

seen less progress. For example, it is not clear what is the 

role of the altered LTP/LTD balance on language 

development in DS. Descriptions of the exact way by which 

biological differences contribute to language impairments in 

different populations (e.g., TD, Williams syndrome, fragile 

X syndrome) will inform us on what is common across 

populations, the nature of language impairments, and how 

the language capacity is vulnerable (Rice et al., 2005). 

Given the evidence from two fields of research, one 

informed by behavioral studies suggesting a preserved and 

marked asymmetry between comprehension and production 

of words, and another informed by neurophysiological 

studies describing an altered mechanism for associative 

learning, and in the context of an associative learning 

account to word learning, in this paper our focus is on 

exploring, the role of atypical associative learning 

mechanisms in word learning in DS. 

Computational Model 

Overview and Architecture The present model is based on 

the MHS model. It is designed to analyze the role of 

associative learning in the establishment of correspondences 

between auditory word forms and visual objects. In the 

following, we describe our model and we indicate the 

differences between the present model and the MHS model. 

The present model is composed of a neural network with 

three layers of units. Two of these layers represent 

processing in the auditory and visual systems. These layers 

are used to present input patterns to the network and to 

collect responses. These layers are not directly connected 

with each other; instead they are indirectly connected 

through a third layer of “lexical units” (see Figure 1). 

One assumption of this approach is that the auditory and 

visual systems can already categorize objects and select 

discrete elements from the environment. The units in the 

visual and auditory layers are localist; each unit represent 

only one stimulus. 

 
 

Figure 1: Architecture of the neural network with the 

visual, auditory and lexical layers. Only a few connections 

are shown to represent connectivity from auditory and 

visual units to lexical units. 

 

The auditory and visual layers have 40 units each. Thus, 

40 is the total number of words that the network is able to 

learn. The lexical layer contains 100 units. There are more 

lexical units than would be needed to learn 40 words –this 

allows for better learning (McMurray et al., 2012). Since the 

model could initially randomly associate two different 

inputs with the same lexical unit, increasing the number of 

lexical units prevents mismappings and increases 

discrimination of words (McMurray et al., 2012). 

The architecture of the model is similar to the one 

presented by McMurray and colleagues (2012), but a key 

difference is in the number of units. The MHS model has 35 

input units in the auditory and visual layers, and 500 lexical 

units. Our model incorporates more input units and fewer 

lexical units; thus our model requires less computational 

power to simulate the learning of a higher number of words. 

Each unit in the input layers is connected to all the units 

in the lexical layer. These connections are bidirectional and 

their weights are initially randomized. In the MHS model, 

connections are not functionally bidirectional, since they use 

a different temperature parameter for feed-forward and 

feed-back connections. 

Activation values of units range between 0 and 1. The 

activation values of the lexical units are initially normalized, 

such that the sum of all activation values equals 1. When an 

auditory or visual stimulus is presented to the input layers, 

the unit that represents this stimulus is activated with a 

value of 1, and all remaining inputs are set to 0. The 

activation flows through the connections and reaches the 

lexical layer, which then computes the net input as the sum 

of activations coming from the auditory and visual inputs 

weighted by the corresponding connection values. The 

activation values in the lexical layer then go through a 

process of normalization (Equation 1), during 7 cycles. In 

our model 7 cycles are optimal to stabilize 100 lexical units. 

It is not clear how many cycles the MHS model requires.  
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The activation of the lexical units then feeds back to the 

auditory and visual layers; these units then sum the net input 

coming from the lexical layer with the activation from direct 

stimulation. This process allows integration of bottom-up 

with top-down information. Then, the connection weights 

are updated according to the rule described below.  

 

Learning The MHS model incorporates a Hebbian learning 

algorithm that strengthens connections between co-acvtive 

units. The decay terms in the MHS model weaken the 

connections when either the lexical-, or the input units are 

inactive. In our model, the learning algorithm is designed to 

capture the functional differences in synaptic adaptation 

between TD and DS, as informed by studies with mouse 

models. Thus, both strengthening and weakening of 

connections result from the co-activation of units. Our 

algorithm incorporates a co-activation threshold (θ). Those 

co-activation values that surpass θ lead to gains in the 

connection weights, and co-activation values below θ lead 

to decays in connection weights. The simulations of DS use 

a relatively higher value for θ than simulations of TD (i.e., θ 

= 0.9 for DS and 0.7 for TD). Higher values of θ restrict 

connection strengthening and increase connection decay; in 

this way we simulate the atypical pattern of increased LTD 

and limited LTP that has been described in DS. 

To stabilize changes in connection weights we also 

include a self-adjusting parameter called lambda (λ). It 

keeps weights between 0 and 1, by reducing changes as 

weights approach 1. As shown in Equation 2, for above-θ 

values, λ depends on the difference between the co-

activation and the current connection weight. It is computed 

by subtracting the value of the current weight from the 

current co-activation. For below-θ values, lambda acquires a 

negative value proportional to the current weight. 

 

If (ai*aj)> θ,  Then λ = (ai*aj) – Wij              (2) 

              Else                 λ = –Wij 

 

    Lambda is a multiplicative parameter in the final learning 

algorithm (Equation 3). 

 

Wij(t+1) = Wij(t) + λ ß (ai*aj)                    (3) 

 

Changes in weights (Wij) then depend on the co-activation 

value (ai*aj) modulated by the interaction between the 

current state of the connection and the co-activation 

computed by λ, and a learning rate (ß). We ran two sets of 

simulations for DS. In the first set (DS-1) we used a 

relatively lower ß in DS compared to TD simulations to 

capture additional neurophysiological abnormalities in DS 

with impact on computing power, namely, a reduction of 

synapse density and inhibitory predominance (Dierssen, 

2012). In the second set of simulations of DS (DS-2) we 

kept the same value ß as the one used in TD. We did this to 

be able to compare and explore the effects of an increased θ 

alone vs. increased θ and lower ß. (ß = 0.001 for TD and 

DS-2; and ß = 0.0005 for DS-1). 

Simulations 

Training One auditory object was presented during each 

training trial along with many visual objects (usually five). 

These presentations simulate natural scenes where, in a 

discrete moment, one auditory word form is presented 

(spoken) to the child in the presence of a cluttered visual 

scene. For example, the first time a child hears the word 

/cat/, she can observe a visual scene that contains a cat, but 

also contains a dog, a container with milk, a ball of yarn, 

etc. Thus, the word /cat/ could initially refer to any of these 

visual objects. This problem of referential ambiguity needs 

to be solved by the child across many trials. Let’s consider a 

second trial when the word /cat/ is presented again, but now 

the visual scene contains the cat, the container with milk, a 

pillow, and a table. If the child is sensitive to the 

environmental regularities, across many trials she will learn 

the correct correspondences between auditory words and 

visual objects (Smith & Yu, 2008). But this is a slow 

process that requires numerous trials. To capture this 

process, in our simulations, each time that an auditory word 

was presented, the correct visual object was presented with 

another 4 different visual objects. The additional visual 

objects changed for every trial. We simulated the learning of 

40 words, by presenting each auditory-visual pairing a total 

of 20000 times. 

 

Testing We presented trials to evaluate comprehension and 

production of words. Tests for comprehension were 

designed, as in the MHS model, to simulate a traditional test 

of lexical comprehension, The N-alternative forced choice, 

where a number of different visual objects are presented to 

the child and she is asked to point or select one in particular 

(e.g., where is the pencil? which one is the pencil?). In our 

simulations one auditory stimulus (e.g., pencil) was active, 

as well as 4 visual objects (e.g., pencil, cat, table, glass) in 

the visual layer. Activation flowed from inputs to the lexical 

layer and back. Then the unit in the visual layer with the 

highest activation (e.g., pencil) was taken as the response of 

the model. In this way, comprehension was conceptualized 

as the correct activation of the visual object in the presence 

of one particular auditory word form. 

Following again simulations in the MHS model, tests for 

production of words were designed to simulate the “child 

says” measures of the MacArthur-Bates Communicative 

Development Inventory. In these trials one single visual 

object was active and all possible auditory word forms were 

active. Activation flowed from inputs to the lexical units 

and back, then the auditory unit with the highest activation 

value was taken as the response of the model. Production 

then corresponded to evaluating the activation of auditory 

word forms in the presence of a particular visual object. 
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The comprehension and production test trials were run 

after every 50 training epochs (each epoch was composed of 

the presentation of the 40 training trials). A total of 400 

measures of comprehension and production were obtained 

for each simulation. We ran 20 simulations of TD, 20 of 

DS-1 and 20 of DS-2. 

Results and Discussion 

Figure 2 shows the mean values of words comprehended 

and produced for TD, DS-1, and DS-2. The standard 

deviation values are shown in the error bars (gray areas).  
Our simulation of TD (Fig. 2A) shows that 

comprehension surpassed production in the early stages of 

learning; then, from the test trial 51 until the end of the 

simulation, comprehension and production were matched, 

and show complete learning of vocabulary. 

The simulations of DS-1 and DS-2 (Fig. 2 B and C) show 

a qualitatively different trajectory of lexical acquisition. 

Some aspects shown by these simulations are of particular 

interest in the context of our theoretical and empirical 

review. First, performance in the comprehension task is 

always above the performance in the production task. 

Moreover, production of words never reaches the maximum 

possible value of 40 words. Second, DS-1 is more affected 

than DS-2. DS-1 used a higher co-activation threshold with 

a lower learning rate, while DS-2 used the higher co-

activation threshold with a high learning rate. Data from 

DS-2 suggests that the atypical synaptic learning process in 

DS has a direct consequence on lexical development on its 

own, and the difference between DS-1 and DS-2 suggests 

that the learning rate has an additional effect. Third, the 

standard deviations show that the performance in the DS 

groups was more variable than the performance in TD. DS-1 

showed the highest variability. These patterns replicate the 

high inter-individual variability usually observed in DS 

compared with TD (see Karmiloff-Smith et al., 2016). 

Comprehension and production tests were different tasks 

in our simulations. Comprehension required the selection of 

a visual stimulus from a sample of a few objects, while 

production, a more demanding task, required the selection 

of an auditory stimulus from the total number of auditory 

word forms. These tasks were designed to reproduce the 

top-down and bottom-up interactions that a child processes 

when she produces names vs. when she comprehends 

auditory words. Then, in our model, the asymmetries 

between comprehension and production are (partially) 

explained by the properties of the tasks. Remarkably, the 

disparity between comprehension and production in TD was 

overcome as training continued, but this disparity persisted 

for the DS simulations, thus pointing to the atypical 

associative learning mechanism as an explanation for the 

persistence and more marked disparity between 

comprehension and production of words in DS. 

Other factors may as well contribute to the lexical 

comprehension/production asymmetry in DS, such as an 

atypical physical development that affects correct 

articulation of words and therefore restricts experience with 

lexical production. Our model, however, shows that the 

atypical pattern of synaptic strengthening directly affects 

lexical development. 

Our approach supports a domain-general view of 

cognitive development, and we argue that it also strengthens 

the associative learning account to lexical development, 

since it explains a pattern of uneven development of lexical 

abilities in Down syndrome as a result of an altered domain-

Figure 2: Mean values of comprehension and production across the 400 test trials for TD (Panel A), DS-1 (Panel B) 

and DS-2 (Panel C). The values from the three populations appear for comparison purposes in Panel D. Gray areas in 

Panels A, B and C show the standard deviation. 
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general mechanism in combination with the properties of 

the behavioral task. 
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The temporal dynamics of base rate neglect: People may not be intuitive
statisticians after all

Eoin Travers
Institute of Philosophy, University of London

Jonathan J. Rolison
Department of Psychology, University of Essex

Aidan Feeney
School of Psychology, Queen’s University Belfast

Abstract: According to a classic view of reasoning, intuition is fast but fallible, while reflection is slow but reliable. Biases,
therefore, emerge when a reasoner’s intuitions are wrong and they fail to notice. Recent evidence, however, suggests that
people may be aware when their intuitions are incorrect. A possible explanation reason for this is that both correct and incorrect
responses are cued in parallel, but the strongly-cued incorrect response is given unless people can inhibit it. We tested this
explanation using base rate neglect problems, and recorded participants’ mouse cursor movements as they chose between
possible answers under time pressure. Descriptions affected both participants’ early movements and ultimate responses, and
interfered with their use of the base rates, while base rates rarely interfered with participants’ use of descriptions, and then only
at a later point in time. Thus, despite suggestive findings elsewhere, our results support the classic of view reasoning.
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Abstract 
Recent results demonstrate that inducing an abstract 
representation of target analogs at retrieval time aids access to 
analogous situations with mismatching surface features (i.e., 
the late abstraction principle). A limitation of current 
implementations of this principle is that they either require the 
external provision of target-specific information or demand 
very high intellectual engagement. Experiment 1 demonstrated 
that constructing an idealized situation model of a target 
problem increases the rate of correct solutions compared to 
constructing either concrete simulations or no simulations. 
Experiment 2 confirmed that these results were based on an 
advantage for accessing the base analog, and not merely on an 
advantage of idealized simulations for understanding the target 
problem in its own terms. This target idealization strategy has 
broader applicability than prior interventions based on the late 
abstraction principle, because it can be achieved by a greater 
proportion of participants and without the need to receive 
target-specific information. 

Key words: analogy, transfer, idealization, retrieval 

Introduction 
Analogical reasoning represents a powerful heuristic for 
creative problem solving. By matching an unsolved situation 
(the target analog) to a stored exemplar whose solution is 
known (the base analog), the base solution can be transferred 
to the target problem. One of the most robust findings in the 
experimental literature on analogical transfer is that people 
often fail to spontaneously retrieve analogous situations when 
they do not share surface features with the target situation 
being processed (Gick & Holyoak, 1980; Keane, 1987; 
Trench, Oberholzer, & Minervino, 2009, for a discussion of 
naturalistic findings, see Trench & Minervino, 2015).  

A considerable body of research has sought to enhance 
spontaneous analogical retrieval by means of promoting a 
more abstract encoding of the base analogs, so as to render 
them more accessible during later encounters with analogous 
situations lacking surface similarities with the base analogs. 
Two successful interventions have consisted in presenting the 
base analog together with its abstract schema (Goldstone & 
Wilensky, 2008) or with a second analogous situation 

(Catrambone & Holyoak, 1989), and asking participants to 
compare them. More stripped-down interventions include 
asking participants to discuss the base analog with another 
student (Schwartz, 1995), to explain the problem to 
themselves (Ahn, Brewer, & Mooney, 1992) or to construct 
a structurally equivalent problem (Bernardo, 2001). Even if 
participants are not asked to elaborate on the base situations, 
transfer advantages can still be obtained by means of 
removing irrelevant information in the base analog 
(Goldstone & Sakamoto, 2003), and even by replacing 
domain-specific terms of the base situation with domain-
general ones (e.g., replacing “typing” by “writing”, Clement, 
Mawby, & Giles, 1994). What all of these interventions have 
in common is the highlighting of the abstract structure of the 
base analogs. As future, relationally similar examples will 
have a stronger match with such stripped-down 
representations than they will with specific examples having 
surface features that mismatch, the future retrievability of 
relationally encoded base analogs increases. Despite the 
relative success of these interventions, they cannot be applied 
to already learned situations or procedures that had not been 
originally encoded in ways that highlighted their abstract 
structure.  

 
The late abstraction principle 

 
Kurtz and Loewenstein (2007) reasoned that as retrieval 
depends on the degree of match between the stored items and 
the memory probe, the beneficial effect of relational schemas 
should also apply when elaborating on the target analog at 
retrieval time. The removal of lower-level information was 
hypothesized to increase distant retrieval (1) by granting more 
weight to structural predicates due to the normalization of 
content vectors, and (2) by reducing the unwanted activation of 
competing situations that maintain only superficial similarity 
with the target. To gather behavioral evidence for this theory-
laden prediction, Kurtz and Loewenstein (2007, Experiment 1) 
assessed the effectiveness of an intervention that consisted in 
providing participants with a second (unsolved) problem that was 
isomorphic to the target problem to be solved, and asking them 
to compare both problems prior to attempting their solution.  
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As was the case with the "base comparison" interventions, the 
abstraction process induced by this "target comparison" 
procedure resulted in enhanced transfer of the base solution as 
compared to the standard base-target paradigm. In subsequent 
work, Gentner, Loewenstein, Thompson and Forbus (2009) 
generalized the benefits of the target comparison strategy to 
autobiographical memories that were acquired several years 
prior to the experimental session, and also simulated the 
process of backward transfer using a retrieval algorithm and 
a set of stories that were developed before the late analogical 
encoding hypothesis had been proposed. To carry out these 
simulations, Gentner et al. (2009) fed MAC/FAC (Forbus, 
Gentner, & Law, 1995), with either the original stories from 
the Karla the Hawk series of studies (Gentner, Rattermann, 
& Forbus, 1993) or with their respective abstract schemas, 
and had it run on a long-term memory comprising analogical 
matches, mere appearance matches, and several filler stories. 
In line with the target-comparison studies, MAC/FAC 
retrieved more analogical matches when using the schemas 
rather than detailed stories as working memory cues.  

As suggested by the results of the target-comparison 
studies, the process of late analogical abstraction opens a 
promising avenue for retrieving base situations whose initial 
encoding was not especially engineered to highlight their 
abstract properties, and which represent the vast majority of the 
situations we learn within and outside instructional settings.    
In contrast to the widespread potential applicability of the late 
analogical abstraction principle, however, the specific target-
comparison intervention falls short of representing a truly 
portable cognitive strategy because participants will depend 
on the external provision of a second analogous problem for 
every new target problem they are to solve.  

With the aim of helping learners capitalize on late 
analogical abstraction without needing to be provided with 
additional information about the target, Minervino, Olguín 
and Trench (2017) demonstrated that analogical transfer from 
a distant source analog can be enhanced by asking participants 
to invent a new unsolved problem analogous to the target. 
Even though successful problem constructors were much more 
likely than unsuccessful constructors to transfer the base 
solution to the target problem, only a small proportion of 
participants succeeded at fabricating an analogous problem, 
an activity that seems to require a great deal of world-
knowledge and above-average intellectual engagement. 

In order to devise more widely applicable ways of 
capitalizing on the late abstraction principle, in the present 
study we identified an easily executed strategy credited with 
having enhanced the retrievability of base analogs during 
their initial encoding, and assessed whether its application to 
the target analog proves advantageous for retrieving 
analogous problems lacking surface similarities. 

Concrete vs. idealized representations 
Goldstone and Sakamoto (2003) examined whether there was 
an effect of training with concrete or idealized graphics on 
spontaneous transfer of a general principle called 
“competitive specialization.”  Participants were trained with 

an Ants and Food simulation with concrete graphics (black 
ants and small fruit) or idealized elements (black dots and 
green blobs) as shown in Figure 1. Afterwards they were 
asked to explore another instance of the competitive 
specialization principle in which initially undifferentiated 
matrices progressively learn to respond to a predefined set of 
letter inputs. Results revealed that participants in the 
idealized condition showed better transfer to the Sensors and 
Inputs quiz than in the concrete condition. 
 
 

 
 
Figure 1. Snapshots of the concrete and idealized simulations 
of base analogs employed by Goldstone and Sakamoto (2003).  

 
In order to assess whether a comparable transfer advantage 

can be obtained by inducing a more idealized representation 
of the target analog at retrieval time, we had three groups of 
participants learn how to solve a “collision” problem in which 
a plane and a helicopter travelled towards each other at 
different speeds. After a distracting task, participants were 
presented with a problem pertaining to a different family of 
algebra problems (i.e., "work problems"), but whose abstract 
structure was similar to that of the learned problem. In this 
problem, participants had to calculate the time that two 
painters would need to jointly paint a wall, given the times 
that each of them would have needed to paint it on his own. 
Before being asked to actually solve the problem, two of the 
groups were presented with a set of manipulatives and were 
tasked with carrying out an approximate representation of the 
situation described by the target problem as it unfolded from 
the initial moment until the moment when the wall got 
completed. While participants in the concrete condition 
received a realistic illustration of a horizontally laden wall 
and two smaller rectangles printed with drawings of painters, 
participants in the idealized condition received similarly 
sized paper rectangles without any figurative illustrations. 
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Experiment 1  

Method 
Participants and design A total of 90 participants were 
recruited from the Department of Psychological and Brain 
Sciences participant pool at Indiana University-Bloomington. 
All participants signed an informed consent for participation 
in the study, and were compensated with course credit. An 
equal number of participants (N = 30) were randomly 
assigned to the idealized, the concrete, and the no simulation 
conditions. 

 
Procedure and materials The experimental session was 
introduced to participants as dealing with the effectiveness of 
instructions for solving different kinds of algebra problems. 
Participants were told that for most of the problem types to 
be covered during the session, they would begin by trying to 
solve a problem of such type on their own, follow by reading 
instructions on how to solve such problem, and finish by 
applying the learned strategy to a subsequent problem of the 
same type. Unbeknownst to participants, the first block 
served to encode a base analog and its solution, the third 
block was used as a test of whether participants 
spontaneously applied the base solution to a seemingly 
unrelated problem that admitted a similar solution strategy, 
and the middle block served to contextually separate the first 
and third blocks. Upon receiving a booklet containing the 
materials, they were told that they would be informed in 
advance how much time they would have for carrying out 
each of the tasks, and that they could only proceed to the 
following page of the booklet once the experimenter had 
notified them that the allotted time for the current activity had 
elapsed. Participants were also provided with a pencil, an 
eraser, and an electronic calculator. The session was 
administered in small groups ranging from one to ten, with 
each participant working individually. 

During the first block of problems (i.e., the encoding phase), 
participants of all groups were presented with a typical 
"collision" problem in which a plane and a helicopter initially 
located at two cities 2000 miles apart started travelling 
towards each other at different speeds (See Table 1). 
Participants were allotted 5 min to calculate the time the 
aircrafts would need to pass next to each other. Once the 
allotted time had elapsed, they were given 3 min to read a 
worked solution to such problem that included a standard 
illustration in which the plane and the helicopter were located 
at their respective cities A and B, which were in turn 
connected by a straight horizontal line. Participants were 
given 4 more min to apply the learned strategy to a similar 
problem in which a helium balloon and an elevator located at 
the top vs. bottom of a tall building begin travelling toward 
each other at different speeds (see Table 1). Given that 
achieving a basic understanding of the base problem and its 
solution represents a necessary prerequisite for subsequent 
transfer to occur, participants who failed to apply the base 
solution to this second problem were withdrawn from further 
analysis. 

Table 1: Base and target problems used in Experiment 1 
 

Base problem: A plane flies at 600 mph, while a helicopter flies 
at 100 mph. Imagine that the plane starts flying from City A to 
City B at the same time that the helicopter departs from city B 
to City A. How long will it take them to pass each other, if the 
cities are 2000 miles apart? 

Base problem 2: While a helium balloon goes up at a speed of 2 
feet per second, an external elevator travels at a rate of 4.5 feet 
per second. Suppose that the elevator starts descending from an 
altitude of 100 feet at the same moment that the balloon is freed 
from street level. How long will it take them to pass each other? 

Target problem: Fred can paint an 18-feet wall in 8 hours, 
while Bob can paint such wall in 5 hours. How long will it take 
them to paint such wall in case they painted it together? 
 
The second block of problems had the same structure and 

time allowances as the encoding phase, with the difference 
that it involved learning and applying a simple procedure for 
solving combinatorics problems that were unrelated to the 
prior problems. It thus served to contextually separate the 
encoding and transfer phases. 

The third section (i.e., the transfer phase) was presented to 
participants of all groups as dealing with "work" problems, 
and had a different structure than the two previous phases. 
For brevity, we begin by describing the procedure followed 
by the concrete simulation group, and proceed by describing 
how the other conditions differed from such condition.  

 Participants of the concrete simulation condition received 
a typical work problem in which they had to calculate the time 
that two painters would need to jointly paint a wall, given the 
times that each of them would have needed to paint it on his 
own (see Table 1). They were given 2 min to read the problem 
very carefully, but they were asked to refrain from attempting 
a solution until explicitly indicated by the experimenter. 
Right below the problem text, the page displayed a 6.37 in x 
1.84 in sized illustration of a brick wall printed in greyscale. 
Upon receiving two small paper rectangles each one 
illustrated with a figurative drawing of a painter (one grey 
and one black, see Figure 2), participants were asked to take 
advantage of these manipulatives to carry out an approximate 
representation of how the painting of the wall unfolds over 
time, from the moment the painters start their job until the 
moment when it gets completed. In order to get a record of 
the specifics of each participant's simulation, the next page 
included three similar walls meant to represent three different 
snapshots of the dynamic simulation they had just performed. 
Upon receiving four additional paper painters (two grey and 
two black) and a glue stick, they were allotted 2 min to produce 
a record of the simulation they had just performed by means 
of sticking two painters onto each wall in a manner faithful to 
the locations of each of the painters at three different moments:            
(1) at the exact moment when they started painting [top wall], 
(2) at an intermediate stage of the process [center wall], and 
(3) at the exact moment when the painting job was completed 
[bottom wall]. Once the time allotted to this activity had elapsed, 
participants were given 5 min to solve the problem by any means.  
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 The procedure followed by the idealized simulation group 
was identical to that of the concrete simulation condition, with 
the difference that the manipulatives used during the simulation 
were relatively more abstract. While the wall consisted of a 
white 6.37in x 1.84in sized rectangle, the two painters were 
represented by 1.6in x 0.75 in sized grey/black paper rectangles.  

The procedure followed by the no simulation group was 
identical to that of the simulation conditions, with the difference 
that participants were not asked to simulate the situation 
models of the target problem prior to attempting its solution. 

 

 
 

Figure 2: Manipulatives employed for the  idealized (top panel) and 
concrete (lower panel) representations of the target problem.  

 
Data analysis Two independent judges sorted the solutions to 
the posttest (the "collision" problem featuring a balloon and a 
helicopter) as either correct or incorrect. Solutions were scored 
as "correct" whenever (1) the collision time obtained was 
expressed with at least one decimal position and coincided with 
the exact solution, and (2) the participant showed how such 
result was derived. Eight participants (five from the concrete 
simulation condition, three from the no Simulation condition 
and one from the idealized Simulation condition) were not able 
to apply the base solution to the balloon problem, and were 
thus removed from further analyses. Two additional judges 
blind to the purposes of the experiment followed the above 
criteria to score participants' solutions to the target problem. 
Judges reached 94% agreement regarding solutions to the balloon 
problem and 96% agreement regarding solutions to the target 
problem. Cases of disagreement were resolved by discussion. 
 
Results and Discussion 

 
The rates of correct solutions to the target problem were 

36%, 79%, and 51% for the concrete, idealized and no 
simulation conditions, respectively. The spontaneous transfer 
rate in the idealized condition was reliably greater than those 
obtained in the concrete, χ2(1, N = 54) = 10.43, p = .0012, and 
in the no simulation conditions, χ2(1, N = 56) = 4.7, p = .0302. 

The rates of spontaneous transfer did not differ between the 
concrete and the no simulation conditions, χ2(1, N = 52) = 1.32, 
p = .2506 These results indicate that idealized representations 
were more advantageous than concrete representations for 
eliciting correct answers to the work problem. On the other 
hand, the fact that the idealized simulation condition also 
outperformed the no simulation condition suggests that there are 
genuine benefits of idealization as opposed to disadvantages 
due to concrete representations.   

In a manner similar to the transfer advantage of comparing 
two analogous targets (Gentner et al. 2009), the observed 
advantage of the Idealized Simulation Group in generating 
correct solutions suggests that there is a general advantage of 
lean representations for accessing analogous situations 
lacking superficial similarities with the target. However, an 
alternative explanation could be that the concrete representations 
of the painters might have invited a dynamical representation 
that was inconsistent with the "convergent" representation 
that characterized the base problems. If the concrete 
simulation of the painters' activity recruited a "socially laden" 
representation in which the painters advance in parallel 
fashion—e.g., to talk to each other—rather than in the more 
transfer-appropriate "converging" motion, this idiosyncratic 
accidental feature could have contributed to their inferior 
transfer performance. In order to assess this possibility, we 
sorted participants' representations as "convergent" vs. "non 
convergent" according to the way in which they had glued the 
painters onto the three walls that were meant to record three 
informative snapshots of how participants intuitively imaged 
the process as it unfolded over time. This analysis revealed a 
nonsignificant trend towards a greater use of the convergent 
representation in the concrete simulation condition (96%) than 
in the idealized simulation condition (76%), p = .056 (Fisher 
exact test). Given that the opposite trend would have been 
expected under the socially-laden interpretation account, the 
relative advantage of idealized simulations appears not to be 
due to an intrinsic advantage this kind of representations for 
prompting a convergent motion simulation. 

Another alternative explanation for the superiority of target 
representations for eliciting correct solutions to the work 
problem could be that such advantage was originated, not in 
the benefits of our idealized materials for analogical transfer 
(as posited here), but rather in their potential to promote a 
better understanding of the target problem in its own terms, 
thus leading to a higher probability of solving such problem 
by first principles. According to various authors (see Belenky 
& Schalk, 2014 for a discussion) learning is facilitated when 
representations convey the minimum detail that is necessary 
to grasp the quantitative structure of a problem. As an example, 
the removal of potentially distracting irrelevant features like 
the quasi-regular pattern of the bricks or the left vs. right 
handedness of the painters could have helped participants 
build a more accurate representation of the temporal 
dynamics of the problem (e.g., the different speeds of each 
painter), which may in turn serve as a secure foundation from 
which to control the accuracy and soundness of algebraic 
manipulations (Minervino, Trench, & Oberholzer, 2009). 
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In order to assess how the concrete and idealized simulations 
enforced in Experiment 1 impacted the raw probabilities of 
solving the target problem in a non-analogical fashion, in 
Experiment 2 the transfer phases of the idealized, concrete 
and no simulation conditions were not preceded by the 
presentation of a structurally equivalent base analog. 

Experiment 2 
Method 
Participants and design A total of 90 participants (N = 30 per 
condition) were recruited from the Department of Psychological 
and Brain Sciences participant pool at Indiana University-
Bloomington, and were compensated with course credit.  

 
Procedure and materials The experimental session was 
introduced to participants as dealing with the effectiveness of 
different instructional aids for solving algebra problems, and 
took place after participants completed an unrelated 
experiment whose length was roughly equivalent to the time 
taken by participants of Experiment 1 to complete the 
encoding plus distracter phases. Upon receiving a booklet 
containing the materials, they were told that they would be 
informed in advance how much time they would have for 
carrying out each of the tasks, and that they could only 
proceed to the following page of the booklet once the 
experimenter had notified them that the time allotted to the 
current activity had elapsed. Participants were also provided 
with a pencil, an eraser, and an electronic calculator. The 
session was administered in small groups ranging from one 
to ten, with each participant working individually. 

Participants of the simulation conditions received the painters' 
problem coupled with the same manipulatives and the same 
simulation tasks as in the corresponding groups of Experiment 1. 
After completing the simulation tasks, they were given 5 min to 
try solving the problem by whatever means. The procedure 
followed by the No Simulation Group was identical to that of 
the simulation conditions, with the difference that participants 
were neither provided with manipulatives nor invited to 
simulate the situation model of the problem prior to attempting 
its solution. Coding of correct solutions followed the same 
criteria as in Experiment 1, with judges reaching total agreement. 
 
Results and Discussion 
The rates of correct solutions to the target problem were 37%, 
30%, and 33% for the concrete, idealized and no simulation 
conditions, respectively. The rate of correct solutions in the 
idealized condition did not differ from that obtained in the 
concrete condition, χ2(1, N = 60) = 0.3, p = .5839. Similarly, 
differences were neither found between the no simulation and the 
idealized simulation conditions, χ2(1, N = 60) = 0.08, p = .7773, 
nor between the no simulation and the concrete simulation 
conditions, χ2(1, N = 60) = 0.07, p = .7913. The fact that the rate 
of correct solutions obtained by the Idealized Simulation Group 
was not even numerically higher than those of the concrete and 
the no Simulation conditions (in fact it was slightly lower) 
confirms that the advantage of idealized simulations over the 

other conditions of Experiment 1 did not originate in their ability 
to promote a better comprehension of the target problem, but 
rather in an advantage for transferring a previously learned 
solution to a superficially dissimilar target. 

General Discussion 
The present results are compatible with Gentner et al.'s 

(2009) late abstraction principle, which postulates that just as 
source abstractions can be beneficial for later analogical 
retrieval (i.e. forward transfer), manipulations aimed at 
highlighting the structure of the target can enhance the 
retrieval of superficially similar base analogs whose encoding 
was not intended to emphasize their structural features. It 
should be noted, however, that the perceptual nature of our 
concrete vs. idealized manipulation is very different from the 
"conceptual" abstraction induced by Kurtz and Loewenstein 
(2007) or Minervino et al. (2017), and computationally 
simulated by Gentner et al. (2009). In the above studies (see 
Trench & Minervino, 2017 for a review), the domain-specific 
elements of the original problems (e.g., "destroy a tumor") 
are allegedly replaced by more domain-general expressions 
(e.g., "neutralize a central target"), which could promote 
distant retrieval in at least two different ways: (1) by granting 
more relative weight to the relational predicates of target 
representations, and (2) by decreasing the retrieval of mere 
appearance matches that could outcompete useful base 
situations with dissimilar surface features but similar structure. 
The fact that we obtained similar results by means of 
removing perceptual detail from the target representations 
suggests a subtle parallelism between the abstraction process 
that takes place in tasks like problem comparison or problem 
construction and the kind of idealization induced by our 
manipulation of the target. Akin to the advantage of abstract 
retrieval cues in the MAC/FAC simulations of the late 
abstraction principle, the observed advantage of idealized 
simulations of the target analog might have originated in their 
tendency to be, on average, perceptually more similar to the 
superficially dissimilar base analogs compared to their 
alternative concrete representations, as well as in their being 
less likely to evoke superficially matching situations that 
could outcompete the base analog. The present results thus 
contribute to enlarging the empirical basis of the late 
abstraction principle, while at the same time broadening its 
scope so as to include a perceptual dimension that has not 
been thus far discussed in the existing literature. 

Much of the excitement over target elaborations stems 
from the possibility of retrieving base analogs learned under 
conditions that were not especially engineered to highlight 
their abstract features. If the encoding specificity hypothesis 
applied, however, any advantage of distilling abstract or 
idealized representations of the target would be limited to 
maximizing the retrieval of stored representations whose 
initial encoding had already emphasized those same features 
(Tulving & Thompson, 1973). As discussed in more detail 
elsewhere (Trench & Minervino, 2017), there are several ways 
in which a base analog can be suboptimally encoded, and yet 
benefit from a more structural representation of the target.  
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Beyond their relevance for theoretical models of analogical 
retrieval, the present results bear implications for the design of 
interventions aimed at fostering a flexible use of learned contents. 
On the one hand, the fact that asking participants to carry out 
idealized simulations led to higher solution rates than not 
requiring them to perform any kind of simulation indicates that 
the superior performance of the idealized condition was not based 
on an intrinsically detrimental effect of concrete simulations. 
More importantly, the activity of constructing idealized 
representations of the target overcomes important limitations 
of previous instantiations of the late abstraction principle. With 
regards to Kurtz and Loewenstein's (2007) target-comparison 
intervention, an important shortcoming had to do with the 
need to provide participants with a second analogous target 
for every problem to be solved by analogy. Even though 
Minervino et al.'s (2017) target-construction intervention was 
not subject to this crucial limitation, only a small proportion of 
participants were able to generate an isomorphic problem.    
In contrast to the above instantiations of the late abstraction 
principle, the cognitive strategy assessed in the present study 
can be easily implemented by a great majority of participants, 
and without needing to be provided with additional information 
about the target. Future research should assess whether the 
advantages of target idealization can be combined with the 
benefits of strategic search (see e.g., Trench, Olguín, & 
Minervino, 2016), as well as whether they generalize to other 
educationally relevant activities such as generating explanatory 
hypotheses for poorly understood phenomena or communicating 
complex ideas to others.  
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Abstract 

Real-time sentence processing involves connecting linguistic input 
with knowledge. Here, we ask how variability in semantic memory 
(specific domain knowledge) may influence semantic access in real-
time sentence processing. We recorded EEG while participants 
more/less knowledgeable about the narrative world of Harry Potter 
(HP) read sentences. In Experiment 1, all participants showed N400 
predictability effects for general-knowledge sentences, but only 
those with high HP knowledge showed predictability effects for 
sentences about Harry Potter. This effect was driven by graded brain 
responses to predictable endings as a function of knowledge. 
Experiment 2 revealed greater semantic activation (inferred from 
N400 effects) for HP items participants reported knowing. High-
knowledge participants also showed greater semantic activation for 
items they reported not knowing/remembering. These findings 
suggest that amount and/or functional organization of knowledge 
has real-time consequences on written sentence processing and 
implicate implicit/partial access to domain knowledge for experts 
when information is not explicitly recalled. 

Keywords: sentence processing; knowledge; ERPs; 
individual differences 

Introduction 
Depending on your background, the question, “What’s 

your patronus?” might leave you bewildered. But if you’ve 
spent a sizable chunk of your life obsessing over the fictional 
world of Harry Potter created by J.K. Rowling, you might 
have a response quickly at hand (e.g., a dolphin or a cat). 

Variability in individual experiences helps determine an 
individual’s knowledge, whether the domain is a fictional 
narrative world like Harry Potter, a game like chess, or an 
academic discipline, like physics. Moreover, knowledge 
differences in many domains have been shown to 
systematically influence various aspects of the organization 
of knowledge, including depth, breadth, and hierarchical 
information structure (Chi, 2006). Such differences in 
knowledge seem likely to impact real-time semantic access, 
including perceiving an utterance (or text), relating it to prior 
knowledge, and forming expectations about upcoming 
content. Yet despite the inevitable link between an 
individual’s knowledge and semantic access, the specific 
role(s) of knowledge variability has received relatively little 
attention in models of real-time language processing. 

Decades of psycholinguistic research have revealed that 
language processing is incremental: we update our mental 
representations word-by-word (e.g., Tanenhaus et al., 1995; 
Kamide, Altmann, & Haywood, 2003). Upon encountering 
an incoming word, world knowledge is used as soon as 
possible (e.g., Kutas & Hillyard, 1980). Real-time access to 
such knowledge is influenced by a host of contextual factors, 

both linguistic and nonlinguistic, including sentence and 
discourse context (Kutas & Hillyard, 1980), discourse 
context (Nieuwland & Van Berkum, 2006), and who the 
speaker is (Van Berkum et al., 2008). 

These (and many other) studies have used event-related 
brain potentials to investigate the activation and organization 
of the semantic system during real-time language processing. 
A well-known ERP signature called N400 (a broad centro-
parietally distributed, negative-going potential peaking 
approximately 400 ms after stimulus onset) shows fine-
grained sensitivity to semantic relationships, with stronger 
relations between context and input yielding less negative- or 
more positive-going potentials between 200-500 ms post-
input onset (Kutas & Federmeier, 2000). 

The content and organization of long-term memory (i.e., 
knowledge) influence semantic access as reflected in N400 
modulation both within sentences and simpler (or even no) 
context. For words presented in isolation, N400 amplitude is 
reduced for high-, compared to low-frequency, words (Kutas 
& Federmeier, 2000). Moreover, N400 amplitude is sensitive 
to category membership. Following a category label (e.g., ‘a 
type of bird’), typical category exemplars (‘robin’) yield 
reduced N400 amplitude compared to atypical exemplars 
(‘turkey’), and both are reduced compared to unrelated words 
(‘broom’) (Federmeier, Kutas, & Schul, 2010).  

Such effects rely on long-term knowledge likely available 
due to years of experience with concepts like birds. N400 
studies, however, have also revealed sensitivities to 
culturally-specific information (e.g., the fact that Dutch trains 
are yellow, not white; Hagoort et al., 2004) and fictional 
information (Nieuwland & Van Berkum, 2006; Filik & 
Leuthold, 2013). Taken together, these N400 findings offer a 
window into the relationship between language input and 
structured, flexible knowledge use. Moreover, N400 
amplitude provides an excellent proxy measure of the ease of 
access to semantic information. 

Here, we use the N400 to explore the notion that systematic 
variability in the content and organization of individuals’ 
knowledge, as a function of their expertise, will have 
systematic influences on real-time semantic access. To that 
end, we conducted two ERP studies with individuals varying 
in their knowledge of the narrative world of Harry Potter. We 
first asked whether domain knowledge will systematically 
influence N400 effects, possibly reflecting ease of semantic 
access and/or availability of information in long-term 
memory (Experiment 1). Next, we dissociated knowledge of 
individual facts from domain knowledge, allowing us to ask 
whether or not, and if so how, domain knowledge influences 
ease of semantic access when individuals think they know, or 
don’t know/remember, the information (Experiment 2).  
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Experiment 1 
In Experiment 1, participants ranging in their knowledge 

of Harry Potter (based on an objective offline measure) read 
Control sentences about general, real-world topics as well as 
sentences about the narrative world of Harry Potter (HP) 
while we recorded EEG. Sentences of both types ended with 
either a Predictable or an Unpredictable word. 

Based on the literature (Kutas & Federmeier, 2000), we 
expected predictability effects for Control sentences, with 
Predictable items eliciting reduced N400 amplitudes 
compared to Unpredictable items. Moreover, we expected 
that for HP sentences, specific knowledge of Harry Potter 
would have its effect during this N400 time window, with 
knowledgeable individuals showing a reliable predictability 
effect and less knowledgeable individuals showing a smaller 
(or no) difference between Predictable and Unpredictable 
words. 

Though our study focused on predictions during the N400 
time window, we also anticipated later positive effects. Late 
positive complexes, often occurring post-N400, have been 
related to attention-driven processing, including integration, 
revision, or updating of ongoing interpretations in the 
presence of unexpected items (e.g., Van Petten & Luka, 2012; 
Brouwer et al., 2012). We suspected that we might observe 
effects of Predictability on late positivities to words ending 
Control sentences, and possibly (for knowledgeable 
individuals) to words ending HP sentences, to the extent that 
individuals revise their interpretations. 

Methods 
Participants 40 right-handed students at UCSD participated 
for partial course credit and some monetary compensation. 
 
Sentence Materials During the ERP portion of the study, 
participants read sentence pairs of two types. Control 
sentences described commonplace scenarios and ended in a 
Predictable (Offline Cloze > 87%) or an Unpredictable 
(Offline Cloze = 0%), albeit plausible, word, determined by 
offline norming studies. Harry Potter (HP) sentences 
described situations and entities from the Harry Potter book 
series and ended in a Predictable (book-consistent) or an 
Unpredictable (book-inconsistent) word. Unpredictable 
words were matched to Predictable words for the broad 
classes of words they belonged to (common noun, proper 
noun, Harry Potter-specific noun) and in many cases 
belonged to the same, more specific category. For example: 

 
(1)  Control: We had been watching the blue jay for days. 

The bird laid her eggs in the nest. (Predictable) 
    yard. (Unpredictable) 
HP: The character Peter Pettigrew changes his shape 
at times. He takes the form of a rat. (Predictable) 

dog. (Unpredictable) 
 

The Predictable Harry Potter sentence endings were only 
predictable assuming perfect knowledge of the books. 
Unpredictable endings were inconsistent with the books but 
were designed to be similarly plausible endings, assuming no 
knowledge of the books. A total of 216 sentence frames (108 
Control, 108 HP) were constructed, each with two ending 
types (Predictable, Unpredictable). Two lists were 
constructed such that each sentence frame appeared with only 
one ending type. Participants therefore saw a total of 216 
sentences (54 sentences of each type). 
 
Experimental Procedures Participants were told they would 
be reading sentences for comprehension and that they would 
be asked questions about the materials at the end of the study. 
After a practice session, blocks of Control sentences were 
presented first, followed by blocks of HP sentences. For each 
sentence pair, the first sentence appeared all at once in the 
center of the screen. When ready, participants pressed a 
button to move on to the second sentence, presented one word 
at a time in the center of the screen with a 500 ms SOA (200 
ms on, 300 ms off). Immediately following the ERP study, 
participants were given a Control memory quiz followed by 
an HP memory quiz. For each, participants saw a list of 90 
words, 60 of which had appeared in sentence-final position 
(half Predictable, half Unpredictable). They were instructed 
to circle the words they remembered as an ending to the 
second sentence of each pair in the study. After clean-up, 
participants completed 10 multiple-choice questions about 
the Harry Potter books. Raw scores are henceforth referred to 
as HP Knowledge. A median split on these scores determined 
High- and Low-Knowledge Groups. 

 
ERP Recording and Data Analysis The electro-
encephalogram (EEG) was recorded from 26 tin electrodes 
geodesically arranged in an ElectroCap, with impedances 
kept below 5 KΩ. Recordings were referenced online to the 
left mastoid and re-referenced offline to an average of the left 
and right mastoids. EEG was recorded by Grass bio-
amplifiers with a bandpass of .01-100 Hz at a sampling rate 
of 250 Hz. Trials contaminated by artifacts (e.g., eye 
movements or blinks) were not included in analyses. 

Grand average ERPs to sentence-final words were 
computed across all 26 recording sites by Sentence Type 
(Control/HP) and Ending Type (Predictable/Unpredictable). 
We performed statistical analyses on mean amplitudes of 
these waveforms in two time periods: a canonical N400 time 
period (250-500 ms) and a post-N400 period (500-750 ms) 
relative to a 500 ms pre-stimulus baseline. For each time 
period, we subjected data to an omnibus ANOVA including 
Channel1 (26 levels), Sentence Type (Control, HP), Ending 
Type (Predictable, Unpredictable) as within-subjects factors 
and Knowledge Group as a between-subjects factor. 
Subsequently we focused on a region of interest (ROI) 
including 8 centro-parietally distributed channels (MiCe, 
LMCe, RMCe, MiPa, LDPa, RDPa, LMOc, and RMOc). 

                                                             
1 Due to limited space, we do not report main effects of or 

interactions with Channel. Main effects of and interactions with 
Channel in the N400 region reflect the fact that N400 amplitude (and 
N400 effects) are largest over the middle and back of the head. 
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Figure 1: ERPs from a central-parietal ROI to sentence-final critical words from Experiment 1 are plotted for 
Predictable (black lines) and Unpredictable (red lines) endings relative to a 200 ms baseline for illustrative purposes. 
Shaded regions depict the area between 250 and 500 ms (N400 time window). All participants showed Predictability 
effects for Control sentences while Predictability effects for HP sentences were driven by the High-Knowledge group.

Results 
Memory task Participants correctly recognized an average 
of 15 out of 60 Control words (25%) and false alarmed to an 
average of 2 words (7%). On the HP recognition test, 
participants correctly recognized an average of 30 out of 60 
HP words (50%) and false alarmed to an average of 2 words 
(7%). Participants were therefore able to discriminate 
between words they had and had not seen for both the Control 
and HP memory tests. 

To control for false alarms, we subtracted the number of 
false alarms for each memory test (Control, HP) from the 
number of items correctly recognized. We subjected these to 
a repeated measures ANOVA with Sentence Type (Control, 
HP) and Ending Type (Predictable, Unpredictable) as factors. 
There was a main effect of Sentence Type (p < .0001), with 
higher accuracy for HP compared to Control sentences. There 
was also an interaction between Sentence Type and Ending 
Type (p < .001); while memory for HP words was similar 
irrespective of the Ending Type (corrected accuracy for 
Predictable = 44%; corrected accuracy for Unpredictable = 
40%), memory for Control words was better for 
Unpredictable words (22%) compared to Predictable words 
(15%). 

 As predicted, HP knowledge was not correlated with 
accuracy for Control words, but HP knowledge was  
correlated with accuracy for  HP words (Predictable: r = .471, 
p < .005; Unpredictable: r = .478, p < .005). 
 
ERPs ERPs from our centro-parietal ROI are shown in Fig. 
1. ERPs for both Control and HP sentences are characterized 
by two early sensory components, a negative-going peak 
around 100 ms (N1) and a positive-going peak around 200 
ms (P2). Across all participants, for Predictable endings, the 
P2 is followed by a positivity in the N400 time window  
 

 
(~250-500 ms). For Unpredictable endings, the P2 is 
followed by a relative negativity in this window. 

Effects of knowledge during the N400 time window. Our 
primary hypothesis was that specific domain knowledge 
would influence semantic access, reflected by interactions 
between Knowledge Group, Sentence Type, and Ending 
Type during the N400 time window (250 to 500 ms). In the 
omnibus ANOVA, we observed a main effect of Ending Type 
(p < .005) but no effect of Sentence Type, reflecting the 
pattern observed in Fig. 1: for both sentence types, N400 
amplitude is reduced for Predictable items. Of note, 
Knowledge Group interacted with Sentence Type (p < .005), 
and a three-way interaction was observed between 
Knowledge Group, Sentence Type, and Ending Type (p < 
.05). 

To follow up on the effects of Knowledge Group, Sentence 
Type, and Ending Type on N400 amplitude, we examined 
Control and HP sentences separately at our centro-parietal 
ROI. Within Control sentences, there was an effect of Ending 
Type on N400 amplitude (p < .0001) but no main effect of 
Knowledge Group or interaction between Knowledge Group 
and Ending Type. Conversely, within HP sentences, there 
was a main effect of Ending Type (p < .0001), and an 
interaction between Knowledge Group and Ending Type (p < 
.005). Follow-up t-tests revealed a larger reduction in N400 
amplitude for Predictable versus Unpredictable endings for 
the High-Knowledge Group compared to the Low-
Knowledge Group (p < .01), supporting the notion that 
specific knowledge at the level of the individual reduces 
N400 amplitude (see Fig. 2). Furthermore, the differential 
knowledge had its effect primarily for Predictable endings, as 
High-Knowledge and Low-Knowledge individuals showed 
differences in N400 activity to Predictable endings (p < .05) 
but similar N400 activity to Unpredictable endings (p = .630). 
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Figure 2. Difference ERPs for Unpredictable minus 
Predictable endings from Experiment 1 are plotted for 
the High HP Knowledge Group (solid lines) and the Low 
HP Knowledge Group (dashed lines) relative to a 200 ms 
baseline. Predictability effects for Control sentences 
were similar for both groups but only the High HP 
Knowledge Group showed sizable Predictability effects 
for HP sentences. 
 
Analysis involving our continuous measure of HP 

Knowledge coincided with this pattern of results. We 
observed a graded relationship between the N400 effect 
(mean amplitude to Unpredictable minus Predictable 
endings) and knowledge scores, r = .457, p < .005; this 
relationship was driven by the correlation between 
knowledge and mean amplitude to Predictable endings (r = 
.473, p < .005) whereas no correlation obtained between 
knowledge and mean amplitude to Unpredictable endings (r 
= .171, p = .293). 

Effects of knowledge post-N400 (500-700 ms). In the 
omnibus ANOVA, we observed an interaction effect of 
Sentence Type and Ending Type (p < .01), which resulted 
from a significant difference between Predictable and 
Unpredictable endings to Control sentences (p < .0001), with 
Unpredictable endings associated with greater positivities, 
but only a marginal difference between Predictable and 
Unpredictable endings for HP sentences, with the reverse 
pattern (p = .08). Apart from effects involving Channel, there 
were no other main effects or interactions in this analysis.2 

Experiment 2 
Experiment 1 demonstrated that specific domain 

knowledge influences real-time semantic access, inferred 
from N400 predictability effects. This pattern could obtain 
for multiple reasons. By definition, experts know more 
information, but expert knowledge also may be functionally 
organized differently, with greater structure and/or depth than 
that of less-knowledgeable individuals (Chi, 2006). We 
expect that this organization, in whichever form it may take, 
may influence semantic access above and beyond the 
successful retrieval of any given known item.  

                                                             
2 More fine-grained analyses of HP sentences, however, do suggest 
a relationship between knowledge and late positivities that is 
mediated by offline, knowledge-based Cloze measures. For lower-

To tease apart contributions of (1) knowledge of individual 
items and (2) knowledge of the domain (Harry Potter) to 
semantic access, we asked participants to read sentences, all 
of which were consistent with the world of Harry Potter, and 
to respond with judgments of their knowledge along with 
their confidence in them. We were particularly interested in 
whether domain knowledge might have independent effect 
on semantic activation (inferred from N400 amplitude) for (a) 
items people say they know, (b) items people say they don’t 
know, or (c) both.  

Methods 

Participants 41 right-handed students at UCSD participated 
for partial course credit and some monetary compensation. 
Sentence Materials Materials consisted of 172 sentence 
pairs describing the world of Harry Potter, including the 108 
from Experiment 1 plus an additional 64. All sentences ended 
in a word consistent with the Harry Potter books (i.e., the 
Predictable endings from Experiment 1). 
 
Experimental procedure Sentence presentation was as in 
Experiment 1. After each sentence pair was presented, 
participants were first asked to make a non-speeded judgment 
about whether they knew the information in the sentences 
ahead of time, followed by a judgment of their certainty (we 
report only on responses to the first question in this paper).  

After clean-up, participants completed 40 multiple-choice 
questions about the Harry Potter books (including the 10 
questions used in Experiment 1). Raw scores are henceforth 
referred to as HP Knowledge. A median split on these scores 
was used to determine High- and Low-knowledge groups. 
 
ERP recording and data analysis ERPs were recorded and 
processed as in Experiment 1. Because the design of 
Experiment 2 involves binning data based on subject 
responses, we used mixed-effects models (Baayen et al., 
2008), which allow for the analysis of unbalanced data (e.g., 
Tibon & Levy, 2015). For both N400 and post-N400 time 
windows, we start by employing models that include fixed 
effects of (1) Judgment of Knowledge (two levels: “Yes,” 
“No”) and (2) HP Knowledge (continuous measure) along 
with random by-items and by-subjects intercepts. To unpack 
interactions, we follow up with similar mixed-effects models 
designed to isolate the root(s) of the interactions. These 
models were applied to data from our centro-parietal ROI 
(see Experiment 1). As in Experiment 1, we examined a 
window centered around the N400 (250-500 ms) and a post-
N400 window (500-750 ms). For illustrative purposes, when 
plotting these data, we weight trials equally (rather than 
plotting grand averages as is typical, where each subject is 
weighted equally). 

 
 

Cloze (and, by inference, less-frequently-accessed) compared to 
higher-Cloze items, post-N400 activity was more positive-going, 
but only for high-knowledge individuals. 
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Figure 3: (A) ERPs from a central-parietal ROI to 
sentence-final critical words from Experiment 2 are 
plotted for words judged as known (black lines) and 
unknown (red lines) relative to a 200 ms baseline. 
Shaded regions depict the area between 250 and 500 ms 
(N400 time window). Across all participants, words 
judged as known led to more positive-going waves 
during this time. (B) During the N400 time window, HP 
Knowledge influenced mean amplitude only for 
Unknown (red), but not known (black) items. 
 

Results 
Behavior On average, participants responded that they knew 
102 out of 172 items (60%). As expected, high-knowledge 
participants reported knowing more items (80%) than low-
knowledge participants (38%), with a strong correlation 
between HP Knowledge and number of items judged as 
known, r = .85, p < .0001. 

We trimmed response times three standard deviations 
greater than the mean for all responses. Response times for 
judgments of knowledge were overall slower for “No” 
responses (1015 ms) than “Yes” responses (851 ms), p < 
.0001. Moreover, HP knowledge interacted with Judgment of 
Knowledge (p < .0001): high-knowledge individuals 
responded faster for “Yes” responses (809 ms) than “No” 
responses (1193 ms) (p < .0001), but Low-Knowledge 
individuals showed only slightly faster RTs for “Yes” (943 
ms) than  “No” (964 ms) (n.s.). Pair-wise differences between 
High- and Low-Knowledge Groups were significant for “No” 
responses (p < .005) but not for “Yes” responses. Individuals 
therefore responded with similar speed when they judged 
items as known, but those with greater HP knowledge took 
longer to judge an item as unknown. 
 
ERPs Grand average ERPs to sentence-final words were 
computed across all 26 recording sites grouped by 
participants’ responses. See Fig. 3 for plots from the centro-
parietal ROI. 

Effects of knowledge during the N400 time window. As 
expected, we observed overall more positive-going 
waveforms during the N400 time window for high-
knowledge compared to low-knowledge individuals (p < 

.005). In addition, positive Judgments of Knowledge (i.e., 
“Yes” responses) resulted in reduced N400 amplitudes (p < 
.0001; see Fig. 3). We also observed an interaction of 
Judgment and HP Knowledge (p < .005). Follow-up 
comparisons revealed that this interaction was driven by 
effects of HP Knowledge on N400 amplitude for “No” 
responses (p < .05) but not for “Yes” Responses, 
demonstrating that specific domain knowledge has its 
primary influence on items which participants say they did 
not know (recollect) at the time. 

Effects of knowledge post-N400 (500-750 ms). Mean 
amplitude during the post-N400 window was influenced both 
by HP Knowledge (p < .05) and Judgments of Knowledge (p 
< .0001), with the two terms also interacting (p < .0001). 
Overall, “Yes” responses yielded more positive-going waves 
than “No” responses, and greater HP Knowledge was also 
related to more positive-going potentials. Follow-up analyses 
revealed that this interaction was driven by an effect of HP 
Knowledge on “No” responses (p < .05), with no relationship 
between HP Knowledge and positive-going potentials for 
“Yes” responses (p = .869). For “No” responses, individuals 
with more knowledge had more post-N400 positive-going 
activity. 

General Discussion 
We set out to investigate the relationship between specific 

domain knowledge and semantic access during real-time 
written sentence processing. Experiment 1 provided a strong 
indication that knowing about a domain (in our case, the 
narrative world of Harry Potter) influences semantic access, 
but only within that domain. As predicted, we observed no 
effects of Harry Potter-specific knowledge on processing of 
sentences about general topics. However, Harry Potter-
specific knowledge did mediate N400 effects for Harry Potter 
sentences. We found that the size of the N400 predictability 
effect was correlated with HP knowledge score, with the 
correlation being driven by a graded relationship between 
knowledge and the neural response to predictable words. 

In many ERP studies of sentence processing, predictability 
is defined using offline Cloze norming measures (that is, how 
likely an individual is to provide a word given a sentence 
context). It is worth noting that offline Cloze measures for 
our Harry Potter sentences provide a different type of metric 
than for our Control sentences. That is, predictable endings 
for Harry Potter sentences are predictable by virtue of being 
factual (within the narrative world); predictable endings for 
Control sentences are predictable based on world knowledge, 
but have no “correct” ending. Even so, our analyses revealed 
no main effect of sentence type (general/control vs. Harry 
Potter sentences) in Experiment 1. That is, across the whole 
group, we observed similar N400 effects of predictability for 
both Control and Harry Potter sentences (see Fig. 1). Our 
findings concur with many reports that N400 amplitude is 
sensitive to a word’s predictability and/or contextual fit, in 
factual and non-factual scenarios (e.g., Hagoort et al., 2004). 

Our finding that semantic access (inferred from N400 
effects) is driven by knowledge is not surprising. In order to 
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access information, the information must exist in the first 
place. However, there are at least two reasons why HP 
knowledge might relate to N400 predictability effects in 
Experiment 1: (1) low-knowledge individuals know fewer 
facts than high-knowledge individuals on average; and (2) 
there are potentially additional contributions of domain 
knowledge on semantic processing when individuals know 
(or don’t know) items, respectively. In Experiment 2, we 
examined these possibilities by asking participants whether 
they knew each item (i.e., each Harry Potter fact) ahead of 
time. While both high- and low-knowledge groups showed 
large differences in N400 activity based on their own (meta-
cognitive) judgments of whether they knew specific items, 
high-knowledge (compared to low-knowledge) individuals 
showed greater positivities during the N400 window even for 
information they reported not knowing at the time. 

There are multiple reasons why domain knowledge might 
modulate N400 amplitude for items that are not immediately 
recognized. We cannot currently rule out the possibility that 
high- vs. low-knowledge individuals perceive different task 
demands or use different criteria when making judgments.  

We believe a more likely explanation is that enhanced 
N400 reduction for high- compared to low-knowledge 
individuals suggests some level of implicit activation of 
information outside of conscious awareness. This activation 
may be restricted to a specific word and its semantic features 
or it may extend to related words / concepts. The precise 
nature of such implicitly activated information, and precisely 
how it is modulated by variation in level or amount of 
knowledge, have yet to be determined. Some possibilities 
include information that is taxonomically / categorically 
related to a predictable word (e.g., Federmeier & Kutas, 
1999) and information related to the scenario / event being 
described (e.g., Metusalem et al., 2012). 

As for post-N400 activity, we observed systematic effects 
of both HP Knowledge and judgments of knowledge on late 
positivities in Experiment 2, with high-knowledge 
individuals showing greater positivities than low-knowledge 
individuals for items they did not know. One way of 
interpreting this interaction is that when high-knowledge 
individuals do not know an item, they continue to search for 
it (perhaps because they believe they may know, but not 
currently be able to retrieve, the knowledge). 

Our findings build on work showing that the functional 
organization of long-term memory plays an important role in 
the real-time construction of meaning (e.g., Federmeier & 
Kutas, 1999). We have demonstrated that variability among 
individuals in their knowledge of a domain is an important 
contributor to real-time access to meaning. More specifically, 
our data suggest that the amount and/or organization of 
domain knowledge appear to influence access to knowledge 
above and beyond explicit knowledge of individual items: 
expert-like knowledge organization in a domain may lead to 
implicit or partial activation of domain-related information, 
even when individuals do not explicitly recall a given piece 
of information. 
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Abstract 

Using referential context in language (e.g., saying “blue pen” 
when two different-colored pens are visible) makes 
communication efficient. But it is still unclear which general 
cognitive processes support the use of context in 
conversation. Research on pragmatic use in language 
implicates working memory and inhibitory control; however, 
no studies have shown evidence of a shared cognitive 
mechanism in both production and comprehension within an 
individual. The current study asked a) whether referential 
context use is supported by the same cognitive mechanisms in 
production and comprehension, b) which processes are 
implicated, and c) whether the nature of the context itself 
affects processing. Participants completed a referential 
communication eye-tracking task in which a disambiguating 
adjective was either necessary or over-informative, as well as 
a cognitive test battery. The results implicated inhibitory 
control in both production and comprehension (although the 
comprehension results were more variable), suggesting a 
shared underlying cognitive mechanism across domains. 

Keywords: language production; language comprehension; 
discourse; pragmatics; inhibitory control; working memory 

Introduction 

The ability to take context into account often facilitates 

communication in interactive settings. Imagine you are 

cooking with a friend. There are two identical spoons on the 

table: one next to a big bowl, and one next to a small bowl. 

You may know that you would like you friend to hand you 

the former; however, if you just say, “hand me the spoon 

next to the bowl,” he will likely not understand which one 

you mean. Thus, in order to effectively communicate your 

intent, you would need to use a disambiguating adjective 

(i.e., “hand me the spoon next to the big bowl”). On the 

other hand, if only one spoon and one bowl were visible, 

saying “hand me the spoon next to the big bowl” would be 

confusing, as it implies to your listener that there is more 

than one option to choose from. This paper investigates how 

speakers and listeners behave in situations when adding or 

subtracting an adjective is most appropriate for clear 

communication given the referential context.  

Related to the idea that listeners and speakers will tailor 

their language to the referential context is the Gricean 

Maxim of Quantity (Grice, 1975), which specifies that 

speakers should make their utterances only as informative as 

is required. Thus, enough information should be provided to 

distinguish the intended referent from its potential 

competitors (e.g., the big bowl when two bowls are visible), 

and providing information that is not necessary (e.g., the big 

bowl, when no other bowls are in view), should be avoided. 

Although, ideally, following this maxim would help to make 

communication maximally efficient, in reality, speakers and 

listeners and often fail to behave in a completely Gricean 

manner (e.g., Deutsch & Pechmann, 1982; Sedivy, 2005). 

Speakers’ and listeners’ ability to make their utterances 

optimally informative, or to appropriately interpret the 

utterance they are hearing, within the current referential 

context may depend upon the cognitive demands that this 

process places upon them. Referential context adaptation 

(RCA) is a complex process, involving not only language 

production or comprehension, but also selectively attending 

to certain objects in one’s surroundings, remembering what 

information has already been introduced into the discourse, 

or refraining from mentioning irrelevant or confusing 

information, to name a few. Therefore, general cognitive 

functions, such as working memory (WM) and inhibitory 

control (IC), could play an important role in RCA.  

The current work investigates whether the ability to take 

referential context into account is supported by the same 

cognitive processes in language production and 

comprehension, and under different linguistic demands. If 

so, we would expect (a) individuals with better RCA to 

demonstrate this ability in both production and 

comprehension, and (b) the same general cognitive 

operations to drive referential context consideration in 

comprehension and production, and perhaps in situations 

with different linguistic demands. 

Pragmatic Language Use and Cognitive Abilities 

The fact that speakers often fail to observe the Gricean 

Maxim of Quantity provides evidence that taking referential 

context into account may be a cognitively demanding 

process.  While research in this field has not previously 

addressed the relationship between RCA and general 

cognitive abilities, some work on a related linguistic 

process, perspective-taking, has attempted to identify the 

cognitive processes underlying pragmatic language use. 

Perspective-taking and RCA are similar in that both involve 

the on-line incorporation of referential context in interactive 

conversation. Thus, it is possible that a similar set of 
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cognitive mechanisms supports both processes. 

In one study of perspective-taking, speakers were tested 

on their ability to refrain from producing descriptions that 

were over-informative from the perspective of their listener 

(e.g., “the big star” when two stars are visible to the speaker, 

but only one is visible to the listener; Wardlow, 2013). The 

results showed that this ability was correlated with both 

WM and IC. In comprehension, Brown-Schmidt (2009) 

found that participants with greater IC were more likely to 

take the experimenter’s perspective when interpreting their 

questions about a display containing some pictures that were 

visible to only the listener. Lin, Keysar, and Epley (2010) 

found that comprehenders with higher WM capacity 

performed better on a similar task. 

While these studies all point to a role for general 

cognitive resources in perspective-taking, an important 

question remains: Do the same abilities underlie 

perspective-taking in production and comprehension? The 

two studies that have investigated perspective-taking in both 

domains within the same individuals found contradicting 

results: Ryskin, Benjamin, Tullis, & Brown-Schmidt (2015) 

found WM to be correlated with perspective-taking in 

production, but none of their executive control measures 

were correlated with comprehension. On the other hand, 

Nilsen and Graham (2009) found that IC negatively 

correlated with egocentric behaviors in a comprehension 

task in 3-5 year olds; however, none of their executive 

control measures correlated with production. The question, 

thus, remains: is the ability to take into account the 

referential context the same in both domains? 

The Current Study 

The current study investigates how speakers and listeners 

adapt their language processing to referential context when 

observing the same visual display. Specifically, we asked: is 

the ability to take referential context into account related in 

production and comprehension, and under different 

linguistic and contextual demands? To this end, each 

participant took turns as both speaker and listener in a 

referential communication task with a visual world design, 

and their eye fixations, as well as their utterances (when 

acting as speakers) were recorded. Two conditions with 

different contextual demands were created: in the Adj+ 

condition, the most felicitous utterance required the 

inclusion of an adjective (e.g., “Click on the heart under the 

green gorilla,” Figure 1a).  In the Adj− condition, the most 

felicitous utterance was one without an adjective (e.g., 

“Click on the heart under the gorilla,” Figure 1b). To test 

which cognitive processes underlie RCA in production and 

comprehension, each participant also completed a battery of 

tasks that included three WM and three IC measures. The 

WM measures were selected so as to include a mixture of 

both linguistic and non-linguistic tasks. The IC measures 

were selected to probe both competitive inhibition (the 

ability to inhibit a strongly competing response, e.g., not 

saying red gorilla in Figure 1a.) and global inhibition (the 

ability to inhibit a prepotent response, e.g., refraining from 

using an adjective in Figure 1b.) (Munakata et al., 2011). 

Due to the rich set of independent and dependent variables 

in the current design, we adopted a statistical approach that 

is well-suited to handling this type of data structure: partial 

least squares path modeling (PLS-PM). This method allows 

us to look at multiple dependent variables simultaneously. 

In addition, this method allows us to similarly group WM 

and IC tasks into latent constructs in order to minimize task-

specific effects and avoid the issue of collinearity.  

 

 

Figure 1: Example Adj+ (a) and Adj− (b) displays used in 

the referential communication task.  

Methods 

Participants 

Twenty-eight native English speakers, ages 18-30, 

participated for $40. 

Materials 

 

Referential Communication Task Each display consisted 

of four black card suit shapes (club, diamond, heart, or 

spade). Above each shape was a drawing of an animal. The 

animal stimuli were chosen to be cohort competitors with 

either a size or color adjective (e.g., big buffalo, green 

gorilla). On each trial, the target and competitor shapes were 

the same (e.g., both spades), ensuring that the target shape 

always needed to be disambiguated from the competitor by 

describing the animal above the target. Trials were 

presented in one of four fixed random orders. 

There were two critical trial types. On Adj+ trials (n=96), 

the same cue animal appeared above the target and 

competitor shapes in two different colors or sizes. Critically, 

the animal above the target shape was rendered in its cohort-

competitor adjective (e.g., green gorilla). These trials were 

designed such that, if participants used RCA, in production, 

they would include the adjective necessary to disambiguate 

the target cue from the competitor cue, and in 

comprehension, upon hearing the initial phoneme of the 

adjective (e.g., the /g/ in green), they would interpret this 

sound as the beginning of an adjective, and not a noun, and 

as a result fixate more on the cue above the target (green 

gorilla) than the cue above the competitor (red gorilla) 

(Table 1). 

On Adj− trials (n=96), different cue animals appeared 
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above the target and competitor shapes. The cue animal 

above the target shape was always a cohort competitor with 

the adjective corresponding to the cue above the competitor 

shape (e.g., red gorilla vs. green raccoon). These trials were 

designed such that, if participants used RCA, no adjective 

would be produced in production, as it would be over-

informative, and in comprehension, upon hearing the initial 

phoneme of the target noun (e.g., the /g/ in gorilla), the 

participant would interpret this phoneme as the onset of a 

noun (gorilla), and not of the adjective preceding the 

competitor cue (green raccoon) (Table 1). 

 

Table 1: Felicitous utterances on Adj+ and Adj− trials. 

 

 Adj+ Adj− 

Production Say “the heart under 

the green gorilla.”  

Say “the heart under 

the gorilla.”  

Comprehension Upon hearing “heart 

under g…” look for 

“green,” not “gorilla” 

Upon hearing “heart 

under g…” look for 

“gorilla,” not “green” 

Cognitive Battery 

A spatial WM task (Corsi Block, Kessels et al., 2000) and 

two linguistic WM tasks (Category and Rhyme Probe, 

Freedman & Martin, 2001), measuring semantic and 

phonological WM respectively, were administered. Three 

IC measures were also employed: Fish Flanker along with 

embedded NoGo (Nozari, Trueswell, & Thompson-Schill, 

2016), as well as semantic blocking elicited through cyclic 

naming (e.g., Schnur et al., 2006), in which participants 

named twelve sets of six images, either in semantically-

homogenous or heterogeneous blocks. Semantic blocking 

was determined as the difference in response latencies 

between the two block types.  

Procedure 

Participants completed two sessions 3-7 days apart. Each 

session began with the eye-tracking task, followed by half 

of the cognitive measures. Stimuli were displayed using 

MATLAB and Psychophysics Toolbox (Brainard, 1997), 

and the participant’s eye movements during the referential 

communication tasks were recorded using an Eyelink 1000 

Plus desktop-mounted eye-tracker (SR Research). 

 

Referential Communication Task, Session 1. On each 

trial, a fixation cross was presented for 500 ms before the 

stimuli appeared. After a 1500 ms preview period, a tone 

sounded and the target shape began to flash, cuing the 

participant to begin speaking. After 2.5 seconds, a lower 

tone sounded, indicating the end of the trial. The participant 

and experimenter viewed separate monitors containing the 

same stimuli. The participant instructed the experimenter to 

click on the target shape that was cued on the participant’s 

screen, using sentences with this structure: “Click on the 

[target shape] under the [adjective, if needed] [target cue].” 

They were told that the goal of the task was to provide 

instructions as quickly as possible, and to avoid unnecessary 

words to meet the temporal deadline, thus motivating them 

to drop the adjective when not necessary.  

 

Referential Communication Task, Session 2.  Participants 

followed instructions like the ones they had given during 

Session 1. Each trial began with a 500 ms fixation point. 

The stimuli then appeared onscreen, and after a 1000 ms 

preview period, a pre-recorded instruction played, 

instructing the participant to click on one of the shapes. 

Instructions were always pragmatically appropriate (i.e., an 

adjective was always provided on Adj+ trials, and no 

adjective was provided on Adj− trials).  

Analyses 

Behavioral 

Participants made a total of 345 infelicitous utterances out 

of 5376 critical trials (6.4% error rate, M = 12.3 errors, SD = 

8.5). Of these infelicitous utterances, 187 were made on 

Adj+ trials (i.e., adjective underuse), while 157 were made 

on Adj− trials (i.e., adjective overuse). Participants were 

expected to perform near ceiling on the comprehension task, 

so no accuracy measures were collected. 

Eye-Tracking 

In production, eye-tracking analyses combined each card 

suit and its animal cue into a single region. Data was 

analyzed from 400-1350 ms post-target cuing, comprising 

the time period between the minimum and maximum 

proportion of fixations to the competitor after attention was 

initially drawn to the flashing target (see Figure 2a). 

Competitor fixations were considered critical because, in 

order to establish the referential context of the display, 

participants needed to divert their attention from the 

extrinsically-cued target to its competitor. Thus, our 

dependent measure of analysis was a competitor advantage 

score, or the proportion of fixations to the competitor minus 

the proportion of fixations to the target.   

In comprehension, eye-tracking analyses were completed 

on the target advantage score (proportion of fixations to the 

target and its cue minus the proportion of fixations to the 

competitor and its cue) over a time window beginning 300 

ms before the onset of the critical word (cue noun in the 

Adj- and cue adjective in the Adj+ condition) and ending 

200 ms after the onset of the critical word (see Figure 2b). 

The time window was chosen in order to encompass 

coarticulatory cues from the word preceding the critical 

word, as well as processing of the initial cohort phoneme of 

the critical word. This target preference measure should 

indicate how well participants took referential context into 

account (i.e., disregarded the competitor). By using target 

advantage as a DV in comprehension and competitor 

advantage in production, we ensured that in both cases, a 

more positive eye-tracking score would index better RCA. 
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a.  

b.  

 

Figure 2: Time course of eye-tracking data for all critical 

trials in Production (a) and Comprehension (b). Highlighted 

regions indicate windows of analysis. 

Partial Least Squares Path Modeling (PLS-PM) 

Analyses were conducted using partial least squares path 

modeling, implemented in the plspm package in R 

(Sanchez, 2013). PLS-PM is a partial least square approach 

to Structural Equation Modeling suitable for analyzing the 

relationship between latent variables (psychological 

constructs such as WM) and manifest variables (observed 

data from tasks assumed to index these variables) as a 

network of multiple interconnected linear regressions. 

Figure 3a shows our initial theoretical model. The model 

has three latent variables: RCA, Working Memory (WM), 

and Inhibitory Control (IC), each measured through a 

number of manifest variables. The direction of the arrows 

indicates the direction of causal influence. 

Model quality assessment takes three general steps. The 

first is to verify the relationship between manifest variables 

and the latent variables hypothesized to underlie them. This 

is done by first assessing unidimensionality, or the extent to 

which a change in the latent variable affects all manifest 

variables in the same direction. Unidimensionality is 

indexed by Dillon-Goldstein’s rho (DG rho). A DG rho 

above 0.7 is favorable. Second, the relative contribution of 

the latent variable (vs. noise/task-specific factors) to each 

manifest variable is calculated. Indicators with a loading of  

a.  

  

b.  

 

Figure 3: Structure of initial path model (a) and revised 

model for production data only (b). 

 

less than 0.6 are not good indices of the latent construct. 

Third, the cross-loadings of the manifest variables are 

checked to ensure that the loading of a manifest variable is 

indeed highest on the latent variable it is assumed to 

represent, and not on another latent variable in the model.  

The first three steps are used to revise the model by 

dropping manifest variables or re-partitioning the latent 

variable constructs. The revised model is then re-checked. 

Once a viable model is obtained, the overall fit is 

assessed, which also includes the relationship between the 

latent variables. R2 is reported for the latent variable of 

interest, and similar to simple regression models, indicates 

the amount of variance explained by the independent latent 

variables (WM and IC).  

The part of the model that answers questions about the 

contribution of general cognitive functions on RCA is the 

inner model, or the links between latent variables. Its output 

is similar to that of any generalized linear model. 

Significance levels of path coefficients are estimated via 

bootstrapping with 1000 iterations. 

Results 

Model 1: General Model  

Model 1 is based on the following theoretical assumptions: 

(a) the three WM tests measure a unified WM construct, (b) 

the three IC tests measure a unified inhibition construct, and 

(c) all the RCA scores measure a unified RCA construct. 

Examination of this general model resulted in three main 

revisions: (a) Rhyme Probe was dropped because it did not 

contribute substantially to the latent WM construct (loading 
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= 0.12) (b) The loadings and cross-loadings of the latent 

variables revealed that the IC variable had low 

unidimensionality (DG rho = .11). NoGo errors had a large 

negative loading on the IC latent variable (-0.93), while the 

other two IC manifest variables had positive loadings, 

indicating that the NoGo errors were measuring a 

fundamentally different construct. Thus, the IC latent 

variable was broken down into two variables: indirect 

competitive (CI; Semantic Blocking and Flanker) and global 

(GI; NoGo) to reflect two types of IC that have been shown 

to have different cognitive and neural underpinnings 

(Munakata et al., 2011). (c) While all measures of RCA in 

production had factor loadings above 0.6 on the RCA latent 

variable, RCA measures in comprehension had low factor 

loadings and low unidimensionality across Adj+ and Adj- 

conditions. This finding points to dissociation of the RCA 

construct in production and comprehension and calls for 

separate examination of the two tasks. 

Model 2: Production  

This model is shown in Figure 3b, and includes only 

manifest variables indexing RCA in production. RCA had a 

DG rho of 0.86, and high factor loadings for all four 

manifest variables. This finding supports defining RCA in 

language production as a unified construct, regardless of 

linguistic demands. DG rho’s for WM and CI were 0.7 and 

0.63 respectively, with R2 of 0.51.  

Table 2 shows the results of the bootstrapping on Model 

2. The only latent variable that significantly predicted RCA 

in production was GI. Post-hoc modeling of Adj+ and Adj- 

manifest variables separately also revealed a reliable 

contribution of this variable to RCA in both trial types. 

 

Table 2: Results of Bootstrapping for Model 2. CI = 

Competitive Inhibition; GI = Global Inhibition; WM = 

Working Memory.  

 

Latent 

IV 

Path 

Coeff. 

Bootstrapping 

Means 

SE Lower 

95% 

CI 

Upper 

95% 

CI 

WM 0.18 0.20 0.20 -0.24 0.54 

CI 0.26 0.18 0.28 -0.42 0.57 

GI -0.56 -0.54 0.18 -0.80 -0.21 

 

Analysis of eye-tracking data in production showed that 

participants’ average competitor advantage scores were 

positively correlated with RCA accuracy in both the Adj+ 

and Adj- condition (r = .45 and .58, respectively; p’s < .05), 

and that eye-tracking performance itself was highly 

correlated across the two conditions (r = .96, p < .001). 

Analysis of Comprehension Data 

In the path model, the two measures of RCA in 

comprehension had opposite loadings on the RCA latent 

variable, thus forcing us to examine them separately. To 

understand why the eye-tracking measures in 

comprehension had opposite effects on the RCA variable, 

we first examined the correlation between participants’ 

target advantage scores in the Adj+ and Adj− conditions. 

The two measures showed a significant negative correlation 

(r = -.47, p = .01), in contrast to the production results. 

Nearly half of the participants (13 of 28) showed a negative 

target advantage score in one condition and a positive score 

in the other, indicating that in one condition, participants 

systematically interpreted the critical cohort phoneme as the 

onset of the competitor, instead of the target.  Recall that in 

the Adj+ condition, the target word was always an adjective 

and its cohort competitor was always a noun, while in the 

Adj− condition, the opposite was true. Thus, it appears that 

these participants adopted a strategy of always interpreting 

the cohort phoneme as being from the same part of speech.  

Because our main question of interest was whether RCA 

in production and comprehension rely upon the same 

cognitive processes within an individual, we directly 

compared performance in these two domains within the 

subset of participants who were clearly engaging in RCA 

during comprehension (Adapters; n = 11). While no 

relationship was found between production and 

comprehension on Adj+ trials, on Adj− trials, these 

participants’ eye-tracking performance in comprehension 

was significantly positively correlated with their production 

accuracy (r = .63, p  < .05) and marginally positively 

correlated with their eye-tracking performance in production 

(r = .49, p = .12). 

We also tested whether the same cognitive abilities were 

responsible for performance across conditions in Adapters. 

Due to the univariate nature of the dependent measures in 

these analyses, we ran multilevel models separately on Adj+ 

and Adj− eye-tracking data, with all six cognitive tests 

included as predictor variables. While none of the cognitive 

measures predicted performance on Adj+ trials, RCA on 

Adj− trials was significantly predicted by the Flanker (t = 

6.2, p < .01) and NoGo tasks (t = 5.1, p < .05).  

In summary, comprehension results differentiated two 

groups of individuals: those who flexibly adapted their 

processing to referential context and those who did not. In 

those who did, RCA abilities were correlated in production 

and comprehension, at least on Adj− trials, and in both cases 

they were well predicted by a measure of IC.  

Discussion 

This experiment tested three central questions: 1) Which 

cognitive processes underlie RCA? 2) Are these processes 

consistent across production and comprehension? 3) Do 

situations in which better RCA is marked by addition of an 

adjective differ from those in which it is marked by 

omission of an adjective? In answer to question 1, we 

observed a clear effect of IC across the domains of 

production and comprehension. In production, NoGo scores 

were predictive of better RCA for both Adj+ and Adj- trials. 

In comprehension, amongst Adapters, scores on both NoGo 

and Flanker tasks predicted performance on Adj− trials. 

These findings suggest a definite role for IC in RCA. Since 

common to both production and comprehension, this finding 
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most likely points to the role of IC in capturing the critical 

contrast by preventing fixed attention to the target (hence 

ignoring the critical competitor).    

Two lines of evidence can be used to answer question 2. 

First, the fact that IC played a role in RCA for both 

production and comprehension is evidence that the RCA 

abilities are related in the two domains. Second, 

performance on Adj− trials was correlated between 

production and comprehension amongst Adapters. Together, 

these findings provide the first piece of evidence for a 

common basis of RCA in production and comprehension. 

In answer to question 3, production analyses strongly 

suggested RCA ability was independent of trial type: Eye-

tracking measures across Adj+ and Adj- trials were highly 

correlated, PLS-PM revealed the RCA latent variable in 

production to be a highly coherent construct, and the same 

underlying cognitive mechanism, global inhibition, was 

implicated in both Adj+ and Adj− trials. In comprehension, 

more variability across conditions and participants was 

observed. PLS-PM showed a lack of unidimensionality 

across comprehension conditions, and further inspection of 

the data revealed that nearly half of the participants did not 

use referential context. Even within Adapters, only RCA on 

Adj− trials correlated with production and was predicted by 

measures of IC. This is in part due to low internal reliability 

of RCA in comprehension (ρ* = .34 for Adj− and ρ* = -.16 

for Adj+)1, as also reported by Ryskin et al. (2015), which 

stands in sharp contrast to the high split-half reliability of 

RCA in production (ρ* = .97 in both conditions). However, 

our results suggested that apart from consistency issues, 

listeners did often default to a fixed strategy, as opposed to 

flexibly adapting to context, as they did in production. 

In summary, these results represent the first evidence for 

shared underlying cognitive mechanisms of pragmatic 

processing in production and comprehension. In production, 

this mechanism, global inhibition, was recruited regardless 

of the particulars of the referential context, while in 

comprehension, results were less uniform across conditions, 

pointing to specific strategies adopted by listeners in 

locating the referent. These findings provide insights into 

the cognitive processes that drive pragmatic use during 

spoken language comprehension and production, and help to 

situate pragmatic processing within a larger and more 

general cognitive framework. 
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Abstract
We present a dynamic process model for workload, developed
according to a conducted experiment, which recorded the pupil
dilation during an air traffic controller simulation. We describe
how we built such a dynamic system based on the collected
data. Logged events that happened in our simulation were used
as system input and the recorded pupil dilation as output. Af-
terwards, we used the MATLAB system identification toolbox
to identify the transfer function between input and output. The
identified model is validated with a validation data set that has
been excluded from the identification process. Results show
that we are able to explain nearly 50% of the variance of the
recorded pupil dilation data in the air traffic controller simu-
lation. Moreover, the model explains some contrary results of
the statistical analysis from our experiment.
Keywords: Dynamic process model; System theory; Work-
load; Pupillometry; Air traffic controllers

Introduction
According to current statistics, the amount of airline pas-
sengers will continue its positive development over the next
years, with expected annual growth rates of up to five percent
(IATA, 2017; Boeing, 2017). To maintain the resulting needs
and ensure smooth and safe traveling, the duty of air traffic
controllers (ATCs) is of high importance. However, tasks like
this are rather complex and put high demands on the available
resources of such job holders (Mogford, Guttman, Morrow, &
Kopardekar, 1995). Beyond this, it is proven that predefined
factors like traffic volume or frequency congestion influence
ATCs’ mental workload (Mogford et al., 1995).

As discussed by Gopher and Donchin (1986), the concept
of mental workload enfolds various dimensions and facets.
Although it has been broadly inspected, deriving a clear def-
inition forms a rather difficult matter. Nevertheless, there are
two constituting aspects that build a common ground in most
cases. While task difficulty results from the demands required
to successfully solve a task in a given time (Galy, Cariou,
& Mélan, 2012), resource supply refers to the information
processing capacity available for this purpose. In this vein,
mental workload comprises the difference between required
capacities of the information processing system to achieve
satisfying task performance and available capacity at a given
time (Gopher & Donchin, 1986; Wickens, 2008). Based on
the assumption that tasks with increased difficulty require ad-
ditional resources, a significant decrease in performance due

to the lack of resources should appear as soon as resource
demands exceed resource supply (Wickens, G., Banbury, &
Parasuraman, 2013).

There are different possibilities to estimate human work-
load (Prewett, Johnson, Saboe, Elliott, & Coovert, 2010;
Beatty & Lucero-Wagoner, 2000; Reiner & Gelfeld, 2014)
and build workload models (Gopher & Braune, 1984; Wick-
ens, 2008). Beatty and Lucero-Wagoner (2000) described
nonreflexive phasic pupillary movements as indicators for
brain processes that underlie dynamic, intensive aspects of
human cognition. In several research investigating the cog-
nitive functions, task-evoked responses of the pupil (TERPs)
(Beatty, 1982; Beatty & Lucero-Wagoner, 2000) were used
to measure cognitive effort, workload and cognitive load
(Haapalainen, Kim, Forlizzi, & Dey, 2010; Wierwille, 1979;
Paas, Tuovinen, Tabbers, & Van Gerven, 2003). Therefore, in
our approach we used the measured TERPs to model and val-
idate a dynamic workload model to investigate and simulate
workload in ATC tasks.

Experiment

We collected data from 25 volunteers located at the campus
of University Pompeu Fabra (MAge = 28.12; SD = 5.67, 64%
male). The majority of 84% participants had no prior ex-
perience in ATC tasks (including, but not limited to, video
games).

Figure 1: Experimental procedure with preparation phase,
practice session and two different conditions. Measures on
personality (BFI) and mood (MDMQ) are not reported in this
paper.
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Experimental Design
In our 2 (workload condition) x 3 (events) within-subjects de-
sign, each participant completed a simulated ATC task. The
simulation was divided into a practice session and two condi-
tions of 4 min, a low workload condition (LWC) with a lower
degree of difficulty and a high workload condition (HWC)
with a higher degree of difficulty. In the LWC, participants
had to manage and control less airplanes appearing at a lower
frequency (airplanes appeared every 4–8 s). This results in
an easy task difficulty with lower time pressure, since partic-
ipants had more time to handle each airplane. In the HWC,
participants had to manage a greater number of airplanes ap-
pearing in a higher frequency (airplanes appeared every 1–5
s), which resulted in higher task difficulty and time pressure
to avoid collisions between airplanes.

Workload Measurement Since Beatty and Lucero-
Wagoner (2000) reported a significant increase in pupil di-
lation due to an increase in workload, we recorded the pupil-
lary response during each condition. We used the mobile eye
tracking headset from Pupil Labs with a sample rate of 60 Hz
and analyzed the TERPs by calculating the mean pupil dilata-
tion during an 1.5 s window for three classes of events that
were assumed to trigger an increase in workload. The time
window of 1.5 s was chosen in line with Beatty and Lucero-
Wagoner (2000), who identified that TERPs are recognized
due to an increase in mental workload between 1-2 s after the
presentation of a stimulus.

One class of events included all collisions caused by
the participant, another one included participants actions of
changing height or direction of an airplane. The third class of
events included system-induced occurrences of a new couple
of airplanes. All events were logged by a self-programmed
protocol system, which was part of the simulated scenario.
The obtained log files included timestamps for each pupil-
lary response, which were sent to the system via a wlan-
connection, as well as simultaneously recorded timestamps
for each event occurrence.

Procedure
The study was conducted in a virtual reality room, called
XIM, and participants were recruited directly from the cam-
pus plaza. After completing the consent forms, they were
invited to enter the XIM. For each participant, the experi-
ment started with a preparation phase, where the eye track-
ing glasses were put on, the Big Five Inventory (BFI) was
completed and some instructions regarding the virtual real-
ity room were given (see Figure 1). In addition, there was
a calibration phase that also ensured stable light conditions
with and without planes presented on the screen. Afterwards,
the practice session started, in which participants received an
instruction on how to structure their commands to change
airplane routes (see Fig. 2) and how to avoid collisions be-
tween airplanes. Following this instructions, participants had
to manage the airplanes appearing at the screen on their own.

Figure 2: Experimental setup with eye-tracking device.

This section was finished as soon as participants were able
to manage the scenario, measured by 10 correct answers in a
row. After the practice section, participants were exposed to
two trial sections presented in static order, the LWC followed
by the HWC.
In each section, the airspace was divided in several airspace
areas, whereof the subjects were responsible for the middle
airspace (green rectangle). At a predefined frequency (HWC:
1–5 s; LWC: 4–8 s) two airplanes with a given number and
a random height appeared from both sides or from top and
down heading to the same randomized point in the responsi-
ble airspace. During the whole experiment, participants had
to keep in mind that airplanes, which do not collide in a 3D
space, could appear at the same screen location due to the
2D display. This indirect 3D perception demands informa-
tion processing resources as well (Wickens et al., 2013), but
since all participants were exposed to comparable require-
ments, we did not expect additional effects on the measured
level of workload. For avoiding collisions, participants had
to use control commands with a similar structure compared
to real ATC commands (see Figure 3). In detail, they had
to provide to the number of the chosen airplane plus the in-
formation about what they want to change, for instance the
direction or height of the airplane. The experimenter in the
back adopted the role of the pilot, controlling the airplanes by
sending special keyboard sequences to the simulation. Each
session comprised a break as well. During this time span, par-
ticipants reported their mood state by completing the Multi-
dimensional Mood State Questionnaire (MDMQ). After fin-
ishing the LWC and HWC, the experimenter removed the eye
tracker glasses.

Data Analysis and Model Preparation
After conducting the experiment and preparing the pupil di-
lation data, we analyzed the data statistically and computed a
dynamic model of workload over the task with an identified
and fitted dynamic system (Isermann & Münchhof, 2011).
With reference to the latter, we developed some hypotheti-
cal assumptions based on the curve progressions of figure 6
in Beatty (1982). We assumed that dealing with appearing
airplanes and setting a command will increase participants’
workload (see Fig. 4). If a collision happened, we expected
participants to immediately recognize their mistake and think
about. However, at the same time the complexity of the air
space should be reduced due to the reduced number of air
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Figure 3: Schematic representation how participants had to
change the height of an airplane.

planes on the screen. On this account, we assumed an initial
increase in workload after collisions, directly followed by a
decrease caused by the reduced amount of airplanes.

Data preparation
To calculate the mean pupil dilation, the recorded data had
to be cleaned from artifacts, blinks and other undesired pat-
terns in the data stream (Beatty & Lucero-Wagoner, 2000).
Therefore, we used MATLAB-functions to implement stan-
dard methods for cleaning and analyzing pupil dilation data.
First, we deleted all blinks in the signal, which are character-
ized by zero values in the data stream. Then, we interpolated
the missing values and used a median filter in order to clean
the signal from outliers. Participants with more than 18%
blinks or zeros in the data stream were excluded from the sta-
tistical analysis, as the filtering functions and the evaluation
could be falsified by very noisy signals. For the statistical
approach, we calculated the respective level of workload for
the events ”collision”, ”disappear” and ”appear” as mean of
all occurred TERPs after the system had logged the collision
or the appearance of airplanes. Due to the fact that our simu-
lation only recognized if an airplane changed its direction or
height, we measured the level of workload for the event ”ac-
tion” from TERPs calculated during an 1.5 s window before
the change happened. Within our statistical analyses, we cal-
culated the mean of the pupil dilation of LWC and HWC as
measure of workload for the particular condition.

Statistical Results
We conducted a repeated measures analysis of variance
(ANOVA), to validate TERPs as predictor for workload.
Event (”collision” vs. ”appear” vs. ”disappear”) and work-
load condition (LWC vs. HWC) were regarded as inde-
pendent variables and the recorded TERPs as indicator of
workload were defined as dependent variable. Mauchly’s
test indicated a violation in the assumption of sphericity
for the main effect of event, χ2(5) = 73.049,p < .001, as
well as the interaction between condition and event, χ2(5) =
42.331,p < .001, thus degrees of freedom were corrected
using Greenhouse-Geisser estimates of sphericity for event,
ε= .388, and the interaction, ε= .573. We found a significant
main effect for event, F(1.17,19.79) = 12.394, p < .05,η2

p =
0.42, but no significant main effect of workload condition.
Post-hoc pairwise comparisons with Bonferroni correction

Figure 4: Assumed schematic curve progression of TERPs
during different events.

pointed out that the workload after an action (p < .001) and
after a collision (p< .05) was significantly higher than the av-
erage workload in the whole condition. However, the work-
load after the appearance of an airplane was significantly
lower (p < .05). Moreover, a significant interaction effect
between condition and event showed up, F(1.72,29.24) =
3.701, p < .05,η2

p = .18, indicating a difference in the work-
load between events in both conditions. Since we had a static
order, the level of workload in the HWC could have been in-
fluenced by the LWC. To control for this effect, we computed
pupil dilation means during a 1 s window at the beginning
of the LWC and HWC and conducted a paired-samples t-test.
It did not show significant results, t(19) = −1.927, p > .05,
thus we can assume that there was no influence on workload
evoked by the static order.

Workload Model
We assume that different levels of workload in both condi-
tions result from task difficulty and the different events cor-
responding to the behavior of simulation and participants.
Therefore, each simulated event as well as the spoken com-
mands should have a direct influence on the level of work-
load in each condition, resulting in different TERPs. Thus,
in the dynamic approach, the pupil dilation as level of work-
load is described as output that is dependent on the events,
which are described as inputs. If there was a stable unique
relation between input and output, we should be able to find
a mathematical model for the temporal behavior of the work-
load (TERPs) from the measured input of the events.

System Description
In system theory, such model can be described as multiple
input and single output model (MISO), at which appearance,
disappearance and collisions of airplanes as well as actions
commanded by the participants are inputs, whereas the ob-
tained TERPs are regarded as output. In detail, we measured
a continuous time signal, with pupillary response and the re-
lated events as impulse responses appearing in each condi-
tion. An impulse response can be defined as the output of
a process being excited by an impulse (δ(s)) (Isermann &
Münchhof, 2011).

δ(t) =

{
∞ for t = 0
0 for t 6= 0

(1)
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For a better understanding, while the step response or impulse
response can be measured easily in many cases, we modeled
our input events as step functions, whereas a step (σ(s)) can
be obtained by integrating the impulse with respect to time t
(Isermann & Münchhof, 2011).

σ(t) =

{
1 for t ≥ 0
0 for t < 0

(2)

To estimate important system parameters, such as settling
time or the the damping coefficient and other characteristic
values, we can use the following generic transfer function

G(s) =
y(s)
u(s)

=
b0 +b1(s)+bm−1(s)m−1 +bm(s)m

a0 +a1(s)+am−1(s)m−1 +am(s)m (3)

which is the Laplace transformation of an ordinary differen-
tial equation (ODE) for a lumped parameter system (for fur-
ther details see Isermann and Münchhof). Since we model
our input data with step responses, we can directly take some
individual characteristic values from the calculated step re-
sponse of the system, which might be used to determine co-
efficients of special transfer functions by means of simple
calculations (Isermann & Münchhof, 2011). With the sys-
tem identification toolbox, MATLAB offers a great database
of identification methods to solve such process identifica-
tion problems. Therefore, we used MATLAB to identify our
workload model based on the data we collected during the
experiment.

Modeling the input For modeling the system input, we
used the timestamps of appearances and disappearances of
airplanes as well as collisions and actions within the tasks
from participants’ log files. Based on this, we created sev-
eral time series for each event class, which contained a step
response at each event timestamp recorded by the simulation.
Since airplanes stayed on the screen till they disappeared, we
had to take into account that appearance and disappearance of
airplanes have a different influence on the resulting workload
compared to commands and collisions. Thus, the σ-function
of appear is increased by two if an airplane couple appeared
on the screen and the σ-function of disappear is increased by
the number of airplanes which left the air space unharmed.
By contrast, the influence of actions and collisions lasted only
a limited time (an action during the time the participant spoke
and the collision as long as the collision sound was played
and the airplanes disappeared). Therefore, the σ-function of
action was set to 1 for the time frame of 2 s before an ac-
tion happened (see Fig. 5(a)). We chose these time window
because the middle duration of commands was 2 s. Due to
the fact that an airplane collision reported relatively short by
a collision sound, we modeled the σ-function of collision by
setting it to 1 for the time frame of 1 s after a collision hap-
pened (see Figure 5(b)).

Identify the types of transfer functions for events After
modeling the input, we analyzed the behavior of the pupil
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Figure 5: Example step response function of all events.

dilation over 4 s time windows during the recorded events.
The chosen time windows doubled the recommended 2 s time
window (Beatty & Lucero-Wagoner, 2000), as for identifying
the dynamic of the system we had to ensure that the event-
related response was included even with potential reaction
time differences between participants. Moreover, the addi-
tional information of the signal behavior could help to find
the right time constants.

In system theory, there exist several LTI(Linear-Time-
Invariant)-systems, which describe different patterns of be-
havior in signals with linear ODEs. In the mathematical view,
this behavior is described with the transfer function G(s),
which describes how a step response(s) influences the output
signal. For example, a transfer function for an PT1-system
can be described by

G(s) =
y(s)
u(s)

=
b0

1+a1s
= K

1
1+T1s

(4)

in which PT1-system results depend on an step response in an
increase of K during the time T1/T, whereas T is the sampling
rate of the signal. Thus, the time constant T1 describes how
fast the signal reached the value K. In terms of the workload
description such a system would describe how the workload
will be influenced over time. Whereas T1 describes how fast
the workload is increased and K describes the absolute in-
crease or decrease of the workload after an event is recorded.
A more detailed view and the explanation of all types of LTI-
systems are described in Isermann and Münchhof (2011).

Since we focused on developing a general model for each
event and there might be some disturbing influences within
recorded TERPs, we calculated the mean of all TERPs and
regarded this as a baseline within our identification process.
Such disturbing influences could be seen in miscalculated
workload within overlapping, unrecognized or overwhelming
events. By calculating the mean progression of the TERPs
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Model data (NRMSE: 78.59%)
Mean of pupil dilation during event

(a) Transfer function: Actions.
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Model data (NRMSE: 82.89%)
Mean of pupil dilation during event

(b) Transfer function: Appear.
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Model data (NRMSE: 97.38%) 
Mean of pupil dilation during event

(c) Transfer function: Collision.
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 Model data (NRMSE: 54.84%) 
Mean of pupil dilation during event

(d) Transfer function: Disappear.

Figure 6: Curve progression of TERPs at different events.

during the events, we assume that disturbing influences might
distracted from the characteristic behavior. In Figure 6, we
show the behavior of the TERPs based on this means (black
lines in each figure). Moreover, it outlines that we identi-
fied transfer functions for the each step function of several
events, therefore the mathematical description of our transfer
function could be seen as the mathematical description of our
TERPs depending on event inputs (colored lines). We iden-
tified a PT2-system for the action, which shows a short ini-
tial decrease in workload, followed by a steep increase. The
under-dumped PT2-system with a death time for the behavior
of collision, shows that there was no significant increase in
workload after a collision but a decrease after 0.5-1.0 s. The
identified system of appear comprises a DT2-system with a
death time, which shows a significant increase in workload
during an spoken command. The signal of disappearance re-
veals that the reaction of this event is very small (signal range
is between 0.08 and -0.05). Potential reasons might be the
lack of reaction in pupil dilation to this event or an ineptly
small size of the chosen time window for identifying a signif-
icant change. Thus, we have to handle the identified PT2Z-
system with death time carefully, since it might be incorrect.
Of course, these identified models are ”ideal” models to the
mean behavior of the TERPs, but they can provide a hint on
the type of underlying system and a clue for the range of the
used time constants. Such applies in particular for collision
and action, since these events are most likely to trigger direct
and fast input-response behavior.
Identify the overall system behavior Based on the identi-
fied dynamic system for the TERPs, we aimed to identify the

Table 1: Identified parameters of the mean curve progression
of all event-based TERPs.

System K T1 T2 Tz Td Tw ζ

Action 1.25 1.84 1.59
Appear .51 .52 .52 −1.4 .59
Collision −10 1.41 .96 .89
Disapp −.2 4 4 −10 .66
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Experiment data
Model data (NRMSE= 45.86)

(a) LWC of participant 8.
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Experiment data
Model data (NRMSE= 45.86)

(b) LWC of participant 25.

Figure 7: Comparison of recorded and modeled pupil dilation
for participants 8 (training data) and 25 (validation data).

underlying dynamic system behavior of pupil dilation for the
whole conditions. We assumed that the measured pupil dila-
tion reflects the sum of responses to the input. For validating
our model, we divided the data in a training data set, contain-
ing 16 participants (80% of the sample), and a validation data
set, containing four participants (20% of the sample). Data
of LWC and HWC were represented as independent experi-
ments and contained the time series of the events (see Fig-
ure 5) and the corresponding recorded measurements of the
pupil dilation. We defined the types of systems and their
possible range of parameters detected in the TERP-analysis
as system structure, to identify the complete model of pupil
dilation behavior. Afterwards, we used the system identifi-
cation toolbox to identify the best model describing change
of pupil dilation over time depending on the event inputs.
Figure 7(a) shows the simulated and the experimental out-
put of the dynamical pupil dilatation system of two examples
of the training and validation data set. We see the typical
increase of the pupil dilation during the conditions of partic-
ipants 8 and 25 (black lines) and the corresponding model
outputs (red lines) with their exponential curve progression.
The goodness-of-fit is calculated by the normalized root mean
square error (P8 = 46.06%,P25 = 45.68) and shows that the
peaks in the pupil dilation are the result of TERPs from ac-
tions and the dips are the result of TERPs from happened
collisions. The fitted model parameters for different transfer
functions are displayed in table 2. As expected, in the fitted
time constants of appear and disappear event-related influ-
ences are very slow (T1ap = 104.2; T1di = 211.2), compared
to action and collision (T1ac = 1.72; T1co = 1.5). Furthermore,
the absolute influence of an action and a collision (Kac = 2.77;
Kco = −9.58) to the workload is greater than the appearance
and disappearance of airplanes (Kap = 0.93; Kdi =−1.0).

Table 2: Identified parameters of event-based TERPs based
on pupil dilation data of the whole conditions.

System K T1 T2 Tz Td
Action 2.77 1.72 1
Appear .93 104.2 .61 −.62 .6
Collision −9.58 1.5 .96 1.14
Disappear −1 211.2 55.65 .74
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Figure 8: Comparison of experiment and fitted model data

Validation of the model The model described above was
identified by data from the LWC and HWC of the first 16
participants. To measure how good our model can represent
the recorded data of participants the model never seen, we
calculated the deviation between model and experiment data
over all participants and conditions by the normalized root
mean square error (NRMSE) and the normalized coefficient
of determination (NR2). In Figure 8 shows the goodness-of-
fit-results of our training data set and the validation data set.
For the NRMSE, we reached mean values of 28.87% for the
validation data set and 32.99% for the training data set. If we
look at the NR2, the model is able to explain 49.42% of vari-
ance in the validation data and 55.10% in the training data.

Discussion

We developed and identified a dynamic model for the TERPs
within a simulated ATC scenario. Corresponding to our ex-
pectations, statistical analyses show a significant increase in
participants’ TERPs due to collisions and actions, indicat-
ing metacognitive reflections about commands or mistakes.
Contradictory results show up with a significant decrease in
TERPs after the appearance of a couple of airplanes that af-
terwards increases again (see Figure 6(b)). These effects are
very slow and the sole calculation of state based statistics is
prone to loose this information. On this account, we built and
validated a dynamic model to predict workload of ATC-Tasks
based on the experimental results. We used different models
for each event logged in the session, and thus can conclude
that not each visual input provides the same TERPs (Beatty
& Lucero-Wagoner, 2000). Furthermore, we show that the re-
sulting workload in our condition is the sum of the responses
of our system to the events. However, the increase is not a
straight line, but rather an exponential increase, which might
occur as well in similar experiments that investigate work-
load. Moreover, we can conclude that there is a stable unique
relation between events in the simulation and the resulting
TERPs, as we were able to find a mathematical model for
the temporal behavior of the pupil dilation. Still, this model
is just an approximation of the dynamic processes of work-
load that might be limited by the underlying linear process
model. Nevertheless, we were already able to explain and
predict nearly 50% of the variance in the resulting workload.

Further steps
In the next instance, we will conduct another experiment with
a duration of 7 min and two conditions, an emotional and a
neutral session. In this vein, we can validate our identified
workload progression for the extended time frame and fur-
thermore investigate how the emotional influence in the sec-
ond condition changes the dynamics of our model. Based on
these results, we will extend our model by an emotional com-
ponent, simulating and predicting the influence of emotions
to the workload and TERPs.
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Abstract

When making decisions humans often violate the principles
of rational choice theory. Recent experiments, involving rapid
experiential decisions, uncovered a mechanism that is respon-
sible for various rationality violations. According to this se-
lective gating mechanism, incoming value samples are accu-
mulated across time, but prior to their accumulation they are
weighted in proportion to their momentary rank-order. Here,
using a data-driven approach, I present a dynamic extension
of this mechanism, which involves potentially asymmetric in-
hibition between the inputs. As a result, and contrary to the
previous selective gating implementation, the vigour of gating
is modulated by the difference between two value samples (a
distance effect) as well as by the absolute magnitude of the
samples (a magnitude effect). This extension offers a supe-
rior explanation to existing and new data; and links high-level
decision phenomena with computational principles previously
described in theories of selective attention and visual search.
Keywords: Selective integration; Experiential decisions;
Risk-seeking; Intransitivity

Introduction
Behaving organisms update their preferences in response to
changes in their internal status and the state of the world; but
they also do so in the absence of such changes. For instance,
people are found to prefer A (e.g., fresh fish) over B (e.g.,
steak), when these two alternatives are offered, but B over
A when a third – inferior and unchosen– alternative, C (e.g.,
frozen fish), becomes available (Huber, Payne, & Puto, 1982).
Reversals of preference, as in the example above violate the
axioms of rational choice theory (Von Neumann & Morgen-
stern, 2007) and indicate that the valuation of an alternative
is context-sensitive, not only dependent on the agreement be-
tween the goals of the decision-maker and the properties of
the judged alternative but also dependent on the properties of
other alternatives in the choice set.

Context-sensitive valuation (hereafter CSV) phenomena
are reported as preference reversals (Tsetsos, Usher, &
Chater, 2010) or transitivity violations (Tversky, 1969),
elicited in multiattribute choice experiments. Recently,
analogues of these CSV phenomena were obtained in a
rapid experiential decision task, labelled value psychophysics
(Tsetsos, Chater, & Usher, 2012; Tsetsos et al., 2016). Ob-
taining CSV phenomena in a psychophysical task enabled
the detailed computational modelling of the involved decision
processes, pointing to a selective integration model (hereafter
SI) that underlies several rationality violations.

According to SI, value information is accumulated across
time but, prior to accumulation, higher value samples sup-
press lower samples via a selective gating mechanism. In the
extant implementation of the model the vigour of this sup-
pression is constant. For instance, a value sample of 60 will
suppress a competing value sample of 59 in the same fashion

that it would suppress a competing value sample of 49. Here,
I focus exclusively on binary choices and show that this in-
variant mechanism fails to capture some qualitative patterns
in past data. To overcome this limitation, I propose a dy-
namical mechanism in which the inputs compete against each
other via potentially asymmetric inhibition.

In what follows, I describe the extant implementation of the
SI model and its trademark behavioural signatures. Then, I
use previously published data and outline qualitative patterns
that SI in its current form cannot explain. These patterns are
replicated in a new experiment. Third, I propose three exten-
sions of the selective integration model and fit these exten-
sions to the new data. Finally, I present results from a new
experiment that decisively disentangles these three selective
integration extensions.

Selective Integration: description and
behavioural signatures

In the SI model for binary choices, value samples in support
of the two alternatives arrive simultaneously 1 and are accu-
mulated over time, as in sequential sampling models of per-
ceptual discrimination and categorisation (Bogacz, Brown,
Moehlis, Holmes, & Cohen, 2006). Importantly, the values
that are momentarily higher are passed onto the accumula-
tion layer unaffected but the relatively lower values are trun-
cated, akin to an attentional process that selectively prioritises
the accumulation of local winners over local losers. In this
section I outline the mathematical details of the extant im-
plementation of selective integration for binary choices and
point to key behavioural phenomena predicted by the model.

Model description
The model described here applies to decisions based on two
sequences of inputs, presented simultaneously. The two se-
quences have thus the same number of samples and each pair
of samples is presented at a discrete time-step, for a fixed time
interval. Here, based on the findings in Tsetsos et al. (2016), I
assume that the incoming samples are not corrupted by noise
prior to accumulation. The two sequences are labelled SA and
SB, with SA(t) indicating the value of sequence A at the (dis-
crete) sample t. Two accumulators (YA and YB) integrate the
values of the sequences across time according to the follow-
ing difference equations:

1It is suggested that the simultaneous processing of two compet-
ing samples emulates deliberation over two multiattribute options.
This analogy works under the assumtpion that, in real-life multiat-
tribute choices and on each moment, one attribute is considered and
the corresponding attribute values serve as inputs into a preference
formation process (Tsetsos et al., 2012)
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YA(t) = (1−λ) ·YA(t−1)+ IA(t)+ξ ·ζA(t) (1)
YB(t) = (1−λ) ·YB(t−1)+ IB(t)+ξ ·ζB(t) (2)

In the above t indicates the current discrete time-step (or
sample), λ is accumulation leakage, IA,B(t) is the input to
the two accumulators on a given time-step, ξ is the standard
deviation of the noise at the accumulation level and ζA,B(t)
are standard Gaussian samples, independent from each other
and across time-steps. The accumulators are initialised at 0:
YA(t) = YB(t) = 0. At the end of the accumulation period (at
t = T , with T being the total number of samples presented in
each sequence) a decision is made in favour of the accumu-
lator with the higher tally. If both accumulators end up with
equal tallies, a decision is made randomly.

The inputs to the two accumulators (IA,B(t)) reflect the
modified sequence values after the selective integration filter
is applied. I refer to this filter as selective gating. Selective
gating is implemented as follows.

IA(t) = θ(SA(t),SB(t)) ·SA(t) (3)
IB(t) = θ(SB(t),SA(t)) ·SB(t) (4)

Function θ returns a value of 1 if the first argument is equal
or larger than the second and a value w (selective gating pa-
rameter) otherwise:

θ(x,y) =
{

1 if x >= y
w if x < y (5)

Behavioural signatures of selective integration
Pro variance (PV) effect. Consider two sequences, A and
B, with values sampled from normal distributions with means
µA,µB and standard deviations σA,σB. The pro variance ef-
fect (PV) occurs when participants choose more often se-
quence A when µA = µB and σA > σB. Equivalently, the
PV effect is present when accuracy is higher in trials where
µA > µB and σA > σB (correct answer is A) relative to the
accuracy in trials where the means are swapped (µA < µB
and σA > σB; correct answer is B). The PV effect was origi-
nally demonstrated in Tsetsos et al. (2012) and it was robustly
replicated in Tsetsos et al. (2016). SI explains the PV effect
as follows: a losing sample from the high variance distribu-
tion will more likely have low value. In the low variance dis-
tribution, a losing sample will more likely have a mediocre
value. Multiplicatively downweighting a low value results
in a smaller loss relative to downweighting a mediocre value
(for a value of 30 and for w = 0.5 the loss is 15; for a value
of 50 the respective loss is 25)(Tsetsos et al., 2012).

Frequent-winner (FW) effect. Consider two sequences A
and B, consisting of the same three low (L), medium (M) and
high (H) value samples such that H −M = M− L. The or-
der of appearance of these three samples differs in the two
sequences: A→ LMH and B→HLM. Thus, when presented

simultaneously in that order, sequence A wins locally twice
by a small margin (M vs. L and H vs. M) and loses once
by a larger margin (L vs. H). According to the SI model
(w < 1) a choice bias in favour of sequence A is expected
since M +H +L ·w > L ·w+M ·w+H or M > M ·w. This
frequent-winner effect (hereafter FW) can also appear when
accuracy is higher in trials in which all values in A are aug-
mented by a small constant c (such that A has a higher total
value and dominates B in 2 out of 3 samples), relative to the
accuracy in trials in which all values of B are augmented by
a small constant c (in that case B has a higher value but A
still dominates B in 2 out of 3 samples). Importantly, SI can
lead to intransitive preference cycles when a third sequence
C with values MHL is considered. In that case, in the re-
spective binary choices, A will be preferred over B, B will be
preferred over C and C will be preferred over A. The FW ef-
fect, and the corresponding weak stochastic transitivity viola-
tions, were robustly obtained across 4 experiments, in which
participants had to choose between bars of different length,
presented sequentially (Tsetsos et al., 2016).

Challenges for Selective Integration
Under the selective integration framework the PV and FW
effects occur due to the same mechanism, controlled by the
selective gating parameter. It is therefore expected that the
two effects will be strongly correlated across participants.
However, a re-examination of the 4 experiments reported in
Tsetsos et al. (2016) (N = 93) reveals no correlation between
the two effects (r = 0.000). On the contrary, the effects pre-
dicted by fitting the SI model show indeed significant posi-
tive correlation (r = 0.323, p = 0.002). Additionally, for the
same parametrisation, the SI model predicts a much stronger
FW than PV effect (difference in the predicted effects: M =
0.128,SE = 0.014, t(92) = 9.150, p < 0.001). However, in
the observed data this difference does not occur (difference
in the observed effects: M = 0.006,SE = 0.023, t(92) =
0.240, p = 0.811). The model predicts well the magnitude of
the FW effect but, although the predicted PV effect is signifi-
cant (M = 0.036,SE = 0.004, t(92) = 9.177, p < 0.001), it is
much smaller than the observed one (observed and predicted
difference for the PV effect: M = 0.102,SE = 0.014, t(92) =
7.274, p < 0.001).

The lack of correlation between the PV and FW effects
and the underestimation of the PV effect challenge the ex-
isting implementation of SI. It is conceivable, however, that
these patterns are specific to the design and stimuli used in
Tsetsos et al. (2016) (i.e. accumulation of lengths) and do
not reflect generalisable limitations of the model. I examine
next whether this is the case by characterising the PV and
FW effects in an experiment that involves the accumulation
of numerical values (c.f. Tsetsos et al. (2012)).

Experiment 1

Participants. 25 participants (Mage = 28.1,SDage = 6.4, 14
female) with normal or corrected-to-normal vision and no
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history of neurological or psychiatric impairment were re-
cruited from Birkbeck’s (University of London) participants
pool. All participants gave informed consent to participated
and all procedures were approved by the local ethics commit-
tee.

Task & Procedure. On each trial, participants observed
pairs of black 2-digit numerical values presented rapidly and
sequentially, to the left and right of a central fixation point and
against gray background. The viewing distance was 60 cm
and each numerical character was 0.93◦wide and 1.5◦long.
After the presentation of 9 pairs of numbers, the central fixa-
tion point turned blue and participants were asked to choose
which stream had on average the higher value. After giving a
response the blue dot turned green (red) to indicate a correct
(incorrect) response. The presentation rate of the numbers
was 800 ms and 1 second gap was left between trials. Overall
there were 4 blocks with 65 trials each. At the end of each
block participants could see their accuracy so far. At the end
of the experiment participants received £7 and a £2 bonus if
their accuracy exceeded 75%.

Design. There were 4 types of trials (65 trials per type) in
the experiment, presented in random order. In all trials there
was a correct answer, with the sum of the higher sequence dif-
fering from the sum of the lower sequence by 72 units. Two
types of trials were associated with the PV effect while the
other two with the FW effect. In the PV trials the sequences
were generated from Gaussian distributions, with the mean
of the higher sequence (µH ) sampled from µH ∼ U(45,65).
The mean of the lower sequence was µL = muh− 8. In one
type of PV trials, referred to as PV1 trials, the standard devi-
ation of the higher sequence was σH = 20 while the standard
deviation of the lower sequence was σL = 10. In PV2 trials
the standard deviations changed with σH = 10 and σL = 20.
The accuracy difference between PV1 and PV2 trials quanti-
fies the PV effect. In the FW trials, the mean values of the
higher and lower sequences were matched to those in the PV
trials. However, the temporal distribution of the sequences
was manipulated such that one alternative always dominated
the other in 6 out of 9 samples (see also Tsetsos et al. (2016)).
In FW1 trials the higher sequence dominated the lower se-
quence more often. When the higher sequence dominated, it
did so by U(23,28) units and in the less often cases when
the lower sequence dominated it did so by U(22,32) units.
In FW1 trials the higher sequence dominated the lower se-
quence in 3 out of 9 samples only. When the higher sequence
dominated it did so by U(38,48) units and when the lower
sequence dominated it did so by U(7,13) units. The accuracy
difference between FW1 and FW2 trials quantifies the FW ef-
fect. In all trials the generated sequences were constrained so
as to involve only 2-digit numbers ranging from 10 to 90.

Results. Participants performed above chance in all tri-
als (accuracy: M = 0.774,SE = 0.023). Accuracy in PV1
trials was higher than in PV2 trials (M = 0.167,SE =
0.032, t(24) = 5.170, p < 0.001,d = 1.034 ) replicating thus

the PV effect obtained elsewhere (Tsetsos et al., 2012,
2016). Accuracy in FW1 trials was higher than in FW2 tri-
als (M = 0.050,SE = 0.017, t(24) = 2.897, p = 0.008,d =
0.579). This finding replicates with different stimuli (i.e.
numbers) the effect reported in Tsetsos et al. (2016). Con-
trary to what SI predicts, there was no correlation between
the two effects (r = −0.014, p = 0.949) and the FW effect
was weaker than the PV effect.

Extensions of selective integration
The challenges that were identified for SI using the datasets
from Tsetsos et al. (2016) persist in Experiment 1: the two
critical effects were not correlated and the PV effect was
larger than the FW effect. To address these challenges I
here propose 3 extensions of the SI model. One extension
is static, with selective gating invariance as in the original
model, while the other two are dynamic and biologically in-
spired. The primary aim of these extensions is to decorrelate
the PV and FW effects. Hereafter, the baseline SI model de-
scribed earlier will be referred to as MS0.

A static extension
The first SI extension involves a transducer function that
transforms objective values into their subjective counterparts.
The model is thus identical to the one described in Eq. 1-5,
with the exception that Eq. 3-4 take the form:

IA(t) = θ(SA(t)α,SB(t)α) ·SA(t)α (6)
IB(t) = θ(SB(t)α,SA(t)α) ·SB(t)α (7)

Exponentiating the inputs allows the PV effect to occur in-
dependent of the selective gating parameter when α > 1. In
such cases the value function is convex resulting in a risk-
seeking bias. Although convex low-level representation is
undocumented in numbers (Feigenson, Dehaene, & Spelke,
2004) or lengths (Stevens, 1957)), it is possible that, at a
higher processing level, large quantities stand out. This
model will be referred to as MS1.

Dynamic extensions
Implementations MS0,1 are static in nature. Here I explore dy-
namical implementations, in which selective gating falls out
from continuous competition between the input units. The
competition is mediated by inhibition as in models of vi-
sual attention (Lee, Itti, Koch, & Braun, 1999). To illus-
trate the basic idea, the incoming values compete against each
other and the activation states of the input units feed contin-
uously, in cascade (McClelland, 1979), to the accumulation
level (variables Y in Eq. 2). Almost equivalently, and to main-
tain comparability between static and dynamic SI implemen-
tations, I assume that a given accumulator receives discrete
updates. These updates are equal to the temporal average of
the activation in the corresponding input unit, for the period
during which the stimulus was presented. The first dynamic
model, labelled MD1, involves mutual inhibition between the
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input units (Usher & McClelland, 2001). Eq. 1-2 remain in-
tact but Eq. 3-5, which implement the selective gating filter-
ing, are replaced as follows:

IA(t) =
∫ P

0 XA(x)dx
P

(8)

IB(t) =
∫ P

0 XB(x)dx
P

(9)

Variables XA,B reflect the input units. Variable P is the du-
ration (in units of time) that a given pair of samples is pre-
sented for and dx is a small time interval (set in simulations
to dx = 0.001 seconds). The input units are initiated at 0 and
their dynamics are governed by the following coupled differ-
ential equations:

dXA = (−κXA−β f (XB)+SA(t))dx (10)
dXB = (−κXB−β f (XA)+SB(t))dx (11)

In the above, κ is a leak parameter (set to 1 throughout
this paper), f is the identity function ( f (x) = x) and β is the
strength of mutual inhibition. The two input units thus re-
flect sustained input, corresponding to the presented values,
SA,B(t) at time-step t. For simplicity, the above equations are
deterministic, consistent with the finding that during value
psychophysics noise at the representation level is negligible
(Tsetsos et al., 2016). The input units are subject to a reflect-
ing boundary at 0 that prevents activation states from being
negative:

XA = max(XA,0) (12)
XB = max(XB,0) (13)

When β = 0, the two input units quickly converge to their
nominal values. When inhibition is present, the larger value
suppresses the smaller value, implementing that way a form
of selective gating. Figure 1a shows examples of the evolu-
tion of activation states in the input units.

The second dynamic extension (MD2) is identical to MD1
with the exception that, following Brown and Holmes (2001),
each unit inhibits the other via a sigmoid activation func-
tion.Thus, f , which was the identity function in MD1, now
becomes:

f (x) =
1

1+ e(−g(x−b))
(14)

In the above, g is the slope of the activation function (here
set to 1) and b the inflection point of the sigmoid. In other
words, b controls when selective gating will kick in while
the inhibition strength (β) controls the strength of selective
gating. The difference between (MD1) and (MD2) is that, in
the former, inhibition is mutual while in the latter inhibition
can be non-reciprocal (Figure 1b) and inactive from inputs
of low value.
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Figure 1: (a) Input activation trajectories for MD1 for differ-
ent value samples and for κ = 1. Leftmost panel depicts the
special case without inhibition. (b) Same as (a) but for MD2
and b = 38, g = 1 and κ = 1.

Comparison of selective integration extensions
Quantitative comparison of the models
Here I fit the models to the choice data of each partici-
pant from Experiment 1. Model predictions for each trial
are derived numerically. The negative log likelihood of
each parametrisation is calculated on a trial-by-trial basis
and summed across trials. MS0 has three free parameters
(w,ξ,λ) and MS1 has one extra free parameter (α). For the
dynamic extensions, some parameters are set to fixed values
(κ = 1,g = 1,P = 500ms,dx = 1ms), which leaves MD1 with
3 free parameters (σ,λ,β) and MD2 with a fourth parameter
(b). The models are compared based on their BIC values,
aggregated across participants, and also on a participant-by-
participant basis (i.e. the proportion of participants for which
a model has the lowest BIC score). Additionally, the corre-
lation between the PV and FW predicted effects is examined.
The results are summarised in Table 1.

Table 1: Model comparison in Experiment 1.

Model Total BIC % BIC lowest r
MS0 8,458 28% 0.736
MS1 8,554 0% 0.254
MD1 8,441 24% 0.779
MD2 8,398 48% 0.087

MD2 explains the data best and succeeds to decorrelate the
PV and FW effects (last column in Table 1). It is also the only
model that does not underestimate dramatically the PV effect
and predicts that it will have higher magnitude than the FW
effect (Figure 2). In this model, the PV effect is partly driven
by parameter b. If this parameter is set above the middle of
the value range, selective gating will be inactive for compar-
isons between mediocre and low values, further exaggerating

1233



0

0.05

0.1

0.15

0.2

0.25

0.3
Ef

fe
ct

 m
ag

ni
tu

de

Data

PV FW

Figure 2: Data and model fits in Experiment 1. Error bars
correspond to 2SE.

the choice bias for a high variance sequence. The FW effect
is independent of the b value (as long as it is not too high,
deactivating altogether selective gating). MS1 also succeeds
to decorrelate the effects but provides a poor fit. Importantly,
MD1 appears to suffer from the same limitation as MS0: se-
lective gating is controlled by one parameter (β) and the PV
and FW are strongly correlated.

Qualitative differences among models
The distinction between the four selective integration imple-
mentations is the way selective gating is implemented. In
the two static implementations (MS0,1) the weight applied on
the local loser is invariant to the difference between the win-
ning and losing value samples. On the contrary, in the dy-
namic extensions, this difference matters. In Figure 3, I show
the effective weight applied on the losing sample for several
combinations of pairs of values (c.f. Figure 1). Static im-
plementations predict, by definition, invariance of weighting
(here for w = 0.5). MD1,2 both predict that as the difference
between the two inputs increases (c.f. leftmost and middle
bars), suppression of the loser increases too. This is reminis-
cent of the distance effect encountered in numerical cognition
(Moyer & Landauer, 1967).

Adding a constant to both input samples (c.f. leftmost
and rightmost bars) results in opposing predictions in the two
dynamic models. MD1 predicts weaker suppression for in-
creased values, since the competition between the two inputs
takes longer to resolve. MD2 predicts a stronger suppression
of the loser, since the winning unit will breach first the b bar-
rier and will start inhibiting the other unit strongly, resulting
in enhanced winner-take-all dynamics (Figure 1, rightmost
panels). All models thus make distinctive qualitative predic-
tions regarding a magnitude effect, which I exploit in the next
experiment.

Experiment 2
In this experiment I examine how the PV effect changes when
all sequence values increase or decrease by the same constant
amount (Figure 4a). According to static models no change
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Figure 3: Effective weighting is the ratio between the filtered
lower sample and the corresponding unfiltered values. The
unfiltered values in static models are nominal values (without
selective gating, w = 1) and in dynamic models values, as per
Eq.8-9, in the β = 0 instantiation . The values of the different
pairs are given in the x-axis.

is expected, since selective gating is invariant to the magni-
tude of the values. MD1 predicts weaker selective gating for
high values, while MD2 predicts a stronger PV effect for high
values.

Participants. 18 participants (Mage = 26.4,SDage = 5.2, 11
female) took part. The rest of details are as per Experiment 1.

Task & Procedure. The task and procedure was identical
to Experiment 1 except that there were 12 samples in each
stream and that the presentation rate was 0.5 seconds. Overall
participants did 6 blocks with 50 trials each.

Design. The PV effect was elicited as in Experiment 1, us-
ing two trial types ( PV1,2) and examining the accuracy differ-
ence between them. Here, there were 3 conditions giving rise
to 6 trial types (50 trials for each type, randomly presented).
In the baseline condition (PVB1,2 ), the correct sequence had
always a mean of 50 and the incorrect a mean of 42. In the
negative offset condition (PV−1,2 ), for a given trial, 6 pairs
of values were created as per the baseline condition. The re-
maining 6 pairs were created by subtracting from the mean
of both Gaussians a constant (c = 15). The regular and lower
pairs were presented in random order in a given trial. Equiv-
alently, in the positive offset condition (PV+1,2 ) a constant
(c = 15) was added to the values of 6 pairs.

Results. The PV effect increased as both sequences in-
creased in absolute values as indicated by a repeated mea-
sures ANOVA (F(2,34) = 18.74, p < 0.001,n2 = 0.524).
Tukey post-hoc tests revealed that the PV effect was lower
in the negative offset condition relative to the baseline (p <
0.001) and the positive offset (p < 0.001) conditions. The
difference between the baseline and the positive offset condi-
tion was not significant (p = 0.171). As predicted, this PV
increasing pattern was solely captured by MD2. The advan-
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Figure 4: (a) Outline of experimental design. (b) PV effect
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tage of MD2 in this experiment was clear also in quantitative
comparisons (data fitted for each participant separately) using
BIC (Table 2).

Table 2: Model comparison in Experiment 2.

Model Total BIC % BIC lowest
MS0 5,976 6%
MS1 5,466 0%
MD1 5,448 6%
MD2 5,253 88%

Conclusion
Selective integration is a decision making model that has suc-
cessfully explained several rationality violations. One po-
tential criticism against this model is that its applicability is
limited to rapid decisions from experience, in which atten-
tional demands are increased. However, it has been previ-
ously shown that selective gating increases under lower at-
tentional demands (Tsetsos et al., 2016). Additionally, be-
havioural signatures that are routinely obtained in high-level
decisions are also obtained in rapid experiential decisions,
implying that the latter can offer a window to more complex
choice mechanisms.

Here I presented challenges for the extant implementation
of selective integration. These challenges were successfully
addressed by a dynamic extension of the model, in which the
inputs compete for accumulation via inhibiting each other,
as in models of selective attention and visual search. This
dynamic extension predicts that the vigour of selective in-
tegration increases both when the distance and the absolute
magnitudes of the two inputs increase. This prediction was
experimentally confirmed. Oveall, this dynamic and biolog-
ically inspired (Usher & McClelland, 2001) extension pre-
sented here, significantly improves the descriptive adequacy
of the selective integration framework and facilitates its vali-
dation at the neurophysiological level.
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Abstract 

A large literature shows that language influences cognition. 
Yet, we know very little about when and how linguistic 
influences on cognition become important in development. 
Here we test the proposal that one pathway by which 
language affects cognition is by activating category 
information which influences visual processing, and that this 
influence starts early. Across two experiments, we show that 
category information affects visual processing and that words 
can activate category information in young children. 

Keywords: language; attention; cognitive development; 
vision. 

Introduction 
A large literature has documented that linguistic information 
changes other cognitive processes. Evidence for this comes 
from laboratory tasks in which people perform differently if 
they experience the same event associated with different 
kinds of linguistic information (Feist & Gentner, 2007; 
Loftus & Palmer, 1974) or associated with linguistic 
information vs. information presented in another modality 
(Lupyan & Spivey, 2010; Lupyan & Thompson-Schill, 
2012), and from cross-linguistic research that shows 
influences of language on presumably non-linguistic 
processes (Fausey & Boroditsky, 2011; Levinson & 
Haviland, 1994). Taken together, these results show that 
language – and words, in particular – changes how adults 
perform on a wide variety of tasks, and that these cognitive 
processes are permeable to linguistic information. 

Despite this wealth of evidence, we know very little about 
when and how linguistic influences on cognition become 
important in development. Understanding the development 
of linguistic effects on cognition is essential to understand 
the development of human cognition and the nature of 
individual differences in cognitive abilities – differences 
that start early and have downstream consequences into later 
development (Morgan, et al., 2015; Stanovich, 1986). One 
possibility is that language influences cognition by 
activating information about the objects or events to which 
it refers, and this information changes how visual 
information is processed. This hypothesis is plausible for 
three reasons. First, there is evidence supporting the link 
between language and visual processing. For example, 
adults listening to spoken sentences look at possible visual 
referents even when the visual array is irrelevant to the task 
(see Huettig, Rommers & Meyer, 2011), and when adults 

hear a word (e.g. “snake”) they are likely to look at objects 
that share aspects with the referent of the word (e.g. a rope, 
similar shape, Huettig & Altmann, 2007).  Similarly, adults’ 
ability to detect a visual item is boosted by labeling the item 
(Lupyan & Spivey, 2008), and children’s ability to find a 
target in a cluttered display is boosted by hearing the spoken 
name of the target object (Vales & Smith, 2015).  

Second, word learning and object recognition are two 
related developmental achievements. Children’s ability to 
identify visually degraded objects (Pereira & Smith, 2009), 
to attend to the configuration among the parts of a novel 
object (Augustine, et al., 2011), and to recognize sparse 
versions of known object categories (Smith, 2003), all are 
positively related to the number of words a child knows. 
Object recognition continues to be coordinated with word 
comprehension into adulthood (Huettig et al., 2011).  

Third, there is evidence suggesting that words activate 
knowledge about the categories to which they refer. Words 
– object names in particular – do not refer to a specific item 
but rather to more abstract knowledge. Empirical results 
have shown that, relative to other cues (e.g. environmental 
sounds), words activate more decontextualized, categorical 
knowledge (Edmiston & Lupyan, 2015; Lupyan, 2008).  

Taken together, this evidence supports our proposal that 
one pathway by which language affects human cognition is 
by activating category information which then influences 
visual processing, and that this pathway likely starts in early 
childhood. To directly test this proposal, in Experiment 1 
we asked whether visual processing can be influenced by 
visual category information, and in Experiment 2 we 
examined whether category information activated by words 
can also influence visual processing. We tested 3-year-old 
children, who know several hundreds of object names and 
are at the start of the long developmental course in visual 
object recognition and in language development. 

Rationale for the experiments  
A large literature on categorical perception suggests that 
categorical information activated through visual means can 
change how adults process visual stimuli (Beale & Keil, 
1995; Daoutis, Pilling & Davies, 2006; Goldstone, 1995; 
Goldstone, Lippa & Shiffrin, 2001; Livingston, Andrews & 
Harnad, 1998). By hypothesis, having learned that items 
belong to the same category changes in-task perceived 
similarity, making within-category discriminations harder 
than between-category discriminations. This idea that 
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within-category comparisons are more difficult than 
between-category comparisons has been conceptually 
replicated with multiple kinds of tasks and stimuli (Jonides 
& Gleitman, 1972; MacKain, Best & Strange, 1981; Newell 
& Bülthoff, 2002), including some with infants and children 
(Eimas, Siqueland, Jusczyk & Vigorito, 1971; Jusczyk, 
Rosner, Cutting, Foard & Smith, 1977; Massaro, 1984).   

To test if categorical information influences visual 
processing in young children, the present experiments tested 
children’s ability to find a target in a cluttered array. The 
visual arrays were composed of items of the same category 
as the target (Within-Category search) or items of a different 
category than the target (Between-Category search). In 
Experiment 1, the category information was instantiated via 
visual information, and in Experiment 2, the category 
information was instantiated via linguistic information. In 
both experiments, we used two categories that share visual 
similarity but minimal conceptual similarity, and that 
children are likely to be familiar with: cakes and hats.  

Experiment 1 
If categorical information instantiated by visual information 
changes children’s ability to visually process a visual array, 
then searching for a target amidst items of the same visual 
category should be more difficult than searching for that 
target amidst items of a distinct visual category.   

Methods 
Participants. Thirty-two children (15 females, Mage=36 
months, SD=1.92) were randomly assigned to either the 
Within- or the Between-Category condition. Children had 
no developmental disorders, and English was the main or 
only language spoken by all families. Two additional 
children were recruited but not included due to experimenter 
error and being unable to follow task instructions during the 
familiarization phase. Parental consent was obtained for all 
participants, and all children received a toy for participating. 

 

Apparatus and Stimuli. Stimuli were presented on a 17” 
touchscreen monitor. E-Prime (PST, Pittsburgh, PA) was 
used to present the stimuli and to record participants’ 
responses. The stimuli were placed in 16 possible locations. 
The stimulus set is depicted in Figure 1A; four hats and four 
cakes were selected in pairs and recolored in red scale, such 
that a hat and a cake in the same pair were similar to each 
other in color appearance, overall shape, and details (e.g. in 
pair 1, both items have stripes and a smaller component at 
the top). The Within- vs. Between-Category manipulation 
was realized by changing target/distractor assignments; for 
instance, for pair 2, the Within-Category search array was 
composed of hat 2 as the target and hats 1, 3, and 4 as 
distractors; for the Between-Category search, cake 2 served 
as the target amidst the same (i.e. 1, 3, and 4) hat distractors. 

To ensure that young children could recognize the items 
used, 12 children who did not participate in the main 
experiments (7 females, Mage=36 months, SD=2.67) were 
tested in a 4-alternative forced choice recognition task; on 

each trial, children were asked to select the picture that 
matched the heard word (e.g. “Where is the cake?”). Each 
child was asked to recognize all the items in the stimulus set 
twice, with target category (hat vs. cake) blocked, order of 
block presentation counterbalanced across children, and 
items presented in random order. On average, children 
selected the correct item on 81% of the trials (SD=0.22).  
No differences in accuracy were found across the two 
category of items (t(11)=1.11, p=0.29), or time taken to 
respond to cakes vs. hats items (t(11)=1.92, p=0.08). 

 

hat cake ambiguous

pair	1

pair	2

pair	3

pair	4

A. B.

Within-Category	Search: Between-Category	Search:

 
 

Figure 1, A: Full stimulus set.  The hat and cake stimuli 
were used as targets and distractors in Experiment 1. The 
ambiguous items were used as targets in Experiment 2. 

B: Experiment 1, Trial structure. 
 
Because the visual search task requires participants to 

discriminate the items in the search array from each other, 8 
additional children (2 females, Mage=36 months, SD=1.04) 
were tested in an immediate match-to-sample task that 
probed their ability to discriminate pairs of stimuli. On each 
trial, children were presented with a sample object at the top 
center of the screen and then asked to indicate which of two 
options at the bottom matched the sample; if children could 
discriminate the two stimulus pictures, then they should be 
able to correctly select the option that matched the sample. 
All possible combinations of items that would be presented 
as targets and distractors in the visual search were tested. 
Each child was asked to discriminate one hat and one cake 
from the remaining items; this was done so that, for each 
child, a foil never became a target and vice-versa. The target 
category (hat vs. cake) was blocked, order of block 
presentation was counterbalanced across children, and items 
were presented in random order. Each child was tested on a 
given contrast (e.g. hat 1 vs. hat 2) twice. On average, 
children selected the correct option on 89% of the trials 
(SD=0.19). No differences were found in children’s ability 
to discriminate Between- vs. Within-category items 
(t(7)=1.07, p=0.32) or time taken to respond to cakes vs. 
hats items (t(7)=0.41, p=0.69).   
 

Design and Procedure. Each trial started with a “fixation” 
slide that encouraged children to rest their hands on the 
table. The experimenter made sure the child was looking at 
the screen before displaying a preview of the target. After 
1s, the search array was automatically displayed and the 
child was asked to find the target picture and touch it; the 
trial ended once a manual response was detected (see Figure 
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1B). Children had up to 15 secs to make a response, and 
were encouraged to find the picture as fast as possible. 
Across test trials, the target was displayed equally often on 
the left and right side of the screen. Prior to the test phase, 
children were familiarized with using the touch screen and 
with the idea of searching for the object that matched the 
visual preview as fast as possible. Each child was assigned 
to one target, and searched for that target for 24 trials. None 
of the objects were labeled. The experimenter gave general 
encouragement (e.g. “thanks for your help finding the 
pictures”) but no feedback was provided. Children received 
stickers to maintain their interest in the task.   

Results and Discussion 
Initial inspection of the data suggested that participants 
were, on average, both faster and more accurate in the 
Between-Category condition than in the Within-Category 
condition. Traditional analysis of variance would require 
analyzing response time and accuracy separately, which 
implicitly assumes that these two variables are independent 
(e.g. Davidson & Martin, 2013). Instead, we analyzed RT 
and accuracy together by comparing the relationship 
between RT and accuracy across the two conditions. Figure 
2A depicts this relation and shows that the two conditions 
differ in how time taken to respond (plotted as quantiles) 
influences the likelihood of correctly identifying the target; 
accuracy in the Between-Category condition was overall 
higher and less influenced by response time. A generalized 
linear mixed effects analysis was performed using the 
geepack package (Højsgaard, Halekoh & Yan, 2006) in the 
R environment. The model was fit with a logit link function, 
a binomial variance function, a scale parameter fixed at 1, 
and an independent correlation structure. The variables 
Condition (Between-Category vs. Within-Category) and RT 
(as a continuous variable) were included as fixed effects 
with the interaction term, and participant was included as a 
random effect; RT was centered to decrease the differences 
in the scales of the model parameters. Odds Ratios were 
calculated by exponentiating the model estimates. 

The model showed that Condition (Odds Ratio, OR=0.2, 
p<0.001) and the interaction between condition and RT 
(OR=0.43, p<0.05) were significant predictors of accuracy. 
RT was marginally predictive of accuracy, OR=1.8, p=0.08. 
This suggests that processing the visual information in the 
within-category condition is challenging, and when children 
are asked to find a target amidst distractors of the same 
visual category they either cannot maintain the target active 
for more than a few seconds, or they disengage with the task 
if they fail to find the target within a few seconds.  Notice 
that visual category information affected visual processing 
even though children could discriminate pairwise 
presentations of within- and between-category items equally 
well in the calibration study, even though children searched 
for the same visual target across all trials and thus should be 
able to remember the particular visual target, and even 
though the visual properties of the items were equated as 
best as possible across the two conditions.   

 

A. Experiment 1 B. Experiment 2

 
 

Figure 2, Mean proportion of correct responses per 
Reaction Time quantiles. Dashed line: Between-Category, 

Solid line: Within-Category. 
 

These results show that category information presented 
through visual means influences visual processing in young 
children; this is, to the best of our knowledge, the first 
demonstration that visual categories directly influence 
visual processing in young children. This result adds to past 
research showing that infants, children, and adults (e.g. 
Eimas, Siqueland, Jusczyk & Vigorito, 1971; Goldstone, 
Lippa & Shiffrin, 2001; Massaro, 1984) are sensitive to 
category information, showing that category information 
matters for how children visually process a scene. When 
children encoded, for example, a hat target and saw the 
other hats in the within-category search array, that same-
category information seems to have disrupted their ability to 
find the target hat. In sum, Experiment 1 shows that 
categorical information perceived in a visual scene can 
directly influence visual processing, as predicted by our 
proposal. In Experiment 2 we test the hypothesis that words, 
through activating categorical information, should also 
change the perceived target-distractor similarity, and 
therefore change visual processing.   

Experiment 2 
The goal of Experiment 2 was to test the hypothesis that 
hearing the spoken name of an object activates information 
about that object’s category, which influences visual 
processing. This hypothesis predicts that, for example, if an 
ambiguous target is labeled as a hat and is placed amidst 
other hat distractors, it should be more difficult to find than 
when that target is labeled as a cake and is placed amidst the 
same hat distractors. In other words, when presented with 
the same visual information in the search array, children 
should be better able to find a target if it was labeled as a 
category other than the distractors. 

Methods 
Participants. Thirty-two children (18 females, Mage=36 
months, SD=2.12) were randomly assigned to either the 
Within-Category or the Between-Category condition.  These 
children did not participate in Experiment 1. Four additional 
children were recruited but not included due to refusal to 
participate (N=3) and failure to follow task instructions. 
Stimuli and Procedure. Four ambiguous items were 
created by blending together the two items (cake and hat) of 
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each pair (see Figure 7, rightmost column); the ambiguous 
items included aspects of both the cake and the hat of the 
pair (e.g. the frosting and the ribbon), and were edited to 
look like a plausible visual object (e.g. smooth surface, even 
coloring, even edges). The Within- vs. Between-Category 
manipulation was realized by changing how the target 
object was labeled during the visual preview. For instance, 
in the Within-Category condition, children would preview 
the ambiguous item #2 and hear it labeled as hat, and then 
be asked to find it amidst hats 1, 3, and 4. In the Between-
Category condition, children would preview the same 
ambiguous item #2, but hear it labeled as cake and then be 
asked to find it amidst hats 1, 3, and 4.  Notice that the 
visual information presented in the preview and in the 
search array is exactly the same in both conditions – the 
difference between the two conditions is whether the 
ambiguous target is labeled a member of the same vs. a 
different category as the distractors while it is previewed 
prior to search. All other aspects of the procedure for the 
visual search were the same as Experiment 1. 

To ensure that the ambiguous stimulus pictures were 
equally likely to be recognized as hats and cakes, 8 
additional children (6 females, Mage= 36 months, SD=2.62) 
were tested in a 4-alternative forced choice recognition task 
similar to the one used in Experiment 1. Each child was 
tested with all the ambiguous items, two of them as “cake” 
and the other two as “hat”; across children, each ambiguous 
item was equally likely to be tested as “hat” and as “cake”. 
The target category (hat vs. cake) was blocked for each 
child, the order of block presentation was counterbalanced 
across children, and the presentation order of the items was 
randomized within each block. On average, children 
selected the ambiguous items as “cake” on 81% (SD=0.40) 
of the trials, and as “hat” on 84% (SD=0.35) of the trials 
(paired t(7)=0.16, p=0.88) – suggesting that the ambiguous 
items were equally likely to be recognized as hats and cakes. 
Children took a similar amount of time to respond to cakes 
vs. hats trials (t(7)=0.45, p=0.67). In addition, to ensure that 
children were not selecting the ambiguous items merely 
because they looked more unfamiliar or novel than any of 
the foils, children were presented with 4 “catch” trials (2 
after each block) where they were asked to find a balloon; 
on these “catch” trials, one of the foils was a novel-shaped 
object and the other two foils were known objects. Children 
correctly identified the balloon on 91% (SD=0.18) of the 
trials, suggesting that they were not relying on novelty to 
respond in this task.  

Results and Discussion 
Similar to Experiment 1, initial data inspection suggested 
that participants were both faster and more accurate in the 
Between-Category condition than in the Within-Category 
condition. Figure 2B shows that the relationship between 
RT and accuracy is the same across conditions, in that 
participants’ accuracy does not depend on time taken to 
respond, but participants in the Between-Category condition 
were more accurate than participants in the Within-Category 

condition. A generalized linear mixed effects model (fit in 
the same way as in Experiment 1) showed that Condition 
was the only significant predictor of accuracy, OR= 0.12, 
p<0.001. Time taken to respond [OR=1.1, p=0.8] and the 
interaction between Condition and RT [OR=0.8, p=0.4] 
were not predictive of accuracy. This suggests that hearing 
the name of an object activates visual information about that 
objects’ category, which affects visual processing. When 
presented with the same visual information, children’s 
ability to find a visual target in a cluttered array depended 
on how that visual target had been labeled while it was 
being previewed. This is a robust demonstration of the 
effect of language on visual processing – encoding an 
ambiguous object as a hat or as a cake changed children’s 
ability to find that object amidst the same set of distractors. 

General Discussion 
The experiments presented here support our proposal that 
language affects human cognition by activating category 
information, which in turn influences visual processing. In 
Experiment 1, children’s ability to find a visual target was 
hindered by the presence of same-category distractors; this 
influence of categorical information on visual processing 
was instantiated through visual means. Experiment 2 
extended those results by showing that words can also 
activate categorical information which influences visual 
processing. Together, these results show that visual 
processing is influenced by categorical information, and that 
heard words can instantiate categorical information.  

How does categorical information – through visual or 
linguistic means – influence visual processing? Past 
research on categorical perception suggests that categorical 
information changes the perceived similarity among the 
items, with items that belong to the same category being 
perceived as more similar to one another than items that 
belong to different categories (Goldstone & Hendrickson, 
2010; see also Sloutsky & Fisher, 2004 for a related 
developmental model). This perceived similarity could 
influence visual processing in multiple ways. One 
possibility is that perceiving an item as a member of the 
same category as the distractors – and consequently as more 
similar to the distractors – lowers the threshold for 
accepting an item in the array as the target (e.g. Elman, 
1979). Another possibility is that perceiving all the items as 
items of the same category influences children’s ability to 
bind all the features of the target object together (Treisman 
& Schmidt, 1982); there is evidence that object feature 
binding is still developing in late childhood (Lorsbach & 
Reimer, 2005) and that children are prone to making 
conjunction errors (Dessalegn & Landau, 2008). Through 
increasing the perceived similarity between the target and 
the distractors, category information might lead children to 
incorrectly bind features of the target and the distractors, 
increasing the likelihood of making an incorrect selection. 
Interestingly, language has been suggested to play a role in 
the binding of visual features in young children (Dessalegn 
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& Landau, 2008; 2013), perhaps through the activation of 
categorical information.   

These are empirically testable possibilities that merit 
future research.  But notwithstanding the specific process by 
which children’s ability to find a target was impaired by the 
presence of distractor items of the same category as the 
target, the point is that it was impaired – both when the 
categorical information was presented through visual means 
(Experiment 1) and through language (Experiment 2). The 
current results support the idea that words influence visual 
processing by highlighting information about the objects’ 
category. This idea has important consequences to 
conceptualize the pathway by which words change visual 
object processing in young children, proposing that words 
activate categorical information that may change how 
objects are perceived and processed. Future research should 
examine what specific aspects of the objects’ category are 
being activated when a word is heard. The ability to 
recognize the components of an object, and how those 
components relate to each other, is one critical aspect of 
visual object recognition (Tarr & Bülthoff, 1998), and the 
developmental literature on visual object recognition 
suggests a long and protracted development on the ability to 
use configural information (Augustine et al., 2011: Jüttner et 
al., 2013). Given the strong links between word learning and 
visual object recognition in early childhood (Augustine, et 
al., 2011; Pereira & Smith, 2009; Smith, 2003), it is possible 
that language comes to change what aspects of the objects 
children attend to. 

These results also highlight the importance of 
understanding the nature of visual processing in young 
children. Contemporary accounts of visual processing in 
adults propose a reciprocal interaction between the short-
term encoding of visual information and long-term visual 
representations (e.g. Brady, Konkle, & Alvarez, 2011).  
Research across levels of analysis suggest that both 
processes might be permeable to top-down influences (e.g. 
Hemmer & Steyvers, 2009; Olsson & Poom, 2005), but we 
have very little understanding of how these develop. That is, 
what information do children use to visually process objects 
in the moment, what do those visual representations include, 
and what factors influence the long-term encoding and 
fidelity of those visual representations? All these processes 
are likely to mature and improve with age (e.g. Burnett 
Heyes et al., 2012; Simmering & Perone, 2012) and might 
be weak in children (Riggs, McTaggart, Simpson & 
Freeman, 2006; Zhang, Shen, Tang, Zhao & Gao, 2013). 
Importantly, visual processing and visual working memory 
have been shown to be immature in children with language 
impairments (Collisson et al., 2015), further underscoring 
the importance of understanding the development of these 
processes. 

In sum, we documented that words influence visual 
processing, likely by highlighting information about the 
objects’ category. This fits with our proposal that one 
pathway by which language influences human cognition is 
by activating category information, which influences visual 

processing, and that this pathway likely starts in early 
childhood. 
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Abstract 

Semantic knowledge influences various higher-order 
cognitive processes; therefore, it is important to understand 
how it changes with development. The Match-to-Sample task 
is perhaps the most common paradigm for studying changes 
in semantic knowledge over development, yet this paradigm 
has a number of limitations. Here we provide initial evidence 
validating a Visual Search paradigm as a measure of semantic 
knowledge in preschoolers, and discuss the potential of this 
paradigm to address the limitations posed by the Match-to-
Sample task to study semantic knowledge development. 

Keywords: semantic knowledge; visual attention; visual 
search; match-to-sample; language; children. 

Introduction 
Knowledge about the world supports efficient behavior. For 
example, knowing that cats are often playful and have sharp 
claws makes one careful when playing with a cat, and 
knowing that light bulbs generate light makes one likely to 
check the light bulb if a lamp stops working. This 
knowledge about objects, facts, and concepts (Clark, 1973) 
is thought to be represented in a semantic network that links 
entities by multiple meaningful relations (McClelland & 
Rogers, 2003). Structured semantic knowledge influences 
multiple cognitive processes, including memory, reasoning, 
word learning, and visual attention (Bower et al., 1969; Chi 
et al., 1981; Moores et al., 2003; Roediger & McDermott, 
1995; Xu & Tenenbaum, 2007), and individual differences 
in semantic knowledge have been putatively related to the 
ability to make inferences about novel instances (Coley, et 
al., 2004; Gobbo & Chi, 1986; Fisher, 2015). 

Developmental changes in semantic knowledge 
As semantic knowledge plays an important role in 

supporting efficient behavior, there is a large literature 
investigating what aspects of semantic knowledge change 
over development to give rise to mature, adult-like behavior. 
One of the most widely used tasks to study the development 
of semantic knowledge is the Match-to-Sample task; in this 
task, participants are shown a target object (e.g. chicken) 
and asked to match it with one of two options – often a 
thematic match (an item that is likely to co-occur with the 
target item, such as pig) and a taxonomic match (an item 
that belongs to the same stable category of items that share 
intrinsic properties, such as eagle). Research using this task 
has documented marked age-related changes starting in the 

preschool years in preferences for matching items on the 
basis of different types of relations (Smiley & Brown, 1979; 
Walsh, et al., 1993). However, the Match-to-Sample task 
presents two main limitations to study developmental 
changes in semantic knowledge. First, this task cannot be 
used with young children who are unable to follow verbal 
instructions and indicate their choices. Prior research 
examining semantic knowledge development in infants and 
toddlers has used other tasks (e.g. Arias-Trejo & Plunkett, 
2009; Chow et al., 2017), which may result in confounding 
developmental changes and task demands. Second, because 
the Match-to-Sample task requires participants to make 
explicit judgments about the items, performance in this task 
might stem not only from knowledge of semantic 
relatedness but also from other deliberative processes. 
Indeed, past research with children has shown that 
performance in the Match-to-Sample task is modulated by 
the wording of instructions (e.g. Waxman & Namy, 1997), 
suggesting that interpreting the pragmatics of the task plays 
a role in which objects children select. In sum, this task is 
not ideally suited to study changes in semantic knowledge. 

Priming procedures have been used to bypass the 
limitations of the Match-to-Sample task in adults; however, 
traditional priming paradigms are difficult to implement 
with young children. Although several studies have used 
semantic priming paradigms in infants using looking 
behavior measures (vs. manual response times) (e.g., Arias-
Trejo & Plunkett, 2009), paradigms developed for infants 
are often not suitable for older children who are not content 
to inspect visual displays in the absence of an overt task. 
Below we suggest that a measure of visual attention has the 
potential to address the limitations outlined above and be 
used to study semantic knowledge over the lifespan. 

The Visual Search paradigm 
Research with adults has used visual attention measures to 
study knowledge associated with concepts (e.g. Huettig et 
al., 2011). In these studies, participants are cued about an 
upcoming target (e.g. by hearing a word or a sentence) and 
asked to locate the target in a cluttered display. Participants’ 
response times to detect the target (Moores et al., 2003) or 
their gaze while scanning the array (Huettig & Altmann, 
2005; Mirman & Magnuson, 2009) are taken as a proxy for 
the co-activation of concepts related to the target.   
A Visual Search paradigm has two main advantages for 
studying the development of semantic knowledge. First, 
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visual search tasks have been successfully implemented 
across the lifespan (Gerhardstein, & Rovee-Collier, 2002; 
Vales & Smith, 2015), in children with developmental 
disorders (Kaldy et al., 2011), and with varying degrees of 
language knowledge (Vales & Smith, 2017). Thus, a Visual 
Search paradigm is well suited to studying developmental 
changes in semantic knowledge, reducing differences in task 
demands from using different tasks with different 
populations. Second, the Visual Search task allows semantic 
knowledge to be measured by manipulating the distractors 
present in the array; because participants do not make 
explicit judgements about these related distractors, 
deliberative processes are greatly reduced (see Chun & 
Jiang, 1998 for evidence that people are often unaware of 
experimental manipulations in the visual array). In sum, the 
Visual Search task is a good candidate to address the 
limitations of the Match-to-Sample task outlined above.  

The current study 
In this study, we seek initial evidence that a Visual Search 
paradigm can provide estimates of semantic relatedness that 
are broadly consistent with the estimates from tasks used in 
prior research. If this is the case, then items judged as more 
strongly related in a Match-to-Sample task should also more 
strongly influence performance in a Visual Search task. To 
this end, we used the Match-to-Sample task to select pairs 
of target-distractor items. Each potential distractor was 
tested against a foil that we identified as more distantly 
related to the target. Measuring the rate at which children 
chose each distractor versus the foil allowed us to calibrate 
two distractors for each target, one strongly- and one 
weakly-related. While the Match-to-Sample procedure 
suffers from low resolution to detect graded responses, as it 
allows only binary judgements on each trial, it should still 
provide a coarse measure of semantic relatedness. We then 
tested the effect of target-distractor strength in a Visual 
Search task by asking children to indicate if a target was 
present in an array of distractors. Across trials, we 
manipulated the presence of the related distractors; 
performance in the critical trials in which a related distractor 
was present was compared with performance in baseline 
trials in which the related distractors were replaced by items 
unrelated to the target object. The degree to which children 
performed more poorly in the presence versus absence of a 
related distractor was used as the measure of the strength of 
the perceived relation. As in previous studies with adults 
and infants (e.g. Chow et al., 2017; Moores et al., 2003), we 
focused our analyses on target-absent trials, because 
participants’ attention to the target on target-present trials 
leaves little room for related distractors to influence 
performance. Target-present trials were included to ensure 
that children were completing the target identification task. 

Prior work using the Match-to-Sample task suggests that 
children under the age of four are unlikely to consistently 
select an item related to the target if the foil is a strong 
competitor (e.g. a visually similar item; Godwin & Fisher, 
2015). As such, we recruited 4 and 5-year-old children, as 

this is the youngest age group that we can confidently 
expect to complete the Match-to-Sample task and thus 
provide reliable relatedness judgements. 

Methods 
We first describe the Match-to-Sample task used to select 
pairs of items, and report the items selected. Next, we 
describe the Visual Search paradigm used to test the 
hypothesis that items judged as more similar in the Match-
to-Sample task should also more strongly influence 
performance in the Visual Search task. 

Stimuli Selection: Match-to-sample task 
To select pairs of items with varying strength, we conducted 
a calibration study with 16 children (Mage=4.9 years, 
range=4.0-5.9, 6 females); children were recruited from 
local preschools and from a university-affiliated laboratory 
school in Pittsburgh, PA and tested in a quiet location.  

We selected 10 target objects that were likely to be 
recognized by young children from a prior study 
investigating the role of semantic relations in a Visual 
Search task (Moores et al., 2003). For each target, we 
selected four related items to be tested in the Match-to-
Sample task with the goal of selecting two related items 
(one strong relation and one weaker relation); the relation 
strength between each target and each related item was 
tested in the presence of the same foil, judged by the authors 
to be a plausible competitor. For example, to test the 
strength between cat and the items bear, bird, dog, and 
mouse, participants were presented with the following 
triads: cat-bear-butterfly, cat-bird-butterfly, cat-dog-
butterfly, cat-mouse-butterfly. Two testing sets were created 
by randomly selecting two of the four triads for each target. 
Each participant completed one of the sets, for a total of 20 
test trials; the order of the trials was randomly determined 
for each subject, with the constraint that the same target was 
not presented on consecutive trials. The target was 
displayed at the top center of a computer screen, and 
followed by the presentation of the two options (related item 
and foil); these were presented on the left and right bottom 
of the screen, with side counterbalanced across trials.  

To ensure that children understood the task and were not 
arbitrarily selecting items, five “catch” trials were randomly 
placed amid the test trials. These catch triads were intended 
to introduce no conflict and included items not used in the 
test trials (e.g. cherries-apple-stapler). On average, children 
selected the related object on 95% (SD=0.12) of the catch 
trials, suggesting that they understood the task (one 
additional child failed to complete at least 3 out of the 5 
catch trials correctly and was not included in the sample). 
Additionally, because the Match-to-Sample task presented 
the same foil for each target (and thus children saw the same 
target-X-foil triad more than once), we checked that children 
were not learning to reject the foil for each target by 
presenting a block of 10 “control” trials after the 
experimental trials. In these control triads, the foil used on 
the test trials was presented against an item judged to be 
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unrelated to the target (e.g. cat-butterfly-watch). If children 
were learning to reject the foil over the course of the 
experimental trials, they should select the non-foil item (the 
watch in this example); on the other hand, if children were 
responding to each triad by considering how the items are 
related, they should select the item that is more strongly 
related to the target within each triad, even if previously 
they have not selected that item (the butterfly in the example 
above). On average, children selected the related item (the 
butterfly in this example) on 81% (SD=0.24) of the control 
trials; this suggests that children were considering how the 
items were related within each trial. 
 

For each target, we selected two related items that varied 
in the degree of semantic relatedness, a strongly-related 
item (selected by most children) and a weakly-related item 
(selected at a lower rate, at or above chance). Two targets 
items (banana and cow) failed to produce relations that 
satisfied these conditions and were not used in the Visual 
Search task. Table 1 presents the eight sets of items 
consisting of a target, strongly-related item, and weakly-
related item to be used in the Visual Search task and the 
proportion of trials in which each related item was selected 
in the Match-to-Sample task. On average, strongly-related 
items were selected on 94% (SD=0.09) of the trials and 
weakly-related items were selected on 61% (SD=0.10) of 
the trials in the Match-to-Sample task, t(14)=6.97, p<0.001. 
These sets of items were used to create 16 target-related 
match pairs for the Visual Search task. 

 
Table 1: Proportion of trials each related item was 

selected in the Match-to-Sample task. 
 

 

Visual search task 
Participants. Twenty-four children (Mage=4.8 years, 
range=4.0-5.8, 12 females) were recruited from a university-
affiliated laboratory school in Pittsburgh, PA and tested in a 
quiet location; these children had not participated in the 
calibration study. One additional child was recruited but not 
included in the final sample due to computer malfunction. 
Children had no known developmental or visual 
impairments, and English was their only or main language.   
 

Apparatus and Stimuli. Stimuli were presented on a 15.6" 
touchscreen laptop and responses (accuracy and latency) 
were recorded using E-Prime (PST, Pittsburgh, PA). To 
prevent color information from guiding participants’ search, 

each image was recolored in sepia; recolored images were 
rendered in a 200 x 200 pixel area on a white background. 
The audio files used to present the spoken names of the 
targets were recorded by a female native speaker of English. 
 

Design and Procedure. There were six trial types, resulting 
from all combinations of target presence (present/absent) 
and related distractor presence (strong present, weak 
present, related absent), with equal occurrence of each trial 
type. On each trial, children saw four objects, one on each 
quadrant of the screen and all equally distant from the center 
of the screen. Depending on the trial, the four objects were 
combinations of target, related distractor, and random 
distractor objects. The order of the test trials was randomly 
determined for each child, provided that the same target did 
not appear on consecutive trials. Across trials, the target and 
related distractors appeared equally often on the left and 
right side of the screen. A unique token of each concept was 
used on each trial; for example, each trial probing cat used a 
different token (see Figure 1 for examples). 

 
Figure 1: Tokens used to instantiate the concept “cat”. 

 
Figure 2 shows the temporal order of events on each 

trial. A “fixation” slide encouraged the child to rest their 
hands on the table before the trial started (Fig. 2a); the 
experimenter ensured that the child had their hands down 
and was looking at the screen before starting a trial. The 
spoken name of the target (Fig. 2b) was then presented and 
followed by the search array (Fig. 2c); upon viewing the 
search array, children had to indicate if the target was 
present or absent by touching one of two buttons. 

(a)

(b)

(c)

<target name>

 
Figure 2: Visual Search, trial structure. The target (carrots) 

is absent and the strong distractor (rabbit) is present. 
 
Children sat in front of the laptop and were told that the 

goal of the game was to look for pictures on the screen. 
They were first shown which buttons to touch (“Touch this 
button if you see the picture on the screen and this button if 
you do not see the picture on the screen”); the location of 
the two buttons was counterbalanced across participants. 
Children were asked to repeat the instructions (“Can you 
show me which button you touch if you do not see the 
picture on the screen?”) and all children correctly repeated 
the instructions. Next, children completed 4 “warm-up” 
trials in which they were familiarized with putting their 

Target Strongly-related Weakly-related 
bike skateboard 0.86 train 0.71 
carrots rabbit 0.78 horse 0.58 
cat dog 1.00 mouse 0.67 
chair table 0.89 bed 0.57 
chicken turkey 1.00 eagle 0.55 
drum guitar 1.00 piano 0.57 
foot shoe 1.00 glove 0.77 
lamp flashlight 1.00 candle 0.44 
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hands down during the “fixation” slide, listening to the 
audio cue, and touching the appropriate button to indicate 
the target’s presence or absence; feedback was provided and 
children were reminded of the instructions if necessary. 
Children then completed 48 test trials. The experimenter 
gave general encouragement throughout the task (e.g. “You 
are doing great”) but did not provide explicit feedback. A 
short break was introduced every 16 trials during which 
children could stamp a progress chart.  

Results 
To confirm that children were performing the task, we start 
by analyzing performance on target present trials. Next, we 
focus on target absent trials to test the hypothesis that items 
judged as more similar to the target in the Match-to-Sample 
task also more strongly influence performance in the Visual 
Search task. We used linear mixed models to analyze the 
effect of target-distractor relatedness on the time taken to 
indicate the target’s absence (RT). Differently from a 
traditional analysis of variance, which requires data to be 
aggregated and incorrect trials to be excluded, a mixed 
model can include all data and take accuracy into account 
by modeling the data at the trial level. We included both 
subject and target item as random factors, that is, varying 
around a group mean; modeling both subject and target item 
as random effects is particularly important in experimental 
designs in which the two factors are fully crossed (Baayen, 
Davidson, & Bates, 2008; Jude, Westfall, & Kenny, 2012). 

Target present trials 
Children correctly indicated the target’s presence on 83% 
(SD=0.37) of these trials, suggesting they were trying to 
locate the target. No main effect of distractor strength on 
accuracy was found, F(2,46)=1.78, p=0.18. 

Target absent trials 
Children correctly indicated the target’s absence on 91% 
(SD=0.28) of these trials. This supports the conclusion from 
target present trials that children were searching for the 
target. However, there was a main effect of distractor 
strength on accuracy, F(2,46)=10.49, p<0.001, as 
participants were less accurate when the strongly-related 
distractor was present in the array (Macc=0.84, SD=0.36) 
than when the weakly-related distractor was present in the 
array (Macc=0.95, SD=0.22) or when all items in the array 
were unrelated to the target (Macc=0.95, SD=0.21). 
Analyzing RT for correct trials only would exclude different 
amounts of data from each condition; instead, we include 
accuracy as a factor in the analyses below. The same pattern 
of results is found when we consider only correct trials.  

Figure 3 depicts mean RT across the three types of trials. 
Relative to baseline trials (M=3.6s), children took over a 
second longer to judge the target’s absence in the presence 
of a strongly-related distractor (M=4.7s), but only slightly 
longer in the presence of a weakly-related distractor 
(M=3.8s). To assess how the strength of the distractors 
influenced the ability to correctly indicate the target’s 

absence, we implemented a linear mixed model using the 
lme4 package (Bates et al., 2015) in the R environment. We 
specified accuracy (correct, incorrect) and strength of the 
distractors (unrelated, weak, strong) as fixed effects, and 
subject and target item as random effects. The RT outcome 
variable was log-transformed. Wald F tests and respective 
p-values were calculated using Kenward-Roger’s 
approximation. The model showed only a significant main 
effect of distractor strength, F(2,16.19)=3.64, p<0.05. The 
main effect of accuracy [F(1,13.45)=2.40, p=0.14] and the 
interaction between accuracy and distractor strength 
[F(2,415.42)=0.14, p=0.87] were not significant predictors 
of RT. Planned contrasts (adjusted using a Bonferroni 
correction) showed that participants were significantly 
slower when a strongly-related distractor was present in the 
array compared to baseline trials in which no related 
distractor was present, F(1, 16.70)=7.64, p=0.003. The 
difference between weakly-related distractor trials and 
baseline trials, F(1,16.76)=0.60, p=1.00, and the difference 
between strongly-related and weakly-related distractors, 
F(1,17.03)=2.77, p=0.34, were not significant. 
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Figure 3: Mean RT per trial type in the Visual Search task. 

Error bars display standard errors of the mean. 

Discussion 
The goal of this experiment was to examine if estimates of 
semantic relatedness as measured by a Match-to-Sample 
task converged with performance in a Visual Search task. 
Specifically, for each target item we selected two related 
items that varied in how strongly they were judged to be 
related to the target (one strongly-related and one weakly-
related distractor) in a Match-to-Sample task, and tested the 
effect of each type of distractor on children’s ability to 
search for that target. Our finding that strongly- but not 
weakly-related items influenced children’s ability to 
indicate the absence of a target provides initial evidence that 
Visual Search task performance is influenced by semantic 
relation strength in children. As such, the Visual Search task 
is a promising alternative to the Match-to-Sample task, 
addressing the limitations of this task as outlined above. 

Using Visual Search to study the development of 
semantic knowledge 
Semantic knowledge exerts a pervasive influence on 
cognitive processes. This knowledge about objects, facts, 
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and concepts deeply influences how people search for 
information in the environment (Moores et. al, 2003), 
retrieve information from memory (Bower et al., 1969), 
make predictions about objects (Coley et al., 2004), or make 
sense of events (McNamara & Kintsch, 1996). Despite the 
important role that semantic knowledge plays in organizing 
efficient behavior, we still have a limited understanding of 
how this knowledge is acquired and how its structure 
changes with experience. Currently, one obstacle to study 
the development of semantic knowledge and how it changes 
with experience is the lack of measures that can be used 
across the lifespan; as outlined in the Introduction, the most 
commonly used measure, the Match-to-Sample task, is not 
well-suited to do so. Visual search paradigms may be a 
viable alternative as they have been extensively used with 
adults to study many facets of knowledge (Huettig et al., 
2005), and some recent work with toddlers shows similar 
evidence in younger populations (Chow et al., 2017).  

This paradigm also shows promise in capturing individual 
variation among children. Figure 4 shows participants RT 
(subtracted from baseline trials RT) to indicate the target’s 
absence from the visual array when the strongly-related and 
the weakly-related distractors were present. Each bar depicts 
the relative response time of a single participant, indicating 
how much that participant was affected by the presence of 
the related distractor. The range of variability suggests that 
this task may be a promising tool to study how individual 
differences in semantic knowledge contribute to individual 
differences in processes theorized to rely on semantic 
knowledge (e.g. Fisher, 2015). 

Together, the present data suggest that a Visual Search 
paradigm both complements the Match-to-Sample paradigm 
and potentially addresses many of its limitations. Below we 
discuss some of the unresolved questions and important 
future directions of this work. 
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Figure 4: RT difference scores, calculated as: related-absent 

trials (i.e. baseline) minus related present trials. 
 

Unresolved questions and future steps  
The present study revealed no evidence that the presence of 
a weakly-related distractor influenced search performance. 
One possibility is that our RT measure was insufficient to 
detect subtler effects of semantic relatedness. More fine-
grained moment-to-moment measures taken while children 

are looking for the target may detect these effects. Indeed, 
prior research that found graded effects of knowledge 
associated with a target concept made use of higher 
resolution measures, such as eye-tracking or mouse-tracking 
(e.g. Mirman & Magnuson, 2009). Another possibility is 
that children’s performance in the Match-to-Sample task is 
idiosyncratic, and the findings of our calibration study do 
not generalize across children. To address this possibility, 
we retested in the Match-to-Sample task all children who 
participated in the Visual Search task; the estimates were 
comparable across the two samples, lending some 
confidence to the estimates from the stimuli selection study.  

As this was the first attempt at using the Visual Search 
task to measure semantic knowledge in young children, we 
were agnostic as to which relations to probe and thus 
imposed no constraint when selecting the target-distractor 
pairs. In the current set of items, some items are linked by 
multiple relations (e.g. chair and table are both furniture 
items and often co-occur in the environment, and thus share 
two types of relations), while other items share only one 
type of relation (e.g. carrots and rabbit). Previous research 
using a spatial arrangement task showed that young children 
seem to consider items that share multiple relations as being 
more strongly related than items that share only one relation 
(Unger et al., 2016), and thus it is possible that items that 
are related in more than one way more strongly influence 
performance in a Visual Search. Future work can more 
closely test this prediction by systematically selecting 
stimuli that vary in the types of relations depicted. 

We also did not control for visual similarity between 
targets and distractors. It is well known that visual similarity 
influences visual search (e.g. Vales & Smith, 2015); when 
selecting the visual tokens, we selected items that were 
easily discriminable both within- and between-categories, 
but we did not empirically measure visual similarity. 
Although it is not trivial to obtain a pure measure of 
similarity (see Medin et al., 1993; Chow et al., 2017), some 
recent work has tried to address these issues (e.g. De Groot 
et al., 2016), and as such it will be important to try to more 
systematically measure visual similarity in future studies. 

Conclusions  
The present study demonstrates the Visual Search paradigm 
as a feasible approach to investigate the development of 
semantic knowledge. In contrast with paradigms commonly 
used in prior research, this paradigm is age-appropriate 
across a wide developmental range, and greatly reduces the 
influence of deliberative processes on performance. Thus, 
the Visual Search task has the potential to shed new light on 
the development of semantic knowledge and its role in a 
variety of cognitive processes.  
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Abstract 

In the triangle of coins problem coins are arranged to 

create a triangle pointing down and the solution involves 

moving a few coins to change its orientation. The task 

ecology can be designed such that participants can work 

on it in a low interactivity environment, maintaining a 

mental representation of simulated moves, or in a high 

interactivity environment, thinking with and through a 

physical model of the problem. These task ecologies 

involve working memory to a different degree: Problem 

solving draws more on working memory the lower the 

degree of physical interaction. Participants first engaged 

in a writing task that required vigilance to inhibit 

common word choices, a degree of self regulation 

designed to induce a so-called ego depletion; 

participants then worked on the ToC problem in either a 

low or high interactivity environment. Solution rates 

were determined by level of interactivity; the preceding 

depletion experience did not impact performance. 

 

Keywords: Interactivity, ego depletion, insight problem 

solving, working memory 

 

Introduction 

The relative contribution of working memory in analytic 

and insight problem solving has been explored using a 

broad range of methodologies. Prototypical analytic 

problems such as those requiring arithmetic operations 

would involve the maintenance and updating of interim 

results, the strategic allocation of attentional resources, 

and retrieval of long term memory knowledge, processes 

that draw heavily on working memory resources; high 

working memory capacity (WMC) is a reliable predictor 

of analytic problem solving performance (Wiley & 

Jarosz, 2012). In turn, insight problems are designed to 

resist initial analytic efforts or the direct transfer of long 

term memory knowledge. They are presented in a manner 

that trigger prepotent responses, but these lead to an 

impasse. Solving these problems then requires letting go 

of the incorrect interpretation. Less rather than more focus 

and attentional control might facilitate abandoning the 

incorrect interpretation, and hence a lower or transiently 

lowered WMC may better predict insight problem solving 

success (DeCaro & Beilock, 2010).  

 

However, there is also evidence that working memory 

capacity is involved in solving insight problems (Gilhooly 

& Fioratou, 2009). For example, verbal working memory 

scores predict solution rates for compound remote 

associates (Chein & Weisberg, 2014) and spatial working 

memory scores correlate significantly with solution rates 

for the nine-dot problem (Chein, Weisberg, Streeter, & 

Kwok, 2010). Weisberg’s (2015) integrated framework 

stresses the central role of analytic processes in solving 

insight problems, processes that draw on WMC.  

A temporary reduction in deliberate executive function 

skills using a self-control exercise prior to engaging in an 

insight problem solving task might offer an interesting 

means to throw light on these somewhat conflicting 

findings. Hoffman, Schmeichel and Baddeley (2012) 

proposed that key features of executive functioning 

subserve self-regulation. So-called ego depletion tasks 

involve participants actively inhibiting a response set; 

these inhibitory efforts have negative aftereffects in 

subsequent tasks that require executive functions. For 

example, in Schmeichel (2007) participants’ backward 

digit span was significantly lower after they engaged in a 

writing task that prohibited the use of the letters a and n 

than after an unconstrained writing task. Such findings 

support a fuel metaphor: executive control processes rely 

on a limited resource that fluctuates as a function of 

effort, rest and, more controversially, glucose level. The 

transient depletion of executive functions may impact 

analytic and insight problem solving differently. For 

example, performance on a mental arithmetic problem 

that requires temporary storage, retrieval of long term 

arithmetic knowledge and the strategic allocation of 

attentional resources, might be influenced by prior 

exposure to an ego-depletion manipulation. The 

prediction for insight problem solving however depends 

on the purported involvement of WMC. If a looser focus 

and ‘leaky’ attention (Wiley & Jarosz, 2012) are 

important, then ego depletion might actually enhance 

insight problem solving. In contrast, if, as Weisberg 

(2015) contends, analytic processes are implicated in 

insight problem solving, then an ego-depletion 

manipulation should have a negative aftereffect on 

performance.  
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Interactivity  

The debate concerning the mental processes and 

capacities involved in problem solving reflects a 

commitment to methodological individualism (Vallée-

Tourangeau & Vallée-Tourangeau, 2017): that the locus 

of cognition is person, or more specifically, skull bound. 

Problem solving outside the laboratory naturally involves 

interacting with the world, recruiting artefacts, building 

models of proto solutions, assembling non-mental 

resources that scaffold creativity and problem solving. 

The world is there to see and act upon, its dynamic 

configuration triggers different actions and guides 

attention. As such, then, the working memory burden of 

keeping a detailed representation of the problem is not the 

same when participants can interact with a physical model 

of the problem. In some sense, interactivity might result 

in a functional increase in WMC (Vallée-Tourangeau, 

Sirota, Vallée-Tourangeau, 2016), and profiling 

participants in terms of their WMC might not be as 

informative as profiling the working memory resources of 

the agent-environment system created through 

interactivity.  

 

Figure 1: The triangle points down: Which three coins 

should be moved to make the triangle point up? Solving 

the triangle of coins problem involves moving the coins 

that mark the three vertices.  

 

Real-world interactivity can be scaled down under 

laboratory conditions if the problem solving environment, 

or the cognitive ecosystem (Hutchins, 2010) affords 

interacting with a physical model of the problem (Vallée-

Tourangeau, Sirota, Vallée-Tourangeau, & Makri, 2015). 

For example, Fleck and Weisberg (2013) used the triangle 

of coins problem (ToC see Fig. 1), among other insight 

problems, to explore problem solving strategies (based on 

verbal protocols). For this problem, they supplied 

participants actual coins to manipulate to determine the 

solution. They quote, at length (see p. 452) the protocol of 

one participant who works on the problem by initially 

moving coins in a trial and error fashion. The changes in 

the problem configuration guide and constrain the 

problem solving trajectory. Fleck and Weisberg also 

describe what they term ‘data-driven’ restructuring, or 

how a productive interpretation of the problem is 

triggered by manipulating the physical model; for 

example, an exploratory rotation of the entire model 

helped a participant notice that only the three vertices 

should be moved and the hexagonal core should be 

untouched (see pp. 452-453). Thus a productive strategy 

to solve the problem was triggered by changes in the 

physical model of the problem, not through the mental 

manipulation of a problem representation.  

The Present Experiment 

The present experiment explored the impact of an ego 

depletion task and level of interactivity on insight 

problem solving using the ToC problem. The experiment 

employed a 2x2 between subjects design. The first 

independent variable was the nature of a six-minute 

writing task before participants tackled the ToC problem: 

Half the participants had to closely monitor and inhibit 

certain responses to ensure that words containing the 

letters a or n were not used, while the other half wrote 

freely. The second independent variable was the level of 

interactivity. After the writing task, half of the 

participants worked on the ToC in a low interactivity 

condition, that is by looking at a static visual display of 

the problem and dictating possible moves to an 

experimenter. They did so by keeping their hands palm 

down in front of them and could not point at the coins or 

simulate movements with their fingers. The other half of 

the participants worked on the problem in a high 

interactivity condition: Participants were presented with a 

physical model of the problem and they could touch, 

point to or move the tokens in determining which three 

could be moved to change the triangle’s orientation. The 

low interactivity condition draws more heavily on WMC 

since participants must mentally simulate move, keeping 

track of the simulated movements of certain tokens, while 

evaluating the movement of which other token(s) would 

mentally change the orientation of the triangle. None of 

this mental activity could be supported with 

complementary actions (Kirsh, 1995). To the extent that 

the constrained writing exercise prior to working on the 

ToC problem depletes executive functions and solving the 

ToC problem requires analytic processes that draw on 

WMC, then performance should be better after the free 

writing session than after the constrained writing session. 

On the other hand, if solving the ToC does not proceed 

from focused deliberate analytic efforts, then participants 

might actually perform better with prior exposure to the 

ego depletion task, that is a transient reduction in 

executive functions might be beneficial. Participants 

working on the ToC in the high interactivity condition are 

not confronted with the same kind of WMC taxing 

environment, and as such we predict a much higher rate 

of problem solving success in the high than in the low 

interactivity condition. In the high interactivity condition, 
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participants think with and through the physical model of 

the problem. Transient executive functions depletion 

might have little or no impact on problem solving 

performance.  

Method 

Participants 

Eighty undergraduate and postgraduate students (60 

females) received course credits for their participation 

(Mage = 24.2, SD = 7.3). 

Procedure 

Participants were tested individually in a quiet cubicle. The 

experimental session was composed of three parts. Once 

an information sheet was read and understood and a 

consent form signed, participants first engaged for six 

minutes in a writing exercise modelled after the one 

reported in Schmeichel (2007). They were instructed “to 

write a short story describing a trip you have taken 

recently”. Half of the participants experienced the 

depletion version of the task, where they were further 

instructed that the letters ‘A’ or ‘N’ could not be used: 

“you must pay close attention to the words you are using 

and aim to describe the trip with words that don’t use these 

two letters”. The other participants wrote freely without 

having to inhibit word choice responses.  

During the second part of the experiment, all the 

participants were shown a sheet of paper (size A4) on 

which 17 digits were randomly printed. They were 

instructed to add these numbers as quickly and accurately 

as possible; however, participants had to keep their hands 

palm down on the table top and hence the mental 

arithmetic could not be supplemented or supported by 

complementary actions, such as touching the printed 

numbers of pointing at them.  

In the third and final part of the experiment participants 

worked on the triangle of coins problem for five minutes; 

half of the participants were allocated to the low 

interactivity condition, half to the high interactivity 

condition. The problem was illustrated on a 9x9 grid 

printed on a sheet of paper: Columns were labelled with 

letters (A-I) and rows with numbers (1-9). Ten tokens were 

arrayed on that grid, each token labelled with an individual 

letter (see Fig. 2); the solution to the problem involved 

moving tokens R, W, A to cells E4, B7, and H7 to reorient 

the triangle such that it pointed up rather than down. 

Participants in the low interactivity condition worked on 

the problem with hands palm down on the table top, and 

voiced their proposed moves to the experimenter in groups 

of three moves: They would name the token and then the 

cell coordinate where it should be moved. The 

experimenter noted the moves on a record sheet hidden 

from the participants’ view, and provided feedback. It’s 

important to note that the problem configuration always 

remained the same, that is participants had to mentally 

project moves on the grid and verbalise these moves, while 

looking at the instruction sheet show in Figure 2; the 

experimenter never modified the triangle as such, and only 

provided feedback. In addition, feedback provided was all 

or none, that is participants were not informed if the 

projected position of one or two tokens was right on a 

given trial. In the high interactivity condition, participants 

worked with a laminated 9x9 grid (measuring 21cm x 

29cm) with rows and columns labelled as in the low 

interactivity condition. Ten tokens (2.2cm in diameter) 

were arrayed as in the low interactivity condition, creating 

a triangle pointing down; each token had a letter printed on 

it, just as it did in the low interactivity condition. The 

token and grid coordinates helped the experimenter record 

the participants’ moves, but the participants were not 

required to verbalise moves by identifying tokens and cell 

destinations. Rather participants were invited “to touch the 

tokens” and “trace their movement with your finger”. If 

after moving the three tokens, the pattern created did not 

result in the correct answer, the experimenter put the 

tokens back to their original place, and participants could 

try to move a new set of three tokens 

Figure 2: The problem instructions in the low interactivity 

condition.  
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The experimental design was thus a 2 (Depletion: 

constrained writing or free writing) x 2 (Interactivity: low, 

high) between subjects design. Participants were allocated 

randomly to each of the four experimental conditions. 

Results 

The mean number of words written in the constrained-ego 

depletion version of the story writing task (Mdepletion = 28.7, 

SD = 12.26) was significantly lower than in the 

unconstrained free version of the task (Mno depletion = 122.7, 

SD = 25.48), t(56) = -20.8, p < .001 (the degrees of 

freedom were adjusted to account for heterogeneity of 

variance). Thus participants complied with the task 

instructions and struggled to write a story when they had to 

suppress words containing the letters a or n. However, 

performance on the mental arithmetic task, immediately 

following the story writing task, was unaffected by the 

prior exposure to the ego depletion manipulation in terms 

of the magnitude of absolute calculation errors (Mdepletion = 

3.45, SD = 5.16, Mno depletion = 5.23, SD = 8.18) t(66) = -

1.16, p = .250, or latency (s) to solution (Mdepletion = 71.1, 

SD = 42.64, Mno depletion = 79.4, SD = 57.81), t(72) = -0.729, 

p = .469 (degrees of freedom were adjusted to account for 

heterogeneity of variance).  

Performance on the triangle of coin problem is illustrated 

in Figure 3. With low interactivity, 4 participants (or 20%) 

solved the problem following the constrained writing task, 

while 5 (or 25%) did so after the unconstrained writing 

task. With high interactivity, 14 participants (or 70%) and 

10 (or 50%) solved the problem following the constrained 

and unconstrained writing task, respectively. Summing 

across depletion levels, more participants (60%) solved the 

ToC problem in the high interactivity condition, than in the 

low interactivity condition (23%), 
2
 (1, N = 80) = 11.61, p 

= .001; solution rates between the two high interactivity 

conditions did not differ significantly, 
2
 (1, N = 40) = 

1.67, p = .196. 

Figure 3: Percentage of correct solutions for the triangle of 

coins problem in the low and high interactivity task 

environment after engaging in a self-regulation task 

(depletion) or not (no depletion).  

 

The solution rate data were analysed using a binary 

logistic regression. The outcome variable was the 

probability of solving the triangle of coin problem. Three 

models were tested: the first included only depletion as a 

predictor variable, the second included both depletion and 

interactivity as predictors, and the third model included 

depletion, interactivity, and their interaction as predictors. 

The first model was not significant, 
2
 (1) = 0.465, p = 

.495; adding interactivity produced a significant model, 
2
 

(2) = 12.026, p = .001, Nagelkerke R
2
 = .195; however, 

adding an interaction term did not increase the significance 

of the model,
2
 (1) = 1.280, p = .258. The only significant 

predictor of success using the Wald criterion was level of 

interactivity (p = .001) with an odds ratio of 5.231 (see 

Table 1). 

 

Table 1: Summary of Binary Logistic Regression with the 

Model Involving Depletion and Interactivity as Predictors. 

Discussion 

The triangle of coins problem was difficult to solve within 

the time allocated for participants in the low interactivity 

conditions; the success rate was very similar between those 

who had undergone the ego-depletion manipulation and 

those who had engaged in the free writing exercise. In turn, 

the success rates were substantially higher for participants 

in the high interactivity conditions. The interaction 

between ego-depletion and level of interactivity was not a 

significant predictor of the solution rate, however. 

The level of interactivity afforded by the thinking 

environment substantially influenced problem solving 

performance, and corroborates recent findings with other 

types of insight problems (e.g., matchstick algebra, the 17 

animals problem, see Weller, Villejoubert, & Vallée-

Tourangeau, 2011; Vallée-Tourangeau, Steffensen, Vallée-

Tourangeau, & Sirota 2016). The overall solution rate in 

the high interactivity condition in this experiment is similar 

to the one reported in Fleck and Weisberg (2013) who 

presented the ToC problem in a high interactivity 

environment, even if their work did not explicitly explore 

and contrast levels of interactivity in insight problem 

solving. A physical and modifiable model of the problem 

reduces working memory demands because changes in the 

problem configuration cue new actions and guide attention. 

Moves need not be premeditated, and need not be mentally 

simulated; participants observe the results of their action, 

and changes in the world, that is changes in the physical 

model of the problem, convey new information. 

Participants can more readily see how to solve the 

problem, they need not mentally represent possible 

changes, imagine their outcome, and while maintaining 
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this simulated modification to the problem in working 

memory, project and simulate the next move.  

As for the ego-depletion manipulation, whether the 

constrained writing task achieved its purpose of 

temporarily reducing executive functions, remains 

uncertain. On the one hand, word production was much 

lower in the constrained writing condition than with the 

free writing task. This suggests that participants complied 

with the task instructions and struggled to write. Assuming 

that the sustained inhibition of common word choices led 

to a depletion in executive functions, the predicted impact 

of such transient depletions on insight problem solving 

depends on the prominence attributed to deliberate 

analytical processes. What is less controversial is how such 

an ego-depletion manipulation should have influenced 

performance on the mental arithmetic task immediately 

following the writing exercise, but it did not; if anything 

absolute calculation errors were marginally lower 

following ego depletion. As for the ToC problem, 

performance in the low interactivity conditions was very 

poor, and such a floor effect might have masked any 

influence of ego depletion. Thus, on the one hand, the 

potential window on the importance of WMC in insight 

problem solving that a purported depletion in executive 

functions might offer was undermined by the very low 

rates of success in both low interactivity conditions. On the 

other hand, the mental arithmetic data suggest that the 

depletion manipulation did not work. In the final analysis, 

the controversy surrounding the very existence of the ego-

depletion phenomenon (Hagger, Chatzisarantis, Alberts, 

Anggono, Batailler, et al., 2016) suggests that such a 

manipulation does not offer an interesting tool to gauge the 

importance of WMC and executive functions in problem 

solving. There is also the possibility that the mental effort 

invested in the mental arithmetic task depleted executive 

functions more so than the constrained writing exercise, 

and the low solution rate in the low interactivity conditions 

reflects this depletion. Thus, possible avenues for future 

research involve eliminating the intervening mental 

arithmetic task (and devising an alternative ego depletion 

manipulation check) or employing a more exacting 

depletion task such as a computation span test of the kind 

used to gauge WMC.  

Fleck and Weisberg (2013) reported that some 

participants solved the ToC problem through an analytic 

and incremental strategy while for others the solution 

appeared to reflect a non-incremental insight. On the basis 

of concurrent verbal protocols or post-participation 

interviews future research could thus better determine the 

strategies and processes employed by a given participant, 

and make more specific predictions as to the degree of 

WMC involvement in solving that particular problem (I 

thank Robert Weisberg for this point). 

In light of the controversy surrounding the concept of 

depletion and its potential negative aftereffects on 

performance, perhaps an altogether more productive 

research programme could look at burdening working 

memory with a secondary task (e.g., Lavric, Forstmeier, & 

Rippon, 2000) to determine how it would affect insight 

problem solving as a function of the level of interactivity 

afforded by the task environment. Recent work suggests 

that the impact of articulatory suppression on mental 

arithmetic was much greater in a low than in a high 

interactivity environment (Vallée-Tourangeau et al., 2016). 

Such a paradigm might be usefully employed with insight 

problem solving, not only as means to adjudicate the 

different proposals concerning the involvement of working 

memory but also to assess how working memory capacity 

is functionally enhanced in a high interactivity 

environment.  

Concluding Remarks 

Individual differences in cognitive capacities and thinking 

dispositions are often measured to throw light on thinking 

processes (e.g., Stanovich & West, 1998). Correlational 

and latent variable analyses are conducted to determine the 

underlying factors that best account for thinking 

performance. This strategy is employed in problem solving 

research as reviewed earlier (see also Chuderski, 2014). 

The tests designed to measure cognitive capacities—such 

as working memory—and the problem solving tasks 

typically involve little or no interactivity with physical 

problems. Thus, the commitment to methodological 

individualism is implicitly reinforced rather than 

challenged. The substantial improvement in problem 

solving performance in the high interactivity environment 

observed in this and other experiments (e.g., Vallée-

Tourangeau, Abadie, & Vallée-Tourangeau, 2015; Vallée-

Tourangeau et al., 2016) suggests that researchers should 

be mindful of the importance of interacting with a physical 

model when solving a problem. 
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Abstract
How do people plan ahead in sequential decision-making
tasks? In this article, we compare computational models of hu-
man behavior in a challenging variant of tic-tac-toe, to inves-
tigate the cognitive processes underlying sequential planning.
We validate the most successful model by predicting choices
during games, two-alternative forced choices and board evalu-
ations. We then use this model to study individual skill differ-
ences, the effects of time pressure and the nature of expertise.
Our findings suggest that people perform less tree search un-
der time pressure, and that players search more as they improve
during learning.
Keywords: Sequential decision-making, Behavioral model-
ing, Expertise

Introduction
Imagine you are deciding if you should run for President of
the United States in 2020. To make that choice, you have
to consider a sequence of future decisions. Will you run as
a Republican, Democrat or Independent? If Democrat, will
you run as a moderate or progressive candidate? What posi-
tions will you take on abortion or gun control? How will you
distinguish yourself during the primaries? What line of attack
will you choose in the Presidential Debates? You face a se-
quence of decisions, which together determine your electoral
success. In short, you have to explore a decision tree.

Although the computations underlying human decision-
making are extensively studied, the process by which peo-
ple explore decision trees is less understood. Most work fo-
cuses on the neural implementation of learning and decision-
making in small decision trees (Solway & Botvinick, 2015;
Simon & Daw, 2011). However, with more choices and more
available options, the decision tree grows exponentially, and
people need to prune the tree (Huys et al., 2012).

There exists a large literature exploring human decision-
making in chess, starting with de Groot’s seminal arti-
cle (A. D. de Groot, 1946). One central question in this lit-
erature is whether the superior performance of experts relies
primarily on enhanced pattern recognition (Chase & Simon,
1973), increased tree search (Holding, 1985), or both. The
relation between tree search and expertise is especially con-
troversial, with both positive (Campitelli & Gobet, 2004) and
negative (A. D. de Groot, 1946) results.

In this article, we investigate sequential decision-making in
a two-player board game, which is much simpler than chess,
but much more complex than traditional decision-making
tasks. We develop a computational model that predicts peo-
ple’s choices on individual trials, and fit this model to data
from individual participants. We then ask whether the compu-
tations performed by our model mimic the process by which
people arrive at their decisions. Finally, we use our model to
investigate the nature of expertise in our game.

Experiments
Task. To investigate the computations underlying sequen-
tial decision-making, we collected data from people playing
a variant of tic-tac-toe, in which players need to make 4-in-a-
row on a 4-by-9 board (figure 1A). Despite these simple rules,
the game is surprisingly challenging and fun to play. Because
the game is deterministic without hidden information, it is
theoretically solvable. Using alpha-beta pruning and threat
tree search (Allis et al., 1994), we were able to derive a weak
solution: the first player can force a win by opening on the
central square. However, with perfect defense, the second
player can delay the win for 17 moves.

Figure 1: Task. A. Two players take turns placing black or
white pieces on a 4-by-9 board, and the first to achieve 4-in-
a-row (horizontal, diagonal or vertical), wins the game. B.
In the 2AFC task, participants see a board and two candidate
moves, and indicate their preferences. C. In the evaluation
task, participants see a board position and report their esti-
mated winning chances on a 7-point scale.

Participants. We conducted four experiments: human-vs-
human (N = 40 participants), generalization (N = 40), time
pressure (N = 30), and learning (N = 30). We recruited par-
ticipants through the NYU psychology research participant
system, flyers, a sign-up link on our lab webpage or personal
communication. We did not collect demographic data. We
compensated participants 12 per hour, but did not incentivize
task performance.
Procedure. In the human-vs-human experiment, we divided
participants into pairs. Participants in each pair played games
against each other without time constraints for 50 minutes,
switching colors every game. In the generalization experi-
ment, participants performed three tasks: playing the game
against a computer opponent for 30 minutes, 82 trials of a
two-alternative forced-choice (2AFC) between moves in a
given board position (figure 1B), and 82 board evaluation tri-
als, in which they rated their winning chances in given board
positions on a 7-point scale (figure 1C). The time pressure
experiment was identical to the human-vs-computer compo-
nent of the generalization experiment, except that for each
game, we added a time limit randomly selected between 5,
10 or 20 seconds per move. If participants exceeded the time
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limit, they lost the game. The learning experiment consisted
of 5 sessions, no more than 3 days apart. In sessions 1, 3 &
5, participants played against computers for 30 minutes, then
completed 60 trials each of the 2AFC and evaluation tasks.
In session 2 & 4, they played against computers for the entire
50-minute session.

In all human-vs-computer games, the computer opponents
implemented an early version of our computational model for
people’s decision-making process, with parameters adapted
from fits on human-vs-human games. We created 30 AI
agents, grouped by playing strength into 6 groups of 5 agents
each, and matched participants with AI opponents through a
one-up, one-down staircase procedure.

In the 2AFC and evaluation task, each participant com-
pleted the same trials in shuffled order. We selected board
positions and move options that maximize an approximation
to mutual information between model parameters and move
choice, in order to present participants with interesting and
informative choices.

Model
Value function. The core component of our model is an eval-
uation function V (s) which assigns values to board states s.
We use a weighted linear sum of 5 features: center, connected
2-in-a-row, unconnected 2-in-a-row, 3-in-a-row and 4-in-a-
row. The center feature assigns a value to each square, and
sums up the values of all squares occupied by the player’s
pieces. This value of each square is inversely proportional to
its Euclidean distance from the board center. The other fea-
tures count how often particular patterns occur on the board
(horizontally, vertically, or diagonally):
Connected 2-in-a-row: two adjacent pieces with enough
empty squares around them to complete 4-in-a-row.
Unconnected 2-in-a-row: two non-adjacent pieces which lie
on a line of four contiguous squares, with the remaining two
squares empty.
3-in-a-row: three pieces which lie on a line of four contigu-
ous squares, with the remaining square empty. This pattern
represents an immediate winning threat.
4-in-a-row: four pieces in a row. This pattern appears only in
board states where a player has already won the game.

We associate weights wi to these features, and write

V (s) = cself

4

∑
i=0

wi fi(s,self)− copp

4

∑
i=0

wi fi(s,opponent)

where cself =C and copp = 1 whenever the player is to move
in state s, and cself = 1 and copp = C when it is the oppo-
nent’s move. The scaling constant C captures value differ-
ences between “active” and “passive” features. For exam-
ple, a three-in-a-row feature signals an immediate win on the
player’s own move, but not the opponent’s.

Tree search. The evaluation function guides the construc-
tion of a decision tree with an iterative best-first search algo-
rithm. Each iteration, the algorithm chooses a board position
to explore further, evaluates the positions resulting from each

legal move, and prunes all moves with value below that of
the best move minus a threshold. After each iteration, the al-
gorithm stops with a probability γ, resulting in a geometric
distribution over the total number of iterations.

Noise. To account for variability in people’s choices, we
add three sources of noise. Before constructing the decision
tree, we randomly drop features (at specific locations and ori-
entations), which are omitted during the calculation of V (s)
anywhere in the tree. During tree search, we add Gaussian
noise to V (s) in each node. Finally, we include a lapse rate λ.

The components of our computational model are inspired
by behavioral studies of human decision-making. Tree
search, as a mechanism whereby people mentally simulate
the consequences of available actions, is similar to “level-
K reasoning” (Arad & Rubinstein, 2012) in behavioral eco-
nomics. In other decision-making tasks, people have been
shown to prune away options leading to immediate losses but
long-term gains (Huys et al., 2012). Feature dropping reflects
shift in endogenous attention (to spatial locations, orientation
or feature types), corresponding to participants overlooking
relevant features on the board. Finally, feature-based evalua-
tion functions, value noise and lapse rates are all common in
reinforcement learning.

There also exists neural evidence consistent with our
model. In rats, dynamic search and exploration of possible
paths at junctions in a T-maze have been linked to preplay
sequences in hippocampal place cells (Johnson & Redish,
2007). In humans, tree search is associated with neural activ-
ity in the ventral striatum (Simon & Daw, 2011) and ventro-
medial prefrontal cortex (Lee, Shimojo, & ODoherty, 2014).

Methods
Estimating task performance. To quantify task perfor-
mance in human-vs-computer games, we use the Elo rating
system (Elo, 1978), which estimates playing strength from
game results, independent of the moves played. We append
the results of games from all 4 experiments to a computer-
vs-computer tournament, and estimate ratings jointly for all
humans and computers with a Bayesian optimization al-
gorithm (Hunter, 2004). To calculate performance in the
2AFC task, we calculate the agreement between a partici-
pant’s choices and those of an optimal agent with random
tie-breaking. In the evaluation task, we define performance
as the correlation between a participant’s choices and the op-
timal rankings.

Estimating model parameters The model has 10 param-
eters: the 5 feature weights, the active-passive scaling con-
stant C, the pruning threshold, stopping probability γ, fea-
ture drop rate δ and the lapse rate λ. We infer these param-
eters for individual participants and individual learning ses-
sions or time limit conditions with maximum-likelihood es-
timation. We estimate the log probability of a participant’s
move in a given board position with inverse binomial sam-
pling (M. H. de Groot, 1959), and optimize the log-likelihood
function with multilevel coordinate search (Huyer & Neu-
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maier, 1999). We account for potential overfitting by re-
porting 5-fold cross-validated log-likelihoods, with the same
testing-training splits for all models.

Model comparison
To test how well our model predict participants’ choices,
we compare its log-likelihood on human-vs-human games to
that of 25 alternative models (figure 2). We test four cate-
gories of alternative models: lesions, generated by remov-
ing model components; extensions, generated by adding new
model components; modifications, generated by replacing a
model component with a similar implementation; and con-
trols, which are structurally different from the main model.

Figure 2: Cross-validated log-likelihood/move for our main
model and 25 alternatives on the human-vs-human data. The
bars show mean and s.e.m. across participants (N = 40). The
main model fits better than lesions, most controls and some
modifications, and approximately equally good as extensions
or some other modifications.

Lesions. We create lesion models by forcing either one of
the feature weights to zero, or removing the feature dropping,
pruning, value noise, active-passive scaling or the entire deci-
sion tree. The no-tree model evaluates the positions after each
possible move, and chooses the one with maximum value. It
contains feature dropping and value noise but no pruning.

Extensions. We consider extending the model with a fea-
ture that recognizes to a three-piece pattern arranged in a tri-
angle, or multiplying the weights for diagonally and vertically
oriented features by scaling constants cdiag or cvert, respec-
tively. Alternatively, we extend the main model by allowing
feature drop rates to differ between features of different types
(2-in-a-row, 3-in-a-row, etc) or orientations. Finally, we test
a model in which all weights for the opponent’s features are
scaled by a factor copp, which thereby controls the balance
between attack and defense.

Modifications. We modify the model by fixing the num-
ber of iterations of the search algorithm to a constant instead
of the geometric distribution prescribed by the main model.
Alternatively, we amend the search process to explore each
branch of the tree up to fixed depth, or the pruning rule to
keep only the K best moves (according to the evaluation func-
tion), where the branching factor K is again fixed. For a more
drastic modification, Monte Carlo Tree Search (MCTS) esti-
mates state values not by calling the evaluation function V (s),
but by aggregating outcomes of simulated games between no-
tree agents. It also extends the best-first search algorithm
by adding a term that favors exploration (investigating unex-
plored moves) over exploitation (further investigating already
explored moves). We consider fixing the feature weights to
the optimal solution, i.e. those weights that maximize the
correlation between V (s) and the game-theoretic value of the
position s. Finally, we modify the attention mechanism from
dropping random features from the evaluation function to
dropping random branches from the decision tree.

Controls. We consider MCTS with completely random
playouts, or a mixture model between optimal and random
play. The optimal agent enumerates all candidate moves
that preserve the game-theoretic value of the position, and
chooses randomly between them. Another control model, la-
beled soft-max, assigns a value to each square on the board
(enforced to obey reflection/rotation symmetry), and chooses
a move with a softmax decision rule, constrained to unoccu-
pied squares.

All lesioned models fit worse than the full model. The most
impactful lesions are specific features (3-in-a-row, connected
2-in-a-row and center) and sources of variability (value noise
and feature dropping). Lesioning the pruning mechanism or
the entire tree search algorithm has a less dramatic effect,
which can be partially explained by parameter trade-offs. Fi-
nally, some lesions (active-passive scaling, unconnected 2-
in-a-row and 4-in-a-row) cause only small reductions in log-
likelihood. Most modifications also worsen the main model,
but the Monte Carlo Tree Search model is equally good and
the “fixed iterations” model slightly outperforms it. The
model extensions also slightly increase the main model’s per-
formance. Finally, all control models fit much worse than the
main model.

Unfortunately, the model comparison does not reveal a
unique best-fitting model, meaning that we did not collect
enough data to determine precise details of people’s thought
process. For example, we cannot distinguish between tree
search algorithms (best-first search or MCTS) or determine
specifics of the best-first search algorithm (pruning and num-
ber of iterations). Alternatively, different participants may
use different strategies. However, the model comparison does
suggest that any model that can predict human choices needs
to contain a feature-based evaluation function, and mecha-
nisms for attentional oversights and tree search.
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Generalization to 2AFC and Evaluation
Next, we show that the model can generalize by estimating
parameters from subjects’ choices in games against comput-
ers and predicting their choices in the 2AFC or evaluation
tasks with minimal additional assumptions. To select an op-
tion on a 2AFC trial, the only change we make is to initial-
ize the tree search algorithm with a three-node decision tree
with the current board position as the initial node and the two
available candidate moves as children. On an evaluation trial,
we execute the tree search algorithm as usual, then measure
the value of the root node. We then convert this value to a
seven-point scale by transforming v→ 3+ 4tanh(v/20) and
rounding to the nearest integer.

Figure 3: A. Histogram of the percentage of correctly pre-
dicted 2AFC choices by our model across N = 40 partici-
pants. We fit parameters for each participant on their choices
in games against computers. The dashed line indicates the
accuracy of a random prediction. B. Same for the evalua-
tion task, where we quantify goodness-of-fit as the correla-
tion across trials between rankings predicted by the model
and reported by a participant.

The average accuracy of the model prediction on 2AFC
data is 58.6± 1.0% (figure 3A), the average correlation be-
tween predicted and observed evaluations is ρ = 0.38±0.04
(figure 3B). The prediction is better than chance for 36/40
participants in the 2AFC task, and 37/40 for evaluation.

Even though our model predicts participants’ choices in
these additional tasks well on average, the goodness-of-fit
is highly variable across participants. This variability in
goodness-of-fit is correlated across subjects between the three
tasks (2AFC-evaluation: ρ = 0.54, p < 0.001; 2AFC-games:
ρ = 0.35, p < 0.05; evaluation-games: ρ = 0.24, p = 0.12).
Moreover, on the 2AFC and evaluation task, goodness-of-
fit correlates with participants’ objective task performance
(2AFC: ρ = 0.56, p < 0.001; evaluation: ρ = 0.96, p <
0.001). This suggests that the variability in goodness-of-fit
can at least partially be explained by differences in intrinsic
variability across participants.

How experimental manipulations affect model
parameters

To further support the model, we investigate whether its pa-
rameters respond in predictable ways to experimental manip-

ulations. As our first manipulation, we introduce time con-
straints of 5, 10 or 20 seconds per move. Second, we conduct
an experiment in which participants play the game for 5 ses-
sions.

Given a set of parameters for an individual participant in a
time limit condition or learning session, we simulate moves
made by the model in a database of pre-determined posi-
tions and measure 3 statistics of its process: the percentage
of dropped features, the value quality (correlation between
V (s) and the game-theoretic value V ∗(s)) and the mean tree
size (number of nodes in its decision tree). Note that tree size
incorporates both the width and depth of the decision tree.

Based on the literature on expertise and time pressure in
chess, we expected that time constraints would reduce tree
size but not affect value function quality. In the learning ex-
periment, we expected the value function quality to increase
across sessions and the tree size to remain constant or in-
crease only slightly. Since chess algorithms often do not
explicitly include feature dropping or similar mechanisms,
we made no predictions for its trajectory. Finally, we pre-
dict that experience increases participants’ task performance
while time pressure reduces it.
Time pressure To test the effectiveness of time constraints to
manipulate participants’ behavior, we first plot the distribu-
tion of response times in the three conditions, as well as the
response times from the unconstrained (generalization) ex-
periment (figure 4A). Adding time pressure causes an overall
shift in the response time distribution regardless of the time
limit. Additionally, participants play faster with shorter time
constraints. Surprisingly, there is no consistent effect of time
constraints on participants’ performance (figure 4B).

Figure 4: A. Empirical cdf of response times in the three con-
ditions of the time pressure experiment (red), and the gener-
alization experiment (blue). In the latter experiment, players
could take arbitrary amounts of time, which we denote as an
infinite time limit. People play faster with shorter time lim-
its. B. Task performance, quantified by Elo rating, for the
same experiments and conditions. Error bars indicate mean
and s.e.m. across participants (N = 30). The effect of time
limits on performance is unclear.

In figure 5 (top), we show the feature drop rate, value func-
tion quality and tree size in different time limit conditions.
Compared to the unconstrained experiment, participants build
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smaller trees and drop more features, while the value function
quality is similar. The impact of the time constraint on tree
size becomes larger with shorter time limits, but the feature
drop rate shows the opposite trend and is at its highest in the
20-second condition. We speculate that the stress of poten-
tially losing on time causes participants to pay more attention
with shorter time limits, whereas with 20 seconds, they are
more relaxed and make more attentional lapses.

Figure 5: Top row. Estimated model parameters in the time
pressure and generalization experiments. Error bars denote
mean and s.e.m. across participants. The model infers a re-
lation between time limit and tree size, but unclear effects
on feature dropping and the value function quality. Bottom
row. Model parameters and Elo rating for each participant in
each time limit condition. The tree size and feature drop rate
correlate with Elo rating, but value function quality does not.

To understand the surprising negative result of figure 4, we
investigate how Elo rating and parameter estimates correlate
across both individuals and time limit conditions (figure 5,
bottom). Stronger players (in all time limit conditions) are es-
timated to build larger decision trees and drop fewer features.
Therefore, the increased tree size with longer time limit pre-
dicts a performance increase, but the increased feature drop
rate predicts decreased performance. These opposite effects
happen to be approximately equal, which explains the lack of
correlation between time limit and Elo rating.
Learning We first validate that experience affects partici-
pants’ behavior by plotting Elo rating as a function of session
number (figure 6). Next, we investigate changes in parame-
ters across sessions (figure 7, top). Tree size increases across
sessions, feature drop rate decreases and value function qual-
ity remains constant. As in the time pressure experiment, tree
size and feature drop rate correlate with Elo rating on an in-
dividual level (figure 7, bottom), and the change in parame-
ter estimates across sessions explains changes in task perfor-
mance. Experienced players build larger decision trees and
drop fewer features, both of which predict increased playing
strength, which matches the data.

Figure 6: Elo rating of N = 30 participants in the learning
experiment (mean and s.e.m. across participants). As partici-
pants gain expertise, they play stronger.

Figure 7: Top: Model parameters as a function of sessions
completed in the learning experiment. Over the course of
learning, tree size is estimated to increase while feature drop-
ping decreases. The value function quality decreases, but
only slightly. Bottom: Model parameters and Elo ratings for
each participant in each session of the learning experiment.
Both tree size and feature dropping correlate with Elo, but
value function quality does not.

Discussion
Limitations. Our model has three conceptual limitations.
First, although its parameters shift as participants acquire ex-
pertise, the model does not describe how these shifts arise
from their experience (their specific move choices and re-
wards). Instead, model parameters are stationary within each
session. Moreover, because model parameters are constant
while participants play against multiple AI opponents per ses-
sion, the model cannot capture strategic adaptations based on
an opponent’s game play. Finally, the model assumes that
people make decisions independently on every move, ignor-
ing potential long-term planning or caching of partial game
trees between moves. We make these assumptions out of ne-
cessity, because parameter inference is already challenging.
Relation with chess literature. Contrary to the chess
literature, in which the superior pattern recognition of
chess experts is evident from board reconstruction experi-
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ments (Chase & Simon, 1973) and eye movements (Reingold,
Charness, Pomplun, & Stampe, 2001), we find no changes in
value function quality with expertise or individual skill dif-
ferences. Stronger players might use features outside our
model space, and the lack of correlation could be a false nega-
tive. Alternatively, perhaps chess and 4-in-a-row are qualita-
tively different domains of expertise. Chess contains many
non-obvious features (pawn structure, the bishop pair) or
non-obvious feature weights (bishops and knights are equally
strong). By contrast, in our task, people’s intuitive priors
(three-in-a-row is good) happen to be correct.

Our finding of increased tree search with longer time con-
trols is consistent with chess studies that conceptualize pat-
tern recognition and tree search as fast and slow processes,
respectively (Chabris & Hearst, 2003). However, the strong
dependence between expertise and tree search is unexpected.
We first investigate whether this effect could have arisen from
incorrect model assumptions. Specifically, players may use
unmodeled features, stronger players may assign those fea-
tures higher weights, and those feature weights may trade
off with additional tree search in our model. However, by
analyzing parameter estimates in lesion models, we find no
such trade-offs. Therefore, our results reflect differences be-
tween 4-in-a-row and chess, or a methodological improve-
ment. Conclusions about tree search in chess derive almost
solely from verbal reports, whereas we use the more princi-
pled method of parameter inference in a behavioral model.

Conclusion
We built a computational model that predicts people’s choices
in a two-player board game. The model posits three compu-
tational principles for sequential decision-making: a feature-
based evaluation function, attentional oversights and tree
search. All three components are necessary to explain par-
ticipants’ behavior, but the data does not constrain details of
their implementation such as the order by which nodes are
visited during search, or how long the search process contin-
ues before players finalize their decision.

The model generalizes to predict choices in a two-
alternative forced-choice task and a board evaluation task.
This suggests that the model doesn’t just fit a mapping from
boards to moves, but that it captures aspects of the compu-
tational process that underlies decision-making in all three
tasks. Furthermore, the feature drop rate and tree size change
in predictable ways when we expose participants to manipula-
tions in time pressure and experience. These changes account
for participants’ task performance, suggesting that these spe-
cific parameters reflect some task-relevant characteristic of
participants’ cognitive process. Furthermore, these two be-
havioral characteristics are dissociable, since in the time pres-
sure experiment, both tree size and feature dropping increase
across conditions, whereas in the learning experiment, tree
size increases while feature dropping decreases. In the fu-
ture, we aim to further support our model as a description of
the computational process underlying people’s move choices

by using it to predict response times and eye movements.
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Abstract

The lexical frequency of an upcoming word affects read-
ing times even when the upcoming word is masked from
readers (Angele et al., 2015). One explanation for this
observation is that readers may slow down if there is high
uncertainty about upcoming material. In line with this
hypothesis, this study finds a positive correlation be-
tween predictive entropy and self-paced reading times.
This study also demonstrates that such predictive en-
tropy can be effectively approximated by the surprisal
of upcoming observations and that this future surprisal
estimate is more predictive of reading times when the
grammar is more granular, which would be prohibitively
expensive for predictive entropy. These results suggest
readers engage in fine-grained predictive estimations of
certainty about upcoming lexical and syntactic material,
that such predictions influence reading times, and that
estimating that uncertainty can be done less expensively
and more robustly with information-theoretic surprisal.

Keywords: Self-Paced Reading; Information Theory;
Language Modeling; Corpus Studies

Introduction
The lexical frequencies of upcoming words affects read-
ing times even when the upcoming word is masked from
readers (Angele et al., 2015). Angele et al. suggest that
the driving factor behind their result may be anticipation
of upcoming difficulty. For example, a less constrain-
ing context (i.e. less predictable upcoming words) may
produce slower reading. This study uses information-
theoretic entropy to test their hypothesis and to investi-
gate the level of linguistic detail predicted by readers.

This work is scientifically important because it uses
a large self-paced reading corpus to show that reading
times are influenced both by uncertainty over upcom-
ing syntactic constructions and by uncertainty over up-
coming lexical items, which supports the hypothesis of
Angele et al. (2015) that anticipation of upcoming diffi-
culty influences reading times. While previous work has
found evidence of prediction during language process-
ing through responses to violated predictions (Wicha,
Moreno, & Kutas, 2004; Van Berkum, Brown, Zwitser-
lood, Kooijman, & Hagoort, 2005; Fine, Jaeger, Farmer,
& Qian, 2013; DeLong, Troyer, & Kutas, 2014), the
present work demonstrates that the influence of predic-
tion can be reliably detected in reading times prior to
any violation of that prediction. Other work, for exam-
ple using a visual world paradigm (Altmann & Kamide,
1999; Kamide, Altmann, & Haywood, 2003; Ito & Speer,

2008), has also demonstrated predictive processing ab-
sent a prediction violation, but the present work demon-
strates that such an effect is also observable in a broad-
coverage self-paced reading corpus such as can be col-
lected via Mechanical Turk. Finally, Roark, Bachrach,
Cardenas, and Pallier (2009) have previously shown that
the entropy of upcoming syntactic categories influences
self-paced reading times, but their entropy measure is ex-
tremely expensive to compute, they used a much smaller
corpus,1 and they did not find an influence of upcoming
lexical uncertainty on reading times, unlike the present
work.

In addition, this work demonstrates that surprisal
(Hale, 2001; Levy, 2008), typically only used to esti-
mate responses to observed stimuli, can be used to quan-
tify predictive influences as well. From a computational
perspective, this work provides an inexpensive way to
estimate the uncertainty experienced by readers, which
will allow future studies to test the cognitive plausibility
of various grammars and parsing algorithms, providing
a tool with which to probe predictive human sentence
processing outside of highly constraining experimental
stimuli.

Background

Angele et al. (2015) wanted to test whether lexical suc-
cessor effects (influences of upcoming material) could
be elicited even when readers were unable to view the
upcoming words. They used a moving mask to hide
upcoming words from readers but still found that the
trigram predictability of the next hidden word was a
significant predictor of reading times. Angele et al.
(2015) hypothesized that readers may anticipate upcom-
ing difficulty and slow down. That is, an unconstrained
context with several plausible continuations might pro-
duce slower reading (due to each continuation’s low pre-
dictability) than a highly constraining context with a
smaller number of plausible continuations. To test this
hypothesis, we use information-theoretic entropy to pre-
dict reading times.

Under information theory (Shannon, 1948), the en-
tropy (H) of a random variable (X) is defined by the
component probabilities of each possible value (x) of that

1The corpus in this work is about 25 times larger.
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variable:
H(X) = −

∑
x∈X

P(x) log P(x) (1)

In the case of language processing, the possible values
are words that have yet to be observed, and entropy
is typically computed from the conditional probability
of each possible value given the observations that have
already been made.

Linzen and Jaeger (2015) distinguished single-step
predictive entropy (uncertainty about the next process-
ing step) from full entropy (uncertainty about the rest
of the sentence). Since Angele et al. (2015) found that
lexical frequency successor effects were only dependent
on the word following a fixation, the present work is
concerned with single-step predictive entropy. Linzen
and Jaeger (2015) found that when single-step predic-
tive entropy was computed over upcoming syntactic con-
stituents based on verb subcategorization biases, it was
not predictive of self-paced reading times. However, they
hypothesize that the fit of entropy may improve when
computed over finer-grained categories (they only com-
puted probabilities for 6 subcategorization classes). The
results in Analysis 4 of this paper support their hypoth-
esis.

Roark et al. (2009) defined two variants of single-step
predictive entropy to distinguish syntactic uncertainty
from lexical uncertainty. Syntactic entropy is computed
over the conditional probability of each preterminal (p)
in the grammar (G) given the previously observed lexical
sequence (w1..i−1):

SynH1
G(w1..i−1)

def
=

−
∑
pi∈G

PG(pi | w1..i−1) log PG(pi | w1..i−1) (2)

Syntactic entropy is computed in practice by generating
all possible syntactic derivations2 that can generate each
possible upcoming word (wi) in the vocabulary (V ) and
then subtracting from each derivation’s probability the
emission probability of generating wi from the chosen
preterminal (pi).

Lexical entropy is computed over the conditional prob-
ability of each possible upcoming lexeme, given the pre-
viously observed lexical sequence:

LexH1
G(w1..i−1)

def
=

−
∑
wi∈V

PG(wi | w1..i−1) log PG(wi | w1..i−1) (3)

Roark et al. (2009) found that syntactic entropy was
predictive of self-paced reading times but that lexical en-
tropy was not, which we were able to replicate on the cor-
pus in this study as well. Roark et al. suggested that the

2In fact, the number of possible syntactic derivations is
constrained by a very large beam.

failure of lexical entropy to predict reading times may
be due to the fact that their grammar was trained on
the relatively small Brown portion of the Penn Treebank
(Marcus, Santorini, & Marcinkiewicz, 1993), so their lex-
ical probabilities may not have been robust enough.

It is interesting to note that ‘single-step prediction’
was defined slightly differently for these two sets of au-
thors. Roark et al. (2009) define it as a prediction over
the next word in a lexical sequence, while Linzen and
Jaeger (2015) define it as a prediction over the next syn-
tactic category (e.g., noun phrase) that will branch from
a partial derivation ending in a verb phrase. To avoid
making a commitment as to the particular parsing strat-
egy adopted by readers, this paper will use the definition
of ‘single-step prediction’ from Roark et al. (2009) to
mean uncertainty about the next lexical observation.

Data

This study makes use of the Natural Stories self-paced
reading corpus (Futrell et al., in prep). The corpus is
a set of 10 texts (485 sentences) written to sound flu-
ent but still containing many low-frequency and marked
syntactic constructions. The sentences within each text
were presented in order, and self-paced reading time data
was collected from 181 native English speakers. Reading
times were excluded if they occurred at the beginning or
end of a sentence, or if they were less than 100 ms or
greater than 3000 ms. Approximately one third of the
sentences (255,554 events) were used for exploration and
two thirds of the sentences (512,469 events) were used as
a confirmatory partition for significance testing to reduce
the risk of false positives due to multiple comparisons.
All significance results reported in this paper are from
the confirmatory partition.

Models

This study fits reading times using linear mixed effects
models computed with the lme4 (version 1.1-7) R pack-
age (Bates, Maechler, Bolker, & Walker, 2014). All mod-
els include a baseline of fixed effect predictors for word
length, sentence position, and 5-gram surprisal.3 The
models also include random intercepts for each word,
each subject, and each subject/sentence pair. The last
random intercept corrects for the fact that multiple non-
independent observations are drawn from each sentence.
Finally, each model includes by-subject random slopes
for all the fixed effects. All predictors were z-transformed
prior to fitting. Significance values for each predictor
were obtained using a likelihood ratio test between two

35-gram surprisal predicts conditional frequency effects
based on n-gram co-occurrence counts. Previous work has
shown that 5-gram frequency controls are sufficiently able to
control for frequency effects that syntactic frequency controls
are sometimes unable to predict reading times over them (van
Schijndel & Schuler, 2016), so 5-grams create a strong base-
line with which to test other frequency influences.
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mixed models: one of which contained both a by-subject
random slope and a fixed effect for the predictor of in-
terest, and the other of which omitted the fixed effect
for that predictor.

Analyses

Analysis 1: Single-Step Predictive Entropy

First, we test whether the original finding of Roark et
al. (2009) that syntactic predictive entropy positively
correlates with reading times holds up on the Natural
Stories corpus (Futrell et al., in prep). We compute
single-step predictive syntactic and lexical entropy us-
ing the Roark (2001) top-down incremental parser. Our
findings are consistent with those of Roark et al. (2009):
syntactic entropy has a significant positive effect on self-
paced reading times in the Natural Stories confirmatory
partition over the baseline model (β̂ = 4.53, σ̂ = 0.54,
p-value < 0.001), and lexical entropy is not a significant
predictor of reading times.

As Roark et al. (2009) point out, the lack of predic-
tivity of lexical entropy may stem from the sparseness of
the training data. Unfortunately, computing predictive
entropy is very expensive since it requires predictively
running the parser over a large set of hallucinated obser-
vations whose cardinality is the size of the vocabulary
for for each actual observation. Therefore, meaningfully
increasing the vocabulary is not generally practical.4

Analysis 2: Surprisal as Entropy
Approximation

Angele et al. (2015) found that the trigram surprisal of
an upcoming word is predictive of reading times and
speculated that such an effect could be driven by uncer-
tainty over future events, so this section tests whether
the predictive entropy effect observed in Analysis 1 can
be approximated by the PCFG surprisal of the upcoming
word.

Roark (2011) showed that single-step predictive lexi-
cal entropy is mathematically equivalent to the expected
value of total surprisal S:

SG(wi, w1..i−1)
def
= −log PG(wi | w1..i−1) (4)

LexH1
G(w1..i−1)

def
=

∑
wi∈V

−PG(wi | w1..i−1) log PG(wi | w1..i−1) (5)

=
∑
wi∈V

PG(wi | w1..i−1) SG(wi, w1..i−1) (6)

= E[SG(wi, w1..i−1)] (7)

4An alternative to the approach taken in this paper would
be to maintain a constant vocabulary size but to train the
conditional probabilities of that vocabulary over a much
larger training set. Such an approach would only help if
the weakness of lexical entropy is due to poor probability
estimates rather than to unknown words.

where wi is the current lexical item, w1..i−1 is the se-
quence of previously observed lexical items and V is the
vocabulary of the language.

Therefore, surprisal is a single sample from the con-
ditional probability distribution over which single-step
lexical entropy is computed, where the sampled observa-
tion is the occurrence that ultimately is observed. Over
several trials, then, future surprisal should approximate
entropy since each observed occurrence should happen
proportionately to its expected occurrence frequency. As
a moving window self-paced reading corpus, participants
were physically unable to see upcoming words, similar to
the masked condition used by Angele et al. (2015).

To test surprisal as an approximation of entropy, we
use the Roark (2001) parser’s estimate of surprisal of
each observation to predict the reading time of the pre-
ceding observation. This measure (future surprisal)
also has a significant positive effect on reading times
(β̂ = 4.96, σ̂ = 0.63, p-value < 0.001). This measure
may be thought of as an aggregate approximation to en-
tropy, whereas the lexical entropy output by the Roark
(2001) parser may be thought of as a point-wise approx-
imation to entropy. That is, Roark lexical entropy ap-
proximates the true lexical entropy for each new obser-
vation as the weighted average of the conditional proba-
bility distribution at that point according to the parser’s
grammar, while future surprisal approximates the true
lexical entropy over the entire corpus (aggregated over
all observations) by sampling from the conditional prob-
ability distribution for each observation. The fact that
future surprisal is able to fit reading times more con-
sistently than point-wise lexical entropy gives hope that
this less expensive aggregate approximation of entropy
is a more robust means of computing entropy than a
point-wise approximation.

Analysis 3: N -grams as Better Entropy
Approximation

Since the Roark (2001) parser computes surprisal based
on a relatively small and coarse-grained Penn Treebank
grammar, the previous results may be skewed by the
small amount of training data. In order to obtain con-
ditional probabilities based on more data, we use a 5-
gram back-off model computed with the KenLM toolkit
(Heafield, Pouzyrevsky, Clark, & Koehn, 2013) on the
Gigaword 4.0 corpus (Graff & Cieri, 2003), which con-
sists of 2.96 billion words from English newswire text.
Again, the 5-gram surprisal of each word was used to pre-
dict the reading time of the preceding word. Similar to
future Roark surprisal, future 5-gram surprisal has a sig-
nificant positive correlation to reading times (β̂ = 4.49,
σ̂ = 0.57, p-value < 0.001), and when future 5-gram sur-
prisal is in the model, future Roark surprisal ceases to
be a significant predictor of reading times.

This result aligns with work by van Schijndel and
Schuler (2016) who found that future PCFG surprisal,
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computed with a Penn Treebank PCFG, is an effective
predictor of reading times in eye-tracking, but that it
ceased to be predictive when future n-gram surprisal was
included in their model. They also found that future n-
gram surprisal was only predictive for one or two words
following a fixation, similar to the finding of Angele et
al. (2015) that only the frequency of the word following
a fixation was predictive of reading times.

Analysis 4: Fine-Grained Syntactic
Prediction

Although future n-gram surprisal seems to account for a
lexical entropy effect, it is unable to account theoret-
ically for the effect of Roark syntactic entropy, since
n-gram surprisal reflects lexical probabilities and syn-
tactic entropy reflects syntactic probabilities (without
lexical emission probabilities). However, future Roark
PCFG surprisal using the default set of Penn Treebank
syntactic categories was unable to predict reading times
when future n-gram surprisal was in the model. Pre-
vious work on predictive processing has suggested that
predictions can be relatively fine-grained (Luke & Chris-
tiansen, 2015; Kim & Lai, 2012), so this section explores
whether humans predict upcoming material with fine-
grained syntactic specificity.

Whereas the above experiments used the Roark (2001)
parser with the default Penn Treebank tag set, this sec-
tion uses the van Schijndel, Exley, and Schuler (2013)
parser, which computes surprisal using the Petrov, Bar-
rett, Thibaux, and Klein (2006) latent-variable grammar
computed from sections 2-21 of the Wall Street Jour-
nal portion of the Penn Treebank and thereby achieves
higher parsing accuracy than the Roark parser (van Schi-
jndel et al., 2013). The latent-variable grammar is de-
rived from a split-merge algorithm that creates fine-
grained subcategory tags from the basic Penn Treebank
category tags. For this experiment, the grammar under-
went 5 split-merge operations to obtain optimally tuned
tags, following the recommendations of Petrov et al.

When future surprisal is computed with a finer-
grained tag set, it is able to obtain a significant positive
correlation with reading times, even in the presence of
future 5-gram surprisal and syntactic entropy (β̂ = 4.10,
σ̂ = 0.74, p-value < 0.001).

Discussion

Much previous psycholinguistic and neurolinguistic work
has shown that prediction plays a role in language pro-
cessing (DeLong et al., 2014; Kuperberg & Jaeger, 2015).
Angele et al. (2015) observed that even when upcom-
ing material is masked, its predictability can affect read-
ing times. They suggest that their observation is likely
driven by readers predicting difficult material and slow-
ing in anticipation of it. The findings in this paper of
a positive correlation between self-paced reading times

β̂ σ̂ t
Syntactic Entropy 4.53 0.54 8.36
Future Roark Surprisal 4.96 0.63 7.85
Future 5-gram Surprisal 4.49 0.57 7.89
Future Fine PCFG Surprisal 4.10 0.74 5.58

Table 1: Effect sizes for each predictor of interest over
the baseline described in the Models section. Each pre-
dictor was tested over the baseline factors and all predic-
tors listed above it in the table. Future Roark Surprisal
is not significant once Future 5-gram surprisal is added.

and predictive entropy are consistent with that hypoth-
esis and suggest that, in particular, readers slow due to
increased probabilistic uncertainty over upcoming mate-
rial.

Previous studies have claimed that a positive corre-
lation between entropy and reading times would indi-
cate that there is a competition cost between multiple
parse hypotheses (Linzen & Jaeger, 2015), but this is not
the only possible explanation for such a correlation. For
example, similar reasoning to the Uniform Information
Density hypothesis (UID; Jaeger, 2010) might apply to
readers. That is, if readers have more uncertainty about
upcoming material, they may anticipatorily slow their
reading in order to better process the less expected in-
formation (reducing their expected per-millisecond sur-
prise to channel capacity). If, instead, readers are rea-
sonably confident about what words they are about to
encounter, they may speed up in order to maximize the
per-millisecond informativity of their observations. This
sort of tuning may be exaggerated in the moving win-
dow self-paced reading paradigm, where readers will be
unable to regress if they speed past an unexpected ob-
servation, which could be why previous work using eye
tracking has only been able to find an effect of future n-
gram surprisal on reading times (Angele et al., 2015; van
Schijndel & Schuler, 2016), while the present self-paced
reading study also found an effect for future PCFG sur-
prisal.

The fact that both future 5-grams and future PCFG
surprisal are predictive of reading times suggests that
predictions of upcoming difficulty are being made both
about lexical items and syntactic constructions. Sur-
prisal is computationally much less expensive than en-
tropy, and therefore it can provide samples from a much
finer-grained conditional probability distribution over
possible analyses than would be practical for entropy
calculation.

The present results show that future latent-variable
PCFG surprisal can fit reading times even when the
coarser Roark et al. (2009) surprisal and lexical entropy
cannot, which suggests that humans predict upcoming
material at a relatively fine-grained level (both syntac-
tic and lexical) as suggested by previous work (Luke
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& Christiansen, 2015; Kim & Lai, 2012). These re-
sults further indicate that the fit of entropy to reading
times improves as the granularity of the grammar be-
comes finer, which supports the hypothesis of Linzen and
Jaeger (2015) that their subcategorization entropy was
likely too coarse-grained to reveal entropy’s influence.

The finding that Roark syntactic entropy retains its
reading time predictivity in the presence of future 5-
gram surprisal and future latent-variable surprisal sug-
gests that humans estimate certainty about upcoming
parses based on multiple samples from the distribution
over upcoming observations. Such a finding is consistent
with parallel models of sentence processing but may be
problematic for serial processing models. Another inter-
pretation of this finding is that a point-wise entropy ap-
proximation is more stable and so can serve as a back-off
for the less stable but more nuanced aggregate approxi-
mations provided by both the n-gram and latent-variable
surprisal models. It is left to future work to differentiate
between these two possibilities.

It may seem strange that total latent-variable surprisal
was used in this study instead of syntactic latent-variable
surprisal (without lexical probabilities) since the goal of
moving beyond future n-gram surprisal was to capture
something of syntactic entropy, which omits lexical emis-
sion probabilities; however, explorations on the devel-
opment partition revealed that total surprisal generally
provides better fits to reading times than syntactic sur-
prisal even in the presence of future 5-gram surprisal. In
any case, the goal was not necessarily to approximate
Roark syntactic entropy but to capture an aspect of the
uncertainty experienced by readers, of which Roark lex-
ical entropy and Roark syntactic entropy are themselves
approximations. In fact, the consistent correlation be-
tween future surprisal (both n-gram and latent-variable)
and reading times compared to Roark lexical entropy
suggests that fine-grained aggregate entropy approxima-
tion via future surprisal is more robust than the coarser
but more intuitive point-wise lexical entropy approxima-
tion output by the Roark (2001) parser.

The entropy findings in this paper are distinct from
those in the entropy reduction literature. The Entropy
Reduction Hypothesis states that readers slow accord-
ing to the informativity of the words they encounter (as
measured by a decrease in entropy; Hale, 2006). It is
possible that the two effects are independent and that
people slow down before areas of greater uncertainty,
while also slowing down due to larger information gains.
These effects are not necessarily mutually exclusive be-
cause entropy reduction deals with changes in entropy
while predictive entropy deals with the overall level of
uncertainty in a text. That is, an entropy reduction of
k may predict the same k · β∆H ms effect on reading
times whether the resulting entropy is low or high. In
contrast, the experiments in this paper highlight a broad-

coverage correlation of fine-grained predictive entropy to
self-paced reading times.

Conclusion

This paper has replicated previous findings that single-
step predictive entropy is positively correlated with self-
paced reading times and presented new results that show
this correlation can be inexpensively approximated using
both future n-gram surprisal and future latent-variable
PCFG surprisal. The present results also demonstrate
that such approximations improve as the granularity of
the approximation increases. By showing that greater
uncertainty over upcoming words and syntactic con-
structions slows reading times, these results support the
hypothesis of Angele et al. (2015) that anticipation of
upcoming difficulty affects reading.
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Abstract 

Representations of social categories help us make sense of the 
social world, supporting predictions and explanations about 
groups and individuals. Here we explore whether children and 
adults are able to understanding category-property associations 
in structural terms, locating an object of explanation within a 
larger structure and identifying structural constraints that act 
on elements of the structure. We show that children as young 
3-4 years of age show signs of structural thinking, but that this 
capacity does not fully develop until after 7 years of age. These 
findings introduce a viable alternative to internalist accounts of 
social categories, such as psychological essentialism. 

Keywords: structural explanation, structural factors, social 
categories, essentialism, category representation 

 

Imagine that a school introduces a dress code stating that 
all items of a student’s clothing must match in color. When 
school begins, most boys show up wearing blue, and most 
girls show up wearing pink. What explains the correlation 
between gender and color? One explanation is that boys 
naturally prefer blue, and girls pink. But a quick glance at 
history shows that in the 19th century, pink was considered 
the vigorous, masculine color, whereas girls wore “delicate 
and dainty” blue (Fausto-Sterling, 2012). If an explanation 
that appeals to intrinsic preferences is inadequate, an 
alternative might be to appeal to a structural feature of the 
environment: department stores reliably stock more pink 
options for girls than for boys. In this case, availability could 
be a sufficient explanation for the observed correlation. 

This example illustrates what we call “structural thinking.” 
A hallmark of structural thinking is locating an object of 
explanation within a larger structure and identifying 
structural constraints that act on components of the structure 
to shape the distribution of outcomes for each component. In 
our example, girls occupy a position within larger social and 
institutional structures that make them more likely than boys 
to choose pink over blue. A structural approach to social 
categories differs from internalist approaches, which focus 
on essential or inherent properties of the category itself. In 
the current paper, we ask whether and when children develop 
the ability to think about social categories in structural terms.  

Internalist approaches to category representation. One 
prominent approach to theorizing about the representation of 
social categories (such as “girl”) is based on the notion of 
psychological essentialism, which refers to the tendency to 
represent (some) categories in terms of an underlying essence 
that is constitutive of category membership and/or causally 
responsible for key category features (Gelman, 2003). 
Psychological essentialism can support efficient 
generalizations about natural kinds, but can also lead to 
unwarranted normative expectations about categories, 
stereotypical generalizations, and prejudice (Leslie, 2015).  

A related internalist approach comes from Cimpian and 
Salomon (2014), who argue for the inherence heuristic, 
defined as the tendency to explain observed patterns in terms 
of the inherent properties of the objects that instantiate them. 
If girls wear pink, people might infer that it must be due to 
something inherent about pink (“it is delicate”) and/or girls 
(“they are attracted to delicate colors”), rather than 
considering a broader range of external, historical factors. 
Cimpian and Salomon argue that the inherence heuristic is 
distinct from, but potentially a precursor to, essentialized 
representations of social categories. 

A final approach, the aspect hypothesis, comes from 
Prasada and Dilllingham (2006, 2009), who offer a non-
essentialist account of categorical representation. On this 
view, some features of a category are viewed as aspects of 
the kind. For example, “fighting crime” is an aspect of being 
a police officer (in contrast to merely statistical associations, 
such as between police officers and “eating donuts”).  

While psychological essentialism, the inherence heuristic, 
and the aspect hypothesis are importantly distinct in their 
commitments regarding categorical representations, they all 
support internalist explanations for associations between a 
category and a feature (e.g., “she chose pink because girls 
like warm colors”), as well as formal explanations that appeal 
to category membership (e.g., “she chose pink because she is 
a girl”). By contrast, they lack mechanisms for differentiating 
kinds (i.e., “girls”) from the structures in which they are 
embedded (i.e., the social position occupied by girls). As a 
result, they cannot readily accommodate the kind of 
structural thinking supported by a structural approach. 

A structural approach to category representation. Our 
study explores an alternative to internalist accounts. 
According to a structural view of categorical representation, 
reliable connections between properties and categories can be 
represented as a consequence of stable structural constraints 
acting on categories from the outside. 

This approach is based on the notion of structural 
explanation developed in philosophy of social sciences, 
where it is defined by situating the object of explanation in a 
network of relationships within a larger, organized whole (a 
structure), and identifying how relationships to other parts of 
the whole modify the probability distribution over possible 
states of the part whose behavior is explained (relative to a 
hypothetical case outside a structure, relative to other nodes 
within the structure, or relative to different structures; 
Haslanger, 2015). For example, an internalist explanation for 
why many women in heterosexual relationships leave their 
jobs after having a child might appeal to women’s priorities 
or abilities, whereas a structural explanation would identify 
constraints that affect women in virtue of their position 
within the social structure (e.g., lack of paid parental leave, a 
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gender wage gap, etc.). These structural constraints shift the 
probability distribution across different outcomes for women 
versus men. For another position subjected to different 
structural constraints (e.g., “men,” “women in a different 
culture”), the same event (having a child) need not trigger the 
same outcomes. Rather than pinpoint triggering causes (e.g., 
the baby’s arrival), structural explanations identify 
constraints that shape the causal relationships between 
triggering causes and their effects (Dretske, 1988). 

The structural view capitalizes on the distinction between 
nodes (positions within social structures) and node-occupiers 
(categories that occupy those positions, and come to possess 
particular properties by virtue of their location within the 
structure; Haslanger, 2015). This distinction brings to light a 
potential ambiguity in formal explanations (e.g. “Smith quit 
her job after having a baby because she is a woman”), given 
that the term “woman” can refer to either the node or the 
node-occupier. Such explanations could attribute properties 
directly to the node (i.e., women’s location in a structure), 
without necessarily tying them to its inherent nature (i.e., to 
women themselves). In other words, a formal explanation 
could support both structural and internalist interpretations, a 
prediction that our experiments test. 

Structural vs. other externalist approaches. One way to 
appreciate what constitutes a structural explanation is to 
consider what it is not. Structural explanations are not merely 
“situation” explanations from the traditional person-situation 
dichotomy (Ross & Nisbett, 2011), nor “causal history of 
reasons” explanations from Malle’s (2004) taxonomy, which 
are narrower in their restriction to intentional behavior, yet 
broader in allowing for non-structural antecedents to reasons. 
Structural explanations are a sub-type of externalist 
explanations that invoke stable constraints acting on a 
category in virtue of its position in a structure.  

It’s useful to think of structural explanations in terms of the 
ANOVA or “cube model” (Kelley, 1973), in which a 
behavior is attributed to co-varying factors (person, situation, 
or stimulus). However, the cube model assumes that the data 
(behaviors) come from an “unconfounded” factorial design, 
where person and external factors vary independently. 
Structural thinking is instead sensitive to confounds between 
people and situations; within a social structure, categories are 
often constrained by their nodes. The category “women” can 
only occupy the “women” node, which constrains the range 
of properties the occupier can display.  

The notion of a confound between a category and its social 
location also helps to position the structural view of 
categories relative to role-based categories, such as guest, 
which specify a role in a relational structure (Asmuth & 
Gentner, 2016; Markman & Stilwell, 2001). Role-based 
categories involve relational structure, but structural thinking 
about social categories critically applies to cases in which a 
relational position is confounded with membership in a 
(perceived) taxonomic category.  

Cross-cultural research on independent vs. interdependent 
(object vs. field) construals (Nisbett, 2003) suggests that the 
reasoning style associated with structural thinking is not as 
“unnatural” as it may seem. Research on analogy (Gentner, 

1983; 2005) and recent work on role-based concepts 
(Goldwater, Bainbridge, & Murphy, 2016) offer additional 
indications that people have the representational capacities to 
reason about structures. If people possess the requisite 
resources for engaging in structural reasoning, the question 
is: do they? And if so, when does this capacity develop? 
These are the questions our study addresses. 

The development of structural thinking. Our study 
evaluates two competing hypotheses. Hypothesis 1 is that 
young children lack the conceptual prerequisites and/or 
knowledge to engage in structural thinking. Hypothesis 2 is 
that young children can successfully engage in structural 
thinking from an early age. 

Each hypothesis receives some support from existing 
research. In favor of the first hypothesis, prior work 
demonstrates that children view some social categories (such 
as gender) as essentialized natural kinds from an early age  
(Rhodes & Gelman, 2009; Taylor, 1996), even when cultural 
input suggests otherwise (Astuti et al., 2004). There is also 
evidence that young children have trouble endorsing 
environmental mechanisms that could produce category 
features (Rhodes & Taylor, 2009), although the 
“environmental factors” that were examined were primarily 
non-structural in nature. Finally, as young as 4-5 years of 
age, children tend to generate and endorse “inherent” 
explanations of categorical patterns over “extrinsic” ones 
(Cimpian & Markman, 2011; Cimpian & Steinberg, 2014). 

Beyond evidence of early essentialist and inherence-based 
reasoning, there is evidence that children lack capacities 
involved in structural thinking. Structural explanation could 
rely on structure-wide counterfactual alternatives, which do 
not fully emerge until age 7-8 (Beck et al., 2006; Rafetseder, 
Cristi-Vargas, & Perner, 2010). Structural reasoning also 
relies on representing relations, and research on relational 
reasoning suggests a developmental shift in relevant 
capacities throughout and beyond the preschool years (e.g., 
Gentner, 1988; Richland, Morrison, & Holyoak, 2006).  

On the other hand, there is evidence that potentially favors 
Hypothesis 2. Several findings suggest that young children 
appreciate external constraints on social categories. Seiver, 
Gopnik, and Goodman (2013) demonstrated that children as 
young as 4 can use situational information in explanation and 
prediction when appropriate covariation evidence is 
available. Four-year-olds also recognize moral constraints on 
their own behavior (Chernyak & Kushnir, 2014) and 
acknowledge that the behavior of members of a social 
category can be driven by common norms (Kalish, 2011; see 
also Kalish & Shiverick, 2004; Rakoczy, Warneken, & 
Tomasello, 2008; Smetana, 1981; Turiel, 1983).1 

                                                             
1 Translating research on norms into predictions about structural 
reasoning is not straightforward. First, moral norms carry deontic 
content, which distinguishes them from other kinds of structural 
constraints (such as a wage gap) that do not. Second, category-
specific norms can be interpreted in either essentialist or structural 
terms (e.g., if girls are not allowed to go out after 9 pm, this could 
stem from inherent characteristics of girls, or structural forces). 
Existing studies about norms have not made these distinctions, 
complicating their interpretation with regard to structural reasoning.  
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A final and more intriguing possibility is that young 
children may be more open to structural reasoning than older 
children and adults. Rhodes and Gelman (2009) showed that 
young children are more flexible than older children about 
some social categories, such as race. In Seiver et al. (2013), it 
was older children, not younger children, who showed an 
overall bias for person over situation explanations. Moreover, 
young children may be less biased by prior assumptions than 
adults, and thus open to learning a broad range of causal 
relationships (Lucas, Bridgers, Griffiths, & Gopnik, 2013). 
This body of work suggests that relative to older children and 
adults, young children could be more open to integrating 
external constraints in their representations of social 
categories and relying on structural relations in reasoning.  

Experiment  
This study had three goals: to determine whether and when 

children can successfully engage in structural thinking in 
explaining the association between a category and a property; 
to determine whether a structural construal can be 
experimentally induced; and to evaluate the prediction that 
structural thinking can support formal explanations under a 
structural interpretation of the category. 

To address these three goals, we adopted an approach 
mirroring Prasada and Dillingham (2006, 2009), who 
developed a set of tasks that can be used to identify whether 
people construe the connection between a feature and a 
category as principled (such as between “fighting crime” and 
being a police officer) or statistical (such as between “eating 
donuts” and being a police officer). They showed that only 
the principled connections between kinds and features 
supported judgments of feature immutability (a person who 
does not fight crime is not really a police officer), partial 
definitions (a police officer is a person who fights crime), and 
formal explanations (“this person fights crime because she is 
a police officer”). With the aim of detecting structural 
thinking and differentiating it from internalist thinking, we 
modified these three measures (described below). Vasilyeva 
and Lombrozo (in prep) found that with adults, responses 
across these judgments can successfully be used as a 
“profiling tool” to detect structural thinking, which generates 
a unique signature: relatively high mutability ratings, low 
partial definition ratings, and high formal explanation ratings. 
In contrast, the pattern for an internalist construal should be 
low – high – high. To further validate the profiling tool, we 
additionally included an open-ended explanation prompt and 
close-ended causal explanation evaluations.  

Method 
Participants We recruited 41 3-4-year-olds (mean age 4.3 
years, range 3.0-4.9; 23 females, 18 males) and 48 5-6-year-
olds (mean age 5.6 years, range 5.0-6.9; 23 females, 25 
males). Additionally, 67 adults (mean age 33 years, range 19-
71; 33 females, 64 males) were recruited via Amazon 
Mechanical Turk; participation was restricted to users with 
an IP address within the US and an approval rating of at least 
95% based on at least 50 previous tasks. Children were tested 
in person using an illustrated storybook presented on a 
laptop; adults were tested online.  

Materials, Design, and Procedure Participants were first 
introduced to a school where girls and boys study in separate 
classrooms, and presented with fictitious data about students 
playing different games during recess: girls predominantly 
played Yellow-Ball while boys predominantly played Green-
Ball. Participants were told that the game each child played 
was determined by tossing a pebble towards two buckets 
standing side by side: if the pebble fell into the yellow 
bucket, the child played Yellow-Ball that day, and if the 
pebble fell into the green bucket, that child played Green-
Ball that day (Figure 1a). The critical manipulation 
concerned the sizes of the buckets. In the internalist 
condition, both buckets were of the same size (Figure 1b), 
inviting participants to infer that the correlation between 
category membership and game choice was the product of 
inherent preferences (see Kushnir, Xu, & Wellman, 2010, for 
evidence that even younger children can use statistical 
evidence to infer a preference). In the structural condition, 
one bucket was instead much larger than the other: in the 
girls’ classroom the yellow bucket was larger than the green 
bucket, with the reverse in the boys’ classroom (Figure 1c). 
The size difference imposed a stable structural constraint on 
the probability distribution over options available to members 
of each category, inviting a structural interpretation of the 
category-property connection. 
 After comprehension checks, all participants completed a 
series of measures designed to differentiate an internalist 
from a structural construal of the property. First, in the open-
ended explanation task, participants were asked why girls in 
the girls’ classroom play Yellow-Ball a lot at their school. 
Second, participants completed a causal explanation 
evaluation task and the three profiling tools measures: a 
mutability judgment, a partial definition, and formal 
explanation ratings.   

In the causal explanation evaluation task, children 
evaluated three kinds of causal explanations offered by 
puppets that “sometimes say things that are smart, and 
sometimes say things that are silly.” The puppets explained 
that girls tend to play Yellow-Ball “because girls like playing 
Yellow-Ball” (internalist); “because in the girls’ classroom, 
it’s easier to throw a pebble in the yellow bucket” (structural); 
or “because they got sprinkled with water” (an incidental 
explanation invoking an irrelevant fact from the cover story). 
Participants evaluated each explanation using a two-step, four- 

  

 
Figure 1: Illustrations of the procedure determining which game each 
student played in the story (a) and of the different constraints on the 
probability of outcomes in the internalist (b) and structural conditions (c).  
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point thumb scale: they first chose one of two thumbs 
representing “good explanation” (up) and “bad explanation” 
(down), and they then chose between two subsequent options 
based on their choice: “kind of good/bad” (small thumb) or 
“really good/bad” (big thumb) – a scale previously shown to 
work well to measure children’s agreement with explanations 
(Cimpian & Steinberg, 2014; Hussak & Cimpian, 2015).  

For the mutability judgment, participants were told that 
after a change in the school’s rules allowing children to 
attend any classroom, Suzy’s parents transferred her to the 
boys’ classroom. Participants were asked to guess which 
game Suzy would play after transferring, responding on a 
two-step, four-point scale ranging from “for sure Yellow-
Ball” to “for sure Green-Ball.” This mutability judgment 
mirrors more familiar “switched at birth” tasks in the 
essentialism literature (Gelman & Wellman, 1991), in which 
children are asked, e.g., whether a cow raised by pigs will 
moo or go oink. Similarly, our mutability judgment involves 
a change in environment (structural constraints), and 
participants are asked to infer whether a property will match 
the exemplar’s category (the node occupier) or the new 
environment (the node). A shift in predictions from Yellow-
Ball to Green-Ball should track the causal influence of the 
node, and indicate structural thinking (as well as show that 
structural positions are seen as influencing behavior, rather 
than merely reflecting existing internal preferences). 

For the partial definition task, participants rated whether an 
alien did a good job telling what a girl is to another alien who 
had never heard about girls: “A girl is a person who plays 
Yellow-Ball a lot.” Participants used a two-step, four-point 
scale (“really bad job” - “really good job”). 

In the formal explanation task, participants met Suzy who 
“plays Yellow-Ball a lot at her school” and were asked to 
evaluate a formal explanation offered by a puppet - “Because 
Suzy is a girl” - using the two-step, four-point thumb scale 
ranging from “really bad” to “really good.”  
Results and Discussion 

Due to differing test formats and sample sizes, data from 
children and adults were analyzed separately. For the open-
ended explanation task (see Figure 2), participants’ 
explanations were coded as internalist (“maybe the girls just 
like it better, so they always aim to get their pebbles into the 
yellow ball bucket”), structural (“because the pebble went 
into the yellow bin, because the yellow one is bigger”), or 
miscellaneous, comprised of “I don’t know,” question 
restatements, and unclassifiable responses (“the yellow ball is 
brighter”). The distribution of explanations was affected by 
condition for each age group (3-4-year-olds: χ2(N=41)=6.19, 
p=.045; 5-6-year-olds: χ2(N=48)=16.80, p<.001; adults: 
χ2(N=67)=42.86, p<.001). Critically, in the structural 
condition some proportion of participants in each age group 
produced structural explanations (Figure 2, right panel, black 
bars). There was also evidence of developmental change: in 
the structural condition, the percentage of internalist 
explanations dropped as the percentage of structural 
explanations increased, so that the overall preference for 
internalist explanations in the younger age group flipped to a 
preference for structural explanations for older children. 

 
Figure 2: Distribution of internalist and structural explanations 
generated in response to question about why girls play Yellow-Ball, 
as a function of condition and age group. 
 
 Children’s evaluations of causal explanations (see Figure 3) 
were analyzed as a function of explanation type (internalist, 
structural, incidental), condition (internalist, structural), and 
age group (3-4, 5-6 year-olds) in a mixed ANOVA, with the 
key prediction concerning an interaction between explanation 
type and condition. The analysis revealed a main effect of 
explanation type, F(2,170)=9.87, p<.001, ηp

2=.104, which was 
qualified by a significant interaction between explanation 
type and condition, F(2,170)=6.00, p=.003, ηp

2=.066: only 
the structural explanation ratings were boosted by the 
structural framing. Most importantly, we observed the target 
three-way interaction: F(2,170)=3.73, p=.026, ηp

2=.042, 
driven by the selective effect of condition on 5-6-year-olds’ 
evaluations of the structural explanation: older children, but 
not younger children, rated structural explanations higher in 
the structural condition than in the internalist condition 
(polder<.001, pyounger=.390). The interaction remained significant 
when restricting the analysis to internalist and structural 
explanations, p=.012. For adults, an explanation type 
(essentialist, structural, incidental) by condition (essentialist, 
structural) mixed ANOVA revealed a significant effect of 
explanation type, F(2,126)=171.15, p<.001, ηp

2=.731,  and a 
marginal effect of condition, F(1,63)=3.74, p=.058, ηp

2=.056, 
qualified by a significant interaction, F(2,126)=117.83, 
p<.001, ηp

2=.652: adults favored the internalist explanation 
over the structural in the internalist condition, with the 
reverse in the structural condition (p’s<.001, see Figure 3).  
 Having succeeded in finding evidence of structural thinking 
in our open- and close-ended causal explanation tasks, we 
next turn to the profiling tool measures to see whether they 
reveal developmental differences mirroring these patterns. 
For adults, who exhibited high levels of structural thinking, 
we would predict the following for the structural condition 
relative to the internalist condition: more frequent predictions 
 

 
Figure 3: Explanation evaluation as a function of explanation type, 
framing  condition, and age group. 
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Figure 4: Mutability (a), partial definition (b), and formal explanation 
ratings (c) as a function of framing condition and age group. 
 
that Suzy will play Green-Ball when switched to the boys’ 
classroom, lower endorsement of the partial definition, and 
no difference in endorsement of the formal explanation. For 
children, we would predict the same patterns, with smaller 
effects for the younger children. This is what we found. 

For the mutability judgment task (see Figure 4a), the 
predicted main effect of condition was marginal for the 
youngest group, t(39)=1.96, p=.057, d=.42, but significant for 
the older children, t(46)=2.29, p=.027, d=.63, and for adults, 
t(65)=8.04, p<.001, d=2.00. The age by condition interaction 
for children was not significant, F(1.85)<.01, p=.984, but it 
appears that the property (playing Yellow-Ball for girls) was 
seen as more mutable in the structural condition than in the 
essentialist condition by age 5-6. 

For the partial definition task (Figure 4b), we predicted 
that properties construed as internalist should support 
definitions better than properties construed as structural. 
Neither younger nor older children displayed such a pattern 
(p’s≥.687), but adults did, t(65)=2.11, p=.039, d=.52. 

Finally, as predicted, formal explanation ratings did not 
significantly differ across the essentialist and structural 
conditions for any age group, all p’s≥.915 (see Figure 4c), 
suggesting that these explanations support both internalist 
and structural construals. 

These results show that even young children are  
capable of structural thinking, as reflected in their open-
ended explanations. They also provide the first demonstration 
that across all age groups formal (categorical) explanations 
support two interpretations: essentialist and structural. 
Beyond these age-general effects, they reveal developmental 
changes in structural thinking, with older children and adults 
more readily engaged in structural thinking. (Notably, we 
have reasons to believe that the observed pattern of 
developmental change is not due to younger children simply 
not understanding the task or explanations: in the explanation 
generation task younger children produced predominantly 
internalist explanations regardless of the framing, and when 
asked to break ties in the explanation evaluation task, they 
ranked internalist explanations higher under the internalist 
framing.) Moreover, these results suggest that internalist 
versus structural construals can be effectively induced, though 

in reality, they likely coexist, and are triggered by different 
cues. Finally, our results show that the profiling tool can 
effectively track internalist versus structural thinking across 
development. 

General Discussion 
Using novel tasks designed to assess structural thinking, 

we find evidence that even young children are able to reason 
about social categories in structural terms. By age 5-6, 
children preferentially generated and accepted structural 
explanations for a category-property association when a 
structural constraint was presented, with hints of an emerging 
sensitivity by ages 3-4.  

Recognizing structural reasoning as a distinct cognitive 
phenomenon invites us to rethink some of the findings in the 
literature on psychological essentialism. For example, many 
discussions of essentialism emphasize its capacity to support 
predictions and promote generalizations across category 
members (Gelman, 2003). In fact, generalization tasks are 
often used to measure the extent to which a category 
representation is essence-based. However, a structural 
representation of a category can likewise support such 
generalizations: structural forces shape properties of the 
nodes within the structure, and the occupiers of the nodes, 
being subject to these forces qua occupiers, are likely to 
obtain the properties in spite of idiosyncrasies in their 
individual histories and predispositions. Haslanger (2015) 
correspondingly praises structural explanations for their 
stability and identification of broad patterns that hold across 
“inessential perturbations,” suggesting that such explanations 
may be particularly good in supporting generalizations within 
stable structures. These features of structural thinking challenge 
the widespread assumption that the stability and generalizability 
of category properties imply internalist (essentialist) 
representations. More generally, our findings lay the 
groundwork for refining internalist claims and the evidence 
that is taken to support them, and for making more fine-
grained distinctions when it comes to externalist alternatives.  

We have also demonstrated that formal explanations 
support both structural and internalist interpretations. 
Introducing structural connections as a new type of non-
accidental relationship between a property and a category 
raises new questions about generics (e.g., “Girls prefer 
pink”), which are implicated in perpetuating stereotypes. On 
most accounts, generics are interpreted as expressing 
something about the underlying nature of the category, 
reinforcing essentialist beliefs (Cimpian & Markman, 2011; 
Leslie, 2014; Prasada & Dillingham, 2009). For example, 
Leslie argues that generics are by default interpreted as 
expressing “generalizations that hold because of common, 
inherent features of the members of the kind” (p. 217), where 
the only alternative available to people is interpreting 
generics as describing statistical connections, along the lines 
of “police officers eat donuts,” on the basis of “specific 
worldly knowledge.” But if people can interpret generics 
structurally, by construing features of category members as 
products of structural constraints rather than inherent 
attributes of the kind, this potentially opens up a new way to 
mitigate harmful side-effects of generic language without 
purging it from everyday speech (or, equally implausibly, 
convincing people that many associations between properties 
and social categories are merely “accidental”).  
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By introducing a structural alternative into the dichotomy 
of internal vs. vaguely and variably defined external 
(situational) factors in explanations of behavior, we have 
unmasked a gap in our understanding of categorical 
reasoning, and opened up new directions of study that may 
help account for some of the mixed evidence in research on 
the development of relational reasoning, essentialist beliefs 
about social categories, and reasoning about moral and 
conventional norms. The reported work already calls for 
revision of current accounts of generic language and formal 
explanation, and highlights the need to study categories 
embedded in relational structures. But of course, a lot more 
remains to be done. 
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Abstract

We show that publishing results using the statistical signif-
icance filter—publishing only when the p-value is less than
0.05—leads to a vicious cycle of overoptimistic expectation
of the replicability of results. First, we show analytically that
when true statistical power is relatively low, computing power
based on statistically significant results will lead to overesti-
mates of power. Then, we present a case study using 10 exper-
imental comparisons drawn from a recently published meta-
analysis in psycholinguistics (Jäger et al., 2017). We show that
the statistically significant results yield an illusion of replica-
bility. This illusion holds even if the researcher doesn’t con-
duct any formal power analysis but just uses statistical signifi-
cance to informally assess robustness (i.e., replicability) of re-
sults.
Keywords: Statistical significance; p-values; replicability

“‘. . . in [an]. . . academic environment that only publishes
positive findings and rewards publication, an efficient
way to succeed is to conduct low power studies. Why?
Such studies are cheap and can be farmed for significant
results, especially when hypotheses only predict differ-
ences from the null, rather than precise quantitative dif-
ferences and trends.” (Smaldino & McElreath, 2016, p.
5)

Introduction
The statistical significance filter tells us that significant
results—those findings in which the p-value is less than
0.05—are positively biased. The statistically significant esti-
mate is, by definition, more than t standard errors away from
zero, where t is some critical value determined by a statistical
test (such as the t-test) and the pre-specified Type I error (the
probability, under repeated sampling, of incorrectly rejecting
the null hypothesis).

Statistical power is the probability, under repeated sam-
pling, of correctly rejecting the null hypothesis assuming that
the parameter of interest has some true point value µ.1 It is
well-known that when statistical power is low, the effect (the
sample mean) will tend to be exaggerated. These are referred
to as Type M errors by Gelman and Carlin (2014) (also see
Gelman & Tuerlinckx, 2000). This exaggeration of effects
has been noticed in previous work (Hedges, 1984; Lane &
Dunlap, 1978), and most recently in neuroscience and epi-
demiology, where Button et al. (2013) refer to the exagger-
ation of effects in neuroscience as the “winner’s curse” and
“the vibration of effects.” In related work, Ioannidis (2008)

1In order to compute power, we need to have an estimate of the
true effect, the sample size, and an estimate of the standard devia-
tion.

discusses this exaggeration of effects in epidemiological stud-
ies in terms of the vibration ratio: the ratio of largest to small-
est observed effects.

These overestimates get published and fill the literature.
Now consider what happens when researchers design a new
study. They read the literature and see all these big effects,
then plan their next study. They do a power calculation based
on these big effects and get an exaggerated estimate of power,
and can easily convince themselves that they have a high pow-
ered study. Alternatively—and this is probably the more com-
mon route in many fields, such as psychology—they don’t
do a formal power analysis, but just rely on the informal ob-
servation that most of the previously published results had a
significant effect and so the effect must be present.

A related observation about overestimation comes from the
replication attempts reported by the Open Science Collabora-
tion (2015). The authors report that the magnitude of the pub-
lished p-values from the original studies were predictive of
replication success. As they put it (p. 943): “. . . correlational
evidence is consistent with the conclusion that variation in
the strength of initial evidence (such as original P value)
was . . . predictive of replication success . . . ” From this, re-
searchers might erroneously conclude that lower p-values are
generally more predictive of replication success. In other
words, an erroneous conclusion would be that a lower p-value
suggests a higher probability that the effect can be detected in
future repeated studies.

We show that if statistical significance is used as a filter
for publishing a result, and the observed effect (or p-value) is
used to determine replicability, this will lead the researcher
to overestimate replicability. We demonstrate this point ana-
lytically, and then present a case study involving 10 reading
studies in psycholinguistics that illustrates this illusion.

The relationship between p-values and
estimated power

Assume for simplicity the case that we carry out a one-sided
statistical test where the null hypothesis is that the null hy-
pothesis mean is µ0 = 0 and the alternative is that µ > 0.2

Given some continuous data x1, . . . ,xn, we can compute the
t-statistic and derive the p-value from it. For a large sample
size n, a normal approximation allows us to use the z-statistic,
Z = X̄−µ0

σX/
√

n , to compute the p-value. Here, X̄ is the mean, σX

the standard deviation, and n the sample size.

2The presentation below generalizes to the two-sided test.
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The p-value is the probability of observing the z-statistic
or a value more extreme assuming that the null hypothesis is
true. The p-value is a random variable P with the probability
density function (Hung, O’Neill, Bauer, & Kohne, 1997):

gδ(p) =
φ(Zp−δ)

φ(Zp)
, 0 < p < 1 (1)

where

• φ(·) is the pdf of the standard normal distribution, Nor-
mal(0,1).

• Zp, a random variable, is the (1-p)th percentile of the stan-
dard normal distribution.

• δ = µ−µ0
σX/
√

n is the true point value expressed as a z-score.
Here, µ is the true (unknown) point value of the parameter
of interest.

Hung et al. (1997) further observe that the cumulative dis-
tribution function (cdf) of P is:

Gδ(p) =
∫ p

0
gδ(x)dx = 1−Φ(Zp−δ), 0 < p < 1 (2)

where Φ(·) is the cdf of the standard normal.
Once we have observed a particular z-statistic zp, the cdf

Gδ(p) allows us to estimate power based on the z-statistic
(Hoenig & Heisey, 2001). To estimate the p-value given that
the null hypothesis is true, let the true value be µ = 0. It
follows that δ = 0. Then:

p = 1−Φ(zp) (3)

To estimate power from the observed zp, set δ to be the
observed statistic zp, and let the critical z-score be zα, where
α is the Type I error (typically 0.05). The power is therefore:

Gzp(α) = 1−Φ(zα− zp) (4)

In other words, power estimated from the observed statis-
tic is a monotonically increasing function of the observed z-
statistic: the larger the statistic, the higher the power estimate
based on this statistic (Figure 1). Together with the com-
mon practice that only statistically significant results get pub-
lished, and especially results with a large z-statistic, this leads
to overestimates of power. As mentioned above, one doesn’t
need to actually estimate power in order to fall prey to the
illusion; merely scanning the statistically significant z-scores
gives an impression of consistency and invites the inference
that the effect is replicable and robust. The word “reliable” is
frequently used in psychology, presumably with the meaning
that the result is replicable and represents the reality.

A direct consequence of Equation 4 is that overestimates
of the z-statistic will lead to overestimates of power. For ex-
ample, if we have 36 data points and the true effect is 0.1 on

Observed Z−score

P
ow

er

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6
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8
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0

Figure 1: The relationship between power and the observed z-
score. The larger z-scores are easier to publish due to the sta-
tistical significance filter, and these published studies there-
fore give a mistaken impression of higher power.

some scale and standard deviation is 1, then statistical power
is 15%.3

If we now re-run the same study, collecting 36 data points
each time, and impose the condition that only statistically sig-
nificant results with Type I error α = 0.05 are published, then
only observed z-scores larger than 1.64 (for a one-sided test)
would be published and the power estimate based on these
z-scores must have a lower bound of

GZα
(α) = 1−Φ(1.64−1.64) = 0.5 (5)

Thus, in a scenario where the real power is 15%, and only z-
scores greater than or equal to zα are published, power based
on the z-score will be overestimated by at least a factor of
0.5/0.15=3.33. Call this ratio the Power Inflation Index (PII).

Now, lower p-values are widely regarded as more “reli-
able” than p-values near the Type I error probability of 0.05.4

This incorrect belief, widely shared by editors, reviewers, and
authors in areas like psychology and linguistics, has the effect
that studies with lower p-values are more likely to be reported

3This can be confirmed by running the fol-
lowing command using R (R Core Team, 2014):
power.t.test(delta=0.1,sd=1,n=36,alternative =
"one.sided",type="one.sample").

4Treating lower p-values as furnishing more evidence against the
null hypothesis reflects a misunderstanding about the meaning of
the p-value; given a continuous dependent measure, when the null
hypothesis that µ = 0 is true, under repeated sampling the p-value
has a uniform distribution (see proof in the Appendix). This has the
consequence that, when the null is true, a p-value near 0 is no more
surprising than a p-value near 0.05.
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and published, with the consequence that the PII will tend to
be even higher than the lower bound discussed here.

We turn next to a case study involving psycholinguistic
data that illustrates the illusion of replicability.

Case study: Interference effects in reading
studies

To illustrate the illusion of replicability, we consider the
10 experiments that were reviewed in the literature review
and meta-analysis presented in Jäger, Engelmann, and Va-
sishth (2017). These were psycholinguistic studies in which
the dependent measure was reading time in milliseconds of
words. The experimental manipulation involved pairs of sen-
tence types where one type was easier to read than the other;
the empirical phenomenon of interest here is interference in
working memory. Here, an appropriate statistical test is the
two-sided paired t-test (one could do a one-sided t-test, al-
though this is less common in psycholinguistics).

We had the raw data from these 10 studies and so were
able to carry out the pairwise comparison. As discussed in
detail in Jäger et al. (2017), theory predicts an effect with a
negative sign. The original results as published were analyzed
on the raw milliseconds scale, but here we analyze the data on
the log milliseconds scale because the reading time data were
log-normally distributed.

A summary of the pairwise t-test is shown in Table 1. From
the table, it is clear that the studies consistently found neg-
ative values for the coefficient; this consistent result raises
our confidence in the reproducibility of the result. A formal
power analysis based on these studies, also shown in the last
column of the table, leads to estimates of power ranging from
17 to 60%.

t d n se s pval power
1 -1.9 -0.1 40 0.0 0.2 0.1 0.3
2 -3.1 -0.1 32 0.0 0.1 0.0 0.6
3 -1.5 -0.0 32 0.0 0.2 0.2 0.2
4 -2.1 -0.0 32 0.0 0.1 0.0 0.3
5 -1.7 -0.0 32 0.0 0.1 0.1 0.2
6 -2.6 -0.1 28 0.0 0.2 0.0 0.4
7 -1.6 -0.0 60 0.0 0.2 0.1 0.2
8 -3.2 -0.1 44 0.0 0.2 0.0 0.6
9 -1.9 -0.1 60 0.0 0.2 0.1 0.3

10 -2.6 -0.0 114 0.0 0.2 0.0 0.5

Table 1: Results from the paired t-tests for the 10 experimen-
tal comparisons. Shown are the t-score, the effect d in log
ms, the sample size n, the standard error se, the standard de-
viation s, and the p-value. The t-tests were done on the raw
data from the original studies (the t-values reported here may
deviate slightly from the published t-values). Also shown is
the power estimated from each study.

Using a Bayesian random-effects meta-analysis to
estimate the power function

In Table 1, we calculated power based on the individual stud-
ies. As discussed above, these will tend to be overestimates
because there is a preference to publish effects with low p-
values. How can we check this for the 10 studies? True power
is unknown so we have no basis for comparing the power es-
timates from individual studies with a true value for power.

One way to arrive at a conservative estimate of the true
power given these 10 studies is to carry out a Bayesian
random-effects meta-analysis (Gelman et al., 2014). This
hierarchical modelling approach allows us to determine the
posterior distribution of the effect, which can then be used
for computing an estimate of power. As discussed in Button
et al. (2013), using estimates from a meta-analysis yields a
more conservative estimate of power. In the random-effects
meta-analysis, this conservativity arises due to the shrinkage
property of hierarchical models: Larger sample studies re-
ceive a greater weighting in determining the posterior than
smaller sample studies. Note, however, that even here the
power may be an overestimate due to the fact that the studies
that go into the meta-analysis are likely to have publication
bias. But as we show below, the estimates of power from
individual studies tend to be ever larger.

The random-effects meta-analysis model was set up as fol-
lows. Let yi be the effect size in log milliseconds in the i-th
study, where i ranges from 1 to n. Let µ be the true (un-
known) effect in log ms, to be estimated by the model, and
µi the true (unknown) effect in each study. Let σi log ms be
the true standard deviation of the sampling distribution; each
σi is estimated from the sample standard error from study i.
The standard deviation parameter τ represents between-study
variability.

Then, our model for n studies is as follows. The model as-
sumes the i-th data point (the effect observed on the log ms
scale) yi is generated from a normal distribution with mean
µi and some standard error σ, estimated from the sample’s
standard error. Each of the true underlying means µi are as-
sumed to be generated from a normal distribution with true
mean µ and between-study standard deviation τ. We assign
Cauchy(0,2.5) priors to the parameters µ and µi, and a trun-
cated Cauchy(0,2.5) prior for the between-study standard de-
viation τ, truncated so that τ is greater than 0. The model can
be stated mathematically as follows:

Likelihoods:

yi | µi,σ
2
i ∼Normal(µi,σ

2
i ) i = 1, . . . ,n

µi | θ,τ2 ∼Normal(µ,τ2),

Priors:
µ∼Cauchy(0,2.5),

µi ∼Cauchy(0,2.5),
τ∼Cauchy(0,2.5),τ > 0

(6)
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Figure 2: Posterior distributions of the estimated effect (µ̂),
and the standard deviation of estimate of the between-study
variability (τ̂) in the random-effects meta-analysis.

We fit the model using Stan 2.14.2 (Stan Development
Team, 2016), running four chains with 4000 iterations (half
of which were warm-ups). Convergence was successful, as
diagnosed using the R̂ diagnostic (Gelman et al., 2014). The
posterior distributions of µ̂ and of the between-study standard
deviation τ̂ are shown in Figure 2. The posterior mean of
the effect is -0.05 log ms, with 95% credible interval [-0.08,-
0.03]. Next, we use this estimate of the posterior distribution
to compute a power distribution.

Computing the power distribution using the posterior dis-
tribution of the effect An analysis of reading studies, in-
cluding the ones considered here, showed that the precisions
(the inverse of the variance) in reading time studies have mean
values 16.3 and standard deviation 7.07 (the unit for precision
is 1/log ms2). Since precision can be modelled as a Gamma
distribution, we assumed that precisions are distributed as
Gamma(α = 5.3,β = 0.3). These parameters of the Gamma
distribution were computed by taking the mean x̄ and stan-
dard deviation s of the precisions, and then deriving the pa-
rameters of the Gamma distribution by solving for α and β.
We use the fact that for a random variable generated from a
Gamma distribution with parameters α and β, the expectation
µ and variance σ2 are:

E(X) =
α

β
= µ and Var(X) =

α

β2 = σ
2 (7)

Having obtained the estimate of the effect (through the
meta-analysis) and the distribution of the precisions, we used
these estimates to carry out 100,000 Monte Carlo simula-
tions to derive a power distribution for different sample sizes
(n = 20, . . . ,50) in the following manner. For each sample
size, we repeatedly computed power after obtaining:

• one sample for the effect by sampling from the distribution
Normal(−0.05,0.01); this is the posterior distribution of
the effect derived from the random-effects meta-analysis;

• one sample for the precision by sampling from the
Gamma(5.3,0.3), and then converting this to a standard
deviation.

Such a Monte Carlo sampling procedure gives a probability
distribution of power values and allows us to quantify our un-
certainty about the estimated power by taking all sources of
uncertainty into account—the uncertainty regarding the ef-
fect, and the uncertainty regarding the standard deviation.

Figure 3 shows the resulting power distributions for power
given different sample sizes. These power distributions are of
course only estimates, not the true power; and as Button et
al. (2013) point out, are probably slight overestimates if the
studies themselves have publication bias.

The power distributions illustrate two important points.
First, the range of most likely power values is remarkably
low for typical sample sizes used in psycholinguistic read-
ing experiments relating to interference effects (see Table 1).
As an aside, we note that our estimates are similar to those
from a recent review of 44 meta-analyses of research in so-
cial and behavioural sciences published between 1960-2011;
they report a mean power of 0.24 with most studies suggest-
ing power to be below 0.4 (Smaldino & McElreath, 2016, p.
6, Fig. 1). The second observation is that the power values
computed from individual studies (the red dots) tend to be
overestimates relative to the mean of each power distribution
shown. The power from each study tends to be higher than the
mean of each power distribution. Of course, if the statistical
power of the original studies were very high (approximately
80% or higher), then the overestimation problem would dis-
appear or at least be negligible.

We can quantify the overestimation of power by computing
the Power Inflation Index: the ratio of the power computed
from individual studies to the power distribution computed
using Monte Carlo simulations. If power is overestimated,
then the distribution of the PII will be such that the mean
ratio will be greater than 1. These distributions of PIIs are
computed for a typical sample size used in psycholinguistic
studies (n=20, 30, 40) in Table 2. Here, we can see that the
PII can be as high as 12.

Discussion
We have shown that if statistical significance is used to decide
whether to publish a result, overestimates of the effect will
tend to be published, leading to an over-enthusiastic belief in
the replicability of the effect.

Recently, the replication project reported by Open Sci-
ence Collaboration (2015) showed that only 47% of the stud-
ies they investigated could be replicated. One factor causing
these failures to replicate could have been low power in the
original studies. Even before the replication project, Cohen
(1962, 1988) and others have repeatedly warned against run-
ning low-powered studies. Despite these injunctions, many
researchers do not believe that there is a problem of low
power. For example, Gilbert, King, Pettigrew, and Wilson
(2016) contested the 47% replication rate and argued that
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Figure 3: Power distributions for different sample sizes (log
reading times). The histogram shows the power distribution
(generated through Monte Carlo sampling; see text for de-
tails). The red dots show power estimates from the 10 individ-
ual experimental comparisons considered in this case study.
The white dot shows the mean of each power distribution.

n=20 n=30 n=40
Study 2.5% 97.5% 2.5% 97.5% 2.5% 97.5%

1 1.37 4.64 0.98 3.95 0.76 3.47
2 3.67 12.45 2.63 10.61 2.04 9.30
3 1.08 3.67 0.78 3.13 0.60 2.74
4 1.95 6.61 1.40 5.64 1.08 4.94
5 1.41 4.76 1.01 4.06 0.78 3.56
6 3.06 10.37 2.19 8.83 1.70 7.75
7 0.76 2.59 0.55 2.20 0.42 1.93
8 2.99 10.12 2.14 8.62 1.65 7.56
9 0.98 3.34 0.71 2.84 0.55 2.49

10 1.02 3.47 0.73 2.96 0.57 2.59

Table 2: The 95% credible intervals of the Power Inflation In-
dex for each of the 10 experimental comparisons, for different
sample sizes. The Power Inflation Index can be as large as 12.

the replication rate may be much higher, perhaps even “sta-
tistically indistinguishable from 100%.” The objections of
Gilbert et al. (2016) were largely based on arguments about
the lack of fidelity to the original design, but it is possible that,
in addition to concerns about fidelity, Gilbert et al. are, like
many researchers, generally overconfident about the replica-
bility and robustness of their results. This overconfidence is
also evident in reading research in psycholinguistics, where it
is routine to run experiments with sample sizes ranging from
20 to 40 participants. Recent work has argued that sample
sizes of 20-40 partipants may be too low for reading studies
on interference (Jäger et al., 2017). We are hopeful that fu-
ture work will take this finding into account when planning
studies.

Currently, the replication problems in psycholinguistics are
serious. For example, in recent work (Mertzen, Jäger, & Va-
sishth, 2017) we carried out six replication attempts of two
eyetracking experiments published in the Journal of Mem-
ory and Language. We were unable to replicate any of the
claims in the paper. There is thus an urgent need to attempt to
replicate published results, and not just in psycholinguistics.
For example, Makel, Plucker, and Hegarty (2012) present a
quantitative analysis of the low rate of successful replications
in psychology (1%). Other fields are also affected. For ex-
ample, Button et al. (2013) have shown that in neuroscience
studies, power may also be quite low, ranging from 8 to 31%.
Smaldino and McElreath (2016) have shown through a 50-
year meta-analysis in behavioural science that power has not
improved (mean power: 24%). In biomedical sciences, ap-
proximately 50% of studies have power in the 0-10%5 or 11-
20% range (Dumas-Mallet, Button, Boraud, Gonon, & Mu-
nafò, 2017).

Despite these indications, many researchers remain over-
confident about the robustness of their results. This overcon-
fidence is in part due to the statistical significance filter.

Concluding remarks
We have shown that the statistical significance filter directly
leads to over-optimistic expectations of replicability of pub-
lished research. Even if the researcher doesn’t conduct any
formal power analyses, they can fall prey to this illusion be-
cause of the informal assessment of replicability afforded by
the statistical significance filter. We illustrated the illusion
of replicability through a case-study involving 10 published
experimental comparisons.

Many psychology journals are beginning to require that
power analyses be included in submitted manuscripts. But
our results, echoing those of others who have studied this
problem, suggest that such analyses, which invariably are
based on previously published work, will tend to provide
overestimates of power.

To resolve or at least reduce this problem, we offer two
pieces of advice. First, we recommend entirely abandon-

5Note that this range is an error; power cannot be less than 5% if
Type I error is set at 5%.
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ing the concept of power, which is based on the idea that
“p < .05” is a win, an attitude that fails miserably when ef-
fect sizes are small and measurements are noisy. Second,
when performing design analysis, consider possible effect
sizes based on subject-matter understanding; see Gelman and
Carlin (2014) for further discussion of this point. It can make
sense to consider a range of reasonable effect sizes.

Appendix
Here, we review the well-known proof that for a point null
hypothesis and a continuous dependent variable, the distribu-
tion of the p-value under the null is Uni f orm(0,1).

When a random variable Z comes from a Uni f orm(0,1)
distribution, then the probability that Z is less than (or equal
to) some value z is exactly z: P(Z ≤ z) = z.

The p-value is a random variable, call it Z. The p-value is
computed by calculating the probability of seeing a t-statistic
or something more extreme under the null hypothesis. The
t-statistic comes from a random variable T that is a transfor-
mation of the random variable X̄ : T = (X̄−µ)/(σ/

√
n). This

random variable T has a CDF F .
We can establish that if a random variable Z = F(T ), then

Z ∼Uni f orm(0,1), i.e., that the p-value’s distribution under
the null hypothesis is Uni f orm(0,1). This is proved next.

Let Z = F(T ). Then: P(Z ≤ z) = P(F(T ) ≤ z) =
P(F−1F(T )≤ F−1(z)) = P(T ≤ F−1(z)) = F(F−1(z)) = z.

Since P(Z ≤ z) = z, Z is uniformly distributed, that is,
Uni f orm(0,1).

Acknowledgements
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École Nationale de la Statistique et de l’administration économique, Malakoff, France.
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Abstract

We present a case-study demonstrating the usefulness of
Bayesian hierarchical mixture modelling for investigating cog-
nitive processes. In sentence comprehension, it is widely as-
sumed that the distance between linguistic co-dependents af-
fects the latency of dependency resolution: the longer the
distance, the longer the retrieval time (the distance-based ac-
count). An alternative theory, direct-access, assumes that re-
trieval times are a mixture of two distributions: one distribu-
tion represents successful retrievals (these are independent of
dependency distance) and the other represents an initial failure
to retrieve the correct dependent, followed by a reanalysis that
leads to successful retrieval. We implement both models as
Bayesian hierarchical models and show that the direct-access
model explains Chinese relative clause reading time data better
than the distance account.
Keywords: Bayesian Hierarchical Finite Mixture Models;
Psycholinguistics; Sentence Comprehension; Chinese Relative
Clauses; Direct-Access Model; K-fold Cross-Validation

Introduction
Bayesian cognitive modelling (Lee & Wagenmakers, 2014),
using probabilistic programming languages like JAGS
(Plummer, 2012), is an important tool in cognitive science.
We present a case study from sentence processing research
showing how hierarchical mixture models can be profitably
used to develop probabilistic models of cognitive processes.
Although the case study concerns a specialized topic in psy-
cholinguistics, the approach developed here will be of general
interest to the cognitive science community.

In sentence comprehension research, dependency comple-
tion is assumed by many theories to be a key event. For ex-
ample, consider a sentence such as (1):

(1) a. The man (on the bench) was sleeping

In order to understand who was doing what, the noun The
man must be recognized to be the subject of the verb phrase
was sleeping; this dependency is represented here as a di-
rected arrow. One well-known proposal (Just & Carpenter,
1992), which we will call the distance account, is that depen-
dency distance between linguistically related elements partly

determines comprehension difficulty as measured by read-
ing times or question-response accuracy. For example, the
Dependency Locality Theory (DLT) by Gibson (2000) and
the cue-based retrieval account of Lewis and Vasishth (2005)
both assume that the longer the distance between two co-
dependents such as a subject and a verb, the greater the re-
trieval difficulty at the moment of dependency completion.
As shown in (1), the distance between co-dependents can in-
crease if a phrase intervenes.

As another example, consider the self-paced reading study
in Gibson and Wu (2013) in Chinese subject and object rel-
ative clauses. The dependent variable here was the reading
time at the head noun (official). As shown in (2), the dis-
tance between the head noun and the gap it is coindexed with
is larger in subject relatives compared to object relatives.1

Thus, the distance account predicts an object relative advan-
tage. For simplicity, we operationalize distance here as the
number of words intervening between the gap inside the rel-
ative clause and the head noun. In the DLT, distance is op-
erationalized as the number of (new) discourse referents in-
tervening between two co-dependents; and in the cue-based
retrieval model, distance is operationalized in terms of decay
in working memory (i.e., time passing by).

(2) a. Subject relative

[GAPi

GAP

yaoqing

invite

fuhao

tycoon

de]

DE

guanyuani

official
xinhuaibugui

have bad intentions

‘The official who invited the tycoon has bad in-
tentions.

b. Object relative

1The dependency could be equally well be between the relative
clause verb and the head noun; nothing hinges on assuming a gap-
head noun dependency.
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have bad intentions

‘The official who the tycoon invited has bad in-
tentions.

In the Gibson and Wu study, reading times were recorded
using self-paced reading in the two conditions, with 37 sub-
jects and 15 items, presented in a standard Latin square de-
sign. The experiment originally had 16 items, but one item
was removed in the published analysis due to a mistake in the
item. We coded subject relatives as−1/2, and object relatives
as +1/2; this implies that an overall object relative advantage
would show a negative coefficient. In other words, an object
relative advantage corresponds to a negative sign on the esti-
mate.

The distance account’s predictions can be evaluated by fit-
ting the hierarchical linear model shown in (1). Assume that
(i) i indexes participants, i = 1, . . . , I and j indexes items,
j = 1, . . . ,J; (ii) yi j is the reading time in milliseconds for the
i-th participant reading the j-th item; and (iii) the predictor X
is sum-coded (±1/2), as explained above. Then, the data yi j
(reading times in milliseconds) are defined to be generated by
the following model:

yi j = β0 +β1Xi j +ui +w j + εi j (1)

where ui ∼ Normal(0,σ2
u), w j ∼ Normal(0,σ2

w) and εi j ∼
Normal(0,σ2

e); all three sources of variance are assumed to
be independent. The terms ui and w j are called varying in-
tercepts for participants and items respectively; they repre-
sent by-subject and by-item adjustments to the fixed-effect
intercept β0. Their variances, σ2

u and σ2
w represent between-

participant (respectively item) variance.
This model is effectively a statement about the generative

process that produced the data. If the distance account is cor-
rect, we would expect to find evidence that the slope β1 is
negative; specifically, reading times for object relatives are
expected to be shorter than those for subject relatives. As
shown in Table 1, this prediction appears, at first sight, to be
borne out. Subject relatives are estimated to be read 120 ms
slower than object relatives, apparently consistent with the
predictions of the distance account.

Estimate Std. Error t value
β̂0 548.43 51.56 10.64*
β̂1 -120.39 48.01 -2.51*

Table 1: A linear mixed model using raw reading times in
milliseconds as dependent variable, corresponding to the re-
ported results in Gibson and Wu 2013. Statistical significance
is shown by an asterisk.

The object relative advantage shown in Table 1 was origi-

nally presented in Gibson and Wu (2013) as a repeated mea-
sures ANOVA.

To summarize, the conclusion from the above result would
be that in Chinese, subject relatives are harder to process than
object relatives because the gap inside the relative clause is
more distant from the head noun in subject vs. object rela-
tives. This makes it more difficult to complete the gap-head
noun dependency in subject relatives. This distance-based ex-
planation of processing difficulty is plausible given the con-
siderable independent evidence from languages such as En-
glish, German, Hindi, Persian and Russian that dependency
distance can affect reading time (see review in Safavi, Hu-
sain, and Vasishth (2016)).
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Figure 1: Boxplots showing the distribution of reading times
by condition of the Gibson and Wu (2013) data.

However, the distributions of the reading times for the
two conditions show an interesting asymmetry that cannot be
straightforwardly explained by the distance account. At the
head noun, the reading times in subject relatives are much
more spread out than in object relatives. This is shown in
Figure 1, where reading times are shown on the log scale.
Although this spread was ignored in the original analysis, a
standard response to heterogeneous variances (heteroscedas-
ticity) is to delete “outliers” based on some criterion; a com-
mon criterion is to delete all data lying beyond ±2.5SD in
each condition.2 This procedure assumes that the data points
identified as extreme are irrelevant to the question being in-
vestigated. An alternative approach is to not delete data but to
downweight the extreme values by applying a variance stabi-
lizing transform (Box & Cox, 1964). Taking a log-transform

2In the published paper, Gibson and Wu (2013) did not delete
any data, leading to the results shown in Table 1.
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of the reading time data, or a reciprocal transform, can re-
duce the heterogeneity in variance; see Vasishth, Chen, Li,
and Guo (2013) for analyses of the Gibson and Wu data us-
ing a transformation.

One might think that if subject and object relatives are gen-
erated by LogNormal distributions with different means, then
modelling the data as being generated by LogNormals would
adequately explain the data. Table 2 shows that if we assume
such a model, there is no longer a statistically significant ob-
ject relative advantage: the absolute t-value for the estimate of
the β1 parameter is smaller than the critical value of 2 (Bates,
Maechler, Bolker, & Walker, 2015). Thus, assuming that the
data are generated by LogNormal distributions with different
means for the subject and object relatives leads to the conclu-
sion that there isn’t much evidence for the distance account.

Estimate Std. Error t value
β̂0 6.06 0.07 92.64*
β̂1 -0.07 0.04 -1.61

Table 2: A linear mixed model using log reading times in mil-
liseconds as dependent variable in the Gibson and Wu, 2013,
data.

Consider next the possibility that the heteroscedasticity in
subject and object relatives in the Gibson and Wu data reflects
a systematic difference in the underlying generative processes
of reading times in the two relative clause types. We investi-
gate this question by modelling the extreme values as being
generated from a mixture distribution.

Using the probabilistic programming language Stan (Stan
Development Team, 2016), we show that a hierarchical mix-
ture model provides a better fit to the data (in terms of predic-
tive accuracy) than several simpler hierarchical models. As
Nicenboim and Vasishth (2017) pointed out, the underlying
generative process implied by a mixture model is consistent
with the direct-access model of McElree, Foraker, and Dyer
(2003). We therefore suggest that, at least for the Chinese
relative clause data considered here, the direct-access model
may be a better way to characterize the dependency resolution
process than the distance account.

We can implement the direct-access model as a hierarchi-
cal mixture model with retrieval time assumed to be generated
from one of two distributions, where the proportion of trials
in which a retrieval failure occurs (the mixing proportion) is
psr in subject relatives, and por in object relatives. The ex-
pectation here is the extreme values that are seen in subject
relatives are due to psr being larger than por.

Subject relatives

yi j ∼psr ·LogNormal(β+δ+ui +w j,σ
2
e′)

+(1− psr) ·LogNormal(β+ui +w j,σ
2
e)

Object relatives

yi j ∼por ·LogNormal(β+δ+ui +w j,σ
2
e′)

+(1− por) ·LogNormal(β+ui +w j,σ
2
e)

(2)

Here, the terms ui and w j have the same interpretation as in
equation 1.

Model comparison
Bayesian model comparison can be carried out using differ-
ent methods. Here, we use Bayesian k-fold cross-validation
as discussed in Vehtari, Gelman, and Gabry (2016). This
method evaluates the predictive performance of alternative
models, and models with different numbers of parameters can
be compared (Vehtari, Ojanen, et al., 2012; Gelman, Hwang,
& Vehtari, 2014).

The k-fold cross-validation algorithm is as follows:

1. Split data pseudo-randomly into K held-out sets y(k), where
k = 1, . . . ,K that are a fraction of the original data, and K
training sets, y(−k). Here, we use K = 10, and the length of
the held-out data-vector y(k) is approximately 1/K-th the
size of the full data-set. We ensure that each participant’s
data appears in the training set and contains an approxi-
mately balanced number of data points for each condition.

2. Sample from the model using each of the K training sets,
and obtain posterior distributions ppost(-k)(θ) = p(θ |
y(−k)), where θ is the vector of model parameters.

3. Each posterior distribution p(θ | y(−k)) is used to compute
predictive accuracy for each held-out data-point yi:

log p(yi | y(−k)) = log
∫

p(yi | θ)p(θ | y(−k))dθ (3)

4. Given that the posterior distribution p(θ | y(−k)) is summa-
rized by s = 1, . . . ,S simulations, i.e., θk,s, log predictive
density for each data point yi in subset k is computed as

êl pdi = log

(
1
S

S

∑
s=1

p(yi | θk,s)

)
(4)

5. Given that all the held-out data in the K subsets are yi,
where i = 1, . . . ,n, we obtain the êl pd for all the held-out
data points by summing up the êl pdi:

êl pd =
n

∑
i=1

êl pdi (5)
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The difference between the êl pd’s of two competing mod-
els is a measure of relative predictive performance. We can
also compute the standard deviation of the sampling distribu-
tion (the standard error) of the difference in êl pd using the
formula discussed in Vehtari et al. (2016). Letting ÊLPD be
the vector êl pd1, . . . , êl pdn, we can write:

se(êl pdm0− êl pdm1) =

√
nVar(ÊLPD) (6)

When we compare the model (1) with (2), if (2) has a
higher êl pd, then it has a better predictive performance com-
pared to (1).

The quantity êl pd is a Bayesian alternative to the Akaike
Information Criterion (Akaike, 1974). Note that the relative
complexity of the models to be compared is not relevant: the
sole criterion here is out-of-sample predictive performance.
As we discuss below (Results section), increasing complexity
will not automatically lead to better predictive performance.
See Vehtari et al. (2012); Gelman, Hwang, and Vehtari (2014)
for further details.3

The data
The evaluation of these models was carried out using two sep-
arate data-sets. The first was the original study from Gibson
and Wu (2013) that was discussed in the introduction. The
second study was a replication of the Gibson and Wu study
that was published in Vasishth et al. (2013). This second
study served the purpose of validating whether independent
evidence can be found for the mixture model selected using
the original Gibson and Wu data.

Results
In the models presented below, the dependent variable is read-
ing time in milliseconds. Priors are defined for the model pa-
rameters as follows. All standard deviations are constrained
to be greater than 0 and have priors Cauchy(0,2.5) (Gelman,
Carlin, et al., 2014); probabilities have priors Beta(1,1); and
all coefficients (β parameters) have priors Cauchy(0,2.5).

Fake-data simulation for validating model Before evalu-
ating relative model fit, we first simulated data from a mixture
distribution with known parameter values, and then sampled
from the models representing the distance account and the
direct-access model. The goal of fake-data simulation was to
validate the models and the model comparison method: with
reference to the simulated data, we asked (a) whether the 95%
credible intervals of the posterior distributions of the param-
eters in the mixture model contain the true parameter values
used to generate the data; and (b) whether k-fold cross valida-
tion can identify the mixture model as the correct one when
the underlying generative process matches the mixture model.

3We also used a simpler method than k-fold cross-validation
to compare the models; this method is described in Vehtari et al.
(2016). The results are the same regardless of the model compari-
son method used.

The answer to both questions was “yes”. This raises our con-
fidence that the models can identify the underlying parame-
ters with real data. The fake-data simulation also showed that
when the true underlying generative process was consistent
with the distance account but not the direct access model, the
hierarchical linear model and the mixture model had com-
parable predictive performance. In other words, the mixture
model furnished a superior fit only when the true underlying
generative process for the data was in fact a mixture process.
Further details are omitted here due to lack of space.

The original Gibson and Wu study The estimates from
the hierarchical linear model (equation 1) and the mixture
model (equation 2) are shown in Tables 3 and 4. Note that in
Bayesian modelling we are not interested in “statistical sig-
nificance” here; rather, the goal is inference and comparing
predictive performance of two competing models.

mean lower upper
β̂1 6.06 5.91 6.20
β̂2 -0.07 -0.16 0.02
σ̂e 0.52 0.49 0.55
σ̂u 0.25 0.18 0.34
σ̂w 0.20 0.12 0.33

Table 3: Posterior parameter estimates from the hierarchical
linear model (equation 1) corresponding to the distance ac-
count. The data are from Gibson and Wu, 2013. Shown are
the mean and 95% credible intervals for each parameter.

mean lower upper
β̂0 5.85 5.76 5.95
δ̂ 0.93 0.73 1.14

p̂sr− p̂or 0.04 -0.04 0.13
p̂sr 0.25 0.17 0.34
p̂or 0.21 0.14 0.29
σ̂e′ 0.64 0.54 0.74
σ̂e 0.22 0.20 0.25
σ̂u 0.24 0.18 0.31
σ̂w 0.09 0.05 0.16

Table 4: Posterior parameter estimates from the hierarchi-
cal mixture model (equation 2) corresponding to the direct-
access model. The data are from Gibson and Wu, 2013.
Shown are the mean and 95% credible intervals for each pa-
rameter.

Table 4 shows that the mean difference between the prob-
ability psr and por is 4%; the posterior probability of this
difference being greater than zero is 82%. K-fold cross-
validation shows that êl pd for the hierarchical model is
−3761 (SE: 38) and for the mixture model is −3614 (35).
The difference between the two êl pds is 148 (18). The
larger êl pd in the hierarchical mixture model suggests that
it has better predictive performance than the hierarchical lin-
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ear model. In other words, the direct-access model has better
predictive performance than the distance model.
The replication of the Gibson and Wu study This data-
set, originally reported by Vasishth et al. (2013), had 40 par-
ticipants and the same 15 items as in Gibson and Wu’s data.
Figure 2 shows the distribution of the data by condition; there
seems to a similar skew as in the original study, although the
spread is not as dramatic as in the original study.
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Figure 2: Boxplots showing the distribution of reading times
by condition of the replication of the Gibson and Wu data.

Tables 5 and 6 show the estimates of the posterior distri-
butions from the two models. Table 4 shows that the mean
difference between the probability psr and por is 7%; the pos-
terior probability of this difference being greater than zero is
96%.

The êl pd for the hierarchical model is −3959 (53), and for
the hierarchical mixture model, −3801 (38). The difference
in êl pd is 158 (29). Thus, in the replication data as well, the
predictive performance of the mixture model is better than the
hierarchical linear model.

mean lower upper
β̂0 6.00 5.88 6.12
β̂1 -0.09 -0.16 -0.01
σ̂e 0.44 0.41 0.47
σ̂u 0.25 0.19 0.33
σ̂w 0.16 0.10 0.26

Table 5: Posterior parameter estimates from the hierarchical
linear model (equation 1) corresponding to the distance ac-
count. The data are from the replication of Gibson and Wu,
2013 reported in Vasishth et al., 2013. Shown are the mean
and 95% credible intervals for each parameter.

mean lower upper
β̂0 5.86 5.78 5.95
δ̂ 0.75 0.56 0.97

p̂sr− p̂or 0.07 -0.01 0.15
p̂sr 0.23 0.15 0.33
p̂or 0.16 0.09 0.25
σ̂e′ 0.69 0.59 0.81
σ̂e 0.21 0.18 0.23
σ̂u 0.22 0.17 0.29
σ̂w 0.07 0.04 0.12

Table 6: Posterior parameter estimates from the hierarchical
linear model (equation 2) corresponding to the direct-access
model. The data are from the replication of Gibson and Wu,
2013 reported in Vasishth et al., 2013. Shown are the mean
and 95% credible intervals for each parameter.

Discussion
The model comparison and parameter estimates presented
above suggest that, at least as far as the Chinese relative
clause data are concerned, a better way to characterize the de-
pendency completion process is in terms of the direct-access
model and not the distance account implied by Gibson and
Wu (2013) and Lewis and Vasishth (2005). Specifically, there
is suggestive evidence in the Gibson and Wu (2013) data that
a higher proportion of retrieval failures occurred in subject
relatives compared to object relatives. In other words, in-
creased dependency distance may have the effect that it in-
creases the proportion of retrieval failures (followed by re-
analysis).4

There is one potential objection to the conclusion above.
It would be important to obtain independent evidence as
to which dependency was eventually created in each trial.
This could be achieved by asking participants multiple-choice
questions to find out which dependency they built in each
trial. Although such data is not available for the present study,
in other work (on number interference) (Nicenboim, Engel-
mann, Suckow, & Vasishth, 2016) did collect this informa-
tion. There, too, we found that the direct-access model best
explains the data (Nicenboim & Vasishth, 2017). In future
work on Chinese relatives, it would be helpful to carry out a
similar study to determine which dependency was completed
in each trial. In the present work, the modelling at least shows
how the extreme values in subject relatives can be accounted
for by assuming a two-mixture process.

Conclusion
The mixture models suggest that, in the specific case of Chi-
nese relative clauses, increased processing difficulty in sub-
ject relatives is not due to dependency distance leading to
longer reading times, as suggested by Gibson and Wu (2013).

4A reviewer suggests that the direct-access model may simply
be an elaboration of the distance model. This is by definition not the
case: direct access (i.e., distance-independent access) is incompati-
ble with the distance account.
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Rather, a more plausible explanation for these data is in terms
of the direct-access model of McElree et al. (2003). Under
this view, retrieval times are not affected by the distance be-
tween co-dependents, but a higher proportion of retrieval fail-
ures occur in subject relatives compared to object relatives.
This leads to a mixture distribution in both subject and ob-
ject relatives, but the proportion of the failure distribution is
higher in subject relatives.

In conclusion, this paper serves as a case study demon-
strating the flexibility of Bayesian cognitive modelling using
finite mixture models. This kind of modelling approach can
be used flexibly in many different research problems in cog-
nitive science. One example is the above-mentioned work by
Nicenboim and Vasishth (2017). Another example, also from
sentence comprehension, is the evidence for feature overwrit-
ing (Nairne, 1990) in parsing (Vasishth, Jäger, & Nicenboim,
2017).
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Abstract 

We cannot see others’ mental states, so we infer them by 
watching how people behave. Bayesian inference in a model of 
rational action – called inverse planning – captures how 
humans infer desires from observable actions. These models 
represent desires as simple associations between agents and 
world states. In this paper we show that by representing desires 
as probabilistic programs, an inverse planning model can infer 
complex desires underlying complex behaviors—desires with 
temporal and logical structure, which can be fulfilled in 
different ways. Our model, which combines basic desires via 
logical primitives, is inspired by recent probabilistic grammar-
based models of concept learning. Through an experiment 
where we vary behaviors parametrically, we show that our 
model predicts with high accuracy how people infer complex 
desires. Our work sheds light on the representations underlying 
mental states, and paves the way towards algorithms that can 
reason about others’ minds as we do. 
 

Keywords: social cognition; theory of mind; computational 
modeling; Bayesian inference. 

Introduction 

 

As social creatures, humans routinely have to make sense 

of what other people are doing, and we do so by appealing to 

mental states such as beliefs, desires, and intentions. Because 

we cannot see these internal mental states we need to infer 

them by watching how people act. 

Research into this capacity, called a Theory of Mind 

(Gopnik & Meltzoff, 1997; Dennett, 1989), suggests that 

mental state inferences are driven by the assumption that 

agents act efficiently, subject to constraints imposed by their 

environment (Gergely & Csibra, 2003). If, for instance, an 

agent takes a straight path towards a cookie jar, we can guess 

that her goal is to get a cookie, even before she has reached 

it. By contrast, if she gets there after wandering around for a 

while, we may infer that she found it without having 

deliberately searched. 

In such scenarios, it makes sense to equate goals with 

desires. But in more complex scenarios it is important to 

distinguish between the two: a one-to-one correspondence 

between desires and goals is rare. Consider, for instance, if 

Bob wants to have breakfast. He can do this in several 

different ways that each require a different plan: he can stay 

home and prepare breakfast; he could go to the local café near 

his house; or he could go to a coffee shop that is out of the 

way. If he chooses to eat at the local café, he can show up and 

request food. By contrast, if he chooses to cook, he may have 

to go to the grocery store first and then go to his kitchen, in 

that order. While Bob is at the grocery store, he may need to 

buy coffee and milk, but the order in which he buys them does 

not matter. Finally, before Bob has had breakfast, many states 

of the world are rewarding (eating at the café or having a 

scone at home, for example), but once he eats something, all 

rewards associated with breakfast disappear. 

These examples reveal three key properties of desires. 

First, desires can often be fulfilled in more than one way. So 

from an observer’s standpoint, goals cannot be equated with 

desires. Second, desires can have logical and temporal 

structure: they can be fulfilled in different ways (get tea or 

coffee), they can break into subgoals (get coffee and milk), 

and they can have temporal structure (go to the café and then 

buy a scone). Finally, the logical and temporal structure of 

desires interacts with the underlying rewards. If Bob is 

thirsty, then both soda and water are rewarding. But once he’s 

had one of them, the other loses its immediate appeal. If Bob 

wants to exercise and then bathe before work, he has to do 

them in that specific order; doing them in the wrong order 

does not suffice. In other cases, the order does not matter, but 

the reward is only achieved once all the necessary 

prerequisites are fulfilled. If Bob likes his coffee with milk, 

then having coffee and milk together is rewarding, but having 

only one of them is not. 

Computational models of mental-state attribution that 

successfully explain human mental-state inferences assume a 

relatively simplistic representation of desires: each desire can 

only be fulfilled in one way, and it is fulfilled by reaching one 

and only one physical state of the world (e.g. Baker et al., 

2017; Baker et al., 2012). This assumption implicitly blurs 

together desires, intentions, goals, and physical states of the 

world. As our examples show, this is overly limiting; people 

may require conjunctions (A and B) or disjunctions of goals 

(A or B), with temporal properties (A then B). 

In this paper we develop a richer representation of desires, 

and clarify the multiple computational levels that transform 

desires into actions. To solve the representational challenges, 

we draw on advances in concept learning that support 

concepts of unbounded complexity (Piantadosi et al., 2012; 

Goodman et al., 2008, 2014). To solve the inferential 

challenges that arise with more sophisticated representations, 

we draw on advances in mental-state attribution beyond goal 

inference (Lucas et al., 2014; Jara-Ettinger et al., 2016, under 

review). In the remainder of the paper, we sketch out the 

computational framework and we present an experiment 

testing quantitative predictions of our model. 
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Figure 1. (a) schematic of the generative model. (b) 

example of how an expression combines primitives and 

objects to determine how to satisfy a desire. This 

expression corresponds to an agent who first wants either 

coffee and milk, or just tea, and then a scone afterwards. 

The tree below shows the space of possible intentions that 

can fulfill the desire. 

Computational model 

 

We take as a starting point the idea that social cognition is 

supported by a probabilistic generative model that determines 

how mental states lead to actions (Baker, et al., 2017). We 

expand on this approach by building a more powerful 

representation of desires, and how they relate to behavior. 

Figure 1a shows the overall schematic of our model. We 

argued that a realistic model of commonsense psychology 

should distinguish between desires, goals, intentions, and 

actions, and our model attempts to do so. 

At the top level we place desires, which combine logical 

(and/or) and temporal (then) primitives with simple goals 

(such as arriving to certain physical locations). This approach 

enables us to represent desires that directly map onto a single 

goal (e.g. “go to get coffee”) as well as desires that can be 

fulfilled in different ways (e.g. “eat breakfast first, and then 

either get coffee and milk, or alternatively get tea”). This 

representation is inspired and based on computational models 

that combine logical primitives with unitary concepts to 

explain the productivity and compositionality of conceptual 

knowledge (Piantadosi et al., 2012; Goodman et al., 2008, 

2014). 

Following Goodman et al. (2008), we model the space of 

desires with a probabilistic grammar, which builds arbitrarily 

complex desires by composing simple ones. The grammar 

implements production rules that recursively conjoin 

primitives and units to yield desire expressions. We endow 

the grammar with several primitives – And, Or, and Then – 

but the framework is general. These primitives are motivated 

by common-sense intuitions, but our primary goal is to 

develop a framework for compositional desires, not to 

identify the exact primitives that underlie goal-directed 

behavior. 

To connect desires to actions, we rely on an intermediate 

representation of intentions (see Jara-Ettinger et al., under 

review). Given a composite desire, our model derives the 

space of intentions as the set of all ordered sequences of sub-

goals that satisfy it. For instance, if an agent desires to get 

either coffee and milk, or just tea, and then a scone afterwards 

(Fig 1b), her space of intentions is {get tea and then a scone; 

get milk, coffee, and then a scone; and get coffee, milk, and 

then a scone}. 

To model how the agent selects an intention and transforms 

it into an action plan, we rely on advances in commonsense 

psychology that suggest that we interpret other people’s 

behavior through the assumption that they act to maximize 

their subjective utilities – the difference between the rewards 

they obtain and the costs they incur (Jara-Ettinger et al., 2016, 

under review; Lucas et al., 2014). This assumption operates 

at two levels: given a space of intentions, the agent will 

choose the one that maximizes her subjective utilities, and 

given an intention, the agent will attempt to complete it as 

efficiently as possible (for an agent to maximize utilities, they 

must also minimize costs). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Examples of the experimental stimuli. (a-b) 

examples of stimuli that consist of a single event. (c) 

example of stimuli that consists of two events. 

 

To compute each intention’s utility, we rely on planning 

algorithms developed in the robotics literature (Puterman, 

2014) that have been successfully applied to model mental-

state attribution (Baker et al., 2009; 2017): Markov Decision 

Processes (MDPs). Given a set of states, a set of actions, and 

an underlying reward function, MDPs allow us to determine 

the sequence of actions that an agent should take to fulfill her 

goal as efficiently as possible. By using MDPs, we can 

compute the expected cost of achieving each goal, and  

define an intention’s utility as the reward gained by fulfilling 

the desire minus the sum of the costs for achieving each goal 

in the intention. Given each intention’s utility, we assume that 

agents probabilistically select an intention: 

 

 

 𝑝(𝐼) ∝ exp(
𝑈(𝐼)

𝜏
) 

(1) 
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where 𝜏 is a parameter that captures expectations about the 

agent’s rationality. When 𝜏 is low, the agent invariably  

selects the intention with the highest utility; as 𝜏 increases, 

the agent is more likely to choose a suboptimal intention. 

Finally, once the agent has selected an intention, we define 

the action plan as the ordered sequence of goals along with 

the motor programs that complete each goal (computed 

through MDPs). 

Inference in the generative model 

We have specified a generative model for compositional 

desires, intentions, and action plans. To recover a desire 

given some observed actions, we use Bayesian inference to 

invert the generative model. Given an observable set of 

actions A, the posterior belief for each underlying desire D is 

given by: 

 

 𝑝(𝐷|𝐴) ∝ 𝑙(𝐴|𝐷)𝑝(𝐷) (2) 

 

where the prior p(D) is set to favor simpler explanations using 

a simple penalization for the length of the expression (as in 

Goodman et al., 2008). 

To compute the likelihood, l(A|D), we integrate over the 

space of all possible intentions the agent could have: 

 
Figure 3: Detailed results from the experiment. Each plot represents one trial from the experiment. The x-axis shows the 

model’s top three hypotheses and the y-axis shows the z-scored prediction with participant judgments. Blue lines and dots 

show model predictions and red lines and dots show participant judgments. Vertical bars show 95% confidence intervals. In 

each plot, the schematic represents the paths the agent took in the event (see Figure 2 for examples of the actual stimuli).  
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 𝑙(𝐴|𝐷) = ∑ 𝑝(𝐴|𝐼)𝑝(𝐼|𝐷)

𝐼∈𝐼𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑠

 
(3) 

 

Both the probability of the intention given the desire (p(I|D)), 

and the probability of the action, given the intention (p(A|I)) 

are computed through the assumption that agents act to 

maximize their utilities—the difference between the 

subjective reward for fulfilling their desires minus the cost 

for fulfilling it. This expectation implies that agents are more 

likely to act efficiently given their intention, but that they are 

also more likely to select the intention that can fulfill the 

desires with the overall lowest cost. We enumerate a set of 

desires using breadth-first-search over the grammar, and then 

approximate the posterior over that space using Bayesian 

inference. 

Simplicity prior alternative model 

To better understand our model, we developed a simple 

alternative that uses a deterministic likelihood function, 

where the probability of a desire generating an action 

(p(A|D)) is 1 if the action satisfies the desire and 0 otherwise. 

This model continues to have much of the power of the full 

model: it has access to rich representations of desires and the 

prior over hypotheses creates a preference for simpler 

explanations. Unlike the main model, this model is 

insensitive to the intermediate representations of intentions, 

as it does not account for how the agent chooses the intention 

that will fulfill their desires. 

Experiment 

Design 

To evaluate our model, we designed a simple task where 

participants watched an agent’s behavior across one or two 

days and were asked to determine their belief that the agent 

had certain desires (see Figure 2).     

Methods 

Participants 33 participants, mean age (SD) = 32.13 years 

(9.38 years), range = 20-61 years from the US (as determined 

by their IP address) were recruited using Amazon’s 

Mechanical Turk Framework. 

 

Stimuli 
Figure 2 shows an example of the stimuli. Stimuli consisted 

of 19 two-dimensional images of an agent traveling to one or 

more of three potential static locations. Eight of these trials 

consisted of a single event and the remaining 11 consisted of 

two events. The one event trials were built by designing all 

possible efficient paths agents could take to reach between 1 

and 3 of the locations and removing equivalent paths (i.e. 

identical under a rotation or reflection of the map). 

Trials with two events were built by first creating a set 

including possible efficient paths between 1 and 2 of the 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Comparison between our model (simplicity & 

efficiency) and the alternative model (prior only). Each dot 

represents a judgment of a hypothesis for a given trial. The 

x-axis shows the model’s prediction and the y-axis shows 

participant judgments. 

 

locations, omitting paths between 3 locations to prevent the 

stimuli set from growing too large. In contrast to the single 

event set, we keep the equivalent paths, as they become 

necessary to construct the most primitive desires occurring 

over two events e.g. (A or B). This creates a base set of 9 

paths. To generate the trials with two events, we first split the 

9 paths into two classes, one for paths that go to only one 

location (3 paths) and another for paths that go to two 

locations (6 paths). For each class we compute the cartesian 

product of itself, and after removing duplicate pairs of stimuli 

in each class, (e.g. A,B = B,A), this provided a set of 27 two 

event trials. From that set, events that violated the principle 

of rational action were removed (10 trials). Additionally, if a 

trial with repeated events was the reflection or rotation of 

another trial with two events, it was removed (5 trials); e.g. 

between (A,A) and (C,C), we kept (A,A). Last, trials with two 

events were removed if only one possible hypothesis could 

explain the trials (2 trials), these trials trials impact our ability 

to get graded responses on alternative plausible hypotheses 

(an ideal trial would have more than one plausible 

explanation, to determine if the model captures the same 

graded measure humans have for alternatives). For example, 

if the agent only goes to the farthest location on event 1 and 

2, it's clear the only compatible hypothesis is that the agent 

wants to go that location. As an exception, we included one 

of these cases in the final set, just to show that the model was 

capable of inferring the only plausible hypothesis. After 

filtering the original 27 two event stimuli, 11 remained. These 

11 plus the 8 one event trials result in the 19 stimuli used in 

the experiment.  

 

Procedure  
Participants first read a tutorial that explained the logic of the 

task. Participants then completed a short survey that ensured 

they had read the instructions, and the test phase followed 

immediately after. 

During the test phase, participants completed 19 trials. In 

each trial participants saw the stimuli on the left side, and 

they were asked to rate their belief that the agent had each of 

three different desires. Each desire was rated on a scale from 

0-10 for each, with 0 indicating “Definitely not”; 5 “Maybe”; 
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and 10 “Definitely.” The three desires were obtained by 

selecting the three hypotheses with the highest posterior 

distribution according to the model. In order to present these 

hypotheses to participants, we translated the description from 

the model into descriptions in English. To ensure their 

accuracy, two coders blind to the original hypotheses back-

translated the descriptions into the model’s original 

representations. The two coders showed 100% agreement and 

recovered the correct model hypothesis in all trials. 

Results 

Figure 3 shows the results from the experiment. 

Qualitatively, our model fit participant judgments well. Our 

model predictions showed a correlation of r=0.92 with 

participant judgments (95% CI: 0.86-0.95). See Figure 4. By 

contrast, the alternative model (prior only) showed a weaker 

correlation (r=0.80; 95% CI: 0.69 -0.88). A bootstrap over the 

correlation difference showed that the full model performed 

reliably better than the alternative model (correlation 

difference = 0.11; 95% CI: 0.009-0.18). 

Figure 5 shows the detailed results of a single trial that 

illustrates how the alternative model with a deterministic 

likelihood function fails to capture participant judgments. In 

this trial the agent begins by going to the top left location 

(which is one of the closest ones, together with the bottom 

right location), and then travels diagonally to the bottom right 

location. Our full model gives a high probability to the desire 

that the agent wanted to visit those two locations in that 

specific order (A then C), an average probability to the desire 

that she could have wanted to visit the locations in any order 

(A and C), and a low probability to the desire that the agent 

wanted to visit either A or B first, then C ((A or B) then C). 

Although all hypotheses explain the actions, our model is 

sensitive to the probability that each desire would generate 

the observed actions relative to competing ways to fulfill the 

same desire (driving the difference between the first and 

second hypotheses) and to the baseline complexity of the 

desires (driving the difference between the second and third 

hypotheses). That is, our model recognizes that there are two 

equally good intentions that fulfill the desire “A and C” (A 

and then C, or C and then A), but only one that fulfills the 

ordered desire “A then C” (A and then C). This makes our 

model favor the ordered explanation, as participants do (see 

Figure 5). This is not captured in the prior only model, as it 

is only sensitive to expression complexity. These results 

show how people are both sensitive to the likelihood that a 

desire would generate the observed actions, and to the 

complexity of the ascribed desire. Figure 6 shows how this 

failure becomes even stronger in the case where participants 

watch the agent behave identically across two events. 

Discussion 

 

Here we presented a formal model of action understanding 

that represents desires as composite entities sampled from a 

probabilistic context free grammar. Desires get transformed 

into intentions and then into action plans by the assumption 

that agents act to maximize their utilities. By performing 

Bayesian inference over this generative model, we showed 

how we can capture desires that have rich logical and 

temporal structure, as well as enabling us to represent desires 

that can be fulfilled in more than one way. We tested our 

model by comparing its inferences with those made by human 

participants, finding that it closely mirrors their judgments, 

and that an alternative model is less successful. 

Our model shows that combinations of primitives and 

objects using a probabilistic context free grammar supports 

rich representations of desires in Theory of Mind. The 

primitives, composing over objects, generate structured 

desires that capture temporal and logical structure. 

Our goal was to develop a more nuanced representation of 

desires, and the framework we propose works for any 

arbitrary set of primitives and objects. To test our model, we 

focused on three specific primitives: And, Or, and Then. Our 

results do not imply that these are the only primitives people 

use when they reason about others’ desires, or even that they 

are central in action-understanding. Other primitives such as 

If, Any, and Not, are likely also at play when we reason about 

other people’s behavior. More research is needed to 

characterize the primitives we use in action-understanding, 

and their developmental origins. 

To characterize desire complexity, we used a simple prior 

 

 
 

Figure 5. Detailed results one of the trials. The top left plot 

shows the schematic of the stimuli we used. The top right 

plot shows participant judgments (z-scored); the bottom 

two plots show the predictions of the full model and the 

alternative model (z-scored). This example illustrates how, 

by removing the probabilistic nature of the likelihood 

function, the model loses sensitivity to variability in 

participant judgments. 
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that penalized the length of the expression (based on 

Goodman et al., 2008). Although this is a useful 

approximation, different primitives may have different priors 

which capture both their conceptual complexity and the 

extent to which they are useful in explaining behavior. Future 

work may attempt to uncover primitive-specific priors and 

the forces that shape these priors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Results from the trial where participants watch two 

repeated events. While the prior only model continues to 

make the same predictions, both participants and our model 

have a stronger belief that the order mattered, in comparison 

to the trial with a single event (Figure 5) 

 

In our current work, we focused specifically on desires and 

we assumed that the agents had full knowledge about the 

environment. In more realistic cases, agents can be uncertain, 

ignorant, or wrong about the world, and people’s reasoning 

about others is sensitive to this fact (Baker et al., 2017; 

Kovács, Téglás, & Endress, 2010). Our grammatical 

approach to desires may also support more structured 

representations about beliefs. Intuitively, people’s beliefs are 

often structured logically (e.g. my laptop is in my backpack 

or at home; she thinks he is hungry and tired). In future work 

we will investigate the power and limitations of applying this 

approach to the representations of beliefs, and to the 

interaction of beliefs and desires. 

Although in our work we focused on these representations 

as applying to desires, these desires often inherit their 

structure from how the world works. If Bob wants to shoot a 

water gun, he needs to pour water into the tank first, then 

pump air into valve, and then press the trigger, in that order. 

The fact that Bob’s desire takes this structure is a reflection 

of how water guns work. This opens the possibility that, 

through the ability to reason about other people’s desires, we 

may simultaneously learn procedural knowledge about how 

to make changes to the world. As such, our model may shed 

light on how we learn about the world by watching more 

competent agents (see also Jara-Ettinger, Baker & 

Tenenbaum, 2012). 
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Abstract 

English-speakers whose access to number language is 
artificially compromised by verbal interference and the Pirahã 
(an Amazonian tribe without exact number words) appear to 
rely on analog magnitude estimation for representing non-
symbolic exact quantities greater than 3. Here, 16 participants 
with aphasia performed the 5 counting tasks from these 
previous studies. Performance was poorest when targets were 
not visible during response (70% correct, task 4; 71% correct, 
task 5) and best when targets were presented as subitizable 
groups of 2 and 3 (98% correct, task 2). Western Aphasia 
Battery-Revised subtest scores correlated with task 
performance, suggesting diverse forms of language 
impairment may contribute to errors. Coefficients of variation 
for tasks and significant correlations of target magnitude with 
error rate (r2=.88) and error size (r2=.87) across tasks suggest 
participant use of analog magnitude estimation. Experiments 
involving people with aphasia may further refine our 
understanding of how language and thought interact. 
 
Keywords: aphasia, language, number 

Introduction 
“Linguistic relativity” occupies the broad theoretical middle 
ground where language and cognition interact, where the 
grammatical structures and lexicons of a language are 
believed to influence thought to a greater or lesser degree.  
While the idea that language can influence thought, 
perception, and action has a long history in Western 
philosophy, Whorf (1956) provided the first and clearest 
articulation of a strong version of this position. According to 
linguistic relativity, words aren’t just names for pre-existing 
concepts; thought is influenced by the way particular 
languages are structured, what languages have words for, 
and what they don’t. When a language is transmitted from 
one generation to the next, so are particular ways of “cutting 
up” the world that come with speaking that language. 

Everett (2013) compiles a diverse array of recent research 
that explores domains like space, time, quantity, gender, and 
color and draws positive conclusions about the effects of 
language on thought. Similarly, Frank, Fedorenko, Lai, 

Saxe, and Gibson (2012), review several studies that find 
“meaningful cognitive differences” (p. 75) between speakers 
of languages that have words for particular concepts and 
those that don’t. Such cognitive differences appear to exist 
both across cultures and across development. At the same 
time, experimentally manipulated verbal interference can 
temporarily remove differences otherwise present.  

The domain of number is a good entry point for testing 
the linguistic relativity hypothesis. Numeracy develops 
alongside language in humans, and there are clear 
differences between the ways adult speakers of different 
languages perform number-related tasks. The Pirahã, an 
indigenous Amazonian tribe, are of particular interest here, 
as their language lacks words for exact number. Gordon 
(2004) engaged seven Pirahã tribe members in a series of 
nonverbal matching tasks where participants were asked to 
reproduce a visual array that matched a model. The Pirahã 
struggled to accurately reproduce any set of objects 
containing more than three items, even when the model was 
visible to copy. Gordon (2004) also noted Pirahã responses 
produced a coefficient of variation (CoV) of approximately 
0.15, congruent with evidence that without access to number 
language and counting, people use less accurate but inborn 
abilities to estimate quantities larger than three1.  

Frank, Everett, Fedorenko, and Gibson (2008) replicated 
the tasks from Gordon (2004) with fourteen participants in a 
different Pirahã village. The authors found similar results 
for each task with the exception of the one-to-one matching 
task, where results were near ceiling. Consequently, Frank 
et al. (2008) concluded that some of the startling results of 
Gordon (2004) might be the product of participants not 
understanding the task or inconsistencies in the experiment. 

Everett and Madora (2012) sought to resolve the 
conflicting results of Gordon (2004) and Frank et al. (2008). 
The authors recreated the three tasks from Frank et al. 

                                                             
1 CoV is the standard deviation of a data set divided by its mean. 
Studies of magnitude estimation in animals and humans have 
found that response variability correlates with target magnitude, 
producing a CoV of 0.15 (see Whalen, Gallistel, & Gelman, 1999). 
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(2008) with fourteen participants in a third Pirahã village. 
With one exception, Everett and Madora (2012) found no 
significant differences when making intra- or inter-study 
task comparisons. The exception was the one-to-one 
matching task from Frank et al. (2008), which was 
significantly different from control tasks and the Everett and 
Madora (2012) one-to-one matching task. The CoVs for all 
tasks in Everett and Madora (2012) were 0.15, consistent 
with Gordon (2004) and the hypothesis that the Pirahã were 
employing analog estimation strategies. 

Frank et al. (2012) extends the experimental tasks 
performed with the Pirahã to a numerate population by 
using verbal interference in an attempt to force participants 
to resort to analog magnitude estimation (Whalen et al., 
1999). The authors hypothesized that if language is not 
crucial to establishing exact number, then participants 
should successfully perform non-verbal number tasks under 
verbal interference. Should language be necessary for exact 
numeracy, however, these same participants should fall 
back on analog magnitude estimation under verbal 
interference revealing a constant CoV, as seen in other 
studies. To test this, Frank et al. (2012) had thirty-five MIT 
students attempt the matching tasks performed with the 
Pirahã while simultaneously repeating radio news 
broadcasts aloud. The results of these experiments were then 
compared to each other and to the results of the same 
experiments with the Pirahã from Frank et al. (2008). 

While the English-speakers were found to be more 
accurate than the Pirahã, both groups made “significant and 
systematic errors” (p. 79) on the “nuts-in-a-can” task (see 
Figure 1 below), where participants have no access to a 
direct or remembered visual representation of the array. 
Here, college students under verbal interference, like the 
Pirahã, produced a flat CoV of 0.15 across targets, 
suggesting the use of analog magnitude estimation. Frank et 
al. (2012) drew the conclusion that the concept of “exact 
match” does not require language, but that language is 
crucial to storing and manipulating exact quantities greater 
than three. This conclusion is in line with the language as a 
technology or tool-kit version of the linguistic relativity 
hypothesis, wherein language allows us to transcend our 
pre-linguistic cognitive capacities (Gentner & Goldin-
Meadow, 2003). 

The evidence to date strongly suggests that language for 
number has a significant influence on how quickly and 
accurately we comprehend and process quantities larger 
than three. At the same time, there is room for debate as to 
how fundamental number language is to the correct 
apprehension of exact quantity. One largely unexplored 
route to an understanding of the relationship between 
language and counting (and more generally, questions 
regarding linguistic relativity) involves studying people with 
organic language impairments. People with focal brain 
lesions—either as a result of infarcts, tumor resections or 
other restricted lesions—may acquire aphasia, an 
impairment of a person’s ability to comprehend and 
formulate language across multiple modalities, including 

speaking, reading, writing, and listening (Rosenbek, 
LaPointe, & Wertz, 1989). Consequently, people with 
aphasia may experience difficulty in the use of language for 
number and calculation (Dragoy, Akinina, & Dronkers, 
2016). McNeil and Pratt (2001) specify that aphasia is a 
processing or performance disorder—that is, a problem in 
using language for a known concept. By this reasoning, if 
aphasia were to affect a person’s ability to represent exact 
quantity on a non-symbolic task such as the one employed 
in the current study, it may work in a similar fashion to 
verbal interference—by disrupting access to a number 
concept and consequently impairing comprehension or 
speech in relation to that concept. However, it is 
conceivable that aphasia may impair some individuals’ 
ability to represent exact quantity in a manner more like 
the Pirahã, who have no exact number language to employ. 
In such a scenario, a person with aphasia may be impaired 
because they have no stored verbal label for exact quantity 
available for access.  While the current study cannot 
adjudicate between these possibilities, we hope the diversity 
of impairment within the present aphasia population may 
provide a window into qualitative differences that account 
for errors across the kinds of tasks used with the Pirahã. We 
also hope to suggest ways that aphasia populations may 
generally contribute to investigations of the linguistic 
relativity hypothesis.  

While several case studies have examined the impact of 
aphasia on calculation—e.g., Dragoy et al. (2016), where 7 
of 10 participants with aphasia struggled with basic 
arithmetic and when comparing Arabic representations of 
quantities—little research to date has examined the impact 
of language impairment on non-symbolic representation of 
quantity. Lemer, Dehaene, Spelke, and Cohen (2003) 
examined a person with acalculia due to a focal lesion of the 
left parietal lobe and another person with semantic dementia 
from predominantly left temporal hypometabolism to 
demonstrate dissociations between tasks associated with 
counting and those associated with innate quantity systems 
of number processing. As predicted by a lesion in the 
parietal lobe, the patient with acalculia showed a severe 
slowness in approximation, and exhibited impairments in 
subitizing and numerical comparison tasks. Meanwhile, the 
patient with semantic dementia had intact approximation 
abilities and showed preserved processing of non-symbolic 
small numbers—that is, her “quantity processing” systems 
were functioning as expected—but struggled with tasks that 
required intact verbal processing and counting. Given these 
findings and related results with other populations, language 
impairment in the form of aphasia may be predicted to 
negatively affect the individual’s ability to produce non-
verbal and non-symbolic representations of exact quantity. 

In the current study, participants with aphasia performed 
the same set of five, increasingly complex matching tasks 
used with the Pirahã and English-speakers whose access to 
language was artificially compromised by verbal 
interference (Frank et al., 2012). It bears noting that unlike 
the previously studied groups, a clinical aphasia population 
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consists of individuals with a diversity of verbal and 
nonverbal impairments. Regardless, we hypothesize that 
participants will make more frequent and larger errors (1) in 
proportion to target size; (2) on each subsequent, more 
difficult, task; and (3) produce a flat coefficient of variation 
(CoV) on each task and across target quantities, suggesting 
reliance on the analog magnitude system to estimate 
quantity. Such results would lend further support to the 
hypothesis that access to language for exact number is 
necessary for the recognition and representation of exact 
quantities. While general severity of language impairment is 
predicted to correlate with performance across tasks, we are 
also interested in whether particular aspects of language 
impairment point to specific qualities of language involved 
in counting and exact quantity representation.  

Results suggesting that aphasia limits a person’s ability to 
represent non-symbolic exact quantities would complement 
the body of evidence demonstrating a relationship between 
exact number language and the ability to perform non-
symbolic exact quantity tasks. When taken alongside similar 
evidence from previous studies with different human 
populations—i.e. children raised in numerate cultures but 
who have yet to develop number-language skills (e.g., 
Condry & Spelke, 2008), adults in numerate cultures under 
verbal interference, and adults in an anumeric culture—it 
would seem difficult not to conclude that access to exact 
number language has an effect on the way that humans think 
about numbers. More broadly, these findings may refine 
hypotheses generated by linguistic relativity with regard to 
the necessity and/or effective use of language in 
representing basic number concepts.  The linguistic 
diversity present within the present clinical aphasia 
population may provide deeper insight into relations 
between particular aspects of language function and the 
representation of exact quantity. 

Methods 
Sixteen participants (3 female) completed aphasia 
assessments and the set of five non-verbal and non-symbolic 
exact quantity representation tasks from Everett and Madora 
(2012) and Frank et al. (2012). Thirteen participants also 
completed a numeral elicitation task, confrontation naming 
task, and free counting task. Eight completed tests of 
nonverbal semantic processing and short-term memory—the 
Semantic Category Probe (Freedman & Martin, 2001), and 
Pyramids and Palm Trees tests (Howard & Patterson, 1992). 
All participants had aphasia resulting from a left-
hemisphere stroke as determined by their score on the 
Aphasia Quotient (AQ) portion of the Western Aphasia 
Battery-Revised (WAB-R) (Kertesz, 2006) and a speech-
language pathologist. Within this framework, 5 participants 
are considered to have Broca’s aphasia, 6 Anomic aphasia, 2 
Wernicke’s aphasia, 2 conduction aphasia, and 1 global 
aphasia. Eligible participants were a minimum of six 
months post onset of aphasia (M=73 months, R=9–159 
months), between the ages of eighteen and eighty-five years 
(M=61, R=43–75) and native English speakers.  

Aphasia assessment. Participants completed the AQ 
portion of the WAB-R (Kertesz, 2006). This formal 
assessment includes tasks such as answering simple 
questions, describing pictures, manipulating and naming 
common objects, following directions, repeating words, and 
matching pictures to printed words and sentences. 
 
Matching tasks (Everett & Madora, 2012; Frank et al., 
2012). Participants completed five non-verbal and non-
symbolic exact quantity representation tasks in the 
following order: a one-to-one matching task, an uneven 
matching task, an orthogonal matching task, a hidden 
matching task, and a “nuts-in-a-can” task (see Figure 1). In 
every task, the experimenter presented a quantity of spools 
of thread (approximately 1” tall, ¾” in diameter) and asked 
the participant to construct a row of un-inflated balloons 
(approximately 4” long and 2” wide) that matches the 
number of spools of thread. In the one-to-one task, the 
experimenter placed the spools one at a time in an evenly 
spaced line from left to right. In the uneven task, the spools 
were presented in the same manner as in the one-to-one 
task, but broken randomly into smaller groups of two and 
three. The orthogonal task is identical to the one-to-one task 
except that the row of spools is presented in a line 
perpendicular to the participant. The hidden matching task 
is identical to the one-to-one task except that the row of 
spools is hidden from the participant after being presented. 
In the “nuts-in-a-can” task, the experimenter places spools 
one by one into an opaque cup. Participants were tested 
once per task on each quantity from four to twelve in one of 
two random orders, totaling forty-five trials per participant. 
 

 
 
Figure 1: Schematic of each matching task. From left to right: one-
to-one match (task 1), uneven match (task 2), orthogonal match 
(task 3), hidden match (task 4), “nuts-in-a-can” (task 5). Image is 
from Frank et al. (2012). 
 
Numeral elicitation task. Participants were asked to name 
the number of spools of thread presented, increasing from 
one to twelve and then decreasing from twelve to one. In 
each case, participants were asked, “How many spools of 
thread are there?” by the researcher. Divergence between 
performance on this task and on the matching tasks might 
illuminate whether the participant is having difficulty 
recognizing, articulating, or representing the target quantity. 
 
Confrontation naming task. Participants were asked to 
name the Arabic numerals one through twenty as presented 
individually on flashcards. In each case, participants were 
asked, “What number is this?” This task assessed the 
participant’s ability to recognize and name Arabic numerals. 
Confluent or divergent performance on this task when 
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compared to the matching and counting tasks might help 
differentiate the participant’s ability to recognize and name 
symbolic and non-symbolic numbers. 
 
Free counting task. Participants were asked to count up 
from one to twenty and down from twenty to one. The 
researcher says, “Please count from one up to twenty” and 
“Please count from twenty down to one.” Participants were 
allowed five minutes to recite each count list. Performance 
on this task indicates the participant’s capacity to access and 
articulate counting numbers in order, a factor in the 
participant’s performance on the matching tasks.  
 
Semantic Category Probe Test (Freedman & Martin, 
2001). Participants listened to a list of three or more words 
and determined whether the final word is from the same 
category as any of the preceding words by saying or 
pointing to “Yes” or “No.” This task assesses the 
participant’s capacity to retain semantic information in their 
short-term memory, where impairment might be a potential 
reason for poorer performance on the matching tasks. 
 
Pyramids and Palm Trees Test (Howard & Patterson, 
1992). Participants matched a pictured item to the closest 
associate among a set of two pictured choices (e.g., fish 
matched to: cat, table). This task assessed the participant’s 
capacity to process non-verbal semantic information. 
Distinguishing between semantic and verbal impairments 
may help explain performance on the matching tasks.  

Results 
There was notable variation across participants and tasks. 
Percent correct scores for all tasks ranged from 53% to 98% 
(Table 1). Participants responded correctly on 83% of task 1 
trials, 98% of task 2 trials, 90% of task 3 trials, 70% of task 
4 trials, and 71% of task 5 trials (Fig. 2, far left).  

Participants’ accuracy descreased as the target quantity 
increased across all tasks (r2 = 0.87) (Fig. 2, center left) and 
for each individual task (Fig. 3, top row). Similarly, error 
magnitude increased as target quantity increased (r2 = 0.88) 
(Fig. 2, center right). CoV was similar across target 

quantities and tasks (Fig. 2, far right), but higher on task 4 
(0.10) and task 5 (0.11) (Fig. 3, bottom row). Across 
analyses, aphasia participants’ performance was remarkably 
similar to the performance of English speakers under verbal 
interference from Frank et al. (2012) (Figs. 2 and 3). 
Compared to the Pirahã (Figs. 2 and 3, aggregated from 
Everett & Madora, 2012; Frank et al., 2008; and Gordon, 
2004), participants with aphasia and English speakers under 
verbal interference were generally more accurate and made 
smaller errors, but all three groups showed similar patterns 
of responding across tasks.  
 

  Task   
  1 2 3 4 5 Total % 

Correct 

Pa
rt

ic
ip

an
t 

2 0 0 0 1 0 1 97.8 
16 0 0 0 1 1 2 95.6 
7 0 0 0 1 1 2 95.6 
1 0 0 0 1 1 2 95.6 

10 0 0 0 1 1 2 95.6 
12 1 0 0 1 1 3 93.3 
13 0 1 3 1 2 7 84.4 
11 0 0 0 5 2 7 84.4 
15 0 0 0 4 5 9 80.0 
3 2 0 1 3 4 10 77.8 
9 1 0 2 2 5 10 77.8 
6 4 0 2 2 2 10 77.8 

14 2 0 2 4 4 12 73.3 
4 5 1 0 3 4 13 71.1 
8 5 0 2 6 3 16 64.4 
5 4 1 3 7 6 21 53.3 

 
Table 1: Participant errors across tasks. The maximum number of 
errors on each task is nine. Darker colors indicate more errors. 
 
 WAB-R AQ and subtest scores were reliably correlated 
with task performance on tasks 4 and 5. AQ and subtest 
scores were most predictive of performance on task 5, the 
“nuts-in-a-can” task (Table 2).  
 Thirteen participants completed additional number tasks. 
While, generally speaking, participants with higher AQ 
scores who had made fewer errors on the nonverbal 
matching tasks also performed better on the additional 

 
 

Figure 2: Matching task summary data for participants with aphasia, Pirahã, and adults under verbal interference. Far left: For participants 
with aphasia, performance was poorest when targets were not visible during response (70% correct, task 4; 71% correct, task 5) and best 
when targets were presented as subitizable groups of 2 and 3 (98% correct, task 2). Center left: Significant correlations were found 
between target magnitude with both error rate (r2=.87) and error size (r2=.88) (Center right) across tasks. Far right: Coefficients of 
variation for participants with aphasia mirrored those of adults under verbal interference. “Pirahã” data is from Everett and Madora (2012); 
Frank et al. (2008); and Gordon (2004). “Verbal Interference” data is from Frank et al. (2012). 
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counting tasks, there were exceptions. Participant 13, who 
has a high AQ score and made no errors on the additional 
number tasks made seven errors across matching tasks. 
Participant 11 made as many matching task errors as 
Participant 13 (refer to Table 1), but scored only 4 of 12 on 
the numeral elicitation task. Additionally, Participant 11, 
despite correctly reciting 18 of 20 numbers on the ascending 
free counting task, could not count backwards from 20 to 1, 
receiving a score of zero on the descending free counting 
task. Across all 8 participants who completed the nonverbal 
semantic processing and short-term memory tasks, higher 
AQ scores predicted better performance on the Pyramids 
and Palm Trees and Semantic Category Probe tests.  
 

  Task 
  1 2 3 4 5 

W
A

B
-R

 
su

bt
es

t 

AQ 0.41 -0.02 0.23 0.61 0.77 
Speech 0.30 -0.04 0.18 0.62 0.74 

Comprehension 0.42 0.04 0.10 0.38 0.69 
Repetition 0.38 -0.01 0.16 0.50 0.68 

Naming 0.49 -0.10 0.33 0.66 0.72 
 
Table 2: Correlations between task performance and WAB-R 
subtest scores. AQ = Aphasia Quotient, Speech = Spontaneous 
Speech, Comprehension = Auditory Comprehension, Naming = 
Naming and Word Finding. Darker colors indicate larger r-values. 

Discussion 
Generally, participants (1) made more errors for larger 
target quantities, (2) made errors of greater magnitude for 
larger target quantities, and (3) had more difficulty with 
tasks where targets were not visible during response. There 
was consistency among those participants with the greatest 
overall task impairments. Participants who made ten or 
more incorrect responses also made errors across tasks 1, 3, 
4, and 5. Eight different participants responded incorrectly 

to at least one trial of task 1, where the target remained 
visible and did not require conservation in space or time, 
nor, presumably, counting: correct responding only required 
participants to match one object to another. The results of 
task 1 stand in stark contrast to near-ceiling results on task 
2. In task 2, targets were presented in groups of 2 and 3. 
This is the only difference between tasks 1 and 2, 
suggesting that many participants were able to subitize the 
visible targets on task 2 in order to answer accurately, but 
were unable to do so consistently on task 1. Near-ceiling 
performance on task 2 also suggests that perceptual and/or 
attentional impairments (e.g., field cuts, neglect) do not 
explain poor performance on tasks 1, 3, 4, and 5; this 
represents an important control condition in a stroke 
population with expected neurological and behavioral 
heterogeneity. Surprisingly, performance on task 3 was 
superior to performance on task 1, despite the required 
spatial translation between the perpendicular target array 
and horizontal response. Participants responded incorrectly 
on 10% of task 1, 2, and 3 trials, where the target remained 
visible for comparison, matching, and recounting. 
Performance on tasks 4 and 5 was poorer, as  expected: both 
involve responding without the target array still visible. 

These results mirror those of previous studies with the 
Pirahã and adults under verbal interference, although the 
Pirahã made more frequent and larger errors, more clearly 
suggesting a reliance on analog magnitude estimation in 
attempting to represent target quantities. Of all the research 
of this kind conducted with the Pirahã, only the one-to-one 
matching task in Frank et al. (2008) produced a CoV 
markedly different from 0.15. Everett and Madora (2012) 
offered a speculative explanation: unlike the others, the 
village tested in Frank et al. (2008) had been exposed to 
math tutoring that included neologisms for number words. It 
is the neologisms for number words that are exceptional—
all the villages had been exposed to the one-to-one matching 

 
 

Figure 3: Task accuracy and CoV for participants with aphasia, Pirahã, and adults under verbal interference. Accuracy (Top row) and CoV 
(Bottom row) for participants with aphasia mirrored those of adults under verbal interference. “Pirahã” data is from Everett and Madora 
(2012); Frank et al. (2008); and Gordon (2004). “Verbal Interference” data is from Frank et al. (2012). 
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task and other attempts at basic math training by the 
Brazilian government, but only the site of Frank et al. 
(2008) had been exposed to number word neologisms. The 
authors are clear that this is speculation on their part, but it 
dovetails with a possible explanation as to the task 
performance differences between the Pirahã on the one hand 
and the verbal interference and aphasia participants on the 
other. In attempting to account for the lower CoVs and 
greater accuracy of the verbal interference participants, 
Frank et al. (2012) suggests that participants’ “differential 
cultural experience with mathematics and other uses of 
exact numerosity led to their relatively more precise 
representation of analog magnitude” (p. 82). The same 
could be suggested of the aphasia participants in this study. 

Certainly there are differences between the current 
population of people with aphasia, people of an anumeric 
culture, and English-speakers under verbal interference. 
What separates the Pirahã from other populations under 
discussion here is that they exist in a world without exact-
quantity language and may not have a concept of number to 
access. English speakers under verbal interference, 
meanwhile, are members of a numeric culture who have had 
their ability to use language temporarily disrupted, and 
people who have aphasia are members of the same culture 
with a more permanent disruption. Also, an aphasia 
population consists of individuals with distinct lesions, 
resulting in a range of verbal and nonverbal impairments 
and significant heterogeneity is to be expected, compared to 
a population of English speakers undergoing experimental 
manipulation via verbal interference.  While diversity within 
the current aphasia population is viewed as a potentially rich 
source for identifying particular aspects of language (e.g., 
comprehension, speech) that may uniquely affect particular 
aspects of number use (e.g., mental representation of exact 
quantity, counting), it also suggests caution before drawing 
definitive conclusions based on group performance.  

That several studies have repeatedly found similar results 
despite population differences lends support to established 
ways of thinking about number, thought, and language. 
According to the model put forth by Feigenson, Dehaene, 
and Spelke (2004), we are born with two systems for the 
cognitive representation of number—a parallel-
individuation system that can track up to three or four 
discrete objects and an analog magnitude estimation system 
we use to approximate large quantities. While these 
cognitive systems are also found in other animals, humans 
appear to use exact number words as tools that enhance our 
capacity to do things with quantities by bridging these 
systems. The results of the present and previous studies fit 
this model: language impairment, like verbal interference 
and living in a culture without exact number words, makes 
it difficult, if not impossible, for individuals to bridge the 
two systems for cognitively representing quantities. The 
present study also suggests that experiments involving 
people with aphasia may serve to further refine our 
understanding of how language and thought interact. 

Acknowledgments 
The authors would like to thank Michael C. Frank and Peter 
Gordon for sharing raw data from Frank et al. (2008), Frank 
et al. (2012), and Gordon (2004), respectively. 

References 
Condry, K., & Spelke, E. (2008). The development of 

language and abstract concepts: The case of natural 
number. Journal of Experimental Psychology: General, 
137(1), 22-38. 

Dragoy, O., Akinina, Y., & Dronkers, N. (2016). Toward a 
functional neuroanatomy of semantic aphasia: A history 
and ten new cases, Cortex, 1-19. 

Everett, C. (2013). Linguistic relativity: Evidence across 
languages and cognitive domains. Berlin: De Gruyter 
Mouton.  

Everett, C., & Madora, K. (2012). Quantity recognition 
among speakers of an anumeric language. Cognitive 
Science, 36(1), 130-141. 

Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core 
systems of number. Trends in Cognitive Sciences, 8(7), 
307-314. 

Frank, M., Fedorenko, E., Lai, P., Saxe, R., & Gibson, E. 
(2012). Verbal interference suppresses exact numerical 
representation. Cognitive Psychology, 64(1-2), 74-92. 

Frank, M., Everett, D., Fedorenko, E., & Gibson, E. (2008). 
Number as a cognitive technology: Evidence from Pirahã 
language and cognition. Cognition, 108(3), 819-824. 

Freedman, M., & Martin, R. (2001). Dissociable 
components of short-term memory and their relation to 
long-term learning. Cognitive Neuropsychology 18(3), 
193–226. 

Gentner, D., & Goldin-Meadow, S. (Eds.). (2003). 
Language in mind: Advances in the study of language and 
thought. Cambridge, MA: MIT Press. 

Gordon, P. (2004). Numerical Cognition Without Words: 
Evidence from Amazonia. Science, 306(5695), 496-499. 

Howard, D., Patterson, K. (1992). Pyramids and palm trees: 
A test of semantic access from pictures and words. Bury 
St. Edmunds, UK: Thames Valley Test Company.  

Kertesz, A. (2006). Western Aphasia Battery–Revised. New 
York, NY: Pearson.  

Lemer, C., Dehaene, S., Spelke, E., & Cohen, L. (2003). 
Approximate quantities and exact number words: 
Dissociable systems. Neuropsychologia, 41(14), 1942-
1958. 

McNeil, M. & Pratt, S. (2001). Defining aphasia: Some 
theoretical and clinical implications of operating from a 
formal definition. Aphasiology, 15(10/11), 901-911. 

Rosenbek, J., LaPointe, L., & Wertz, R. (1989). Aphasia: A 
clinical approach. Boston, MA: Little, Brown & Co. 

Whalen, J., Gallistel, C., & Gelman, R. (1999). Nonverbal 
counting in humans: The psychophysics of number 
representation. Psychological Science, 10(2), 130-137. 

Whorf, B. (1956). Language, thought and reality: Selected 
writings of Benjamin Lee Whorf (J.B. Carroll, Ed.). 
Cambridge, MA: MIT Press. 

1295



Audiovisual integration is affected by performing a task jointly  
 

Basil Wahn (bwahn@uos.de)  
Institute of Cognitive Science – Neurobiopsychology, University of Osnabrück, Wachsbleiche 27, 

 49090 Osnabrück, Germany 
 

Ashima Keshava (akeshava@uos.de) 
Institute of Cognitive Science – Neurobiopsychology, University of Osnabrück, Wachsbleiche 27, 

 49090 Osnabrück, Germany 
 

Scott Sinnett (ssinnett@hawaii.edu) 
Department of Psychology, University of Hawai'i at Mānoa, 2530 Dole Street, 

Honolulu, HI 96822-2294, USA 
 

Alan Kingstone (alan.kingstone@ubc.ca) 
Department of Psychology, University of British Columbia, 2136 West Mall,  

Vancouver, British Columbia, Canada V6T1Z4 
  

Peter König (pkoenig@uos.de) 
Institute of Cognitive Science – Neurobiopsychology, University of Osnabrück, Wachsbleiche 27, 

 49090 Osnabrück, Germany 
Institut für Neurophysiologie und Pathophysiologie, Universitätsklinikum Hamburg-Eppendorf, 

Hamburg, Germany 
 

 
Abstract 

Humans constantly receive sensory input from several sensory 
modalities. Via the process of multisensory integration, this input 
is often integrated into a unitary percept. Researchers have 
investigated several factors that could affect the process of 
multisensory integration. However, in this field of research, social 
factors (i.e., whether a task is performed alone or jointly) have 
been widely neglected. Using an audiovisual crossmodal 
congruency task we investigated whether social factors affect 
audiovisual integration. Pairs of participants received congruent or 
incongruent audiovisual stimuli and were required to indicate the 
elevation of these stimuli. We found that the reaction time cost of 
responding to incongruent stimuli (relative to congruent stimuli) 
was reduced significantly when participants performed the task 
jointly compared to when they performed the task alone. These 
results extend earlier findings on visuotactile integration by 
showing that audiovisual integration is also affected by social 
factors. 

Keywords: multisensory integration; joint action; task 
distribution; social cognition. 

 

Introduction 
 

In everyday life, humans constantly process sensory input 
from several sensory modalities. If sensory input from 
multiple sensory modalities coincides in space and/or time, 
it is frequently integrated into a unitary percept (Alais & 
Burr, 2004; Ernst & Banks, 2002; Körding et al. 2007; Rohe 
& Noppeney, 2015; for a review, see: Spence, 2007) – a 
process referred to as “multisensory integration”. 
Multisensory integration can result in perceptual benefits as 

well as costs. In particular, if the multisensory inputs 
contain redundant information (e.g., visual and auditory 
stimuli originate from the same spatial location), human 
localization performance is faster and more accurate (e.g., 
Körding et al. 2007; Rohe & Noppeney, 2015; Wahn & 
König 2015a,b; 2016). Yet, if the sensory inputs provide 
conflicting information (e.g., visual and auditory stimuli 
originate from different spatial locations but still coincide in 
time), human localization performance is slowed down and 
less accurate (Heed, Boukje, Sebanz, & Knoblich, 2010; 
Plöchl et al., 2016; Rohe & Noppeney, 2015; Spence, 
Pavani, & Driver, 2004). In the past, researchers have 
explored how attentional processes influence the 
multisensory integration process, and more generally, how 
attentional processing is distributed across the sensory 
modalities (e.g., Alais, Morrone, & Burr, 2006; Alsius, 
Navarra, Campbell, & Soto-Faraco, 2005; Helbig & Ernst, 
2008; Wahn & König, 2015a,b, 2016; Wahn, Murali, 
Sinnett, & König, 2017; for recent reviews, see Talsma, 
2015; Wahn & König, 2017). However, to date, researchers 
have largely neglected how social factors could affect the 
integration process. Thus we know relatively little about 
how the social presence of another person, and/or how 
performing a task with another person, influences the 
process of multisensory integration.  

To date, to the best of our knowledge, only two studies 
(Heed et al., 2010; Teneggi, Canzoneri, di Pellegrino, & 
Serino, 2013) have addressed the extent to which social 
factors can modulate multisensory integration. In Heed et 
al.’s experiment participants performed a visuotactile 
congruency task that was either performed alone, or jointly 
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with another person. When the task was performed alone, 
participants were required to hold two foam cubes, one in 
each hand, and indicate with foot pedal presses the spatial 
elevation of a tactile stimulus that could either appear at the 
top of the cube (i.e., felt at the index finger) or at the bottom 
of the cube (i.e., felt at the thumb). The participants also 
simultaneously received irrelevant visual stimuli that either 
appeared at the same spatial location as the tactile stimulus 
or not (i.e., stimuli were presented either in congruent or 
incongruent positions). Thus, the visual stimuli provided 
either conflicting or redundant spatial information, resulting 
in costs or benefits of multisensory integration, respectively. 
Heed et al. (2010) replicated earlier results (Spence, Pavani, 
& Driver, 1998; 2004) by finding that reaction times were 
faster when indicating the location of the tactile target if the 
visual stimulus appeared in a congruent position compared 
to an incongruent position. This effect is referred to as the 
“crossmodal congruency effect” (CCE). That is, when the 
tactile and visual stimuli provide redundant information 
(i.e., are presented in the same (congruent) position), 
localization performance is faster compared to when 
conflicting information is provided (i.e., stimuli are 
presented in different, i.e. incongruent positions). When 
participants performed the task in pairs, one of them 
indicated the elevation of the tactile stimuli (as before) 
while the second participant indicated the elevation of the 
visual stimuli. But note, the person detecting tactile stimuli 
was still exposed to the congruent or incongruent visual 
stimuli. Heed et al. found that the magnitude of the CCE 
was reduced when performing the crossmodal congruency 
task jointly compared to performing it alone. In particular, 
when participants performed the task jointly, incongruent 
presentations had less of an effect on reaction times when 
compared to performing the task alone. This observation 
suggests that the cost of incongruent presentations on 
multisensory integration is reduced when the task is 
performed jointly. 

To date, the modulation of the CCE by social factors as 
found by Heed et al. (2010) has not been investigated with 
other sensory modalities. In particular, it is an open question 
whether audiovisual integration is similarly affected by 
social factors. Given that the tactile sensory modality 
processes events in close proximity while the auditory 
sensory modality is also able to sense more distal events, it 
is not clear whether audiovisual integration would be 
similarly affected by social factors as visuotactile 
integration. Thus rather than the visuotactile congruency 
task as used in Heed et al. the present study required 
participants to perform an audiovisual congruency task, 
either alone or jointly. If social factors modulate the CCE 
for audiovisual stimuli, we predict that the CCE will be 
reduced when performing the audiovisual congruency task 
jointly as compared to performing the task alone. 
Conversely, if social factors do not affect the CCE, then the 
CCE should not be modulated regardless of whether the task 
is performed jointly or alone. 

 Methods 

Participants 
Twelve pairs of individuals (15 female, M = 21.92 years, 

SD = 3.35 years) participated in the study at the University 
of Osnabrück. Prior to the experiment, participants signed 
informed written consent. The study was approved by the 
ethics committee of the University of Osnabrück. After  the 
experiment had been completed, participants were debriefed 
and received monetary compensation or participation hours. 

Experimental setup 
Participants sat in a dark room in front of a computer 

screen (Apple 30” LCD screen, resolution 2560 x 1600 
pixels, 77.53 x 48.46 visual degrees) at a distance of 50 cm. 
Four USB speakers (Mini HiFi USB 2.0 mini speaker), 
which were connected via a USB hub (Orico HF9US-2P 
USB 9-Port HUB) were arranged in a 2 x 2 grid above and 
below the monitor (vertically and horizontally 1600 pixels, 
equivalent to 48.45 visual degrees, apart) in front of the 
participants (Figure 1). The positions of the visual flashes 
(80 x 80 pixels, 2.42 visual degrees wide, 100 ms) were 
arranged in the same 2x2 grid, such that the visual flashes 
were observed from approximately the same spatial 
locations as the auditory stimuli (sine wave tone, 4800 Hz, 
100 ms) – they were vertically displaced by 2.4 cm. 

 Participants sat in two chairs placed in front of the 
computer screen (left and right of the fixation cross, 
respectively) with keyboards on their laps. 
 

 
 

Figure 1: Experimental Setup.  

Experimental conditions and procedure 
In the experiment, participants performed an audiovisual 

congruency task either alone or jointly. In this task, 
participants received visual flashes and auditory tones, 
originating either from the same (i.e., congruent) or a 
different (i.e., incongruent) spatial elevation. In addition, 
stimuli could originate either from the same or opposite 
side. For example, either both stimuli could originate from 
the left side or one could originate from the left and one 
from the right side. The task was to indicate the elevation of 
one of these stimuli using the keyboard with the mapping of 
keys F/up & C/down for the visual stimuli; keys K/up & 
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M/down for the auditory stimuli. We set the time limit for 
responses to 2 seconds (see Figure 2, for a trial overview).  

When participants performed the task jointly, they sat 
next to each other in front of the computer screen in close 
proximity (~10 cm) to ensure that they shared peripersonal 
space (Heed et al., 2010). In this condition, one participant 
would indicate the elevation of the auditory stimuli while 
the other participant would indicate the elevation of the 
visual stimuli. When participants performed the task alone, 
one participant was asked to wait outside the experiment 
room while the other participant performed the task, 
indicating the stimulus elevation for their assigned modality. 
Note, regardless of whether participants performed the task 
alone or jointly, the seating positions of participants 
remained constant in all conditions within a pair and were 
counterbalanced across pairs (i.e., in half of the pairs, the 
participant responding to the auditory stimuli was sitting on 
the right side). 

 
Figure 2: Trial overview. (A) Participants simultaneously 
received a visual and auditory stimulus. (B) Participants 

were required to indicate the elevation of one of the stimuli 
using the keyboard. In this example trial, the auditory 

stimulus would be in the upper location on the right side, the 
visual stimulus in the bottom location on the left side (i.e., 

an incongruent opposite side trial). After two seconds 
passed, the next trial started automatically. 

 
In sum, the experiment consisted of a 2x2x2 factorial 

design with Congruency (Congruent, Incongruent), Side 
(Same, Opposite), and Condition (Individual, Joint) as 
factors.  
   The experiment consisted of six blocks, each composed of 
144 trials. In these trials, each combination of the factor 
levels for the factors Congruency and Side occurred equally 
often in a randomized order. The factor Condition was 
varied across blocks. That is, there were three types of 
blocks: 1) The participant responding to the visual stimuli 
performing the task alone, 2) the participant responding to 
the auditory stimuli performing the task alone, 3) both 
participants performing the task jointly. Participants 
performed a pseudorandomized sequence of these three 
types of blocks twice. We avoided repetitions of the same 
block type in consecutive blocks. 
   The experiment took approximately 40 minutes. It was 
programmed in Python 2.7.3. 
 
Data preparation and analysis 

In line with Heed et al. (2010), we restricted our analysis 
to the participant in a pair responding to the auditory 
stimuli. That is, given that visual stimuli are considerably 

easier to localize than auditory stimuli, CCE effects are only 
observed for the participants responding to the auditory 
stimuli. Prior to performing inferential statistical tests, we 
tested whether the normality assumption was given with a 
Shapiro-Wilk test. In the case of a violation, we transformed 
the data using a log transformation.  

Results 
 

On a descriptive level (see Figure 3A & B), when 
examining the reaction times of correctly localized auditory 
cues, participants were slower to localize the cues in the 
incongruent condition compared to the congruent condition. 
This observation establishes the well-known CCE effect. 
Furthermore, in line with earlier studies (Heed et al., 2010), 
the CCE was more pronounced for stimuli that were shown 
on the same side compared to the opposite side. Importantly, 
for same side stimuli, the CCE was reduced profoundly in 
the joint condition relative to the individual condition. 
 

 

 Prediction: Condition 1 & 2 show congruency effect.  
In condition 3, P1 distractor processing is reduced.  

100 ms 2 seconds 

A B

A

B

A

B
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Figure 3: Mean reaction time (in seconds) as a function of 
the factors Condition (Individual, Joint) and Congruency 

(congruent, incongruent), separately for same side (A) and 
opposite side stimuli (B). Error bars in both panels are 

standard error of the mean. 
 
We tested whether these observations were statistically 

reliable by performing a 2x2x2 repeated measures ANOVA 
with the factors Congruency (Congruent, Incongruent), Side 
(Same, Opposite), and Condition (Individual, Joint). As the 
assumption of normality was violated, we applied a log 
transformation to the reaction times prior to entering them to 
the ANOVA.  

We found a significant main effect for the factor 
Congruency (F(1,11) = 19.73, p < .001). We found 
significant two-way interactions between the factors Side 
and Congruency (F(1,11) = 38.42, p < .001) and the factors 
Condition and Congruency (F(1,11) = 6.00, p = .032). The 
former interaction effect suggests that the magnitude of the 
CCE is reduced for opposite side stimuli compared to same 
side stimuli. Importantly, the latter interaction effect 
suggests that the CCE is reduced for the joint condition 
compared to the individual condition. In addition, we also 
observed a three-way interaction (F(1,11) = 6.61, p = .026), 
suggesting that the reduced CCE for the joint condition 
compared to the individual condition depends on whether 
stimuli appear on the same side or opposite sides. To further 
investigate the three-way interaction effect, we performed 
two 2x2 repeated measures ANOVAs (Condition x 
Congruency), restricting the data either to only same side or 
opposite side stimuli. For same side stimuli, we found a 
significant main effect of Congruency (F(1,11) = 27.29, p < 
.001) and a significant interaction between the factors 
Condition and Congruency (F(1,11) = 9.62, p = .01). This 
demonstrates that for same side stimuli, performing a task 
jointly indeed reduced the CCE. However, for opposite side 
stimuli, we only found a significant main effect of 
Congruency (F(1,11) = 5.58, p = .038) but no interaction 
effect between the factors Condition and Congruency 
(F(1,11) = 0.07, p = .801). Both of these results are in line 
with the findings by Heed et al. (2010). That is, when 
investigating visuotactile integration, Heed et al. (2010) 
similarly found that the CCE effect was reduced in the joint 
condition relative to the individual condition for same side 
stimuli but not for opposite side stimuli. 

We also tested an alternative explanation of these results 
by a speed-accuracy tradeoff. That is, in the joint condition, 
participants potentially could have localized the incongruent 
cues faster at the expense of being less accurate in their 
responses. To investigate this, we repeated the 2x2x2 
repeated measures ANOVA with the dependent variable 
fraction correct (for a descriptive overview, see Figure 4A 
& B). We found significant main effects for the factors Side 
(F(1,11) = 73.32, p < .001) and Congruency (F(1,11) = 
29.87, p < .001) and a significant interaction effect between 
these two factors (F(1,11) = 66.14, p < .001). Importantly, 
we did not find a significant main effect or interaction 

involving the factor Condition (Condition: F(1,11) = 0.31, p 
=  .588; Condition x Congruency: F(1,11) = 0.02, p = .881; 
Condition x Congruency x Side: F(1,11) = 0.003, p = .954). 
These results indicate that a speed-accuracy tradeoff does 
not explain the reduced CCE for the joint condition relative 
to the individual condition reported above because the 
accuracy did not vary as a function of whether the task was 
performed in pairs or alone. Thus the latency benefit of the 
joint condition relative to the alone condition was not 
acquired at the expense of committing more errors. 

In sum, the results for same side stimuli indicate that the 
CCE is reduced significantly when participants perform an 
audiovisual crossmodal congruency task jointly compared to 
when they perform it alone. 
 

 
Figure 4: Mean fraction correct as a function of the 

factors Condition (individual, joint) and Congruency 
(Congruent, Incongruent), separately for same side (A) and 

opposite side stimuli (B). Error bars in both panels are 
standard error of the mean. 

 

A

B

A

B
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Discussion 
 

The present study investigated whether the modulation of 
the CCE by social factors found in earlier studies 
investigating visuotactile integration (Heed et al. 2010) can 
also be observed for audiovisual presentations. In line with 
Heed et al., we found that the CCE is indeed reduced for 
same side stimuli when participants perform an audiovisual 
crossmodal congruency task jointly compared to performing 
it alone. Furthermore, we found that the data are not 
explained by a speed-accuracy tradeoff. Collectively, the 
present results extend Heed et al.’s earlier findings of a 
modulation of the CCE for a visuotactile crossmodal 
congruency task, and indicate that this social effect 
generalizes to audiovisual integration. 

A possible “mechanism” for our present social effect 
could be a co-representation process (Sebanz, Knoblich, & 
Prinz, 2003; for reviews see: Sebanz, Bekkering, & 
Knoblich, 2006; Vesper et al., 2017). That is, when 
participants perform the task jointly, participants co-
represent the task of their partner (e.g., that the partner 
responds to the visual stimuli) which could lead to a reduced 
processing of the stimuli relevant for the partner but 
irrelevant for the own task. As a consequence, the irrelevant 
stimuli could be perceived as less distracting for 
incongruent stimulus presentation but still sufficiently 
processed for congruent presentations, yielding faster 
reaction times. Alternatively, the effects in the present study 
could be explained by a dynamic modulation of the co-
actor’s peripersonal space as found in an earlier study 
(Teneggi et al., 2013) or by a general withdrawal of 
attention to the stimuli to which the co-actor responds 
(Szpak et al., 2015).  

Future studies could discern further how social factors 
contribute to the modulation of the CCE. In the present 
study, pairs of participants performed the crossmodal 
congruency task in the same peripersonal space and both 
participants performed the task. Earlier findings (Heed et al., 
2010) showed that the CCE for visuotactile stimuli is only 
affected by social factors if both participants perform the 
task and are located in their respective peripersonal spaces. 
It is an open question whether a reduction of the CCE for 
audiovisual stimuli would be observed when only one of 
these factors is manipulated. For instance, when participants 
are in the same peripersonal space but only one of them 
performs the task, or when both of them perform the task 
but from separate peripersonal spaces. In contrast to the 
tactile modality, both the visual and the auditory modality 
investigated here sample distant events. Thus, it is quite 
conceivable that visuotactile integration is dependent on 
jointly executing the task in peripersonal space while this 
might not be the case for audiovisual integration.  

As another point of note, our finding that performing the 
crossmodal congruency task jointly affects the CCE for 
same side stimuli but not for opposite side stimuli could be 
explained by the observation that for opposite side stimuli 
the CCE was already greatly reduced in the individual 

condition. That is, an already lower CCE may not allow for 
any additional modulations by social factors.  

Future studies could also test whether the social effects 
found in this study can alternatively be explained by other 
factors (Stenzel & Liepelt, 2016). For instance, it could be 
investigated whether a non-human co-actor (e.g., a robot) 
responding to the distractors is sufficient to find the effects 
in the present study (Stenzel et al., 2012).  

More generally, the present findings are relevant to, and 
may benefit, real-world situations in which humans perform 
tasks jointly while processing multisensory information. 
That is, our data and the earlier findings of Heed et al., 
(2010) suggest that the benefits of multisensory integration 
are preserved when performing a task jointly (i.e., 
participants respond faster to congruent multisensory 
stimuli) while the costs of multisensory integration are 
reduced (i.e., participants are slowed down less by 
incongruent stimuli). Future studies could investigate further 
how the benefits of multisensory processing (e.g., due to 
multisensory integration (Alais & Burr, 2004; Ernst & 
Banks, 2002; Körding et al. 2007; Rohe & Noppeney, 
2015), sensory augmentation (König et al., 2016; Goeke, 
Planera, Finger, & König, 2016), or circumventing limited 
attentional resources (Alais & Burr, 2004; Arrighi, Lunardi, 
& Burr, 2011; Wahn, et al. 2016; for a review, see: Wahn & 
König, 2017)) may facilitate human performance in other 
joint settings.  
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Abstract 

 
The ability to represent same-different relations is a condition for 

abstract thought. However, there is mixed evidence for when this 

ability develops, both ontogenetically and phylogenetically. 

Apparent success in relational reasoning may be evidence for 

conceptual understanding or may be due to low-level, perceptual 

strategies. We introduce a method to discriminate these possibilities 

by pitting two conditions that are perceptually matched but 

conceptually different: in a “fused” condition, same and different 

objects are joined, creating single objects that have the same 

perceptual features as the pairs in the “relational” condition. 

However, the “fused” objects do not provide evidence for the 

relation. Using this method in a causal task provides evidence for 

genuine conceptual understanding. This novel technique offers a 

simple manipulation that may be applied to a variety of existing 

match-to-sample procedures used to assess same-different reasoning 

to include in future research with non-human animals, as well as 

human infants. 

Keywords: cognitive development; causal inference; relational 
reasoning; perceptual processes 

 

 

The ability to represent relations between objects and events 

is an essential condition for abstract thought; some have 

suggested that relational abilities may be the key to the 

cognitive differences between humans and other animals 

(Penn, Holyoak, & Povinelli, 2008). However, there is mixed 

evidence about when this ability develops, both 

ontogenetically and phylogenetically. Traditionally, there 

was little evidence for relational reasoning in either young 

children or non-human animals. More recent results, 

particularly involving the foundational relations “same” and 

“different” challenge that conclusion. Ducklings can 

generalize these relations in an imprinting paradigm 

(Martinho & Kacelnik, 2016). Human infants are able to 

generalize these relations in looking-time experiments. In 

particular, pre-verbal infants can be habituated to pairs of 

same and different objects (Addyman & Mareschal, 2010; 

Ferry, Hespos, & Gentner, 2015; Hochman, Mody, & Carey, 

2016; Tyrell et al., 1991), discriminate and generalize 

patterns of repeated visual or auditory elements 

(ABA/AAB/ABB) (Dawson & Gerken, 2009; Johnson et al., 

2009; Marcus et al., 1999; Saffran et al., 2007), and provide 

a conditioned response to pairs of identical stimuli (Kovács, 

2014; Hochmann, 2010). Moreover, very young toddlers can 

apparently use same-different relations in an active causal 

learning paradigm (Walker & Gopnik, 2014), although this 

ability declines in the preschool period (Walker, Bridgers, & 

Gopnik, 2016). In these studies, toddlers, aged 18-30-months, 

were able to infer same-different relations in a causal version 

of a match to sample task (i.e., matching AA’ with BB’, not 

CD, and matching EF with CD, not BB’).  

On the other hand, it is possible that these successes may 

be mediated by perceptual factors that are quite separate from 
the abstract same-different concepts that these tasks are 

intended to assess (see Addyman & Mareschal, 2010 for a 

review). It is clear that both human and non-human animals 

are able to perceive the similarity of objects, agents, and 

events in their environment; these abilities are necessary for 

basic cognitive functions (Martinho & Kacelnik, 2016; 

Hochman, Mody, & Carey, 2016). However, noticing 

similarity does not necessarily imply the existence of the 

conceptual representation, same. This distinction is difficult 

to make, and this point has been widely debated in the 

comparative literature (Penn, Holyoak, & Povinelli, 2008; 

Thompson & Oden, 1996).  

For example, non-human primates (Wasserman, Fagot, & 

Young, 2001) and several species of birds (Smirnova et al., 

2015; Pepperberg, 1987) have succeeded in solving similar 

relational problems, in the context of multiple trials in 

reinforcement learning paradigms (Wasserman, Fagot, & 

Young, 2001; Smirnova et al., 2015; Pepperberg, 1987), 

suggesting that these species, like humans, may possess the 

ability to learn abstract relational properties (Cook & 

Wasserman, 2007). However, there is also growing evidence 

indicating that these trained abilities may be grounded in 

perceptual expertise, reflecting learned sensitivity to surface 

cues, rather than higher-order reasoning, per se (Thompson 

& Oden, 2000).  

This suggests that the match to sample tasks that have 

historically served as the standard for assessing same-

different understanding across species may be passed in the 

absence of genuine conceptual representations. In particular, 

lower-level, perceptual strategies, like attention to the 

symmetry, contrast, and the variance of the stimuli could 

contribute to success (Young & Wasserman, 2001; Smith et 
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al. 2008; Blaisdell & Cook, 2005). Might infants, toddlers, 

and non-human animals in an imprinting paradigm, like non-

human animals in reinforcement training, be responding to a 

perceptual analysis of the stimuli pairs rather than a same-

different strategy?  

One candidate for such a strategy is a low-level heuristic, 

called “perceptual entropy,” that has been proposed to 

facilitate relational recognition in non-human animals (Penn, 

Holyoak, & Povinelli, 2008; Wasserman, Fagot, & Young, 

2001; Fagot, Wasserman, & Young, 2001; Young & 

Wasserman, 1997; Wasserman, Young, & Cook, 2004; 

Wasserman & Young, 2010; Zentall et al., 2008). In 

particular, any visual display can be reduced to “a continuous 

analog estimate of the degree of perceptual variability 

between the elements” (Penn, Holyoak, & Povinelli, 2008, 

pg. 112), a strategy similar to a process of conceptual 

chunking (Halford, Wilson, & Phillips, 1998). In other 

words, because there is a lower amount of perceptual 

variation among the elements for ‘same’ displays (AA’) than 

for ‘different’ displays (AB), toddlers (as well as human 

infants and non-human animals) may succeed by learning and 

applying the following rule: If the variability of the effective 

training sample is low, select the test pair that also has low 

variability.  

This attention to variance would also subsume a range of 

other perceptual cues including symmetry, oddity, and spatial 

orientation, among others (Cook & Wasserman, 2007). Adult 

humans show some sensitivity to the amount of perceptual 

variance in a display, but this evidence is not sufficient to 

prove that it is responsible for their performance. In fact, 

previous findings suggest that additional processes of 

categorization likely play a role in the human 

conceptualization of “same-different” relations (Smith et al., 

2008; Fagot, Wasserman, & Young, 2001). Interestingly, 

similar findings have been recently found with baboons 

(Flemming, Thompson, & Fagot, 2013). 

Discriminating between conceptual and perceptual 

learning strategies in non-verbal relational reasoning tasks is 

a notoriously difficult problem to solve in both 

developmental and comparative contexts. In the current 

study, we introduce a novel method designed to directly pit 

the perceptual and conceptual accounts against one another. 

The method involves a contrast between one condition 

relying upon a traditional match to sample task involving 

same-different relations (i.e., matching AA’ with BB’, not 

CD, and matching EF with CD, not BB’) and a “fused” object 

condition. Exactly the same objects are used in the two 

conditions, but in the “fused” condition the objects are 

physically joined to create a single compound object. 

Importantly, the amount of perceptual entropy, or variance, 

as well as other perceptual features such as symmetry is 

matched between the two conditions. However, only the 

unfused/relational condition also provides evidence for the 

higher-order relation ‘same.’ In the fused/single object case, 

there is no relation between objects to learn – there is only 

one object present.  

As a proof of concept, we applied this method to assess 

human toddlers in a causal match to sample task originally 

developed by Walker and colleagues (Walker & Gopnik, 

2014; Walker, Bridgers, & Gopnik, 2016). In the current 

study, children observed two trials in which a pair of “same” 

objects, or a fusion of those objects, activated a machine, but 

a pair or fusion of two “different” objects did not. Then, 

children had to select a novel pair of objects or a novel fused 

object to activate the machine (see Figure 1). If children are 

indeed relying upon a low-level perceptual heuristic, they 

should select the lower entropy pair (i.e., the pair with less 

variance among its features) consistently across both 

conditions, whether they are fused or not. On the other hand, 

if children learn the abstract relation ‘same’ during the 

training trials, they should privilege this test pair only in the 

unfused/relational condition, where there is a relation 

between objects to learn.  

Although the current study applies this method to assess 

human reasoning in a previously published causal reasoning 

paradigm, this same technique is intended to be used for 

discriminating perceptual strategies from genuine relational 

reasoning in a variety of existing paradigms, across species. 

Method 

Participants 

A total of 80 18-30-month-olds participated (M = 24.3 

months; SD = 3.6 months; range =  17.9 - 31.1 months; 40 

girls), with 40 toddlers randomly assigned to one of two 

conditions (fused/single object or unfused/relational). There 

was no difference in age between conditions, t(1) = 1.21, p = 

.23, and approximately equal numbers of males and females 

were assigned to each. Sixteen additional children were tested 

but excluded for failure to complete the study (11) or due to 

experimenter error (5). Children were recruited from a local 

museum.  

Materials 

The toy was a 10” x 6” x 4” opaque cardboard box containing 

a wireless doorbell. When a block or pair of blocks 

“activated” the toy, the doorbell played a novel melody. In 

fact, the toy was surrepticiously activated by a remote 

control. Eight painted wooden blocks in assorted colors and 

shapes (2 pairs of ‘same’ blocks and 2 pairs of ‘different’ 

blocks) were placed on the toy in pairs during the 

unfused/relational condition training. The ‘same/low 

entropy’ blocks were identical in color and shape, and the 

‘different/high entropy’ blocks were distinct in color and 

shape. An identical set of these eight painted blocks were 

used to create the “fused” objects to be placed on the toy as 

single objects in the fused/single object condition training. In 

this condition, each pair of training blocks were glued 

together to create a single, larger block. Four additional 

blocks were used during the test phase of each condition, 

including 1 novel pair of ‘same’ and 1 novel pair of 

‘different’ blocks. The test blocks either appeared as two 

pairs of blocks or as two fused, single objects, depending 
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upon condition (see Figure 1). The pairs of test blocks in each 

condition were placed on 4” x 4” plastic trays. 

Two different complete sets of blocks were constructed for 

each condition. In the simple set, all blocks were composed 

of simple, symmetrical geometric shapes (e.g., cubes, 

spheres, cylinders) with a single color and no pattern. In the 

complex set, all blocks were composed of asymmetrical, 

irregular polygons. Half of the children in each condition 

were randomly assigned to receive each stimuli set.  

Procedure 

All children were tested one-on-one, seated at a table across 

from the experimenter. Following a brief warm-up, the 

experiementer introduced a toy that was placed on the table. 

The experimenter said, “This is my toy. Some things make 

my toy play music and some things do not. Let’s try some 

things on my toy and find out how it works.”  

In the unfused/relational condition, children observed as 

the experimenter placed a pair of ‘same’ blocks (AA’) on the 

toy, causing it to activate and play music (twice). They then 

observed that a pair of ‘different’ blocks (BC) failed to 

activate the toy (twice). This procedure was repeated for two 

additional pairs, one pair of ‘same’ (DD’) and one pair of 

‘different’ blocks (EF) (see Figure 1). The ‘same’ pairs (AA’, 

DD’) were composed of individual blocks that were identical 

in both color and shape, and the ‘different’ pairs (BC, EF) 
were composed of individual blocks distinct in both color and 

shape. In the fused/single object condition, children observed 

an identical presentation with one critical exception: each 

pair of blocks were glued together to form single objects (A-

low entropy, B-high entropy, C-low entropy, D-high entropy) 

(see Figure 1).  

In detail, the experimenter selected the first pair [block], 

saying, “Let’s try!” and placed them [it] on the toy. Children 

in both conditions observed the ‘same’ pair [‘low entropy’ 

block’] activate the toy. The experimenter said, “Music! Let’s 

try again!”, picked up the pair [block], and placed them [it] 

back on the toy a second time, and children observed the 

outcome. The experimenter said, “Music! These ones [this 

one] made my toy play music.” After this second 

demonstration, the experimenter removed the pair [block], 

selected another – a ‘different’ pair or a ‘high entropy’ block 

– and placed it on the toy. This time, children in both 

conditions observed no effect. The experimenter said, “No 

music. Let’s try again!” As with the first pair [block], this was 

demonstrated a second time. The experimenter concluded, 

“No music. These ones [this one] did not make my toy play 

music.”  

This procedure was repeated for all 4 pairs [blocks]: 2 pairs 

[blocks] of ‘same’ [‘low entropy’] objects and 2 pairs 

[blocks] of ‘different’ [‘high entropy’] objects. All pairs were 

placed on the toy twice. Therefore, children observed a total 

of 8 outcomes (4 positive and 4 negative). The order that the 

individual pairs [blocks] were presented was randomized, 

however, the order of the presentation pairs was fixed, 

beginning with a causal pair, and alternating between causal 

and inert pairs. In all cases, the experimenter placed all pairs 

of objects on the toy in the same orientation as the objects 

that formed the fused blocks, so that they were perceptually 

identical. Except for the particular objects used in the training 

trials (fused or unfused), there were no other differences in 

procedure between conditions.  

 

 
Figure 1: Schematic of study design (simple set). On 

training trials, pairs of blocks were placed on the toy. In the 

fused/single object condition, fused, identical/low entropy 

objects activated the toy, while fused, distinct/high entropy 

objects did not. In the unfused/relational condition, pairs 

of identical/low entropy objects activated the toy while 

pairs of distinct/high entropy objects did not. Participants 

observed 4 pairs (2 causal, 2 inert). On each test trial, the 

child selected between 2 novel pairs (“low entropy [same]” 

or “high entropy [different]”). 

 

 

Following the training phrase in both conditions, the 

experimenter said, “Now it is your turn. Can you help me pick 

the thing[s] that will make my toy play music?” The 

experimenter produced 2 pairs of test blocks (1 novel ‘same’ 

pair [‘low entropy’ block], 1 novel ‘different’ pair [‘high 

entropy’ block]). In order to avoid a novelty preference, both 

test pairs were composed of novel objects. The pairs were 

presented to the child on trays. The experimenter held up the 

two trays, saying, “I have these [this] and I have these [this]. 

Only one of these trays has the thing[s] that will make my toy 
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play music.” She then lowered the trays and placed them on 

opposite sides of the table in front of the child, saying, “Can 

you point to the one[s] that will make my toy play music?” 

The side on which the correct pair was placed was 

randomized between subjects.  

 

Coding The first tray that the child selected (pointing, 

reaching, picking up objects) was recorded. Children 

received 1 point for selecting the low entropy pair/object that 

was consistent with their training and 0 points for selecting 

the high entropy pair/object. Children’s responses were 

recorded by a second researcher during the testing session, 

and all sessions were video recorded for independent coding 

by a third researcher who was naïve to the the hypotheses of 

the experiment.  Interrater reliability was very high; the two 

coders agreed on 99% of the children’s responses to the test 

questions.  

 

Results 
Results show no difference between the complex objects and 

simple objects, in either condition, χ2(1) = 0, p = 1, φ = 0 

(fused/single object); χ2(1) = .13, p = .72, φ = -.06 

(unfused/relational). We therefore combined data from the 

two stimuli sets within each condition for all subsequent 

analyses. Children in the unfused/relational condition 

selected the ‘same’ test pair more often than chance (73%), p 

= .006 (two-tailed, exact binomial). These results replicate 

previous findings with 18-30-month-olds (Walker & Gopnik, 

2014; Walker et al., 2016). However, in contrast with the 

perceptual account, children of the same age in the 

fused/single object condition selected at chance (40%), p = 

.27 (two-tailed, exact binomial). There was a significant 

difference between conditions, χ2(1) = 8.58,   p = .004, φ = 

.33. 

Discussion 

Results demonstrate that when perceptual cues are matched, 

but no relation is present, toddlers do not appear to learn and 

generalize an abstract concept of ‘same’ to a novel set of 

objects. These findings therefore suggest that early relational 

competence in humans found here and elsewhere is unlikely 

to be the result of reliance on a perceptual heuristic, and 

provide evidence for genuine conceptual understanding of 

‘same’ at this young age.  

This novel method offers a simple, non-verbal 

manipulation that may be applied to a variety of existing 

match-to-sample procedures used to assess same-different 

reasoning to include in future research with non-human 

animals across species, as well as human infants. If infants or 

animals show the discriminative pattern of the toddlers in this 

experiment – generalizing the unfused/relational but not the 

fused/single objects – that suggests that they genuinely 

understand the relations. On the other hand, if they respond 

in the same manner to both conditions, the perceptual 

hypothesis would gain more weight. The latter pattern would 

not eliminate the possibility that relational reasoning was in 

play – perhaps children or animals are using different kinds 

of reasoning in the two conditions. But it would place the 

burden of proof on the relational claim.  

Whatever the results of non-human animals or infants 

might turn out to be, the present results are consistent with 

previous claims that, from a very early age, as young as 18 

months, humans posess cognitive tools for genuine 

conceptual understanding of same-different relations. These 

findings are also consistent with the idea that humans may 

possess a qualitatively different system for abstracting 

relations. 
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Abstract 

Learning syntax requires determining relations between the 
grammatical categories of words in the language, but learning 
those categories requires understanding the role of words in 
the syntax. In this study, we examined how this chicken and 
egg problem is resolved by learners of an artificial language 
comprising nouns, verbs, adjectives and case markers 
following syntactic rules. We found that the language could 
be acquired through cross-situational statistical 
correspondences with complex scenes and without explicit 
feedback, and that knowledge was maintained after 24 hours. 
Results also showed that verbs and word order were the first 
to be acquired, followed by nouns, adjectives and finally case 
markers. Interdependencies in learning were found for word 
order and verbs, and also for nouns, adjectives and case 
markers. Grammar and vocabulary can be acquired 
simultaneously, but with distinctive patterns of acquisition – 
grammar and the role of verbs first, then the vocabulary of 
other lexical categories.  

Keywords: language acquisition; grammar; vocabulary; 
artificial language learning; statistical learning. 

Introduction 
The early stages of language learning involve a great deal of 
ambiguity as learners must make sense of the stream of 
input they hear by noticing words boundaries, decoding the 
meanings of words, identifying lexical categories and 
understanding the relations between categories defined by 
the syntax. How this is achieved and the order in which 
vocabulary and grammatical knowledge is acquired has 
been a critical question in the cognitive sciences (Marcus, 
1996). 

Cross-situational learning 
Recent research has shown that it is possible for children 

and adults to learn vocabulary within basic categories of 
words when they are presented across numerous ambiguous 
learning situations without any feedback, a mechanism 

known as cross-situational learning. Smith and Yu (2008) 
showed that 12 to 14-month old infants could learn the 
meanings of novel nouns by keeping track of cross-trial 
statistics. Scott and Fisher (2012) also demonstrated that it 
is possible for 2.5 year-old toddlers to learn novel verbs, 
utilising syntactic cues, knowledge of nouns and other 
situational referents. Monaghan et al. (2015) found that 
nouns and verbs could be learned simultaneously without 
any syntactic cues, although nouns were learned slightly 
more quickly. They suggested that this prioritisation of 
nouns could be explained by the greater saliency and 
stability of object versus action referents.  

However, these studies on the cross-situational learning of 
nouns and verbs are a substantial abstraction from the 
complexity of natural language acquisition. In child-directed 
speech, children are generally exposed to multi-word 
utterances containing many word categories (Mintz, 2006). 
With every new word category or syntactic phrase added, 
the number of possible referents for any given word 
increases, making the tracking of statistical probabilities 
more complex.  

On the other hand, with greater complexity comes greater 
interdependency between content words, function words and 
word order. And so conversely, this extra complexity may 
also provide additional cues from which to constrain 
learning. Monaghan and Mattock (2012), for example, 
found that function words could aid the learning of nouns in 
a cross-situational learning paradigm.  

A key question is, therefore, how learners can break into 
this complex stream, given the difficulty of attempting to 
acquire the syntax to indicate the role of grammatical 
categories, and learning the vocabulary to populate those 
categories. This chicken and egg problem has proven 
difficult to resolve, and has led to proposals either for 
independence of learning grammar and vocabulary (e.g., 
Marcus, 1996), or their inter-relatedness (Bates & 
Goodman, 1997). Under these latter accounts, learning a 
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few words can give rise to syntactic bootstrapping 
(Gleitman, 1990), which can then be used to promote further 
vocabulary acquisition, predicting correlations in children’s 
performance for vocabulary and grammatical processing 
tasks. However, evidence from actual language learning 
tasks in which both vocabulary and grammar must be 
acquired has not been extensively explored. Many previous 
studies of artificial language learning have trained 
participants on vocabulary before testing them on a 
language structure.  

In the current study, we investigated whether it is possible 
to learn more complex artificial languages that combine 
content words, function words and syntactic structures 
under cross-situational learning conditions without any 
feedback. 

The acquisition order of linguistic categories 
The second question this study addressed was that of 

acquisition order: When are nouns, verbs, adjectives, case 
markers, and syntactic constraints on word order acquired 
and are some aspects learned before others? The vast 
majority of studies into early childhood language learning 
support Gentner’s (1982) claim that across all languages 
children learn nouns before verbs and adjectives (e.g, 
Bornstein et al., 2004). One reason might be that predicates 
are more semantically complex as they modify and depend 
on nouns (Dixon, 1982), whether that be adjectives (the 
black dog) or verbs (the cat pounced on the mouse). 
Therefore, in order to learn the verb or adjective, learners 
need to also encode information about the noun (Gleitman et 
al., 2005).  

However, there is some evidence that in languages such 
as Korean and Japanese, where the verb is found in a 
highly-salient sentence-final position and subjects and 
objects are often left out of utterances by caregivers, verbs 
may be learned earlier than in SVO languages such as 
English (Choi & Gopnik, 1995). There is, however, a lack 
of consensus as to whether verbs in these languages are 
learned at the same time as nouns (see Bornstein et al., 
2004).  

Regarding adjectives, Booth and Waxman (2003) 
demonstrated that 14-month-old children could extract the 
meaning from nouns but not adjectives when presented with 
basic syntactic and visual frames. In a large corpus-based 
study, Behrens (2006) found that German children aged 1 
year 11 months produced more verbs than adjectives.  

Finally, case markers which indicate the agent and patient 
of a sentence have been shown to be understood by children 
as young as two years old (Göksun et al., 2008). However, 
in this and other studies, a small vocabulary of nouns and 
verbs had been acquired before comprehension of case 
markers was demonstrated.  

The participants in the current study were adults who 
have already mastered their first language, and so it is 
arguable that the acquisition order observed in child 
language development may not apply to these learners. An 
alternative strand of research comes from first exposure 

studies of adults learning a second language (L2; for an 
overview, see Indefrey & Gullberg, 2010). In a study into 
the initial stages of learning an L2 by adults in a classroom 
setting, Shoemaker and Rast (2013) found that it was the 
words in sentence-initial and sentence-final positions that 
were most easily recognised in a stream of speech. They 
argued that this was due to not only silence bordering the 
initial and final words, but that working memory is less 
burdened for the final word of the utterance. 

Another factor that influences whether a word can be 
picked out of a stream of speech is the number of syllables it 
contains (Gullberg et al., 2012). With many function words 
monosyllabic, this could render them less easily noticed 
than highly salient content words, despite the frequency 
with which they occur in utterances.  

Overall, if the learning of nouns and verbs follows the 
findings of child language research, then we can expect 
nouns to be learned before verbs. Alternatively, if sentence 
position is a more important factor, we could expect verbs, 
which in our current study occupy the sentence-final 
position, to be learned before nouns, which are mostly in 
medial position. We then predict that adjectives will be 
learned next, followed by case markers, although given the 
short duration of the learning paradigm, it is possible that 
the latter may not be learned at all (e.g., DeKeyser, 2005). 

The learning mechanisms of vocabulary and syntax 
A final aim of this study was to investigate how the 

different types of language structure cohere. Is the meaning 
of vocabulary items (nouns, verbs, adjectives) learned in the 
same way as grammatical items (word order, case markers) 
or do they depend on different mechanisms? Research from 
models of learning data (Frost & Monaghan, 2016), 
neuropsychology patient studies (Alario & Cohen, 2004), 
theoretical models (Bock & Levelt, 1994), and memory 
models (Ullman, 2004) treat vocabulary and syntax as 
distinct. If this were the case, we might expect word order 
and case markers to be interdependent, with nouns, verbs 
and adjectives also grouped together. Alternatively, if 
syntax and vocabulary share the same learning mechanism, 
as is postulated in single-system models (MacWhinney, 
1987), we might expect to see no interdependency of word 
order and case markers. Instead, as word order is determined 
by the position of the verb, it is possible that learning which 
word is the verb and the word order will be linked.  

Method 

Participants 
Sixty-four native speakers of English (47 women) were 

randomly assigned to two conditions (massed vs distributed, 
each n = 32) which varied in terms of whether there were 
pauses between blocks of training on an artificial language 
learning task. Participants were students or graduates of 
universities in the North West of England. The mean age 
was 26.0 years (SD = 7.1). None of the participants had 
previously studied any verb-final languages. Participants in 
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the massed group received 20 GBP and participants in the 
distributed group received 28 GBP. The difference was due 
to the extra time involved in the distributed condition. 

 

 
 

Figure 1: Screenshot of the cross-situational learning task. 
Participants see two dynamic scenes and hear a sentence and 

decide which scene the sentence refers to. 

Materials 
A novel artificial language was created for this 

experiment. The lexicon consists of 16 pseudowords, taken 
from Monaghan and Mattock (2012). Fourteen bisyllabic 
pseudowords were content words: Eight nouns, four verbs, 
and two adjectives. Two monosyllabic pseudowords served 
as function words that reliably indicated if the preceding 
noun referred to the subject or the object of the sentence. 
The words were recorded by a female native speaker of 
British English who was instructed to produce the words in 
a monotone. 

In terms of syntax, the artificial language was based on 
Japanese. Sentences could either be SOV or OSV, i.e. verbs 
had to be placed in final position but the order of subject 
and object noun phrases (NPs) was free. NPs had to contain 
a noun as its head and a post-nominal case marker that 
indicated if the preceding noun was the agent or the patient 
of the action. Adjectives were optional and only occurred in 
half the NPs. Adjectives occurred pre-nominally. 

Eight alien cartoon characters served as referents for the 
language (see Figure 1). The aliens could either appear in 
red or blue and were depicted performing one of four 
actions (hiding, jumping, lifting, pushing) in dynamic 
scenes generated by E-Prime (version 2.0). Figure 1 shows a 
sample screen shot, containing the target scene and a 
distractor scene. Each noun referred to one alien, the 
adjectives referred to the colours of aliens, and the verbs 
referred to the actions. Word-referent mappings were 
randomly generated for each participant to control for 
preferences in associating certain sounds to objects, motions 
or colours. 

For training, there were 12 blocks of 16 trials each. In 
each trial, two scenes were presented and an artificial 
language sentence played. The sentence described only one 
of the scenes and the participants had to match the sentence 
to the correct scene. Within each block, each alien and 
action occurred an equal number of times; half the 

utterances in each block were SOV, the other half OSV. In 
the distractor scene, no actions were the same and the aliens 
and their colours were randomly selected. The locations of 
the target scene were counterbalanced. 

For testing, each type of information in the language was 
assessed by presenting an utterance and varying the target 
and distractor scenes by one piece of information: For 
testing nouns, target and distractor scenes were identical 
except for one of the aliens; for testing verbs, only the 
scenes’ actions differed; for testing adjectives, one of the 
colours of an alien was changed; and for testing marker 
words, the two scenes depicted the same aliens performing 
the same actions but with opposite agent-patient assignment. 
Testing trials were intermingled with every third training 
block.  The purpose of this was to make it less likely that 
participants would know they were being tested. For testing 
word order, grammatical and ungrammatical sentences were 
presented: Half the trials followed the licensed SOV or OSV 
order in sentences that had not been presented in the cross-
situational learning trials, whereas the other half contained 
syntactic violations (*VSO, *VOS, *OVS, *SVO). 

Procedure 
Participants were trained and tested on the artificial 

language on two days. Participants first completed 16 
training and testing blocks. Twenty-four hours later, they 
returned to the lab to complete a delayed post-test. There 
were eight pure training blocks, four mixed training and 
testing blocks, and four grammaticality judgment test (GJT) 
blocks. In the cross-situational learning task, participants 
were instructed to observe the two scenes on the screen and 
listen to the sentence played over headphones. Their task 
was to decide, as quickly and accurately as possible, which 
scene the sentence referred to. Participants received no 
feedback regarding the accuracy of their choice. For the 
word order trials, participants were told that they would see 
only one scene and hear a sentence spoken by another alien 
from a very different planet who was also learning the new 
language. Their task was to listen carefully and decide if the 
sentence sounded “good” or “funny”.  

Presentation order of trials within each block was 
randomized but all participants completed blocks in the 
same sequence. There were two training blocks, then one 
mixed training and vocabulary testing block, then a word 
order test block. This sequence was then repeated four 
times. 

The massed group completed the first 16 blocks 
consecutively while the distributed group had three 20-
minute breaks after every four blocks, in which they 
watched a natural history documentary on mute. Training 
and testing on day 1 took between 70 and 90 minutes for the 
massed group and between 130 and 150 minutes for the 
distributed group. The delayed test on day 2 comprised a 
final block of vocabulary testing trials and then a block of 
word order testing, and five cognitive tests (not reported 
here), and lasted approximately 90 minutes.  
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Results 

Performance on training trials 
We first performed a mixed analysis of variance on 

accuracy within each block, with training block as within 
subjects factor and the two training conditions (massed and 
distributed) as between subjects factor. There was a 
significant main effect for block, using the Greenhouse-
Geisser correction, F(4.55, 282) = 42.0, p <.001, ηp

2 = .40. 
This indicates that subjects improved with more training. 
However, there was no significant main effect for group, nor 
was there a significant interaction between time and group, 
both F < 1. We therefore pooled the data from the two 
training conditions for the remaining analyses. 

In order to ascertain when learning had taken place during 
the training blocks, a one-sample t-test was conducted to 
compare the mean scores for each block to a chance score of 
.5. Participants performed significantly above chance from 
block two (M = .57, SD = .18) onwards, 95% CI [.028 to 
.12], t(63) = 3.27, p = .002. In other words, 32 trials of 
exposure (without feedback) were enough to lead to above-
chance performance in the cross-situational learning task. 

Performance on test trials 
In order to determine performance for each type of 

information in the language, we performed one sample t-
tests to establish the first test block at which accuracy was 
above chance (at .5). We then carried out a series of 
repeated measures ANOVAs in order to determine the 
effects of test block on the scores for word order, nouns, 
verbs, adjectives and markers. Finally, we conducted further 
repeated measures ANOVAs for test blocks 4 (immediate 
post-test) and 5 (delayed post-test) for each word type and 
word order to assess the role of the 24-hour delay. The 
results are displayed in Figure 2 and Table 1 and Table 2. 

 
Table 1: Summary of repeated measures ANOVA over 

test blocks 1 to 4 showing effect for block. 
 
Test F p hp

2 
Word order 7.82    <.001 11 
Noun 14.5 <.001 .19 
Verb 2.46 .064 .038 
Adjective 2.76 .043 .043 

   Case marker .63 .60 .010 
 
Table 2: Summary of repeated measures ANOVA over 

blocks 4 to delayed test block 5 showing effect for block. 
 
Test F P hp

2 
Word order .025 .88 .00 
Noun 2.90 .59 .005 
Verb 4.61 .036 .069 
Adjective 2.50 .12 .040 

   Case marker 2.63 .11 .041 
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Figure 2: Proportion of correct trials across the five test 
blocks. Test blocks 1 to 4 were completed on day 1. Test 

block 5 was administered with a 24-hr delay. 
 

Participants performed significantly above chance from 
test block 1 onwards for both the word order tests, (M = .76, 
SD = .19), 95% CI [.22 to .31], t(63) = 10.9, p = < .001 and 
also verb tests, (M = .70, SD = .25, 95% CI [.13 to .26], 
t(63) = 6.16, p < .001). For noun tests, participants 
performed significantly better than chance from test block 2 
onwards, (M = .60, SD = .19, 95% CI [.052 to .15], t(63) = 
4.16, p < .001). Adjective test results were significantly 
above chance from test block 4 onwards, (M = .64, SD = 
.27), 95% CI [.076 to .21], t(63) = 4.22, p < .001). Finally, 
case markers only reached significantly above chance on 
test block 5, (M = .54, SD = .16), 95% CI [.001 to .079], 
t(63) = 2.06, p = .043.  

Determining relations between learning different 
information types 

In order to determine the factors driving performance in 
the task – whether learning was independent or 
interdependent for different types of information, we 
conducted a principal components analysis on test 
performance for the final test block for word order, nouns, 
verbs, adjectives, and marker words. There were two 
components with eigenvalues greater than 1, and the 
loadings of the individual tests on these components, with 
varimax rotation, showed a simple solution (i.e., each test 
loaded > 0.4 on only one component). The components and 
their loadings are shown in Table 3. 

The first component related to learning nouns, adjectives, 
and marker words, and the second component related to 
learning word order and verbs. This indicated that 
performance across the five information types was 
effectively explained by two aspects of the data: The first 
relates to learning the vocabulary items of nouns and  
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Table 3: Loadings of the five delayed tests on the two 
principal components. 

 
Test First component Second component 
Noun .778 .104 
Adjective .769 .034 
Marker words .604 .081 
Verb .322 .718 
Word order -.090 .873 

 
adjectives and how the marker words affected the role of the 
adjective-noun phrases, and the second indicated a close 
relation between learning the identities of verbs and learning 
that the word order of sentences was verb-final. 

Discussion 
In this study we investigated whether adult learners could 

acquire the syntax and vocabulary of a novel language by 
keeping track of cross-trial statistics, without feedback and 
without any explicit instruction about the structure of the 
language or its vocabulary. We also provided a delayed 
post-test after 24 hours to determine whether any acquired 
knowledge had been maintained. Furthermore, we examined 
the order of acquisition and investigated how learning of 
syntax and of vocabulary cohered. 

Simultaneous learning of words and syntax 
Our results indicated that adult learners can rapidly 

acquire both syntax and vocabulary of the language 
simultaneously. Previous cross-situational learning studies 
only investigated nouns (Smith & Yu, 2008) or verbs (Scott 
& Fisher, 2012) or nouns and verbs simultaneously 
(Monaghan et al., 2015). Our results extend these findings 
to demonstrate that it is possible for adults to acquire a 
wider range of information, including adjectives and case 
markers. We cannot rule out, however, that this occurred 
because of the nature of the lexical test design, in which the 
two scenes presented differed only in terms of the lexical 
item being tested, artificially making these word categories 
more salient. It also remains to be seen whether children can 
also learn such a complex system via cross-situational 
learning, and this is an important question that we are 
currently addressing. The results also show that the learning 
effects can be retained overnight. This is an important 
methodological observation as the majority of studies in 
statistical learning do not have a delayed post-test, which 
means that it is unclear whether the learning is robust. By 
including a 24-hr delayed post-test, we show that learning is 
indeed robust and that this applies to words and syntax. 

For the case markers, it was only after 24 hours that test 
scores were significantly above chance. This corresponds 
with Grey, Williams and Rebuschat’s (2015) study that 
found no learning effect for Japanese morphology on an 
immediate post-test, but a significant effect after a two-week 
delay. These findings suggest that consolidation may be 
valuable, particularly for the function words’ role in the 
language. Indeed, there is evidence that sleep aids in the 

generalization of grammatical rules (Walker & Stickgold, 
2010). The case marker results also raise another important 
methodological consideration. Without the delayed test, we 
would have underestimated the amount of learning that had 
taken place and would have concluded that case markers 
had not been learned at all. Whereas, with the delayed test, 
there is evidence, albeit a small effect, that learning of case 
markers does in fact take place. It is recommended, 
therefore, that future studies into cross-situational learning 
include delayed post-tests to show that learning is robust 
and to catch any learning effects brought on through 
consolidation. 

Order of acquisition 
Although learners were exposed to both vocabulary and 

syntax simultaneously, they performed above chance on 
different aspects of the language at distinct stages: First, 
verbs and word order were acquired, then nouns, then 
adjectives, and finally case markers (see Figure 2). It is 
interesting to note that verbs were learned before nouns in 
this artificial language and thus differed from the majority 
of first language acquisition studies. One possible reason for 
this is the saliency of the final-position verb compared to the 
mostly medial-position nouns (Shoemaker & Rast, 2013). 
Another possibility is that adult learners already possess 
syntactic and lexical knowledge of word categories in their 
L1 and so can transfer them to their L2. This would then 
allow the learner to concentrate on deciding which words 
map onto the different lexical categories, rather than also 
working out the lexical categories as infants do. 

The coherence of vocabulary and syntax 
Regarding the coherence of learning of syntax and 

vocabulary, we found that acquisition of word order and 
verb learning were interdependent. Upon learning that the 
final word in the sentence was a verb, participants were able 
to gain an understanding of the basic word order of the 
sentence. It is conceivable that such an understanding could 
be gained by breaking into the stream of input through any 
word category, with the greater salience of verbs due to final 
utterance position promoting this acquisition. In addition, 
we found that nouns, adjectives and case markers were also 
interdependent but acquired somewhat independently of 
verbs and word order. This result supports an emergentist 
view that syntactic knowledge associated with case markers 
develops only after a core vocabulary of content words has 
been learned (Bannard et al., 2009).  

These results demonstrate that the chicken and egg 
problem of acquiring grammar and vocabulary can be 
resolved by the learner through using cross-situational 
statistics with events in the environment. An alternative 
explanation is that once verbs are learned, this knowledge is 
then bootstrapped to aid the acquisition of the other lexical 
categories. The patterns of results we found for this verb-
final language in our experimental paradigm did not neatly 
correspond with a distinction between grammar and 
vocabulary learning (e.g., Ullman, 2004), with word order 
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being related to verb acquisition, and case marking being 
related to noun and adjective learning. Complex interactions 
between grammatical categories and grammar do not appear 
to lend themselves to a neat distinction in acquisition of 
these sources of linguistic knowledge. 
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Abstract 

Radical Enactivism is a position in the philosophy of 
cognitive science that aims to displace representationalism, 
the dominant position in cognitive science for the last 50-60 
years. To accomplish this aim, radical enactivism must 
provide an alternative explanation of cognition. Radical 
enactivism offers two alternative explanations of cognition. 
The first I call the dynamical explanation and the second I call 
the historical explanation. The mechanists have given us 
reasons for doubting that the first alternative makes for a good 
explanation. The historical explanation does not hit the right 
explanatory target without the introduction of a proximate 
mechanism, but the proximate mechanisms suggested by 
radical enactivism are associationist mechanisms, the 
limitations of which led to the initial widespread endorsement 
of representationalism. Therefore, radical enactivism cannot 
displace representationalism in cognitive science.  

Keywords: radical enactivism, representation, dynamical 
explanation, computationalism, explanation 

1 Introduction 

Radically enactive cognition (REC) is a position in the 

philosophy of cognitive science aiming to displace 

representationalism (Hutto & Myin 2013), the dominant 

position in cognitive science for the last 50-60 years.1 To 
accomplish this aim, proponents of REC—or RECers—

must settle their explanatory debt by providing us with an 

alternative explanation of cognition. Cognition, here, is 

understood in a non-question begging biological sense as 

that system functioning to coordinate behaviour intelligently 

(Godfrey-Smith 1996).2 It’s a familiar phenomenon. It’s 

what happened when you wrote your last paper or organised 

your last workshop. It’s probably what happened when you 

performed some less sophisticated tasks too. The RECers 

owes us an explanation of that. For half a century, the 

representational explanation of cognition has been the 
defining explanation of cognitive science—“the only game 

in town” (Fodor 1975). But the RECers argue that the 

representational explanation is bad. If we can’t play the 

representation game anymore what game shall we play? 

REC is committed to two alternative explanations of 

cognition. The first, I call the dynamical explanation. Here, 

RECers presuppose that all dynamical models make for 

good explanations, and David Kaplan and William Bechtel 

                                                        
1 Radical enactivism is just one position in the greater anti-

representationalist movement in the philosophy of cognitive 

science. Less ambitious positions within this movement will not be 
discussed in this paper. 

2 This understanding does not presuppose that cognition must be 
explained by appealing to representation. 

have given us good reasons to think otherwise (Kaplan 

2015; Kaplan & Bechtel 2011). Although many of the 

dynamical models appealed to by the RECers provide 

elegant and predictive descriptions of phenomena, they do 

not explain those phenomena. Their second alternative, I 

call the historical explanation. Although this is a good 

explanation, it is, by itself, not the right kind of explanation 

to compete with the representational explanation. Even with 

the addition of associationist mechanisms, the explanation 
still fails to explain certain intelligent behaviour, a limitation 

that led to the initial widespread endorsement of the 

representational explanation in cognitive science. Therefore, 

RECers owe us an explanation of cognition that can displace 

the representational explanation.3  

2 The Representational Explanation 

According to the representational explanation, intelligent 

behaviour is coordinated through the manipulation and 
transformation of information-bearing structures called 

representations. There are a number of versions of the 

explanation, however, owing to the different ways in which 

the term “representation” has been used. William Ramsey 

identifies four ways in which the term has been used 

(Ramsey 2007). Here, I defend only the representational 

explanation of the classical computational theory of 

cognition (CCTC), so only two of the four notions of 

representation Ramsey identifies are relevant: the IO-notion 

and S-representation. For brevity’s sake, I will discuss only 

the IO-notion (Ramsey 2007: 68-77).4 

The IO-notion of representation is used to describe those 
situations in which some structure standing in for another is 

taken as a system’s input (hence the “I”) and transformed 

into another structure (again standing in for yet another 

structure), which is its output (hence the “O”). If this is a 

little abstract, imagine a calculator taking as input some 

structures standing in for numbers and mathematical 

operators—say, “2,” “3,” “+,” and “=.” All going well, the 

calculator transforms its input into another structure, “5,” 
which stands in for the number five, and which the 

                                                        
3 There is another class of alternatives to the representational 

explanation as I characterize it in §2, which I call cognitive-
neuroscience explanations. REC does not offer these explanations 
so they won’t be considered here. Relating the representational 
explanation to these alternatives will be left for future work. 

4 CCTC can be made more rigorous with any number of formal 

theories of computation. Here, I follow Gallistel and King’s and 
assume a functioning homomorphism view of computation and the 
Turing machine mathematical formalism because these apply to 
the desert ant example in section 4.1 (see Gallistel & King 2009: 
196-206). 
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calculator gives as its output. Here’s another example. 

Imagine a face recognising computer. Again, its input is a 

structure standing in for another structure, a face in this 

case. Let’s say its input is a portrait of Charles Darwin. All 
going well, the computer transforms its input and gives as 

output a different structure that stands in for the individual 

to whom the face belongs. Something like “Charles 

Darwin.” CCTC models the transformation of a structure 

from input to output as a series of operations carried out by 

component sub-systems. Each sub-system also takes as its 

input structures standing in for other structures and gives as 

its output yet more such structures. It is due to this on-going 

replacement and its role in the transformation of system 

input to system output that CCTC takes such systems to 

manipulate and transform structures standing in for other 

structures—that is, representations.5 
If you are sceptical of CCTC’s representational 

explanation then consider the digital computer. The digital 

computer can perform calculation and facial recognition as 

in the examples above and does so in the way I’ve 

described. The digital computer is a paradigm case of a 

physical system for which the representational explanation 

is good. It is, in effect, an existence proof for good 

representational explanations. No matter what position you 
occupy in the philosophy of cognitive science, if it follows 

from your argument that the representational explanation of 

a digital computer is bad, then that is a reductio against your 

argument. Whether or not the representational explanation is 

good for human cognition is an empirical question. But 

RECers argues that the representational explanation of 

human cognition is bad on theoretical grounds. 

2.1 The Cost of the Representational Explanation 

RECers claim that we should reject the representational 

explanation because it is too metaphysically demanding to 

be naturalised.6 A naturalistic explanation, here, is 

understood as one that can be squared with our current 

scientific knowledge—no spooky stuff. The representational 

explanation is too metaphysically demanding, REC claims, 

because it posits the existence of content, which determines 

what a structure stands for: the structure “5” stands in for 

the number five because of its content. According to REC, 

no naturalistic account of content has succeeded in 

explaining the “special properties,” such as “truth, 
reference, implication,” attributed to content (Hutto & Myin 

2013: 67). These properties make content, and hence the 

                                                        
5 This is a minimal conception of CCTC. Many classical 

computationalists, such as Jerry Fodor (1975), endorse a language 
of thought, but CCTC is compatible with the absence of a language 
of thought. Furthermore, CCTC need not (and I think should not) 
posit anything like that found in our folk psychological theories 

(Stich 1983). 
6 This is not the only reason RECers have for rejecting 

representations. For example, another reason, which I deal with 
below, concerns the causal efficacy of semantic properties. For 
brevity’s sake I can present no more reasons here. 

representational explanation, “too metaphysically 

extravagant to be accepted by hard- nosed naturalists” (21). 

As a naturalist, I shy away from metaphysical 

extravagance, and I agree that no naturalistic account of 

representation has explained content as REC understands it. 
But I resist the assumption that content must have such 

metaphysically demanding properties, such as truth and 

reference. One reason why REC might make this 

assumption is because their emphasis is partly on mentality 

and the mind: “Enactivism is inspired by the insight that the 

embedded and embodied activity of living beings provides 

the right model of understanding minds” (Hutto & Myin 

2013: 4, my emphasis). The focus of the representational 
explanation radical enactivists hope to displace, however, is 

not on the mind but on cognition. It may prove difficult to 

give good naturalistic explanations of the mind’s features 

because the mind simply doesn’t lend itself to good 

naturalistic explanation. But I will leave that to the 

philosophers of mind. 

Can we make do with less metaphysically demanding 

accounts of representational in cognitive science? I think we 

can. Furthermore, I think REC must also make do with less 
metaphysically demanding accounts of representation 

because they are committed to the existence of public 

representational systems, such as public language. How 

does “5” come to stand in for (at least in most instances) the 

number five in our public language? Radical enactivists 

cannot answer that “5” stands for the number five because 

of representations internal to the language users. The 

meaning of public representations can’t be due to something 

metaphysically extravagant in your head or in mine. Such an 

answer is anathema to RECers. Instead, public structures 

like “5” come to stand in for what they do in virtue of the 
interactions between public language users (Hutto 2008). 

This was, roughly, Wittgenstein’s view of language in his 

Philosophical Investigations. According to this view, “5” 

stands in for the number five because we use that structure, 

either as a written symbol or as an utterance, in those 

situations involving five-type things, such as when we ask 

someone to fetch five stones or to wait five days. Over time, 

language users become expert at recognising situations like 

these and can use “5” in situations involving much more 

complicated or abstract entities, like dollars and electrons. 

For Wittgenstein, structures stand in for other structures (in 

most cases) in virtue of their functional role in a system of 
public language users. In slogan form: “the meaning of a 

word is its use in the language” (Wittgenstein 2009/1953: 

§43). So “5” or “five” means (has as its content) the number 

five because of the way in which “5” is used in a 

community of language users.7  

REC is committed to something like Wittgenstein’s 

meaning-as-use account. A metaphysically undemanding 

explanation of representation such as this can generalise to 

cognitive systems. Just as utterances can be said to stand in 
for other structures in virtue of their functional role in a 

                                                        
7 This is only a sketch of Wittgenstein’s view, but a sketch will 

do here. 
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public system, so can structures in a computational system. 

These structures can be said to stand in for others in virtue 

of how they are passed between the different sub-systems of 

the computational system and how they are transformed by 
each sub-system—that is, how they are used within and by 

the system. You might be sceptical of a Wittgenstein-

flavoured meaning-as-use account of representation. And 

it’s fine if you are. All that’s important here is that REC is 

committed to an explanation of interactions between 

organisms—that is, human public practices—that involves 

representation and avoids metaphysical extravagance. If 

public practice can be given a metaphysically undemanding 
representational explanation then so can cognition. There is 

no reason to suppose that representational explanations of 

intraorganism processes will be any more metaphysically 

extravagant than those for interorganism processes. 

Advancing the representational explanation, at least as it 

is understood in CCTC, does not entail positing anything as 

problematic as REC suggests it does. As I outlined above, 

within CCTC we can posit representations and explain 

representational content in virtue of a structure’s function 

within the computational system. A structure stands in for 
what it does because of the role that structure plays in the 

computational system. Furthermore, this way of grounding 

content is analogous to REC’s strategy for grounding the 

content of public representations. So, if REC remains 

sceptical of CCTC’s representational explanation, as I have 

outlined it in this section, then they must rethink their own 

commitments to the existence of public representational 

systems. 

Furthermore, according to CCTC’s representational 

explanation, structures in a computational system are not 

causally efficacious because of their content. They are 
causally efficacious because of how their formal properties 

map onto physical parts of the target system, such as 

transistors or neurons (Fodor 1981; Pylyshyn 1984; Gallistel 

and King 2009). If the RECers suppose the representational 

explanation requires that structures be causally efficacious 

because of their content then they are setting up a straw 

person. Hence, I take it this is not their position. If the 

RECers accept CCTC’s representational explanation but 
reject other versions of the representational explanation, 

such as those according to which structures are causally 

efficacious in virtue of their content, then they are 

conservatives, classical computationalists rather than 

radicals. Hence, I take it this is not their position. Instead, I 

take it that REC is a position according to which CCTC’s 

representational explanation is unnecessary for explaining 

any intelligent behaviour. This is an empirical question. And 
we have good reasons to answer it in favour of the 

representational explanation (see §4.1 especially). From 

here on, I argue that REC’s candidate replacement 

explanations are not genuine alternatives to the 

representational explanation of CCTC or, where they are 

genuine alternatives, they fail to explain some intelligent 

behaviour that the representational explanation can. 

3 The Dynamical Explanation 

The first alternative to the representational explanation 

offered by REC is the dynamical explanation: “the vast sea 

of what humans do and experience is best understood by 

appealing to dynamically unfolding, situated embodied 
interactions and engagements with worldly offerings” 

(Hutto & Myin 2013: ix). Dynamical explanations are 

constructed with the language of dynamical systems theory, 

which models how physical systems change over time with 

differential and difference equations. These equations 

quickly become analytically intractable as structures or 

details are added but their solutions can be satisfactorily 

approximated using numerical methods and computer 
simulation. From the approximate solutions, modellers 

create geometric visualisations of the different ways in 

which the system can change over time as transitions 

through a state space. The explanation’s language is 

complex, but it need not concern us here. The problem with 

dynamical explanations is not the language in which they 

are described. 

A paradigm case of a dynamical model is the Haken-
Kelso-Bunz (HKB) model of human hand movements 

(Haken et al. 1985). The model captures “voluntary 

oscillatory motions of the two index fingers”—that is, the 

movement of your index fingers when you move them back 

and forth in a coordinated fashion, either symmetrically or 

asymmetrically. In particular, it captures the abrupt change 

from asymmetrical and symmetrical coordination when the 

oscillations reach a certain frequency. HKB is a 
phenomenological model, built to have a close qualitative fit 

with the system’s behaviour: the “first step in the 

development of the model is to provide a mathematically 

accurate description of the main qualitative features of the 

data” (349). 

HKB has received much attention because it is a minimal 

model of a “relatively simple two-component system” 

(Bressler & Kelso 2001: 28) with predictive power, 

capturing the dynamics of a wide range of interactions 

including those between an agent and their environment 
(Kelso 1994) and between two agents (Schmidt et al. 1990). 

For RECers and similarly inclined anti-representationalists, 

models like this provide good alternative explanations 

because they make simple and generalisable predictions 

(without positing content): “If models are accurate enough 

to describe observed phenomena and to predict what would 

have happened had circumstances been different, they are 

sufficient as explanations” (Chemero & Silberstein 2008: 

12). Although accurately describing the behaviour of a large 

class of systems is a virtue of these models, good 

descriptions and predictions are not sufficient for 
explanation. 

Dynamical explanations of the intelligent coordination of 

behaviour can only be genuine alternatives to the 

representational explanation if they are genuine 

explanations. Dynamical explanations are only genuine 

explanations if the predictions and descriptions of behaviour 

offered by models like HKB are also explanatory. 

1315



Description and prediction are certainly similar to 

explanations. The covering law account of explanation, for 

example, treats them as having the “same logical character” 

as each other (Hempel 1958: 37; 1965). But they are 

importantly different from explanation (Kaplan 2015; 

Kaplan & Bechtel 2011). The difference between 
description and explanation is obvious: a description of a 

phenomenon is simply a statement of the explanandum. The 

difference between prediction and explanation is not so 

obvious but just as real. 

To see the difference between prediction and explanation, 

imagine a flagpole, which casts a shadow as the sun rises 

and sets. As the position of the sun changes, so does the 

shape and size of the shadow. The two change together with 

law-like regularity. Hence, we can use the height of the 

flagpole along with the position of the sun and some 
mathematics to predict the shape and size of the shadow. 

We can also use the shape and size of the shadow along 

with the position of the sun and some mathematics to 

predict the height of the flagpole, but we cannot explain the 

height of the flagpole in virtue of the shadow’s shape and 

size. Although predictions can run either way, from flagpole 

to shadow and from shadow to flagpole, explanations run in 

only one direction—in this case, from flagpole to shadow 

(Bromberg 1966; also Kaplan & Bechtel 2011: 440-441). 

Explanations must inform us of that which gives rise to a 
phenomenon, so an explanation of the height of the flagpole 

would appeal to the factory in which it was made, but not to 

its shadow. 

Precise mathematical models of behaviour like HKB are 

not the explanans.8 They are the explanandum. This is not 

especially controversial; dynamical modellers themselves 

are aware of this. Haken et al., for example, admit of their 

model that it describes the coupling between the two hands 

but says nothing about what gave rise to that coupling and 
leave this for “further theoretical and experimental research” 

(Haken et al. 1985: 355). Short an actual explanation of the 

phenomena described by HKB, Haken et al. provide a how-

possible explanation, describing a mechanism that might be 

responsible for causing the phenomena: “one coupling 

might be established via the corpus callosum, the well-

known band of fibres that joins the two hemispheres of the 

brain” (ibid.). Another explanation of the regularities 
described by dynamical models like HKB may involve the 

manipulation and transformation of information-bearing 

structures. The behaviour of digital computers, for example, 

can be modelled using the tools of dynamical systems 

theory, but, as I said above, it is a paradigm case of a system 

for which the representational explanation is good. Hence, 

dynamical models of cognition—explanatory or not—are 

compatible with representational explanations. Even if 

                                                        
8 As Kaplan (2015) argues, dynamical models can be 

explanatory when construed as representing the dynamics of the 

mechanism responsible for the phenomena to be explained, but not 
when they are merely phenomenological. In these cases, the 
mechanism and not just its dynamic behaviour constitute the 
explanation. 

REC’s dynamical explanation were genuinely explanatory it 

would be compatible with representational explanation. 

4 The Historical Explanation 

REC’s second alternative to the representational explanation 

is the historical explanation. In this case, cognition is 

explained in virtue of an agent’s “history of previous 

engagements and not in some set of internally stored mental 

rules and representations” (Hutto & Myin 2013: 9). To 

make this concrete, imagine some behaviour: 

“Someone is living in a house with a kitchen in the hallway, 

such that she has to walk around a sideboard to get to the 
other side. Suppose that at some point the sideboard gets 

removed, but that the person still takes the same curve to get 

to the other side of the hall.” (Degenaar & Myin 2014: 

3642) 

 

Here is the historical explanation of that behaviour: 

 

“In the new situation, the person is going through the same 
old motions in absence of the environmental basis for these 

motions. Over the years, a behavioural pattern has emerged: 

the person tends to take a particular trajectory when walking 

through the hallway.” (Degenaar & Myin 2014: 3642) 

 

The historical explanation is neither mere prediction nor 

description. Unlike REC’s first alternative explanation, its 

second is genuinely explanatory. However, it is still not a 
genuine alternative to the representational explanation. 

Rather, it is compatible with the representational 

explanation. As Jan Degenaar and Erik Myin say of the 

above example, “This might involve representations or it 

might not” (Degenaar & Myin 2014: 3642). 

The historical explanation is not the right kind of 

explanation to be an alternative to the representational 

explanation because the historical explanation is an ultimate 

explanation, while CCTC’s representational explanation is a 

proximate explanation. Niko Tinbergen (1963) first made 
the distinction between proximate and ultimate 

explanations. An example will help illustrate the distinction: 

humans regularly help needy others at a cost to themselves. 

One explanation of this behaviour is that empathising with 

needy others motivates us to help them (Batson 2011). This 

is a proximate explanation. It tells you about the mechanism 

here and now—empathy—that produces the helping 

behaviour. But why this sort of mechanism? Why are we 

empathetic? This question calls for an ultimate explanation, 

which might explain the helping behaviour as the result of 

selection for a particular behavioural disposition in terms of 
benefits to an organism or group’s fitness. For example, 

perhaps our empathetic ancestors were better carers for their 

and their kin’s young, so our empathetic ancestors did better 

than our nonempathetic ones and empathy spread through 

the population (De Waal 2008). Importantly, ultimate 

explanations need not refer to evolution. They can also refer 

to an agent’s developmental history (Baum 1994). For 

example, an ultimate explanation of an agent without the 
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disposition to help may be that their helping was rewarded 

materially early in their developmental history such that the 

agent came to expect material rewards to follow from 

helping (Warnaken & Tomasello 2014). Hence, when there 

are no material rewards on the horizon, the agent doesn’t 

help. Here, our ultimate explanation refers to a learning 
process rather than an evolutionary one. 

Proximate and ultimate explanations are natural partners, 

with one explaining the mechanism producing the behaviour 

here and now and the other explaining why that kind of 

mechanism exists instead of another. Since REC’s historical 

explanation is compatible with the representational 

explanation it is no real alternative at all. 

4.1 The Proximate Explanation 

RECers might respond that their historical explanation does 

involve a proximate mechanism, which is something akin to 
what Kim Sterelny (2003) calls a detection system. 

Detection systems link certain environmental stimuli with 

certain behavioural responses and do not involve the 

manipulation and transformation of information-bearing 

structures.9 In the example above, entering the hallway has 

been linked with the response of taking a particular 

trajectory. This connection has been wired up through 

something like simple association-based learning—the 

hallway becomes associated with taking the trajectory in 
virtue of certain rewards, such as not bumping into the 

sideboard. But detection systems can also be wired up 

through evolutionary processes. Organisms can be born 

responding to particular stimuli with particular responses 

because such organisms have had greater reproductive 

success. The infamous male Photuris firefly, for example, is 

born with such a detection system, which links a certain 

series of flashes with the response of flying toward the 
source of the flashes. Female Photuris fireflies produce 

these flashes and males find them, so the two can mate. 

Although often effective, detection systems are fragile. 

The Photinus firefly’s detection system is exploited by the 

Photuris firefly. They produce the flashing just like the 

Photinus females, catching and eating a fair number of 

unfortunate males (Lloyd 1965). Sterelny’s robust systems 

are, as the name suggests, less fragile than detection 
systems. These link a number of environmental stimuli with 

a particular response. But even these have their limits. Once 

the causal chain through which a relevant aspect of an 

environment and an appropriate behavioural response are 

linked becomes sufficiently complex and rare, it becomes 

invisible to whatever processes build detection and robust 

systems, such as associationist learning or evolution by 

selection. Sterelny argues that this is the case in complex 
social environments in which deception is common and 

multi-place relations between group members matter, and 

from which language can emerge as it has in the case of 

human lineage. Explaining human cognition, then, will 

                                                        
9 Some might want to resist this claim and argue that detection 

systems do involve information-bearing structures. For good 
reasons to not to resist see (Ramsey 2007). 

require a proximate explanation appealing to more than 

detection systems and associationist learning. 

If the only good proximate explanation RECers have up 

their sleeves is one involving associationist mechanisms 
linking a stimulus with response in virtue of a history of 

interaction then that’s a problem. As Sterelny argues, the 

complexities of social life are such that stimulus-response 

systems like Photinus’s just won’t do. But REC needs more 

than a good proximate explanation for human social 

behaviour (here, RECers will argue is richly scaffolded by 

shared practices and hence not as computationally 

demanding as it seems). REC also needs one for the 
behaviour of much simpler organisms, such as insects 

(Gallistel 1990, Gallistel & King 2009). Desert ants, among 

other insects, often trace winding paths away from their 

nests as they forage. Upon returning to their nests, they 

don’t retrace their steps, but take an almost direct route. 

This is known as path integration or dead reckoning. It 

requires integrating information both about the distance and 

direction travelled from the nest. This ability has been 
experimentally demonstrated (Wehner & Srinivasan 1981). 

In Wehner and Srinivasan’s experiment, ants forage from 

their nest to a feeder station 20m away. Upon reaching the 

feeder station, the ants are transferred to a test area several 

hundred meters away with a replica feeder station. From this 

replica, the ants take a direct path to where their nest should 

be. When they reach this point they begin searching for their 

nest in different directions. In these experiments, the ants 
are clearly not using environmental cues. If they were, they 

would find their actual nest, not where their nest should be. 

Their destination is a novel location, so they cannot be 

navigating by anything like habit. In this instance, there is 

no history of on-going interactions to appeal to and no 

stable environmental stimuli with which behaviour can be 

associated. A good explanation is one positing a 

computational process involving representations of the ants’ 
location relative to the nest and feeder station. 

5 Revolution? 

The radical enactivists owe me an explanation. They owe 

you one too. They owe us all an explanation of how 

biological systems like you and I behave in the complicated 

ways we do. They owe us an explanation of cognition. 

Importantly, the explanation cannot one of those advanced 
before the cognitive revolution. You cannot displace the 

representational explanation with stimulus-response 

mechanisms because the representational explanation 

initially gained traction in virtue of the limitations of such 

mechanisms. 

So what new explanations are on offer? There is the 

dynamical explanation, according to which our actions are 

the results of dynamically unfolding interactions with our 
environments. But what explains why these dynamics obtain 

instead of others? When I become reciprocally coupled with 

my environment, what initiates and maintains that coupling 

such that my behaviour can be predicted with a set of 

elegant differential equations? Although the models of the 
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dynamical explanation can offer mathematically precise 

descriptions of behaviour, they don’t explain why those 

descriptions hold. If those in the radical camp want an anti-

representational revolution, they must fill the explanatory 
gap left by the representational explanation. So far, they 

have failed to do this. 
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Abstract: In recent years deep reinforcement learning (RL) systems have attained superhuman performance in a number of
challenging task domains, but are constrained by a demand for large training sets. A critical present objective is thus to develop
deep RL methods that can adapt rapidly to new tasks. In the present work we introduce a novel approach to this challenge,
which we refer to as deep meta-reinforcement learning. Previous work has shown that recurrent networks can support meta-
learning in a fully supervised context. We extend this approach to the RL setting. What emerges is a system that is trained
using one RL algorithm, but whose recurrent dynamics implement a second, quite separate RL procedure. This second, learned
RL algorithm can differ from the original one in arbitrary ways and exploit structure in the training domain. We unpack these
points in five proof-of-concept experiments to examine key aspects of deep meta-RL.
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The Learning of Subordinate Word Meanings
Hao Wang
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Abstract: In three experiments, adults attempted to learn words with subordinate-level meanings (dalmatian) by sampling the
referent world cross-situationally. Xu & Tenenbaum, 2007 predicted that encountering three uses of a word, each referring
to a dalmatian would evoke “suspicious coincidence” inferencing, leading to the subordinate meaning (dalmatian). Exp. 1
found little evidence for this; cross-situational exposure led to a basic-level bias. This bias was unchanged even when the
sample was increased to five subordinate exemplars (Exp. 2). Exp. 3 encouraged semantic contrast by simultaneously teaching
each subject a word for the subordinate-level and the basic-level category within the same semantic domain (dap=dalmatian;
blit=dog). Participants now showed non-basic level learning, but more in line with mutual exclusivity: they may think “dap”
means dalmatian but “blit” means all-dogs-except-dalmatians. We conclude that the basic-level interpretation is powerful and
cannot be removed by the mere observation of exemplar items over multiple word instances.
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Abstract 
By integrating theories and methodologies from a diverse 
range of scientific disciplines (e.g., physics, neuroscience, 
cognitive science, psychology and robotics engineering) the 
present work is aimed at harnessing self-organized 
anticipatory synchronization in order to advance human-
robotic interaction (HRI). This phenomenon is characterized 
by the emergence of anticipatory behavior by one system 
coupled to the chaotic behavior of another, following the 
introduction of short self-referential delays in the coordinating 
system. The current set of studies involved the creation of an 
artificial agent based on a time-delayed, low-dimensional 
dynamical model capable of behaving prospectively during an 
interaction with a human actor performing complex, 
unpredictable behaviors. By achieving characteristics similar 
to those observed during natural human interaction and 
coordination, the time-delayed modeling approached 
advocated here provides the potential for considerable future 
advancements in HRI.   

 
Key words: human-robotic interaction; artificial agents; 
dynamical modeling; virtual reality; anticipatory 
synchronization; interpersonal coordination; chaos 
 

Rapid advances in cyber-technologies and robotics present 
increasing opportunities for the implementation of 
interactive, artificial agents within contexts of human 
behavior. This includes, but is not limited to, assistance 
during the performance of everyday tasks and the 
development of new skills. Work has already been done, for 
example, on the development of virtual agents able to assist 
elderly individuals with the organization of their daily 
activities (Yaghoubzadeh et al., 2013), and to create a robot 
whose structured interaction may help to improve 
interpersonal coordination in children with autism spectrum 
disorders (Palatinus, 2014). However, Lorenz and Hirche 
(2014) have recently drawn attention to the fact that 
engineers working to design virtual and robotic agents do 
not always prioritize those aspects which will allow for 

smooth, effortless human interaction, while psychologists 
studying interpersonal or joint-action do not always take 
into account technical realizability in describing what they 
see as the fundamental elements of successful multi-agent 
coordination.  

One potential solution to this issue is to identify and 
model the behavioral dynamics (Warren, 2006) of natural 
human-human interaction using low-dimensional 
differential equations that can be easily implemented within 
interactive robotic or machine systems. Recent work by 
Dumas et al. (2014) and Zhai et al. (2014) has already 
provided support for the idea that relatively simple self-
sustaining, nonlinear dynamical systems can be used to 
construct virtual interaction partners capable of successful, 
flexible coordination with human actors. Both groups of 
researchers used long-standing oscillator models of 
biological coordination to develop virtual agent systems 
capable of synchronizing with a selection of behaviors 
exhibited by a human actor. For instance, Dumas et al. 
(2014) have developed variations of their Human Dynamic 
Clamp (HDC) system that can coordinate with continuous 
and discrete finger movements of a human actor. Zhai et al. 
(2014) have designed a similarly adaptive virtual agent that 
is capable of coordinating with an individual during a 
continuous, one-dimensional movement-mirroring task.  

The development of these dynamical, artificial agents has 
primarily focused on their ability to exhibit coordination 
with periodic behaviors, or synchronize with fluctuating 
movement speeds using a velocity estimation algorithm. 
However, one only has to consider a pedestrian navigating a 
busy city sidewalk to be reminded that people are often 
capable of prospectively coordinating their behavior with 
highly variable, seemingly unforeseeable events in an 
effortless manner. Recent research in human motor control 
and joint-action has demonstrated that small perceptual-
motor feedback delays, such as those known to exist within 
the human nervous system, may actually facilitate the ability 
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to achieve anticipation of such continuous chaotic events 
(Stepp, 2009; Washburn et al., 2015). This phenomenon, 
referred to as strong anticipation or self-organized 
anticipatory synchronization, has been found to emerge 
when a unidirectional coupling exists between a “slave” 
system and a chaotically behaving “master” system (e.g., 
Masoller, 2001; Stepp & Turvey, 2015; Voss, 2000). 
Surprisingly, as the slave system begins to synchronize with 
the chaotic behavior of the master system, the introduction 
of small temporal feedback delays results in the slave 
system anticipating the ongoing behavior exhibited by the 
chaotic master system.  

Of particular significance here, is that the dynamics of 
chaotic anticipation during interpersonal coordination can 
be captured using a low-dimensional dynamical model and 
can be easily implemented in artificial agents. Such models 
of self-organized anticipatory synchronization could 
therefore provide an opportunity for significant 
advancement in HCI and HRI through the development of 
artificial systems capable of anticipating chaotic human 
behavior during real-time interaction. In the current study, 
two experiments were conducted to examine whether a 
virtual, artificial agent, whose arm movements were 
controlled by a time-delayed dynamical model, could not 
only coordinate with the chaotic movements of human 
actors in real time, but could do so in a self-organized 
anticipatory manner akin to human-human perceptual-motor 
coordination. 

 
Method 

Participants 
Twelve students were recruited from the University of 
Cincinnati to take part in Experiment 1 along with four 
individuals from the greater Cincinnati area, for a total of 16 
participants. Participants ranged in age from 19 to 31 years. 

Seventeen University of Cincinnati undergraduate 
students participated in Experiment 2 (eight in the 1.5 
coupling strength condition and nine in the 2.0 coupling 
strength condition). Participants ranged in age from 18 to 31 
years. 
  
Procedure and Design 
A virtual reality (VR) interface was employed in both 
experiments as it afforded the opportunity to examine the 
phenomenon of human-human and human-machine 
anticipatory synchronization within a realistic, yet highly 
controllable setting. A seated participant interacted with a 
simple virtual environment created using Unity 3D and 
viewed via a head-mounted Oculus Rift. Within the virtual 
environment participants saw a robot avatar sitting directly 
in front of them, and an additional avatar arm that moved 
along with their own right arm movements. The movements 
of this virtual participant arm were generated through the 
inverse kinematics function available within Unity 3D by 
coupling the pointer finger of the virtual arm to the real time 

position of a wired motion sensor attached to the first two 
fingers of a participant’s right hand. A Polhemus Liberty 
electro-magnetic motion capture system (~0.1 mm 
accuracy) (Polhemus Liberty, Polhemus Corporation, 
Colchester, VT) was used to record and track participants’ 
movements at 120 Hz. The horizontal and vertical 
coordinates of participant movement were also recorded 
from the magnetic tracking system at a sampling rate of 75 
Hz for later analysis. The receiver for this system was 
positioned approximately 10 cm in front of the fingers of a 
participant’s right arm outstretched directly in front of their 
body. 
 
Experiment 1: Human (slave) – Avatar (master) 
Experiment 1 was designed to establish the coordinative 
dynamics exhibited by human actors coordinating with an 
artificial agent via a novel VR setup. That is, we examined 
whether small perceptual-motor feedback delays could 
enhance a human actor’s ability to anticipate the chaotic 
movements of the artificial agent system. Experiment 1 was 
also conducted to assess the degree to which bidirectional 
coupling (from master to slave) might influence the 
emergence of anticipatory synchronization. At the beginning 
of each experimental trial, the robot avatar began to move 
its left arm with the index finger pointed in a continuous 
trajectory. The participants’ task was to synchronize their 
own arm movements with those of the moving stimulus (in 
this case the robot avatar’s arm). The movements of the 
robot avatar (master system) were defined online by means 
of a chaotic spring system, 
 

  
 
with the x3, x4 and x5 dimensions defining a standard Rössler 
attractor (Stepp, 2009). This attractor generates the chaotic 
dynamics used to define position of the ‘x’ and ‘y’ 
dimensions for a simple harmonic oscillator specified in x1 
and x2. The resulting system maintains an elliptical 
trajectory over time while exhibiting chaotic fluctuations in 
amplitude and frequency. Nine sets of system parameters a, 
b, c, α, β, 𝜔 and initial conditions x1, x2, x3, x4, and x5 were 
selected for use based on support of the evolution of 
bounded chaotic behavior.  

Generating this behavior online allowed us to introduce a 
coupling term, C, between the virtual robot avatar and the 
behavior of the human participant. This system included an 
influence of the ‘x’ coordinates of a participant’s arm 
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movements, p1, on the ‘x’ coordinates of robot avatar arm 
movements, x1, as well as a symmetrical influence of the ‘y’ 
coordinates of participant arm movements, p2, on the ‘y’ 
coordinates of the robot avatar arm movements, x2. The 
weight of avatar-participant coupling was manipulated to 
allow for more or less influence of the movement of the 
participant on that of the robot avatar, resulting in three total 
coupling strength conditions (0, .025, and .05). Feedback 
delays of 26.671, 200, and 400 ms were introduced between 
the participant’s movements and the movement of their 
virtual arm. The average movement frequency exhibited by 
the robot avatar for a given trial in this study was between 
.23 and .30 Hz2. Trials lasted 60 s. The first 10 s and last 5 s 
of each time series were discarded to remove transients. 

 
Experiment 2: Human (master) – Avatar (slave) 
Experiment 2 examined whether an artificial agent, as a 
slave system, could anticipate the chaotic movements of a 
human master system. Participants were initially asked to 
complete two training trials in which they were to 
synchronize with robot avatar movement defined by fully 
chaotic, 2-D movement sequences generated ahead of time 
(i.e., there was no influence of participant movements on 
robot avatar master system behavior). The same two chaotic 
robot avatar movement sequences3 were provided to all 
individuals. During these trials participants saw their own 
virtual arm within the environment at the minimum delay 
possible (i.e., 26.67 ms). Each sequence lasted 100 s. For 
the remainder of the experiment participants were asked to 
continue making the same kinds of movements they had 
been making during the training period: “generally circular 
and always in the same direction, but somewhat 
unpredictable in terms of the speed and size of movements”. 
They were also informed that they would be switching roles 
with the robot avatar, so that they were now the leader and 
the avatar would be coordinating with their movements. For 
these test trials the system of equations specifying the 
baseline slave behavior of the robot avatar consisted of a 
harmonic spring oscillator4  

																																																													
1 Motion tracking (~5.32 ms) and data transfer (~5 to 8 ms) time, 
plus screen refresh rate (~13.33 ms) resulted in a minimal delay 
between a participant’s movement and rendering of 26.67 ms.  
2 Individuals creating similar chaotic movement sequences 
produced behavior with the average frequency for a given trial 
between .14 and .57 Hz, and an overall average frequency of .32 
Hz (Washburn et al., 2015).  
3 Washburn et al. (2015) used these sequences to train individuals 
to act as master systems during interpersonal anticipatory 
synchronization and demonstrated that the training consistently led 
to individuals producing chaotic movement behavior.   
4 Harmonic spring systems are flexible with relatively few intrinsic 
dynamics. For slave systems with inherently chaotic dynamics it 
will be harder to evaluate whether anticipatory behavior of another 
chaotic system is primarily a product of coordination. 

 
 
As in the harmonic spring system used in the previous 
experiment, this system includes a coupling term, C, here to 
modulate the strength of coupling between the robot avatar 
and the ‘x’, m1, and ‘y’, m2, dimensions of a 2-D master 
system (i.e., human participant) behavior. This method of 
delay-coupling results in a function that incorporates the ‘x’ 
and ‘y’ dimensions of its’ past behavior, x1d and x2d, into the 
terms that reference the velocity of movement in each of the 
‘x’ and ‘y’ dimensions, x3 and x4, effectively constituting a 
feedback delay within the system (see Stepp & Turvey, 
2015; Voss, 2000). Here the past behavior being referenced, 
xd, is always that which occurred at a constant, set length of 
time, τ, prior to the current time point, t, 
 

 
 
The remaining terms in the system of equations responsible 
for robot avatar movement include the variable specifying 
spring stiffness, 𝜔, through interaction with the ‘x’ and ‘y’ 
position variables, x1 and x2. Two different values for the 
slave-master coupling term, C, were introduced within this 
system (1.5 and 2), and were treated as a between subjects 
variable such that participants either interacted with the 
avatar system coupled to them with the lower or higher 
strength. Five different delay latencies were also introduced 
within the robot avatar system as τ (26.67, 106.64, 199.95, 
306.59, and 399.90 ms). These coupling strengths and delay 
latencies were chosen based on preliminary simulations 
using a chaotic spring master system and the current 
harmonic spring oscillator slave system. Each delay latency 
was instituted once per participant, with the order of 
presentation randomized over the five test trials experienced 
by each participant. Each trial lasted a total of 60 s. As in 
Experiment 1, the first 10 s and last 5 s of each time series 
were discarded for analysis. 
 

Data Analysis & Results 
Largest Lyapunov Exponent 
Calculation of the largest Lyapunov exponent (LLE) 
provided an initial measure of the chaotic dynamics within 
master system movement time series (see Washburn et al., 
2015 for details). Average LLE values of robot avatar 
movement sequences from Experiment 1 were all positive 
(M = 0.024, SD = 0.008), indicating that the robot avatar 
exhibited consistent chaotic movement dynamics even when 
it was coupled to the coordinating behavior of the human 
participant. LLE values associated with human participant 
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behavior in Experiment 2 were also positive for all 
combinations of feedback delay latency and slave-master 
coupling conditions except one (feedback delay: 26.67 ms, 
avatar-actor coupling: 2.0) (overall M = 0.034, SD = 0.046), 
indicating that the participants produced reasonably 
consistent chaotic movement dynamics when acting as the 
master system.  
 
Cross-Correlation and Phase Lead 
To evaluate whether anticipatory synchronization occurred 
between the slave and master systems in Experiments 1 and 
2, we first performed a cross-correlation analysis. This 
analysis indexes the degree of synchrony between two 
behavioral time series across a range of possible temporal 
relationships (Stepp, 2009). Of relevance for identifying 
anticipatory synchronization is the maximum degree of 
synchrony that occurred (indexed by the maximum observed 
cross-correlation coefficient) and the corresponding time lag 
(or lead) at which the synchrony occurred.  
 

 
 
Figure 1: Average maximum cross-correlation (left) and 
temporal lead/lag (right) between artificial agent and human 
participant movements for Exp. 1 (top) and 2 (bottom). Line 
graphs in this figure are presented as means ± SEM. *p< 
.05; two-way analysis of variance (ANOVA), using 
Bonferroni post hoc comparisons. 

The results of this analysis for Experiment 1 were very 
similar to those found in previous studies of human 
anticipatory synchronization (Stepp, 2009; Washburn et al., 
2015). Namely, that although overall coordination decreased 
slightly with increases in perceptual-motor feedback delay, 
anticipatory synchronization was observed for delays 

between 200-400 ms (Fig. 1, top). Interestingly, no 
significant differences in anticipation were observed for the 
different coupling strengths employed. This is also 
consistent with existing studies in agent-environment and 
interpersonal human coordination, indicating that the VR 
paradigm employed here is suitable for the continued 
investigation of human anticipatory synchronization during 
uni-directional and bi-directional slave-to-master coupling 
situations. 

In Exp. 2, maximum cross-correlation analysis also 
revealed a decrease in coordination with increases in time-
delay, here implemented within the artificial agent slave 
system (Fig. 1, bottom left). More importantly, increases in 
time-delay were associated with a progressive decrease in 
lag latency between the artificial agent and human 
participant, with the artificial agent achieving temporal 
synchrony with the human participant for the 399.90 ms 
delay latency (Fig. 1, bottom right).  

 
Instantaneous Relative Phase 
To gain further information about the anticipatory 
coordination that occurred between the human and artificial 
agent, an analysis of the relative phase between the 
movements of the slave and master systems in each 
experiment was conducted. Relative phase captures the 
spatial-temporal patterning of the coordination that occurs 
between two movement time-series. Of particular relevance 
for the current study was the distribution of relative phase 
angles that occurred for each feedback delay condition (i.e., 
how often a particular relative phase relationship was 
observed between the coordinator and producer over the 
course of a behavioral trial), with peaks in the distribution 
indicative of the stability of the coordination (higher peaks 
= higher stability) and the degree to which the slave system 
led or lagged behind the movements of the master system 
(Schmidt & O’Brien, 1997). 

IRP distributions for participant with respect to avatar 
movements in Experiment 1 consistently indicated the 
occurrence of intermittent leading and lagging behavior, 
with more frequent leading than lagging in all combinations 
of coupling strength and feedback delay conditions (see Fig. 
2). This kind of intermittent, or relative, coordination is 
consistent with the coordinative dynamics exhibited during 
interpersonal anticipatory synchronization (Washburn et al., 
2015), and characterizes weakly coupled physical or 
biological limit-cycle oscillators (see Kelso & Ding, 1993), 
including visually coupled rhythmic limb movements of co-
acting individuals (Schmidt & O’Brien, 1997). These 
distributions look similar across conditions with some 
decreased stability apparent in the 400 ms delay condition, 
especially when there was no coupling from robot avatar to 
participant. There also seemed to be less relative difference 
in the frequency of leading to lagging in both of the bi-
directional coupling conditions as compared to the no 
coupling condition at the 26.67 ms feedback delay. There 
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were very few differences in these distributions between the 
low and high coupling strengths conditions examined. 

 

 
 

Figure 2: Distribution of average instantaneous relative 
phase (IRP) values between artificial agent and human actor 
as a function of the coupling strengths and delay conditions 
examined in Experiment 1. 
 

Consistent with the maximum cross-correlation results 
above, when the artificial agent slave system was coupled to 
the live human actor master system in Experiment 2, most 
combinations of feedback delays and coupling strengths 
were associated with the artificial agent lagging behind the 
human actor (see Fig. 3). There was in fact relatively more 
anticipation than lagging at the longest feedback delay in 
Experiment 2 (i.e., 399.90 ms), but the overall stability the 
phase relationships at this delay was reduced in comparison 
to the shorter delays. It is important to keep in mind that 
both the IRP frequency distributions and the maximum 
cross-correlation analysis represent average phase and 
temporal relationships between the artificial agent and the 
master system to which it is coupled. Furthermore, a 
participant-wise examination revealed that the artificial 
agent achieved anticipation for three of the eight 
participants in the 1.5 coupling strength condition, and five 
of the nine participants in the 2.0 coupling strength 
condition. This provides strong support for the idea that the 
kind of artificial agent developed and tested here can 
produce adaptive, prospectively coordinated behavior 
during ongoing, bi-directionally coupled interaction with a 
human actor.   

 
Discussion 

The current project extends a rapidly emerging line of work 
investigating the process of coordination and self-organized 

anticipatory synchronization during human-human and 
human-machine interaction. The findings of Experiment 1, 
demonstrated that anticipation similar to that observed 
during interpersonal interaction is also exhibited by human 
actors with respect to a chaotically behaving virtual co-
actor. Experiment 2 used the same novel VR paradigm to 
evaluate the anticipatory abilities of time-delayed artificial 
agent during interaction with a human co-actor. The 
movements of this artificial agent were defined by a low 
dimensional, harmonic oscillator system, coupled to the 
real-time behavior of the human co-actor. The results of this 
experiment revealed that the addition of feedback delays 
reduced the degree to which the avatar lagged behind the 
human actor. 

 

 
Figure 3: Distribution of average instantaneous relative 
phase (IRP) values between human participant and robot 
avatar for coupling strengths of 1.5 (left) and 2.0 (right) and 
in each feedback delay condition examined in Experiment 2. 

 

1325



	
	

It is important to appreciate that while the addition of 
feedback delays in the artificial agent only, on average, 
reduced the lag between artificial agent and the human co-
actor, this should not be taken to indicate that the current 
agent is ill-suited to achieving self-organized anticipatory 
synchronization during human-machine interaction. The fact 
that human actors are intentional agents means they likely 
exhibited some adaptation to the artificial agent during 
interaction even though they were instructed to focus on 
producing their own movements and simply allow the avatar 
to follow them. This could account for the finding that the 
artificial agent only consistently achieved more anticipation 
than lagging of the human co-actor in the context of the 
longest time-delay. Furthermore, the patterns of intermittent 
anticipatory coordination observed in Experiment 2 were 
still quite similar to those seen in instances of interpersonal 
anticipatory synchronization, suggesting that small feedback 
delays in artificial agents induce a coordinative dynamic 
analogous to natural to human-human interaction.  

Indeed, overall the current findings present a potentially 
transformative advance in the development of artificial 
agents and HRI. An agent defined by a low-dimensional 
dynamical model was able to display adaptive, anticipatory 
coordination during real time interaction with a human actor 
performing complex, seemingly unpredictable movements. 
The coordinative patterns exhibited by this agent were 
analogous to those observed during the occurrence of 
visual-motor agent-environment and interpersonal 
anticipatory synchronization in humans. This supports the 
idea that the dynamical models employed in the current 
research capture universal properties intrinsic to many 
physical systems, including complex biological behaviors 
like the human neural and movement processes that exhibit 
the kind of unpredictable determinism characteristic of 
chaos (e.g., Mitra et al., 1997). In displaying behavior that is 
qualitatively similar to human individuals the artificial agent 
developed here is likely capable of not only participating in 
the kind of interpersonal coordination known to support the 
successful completion of many everyday human tasks, but 
also engendering some of the associated increases 
interpersonal rapport and the facilitation of social awareness 
found following behavioral coordination between 
individuals (e.g., Miles et al., 2011). The current outcomes 
therefore suggest that engaging in coordinated interaction 
with such agents in the process of some higher order task 
goal will not only allow for more successful and efficient 
interactions during a wide variety of tasks, but may also 
result in the kinds of positive social outcomes associated 
with naturally occurring human interaction. 
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Abstract

Motor adaptation displays a structure-learning effect: adapta-
tion to a new perturbation occurs more quickly when the sub-
ject has prior exposure to perturbations with related structure.
Although this ‘learning-to-learn’ effect is well documented, its
underlying computational mechanisms are poorly understood.
We present a new model of motor structure learning, approach-
ing it from the point of view of deep reinforcement learning.
Previous work outside of motor control has shown how recur-
rent neural networks can account for learning-to-learn effects.
We leverage this insight to address motor learning, by import-
ing it into the setting of model-based reinforcement learning.
We apply the resulting processing architecture to empirical
findings from a landmark study of structure learning in target-
directed reaching (Braun et al., 2009), and discuss its implica-
tions for a wider range of learning-to-learn phenomena.
Keywords: motor adaptation; reinforcement learning; learn-
ing to learn; structure learning; system identification

Introduction
Learning can be defined as a process that improves perfor-
mance as exposure to a task increases. However, research
on human and animal learning makes clear that this simple
definition is not quite enough to explain the observed rela-
tionship between experience and performance. The full pic-
ture must also include ‘learning-to-learn,’ a process whereby
growing experience causes learning itself to become more ef-
ficient (Harlow, 1949). More specifically, learning-to-learn
(also referred to as meta-learning and structure learning) oc-
curs in settings where the learner encounters a series of tasks
that share some underlying structure, and gains from these an
ability to quickly adapt to a new task that displays the same
general form (Thrun & Pratt, 1998).

A vivid example of learning-to-learn, which provides a
concrete focus for the present research, comes from research
on motor adaptation. Many studies have documented the
ability of human subjects to adapt to perturbations of mo-
tor dynamics or kinematics, as for example in prism adap-
tation (Harris, 1963). However, a series of studies by Braun
and colleagues (Braun et al., 2009, 2010; Braun & Wolpert,
2012) went beyond this to show that adaptation can occur
faster when the subject has prior exposure to perturbations
that share structure with the final test conditions. In one
specific experiment, upon which we will continue to focus,
Braun and colleagues (2009) studied reaching under visuo-
motor rotation. They examined the speed with which target-
directed reaching adapted to a 60-degree rotation, manipulat-
ing between subjects the content of a preceding set of training

trials. In one condition, which we will refer to as Rot, sub-
jects dealt with a series of rotations (though never the one
presented at test). In a comparison condition Rot+, subjects
dealt with a more diverse set of transformations, each made
up of a rotation along with shear and scale components. Re-
sults showed that subjects in the Rot group adapted faster to
the probe rotation problem (Figure 1). Braun et al. (2009) in-
terpreted this as learning-to-learn effect, which they referred
to as “motor structure learning”: Subjects in the Rot group ev-
idently learned that the transformations being presented were
restricted to a particular structurally coherent set (rotations),
and this allowed them to infer and adapt rapidly to the probe
transformation. This structure learning was less feasible in
the Rot+ condition because the structure underlying the train-
ing set was more complex, thus offering weaker constraint on
inference when facing a new transformation.

In the present study, we consider the computational mech-
anisms underlying motor structure learning, treating it as a
case study in learning-to-learn. Despite widespread agree-
ment that learning-to-learn effects are both real and impor-
tant, the precise computational processes underlying such
effects are poorly understood. The most widely proposed
idea comes from a Bayesian perspective, and proposes that
learning-to-learn involves refining the structure and hyper-
parameters of a generative model of the relevant task do-
main (Lake et al., 2015). Braun and colleagues initially pro-
posed, and later investigated (Genewein et al., 2015) a model
of this sort to account for their structure learning results.

A different computational proposal, which has been less
widely considered in cognitive science, comes from neural
network or deep learning research. In classic work, Hochre-
iter and colleagues (2001) showed how a recurrent neural
network (RNN) can learn to learn, by integrating informa-
tion about past outcomes into predictions concerning new
observations. Recent applications of this idea (Wang et al.,
2016; Duan et al., 2016) have treated the RNN in Hochre-
iter’s scheme as a mechanism for directly selecting actions.
In the present work, we leverage Hochreiter’s (2001) insight
in a different way, using an RNN as an adaptive model of
the task domain, which is leveraged by a separate action-
selection mechanism. In this sense, the aim of our work is to
bridge Bayesian and deep learning perspectives on learning-
to-learn. On a more immediate level, we show how the result-
ing approach can be used to account for the findings of Braun
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Figure 1: Results redrawn from Braun et al.(2009), showing
mean cumulative error on a series of five reaches under a 60-
degree visuomotor rotation.

and colleagues (2009) in motor adaptation.
The motor control literature suggests that actions such as

reaching are based, at least in part, on an internal predic-
tive or forward model of reaching dynamics (Wolpert et al.,
1995; Miall & Wolpert, 1996), and analyses of motor adap-
tation have portrayed adaptation as reflecting a progressive
adjustment of this internal model to fit with current observa-
tions (Berniker & Kording, 2008; Haith & Krakauer, 2013).
Following this idea, and a great deal of previous work in com-
putational motor control, we construe action selection as a
form of model-based reinforcement learning (RL).

Formulating the problem in this way begins by casting it
as a finite-time Markov decision process (MDP) M, which is
made of a set of states S, a set of possible actions A, a tran-
sition function T , and reward function R (in many settings
a discount factor γ is included, but since we formulate the
task as a finite-time problem this is unnecessary). The goal is
to select actions that maximize the cumulative reward up to
some time T : ∑

T
t=0 rt+1, where t indexes discrete time steps

up to some maximum T , and rt is the reward received on each
step. Focusing on target-directed reaching, the task studied
by Braun and colleagues (2009), the problem is defined as
follows: M is the entire reaching task; S are possible arm
configurations; A are possible motor inputs; T defines the
dynamics of the arm based on motor inputs; R is the negative
distance from the cursor to the target. In order to be consis-
tent with the literature on structure learning in motor control,
we will use the terms reward maximization and penalty (or
error) minimization interchangeably.

In model-based RL, a model M̂ of the environment M is
built, and then used by a planner P in order to construct an
action-selection policy. The general form of a model-based
learning architecture is diagrammed in Figure 2, left. Here
a planner P is informed of a current state s by the true MDP
M. Based on the particular policy of P, the planner queries
the model M̂ with a series of state-action pairs (st ,at), and
in turn receives an estimated next state st+1 and reward rt+1.
After the planner completes querying M̂, either because it has

Figure 2: Model-based reinforcement learning with a fixed
model (left) and an adaptive model (right).

taken as much data as it needs or due to some outside pressure
such as a time limit, it returns an action a which is executed
in M, which results in a new state and reward and the process
repeats.

In the architecture shown in Figure 2 (left), one way of im-
plementing the forward model M is as a feed-forward neural
network. This approach has been explored in a number of
previous studies (Jordan & Rumelhart, 1992; Hamrick et al.,
2016). However, a feed-forward neural network will not suf-
fice to address the learning-to-learn phenomena we are con-
cerned with here. Indeed, the overall architecture must be
fundamentally changed in order to address the learning-to-
learn problem.

As introduced earlier, learning-to-learn arises in a setting
where the learner encounters a series of interrelated problems
or tasks, and must adapt to each one in turn. Using our termi-
nology, each task Mn,n= 1...N becomes a sample from a task
distribution M. As such, the properties of each Mn must be
inferred based on observed action-outcome pairs (a process
referred to in the engineering literature as system identifica-
tion). On a formal level, this demand changes the MDP we
have been considering into a partially observable Markov de-
cision process (POMDP). By definition, a POMDP is an MDP
which additionally has an observation space O and observa-
tion function Ω which takes its internal state and outputs an
observation o to the agent. Instead of the true state, an agent
only has access to observations, which unlike state, is gen-
erally insufficient to act optimally when considered in isola-
tion. In order for M̂ to adjust to each Mn, it must have some
form of memory α to keep a relevant summary of interactions
with the environment, allowing for integration over previous
timesteps in order to accurately estimate problem dynamics.

These requirements yield the interaction and planning
structure diagrammed in Figure 2 (right). Instead of states
s, information presented is in terms of observations o. The
model M̂ must now directly consume o and r from Mn at ev-
ery time step, which causes it to update its memory α. P
now only passes a sequence of actions along trajectories to
the model. This is because it does not have access to the
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true state, and because observations alone are not sufficient
for planning or modelling1. Additionally, during the plan-
ning trajectories, the P must signal to M̂ when its evaluation
of a simulated trajectory is complete so that α can be reset
(omitted from figure for clarity).

Note that, unlike in the simpler MDP, in the POMDP set-
ting the internal model M̂ cannot be accurately implemented
as a feed-forward neural network, because such networks do
not have memory or persistent internal state. The key move
in the present work is to substitute for the feed-forward net-
work a RNN, whose recurrent connectivity endows it with
the memory needed to support system identification and, as
we will show, learning-to-learn.

Simulation Study
We predicted that the proposed architecture, if trained in
an appropriate multi-task setting, would display learning-to-
learn, leveraging experience with past tasks to adapt rapidly
to a new task sharing in the same structure. In order to test
this idea, we applied the architecture to the task paradigm em-
ployed in they study of motor structure learning by Braun and
colleagues (2009).

Model implementation and task design
We implement the architecture shown in Figure 2 (right), in-
stantiating the forward model in the form of a recurrent neural
network (which is naturally deep as it is unrolled over time).
More specifically, this involves one LSTM layer (Hochre-
iter & Schmidhuber, 1997) followed by two more fully con-
nected layers containing rectified linear units (Nair & Hin-
ton, 2010), where each layer contains 100 units. The planner
is an open-loop planner based on cross-entropy optimization,
as described in Weinstein & Littman (2013), with the addition
of “warm starting.” In warm starting, planning is done from
scratch on the first step of a trajectory, but all subsequent steps
in the actual domain initiate planning with the result from the
previous step. At each time step only the first action in the
current plan is executed in the true domain before partial re-
planning in this manner occurs. For simplicity, we assume
(without loss of generality) that M̂ has access to the reach-
target coordinates and can compute the reward function.

In order to model target-directed reaching, we imple-
mented a simple arm model. While not intended to offer a
detailed model of biomechanics, this was intended to capture
the most important aspects in terms of possible arm geom-
etry, velocity, and acceleration (Nagasaki, 1989). As simu-
lated, the underlying state space of the problem has four di-
mensions: horizontal shoulder angle, elbow angle, and cor-
responding angular velocities. Observations emitted are the
Euclidian position of the cursor controlled by the arm’s tip
as seen in the experiment (meaning that M̂ must also learn to

1Belief states (Kaelbling et al., 1998) or predictive state repre-
sentations (Littman et al., 2001) are sufficient for planning, but can
be computed internally in each module and do not need to be com-
municated.

estimate velocities), and the goal. The two dimensional ac-
tion space sets the angular accelerations of the joints, and the
reward is the negative Euclidean distance of the cursor from
the center of the goal region.

In the reaching task, the cursor is always initialized at the
origin and is controlled by the transformation of the underly-
ing position of the simulated hand. Before each trial a goal
location is selected which is set to be 8 cm from the origin at
a uniformly distributed angle.

Training and testing procedure
The simulation study, like the experiment by Braun et
al. (2009) was divided into training and testing phases. Dur-
ing training, the RNN model was trained to predict each se-
quential outcome observation exactly along a trajectory con-
sisting of observations and randomly selected actions, that is,
following a random walk. Again as in the empirical study,
two versions of the model were trained in different environ-
ments. One model, which we label (in a minor abuse of ter-
minology) Rot, was trained on a series of visuomotor rota-
tions, simulated by appropriately transforming the observed
cursor coordinates. The second model instance, Rot+, was
trained on a combination of rotations, shears, and scales (fol-
lowing the design described in Braun et al., 2009, Supple-
mental Data). Following the design imposed by Braun and
colleagues, when the rotation to be presented to Rot+ fell
between ±50◦ and 70◦, a rotation of ±60◦ was substituted
and no linear transform was applied. As a result, both Rot
and Rot+ had roughly equal exposure to the transformation
used during test trials. In both conditions, the model was
trained by backpropagation through time on 2,000 trajectories
of random-walk data, with each trajectory containing three
seconds of simulation time, and training starting from the ini-
tial observation of each trajectory.

In the testing phase the RNN weight parameters were
frozen and reaches were elicited only under only pure ro-
tations of ±60◦, as in the testing phase of the experiment
by Braun and colleagues. Goal locations were placed at a
randomly selected angle 8 cm from the start location of the
cursor. The radius of the goal region is 1.6 cm. In order
to simulate a series of reaches, the angle of the imposed vi-
suomotor rotation was held constant while the position of the
goal varied between reaches. Test reach trajectories ran for a
maximum of two seconds, terminating early if the cursor was
brought within the goal region for 500 ms.

Results
Training of models for both the Rot and Rot+ conditions were
successful, but the model trained on Rot was able to achieve
an average error of about 0.002 cm per time step for trajecto-
ries in the training set, while Rot+ an error of about 0.03 cm
by the same metric. In the Rot condition, the RNN model
learned to act as an adaptive forward model, adjusting its
predictions to fit with accumulating action-outcome obser-
vations. Figure 3 shows the average observation-prediction
errors of both Rot and Rot+ models during an initial random-
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Figure 3: Model errors by step in initial trial. Figure 4: Average cumulative penalty by
trial.

walk trajectory which was not part of the training set. The
initial data-point is the error of the model prior to any ex-
perience in the test MDP. In interpreting the values on the
y-axis of the plot, it should be taken into account that in our
simulation two seconds of time takes 28 discrete time steps,
and error compounds over these steps. In contrast to the Rot
model, the Rot+ model adapts much less successfully, despite
having been trained on an identical amount of data.

Figure 4 shows the mean cumulative penalty when the
model is coupled with a planner, for each reach at test for
both models. This is intended for comparison with the empir-
ical data from humans in preceeding work shown in Figure 1.
As predicted, Rot is better able to conduct structure learning,
by adapting more rapidly and completely to the test rotation
(the manipulation both models were exposed to during train-
ing) than Rot+. This qualitatively replicates the experimental
findings from Braun et al. (2009).

Figure 5a shows average trajectories for five successive
reaches (normalized by rotation and goal angles), for both Rot
and Rot+ models. Both models adapted across reaches (start-
ing with smaller initial angular errors after the initial reach),
but the effects were stronger in the Rot model. Quite striking
is the standard deviation of the final position of the first trial
of Rot, and Rot+ in cyan and magenta, respectively. Although
on average Rot+ tracked toward target, there is a tremendous
amount of variability in its trajectories, and was not able to
consistently reach the goal region, whereas Rot usually ter-
minated within the target.

We also consider other indirect metrics of performance
which are presented in the human studies such as initial an-
gular error, velocity, and minimum distance to goal region,
which are presented in Figures 5b through 5d, respectively.
In general the results with these metrics are similar to the
previous plots, with Rot improving quickly and performing
better than Rot+. We also note the higher variance of Rot+,
which manifests itself in wider confidence intervals across all
Figures, especially Figure 5d. These results are qualitatively
aligned with those reported in the experimental study.

In fact, of these metrics, the only one which shows im-
provement by Rot+ is the initial angular error. Even with

this improvement, the agent frequently falls short of reaching
goal region (which would allow for an early termination of
distance penalties). This is most likely due to the fact that on
average testing data in Rot+ has a scaling amount of roughly
1.3 (this design is part of the original human study), and in-
deed Rot+ almost uniformly tells the planner that actions will
result in greater changes in location than actually occur.

Although Rot+ was less effective at structure learning than
Rot, it is not the case that it failed entirely. The average
penalty of a trajectory for agent using a uniform random pol-
icy is approximately 220 units which is significantly poorer
than what Rot+ was able to achieve.

We note that our goal was not to fit the results from the
human data quantitatively, but rather to demonstrate the same
phenomenon which is that structure learning becomes more
difficult as the the amount of variability in the problem in-
creases. And although Rot+ was not able to perform well,
the overall architecture does have the capacity to do effective
structure learning; expanding the data corpus size by a fac-
tor of five produces models that have statistically equal, high
quality performance on test tasks for both Rot and Rot+.

Discussion
Learning-to-learn is a fundamental aspect of human behav-
ior, but its computational basis is not yet well understood.
We have presented a new model of learning-to-learn in the
setting of motor adaptation. This task, defined by Braun and
colleagues (2009) involves learning to learn in the sense that
the subject must gather data on a current situation in order
to infer the hidden parameters of the dynamics, and indeed
Braun and colleagues state that learning to learn can be recast
as structure learning. On the other hand, a stronger defini-
tion of learning to learn could require learning to adapt to a
situation it has not experienced in the past, perhaps in terms
of new objects to interact with that follow some prelearned
rules (Harlow, 1949). This has been considered in a different
simulated setting in RL where the agent learns policies (Wang
et al., 2016), as opposed to models of the environment as is
done here.

Adopting the standard approach, we assume that motor
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Figure 5a: Average trajectories by trial.
Standard deviation of final position of first
trial in shaded region. Goal region in black.

Figure 5b: Average angle error from goal af-
ter 200 ms of simulated time.

Figure 5c: Average velocities by trial
Figure 5d: Average minimum distance to
goal by trial

adaptation involves updating an internal forward model of
reaching dynamics. Our novel contribution is to instantiate
this internal model as a recurrent neural network. Through
simulations of a key experimental study, we have shown that
the resulting system not only learns to adapt to changing per-
turbations, but also that its adaptation becomes more effective
when there is prior exposure to structurally related conditions,
as seen empirically in motor structure learning. Importantly,
no special measures were required in order to secure this
learning-to-learn effect. Through error-correcting learning,
the parameters of the RNN are, perforce, fit to the structure
of the pre-training data. That same structure is thus naturally
– indeed inevitably – expressed in its later inferences at test.

We consider learning to learn as refining a (potentially im-
plicit) hypothesis set based on experience. If the problem has
a large underlying dimension, then the hypothesis set learned
by the model must be of corresponding size. This is in turn
fundamentally linked to the amount of data required to both
train the model, as well as do inference, accurately. For these
reasons, it is to be expected that when comparing the data
requirements of doing both in Rot versus Rot+, Rot leads to
lower data requirements. Just as is the case with Braun and
colleagues (2009), we do not attempt to disentangle these is-
sues, although a more detailed investigation warrants future

attention.

As noted earlier, our use of RNN dynamics to capture
learning-to-learn effects builds directly on pioneering work
by Hochreiter and colleagues (2001), in which an RNN model
was applied to the problem of function induction (see also
Wang et al., 2016; Santoro et al., 2016). In contrast to that
work, we deployed our RNN as a forward model situated
within a larger model-based RL system. In this sense, our im-
plementation bridges between Hochreiter’s original proposal
and models of motor adaptation that have embedded an adap-
tive Bayesian model of limb dynamics (e.g. Berniker & Ko-
rding, 2008; Genewein et al., 2015). The approach we have
introduced also relates to other work in which RNNs have
been used as forward models in support of motor adaptation,
but where multiple fixed models are assumed (Haruno et al.,
2001; Pitti et al., 2013), rather than a single adaptive model
used here. These fixed models lack memory, meaning that
reweighing fixed models aside, adaptation is only possible by
retraining the system. Implicitly, our work implements a sort
of Kalman filter which has also been considered previously
in recurrent networks (Wolpert et al., 1995). Undertaking a
careful comparison between these related approaches and the
one we have introduced here offers an important objective for
next-step research.
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Our implementation of the reaching task was deliberately
minimal, simplifying both the underlying biomechanics and
the motor planning process, in order to foreground our cen-
tral computational proposal. Naturally, a more detailed eval-
uation of the approach, incorporating a higher degree of em-
pirical constraint, will be desirable in further evaluating the
viability of our approach as a theory of motor adaptation. A
related opportunity is to consider the potential parallel be-
tween the recurrent connectivity underlying the function of
our adaptive model and the recurrent connectivity inherent in
biological neural circuits underlying motor control and adap-
tation, including circuits running through the basal ganglia
and cerebellum.

At the same time, however, we feel it may also be fruit-
ful to apply the model-based framework we have introduced
here in domains beyond motor control, in particular other do-
mains that display the characteristics of a POMDP and where
learning-to-learn effects have been observed. Such tasks are
indeed ubiquitous, ranging from structured bandit tasks to
video-game play (Wang et al., 2016; Lake et al., 2015). To
the extent that the framework we have presented here can
be adapted and (more challenging) effectively scaled to these
other settings, it offers to provide a more general new per-
spective on the problem of learning-to-learn.
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Abstract 

We investigated children’s understanding of mental life by 
analyzing attributions of perceptual, cognitive, affective, and 
other capacities. 200 children (7-9y) and 200 adults evaluated 
the mental capacities of beetles or robots. By assessing which 
capacities traveled together when participants disagreed about 
these controversial “edge cases,” we reconstructed the latent 
structure underlying mental capacity judgments from the 
bottom up—a novel approach to elucidating conceptual 
structure among children. For both children and adults, factor 
analyses revealed a distinction between social-emotional, 
physiological, and perceptual-cognitive capacities, hinting at 
three fundamental ways of explaining and predicting others’ 
actions: as social partners, biological creatures, and goal-
directed agents (each involving related forms of both 
“experience” and “agency”; Gray et al., 2007). Relative to 
adults, children attributed greater social-emotional capacities 
to beetles and robots, suggesting that intuitive ontologies of 
mental life could be critical for making sense of children’s 
developing understanding of the social world. 

Keywords: mind perception; sentience; animate–inanimate 
distinction; cognitive development. 

Introduction 
Questions about the nature of mental life extend back to 

antiquity, but it is only recently that cognitive scientists 
have begun to explore lay people’s conceptions of the mind.  

One particularly exciting approach was pioneered by 
Gray, Gray, and Wegner (2007) in their work on mind 
perception. From participants’ responses to simple questions 
about the mental capacities of various characters (e.g., 
“Which is more capable of experiencing joy: a frog or an 
infant?”), Gray et al. extracted a conceptual space 
characterized by two dimensions: “experience,” the extent 
to which a character is capable of hunger, fear, pride, and 
other inner experiences; and “agency,” the extent to which a 
character is capable of self-control, morality, memory, and 
other capacities central to acting in the world.  

This bottom-up approach has tremendous potential in 
elucidating the kinds of deep conceptual structures that are 
difficult for participants to report on directly (and for 
experimenters to anticipate a priori). Rather than imposing 
theory-driven categories onto participants’ responses, Gray 
et al. (2007) let the data speak for themselves.  

However, Gray et al.’s (2007) study focused participants’ 
attention on the similarities and differences between 
characters, thus illuminating the dimensions along which 
social beings are thought to differ from each other—an 
important part of social reasoning, but not equivalent to 
intuitions about the structure of mental life itself.  

Inspired by their approach, we recently conducted a series 
of studies designed to assess intuitive ontologies of mental 
life directly (Weisman, Dweck, & Markman, 2016). We 
focused participants’ attention on the connections and 
divisions between different aspects of mental life by asking 
them to evaluate a wide variety of mental capacities for a 
single character (e.g., a robot or a beetle). By analyzing 
patterns of attributions across participants, we uncovered a 
3-part conceptual structure that emerged reliably across 
several studies: Physiological sensations and self-initiated 
behaviors hung together to form a suite of capacities related 
to the body; social-emotional experiences and moral agency 
formed a suite of capacities related to the “soul”; and 
perceptual-cognitive abilities and goal pursuit formed a suite 
of capacities related to the mind. Interestingly, each of these 
three factors encompassed aspects of both “experience” and 
“agency.” Instead of the broad distinction that seems to 
characterize adults’ understanding of social beings (Gray et 
al., 2007), adults’ understanding of the structure of mental 
life itself seems to hinge on distinctions among varieties of 
experience and agency, and connections among related 
kinds of experience and agency.  

Intuitions about mental life are at the core of many of the 
oldest and richest lines of research in developmental 
psychology, including animism (Piaget, 1929), lay biology 
and psychology (Carey, 1985), and theory of mind 
(Wellman & Woolley, 1990). But most of this work has 
relied on a priori distinctions between perception, desires, 
emotions, intentions, beliefs, knowledge, etc. (Flavell, 
1999), leaving the actual conceptual structure underlying 
children’s reasoning and behavior unknown; to our 
knowledge, there have been no attempts to map out the 
ontology of mental life from the ground up with children. 
This may be due in part to the challenges of implementing 
bottom-up approaches, which generally require hundreds of 
participants to answer dozens of questions—not the typical 
design for studies with young children. On the other hand, 
studies like Gray et al. (2007) and Weisman et al. (2016) are 
built on the premise that these complex conceptual 
structures can be uncovered from participants’ answers to 
relatively simple questions, suggesting that this approach 
might lend itself to adaptation for younger participants.  

Thus, in the current study we developed a bottom-up 
approach for uncovering children’s intuitions about the 
structure of mental life. We believe these intuitions are 
critical for making sense of children’s social and moral 
reasoning about the people, animals, and other social 
partners in their lives. 
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Study 
We based our experimental paradigm on our previous 

work with adults, in which participants evaluated a target 
character on 40 mental capacities using a 7-point scale from 
not at all capable to highly capable. Pilot testing suggested 
two necessary modifications for children: rewording some 
of the mental capacity items, and using a 3-point response 
scale (no, kinda, yes). Although a 3-point scale is not 
optimal for factor analyses, it allowed children to move fast 
enough through the study to answer all 40 questions, and 
maintaining this within-subjects design was our top priority 
for the planned factor analysis.  

As in our previous work, we focused on judgments of the 
mental capacities of two “edge cases” in social reasoning: a 
beetle and a robot. Because beetles are animals and robots 
are artifacts, this pair provides insight into the role of 
biological life in attributions of mental life—an issue of 
particular interest from a developmental perspective, given 
the long history of work on the development of the animate–
inanimate distinction and its relation to folk psychology. 
Most critically for our bottom-up approach to uncovering 
intuitive ontological structures, the “mental lives” of these 
entities are controversial: People differ in their assessments 
of the mental capacities of beetles and robots (Weisman et 
al., 2016). This allowed us to address the following 
question: When children disagree about the mental 
capacities of some entity, which capacities “go together”? 

Pilot testing suggested that children as young as 7y found 
the paradigm easy and enjoyable, and work on the 
development of lay biology and psychology has suggested 
that these concepts may continue to develop well into 
middle childhood (e.g., Carey, 1985; Hatano & Inagaki, 
1997; Piaget, 1929; cf. S. Gelman & Opfer, 2002). Thus, we 
targeted 7- to 9-y-old children for our child sample. 

We also recruited a group of adults to validate our child-
friendly paradigm, i.e., to evaluate whether it replicated our 
earlier work with adults (Weisman et al., 2016).  

Methods 
Participants. 400 people participated in this study.  

Children (n=200) participated at one of several Bay Area 
museums or at their younger sibling’s preschool (median 
study duration: 5.18min). Children ranged in age from 7.0-
10.0y (median: 8.3y). An additional 12 children participated 
but were excluded for being outside the target age range 
(n=7), being of unknown age (n=4), or being shown a target 
character other than a beetle or a robot (n=1). 

Adults (n=200) participated via MTurk. Adult participants 
had gained approval for ≥95% of previous work on MTurk; 
had verified accounts based in the US; and indicated that 
they were ≥18y old. Adults were paid $0.30 (median 
duration: 2.48min). Repeat participation was prevented.  

Materials and procedure. Participants were randomly 
assigned to evaluate one of two target characters: a beetle, 
accompanied by a photograph of a black beetle on a leaf 

(n=98 adults, 104 children), or a robot, accompanied by a 
photograph of a humanoid robot (Sony Qrio; n=102 adults, 
96 children). The picture and label (a beetle or a robot) 
were present throughout the survey.  

Instructions focused on the idea that we wanted to know 
what participants thought “[beetles/robots] can do and can 
not do.” Participants rated the target character on 40 mental 
capacities, presented in a random order for each participant. 
On each trial, participants responded no, kinda, or yes to the 
question “Do you think a [beetle/robot] can…?”  

The 40 mental capacities were designed to be as close as 
possible to those in our previous studies (Weisman et al., 
2016) while being comprehensible to children in early 
elementary school. This set of items included physiological 
sensations related to biological needs (e.g., get hungry); 
emotional experiences (e.g., feel happy); perceptual abilities 
(e.g., hear sounds); cognitive abilities (e.g., remember 
things); capacities related to autonomy or agency (e.g., 
decide what to do); social abilities (e.g., feel guilty); and 
several additional items (e.g., be aware of itself). Each of 
these a priori categories included at least five items of 
varying valence, complexity, and phrasing (see Table 1).  

We also prepared a short definition for each item, so as to 
be consistent in our responses to participants if they asked 
for clarification. Children were encouraged at the beginning 
of the study to ask questions if they did not know what a 
word meant, in which case they given these definitions; 
adults were told that they could access these definitions by 
hovering over the text. Pilot testing suggested that 7 items 
required clarification for most children, so these items were 
always accompanied by their definitions from the beginning 
of the trial (for both children and adults), as follows: have a 
personality, like when someone is shy and somebody else is 
silly; have beliefs, like when you think something is true; feel 
pleasure, like when something feels really good; have 
desires, like when you really want something; have self-
control, like when you stop yourself from doing something 
you shouldn’t do; have goals, like when you’re trying hard 
to do something or make something happen; and feel sick, 
like when you feel like you might throw up.  

Data preparation. We scored responses of no as 0, kinda as 
0.5, and yes as 1. We dropped trials with response times that 
were faster than a preset criterion of 250ms (n=3 child trials, 
97 adult trials) and retained participants regardless of 
skipped trials (n=55 child trials, 1 adult trial). Overall, only 
1% of adult trials and 1% of child trials were missing data. 

Analysis plan. Our primary goal was to determine which 
mental capacities go together: e.g., if a participant indicated 
that a character was capable of hunger, what other capacities 
did she endorse? To do this, we used exploratory factor 
analyses (EFA) to reveal the covariance structure underlying 
participants’ responses, collapsing across characters and 
using Pearson correlations to find minimum residual 
solutions. We first examined maximal (13-factor) unrotated 
solutions to determine how many factors to extract, using 
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the following preset retention criteria: Each factor must 
have an eigenvalue >1.0; individually account for >5% of 
the total variance; and be the “dominant” factor (the factor 
with the highest factor loading) for ≥1 mental capacity item. 
We focus our interpretation on varimax-rotated solutions, 
extracting the number of factors that met these criteria. 
(Using polychoric correlations and/or oblimin rotation 
yielded similar latent structures.) 

Results and Discussion 
We first assess the validity of our child-friendly paradigm 
relative to our previous work with adults by examining an 
EFA of adults’ responses. We then address our primary 
question—children’s intuitions about the structure of mental 
life—via EFA of children’s responses. Finally, we analyze 
differences in factor scores between children and adults. 

EFA: Adults. EFA revealed 3 factors that met our criteria. 
After rotation, the first factor corresponded primarily to 

physiological sensations related to biological needs. It was 
the dominant factor for such items as get hungry, do math 
(negative loading), feel pain, feel scared, and feel tired. 
Factor 1 accounted for 25% of the variance in the rotated 
maximal solution. 

The second factor corresponded primarily to capacities 
for self- and other-relevant emotions. It was the dominant 
factor for such items as feel joy, feel proud, feel sad, feel 
happy, and feel love. Factor 2 accounted for 21% of the 
variance in the rotated maximal solution. 

Finally, the third factor corresponded primarily to 
perceptual-cognitive abilities to detect and use information 
about the environment. It was the dominant factor for such 
items as recognize somebody else, figure out how to do 
things, remember things, sense whether something is close 
by or far away, and communicate with somebody else. 
Factor 3 accounted for 10% of the variance in the rotated 
maximal solution. (See Table 1 for all factor loadings.) 

In sum, as in our original studies (Weisman et al., 2016), 
a three-factor structure emerged from adults’ mental 
capacity attributions, characterized by a distinction between 
physiological, social-emotional, and perceptual-cognitive 
abilities. This suggests that our child-friendly paradigm was 
valid: Using reworded items and a 3-point response scale 
elicited the same intuitive ontology of mental life, among 
adults, as revealed by our “adult-friendly” paradigm. 

EFA: Children. Again, 3 factors met our retention criteria.  
After rotation, the first factor corresponded primarily to 

social-emotional abilities. It was the dominant factor for 
such items as feel proud, feel happy, feel joy, get hurt 
feelings, and feel sad. Factor 1 accounted for 25% of the 
variance in the rotated maximal solution. 

The second factor corresponded primarily to 
physiological sensations. It was the dominant factor for such 
items as get hungry, feel pain, do math (negative loading), 
smell things, and feel scared. Factor 2 accounted for 18% of 
the variance in the rotated maximal solution. 

The third factor corresponded primarily to perceptual-
cognitive abilities. It was the dominant factor for such items 
as be aware of itself, figure out how to do things, be aware 
of things, sense whether something is close by or far away, 
and sense temperatures. Factor 3 accounted for 7% of the 
variance in the rotated maximal solution.  

In sum, like adults, children’s mental capacity attributions 
were dominated by a 3-way distinction between social-
emotional, physiological, and perceptual-cognitive abilities.  

Note that a number of additional or alternative latent 
factors could have emerged from this analysis. For example, 
children might have distinguished primarily between 
internal experience and external action (Gray et al., 2007), 
or they might have demonstrated finer-grained groupings of 
mental capacities based on phrasing, rote knowledge, etc. 
Instead, the latent conceptual structure underlying children’s 
responses appears to be very similar to that of adults. 

Children vs. adults. To formally compare responses from 
children and adults, we considered the full, combined 
dataset and examined factor scores by age group.  

EFA using the combined dataset revealed three factors 
that met our retention criteria. Unsurprisingly, these three 
factors were very similar to those revealed for adults and 
children analyzed independently: They corresponded to 
social-emotional abilities, physiological sensations, and 
perceptual-cognitive abilities (see Table 1). 

The purpose of this combined EFA was to examine 
differences in adults’ and children’s evaluations of beetles 
and robots within this 3-part structure. To do so, we derived 
factor scores (via the ten Berge method) using the rotated 3-
factor solution. This yielded 3 scores for each participant, 
corresponding, in principle, to holistic judgments of the 
social-emotional, physiological, and perceptual-cognitive 
abilities of the target character the participant evaluated. 
(Note that each of these 3 scores takes into account factor 
loadings for all 40 mental capacities, as listed in Table 1.) 

This allowed us to examine the effects of age group 
(adult, child), character (beetle, robot), and factor (social-
emotional, physiological, perceptual-cognitive) on these 
scores via mixed effects linear regression. See Table 2 for 
the results of a maximal model and Fig. 1 for mean scores. 

Collapsing across age groups and domains (physiological, 
social-emotional, and perceptual-cognitive), factor scores 
suggest that participants generally attributed fewer mental 
capacities to the robot than the beetle (b=-0.25). However, 
this appears to be entirely due to the huge discrepancy 
between characters in the physiological domain; the 
difference between characters was reduced to nothing in the 
social-emotional domain (b=0.26), and reversed in the 
perceptual-cognitive domain (b=0.39). Collapsing across 
entities (beetle, robot), children tended to attribute more 
mental capacities adults (b=0.19), but this was driven 
primarily by the social-emotional domain (b=0.46), and was 
reversed in the perceptual-cognitive domain (b=-0.30).  

Scores in the physiological and perceptual-cognitive 
domains were very similar for children and adults: Both 
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Table 1: Factor loadings from exploratory factor analyses for adults alone (n=200), children alone (n=200), and the 
combined dataset. Loadings are from 3-factor varimax-rotated minimum residual solutions. Items are grouped according to 
their dominant factor (the factor with the strongest factor loading) in the combined analysis; loadings >0.60 or <-0.60 are in 
bold. Items marked with an asterisk were accompanied by a brief definition (see main text).  

 
Item 

Do you think a [target] can…? 
 Social-emotional  Physiological  Perceptual-cog. 
 Ad. Ch. ALL  Ad. Ch. ALL  Ad. Ch. ALL 

             
feel proud  0.81 0.78 0.86  0.13 -0.03 0.03  0.08 -0.02 -0.05 
feel happy  0.77 0.76 0.83  0.33 0.07 0.18  0.05 0.04 0.02 
feel joy  0.81 0.75 0.82  0.30 0.12 0.18  0.02 -0.04 -0.03 
feel sad  0.80 0.66 0.77  0.26 0.27 0.23  0.04 0.02 0.00 
get hurt feelings  0.70 0.66 0.77  0.21 0.19 0.16  0.04 0.10 0.00 
feel love  0.76 0.63 0.74  0.26 0.11 0.16  0.14 0.00 0.03 
feel guilty  0.69 0.59 0.71  0.14 0.06 0.07  0.06 0.06 0.00 
get angry  0.51 0.50 0.67  0.38 0.31 0.30  0.15 0.05 0.04 
have beliefs*  0.51 0.53 0.65  -0.03 -0.04 -0.04  0.33 0.22 0.18 
feel embarrassed  0.60 0.57 0.65  0.09 0.04 0.05  0.03 -0.06 -0.06 
have a personality*  0.50 0.51 0.64  -0.05 -0.06 -0.06  0.26 0.30 0.20 
feel pleasure*  0.47 0.62 0.64  0.55 0.09 0.30  0.08 0.02 0.04 
feel calm  0.43 0.48 0.60  0.53 0.22 0.36  0.16 0.12 0.11 
have thoughts  0.36 0.46 0.55  0.24 0.24 0.22  0.37 0.32 0.30 
know what's nice and what's mean  0.42 0.47 0.54  -0.20 -0.18 -0.19  0.34 0.20 0.22 
have desires*  0.36 0.43 0.53  0.53 0.33 0.39  0.19 0.03 0.09 
understand how somebody else is feeling  0.42 0.40 0.51  -0.09 -0.31 -0.21  0.31 0.28 0.24 
have self-control*  0.42 0.26 0.47  0.00 0.02 0.00  0.34 0.28 0.25 
have goals*  0.21 0.37 0.42  0.16 -0.17 -0.01  0.42 0.22 0.29 
             
get hungry  0.04 0.12 0.14  0.94 0.87 0.90  -0.08 -0.07 -0.04 
do math  0.05 0.14 0.05  -0.83 -0.71 -0.79  0.36 0.34 0.31 
feel pain  0.17 0.21 0.26  0.82 0.79 0.79  0.06 0.01 0.06 
smell things  0.01 -0.10 -0.08  0.67 0.64 0.64  0.21 0.11 0.22 
feel scared  0.32 0.39 0.46  0.75 0.53 0.62  0.13 0.06 0.10 
feel sick*  0.29 0.16 0.21  0.66 0.51 0.58  0.14 -0.06 0.09 
feel tired  0.24 0.27 0.41  0.72 0.46 0.58  0.22 -0.01 0.10 
feel safe  0.28 0.42 0.47  0.71 0.33 0.50  0.23 0.31 0.25 
             
figure out how to do things  0.16 0.12 0.18  0.00 -0.04 -0.04  0.59 0.49 0.55 
be aware of things  0.06 0.17 0.08  0.32 0.20 0.23  0.50 0.49 0.50 
sense whether something is close by or far away  -0.03 0.02 -0.16  0.10 0.01 0.00  0.57 0.44 0.49 
remember things  0.19 0.10 0.16  -0.33 -0.40 -0.39  0.57 0.39 0.47 
sense temperatures  0.00 -0.12 -0.26  0.19 -0.13 -0.03  0.51 0.42 0.46 
make choices  0.14 0.28 0.23  0.08 0.18 0.09  0.57 0.36 0.46 
recognize somebody else  0.21 0.18 0.14  -0.45 -0.16 -0.34  0.61 0.32 0.46 
decide what to do  0.09 0.31 0.20  0.09 0.28 0.14  0.48 0.40 0.45 
be aware of itself  0.21 0.11 0.31  0.23 0.06 0.14  0.41 0.52 0.42 
hear sounds  0.01 -0.18 -0.11  0.13 0.01 0.05  0.50 0.33 0.42 
see things  -0.03 -0.13 0.03  0.24 -0.05 0.11  0.55 0.23 0.40 
communicate with somebody else  0.14 0.08 0.17  -0.32 -0.18 -0.26  0.57 0.24 0.40 
make plans  0.28 0.32 0.33  -0.31 -0.18 -0.27  0.46 0.41 0.40 
             
% variance 

explained 
…3-factor solution:  37% 50% 53%  37% 30% 28%  26% 20% 19% 
…maximal (13-factor) solution:  21% 25% 37%  25% 18% 20%  10% 7% 8% 
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children and adults marked a clear difference between the 
robot and the beetle in the physiological domain (Fig. 1, 
center), in line with the animate–inanimate distinction1; and 
both age groups credited the robot with slightly greater 
perceptual-cognitive skills than the beetle (right). In 
contrast, in the social-emotional domain (left) both the 
beetle and the robot received rather low scores among 
adults, but very high scores among children. See Fig. 2 for 
raw counts of no, kinda, and yes responses for all items, 
grouped by character, age group, and dominant factor. 

In sum, we see only minor differences between children 
and adults in their attributions of physiological and 
perceptual-cognitive abilities to beetles and robots—but a 
major difference in the social-emotional domain: Relative to 
adults, children tended to credit both beetles and robots with 
much greater social-emotional abilities.  
 
 

General Discussion 
A bottom-up approach designed to shed light on children’s 
intuitions about the ontology of mental life revealed an 
adult-like conceptual structure in place among 7- to 9-y-old 
children. Patterns of mental capacity attributions revealed a 
shared fundamental distinction between social-emotional, 
physiological, and perceptual-cognitive abilities. To our 
knowledge, this is the first bottom-up exploration of 
children’s intuitions about the structure of mental life. 

In a close parallel to adults (Weisman et al., 2016), the 
distinction that loomed the largest in children’s responses 

                                                             
1 Compared to adults, children credited robots with slightly 

greater physiological capabilities. This is particularly obvious in 
examining modal responses for items like feel safe (adults: no, 
n=82; children: yes, n=40), feel tired (adults: no, n=88; children: 
no, n=38, yes, n=36), and feel scared (both age groups: no, n=93 
adults, 50 children), which each have emotional and cognitive 
connotations in addition to their relevance for biological life. 

was not between experience and agency (Gray et al., 2007), 
but between three varieties of experience: emotional, 
physiological, and perceptual. Echoing this previous work, 
different aspects of agency were distributed across these 
factors: The social-emotional factor included several items 
related to moral agency (e.g., understand how somebody 
else is feeling, know what’s nice and what’s mean), while 
items related to goal pursuit tended to pattern with 
perceptual-cognitive abilities (decide what to do, make 
plans).2 For both children and adults, connections between 
related varieties of experience and agency seemed to play a 
particularly important role in intuitive ontologies of mental 
life—perhaps because they allow us to explain and predict 
others’ actions in several fundamental domains (interactions 
among social partners, the bodily needs of animals, and the 
goal-directed actions of agents).  

Although the conceptual structure underlying children’s 
mental capacity attributions was quite similar to that of 
adults’, there was one striking difference in their evaluation 
of entities within that structure: Children were far more 
generous in their assessment of the social-emotional abilities 
of both beetles and robots. The specificity of this age 
difference—which emerged dramatically in one domain, but 
not others—suggests that this is unlikely to be due either to 
a general tendency toward “mentalizing” these characters 
(or a simple “yes” bias). But its extension to both beetles 
and robots raises many questions. With regard to robots, 
children growing up in the 21st century might be converging 
on a new understanding of technological “beings” as 
inanimate objects with some degree of social-emotional life 
(see Kahn, Gary, & Shen, 2013)—but this kind of historical 
conceptual change would not predict the high rates of 
social-emotional attributions to beetles that we observed. 
Our findings are perhaps more consistent with a general 
openness to untraditional social partners that extends into 
middle childhood (but not adulthood)—or with a difference 
in construals of what it means to feel proud, happy, guilty, 

                                                             
2 Note, however, that have goals loaded more strongly on the 

social-emotional factor, and two potentially “moral” items (have 
self-control; communicate with somebody else), loaded equally on 
the social-emotional and perceptual-cognitive factors.  

Table 2: Results of a mixed effects linear regression of 
factor scores on target character, factor, and age group, with 
random intercepts by participant. Categorical predictors 
were effect-coded and compared to the grand mean (GM). 
“Significant” predictors (|t|>2) are in bold. 

 
Predictor b se t 
(Intercept) -0.01 0.02 -0.25 
character (robot vs. GM) -0.25 0.02 -10.00 
factor 1 (vs. GM) 0.00 0.03 -0.06 
factor 3 (vs. GM) 0.01 0.03 0.41 
age group (children vs. GM) 0.19 0.02 7.65 
character * factor 1 0.26 0.03 8.64 
character * factor 3 0.39 0.03 13.00 
character * age group 0.05 0.02 1.87 
factor 1 * age group 0.46 0.03 15.10 
factor 3 * age group -0.30 0.03 -9.88 
character * factor 1 * age group 0.00 0.03 0.12 
character * factor 3 * age group -0.04 0.03 -1.35 

    

Fig. 1: Mean factor scores for the beetle and the robot for 
each of the three factors (social-emotional, physiological, 
perceptual-cognitive), among adults (n=200) and children 
(n=200). Error bars are non-parametric bootstrap 95% CIs. 
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etc. To what kinds of entities would children of this age 
deny social-emotional abilities, and how do they draw this 
line? What aspects of attributing pride, happiness, or guilt 
might change between 7-9y and adulthood? 

Our findings point to the importance of distinguishing 
between different aspects of mental life in building theories 
of how social cognitive reasoning might evolve—both over 
the lifespan and across history and cultures. The current 
studies offer the major advantage of making these 
distinctions on the basis of children’s own conceptual 
structure, rather than a priori categories generated by 
experimenters—an approach that could prove particularly 
powerful in making sense of children’s beliefs about and 
behaviors toward the many kinds of human, animal, and 
technological “beings” in the modern social world.     
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Abstract 

Previous work has demonstrated that the visual complexity of 
letter-shapes is processed differently by naïve and expert 
observers. Specifically, fluent readers of the Arabic alphabet 
were found to discriminate complex letters more readily than 
less complex letters, whereas naïve observers exhibited the 
opposite effect. This “complexity benefit”, wherein complex 
letters confer a processing advantage to expert observers, is 
not yet well understood. In a new study, we investigate 
whether this effect generalizes across scripts, and whether it 
is unique to individuals with biscriptal experience (knowledge 
of reading two different scripts). The results of the three 
experiments confirm that the complexity benefit is 
characteristic of expert monoscriptal and biscriptal readers, 
and that, furthermore, there may be a biscriptal advantage in 
processing visual complexity. 

Keywords: biscriptal; orthography; visual complexity; 
perceptual expertise  

Background 
Letter perception and identification require detection and 
processing of a letter’s component visual features (Grainger, 
Rey, & Dufau, 2008). For example, Pelli and colleagues 
(Pelli, Burns, Farell, & Moore-Page, 2006) determined that 
letters are identified by detecting 7 ± 2 visual features. 
While core properties of the human visual system certainly 
determine how and which visual features are detected for in 
letter identification, there is increasing evidence that the 
extent and type of experience with letters influences how the 
visual system processes them. 

 Wiley, Wilson, & Rapp (2016) examined the effects of 
both alphabet and expertise on Arabic letter perception by 
comparing same/different letter judgments of expert, 
biscriptal Arabic-English readers, and naïve, monoscriptal 
English-only readers. Among the findings was that letter 
complexity, defined as the number of visual features in a 
letter1, was associated with slower/less accurate responses 
for naïve observers, but faster/more accurate responses for 
expert, biscriptal readers. This finding suggests that 

                                                             
1 An alternative definition of complexity, perimeter squared over 

ink area, has been used successfully by Pelli, Burns, Farell, & 
Moore-page (2006) to account for human efficiency in letter 
identification. However, it was found that this measure of 
complexity was a significantly weaker predictor of RT in the 
same/different judgment, as originally reported in Wiley, Wilson, 
& Rapp (2016). 

extensive experience leads to more efficient visual 
processing of complex shapes. In other words, whereas for 
naïve observers, complex letter-shapes are more difficult to 
discriminate than are simple ones, for expert observers the 
reverse is true. This effect was referred to as the 
“complexity benefit”. As a first step to furthering our 
understanding of the complexity benefit, the current study 
seeks to determine (a) whether the complexity effect is 
specific to Arabic, and (b) whether the magnitude of the 
effect is related to the amount of experience with a specific 
script or if extends across scripts. 

 

The Current Study 
Whereas Wiley, Wilson, & Rapp (2016) focused only on 
comparing the effects in letter perception of the amount of 
expertise (naïve or expert observers), it is also the case that 
those participants can be divided along another dimension: 
monoscriptal and biscriptal. Here, we make use of the 
biscriptal experience to better understand the nature of the 
complexity benefit. Specifically, we address two questions: 
 
Question 1: Is the complexity benefit limited to Arabic 
letters? 
 
Question 2: Is the complexity benefit affected by the 
amount of expertise with a script? 
 
Question 3: Does biscriptalism affect the perception of 
Roman letters? 
 
 
The answers to these questions have implications for our 
understanding of whether and how the visual system is 
affected by extensive reading experience. There are at least 
two relevant hypotheses that are evaluated: (1) the 
complexity benefit is a consequence of extensive experience 
with letter identification within a specific set (e.g. the 
Roman alphabet). In that case, expertise with one script 
should have no bearing on the visual processing of another. 
(2) The complexity benefit may be related to the manner in 
which visual features are processed, regardless of the letter 
in which they appear; in this case, expertise with one script 
may influence the processing of another, depending on the 
extent to which they make use of similar sets of visual 
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features. This latter possibility would support a “biscriptal 
advantage”, such that biscriptal Arabic-English readers 
should show a greater complexity benefit than monoscriptal 
readers. In addressing these questions, we also determine 
whether or not our original finding of a “complexity 
benefit” is replicable, whether or not it is an artifact of the 
Arabic alphabet, and whether or not it is true of 
monoscriptal as well as biscriptal individuals. 

 The questions are addressed in three experiments. In 
Experiment 1, the experimental protocol from Wiley, 
Wilson, & Rapp (2016) was used with a considerably larger 
sample size of monoscriptal Roman-only readers, with 
implementation in Amazon’s Mechanical Turk, with both 
Arabic and Roman letters. This experiment directly tests 
whether the complexity benefit is unique to the Arabic 
alphabet, or whether it is also present in monoscriptal 
participants viewing the Roman alphabet. 

Experiment 2 is a re-analysis of the data from Wiley, 
Wilson, & Rapp (2016), specifically the reaction time 
measurements from the same-different judgment task with 
pairs of Arabic letters. We separate the expert, biscriptal 
participants into two groups, one low-proficiency and the 
other high-proficiency, to shed light on whether the amount 
of expertise with reading a script affects the magnitude of 
the complexity benefit. 

Finally, in Experiment 3 we use the same protocol as in 
Experiment 2 with new samples of both monoscriptal 
(Roman-only) and biscriptal (Arabic & Roman) participants, 
viewing both Arabic and Roman letters. This experiment 
allows us to address whether expertise with reading one 
script affects the perception of a second script, specifically 
evaluating whether or not being biscriptal provides an 
advantage in terms of the complexity benefit.  

Experiment 1: Is the complexity benefit limited 
to Arabic letters? 

Following Wiley, Wilson, & Rapp (2016): we used a same-
different judgment task with pairs of letters, using letter-
shapes from both the Arabic and Roman alphabet. For all 
experiments, the questions of interest are addressed on the 
basis of reaction times (RT, on correct trials), analyzed 
using linear mixed-effects modeling (LMEM; including 
random intercepts and slopes by both participants and 
items). 

Participants 
167 participants were recruited online via Amazon’s 
Mechanical Turk (MTurk), receiving payment of $7.50/hour 
for their participation. 86 participants completed the task 
with Arabic letters and 81 with Roman letters. All 
participants reported no knowledge of any language written 
in a non-Roman script, and thus all are considered 
monoscriptal (MS). 

Stimuli 
A set of 23 letter-shapes from the Arabic alphabet was 
presented in Adobe Arabic, in font size 24 (stimuli 
subtended 0.17°-0.31° and 0.05°-0.35° of visual angle, 
respectively in the vertical and horizontal dimensions). A set 
of 23 letter-shapes from the Roman alphabet was also 
presented in Arial, font size 16, thereby equating the size 
range of the two alphabets. 
Both sets of stimuli included 8 pairs of allographs (i.e. 8 
letters were presented with two letter-shapes, such as “A” 
and “a”; see Table 2). The stimuli are listed in Tables 1 and 
2. 

Procedure 
Each trial began with a central fixation cross (250ms), 
which disappeared and was replaced by a pair of letters 
simultaneously on either side of fixation, 48 pixels apart. 
Each pair of letters was presented for 2000ms or until a 
response of “same” or “different” (by pressing either the “a” 
or “l” key on the keyboard was recorded. After a response 
or two-second timeout there was a 500ms intertrial blank 
screen. Participants completed either the task in Arabic or in 
Roman letters but not both; the ratio of same to different 
trials was 40/60, for a total of 437 trials. 

Analysis 
Using only correct responses, a single LMEM was fit to the 
“same” pairs2 data to determine the effect of complexity 
(number of visual features from a list of 14) on reaction 
time, and whether this effect differed across groups. The 
regression model was fit using R (R Core Team, 2015), 
package lme4 (Bates, Mächler, Bolker, & Walker, 2015), 
and confidence intervals for the parameters of interest were 
determined using parametric bootstrapping; plots are 
provided based on the R package effects (Fox, 2003).  
 
Regression predictors: For the fixed effects, two predictors 
of interest were included: the categorical variable Alphabet 
(Arabic or Roman, with sum-coding) and the continuous 
variable Complexity (total number of visual features, 
ranging from 4-12). Two additional predictors were 
included as control variables: Trial Order and Previous RT 
(reaction time on the preceding trial), to control for trends in 
RT across the duration of the experiment. Finally, we 
included the interaction Alphabet X Complexity. 

The following crossed random effects were included: 
random intercepts were included both by participants and by 
items, as was a random slope for the effect of Complexity 
by participant.  
 

                                                             
2 Only the “same” pairs are used here because they are used to 

measure the effects of visual complexity. The “different” pairs are 
discussed in detail in Wiley, Wilson, & Rapp (2016), where they 
were used to determine the relative importance of various visual 
features (e.g. lines, curves) for letter perception and how that 
relative importance differed between naïve and expert observers. 
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Results 
The results are reported in Figure 1. Confidence intervals 
are based on 1,000 bootstrap simulations. 

The estimated complexity benefit is significant for Roman 
letters, beta = -0.014 [-0.017, -0.010], whereas there is a 
significant increased RT as the number of features increases 
for the Arabic alphabet, beta = 0.005 [0.002, 0.009]. The 
interaction between alphabets is significant, a beta 
difference = 0.019 [0.015, 0.024]. 

Summary: The finding that the complexity benefit also 
exists for monoscriptal participants in the Roman alphabet 
(in which they are experts) is replicated in a large MTurk 
sample, as is the finding that the opposite effect (slower RT 
on more complex letters) for monoscriptal observers with no 
experience in reading Arabic.  

  

 
Figure 1: Experiment 1, predicted RT (ms) as a function 

of complexity (# of visual features) in the Arabic (green) 
and Roman (red) alphabets, measured in response to “same” 

pairs. 
 

Experiment 2: Is the complexity benefit 
affected by amount of expertise? 

Experiment 2 is a reanalysis of data originally presented in 
Wiley, Wilson, & Rapp (2016). The procedure was the same 
as that described for Experiment 1, with the following 
differences in participants and stimuli. 

Participants 
There were 34 participants, all from the Johns Hopkins 
University community, who took part in two one-hour 
sessions, receiving either course credit or $20 for their 
participation. The participants were organized into three 
groups: 

Low-proficiency biscriptal (L-BS, n = 11): individuals 
whose first written language is English and who have had 2-
3 years of studying Arabic. 

High-proficiency biscriptal (H-BS, n = 11): individuals 
who learned to read and write Arabic simultaneously with 
English, or as a second language with at least 4 years of 
study. 

Monoscriptal (MS, n = 12): consists of participants 
whose first language is English, and who have had no 
exposure to reading or writing in non-Roman scripts3. 

Stimuli 
The stimuli were a superset of the Arabic letters used in 
Experiment 1, for a total of 45 shapes. However only the 23 
stimuli used for Experiment 1 are analyzed here in order to 
better compare results across experiments. 

Procedure 
Stimuli were presented using E-Prime 2.0 (Psychology 
Software Tools, Pittsburg, PA). Participants completed the 
experiment over two sessions, with each session consisting 
of 990 trials with a 50/50 ratio of 50/50 same to different 
trials. For this analysis, a total of 506 trials were used. 

Analysis 
The same analysis was used as in Experiment 1. 
 
Regression predictors: The model structure was the same 
as outlined in Experiment 1 except that the predictor 
Alphabet replaced by the predictor Group (MS, L-BS, or H-
BS, with sum-coding). 

 
Table 1: Arabic letter-shapes and their complexity, the 

mean RTs across Experiments 2 and 3, for each group for 
each letter, and the correlation between complexity and 

mean RT (bottom row). 
Letter	 Complexity	 MS	 L-BS	 H-BS	

	563 10 ط 549	 622	
	583 7 ح 567	 666	
	567 4 ا 536	 625	
	575 10 ع 557	 639	
	573 10 ـعـ 560	 648	
	591 10 ـع 593	 702	
	556 7 بـ 569	 605	
	579 6 ذ 582	 668	
	609 11 ظ 586	 617	
	604 11 غ 579	 608	
	557 6 ه 559	 614	
	572 8 ـه 558	 619	
	607 8 ج 578	 631	
	606 6 ك 573	 616	
	567 6 كـ 552	 611	
	552 5 ل 554	 588	
	603 4 لـ 568	 668	
	587 7 ن 571	 610	
	573 4 نـ 613	 709	
	562 4 ر 571	 605	
	579 12 س 566	 593	
	576 9 سـ 581	 634	
	577 5 ز 570	 645	

	
r	=	 0.298	 0.071	 -0.148	

                                                             
3 The monoscriptal participants had varying degrees of 

knowledge of languages written in the Roman alphabet other than 
English, primarily Spanish or French. 
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Results 
The re-analysis of data from Wiley, Wilson, and Rapp 
(2016) is reported in Figure 2 based on the LMEM as 
previously described; confidence intervals are based on 
1000 bootstrap simulations. 

The estimated beta-weight for the effect of Complexity is 
for the MS group = 0.015, 95% CI [0.010, 0.020] Thus, we 
again find that among the naïve (monoscriptal) participants 
more complex letters lead to significantly slower reaction 
times.  

For the biscriptal groups, for the L-BS the effect is 
estimated = -0.002 [-0.008, 0.002]; and for the H-BS = -
0.007 [-0.013, -0.001]. Thus, only the H-BS show a 
significant complexity benefit, while the L-BS show only a 
trend toward faster RT on more complex letters. 

The estimated difference between the MS and L-BS is = 
0.017 [0.011, 0.024], and between the MS and H-BS = 
0.022 [0.014, 0.029]. Both biscriptal groups show 
significantly more negative (hence, more of a complexity 
benefit) than the monoscriptal group. The estimated 
difference between the two biscriptal groups = 0.005 [-
0.003, 0.011], with a nonsignificant trend toward a greater 
complexity benefit for the H-BS relative to the L-BS.  

Summary: Both biscriptal groups show a numerically 
larger complexity benefit than the monoscriptal group; 
although only for the H-BS group is the complexity benefit 
statistically significant.  

 

 
Figure 2: Experiment 2, Predicted RT (ms) as a function 

of complexity (# of visual features) in the Arabic alphabet, 
measured for each group of participants in response to 
“same” pairs. 

Experiment 3: Does biscriptalism affect the 
perception of Roman letters? 

The same procedure as outlined in Experiment 1 was used, 
with a few differences noted as follows. 

Participants 
29 students from Johns Hopkins University (ages 18-22), all 
different from those in Experiment 2, took part in the one-
hour experiment, receiving either course credit or $10 for 
their participation. The participants were divided into L-BS 

(n = 7), H-BS (n = 5), and MS (n = 17) for a total of 29 
participants.  

Stimuli 
The stimuli were identical to those used in Experiment 1. 

Procedure 
The same procedure as Experiment 1 was used, except 
participants completed the task for both alphabets separately 
across two sessions, with the order (Arabic-Roman or 
Roman-Arabic) counterbalanced across participants.  

Analysis 
The same analysis as described for Experiment 1 was 
conducted, plus the addition of the variable Group (MS, L-
BS, or H-BS, sum-coded) and the 3-way interactions of 
Alphabet X Group X Complexity and Alphabet X Group X 
Previous RT. The random effects structure was the same as 
in Experiment 1, with the addition of (correlated) random 
slopes for the effect of Alphabet by participants. 

 
Table 2: Roman letter-shapes and their complexity, the 

mean RT from Experiment 3, for each group for each letter, 
and the correlation between complexity and mean RT 

(bottom row).  
Letter	 Complexity	 MS	 L-BS	 H-BS	

a 10 532	 506	 605	
A 10 507	 497	 563	
b 8 528	 553	 613	
B 14 518	 527	 595	
C 6 545	 530	 627	
d 8 519	 541	 658	
D 7 512	 510	 593	
E 12 520	 542	 584	
g 9 516	 536	 626	
G 7 530	 537	 612	
I 5 547	 552	 648	
j 5 529	 539	 631	
J 4 526	 519	 646	
O 5 522	 545	 628	
q 9 523	 538	 657	
Q 9 517	 531	 593	
r 6 529	 540	 658	
R 10 519	 519	 623	
S 7 528	 520	 600	
t 9 538	 543	 643	
T 8 523	 522	 585	
W 11 533	 528	 642	
X 8 546	 544	 619	

	
r	=	 -0.353	 -0.231	 -0.424	

Results 
The results from participants completing the same-different 
task with both alphabets are reported in Figure 3 (Arabic) 
and Figure 4 (Roman). Confidence intervals are based on 
1,000 bootstrap simulations. 

For the Arabic alphabet, the MS show significantly 
slower RTs on more complex letters, beta estimated = 0.013 
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[0.007, 0.017]. The L-BS show a nonsignificant trend in the 
same direction, beta = 0.007 [-0.001, 0.014], whereas the H-
BS show a nonsignificant trend toward a complexity 
benefit, beta = -0.007 [-0.018, 0.001]. 

While the complexity benefit is not significant within 
either biscriptal group, the difference between the H-BS 
both of the other two groups is significant: the H-BS beta-
weight is significantly different than that for the MS, by an 
estimated 0.019 [0.009, 0.031] and than the L-BS by beta = 
0.014 [0.003, 0.025]. The difference between the MS and L-
BS is not significant (beta = 0.006 [-0.003, 0.014]). 

 
Figure 3: Experiment 3, predicted RT (ms) as a function 

of complexity (# of visual features) in the Arabic alphabet, 
measured for each group of participants in response to 
“same” pairs. 

 
For the Roman alphabet, the MS show a significant 
complexity benefit = -0.005 [-0.010, -0.0002]. The L-BS 
show a marginally significant complexity benefit, beta = -
0.008 [-0.016, 0.0001]. The H-BS show a significant 
complexity benefit, beta = -0.020 [-0.029, -0.013]. 

Finally, the H-BS show a significantly greater effect than 
both the MS (beta = 0.015 [0.005, 0.026]) and the L-BS 
(beta = 0.013 [0.002, 0.025]). There is no difference 
between the MS and the L-BS (beta = 0.002 [-0.006, 
0.011]).  

 
Figure 4: Experiment 3, Predicted RT (ms) as a function 

of complexity (# of visual features) in the Roman alphabet, 
measured for each group of participants in response to 
“same” pairs. 

 
Summary: We find a similar pattern of results for the 
Arabic alphabet as in Experiment 2 with the H-BS group 
showing a significantly greater complexity benefit than 
either then MS or the L-BS groups. Critically, a complexity 
benefit is found for the Roman alphabet for all groups, 
including the monoscriptal (English-only) participants, 
indicating that it is not an artifact of the Arabic alphabet or 
of being biscriptal. The magnitude of the effect is 
significantly greater in the H-BS than in either the MS or L-
BS groups, suggesting a possible biscriptal advantage.  

 

Discussion 
We investigated the role that expertise and biscriptalism 
play in the visual processing of letter-shapes. Specifically, 
we sought to determine whether: (1) the complexity benefit, 
wherein expert readers of a script identify complex letters 
significantly more quickly than simpler letters, occurs for 
scripts other than Arabic where it was first reported, (2) the 
complexity benefit is limited to biscriptal individuals or is 
present also in monoscriptals, and (3) there is a biscriptal 
advantage for visual processing of letters, such that 
biscriptals show a greater complexity advantage or if, 
instead, the magnitude of the complexity benefit is simply 
tied to the amount of experience with a script. There were 
three participant groups: monoscriptal, English-only readers 
(MS), and two biscriptal Arabic-English reader groups, one 
with four or more years of experience (H-BS) and one with 
two or three years (L-BS). We used LMEM to determine the 
direction and strength of the relationship between letter 
complexity (as defined by the number of visual features), 
and whether this relationship differs across groups of 
participants and across alphabets. 

The results of Experiments 1 and 3 both reveal that the 
complexity benefit is not an artifact of the Arabic alphabet. 
Monoscriptal participants who participated in the laboratory 
or the MTurk experiments all exhibited a complexity benefit 
when performing the same-different task with Roman letter 
stimuli. Thus, it would seem that the complexity benefit is 
not only a general trait of reading expertise, but also is not 
unique to individuals with biscriptal experience. 

Additionally, the results of Experiments 2 and 3 provide 
further details regarding the complexity benefit 
phenomenon. While a significant complexity benefit was 
not limited to biscriptal individuals, the effect was greatest 
in the high-proficiency biscriptal individuals. This group 
showed a larger complexity benefit than the other two 
groups in both Arabic and Roman scripts. This is 
particularly interesting, given that the monoscriptal and 
biscriptal participants presumably had comparable expertise 
with the Roman alphabet. In fact, if anything the 
monoscriptal participants are likely to have had more 
experience with the Roman alphabet, as the biscriptal 
participants would have spent some of their time reading in 
Arabic instead of Roman letters. It is possible that this 
division of reading time between the two scripts may 
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underlie the overall slower reaction times exhibited by this 
group, analogous to the rationale provided for some of the 
findings in the literature on spoken word production with 
bilinguals (Gollan et al., 2008). This possibility will require 
more targeted experimental work. Nonetheless, the larger 
complexity benefit observed for the high expertise biscriptal 
participants indicates that there may be a biscriptal 
advantage for processing visual complexity, at least for 
letters.  

The mechanism underlying the complexity benefit itself is 
not yet well understood. There are multiple possible 
explanations for why expert observers learn to identify more 
complex letters more quickly or accurately. One possibility 
is that expertise leads to the creation of new visual 
features— such that features are “bundled” together, making 
a complex letter no longer complex. For example, the letter 
“w” may not be processed as four slanted lines, three 
intersections, two terminations, with symmetry and 
cyclicity, but instead as fewer features or even a single 
feature, “w”. This type of expertise effect is consistent with 
findings in perceptual learning research (e.g. Goldstone, 
1998; Kellman & Garrigan, 2009; Sireteanu & Rettenbach, 
2000). 

Another explanation for the complexity benefit is that it is 
related to the distinctiveness of letter-shapes within the set 
of shapes being processed. Under such an account, a 
complex letter like “w” may be easier to identify because its 
greater number of features provide more possible ways to 
distinguish it from other letters. This is compatible with 
findings from visual crowding effects, indicating that a 
target is easier to identify within an array of distractors if it 
is relatively more complex than those distractors (Bernard & 
Chung, 2011; Chanceaux, Mathôt, & Grainger, 2014). 
Accordingly, with increasing expertise, one learns not only 
the visual properties of each of the letters, but the 
distribution of features across the set of letters.  

Relatedly, it may be that experts learn a greater number of 
ways to identify complex letters relative to simpler letters, 
allowing the identification process to terminate sooner. For 
example, whereas an observer with minimal experience may 
identify “w” only after considering all of its features, an 
expert may identify it as soon as some distinct combination 
of features (a subset of the total number of features) are 
recognized. In this case, a “simple” letter such as ‘l” may be 
more difficult to distinguish from other letters, because 
while a complex letter like “w” can be identified without 
full consideration of all of its features and without searching 
for the absence of certain features, an “l” does not afford 
these opportunities.  

Of these possibilities, perhaps the one most consistent 
with a biscriptal advantage would be the creation of new 
complex features from simpler features—biscriptal 
individuals’ expertise with a wider range of letter-shapes 
may result in a larger feature ‘vocabulary’ that allows 
relatively more complex shapes to be more readily 
processed. In future research, it will be important to 
examine if the biscriptal complexity advantage extends to 

other types of visual stimuli, and to identify evidence to 
adjudicate between possible mechanisms that support the 
complexity benefit. 
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Abstract 

During collaborative problem solving (CPS), coordination 
occurs at different spatial and temporal scales. This multiscale 
coordination should, at least on some scales, play a functional 
role in facilitating effective collaboration outcomes. To 
evaluate this, we conducted a study of computer-based CPS 
with 42 dyads. We used cross-wavelet coherence as a way to 
examine the degree to which movement coordination is 
evident at a variety of scales and tested whether the observed 
coordination was greater than both the amount expected due 
to chance and due to task demands. We found that 
coordination at scales less than 2s was greater than expected 
due to chance and at most scales (except 16s, 1m, and 2m) 
was greater than expected due to task demands. Lastly, we 
evaluated whether the degree of coherence at scales less than 
2s, and the form of coordination (in terms of relative phase), 
were predictive of CPS performance. We found that .25s and 
1s scales were predictive of performance. When including 
relative phase, our results suggest that higher in-phase 
movement coordination at the 1s scale was the strongest 
predictor of CPS performance. We discuss these findings and 
detail their relevance for expanding our knowledge on how 
coordination facilitates CPS.     

Keywords: coordination; collaboration; problem solving; 
team performance; dynamical systems; synchrony. 

Introduction 
Collaborative problem solving (CPS) is a cognitive skill 
pervasive in many human interaction contexts ranging from 
everyday life to highly complex work environments. CPS is 
defined as “a process whereby two or more agents attempt 
to solve a problem by sharing the understanding and effort 
required to come to a solution and pooling their knowledge, 
skills and efforts to reach that solution” (OECD, 2015, p. 6). 
Given the increasing complexity of problems in 
contemporary societal practices, and the need for multiple 
disciplines to solve them, CPS has been recognized as an 
essential 21st century skill. However, while some research 
has examined CPS in a variety of laboratory (e.g., Berg, 
Johnson, Meegan, & Strough, 2003; Roschelle & Teasley, 
1995) and naturalistic contexts (e.g., Fiore, Wiltshire, 
Oglesby, O’Keefe, & Salas, 2014; Jordan & McDaniel Jr, 
2014), the state of the science is still limited. In this paper, 
we explore the implications of the notion that CPS is a 
multiscale phenomenon, and investigate the degree to which 
movement coordination, at various scales, plays a functional 
role in effective CPS.  

Human interaction in any context is a dynamic, multiscale 
phenomenon (e.g., Dale, Fusaroli, Duran, & Richardson, 

2013; Steffensen & Pedersen, 2014). For example, during a 
conversation, neural events transpire on the order of 
milliseconds, speech production and gestures over seconds, 
and the conversation itself on the order of minutes (Hasson, 
Ghazanfar, Galantucci, Garrod, & Keysers, 2012). This 
point, while oversimplified, illustrates the fact that human 
interaction involves a variety of temporal and spatial scales 
(e.g., neural, physiological, bodily). Recognizing human 
interaction as multiscale, especially during CPS, implies 
that coordination, both intra- and inter-personally, must 
span a variety of these spatial and temporal scales in order 
to effectively accomplish joint goals (Eiler, Kallen, 
Harrison, & Richardson, 2013).  

Indeed, a common question, particularly in the movement 
sciences, has been to understand how systems with high 
degrees of freedom, are able to functionally coordinate (e.g., 
Mitra, Amazeen, & Turvey, 1998). Coordination in this 
context is simply the ways in which components and 
processes of a system change together over time (Butner, 
Berg, Baucom, & Wiebe, 2014). In an interpersonal context, 
a wide variety of terms have been used to describe different 
forms of coordination (Butler, 2011) such as 
synchronization, co-regulation, entrainment, and coupling. 
Evidence for many forms of interpersonal coordination are 
quite pervasive amongst differing modalities (Fusaroli & 
Tylén, 2016; Louwerse, Dale, Bard, & Jeuniaux, 2012) and 
contexts (Palumbo et al., 2016). But, while many different 
forms of coordination have been discovered, the ways in 
which they facilitate effective interaction outcomes is less 
studied (cf., Timmons, Margolin, & Saxbe, 2015), 
particularly in collaborative contexts.   

Prior research has suggested that coordination is required 
for the accomplishment of joint goals (Mills, 2014) and that 
stronger coordination should contribute to better 
collaborative results (Barron, 2000). Findings so far have 
been mixed, though, with regard to how coordination, albeit 
in different modalities and scales, relates to optimal 
performance on joint tasks (Gallotti, Fairhurst, & Frith, 
2017). In one example, performance on a dyadic movement 
task was predicted by a measure of coordination that 
reflected interaction across multiple time scales (Davis, 
Brooks, & Dixon, 2016). In another example, Abney, 
Paxton, Dale, and Kello (2015) found that stronger 
coordination in bodily movements were associated with 
poorer performance on a movement-based dyadic problem 
solving task. Louwerse et al. (2012) found that as task 
difficulty increased, so too did coordination. Further, 
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coordination of bodily movements in psychotherapy, a 
highly collaborative endeavor (Tryon & Winograd, 2011), 
were shown to link to effective treatment outcomes  
(Ramseyer & Tschacher, 2011). While not related to 
performance specifically, a number of interactional benefits 
have been observed following periods of interpersonal 
coordination such as increased affiliation (Hove & Risen, 
2009) and cooperative behavior (Valdesolo, Ouyang, & 
DeSteno, 2010; Wiltermuth & Heath, 2009).   

Given the extant research, briefly reviewed here, we 
expect that multiscale coordination of bodily movements 
should have a functional relationship with performance in 
complex, CPS. Relatedly, a recent theoretical account of 
dialog proposed that high coordination in lower level 
behaviors (e.g., posture) may provide a necessary 
foundation for more variability and complementarity at 
higher levels of dialog  (Fusaroli, Rączaszek-Leonardi, & 
Tylén, 2014). So, a key aspect that distinguishes the present 
work from prior research is that we focus on movement 
coordination in a challenging computer-based CPS context.  

The Current Study 
The present work is part of a larger study examining team 

interaction dynamics during a dyadic CPS task (Wiltshire, 
2015; Wiltshire, Butner, & Fiore, 2017). Whereas in prior 
work, we have examined how transitions in communication 
structures and their complexity relate to CPS performance 
(Wiltshire et al., 2017), here we focus on coordination of 
bodily movements at various time scales and how that 
coordination relates to CPS performance.  

We utilize cross-wavelet coherence as a way of 
examining coordination of human interaction that is largely 
unstructured, at least when compared to rhythmic movement 
tasks (Fujiwara & Daibo, 2016; Issartel, Bardainne, Gaillot, 
& Marin, 2015). This method allows for evaluation of the 
degree of coordination of two continuous time series and 
whether that coordination is in-phase or anti-phase. One of 
its key strengths is that it retains a high level of precision in 
both the time and frequency domains (Issartel et al., 2015). 
This method has been used previously to examine 
movement coordination in a variety of interactive contexts 
such as the exchange of jokes (Schmidt, Morr, Fitzpatrick, 
& Richardson, 2012), dialog (Fujiwara & Daibo, 2016), the 
coordination of jazz musicians (Walton, Richardson, 
Langland-Hassan, & Chemero, 2015), and dancers 
(Washburn et al., 2014).  

We expect that the coordination of bodily movements will 
serve a functional role in facilitating effective CPS 
performance. However, we also expect that this functional 
role will vary based on time scales. In other words, 
movement coordination at some time scales should be more 
relevant to CPS than others. We thus adopt an exploratory 
approach to determine what scales are important in 
predicting effective CPS performance. Given the nature of 
the task, it is likely that smaller time scale movements will 
matter such as those that occur while controlling the 
computer-based task as well as during speech. When 

examining interpersonal coordination dynamics, it is 
essential to demonstrate that the observed coordination is 
greater than can be expected due to chance alone (Ramseyer 
& Tschacher, 2010), and that it is not solely due to task 
constraints (Strang, Funke, Russell, Dukes, & Middendorf, 
2014). Thus, we advance the following research hypotheses 
(H) and research questions (RQ): 
• H1: Movement coordination will be greater than 

chance, at least at lower scales. 
• H2: Movement coordination will be greater than can be 

expected due to task constraints. 
• RQ1: At what scales does movement coordination 

predict CPS performance? 
• RQ2: Does the form of coordination (e.g., in-phase, 

anti-phase) at these scales relate to performance? 

Method 

Participants 
84 undergraduate students (31 female, Mage =19.2 years, 
range 18-28 years; ~ 67% White, 8% Black, 10% Hispanic, 
10% Asian, and 5% other) from a large United States 
university voluntarily participated in this experiment 
comprising 42 dyadic teams. There were five female-only 
teams, 17 male-only teams, and 20 mixed-gender teams. 
Participants must have had general video game experience 
using a mouse and keyboard for third-person video games, 
no prior history of seizures, no experience using the 
Moonbase Alpha simulation, and no prior acquaintance. 

Materials 
Participants sat face-to-face with each other with two 
desktop computers offset to one side. This setup allowed 
them to view the other’s face and torso. The computer 
screens were placed back-to-back. A Logitech HD webcam 
model C615 was used to record the participants from a 
profile view. All videos were collected in 720p resolution. 

Task 
NASA’s Moonbase Alpha is a complex, CPS task (NASA, 
2011) that places team members in a simulated scenario 
where a meteor strike damages critical life support systems 
of a moonbase. The goal of the Moonbase Alpha task is for 
participants to fully restore oxygen to the settlement in 25 
minutes or less. Both team members must work together to 
solve the problem by figuring out how to fix and/or replace 
damaged components of the life support system such as 
solar panels, power cables, couplers, and a power 
distributor. A variety of tools and coordination strategies 
must be employed to complete the task; however, there are 
no predefined guidelines for how to completely repair the 
settlement in the given timeframe. 

Procedure 
Participants were briefed about the nature of the experiment 
and asked to introduce themselves to each other by 
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providing a greeting and sharing their name with the other 
participant. Participants were then given an informed 
consent document to review and asked to complete a 
biographical questionnaire.  

Participants were then provided a PowerPoint tutorial that 
covered the basics of the Moonbase Alpha simulation, 
which were derived from the simulation’s instruction 
manual (NASA, 2011). Further, participants were told that 
they would be tested on the content. After completing the 
PowerPoint, they received a 10-item multiple-choice 
knowledge assessment (see Wiltshire, 2015).  

After completion of the knowledge assessment, the 
necessity for communication to complete the task was 
reiterated. Participants were then instructed to begin the 
simulation. A short video introduced the problem (i.e., the 
moonbase was damaged by a meteorite and life support 
functions need to be restored) before participants began the 
25-minute task. The task was considered complete either 
when time ran out or once participants fully restored 
oxygen, whichever came first.  

CPS Performance 
Problem solving performance was determined by a rescaled 
combination of three variables: (a) the total time taken to 
restore life support (0-25 minutes), (b) the total percentage 
of oxygen restored (0-100%), and (c) a ratio of completed 
object repairs to the total possible repairs (0-25; only for 
teams that restored zero oxygen). The rescale function in 
R (R Core R Core Team, 2016) was used to place teams 
whose performance restored no oxygen at all into a range of 
0-33 as a function of their ratio of object repairs/total 
possible object repairs. Those teams that restored some, but 
not all, oxygen were rescaled to fit a range of 34-66. Lastly, 
for those teams that restored all oxygen, the time to 
complete the task was inversely rescaled to fit the range of 
67-100 (with lower times leading to higher scores). 

Analytic Strategy 

Frame-Differencing We used Paxton and Dale’s (2013) 
video frame-differencing technique to extract a time series 
representing the level of bodily movement for each 
participant from all videos at an 8 Hz sampling rate. For the 
current task, this measure of bodily movement captures 
behaviors such as speech, postural sway, gestures, 
adjustment of position, hand movements controlling the 
mouse and keyboard, and shifting of the legs and/or feet. In 
general, this technique provides an objective measure of the 
amount of movement a given participant is exhibiting 
moment-by-moment over the duration of the task with 
higher values corresponding to more movement. The trade-
off when using this type of method is that there is a loss of 
specificity with regard to the types of movements that are 
coordinated, but movement can be extracted with relatively 
little effort and time compared to more specific movement 
coding systems (cf. Louwerse et al., 2012; Paxton & Dale, 
2013).  
 

Cross-Wavelet Coherence We examined dyadic movement 
coordination with the cross-wavelet transformation method 
by using the wtc function from the biwavelet package 
(Gouhier, Grinsted, & Simko, 2016) in R. This is a spectral 
decomposition method that allows for examination of time 
localized oscillations in a variety of frequencies and how the 
spectrum changes in those frequencies over time (Issartel, 
Marin, Gaillot, Bardainne, & Cadopi, 2006). This method is 
known to be robust to nonstationary time series (Issartel et 
al., 2015). We extracted the average coherence and average 
relative phase values from the following frequency ranges: 
.25s, .5s, 1s, 2s, 4s, 8s, 16s, 32s, ~1m, ~2m, and ~4.5m 
within +/- .5 scales (frequency scales are converted to time 
domain by multiplying them by the 8 Hz sampling rate and 
dividing by 60 for minutes). Coherence is the spectral 
equivalent to a cross-correlation. Values of 0 convey no 
coordination and a value of 1 conveys absolute coordination 
(Schmidt, Nie, Franco, & Richardson, 2014). Relative phase 
indicates whether the oscillations are in-phase (0°), anti-
phase (180°), or exhibiting a lag (between 0° and 180°).   

Surrogate and Virtual Pairs Analyses Surrogate analysis 
was conducted by computing a shuffled transformation of 
each observed movement time series and repeated the cross-
wavelet analyses for each dyad. This effectively destroys the 
temporal pattern in the data while preserving the 
distributional properties (Louwerse et al., 2012). Any 
measures of coordination applied to these are widely 
interpreted as the degree of coordination expected due to 
chance (Ramseyer & Tschacher, 2010). 

For the virtual pairs analysis, 42 randomized 
combinations of individuals who did not interact together 
were created. Because these individuals did not interact with 
each other, but were performing the same task, coordination 
measures calculated from virtual pairs have been interpreted 
as the coordination that can be expected due to the task 
demands (Strang et al., 2014). Thus, cross-wavelet analyses 
were conducted on these virtual pairs. Where time series 
were of unequal length, the longer time series was truncated 
to the length of the shorter series. Separate paired-sample t-
tests were used to compare between observed coherence and 
surrogate coherence as well as between observed coherence 
and virtual pairs coherence for each time scale.  

Examining Relationship Between Coordination and 
Performance Our approach to answering RQs 1 and 2 was 
exploratory based on the results from H1. Specifically, we 
first conducted a linear multiple regression model with the 
observed coherence values at scales that were significantly 
greater than chance as predictors of performance. Then, we 
took those values that were significant predictors of 
performance and included them in a second multiple 
regression model with the relative phase values for those 
respective scales. 

Results 
In order to examine H1, that the observed coordination 
would be greater than chance at some scales, the coherence 
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values for the surrogate data were compared to the 
coherence of the observed data. Results (see Table 1) 
suggested that coherence was significantly greater than 
chance at the .25s, .5s, 1s, and 2s frequency scales.  

Table 1: Paired sample t-tests comparing observed to 
surrogate coherence and to virtual pairs coherence. 
 

Freq. 
Scale 

Observed 
Coherence 

Surrogate 
Coherence 

Virtual Pairs 
Coherence 

.25s 0.84 (.04) 0.30 (.02)*** 0.72 (.05)*** 

.5s 0.93 (.03) 0.54 (.09)*** 0.79 (.17)*** 
1s 0.42 (.06) 0.29 (.02)*** 0.30 (.01)*** 
2s 0.37 (.05) 0.33 (.03)*** 0.30 (.03)*** 
4s 0.28 (.02) 0.29 (.01) 0.26 (.02)*** 
8s 0.28 (.03) 0.29 (.04) 0.26 (.02)** 
16s 0.30 (.04) 0.31 (.04) 0.29 (.04) 
32s 0.32 (.07) 0.31 (.07) 0.29 (.06)* 
1m 0.33 (.08) 0.34 (.08) 0.31 (.07) 
2m 0.38 (.13) 0.36 (.11) 0.33 (.11) 
4.5m 0.48 (.18) 0.43 (.21) 0.36 (.17)* 
Note. Values are mean and standard deviation. * p < .05; 
** p < .01; ***; p < .001 

 

 
Figure 1: Cross-wavelet coherence plots for a high 

performing team (top) and low performing team (bottom). 

Likewise, in order to examine H2, that the observed 
interpersonal movement coordination would be greater than 
due to task demands and environment, the coherence values 
for the virtual pairs data were compared to the coherence of 

the observed data. Results (see Table 1) suggested that 
coherence was significantly greater than could be expected 
due to task demands and environment alone for all 
frequency scales except 16s, 1m, and 2m.  

To better understand the relationship between coherence 
and performance, we present two examples of cross-wavelet 
coherence plots in Figure 1. The top example is derived 
from the top performing team and the bottom example is 
derived from the lowest performing team. The y-axis 
corresponds to the frequency scale (which when divided by 
8 can be related to time in seconds). The x-axis corresponds 
to the time on task with each point corresponding to 1/8 of a 
second (or one video frame). The colors correspond to the 
amount of coherence with warmer colors indicating high 
coherence. Arrows indicate phase relationships with right 
arrows conveying in-phase and left arrows conveying anti-
phase. Arrows shifted up or down convey a lag in the 
oscillations between participants.  

Next, we turn to RQs 1 and 2. In our first model, we 
included the four scales that were significantly more 
coordinated than expected due to chance alone as predictors 
of CPS performance (.25s, .5s, 1s, and 2s). Overall, this 
model accounted for a significant 30.2% (R2

adj = .226; 
F(4,37) = 4.00, p = .009) of the variability in CPS 
performance with coherence at the .25s (β = -.584, p = .017) 
and 1s scales (β = .789, p = .003) as significant predictors of 
performance. The .5s and 2s scales were not significant (ps 
> .05). Regarding RQ1, these results suggest that whereas 
stronger movement coordination at the 1s scale is a strong 
predictor of better CPS performance, stronger coordination 
at the .25s scale is associated with poorer performance.   

Next, we sought to better understand the form of 
coordination at these scales. Thus, we conducted a second 
model that included coherence as well as relative phase at 
.25s and 1s scales. This model accounted for a significant 
34.6% (R2

adj = .276; F(4,37) = 4.90, p=.003) of the 
variability in CPS performance with coherence (β = .614, p 
= .007) and relative phase (M = 3°, SD = 2°; β = -.294, p = 
.038) at the 1s scale as significant predictors of 
performance. Now, however, coherence at .25s was not 
significant (β = -.412, p = .06) nor was relative phase at .25s 
(p = .24). Thus, these results suggest that movement 
coordination at the 1s scale is a primary predictor of 
performance and further, that relative phase values at the 1s 
scale closer to 0° (more in-phase) are associated with better 
CPS performance.  

Discussion 
In this work, we investigated the multiscale, movement 
coordination dynamics that emerge in computer-based CPS. 
We found that movements in .25s-2s scales were 
significantly more coordinated than chance and that all but 
the 16s, 1m, and 2m scales were more coordinated than 
expected due to task demands. We also observed that where 
coordination was greater than chance, both .25s and 1s were 
associated with CPS performance. However, when also 
accounting for relative phase, it appeared that higher in-
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phase coordination at the 1s scale was the best predictor of 
CPS performance. Thus, some significant variability in CPS 
performance, in this context, appears to be explained by 
specific, low-scale patterns of coherence.  

Given the low specificity of the movement data extracted 
from video, the question remains as to what is coordinated 
at these low scales and why they matter. In general, 
interactional phenomena that play out on (and below) a .25s 
timescale differ qualitatively from phenomena at a .5s 
timescale and beyond. For example, how interlocutors 
orient to each other’s behavior as meaningful for the 
interaction depends on timing. Short pauses in interaction 
(typically < .25s) are treated as idiosyncratic variation in 
speech; pauses around .5s mark a transition space where the 
next speaker can take the word; and longer pauses (> 1s) 
“are often treated as flagging something unusual or 
troublesome about the interaction” (Mushin & Gardner, 
2009, p. 2035). Although, in addition to capturing these 
aspects of dialog, the observed coordination also captures 
mouse and keyboard movements, which likely unfold at 
these low scales as well. In general, many of the modalities 
captured by our movement measure can be argued to be task 
relevant as they capture dialogical events and computer 
input required for collaboration, but future work could 
consider more specific modalities such as how mouse 
movements are coordinated.  

As far as future work is concerned, it is important to note 
some observable differences in coherence between the high 
and low performing teams in Fig. 1. There appear to be 
differences at higher scales, although average coherence 
was not generally above chance at these scales. However, 
we can speculate that participants’ performance may reflect 
their ability to create functional coherence across scales 
(e.g., between bodily ability and task demands), which 
could be assessed with fractal analyses (Davis et al., 2016). 
Further, it may be that successful CPS performance relies on 
higher-order transitions (Wiltshire et al., 2017) in 
coordination at one or more slow scales, as could be 
tenuously suggested by the pattern of high-low-high 
coherence near the 2m scale across the duration of the task. 
Thus, future work should also consider extracting not only 
specific scales, but also time ranges that could be 
theoretically important to CPS. 

More generally, research of this nature is important 
because it advances an efficient means of unobtrusively 
examining coordination processes during collaboration with 
a goal of working toward systems that can elicit forms of 
coordination that enable effective collaboration (Fiore & 
Wiltshire, 2016; Kim, Chang, Holland, & Pentland, 2008; 
Wiltshire & Fiore, 2014). However, more work is necessary 
to understand if movement coordination is related to CPS 
performance in larger teams (de Montjoye, Stopczynski, 
Shmueli, Pentland, & Lehmann, 2014), with different roles 
and disciplinary expertise (Bergmann, Dale, Sattari, Heit, & 
Bhat, 2016), and when the teams are not co-located. Of 
course, such pursuits may require considering alternative 
modalities in which multiscale coordination might also 

occur. We expect that such endeavors are essential to 
advancing our knowledge of the way that coordination 
during human interaction relates to collaborative cognition.   
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Abstract

When choosing between multiple alternatives, people usually
do not have ready-made preferences in their mind but rather
construct them on the go. The 2N-ary Choice Tree Model
(Wollschlaeger & Diederich, 2012) proposes a preference con-
struction process for N choice options from description, which
is based on attribute weights, differences between attribute val-
ues, and noise. It is able to produce similarity, attraction,
and compromise effects, which have become a benchmark for
multi-alternative choice models, but also several other context
and reference point effects. Here, we present a new and math-
ematically tractable version of the model – the Simple Choice
Tree Model – which also explains the above mentioned effects
and additionally accounts for the positive correlation between
the attraction and compromise effect, and the negative correla-
tion between these two and the similarity effect as observed by
Berkowitsch, Scheibehenne, and Rieskamp (2014).
Keywords: computational model; multi-alternative choice;
choice from description; preference construction; context ef-
fects

Introduction
The decision making process involves various steps such as
setting and prioritizing objectives, identifying choice alter-
natives, searching for information, developing preferences,
and eventually taking a course of action. Here, we focus on
developing preferences in multi-alternative choice situations
and use in the following decision making from description
as basic paradigm. Given a set of at least three choice al-
ternatives that are described by at least two attributes, which
they have in common, how do people choose one of these
options? Simon (1955) argues that preferences in this kind
of situation are dynamically constructed over time due to
limited processing capacities. The decision maker experi-
ences preference uncertainty (cf. Simonson, 1989) and tries
to overcome it by gradually integrating the given informa-
tion (see Payne, Bettman, & Johnson, 1992, for a review
on constructive processing in decision making). The result-
ing preferences are stochastic and highly dependent on the
context, i.e., on the alternatives in the choice set and on
any external reference points. Naturally, a model describing
multi-alternative decision making from description should be
a context-sensitive cognitive process model. The recently
proposed 2N-ary Choice Tree Model for preference construc-
tion for N choice options (2NCT; Wollschlaeger & Diederich,
2012) assumes that the decision maker compares attribute
values within attributes and between alternatives in a pair-
wise manner. Attributes are selected for examination based
on attribute weights that reflect salience. Within attributes,

pairs of attribute values are selected for comparison based
on so-called comparison values. In the 2NCT Model, the
comparison values have a ”global” component that remains
constant over time during preference construction, a ”local”
component that depends on the outcomes of previous com-
parisons (reflecting leakage and inhibition, cf. Roe, Buse-
meyer, & Townsend, 2001; Usher & McClelland, 2004), and
a random component. Advantageous and disadvantageous
comparison outcomes for each alternative are counted sepa-
rately and the difference of these counters is compared to two
thresholds: a positive choice criterion and a negative elimina-
tion criterion. Implementation of an asymmetric value func-
tion (emphasizing disadvantageous comparison outcomes, cf.
Usher & McClelland, 2004) into the 2NCT Model is possi-
ble. Here, we present a revised and simpler version of the
2N-ary Choice Tree Model, the Simple Choice Tree (SCT)
Model. Therein, the local component is omitted from the
definition of comparison values, making the model mathe-
matically tractable while maintaining its ability to account for
similarity, attraction and compromise effects. Furthermore, a
new parameter, the focus weight λ, is introduced. It replaces
the asymmetric value function and allows the SCT Model to
account for correlations between the effects.

Benchmark: Context Effects
Three context effects, demonstrating the influence of choice
set composition on preferences, have played a prominent role
in the multi-alternative preference construction modeling lit-
erature: The similarity effect, the compromise effect, and the
attraction effect. All three effects occur when adding a third
alternative to a set of two equally attractive yet clearly distin-
guishable options described by two attributes. Let A1 and A2
be two choice alternatives with two common attributes, D1
and D2, describing them. We assume that D1 is the unique
strongest attribute for A1 and D2 is the unique strongest at-
tribute for A2, that is, A1 scores high on D1 but low on D2 and
vice versa for A2. One can think of the alternatives as placed
in a two-dimensional space with dimensions D1 and D2. We
further assume that the probability for choosing alternative
A1 from the binary choice set is equal to the probability for
choosing alternative A2, P(A1|A1,A2) = P(A2|A1,A2).

Similarity Effect The similarity effect was named and first
studied systematically by Tversky (1972). He observed
the effect when comparing the binary choice set {A1,A2}
to the ternary choice set {A1,A2,A3} where A3 is similar
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to one of the original alternatives, say A1, in scoring high
on attribute D1 and low on attribute D2 while overall be-
ing similarly attractive (i.e. P(A1|A1,A3) = P(A3|A1,A3)).
The probability of choosing A1 over A2 decreases when
the decision maker chooses from the ternary choice set as
compared to the binary set: P(A1|A1,A2)/P(A2|A1,A2) >
P(A1|A1,A2,A3)/P(A2|A1,A2,A3).

Attraction Effect The attraction effect (or decoy effect
or asymmetric dominance effect) was introduced by Huber,
Payne, and Puto (1982) as consistent violation of the regu-
larity principle. This principle, as presumed for example by
the theory of Elimination by Aspects (Tversky, 1972), states
that additional alternatives cannot increase the choice proba-
bilities of the original options. However, Huber et al. (1982)
claim that the relative probability for choosing alternative,
say, A1 can be increased by adding a third alternative A3 to
the choice set that is similar to but dominated by A1 (and sym-
metrically for alternative A2). A3 then serves as a decoy for
alternative A1, drawing attention to it and therewith improv-
ing its evaluation and increasing its choice probability.

Compromise Effect Originally intended to explain the
attraction effect, the theory of Reason-based Choice
(Simonson, 1989) predicts an additional context effect, the
compromise effect. It occurs when a third alternative A3,
equally attractive as the original alternatives A1 and A2, but
more extreme with respect to the attribute values, is added
to the choice set. If A3 is more extreme than alternative
A1, that is, if it scores higher than A1 on attribute D1 but
lower on attribute D2, then it increases the choice share
of A1 as compared to the binary situation (and vice versa
for alternative A2): P(A1|A1,A2,A3)/P(A2|A1,A2,A3) >
P(A1|A1,A2)/P(A2|A1,A2). However, note that the more sim-
ilar the additional extreme alternative A3 is to its adjacent al-
ternative A1, the more shares it takes away from A1 via the
similarity effect.

Interrelations of the Effects Recently, several studies have
explored similarity, attraction and compromise effects and
their interrelations in different choice scenarios. In a within-
subject consumer choice design, Berkowitsch et al. (2014)
find that the similarity effect is negatively correlated with
both the attraction and the compromise effect while the latter
two are positively correlated. In a similar vein, Liew, Howe,
and Little (2016) criticize that most of the results regarding
context effects are based on averages over participants, not
taking into account individual differences. Before analyzing
the data from their inference and consumer choice experi-
ments, they cluster it according to the observed choice pat-
terns. The differences between clusters are remarkable, some
even show negative (reverse) context effects while positive
effects are observed in the averaged data. Before explaining
how the Simple Choice Tree (SCT) Model accounts for the
similarity, attraction and compromise effects and their inter-
relations, we introduce the basic mechanisms of the model.

The Simple Choice Tree Model
Let na be the number of alternatives under considera-
tion, {A1,A2, . . . ,Ana}, and nd the number of attributes,
{D1, . . . ,Dnd}, that characterize them. The decision maker
is provided with one attribute value per alternative per at-
tribute, that is, na · nd attribute values in total. Let mi j be
the attribute value for alternative Ai with respect to attribute
D j. Attribute values within attributes and between alterna-
tives are repeatedly compared and the resulting evidence is
accumulated in two counters S+i and S−i for each alternative
Ai, i ∈ {1, . . . ,na}. The positive counter S+i accumulates ev-
idence for choosing alternative Ai and the negative counter
S−i accumulates evidence for rejecting it. Here, the initial
counter states are set to zero, S+i (0) = 0 = S−i (0). Definition
of non-zero initial counter states accounting for prior knowl-
edge about the choice alternatives is possible. However, these
additional free parameters make the model less parsimonious
and complicate parameter estimation. The counter states at
time t, S+i (t) and S−i (t), are the initial counter states increased
by the respective evidence accumulated until t. Their differ-
ence defines the momentary preference state for alternative
Ai at time t: Pre f (Ai, t) = S+i (t)− S−i (t). We will now an-
swer the following questions: (1) How is attention allocated
between choice alternatives and attribute values? (2) How are
alternatives evaluated and how is evidence accumulated? (3)
When does evidence accumulation stop and which alternative
is chosen?

Attention Allocation

At the beginning of the process, when information about the
alternatives and attributes is made available to the decision
maker, each attribute D j, j ∈ {1, . . . ,nd}, is assigned a weight
ω j, 0 ≤ ω j ≤ 1, reflecting its salience. The attribute weights
determine how much attention the decision maker gives to the
respective attributes during the preference construction pro-
cess. Attributes with higher weights get more attention than
attributes with lower weights. To allow for at least some of
the attention to be allocated randomly between attributes, we
define a random component (see below) for which an addi-
tional weight ω0,0≤ω0≤ 1 is designated. Assuming that the
weights sum up to one, ∑

nd
j=0 ω j = 1, they can be interpreted

as attention probabilities for the attributes: At each points of
the preference construction process, the decision maker con-
centrates on attribute D j, j ∈ {1, . . . ,nd} with probability ω j.

Having selected an attribute D j, the decision maker con-
centrates on the specific attribute values of two alternatives
and compares them. Pairs of attribute values are selected for
comparison according to their importance for the decision.
The more diagnostic the attribute values are, i.e., the more
they discriminate between the alternatives, the more impor-
tant they become for the decision. Pair selection probabilities
within attribute D j are therefore defined to be proportional to
the absolute differences dik j = |mi j−mk j|, i 6= k∈ {1, . . . ,na}.
In order to obtain probabilities, we normalize these differ-
ences to sum up to one: The probability for selecting the pair
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{mi j,mk j} for comparison is pik j = dik j/∑{l,m} dlm j, l 6= m ∈
{1, . . . ,na}. Note that the normalization of absolute differ-
ences balances out inequalities between attributes with – on
average – bigger or smaller differences. Higher salience of an
attribute D j, j ∈ {1, . . . ,nd}, with, for example, higher abso-
lute differences, is thus not hard-wired into the model but is
reflected in a higher attribute weight ω j instead.

Preference Sampling

The actual comparison of the two selected attribute values
mi j and mk j is ordinal and directional: Let mi j > mk j, then
the comparison can be either positively phrased, e.g. ”mi j is
greater than mk j”, or it can be negatively phrased, e.g. ”mk j
is smaller than mi j”. For the positive phrasing, mi j is called
focus value and mk j is called reference value. The focus value
determines the counter whose state is increased by +1, here
S+i , since the comparison is advantageous for the associated
alternative Ai. For the negative phrasing, mk j is the focus
value and mi j is the reference value, leading to an increase by
+1 of counter S−k , since the comparison is disadvantageous
for alternative Ak. Which phrasing the decision maker uses
for the comparison and therewith which counter is updated
might, for example, depend on the wording of the task or the
decision maker’s attitude (cf. Choplin & Hummel, 2002). It is
implemented into the model via the focus weight λ, 0≤ λ≤ 1.
If λ = 1−λ = 0.5, the decision maker uses the positive and
negative phrasing both about equally often. If λ > 0.5, the
decision maker has a tendency towards the negative phras-
ing and towards updating negative counters. If λ < 0.5, the
decision maker has a tendency towards the positive phrasing
and towards updating positive counters. The focus weight λ

replaces the asymmetric value function that was applied to
the absolute differences between attribute values in the origi-
nal 2NCT Model (Wollschlaeger & Diederich, 2012). While
the asymmetric value function hard-wired a tendency towards
updating negative counters into the 2NCT Model, weight-
ing with λ allows for flexible balancing of attention to pos-
itive versus negative aspects of the alternatives in the SCT
Model. It is therefore especially useful in situations without
a loss/gain-framing, e.g., in perceptual or preferential choice.
Note that λ is a global weight and independent from the at-
tributes and attribute values. However, it allows us to define
counter updating probabilities for the positive and negative
counter of alternative Ai, i ∈ {1, . . . ,na} with respect to at-
tribute D j, j ∈ {1, . . . ,nd}: p+i j = ∑k:(mi j>mk j)(1−λ) · pik j for
updating S+i and p−i j = ∑k:(mi j<mk j) λ · pik j for updating S−i .

Finally, the random component accounts for times where
counter states are updated at random and without any con-
nection to the actual attribute values (for instance due to inat-
tention or misperception, cf. Busemeyer & Townsend, 1993).
Technically, it is treated as an additional (phantom) attribute
D0. The counter updating probabilities p+i0 = p−i0 = 1/(2 ·na),
i ∈ {1, . . . ,na} with respect to D0 depend on the number of
available choice alternatives and therefore sum up to one:
∑

na
i=1(p+i0 + p−i0) = 1.

Combining attribute-wise counter updating probabilities
p±i j with attribute weights ω j, we can now define weighted
counter updating probabilities for the positive and negative
counter of alternative Ai:

p+i =
nd

∑
j=0

p+i j ·w j and p−i =
nd

∑
j=0

p−i j ·w j. (1)

Choice Tree and Stopping Rules
Starting with the presentation of the choice alternatives and
their attribute values, the preference construction process
consists of a sequence of counter updates. In principle, ev-
ery possible sequence of counter updates may occur and it
is therefore of interest to have them conveniently summa-
rized. For this purpose, we introduce the (2 · na)-ary choice
tree T = (V,E,r) with vertices V , edges E ⊆ V ×V and root
r ∈ V , where all vertices are directed away from r and each
internal vertex v ∈ V has 2 · na children that are associated
with the 2 ·na counters. Figure 1 shows an example with three
choice alternatives and six counters. The preference construc-
tion process is represented by a random walk on T , beginning
at the root and passing from there through an edge to another
vertex, triggering the update (increase by +1) of the associ-
ated counter, moving on through another edge and so forth.
The next edge to pass through is chosen according to the up-
dating probability of the counter associated with its endpoint.
Note that for each vertex the transition probabilities of all out-
going edges sum up to one. An example path of this random
walk is pictured in bold in Figure 1.

The preference construction process stops when enough
evidence has been accumulated to make the required choice.
To this end, the preference states Pre f (Ai, t) = S+i (t) −
S−i (t), i ∈ {1, . . . ,na} are constantly compared to two thresh-
olds, a positive threshold θ+ and a negative threshold θ− =
−θ+. If the preference state for alternative Ai hits the pos-
itive threshold, the process stops and Ai is chosen. If, on
the other hand, the preference state for alternative Ak hits
the negative threshold, Ak is eliminated from the choice set
and the process continues with the remaining alternatives un-
til one of them is chosen or until all but one of them have been
eliminated. Consider a simple example with three choice al-
ternatives {A1,A2,A3} and thresholds θ+ = 2 and θ− = −2.
The sample path in Figure 1 with its associated sequence of
counter updates S+2 ,S

−
1 ,S

−
1 ,S

+
2 , leads to elimination of alter-

native A1 after three steps and choice of alternative A2 after
four steps. Other possible sequences resulting in choice of
alternative A2 include S+3 ,S

−
1 ,S

+
2 ,S

+
2 with direct choice of A2

after four steps, and S−1 ,S
−
3 ,S

−
3 ,S

−
1 with elimination of alter-

natives A3 after three steps and A1 after four steps and there-
with choice of the only remaining alternative A2.

Choice Probabilities and Expected Response Times
The probability for walking along a specific path as, for ex-
ample, shown in Figure 1, is the product of the transition
probabilities along the respective edges. The choice prob-
ability for alternative Ai, i ∈ {1, . . . ,na} is equal to the sum
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Figure 1: A random walk on the choice tree for three al-
ternatives. The associated sequence of counter updates is
S+2 ,S

−
1 ,S

−
1 ,S

+
2 and the probability for walking along this spe-

cific path is p+2 · p
−
1 · p

−
1 · p

+
2 . Supposing that the rejection

threshold θ− is equal to −2 and the choice threshold θ+ is
equal to 2, this sequence implicates first rejection of alterna-
tive A1 and then choice of alternative A2. When A1 is elim-
inated from the choice set, the vertices associated with its
counters no longer appear in the choice tree, as can be seen in
the bottom row of vertices here.

of the probabilities for walking along all the specific paths
that lead to choice of alternative Ai. Since it is not feasible
to calculate probabilities separately for each path and sum
them up, we will analyze preference states, choice probabil-
ities and response times instead by interpreting them as in-
dependent birth-death Markov chains with absorbing bound-
aries θ+ and θ−. The state space of these birth-death chains
Pre f (Ai, t) = S+i (t)− S−i (t) =: Si(t), i ∈ {1, . . . ,na} is S :=
{θ−, . . . ,−1,0,1, . . . ,θ+}, with |S |= θ+−θ−+1. The tran-
sition probabilities are

pi(x,x+1) = p+i > 0

pi(x,x−1) = p−i > 0

pi(x,x) = 1− p+i − p−i = p0
i > 0

 for x∈ S−{−θ
−,θ+},

where p±i is defined in Eq. 1 above; pi(x,x+ 1) = pi(x,x−
1) = 0, pi(x,x) = 1, for x ∈ {−θ−,θ+}; and zero other-
wise. They form a |S | × |S | transition probability matrix
P′i = (p′rs)r,s=1,...,|S |, where p′rs is the probability for the birth-
death chain to transition from state xr to state xs in one step.
P′i can be written in its canonical form Pi by rearranging the
rows and columns (changing the indices of the states such
that the absorbing states −θ− and θ come first). Pi can be de-

composed into a 2×2 identity matrix I2, a 2×nt matrix 0 of
zeros with nt = |S |− 2 (the number of transient states in S ),
a nt × 2 matrix Ri, containing the probabilities for entering
the absorbing states θ+ and θ−, that is, for hitting the elimi-
nation or choice threshold, and a nt × nt matrix Qi, contain-
ing the transition probabilities between transient states (cf.

Diederich, 1997): Pi =

(
I2 0
Ri Qi

)
.

Given a row vector Zi of length nt which represents the
initial preference state (e.g.,

(
0 0 1 0 0

)
) or the ini-

tial distribution of preference over the transient states (e.g.,(
0.05 0.10 0.70 0.10 0.05

)
, cf. Diederich & Buse-

meyer, 2003) for alternative Ai, the probability that the pro-
cess is absorbed during the first step can be obtained by mul-
tiplying Zi and Ri, yielding a vector of length 2: Zi · Ri =
[P(Si(1) = θ+),P(Si(1) = −θ−)]. In the case that the pro-
cess was not absorbed during the first step, the distribution
of preference over the transient states after the first step is
given by Zi ·Qi, a vector of length nt . Multiplying the result
with the matrix Ri yields the probabilities of absorption in the
second step: Zi ·Qi ·Ri = [P(Si(2) = θ+),P(Si(2) = −θ−)].
The distribution of preference over the transient states is
given by (Zi ·Qi) ·Qi = Zi · (Qi ·Qi) = Zi · (Qi)

2. The en-
tries of the nt × nt matrix (Qi)

2 are 2-step transition proba-
bilities between the transient states, allowing for calculation
of absorption in the third step: Zi · (Qi)

2 · Ri = [P(Si(3) =
θ+),P(Si(3) = −θ−)]. Iterating these results indicates that
all the relevant probabilities can be obtained from the vector
Zi, the matrix Ri and powers of the matrix Qi. Since Qi is
a tridiagonal Toeplitz matrix (the entries on the main diago-
nal are all equal to p0

i , the entries on the diagonal above the
main diagonal are equal to p+i and the entries on the diago-
nal below the main diagonal are equal to p−i ), its eigenvalues,
eigenvectors and its powers are known and given in closed
form (Salkuyeh, 2006), making it easy to compute all the rel-
evant quantities.

We are interested in the conditional probabilities and ex-
pected hitting times for each alternative Ai, i ∈ {1, . . . ,na},
given that Ai is the first alternative to be chosen/eliminated.
Therefore, we have to determine the probability that alter-
native Ak, k ∈ {1, . . . ,na} with k 6= i, has not been cho-
sen/eliminated until time t. It is given by

P(−θ
− < Sk(T )< θ) = 1−

T

∑
t=1

Zk · (Qk)
t−1 ·Rk ·

(
1
1

)

= 1−Zk ·

(
T

∑
t=1

(Qk)
t−1

)
·Rk ·

(
1
1

)
.

The choice and elimination probability for alternative Ai at
time T is then equal to

[P(Si(T ) =−θ
−),P(Si(T ) = θ)]

=

(
Zi ·

T

∑
t=1

(Qi)
t−1 ·Ri

)
·∏

k 6=i

(
P(−θ

− < Sk(T )< θ)
)
.
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Overall, this yields probabilities

[P(chooseAi),P(eliminateAi)]

=
∞

∑
T=1

(
[P(Si(T ) =−θ

−),P(Si(T ) = θ)]
)

and expected response times

[E(Ti|chooseAi),E(Ti|eliminateAi)]

=
∞

∑
T=1

T ·
(
[P(Si(T ) =−θ

−),P(Si(T ) = θ)]
)
.

Note that the infinite sums over T have only a finite number of
nonzero addends, since P(Ni < ∞) = 1 for all i ∈ {1, . . . ,na},
thus the choice/elimination probabilities and expected re-
sponse times can be easily computed.

Context Effects Explained
Three interacting mechanisms produce similarity, attraction,
and compromise effects in the Simple Choice Tree Model:
(1) selection of pairs of attribute values for comparison based
on normalized differences, (2) the possibility to eliminate un-
wanted alternatives from the choice set, and (3) weighting
of attributes based on salience. The first mechanism leads
to a higher impact of dissimilar alternatives on the updating
probabilities and thus faster evidence accumulation for alter-
natives with more distant competitors. In the similarity and
attraction settings, this applies to the dissimilar alternative A2,
and in the compromise situation to the extreme alternatives A2
and A3. The second mechanism and the related focus weight
λ determine whether choices are more likely to be based on
eliminations or to be made directly. The greater λ, the more
likely are the choices based on eliminations. In the similarity
situation, greater λ leads to faster elimination of the dissimilar
alternative A2 and subsequent choice or elimination of either
alternative A1 or A3, that is, a small or even negative similar-
ity effect. On the other hand, smaller λ leads to more direct
choices of alternative A2 and thus a higher similarity effect.
Regarding the dissimilar alternative A2, the same is true in
the attraction situation. Greater λ leads to faster elimination
of A2 while smaller λ leads to more direct choices of alter-
native A2. However, the attraction effect is higher for greater
λ, since after elimination of alternative A2, either the domi-
nating option A1 is chosen directly or the dominated option
A3 is eliminated first. In the compromise setting, greater λ

increases the probability for the extreme options to be elim-
inated from the choice set, leaving the decision maker with
the compromise option. Smaller λ on the other hand more
likely leads to choice of an extreme option and thus a smaller
or even negative compromise effect. Attribute weights further
moderate the strengths of the context effects, but as long as
they are more or less balanced, they play a minor role in the
explanation of the similarity, attraction, and compromise ef-
fects. However, a high attribute weight is able to bias choice
towards the alternative that scores highest on that attribute,
covering any context effect.

Figure 2: Simulations of choice probabilities for changing
focus weight λ in the similarity, attraction, and compromise
situation. There is a positive similarity effect for smaller λ

and a negative similarity effect for larger λ (upper left) and
vice versa for the attraction effect (upper right). The com-
promise effect (lower left and right) shows for larger λ and is
reversed for smaller λ.

We ran several simulations to illustrate these mechanisms.
The available choice alternatives were A1 = (70,30), A2 =
(30,70) and A3 = (70,30) for the similarity effect, A3 =
(65,25) for the attraction effect, A3 = (90,10) for the asym-
metric compromise effect, or A3 = (50,50) for the symmetric
compromise effect. The attribute weights were ω0 = 0.1 and
ω1 = ω2 = 0.45, and the focus weight λ varied between 0
and 1 in steps of 0.1. For each data point we ran 10000 sim-
ulations and the resulting choice probabilities are presented
in figure 2. According to the simulations, the similarity ef-
fect is opposed to the attraction and the compromise effect.
The similarity effect is strongest for low λ, whereas the at-
traction and the compromise effect are strongest for high λ.
This prediction is consistent with the finding that the attrac-
tion and the compromise effect are positively correlated with
each other and negatively correlated with the similarity ef-
fect (Berkowitsch et al., 2014). Note that λ is assumed to be
a global weight that does not change between trials but may
vary between participants.

Conclusion
We propose a revised and simpler version of the 2N-ary
Choice Tree Model (Wollschlaeger & Diederich, 2012), the
Simple Choice Tree (SCT) Model. It predicts choice proba-
bilities and response times in multi-alternative multi-attribute
preferential choice from description and accounts for several
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effects observed in these situations, including the similarity,
attraction, and compromise effect. The SCT Model shares
several aspects with existing models: Like Decision by Sam-
pling (DbS; Stewart, Chater, & Brown, 2006), it proposes
binary ordinal comparisons and frequency accumulation as
basic mechanisms. In DbS, however, pairs of attribute values
are chosen at random and reference values may be sampled
from long-term memory as well as from the given context.
Only advantageous comparisons are counted and the model
is not able to account for the above mentioned context ef-
fects, nor does it provide solutions for choice probabilities
or choice response times. Multi-alternative Decision Field
Theory (MDFT; Roe et al., 2001) and the Leaky Compet-
ing Accumulator (LCA) Model (Usher & McClelland, 2001,
2004) provide such solutions only for fixed stopping times.
Both models, like the SCT Model, are based on pairwise dif-
ferences of attribute values. To account for the similarity,
attraction, and compromise effect simultaneously, however,
additional non-linear mechanisms (among others leakage and
inhibition, cf. the original 2NCT Model) are required, pre-
venting the models from providing mathematically tractable
solutions for optional stopping times. Elimination by Aspects
(EBA; Tversky, 1972) proposes ”a covert elimination process
based on sequential selection of aspects” (p. 296). As an early
example for a cognitive process model, it does not make any
predictions about choice response times and accounts only
for the similarity effect. The SCT model mimics EBA for
high values of the focus weight λ, where mostly disadvanta-
geous comparison outcomes are considered and decisions are
based on the elimination of choice alternatives. The Multi-
attribute Linear Ballistic Accumulator Model (MLBA; True-
blood, Brown, & Heathcote, 2014), basically a deterministic
version of MDFT, provides analytic solutions for expected
response times and choice probabilities like the SCT Model.
However, it is unclear if and how the response times are re-
lated to the actual integration of information. Furthermore,
the model has mostly been applied with fixed stopping times
until now. Additional mechanisms allow the MLBA model
to account for the compromise effect (a curved subjective
value function) and the similarity effect (a higher weight on
supportive information as compared to disconfirmatory evi-
dence). The latter is comparable to low values of the focus
weight λ in the SCT Model. To summarize, the SCT Model
combines aspects of competing models in a new way, yielding
qualitatively new explanations for the context effects and ad-
ditionally predicting correlation patterns amongst the effects.
It provides mathematically tractable solutions for both choice
probabilities and expected choice response times for optional
stopping times, by that outperforming existing models.
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Abstract

We introduce the spatially correlated multi-armed bandit
as a task coupling function learning with the exploration-
exploitation trade-off. Participants interacted with bi-variate
reward functions on a two-dimensional grid, with the goal of
either gaining the largest average score or finding the largest
payoff. By providing an opportunity to learn the underly-
ing reward function through spatial correlations, we model
to what extent people form beliefs about unexplored payoffs
and how that guides search behavior. Participants adapted to
assigned payoff conditions, performed better in smooth than
in rough environments, and—surprisingly—sometimes per-
formed equally well in short as in long search horizons. Our
modeling results indicate a preference for local search options,
which when accounted for, still suggests participants were
best-described as forming local inferences about unexplored
regions, combined with a search strategy that directly traded
off between exploiting high expected rewards and exploring to
reduce uncertainty about the spatial structure of rewards.
Keywords: Exploration-exploitation; Multi-armed bandits;
Active Learning; Gaussian Processes;

Introduction
Modern humans descend from capable foragers and hunters,
who have migrated and survived in almost every environment
on Earth. Our ancestors were able to adaptively learn the
distribution of resources in new environments and make good
decisions about where to search, balancing the dual goals of
exploring to acquire new information and exploiting existing
knowledge for immediate gains. What strategies do humans
use to search for resources in unknown environments?

We present a new framework for studying human search
behavior using a spatially correlated multi-armed bandit task,
where nearby arms (i.e., search options) have correlated re-
wards. Spatial correlations provide an opportunity to learn
about the underlying reward function, extending the tra-
ditional reinforcement learning paradigm (Sutton & Barto,
1998) to allow for generalization of learned rewards to un-
observed actions using spatial context. We compare search
behavior across different payoff conditions, search horizons,
and types of environments, finding that participants adapt to
their environment, tend to perform very local inferences about
unexplored regions and choose arms based on a trade-off be-
tween expectations and their attached uncertainties.

Spatially Correlated Multi-Armed Bandits
We adapt the multi-armed bandit (MAB) setting by adding
spatial correlation to rewards and placing the arms in a two-
dimensional grid (Fig. 1). Each tile represents a playable
arm of the bandit, which are initially blank and display the
numerical reward value (along with a color aid) after an arm
has been chosen. Traditionally, the goal in an MAB task is to

Smooth Environment Rough Environment

Figure 1: Examples of the underlying reward functions for the two
classes of environments.

maximize cumulative payoffs by sequentially choosing one of
the N-arms of the bandit that stochastically generate rewards
(Steyvers, Lee, & Wagenmakers, 2009), with learning hap-
pening independently for each arm (i.e., reinforcement learn-
ing). In our case, because proximate arms generate similar re-
wards, there is the opportunity to form inductive beliefs about
unobserved rewards (i.e., function learning). This allows us to
study how people generate beliefs about unobserved rewards
and how this influences their search behavior.

The spatially correlated MAB is related to the optimal for-
aging context (Krebs, Kacelnik, & Taylor, 1978), whereby a
forager is not only guided by the search for resources, but also
by the need to acquire information about the distribution of
resources in the environment (Schulz, Huys, Bach, Speeken-
brink, & Krause, 2016). This creates a natural trade-off be-
tween exploration and exploitation (March, 1991), where an
effective search policy needs to adequately balance exploring
areas with higher uncertainty, while also exploiting existing
information to obtain rewards. One key difference in our task
is that the decision-maker must determine where to search,
and not only whether to stay or to leave a patch.

Modeling Adaptive Search Behavior
We consider various computational models for describing hu-
man behavior, which all make sequential predictions about
where people are likely to search. We present both simple
strategies without an explicit representation of the environ-
ment, along with more complex function generalization mod-
els representing the task as a combination of (i) a function
learning model and (ii) a decision strategy. We use a form of
Gaussian Process regression as a flexible and universal func-
tion learning model, which forms inferential beliefs about the
underlying reward function, conditioned on previous obser-
vations of rewards. Decision strategies are used to transform
beliefs into predictions about where to search next. The re-
covered parameter estimates of our models describe the ex-
tent to which people make spatial inferences and how they
trade off between exploration and exploitation.
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Simple Strategies
Local search. While simple, a tendency to stay local to the
previous search decision—regardless of outcome—has been
observed in many different contexts, such as semantic forag-
ing (Hills, Jones, & Todd, 2012), causal learning (Bramley,
Dayan, Griffiths, & Lagnado, 2017), and eye movements
(Hoppe & Rothkopf, 2016). We use inverse Manhattan dis-
tance (IMD) to quantify locality:

IMD(x,x′) =
1

|x1− x′1|+ |x2− x′2|
(1)

which compares the location of two arms x and x′, where x1
and x2 are the grid coordinates. For the special case where
x= x′, we set IMD(x,x′) = 1. At each time t, we compute the
IMD for each arm based on the choice at xt−1, and then use
a softmax function (Eq. 11) to transform locality into choice
probabilities, such that arms closer to the previous search de-
cision have a higher probability of being chosen.

Win-stay lose-shift. We also consider a form of the win-
stay lose-shift (WSLS) heuristic (Herbert, 1952), where a win
is defined as finding a payoff with a higher or equal value
than the previous best. When the decision-maker “wins”, we
assume that any tile with a Manhattan distance ≤ 1 is chosen
(i.e., a repeat or any of the four cardinal neighbors) with equal
probability. Losing is defined as the failure to improve, and
results in choosing any unrevealed tile with equal probability.

Function Generalization Models
We use a combination of (i) Gaussian Process (GP ) regres-
sion as a model of how people form beliefs about the un-
derlying reward function conditioned on previous observa-
tions (Lucas, Griffiths, Williams, & Kalish, 2015), and (ii)
a decision strategy that transforms beliefs into predictions
about where a participant will sample next. This approach
has recently been applied to human behavior in contextual
multi-armed bandits (Schulz, Konstantinidis, & Speeken-
brink, 2016) and is the only known computational algorithm
to have any guarantees in a bandit setting (i.e., bounded re-
gret; Srinivas, Krause, Kakade, & Seeger, 2010).

Gaussian process learning. A GP defines a distribution
P( f ) over possible functions f (x) that map inputs x to output
y, in our case, grid location to reward. A GP is completely
defined by a mean µ(x) and a kernel function, k(x,x′):

µ(x) = E [ f (x)] (2)

k(x,x′) = E
[
( f (x)−µ(x))( f (x′)−µ(x′))

]
(3)

Here, we fix the prior mean to the median value of payoffs,
µ(x) = 50 and use a radial basis function kernel (Eq. 7).

Suppose we have collected observations yT =
[y1,y2, . . . ,yT ]

> at inputs XT = {x1, . . . ,xT}, and assume

yt = f (xt)+ εt εt ∼N (0,1) (4)

Given a GP prior on functions f (x) ∼ GP (µ(x),k(x,x′)),
the posterior distribution over f (xT ) given inputs XT is also

a GP with the following mean and covariance:

µT (x) = kT (x)>(KT +σ
2I)yT (5)

kT (x,x′) = k(x,x′)−kT (x)>(KT +σ
2I)−1kT (x′) (6)

where kT (x) = [k(x1,x), . . . ,k(xT ,x)]> and KT is the posi-
tive definite kernel matrix [k(xi,x j)]i, j=1,...,T . This posterior
distribution is used to derive normally distributed predictions
about the rewards for each arm of the bandit (Fig. 2).

The kernel function k(x,x′) encodes prior assumptions
about the underlying function. We use the radial basis func-
tion (RBF) kernel

kRBF(x,x′) = exp
(
−||x−x′||2

2λ2

)
(7)

which is a universal function learner and assumes infinitely
smooth functions (i.e., correlations between two points x and
x′ slowly decay as an exponential function of their distance).
The RBF kernel uses λ (length-scale) as a free parameter,
which determines how far correlations extend: larger values
of λ result in longer spatial correlations, whereas λ→ 0+ as-
sumes complete independence of spatial information. We use
recovered parameter estimates of λ to learn about the extent
to which humans make inferences about unobserved rewards.

Decision strategies. The GP learning model generates nor-
mally distributed predictions about the expectation µ(x) and
the uncertainty σ(x) for each arm, which are available to the
decision strategies1 for evaluating the quality, q(x), and ulti-
mately making a prediction about where to sample next.

The Variance Greedy (VG) strategy values an arm using
only the estimated uncertainty

qV G(x) = σ(x) (8)

and is an efficient step-wise (greedy) approximation of infor-
mation gain (Srinivas et al., 2010), which seeks to learn the
global reward function as rapidly as possible. VG achieves at
least a constant fraction of the optimal information gain value
(Krause & Guestrin, 2005); however, it fails to adequately
trade-off between exploration and exploitation, because ef-
fort is wasted exploring the function where f (x) is small.

The Mean Greedy (MG) strategy is also step-wise greedy,
valuing arms using only the estimated mean reward

qMG(x) = µ(x) (9)

although this strategy carries no known guarantees and is
prone to getting stuck in local optima.

Upper confidence bound sampling (UCB) combines the
VG and MG strategies

qUCB(x) = µ(x)+βσ(x) (10)

1We also considered Probability of Improvement and Probabil-
ity of Maximum Utility (Speekenbrink & Konstantinidis, 2015) as
alternate decision strategies, but have omitted them because they
failed to reach performance comparable to UCB.
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where the exploration factor β determines how the reduction
of uncertainty trades off against exploiting high expected re-
wards. This is sometimes referred to as optimistic “sampling
with confidence” as it inflates expectations with respect to
the upper confidence bounds (Srinivas et al., 2010), creating
a natural balance between exploration and exploitation.
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Figure 2: Modeling human performance. Column left represents the
initial state of the task and column right is after 10 clicks. Top row:
screenshots from the experiment. 2nd row: posterior predictions of
expected reward µ(x), from a GP with an RBF kernel (not shown:
the estimated variance). 3rd row: the values of each tile q(x) using
the UCB acquisition function. Bottom row: the softmax prediction
surface transforming the UCB values into choice probabilities.

Choice Probabilities
For all models, we use a softmax function (Fig. 2 bottom row)
to convert the value of an option q(x) into a choice probability

P(x) =
exp(q(x)/τ)

∑
N
j=1 exp(q(x j)/τ)

(11)

where τ is the temperature parameter. As τ→ 0 the highest-
value arm is chosen with a probability of 1 (i.e., argmax), and
when τ→ ∞, all options are equally likely, with predictions
converging to random choice. We use τ as a free parame-
ter, where lower estimates can be interpreted as more precise
predictions about choice behavior.

Experiment
We present a bi-variate MAB problem with spatially corre-
lated rewards. The problem space was represented by a two-
dimensional grid, measuring 11×11, resulting in 121 unique
tiles in total. Participants could click to reveal unexplored
tiles or re-click previously uncovered tiles to exploit known
rewards (see Fig. 2 top row for screenshots).

Methods
Participants. We recruited 80 participants from Amazon
Mechanical Turk (25 Female; mean age ± SD 32 ± 9). Each
participant was paid a participation fee of $0.50 and a per-
formance contingent bonus up to $1.50. Subjects earned on
average $1.64 ± 0.20 and spent 8 ± 4 minutes on the task.

Design. We used a 2×2 between subject design, where par-
ticipants were randomly assigned to one of two different
pay-off structures (Average Reward vs. Maximum Reward)
and one of two different classes of environments (Smooth
vs. Rough). Each grid represented a bi-variate function,
with each observation including normally distributed noise,
ε∼N (0,1). The task was presented over 8 blocks on differ-
ent grid worlds drawn from the same class of environments.
In each block, participants had either a Short (20 clicks) or
Long (40 clicks) search horizon to interact with the grid. The
search horizon alternated between blocks (within subject),
with initial horizon length counterbalanced between subjects.
Per block, observations were scaled to a uniformly sampled
maximum value in the range of 65 to 85, so that the value of
the global optima could not be easily guessed (e.g., a value of
100).

Materials and procedure. Before starting, participants
were shown four fully revealed grids in order to familiarize
themselves with the task. Example environments were drawn
from the same class of environments assigned to the partic-
ipant (Smooth or Rough) and underwent the same random
scaling of observations. Additionally, three comprehension
questions were used to ensure full understanding of the task.

At the beginning of each of the 8 blocks, one random
tile was revealed and participants could use their mouse to
click any of the 121 tiles in the grid until the search hori-
zon was exhausted, including re-clicking previously revealed
tiles. Clicking an unrevealed tile displayed the numerical
value of the reward along with a corresponding color aid,
where darker colors indicated higher point values (Fig. 1).
Previously revealed tiles could also be re-clicked, although
there were variations in the observed value due to noise. For
repeat clicks, the most recent observation was displayed nu-
merically, while hovering over the tile would display the en-
tire history of observations. The color of the tile corresponded
to the mean of all previous observations.

Payoff conditions. We compared performance under two
different payoff conditions, requiring either a balance be-
tween exploration and exploitation (Average Reward) or a
pure exploration context (Maximum Reward). Previous work
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has shown that people can adapt (sometimes with great dif-
ficulty) to different payoff conditions in information acquisi-
tion tasks (Meder & Nelson, 2012).

In each payoff condition, participants received a perfor-
mance contingent bonus of up to $1.50. Average Reward par-
ticipants were told to “gain as many points as possible across
all 8 grids” and were given a bonus based on the average
value of all clicks as a fraction of the global optima, 1

T ∑( yt
y∗ ),

where y∗ is the global optimum. Maximum Reward partic-
ipants were told to “learn where the largest reward is” and
were giving a bonus using the ratio of the highest observed
reward to the global optimum, (maxyt

y∗ )4, taken to the power of
4 to exaggerate differences in the upper range of performance
and for parity in expected earnings across payoff conditions.
All 8 blocks were weighted equally, using noisy but unscaled
observations to assign a bonus of up to $1.50. Subjects were
informed in dollars about the bonus earned at the end of each
block.

Smoothness of the environment. We used two different
classes of environments, corresponding to different levels of
smoothness (Fig. 1). All environments were sampled from a
GP prior parameterized with a RBF kernel, where the length-
scale parameter (λ) determines the rate at which the correla-
tions of rewards decay over distance. We sampled 20 Smooth
environments using λ = 2 and 20 Rough environments us-
ing λ = 1. Subjects performed the task on 8 grids randomly
drawn (without replacement) from their assigned class of en-
vironments, while the four fully revealed environments used
to familiarize subjects with the task were drawn (without re-
placement) from the remaining 12 environments.

Search horizons. The length of the search horizon influ-
ences the value of information learned about the environment,
with respect to the assigned payoff condition. Longer hori-
zons provide more opportunities for exploiting acquired in-
formation, thereby making early exploration more valuable.
We chose two horizon lengths (Short= 20 and Long= 40) that
were fewer than the total number of tiles on the grid (121),
and varied within subject (alternating between blocks).

Results
Figure 3 shows task performance. In all conditions, perfor-
mance improved as a function of the trial number (i.e., with
each additional click), as measured by both the overall cor-
relation between average reward and trial number (r = .32,
p = .04) and between the maximum observed reward and
trial number (r = .83, p < .001). There were no learning
effects across blocks (i.e., over successive grids), indicated
by a lack of correlation between average reward and block
number (r = .19, p = .65), or between maximum reward and
block number (r =−.37, p = .36). Performance improved as
more information was revealed (i.e., over trials), but not over
additional blocks of identically parameterized environments.

Payoff conditions. Payoff conditions influenced search be-
havior, with participants in the Maximum Reward condition

displaying more variance in the locations sampled (t(78) =
−2.48, p = .02). There were some differences in the number
of unique tiles revealed (Fig. 3C) and the number of repeat
clicks across the payoff conditions (Fig. 3D), although the ef-
fect size is largest for smooth environments given long search
horizons. However, these behavioral differences did not man-
ifest in terms of performance, with no systematic differences
across payoff conditions in terms of the average reward ob-
tained t(78) = 1.32, p = .2) or in the maximum revealed re-
ward (t(78) = .001, p = .99).
Environment and horizon. Independent of the payoff
condition, participants assigned to Smooth environments
achieved higher average rewards (t(78) = 6.55, p < .001)
and higher maximum rewards (t(78) = 5.45, p < .001), than
those assigned to the Rough environments (Fig. 3E), suggest-
ing that stronger correlations of payoffs make the task easier.
Interestingly, longer horizons did not lead to better overall
performance in the Average Reward condition (t(80) = .34,
p = .73), although participants given longer horizons found
larger maximum rewards for all payoffs and environment
conditions (t(158) = 7.62, p < .001). There may be a less-is-
more-effect, with longer horizons leading to over-exploration,
given the goal of maximizing average rewards.
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Figure 3: Overview of task performance. (A) Average reward earned
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Model Comparison
We describe each model’s ability to predict participant behav-
ior using leave-one-block-out cross validation. For each par-
ticipant, we analyzed the four short and the four long horizon
blocks separately. Cross-validation was performed by hold-
ing out a single block as a test set, and fitting the model pa-
rameters using a maximum likelihood estimate (MLE) on the
remaining three blocks. Iterating through each of the four
hold-out blocks, for both short and long horizons, we calcu-
lated a model’s out-of-sample log loss (i.e., test set prediction
accuracy) and then summed up the results over all blocks. We
use McFadden’s R2 values (McFadden, 1974) to compare the
out-of-sample log loss for each model to that of a random
model (Fig. 4), where R2 = 0 indicates chance performance
and R2 = 1 is a perfect model.
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Figure 4: Model Comparison. The height of the bars show the
group mean and error bars indicate standard error. McFadden’s R2

is a goodness of fit measure comparing each model Mk to a ran-
dom model Mrand. Using the out-of-sample log loss for each model,
R2

McF = 1− logL(Mk)/ logL(Mrand).

A large amount of the variance in participant behavior is
explained by local search (R2 = .28; all conditions); how-
ever, locality alone fails to achieve similar task performance
as humans, with performance almost identical to random in
terms of average reward and worse than random in maximum
reward (Fig. 5). WSLS by comparison, was a poor approxi-
mation of search behavior (R2 = .05), and was excluded from
the model performance comparison.

Among the GP models, UCB performed best (R2 = .23),
with MG showing comparable results (R2 = .17) and VG per-
forming poorly (R2 = .01). Interestingly, the performance of
the GP-UCB model was remarkably similar to human sub-
jects in terms of both average and maximum reward (Fig. 5).
Both humans and the GP-UCB model explore beyond what
is adaptive in the average reward context as evidenced by the
peak around t = 15, continuing to explore after most high-
value rewards have been revealed and thus failing to consis-
tently improve average rewards2.

To harmonize the different aspects of human behavior cap-
tured by local search and by the GP-UCB model, we added a

2Note that the peak in average reward for the GP-UCB is due to
the use of human parameter estimates, whereas a GP-UCB model
with optimized hyper-parameters and a dynamic β is known to
achieve sublinear regret bounds (i.e., monotonically increasing av-
erage reward; Srinivas et al., 2010)

local variant of each GP model (Local GP), which weighs the
q(x) for each arm by the inverse Manhattan distance to the
previous choice, qLocal(xt) = q(xt) · IMD(xt ,xt−1). Adding
locality to the GP models only improved prediction accuracy
(Fig. 4 right), with the Local GP-UCB model having the high-
est overall out-of-sample prediction accuracy (R2 = .38).

Overall, the modeling results show that humans display
a preference for local search, but that locality alone fails to
achieve comparable performance levels. The best model (Lo-
cal GP-UCB) incorporated this tendency for local search into
a computational model that combines function learning with
a decision strategy explicitly trading off between both high
expected rewards and high uncertainty.
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Figure 5: Comparison of simulated model performance over
10,000 replications, where parameters were sampled from the cross-
validated MLEs of the subject population. Human results are aver-
aged across payoff conditions and horizon length.

Parameter Estimation
Figure 6 shows the cross-validated parameter estimates of the
best predicting Local GP-UCB model. The estimates indi-
cate subjects systematically under-estimated the smoothness
of the underlying environments, with λ values lower than the
true underlying function (λSmooth = 2, λRough = 1), for both
Rough environments (t(36) =−4.80, p < .001) and Smooth
environments (t(42) = −18.33, p < .001), using the median
parameter estimate for each subject. Participants not only had
a tendency towards selecting local search options, but also
made local inferences about the correlation of rewards.

All participants valued the reduction of uncertainty (β >
0), with long horizons often yielding larger β estimates than
short horizons (51 out of 80 subjects; t(79) = −2.02, p =
.047)3. There were no differences between payoff conditions
(t(78) =−1.65, p = .1) or environments (t(78) = .5, p > .1).

Subjects in the average reward condition yielded smaller
estimates of the softmax temperature parameter (τ) than those
in the maximum reward condition (t(78) =−2.66, p = .009),
This is consistent with almost all models making better pre-
dictions for average reward than for maximum reward sub-
jects (Fig. 4), since smaller values of τ indicate more precise
predictions. The larger number of unique tiles searched in the
maximum reward condition (Fig. 3C) may indicate a more
difficult prediction problem.

3Because horizon length varied within subjects, we compare the
aggregate mean of the cross-validated parameter estimates for β.
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Figure 6: Cross-validated parameter estimates for the Local GP-
UCB model, showing the median estimate for each participant.

General Discussion
The results presented here can be seen as a first step towards
uncovering how people search to acquire rewards in the pres-
ence of spatial correlations. We have re-cast the multi-armed
bandit problem as a framework for studying both function-
learning and the exploration-exploitation trade-off by adding
spatial correlations to rewards. Within a simple experiment
about searching for rewards on a two-dimensional grid, we
found that participants adapt to the underlying payoff condi-
tion, perform better in smooth than in rough environments,
and—surprisingly—sometimes seem to perform as well in
short as in long horizon settings.

Our modeling results show a tendency to prioritize local
search options, which may indicate the presence of innate
search costs (e.g., mouse movements or some additional cog-
nitive processing). Even accounting for this local search be-
havior, our best predicting model (Local GP-UCB) indicates
that people still systematically underestimate the extent of
spatial correlation of rewards, preferring instead to make very
local inferences about unexplored rewards. Additionally, we
also found that search behavior was best predicted by a com-
bination of both high expected reward and high uncertainty,
embodied in the UCB decision strategy, which implicitly ne-
gotiates the exploration-exploitation trade-off.

Future studies could expand on this work by assessing a
more diverse and perhaps combinatorial set of kernel func-
tions (Schulz, Tenenbaum, Duvenaud, Speekenbrink, & Ger-
shman, 2016) or by speeding up GP-inference using approxi-
mation methods such as sparse inference (Lawrence, Seeger,
& Herbrich, 2003) or more parsimonious neural network rep-
resentations (Neal, 2012). Indeed, the result that participants
formed only very local beliefs about spatial correlations could
be used to find heuristic approximations to GP models in the
future, which could effectively trade-off a small loss in accu-
racy for reduced computational complexity.

Conclusion
We compared both simple strategies and more complex func-
tion generalization models in their ability to make out-of-
sample predictions about participant sampling behavior. Our
modeling results indicate that there may be innate search
costs, creating a tendency to prioritize local search options.
Furthermore, even accounting for this local search behavior,
our best performing model (Local GP-UCB) indicates that
people also have a systematic tendency to underestimate the

extent of spatial correlation of rewards, preferring instead to
make very local inferences about unexplored rewards.
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Abstract 

We investigate children’s ability to use social display rules to 
infer agents’ otherwise under-determined desires. In 
Experiment 1, seven-to-ten-year-olds saw a protagonist 
express one emotional reaction to an event in front of her 
social partner (the Social Context), and a different expression 
behind her social partner’s back (the Nonsocial Context). 
Children were able to use the expression in the Social Context 
to infer the social partner’s desire and the expression in the 
Nonsocial Context to infer the protagonist’s desire. This 
ability increased between ages seven and ten (Experiment 1). 
When task demands were reduced (Experiment 2), seven-to-
eight-year-olds, but not five-to-six-year-olds, succeeded. 
These results suggest that although it is not easy for observers 
to infer emotions masked by social display rules, changing 
emotional expressions between social and non-social contexts 
allow even children to recover not only the desire of the 
person displaying the emotions, but also that of the audience. 

Keywords: emotional expression; social display rule; mental 
state inference 

Introduction 
Young children can use emotional expressions to draw 
inferences about both external events in the world (e.g., 
Berman, Chambers, & Graham, 2010; Feinman, Roberts, 
Hsieh, Sawyer, & Swanson, 1992; Wu, Muentener, & 
Schulz, 2015), and others’ internal mental states (e.g., 
Repacholi & Gopnik, 1997; Rieffe, Terwogt, & Cowan, 
2005; Wellman, Phillips & Rodriguez, 2000; Wu & Schulz, 
2017). However, because people sometimes go to great 
lengths to disguise their true feelings, emotional expressions 
can be misleading. When speaking in front of a large 
audience, an adult will pretend to be calm, even if she is 
nervous. When receiving an undesirable gift, a polite child 
will pretend to be happy even if she is disappointed. As we 
will review, a relatively large body of work has looked at 
children’s understanding of social display rules and masked 
emotions. Here however, we consider a feature of social 
display rules that has been largely overlooked in prior work: 
they may disguise an individual’s feelings while being 
informative about the feelings of her social partner’s.  When 
someone congratulates a friend in public but fumes in 
private, we learn not only that this person’s true feelings 
about the event are negative, but also that her friend’s true 
feelings are probably positive. Thus, masked emotions may 
reveal (about social partner’s) as much as they conceal 
(about the individual herself). Given evidence about 
someone’s feelings in both social and non-social contexts, 
an observer might therefore recover information both about 

the individual’s mental states, and those of the society she 
keeps.   

This kind of inference is non-trivial: it requires tracking 
someone’s emotional expressions across social and non-
social contexts, reasoning recursively about the mental 
states of at least two parties. To our knowledge, despite 
abundant work on emotion understanding and theory of 
mind in early childhood (see Wellman, 2014 for review), no 
one has yet looked at whether children can use real and 
apparent emotions to infer not only the true feelings of the 
person expressing the emotions but also of their intended 
audience. That is our goal here. 

First however, we note that there is a long line of work on 
children’s ability to understand others’ real and apparent 
emotions and their ability to respect display rules in their 
own behavior. Research suggests that young children 
modulate both their verbal and nonverbal responses in social 
contexts (Cole, 1986; Saarni, 1984; Talwar & Lee, 2002; 
Talwar, Murphy, & Lee, 2007; Xu, Bao, Fu, Talwar, & Lee, 
2010). If for instance, an experimenter has lipstick on her 
nose and asks a child how she looks, children as young as 
three lie and tell her that she looks okay (Talwar & Lee, 
2002). By three and four, children (in the laboratory 
anyhow) inhibit their negative emotional responses to an 
undesirable gift in front of a gift giver (Cole, 1986). As 
children get older, they are more likely to lie for pro-social 
purposes than for self-protective purposes (Xu, Bao, Fu, 
Talwar, & Lee, 2010), and some evidence suggests that girls 
are better than boys at regulating their verbal and nonverbal 
behaviors (Cole, 1986; Davis, 1995; Saarni, 1984). 

Between ages three and ten, children also show an 
increasing ability to understand others’ masked emotions in 
social contexts. When predicting a recipient’s response to an 
undesirable gift, children invoke both verbal display rules 
(e.g., judging that the recipient will tell a white lie) and 
facial display rules (e.g., judging that she will express 
happiness rather than disappointment; Broomfield, 
Robinson, & Robinson, 2002; see also Gnepp & Hess, 
1986). Children appear to understand verbal display rules 
earlier than facial display rules (Broomfield, Robinson, & 
Robinson, 2002), and are better at understanding display 
rules for pro-social purposes than for self-protective 
purposes (Gnepp & Hess, 1986; but see Misailidi, 2006). 
The latter may be influenced by family emotional climates. 
For example, negative expressiveness in a family 
environment correlates positively with children’s 
understanding of self-protective display rules and negatively 
with their understanding of pro-social display rules (Jones, 
Abbey, & Cumberland, 1998). Additionally, some 
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researchers (Banerjee, 2002; Banerjee & Yuill, 1999a, 
1999b; Naito & Seki, 2009) argue that the understanding of 
social display rules relies on an ability to represent second-
order mental state information. In support of this, children’s 
performance on a second-order false belief task predicts 
their understanding of self-protective display rules 
(Banerjee & Yuill, 1999b) and a more recent study suggests 
that it predicts both their understanding of self-protective 
and pro-social display rules (Naito & Seki, 2009).  

Although fruitful, much of this literature has used tasks 
with very rich contextual information (Banerjee, 1997; 
Harris, Donnelly, Guz, Pitt-Watson, 1986; Misailidi, 2006; 
Josephs, 1994; Wellman & Liu, 2004; Naito & Seki, 2009; 
Gross & Harris, 1988). This is especially true for studies 
involving very young children.  For example, in Banerjee’s 
study (1997), preschoolers were read stories including an 
eliciting event (e.g., “Michelle is sleeping over at her 
cousin’s house but she forgot her favorite teddy bear at 
home”), an agent’s mental state (i.e., “Michelle is really sad 
that she forgot her teddy bear”), an intention to hide the 
agent’s true feeling (i.e., “Michelle doesn’t want her cousin 
to see how sad she is”), and a reason for hiding that feeling 
(i.e., “because her cousin will call her a baby”). Children 
were then asked about what the agent really feels and what 
she will try to look on her face.  In such contexts, children 
may succeed without going much beyond the information 
available in the stories.  

Consistent with this concern, studies using less 
informative contexts have found that an understanding of 
masked emotion and social display rules emerges much later 
in development (Broomfield, Robinson, & Robinson, 2002; 
Gnepp & Hess, 1986; Jones, Abbey, & Cumberland, 1998). 
For instance, Gnepp & Hess (1986) provided children (first, 
third, fifth, and tenth graders) with an eliciting event and an 
agent’s mental state but did not explicitly mention the 
agent’s intention to hide her feelings or any reason for her 
doing so. Children failed to predict the use of verbal display 
rules until third grade. Even adolescents (who successfully 
predicted the use of verbal display rules) frequently failed to 
predict that the agents would try to regulate their facial 
expressions. However, with less information in the stories, 
there is more uncertainty about whether the protagonist 
intended to be polite or not; children may have preferred to 
predict the emotional expression that directly mapped onto 
the protagonist’s true mental state.  

Thus, there remains some ambiguity about what children 
understand, and when, about masked emotions. Rich 
detailed scenarios may overestimate children’s ability to 
understand social display rules, while less informative 
scenarios may be open to interpretations that do not involve 
social display rules at all.   

More critically for the present purposes, previous work 
does not ask whether children can recover information, not 
only about the person displaying the emotion, but also about 
the person who is the intended audience of the emotion.  To 
test this, we introduce children to a simple context where 
one of two teams wins a game. An observer of the game 

displays one of two emotional reactions (happy or sad) in 
front of a social partner and the contrasting emotional 
expression (sad or happy) behind the social partner’s back.  
We ask children both the desire of the person expressing the 
emotion, and that of his social partner. Since abundant work 
suggests that even infants and toddlers understand that 
someone whose desires are fulfilled will be happy and that 
someone whose desires are thwarted will be sad (see e.g., 
Skerry & Spelke, 2014; Stein & Levine, 1989; Wellman & 
Woolley, 1990; Yuill, 1984), we took it for granted that by 
middle childhood, children could make this inference. The 
critical question was whether children could recover each 
participant’s true desires given that one person (henceforth 
the Protagonist) displayed contradictory emotions in the 
social and non-social contexts, and the other person 
(henceforth the Social Partner) never displayed any emotion 
at all. (Not only do children not see the social partner’s face, 
they have no other source of information about his emotions 
or desires. Thus the only way they can infer the social 
partner’s desires is by using the protagonist’s display of a 
false, misleading emotion in his presence. Given that 
without considerable scaffolding, children only appear to 
understand masked emotion relatively late in development 
(e.g., Broomfield et al., 2002; Gnepp & Hess, 1986; Jones et 
al., 1998), in Experiment 1 we test seven- to ten-year-olds. 
In Experiment 2, we reduce the task demands and test five- 
to eight-year-olds. In both cases, we look at whether 
children can use the emotional expression in the nonsocial 
context to infer the protagonist’s desire and the emotional 
expression in the social context to infer the social partner’s 
desire.  

Experiment 1 

Method 
Participants Thirty-two children (M = 8.8 years; range: 
7.2-10.8; 56% girls) were recruited from an urban children’s 
museum. To ensure a balanced distribution across ages, 
children were recruited in age bins consisting of 16 seven- 
and eight-year-olds (M = 7.9 years; range: 7.2-8.8; 63% 
girls) and 16 nine- and ten-year-olds (M = 9.8 years; range: 
9.0-10.8; 50% girls). While most of the children were white 
and middle class, a range of ethnicities and socioeconomic 
backgrounds reflecting the diversity of the local population 
(47% European American, 24% African American, 9% 
Asian, 17% Latino, 4% two or more races) and the museum 
population (29% of museum attendees receive free or 
discounted admission) were represented throughout. 
Materials Each child saw two illustrated stories, one 
presenting the Happy-Sad condition (e.g., Tom was happy 
in front of Bryan but sad behind Bryan’s back) and the other 
presenting the Sad-Happy condition. The facial expressions 
were from istock photos (http://www.istockphoto.com/) and 
have been used by previous research (Wu & Schulz, 2017). 
The mapping between stories and conditions, and the order 
of conditions were counterbalanced across participants, 
resulting in a total of 4 storybooks. Different agents and 
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games were used in each storybook (Tom, Bryan, and 
basketball in one story and Sally, Diana, and volleyball in 
the other). 
Procedure Children were tested individually; all sessions 
were videotaped. Children were asked check questions to 
encourage them to follow along. Incorrect responses were 
corrected throughout. Children had little difficulty with the 
check questions. Check questions were used only to 
maintain children’s attention; they were not analyzed or 
used as inclusion criteria.  

Each story was read consecutively, as follows (using the 
basketball-game story as an example). The experimenter 
placed the first picture on the table and said, “There is a 
basketball game today. It’s the Tiger team against the Lion 
team.”  She introduced the next picture and said, “This is 
Tom. Tom is a basketball fan. He loves watching basketball 
games. He goes to watch the game. He is either a fan of the 
Tiger team, or the Lion team, but we don’t know which 
one.” Children were asked (Check question 1): “Do we 
know which team Tom is a fan of?” The experimenter 
introduced the third picture and said, “This is Bryan. Bryan 
was Tom’s friend when they were little, but now they don’t 
get to see each other very much. Bryan becomes a 
basketball player. He plays in the game. He either plays for 
the Tiger team or the Lion team, but we don’t know which 
one.” Children were asked (Check question 2): “Do we 
know which team Bryan plays for?” The experimenter 
introduced the fourth picture and said, “The result of the 
game was that the Tiger team won, and the Lion team lost.” 
Then the experimenter introduced the fifth picture and said, 
“After the game, Bryan ran back to the locker room. Tom 
was passing by and saw Bryan. It was a very noisy and 
crowded room and they didn’t have a chance to talk. 
However, in front of Bryan, when Tom came passing by, 
Tom made a face like this.” Children were asked (Check 
question 3): “Did Tom look happy or sad?” The 
experimenter introduced the sixth picture and said, 
“However, behind Bryan’s back, as soon as Bryan passed 
by and couldn’t see Tom, Tom made another face.” 
Children were asked (Check question 4): “Did Tom look 
happy or sad?” We controlled for the complexity between 
the social and nonsocial contexts by having two people in 
both contexts; the difference was only that in the social 
context, they were facing towards each other, and in the 
nonsocial context, they were facing away from each other. 
(See Figure 1.) 

Finally, the experimenter asked two test questions. The 
first question was about the protagonist (Protagonist 
Question): “Now I am going to ask you some questions. In 
front of Bryan, Tom looked [happy/sad] but behind Bryan’s 
back, Tom looked [sad/happy]. Do you think Tom is a fan 
of the Tiger team or Lion team?” The experimenter then 
asked the other test question (Social Partner Question): 
“Does Bryan play for the Tiger team or the Lion team?”1 

                                                             
1 These two questions, although indirect assays of the agents’ 

desires, were selected as being more natural to the context. To 

Coding We scored children’s responses separately for the 
Protagonist and the Social Partner. Children received one 
point for answering a question correctly and none for 
answering it incorrectly.  

Results and discussion 
Participants performed equally well in the Happy-Sad and 
Sad-Happy conditions (protagonist: X2 = .59, p = .442; 
social partner: X2 = .00, p = 1.00). Additionally, there was 
no order effect between the first and second stories 
(protagonist: X2 = .07, p = .798; social partner: X2 = .00, p = 
1.00). Thus, we collapsed children’s scores across the two 
conditions. This resulted in a score of 0-2 for the 
Protagonist and a score of 0-2 for the Social Partner. 

Using age as a continuous variable, we found that 
children between ages seven and ten showed an increasing 
ability to use the emotional expression in the nonsocial 
context to reason about the protagonist’s desire (β = .75, SE 
= .36, z = 2.11, p = 0.035; Ordinal Logistic Regression), and 
the emotional expression in the social context to recover the 

                                                                                                       
answer these two questions, however, children have to infer the 
two agents’ desires. 

Figure 1 Example of the materials used in 
Experiments 1 and 2 (corresponding to the fourth to 
sixth pictures described in Procedure).   

Experiment 1
From social to nonsocial contexts

Experiment 2
From nonsocial to social contexts
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social partner’s desire 
(β = .69, SE = .34, z = 2.02, 
p = 0.044). See Figure 2.  

Overall, children did not 
recover the protagonist’s 
desire above chance (z = 
1.40, p = .230) and showed a 
non-significant trend 
towards recovering the 
social partner’s desire (z = 
2.13, p = .052) but there was 
no significant difference 
between the two (z = -1.13, p 
= .453). Because of the age 
effect, we did a median split 
on age. Seven- and eight-
year-olds did not perform 
above chance on either 
question (protagonist: z = -
.58, p = .774; social partner: z = .00, p = 1.00); however, 
nine- and ten-year-olds performed above chance on both 
(protagonist: z = 2.50, p = .022; social partner: z = 2.67, p 
= .013). See Figure 2. 

These results suggest that nine- and ten-year-olds can use 
changing emotional expressions between social and 
nonsocial contexts to recover the desires of both the 
protagonist and the social partner in a masked emotion 
context. However, why did younger children fail? As noted, 
many previous studies suggest that by seven and eight, 
children can predict an agent’s real and apparent emotions 
given relatively rich contextual information (Banerjee, 
1997; Harris, Donnelly, Guz, Pitt-Watson, 1986; Misailidi, 
2006; Josephs, 1994; Wellman & Liu, 2004; Naito & Seki, 
2009; Gross & Harris, 1988; Gnepp & Hess, 1986; 
Broomfield, Robinson, & Robinson, 2002; Jones, Abbey, & 
Cumberland, 1998). They can also represent second-order 
mental state information (Perner & Wimmer, 1985; 
Sullivan, Zaitchik, & Tager-Flusberg, 1994), which supports 
the understanding of social display rules. Thus, it is possible 
that children’s chance performance here was due to task 
demands. In particular, children may have tripped up by the 
fact that the first expression they saw was an apparent, 
misleading emotional expression. Only when children saw 
the second expression, did they have the information to tell 
that the first expression was a fake one.  

In the next experiment, we reduce these task demands by 
flipping the order of the social and nonsocial contexts. Thus, 
children first see the agent’s emotional expression in the 
nonsocial context and then a different one in the social 
context. This order does not require children to re-interpret 
the first emotional expression; additionally, the first 
expression may provide a basis for children to understand 
the expression displayed in the social context.  To see if 
even younger children might succeed given these reduced 
task demands, we test both seven- and eight-year-olds and 
five- and six-year-olds. 

Experiment 2 

Method 
Participants Thirty-two children (M = 7.0 years; range: 
5.3-8.8; 66% girls) were recruited from the children’s 
museum. Half of them were seven- and eight-year-olds (n = 
16; M = 8.0 years; range: 7.1-8.8; 75% girls) and the other 
half were five- and six-year-olds (n = 16; M = 6.0 years; 
range: 5.3-6.8; 56% girls).  
Materials, procedure and coding The materials, procedure 
and coding were identical to Experiment 1 except that we 
flipped the order of the social and nonsocial contexts. See 
Figure 1. For example, instead of first showing Tom’s 
emotional expression in front of Bryan, the experimenter 
presented Tom’s expression behind Bryan’s back: “After the 
game, Tom made a face like this. At this moment, Bryan 
was nearby but Tom didn’t see him.” Children were asked a 
check question: “Did Tom look happy or sad?” The 
experimenter then introduced the next picture and said, 
“However, Tom turned around and saw Bryan. Tom made 
another face.” Children were asked another check question: 
“Did Tom look happy or sad?”  

Results and discussion 
As in Experiment 1, participants performed equally well in 
the Happy-Sad and Sad-Happy conditions (protagonist: X2 = 
2.82, p = .093; social partner: X2 = .67, p = .412). There was 
no order effect between the first and second stories 
(protagonist: X2 = .93, p = .335; social partner: X2 = .67, p 
= .412). Thus, children’s scores were collapsed across the 
two conditions. 

We used the same analyses as in Experiment 1. Taking 
age as a continuous variable, we found that children 
between ages five and eight showed an increasing ability to 
recover both the protagonist’s (β = .89, SE = .35, z = 2.53, p 
= .011) and the social partner’s desires (β = .81, SE = .36, z 
= 2.25, p = 0.024). See Figure 2. 
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Overall, there was a non-significant trend for children to 
recover the protagonist’s desire (z = 1.96, p = .078) and 
children successfully recovered the social partner’s desire (z 
= 3.15, p = .002); there was no significant difference 
between the two  (z = -1.13, p = .453). Given the age effect, 
we performed a planned median split on age. Five- and six-
year-olds did not perform above chance in either question 
(protagonist: z = .00, p = 1.00; social partner: z = 1.34, p 
= .375) but seven- and eight-year-olds succeeded in both 
(protagonist: z = 2.50, p = .022; social partner: z = 2.89, p 
= .006). See Figure 2. Thus, we found that at least by ages 
seven and eight, children can use changing emotional 
expressions between social and nonsocial contexts to 
recover the desires of both participants in a social exchange, 
even when one participant is masking her emotions and the 
only cue to the other participant’s desires is that misleading, 
masked emotional reaction. 

General Discussion 
In two experiments, we investigated children’s ability to use 
the information embedded in social display rules to recover 
others’ otherwise under-determined mental states. Children 
saw an emotional expression when a protagonist was in 
front of a social partner, and a different expression when the 
protagonist was behind the social partner’s back. Children 
successfully used the expression in the nonsocial context to 
infer the protagonist’s desire, and the expression in the 
social context to infer the social partner’s desire. Children’s 
ability to draw these inferences improved between ages five 
and eight.  

Our study builds on many previous studies that have 
looked at children’s ability to predict an agent’s real and 
apparent emotions given rich mental state information (e.g., 
the agent’s desires, true feelings, her intentions, and a 
motivation to hide her true feelings; Banerjee, 1997; Harris, 
Donnelly, Guz, Pitt-Watson, 1986; Misailidi, 2006; Josephs, 
1994; Wellman & Liu, 2004; Naito & Seki, 2009; Gross & 
Harris, 1988; Gnepp & Hess, 1986; Broomfield, Robinson, 
& Robinson, 2002; Jones, Abbey, & Cumberland, 1998). In 
contrast, here we provided children with very minimal 
background information, and no direct information about 
the agent’s mental states.  Children’s ability to use the social 
context to recover the desires of an agent who provided two 
contradictory emotional reactions to an event, and also the 
desire of a social partner, whose emotional expressions were 
never observed at all, is consistent with other studies finding 
that children can recover rich unobserved information from 
observed emotional cues (e.g., Berman, Chambers, & 
Graham, 2010; Feinman, Roberts, Hsieh, Sawyer, & 
Swanson, 1992; Wu, Muentener, & Schulz, 2015; Repacholi 
& Gopnik, 1997; Rieffe, Terwogt, & Cowan, 2005; 
Wellman, Philips & Rodriguez, 2000; Wu & Schulz, 2017). 
However, our study goes beyond those studies in suggesting 
that children can also detect and understand the conditions 
in which real emotions are masked.  

Although emotional expressions are misleading when 
people mask their true feelings, our results indicate that the 

masking behavior itself (if detected) can be richly 
informative. Note that feigning an emotional expression in 
front of others reflects one’s beliefs and desires about 
others’ beliefs or desires. Thus when a feigned emotional 
expression is detected, it contains recursive mental state 
information about what one agent thinks about what another 
agent thinks. Although there has been debate on the extent 
to which reasoning about pro-social display rules requires 
second-order mental state representation (Banerjee, 2002; 
Banerjee & Yuill, 1999a, 1999b; Naito & Seki, 2009), in 
our task, the social partner’s beliefs, desires, and emotions 
were unknown throughout. To recover information about 
the social partner, children had to refer to the protagonist 
and selectively use the protagonist’s emotional expressions 
to gain insight into the mind of his audience. We suggest 
that this kind of inference does require recursive mental 
state reasoning, and the current results suggest that the 
ability to make these inferences develops over middle 
childhood.  

Critically, children succeeded here in a very tightly 
constrained context: there were only two possible outcomes 
(one of two teams won a game), two possible emotional 
responses (happy or sad) and two social partners.  
Moreover, the task design virtually eliminated any memory 
demands: children did not need to track the changing 
emotional expressions over time; they were all concurrently 
displayed in the storybook card format, together with the 
social context.  Future work might look at children’s ability 
to draw comparable inferences when they must track 
changing emotional dynamics over time and in more 
complex, multi-participant scenarios. Note however, that 
although more realistic scenarios may add processing 
demands and complexity, they may also provide children 
with richer cues to agents’ mental states.  

The current results however, suggest that by age seven, 
children can recover underlying mental states from changes 
between real and apparent emotional expressions.  
Intriguingly, the current results also suggest that there is a 
limit to how much we can hide when we hide our feelings: 
in disguising our true feelings, we may reveal what we think 
about what other people want.   
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Abstract 

Human interaction involves the organization of a collection of 
sensorimotor systems across space and time. The study of 
how coordination develops in child-parent interaction has 
primarily focused on understanding the development of 
specific coordination patterns from individual modalities. 
However, less work has taken a systems view and 
investigated the development of coordination among multiple 
interdependent behaviors. In the present work, we used 
Granger causality as a mathematical model to construct 
dyadic causal networks of multimodal data collected from a 
longitudinal study of child-parent interaction. At a group-
level, we observed increases in the number of causal links and 
in the strength of such links in dyadic interaction from 9-
months to 12-months. At an individual-level, we observed 
high variability in the types of causal links that emerged 
across developmental ages. We discuss these results in terms 
of a multicausality hypothesis for the development of human 
coordination. 

Keywords: Interpersonal Coordination; Social Interaction; 
Child-Parent Interaction; Granger Causality; Multimodal 
Social Interaction; Multivariate Autoregressive Model 

Introduction 

Human interaction entails the organization of a vast array of 

sensorimotor systems across space and time (Kendon, 

1970). We imitate, align and synchronize over a spectrum of 

social behaviors with our social partners during 

communication and studies have shown fine-grained 

temporal structures across modalities in interpersonal 

coordination (Fusaroli & Tylén, 2016; Garrod & Pickering, 

2009; Louwerse, Dale, Bard, & Jeuniaux, 2012). How we 

are able to organize behaviors across multiple modalities 

and achieve seamless coordination in only fractions of a 

second is one of the most important questions about human 

cognition (Marsh, Richardson, & Schmidt, 2009). 

One effective approach to answering this question is to 

examine how such smooth coordination evolves during 

development. In developmental science, past research have 

shown that within specific behavioral modalities, 

coordinated behaviors emerge early in life and develop 

incrementally with age (Yale, Messinger, Cobo-Lewis, & 

Delgado, 2003). For example, infants start to follow and 

coordinate the gaze direction of their social partner (Scaife 

& Bruner, 1975) and form vocal and facial expression 

feedback loops with their parents early in their first year of 

life (Cohn & Tronick, 1988). Such social contingencies are 

suggested to be indicative of later language development 

(Goldstein, King, & West, 2003; Mundy & Newell, 2007; 

Warlaumont, Richards, Gilkerson, & Oller, 2014).  

Development is about change. The multicausality 

assumption in dynamical systems theory (Smith & Thelen, 

2003) indicates that change and growth in the system 

emerge through the relationships between different 

interdependent components, without an executive pre-

programmed and unified path. Certain patterns and 

behavioral influences emerge or diminish at different 

developmental ages, and through different developmental 

pathways. In light of this, the aim of the present study is to 

examine the change in the organization of coordination 

among multiple interdependent behaviors. More 

specifically, we want to investigate the connectivity and 

directional influences from one modality to another in the 

course of development. 

Towards this goal, in this paper, we proposed a novel 

approach to modeling multimodal coordinated behaviors 

between children and parents as a directed graph network 

with Granger causality (Bressler & Seth, 2011; Granger, 

1969). A longitudinal study was conducted in which we 

invited children at 9 months and their parents to participate 

in a toy play experiment, and again at 12 months. During the 

toy play sessions, we recorded the dyad’s momentary eye 

gaze and manual action data with eye-trackers and multi-

view video recording. With this study and our analytic 

approach, we can investigate the development of human 

coordination through directional causal relations among a 

network of interdependent behavioral variables. 

This framework of modeling child-parent interaction as 

causal networks allowed us to determine changes in the 

amount of causal links and the strength of causal links 

across 9- and 12-months. We tested two specific hypotheses 

about the development of coordination. First, the 

developmental hypothesis: on a group level, we expected 

that the number and strength of causal links in the child-

parent coordination network would increase from 9- to 12-
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Figure 1: (a) A dual eye-tracking child-parent interaction 

paradigm. (b) Eye movement and object manipulation 

events from both the child and parent were coded into 

categorical data streams. The data streams were then 

divided into three different ROI groups, preserving only 

the onset of events. Finally, per subject, the three groups 

were concatenated as input for subsequent calculations of 

Granger causality. 

months. Second, the multicausality hypothesis: we expected 

the increased coordination to be achieved by the emergence 

of new causal influences in the network, among multiple 

different behavior variables. One key assumption of this 

hypothesis is that no causal link has developmental priority. 

If dyads show individual differences in their coordination 

development pattern, it would be an indication that they 

each follow distinct pathways to achieve increased levels of 

sensorimotor coordination. 

Granger Causality for Point Process Data 

Coordination patterns change throughout the course of an 

interaction and require real-time adjustment of actions and 

predictions in accordance with their sensorimotor input 

(Clark & Brennan, 1991; Yu & Smith, 2016). When we 

study interpersonal coordination and development from a 

dynamical approach, one challenge is quantifying 

directional influence and connectivity between two specific 

variables. This is due, in part, to the interconnectivity and 

complexity of information exchange among behavioral 

variables (Fusaroli, Konvalinka, & Wallot, 2014; Hidaka & 

Yu, 2010). 

Granger causality, or G-causality, is a well-established 

and effective method for the investigation of directional 

relationships among a set of interdependent variables in 

many domains (Bressler & Seth, 2011). Granger (1969) 

formalized the basic idea of causality between signals 

introduced by Wiener (1956) based on multivariate 

autoregressive (MVAR) models: if past values of Y contain 

information that help predict X above and beyond the 

information contained in the past values of X alone, then Y 

is said to Granger-cause X.  

Kim et al. (2011) proposed a point process framework to 

enable G-causality to be applied to point process data with a 

discrete nature. A temporal point process is a stochastic time 

series of binary events that occurs in continuous time. It can 

only take on two values at any point in time, indicating 

whether or not an event has occurred. With a time series 

dataset of an ensemble of variables, the occurring likelihood 

of the event variable X can be modeled by the generalized 

linear model (GLM): a linear combination of time series X’s 

dependency to the history of each individual element in the 

ensemble. Given a set of multivariate temporal streams, the 

causal relationships from variable Y to X is assessed by 

calculating the relative reduction in the likelihood of 

producing this particular history of time series of X when 

the history of Y is excluded, compared with the likelihood if 

all the available covariates are used in the prediction 

calculation. If the prediction likelihood is reduced when the 

history of variable Y is excluded from calculation, then there 

exists a Granger causal relationship from Y to X. In 

addition, Kim et al. (2011) proposed that the sign of 

averaged influence of the occurring history of variable Y on 

X can be used to distinguish excitatory (positive estimate) 

and inhibitory (negative estimate) influences: whether the 

event history of Y is more or less likely to lead to the event 

occurring for variable X. Finally, the point process 

framework also affords researchers to identify the statistical 

significance of a causal link based on the likelihood ratio 

test statistic. The goodness-of-fit statistics were applied by 

comparing the deviance between the estimated model with 

trigger variable Y excluded and the estimated full model in 

the GLM framework. Then, a multiple hypothesis testing 

error measure, FDR, proposed in (Benjamini & Hochberg, 

1995; Storey, 2002) was used to control the expected 

proportion of false discovery rate when the number of 

hypothesis tests is large and the number of rejected null 

hypotheses is consequentially large. 

Calculating G-causality with GLM model fitting makes 

very general assumptions about the data (Barnett, Barrett, & 

Seth, 2009) and with the point process framework, we are 

able to apply G-cause to categorical behavioral data. In the 

present paper, we used this framework to construct 

quantitative causal networks among different behavioral 

modalities in child-parent interaction and study child’s 

coordination development. 

Methods 

Participants 

21 parent-child dyads participated in this study. Dyads came 

into the lab when the children were 9-months-old and 12-

months-old. 
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Figure 2: (a) The G-cause coordination network among 

child eye, child hand, parent eye and parent hand time 

series for Dyad#1 at 9 months (left) and 12 months 

(right); red links are significantly positive G-cause links 

and the number indicates the G-cause value of that causal 

relation. (b) The G-cause coordination network for 

Dyad#2 at 9 months (left) and 12 months (right). 

Procedure 

Figure 1(a) shows the experimental setup of our dual eye-

tracking child-parent interaction experimental paradigm (Yu 

& Smith, 2013, 2016). Parents and their children were 

seated across from each other at a plain white table (61cm × 

91cm × 64cm). Head-mounted Positive Science eye trackers 

(Franchak, Kretch, Soska, & Adolph, 2011) were put on 

both the child and parent to capture their gaze data in real 

time. Each eye-tracking system includes an infrared camera 

that records eye images (mounted on the head and pointed 

to the right eye, see Figure 1a), and a scene camera 

capturing the first-person view from the participant’s 

perspective. The scene camera’s visual field is 108 degrees 

providing a broad view. Each eye-tracking system recorded 

both the first-person view video and precise gaze allocation 

in that view, with a sampling rate of 30 frames per second. 

Another high-resolution camera was mounted above the 

table and provided a bird’s-eye view at a recording rate of 

30 frames per second. 

For each trial of the experiment, there were two sets of 

toys. Each set consisted of three toy objects with three 

different colors (blue, green, red). The toys were of similar 

size and weight. Parents were told that the goal of the 

experiment was to study how parents and toddlers interacted 

with objects during free play and they were asked to engage 

their children with the toys as what they would naturally do 

in daily life. Each of the two sets of toys was played with 

twice for 90 seconds, resulting in approximately six minutes 

of play over four trials from each dyad. Toy set order 

(ABAB or BABA) was counterbalanced across dyads. 

Data Processing  

Human coders went through the videos from multiple 

viewpoints and manually annotated frame-by-frame about 

which object was gazed at and held by the child and the 

parent with both of their hands. In this study, we coded four 

Region-Of-Interest (ROI)s for the eye movement data: blue, 

green and red object categories (1-3) and other (0). Each 

value represents where the child or the parent was looking at 

in every frame. The participants could be looking at each 

other’s face, but our analysis didn’t include face looking 

events in this paper.  The same object and empty ROIs (0-3) 

were also the coding categories for hand action data 

streams, indicating the target object was held by either the 

left or the right hand of the child and the parent. For each 

trial, after data processing, four coded categorical data event 

streams (child gaze events, child holding events, parent gaze 

events, and parent holding events) were obtained. 

The next step was to convert our behavioral temporal data 

streams into multivariate point processes. All behavioral 

data streams were divided into three groups by different 

ROIs and then only the onsets of object ROI events were 

preserved to fit the point process framework for calculating 

G-causality. Figure 1(b) shows the point process data 

streams from one experimental trial. After point process 

conversion, for each dyad, three groups were concatenated 

as input data for calculating G-causality. In each group, all 

streams contained the onset of the same category of events. 

With this point process data transformation, we extracted 

Granger causality among different behavioral variables 

acting on the same object. For example, we estimated G-

causality from the event of child looking at the red object to 

the occurrence of the parent looking at the same object. 

Analysis 

For each dyad, we constructed a dyadic causal network 

among four behavioral variables (child eye movement, child 

hand action, parent eye movement and parent hand action) 

at 9 months and 12 months. Figure 2 shows the G-cause 

network constructed with two dyads’ interaction data. In 

each network, there are 4 behavioral variables (child eye, 

child hand, parent eye and parent hand) and 12 different 

types of directional links between every pair of variables. 

The different types of directional links are illustrated in 

Figure 2. 

Significance tests based on the likelihood ratio test 

statistic with FDR controlling false positive causal 

interactions (Storey, 2002; Kim et al., 2011) was performed 

to determine the statistical significance of every causal link 

with regard to the entire network. In Figure 2, red colored 

links indicate the significantly positive links with number at 

the end of each link representing the G-cause value from 

one behavioral variable to the other. For example, at 12 

months, Dyad#1 had a significantly positive causal link 

from child’s gaze to child’s holding behavior. This means 

that the child was looking at a certain object and the 

occurrence of this event significantly increased the 

likelihood of the child holding the same object. In addition, 

to best comprehend the magnitude of G-cause values for our 
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Figure 3: (a) Amount of significantly positive G-cause 

links and (b) average G-cause values of child-parent eye 

hand coordination networks at 9 months and 12 months.  

multimodal coordination data, we also calculated the 

baseline G-cause network for every interaction. This was 

done by randomizing the order of event streams (with all 

ROIs and their event durations) for the behavioral variables. 

Then, the randomized onsets of object ROI events were 

preserved to convert the data to fit point process model for 

baseline G-cause network calculation. 

The source code, a more detailed explanation of the 

Granger causality calculation process and more 

supplementary materials of this study are available at:  

https://github.com/lingerxu/Granger_causality_coordination

. 

Results 

To examine our developmental hypothesis – increased 

coordination from 9-months to 12-months – we first looked 

at two group-level measures: the number of significantly 

positive G-cause links and the average G-cause value per 

link in each interaction network. For example, in Figure 2a, 

Dyad#1 had 3 significantly positive links at 9 months and 5 

links at 12 months and the average G-cause value per link 

was 2.96 at 9 months (baseline value 0.19) and -2.27 at 12 

months (baseline value -0.04). Average baseline G-cause 

values obtained with the randomized event streams were 

close to 0 for both age groups. In the present paper, we 

focused on examining the significantly positive G-cause 

links, which have much higher values than baseline and 

entail a strong causal link from one behavior variable to 

another. 

As shown in Figure 3, we observed more significantly 

positive G-cause links at 12 months (M=3.95, SD=0.23) 

compared to each dyad’s network at 9 months (M=2.38, 

SD=0.20), t(20)=3.27, p=.004. We also observed that the G-

cause network for 12 month olds (M=5.50, SD=0.39) had 

significantly higher average G-cause values per link than 9 

months (M=2.52, SD=0.26), t(20)=3.85, p<.0001. Overall, 

the multimodal coordination between child and parent 

showed increased developmental changes from 9 months to 

12 months. The observation of increased positive causal 

links in the network and higher G-cause values on average 

from 9- to 12-months, suggests that the coordinative 

patterns of the child-parent dyadic system are becoming 

more dense and stronger. 

Multicausality and Individual Differences 

The main proposal of the multicausality hypothesis is that 

increased coordination is achieved by the emergence of 

multiple new causal influences between different pairs of 

behavioral variables and that no causal link has 

developmental priority. The results observed in the last 

section provided clear evidence that child-parent dyadic 

systems become more coordinated from 9 months to 12 

months. Next, we want to look at how this increased level of 

coordination was achieved and whether we will observe 

individual differences in the developmental pattern in the 

dyadic causal network. 

When we take a closer look at the individual development 

between the two networks of each dyad, and how each 

causal link in the network changed from 9 months to 12 

months, there are multiple types of change. Here we will 

mainly focus on examining the emergence of new 

significantly positive link, which means that this positive 

causal link did not exist in the 9-month coordination 

network, and only appeared in the 12-month network. 

With 12 different types of G-cause links in total, the 

development of the coordination network can be described 

by a vector of developmental changes in each type of causal 

relations. The developmental coordination row vector for 

each dyad is visualized in Figure 4a. Three causal relation 

links, child hand→child eye, parent hand→child hand and 

child hand→parent hand, are omitted in the illustration 

because we did not observe any emergence of new positive 

links in these three link types. For example, the two dyads 

in Figure 2 can be mapped to the first two vector 

representations in Figure 4a. For Dyad#1, two new positive 

links emerged in their G-cause network at 12 months. This 

emergence is depicted in the developmental coordination 

vector: two red cells in parent eye→child eye and child eye

→child hand categories (see Figure 4a, row 1). In another 

example, for Dyad#2 (see Figure 4a, row 2), five new links 

emerged from 9 months to 12 months. And we can see that, 

between the two dyads, four out of five emergent links from 

Dyad#2 were completely different from the G-cause relation 

types in which Dyad#1’s emergent links belonged to. 

Finally, if increased coordination from 9 months to 12 

months was achieved through one type of causal link with 

causal priority, then the hypothesized frequency distribution 

of emergent links will be similar to Figure 4b. We can 

observe that the majority of emergent links belong to the 

same causal relation type. Alternatively, the multicausality 

hypothesis entails that increased coordination is achieved 

via multiple different causal relations. In an ideal situation, 

we would observe a uniform frequency distribution of 

emergent causal relations. This possibility is depicted in 

Figure 4c. Figure 4d shows the empirical frequency 

distribution of emergent links. The empirical distribution 

provides evidence for a diffuse collection of emergent 

causal relations, supporting the multicausality hypothesis 
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Figure 4: (a) The development coordination vector for each dyad’s G-cause network. Red cells indicate the emergence of 

significantly positive G-cause links from 9 months to 12 months between different pairs of behavior variables. Each row 

represents the developmental change in coordination network for one dyad. Each column represents the developmental 

change for a particular type of causal relation link. Three causal relation links, child hand→child eye, parent hand→child 

hand and child hand→parent hand, are omitted here because we did not observe the emergence of significantly positive 

links. (b) The hypothesized frequency distribution of emergent causal links if increased coordination was achieved by only 

one link with causal priority. (c) Illustration of the frequency distribution of emergent links for the ideal uniform 

distribution under the multicausality hypothesis. (d) The empirical frequency distribution of emergent links in our results. 

that child-parent dyads are utilizing multiple coordination 

patterns to achieve increased coordination. 

General Discussion 

The goal of the present paper was to investigate the 

development of multimodal organization in naturalistic 

child-parent interactions. We used a novel causal network 

modeling approach to better understand how multimodal 

dyadic systems change across developmental age. The 

observed results provide preliminary evidence for the 

developmental and multicausality hypotheses that we 

proposed at the outset of the paper. 

At a group-level, we observed an increase in the amount 

of causal links and an increase in the strength of causal links 

from 9 months to 12 months. These results provided support 

for the developmental hypothesis, suggesting that the 

multimodal coordination patterns across the child-parent 

dyadic system became stronger with more components 

being coordinated within the dyadic system. This is an 

important observation because it provides novel evidence 

for an important property of the developing child-parent 

dyadic system: development includes adding redundancy to 

the social interaction by creating new pathways for 

coordination to occur (Yu & Smith, 2016). Redundancy is 

an important property for any complex system because it 

affords adaptability in the face of intrinsic and extrinsic 

perturbations (Kugler & Turvey, 1987; Thelen & Smith, 

1998). 

At an individual level, we observed that the causal 

relation links were distributed among all types of G-cause 

relations between two behavioral variables both within and 

between agents. Furthermore, the frequency distribution of 

emergent causal links was approximately uniform 

suggesting that there was no single behavioral link taking 

developmental causal priority in the network. These results 

add preliminary support for the multicausality hypothesis. 

These observations provide important conceptual and 

empirical contributions. Multicausality has been proposed to 

be an important property of a complex system (Smith & 

Thelen, 2003), however there has been little work to extend 

the proposal of multicausality to a dyadic model of child-

parent interactions. This framework quantifies the 

directional causal influences between different behavioral 

variables to model the complex system of interpersonal 

coordination at sensorimotor level. Thus, it can provide 

heuristics towards understanding the individual differences 

in the establishment of joint attention and possibly the 

reasons underlying the correlations between joint attention 

and many developmental outcomes (Mundy et al., 2007; 

Tomasello & Farrar, 1986; Yu & Smith, 2016). Finally, to 

our knowledge, this is the first study to use MVAR-based 

Granger causality to model multimodal coordination as 

directed causal networks. Our results provide evidence for 
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the promise of this analysis method as a novel dynamic 

modeling method for many domains, such as developmental 

science, behavioral science, etc. 
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Abstract

The enormous scale of the available information and products
on the Internet has necessitated the development of algorithms
that intermediate between options and human users. These al-
gorithms do not select information at random, but attempt to
provide the user with relevant information. In doing so, the
algorithms may incur potential negative consequences related
to, for example, “filter bubbles.” Building from existing al-
gorithms, we introduce a parametrized model that unifies and
interpolates between recommending relevant information and
active learning. In a concept learning paradigm, we illustrate
the trade-offs of optimizing prediction and recommendation,
show that there is a broad parameter region of stable perfor-
mance that optimizes for both, identify a specific regime that
is most robust to human variability, and identify the cause of
this optimized performance. We conclude by discussing im-
plications for the cognitive science of concept learning and the
practice of machine learning in the real world.
Keywords: Recommender systems, active learning, concept
learning, filter bubble

Historically, the information each individual had access
to was defined by one’s local environment: what one could
directly observe , who one had to talk to or do business
with, and available texts or catalogs one could access. With
the advent of the Internet, information and products became
available at a global scale. This vast potential resource cre-
ates a problem: how to choose—from billions or trillions of
options—which information or products to present to an in-
dividual at a given time. Solutions to these problems form
the foundation that supports major players in the online busi-
ness world—from search engines and e-commerce to social
network services—such as Google, Amazon, and Facebook.
These algorithmic solutions radically affect not only what in-
formation and products we are exposed to, but also which
information and products we have the chance to be exposed
to. Thus, these algorithms mediate between us and reality,
not by providing a random sample from what is possible, but
by carefully selecting a sample which optimizes some under-
lying goals and metrics. The consequences of these human-
algorithm interactions have been insufficiently explored de-
spite recent interest in cases such as filter bubbles (Pariser,
2011), algorithmic bias (Baeza-Yates, 2016), and human-
algorithm interaction biases (Nasraoui & Shafto, 2016).

A well-established doctrine in cognitive science asserts
that a driving factor of our beliefs is the information we are
exposed to. However, the situations investigated in the most
typical concept learning experiments (Bruner, Goodnow, &
Austin, 1956; Shepard, Hovland, & Jenkins, 1961) differ
sharply from the kinds of situations we encounter with recom-
mender systems. In concept learning experiments, examples
are typically sampled either exhaustively or randomly, neither

of which is feasible in the context of Internet-scale problems.
Obviously, enumeration is not feasible. Random sampling is
also not feasible because if the quality of the algorithm’s sug-
gestions were too poor, human users could simply choose to
go elsewhere. This yields a thorny problem: how to select
information and products to maximize relevance, while also
accurately estimating what users want.

Two classes of algorithms—information filters
(Sparck Jones, 1970; Van Rijsbergen, 1979; Salton,
Fox, & Wu, 1983) and recommender systems (Goldberg,
Nichols, Oki, & Terry, 1992; Maes et al., 1994; Adomavi-
cius & Tuzhilin, 2005)—have been developed to facilitate
selection of information for users. Although different in
some ways, they share a core assumption that the goal is
to deliver humans relevant information or products. Given
that these sorts of algorithms have raised concerns about
not exposing people to the breadth of potentially relevant
information, basic questions one might raise are whether the
data they obtain allow them to accurately estimate human
users’ preferences, and whether there are small adjustments
that could be made to optimize for recommendation and
learning about the users’ preferences.

One approach for obtaining optimally informative data
is active learning, well known in both cognitive science
(Nelson, 2005) and computer science (MacKay, 1992). Ac-
tive learning has been proposed both as a model for how hu-
mans search for information and as an algorithm for how ma-
chines learn about the world. In the current context, active
learning is a method for learning what information is relevant
to the human user (Elahi, Ricci, & Rubens, 2016), which—
while having advantages for estimating the user’s beliefs—is
unlikely to produce quality recommendations.

Drawing inspiration from real-world problems of informa-
tion filtering and recommendation, we seat these problems
in a concept learning framework that allows for experimental
control of which examples are relevant. This framework al-
lows for an exploration of algorithms that perform better or
worse on the joint problems of optimizing recommendations
and inferring relevance. We introduce a novel approach to
investigating algorithm performance that merges aspects of
computational simulation and user testing: people are trained
on the true concept, then they interact with the algorithm to
test performance. Unlike in computational simulations and
user testing, there is both defined ground truth and naturalis-
tic human variability in behavior.

Our approach uses the simple concept learning task pre-
viously used by Markant and Gureckis (2014). We present
two experiments. The first validates the method by demon-
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strating expected limitations of recommendation and active
learning. The second investigates a simple one-parameter
generalization—active recommendation—that unifies both
approaches. We show that while the extreme cases of pure
active learning and pure recommendation yield poor perfor-
mance, all intermediate values converge to near optimal rec-
ommendation and prediction. We also observe that due to hu-
man variability, parameter values that are closer to pure rec-
ommendation yield the best performance. We conclude by
discussing implications for cognitive science in the lab and
machine learning in the real world. Overall, the main contri-
butions of our work are: (i) the use of an experiment to gauge
how real human users interact with a system that spans graded
shades between recommendation and active learning and (ii)
how a unified, yet simple and generic model is beneficial in
the design and interpreting of real user experiments.

Unifying recommending and active learning
Given a dataset, D= {xi,yi}N

i , the goal of a probabilistic clas-
sification algorithm is to predict the probability that a new
data point x∗ belongs to class y, P(y|x∗,D). We will be con-
cerned with learning two classes corresponding to irrelevant
and relevant information, y ∈ {0,1}. These predictions form
the basis of the recommendation and active learning algo-
rithms we will consider. Intuitively, the goal of recommen-
dation is to provide the user with examples that are relevant.
This intuition can be formalized directly,

xrec = argmax
x∗

P(y = 1|x∗,D). (1)

At any point—given previously observed data—this defines
which examples are optimal for recommendation: those that
maximize the probability of being relevant. Within the
closely related problem of probabilistic retrieval (ranking rel-
evant information), this coincides with optimal probabilistic
retrieval for the most relevant item (Robertson, 1977).

One intuitive formalization of active learning is to select
examples that reduce our uncertainty about which examples
are relevant. This can also be formalized directly,

xact = argmin
x∗
|0.5−P(y = 1|x∗,D)| . (2)

Given previously observed data, the optimal example to ob-
serve is the one about which we have the greatest predictive
uncertainty.

It is worth noting that this is not the only formalization
of active learning that one may consider. Other well known
strategies include optimizing information gain (K-L diver-
gence), diagnosticity, and probability gain (Nelson, 2005).
While each differs in formal detail, in many practically rel-
evant situations, their predictions are quite similar. We for-
malize active learning as the selection of maximally uncertain
data to facilitate integration with the recommendation crite-
rion in Eq. 1, as will be seen below.

We propose a unified model of active recommendation that
exploits the parallel structure in previous models. Our single
parameter generalization includes filtering and active learn-

ing as extreme cases and thus unifies the two approaches and
interpolates between them. Formally,

xα = argmin
x∗
|α−P(y = 1|x∗,D)| , (3)

where α ∈ [0.5,1]. When α = 0.5 we recover active learn-
ing, as is obvious from inspection of Eq. 2. When α = 1, we
recover recommendation. In our context, subtracting from 1
and taking the min is equivalent to taking the max in Eq. 1.

Of interest is what happens between the extremes that cor-
respond to recommendation and active learning. Are there
parameterizations of active recommendation that optimize ac-
curacy in terms of recommendation and prediction? Are there
parameterizations that are more robust to the kinds of vari-
ability that are characteristic of human behavior?

Experiments
In what follows, we empirically investigate these questions
using a novel approach. Human subjects were first trained
on the underlying conceptual structure that defines which ex-
amples are relevant and which are not. The classes of rel-
evant examples are defined by axis-aligned logistic function
with data standardization in two dimensions. Next, people are
randomly assigned to an algorithm, and are presented with
a series of examples, which they label as being in the rele-
vant class or not. The algorithm updates upon receiving each
example-label pair, and then selects a new example. This
method combines aspects of computational simulation and
user testing by providing a ground truth, yet allowing human
variability in responses. It thus provides information about
when we would expect algorithms to perform well—both ab-
solutely and in the presence of human variability.

The questions of interest are: which algorithms perform
well in terms of recommendation and prediction and which
ones perform well in terms of robustness to human variabil-
ity? An algorithm’s trial-by-trial recommendation accuracy is
the fraction of examples labeled as relevant, at each trial, by a
population of participants. Its predictive accuracy for trial i is
the fraction of correct predictions—made by the classification
algorithm trained with data up to trial i—where predictions
are tested on a grid of predetermined, held-out test examples.
The correctness is judged against the optimal decision bound-
ary that was set in the beginning of the experiment.

Two experiments follow. Experiment 1 investigates the
performance of pure recommendation and active learning,
and compares them with random sampling. This experiment
allows us to validate that recommendation and active learn-
ing fail to predict and recommend well, respectively, and pro-
vides a random sampling baseline. Experiment 2 investigates
the unified active recommendation model, which interpolates
between pure recommendation and pure active learning. This
experiment characterizes recommendation and prediction ac-
curacies of the algorithm in the context of concept learning.

Experiment 1
Participants. The experiment was run on Amazon’s Me-
chanical Turk (MTurk) with 30 participants in each of the

1376



three conditions: recommend, active learning, and random.

Stimuli. Following Markant and Gureckis (2014), the stim-
uli were circles with a central diameter. The stimuli varied
along two dimensions—the size of the circle’s radius in pix-
els and the orientation of the central diameter in degrees (for
an example, see Figure 5 B in Markant and Gureckis (2014)).
The ranges of the size and orientation were fixed to 110 pixels
and 140 degrees, respectively. The minimum radius and min-
imum orientation for the classes were sampled independently
and uniformly from 10 to 30 units and fixed for the whole ex-
periment. This procedure determined a pair of minimum and
maximum values {min,max} for each dimension.

For each experiment, one of the dimensions (size or ori-
entation) was randomly selected as the separable dimension.
Let the {mins,maxs} be the minimum and maximum values
of the separable dimension, and {mint ,maxt} be the values
for the other dimension. Two classes were defined by two
two-dimensional normal distributions. Along the separable
dimension, the variances of the two classes were both 75, and
their means were set at (mins+maxs)/2±30. Along the other
dimension, the variances were both 2250, and the means were
both (mint +maxt)/2. Stimuli were sampled from the two-
dimensional Gaussian described above. Those that happened
to be outside the determined range were resampled.

The experiment consisted of three phases: training, inter-
action, and testing. In each trial of the training phase, a class
was randomly sampled, and a stimulus was sampled accord-
ing to its class distribution. In the interaction phase, there
were several sampling algorithms. Random sampling used
the procedure as in the training phase. Recommendation and
active-learning sampling followed Eqs. 1 and 2 respectively.
The choice was made from a fixed pool of 400 randomly sam-
pled stimuli for each experiment. In the test phase, the stimuli
were no longer sampled from the classes but from a test set.
The test set consisted of 16×16 samples that lied on a regu-
lar grid covering the area of feature space defined by [10,140]
pixels × [10,170] degrees. Five stimuli were randomly se-
lected from each of the four quadrants in that area to form the
20 test stimuli used in the test phase.

Procedures. Before the training phase, participants were
instructed that throughout the experiment, they would see a
series of “loop antennas” that receive signals from music sta-
tions called “Beat” and “Sonic” (the two classes of stimuli
described above). They were instructed that the station re-
ceived depends upon the antenna’s radius and the orientation
of its diameter. The goal of the training phase, as described to
the participants, was for them to learn which station was re-
ceived by a given class of antennas (e.g., Beat antennas have
large diameters and Sonic have small). Participants provided
input by clicking on one of two buttons (labeled Beat and
Sonic respectively). After responding, participants received
feedback on whether or not their input was correct. The par-
ticipants moved on to the interaction phase once they had 19
correct answers in the past 20 trials.

The interaction phase was comprised of two parts. Partici-
pants were first instructed to pretend that they preferred either
Beat or Sonic. Given this preference, participants were told
that they would teach an algorithm to recommend the station
that they preferred by indicating–by clicking on a button–that
the antenna it chose was one that they “like” or “dislike.”
Participants were instructed to pay attention to whether the
algorithm was improving or not. This part of the interac-
tion phase continued for 20 trials. Next, participants rated the
algorithm’s improvement—that is, how well the participants
thought the algorithm learned to recommend their preferred
station—using a slide bar from “very poor” to “excellent.”

The final phase of the experiment, the test phase, entailed a
classification test to confirm whether participants still remem-
bered the categories correctly. This phase followed the same
procedure as the initial training phase, but did not provide
participants with feedback (i.e., they were not told whether or
not their categorization was correct). Afterwards, participants
were asked to provide feedback about the experiment and
identify the rule behind the classification they were trained
on. Participants who successfully completed all phases of the
experiment were compensated via MTurk.

Analysis. We quantify the behavior of the sampling algo-
rithms by their trial-by-trial recommendation and predictive
accuracies, as described previously. The test examples for
computing the predictive accuracy consisted of a grid of 10-
by-10 examples covering the area spanned by two pairs of
{min,max} sampled for each experiment (see the Stimuli sec-
tion under Experiment 1).

We report the first trial index by which an algorithm’s rec-
ommendation accuracy becomes statistically different from
50% as well as the first trial index at which its recommen-
dation accuracy becomes statistically no different from 95%.
For these we use the binomial test and claim statistical signif-
icance when p-value is less than 0.05. We also report the trial
index at which an algorithm’s predictive accuracy converges.
We formalize this as the first trial at which the predictive ac-
curacy is not statistically different from the prediction accu-
racy at the last trial, using a one-sample t-test. The accuracy
at the final trial is reported as the converged value.

We omit subjects whose test accuracy is below 18 out of
20 (below 90%). For the included subjects, we compute a
consistency score, which is the fraction of their responses
to the recommended examples that matched the expected re-
sponse. For subjects whose consistency score is below 50%,
we computed the predictive accuracies after flipping all their
responses in the recommendation phase. This allowed us to
correct for the responses from subjects who misremembered
the preference during the interaction phase. A 0% consis-
tency would flip the classification algorithm’s prediction on
every test example. We assume that the fraction of properly
predicted examples is proportional to consistency. Thus, to
maximize the fraction of proper predictions, we flip responses
when consistency is < 50%. The number of included subjects
are 26/30 (3 flipped) for random, 27/30 (4 flipped) for active
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Figure 1: Predictive accuracy and recommendation accuracy for all
six conditions over time (trial index indicated on x-axis).

learning, and 27/30 (3 flipped) for recommendation.

Results. Figure 1 shows the recommendation and predic-
tive accuracies of the different sampling algorithms. As ex-
pected, examples chosen under the recommendation objec-
tive result in high recommendation accuracy, but low predic-
tive accuracy. As a function of the number of examples seen
(trial index), recommendation accuracy rises above chance
level and reaches 95% after 4 examples, 1 while predictive
accuracy converges after 5 examples to 81%, which is low
compared to the active learning or random algorithms.

Conversely, recommendation accuracy under the active-
learning algorithm results in low recommendation accuracy,
but high predictive accuracy. As a function of trial index, rec-
ommendation accuracy remains at chance level, while predic-
tive accuracy converges after 5 examples to 92%.

For reference, results of random sampling are also pre-
sented. These show a pattern similar to that observed for
active learning. There is a rapid increase in predictive accu-
racy, converging after 8 examples to 95%. Recommendation
accuracy remains at chance level throughout.

Experiment 2: Exploring active recommendation

An ideal algorithm would combine both high recommenda-
tion and high predictive accuracy. As a function of the num-
ber of examples given, one hopes that the recommendation
accuracy will approach 1 after a few examples, and the pre-
dictive accuracy will steadily increase to 1. Given the sharp
dichotomy between the performance on recommendation and
active learning, it is not obvious how best to achieve this.

We explore a simple, one parameter generalization of rec-
ommendation and active learning that we call, active rec-
ommendation. We investigate its trace of accuracy under a
range of α = (0.55,0.75,0.95). We look at how the predic-
tive and recommendation accuracies interpolate between the
active learning and recommendation sampling as a function
of α. The new sampling algorithm is as described in Eq. 3.
The stimuli and procedure are the same as Experiment 1.

1This and subsequent numbers represent statistically significant
results, as described above.

(a)
0 5 10 15 20

Trial index

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ive

 ac
cu

ra
cy

0 5 10 15 20
Trial index

0.0

0.2

0.4

0.6

0.8

1.0

Re
co

mm
en

da
tio

n a
cc

ur
ac

y

(b)
0 5 10 15 20

Trial index

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ive

 ac
cu

ra
cy

0 5 10 15 20
Trial index

0.0

0.2

0.4

0.6

0.8

1.0

Re
co

mm
en

da
tio

n a
cc

ur
ac

y

(c)
0 5 10 15 20

Trial index

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ive

 ac
cu

ra
cy

0 5 10 15 20
Trial index

0.0

0.2

0.4

0.6

0.8

1.0

Re
co

mm
en

da
tio

n a
cc

ur
ac

y

(d)
0 5 10 15 20

Trial index

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ive

 ac
cu

ra
cy

0 5 10 15 20
Trial index

0.0

0.2

0.4

0.6

0.8

1.0

Re
co

mm
en

da
tio

n a
cc

ur
ac

y

(e)
0 5 10 15 20

Trial index

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ive

 ac
cu

ra
cy

0 5 10 15 20
Trial index

0.0

0.2

0.4

0.6

0.8

1.0

Re
co

mm
en

da
tio

n a
cc

ur
ac

y

Figure 2: Predictive and recommendation accuracies for all included
subjects broken down by condition. Red traces corresponds to indi-
vidual subjects, and the blue curve is the average. (a) Active train-
ing; (b) α = 0.55; (c) α = 0.75; (d) α = 0.95; (e) Recommend. Note
that a few mislabeled examples in the early trials can lead to unstable
behavior, such as those curves that dip below chance level.

Participants. The experiment was run on MTurk with 30
subjects for each of the 3 conditions: α = (0.55,0.75,0.95).
Following the criteria described above, the number of sub-
jects included in the analysis is 27/30 (4 flipped) for α= 0.55,
26/30 (5 flipped) for α = 0.75, and 23/30 (3 flipped) for
α = 0.95.

Results. Figure 1 shows the plot of predictive and recom-
mendation accuracies for all conditions. The predictive accu-
racies in the active-recommendation conditions converge to
93%, 90%, and 93% for α = (0.55,0.75,0.95), respectively.
These are similar to the 92% in the active condition and bet-
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Figure 3: The distributions of like/dislike examples for each condi-
tion. The dotted lines in the distributions indicate the distributions’
quartiles.

ter than the 81% in the recommend condition. The predic-
tive accuracies of the active-recommendation conditions con-
verged after 5, 5, and 8 examples for α = (0.55,0.75,0.95),
respectively. The recommendation accuracies in the active-
recommendation conditions reached 95% after 12, 16, and 4
examples for α = (0.55,0.75,0.95), respectively. These are
similar to the recommendation condition in that all reached
95%, whereas recommendation accuracies in the active and
random conditions remain at chance level.

Importantly, if we move slightly away from the active con-
dition (sampling from slightly farther away from the bound-
ary than active; i.e., from α = 0.5 to 0.55), we can achieve
much higher recommendation accuracy (it rises above chance
after 8 examples and reaches 95% after 12 examples vs. at
chance level throughout), while also achieving similar pre-
dictive accuracy. Similarly, if we move slightly away from
the recommendation condition (from α = 1 to 0.95), we can
maintain the recommendation accuracy while improving the
predictive accuracy. Thus, these intermediate conditions (in
terms of α) appear to allow the algorithms to uncover more
of the space that is relevant.

Figure 2 employs the same measures as Figure 1, but dis-
plays each of the six conditions separately, with individual
participant performance (red lines) and the results averaged
over all participants (blue lines). Figures 2a-2e allow for a
closer look at individual variability during the experiment,
and in particular highlight the difference in recommendation
accuracy from the active learning and α = 0.55 conditions.
If we compare Figures 2a and 2b, we can see that variation
in recommendation accuracy across individuals persists for
all trials in the active condition, while reducing greatly after
8 to 12 trials in the α = 0.55 condition. Comparing Figure
2d and 2e, we can see the predictive accuracy across indi-
viduals varies much less in the α = 0.95 condition than in
the recommendation condition, resulting in the better average
predictive accuracy for α = 0.95.

The cause of the improved performance of intermediate α

values can be traced back to the examples they select. The
distributions of “likes” and “dislikes” are plotted in Figure 3
alongside random sampling, active learning, and recommen-

dation. At the top, random sampling replicates the true distri-
bution (up to some small number of inconsistent responses).
Active learning selects examples that are evenly distributed
across likes and dislikes but shifted toward the boundary be-
tween the two categories. At the bottom, recommendation
selects examples that are skewed away from the boundary
and the balance of examples is strongly tilted toward likes,
consistent with the goal of recommending relevant exam-
ples. Of particular interest are the three alpha conditions.
There are minor differences focused on the distribution of dis-
liked items. What is most notable are the similarities among
them and the active learning distribution for likes. Unlike the
recommend condition, all three intermediate conditions dis-
proportionately select “liked” examples that are close to the
boundary. They all also select relatively few “disliked” exam-
ples. Cross-referencing against Figure 2, these disliked items
happen only in the early trials. To summarize, the advantage
of the active recommendation approach is a bias to select un-
certain items within the relevant category. This allows them to
achieve both high recommendation and predictive accuracy.

Interestingly, if we include only the fully consistent sub-
jects, the α values dictate a strict ordering in both the pre-
dictive and recommendation accuracy. Increasing α from 0.5
to 1, one sees a monotonic decrease in the converged predic-
tive accuracy and a monotonic increase in the rate at which
recommendation accuracy reaches 1. The stochasticity in the
subjects’ responses can break the ordering in two ways. First,
algorithms that provide examples closer to the boundary will
receive more noisily labeled examples. Second, randomness
in responses slows down the convergence of the classification
algorithm. These effects cause the converged prediction ac-
curacies, in small α conditions, to be lower than what they
could be with less variable responses.

Discussion

Information filters and recommender systems mediate be-
tween humans and the vast information and product stores
on the Internet. Naturally, these algorithms aim to provide
relevant information, but this goal may also lead to negative
consequences by overly restricting experience. Embedding
recommendation into a concept learning framework, we in-
vestigate the conditions under which we may observe high
recommendation and predictive accuracy, in the presence of
naturalistic human variability. We introduced a unified model
of recommendation and active learning which we call active
recommendation. In well-controlled experiments, we show
that—across a wide range of parameterizations—active rec-
ommendation converges toward optimal predictive and rec-
ommendation accuracy. We also observe that parameteriza-
tions closer to pure recommendation yield better performance
in terms of faster convergence and greater robustness to hu-
man variability. We trace the success of active recommenda-
tion to the fact that all parameterizations automatically com-
bine rapid convergence toward selecting only relevant items
and actively exploring informative examples from within that
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set. Parameterizations close to pure recommendation per-
form best because they minimize exploration of regions of
the space where human actions are most variable—near the
boundary and in the non-focal category.

Our approach is unusual in that the goal is to use humans
to investigate the behavior of algorithms. This makes sense
because the algorithms are meant for recommending options
to humans. In contexts where recommendation is typically
applied, however, there is no known ground truth, which
makes assessing the performance of algorithms difficult. One
could assume a ground truth and perform computational sim-
ulations, but these assume that your simulation is robust to
human-like variability, which is rarely known or checked. In
our experiments, humans were taught very simple concepts
that governed relevance. They then labeled data for the al-
gorithm, which captures the kinds of uncertainty associated
with cognition—stochasticity across time, in response to re-
cent input, and features of the concepts. The results bear the
fruits of the approach. If one considers only the people who
labeled correctly in their interactions, active recommendation
performs comparably well across a wide range of parameter-
izations. However, human variability is concentrated at the
boundary and toward the non-focal concept, which gives pa-
rameterizations closer to pure recommendation a distinct ad-
vantage in recommendation and predictive accuracy.

Our proposed unified model of active recommendation
takes pure recommendation and active learning as a starting
point. However, across a wide range of parameterizations,
the unified model exhibits behavior that is qualitatively dif-
ferent from either. That is, it achieves good performance on
both goals of recommendation and active learning simultane-
ously. It is useful to consider this behavior in contrast with
more explicit alternative approaches, namely, managing the
exploitation-exploration trade-off in reinforcement learning.
Formalizing and training a policy about when to apply rec-
ommendation (exploitation) or active learning (exploration)
would certainly be more involved than the simple model we
presented; it would also arguably miss the point. The active
recommendation approach, in denying the existence of the
dichotomy, allows simultaneous optimization of recommen-
dation and prediction.

Active recommendation can be recast as a social active
learning model where an agent asks questions to learn from
another agent who may not answer because of disinterest,
ignorance, or some other factors. In these social scenarios,
good questions should depend on the answerer’s preference,
knowledge state, etc.. In the cognitive development literature,
empirical studies have shown that children select questions
based on the answerer’s expertise (Kushnir, Vredenburgh, &
Schneider, 2013). This exemplifies an interesting connection
between our model and human social learning.

Although active recommendation has demonstrated excel-
lent performance, the problems considered here are vastly
simpler than those more typical of real-world recommenda-
tion or information filtering. In light of this, one may rea-

sonably ask whether the results are likely to generalize to
more complex, high-dimensional problems. Of course, active
learning becomes decreasingly tractable as the space grows.
This is why active recommendation may be expected to per-
form well. Instead of exploring the space of possibilities, ac-
tive recommendation focuses on exploring the space of rele-
vant possibilities. An important direction for future work is
to formalize and test this question.

Often experimental control and real-world relevance are
seen in competition. However, there are ways in which they
can and should be complementary. Real-world applications
of machine learning are especially amenable to this due to
their algorithmic nature. In addition to the user studies that
are typical of the applied computer science, we propose that
more controlled experimental and modeling approaches in
cognitive science can shed light on the core strengths and lim-
itations of these algorithms.
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Abstract 

Human perceptual grouping of sequential auditory cues has 
traditionally been modeled using a mechanistic approach. The 
problem however is essentially one of source inference – a 
problem that has recently been tackled using statistical 
Bayesian models in visual and auditory-visual modalities. 
Usually the models are restricted to performing inference over 
just one or two possible sources, but human perceptual 
systems have to deal with much more complex scenarios. To 
characterize human perception we have developed a Bayesian 
inference model that allows an unlimited number of signal 
sources to be considered: it is general enough to allow any 
discrete sequential cues, from any modality. The model uses a 
non-parametric prior, hence increased complexity of the 
signal does not necessitate more parameters. The model not 
only determines the most likely number of sources, but also 
specifies the source that each signal is associated with. The 
model gives an excellent fit to data from an auditory stream 
segregation experiment in which the pitch and presentation 
rate of pure tones determined the perceived number of 
sources. 

Keywords: Bayesian modeling; Cognitive model; Causal 
reasoning; Computational neuroscience; Audition. 

Introduction  
Ambiguity in perceptual systems is a blight for inference. 
When we hear two sounds sequentially, we may infer that 
they came from two different sources, A and B, or the same 
source repeated. A third sound is heard - are the sources 
AAA, AAB, ABA, ABB or ABC? By the time four, five and 
six sounds are heard the number of combinations reaches 
15, 52, 858. The ambiguity breeds to generate a 
combinatorial explosion, and yet the human auditory system 
is able to reliably allocate multiple sources of sound in 
complex, real world situations. Features of the signal are 
consistently associated with different sources, allowing us to 
keep track of a speaker’s voice and the wail of an ambulance 
siren, separate from the noise of background traffic and 
falling rain.  

For several decades, the human ability to segregate 
sequential sounds into streams corresponding to sources has 
been investigated using simple sequences of either pure 
tones or more complex sounds (reviewed in (B. C. J. Moore 
& Gockel, 2012)). The time interval between tones, their 
pitch difference and the duration of a sequence are among 
the factors that play an important role (Anstis & Saida, 

1985; Bregman & Campbell, 1971; van Noorden, 1975): 
explanations of how the factors are used based on principles 
such as Gestalt laws and Occam’s razor have been 
incorporated into the sophisticated conceptual model of 
Bregman (Bregman, 1994). Descriptive models based on 
peripheral excitation (Beauvois & Meddis, 1997), coherence 
of coupled oscillators (Wang, 1996) and cortical streaming 
modules (McCabe & Denham, 1997) provide mechanisms 
to estimate the number of streams, but do not specify which 
sound is associated with which source. While some of the 
models are expandable to allow more sources to be inferred, 
it is not known if they would cope with the combinatorial 
explosion. Furthermore, Moore & Gockel (B. Moore & 
Gockel, 2002) conclude from an extensive review of the 
literature that any sufficiently salient factor can induce 
stream segregation. This indicates that a more general model 
of inference is needed, that can incorporate any auditory 
perceptual cue and multiple sounds with different sources. 

If ambiguity is a blight for inference, regularities in 
natural signals are the cure. Not all combinations of signal 
sources are equally likely – when perceptual systems 
generate a model of the world, we assume that they infer the 
most likely interpretation because the perceptual systems are 
optimized to the statistics of natural signals (Barlow, 1961; 
McDermott & Simoncelli, 2011). Bayesian inference has 
had considerable success in modeling many visual and 
multi-sensory percepts as a generative, probabilistic process 
(Shams, et al. 2005; Weiss et al. 2002). Despite these 
successes, and the increasing evidence for the importance of 
predictability for auditory perception (for a review see 
Bendixen, 2014), we still have no general, principled model 
of how the auditory system solves the source inference 
problem.    

A Bayesian approach to auditory stream segregation has 
been used to model the dynamics of perceptual bistability 
(Lee & Habibi, 2009) but assumes that only two percepts are 
possible. Turner (2010) has developed methods of analyzing 
statistics of sounds based on Bayesian inference, and 
constructed a model to synthesize realistic auditory textures. 
Promisingly, inference in the model can qualitatively 
replicate many known auditory grouping rules. 

In our model the probability of many alternative stream 
configurations (given the input signal) are calculated and the 
percept generated corresponds to the most probable 
configuration. The probabilities are calculated using Bayes’ 
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rule to combine the likelihood of generating a signal given a 
postulated stream configuration, with the prior probability of 
sounds being associated with different sources. The 
likelihood and prior probability distributions are iteratively 
updated in a principled manner as information accumulates. 
The forms of the distributions are presumably optimized to 
natural signal statistics: the likelihood distribution we use is 
based on considerations of the physical limitations of 
oscillators. However, the framework of the model allows 
formulations of multiple explanatory factors, such as those 
determined by Bregman (1994) from psychophysics 
experiments, to be simply incorporated in the distributions. 
Furthermore, while the current study uses simple pure tones 
(replicating work by Bregman), the framework allows more 
complex cues from audition and other modalities to be used 
as long as their perceptual difference can be quantified.  

Human inference model 
Pure tones are the indivisible atoms of input to the model – 
each being assigned to just one sound source, or stream. 
Inspired by work done on non-parametric priors (Froyen, 
Feldman, & Singh, 2015; Orbanz & Teh, 2010; Wood, 
Goldwater, & Black, 2006) we assume the existence of an 
infinite number of potential sources, leading to a sequence 
of tones with pitch f1, f2…, onset time t1

on, t2
on… and an 

offset time, t1
off, t2

off… and the sound sources/streams that 
generated the tones are denoted by positive integers S1, S2... 
We rename the sources when necessary so that the first tone 
heard will always be generated by source 1 (i.e. S1 = 1), and 
a subsequent tone, Sn can be associated with source 
1:max(S1…Sn-1)+1. 

Generative model  
Given a source Si we assume that the frequency of tone i is 
governed by physical constraints and statistical regularities 
of the source. If two sounds f1 and f2 with frequencies F1 and 
F2 are produced by the same source, the pitch cannot change 
at an infinitely fast rate: to make an oscillator change its 
frequency discontinuously would require an infinite impulse 
of energy. We assume that, all things being equal, a pure 
tone sound source is most likely to continue oscillating at 
the same frequency as it has in the past, and the probability 
of it changing at a rate ΔF/Δt will decrease as ΔF/Δt 
increases. More specifically we assume a normal probability 
distribution:  

𝑝 𝑓#	 𝑆#, 	𝑓#'(, 𝑆) = 𝑆#'( = +

,-./
𝑒'

12
13

/

/4/   (1) 

where σ is a constant. We here assume that the observer 
has a perfect noise free access to the generated frequency. 

Inference 
The task of the observer is to infer the sources generating 
each of the tones, i.e. to find the S1 S2 S3… that maximize 
p(S1 S2 S3… | f1 f2 f3…), as illustrated in figure 1. As an 
example we use a sequence of three tones f1 f2 f3, for which 
the observer wishes to infer the likely sources S1 S2 S3. Thus 
the probability p(S1 S2 S3 | f1 f2 f3) that a sequence of three 

tones was generated by sources S1 S2 S3, has to be calculated 
over the five combinations: [S1=1, S2=1, S3=1], [S1=1, S2=1, 
S3=2], [S1=1, S2=2, S3=1], [S1=1, S2=2, S3=2], [S1=1, S2=2, 
S3=3] corresponding to the five unique configurations of 
sources generating three sounds. Note that the first source is 
always assigned the value 1, the next different source is 
assigned 2, etc.. Bayes’ rule relates each conditional 
probability (the posterior distribution) to the likelihood     
p(f1 f2 f3| S1 S2 S3) of each configuration of sound sources 
generating the sequence of tones, by  

p(S1 S2 S3 | f1 f2 f3) = p(f1 f2 f3| S1 S2 S3) p(S1 S2 S3)/Z  (2) 

where Z is a normalization constant, and p(S1 S2 S3) is the 
prior probability of the particular configuration of sound 
sources, regardless of the frequency, etc. of the tones 

Assuming conditional independence of the tones and 
tone-source causality, this can be rewritten as  

p(S1 S2 S3 | f1 f2 f3)     (3) 

= p(f3| S1 S2 S3)/ p(f3)× p(S3 | S1 S2) × p(S1 S2| f1 f2)          

The final term is the posterior generated from the first two 
tones. The latter two terms can be considered together as the 
prior for the third source, allowing us to use an iterative 
approach to the inference. After each tone we grow the tree 
of possible source sequence (e.g. 11 → 111 and 112), by 
multiplying the previous posterior p(S1 S2| f1 f2) with two 
terms; the likelihood p(f3| S1 S2 S3) and a prior for how likely 
the next ‘branch’ is, p(S3 | S1 S2).  

We now consider how to determine the likelihood and 
prior probabilities. The first source can only be associated 
with one source, so p(S1=1) = 1. The principle of Occam’s 
razor would suggest that p(S1=1,S2=1) > p(S1=1,S2=2), i.e. 
if we haven’t heard any of the sounds, the most probable 
acoustic scene is the simplest one:  all sounds come from the 
same source. The value of p(S1=1,S2=1) for an individual 
can be determined  from fitting their data, and the value 
p(S1=1,S2=2) is simply 1– p(S1=1,S2=1). The values may 
depend on factors such as the environment, which are not 
considered in the model: natural signal statistics may 

Figure 1: a) Example of the integration or segregation of 
tones, either as 1 stream or 2 streams. b) Example of the 
condition [3 1 9 1 3 9] from Exp. 2 (top) and the model’s 
sequential maximum a posteriori assignment of tones 
within a stream (bottom). As each tone arrives the model 
reassigns the entire set of tones to streams (1->12->123 
etc.).  

a) b)
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1 123
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11211
112112
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Any # streams
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provide guidance for how the prior probabilities are 
assigned. For successive sources, we use the probability 
given by a Chinese restaurant process (CRP) (Aldous, 
1985), which can be considered as an extension of Occam’s 
rule: 

p(SN = i | S1...SN-1)  = ni/(N – 1 + α)    (4) 
           when ni of the previous sources S1...SN-1 is equal to i 
p(SN = i | S1...SN-1)  = α/(N – 1 + α)   
           when none of the previous sources is equal to i 
 

where N is the total number of sounds heard.  
Regarding the likelihood function, the observer assumes 

the generative probability p(fi | Si, fi-t, , Si =Si-t). Note that this 
applies even when the sounds generated by the same source 
are separated by one or more sounds associated with 
different sources. The only transition that matters is that 
between the most recent tone and the last tone in the same 
stream, so if three tones f1 f2 and f3 had all been associated 
with the same stream, we would only consider the transition 
from f2 to f3, whereas if f2 was associated with a different 
stream, we would only consider the transition from f1 to f3. 

If a sound comes from a new source, then we assume that 
the likelihood is independent of previous tones: 

p(fn | S1,…Sn-1,  SnÏS1…Sn-1) =
+

,-./
𝑒'

5675
/

/4/   (5) 

where 𝑓 is the midpoint of the range of auditory frequencies 
presented for the trial. The final model has two parameters, 
α and σ. 

Posterior approximation  
Using the iterative scheme above we can calculate 
analytically the possible combinations of tones, but as 
the tone sequence progresses the number of possible source 
combinations - and hence the size of the posterior 
distribution - increases exponentially. To prevent 
combinatorial explosion two methods are used to generate 
an approximation of the full posterior distribution. The first 
limits the number of tones that are retained when using the 
previous posterior as the next prior, i.e. the algorithm only 
retains e.g. the last 10 tones and their potential allocations to 
sources 

Limiting the number of tones eases the computational 
load, and can also be seen as a crude model of a limited 
memory capacity. Although the iteratively constructed prior 
retains some stream information of all previous tones, when 
a very short memory is used this may not be sufficient to 
generate stable stream allocation as the CRP prior 
probabilities fluctuate greatly when the number of previous 
tones is small. Furthermore, if the structure of the sequence 
is an important cue for streaming, a larger memory may be 
necessary to determine regularities in the sequence. 

Even when the memory is limited to the previous six 
tones, allocating a stream to the seventh tone requires a 
posterior distribution taking 858 values, most of which must 
necessarily have very small probabilities. A second method 
to limit the size of the posterior is simply to select only the 
most probable stream combinations by imposing a 
probability threshold, hence we only used stream 

combinations with p>0.001. Together these approximation 
methods allow a reasonable memory length of 10 tones (to 
avoid instability), while avoiding combinatorial explosion. 

Experiment 1 
To compare the model to human performance we conducted 
a psychophysics experiment, in which six participants with 
normal hearing listened to simple auditory sequences and 
performed a subjective judgment task (a variant of 
experiments by van Noorden (1975)). Subjects were under-
graduate students and received course credits for their 
participation. Each subject was fully briefed, provided 
informed consent and was given brief training on the task 
through exposure to 5 trial stimuli. 

Experimental setup  
Figure 1a shows a schematic of the stimuli used – each 

sequence comprised 30 tones in repeated LHL- triplets, 
where the dash represents a silent gap. Each tone was 50 ms 
in duration, including 10 ms raised cosine onset and offset 
ramps. A 2×2 factorial design was used: the pitch of the 
high tones taking values of 3, 6, 9, 12 and 15 semitones 
above the low tone, which had a fixed frequency of 1000 
Hz, and the offset to onset interval taking values 17, 33, 50 
and 67 ms. The duration of the silent gap was equal to the 
tone duration plus the offset-onset interval. Conditions were 
ordered randomly – each condition was tested 20 times over 
5 runs, each run lasting approximately 7 minutes. Stimuli 
were presented through Sennheiser 280 headphones at a 
comfortable supra-threshold level. At the end of the 
sequence participants pressed a key to report whether the 
percept at the end of the sequence was most like a single 
stream (a galloping rhythm) or two separate streams of 
notes. The fraction of 2-stream responses per condition is 
shown in figure 2b for all six participants.  

Model response 
To determine the response of the model to a tone 

sequence, the posterior for each possible sequence, C, is 
calculated tone-by-tone until all 30 tones have been 
presented. To relate the final posterior over sequences to 
subject responses, sr (‘1 or 2 streams’) Pmodel(sr|tones,C), we 
defined a metric between two sequences. While the simple 
Hamming distance was considered we found it did not 
capture the similarities and differences between sequences. 
As an example, the Hamming distance between the 
sequence [11111] and [12222], H(11111,12222)=4, does not 
capture the intuition that a change of labels (2->1) implies a 
distance of 1. Instead we define a transition matrix, MC with 
elements mi,j=Ci-Cj i.e. the difference in the stream number 
for entry i and j of sequence C.  

A transition matrix MpC is calculated for each posterior 
stream combination C, and also for the ‘ideal’ one or two 
stream response percepts (i.e. M1 corresponding to 111 
111... and M2 corresponding to 121 121...). The sum of the 
absolute difference between elements of MpC and both M1 
and M2, dC1=| MpC - M1| and dC2=| MpC - M2| give measures 
of the distances dC1 and dC2 from C to the ideal response 
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percepts. This method can also give the fixed distance d12 
between the ideal responses, d12=|M1- M2|, thus streams C, 
111 111... and 121 121... are represented by a triangle with 
sides of length dC1, dC2 and d12. The vertex corresponding to 
stream C can be projected onto the side d12 giving D1, the 
relative difference between C and the two response percepts: 

D1= (d12
2 + dC1

2 - dC2
2)/2d12

2 

D1 is restricted to the range [0, 1], and each projected 
point is weighted by its posterior probability to give the 
marginal distribution of the posterior projected onto the axis 
joining the two responses. The distance D1 gives the 
probability of subjects response, sr, 1 or 2, given C, i.e. P(sr 
=2|C) = D1 and P(sr =1|C) = 1-P(sr =2|C). Lastly we 
marginalize over the possible sequences, and assume that 
participants draw a sample from the posterior when 
responding, giving 

Pmodel(sr |tones)=SCP (sr |tones,C) P(C|tones)  

The parameters of the model (as well as for the alternative 
models below) were optimised using the MATLAB 
fminsearch routine to maximise the log-likelihood of the 
data, S ln(Pmodel(sr |tones)) independently for each subject. 
During each iteration of the search, a sequence of 30 tones 
was presented to the model for each condition, and the 
probability of response ‘1’ was calculated per condition. 

Model performance and comparison  
The model was compared against three alternatives that used 
different priors to constrain the number of possible streams 
to two: 
A. When the stream combination comprised only one 

stream (repeated), the prior probability of the next 
stream being 1 or 2 was allocated according to the CRP, 
but if the combination already contained two streams, 
the prior probability of allocating stream 1 or 2 was 
simply the fraction of previous tones that were allocated 
to stream 1 or 2 respectively. 

B. The prior probabilities of a new tone being allocated to 
stream 1 or stream 2 was given by P1, and 1-P1 
respectively, where P1 is a free parameter. 

C. The prior probabilities of a new tone being allocated to 
stream 1 or 2 were fixed at 0.5.  

As mentioned earlier, an alternative response measure based 
on the Hamming distance was also tested: in this case we 
used the original, unconstrained CRP prior model. In the 
results, this is referred to as alternative D. 

Because alternative model C has only one free parameter 
(all others have two), we use the Bayesian information 
criterion (BIC=-2log P(resp|tones)+k*log(n), where k is the 
number of parameters and n is the number of data points 
fitted over) to compare model performance in table 1. With 
the exception of participant LHH, the unconstrained model 
gives a better fit (smaller BIC) than all the alternatives 
considered. The mean ± SEM of the optimised parameters 
for the unconstrained model are α = 0.81 ± 0.12 
(equivalently P(11) = 0.56 ± 0.04) and σ= 105 ± 7 
[semitones/sec].  Data from all subjects and the 
unconstrained model output for participant KC is shown in 
figure 2.  

Partici-
pant 

Uncon-
strained 

Alternative 
A 

B C D 

SAG 246.3 328.9 276.6 395.2 286.1 

TAY 219.5 279.8 225.3 313.3 302.7 

KC 287.4 345.4 314.1 414.1 489.9 

LHH 288.5 335.9 257.8 424.1 284.5 

GM 200.7 303.7 207.8 323.9 227.3 

MLP 308.7 338.7 322.1 431.3 566.3 

Figure 2: a) Model prediction, based on fitted parameters from subject KC, giving the fraction of trials in which 
participant responded ‘2’ for the number of streams perceived. Axes give the pitch difference for the middle tone and 
the inter stimulus interval (ISI): the time between the offset of one tone and the onset of the next. b) The results from 6 
subjects. 
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Table 1. BIC per participant. A smaller number indicates 
better relative performance (best model for each subject 
indicated in bold). 
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Experiment 2  
While the model above theoretically allows an unlimited 
number of tones to be segregated into an unrestricted 
number of streams, the classical experiment (presented 
above) only allows a sequence of 3 tones to be separated 
into 1 or 2 streams. However, the model predicts that 
subjects should generally segregate based on frequency and 
temporal distances between tones. To test this further we 
performed a novel follow-up experiment where subjects 
were presented with seven tones and had to indicate the 
number of streams perceived. Nine conditions were created 
with sequentially larger discrepancy in frequency between 
tones and thus a larger probability of being assigned to 
different streams according to the model. The temporal gap 
between tones (ISI) were kept constant at 33.3 ms, unlike 
experiment 1. For each condition, of the seven tones (see fig 
1b for one condition) three tones were unique. Five further 
subjects (see above) performed this new task. Results 
showed that subjects perceived an increasing number of 
streams (fig. 3), in accordance with predictions from the 
model, rising from 1 to close to 3 (p<0.0001, F=20.39, one-
way anova, df=8). None of the subjects perceived more than 
3 streams for any of the conditions.  

Discussion 
We have presented a simple Bayesian statistical model for 
grouping of discrete sequential stimuli. Utilizing a non-
parametric Bayesian prior the model iteratively updates the 
posterior distribution over the assigned group of each 
stimuli and provides an excellent description of the 
perceptual interpretation of simple auditory sequences in 
human observers. 

With just two parameters, the model gives a good account 
of the basic characteristics of auditory stream segregation – 
the variation in the probability of perceiving a single sound 
source as a function of the repetition rate and pitch 
difference of the sounds. Although the ultimate goal is to 
characterize complex problems such as human speech 

segregation, for experimental simplicity we tested a well 
known paradigm from auditory psychophysics. The 
proposed model gave a better fit to the data than alternative 
models that were constrained to interpret the sounds as 
being produced from just one or two streams. Predictions 
from the model were also in accordance with results from a 
novel experiment with larger number of tones (exp. 2). 

Importantly the model goes beyond giving just the 
number of sources, but says which sounds are produced by 
each source. While the combinatorial space of the posterior 
distribution in experiment 1 was collapsed to give a 
marginal distribution in a continuous 1-d response space 
(leading to an estimate of response probability), the 
maximum a posterior (MAP) for all participants was always 
located at either 111-111... or 121-121..., depending on the 
stimulus condition (figure 2b). This is reassuring as it is 
consistent with the anecdotal evidence that participants 
always perceive either a galloping rhythm (streams 111-
111...) or a high-pitch and a low pitch stream (121-121...), 
i.e. the percept is always at the MAP. Indeed, the percept 
cannot in general be at the mean because the space of 
possible percepts is discrete: there is no percept between, 
say, 111 and 121.  

One consequence of the inference model that is not 
addressed by mechanistic models of stream segregation is 
that when a percept changes from say 111-111 to 121-121, 
the source allocation of previous sounds is changed. 
Ironically, this ‘non-causal’ effect is essentially a feature of 
causal inference – when an observer decides that the percept 
has changed to 121-121, this is based on previous evidence, 
and yet at the time that the previous tones were heard, they 
were all associated with one source. A similar effect is 
commonly encountered when mis-interpreted speech 
(perhaps mis-heard due to background noise) suddenly 
makes sense when an essential word is heard – the previous 
words are reinterpreted, similar to the letters in predictive 
text message systems.  

The framework of the model is very general, and allows 
for the incorporation of other factors into the likelihood to 
describe other aspects of auditory stream segregation. 
Adding terms in the likelihood function may be able to 
explain other effects seen in the literature, such as 
segregation based on bandwidth (Cusack & Roberts, 2000), 
or build-up and resetting of segregation (Roberts, Glasberg, 
& Moore, 2008). Furthermore, in the current study we 
assume that there is no ambiguity in the percept of the pure 
tones, the uncertainty arises from lack of knowledge about 
the underlying generative structure of the data. In a realistic 
situation perceptual ambiguity would have to be taken into 
account using an approach such as suggested by Turner and 
Sahani (Turner & Sahani, 2011). Nevertheless, we should 
emphasize that even though we are dealing with a Markov 
property (each tone within a stream only depends on the 
previous tone), the mixture of streams makes the problem 
very different from work on e.g. Hidden Markov Models (or 
even Infinite Hidden Markov Models) for which the goal 
would be to infer underlying states despite perceptual 
ambiguity. Note also that while there are algorithms 
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Figure 3: Averaged subject responses as a function of 
the auditory tone condition (see example in Fig. 1b). The 
horizontal labels indicate the tone-sequence of the 
condition, ordered by increasing step sizes. Error bars 
are standard errors. 
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developed to separate audio signals (e.g. Roweis, 2001), 
these are not meant to mimic human perception, although a 
future comparison would be very interesting. 

In the current implementation we used numerical 
approximations in order to handle the complexity of the 
model. As an alternative to calculating our results 
analytically we could use Monte Carlo techniques (e.g. 
Markov Chain Monte Carlo sampling, a different type of 
approximation), which have become a standard tool for 
solving complex statistical models.  

The proposed model of auditory stream segregation is a 
specific instantiation of an iterative probabilistic approach 
towards inference of perceptual information. A major issue 
for this approach is the problem of dealing with multiple 
sources, as represented by the work done on causal 
inference (Shams & Beierholm, 2010). Until now models of 
causal inference have been unable to handle more than two 
sources, due to the escalating number of parameters needed 
for parametric priors. The use of a non-parametric prior 
allows a complex of many stimuli to be interpreted without 
running into this problem, potentially allowing for an 
arbitrary number of causes in the world. This approach is 
very general – it can be applied to any set of discrete 
sequential cues involving multiple sources – and it gives a 
simple, principled way to incorporate natural signal 
constraints into the generative model. 
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Abstract
We outline a simple way of representing sets of non-normative
judgements that makes them look as similar as possible to nor-
mative ones. This representation allows us to view certain
types of non-normative judgments, such as conjunction falla-
cies, as arising from a misestimation of the correlation between
events, that might arise when decision-makers have no prior
information about the frequency of co-occurrence. We sug-
gest that decision-makers use the perceived similarity between
events to make inferences about correlation, and we describe
the results of an experiment showing that judged correlation
and violations of independence in probabilistic judgments are
strongly influenced by the perceived similarity between events.
Keywords: Conjunction fallacy, similarity, normative reason-
ing

Introduction
Being able to make unbiased and reasonably accurate like-
lihood judgments about simple events is a foundation for
more complicated tasks such as inference or causal reason-
ing. Human reasoners are often very competent at providing
such judgments, in the sense that their judgments align well
with normative prescription. However there are classic re-
sults, such as those associated with the famous Tversky and
Kahneman research program, which show that in some cases
human reasoners may provide likelihood judgments for sim-
ple combinations of events that show systematic biases. In
causal reasoning tasks for example, this can lead to violations
of the predictions of models based on classical probability
theory, with a resulting need to supplement classical models
with extra unobserved relationships (Rehder, 2014), or even
to reject classical probability theory entirely and attempt to
construct models based on other theories of probability, such
as quantum probability theory (Pothos & Busemeyer, 2013).

Several decades of experience have taught researchers
where to expect violations of normative rules when making
likelihood judgments, but there has been less success in de-
termining why such violations occur. Tversky and Kahne-
man (1983) argued that conjunction fallacies occur because
of a representativeness heuristic, while explanations for vio-
lations of normative rules such as the Markov Condition in
causal reasoning often involve the presence of additional en-
abling or disabling causes (Rehder, 2014). Meanwhile mod-
els based on non-classical probability theory posit that viola-
tions of classical probability rules occur because of a some-
what mysterious property known as ‘incompatiblity’ (Buse-
meyer & Bruza, 2012). Perhaps one or more of these expla-
nations is correct, perhaps none are, but regardless they all

suffer from the same problem that it is difficult to predict in
advance whether a given set of events will be ‘representative’
or ‘incompatible’ etc.

An additional problem faced when attempting to under-
stand why some judgments are normative and some are not
is that different frameworks are used to model the differ-
ent types of judgments. Partly this is due to the fact that
non-normative judgements are defined by what they are not,
viz. those that can be explained by an underlying classical
(Bayesian) belief state. One way of modeling non-normative
judgments is via heuristics (see e.g., Gigerenzer et al, 2015)
which may bear no relationship to classical probability com-
putations. Another is to replace classical sample spaces with
quantum vector (Hilbert) spaces, as done in quantum models
of cognition (Busemeyer & Bruza, 2012), which again appear
to have little relation to classical probability theory.

There would appear, therefore, to be a disconnect between
the way cognitive states, and computations on them, are rep-
resented depending on whether one is dealing with norma-
tive or non-normative reasoning. This poses a challenge if we
wish to understand the reasons why we might sometimes give
normative judgments and sometimes not, or, for example, if
we wish to understand how corrective feedback may improve
performance.

What we want to do in this contribution is to introduce a
way of thinking about non-normative judgments that makes
them look as similar as possible to normative ones. This rep-
resentation can be used in a variety of settings to study tran-
sitions between non-normative and normative behaviors. We
will show that for non-normative judgments the notion that
an underlying probability distribution ‘does not exist’ can be
formalized by considering quasi-distributions, which are sim-
ilar to standard probability distributions except that some el-
ements may be negative. This gives us a way to think about
smoothly transitioning from non-normative judgments, rep-
resented by quasi-distributions, to normative ones, where all
elements of the distribution are positive and it may be inter-
preted as a classical probability distribution.

By itself this achieves little beyond expressing the problem
of non-normative judgments in a different language, however
we will argue that this representation provides a new way to
understand the origin of non-normative judgments, and even a
way of visualizing how learning can cause a transition to nor-
mative behavior. We will see that non-normative judgments
can arise because of an misestimation of the correlation be-
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tween events, and we will argue that this may occur when
events are perceived to be highly similar. We test this in an
experiment, looking at judgments about the joint occurrence
of events with different degrees of similarity.

The rest of this contribution is structured as follows, first
we provide a brief introduction to quasi-probability distribu-
tions, our aim being to show how they may be used to encode
non-normative judgments. Next, we use this framework to
develop a novel empirical prediction that a high degree of
perceived similarity between features of an object can give
rise to violations of independence and conjunction fallacies
in probabilistic judgments. Then, we describe an experiment
to test this prediction. We conclude with some possible av-
enues for further study.

Probability distributions and
quasi-distributions

A common theme in experiments on probabilistic judgment is
that participants are asked to make a set of judgments about
the likelihood of some events, e.g. p(A), p(B), p(A∩C) etc,
and the normative status of these judgments is assessed by
proving that there either does or does not exist a probabil-
ity distribution p(Ai,B j,Ck) such that all the measured judg-
ments can be thought of as marginals of this joint distribu-
tion. For example, the conjunction fallacy, wherein partici-
pants judge p(A∩B) > p(A), is non-normative because it is
impossible for participants to have a single joint probability
distribution for A and B with this property.

Joint probability distributions
Establishing whether a set of probability or likelihood judg-
ments is normative is therefore equivalent to the following:

Given some set of probabilities, S =
{p(A), ...p(A,B), ..., p(A,B,C), ...} etc does there exist
a joint distribution p(Ai,B j,Ck...) of which all elements of
the set S may be considered as marginals?

If such a probability distribution exists, then the set of judg-
ments S are normative, otherwise they are non-normative.

Some Examples

• This definition includes trivial cases, e.g. where ∑i p(Ai) 6=
1. Such cases are obviously non-normative.

• A simple example is provided by the set S =
{p(Ai), p(B j), p(Ck), ...} where participants are only asked
to make judgments about a single event. In this case
we can easily find a joint distribution that has the single
event probabilities as marginals, e.g. p(Ai,B j,Ck, ...) =
p(Ai)p(B j)p(Ck)... will work (there are many choices).

A Less Trivial Example Suppose we have three binary
events A,B,C and we are given the joint probabilities, S =
{p(Ai,B j), p(B j,Ck), p(Ai,Ck)}. An important result is that it
is not always possible to find a joint distribution p(Ai,B j,Ck)
with these marginals. The conditions under which this is pos-
sible are when the Bell inequalities are satisfied (Fine, 1982).

Joint quasi-probability distributions
If a set of judgments S is not normative, then a probability
distribution capturing these judgments does not exist. How-
ever there may still exist some function q(Ai,B j,Ck...) such
that all the elements in the set S can be obtained by summing
out the other variables in q(...). This function q(Ai,B j,Ck...)
will generally fail to be a probability distribution because it
will not be non-negative.

Example Suppose S = {p(A), p(B), p(A∩B)} for some bi-
nary valued features A,B and p(A ∩ B) > p(A). Clearly
there is no probability distribution which can have S as its
marginals. However a quasi-distribution with these proper-
ties may be given as:

q(A,B) = p(A∩B),
q(A, B̄) = p(A)− p(A∩B),
q(Ā,B) = p(B)− p(A∩B),
q(Ā, B̄) = 1− p(A)− p(B)+ p(A∩B).
Note that this has the desired marginals, e.g. q(Ā,B) +

q(Ā, B̄) = 1− p(A), but that q(A, B̄)< 0.
The use of quasi-distributions in psychology to understand

inconsistent judgments has been advocated before, most no-
tably by de Barros, (e.g. de Barros, 2013). In physics there
is a long history of trying to apply ‘extended’ probabilities to
understand aspects of quantum theory (see e.g. Muckenheim,
1986). Their interpretation can be challenging (Halliwell &
Yearsley, 2013) but here we shall avoid assigning any mean-
ing to them and regard them simply as a computational tool.

So far all we have done is to express some classes of non-
normative judgments in terms an object which is superficially
similar to a joint probability distribution, but which fails to
be one in some (rather drastic) way. Why is this useful?
Well the usefulness of quasi-probability distributions lies in
part in the fact that they smoothly capture the idea of transi-
tioning between non-normative behavior (where one or more
of the elements of the distribution is negative) to normative
behavior, where all elements are non-negative. Suppose for
example that we are performing an experiment where partici-
pants have to bet on the outcome of some gamble involving a
conjunction. If they commit a conjunction fallacy in their
reasoning, they may initially perform badly, but with cor-
rective feedback they may revise their estimate of the prob-
abilities of the outcomes. At some point their beliefs will
change from non-normative to normative discontinuously, but
in terms of quasi-distributions their their belief state may
change smoothly as they learn.

Quasi-distributions also allow us to define a notion of dis-
tance from normative behavior, for example one could define
the degree of non-normativity as,

∆ = ∑
i, j,k...

|q(Ai,B j,Ck...)|−1 (1)

which is zero if q(...) is a probability distribution and non-
zero otherwise. For example, for the case above of a con-
junction fallacy, ∆ = 2|p(A,B)− p(A)|, which is an appealing
measure of the non-normativity.
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One reasonable proposal would be to look at cases where
a set of judgements S only just fails to be normative by this
measure. One could then try to define a genuine probability
distribution p(...) and a new set of judgments S ′ which are
‘close’ to the real judgments S in the sense that p(...) is close
to q(...). If there is a sense in which this is possible then one
might regard the judgments S as almost normative, and per-
haps attribute the discrepancy to some sort of response noise.

We will not pursue this further here. Instead we will make
use of another advantage of quasi-distributions, which is that
by expressing normative and non-normative behaviors in a
similar language, they suggest ways to understand how non-
normative behaviors may come about. We shall explore one
such idea in the next section.

A Simple Proposal
In a typical conjunction fallacy type experiment, participants
might be expected to have some information about the rate
of occurrence of the features A and B, and be asked to guess
the likelihood of the conjunction p(A∩B). It is important to
realize that even given p(A), p(B) there is no ‘correct’ answer
to this question. Rather there are a range of possible allowed
values, in other words, the marginal probabilities p(A), p(B)
under-specify the joint distribution. One extra piece of infor-
mation is needed, one of the joint probabilities would do, as
would some linear combination of these. One possibility is to
consider the quantity,

SAB = p(A∩B)+ p(Ā∩ B̄) (2)

which is closely related to the correlation. The differ-
ence between a normative probability distribution and a non-
normative quasi-distribution can be thought of, perhaps sim-
plistically, as the difference between choosing a value for SAB
within or outside of the allowed range. This is important be-
cause decision makers armed only with p(A), p(B) have no
information about SAB, and there is therefore a significant
possibility that they may chose incorrectly. To put it another
way, if decision makers make an incorrect guess for the cor-
relation between A and B, this can lead to a non-normative set
of judgments.

Now SAB is a number which varies between 1 if the events
always happen together, to 0 if the presence of one event im-
plies the absence of the other and vice versa. One possibility
is that decision makers simply pick a value for SAB based on
a uniform prior. Another possibility is that decision makers
equate SAB with a more primitive quantity such as the simi-
larity between A and B. (We note in passing that the idea of
similarity as essentially joint probability appears in accounts
of similarity judgment based on quantum cognitive models
(Pothos et al, 2015).)

This leads to an important prediction, which we will test
below: In the absence of any information about joint occur-
rence, human decision makers will use features of events such
as their similarity to construct a joint distribution. Manipulat-
ing these relationships in an experimental setting should lead

to greater or lesser degrees of violations of independence for
these events, and more generally to changes in the correlation
between events. We describe an experiment to test these ideas
in the next section.

An Experiment
Methods
58 undergraduate students from Vanderbilt University partic-
ipated in the experiment online at a time of their choosing for
course credit. Participants answered questions about three
different novel categories, an animal, a natural object and a
human made object, adapted from previous work on causal
reasoning (Rehder, 2014) . Each object had three binary fea-
tures (A,B, and C). For each feature participants were told
that ‘most’ members of the category had a high value for
that feature, while ‘a few’ members of the category had a low
value for the feature. Participants were not told about any re-
lationships between the features. For example, in the Kehoe
Ant category, A = Blood iron level (high or low amount), B =
Immune system activation level (hyperactive or suppressed),
and C = Blood thickness (thick or thin).

After this, participants answered a number of questions
where they were told that a new member of the category had
been discovered, and were asked to indicate how likely they
thought it was that the new object had various features. There
were three question types: (1) how likely it was that the ob-
ject had a particular feature, e.g. blood high in iron sulphate,
(2) how likely it was that the object had a combination of
features, e.g. blood high in iron sulphate and an immune sys-
tem that is hyperactive, and (3) a conditional, e.g. a hyper-
active immune system given that a previous test had estab-
lished a high level of iron sulphate in the blood. Participants
were asked about all possible conjunctions of events, but only
about conditionals where one feature was conditioned on the
presence of a low value for another feature. The reason for
this was to reduce the overall number of questions in the ex-
periment, particularly since our expectation was that features
would be positively correlated, which would be likely to lead
to floor or ceiling effects for the other possible conditionals.

The responses were either requested as whole numbers be-
tween 0 and 100, or as points on a 9 point Likert scale. The
response format for all questions concerning a given category
were the same, and participants were randomly assigned ei-
ther the whole number or the Likert response options for each
category. After completing the likelihood judgment questions
for each category, participants were asked to rate the similar-
ity between the feature types on a 7 point Likert scale. The
order in which the features appeared in the similarity question
(e.g. how similar is feature 1 to feature 2) was randomized
between participants for every judgment, however there were
no significant order effects in the similarity judgments.

After finishing the main part of the experiment, participants
completed an extended version of the Cognitive Reflection
Test (CRT, Frederick, 2005), but there was no significant ef-
fect of CRT and it will not be discussed further here.
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Results

We first wanted to examine whether we had conjunction falla-
cies and violations of independence in this data set. For each
pair of likelihood judgments, e.g. {A,A∩B} or {A,A|B} we
can perform a paired samples t-test to assess the presence of
these effects, however this procedure would generate a sub-
stantial volume of test statistics without giving much insight.
Instead we will plot the relevant likelihoods, and quote some
representative statistics. In this contribution, we only re-
port Bayesian statistical tests that were performed using JASP
(JASP team, 2016). In particular we report Bayes factors for
the alternative versus the null hypothesis, so that values > 1
indicate evidence for the alternative hypothesis.

We begin by assessing the conjunctions. For each pair
{A,A∩B} we plotted the average values across participants
of the single event and the conjunction. It is useful to split
these pairs up into four different types, depending on whether
each of the events has high or low individual probability. The
results are shown in Fig 1, and we have separated out data
that comes from responses using whole numbers and from the
Likert scale. Points that lie above the diagonal correspond to
conjunction fallacies. The first thing to note is that there are
three obvious clusterings of data points. We see straight away
that pairs of the form {A,A∩ B̄} behave as expected, there
are no conjunction fallacies. Equally the pairs {A,A∩B} do
not display robust conjunction fallacies (All Bayes factors for
t-tests < 1), although these data points are slightly odd in an-
other way, which we will return to shortly. The pairs which
do display conjunction fallacies are {Ā, Ā∩B} and {Ā, Ā∩ B̄}.

The pairs of the form {Ā, Ā∩B} display robust conjunction
fallacies. For the whole number responses 14 out of 18 of the
Bayes factors for t-tests are > 3, and 10 out of 18 are > 10.
For the Likert responses 16 out of 18 of the Bayes factors for
t-tests are > 3, and 11 out of 18 are > 10. These are the pairs
for which conjunction fallacies are typically expected, with
one likely and one unlikely event. In contrast the presence of
conjunction fallacies in the pairs of the form {Ā, Ā∩ B̄} are
less expected. For the whole number responses none of the
Bayes factors for t-tests are > 3, but for the Likert responses
7 out of 18 of the Bayes factors for t-tests are > 3, and 5 out
of 18 are > 10. We will return to why this may be so later.

Overall then, we have good evidence for conjunction fal-
lacies in some of these judgments, for both response types.
Note also that there do not appear to be large systematic dif-
ferences between the data obtained from different response
modes, which is reassuring.

Next we check for violations of independence. Note
that these violations are not necessarily non-normative, since
no information about the relationship between features was
given to participants. However systematic violations of inde-
pendence would still be a surprising finding. We proceed as
for the conjunctions, plotting the pairs {A,A|B̄} and {Ā, Ā|B̄}
separately and also separating out whole number and Likert
responses. The results are shown in Fig 2. Independence
would be indicated by data points lying on the diagonal.

Figure 1: Plots of likelihood judgments for conjunctions against
single constituent events. Data points above the diagonal indicate
conjunction fallacies. a) Likert scale responses. b) Whole number
responses.

For the pairs of the form {A,A|B̄} all points appear to lie
below the diagonal, and this is confirmed by Bayesian t-tests.
For the whole number responses and for the Likert responses
all Bayes Factors are > 10.

For the pairs of the form {Ā, Ā|B̄} all points appear to lie
above the diagonal, and this is confirmed by Bayesian t-tests.
For the whole number responses 13 out of 18 Bayes Factors
are > 3, and 7 out of 18 are > 10. For the Likert responses
we also have 13 out of 18 Bayes Factors > 3, and 7 out of 18
> 10. Again overall there is good evidence for violations of
independence in this data.

More specifically, the conjunctions and the conditionals
point to similar behavior - namely participants appear to be-
lieve that there is strong correlation between the different fea-
tures, such that “high” or “low” values of these features are
likely to occur together.

Now we turn to the question of whether the perceived sim-
ilarity between features mediates the correlations and viola-
tions of independence.

We begin with the correlation, defined for each pair of fea-
tures A,B as p(A∩B)+ p(Ā∩ B̄)− p(A∩ B̄)− p(Ā∩B). We
ran a Bayesian ANOVA with the perceived similarity as the
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Figure 2: Plots of likelihood judgments for conditionals against the
conditioned events. Data points on the diagonal indicate indepen-
dence. Data points off the diagonal indicate violations of indepen-
dence. a) Likert scale responses. b) Whole number responses.

independent variable. Note that we collapse across features
and scenarios here, since we have similarity data for each in-
dividual feature pair.

For the whole number responses the results of the Bayesian
ANOVA show that a model including perceived similarity is
preferred over the null model (BF10 > 107). For the Likert re-
sponses the results of the Bayesian ANOVA also show that a
model including perceived similarity is preferred over the null
model (BF10 > 103). Analysis of effects for both ANOVAs
are given in Table 1.

We plot in Fig 3a below the correlation as a function of
the similarity. Since we saw in the analysis of the conjunc-
tions and conditionals there were no obvious differences be-
tween the response types we have converted the Likert scale
responses to numbers in the range 0-100 and plotted them on
the same axis. This lets us establish that the same qualitative
pattern holds for both response types, namely there is some
apparent decrease in correlation for very small similarity rat-
ings, but then a robust increase in correlation with increasing
perceived similarity. The reason for the decrease in correla-
tion for small similarity ratings is unclear, although it is worth
noting that the number of participants who gave similarity
ratings from 1-3 is small (7-11) compared with the number of

participants who gave higher similarity ratings (40-66). In ad-
dition, for the lowest similarity rating a higher than expected
proportion of participants giving this rating (5 out of 8 for the
Likert scale and 6 out of 9 for the whole numbers) had the
highest possible CRT score. This is significant because if two
events, each of which has an individual probability of 0.8, are
independent, then the expected correlation is 0.32, which is
in fact close to the observed value for a similarity rating of 1
in the whole numbers condition.

Next we analyze the violations of independence. We com-
pute a violation ‘score’ which is just the sum of the absolute
value of the difference between the conditional and the sin-
gle event, e.g. |p(A|B)− p(A)| for all the conditionals we
measured. Again we ran a Bayesian ANOVA, with perceived
similarity as the independent variable.

For the whole number responses, the results of the
Bayesian ANOVA show that a model including perceived
similarity is preferred over the null model (BF10 ∼ “∞”). For
the Likert responses the results of the Bayesian ANOVA show
that a model including perceived similarity is again preferred
over the null model (BF10 > 1010). Analysis of effects for
both ANOVAs are given in Table 2.

In Fig 3b we plot the violation of independence score as
a function of perceived similarity. Again we transform the
values for the Likert scale responses allowing us to plot them
on the same axes. The pattern is qualitatively similar to that
for the correlation; a general trend towards larger violations
of independence for higher values of the perceived similarity.

Table 1: Analysis of effects for Bayesian ANOVA of Correlation

Whole Numbers
Effect p(incl) p(incl|data) BFInclusion
Similarity 0.500 1.000 3.01×107

Likert Scale
Effect p(incl) p(incl|data) BFInclusion
Similarity 0.500 0.999 1.58×103

Table 2: Analysis of effects for Bayesian ANOVA of Violations of
Independence

Whole Numbers
Effect p(incl) p(incl|data) BFInclusion
Similarity 0.500 1.000 “∞”

Likert Scale
Effect p(incl) p(incl|data) BFInclusion
Similarity 0.500 1.000 3.08×1010

Overall the data provide strong support for our proposal
that perceived similarity mediates perceptions of correlation
and violations of independence in probabilistic judgments. It
is also worth noting that there are strong positive correlations
between the correlation function and violations of indepen-
dence, (Pearson’s rho = 0.481, BF10 > 1014 for whole number
responses, Kendall’s tau = 0.345, BF10 > 1013 for the Likert
responses.)
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Figure 3: Plots of the correlation and degree of violation of indepen-
dence against the perceived similarity. a) Correlation as a function of
perceived similarity for the whole number responses (blue line) and
the Likert scale responses (red line.) b) Violations of independence
as a function of perceived similarity for the whole number responses
(blue line) and the Likert scale responses (red line.)

Conclusions and Future Directions
We have shown that quasi-probability distributions can be
used to encode certain sets of probabilistic judgments which
are non-normative, in the sense that they cannot be re-
garded as marginals of a joint probability distribution. Quasi-
distributions generalize regular probability distributions in
that they can have negative elements. By themselves these
do not provide any great insight into non-normative behavior,
but the fact that one can define analogues of properties such
as correlations for quasi-distibutions lets us examine the ways
in which sets of judgments fail to be normative, and perhaps
suggest some possible reasons why. We proposed that in the
absence of information about joint occurrence, human deci-
sion makers might use properties such as the similarity be-
tween features to set the correlation, which we demonstrated
experimentally. Similarity does seem to mediate correlation
and violations of independence. We also showed that these
results are largely independent of the response format.

These findings are particularly significant for attempts to
assess the normative status of human causal inference using
stimuli of this nature (e.g. Rehder, 2014). In these experi-

ments, participants are given extra information about the fea-
tures in the form of causal relationships between them. Judg-
ments about correlations in this case could then reasonably
be interpreted as meaning participants believe the presence of
one feature caused another. This work suggests that care is
needed when interpreting these studies - participants may be-
lieve that features are correlated even in the absence of causal
relationships, which may lead to overestimation of perceived
causality. Future work should explore this possibility.

Finally, the results of this study suggest quasi-distributions
may be a valuable way of thinking about non-normative rea-
soning, and we are hopeful that this approach may be used
fruitfully in other areas. One important task is the develop-
ment of a learning model which works directly with quasi-
distributions. This could help us understand how people learn
to avoid committing probabilistic fallacies (Nilsson, 2008).
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Abstract: From a quick glance or the touch of an object, our brains map sensory signals to scenes composed of rich and
detailed shapes and surfaces. Unlike the standard approaches to perception, we argue that this mapping draws on internal
causal and compositional models of the physical world and these internal models underlie the generalization capacity of human
perception. Here, we present a generative model of visual and multisensory perception in which the latent variables encode
intrinsic (e.g., shape) and extrinsic (e.g., occlusion) object properties. Latent variables are inputs to causal models that output
sense-specific signals. We present a recognition network that performs efficient inference in the generative model, computing
at a speed similar to online perception. We show that our model, but not alternatives, can account for human performance in an
occluded face matching task and in a visual-to-haptic face matching task.
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Abstract 

In risky decision-making, expected utility (EU) theory is 
widely used to examine people's risk attitude and choice 
behavior. However, it is unknown how risk attitude relates to 
attention and information search. In this paper, we explore the 
relationship between risk attitude (as measured by a variant of 
EU) and eye movement patterns (which serve as a proxy for 
attention and information search). Participants made choices 
between gambles presented perceptually as flickering grids in 
which monetary values were indicated by colors and 
probabilities by color proportions. To explore attention and 
information search patterns, we investigated eye movement 
patterns when faced with different gambles and correlated 
these patterns with the parameters of EU. We observed that 
people who are more risk-seeking (as determined by 
modeling) tend to look at risky options more often. These 
results bridge choice behaviors conceptualized by EU and 
information search strategies under risky decision-making 
revealed by eye movements. 

Keywords: risky decision-making; eye movements; 
cumulative prospect theory; hierarchical Bayesian parameter 
estimation; individual differences 

Introduction 

We face decision-making under risk every day in our lives, 

from financial investment decisions, choosing a new job, to 

voting for a presidential candidate. Lotteries, or gambles, 

consisting of well-defined sets of options, are widely used in 

psychological research to explore how people make 

decisions under risk. Expected Utility (EU) theory  

(Neumann & Morgenstern, 1947) has been widely used to 

predict choices with well-defined sets of gambles in 

different forms, but its connection to information search and 

attention (e.g., as measured by eye movements) has not been 

clearly revealed. For example, do people who are more risk-

seeking look more often at risky options? 

Eye movements, which have been studied as a process 

tracing methodology (Glaholt & Reingold, 2011), have been 

shown to be related to decisions under different tasks 

(Krajbich, Armel, & Rangel, 2010; Krajbich & Rangel, 

2011; Shimojo et al., 2003; Stewart, Hermens, & Matthews, 

2016) and tested by different models (Brandstätter & 

Körner, 2014; Fiedler & Glökner, 2014). Nevertheless, the 

link between risk attitude revealed by EU and attention and 

information search strategy is still missing.  

In the present study, participants were asked to make 

risky decisions between two gambles presented perceptually 

while their eye movements were monitored. Gambles were 

represented as a grid of colored pixels where the colors were 

associated with monetary amounts and the proportion of 

pixels with the probability of winning that amount. One 

gamble was risky (higher possible monetary payout, but 

lower probability) and one was safe (lower possible 

monetary payout, but higher probability). We used a variant 

of EU to model participants’ choice behavior and then 

examined the relationship between model parameters and 

eye movement characteristics. This experimental paradigm 

enables us to bridge the gap between decision processes (as 

modeled by EU) and attention and information search 

patterns (as measured by eye movements). 

Experiment: Speeded Risky Gambling 

Participants 

39 undergraduate students (31 female) from Vanderbilt 

University participated in the experiment for course credit. 

Their age ranged from 18 to 22 years old (mean = 19.3). We 

tested 28 participants with a right dominant eye and 11 with 

a left dominant eye. 

Methods 

All stimuli were presented on a 23.5-inch ViewSonic 

screen with a 60 Hz refresh rate at 1980  1020-pixel 

resolution. The viewing distance was 68 cm and each 

gamble had an overall size of 4.5°  4.5° of visual angle. In 

this experiment, each trial began with a fixation cross 

displayed for 0.5 second. Following the fixation cross, two 

square grids were always presented diagonally at two of the 

corners on the screen for maximal 2 seconds. These two 

grids consisted of 20  20 10-pixel squares, which were 

filled in with grey indicating a zero payout and one of three 

colors (blue, rose, and yellow) indicating different positive 

monetary payouts that participants learned from instructions 

and practice. The proportion of color to grey (i.e., positive 

payout to zero payout) was randomly selected from 15 pairs 

of gambles (Table 1). Thus, participants were faced with a 

choice between two nonnegative gambles that offered 

different probabilities of winning different amounts of 

money. The configuration of colored elements in the grids 

was randomly rearranged every four frames to avoid 

potential perceptual pattern biases (thus the grids 
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Figure 1. Speeded risky gambling experiment procedure. There were three practice blocks before the main task. In this case, rose, yellow, 

and blue represent $2, $4.5, and $7. In the second and the third practice blocks as well as the main task, participants pressed ‘z’ or ‘m’ to 

indicate choosing the left or the right grid, respectively. In practice block 2, participants were instructed to select the gamble with a higher 

expected value. The feedback indicated whether their choice was correct or not. In practice block 3, participants were allowed to select 

whichever gamble they preferred. They received feedback about their choices after every trial. In the main experiment, the participants 

received feedback at the end of blocks. There was no trial-by-trial feedback during the main task. 

 

appeared to flicker). Participants were instructed to select 

the gamble that they wanted to play. The results of the 

chosen gambles were provided to participants during block 

breaks as their cumulative payouts.  

 
Table 1: Gambles used in the Speeded Risky Gambling Task 

v(R) p(R) v(S) p(R) ΔEV(R-S) 

$4.5 0.46 $2 0.54 0.99 

$7 0.33 $2 0.67 0.97 

$7 0.48 $4.5 0.52 1.02 

$4.5 0.38 $2 0.62 0.47 

$7 0.28 $2 0.72 0.52 

$7 0.43 $4.5 0.57 0.45 

$4.5 0.31 $2 0.69 0.02 

$7 0.22 $2 0.78 -0.02 

$7 0.39 $4.5 0.61 -0.02 

$4.5 0.23 $2 0.76 -0.49 

$7 0.17 $2 0.83 -0.47 

$7 0.35 $4.5 0.65 -0.48 

$4.5 0.15 $2 0.85 -1.03 

$7 0.11 $2 0.89 -1.01 

$7 0.3 $4.5 0.70 -1.05 

R denotes the risky gamble, S denotes the safe gamble 

 

The experiment had three practice blocks before the main 

experiment, which consisted of 16 blocks (Figure 1). The 

first practice had 20 trials. In the first practice block, we 

asked participants to select the monetary value associated 

with a particular color and provided feedback based on their 

responses. In the second practice block, two grids were 

presented that had two different colors (i.e., different 

monetary amounts), but in the same proportions. 

Participants needed to choose the grid with the greater 

expected value (i.e., the grid with the color associated with 

the higher value). The third practice block was similar to the 

main experiment, except that feedback on the gambling 

results was provided for each trial. Both the second and the 

third practice had 15 trials. In the main experiment, each 

block had 66 trials of which 10% are catch trials. During 

block breaks, the payout for the current block and 

cumulative payout were provided. Each gamble pair had one 

risky gamble and one safe gamble. Risky gambles were 

defined as gambles where positive payouts were greater 

than that of safe gambles, but where probabilities of 

winning were less than that of safe gambles. The difference 

in expected values (ΔEV, defined as EV(risky gamble) – 

EV(safe gamble)) of 15 gamble pairs ranged from about -1 

to 1 (Table 1). We had three gamble pairs for each ΔEV 

condition: $4.5 and $2, $7 and $2, and $7 and $4.5. Catch 

trials were gamble pairs where the risky gamble had a 

higher probability and greater monetary payout than the safe 

gamble.  

 
Figure 2. Panel A: Areas of interest diagram. Panel B: 

Representative eye trajectory (red lines) within one trial. Two 

gambles were presented diagonally in randomized locations. Solid 

black square is the center of fixation. Solid rose and yellow squares 

are the center of two gambles. Black squares are AOIs (solid: the 

chosen gamble; dotted: fixation area and the unchosen gamble).  
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Eye movements were monitored by an EyeLink 1000 

desk-mounted eye tracker (SR Research, Ontario, Canada). 

We tracked participants’ dominant eye movement with both 

pupil and corneal reflection settings at a sampling rate of 

1000 Hz. Area of interest (AOI) was defined around the 

centers of the grids and fixation cross with the size of 400 × 

400 pixels. We used these AOIs to determine when 

participants were looking at each gamble and to explore the 

gaze dynamics during their deliberation (Figure 2). 

After the speeded risky gambling task, every participant 

completed a set of surveys, which included the Cognitive 

Reflection Test (CRT, Frederick, 2005), DOSPERT scale 

(Blais & Weber, 2006), and Holt and Laury gambles (Holt 

& Laury, 2002). In this paper, we did not include the results 

from the CRT, DOSPERT scale, and Holt and Laury 

gambles. Those results will be reported elsewhere. 

Results 

Two participants, one of whom had less than 30% correct on 

the catch trials, one who did not move his or her eyes at all 

throughout the experiment, and another five participants’ 

data were not successfully recorded due to technical issues, 

were excluded. We first analyzed the effect of ΔEV and 

different gamble pairs on risky choices and response time. 

We observed that the probability of risky choice increased 

as the ΔEV increased (Figure 3A). The probabilities of risky 

choice under the three gamble pairs were different, with the 

probability of risky choice under the $7-$4.5 pair being the 

highest and the $7-$2 pair being the lowest. When ΔEV is 

greater than zero, which indicates that the risky gamble had 

a greater EV compared to the safe gamble, the risky gamble 

was more likely to be chosen. We used Bayesian methods to 

analyze the data and report the resulting Bayes Factors (BF), 

Based on a Bayesian two-way ANOVA, we found that the 

model with ΔEV and gamble pair without their interaction 

was preferred to all other models (BFModel = 636.06) as well 

as to the null model (BF10 = 2.03×1037). The Bayes Factors 

for including the variables ΔEV, gamble pairings, and their 

interaction were BFInclusion ~ ∞, and BFInclusion = 731.74, 

respectively. Regarding response time, risky decisions in 

general took longer as the ΔEV increased. Response time 

increased as ΔEV increased under the $7-$2 and $4.5-$2 

pairs, but did not change much under the $7-$4.5 pair. 

Based on a Bayesian two-way ANOVA, we found that a 

model with both ΔEV and gamble pairings and no 

interaction was preferred to all other models (BFModel = 

580.70) as well as the null model (BF10 = 2.36×1013). The 

Bayes Factors for including ΔEV and gamble pair were 

BFInclusion =2.17×102 and BFInclusion=2.98×102, respectively. 

Next, we used number of fixations to investigate 

information search patterns under the five ΔEV conditions 

with the three gamble pairs (Figure4A). The number of 

fixations is the average fixation count in non-catch trials 

prior to the decision. We observed that the number of 

fixations increased with increasing ΔEV, which was 

consistent with response time patterns. Based on a Bayesian 

two-way ANOVA, we found that the model with both ΔEV 

and gamble pair and no interaction was preferred to all other 

models (BFModel = 133.90) as well as the null model (BF10 = 

5.32×105). The Bayes Factors for including ΔEV and 

gamble pair were BFInclusion = 1.48×103 and BFInclusion = 

286.17, respectively. 
 

 
Figure 3. Psychometrics in speeded risky gambling experiment. 

Panel A: probability of risky choices under different ΔEV 

conditions. Panel B: the effect of different ΔEVs and gamble pairs 

on response time. Error bars are the standard error of the mean. 

Dark, medium, and light green lines represent the three gamble 

pairings.  
 

 
Figure 4. Eye movement results. Panel A: Fixation numbers under 

different ΔEV conditions. Panel B: Probability of choosing the last 

seen gamble and the other gamble. The error bars are the standard 

error of the mean. 
 

    We also observed the same gaze biases reported in 

previous studies showing that eye movements made during 

a choice have a strong relationship with the final choice 

(Krajbich, Armel, & Rangel, 2010; Krajbich & Rangel, 

2011; Stewart, Hermens, & Matthews, 2016). We compared 

choice proportions when the last gaze was on the chosen 

gamble with that of the unchosen gamble, and found that the 

last seen gamble was more likely to be chosen as compared 

to the other gamble for the three gamble pairs separately 

($7-$4.5: BF10 = 37.93; $7-$2: BF10 = 4.58×104; $4.5-$2: 

BF10 = 79.17) (Figure 4B). To investigate the influence of 

different gamble pairs on the relationship of last gaze and 

risky choices, we further examined the difference in 

proportion of risky choice given the first or the last gaze was 

in the AOI of the risky gambles. The first gaze had less 

influence on final choice of the risky gambles compared to 

the last gaze. For the three gamble pairs, the proportion of 

choices for the risky gambles was greater when the last gaze 
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was on the risky gamble than when the last gaze was on the 

safe gamble (Table 2 and Figure 5). 
 

 
Figure 5. Proportion of risky choices given the first or last gaze 

was on the risky versus safe option. Solid lines: proportion of risky 

choices when the first or last gaze was on the risky gamble. Dotted 

lines: proportion of risky choices with the first or last gaze was on 

the safe gamble. The error bars are the standard error of the mean. 

 
Table 2. Bayesian ANOVA for first and last gaze effects.  

 
Gamble 

pairs 
Best model BFmodel BF10 

First Gaze 

(FG) effect 

$7 - $4.5 ΔEV 6.3 1.4×1024 

$7 - $2 ΔEV 26.9 1.4×1017 

$4.5 - $2 ΔEV 21.2 1.9×1055 

Last Gaze 

(LG) effect 

$7 - $4.5 LG + ΔEV 146.9 2.8×1024 

$7 - $2 LG + ΔEV 34.9 1.3×1017 

$4.5 - $2 
LG + ΔEV + 

LG*ΔEV 
4.4 6.0×1053 

The first (last) gaze effect is the difference in the probability of 

selecting the risky option when the first (last) gaze is on the risky 

option as compared to the safe option. 

 

Hierarchical Bayesian Parameter Estimation 

of “Perceptual” Expected Utility Theory 

To account for choice behavior, we developed a 

“perceptual” variant of EU theory. The parameters of this 

model were estimated using a hierarchical Bayesian 

parameter estimation approach. There are two components 

of our variant of EU: (1) the subjective utility function and 

(2) the perception of probabilities. The subjective utility 

function is governed by alpha, which indicates an 

individual's risk attitude. If alpha is less than 1, it indicates 

that the person is risk-aversive. If alpha is greater than 1, it 

indicates that the person is risk-seeking. If alpha is equal to 

1, that person is risk-neutral.  

In EU theory, the subjective value of a two-outcome 

gamble G is determined by 

𝐸𝑈(𝐺) =  𝑝1𝑢(𝑥1) + 𝑝2𝑢(𝑥2),                (1) 

where 𝑢(∙) is the utility of the outcomes defined as  

𝑢(𝑥𝑖) =  𝑥𝑖
𝛼 ,                                (2) 

where 𝛼 is a free parameter that is greater than 0 and 

quantifies the curvature of the utility function.  

In EU theory, the objective probabilities are used to 

compute the expected utilities of the gambles. In our 

experiment, however, the probabilities of both safe and 

risky gambles are presented as proportions of colors in the 

flickering grids. It is possible that people’s perception or 

estimation of the actual proportion does not match the exact 

probabilities shown in the grids. That is, there may be 

perceptual distortion of the probability estimation. In order 

to capture this feature, we assume that perceived probability 

is given by the following function: 

𝑝𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑 =  
𝑝𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒

𝛽

𝜑𝛽+ 𝑝𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒
𝛽  (3) 

where φ is the adaptation level for the proportion of color in 

the grid and β is a shape parameter. The probability of 

choosing option A over option B is modeled as: 

𝑝(𝐴, 𝐵) =  
𝐸𝑈(𝐴)

𝐸𝑈(𝐴)+𝐸𝑈(𝐵) 
                   (4)  

Hierarchical modeling serves as a compromise between a 

no-individual-differences model and a full-individual-

differences model. In a hierarchical model, individual 

parameters are drawn from group-level distributions, usually 

normal distributions with estimated mean and standard 

deviation. The estimated means quantify different cognitive 

processes. The standard deviations quantify the similarity 

among individual participants’ behavior.  

We used the prior distributions for these three parameters 

as following. Individual 𝛼𝑖 is drawn from the normal 

distribution with two group-level parameters 𝜇𝛼  ~ 𝑈(0,5) 

and 𝜎𝛼  ~ 𝑈(0,10). Individual 𝜑𝑖  is drawn from the normal 

distribution with two group-level parameters 

𝜇𝜑  ~ 𝑈(0,100) and 𝜎𝜑  ~ 𝑈(0,10). Individual 𝛽𝑖  is from the 

normal distribution with its group-level parameter 

𝜇𝛽  ~ 𝑈(0,100) and 𝜎𝛽  ~ 𝑈(0,10). We implemented the 

hierarchical EU model in JAGS. Posterior distributions were 

approximated by 3 MCMC chains with 5000 samples from 

each chain, after a burn-in of 1000 samples. Convergence of 

chains was evaluated by computing the �̂� statistic. Figure 6 

shows the posterior distributions of three group-level means. 

The means of 𝜇𝛼, 𝜇𝜑, and 𝜇𝛽 are 0.92, 0.41, and 13.13, 

respectively.  
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By comparing observed choices with the predicted 

choices, we are able to assess how accurately the model 

captures people’s choice behavior. We plot the observed 

risky choice proportions from the data with the posterior 

predictive of the model using the individual-level 

parameters (Figure 7). The model predictions are reasonably 

close to the actual proportion of risky choices indicating that 

the model accounts for the group-level data.  

 
Figure 6. Posterior distributions of EU group-level parameters. 

 

 
Figure 7. Comparison of the risky choice proportions from the data 

and predicted by EU theory. Light grey bins represent risky choice 

proportion from data, and dark grey bins represent risky choice 

proportion predicted by EU theory. 

 

 
Figure 8. Comparison of risky choice proportion from the data and 

that predicted by EU. The line is y = x.  

 

To examine the performance of EU theory at the 

individual level, we plot the individual data and predictions 

from EU theory using the individual-level parameters 

(Figure 8). Most of the data points fall on the diagonal, 

meaning that the performance of EU is reasonable at the 

individual level as well. 

Individual differences in gaze dynamics 

To bridge the gap between the conceptualized EU model 

and actual information search dynamics, we examined the 

correlation of EU parameters and eye movement statistics. 

We examined the correlations with four eye movement 

measures: % of trials with first fixation on risky, % of trials 

with last fixation on risky, proportion of gaze duration on 

risk, proportion of gaze duration on chosen gambles, as well 

as response time. See Table 3 for definitions of these five 

measures. 

    In EU, the parameter α captures participants' risk 

preferences. Note that EU assumes that the subjective utility 

function is concave if 0 < α < 1, implying that people are 

risk-averse, while the subjective utility function is convex if 

α > 1, implying that people are risk-seeking. A larger value 

of α implies less risk-aversion (or relatively greater risk-

seeking behavior). We found that α was positively 

correlated with % of trials with last fixation on risky and 

proportion of gaze duration on risky gamble (see Table 3). 

For the two measures, the BF10 was greater than 100, 

indicting extremely strong support for the correlations. 

These correlations suggest that people who are more risk-

seeking tend to look more at risky options. 

    

Table 3. Correlations and Bayes Factors (BF) between eye 

movement statistics, response time, and EU parameters 

Eye movement 

measures 

EU parameters 

α φ β 

% of trials with first 

fixation on risky  

0.31 

(0.942) 

-0.47 

(7.21) 

-0.14 

(0.29) 
    

% of trials with last 

fixation on risky 

0.65*** 

(479.29) 

-0.60*** 

(133.72) 

-0.14 

(0.30) 
    

proportion of gaze 

duration on risky 

0.70*** 

(2787.37) 

-0.73*** 

(11149.51) 

-0.23 

(0.46) 
    

proportion of gaze 

duration on chosen 

-0.14 

(0.29) 

-0.17 

(0.33) 

0.05 

(0.23) 

    

response time 
0.38 

(1.87) 

-0.29 

(0.76) 

0.004 

(0.22) 
BF10 enclosed in parentheses. * BF10 > 10, ** BF10 > 30, *** BF10 > 100 

- % of trials with first fixation on risky: proportion of trials in 

which the first fixation after gambling presentation was on the 

risky. 

- % of trials with last fixation on risky: proportion of trials in 

which the last fixation before decisions were made was on the 

risky. 

- proportion of gaze duration on risk: ratio of gaze duration on the 

risky to the response time of each trial. 

- proportion of gaze duration on chosen: ratio of gaze duration on 

the chosen gamble to the response time of each trial. 

- response time: from stimuli onset to responses by pressing keys. 

 

The parameter 𝜑 determines the adaptation level of the 

perceived probability transform function. When 𝜑 < 0.5, 
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individuals are more adapted to small probabilities, which 

also correspond to riskier options in our task (i.e., risky 

gambles in our experiment have high values and small 

probabilities). Thus, smaller values of 𝜑 indicate increased 

adaptation for risky options. We found that the parameter 𝜑 

was negatively correlated with % of trials with the last 

fixation on risky and the proportion of gaze duration on 

risky.  

The 𝛽 parameter is the shape parameter for the 

probability transform function. This parameter was not 

correlated with any of the eye movement measures we 

calculated.  
 

Discussion  

In this study, we investigated the relationship between gaze 

dynamics and “perceptual” EU parameters in risky decision-

making. First, we corroborated previous findings that the 

last fixation was closely related to actual choices (Krajbich, 

Armel, & Rangel, 2010; Krajbich & Rangel, 2011; Shimojo 

et al., 2003; Stewart, Hermens, & Matthews, 2016). Going 

beyond this, we observed that people with different risk 

attitudes have different patterns of eye movements, which 

serve as a proxy for information search and attention. In 

particular, we found that (i) the utility shape parameter of 

EU was positively correlated with measures related to gaze 

duration on the risky option and to the proportion of last 

gaze on the risky option, and (ii) the adaptation level in 

perceived probability was negatively correlated with the 

proportion of the last gaze on the risky option and with the 

gaze duration on the risky option. These results establish the 

connection between risky choice behavior conceptualized 

by EU and information search strategies under risky 

decision-making revealed by gaze dynamics. 

Given the fact that eye movements are only considered as 

a proxy of internal processes of attention, we cannot rule out 

the possibility that participants held the two gambles in a 

mental comparison while moving their eyes. Thus, we 

cannot conclude that the decision processes conceptualized 

by the EU model caused specific information search 

strategies or vice versa. Future studies are needed to explore 

the causal relationship between gaze dynamics and choice. 

For example, future studies could examine if changing 

information search strategies by manipulating the salience 

of risky gambles might influence people’s risky choices. 

Also, manipulating exposure time of options might 

influence choices.  

We conclude by addressing some of the limitations of the 

present study. First, all thirty-nine students were granted 

course credit regardless of their performance. It is possible 

that their behavior might change if there was actual 

monetary reward rather than a hypothetical situation. The 

three estimated parameters of EU might be different when 

participants are more engaged to maximize their final 

payouts (Holt & Laury, 2002). Second, in this study we did 

not include gambles with pure losses or mixtures of both 

gains and losses. People may adopt different strategies in 

this speeded risky gambling task when losses are 

introduced. Addressing these issues would be suitable for 

future studies. Nevertheless, we did observe individual 

differences in risk preferences as measured by EU and these 

differences where related to differences in gaze dynamics. 

This suggests that information search and attention is related 

to underlying decision processes. 
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Abstract 

Bilinguals’ need to monitor and inhibit non-relevant 
languages over a relevant one confers advantage in cognitive 
control. No studies have demonstrated that the dual-language 
control process directly contributes to the bilingual cognitive 
advantage. We utilized a novel language control manipulation 
paradigm where 83 English-Chinese bilingual adults 
completed a reading and comprehension task in either single-
language (low-language-control) or dual-language (high-
language-control) prior to performing nonverbal executive 
control tasks (Stroop, task-switching, and n-back). Results 
showed that language control had significant effects on 
subsequent cognitive performance, depending on whether the 
participants were regular dual language users or not. In the 
dual-language condition, but not the single-language 
condition, participants who used both languages regularly 
demonstrated a smaller mixing cost in task-switching and a 
greater sensitivity in n-back detection compared to 
participants who did not. This suggests that dual language 
control utilizes similar resources as executive function and 
frequent dual language use enhances this resource.   

Keywords: bilingualism; cognitive resources; task mixing; 
working memory; adults 

Introduction 
Research evidence suggests that the ability to speak more 
than one language confers an advantage in cognition, 
specifically in executive control. Executive control refers to 
a set of top-down mental processes such as the ability to 
inhibit impulses, monitor and update working memory 
representations and task switching (Miyake et al., 2000). 
The evidence for the bilingual advantage in executive 
control (henceforth bilingual advantage) is robust and is 
seen across the lifespan from young children to the elderly 
across several executive control tasks (e.g., Bialystok, 
Craik, & Luk, 2008; Macnamara & Conway, 2013).  

Why would being bilingual have positive consequences to 
executive control? The transfer from bilingualism to 
enhanced executive control is likely a two-step process.  

First, for a bilingual, different languages are activated in 
parallel during language processing (e.g., Crinion et al., 
2006). Increased executive control resources are therefore 
needed to monitor this parallel activation and prevent cross-
linguistic interference. Various executive control processes 
are hypothesized to be necessary for language control in 
different interactional contexts (Green & Abutalebi, 2013). 
For example, a bilingual speaker must maintain a task goal 
and inhibit the non-relevant language when speaking in one 
language rather than another. These processes are akin to 
updating and inhibition components in the Miyake et al. 

(2000) model of executive control. The cognitive demands 
on such processes are likely to increase in a dual-language 
context whereby both languages known to a bilingual are 
used and switched within a conversation. Such 
codeswitching acts (i.e., switching between languages) add 
another dimension of control necessary for disengagement 
from a prior language and engagement of the language in 
use. Neuroimaging studies have shown overlapping neural 
substrates between language control and nonverbal 
executive control (e.g., De Baene, Duyck, Brass, & 
Carreiras, 2015; Rodríguez-Pujadas et al., 2014). 

Second, the control processes associated with language 
control in bilingual speakers are hypothesized to adapt to the 
demands imposed on them, in turn enhancing domain-
general cognitive control (e.g., Bialystok & Craik, 2010; 
Green & Abutalebi, 2013). Behavioral evidence indicates 
that executive control processes implicated in language 
control such as updating, interference suppression and 
shifting are enhanced in bilinguals (e.g., Morales, Calvo, & 
Bialystok, 2013; Wiseheart, Viswanathan, & Bialystok, 
2014). Neuroimaging work suggests that bilingual language 
control exerts neuroplastic effects both structurally and 
functionally in brain areas of importance for executive 
control (e.g., Klein, Mok, Chen, & Watkins, 2014). 
Bilinguals show reduced activation relative to monolinguals 
when performing conflict and inhibitory control tasks in the 
anterior cingulate (Rodríguez-Pujadas et al., 2014), 
indicating greater neural efficiency. These findings suggest 
that bilingual speakers may hold larger cognitive resources 
because of the adaptive language control processes.  

A more specific account has been put forward recently, 
that these general “spill-over” positive effects of 
bilingualism in executive control skills may be due to the 
dual language switching behavior that bilinguals regularly 
engage in, which represents a skillful control of language 
use (e.g., Prior & Gollan, 2011; Yim & Bialystok, 2012). 
For example, Soveri, Rodriguez-Fornells, and Laine (2011) 
found that higher self-reported daily language switching 
frequency is associated with reduced task-mixing cost in 
adults from 30 to 75 years old. In addition, Yow and Li 
(2015) demonstrated that bilinguals who used both 
languages regularly have lower Stroop interference effects 
and task mixing costs than those who used one language 
significantly more than the other language. This bilingual 
advantage based on how often a bilingual uses both 
languages is also apparent across the lifespan from 
childhood to the elderly. Specifically, Thomas-Sunesson, 
Hakuta, and Bialystok (2016) showed that the more 
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balanced Spanish-English bilingual young children were in 
their language proficiency between two languages, the 
better they performed in working memory and conflict 
resolution. 

Bilinguals often differ from each other in language 
proficiency and usage frequency of each of their languages, 
as well as language switching behavior. These differences in 
language usage behavior might lead to different neural and 
cognitive consequences due to the executive control 
processes implicated in language control. However, it is 
currently unknown whether active engagement in language 
control activities would have a positive or negative impact 
on bilingual speakers’ performance in nonverbal tasks 
tapping executive control processes. No studies have 
experimentally manipulated language control to determine 
its effects on executive control. This present study aims to 
explore this question and to further understand the 
mechanisms underlying the effects of language control on 
executive control.  

In the current study, we manipulated active engagement 
in language control by introducing a novel reading and 
comprehension task. In the single-language condition, 
participants read articles and answered questions in only 
English. In the dual-language condition, participants read 
and answered questions intermixed in English and Chinese, 
which would induce higher cognitive demands on language 
control compared to those in the single-language condition. 
Following the reading comprehension task, participants 
completed three executive control tasks (i.e., Stroop, 
number-letter task-switching, and n-back) to assess different 
executive control components (i.e., inhibition, shifting, and 
updating, respectively) (e.g., Miyake et al., 2000). If the 
engagement in language switching behavior indeed caused a 
higher cognitive demand (in the dual-language condition), 
then it could be expected that less cognitive resources would 
be available for integrating the text information, resulting in 
lower performance in the comprehension test. We also 
hypothesized that participants’ performance in the 
subsequent executive control tasks would be negatively 
affected if they were in the dual-language condition, as 
cognitive resources would be depleted for these participants 
who had to engage in greater language control.  

Since previous studies indicate that bilinguals who 
regularly use both languages may have a protective 
advantage in cognitive control, current participants who are 
balanced bilinguals (defined as either a balanced use or a 
balanced level of proficiency in two language systems) 
would be less likely to be affected by the language control 
manipulation than those who are unbalanced bilinguals. 

Method 

Participants 
Eighty-three undergraduates (56 females, Mage = 22.60, SD 
= 1.83, range = 19 - 25) were recruited from the authors’ 
university. All participants are Chinese Singaporeans and 
have been living in Singapore since they were born. 

Singapore is a multilingual country with English as the main 
official language. The bilingual policy in Singapore 
encourages citizens to be proficient in both English and a 
mother tongue, which is Chinese for the participants of this 
study. All participants provided written informed consent 
prior to their participation and received credit points or 
reimbursement for their time of participation.  

Materials and Measures 
Language Background Questionnaire (LBQ) This 
questionnaire asked participants to name all the languages 
that they know and to provide details about each of the 
listed languages (e.g., age of language acquisition, language 
proficiency, usage frequency, and language switching 
habits). For language proficiency, participants rated their 
proficiency in listening, reading, speaking and writing for 
each language on a 10-point scale (1 = not proficient to 10 = 
very proficient). We defined most and second most 
proficient language based on the two languages that have 
the highest average rating across these four domains. Usage 
frequency for each of the languages was assessed by asking 
participants to approximate the percentage they use each 
language when communicating with different groups of 
people (e.g., family members, colleagues, friends) in 
different contexts in a typical week. The usage of all 
different languages would add up to 100%. In addition, 
participants rated on a 5-point scale (1 = never to 5 = 
always) for nine questions relating to how frequent they 
switch languages during discourse. A higher score therefore 
indicates more frequent language switching.    

We followed the procedures in Yow and Li (2015) to 
estimate the individual differences in the degree of 
bilingualism: 

(I) Balanced Proficiency: Most proficient language rating 
minus second most proficient language rating; a metric of 
balanced bilingualism of relative competency between 
participants’ most and second most proficient languages.  

(II) Balanced Usage: Frequency of most used language 
minus frequency of second most used language; a metric of 
balanced bilingualism of relative usage frequency between 
participants’ most used and second most used languages.  

For both measures, a score closer to 0 indicates more 
balance between two languages. Conversely, a higher score 
indicates more dominant proficiency or use in one language 
over the other. See Table 1 for all key language variables, 
including details between the balanced and unbalanced users 
related to the current study. Differences between the 
balanced and unbalanced users are reported as this is of 
interest in the current study.  
 
Reading Comprehension Task This task was administered 
as a manipulation of language control. Participants were 
randomly assigned to a single-language condition (i.e., SL; 
n = 38) or a dual-language condition (i.e., DL; n = 45). For 
both conditions, participants read four passages pertaining 
to current events happening at the authors’ university (two 
before executive control tasks and two after). 
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Participants assigned to the SL condition read passages 
presented in English only. The English reading passages are 
suitable for students in grade 12 (between grade 11 to 13), 
based on Flesch-Kincaid readability tests performed online 
(https://readability-score.com). The English passages 
contained on average 332.75 words (range = 305 to 366 
words). In the DL condition, participants were presented 
with passages intermixed in English and Chinese. The 
passages contained 438.5 words on average (range = 406 to 
458 words). Only inter-sentential switches (i.e., switching 
from English to Chinese sentence and vice versa) were used 
(M = 13.5 switches, range = 11 to 15).  

After reading each passage, participants were required to 
answer eight questions in oral and then written form. For 
each passage, four questions required an oral response and 
four required a written response. However, four were filler 
questions (two oral and two written) that were not scored. 
Participants were given one point for each correctly 
answered question (not including the filler questions). A 
maximum score a participant can receive is therefore four. 
Participants could answer in either English or Chinese for 
any of the questions, regardless of whether they are in the 
SL or DL condition. The questions were all presented on the 
computer screen. The passages remained on screen for the 
participants to refer to if needed. 

In the SL condition, all questions were posed in English 
only. In the DL condition, participants were presented the 
questions in English and then Chinese in alternating fashion. 
For each of the four questions posed (oral and written), the 
answers could only be found in the passage printed in the 
opposite language. In other words, for a question posed in 
English, its corresponding answer is printed in Chinese in 
the passage and vice versa. This therefore necessitated 
participants in the DL condition to engage in codeswitching 
to answer the questions.  

The sum of all correct responses was calculated for each 
form of questions (oral or written) and for each two 
passages before or after the executive control tasks as DVs 

 
(dependent variables) from this task. 

 
Executive Control Tasks We selected three tasks, color-
word Stroop, number-letter switching, and n-back, to 
measure executive control components of inhibition, 
mental-set shifting, and information updating and 
monitoring, respectively (Miyake et al., 2000; see Yow & 
Li, 2015 for details about stimuli design and procedure for 
each of the tasks). 

In the Stroop task, participants were required to indicate 
the color that the stimuli were printed in and ignore the 
color names. The dependent measure in this task is the 
Stroop effect, taken as the difference in response time (RT) 
between the incongruent and neutral trials. Greater Stroop 
effects reflect the poorer inhibition. 

In the letter-number switching task, participants saw 
number-letter pairs and either determined if the number was 
even or odd or if the letter was a vowel or consonant. The 
DVs for this task are switch cost and mixing cost. Switch 
cost reflects more transient control processes to updating 
goals or task demands, while mixing cost reflects cognitive 
control in actively maintaining representations of multiple 
task demands. 

In the n-back task, participants completed two blocks of 
2-back and two blocks of 3-back test trials. The dependent 
measures in this task are d’ calculated separately for 2 and 
3-back, reflecting detection sensitivity according to the 
signal detection theory. 

General Procedure 
All tasks were administered individually in a quiet room at 
the authors’ university. Participants first completed the 
LBQ. Participants then performed the two reading 
comprehension tasks and subsequently completed three 
executive control tasks: Stroop task, task-switching and n-
back task, programmed in MATLAB (Version 7.10). The 
order of the Stroop and task-switching task was 
counterbalanced between participants but the n-back task 

 Table 1: Language background measures. 
 

Language variable Overall 
Mean (SD) 
n = 83 

Balanced users 
Mean (SD) 
n = 40 

Unbalanced users 
Mean (SD) 
n = 39* 

Age of first acquired language 2.23 (1.51) 2.35 (1.29) 2.00 (1.69) 
Age second acquired language 2.79 (1.75) 2.40 (1.26) 3.08 (2.10) 
Most proficient language proficiency rating  8.49 (1.29) 8.47 (1.10) 8.47 (1.48) 
Second most proficient language proficiency rating  6.54 (1.76) 7.36 (1.34) 5.63 (1.80) 
Frequency of most used language 0.76 (0.19) 0.66 (0.93) 0.91 (0.58) 
Frequency of second most used language 0.21 (0.17) 0.32 (0.09) 0.09 (0.06) 
Balanced proficiency (Most proficient minus 2nd most proficient) 1.95 (1.84) 1.11 (1.00) 2.84 (2.16) 
Balanced usage (Most used minus 2nd most used) 0.55 (0.34) 0.35 (0.17) 0.82 (0.11) 
Language switching 25.96 (4.26) 26.60 (4.60) 25.11 (3.91) 
*Note: Four participants did not provide their usage frequency for their languages. Hence, we were not able to categorize 

them as balanced or unbalanced users. 
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was always performed last. When all the executive control 
tasks were completed, participants completed two other 
reading comprehension tasks. Visual stimuli were presented 
to participants from about 70cm via a 23-inch monitor with 
a refresh rate of about 60Hz. For the executive control tasks, 
participants were instructed to respond as quickly and as 
accurately as possible. Each experimental session took 
about 1.5 to 2 hours.  

Results 
Prior to data analyses, we screened the data from all 
executive control tasks to remove incorrect trials as well as 
trials with those RTs shorter than 200ms or longer than 
3000ms. These discarded trials amounted to less than 6% 
(3% - 5%) of the total number of trials for each task. We 
also discarded DVs (Stroop interference RT, switch cost 
RT, mixing cost RT, 2-back d’ and 3-back d’) of interest 
that were greater or less than 2.5 SDs from the group mean. 
These outliers were rare and amounted to about 2% of the 
total number of data points. These data trimming procedures 
are typical in studies using similar experimental tasks. 

We performed a median split on balanced proficiency and 
balanced usage to categorize participants into balanced and 
unbalanced proficient groups as well as balanced and 
unbalanced dual-language users. This is to directly compare 
these groups and subsequently perform analyses to 
determine the effect of proficiency and usage interactions on 
executive control. As participants’ language switching could 
potentially confound the relationship between language 
usage and proficiency on our executive control measures, 
we controlled for its effects by entering language switching 
as a covariate in separate analyses of covariance. 

Reading Comprehension Performance 
We first performed 2 (time: reading comprehension 

before and after executive control tasks) x 2 (response type: 
oral and written) x 2 (condition: SL and DL) x 2 (balanced 
usage: balanced and unbalanced) x 2 (balanced proficiency: 
balanced and unbalanced) mixed ANCOVA with language 
switching as a covariate to determine whether performance 
in the reading comprehension task differed as a function of 
time, bilingualism, response type and condition. 
Importantly, this also allowed us to perform a manipulation 
check to determine if the DL condition was indeed more 
cognitively demanding than the SL condition. 

There was a Condition effect, F(1, 63) = 21.71, p < .001, 
ηp

2 = 0.26. This was qualified by a Condition x Balanced 
Usage interaction, F(1, 63) = 4.14, p = .05, ηp

2 = 0.06. 
Specifically, unbalanced language users’ reading 
comprehension performance was poorer when required to 
codeswitch in the DL condition (M = 11.80) compared to 
the SL condition where codeswitching was not required (M 
= 13.56), t(36) = 2.34, p = .03. Similarly, balanced users 
performed poorer in reading comprehension in the DL (M = 
10.22) than in the SL condition (M = 14.12).  

There was also a Time effect, F(1, 63) = 8.10, p = .01, ηp
2 

= 0.11, indicating that participants performed better in the 

reading comprehension task following (M = 3.18) the 
executive control tasks than before (M = 3.06). This was 
however qualified by a Time x Language Switching 
interaction. We followed up this significant interaction with 
a median split of language switching and compared the 
reading comprehension scores for frequent and infrequent 
language switchers. While the infrequent language switchers 
performed better (M = 6.57) after the executive control tasks 
than before (M = 5.87), t(36) = -3.03, p = .01, the frequent 
language switchers performed equally well before (M = 
6.13) and after (M = 6.16) the executive control tasks, t(37) 
= -0.1, p = .93. This suggests infrequent switchers but not 
the frequent switchers gained from a prior practice in the 
reading comprehension task. No other main effects or 
interactions approached or were statistically significant.  

Overall, the significant main effect of condition showed 
that the dual-language condition was more demanding and 
indicated that our manipulation was successful in increasing 
executive control load.  

Executive Control Performance 
Inhibition A 2 (balanced proficiency) x 2 (balanced usage) 
x 2 (condition) ANCOVA with language switching as a 
covariate to account for unintentional switching in language 
use as a potential confound was conducted. Language 
switching was not significantly related to Stroop effect (p = 
.53). There was a significant Balanced Proficiency x 
Condition interaction, F(1,65) = 4.22, p = .04. Follow up 
comparisons however showed no significant difference in 
Stroop interference effects between the two conditions 
amongst balanced proficient bilinguals (p = .095). This was 
similar for the unbalanced proficient bilinguals (p = .22). No 
other significant effects were found (all ps > .43).  
 
Shifting The switch cost and mixing cost in task-switching 
were evaluated in a similar way. There were no significant 
main effects or interactions on the switch cost (all ps > .23). 
In contrast, for the mixing cost, the Balanced Usage x 
Condition interaction was significant, F(1, 67) = 4.87, p = 
.03, ηp

2 = 0.07 (see Figure 1). In the SL condition, no 
significant differences were found between balanced and 
unbalanced dual language users in mixing cost (p = .26). 
However, in the DL condition, the balanced users had a 
significantly smaller mixing cost than the unbalanced users 
(p = .04). These results suggest that codeswitching in the 
DL condition negatively affected unbalanced participants in 
task mixing but not on balanced usage participants. 
 
Updating On the 2-back trials, there was a significant 
Balanced Usage x Condition interaction on the sensitivity to 
targets, F(1, 67) = 4.48, p = .04, ηp

2 = 0.06 (see Figure 2). 
Follow up comparisons revealed that although there was no 
difference in 2-back d’ between balanced and unbalanced 
users in the SL condition (p = .31), 2-back d’ differed 
between the two groups in the DL condition (p = .047). This 
demonstrated that codeswitching adversely affected 
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information updating (in 2-back) for the unbalanced users, 
but had no effect on the balanced users. 

On the 3-back trials, a significant main effect of balanced 
usage was evident, F(1, 68) = 6.17, p = .02, ηp

2 = 0.08. This 
main effect was qualified by a Balanced Usage x Condition 
interaction, F(1, 68) = 4.80, p = .03, ηp

2 = 0.07. Similar as 
the 2-back task, no significant differences in performance 
were found between balanced and unbalanced dual-
language users in the SL condition (p = .84). However, 
balanced users had significantly higher 3-back d’ scores 
compared to unbalanced dual language users in the DL 
condition (p = .001). This indicates that balanced dual 
language users were less affected by codeswitching than did 
their unbalanced counterparts (see Figure 3). Additionally, a 
significant balanced proficiency main effect was found for 
the 3-back d’ scores, F(1, 68) = 5.72, p = .02, ηp

2 = 0.08. 
The Balanced Usage x Balanced Proficiency interaction was 
also significant, F(1, 68) = 6.91, p = .01, ηp

2 = 0.09. 

Discussion 
This study investigated the effects of language control on 
domain-general executive control in bilingual adults who 
differed in the degree of bilingualism. By implementing a 
novel language control manipulation and adopting an 
individual differences approach to study the bilingual 
advantage, we found that (1) engaging bilingual speakers in 
a dual-language context (involving codeswitching) 
increased cognitive load and interfered with information 
organization and integration, resulting in poorer 
comprehension performance, (2) increased cognitive 
demands on language control depleted general executive 
control resources and negatively impacted executive control 
components such as maintenance of mental representations 
and sensitivity to targets, and (3) effects of language control 
on executive control were modulated by factors that 
influenced the exposure and opportunity for bilingual 
speakers to practice language control in daily life.  

When required to codeswitch prior to performing 
executive control tasks, participants who were balanced dual 
language users demonstrated smaller mixing cost and better 
target discrimination compared to those unbalanced users. 
These results suggest that a more balanced use of two 
languages may function as a cognitive reserve that would 
mitigate the effects of language control on executive 
control, i.e., balanced bilinguals may have larger cognitive 
resources for executive control than less balanced 
bilinguals. This advantage is likely due to balanced dual 
language users having more opportunity to be involved in 
interactional contexts where both languages are used with 
different speakers, and the constant need to monitor and 
control attention to the target language system over the 
competing other language, which in turn lead to the 
development of larger cognitive resources for adaptive 
language control processes.  

The interaction effects of balanced usage and language 
control condition were significant for only mixing cost and 
working memory updating, but not for Stroop interference 

       
Figure 1. Mixing cost for balanced and unbalanced usage 
participants in single- and DL conditions. Error bars denote 
95% confidence intervals. 

            
Figure 2. Performance in 2-back (d’) by balanced usage and 
condition. Error bars denote 95% confidence intervals. 

            
Figure 3.  Performance in 3-back (d’) by balanced usage and 
condition Error bars denote 95% confidence intervals. 
 
effect or switch cost, indicating that only some cognitive 
control processes were used in the current dual-language 
context. This is consistent with the adaptive control 
hypothesis proposing that the demand on different control 
processes varies as a function of the interactional context. 
For instance, it is hypothesized that, for bilingual speakers, 
both single-language and dual-language contexts increase 
the demands on interference control that was assessed by the 
Stroop task in this study. Thus, resources for inhibition may 
not be depleted in the dual-language context, even amongst 
unbalanced users. Our failure to find bilingual advantages in 
switch cost has been documented previously (e.g., Yow & 
Li, 2015). Being more balanced in dual language use may 
not have conferred an advantage to the transient switching 
cost because task switching is also akin to frequent topic 
changes during discourse, in which both balanced and 
unbalanced users are equally likely to engage in (Wiseheart 
et al., 2014). In contrast, mixing cost reflects global 
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unintentional switching in language use as a potential confound. Language switching was not 

significantly related to mixing cost (p = .72). There was a significant Balanced usage X 

Condition interaction, F(1, 67) = 4.87, p = .03, ηp
2 = 0.07. All other main effects, two and three-

way interactions were not statistically significant (all ps > .35).  

Following up the significant Balanced usage X Condition interaction, it was shown that in 

the English condition, balanced dual language users did not differ from their unbalanced 

counterparts in mixing cost (p = .26). However, in the codeswitching condition, the balanced 

users had a significantly smaller mixing cost that the unbalanced users (p = .04). See figure 1. 

This showed that codeswitching negatively affected unbalanced participants in task mixing but 

had no effect on balanced usage participants. 

 

Fig 1. Mixing cost for balanced and unbalanced usage participants in English and 

Codeswitching conditions. Error bars denote 95% confidence intervals. 
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language switching as a covariate was conducted to examine the effects of bilingualism and 

condition on 2-back d’. Language switching was entered as a covariate to account for 

unintentional switching in language use as a potential confound. Language switching was not 

significantly related to 2-back d’ (p = .91). Only Balanced usage X Condition interaction was 

statistically significant, F(1, 67) = 4.48, p = .04, ηp
2 = 0.06, while Balanced usage X Balanced 

proficiency approached but was not statistically significant (p = .07).  

Follow up comparisons on the significant balanced usage X condition interaction revealed 

that although there was no difference in 2-back d’ between balanced and unbalanced users in the 

English condition (p = .31), 2-back d’ differed between the two groups in the codeswitching 

condition (p = .047). This demonstrated that codeswitching adversely affected working memory 

updating (in 2-back) for the unbalanced users, but had no effect on the balanced users. See figure 

2. 

 

Fig 2. 2-back d’ for balanced and unbalanced usage participants in English and 

Codeswitching conditions. Error bars denote 95% confidence intervals. 
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Figure 4. Working memory updating (3-back d’) for balanced and unbalanced dual language 

users across both English and Codeswitching conditions. Error bars denote 95% confidence 
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sustained control necessary for maintaining competing 
mental representations, which is akin to using different 
languages in dual-language contexts. Balanced dual 
language users may have developed a larger executive 
control resource to hold multiple language rules “on-line”, 
preventing resource depletion following our codeswitching 
manipulation. Lastly, updating and monitoring is postulated 
to be necessary for maintenance of task goals during dual 
language discourse. Unbalanced dual language users who 
hold smaller working memory resources are therefore more 
affected in updating after having to codeswitch. Taken 
together, these results indicate that bilingual advantage is 
limited to certain but not all components within the Miyake 
et al. (2000) model.  

One limitation inherent in our study is the use of self-
report for language proficiency. Although this approach is 
consistent with many other studies (e.g., Wiseheart et al., 
2014), we acknowledge that using self- report measures may 
result in less accurate proficiency ratings than objective 
measures. However, given that many participants may know 
more than two languages, objective measures of their 
language proficiency may not be feasible without 
substantially prolonging the experimental session.  
In conclusion, we provide novel evidence showing that 
language control and executive control depend on shared 
resources by experimentally manipulating language control 
via codeswitching. Crucially, we provide evidence of the 
bilingual advantage in showing that bilinguals who are more 
balanced in dual language use have larger working memory 
and task mixing resources that buffered against performance 
decline following language control. Theoretically, our 
results add to the current understanding of the mechanism of 
the bilingual advantage in executive control: language and 
executive control share similar resources, and this shared 
resource can be enhanced by using more than one language 
equally frequently. 
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Abstract 

Biased sampling of participants presents a major limiting factor for 

the generalizability of findings from behavioral studies. This effect 

may be especially pronounced in developmental studies, where 

parents serve as both the primary environmental input and decide 

whether their child participates in a study. To estimate the effects 

of parental non-consent, we coupled naturalistic observations of 

parent-child interactions with a behavioral test. Results showed 

that one particular parenting practice, the tendency to use questions 

to teach, associated with both children’s behavior in the test and 

parents’ tendencies to participate. Exploiting these associations 

with a model-based multiple imputation, we estimated that the 

means of the consented and not-consented groups could differ as 

much as 0.2 standard deviations for five of the seven test 

measurements we used, and standard deviations are likely 

underestimated. These results suggest that ignoring the role of 

consent may lead to systematic biases when generalizing beyond 

lab samples. 

Keywords: sampling; generalization; parent-child interaction; 

learning; exploration; multiple imputation. 

Introduction 

Sampling and generalizability are the methodological 

bedrocks of science. Researchers often rely on 

measurements taken from a small group of volunteers to 

draw conclusions for a much broader population, so 

knowing whether the sample is representative of the 

population becomes critical to the validity and 

generalizability of research findings. Among the many 

factors that may bias the sampling process, one prevalent 

but under-studied factor is the refusal to participate in 

research. Because ethical treatment of research participants 

requires informed consent prior to their participation, we 

know very little about what characteristics are associated 

with non-consent, and what those who did not consent 

would have done if they had participated. 

The problem is potentially more acute for fields in which 

behavior tends to be heterogeneous along factors that may 

associate with non-consent. One such field is experimental 

research with young children: On the one hand, before the 

start of schooling, children’s experiences are heavily 

influenced by the values and practices of their parents, 

which are known to be heterogeneous both within and 

between social groups (Bornstein, 1991; Hoff, Laursen, 

Tardif, & Bornstein, 2002). At the same time, parents are 

also the ones who decide whether their children could 

participate in research, and the same values and practices 

may play a role in their decision. Given that parents’ 

decisions are crucial for the composition of research 

samples for most of the prevalent recruitment methods used 

in developmental experiments with young children (e.g., 

direct phone calls, recruitment from day care centers, 

preschools, and public spaces like museums), non-consent 

can present a major hurdle when evaluating the 

generalizability of findings from the field. 

However, to date little is known about the factors 

associated with parents’ non-consent to have their young 

children participate in experiments; consequently, it is 

difficult to speculate on the behavior of children who did not 

participate or on the implications for generalizability. This is 

in sharp contrast with the field of survey-based research 

with school-aged children and adolescence, where an 

extensive literature has associated parental consent and non-

consent with both parents’ characteristics and children’s 

behavioral outcomes. For example, studies from 1970s-80s 

have shown that U.S. parents who are female, white and 

well-educated are more likely to return written consents for 

their children to participate in research (Kearney, Hopkins, 

Mauss, & Weisheit, 1983; Lueptow, Mueller, Hammes, & 

Master, 1977), and children who have better school 

performance and fewer behavioral problems are more likely 

to receive parental consents (Kearney et al., 1983; Severson 

& Ary, 1983). Moreover, the method of consent also matters. 

Compared to passive consent which requires a reply to opt 

out of a study, active consent which requires a reply to opt-

in can bias the sample towards parents who are white and 

well-educated, and towards children who live in two-parent 

households, who have better school performance and 

satisfaction, who involve in more extracurricular activities 

and less risk-seeking behavior, and who are higher on self-

esteem and assertiveness (Anderman et al., 1995; Dent et al., 

1993). Critical to estimating these effects is the availability 

of relevant correlates, such as school records that contain 

demographic information and students’ performance.  

This study takes a first step to investigate whether parents’ 

non-consent is also associated with preschoolers’ behavior 

in standard experimental settings. Given that methods used 

to discover factors associated with non-consent in school-

aged children (such as passive consent procedures and 

school records) are not usually applicable in the research 

with preschoolers, we developed a new method that is well-

suited to many settings in which developmental 

psychologists collect data: coupling naturalistic observations 

of parent-child interactions with behavioral experiments.  

By conducting the observation in public spaces without 

the awareness of the dyad, we aim to start with a relatively 

representative population that is unaffected by the consent 
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process. We then invite participation in a behavioral test to 

those who were observed. By analyzing the correlations 

between the observational and test data, and between the 

observational data and participation, we look for predictors 

that may associate test data from the participated group with 

participation itself, which would indicate the potential 

effects of non-consent on estimates of test measurements. If 

such association can be established, we would then use a 

model-based multiple imputation to simulate the behavior of 

children who did not participate, and compare the 

participated sample with the initial population on the test 

measurements. 

The domain we chose to examine is one where there is 

known heterogeneity in parenting practices: the use of 

questions to teach. This line of research is grounded in a rich 

literature about informal pedagogy (Bonawitz et al., 2011; 

Csibra & Gergely, 2009), which suggests that the format in 

which parents and educators chose to present evidence to 

children influence how children infer and learn. Specifically, 

recent experiments (Yu, Bonawitz, & Shafto, under review) 

have shown that pedagogical questions asked by 

knowledgeable teachers are particularly effective in 

facilitating children’s learning and exploration of a novel 

artifact. Given that the tendency to ask pedagogical 

questions has been shown to vary across parents (Yu, 

Bonawitz, & Shafto, 2016), we explore the effects of 

children’s experiences with pedagogical questions on their 

responses in the experiment. We did so by replicating one 

condition of the previous experiment with an added 

observation phase, in which parents’ pedagogical questions 

towards children were measured along with other parent-

child interaction measurements. This allows us to look for 

associations between parents’ pedagogical questions and 

children’s responses to these questions. And because the 

observational data is available for children who did not 

participate, these associations could then be used to estimate 

the test data for the whole population. 

Method 

Testing sites 

We set up the study in two sites: an indoor reptile exhibit in 

a zoo, and an indoor playground. The zoo is in Essex 

County, NJ, which is one of the nation’s most racially 

diverse counties, and has one of the nation’s most unequal 

economies measured by the Gini Index (U.S. Census Bureau, 

2016). The playground is in Middlesex County, NJ, which is 

overall more affluent, but also has a highly racially diverse 

population, of which 30% were born outside the U.S. (U.S. 

Census Bureau, 2016). We chose these two sites to ensure 

diversity in the population we initially observed. Consents 

from these two sites and from the internal review board was 

obtained before conducting the study. 

These two sites differ in the expected level of supervision 

and involvement from parents. The zoo is an open 

environment that requires parents to constantly supervise 

their young children. Exhibits in the zoo also feature many 

textual materials which require parents’ explanations for 

young children to understand. In comparison, the 

playground features spaces and activities which young 

children can navigate on their own, and the closed 

environment allows minimal supervision from their parents. 

This contrast allows us to test whether the characteristics 

associated with parental non-consent differ by the type of 

facilities from which they were recruited. 

Participants 

Between the two sites, we observed a total of 109 parent-

child dyads. Of these 109 dyads, 31 were not invited for the 

test because of one of the following: the dyad left before the 

observation was finished (18), parent interrupted researchers 

during observation (1), researchers did not get a chance to 

invite parent (4), adult accompanying child was not the 

child’s parent (4), child was out of the target age range (2), 

or child did not speak English (2). The remaining 78 parent-

child dyads comprised our “population”, which is unaffected 

by the consent process. Among them 41 were recruited from 

the zoo, and 37 were recruited from the playground. 

Procedure 

During each trip to the testing sites, three researchers 

collected data from parent-child dyads in three phases: Two 

coders first observed and coded the interactions between the 

parent and the child (observation phase). Then a third 

researcher invited the dyad to a test (recruitment phase). She 

and one of the coders conducted the test if the dyad agreed 

to participate (testing phase). 

 

Observation phase. Two coders pretended to be visitors of 

the zoo or the playground, so that they could code parent-

child interactions without the dyad’s awareness. The coders 

first looked for a child who was estimated to be between 3 

and 6 years of age, and determined who were the adults 

accompanying the child. If at least one adult looked like the 

child’s parent, the coders would record the members in the 

group (e.g., father, mother, and two daughters), and agree on 

a target dyad for observation (e.g., mother and younger 

daughter). To reduce potential selection biases from the 

coders, they always observed the first dyad they saw that 

fitted the requirements, and the observation always started 

immediately once the target dyad was determined. Each 

dyad was observed for 5 minutes, during which the coders 

independently coded both the quantity and the quality of 

parent-child interactions. Quantity of interaction was 

measured by the length of time period of dyadic activities 

(parent and child engaging in the same activity), supervised 

activities (parent watching, following, or taking pictures of 

child while child is engaging in his or her own activities), 

and unsupervised activities (parent and child engaging in 

different activities). We coded these as mutually exclusive 

categories, and they added up to the total time length (5 

minutes). Quality of interaction was coded as a set of 

frequency measurements, adapted from the Dyadic Parent–

Child Interaction Coding System (Eyberg, Nelson, Ginn, 
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Bhuiyan, & Boggs, 2013): The coders recorded the numbers 

of parents’ questions, statements, and commands towards 

children.  

Critical to our interest, parents’ questions were further 

differentiated based on their functions (Yu et al., 2016): 

Those used to help children learn were coded as 

“pedagogical questions”, whereas those used to request 

information from children were coded as “information-

seeking questions”. All coders were trained for 

approximately 5 hours and practiced the coding scheme with 

at least 5 parent-child dyads before formal data collection. 

Inter-rater reliabilities were high for both the quantity and 

quality of parent-child interactions: Inter-rater correlation r 

= .78 ~ .84 for quantity codes, and r = .79 ~ .86 for quality 

codes. The average of the two coders’ codes were used for 

data analysis. 

 

Recruitment phase. After the 5-minute observation, a third 

researcher who was blind to the observation phase 

approached the parent and invited the parent-child dyad to 

participate in a test. The recruitment procedure followed a 

script which resembled that of a typical developmental 

experiment: The research started with a brief self-

introduction, then described the research as a study of how 

children learn and explore a novel toy, then briefly 

explained the consent form, and finally asked if the parent 

would be interested to have his or her child participate in the 

test. For parents who had multiple children with them, we 

specifically asked for the child who had been observed. 

Among the population of 78 parent-child dyads that were 

observed, 59 agreed to participate (the “consented” group) 

and 19 refused (the “not-consented” group). Of the 59 

parents who agreed, 11 children did not participate in the 

test (2 were busy playing and did not get a chance to come, 

8 refused to come, and 1 did not understand English), and 

the video was missing for one additional child, so data from 

the testing phase were available for 47 children. According 

to parental report, children who participated in the testing 

phase were diverse regarding race (51% white, 4% black, 15% 

Hispanic-Latino, 13% Asian, 17% multi-racial), but most 

came from middle- or upper-class families (91% of the main 

caregivers have college diploma or above, 84% of the 

families have annual house hold income of $50K or above).  

 

Testing phase. Parents and children who agreed to 

participate were led to a corner of the zoo exhibit or a 

separate room in the indoor playground, where the test was 

conducted by the recruiter (acting as an experimenter) and 

one of the coders (acting as a confederate). The materials 

and procedure of the test was adapted from Bonawitz, et al. 

(2011), and was identical to the pedagogical question 

condition in our recent experiment (Yu et al., under review).  

A novel toy of approximately 14” × 7.5” × 14.5” was 

used in the test. In addition to several inert properties, the 

toy had five functional parts: a tower that lit up when a 

button was pushed, a knob that produced a squeaking sound 

when squeezed, a lady bug pin light that flashed in three 

different patterns when pushed, a flower magnet that moved 

between three different places on the toy, and a turtle hidden 

in a pipe that was visible through a magnifying window.  

During the test, the child sat at a table opposite the 

experimenter and the confederate. The toy was initially 

hidden out of sight. The experimenter first said that she 

knows about the toy and the confederate does not, and asked 

the confederate to bring out the toy. After the confederate 

brought out the toy and handed it over to the her, the 

experimenter then asked a pedagogical question to the child, 

“I’m asking you to think about: What does this button do?”, 

while pointing to the button on the tower without activating 

it. Then she told the child it is his or her turn to play with the 

toy, and to let the researchers know when he or she is done. 

The test ended when the child stopped playing and signaled 

the researchers, and a sticker was presented as a reward. The 

whole phase was video recorded. 

Video coding 

After data collection, the videos from the testing phase were 

coded by another research assistant who was blind to the 

observation phase and to the hypotheses of the study. She 

first determined the total time children spent playing with 

the toy, and then coded three measurements regarding both 

the whole playing period, and the first minute after children 

started playing: whether children activated the target 

function (the tower with the button), the number of unique 

actions they performed with the toy, and the number of non-

target functions (out of 4) they activated. A second coder 

coded 14 (30%) of the videos, and the inter-coder reliability 

was high for all measurements: total time playing: r = .98; 

activating target function: Cohen’s κ = 1 for both total time 

and first minute; number of non-target functions activated: 

Cohen’s κ = 81 (total time) and κ = 75 (first minute); 

number of unique actions performed: r = .79 (total time) and 

r = .92 (first minute). 

Results 

Our population consisted 32 mother-son dyads, 16 mother-

daughter dyads, 17 father-son dyads, and 13 father-daughter 

dyads. Parent-child interactions varied both across sites and 

within sites: Compared to dyads in the playground, dyads in 

the zoo spent more time on dyadic activities, and less time 

on supervised (but not dyadic) activities or unsupervised 

activities, ts > 2.6, ps < .01. Parents also asked more 

pedagogical and information seeking questions, and said 

more statements in the zoo than in the playground, ts > 3.4, 

ps < .001. The difference in parents’ commands toward 

children was marginally significant, t(67.7) = 1.75, p = .09. 

These results suggest that the testing site needs to be taken 

into account when interpreting parent-child interactions. 

Therefore, testing site had been entered as a control variable 

for all further analyses. We also observed large within-site 

variations: For all measurements, standard deviations were 

higher than 1/3 of the mean for both the zoo and the 

playground. These variations suggest that the population we 

observed was diverse with regard to parent-child 
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                              (a)                                                            (b)                                                                       (c) 

Figure 1. The estimated effects of non-consent on one of the test measurements: the number of unique actions children performed 

during the first minute of play. We tested whether the mean and the standard deviation measured from the consented group (1c, blue 

bars) are unbiased estimates of the population. To do so, we separated the consented group according to the number of PQs parents 

asked children during the observation prior to the test (1a). Parents who asked more PQs tended to have children who performed 

more unique actions during the test. On the other hand, as shown in (1b), parents who asked more PQs also tended to consent their 

children to participate (blue) rather than not consent (red). These two associations resulted in the simulated not-consented group to 

have a lower mean than the consented group (1c), by an estimated effect size (Cohen's d) of 0.2. Compared to the population (purple 

bars), focusing on the consented group may result in an overestimation of the mean and an underestimation of the standard deviation. 

PQ = pedagogical questions. Error bars denote standard errors across children (1a) or across simulations (1c). 

 

interactions, which serves as a basis for further correlational 

analyses. Though parent-child interactions differed by site, 

the proportion of parents who agreed to participate did not 

differ significantly, playground: 25 agreed, 12 refused (68% 

vs. 32%); zoo: 34 agreed, 7 refused (83% vs. 17%); Fisher’s 

exact p = .19.  

Are parent-children interactions associated with 

children’s behavior in the test? 

Test data was available for 47 children ranging from 3.0y to 

6.3y, of which 27 were recruited from the zoo and 20 from 

the playground. Children from the two sites did not differ 

with regard to the activation of target and other functions, or 

the number of unique actions they performed on the toy, ts < 

1.4, ps > .1. However, there was a trend of children playing 

longer with the toy in the playground than in the zoo, Mzoo = 

189s, Mplayground = 132s, t(29.4) = 1.83, p = .08, d = 0.58. 

When comparing these results with previous experiments 

we conducted in preschools (n = 30, age range = 4.0y to 

6.0y) using the exact same protocol (Yu et al., under review), 

none of children’s response measurements differed 

significantly across the three sites, Fs < 2.2, ps > .1. 

Next we looked at the relation between children’s 

responses during the test and parent-child interaction 

measurements during the observation. After controlling for 

testing site and age, measurements regarding the 

composition of the group being observed (parent’ and 

child’s gender, and whether they were accompanied by 

other adults or children) did not correlate with any of 

children’s responses, ps > .1. However, measurements of 

parent-child interaction did correlate with children’s 

responses: Children of parents who spent more time 

watching and following them were less likely to discover 

the target function during the first minute of play, r(42) 

= .33, p = .02. At the same time, children whose parents 

asked more pedagogical questions discovered more other 

functions of the toy, r(42) = .32, p = .03, and also performed 

more unique actions during first minute of play (Figure 1a), 

r(42) = .29, p = .05. These results suggest that patterns 

observed in parent-child interactions were indeed associated 

with children’s learning and exploration during the test.  

Are parent-child interactions associated with 

participation?  

We then examined whether patterns observed in parent-

child interactions also predicted parents’ responses to the 

invitation for research. We fitted a logistic regression model 

with participation as the dependent variable and the 

observational measurements as the predictors. Overall the 

model predicted actual participation with 80% accuracy. 

With regard to individual predictors, parents were more 

likely to have their boys participate than girls, B = 1.47, p 

= .03; and those parents who asked more pedagogical 

questions during the observation were more likely to 

participate, B = 1.49, p = .05 (Figure 1b). 

What can be predicted for children who did not 

participate?  

Results so far have shown that the number of pedagogical 

questions parents asked children predicted both children’s 

participation in a test and their behavior during the test. This 

indicates that children’s participation and behavior may be 

related as well—that is, if we have tested children whose 
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parents did not consent them to participate, they may have 

responded differently than children who did participate.  

To test this hypothesis, we applied model-based multiple 

imputation to our data (Rubin, 2004).1 The model we used 

for multiple imputation was a stochastic regression model, 

implemented with IBM SPSS 22. The seven observational 

measurements were used to model the seven test 

measurements, based on data from the consented group. The 

resulting models were then used to predict behavior of the 

not-consented group stochastically (with random noise) for 

100 independent runs of simulations.2 

Results showed that across the 100 runs of simulations, 

the means of the not-consented group were consistently 

different from that of the consented group for five out of 

seven test measurements including activating target function 

(total time and first minute), number of non-target functions 

activated (first minute), and number of unique actions 

performed (total time and first minute). The departure was 

towards the same direction—the participated children 

learned and explored more with the toy (Figure 1c shows 

one example). The differences between the means of the 

consented and not-consented group were estimated to be 

between 0.09 and 0.20 standard deviations for these five 

measurements. In addition, compared to the population, 

focusing on the consented group alone would lead to 

consistent underestimation of the standard deviations across 

children, and this is true for all test measurements we 

examined. 

Discussion 

This study takes a first step towards evaluating whether 

                                                           
1 Multiple imputation is the recommended tool to predict missing 

data when missingness depended on other observed variables, but 

not the missing variable itself (Sinharay, Stern, & Russell, 2001). 

In our case, because missingness was a result of the parent’s 

decision, it was associated with patterns observed in parent-child 

interactions (as shown in the logistic regression), but was not 

directly associated with children’s behavior in the test. Therefore, 

multiple imputation is suitable to simulate behavior for the not-

consented children.  
2 The two test measurements regarding activation of target function 

were imputed as binary variables, whereas all other test 

measurements were imputed as continuous variables. For each test 

measurement, a logistic regression model (for binary variables) or 

a linear regression model (for continuous variables) was first fitted 

on the data from the consented group. From the fitted model, 

posterior distributions were computed for the 8 parameters in the 

logistic regression model or the 9 parameters in the linear 

regression model (intercept, coefficients for the 7 observational 

measurements, and the residual variance for linear regression only). 

Then the values for the not-consented group were imputed for m = 

100 runs. For each run, a new set of parameters were randomly 

drawn from their respective posterior distributions, and were used 

to compute the expected values plus random errors for each child 

in the not-consented group. The means and standard deviations of 

the not-consented group and of the whole population were then 

calculated for this test measurement. The procedure is then 

repeated for the remaining runs of simulations, and applied to the 

other test measurements. 

results from children who participated in an experiment 

could generalize to children whose parents did not consent 

for them to participate. We attempted to estimate these 

potential biases with a novel approach by pairing a 

behavioral test with naturalistic observations of parent-child 

interactions prior to parental consent. Results have shown 

that a specific parenting practice—asking questions to help 

children learn—correlated with both parents’ tendencies to 

have their children participate in the test, and children’s 

learning and exploration during the test. And since the 

observational data was available for both those who 

participated and did not participate, we were able to exploit 

these associations to impute behavior for children who did 

not participate. Results from the imputation showed 

differences in group means between the consented and not-

consented group for five out of the seven test measurements, 

with estimated effect sizes (Cohen’s ds) between 0.09 and 

0.20. Furthermore, the consented group showed a lower 

standard deviation than the population for all test 

measurements. 

Before discussing the implications of the results, it is 

worth noting that several assumptions underlie these 

simulated estimates. First, we assumed no direct causal 

relation between parents’ decisions to have their children 

participate and children’s potential behavior in the test. This 

assumption is plausible in our case: Because parents were 

not given much detail about the testing procedures, their 

decision to participate is unlikely to be based on what they 

expect their children to do. However, in other situations this 

assumption could be violated, which could render the 

imputation analysis invalid. For example, in a study that 

measures children’s executive functions, if children drop out 

from the study exactly because of low executive functions, 

then it would be invalid to impute executive functions for 

the dropout group even when all relevant correlates have 

been observed and entered into the model. Second, our 

approach is valid because we saw variations in parent-child 

interactions for both the consented and not-consented 

groups, as well as significant overlap between the two 

groups. This allows imputation to be done as interpolations 

within the ranges of empirical support. In cases where the 

consented and not-consented groups do not overlap, our 

approach could be invalid, as the relations found in the 

consented group may not extend to the not-consented group. 

In sum, our methods to generalize experimental results are 

themselves subject to usual conditions for generalization. 

How much this new approach could be and should be 

implemented in developmental experiments would also 

depend on various factors. The first factor is the recruitment 

method. Our approach could be beneficial for research 

settings that provide opportunities to observe and recruit 

from a relatively diverse population, such as in public 

spaces. On the other hand, for studies recruiting from places 

with a preselected population, such as preschools, the 

demographics of the preselected population may present a 

stronger sampling bias than parents’ consent. The second 

factor is the research topic.  Our approach could be more 
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valuable for domains in which parent-child interactions have 

been, or are expected to be, associated with children’s 

behavior. The last factor is the research ethics. Pre-consent 

observations are ethically viable only for public actions, and 

needs to be performed with caution. 

In cases where our approach can be applied, it could 

benefit the interpretation and generalization of experimental 

findings in several ways: First, it could reveal correlations 

between parent-child interactions and children’s behavior, 

which may help explain the cognitive mechanisms and 

environmental inputs associated with the observed behavior. 

Second, it could inform the generalizability of experimental 

findings to children whose parents did not consent them to 

participate. Third, it can serve as an empirical base for 

future research to recruit a more representative sample. By 

knowing the associations between parental consent and 

patterns in parent-child interaction, it may be possible to 

intentionally focus recruitment on parent-child dyads who 

are likely underrepresented in typical recruitment 

procedures. 

Our results may also have implications for developmental 

theories. Many developmental theories are built upon 

findings from experiments, as experimental design has 

advantages in addressing a range of developmental 

questions: These include depicting developmental 

trajectories (“Children do X at age Y”), disentangling causal 

mechanisms underlying children’s behavior (“Children do X 

because of Z”), and testing causal effects of interventions 

(“T helps children do X”). In typical cases, random 

assignment of participants across groups removes unwanted 

systematic differences between groups, so that the effects of 

age, condition, or treatment can be detected by comparing 

between-group differences with within-group differences. 

Our results have shown that parental non-consent may have 

biased this comparison in two ways that random assignment 

cannot solve: First, it could lead to an underestimation of 

within-group variations, and thus Type I errors may be 

underestimated and effect sizes may be overestimated. 

Second, compared to the general population, children who 

received consent may be more susceptible or insusceptible 

to certain manipulations or treatments, therefore biasing the 

estimation of the between-group differences. Because 

findings from developmental experiments often guide real-

world practices which apply to the general population, 

understanding factors and biases associated with non-

consent is essential when interpreting and applying these 

findings. 

To conclude, this study provided a first empirical 

demonstration that children with and without parental 

consent to participate in research may have differed in 

behavior measured in an experiment. Therefore, parental 

non-consent should be considered an important factor when 

evaluating the generalizability of experimental findings, and 

the theories built upon them. In addition, we provided a 

method that, in certain contexts, could be used to estimate 

the effect of parental non-consent and generalizability of 

experimental results. 
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Seeing Is Not Enough for Sustained Visual Attention 
 

Lei Yuan, Tian Linger Xu, Chen Yu and Linda Smith  
Department of Psychological and Brain Sciences, and Cognitive Science Program, Indiana University 

Bloomington, IN, 47405 USA 
 

Abstract 

Sustained visual attention is crucial to many developmental 
outcomes. We demonstrate that, consistent with the 
developmental systems view, sustained visual attention 
emerges from and is tightly tied to sensory motor coordination. 
We examined whether changes in manual behavior alter 
toddlers’ eye gaze by giving one group of children heavy toys 
that were hard to pick up, while giving another group of 
children perceptually identical toys that were lighter, easy to 
pick up and hold. We found a tight temporal coupling between 
the dynamics of visual attention and the dynamics of manual 
activities on objects, a relation that cannot be explained by 
interest alone. In the Heavy condition, toddlers looked at 
objects just as much as did toddlers in the Light condition but 
did so through many brief glances, whereas in Light condition 
looks to the objects were longer and sustained. We discuss the 
implication of hand-eye coordination in the development of 
visual attention.  

Keywords: Sustained visual attention; hand-eye coordination; 
multimodal; perception action; manual behavior; 
developmental systems 

Introduction  
The ability to focus attention on an individual object or 

event for a period of time, often in the face of distractions, is 
predictive of learning and general cognitive capacities 
(Lansink, Mintz, Richards, 2000; Ruff & Lawson, 1990). The 
ability to sustain visual attention undergoes substantial 
developmental change from infancy to early childhood with 
a steady increase in both total duration and the ability to resist 
distractions (Ruff & Lawson, 1990; Kannass, Oakes & 
Shaddy, 2006). Prior research on the development of visual 
attention has focused on both the effect of low-level stimulus-
driven properties (exogenous) and the emergence of top-
down internal control of attention (endogenous) (Colombo, 
2001). However, like the development of many other 
cognitive capacities, visual attention interacts with and is 
influenced by other sensory modalities within the 
developmental system (Thelen & Smith, 1994). The ability to 
sustain attention may not emerge directly from the 
development of internal controls but rather externally—from 
the coupling of vision with physical action. 

Within this view, visual attentional skills are not built 
solely on the development of vision; but rather are 
influenced, altered, and coordinated with other sensory 
modalities (Yu, Smith L, Shen, Pereira, & Smith T, 2009). 
One apt example is the demonstration that deaf children 
performed worse on a non-auditory visual attention task than 
their age-matched controls; but, deaf children who had 
cochlear implant for at least one year performed similarly to 
hearing children (Quittner, Smith, Osberger, Mitchell, & 
Katz, 1994). Because the visual attention task did not rely on 

auditory process at all, the deficit shown by deaf children 
without the implant was solely attributable to an 
impoverished capacity of visual attention. A history of having 
auditory experience with the aid of cochlear implant helped 
to build visual attention, which was then successively 
recruited to perform a task that did not rely on auditory 
information. Thus, visual information alone is not enough for 
building visual attention; the interaction of multiple sensory 
modalities may be critically involved in the pathways to 
internal control of attention.    

We focus here on the role that manual behavior plays in the 
control of visual attention. It has long been recognized that 
the development of perception is driven by the development 
of motor behaviors (Gibson, 1979). For example, as infants 
achieve motor milestones (e.g., sitting, crawling and 
walking), they are able to receive different perceptual 
experiences (e.g., stably held objects, optical flow), leading 
to the development of various perceptual abilities such as 
object recognition and depth perception. Research has also 
shown that changes on the affordance of objects (or how they 
can be held) alters the visual input infants receive, which in 
turn alters the outcome of object recognition (Pereira, James, 
Jones, & Smith, 2010). Thus, changes in manual behavior 
may alter infants’ visual attention on objects through the 
coordination between hands and eyes.  

Recent research suggests that infants’ hands and eyes are 
dynamically coupled during toy play (Pereira, Smith, & Yu, 
2014; Yu & Smith, 2014, 2016) and this coupling may play a 
causative role in sustained attention. The natural learning 
environment is complex, often presenting multiple visually 
interesting objects in a cluttered setting. In these visually 
complex contexts, infants may rely on manual behaviors to 
externally select and maintain attention on a target of interest. 
For example, Pereira, Smith, & Yu (2014) have shown that 
infants own manual actions on objects help them to select 
target, reduce visual clutter, and create larger input images in 
the visual field, leading to sustained visual attention on 
objects, better object recognition and early word learning. In 
this sense, manual action helps to regulate and sustain visual 
attention. Conversely, it has been found that irregular 
attentional patterns in atypical development co-occur with 
perturbations between the visual and manual modalities 
(Koterba, Leezenbaum, & Iverson, 2014).   

Both between- and within-person hand and eye 
coordination may contribute to a more mature control of 
visual attention in social contexts. Yu and Smith (2016) 
demonstrated that parent’s visual attention often follows 
infant’s hands to the object to which the infant was directed; 
this between person hand and eye coordination substantially 
prolonged infant’s sustained attention on the same object 
during toy play. Thus, visual attention is not a sole product of 
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vision or perhaps even the individual but also influenced by 
cross-person sensory-motor coordination. Consistent with 
this idea, recent findings suggest that joint attention is also 
dependent on the child’s hand-eye coordination. One- to two-
year-olds who showed more tightly coordinated hands and 
eyes were also better able to coordinate their attention with 
their parents and better able to sustain joint attention with a 
parent (Yu & Smith, 2013, 2014).  

All previous findings linking hand-eye coordination in 
toddlers to sustained visual attention were correlational.  Here 
we attempt to show a causal link. We manipulated manual 
behavior by giving one group of children heavy toys that 
were hard to pick up but that could be poked and touched in 
various interesting ways. We gave another group of children 
perceptually identical toys that were lighter and easy to pick 
up and hold. The expectation is that the duration of each 
individual hand contact will be less for the heavy toys than 
the light toys that can be picked up and held.  However, if the 
toys are equally engaging—which we designed them to be—
the total amount of hand contact may not differ between the 
two conditions. The key expectation then is on the dynamics 
of individual contacting events: more briefer touches (pokes 
and touches) in the heavy case and fewer but longer touches 
(poking and touching while holding) in the light case.  

We illustrate the expectations under the two hypotheses in 
Figure 1. First, if infants’ hands and eyes are dynamically 
coupled—when hands are on an object, eyes are more likely 
to be on the same object—then the different dynamic 
properties of the manual behaviors caused by the weights of 
object should lead to different dynamic patterns of visual 
attention, with less sustained attention in the heavy condition 
(Fig. 1, H1). Second, and in opposition, if visual attention is 
independent of hand actions (if visual properties of objects 
solely determine gaze) then, when presented with novel and 
interesting toys, infants would visually look at them and for 
similar durations at each looking event, irrespective to 
whether the object can be held or not (Fig. 1, H2). We expect 
that the results will support Hypothesis 1: children from both 
conditions will manually handle and visually attend to the 
objects for the same total amount of time over the whole play 
session, but the dynamic properties of gaze will differ 
considerably and aligned with the different dynamics of the 
hands.  

Methods 

Participants 
The final sample consisted of thirty-one parent – toddler 

(mean age = 21 months old, range = 18-25) dyads. Roughly 
half (16) of the dyads were assigned to play with light weight 
toys, while the other half (15) played with heavy weight toys. 
Children were recruited from a population of working and 
middle class families in a Midwestern town.  

Stimuli  
Two sets of six novel toys (12 in total) were developed 

from extensive pilot work to be engaging for manual play 
with moveable elements, openings, and possible actions. 
They were made of hardened clay, painted in red, blue or 
green, and were roughly the same size (9.5 x 6.5 x 5cm). The 
two sets were identical in terms of shape, size and color, with 
the only difference being their weights. The heavy set of toys 
was on average 1.4lbs, seven times heavier than the average 
weight of the light set, which was 0.21lbs.  

Apparatus 
Parent and child sat across a small table (61cm x 91cm x 

64cm) (see Fig. 2). The child was strapped loosely into a 
small chair and the parent sat cross-legged on a pillow. Both 
participants wore head-mounted eye trackers with a sampling 
rate of 30 hz (positive science, LLC; also see Franchak et al., 
2011). The eye tracker consists of a scene camera that 
captures the egocentric view of the participant, and an 
infrared camera that is mounted on the head, points to the 
right eye of the participant, and records the eye-in-head 
position (x and y) in the captured scene. Another high-
resolution camera (recording rate 30 frames per sec) was 
mounted above the table and provided a bird’s eye view that 
was independent of participants’ movements.  

Procedures 
To place the eye tracker on the child head, one 

experimenter attracted the child’s attention with an 
interesting toy, while another experimenter put the eye-
tracking gear low on the child’s forehead. To calibrate the eye 
tracker, the experimenter directed the child’s eyes toward an 
interesting toy, which were repeated 15 times while the toy 
was placed at various locations on the table. Parents were 
instructed to place the eye tracker on their heads. Parents’ eye 
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tracker was calibrated in a similar way. After this initial set 
up, parents were told that the goal of the experiment is to 
study how parents and their toddlers interact during toy play, 
and were instructed to play with their toddlers as naturally as 
possible.  

The free play session lasted for a total of 6 minutes that was 
composed of four trials with each lasted 1.5 minutes. The six 
novel toys were grouped into two sets (A and B) with each 
set having three different colored objects (red, blue and 
green). The sets were interleaved with the order of the sets 
counterbalanced across dyads (ABAB or BABA). At the end 
of each trial, the experimenter signaled parent with a clicking 
sound, and quickly replaced the old set of toys with a new set. 

Coding 
Three regions-of-interest (ROI) were defined for both the 

eye tracking data and the manual action data: the green, blue 
and red object. These ROIs were coded manually by coders 
who annotated frame-by-frame when the cross-hairs 
overlapped with any of the three ROIs. Another coder 
independently coded 10% of the frames with 95% agreement 
between coders. The final dataset consisted of a total of 
203,316 frames.   

Results 
Because our manipulation was on the weight of objects, we 

first analyzed toddlers’ manual activity. We then turned to 
visual attention as measured by gaze patterns. Finally, we 
examined the hand-eye coordination as a possible mechanism 
that drives the observed effects.  

Manual activity 
We defined manual activity event as any event during 

which the toddles’ hands were in contact with any of the three 
objects (data from two hands were coded individually and 
then combined with a manual contact defined as either or 
both hands). Results showed that children in the heavy 
condition handled the objects for a comparable amount of 
total time as those in the light condition (Fig. 4), suggesting 
that overall the Heavy and Light versions of the toys were 
both manually engaging. There was no significant difference 
in the proportion of total time children in the light (M = 84%, 
SD = 7%) and heavy condition (M = 87%, SD = 6%) were in 
manual contact with the objects, t (29) = .24, p = .8. This is 
important to rule out the possibility that due to object weight, 

children in one of the conditions were more interested in the 
objects and played with them more than the other condition.  

Children in the heavy condition (M = 21.31, SD = 7.26) 
produced manual activities at a higher frequency (count of 
events per minute) than those in the light condition (M = 
15.48, SD = 4.42), t (29) =2.67, p = .01 (Fig. 3 & 4). But, 
children in the heavy condition (M = 2.63s, SD = .99s) spend 
less time in each manual activity event than those the light 
condition (M = 3.46s, SD = 1.38s), t (29) = 1.91, p = .06. 
Thus, it appears that children in the light condition would 
pick up and hold objects, resulting in many long manual 
activity events. In contrast, children in the heavy condition 
generated more short manual activity events because they 
can’t hold the objects for a long time if at all, and would 
probably more often touch the object that sat on the table. 
This prediction was confirmed by the data: during manual 
activity events, compared to the heavy condition, children in 
the light condition had on average a larger visual image size 
(the size of the object in proportion to the entire visual field 
captured by the ego-centric view recording in the eye 
tracker), Light: M = 5.84%, SD = .99%, Heavy: M = 4.21%, 
SD = 1.17%, t (29) = 4.24, p < .001.   

Despite the similarity in the total duration of manual 
activity, the way children handled the objects were different 
between the two conditions. Because previous studies have 
used 3 seconds as the threshold of sustained attention (Ruff 
& Lawson, 1990; Yu & Smith, 2016), here we defined 
sustained manual activity as any manual action that lasted for 
more than 3s. Consistent with our prediction, children in the 
heavy condition had significantly more short (less than 3 
seconds) manual activity events per six minutes (session 
length) than did children in the light condition (Heavy = 1553, 
Light = 994); in contrast, the number of sustained manual 
action events per six minutes were comparable between 
conditions (Heavy = 493, Light = 399). Chi-square test of 
independence indicated that there was a significant 
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relationship between the number of sustained manual activity 
events and the weight of objects, χ2 (1, N = 3439) = 8.92, p = 
.002. 

These results set the stage for answering the key question:  
given that hand dynamics differ, do eye dynamics—and 
sustained attention episodes—differ as well? 

Visual attention 
To analyze children’s visual attention, we first examined 

all looking events during which the child had fixated on any 
of the objects (the ROIs). There was no significant difference 
in the proportion of total time children in the Light (M = 67%, 
SD = 2%) and Heavy conditions (M =65%, SD = 2%) looked 
at the objects, t (29) = .51, p = .61. Thus, children from both 
conditions were visually interested in the objects by this 
measure.  

The mean duration of looking events was significantly 
lower in the heavy condition (M = 2s, SD = 0.44s) than the 
light condition (M = 2.43s, SD = 0.63s), t (29) = 2.21, p = .03. 
However, the looking events in the heavy condition (M = 
20.55, SD = 5) had a slightly higher frequency (count per 
minute) than those in the light condition (M = 17.64, SD = 
4.6), although this difference was not statistically significant, 
t (29) = 1.67, p = .1. Similar to the manual activity analysis 
and to previous research (Ruff & Lawson, 1990; Yu & Smith, 
2015), we defined sustained looking as any looking event that 
lasted for more than 3 seconds. As shown in Fig. 5, children 
in the heavy condition had significantly more short (less than 
3 seconds) looking events per six minutes (session length) 
than did children in the light condition (Heavy = 1789, Light 
= 1625); in contrast, the number of sustained looking events 
per six minutes were comparable between conditions (Heavy 
= 350, Light = 425). Chi-square test of independence 
indicated a significant relationship between the number of 
sustained looking events and the weight of objects, χ2 (1, N = 
4189) = 13.25, p = .0003.  

Overall, the results of the looking patterns mirror the 
results from the manual activity: children in the heavy 
condition produced more rapid but frequent manual activity 
events, as well as more rapid but frequent looking events. By 
our hypothesis, the dynamic hand-eye coordination is 
responsible for the corresponding differences in the hand and 
eye patterns in the two conditions.  

 Hand-eye coordination 
We propose that the result—that heavy condition had more 

short and rapid manual activity events, as well as more short 
and rapid looking events than the light condition—is driven 
by the hand-eye coordination of the child. In other words, 
because child’s hands and eyes are closely coupled such that 
when hands are on the object, the eyes are also more likely to 
be on the same object—sustained hand actions create and 
support sustained visual attention. To demonstrate this link, 
we measured the durations of joint hand-eye to the same 
object. If this is the case, then we would expect to see more 
short but rapid hand-eye coordination events—the hands and 
eyes of the child were on the same object—in the heavy than 
the light condition. 

 As predicted, the mean duration of hand-eye coordination 
events was significantly lower in the heavy condition (M = 
1.04s, SD = 0.25s) than the light condition (M = 1.33s, SD = 
0.44s), t (29) = 2.26, p = .03. However, the hand-eye 
coordination events in the heavy condition (M = 17.83, SD = 
3.93) had a significantly higher frequency (count per minute) 
than those in the light condition (M = 14.19, SD = 3.26), t 
(29) = 2.55, p = .01. Again, we used 3 seconds as the 
threshold to define sustained hand-eye coordination event 
and found that children in the heavy condition had 
significantly more short hand-eye coordination events per six 
minutes (session length) than did children in the light 
condition (Heavy = 1577, Light = 1116); in contrast, the 
number of sustained hand-eye coordination events per six 
minutes were comparable between conditions (Heavy = 134, 
Light = 151). Chi-square test of independence showed a 
significant relationship between the number of sustained 
hand-eye coordination events and the weight of objects, χ2 (1, 
N = 2978) = 14.05, p = .0002.  

General Discussion  
When actively engaged with objects—the context for much 

real-world learning and problem solving—infants’ visual 
attention is dynamically tied to their hand actions. The 
implications of this for the development of visual attention 
and for the underlying brain mechanisms are profound: this 
sensory motor coordination could be a core driving force for 
visual development, setting up the behavioral and neural 
networks for the mature control of visual attention (Byrge, 
Smith, & Sporns, 2014). 
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The direct connection between bodily movement, gaze 
direction and internal cognitive processing has been 
supported in many studies of adults’ cognition. For example, 
it has been shown that bodily movement or direction of eye 
gaze serves as the basis for establishing deictic (pointing) 
reference to objects as well as the spatial relations between 
objects, suggesting that visual attention and action may share 
overlapping spatial referent frames (Ballard et al, 1997; 
Yuan, Uttal, & Franconeri, 2016). Manual actions can also 
directly guide or bias visual attention. The position of hands 
elicits unique neural responses in several brain areas and 
serves to prioritize visual attention (Makin, Holmes, & 
Zohary, 2007). Using a visual covert-orienting paradigm, for 
example, Reed, Grubb and Steele (2006) have shown that 
placing a hand on the side of the screen where a target would 
appear facilitated target detection, but the presence of visual 
anchors did not produce the same effect. This result suggests 
that adults have a hand-centered representation within 
peripersonal space (i.e., space that is close to a person’s 
body), raising the possibility that children may have a similar 
or even stronger hand-centered representation in near space 
as they had shorter arms than adults and often hold objects 
very close to their body.  

Manual action is a crucial way through which infants select 
and learn about the visual properties of objects in the world. 
Despite the complex and often cluttered real-world learning 
environment, the ego-centric view of infants suggests that 
they often attend to one dominant object at one time (Yu et 
al., 2009), which is crucial for developing visual attention to 
the detailed properties of objects. Importantly, although 
social partner occasionally brings an object in front of an 
infant’s face, the predominant pathway through which infants 
create this optimal learning moments is through his or her 
own hand actions—it is hand actions that bring objects closer 
to the body and eyes, allowing for close examination of the 
various properties of the object, multiple sampling of the 
dynamic views of objects, leading to sustained visual 
attention and helping to build representations of the three-
dimensional structure of objects (Bambach, Crandall, Smith, 
& Yu, 2016; Soska, Adolph, and Johnson, 2010).  

The current study offers another pathway through which 
manual action exerts influence on visual attention—by 
changing the frequency and duration of looking events. 
Because hands and eyes are closely synchronized during 
play, the temporal characteristics of manual actions can 
influence those of vision. An analogous example is the 
demonstration that auditory input, particularly the rhythm of 
sounds, can facilitate visual learning for both adults 
(Iordanescu, Guzman-Martinez, Grabowecky, & Suzuki, 
2008) and children (Bahrick & Lickliter, 2000). This 
multimodal learning not only provides redundant information 
to recruit sustained attention, but also capitalizes on the 
interconnection among sensory modalities—activities in one 
domain can influence and promote that of another domain. In 
this sense, the sensory motor coordination is the core driving 
force for the development of cognitive capacities. 

Hand-eye coordination can help to build and integrate 
multiple neural networks that underpin cognitive 
development. Time-locked signals from perception and 
action not only afford the direct mapping between the 
physical properties of the object to the neuronal activity of 
the visual network, between the physical properties of the 
object to the neuronal activity of the haptic system, but also 
allow for cross-modality integration and enrichment: activity 
of the visual system and the activity of the haptic system are 
directly mapped to each other (Edelman, 1987; Smith & 
Gasser, 2005). For example, as one holds and manipulates an 
object, the neuronal activity of the visual system is time-
locked to the activity of the haptic system—each different 
hold is linked to each unique visual representation of the 
object. As a result, a particular sight of an object may elicit 
its corresponding neuronally mapped action. For instance, in 
one visual recognition task, adults were shown a picture of a 
pitcher and answered the question “Is this a pitcher” by 
pressing either a left or a right button. Adults responded faster 
when the “yes” button was on the same side of the pitcher’s 
handle, suggesting that the sight of the object may have 
elicited corresponding motor activity, facilitating the motor 
execution of button press on the same side (Ellis & Tucker, 
2000).   

This multimodal learning mechanism has important 
implications for development and learning. For example, 
manual actions can be leveraged to train a mature control of 
visual attention. One classic demonstration of this idea is the 
A-not-B error (Piaget, 1954). After repeating the sequence of 
seeing one object being hidden at location A and retrieving 
the object at location A several times, infants were shown the 
object being hidden at location B. Despite seeing the object 
being hidden in the new location B, infants continued 
searching at location A. However, changes in the motor 
actions or giving infants more motor experiences led to 
improved performance (Bertenthal, Campos, & Barrett, 
1984). For instance, changing the manual behavior that 
children need to perform to approach the object through 
changes in posture (sitting vs. standing) led children to search 
at the correct location much often (Smith, Thelen, Titzer, & 
McLin, 1999).  

In conclusion, the current study supports the 
developmental systems view of visual attention: visual 
attention emerges from the interaction among multiple 
sensory modalities, which are dynamically coordinated 
during moment-by-moment perception and action events to 
support cognitive development. In particular, the current 
study showed that changes in manual behavior alter the 
patterns of toddlers’ visual attention during toy play. Further, 
we provided evidence that the hand-eye coordination is the 
underlying mechanism: toddlers’ hands and eyes were 
dynamically coupled, such that when hands were on an 
object, the eyes were also likely to be on the same object. 
These results have implications for the research and 
development of visual attention, as well as the possibility to 
leverage on manual action as a way for training the control of 
visual attention.  
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Abstract 

It is often assumed that the socio-cultural context positively 
influences mindreading performances. Among the available 
theories, mindshaping is proposed to consist of cultural 
mechanisms that make the social domain homogeneous and, 
hence, easier to interpret. Proponents of the mindshaping 
hypothesis claim that homogeneity is responsible for the 
computational tractability of mindreading, which is otherwise 
intractable. In this paper, we examine this core claim of 
mindshaping and investigate how homogeneity influences 
mindreading tractability. By taking action understanding as a 
case-study for mindreading, we formally operationalize 
mindshaping homogeneity in different ways with the goal of 
bridging the gap between informal claims and formal 
(in)tractability results. The analysis shows that only specific 
combinations of homogeneity may lead to tractable 
mindreading, whilst others do not. Additionally, the analysis 
reveals the possibility of a yet undiscovered mindshaping 
mechanism. 

Keywords: mindshaping; mindreading; computational 
intractability; culture; goal inference; conceptual/philosophical 
analysis; computational modeling 

Introduction 

The ability to understand what motivates other people’s 

behavior is often considered a defining capacity of human 

cognition. Theories of this mindreading capacity, however, 

are challenged with explaining how humans can interpret 

behaviors in a timely manner, because the available theories 

are often computationally intractable (Alechina & Logan, 

2010; Apperly, 2010; Zawidzki, 2013). As Gigerenzer and 

colleagues proposed: 

“The computations postulated by a model of cognition 

need to be tractable in the real world in which people 

live, not only in the small world of an experiment with 

only a few cues. This eliminates NP-hard models that 

lead to computational explosion, …” Gigerenzer (2008) 

Given that mindreading is performed in a complex, real-

world socio-cultural environment (Adams et al., 2010; Perez-

Zapata, Slaughter, & Henry, 2016; Tomasello, Carpenter, 

Call, Behne, & Moll, 2005), it stands to reason that 

intractable (NP-hard) theories of mindreading cannot explain 

how humans can perform the computations postulated by the 

theory quickly. 

In an attempt to address this theoretical paradox, Zawidzki 

has proposed that the socio-cultural environment plays a key 

role. Zawidzki proposes that this environment is shaped by 

agents themselves so that mindreading can be tractable 

(Mameli, 2001; Zawidzki, 2008, 2013). Introduced as the 

mindshaping hypothesis, this claim entails a collection of 

(social) cognitive and evolutionary mechanisms that bring 

structure to the environment. 

In this paper, we assess the potential that the mindshaping 

hypothesis has to solve the intractability paradox of 

mindreading. Given that computational (in)tractability is a 

well-defined mathematical property of computational-level 

theories (Marr, 1982; van Rooij, 2008), a bridge will have to 

be built between Zawidzki’s informal theoretical 

contributions and formal complexity-theoretic results. We 

propose that such a bridge can be built by taking action 

understanding as a special-case proxy for evaluating how 

mindshaping mechanisms may pave the way for tractable 

mindreading.  

In order to do this, we take two steps. First, we analyze the 

mindshaping hypothesis and extract specific claims about the 

effects that mindshaping mechanisms may have on the 

structure of the socio-cultural environment and consequently 

the (in)tractability of mindreading. Second, we assess the 

plausibility of the claims identified in the first step by 

operationalizing the mindshaping structuring effects in a 

computational-level model of action understanding (viz., 

Bayesian inverse planning; Baker, Saxe, & Tenenbaum, 

2009; Baker, Tenenbaum, & Saxe, 2008). This allows us to 

relate mindshaping effects to formal (in)tractability results 

(Blokpoel, Kwisthout, van der Weide, Wareham, & van 

Rooij, 2013). The analysis will show that only certain 

combinations of mindshaping effects lead to tractable 

mindreading, whilst other effects do not. Furthermore, the 

analysis also suggests the possibility of a novel effect that is 

necessary for tractability, which may lead to the discovery of 

new mindshaping mechanisms. 

Mindreading as abductive inference 

Several theoretical accounts of mindreading have been 

proposed. Fast and frugal heuristics theories (Chater, 

Oaksford, Nakisa, & Redington, 2003) conjecture that 

humans can understand what motivates other people’s 

behavior through simple cue-based rules. Simulation theory 
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(Goldman, 2006) conjectures that we understand external 

behaviors by the means of mental simulations. In this paper, 

we focus on a third hypothesis proposed by Zawidzki. By  

rejecting modularity, acknowledging domain-generality and 

the relevance problem (Fodor, 1983; Heal, 1996) for social 

reasoning, Zawidzki implicitly accepts isotropy and with it a 

mindreading account that is inferential in nature (Zawidzki, 

2013).1 Under this view, mindreading can be construed as a 

mapping from an observed socio-cultural environment 

(consisting of observed behaviors, actions and context) and 

social knowledge to the intentional attributions that best 

explain the observed social environment. Unfortunately, with 

the notion that mindreading is inferential also comes 

intractability. 

Zawidzki attributes intractability of mindreading to the 

problem of holism/isotropy. Because in principle any 

information that a person has might be relevant for any 

inference that is made, every possibility must be considered 

(Fodor, 2001). The intractability of inferential mindreading is 

corroborated by the fact that many of our best theories of 

inferential cognitive capacities are computationally 

intractable (NP-hard or worse) (Cherniak, 1986; Frixione, 

2001; Levesque, 1988; Thagard & Verbeurgt, 1998; Tsotos, 

1990; van Rooij, 2008; van Rooij & Wareham, 2012). 

An intractable theory makes unrealistic (exponential or 

worse) demands on computational resources (van Rooij, 

2008). Hence, such a theory cannot satisfactorily explain why 

people can ‘mindread’ as quick as they do (see Table 1). This 

leads to the paradox mentioned in the introduction. However, 

rather than rejecting the inferential mindreading account 

altogether, the paradox may be resolved if the effects of 

mindshaping mechanisms are adequately fleshed out.  In the 

next section, we discuss the different possible structuring 

effects that mindshaping mechanisms may have on the 

environment. 

Deconstructing mindshaping 

First proposed by Mameli (2001) and later developed by 

Zawidzki (2009; 2008; 2013), the mindshaping hypothesis 

proposes that the success of human social cognition is 

explained by the (evolutionary) development of behavioral 

mechanisms that “shape our socio-cultural environment in 

ways that make coordination exponentially more tractable” 

(Zawidzki, 2013). Examples of mindshaping mechanisms 

are: imitation, over-imitation, the chameleon effect 

(Chartrand & Bargh, 1999), pedagogy, norm following and 

self-constituting narratives (Zawidzki 2013). Although these 

mechanisms are individually quite different, they all 

implement a form of social expectancy and conformity 

mechanism that ‘mindshape’ both the socio-cultural 

environment and social knowledge through biased 

transmission and selection of behaviors. Under the 

                                                           
1In a recent book chapter (Zawidzki, forthcoming), Zawidzki takes 

a stronger stance on mindshaping. Although Zawidzki seemingly 

proposes mindshaping as a separate alternative to inferential 

mindreading, in doing so one may throw out the baby with the 

assumption that mindreading is a capacity that operates on 

the social environment and social knowledge, mindshaping 

may potentially have a positive effect on the tractability of 

mindreading. To assess this claim, however, it is necessary to 

characterize in more detail the different kinds of effects that 

mindshaping may have on the input of mindreading. 

 

Table 1: An illustration of polynomial and exponential time 

requirements. The input size corresponds to the size of the 

representation of the input (e.g., the observed social 

environment and social knowledge encoded in a Bayesian 

network). The other columns illustrate the difference 

between tractable (i.e., polynomial time) intractable (i.e., 

exponential time or worse). The time required to compute 

intractable theories quickly outgrows the age of our 

universe. 

 

Input 

size n 

Polynomial time 

required n2 

Exponential time 

required 2n 

5 0,25 msec. 0,32 msec. 

10 1 msec. 10 msec. 

20 4 msec. 10,5 sec. 

50 25 msec. 130312 days 

100 0,10 sec. 4×1017 years 

250 0,63 sec. 5,7×1062 years 

500 2,50 sec. 1,0×10138 years 

  

Unfortunately, the literature only vaguely provides such a 

characterization of the effects of mindshaping, which is 

thought to ‘homogenize’ the social environment and 

knowledge to make mindreading easier. Such a 

characterization is insufficient as it states only the ultimate 

effect of mindshaping (i.e., tractability of mindreading), 

which is exactly that which needs to be explained. In order to 

unravel if and how mindshaping can render mindreading 

tractable, we need to understand two things. First, we need to 

understand that by putting constraints on the input of a 

mindreading, those constraints may render mindreading 

tractable. Second, we need to understand how mindshaping 

can implement such constraints through homogeneity. 

How homogeneity should affect mindreading 

The main claim put forth by mindshaping is that 

mindshaping mechanisms positively affect the reliability of 

mindreading (Zawidzki, 2013). The term reliability, 

however, conflates two different meanings: accuracy and 

tractability. In order for mindreading to be reliable, inferred 

propositional attitudes need to be good and the computations 

need to be performed in a short amount of time (tractability). 

Perhaps counterintuitively, accuracy does not always cause 

intractability. An intractable function can be extremely 

inaccurate and it is also possible for a tractable function to, 

bathwater. If, as originally proposed, we can show how 

Mindshaping mechanisms can render inferential mindreading 

tractable, it would strengthen the plausibility of the mindshaping 

account whether it is separate of mindreading or not. 
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instead, be accurate. Even approximate accuracy (compared 

to e.g., optimality) does not necessarily grant tractability (van 

Rooij & Wareham, 2012). It seems, therefore, that the reason 

mindreading is tractable for humans lies not in mindreading 

trading off accuracy, but in the homogeneity effect that 

mindshaping has. 

Research has focused on characterizing the phylogenetic, 

ontogenetic and cultural evolution of human social cognition 

(Mameli, 2001; Zawidzki, 2008, 2013). Although the 

computational details are underspecified, the mindshaping 

hypothesis clearly states that the tractability of mindreading 

is not obtained by altering the mindreading capacity, but by 

changing the socio-cultural environment and social 

knowledge on which mindreading operates. Mindshaping 

mechanisms are hence not modules (Zawidzki, 2009, 2013). 

Therefore, for the purpose of assessing the claim about 

mindreading tractability, they can be considered 

complementary to mindreading. This allows us to abstract 

away from the evolutionary mechanisms that underlie 

mindshaping and focus on their homogeneity effect. 

The solution for tractable mindreading lies “not within 

human mind readers, but, rather, outside of them" (Zawidzki, 

2009). The idea is promising, since it is known that some 

intractable functions f:I→O can be tractable when their input 

domain is constrained f’:I’→O, where I’⊂I (Downey & 

Fellows, 1999; van Rooij, 2008). These constraints can be the 

result of naturally occurring or ‘mindshaped’ structure in the 

world. They are formally defined as restrictions on properties 

of the input of computational-level models, called parameters 

(e.g., see Figure 1). When the tractability of a function is 

obtained through such restrictions it is said to be fixed-

parameter tractable for that subset of the input. Fixed-

parameter tractability, however, is a formal, mathematical 

property of computational-level models. In order to assess if 

homogeneity can render mindreading tractable, we need a 

formal computational-level model of mindreading. Although 

such an account does not yet exist for mindreading in general, 

we can investigate the tractability claim using a special-case 

capacity for mindreading. In the next section, we take 

(inferential) action understanding as a special case of 

(inferential) mindreading and present possible ways of 

operationalizing homogeneity in Bayesian inverse planning 

(Baker, Saxe, Tenenbaum 2009). We then show that only 

certain combinations of homogeneity effects render Bayesian 

inverse planning tractable, whilst other do not. 

Bridging homogeneity to tractability of 

Bayesian inverse planning 

The ability to understand what goals underlie the actions of 

others is a prime example of the human capacity to mindread. 

In the Bayesian inverse planning model (Baker et al. 2009), 

action understanding is characterized as inferring the most 

probable goal given observed social behavior. In other 

words, a mapping from an observed socio-cultural 

environment (consisting of observed behaviors, actions and 

context) and social knowledge (about planning) to the 

intentional attributions (goals) that best explain the 

observations. Table 2 compares the input and output domains 

of mindreading and Bayesian inverse planning and Figure 1 

illustrates the Bayesian network that underlies Bayesian 

inverse planning. 

 

Figure 1. In Bayesian inverse planning knowledge about 

planning is represented by state, action and goal variables 

(circles) and the probabilistic dependencies between them 

(arrows). Each variable has a domain (boxes). The input of 

the model consists of such a network and observed states 

and actions (gray variables). The output is the most likely 

value assignment to the goal variables. Several parameters 

are: The number of goals |G|, the number of observed 

actions |A|, the maximum number of values a goal variable 

can have g and the maximum number of values an action 

variable can have a. 

 
Table 2. Comparing the input and output of the mindreading 

capacity with those of the special case Bayesian inverse 

planning model. 

 

 Mindreading 
Bayesian inverse 

planning 

Input observed socio-

cultural environment 

and  

social knowledge 

observed states, 

actions 

and 

knowledge about 

planning encoded in a 

Bayesian network  

 

Output intentional 

attributions 

most probable goals, 

given the input 

 

Like Bayesian inference (Chater, Tenenbaum, & Yuille, 

2006; Martignon & Hoffrage, 2002), Bayesian inverse 

planning is computationally intractable in general (Blokpoel 

et al., 2013). This is consistent with the idea that (inferential) 

mindreading is computationally intractable too. Blokpoel et 

al. (2013), however, used formal analysis to prove that when 

certain constraining assumptions are made on the input of 

Bayesian inverse planning, it becomes tractable. To 

investigate whether or not a more homogeneous socio-

cultural environment and more homogeneous social 

knowledge may lead to tractable mindreading, we have to 

build a bridge all the way to Bayesian inverse planning. We 
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first start by illustrating possible interpretations of 

homogeneity. We then operationalize these interpretations in 

Bayesian inverse planning, and finally relate the 

operationalized homogeneity effects with known 

computational tractability results. 

Interpreting homogeneity effects 

There are two types of homogeneity that are consistent 

with the mindshaping literature: Cognitive homogeneity and 

mindshaping homogeneity. This analysis is a first attempt and 

by no means exhaustive, i.e., more homogeneity effects may 

be postulated/discovered in the future. For example, our 

analysis will point to possible novel homogeneity effect that 

is not yet covered by a mindshaping mechanism.  

 

Cognitive homogeneity 

Since all humans have similar biological and cognitive 

systems, one could argue that humans also share the majority 

of their propositional attitudes. For example, if all humans 

behave rationally, they all have the same (rational) bias when 

deciding how to act to achieve a goal.  

Cognitive homogeneity mechanisms may result in a 

population where sets of intentions overlap a lot (i.e., most of 

people’s possible intentions are shared; CH-S). This, 

however, does not necessarily restrict the number of possible 

intentions, as the shared set can still be very large. 
Furthermore, Zawidzki argues that tractability of 

mindreading cannot be achieved only by cognitive 

homogeneity. This seems to make sense from a 

computational perspective as well. Even if, for example, all 

humans mindread ‘rationally’ this does not explain why 

mindreading is tractable. And even if all humans share most 

of their intentions, that set can still be extremely big. Other 

restrictions are needed to provide any computational benefits.  

 

Mindshaping homogeneity 

Mindshaping homogeneity is effected by a set of mechanisms 

either cognitive, cultural or evolutionary that decrease the 

heterogeneity of the socio-cultural environment and social 

knowledge. For example, by having a culture that keeps 

reinforcing the same knowledge and behaviors through 

pedagogy, norms enforcement and imitation (Zawidzki 

2013), the knowledge in that population can become more 

and more homogeneous over generations. 

Mindshaping homogeneity can be conjectured to result in 

the following restrictions as a consequence of biased 

transmission of knowledge over generations: 

• Biased transmission can restrict on the number of 

available behaviors in a population (MH-B); 

• Biased transmission can make social knowledge 

(i.e., the relations between behaviors and intentions) 

less ambiguous (MH-A). 

• Mindshaping mechanisms resulting in ritualization 

phenomena may limit, regardless of the total 

number of possible actions available, the number of 

executed and observed actions (MH-R). 

• Habitualization and culture codification may further 

limit the complexity of what people can achieve to 

facilitate social understanding (MH-C). 

In the mindshaping literature, the focus has been on 

identifying the nature of the mindshaping mechanisms that 

lead to homogeneity. Here instead, we focus on the actual 

contribution of mindshaping mechanisms and the relative 

homogeneity. Hence, we assume the validity of mindshaping 

as a starting point, together with homogeneity, and 

investigate if their effect can render an intractable model of a 

mindreading capacity tractable. 

Operationalizing homogeneity effects in Bayesian 

inverse planning 

Taking Bayesian inverse planning as our case-study we can 

now investigate the possible input-restrictions that can result 

from the mindshaping hypothesis for action understanding, 

and show which of the homogeneity-based restrictions may 

lead to tractability of action understanding. To this end, we 

build the final part of our bridge by linking the homogeneity-

based restrictions to input restrictions of the Bayesian inverse 

planning model. The effect of these restrictions on the 

(in)tractability has been investigated by Blokpoel et al. 

(2013). Table 3 and Figure 1 provide an overview of the five 

parameters they analyzed. 

The above-mentioned parameterizations of Bayesian 

inverse planning and the previously given interpretations of 

homogeneity make it possible to operationalize homogeneity. 

Our contribution is to provide these operationalizations as 

restrictions on input parameters for Bayesian inverse 

planning. We go beyond what is currently in the literature by 

fleshing out more detailed effects that mindshaping might 

have. 
 

Table 3. Possible parameters for the Bayesian inverse 

planning model (taken from Blokpoel et al. 2013) and their 

associated homogeneity hypothesis. 

 
 Homogeneity Description 

|A| MH-R (partly) The number of actions that are 

observed by an interpreter. 

|G| MH-C The number of goal variables 

that are inferred by an 

interpreter. 

a MH-B The number of available actions 

values per action variable. 

g unknown The number of available values 

per goal variable. 

1-p MH-A The probability of the most 

likely goal inference, dependent 

on the probabilistic knowledge 

encoded in the Bayesian 

network. 

 

Restricting the number of observed actions |A| 

Parameter |A| defines the number of actions that an 

interpreter observes in order to infer the underlying goal. 
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Mindshaping mechanisms at work in phenomena like 

ritualization may limit the number of executed and observed 

actions. However, ritualized behavior may only explain why 

|A| may be small in those codified situations. Action 

understanding transcends those cases. If MH-R proponents 

are committed to small |A| in general, the account needs to be 

strengthened. Regardless, restricting |A| does not lead to any 

known tractability result.  

 

Restricting the number of inferred goals |G| 

If action understanding is to be tractable, then one option is 

for |G|, the number of possible goals that an interpreter 

actually pursues, to be small (together with g). If, within a 

social community, an actor would like his/her actions to be 

timely interpretable to others, then this actor might pursue 

few goals at a given time so as to make |G| small. This 

behavior might be the result of mindshaping mechanisms 

such as habitualization, culture and phenomena like 

ritualization (MH-C). 

 

Restricting the domain of actions a 

Parameter a can be seen as the maximum number of possible 

actions that are available at any point in time. This number is 

upper-bounded by the total number of possible actions that 

are available to a person (MH-B). 

 

Restricting the domain of goals g 

Parameter g can be seen as the maximum number of possible 

goal attributions available for the given inference. This 

number is upper-bounded by the total number of intentions 

available to an agent. One might argue that sharing the same 

intentions (CH-S) may lead to a restriction on g, but it does 

not as humans may in principle share even an infinitely large 

set. If anything restricts g, it seems there must be some not 

yet discovered mindshaping process that does so, or another 

cognitive process that selects the relevant intentions from the 

set of all possible intentions. The latter, however, would 

imply solving the relevance problem (Fodor, 1983, 2001; 

Pylyshyn, 1989) which is notoriously hard but perhaps the 

solution lies in a combination of mindshaping and cognitive 

relevance selection. Due to the ubiquity of g in tractability 

results discovering these processes would be paramount for 

having a complete picture of the relation between 

homogeneity and tractability of mindreading. 

 

Restricting the ambiguity of behavior to make 1-p low 

The relational probabilities between variables can be seen 

as encoding the social knowledge that is brought to bear when 

inferring the most probable goal. The prior probabilities of 

variables can be seen as the disposition a person has towards 

particular unobserved variables (such as goals) at the time of 

the inference. Together, these probabilistic relations between 

variables and the prior probability of variables may be shaped 

                                                           
2 Blokpoel et al. proved that Bayesian inverse planning can 

encode and ‘solve’ computational problems that are amongst some 

of the hardest problems known in computer science. For details (and 

a full tutorial) see Blokpoel et al. (2013).  

by pedagogy, norm following and imitation such that, 1-p is 

low (MH-A). 

Computational complexity of Bayesian inverse 

planning in ‘mindshaped’ worlds 

Blokpoel et al. (2013) proved several computational 

complexity results for Bayesian inverse planning.2 These 

results show that tractability is not easily achieved. Even 

restricting multiple parameters simultaneously does not 

necessarily render the model computationally tractable. The 

following two intractability results prove that either by 

themselves or in combination, these restrictions do not make 

Bayesian inverse planning tractable: 

1. Restricting |A|, a, and |G| simultaneously, or 

2. Restricting |A|, a and g simultaneously 

 

Importantly, none of the parameters by themselves render 

Bayesian inverse planning tractable.3 Only when the right 

combination of parameters is restricted, i.e., only when the 

world is mindshaped in the right way, Bayesian inverse 

planning does become tractable. The following two results 

show that if either (3) or (4) or both conditions hold, then 

action understanding is tractable.  

3. Restricting |G| and g, and/or 

4. Restricting 1-p and g 

 

These two tractability results show that in principle, under 

the correctly (mind)shaped conditions, Bayesian inverse 

planning can be tractable. However, the results also reveal (at 

least for the restricted case of action understanding) a gap in 

the mindshaping theory. While one of the main claims of 

mindshaping is the importance of homogeneity for the 

tractability of mindreading, homogeneity alone cannot (yet) 

fully explain tractability. All known tractability results show 

that a restriction on g is always necessary for tractability, but 

no known mindshaping process leads to that restriction. 

Discussion 

Explaining why people can understand what motivates 

other people’s behavior quickly is, at least from a 

computational perspective, not trivial. Often, culture or 

evolution are used to trivialize the paradox of mindreading 

intractability and explain the speed at which people 

understand the social world around them. These ideas are 

embodied by Zawidzki’s mindshaping hypothesis. In our 

analysis, we have shown that, a bridge can be built between 

mindshaping and a special-case capacity for mindreading, a 

lot of ground still needs to be covered if these ideas are to 

fully deal with the intractability paradox. 

By detailing possible interpretations of mindshaping 

effects and relating those to known (in)tractability results for 

a computational model of action understanding, we have 

3No results are known for 1-p by itself. It is, however, prudent to 

assume that restricting 1-p by itself also does not lead to tractability 

of Bayesian inverse planning. 
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shown that only very specific combinations of mindshaping 

effects have the potential to explain the performance of 

human mindreading. 

The analysis has also revealed that a restriction on the 

number of available intentions (specifically, the maximum 

number of possible goal attributions) is a necessary condition 

for tractability. At the same time, no clear homogeneity effect 

leads to this restriction. Theoreticians interested in 

computationally explaining the speed of human mindreading 

through mindshaping may look for mindshaping mechanisms 

that specifically lead to this constraint. 

Even for a restricted case of mindreading such as action 

understanding, some of these restrictions have an effect on 

the tractability of this capacity, while others do not. It stands 

to reason that caution is in order when claims about 

tractability are concerned. While not exhaustive, our analysis 

can be seen as a structured attempt at capturing philosophical 

and psychological claims about the influence of culture on 

mindreading into a systematic computational framework. 

References  

Adams, R., Rule, N., Franklin, R., Wang, E., Stevenson, M., 

Yoshikawa, S., … Ambady, N. (2010). Cross-cultural 

reading the mind in the eyes: an fMRI investigation. 

Journal of Cognitive Neuroscience, 22(1), 97–108.  

Alechina, N., & Logan, B. (2010). Belief ascription under 

bounded resources. Synthese, 173(2), 179–197.  

Apperly, I. (2010). Mindreaders: the cognitive basis of‘ 

theory of mind’. Psychology Press. 

Baker, C. L., Saxe, R., & Tenenbaum, J. B. (2009). Action 

understanding as inverse planning. Cognition, 113(3), 

329–349.  

Baker, C. L., Tenenbaum, J. B., & Saxe, R. R. (2008). 

Bayesian models of human action understanding. 

Consciousness and Cognition, 17(1), 136–144.  

Blokpoel, M., Kwisthout, J., van der Weide, T. P., Wareham, 

T., & van Rooij, I. (2013). A computational-level 

explanation of the speed of goal inference. Journal of 

Mathematical Psychology, 57(3–4), 117–133.  

Chartrand, T. L., & Bargh, J. A. (1999). The chameleon 

effect: The perception–behavior link and social 

interaction. Journal of Personality and Social 

Psychology, 76(6), 893. 

Chater, N., Oaksford, M., Nakisa, R., & Redington, M. 

(2003). Fast, frugal, and rational: How rational norms 

explain behavior. Organizational Behavior and Human 

Decision Processes, 90(1), 63–86. 

Chater, N., Tenenbaum, J. B., & Yuille, A. (2006). 

Probabilistic models of cognition: Conceptual 

foundations. Trends in Cognitive Sciences, 10(7), 287–

291. 

Cherniak, C. (1986). Limits for knowledge. Philosophical 

Studies, 49(1), 1–18. 

Downey, R. G., & Fellows, M. R. (1999). Parameterized 

Complexity. New York, NY: Springer New York.  

Fodor, J. (1983). The Modularity of Mind. (Z. W. Pylyshyn, 

W. Demopoulos, Z. W. E. Pylyshyn, & W. E. 

Demopoulos, Eds.)Philosophical Review (Vol. 94). 

MIT Press.  

Fodor, J. (2001). The Mind Doesn’t Work That Way: The 

Scope and Limits of Computational Psychology. 

Representation and mind (Vol. 10). MIT Press. 

Frixione, M. (2001). Tractable competence. Minds and 

Machines, 11(3), 379–397.  

Gigerenzer, G. (2008). Why heuristics work. Perspectives on 

Psychological Science, 3(1), 20–29.  

Goldman, A. I. (2006). Simulating Minds. Philosophical 

Books (Vol. 49). 

Heal, J. (1996). Simulation, theory, and content. Theories of 

Theories of Mind, 75–89. 

Levesque, H. J. (1988). Logic and the complexity of 

reasoning. Journal of Philosophical Logic, 17(4), 355–

389.  

Mameli, M. (2001). Mindreading, Mindshaping, and 

Evolution, 597–628. 

Marr, D. (1982). Vision. San Francisco: W.H. Freeman and 

Company. 

Martignon, L., & Hoffrage, U. (2002). Fast, frugal, and fit: 

Simple heuristics for paired comparison. Theory and 

Decision, 52(1), 29–71.  

Perez-Zapata, D., Slaughter, V., & Henry, J. D. (2016). 

Cultural effects on mindreading. Cognition, 146, 410–

414. 

Pylyshyn, Z. W. (1989). The Robot’s Dilemma: The Frame 

Problem in Artificial Intelligence. Norwood: Ablec 

Publishing Corporation. 

Thagard, P., & Verbeurgt, K. (1998). Coherence as constraint 

satisfaction. Cognitive Science, 22(1), 1–24. 

Tomasello, M., Carpenter, M., Call, J., Behne, T., & Moll, H. 

(2005). Understanding and sharing intentions: The 

origins of cultural cognition. Behavioral and Brain 

Sciences, 28(5), 675–691. 

Tsotos, J. K. (1990). Analyzing vision at the complexity 

level. Behavioral and Brain Sciences, Behavioral(13), 

423–469. 

van Rooij, I. (2008). The Tractable Cognition Thesis. 

Cognitive Science: A Multidisciplinary Journal, 32(6), 

939–984. 

van Rooij, I., & Wareham, T. (2012). Intractability and 

approximation of optimization theories of cognition. 

Journal of Mathematical Psychology, 56(4), 232–247. 

Zawidzki, T. (forthcoming). Mindshaping. In A. Newen, L. 

de Bruin, & S. Gallagher (Eds.), Oxford Handbook of 

4E Cognition. Oxford University Press. 

Zawidzki, T. (2008). The function of folk psychology: mind 

reading or mind shaping? Philosophical Explorations, 

11(3). 

Zawidzki, T. (2009). Theory of mind, computational 

tractability, and mind shaping: 2009 Performance 

Metrics for Intelligent Systems Workshop. In 

Proceedings of the 9th Workshop on Performance 

Metrics for Intelligent Systems (pp. 149–154). ACM. 

Zawidzki, T. (2013). Mindshaping: A New framework for 

understanding human social cognition. MIT Press. 

1423



Using mouse-tracking data to visualise decision landscapes
Arkady Zgonnikov (arkady.zgonnikov@nuigalway.ie)
School of Psychology, National University of Ireland, Galway

Andrea Aleni (andrea.aleni@gmail.com)
Department of Electrical Engineering and Information Technology

University of Naples Federico II, Italy

Petri Piiroinen (petri.piiroinen@nuigalway.ie)
School of Mathematics, Statistics & Applied Mathematics

National University of Ireland, Galway

Denis O’Hora (denis.ohora@nuigalway.ie)
School of Psychology, National University of Ireland, Galway

Abstract

Computerised paradigms have enabled decision making re-
searchers to gather rich data on human behaviour, including
information on motor execution of a decision, e.g., by track-
ing mouse cursor trajectories. As the number and complexity
of mouse-tracking studies rapidly increase, more sophisticated
methodology is needed to analyse the decision trajectories.
Here we present a new computational approach to generat-
ing decision landscape visualisations based on mouse-tracking
data. Decision landscape is an analogue of energy potential
field mathematically derived from velocity of mouse move-
ment during a decision. Visualised as a 3D surface, it pro-
vides a comprehensive overview of motor evolution of deci-
sions. Employing the dynamical systems theory framework,
we develop a new method for generating decision landscapes
based on arbitrary number of trajectories. The decision land-
scape visualisation have potential to become a novel tool for
analysing mouse trajectories during decision execution, which
can provide new insights into the dynamics of decision mak-
ing.

Keywords: decision making; mouse tracking; dynamical sys-
tems; visualisation

Introduction
Traditionally, decision making studies have been focused on
what people choose and explaining the mechanisms lead-
ing to the observed choice outcome distributions. Sequen-
tial sampling models (Busemeyer & Townsend, 1993; Rat-
cliff & Rouder, 1998) make predictions on the time required
for the decision maker to arrive to a decision, thereby stimu-
lating empirical research to measure response times in addi-
tion to choice outcomes. However, in the past decade, deci-
sion making researchers have been employing more advanced
experimental paradigms, measuring behavioural activity dur-
ing decision-making to investigate whether how we choose is
meaningfully related to what we choose.

A variety of experimental methods have been used to
study the cognitive processes underlying decision making.
One class of paradigms, including eye tracking (Orquin &
Loose, 2013) and different variations of information search
paradigm (Payne, 1976), taps attentional processes, trying to
answer the question of what information is attended to in the
course of decision. Another strand of research, focused on

hand or mouse tracking, examines how decisions are exe-
cuted through motor system. These studies interpret motor
output of a decision as a continuous trace of decisional pro-
cesses. In a typical experiment on mouse tracking, the partici-
pant chooses between the two options presented in the corners
of a computer screen (Fig. 1). The dynamics of the response,
as expressed in recorded mouse cursor trajectories, can then
reveal the degree of competition between the two options dur-
ing choice.

Mouse (or hand) tracking have been employed to in-
vestigate decision making dynamics in a variety of differ-
ent domains, e.g., speech processing (Spivey, Grosjean, &
Knoblich, 2005), social categorisation (Freeman, Ambady,
Rule, & Johnson, 2008; Freeman & Ambady, 2011), and in-
tertemporal choice (Dshemuchadse, Scherbaum, & Goschke,
2013; O’Hora, Carey, Kervick, Crowley, & Dabrowski,
2016). The recent development of “off-the-shelf” solutions
for capturing mouse cursor data (Freeman & Ambady, 2010;
Kieslich, Wulff, Henninger, & Haslbeck, 2017) has further
increased the amount and complexity of the data generated
by mouse-tracking studies. However, the vast majority of
available studies utilise only few basic measures derived from
rich mouse-tracking data. At the same time, much potentially
important information conveyed by mouse trajectories is still
very often ignored. More advanced analysis methods can po-
tentially enable us to get deeper insights from the rich data
provided by the mouse-tracking paradigm.

Here we present a new computational approach for il-
lustrating mouse-tracking data via three-dimensional visu-
alisations of decision landscape. Recently, a method was
suggested to infer such visualisations directly from the
data (O’Hora, Dale, Piiroinen, & Connolly, 2013). Here,
we build up on this work, employing an alternative, model-
based approach. We assume that the decision process, as
reflected by a mouse trajectory, is governed by a ’potential
energy’ landscape. The parameters defining the form of the
landscape for each decision can then be fitted to capture spe-
cific mouse motion trajectory during that decision. Visualised
as a 3D surface, this decision landscape provides a com-
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Figure 1: Typical setup of a mouse-tracking experiment. Plot-
ted in green is an actual mouse trajectory representing binary
choice in a learning task (O’Hora et al., 2013)

Figure 2: Mouse trajectory from Fig. 1 and a hypothetical
decision landscape driving the decision process. The grey
line is a projection of the trajectory on the decision landscape.
The figure is based in part on visualisation of hypothetical
decision attractor manifold by Spivey and Dale (2006).

prehensive overview of motor evolution of decisions. The
suggested method can generate illustrations of decision land-
scapes based on arbitrary number of trajectories. Using previ-
ously collected data on a learning task (O’Hora et al., 2013),
we demonstrate how decision landscape visualisations can be
used to compare sets of mouse trajectories between experi-
mental conditions or individual decision makers in a compre-
hensive, visually appealing way.

Visualising decision landscape
The proposed method is aimed at reconstructing a 3D deci-
sion landscape based on a mouse trajectory of a decision (or
a set of trajectories). We assume that each trajectory can be
described by a dynamical system of a specific form, which
incorporates a parametrised function describing the shape of
the two-well landscape. By fitting this dynamical system to a
set of trajectories, we obtain specific values of the parameters
characterising these particular trajectories. We can then use
these parameters to generate the 3D visualisation of the deci-
sion landscape characterising all of the given decisions. The
source code implementing all the procedures of the method in
Python is available via Open Science Framework (Zgonnikov,
Aleni, Piiroinen, O’Hora, & di Bernardo, 2017).

Data requirements and preprocessing
To visualise decision landscapes, we use two-dimensional
trajectories obtained in a typical mouse-tracking experiment
(Fig. 1). We assume that each decision trajectory starts in the
bottom centre part of the screen and ends in either top left or
top right corner. The method can be generalised to the case of
more than two choice options; with minor adjustments (e.g.,
using two-dimensional projections of 3D trajectories) it can
as well be used with any other experimental paradigm gen-
erating simple enough continuous trajectories, for instance,
arm reaching (Song & Nakayama, 2008; Gallivan & Chap-
man, 2014).

Importantly, the current version of the method assumes
continuity and smoothness of the trajectories, which is not
always the case. In a fraction of experimental trials, partic-
ipants change their mind in the course of a trial, which is
indicated by major shifts in the x-direction of a decision tra-
jectory (Resulaj, Kiani, Wolpert, & Shadlen, 2009; Freeman,
2014). The deterministic dynamical model of a decision tra-
jectory utilised in the present method does not account for
such changes-of-mind, so we recommend using the method
only with the trajectories without abrupt shifts.

As screen size and proportions can differ between experi-
ments, we illustrate the method for spatially normalised tra-
jectories. In particular, the screen coordinates are assumed to
be rescaled such that each trajectory originates near (x,y) =
(0, 0) and ends in the vicinity of (x,y) = (−1, 1) (left target)
or (x,y) = (1, 1) (right target).

Each trajectory is supposed to be described by the time se-
ries of x- and y-coordinates of the mouse cursor on the screen.
In addition to this data, the method also requires x- and y-
velocities of the mouse cursor at each time step, which are
computed numerically.

Model of trajectory dynamics
Without aiming at developing a model explaining the dynam-
ics of a decision, we use a simple dynamical system to de-
scribe the decision trajectory, capturing the high-level fea-
tures of motion of the mouse cursor. We describe the time
dependent x- and y-components of a decision trajectory by a
system of ordinary differential equations

τẋ =−∂V
∂x

,

τẏ =−∂V
∂y

,

(1)

where ẋ = dx
dt and ẏ = dy

dt are the time derivatives of x and
y, τ > 0 is the time scale parameter expressed in seconds,
V (x, y) is a function describing the decision landscape, which
defines the dynamics of the system, and ∂V

∂x and ∂V
∂y are its

partial derivatives with respect to x and y.
Our method is not constrained by some particular function

V (x,y); here we use one of the simplest possible variants.
We assume that V (x,y) comprises a fixed baseline component
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Vx(x)+Vy(y) and a parametrised component Vxy(x, y) so that

V (x,y) =Vx(x)+Vy(y)+Vxy(x,y), (2)

where Vx(x) and Vy(y) are polynomials chosen in a way that
the two target locations, (-1, 1) and (1, 1), are attracting steady
states (“attractors”), and the starting location (0, 0) is a re-
pelling state of the system (1) given that Vxy(x, y)≡ 0. Thus,

Vx(x) =
∫

∂Vx

∂x
dx =

∫
x(x+1)(x−1)dx =

x4

4
− x2

2
, (3)

Vy(y) =
∫

∂Vy

∂y
dy =

∫
y(y−1)dy =

y3

3
− y2

2
. (4)

Having a two-attractor decision landscape as a baseline, we
introduce the parametrised polynomial component Vxy(x,y) to
be able to account for asymmetry in the landscape and other,
more intricate properties of experimental trajectories. Here,
also for the reason of simplicity, for Vxy(x,y) we use a poly-
nomial function of x and y

Vxy(x,y) =
α

∑
k=2

∑
i, j>0
i+ j=k

ci jxiy j/(k−1), (5)

where the parameter α ≥ 2 determines the number of terms
in the polynomial, which in turn regulates flexibility of the
model, and the coefficients ci j are fitted to the data. Note that
with increasing α the number of free parameters increases,
thus the fitted values of these parameters may be difficult to
interpret for large α. We recommend using the method with
α= 2, 3, or 4, depending on the complexity of the trajectories,
and to take into account the trade-off between approximation
accuracy and interpretability of the parameters.

The effect of the model parameters τ and ci j on the shape
of the decision landscape can be analysed independently of
the experimental data (Fig. 3). For any α, two parameters
always enter the model, τ and c11. The parameter τ affects
the characteristic time scale of the system motion: the larger
the value of τ, the slower the motion of the mouse generated
by the model (in both directions). In what follows we use the
baseline value τ = 0.05 s.

The parameter c11, corresponding to the only second-order
polynomial term of the model, is the primary determinant of
the asymmetry of the decision landscape. Such asymmetry
may be caused, for instance, by strong prevalence of one de-
cision outcome over the other. Another possible example of
asymmetry would be a situation when the trajectories towards
one option are consistently faster compared to the trajectories
pointing to the other option, with the two options being cho-
sen equally likely.

When α ≥ 3, additional polynomial terms enter Vx,y(x,y).
The effects of the parameters ci j in front of these higher-order
terms are somewhat similar to those of τ and c11, but allow
for much finer tuning of the decision landscape to the experi-
mental trajectories.

Fitting the model to the single trajectory
For a single experimental trajectory, we aim to find the pa-
rameters allowing the model (1)–(5) to reproduce this trajec-
tory as closely as possible. We can define the fitting error in
two ways: as a function of the positional difference between
the data and the modelled trajectory, or based on the differ-
ence in mouse velocities between the data and the model. The
first approach would result in a more accurate approximation
of trajectories, but requires substantially more computational
time, as on each step of the fitting algorithm the system of dif-
ferential equations (1) has to be integrated numerically. The
second approach, employing the velocity-based fitting error,
is much more efficient in terms of computational resources,
sometimes at the expense of approximation accuracy. Here
we focus on the latter; the supplied source code implements
both approaches.

Given an experimental mouse trajectory sampled at m time
steps and the numerically derived mouse velocities {vdata

x ,
vdata

y }, we define the fitting error

H(τ,ci j,{vdata
x ,vdata

y }) =
1
m

m

∑
i=0

(vmodel
x (xi,yi)−vdata

x (ti))2 +(vmodel
y (xi,yi)−vdata

y (ti)),

(6)

where vmodel
x,y (xi,yi) are the values of the right-hand side of

the system (1) computed at each point (xi,yi) along the ex-
perimental trajectory. These values depend on the current
parametrisation of the model, so the defined error function
depends both on the model parameter values and the experi-
mental trajectory.

Using numerical optimisation routines (available, e.g., in
the Python package scipy.optimize), one can find the val-
ues of the model parameters τ,ci j minimising function (6) for
a given mouse trajectory. These parameters are substituted in
Eq. (5), which, along with Eqs. (2)–(4), fully specifies V (x,y).
The 3D plot of the function V (x,y)/τ then visualises the de-
cision landscape representing the original trajectory.

Fitting to multiple trajectories
Visualising a decision landscape that would integrate the
properties of multiple trials (within a single experimental con-
dition, individual participant, or a group of participants) is
where the method can prove most useful. To be able to do
this, we use the same approach as in the case of a single trial,
and minimise the average error across individual trials in a
set of trials. Given the set of N trajectories and their veloci-
ties {vdata

x ,vdata
y }N

n=1, the fitting error for multiple trajectories
is defined by

Ĥ(τ,ci j,{vdata
x ,vdata

y }N
n=1) =

1
N

N

∑
n=1

H(τ,ci j,{vdata
x ,vdata

y }n),

(7)
where H is defined in (6).
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Figure 3: Changes in the baseline decision landscape depending on the parameters of the model for α = 2. In each panel, all
parameters except for the one in the panel title are fixed at the baseline levels τ = 0.05, ci, j = 0; the baseline landscape is shown
in grey colour. In this and the following figures, the black marble marks the starting location of a trial.

Example scenarios
We illustrate several potential scenarios of using our method
to visualise mouse tracking data by applying it to the pre-
viously obtained experimental data on a simple learning
task (O’Hora et al., 2013). The task consisted of a series of
binary choices between abstract symbols, with each symbol
yielding either low or high reward (e.g., 5 or 20 points). The
goal of the participants was to get as many points as possible
throughout a set of 36 trials, which included low vs. low, high
vs. low, and high vs. high choices. By the end of the experi-
ment, most of the participants successfully learned to choose
only the symbols associated with high reward.

Here we only consider part of the dataset corresponding
to high vs. low choices, so that there is always a “correct”
choice. The data are preprocessed so that the correct (“high”)
option is mapped to right-hand corner of the screen, and in-
correct option is located in the left-hand corner. To fit the ex-
perimental data, we used the version of the model with α = 4,
which has seven free parameters. The baseline values of the
parameters were set to τ = 0.05, ci j = 0.

Fig. 4 shows the example decision landscapes obtained for
three trajectories generated by Participant 444. The shape
of the fitted landscape changes depending on the dynamics
of the decision. Two key properties of a mouse trajectory
reflected by the fitted decision surface are: motion time, i.e.,
the how long it takes for the cursor to reach the response area
once it leaves the starting location, and maximum deviation of
the trajectory from the ideal, straight-line trajectory (termed
“max-d”).

Importantly, the decision landscape is supposed to capture
dynamics rather than geometry of the mouse trajectory. How-
ever, with increasing deviation of the trajectory towards un-
chosen option, the strength of the attractor corresponding to
that option increases. Moreover, in extreme cases, when de-
viation towards competitor option is very large, the attractor
representing the unchosen option can be even stronger than
the attractor corresponding to the eventually chosen option
(yellow surface in Fig. 4). This situation, paradoxically indi-
cating that the attraction towards the unchosen option during

Figure 4: Decision landscapes of three representative trials of
Participant 444. In all three trials, the subject had chosen the
option on the right (“correct choice”). Trial 2 (yellow surface)
was slow (motion time 0.72 s) and mildly conflicted (max-d
0.23). In trial 15 (purple surface), the mouse trajectory was
fast (motion time 0.15 s) and was close to straight line (max-
d 0.02). In trial 28 (green surface), the trajectory was still
relatively fast (motion time 0.37 s), but substantially curved
towards the unchosen option (max-d 0.77).
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Figure 5: Decision landscapes of the two representative par-
ticipants. Participant 2 (blue surface) had chosen right- and
left-hand-side options 7 times each (mean motion times 0.56
and 0.45 s). Red surface illustrates Participant 3 with the
right-hand-side option chosen 3 times (mean motion time 0.5
s) and the left-hand-side option chosen 10 times (mean mo-
tion time 0.4 s).

the trial was stronger than towards the chosen one, is very
rare and happens only for landscapes of individual trajecto-
ries with high max-d.

One of the potential applications of the present method is
highlighting individual differences between two participants
performing the same task. To do this, one needs to obtain de-
cision landscapes individually for each participant by fitting
the model to all trials of that individual simultaneously. In the
case of multiple-trajectory fitting, the fitting error is defined
as the average error across all trajectories of a given partic-
ipant, so the resulting decision landscape will integrate the
information on how often and how fast each option was cho-
sen, providing a comprehensive overview of the participant’s
decisions throughout the experiment.

We illustrate this by comparing the decision landscapes of
the two participants (Fig. 5). Participant 2 was equally likely
to chose either option, with faster trajectories reaching to-
wards the incorrect (left-hand-side) option. Participant 3 had
chosen the incorrect (left) response more often, and it was
chosen on average faster than the correct option.

If the experimental task involves adaptation, the current
method can be used to highlight learning patterns within sub-
jects. Fig. 6 represents three decision landscapes separately
fitted to the trajectories of three consecutive blocks of trials
of Participant 4 (with each block containing six to eight tri-
als). The decision surface gradually changes from the two-
attractor landscape slightly favouring the right attractor to the
single-attractor configuration, thereby tracking the learning-
induced evolution of preference across blocks.

Discussion
The decision landscape visualisations provide comprehensive
overview of a mouse-tracking data. Each visualisation inte-
grates the information on 1) the likelihood of each option to

Figure 6: Evolution of decisions of Participant 4 throughout
three consecutive blocks of trials. Each surface corresponds
to all trials of a block.

be chosen, 2) the duration of the response, and 3) the degree
of competition between the options.

The first attempt to develop an algorithm to visualise de-
cision landscapes based on mouse tracking data has been re-
cently made by O’Hora et al. (2013). Their approach, how-
ever, is purely data-driven, and thus requires hundreds of tra-
jectories to generate a reliable visualisation of the decision
surface. By incorporating prior assumptions about decision
landscape V (x,y) into a parametrised model, we dramatically
reduce the data requirements of our method. As demonstrated
above, the method proposed here can be used with as few tra-
jectories as one, but can also incorporate arbitrary number of
trajectories.

One of the main limitations of the proposed method is its
focus on trajectories without changes-of-mind. An important
(although relatively rare) class of decisions are those involv-
ing preference reversals during choice execution. These hap-
pen even in simple perceptual discrimination tasks (Resulaj et
al., 2009); in more cognitively demanding tasks the frequency
of changes-of-mind can increase up to 20% (Freeman, 2014).
Developing a way of visualising decision landscapes of the
change-of-mind trajectories is one of our foremost future re-
search directions.

Attractor models have proved useful in understanding out-
comes of cognitive processes such as categorisation (Tuller,
Case, Ding, & Kelso, 1994), risky decision making (van
Rooij, Favela, Malone, & Richardson, 2013), and binary de-
cision making in intermittent motor control (Zgonnikov &
Lubashevsky, 2015). This work is among the first attempts
to apply the concepts of dynamical systems theory to process
data characterising decisions. We hope that the proposed de-
cision landscape visualisation approach will eventually grow
in a new tool for analysing decision trajectories, which will be
able to provide new insights into dynamics of decision mak-
ing.
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Abstract 

Insomniacs were found to have compromised perception of 
facial expressions. Through eye movement examinations, 
here we test the hypothesis that this effect is due to impaired 
visual attention functions for retrieving diagnostic features in 
facial expression judgments. 23 individuals with insomnia 
symptoms and 23 non-insomniac controls completed a task to 
categorize happy, sad, fearful, and angry faces. The 
insomniacs were less accurate to recognize angry faces and 
made more “fearful” mistakes than controls. A hidden 
Markov modeling approach for eye movement data analysis 
revealed that when recognizing angry faces, more insomniacs 
adopted an eye movement pattern focusing on the mouth 
while more controls adopted a pattern attending to both the 
eyes and the mouth. This result is consistent with previous 
findings that the primary diagnostic feature for recognizing 
angry faces is the eyes suggesting that impaired information 
selection through visual attention control may account for the 
compromised emotion perception in insomniac individuals. 

Keywords: insomnia; eye-tracking; hidden Markov model; 
facial expression 

Introduction 

Insomnia is closely related to emotional disorders such as 

anxiety and depression (see Baglioni et al., 2010 for a 

review). In particular, compromised perception of emotional 

facial expressions, which has an important role in one’s 

socioemotional functioning, has been frequently found 

among sleep-deprived individuals or those with insomnia 

symptoms. For example, individuals with physiological 

insomnia were found to perceive fearful and sad faces as 

less emotional compared with good sleepers (Kyle et al., 

2014). Another study found that 31.5-hour sleep deprivation 

led to less accurate recognition of sad faces (Cote et al., 

2014). In addition, an fMRI study found that sleep 

deprivation made participants more likely to classify facial 

expressions as angry, and this effect was coupled with their 

diminished neural discrimination between threatening and 

non-threatening stimuli (in the anterior cingulate and 

anterior insula; Goldstein-Piekarski et al., 2015). 

Nevertheless, the underlying mechanism for the disturbed 

perception of emotional facial expressions among 

insomniacs remains unclear (Kyle et al., 2014). 

In addition to emotional functioning, insomniacs and 

sleep-deprived individuals are commonly found to have 

impaired performance in visuospatial attention tasks 

(Marchetti et al., 2006), and this behavioral impairment is 

associated with attenuated activation in the attention neural 

network comprising the prefrontal, parietal, and cingulate 

cortex (Tomasi et al., 2009; Mander et al., 2008). The 

impairment in the attention network may have a profound 

impact on cognitive performance in general, as it can 

significantly influence how task relevant information is 

selected. Indeed, attenuated activations in the attention 

network were reported to be associated with less explorative 

eye movement patterns and worse performance in face 

recognition (Chan et al., 2016). It is thus possible that 

insomniac individuals adopt different eye movement 

patterns from good sleepers in emotional facial expression 

judgments as a result of their impaired visual attention 

control, leading to compromised recognition performance.  

Here we aim to investigate the role of visual attention 

functions in accounting for insomniacs’ compromised 

identification of emotional facial expressions through eye 

tracking. Individuals with insomnia symptoms and non-

insomniac controls completed an emotional facial 

expression judgement task in which they were required to 

recognize emotional facial expressions and rate the 

emotional intensity with eye tracking. Recent studies have 

suggested four basic facial expressions that are recognized 

across cultures: ‘happy’, ‘sad’, ‘fear’ and ‘anger’ (Jack et al., 

2016). Accordingly, here we examine participants’ 

perception of these four facial expressions. Previous 

research did not consistently find disturbed perception of a 

particular facial expression in sleep-deprived or insomniac 

individuals. However, most of the expressions reported to 

be affected were negative expressions (e.g., sadness in Cote 

et al., 2014; anger in Goldstein-Piekarski et al., 2015; 

sadness and fear in Kyle et al., 2014). Thus, here we 

hypothesize that insomniac individuals may be less accurate 

in recognizing the negative facial expressions than non-

insomniac controls, and that this behavioral difference may 

be associated with differences in eye movement patterns 

adopted by the two groups.  

While eye movements are important measures for visual 

attention functions, recent studies have reported substantial 

individual differences in eye movements in visual tasks (e.g. 

Kanan et al., 2015), which were not adequately reflected in 

most of the current analysis methods. In view of this, Chuk, 

Chan, and Hsiao (2014) have recently proposed a Hidden 
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Markov Model (HMM, a type of time-series probabilistic 

model in machine learning) based approach for analyzing 

eye movement data. This approach assumes that the current 

eye fixation during a task is conditioned on previous 

fixations. Thus, eye movements in the task can be 

considered a Markov process, which can be better 

understood using HMM. In this approach, each individual’s 

eye movements are modeled with an HMM, including both 

person-specific regions of interests (ROIs) and transitions 

among the ROIs. Thus, it reflects individual differences in 

both spatial and temporal dimensions of eye movements. 

Individual HMMs can be clustered to discover common 

patterns among individuals (Coviello, Chan, & Lanckriet, 

2014), and similarities between individual eye movement 

patterns can be quantitatively assessed by calculating the 

likelihoods of the patterns being generated by a given 

HMM. Thus, this approach is especially suitable for 

examining the relationship between eye movement patterns 

and other outcome measures such as task performance (e.g., 

Chuk, Chan, & Hsiao, in press). Here we aim to apply this 

method to examine the relationship among insomnia, eye 

movements, and performance in facial expression 

categorization. We hypothesize that there may be more 

insomniac individuals adopting an eye movement pattern 

that overlooks diagnostic features for the negative facial 

expressions than non-insomniac controls, and participants’ 

likelihoods of adopting this pattern may be associated with 

their performance in recognizing the negative expressions. 

Methods 

Participants 

23 individuals with insomnia symptoms and 23 non-

insomniac controls classified by the Sleep Condition 

Indicator (SCI, Espie et al., 2014) were recruited (Table 1). 

The SCI consists of 8 items concerning an individual’s sleep 

condition during the recent month in a 0-4 Likert-style 

scale. The Chinese SCI has been validated and 

recommended as a screening tool for clinical insomnia with 

an original cut-off at 21/22 (Wong et al., 2017). To increase 

the contrast between the two groups, individuals with SCI 

scores < 19 were classified as individuals with insomnia 

symptoms, and those with SCI scores > 24 were classified 

as non-insomnia controls. Participants in the two groups 

were individually matched in gender and age. They were 

ethnically Chinese from Hong Kong and right-handed 

(Edinburgh Handedness Inventory, EHI; Oldfield, 1971). 

They had normal or corrected-to-normal vision and no 

history of head trauma or psychiatric conditions.  

 

Table 1. Participants’ demographics and sleep conditions 

 Controls 

(n=23) 

INS 

(n=23) 
Comparison test 

Age (M+SD) 18.91+0.90 18.74+0.81 t(44) = .689 

Gender 

(%male) 
30.43% 30.43% χ2(1) = 0 

SCI (M+SD) 27.61+1.80 15.70+2.94 t(44) = 16.54** 

SCI: Sleep Condition Indicator; INS: insomnia group.  

* p < .05; ** p < .01 

Design & Procedures 

Participants completed an emotional facial expression 

judgment task adapted from Kyle et al. (2014), which 

required participants to categorize and rate emotional 

intensity of 4 facial expressions (i.e. happiness, sadness, 

fear, and anger; Figure 1A). The task consisted of 2 blocks 

with 40 trials in each block (10 trials for each expression). 

In each trial, a solid dot first appeared at the screen center 

for drift correction, and it was replaced by a fixation cross 

for 500 ms. Once a fixation was detected at the cross at the 

end of the 500 ms, a color picture of an Asian individual’s 

face with an emotional facial expression (Figure 1B; 450 x 
600 pixels) was presented either above or below the center 

of the screen until the participants categorized it as a happy, 

sad, fearful, or angry face by pressing corresponding 

buttons. Participants were asked to respond as quickly as 

possible. After a 250-ms pause, they were asked to rate the 

emotional intensity of the facial expression on a 6-point 

scale, ranging from “1-not very intense” to “6-extremely 

intense”. Half of the face images were male faces; the faces 

spanned around 8°of visual angle at the viewing distance 

of 60 cm (Hsiao & Cottrell, 2008). The participants had a 

practice of 24 trials at the beginning of the task.  

Participants’ eye movements were recorded by an 

EyeLink 1000 eye tracker. The standard 9-point calibration 

procedure was used at the beginning of each block and was 

repeated whenever the drift-correction error was larger than 

1° of visual angle. The tracking mode was pupil and corneal 

reflection and the sampling rate was 2000 Hz. A chinrest 

was used during the task to reduce head movements. 

 

 
 

The eye movement data were analyzed using the 

EMHMM (Eye Movement analysis with Hidden Markov 

Models, http://visal.cs.cityu.edu.hk/research/emhmm/; Chuk 

et al., 2014) approach. Each participant’s eye movements 

while viewing one type of facial expressions was 

summarized with an HMM. The optimal number of ROIs 

for each model was determined automatically through a 

variational Bayesian approach, by selecting the model with 

the highest marginal likelihood. For each facial expression, 

we clustered all individual HMMs into 2 groups to reveal 

common patterns. We then examined the distributions of the 

insomniacs and the controls in the 2 common patterns, and 

Figure 1. (A) A demonstration of a trial with an angry face. (B) 

The average pictures of the 20 stimuli used in each emotional 

expression. From left to right: happiness, sadness, fear, anger. 
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the correlations between their likelihoods of adopting each 

pattern and behavioural performances. 

Results 

Behavioral results 

A 2 (group: insomnia vs. control) by 4 (emotion: happy, sad, 

fearful and angry) repeated measures ANOVA revealed a 

significant interaction between group and emotion on the 

accuracy of the facial expression judgment task, F(3, 132) = 

2.68, p = .049, η2 = .057. Independent t-tests between the 

insomnia and the control group in each emotion condition 

indicated that there was 8.4% higher accuracy on average to 

recognize angry faces in the control group than the insomnia 

group, t(44) = 2.12, p = .039, d = .63 (Figure 2A). This 

group difference was not found in other emotion conditions, 

ps > .05. When we examined the responses participants 

made towards angry faces (Figure 2B), the 2 by 4 repeated 

measures ANOVA indicated a significant interaction 

between group and emotion, F(3, 132) = 3.57, p = .016, η2 = 

.075. Post-hoc between-group t-tests showed a significantly 

higher percentage of “fearful” responses in the insomnia 

group than the control group, t(44) = 2.07, p = .045, d = .62.  

 

 

 
 

In the correct response time (RT) data (Figure 2C), a 2 

(group) by 4 (emotion) repeated measures ANOVA 

indicated a main effect of emotion (adjusted post-hoc 

comparisons: happy < sad, fear, and anger), F(3, 132) = 

40.72, p < .001, η2 = .48. This effect did not interact with 

group. When we examined the difference between the two 

groups in categorizing different expressions separately, the 

insomnia group responded marginally slower in identifying 

angry faces than the control group, t(44) = 1.768, p = .084, d 

= .53. The group by emotion repeated measures ANOVA on 

emotional intensity rating showed a main effect of emotion 

(adjusted post-hoc comparisons: fearful > happy, angry > 

sad; Figure 2D), F(3, 132) = 23.24, p < .001, η2 = .35. 

However, this effect did not interact with group. 

Eye movement data 

We modeled each participant’s eye movements for viewing 

each type of facial expressions with an HMM. For each 

expression type, we clustered all participants’ HMMs into 2 

representative patterns and examined the distributions of the 

insomniacs and controls adopting the 2 patterns. We 

observed that the insomnia and control groups differed 

significantly in their frequencies of adopting the 2 

representative patterns when viewing angry faces. 

Consistent with our behavioral data, this difference was not 

observed in viewing other expressions1. Figure 3A and 3B 

show the 2 representative patterns. The 3 ROIs were in red, 

green, and blue respectively and the table showed the priors 

(the probability of the first fixation being located at an ROI) 

of the ROIs and the transition probabilities among them. In 

the eye-mouth pattern (Pattern 1; n = 21), the first fixation 

was most likely to be in eye region (red ROI, 47%) or the 

mouth region (blue ROI, 42%). The next fixation from the 

eye ROI had a high probability to stay in the same (eye) 

ROI, whereas the next fixation from the mouth ROI had a 

26% probability to move to the eye region. Thus, 

participants adopting this pattern focused the most on the 

eye region, followed by the mouth region, while viewing 

angry faces. In the nose-mouth pattern (Pattern 2; n = 25), 

the first fixation was most likely to be at the nose/face 

center (red ROI, 46%) or the mouth and chin region (green 

ROI, 42%). The next fixation following the first was most 

likely to stay in the same ROI as the first fixation (> 99%), 

suggesting few transitions among the ROIs. Thus, 

participants adopting this pattern tended to focus on the 

lower part of the face (nose, mouth and chin) but neglect the 

eye region. Figure 3C shows the difference heat map 

between the two patterns: the eye-mouth pattern had more 

fixations on the right eye region (warm colors) while the 

nose-mouth pattern had more fixations on the mouth and 

chin regions (cold colors). This clear separation of the eye 

movement patterns demonstrated well the power of machine 

learning methods. 

Importantly, significantly more insomniacs adopted the 

nose-mouth eye movement pattern, and more controls 

adopted the eye-mouth pattern (Figure 3D), χ2(1) = 4.29, p = 

.038. In addition, insomniacs’ eye movement patterns had 

higher similarities to the nose-mouth pattern than those from 

controls, t(44) = -2.37, p = .022, d =.713, as measured in the 

log-likelihoods of their eye movement patterns being 

generated by the HMM of the nose-moth pattern. In 

contrast, there was no significant difference in the similarity 

of eye movement patterns to the eye-mouth pattern between 

insomniacs and controls, p > .05.  

 

                                                           
1 Due to space limit, these results were not reported here. 

Figure 2. (A) The accuracy to categorize happy, sad, fearful, and 

angry facial emotions in the control and the insomnia group. (B) 

Reponses made while angry faces were presented. (C) Response 

time to accurately categorize emotional facial expressions. (D) 

Emotional intensity rating of the 4 facial emotions in the two 

groups. (* p < .05;  .05 < p < .10; error bars: 1 s.e.m.) 
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To demonstrate the advantage of using the EMHMM 

approach to reveal these differences, we plotted the heat 

maps of the fixations of the insomnia and control groups 

and the difference map between them (Caldara & Miellet, 

2011). As can be seen in Figure 4 difference map, the 

significantly different areas (circled in white) were scattered 

and not easily interpretable. This phenomenon was due to 

significant individual differences in eye movement patterns 

within each group. The EMHMM approach allows us to 

identify the eye-mouth and nose-mouth patterns in a data 

driven fashion and clearly reveal the difference between the 

two participant groups while accounting for individual 

differences in eye movement patterns.  

When we examined the relationship between eye 

movement patterns and performances in the facial 

expression judgment task, we found that the log-likelihood 

of participants’ patterns being classified as the nose-mouth 

pattern was positively correlated the percentage of “fearful” 

responses (Figure 5A), r = .423, p = .0032: the more similar 

the pattern to the nose-mouth pattern when viewing angry 

faces, the more “fearful” mistakes made. In addition, in the 

control group, the log-likelihood of being classified as the 

eye-mouth pattern was negatively correlated with the correct 

RT of identifying angry faces (Figure 5B), r = -.451, p 

= .031: the more similar the pattern to the eye-mouth pattern, 

the faster the correct RT. This correlation was not 

significant in the insomnia group, p > .05. 

 

 

 

Discussion 

 In the current study, we aim to test the hypothesis that the 

compromised perception of emotional facial expressions in 

insomniacs is related to impaired visual attention functions 

for selecting diagnostic features as revealed in their eye 

movements. Our results showed that individuals with 

insomnia symptoms  were less accurate and marginally 

slower to identify angry faces than non-insomniac controls. 

Furthermore, insomniacs tended to misidentify angry faces 

as fearful faces more often than controls. Through the 

EMHMM approach (Chuk et al., 2014), we discovered two 

common eye movement patterns among the participants 

when viewing angry faces: an eye-mouth pattern that looked 

at the eyes and mouth primarily, and a nose-mouth pattern 

that fixated at either the nose or the mouth/chin region. 

Significantly more controls adopted the eye-mouth pattern 

and more insomniacs adopted the nose-mouth pattern. 

Indeed, the eye-mouth pattern was associated with faster 

identification of angry faces in the control group, whereas 

the nose-mouth pattern was associated with more 

misidentification of angry faces as fearful faces. These 

results suggest that insomniacs misidentified angry faces as 

fearful faces because of missing the eyes. The EMHMM 

approach is a data-driven method that reflects individual 

differences in both spatial and temporal dimensions of eye 

movements and provides quantitative assessments of 

                                                           
2  The log-likelihood of participants’ eye movement patterns 

being classified as the eye-mouth pattern was also correlated with 

the percentages of “fearful” responses, but with a smaller 

Pearson’s r, r = .394, p = .007. This effect may be due to the 

similarities between the two representative patterns. Note that the 

two patterns were significantly different: eye movements classified 

as the eye-mouth pattern had higher likelihoods of being generated 

by the eye-mouth model, and vice versa (Chuk et al., 2014).  

Figure 3. (A and B) The eye-mouth and nose-mouth representative 

eye movement patterns for viewing angry faces as the result of 

clustering. Images from left to right: 3 ROIs, actual assignments of 

the fixations to the ROIs, and heat map of eye fixations. The tables 

contain the priors and transition probabilities of the ROIs. (C) 

Difference map of actual fixations between the two patterns. (D) 

Distribution of the eye-mouth (Pattern 1) and nose-mouth (Pattern 

2) patterns in the insomnia group and the control group. 

Figure 4. Fixation heat maps of the control and insomnia group 

and the difference map between the two groups. The areas 

surrounded by white contours showed significant differences. 

Warm colors: control > insomnia; cold colors: insomnia > control. 
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similarities among individual eye movement patterns, 

making it possible to reveal these effects. These findings 

were not possible with traditional approaches to eye 

movement data analysis such as using predefined regions of 

interest (ROIs; Henderson et al., 2005) or fixation heat maps 

(iMap, Caldara & Miellet, 2011) between the insomniacs 

and the controls (Figure 3 vs. Figure 4).  

 

 
 

Our finding is consistent with previous studies suggesting 

that insomnia and sleep loss are associated with 

compromised recognition of emotional facial expressions 

(e.g. Kyle et al., 2014; Cote et al., 2014). In particular, in an 

fMRI study, Goldstein-Piekarski and colleagues (2015) 

found that experimental sleep deprivation impaired 

behavioral and neural discrimination of angry faces from 

neutral faces. Angry facial emotions signal social threats, 

and thus misidentification or slower identification of angry 

faces may elevate interpersonal conflicts of insomniac 

individuals. Interestingly, insomniacs were more likely to 

misidentify angry faces as fearful faces than controls, 

suggesting that they may misidentify social threats senders 

as social threats receivers. 

The misidentification of facial anger as facial fear in 

insomniacs corresponds to their eye movement patterns. 

Most of the insomniacs adopted a pattern that focused on 

either the nose or the mouth while missing the eye region. In 

contrast, most controls adopted a pattern that looked at 

mainly the eye region or both the eye and the mouth region. 

The finding that insomniacs missed the eye region may be 

related to their impaired perception of angry faces. Indeed, 

through the ‘Bubbles’ reverse-correlation technique, Smith, 

Cottrell, Gosselin, and Schyns (2005) showed that eyes are 

the most diagnostic feature for recognizing angry 

expressions, whereas the most diagnostic features for 

recognizing the other three expressions (i.e. ‘happy’, ‘sad’, 

and ‘fearful’) were either mainly on the mouth region or 

comprised both the mouth and the eyes (see also Schyns, 

Petro, & Smith, 2009). Consistent with this finding, 

Eisenbarth and Alpers (2011) showed that participants 

looked at the eyes longer than the mouth in recognizing 

anger and sad expressions, the mouth longer than the eyes 

for happy expressions, and the mouth and the eyes equally 

for fear and neural expressions. The exclusive importance of 

the eye region for recognizing angry faces may explain why 

we only observed behavioral differences between 

insomniacs and controls in identifying angry faces, since 

identifying other expressions do not require specific 

attention to the eye region as much as identifying angry 

expressions. 

In the literature, biased interpretation of emotional 

information after sleep loss has typically been attributed to 

impaired functioning of limbic structures such as amygdala 

and anterior cingulate cortex and the functional connectivity 

between the prefrontal cortex and these limbic structures 

towards emotional stimuli (e.g., Yoo et al., 2007; Goldstein-

Piekarski et al., 2015). In addition to this emotional brain 

network, the current study suggests that impaired attentional 

functioning may also play an important role in accounting 

for the misinterpretation of emotional information after 

sleep loss. Indeed, sleep loss is shown to affect visual 

attention control and activation in the attention brain 

network (Tomasi et al., 2009; Mander et al., 2008). 

Decreased activations in the attention brain network (e.g., 

the frontal eye field and intraparietal sulcus) are associated 

with maladaptive eye movement patterns and impaired 

recognition performance during face viewing (Chan et al., 

2016). Impaired visual attention functions may cause failure 

of selecting diagnostic information for emotional face 

perception, leading to biased interpretation of emotional 

information. Our finding is consistent with Cote et al.’s 

(2014) study, which showed that impaired facial expression 

identification in sleep-deprived individuals was reflected in 

early visual ERP components including P1 and N170. 

While the current study showed impaired recognition of 

angry expressions but not other expressions in insomniacs, 

some previous studies have reported disturbed perception of 

sad and fearful faces in addition to angry faces (e.g., Kyle et 

al., 2014). Cote et al. (2014) showed that altered early visual 

ERP responses due to sleep deprivation were observed for 

all expressions, whereas difference in identification 

accuracy between sleep deprived individuals and controls 

was only observed in sad faces. This effect suggests that 

while the modulation of sleep loss in attentional functioning 

may apply to all expressions in general, whether it results in 

decreased identification accuracy may depend on how it 

affects selection of diagnostic features, since different facial 

expressions differ in their diagnostic features (Schyns et al., 

Figure 5. (A) A positive correlation between the log-likelihood of 

being the nose-mouth pattern and the “fearful” response rate 

among all participants. (B) A negative correlation between the log-

likelihood of being the eye-mouth pattern and the RT to identify 

angry faces in the control group. 
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2009). There may be individual differences in how features 

are selected and used for identification; individual 

differences in emotional functioning may also play a role. 

Future work will examine these possibilities. 

In conclusion, here we showed that insomniacs 

misrecognized angry expressions because of missing 

diagnostic features in the eye region. This effect suggests 

that the impaired perception of facial expressions after sleep 

loss may be due to diminished visual attention control in 

addition to impaired emotional functioning. To our 

knowledge, this is the first to report the role of eye 

movement in the biased perception of emotional information 

due to sleep loss. Future studies will examine eye 

movements in clinical insomnia samples and sleep-deprived 

individuals to further examine the role of visual attention 

control in emotional perception after sleep loss. 
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Abstract 
The study of multi-cue judgment investigates how decision 
makers integrate cues to predict the value of a criterion 
variable. We consider a multi-cue judgment task in which 
decision makers have prior knowledge of inter-cue 
relationships but are ignorant of how the cues correlate with 
the criterion. In this setting, a naive judgment strategy 
prescribes an equal weight for each cue. However, we find 
that many participants appear to use a weighting scheme 
based on a low-dimensional representation of the cue space. 
The use of such a representation is consistent with core 
insights in semantic memory research and has important 
optimality properties concerning judgment accuracy. 
 
Keywords: judgment and decision making; cue 
integration; improper linear models; dimensionality 
reduction; semantic memory 

Introduction 
Effective judgment and decision making involves the 

aggregation of multiple cues, or pieces of information, to 
evaluate a criterion variable. For example, individuals may 
receive advice from two or more friends regarding a 
financial investment, and aggregate this advice to calculate 
the expected return on the investment. Alternatively, they 
may have to choose between job candidates with multiple 
attributes, and have to aggregate these attributes to 
determine the quality of the candidates.  

Traditionally, many normative and descriptive models 
of judgment and decision making adopt a linear approach 
and propose that decision makers compute the value of the 
criterion using a weighted average of the cues, with the 
weights being proportional to the observed relationship 
between the cues and the criterion (Brunswik, 1952; 
Keeney & Raiffa, 1993). Linear models are often criticized 
as they require large amounts of information and abundant 
cognitive resources in order to be accurate. Thus, many 
researchers have proposed that individuals use improper 
linear models, such as heuristics. These models involve a 
fixed weighting scheme that assigns a priori weights to the 
cues. For example, an equal weights model gives each cue 

the same weight, and the lexicographic model assigns all 
the weight to a single cue (Dawes, 1979; Gigerenzer & 
Todd 1996).  These models have been shown to perform 
as well as, if not better than, proper linear models in many 
situations, ranging from graduate student admission to 
clinical predictions (Dawes, 1979). 

In addition to being cognitively simpler, improper linear 
models can also be used in situations where proper linear 
models are inapplicable. Consider settings where the 
relationship between the cues and the criterion is 
completely unknown. For example, individuals using the 
advice of their friends to judge an investment may not have 
previously observed how well their friends predict the 
performance of such investments. Likewise, individuals 
evaluating job candidates for novel or unconventional jobs 
may have never observed the value of different candidate 
attributes in the context of these jobs. In these situations, 
decision makers may have detailed knowledge about the 
relationship between the cues (e.g. how often their friends 
agree with each other or how frequently job candidate 
attributes co-occur) but have no way to assign weights to 
the cues in accordance with the standard linear model 
(where weights depend on the cues’ relationship with the 
criterion). However, an a priori weighting scheme, as 
proposed by improper linear models, can still be used to 
make an evaluation.  

For multi-cue judgment with known inter-cue 
relationships, but unknown cue-criterion relationships, the 
key questions of interest are the following: Which 
improper weighting scheme should decision makers use 
and which schemes do decision makers use. The former 
question has been tackled by Davis-Stober, Dana & 
Budescu (2010a, 2010b). Davis-Sober et al. propose that 
any possible weighting scheme, 𝜷, can be assessed with 
regards to how far it deviates from the true weight vector, 
𝜷∗, by taking the sum of squared difference between the 
weights in 𝜷  and 𝜷∗ , i.e. 𝛽$ − 𝛽$

∗ &
$ . When the cue-

criterion relationships are unknown, 𝜷∗ is also unknown. 
In these settings optimizing 𝜷 can be seen as involving 
minimizing the risk, defined as the expectation of sum of 
squared error of 𝜷, 𝛽$ − 𝛽$

∗ &
$ . By this standard, the 

best improper linear weighting scheme is the eigenvector 
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corresponding to the first (i.e. largest) eigenvalue of the 
inter-cue correlation matrix (see Davis-Stober et al. 2010 
for details). We will refer to this weighting scheme as 
𝜷𝑬𝑽𝟏. Here EV1 in the subscript refers to the use of the 
eigenvector corresponding to the first eigenvalue.  
𝜷𝑬𝑽𝟏	depends on the relationship between the cues in 

the judgment task, and can be shown, in appropriate 
settings, to approximate other existing improper linear 
models. For example, if the cues are equally, and 
positively, correlated with each other, 𝜷𝑬𝑽𝟏	 assigns an 
equal weight to each cue, similar to the equal weights 
model. In contrast, if cue 1 is highly correlated with all the 
other cues, and all the other cues are moderately correlated 
or uncorrelated internally, 𝜷𝑬𝑽𝟏	overweighs cue 1 relative 
to other cues. This can mimic a lexicographic judgment 
strategy.  

 Normative solutions aside, descriptively, which 
weighting scheme do decision makers actually use when 
integrating multiple cues with unknown cue-criterion 
relationships? A first guess involves an equal weights 
model: Without knowing which cues are more related to 
the criterion than others, it seems conceivable that decision 
makers assign the same weights to all the available cues. 
This corresponds to a type of ignorance prior. However, a 
more principled guess could rely on insights regarding 
semantic representation. Decision makers with prior 
experience with the cues may have learnt mental 
representations of the cues. These representations, in many 
settings, correspond to projections of the decision makers’ 
experiences with the cues onto a low-dimensional space. 
Such projections can be approximated by a principle 
components analysis on the cue-correlation matrix, or 
equivalently, a singular value decomposition on the matrix 
of cue-context co-occurrence. Indeed, such a 
decomposition is a key component of numerous existing 
approaches to modelling semantic representation, 
including latent semantic analysis (Landauer & Dumais, 
1997), multi-dimensional scaling (Kruskal & Wish, 1978), 
and neural network models of semantic memory (Saxe, 
McClelland & Ganguli, 2013). Interestingly, such a 
decomposition also yields the normative 𝜷𝑬𝑽𝟏	 model 
when only the first latent dimension of the projection is 
used to evaluate the criterion. 

The goal of this paper is to investigate the plausibility 
of the 𝜷𝑬𝑽𝟏 weighting scheme, and to compare its ability 
to predict participant judgments with alternate improper 
linear models such as the equal weights rule and the 
lexicographic rule. To appropriately test these models, we 
examine settings where participants have prior knowledge 
of inter-cue correlations but do not know how the different 
cues correlate with the criterion in consideration. 
Additionally, we systematically vary the cue-correlation 
matrix, and subsequently 𝜷𝑬𝑽𝟏 , in order to adequately 
differentiate the predictions of this weighting scheme from 
those of alternate weighting schemes in our studies. We 
demonstrate the applicability of 𝜷𝑬𝑽𝟏	 for describing 
participant behavior in two ways: 1) by examining the 
model fits for 𝜷𝑬𝑽𝟏	 relative to other improper linear 
models, and 2) by testing whether the weights assigned by 

𝜷𝑬𝑽𝟏	predict decision makers’ use of these other improper 
models. 

General Method 
In our three studies, the multi-cue judgment task was 
presented as an advice integration task, with the cues in 
consideration corresponding to the judgments of four 
advisors (similar to Bröder, 2003). They were described as 
predicted stock prices in Studies 1 and 2 and restaurant 
ratings in Study 3. Correspondingly, the criterion was the 
true stock price in Studies 1 and 2 and the true restaurant 
quality in Study 3. The cue-criterion correlations were 
never revealed to the participants.  

The studies consisted of three tasks. The first two tasks 
exposed the participants to the cues, so as to allow them to 
form mental representations of the cue space. The third 
task asked participants to predict the criterion value based 
on the cues. In addition to being stated numerically, cue 
values in the three tasks were also shaded based on their 
magnitude. Participants were told that the cue values 
ranged from 0-100 and were all centered at 50. They were 
also told that some cues (advisors) might be more similar 
to each other, and that it was useful to pay attention to how 
closely different cues agreed with each other. 

 
 

 
Figure 1. Stimuli display for Task 1-3.  

 
In task 1, participants saw the four cues in 25 trials 

(Figure 1: upper left) displayed in four boxes. Each trial 
presented a set of cue values, and participants were asked 
to merely observe the cue values, without providing a 
response. In task 2, participants continued to learn the cue 
values, this time with feedback. Particularly, only three of 
the four cues were shown to participants (Figure 1: lower 
left). Participants had to guess the value of the fourth cue 
based on their knowledge of the inter-cue relationships. 
After the participant’s guess, the real cue value was 
revealed. To increase motivation, participants were 
provided with a summary of their performance accuracy 
after every 50 trials. The cue to be guessed was determined 
at random in each trial.  

In task 3, participants were shown all four cue values, 
and were asked to make a guess regarding the value of the 
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criterion (real stock price for Studies 1 and 2 and actual 
restaurant quality for Study 3; Figure 1: right). The true 
value of the criterion was not revealed after participants’ 
guesses, so that participants stayed uninformed regarding 
the cue-criterion relationship. Task 3 was the most 
relevant to our research question, as it provided a direct 
test of how cue values were integrated to make a judgment 
of the criterion. 
 

Study 1 

Study 1 examines the predictions of the 𝜷𝑬𝑽𝟏weighting 
rule by considering a setting in which inter-cue 
relationships lead to a larger weight on one cue and smaller 
weights on the remaining cues.   

Methods 
44 participants (37 females; Mean Age = 19.7, SD Age = 
1.2), recruited from a university experimental 
participation pool, completed this study in a behavioral 
laboratory.   

The study involved a hypothetical stock prediction task. 
The cue values were stock prices predicted by four 
advisors. For each cue, the values were normally 
distributed, with a mean of 50 and a standard deviation of 
25. The inter-cue correlation matrix of the advisors is 
shown in Figure 2a. 

 
Figure 2 (a) Inter-cue correlation matrix for Study 1 and 
the treatment condition of Study 2. (b) Inter-cue 
correlation matrix for the control condition of Study 2. 
(c) Inter-cue correlation matrix for Study 3. 
 

As can be seen in this matrix, cue 1 is highly correlated 
with all the three other cues, with a correlation coefficient 
of 0.6. The internal correlation among the remaining cues 
is very weak, with a correlation coefficient of 0.05. The 
eigenvector corresponding to the first (largest) eigenvalue 
of the cue correlation matrix is 𝜷𝑬𝑽𝟏 = [0.35, 0.22, 0.22, 
0.22]. Using this weighting vector, leads to an 
overweighting of cue 1, and a relative underweighting of 
the remaining cues.  

We used the above distributions to generate a single set 
of stimuli for all participants, for tasks 1, 2 and 3. For each 
participant, the display position for each of the four cues 
was randomly chosen at the beginning of the study and 
stayed unchanged for the entire session. In other words, 
the specific advisor (advisor A, B, C or D) associated with 
cue 1, was counterbalanced.  

Results 
We first examined participants’ performance in task 2, 
where they used three cue values for guessing the 
remaining cue value. Our analysis of behavior in this task 
suggested that participants were able to successfully learn 
the underlying cue structure. Particularly they placed a 
higher weight on cue 1 relative to the other cues when 
predicting the remaining cues (𝑝 < 0.001). Due to space 
constraints we will not outline these results in more detail 
(they will be reported elsewhere).  

We also investigated the weighting scheme used by 
participants when integrating cues to predict criterion 
values in task 3. For this purpose, we considered a number 
of candidate weighting schemes, including 𝜷𝑬𝑽𝟏 
(corresponding to the first eigenvector of the cue-
correlation matrix) and 𝜷𝑬𝑾(corresponding to the equal 
weighting rule). We also considered lexicographic rules. 
Here, we tested four models that put all the weights on a 
single cue. These were referred to as 𝜷𝑳𝑬𝑿𝟏 , 𝜷𝑳𝑬𝑿𝟐 , 
𝜷𝑳𝑬𝑿𝟑	and 𝜷𝑳𝑬𝑿𝟒, corresponding to the cue that was given 
the unit weight. In addition to 𝜷𝑬𝑽𝟏, we also considered 
the linear weighting schemes corresponding to the 
remaining three eigenvectors of the cue correlation matrix. 
These are referred to as 𝜷𝑬𝑽𝟐, 𝜷𝑬𝑽𝟑	and 𝜷𝑬𝑽𝟒. Therefore, 
we have in total nine improper linear weighting schemes 
to compare. Each linear weighting scheme defined a 
weighting vector for the four cues. E.g. 𝜷𝑬𝑽𝟏 =
0.35, 0.22, 0.22, 0.22 , 𝜷𝑬𝑾 = [0.25, 025, 0.25, 0.25] , 
𝜷𝑳𝑬𝑿𝟏 = [1, 0, 0, 0], etc. For comparability, the weights in 
each scheme were constrained to add up to one.  

In order to scale the criterion estimate generated by 
these improper linear models to match the participants’ 
guesses, we introduced two additional participant-level 
parameters, 𝛼> and 𝛼?, so that the predicted guess for each 
weighting scheme was 𝛼> + 𝛼?𝜷 ⋅ 𝑪.  Here 𝜷 corresponds 
to the weighting vector of the model in consideration, and 
𝑪 is the vector of cue values presented in the trial. We also 
assumed a normally distribute error, with standard 
deviation 𝜎 , and subsequently fit each of these nine 
models by maximizing log-likelihood. 𝛼>, 𝛼? and 𝜎 were 
allowed to vary across the nine models. The model fitting 
was done on the participant level. Because the linear 
weighting schemes were pre-determined, each model used 
same number of parameters (3 parameters: 𝛼>, 𝛼? and 𝜎) 
to predict each participant’s 100 guesses in task 3. 

We compared participant level log likelihood values for 
the nine candidate models (Table 1). Since all models have 
the same number of parameters, our model comparison is 
equivalent to model selection by AIC. Among 44 
participants, 10 participants’ predictions were best 
described by 𝜷𝑬𝑽𝟏, 23 by 𝜷𝑬𝑾, 8 by 𝜷𝑳𝑬𝑿𝟏, 1 by 𝜷𝑬𝑽𝟐, 
1by 𝜷𝑬𝑽𝟑, and 1 by 𝜷𝑳𝑬𝑿𝟒.  When comparing only 𝜷𝑬𝑽𝟏 
and 𝜷𝑬𝑾, 19 participants were better described by 𝜷𝑬𝑽𝟏, 
whereas 25 were better described by 𝜷𝑬𝑾. According to a 
paired Wilcoxon test on participant level model fits, there 
was no significant difference between log likelihood 
values of the 𝜷𝑬𝑽𝟏 model (𝑀𝑒𝑑𝑖𝑎𝑛 = −351.38) and the 
𝜷𝑬𝑾 model (𝑀𝑒𝑑𝑖𝑎𝑛 = −351.59), 𝑍 = 1.24, 𝑝 = 0.216. 
Paired Wilcoxon tests also indicated that fits for all of the 
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remaining models were significantly worse than those for 
the 𝜷𝑬𝑽𝟏 model and 𝜷𝑬𝑾 model (p < 0.001).  

Table 1: Comparison of model fits for Study 1 
 Parameter (Median) Log Likelihood 
Model 𝛼> 𝛼? 𝜎 Median Mean # best 
EV1 7.32 0.84 8.57 -351.38 -357.16 10 
EV2 49.92 0.02 18.66 -424.01 -420.56 1 
EV3 49.96 0 18.63 -423.86 -420.64 1 
EV4 45.37 0.32 18.63 -424.05 -420.6 0 
EW 4.94 0.89 8.56 -351.59 -357.10 23 
LEX1 17.94 0.63 8.76 -351.39 -358.54 8 
LEX2 29.81 0.37 15.83 -408.81 -406.45 0 
LEX3 32.17 0.38 15.95 -410.32 -407.24 0 
LEX4 29.7 0.39 15.58 -408.7 -405.83 1 

 
 
Although participants had no information regarding the 

validities of any cues, a substantial subgroup of 
participants did not simply assign equal weights to cues. 
Instead, they overweighed cue 1 as predicted by 𝜷𝑬𝑽𝟏. The 
fact that some participants were actually best fit by 𝜷𝑳𝑬𝑿𝟏 
suggested that some participants overweighed cue 1 even 
more than 𝜷𝑬𝑽𝟏	recommended. Only one participant was 
best described by the other three lexicographic rules, 
indicating that 𝜷𝑬𝑽𝟏 can predict which single cue 
participants tend to overweigh. 

Study 2 

In Study 1, we found that the EV1 and EW models 
described participant level data about equally well, in 
terms of average log likelihood and proportion best fit. 
However, it is possible that predictions made by EV1 and 
EW were similar enough to be practically 
indistinguishable (given the noise in the data). This could 
confound our interpretation of model fit. Study 2 addresses 
this alternative explanation by manipulating the inter-cue 
relationships between subjects.  

Methods 
64 participants (35 females; Mean Age = 19.9, SD Age = 
1.1), recruited from a university experimental 
participation pool, completed this study in a behavioral 
laboratory.   

All aspects of the study design were kept identical to 
Study 1, except that the cue correlation matrix varied 
between a treatment condition and a control condition. 
Participants were randomly assigned to one of these two 
conditions at the start of the study. 

For the treatment condition, the inter-cue correlation 
matrix was identical to that in Study 1 (Figure 2a), 
generating an optimal weighting scheme with 𝜷𝑬𝑽𝟏OPQRS = 
[0.35, 0.22, 0.22, 0.22] (here we use the superscript to 
distinguish the treatment  vs. control condition). For the 
control condition, the cue correlation matrix kept the 
correlation between all the cues constant at 0.4 (Figure 2b). 
Therefore, the weighting vectors predicted by the optimal 
weighting scheme and the equal weights rule were both 
𝜷𝑬𝑽𝟏TUVS = 𝜷WX = [0.25, 0.25, 0.25, 0.25]. Due to different 

inter-cue relationships across conditions, 𝜷𝑬𝑽𝟏OPQRS  should 
provide a better account of behavior in the treatment 
condition compared to the control condition. Likewise 
𝜷𝑬𝑽𝟏TUVS = 𝜷WX	should provide a better account of behavior 
in the control condition compared to the treatment 
condition (even if a large subgroup of participants in the 
treatment condition do place an equal weight on all cues).  

Results 
31 participants were assigned to the treatment condition 
and 33 participants were assigned to the control condition. 
As in Study 1, we first looked at participant learning in 
task 2. In the treatment condition, participants did learn the 
special status of cue 1. Particularly, as in Study 1, they 
placed a higher weight on cue 1 relative to the other cues 
when predicting the remaining cues (𝑝 < 0.001). In the 
control condition, participants placed similar weights on 
cues 1-4 when predicting cue values, indicating that they 
learnt different inter-cue relationships for the two 
conditions. Manipulating the cue-correlation matrix thus 
had an effect on participant learning. This laid the basis for 
task 3, where participants integrated cues to predict 
criterion values (again, due to space constraints, we will 
not expand on these results here). 

Next, we examined which weighting schemes were 
used by participants in task 3. For both conditions, we 
applied the model fitting procedures of Study 1, and nine 
linear weighting schemes were compared on the 
participant level (Tables 2 and 3).  Out of 31 participants 
in the treatment condition, 6 were best described by 𝜷𝑬𝑽𝟏OPQRS, 
18 by 𝜷𝑬𝑾 , 6 by 𝜷𝑳𝑬𝑿𝟏 and 1 by 𝜷𝑬𝑽𝟐 . 𝜷𝑬𝑽𝟏OPQRS 
outperformed 𝜷𝑬𝑾 for a substantial subgroup of 
participants (13 out of 31). As in Study 1, some 
participants were best described by 𝜷𝑳𝑬𝑿𝟏, indicating that 
they overweighed cue 1 more than recommended by 
𝜷𝑬𝑽𝟏OPQRS . No participant was best described by the other 
three lexicographic rules, indicating that 𝜷𝑬𝑽𝟏OPQRScan predict 
decision makers’ use of other improper linear models in 
the treatment condition. 

We also compared the log likelihood values of the fits. 
Although the log likelihood values of the 𝜷𝑬𝑽𝟏OPQRS  model 
were significantly smaller than those of the 𝜷𝑬𝑾  model 
( 𝑍 = −2.06, 𝑝 = 0.040) , the effect size was small 
( 𝑀𝑒𝑑𝑖𝑎𝑛WZ? = −350.56, 𝑀𝑒𝑑𝑖𝑎𝑛WX = −350.17 ). 
Additionally both the 𝜷𝑬𝑽𝟏OPQRS model and 𝜷𝑬𝑾  model 
predicted participant level data significantly better than all 
other models ( 	𝑝 < 0.001 ). These results replicate 
findings of Study 1. 

In the control condition, the inter-cue correlation matrix 
was balanced and the weighting schemes for 𝜷𝑬𝑽𝟏TUVS and 
𝜷𝑬𝑾 were identical. Unsurprisingly, all 33 participants 
were better described by 𝜷𝑬𝑽𝟏TUVS =  𝜷WX  than any other 
models (Table 3). The fact that no participants were best 
fit by lexicographic rules in the control condition but some 
were best fit by 𝜷𝑳𝑬𝑿𝟏 in the treatment condition again 
indicated that participants’ cue weighting behavior can be 
predicted by the inter-cue correlation matrix.  

Lastly, we examined the predictions of 𝜷𝑬𝑽𝟏OPQRS  on the 
data from the control condition. For this purpose we fit a 

1439



tenth model in the control condition, with weights given 
by 𝜷𝑬𝑽𝟏OPQRS  (and 𝛼> , 𝛼?  and 𝜎  flexible). Unlike the 
treatment condition, this model outperformed the 𝜷WX =  
𝜷𝑬𝑽𝟏TUVS	model for only 4 out of 33 participants in the control 
condition. A paired Wilcoxon test indicated that the log 
likelihoods of the 𝜷𝑬𝑽𝟏OPQRS	model on the control-condition 
data (𝑀𝑒𝑑𝑖𝑎𝑛 = −336.73) were significantly lower than 
those of the 𝜷WX  = 𝜷𝑬𝑽𝟏TUVS	model (𝑀𝑒𝑑𝑖𝑎𝑛 = −335.76), 
𝑍 = −4.24, 𝑝 < 0.001.  

Table 2: Comparison of model fits for Study 2 (treatment) 
 Parameter (Median) Log Likelihood 
Model α> α? σ Median Mean #best 
EV1 7.70 0.90 10.07 -350.56 -363.55 6 
EV2 50.65 0.03 19.73 -424.88 -423.34 1 
EV3 50.72 0.01 19.73 -425.08 -423.60 0 
EV4 46.79 0.33 19.66 -424.85 -423.52 0 
EW 5.10 0.95 10.07 -350.17 -363.35 18 
LEX1 19.28 0.67 10.19 -353.77 -365.33 6 
LEX2 31.88 0.40 16.28 -407.65 -408.75 0 
LEX3 33.68 0.39 17.28 -412.35 -411.83 0 
LEX4 30.22 0.44 16.59 -411.66 -409.48 0 

Table 3 Comparison of model fits for Study 2 (control) 
 Parameter (Median) Log Likelihood 
Model 𝛼> 𝛼? 𝜎 Median Mean #best 
EV1/EW 10.59 0.83 7.49 -335.76 -336.13 29 
EV2 51.41 0.00 17.64 -415.22 -411.91 0 
EV3 51.41 0.00 17.64 -415.22 -411.92 0 
EV4 51.39 0.07 17.63 -414.84 -411.69 0 
LEX1 28.91 0.45 13.00 -387.19 -385.25 0 
LEX2 30.35 0.43 13.30 -391.31 -388.82 0 
LEX3 28.55 0.46 12.20 -382.23 -382.13 0 
LEX4 31.17 0.44 13.32 -390.59 -387.50 0 
EV1Treat 11.04 0.81 7.75 -336.73 -340.25 4 

 

 
  

Overall, the differences in the mean and median log 
likelihoods of the 𝜷𝑬𝑽𝟏OPQRS and the 𝜷𝑬𝑽𝟏TUVSPU^ = 𝜷𝑬𝑾 models 
in the control condition were 4.12 and 0.97 respectively. 
These were larger than the equivalent differences in the 
treatment condition, which were 0.20 and 0.39 (these 
differences were 0.06 and -0.21 in Study 1). These results 
indicate that the relatively good fits for the 𝜷𝑬𝑽𝟏	 model in 
the treatment condition of Study 2 and in Study 1 were not 
due to this model mimicking the equal weights rule.  

Study 3 

Study 3 provides a more stringent test of the 𝜷𝑬𝑽𝟏	 model 
by considering a setting with more complex inter-cue 
relationships. It also examines judgments of restaurant 
quality rather than stock performance.  

Methods 
46 participants (34 females; Age Mean = 19.3, SD Age = 
1.0) recruited from a university experimental participation 
pool, completed this study in a behavioral laboratory.   

The study was framed as involving judgments of 
restaurant quality. Here the cue values were restaurant 
scores rated by four reviewers, and the criterion 
corresponded to the real restaurant quality. Other aspects 
of the study design were kept identical to Study 1, except 
the inter-cue correlation matrix, which was changed to the 
matrix displayed in Figure 2c. Here cue 1 is highly 
correlated with cue 2, cue 3 is moderately correlated with 
cue 4, and cues 1 and 2 are weakly correlated with cues 3 
and 4. With this inter-cue correlation structure, 𝜷𝑬𝑽𝟏 
predicts a weighting vector of [0.35, 0.35, 0.15, 0.15], i.e. 
an overweighting of cues 1 and 2, relative to 3 and 4.  

Results 
As in Studies 1 and 2, our analysis of behavior in task 2 
suggested that participants were able to successfully learn 
the underlying cue structure. Particularly they relied more 
on cues 1 and 2 than on cue 3 and 4 when guessing for 
cues 1 and 2; they also relied more on cues 3 and 4 than 
on cues 1 and 2 when guessing for cues 3 and 4. Again, 
due to space constraints we will not outline these results in 
more detail.   

Next, we investigated the linear weighting schemes 
used by participants in task 3. The nine candidate 
weighting schemes and the model fitting procedures were 
the same as in Study 1 (though, of course, 𝜷𝑬𝑽𝟏 , 𝜷𝑬𝑽𝟐 , 
𝜷𝑬𝑽𝟑, 𝜷𝑬𝑽𝟒assigned different weights to the cues in Study 
3, compared to the corresponding models in Study 1).  

Out of the 46 participants, 7 were best fit by 𝜷𝑬𝑽𝟏and 
38 were best fit by 𝜷𝑬𝑾. The remaining participant was 
best fit by 𝜷𝑳𝑬𝑿𝟐. When comparing only 𝜷𝑬𝑽𝟏and 𝜷𝑬𝑾 , 
we found that 8 participants were better described by 
𝜷𝑬𝑽𝟏than 𝜷𝑬𝑾 . Additionally, 𝜷𝑬𝑾  (𝑀𝑒𝑑𝑖𝑎𝑛 = −350.82) 
was significantly better than 𝜷𝑬𝑽𝟏 (𝑀𝑒𝑑𝑖𝑎𝑛 = −353.15) 
according to a paired Wilcoxon test performed on 
participant level log likelihood values, 𝑍 = 3.98, 𝑝 <
0.001. Except for 𝜷𝑬𝑾 , 𝜷𝑬𝑽𝟏outperformed all the other 
candidate models (with 𝑝 < 0.001).  As would be 
predicted by the 𝜷𝑬𝑽𝟏model, the lexicographic models did 
not provide a good account of participant behavior in this 
study. Table 4 provides additional details regarding these 
fits. 

Table 4 Comparison of model fits for Study 3  
 Parameter (Median) Log Likelihood 
Model 𝛼> 𝛼? 𝜎 Median Mean # best 
EV1 14.04 0.76 9.28 -353.15 -358.26 7 
EV2 44.77 0.26 16.76 -412.07 -410.59 0 
EV3 51.04 0.10 17.29 -415.25 -413.63 0 
EV4 50.95 0.03 17.35 -415.29 -413.82 0 
EW 6.32 0.88 8.75 -350.82 -349.09 38 
LEX1 30.22 0.44 12.58 -383.14 -384.67 0 
LEX2 28.31 0.49 11.94 -379.23 -381.29 1 
LEX3 32.89 0.34 15.32 -403.08 -401.97 0 
LEX4 32.01 0.37 14.63 -400.57 -398.18 0 

 
 
As in previous studies, we found that a significant 

subgroup of participants overweighed some cues (as 
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suggested by 𝜷𝑬𝑽𝟏), rather than simply averaging all the 
available cues (as suggested by 𝜷𝑬𝑾 ). That said, the 
performance of 𝜷𝑬𝑽𝟏was relatively worse in this study 
compared to our previous studies. This could be due to the 
differences in the cue-correlation matrices, suggesting that 
decision makers are less likely to use the 𝜷𝑬𝑽𝟏 scheme 
when the underlying cue structure is complex. These 
differences could also, however, be attributed to the 
change in the task frame. Restaurant quality is more 
subjective than stock performance, and decision makers 
may be less likely to rely on the cue-correlation structure 
in these subjective settings.  

Discussion 
In three studies, we investigated how decision makers 
weigh cues when cue criterion relationships are unknown. 
The optimal improper linear model uses the eigenvector, 
βEV1, corresponding to the largest eigenvalue of the cue 
correlation matrix (Davis-Stober et al., 2010a, 2010b). 
Low dimensional representations of the cue space, learnt 
by some common models of semantic memory (Kruskal & 
Wish, 1978; Landauer & Dumais, 1997; Saxe et al., 2013), 
can also produce this type of weighting scheme.  

Our results suggest that 𝜷𝑬𝑽𝟏 provides a good 
description of participants’ behavior. This model 
outperformed all other improper linear models tested in 
this paper, except for the equal weights model (with 
weights 𝜷𝑬𝑾). On the aggregate level, the log likelihoods 
for the 𝜷𝑬𝑽𝟏 and 𝜷𝑬𝑾weighting scheme were relatively 
close, showing no meaningful differences in Study 1, very 
minor differences in the treatment condition of Study 2, 
and somewhat larger differences in Study 3. As for 
individual level fits, there existed a substantial group of 
participants for whom 𝜷𝑬𝑽𝟏outperformed 𝜷𝑬𝑾. The size 
of this group ranged from 43% of the participant pool in 
Study 1, 42% in the treatment condition of Study 2, and 
17% in Study 3. Moreover, a comparison of the control 
and the treatment conditions of Study 2 showed that 
experimental manipulations that varied the inter-cue 
correlation matrix influenced relative model fits.  
𝜷𝑬𝑽𝟏  was also able to predict when and how 

participants used lexicographic weights. When 𝜷𝑬𝑽𝟏 
prescribed equal weights (control condition of Study 2) or 
the overweighing two cues (Study 3), there were almost no 
participants who were best described by such 
lexicographic weighting schemes. In contrast, in Study 1 
and the treatment condition of Study 2, 𝜷𝑬𝑽𝟏 overweighed 
a single cue. In these conditions, a substantial group of 
participants (18% in Study 1 and 19% in the treatment 
condition of Study 2) behaved according to a 
lexicographic rule that placed all of the weight on this cue 
(in contrast lexicographic rules that prioritize other cues 
all performed very poorly).  

That said, 𝜷𝑬𝑽𝟏 did not provide a good account of 
behavior in Study 3, which adopted a more complex inter-
cue correlation matrix. The results of this study suggest 
that such a weighting scheme may not be used in all 
settings. Additionally, the equal weights rule was the 
majority model in all studies, indicating that most 
participants tend to use the simpler equal weights strategy 
(corresponding to an ignorance prior) in the absence of 

cue-criterion knowledge. Further work should examine the 
effect of inter-cue correlation structure and individual 
differences on the use of the 𝜷𝑬𝑽𝟏weighting rule. This 
work may extend the insights of other cognitive models of 
multi-cue judgment, such as those relying on neural 
network representations (Glöckner, Hilbig & Jekel, 2014) 
or exemplar memory-based predictions (Juslin, Karlsson 
& Olsson, 2008). Such models have not been applied to 
settings in which cue-criterion relationships are unknown. 
However, they nonetheless provide formal predictions 
regarding the learning and representation of cue 
knowledge and its relationship with the statistical structure 
of the judgment environment. For this reason they may 
provide a more adequate framework for understanding the 
cognitive underpinnings of the 𝜷𝑬𝑽𝟏 weighting model.  
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Introduction 

There is long history of studies documenting that some 

neurons respond to images of objects, faces, and scenes in a 

highly selective manner.  This includes neurons in the 

human hippocampus (e.g., the famous example of a neuron 

responding to images of the actress Jennifer Aniston) and 

neurons in high-level visual cortex in monkey (for reviews 

see Bowers, 2009; Ison, Quian Quiroga, & Fried, 2015).  

These findings have led to a growing interest in the claim 

that some neurons code for information in a localist 

(‘grandmother cell’) manner, as reflected in the many 

contributions to a recent special issue on this topic in the 

journal Language, Cognition, & Neuroscience (Bowers, 

2017). 

By contrast, it is only recently that interest in 

characterizing the selectivity of single units in connectionist 

networks has gathered speed.  Critically, these studies also 

show that networks learn highly selective representations 

under a number of conditions, as detailed below.  In this talk 

I will summarize recent research in my lab that explores the 

conditions in which artificial networks learn selective codes, 

and research comparing the responses of selective neurons 

and localist representations used in cognitive models.  These 

findings suggest when and why some neurons in cortex 

respond in a highly selective manner, and highlight the 

biological plausibility of localist models in psychology.   

Selective codes as a solution to the superposition 

catastrophe 

In Bowers, Vankov, Damian, and Davis (2014, 2016) we 

carried out single-unit recordings on networks trained to co-

activate multiple words at the same time in short-term 

memory (STM). We adapted models by Botvinick and Plaut 

(2006) who demonstrated that recurrent PDP networks can 

support human-like performance on STM tasks, and claimed 

that the models succeeded on the basis of co-activating 

learned distributed representations.  This claim is important 

because it challenges the hypothesis that overlapping 

distributed representations result in blend patterns that are 

ambiguous, the so-called superposition catastrophe (Von 

Der Malsburg, 1986).  The superposition catastrophe has 

been one of the key arguments in support of localist 

representations (Bowers, 2002; Page, 2000) 

However, we showed that the Botvinick and Plaut (2006) 

and related models solved the superposition catastrophe by 

learning localist representations.  Adapting an analytical 

tool developed by Berkeley, Dawson, Medler, Schopflocher, 

and Hornsby (1995), we carried out single unit recordings of 

the hidden units of trained networks.  We showed that the 

models learned more selective codes when the superposition 

constraint became more challenging. For example, Figure 1 

depicts a hidden unit (unit 89 of 200 hidden units) that 

responded selectively to the trained word ‘cot’ (taken from 

Bowers et al., 2014). 

 

Figure 1 

 
 

Furthermore, we found that recurrent networks of STM 

were only able to recall lists of novel words when they 

learned localist representations (Bowers et al., 2016), 

contrary to the widespread assumption that distributed codes 

are better able to support generalization.  These findings 

extend our understanding of when and why some neurons 

respond selectively:  Just as neurons in the hippocampus are 

thought to code information in a selective manner in order 

to support fast learning without forgetting (Marr, 1971), our 

findings suggest some neurons in cortex learn selective 

codes for the sake of STM. 

Selective codes as a solution to some forms of arbitrary 

input-output mappings. 

Recently there has been an explosion of interest in 

characterizing the selectivity of single hidden units in so-

called ‘deep’ networks that achieve state-of-the-art 

performance on a range of tasks, including object and 

spoken word identification (for review, see Bowers, 2017).  

The striking finding is that these networks often learn highly 

selective representations even when trained on items one-at-

a-time.  This raises the question as to why we found that 

networks learned non-selective representations when trained 

on items one-at-a-time (Bowers et al., 2016).   

Vankov and Bowers (2017) began to explore the 

conditions in which PDP networks learn selective and non-

selective codes when trained on words one-at-a-time.  

Models learned non-selective distributed codes under a 

range of conditions, including when trained on many 

arbitrary input-output mappings.  For example, a 3-layered 

model trained to map random patterns of binary inputs (with 

input units taking on an activation of 1 or 0) to another 
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random pattern of binary output units learned distributed 

codes. 

However, we found one condition in which a 3-layered 

network learned localist codes: when trained on images of 

faces when input units took on continuous values and the 

model was trained on many-to-one mappings (with multiple 

different images of a given person mapping onto the same 

output representation). For example, Figure 2 depicts 16 

localist units (units that are highlighted) out of 500 hidden 

units that selectively fire to a given face.  To illustrate, the 

face images that activate units 312 and 404 are displayed.  

 

Figure 2 

 
 

We are currently carrying out more simulations to better 

understand the conditions in which networks learn 

distributed and localist codes when trained on items one-at-

a-time.  For example, is it many-to-one mappings that is 

critical, or the nature of the images themselves?   

 Comparing the selectivity of single neurons to the 

selectivity of single units in localist models in psychology. 

Even when neurons are identified that selectively respond 

to images of one person or object within an experiment, it is 

often claimed that the neuron would responds to other 

(untested) categories of images.  For example, Waydo et al. 

(2006) estimated that the most selective neurons observed in 

Quian Quiroga et al. (2005) study would respond to between 

50-150 different people or objects if researchers had more 

time to find the relevant images. This is taken as 

inconsistent with grandmother cells. 

However, Gubian, Davis, Alderman, and Bowers (2017) 

showed that the analysis of Waydo et al. (2006) is consistent 

with localist models in psychology.  We carried out single-

unit recordings in the Spatial Coding Model of visual word 

identification that represents ~30,000 words in a localist 

manner (Davis, 2010).  Under parameter conditions that 

allow the model to correctly identify words we found that 

that the localist representations responded to approximately 

to 50 different words (e.g., the word DOG responds most 

strongly to the input DOG, but also responds above baseline 

to LOG, FOG, JOG, etc.). Page (2017) also provides 

evidence that localist models can account for single-cell 

recording data taken to support distributed coding. 

Together, these results highlight the computational reasons 

why some neurons in cortex respond in a highly selective 

manner, and show that localist (grandmother cell) 

representations are in fact consistent with single-cell 

recording data. 
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Concepts are the basis of the human cognitive system, and 
the question of what constitutes the content of these mental 
representations has long occupied the cognitive sciences. 
Work in psychology, linguistics and cognitive neuroscience 
has converged on the idea that we develop our conceptual 
representations through our perception of and interaction 
with our environment. To date, such research has typically 
restricted consideration to the perceptual modalities of 
vision, touch, sound, taste, and smell. However, there is 
another major modality of perceptual information that is 
distinct from these traditional five senses; that is, 
interoception, or sensations within the body. In this paper, 
we explore the role of interoception in the perceptual 
grounding of concepts.  

Recently, modality-specific measures of the strength of 
perceptual experience (Lynott & Connell 2009, 2013) have 
proven themselves important predictors of human behaviour 
in a range of conceptual tasks including word recognition 
and reading (Connell & Lynott, 2010, 2012, 2014a, 2014b, 
2015, 2016). In a megastudy of over 32,000 words from 
across the abstract-concrete spectrum, we asked people to 
provide modality-specific ratings of perceptual strength for 
six modalities: the usual five (auditory, haptic, gustatory, 
olfactory, visual) plus the new category of interoceptive 
strength. We found that interoceptive information dominates 
the perceptual profile of a sizeable number of concepts (9%; 
e.g., hangover, eternal, remorse), less than the proportion of 
concepts dominated by vision (74%; e.g., book) or sound 
(12%; e.g., melody), but more than are dominated by touch 
(3%; e.g., silky), gustation (2%; e.g., candy), or olfaction 
(<1%; e.g., bleach). Using principal components analysis to 
examine how interoception relates to the other perceptual 
modalities, we found that it tends to be strongly loaded 
against visual and haptic strength (i.e., that which is sensed 
within the body can be neither seen nor touched) but is 
relatively distinct from sound, taste, and smell.  

Finally, we tested whether interoceptive strength offers 
valuable information to conceptual content by examining its 
role in semantic facilitation of word recognition. Maximum 
perceptual strength (i.e., strength in the dominant modality) 
has previously been shown to predict word recognition 
performance better than concreteness or imageability 
(Connell & Lynott, 2012). We therefore compared the 
predictive ability of two different versions of maximum 

perceptual strength: the original measure based on five 
traditional modalities, and a new version based on six 
modalities including interoceptive strength. In a regression 
analysis of lexical decision and word naming performance, 
interoceptive information considerably improved the 
efficacy of maximum perceptual strength in predicting both 
response time and accuracy (Bayes Factors ranged from 
BF10 = 3.303×107 to BF10 = 3.059×1016). That is, 
perceptually strong words were recognized more quickly 
and accurately than perceptually weak words, and 
interoceptive strength was a valuable component in this 
perceptual facilitation. Overall, these findings suggest that 
interoception has comparable status to other modalities in 
contributing to the perceptual grounding of concepts. 
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Meaning Change  

Words are often regarded as “slippery customers” (Labov, 

1973). First, it is difficult to come up with a fixed content 

that seems to apply across all uses of a single word 

(Wittgensten, 1953). Second, the meaning of a word is 

subject to wider contextual constraints beyond the company 

it keeps with other words within a sentence.  Third, the 

assumption that a word means a fixed thing is at odds with 

the fact that word meaning shifts over time, as do the 

objects a word refers to. Taken together, theories of word 

meaning need to be able to account for the intuition that 

words have content associated with them, while allowing 

for variation in how a word is used in context, and how 

word meaning can change over time. 

We provide an approach to word meaning within the 

spirit of dynamic systems theory (DST) models of cognition 

that accounts for the slipperiness of words. First, we draw 

an analogy between models of (non-linguistic) spatial 

behavior and how the meaning of language changes over 
time while exhibiting regularity. In particular, we identify 

two key features of DST models – multicausality and the 

building of temporally-bound attractor states - that afford 

application to theories of meaning. Second, we take these 

features of DST models and test them in experiments 

examining the comprehension of spatial expressions over 

time using object placement behavior as a measure (e.g. 

“Place the oil paint tube over the toothbrush”). Building on 

earlier work examining the constraints in which spatial 

language is used (Carlson-Radvansky et al., 1999; Coventry, 

2013, 2015; Coventry & Garrod, 2004; Coventry et al., 

2001, 2010, 2013, 2016; Gudde et al. 2016), we present a 

programme of studies mirroring early models of spatial 

memory, with experimental data showing striking similarity 

with results from other (non-linguistic) spatial tasks (namely 

the A not B error tasks and associated model produced by 

Smith & Thelen; e.g. Smith & Thelen, 2003; Thelen et al., 

2001).  Third, we take these data, and show that a previous 

DST model originally developed to account for infant 

perseverative reaching behavior (Thelen et al., 2001) 

provides an elegant model of the changing meaning of 

spatial expressions over time.  

 

Figure 1: Examples of scenes used (A) and movement 

manipulation 

A 

 
B  

                  
 

The programme of experiments involved using placement 

behavior as a proxy for situation-specific meaning (adapting 

a method from Carlson-Radvansky et al., 1999). Participants 

were given spatial expressions of the form PLACE OBJECT 

A ‘PREPOSITION’ OBJECT B, followed by a picture 

displayed on a computer screen. The task was to move 

OBJECT A so that the relation between objects matched the 

location denoted by the sentence (prepositions used were 

over/under/above/below). OBJECT B was always an object 
with a functional part at one end (e.g. a toothbrush), and 

these objects were always displayed in sideways view 

(Figure 1). Critically the similarity between the probe and 

the prime trials was manipulated – analogous to the 

different object locations in the A not B error task (Thelen 

et al., 2001). The objects to be placed were either 

functionally related (e.g. a toothpaste tube and a toothbrush, 

hereafter F) or non-functionally related (e.g. a tube of paint 

and a toothbrush, hereafter NF). Previously it has been 

shown that placement behavior for F object pairs is different 

from placement behavior for NF object pairs when 

participants are given spatial sentences with the preposition 

above in them. Placements for an F object were nearer the 
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functional part of the other object than for NF objects; 

placements for NF objects were nearer the mid-point (centre 

of mass) of the other object than for F objects (Carlson-

Radvansky et al., 1999).   

The programme of studies varied the similarity between 

prime and probe trials (in terms of same/different spatial 

relations, functional relations between objects, and the way 

in which objects are moved) as well as the number of prime 

trials (i.e. the extent to which an attractor state is built prior 

to probe placements). Among the results in the series of 

studies we find evidence that object placements on a probe 

trial are affected by the number of prime trials presented 
first, and the nature of the similarity between prime and 

probe trials. For example, when a probe involves 

functionally related objects, placements  are more functional 

(i.e. more over the bristles of the toothbrush) following 

previous functional prime trials with different objects than 

when the primes trials were non-functionally related objects, 

etc.  

We also manipulated how participants placed objects 

(Figure 1B). Consistent with DST and the A not B error 

model, we postulated that the temporal binding of spatial 

language to objects might also involve interaction with 

those objects. Placing a toothpaste tube over a toothbrush 

may call up an attractor state involving an action component 

as the toothpaste tube and toothbrush are held in specific 

ways associated with a brushing routine when those objects 

are in that relation. Participants either moved the objects on 

the touch screen with their hand upright (palm pointing 

downwards, Figure 1B, left panel), in a manner affording 

normal interaction with that object, or they moved the object 

with hand rotated in a manner that did not afford interaction 

(Figure 1B, right panel). We predicted that placements 

would be nearer the functional part of the other object when 

the movement was one that afforded action. Critically, we 

wanted to test whether this effect, if present, occurs for both 

functionally related and non-functionally related objects. If 
the effect only occurs for functionally related objects, one 

can argue that it is the action at encoding that it is important 

rather than any affordance to do with how the objects are 

moved per se. This was indeed what we found.  

Overall results mirror the results from the A not B error 

task. Following the building of an attractor state over four 

prime trials, placement behavior reflecting comprehension 

of spatial language on the critical probe trials is dragged in 

the direction of previous object placements for incongruent 

prime-probe combinations – analogous to an infant 

searching in the wrong location on the A not B task. 

Second, the (incidental) way in which an object was moved 

on the screen also affected placement behavior, but only 

reliably so for F objects. This is consistent with the view 

that what objects are, how they interact, and how we interact 

with them becomes temporally coupled during learning, and 

forms a multimodal attractor state for spatial language.  

Taking this data, we present a working DST 

computational model that also makes predictions tested in 

further later experiments. Overall, the novel approach to 

word meaning allows the appearance of stable underlying 

“senses’ of words while accounting for changes in meaning 

on a moment-to-moment basis.  
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Introduction 
The perceptual processing of speech is a constant interplay 

of multiple competing albeit convergent processes: acoustic 
input vs. higher-level representations, universal mechanisms 
vs. language-specific, veridical traces of speech experience 
vs. construction and activation of abstract representations. 

The present summary concerns the third of these issues. 
The ability to generalise across experience and to deal with 
resulting abstractions is the hallmark of human cognition, 
visible even in early infancy. In speech processing, abstract 
representations play a necessary role in both production and 
perception. New sorts of evidence are now informing our 
understanding of the breadth of this role. Two earlier and 
more detailed reviews of the role of abstraction in speech 
processing (Cutler, 2008; 2010) also embrace, respectively, 
evidence on the lexical representation of form versus 
meaning, and evidence on prosodic processing. 

Evidence from the second-language lexicon  
Learners of a second language (L2) endure persistent 

perceptual trouble (not fixable just by accruing experience) 
with L2 phonemic distinctions that their first language (L1) 
lacks. The classic explanation of this is that L1 phonology 
(here, abstract knowledge about which phonemic contrasts 
may be encountered in speech signals) captures the input.  

This is not the full account of this difficulty, however. 
Abstract knowledge of a contrast’s existence (from reading, 
or from teaching, e.g., that light and write are supposed to 
be different) influences the construction of phonological 
representations in the lexicon. In the L2 lexicon, these 
representations thus become distinct. Speech perception, 
however, still fails to deliver the discrimination this requires 
(Weber & Cutler, 2004; Cutler, Weber & Otake, 2006; 
Broersma & Cutler, 2008); both L2 sounds are perceived as 
(more or less good) realisations of a single phoneme. (That 
will usually be the L2 phoneme acoustically closest to the 
single L1 sound; for Japanese listeners hearing English [r/l], 
this is [l]). In righteous or rightful, the initial syllable will 
then actually activate light, not right. The second syllable 
will be needed in order to produce the desired lexical entry 
as the closest match to the input as a whole. The result is 
that word recognition in L2 is slower than it should be, 
because more competitor words are activated, and the 
competition from the spuriously activated ones is also more 
persistent (Broersma & Cutler, 2011; Cutler, 2015). 

Evidence from talker adaptation  
We adapt so rapidly to talkers we have never before heard 

by using existing knowledge to resolve phonetic ambiguity, 
and in consequence adjusting phoneme category boundaries 
for that specific talker (Norris, McQueen & Cutler, 2003; 
Eisner & McQueen, 2005). The adjustment generalises to 
words and phonetic contexts in which the phonemes in 
question have not previously been heard from the new talker 
(McQueen, Cutler & Norris, 2006). Thus the adaptation has 
concerned phonemic categories, not veridical traces of 
experience (Cutler, 2010). Episodic models of lexical 
storage and retrieval, in which stored traces of lexical 
experience are activated in proportion to their match to the 
current input, cannot cope with this generalisation result 
(Cutler, Eisner, McQueen & Norris, 2010), because the 
models are unable to assign the novel pronunciation instances 
uniquely to the phonemic category they should represent. 

Evidence from cross-modal generalisation  
Cross-modal priming is popular in psycholinguistics, not 

necessarily because it calls on representations abstracted 
across different modalities; it is just a robust and useful task. 
Interestingly, recourse to the supra-modal representation 
even informs priming across modalities when the target is 
the same articulatory event – hearing words facilitates later 
phonological processing from lipreading the same spoken 
words, compared with new words (van der Zande, Jesse & 
Cutler, 2014a). Notably, the lipreading here was facilitated 
whether or not the talker was the same one who had been 
heard in the priming phase; there was always an advantage 
for old words over new, but no effect of talker familiarity. 
Talker adaptation (as outlined in the section above) was 
likewise unaffected by visual information indicating another 
talker (van der Zande, Jesse & Cutler, 2014b). These results 
confirm that phonological representations in the lexicon are 
shared across auditory and visual processing, and also show 
that talker information is not transferred across modalities at 
the lexical level. The abstract representations are stronger 
than, or unaffected by, modality-specific experience. 

Evidence from talker recognition  
One of the best-known effects in talker recognition is that 

listeners find it easier to recognise talkers (pick them out 
from a set, as in a forensic lineup) when they are talking the 
listeners’ native language. This turns out not to be due to a 
need to understand what is being said, because this native-
language effect appears even with seven-month-old infants: 
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Dutch-learning infants at this age perk up when a new talker 
is added to a set of three female talkers uttering unrelated 
(adult-style) Dutch sentences, but do not notice when a new 
talker is added to a set speaking Italian, or a set speaking 
Japanese (Johnson, Westrek, Nazzi & Cutler, 2011).  

At seven months, infants are acquiring the phonological 
structure of the language around them, but do not yet have a 
functional vocabulary that would allow them to understand 
such input. Thus the effect is here based on familiarity with 
the phonology in the one set of input but not in the others. 

 Analogously, adult listeners show equivalent efficiency 
with two phonologically comparable dialects of a language 
as opposed to a language with a differing phonology, and 
this works each way – native speakers of one of the dialects 
recognise talkers equally well in either dialect (but worse in 
the phonologically different language), while non-native 
listeners perform the talker recognition task equally badly in 
either dialect (but better in their phonologically different 
own tongue; Johnson, Bruggeman & Cutler, in press). Again, 
the phonological familiarity predicts the results.  

Evidence from a lost language 
Children adopted into another country lose all conscious 

knowledge of their first language and become essentially 
native speakers of a new language. But traces remain of the 
first, as many studies, with many languages, have shown. A 
recurring finding is that adoptees (in comparison to controls) 
show an accelerated trajectory of learning phonological 
structures found in the birth language but not in the current 
native tongue. In the largest such adoptee study so far, we 
replicated this for speech perception (Choi, Broersma & 
Cutler, 2017), and also found that the perceptual mastery 
transferred to speech production (Choi, Cutler & Broersma, 
2017). This transfer, and a further generalisation of training 
on one phoneme contrast to other places of articulation, 
indicate that the observed benefit is based on abstract 
phonological representations. Most strikingly, the adoptee 
benefit was independent of age at adoption;  infants adopted 
under the age of six months (before vocabulary building, or 
phoneme repertoire mastery, or talking) showed as much 
evidence of phonological retention as those adopted over the 
age of one. Thus abstract phonological knowledge is 
compiled and laid down even before six months of age, in 
preparation for the later stages of language acquisition. 

Conclusion  
Abstract phonological knowledge plays a role in all 

aspects of speech processing. This is true even of those 
processing realms which may seem to form natural sources 
of evidence for memory-based effects. Thus we can see that 
abstractions are involved in many kinds of processing where 
differences between talkers are at issue. Likewise, though 
phonological structures are language-specific and hence not 
inborn, whereby language acquisition needs speech input to 
set it going, it also appears that construction of abstract 
phonological generalisations across this input must form part 
of linguistic processing even in the earliest months of life. 
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Introduction 
Organisms learn from experience in many ways.  One 

component of learning from experience is recording what has 

happened in the world when actions are taken, a form of 

episodic memory, and distilling such experience over time to 

learn models of phenomena for generating expectations.  As 

further actions are taken, the accuracy of such models can be 

monitored, to detect surprises and to help identify and 

prioritize learning goals.  This publication-based talk will 

describe some recent results in exploring the use of analogical 
generalization over episodic memories in the Companion 

cognitive architecture to formulate models of the effects of 

actions in a complex dynamic world.  Measures of novelty, 

surprise and for prioritization of learning goals will be 

discussed. 

 

Episodic Memory and Analogy 
How human episodic memory is organized is still an open 

question.  Given the centrality of analogy in human cognition 
(e.g. Gentner, 2003), it seems reasonable that a common way 

of structuring episodic memories could be as cases, so that 

they can be accessed via analogical retrieval (e.g. MAC/FAC, 

Forbus et al. 1995) with more transferable knowledge 

constructed incrementally via generalization (e.g. SAGE, 

McLure et al. 2015).  The Companion cognitive architecture 

(Forbus et al. 2009; Forbus 2016; Forbus & Hinrichs, in 

press) incorporates these analogical processing models, along 

with SME (Forbus et al 2016), which MAC/FAC and SAGE 

are built upon.  The Companion architecture also includes 

facilities for language understanding, sketch understanding 
(Forbus et al. 2011), and integration with simulators.  For 

example, Companions can interact with Freeciv1, an open-

source version of Civilization 2, which is a popular strategy 

game.  The attraction of such games to players is their 

complexity, e.g. building civilizations and transportation 

networks, exploration, technology research, military 

operations, over hundreds of turns.  Such complexity makes 

Freeciv useful for exploring learning about complex 

dynamics (McFate et al. 2014; Hinrichs & Forbus, 2016).  For 

example, by storing cases of both positive outcomes and 

negative outcomes generated by experimentation, a 

                                                        
1 http://www.freeciv.org/ 

Companion has learned to perform city management 

(Hinrichs & Forbus, 2007).   

This talk goes beyond that work by focusing on how a 

Companion can distill models of actions via analogical 

generalization while observing human players.  For each 

action the person takes, the Companion records information 

about the state of the world before and after the action, and 

uses some general-purpose heuristics to attempt to explain 

immediate events in terms of the action.  For each occurrence 
of each action, a case consisting of this information is stored.  

Storage occurs via a SAGE generalization pool for each 

command (e.g., doMove, doIrrigate).  The generalization 

pool for a command can be thought of as an analogy-derived 

model for what happens when that command is used.  By 

letting the system watch replays from six different games, it 

builds up over 4,200 cases across 34 different commands.   

Inspecting these generalization pools leads to some 

interesting insights.  First, the number of generalizations and 

outliers in a pool provides an indication of how well the 

action is understood.  If there are many cases all forming a 
single generalization, then that command has straightforward 

local consequences (e.g. doIrrigate).  When there are multiple 

generalizations, comparing their structures can be 

illuminating: For example, in doResearch, the generalizations 

differ only in the number of requirements and opportunities, 

making them artifacts of the encoding strategy, which could 

be eliminated via re-representation.  Thus properties of the 

generalization pools provide a signal about how encoding 

strategies might be improved. 

Analogical generalization also provides a means of 

detecting and quantifying novelty and surprise.  Novelty can 

be detected in two ways: Failure to retrieve a similar 
experience, and by analysis of candidate inferences 

indicating differences.  When little is known, all is novel – 

surprise, I argue, occurs when a novel situation is experienced 

for a type of situation that was considered to already be well 

understood.  The degree of surprise can be estimated based 

on the number of cases in the pool and frequency information 

for relationships within them that are computed for the 

generalizations: When there are many cases and highly 

certain outcomes, a new outcome can be more surprising.  

doMove provides an excellent example: It occurs frequently, 

so a dominant analogical model is quickly built up.  But when 
a unit moves into a hut, there are five different things that 

might happen, leading initially to surprises.   
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In addition to summarizing the results of these 

experiments, I will describe work in progress on making 

adaptable encoding strategies guided by the system’s own 

analysis of its experience. 
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Introduction
There is considerable debate on the precise role of hierar-
chical syntactic structure during the comprehension of sen-
tences, with some arguing that a full hierarchical analysis
is required for comprehension (e.g., Ding, Melloni, Tian, &
Poeppel, 2017) and others claiming that non-hierarchical pro-
cessing is more common (e.g., Frank, Bod, & Christiansen,
2012). Ding, Melloni, Zhang, Tian, and Poeppel (2016) re-
cently presented evidence that cortical entrainment during
speech perception reflects the neural tracking of hierarchical
syntactic structure of simple sentences, which would support
the view that hierarchical processing is unavoidable. How-
ever, we show that the same entrainment effects appear in a
computational model that does not incorporate syntax or any
other linguistic knowledge or process beyond the word level.
Hence, the cortical entrainment results do not need to be in-
dicative of syntactic processing.

Ding et al. (2016) had participants listen to Chinese or
English four-syllable sentences, with syllables presented at
a fixed rate while cortical activity was recorded with MEG.
A frequency analysis of the MEG signal revealed peaks in
the power spectrum at exactly the occurrence frequencies of
syllables, phrases, and sentences. For example, when sen-
tences with [NP VP] structure (such as “dry fur rubs skin”)
were presented at a rate of 250 ms per monosyllablic word,
peaks would appear at 4 Hz, 2 Hz, and 1 Hz, correspond-
ing to the syllable/word, phrase, and sentence rate, respec-
tively (see Figure 1). Likewise, a sequence consisting of only
NPs or only VPs resulted in peaks at 4 Hz and 2 Hz but not
1 Hz, while presenting a sequence of Chinese syllables with-
out word or phrase structure resulted in only the 4Hz peak.

Although these results can indeed be interpreted in term of
the sentences’ syntactic structures, we propose a simpler ex-
planation: The power spectrum merely reflects responses to
regularities in word-level properties, such as (approximate)
syntactic or semantic category. For example, in the [NP VP]
sentences, verbs occur at 1Hz and nouns at 2Hz. We imple-
mented this alternative explanation in a simple computational
model and show that it indeed predicts the MEG power spec-
tra in different experimental conditions.

The model

The only linguistic knowledge available to the model is en-
coded in word vector representations. These were generated
by a distributional semantics model (Mikolov, Chen, Corrado,
& Dean, 2013) trained on large corpora of Chinese or En-
glish texts (the same model and English corpus were used to
obtain word representations that Frank & Willems, in press,
and Frank, 2017, applied to account for N400 and reading
time effects). Words that occur in similar contexts get sim-
ilar vectors so that representations of words from the same
syntactic/semantic category tend to be clustered together.

The stimuli from the (Ding et al., 2016) experiments were
presented to the model at a simulated rate of 4 Hz per English
word or Chinese syllable. Twelve different subjects were
simulated by retraining the distributional semantic model and
randomly varying stimuli presentation order. The sequence of
vector representations, at a simulated time resolution of 5 ms,
were analysed by applying a Discrete Fourier Transform to
obtain a power spectrum, just like Ding et al. (2016) do in
their analysis of the MEG signal.

Results

Figure 2 shows that the model predicts the same peaks in the
power spectrum as in the original MEG study. The minor
peak at 3 Hz, which did not reach significance in the MEG
data, is most likely merely the second subharmonic of the
1 Hz peak (Zhou, Melloni, Poeppel, & Ding, 2016). The
model further correctly accounts for the outcomes of exper-
iments with two-syllable NP or VP sequences that lack full
sentence structure, and predicts results very similar to those
in the MEG data when syllable sequences are scrambled to
remove any higher linguistic structure (see Frank & Yang,
2017)

Conclusion

The only linguistic knowledge in the model is encoded in the
input vectors, so it remains at the lexical level. Furthermore,
the model does not include any intergrative processing. The
resulting power spectra can therefore not reflect any (hierar-
chical) syntactic processing. Consequently, the original MEG
results may also be explained without syntax.
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Figure 1: Left: MEG results for Chinese [NP VP] sentences. Right: MEG results for English [NP VP] sentences, reproduced
from Ding et al. (2016, Figure 2e) with permission (the frequency scale was adapted to match simulated presentation rate).
Shaded areas represents the standard error over subjects; lines are the average over subjects. Stars indicate significant peaks
after multiple comparison correction.
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Figure 2: Model results for Chinese (left) and English (right) [NP VP] sentences. Grey lines represent individual simulated
subjects; coloured lines are the averages over simulated subjects. Stars indicate significant peaks after multiple comparison
correction.
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Introduction 
Categorization is critical for our ability to organize 
information. A comparative analysis may provide important 
insights into the cognitive and neural mechanisms underlying 
category learning. We have examined category learning in 
rats and pigeons because of differences in brain organization 
between mammals and birds. Species differences in category 
learning and representation can indicate how the differences 
in brain organization lead to differences in cognition. 

Category structure and supervision are factors importantly 
influencing category learning and representation in humans 
(Kloos & Sloutsky, 2008; Love, 2002). Humans can learn 
categories with dense defining features with no supervision, 
but we need supervision to learn categories with sparse 
features. These finding have been interpreted as evidence for 
multiple category learning systems in the brain. The current 
study examined the roles of feature density and supervision 
in visual category learning in rats and pigeons. 

Experiment 1 
Rats were trained on a discrimination task earlier used for 
category learning with photographic stimuli (Brooks et al., 
2013). Rats were trained with two visual categories in which 
feature density could be precisely manipulated (see Figure 1). 
One category was associated with a left response, whereas the 
other category was associated with a right response. 

 
 

 
 
 
 
 
 
 

Figure 1: Exemplars of one high-density (dense) category 
(top) and one low-density (sparse) category (bottom). 

 
Each stimulus category had five features. In the dense 

condition, three of the features were category-relevant, 
whereas the sparse condition had only one relevant feature. 
High supervision was defined as delivery of a food reward 
only after a correct choice. In contrast, low supervision was 
defined as delivery of a food reward regardless of whether or 
not the choice was “correct.” Rats were trained in a 2 x 2 
design with density and supervision as factors: dense–high 
supervision, sparse–high supervision, dense–low 
supervision, and sparse–low supervision. The rats were 
trained until reaching a criterion of 75% correct responding 
for both categories for 2 consecutive days or for a maximum 
of 60 days. After meeting the training criterion, the rats were 
given testing sessions in which training stimuli were mixed 
with probe trials. Probe trials included novel exemplars 
(novel irrelevant features), rotated stimuli (in which the 
relevant features appeared in different locations), and 
singleton stimuli (only one relevant feature was presented, in 
the absence of any other features). 

Figure 2: Mean accuracy of rats trained in the dense–high 
supervision (dense-high), sparse–high supervision (sparse-
high), dense–low supervision (dense–low), and sparse–low 
supervision (sparse-low) conditions. 
 
All rats in the dense–high supervision condition (6/6) showed 
rapid learning of the two categories (see Figure 2). They also 
showed very high accuracy with novel stimuli. Accuracy 
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dropped significantly when rotated or singleton stimuli were 
presented, suggesting that the rats’ representations of the 
categories included feature-location binding. Some of the rats 
in the sparse–high supervision condition (2/6) learned and 
showed substantial generalization to novel exemplars. Like 
rats in the dense–high supervision condition, the rats in the 
sparse–high supervision condition that learned showed a 
significant drop in accuracy during presentations of the 
rotated and singleton test stimuli. Rats trained in the low 
supervision conditions did not learn. Only one rat in the 
dense–low supervision condition reached criterion 
performance. Rats that did not learn showed a position bias 
and were slower to learn when switched to high supervision. 

Experiment 2 
Pigeons were trained and tested under identical conditions as 
the rats. This experiment is in progress and, currently, 
training and testing has been conducted with a limited 
number of animals: dense–high supervision (2), sparse–high 
supervision (3), dense–low supervision (2), and sparse–low 
supervision (3). All of these pigeons learned relatively 
quickly, compared to the rats. 

Figure 3: Mean accuracy of pigeons trained in the dense–high 
supervision (dense-high), sparse–high supervision (sparse-
high), dense–low supervision (dense–low), and sparse–low 
supervision (sparse-low) conditions. 

 
As can be seen in Figure 3, pigeons in the high density 

conditions learned rapidly, in five or fewer sessions, 
regardless of the level of supervision. They also showed very 
high accuracy to novel stimuli (above 90%), and to rotated 
and singleton stimuli as well (above 90%). Pigeons in the 
sparse conditions took longer to learn but, just as in the dense 
conditions, the level of supervision minimally affected their 
rate of learning. In both sparse conditions, accuracy to novel 
stimuli was high, albeit lower than in the dense conditions 
(85%). Accuracy to the singleton stimuli was high as well 
(85%), but it dropped a bit more for the rotated stimuli (75%). 
Pigeons’ representations of the categories seemed to include 
feature-location binding as well, just as we observed in the 
rats; however, this factor played a much smaller role in the 
pigeons’ performance. 

Conclusions 
The results indicate clear differences in category learning 
between rats and pigeons. Pigeons learned rapidly in all four 

conditions and their learning rate was not affected by the 
level of supervision. For pigeons, the most important factor 
was the density of category-relevant features—dense 
categories were learned faster than sparse categories. In 
contrast, rats showed robust learning only in the dense–high 
supervision condition. Statistical density is therefore a crucial 
factor for visual category learning in birds, rodents, and 
humans. The interaction of density and supervision is more 
complex, however, and may be related to whether the 
organism is remembering visual features, binding features 
and spatial locations, or learning category rules. 

The differences in category learning between pigeons and 
rats may reflect differences in brain organization. Birds do 
not have a laminar cortex or a prefrontal cortex. Thus, the 
pigeons’ insensitivity to the level of supervision might be 
related to the absence of prefrontal processing of differential 
reinforcement. The clear superiority in learning rate in the 
pigeons relative to the rats suggests, however, an advantage 
in memory for visual stimuli, which might be related to 
specializations within the visual areas of the avian brain. 
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Introduction 

Imitation is a ubiquitous human behavior which has been 

linked to both social learning and social bonding (Uzgiris, 

1981).  Here, we examine how imitation is used in the 

context of social affiliation, with a particular focus on the 

unconscious mimicry of body postures or gestures which are 

sometimes referred to as the ‘chameleon effect’ (Chartrand 

& Bargh, 1999).  The ‘social glue’ hypothesis of mimicry 

claims that mimicry behavior has a key causal role in social 

affiliation (Lakin, Jefferis, Cheng, & Chartrand, 2003; van 

Baaren, Janssen, Chartrand, & Dijksterhuis, 2009).  For 

example, if Anna mimics an action by Bert (without 

awareness in either), the theory claims that Anna sends a 

prosocial signal to Bert and Bert receives that information 

(Wang & Hamilton, 2012).   

 

A correlational relationship between increased bodily 

mimicry in dyadic interactions and positive ratings of the 

interaction has been repeatedly observed (Pentland, 2008). 

However, direct experimental evidence that mimicry has a 

social signaling role remains weak.  Two major types of 

evidence can show if an action functions as a social signal – 

first, does the sender’s behavior change depending on who 

can see the signal? and second, does the receiver act on the 

signal?  This talk will examine recent evidence for each of 

these, and will thus test the social glue hypothesis of 

mimicry. 

Is mimicry changed by who can see? 

Several studies suggest that mimicry is enhanced when 

another person makes eye contact and can receive a signal 

from the mimicker (Bavelas, Black, Lemery, & Mullett, 

1986; Wang, Newport, & Hamilton, 2011).  Here I will 

focus on three recent studies which show how mimicry in 

children and adults is modulated by the gaze behaviour of 

an observer.  First, we report that children performing an 

overimitation task (similar to Marsh, Ropar, & Hamilton, 

2014) show  more imitation behaviour when observed by an 

adult than when the adult turns her back (Marsh & 

Hamilton, n.d.).  Second, we show that rapid hand action 

mimicry is enhanced when the participant is observed at the 

time of response, but not if the observer’s gaze is occluded 

just before the response (Wang & Hamilton, 2013).  In a 

third study, we asked dyads to complete a leader-follower 

task where the leader demonstrated a movement sequence 

and we measured how closely the follower copied the 

kinematics of the sequence despite not being instructed to 

do so.  We find that followers imitate with higher fidelity 

when the leaders eyes are open than when they are closed 

(Krishnan-Barman & Hamilton, n.d.), matching the 

predictions of the signaling hypothesis. 

Together, this series of studies provides clear evidence 

that the production of mimicry behavior varies according to 

whether the mimicry can be seen by another person or not.  

This is true across children, adult reaction time studies and 

adult dyadic interactions.  These results are compatible with 

the idea that senders are producing mimicry as a social 

signal, in order to convey information to another person. 

 

Is mimicry detected by receivers? 
 

For mimicry to function effectively as a signal, the 

message must be send and also received.  That is, Bert must 

(on some level) detect that Anna is mimicking his action 

and respond to that signal.  It is hard to find strong evidence 

for this, partly because it is not an easy experiment to 

implement.  Most approaches require that a confederate 

should mimic or not-mimic the actions of a participant in a 

well-controlled manner.  While some studies report positive 

effects (Chartrand & Bargh, 1999; Müller, Maaskant, van 

Baaren, & Dijksterhuis, 2012), others report mixed results 

or null effects (van Swol, 2003; Verberne, Ham, Ponnada, & 

Midden, 2013).  A full review of these results is provided in 

(Hale & Hamilton, 2016a). 

 

We propose that the most rigorous way to test the 

hypothesis that being mimicked leads to a positive social 

effect is to use virtual reality.  In virtual reality mimicry, the 

experimenter has full control of the interaction and can 

ensure that mimicry (and only mimicry) is the factor which 

differs between experimental conditions, and that all 

participants receive a consistent experience.  An early 

virtual reality study reported positive effects of being 

mimicked in VR (Bailenson & Yee, 2005).  We recently 

extended this result and examined how participants respond 

to being mimicked or not by a virtual character from their 

own culture or a different culture.  In a pre-registered study 

with a large sample size, we find that mimicry of head 

motion which is not detected by participants has no impact 

on rapport or trust (Hale & Hamilton, 2016b).  
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Several factors could account for this null result.  First, 

we examined only mimicry of head motion, and mimicry of 

other motion features (e.g. gesture or posture) might lead to 

larger effects.  Second, imperfections in the VR itself might 

negate any positive social effects, through similar VR 

systems can replicate many other psychological phenomena.  

Finally, it is possible that being mimicked is not implicitly 

detected as a social signal, arguing against the social 

signaling interpretation of mimicry. 

 

Conclusions 

The present data suggests that the production of mimicry 

depends on who can see, but it is not yet clear if receivers 

respond positively to mimicry.  This means that the role of 

mimicry as a social signal is not yet firmly established.  We 

suggest that acquiring high-resolution motion capture data 

to better establish how dyads use mimicry will also enable 

the creation of better VR mimicry.  This can provide a more 

definitive test of the claim that mimicry is used as a signal 

of social affiliation. 
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Introduction
Convolutional neural networks (CNNs) trained as classifiers
learn by associating visual inputs (e.g., photographs of ob-
jects) with appropriate output labels (e.g., “crow”, “dog”,
“car”). These complex models, which contain millions of
weights, are the state-of-the art in machine vision, rivaling
humans in object recognition tasks (LeCun, Bengio, & Hin-
ton, 2015; Krizhevsky, Sutskever, & Hinton, 2012). What
these networks learn displays some commonalities with hu-
man learning (Kubilius, Bracci, & de Beeck, 2016; Lake,
Zaremba, Fergus, & Gureckis, 2015). Furthermore, the layers
in these networks have been related to neural activity along
the ventral stream (Khaligh-Razavi & Kriegeskorte, 2014;
Yamins & DiCarlo, 2016)

The similarity spaces created by these models at various
network layers allow us to draw parallels with the brain’s neu-
ral coding schemes (Guest & Love, 2017). At earlier layers,
networks display similarity spaces that reflect the high-level
categories found in the input space, e.g., lions and tigers are
more similar to one another than to mopeds. At the more ad-
vanced layers, similarity structure tends to break down such
that representations of different object categories become or-
thogonal.

Can these networks also shed light on how non-human an-
imals categorize? CNNs can be used to determine at what
level of representation (i.e., what network layer) animals are
coding similarities between images. For example, are ani-
mals learning regularities at a very low level, close to the
pixels in the image, or are they seizing upon more abstract
shape features? In this contribution, we address this question
by examining data from pigeons trained to categorize images
of cardiograms as normal or abnormal.

Pigeons are excellent at classifying visual stimuli (Bhatt,
Wasserman, Reynolds, & Knauss, 1988). For example, pi-
geons trained to discriminate between medical images of nor-

a) b)

Figure 1: Two examples of the stimuli that the pigeons and
network are asked to classify: a) a normal cardiogram without
any perfusion damage; and b) an abnormal cardiogram with
total perfusion damage 20 (of a maximum of 51).

mal and cancerous breast tissue generalized to novel stim-
uli and attained human-level accuracy (Levenson, Krupin-
ski, Navarro, & Wasserman, 2015). Importantly, knowledge
transfer was only true in certain circumstances. Pigeons only
generalized within image magnification levels — they were
not scale-invariant. Also, generalization was significantly
compromised, although still above chance, when tested on
grayscale images (perhaps to be expected given the loss of
hue and brightness cues). However, the pigeons’ performance
improved with additional training on greyscale images.

Can CNNs explain such patterns of performance? At
the most advanced layers of these networks, representations
should be somewhat invariant to changes in size, luminance,
translation, etc. However, at lower layers the network will
be more sensitive to such changes and will not generalize as
broadly. Which network layer best captures how pigeons cat-
egorize?

Here we consider data from an a yet unpublished study by
Wasserman and colleagues in which pigeons are trained to
classify cardiograms as normal or abnormal, see Figure 1.
Pigeons can correctly determine whether a cardiogram is ab-
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normal or normal in much the same way as a skilled human,
and can correctly classify unseen cardiogram images.

To parallel the pigeons, we also show the same stimuli
to a CNN, namely Inception-v3 GoogLeNet (Krizhevsky et
al., 2012). In line with the pigeons, the network can also
determine whether a stimulus is normal or abnormal. Also
like the pigeons, Inception-v3 GoogLeNet is very sensitive to
changes in color, having serious problems generalizing when
trained on color images and tested on grayscale without addi-
tional training. Importantly, even though the model can dif-
ferentiate between the two classes at the output layer it can
also do so at much lower layers. The output layer is trained to
represent very high-level conceptual categories (1000 mutu-
ally exclusive classes, e.g., sunglasses, moped, jellyfish, etc.).
Although these output classes do not contain options for nor-
mal and abnormal cardiograms, the network provides a dis-
tributed answer across these categories thus solving the clas-
sification task. In other words, the output shows a similarity
structure matching the normal/abnormal distinction in the in-
puts.

As mentioned, at lower layers including the input layer, the
network can also differentiate the two types of stimuli into
normal and abnormal. This means that basic stimulus proper-
ties, which are what the network and the pigeons are extract-
ing and learning, are sufficient to separate the two classes of
cardiograms shown in Figure 1. This is important because
it implies that more complex and abstract features, or even
representations of basic shapes, are not required for the type
of learning problem the pigeons are solving. In addition, this
predicts that generalization will be poor in both the animal
and computational models we have considered. We consider
the broader implications of these results for how humans and
non-human animals categorize.
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new conceptual knowledge. Proceedings of the National
Academy of Sciences (PNAS), 113(46), 1320313208.
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Abstract 
Notions of entropy and uncertainty are fundamental to 

many domains, ranging from the philosophy of science to 
physics. One important application is to quantify the 
expected usefulness of possible experiments (or questions or 
tests). Many different entropy models could be used; 
different models do not in general lead to the same 
conclusions about which tests (or experiments) are most 
valuable. It is often unclear whether this is due to different 
theoretical and practical goals or are merely due to historical 
accident. We introduce a unified two-parameter family of 
entropy models that incorporates a great deal of entropies as 
special cases. This family of models offers insight into 
heretofore perplexing psychological results, and generates 
predictions for future research. 

Uncertainty and Information 
Notions of entropy and uncertainty are fundamental to 

many domains, ranging from the philosophy of science to 
physics. One important application of uncertainty is to 
quantify the expected usefulness of possible experiments (or 
questions or tests). Lindley (1956) suggested that an 
experiment’s usefulness could be quantified in terms of how 
much it reduces expected Shannon (1948) uncertainty about 
the possible states of the world. This idea has proven useful 
in psychological models (Oaksford & Chater, 1994) as well. 
In a psychological context, the possible states could be the 
different categories that an object might belong to, and 
“experiments” could be a child’s queries to learn more about 
the category. Other entropy models, such as Quadratic 
entropy (Crupi & Tentori, 2014) or Bayes’s error (Baron, 
Beattie & Hershey, 1998; Crupi, Tentori & Lombardi, 2009) 
could also be used. Different models do not in general lead 
to the same conclusions about which tests (or experiments) 
are most valuable (Nelson, 2005, 2008, 2009).  

What kind of entropy model best characterizes people’s 
goals in searching for information? Some data suggest that 
reduction in Bayes’s error (probability gain) is a more 
plausible intuitive model than reduction in Shannon entropy 

(Nelson, McKenzie, Cottrell & Sejnowski, 2010; Meder & 
Nelson, 2012). Probability gain appears to have its own 
limitations, however, as it does not show a preference for 
questions with close to a 50:50 split in 20-questions games 
(Nelson, Divjak, Gudmundsdottir, Martignon & Meder, 
2014).  

Many different ideas of important axioms for entropy 
measures have been proposed (Csiszár, 2008). Interestingly, 
particular entropy measures have been predominant in 
particular research areas, and it is often unclear whether this 
is due to different theoretical and practical goals or are 
merely due to historical accident.  

Is there any possibility for a formal model of uncertainty 
that would be able to describe people’s behavior across a 
wide variety of tasks? Could such a model also have 
theoretically desirable properties?  

Entropy is often thought of as expected surprise. But (1) 
what constitutes surprise, and (2) what constitutes an 
expectation? Depending on how surprise and expectation 
are defined, different entropy measures result. Combining 
these two ideas, we show that many entropy measures, 
including Hartley (1928), Shannon (1948) and Quadratic 
entropy, and the families of Tsallis (1988), Rényi (1961), 
and Arimoto (1971) entropies, can all be derived as special 
cases in the Sharma-Mittal (1975) framework for entropy 
measures.  

Figure 1 depicts the Sharma-Mittal space of entropy 
measures graphically, where the horizontal axis (the order r) 
specifies the type of averaging function, and the vertical 
axis (the degree t) specifies the surprise function. A number 
of heuristic ideas of uncertainty, for instance the number of 
possibilities, and whether or not you know for sure 
(analogous to a Popperian formulation, Popper, 1959), also 
arise as special cases in this framework. 

Can psychological insight be derived from this 
formalism? We show that many heretofore disparate-
seeming empirical results and normative desiderata can be 
accommodated by specific entropy measures within this 
formalism. Importantly, this framework affords more than a 
post hoc story; novel predictions can be derived for future 
experiments, to better characterize the psychological bases 
of uncertainty and information. 
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Figure 1: The Sharma-Mittal framework 
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Motivation and Background 
Imagine a child who is just beginning to produce words. To 
figure out what a word like CUP means, she has to not only 
identify the individual cup, but also understand what 
properties are relevant for belonging to the category of cups 
in order to remember the word later and apply it to new cups 
she encounters (e.g., its abstract shape rather than its purple 
plastic material).  

At the same time this child is learning all about cups, 
she is also learning other words, many of which also name 
categories of objects similar in shape (e.g., BALL and 
CAR), from which she will learn a bias to attend to shape 
when generalizing novel names to novel objects (i.e., shape 
bias). A child’s prior knowledge and experiences help her to 
not only learn individual words and categories, but also, 
more importantly, to learn how to learn words, making 
subsequent word learning easier.  

In this talk I will discuss my research on children’s 
word learning biases and the consequences these biases 
have on their future learning and generalization. 
Additionally, I will discuss how our understanding of the 
development of these biases can inform our understanding 
of children and adults’ visual recognition abilities. 

Attention to Shape 
At first glance, the “shape bias” may seem like an artificial 
laboratory phenomenon. Children are presented with three 
novel objects: an exemplar, one object that matches the 
exemplar in shape but differs in material and color, and one 
object that matches the exemplar in material but differs in 
shape and color. When the experimenter names the 
exemplar and asks the child to generalize it to one of the 
other two saying, by the time children are about 2-years-old 
they systematically select the object mapping in shape 
(Landau, Smith, & Jones, 1988). Although this phenomenon 
may seem simple, it has been shown to have consequences 
for children’s future word learning (e.g., Perry et al., 2010) 
and is window into children’s developing object recognition 
(Yee, Jones, & Smith, 2012) and memory (Vlach, 2016). 

Additionally, evidence from atypical populations 
further suggests that the shape bias can tell us about 
developmental process. For example, children with autism 
(Tek, Jaffery, Fein, & Naigles, 2008), children who are late 
talkers (Jones & Smith, 2005), and children who are deaf or 
hard of hearing and wear cochlear implants (Quittner, Cejas, 
Wang, Niparko, & Barker, 2016) all show delayed or 
atypical biases when generalizing novel nouns.  

My own work reveals interesting individual differences 
even within typically developing populations. Children 
whose vocabularies differ from the norm show 
generalization biases that differ from the norm (Perry & 
Samuelson, 2011). The more words a child knew naming 
solid objects in categories organized by similarity in shape 
(e.g., CUP), the more likely she was to generalize novel 
names by similarity in shape. However, the more words she 
knew naming solid objects in categories organized by 
similarity in material (e.g., CHALK), the more likely she 
was to generalize novel names by similarity in material.  

I have extended this line of research to examine how 
vocabulary differences lead to differences in memory for 
objects’ features (Perry, Axelsson, & Horst, 2015) and 
recognition of familiar objects (Perry & Saffran, 2016). For 
example, regardless of vocabulary size, children who knew 
relatively few names for categories organized by shape had 
more trouble recognizing objects in the wrong colors (e.g., 
pink cow) than children who know more categories 
organized by shape.  The particular words children already 
know, bias their future word learning and recognition.  

Importantly, longitudinal training studies suggest 
vocabulary regularities play a causal role in shape bias 
development. Teaching young children categories organized 
by similarity in shape leads them to develop a precocious 
shape bias and learn new words at an increased rate (e.g., 
Perry et al., 2010). Together, this work on the shape bias 
offers insights about developmental process: 1) the process 
of learning words has cascading consequences for future 
word learning; and 2) the structure of a child’s vocabulary 
influences what information they attend to and remember.  

Attention to Material 
In addition to learning about solid objects like CUP, children 
also learn about nonsolid substances like APPLESAUCE and 
JUICE, for which material is important. When generalizing 
the names of novel nonsolids, older children and adults 
attend to similarity in material (“material bias”). Compared 
to the shape bias, the material bias is later acquired 
(Samuelson & Smith, 1999) and is sensitive to stimuli and 
task changes (Samuelson & Horst, 2007).  

One reason for this difference in development is that 
children learn about nonsolids in a relatively constrained 
context—all early-learned nonsolids are foods seen at 
mealtimes, while solids are seen across a variety of contexts. 
I found that putting children in a highchair allows them to 
explore stimuli as they would at mealtimes and led them to 
show a material bias several years earlier than they do in a 
standard lab context (Perry, Samuelson, & Burdinie, 2014).  

An additional difference is that materials might be 
difficult to recognize from static visual information and may 
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require tactile information. Indeed, it was the children who 
touched stimuli the most who showed the strongest material 
bias in my study (Perry et al., 2014). And those in the 
highchair were messiest because that setting increased 
context-dependent action patterns that proved necessary for 
recognizing similarity between materials (cf Perry, 2015). 
Children’s developing attention to material similarity builds 
on what we already know about attention to shape, and also 
provides new insight into the importance of context and 
exploration in recognition and generalization. 

How do children eventually learn to pay attention to 
substances’ materials outside of this specific context? 
Adults don’t need to sit in a highchair to distinguish 
whiskey from juice. How do children learn to visually 
recognize materials? What do adults even know about 
substances? These questions have important applications 
beyond understanding word learning: although we can teach 
artificial intelligence systems to recognize solid objects, it is 
nearly impossible to teach them to recognize nonsolid 
substances (Adelson, 2001). To begin answering these 
questions, I conducted a study in which adults and children 
drew familiar objects and substances from memory. 

New Insights From Drawing 
In my recent work, I assessed children and adults’ drawings 
of familiar objects and substances from memory. Examining 
these drawings allows us to assess what visual information 
is relevant to representations of different kinds of things and 
how this information changes over development. As such, 
this study is an important first step in understanding how we 
recognize objects and substances. 

Amazon Mechanical Turk participants identified 
drawings. Critically, they were more accurate in identifying 
drawings of solid objects than nonsolid substances. Both 
children and adults tended to include container information 
for nonsolids rather than draw the substance itself. 
Drawings of nonsolids that depicted distinct, prototypical 
containers (e.g., milk carton, coffee mug) aided recognition.  

Additionally, adult were quite consistent in color use—
e.g., all adults drew brown (i.e., chocolate) pudding and 
purple grapes, while children used a variety of colors. These 
results suggest 1) color might be more important to object 
representations than previously believed and 2) that as 
children develop, they become more systematic and 
prototypical in the colors they associate with objects.  

Overall, these new findings build on my previous work 
examining children’s attention to shape and material by 
demonstrating what information we use to remember and 
recognize solids and nonsolids. These results demonstrate 
that visual recognition of both solids and nonsolids—is 
aided by shape, suggesting we may conceptualize nonsolids 
as more object-like than was thought. 

Relevant publications 
My publications most relevant to this presentation are: Perry 
et al., 2010; Perry & Samuelson, 2011; Perry et al., 2014; 
Perry, 2015; Perry et al., 2015; and Perry & Saffran, 2016. 
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Abstract

Word meaning priming has become a key method to study
how listeners (and readers) retune their lexical semantic
representations in response to their linguistic environment in
order to facilitate access to word meanings. We present a
summary of recent findings using this method that help to
constrain our theories of how this important form of lexical-
semantic learning occurs.

Keywords: lexical ambiguity; semantic ambiguity; learning;
speech; language

Background: Lexical Ambiguity
Access to word meanings during natural language
comprehension is made difficult by the ubiquity of lexical
ambiguity: 80% of common English words have multiple
dictionary definitions (Rodd, Gaskell & Marlsen-Wilson,
2002). Take for example the first sentence of a reading
comprehension text that was recently given to 11-year-old
children in England: “Dawn was casting spun-gold threads
across a rosy sky over Sawubona game reserve”. The words
in this sentence have on average 8.8 dictionary definitions.
The reader must work out that “Dawn” does not refer to a
girl’s name and that “game” does not refer to a form of
competitive sport. And they must realise that the words
“casting” and “threads” are not referring to a physical action
and object, but are instead being used in a somewhat
metaphorical sense.

When a listener/reader encounters an ambiguous word,
they usually rapidly retrieve the most appropriate meaning
and ignore any other irrelevant meaning(s). A very large
body of psycholinguistics experiments conducted over the
last 40 years have provided important constraints on our
understanding of how this disambiguation process operates.
The literature has converged on the view, exemplified in the
reordered access model (Duffy, Morris, and Rayner, 1988,
see Vitello and Rodd, 2014 for review) that whenever a
reader/listener encounters an ambiguous word, its multiple
different meanings are activated in parallel, but this
activation is modulated by the sentence context and the
relative frequencies of the different meanings: meanings that
are highly frequent or compatible with the preceding context
are more readily available.

Word Meaning Priming: Published Findings
Recent studies using a novel word-meaning priming

paradigm (Rodd et al., 2013; 2016) have supplemented this
view of lexical disambiguation with evidence that learning

mechanisms make a key contribution to disambiguation
fluency, by allowing listeners to make use of the past
experience to boost the availability of meanings that are
more likely to occur in the future. For example,
comprehension of a sentence such as “the sheep were put
into the pen”, is usually relatively difficult because the
intended ‘animal-enclosure’ meaning of “pen” is far less
frequent than the dominant ‘writing-instrument’ meaning.
But learning mechanisms can make such sentences easier in
conditions where the listener has increased prior experience
with the lower frequency meaning.

Specifically, these word-meaning priming experiments
have revealed the key role of recent experience in
modulating the availability of word meanings. For example,
if the lower-frequency meaning of “pen” is encountered as
part of a sentence comprehension prime task, then this
meaning will be more readily available after a 20-40 minute
delay (compared with an unprimed control; Rodd et al.,
2013; 2016). This form of word meaning priming does NOT
reflect a general forms of semantic priming; a control
condition in which participants were primed with different
but synonymous words showed no priming at this relatively
long delay (Rodd et al., 2013). Word-meaning priming only
occurs when the specific ambiguous word (e.g., “pen”) is
encountered in both the prime and test phases. In natural
listening situations this dynamic ‘retuning’ of lexical-
semantic representations will act to improve comprehension
fluency for cases where an ambiguous word is encountered
multiple times within the same conversation.

In addition to these lab-based experiments that have
shown word-meaning priming at 20-40 minute delays (with
little decay during this time window), experiments
conducted with larger sets of participants outside the lab
have shown that even larger priming effects occur as a
consequence of naturalistic encounters with word meanings.
For example when recreational rowers encounter the
specific rowing-related meanings of common words like
“catch” and “feather” during their training, a significant and
numerically large priming effect was observed after a
median delay of eight hours (Rodd et al., 2016). In addition,
these relatively large effects of same-day experience with
word meanings leave residual traces that accumulate
incrementally over many years to alter a listener’s overall
preferences for the different meanings: the number of years
rowing experience that an individual rower had was a strong
predictor of meaning access (Rodd et al., 2016).

Taken together, these results indicate that adult lexical-
semantic representations are relatively fluid and are
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constantly being retuned on the basis of experience to
improve the fluency and accuracy of comprehension.

Word Meaning Priming: Recent Developments
A set of seven (unpublished) word-meaning priming
experiments have been conducted to help constrain our
theories of how exactly the availability of word meanings is
boosted as a consequence of our experience.

Effects of prime/target modality. Two experiments (using
different tasks at test) show that word-meaning priming
occurs when the ambiguous words are presented in different
modalities (i.e. spoken and written) at prime and test, and
that such cross-modal priming is not reduced compared with
uni-modal priming. This indicates that learning may occur at
a relatively abstract lexical-semantic level, and that
knowledge about words learned in one modality influences
comprehension in the other modality.

Effects of word position. Two experiments (using different
tasks at test) show that word-meaning priming is NOT
modulated by the position of the ambiguous word within the
sentence: there is no significant difference in priming when
the disambiguating context occurs before or after the
ambiguity (e.g., “the sheep were enclosed in a PEN” vs “a
PEN was used to enclose the sheep”). These results are
incompatible with an account where learning is triggered by
the detection of an error signal that indicates that the
ambiguous word has been misinterpreted, as this would
predict increased priming for late-disambiguation sentences.
The results are also incompatible with an account in which
the co-activation of the word form and the contextually-
appropriate drives learning: this would predict more priming
for the early-disambiguation sentences. Instead the results
indicate that lexical semantic representations are modulated
on the basis of a word’s final, comprehended meaning and
do not seem to be influenced by partial, transient activation
of irrelevant meaning during comprehension.

Effects of multiple encounters. Three experiments show
that listeners keep track of the likelihood of different
meanings across multiple encounters with the ambiguous
word. If the word is used repeatedly with the same meaning,
the priming effects accumulate to increase the availability of
this meaning relative to a single presentation control
condition. In contrast, if different meanings are encountered
then the effects of these experiences cancel each other out.
Importantly, the cumulative effects of repeated exposure are
dependent on the spacing of the words – no benefit of
repetition is observed if the word is encountered multiple
times in adjacent sentences.

Summary
Word meaning priming has become a key method to study
how listeners (and readers) retune their lexical semantic
representations in response to their linguist environment.

We present recent findings using this method that help to
constrain our theories of how this learning occurs and will
guide the development of our connectionist model of how
words are represented and processed (Rodd et al., 2004).
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Abstract

Implementing interventions that are supposed to enhance students’
general learning skill and overall cognitive ability is still a
common practice in education. The basic idea on which this
approach relies is that improving domain-general skills provides
benefits for a broad range of domain-specific areas, such as
academic disciplines. Thus, it is assumed that there is far transfer –
i.e., the generalization of a set of skills between domains loosely
related to each other. In recent years, chess instruction, music
instruction, and working memory training have been claimed to be
able to train domain-general abilities (e.g., fluid
reasoning/intelligence) which, in turn, generalize to other cognitive
and academic skills (e.g., mathematics). We tested these claims in
the population of healthy children via meta-analysis. The results
showed small to moderate overall far-transfer effects in all the
outcome measures of the three meta-analyses. However, the effect
sizes were inversely related to the design quality (e.g., presence of
active control groups), which casts doubts on the effectiveness of
the three activities. We discuss the theoretical and practical
implications of these findings for education and expertise and
extend the debate to another type of training, video games training.

Keywords: chess; education; learning; mathematics; music;
transfer; working memory.

Introduction
The question of transfer is central to cognitive science. Near
transfer can be defined as the generalization of a set of
trained skills across domains closely related to each other.
Far transfer can be defined as the generalization of a set of
trained skills across domains loosely related to each other.
Ever since Thorndike and Woodworth’s (1901) common
elements theory, psychology has documented the difficulty
of far transfer. As noted by these authors, transfer from one
domain to another can only happen when the two domains
share common elements. Thus, while near transfer is
expected to occur fairly often (e.g., transfer is expected
between geometry and calculus), far transfer is much less
likely, as the source and target domains share few elements
(e.g., no transfer is expected between Latin and calculus).

The field of education has been much more sanguine
about the possibility of far transfer. For example, in a very
influential book, Papert (1980) argued that the skills
acquired in learning the programming language LOGO
would transfer to mathematics and indeed would improve
learning generally. (Considerable research has shown that
this was unlikely to be the case; e.g., Gurtner et al., 1990.)
More recently, very strong claims have been made in

educational quarters, on the web and in the popular press
about the possible benefits of music, chess, and working
memory training for improving academic achievements and
a large variety of cognitive abilities (e.g., fluid intelligence,
cognitive control, phonological processing, and spatial
ability).

Recent Evidence
In recent meta-analyses (Sala & Gobet, 2016, 2017a,

2017b), we evaluated the evidence of transfer in three
domains (chess, music, and working memory training). In
all cases, we focused on healthy children and young
adolescents.

The results showed null to medium overall effect sizes in
all three meta-analyses. Moreover, the size of the effects
was inversely related to the quality of the experimental
design. Specifically, when the participants were randomly
allocated to the groups and the experimental groups were
compared to active control groups, the overall effect sizes
were minimal or null.

Design quality thus accounts for the variability between
the studies. The three treatments provide either minimal
overall effects on academic achievement and overall
cognitive ability (music and working memory training), or
medium effects possibly due to placebo effects (chess)
and/or statistical artefacts due to lack of randomization.
Overall, these results support Thorndike and Woodworth’s
(1901) theory.

Link with Expertise Research
The lack of far transfer in these domains might appear
surprising, because there is considerable evidence in these
domains for correlations with intelligence and other
intelligence-related measures. In a survey, Schellenberg
(2006) reported medium correlations between time spent for
music lessons and several measures of cognitive ability and
academic attainment in a sample of children and
undergraduate students. Similarly, Burgoyne et al. (2016)
found that with chess players, the correlation between skill
and fluid intelligence was ̅ = .24. Sala et al. (2017) found
that chess players are more intelligent than individuals who
do not play chess ( ̅ = 0.49). Finally, the correlation
between working memory and intelligence is about r = .70
(Kane, Hambrick, & Conway, 2005).
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Of course, this evidence is correlational, and drawing
conclusions about causality is notoriously difficult.
Nevertheless, the pattern of results (near absence of far
transfer in training studies and correlations with
intelligence) suggests that, in the domains we have
reviewed, intelligence comes first and explains why some
individuals perform better than others.

We also note that the difficulty of far transfer is consistent
with several theories of expertise. In particular, both
chunking theory (Simon & Chase, 1973) and template
theory (Gobet & Simon, 1996) propose that the
development of expertise is closely linked to the acquisition
of a large number of perceptual patterns. These patterns
allow experts to memorise domain-specific material better
than non-experts, even when the global structure of the
material is destroyed by randomization (Sala & Gobet,
2017c). Accessing knowledge depends on productions
matching these perceptual patterns. Thus, even if two
domains share common elements at an abstract level, these
two theories predict that far transfer is unlikely, as the
perceptual patterns met in the two domains are different
(Gobet, 2015, 2016; Gobet & Campitelli, 2006).

We are currently carrying out a meta-analysis of the
effects of video game playing to further test these
hypotheses. We strongly predict that near transfer will be
common, but that far transfer will be rare. The results of this
meta-analysis will be ready for the conference.

Implications for Education
The studies discussed above suggest that the widespread

notion that practicing any cognitively demanding activity
enhances one or more cognitive skills beyond the trained
activity has little empirical support. In other words, the
benefits of cognitive training seem to be, to a large extent,
domain- and task-specific. Practically, the unlikely
occurrence of far transfer suggests that the most effective
way of improving a skill is to train that particular skill. This
sobering conclusion should discourage educators and
trainers from proposing curricula aimed at fostering domain-
general skills. Rather, curricula and training programs with
a considerable amount of domain-specific content should be
preferred. Thus, if the aim is to teach mathematics, lessons
focusing on mathematics are better than lessons containing
material on music, chess or working memory training.

References
Burgoyne, A. P., Sala, G., Gobet, F., Macnamara, B. N.,

Campitelli, G., & Hambrick, D. Z. (2016). The
relationship between cognitive ability and chess skill: A
comprehensive meta-analysis. Intelligence, 59, 72-83.

Gobet, F. (2015). Cognitive aspects of learning in formal
and non-formal contexts: Lessons from expertise
research. British Journal of Educational Psychology,
Monograph Series II: Number 11, Learning beyond the
Classroom, 23-37.

Gobet, F. (2016). Understanding expertise: A multi-
disciplinary approach. London: Palgrave/Macmillan.

Gobet, F., & Campitelli, G. (2006). Educational benefits of
chess instruction. A critical review. In T. Redman (Ed.),
Chess and education. Selected essays from the
Koltanowski Conference (pp. 124-143). Dallas, TX:
University of Texas at Dallas.

Gobet, F., & Simon, H. A. (1996). Templates in chess
memory: A mechanism for recalling several boards.
Cognitive Psychology, 31, 1-40.

Gurtner, J. L., Gex, C., Gobet, F., Núñez, R., & Retschitzki,
J. (1990). La récursivité rend-elle l'intelligence
artificielle? Revue Suisse de Psychologie, 49, 17-26.

Kane, M. J., Hambrick, D. Z., & Conway, A. R. A. (2005).
Working memory capacity and fluid intelligence are
strongly related constructs: Comment on Ackerman,
Beier, and Boyle (2005). Psychological Bulletin, 131, 66-
71.

Papert, S. (1980). Mindstorms: Children, computers, and
powerful ideas. New York: Basic Books.

Sala, G., Burgoyne, A. P., Macnamara, B. N., Hambrick, D.
Z., Campitelli, G., & Gobet, F. (2017). Checking the
“academic selection” argument. Chess players outperform
non-chess players in cognitive skills related to
intelligence: A meta-analysis. Intelligence, 61, 130-139.

Sala, G., & Gobet, F. (2016). Do the benefits of chess
instruction transfer to academic and cognitive skills? A
meta-analysis. Educational Research Review, 18, 46-57.

Sala, G., & Gobet, F. (2017a). When the music’s over. Does
music skill transfer to children’s and young adolescents’
cognitive and academic skills? A meta-analysis.
Educational Research Review, 20, 55-67.

Sala, G., & Gobet, F. (2017b). Working memory training in
typically developing children: A meta-analysis of the
available evidence. Developmental Psychology, 53, 671-
685.

Sala, G., & Gobet, F. (2017c). Experts’ memory superiority
for domain-specific random material generalizes across
fields of expertise: A meta-analysis. Memory &
Cognition, 45, 183-193.

Sala, G., Gobet, F., Trinchero, R., & Ventura, S. (2016).
Does chess instruction enhance mathematical ability in
children? A three-group design to control for placebo
effects. Proceedings of the 38th Annual Meeting of the
Cognitive Science Society.

Schellenberg, E. G. (2006). Long-term positive associations
between music lessons and IQ. Journal of Educational
Psychology, 98, 457-468.

Simon, H. A., & Chase, W. G. (1973). Skill in chess.
American Scientist, 61, 393-403.

Thorndike, E. L., & Woodworth, R. S. (1901). The
influence of improvement in one mental function upon the
efficiency of other functions (I). Psychological Review, 8,
247-261.

1466



Scientific Sensemaking: A Critical Resource for Science Learning in School  
 

Christian D. Schunn (schunn@pitt.edu) 
814 LRDC, University of Pittsburgh, 3939 O’Hara St 

Pittsburgh, PA 15260 USA 
 
 

Keywords: Science Learning; cognitive resources 

Conceptualizing Integration & Transfer 
Science consists of both a body of knowledge and a process 
by which the knowledge is produced. Historically, these two 
aspects were often assessed separately (i.e., test items on 
knowledge and test items on skills) and taught relatively 
separately (e.g., with an introduction section on skills or via 
isolated projects or labs). The last decade has been marked 
by a substantial shift to an integrated view of both how 
science should be taught and how science learning should be 
assessed. Now, consensus reports (e.g., NRC, 2007, 2011) 
assert that scientific processes (renamed practices) should be 
used to learn science content (e.g., by designing, conducted, 
and interpreting experiments, or by arguing from existing 
sources). Further, new science standards (e.g., NGSS) 
strongly claim that science practices must be demonstrated 
in use with scientific content and that scientific content must 
be demonstrated through use with scientific practices. 

While the central point about the importance of practice 
and content integration is well supported by existing data 
(for a summary, see NRC 2011), embedded within these 
new conceptions of teaching and learning science are some 
open cognitive foundations questions that bear further 
investigation. These questions have important implications 
for both assessment and instruction. The first open question 
is the about the generativity and transferability of practices 
across content. If students learn sciences practices in one 
science content area (e.g., in biology), are they able to apply 
those science practices in another domain (e.g., chemistry)? 
Expert scientists have some transferability of their skills 
(Schunn & Anderson, 1998), but will students also show 
such transferability? If so, they will be better positioned to 
learn new content having mastered practices in a prior 
science content area. However, if practices are very tightly 
bound to science content given how they are taught and 
learned, students may struggle with using these practices in 
new content areas. 

The second but related open question has to do with the 
coherence of practices. If science consists of independent 
practices, is it meaningful to report an overall mastery level 
of science practices? However, if science practices work 
together in overall cycles of inquiry, then students who 
master some practices will be better positioned to master 
other practices, and there will be meaningful overall mastery 
level of science practices which can be taught and assessed.  

Taking on both of these open questions, here I present 
recent tests of the general hypothesis that there is a general 
overall mastery level of core scientific practices that drives 

learning in new science content areas. If supported, 
instruction should be organized around developing these 
core practices early in instruction (to accelerate later 
learning). Also, support for this approach suggests that 
computational agents could be developed to systematically 
acquire science content through experimentation and 
reading using scientific sensemaking skills as a foundation.  

Conceptualizing this general mastery level as scientific 
sensemaking, and efficiently measuring it using scenarios 
that invoke shared, intuitive understandings of the natural 
world, I will describe recently obtained evidence that 1) 
students tend to vary along coherently along this overall 
sensemaking dimension; 2) overall sensemaking levels are a 
strong predictor of science learning; and 5) this overall 
sensemaking dimension can improve with effective science 
instruction.  

Conceptualizing Scientific Sensemaking 
Approaching learning of science-related content as a 

sensemaking activity means recognizing that science is not a 
series of facts, but rather an ongoing and iterative 
employment of a set of practices that used in the pursuit of 
an increasingly rich understanding of natural and physical 
phenomena. These practices include asking good questions, 
seeking mechanistic explanations for natural and physical 
phenomena, engaging in argumentation about scientific 
ideas, interpreting data tables, designing investigations, and 
understanding the changing nature of science (Apedoe & 
Ford, 2009; Lehrer, Schauble, & Petrosino, 2001). Each of 
these practices play an important and complementary role in 
science learning. In selecting practices for inclusion within 
the scientific sensemaking construct, several criteria needed 
to be met: 1) an existing research-base for its role in 
predicting science achievement; 2) uniqueness in its 
contribution to learning; and 3) the flexibility to be 
improved through targeted instruction. 

Measuring Scientific Sensemaking 
To cleanly measure scientific sensemaking, it is important 

consider several critical issues. First, the measure had to be 
about some scientific content: one cannot engage in 
scientific sensemaking void of content—science has some 
logic to its processes, but most of the logic is context 
specific about which assumptions or inferences are merited. 
Consider the class Control-of-Variables strategy 
(Zimmerman, 2007). This strategy can only be applied when 
it is clear what variables are possible to vary (and plausibly 
causal), which involves thinking about content. 
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A second consideration is that the assessment be effort-
worthy. Engaging in scientific sensemaking requires effort, 
and there is often little incentive for students to put forth 
effort to perform on an assessment. If students are not 
putting effort into the assessment, then the scores obtained 
from the assessment are an underestimate of the abilities 
students have. In order to motivate students to put forth 
effort, the content we selected for the assessment scenarios 
were so-called “charismatic mega-fauna” (i.e., Dolphins, 
Monkeys, & Eagles), in which a general interest in the topic 
motivates some basic level of effort (Bathgate, et al. 2013). 

A third consideration is assessment length. Items that are 
cognitively demanding of students and require them to make 
sense of scientific information, take relatively longer 
amounts of time than items simply requiring content recall. 

Empirical Tests of Scientific Sensemaking 
After consideration of design considerations listed above, 

a new measure was created, and its psychometric properties 
were verified. Then, the validity of scientific sensemaking 
as a predictor of future content learning was tested in a 
large-scale study of students learning diverse science 
content across middle school and early high school grades 
in diverse curricula (included more hands-on and more text-
book-based). Finally, changes in scientific sensemaking 
were examined in relation to levels of student engagement 
in classroom learning, to show that is malleable, rather than 
a fix construct like IQ.  
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Introduction 
The learning of rich associative networks is foundational to 
language and other advanced cognitive competencies. Such 
learning is commonly encouraged by direct supervision 
entailing explicit feedback for correct and incorrect 
responses. The power of explicit feedback has recently been 
demonstrated in an animal model (Wasserman, Brooks, & 
McMurray, 2015), in which pigeons successfully learned to 
categorize 128 stimuli into 16 human language categories 
via both associative strengthening and weakening processes 
(Roembke, Wasserman, & McMurray, 2016). 

The use of supervised training strongly implies “cajoling” 
an organism to respond correctly. Most supervised learning 
tasks for animals differentially reinforce behavior, so that 
reward is given when the animal’s response is correct, but 
not when the animal’s response is incorrect. Arranging 
unsupervised associative learning tasks in an animal model 
is decidedly more difficult, as doing so requires that 
experimenters nondifferentially reinforce behavior. 

Nonetheless, unsupervised learning may materially 
participate in the acquisition of rich associative networks. 
Given that supervision can dramatically change how stimuli 
are learned and represented (Love, 2002), a key and as yet 
unmet challenge is to devise behavioral tasks that 
demonstrate associative learning in animals and that do not 
involve explicit supervision. Extending work in infant 
behavior (Sloutsky & Robinson, 2013), we devised and 
deployed a promising new paradigm to assess unsupervised 
learning in a pigeon model. 

Experiment 
Two groups of four pigeons each were shown eight object 
images and eight color patterns on a touch-sensitive 
computer screen. In the Consistent Pairings group, each 
object was paired with a particular pattern (e.g., Object A 
was always paired with Pattern 1, etc.), so that these birds 
could learn eight specific object-pattern pairs. In the 
Random Pairings group, each of the eight objects was 
presented an equal number of times with each of the eight 
color patterns, so that these birds could not learn any 
consistent object-pattern pairs. All birds were first trained 

without supervision and later trained with supervision, 
yielding two different ways to assess associative learning. 

Unsupervised Phase 
Daily sessions comprised 128 trials, in which each object 
image was shown 16 times: always followed by the same 
color pattern in the Consistent Pairings group or randomly 
followed by each of the color patterns in the Random 
Pairings group. Birds simply had to peck each of the images 
a fixed number of times (gradually increased to 10). After 
completing that requirement—first to the object and next to 
the color pattern—food was always given. There were no 
correct or incorrect responses; so, no differential feedback 
was ever provided. Under these unsupervised training 
conditions, were the Consistent Pairings birds learning the 
statistical relations between each object and color pattern? 

To find out, after 5 sessions of training, we gave 1 testing 
session in which—in addition to the 128 training trials—we 
included 28 testing trials. On testing trials, after pecking the 
object, two color patterns (rather than one) appeared to the 
left and right of the object. In the Consistent Pairings group, 
one color pattern was the same one that had consistently 
followed the object in training sessions, whereas the other 
was one of the remaining color patterns, randomly chosen. 
In the Random Pairings group, the two color patterns were 
randomly chosen. We repeated this sequence of 5 sessions 
of training followed by 1 session of testing 8 times. Food 
always followed any choice response the bird made. 
 

Figure 1: Mean percent correct for Consistent and Random 
Pairings groups on test trials during the unsupervised phase. 
 

Results on testing trials are shown in Figure 1. The 
percent of correct responses reflects the tendency of birds in 
the Consistent Pairings group to choose the color pattern 
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that had been paired with the object. There was no correct 
choice possible for the birds in the Random Pairings group, 
so their choice was bound to lie near the 50% chance level 
(M = 52%). Surprisingly, birds in the Consistent Pairings 
group actually preferred to peck the other color pattern, not 
the one that had been paired with the object; their choice 
performance was significantly below chance (M = 35%). 

Thus, pigeons in the Consistent Pairings group did learn 
which specific color pattern was associated with each 
specific object; however, in choice tests, they displayed a 
preference for the other color pattern. This type of choice 
appears to parallel the preference for novelty in the classical 
children’s preferential looking paradigm. Critically, all of 
the stimuli in our experiment were equally novel in both the 
Consistent Pairings group and in the Random Pairings 
group. Thus, the difference in performance here clearly 
implicates associative learning. 

Supervised Phase 
After eight cycles of unsupervised training and choice 
testing, we began the supervised training phase, which was 
the same for both groups of pigeons. Now, all trials 
presented one object followed by two color patterns. Choice 
of the correct color pattern was followed by food, whereas 
choice of the incorrect color pattern was not. Figure 2 shows 
the number of training sessions necessary to reach 65%, 
75%, and 85% accuracy levels. 

 
Figure 2: Mean number of days for Consistent and Random 
Pairings groups to reach 65%, 75%, and 85% accuracy 
levels in the supervised phase. 
 

Mean accuracy on the first session of supervised training 
was 38% for the Consistent Pairings group and 51% for the 
Random pairings group, agreeing with their earlier behavior. 
Yet, despite this initial disadvantage, the Consistent Pairings 
group was actually faster to reach the 65%, 75%, and 85% 
correct levels than the Random Pairings group. Again, the 
Consistent Pairings group showed clear evidence of having 
learned the object-pattern pairs during the unsupervised 
training phase, here by learning faster than the Random 
Pairings group during the supervised learning phase. 

Conclusions 
These results clearly demonstrate unsupervised associative 
learning in pigeons using the same general stimuli and 
response options used in our earlier work in pigeons’ 

supervised category learning. One must appreciate, 
however, that supervised learning tasks are not altogether 
free from the influence of unsupervised learning. When 
correct responses are made and positive feedback is given, a 
statistical regularity is enforced which can strengthen the 
stimulus-response bond on correct-choice trials. What most 
strikingly distinguishes supervised from unsupervised 
learning is therefore likely to be what happens on incorrect-
choice trials; here, weakening or pruning of stimulus-
response bonds can further direct responses to the correct 
choice option. Just such independent evidence was provided 
in the research of Roembke et al. (2016). 

What remains to be determined is why—during the 
supervised phase—pigeons in the Consistent Pairings group 
were reluctant to peck the color pattern that had earlier been 
paired with the object image. Further work is underway to 
make that determination. 
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Abstract 

There is contradictory evidence on whether speech production 

gets impaired or enhanced when people are restrained from 

gesturing. There is also very little research on how this effect 

can change with aging. The present study sought evidence for 

these by asking young and elderly adults to describe two 

different routes on a map in spontaneous speech and when 

gestures were prohibited. We found that elderly adults 

produced more spatial language when they were restricted to 

use gestures compared to their spontaneous speech, whereas 

young adults produced comparable levels of spatial language 

in both conditions. Young and elderly adults used comparable 

levels of gestures in their spontaneous route descriptions. Yet, 

only young adults’ gesture use correlated positively with their 

spatial language production. Thus, the results of gesture 

prohibition on speech production are different for young and 

elderly adults.  

Keywords: gesture restriction; speech production; aging; 

spatial language  

Introduction 

People produce spontaneous gestures as they speak. 

Gestures improve communication as listeners understand a 

spoken message better when it is accompanied by a visible 

gesture (Hostetter, 2011). This enhanced communication 

might arise because gestures provide an image that is 

particularly informative about the spatial or motor aspects of 

the message that are not easily encoded in speech. That is, 

gestures, especially the ones accompanying spatial or motor 

information, improve communication (Alibali, 2005). Apart 

from the effects on the listener, gestures also benefit 

speakers. Gestures can directly convey imagistic 

components of thought due to the isomorphism between 

spatial-motor images and representational gestures. This 

might be helpful for speakers describing spatial-motor 

events (Church & Goldin-Meadow, 1986). The current 

study investigates the role of gesturing on the use of spatial 

language in a spatial task in young and elderly adults. We 

examined the relation between gesture and speech to 

address two questions: (1) How does people’s use of spatial 

language change when they are restricted from using 

gestures in a spatial task? (2) How does aging influence the 

link between gesture production and spatial language use? 

How does gesture restriction affect speech 

production? 

There are multiple accounts suggesting that gesturing 

benefits speakers as they speak (e.g., Kita, 2000; Krauss, 

Chen, & Gottesman, 2000; Melinger & Levelt, 2004). 

However, these accounts differ in the proposed mechanism 

for this benefit in speech. The Information Packaging 

Hypothesis (Kita, 2000) states that gestures help speakers to 

organize and package visual-spatial information into the 

linear and segmented units of language. Forming an image 

of the referent by gesturing might induce attention on the 

specific properties of that image, thus, helping speakers to 

break their rich spatial representations into units that are 

codable in speech. According to this model, when people 

are restricted from gesturing while talking about spatial 

information, people have difficulty in organizing their rich 

spatial-motor ideas into the units of language. As a result, 

they produce less spatial information in their speech 

compared to the cases in which they can spontaneously 

produce gestures. Indeed, Rimé and colleagues (1984) found 

that when people are restricted from gesturing, their speech 

contained less vivid descriptions. In line with the 

Information Packaging Hypothesis, when producing motor 

descriptions (e.g. how to tie a shoe), people who were free 
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to produce gestures used more semantically rich verbs 

referring to key elements in motoric descriptions (Hostetter, 

Alibali, & Kita, 2007). 

Another account, the Lexical Access Hypothesis, suggests 

that gestures might facilitate speech to retrieve words 

especially when expressing spatial information (Hadar & 

Butterworth, 1997; Krauss, Chen, & Gottesman, 2000). One 

prediction of this account is that if speakers are restricted 

from gesturing, they will have problems in retrieving the 

correct words particularly when they describe spatial-motor 

events. Thus, in line with Information Packaging 

Hypothesis, this account argues that speech will be impaired 

in the absence of gesture use. Many studies support this 

account (Krauss, 1998; Rauscher, Krauss, & Chen, 1996). 

For example, Hostetter, Alibali, and Kita (2007) found that 

speakers who were restricted from gesturing started their 

speech with more connectors such as “and” compared to 

speakers who were free to use gestures when describing 

motoric events. The disfluencies observed in the absence of 

gesture is more evident in spatial contents. When restricted 

from gesturing, speakers were found to be speaking slower 

when talking about spatial information compared to the non-

spatial aspects of a cartoon (Krauss, 1998). Also, speakers 

produced higher proportion of filled pauses (e.g. um, uh) 

when they could not gesture, indicating that they had 

difficulty in accessing the lexical items.  

Another account suggests that speakers use gestures to 

supplement and/or complement their speech (Melinger & 

Levelt, 2004). It is easier to convey the imagistic properties 

of spatial-motor events with gestures in a more global 

manner compared to speech (see also Kita, 2000). Yet, 

according to this account, speakers use speech and gesture 

concurrently; but if a gesture expresses necessary 

information, then, that information can be omitted in speech. 

For instance, Melinger and Levelt (2004) found that 

speakers who produced iconic gestures representing the 

spatial relations omitted the required spatial information 

from their speech more compared to speakers who did not 

gesture. Also, when restricted from gesturing, speakers used 

more spatial language when describing the spatial relations 

between objects (Graham & Heywood, 1975).  

Although all three accounts state that gesturing not only 

benefit communication of the listener but also of the 

speaker, they diverge on the mechanism of this benefit. 

They also propose different predictions on how speech will 

be affected in the absence of gesture use. The Information 

Packaging Hypothesis and the Lexical Access Hypothesis 

predict that speech will be impaired when speakers are 

restricted from gesturing, whereas the third account by 

Melinger and Levelt (2004) suggests that speech and gesture 

work as two different channels of expression, mutually 

compensating each other. Thus, speech can be enhanced in 

the absence of gesture use. 

How does aging affect gesture production?  

Although the effect of aging on communication has been 

studied considerably in the literature, the impact of aging on 

gesture use has received less attention. Studies investigating 

the effects of aging on gesture show that production (Cohen 

& Borsoi, 1996), imitation (Dimeck, Roy, & Hall, 1998), 

and comprehension (e.g., Cocks, Morgan, & Kita, 2000) of 

gestures are all impaired by aging.  

Aging can either affect cognition globally or increase 

problems in specific components of the cognitive system, 

such as working memory and spatial integration in visual 

processing (Andersen & Ni, 2008; Copeland & Radvansky, 

2007). People with poor visual-spatial working memory and 

spatial transformation ability used more representational 

gestures (Chu, Foulkes, Meyer, & Kita, 2014). Thus, it is 

possible that elderly people use fewer representational 

gestures in spontaneous speech due to problems in their 

working memory system. Cohen and Borsoi (1996) found 

that in an object description task, elderly adults produced 

fewer descriptive (i.e., representational) gestures compared 

to young adults; however, the use of non-descriptive (i.e., 

beat) gestures did not differ between young and elderly 

adults. These findings were interpreted as a specific 

consequence of reduced use of visual imagery in elderly 

people. No difference in the description quality of speech 

was found as a function of age. This study, in contrary to the 

Information Packaging Hypothesis (Kita, 2000), suggests 

that the less frequent use of gestures did not impair speech 

in elderly. Feyereisen and Harvard (1999) also investigated 

the production of representational and beat gestures in 

different description contents varying the likelihood of 

generating mental images. Elderly adults used fewer 

representational gestures when they talked about 

visuospatial content generating more mental imagery, 

whereas the use of beats for low mental imagery events was 

comparable between young and elderly.  

The findings on the gesture use of elderly adults are not 

conclusive. Although elderly adults less frequently use 

representational gestures in spontaneous speech in spatial 

contents, the effects of gesture restriction on their speech is 

unknown. To our knowledge, no study has investigated how 

the effects of gesture restriction on speech, particularly 

spatial information, differ between young and elderly adults.  

The Present Study  

The purpose of the present study is to further understand the 

effects of gesture restriction on speech production as a 

function of aging. We asked young and elderly adults to 
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describe two different routes on a directional map task 

without mentioning gesture use (i.e., spontaneous gesture 

production) and by prohibiting them from gesturing.  

First, in line with the previous studies (e.g., Feyereisen & 

Harvard, 1999; Cohen & Borsoi, 1996), we expect that 

elderly adults would use fewer gestures compared to young 

adults when spontaneously describing the routes on the 

map. If gestures facilitate speech production by either 

helping speakers to organize and package visual-spatial 

information into units of speech (as suggested by the 

Information Packaging Hypothesis) or helping them to 

retrieve words (as suggested by the Lexical Access 

Hypothesis), then we would expect that young and elderly 

adults should use more spatial language in the gesture 

unrestricted condition compared to the gesture restricted 

condition. However, when we consider the already sparse 

use of gestures in elderly, we might also observe no 

difference between spatial language use in spontaneous 

speech and gesture restricted conditions in elderly adults. If, 

on the other hand, gesture helps speakers by easily 

conveying information that is not necessarily available in 

speech (Melinger & Levelt, 2014), then, young adults 

should use more spatial language when restricted from 

gesturing compared to spontaneous speech. However, if 

elderly adults use fewer gestures compared to young adults, 

then elderly adults would use more spatial language in 

spontaneous speech compared to young ones and use 

comparable levels of spatial language across spontaneous 

speech and gesture restriction conditions.  

Method 

Participants 

Twenty young (Mage = 20.3, SD = 2.18, range: 18-22, 9 

females) and 19 elderly (Mage = 62, SD = 7.17, range: 52-78, 

15 females) adults agreed to participate in the experiment in 

exchange for course credit or $10 for an hour. All 

participants were right-handed and native English-speakers. 

Before the sessions, they were provided with a written, 

informed consent in accordance with the policies of the 

University of Pennsylvania’s Institutional Review Board. 

Stimuli and Procedure 

Participants were asked to describe two different routes 

(Route 1 vs. Route 2) on a San Diego Zoo Map in two 

different counterbalanced conditions in a quiet room with an 

individual setting (see Figure 1). All participants were 

seated on an armless chair to promote gesturing. The map 

was printed on an A1 size cartoon (594 x 841 mm) so that 

the routes were visible to the participants. The large and 

unnecessary identification signs were erased and targets 

were circled in pink to make finding them easier on the 

map. Two routes (Route 1 vs. Route 2) were created. Route 

1 was from a landmark at the bottom left to another 

landmark at the top right. Route 2 was the other diagonal 

route; from a landmark at the top right to another landmark 

at the bottom left. The map was present throughout the 

session and the experimenter held the map for the 

participant to describe the routes. 

 

Figure 1: San Diego Zoo Map 

In the first condition (spontaneous gesture condition; SG), 

participants were asked to describe the path they would take 

to go from one pink-circled landmark to another. In this 

condition, they were given no specific information about the 

use of speech or gesture. In the second condition (gesture 

restricted condition; GR), however, they were asked to sit 

on their hands and explain how they would continue from a 

different marked landmark to another just with speech. 

Participants always completed the SG condition first and 

GR condition second not to make them aware of the gesture 

use in the SG condition. However, the order of routes 

(Route 1 vs. Route 2) on the map was counterbalanced 

across different conditions. Sessions were videotaped for 

further coding. 

Coding 

Speech. Participants’ speech was transcribed verbatim in 

both conditions by a native English speaker. For each 

condition, we first calculated the number of utterances 

coded as the units of speech bounded by silence. Next, we 

coded three different spatial information in speech: (1) 

direction describing the course of movement in relation to 

other objects (e.g., down, south), (2) street names (e.g., 

Hippo trail or Parkway), and (3) landmarks (e.g., 

restaurant). Participants’ frequency of using each spatial 

information in speech was calculated. We also calculated a 

composite speech score that was the sum of all spatial 

information in speech. 

Gesture. Participants’ use of spontaneous co-speech 

gestures was coded in SG condition. A change in the path of 

hand movement determined a new gesture. We coded three 

different gestures: (1) pointing (e.g., pointing at a landmark 

on the map), (2) tracing (e.g., continuously moving the 

finger or hand on the map to show the route), and (3) iconic 

(e.g., moving the hand off the map to represent a direction). 
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We also calculated a composite gesture score that was the 

total of all 3 specific gesture types. Both speech and gesture 

were coded by the first author.  

Results 

Young and elderly adults did not differ in the total number 

of utterances in SG (F (1, 37) = .77, p  .05) and GR (F (1, 

37) = .04, p .05) conditions, and the total trial duration it 

took to describe the routes in SG (F (1, 37) = .30, p  .05) 

and GR (F (1, 37) = 2.99, p  .05) conditions. There was 

also no gender difference in the total number of utterances 

in SG (F (1, 37) = .57, p  .05) and GR (F (1, 37) = 1.13, p 

 .05) and, the total trial duration in SG (F (1, 37) = .19, p  

.05) and GR (F (1,37) = .31, p  .05) conditions. Thus, we 

merged gender for further analyses.  

To see if the order of the routes (Route 1 first vs. Route 2 

first) influenced the number of utterances used and the 

duration of describing the routes, we conducted 2 separate 

mixed ANOVA with total number of utterances (SG vs. GR 

conditions) and total trial duration (SG vs. GR conditions) 

as within subject variables and the order of routes (R1 first 

vs. R2 first) as the between subject variable. There was an 

interaction between the number of utterances and the order 

of the routes, and between the trial duration and the order of 

the routes, F (1, 37) = 7.59, p < .01 and F (1, 37) = 6.69, p < 

.02, respectively. Participants produced more utterances and 

spent more time in GR (M = 10.25 and M = 78.35 seconds, 

respectively) compared to SG (M = 6.35 and M = 39.80 

seconds, respectively) only when they completed the second 

route (R2) in GR condition. Thus, for further analyses, we 

used normalized scores, obtained by the total number of 

utterances (i.e. raw scores) divided by the number of 

utterances for each subject in the respective condition. For 

the next analyses, we used Bonferroni adjusted alpha levels 

in pairwise comparisons for multiple hypotheses testing and 

applied Greenhouse-Geisser correction when sphericity 

assumption was violated (see Tables 1 and 2 for the mean 

raw scores)  

Speech Analyses 

First, we conducted a mixed ANOVA with composite 

speech score (SG vs. GR conditions) as within subject 

variable and group (young vs. elderly) as the between 

subject variable to see if total spatial information used in 

speech from SG to GR conditions differed between young 

and elderly. There was a main effect of the condition on the 

composite speech scores, F (1, 37) = 27.68, p < .001. 

However, this main effect was qualified by interaction, F (1, 

37) = 7.07, p < .05. Young participants (M = 2.18) used 

more spatial information compared to elderly (M = 1.42) in 

SG condition. However, no difference was found for the use 

of spatial information between young (M = 2.58) and elderly 

(M = 2.62) participants in GR condition. In addition, elderly 

adults used more spatial information in GR compared to SG, 

whereas young participants produced comparable spatial 

information in speech in SG and GR conditions (see also 

Table 1 for raw scores). Thus, even though young adults 

used similar spatial information in both conditions, when 

gesture use was restricted, elderly adults’ use of spatial 

information increased. 

To see if specific spatial information used in speech (street 

name, landmark or direction) in SG to GR conditions 

differed between groups, we conducted a 2×2×3 mixed 

ANOVA with group (young and elderly adults) as the 

between subject variable and condition (SG and GR) and 

specific spatial information (street name, landmark, and 

direction) as within subject variables. There was a main 

effect of condition, F (1, 37) = 27.68, p < .001 and an 

interaction of condition by group, F (1, 37) = 7.07, p < .02. 

As reported earlier, elderly, on average, used more spatial 

information in GR compared to SG conditions, whereas 

young produced comparable levels of spatial information in 

SG and GR conditions. There was also a main effect of the 

specific type of spatial information, F (2, 74) = 16.35, p < 

.001. Regardless of the condition, all participants used more 

direction information (M = .99) compared to street name (M 

= .60) and landmark (M = .61) information in speech. No 

other interactions among spatial information, group, or 

condition were found, ps  .05.  

Table 1: Mean raw speech scores for each condition (SG and GR) 

and group. The values in parentheses are standard errors of mean. 

 

Gesture Analyses  

There was no difference in the total number of gestures 

produced by young and elderly participants, F (1, 39) = 

1.15, p  .05. We conducted a mixed ANOVA with 

different gesture types (pointing, iconic and tracing) as the 

within subject variable and group (elderly vs. young) as the 

between subject variable. There was a main effect of gesture 

 Young Elderly 

 SG    GR      SG     GR 

Number of Utterances 

 

9.6 

(2.2) 

9 

(1.5) 

7.3 

(1.4) 

9.5 

(1.7) 

Composite Speech 

Score 

 

18.0 

(3.5) 

21.1 

(2.6) 

11.6 

(2.9) 

21.4 

(2.6) 

Direction in speech 8.3 

(1.9) 

9.3 

(1.5) 

5.6 

(1.2) 

9.3 

(1.4) 

Landmark in speech 5 

(1.3) 

6.5 

(1.0) 

3.5 

(1.1) 

7.0 

(1.2) 

Street Name in speech 4.7 

(0.6) 

5.2 

(0.5) 

2.4 

(0.8) 

5.2 

(0.6) 
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type, F (1.20, 44.34) = 46.59, p < .001. There was also a 

marginally significant interaction between gesture type and 

group, F (1.20, 44.34) = 3.79, p = .051. Both young and 

elderly adults used more tracing gestures (M = .80 and M = 

1.23, respectively) compared to pointing (M = .29 and M= 

.16, respectively) and iconic gestures (M = .06 and M = .06, 

respectively). However, the difference between pointing and 

iconic gestures was only significant for young adults, Mdiff = 

.23, p < .01. Elderly adults produced comparable number of 

pointing and iconic gestures, Mdiff  = .10, p > .05.   

Table 2: Mean raw gesture scores. The values in parentheses are 

standard errors of mean. 

 

Gesture & Speech Analyses  

Young adults’ total number of gestures and spatial language 

positively correlated in both SG (r = .54, p < .05) and GR (r 

= .70, p < .01) conditions. There was also a positive 

correlation for spatial language use in SG and GR 

conditions (r = .58, p < .01) in young adults. The total 

number of gestures did not correlate with spatial language 

use in SG (r = -.42, p > .05) and GR (r = .01, p > .05) 

conditions in elderly adults. Moreover, the spatial language 

use in SG and GR conditions did not correlate in elderly 

adults as well, r = .08, p > .05.  

Discussion 

This is one of the first studies investigating how the effects 

of gesture restriction on speech production differ with aging. 

We asked whether gesture prohibition impair or enhance 

spatial speech production of young and elderly adults. Our 

results showed that the effects of gesture restriction on the 

production of spatial language differed between young and 

elderly. Even though elderly and young adults produced 

comparable number of gestures in spontaneous speech 

condition, gesture restriction increased the use of spatial 

information in speech only for elderly adults. Overall, 

younger individuals produced more spatial language and the 

use of gestures correlated with their use of spatial 

information.  

In the first task when people were allowed to gesture, 

young and elderly individuals produced similar number of 

gestures.   This result contradicts with the previous findings 

that showed evidence for decreased amount of gestures in 

elderly adults (Cohen & Borsoi, 1996; Feyereisen & 

Harvard, 1999). However, the majority of the gestures used 

by young and elderly adults in our study were non-

representational (e.g. tracing and pointing gestures). Since 

the map was present throughout the experiment, this might 

trigger the frequent use of pointing to the map (i.e. pointing 

gestures) or continuously moving finger on map to trace the 

route (i.e. tracing gestures). When people are asked to talk 

about an object from memory, they use more 

representational gestures compared to a condition where the 

object of interest is present when they talk about it (Wesp et 

al., 2001). Thus, the sparse use of iconic gestures might lead 

us not to find any difference between young and elderly 

adults in the use of representational gestures. 

Our results showed that elderly adults used more spatial 

language when they were restricted from gesturing 

compared to spontaneous speech, whereas young adults 

produced comparable levels of spatial language in both 

conditions. The higher use of spatial language when gesture 

use was restricted in elderly adults is compatible with the 

account suggesting that gestures are used to supplement 

and/or complement the speech. That is, when gestures 

convey the imagistic properties of spatial events, this 

information can be omitted from speech (Melinger & 

Levelt, 2004; Graham & Heywood, 1975). Our results, 

however, did not find support for the Information Packaging 

Hypothesis (Kita, 2000) or the Lexical Retrieval Hypothesis 

(Hadar & Butterworth, 1997; Krauss, Chen, & Gottesman, 

2000). On the other hand, our findings from young adults 

did not support any of accounts regarding the relation 

between speech production and gesture restriction. For 

young adults, gesture restriction did not affect their spatial 

speech production. However, we found that the gesture and 

speech production were positively correlated in young 

adults. Thus, young adults, who produced more gestures 

(possibly high in spatial skills) could use more spatial 

information overall.  

Why does gesture restriction influence only elderly 

adults’ speech? We cannot answer this question with 

certainty, but state some possible explanations. First, 

people’s general verbal skills could be related to their 

gesture use. Hostetter and Alibali (2007) found that people 

with low verbal skills produced gestures to facilitate their 

speech, yet people with high verbal skills only 

supplemented their speech with gestures. Thus, elderly 

individuals who had high verbal skills could produce more 

spatial information in a gesture prohibited context. This 

does not necessarily explain the difference between young 

and elderly adults, which require future studies to find 

 Young Elderly 
Composite Gesture Score 

 

8.4 

(1.6) 

7.3 

(1.2) 

Pointing Gestures 

 

2.5 

(0.6) 

1.2 

(0.3) 

Tracing Gestures 4.9 

(0.9) 

5.9 

(1.0) 

Dynamic Gestures 1 

(0.5) 

0.2 

(0.2) 
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answers. Second, not only verbal abilities, but also spatial 

skills (e.g., Chu & Kita, 2011; Chu et al., 2014) or working 

memory and spatial integration in visual processing 

(Andersen & Ni, 2008; Copeland & Radvansky, 2007) 

could play a role in how people benefit from gestures. 

Increased problems in working memory and visual-spatial 

problems might particularly be a problem in the elderly 

group. Again, we did not examine the participants’ spatial 

skills or working memory in the current study, hence we 

cannot make a conclusion regarding this issue. Future 

studies should investigate skill differences between these 

age groups to draw stronger conclusions. Also, the 

composition of our two different age groups in terms of sex 

might create a problem in the interpretation of findings. 

Finally, even though we told everyone not to gesture, it is 

possible that some people might have moved other body 

areas such as lips, eyes or parts of the body (Rimé et al., 

1984).  

Taken together, the present study provided new evidence 

for the role of gesture restriction on spatial language use 

from young and elderly adults. Surprisingly, we did not find 

detrimental effects of gesture prohibition on spatial 

language use in either groups. On the contrary, elderly 

people benefited from not using gestures. These findings 

suggest that gestures might serve different purposes for 

young and elderly people in the context of spatial language 

use.    
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Abstract 

Subjective duration estimates are positively related to the 

magnitude of various non-temporal stimuli (e.g. Xuan et al., 

2007). Our study investigated whether temporal and spatial 

magnitude information conveyed by linguistic stimuli would 

affect perceived duration in a temporal reproduction task. We 

used time-related words referring to different exact durations 

(e.g. second; Experiment 1), and spatial-temporal metaphors 

(e.g. long), referring to indistinct temporal as well as spatial 

magnitudes (Experiment 2).  In both experiments, participants 

over-reproduced the shorter target duration (2.4 s) and under-

reproduced the longer target duration (4.8 s). In Experiment 

1, participants under-reproduced the longer target duration 

more when they saw “week” in the training and “year” in the 

reproduction. Yet, we did not observe the same semantic 

magnitude effect in other word pairs either in Experiment 1 or 

2. Overall, we did not find supporting evidence for magnitude 

information conveyed by language affecting subjective time 

estimates.  

Keywords: time perception; language 
 

Introduction 

The perception of time is a key feature of many biological 

and behavioral processes. Although accurate timing is 

essential to many daily tasks, substantial evidence shows 

that the subjective experience of time is not perfectly 

isomorphic to physical time (Zakay, 1993). Rather, 

perceived durations are contracted or dilated depending on 

many factors, including changes in non-temporal stimulus 

properties.  

In this study, we investigated how perceived durations are 

modulated by temporal magnitude information provided in 

the medium of language. 

The Interaction Between Non-Temporal Stimulus 

Magnitude and Perceived Duration 

Subjective duration estimates are positively related to the 

magnitude of various non-temporal stimuli presented in 

different modalities. In visual domain, duration judgments 

were observed to be longer for larger numbers (Xuan et al., 

2007; Oliveri et al., 2008; Vicario, 2011), stimulus size 

(Ono & Kawahara, 2007), stimulus luminosity (Goldstone, 

Lhamon & Sechzer, 1978), and complexity (Schiffman & 

Bobko, 1974). For example, people were more accurate and 

faster when classifying the duration of smaller magnitude 

numbers presented for a shorter time (congruent trials) than 

smaller magnitude numbers presented for a longer duration 

(incongruent trials) in a Stroop-like paradigm (Xuan et al., 

2007). The effect of stimulus size on perceived duration has 

also been documented in many studies (e.g.,Ono & 

Kawahara, 2007; Xuan et al., 2007; Rammsayer & Verner, 

2014).  For example; when categorizing the durations of 

stimuli of different sizes by pressing one of four keys (“1” 

for short and “4” for long) in a temporal categorization task, 

people perceived larger visual stimuli as lasting longer 

compared to smaller visual stimuli of an equivalent duration 

(Ono & Kawahara, 2007).  

Although the studies cited above each investigate the 

effects of non-temporal magnitude information on perceived 

duration, to our knowledge, no study so far has investigated 

the effects of the temporal magnitude (i.e. duration) implied 

by word stimuli on time perception. If there is an effect of 

magnitude on subjective time estimations, then we should 

be able to see the same effect of magnitude information 

derived from the semantic representations activated by 

linguistic stimuli. However, how semantic representations 

of duration and magnitude information encoded by 

individual words interact with the representation of duration 

is mostly unknown.  

Interaction Between Language Processing and 

Low-Level Sensory/Perceptual Processing 

A growing body of research investigating the interaction 

between language and perceptual processing suggests that 

semantic representations activated as we process linguistic 

stimuli affect the content-specific domain of low-level 
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sensory and perceptual processing (Glenberg, Kaschak, 

2002; Zwaan, 2004; Kaschak et al., 2005). According to 

theories of embodied language processing, comprehension 

involves the perceptual and motor simulation of the 

situation described in the linguistic input. Thus, the 

comprehension of words referring to a particular modal 

event should interact with low-level perceptual processing 

of that event (Barsalou, 1999; Glenberg & Kaschak, 2002; 

Zwaan, 2004; Kaschak et al., 2005). Many behavioral 

studies have provided evidence for an interaction between 

comprehension and perceptual processing, suggesting that 

higher-level semantic knowledge influences low-level 

sensory processing in visual perception (e.g. Spivey et al., 

2001; Stanfield & Zwaan, 2001; Zwaan, Stanfield & 

Yaxley, 2002).  

While the effects of language-activated semantic 

information on cognitive processing across a range of 

domains has been investigated, the effects of temporal 

magnitude representations activated by duration words and 

metaphors on the content-specific area of perceptual 

processing, namely duration perception, has not been 

studied. The present study aimed to fill this gap, in order to 

provide evidence informing both the duration perception 

and language processing literatures. To this end, in two 

experiments, we investigated how participants’ reproduced 

duration estimations of a target interval are modulated when 

presented as different word types: 1) distinct temporal 

magnitudes (i.e. duration words; e.g. week vs. year) or 2) 

indistinct magnitudes or durations (i.e. spatial-temporal 

metaphors; e.g. long vs. short).  

Experiment 1 

In Experiment 1, we investigated how words referring to 

different exact durations (e.g. second, year) affect duration 

estimations. We hypothesized that when the word in training 

refers to a shorter duration compared to the word presented 

in the reproduction (e.g. seeing the word “second” in the 

training and “minute” in the reproduction), participants 

would under-estimate (i.e. over-reproduce) the target 

interval and vice versa. We did not expect any systematic 

difference in reproduced duration estimations when 

participants are presented with the same words in both 

reproduction and training.  

Method 

Participants 

Twenty-five Koç University students (16 females, 

Mage=21.7) agreed to participate in exchange for course 

credit. We discarded one female subject because her average 

coefficient of variation (CV) was high (average CV across 

conditions = .51). All experiments were approved by the 

Institutional Review Panel for Human Subjects of Koç 

University.  

Task and Stimuli 

We used a temporal reproduction task. In this task, we asked 

participants to reproduce a given target duration by pressing 

a pre-designated response button to approximate the target 

duration as closely as possible.  

At the beginning of a trial, a word (“training word”) was 

visually presented for one of two different target intervals 

(2400 ms or 4800 ms). At the end of the target interval, a 

blank screen was presented for 1 second, followed by a 

fixation cross presented for a random interval between 500 

ms and 1500 ms. Participants were then instructed to initiate 

the reproduction interval by pressing the space bar. Upon 

pressing the spacebar, another word (“reproduction word”) 

appeared at the center of the screen, remaining for the 

entirety of the reproduction interval. The interval ended 

when the reproduction was perceived as temporally 

equivalent to the target and the participant released the 

spacebar. Following the termination of the reproduction 

interval, the next trial was presented after a random interval 

between 1000 and 2000 ms.  

In Experiment 1, we chose four words referring to 

different exact durations in Turkish: saniye (“second”), 

dakika (“minute”), hafta (“week”) and sene (“year”). 

There were two conditions presented in two different 

sessions. In Condition 1, the words appearing in training 

and reproduction were different (different word pairs). In 

this condition, we created two-word pairs out of these four 

words: (“second”) vs. (“minute”) and (“week”) vs. 

(“year”). The order of the words also changed. Thus, in 

some trials participants saw the word referring to the shorter 

duration during training (e.g. “week” in training and “year” 

in reproduction) and vice versa (e.g. “year” in training and 

“week” in reproduction), making four different training 

word - reproduction word pairs. In Condition 2, however, 

the same word appeared both in the training and the 

reproduction intervals (same word pairs). Thus, in this 

condition, four words appeared both in training and 

reproduction (e.g. “week” in training and “week” in 

reproduction, etc.).  

Procedure 

All words were presented at the center of the screen, printed 

in white on a black background. There were 30 

presentations for each training word-reproduction word pair 

at each of the target durations. Hence, in each session, for 

two target durations and four word pairs, there were 240 

experimental trials. We also added 24 trials (10% of the 

experimental trials) in which the target words appeared for a 

random interval between 500 and 5000 ms. We added them 

in order to avoid participants to habituate the two target 

intervals and label them as “short” and “long” durations 

throughout the experiment. the selected target intervals as 

“short” and “long” durations. Thus, in each session, there 

were 264 trials in total, 240 of which were used in the 

analyses. All trials were presented randomly. Additionally, 

to verify that participants looked at the screen, we asked 

them to report the last word they saw on the screen on 12 
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randomly selected trials. Participants who could not 

correctly identify the words three or more times were 

discarded from analyses (Only one participant in 

Experiment 2 was discarded on this front). Each participant 

completed the two sessions and the order of the sessions 

was counterbalanced across participants. Each experimental 

session lasted 50-60 minutes and was separated by a 

minimum of 1 and a maximum of 5 days. 

Results 

For every participant, we calculated the normalized 

reproduced time (i.e. the reproduced duration divided by the 

target duration) and averaged those scores for each word 

pair-target duration combination. Also, for each participant, 

we calculated the coefficient of variation (CV; i.e. standard 

deviation of each condition divided by its mean) for each 

condition. Reproduced intervals that were greater than three 

times, or smaller than one third of the target duration were 

excluded from the analyses. Also, the mean normalized 

reproduction scores and CVs that were above and below 

three standard deviations of the sample mean for any of the 

word pairs for a specific target duration were treated as 

outliers and excluded from further analyses. 

The mean normalized reproduction times across target 

durations for second vs. minute and week vs. year can be 

found in Table 1. This table presents the over-reproduction 

of the 2.4 s duration and an under-reproduction of 4.8 s 

duration regardless of the word pair type (same vs. 

different) or the specific word pairs used. 

 

Table 1: Mean normalized reproduction scores for two word 

pairs across two target durations. The first word in the pair 

is the one that was presented in training, and the second one 

during reproduction. The values in parentheses are the 

standard errors of the mean. 

 

 

There was no effect of sex (all ps >.19) and the order of 

the conditions (all ps >.18) in any of the word pair–target 

duration combinations. Also, there was no interaction 

between sex and the session order (all ps > .22). 

In Condition 1, we conducted three-way repeated 

measures ANOVA. The results showed that word pairs, F 

(1, 20) = 116.56, p < .001, target duration, F (1, 20) = 

110.72, p <. 001, and the order of the word referring to the 

shorter duration, F (1, 20) = 40.60, p < .001, had significant 

main effects. However, these main effects were qualified by 

an interaction between all three repeated factors, F (1, 20) = 

49.66, p < .001. Further comparisons showed that, for week 

vs. year, reproduced durations were greater when week was 

given in reproduction (M = .80) compared to training (M = 

.60) only when they were presented for 4.8 s.  

In Condition 2, we conducted a two-way repeated 

measures ANOVA and found a main effect of the target 

duration, F (1, 21) = 73.35, p < .001, and the same word 

pairs, F (3, 63) = 4.38, p = .007. Pairwise comparisons 

showed that the mean normalized reproduced durations 

were greater for 2.4 s for all same word pairs compared to 

4.8 s (Mdiff = .34, p < .001). However, there were no 

significant differences between any of the same word pairs 

when we consider Bonferroni adjusted alpha levels of .008 

per test (.05/6) in the pairwise comparisons. There was also 

no interaction between target duration and same word pairs, 

F (3, 63) = 1.50, p = .22.  

To investigate the difference between the same and 

different word pairs, we averaged the mean normalized 

scores for the same and different word pairs separately and 

conducted a two-way repeated measures ANOVA. The 

results showed only a main effect of target duration, F (1, 

19) = 92.18, p < .001. There was no difference between 

same and different word pairs, F (1, 19) = 3.09, p = .095 or 

the interaction between word pair type and target duration, 

F (1, 19) = 3.26, p = .087.  

A two one-way ANOVA with all word pairs regardless of 

the word pair type (same vs. different) and the order of the 

shorter duration as repeated measures and CV scores as 

dependent measure was conducted separately for each target 

duration. For 2.4s, there was no significant effect of word 

pair on CV scores, F (4.14, 95.18) = 1.30, p = .25. However, 

for 4.8s, there was a main effect of word pair, F (7, 161) = 

78.65, p < .001. Pairwise comparisons revealed that CVs 

were greater when participants saw “week” in the training 

and “year” in the reproduction compared to all other word 

pairs in 4.8 s (all Mdiff > .173, all ps < .001). To see whether 

variability in perceived durations differed between 

Condition 1 and 2, we computed grand total CVs for same 

and different word pairs separately for each target duration 

and conducted a two-way repeated measures ANOVA. 

Results revealed a main effect of the target duration, F (1, 

19) = 92.18, p < .001. The CVs were greater for 2.4 s (M = 

1.172) compared to 4.8 s (M = .806). There was no main 

effect of the word pair type (same vs. different), F (1, 19) = 

3.09, p = .095 and no interaction between two, F (1, 19) = 

3.26, p =.087.  
 In sum, in Experiment 1, we found that regardless of the 

word pair type and specific order, participants over-

reproduced the target duration of 2.4s and under-reproduced 

4.8s. We also found that participants under-reproduced 4.8s 

more when they saw “week” in the training and “year” in 

the reproduction compared to all word pair conditions. The 

 2.4 s          4.8 s 

second - minute 1.19 (.05) .84 (.03) 

minute - second 1.21 (.06) .84 (.03) 

second – second 1.22 (.05) .89 (.03) 

minute – minute 1.22 (.06) .86 (.03) 

 2.4 s          4.8 s 

week – year 1.20 (.05) .62 (.03) 

year – week 1.15 (.04) .83 (.04) 

week – week 1.20 (.05) .88 (.03) 

year - year 1.18 (.05) .87 (.04) 
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CV was also greater for that word pair (“week-year”) 

compared to all other. 
Experiment 2 

In Experiment 2, we investigated how words implying both 

a temporal magnitude as well as a spatial magnitude 

modulated duration estimations. To this end, we employed 

quantifiers that can refer metaphorically to different 

indistinct durations as well as spatial magnitudes (i.e. the 

size of an object; e.g. long vs. short). Our hypotheses were 

same as with Experiment 1.  

Method 

Participants 

Twenty-five Koç University students (14 females, Mage=21) 

agreed to participate in exchange for course credit. One 

male participant was discarded because he did not pay 

attention to the experiment and one female participant was 

discarded because her mean normalized reproduced scores 

were outliers in 10 out of the 16 conditions.  

Task, Procedure & Stimuli 

The task and the procedure were identical to Experiment 1, 

except for the word stimuli used in the task. In Experiment 

2, we used spatial adjectives and adverbs that are used as 

spatial-temporal metaphors referring to indistinct durations. 

We chose four words: uzun (“long”), kısa (“short”), geniş 

(“wide”) and dar (“narrow”). In Condition 1, participants 

were trained with a spatial-temporal adjective and presented 

with the antonym of that word in the reproduction phase. 

We created 2 word pairs: “long” vs. “short” and “wide” vs. 

“narrow”. The order of the words was reversed in this 

condition. In Condition 2, participants saw the same spatial-

temporal adjective both in training and reproduction.  

Results 

We used the same exclusion criteria as in Experiment 1. The 

averaged mean normalized reproduced intervals for short vs. 

long and narrow vs. wide for each target interval can be 

found in Table 2. Visual inspection of Table 2 suggests the 

over-reproduction of 2.4 s and an under-reproduction of 4.8 

s in both word pairs.  

 

Table 2: Mean normalized reproduction scores for two 

word pairs across two target durations. The values in 

parentheses are the standard errors of the mean. 

 

 

 

Neither sex (all ps > .12) nor the order in which 

participants attended the two conditions (all ps > .09) 

affected the normalized reproduction scores in any of the 

word pair-target duration combinations. Also, there was no 

interaction between sex and the session order in any of the 

conditions (all ps > .15). 

For Condition 1, we conducted a three-way repeated 

measures ANOVA. The results revealed only a main effect 

of target duration, F (1, 19) = 122.96, p < .001. The mean 

normalized reproduction scores were greater in 2.4 s (M = 

1.29) compared to 4.8 s (M = .86) for all different word 

pairs. There were no main effects of the specific word pair 

(short vs. long and narrow vs. wide), F (1, 19) = .286, p = 

.599, or the order of the shorter duration, F (1, 19) = .147, p 

= .706. Also, there was no interaction between all three 

repeated factors, F (1, 19) = .013, p = .910.  

For Condition 2, our analysis revealed only a main effect 

of target duration, F (1, 20) = 69.56, p < .001. Pairwise 

comparisons showed that the mean normalized reproduced 

durations were greater in 2.4s (M = 1.18) compared to 4.8s 

(M = .81).  There was no main effect of the same word 

pairs, F (3, 60) = 2.095, p = .110. There was also no 

significant interaction between same word pairs and target 

duration, F (3, 60) = 2.39, p = .078.  

We conducted two separate two-way repeated measures 

ANOVA with the averaged mean normalized reproduced 

durations for the same and different word pairs for each 

target duration. The results showed only a main effect of 

target duration, F (1, 17) = 87.54, p < .001. There was no 

significant difference between the averaged normalized 

reproduced durations for same and different word pairs, F 

(1, 17) = 2.70, p = .119. Also, there was no interaction 

between two repeated factors, F (1, 17) = .999, p = .334.  

With participants’ CV scores, we conducted a two-way 

repeated measures ANOVA with all word pairs and the 

target duration as the two repeated factors and the CVs as 

the dependent measure. The results showed a significant 

effect of target duration, F (1, 22) = 35.338, p < .001. 

Pairwise comparisons revealed that CVs were greater in 2.4s 

(M = .260) compared to 4.8s (M = .213). There was no 

difference between any word pair, F (3.31, 72.83) = .639, p 

= .607. However, these results were qualified by an 

interaction between two, F (7, 154) = 2.674, p = .012. The 

follow-up multiple t-tests show that, when we consider 

Bonferroni adjusted alpha levels (.05/8 =.0062), CV scores 

were greater in 2.4s in word pairs “long-short” (M = .271), 

“wide-narrow” (M = .276), “short-long” (M = .259), 

“narrow-wide” (M = .265), “wide-wide” (M = .252) and 

“narrow-narrow” (M = .255) compared to the target 

 2.4 s          4.8 s 

short - long 1.30 (.05) .85 (.02) 

long - short 1.30 (.05) .86 (.02) 

short – short 1.18 (.04) .83 (.03) 

long - long 1.20 (.04) .83 (.03) 

 2.4 s          4.8 s 

narrow – wide 1.30 (.05) .88 (.02) 

wide – narrow 1.27 (.04) .86 (.02) 

narrow- narrow 1.21 (.04) .81 (.03) 

wide - wide 1.23 (.05) .82 (.03) 
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duration of 4.8s (M = .207, .204, .201, .211, .208, .218; 

respectively).  

  In sum, in Experiment 2, we found an over-reproduction 

of 2.4 s and an under-reproduction of 4.8 s regardless of the 

word pair conditions, as in Experiment 1. However, we did 

not find any difference in mean normalized reproduced 

duration between any of the word pairs. We also found that 

CVs were greater in 2.4s compared to 4.8s for all four 

different word pairs as well as two of the same word pairs 

(“short” and “wide”).  

General Discussion 

In this study, we asked how language affects time 

perception. Specifically, we investigated how the temporal 

magnitude (Experiment 1; duration words) and spatial-

temporal magnitude (Experiment 2; spatial-temporal 

metaphors) implied by words influenced subjective time 

estimates as assessed in temporal reproduction task. We 

hypothesized that increasing the magnitude conveyed by 

words from training to reproduction would lead to the over-

reproduction of the target duration, and vice versa. We 

found that (1) in two experiments, participants over-

reproduced 2.4s and under-reproduced 4.8s, regardless of 

the implied temporal / spatial magnitude of words (Figure 1 

and 2), (2) CVs were greater in 2.4 s compared to 4.8 s in 

both experiments, and (3) participants’ reproduced durations 

were smaller and CVs greater when they saw “week” in the 

training and “year” in the reproduction in 4.8s compared to 

all other conditions in Experiment 1. Last, (4) we did not 

find any systematic effect of the temporal/spatial magnitude 

implied by words on perceived duration in both 

experiments. 

The over-reproduction of 2.4s and the under-reproduction 

of 4.8 s in our current study are in line with Vierordt’s Law 

(for a review see Lejeune & Wearden, 2009) and found in 

many timing studies in the literature across multiple timing 

tasks (e.g., Karşılar & Balcı, 2016). This migration effect, 

which is the regression of duration estimates toward the 

mid-range of the target duration series, is likely due to the 

fact that all word pair–target duration conditions were 

presented randomly (i.e. interleaved) rather than in blocks. 

We also detected a trend that CVs were greater for 2.4s 

compared to 4.8s. According to Weber’s Law, although the 

variation of the reproduced duration increases 

proportionally with the to-be-timed intervals, these results 

might be best explained by an additive source of variability 

due to experimental manipulations (other than duration) in 

addition to the proportional one due to timing mechanism 

itself (e.g. generalized form of Weber’s Law). 

In Experiment 1, we found that the word pair week-year 

was under-reproduced more when presented for 4.8s 

compared to all other word pairs. It means that participants 

thought of the target duration of 4.8s as shorter when 

“week” in the training was followed by a word implying a 

larger temporal magnitude, like “year”. However, we did 

not see the same effect in other exact duration word pairs in 

Experiment 1 and spatial–temporal metaphor pairs in 

Experiment 2. This might be due to the larger temporal 

magnitude difference between these two words compared to 

the other word pair. Furthermore, the opposite effect was 

not observed for the year-week pair suggesting an 

asymmetrical form of time warping (see also Karşılar & 

Balcı, 2016). Further investigation is needed to determine if 

this effect is reliable.   

Overall, we could not find supporting evidence for the 

effect of language on time perception. Both temporal 

magnitude and temporal/spatial magnitude information 

conveyed by words did not affect perceived duration (other 

than the word pair of week-year in 4.8s). Yet, it should be 

noted that there is no hypothesized model for the interaction 

between time perception and language. Thus, the current 

study is an exploratory one. However, in a recent study, 

Bottini and Casasanto (2010) investigated the effects of 

implicit spatial length information encoded in different 

object nouns (e.g. cigarettes, clothesline, footpath) on 

perceived duration and found a positive effect of spatial 

magnitude information conveyed in linguistic medium on 

time perception. Object nouns with relatively shorter 

implicit spatial lengths (e.g. cigarette) were remembered as 

appearing for shorter durations compared to nouns with 

longer implicit spatial lengths (e.g. footpath) despite each 

being presented for the same amount of time. However, we 

did not find the same kinds of effects. It is interesting when 

we consider that we used direct spatial magnitude 

information in Experiment 2, rather than an implicit one as 

in Bottini and Casasanto (2010). One possibility for falling 

short to replicate the findings of this study might be that the 

previously documented effects of magnitude on time 

perception are only for spatial and numerical magnitude (i.e. 

non-temporal) and not for temporal magnitudes. In other 

words, those findings might be present only for cross-

domain effects. In the current study, however, we tested the 

impact of duration magnitude on duration perception, which 

is a within-domain interaction. Yet, in Experiment 2, we 

used spatial–temporal metaphors that implied both temporal 

and spatial magnitudes. One reason for the null effect in this 

experiment concerns the everyday use of spatial –temporal 

metaphors. Space and time are so intertwined that spatial 

adjectives are commonly understood as temporal concepts, 

especially in the context of a time reproduction task (Lakoff 

& Johnson, 1980).  

Another possible explanation for not finding data to 

support our hypothesis in both experiments, concerns the 

nature of our to-be-timed stimuli. Larger, more complex, 

and intense stimuli expand perceived duration (Eagleman, 

2008). One mechanism for this effect is the modulation of 

attention and arousal by the non-temporal properties of the 

to-be-timed stimulus. For example, intense negative sounds 

expand subjective duration since they heighten 

physiological arousal (Mella et al., 2011). Also, apart from 

emotional valence, attentional modulation by highly 

dynamic stimuli might affect duration perception. For 

example, Karşılar and Balcı (2016) found that higher motion 
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coherence in a highly dynamic moving dot array may 

capture more attention to the non-temporal properties of the 

stimulus at the expense of attention to the timing task itself. 

This may result in the over-reproduction of a target interval 

when the coherence level is increased from training to 

reproduction. However, our stimuli were not emotionally 

arousing nor attention capturing. Also, magnitude was not 

inherently perceptible in the to-be-timed stimuli, but implied 

by words. Concrete, visual magnitude information presented 

as an inherent property of the external stimuli might affect 

perceived duration by better directing attentional resources 

to stimulus properties.  

Last, the task we used might not be the most sensitive for 

exploring the possible effects of language on perceived 

duration. Other tasks, like temporal bisection (Allan & 

Gibbon, 1991) or categorical timing (Wearden, 1992) that 

force participants to decide on whether the perceived target 

duration is shorter or longer compared to a reference 

interval, might better detect differences between conditions 

due to its specificity to perceptual time in future studies.  

In sum, the current study did not support the hypothesis 

that temporal and spatial magnitude information conveyed 

by linguistic stimuli influences subjective duration 

estimations. Limitations of the current study and the absence 

of an hypothesized model to be rejected prevent strong 

conclusions, but higher-order linguistic representations may 

not reliably interact with a low-level domain like interval 

timing across experimental paradigms. 
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Abstract

Eye tracking research on situated language comprehension has
shown that participants rely more on a recent event than on a
plausible future event during spoken sentence comprehension.
When people saw a recent action event and then they listened
to a German (NP1-Verb-Adv-NP2) past or futuric present tense
sentence, they preferentially looked at the recent event target
over another plausible target object (that might be involved
in a future action) independent of tense. This preferential in-
spection persisted even when future events and futuric present
sentences were much more frequent within the experiment,
or when a gaze cue biased towards the future action target.
The present experiments extend this line of research by intro-
ducing incongruence (in Experiment 1 a past tense verb mis-
matched the recently seen action and in Experiment 2 an actor
gaze cue mismatched the past tense sentence condition). Can
the verb-action and the gaze-sentence mismatches eliminate
the recent-event inspection preference? Would participants re-
call information in post-experimental memory tests better for
matches (the futuric present tense condition) than mismatches
(the past tense condition)? Results revealed inspection of the
recent event target as participants processed the verb-action
mismatch (Exp 1) and actor gaze incongruence (Exp 2). How-
ever, the gaze (but not the verb-action) incongruence elimi-
nated the overall recent event preference in the NP2 region.
The memory tests also showed some evidence for a reversal of
the recent-event preference.
Keywords: Eye-tracking; spoken sentence comprehen-
sion; visual world paradigm; recent-event preference; event-
sentence incongruence; actor gaze mismatch

Introduction
Every day people see or hear about events in the world and
effortlessly integrate language with what they see. Although
previous research has examined how people understand lan-
guage referring to events, little is known about how we in-
terpret reference to a preceding event context in relation to
language about future events. Previous research has revealed
that both visual and linguistic context can rapidly guide the
listeners’ visual attention (e.g., Chambers, Tanenhaus, Eber-
hard, Filip, & Carlson, 2002; Tanenhaus, Spivey-Knowlton,
Eberhard, & Sedivy, 1995) and expectations about events.
For example, cues to event tense provided by the utterance
can help comprehenders in developing expectations about fu-
ture events (e.g., Altmann & Kamide, 1999; Kamide, Scheep-
ers, & Altmann, 2003). At the same time, listeners tend
to prioritize recently inspected event depictions (Knoeferle
& Crocker, 2007), or real-world event portrayals (over ex-
pectations of future events) when both recent and future
events could, temporarily, relate to an utterance (Abashidze,
Knoeferle, Carminati, & Essig, 2011; Knoeferle, Carminati,
Abashidze, & Essig, 2011). We present two eye-tracking ex-

periments that are situated in the context of these extant find-
ings. The present experiments examine to which extent the
priority accorded to recent (vs. future) events in interpreting
an utterance holds up when we weaken the congruence be-
tween the recent event and the unfolding utterance. To this
end, we created mismatches between the recent event context
(the action) and (the verb in) an unfolding utterance (Experi-
ment 1) / an actor’s gaze behavior (Experiment 2).

The robustness of the recent-event preference
A number of studies have provided evidence for an atten-
tional behaviour that has been dubbed the ‘recent event pref-
erence’ (e.g., Abashidze et al., 2011; Knoeferle & Crocker,
2007): In Experiment 2 by Abashidze et al. (2011) partici-
pants saw a person performing an action (e.g., sugaring straw-
berries) and then they listened to either a past tense sentence
(Der Versuchsleiter zuckerte kürzlich die Erdbeeren, ‘The ex-
perimenter recently sugared the strawberries’) or a futuric
present tense sentence (Der Versuchsleiter zuckert demnächst
die Pfannkuchen, ‘The experimenter will soon sugar the pan-
cakes’). During the sentence they saw the person in a static
position and two objects on the table in front of him (e.g., pan-
cakes and strawberries, i.e., Fig 1-B). After the sentence pre-
sentation a second event showed again a sugaring action (the
‘future’ action) but this time on the other object (e.g., sug-
aring pancakes). While participants listened to the sentence,
their eye gaze to the two potential targets (of the recently seen
action, and of a potential future action) were monitored. Re-
sults showed that participants preferentially inspected the re-
cent event target (i.e., the strawberries) over the other plau-
sible future event target. This happened even during the fu-
turic present tense sentence, and they shifted gaze to the pan-
cakes (the plausible future event target) only as it was men-
tioned. Follow-up studies examined this issue by increasing
the number of the future events and of futuric present tense
sentences up to 88% (Abashidze, Carminati, & Knoeferle,
2014), by having the actor gaze at the targets before their
mention (Abashidze, Knoeferle, & Carminati, 2015), and by
moving linguistic cues that could bias against the recent-event
preference to the sentence beginning (Abashidze & Cham-
bers, 2016). Despite these strong visual and linguistic cues in
favor of the future event target, these experiments replicated
the overall recent event preference.

The impact of incongruence and gaze cues
In language processing research, many studies have em-
ployed picture-sentence incongruence and verification as a
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method. Experiments using this method have found that
participants are sensitive to the incongruence, so that they
responded faster to congruent than incongruent picture-
sentence pairs (Carpenter & Just, 1975; Underwood, Jebbett,
& Roberts, 2004). In an eye-tracking study by Knoeferle
and Crocker (2005) participants were presented with depicted
scenes and either matching or mismatching np1-verb-adv-
np2 sentences. The authors found an incongruence effect
in the verb and adverb regions. Participants were faster
reading these sentence regions in the congruous than in-
congruous condition (see also related findings on gender
stereotype effects in a picture-sentence verification task by
Rodrı́guez, Burigo, & Knoeferle, 2015). Further studies
used the sentence-picture verification procedure while par-
ticipants were presented with positive and negated sentences
(Glenberg, Robertson, Jansen, & Johnson-Glenberg, 1999).
Results showed that pictures matching the presented sen-
tences (even when the sentences were negated) elicited faster
responses than pictures mismatching the sentences. In ad-
dition, another cue that has been shown to rapidly influence
comprehension (and guide participants’ visual attention even
when it was incongruous with language) is a speaker’s gaze
(e.g., Hanna & Brennan, 2007; Kreysa & Knoeferle, 2013;
Staudte, Crocker, Heloir, & Kipp, 2014).

The present experiments relied on incongruence in verb-
action relations and an actor’s gaze (to the future target) as a
way to stress-test listeners’ preference of inspecting the tar-
get of a recent action. The causes underlying the preferential
inspection of the recent event are unclear. Perhaps the pref-
erential inspection is guided by the verb. The verb could be
linked to representations of the recently inspected action and
its location, prompting participants to shift gaze to the loca-
tion of the action when they encounter the verb. If so, then
a match between the recent event and the sentence referring
to it could boost the attention towards the recent event. By
contrast, a mismatch between the visual and linguistic infor-
mation could reduce the recent event preference. Alterna-
tively, what we see is a general recency effect (i.e., partici-
pants inspect the object that is the target of the recent action,
independent of verb meaning). If this were the case, then a
mismatch between the recent action and the verb should not
interfere with the recent-event preference but a gaze cue (e.g.,
the actor shifting gaze during the verb to the future target ob-
ject) might diminish a recency effect and direct the listener’s
attention to the future target object.

The present experiments
Given that incongruence has been shown to influence partici-
pant’ eye-movements and their reaction times during picture-
sentence verification tasks, two eye-tracking studies exam-
ined to which extent incongruence could bias against the
recent-event preference. In Experiment 1, the verb of the past
(but not futuric present) tense sentences mismatched the re-
cent action. In Experiment 2, the actor began to inspect the
future target object at verb onset in the past tense sentences.
We tested to what extent these incongruences will reduce the

preferential inspection of the recent event target during the
verb. At this point people could realize that the verb does not
match the action they saw in Exp 1 and notice that the actor
shifts his gaze towards the future target from the verb onset
while the past tense sentence refers to the recent event target
in Exp 2. In both experiments the experimental trials were
incongruent in the past tense condition only. These experi-
ments used the design from Abashidze et al. (2011, Exp 2),
presented above, with one factor, viz. tense (past vs. futuric
present). If the recent event preference is sensitive to the in-
congruence between the recent event and either the past tense
sentence (Exp 1) or the actor’s gaze (Exp 2), then we should
see a decrease in looks to the recent event target starting from
the verb region. Can the congruence in the futuric present
tense increase the inspections towards the future event target
and override the preferential inspection of the recent event?
The incongruence in the past tense might strengthen the con-
gruence in the futuric present tense condition (e.g., Glenberg
et al., 1999).

After the eye-tracking session, participants took part in a
gated-memory (Exp 1) and a memory (Exp 2) test. Previous
studies reported a better recall of the future event (Abashidze
et al., 2015, Exp 1) which was not in agreement with the gaze
data; however, other findings revealed a better recall of the re-
cent events (Abashidze et al., 2014, Exp 1 and 2), and a better
recall of the past tense sentence (Abashidze et al., 2015, Exp
2) underscoring the recent-event preference in the gaze data.
If the incongruence affects the recent-event preference and
the incongruence effects are long-lasting, then we might see
a reduced recall performance for recent compared with future
events in the memory test. Alternatively, the incongruence
does not affect the recent-event preference and / or its effects
are short-lived, in which case we might see better recall of
recent than future events.

Experiments 1 and 2: Methods
Participants
Thirty-two native German University students in each exper-
iment (aged 18 to 32) with normal or corrected-to-normal vi-
sion gave informed consent and received 6 Euros each for
their participation. The study was approved by an ethics vote
(Experiment 1: Bielefeld University ethics committee, Ex-
periment 2: DGfS).

Materials and design
The current experiments used the experimental sentences
from Abashidze et al. (2014, see Table 1). All sentences
(N=24) had the structure NP-VERB-ADV-NP and two native
German speakers recorded them. The sentences were in two
tense conditions and referred either to a recently seen event
or a plausible future event. In one condition, the verb was in
the present tense and a time adverb (demnächst, ‘soon’) in-
dicated the futuric present tense condition (Table 1b). In the
other condition, the verb was in the simple past, and a time
adverb (kürzlich, ‘recently’) indicated the past tense condi-
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tion (Table 1a). The critical sentences employed only regular
German verbs in which the verb was tense ambiguous up to
but excluding the word-final phoneme which disambiguated
towards the simple past in the past tense condition. As we can
see in Table 1, the experiments used two sentences for each
tense condition. With this counterbalancing we ensured that
each object was once the target of the recent and once the tar-
get of the future event. The critical words in a sentence were
matched for spoken syllables and lemma frequency within an
item (Baayen, Piepenbrock, & Gulikers, 1995).

Experiment 1 also used the videos from Abashidze et al.
(2014) for futuric present tense sentences. These videos
(Mduration=5015) showed an actor sitting at a table in front
of two objects (e.g., strawberries and pancakes, one on the
left and one on the right; both of the objects can be sweet-
ened). We additionally recorded new videos (for the recent
events). For example, instead of sugaring strawberries, a first
video presented the actor tasting the strawberries (see Fig 1-
A), and the verb in the past tense sentence (translated literally:
‘The experimenter sugared recently the strawberries’) never
matched the recent action. By contrast, the futuric present
sentence always matched the future event (see Fig 1-C).

In Experiment 2, for each experimental trial, participants
saw a short video before and after hearing a sentence about
a person performing an action. For the incongruence, we
used the gaze videos from Experiment 2 by Abashidze et
al. (2015). For instance, when participants listened to a past
tense sentence they saw a video of the actor shifting his gaze
towards the future event target (i.e., pancakes) from the onset
of the verb, where it remained until the end of the sentence
(the gaze cue mismatched the referential past tense sentence).
By contrast, in the futuric present tense condition no gaze cue
was present. Participants saw a snapshot from the last frame
of the first video showing the actor in a static position look-
ing straight ahead (i.e., see Fig 1-B). In both experiments the
incongruence biased against the recent event preference.

In addition to the experimental items we created 36 filler
sentences. To balance the incongruence across/within exper-
iments, 12 fillers in Experiment 1 featured an incongruence
between the futuric present verb and future event. Similarly,
12 fillers in Experiment 2 showed the actor looking at the re-
cent event target during a futuric present sentence. In both
experiments, recent and future events appeared equally often.

Thus, both experiments manipulated 1 factor: sentence
tense (past vs futuric present); in half of the trials the sen-
tence was in the past tense and in the other half in the futuric
present tense (see Table 1 for counterbalancing). The result-
ing four lists used a Latin square design. Each experimental
list contained every critical item in only one condition and all
fillers. Each subject saw an individually pseudo-randomized
version of one of the four experimental lists.

Procedure
An Eyelink 1000 eye-tracker recorded participants’ eye
movements. After a successful 9-point calibration, the ex-
periment began. Participants were asked to inspect the scene

Figure 1: Sequence of events of a typical experimental trial
for Experiment 1

A Video of recent action for ca. 5sec time 

B Static photo, dur=700ms  
sentence dur +700ms 

C Video of future action for ca. 5sec 

1a The experimenter sugared 
    recently the strawberries 
1b The experimenter sugars soon  
    the pancakes 
 
 

or 

and to listen carefully to the sentences. As in the previous
studies by Abashidze et al. (2011), on a given trial, a par-
ticipant first saw a video of a person (the actor) performing
one action before the sentence (e.g., tasting strawberries for
Exp 1 and sugaring strawberries for Exp 2); then participants
saw a static photo (see Fig 1-B). 700 ms after the onset of
the static photo, a sentence was presented via the loud speak-
ers either in (a) the past tense or (b) the futuric present tense
(see Table 1). In Experiment 1 (experimental items), the past
tense verb did not match the recent event; but the verb of the
futuric present matched the future event (shown after the sen-
tence had ended). In Experiment 2, during the past tense sen-
tence the actor directed his gaze towards the future event tar-
get from verb onset (the gaze cue mismatched the past tense
sentence and its NP2 referent). However, during the futuric

Table 1: Example experimental sentences. The indices (’)
indicate counterbalancing versions

Tense condition &
counterbalancing Sentences
1a past tense Der Versuchsleiter zuckerte kürzlich

die Erdbeeren
‘The experimenter recently sugared
the strawberries’

1a’ past tense Der Versuchsleiter zuckerte kürzlich
die Pfannkuchen
‘The experimenter recently sugared
the pancakes’

1b futuric present Der Versuchsleiter zuckert demnächst
die Pfannkuchen
‘The experimenter will soon sugar
the pancakes’

1b’ futuric present Der Versuchsleiter zuckert demnächst
die Erdbeeren
‘The experimenter will soon sugar
the strawberries’
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present sentence participants saw the actor in a static position
throughout the sentence (as in Experiment 1, see Fig 1-B).
700 ms after the sentence had ended, participants saw a video
of the actor performing the second action event (e.g., sugar-
ing pancakes, Fig 1-C, both experiments). Post-experiment,
participants completed a gated memory test in Experiment 1
and a memory test in Experiment 2 (Fig. 2). At the end, they
were debriefed. Each experiment lasted approximately 50-55
minutes.

Memory tests

Experiment 1 tested participants’ later memory of the linguis-
tic information and Experiment 2 examined participants’ later
memory of the visual information. Experiment 1 shows an
example sentence as presented in the gated memory test in a
3-stage procedure (Fig 2, Exp 1). At the first stage, partici-
pants saw only the first noun phrase and the verb stem and had
to verbally complete the verb tense. The second stage added
the temporal adverb, and they had to recall the second noun
phrase. If they were unable to do so, they received a further
prompt at the third stage and had to select the correct referent
out of three objects. Two of these were from that sentence
trial and the third was a distractor from another filler item.

Figure 2: An example of a sequence of stages in the gated
memory test, Exp 1 and display for the memory test, Exp 2

!"#
!"#$%"#&'()&*"+,"#$-.#/$0$
1+,2$34)"$"56"#+7"8,"#$9:;<#$0=$
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1 Exp 2 

Exp 1 

For the memory test in Experiment 2, we created two
snapshots of the first and second video of each experimental
item, i.e., showing the experimenter performing one of the
two actions (Fig 2, Exp 2). The two snapshots associated
with each item were combined into one display and shown
to participants. Two versions were created in which the
respective location of the two pictures was counterbalanced
and participants responded with a button press. Above the
picture, one of two questions appeared:

(a) Welche Aktion wurde VOR dem Satz durchgeführt?
“Which action was performed before the sentence?”
(b) Welche Aktion wurde NACH dem Satz durchgeführt?
“Which action was performed after the sentence?”

Experiments 1 and 2: Analyses and results
Eye tracking
For the eye-tracking data we divided each experimental sen-
tence into three time regions, (the verb, the adverb and the
NP2). Each word region lasted from its onset to the onset
of the following word region and NP2 ended at sentence off-
set. The measure of interest was inspection of the recent and
future target objects. Because looks to one of the objects im-
plied fewer looks to the other target objects, we computed
mean log gaze probability ratios for the recent relative to the
future target (ln (P(recent target)/P (future target))). A score
of zero indicates that both targets are inspected equally often;
a positive value means more looks to the recent event target; a
negative value means more looks go to the future event target
(see Knoeferle et al., 2011).

For the inferential analyses, we performed separate
ANOVAs on the mean log ratio averaged for each condition
(past vs. futuric present) and word region by participants and
by items respectively. The independent variable was tense,
with two levels, past and future tense. We tested the signifi-
cance of the intercept overall (a positive intercept represents
a preference of inspection of the recent event target).

In Figure 3, the dotted lines indicate the past tense condi-
tion and the solid lines indicate the futuric present tense con-
dition. As we can see, the incongruence influenced target
inspection during sentence comprehension. In Experiment
1, participants decreased their attention towards the recent
event target at the end of the verb region (i.e., following the
mismatch); however both lines (in the mismatching past and
matching futuric present tense) remain above zero, meaning
that people continued to preferentially inspect the recent (vs.
future) event target. In Experiment 2, the preferential looks
towards the recent event target lasted until the middle of the
adverb region in both tense conditions. Interestingly, despite
the incongruent gaze in the past tense condition, participants’
attention towards the recent event target persisted until sen-
tence end but decreased as the target was mentioned.

A noticeable difference between Experiment 2 and Exper-
iment 1 is thus that the gaze incongruence (but not the verb-
action incongruence) seems to have prompted participants to
decrease their attention to the recent target object during NP2.
At the end of the NP2 (the name of the recent event tar-
get), participants inspected the recent and future event targets
equally often in the past tense condition (unlike in Experi-
ment 1).

ANOVAs revealed a tense effect in the NP2 region in Ex-
periment 1 and in the Adverb and NP2 regions in Experiment
2, reflecting that tense modulated the listeners’ looks to the
recent (vs. future) event target. The grand mean (i.e., the
mean of both conditions / the intercept) was positive in all re-
gions in Experiment 1 and in the Verb and Adverb regions in
Experiment 2, which indicates an overall recent-event pref-
erence (significant intercept in all the ANOVAs by region).
Thus, Experiment 1 replicated the overall preference to look
at the recent event target in all three word regions indepen-
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Figure 3: Mean log gaze probability rations (ln (P(recent tar-
get)/P (future target))) by condition from verb onset for Exps
1 and 2
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dent of tense condition, whereas Experiment 2 did not reveal
a significant intercept in the last word region (NP2), sug-
gesting the gaze incongruence eliminated the overall recent
event preference in the NP2 region. Furthermore, a post-hoc
two-way ANOVA on the mean log gaze ratios of the NP2
region revealed a tense effect and a marginal experiment ef-
fect but no interaction. This experiment effect suggests that
the gaze incongruence not only eliminated the overall recent
event preference but also marginally decreased participants’
attention towards the recent event target in Experiment 2 com-
pared with Experiment 1.

Memory tests
Gated memory test We calculated the percentage of cor-
rect responses by conditions. Participants correctly answered
questions from all three stages on average with 61%. They
correctly recalled 54% at stage one, which is more accurate
than at stage two with 40%. Importantly, the highest accu-
racy emerged at stage three (89%). Subjects recalled the fu-
turic present sentence (match) better than the past tense sen-
tence (mismatch). Logistic linear mixed effect (LME) anal-
yses showed a marginal tense effect at stage 1 (p < .08) and
a fully significant tense effect at stage 2 (p < .02), indicating
higher accuracy for the futuric present than past tense sen-
tence condition. Memory test In Experiment 2 we calculated
the percentage of correct answers in indicating the event tar-
geted in the image. Participants correctly answered questions
on average with 61%. They were slightly more accurate in
recognizing the future (matching) events (60%) than the re-
cent (mismatching) events (59%). The LME analyses did not
reveal any significant difference in recalling the recent versus
future events.

Discussion
Across two experiments, we examined the recent-event pref-
erence (e.g., Abashidze et al., 2014; Knoeferle et al., 2011)
and stress-tested it with two types of incongruence (verb-
action and the actor’s gaze to the future target in the past tense
condition).

We had predicted that if the recent event preference were
guided by the verb, then participants’ overall preference to
inspect the recent event target should disappear when they re-
alize that the recent action mismatched the verb in meaning
(this did not happen, Exp 1). Analyses of the data from both
eye-tracking experiments did not show an early preferential
inspection (during the verb and adverb) of the future event
target but rather corroborated participants’ preference to gaze
at the recent event target. It is possible that the effect of the
verb-action incongruence was weak since the past tense sen-
tence, while mismatching at the verb, did mention the correct
event target. Perhaps for this reason, inspection of the recent
event target persisted during the Adverb and increased during
NP2 in the past tense sentences of Experiment 1.

Furthermore, if a recency effect underlies the recent-event
inspection preference and more generally object inspection,
then an incongruent actor’s gaze to the future target (as the
most recent cue) should have guided the listeners’ attention
to that target during the verb and adverb for the past tense
sentences, which did not happen; rather participants prefer-
entially inspected the target of the past event i.e., in line with
the sentence tense and the recent-event preference.

While previous studies revealed an immediate gaze effect
in a congruent environment (at around 300-500 ms after its
onset, e.g., Kreysa & Knoeferle, 2013), participants in Ex-
periment 2 fully decreased their inspection of the not-gazed-
at recent event target only at sentence end (i.e., after mention
of the target), thus ignoring that the actor gazed at the future
target from verb onset. This suggests a strong reliance on
the recently-seen event and a relatively slow effect of the ac-
tor’s gaze when it had to compete with the preceding action
event referenced by the verb. Although the gaze mismatch
eliminated the overall recent event preference in the NP2 re-
gion of Experiment 2, a between-experiment comparison of
the same word region did not reveal a fully significant ex-
periment effect between Experiment 1 and 2. The two types
of incongruence hence did not differ reliably in the extent to
which they disrupted the recent event preference at sentence
end. For the Adverb region, however, between-experiment
analyses clarified that participants were more likely to inspect
the recent event target in Experiment 2 than 1, corroborat-
ing that gaze did not immediately modulate this inspection
preference. Tense effects in the Adverb and NP2 regions in
Experiment 2 (compared with only the NP2 region in Exper-
iment 1) revealed that the gaze incongruence (and the actor’s
attention to the future event target) did boost the integration
of tense after the verb in Experiment 2 compared with 1.

The post-experiment memory tests results in Experiment 1
did not agree with the overall recent event preference in the
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gaze data (recall was reliably better for the futuric present
tense sentences, in conflict with the recent event inspection
preference (see also Abashidze et al., 2015)). In Experiment
2, no reliable difference in recall emerged for the recent ver-
sus future events, suggesting short-lived effects of the gaze
mismatches. The better recall of the futuric present condition
in Experiment 1 could be explained if we assume that the con-
gruent recent events and linguistic information evoked more
in-depth processing and increased attention to the stimuli that
then also benefitted the later recall of event information.

In conclusion, the incongruences in the past tense sen-
tences did not reduce the overall recent event preference im-
mediately (during the verb and adverb in both experiments);
but at least actor gaze incongruence did eliminate the over-
all preference eventually, in the NP2 region of Experiment 2
and it boosted the tense effects. What these results suggest
is that the recent-event inspection preference it robust, and
that it is not entirely dependent upon verb reference or cue
recency. The recall accuracy in Experiment 1, by contrast,
suggests that the verb-action mismatches affected short-term
memory of the events. Gaze mismatches, by contrast, seem
to have had immediate effects in the sense that they boosted
tense effects but they neither reduced the overall inspection
preference more than verb-action mismatches at NP2, nor did
they modulate recall of the stimuli.

Acknowledgments
This research was funded by the Cognitive Interaction Tech-
nology Excellence Center 277 (German Research Founda-
tion, DFG). We thank Johanna Bokelmann, David Noth-
durfter and Luise Henneberg for help in conducting Exper-
iment 2.

References
Abashidze, D., Carminati, M. N., & Knoeferle, P. (2014).

How robust is the recent event preference? In Proceedings
of the 36th Annual Meeting of the Cognitive Science Society
(pp. 92–97). Cognitive Science Society.

Abashidze, D., & Chambers, C. G. (2016). The role of early
linguistic cues in the recent event preference. In Proceed-
ings of the Conference on Architectures and Mechanisms
for Language Processing.

Abashidze, D., Knoeferle, P., & Carminati, M. N. (2015).
Eye-tracking situated language comprehension: Immediate
actor gaze versus recent action events. In Proceedings of
the 37th Aannual Meeting of the Cognitive Science Society
(pp. 31–36). Cognitive Science Society.

Abashidze, D., Knoeferle, P., Carminati, M. N., & Essig, K.
(2011). The role of recent real-world versus future events
in the comprehension of referentially ambiguous sentences:
Evidence from eye tracking. In Proceedings of the Eu-
roCogSci. New Bulgarian University Press.

Altmann, G., & Kamide, Y. (1999). Incremental interpre-
tation at verbs: restricting the domain of subsequent refer-
ence. Cognition, 73, 247–264.

Baayen, R., Piepenbrock, R., & Gulikers, L. (1995). The
celex lexical database philadelphia: University of Pennsyl-
vania. Linguistic Data Consortium.

Carpenter, P. A., & Just, M. A. (1975). Sentence comprehen-
sion: A psycholinguistic processing model of verification.
Psychological Review, 82(1), 45.

Chambers, C. G., Tanenhaus, M. K., Eberhard, K. M., Filip,
H., & Carlson, G. N. (2002). Circumscribing referential
domains during real-time language comprehension. Jour-
nal of Memory and Language, 47(1), 30–49.

Glenberg, A. M., Robertson, D. A., Jansen, J. L., & Johnson-
Glenberg, M. C. (1999). Not propositions. Cognitive Sys-
tems Research, 1(1), 19–33.

Hanna, J. E., & Brennan, S. E. (2007). Speakers’ eye
gaze disambiguates referring expressions early during face-
to-face conversation. Journal of Memory and Language,
57(4), 596–615.

Kamide, Y., Scheepers, C., & Altmann, G. T. M. (2003).
Integration of syntactic and semantic information in pre-
dictive processing: cross-linguistic evidence from German
and English. Journal of Psycholinguistic Research, 32, 37–
55.

Knoeferle, P., Carminati, M. N., Abashidze, D., & Essig, K.
(2011). Preferential inspection of recent real-world events
over future events: Evidence from eye tracking during spo-
ken sentence comprehension. Frontiers in Psychology, 2.

Knoeferle, P., & Crocker, M. (2005). Incremental effects
of mismatch during picture-sentence integration: Evidence
from eye-tracking. In Proceedings of the 26th Annual
Meeting of the Cognitive Science Society (pp. 1166–1171).

Knoeferle, P., & Crocker, M. W. (2007). The influence of
recent scene events on spoken comprehension: evidence
from eye-movements. Journal of Memory and Language,
75, 519–543.

Kreysa, H., & Knoeferle, P. (2013). Reference-related
speaker gaze as a cue in online sentence processing. In
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Abstract 

The study of the coordination of attention, a term called joint 
attention (JA), has resulted in a better understanding of the 
dynamics and development of communication. Despite the 
important insights gained from studying JA, there is little 
consensus regarding the specific components that are included in 
operationalizing JA. The present work explored a parameter space 
of JA during a dyadic naturalistic toy play task between 9-month-
old infants and their parents. We systematically measured the 
temporal properties of two components commonly used to 
operationalize JA: the duration of continuous alignment of parent 
and infant visual fixations and the flexibility of fluctuations of 
attention. The results show that very brief bouts of JA are 
important predictors for vocabulary development. The results from 
this work provide new insights into the specific properties used to 
operationalize JA and point to the importance of considering 
multiple timescales of behavior that make up JA. 

Keywords: joint attention; communication; development; 
language development; methodology 

Introduction 
Human interaction consists of behaviors that occur across 
multiple timescales. When an infant interacts with a parent, 
physiological rhythms are coordinated within a 1s timescale 
(Feldman, Margoi-Cohen, Galli, Singer, & Louzoun, 2011), 
vocalizations at a 3s timescale (van Egeren, Barratt, & 
Roach, 2001; Harder et al., 2015), and leader-follower 
dynamics of vocalizations fluctuate across a 10s-temporal 
window (Abney, Warlaumont, Oller, Wallot, & Kello, 
2016). Infants and their parents also coordinate their 
attention onto objects, a coordinative behavior called joint 
attention. The achievement of joint attention emerges early 
in the first year of life (Scaife & Bruner, 1975), and has 
been shown to be a fundamental component of 
communicative skills ranging from the development of 
language to social competencies (Mundy & Newell, 2007). 
The main goal of the current paper is to determine the 
relevant timescales for joint attention during infancy.  

The empirical study of joint attention was initiated by the 
seminal work of Scaife and Bruner (1975) observing that 
infants could follow the direction of a partner’s gaze within 
the first year, and that this behavior increased in frequency 
with age. Since Scaife and Bruner’s original findings, 
decades of research have led to important theoretical and 
empirical contributions to areas of psychology ranging from 

basic questions and connections about attentional processes 
(Corkum & Moore, 1995; Mundy, Card, & Fox, 2000), to 
whether or not joint attention is critical for language 
development (Baldwin, 1995; Tomasello, 1988; Akhtar & 
Gernsbacher, 2007), and has led to proposals about the 
origins of theory of mind (Baron-Cohen, 1991) and 
communication (Tomasello, 2010).  
	

Table 1: Summary of an abbreviated literature review of 
studies investigating the relationship between joint attention 
and language. Note: u.r. = under review. n=semi-naturalistic 
play paradigm. ht=head turn paradigm. Age in is months. T 

= timescale (s)   

	
Although the overall consensus is that joint attention is an 

important ability, there is less agreement and consistency 
regarding how joint attention is defined and operationalized. 
For example, in Scaife and Bruner’s (1975) original work, a 
positive joint attention behavior was coded if an infant (a) 
looked in the same direction as the experimenter without (b) 
intervening looks elsewhere within (c) 7s of the 
experimenter’s look. In another example, Bakeman and 
Adamson (1984) coded behavior as a coordinated joint 
engagement state if the infant (a) actively coordinates his or 
her attention with another person and an object for (b) a 
particular duration with (c) only brief attention shifts to 
other objects for less than 3s. Finally, Tomasello and 
colleagues (Tomasello & Todd, 1983; Tomasello & Farrar, 
1986) defined joint attention as when (a) infant and parent 
both visually attended to the same object for (b) at least 3s 
with (c) only brief looks elsewhere. Table 1 provides an 
abbreviated review of the timescales used to operationalize 

Author Year N Age  T 
Bakeman & Adamsonn 1994 28 6-18  3 
Brooks & Meltzoffht 2005 96 9-11 6.5 
Brooks & Meltzoffht 2008 32 10-11 6.5 
Carpenter et al.n 1998 24 9-15  3s  
Morales et al.n 1998 22 2-18  NA 
Mundy, Sigman, & Kasarin 1990 45 33  NA 
Tomasello & Farrar (Exp. 1)n 1986 24 15-21  3 
Tomasello & Farrar (Exp. 2)n 1986 10 17  3 
Tomasello & Toddn  1983 6 12-13  3 
Yu, Suanda, & Smithn  u.r. 26 9 .5  
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joint attention for studies focused on the relationship 
between joint attention and language.   

In free-flowing parent-infant everyday interaction, joint 
attention is embedded in a stream of free-flowing activity in 
which parents both react to and attempt to control toddlers’ 
behaviors and in which toddlers react to, direct, and 
sometimes ignore parents as they pursue their own goals. In 
those naturalistic contexts, we know that adults generate on 
average 3 eye fixations per second (Hayhoe, Shrivastava, 
Mruczek, & Pelz, 2003) and we also know, from our recent 
head-mounted eye tracking studies, infants generate lots of 
short looks in toy play (Yu & Smith, 2016). That means the 
exquisite real-time “dance” of social interactions require 
effective adjustments within the dyad and socially 
coordinated shifts in attention have to be resolved in 
fractions of a second. In this context, it is possible that joint 
attention spans multiple timescales, displaying important 
variability at short timescales and also at longer timescales.  

The specific goal of the current paper is to investigate the 
relevance of two key parameters used to operationalize joint 
attention that have varied considerably across research 
groups: the duration of continuous alignment of parent and 
infant visual fixations and the flexibility of fluctuations of 
attention. We refer to the former parameter as minimum 
joint duration and the later parameter as minimum duration. 
For minimum joint duration, we varied the duration to 
estimate joint attention across micro-level (e.g., 500ms) and 
macro-level (e.g., 10s) timescales. We focused on two 
aspects of this manipulation. First, we investigated how 
properties of joint attention, like mean duration, frequency, 
and proportion, varied across the minimum joint attention 
dimension. Importantly, we were also interested in how 
minimum joint duration affected how many dyads in our 
sample exhibited joint attention at a particular timescale. For 
example, it is possible that some infant-parent dyads do not 
exhibit any macro-level joint attention bouts, which would 
require us to omit them from subsequent analyses. For 
minimum duration, we first kept the parameter fixed at 0ms 
to simulate coding schemes that only identified a JA bout as 
continuous visual alignment on a target object with no looks 
elsewhere (Study 1) and then manipulated the parameter to 
allow for brief fluctuations of attention less than 300ms 
(Study 2).  

Second, we asked how different values of minimum joint 
duration impacted the predictive value of joint attention. 
Previous research has observed that joint attention correlates 
with concurrent – and predicts future – vocabulary size 
(Baldwin, 1995; Tomasello & Farrar, 1986; Tomasello & 
Todd, 1983; Smith et al., 1988; Carpenter et al., 1998; 
Morales et al., 2000; Mundy, Sigman, & Kasari, 1990). 
Therefore, to determine how minimum joint duration affects 
the predictive value of joint attention for vocabulary size, in 
Study 3, we estimated joint attention for different values 
along the minimum joint duration dimension for 9-month 
infants and their parents, and tested whether joint attention 
across various timescales predicted future vocabulary size.   

Methods 

Participants 
26 parent-infant dyads participated (15 female and 11 male). 
The mean age of infants was 9.21 months (SD=0.23). Parent 
reports of vocabulary were collected three and six months 
later when the infants were 12 months and 15 months. 

Stimuli 
Six toys (car, cup, and train; duck, plane, and boat), 
organized into two sets of three were used. Each toy in the 
two sets had a unique uniform color (red, blue, green).  

Stimuli 
Parents and their infants sat across from each other at a table 
(61cm x 91cm x 64cm). The infants sat in a custom high-
chair and the parents sat on the floor. Both infants and 
parents wore head-mounted eye trackers (positive science, 
LLC). The head-mounted eye-tracking system includes two 
cameras: (1) An infrared camera that is placed just below 
and is pointed to the right eye that records eye images, and 
(2) A scene camera that is placed low on the forehead and is 
pointed outwards captures the user’s first-person view (90° 
visual field). Each eye tracking system recorded egocentric-
view video and gaze direction (x-, y-coordinates) in that 
view, sampled at 30Hz. Another camera (30Hz) was 
mounted above the table and provided a bird’s eye view of 
the dyadic interaction (see Yu & Smith (2013) for additional 
technical details).  

Procedure 
Parents and infants were fitted with the eye-tracking gear 
(see Figure 1). Once the eye-tracking gear was securely 
affixed to the participants, a calibration phase was 
completed. To collect calibration points for each eye-
tracker, an experimenter directed the infant’s attention 
toward a toy that was only used for calibration while 
another experimenter recorded the moment the child 
attended to the location of the toy. This procedure was 
repeated 15 times with the calibration toy played in various 
locations on the tabletop. A similar procedure was used to 
calibrate the parent’s eye tracker. The calibration procedure 
took approximately five minutes.  

Once the calibration phase was complete, an experimenter 
placed one of the object sets on the table and the first play 
trial began. During object play, parents were instructed to 
engage with their infant as they naturally would. After 
approximately 60 seconds of play, an experimenter swapped 
out the objects with the second set of objects, and the 
second trial began. This procedure was repeated and dyads 
completed up to four trials for a total of six minutes of play. 
Not all dyads completed the full play session. Twenty-four 
dyads completed all four trials and two dyads completed 
three trials, for a total average playtime of five minutes, 
eight seconds. 
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Figure 1: (A) A dual eye-tracking set-up. (B) Sample infant 

and parent ROI streams. 	

Data Processing 
Eye-tracking software yielded scene camera footage with 
crosshairs superimposed, this footage was then sampled at a 
rate of 30 frames per second. Using an in-house coding 
program, trained coders annotated frame-by-frame the target 
of gaze. Three regions of interest (ROIs) were defined for 
the three objects. ROIs were manually coded frame-by-
frame from a first-person view video. An ROI was 
annotated when a cross-hair overlapped on any portion of an 
object or face. To assess reliability, a second coder coded a 
randomly-selected 10% of the frames with 95% agreement.  

 
Figure 2: Operationalizing joint attention bouts using 

minimum duration and minimum joint duration. 	

Joint Attention Parameters 
Two parameters were used to determine joint attention: 
minimum joint duration and minimum duration (see Figure 
2). Minimum joint duration is the temporal duration of 
continuous alignment of parent and infant fixations on a 
particular object ROI. Minimum duration is the temporal 
duration of brief looks elsewhere other than the joint 
attention ROI, e.g., another object, partner’s face. Previous 
research has incorporated this component into various 
coding schemes, sometimes allowing for brief looks 
elsewhere, and for other coding schemes, not allowing the 
flexibility of brief looks. For Study 1, we keep this 
parameter fixed at 0ms to not allow for brief looks 

elsewhere. In other words, all joint attention bouts estimated 
for this study only included simultaneous and continuous 
fixations from infant and parent. For example, in Figure 2, 
Bout 1 (blue object) would not be considered a JA bout 
because there is a brief look from the parent to the infant’s 
face (pink). Bout 2  (red object) would be considered a JA 
bout because (1) the infant’s and parent’s fixations were on 
the same object (red object) for longer than a particular 
duration set in our parameter exploration and (2) the 
fixations were continuous with no brief fixations elsewhere.  
In Study 2, we manipulated the minimum duration 
parameter to equal either 0ms or 300ms. To return back to 
the example in Figure 2, when minimum duration equals 
300ms, Bout 1 (blue object) would now be considered a JA 
bout because the brief look from the parent to the infant’s 
face (pink) is shorter in duration than 300ms. 

Exploration of Joint Attention Parameter Space 
To explore the parameter space of minimum joint duration, 
we created six different temporal durations for minimum 
joint duration (500ms, 1s, 2s, 3s, 5s, and 10s). The other 
parameter we manipulated was minimum duration, and 
varied this parameter as either 0ms or 300ms. In Study 1, we 
fixed the minimum duration parameter to 0ms, and explored 
the minimum joint duration parameter across all six 
duration. In Study 2, we explored a combination of a subset 
of the minimum joint duration parameter (500ms and 1s) 
and the minimum duration parameter (0ms and 300ms).   

Properties of Joint Attention Bouts 
In Study 1, we estimated joint attention bouts across the 
minimum joint duration parameter space for each of the 26 
infant-parent dyads. Thus, for each dyad, we had 6 joint 
attention streams. In Study 2, we estimated joint attention 
bouts across the limited minimum joint duration parameter 
and the minimum duration parameter, equating to 4 joint 
attention streams across the parameter space combinations. 
For each joint attention bout stream, we estimated three 
properties: proportion (% of time in joint attention), 
frequency (rate/min), and average bout duration. To 
determine how many dyads with at least one joint attention 
bout in each parameter space value, we calculated a 
parameter-level measure as the percentage of the sample (26 
dyads) that yielded at least one joint attention bout in a 
particular parameter value. In Study 3, we explored how 
joint attention proportion estimates across the minimum 
joint duration parameter space at 9-months of age predicted 
vocabulary size at 12 and 15 months of age. 

Vocabulary Size 
Infants and parents returned to the laboratory at ages 12- 
and 15-month to complete the MacArthur-Bates 
Communicative Development Inventory (Fenson et al., 
1994). We used total receptive vocabulary as our measure of 
vocabulary scores at each age.  
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Study 1 
We first investigated the properties of joint attention bouts 
across parameter space. We conducted a linear mixed-
effects model (Baayen, Davidson, & Bates, 2008) to 
examine the effects of minimum joint duration on the joint 
attention bout properties (proportion, frequency, and 
average bout duration). We included dyad membership as a 
random slope with the maximally permitted random 
intercept. Because only one dyad had at least one joint 
attention bout longer than the minimum joint duration 
parameter at 10s, we excluded the 10s duration from the 
minimum joint duration parameter in subsequent analyses 
(see Figure 3).  

 
  Figure 3: Joint attention properties across minimum joint 

duration parameters. Error bars reflect 95% CIs.	
	

For joint attention rate, there was a significant effect of 
minimum joint duration (β=-.0009, SE= 0.00007, p<.001), 
suggesting that as minimum joint durations increased, the 
rate of joint attention bouts (per minute) decreased. When 
increasing the minimum joint duration parameter from the 
shortest duration reflecting the micro-level timescale, 500ms 
(Mrate=4.99, SErate=.39), to the frequently-used timescale in 
previous literature, 3000ms (Mrate=1.07, SErate=.11) (see 
Table 1; Bakeman & Adamson, 1994; Carpenter et al., 
1998; Tomasello & Todd, 1983; Tomasello & Farrar, 1986), 
we observed a 78% decrease in JA bout rate.  

As expected, for mean joint attention duration, there was 
a significant effect of minimum joint duration (β=.001, SE= 
0.00003, p<.001), suggesting that as minimum joint 
durations increased, the mean duration of joint attention 
bouts increased.  

Similar to what was observed for rate, for joint attention 
proportion, there was a significant effect of minimum joint 

duration (β=-.0001, SE= 0.00002, p<.001), suggesting that 
as minimum joint durations increased, proportion decreased. 
When increasing the minimum joint duration parameter 
from 500ms (Mproportion=.16, SEproportion=.02) to 3000ms 
(Mproportion=.07, SEproportion=.01), we observed a 53% decrease 
in JA proportion.  

Calculating the percentage of dyads with at least one joint 
attention bout for a particular parameter space value 
provides a metric of how the sample size changes as a 
function of parameter value choices. Considering that 
investigations of joint attention utilize properties of joint 
attention bouts, we interpret this value below 100% for a 
particular combination to be suboptimal for the study of 
joint attention. Inspection of these estimates yielded some 
important observations. Estimates decreased as the duration 
of the minimum joint duration parameter increased. At 2s, 
the amount of dyads with at least one JA bout dropped 
below 100% and at 5s, only approximately 50% of the 
sample had at least one joint attention bout. This is an 
important observation because it points to a particular 
timescale, 2-3s, when the behavior of interest, joint 
attention, does not occur for some dyads in a sample. 

We have established that after a particular timescale, 2-3s, 
the amount of dyads producing at least one bout of joint 
attention drops considerably with increases in the minimum 
joint duration parameter. 

Study 2 
To investigate the potential combinatory effects of both 
minimum joint duration and minimum duration, we 
estimated JA bouts across the minimum duration parameter 
(0ms and 300ms) and a subset of the minimum joint 
duration parameter dimension (500ms and 1000ms). Our 
parameter space therefore consisted of 4 possible 
combinations of the two parameters. We chose these 
parameters because (1) in Study 1, we observed 100% of the 
dyads had at least one JA bout for the 500ms and 1000ms 
minimum joint duration values and (2) 300ms as a value for 
the minimum duration parameter has been used in previous 
research to allow for flexibility in the fluctuations of 
attention (Yu & Smith, 2013, 2016). 

Consistent with Study 1, for joint attention rate, there was 
a significant effect of minimum joint duration (β=-.0004, 
SE= 0.00003, p<.001), suggesting that as minimum joint 
durations increased, rate of joint attention bouts increased. 
There was no significant effect of minimum duration 
(β=.0001, SE= 0.0004, p=.76) nor was the interaction 
significant (β=.0000001, SE= 0.0000006, p=.78), 
suggesting, despite allowing for brief attentional flexibility 
(minimum duration=300ms) compared to no flexibility 
(minimum duration=0ms), joint attention rate remained the 
same (see Figure 5).  

Mean joint attention duration increased as minimum joint 
duration increased (β=.002, SE= 0.0001, p<.001), but there 
was no significant effect of minimum duration (β=-.0002, 
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SE= 0.0004, p=.75) nor was the interaction significant 
(β=.00000003, SE= 0.0000006, p=.56). Mean joint attention 
proportion decreased as minimum joint duration increased 
(b=-.0005, SE= 0.00004, p<.001), but there was no 
significant effect of minimum duration (b=.00005, SE= 
0.0001, p=.74) nor was the interaction significant (b=-
.00000005, SE= 0.0000002, p=.81).  
	

  
Figure 5: Joint attention properties across minimum joint 
duration and minimum duration parameters.  Error bars 

reflect 95% CIs. 

Study 3 
We analyzed the relationship between joint attention 
proportion estimates across the minimum joint duration 
parameter space at 9-months of age and vocabulary size at 
12 and 15 months of age. From the previous analyses, we 
know that increases in minimum joint duration lead to 
decreases in the amount of joint attention bouts and also the 
proportion of joint attention bouts. It is possible that even 
though joint attention proportion decreases, the overall 
variability still predicts vocabulary size. Alternatively, it is 
also possible that decreases in joint attention proportion also 
reduces the likelihood that the variability of joint attention 
proportion covaries with later vocabulary size. Table 2 
shows the correlation results across parameter space values 
for joint attention proportion at 9 months and vocabulary 
size at 12 and 15 months. As observed in previous analyses, 
the amount of dyads with proportion estimates varies across 
the parameter space. Therefore, it is important to note the 
varying degrees of freedom of the correlations across the 
parameter space values. 

There are a few important observations from this analysis. 
First, the pattern of correlations between joint attention 
proportion and vocabulary size does not vary across 12 
months to 15 months. This suggests that the predictive value 
of joint attention at 9 months extends into the second year of 
life. Second, the results suggest that after exceeding a 
minimum joint duration of 3s, joint attention is no longer 
predictive of language development. This is an important 

finding because it strengthens the argument that the relevant 
timescales for joint attention, and subsequent predictive 
value for language development, include durations shorter 
than 3 seconds. We will discuss the implications of this 
result in the Discussion section.  
	

Table 2: Summary of correlation coefficients (degrees of 
freedom in parentheses) between JA proportion and 12- and 

15-month vocabulary size across the Minimum Joint 
Duration parameter.  

Note. *p<.05, **p<.01, ***p<.001. 

Discussion 
The present study investigated the relevant timescales for 
joint attention in infant-parent naturalistic free-play. To 
answer this question, we explored a parameter space 
consisting of two frequently used components implemented 
to operationalize joint attention: minimum joint duration 
and minimum duration. Across three studies, we observed a 
collection of important results that provide insight into the 
consequences of choosing specific parameters for 
operationalizing joint attention. First, the observation of 
joint attention behavior drops precipitously when the 
duration of continuous alignment of parent and infant visual 
fixations (minimum joint duration parameter) extends 
longer than ~3s. Second, allowing for brief fluctuations of 
attention away from the target object (minimum duration 
parameter), does not appear to impact the overall properties 
of joint attention. Third, the predictive value of joint 
attention for language development reduces in strength 
when joint attention bouts shorter than 3s are omitted from 
analysis.  

Perhaps the most important observation from this study 
was that when we only included joint attention bouts 
exceeding 3 seconds, the properties of joint attention 
changed significantly: rate and proportion of joint attention 
bouts were reduced by 50% or more. Furthermore, only 
including joint attention bouts exceeding a 3-second 
duration resulted in the loss of predictive value of joint 
attention for vocabulary size. Taken together, these results 
suggest that a purely macro-level approach to the study of 
joint attention can lead to a loss of important variability that 
captures the phenomenon of joint attention.  

We also observed that the inclusion of a parameter that 
affords brief fluctuations of attention to parts of the visual 
environment other than the target object does not 
significantly affect the properties of joint attention. It is 
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important to point out that we limited this analysis to only a 
subset of the minimum joint duration parameter in order to 
include all joint attention bouts longer than 500ms and 
1000ms. It is possible that the inclusion of macro-level 
values of minimum joint attention (e.g., 500ms) and longer 
values of minimum duration – extending the duration of 
fluctuations of attention – would affect the joint attention 
properties beyond nominal differences. We plan to attend to 
this question in more detail in subsequent research.  

Investigations of joint attention provide unique insights 
into the development and dynamics of human 
communication. The present study focused on an important 
methodological and theoretical question: what are the 
relevant timescales for joint attention? Our results, 
generated from a deductive technique to explore different 
areas of the parameter space of joint attention, suggest that 
the inclusion of micro-level temporal specifications of joint 
attention (e.g., <3s) is important for capturing a more 
vibrant picture of joint attention.  

Acknowledgments 
We thank Melissa Elston, Steven Elmlinger, Charlotte 
Wozniak, Charlene Tay, Seth Foster for collection of the 
data. This investigation was supported by the National 
Institutes of Heath, T32 Grant # HD07475.  

References  
Abney, D. H., Warlaumont, A. S., Oller, D. K., Wallot, S., 

& Kello, C. T. (2016). Multiple Coordination Patterns in 
Infant and Adult Vocalizations. Infancy. 1-26.  

Akhtar, N., & Gernsbacher, M. A. (2007). Joint attention 
and vocabulary development: a critical look. Language 
and linguistics compass, 1(3), 195-207. 

Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). 
Mixed-effects modeling with crossed random effects for 
subjects and items. Journal of memory and language, 
59(4), 390-412. 

Bakeman, R., & Adamson, L. B. (1984). Coordinating 
attention to people and objects in mother-infant and peer-
infant interaction. Child development, 55(4), 1278-1289. 

Baldwin, D. A., Moore, C., & Dunham, P. J. (1995). 
Understanding the link between joint attention and 
language. Joint attention: Its origins and role in 
development, 131-158. 

Baron-Cohen, S. (1991). Precursors to a theory of mind: 
Understanding attention in others. 

Brooks, R., & Meltzoff, A. N. (2005). The development of 
gaze following and its relation to language. 
Developmental science, 8(6), 535-543. 

Brooks, R., & Meltzoff, A. N. (2008). Infant gaze following 
and pointing predict accelerated vocabulary growth 
through two years of age: A longitudinal, growth curve 
modeling study. Journal of child language, 35(01), 207-
220. 

Carpenter, M., Nagell, K., Tomasello, M., Butterworth, G., 
& Moore, C. (1998). Social cognition, joint attention, and 
communicative competence from 9 to 15 months of age. 
Monographs of the society for research in child 
development, i-174. 

Corkum, V., & Moore, C. (1995). Development of joint 
visual attention in infants. In Joint attention: Its origins 
and role in development. Lawrence Erlbaum Associates, 
Inc. 

Feldman, R., Magori-Cohen, R., Galili, G., Singer, M., & 
Louzoun, Y. (2011). Mother and infant coordinate heart 
rhythms through episodes of interaction synchrony. Infant 
Behavior and Development, 34(4), 569-577.  

Hayhoe, M. M., Shrivastava, A., Mruczek, R., & Pelz, J. B. 
(2003). Visual memory and motor planning in a natural 
task. Journal of vision, 3(1), 6-6. 

Harder, S., Lange, T., Hansen, G. F., Væver, M., & Køppe, 
S. (2015). A longitudinal study of coordination in 
mother–infant vocal interaction from age 4 to 10 months. 
Developmental psychology, 51(12), 1778.  

Morales, M., Mundy, P., Delgado, C. E., Yale, M., 
Messinger, D., Neal, R., & Schwartz, H. K. (2000). 
Responding to joint attention across the 6-through 24-
month age period and early language acquisition. Journal 
of applied developmental psychology, 21(3), 283-298. 

Mundy, P., Card, J., & Fox, N. (2000). EEG correlates of 
the development of infant joint attention skills. 
Developmental psychobiology, 36(4), 325. 

Mundy, P., & Newell, L. (2007). Attention, joint attention, 
and social cognition. Current directions in psychological 
science, 16(5), 269-274. 

Scaife, M., & Bruner, J. S. (1975). The capacity for joint 
visual attention in the infant. Nature. 253, 265-266. 

Tomasello, M., & Todd, J. (1983). Joint attention and 
lexical acquisition style. First language, 4(12), 197-211. 

Tomasello, M., & Farrar, M. J. (1986). Object permanence 
and relational words: A lexical training study. Journal of 
Child Language, 13(03), 495-505. 

Tomasello, M. (1988). The role of joint attentional 
processes in early language development. Language 
Sciences, 10(1), 69-88.  

Yu, C., & Smith, L. B. (2013). Joint attention without gaze 
following: Human infants and their parents coordinate 
visual attention to objects through eye-hand coordination. 
PloS one, 8(11), e79659.  

Yu, C., & Smith, L. B. (2016). The social origins of 
sustained attention in one-year-old human infants. 
Current Biology, 26(9), 1235-1240 

Van Egeren, L. A., Barratt, M. S., & Roach, M. A. (2001). 
Mother–infant responsiveness: Timing, mutual regulation, 
and interactional context. Developmental psychology, 
37(5), 684. 

	
	
	

1494



The Role of Letter Frequency on Eye Movements in Sentential Pseudoword Reading  
 

Cengiz Acartürk  
(acarturk@metu.edu.tr) 

Middle East Technical University  
Cognitive Science Program 

Ankara, Turkey 

Özkan Kılıç 
(ozkankilic@ybu.edu.tr) 

Yildirim Beyazit University, Computer Engineering  
Middle East Technical University, Cognitive Science  

Ankara, Turkey 
 

 
Bilal Kırkıcı 

(bkirkici@metu.edu.tr) 
Middle East Technical University, 

Foreign Language Education  
Ankara, Turkey 

Burcu Can 
(burcucan@cs.hacettepe.edu.tr) 

Hacettepe University,  
Computer Engineering  

Ankara, Turkey 

Ayşegül Özkan 
(oaysegul@metu.edu.tr) 

Middle East Technical University, 
Cognitive Science Program 

Ankara, Turkey 
 

 
 

Abstract 

For a language learner, any new word is a pseudoword. A 
pseudoword is a string of of letters or phonemes that sounds 
like an existing word in a language, though it has no meaning 
in the lexicon. On the other hand, speakers are well aware of 
permissible phonemes, their frequencies and collocations in 
their language due to the phonotactics inherent in the 
language. For example, saktal is a pseudoword in Turkish, 
whereas szyan is not, due to Turkish phonotactics. This study 
investigates the relationship between pseudoword letter 
formation and eye movement characteristics in reading. In 
particular, we examine the role of Turkish vowel harmony, 
middle-word consonant collocation, and word-initial and 
word-final consonants on eye movements with adult native 
speakers reading sentences that involve predesigned Turkish 
pseudowords. The results of an experiment with 34 
participants are indicative of the role of pseudoword 
formation on a set of eye movement parameters.  

Keywords: Consonant collocations; Eye movements, 
Pseudowords; Reading; Turkish; Vowel harmony. 

Introduction 
If native speakers of English are asked to judge the 
acceptability of the words, wug, toysion, or craphen, they 
are likely to rate them as acceptable. Similarly, Turkish 
speakers may judge talar as a possible Turkish word though 
they hear it for the first time. These are all pseudowords, 
which sound like existing words in a language, without 
semantic content. 
 
Pseudowords are commonly used as experiment stimuli in 
research in psychology, linguistics, neuroscience, and 
cognitive science. They are especially useful when 
researchers aim at overcoming likely effects of semantics in 
the experiments. Phonological well-formedness of words 
(Hammond, 2004), morphological productivity (Anshen & 
Aronoff, 1988), language development (Dabrowska, 2006), 
judgment of semantic similarity (MacDonald & Ramscar, 
2001), vowel harmony (Pycha, Novak, Shosted & Shin, 
2003), machine learning for orthography (Testolin, 

Stoianov, Sperduti & Zorfib, 2015), neuroimaging of 
reading (Mechelli, Gorno-Tempini & Price, 2003), and 
dyslexia (Grainger, Bouttevin, Truc, Bastien & Ziegler, 
2003; Houpt, Sussman, Townsend & Newman, 2015) have 
been among the major topics that have been studied through 
the use of pseudowords as experimental stimuli. 
Pseudowords have been employed to test models of word 
and letter perception, such as the interactive activation 
model of context effects in letter perception (McClelland, & 
Rumelhart, 1981).  
 
Previous studies have revealed that native speakers seem to 
make their judgments by using a probable combination of 
sounds (Hammond, 2004; Shademan, 2007), the co-
occurrence of syllables or consonant collocations locally 
(Hay, Pierrehumbert & Beckman, 2004), non-locally 
(Finley, 2012; Frisch & Zawaydeh, 2001; Koo & Callahan; 
2011), or through nucleus-coda combination probabilities 
(Treiman, Kessler, Knewasser, Tincoff & Bowman, 2000). 
Accordingly, the acceptability judgments of pseudowords 
are connected to orthographic neighborhood (e.g., Davis, 
2010, see Rayner, Pollatsek, Ashby, Clifton Jr., 2012, for a 
review), which takes into account the relative positions of 
consonants and vowels (Perea & Lupker, 2004), as well as 
letter position coding through adjacent bigrams (Seidenberg 
& McClelland, 1989) and open bigrams of letters (Whitney, 
2001). 
 
For Turkish, a language with shallow orthography, it has 
been shown that some of the properties that characterize 
pseudowords can be captured from a written corpus in 
parallel to native speakers’ judgment (Kilic, 2014). Against 
this background, the present study first employs corpus-
based frequencies for the formation of pseudowords 
according to a set of criteria, including the relative positions 
of consonants and vowels in pseudowords. Then we 
investigate pseudoword processing by locating the 
pseudowords in sentential contexts and having native 
speakers read them in sentential contexts. The underlying 
approach is that we capture eye movement characteristics as 
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an indicator of word processing, which may enrich our 
knowledge about word processing by providing data that go 
beyond response time (cf. lexical decision tasks). In other 
words, we propose that sentential pseudoword reading, as 
we name it, has the potential to contribute to our 
understanding of word processing through the study of the 
relationship between subword characteristics of 
pseudowords and eye movement parameters. 
 
Three dominant experimental factors that have been found 
to influence eye movement characteristics in reading are 
word length, frequency and sentential predictability 
(Rayner, Sereno & Raney, 1996; Rayner, 1998; Rayner, 
Pollatsek, Ashby, Clifton Jr., 2012). In the present study, we 
controlled word length by forming pseudowords of six 
letters. Using pseudowords allowed us to ignore sentential 
predictability and word-level frequency as factors for 
experimental control. Instead, we focused on subword 
frequencies that are specified by the combinations of the 
letters that form six-letter pseudowords. We studied three 
specific types of combinations by designing high-frequency 
and low-frequency letter bigrams for experimental purposes:  

 
• Vowel combinations that follow vowel harmony  
• Middle-word consonant collocation 
• Word-beginning and word-end consonants 

 
Silent reading is under the influence of inner speech. If a 
pseudoword is hard to speak out loud, it is also hard to read 
silently. In this study, we hypothesize that these three 
variables will affect pseudoword reading in Turkish as high 
frequency ensures easy pronunciation, whereas low 
frequency of these variables lead to difficult pronunciation. 
It is also expected that adjacent dependencies will have a 
strong influence on pseudoword reading. In the following 
section, we present an overview of these characteristics of 
word structure in Turkish. 

The Turkish Language 
Turkish is an agglutinating language, read from left-to-right, 
with a considerably shallow orthography using 8 vowels and 
21 consonants derived from the Roman Alphabet (Göksel & 
Kerslake, 2005; Lewis, 2000). The description of Turkish 
word structure depends on morphophonological constraints. 
The continuation of a morpheme and the selection of the 
corresponding morph are determined by the preceding 
morph. The final vowel in the preceding morph affects the 
form of the vowel in the incoming morpheme (Turkish 
vowel harmony). Similarly, the final consonant in the most 
recent morph causes some changes on the first consonant of 
the next morpheme (Assimilation).  
 
While a morpheme with a vowel is concatenated to a string 
in Turkish, its vowel is modified with respect to the 
roundedness and backness properties of the most recent 
vowel in the string as in (1). 

 

(1) at-lar  kedi-ler  okul-lar 
 horse-Plu cat-Plu  school-Plu 
 horses  cats  schools 

 
This is not an immediate dependency because diphthongs 
and consecutive vowel collocations are usually not allowed 
in Turkish. When the corpus frequencies are investigated, it 
is seen that the frequencies of words containing a…a or e…i 
as substrings are higher than the frequencies for the words 
with ı…ü or o…e. In other words, frequencies mimic vowel 
harmony. Similarly, some immediate consonant collocations 
are more frequent than others due to assimilation as shown 
in (2) for the ablative case marker -DAn. 

 
(2) ev-den  et-ten  yatak-tan 
 house-Abl meat-Abl bed-Abl 
 from house from meat from bed 

 
Accordingly, some consonant collocations, such as vd, tt, 
and kt, are more frequent than vt, td, and kd. These are 
infrequent but not zero frequencies because there are 
exceptions to assimilation as well as vowel harmony.  
 
Another salient aspect of Turkish word structure is word 
boundary. Some letters, e.g., k, g, d, z and y, are observed 
more frequently than, e.g., c, g, r, v, and f in word-initial or 
word-final position. Even Turkish words in root forms 
mostly follow the regularities briefly exemplified above. In 
this study, word-initial and word-final boundaries are 
treated as a single variable (either low or high frequency 
letters at both boundaries) to keep the stimuli size 
manageable and the experiment duration reasonable. 
 
The present study examines the effects of the 
aforementioned three major aspect of word formation in 
Turkish, namely the frequency of vowel combinations that 
follow vowel harmony (henceforth, vowel harmony 
collocation), the frequency of middle-word consonant 
collocations (henceforth, consonant collocation), and the 
frequency of word-beginning and word-end consonants 
(henceforth, word boundary collocation) on eye movement 
characteristics in sentential reading. These three variables 
are assumed to be binary variables with either high 
frequency or low frequency in a 2 x 2 x 2 design. A total of 
80 pseudowords were created as experimental stimuli. The 
letter bigram frequencies were obtained from the METU 
Turkish Corpus (Say, Zeyrek, Oflazer & Ozge, 2002). All 
pseudowords had the same template of vowels (V) and 
consonants (C) shown in (3). 
 

(3)  C1V1C2C3V2C4 
 
Low-frequency or high-frequency vowel collocations, i.e. 
V1V2, were selected, where high-frequency pairs of V1V2 
followed the rules of Turkish vowel harmony. Similarly, 
high-frequency and low-frequency pairs were selected for 
the consonant collocation C2C3, and for the word boundary 
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collocation C1C4. Below, we present the experiment, its 
methods, materials and the results obtained. 

Experiment 
Thirty-four university students at Middle East Technical 
University (METU), Turkey, participated in the experiment 
(18 female and 16 male university students, mean age: 
23.59, SD: 5.04). The participants were asked to read 
silently 80 single-line sentences displayed separately on a 
computer screen while their eye-movements were recorded 
by an EyeLink 1000Hz desktop eye tracker. Each sentence 
included one pseudoword, which was located around the 
middle of the display. The stimuli were shown in random 
order. Simple true/false questions were asked randomly 
after some screens to ensure active engagement of the reader 
with the task.  20 random and simple true/false questions, 
which were about words other than the pseudowords in the 
sentences, were asked as well in order to ensure that the 
participants had been actively reading. The experiment was 
conducted in single sessions. Each session took 
approximately 40 minutes. The participants were paid 25 TL 
(approximately 6$) as an incentive for participation. 

Material 
A total of 80 pseudowords of the form C1V1C2C3V2C4 were 
formed for the eight categories (cf. 2 x 2 x 2 design of high- 
and low-frequency bigrams) by using orthographic 
frequencies obtained from the METU Turkish Corpus. 
Frequency was specified as a binary variable, with either 
high or low values. For example, if the frequency of a 
consonant bigram is above the mean of the frequencies of 
all possible bigrams, it was assumed to be a high consonant 
collocation frequency for selecting C2C3. Otherwise, it was 
assumed to be a low frequency consonant collocation. 
Similarly, high-frequency and low-frequency bigrams were 
selected for the word boundary collocations C1C4, and for 
the vowel harmony collocations V1V2. We did not 
distinguish between onset and offset frequencies while 
studying the bigrams in the corpus to keep the experiment 
design simple. Below, we present more detail about the 
three types of collocations. 

 
Turkish Vowel Harmony Collocation (V1V2). Since 
Turkish has eight vowels, 8 x 8 vowel bigrams were 
produced and their frequencies were calculated from the 
METU corpus. The vowels might have zero or more 
intervening characters in between. For example, while a…a 
is a very frequent vowel substring, ı…ü is an unlikely one. 
We calculated all available vowel bigrams. The high-
frequency bigrams represented Turkish vowel harmony, 
whereas the ones with low frequency were due to the words 
that were exceptions to vowel harmony. 
 
Consonant Collocation (C2C3). Turkish has 21 consonants. 
Therefore, 21 x 21 bigrams from bb to zz were produced by 
calculating their bigram frequencies from the corpus. For 
example, ml is much above the average of all possible 

bigram frequencies while fv is very rare in the corpus. 
Accordingly, high-frequency consonant collocations and 
low-frequency consonant collocations were identified for 
forming the pseudoword consonant collocations of the form 
C2C3. In contrast to vowel harmony collocations, only 
adjacent bigrams were calculated for consonant collocation 
since C2C3 is an adjacent-bigram collocation. 

 
Word Boundary Collocation (C1C4). The frequency values 
of the 21x21 bigrams, from b…b to z…z, were produced 
from the 21 consonants in Turkish and their word boundary 
frequencies were calculated from the corpus. Since C1C4 is 
not an adjacent-bigram collocation, we allowed intervening 
characters between the first character of words and the last 
character when calculating the bigram frequencies. For 
example, k is a frequent word-initial boundary while z is a 
frequent word-final boundary in Turkish, making k...z a 
frequent word boundary pattern, whereas f…b is a very rare 
word boundary co-occurrence in Turkish.   

 
Since each of the three independent variables can be either 
high or low frequency, eight (2 x 2 x 2) groups, each of 
which had ten representative pseudowords, were formed. 
Eight samples from the 80-pseudoword set are shown in 
Table 1. 
 
Table 1: Pseudoword groups and representative samples  
 

 V1V2: Low V1V2: High 
 C2C3: 

Low 
C2C3: 
High 

C2C3: 
Low 

C2C3: 
High 

C1C4: Low vöfvac nındüd lagşav remliv 
C1C4: High töjkır köndız hupşar kadraz 

   V1V2: Vowel harmony frequency  
   C2C3: Consonant collocation frequency 
   C1C4: Word boundary frequency 
 
The pseudowords were located around the center of 80 
meaningful and different sentences of similar length (63 to 
65 characters). For avoiding likely effects of the 
orthographic features of the neighbor words, the pre-target 
word was fixed in the sentences: The word “aslında” 
(English ‘actually’), which is a very frequent Turkish adverb 
was consistently used as the single pre-target word. For 
preventing parafoveal information intake from the post-
target word, we used the frequent Turkish bigram bi- such 
that all the post-target words started with this same bigram 
(cf. Lima & Inhoff, 1985). A sample sentence is shown in 
(4), where GEN is the genitive marker, PLU is the plural 
marker, NEG is the negative marker, PASS is the passive 
marker, and PAST is the past tense marker in Turkish. The 
target pseudoword is underlined. 
 
(4) Siz-in      mektuplar aslında köndız bitmez  dendiği  için  
     Your-GEN letter-PLU indeed    köndız end-NEG say-PASS for  
     dağıtılmamış. 
      distribute-PAST-NEG. 
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In (4), the target word is the pseudoword köndız. It has a 
low-frequency vowel harmony collocation V1V2, in this 
case öı; a high-frequency consonant collocation C2C3 nd; 
and a high-frequency boundary collocation C1C4 kz. (sample 
sentences are provided in the Appendix). 

Results & Discussion 
We calculated a set of eye movement measures, as listed 
below. 

• First fixation duration is the duration of the first 
fixation on the first-pass reading of the target 
pseudoword.  

• First pass gaze duration is the sum of individual 
fixation durations in the first-pass reading of the 
target pseudoword. In other words, the entire word 
is an area-of-interest and this value represents the 
total time spent by a participant before his/her gaze 
left the word for the first time. 

• First pass fixation count is the sum of individual 
fixations in the first-pass reading of the target 
pseudoword. The first-pass reading covers all the 
fixations on the word without leaving it. If the eye 
shifts from a pseudoword to another word on its 
right, the first pass is over.  If the eye shifts from a 
pseudoword to another word on its left, the first 
pass is over, as well. 

• Regression in count is the number of regression 
fixations that return to the target pseudoword after 
the first-pass reading. If the gaze re-fixates on a 
previously fixated word, but this time from its 
right, this is called Regression-in.  

 
The mean values for those eye movement parameters, for 
the eight pseudoword categories are shown in Table 2.  

 
Table 2: Mean values for eye movement parameters on 
target pseudowords 
 

 V1V2: Low V1V2: High 
 C2C3: 

Low 
C2C3: 
High 

C2C3: 
Low 

C2C3: 
High 

 First Fixation Duration (ms) 
C1C4: Low 265.97 253.67 259.58 253.72 
C1C4: High 259.74 247.01 274.45 258.06 
 First Pass Gaze Duration (ms) 
C1C4: Low 467.97 435.13 454.60 390.80 
C1C4: High 426.58 360.19 431.32 331.75 
 First Pass Fixation Count 
C1C4: Low 1.86 1.86 1.84 1.66 
C1C4: High 1.76 1.57 1.71 1.40 
 Regression in Count 
C1C4: Low 1.27 1.29 1.18 1.22 
C1C4: High 1.23 1.28 1.28 1.34 

 

We also calculated the averages for eye movement measures 
for the six-letter, legitimate words of the form CVCCVC in 
the sentences (excluding the sentence-initial word, the 
sentence-end words, and post-target words). We found nine 
words as such, in the stimuli sentence set. Table 3 shows the 
mean values, which can be taken as a baseline for 
comparison with the pseudoword values. 
 
Table 3: Mean values for eye movement parameters on 
legitimate words 
 

First Fixation Duration (ms) 201.65 
First Pass Gaze Duration (ms) 237.33 
First Pass Fixation Count 1.20 
Regression in Count 1.20 

 
The data in Table 3 are not sufficiently representative due to 
the limited number of words. On the other hand, the values 
in Table 3 are close to the average values obtained for six-
letter words in another study with a richer data set 
(Acartürk, et al., in preparation). Therefore, we believe that 
these values can be conceived as close to representative 
mean values.     

Analyses 
Four three-way ANOVAs were run on the data from 34 
participants to examine the role of vowel harmony 
collocation, consonant collocation and word boundary 
collocation on the following eye movement measures in 
sentence reading: First Fixation Duration, First Pass 
Dwelling Time, First Pass Fixation Count, and Regression 
in Count. No significant three-way interaction was observed 
between the variables and these measures (F(1,33)=.266, 
p=.61, ƞ2=.001; F(1,33)=.002, p=.97, ƞ2=.000; 
F(1,33)=.208, p=.65, ƞ2=.006; and F(1,33)=.000, p=.99, 
ƞ2=.000 respectively). However, there were significant two-
way interactions and single effects, as presented below. 
 
First Fixation Duration. Consonant collocation frequency 
had a significant effect on the first fixation duration, 
F(1,33)=8.428, p<.05, ƞ2=.20. As the frequency of the 
collocated consonant bigram decreased, the average 
duration of the first fixation on the pseudoword significantly 
increased, and vice versa.  

 
First Pass Gaze Duration. A statistically significant 
interaction was found between consonant collocation 
frequency and word boundary collocation frequency, 
F(1,33)=4.608, p<.05, ƞ2=.12. In other words, the effect of 
consonant collocation is greater in the high-frequency word-
boundary collocation condition than in the low-frequency 
word-boundary collocation condition, and the effect of 
word-boundary collocation is greater in the high-frequency 
consonant collocation condition than in the low-frequency 
consonant collocation condition. 
 

1498



First Pass Fixation Count. There was a statistically 
significant interaction between consonant collocation 
frequency and word boundary collocation frequency, 
F(1,33)=4.341, p<.05, ƞ2=.12, similar to the finding 
obtained for the gaze duration. This means that if the 
frequency of consonant collocation is high, then word 
boundary collocation frequency has an effect on the first 
pass fixation count, such that if the word boundary 
collocation frequency changes from high to low, first pass 
fixation count increases. If both the consonant collocation 
frequency and the word boundary collocation frequency 
change, the effect is stronger. 
 
Regression in Count. A statistically significant interaction 
was obtained between vowel harmony collocation frequency 
and word boundary collocation frequency, F(1,34)=5.002, 
p<.05, ƞ2=.13, without an interaction with consonant 
collocation frequency. In particular, when the consonant 
collocation frequency is high, pseudowords with high word 
boundary collocation frequency gets more re-fixations from 
its right if the vowel harmony collocation frequency is also 
high. This effect disappears if the dominant variable, the 
consonant collocation, becomes infrequent. 

Discussion and Conclusion 
Our findings revealed mixed results. This indicates the need 
for further research on pseudoword reading in Turkish. In 
particular, the findings for the first fixation durations 
showed that the consonant collocation frequency is the 
dominant aspect that influences eye movements in reading, 
since low frequency consonant collocations result in longer 
fixation durations and vice versa. The frequency of 
consonant collocations also significantly interacts with the 
frequency of word boundary collocations, according to the 
findings obtained for the first pass fixation count and first 
pass gaze duration, showing that when they both have low 
frequency, a higher number of first pass fixation count and a 
longer first pass gaze duration is observed. Finally, the 
regression-in-count findings suggest that when the 
consonant collocation frequency is already high, regression-
in counts increase when the vowel harmony collocation 
frequency and the frequency of word boundary collocations 
are also high.  It is likely that this is because pseudowords 
of this type look like real words. This might have caused the 
participants to assume misreading a known word, which 
was followed by re-fixations after the first pass. 
 
In reading research, the first fixation duration on a word is 
usually conceived as the most valuable indicator of word 
recognition, since it can be seen as a reflection of the initial-
stage processes in word recognition (Rayner, 1998). The 
second fixation on a word (viz. refixation), further fixations 
on the same word and regression fixations reveal more 
complex processes than word recognition, such as syntactic 
and semantic processes at a sentential-level. Accordingly, at 
this stage, our findings indicate the frequency of the middle-
word consonant allocation as a dominant factor that 

influences pseudoword reading in Turkish. We also believe 
that the sentential pseudoword reading paradigm has the 
potential to enrich our knowledge about word processing 
with higher ecological validity compared to alternative 
approaches, such as lexical decision tasks and naming tasks. 
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Appendix 
Below we present sample stimuli for each combination of 
vowel harmony collocation V1V2, middle-word consonant 
collocation C2C3, and boundary word collocation C1C4, 
respectively. H is used for high frequency, and L is used for 
low frequency. Pseudowords are underlined for 
demonstration. 
 
V1V2 is high, C2C3 is high, C1C4 is high 
• Kaldırmaya çabalasan aslında biylen birden yere düşüp 

kırılmazdı. 
• Mirası harcamasaydım aslında sirden binası şimdi çoktan 

bitmişti. 
V1V2 is high, C2C3 is high, C1C4 is low 
• Hasan cebindeki parayı aslında niyled birimi olarak 

düşünüyordu. 
• Son yılın modası aslında lirdev birası ile karides pişirmekmiş. 

V1V2 is low, C2C3 is high, C1C4 is high 
• Sizin mektuplar aslında köndız bitmez dendiği için 

dağıtılmamış. 
• Dün Emine'nin nişanlısı aslında bındül binayı bulamadı 

gerçekten. 
V1V2 is low, C2C3 is high, C1C4 is low 
• Radyonun sesini açarsan aslında nındüd bizden sonuçları 

öğrenir. 
• Şu kediler sokakta aslında lülrıv birini bulup sürtünüyorlarmış. 

V1V2 is high, C2C3 is low, C1C4 is high 
• Yarın deniz kenarında aslında bıgvıl birini izleyerek eğlenecek. 
• Baharda sigara içmek aslında sagşan binası çevresinde 

yasaktır. 
V1V2 is high, C2C3 is low, C1C4 is low 
• Bu bölgedeki kuşların aslında lagşav birini korkuttuğu 

söylenir. 
• Fizik dersi haricinde aslında revşev bilimi konusundan 

bahsetti. 
V1V2 is low, C2C3 is low, C1C4 is high 
• İstatistik dersinde aslında söcşun birden bütün verileri bozmuş. 
• Hastaneye sabah gelenler aslında töjkır birini görmek 

istiyorlar. 
V1V2 is low, C2C3 is low, C1C4 is low  
• Doğa resimlerinde aslında löcşuv binası betimlemelerini 

kullanır. 
• Cuma gecesi televizyonda aslında şobçüc birini izleyerek 

uyudum. 
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Abstract

In both adults and school-age children, volitional control
over the presentation of stimuli during study leads to en-
hanced recognition memory. Yet little is known about
how very young learners choose to allocate their time
and attention during self-directed study. Using a recog-
nition memory task, we investigate self-directed study in
low-income preschoolers, who are at an age when atten-
tion, memory, and executive function skills rapidly de-
velop and learning strategies emerge. By pre-exposing
children to some items before self-directed study, we
aimed to discover how familiarity modulates their study
strategies. We found that children showed a preference
for studying pre-exposed items. Overall, items stud-
ied longer led to increased recognition of those items at
test. We also compared recognition task performance
and strategies with measures of cognitive control skills,
finding that children’s selective attention skills support
recognition performance. These findings may inform
both theory and educational intervention.

Keywords: active learning; recognition memory; exec-
utive function; attention; cognitive development

Introduction

Children learn through active exploration of their en-
vironments. They ask questions, test hypotheses, and
probe novel or confounding objects that could shed new
light on how the world works (Schulz & Bonawitz, 2007).
Recent research in cognitive science suggests that school-
age children learn better when allowed to control the
content and timing of information flow compared to
passively receiving information (Partridge, McGovern,
Yung, & Kidd, 2015; Sim, Tanner, Alpert, & Xu, 2015).
Little is known, however, about how self-directed in-
formation gathering develops during preschool ages, a
time of great plasticity in the neural networks that sup-
port executive function, attention, and memory (Blair
& Raver, 2015). Understanding patterns in young chil-
dren’s active information gathering and examining the
mechanisms through which self-directed control affects
learning may inform cognitive science as well as educa-
tional initiatives, particularly for low-income preschool-
ers at higher risk of poor learning outcomes (Ursache,
Blair, & Raver, 2012).

Episodic memory is one ability that has been found to
benefit from active learning. Memory is aided by top-
down, meta-cognitive control processes, such as when
learners prioritize study of items close to mastery and

avoid content that is already learned or that is too dif-
ficult to master (Markant, Ruggeri, Gureckis, & Xu,
2016). Bottom-up influences of cognitive control can also
support episodic memory. In adult recognition memory
tasks with self-paced study, alignment of stimulus ex-
posure with attentional resources improved later recog-
nition (Markant, DuBrow, Davachi, & Gureckis, 2014).
These active control behaviors enhance representations
and strengthen associative networks, both of which help
to encode and retrieve experienced stimuli (Markant et
al., 2016).

Voss and colleagues (Voss, Galvan, & Gonsalves, 2011;
Voss, Gonsalves, Federmeier, Tranel, & Cohen, 2011)
examined how adults’ study patterns influence the ben-
efits of active encoding for recognition memory. They
tasked participants with memorizing a set of objects ar-
ranged in a 5x5 grid. A moving window allowed only
one object to be visible at a time, with control over the
window given to the participant during active blocks.
During yoked blocks, participants watched the window
move according to the recorded movements of a previous
participant. Importantly, the yoked condition allowed
the authors to distinguish the effects of active control
over and above the visual stimulus information experi-
enced during study. They found both an overall active
study advantage, as well as benefits to particular study
patterns. Recognition improved when objects were stud-
ied for longer duration and revisited within a short time
frame, but the benefits of these study features were only
found in active and not yoked conditions.

Ruggeri, Markant, Gureckis, and Xu (2016) adapted
the Voss et al. paradigm to examine study patterns
during active encoding with school-age children. They
found that 6-to 8-year-olds had better recognition mem-
ory when given volitional control over the presentation
of stimuli during study, as compared to being yoked to
study sequences generated by other children. Moreover,
the recognition memory advantages of self-directed study
were present following a one-week delay. In contrast
to Voss et al.’s findings in adults, school-age children
showed generalized benefits of certain study patterns
on their memory encoding: participants had improved
recognition memory in both active and passive condi-
tions for items visited often and studied longer (Ruggeri
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et al., 2016). The authors suggest that children bene-
fited in both conditions from attentional cues (red out-
lines that indicated which object would be presented for
study next). For school-age children, attentional cue-
ing appears to support benefits of longer study even in
the yoked condition. This finding is consistent with pre-
vious research showing that even subtle opportunities
to coordinate the learner’s attentional state to incoming
information (i.e., by giving learners control over when
the next stimulus appears) can improve episodic mem-
ory (Markant et al., 2014).

These studies suggest that multiple levels of control
may enhance memory from an early age, but the de-
velopmental course of these processes remains unclear.
One possibility is that the effects of active encoding vary
based on the maturation of the neural networks that sup-
port volitional control, working memory, and attention.
These neural networks undergo tremendous growth dur-
ing the preschool years, leading to meaningful individ-
ual differences in children’s attention and self-regulatory
control (Blair & Raver, 2015). These cognitive control
skills support school readiness, and are targeted for in-
tervention to close income-based early achievement gaps
(Ursache et al., 2012). Little is known about the effects
of active encoding on recognition memory at preschool
ages. Young children’s variability in attentional control
may make study duration and attentional coordination
particularly critical factors for active encoding. Devel-
oping cognitive control skills may also affect children’s
metacognitive ability to strategically allocate study ef-
fort based on their current familiarity with the materials.

This study examines whether low-income preschoolers
use active control to engage in strategic study during a
recognition memory task. If so, what patterns of sam-
pling emerge, and how do these patterns change with
varied stimulus familiarity? Another gap in the research
literature is whether individual differences in young chil-
dren’s control skills influence the effects of active sam-
pling on encoding. This study addresses these questions
by examining active memory performance in a large sam-
ple of low-income preschoolers. We use a novel extension
of the Ruggeri et al. (2016) task design that varies stim-
uli pre-exposure, as well as a battery of well-validated
executive function and attention measures.

Experiment
Methods
Participants Ninety-four 5-year-olds from low-income
backgrounds were recruited and tested as part of a school
readiness study run in collaboration with two Head Start
preschool centers. An additional 16 participants were
tested but excluded due to incomplete data due to ex-
perimenter error or connectivity problems, or because
of difficulty understanding task instructions. Children
were tested in their preschools by trained assessors. Ad-
ministration of the tasks was divided over two testing

days scheduled within one week of each other. EF and
attention tasks were administered on day 1, and lasted
about 5 minutes each for a total of 15 minutes. The
recognition memory task was administered on day 2 and
lasted about 10 minutes.

Memory Task

Materials Stimuli were taken from Ruggeri et al.
(2016), which included 149 color line drawings of an-
imals and objects that are used frequently by chil-
dren younger than 5-years-old in everyday conversa-
tions (MacWhinney & Snow, 1985). Items were ran-
domly sampled from the stimulus set and presented in
a series of 4x3 grids. Stimuli not presented during the
practice or study phases were randomly sampled in the
test phase and used as novel foils. The task was pre-
sented on a touchscreen laptop, with timing and choice
data logged to a database via psiTurk (Gureckis et al.,
2015).

Procedure The task was presented as a simple mem-
ory card game (see Figure 1). Children were instructed
to study a grid of images on the touchscreen tablet, pre-
sented initially “face-down” as empty rectangles. Chil-
dren could “turn cards over” by touching the empty rect-
angle to reveal the image underneath. Later, they were
asked to recognize studied items presented among novel
distracter images. The design and procedure closely fol-
lowed described in Ruggeri et al. (2016), with a key de-
sign modification: this version experimentally manipu-
lates the pre-exposure of items during the study phase
in order to examine the role of exposure on children’s
active study behavior.

Practice phase. Children were presented with a 2x2
practice grid. Half the items on the grid were simultane-
ously revealed during a pre-exposure phase that lasted
6 s while the other half remained face down, and chil-
dren were instructed to “Remember these pictures!” The
practice study phase (30 s) followed, with all cards pre-
sented face down. Children were told to tap the cards
they wanted to see. Once a card was touched, the im-
age underneath was revealed until the child “tapped” off
by touching the image again, or touched another card.
Only one item was revealed at a time. Next the untimed
test phase presented a 3x2 grid showing all 4 items in the
study phase as well as 2 additional novel distracter items,
in random grid locations. Children were instructed to
touch all the “old” pictures they saw before, and not
touch the “new” pictures. A red box appeared around
each item when selected, and was toggled off if tapped
again. Children were not restricted in how many or few
items could be selected during the test phase. Once chil-
dren indicated that their selections were complete, the
assessor praised correct answers and gave feedback on
incorrect answers. The practice phase could be played 1
to 3 times with different stimuli. If the child was unable
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to understand directions, the task was ended.

Study phase. The study phase consisted of 3 blocks,
each presenting a 4x3 grid of randomly sampled images.
The procedure is similar to that described in the prac-
tice phase. Simultaneous pre-exposure of half the items
lasted 2 s per item (12 s in the two half pre-exposed
blocks, and 24 s in the all pre-exposed block) before cards
were turned over and the child could then actively select
and turn over cards to study for 36 s. This shorter dura-
tion of the active study phase (as compared to Ruggeri
et al., 2016) was chosen to enhance the potential effect
of pre-exposure on search behavior. The 3 study grids
were presented consecutively before the test phase.

Test phase. The test phase consisted of 6 blocks. Each
4x3 test grid was a random sample drawn without re-
placement from a pool of 72 stimuli, including the 36
included in the study phase along with 36 novel images.
The number of old items in each grid ranged from 0
to 12 (randomly chosen) in order to minimize strate-
gic responding based on the proportion of items selected
within each block. All 36 studied stimuli and all 36 novel
stimuli were presented only once at test. Children were
instructed to “Touch the pictures you remember!” and
not to select new pictures. Once the child indicated that
they were done with selection, the assessor prompted.
“Are you sure you touched only the pictures you saw
before and not any new pictures?” If the child said yes,
the assessor advanced to the next test grid. If the child
answered no, the assessor reminded them to choose only
“old” pictures seen before.

Both hit rate (proportion of studied items correctly
selected as “old”) and correct rejection rate (proportion
of novel items correctly not selected) were calculated. In
addition, total study time per item and study repetitions
per item was computed for pre-exposed vs. non-pre-
exposed items and conditions.

Executive Function and Attention Tasks Atten-
tion Network Test. The Attention Network Test (ANT;
Rueda et al., 2004) is a well-known behavioral measure
thought to map onto the neural networks supporting at-
tentional control. The child version of the ANT presents
either a single fish or a horizontal row of five fish. Chil-
dren are instructed to feed the center fish by pressing
a blue box in the lower corners of either side of the
screen indicating in which direction the central fish is
swimming. Children are asked to ignore the flanker fish
pointing either in the same (congruent) or opposite di-
rection (incongruent) as the target middle fish. Mean
accuracy and reaction time are computed.

Visual Search Task. The Visual Search task (Steele,
Karmiloff-Smith, Cornish, & Scerif, 2012) measures the
ability to select relevant stimuli (targets) while ignoring
distracters (non-targets). Children are presented with a
search display on the touch screen monitor. Each display
contains 90 items, made up of 20 targets (animals) and

Pre-exposure (2s/item)

…

Study (36s)

Test … (x6)

Figure 1: Each study phase of the experiment was pre-
ceded by pre-exposure of half (6) or all (12) of the items,
for 2 s per item (i.e., 12 s in the two half-pre-exposed
conditions and 24 s in the all-pre-exposed condition). All
three cycles of pre-exposure and study were completed
before the six screens of testing were performed.

70 non-targets (objects). Children are instructed to find
animals, which are replaced with a star when success-
fully touched. The task ends when a total of 18 correct
responses is reached, or 40 responses are made overall.
Mean search speed (time between touches), and number
of errors are recorded.

Continuous Performance Test. The Continuous Per-
formance Test (CPT; (Steele et al., 2012) measures the
ability to sustain attention for a prolonged period with-
out distraction. In this version, the child is instructed
to touch the screen as soon as an animal appears. One
hundred pictures are randomly presented one at a time,
including 20 presentations of the target stimuli (ani-
mals) and 80 presentations of nontarget stimuli (ob-
jects). Each stimulus appears on the screen for 300 ms
followed by a blank screen for 1250 ms. In addition
to response time, number of missed responses to tar-
gets (omission error) and incorrect touches to distracters
(commission error) are recorded.

Digit Span. Digit Span is a widely used executive
function task that assesses children’s working memory.
Children are instructed to repeat number sequences of
sequentially longer length in forward and backward con-
ditions. Total number of correct responses per condition
is recorded. Children in this sample were largely unable
to repeat sequences backwards, so only performance on
the forward condition are used here.

Results

Data from 94 participants were analyzed with respect to
recognition (selection) of studied items (i.e., hit rate),
correct rejection of unstudied items, and the number of
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repetitions and total study time for studied items. Par-
ticipants’ mean hit rate (HR) was 0.65, and the mean
correct rejection (CR) rate was 0.56.

Study Behavior Studied items were selected for
study on average 1.78 times (median: 1; maximum: 10).
The mean study time for old items was 3037 ms (me-
dian: 2067 ms). Table 1 shows the distribution of how
many times children repeated study items and cumula-
tive study time per item (median, mean, and SD). Chil-
dren most often studied items a single time (38.6%), but
it was not uncommon to study an item twice (22.6%) or
even three times (10.6%). A surprising number of items
(23.4%) were not actively selected for study at all, and
these were well-distributed among the participants, who
left a median of 6 of the 36 items unstudied (mean 8.3,
bootstrapped 95% confidence intervals: (6.8, 10.1)).

Reps Median Time Mean Time SD N
0 0 ms 0 ms 0 ms 783
1 1,452 2,443 3,137 1,307
2 2,305 3,371 3,331 766
3 2,860 3,528 2,413 360
4 3,645 4,491 2,891 121
5 5,069 6,622 5,028 37

> 5 5,467 6,984 5,552 8

Table 1: Statistics of study repetitions and time (ms).

Pre-exposure Effects To investigate the impact of
pre-exposure on study time and repetitions, we fit mixed-
effects regression models to separately predict trial-
level study time and study repetitions (both scaled and
centered to [-1,1]) for only the blocks with half pre-
exposed items. Subject was included as a random fac-
tor, and item pre-exposure as a binary predictor (R
syntax: Study Time ∼ Preexp + (1|Subject) and
Repetitions ∼ Preexp + (1|Subject). Shown in Ta-
ble 2, the regression predicting study time found a signif-
icant positive intercept (β = 0.19, Z = 5.02, p < .001).
Moreover, there was a significant positive effect of pre-
exposure (β = 0.11, Z = 2.23, p < .05), indicating
that pre-exposure led to increased study time.1 On aver-
age, pre-exposed items in these conditions were studied
for 3477 ms, whereas the hidden items were studied for
3001 ms. Shown in Table 3, the regression predicting
study repetitions found a significant positive intercept
(β = 0.32, Z = 5.58, p < .001). There was a positively-
trending effect of pre-exposure (β = 0.07, Z = 1.88,
p = .06), suggesting that pre-exposed items may be se-
lected more often for study. On average, pre-exposed
items in these conditions were selected 1.80 times, while
the hidden items were selected 1.65 times.

1The coefficients (β) are interpretable as log-odds, but can
also be transformed to an odds ratio (OR = eβ).

β SE Z-score p-value
Intercept 0.185 0.037 5.016 p < .001***
Pre-exposed 0.112 0.050 2.233 p < 0.05*

Table 2: Regression predicting study time.

β SE Z-score p-value
Intercept 0.315 0.057 5.578 p < .001***
Pre-exposed 0.070 0.037 1.884 p = 0.06 .

Table 3: Regression predicting study repetitions.

Recognition Accuracy To investigate the impact of
pre-exposure, repetitions, and study time on recognition
performance, we fit two logistic mixed-effects regression
models to the item-level accuracy data for old stimuli,
separating study time and repetitions since they are cor-
related. Subject was included as a random factor, and
study repetitions and study time (scaled and centered to
[-1,1]) were included in their respective models as fixed,
continuous predictors, allowed to interact with item pre-
exposure, a binary predictor (R syntax for study time
model: Correct ∼ Preexp * Time + (1|Subject);
and substitute Reps for Time in the other model).

In the study repetitions model, there was a signifi-
cant positive intercept, showing that participants were
more likely to correctly recognize rather than miss the
old items (β = 0.95, Z = 5.16, p < .001). There was a
significant positive effect of study repetitions (β = 0.52,
Z = 4.19, p < .001), showing that studying items more
often led to higher recognition of those items. There
was also a significant positive effect of pre-exposure
(β = 0.27, Z = 2.37, p = .02), showing that pre-exposure
increased the likelihood of correctly recognizing an old
item. Finally, there was a significant negative interaction
of pre-exposure and repetitions (β = −0.31, Z = 2.23,
p = .03): with pre-exposure, there was less accuracy ben-
efit of more study repetitions. Figure 2 shows the mean
hit rate as a function of pre-exposure and study repeti-
tions, along with the relative frequency of each level of
repetitions.

In the study time model, in addition to a significant
positive intercept, (β = 1.05, Z = 5.83, p < .001),
there was a significant positive effect of study time
(β = 0.36, Z = 3.19, p = .001), showing that study-
ing items longer led to increased recognition of those
items. There was also a positively-trending effect of pre-
exposure (β = 0.21, Z = 1.92, p = .06), suggesting that
pre-exposure may increase their chance of recognizing
old items. Finally, there was a significant negative in-
teraction of pre-exposure and repetitions (β = −0.29,
Z = 2.32, p = .02), showing that pre-exposure lessens
the accuracy benefit of longer study time.

The AIC of the study repetition model was 2712.8, and
the AIC of the study time model was 2722.6, making the
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Figure 2: Items that were studied more often had higher
hit rates, but most items were not studied more than
one or two times. (Not pictured: participants were at
chance for unstudied ‘old’ items.)

relative likelihood of the study time model 0.007. Thus,
although both models have similar interpretations, the
repetitions model provides a better account of the data.

Self-directed Memory and Executive Function
We next examined the link between behavior in the self-
directed memory task and the various attention and ex-
ecutive function (EF) measures using three mixed-effects
regression models to predict item-level (N = 2,770) 1)
recognition accuracy, 2) study time, and 3) study rep-
etitions for old items. All three models included sub-
ject as a random factor, and the following EF mea-
sures (scaled and centered to [-1,1]) as fixed predic-
tors: working memory, visual search errors, visual search
reaction time, commission errors, and omission errors,
and ANT accuracy and RT (R syntax: Correct ∼
+ EFvar1 + EFvar2 + .. + (1|Subject)).
For the logistic model predicting recognition accu-

racy, besides a significant positive intercept (β = 0.77,
Z = 4.35, p < .001), there was a negatively-trending co-
efficient for visual search errors (β = −0.41, Z = −1.92,
p = .05). All other predictors were insignificant (p’s
> .1). In summary, this suggests that fewer visual search
errors, an index for selective attention skills, is associated
with increased recognition.

The model predicting study time (log-transformed,
scaled and centered to [-1,1]) found a positive coefficient
for visual search time (β = 0.05, Z = 2.11, p = .03),
with all other predictors insignificant (p’s > .1). This in-
dicates that participants with longer visual search times
also spent longer studying items during the study phase.

The model predicting study repetitions (with a Poisson
linking function) found no significant predictors in the
EF measures.

Discussion
The present study examined low-income preschool chil-
dren’s study behavior in a self-directed recognition mem-
ory task, and compared 5-year-olds’ active study behav-
iors to patterns found in older samples in previous liter-
ature. We next examined if stimuli pre-exposure affects
active encoding. Finally, we explored how individual dif-
ferences in executive function and attention skills may
influence study strategies and recognition.

First, we found that children were above-chance
at recognizing old items and correctly rejecting new
items, indicating that they can meaningfully engage
in a developmentally-complex paradigm requiring self-
directed study. We found increased recognition accuracy
for items with greater repetitions, and for items with
greater study time, replicating classic repetition effects
from both traditional (experimenter-directed) recogni-
tion memory experiments, as well as self-directed ver-
sions (e.g., Voss et al., 2011a; Voss et al., 2011b).

Second, we found that pre-exposure significantly in-
creased study time, suggesting a preference to allocate
study effort to familiar material at the outset of study.
Pre-exposed items were also more likely to be recognized,
but this effect appeared to overlap with other helpful
study behaviors. For pre-exposed items, both repetitions
and study time showed less benefit to recognition com-
pared to items without pre-exposure. Thus, although
children use their familiarity with items to guide their
study, they appeared to benefit more generally from
stimulus exposure, be it through passive pre-exposure
or active selection (i.e., increased study time or repeti-
tions). Ruggeri et al. (2016), finding similar results for
6- to 8-year-olds who had better recognition memory in
both active and yoked conditions for items visited of-
ten and studied longer, suggested that children in yoked
conditions were able to benefit from attentional cueing,
allowing them to coordinate their attention with the pre-
sentation of new information. Notably, we found that
preschoolers benefited from passive pre-exposure, which
provides no attentional cueing. These findings suggest
that duration of stimuli exposure alone may be particu-
larly important for memory encoding at preschool ages.

Third, we found that greater recognition accuracy was
predicted by both fewer visual search errors and longer
visual search response times in a developmental selec-
tive attention task. These data suggest that selective
attention skills support children’s active study during
preschool, a period of neurocognitive plasticity in sys-
tems that support attention, executive function, and
memory (Blair & Raver, 2015). While it may be sur-
prising that longer visual search time supports recogni-
tion memory, it is important to note that these behav-
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ioral measures often exhibit a speed-accuracy trade off
(Davidson, Amso, Anderson, & Diamond, 2006). Young
children who search more carefully may be slower to re-
spond but more successful in encoding stimulus infor-
mation. The relation between stimuli pre-exposure and
increased study time suggests that one possible study
strategy for children is to focus attention on familiar
items. As attentional focus is a more effortful and limited
resource at this young age, children may benefit from al-
locating study time to known items. Prioritizing study
of items close to mastery is a learning strategy described
in Metcalfe’s zone of proximal development framework
(Metcalfe, 2011). In this framework, optimal learning
strategies should focus on the easiest possible as-yet-
unlearned items, as focus on items too difficult may be
maladaptive and potentially disheartening. In this task,
the difficulty of unexposed items to encode is unknown
until they are “turned over” and revealed, whereas young
children have time during pre-exposure to evaluate pre-
exposed item difficulty and engage attentional resources.
Continued experimental investigation is needed to better
understand the role of attention skills and search strate-
gies on young children’s active encoding.

This study is a first step in examining the effects of ex-
ecutive function and attention on low-income preschool
children’s active learning. We found that selective at-
tention supports recognition memory, but measures of
inhibitory control and working memory were not signifi-
cant unique predictors. One possibility is that demands
of the recognition memory task were particularly depen-
dent on visual search and attentional focus skills. Fu-
ture experimental studies should aim to tease apart how
various cognitive control skills might contribute to dif-
ferent types of active learning tasks. A limitation to this
study is that the narrow range of socio-economic status
(SES) for our sample may limit generalizability of the
findings. Notably, long-term exposure to chronic stress
associated with poverty has been found to have negative
consequences on children’s selective attention and mem-
ory (McEwen, 2000). Thus, examining mechanisms that
support active encoding may be particularly important
for understanding the effects of poverty on early learning.
We are planning additional data collection with a higher
income cohort to examine relations between SES, cog-
nitive control skills, and active encoding. Future work
may also seek not only to measure children’s self-directed
study strategies, but to improve them via intervention.
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Abstract 

Recent Machine Learning systems in vision and language 
processing have drawn attention to single-word vector spaces, 
where concepts are represented by a set of basic features or 
attributes based on textual and perceptual input. However, 
such representations are still shallow and fall short from 
symbol grounding. In contrast, Grounded Cognition theories 
such as CAR (Concept Attribute Representation; Binder et 
al., 2009) provide an intrinsic analysis of word meaning in 
terms of sensory, motor, spatial, temporal, affective and 
social features, as well as a mapping to corresponding brain 
networks. Building on this theory, this research aims to 
understand an intriguing effect of grounding, i.e. how word 
meaning changes depending on context. CAR representations 
of words are mapped to fMRI images of subjects reading 
different sentences, and the contributions of each word 
determined through Multiple Linear Regression and the 
FGREP nonlinear neural network. As a result, the FGREP 
model in particular identifies significant changes on the 
CARs for the same word used in different sentences, thus 
supporting the hypothesis that context adapts the meaning of 
words in the brain. In future work, such context-modified 
word vectors could be used as representations for a natural 
language processing system, making it more effective and 
robust. 

Keywords: Neural Networks; FGREP; Concept Attribute 
Representation theory; fMRI; Context; Meaning; Semantics; 
Embodied Cognition 

Introduction 
Recently, Deep Learning systems of vision and natural 
language processing (NLP) have drawn special attention 
into single-word vector spaces. They are able to extract low 
level features in order to recognize concepts (e.g. cat), but 
they are incapable of forming an abstract notion of the 
concept (symbol). In general, these models build semantic 
representations from text corpora where words that appear 
in the same context are likely to have similar meanings 
(Harris, 1970; Landauer & Dumais, 1997, Burgess, 1998; 
Baroni et. al., 2010). However, such representations lack 
intrinsic meaning, which means sometimes even different 
concepts may appear similar. This problem has driven 

researchers to develop new componential approaches, where 
concepts are represented by a set of basic features, or 
attributes, based on textual and perceptual input. (Bruni, et 
al., 2012; Silberer & Lapata, 2014, Vinyals et. al., 2015). 
However, even with their multimodal embedding space, 
such vector representations fall short from symbol 
grounding.  

In contrast, embodiment theories of knowledge 
representation (Regier, 1996; Landau et al., 1998, Barsalou, 
2008) provide a direct analysis in terms of sensory, motor, 
spatial, temporal, affective, and social phenomena. Further, 
these theories can be mapped to brain networks. Recent 
fMRI studies helped identify a distributed large-scale 
network of sensory association, multimodal and cognitive 
regulator systems linked with the storage and retrieval of 
conceptual information (Binder et al., 2009). This network 
was then used as a basis for Concept Attribute 
Representation (CAR) theory, an embodiment theory that 
enumerates semantic features of concepts and grounds them 
in brain networks (Binder et al., 2009, 2011 and 2016). 

An intriguing challenge to such theories is that concepts 
are dynamic, i.e. word meaning depends on context and 
recent experience (Pecher, Zeelenberg, & Barsalou, 2004). 
For example, a pianist would invoke different aspects of the 
word piano depending on whether he will be playing in a 
concert or moving the piano. When thinking about a coming 
performance, the emphasis will be on the piano’s function, 
including sound and fine hand movements. When moving 
the piano, the emphasis will be on shape, size, weight and 
other larger limb movements. 

This paper focuses on addressing these challenges based 
on the CAR theory. The main idea is that different attributes 
in CARs can be weighted differently depending on context, 
i.e. according to how important each attribute is in that 
context. More specifically, neutral CARs of words are first 
used to form an expected fMRI pattern of a subject reading 
a sentence. That pattern is compared to an actual fMRI 
image. Two techniques, multiple linear regression and a 
FGREP neural network, are then used to determine how the 
CARs would have to change to account for the actual fMRI 
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pattern. These changes represent the weighting in context; it 
is thus possible to track the dynamic meanings of words by 
tracking how the weighting changes across contexts. 

Experiments with available fMRI data show that the 
approach is feasible, demonstrating meaningful differences 
for e.g. human communication vs. noise from a machine; 
dangerous storm vs. dangerous person; live mouse vs. dead 
mouse. These changes are principled and could be captured 
e.g. by a neural network. It might then be possible to create 
them dynamically, and form as a basis for a more robust and 
grounded natural language processing system.  

The CAR theory is first reviewed below, and the sentence 
fMRI and word representation data described. The methods 
for determining semantic changes, i.e. multiple linear 
regression and FGREP, are then presented, followed by an 
analysis of the results. 

 

 
Figure 1: Perceptual Grounding. CARs are composed of a list of 
known modalities that relate to specialized sensory, motor and 
affective brain processes, systems processing spatial, temporal, and 
casual information, and areas involved in social cognition. They 
capture aspects of experience central to the acquisition of abstract 
and concrete event as well as object concepts. 

Concept Attribute Representation Theory 
CARs represent the basic components of meaning defined in 
terms of known neural processes and brain systems (Binder, 
2016). They relate semantic content to systematic 
modulation in neuroimaging activity. And are therefore not 
limited to the classical sensory-motor dimensions of most 
embodied theories. 

CARs are composed of a list of well-known modalities 
that correspond to specialized sensory, motor and affective 
brain processes, systems processing spatial, temporal, and 
casual information, and areas involved in social cognition. 
They capture aspects of experience central to the acquisition 
of event and object concepts (both abstract and concrete).  

These attributes were selected after an extensive body of 
physiological evidence based on two assumptions: (1) all 
aspects of mental experience can contribute to concept 
acquisition and consequently concept composition; (2) 
experiential phenomena are grounded on neural processors 
representing a particular aspect of experience (Figure 1). 

These aspects of mental experience model each word as a 
collection of a 66-dimensional feature vector that captures 
the strength of association between each neural attribute and 

the word meaning. An example is shown in Figure 2. For a 
more detailed account of the attribute selection and 
definition see Binder et al. (2009, 2011 and 2016).  

Data Collection and Preprocessing 

Two existing data sets were used in this study: fMRI images 
of sentences and CARs obtained via Mechanical Turk. 

Neural Images 
The stimuli shown to subjects consisted of a list of 240 
every day written sentences prepared in the Knowledge 
Representation in Neural Systems (KRNS) project 
(Glasgow et al., 2016). The sentences are composed by 
three to nine words from a set of 242 words (141 nouns, 39 
adjectives and 62 verbs). Eleven subjects took part in this 
experiment producing 12 repetitions each. Participants 
viewed the sentences word by word while in the scanner. 
The data was acquired by the Center for Imagining Research 
of the Medical College of Wisconsin (Anderson et al., 
2016). The fMRI data was preprocessed and transformed 
into a single sentence fMRI representation per participant 
(by averaging all the repetitions), with a final selection of 
396 voxels per sentence on a scale from 0.2-0.8, for further 
use in the computational models. 

 

 
Figure 2: Bar plot for CAR 66 semantic features. The attribute 
ratings represent the basic features of chair. Given that this 
concept is an object, gets low weightings on human-related 
attributes: face, speech, social, and emotion and strong on visual, 
shape, touch, manipulation, and some others. 

Semantic Vectors 
The semantic attribute ratings were collected thru Amazon 
Mechanical Turk for each of the 242 words (e.g. family, 
hospital, chair, small, green, laughed, listened, walked). In 
a scale of 0..6, the participants were asked to assign the 
degree to which a given concept is associated to a specific 
type of neural component of experience (e.g. “To what 
degree do you think of a chair as having a fixed location, as 
on a map?”). Approximately 30 ratings (all attributes for 
each word) were collected. After averaging all the ratings 
and removing outliers, the final attributes were transformed 
to unit length yielding a collection of 66-dimensional 
feature vector that captures the weights of association 
between each neural attribute and the 242 words. Note that 
in this manner, the richness and complexity of 
representations is based on intrinsic meaning of each word, 
and not on word co-occurrence (Figure 2). 
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Data Preparation 
The data set did not include fMRI images for words in 
isolation, a technique developed by Anderson et al. (2016) 
was adopted to approximate them. The voxel values for 
words were obtained by averaging all fMRI images for the 
sentence where each word occurred. Thus, the vectors 
include a combination of examples of that word along with 
other words that appear in the same sentence (context). 
Because of the limited number of combinations, some of 
these became identical, and were excluded from the dataset.  

Given the final set of 237 sentences and 236 words (138 
nouns, 38 adjectives and 60 verbs), the next step was to 
identify pairs of sentences with differences on word 
meanings such as live mouse vs. dead mouse, good soldier 
vs. soldier fighting, built hospital vs. damaged hospital, and 
playing soccer vs. watching soccer. This collection will 
allow the computational models to evaluate distinctive 
attribute representations and consequently adjust the base-
line meaning of a word to convey the effects of context and 
conceptual combination. 

A collection of 77 such sentences, with different shades 
of meaning for verbs, nouns and adjectives, as well as 
different contexts for nouns and adjectives was assembled. 
This collection will be used as Words of Interest (WoI) for 
the analysis of context in the experiments (Table 1).  

 
Table 1: Contrasting Sentences. Eight sentences from the 
collection of the 77 contrasting sentences. Here, for instance, the 
verb kicked is used in two different contexts, playing with a ball 
(as in Soccer) vs. breaking the door (as an aggressive behavior). 

 
 

Computational Models 
A new technique is proposed in this section for analyzing 
data imaging. It is grounded on the CAR theory and 
implemented using Multiple Linear Regression (LReg) and 
the FGREP neural network (Forming Global 
Representations with Extended BP; Miikkulainen & Dyer, 
1991). The main idea is to predict sentence fMRI by 
mapping CARWord to SynthWord (fMRI) (top of Figure 3). 
The SynthWord is then combined by averaging to form 
SyntSent for the predicted sentence. Next, the SynthSent is 
compared to the actual fMRISent (middle of Figure 3). The 
differences are included by modifying the SynthWord that 
map to fMRISent and by modifying the CARWord that map 
to the modified SynthWord (bottom of Figure 3). The 
resulting CARWord indicate how word meaning change 
across sentences. 

 
Figure 3: General System framework and data flow. Mapping 
CARWord to SynthWord (top). Then SynthWord is combined by 
averaging to form SyntSent and to be compared to the actual 
fMRISent (middle). Invert the process to modify the CARWords 
via SynthWord revised (bottom). The Revised CARWord includes 
different word meaning across sentences. 

Multiple Linear Regression  
At the word level, Multiple regression (LReg) is used to 
learn the mapping between CARWord and SynthWord 
voxels. The training set has attribute vectors of words as 
independent variables and the corresponding SynthWord 
vectors as the dependent variable, predicting one voxel at 
the time. Similarly, at the sentence level, the training 
contains assembled sentences (SynthSent) as independent 
and the corresponding Observed fMRISent as the dependent 
variable. Once the prediction error is calculated, LReg is 
inverted (which is possible because it is linear), to determine 
what the CARWord values should have been to make the 
error zero. 

Neural Network with FGREP  
It is possible that the linear prediction based on LReg is not 
powerful enough to account for the context effects. 
Therefore, a nonlinear approach based on neural networks is 
tested as well. A neural network is trained to map 
CARWord to SynthWord, which are then averaged (as 
before) into a prediction of the sentence SynthSent (Figure 
4). The prediction error is used (through backpropagation) 
to train the network. 

After training, this network is used to determine how the 
CARWords should change to eliminate the error. That is, 
for each sentence, the CARWords are propagated and the 
error is formed as before, but during backpropagation, the 
network is no longer changed. Instead, the error is used to 
change the CARWords themselves (which is the FGREP 
method---Forming Global Representations through 
Extended backPropagation; Miikkulainen et al., 1991). This 
modification can be carried out until the error goes to zero, 
or no additional change is possible (because the CAR values 
are already at their max or min limits).  
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Figure 4: The FGREP model to account for context effects. Propagate CARWord to SynthWord. Compose SynthSent by averaging the 
words into a prediction of the sentence. Compare SynthSent against Observed fMRISent. Backpropagate the error with FGREP for each 
sentence, freezing network weights and changing only CARWord. Repeat until error reaches zero. 
 

Training the neural network requires as input the 236 
CARWord 66-dimensional vectors (W1, W2, W3) and as 
target, the equivalent corresponding 396-dimensional 
SynthWord vector (W’1, W’2, W’3). The network then 
learns a general mapping of words across all sentences. This 
mapping is then utilized in the FGREP phase to change the 
CARWord for each different sentence separately (Figure 4). 
As the last step, the changes in the semantic attributes are 
analyzed according to the CAR theory for each affected 
sentence. At this point, due to scarcity of data this is a 
manual process verifying that the changes made sense. 

Results 
The two approaches LReg and FGREP were evaluated in a 
preliminary experiment of distinguishing between the 
different meanings of the verb listened. LReg was found to 
be inadequate in this task and therefore in two subsequent 
experiments, focusing on the the adjective dangerous and in 
the noun mouse only the FGREP approach was used. The 
analysis was performed on the individual subjects for which 
the fMRI data in general was most consistent. 

Different contexts for the verb “listened “ 
Both models were used in this experiment to compare the 
contrasting meanings of HUMAN COMMUNICATION vs. 
NOISE FROM A MACHINE for the word listened as 
expressed in 89: The mayor listened to the voter, 92: The 
lonely patient listened to the loud television. The left side of 
Figure 5 shows the results for LReg between the original 
and transformed CARs. Although the CARs adjusted in all 
sentences, the changes were small and unprincipled, unable 
to characterize the difference between human 
communication versus noise from a machine. In contrast, 
the outcome for FGREP resulted in context-dependent 

changes as shown, for sentences 89 and 92 in the right side 
of Figure 5.  

CARs in Sentence 89 presented salient activations in 
human-related attributes like Face, and Body, Audition, and 
Speech, as well as Human, Communication, and Cognition, 
presumably denoting human verbal interaction. For 
Sentence 92, high activations on Vision, Bright, Color, 
Pattern, Large, Shape, Complexity, Touch, Temperature, 
Weight, Scene, Near, Harm, Unpleasant, Happy, and Angry 
describe a loud and large object such as a television. These 
results suggest that the linear mapping that LReg performs 
is not powerful enough to capture context, but the nonlinear 
mapping of FGREP is. The following experiments therefore 
both used the FGREP method for this task.  

Different contexts for the adjective “dangerous” 
This experiment compared the contrasting meanings of 
NATURE vs. BAD PEOPLE for the word "dangerous", as 
expressed in 98: The flood was dangerous, 118: The 
dangerous criminal stole the television. Figure 6 shows the 
differences resulting from the FGREP method. As with the 
verb listened, context-dependent changes did emerge. 

CARs in Sentence 98 present changes on activation for 
Large, Motion, SOMS attributes Texture and Weight, and 
event attributes Time, Short, and Caused, reflecting moving 
water. The attributes Toward, Harm, Unpleasant, and the 
emotion of Angry, represent the experiential and personal 
nature of danger. Conversely, Sentence 118 shows high 
activation for Vision, Complexity, Face, and Speech, 
because they represent human types and roles such as a 
criminal. Motor attribute Lower Limb as well as evaluation 
attributes Benefit, Angry, Disgusted, and Fearful can be 
associated with a dangerous act by a criminal. The FGREP 
method, therefore, was largely able to differentiate between  
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Figure 5: Results for the word listened in two contrasting sentences. LReg (left) did not capture context. All changes were insignificant to 
characterizing the context-dependent representations. The green line shows the original CARs for comparison. FGREP (right) did grasp 
context. The CARs for Sentence 89 have increased activations in human-related attributes like Face and Body, Auditory attributes, as well 
as Human, Communication and Cognition. In contrast, Sentence 92 activations on Vision, Color, Large, Shape, Complexity, Touch 
Temperature, High sound, and Unpleasant, depict a loud object such as a television.  

 
the contrasting relevant dimensions of dangerous act of 
nature and humans. 

Different contexts for the noun “mouse” 
This experiment compared the contrasting meanings of 
DEAD vs. ALIVE for the word mouse as expressed in 
sentences 56: The mouse ran into the forest, 60: The man 
saw the dead mouse. Figure 7 shows the differences 
resulting from the FGREP method, which are again 
systematic and meaningful. 

 
Figure 6: FGREP results for the adjective dangerous across two 
contrasting sentences. CARs in Sentence 98 changed activation for 
Large, Motion, Texture and Weight, Time, Short, and Caused, 
reflecting moving water. The attributes Toward, Harm, 
Unpleasant, and Angry, represent the experiential nature of danger. 
Sentence 118 shows high activation for Vision, Complexity, Face, 
and Speech, because they represent human types and roles. Lower 
Limb, Benefit, Angry, Disgusted and Fearful can be associated  

CARs in Sentence 56 have increased activation for 
Vision, Motion, Complexity, High, and Sound, possibly 
suggesting animate properties of the live mouse. Upper 
Limb, spatial attributes Path and Away, and event attributes 
Time, Duration, Short, and Consequence, symbolize activity 
such as running. Emotions of Fearful and Surprised may 
well be associated with seeing a live mouse. In contrast, 
Sentence 60 shows increased activation for Temperature, 
Weight, and Smell, as well as emotions Sad, Angry, 
Disgusted and Fearful, which may be associated to the dead 
mouse. These changes indicate different aspects of mouse in 
two contrasting contexts. 

Discussion and Further Work 
The experiments in this paper suggest that different aspects 
of word meaning are activated in different contexts, and it is 
possible to see those changes in the corresponding fMRI 
images. These changes are likely to be nonlinear: The linear 
mapping approach (regression) tends to muddle them, but a 
nonlinear mapping (FGREP neural network) can tease them 
apart.  

This result is remarkable considering that the dataset was 
not originally designed to answer the question of dynamic 
meaning. In particular, having fMRI images for isolated 
words available, instead of having to synthesize them, 
should amplify the observed effects significantly. It should 
also be possible to include sentences with contrasting 
contexts systematically, thus increasing the number of 
possible observations, and making it possible to identify 
differences in a more comprehensive manner. 

With such a larger dataset, it should be possible to 
characterize changes across multiple sentences. Different 
kinds of changes may occur in nouns, adjectives, and verbs, 
and there are likely to be interactions between them. 
Moreover, the semantic changes can vary from individual to 
individual. As the first step, only single subjects were 
analyzed in this paper.  In the future, the analysis can be 
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extended to more subjects, identifying which changes are 
consistent across subjects, and which ones are more 
individualistic.  For instance, the subject in experiment 3 
was Sad that the mouse was dead; another subject could 
show a different emotion.  

After formulating such principles, the next step would be 
to utilize them in building artificial natural language 
processing systems. It may be possible to train e.g. a neural 
network to predict how meaning changes in context. Such a 
network could be then used as a part of an engineered 
natural language processing system, dynamically modifying 
the vector representations for the words to fit the context. 
Such a system should be more effective and more robust in 
its inference, and match human behavior better. 

 
Figure 7: FGREP results for the noun mouse across two 

contrasting sentences. CARs in Sentence 56 increased activation 
for Vision, Motion, Complexity, High, and Sound, presumably to 
indicate the animate properties of the live mouse. Upper Limb, 
Path, Away, Time, Duration, Short, and Consequence, suggest 
activity such as running. In contrast, Sentence 60 shows increased 
activation for Temperature, Weight, and Smell, as well as Sad, 
Angry, Disgusted and Fearful, which can be associated to the dead 
mouse. These changes indicate different aspects of mouse in two 
contrasting contexts. 

Conclusion 
Concepts are dynamic; their meaning depends on context 
and recent experience. In this paper, word meaning was 
represented as a collection of attributes (CARs), grounded 
in observed brain networks. Multiple Linear Regression 
analysis and a nonlinear FGREP Neural Network were used 
to understand how the CARs could change to construct the 
actual sentence representations seen in fMRI images. 
Preliminary results suggest that there are indeed systematic 
changes in CARs, and they make sense in each sentence 
context. These changes could only be seen in the FGREP 
analysis, suggesting that they are likely to be nonlinear. In 
the future, such changes could be characterized more fully 
and used to make artificial natural language systems 
sensitive to context. 
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Abstract 

Social media platforms provide a source for transmitting 
information that can become widely accepted. However, in 
this process of transmission, information becomes susceptible 
to distortion. In this study, we assessed people’s semantic 
(i.e., prior expectations) and recognition memory for pop 
culture content, as a function of confidence and perceived 
information source. In Experiment 1, we investigated 
semantic memory for ubiquitous movie quotes (e.g., the 
famous Star Wars quote “Luke I am your father”). Notably 
this quote is incorrect, but we found that a majority of 
participants accepted these lure quotes as true with high 
confidence and indicated they had experienced the original 
source. In Experiment 2, participants viewed the original 
movie sources before a recognition test of the quotes. We 
found that while there was some improvement, people still 
preferred the lure quote with high confidence. We discuss the 
findings in terms of the strength of people’s prior expectations 
when reconstructing events from memory. 

Keywords: Semantic memory, recognition memory, source 
attribution, pop culture, confidence ratings.  

Introduction 
Social media platforms such as Reddit, Facebook, and 

Twitter are popular outlets to discuss a broad range of topics 
including people’s memories of favorite movies, movie 
quotes, and scenes. Recently a viral online forum topic 
focused on people who recalled watching a movie dating 
back to the ‘90s called ‘Shazaam,’ which starred the actor 
Sinbad playing the role of a genie (“People Claim to Have 
Seen”, 2016). Interestingly, there is no record of a movie 
called ‘Shazaam,’ and Sinbad himself denies the movie ever 
existed. This raises the question: how could so many people 
feel so strongly about a shared false memory of watching a 
movie that never was? While misremembering a movie might 
be harmless, imagine being misinformed about a real-world 
event—such as falling prey to fake news about politics or 
terrorist attacks. In this paper, we assess people’s semantic 
(i.e., prior expectations) and recognition memory for pop 
culture content, as a function of their confidence and 
perceived information source.  

There are a number of cognitive mechanisms that might 
underpin this behavior. One explanation might be that people 
are falling victim to “the social contagion of memory”, which 
occurs when one person’s recollection of events influences 
and shapes another person’s recollection (Roediger, Meade, 
& Bergman, 2001). People integrate the false information 
with their true source representation. In this case, the 
contagion becomes exacerbated online as people’s personal 

recollections are being influenced by the recollections of 
people from around the world in an instant, thus allowing 
these false memories to be shared and spread.  

Take the game of telephone as an example. It begins with 
one person whispering a message to the person next to them, 
and so on. Oftentimes, the last message is significantly 
different from the original. The transmission for any 
individual in the chain would become a question of 
reconstructing the noisy information from memory (Xu & 
Griffiths, 2009).  

These same factors also have implications for everyday 
memory such as singing the wrong song lyrics or misquoting 
common phrases and movie lines. As illustrated by the shared 
internet memory of ‘Shazaam,’ many of our memories for 
ubiquitous and pop culture concepts are not learned through 
first-hand experience with the original source—such as 
learning a quote directly from a movie—but rather are the 
result of information being passed from one person to 
another. In this case, the information transmitted takes on an 
abstracted nature.  

Such distortion can happen in three different ways: 
assimilation, leveling, and sharpening (Bartlett, 1932). 
Assimilation occurs when details of the information are 
altered in memory to reflect one’s own culture. Leveling 
occurs when information that is deemed non-essential is left 
out, reflecting a ‘gist’ representation of the event rather than 
the details. Sharpening occurs when the order of some details 
is changed. This illustrates how the reconstructive process 
can influence the transmission of information, leading to an 
event being slightly altered with each retelling to reflect the 
biases of the people participating in the transmission process. 

While assimilation, leveling, and sharpening can result 
unintentionally from either the person transmitting the 
information or the person encoding the information, it is also 
possible to intentionally distort the shared information. This 
has been apparent in many experiments involving eyewitness 
testimony. Repeated exposure to suggestion, specifically, has 
been found to alter recall for a previous event (e.g., Loftus & 
Palmer, 1974). When shown a video of a car stopped at a stop 
sign and asked questions containing misinformation, such as 
"did the car stop at the yield sign," most participants 
responded in the way suggested by the misleading interview 
question, rather than what they had witnessed in the video 
(Loftus, Miller, & Burns, 1978; Loftus & Palmer, 1974; 
Mitchell & Zaragoza, 1996). It has been suggested that when 
misleading information is presented, it is introduced into the 
representation for the event and causes an alteration of that 
representation (Loftus, Miller, & Burns, 1978). This 
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illustrates a reconstructive process similar to that of the 
telephone game leading to biases in memory.  

One possible hypothesis to explain this willingness to 
accept misinformation as part of the original event is source 
misattribution, where people incorrectly attribute the source 
of the memory (e.g., Schacter, 2001). According to the source 
monitoring framework, participants fall prey to 
misinformation because they have confused the source of the 
original information with the source of the misinformation 
(e.g., Johnson et al., 1993; Lindsay, 1994; Lindsay & 
Johnson, 1989).  

In addition to confusing the source of information, people 
tend to express high levels of confidence in their memory, 
whether it is accurate or not (Bacon, 1979; Mitchell & 
Zaragoza, 1996). People are equally confident when 
reporting false information about an event that they heard 
from a secondhand source, as when they are correctly 
recalling the event as they experienced it (Mitchell & 
Zaragoza, 1996). Higher confidence has also been reported 
for more familiar statements (those that have been heard 
before), regardless of the accuracy of those statements 
(Hasher, Goldstein, & Toppino, 1977). This suggests that 
confidence in memory is not directly related to the accuracy 
of that memory. 

Each of these cases demonstrates how memory is a 
constructive process, prone to distortions from factors 
including intrusions from semantic memory, source 
misattribution, and misinformation. Although there is 
extensive literature on false memories and source 
misattribution across a number of domains, one domain that 
has not been widely studied is memory for ubiquitous 
concepts, specifically the type that would be prone to 
influences from popular culture. Therefore, we were 
interested in evaluating people’s semantic memory (i.e. prior 
expectations) for pop-culture content and how their semantic 
memory influences recognition memory for this content. We 
tested semantic and recognition memory for well-known 
quotes that tend to be misrepresented in popular culture, 
specifically focusing on how pervasive the misremembering 
of popular incorrect information is, what source people 
attribute the information to, and how confident they are in 
their responses. We compared these ubiquitous quotes to 
performance on common graphics such as the Apple logo, 
which are less likely to undergo transmission distortion.  

In Experiment 1 we assessed participant's semantic 
memory and attribution of the source of the information, but 
we did not test recognition memory given the true source 
information. In Experiment 2 we investigated recognition 
memory for the original source of the ubiquitous information, 
in order to compare it to the semantic memory in Experiment 
1. We hypothesized that selections of the incorrect popular 
lure quote would be made with high confidence, and that the 
likelihood a selecting the lure quote even after studying the 
video would be similar to the likelihood of selecting the lure 

                                                             
1 Due to the difference, the Google graphic was not included in 

the analysis since it was designed differently compared to the other 
questions. 

quote in Experiment 1. If prior expectations exert a strong 
influence on memory, it is possible that even after viewing 
the original source material participants will still recall the 
misinformation that is pervasive in popular culture. 
 

Experiment 1 
Method 
Participants Sixty-three Rutgers University undergraduate 
students participated in this study in exchange for course 
credit. 
Materials The stimuli consisted of a brief demographics 
questionnaire (i.e. age, primary language, major, and media 
usage), and 27 3-alternative forced choice (AFCs) questions: 
three movie quotes, three famous quotes, four logos (note: the 
Google logo had six individual test questions, one for each 
letter1, so the total number of logo questions was nine), and 
12 distractor questions. See Figure 1 for the set of target 
stimuli. The 3-AFCs for each question included the correct 
response, a critical lure (i.e., the quote that has become 
common usage), and a non-critical lure. We selected the 
critical lures based on what has circulated on the Internet (e.g. 
In 2012’s “Snow White and the Huntsman,” Charlize 
Theron’s character can be heard saying, “Mirror, Mirror, on 
the wall…”). For the graphics questions, the lures were 
selected based on one that closely resembled the target and 
one that did not. Both the demographics questionnaire and the 

 
Movie Quotes: 
Star Wars: “No. I am your father.” 
Snow White and The Seven Dwarves: “Magic, mirror 
on the wall, who is the fairest of them all?”  
Forrest Gump: “Life was like a box of chocolates.” 
 
Graphics: 

   
 
Figure 1. Stimuli (movie quotes and graphics) used in 
Experiments 1 and 2.	 

Figure 2. First panel: demographic questionnaire; Second 
panel: sample stimuli. 
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3-AFC questions were written in Matlab and presented on 23-
inch Dell monitors  
Design Given the types of questions that were asked (e.g. 
recognition of the Apple logo), participants were instructed 
to put away all cellphones and other electronic devices before 
the experiment began. First, participants completed the 
demographic questionnaire (Figure 2, first panel). Next, 
participants answered 27 questions, one at a time, which 
consisted of three parts: 1) participants responded to each 
question by selecting one of the 3-AFCs from a drop-down 
menu 2) participants rated their level of confidence in their 
answer on a seven point Likert scale, with one being not 
confident at all and seven being very confident 3) participants 
indicated from a drop-down menu if and how they had 
previously been exposed to the information presented in the 
question. The options included: “I recently discussed this 
with a friend", "I have seen the TV show/movie, read the 
book/play, or heard the song/phrase before”, "I have not seen 
the TV show/movie, read the book/play, or heard the song, 
but I have seen this referenced elsewhere", "I have never seen 
or heard of this before", or "Other", which then allowed 
participants to elaborate on their source of knowledge using 
the keyboard (Figure 2, second panel). The presentation order 
of the 27 questions was randomized across participants. On 
average, it took participants 20 minutes to complete the 
experiment.  
Results 

Because the goal was to compare performance on the 
ubiquitous movie quotes and graphics between Experiments 
1 and 2, only these target questions were used in the analysis. 
To evaluate whether participants could correctly identify the 
true quotes/graphics, we computed the response probability 
for the target, the critical lure, and the non-critical lure for 
each question (see Figure 3). We found that the preferred 
response for the movie questions was the critical lure (Star 
Wars: 95%; Snow White: 95%; Forrest Gump: 92%). The 
preferred response for most of the graphic questions was the 
target (Apple logo: 82%; American flag: 79%). However, for 
the Microsoft logo question, participants were split, with 
48% of participants choosing the target, and 48% choosing 
the more closely matching lure. 

A series of binomial tests were conducted to assess whether 
the proportion of correct responses for each question was 
different from chance. The tests revealed that performance 
was significantly worse than chance for the movie quote 

questions and significantly better than chance for the graphics 
questions (see Table 1). 

We then assessed confidence for the preferred response for 
each question. For the movie related questions, a majority of 
those who chose the critical lure also responded with high 
confidence, defined as five or higher (Star Wars: 86%; Snow 
White: 92%; Forrest Gump: 77%). For the graphics 
questions, a majority of those who chose the target responded 
with high confidence (Apple logo: 78%, American flag: 94%; 
Microsoft logo, target: 55%, most closely matching lure: 
45%), see Figure 4. When comparing confidence ratings for 
targets to critical lures, we found that for most of the movie-
related questions, confidence was greater for the critical lure 
than the target. We report the mean and standard deviation 
because there were not enough participants who chose the 
target to conduct a statistical test comparing confidence 
between target and critical lure (Star Wars: critical lure 
M=6.14, SD=1.63, target M=3.50, SD= 3.54; Snow White, 
critical lure M=6.55, SD=0.82, target M=3.50, SD=2.12; 
Forrest Gump, critical lure M=5.6, SD=1.6, no participants 
chose the target for this question). There was no significant 
difference in confidence ratings between targets and more 
closely matching lures for the Apple logo, American flag, and 
Microsoft logo questions.  

For source attribution, we computed the response 
probability for each possible source conditioned on target and 
critical lure responses. Here we report the most frequently 
selected source for the preferred response for each question. 
Given that a majority of participants responded with the 
critical lure for the movie related questions, we analyzed 
which source they attributed their response to and found that 
they responded “watched the movie” as their direct source of 
knowledge (Star Wars:  71%; Snow White: 83%; Forrest 
Gump: 84%), see Figure 5. 

Table 1:  Proportion Correct Compared to Chance 
Question Exp1 Exp2 Chi Square 

Exp1 & Exp2 
Star Wars p<.001** p=.08 χ²=25.04, p<.001** 
Snow White p<.001** p=.01* χ²=2.39, p=0.12 
Forrest Gump p<.001** p=.004* χ²=4.54, p=0.03* 
Apple Logo p<.001** p=.08 χ²=11.22, p<.001** 
Flag p<.001** p<.001** χ²=0.09, p=0.77 
Microsoft Logo p<.001** p=.007* χ²=1.34, p=0.25 
*p<.05; **p<.001 
 

Figure 3: Response probabilities for the target and 
critical lure for each question in Experiments 1 and 2.   
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Experiment 2 
Method 
Participants Thirty-six Rutgers University undergraduates 
participated in exchange for course credit. 
Materials The demographic questionnaire was identical to 
Experiment 1. The study stimuli consisted of eight videos 
corresponding to the movie quotes and graphics, as well as 
one distractor clip. The video clips were scenes from movies 
that contained the quotes and commercials that contained the 
logos that were the basis of the questions in Experiment 1. 
The clips varied in length from 30 seconds to one minute. The 
test stimuli consisted of 12 3-AFC questions identical to those 
in Experiment 1, and related to the video clip content (three 
movie quotes, three logos, and three Google logo related 
questions2). The demographics questionnaire and 3-AFC 

                                                             
2 The 6 Google logo related questions tested participants on 

correctly recalling the colors of each of the letters in ‘google.’ 

questions were administered through Qualtrics Survey 
System on Dell computers in the lab. 
Design After completing the demographic questionnaire, 
participants viewed seven of the eight video clips, one at a 
time, wearing a pair of provided headphones. Participants 
were instructed that they would receive a memory test on the 
content of the video clips. After viewing all seven target 
video clips, participants then watched an eighth clip which 
was unrelated to the memory test. This clip served as a 
distractor between study and test and lasted for roughly five 
minutes. After the distractor, participants answered 12 
recognition memory questions related to the seven clips they 
had just viewed. Importantly, these questions were identical 
to those in Experiment 1 including the 3-AFC (target 
response, critical lure, and non-critical lure), confidence 
ratings, and source attribution questions. The recognition 

Figure 4: Confidence ratings for target and critical lures for movie related and graphic questions in Experiments 1 (top 
row) and 2 (bottom row).  

Figure 5: Source attribution for the movie related questions in Experiment 1 (left column) and Experiment 2 (right 
column).   
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questions were self-paced and took participants 15 minutes, 
on average, to complete. 
Results 

 To evaluate whether participants could correctly recognize 
the target quote and graphic after having viewed the original 
source, we computed the response probability for the target, 
critical lure, and non-critical lure for each question (see 
Figure 3). We found that participants were split for the Star 
Wars question with 44% choosing the lure response and 47% 
choosing the target response, indicating that performance was 
substantially better for participants after watching the 
original source (with 95% choosing the critical lure in 
Experiment 1). Interestingly, however, for the other movie 
related questions the preferred response was still the critical 
lure (Snow White: 75%; Forrest Gump: 78%). Participants 
were split for the Apple logo question, with 47% of 
participants choosing the target, and 33% choosing the more 
closely matching lure. It is important to note that more 
participants responded correctly with the target in 
Experiment 1 than in Experiment 2. For the other graphic 
questions, the preferred response remained the target 
(American flag: 84%; Microsoft logo: 56%).  

 A series of binomial tests were conducted to assess 
whether the proportion of correct responses for each question 
was different from chance (see Table 1). The tests revealed 
no significant difference for the Star Wars question and the 
Apple logo question. There was a significant difference in 
performance for the remaining questions, with participants 
doing significantly worse than chance for the Snow White 
and Forrest Gump questions, and significantly better than 
chance for the American flag and Microsoft Logo questions.  

In order to further examine whether the introduction of the 
video clips improved performance, a chi-square test was 
conducted to compare the proportion of correct responses in 
Experiment 1 to the proportion of correct responses 
in Experiment 2 (see Table 1). The test revealed that 
performance on the Star Wars and Forrest Gump questions 
were slightly better for those participants who watched the 
video clips in Experiment 2. For the Star Wars question, there 
were significantly more people who answered correctly in 
Experiment 2 (47.22%) compared to Experiment 1 
(3.28%). For the Forrest Gump question, there were 
significantly more people who answered correctly 
in Experiment 2 (11.11%) compared to Experiment 1 (0%), 
indicating that recognition accuracy was higher for those 
participants who had studied the direct source. However, 
there was no significant difference in performance between 
experiments for the Snow White, American flag, or Microsoft 
logo questions, indicating that for some questions, even for 
participants who had seen the video clips, recognition 
performance was no better than for participants in 
Experiment 1 who had not viewed the direct source. For the 
Apple Logo question, there were significantly more people 
who answered correctly in Experiment 1 (81.97%) compared 
to Experiment 2 (47.22%).  

We then assessed confidence for the preferred response for 
each question in Experiment 2. For the movie related 

questions, a majority of those choosing the critical lure also 
responded with high confidence, defined as five or higher 
(Star Wars: 88%; Snow White: 81%; Forrest Gump: 75%, 
Apple logo, critical lure: 71%, more closely matching lure: 
58%). It is important to note that for the Apple Logo question, 
more people answered with the critical lure in Experiment 2 
than in Experiment 1.  However, for the remaining graphic 
questions, a majority of those choosing the target responded 
with high confidence (American flag: 90%; Microsoft logo: 
55%), see Figure 4. When comparing confidence ratings for 
targets to critical lures, we found that there was no significant 
difference in confidence ratings between target and critical 
lures for any of the questions, indicating that participants who 
chose the critical lure were just as confident as those who 
chose the target. 

For source attribution, in Experiment 2 we computed the 
response probability for each possible source conditioned on 
target and critical lure responses. Here we report the most 
frequently selected source for the preferred response for each 
question. We found that a majority of those who chose the 
critical lure also responded that they had “watched the 
movie” as their source of knowledge (Star Wars, critical lure: 
50%, target: 53%; Snow White, critical lure: 93%; Forrest 
Gump, critical lure: 82%), see Figure 5. 

Discussion 
The current study investigated people’s semantic memory 

(i.e., prior expectations) and recognition memory for pop 
culture content, as a function of their confidence and 
perceived information source. We found that people chose 
the ubiquitous incorrect (critical) lure for the movie related 
questions. These results are consistent with the finding that 
people remember the gist of sources and not most of the 
details (Sachs, 1967).  These responses were given with high 
confidence, with participants indicating that they had learned 
this information from the direct source, i.e., the movie. This 
suggests that people have strong prior expectations for pop 
culture content frequently circulated through the media – 
even though these expectations are not correct.  

We found that in Experiment 2, exposure to original source 
material did not overwhelm pop-cultural distortions or lead 
to higher recognition accuracy for all of the movie quotes. 
Participants were still prone to select the critical lure, and did 
so with high confidence. This suggests that when prior 
expectations are strong, even if they are misaligned to the 
truth, viewing the original source cannot always overcome 
this inaccuracy.  

Although there has been some success in correcting false 
memories (Brewer, 1977; Fazio & Marsh, 2010), we did not 
observe this in our study. Providing the original source 
material may have been ineffective in our task because we 
did not explicitly inform our participants to attend to the 
original source material (movie quotes or graphics). This was 
purposely done to simulate real world settings where people 
may passively encode information.  

These two findings together present a somewhat dangerous 
picture of what misinformation can do to episodic memory. 
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For example, for the Apple logo where semantic memory 
(Experiment 1) was highly accurate, recognition memory 
(Experiment 2) faltered. This might be because the somewhat 
abstract noisy semantic representation is integrated with a 
noisy episodic representation in the reconstruction process. 
In contrast, for the pop culture movie quotes, recognition 
memory was only slightly better than semantic memory. This 
might be a result of semantic representations exerting a strong 
influence on the noisy episodic traces in the reconstruction 
process–consistent with a Bayesian interpretation of memory 
(e.g., Hemmer & Steyvers, 2009). In other words, the false 
semantic representation provides a high baseline contribution 
to episodic memory that is too strong to overcome even with 
exposure to the true source. 

The implications of these findings as they relate to real 
world events are far reaching. Much of the “fake news” that 
was circulated the Internet throughout the 2016 presidential 
election consisted of fabricated stories posing as professional 
journalism. These stories were spreading misinformation, 
and ultimately became a means to influence public opinion. 
The importance of this issue has grown over time, as more 
people have reported that they get their news from the 
Internet (Lee, 2016). If we examine contemporary popular 
culture and the focus on social network distribution, it is easy 
to see how information spreads very rapidly through re-posts, 
re-tweets, or sharing via word of mouth throughout the 
Internet population, often in ways that the original producers 
cannot determine or control (Burgess, 2008). So, the next 
time you share a post on Facebook, or quote a movie, make 
sure you check your sources.  
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Abstract
The paper folding task is commonly used for the evaluation of
nonverbal, spatial reasoning skills. In this paper, we present
a computational model that attempts to use visual-imagery-
based representations and operations to solve this task. The
model was tested against all problems from the standard pa-
per folding task and achieved a perfect score, illustrating that
visual-imagery-based representations and operations are suf-
ficiently expressive to capture at least one successful solution
strategy. Although the model does not closely resemble human
cognitive processing, and thus should not be considered in its
current form to be a plausible psychological model of human
task performance, the assumptions made and their implications
for our understanding of human cognition on the paper folding
task point to fruitful lines of future work towards this goal.
Keywords: artificial intelligence; cognitive assessment; paper
folding; spatial skills.

Introduction
Paper folding tasks are cognitive assessment tools used in the
evaluation of spatial, non-verbal reasoning skills. Visuospa-
tial skills in general are thought to be critical to a variety
of human endeavors, including scientific discovery (Miller,
1984), art (Arnheim, 1969), engineering (Ferguson, 1994),
computer programming (Petre & Blackwell, 1999), mathe-
matics (Giaquinto, 2007), education (Silverman, 2002), and
even feats of memory (Foer, 2011). Visuospatial skills also
seem to be areas of intact or even superior performance for
certain individuals with developmental conditions such as
autism (Soulieres et al., 2011; Kunda & Goel, 2011) and
Prader-Willi syndrome (Verdine et al., 2008).

In research on Science, Technology, Engineering and
Mathematics (STEM) education, visuospatial ability is
viewed as a key contributor to math learning (National Re-
search Council, 2009) and to pursuing degrees and careers in
STEM disciplines (Wai et al., 2009). Studies suggest that
visuospatial ability can improve with training (Uttal et al.,
2013), and that such training can enhance math performance
in children (Cheng & Mix, 2014).

Thus, there is an urgent need for effective visuospatial as-
sessments as well as training interventions to promote learn-
ing outcomes, creative discoveries, effective design work, and
more. Understanding the specific cognitive mechanisms that
underlie visuospatial ability is a critical step along this path.

Of course, studying visuospatial ability purely through ob-
servations of human behavior is challenging because many
of the underlying cognitive processes are not directly observ-
able. Even neuroimaging yields only a coarse view of the
specific information processing steps that take place as some-
one is solving a task.

Figure 1: A sample task from the VZ-2 paper folding test.
The images on the left of the vertical line depict the stages in
a fold. The images on the right of the line are possible choices
of how the paper may look when unfolded.

In this paper, we instead adopt the approach of implement-
ing a computational cognitive model that simulates solving
the task—the cognitive systems approach of artificial intelli-
gence (AI) (Thagard, 2005). Cognitive systems model how
intelligent agents combine different cognitive processes, like
learning, reasoning, and memory, to perform a task. By im-
plementing a cognitive system that simulates solving visu-
ospatial tasks, we can look “under the hood” at specific types
of information processing mechanisms that might drive visu-
ospatial ability.

In previous work, we have implemented similar models
that investigate aspects of visuospatial cognition on other
cognitive assessment tasks. Previous work on the Raven’s
Progressive Matrices intelligence test has examined the role
of visual mental representations in solving difficult test prob-
lems (Kunda et al., 2013), the contributions of different types
of imagery operators (Kunda et al., 2013), the meaning of
different patterns of errors (Kunda, Soulières, et al., 2016),
and visual mechanisms for maintaining goal-subgoal hierar-
chies (Kunda, 2015). Previous work on the Block Design task
has looked at relationships between internal mental represen-
tations and external deployments of visual attention (Kunda,
El Banani, & Rehg, 2016), and previous work on the Embed-
ded Figures task has looked at capacity limits in visuospatial
memory, in particular the effects on task performance of in-
ternal deployments of visual attention to different parts of a
visual mental representation (Kunda & Ting, 2015).

In this paper, we present initial results from a new compu-
tational model of the paper folding task. Although the model
does not closely resemble human cognitive processing, and
thus should not be considered in its current form to be a plau-
sible psychological model of human task performance, the as-
sumptions made and their implications for our understanding
of human cognition on the paper folding task point to fruitful
lines of future work towards this goal.

In particular, the model we present can be considered as
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an experiment on the sufficiency of certain imagery-based
representations and operations for solving paper folding,
which is valuable for understanding how different cognitive
mechanisms might in theory contribute to visuospatial abil-
ity in people, and especially how certain cognitive limitations
might affect task performance. Ultimately, we hope that re-
sults from this line of work will serve as a basis to suggest
routes for how such cognitive limitations might eventually be
overcome, i.e., in developing new visuospatial training inter-
ventions for use in education.

About Paper Folding Tasks
Paper folding tasks are usually presented as line-drawings of
paper cut-outs or folded pieces of paper. People are then
asked to imagine changes that happen when this paper is ma-
nipulated in different ways. Several forms of the test exist.

Shepard and Feng (1972) presented a form of the paper
folding test which required test subjects to fold a cube out of
six connected squares. Two of the squares have arrows that
point to an edge and one square is greyed out to show that it
is the base of the cube. People are then required to predict
whether the arrows align and point to the same edge when
the cube is re-constructed. This essentially requires them to
mentally reconstruct the cube by imagining folding the pa-
per as though the shape was cut-out of the paper. Lovett and
Forbus (2013) developed a computational model developed to
reason about this specific case of paper folding tasks. Their
model takes the approach of simplifying the task by removing
unnecessary details and essentially focusing primarily on the
orientation of critical edges to solve the task.

Another form of the paper folding task (which is also called
“the punched hole test”), developed by Ekstrom and col-
leagues (1976), is administered as a 6 minute pencil and paper
test in two parts (3 minutes for each part). During the test,
subjects are presented with a sequence of images showing
the stages in folding a square piece of paper. A hole is then
punched on this folded piece. Test subjects are also presented
with five possible outcomes of how the paper looks when it is
unfolded. See Figure 1 for an example of this type of prob-
lem. Designed as part of the “Kit of Factor-Referenced Cog-
nitive Tests”, this task appears as the second test under the
group of tests that evaluate the visualisation cognitive factor
(VZ-2).

A number of research studies have used paper folding to
evaluate spatial reasoning skills. While testing a hypothe-
sis on learning styles amongst individuals, Mayer and Massa
(2003) used this test as part of their measure of spatial skills.
Keehner et al. (2004) also used this test as one of their tests
of spatial ability while investigating the correlation between
spatial ability, experience and skill in laparoscopic surgery.
Another example is the study by Silvia (2008) in which the
paper folding test was used as part of a measure of fluid intel-
ligence, while investigating relationships between creativity
and intelligence.

There is much that is still unknown about the direct cogni-

tive mechanisms involved in paper folding tests. Mental ro-
tations are believed to play a major role (Shepard & Feng,
1972). In addition to the complexity of the mental rota-
tions, people may have to deal with the additional compo-
nent of mental folding (Glass et al., 2012) and in the case
of a punched hole test, how the holes affect the final output.
Wright and colleagues (2008) showed that training on mental
rotation tasks improved performance on paper folding tasks,
just as training on paper folding tasks improved mental rota-
tions.

Next, we present a computational model that attempts to
solve the paper folding task using simulated “mental rota-
tions” in “three dimensions”. The exact formulation of the
paper folding task we intend to tackle with this model is “The
Punched Hole” test (Ekstrom et al., 1976).

Figure 2: A sequence of images sent as input to the model
(blue and white), and the corresponding bitmaps that are used
by the model after inputs are processed (black and white).
The first input row corresponds to the initial “problem” part
of a paper folding item. The second input row contains the
possible choices the model is presented with.

The Model
We present a computational model that attempts to solve “The
Punched Hole” paper folding task (Ekstrom et al., 1976) us-
ing only image based operations. The model is built in the
Python programming language and relies extensively on the
Pillow fork of the Python Imaging Library (PIL) to perform
low level image manipulation.

The main task of the model is to analyze a sequence of
images that depict the folding and punching in a problem
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of the paper folding task to determine what the paper would
look like when unfolded. It achieves this by maintaining a
three dimensional representation of the paper which is stored
as a stack of two dimensional images. Each image on the
stack represents a single level of folding performed in a single
time-slice. The actual fold operations are performed with im-
age reflections that provide a simplified simulation of three-
dimensional rotations.

Input
Inputs to the model are presented in three stages. The first
stage consists of a sequence of images that represent the state
of the folded paper in each time-slice. The second stage con-
sists of a single image that represents the state of the folded
paper after the hole has been punched. Finally, the third stage
presents the possible solutions from which the model could
select an answer after it is done predicting a solution.

All the inputs are presented as line drawings with sections
that contain paper filled with pixels to ensure the model can
properly differentiate between paper and empty space. Be-
fore any images are passed on for further processing, they are
converted to single colour images. This makes it easy for the
model to perform logical bitwise operations between images.
Once converted to a single colour image, any pixel that is set
to 1 in the image is considered to be an area containing pa-
per, and pixels set to 0 are considered to be empty spaces.
See Figure 2 for a sample sequence of input images and their
corresponding bitmap representations.

Strategy
The model’s strategy for solving the tasks relies heavily on
two stacks. The first stack (which we call the image stack)
keeps track of images that represent the layers of folds. The
second stack (which we call the operations stack) keeps track
of the operations that are performed on the images as folds
occur. In predicting the solution, the model utilizes four main
operations: Initialize, Fold, Punch and Unfold.

The Initialize operation sets up the model before solving
any task. It places an image which has all its bits set to 1
on the images stack. This image is meant to represent the
initial piece of unfolded paper on which fold operations will
be performed.

The Fold operation receives as input an image of the state
of the paper after a given fold has occurred. The model will
attempt to use this image and other images on the image stack
to find the best estimation of the line along which the fold
was made. To accomplish this, the following processing steps
are performed on the bitmap representation of the fold input
image for every image on the stack, starting from the bottom:

1. The current layer to be processed is retrieved from the im-
age stack. In the case of the first fold operation, this image
has all pixels set to 1.

2. An intersection operation is performed between an inverse
of the fold input image and the image retrieved from the
stack. This operation is constrained by the bounding box

around the image that was retrieved from the stack. The
resulting image is an image of the flap to be folded, as il-
lustrated in Figure 3.

-1  → ∩   =

Figure 3: Stages the images go through to generate the folded
flap image.

3. Another intersection operation is performed between the
fold input and the image retrieved from the stack. This new
image replaces the original image on the stack, as shown in
Figure 4.

∩   =

Figure 4: The intersection between the input image and the
existing image on the stack to generate a replacement for the
image on the stack.

4. In order to determine the line along which the fold would
occur, a single pixel border is drawn around both the folded
flap image, and the modified image on the stack. This is to
make both images larger so they can slightly overlap. An
intersection operation is computed between the two new
overlapping images to generate an image containing the
line along which the fold is to be made. A search for two
extreme coordinates of this image is then performed on the
pixels in this image. This search is biased towards the pix-
els that are from the folded flap image. Search results will
now contain the coordinates of the fold line. These coordi-
nates are then pushed onto the operations stack.

∩   =

Figure 5: Intersecting the new overlapping images to deter-
mine the fold line.

5. Finally, the folded flap image is reflected across the fold
line. This reflection operation is analogous to a 180◦ ro-
tation in three dimensional space about the fold line axis.
The reflected image is then pushed to the top of the stack
to act as one of the base images for any subsequent fold
operations. After a series of fold operations is performed,
each image on the stack will represent a folded layer.
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Figure 6: The final reflection operation of the fold.

Once all fold operations are completed, the Punch opera-
tion is performed. This operation takes the punch input, and
computes the intersection of this input with all the images on
the stack, replacing all the contents on the stack with the re-
sults. See Figure 7 for an image depicting all the changes
that take place on the stack for fold operations and the punch
operation.

StackInput

Figure 7: The various states of the image stack as inputs are
fed to the model.

Unfold is the next operation after the punch has been per-
formed. This operation runs through the operations stack and
performs a reverse of all operations. It works by picking the
image on top of the stack and the one below the stack. It per-
forms the reverse operation on the image on top of the stack
(which will be the folded flap).

It then performs an OR operation between the folded flap
and the base image. The new image generated after the OR
operation is placed onto a new image stack. The unfold op-
erations are recursively called on the newly generated image
stack until the stack contains a single image. This image will
represent the model’s predicted solution to the problem.

A final solution can be chosen by the model with the last
image generated after the unfold operation. A pixel by pixel
comparison is performed between the model’s prediction and
each of the possible solutions. The comparison that yields the
largest number of matching pixels is selected as the solution.

Figure 8: The various states of the image stack during the
unfold operations.

Experiments and Observations

We tested the model against all twenty items from “The
Punched Hole” test (Ekstrom et al., 1976). Input images (for
both the fold stages and answer choices) for this experiment
were taken from the original test but redrawn as “clean” ver-
sions using the Inkscape Vector Graphics editor. Redrawn
vector images were converted to raster images before being
passed to the model.

Results for the experiment were a count of the number of
items on which the model was able to select the correct an-
swer. When this experiment was performed, the model se-
lected the correct answer on all items in the test—a score of
20 out of 20.

Looking more carefully at the operation of the model, we
observed that a constant number of operations are performed
for each fold simulated. Also, the size of the stack grows
exponentially with respect to the number of folds performed.
For every n folds, there are a total of 2n items on the stack.

Interestingly, the set of problems had 1 to 3 fold levels.
This meant that the maximum stack size required for the tasks
varied from 2 (for single folds) to 8 (for triple folds). If we
take the size of the image stack to be analogous to “work-
ing memory usage” in our model, the maximum number of
items stored while solving any of the paper folding problems
is consistent with what is known about visuospatial working
memory capacity limits in people (Luck & Vogel, 1997).

Also, working in the image domain gives the model the
ability to operate on arbitrary folding tasks. To test this abil-
ity, we ran a “paper snowflake” simulation through the model
to evaluate its output. From Figure 9, we can clearly observe
that the model generated an output that corresponds to the
snowflake folds passed through it.
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Fold Sequence Cut / Punch

Unfold Sequence

Figure 9: The model’s “solution” to a paper folding problem
with arbitrary fold and punch shapes. The top row of images
show the input to the model and the bottom row of images
showt the output of the model at the various stages of unfold-
ing the snowflake.

Discussion and Future Work
One current assumption of this model has to do with the com-
parison technique used to match possible solution choices to
the predicted solution. As stated earlier, this operation is per-
formed using a pixel by pixel comparison technique, where
pixels on the predicted solution must closely match pixels on
a possible solution. For the case of our experiment, these pos-
sible solutions were carefully drawn such that holes in both
the right and wrong choices were precisely placed.

However, as we have observed in other standardized cogni-
tive assessments (Kunda et al., 2013; Kunda & Ting, 2015),
printed figures in test booklets are not always so precise at
the pixel level. (We surmise that many of these tests must
have been hand-drafted when they were first created.) On the
actual paper folding test by Ekstrom et al. (1976), many of
the positions of the punched holes are not necessarily aligned
perfectly. However, people are still able to solve these tasks,
which suggests that the model should have more robust pat-
tern recognition and processing abilities.

Our model has shown one possible set of cognitive mech-
anisms, based on visual mental images, that are sufficient for
solving the paper folding test. Other strategies undoubtedly
exist. What is more interesting, perhaps, is a consideration
of why people might fail to solve paper folding items. What
mechanism or set of mechanisms might they lack?

One possibility is working memory capacity, simulated in
our model as the size of the image stack. Clearly, limiting the
size of the stack will immediately reduce the model’s ability
to successfully solve paper folding problems. However, there
are other possibilities as well.

One idea is that people might “forget” where the fold is
on a folded up piece of mental paper, and proceed to unfold
the paper in the wrong direction. (For example, they might
interchange the folded side and the open side of a folded page,
at the moment when they are unfolding it.) This is a subtle
error that does not have to do with raw capacity but more like
a limit on attentional capability, or the accurate persistence

of information in working memory. We speculate that these
types of fold-forgetting errors may lead participants to choose
some of the distracter answer choices that are provided.

In continued work on the model, we will implement some
of these cognitive limitations to see what might lead the
model to make particular types of errors. Then, we could
compare the errors made by different configurations of the
model to the errors made by people, to see if there are sug-
gestive connections between cognitive strategy variations and
behavioral error patterns (Kunda, Soulières, et al., 2016).
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Abstract
In psychology, we tend to follow the general logic of fal-
sificationism: we separate the ‘context of discovery’ (how
we come up with theories) from the ‘context of justification’
(how we test them). However, when studying human interac-
tion, separating these contexts can lead to theories with low
ecological validity that do not generalize well to life outside
the lab. We propose borrowing research practices from for-
mal inductive methodologies during the process of discover-
ing new regularities and analyzing natural data without being
led by theory. From the perspective of experimental psychol-
ogy, this approach may appear similar to the ‘questionable re-
search practice’ of HARKing (Hypothesizing After The Re-
sults are Known). We argue that a carefully constructed form
of HARKing can be used systematically and transparently dur-
ing exploratory research and can lead to more robust and eco-
logically valid theories. Keywords: HARKing; experimental
psychology; conversation analysis; methodology; interaction

Performance-enhancing questionable practices
Most discussions of the current ‘replication crisis’ in psychol-
ogy and the social sciences (Pashler & Harris, 2012; Pashler
& Wagenmakers, 2012) focus on identifying and mitigating
the biases and incentives that lead researchers to adopt ques-
tionable research practices (QRPs): a range of methods for
manipulating experimental results and processes that John,
Loewenstein, and Prelec (2012) describe as “the steroids of
scientific competition, artificially enhancing performance”.
But science—at least ideally—is not about competition, and
the highest scientific achievements are of benefit to all. It
makes sense, therefore, to look at some QRPs and their un-
derlying rationales in more detail: why are they so tempting?
What makes them ‘safe’ or ‘unsafe’ for science in specific
contexts? For example, qualitative, inductive methods often
used in cognitive science such as grounded theory (Glaser &
Strauss, 1967) are very useful for exploratory studies in many
research areas, but may produce misleading inferences when
used to code certain kinds of behavioral phenomena for con-
firmatory, quantitative research into language and human in-
teraction (Stivers, 2015). However, rather than simply label-
ing all such methods as QRPs in the context of experimen-
tal, confirmatory research, we may be able to borrow from
them to enhance our research results without compromising
our methodological rigor. In many of the failed replications
reported in Open Science Collaboration (2015), it seems that
QRPs are used to increase the probability of ‘finding’ an ef-
fect predicted by the stated theory. Theorizing about an inter-
actional phenomenon that has no grounding in interactional
reality makes QRPs attractive, simply because they make it
more likely that researchers will be able to report significant
effects that support their theory. The issue underlying the use

of QRPs in the study of human interaction, then, may be in-
trinsically related to the broader problem of groundless the-
orizing, where theories are formulated without being famil-
iar with the situations they theorize about. We suggest that
this problem, in turn, stems from some uncritical assumptions
about science and human interaction.

The problem of groundless theorizing
A common assumption about falsificationism, still implicitly
or explicitly a major philosophical underpinning of empirical
science, is that as long as a theory can be falsified by testing
a hypothesis, the scientist is free to theorize any conceivable
causal relationship between any measurable variables. There
is nothing inherently wrong with this approach if all plausible
confounding variables can be controlled, and this theoretical
freedom of movement is tremendously powerful. Popper was
inspired by how the freedom to theorize raised the stakes for
cosmologists such as Einstein, whose entire theory of general
relativity could have been falsified if just one of his auda-
cious predictions about electromagnetism and gravitational
potential had turned out to be false. However, in the con-
text of human interaction research, it is notoriously difficult
to control for confounds because there are many human be-
haviors that are very difficult if not impossible to emulate in
controlled conditions (De Ruiter, 2013; Schegloff, 2006), and
just recording or observing people interacting may change the
ways they interact in unpredictable ways (Labov, 1972). In
this paper we describe a set of pre-theoretical research pro-
cedures that interaction researchers can use to constrain their
theories to match observable facts within the domain of in-
terest. While this may sound like the questionable research
practice of HARKing (Hypothesizing After the Results are
Known) (Kerr, 1998), we argue that systematic, inductive
methods for analyzing social interaction can provide a prin-
cipled and effective way to ground theorizing about human
interaction, leading to more robust and relevant theories.

Contexts of discovery and contexts of justification
The ‘context of discovery’ is the situation in which a phe-
nomenon of interest is discovered. For example, when study-
ing human interaction, a useful context of discovery would
be an otherwise naturalistic conversation that happened to
be recorded for analysis (Potter, 2002). ‘Contexts of jus-
tification’, in this example, might then include the labora-
tory, the conference paper, and the academic literature within
which the empirical details are reported, analyzed and formu-
lated as a scientific discovery (Bjelic & Lynch, 1992). These
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Figure 1: Interactional resources and methods within partici-
pants’ or analysts’ contexts of discovery and justification.

are important distinctions for what we think of as theoret-
ical grounding: drawing together the contexts of discovery
and contexts of justification in order to place principled lim-
its on theorizing about interaction. However, drawing these
contexts together in interaction research requires analysts to
take account of critical distinctions between what kinds of
evidence is available to analysts and the kinds of interac-
tional resources available to participants in the situation itself
(Garfinkel, 1964; Lynch, 2012). Figure 1 lists a few key re-
sources participants and analysts can both use when discover-
ing and justifying interactional phenomena, and (underneath,
in red) some of the resources for making sense of interac-
tion that are only available from one perspective or the other.
Some of these resources are shared, for example, both partic-
ipants and overlooking analysts can use observable features
of the setting and the visible actions of the people within it to
discover new phenomena. Both participants and analysts can
also observe when these visible actions are contiguous and
uninterrupted (Sacks, 1987), and can see if certain actions are
routinely matched into patterns of paired or ‘adjacent’ initia-
tions and responses (Heritage, 1984, p.256). Similarly, both
analysts and participants can observe when contiguous flows
of initiation and response seem to break down, falter or re-
quire repair to re-establish orderliness and ongoing interac-
tion (Schegloff, Jefferson, & Sacks, 1977). By contrast, many
other resources and methods for making sense of the situation
are exclusively available to one or another role. For example,
analysts can repeatedly listen to a recording, slow it down,
speed it up, and can precisely measure, quantify, and de-
duce cumulative facts that would be unimaginable to partici-
pants in the interaction. On the other hand, participants may
draw on their store of tacit knowledge and use introspection—
options which are not necessarily observable for overlooking
analysts—to make sense the current state and consequences
of the interaction. ‘Discovery’ for participants, then, is some
action or phenomenon observably discovered and treated as
mutually relevant with others in the situation. Justification is
the interactional work participants do with others in the set-
ting to display and uphold the mutual intelligibility and ra-
tionale of their actions: an imperative that Garfinkel (1967)

describes as ‘mutual accountability’. For analysts, discovery
and justification use as many of the same resources as pos-
sible, but are motivated by different concerns i.e. to provide
causal explanations for the events and phenomena discovered
for the purposes of scientific research, but without the urgent
imperatives of mutual accountability. The challenge for an-
alysts wishing to improve their theories by bringing together
contexts of discovery and contexts of justification is to con-
strain themselves to testing theories that deal with resources
and methods that are evidently available to both analysts and
participants.

Pre-experimental HARKing for better theories

When we advocate pre-experimental HARKing, it should be
clear that this proviso about using interactional resources
available to both participants and analysts excludes ‘ex-
ploratory data analysis’ (Jebb, Parrigon, & Woo, 2016) or
other uses of inferential statistics for pre-confirmatory the-
orizing since this is not something participants would be able
to use as a resource within their contexts of discovery or
justification. Rather, the research procedures recommended
here are inspired by conversation analysis (CA): an approach
to interaction research which exemplifies the use of empir-
ical constraints on theorizing (Schegloff, 2007, pp. xii-xiii),
and which has tended to avoid engagement with experimental
studies that necessarily prioritize theorizing in order to arrive
at causal explanations (Kendrick, 2017). The ‘theoretical as-
ceticism’ (Levinson, 1983, p. 295) of CA’s research practices
makes them very useful for drawing together contexts of dis-
covery and justification in a principled and coherent way (De
Ruiter & Albert, 2017). In relation to theorizing, we call these
practices ‘pre-experimental HARKing’ to draw attention to
the distinction between HARKing as a QRP (after having
produced a theory and tested it with an experiment), and CA’s
“qualitative, inductive, and strictly empirical” (Haddington,
Mondada, & Nevile, 2013, p.7) research processes of system-
atic observation and ongoing informal peer review that takes
place before any theorizing is allowed. One of the ironies of
theories and experiments in interaction psychology that use
corpora is that the ‘results’ (i.e. what actually happened in
the interaction) usually are known before the hypotheses or
research questions are formulated. It therefore makes sense
to use these data to develop better theories and operational-
izations before having to make key decisions about coding,
quantifying and analyzing interactional phenomena. The risk
otherwise is that what gets coded, quantified and tested may
not turn out to be observably relevant to the participants in the
interaction at all (Schegloff, 1993; Stivers, 2015). It should
be clear by now that the term HARKing is not used perjora-
tively here. Since existing data, intuitions, and past results
often provide the basis for theorizing at a pre-experimental
stage in any case, we advocate using CA’s systematic and
transparent procedures to constrain and ground those theories
empirically.
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Sharing contexts of discovery and justification

A ‘result’ in the participants’ context of discovery can be
thought of as the achievement of a reciprocal action in a social
situation such as successfully ordering a beer in a bar. This is
motivated quite differently from from the ‘results’ that might
be discussed in the analyst’s context if the researcher were,
for example, designing an experiment to try to figure out what
behaviors enable people to obtain beer in bars. Loth, Huth,
and De Ruiter (2013) show that going to a bar and system-
atically observing how beer-ordering is achieved through in-
teraction provides very informative and somewhat surprising
results as the basis for formulating new theories. They found
that all customers have to do to initiate a successful beer-
ordering interaction is to stand at the bar looking towards the
bartender and that any use of the stereotypical ordering-like
actions they had anticipated in fact proved to be unnecessary
and even potentially disruptive. The first step in drawing to-
gether contexts of discovery and justification, then, is to find
a setting where participants do observable interactional work
to achieve their results (getting a beer in a bar) in ways that
are informative for the analyst’s results (finding out how peo-
ple get beer in bars). CA terms this kind of social situation
that can be used as a starting point for analysis a ‘perspicu-
ous setting’ from the Latin perspicio ‘to see through’, denot-
ing a situation that functions like a microscope that analysts
can use to examine the local organization of human affairs.
Garfinkel (1992, pp. 184-186) emphasizes that in perspic-
uous settings participants’ affairs are “locally produced, lo-
cally occasioned and locally ordered” and that these function
as contexts of discovery and justification of what is relevant
for the participants, whose interactions in those contexts are
conducted without reference to analyst’s concerns. The bar
is an obvious choice as a perspicuous setting for exploring
beer-ordering, but even if there is no specific domain of in-
quiry, new questions can also emerge from repeated viewing
and ‘unmotivated’ analysis of data. For example, a corpus of
video recordings of guided walking tours has provided a per-
spicuous setting for discovering questions about how people
organize themselves as mobile groups (De Stefani & Mon-
dada, 2013), about the roles and procedures involved in get-
ting the group to examine something (De Stefani, 2010), and
to then coordinate the process of walking away together inter-
actionally (Broth & Mondada, 2013). The starting point for
Legal HARKing, then, is to find a perspicuous setting where
participants work together to achieve a given outcome in ways
that researchers can then observe and analyze as the basis for
formulating more interactionally grounded theories.

Transcribe interactionally relevant details

Conversational turn-taking is one of the most clearly observ-
able systematic forms of organization in interaction (Sacks,
Schegloff, & Jefferson, 1974). In this sense conversation
is a useful example of a context of discovery and justifica-
tion that is shared between participants and analysts alike. In
the context of conversation, participants discover things like

whose turn it is to talk next, and justify their discoveries us-
ing a clearly organized protocol for turn-allocation and turn-
transition. For conversation analysts, the turn-taking system
became a foundational context for discovery and justification
when Sacks et al. (1974) showed how it could explain sys-
tematic features of everyday interaction such as the tendency
for minimal gaps and overlaps in natural talk (a discovery that
has subsequently been tested experimentally and across mul-
tiple languages (Stivers et al., 2009)). CA’s transcription sys-
tem was devised by Gail Jefferson to highlight the systematic
patterns of overlap and variations in prosody and intonation
(Hepburn & Bolden, 2012). Although phonetic transcription
in IPA notation provides a much higher degree of accuracy
than standard orthography, these objective levels of descrip-
tion are not necessarily available to participants themselves,
and in any case people in everyday interactions do not usually
make an issue of pronunciation. Jeffersonian transcription is
relatively simple to read and use, and is optimised to spa-
tialize and represent the features of talk such as speed-ups,
stress, stretches, overlaps, and gaps that seem most relevant
to participants’ contexts of discovery and justification. Most
importantly, the activity of hand-transcribing conversational
data is a very useful pre-analytical activity in itself through
which researchers can become intimately familiar with their
data by watching repeatedly while trying to capture the fine
details of whatever features are observably relevant to the par-
ticipants themselves (Bolden, 2015). While all transcription
systems introduce the analytic perspectives and assumptions
of the analyst doing the transcription (Ochs, 1979), it makes
sense to use a system designed specifically to capture the de-
tails of talk most demonstrably relevant to how participants
maintain the smooth operation of the turn-taking system.

Use intersubjective review of subjective judgments
Another way to draw together the participants’ and analysts’
contexts of discovery and justification is to use the interac-
tional aptitudes of the analysts themselves as a heuristic de-
vice to explore what is going on in the interaction. This
may sound like an overly subjective form of judgment, but
since the object of inquiry for analysts is human interaction
where we have no better measuring device than our own so-
cial intelligence, it makes sense to use our skills as interac-
tants, even if we may not understand how these abilities work.
This problems of reliance on subjective intuition can be mit-
igated through interaction itself. The conversation analytic
‘data session’ is a research practice where analysts present
their data, describe what they see, and have their observations
tested against the intuitions and reasoned arguments of other
analysts. This is one of the least well-documented aspects of
CA, and is barely mentioned in the research or training litera-
ture (Sidnell & Stivers, 2012), although Ten Have (1999, pp.
140-141) provides a brief explanatory description.

“[The data session] often involves playing (a part of)
a tape recording and distributing a transcript...The ses-
sion starts with a period of seeing/hearing and/or read-
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ing the data, sometimes preceded by the provision of
some background information by the ‘owner’ of the
data. Then the participants are invited to proffer some
observations on the data, to select an episode which
they find ‘interesting’ for whatever reason, and formu-
late their understanding, or puzzlement, regarding that
episode. Then anyone can come in to react to these
remarks, offering alternatives, raising doubts, or what-
ever.”

The group often consists of both experienced and novice
analysts, so there is an element of ‘tradecraft’ and appren-
ticeship built into the structure of the data session (Jordan
& Henderson, 1995; Harris, Theobald, Danby, Reynolds, &
Rintel, 2012). Ten Have (1999) in fact attributes his learn-
ing CA to having attended data sessions with Gail Jefferson
and Emanuel Schegloff, so despite the lack of documentation,
the data session has clearly been central to CA from the start.
There is a scattering of advice about how to run such ses-
sions in some textbooks, in a few short papers (Hindmarsh,
2012) and even within some reflexive studies that explore CA
data sessions as interactional situations in themselves using
CA (Antaki, 2008; Harris et al., 2012). These accounts also
provide some useful technical advice, for example, Jordan
and Henderson (1995) suggest that the ‘owner’ of the data
plays back short clips of up to twenty seconds, then discusses
each clip, but limits the discussion to 5 minutes before look-
ing at more data, so that “no single participant can specu-
late for very long without being called upon to ground her
or his argument in the empirical evidence, that is to say, in
renewed recourse to the tape.” Heath, Hindmarsh, and Luff
(2010, pp. 156-157) have some similarly practical advice to
limit the session to 20 or fewer people, and not to “cheat and
look ahead, or rely on information exogenous to the clip it-
self”: essentially following the rule of thumb to avoid us-
ing resources or methods unavailable to participants them-
selves. Of course the frequent fast forwarding and rewind-
ing of recordings and many of the other analytical methods
described here do, nonetheless, rely on resources not neces-
sarily available within the participants’ contexts of discovery
and justification. However, since the data session is an in-
teractional situation where peers are involved in grounding
one another’s assumptions about the interaction through in-
teraction, there is also a degree of mutual accountability at
work that may compensate for the loosening of CA’s strict
methodological constraints. Through the data session, the-
ories and assumptions are subjected to open and self-critical
debate. Ten Have (1999) sums up this analytic attitude neatly:

“What is most important in these discussions is that the
participants are, on the one hand, free to bring in any-
thing they like, but, on the other hand, required to ground
their observations in the data at hand, although they may
also support them with reference to their own data-based
findings or those published in the literature. One of-
ten gets, then, a kind of mixture, or coming together,

of substantial observations, methodological discussions,
and also theoretical points.”

Even after the analyst’s painstaking transcripts and obser-
vations have run the gauntlet of multiple data sessions where
flaws in theory may be identified and discussed, the CA re-
search cycle has just begun by finding candidate phenomena
for analysis.

The analytical phases of pre-experimental
HARKing

Having attended multiple data sessions to explore candidate
phenomena and findings, there are several further stages re-
quired to develop analytically grounded theories about in-
teraction. Conversation analytic primers are now available
(Schegloff, 2007; Sidnell & Stivers, 2012; Ten Have, 1999),
so only a summary of analytic procedures is provided here.

After a series of data sessions, analysts collect multiple in-
stances of a target phenomenon each with minor variations
in terms of their composition, sequential structure and their
range of uses in interaction. Analysts often then work on
‘single case analyses’ involving an extended study of a few
episodes of interaction featuring the target phenomenon in
great detail. Over time, the analyst may build up hundreds of
cases, organized into ‘collections’ (Schegloff, 1996), working
towards a more complete characterization of the phenomenon
and its specialized variations. For example, Schegloff (1968)
describes collecting 499 cases of telephone call openings, and
considering his collection almost complete and ready to be
analyzed. It was the 500th case, however, which provided
him with a single ‘deviant case’ that forced him to re-evaluate
his findings about the sequential order of ringing and greeting
exchanges in telephone call openings. This example is often
cited to demonstrate the difference between these approaches
and more conventional case studies. Each single case starts
from first (interactional) principles in trying to explore the
setting from a vantage point as close to the context of dis-
covery and justification of the participants as possible. For
this reason, Schegloff’s (1968) example functions as a kind
of applied falsificationism: the only way the 500th case could
make sense from the analyst’s context was to (quite radically)
change the theory. Furthermore, long-standing collections
of often-analyzed phenomena become theory-like over time,
and can be subject to falsification and ongoing modification
through contradiction by subsequent CA findings, or through
changes in people’s patterns of behavior over time. For ex-
ample, since the mid-2000s the most common telephone call
opening sequence has changed significantly due to the preva-
lence of caller-ID on mobile phones (Raudaskoski, 2009).
This process of careful, qualitative analysis is required before
CA researchers even consider developing a formal coding
scheme (Dingemanse, Kendrick, & Enfield, 2016; Stivers &
Enfield, 2010) with which to quantify their findings (Stivers,
2015) and run experiments—although these last few steps are
still not widely accepted, and remain controversial within CA

1528



(Kendrick, 2017). While this overall procedure is clearly ex-
tremely laborious, it does have the reassuring advantage that
the phenomena described are guaranteed to have actually oc-
curred in reality, not only in our theoretical imagination.

Summary: Better theorizing after legal
HARKing

This paper argues for researchers of human interaction to de-
vote attention and resources to systematically exploring the
context of discovery where their theories will be formulated
by extending the falsificationist paradigm. Before we theo-
rize and then test our predictions experimentally, we suggest
researchers borrow methods from conversation analysis and
other formal inductive methods to enhance the performance
of our theories with a kind of pre-experimental ‘legal HARK-
ing’. This procedure involves using detailed Jeffersonian-
style transcription, holding data sessions and subjecting our
qualitative findings to ongoing, critical analysis before devel-
oping theories. By proceeding with our analysis with a sen-
sitivity to the kinds of resources that participants themselves
have at hand, we can identify interactional practices that are
psychologically relevant and consequential for participants
(and not just researchers), and empirically grounded in nat-
ural interaction. We expect this kind of grounding to improve
the relevance, robustness, and replicability of human interac-
tion research by producing more theoretically grounded hy-
potheses that we can then test using traditional experimental
methods. As long as—at this stage—we pre-register our ex-
periments, we can harness the performance-enhancing bene-
fits of legal HARKing while excluding the dangerous possi-
bility of ‘illegal’ post-experimental HARKing. More gener-
ally, since research practices are seen as ‘questionable’ in re-
lation to the conventions of a specific methodological frame-
work, we suggest that if we reconsider them at a critical dis-
tance from any one methodology, these practices may have
many potentially beneficial applications. From the perspec-
tive of the experimental research practices that predominate
within cognitive science and psychology (Toomela, 2014),
for example, the inductive categorizing and coding methods
of grounded theory may be seen as ‘questionable’. Similarly,
from the perspective of generalization-oriented experimen-
tal studies, the scope of theories derived from micro-analytic
methods such as CA (e.g. about turn-taking) can seem al-
most trivial (Heritage, 2008). However, taken together the
body of work derived from CA’s empirical studies constitutes
a very broad set of findings about interaction against which
generalized theories can be tested (De Ruiter & Albert, 2017).
While different research practices address different problems
and questions at different scales, they may also have some
useful practical and philosophical intersections. One scien-
tists’ ‘questionable’ research practice can be another’s means
of rigorous inquiry, and perhaps remaining ‘questionable’—
in the sense of being open to critical review—is something
more researchers could aim for in their research practices.
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Abstract

We present the Retention and Recognition model (R&R), a
probabilistic exemplar model that accounts for segmentation
in Artificial Language Learning experiments. We show that
R&R provides an excellent fit to human responses in three
segmentation experiments with adults (Frank et al., 2010),
outperforming existing models. Additionally, we analyze the
results of the simulations and propose alternative explanations
for the experimental findings.

Keywords: artificial language learning; segmentation;
statistical learning; cognitive modelling

Introduction
A crucial step in the acquisition of a spoken language is to
discover what the building blocks of a speech stream are.
Children perform such segmentation by exploiting a variety
of statistical and prosodic cues in the input. Understanding
the unique ability of humans to acquire speech requires an
understanding of the nature of this learning mechanism.

Artificial Language Learning (ALL henceforth) has, over
the last 20 years, become a key paradigm to study the nature
of learning biases in speech segmentation and rule general-
ization. In experiments in this paradigm, participants are ex-
posed to artificial stimuli designed to incorporate particular
aspects of speech and language, and they are subsequently
tested on whether and under which conditions they discover
the regularities in such artificial language.

A key result in this tradition is the demonstration that 8
month old infants are sensitive to transition probabilities be-
tween syllables, and can segment a speech stream based on
these probabilities alone (Saffran, Aslin, and Newport (1996),
Aslin, Saffran, and Newport (1998)). This ability to track
statistics over concrete fragments of the input, known in the
literature as statistical learning, has also been demonstrated
in adults (Saffran, Newport, & Aslin, 1996).

However, these experiments do not reveal whether the un-
derlying cognitive mechanism does operate over transitional
probabilities or, instead, it performs computations of an en-
tirely different nature but which can be described as transi-
tional probabilities. In order to reveal the precise underpin-
nings of such cognitive mechanism, a useful methodology is
computational modeling.

There exist several segmentation models in the literature,
offering alternative accounts of the nature of this process.
Thus, these models need to be compared and analyzed against
empirical data to validate their predictions. Possibly the
most comprehensive study for the evaluation of computa-
tional models in segmentation is presented in Frank et al.

(2010). In that study, the authors evaluate a range of mod-
els based on their goodness of fit to three segmentation ex-
periments that involve a great number of different conditions
–thus providing a rich dataset for comparing the models.

In this paper we present one model for to account for seg-
mentation experiments in ALL. Our model, called the Reten-
tion & Recognition model (henceforth R&R), is a novel pro-
cessing model that explains segmentation based on the reten-
tion and recognition of subsequences of the input. Follow-
ing Frank et al., we test our model against the experimental
data from their study, and compare the goodness of fit of our
model with those reported in previous studies.

The R&R Model
The model we propose, which we call the Retention-
Recognition Model (R&R), takes a sequence of syllables X =
〈xo,x1,x2, . . . ,xm〉 as input, and considers all subsequences of
length l = 1,2, . . . , lmax as potential segments to be memo-
rized.

The model maintains a memory M, which is a set of
segment types and their associated counts. The memory is
initially empty (M0 = /0) and it changes with update steps
that either add an entry (with count 1) or increase the count
of an existing entry:

ADD: Mt+1 ←Mt ∪{
〈〈

x j, . . . ,xk
〉
,1
〉
}

INCREMENT:
Mt+1 ←Mt −{

〈〈
x j, . . . ,xk

〉
,c
〉
}∪{

〈〈
x j, . . . ,xk

〉
,c+1

〉
}

For any candidate segment s ∈ S (with segments pro-
cessed in the order they are encountered in the stream), the
model checks whether it is stored in memory and, if so,
what the count of that segment in memory is (its ‘subjective
frequency’). The model may (with a probability p1 that
increases with that count) recognize it (i.e., match it with a
segment in memory). If it succeeds, the count is incremented
with 1. If it fails to recognize the segment, the model might
(with a probability p2 that decreases with the length of the
segment) still retain it (i.e., add it to memory with initial
count of 1 if it was not stored, or in the event that a previously
stored segment was not recognized and is retained –very
rare in practise– increase the count by 1 as a form of ’late
recognition’). In this way, the model builds a memory of
segments that have different degrees of familiarity depending
on their distribution in the stream. R&R’s flowchart is given
in Figure 2.

The key components of the model are the equations for
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computing the recognition probability (p1) and retention
probability (p2). Recognition should become more proba-
ble the more often a segment has been recognized, but de-
crease with the number of segment types in memory (|M|).
Hence, we define p1 as follows, with B and D free parame-
ters (0 6 B,D 6 1) that can be fitted to the data:

p1(s,M) = (1−BCOUNT(s,M)) ·D|M| (1)

If a segment is not recognized, the model considers retain-
ing it with a probability that decreases with the length of the
segment (l(s)), and which can be boosted if there are addi-
tional cues favoring this segment (e.g., a pause preceding it).
Hence, we define p2 as follows, with A and µ free parameters
(0 6 A 6 1; 0 6 µ) that can be fitted to the data:

p2(s) = Alength(s)·µ ,where µ =

{
µwp after a pause
µnp otherwise (2)

The A parameter thus describes how quickly the retention
probability decreases with the length of a segment. The prob-
ability is also affected by the presence of additional cues; in
this paper, we consider only the pauses between sentences as
additional cues. 1

Putting everything together, the model can be described in
pseudocode as in Figure 1. As can be seen, R&R is a simple
model, but it gives a surprisingly accurate match with empiri-
cal data, as we will explore in the next sections, without even
taking processes such as forgetting, priming, interference and
generalization into account.

Related Models
There exist several models of segmentation in the literature.
We do not have the space to address them all here, but we
discuss how our model relates to those to which it has more
similarities.

The recognition component of our model yields rich-get-
richer dynamics (and thus consistently produces very skewed
count distributions over segments in memory) similar to that
of non-parametric Bayesian models, such as the Bayesian
Lexical Model (BLM henceforth) in Goldwater, Griffiths, and
Johnson (2009) (adapted for ALL in Frank et al. (2010)). The
BLM implements such dynamics with a Dirichlet process.
The main assumptions of this process are: (i) the probabil-
ity of a word in the ith position is proportional to the num-
ber of occurrences of this word in previous positions; (ii) the

1An earlier version of R&R (Alhama, Scha, and Zuidema (2016),
Alhama and Zuidema (2016)) features a different probability for re-
tention, with a binary switch over an attenuation parameter. This
design was inspired by experimental studies in which the stimuli
eventually contained 25ms pauses, a duration that is supposed to be
perceived by humans only subliminally. The stimuli we plan to use
for our simulations, based on Frank et al. (2010), differ significantly
in the use of pauses, which have a duration of 500ms (and therefore
should be clearly perceived). The retention probability we present
here is more general, since the effect of pause length could be ac-
counted for with different values of µ.

Input: Stream X , and empty memory M0← /0.
Output: Memory Mn+1.
/∗ Compute candidate segments: ∗/
S← 〈s0,s1, . . . ,sn〉
/∗ Process each segment: ∗/
for i = 0 to n:

/∗ Compute the recognition probability: ∗/
p1 = p1(si,Mi)
/∗ Compute the retention probability: ∗/
p2 = p2(si,Mi)
/∗ Draw two random numbers ∗/
r1 ∼U(0,1)
r2 ∼U(0,1)
/∗ Recognize, retain or ignore: ∗/
IF (r1 < p1)

Mi+1← increment(si,Mi)
ELSE IF (r2 < p2)

Mi+1← add(si,Mi)
ELSE

Mi+1←Mi

Figure 1: Pseudocode describing the R&R model.

relative probability for a new word type in the ith position
is inversely correlated with the total number of word tokens,
and (iii) a new word type is more probable if it is shorter.
Assumption (ii) does not allow for direct comparison, since
R&R is not a generative model, and therefore it does not pro-
vide a probability for new types —rather, the incorporation
of new types to the memory of the model depends on the re-
tention probability, and it is based on a preference for shorter
sequences (an intuition encoded also in assumption (iii) of the
Bayesian model). As for assumption (i), the same principle
is incorporated in the recognition process in R&R; however,
in our model, the counts of the number of occurrences of a
word is based on the subjective frequencies resulting from
memorization, while in the BLM, these counts are based on
absolute frequencies of the current hypothesis. This reflects
a fundamental difference between the two approaches, which
concerns their level of analysis (Marr, 1982). The Bayesian
model is framed at Marr’s computational level, and thus, it
operates over the whole stimuli, since it does not incorporate
perceptual or memory constraints (although some of the ex-
tensions in Frank et al. (2010) experiment with limitations on
memory capacity, leading to a somewhat hybrid model; we
return to this point later). In other words, the BLM is not pro-
posed as a mechanistic explanation of the cognitive processes
involved in the experiment; on the contrary, R&R is a pro-
cessing model, which postulates that cognitive processes of
retention and recognition, and psychological representations
of exemplar segments are responsible for segmentation.

An existing model that is also pitched at Marr’s process-
ing level is PARSER (Perruchet & Vinter, 1998). PARSER
is a symbolic model, built around basic principles of associa-
tive learning and chunking, that shares many similarities with
R&R. Both PARSER and R&R are exemplar-based models
that build a lexicon of segments (exemplars), and use this
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Figure 2: R&R:The Retention-Recognition Model

lexicon of already-memorized segments to decide on further
segments to memorize. Each segment in the lexicon is stored
together with a score that determines the impact of this seg-
ment in the next steps of the segmentation process. Thus, the
models are similar in their procedure, but there are notable
differences between them. One of them is the probabilistic
nature of their components. For PARSER, the stochasticity is
limited to the random selection of the size of the next segment
to read from the stream. In contrast, R&R considers all pos-
sible subsequences of the stream (up to a maximum length),
as inspired by research in Data-Oriented Parsing tradition
(Scha (1990), Zuidema (2006)). Additionally, the model is
inherently probabilistic in its basic processes of retention and
recognition.

There exist other differences in the procedure of these ap-
proaches. To begin with, the process of retention in R&R
penalizes longest segments, on the basis that they would re-
quire more working memory. However, PARSER is a chunk-
ing model, so it implements the opposite principle: whenever
several segment candidates are possible, it selects those that
are built of the longest units, creating in this way a bias for
larger units. As for the process of recognition, it is implicitly
implemented in PARSER when it maps the next segment to
be read against the units in memory. This process involves a
binary threshold: only units with weight above the threshold
can be recognized as components of the segment (but those
below the threshold are retained). In contrast, the interac-
tion between recognition and retention in R&R is based on a
graded probabilistic choice. Finally, an important difference
between the models is that R&R does not implement any form
of forgetting. Although we do not claim that humans are en-
dowed with perfect memory, our results suggest that forget-
ting does not seem to play a key role in the timecourse of the
experiments.

On the other extreme, at Marr’s implementational level, we
find TRACX (French et al., 2011; French & Cottrell, 2014),
a connectionist proposal that is also based on the recogni-

tion of subsequences. TRACX is an autoencoder model that
learns a representation for the input data. The error of the out-
put layer is computed by comparing it with the input, and it
serves as an indication of the degree of recognition of the in-
put. The model processes the input stream sequentially, main-
taining a context window. After successful recognition of a
segment, the internal representation learned by the network
is used as the context for the next segment to be presented.
In this way, contiguous segments that are successfully recog-
nized are gradually represented as a single chunk, and there-
fore can be recognized as a unit. This approach shares with
R&R the intuition that words are consolidated in memory af-
ter repeated recognition; however, like PARSER, TRACX is
a chunking model, that is, it is oriented to the integration of
syllables in order to build larger fragments. In contrast, in
R&R, words emerge in a process that actually penalizes larger
fragments, as a consequence of consolidated memorization of
statistically salient segments.

To sum up, R&R constitutes a new approach to modelling
segmentation that offers a processing level explanation of the
identification of words in a speech stream, which emerges as
a result of the interplay between probabilistic memory pro-
cesses. We now proceed to validate this model against empir-
ical data.

Fitting R&R to Experimental Data
Experimental Results

Frank et al. investigate how distributional aspects of an arti-
ficial language have an effect on the performance of human
adults in segmentation. Each of their three experiments in-
volves a range of conditions that vary in one particular dimen-
sion: (i) sentence length, (ii) amount of exposure (number of
tokens) and (iii) vocabulary size (number of word types).

The stimuli consists of an auditory sequence of sentences,
each of which is created from a sample of artificial (unexist-
ing) words. The sentences are separated with a silence gap
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of 500 ms, while there is no acoustic nor prosodic cue indi-
cating the separation between words within a sentence. After
the participants have been exposed to a sample of sentences
thus constructed, they participate in a 2-Alternative-Forced-
Choice test (2AFC). The two alternatives in the test consist on
one word from the artificial language (a correctly segmented
sequence), and one “part-word” (a sequence resulting from
incorrect segmentation).

To analyze the results, the mean number of correct choices
is computed across participants in each condition. The curves
formed by these datapoints (ordered by condition value) is
taken as indication of how segmentation performance is af-
fected by the varied dimension. These curves (which are
shown in the continuous line in Figure 3) show that: (i) hu-
man adults have more difficulty in segmenting words when
sentences are longer, presumably because they do not benefit
from the extra cue provided by the silence gaps; (ii) when the
amount of word tokens is varied, more occurrences of words
facilitate the identification of such words, and (iii) the size
of the vocabulary seems to cause lower performance in the
experiment, with an almost-linear inverse relation.

Goodness of fit

The study by Frank et al. evaluates a number of segmen-
tation models in terms of their goodness of fit to the curve
that describes the average performance of the human subjects.
The evaluated models include the ones previously described
(BLM, PARSER, and later, also TRACX, reported in French
et al. (2011)), and four additional approaches, all of them con-
sisting on normative models: Transitional Probabilities (TP),
a Bayesian version of TP (by Frank et al.), Mutual Informa-
tion (MI), and a version of MI model that identifies words
when they exceed a threshold both on MI and raw frequency
counts (MI Clustering, Swingley (2005)).

In order to compare the models, Frank and colleagues con-
vert the output of each model to a metric that can be inter-
preted as behavioural predictions for the 2AFC task. To do
so, they employ the Luce Rule (Luce, 1963). Given a pair of
sequences s1 and s2 in test, the Luce Rule defines the proba-
bility of choosing s1 as can be seen in Equation 3:

P(s1) =
Sub jFreq(s1)

Sub jFreq(s1)+Sub jFreq(s2)
(3)

Once the scores have been transformed to probabilities, the
performance of the models is computed as the mean proba-
bility of choosing the correct item, averaged over participants
and test trials. These datapoints are arranged in a curve in the
same way as with human participants, and the correlation in
the shape of these curves —measured with Pearson’s r— is
taken as an indication of good fit.

Likewise, we run simulations of the three experiments with
R&R, transforming its output (the subjective frequencies)
into test trials with the Luce Rule. We run a search over
the parameter space, in order to find which parameters yield
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(a) Varying sentence length (experiment 1).
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(b) Varying the number of tokens (experiment 2).
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(c) Varying the vocabulary size (experiment 3).

Figure 3: Curve of performance for all conditions in the ex-
periments in Frank et al. (2010).

best correlation with human performance2 3. The best results
are shown in Table 1. As it can be seen, our model outper-

2The only parameter that we keep fixed in our search is µnp =
1.0, since the interpretation of the relative importance of pauses is
clearer if only one of the µ parameter is varied.

3We optimize our parameters on the same data we evaluate the
model on, as seems to have been the case for the models we compare
with. This brings the risk of overfitting, so in the discussion section
we briefly discuss better ways of evaluating models.
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Table 1: Comparison of model results to human performance. The reported metric is Pearson’s r. ∗Experiment 2 was not
reported in French et al. (2011). Therefore, the mean can be taken to be 0.63 (for a Pearson’s r of 0.0 in experiment 2) or 0.945
(averaging only over experiments 1 and 3).

Exp. 1: Exp. 2: Exp. 3:
Sentence Length Amount of tokens Word types Mean

1 Transitional Probabilities 0.84 0.43 -0.99 0.09
2 Mutual Information 0.83 -0.32 -0.99 -0.16
3 MI Clustering 0.11 -0.81 0.29 -0.13
4 PARSER 0.00 0.86 0.00 0.28
5 TRACX 0.92 — 0.97 —∗

6 BLM 0.94 0.89 -0.98 0.28
7 Bayesian TPs 4% data 0.82 0.92 0.96 0.90
8 BLM 4% data 0.88 0.85 0.90 0.87
9 BLM Uniform forgetting (types) 0.95 0.92 0.73 0.86

10 BLM Prop. forgetting (types) 0.88 0.87 0.88 0.87
11 BLM Uniform forgetting (tokens) 0.86 0.82 0.97 0.88
12 R&R 0.98 0.94 0.98 0.97

forms all the other models in the three experiments, with a
parameter setting that is common to the three experiments
(A = 0.008,B = 0.923,D = 0.866, µnp = 1.0, µwp = 0.234).
The curves of the performance of both human adults and
R&R can be see in Figure 3.

When it comes to experiment 1, one possible explanation
for this result is that R&R is the only model that explic-
itly models the effect of the silence gaps. By increasing the
length of sentences while keeping the number of types and
tokens constant, the stimuli necessarily consists of fewer sen-
tences when those are made longer; therefore, the number of
silence gaps also decreases. For this reason, the performance
of R&R declines with longer sentences, since it cannot obtain
the same benefit from exploiting silence gaps. This explana-
tion for the superior performance can be supported by looking
at the values of the µwp parameter: the best fit of the model
requires a low value for this parameter (µwp = 0.234)), so in
the presence of a pause it substantially boosts the otherwise
very small (Aµnp = 0.008) retention probability.

In the second experiment, normative models based on point
estimates (those based on TP and MI) do not offer a good fit
with the data, since those metrics do not benefit from the ac-
cumulation of evidence offered by the increased number of
tokens (contrary to humans). Frank et al. suggest that humans
may be forgetting much of what they hear, which would ex-
plain the increased performance with the number of tokens.
However, the extended versions of the BLM that incorporate
some form of evidence limitation (with input data restricted
to a random 4% sample) or forgetting exhibit mixed results
(rows 8, 9, 10, 11 on table 1). Moreover, these extensions ap-
pear unrealistic from a cognitive perspective (e.g. one of the
extensions forgets a random token when the memory capacity
is full), and additionally, the resulting models are somewhat
difficult to interpret, since after incorporating memory limita-
tions, they are not computational level approaches anymore.

PARSER offers a more intuitive account of forgetting, with
modest correlation with human data; however, this model
has zero correlation in the other experiments. So this pat-
tern of results suggests that a rich-get-richer form of recogni-
tion combined with a process of retention as defined in R&R
seems a more compelling explanation than a process of recog-
nition with forgetting.

Also on experiment 3, the R&R model exhibits the best
correlation with human data, followed closely by TRACX.
Again, normative models show the opposite trend from hu-
mans (rows 1, 2, 3, 6 on table 1), since they do not have any
memory limitations, and thus the effect of increasing vocab-
ulary size only has an effect in the distributional properties
of the stream, which result in less statistically coherent part-
words. This is the case also for PARSER and the BLM. Frank
et al. attribute this failure to the lack of forgetting in the mod-
els, but the same issues we have discussed above apply to
this experiment. Therefore, the more convincing approaches
are TRACX and R&R. But although TRACX naturally re-
produces the human results without forgetting, it is difficult
to interpret what is the component of the model that is re-
sponsible for its success in this experiment. Conversely, R&R
explicitly incorporates a parameter that penalizes recognition
based on the number of memorized types. In line with our
intuitions, the corresponding parameter value for the best fit
amounts to D = 0.86, which results in a relatively large pe-
nalization for recognition4. Therefore, in conditions of high
number of types, humans have an increased difficulty in rec-
ognizing sequences, most likely originating from the process
of matching the input segment to one of the many segments
stored in memory.

4Even though the values that parameter D can take range from
0.0 to 1.0, the number of types stored by R&R grow very rapidly
in our model due to the memorization segments of any length. For
this reason, small values are impracticable, since the probability of
recognizing a segment quickly drops close to zero.
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Discussion
With our model, R&R, we provide a theory of the process of
segmentation based on the interaction of two cognitive mech-
anisms of memorization. We believe that one of the best fea-
tures of our model is its transparency: pitched at the process-
ing level, and with a very simple formalization that involves
clearly identified components, R&R allows for straightfor-
ward interpretation of the results. Even though, for reasons
of space, we have not been able to report a thorough analy-
sis of the behaviour of the model under different parameter
settings, we have shown a glimpse on how these parameters
allow for the identification of the relative importance of each
component.

This study shows that our model can fit 2AFC data on hu-
man adults with a correlation that is at least on par with that
of other models. Even though we consider that the evalua-
tion data and procedure initiated by Frank et al. is one of the
most thorough in the ALL modelling literature, in Alhama et
al. (2015) we argue that averaging the responses over stimuli
classes is likely to mask important differences between other-
wise seemingly equivalent models. The work reported in this
paper is a necessary first step to confirm that R&R is com-
parable to other models, but for future work it is important
to move to evaluating models based on response distributions
over individual test items (albeit our first attempts to evaluate
our model with this procedure are inconclusive), and replace
the Luce choice rule and correlation metric with a more cog-
nitively realistic response model.

Finally, segmentation is a fundamental ability for language
learners, but any segmentation model must at some point be
related to other cognitive mechanisms that operate in natu-
ral and artificial language learning. In Alhama and Zuidema
(2016) we show that the subjective frequencies computed by
R&R have the necessary distributional properties to explain
some of the main results in rule learning in ALL. Future work
may explore how the model relates to other linguistic pro-
cesses (e.g. word learning), so that we can eventually achieve
a complete understanding of how segmentation relates to the
complete picture of language learning.
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Phonological features in the bilingual lexicon: Insights from tonal accent in
Swedish
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Abstract: Scandinavian languages like Swedish employ tonal accent as a lexical phonological feature, where suprasegmental
information can be the sole factor differentiating between words. Using cross-modal semantic fragment priming we tested
the following: (a) Do monolingual speakers of Swedish use tonal accent information during lexical access? (b) Do bilingual
speakers, who grew up with one tonal (Swedish) and one non-tonal language, treat this feature the same way as monolinguals?
Our results show that for monolinguals, accent mispronunciations eliminate priming effects, implying that tone is used during
lexical access. For bilinguals, by contrast, mispronunciation sensitivity depends on both the accent type and its distribution
across the linguistic input, as well as on the lexical neighbourhood.
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Abstract
Semantic networks generated from different word corpora
show common structural characteristics, including high de-
grees of clustering, short average path lengths, and scale free
degree distributions. Previous research has disagreed about
whether these features emerge from internally- or externally-
driven properties (i.e. words already in the lexicon vs. regu-
larities in the external world), mapping onto preferential at-
tachment and preferential acquisition accounts, respectively
(Steyvers & Tenenbaum, 2005; Hills, Maouene, Maouene,
Sheya, & Smith, 2009). Such accounts suggest that inherent
semantic structure shapes new lexical growth. Here we ex-
tend previous work by creating semantic networks using the
SEEDLingS corpus, a newly collected corpus of linguistic in-
put to infants. Using a recently developed LSA-like approach
(GLoVe vectors), we confirm the presence of previously re-
ported structural characteristics, but only in certain ranges of
semantic similarity space. Our results confirm the robustness
of certain aspects of network organization, and provide novel
evidence in support of preferential acquisition accounts.
Keywords: semantic networks; word learning; preferential ac-
quisition

Introduction
A word functions as an atomic unit of meaning, in principle
carrying independent semantic content. In practice though, it
occurs with its fellow words, as humans produce language.
From this word-stream, infants begin to understand words by
6-9 months (Bergelson & Swingley, 2012), and to produce
them soon thereafter. Here we aim to shed light on how these
semantic atoms are organized in the mental lexicon, and the
degree to which this representational structure is reflective of
the conceptual order found “out there” in the world.

To explore this, we turn to semantic networks, an idea dat-
ing back nearly a century (Trier, 1931). Given that words
are related along semantic dimensions, characterizing these
relations is a first step towards understanding their represen-
tational structure. Previous research on semantic networks
generated from word corpora have shown small-world con-
nectivity (i.e. any given word node is not very many nodes
away from any other), as well as scale free degree distribu-
tions (i.e. a few nodes serve as ‘hubs’, and node distribu-
tion follows a power law such that probability(k) ≈ k−α ,
for a node with degree k, and scaling parameter α) (Sigman
& Cecchi, 2002; Steyvers & Tenenbaum, 2005; Hills et al.,
2009). This suggests that semantic information may be in-
herently structured in nonrandom, clustered, and highly or-
ganized ways, which internal representations may mirror or
exploit1 (Todd, Hills, & Robbins, 2012). Scale invariance

1Graphs with high clustering coefficients and low average path
lengths, as in small-world networks, are efficient to search and relay
information through, while scale invariance allows a single algo-
rithm to operate across seemingly disparate representational frames.

(here equivalent to scale-free distributions), has been found
in many cognitive domains and diverse natural phenomena; it
is argued to be a general unifying principle of cognitive orga-
nization (Kello et al., 2010).

Barabási and Albert (1999) suggest that graphs with degree
distributions that follow power laws imply constraints on the
processes which formed them. Their model for generating
such networks relies on incremental growth and a process of
“preferential attachment” (hereafter PAT), whereby existing
nodes with many connections are preferentially “chosen” by
new nodes. While their resulting graphs display power law
degree distributions, they did not find small world connec-
tivity of the kind found in semantic networks, such as those
generated from WordNet and Roget’s Thesaurus. Building on
this, Steyvers and Tenenbaum (2005) proposed a model for
incrementally growing semantic networks similar to Barabási
and Albert (1999), which indeed resulted in both small world
and scale free structures. Their growth process centered on
semantic differentiation, i.e. new words that are more con-
trastive with existing words are preferentially incorporated
into the graph; they include a frequency parameter as well.
The resulting semantic graphs showed degree distributions
which reflected the relative time at which a particular node
was added to the network: age-of-acquisition (AoA) norms
for words corresponded to the relative number of connec-
tions in these graphs. PAT-based graphs inherently bias nodes
which are added earlier to have higher degree.

Steyvers and Tenenbaum (2005) suggest that the structure
of internal representations guides the selection process of
new words or concepts. In contrast, Hills et al. (2009) pro-
pose that the connectivity of words in the external environ-
ment plays a guiding role in the acquisition of new words.
In this alternative, dubbed preferential acquisition (hereafter
PAQ), the relative salience between unlearned words directs
new node integration into the lexicon. Under PAQ, the struc-
ture of the external semantic ground is itself scale-free, clus-
tered, and small world, leading internal representations to
mirror this structure as lexical items are added. This con-
trasts with PAT, which suggests that the structuring is a conse-
quence of incremental semantic network growth. Under PAQ,
the higher a word’s contextual variety, the more interactions
it has with other elements in the external ground. This results
in more neighbors in semantic network space, making it more
linguistically salient to the learner. Indeed, evidence by Hills,
Maouene, Riordan, and Smith (2010) suggests a role for con-
textual variety and associative density in noun lexical devel-
opment in particular. In the present work, we build on these
previous results, combining approaches that suggest network
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properties arise from incremental generative processes with
networks that are definitively non-generative, as a window
into how external and internal semantic spaces may influence
the growing noun lexicon.

One limitation of previous work concerns operationaliz-
ing semantic relatedness, generally achieved through hand-
tagged features or word associations (Steyvers & Tenenbaum,
2005; Hills et al., 2009). Hand-tagged features may not re-
flect the underlying semantic organization given that they
stem from an overt metalinguistic task. Indeed such fea-
tures do not produce scale free graphs or predict AoA. Word
association data lead to directed networks, which may ob-
scure inherent transitivity between word pairs (unless both
words have the other as their associative target). It’s not clear
whether this directedness is inherent in the lexicon. While
asymmetry is conspicuous in human similarity judgments
(Tversky, 1977), this may be a function of task rather than
underlying semantic representations. In the present work, we
rely on neither hand-tagged features nor directed associations
in building our semantic graphs.

Given the goal of explaining how semantic structure
emerges, a further limitation of previous work lies in the con-
stituent word nodes in the semantic networks, which used e.g.
free associations, Roget’s Thesaurus, and WordNet, rather
than child-directed corpora. In this paper, we make use of a
new corpus of words from infant-caretaker interactions. This
allows us to examine whether scale free distributions, small
world connectivity, and links to lexical development trajecto-
ries are limited by corpus origin, and thus whether using a full
range of concrete nouns children are exposed to in naturalistic
settings renders different results.

Here we extend previous work and begin to address these
limitations by building ecologically valid semantic graphs of
early linguistic input. We use modern vector space methods
to calculate undirected semantic relations, resulting in a gra-
dient of networks parameterized by degree of similarity. We
limit network nodes to only those which infants’ hear and em-
bed them in a space which approximates a common semantic
ground shared by infants and adults alike. We also investigate
links between word frequency in the corpus, and connectivity
rank in network space.

Present Study
We generate networks using a new model of semantic relat-
edness: vectors trained with GloVe (Pennington, Socher, &
Manning, 2014). We first determine whether our networks re-
produce previously reported small world structure, and scale
invariance (i.e. power law distributions). Such structures are
consistent with PAT or PAQ. However, only PAT proposes
that such structures arise due to incremental growth mecha-
nisms (Barabási & Albert, 1999). PAT suggests that words al-
ready in the internal lexicon guide new word selection: early
words have higher degree than later-added words, i.e. new ad-
ditions “prefer” to attach to words with higher degree. In con-
trast, PAQ proposes that external network connectivity drives

node addition, suggesting that internal structures mirrors ex-
ternal structure, which may be scale-free, small-world, or
not. Because our networks are built using the GloVe vectors,
they are, by definition, non-generative and non-incremental:
showing scale free and small world behavior in our networks
would suggest this structuring might exist without PAT’s as-
sumed incremental generative growth processes.

As a proxy for AoA, we make use of parent-reported
vocabulary norms from WordBank (Frank, Braginsky,
Yurovsky, & Marchman, 2016), a compilation of the
MacArthur-Bates Communicative Developmental Inventory
(CDI.) We assume words known by more infants at a given
age have been in the lexicon longer. Here we attempt to
replicate network structure and AoA correlations originally
presented as evidence for PAT, while violating PATs assump-
tion of incremental growth. If successful, it would imply that
scale-free structure does not itself depend on PAT.

We also test for evidence of PAQ, by determining whether
words that go from being poorly-known to well-known over
time have more connections in the externally-based network
than those that remain poorly known over time. That is, we
test PAQ’s proposal that high degree nodes in networks gen-
erated from external linguistic input are acquired earlier than
lower degree nodes in those same networks. Notably, PAQ
models do not depend on power law distributions or scale
free behavior, but rather on children selectively integrating
salient (more densely connected) words from all possible lex-
ical items they’re exposed to. If adult sampling is also inher-
ently biased to those words which have high degree in seman-
tic network space, then we expect too that highly frequent
words have higher connectivity relative to all child-directed
words. Because our corpus is generated from a large sam-
ple of child-directed speech, we can further compare word
frequency statistics with degree distributions generated using
the same set of words.

Method
Data
The SEEDLingS corpus (Bergelson, 2016a, 2016b) comes
from home recordings of 44 infants from upstate New York,
followed from 6 to 17 months. Each month, a daylong au-
dio recording and hour-long video recording were collected.
All videos and 3-10 hours of each audio recording were man-
ually tagged for concrete nouns directed to and/or attended
by the child, creating tags of several thousand hours of nat-
uralistic interactions between infants and caregivers. We ex-
clude utterances made by the child, resulting in a final dataset
of 4359 unique noun-types (194204 tokens). Plurals and
diminutives were consolidated into a “basic level” proxy for
word lemmas for each recording. These nouns were used
to generate the SEEDLingS-All graphs. We also generate
graphs for 6 month recordings alone (1855 types, 29289 to-
kens; SEEDLingS-6mo) and a 16/17 month combined set
(1708 types, 26969 tokens; SEEDLingS-16+17mo), to con-
trast networks generated from speech to pre-verbal infants
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and speech to newly verbal toddlers; the SEEDLingS net-
works are our model of the external linguistic environment.
We generated an additional network (WordBank), using only
the 369 nouns on the CDI; this serves as our internal semantic
network, given that it only includes words that (some) 16-30-
month-olds produce.

As our measure of relative AoA, we used by-word sum-
mary data from the online WordBank repositories (Frank et
al., 2016). This data includes productive vocabularies for
children aged 16 to 30 months (reported productive vocab-
ulary is generally more reliable than reported receptive vo-
cabulary.2 We make the assumption that words said by more
children at a given age entered the lexicon earlier. Indeed,
the age at which a word is produced by 50% of children, the
AoA metric used by Hills et al. (2010), is significantly in-
versely correlated with the percentage of production at 16, 23,
and 30 months (r = −0.78, −0.97, and −0.88 respectively;
all p < 0.005). Furthermore, AoA measures correlate with
children’s elicited naming rates (Morrison, Chappell, & Ellis,
1997). We use WordBank norms rather than the SEEDLingS
infants’ own productions, as an independent and extremely
large-n (n = 5450, for English) estimate of children’s knowl-
edge for each word in our networks, removing potential de-
pendencies in our analyses.

GloVe Vectors
Since our dataset is not tagged with semantic features, and
since results with hand-engineered features have been mixed,
we chose to follow a method described by Steyvers and
Tenenbaum (2005) and use semantic vector space models to
generate edges between any nodes above a given similarity
threshold. We build on their use of Latent Semantic Analysis
(LSA) vectors. In that work, LSA vectors (which along with
other geometric methods, are non-incremental) did not gen-
erate scale free networks; this result was used to suggest that
such approaches are incompatible with incremental growth
and PAT. To generate our graphs, we use pre-trained word
vectors produced by GloVe, a recently developed algorithm
for word embedding (Pennington et al., 2014). Using this al-
gorithm, we can investigate whether we find scale free and
small world graphs; if so, the original failure to do so might
be LSA-specific, and not a necessary consequence of PAT, as
the authors suggested.

GloVe has been demonstrated to have higher perfor-
mance on many different word similarity tasks compared to
word2vec and matrix factorization methods using SVD. Here,
we opted to use vectors trained on the Common Crawl cor-
pus with 42 billion tokens, resulting in 300 dimensional vec-
tors for 1.9 million unique words.3 In some sense this ’full’
dataset provides word similarity proxy based on the target
(i.e. adult) meanings the child is acquiring. Further analy-
ses using vectors trained on CHILDES (MacWhinney, 2000),

2SEEDLingS networks contain many more nouns than the
WordBank network (resulting in different connectivity patterns), but
AoA data is only available for the 369 CDI nouns for all networks

3http://nlp.stanford.edu/projects/glove/

displayed analogous and in some cases even stronger pat-
terns than the current results.4 This to us suggests consis-
tency in the linguistic manifestation of word meaning (and
perhaps their concomitant cognitive processes) at both large-
and narrow-sampling scales.

Similar to LSA, GloVe learns vector representations of
words from co-occurrence matrices built from large text cor-
pora. It instantiates the distributional hypothesis of linguis-
tics, famously articulated by Firth (1957): “you shall know
a word by the company it keeps”. Because the GloVe vec-
tors encode co-occurrence statistics derived from natural lan-
guage, our similarity measures also indicate the degree to
which two words share contextual coherence. I.e., the more
connections a word has in the semantic network, the more
words it shares this coherence with. Given this high dimen-
sional encoding space, we can use a continuous metric of sim-
ilarity. Iterating through similarity thresholds, we create a
gradient of networks to study.

Generating Semantic Networks
We generate graphs across a range of similarity thresholds
(ε). Our similarity measure is the cosine between two GloVe
vectors. The cosine function also normalizes for word fre-
quency (to some degree) since dot products are divided by
their vector norms. For each corpus, for each word, we cal-
culate cos(θ) between it and every other word in the set.

We give an undirected edge between two words if their co-
sine is above a threshold ε. Since generating each graph is
a quadratic operation we normalize the vectors to unit length
before calculating cosines. We iterate ε from 0 to 0.99 (step
size=0.01), generating a graph for each similarity threshold.
Further methods of edge generation are left for future re-
search. Our code and IPython notebooks are on Github5,6.

Results and Discussion
Correlations Between Node Degree and Production
We generated 100 graphs for each corpus, one for each value
of ε. We calculated Spearman’s rank correlation coefficients
between each word’s number of connections and productive
vocabulary norm (for the 369 CDI nouns), for each network
and similarity threshold, at 16, 23 and 30 months. Under
both PAT and PAQ, we would expect to see that words with
more connectivity have higher CDI production rates. Indeed,
we find robust and significant correlations between the degree
of a word in the network, and the percent of toddlers who
produced it, for a range of ε, across corpora and ages; Fig.1.

More specifically, we find similar behavior across all net-
works, with a global peak in correlation for ε = 0.12-0.19. All
peak correlation values had Spearman’s ρ = 0.43-0.52, with
p < 10−5, showing consistent behavior across networks and
ages . This suggests that both the parent’s word choice given

4We omit these due to space, but thank an anonymous reviewer
for this suggestion; they will be presented at CogSci.

5https://github.com/andreiamatuni/wordgraph
6https://github.com/BergelsonLab/semspace
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a child’s age, and the child’s responsiveness to external se-
mantic density across time are roughly constant. This range
of ε where the correlation is at a maximum is relatively low,
allowing very loose semantic associations to result in edges.
In Figure 2 we show a subgraph from the SEEDLingS-All
network, centered around the node “baby.”

0.2

0.3

0.4

0.5

0.0 0.2 0.4 0.6 0.8
ε

ρ

CDI month
16
23
30

Corpus
SEEDLingS 16+17 mo
SEEDLingS 6 mo
SEEDLingS−All
WordBank

Figure 1: Correlation coefficients (ρ) between number of
edges and CDI production rate across words, as a function
of similarity threshold ε (all ρ are significant at p < 0.005).
Color indicates which corpus created the network, shape in-
dicates which month of CDI norms was used to calculate ρ.
Vertical lines indicate the range in which we find scale free
degree distributions (0.6-0.73). (For thresholds ε> 0.75 there
were very few (or no) edges being created, explaining the dis-
continuity and lack of points towards the end of the scale.)

Figure 2: “Baby” subgraph from the SEEDLingS-All net-
work at the similarity midpoint (ε = .5), where “baby” has
40 neighbors.

Power Law Degree Distributions
Surprisingly, at the values of ε where the correlation is max-
imal, we did not find power law distributions. We did how-
ever find them at higher thresholds: at ε = 0.68 we can fit a
power law function with α = 3.2±0.1, with a log likelihood
ratio in favor of power law over exponential fit (R = 115.73,
p = 2.337×10−21). Indeed, at ε = 0.63−0.75 we find power
law distributions (α =2.39-3.73) characteristic of scale free

networks. At these higher thresholds a word’s neighbors
are semantically very close, similar to other semantic graphs
which have shown scale free distributions (e.g. Roget’s The-
saurus), suggesting this property might depend on connec-
tions’ high semantic proximity. See Figure 3.

10

100

10

degree (k)

# 
of

 n
od

es

SEEDLingS All ε = 0.68
SEEDLingS 6 mo ε = 0.66
WordBank ε = 0.6

Figure 3: Sample networks showing degree distributions with
power law behavior (α=3.1-3.2; SE=.1, p < 0.001; similar
behavior found across networks for 0.60≤ ε≤ 0.73). Distri-
butions are plotted on a log-log scale with logarithmic spac-
ing between points, which represent the edges of bins. Power
law distributions appear linear on this scale.

PAT models presuppose power law distributions (indeed,
PAT was initially proposed after observing scale free distri-
butions in semantic networks, and arguing that this limits the
kinds of mechanism which could have created them). We thus
further analyze the range of ε where our networks display
power law behavior. Again, networks showing this distribu-
tion are critical for PAT (and thus our CDI-based Wordbank
networks’ proxie of an internal network), but incidental for
PAQ, which makes no claims about power-law distributions.

Limiting our focus to these ranges (between the vertical
lines in Figure 1,) we see that the degree of a given word
in the SEEDLingS-All network has uniformly higher correla-
tion with productive vocabulary norms compared to that same
node in the internal (i.e. WordBank) networks. (To be clear,
we can only calculate ρ for words we have CDI norms for, but
the SEEDLingS networks contain all the nouns infants heard,
while the WordBank networks contain only CDI word nodes).
This pattern is consistent with PAQ, where more densely con-
nected words in the environment are preferentially incorpo-
rated into the learner’s lexicon. The correlation between AoA
and node degree for the WordBank networks, along with their
scale-free organization, suggest that PAT is not a necessary
condition for this behavior, since these graphs were generated
using GloVe. The presence of these same correlations for our
other networks (which serve as a proxy of an externally-based
network) in this same range of ε, are also scale-free, and pro-
vide new support for PAQ.

This pattern validates our method of generating graphs us-
ing GloVe vectors: both the WordBank and our SEEDLingS
networks display behavior consistent with previous accounts
(i.e. scale free distributions in internal lexical networks
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and node degrees correlated with AoA). If anything, the
SEEDLingS networks show the predicted structure more
strongly, suggesting the nouns infants actually hear may
form a better representation than limiting the space to lex-
ically simple, early-learned nouns alone. Our current anal-
ysis suggests that scale-free and small world structure can
be produced without an incremental growth process, since
our graphs were generated using a vector space model (i.e.
GloVe). If words are to be incorporated using PAQ, this ex-
ternal structure would necessarily be mirrored in the internal
lexical network. However, it remains possible that PAT and
PAQ could both be at play during infant lexical development,
perhaps with PAQ supplementing PAT by providing a struc-
tured sampling space for new word selection.

Clustering Coefficients and Path Lengths
We next examined whether our semantic networks, based on
natural language to children, exhibited two key small-world
properties found in previous research: low average path-
length (L), and high clustering coefficients (C). We found that
the SEEDLingS networks generally had lower C and higher
L than the WordBank networks. In Table 1 we list C and
L of each network at their respective peak from Figure 1.
We also generated Erdős-Renyi and Watts-Strogratz graphs
for comparison (Watts & Strogatz, 1998; Erdős & Rényi,
1960); Erdős-Renyi gives us a baseline measure of a compa-
rably sized graph built using a random process, while Watts-
Strogatz provides a prototypical example of a small world
graph, with low L and high C. The SEEDLingS networks
clearly showed higher clustering coefficients and smaller av-
erage path lengths compared to the Erdős-Renyi graph, and
comparable behavior to the Watts-Strogatz graph. This small
world organization is indicative of hub structures in the net-
work, where a few very densely connected nodes establish
routes between a large proportion of the graph, keeping the
average shortest path length low. This is also a defining fea-
ture of networks with power law distributions, even though
the networks we’ve listed in Table 1 do not fit that criteria.
This small world organization, even in the absence of power
law distributions,7 supports previous findings in other seman-
tic networks and suggest that even in child-directed natural
language input we see these structures.

AoA as a Function of Frequency and Connectivity
The SEEDLingS corpus contains word frequency counts,
a particularly powerful predictor of word acquisition
(Goodman, Dale, & Li, 2008), allowing us to examine the
relationship between word frequency and network connectiv-
ity.8A positive relationship would suggest that densely con-
nected words are preferentially sampled in adult speech di-
rected towards children. As shown above, more highly con-
nected words were said by more toddlers, across our networks
(at peak ε, all ρ > .51, all p < .0001; see Fig. 1). Using

7Scale free networks are inherently ultrasmall (Cohen & Havlin,
2003)

8Phonological neighborhood effects are saved for future work

Corpus ε C L
SEEDLingS All 0.13 0.594 1.749
SEEDLingS 6 mo. 0.16 0.669 1.739
SEEDLingS 16+17 mo. 0.12 0.726 1.534
WordBank 0.13 0.895 1.202
Erdős-Renyi - 0.049 1.950
Watts-Strogatz - 0.634 3.013

Table 1: Clustering coefficients (C) and average shortest path
lengths (L) of the largest connected subgraph at peak values
from Figure 1. Generated Erdős-Renyi (n=6404, p=0.05) and
Watts-Strogratz graphs (n=6404, k=64, p=0.05) are listed for
comparison.

model comparison of simple linear models, we find that in-
cluding both word frequency and node degree as predictors
of word production (at 16, 23, and 30 months) accounts for
significantly more variance than either alone (all p < .01; in-
teraction term significantly improved model fit for months 23
and 30 only, both p < .01).9

Finally, to better understand whether our semantic net-
works find support for PAT and PAQ models, we tested one
specific prediction of each. For PAT, we tested whether words
that had been known longer (i.e. by proxy, were said by
more children) had more connections than those that had
not. Indeed, conducting a median split on words’ produc-
tion rates at each age (16, 23, and 30 months), we find that
better known words have higher degree than less well known
words (p < 0.005 by Wilcoxon Test). For PAQ, we tested
whether the words that went from less-well-known to better-
known over 16-30 months had higher degree than those that
remained poorly known. Indeed, for words produced below
the median rate at 16 months, those below the median at 30
months had significantly lower degree than those above it
(p < .005 by Wilcoxon Test.) This supports PAQ’s proposal
that high degree nodes in networks generated from external
linguistic input are acquired earlier than lower degree nodes
in those same networks.

Conclusions
Our results suggest there is inherent semantic structure
present in the early linguistic environment, and that both the
caregivers and their children are likely sensitive to this non-
uniform distribution of semantic information. Because the
SEEDLingS corpus provides a uniquely rich dataset of early
linguistic input, we were able to construct ecologically valid
networks and study differences in their structure across time
for a constant set of infants. Our present findings support
previous work addressing semantic network structure. Us-
ing a modern semantic vector space model to generate our
graphs, we were able to confirm the presence of scale free de-
gree distributions in our networks, as well as high clustering

9Node degrees are from the SEEDLings-All network at peak
similarity threshold of ε = 0.13
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coefficients and low average path lengths. This method for
generating semantic networks avoids the need for hand en-
gineered features and sidesteps the limits of free-association
data, providing a potentially more advanced measure of se-
mantic relatedness compared to the original work on PAQ.

That said, the process that generated the GloVe vectors
here is not the same as that generating any human’s lexi-
con; further work is needed to strengthen and test links be-
tween these representations. Moreover, the GloVe model
does not speak to the origin of token distributions in natu-
ral language. It does, however, encode a geometric projec-
tion of a meshwork of causal substructures present in the ex-
ternal world. Future research will explore the link between
these structures and their grounding in cognitive processes.
While we have taken a few steps towards examining network
growth over time (finding little difference in our 6mo. and
16+17mo. SEEDLingS networks, or over 16, 23, and 30mo.
CDI norms), more work is needed to better understand not
only whether PAT and/or PAQ-compatible processes are at
play, but how the interplay between input and uptake changes
as the learner grows.

In their original work, Hills et al. (2009) were not able
to produce scale free graphs using their hand made features,
but were able to do so using adult free association data. In
our own graphs we saw that the scale free property only
manifested at relatively high values of ε, where only very
closely related words (often synonyms) were connecting to
each other. Because our measure of similarity was parame-
terized, we were able to produce a gradient of networks and
study their behavior across a range of thresholds, focusing at
different ranges of the scale as needed. By generating scale
free networks using a non-incremental procedure, we lend
support to the hypothesis that this structuring may be an in-
herent feature in the external environment, rather than a con-
sequence of how it’s integrated into internal representations.
Building on Firth: our results suggest that words may indeed
become known by the company they keep, and that the rele-
vant neighbors may be both those inside the lexicon, and in
the as-yet unknown external world of words.
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Abstract 

This research tests whether analogical processing ability is 

present in 3-month-old infants. Infants are habituated to a series 

of analogous pairs, instantiating either same (e.g., AA, BB, 

etc.) or different (e.g., AB, CD, etc.), and then tested with 

further exemplars of the relations. If they can distinguish the 

familiar relation from the novel relation, even with new 

objects, this is evidence that for analogical abstraction across 

the study pairs. In Experiment 1, we did not find evidence of 

analogical abstraction when 3-month-olds were habituated to 

six pairs instantiating the relation. However, in Experiment 2, 

infants showed evidence of analogical abstraction after 

habituation to two alternating pairs (e.g., AA, BB, AA, BB…). 

Further, as with older groups, rendering individual objects 

salient disrupted relational learning. These results demonstrate 

that 3-month-old infants are capable of analogical comparison 

and abstraction. Our findings also place limits on the conditions 

under which these processes are likely to occur. We discuss 

implications for theories of relational learning. 

 

Keywords: cognitive development, relational processing, 

infants 

Introduction 
Analogical ability – the ability to make relational 

comparisons between objects, events, or ideas, and to see 

common relational pattern across different sets of objects – is 

a cornerstone of higher reasoning abilities. Learning by 

analogy is a powerful way of acquiring and transferring new 

information. Equally important, analogical comparison 

facilitates the formation of abstract categories and rules 

(Doumas & Hummel, 2013; Gentner & Medina, 1998; Gick 

& Holyoak, 1983). Indeed, recent theoretical perspectives 

have asserted that analogical ability is the key capacity 

supporting higher-order cognition and differentiating human 

cognitive capacity from that of other primates (Gentner, 

2003; 2010; Penn, Holyoak, & Povinelli, 2008).  

The relational abilities of adult humans are astounding. But 

there are many contributors to the sophistication of adult 

cognition. Adults have had the benefit of cultural 

transmission of knowledge – skills, cultural technologies of 

various sorts, and symbol systems such as language and 

mathematics. In addition, adults have broad domain 

knowledge—another contributor to understanding relations 

(Gentner, 1988). It is therefore impossible to disentangle the 

roots/sources of our cognitive power by studying adults. To 

gain understanding of the nature and origin of our 

extraordinary relational ability, we must investigate infants 

who have not yet acquired these resources.  

Although little is known about the very early development 

of human analogical ability, there has been considerable 

research on the development of analogical ability from 

preschool to adulthood. Analogical processing shows a 

relational shift (Gentner, 1988; Gentner & Toupin, 1986; 

Halford, 1992; Richland, Morrison, & Holyoak, 2006) with 

young children focusing on object matches and older children 

focusing relational matches and capable of using relational 

similarity in problem-solving (Chen, 1996). This shift has 

been attributed to increases in relational knowledge (Gentner 

& Rattermann, 1991), to maturational increases in processing 

capacity (Halford, 1992) and to increases in executive ability, 

including inhibitory control (Doumas, Hummel, & 

Sandhofer, 2008; Richland et al., 2006; Thibaut, French, & 

Vezneva, 2010), and it is possible that all three play a role.  

This work has also revealed characteristic patterns of 

relational learning, including factors that support or hinder it. 

One signature component of relational learning is that the 

ability to perceive abstract relational matches can be 

enhanced by comparing different instances of a relation. For 

example, Gick and Holyoak (1983) found that comparing two 

stories that had the same causal structure enabled people to 

transfer that structure to a further situation. Preschool 

children have shown similar benefits from comparison (e.g., 

Christie & Gentner, 2010; Honomichi & Chen, 2006). These 

findings are consistent with other research suggesting that the 

act of comparison entails a structural alignment process that 

highlights the relational commonalities between the 

compared items (Markman & Gentner, 1993). The influence 

of structural alignment is a defining characteristic of 

analogical reasoning in adults (Doumas & Hummel, 2013; 

Gentner, Holyoak, & Kokinov, 2001), and the evidence of its 

influence in children as young as 3 years of age suggests that 

there may be continuity in the signature components of 
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relational learning through human development.  

A second signature component of relational learning is that 

attention to individual objects can interfere with relational 

processing. Preschool children perform far worse on 

relational matching tasks when competing object matches are 

present (Gentner & Toupin, 1986; Richland et al., 2006), 

especially if the objects involved are rich and distinctive 

(Gentner & Rattermann, 1991; Paik & Mix, 2006). The 

finding that attention to objects can overshadow attention to 

relations extends to very young age groups (Casasola, 2005; 

Maguire, Hirsh-Pasek, Golinkoff, & Brandone, 2008).  

The following experiments aim to trace the development of 

relational learning processes in infants. We focused on the 

same-different relation because it is among the simplest and 

most basic relations in the human repertoire. Additionally, 

Ferry, Hespos, & Gentner (2015) found that 7- and 9-month 

infants can learn same-different relations from four 

exemplars of same or different toy pairs (e.g., AA, BB, CC, 

DD or AB, CD, BC, DA). The key finding was that infants 

discriminated between the relation they had experienced and 

the novel relation, even when both were instantiated with new 

objects. Further, infants failed to discriminate between the 

learned relations when the test pairs contained objects that 

have been rendered individually salient prior to habituation. 

This was consistent with the findings among older children, 

for whom object salience interferes with analogical 

comparison (Gentner & Toupin, 1986; Richland et al., 2006). 

These findings suggest that by 7 months, infants show the 

basic characteristics of analogical learning. In the present 

research, we took this investigation to even younger infants.  

 

Experiment 1 
To fully understand the ontogenetic development of 

relational processes, we need to test for relational abstraction 

at the earliest age possible. This will this provide evidence as 

to when in development relational processing becomes 

possible. Further, it will serve as a base for capturing 

developmental changes in the learning process across age 

groups. 

The key dependent measure in this study is whether infants 

can differentiate the familiar relation (e.g., same if habituated 

to same) from the unfamiliar one (different) when they see 

test pairs composed of new objects. The specific predictions 

are that if infants are learning via structural alignment, then 

(a) relational encoding and abstraction should benefit from 

comparing a series of exemplars and (b) relational encoding 

should be hampered for pairs that contain a highly salient 

object (based on findings that object focus interferes with 

relational encoding (Gentner & Toupin, 1986; Richland et al., 

2006)).  

 

Methods 

Participants. The participants were 31 healthy, full-term 3-

month-old infants (17 male and 14 female) with an average 

age of 3 months, 2 days. Sixteen infants were assigned to the 

same condition and 15 to the different condition. Seventeen 

additional infants were tested but eliminated from the final 

analysis for fussiness (defined as fussy or crying on 4 or more 

test trials by two independent coders), breaks longer than 8 

minutes, or because they looked the maximum amount of 

time on 7 out of 8 test trials, making their data 

uninterpretable. 

Materials and Procedure. Coding and analysis procedure 

was closely modeled on Ferry et al. (2015). In Experiment 1, 

infants received training on either same or different relations. 

During test trials, infants saw pairs of objects instantiating the 

same and different relations (See Figure 1). The key question 

was whether infants would differentiate the familiar relation 

from the novel relation at test. Each infant saw four types of 

test trials, composing a 2x2 within-subject design. The first 

type consisted of entirely new objects (New). These trials 

tested the main prediction: whether infants had abstracted the 

relation across the habituation pairs and applied this relation 

to new instances. The second test type consisted of objects 

that had been rendered individually salient in the waiting 

room prior to habituation, but not shown in habituation trials 

(Object Experience only). These trials investigated whether 

object salience would disrupt relational processing. The third 

type was made up of objects that had been rendered 

individually salient in the waiting room and had subsequently 

appeared as part of pairs during the habituation trials (Object 

Experience + Pair Habituation). These trials tested whether 

repeated alignment across pairs would overcome initial 

object salience. The fourth test trial type was made of objects 

that were not seen in the waiting room, but were viewed in 

pairs during habituation trials (Pair Habituation only). These 

trials provided a check on whether infants recognized 

identical pairs. If infants failed to discriminate between a pair 

that they had seen in habituation and a novel pair, this would 

suggest failure to learn the exemplars even at a concrete level. 

A small camera captured video of the infant’s face while 

they watched an experimenter raise, lower and tilt a pair of 

objects in tandem on the stage. Two research assistants in a 

separate room viewed the image, each pressing a button when 

the infant attended to events on stage and releasing the button 

when the infant looked away. A software program recorded 

the looking times. Each trial ended when the software 

signaled that the infant had looked away from the stage for 

more than two consecutive seconds. If coder agreement was 

less than 90%, recordings of the trials were re-coded by two 

new coders. 
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Figure 1. Schematic of events in Experiment 1. A) In the 

waiting room before the experiment, infants were shown a 

subset of individual objects used in the experiment. (B) 

During habituation trials, infants were either shown pairs of 

same objects or pairs of different objects. (C) during test 

trials, infants saw pair of objects presented sequentially. 

There were four types of test trials that systematically varied 

the infants' object experience with the objects to measure the 

influence on performance. To give a sense of the variation 

across the stimuli, three sets of same and different pairs are 

shown in Figure 2. 

 

 
Figure 2 Examples of the same and different pairs.  

 

Pair habituation trials. When the screen was raised at the 

start of every trial, a pair of objects rested on the cardboard 

tray on the stage. To engage infants’ attention, in both 

habituation and test trials, the experimenter grasped one 

object in each hand and raised the objects, tilted them to the 

left and right, then paused on the tray. This 8-s cycle repeated 

continuously until the trial ended.  

Test trials. Infants viewed eight test trials. In each test trial, 

infants viewed one pair of objects, presented in the same 

motion pattern as in the habituation trials, while their looking 

time was recorded. Each infant received test trials with both 

same and different pairs of objects, presented in alternation, 

with order counterbalanced across infants.   

Figure 3. Test trial looking times for Experiment 1. 

Looking durations to novel and familiar pairs for each test 

type were collapsed across same and different conditions. The 

diamonds represent the mean. The horizontal line inside the 

rectangle represents the median. The area above and below 

the median represents the 1st and 3rd quartiles respectively. 

 

Results 
The results depicted in Figure 3 show no evidence of 

generalization to new pairs: infants did not distinguish novel 

from familiar relations on the test pairs with new objects. An 

ANOVA testing the between-subject factor of habituation 

condition (same or different), and the within-subject factor of 

relation (novel or familiar) failed to show a significant effect 

of relation across all test trials, F(1,30) = .967, p = .333.  

Critically, there was no evidence that either group—same 

or different—had abstracted the relation, because they 

showed no difference in looking time between novel and 

familiar relations when the relations were composed of new 

objects, t (30) < 1, p = .628. This pattern suggests that infants 

recognized pairs they had seen previously, but did not 

generalize the relation. 

 

Discussion 
Given infants' failure to generalize the relation to the novel 

objects in Experiment 1, there are at least three possible 

interpretations. First, three months-old infants may not yet be 

able to engage in analogical learning. Second, they may not 

be able to form abstract relations like same and different. 

However, a third possibility is that these young infants do 

already possess the relational learning processes, but that the 

training set used in Experiment 1 (i.e., six unique pairs of 

exemplars) was not adequate. For example, the range of 

exemplars given in habituation may have been too limited. 

Perhaps these very young infants need more variation and 

more exemplars to abstract the relation. This would be 

consistent with the standard assumption in learning theories 

that high variability in training enhances transfer, and with 

evidence that generalization improves when the number and 
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range of examples increases (e.g. Gerken, 2006; Quinn & 

Bhatt, 2005; Xu & Tenenbaum, 2007). The six exemplars we 

showed in Experiment 1, though, is already a larger training 

set than the four exemplars 7 – and 9-month-olds saw in 

Ferry, et al. (2015). This larger set did not appear to benefit 

the 3-month-olds.  

A second route—the one we pursued—is to show infants 

fewer pairs during habituation. Although this choice may 

seem counterintuitive, there is evidence that in early learning, 

fewer exemplars of a relation can lead to better learning of 

the relation. For example, Casasola (2005a) found that infants 

were better able to learn and generalize the spatial category 

of support when they were given two alternating exemplars 

of the relation than when they were given six exemplars of 

the relation (see also Maguire, et al., 2008). This pattern can 

be understood in terms of the general finding that relational 

alignment can be impeded by attention to objects (Gentner & 

Medina, 1998; Gentner & Toupin, 1986; Paik & Mix, 

2006)—particularly when the objects are rich and distinctive 

(Casasola & Park, 2013).  

 

Experiment 2 
In Experiment 2, we presented infants with only two pairs 

during habituation--–either two same pairs (alternating 

between AA and BB) or two different pairs (AB and CD). 

The idea is that alternating between just two pairs could allow 

that infants to become familiar enough with the objects to be 

able to attend to the relation between them. As in our previous 

studies, prior to habituation we showed the infants some of 

the objects (singly, not in pairs) in order to render those 

objects individually salient. This serves as a test of whether 

object salience disrupts relational learning in 3-month-olds. 

Thus, this study tests whether 3-month-old infants can 

abstract the same-different relation and generalize it to new 

test pairs and whether their ability to do so will be impeded 

for pairs containing high-salient objects (see Figure 4).  

Methods 
Participants. The participants were 32 healthy, full-term, 3-

month-old infants (19 male and 13 female) average age 3 

months and 16 days, ranging from 2 months 10 days to 4 

months 15 days. Half of the infants were assigned to the same 

condition; the other half, to the different condition. Ten 

additional infants were tested but eliminated from the final 

analyses (using the same criteria as Experiment 1). 

Procedure. As in Experiment 1, there were three types of test 

trials, varied according to infants' experience with the objects. 

Because fewer objects were used in habituation, we reduced 

the number of test trial types from four to three, dropping the 

Pair Habituation only trials (see Figure 4). The remaining 

test trial types were as in Experiment 1.  

 

 
Figure 4. Schematic of events in Experiment 1. A) In the 

waiting room before the experiment, infants were shown a 

subset of individual objects used. (B) During habituation 

trials, infants were shown either alternating pairs of either 

same or different objects. (C) During test trials, infants saw 

six pairs of objects, presented sequentially.  

 

Results 
The results (Figure 5) fit the predictions of an analogical 

learning account.  First, infants looked significantly longer at 

the novel relation than at the familiar relation during test. 

Critically, this novelty preference held for test pairs 

containing new objects, demonstrating that the infants had 

abstracted the relation and could apply it to objects they had 

not seen before, t(29) = 3.616, p < .001. Second, as predicted, 

prior experience with individual objects interfered with 

noticing the relation: there was no significant difference in 

looking time between the novel and familiar relations for 

pairs containing objects seen in the waiting room. This was 

true whether these salient objects appeared only in test or in 

pair habituation as well as test. 

 
Figure 5. Test trial looking times for Experiment 2. 

Looking durations to novel and familiar pairs for each test 
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type collapsed across same and different conditions. The 

diamonds represent the mean. The horizontal line inside the 

rectangle represents the median. The area above and below 

the median represents the 1st and 3rd quartiles respectively. 

The * indicates p <.01. 

 

Discussion 
The findings in Experiment 2 are evidence for early 

relational learning. Critically, infants were able to distinguish 

the familiar relation from the novel relation even on pairs 

composed of new objects—the gold standard for testing 

whether infants abstracted the same and different relations. 

Consistent with other findings on analogical learning, infants 

performed significantly worse on test trials containing 

objects that had been seen prior to habituation. These findings 

show that the key signatures of analogical learning are 

already present by 3 months of age.   

At the same time, the knowledge of the specific relations 

same and different in 3-month-olds appears to be learned: 

Experiments 1 & 2 show strong limits to the situations in 

which they could generalize these relations. Infants 

performed best with fewer exemplars. Even then, the infants 

did not discriminate between novel and familiar relations 

when they saw pairs that contained salient objects. Unlike 

with 7-month-olds in Ferry et al. (2015), 3-month-olds failed 

to overcome their object focus even after seeing the waiting 

room objects in pairs during habituation. 

 

General Discussion 
There are two key findings. First, the results show that 

analogical learning processes are present in 3-month old 

infants. In Experiment 2, the infants showed two key 

signatures of analogical learning: (a) the ability to abstract a 

common relation across a sequence of pairs and (b) the 

detrimental effects of individual object salience. These 

findings suggest that the ability to abstract relations is an 

innate mechanism in human infants.  If so, then analogical 

processing would join association and other domain-general 

processes as part of the core cognitive apparatus of humans.  

The second key finding is that these young infants showed 

more learning when given just two pairs during habituation 

than when given six distinct pairs.  

This pattern runs counter to the general finding that 

increasing the variability within a set of training stimuli 

increases learners’ level of abstraction and therefore the 

range of transfer (Gerken, 2006; Gómez, 2002; Quinn & 

Bhatt, 2005).  

However, there is precedent for this kind of “less is more” 

finding (Casasola, 2005; Casasola & Park, 2013; Maguire et 

al., 2008). What these studies have in common is that the 

objects participating in the relations are of high salience. 

Under these conditions, a participant given a series of 

different exemplars may attend only to the novel objects in 

each pair, and fail to attend to the relations. In this case, 

reducing the range of instances so that a small set of 

exemplars is seen repeatedly may lead to better relational 

learning.  As Casasola and Park (2013) note, although 

increasing the range of exemplars can help learners to isolate 

the relevant structures, “… the need for fewer exemplars 

arises when the relevant features, such as a spatial relation, 

risk becoming obscured by […] the objects depicting that 

relation.”   

The finding then raises the question of when this pattern 

holds. As discussed earlier, many developmental studies have 

found better learning with more exemplars than with fewer 

(e.g., Bulf & Johnson, 2011; Casasola & Park 2013; Gerken 

2006). Further, in our previous studies we found that 7- and 

9-month-olds successfully abstracted same and different 

relations when given four repeated exemplars (Ferry et al., 

2015). Clearly, a goal for future research will be to 

understand the range of exemplar variability that best 

supports early relational learning across development.  

Implications for learning theories. As noted above, a 

surprising finding is that in order for 3-month-old infants to 

learn the relations, they needed comparison across two 

repeating pairs rather than comparison across a greater 

variety of pairs. How do we square this finding with the many 

findings that greater variability during training leads to 

greater abstraction and transfer?  We think that the key is that 

the current studies focus on relational learning. When the 

desired abstraction is at the level of overall exemplar 

similarity (e.g., learning a basic-level category such as dog, 

or learning a distribution of line lengths), then increasing the 

range of exemplars in learning should increase the level of 

generalization. However, if the desired generalization is a 

relational pattern, then it is crucial that the learner be able to 

compare and align the exemplars (Christie & Gentner, 2010).  

In this case, whether the learner can align the exemplars may 

matter more than the amount of information potentially 

available. This leads us to suggest an amended learning 

principle:  in relational learning, breadth of alignable training 

predicts breadth of transfer. 

Summary. Together, the evidence from our experiments 

points neither to core knowledge of same or different nor to a 

process that arises entirely from experience, but to structural 

alignment as an early learning mechanism that becomes 

elaborated over development and with increases in language 

and domain knowledge. 
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Abstract 
A preliminary meta-analysis using the p-curve method 
(Simonsohn, Nelson, & Simmons, 2014) was performed on a 
subset of the learned categorical perception literature to 
explore the robustness of the phenomenon. Only studies using 
novel visual categories and behavioral measures were 
included. The results strongly suggest that the phenomenon is 
robust but that the studies are somewhat underpowered. We 
argue that this is problematic because it renders both 
statistically significant and nonsignificant results very 
difficult to interpret, which impedes progress in 
understanding the learned CP phenomenon, for example, why 
expansion vs. compression is observed, or boundary vs. 
dimensional effects.  Fortunately, there is a clear solution: 
conduct studies with greater statistical power. 

Keywords: categorical perception; categorization; learning; 
p-curve; statistical power; expansion; compression; 
dimensional modulation 

Introduction 
Learned categorical perception (CP) is a phenomenon 
whereby learning to place objects into categories alters 
some aspect of the way those objects are judged (for a 
review, see Goldstone & Hendrickson, 2009).  The classic 
patterns of change in judgments are that items placed in 
different categories become more distinguishable, 
sometimes called expansion, and/or that items placed in the 
same category become less distinguishable, sometimes 
called compression.  These are category boundary effects, 
but other versions of learned CP are increased sensitivity to 
dimensions relevant to the category distinction and/or 
decreased sensitivity to dimensions irrelevant to the 
category distinction. 

There has been a great deal of research on learned CP, but 
this paper will focus on visual categories learned in a 
laboratory setting. This is motivated mainly by our own 
interest in learned visual CP and the recognition that there 
may be important differences between CP in different 

modalities that would make it inappropriate to group those 
studies together for this meta-analysis.  Thus the large body 
of research on auditory CP, in particular for speech sound 
distinctions that are acquired in the lengthy process of 
learning a natural language, will not be considered here. It is 
notable that laboratory-induced learned CP effects are 
obtained with very little training compared to the kind of 
exposure that is usually given in real category learning, e.g., 
learning color categories.  This makes the phenomenon 
appear to be pervasive and basic, but there are several 
important questions that need to be addressed. 

First, in light of the recent attention given to failures to 
replicate (Open Science Collaboration, 2015), p-hacking 
(Head, Holman, Lanfear, Kahn, & Jennions, 2015), the file 
drawer problem (Rosenthal, 1979), lack of sufficient 
statistical power (Button, Ioannidis, Mokrysz, Nosek, Flint, 
Robinson, & Munafò, 2013), and so forth, we believe that it 
is essential to assess whether the published learned CP 
literature demonstrates convincing evidence for the effect.  
Like many, perhaps most, areas of research in cognitive 
science, the phenomenon of learned CP allows researchers 
many degrees of freedom that may, unintentionally no 
doubt, inflate the appearance of real effects.  For example, 
within a single study, there are often a variety of different 
ways in which the data can be analyzed to look for evidence 
of learned CP effects. Researchers can investigate accuracy 
and/or response time data – both have been used as evidence 
of CP in the literature – in a multitude of combinations due 
to the many different possible behavioral patterns that count 
as learned CP. Furthermore, different potential criteria for 
what counts as successful learning (a precondition for 
testing for learned CP effects) can be used, leading to 
additional choices that can unintentionally bias the analysis. 
In short, this is exactly the kind of situation where 
preregistration is important to avoid mistaking the noise in 
the data for signal. To our knowledge, very little if any 
learned CP research has been preregistered as of yet, for 
replication purposes or otherwise.  
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One reason this is important is the current controversy 
over whether there are really any genuine top-down effects 
of cognition on perception, of which learned CP could 
potentially be one type.  Firestone and Scholl (2016) argue 
that none of the vast amount of research claiming to have 
demonstrated such effects has actually successfully done so.  
It seems to us that before we can effectively debate whether 
learned CP provides evidence for such effects that is 
immune from Firestone and Scholl’s criticisms, we must 
first establish that there is credible evidence that the effects 
themselves actually exist.   

The optimist might point to the dozens of studies on CP 
that report significant results as compelling evidence that 
these effects are real. The problem with this approach is that 
it ignores the existence of publication bias in favor of 
statistically significant results. If learned CP turned out to 
not be replicable, it would not be the first example of a 
widely reported phenomenon that did not reliably replicate 
(e.g., Lurquin et al., 2016; Papesh, 2015; Shanks et al., 
2013; Simmons & Simonsohn, in press).  

The purpose of this paper was to do a preliminary 
evaluation of published learned CP effects by using a p-
curve analysis (Simonsohn, Nelson, & Simmons, 2014). A 
p-curve is a meta-analytic technique that looks at the 
distribution of statistically significant p-values in a set of 
related studies. An advantage of the p-curve approach is that 
it nicely handles the file-drawer problem by looking only at 
statistically significant p-values. If the results come from a 
collection of well-powered studies investigating a real 

effect, most of the p-values should be very small (well 
below .05). However, if many of the results are due to false-
positives, either because of a lack of statistical power or 
because the phenomenon being studied is not real, then the 
distribution of significant p-values will be flat, in the case of 
a null effect, or close to flat, in the case of low statistical 
power. (In extreme cases, the presence of substantial p-
hacking can generate a p-curve with left skew.)  
Furthermore, the p-curve can reliably estimate the average 
statistical power of a set of studies because the distribution 
of observed p-values is directly related to statistical power 
when the null hypothesis is false. This estimation of power 
is an average estimate assuming that all studies are 
investigating the same basic effect. 

In the analyses presented below, we calculate p-curves for 
a set of studies from the visual learned CP literature, but we 
caution that this analysis is preliminary. We expect that 
enlarging the scope of the search for relevant sources would 
yield many additional studies of learned CP that could be 
included in the analysis, though our sample size is large 
enough to likely be informative.  

Method and Results 
The articles used in the analysis were selected by 
conducting a Scopus search of all articles citing Goldstone 
(1994) that had “CP” or “categorical perception” in the title, 
abstract, or key words and were deemed relevant (i.e., 
reported original empirical results in detail; used visual 

 
 
               Table 1.  Articles used in the p-curve meta-analysis of learned categorical perception research.
 

 
 
 

Authors 
Year of 
publication 

# experiments 
included 

# analyses 
included 

Learned CP 
measure 

Type of 
measurea 

Corneille & Judd 1999 3 2 Typicality S 
Folstein, Palmeri, & Gauthier 2014 1 1 Same-different O 
Goldstone 1994 4 8 Same-different O 
Goldstone, Lippa, & Shiffrin 2001 1 1 Similarity S 
Goldstone, Steyvers, & Larimer 1996 1 1 Same-different O 
Grandison, Sowden, Drivonikou, 
Notman, Alexander, & Davies 

2016 1 1 Target location RT O 

Gureckis & Goldstone 2008 1 1 XAB O 
Holmes & Wolff 2012 1 1 Discrimination RT O 
Levin & Beale 2000 3 2 XAB variant O 
Livingston & Andrews 2005 2 2 Similarity,  

same-different  
S, O 

Livingston, Andrews, & Harnad 1998 3 2 Similarity S 
Notman, Sowden, & Özgen 2005 2 2 Same-different O 
Op de Beeck, Wagemans, &  
Vogels 

2003 2 2 Same-different O 

Özgen & Davies 2002 2 2 Same-different O 
Stevenage 1998 2 4 Similarity S 
Zhou, Mo, Kay, Kwok, Ip, & Tan 2010 1 1 Target location RT 

 
O 

aO = objective, S = subjective  
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Figure 1: P-curve for all relevant results in the articles listed in Table 1. The solid blue line shows the observed distribution of 
significant p-values. The dotted red line shows what the expected distribution of p-values would be if the null hypothesis 
were true. The right skew tests, for both the full set of p-values (all p-values < .05) and half set of p-values (all p-values < 
.025), indicate that the p-values are more right skewed than would be expected if the null were true. The dashed green line 
represents the expected distribution of p-values if the set of studies had 33% power. The flat tests test if the observed 
distribution is flatter than the distribution that would be observed if the studies had 33% power. 
 

 
stimuli, unfamiliar categories, and behavioral measures; and 
focused on learned CP).  This yielded 14 articles; in 
addition, we included two conference papers meeting the 
same criteria for a total of 16 sources (see Table 1).  Within 
those 16 sources were a total of 30 experiments reporting 42 
distinct relevant statistical results.  (For example, statistical 
results pertaining to the learning of the categories per se 
were not relevant.)  Of these 42 statistical results, 33 were 
statistically significant in the predicted direction and these 
results were input to the p-curve app version 4.05 
(http://www.p-curve.com/app4/) to produce the p-curve 
shown in Figure 1.  Note that the p-curve analysis only 
considers the distribution of p-values below the 0.05 
threshold. 

In addition, separate p-curves were generated for the 
subset of results obtained using objective measures of 
learned CP, such as accuracy of same-different judgments, 
and the subset of results obtained using subjective measures 
such as similarity judgments.  These are shown in Figures 2 
and 3. 

The p-curves shown in Figures 1-3 display the 
distribution of p-values that fall into five bins. For a real 

effect with high power samples, most of the p-values should 
be in the leftmost bin (p < 0.01). Shown in the figures are 
what the distribution would look like with a set of studies 
powered at 33% (green dashed line) and a set of studies 
testing a null effect (red dotted line). Note that because the 
distribution of p-values is determined by statistical power 
when investigating a real effect, the average power of the 
studies can be estimated from the observed distribution of p-
values. 

The results of the overall p-curve meta-analysis show a 
curve that is right-skewed, which strongly suggests that the 
research has evidential value and is not the result of 
worrisome p-hacking (which produces a left-skewed 
curve).1 This is welcome news.  However, the estimated 
power is only 62% (90% confidence interval is 41-78%) 
which is not very high. If this estimate were correct, it 
would mean that only 6 in 10 studies of learned CP will 
detect an effect. We explain why this is a significant 

                                                             
1The p-curve app conducts three different statistical tests to 

detect whether there is right skew. All of these tests were 
statistically significant (p < 0.001 for all), indicating that the curve 
is very unlikely to be not right skewed. 
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problem for advancing our theory of learned CP in the 
discussion. 

We conducted a separate analysis for objective and 
subjective measures of CP for two reasons. The first is that 
some researchers have suggested based on neural evidence 
that learned CP is not a genuinely perceptual effect but 
occurs at a higher, post-perceptual level (e.g., Clifford, 
Franklin, Holmes, Drivonikou, Özgen, & Davies, 2012; but 
see Zhong, Li, Li, Xu, & Mo, 2015 for counterevidence). 
We reasoned that if this were the case, studies employing 
more subjective measures of learned CP, such as ratings of 
similarity or typicality, should show stronger effects.  The 
second is that there is a worry that learned CP effects could 
be the result of demand effects (Goldstone, Lippa, & 
Shiffrin, 2001). That is, participants in these experiments 
may indicate that two items are subjectively more similar 
(dissimilar) to each other precisely because the experiment 
trains them that the two objects belong to the same category 
(different categories), and not because of any perceived 
change in similarity of the visual objects. If this is a 
contributing factor, then we would expect studies with 
subjective measures to have higher power, because this 
demand effect will only contribute for subjective measures 
of CP. 

 

 
 

Figure 2: P-curve for learned CP results based on 
objective measures. 

 
These ideas received some support from the p-curve 

patterns based on studies using subjective vs. objective 
learned CP measures, with a generally stronger pattern and 
higher power estimate for the subjective measure studies 
(79%) than objective measure studies (52%).  However, 
given the preliminary nature of this analysis and the small 
set of results included, particularly for those using 
subjective measures, it is premature to draw any conclusions 
about this yet (note that the confidence intervals for the 
power estimates overlap substantially). Furthermore, we 

can’t distinguish between the two possible explanations of 
this result without directly investigating the matter. 

 

 
 

Figure 3: P-curve for learned CP results based on 
subjective measures. 

Discussion 
The literature for learned visual categorical perception 
contains evidentiary value, according to this meta-analysis. 
We can be reasonably confident that the studies reported are 
in general not reporting on a null effect. However, the 
relatively low statistical power shown by this analysis for 
the overall set of findings has important implications for 
how our theoretical understanding of learned CP is informed 
by these studies, and future studies with similar statistical 
power. We argue here that the statistical power of learned 
CP research must be improved in order to make robust 
advances in theory. 

Several debates in learned CP research (e.g., to what 
degree is CP a perceptual or decision-making process; what 
kinds of judgments are changed by learning categories; is 
CP the result of demand effects) currently hinge on the 
observation of CP in some experimental contexts but not 
others. However, the overall lack of statistical power makes 
the pattern of significant and non-significant results difficult 
to interpret. Low power may well explain the occurrence of 
non-significant results. Low power also increases the 
likelihood that significant results are actually false positives.  
It follows from these two facts that when studies of learned 
CP are underpowered, the noise in the data makes it very 
difficult to distinguish among specific theoretical variants of 
what learned CP is. For example, it is difficult to distinguish 
among the different types of learned CP, of which there are 
at least four, as noted in the introduction (the boundary 
effects of compression and/or expansion and dimensional 
sensitization and desensitization based on category 
relevance). Since null results are impossible to interpret 
when statistical power is low (and using traditional 
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statistical methods), and patterns in statistically significant 
results may be just noise, it is correspondingly impossible to 
use the data to figure out under what conditions each of the 
types of learned CP do and do not occur.  Yet this is 
essential to do in order to determine the nature of learned 
CP mechanisms and their purpose. 

To understand the problem that this causes for our 
theoretical understanding of learned CP, it is important to 
keep in mind that the articles included in our analysis are 
not a set of direct replications, but rather a body of scientific 
evidence. Experiments in this set of results aim to build on 
the contributions of prior work to refine our theory of 
learned CP. Thus, we often rely on the pattern of findings 
within individual studies, or between small sets of studies, 
to constrain theorizing. But, as noted, with low statistical 
power comes the increased probability of false negatives 
and the increased probability that significant results are false 
positives. This leaves the theorist in a tough position. Are 
we improving our theoretical understanding with a new set 
of data, or merely reading the tea leaves of statistical noise?  

Recent work in our lab provides an illustration of this 
problem (de Leeuw, Andrews, Livingston, & Chin, 2016).  
We were primarily interested in why some learned CP 
studies had shown compression while others showed 
expansion.  There seemed to be a relationship between both 
the type of learned CP measure (similarity vs. same-
different judgment accuracy) and stimulus discriminability, 
on the one hand, and the pattern of learned CP on the other.  
Initial studies in our lab seemed to confirm variations of this 
kind but the patterns were somewhat bewildering.  Only 
when we conducted a large scale study (N > 550) 
simultaneously incorporating multiple measures and levels 
of stimulus discriminability and used Bayesian data analysis 
did a clear picture emerge:  learned CP effects occurred (in 
fact, three of the four possible patterns occurred), but this 
pattern of effects did not differ systematically according to 
either of those variables.2 

It is important to note a related set of problems with 
learned CP research that also presented a challenge for 
conducting the p-curve analysis.   (1) Learned CP studies 
often don’t test for more than one or two of the four possible 
types of effect, and the statistical analysis used may test for 
different effects separately or lump them together. 
Furthermore, there are methodological ambiguities in many 
of the studies that make separating out which effects 
occurred impossible.3 We therefore could not classify the p-
values according to which aspect of learned CP they 

                                                             
2 This study was not included in the preliminary meta-analysis 

reported here because it did not provide the relevant standard 
statistical information. 

3 Another difficulty with sorting out the different potential 
effects of learned CP is that nearly all the published work is not 
designed to address this question. This makes it impossible in most 
cases to distinguish between, as an example, acquired 
distinctiveness of a dimension plus compression versus just 
expansion. These two cases have the same behavioral outcome, 
and thus must be distinguished through experimental controls, such 
as different kinds of training. 

corresponded to, even though we would have liked to be 
able to do this.  (2) Predictions are often vague in regard to 
the nature of a two-way interaction in an ANOVA, for 
example.  But different results should be used for the p-
curve for attenuation and reversal interaction predictions 
(just the overall interaction for attenuation and just the 
simple effects for reversal). Since we were limited to the 
information available in the articles, most of which did not 
predict a specific pattern of interaction, power may be 
overestimated by the p-curve. (3) A final caveat regarding 
our analysis is that our p-curve results could potentially be 
somewhat misleading if in fact certain learned CP effects 
(e.g., dimensional effects) are much stronger than others 
(e.g., boundary effects), which would mean that they are not 
really the same kind of effect as assumed by a combined p-
curve analysis. If this were the case, it would suggest that 
power could be higher than our estimate for some aspects of 
learned CP, but lower for others. This would only further 
exacerbate the problem of drawing theoretical conclusions 
about the nature of learned CP, as the studies of certain 
kinds of effects that are deeply relevant to the theory would 
have even lower power. 

The preliminary meta-analysis we report here strongly 
suggests that learned CP effects are real but also that our 
current knowledge of them is highly ambiguous and 
destined to remain so if we do not change the way we do 
research.  In our view, only by conducting future studies 
with sufficient statistical power will we make significant 
progress understanding the phenomenon of learned CP. 
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Abstract 

A reading skill test to diagnose basic language skills is 
introduced. The test is designed to measure six component 
skills relevant to reading in comparison with those of state-of-
the-art natural language processing technologies. The results 
of the first large-scale experiments using the test are reported. 
Surprisingly, almost half of Japanese junior high school 
students do no better than machines in dependency analysis. 
More than half of 7th grade students do no better than making 
random choices on questions involving inferences and 
definition understanding.  

Keywords: Reading Skills, Language Comprehension, 
Test Theory 

1. Introduction 

Artificial intelligence (A.I.) armed with machine learning 

technologies often surprises us by demonstrating its power. 

Arai et al. developed A.I. systems that were capable of 

passing the entrance examinations of more than half the 

universities in Japan (Arai & Matsuzaki, 2014). On the 

other hand, teachers are facing the problem that many 

students come into their classrooms without the requisite 

knowledge, skills, or disposition to read and comprehend 

the materials placed before them (RAND, 2002). 

This situation raises a natural question. Will there be any 

economic returns to education when A.I. is smart enough to 

“learn” better than most of us? Do we have to set different 

goals for education in the age of A.I.? 

Before jumping to any conclusions, we must carefully 

study the performance of human beings in comparison with 

those of machines, especially of the skills and expertise that 

are believed to be acquired only through education. Reading 

comprehension is, of course, one such example.  

In this paper, we introduce a new reading skill test (RST) 

for assessing an examinee’s basic language skills involved 

in the comprehension of texts consisting of sentences taken 

from junior high and high school textbooks and dictionaries. 

It is a major version-up from the prototype developed in 

(Fujita et al., 2016). A unique feature of the RST is that it is 

designed to analyze language skills of both human beings 

and machines. Consequently, the test results will tell us not 

only an examinee’s language skills relative to others, but 

also to machines. It will also reveal what kinds of sentences 

(i.e. lexical, structural, thematic) are harder than others to 

comprehend (process) for human beings (for machines).  

The RST contains six different types of question. The first 

two types are designed to measure an examinee’s ability to 

analyze intra- and inter-sentential relations among words: 

dependency analysis and anaphora resolution. Statistical 

algorithms often achieve precisions around 80%-90% in 

parsing sentences and 60%-70% in anaphora resolution 

(Nivre et al., 2007; Pradhan et al., 2012), which indicates 

that not only examinees but also A.I. may be able to 

perform syntactic analysis of a sentence without 

understanding its meaning. The second two are designed to 

measure an examinee’s inferential skills based on 

appropriate amounts of vocabulary and common sense. 

They are closely related to tasks called textural entailment 

recognition or synonymy recognition in the field of natural 

language processing, and both of them are known to be very 

hard (Dagan et al., 2013). The last two are designed to 

measure how examinees can map texts into meanings. They 

require high-level symbol grounding and abstract thinking, 

and neither a practical algorithm to solve them nor a theory 

to formalize them has been proposed yet. 

If an examinee does equally well on the six different types 

of question, we can assume that he/she reads differently 

from machines. On the other hand, we had better doubt that 

an examinee reads like a machine if he/she does well on the 

first two types of question: he/she appears to understand the 

meaning of the texts, but actually may not. In other words, 

human-machine comparison and error analysis of machines 

may allow us to diagnose why many readers read poorly.  

The results of the first large-scale investigation involving 

1758 students from six public junior high schools are 

reported. Surprisingly, in a country like Japan where 

education is compulsory up to the end of junior high school, 

and which is among the top countries in PISA tests (OECD, 

2016), more than half of the 7th grade students did no better 
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than random choice on the third two types of question. 

These results lend support to the concerns expressed in 

(RAND, 2002). The performance of a popular Japanese 

dependency structure analyzer on dependency analysis 

questions is also reported for comparison.  

2. Design of RST 

2.1 Six Component Skills and their Measurement We 

define six component skills relevant to reading. Each skill is 

measured separately in the RST. We do not claim that basic 

language skills consist exclusively of these six. We plan to 

add new types as necessary. 

1. Dependency Analysis (DEP): The skill of recognizing 

the dependency relations between words and phrases in a 

given sentence.  

2 Anaphora Resolution (ANA): The skill of anaphora 

resolution. ANA is comprised of two elements: 

Demonstrative Anaphora Recognition (DANA) and Zero 

Anaphora Restoration (ZANA). 

DANA: The skill of recognizing the anaphoric relation 

between a demonstrative pronoun in a sentence and its 

antecedent. 

ZANA: The skill of restoring and recognizing a noun 

phrase implicitly omitted in a context. 

3. Paraphrasing (PARA): The skill of recognizing that a 

sentence is the same in meaning as another one. PARA is 

comprised of three elements which are Lexical Paraphrasing 

(LeP), Structural Paraphrasing (SP), and Logical 

Paraphrasing (LoP). The participant reads two sentences and 

judges whether they are synonymous. The examinees are 

asked to choose “Yes” or “No”. 

LeP: The skill of recognizing the synonymy between 

words or short phrases. 

SP: The skill of recognizing the synonymy between two 

sentences written in different voices (active/passive). 

LoP: The skill of recognizing logical equivalency of two 

sentences. 

4. Logical inference (INF): The skill of reading a sentence 

and determining what can be inferred from a proposition in 

the sentence, what conflicts with it, and what does not relate 

to it. Here, two sentences are presented to the examinees. 

The instruction asks the examinees whether the proposition 

in the second sentence (task sentence) can be inferred from 

the proposition in the first sentence (presented sentence). 

The examinees are asked to choose “Yes” if the sentence 

can be inferred, “No” if the first and the second propositions 

cannot hold true at the same time, and “Not known” if the 

propositions are not related to each other. 

5. Representation (REP): The skill to represent an image 

(figure or table) by comprehending a sentence of the 

textbook. The participant reads a sentence and chooses the 

images correctly representing the sentence out of four 

(multiple responses). 

6. Instantiation (INST): The skill to understand how to 

use a term correctly according to a given definition of the 

term. The participant reads a definition sentence and 

chooses correct usages from four sentences (multiple 

responses). 

2.2 Test settings Each RST question requires a 

considerable amount of concentration. We designed the 

RST so that examinees would not get confused or become 

exhausted. As a result, each examinee randomly takes three 

of six types of questions in the current setting. After 

answering two sample questions of a type, examinees are 

asked to answer questions randomly chosen from an item 

pool as precisely and quickly as possible in four minutes. 

 We intend to change the design of the test so that he/she 

takes all six types when we are ready to calculate b, the 

difficulties of the questions, and θ , the ability of the 

examinee in Item Response Theory (IRT; Lord & Novick, 

1968; Hambleton & Swaminathan, 1985) with fewer 

questions.  

 

2.3 Interface RST is conducted as a Computer Based Test 

(CBT) or Paper Based Test (PBT). Figure 1 shows a 

screenshot of an REP question. For the details of the design, 

the reader should refer to (Fujita et al., 2016). 

 

 
Figure 1: Question REP 39 shown in CBT 

 

2.4 Materials We created all of the questions, except for the 

INST questions, on the basis of textbooks that have been 

approved by the Ministry of Education, Culture, Sports, 

Science and Technology and are being used in Japanese 

junior high and high schools. The INST questions were 

created using terms and definitions appearing either in the 

textbooks or in Japanese dictionaries. 

3. Psychometric Properties of RST 

An examinee's score is usually assessed by the sum score 

of all items to which  he/she responded. However, because 

in the setting of RST, each examinee responds to different 

items, the sum score is not appropriate for an examinee's 

assessment. That is, the sum score is "item dependent", 

which means that the assessment result depends on the 

difficulties of the items that the examinee responded to as 

well as the examinee's characteristics. 

Therefore, in this project, IRT is used for each examinee's 

assessment. One of the distinctive features of IRT is that it 
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is not item dependent. The reason is that an item's difficulty 

and an examinee's characteristics are treated as different 

parameters. An item j's difficulty parameter is denoted as bj. 

The higher bj is, the more difficult the item is. An 

examinees i's characteristic is denoted as θi. The higher  θi is, 

the better the examinee’s characteristic is, which is reading 

skill in this study. For the details of IRT, the reader is 

referred to the above references. 

In the near future, we will start computerized adaptive 

testing (CAT, van der Linden and Glas, 2010). In CAT, 

each examinee answers items shown on a PC display or 

tablet. If the examinee correctly answers an item, the next 

item is more difficult, whereas if  he/she incorrectly answers 

an item, the next item is easier. Note that CAT requires an 

item pool, which is a set of items whose item parameters 

have already been estimated. In CAT, an appropriate item 

for each examinee is selected from the item pool. Therefore, 

IRT is suitable for the CAT framework. This is another 

reason why IRT is used in the analysis. 

The R software (version 3.1.0) was used to fit the IRT 

model. Estimations were performed for each component. 

Therefore, if an examinee took all six different types of tests,  

he/she would have six θ values. 

Before going to the next analysis where θ is used, 

inappropriate items were detected and deleted and the IRT 

analysis was done once more. Inappropriate items were 

detected using item analysis, in particular, a trace line plot.  

Figure 2 shows trace line plots of appropriate (left) and 

inappropriate (right) items. The horizontal axis of this figure 

is θ. All the examinees who responded to these items were 

divided into four groups in accordance with θ.  The vertical 

axis of the figure is the ratio of the examinees who selected 

options 1 to 4 for each θ group. For both items, option 2 

(bold line) is the correct one. Note that “s” in this figure 

means ‘skipped the item’.  

The left item is appropriate because the higher θ is, the 

higher is the rate of the examinees correctly answering the 

item. This item will be examined in detail in the Results 

section. On the other hand, the right item is inappropriate 

because the higher θ is, the lower is the rate of the 

examinees correctly answering the item. Therefore, the right 

item was deleted. 

 
Figure 2: Two trace plots 

 

The three deletion criteria described below were applied 

to items responded by more than one hundred examinees. 

Items applied to more than one criterion were deleted. 

1. The rate of the selecting correct option is almost one 

hundred percent for all of the four θ groups. 

2.  The higher θ groups do not have higher rates of selecting 

the correct option (right of Figure 2). 

3. The highest θ group is most likely to select an incorrect 

option (right of Figure 2). 

 

Table 1 shows the numbers of deleted items and the 

numbers of remaining items. 

 

Table 1: The number of deleted and the number of 

remaining items 

 
 

To examine the validity, reliability, and one-

dimensionality of each test, correlations between the six θs, 

ω coefficients (McDonald, 1999) and the factor loadings in 

categorical factor analysis were estimated. Table 2 shows 

the results.  Most of the correlations between the six θs are 

above 0.5, which means that the six tests all measured 

different aspects the same trait (reading skill). This shows 

that the tests have enough validity. Moreover, all six ω 

coefficients are very high, which shows that the tests have 

enough reliability. Finally, the means of the factor loadings 

are not small, which shows the one-dimensionality of each 

test, which is required in IRT. 

 

Table 2: Correlations, omega coefficients, and mean of the 

factor loadings 

 

4. Related work in cognitive science 

To answer the RST items, examinees need to parse 

sentences with unfamiliar content. In this situation, the 

literature suggests that human parsers tend to make errors 

with ambiguous sentences (Frazier & Rayner, 1982). On the 

other hand, readers can construct coherence between 

sentences  through automatic inferences (McKoon & 

Ratcliff, 1992). However, studies on the human parsing 

process are mainly based on data collected from adult 

readers. Some studies suggest that there are different 

characteristics in the sentence processing of younger 

children (Otsu, 1994) and older adults (Baota et al., 2001), 

but there seems to be no evidence on sentence processing of 

young students. Moreover, despite that some school 

teachers recognize the possibility that the difficulties in 

parsing and building coherence between sentences are larger 
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than expected, achievement tests remain mainly concerned 

with higher levels of discourse.  

5. Results of junior high school students 

5.1 The appropriateness of RST Response data from six 

public junior high schools’ students were analyzed, to show 

the appropriateness of the RST. These schools are in City A, 

whose schools are known to perform well (the best in the 

prefecture in 2016) in national standardized achievement 

tests. The responded included 613 students in grade 7, 537 

in grade 8, and 608 in grade 9. The students responded to 

questions (items) taken from sentences from junior high and 

high school textbooks and from Japanese dictionaries.  

The analyses calculated two statistics: the Correct Answer 

Rate (CAR) and the Rate of Students who may respond by 

Guessing (RSG). CAR is the percentage of items that a 

student correctly answered, while RSG is the rate of 

students who were not statistically significant in a one-sided 

hypothesis test assessing whether each student's correct 

answer rate is greater than that by guessing (null hypothesis). 

For example, in the PARA test, whose items have two 

alternatives, the expected correct answer rate by guessing is 

0.5.  

First, we calculated CARs for each student in the six 

component tests. Although each examinee responded to 

different items as noted above, because these items were 

selected randomly, the CARs can be assumed to be 

comparable. The mean CAR was calculated for each grade 

(Table 3).  

 

Table 3: CAR means of each grade  

in the six component tests 
Grade DEP ANA PARA INF REP INST 

7 0.613  0.611  0.728  0.548  0.278  0.247  

8 0.646  0.653  0.746  0.576  0.303  0.281  

9 0.703  0.739  0.798  0.621  0.384  0.383  

 

Table 3 indicates that in all the component tests, as the 

grade goes up, the mean CAR also increases. Generally 

speaking, reading skills improve as the grade goes up.  

 

Table 4: Means of θ and RSG of each component skill  

in each grade 
 Means of θ RSG 

Skills grade 7 grade 8 grade 9 grade 7 grade 8 grade 9 

DEP -0.595  -0.502  -0.295  0.376  0.302  0.188  

ANA -0.558  -0.425  -0.106  0.365  0.260  0.110  

PARA -0.551  -0.440  -0.228  0.107  0.069  0.020  

INF -0.470  -0.443  -0.200  0.660  0.531  0.423  

REP -0.450  -0.436  -0.103  0.522  0.339  0.255  

INST -0.154  -0.072  0.232  0.583  0.505  0.312  

 

Next, to examine the relationships between the six 

component skills and grades, the means of six θs in each 

grade and the RSGs for each grade were calculated (Table 

4). Including city A’s, we collected responses from more 

than 13000 participants, which are elementary-school 

students to adults. The θs were estimated using the 

responses of all the examinees and the mean of the θs was 

set to 0 for all six components. The means of the six θs for 

the junior high school students therefore tend to be negative 

in this table. The table shows that like CARs, for all 

component skills, as the grade goes up, the means of θ also 

increase and the RSGs decrease. 

 Finally, to determine whether the relationships between 

six component skills, RSGs, and grades differ among 

schools, we calculated the means of the six θs and the RSGs 

of each grade in the six schools. The results indicate that the 

six junior high schools showed almost all the same 

tendencies as Table 4. That is, in all schools, as the grade 

goes up, the means of the six θs tended to increase and the 

RSGs of the tests decreased.  

All these results are evidence of the validity of the test.  

 

5.2 Assessment of students’ reading skills 

It is a good sign that RSGs decrease as the grade goes up. 

However, the RSGs of the 7th grade students on INF, REP 

and IST exceeded 50%. In other words, more than half of 

them failed to make inferences correctly based on the 

knowledge given in the textbooks, map the texts into the 

correct images, or understand the definitions. Our statistics 

show that at least one fourth of students graduate from 

junior high school without the ability to read and 

comprehend textbooks at a level better than guessing. As far 

as we know, this is the first large-scale investigation 

revealing this inconvenient fact. 

 

 
Figure 3: Question DEP 103 

 

Now, let us examine three items as to whether or not the 

items were tricky or too difficult for them to answer (Table 

5). In DEP 103, given in Figure 3, one can choose the 

correct answer, Christianity, without knowledge of the four 

religions. Figure 2 shows the trace plot of DEP103. It shows 

the item was neither tricky nor inappropriate. Still, about 

40% of 7th graders, 50% of 8th graders, and 33% of 9th 

graders were not able to choose the correct answer. 

 

Table 5: Percentage of correct answers to the three questions 

for each grade  
Question grade 7 grade 8 grade 9 

DEP103 0.609  0.516  0.676  

REP39 0.070  0.281  0.298  

REP38 0.250  0.419  0.492  
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   Moreover, all the 8th grade students had learned the words 

appearing in REP39, in Figure 1, (i.e., circle, origin, x-axis, 

tangent to) in the 7th grade. The gap between the CARs of 

the 7th and 8th grades (0.070: 0.281) might be explained by 

the unfamiliarity of these words to the 7th graders. Then, 

how can we explain that only 28.1 percent of the 8th grade 

students were able to choose the correct image of the text?  

One may explain that unskillful readers fail to monitor 

when they are checking more than one condition. Here, we 

asked the following simpler question as REP38: “The circle 

passes through the origin O”. The gap between CARs of 

REP 38 and 39 of the 8th and 9th grades might be explained 

by monitoring failure. Still half of the 9th grade students 

failed to answer correctly. We could not find relevant 

literature to explain this phenomenon. 

 

5.3 Correlation with schools’ characteristics We 

calculated correlations between these statistics and the 

schools’ characteristics; Distances from the nearest station 

(Dis), the Number of Students (NS), and Rates of Students 

receiving Financial Help for school attendance (RSFH) in 

each grade (Table 6). 

 

Table 6: Correlations of means of θ and RSG with school 

characteristics 
 Means of θ RSG 

Skills Dis NS RSFH Dis NS RSFH 

DEP -0.534  0.302  -0.540  0.434  -0.324  0.491  

ANA -0.315  0.104  -0.451  0.098  0.018  0.359  

PARA -0.294  0.101  -0.313  0.236  -0.105  0.412  

INF -0.262  0.251  -0.288  -0.001  -0.114  -0.016  

REP -0.235  0.143  -0.291  0.347  -0.209  0.408  

INST -0.156  0.279  -0.310  0.160  -0.345  0.237  

 

Table 6 shows that in all the tests, the correlations of the 

means of θ with Dis and RSFH are negative, but positive 

with NS, and that in almost all of the tests, the correlations 

of RSG with Dis and RSFH are positive, but negative with 

NS. These results imply that students whose schools are 

near a station, are large, and offer less financial support tend 

to have higher component skills and therefore may respond 

to items not by guessing. We will continue to investigate 

these findings. 

We asked examinees to answer a questionnaire including 

items on their attitudes toward reading and likes and dislikes 

of school subjects. City A conducts standardized 

achievement tests every year. We are planning to assess the 

relationship between the results of the RST, the responses to 

questionnaires and the scores of the achievement tests. 

6. Comparison of performances with 

automatic dependency structure analyzer 

We processed the test sentences of the RST dependency 

analysis questions (DEP) with the CaboCha parser (Kudo & 

Matsumoto, 2002) and analyzed the errors. We hoped that 

the analysis of errors made by a machine would help us to 

understand the human errors. CaboCha is a dependency 

parser based on Support Vector Machine. It was trained 

only on a news corpus, and its accuracy on news text is 

around 90% at the dependency relation level and 50% at the 

sentence level. The comparison with the human responses 

provided here is hence preliminary in that we expect the 

parser’s accuracy will improve by retraining it on textbook 

data.  

We analyzed the items on which we collected the 

responses from more than 100 students. DEP is a set of 

multiple-choice questions that ask for a phrase that stands in 

a certain grammatical relation to a phrase in a test sentence. 

We chose the answer based on CaboCha’s output. The rate 

of correct answers by CaboCha was 66%. For example, 

CaboCha parsed DEP103 (Figure 3) correctly. 

 

 
Figure 4: DEP θ value of humans and CaboCha 

 

Figure 4 shows the distribution of human θ and the 

estimated θ of CaboCha on the DEP questions. It reveals the 

mode of human θ is only slightly above that of CaboCha. 

The most common error types made by CaboCha were as 

follows (the numbers in parentheses are the fractions of the 

errors of these types). 

 

1. When the test sentence includes a phrase inside 

parentheses (7%) 

2. When the sentence is long (11%) 

3. Unusual use of a comma or no use of comma (2%) 

4. Choice of the attachment site of a subordinate or 

parallel verb phrase (60%): CaboCha made mistakes 

most frequently on the sentences including more than 

one subordinate or parallel verb phrase (VP). It 

corresponds to a sentence in the form of “… Verb … 

VP1 … VP2 …” in English, where VP2 has two 

possible attachment sites, Verb (matrix verb) and VP1 

(another subordinate VP), as in:  

Adaptive immunity [Verb includes] humoral immunity 

in which B cells [VP1 form proteins called antibodies] 

[VP2 to remove extracellular pathogens], and …(snip). 

         There is no syntactic clue to choose between the two 

possibilities. Thus, it should be judged by meaning, 

and hence, it is difficult for CaboCha. 

5. Wrong word segmentation (5%)  
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In Japanese, words are not separated by whitespaces 

as in English. CaboCha often fails to segment 

technical terms correctly.  

 

The errors of type 1, 3, and 5 would be reduced by 

retraining the parser on textbook data. On the other hand, 

the errors of type 4 require context and meaning to fix them. 

Table 7 lists the rate of correct answers by the human 

examinees on the questions on which CaboCha made 

mistakes. It suggests the choice of subordinate or parallel 

VP attachment is also difficult for humans. While Table 3 

indicates that students gradually acquire the skill and 

knowledge to do it, it would remain a hard problem for an 

automatic parser since it requires some understanding of the 

meaning and context of a sentence. 

We would like to confirm and extend these findings by 

examining more diverse samples collected through RST. Of 

special interest is a further analysis of the errors of human 

and automatic parsers on the basis of the cognitive studies 

on sentence processing (Mitchel 1994) such as the garden-

path theory (Frazier & Fodor, 1978; Frazier & Rayner, 

1982) and minimalist hypothesis (McKoon & Ratcliff, 

1992). 

 

Table 7: Human CARs on the questions on which the 

automatic analyzer made mistakes 

Error type of CaboCha Human CAR 

Parenthesized phrase 0.584 

Long sentence 0.572 

Unusual use or no use of comma 0.615 

Attachment of subordinate VP 0.549 

Word segmentation 0.786 

7. Conclusion 

We developed a new reading skill test (RST) to measure 

six component skills relevant to reading. By analyzing the 

responses to the RST, we confirmed that it has enough 

reliability and validity. In addition, we analyzed response 

data of Japanese junior high school students to the RST, and 

the results implied that, surprisingly, the six component 

skills might be lower than expected. Finally, we compared 

the performances of the students with those of a Japanese 

dependency parser. The results implied that students do no 

better than a machine in dependency analysis.  

References  

Arai, H. N., & Matsuzaki, T. (2014). The impact of A.I. on 

education - Can a robot get into the University of Tokyo?. 

Proceedings of the 22nd International Conference on 

Computers in Education (pp. 1034-1042). 

Balota, D. A., Cortese, M. J., & Wenke, D. (2001). 

Ambiguity resolution as a function of reading skill, age, 

dementia, and schizophrenia: The role of attentional 

control. In Gorfein, D. S. (Ed). On the consequences of 

meaning selection: Perspectives on resolving lexical 

ambiguity (pp. 87-102). Washington, DC, US: American 

Psychological Association. 

Dagan, I., Roth, D., Sammons, M., & Zanzotto, F. M. 2013. 

Recognizing Textual Entailment: Models and 

Applications. Morgan & Claypool.  

Frazier, L., & Fodor, J. D. (1978). The sausage machine: A 

new two-stage parsing model. Cognition, 6(4), 291-325.  

Frazier, L., & Rayner, K. (1982). Making and correcting 

errors during sentence comprehension: Eye movements in 

the analysis of structurally ambiguous sentences. 

Cognitive Psychology, 14, 178-210. 

Fujita, A., Todo, N., Sugawara, S., Kageura, K., & Arai, N. 

H. (2016). Development of a Reading Skill Test to 

Measure Basic Language Skills. Proceedings of the 8th 

IEEE International Conference on Technology for 

Education (pp.156-159). 

Hambleton, R. K., & Swaminathan, H. (1985). Item 

response theory: Principles and applications. Boston, 

MA: Kluwer Nijhof. 

Kudo, T., & Matsumoto, Y. (2002). Japanese dependency 

analysis using cascaded chunking. Proceedings of the 6th 

conference on Natural language learning-Volume 20 (pp. 

63-69). Association for Computational Linguistics. 

Lord, F. M., & Novick, M. R. (1968). Statistical theories of 

mental test scores. Reading, MA: Addison-Wesley. 

McDonald, R. P. (1999). Test theory: A unified treatment. L. 

Erlbaum Associates, Mahwah, NJ. 

McKoon, G., & Ratcliff, R. (1992). Inference during 

reading.  Psychological Review, 99, 440-466. 

Mitchell, D. C. (1994). Sentence parsing. Handbook of 

psycholinguistics, 375-409. 

Nivre, J., Hall, J., Kübler, S., McDonald, R., Nilsson, J., 

Riedel, S., & Yuret, D. (2007). The CoNLL 2007 Shared 

Task on Dependency Parsing. Proceedings of the CoNLL 

Shared Task Session of EMNLP-CoNLL 2007. (pp. 915-

932). 

OECD (2016). PISA 2015 Results in Focus. Retrieved from 

https://www.oecd.org/pisa/pisa-2015-results-in-focus.pdf 

Otsu, Y. (1994). Early acquisition of scrambling in Japanese. 

In: Teun Hoekstra & Bonnie D. Schwartz (eds.) Language 

Acquisition Studies in Generative Grammar, 253-264. 

Amsterdam: John Benjamins Publishing.  

Pradhan, S., Moschitti, A., Xue, N., Uryupina, O., & Zhang, 

Y. (2012). CoNLL-2012 Shared Task: Modeling 

Multilingual Unrestricted Coreference in OntoNotes. 

Proceedings of the Joint Conference on EMNLP and 

CoNLL – Shared task. (pp. 1-40). 

RAND Reading Study Group (2002). Reading for 

understanding: Toward an R&D program in reading 

comprehension. Santa Monica, CA: RAND Education. 

van der Linden, W. J., & Glas, C. A. W. (eds.).  (2010). 

Elements of Adaptive Testing, New York, NY: Springer.  

1561



Perception Meets Examination: Studying Deceptive Behaviors in VR
Carla Aravena1∗ Mark Vo1∗ Tao Gao2 Takaaki Shiratori1 Lap-Fai Yu1

1University of Massachusetts Boston 2General Electric
∗Equal Contributors

Abstract

Students cheating on an exam in an academic setting creates
an environment where one person (the student) must reason
about the perception of another (the teacher). In exploring the
student’s mindset, trends concerning how humans make deci-
sions based on their understanding of another human’s inten-
tions and knowledge can be uncovered. In this work, we study
human cheating behavior through simulated examinations in
virtual reality, showing that the teacher’s animacy and orienta-
tion plays a large part in the student’s reasoning of the teacher’s
awareness. By utilizing a virtual classroom setting and accu-
rately tracking a users behavior (through head tracking, eye
movement, etc.), we have also demonstrated how a novel vir-
tual reality approach can be used for such experiments involv-
ing human behavioral observations, which can be further ex-
plored in other cognitive science research experiments.
Keywords: deceptive behavior; behavior modeling; virtual re-
ality; game experimentation; human vision; Theory of Mind

Introduction
Imagine you are a teacher surveying your classroom of stu-
dents who are taking a final exam. You know that the exam
is very difficult and you expect that some students may at-
tempt to cheat. Perhaps you find yourself scanning the room
for signs of cheating behavior. But, what do such signs look
like? A student looking around the room could simply be in
the process of managing their thoughts. If a student is look-
ing straight at you for a while, are they waiting for you to look
away or are they wondering if they should ask you a question?
How can you determine which students are simply feigning
innocence while planning a cheating attempt? What if you
have a large classroom of students; how would you be able to
keep an eye on all of them at once?

Cheating remains a common problem in examinations,
which creates an interesting scenario for cognitive psychol-
ogy research in its need to have one person relying upon their
perceptions of the intentions of another person to behave. In
a classroom, the student must rely upon the teacher’s actions
and movements in order to determine when the best window
to cheat off of another student’s exam is. How the student
reasons about a teacher’s intentions, formulates the right time
to cheat, and performs certain behaviors to ”trick” the teacher
are areas that have yet to be explored in a way that does not
simply rely on asking students how they cheat. Discovering
how a cheater successfully accomplishes his or her task is re-
lated to the cognitive science concept of the Theory of Mind,
defined as ”a mechanism that helps [one] to make sense of the
behaviour of others in specific contexts and to predict their
next action” (Dias, Aylett, Paiva, & Reis, 2013). In the sit-
uation of cheating during an examination, the student must
predict what the teacher is perceiving in order to gauge the
success of their cheating attempt.

In this work, we study the signs and visual behaviors of
cheating through virtual reality. Having actual students in real
life to participate in our experiments and produce the cheat-
ing data gives us a realistic dataset to visualize and analyze
how university students may actually cheat on classroom ex-
aminations. We recreate the cheating situations captured in

(a) Cheating in a real classroom (b) Our game
Figure 1: (a) Cheating in a real classroom during an exam. (b) A
screenshot of our game that mimics the settings of a real exam. The
player cheats during a simulated examination in virtual reality while
avoiding getting caught by the teacher similar to a real-life situation.

virtual reality to establish ecological validity and track vari-
ous factors of the participants’ behavior with respect to the
state of the teacher.

Figure 1(b) shows a screenshot of our game. Our game
premise is inspired by Sunken Places’ virtual reality game
”Classroom Aquatic”. In their game, the player is asked
to complete their multiple-choice examination within a time
limit by cheating off of other students’ examinations, avoid-
ing the teacher’s and students’ gazes, and using objects as
distractions to answer the questions correctly. This premise
takes an ordinary situation and recreates it in virtual reality,
encouraging players to use deceptive behavior to complete a
task. From a cognitive science standpoint, such a game set-
ting is interesting as it provides a good scenario for studying
how humans exhibit cheating behavior and for understanding
how humans judge the actions of others to be deceptive.

The major contributions of our work include the following:

• Analyzing how students cheat on classroom exams based
on their behavior within a virtual setting.

• Demonstrating that virtual reality environments can pro-
duce a way to objectively gather data on human behavior.

Hypothesis
Through our experiments, we seek to answer the question
of how students use information of a teacher’s movements
to perceive the teacher’s intent (i.e. how does the teacher’s
movement and placement in the room affect the student’s
judgment on when it is ”safe” to cheat?). This question con-
tributes to the discussion of the Theory of Mind and how hu-
mans process information of others’ behaviors to make judg-
ments. Inspired by the previous research on animacy and
how that influences a human’s decision-making process, we
hypothesize that (1) players will cheat most often when the
teacher is completely turned away from them. For this hy-
pothesis, we believe that players will assume that the teacher
will keep walking in the same direction, away from them, for
a long enough time for them to safely cheat. As for how the
players will choose to cheat, we also make the hypothesis
that (2) the players will not look directly at another students’
exam, and will instead cheat while employing their peripheral
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vision in order to appear innocent to the teacher and also to
keep an eye on the teacher as much as they can.

Related Work
Common Cheating Behavior in Exams. Prior meth-
ods used to prevent cheating and to catch potential cheaters
are common in research literature on the topic of student
cheating. The factors behind why students cheat is well-
documented and analyzes how certain variables affect the
students’ likeliness to cheat including gender, GPA, parental
pressure, etc. (Batool, Abbas, & Naeemi, 2011). Al-
though such findings are useful, their applications in prevent-
ing cheating are difficult to place given that one may not be
able to generalize which students are likely to cheat based on
their personal life (such as parental pressure) as well as the
fact that some of these variables may not be accessible by an
educational institution. An examination of classrooms and
learning environments that are best able to dissuade cheating
has been performed in prior research (Cizek, 2003), which
found that students tend to cheat less often when (a) classes
are smaller; (b) classroom conditions (both physical and in-
structional) are established that are conducive to learning; (c)
instruction, assignments, and examinations are clear, well-
designed, meaningful, and relevant; (d) teachers take reason-
able steps to prevent cheating . While (a) is an issue that is
generally assumed to be handled by the educational institu-
tion, and (b) and (c) are obvious goals that any class setting
should aim to achieve, it is (d) that we are most interested in
cultivating by finding out how students actually cheat.

Many of the methods used to discover how cheating is
conducted is qualitative and frequently relies upon students’
readily answering questions on the matter (e.g., (Batool et
al., 2011; Shon, 2006; Yee & MacKown, 2009)). Relying
upon student responses alone is problematic for the obvious
reason that students could easily lie and fail to realize their
exact behavioral habits when trying to be deceptive. By tak-
ing data from “cheaters” in a quantitative way through auto-
matically tracking their actions throughout a cheating session,
this problem would be resolved. Previous attempts to auto-
mate detection have applied text-mining based approaches,
which only evaluate cheating after the fact and is limited to
open-ended exams (Cavalcanti, Pires, Cavalcanti, Pires, et al.,
2012). We are more interested in studying the cheating be-
havior at the instant it occurs, which forces the student to rely
upon his or her reasoning of the teacher’s perception, as it is
highly relevant to the Theory of Mind.
Prior Cognitive Science Studies on Deceptive Behavior.
According to previous studies, students cheat by first ”qual-
ifying the professor”: determining how likely they could get
away with cheating based on evaluating the teacher’s behav-
ior (Batool et al., 2011). This is an area that we would like
to explore further as it is an extension of a human’s Theory
of Mind, defined as the ability to infer the full range of epis-
temic mental states of others, i.e., beliefs, desires, intentions
and knowledge (Dias et al., 2013). This is a mechanism that
helps to make sense of the behavior of others in specific con-
texts and to predict their next action. Through our experi-
ments and analysis, we investigate the Theory of Mind in that
we are trying to find out how people figure out whether or not
the teacher is catching on to them and, based on the teacher’s
behavior, when it is safe to cheat.

In a recent study, (Dias et al., 2013) established a game
in which different artificial intelligence models with varying
levels of Theory of Mind were set to perform deceptive be-
haviors in a game setting, finding that those with higher lev-
els of Theory of Mind (and thus a greater ability to reason and
make inferences on others’ behaviors) were more successful
in deceiving, showing how frequently deception is founded
when making judgments upon the actions of others. In our
experiments, we examine the behaviors of the human play-
ers against the actions of a virtual teacher to discover how
humans may similarly reason about the teacher’s behavior in
order to be successfully deceitful.

Gao’s et al. (Gao, Newman, & Scholl, 2009) research con-
cerning how animacy is involved in a person’s reasoning on
intent provides a possible explanation for what we are observ-
ing in our players’ behavior. Their study found that humans
rely on the direction and orientation of an object to perceive
its animacy, movement, and intent. Subjects were more likely
to reason that a wolf shape was ”chasing” a sheep shape if ori-
entation was present. Therefore, animacy and orientation of
movement may be influential when humans apply the Theory
of Mind. In our experiment, we will observe to what extent
the player will use the teacher’s animacy and movements in
making their decision of what time is best to cheat.

Investigating how humans reason about their game oppo-
nents in game settings is well-documented and is helpful to
those in game-development who are concerned with realistic
AI mechanisms. Prior research in turn-taking games follows
a similar setup in exploring the Theory of Mind and looks
into ”which rules govern human strategic thinking” (Halder,
Sharma, Ghosh, & Verbrugge, 2015). Such findings inspired
us to determine which aspects of human behavior we should
track and record, taking note to include timing and duration of
actions (such as cheating) in our own experiments. However,
unlike such studies, we are dealing with continuous game-
play and so we cannot delineate a player’s choices in a clear-
cut manner as we would in a turn-taking game. Having a
continuous gameplay setup serves our purpose in mirroring a
situation that would take place in everyday life.
Using Games for Cognitive Science Research. The in-
volvement of videogames into academic research has an es-
tablished, albeit relatively new, presence in academic re-
search. Previous branches of research involving videogames
in the fields of Cognitive and Social Psychology have stud-
ied the effect of entertaining games on basic cognitive skills
while another has researched the success of educational gam-
ing (Killingsworth & Clark, 2013). Instead of contributing
to either of these branches, our experiment seeks to instead
use a videogame format in order to observe human behavior,
which is an ability afforded to us through the use of virtual
environments that are now even more immersive with the aid
of a suitable virtual reality headset.

Previous research studies have used virtual reality technol-
ogy to recreate real-life situations and examine human be-
havior in such instances (Kozlov & Johansen, 2010; Olivier,
Bruneau, Cirio, & Pettré, 2014; Li, Liang, Quigley, Zhao, &
Yu, 2017; Rovira, Swapp, Spanlang, & Slater, 2009). These
studies have found that virtual scenarios are a good fit in mea-
suring human responses to real events due to the close corre-
spondence in human behavior between the two environments
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(a) Oculus Rift VR headset (b) Player controller
Figure 2: Experiment setup. The participants performed the exam-
inations using (a) an Oculus Rift virtual reality headset and (b) a
Microsoft Xbox 360 game controller.

as well as the fact that the virtual reality settings can be fine-
tuned by the researchers (Rovira et al., 2009). If the virtual
setting is close enough to pass as its material counterpart, it is
safe to claim that observations made on participants are valid.

Approach
Overview. To study how students cheat, we seek to gather
information on how players cheat on exams within a game
session that models the real-life situation. In our experiments,
the player takes on the role of a student taking a multiple-
choice paper exam. The player is immersed in a virtual class-
room environment and is asked to achieve two objectives:
(1) answer as many questions on the examination correctly
as possible by cheating off of other students’ exams and (2)
avoid detection of the teacher. If the teacher is able to catch
the student in the act of cheating, the player will fail the task
and that round will end.
User Interaction. Figure 2 depicts the experiment setup for
the game sessions. We decided to use an Oculus Rift DK2
as our virtual reality hardware setup due to its ability to con-
duct the sessions in a small space and immerse players within
the game setting. A Microsoft Xbox 360 wireless controller
is used as the primary controller for which the player cheats
and answers questions with. The player can change his view-
point and shift his gaze as he would in reality with the use of
the virtual reality headset. Other primary modes of interac-
tion will be the act of cheating, which is triggered when the
Left/Right Bumper Button is held down by the player (the
answer retrieved from the examination paper of the classmate
sitting on the left or right will be displayed); and the abilities
to switch through and answer examination questions, which
are respectively achieved by pressing Left/Right on the direc-
tional pad and either A/B/Y/X.
Virtual Environment Design. We designed a 3D virtual
environment in the form of a classroom in which the player
is a student surrounded by other students at individual desks,
much like how most classrooms are set up at colleges today.
The classroom objects, the teacher, the player character, and
the other 3D student models were found at the Unity Asset
Store. The design of the classroom is not flashy nor distract-
ing so that players can focus on the task at hand.
Gameplay. The exams of the students to the left and right
sides of the player will contain a correct answer to one of
the questions on the exams; these answers will change in a
preset interval every 5 seconds so that all answers can be ob-
tained by cheating. The teacher moves along a preset path to
hit certain points along the classroom, rotates about every six
seconds, and seems to be checking over the room for signs
of potential cheating. The path of the teacher is shown in

Figure 3: The path of the teacher during the game. Walking through
the path once takes about 80 seconds and the teacher cycles through
the path until the player finishes his exam in the round, which usually
takes about 100-200 seconds. Arrow directions correspond to the
orientations of the teacher.

Figure 3. The questions that show up on the player’s exams
are derived from the website ”Trivia Country” (Trivia Coun-
try, 2016). We chose questions from this website due to their
specificity and very low chance that participants would know
the correct answers. For example, one question we ask partic-
ipants on the exam is: The Philadelphia mint started putting
a ’P’ mint mark on quarters in which year? Answer Choices:
a)1980; b)1960; c)1950; d)never. We give the participants
an incentive to cheat by telling them that the number of cor-
rect responses they answer is important to getting the maxi-
mum amount of money. Since the multiple-choice questions
are derived from random, factual knowledge that the partic-
ipants will most likely not know the answer to, cheating be-
comes a necessity to gathering the correct answers. Further-
more, we give an incentive for the players to cheat wisely by
telling them that, if they are caught cheating, their potential to
gather the maximum amount of points per round will be cut
short. The player is also told that the teacher is powered by
an advanced artificial intelligence and a human vision model
so that he can perceive the environment like a real human, so
that the player treats the teacher’s actions with severity. In ac-
tuality, the teacher has a limited, cone-shaped range of vision
that functions as a spotlight to detect cheating if the player is
within the cone of vision and holding down the cheat button
at the same time.

Data Collection. In order to gather data through the game
session playthroughs, we constantly track the position and
orientation of the teacher model. The position and orienta-
tions of the the teacher’s head and the player’s head move-
ments are recorded during gameplay for later analysis. We
measure the user’s visual attention through game scripts that
track an approximation of the player’s gaze by creating a ray
at a point where the player is looking, as well as taking note of
at what time the player is cheating and which paper the player
is cheating off of (either the left or right exam). During the
player sessions, we also record a video of the gameplay, from
both the teacher’s and the student’s point of view. Refer to our
supplementary video which showcases some of this footage.
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Figure 4: Human’s field of vision.

Experiments

Subjects. 25 participants were recruited to conduct this
study with 22 being college students and the rest in high
school and middle school. The subjects were recruited
through emails sent out to the Computer Science department
at UMass Boston as well as through word of mouth. About
60% of the subjects were of a Computer Science background.
None of the students had played the aforementioned Class-
room Aquatic game. Of all the subjects, there were 14 males
and 11 females. Each player session consisted of 3 rounds.
The participants participated individually for approximately
10 minutes for each player session and so completed each
round in about 3 minutes. Participants were paid $10 for their
time upon completion of their experiments.

Implementation. The virtual reality program was run on
a desktop computer installed with an AMD FX 8350 Eight-
Core Processor (4.00GHz), 16GB memory (RAM) and a MSI
Radeon R9 390 8GB Graphics Card. Participants were given
a Xbox 360 wireless controller and an Oculus Rift DK2 head-
set to play the game created using the Unity game engine.

Briefing. Participants were given instructions on how the
controls of the game functioned through a short tutorial ses-
sion. This tutorial session allowed players to understand how
to answer exam questions, how to cheat, as well as to become
accustomed to the game surroundings. The virtual teacher
was not introduced in the tutorial session. The players were
then told the following message before the start of the game
session:

You are a student looking to get a decent grade on an in-
class, multiple-choice exam. The answers to the questions
correspond to the A-B-Y-X buttons on your controller. To gain
a good score, you can cheat off of the exams of the students to
the left and right of you. Hold down the left or right bumper
to cheat off of their exams, which will have a correct answer
to a question on the exam and will change answers in a set
time interval. There will be three rounds with five questions
on an exam each. You gain a point for each question that you
correctly answer. You can earn up to 10 dollars depending
on how many points you have at the end of the three rounds.
The teacher in this game is wearing a blue suit and is de-
signed with advanced AI and vision capabilities such that they
can perceive the world like real humans can. If the teacher
catches you teaching, it’s game over for that round and you
will go on to the next round.

Figure 5: The angles by which players cheated off of the left or right
exam.

Results and Analysis
Using the data we have gathered during the game experi-
ments, we plot several different variables against each other
to draw conclusions on students’ cheating behavior. We ig-
nore the first round of data for each participant as the latter
two rounds are far more likely to contain the players’ intent
and are not marred by first-time errors.A total of 255 cheating
attempts were recorded (not counting the first round).
Peripheral Vision. We first examine the player’s use of
peripheral vision in order to cheat by inspecting the angle
between the player’s estimated gaze and the exam they are
cheating off of (either the left or the right exam). The angles
at which the player cheated off of the exams are shown in
Figure 5. The number of cheating attempts made off of the
left exam were 117 while the right exam had 138 in total. We
refer to the human’s field of vision (Bhise, 2011) depicted
in Figure 4 to compare the angle between the player’s cen-
tral ray and the left or right exam to this diagram in order to
determine which area of their vision the participants used to
cheat.

For those who cheated on the left exam, a mere 2% cheated
using their central vision. 24% of participants utilized their
near-peripheral vision. The majority of the left attempts,
70% , cheated within the angle range considered to be mid-
peripheral vision. The remaining 4% of these cheating at-
tempts were conducted at an angle greater than 60 degrees.
Similar results were found for the cheating attempts done on
the right exam. 0% used their central vision on this side while
38% relied upon their near-peripheral vision. The remaining
62% all took place under the player’s mid-peripheral vision.

Instead of staring directly at the other students’ exams, the
subjects chose to keep the exam they were cheating off of to
the side of their vision. The reason for this result could be
the effect of the player exhibiting signs of ”sneaky” behav-
ior. The player’s cheating status is turned off or on simply
by holding down the cheating buttons, which was made clear
to the participants during the tutorial. Therefore, looking di-
rectly at another exam or not has no bearing on how quickly
one can ”stop” cheating. Because of this, we can say that the
reason for this behavior is due to the player constantly keep-
ing in mind the teacher, as the player exhibits signs of feeling
wary of the teacher. By only ”sneaking” glances at a nearby
exam they are cheating off of, the student is trying not to be
too ”obvious” in their cheating. This action reveals that the
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(a) Towards (b) Away (c) Left (d) Right
Figure 6: Appearances of the teacher at different relative orienta-
tions with the player.

student is letting their perception of the teacher’s perception
shape their own actions. The students exemplify the The-
ory of Mind: they are reasoning and making inferences on
another’s perception based on that person’s behavior and are
changing their own behavior accordingly (Dias et al., 2013).

Figure 7: Angle be-
tween the teacher’s
central vision and
the student.

Teacher’s Orientation. The teacher
in our experiment, in his pre-figured path
around the room, pauses about every six
seconds to rotate back and forth (as if he
is scanning the room for signs of cheat-
ing) and turns his body like a normal per-
son walking around a room would. Fig-
ure 6 shows the teacher’s appearances at
different orientations. We examine when
players chose to cheat according to the
teacher’s orientation relative to the player by noting the angle
θ by which the teacher sees the student (depicted in Figure 7).

According to Figure 8, students mostly cheated during the
moments where the teacher was farther away from the student
and when the student was on the outskirts of the teacher’s
perceived vision. Out of 255 recorded cheating attempts,
only 7% of attempts were undergone when participants were
within the teacher’s central range of vision (and got caught
by the teacher during these attempts). 12% of cheating at-
tempts were done under the teacher’s near-peripheral range
of vision and 9% under the teacher’s mid-peripheral range.
The majority of cheating was split between when the student
was within the teacher’s far-peripheral range of vision (the
dark purple points, taking up 34% of all cheating attempts)
or when he was not facing the student at all (the black points,
which make up 38%). When the teacher can see the student
only with his far-peripheral vision or not at all, the player
was able to be more certain that the teacher was not paying
attention to him and therefore cheated the most during those
moments.
Teacher’s Position. Figure 8 also shows that more than
half of all cheating attempts took place when the teacher’s
distance exceeded 3 meters, attesting to the player’s feeling
that, the farther away the teacher is, the ”safer” the cheater is.
Figure 9 shows further that students chose to initiate cheating
when the teacher was located in areas that were farther away
from them and did not feel safe enough to cheat when the
teacher was not in sight. The moments in the teacher’s path
with the most frequent cheating attempts, at around 32% of
all cheating instances, were located close to Area A, where
the teacher was within the student’s sight, was not relatively
close to the student, and was moving in a clear path towards
the back of the room. At this point, the student was able to
cheat off of the left exam and keep the teacher within their
line of sight. The least amount of cheating occurred around
Area B, where the teacher was completely out of the student’s
range of vision. We see a brief peak in cheating when the

Figure 8: Each dot refers to an occurrence of cheating, plotted
against the distance between the player and the teacher, and the an-
gle by which the teacher saw the student.

teacher was close by but had his back turned to the player, in
Area C. The player might assume they were safe at this point,
thinking that the teacher would continue to walk away from
them. However, the teacher turned around shortly after and
walked by them again, moving back towards the front of the
room. Cheating instances only became more frequent again,
with around 9% of all cheating attempts happening, when the
teacher had traveled a farther distance away in Area D.

The players’ cheating patterns here reveal that students rely
upon their perception of the teacher’s perception to make
judgments on the teacher’s ability to spot them cheating. This
explains why they choose to cheat only when they are able to
see the teacher. It is also clear that the players used the ani-
macy of the teacher to make predictions of the teacher’s per-
ception and behavior as they were more likely to cheat when
he had his back turned or was walking away.

Discussion
Feedback and Observations. We asked the participants
how they felt about the experiment after receiving their com-
pensation. The general feedback from the players was that the
game was “fun” and “interesting”. They claimed that, during
the game, they felt slightly afraid of the teacher model. From
our observations, we noted that, during the start of the first
round, the participants would be reluctant to look away from
their paper at all once they saw the teacher. Only after we re-
iterated the rules of the game (that the student is not cheating
unless the corresponding button is held down) did the players
feel comfortable looking around the room. However, even
still, very few players turned completely around to see where
the teacher was when he was behind the student, even though
they could have done so with no penalty. In reality, few stu-
dents would turn all the way around to spot the teacher as this
might appear suspicious. This attests to the participants tak-
ing the game seriously and that they performed as they would
in an actual classroom.
Limitations. The participants’ experience with virtual real-
ity and computer games may affect their performance in our
experiments. Most of our participants were students from the
Computer Science major. Many CS majors are exposed to
and regularly enjoy computer games, so they may have had
a slight advantage in escaping cheating during the game ses-
sions, compared to participants from a non-CS background.
Furthermore, virtual reality headsets affected different partic-
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Figure 9: Cheating frequencies when teacher was at different loca-
tions along his path. Redness corresponds to the cheating frequency.
Most cheating occurs when the teacher was at the far left. Refer to
text for detailed description of the observations.

ipants differently, especially when some were wearing glasses
or were just using a virtual reality device for the first time.
As a result, some might have experienced slight discomfort
with the virtual reality headset, perhaps leading to less ease
in playing the game. We are also limited by the teacher’s
lack of realistic head movement. The teacher’s torso and head
move in the same direction throughout the game, which the
player may or may not have realized as they were playing.
Because of this, the results may be slightly varied from a real-
life classroom setting.
Conclusion. In this study, we have verified our hypothesis
about deceptive human behavior during an exam as the play-
ers (1) cheated most frequently when the teacher was turned
completely away from them and (2) used their peripheral vi-
sion frequently to cheat off of other exams, showing that the
teacher’s animacy and orientation play a significant role in
the student’s likeliness to cheat and that their own judgment
about “appearing” suspicious affected how they decided to
cheat. By utilizing a virtual classroom setting and accurately
tracking a user’s behavior, we have also demonstrated how
a novel virtual reality approach can be used for such exper-
iments involving human behavioral observations, which can
be further explored in other cognitive science research exper-
iments. An interesting venue for future work is to use the
human behavior data collected from virtual environments to
train a realistic, human-like AI that can exhibit human decep-
tive behaviors. The application of new virtual reality devices
that can accurately measure eye-tracking to this experiment
would lend itself to the peripheral vision analysis as well.
Furthermore, because students often cheat in collaboration
with other students, our extension of this work will include
a cooperative mode that allows two players to help each other
cheat. We are also developing a quantitative method analysis
of the player’s cheating by establishing a metric to estimate
the amount of visual attention the student is receiving from
the teacher at any given point in time.
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Abstract

A central assumption in joint action research is that in order to
explain how individuals act as part of a group, we must first
explain how the group comes into existence. This assump-
tion has led to an unnecessarily narrow research programme:
research has focussed largely on interpersonal coordination
mechanisms. I outline an alternative approach predicated on
a dynamic conception of the ecosystem. On this view, there
is no need to assume that actors must first constitute a group
agent with their fellows before entering into coordinated ac-
tion. Such coordination can be more efficiently explained by
recognizing that all actions perturb the structure of the ecosys-
tem itself in a manner that can alter the action possibilities
available to neighbouring actors. This move allows us to over-
come entrenched debates over the nature of shared intention-
ality, and to instead focus on practical interventions in multi-
actor settings.
Keywords: joint action; shared intentionality; ecosystems;
ecological psychology

Introduction: The group actor assumption
The group actor assumption is not a commonly-used term;
it is a term I introduce here to characterize the way that re-
searchers working in the joint action tradition typically under-
stand their project (Sebanz, Bekkering, & Knoblich, 2006).
The assumption might be analysed into the following four
claims:

1. the basic form of action is individual action

2. the group is to be understood as a set of constraints and
structures placed on individual action (the tactic here might
be to reduce joint action to structures in individual minds,
or, alternatively, it might be claimed that the group itself is
an emergent structure that constrains the individual com-
ponents)

3. the existence of the group must be explained in terms of
the nature of the individuals involved, and the coordination
activities they engage in

4. the group must come into existence first before a joint ac-
tion can be implemented

I do not, however, wish to make a fetish out of these four
items. So let us immediately simplify this analysis by replac-
ing it with the following statement:

‘The group actor assumptions reifies the group’

That is to say, under the group actor assumption, it is un-
derstood that the study of activity involving multiple actors
requires a special mode of analysis. The group actor assump-
tion says that the group is a real entity, and, furthermore, it

asserts that this groupness will play a crucial role in explain-
ing whatever it is that we wish to explain about some phe-
nomenon of interest. The group actor assumption invites us
to divide the world, a priori, into individual actions and joint
actions, and says that the latter type requires an additional
layer of explanation over and above what is required for the
former.

I will provide evidence for all of these claims below. But
first it will be useful to consider a specific example of the
kind of joint action that we might want to study. I will use
this to argue that the group actor assumption leads to an un-
necessarily narrow research programme. In the second half of
the paper, I outline an alternative approach which avoids the
problems identified, appealing to the concept of the ecosys-
tem.

Case study 1: Children’s soccer training
When young children, say around age five, are first corralled
onto a soccer pitch they can easily enough be divided into
two teams and encouraged to act out a soccer game. What
one will notice, however, is that these teams exhibit a striking
absence of structure. The ball will be propelled in some di-
rection, whereupon the children will chase the ball en masse,
and then different children will try to coordinate the necessary
limb movements in order to make some decisive connection
with the ball. At the end of this process, the ball is propelled
in some new direction, and the cycle begins again. What is
going on here? Here is a succinct explanation: ‘A child’s ba-
sic urge is to run and chase the ball’ (Quinn & Carr, 2006).
The children’s chasing-urge, coupled with the quasi-random
trajectory of the ball at a given moment, produces a situation
in which all of the action appears to be reactive to the current
spatial configuration; indeed, the ball itself almost appears to
be driving the action.

Contrast this with an accomplished team performance
played to a high degree of skill. Take the goal scored by Es-
teban Cambiasso for Argentina against Serbia and Montene-
gro at the 2006 World Cup. This is a famous goal because it
came after the team had completed a sequence of 24 uninter-
rupted passes, and it thus serves as an object lesson in domi-
nant possession-based soccer. But let’s consider just the last
four passes here. For each of these passes the player receiving
the ball is already on the move and the passing player, detect-
ing this movement, plays the ball into the space just in front
of where the recipient is going to be. The whole sequence of
four passes goes off in a fluid, continuous fashion. In con-
trast to the five-year-olds’ game, we are no longer tempted
to claim that the ball is driving the action. The ball is still
central, of course, but it has now come under the control of a
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disciplined, structured team.
The question is: What has changed between these two soc-

cer games? How does one get from the five-year-olds’ skill
level to something approaching that of the Argentinian play-
ers? What does the learning process look like? How can we
understand the skilled version of the game in a way that al-
lows us to do useful things like come up with effective train-
ing interventions?

It would be reasonable to expect that research on joint ac-
tion should give us something to say about such matters. A
joint action research programme worth the name ought to pro-
vide us with some guidance about how to go about formulat-
ing and answering appropriate questions. Does it?

From the study of the individual to the study of
the group: Where did the action go?

Joint action research has its origins in attempts to expand the
traditional, individualistic cognitivist research programme to
encompass the study of interpersonal phenomena, such as
discourse-level activities in spoken language. For the sake
of clarity, here is a definition of that individualistic research
programme: ‘Cognitivism in psychology and philosophy is
roughly the position that intelligent behavior can (only) be
explained by appeal to internal “cognitive processes,” that is,
rational thought in a very broad sense’ (Haugeland, 1978).

This immediately raises a problem. Any attempt to deal
with multi-actor activities within cognitivism runs straight
into an apparent contradiction: how can we appeal exclu-
sively to internal processes when the ‘inside’ is distributed
across multiple individuals? The way that researchers have
typically dealt with this is through accepting the group actor
assumption.

In perhaps the most widely-cited paper on the topic in re-
cent years, Sebanz et al. (2006) frame the problem thus: ‘As
a working definition, joint action can be regarded as any form
of social interaction whereby two or more individuals coordi-
nate their actions in space and time to bring about a change
in the environment.’ Gilbert (1990) discusses the case of two
people going for a walk, and insists that ‘in order to go for
a walk together, each of the parties must express willingness
to constitute with the other a plural subject of the goal that
they walk along in one another’s company.’ Bratman (1992)
identifies as one of the characteristic features of joint activity
that each actor has an ‘appropriate commitment’ to the joint
activity. Marsh, Johnston, Richardson, and Schmidt (2009),
who are not themselves cognitivists, go as far as to describe
the group as a hybrid organism or ‘chimera’, an entity ‘that
has an implausible wholeness, despite the disparateness of the
parts that compose it.’ Searle (1990) provides a clear-eyed
analysis of the problems associated with appealing to inten-
tionality in the group setting, but he also posits a version of
the group actor assumption: ‘Intuitively, in the collective case
the individual intentionality, expressed by “I am doing act A,”
is derivative from the collective intentionality, “We are doing
act A.” ’

What can be seen in all of these statements is an accep-
tance of the view that the group must be understood as a real
entity—a set of constraints or structures which are imposed
on individual action and which must come into existence first
before the joint action can be implemented. Debate within
the joint action tradition can largely be read as a series of
disagreements about what we should expect these constraints
and structures to look like.1

In practice, this has led to the most intense research effort
being directed at the question of interpersonal coordination
(Vesper et al., 2017): How is it that a dispersed set of in-
dividual actors becomes a group? The ancillary assumption
driving such investigations is that we should be able to iden-
tify a single, general mechanism which applies in all cases
and which allows multiple individuals to coordinate with one
another, no matter the activity they are actually engaging in.

In this vein, Tomasello et al. (2005) attribute the set of be-
haviours they consider to be uniquely human, such as lan-
guage and culture, to an entity they call ‘shared intentional-
ity’. Tomasello notes at the end of his 2014 book that a ‘par-
ticularly big’ open question remains concerning ‘the nature
of the jointness or collectivity or “we-ness” that characterizes
all forms of shared intentionality.’ He favours an appeal to
recursive mind-reading of the he-thinks-that-she-think-that-
he-thinks variety, a solution similarly favoured by other re-
searchers (e.g., Clark, 1996). On this account, a joint action
can proceed only when all participants to the action under-
stand themselves to be participating in the action as part of
the group. The group exists in the minds of its members.

The most common alternative to recursive mind-reading
hypotheses are contagion-based theories which posit that the
group comes into existence automatically, as a result of low-
level synchronization phenomena (e.g., Pickering & Garrod,
2004; Marsh, Richardson, Baron, & Schmidt, 2006). On such
accounts, joint action is made possible—the group is able to
act—because the individuals have already, spontaneously, be-
come organized into a coordinated unit. The group exists pre-
cisely in the coordination of its members.

But notice that, in its pursuit of general mechanisms driv-
ing interpersonal coordination, the joint action research pro-
gramme has indefinitely postponed the study of any particular
action phenomenon as an instance of what it says it is: action.
Nowhere does the group actor assumption lead researchers to
ask the kinds of questions suggested above, about how to un-
derstand the movements of skilled soccer players, or how to
come up with useful training interventions. The research pro-
gramme appears to be misnamed, because what is actually be-
ing studied—interpersonal coordination—is understood only
as a prerequisite to the real action. Where did the action go?

1One research tradition which arguably falls outside these
debates is the distributed cognition research programme (e.g.,
Hutchins, 1995a). While distributed cognition is explicitly cog-
nitivist, it succeeds in avoiding the group actor assumption by
analysing individual actions as part of a larger system encompassing
physical artefacts as well as actors within a space (Hutchins, 1995b).
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Case study 2: Group hunting in wolves and
chimpanzees

In the wild, wolves are observed to hunt in packs, chasing
large prey such as buffalo. A buffalo is a dangerous animal
for a wolf: it has horns and powerful legs, which the wolf
must avoid. Rather than attack the buffalo directly, the wolves
chase the prey animal until it tires and collapses, whereupon
the wolves will surround the prey on all sides, cutting off po-
tential escape routes. Muro, Escobedo, Spector, and Cop-
pinger (2011) were able to reproduce this behaviour in a com-
puter simulation, modeling the wolves as agents following
two rules: 1) get as close as possible to the buffalo without
putting yourself directly in its path (i.e., avoid being trampled
on or skewered), and 2) maximize your distance from neigh-
bouring wolves.

Now, we might be tempted to conclude from this that the
wolves are literally following a couple of simple rules. But
the rules here are written as they are only because this is a
computer simulation and it therefore requires explicit, sym-
bolic rules in order to produce any output. In reality, the
wolves cannot be following rules; the action must be driven
by perception. What an individual wolf sees is a vista con-
taining a potential prey animal along with a number of other
wolves, all of which are already moving. The whole scene
is perceived as a set of threats and opportunities which are
continually rearranged as the situation unfolds. The question
is, what aspects of this whole structure must a wolf learn to
attend to and to exploit in order to successfully act?

A somewhat more structured type of group hunting be-
haviour has been observed in chimpanzees, who hunt mon-
keys (Boesch & Boesch, 1989). It is attested that one chim-
panzee will instigate the hunt, chasing the monkey from some
direction, whereupon further chimpanzees will join in from
the sides, driving the monkey into a space where eventually
an ambushing chimpanzee will be in a position to catch and
kill the monkey.

Boesch (2002) posits that the chimpanzees are able to co-
ordinate this behaviour because they each adopt a specific
‘role’. He identifies four roles: chimpanzees can act as driver,
chaser, blocker, or ambusher. The suggestion is that these
roles have some normative significance: a chimpanzee’s role
determines the share of the meat that they are entitled to. If
this is the case, then some form of mind-reading must be in-
volved, as each chimp would need to know what role the other
chimps are playing.

Tomasello (2014) disputes this description, arguing that, in
fact, each individual chimp’s behaviour can be explained by
selfish motives: ‘chimpanzees in a group hunt are engaged in
a kind of co-action in which each individual is pursuing his
own individual goal of capturing the monkey’.

For Boesch, then, the group is reified as a set of norma-
tive role assignations. For Tomasello, the group simply does
not exist because for it to exist the chimpanzees would have
to have a human-like understanding of themselves and their
fellows—the very idea is anathema.

But seeking to explain these hunting behaviours in terms
of the reified group (or the absence of a group) draws our
attention away from the actual action. It draws our atten-
tion away from the physical structures, movements, events,
and reconfigurations that must necessarily be invoked in a de-
scription of the hunting behaviours: the chase, the closing in
from the sides that narrows the monkey’s escape possibili-
ties, the space where the ambush can occur. In other words,
the group actor assumption causes us to overlook the world
itself. So let us reformulate our earlier critique:

‘The group actor assumptions reifies the group while
neglecting the world’

Perhaps ‘the world’ is too imprecise a term here. Below, it
will be replaced with the concept of the ecosystem.

The late appearance of the individual in
evolution and development: from public action

to private action
So far, we have left untouched the special position of indi-
vidual action, generally understood as action in its most basic
form. This assumption, too, must be challenged.

When we take a historical perspective on cognition, we
note that the individual, as self-aware, symbol-using actor,
is in fact a rather late achievement, in evolutionary terms as
well as in terms of development within the human lifespan.
Indeed, the notion that the individual should be treated as a
given is only a self-evident truth when the matter is consid-
ered from within the cognitivist research programme.

One approach to psychology which rejects this progression
from individual to joint action is that developed by Vygot-
sky and his followers. According to Vygotsky (1978), the
child develops into a competent language-using being not by
silently contemplating the actions and utterances of others,
but by actually engaging in action: ‘Prior to mastering his
own behavior, the child begins to master his surroundings
with the help of speech. This produces new relations with the
environment in addition to the new organization of behavior
itself.’ Through the repetition of actions that were initially
directed outwards, the child eventually starts to direct his ac-
tions inwards, at himself. Lake (2012) gives the example of
a child speaking to himself as he looks at paint: ‘I need the
green paint.’ Here, the speech is performed ‘out loud’ but is
directed at regulating the child’s own behaviour, not directed
outwards to an audience.

Through continued practice, the child will eventually learn
to regulate his behaviour without needing to say the words out
loud. His private, self-directed speech becomes inner speech.
This process is what Vygotsky referred to as ‘internalization’.
It should be noted that what has been internalized here is not
some arbitrary symbol, or some Platonic notion of greenness,
but the self-regulatory action. What was an action when it
was carried out publicly remains an action when it is directed
inwards and carried out privately: ‘internalization reflects not
“content” poured into a person’s psychological structure, it is
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how that structure is formed’ (Lake, 2012). In other words,
it is only through the mastery of externally-oriented actions
that the individual arises.

But here we are talking about the development of speech.
What does this have to do with joint action?

The difficulty is that as adult humans we are inescabably
also language-users. Think back to the two soccer teams de-
scribed above. While the five-year-olds have a limited vo-
cabulary for explaining to themselves what they are doing,
this is not the case for skilled adult players. Soccer play-
ers are barked at repeatedly on the training pitch year after
year: “keep the ball moving”, “give your teammates options”,
“don’t get caught ball-watching”, etc. The public behaviour
of skilled soccer players is modified and channeled through
private self-regulating actions and instructions.

The point here is that private action need not be taken as
the starting point for the activity of groups. If action in its ba-
sic form is a public activity, directed outwards at the world
and having immediate effects in changing the structure of
that world itself, then perhaps the central contradiction driv-
ing joint action research—the contradiction which drives re-
searchers to accept the group actor assumption—need never
arise. The problem of explaining group action in terms of in-
ternal processes can be dissolved by recognizing that those in-
ternal processes do not arise until late in evolution and devel-
opment. Private, self-directed behaviour is the consequence
of public action, not a prerequisite for it.

An ecosystems view of action: Reinstating
space and movement

At the level of biology, an ecosystem is thought of as a rather
slow-moving thing: a stable configuration of species, niches,
soil types, atmospheric conditions, and so on that exist in
some sort of equilibrium (Sarkar, 2016). At the level of psy-
chology, the ecosystem must be thought of as a dynamic sys-
tem, one in which every public action made by an animal
alters, or perturbs, the configuration of the ecosystem itself.
Moreover, because the ecosystem contains multiple actors,
all public actions are inherently social, in the sense that the
action changes the whole system in a manner which may be
relevant to other animals: it may create new opportunities,
erase previously existing ones, reveal threats, etc.

Consider the wolves again. After the pursuit of the buf-
falo the wolves surround their prey. Now, at this point any
movement that a given wolf makes—an anti-clockwise rota-
tion around the buffalo, say—alters the layout of opportuni-
ties for the neighbouring wolves, just as it changes the shape
of the potential escape gaps for the buffalo. The second wolf
may respond to the first movement in any number of ways.
In no sense, though, would this response require an ‘under-
standing’ of what the first wolf was doing. It is enough to
point out that the spatial configuration has changed. If we
wish to understand the wolf’s behaviour we should investi-
gate what is going on in the relationship between the animal
and its surroundings—that is, at the level of public action.

Does this mean that the wolf has direct perceptual access
to the ecosystem? It does not. An ecosystem is not the kind
of thing that can be perceived. Here it is necessary to make a
distinction between the ecosystem and the environment.

James Gibson (1979) developed a psychology of percep-
tion that has as a central claim that perception cannot be
thought of as something that an animal does on it own, merely
in response to an environment; perception must instead be
thought of as a process enacted within an animal-environment
system. The animal’s environment is already structured. If it
is to survive, the animal must learn to make use of this struc-
ture in adaptive ways. Moving forwards creates an optic flow
pattern which can be used to direct locomotion. This pattern
only exists when the action is implemented and useable struc-
ture is present in the environment—the pattern does not exist
for an animal that has never moved, nor is it present for an
animal whose environment is filled with thick fog. For the
pattern to exist requires both the animal and the environment
to be in a certain relation, hence the animal-environment sys-
tem.

An under-appreciated implication of this view is that it
requires us to adopt a view of the environment as animal-
specific. That is, it requires us to conclude that there are pre-
cisely as many environments in the world as there are animals
(for a related argument about the concept of information see
van Dijk, Withagen, & Bongers, 2015). At the very start of
his 1979 book, Gibson says the following about the animal
and its environment:

[I]t is often neglected that the words animal and envi-
ronment make an inseparable pair. Each term implies
the other. No animal could exist without an environment
surrounding it. Equally, although not so obvious, an en-
vironment implies an animal (or at least an organism) to
be surrounded. This means that the surface of the earth,
millions of years ago before life developed on it, was
not an environment, properly speaking. The earth was
a physical reality, a part of the universe, and the subject
matter of geology. [...] We might agree to call it a world,
but it was not an environment.

So what can we say about what the wolf sees? What it
sees is a perspective on the ecosystem. But this is only to
say that what is seen is a partial view of the structure that
exists in the world. If an environment is the complement of
an animal, then an environment it is what is experienced from
a first-person perspective. An ecosystem, by contrast, is an
analyst’s label. It is a tool for capturing some of the structure
in the world in a manner that can guide our investigation of
certain phenomena of interest.

In the case of joint action research, the ecosystems con-
cept is a tool that allows us to understand how multiple actors
are able to negotiate a space that is populated with other ac-
tors. It allows us to move beyond the interpersonal coordina-
tion paradigm by making clear that such coordination is not
necessarily something the animals must do. A basic level of
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Figure 1: A pedestrian, represented by the black circle, waits
to cross the road. In (a) the crossing will take 15 s, and the
pedestrian must be attentive to potential threats 200 m down
the road. In (b) the task difficulty is drastically diminished:
with the crossing reduced to 5 s, the pedestrian now only
needs to be aware of potential vehicles up to 67 m away.

coordination is already present by virtue of the fact that the
animals already exist within a single ecosystem, whose struc-
ture is instantiated in just so many first-person perspectives.

The real question, though is whether the ecosystems view
of action actually has any value in terms of its ability to gen-
erate practical research. I believe that it does. One example is
in its potential application to the design of spaces for multiple
actors, such as urban streetscapes.

Case study 3: Pedestrian road crossing
Navigating an urban environment entails continuously coor-
dinating with other actors. An urban design approach that
has been popular in Europe in recent years, the shared space
approach, argues that interpersonal coordination can be not
only necessary but sufficient for managing urban traffic flows.
This reasoning has led the UK government to publish design
guidelines encouraging the removal of formal infrastructure
elements such as kerbs and traffic signs, with the aim of forc-
ing drivers to be more attentive to their immediate surround-
ings (Department for Transport, 2011). This approach has
been criticized because it often renders these spaces less ac-
cessible for elderly and visually impaired pedestrians (Moody
& Melia, 2014). To see why this is the case, it is useful to
adopt an ecosystems perspective on the activities of the road
users. Here we will consider a simple instance in which a
pedestrian wishes to cross a road that carries vehicle traffic.
We will focus only on the pedestrian’s task.2

2It might be argued that this is not really a joint action phe-
nomenon at all. Just as Tomasello argued that the individual chim-
panzees were all merely hunting in parallel, all in their own self-

The first thing to notice is that while this is an interpersonal
coordination phenomenon, it is an asymmetrical one. Should
a collision occur here, it is likely to be more disastrous for the
pedestrian than for the driver of the car. The pedestrian thus
has an immediate interest in being especially cautious.

The pedestrian’s task here involves prospective control: it
requires the pedestrian to be attentive to ongoing, or unfold-
ing, movements in her environment (Von Hofsten, 1993).
This is illustrated in Fig. 1. In order to decide whether to
begin crossing, the pedestrian needs to take into account the
movements of vehicles in the road that are on course to in-
tercept her path. This decision task is made easier or harder
depending on a number of factors, which include: how wide
the road is, how fast the pedestrian is able to cross it, and
the speed of the traffic. If the pedestrian can only move
slowly (or has far to cross), as in (a), then that pedestrian
must be aware of vehicles that are much further away com-
pared to a pedestrian who is able to cross quickly (b). The
difficulty of the decision-making task (how far the pedestrian
has to look down the road) is proportional to the pedestrian’s
time-to-cross. Prospective control refers to the organization
of behaviour with reference to perceived future movement,
i.e. with reference to where objects are going to be, as the
action unfolds. Older, slower-moving pedestrians have par-
ticular difficulty in crossing roads (Langlois et al., 1997), and
Fig. 1 makes clear why this is the case: the slower one is able
to move, the further one has to be able to see in order to con-
trol one’s movements. In practice, for very wide roads or for
very slow pedestrians it becomes impossible to perceive safe
crossing opportunities.

From the fact that the crossing time is proportional to the
distance one has to be able to see down the street, we can
immediately derive a general design principle: for the road
to be crossable by a given pedestrian, the crossing width, in
seconds, can be no longer than the time it will take for a car to
appear from beyond the horizon of visible space to intersect
the pedestrian’s path. In practical terms, this means that in
order to make a road accessible to the widest possible range of
pedestrians the crossing width should be kept to a minimum,
and visibility maximized. This gives theoretical grounding
to recent traffic design manuals that recommend just these
measures (e.g., World Health Organization, 2013).

While the activity of crossing a road can certainly be de-
scribed as an interpersonal coordination phenomenon, this is
not all that it is. The ecosystems perspective allows us to
reach a deeper understanding of the space in terms of: 1)
the first-person perspective of the road users (pedestrians and
drivers); 2) the movement capabilities, and vulnerabilities, of
these actors; 3) the time-extended quality of the action; 4) the
actual layout of the street. Some promising potential areas

interest, so one might argue that the pedestrian’s activity and the
driver’s activity are merely two individual action phenomena that
happen to overlap in space. But this sort of argument again commits
us to dividing the world up a priori into individual and joint actions.
The argument is only valid, in other words, if we already accept the
group actor assumption.
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of application are in designing roads to be inclusive for peo-
ple of diverse capabilities and in redesigning ‘accident black
spots’, which are spaces that are inherently unsafe.

Implications for joint action research
The group actor assumption has restricted research on multi-
actor activities to the study of an unnecessarily narrow range
of interpersonal coordination phenomena. Rejecting it is a
liberating move: it frees researchers from having to address
unsolvable questions about shared intentionality. The adop-
tion of an ecosystems perspective, meanwhile, enables an
investigation of multi-actor activities for what they are: in-
stances of action. It gives us tools for addressing real-world
problems in practical ways. There are some pitfalls to be
avoided. I have barely touched on issues of language-use
here, but human actions are inherently language-involving.
For now, let us restate that internal language use is a kind
of private action, and it is derived from public action. This
public–private distinction is more useful, and less mislead-
ing, than the traditional individual–joint distinction. And let
us restate also the ecosystem–environment distinction. The
latter is a first-person perspective on the former, which itself
is the setting of all social activity.
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Abstract

Emotional state influences nearly every aspect of human cog-
nition. However, coding emotional state is a costly process
that relies on proprietary software or the subjective judgments
of trained raters, highlighting the need for a reliable, automatic
method of recognizing and labeling emotional expression. We
demonstrate that machine learning methods can approach near-
human levels for categorization of facial expression in natural-
istic experiments. Our results show relative success of models
on highly controlled stimuli and relative failure on less con-
trolled images, emphasizing the need for real-world data for
application to real-world experiments. We then test the poten-
tial of combining multiple freely available datasets to broadly
categorize faces that vary across age, race, gender and photo-
graphic quality.
Keywords: Classification, machine learning, computer vision,
support vector machines, emotion and cognition, facial recog-
nition

Introduction
Emotions are widely assumed to play a causal role in nearly
every aspect of cognition (e.g., Pessoa, 2008), and yet many
studies in cognitive science (and developmental science in
particular) neglect to measure emotion because current mea-
sures are either expensive, tedious, or inaccurate. Conse-
quently, many standard practices in the field have turned to
indirect measures of affect. One prevalent example is the as-
sociation of infant looking time with vastly different emotions
depending on the researchers’ theoretical stance, including
preference (e.g., to positive emotional expressions; LaBar-
bera, Izard, Vietze, and Parisi, 1976), interest (e.g., to ani-
mate stimuli; Csibra, 2008), or surprise (e.g., to violations of
belief; Baillargeon, Scott, and He, 2010). Another example
is the notable lack of emotional state measures in studies on
attention, learning and memory, even though the field has ac-
knowledged the impact of emotion on these functions for over
50 years (Easterbrook, 1959). Rather than inferring the role
of emotions, future studies could measure it efficiently using
facial recognition algorithms. The advent of elegant machine-
learning algorithms offers a free, reliable, non-invasive and
easily implemented method that may be able to measure af-
fective state in real-world settings at levels that meet or ex-
ceed trained human raters.

Here, we demonstrate automatic classification of emo-
tional faces using three different datasets. We concentrate on
young populations, as developmental science is particularly
interested and constrained by hand-coding, but also demon-
strate that methods are easily extended to adult populations.
We also concentrate on relatively simple machine learning
algorithms that may be flexibly implemented for a variety of

psychological studies. In doing so, we highlight the need for
real-world data to solve real-world problems, as models based
on well-curated training images that are common in the field
often fail to accurately categorize messy, uncontrolled im-
ages. We further show how a single, large dataset that lever-
ages controlled and uncontrolled images can improve gener-
alization to real-world stimuli.

Recognition of facial expressions is a useful, non-invasive
method of reasoning about another’s thoughts. The seem-
ing universality of emotional expressions further underscores
their importance (Ekman & Friesen, 1971). However, to un-
derstand how emotion influences cognition, researchers must
be able to categorize facial expressions in continuous time –
and no existing measure can do this without great expense of
time or money. Participant surveys lack temporal resolution
and fall prey to metacognitive errors. Physiological methods
require expensive or invasive apparatus such as galvanic skin
response monitors or cortisol measurements Picard, Vyzas,
and Healey, 2001. Even the gold-standard method of the Fa-
cial Action Coding System (FACS; Ekman and Rosenberg,
1997) requires hours of effort by trained technicians or pro-
hibitively expensive proprietary software. As the demand for
ecological experimentation increases, so too does the volume
of video data for researchers (or more often their students)
to scrutinize and label, frame by frame. The relatively con-
strained problems of identifying, labeling and categorizing
facial features over thousands of datapoints is a prime oppor-
tunity for a machine learning solution.

Advances in data science and machine learning offer an
affordable and accurate measure of participant emotional
state using only filmed recordings. Computer scientists have
demonstrated the uncanny accuracy of basic algorithms to
classify highly controlled emotional images (e.g., Cohn, Zlo-
chower, Lien, and Kanade, 1999; Littlewort, Bartlett, Fasel,
Susskind, and Movellan, 2006), and recent efforts to catego-
rize emotion “in the wild” (Yao, Shao, Ma, & Chen, 2015)
have the problem to unsupervised learning for less controlled
images. Here we are interested in applying machine-learning
to the varied contexts typical of cognitive science experi-
ments. Laboratory settings offer more control than streaming
surveillance footage, but less control than posed photography.
We approximate this by comparing human performance to
an algorithm trained on three datasets with unique attributes,
each of which could reasonably be applied to experimen-
tal settings. We demonstrate the need for large amounts of
highly varied data to consistently and accurately categorize
human facial expressions. Furthermore, we present a model
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trained on images that vary by age, ethnicity, gender and pho-
tographic conditions that nonetheless approaches human rater
performance. It is worth noting that our goal is not to model
human performance or develop new machine-learning meth-
ods; rather, we wish to explore the kinds of data required to
approximate human-level emotion coding for cognitive ex-
periments.

We begin by introducing several datasets with unique at-
tributes of in interest to different applications. We define
the methods required to use open-source libraries to create
a simple machine-learning classifier. Applying this model
to the datasets reveals that highly controlled training stimuli
are more easily categorized, and that noisier, real-world stim-
uli are unsurprisingly more difficult. We discuss the trade-
off between accuracy and generality by amalgamating three
datasets into a comprehensive model that is more robust to
noisy input.

General Methods
Databases
Machine learning requires a large number of samples for re-
liable classification. However, the type of input can greatly
affect the generalizability of the model. For instance, a model
trained on only children’s faces might not perform well with
adult faces. Likewise, a model trained on highly controlled
images might not perform well on naturalistic stimuli. We
drew from three sources for training, each with a particular
strength that could improve performance in a given setting.
A “face” was defined as a front-facing image containing two
eyes and no obstructions to facial features.

The CAFE dataset. Most face databases for psychology
and machine learning focus on adults. However, a recent ef-
fort by LoBue and Thrasher (2015) documented the facial ex-
pressions of young children for applications in developmental
psychology. Although stimulus sets exist for older children
(aged 8-17, Egger et al., 2011) and adults (Cohn et al., 1999),
the Child Affective Facial Expression (CAFE) set is the only
collection featuring young children. The set contains pho-
tographs of 154 racially and ethnically diverse 2- to 8-year-
old children posing for six emotional facial expressions (an-
gry, disgusted, fearful, happy, sad, and surprised) as well as a
resting neutral expression. Facial expressions were further la-
beled for “open” or “closed” mouths for angry, fearful, happy,
sad and neutral faces. Disgust expressions were uniquely
coded as with or without a protruding tongue. The CAFE
set features multiple emotional faces for each child, though
not every child demonstrated every subcategory of emotion.
Altogether, the set contains 1192 images. Children’s facial
features offer a great deal of variability, and the ethnic diver-
sity of the participant sample approximates the demographics
of the United States.

The CAFE set was validated by a group of 100 independent
adult raters, who viewed each image and labeled it with one
of the seven emotions. Importantly, the images are labeled
by the expression the child was asked to give, and not by

the labels most often generated by the raters. This variability
makes the CAFE useful to compare to computer models, as
we can test the model’s success on “difficult” or “easy” faces
compared to human performance.

The CK+ dataset. One method of producing cleaner data
for machine learning is to extract images with tightly con-
trolled visual features. Although our focus is on develop-
mental populations, the CAFE set is the only publicly avail-
able database of children’s faces. We therefore included a
dataset comprised only of extensively vetted faces: the Cohn-
Kanade AU-Coded Expression Database, Version 2 (Lucey
et al., 2010). The Cohn-Kande dataset (CK+) consists of
over 11,000 image sequences of 120 adult models as they
changed from neutral resting faces to peak emotional ex-
pression from 7 categories (the same as the CAFE expres-
sions, with the addition of contempt). It is currently unknown
whether training images from an adult dataset would improve
performance on child facial categorization. Given the abun-
dance of adult datasets, any improvement on child facial clas-
sification would expand the available training data for future
models.

Machine vision researchers often use the CK+ dataset as
a benchmark for performance of an algorithm (e.g., Little-
wort et al., 2006). For our purposes, training the algorithm
on the CK+ dataset allows us to test the best case scenario
of facial classification, as it contains only highly controlled
images with little cross-category variability. This comes at
a cost to ecological validity, as all faces are of adults aged
18 to 30, and less than 18% were minorities. Additionally,
whereas items in the CAFE set were validated using subjec-
tive judgments from adult raters, the peak faces from the CK+
database were validated using the Facial Action Coding Sys-
tem (FACS). Briefly, FACS categorizes faces into emotional
categories using reliable expressions of specific facial motor
groups, or action units (Ekman & Rosenberg, 1997). Lucey
et al. (2010) validated the emotional labels given to each peak
face using a linear support vector classifier trained on action
units. Selecting these initial and peak faces generated 308
emotional expressions from the 6 emotional categories with a
corresponding neutral face for each. A single neutral face was
randomly selected for each participant to prevent over-fitting
of neutral faces, leaving 120 neutral faces and a total of 428
faces.

Google image search by category. The CAFE and CK+
sets feature images taken under ideal lighting and camera
positions, with labels that have been rigorously validated.
However, real-world use of a facial expression classifier
would necessarily include less-than-ideal photographic cir-
cumstances. To approximate the noisiness of real-world stim-
uli, we extracted images from a Google image search with the
search term “X child face”, where X was an emotional cate-
gory of interest. Images were selected by research assistants,
with the criteria that each image featured an individual human
child’s face (approximately aged 3-10) without obstruction on
the face area.
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Research assistants terminated the collection of images if
the total number of collected images exceeded 100 exemplars
or if the search returned more than 20 images in a row without
a viable exemplar. This produced only 2 neutral exemplars,
so an additional search was conducted using “calm” and “se-
rious” as additional terms for neutral. This produced a total
of 609 faces from all seven categories

Face Extraction

Images from all datasets contained extraneous information,
including body parts (e.g., hair and shoulders) or photo-
graphic artifacts (e.g., serial numbers in the CAFE and CK+
datasets, miscellaneous objects in the Google dataset). All
images were passed through a facial recognition algorithm 1

and reduced to a 300 x 300 pixel rectangle centered on the
identified face.

Facial recognition was conducted using Haar Feature-
based Cascade Classifiers. Generally, the cascade classifier
breaks an image into clusters of pixels and excludes clusters
that do not resemble facial features from later analysis. The
process is then repeated until only clusters that resemble fa-
cial features remain. For methodological details and valida-
tion, see Viola and Jones (2001). The end result is a compu-
tationally efficient method for identifying facial regions.

A trained cascade classifier was obtained from the
OpenCV website (Itseez, 2016). All faces from all datasets
were passed through the classifier and cropped. A member
of the research team then examined each extracted face and
discarded false positives on non-face objects. This method
produced 1187 faces (5 removed) from the CAFE set, 427
faces (1 removed) from the CK+ dataset, and 477 faces (132
removed) from the Google dataset.

Human Validation

Image category labels for the CAFE and CK+ datasets were
validated using adult human raters. To ensure that all im-
ages were of equal quality when training the classifier, we
validated the Google dataset using 87 adult human raters re-
cruited via Amazon Mechanical Turk. This was necessary
to compare classifier and human performance for images that
more closely resemble the real world.

Raters (median age: 31; 61 females, 41 college graduates,
28 parents) labeled a representative subset of the Google faces
(between 47 and 49 images, evenly distributed across cate-
gories) into one of seven emotional categories. Raters also
labeled a subset of the CAFE dataset (42 images, 6 from each
category). The CAFE faces were evenly distributed by diffi-
culty according to the CAFE set’s previous validation metrics.
This was done to compare the performance of in-person (live)
and online raters.

1The facial recognition algorithm was adapted from the Open
Source Computer Vision Library (OpenCV v2.4.13; Bradski, 2000)
and programmed in Python 2.7. OpenCV is an open source library
that provides a common infrastructure to machine vision applica-
tions in academia and industry.

Figure 1: Validation of the CAFE and Google datasets by “online”
human raters via Mechanical Turk vs in-person, “live” raters.

We first confirmed that Mechanical Turk raters performed
comparably to live human raters (Figure 1). Overall accu-
racy of ratings for CAFE set images between live and online
raters was significantly positively correlated (r = .783, t412 =
25.53, p < .0001). Furthermore, accuracy of online and live
raters were further correlated for all emotional categories
(lowest rsurprise = .410, t55 = 3.340, p = .001; highest rsad =
.820, t57 = 10.807, p < .0001), with the exception of happy
expressions (r = .22, t57 = 1.742, p = .08), which likely had
a reduced correlation due to ceiling effects. These results sup-
port the use of Mechanical Turk raters to validate the Google
dataset.

We then confirmed that the human categorization perfor-
mance for the novel Google images were comparable to the
CAFE images. A two-way ANOVA modeling mean online
rater categorization performance by dataset and emotional la-
bel found significant differences in categorization accuracy
by dataset (F1,877 = 8.753, p = .003,η2 = .086) and emotion
(F6,877 = 89.504, p < .0001,η2 = .881). There was also a
significant interaction (F6,877 = 2.366, p = .028,η2 = .023),
indicating no significant difference between online and live
raters for angry, happy, neutral, sad and surprised expres-
sions (highest t877 [sad] = .9694, p = .167), and significantly
poorer performance by online raters for disgusted and fear-
ful expressions (lowest t877 [disgust] = 2.134, p < .017,d =
.144). These results suggest that the Google dataset is compa-
rable to the CAFE set for five of seven emotions and follows
the same trends for sadness and disgust, making the Google
set ideal for testing an algorithm on ecological images.

The Machine Learning Algorithm

Whole research communities are dedicated to the application
of machine learning to emotional recognition, using both su-
pervised and unsupervised algorithms for still image, video,
audio or multimedia data (e.g., the EmotiW challenge at the
annual ACM ICMI conference). Although there have been re-
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cent successes modeling dynamic features (Littlewort et al.,
2006), We opted to analyze still images to simplify imple-
mentation for the target demographic of psychologists, and
used a supervised learning approach due to the relatively few
training images available. We therefore selected a Support
Vector Machine (SVM) algorithm, as SVMs are ideal for use
by non-computer scientists for their simple implementation
and ease of interpretation. SVMs have a long and success-
ful history in image recognition (Tong & Chang, 2001), par-
ticularly with facial recognition (Osuna, Freund, & Girosit,
1997). An SVM is a type of supervised learning in which
the algorithm identifies the optimal boundary between labeled
data points. The boundary is defined by the support vec-
tors, the subset of the data that define the boundary between
classes. This boundary can then be used to infer, based on ob-
served features, which category a novel image (or novel im-
ages) best fit. We recommend Cristianini and Shawe-Taylor
(2000) for an in-depth overview.

We trained an SVM for each dataset, as well as on a com-
prehensive dataset containing training images from all three
datasets. We used an open-source SVM classifier available
through the scikit-learn database (Pedregosa et al., 2011).
SVMs require the user to choose a similarity function, called
a kernel, that governs the complexity of the possible bound-
aries between classes. There are many standard options for
kernels including linear, polynomial, and radial basis func-
tion (RBF; aka Gaussian). Each computes similarity some-
what differently and they consequently differ in the kinds of
classification boundaries they admit; as one might expect, a
linear kernel gives a linear boundary and polynomial and RBF
kernels allow non-linear boundaries. While these non-linear
methods offer increased expressiveness, they also increase the
risk of overfitting.

Additionally, there are two parameters that must be set and
affect outcomes: the regularization parameter C and kernel
coefficient γ. C is a regularization parameter which, when
set to higher values, allows more complex solutions. The
kernel coefficients γ affect the influence of specific specific
supports. When γ is small, a support has broad influence
on classification decisions, whereas when γ is large the in-
fluence of each support is localized to the area near the
supporting data point. A grid search for kernels, {linear,
polynomial, radial basis function (RBF)}, penalty param-
eters, C = (.001, .01, .1,1,10,100), and kernel coefficients,
γ = (.0001, .001, .01, .1,1,10,100,1000), yielded the optimal
combination of a polynomial kernel with a C = 1 and a
γ = .0001, as assessed via cross-validation.

Although SVM classifiers are often used for facial recogni-
tion, training a classifier for emotional features offers unique
problems. The classifier might divide faces by other similar-
ities; emotional expressions are but a subset of the consider-
able variability between faces. For example, say a classifier
is trained on two stimuli: Child A with an angry expression
and Child B with a happy expression. When presented with a
test image of Child A making a happy expression, the SVM

Figure 2: Classification of test images improved as a function of
training data. The top line denotes average human accuracy across
live and online human validation; the lower line denotes chance.

may be more likely to categorize the test image by the stable
facial similarities of Child A than to the desired similarities
in emotional expression of Child B. One solution might be
to randomly select only one face per child participant in the
CAFE and CK+ sets. This is not ideal, as it would greatly
reduce the training set. Instead, we trained the SVM on all
faces for a proportion of participants and tested on all faces
for the withheld subset of participants. This eliminated the
possibility that a test image might be paired with a training
image of the same child, while also maximizing the richness
of the dataset.

Another issue unique to emotional classification is the
breadth of expression. For instance, the CAFE set makes a
distinction between faces with open and closed mouths, and
both the CAFE and Google sets contain exemplars that were
difficult to label by human raters. We opted to include all in-
stances under the basic emotional category, regardless of sub-
ordinate labels or validation score, so as to maximize training
data with the greatest possible variation between features.

Results
The algorithm was trained on incrementally increasing sizes
of training data from all three datasets individually and a com-
prehensive dataset trained from all sources. Each sample size
by dataset was repeated 40 times with a new random selection
of training and test data to approximate error.

The primary goal of these analyses was to demonstrate
machine-learning categorization on different training data
versus human raters. Figure 2 illustrates overall perfor-
mance by sample size for each of the datasets. An ANCOVA
modeling dataset by training sample size revealed a signif-
icant effect of dataset (F3,1512 = 1412.39, p < .0001,η2 =
.540) and training sample size (F1,1512 = 1103.76, p <
.0001,η2 = .422), with a significant interaction (F3,1512 =
96.91, p = .0001,η2 = .037). Paired comparisons revealed
that performance on within-dataset models increased faster
than the comprehensive dataset as a function of training
size (CAFE: t1512 = 12.246, p < .0001,d = .629; Google:
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Figure 3: Classification by source of testing data. Accuracy on un-
curated Google images improved with the comprehensive model.

t1512 = 3.705, p < .0001,d = .191; CK+: t1512 = 11.886, p <
.0001,d = .611). Altogether, performance on all datasets im-
proved as a function of training data, but performance on
within-dataset models increased faster than the comprehen-
sive model.

The bold dotted line on Figure 2 denotes average human
categorization performance for the CAFE and Google sets,
although it should be noted that no item-wise validation met-
rics were available for the CK+ set. T-tests revealed that
maximum training sizes on the CK+ dataset exceeded hu-
man performance (t40 = 6.00, p < .0001,d = 1.90). Clas-
sifier performance was significantly below human perfor-
mance for the CAFE (t40 = −3.62, p = .0006,d = 1.145),
Google (t40 = −38.65, p < .0001,d = 9.92), and compre-
hensive datasets (t40 = −39.51, p < .0001,d = 10.68). In-
terestingly, human performance was not significantly corre-
lated with classifier performance at maximum training sam-
ple size for any dataset (CK+: r = −.031, p = .837; CAFE:
r = .260, p = .105; Google: r = −.030, p = .869; Compre-
hensive: r = .240, p = .135), suggesting that the basis on
which categorization decisions were made by the algorithm
differed from human judgments.

It is crucial for future applications that a classifier not only
categorizes within a training dataset, but can also general-
ize beyond that set. A common method of gauging gener-
alizability is to train models for each dataset and test on the
other datasets. However, all of the present datasets, partic-
ularly the CK+ dataset, have unequal numbers of exemplars
for each emotional category. As classifier performance is di-
rectly related to the amount of training data, we would have
to hold training data constant to the minimum possible value
across all emotional categories and datasets, which in this
case would be only 25 exemplars per category (the number of
exemplars for “fear” in the CK+ dataset), for a training set of
only 175 images. Instead, we tested how well a single com-
prehensive model performs against maximally trained mod-

Figure 4: The comprehensive model from all three datasets paral-
leled human performance.

els for each individual dataset (the within-set models). This
comparison demonstrates how the addition of training im-
ages outside the dataset improves performance. An ANOVA
comparing accuracy by model type (within-dataset or com-
prehensive) and source of test images revealed a no effect of
model (F1,234 = 0.001, p = .973,η2 < .001) but a significant
effect of test image source (F2,234 = 1175.71, p < .0001,η2 =
.961) as well as a significant interaction (F3,234 = 47.13, p <
.0001,η2 = .039). Accuracy for the comprehensive model
was significantly greater than the within-set model for Google
(t234 = 6.03, p < .0001,d = .792), not significantly differ-
ent for CK+ test images (t234 = 1.09, p = .140,d = .142)
and significantly less for CAFE test images (t234 = 6.50, p <
.0001,d = .849). Comparing Figure 2 and Figure 3, the over-
all performance deficit of the comprehensive model relative
to the CK+ and CAFE sets in Figure 2 are due to the high
proportion of training images in the comprehensive model
that come from the CAFE set (57.9%). Importantly, these
results show that a comprehensive dataset from multiple cu-
rated sources improves classification of more realistic and un-
controlled Google set.

Finally, it is worthwhile to see how a comprehensive
dataset compares to human raters. Figure 4 compares hu-
man and comprehensive model performance by emotional
category. An ANOVA modeling emotion by rating type
(human vs the comprehensive algorithm) revealed than hu-
man raters were significantly more accurate than the clas-
sifier (F1,546 = 1450.24, p < .0001,η2 = .567). There were
significant differences by emotion (F6,546 = 1021.81, p <
.0001,η2 = .400) as well as a significant interaction (F6,546 =
84.51, p < .0001,η2 = .048).

Overall, these results suggests that the comprehensive
dataset follows similar trends as human raters. Sampling
from multiple datasets improves performance on the highly
uncontrolled Google stimuli and the highly controlled CK+
stimuli; although performance drops for the CAFE stimuli, it
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likely stems from the high proportion of images in the com-
prehensive dataset that are sampled from the CAFE. These
results suggest that models comprised of more training data
may approach human performance on varied images.

Discussion
Psychological theories emphasize the causal role of emotions
across a variety of phenomena including learning, memory,
and attention. However, emotion is rarely measured in such
studies due to the cost, inefficiency and tediousness of mod-
ern methods. Widely available and accessible methods for
coding emotion would greatly reduce barriers to advancing
theory by allowing dense measurement of emotion in contin-
uous time. Using a standard machine learning method, we
explored the types of training data one would need to ap-
proach human-level coding of the big 7 emotional categories.
These included curated image sets developed by psychologi-
cal researchers and uncontrolled images drawn from Google
with crowdsourced labels. We find that comprehensive mod-
els generated from multiple datasets improve classification of
uncurated images. Overall model performance follows the
same trends as human performance, and the inclusion of addi-
tional datasets promises to further approach human accuracy.

Cognitive science, and developmental science in particu-
lar, are greatly limited by the methods of the day. A typical
developmental experiment takes place with one child and one
experimenter for fifteen minutes. Such tight controls have led
to important insights at the cost of ecological validity. The
past 20 years have seen incredible improvements to compu-
tational theory and processing power that permit a more flex-
ible study of human behavior. With machine-learning meth-
ods, scientists are no longer bound to brief interventions or
constrained to discrete conditions. Rather, we can now con-
tinuously monitor affect and behavior as a response to the real
world. Instead of inferring surprise from an infant’s looking
times, these models provide a method to measure a reliable
indicator of emotion. Instead of assuming a role of affect in
student outcomes, we can incorporate emotional expression
with an intervention in real time.

This paper represents an effort toward integrating compu-
tational methods with cognitive science with the goal of ac-
tively measuring all features that support cognition. For now,
we have demonstrated the feasibility of using publicly avail-
able software and data to code images in minutes rather than
days. We have not yet reached human-level performance, but
we have shown that the curated datasets that have traditionally
been collected improve performance over training on natural-
istic uncontrolled images. This marks the first step towards
building theories that explain how emotion interacts with cog-
nition in real-world learning scenarios.
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Abstract 

Does the ability to reason well make one less likely to engage 
in motivated reasoning? Following a paradigm used by Kahan, 
Peters, Dawson, and Slovic (2013), this study aims to replicate, 
extend, and explain the surprising finding that those most likely 
to process politicized data in a biased manner are those who 
score highest on a measure of numerical proficiency. Although 
our study found general effects of motivated reasoning, we 
failed to replicate Kahan et al.’s “motivated numeracy effect”.  
However, our study did find that, when forced to consider 
competing statistical interpretations of the data before 
responding, highly numerate participants were more likely than 
less numerate ones to choose a correct but belief-contradicting 
interpretation of data. These results suggest that while 
numerate participants were biased when generating responses, 
they were not when evaluating reasons to justify their 
responses. 

Keywords: reasoning; motivated reasoning; decision making, 
science communication; inference; intelligence; rationality 

 

Introduction 

 
When science becomes politicized, who can we trust to 

maintain objectivity? Conventional wisdom tells us that 

when it comes to assessing politically-charged data, those 

most capable of seeing past their biases and recognizing “the 

facts” are those most proficient in quantitative reasoning. If 

that’s the case, then people high in numeracy— a measure of 

the disposition and capacity to engage with quantitative 

information—ought to process information more objectively 

and therefore exhibit less bias in assessing it. However, a 

body of research suggests not only that polarization increases 

with numeracy, but also that highly numerate people process 

politicized data in a more biased manner (Kahan, Peters, 

Wittlin, Slovic, Ouellette, Braman, & Mandel, 2012; Kahan, 

Peters, Dawson, & Slovic, 2013; Kahan, Jenkins-Smith, & 
Braman, 2010).  

In one of these studies (Kahan et al., 2013), participants 

were faced with a problem that tested their “ability to draw 

valid causal inferences from empirical data.” Participants all 

saw the same two-by-two data table, but the data were framed 

either as the results of a pharmaceutical study of a new rash 

cream or the results of a study of the effects of gun control 

on crime rates. Correctly interpreting the results required 

participants to detect covariance between the relevant 

intervention and two outcomes, and the numbers in each cell 

of the table were chosen such that a conclusion drawn using 

one of two known “heuristic strategies” (comparing either the 

absolute value of positive outcomes or the difference in 

positive and negative outcomes between the two groups) did 

not agree with a conclusion correctly drawn using the 

“covariance strategy” (comparing the ratio of positive to 

negative outcomes between the two groups). Unsurprisingly, 

the authors found that participants highest in numeracy were 

most likely to give the correct response in the politically-

neutral rash cream version of the problem. But in the 

politically-sensitive gun control version, highly numerate 

participants only performed better than their low numeracy 

counterparts in cases where using the covariance strategy 

would lead to a conclusion that aligned with their political 

beliefs. 

This “motivated numeracy effect” fits with a large body of 
literature on motivated reasoning. In her comprehensive 

review, Kunda (1990) writes that while “people are more 

likely to arrive at conclusions that they want to arrive at… 

their ability to do so is constrained by their ability to construct 

seemingly reasonable justifications for these conclusions”. In 

many cases, such a “reasonable justification” will take the 

form of a processing strategy biased towards a favorable 

outcome (Giner-Sorolla & Chaiken, 1997). If the information 

is quantitative in nature, this processing strategy may be a 

statistical heuristic (Ginossar & Trope, 1987; Petty & 

Cacioppo, 1986). Taken together, these studies predict that if 

a sophisticated strategy like covariance detection is required 

to arrive at a favorable conclusion, then people low in 

numeracy will be limited in their ability to engage in 

motivated reasoning. On the flip side, just because highly 

numerate people possess both a heuristic and normative 

strategy does not mean that their application of these 

strategies will be unbiased. To this point, Stanovich and West 

(2008) found that studies in which correlations were found 

between cognitive ability and unbiased processing supplied 

cues which signaled that unbiased processing was required—

most often, these studies employed a within-subjects design 

where the conflict between a normative and heuristic rule was 

transparent. When this conflict was obscured, Stanovich, 

West, and Toplak (2013) found the degree of “myside 

bias”—the tendency to evaluate evidence, generate evidence, 

and test hypotheses in a manner biased towards one’s 

priors—to be uncorrelated with measures of cognitive ability. 

If the motivated numeracy effect depends crucially on both 

the salience and availability of heuristic and normative 

statistical strategies, what would happen if participants were 

to respond to Kahan et al.’s problems with both strategies at 
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hand? If motivated participants are inexorably biased in their 

selection of statistical strategies (as Kahan et al. suggest in 

their discussion), then providing “reasons” that describe each 

strategy before participants make their final judgement 

should infect the responses of those low in numeracy with the 

same bias exhibited by those high in numeracy. Alternatively, 

if motivation only obscures the need for heuristic override, 

then providing reasons may reduce bias in one of two ways. 

Assuming both low and highly numerate participants are 

equally cued by the reasons, performance should improve for 

all participants, regardless of whether the data they encounter 

are belief-affirming or belief-contradicting. However, if 

those high in numeracy are better able to recognize and 

respond to a conflict between normative and heuristic rules, 

then providing all participants with reasons should only 

benefit those high in numeracy. 

Study 

 

This study examined the effect of reasons on the motivated 

numeracy effect, and attempted to replicate and generalize 

Kahan et al.’s (2013) results. 

Method 

 

Participants Seventy-six undergraduates at Brown 

University participated in the study for course credit. Each 

participant attended one of four identical group sessions 

(excluding one who completed the survey during an 

individual session). All participants completed the study on 

personal computers. 

 

Procedure Each participant was randomly assigned either to 

the “no reasons” or “reasons” condition. In both conditions, 

nine fictional experiments were described and the observed 

results were presented in the form of either a table, a 

scatterplot, or a histogram (three of each in total). Six of these 

data analysis problems dealt with politicized issues and three 

of the problems dealt with non-politicized issues.  

  In the “no reasons” condition, participants saw the results 

of the experiment and, on the same page, were asked to 

indicate which conclusion the described experiment 

supported. To respond, participants could select either 

between one of two opposing conclusions or could select 

“Other” and fill in a response. In the “reasons” condition, 

participants saw the results and, on the same page, were asked 

to select “the interpretation that best explains the data”. Then, 

on a separate page, participants saw the data again and were 

asked to respond just as participants in the “no reasons” 

condition did. 

 Immediately following the study, participants completed a 

nine-item numeracy scale and were asked to report their 

political outlook (5-point Likert scale), political affiliation (7-

point Likert scale), and prior beliefs about each of the 

politicized issues presented in the study (7-point Likert 

scales). In a final series of questions, participants shared their 

suspicions, confusions, and any other thoughts concerning 

the study. 

 

Stimuli The six motivated problems looked at (1) the effect 

of gun control measures on crime rates, (2) the effect of 

mandatory anti-bias training on the number of minority 

civilians shot by police, (3) the effect of affirmative action on 

company profitability, (4) the effect of undocumented 

immigrant populations on violent crime rates, (5) the effect 

of stop-and-frisk practices on crime rates, and (6) the effect 

of taxing coal on unemployment rates. The three neutral 

problems looked at (1) the effectiveness of a rash cream, (2) 

the effectiveness of a fertilizer, and (3) the relationship 

between a property’s distance from a city and the real estate 

commission earned on that property. For each problem, the 

conclusion that the data supported was randomized for each 

participant by switching column or axis labels. 

 Of the nine problems, three presented results in table form 

(gun control, affirmative action, and rash cream), three in the 

form of a scatterplot (stop-and-frisk, immigration, and 

property), and three in the form of a histogram (anti-bias, 

coal, and fertilizer). A random sequence of three blocks of 

table-scatterplot-histogram was generated, and the order in 

which the nine problems appeared was then counterbalanced 

using a Latin square.  Selecting the correct answer in case of 

a table or a histogram required participants to detect 

covariance, just as in Kahan et al.’s (2013) original study. 

Selecting the correct answer in case of a scatterplot required 

participants to notice an overall positive (about 0.40) or 

overall negative (about -0.40) correlation rather than extreme 

outliers.  

 For tables and histograms, the interpretations presented in 

the “reasons” condition appealed to one of the two known 

“heuristic” responses first described by Wasserman, Dorner, 

and Kao (1990) or to covariance (a total of three reasons plus 

a fill-in-the-blank, “Other” response option). For scatterplots, 

the reasons drew attention to either overall correlation or 

outliers (a total of two reasons plus a fill-in-the-blank, 

“Other” response option). 

 

Table 1: Reasons Provided for Gun Control Problems 
 

Heuristic A-C Heuristic A-B Covariance 

 

The group that did 

ban carrying 

concealed handguns 
in public has more 

cities who saw an 

[increase/decrease] in 

crime than does the 

group that did not ban 
carrying concealed 

handguns in public. 

 

Comparing the 

number of cities that 

saw crime 
[increase/decrease] to 

the number of cities 

that saw crime 

[decrease/increase], 

there is a greater 
difference for the 

group that did ban 

carrying concealed 

handguns in public. 

 

 

The ratio of cities that 

saw crime 

[decrease/increase] to 
cities that saw crime 

[increase/decrease] is 

larger for the group 

that did ban carrying 

concealed handguns 
in public than for the 

group that did not. 

 

 

 

 The numeracy scale used included five questions adapted 

from Weller et al. (2013) and four CRT questions—three 
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from Toplak, West, and Stanovich (2014) and one from 

Frederick (2005). 

 

Results  

 
Participants performed at ceiling on problems in which the 

results were presented in the form of a scatterplot (Mstop-and-

frisk = 0.95, Mimmigration = 0.91, Mproperty = 0.99), so responses to 

these problems were excluded from the analysis. Responses 

to the coal problem were also excluded, as the mean 

extremity of priors reported at the end of the study indicated 

that, for this group of participants, the issue was not a 

motivated one. On the coal issue, participants reported priors 

that averaged 0.64 points from “No opinion”, compared to 

1.6, 2.1, and 2.3 points on affirmative action, gun control, and 

bias, respectively. That left responses to three motivated 

problems (gun control, anti-bias, affirmative action) and two 

neutral problems (rash cream, fertilizer) from each 

participant for analysis—228 responses in total. 
 
Bias and Priors  Participants were predominantly liberal-

democratic. In terms of outlook, 1% identified as 

“conservative” or “very conservative on a five-point scale. In 

terms of affiliation, 5% identified as Republican leaning, 

Republican, or strong Republican on a seven-point scale. On 

all three motivated issues, participants reported substantial 

bias consistent with their liberal leanings—on a seven-point 

scale, 5% did not support gun control, 1% did not support 

mandatory anti-bias training in police departments, and 5% 

did not support affirmative action. No significant difference 

in reported priors was found between HN participants and LN 

participants on gun-control (t(72.99) = -0.26, p = 0.80), anti-

bias training (t(64.47) = 0.49, p = 0.62), or affirmative action 

(t(72.39) = -0.14, p = 0.89). To simplify the analysis, 

problems that supported the conclusion that gun control lead 

to a decrease in crime, that anti-bias training lead to a 

decrease in the number of minority civilians shot by police, 

or that affirmative action lead to an increase in company 

profit are labeled as “motivated affirming”. Problems that 

supported the conclusion that gun control lead to an increase 

in crime, that anti-bias training lead to an increase in the 

number of minority civilians shot by police, or that 

affirmative action lead to a decrease in company profit are 

labeled as “motivated contradicting”. 

 

Numeracy  Average numeracy was 6.25 out of nine. 

Numeracy classes were assigned by a median split, with 

“high numeracy” (HN) referring to participants with 

numeracy scores of 7 or above and “low numeracy” (LN) 

referring to participants with numeracy scores of 6 or below. 

The sizes of the resulting groups were 36 and 40, 

respectively. Numeracy scores were higher in the “reasons” 

condition (M = 6.58, SD = 2.39) than in the “no reasons” 

condition (M = 5.92, SD = 1.75), though not significantly so; 

t(67.74), p  = 0.175. The difference can be attributed to CRT 

items: Though not significant, the two groups differed in 

performance on the four CRT items, t(71.24) = -1.50, p = 

0.14, while performance on the other five numeracy items 

was the same, t(71.31) = -0.79, p = 0.43.  

 

Motivated Reasoning and the Effect of Numeracy After 

excluding 21 participants who did not encounter at least one 

problem of each valence (i.e. neutral, motivated affirming, 

and motivated contradicting), a repeated measures analysis of 

variance (ANOVA) revealed a significant effect of problem 

valence on performance, F(2,102) = 4.99, p = 0.008, ηG
2 = 

0.041. This analysis also revealed a significant effect of 

numeracy on performance, F(1,51) = 20.01, p < 0.001, ηG
2 = 

0.18, with highly numerate participants more likely to 

respond correctly than their low numeracy counterparts.  

 Unlike Kahan et al. (2013), in our “no reasons” condition, 

we found no significant difference in performance between 

HN and LN participants on neutral (t(17.75) = 1.59, p = 0.13) 

motivated affirming (t(21.90) = 1.50, p = 0.15), and  

motivated contradicting problems (t(22.36) = 0.64, p = 0.53). 

After excluding the 21 participants, we also failed to find a 

significant interaction between numeracy and problem 

valence, F(2,50) = 0.058, p = 0.944, ηG
2 < 0.001. While 

participants clearly exhibit motivated reasoning, we failed to 

find a significant effect of motivated numeracy. 

 

Figure 1: Performance in “No Reasons” and “Reasons” 

Conditions 
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The Effect of Reasons The analysis did reveal a significant 

interaction between numeracy and reasons, F(1,51) = 6.20, p 

= 0.016, ηG
2 = 0.064. HN participants performed significantly 

better in the “reasons” condition than in the “no reasons” 

condition, (Mreasons = 0.68, Mno reasons = 0.43,  t(55.52) = 2.34, 

p = 0.023),  while LN participants performed significantly 

worse with reasons (Mreasons = 0.13, Mno reasons = 0.28,  t(88) = 

2.15, p = 0.034). Note, however, that for both groups of 

participants, the “reasons” manipulation served to reduce 

bias, as measured by the difference in performance on 

motivated affirming and motivated contradicting problems 

(Figure 1). For HN participants, Biasno reasons  = 0.25, while 

Biasreasons = 0.03.  For LN participants Biasno reasons  = 0.26, 

while Biasreasons = 0.11. 

 

General Discussion 

 
While reasons served to reduce bias in all participants, those 

high in numeracy were better able to make use of those 

reasons to improve their performance. These data suggest 

that, in the presence of motivation, reasoners are not 

inexorably biased in their selection of statistical strategies—

comparatively evaluating reasons can serve to block the 

effects of motivation, but only if one is able to understand 

those reasons. Motivation may encourage less reflective 
reasoning, but this effect is not irreparable.    

 Though we failed to find a significant effect of motivated 

numeracy, it is important to note that Kahan et al.’s (2013) 

original study analyzed 1111 observations from 1111 

participants, while our study analyzed 206 observations from 

55 participants (55 after the 21 participants who didn’t 

encounter problems of each valence were excluded). As 

Kahan et al. note, in this paradigm, the “strength of inferences 

drawn from ‘null’ findings depends heavily on statistical 

power”, and our sample may have been too small to detect 

the effect of motivated numeracy those researchers found. If 

Kahan et al.’s original findings are valid, these results support 

the hypothesis that the motivated numeracy effect results 

from belief bias obscuring the need for heuristic override. 

While motivation biased HN participants in their selection of 

an appropriate statistical strategy, they could appreciate the 

correct strategy when it was presented (and when the conflict 

between normative and heuristic strategies was apparent). 

But in any case, whether polarization increases with 

numeracy or whether it remains constant, our results suggest 

that evaluating reasons can reduce the effect of this 

polarization on reasoning.  

 If reasons served to block the effects of motivated 

reasoning, in virtue of what did they do so? The data suggest 

that evaluating reasons may have encouraged reflectiveness. 

To this point, not only were CRT scores higher in the 

“reasons” condition, but considered together, our four CRT 

items were the best predictor of a correct response on 

motivated contradicting, motivated affirming, and neutral 

problems. Recall that numeracy scales were completed after 

responding to the data analysis problems, suggesting that 

evaluating reasons may have elicited a more analytic frame 

of mind.   

 

 Table 2: Correlations Between Numeracy Scale Items 

and Task Performance 

 

  

 These results additionally suggest that CRT is not just a 

measure of numeracy, a position debated in the literature 

(Liberali, Reyna, Furlan, Stein, & Pardo, 2012); the CRT 

scale was always a better predictor of performance on the 

covariance detection task than the numeracy scale considered 

without the CRT items. While there was a ceiling effect for 

three of the numeracy items (N1, N2, N4), the two items for 

which this effect was absent still showed a lower correlation 

with performance compared to the CRT. Out of the non-CRT 

items, only N5 (a Bayes’s rule problem) showed a correlation 

comparable to any of the CRT items. However, unlike N1-

N4, N5 may be more of a measure of reflectiveness than 

quantitative ability, per se—even with a frequency chart, the 

majority of people fail to attend to base-rates in problems like 

N5 (Bar-Hillel, 1980; Gigerenzer & Hoffrage, 1995), and this 

base-rate neglect is correlated with low CRT scores (Hoppe 

& Dusterer, 2011).  

  That said, considering that those low in numeracy 

generally performed worse with reasons, what appears to be 

a decrease in bias may not be the result of increased 

reflectiveness. To this point, unlike their highly numerate 

counterparts, LN participants in the “reasons” condition 

performed worse on CRT items (average scores of 0.94) than 

they did in the “no reasons” condition (average score of 1.25). 

Why might this have been the case? One hypothesis is that 

those low in numeracy had trouble understanding the reasons 

provided. But the number of LN participants who reported 

experiencing some confusion during the study (12%) was 

comparable to the number of HN participants who reported 

experiencing confusion (9%). What’s more likely is that 

those low in numeracy were unable to appreciate and make 

use of the covariance strategy when it was presented as a 

reason.  

  There are three alternative explanations for our results 

that are important to consider. First, the difference in CRT 

scores between the “reasons” and “no reasons” condition may 

Numeracy Scale Item Performance on 

Motivated Tasks 

Performance on 

Neutral Tasks 

 
N1 

N2 
N3 

N4 

N5 

CRT1 
CRT2 

CRT3 
CRT4 

 
NUMERACY-CRT 

NUMERACY (incl. CRT) 
CRT 

 
-0.03 

0.11 
0.07 

0.07 

0.22 

0.43 
0.29 

0.32 
0.44 

 
0.17 

0.42 
0.52 

 
0.17 

0.11 
0.20 

0.17 

0.10 

0.31 
0.33 

0.32 
0.39 

 
0.24 

0.43 
0.47 
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not have reflected an effect of reasons on reflectiveness, but 

only an unfortunate selection confound. However, it’s not 

clear how the presence of such a confound would affect our 

conclusions. As our analyses conditioned on numeracy, 

selection bias would only affect sample sizes, not mean 

performance scores.   

 It might also be suggested that the effect of reasons resulted 

from a task demand. Because in the “reasons” condition, 

participants saw similar reasons presented with both neutral 

and motivated versions of the problem, they may have come 

to suspect that the study was testing their bias. This may have 

been the case with HN participants in the “reasons” 

condition, 32% of whom reported suspicions about the study 

(e.g. “I thought that this study was probably testing how our 

beliefs influence our abilities to analyze the data”). Fewer LN 

participants (19%) reported suspicions about the experiment, 

suggesting that if such a task demand was present, HN 

participants were better at picking up on (as well as 

responding to) it. The crucial point, though, is that even if HN 

participants were responding to a task demand, they could 

only supply responses that they thought experimenters 

wanted to hear if they could determine what those responses 

were. The fact that their responses were so often correct is 

consistent with our conclusion that HN participants were 

better at recognizing a correct response. 

 Third and most importantly, it could be argued that our 

results support an alternative explanation of Kahan et al.’s 

motivated numeracy effect: namely, that HN participants 

were more motivated because they had stronger priors. Here, 

we found no difference in the extremity of priors between low 

and highly numerate participants, and we also failed to find a 

significant motivated numeracy effect. Ultimately, while it is 

not clear how the alternative explanation could explain the 

effect of reasons, this is a pressing question for future 

research.  

 The implications of these results for science 

communication complicate Kahan et al.’s (2013) 

conclusions. While Kahan et al. concluded that “improving 

public understanding of science and propagating critical 

reason skills… cannot be expected to dissipate persistent 

public conflict over decision-relevant science”, our study 

indicates that understanding and being able to make use of 

normatively correct interpretational strategies can make 

people more responsive to debiasing efforts, at least when 

those efforts encourage reflective processing. 

 

Conclusion 

 
These data suggest that providing reasons can block the 

effects of motivated reasoning, and that such intervention is 

most successful for those high in numeracy. Though highly 

numerate people are more able to recognize when a 

sophisticated statistical strategy is appropriate, this 

recognition is impaired when a more immediate, heuristic 

strategy points to their desired conclusion. Making the need 

for heuristic override salient improves performance for those 

high in numeracy, but is not enough to affect those low in 

numeracy. 
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Abstract

Studies of how evidence affects beliefs sometimes show be-
lief polarization in response to mixed evidence. However, the
nature of the mental processes leading to change in opinion is
up for debate. Different accounts of how people process evi-
dence and then update their beliefs make different predictions,
especially about one-sided evidence, which is rarely examined.
We presented subjects with multiple text arguments regarding
socio-political topics as one-sided or mixed evidence. Partici-
pants rated arguments differently according to their extant be-
liefs, which is consistent with accounts of motivated reason-
ing. They did not polarize afterward, instead showing evi-
dence of belief updating according to Bayesian principles: be-
lief change is sensitive to prior opinions and to the direction
and quality of the evidence presented. These data support re-
thinking some of the mental processes underlying incorpora-
tion of evidence into a personal belief structure.
Keywords: cognitive science; decision making; reasoning;
language and thought; psychology; motivated reasoning; ra-
tionality

Introduction
As people navigate a world filled with information, they must
make decisions in order to accomplish various goals. The be-
liefs that individuals hold provide a structure in which new
information is evaluated and potentially integrated with ex-
isting beliefs. Different models explain how people evaluate
information and use that information to update their beliefs,
leading to potentially different implications about human ra-
tionality (Oaksford & Chater, 2007; Klayman & Ha, 1987).

Information from the world can be thought of as data, or
evidence, supporting or disconfirming a hypothesis. The ev-
idence may be accepted without examination or it may be
judged before it is used to update one’s beliefs, or a hy-
pothesis (Nisbett & Ross, 1980; Pyszczynski & Greenberg,
1987). From a Bayesian perspective, evidence is judged ac-
cording to existing hypotheses about the world along with
data that has already been observed. Bayes’ rule provides
a general model for constructing a posterior probability,
P(hypothesis|data), as a function of prior beliefs and ob-
served evidence: P(hypothesis)∗P(data|hypothesis).

People’s prior hypotheses about the world may differ de-
pending on the data they have observed. Furthermore, the
nature of people’s hypothesis space for a given topic is not
always easy to define (Tenenbaum, Kemp, Griffiths, & Good-
man, 2011; Jern, Chang, & Kemp, 2014). Accounts of
Bayesian updating explicitly allow for evidence to be treated
differently depending on whether it is in agreement with one’s
prior beliefs (Gerber & Green, 1999). However, unless there

is reason to suspect the source or validity of the evidence,
Bayesian normative accounts still require that people update
their prior beliefs in the direction of the evidence. This up-
dating can be small, but it cannot be in the opposite direction.
If such a shift occurs, it should be viewed as a violation of
normative updating under this model.

Alternatively, differential rating of information (evidence)
may be due to motivated, or hot cognition processes (Kunda,
1990; Ditto & Lopez, 1992). Under motivated accounts, ev-
idence compatible with an extant opinion is accepted, while
incompatible evidence creates negative emotions and is there-
fore critically examined and judged more negatively because
of its incompatibility. This difference in judgement can lead
to attitude polarization, or belief polarization.

Lord, Ross, and Lepper (1979) suggested that attitude po-
larization occurs because people with opposing views can
come to opposite conclusions from the very same set of ev-
idence. In a classic study, the authors queried participants
about their views on capital punishment, and then revealed
the results of two studies, one which suggested the death
penalty deters crime, and one which suggested the opposite
conclusion. Participants were asked to rate the quality of
each study, and then to recharacterize their views on the death
penalty. The authors found that proponents of capital pun-
ishment rated the study showing the deterrent effect of the
death penalty to be superior to that showing that the death
penalty did not affect crime levels, and subsequently adjusted
their beliefs to more strongly favor capital punishment. By
contrast, opponents of capital punishment favored the study
that showed the death penalty had little effect on crime, and
subsequently adjusted their beliefs to more strongly oppose
capital punishment. So-called biased assimilation is the phe-
nomenon by which participants’ prior beliefs impact the way
they evaluate novel evidence, and it would seem to undermine
the possibility of achieving consensus (Lord, Ross, & Lepper,
1979).

Taber and Lodge (2006) suggest that “primacy and auto-
maticity of affect kick-start the processes that spark moti-
vated biases when citizens encounter attitudinally contrary
information.” Taber and colleagues (2009) found evidence
of an attitude congruency bias, where people evaluate ar-
guments and evidence that supports their prior opinions as
stronger than nonsupporting information; and attitude polar-
ization, where this bias leads to polarization with exposure to
the same set of information.
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The present study aims to clarify the differences between
processing compatible and incompatible evidence, separating
the effects of the two types of evidence. To do this, we will
examine evidence rating for both mixed evidence (as used
in prior studies) and one-sided evidence (previously miss-
ing from much of the literature). Studies using mixed evi-
dence imply that participants process congruent and incon-
gruent information using different processes; for example,
readily accepting compatible arguments while spending more
time and mental resources to undermine incompatible argu-
ments (Edwards & Smith, 1996; Taber, Cann, & Kucsova,
2009). It is not clear whether compatible and incompatible
arguments must be presented together to activate these pro-
cesses or whether they apply to congruent and incongruent
arguments due to the nature of the evidence alone. The inclu-
sion of mixed and non-mixed (one-sided) evidence allows for
examination of potential differences.

This study further aims to examine whether belief updat-
ing behavior supports a motivated reasoning account or a
Bayesian account of belief updating. This will be assessed by
testing whether participants’ beliefs change as a function of
biased assimilation of the evidence, dependent on their prior
beliefs, or whether belief change depends on the direction
and/or merits of the evidence.

Methods
Participants
Participants were 124 students (75 female) enrolled in Psy-
chology, Linguistics, or Cognitive Science courses at the Uni-
versity of California, San Diego (UCSD) participating as part
of a course requirement. All participants provided informed
consent, and procedures were approved by the Institutional
Review Board (IRB) at UCSD. Participants were between 18
and 35 years old, with a mean age of 21. An additional two
participants completed the survey, but their results were not
included, either because their responses suggested they did
not understand the rating scale (n=1), or because their age
was greater than 35 years (n=1).

Materials
The study concerned six socio-political issues: abortion,
animal testing, assisted suicide, climate change, the death
penalty, and school uniforms. These issues were among
the most popular topics covered on two debate websites,
www.procon.org and idebate.org.

Attitude measurements: For each issue, a single policy
statement was chosen for participants to rate in terms of how
much they agree or disagree (e.g., “Animal testing should be
banned.”). This was followed by four position statements for
each issue selected from two headings under “Points for” on
the idebate.org archive, and two from “Points against.” Partic-
ipants responded to all five of these position statements, and
these responses formed the initial attitude measurement. Af-
ter the experimental treatment, participants again responded
to five position statements per issue to form the subsequent

attitude measurement.
Strength measurements: For each issue, participants were

given four questions with a 9-point Likert scale to indicate
how much they cared about, and had thought about, that issue.
These four questions were combined to form a measure of
strength of conviction.

Arguments: Using text from the websites, 6 supporting
(Pro) and 6 opposing (Con) arguments were selected for each
issue. Arguments were generally matched for content (i.e.,
if a Pro and a Con argument addressed the same point, both
arguments were usually selected), and for length (mean argu-
ment length = 120 words, sd = 11). To create arguments of
similar length, portions of longer arguments were omitted.

Procedure
The study included three phases: initial collection of attitude
and conviction strength measurements, the presentation and
rating of arguments, and the subsequent collection of attitude
and strength measurements.

Initial collection of attitude and strength measurements
proceeded one issue at a time, as participants first rated their
attitude on the issue, and then responded to the questions re-
garding the strength of their convictions on that issue. The
presentation order of the six issues was randomly determined.

Following the collection of attitude and strength measure-
ments, each participant was asked to read and rate arguments
for three randomly chosen issues from the original set of six.
For these three issues, one was randomly designated as the
Pro condition, such that the participant read and rated six ar-
guments in support of the original position; one was randomly
designated as the Con condition, such that the participant read
and rated six arguments against the original position; and one
was randomly designated as the Mix condition, such that the
participant read and rated three arguments in support of the
original position, and three arguments against. The order
of the issues was randomized, as was the order of the argu-
ments presented within each issue. Treatment thus included
four treatment conditions: Pro, Con, Mix, and None, with the
None condition comprising four issues for which participants
were not presented any argument text.

After reading all arguments, participants were again asked
to rate their positions on all six issues. Next, participants
completed a brief political knowledge quiz to assess their
political sophistication, and two questions to assess open-
mindedness. Finally, they read a debriefing page that ex-
plained the goal of the study and provided links to the web-
sites used for the argument texts.

Analysis
Opinions were scaled from -5 to 5, with -5 representing the
opinion most against the issue and 5 representing the opinion
most in favor of the issue (each issue is framed as a statement,
e.g. “The death penalty should be banned.”). Items where
participants spent too long reading the argument text (more
than 153 seconds, 3 standard deviations from the mean) were
removed from analysis (28 items out of 2232).
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Participants’ prior opinions and strength of conviction were
analyzed to ensure uniform representation across conditions,
since within each issue, experimental conditions (Pro, Con,
Mix, or None) were varied between subjects. A linear model
of prior opinion as a function of treatment condition and is-
sue showed that although opinions varied by issue, there were
no significant differences among conditions (Pro, Con, Mix,
None), nor was there any interaction of issue and condition.
Similarly, strength of conviction did not vary as a function of
treatment condition.

Models of argument rating were analyzed with a linear
mixed effects regression (LMER) model using the lme4 pack-
age in R (Bates, Maechler, Bolker, Walker, et al., 2014; R
Core Team, 2015). All experimental factors were allowed to
interact initially; more complex models were compared with
more parsimonious models using model ANOVA in R. Mod-
els were fit with random intercepts for subjects and items (viz.
arguments). The reported models are those that included sta-
tistically significant predictors of argument rating and are not
statistically different from more complex models (using cut-
off p < .01).

Models of belief updating were analzed with a linear model
in R. Again, all experimental factors were allowed to in-
teract initially; more complex models were compared with
more parsimonious models using model ANOVA in R. This
is equivalent to selecting all predictors with a significant p
value (p < .01) in the model ANOVA.

Results
The present study was designed (i) to replicate patterns of ar-
gument evaluation shown in other studies (Lord et al., 1979;
Edwards & Smith, 1996; Taber et al., 2009) and (ii) to crit-
ically examine whether biased argument rating leads to be-
lief updating, as suggested by a motivated account of reason-
ing, or whether belief change can be better explained by a
Bayesian account in which participants are sensitive to the
merits of the evidence.

The motivated cognition account explains attitude polar-
ization as resulting from a biased assimilation of the evidence,
such that evidence compatible with participants’ initial posi-
tions is weighted more heavily than incompatible evidence,
and consequently has a disproportionate impact on the way
participants update their beliefs. We first assessed whether
participants evaluated the arguments in a biased manner by
analyzing whether their ratings of these arguments differed
systematically as a function of their prior beliefs. Next, we
assessed the factors that influenced belief change in response
to these arguments.

Argument Rating
As noted above, our first question was whether participants
rated evidence differentially as a function of its compatibility
with their initial attitudes about the relevant issue. To exam-
ine this question, we began by modeling participants’ argu-
ment ratings with a linear mixed effects model with predic-
tors of treatment condition (Pro, Con, or Mix), argument po-

Figure 1: Average argument rating as a function of prior opin-
ion (-5 most opposed, 5 most in favor of the issue). Green
lines represent Pro arguments presented in the Pro and Mix
conditions; Red lines represent Con arguments presented in
the Con and Mix conditions.

larity (Pro or Con), prior opinion, strength of conviction, is-
sue, and political sophistication. Argument polarity is coded
separately from Condition and represents Pro and Con argu-
ments irrespective of which experimental condition they were
presented in. The goal of this variable coding procedure was
to separate potential effects of experimental condition from
effects of argument polarity.

Our model selection procedure revealed that experimental
condition per se was irrelevant. The best model predicts ar-
gument rating as a function of prior opinion and argument
polarity only. There was a trending further interaction with
strength of conviction, with the slope of the rating x prior
opinion line being steeper for participants with high strength
of conviction (p = .015 for the 3-way interaction). Other
experimental variables did not show main effects or interact
with experimental variables. The mixed effects linear model
includes random subject intercepts and individual argument
intercepts. See Equation 1 and Table 1 for model results.

Argument rating∼ prior opinion∗ argument polarity (1)

Table 1: Model results for Equation 1.
Factor df F value
Prior opinion 1 1.5
Argument polarity 1 0.3
Prior x Argument polarity 1 125.1
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Figure 1 shows how argument ratings differ as a function
of participants’ prior opinions, with separate green regression
lines shown for supporting arguments presented in the Pro
condition and in the Mix condition, and separate red regres-
sion lines for opposing arguments presented in the Con con-
dition and in the Mix condition. The positive slope of both
green lines reflects the fact that the more participants support
the issue, the higher they rate the Pro arguments compatible
with their position. The similarity in the slope of the Mix and
the Non-Mix line indicates that participants’ ratings of these
arguments were similar, regardless of whether they were pre-
sented in the context of other Pro arguments, or with a mix-
ture of Pro and Con arguments. Likewise, the negative slope
of both red lines reflects systematic bias in the ratings of op-
posing arguments, with opponents (-5 on the x-axis) rating
those arguments higher than supporters (+5 on the x-axis), ir-
respective of whether opposing arguments were presented in
a Con or a Mix block.

Belief Updating
We are interested in what factors lead to belief updating,
or opinion change, after participants read and rate the ar-
guments. Specifically, experimental condition might inter-
act with participants’ prior opinions, showing that belief up-
dating due to different types of evidence (i.e., that presented
in the Pro, Con, and Mixed conditions) differs as a function
of their original position regarding that issue. Strength of
conviction may also influence opinion change if participants
whose beliefs are stronger are either more motivated to de-
fend their position or rely on a greater body of knowledge to
form their prior opinion. Because participants may change
their opinions differently by issue, issue is also included as
a predictor. Finally, we included a measure of political so-
phistication because previous studies have suggested that so-
phisticated individuals are more likely to engage in motivated
reasoning (Taber et al., 2009).

Opinion change was modeled as a function of treatment
condition (Pro/Con/Mix), prior opinion, strength of convic-
tion, issue, and political sophistication. Linear models as de-
scribed in the Analysis section were created to investigate the
effects of these factors on opinion change. The best model to
predict opinion change is shown in Equation 2.

Opinion change∼ condition+prior opinion∗ strength (2)

Table 2: Model results for Equation 2.
Factor df Estimate F value p value
Condition 2 19.4 < .001
Prior opinion 1 -.41 96.2 < .001
Strength 1 -0.02 0.78 .38
Prior x Strength 1 0.03 7.55 < .01

The effect of experimental condition on opinion change is
shown in Figure 2. On average, independent of prior beliefs,

Figure 2: Average opinion change for each treatment condi-
tion. Lines represent standard error.

participants’ opinions were more in favor of an issue after
viewing and rating arguments in the Pro condition; more op-
posed to the issue after viewing and rating arguments in the
Con condition; and unchanged after viewing arguments in the
Mix condition.

Overall, participants shifted their opinion toward a more
moderate point of view (and also in the direction of the evi-
dence), with participants more in favor of an issue changing
their opinion to be less in favor, and those opposed changing
their opinion to be more in favor. This center-trending behav-
ior is represented in the negative coefficient of prior opinion
in the model. Prior opinion further interacts with strength
of conviction such that participants with lower strength show
more center-trending than do those with higher strength of
conviction.

The prior opinion x strength interaction is shown in Figure
3. Values for opinion change were baseline corrected by sub-
tracting prior opinion * opinion change slope for the None
condition to show how much opinion changed when partic-
ipants viewed and rated arguments. This visually removes
the overall center-trending pattern observed for all conditions.
Participants with high strength of conviction did not show a
difference in opinion change compared to baseline. Those
with low strength of conviction show an additional center-
trending pattern, with participants more in favor of an issue
changing to be more opposed, and participants more opposed
to an issue becoming more in favor.

Finally, we were interested in whether participants’ argu-
ment ratings would influence their beliefs in addition to the
other factors. Motivated cognition accounts would predict
that participants who exhibit biased rating behavior will be
more likely to polarize, updating their beliefs in the direction
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Figure 3: Interaction of prior opinion and strength. The blue
line represents participants with low strength of conviction
for a given issue, and the pink line represents those with high
strength of conviction. Values have been corrected to remove
the center-trending slope of the None condition to show their
difference from baseline.

of their initial opinion. By contrast, Bayesian updating pre-
dicts that participants will rely only on the evidence. Conse-
quently, they will either move in the direction of the evidence
(irrespective of their prior beliefs), or maintain their original
point of view.

Model comparison revealed that when participants’ aver-
age argument rating was included as a predictor, the most par-
simonious account of opinion change is given by the factors
in Equation 3. As in Equation 2, the main effect of treat-
ment condition and the interaction between prior opinion and
strength of conviction were present. In addition to the previ-
ous predictors, opinion change is further predicted by an in-
teraction of argument polarity and argument rating. As shown
in Figure 4, this interaction term results because participants’
opinions on average change to be more congruent with the po-
sition of those arguments that participants rated highly. The
higher a given participant rated Pro arguments, the more their
opinion changed in the positive direction. The higher they
rated Con arguments, the more their opinion changed in the
negative direction.

Opinion change∼ condition+prior opinion∗ strength
+ argument polarity∗ argument rating (3)

Figure 4 shows this interaction of argument rating x ar-
gument polarity (Pro/Con). The occurrence of prior opinion
and argument ratings in separate, additive terms in Equation

Figure 4: Interaction of argument rating and argument polar-
ity. The red line represents average opinion change for Con
arguments in the Con or Mix condition; the green line repre-
sents average opinion change for Pro arguments.

3 suggests that the relationship between argument rating and
opinion change was independent of participants prior beliefs.
That is, whether or not participants initially agreed with the
policy embraced in a given argument, they changed their po-
sitions to be more congruent with the arguments, especially
for highly rated arguments.

Discussion
Argument rating
Participants rated arguments that were compatible with their
prior policy opinions as objectively better than arguments that
were incompatible with those opinions. Moreover, this bias
scaled linearly with participants’ prior opinions, as those at
either end of the scale showed the greatest bias in argument
ratings. This argument rating bias is consistent with previ-
ous findings, potentially supporting the motivated reasoning
account. However, these findings are also consistent with a
Bayesian reasoning account in which participants at the ends
of the scale are assumed to assign a high prior probability
to their own position, and naturally assess the likelihood of
congruent evidence to be higher than that of incongruent evi-
dence. To dissociate motivated from Bayesian reasoning, it is
necessary to examine the opinion change data.

Belief updating
The belief updating data provide support for a Bayesian ac-
count and show that even in the presence of biased argument
ratings, participants changed their beliefs in response to the
evidence. The final model of opinion change suggested that
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for any given issue, participants’ beliefs at the end of the ex-
periment depended on three independent factors: treatment
condition, an interaction between prior opinion and strength
of conviction, and an interaction between argument polarity
and argument rating. Whereas a motivated reasoning account
predicts that treatment condition will interact with prior opin-
ion, we instead found that condition had an independent ef-
fect. Participants who read Pro arguments adjusted their be-
liefs in a positive direction, those who read Con arguments
adjusted their beliefs in a negative direction, and those in the
Mix condition made almost no adjustment to their beliefs.

Further, while prior opinion was highly relevant for be-
lief change, we found no evidence for the polarization phe-
nomenon predicted by motivated reasoning. In fact, partici-
pants with weaker convictions moved a small amount away
from their original positions, while those with strong convic-
tions tended to maintain their existing beliefs.

Finally, the relationship between argument ratings and be-
lief change was more consistent with a Bayesian account than
the biased assimilation process predicted by motivated rea-
soning. That is, with motivated reasoning we would expect
both highly-rated congruent arguments and low-rated incon-
gruent ones to lead to opinion change in the direction of par-
ticipants’ prior opinions. Instead, we saw that highly-rated
arguments, regardless of their congruency with participants’
prior beliefs, were associated with movement in the direction
of the arguments themselves. This is strong evidence in favor
of a Bayesian account and shows that even in the presence of
biased argument rating, belief change seems to be based on
the quality of the evidence itself.
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Abstract 

Nowadays, several of the situations in which we have to make 
decisions are in digital form. In a first experiment (N=1010) 
we showed that people’s moral judgments depend on the 
Digital Context (Smartphone vs. PC) in which a dilemma is 
presented, becoming more utilitarian (vs. deontological) when 
using Smartphones. To provide additional evidence, we ran a 
second (N=250) and a third experiment (N=300), where we 
introduced time constraints and we manipulated time 
instructions. Our results provide an extended perspective on 
Dual-Process Models of Moral Judgment, as we showed that 
the use of smartphones, often assumed to be hurried which 
would be consistent with gut-feeling decision-making, 
increased the likelihood of utilitarian responses and decreased 
deontological ones. This is the first study to look at the 
impact of the digital age on moral judgments and the results 
presented have consequences for understanding moral choice 
in our increasingly virtualized world.  

Keywords: Moral Judgment; Behavioural Ethics; Decision-
Making, Human-Computer Interaction.  

 
Introduction 

In this digital age, we spend a lot of time interacting with 
computer screens, smartphones and other digital gadgets. 
We buy online, work on the cloud, our social relationships 
are sometimes online-based, etc. Thus, the contexts where 
we typically face ethical decisions and are asked to engage 
in moral behaviour have changed. Nowadays, moral 
dilemmas are often presented digitally, that is, relevant 
information is presented through and decisions are made on 
a technological device. 

A key distinction regarding moral judgments concerns 
deontological versus utilitarian decisions (Singer, 1991). 
Recent dual-process accounts of moral judgment contrast 
deontological judgments, which are generally driven by 
automatic/unreflective/intuitive responses, prompted by the 
emotional content of a given dilemma, with utilitarian 
responses, which are the result of 
unemotional/rational/controlled reflection, driven by 
conscious evaluation of the potential outcomes (Greene et 
al., 2001; Greene & Haidt, 2002). In this account, an 
individual’s ethical mind-set (rule-based vs. outcome-based, 
Barque-Duran et al., 2015) can play a central role. A 
deontological perspective evaluates an act based on its 
conformity to a moral norm (Kant, 1785/1959) or perhaps 
just a rule (such a law). By contrast a 
consequentialist/utilitarian perspective evaluates an act 
depending on its consequences (Mill, 1861/1998).  

People often believe that judgments about “right” and 
“wrong” should be consistent and unaffected by irrelevant 
aspects of a moral dilemma or by its context. However, 
studies have shown, for example, that manipulations of the 
language (foreign vs. mother tongue) in which a moral 
scenario is presented can affect moral judgments through 
increasing psychological distance from the situation, and so 
inducing utilitarianism (Costa et al, 2014). The choice of 
deontological versus utilitarian judgments can vary 
depending on the emotional reactivity triggered by the 
dilemma (Valdesolo & DeSteno, 2006). As such, 
establishing which conditions favor each of these two 
influences is fundamental to understanding the psychology 
of moral choice.  

Construal Level Theory (CLT) provides a framework of 
considerable potential relevance by linking mental 
representations to moral judgment. Individuals’ judgments, 
decisions, and behaviours can differ as a function of 
construal levels. CLT proposes that the same event or object 
can be represented at multiple levels of abstraction (see 
Trope & Liberman, 2010, for a review). More weight is 
given to global, abstract features at high-level construal, 
whereas local, concrete features are more influential at low-
level construal. According to CLT, psychological distance is 
a major determinant of what level of construal is activated. 
Distancing a target on any dimension of psychological 
distance (i.e., time, space, social, and hypotheticality) leads 
to greater activation of high-level construal (directing 
attention to end states) than low-level construal. Crucially, 
high-level construal is often assumed to align with more 
utilitarian decision-making (Gong, Iliev, & Sachdeva, 2012; 
Aguilar, Brussino, & Fernández-Dols, 2013).  

The present study explores whether a Digital Context (i.e. 
using a different digital device such a Smartphone or a PC, 
as hundreds of millions of individuals do every day) can 
have a systematic impact on these processes. Could Digital 
Contexts induce different construal levels (through 
psychological distance)? 

There is evidence that people experience a so called 
"narrowing effect” when using smartphones in decision-
making, which means that they channel or tunnel their focus 
toward a main task and ignore or filter out certain cues 
(Ariely, 2016). A narrowing effect is consistent with the 
idea that devices such as smartphones would increase 
psychological distance giving rise to an abstract 
representation of actions. In other words, the narrowing 
effect would seem to be aligned with a more utilitarian/ 
outcome-based mind-set, instead of a more emotional/ 
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deontological one. For this reason we asked ourselves 
whether Digital Context, smartphone vs. PC, might 
influence the relation between different levels of construal 
(psychological distance), thus affecting the likelihood of 
utilitarian vs. deontological judgments.  

To summarize, we hypothesize that Smartphones (vs. 
PCs) have the effect of channeling or tunneling the focus 
toward a main task at the expense of certain cues. This 
should induce high construal, increase psychological 
distance and give rise to an abstract representation of 
actions, thus biasing towards more utilitarian judgments. 
We first tested this prediction using three versions of the 
well-known Trolley Problem (Switch, Fat Man, Balanced; 
Thomson, 1985; see Methods sections). To provide 
additional support we also ran a second and a third 
experiment where we introduced a Time Constraint (10 
seconds vs. Unlimited Time to respond) and where we 
manipulated Time Instruction, relating to how participants 
were given information about the time constraints for 
reaching a decision (Instructing Unlimited Time vs. No 
Time Instruction).  
 

Experiment 1 
The objective was to explore whether a manipulation of the 
Digital Context (Smartphone vs. PC) can have an impact on 
moral judgment. Specifically, we wanted to test if making 
moral judgments using a Smartphone increased the number 
of utilitarian responses in comparison to when using a PC.  
 
Participants  
A total of 1010 participants, all US residents, were recruited 
on-line and received $1 for doing the task (482 women, 528 
men; mean age=31.7 years, SD=9.6). Sample sizes were 
based on extant research (Suter & Hertwig, 2011). 
 
Materials and Procedure 

The study was designed in Qualtrics, run on Amazon 
Mechanical Turk and lasted approximately 10-15 minutes. 
Digital Context (Smartphone vs. PC)1 and Version of the 
Trolley Problem (Switch vs. Fat Man vs. Balanced) were 
manipulated between participants. We used the frequency of 
Utilitarian vs. Deontological Responses as the dependent 
measure. 

Participants were randomly told to switch to a 
Smartphone or a PC after reading and agreeing the general 
instructions on Amazon Mechanical Turk. Having a 
smartphone was a pre-requisite to participate in the 
experiment. Participants in the Smartphone condition had to 
respond to all questions from their smartphone devices. As a 
manipulation check for this condition, we tracked and 
verified through Qualtrics that the responses were indeed 

                                                             
1 In the Smartphone condition participants could do the 

experiment with the following devices: iPhone, Android, Windows 
Mobile Phone and BlackBerry. In the PC condition participants 
could use a desktop or a laptop computer. No tablets were allowed. 

made from an iPhone, Android, Windows Phone or 
Blackberry. Participants were randomly allocated to one of 
these six conditions: (1) Smartphone/Switch; (2) 
Smartphone/Fat Man; (3) Smartphone/Balanced; (4) 
PC/Switch; (5) PC/Fat Man; (6) PC/Balanced. One third of 
the participants (327 Participants) on each Digital condition 
were presented with the Fat Man version of the Trolley 
dilemma, where one imagines standing on a footbridge 
overlooking a train track. A small incoming train is about to 
kill five people and the only way to stop it is to push a 
heavy man off the footbridge in front of the train. This will 
kill him, but save the five people. A utilitarian analysis 
dictates sacrificing one to save five; but this would violate 
the moral prohibition against killing. Imagining physically 
pushing the man is emotionally difficult and therefore 
people typically avoid this choice (Thomson, 1985). 
According to our hypotheses, participants would be more 
likely to opt for sacrificing one man to save five when 
dealing with such moral dilemma using a smartphone in 
comparison to a PC, since this would induce high construal, 
increase psychological distance and give rise to an abstract 
representation of actions, which is aligned with more 
utilitarian judgments under time pressure; or would induce 
psychological closeness due to the link between low-level 
construal and a focus on means, which is also hypothesized 
to align with more utilitarian judgments, under conditions of 
no time pressure. Another third of participants (313 
Participants) were presented with the Switch dilemma, 
where the trolley is headed towards the five men, but you 
can switch it with a lever to another track, where it would 
kill only one man. People are more willing to sacrifice the 
one man by pulling the switch than by pushing him off the 
footbridge and the extensively supported explanation is that 
pulling the switch is less emotionally aversive. The last third 
of participants (314 Participants) were presented with the 
Balanced version of the Trolley Problem. The Balanced 
dilemma had a setting similar to that in the Fat Man version, 
but with a different number of people one could save (15 
instead of 5), so that utilitarian choice would increase. All 
participants first completed a filler task (10 trivia questions) 
before responding to one of the versions of the Trolley 
Problem. A “catch question” was introduced in the 
experiment, to control for attention during the task (i.e. “If 
you are paying attention to this question please select 
answer ‘36’ from the options below”). Then, participants 
were presented with one of the three moral scenarios 
(Switch, Fat Man or Balanced) where they had to choose 
between Choice A (utilitarian) or Choice B (deontological). 
In all cases the dilemma was presented with both text and an 
illustration. Subsequently, participants completed another 
filler task (10 trivia questions). Finally, participants were 
asked to complete The Big Five Inventory (John et al., 
1991) questionnaire, which is considered a quick (44-items), 
reliable, and accurate measure of the five dimensions of 
personality. We considered that the impact of digital content 
on moral choice could also interact with personality 
characteristics (Ozer & Benet-Martínez, 2006) but the 
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results did not lead to firm conclusions and therefore will 
not be reported further. 

 
Results Experiment 1 

We excluded participants whose first language was not 
English, as Costa et al., (2014) showed that the use of a 
foreign language (instead of a mother tongue) in a moral 
scenario increases psychological distance and induces 
utilitarianism when making moral judgments. We also 
excluded those participants who did not answer the catch 
question correctly. A total of 56 participants out of 1010 
were thus excluded. 

We first compared the percentage of Utilitarian Responses 
for the two Digital Contexts (Smartphone vs. PC) on each of 
the three Versions of the Trolley Problem that were 
employed (Switch vs. Fat Man vs. Balanced; Figure 1).  
 

 
 

Figure 1: A) The experimental paradigm used in the 
Smartphone condition in Experiment 1. B) The illustrations 
used in each of the three moral conditions. C) Percentage of 
Utilitarian Responses for both Digital Contexts (Smartphone 
vs. PC) on each of the three versions of the Trolley problem 

(Switch vs. Fat Man vs. Balanced). Error bars represent 
standard errors. 

 
As expected, in the Fat Man dilemma more participants 

avoided the act of pushing the heavy man off the footbridge 
in front of the train, presumably because of the emotional 
burden of this choice. More importantly, participants were 
more likely to opt for sacrificing the Fat Man (utilitarian 
response) to save five men when using a Smartphone 
(33.5%) than when using a PC (22.3%). A 2x2 chi-square 
test of independence was performed to examine the 
frequency of Utilitarian vs. Deontological Responses 
against Digital Context in the Fat Man condition and this 

revealed a significant association between the variables, χ2 
(1, N=327) = 5.15, p=.023. This result supports our 
hypothesis that moral judgments in Smartphones increase 
utilitarian decision-making, than when using a PC.  

We then analyzed the frequency of Utilitarian vs. 
Deontological Responses, across the two Digital Contexts, 
in the Switch condition. Slightly more participants decided 
to sacrifice one man by pulling the switch than to do 
nothing and let five people die (80.9% for the Smartphone 
users; 76.9% for the PC users), but there was no evidence 
for an association between the two variables, χ2 (1, N=313) 
= .741, p=.389. This result supports our expectation that in 
less emotional scenarios, such as the Switch dilemma, there 
is a reduced effect of Digital Context. That is, there is no 
difference in participants’ moral judgments when using a 
Smartphone or a PC if the moral scenario is already highly 
utilitarian.  

Finally, we examined the frequency of Utilitarian vs. 
Deontological Responses in the Balanced condition. Note, 
this condition was designed so that, in the PC condition at 
least, there would be fairly equivalent utilitarian and 
deontological influences, and this was approximately the 
case. Regarding the manipulation of interest, 40.4% of 
participants decided to push the heavy man off the 
footbridge in the PC and 36.7% in the Smartphone 
conditions. Nevertheless, a chi-square test of independence 
showed that the relation between these variables was not 
significant, χ2 (1, N=314) = .448, p=.503. The (tentative) 
conclusion from this experiment is that using a Smartphone2 
rather than a PC has a reliable impact on moral judgments 
only when dilemmas or scenarios have high emotional 
content.  
 

Experiment 2a and 2b 
The objective of Experiment 2a was to provide additional 
evidence for the increased number of utilitarian responses 
using a Smartphone by manipulating the amount of time 
available to form a moral judgment. We wanted to explore 
Digital Context (Smartphone vs. PC) and Time Constraint 
(10 seconds vs. Unlimited time to respond) on moral 
judgments. It is possible that the effect of Digital Context is 
independent from that of Time Constraint, in which case we 
cannot explain the former in terms of (just) the latter. 
Alternatively, Time Constraint may provide a bias on moral 
decision making opposite to the effect of Digital Context 
(e.g., a decrease of utilitarian responses, in the fat man 
scenario, when participants are using a Smartphone), which 
will create a complex picture regarding how using 
Smartphones in everyday moral judgments biases for and 
against utilitarian responses. In Experiment 2b, we 
addressed the challenge to explain the difference in the Fat 
Man condition of Experiment 1 and in the Unlimited Time 

                                                             
2 In the Smartphone condition, 39% of participants used 

an iPhone during the experiment, 58.5% an Android, 2.2% a 
Windows Mobile Phone and 0.2% a BlackBerry.  
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condition in Experiment 2a (where the effect of Digital 
Context had disappeared) by manipulating directly the Time 
Instruction to either specify that there was unlimited time 
available for a moral judgment, or not mentioning time at all 
(Instructing Unlimited Time vs. No Time Instruction). The 
key difference between these two conditions was that in 
Experiment 1 participants were not told anything regarding 
time, while in Experiment 2a, in the equivalent conditions, 
participants were specifically told they had unlimited time. 
We also measured participants’ affective reaction with the 
Self Assessment Manikin test (Bradley and Lang, 1994).  
 
Participants  

A total of 550 participants (250 Exp 2a and 300 Exp 2b), all 
of whom were US residents, were recruited on-line and 
received $0.80 for doing the task (234 women, 316 men; 
mean age=32.5 years, SD=9). 
 
Materials and Procedure  

The studies were designed in Qualtrics, run on Amazon 
Mechanical Turk and lasted less than 10 minutes. Digital 
Context (Smartphone vs. PC), Version of the Trolley 
Problem (Switch vs. Fat Man) and Time Constraint (10 
seconds vs. Unlimited Time to respond) were manipulated 
between participants in Experiment 2a. There were therefore 
eight conditions. We used the frequency of Utilitarian vs. 
Deontological Responses as the dependent measure. 

All participants followed a similar procedure as in 
Experiment 1. They first completed a filler task (10 trivia 
questions) including a catch question, as in Experiment 1. 
Then, participants were presented with one of the two moral 
scenarios (Switch or Fat Man). In all cases the dilemma was 
presented with both text and an illustration. Participants 
were alerted of the available time for responding depending 
on their condition (i.e. “You will only have 10 seconds to 
answer the question in the next screen” vs. “You will have 
unlimited time to answer the question in the next screen”). 
After the presentation of the scenario, in the “10 seconds” 
condition participants had to choose between Choice A 
(utilitarian) or Choice B (deontological), while a countdown 
timer appeared at the top of their screen (both Smartphone 
and PC). In contrast, in the “Unlimited Time” condition, 
participants were explicitly told that they had to make their 
judgment taking as much time as they wanted. Finally, 
participants were asked to complete the Self Assessment 
Manikin test (Bradley and Lang, 1994), which is a 
technique that directly measures the pleasure, arousal and 
dominance associated with a person’s affective reaction. 

In Experiment 2b, Digital Context (Smartphone vs. PC) 
and Time Instruction (Instructing Unlimited Time vs. No 
Time Instruction) were manipulated between participants, 
using the Fat Man scenario. Time Instruction was 
manipulated in the following way. Half the participants 
were given the instructions as in the Experiment 2a 
Unlimited Time condition. The other half did not have any 

indication of the time they had to spend making their 
judgment (same procedure as in Experiment 1).  
 
Results across all Experiments 1, 2a and 2b   

In this section we report the results of Experiment 2a, 2b 
and then bring together the results from all experiments 
focusing on the Fat Man scenario (Figure 2).  

First, we summarize the results from Experiment 2a. We 
excluded a total of 10 participants out of 250 following the 
same criteria as in Experiment 1. As a manipulation check, 
we first examined the amount of time that participants took 
to finish the experiment (5min 10s in the Unlimited Time 
condition; 4min 32s in the 10s condition). 

We examined the differences in the percentage of 
Utilitarian Responses for the two Digital Contexts 
(Smartphone vs. PC) on each of the two versions of the 
Trolley Problem (Switch vs. Fat Man) and with or without 
time pressure (10s vs. Unlimited Time).  

In the time pressure (10s), Switch condition, slightly more 
participants decided to sacrifice one man by pulling the 
switch than to do nothing and let five people die, when 
using a Smartphone (79.31%) than when using a PC 
(66.67%), but this difference was not reliable, χ2 (1, N=65) 
= 1.282, p=.257.  

Regarding the Unlimited Time condition, in the Switch 
condition, Digital Context also did not appear to play a role 
in moral judgments (85.71% and 83.87% for Smartphone 
and PC, respectively); regardless of Digital Context, we 
observed highly utilitarian responses. Thus, as before, the 
results in the Switch dilemma indicate that Digital Context 
and (as it seems) Time Constraint have a reliable impact on 
moral judgments only when dilemmas or scenarios have 
high emotional content. This result also supports our 
assumption that in less emotional scenarios, such as the 
Switch dilemma, any effect of either Digital Context or 
Time Constraint does not result in a reliable increase in 
utilitarian responding. 

In the time pressure (10s), Fat Man condition, participants 
were more likely to opt for sacrificing the Fat Man 
(utilitarian response) to save five when using a Smartphone 
(45.7%) than when using a PC (20.0%), χ2 (1, N=60) = 
4.239, p=.04. At face value, these results challenge the 
assumption that hurried responses necessarily lead to 
deontological moral judgments.  

Then, we examined participant’s responses in the 
Unlimited Time, Fat Man condition. The results here appear 
to conflict with our conclusion from Experiment 1, in that 
there was no difference in Utilitarian vs. Deontological 
responses, between the Smartphone and PC conditions 
(27.58% and 29.63%, respectively, χ2 (1, N=64) = 2.224, 
p=.136). In other words, when participants were specifically 
told to spend unlimited time to resolve the dilemma 
(Unlimited Time condition), the Digital Context effect 
vanished. We return to this finding in Experiment 2b.  

We also considered whether the impact of Digital Content 
on moral choice could interact with the perceived 
emotionality of the scenario/context or affective reactions, 
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but the results did not lead us to firm conclusions and 
therefore will not be reported further. 

Second, we summarize the results from Experiment 2b. In 
this experiment we excluded a total of 141 participants out 
of 300 following the same criteria as in Experiment 1 and 
2a. One participant was rejected because she/he answered 
incorrectly to the catch question and one because English 
was not his/her first language. Additionally, 139 participants 
were eliminated because they said they had come across a 
moral choice in the context of the Trolley Problem before. 
The pattern of results does not change qualitatively if these 
participants are included, but we decided not to do so.  

In this experiment we measured Response Time for the 
particular moral judgment, though we note that, as the 
experiment was run over the internet, the accuracy of these 
measurements is lower than in the lab. Did participants in 
the Instructing Unlimited Time condition take longer to 
respond than ones in the No Time Instruction one? There 
was no evidence that this was the case (2x2 ANOVA with 
Digital Context and Time Instruction, F<1 for all effects). 
We suggest that the effects from Time Constraint and Time 
Instruction seen in Experiments 2a, 2b could result in a 
change of the participants’ mind-set and approach to the 
problems, without corresponding clear differences in 
Response Time. 

 

 
 

Figure 2:  Summary of the relevant results from 
Experiments 1, 2a and 2b for the Fat Man problem. The 

vertical axis shows percentage of utilitarian responses and 
the horizontal axis the conditions of interest. Error bars 

represent standard errors.  
 

The two leftmost bar clusters in Figure 2 show the results 
of Experiment 2b. Interestingly, using the data from 
Experiment 2b, we replicated the finding from Experiment 
2a, that the mere fact of “nudging” participants to use 
unlimited time resulted in utilitarian responses that were not 
influenced by Digital Context. A 2x2 chi-square test with 
frequency of Utilitarian vs. Deontological Responses 
against Time Instruction (Instructing Unlimited Time vs. No 
Time Instruction) confirmed this conclusion, χ2 (1) = 5.509, 
p = .018.  

We next considered whether the results from Experiments 
2b replicated the effect from Experiments 1 and 2a 
regarding Digital Context. The pattern of results from the 

No Time Instruction condition in Experiment 2b closely 
matched the corresponding results in Experiment 1. In 
Experiment 2b, as expected, participants were more likely to 
opt for sacrificing the Fat Man (utilitarian response) to save 
five when using a Smartphone (28.6%) than when using a 
PC (19%). Even though the trend was as expected, a 2x2 
chi-square test with frequency of Utilitarian vs. 
Deontological Responses against Digital Context 
(Smartphone vs. PC) was not significant, χ2 (1, N=70) = 
0.864, p=.35. However, after collapsing the data (for the 
identical Fat Man, No Time Instruction conditions) from 
Experiments 1 and 2b, we obtained a significant association 
between frequency of Utilitarian vs. Deontological 
Responses and Digital Context (Smartphone vs. PC), χ2 (1, 
N=397) = 6.27, p=.012. This result supports our hypothesis 
that moral judgments in Smartphones increase utilitarian 
decision-making, compared to when using a PC, when no 
information about time is provided.  

Importantly, the results from Experiments 1, 2a and 2b 
put together indicate that under conditions of no time 
information and time pressure there is indeed a utilitarian 
bias. The only Time Instruction in which the utilitarian bias 
was eliminated was the Unlimited Time condition, in which 
participants were specifically told to take as long as they 
needed to respond. This finding has a plausible 
interpretation that, in the Unlimited Time condition, 
participants took into account the information they have 
been ignoring so far (which would include emotional cues) 
and this made the utilitarian bias disappear. Thus, the results 
so far support the hypothesis that, under most conditions, 
smartphones (vs. PC) are associated with more utilitarian 
decision-making (vs. deontological). An additional 
interesting finding is that utilitarian judgments emerge in 
both the No Time Instruction condition and the Time 
Pressure condition.  

 
Discussion 

This is the first study to look at the impact of digital context 
in moral judgments. We considered whether the increasing 
tendency for our judgments to be mediated through the use 
of technological gadgets might be changing our approach to 
moral dilemmas. We have shown that people’s moral 
judgments become more utilitarian (vs. deontological) when 
using Smartphones as opposed to PCs, under a variety of 
time-related manipulations (but not all). The present work 
was motivated by the idea Digital Context might impact the 
relation between different levels of construal (psychological 
distance) thus affecting utilitarian vs. deontological 
judgments. While our results are consistent with such a 
view, clearly further research is needed.  

We first consider the implications of these results for the 
Dual-Process Models of Moral Judgment (Greene et al., 
2001; Greene & Haidt, 2002). A standard assumption is that 
moral dilemmas resolved in fast, gut-feeling conditions 
engage a deontological mode of responding, while 
utilitarian responses are typically the result of longer 
consideration and involve cognitive control. Instead, we 
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showed that participants under time pressure were more 
likely to opt for sacrificing the “fat man” to “save five” 
(utilitarian response) when using a Smartphone than when 
using a PC. That is, some digital contexts (i.e. Smartphones) 
can trigger utilitarian decision-making under time pressure, 
even though time pressure has traditionally been associated 
with deontological responding in moral choice. Dual route 
models have received extensive support and no doubt they 
are valid under most circumstances. Our results indicate a 
need to perhaps augment the available routes for utilitarian 
biases in such models.  

Other research has provided a more complex picture 
regarding the impact of time on deontological vs. utilitarian 
judgments. Specifically, Suter and Hertwig (2011) showed 
that participants in a time-pressure condition (associated 
with fast, gut-feeling conditions), relative to a no-time-
pressure condition (associated with longer consideration and 
higher cognitive control), were more likely to give 
deontological responses only in high-conflict dilemmas. By 
contrast, in low-conflict and in impersonal dilemmas, the 
proportion of deontological responses did not differ between 
conditions. The results from the present experiments partly 
support these differences between high-low conflict 
dilemmas. In less emotional scenarios (Switch), neither 
Digital Context nor Time Constraint resulted in a reliable 
increase in utilitarian responding. By contrast, in more 
emotional scenarios (Fat Man), our results question the 
well-established assumption (from Suter & Hertwig, 2011, 
amongst others) that hurried decisions enhance deontology, 
since we showed that moral judgments under a time 
constraint and in a specific Digital context (Smartphones) 
seem to make utilitarian judgments more common.  

Clearly, more work is required to disentangle possible 
explanations for the exact effect of the different instructions 
concerning timing, especially regarding the possibility that 
keeping track of time may result in reduced cognitive 
resources.  But the crucial point regarding the present study 
is that our conclusion considering Digital Context and moral 
judgments appears mostly independent of such 
considerations.  

Our hypotheses regarding Digital Context and moral 
decision-making was largely motivated from the effects and 
implications from Construal Level Theory. According to 
CLT, psychological distance can vary on at least four 
dimensions: temporal, spatial, social and hypotheticality 
(i.e. probability for a scenario to become reality; Trope & 
Liberman, 2010). Can we localize the particular effect of 
distance in considering responding using a smartphone vs. a 
PC? In further studies we will attempt to measure 
psychological distance directly. More generally, our results 
were inconclusive regarding the idea that the psychological 
distance elicited by a smartphone decreased the intensity of 
people’s affective reactions. It is possible that smartphones 
induce a greater distance in other respects. For example, it 
might be the case that the use of digital devices interacts 
with/mediates the hypotheticality dimension.  

Overall, the present work reveals a need for the further 
systematic study of how Digital Context affects moral 
choice, all the more so given that, increasingly, 
governments, charities and other institutions engage in 
intense campaigns over digital media to encourage moral 
choices for important aspects of our way of life.  
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Abstract 

Two hypothesized functions of working memory – 
coordination (ability to maintain unrelated storage loads during 
processing) and integration (ability to integrate multiple 
elements into a relation) – were explored and compared to fluid 
intelligence. In Experiment 1, 130 participants completed a 
modified Latin-Square Task (LST) which experimentally 
added or reduced storage load. Results suggested that pure 
integration (with no storage load) could predict Gf, but no 
difference was found between coordination and integration. 
Experiment 2 employed the Arithmetic Chain Task (ACT), 
again with modifications to storage load. Results support 
replication of LST findings, though a distinction was found 
between coordination and integration when storage material 
could not be easily rehearsed. Findings from both experiments 
support a distinction between coordination and integration 
tasks in understanding the WM-Gf association. 

Keywords: working memory; fluid intelligence; relational integration 

Introduction 
Working memory (WM) has consistently been linked to fluid 
intelligence (Gf), yet the intricacies underlying this 
relationship are not fully understood. This is in part because 
neither WM nor Gf reflect a single cognitive process. Rather, 
WM is a complex system responsible for processing and 
maintaining information, attention, and multi-tasking. Gf is 
similarly multi-dimensional, variously reflecting reasoning 
and the capacity to deal with novelty. Many WM tasks (such 
as complex-span tasks; CSPANs) draw on coordination, in 
that information from one aspect of the task must be 
maintained in storage while performing a simultaneous but 
unrelated processing task. Conversely, many prototypical Gf 
tasks require relational integration (henceforth ‘integration’; 
Halford, Wilson, & Philips, 1998). Integration entails the 
ability to combine multiple representations and is critical to 
reasoning. In this report, we argue that advances in 
understanding the WM-Gf link have been slowed by the 
overrepresentation of coordination in WM tasks, and the 
failure to consider integration as a component of WM.  

We aim to redress this using two experiments. In 
Experiment 1, we modify the integration-based Latin-Square 
Task (LST; Birney, Halford, & Andrews, 2006) by adding or 
removing storage load. In Experiment 2, we investigate the 
same processes in an arithmetic task (Oberauer, Demmrich, 
Mayr, & Kliegl, 2001). We begin with an exposition of 
coordination and integration. 

Two Functions of Working Memory 
Coordination WM tasks typically involve some combination 
of processing and storage, reflecting the two components of 
WM. Coordination can be defined as the ability to coordinate 
stored elements with unrelated processing. CSPANs, such as 
the operation span, are examples of coordination tasks, 
because storage capacity is the primary outcome (e.g., the 
number of words that can be recalled) and processing (e.g., 
verifying the veracity of a math operation) is included to fulfil 
the simultaneous processing-storage conceptualization of 
WM (Baddeley & Hitch, 1974). While a failure of either 
component does not represent a failure of the other, if both 
components are not given equal priority, the extent that 
CSPAN measures WM is brought into question. However, 
even when processing is ensured (e.g., with an 85% threshold 
for operation verifications), the only measure indexing WM 
is the recall. Because the processing is somewhat trivialized, 
it tells us little about how processing ability influences 
performance on WM tasks. This does not, however, take away 
from the fact that coordination tasks are excellent for linking 
WM and Gf (Ackerman, Beier, & Boyle, 2005). 
 
Integration Process-oriented accounts of WM have led to the 
development of tasks that measure the ability to integrate 
representations into higher-order relational structures 
(Oberauer Süß, Wilhelm, and Wittman, 2008). All processing 
subtasks typically require some form of integration (e.g., 
integrating two digits to derive a sum), though some 
researchers have attempted to provide formalized accounts of 
processing tasks. Oberauer et al. (2008) employed the finding 
squares task, where participants monitored a 10x10 grid 
filled with 10 dots. Every few seconds, some dots would 
change position. The task was to monitor the dots and 
respond if a collective set of dots formed a square. Although 
tasks such as these have no storage requirements, they are still 
good predictors of Gf (Oberauer et al., 2008). This has led to 
the suggestion that integration forms the core of WM 
(Oberauer, Süß, Wilhelm, & Sander, 2007); and that rather 
than a ‘storage capacity’ limiting WM, constraints are instead 
dictated by the strength of bindings between integrated 
representations. 

Halford and colleagues provide an alternate process-
oriented account of WM limitations in terms of relational 
complexity (Halford et al., 1998), that formalizes individual 
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capacity for integration. WM is framed not as a limitation in 
the number of elements, but by the complexity of relations 
between elements to-be-integrated. Complexity metrics have 
been shown to capture constraints in processing capacity 
(Birney et al., 2006). 
 
Aims There is evidence that both coordination and 
integration can be implicated in the WM-Gf association. 
However, it is difficult to directly compare these functions, 
as they are typically operationalised in different tasks. The 
current research aims to compare coordination and 
integration within single tasks, experimentally. 

Experiment 1 
One way to explore coordination and integration within a task 
is to consider a variant of a typical processing task, with 
reduced or additional storage load requirements. If the 
reduced storage load condition still associates with Gf, it 
would suggest a role of pure integration within the WM-Gf 
link, as only the processing remains. Conversely, if the 
additional storage load condition associates with Gf, it would 
suggest a role of coordination. This is the approach we used 
in Experiment 1, employing the LST as a processing task.  

The LST was designed following the principles of 
relational complexity theory (Birney et al., 2006). The LST 
presents participants with an incomplete matrix of 4x4 cells 
with the governing rule that each row and column may 
contain only one element from a set of 4 elements. 
Complexity is manipulated by the number of rows and 
columns that must be considered in order to deduce a target 
cell (see Figure 1). In some items, participants must also 
solve interim cells, using information from those cells to 
solve the target. Thus, although the task is processing-
focused, there is some storage costs associated with holding 
interim cell information. Birney et al. (2006) found that 
complexity captures 64% of variability in item difficulty, 
while the number of interim cells captures 16%. Thus, 80% 
of difficulty variance is from identified processing and 
storage demands. 

Because we were employing a variance-partitioning 
approach, it was possible to more directly compare the 
coordination condition with integration by varying whether 
the additional storage was processing-contingent or not. By 
partitioning out variance associated with the baseline task, we 
could derive variance associated solely with a coordination 
load and compare it to variance associated with an integration 
load, that were equivalent in task format and (potentially) 
difficulty. Thus, our four conditions for the LST were: basic, 
reduced storage, additional storage (coordination), and 
additional storage (integration); which were crossed with the 
standard manipulations of complexity and steps. 

We hypothesized that the reduced storage condition would 
reduce the difficulty of the task, but maintain the association 
with Gf, because pure integration was still required of the 
baseline task. We also hypothesized that the additional 
storage conditions would increase the difficulty of the task to 
similar degrees, and each would represent a unique 
contribution to predicting Gf, as they represent the two 
functions of coordination and integration. 

Method 
Participants and Procedure In total 130 first-year students 
(83 females) at the University of Sydney participated in 
exchange for course credit. The mean age was 19.04 (SD = 
1.6) years. Participants were tested in groups in 60m sessions. 

 
Measures Three LST sets, each with 12 unique items equally 
distributed across complexity (2/3/4) and steps (1/2), were 
adapted from Birney and Bowman (2009). Thus, all sets 
included an equal distribution of complexity and steps. The 
basic set consisted of 12 standard items (as in Figure 1).  

The dynamic-completion (DC) set consisted of 12 items 
which allowed participants to insert interim solutions. Instead 
of simply selecting an answer, participants could place shapes 
into empty cells of the matrix, before placing a shape into the 
target cell to indicate their overall response. In this way, 
participants were able to work through the problem, 
offloading storage demands associated with interim cells. 

The final set was additional load, consisting of 12 items. 
Participants were randomly allocated to coordination or 
integration items for this set. The actual items were identical, 
but the procedures were different.  

For coordination items, there was a 5s memory phase 
where participants viewed the matrix without the target 
indicated. During this phase, two shape-filled clue cells were 
coloured to indicate that they must be remembered. After this 
phase and a 2000ms interlude, the typical test phase began 
with the target indicated. After responding to the item, the 
recall phase began. In this phase, there was first a five-second 
downtime with a black screen stating to “recall the cells”. 
After this, a blank probe matrix appeared and the participant 
had to indicate the shapes and locations associated with the 
two marked cells (thus requiring coordination of stored 
elements and unrelated processing). 

Principle: Integration in a single 
column. 
 
Given A3 is a circle, C3 is a square, 
and D3 is a cross, the target cell, B3, 
is a triangle. 
 
AND(A3(O), C3(o), D3(+)) à B3(r) 
 
 

A. Binary Problem Square Options 

Principle: Integration across a 
single column and single row. 
 
Given A2 is a triangle, D2 is a circle, 
and C4 is a cross, the target cell, C2, 
is a square. 
 
AND(A2(r), D2(o), C4(+)) à C2(o) 
 

B. Ternary Problem Square 

Principle: Integration across 
multiple columns and rows. 
 
Given A1 is a triangle, C3 is a 
triangle, and D4 is a cross, the 
target cell, D2  is a triangle 
(because a triangle has to be in 
row D somewhere, and this is the 
only place it can be). 
 
AND(A1(r), C3(r), D4(+)) à D2(r) 
 

C. Quaternary Problem Square 

A 

B 

C 

D 

1 2 3 4 

A 

B 

C 

D 

A 

B 

C 

D 

1 2 3 4 

1 2 3 4 

Figure 1. Example LST items 
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For integration items, a similar procedure was employed 
for coordination items except that the two marked cells 
during the memory phase were removed during the test phase. 
In this way, if the participants forgot the shapes in these cells, 
they would not be able to solve the problem (thus requiring 
integration of stored elements with related processing). 

After the LST, participants completed a 20-item Raven’s 
Advanced Progressive Matrices (Raven, 1941; APM; odd 
items + items 34 and 36). The use of a single task does define 
Gf narrowly, because we cannot be certain that correlations 
between the LST and APM are due to an overlap in WM 
functions or due to task-specific factors, such as modality. 
However, there is a large comparative literature base to draw 
on to understand implications of this limitation.  

Results 
Difficulty Effects Descriptive results are presented in Table 
1. The overall LST-APM correlation was r = .47, p < .001, 
replicating prior work (Birney et al., 2012). Using a repeated 
measures ANCOVA, a complexity effect was investigated 
with APM entered as a moderator (covariate). Consistent 
with prior research (Birney & Bowman, 2009), complexity 
was a significant predictor of performance (F2,256 = 94.73, 
mse = 0.485, p < .001, partial-η2 = .425), but APM did not 
moderate the effect, suggesting increases in complexity does 
not result in increased demand on Gf-like resources. 

A set (basic/DC/load) by complexity (2/3/4D) repeated-
measures ANOVA was conducted to determine whether set 
affected performance. There was a significant main effect of 
set (F2,242 = 43.17, mse = 0.56, p < .001, partial-η2 = .26). As 
hypothesized, DC items were significantly easier (F1,121 = 
35.14, mse = 0.76, p < .001) and load items were significantly 
more difficult (F1,121 = 14.66, mse = 1.48, p < .001). A 
significant set-complexity interaction (F4,484 = 13.28, mse = 
0.36, p < .001, partial-η2 = .10) suggests complexity 
moderates the set effects. Simple-effect analyses suggest the 
difference between conditions, particularly the DC condition 
(DC vs basic x quadratic complexity effect: F1,121 = 4.69, p = 
.03), is more pronounced for more complex items. Finally, 
separate analyses suggest that integration (M=3.12) and 
coordination (M=3.31) conditions were not significantly 
different, F1,128 = 2.81, p = .10. Although this was as 
hypothesized, there was a trend towards integration items 
being more difficult. 

The results of these tests indicate the LST sets were 
performing as expected. That is, the DC condition was aiding 
participants and the load conditions were burdening. The next 
set of analyses sought to test the hypotheses on the links of 
set to predicting Gf. 
 
LST-Gf A series of multiple regressions were performed, 
regressing APM on LST set performance. Our first 
hypothesis was that DC should maintain the association with 
Gf, despite having reduced storage demands.  

When basic and DC items were entered together, 14.2% of 
variability in APM performance was accounted for (R2 = 
.142, F2,127 = 10.49, p < .001). DC items explained 8% unique 

variance (b = .30, sr2 = .084, p = .001), whereas basic items 
did not significantly account for any additional systematic 
variance (b = .14, sr2 = .018, p > .05). As hypothesized, DC 
did sustain the link with Gf; and in fact, captured a larger 
proportion of variance in APM than basic items. 

The final regression aimed to test the hypothesis that 
additional coordination and integration conditions could 
provide unique contributions to APM. The basic set was 
entered first, followed by load (regardless of type), then a 
load interaction variable distinguishing coordination from 
integration. Load items did account for a significant 
proportion of variance in APM performance, b = .39, sr2 = 
.14, p = .001, over and above basic items, b = .16, sr2 = .02, 
p > .05. However, contrary to hypotheses, the regression lines 
were not different, b = .10, sr2 = .01, p > .05. 

Discussion 
In Experiment 1, we flipped the typical WM 
operationalisation, which uses recall as a primary task, to 
have processing as the primary task. Under these conditions, 
a storage-loaded version of the LST, relative to basic items, 
predicted a greater proportion of differences in Gf, providing 
support for the notion that WM does not have to be restricted 
to recall as an outcome, or processing as a distractor. The 
inability to distinguish integration from coordination was 
unexpected, though clashed with the results of the DC 
condition, which implicated pure integration alone as the 
strongest link between WM and Gf. It is possible the impact 
of the additional load conditions was confounded by the use 
of a primary task already highly loaded on integration 
processes. The burden of performing novel integration may 
have attenuated differences between the load conditions. 

To address this limitation, Experiment 2 employed a 
different experimental task, the Arithmetic Chain Task (ACT; 
Oberauer et al., 2001). The ACT requires participants to solve 
a series of simple equations using mental arithmetic under 
additional load conditions, while mitigating the potentially 
high integration present in the LST by having a constant level 
of complexity. Furthermore, because the ACT is non-
visuospatial, it helps quell criticism that the modality overlap 
between the LST and APM was the core determinant of 
correlation. Although arithmetic is a form of integration 

Scale (Total Scores) Mean (SD) Range

LST combined 31.17 (3.42) 17 - 36

2D Items 11.42 (1.02) 7 - 12

3D Items 10.96 (1.14) 8 - 12

4D items 8.78 (2.11) 2 - 12

Basic Set 10.35 (1.50) 5 - 12

DC Set 11.17 (1.19) 6 - 12

Load: Integration (n1 = 65) 9.37 (1.98) 3 - 12

Load: Coordination (n2 = 65) 9.92 (1.78) 4 - 12

Recall Cell 1 (Coordination, n2 only) 10.78 (1.60) 4 - 12

Recall Cell 2 (Coordination, n2 only) 10.69 (1.98) 0 - 12

APM 13.35 (3.88) 2 - 20

Table 1. LST and APM Descriptives
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(3+5=? entails establishing the relation, sums-to(3,5,?); 
Halford et al., 1998), we argue that completing a chain of 
simple arithmetic provides a cognitively simpler instantiation 
of integration than the LST, thus allowing stronger 
differences to emerge between additional load conditions. 

Experiment 2 
Oberauer et al. (2001) provided evidence for a distinction 
between coordination and integration in the ACT. They asked 
participants to complete a mental arithmetic task in which 
participants were shown an equation involving a number of 
digits, three of which were replaced by symbols (e.g., X, Y, 
and Z). In the control condition, participants were given a key 
showing the numerical values of XYZ for use in the equation. 
In the coordination condition, participants were briefly 
shown three additional numeric values associated with other 
symbols (A, B, and C). These variables were to be memorized 
and recalled later, though they were not relevant to the 
arithmetic. In the integration condition (dubbed ‘access’) 
however, XYZ was equated to ABC, necessitating both 
storage and integration (see Figure 2). The authors found that 
although the number of stored value mappings had little 
effect on performance in coordination; in the integration 
condition, higher levels of storage load produced declines in 
speed and accuracy. These diverging outcomes indicated the 
manipulations may have indeed tapped different functions. 

In the current study, the ACT entails equations of six 
operations and seven addends. The format for control, 
coordination, and access from Oberauer et al. (2001) was 
used. We also introduced an additional condition, which 
modified the access condition to include fixed (e.g., 
ABC=XYZ) as well as random (e.g., ABC=YZX) mappings. 
Our complexity analysis (not reported here) suggests that 
random access imposes constraints on conceptual chunking, 
increasing the integration load, relative to access-fixed. In 
summary, the convenience of the serially ordered fixed 
mappings cannot be applied to random mappings, forcing 
participants to deconstruct and reconstruct the bindings 
holding the relation together – a critical source of demand in 
Oberauer et al.’s (2007) architecture of WM.  

In addition to the ACT and APM, we employed the 
symmetry span as an additional criterion measure. We also 
aimed to replicate Experiment 1 by including the LST. If the 
LST-DC is indeed a measure of pure integration, it would 
provide a useful criterion measure. 

Our primary hypothesis was that access and coordination 
aspects of the ACT should provide independent contributions 
to predicting APM variance. Further, we hypothesized that 
access-random should provide the strongest unique 
contribution, over-and-above other conditions, as it places 
the highest theoretical demand on a binding-based relational 
processing system of WM. 

Method 
Participants and Procedure The participants were 60 first-
year students (44 females) at the University of Sydney who 
participated for course credit. The mean age was 19.22 (SD 
= 2.77). Participants were tested in groups in 90m sessions. 

 
Measures The ACT required participants to solve arithmetic 
problems of six operations (additions/subtractions). Four 
blocks of problems (control, coordination, access-fixed, 
access-random) were generated such that all digits were 
between 1 and 7, and final answers, between -9 and +9. There 
were six items per block. Participants had practice with all 
conditions, then received the blocks in random order.  

Control items were basic problems that entailed 
substituting variable-value mappings (e.g., X=2, Y=1, Z=4) 
provided in the top half of the screen into equations where 
each operand was displayed one-at-a-time at a pace 
controlled by participants. After all 7 operands had been 
displayed, a textbox would appear prompting the participant 
for an answer. Feedback was then displayed. 

Coordination items were identical to control items, with 
the exception that participants were given 6s to memorize 
three variable-value mappings (e.g., A=6, B=3, C=1) to be 
recalled at the end of the trial. 

Access-fixed items were similar to coordination items, 
except the XYZ variable-value mappings were directly linked 
to the ABC mappings (e.g., A=6, B=3, C=1; and always, 
X=A, Y=B, Z=C). Again, participants were asked to 
reproduce the digits corresponding to ABC after the equation 
had been solved. Thus, unlike the coordination condition, the 
ABC mappings were required for the arithmetic. Access-
random items were similar but the XYZ mappings were 
randomly linked to the ABC mappings (e.g., A=6, B=3, C=1; 
and say, X=B, Y=C, Z=A).  

Participants also completed the symmetry span, as in Kane 
et al. (2004), with set sizes of two to five (two of each). The 

X=A	
Y=B	
Z=C	
	

5	+	3	–	4	+	X……..	
	
	

Press	spacebar	to	con;nue…	
	

Self-paced	

Phase	2:	Display	Operands	

X=A	
Y=B	
Z=C	
	

5	+	3	–	4	+	X	–	2	+	Y	+	Z		=	?	
	
	

Enter	answer…	
	

Self-paced	

Phase	3:	Derive	solu;on	

X=A	
Y=B	
Z=C	
	

5	+	3	–	4	+	X	–	2	+	Y	+	Z	=	9	
	
	

Your	answer	was:	Correct	
	

2s	

Phase	4:	Feedback	

	
	
	
		
	

A	=	6	
B	=	3	
C	=	1	

6	S	

Phase	1:	Memory	

	
	
	
		
	

A	=	?	
B	=	?	
C	=	?	

Self-paced	

Phase	5:	Recall	

C.	Access-Fixed	

Figure 2. Example of Access condition of the Arithmetic Chain Task (adapted from Oberauer et al., 2001) 
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score analyzed was total number of recalled squares (0-28). 
The LST and APM were administered as in Experiment 1. 

Results  
Difficulty Effects A repeated-measures ANOVA indicated 
differences in performance across conditions were significant 
(F3,180 = 23.99, mse = 1.51, p < .001, partial-η2 = .29). Control 
performance (M = 5.20, SD = 1.01) was not significantly 
different to coordination performance (M = 5.00, SD = 1.34), 
t59 = 1.07, p = .29. However, control performance was 
significantly higher than the access conditions on average 
(Access-fixed: M = 3.98, SD = 1.75; Access-random: M = 
3.60, SD = 1.89), t59 = 7.58, p < .001. Although in the 
expected direction, the difference between fixed and random 
did not reach statistical significance, t59 = 1.60, p = .12.  

In summary, the ordering of performance was as expected. 
Recall was high for all conditions (coordination: 86.67%, 
access-fixed: 92.59% and access-random, 90.37%), meeting 
the criterion of the secondary task in CSPANs, though there 
was some evidence to suggest recall under conditions where 
the information was critical (access) is better than when it 
was irrelevant (coordination). 
 
ACT Correlates The ACT correlated well with the APM, 
sharing 22% of variance (r = .47). The total ACT-recall 
component correlated with the CSPAN (r = .46), but was not 
related to either LST-DC or APM.  

In efforts to understand the relationships among the data, 
step-wise analyses regressing each criterion measure 
(CSPAN, LST-DC, APM) on ACT were conducted. Results 
suggest different sets of unique predictors for each criterion 
in ways as might be expected. For CSPAN, the only ACT 
predictor accounting for significant variance was 
coordination recall. For both LST-DC and APM, control and 
access-random performance were unique predictors. In 
second models, the criterion measures not being predicted 
were added, but the results remained unchanged. 

In order to fully explicate the ACT-Gf model, a hierarchical 
regression was conducted, with each condition predicting 
APM. Model 1, with just control items, predicted 15.3% of 

variance in APM. Contrary to expectations, the coordination 
predictor did not account for additional unique variance in the 
second model (DR2 = .009, F1,57 = .63, p = .431). Model 3 
with access-fixed also failed to result in a significant change 
(DR2 = .032, F1,56 = 2.19, p = .144), with control items and 
shared variance taking the majority of the contribution. 
However, model 4 with access-random added 6.4% of unique 
APM variance predicted – a significant contribution over-
and-above all other variables, (DR2 = .064, F1,55 = 4.77, p = 
.03).  

Discussion 
The findings for LST-DC and APM support the notion that 

integration is a key component of each of these tasks, drawing 
both on the control arithmetic (which is basic arithmetical 
integration) and access-random (which has the highest 
theoretical integration demands). CSPAN, which we have 
argued as capturing coordination, was related to recall in the 
coordination aspect of the ACT. 

General Discussion  
The extant literature makes a distinction between 
coordination and integration functions of WM. We adopt a 
conceptualisation of coordination as the WM function 
underlying dual-task requirements, where a storage load must 
be maintained despite ongoing, unrelated processing. This 
paradigm remains by far the most common used in 
investigations of the WM-Gf link (Ackerman et al., 2005). 
Process-oriented accounts of WM instead focus on the 
capacity for integration: combining multiple representations 
into higher-order relational structures. Integration as a 
concept has been linked conceptually and empirically to Gf 
(Oberauer et al., 2008). The current work contributes to this 
research by investigating coordination and integration 
functions of WM and their relationship to Gf. A feature of our 
approach has been to focus on measures where the primary 
task is processing, rather than recall. 

The LST provided mixed results on a distinction between 
coordination and integration. While additional load overall 
was incrementally predictive of Gf, the load effect did not 
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depend on whether the recalled items were unrelated or 
related to the LST solution. However, evidence for 
integration was found in the DC condition, which exceeded 
expectations as a predictor of Gf, improving performance 
while also increasing the association with APM. We 
replicated this in Experiment 2. This could be explained as a 
means of ‘purifying’ the LST into an assessment of raw 
integration, minimizing the impact of obfuscating storage 
demands associated with holding interim processing 
outcomes. DC may be a valuable tool for future use of 
processing tasks, in order to amplify the effect of integration.  

We argued that one issue with the LST was the high 
integration load present in all manipulations, potentially 
swamping our additional load conditions by task-specific 
characteristics. This is especially plausible given the power 
of DC. The ACT was selected for Experiment 2 because those 
characteristics are less apparent. The ACT conditions were 
predictive of the criterion measures consistent with an 
account for a distinct coordination and integration. However, 
the coordination link to CSPAN only became apparent when 
using the recall portion of the ACT, indicating the 
relationship may have more to do with the outcome measure 
(i.e., recall) rather than a coordination function per se. 

The results of the experiments support a compelling case 
for differentiating a specific role of integration in Gf over-
and-above conceptualisations of WM defined by CSPANs. 
The absence of storage in the LST-DC and other integration-
based tasks (Oberauer et al., 2008) contributes to the notion 
that storage maintenance is not a pre-requisite for WM to be 
associated with Gf, and supports process-oriented accounts of 
WM (Halford et al., 1998; Oberauer et al., 2007). Further, 
specific processing limits were alluded to in the results of 
access-random. That is, consistent with a relational binding 
approach (Oberauer et al., 2007), the random ordering forced 
participants to quickly and flexibly deconstruct and 
reconstruct the variable-value mappings from the way they 
were first presented into an order consistent with the way they 
were presented on the screen at the time of the equation. 
Because only this single condition could indicate binding as 
an ability, further research is needed to determine what 
processes contribute to the capacity for relational binding. 

One limitation with the current results was that the DC 
variance could have represented a general task navigation 
ability (i.e., to apply the advantages of DC), as opposed to 
pure integration per se. It seems unlikely that such a strong 
unique effect (equal to 8.4% of variance in APM) could be 
attributed solely to DC (as opposed to any other condition), 
though there is no way to disprove such an explanation with 
the current data. Because participants could fill as many cells 
as they wished, we could not distinguish which cells were 
filled through trial-and-error and which were used as actual 
planning steps. This task navigation component could be 
explored using a variant of DC where participants are allowed 
only a limited number of cells to fill. 

Another limitation was the LST and ACT both being 
integration-based tasks. While we have attempted to 
reconcile this by holding processing load constant in the 

ACT, it is worth considering alternatives for future work. For 
one, it would be helpful to consider both a storage-based and 
a processing-based primary task, each with coordination and 
integration conditions. For instance, an integration version of 
the operation span could use numbers for the storage 
component, and these numbers could then be used in the 
processing component. While this does remove the ability to 
keep comparisons within a single task, it may at least provide 
some evidence of a coordination-integration dichotomy not 
restricted to processing-based tasks.  

In conclusion, the current results offer mixed support for a 
strict coordination-integration functional dichotomy within 
WM. They do, however, provide evidence of a relational 
integration ability implicated within Gf across multiple task 
formats, with the storage-stripped DC set offering perhaps the 
strongest support. Further work is needed to determine the 
extent of integration across tasks; and to determine if 
coordination can be distinguished from mere recall.  
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Abstract 

In this study, we wanted to investigate whether the processing 

of semantic information is easier when mapping names to 

pictures or is it the other way around. In order to test this 

hypothesis, we ran a behavioural and an ERP (Event Related 

Potential) study, with specific interest in the N400 component 

as an indicator of semantic processing. We compared three 

groups of participants who did a match/mismatch task with 

the only difference being that the labels would appear before, 

after or simultaneously with the pictures. Not surprisingly, the 

hardest condition was the one where the two information were 

presented simultaneously. The amplitude of the N400 was 

more prominent in the condition where labels were presented 

after the pictures in comparison to the condition where labels 

preceded picture presentation, suggesting that this second 

experimental situation led to smaller violation of expectation  

for our participants (word to picture condition) in comparison 

to mapping pictures to words.  

 

Keywords: semantic processing; Event Related Potentials; 

N400; mental representations; word processing; picture 

processing 

 

Introduction 

We are in constant interaction with novel and familiar 

objects on a daily basis. When learning about an object 

for the first time, we examine its visual characteristics 

and associate them with its name.  

In this study, we wanted to investigate whether the 

processing of semantic information is easier when 

mapping names (as more abstract representations) to 

pictures (as more specific representations) or is it the 

other way around. Given that the most informative 

component which is well known to be sensitive to 

semantic processing/integration is the N400 component 

it will be of our primary interest to test whether these 

mappings elicit differences in the N400 amplitude.  

The discovery of the N400 component came in the 

now classical study of Kutas and Hillyard (1980) in 

which participants were presented with sentences (one 

word at a time), that ended with either congruent or 

incongruent words. There were two types of  

incongruent endings: possible but improbable (She 

drinks tea with salt) or completely  semantically 

unrelated to the previous context (She drinks tea with 

house). Incongruent words elicited a negative response 

at around 400 ms from the stimulus onset. Authors 

concluded that the N400 is sensitive to context and 

semantic anomalies (Kutas & Hillyard, 1980). 

Since that study, different authors have reported 

finding the N400 in a variety of experimental tasks 

which required semantic processing such as 

match/mismatch task, semantic priming, word or picture 

recognition (Anderson & Holcomb, 1995; Boutonnet, & 

Lupyan, 2015; Ganis, Kutas, & Sereno, 1996; Holcomb 

& Anderson, 1993). In general, N400 is most prominent 

in the central and parietal regions of the scalp 

(Anderson & Holcomb, 1995; Kutas & Federmeier, 

2011), but the topography changes depending on the 

experimental condition. For example, anterior regions 

are particularly active when processing pictures 

(Anderson & Holcomb,1995). The latency of the 

component is usually in the time window of 200-600 ms 

from stimulus onset (Kutas & Federmeier, 2011). The 

most interesting characteristic of the N400 is its 

amplitude, given that it is most responsive to 

experimental manipulations, whereby a more negative 

amplitude is elicited by unexpected stimuli which are in 

turn harder to process (Kutas & Federmeier, 2009). 

 

Semantic processing and the N400 

Anderson and Holcomb used a semantic priming task in 

order to investigate the differences in processing of 

auditory and visually presented words (Anderson & 

Holcomb, 1995). Word pairs (prim and target) were 

presented in the same modality (visual or auditory) 

using different stimulus onset asynchronies SOA– 0 ms, 

200 ms, 800 ms. N400 component was found in all of 

the experimental conditions, but lasted longer when 

word pairs were presented simultaneously (SOA-0 ms), 

suggesting that the processing of the two stimuli was 
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parallel.Apart from that, the highest error rates where in 

this experimental condition, supporting the hypothesis 

that it is harder to process two pieces of information at 

the same time.  

Following a different line of research, Boutonnet 

and Lupyan (2015) where investigating whether visual 

processing of objects would be easier when they where 

primed with names or with nonverbal cues. In a 

match/mismatch task pictures of familiar animals and 

artifacts were preceded by their names or equally 

informative nonverbal cues (sound of dog barking 

preceding a picture of a dog). Participants were more 

succesful when they were cued with words, and the 

authors suggest that this is because words denote 

categories and are better at evoking mental 

representations which facilitates responding both to 

match and mismatch trials.  

If in fact words evoke more general and abstract 

mental representations, it would be interesting to see in 

what way do pictures, that always represent a specific 

exemplar, can influence the processing of an object’s 

name. 

As previously mentioned, words can be treated as 

more abstract representations and refer to entire 

categories of objects, while a picture is always 

representing a single instance of an object and therefore 

evokes a more narrow and specific mental 

representation (Ković, Plunkett, & Westermann, 2009; 

Ković, Plunkett, & Westermann, 2010). Given that, to 

our knowledge, there are no studies directly comparing 

word to picture versus picture to word processing it 

remains unclear whether these processes differ, and if 

they do, which one is easier. 

In order to investigate this, we constructed an 

experiment in which we manipulated the order of label 

presentation, thereby contrasting three experimental 

conditions: words preceding pictures, pictures preceding 

words, and words and pictures presented together. This 

allowed us to compare the processes of mapping 

abstract (word) to specific (pictures) representations and 

specific to abstract represenations by examining the 

amplitude of the N400 across conditions. Our 

hypothesis is that the hardest condition for our 

participants would be simultaneous presentation of 

words and pictures, given that they have to process two 

pieces of information at the same time (Anderson & 

Holcomb,1995). Furthermore, we expect that the easiest 

condition, which would elicit the smallest negative 

response, would be the pictures to words condition. 

Since names evoke broad mental representations 

(Boutonnet & Lupyan, 2015), any picture shown after 

the label, no matter how typical of an exemplar it is, 

would most likely be somewhat different from our 

evoked mental representation which makes the task 

harder for the participant to respond. On the other hand, 

a picture can evoke only one name for a given object 

which makes the name easier to process when displayed 

after the picture.  

 

 

  

 

Method 
 

Participants 

We tested sixty participants, twenty per experimental 

condition. Participants were psychology students at the 

University of Belgrade, all native Serbian speakers. 

They gave informed consent and received course credit 

for their participation. All participants reported normal 

or corrected-to-normal vision. 

Stimuli 

The study consisted of 120 familiar, everyday objects 

from different categories such as: mammals, fruits, 

furniture, tools, clothes, etc. These objects were 

represented by pictures (original stimuli list taken from 

Kovic et al., 2009) and their coresponding labels. 

Labels were presented visually in order to control the 

duration of stimuli presentation, which wouldn’t be 

possible in the case of auditory presentation. All stimuli 

were pretested and qualified as highly typical and 

highly familiar objects. We also conducted a naming 

task in which 8 participants were asked to name the 

objects presented in the pictures in order to ensure that 

there was only one appropriate name for a given picture. 

Hence, only pictures that were named in the same way 

by every participant, were included in the study.  

Experimental Design and Procedure 

Participants completed 240 trials of a simple 

match/mismatch task . They were instructed to judge if 

the picture and the label represented the same object, 

and indicate their response by pressing one of two keys 

(C or N) on a keyboard (which were counterbalanced 

across participants). The number of match and 

mismatch trials was equal and the order of trials was 

randomized across participants. Depending on the 

experimental condition, participants were responding to 

pictures – when they were preceded by words (WP 

condition); words – when they were preceded by 

pictures (PW condition) or words and pictures when 

they were presented together (TO condition). The labels 

and pictures in the mismatch trials were from different 

categories and paired in a way to avoid phonological 

similarities and phonological onset competition (cat-

cow); rhyme (dog-frog) as well as semantic association 

(cat-dog). Trials would start with a fixation cross, 

followed by a 700ms presentation of word, picture, or 

word and picture together (depending on the 

experimental condition, with the difference being that in 

TO condition the stimuli would last until response, not 

only 700ms)  after which they would see a picture or a 

word on which they had to respond to. The time 

sequence of a single trial for each experimental group is 

presented in Figure 1. In order to avoid preparatory 

movement potentials during the task a jitter of ± 200 ms 

for the fixation cross was introduced (Luck, 2005). 

According to Luck (2005) expecting a stimulus that 

requires a response can cause preparatory movement 
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potentials that are known to appear as contingent 

negative variations (CNV), a low frequency 

negative wave preceding an expected stimulus.  

 

 

 

Figure 1: Time sequence of individual trials for all three 

experimental conditions. 

The experiment was conducted in a Faraday Cage. The 

participants were sitting in front of a computer, at 

approximately one meter distance from the screen. The 

stimuli were presented on a grey background at the 

center of the screen at eye level. Participants were 

instructed to avoid frequent blinking and reduce muscle 

movement as much as possible. 

 

ERP recordings 
EEG signals were recorded continuously throughout the 

experiment. The signals were recorded from 15 

electrodes placed at: F3, Fz, F4, C3, Cz, C4, P3, Pz, P4, 

PC5, PC6, T5, T6, O1 and O2 sites according to the 

international 10–20 standard. Two electrodes were 

placed on the earlobes as a reference, and the ground 

electrode was positioned on the participant’s forehead. 

PSYLAB EEG8 biological amplifier in combination 

with PSYLAB SAM unit (Contact Precision 

Instruments, London, UK) were used for EEG 

measurements. Skin-electrode contact impedance was 

below 5 kΩ at the beginning of the trials. EEG signal 

amplification was 20 k and hardware band-pass filtering 

over the range 0.03–40 Hz. Signals were sampled at 500 

Hz using NI USB- 6212 (National Instruments, Austin 

TX) card for analog to digital signal conversion. For 

EEG signal acquisition and online display a custom 

software with graphical user interface developed in 

LabVIEW 2010 was used (National Instruments, 

Austin, TX, USA) (Savic,Maleševic, & Popovic, 2013). 

For determining the exact moment of stimulus onset 

upon which we time-lock the ERPs a sensor for 

detecting changes in brightness was placed in the  

upper-left corner of the screen. The stimuli had a black 

square in the sensor area which was not visible to the 

participants. This allowed a precision of 1 ms for 

determining stimulus onset.  

 

ERP processing 
Offline EEG processing was conducted using custom 

routines in MATLAB (version 2010a, The Mathworks, 

Natick, MA, U.S.A.). EEG signals from all channels 

were filtered using a zero-phase 4th order Butterworth 

bandpass filter with 0.1–25 Hz cut-off frequencies. 

The high pass component of the filter removes near-DC 

drift and the low pass component filters out muscle 

artifacts and 50 Hz noise, along with related harmonics. 

Data were then segmented into epochs including 100 ms 

baseline prior to stimulus onset, 900 ms following 

stimulus onset. The baseline was corrected in all EEG 

channels by subtracting from each epoch the mean of a 

100 ms interval prior to the stimuli onset. Epochs 

contaminated with ocular-movements and/or other 

artefacts were rejected from further analysis if absolute 

value of the signal from any of the channels exceeded a 

threshold manually determined for each subject within a 

range of 40–60 µV (mean value: 48 ± 6.4 µV). The 

individual event related potential was calculated for 

each electrode site in each of the three experimental 

conditions. In the case where an individual electrode 

contained substantial noise compared to the average 

signal for the participant, only that individual electrode 

was removed, resulting in a small number of exclusions. 

Only three participants (one in each experimental 

condition) were excluded from the study on the basis of 

poor EEG signal. 

 

Results 
 

Behavioral Data 
Accuracy rates for all three experimental conditions 

were extremely high, on average participants were 

correct 97% percent of the time. Mixed ANOVA 

analysis showed no difference in accuracy across 

conditions, but revealed a significant effect of 

match/mismatch (F(1,59) = 133.33; p < .01, pƞ
2
 = 0.72), 

with participants making more errors in the match (5%) 

trials in comparison to mismatch trials (1%). Regarding 
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RTs, we found a main effect of experimental condition 

(F(2,59) = 478.86; p < .01, pƞ
2
 = 0.95). Post hoc tests 

revealed that only the TO condition differed 

significantly from both WP and PW condition (See 

Figure 3.).  

 

 

 
Figure 3. RTs for match and mismatch trials across 

three experimental conditions (WP-word to picture; 

PW-picture to word; TO-together condition) 

 

 

ERP Data 
The model used for analysis consisted of 9 electrode 

sites: F3, Fz, F4, C3, Cz, C4, P3, Pz, P4, divided into 

three bands of coronal orientation (frontal-central-

parietal), and three lateral regions (left-central-right). 

All analysis, including the determination of time 

windows of interest were done with difference waves. 

Namely, we substracted ERP wave forms of match 

trials from the ERP wave forms of mismatch trials in 

order to isolate the N400 component more accurately. 

For determining time windows of interest we adopted 

an exploratory approach to data analysis. Following the 

analysis of Kovic et al. (2010), mean amplitude 

measurements were extracted from the continuous EEG 

signal into 20 ms bins for each participant across all 

experimental conditions. Successive ANOVAs were 

conducted on each time bin. Windows of interest were 

defined if at least 3 consecutive 20 ms bins were 

significant (p < .05). After identification of windows, 

mean amplitudes across the window were computed for 

each experimental condition, and further analysis 

conducted. Two windows of interest  (260ms - 440 ms; 

440ms – 680ms) were analysed with a 3x3x2  repeated 

measures ANOVA with within-subjects factors of 

Frontality (Frontal, Central, Parietal) and Laterality 

(Left, Midline, Right), and between-subjects factor 

Time-condition (WP condition, PW condition). Given 

that the latency of the component of interest (namely 

N400) and pattern of responding was completely 

different between TO in comparison to WP and PW 

conditions, we decided to exclude the TO condition 

from the amplitude analysis.  

 

Time window 260-440ms We found that WP and PW 

condition differed in the N400 amplitude, given that 

there was a significant effect of Time-condition in the 

first time window (F(1,38) = 6.01, p < .01, pƞ
2
 = 0.14). 

PW condition elicited a more negative response than the 

WP condition (See Figure 4.) . Apart from that, we also 

found a main effect of Laterality F(2,30) = 79.24; p < 

.01, pƞ
2
 = 0.58) and an interaction Laterality x Frontality 

F(4,30) = 7.86; p < .01, pƞ
2
 = 0.18). The same effect 

reported here can be easily recognised in Figure 5. 

whereby the dark blue colour indicates the more 

prominent N400 effect across scalp distribution. 

 
Figure 4. Difference waves showing the N400 and P600 

effects across experimental conditions on the Cz 

electrode (WP-word to picture; PW-picture to word; 

TO-together condition) 

 

 

 
Figure 5. Heat maps showing time course of the 

distribution of the N400 and P600 effects across the 

scalp in all three experimental conditions. The dark blue 

color indicates the more negative amplitudes 

 

 

Time window 440-680ms A repeated measures 

ANOVA was conducted in order to analyze the 

difference of the P600 amplitude between the WP 

condition and PW condition. Analysis revealed a main 

effect of Time-condition F(1,38) = 4.99; p < .01, pƞ
2
 = 

0.12) with WP condition eliciting a more positive 

response (See Figure 4.). Similarly to the first, earlier 

time window, we found a main effect of Laterality 
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(F(2,30) = 4.34; p < .05, pƞ
2
 = 0.11) and a Laterality x 

Frontality interaction (F(4,30) = 8.95; p < .01, pƞ
2
 = 

0.19). Figure 5. shows the distribution of activity 

through time and across scalpe. Orange colour indicates 

the more positive responses in amplitude. 

 

 

Discussion 

 
In this study we tested if and how the order of stimuli 

presentation impacts semantic processing. In particular, 

we tested the hypothesis that the mapping from picture 

to name would be easier for processing in comparison 

to name-to-picture mapping given that there are many 

instances of pictures and thus mapping a single name to 

multiple potential objects seemed as a harder 

experimental condition in comparison to mapping from 

a particular picture to the name (which we pretested to 

select the most adequate for the given object).  

The results we obtained demonstrate that the hardest 

condition for the semantic processing is the one in 

which the labels and pictures were presented at the 

same time. This finding was in accordance with our 

expectations because participants needed to process 

both information (word and picture) in parallel, which 

opens possibilities of interference as well as competitive 

processes making the task harder. Additionally, in the 

together condition, there was no priming in a strict 

sense as in the other two conditions, which prevented 

participants from forming any expectations which 

would help them with the task. It is noteworthy to say 

that in this study latency of ERP response in TO 

condition corresponds to a time window commonly 

associated with the P600 component. However, unlike 

the P600 component, here its polarity is negative. This 

is why we believe it  is in fact a late N400 effect, 

delayed because of the difficulty of the task, which was 

also represented through longer RTs. All of this could 

account for the different morphology of the N400 in the 

TO condition. 

Regarding the other two conditions, we observed a 

larger N400 amplitudes in PW condition in comparison 

to WP condition. Thus, in accordance with our 

expectations we found that picture to label mapping 

(PW) was easier for participants to process given that 

the N400 amplitude was more prominent in this 

condition in comparison to label to picture (WP) 

condition.  

A more parsimonious way of interpreting this data 

would be in terms of violation of expectation reflected 

through the amplitude of the N400 component. This is 

consistent with a hypothesis that one can predict a word 

from a picture with more precision than the opposite 

(which leads to a larger violation of  expectations). 

The observed pattern of results in picture to word 

mapping would potentially be different in the case of 

less typical or atypical pictures. Violation of expectation 

in that case would certainly be higher than observed in 

the current study. Similarly, when mapping from word 

to picture, we would also expect greater violation of 

expectation then the one reported in this study. 

Another interesting stream of research would be to 

contrast WP and PW mapping in the situation of novel 

object formation, that is – during the process of 

category formation. Here, we would have better control 

of the variability of the objects used in the study, given 

that with familiar objects the variability is much higher 

for the pictures (then for words). 

Another component that turned out to be sensitive to 

semantic processing in this study, was the P600 

component which in relevant literature is  commonly 

related to syntactic processing (Kotz, Frisch, von 

Cramon & Friederici, 2003; Osterhout & Holcomb, 

1992). However, there are a few studies which also 

reported P600 to be sensitive to semantic processing 

and interpreted as additional processing of meaning 

(Frisch, Schlesewsky, Saddy & Alpermann, 2002; 

Martín-Loeches, Nigbur, Casado, Hohlfeld & Sommer, 

2006). 

In our study, WP condition elicited a more positive 

P600 response in comparison to PW condition, which 

would suggest the information in this condition required 

additional processing in the later stages. However, 

given that there is an ongoing debate over the meaning 

of P600 in semantic processing, and since this 

component wasn’t of main interest in this study, we 

would reserve from making firm claims when 

interpreting these results. 

Practical implications of this research would be that 

in a classical priming experiments the best way to 

design the experiment would be to consistently map 

from pictures to words (that is, from more specific to 

more general representations), at least in the situation 

when typicality, familiarity and frequency of the 

selected pictures are high. 
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Abstract: Executive function is a fundamental component of the human cognitive architecture. Here, we investigate the rela-
tionship between executive function and scientific reasoning. Eighth graders completed measures of three executive functions
(EFs): shifting, inhibiting, and updating. They also completed a measure of cognitive flexibility, the Wisconsin Card Sort Task
(WCST), that has predicted scientific reasoning in prior studies. Scientific reasoning was measured by a standardized test of
science achievement. A principal components analysis found that the three EFs were separable. Different EFs predicted dif-
ferent aspects of cognitive flexibility; notably, participants with poor shifting ability made more perseverative errors. Both EF
and WCST predicted science achievement. Of note was the finding that better updating (i.e., working memory) was associated
with higher science scores. These findings illuminate the role of EF in cognitive flexibility and scientific reasoning, and point
the way to future studies of the effect of training EF on science achievement.
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Abstract 

Omissions figure prominently in causal reasoning from 
diagnosis to ascriptions of negligence. One philosophical 
proposal posits that omissions are accompanied by a 
contrasting alternative that describes a case of orthodox (non-
omissive) causation (Schaffer, 2005; Bernstein, 2014). A 
psychological hypothesis can be drawn from this contrast 
view of omissions: by default, humans should interpret 
omissive causations as representing at least two possibilities, 
i.e., a possibility representing the omission and a possibility 
representing a contrast. The theory of mental models supposes 
that reasoners construct only one possibility (the omission) by 
default, and that they consider separate alternative 
possibilities in sequential order. Two experiments test the 
contrast hypothesis against the model theory, and find 
evidence in favor of the model-theoretic account.  

Keywords: omissive causation; mental models; reasoning; 
contrasts 

Introduction 
A mechanical failure in a car to start causes a missed 

meeting. A friend’s broken promise causes hurt feelings. 
The lack of rainfall causes drought. Each is a case of 
omissive causation, where an omission or lack of some 
event brings about some effect. Take the following oft-cited 
example: 

 

You come home after a business trip to find your 
rosebushes desiccated and ruined. You learn from your 
neighbor that your gardener did not show up to water 
the plants. 

 

Omissive causes feature in both prediction and 
explanation.  Intuition suggests that the death of the roses is 
explained by the failure of the gardener to show up.  
Similarly, we would expect that future failures of this kind 
would yield the same result. And omissions are often 
invoked in moral judgment. If you had signed a contract 
with the gardener and were especially litigious, you would 
have grounds to sue for damages. While we take for granted 
the fact that omissions are causes, omissions pose deep 
puzzles for theorists who wish to treat them in much the 
same way that “orthodox” (i.e., non-omissive) causes are 
treated. 

It seems reasonable to think that orthodox causation 
concerns relations between events. But omissions are non-
events, and it is unclear how a non-event can be an 
argument to a causal relation.  One idea is that omissions 
could be nothing at all (Clarke, 2014; Beebee, 2004), but 
this notion fails to explain why omissions seem to serve as 
sensible causal agents, as in, e.g., the lack of medicine 
caused sickness. If omissions were nothing, then they 

couldn’t be thought of as causes. Another proposal is that 
omissions denote a non-actualized possibility (Bernstein, 
2014), such as that of the gardener showing up to water the 
bushes. Bernstein invokes the machinery of possible worlds 
to argue that omissions involve “counterpart relations” 
between actual omitted events and non-actualized contrast 
events at close-by possible worlds. A related idea in 
Schaffer (2005) is that omissions represent actual events, 
e.g., the event that occurred instead of the gardener showing 
up. The shared assumption from these latter two proposals 
about the nature of omissions is that they are definable in 
terms of contrasts between events (Schaffer, 2005), or 
between the omitted event and a non-actualized possibility 
(Bernstein, 2014). 

Bernstein and Schaffer’s accounts, while distinct, share 
the surface similarity of basing omissions on contrasts. In 
both cases, each theorist argues that an adequate 
metaphysics of omissions ought to not run afoul of human 
intuitions. In this spirit of consilience between intuition and 
metaphysical theorizing, it is worth exploring whether or not 
contrasts are present in mental representations of omissive 
causes and the inferences reasoners draw from them. The 
present paper explores if and how statements about 
omissions automatically refer to representations of 
contrasting events. Evidence from the psychology of 
counterfactual reasoning suggests that reasoners are in 
principle capable of maintaining two separate possibilities 
(Byrne, 2005), but whether they do so for reasoning about 
omissions remains unknown. If a strict interpretation of the 
contrast view is correct, reasoners should interpret omissive 
causation as referring to two representations by default. 

In what follows, we review a psychological account of 
omissive-causal reasoning with mental models (Bello & 
Khemlani, 2015).  The theory predicts that reasoners tend to 
interpret omissive causation as referring to a single 
possibility: one in which the omitted event happens (e.g., 
the gardener fails to water the flowers), and the result 
follows (e.g., the flowers die). The theory posits that 
reasoners can potentially think about other possibilities 
including contrasts, e.g., the situation in which the gardener 
waters the flowers and they don’t die, or the situation in 
which the gardener waters the flowers and they die for some 
other reason. But these alternative possibilities demand 
additional effort, and so by initially considering only one 
(non-contrasting) possibility, reasoners reduce the load on 
their working memories. 

We describe two studies that test between the different 
hypotheses. The experiments support the model-based 
account in which reasoners do not represent contrasting 
possibilities by default, but instead consider alternatives 
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sequentially and in a systematic order. The paper concludes 
by discussing other puzzling aspects of omissive causation 
and plans for future research. 

The model theory 
The mental model theory of reasoning – or “model 

theory” for short – posits that reasoners draw conclusions by 
building and scanning mental models, or iconic 
representations of possibilities (Johnson-Laird, 2006; 
Johnson-Laird & Byrne, 1991, Goldvarg & Johnson-Laird, 
2001; Goodwin & Johnson-Laird 2005). The model theory 
makes three central assumptions: 

 
1. The principle of iconic possibilities. The contents of 

perception, memory, language, or imagination yield models, i.e., 
sets of discrete possibilities. Models are iconic, i.e., they are 
isomorphic to the structure of what they represent (Peirce, 1931-
1958, Vol. 4), but they can also contain abstract tokens, such as 
a symbol denoting negation (Khemlani, Orenes, & Johnson-
Laird, 2012). And they can represent temporal sequences of 
events as discrete possibilities that unfold in time the way events 
do (Khemlani & Johnson-Laird, 2013). 

 
2. The principle of parsimony. Models require maintenance in 

working memory, and so inferences that demand more models 
are more difficult and take longer than those that demand fewer 
models. Hence, the theory posits two primary systems for 
reasoning: a fast system builds and scans models without the use 
of working memory, and so it posits that reasoners tend to 
reason with a single mental model in most scenarios. A slower 
system revises and rebuilds models, and it searches for 
alternative models consistent with the premises. It can correct 
the errors and biases that the fast system yields, but it is subject 
to the limitations of working memory. 

 
3. The principle of truth. Reasoners initially build models that 

represent only what is true in a compound clause, and not what 
is false. They can flesh out the initial mental models to yield a 
set of fully-explicit models, i.e., those possibilities that denote 
both true, false, possible, and impossible scenarios. Fully-
explicit models form a complete representation of the 
possibilities to which a statement refers. 

 
To illustrate these three principles, we now turn to 
summarizing the theory of omissive causation presented in 
(Bello & Khemlani, 2015). 

A model-based account of omissive causation 
According to the model theory, different sorts of causal 

verbs refer to different sets of mental models (Goldvarg & 
Johnson-Laird, 2001; Khemlani, Barbey, & Johnson-Laird, 
2014). For instance, the statement, acid causes flowers to 
die, refers to three separate possibilities that constitute a 
fully-explicit model, which can be depicted in the following 
diagram: 

   acid  death 
 ¬ acid ¬ death 
 ¬ acid  death 
 

Each row of the diagram represents a different temporally-
ordered possibility that renders the statement true. Hence, 
the first row denotes the possibility in which acid is 
introduced and the flowers die; and the latter two rows 
denote possibilities in which acid isn’t introduced and the 
flowers do not die (row 2) or die anyway (row 3). The 
model does not represent situations inconsistent with the 
statement (e.g., the situation in which acid is introduced and 
the flowers do not die, or any situation in which death 
occurs before acid is introduced). Moreover, maintaining 
three separate possibilities is difficult for reasoners, and the 
principle of parsimony implies that most reasoners only 
construct the first possibility, i.e., the mental model:  

  acid  death 
 

The mental model can be scanned and combined with other 
premises to yield inferences rapidly, but reasoners who rely 
on the mental model alone are prone to make reasoning 
errors on certain inferences. Moreover, each additional 
model in the set of fully-explicit models above demands 
working memory resources, and reasoners should be 
progressively less likely to consider them. 

Omissive causation operates similarly to orthodox 
causation under the model theory, with the proviso that 
omissions imply that the antecedent events are negated 
(Bello & Khemlani, 2015) and negations increase difficulty 
(Khemlani et al., 2012). For instance, the statement, the lack 
of water causes flowers to die, refers to the following 
mental model: 

 ¬ water  death 
 

which can be fleshed out into the following fully-explicit 
models: 

 ¬ water  death 
   water ¬ death 
  water  death 
 

And so, just as in the case of orthodox causation, the model 
theory predicts that reasoners should often build only the 
mental model (i.e., the possibility in which there is a lack of 
water and the flowers die). Those who consider additional 
possibilities should construct the second possibility less 
often than the first, and the third possibility less often than 
the second. 

Models and contrasts 
Do omissive causes entail contrasts? If so, then a central 

assumption of the model theory would be incorrect. That is, 
a default representation of contrasts would imply that 
statements such as the lack of water causes flowers to die 
should refer to the following two models: 

 ¬ water  death 
  water ¬ death 
 

instead of just one mental model (see above). Reasoners do 
appear to consider the contrasting possibility often. In recent 
studies by Briggs and colleagues, participants evaluated 
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omissive causal relations (of a structure akin to: the lack of 
A causes B) by assessing whether four separate scenarios 
(not-A and B, A and not-B, A and B, and not-A and not-B) 
were possible given the truth of the relation. Participants in 
one study, for instance, selected not-A and B at ceiling, and 
they selected A and not-B close to ceiling (98% and 83%, 
respectively; see Briggs et al., under review, Experiment 3). 
The preponderance of A and not-B responses lends some 
tentative support to the idea that omissions are understood 
in terms of contrasts, as some metaphysicians have 
suggested. But, the data are also consistent with the view 
that reasoners select the contrasting possibility (A and not-
B) only after considering the mental model (not-A and B) 
first. No studies directly test between the contrast view and 
the model theory, and so we carried out two experiments in 
which reasoners made inferences about omissive causation. 
Certain inferences should be less error-prone if reasoners 
represent contrasting possibilities, but Experiment 1 showed 
no such improvement. Experiment 2 showed that reasoners 
spontaneously generate contrasting possibilities less often – 
and after – they represent possibilities corresponding to 
mental models. Both studies support the predictions of the 
model theory. 

Experiment 1 
Experiment 1 tests reasoners’ inferences about the pattern 

of reasoning known as modus tollens, which is an inference 
in sentential logic of the following form: 

 
If A then C. 
Not C. 
Therefore, not A. 

 

The inference is valid because it is true in every case that 
the premises are true (Jeffrey, 1981, p. 1). But, reasoners 
have difficulty with modus tollens inferences: they tend to 
respond that nothing follows from the premises instead of 
inferring that not A follows (Nickerson, 2015, p. 41 et seq.). 
A causal version of the inference is as follows: 

 

Overexposure to UV light causes snowblindness. 
A particular mountaineer doesn’t have snowblindness. 
What follows? 
 

A valid conclusion from these premises is that the 
mountaineer isn’t overexposed to UV light. But, even in the 
causal domain, many reasoners have difficulty generating 
the valid conclusion, and they instead respond that nothing 
follows (Cummins, Lubart, Alksnis, & Rist, 1991). The 
model theory explains why: if reasoners represent only a 
single mental model of overexposure to UV light causes 
snowblindness, e.g.,  

   UV-overexposure  snowblindness 
 

then that single possibility does not correspond to the 
possibility referred to in the second premise: a mountaineer 
doesn’t have snowblindness. And so, reasoners respond that 
nothing follows. Only those reasoners who construct the 
fully explicit models of the causal relation: 

   UV-overexposure  snowblindness 
 ¬ UV-overexposure ¬ snowblindness 
 ¬ UV-overexposure  snowblindness 
 

can make the valid deductive inference, because the second 
premise corresponds to the second possibility above. 

The same prediction, mutatis mutandis, holds for 
omissive causal relations. Consider the following inference: 

 

A lack of vitamin C causes scurvy. 
A particular sailor doesn’t have scurvy. 
What follows? 
 

If, as the model theory predicts, reasoners represent only a 
single mental model, e.g., 

 ¬ vitamin-C  scurvy 
 

then they should have difficulty drawing a valid conclusion 
from the premises. If, however, reasoners construct both the 
mental model and its contrasting possibility, e.g., 
 

  ¬ vitamin-C  scurvy 
  vitamin-C ¬ scurvy 
 

then they should be more likely to make the valid 
conclusion that the sailor doesn’t have a vitamin C 
deficiency. Hence, the contrastive view of omissive 
causation predicts that reasoners should respond more 
accurately on modus tollens inferences when they concern 
omissions than when they concern orthodox causation. 

To test this prediction, participants in Experiment 1 wrote 
out their natural responses to short vignettes concerning 
omissive and orthodox causal reasoning arguments.  

Method 
Participants. Thirty participants volunteered through the 
Amazon Mechanical Turk online platform (see Paolacci, 
Chandler, & Ipeirotis, 2010, for a review). Fourteen 
participants reported no formal logic or advanced 
mathematical training and the remaining reported 
introductory to advanced training in logic. All participants 
were native English speakers. 
 
Design, procedure, and materials. Participants carried out 
the experiment on a computer screen. The study was 
designed in psiTurk (Gureckis et al., 2015). After reading 
instructions, participants completed eight experimental 
problems. Half the problems concerned omissive causation 
by making use of the word “absence” to establish an 
omission; and the other half concerned orthodox causation 
by using the word “presence”. Each problem comprised two 
premises. The first premise always established the presence 
or absence of a causal relation (e.g., A causes B). For half of 
the problems, the second premise asserted that the event (B) 
occurred (and therefore allowed participants to draw an 
inference known as affirming the consequent), and for the 
other half, the premise asserted that the event did not occur 
(not-B), and so participants could draw a modus tollens 
inference. Participants wrote out responses to the question 
“What, if anything, follows?” An example problem is as 
follows:  
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Suppose the following statements are true:  
1. The [presence/absence] of a particular part causes a 

machine to fail. 
2. On a particular day, the machine [did/didn’t] fail. 

What, if anything, follows? 
 
The information for each problem was presented 
simultaneously, and participants were prevented from 
continuing to the next problem until they typed in at least 
one possibility. Participants were informed that they should 
write out that “nothing followed” if they thought there was 
not enough information in the premises to make any 
conclusion with certainty. The materials were drawn from 
four domains: biology, nature, socioeconomics, and 
mechanics. The presentation order of the content and 
problem type of the vignettes was randomized.  

Results and discussion 
Two coders blind to the predictions of the study judged 

whether participants’ natural responses were accurate or 
inaccurate; they agreed on 99% of trials (Cohen’s κ = .99). 
Table 1 shows the percentage of accurate responses in 
Experiment 1 as a function of whether the inference 
concerned omissive or orthodox causation. Across the study 
as a whole, participants produced more accurate responses 
for orthodox causation than for omissive causation (47% vs. 
32% correct; Wilcoxon test, z = 2.49, p = .01, Cliff’s 𝛿 = 
.15), which is the opposite of the pattern predicted by the 
contrast view. As in previous studies (e.g., Cummins et al., 
1991), participants produced more accurate responses for 
modus tollens inferences than for affirming the consequent 
inferences (63% vs. 15% correct; Wilcoxon test, z = 6.65, p 
< .0001, Cliff’s  𝛿  =  .48).  The   interaction   between   the   
type   of causation and the type of inference was not reliable 
(Wilcoxon test, z = .64, p = .52, Cliff’s 𝛿 = .03). 

Participants in Experiment 1 violated the prediction of the 
contrast   view:  they   were   less   accurate   for   inferences 
concerning omissive causation than for those concerning 
orthodox causation. Indeed, their patterns of inference 
corroborate the model theory, which predicts that inferences 
about omissive causes should be slightly more difficult 
because reasoners represent negated possibilities. 

 
 

 Type of causation 

 Orthodox Omissive 

Inference The presence 
of A… 

The absence of 
A… 

Affirming the consequent: 
   A causes B. B. 
   What, if anything, follows? 

22% 8% 

Modus tollens: 
   A causes B. Not B. 
   What, if anything, follows? 

72% 55% 

 

Table 1. Proportion of correct responses in Experiment 1 as a 
function of the type of inference and the type of causation. 

 Experiment 2 
Experiment 1 concerned inferences, and its results suggest 

that reasoners do not make use of contrasting possibilities in 
their modus tollens or affirming the consequent inferences. 
But, the data do not conclusively establish whether or not 
reasoners represent the contrast by default. After all, people 
might initially represent such possibilities but fail to 
consider them when drawing inferences. Hence, Experiment 
2 tested reasoners’ interpretations of omissive causation 
directly. It elicited natural responses to the different 
possibilities for orthodox and omissive cause and enabling 
conditions. Participants read a single short premise and were 
asked to list the possibilities that correspond to each 
premise. We analyzed the order in which participants 
constructed each possibility, as well as the first possibility 
they constructed. The contrast view predicts that reasoners 
should construct the possibilities that correspond to not-A 
and B and A and not-B equally often when they interpret 
omissive causation. The model theory predicts that 
reasoners should construct the possibility that corresponds 
to not-A and B first, then (if at all) the possibility that 
corresponds to A and not-B, and finally (if at all) the 
possibility that corresponds to A and B. And the theory 
predicts an analogous trend in latencies: reasoners should 
build not-A and B faster than A and not-B, and they should 
build A and not-B faster than A and B. 

Method 
Participants. Thirty-one participants volunteered through 
the Amazon Mechanical Turk online platform. Twenty-two 
participants reported no formal logic or advanced 
mathematical training and the remaining reported 
introductory to advanced training in logic. All were native 
English speakers. 
 
Design, procedure, and materials. Participants completed 
two practice problems and eight experimental problems, and 
they acted as their own controls. Each problem presented 
one premise that consisted of two events and a causal verb. 
The experiment manipulated whether the first event 
concerned orthodox or omissive causation: half the 
problems used the word “presence” and the other half used 
the word “absence.” The experiment also manipulated the 
relevant causal relation: half the problems concerned 
causation and half concerned enabling conditions, though 
for brevity we analyze only those problems concerning 
causation below. An example problem is as follows:  

 

Suppose the following statement is true:  
The [presence/absence] of a particular preservative 
[causes/enables] a substance to decay. 

What is possible given the above statement? 
 

Participants were then asked to construct a list of 
possibilities using pre-populated drop-down menus. Figure 
1 shows an example of the interface used in Experiment 2. 
Participants could choose any combination of the 
possibilities from the drop-down menus, they could change  
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Figure 1. The interface used to elicit responses in Experiment 2. 
Participants completed sentences using drop-down menus and 
added possibilities using a button marked “+”. 
 
their answer choices at will, and they could add additional 
sentences if they thought the statement was true in a number 
of possibilities; but, the interface allowed the construction 
of at most four different sentences. The presentation order 
of the trials was randomized. The order in which the 
participants endorsed possibilities was recorded, as was the 
latency between when the premises appeared and when 
participants pushed a button to finish the trial. 

Results and discussion 
Table 2 shows the percentage of trials on which 

participants constructed the four possible sentences as a 
function of whether the premise in the trial concerned an 
orthodox or an omissive causal relation. The table also 
shows, in parentheses, the percentages of trials on which a 
given sentence appeared first in the set of sentences 
constructed by the participants.  

For omissive causation trials, participants constructed not-
A and B more often than A and not-B (85% vs. 69%, 
respectively; Wilcoxon test, z = 2.88, p = .003, Cliff’s 𝛿 = 
.03), in violation of the contrast view. Instead, the data 
corroborate the trend predicted by the model theory; 
participants constructed not-A and B most often (85% of 
trials), then A and not-B (69%), then A & B (47%), and 
rarely not-A and not-B (19%). A nonparametric trend test 
revealed a significant trend in their responses (Page’s trend 
test, z = 5.16, p < .0001). 

One way of understanding participants’ performance is to 
examine only the first sentence in the set of sentences they 
constructed: doing so allows for a coarse analysis of their 
online preferences for possibilities. Participants constructed 
not-A and B as a first sentence more often than A and not-B 
  

Type of 
causation 

The four sentences (in abbreviated form) 

A & B A & ¬B ¬A & B ¬A & ¬B 

Orthodox 100 (100) 6 (0) 31 (0) 74 (0) 

Omissive 47 (26) 69 (26) 85 (48) 19 (0) 
 

Table 2. Percentages of trials on which participants in Experiment 
2 constructed four separate sentences for trials that concerned 
omissive and orthodox causal relations. ‘¬’ denotes negation. In 
parentheses: percentages of trials on which a sentence appeared 
first in the set constructed by participants. (Not shown: data from 
trials that concerned enabling conditions.) 

(48% vs. 26%, respectively; Wilcoxon test, z = 2.06, p = 
.04; Cliff’s 𝛿 = .22). And they constructed A and not-B and 
A and B equally as often (26% vs. 26%). We recorded the 
latency between when the premises appeared to when 
participants made a response. While those latencies are 
inflated to include the amount of time they read the 
premises, they nevertheless revealed that participants were 
faster to construct not-A and B (26 s) as a first sentence 
compared to A and not-B (38 s); a test on their overall 
selections corroborated the trend predicted by the model 
theory (Jonckheere’s trend test, z = 2.95, p = .001). 

Participants’ responses to orthodox causal relations 
likewise corroborated the predictions of the model theory. 
Every participant responded A and B, 74% of participants 
responded not-A and not-B, and 31% of participants 
responded not-A and B (Page’s trend test, z = 3.54, p < 
.001). And, every participant constructed A and B first. 

The results largely corroborate the predictions of the 
model theory. The significant trends in the proportions of 
constructing the different sentences suggest that reasoners 
consider possibilities sequentially. 

General discussion 
Two experiments showed that when people interpret and 

reason about omissive causal relations, they do not represent 
contrasting alternatives by default. Reasoners can, in 
principle, hold two separate possibilities in mind – they 
seem to do precisely that when reasoning about 
counterfactual assertions (Byrne, 2005). But, as the present 
studies show, they tend to interpret omissive causes as 
referring to a single model of a negated cause and its 
associated effect (Experiment 1). When they are asked to 
list possibilities, they list the mental model earlier, more 
often, and faster than contrasting possibilities (Experiment 
2). These results corroborate the model theory of omissive 
causation (Bello & Khemlani, 2015; Briggs et al., under 
review), and no alternative theory of omissive causation, 
whether psychological (Wolff et al., 2010) or philosophical, 
presently account for the results from the two studies. 

The model theory provides a specific ordering on what 
kinds of possibilities reasoners consider. It is a process 
theory that explains why some possibilities (the mental 
models) are considered by default and why others (the 
alternative models) demand additional cognitive resources 
to construct. And it provides some constraints on the 
contents of alternative properties, though the specific 
contents depend on the semantics of the particular verbs 
used to describe omissive-causal premises.  

How are contrast events identified in the first place?  Both 
Bernstein and Schaffer highlight this open question, and 
they suggest that its answer is critical for shoring up their 
respective theories.  Philosophers who interpret omissive 
causation using possible worlds are faced with developing a 
theory that specifies how to pick through the infinitude of 
possible worlds to find those that contain the most relevant 
contrast event. Actual-event theorists like Schaffer shoulder 
the same explanatory burden. To illustrate, it is perfectly 
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reasonable to think that the Queen of England might have 
shown up to water the rosebushes. This would have 
prevented their death, after all. Does her failure to do so 
qualify her as an omissive cause of their dying? What 
explains why the gardener’s failure to do so is a better 
candidate for the actual cause of their death? 

Recent work shows norms and pragmatics help establish 
relevant contrasts when reasoning about omissions (see 
Henne, Pinillos, & De Brigard, 2016). Analogously, the 
model theory posits that background knowledge of the 
meanings of words and their contexts can introduce 
relations and block the construction of certain possibilities 
in a process known as modulation (Johnson-Laird & Byrne, 
2002). For instance, reasoners often infer a temporal relation 
from the conjunction, Mary studied and she passed her test, 
such that she studied before she passed her test (Juhos et al., 
2012). In the case of omissive causes, modulation may rely 
on knowledge of norms to introduce relations or contents 
for the different contrasting possibilities, and future work 
will investigate the processes by which norms bias the 
representation of omissive causes.  
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Abstract 

People often use spatial vocabulary to describe temporal rela-
tions, and this has increasingly motivated attempts to map 
spatial frames of reference (FoRs) onto time. How people as-
sign FRONT to time and to temporal entities depends on cul-
tural conventions, and is crucial for diagnosing which tem-
poral FoR a person actually adopts. Here, we report findings 
from a survey with speakers of Norwegian that aimed at as-
sessing the cultural conventions involved in FRONT assign-
ment. Data on temporal movements of events, on the temporal 
order of events, and on explicit FRONT assignments to events, 
time units, and “time itself” suggest that participants use dif-
ferent principles for describing fixed relations (static time) 
versus moving events (dynamic time). 

Keywords: space; time; space-time mapping; frames of ref-
erence; mental timeline. 

Introduction 
When talking about time, people tend to do so with vocabu-
lary and concepts borrowed from the domain of space. Yet, 
while research in the two domains and the acknowledge-
ment of cross-domain transfers do have a venerable tradition 
(reviewed in Núñez & Cooperrider, 2013), the challenge of 
mapping a taxonomy of spatial representations onto the 
domain of time has been taken up only recently, and respec-
tive attempts differ considerably in terms of theoretical 
conceptualization and subsequent interpretation of data. 
Based on a review of advances in this field, we outlined 
how such taxonomies may be transferred from space to time 
(Bender & Beller, 2014), with a focus on accounts that deal 
with frames of reference (FoRs). 

Taking Levinson’s (2003) well-established taxonomy of 
spatial frames of reference as starting point, the t-FoR ac-
count (Bender et al., 2010, 2012; Rothe-Wulf et al., 2015) 
derives a set of temporal frames of reference (t-FoRs) fol-
lowing general design principles as described below. Yet, 
while these design principles provide an abstract structure 
for distinct frames of reference, their concrete specification 
depends on cultural conventions involved in how people 
assign FRONT to temporal entities per se. Previous accounts 
drew on intuitions regarding such conventions for speakers 
of English and related languages (such as that FRONT of an 
event is considered to be at its beginning). Here, we report 
findings from a survey that empirically assessed such con-
ventions. 

Spatial and Temporal Frames of Reference 
A frame of reference (FoR) is a coordinate system required 
to localize a figure F in reference to a ground G from an 
observer’s point of view V. Levinson’s (2003) taxonomy 
distinguishes three basic types of spatial FoRs, absolute, 
intrinsic, and relative, as well as different variants of the 
latter. In line with the underlying design principles, these 
FoRs can be mapped from space onto time as follows 
(Bender & Beller, 2014; and see Table 1): 

The absolute FoR is anchored in a superordinate field 
outside F, G, and V. As space itself is the superordinate 
field in the spatial domain, so is time in the temporal do-
main. Assignment of orientation to the field follows cultural 
conventions and may recruit, for instance, cardinal points, 
mountain slopes, rivers, or the land-sea axis on small islands 
(in the case of space), and correspondingly the asymmetry 
inherent in the ‘arrow of time’ (in the case of time), which is 
(presumably) pointing towards the future.  

The intrinsic FoR is anchored in the reference or ground 
entity G and can thus only be adopted if G is perceived as 
being oriented itself (this includes an observer if serving as 
ground). Assignment of orientation again follows cultural 
conventions and may recruit, for instance, moving direc-
tions of objects such as cars (in space) and the beginning 
versus end of events (in time).  

Table 1: Frames of reference and forward movements (in-
dicated by the tips of the arrows) according to the t-FoR 
account (for more details, see Bender & Beller, 2014), based 
on assumed cultural conventions for assigning FRONT in 
English speakers. 

Linear Point-symmetric 
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The relative FoR, finally, is anchored in the viewpoint V 
of an observer (separate from G). V’s position can be estab-
lished both in space (as the observer’s location) and in time 
(as the observer’s subjective present). In order to still be 
able to localize F in reference to G, the coordinate system 
primarily anchored in V needs to be shifted into G. This can 
be done in several ways, two of which are relevant here: the 
reflection variant under which FRONT is assigned to a posi-
tion or time between G and V, and the translation variant 
under which FRONT is assigned to a position or time beyond 
G. In either case, FRONT assignments are point-symmetrical 
to the present, but have diverging directions (reflection: 
towards V; translation: away from V).  

Each of these FoRs hinges on cultural conventions: the 
absolute FoR on how orientation is assigned to the superor-
dinate field (for variation, see Núñez & Sweetser, 2006), the 
intrinsic FoR on how orientation is assigned to the ground 
entity, and the relative FoR on which variant is preferred for 
shifting the primary coordinate system. So far, assumptions 
on these conventions are based more on intuitions than on 
data, especially for the domain of time. In the following, we 
explicate these for three Germanic languages. 

Frames of Reference in Germanic Languages 
Empirical research in the spatial domain on three Germanic 
languages—English, German, and Swedish, (e.g., Beller et 
al., 2015; Grabowski & Weiß, 1996; Majid et al., 2004)—
indicates that speakers of these languages make use of all 
basic spatial FoRs for describing locations and movements 
in space, with a pronounced preference in small-scale space 
for the reflection variant of the relative FoR and, albeit to a 
lesser extent, the intrinsic FoR.  

In the temporal domain, the metaphorical space-time 
mapping emerging in language suggests a set of conventions 
for FRONT assignment that appear similar across the three 
languages. With regard to time itself (as the superordinate 
field in the absolute FoR), FRONT seems to be assigned to 
the future, as reflected in the ‘arrow of time’ pointing to-
wards the future or in expressions such as “the future 
ahead”, and “olden days passed by”. With regard to events 
(as the ground entities in the intrinsic FoR), FRONT seems to 
be assigned to that part of time pertinent to the beginning of 
events, as reflected in expressions such as “the quiet before 
the storm”. When it comes to the subjective viewpoint V of 
an observer (as the central point in the relative FoR), it 
might be ventured that none of its variants are frequent in 
Germanic languages, as the point-symmetric patterns arising 
from them have been observed only infrequently (with 2.5% 
or less in any of the languages under investigation; see 
Rothe-Wulf et al., 2015).  

Based on these assumptions, an absolute FoR would be 
diagnosed when events “in front of” other events or “moved 
forward” from their previous position are localized as fur-
ther in the future, while an intrinsic FoR would be diag-
nosed when they are localized as further in the past (Table 
1). Interestingly, the latter pattern has been described as 
canonical for all three Germanic languages for describing 

fixed relations such as “the quiet before the storm” (Ger-
man: “die Ruhe vor dem Sturm”, Swedish: “lugnet före 
stormen”), while patterns in the three languages differ fun-
damentally when it comes to movement: Moving a meeting 
“forward” results in a later date (futurewards movement) for 
the vast majority of Swedish speakers, in an earlier date 
(pastwards movement) for the vast majority of German 
speakers, and in dissent between these variants for English 
speakers (Rothe-Wulf et al., 2015; and see Boroditsky & 
Ramscar, 2002; McGlone & Harding, 1998).  

Whether, however, these diverging patterns can be diag-
nosed as arising from an absolute or intrinsic FoR, respec-
tively, depends on whether our assumptions regarding the 
cultural conventions for FRONT assignment are correct. Data 
on this question was collected in the current study for a 
fourth Germanic language, namely Norwegian, for which 
research on spatial FoRs revealed the same preferences for 
references in small scale space (Beller & Bender, 2017) as 
in the other three Germanic languages. 

Study 
The study aimed at assessing whether and how FRONT is 
assigned to time itself (relevant for the absolute FoR) and to 
temporal entities such as events (relevant for the intrinsic 
FoR). We also remained open to the possibility of point-
symmetric response patterns indicative of a relative FoR. 

Methods 
Participants. 81 volunteers participated in the survey; three 
were excluded from further analyses because they indicated 
a language other than Norwegian as their mother tongue. 
The resulting sample therefore consisted of 78 participants 
(59 female; age M = 25.3 years, SD = 7.6, range 19-62, with 
5 not indicating their age). 

 
Materials. The tasks described in the following were part of 
a larger paper-and-pencil survey, provided in Norwegian 
(bokmål). Here, we focus only on those tasks that are rele-
vant for the questions under scrutiny in this paper. 

The Event-Moving Task consisted of four items, with an 
event to be moved forward (Norwegian: fram) or backward 
(bakover) in time. Two items used the time scale days:  

• The concert scheduled for Thursday last week was 
moved {forward/backward} two days. On which day of 
the week did it actually take place?  

• The meeting scheduled for Wednesday next week will be 
moved {forward/backward} two days. On which day of 
the week will it now take place?  

The other two items used the time scale hours:  

• The departure scheduled for 9 a.m. yesterday was moved 
{backward/forward} three hours. At what time did it ac-
tually take place? 

• The power cut scheduled for 4 p.m. tomorrow will be 
moved {backward/forward} three hours. At what time 
will it take place now? 

For each time scale, a past and a future event was included; 
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this is necessary to be able to distinguish linear from point-
symmetric t-FoRs (cf. Table 1) that participants might adopt 
(Bender et al., 2010). The original scheduling of the events 
and the moving span were chosen so as to remain within the 
respective time cycle (e.g., for weekdays between Monday 
and Saturday), and hence to prevent ambiguous responses.  

The items were implemented in four arrangements, cross-
ing between-subjects two orders of time scales with the two 
moving directions. The task started either with the time 
scale days (first meeting, then concert), followed by hours 
(first power cut, then departure), or vice versa, and either 
with “forward” as moving direction for the first two events, 
followed by “backward” for the other two, or vice versa. 

The Order Task consisted of six items that asked for the 
order of events, that is, whether a target event (figure F) is 
“in front of” (Norwegian: foran) or “behind” (bak) a refer-
ence event G. Four items used a forced-choice format:  

• Lunch is normally … 
□ in front of / □ behind … breakfast. 

• Good Friday is two days … 
□ in front of / □ behind … Easter Sunday. 

• New Year’s Eve is one week … 
□ in front of / □ behind … Christmas Eve. 

• The Stone Age was … 
□ in front of / □ behind … the Middle Ages. 

Two further items used an open format:  

• The exam is generally nine days 
{in front of/behind} the 17th of May. 
So, at which date does it take place? 

• This year, Peter’s birthday is three months 
{in front of/behind} midsummer.  
So, in which month is his birthday? 

The items were implemented in four arrangements, crossing 
between-subjects two orders of items either with two orders 
of response options for the items in the forced-choice format 
(“in front of” as the first vs. the second option) or with the 
two phrasings for the items in the open format (“in front of” 
for the birthday item and “behind” for the exam item, or 
vice versa). One item order was determined randomly with 
the second order being the exact reversal1. 

The Front Task consisted of eight items that asked for 
indicating whether or not a time segment has a front (Nor-
wegian: forside) or back (bakside), and if so, in which direc-
tion FRONT or BACK is pointing. All items followed the same 
schema and had four response options, here exemplified for 
the item on time in general:  

{ Front/Back} of time in general …  
□ is at the beginning of time. 
□ is at the end of time. 
□ Something like that does not exist. 
□ Something else, namely _______. 

As the two last response options were the same for all items, 
we explicate only the item-specific options for the remain-

                                                           
1 Each set of items also included some non-temporal items, 

which are not discussed here. 

ing items. Three items referred to the units of time day, 
month and year: 

• { Front/Back} of today … 
□ was early in the morning / □ will be late at night.  

• { Front/Back}  of August … 
□ is the 1st of August / □ is the 31st of August.  

• { Front/Back}  of the current year … 
□ was in January / □ will be in December. 

Four other items referred to events: 

• { Front/Back}  of a meeting … 
□ is at the introduction / □ is at the summary. 

• { Front/Back}  of a dinner … 
□ is at the appetizer / □ is at the dessert.  

• { Front/Back}  of Easter … 
□ is on Maundy Thursday / □ is on Easter Monday. 

• { Front/Back}  of your life … 
□ is when you were born / □ is when you will die. 

The items were implemented in four arrangements, crossing 
between-subjects two phrasings (asking for all items either 
for “ front of X …” or “back of X …”) with two orders of 
items (one random order starting with time in general, and 
the exact reversal1). 

 
Design and Procedure. Four versions of questionnaires 
were constructed. The various types of tasks were presented 
within-subject in a fixed order (i.e., event-moving task fol-
lowed by order task followed by front task) in line with the 
increasingly explicit nature of the task (asking for the 
“front” of time highlights the topic of interest more strongly 
than asking for the date to which an event is moved). The 
four item arrangements of each task were randomly as-
signed to one of the four versions of questionnaires, and 
varied between-subjects as indicated in the Materials sec-
tion. Participants were instructed to work on all tasks in the 
given order. 

Results 
For each task, we first describe how FRONT assignments 
were coded and then report participants’ preferences. 

 
Event-Moving Task. In this task, participants had to move 
an event either forward or backward in time. The responses 
were coded as whether they indicated that FRONT of the 
moving direction pointed towards the future or towards the 
past. For the items with “forward”-phrasing, the coding is 
obvious: If, for example, Wednesday’s meeting is moved 
“forward” to Monday, then the assignment of FRONT and the 
moving direction points pastwards. For items with “back-
ward”-phrasing, coding is reversed: If Wednesday’s meeting 
is moved “backward” to Monday, then the assignment of 
FRONT and the corresponding forward direction point fu-
turewards.  

Each single item was tested first for potential influences 
of the order of time scales (days first vs. hours first) and the 
requested moving direction (forward vs. backward) on the 
actually chosen direction (futurewards vs. pastwards). No 

1619



 

 

significant effects were found (all G2 ≤ 5.88; df = 3; 
p ≥ .118). Across items, futurewards movements dominated 
(65.5% on average; Table 2, upper half). 

Then, we determined for each of the two pairs of items 
with the same time scale the pattern of FRONT assignments 
that resulted from considering both the future and past event 
as pointing futurewards, pastwards, towards V (present), or 
away from V (cf. Table 1). We checked whether the distri-
bution of the four patterns for the time scale days differed 
from the distribution for the time scale hours, which would 
be indicative of an influence of time scale on temporal 
movements. According to a marginal homogeneity test for 
paired tasks, this was not the case (std. MH statistic = .906, 
p = .365), thus justifying an aggregation across the time 
scales. Overall, the two linear patterns prevailed by far (Ta-
ble 2, lower half). The majority of participants (60.8% on 
average) made futurewards movements, about one third 
(30.1%) made pastwards movements, while of the two 
point-symmetric patterns, only the one with moving direc-
tions away from V (present) was chosen (9.2%). 

 
Order Task. In this task, participants had to specify wheth-
er a target event is “in front of” or “behind” a reference 
event. The responses were coded as whether they indicated 
that FRONT of the reference event was assigned to the end of 
the event, and hence pointing towards the future, or to the 
beginning of the event, pointing towards the past. For in-
stance, Good Friday is always earlier in the year than Easter 
Sunday. The response “Good Friday is in front of Easter 
Sunday” therefore implies that FRONT of Easter Sunday is 
assigned to its beginning and points pastwards. With lunch 
as target event in reference to breakfast, coding would be 
reversed: As lunch is the later event, the response “Lunch is 
in front of breakfast” implies that FRONT of breakfast is 
assigned to its end and points futurewards. 

Each item was tested first for potential effects of two fac-
tors on the coded FRONT of the event: the order of items (for 
all 6 items) and either the order of response options (for the 
4 items with forced-choice format) or the phrasing (for the 2 
items with open format). For the forced-choice items, no 

significant effects were found (all G2 ≤ 3.77; df = 1; 
p ≥ .052). With some variation between events, the majority 
of responses indicated that FRONT of an event was assigned 
to its beginning and pointed pastwards (83.6% on average; 
Table 3, upper half). For the items with open format, main 
effects of the phrasing were found (G2 ≥ 12.95; df = 1; 
p < .001). Responses indicating that FRONT pointed past-
wards were more frequent when participants had to specify 
whether the target is “in front of” the reference event 
(100%) than when they had to specify whether the target is 
“behind” the reference event (76.4% on average; Table 3, 
lower half)2. 

Finally, we determined how consistently the two possible 
FRONT assignments were made across the whole set of 
items. To this end, we counted for each participant how 
often FRONT pointed futurewards and how often it pointed 
pastwards. FRONT assignments were highly consistent. Par-
ticipants used the same type of assignment on 5.17 (86.1%) 
of the 6 items. Overall, 65 participants (83.3%) had a pref-
erence for a pastwards directed FRONT and four participants 
(5.1%) for a futurewards directed FRONT; the remaining 9 
participants (11.5%) had no preference. 

Taken together, the results from the order task support the 
idea that FRONT of a time segment is at its beginning and 
that it points towards the past, at least for most of the partic-
ipants. While in this task FRONT assignments were assessed 
indirectly from the order of events, the next task explicitly 
asked participants to indicate the “front” or “back” of 
events, time units, and time in general. 

 
Front Task. In this task, participants had to specify whether 
“front” (or “back” respectively) of a temporal entity is at its 
beginning, at its end, does not exist, or something else. 
FRONT assignments were coded in four categories, with 
FRONT pointing futurewards, or pointing pastwards, is non-
existent, or something else (“other”). For the items asking to 
indicate the “front” of an event, coding is again obvious: 

                                                           
2 That references using complementary prepositions (such as “in 

front of” vs. “behind”) need not result in perfectly complementary 
response patterns was also observed for the spatial domain (e.g., 
Grabowski & Weiß, 1996). 

Table 2: FRONT assignments (%) in the event-moving task. 

 Single items  

FRONT 
pointing 

Concert 
(N = 77) 

Meeting 
(N = 77) 

Departure 
(N = 77) 

Power cut 
(N = 76) 

 
M 

futurewards 63.6 71.4 58.4 68.4 65.5 
pastwards 36.4 28.6 41.6 31.6 34.5 

 Future/past items of time scale  

 Days (N = 77) Hours (N = 76)  

futurewards     (abs.) 63.6 57.9 60.8 
pastwards        (intr.) 28.6 31.6 30.1 
towards V        (refl.) — — — 
away from V (trans.)   7.8 10.5   9.2 

Table 3: FRONT assignments (%) in the order task. 

FRONT 
pointing 

Items with forced-choice format  

Lunch 
(N = 77) 

Good Friday 
(N = 78) 

New Year 
(N = 78) 

Stone Age 
(N = 78) 

 
M 

futurewards 14.3 16.7   9.0 25.6 16.4 
pastwards 85.7 83.3 91.0 74.4 83.6 

FRONT 
pointing 

Items with open format  
Exam (N = 41, 37) Birthday (N = 34, 35)  

In front of Behind In front of Behind  

futurewards — 21.6 — 25.7 11.6 
pastwards 100.0 78.4 100.0 74.3 88.4 
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Choosing, for example, the beginning as the “front of the 
event” implies that FRONT points towards the past. For the 
items asking to indicate the event’s “back”, coding was 
reversed: Choosing the beginning as its “back” implies that 
FRONT is assigned to the end of the event and points to-
wards the future. Therefore, the response “the back of a 
meeting is at the summary” implies that FRONT is assigned 
to the beginning of the meeting and hence points towards 
the past. 

Each item was tested first for potential effects of the 
phrasing and the order of items on the coded FRONT. A main 
effect phrasing was found in all cases (all G2 > 8.03; df = 3; 
p < .046), a main effect order of items in three cases (life, 
year, and time; G2 > 9.38; df = 3; p < .025), and an interac-
tion of the two factors in two cases (dinner and Easter; 
G2 > 11.15; df = 3; p < .011).  

A joint log-linear analysis of the four event items (meet-
ing, dinner, Easter, and life) suggested that the model phras-
ing × order of items was the simplest model that fitted the 
data (G2 = 39.69; df = 36; p = .309), justifying the aggrega-
tion across these items. As in the order task, a pastwards 
directed FRONT occurred more frequently when participants 
had to specify the “front” of an event (as compared to the 
“back”), but this was the preferred response only when the 
task did not begin with the item on time in general (cf. Ta-
ble 4). In the other cases, the majority of participants indi-
cated that something like “front” does not exist. Among the 
two directions future- and pastwards, pastwards assign-
ments clearly prevailed (87.2%; 129 of 148 responses). 

A joint log-linear analysis of the four time and units items 
(day, month, year, and time) suggested again that the model 
phrasing × order of items was the simplest model that fitted 
the data (G2 ≥ 40.903; df = 36; p = .264), justifying to ag-
gregate the data across these items. The results were quite 
similar to those from the event items: The pastwards di-
rected FRONT occurred more frequently when participants 
had to specify the “front” of an event (as compared to the 
“back”), but this was the preferred response only when the 

task did not begin with the item on time in general. In the 
other cases, a majority of participants indicated that some-
thing like “front” does not exist. Among the two directions 
future- and pastwards, pastwards assignments again pre-
vailed (81.3%; 117 of 144 responses). This pattern includes 
the item on time in general. Futurewards directed FRONT 
assignment, which was the prevailing pattern in the event-
movement task (65.5%) (cf. Table 2), occurred rarely when 
asked explicitly, and almost only when “back” had to be 
indicated (6 of 37 responses = 16.2%). 

Finally, we determined how consistently different re-
sponses were given across the whole set of items. To this 
end, we counted for each participant how often FRONT 
pointed futurewards, how often it pointed pastwards, and 
how often it was declared as nonexistent. Responses were 
fairly consistent. Participants gave the same type of re-
sponse on 6.37 (79.6%) of the 8 items. 29 participants 
(37.2%) had a preference for a pastwards directed FRONT, 
and four participants (5.1%) for a futurewards directed 
FRONT; 31 participants (39.7%) were consistent in declaring 
that something like “front” or “back” does not exist; the 
remaining 14 participants (17.9%) had no preference. 

Taken together, the front task yields three results: First, 
the high number of participants indicating that something 
like FRONT or BACK does not exist for temporal entities is 
eye catching. Second, if FRONT was assigned to an entity at 
all, then it was assigned to its beginning and pointed to-
wards the past. Finally, this tendency was also found for the 
item representing time in general. 

Discussion 
Summarizing the findings across the three tasks presented 
here, the results indicate a preference among speakers of 
Norwegian for a futurewards orientation when “moving 
forward” an event (about 60%), but a pastwards orientation 
when localizing earlier events as “before” later events 
(about 80%). The latter is largely in line with the explicit 
assignment of FRONT to the beginning (rather than end) of 
events and time units—in fact, even to time itself—but 
assignments also depended on the order of items to some 
extent. These findings are surprising in at least three ways. 

First, assignment of FRONT to temporal entities does not 
seem to follow the same principles across tasks, even 
though they were aimed at tapping the same underlying 
concepts. This is not unexpected per se, as people may have 
more than one timeline (Miles et al., 2011; and see Bender 
& Beller, 2014, for a review of respective data). Here, the 
static versus dynamic nature of the tasks seems to make the 
difference: While the pastwards orientation prevails for 
fixed relations (revolving around the order or orientation of 
events), the futurewards orientation takes over when move-
ment is involved. A similar pattern was observed for spatial 
referencing, in a task where participants had to pick the 
“front” token (from a set of several tokens) and move it 
“forward” by a given number of fields. In this case, FRONT 
was assigned to the token and the movement in diverging 
ways: closer to Ego for the former, and away from Ego for 

Table 4: FRONT assignments (%) in the front task. 

 Order of items 
 Time item first  Time item last 

FRONT 
(pointing) 

Phrasing  Phrasing 
Front Back  Front Back 

 Event items (meeting, dinner, Easter, life) 
futurewards —   7.4    2.5 15.2 
pastwards 39.8 30.9  73.8 20.3 
Nonexistent 51.8 50.0  13.8 53.2 
Other   8.4 11.8  10.0 11.4 

 Unit items and time (day, month, year, time) 
futurewards   2.4 13.6  — 20.0 
pastwards 35.7 18.2  81.3 12.5 
Nonexistent 53.6 51.5  18.7 65.5 
Other   8.3 16.7  —   5.0 
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the latter (Bender et al., 2012). Since movement itself pro-
vides orientation, it may serve as a direct source for FRONT 
assignment and thereby even override possibly conflicting 
orientations of the entities involved (Talmy, 2000). Interest-
ingly, however, in the cases discussed here, the direction of 
movement is not specified beforehand, but is a consequence 
of FRONT assignment. This suggests that FRONT assignments 
follow different a priori preferences, but where these prefer-
ences are grounded in remains an open question. 

Second, in the front task, time itself is treated similar to 
the smaller units year, month, and day, which themselves 
are treated similar to events in time. This appears at odds 
with the observation that for speakers of most languages 
(and especially English and related languages), FRONT is 
typically pointing towards the future (evidence summarized 
in Bender & Beller, 2014). However, we hesitate to interpret 
our current data as strong evidence to the contrary for three 
reasons: The high proportion of “does not exist” responses 
observed for all items alike hints at the possibility that the 
phrasings (i.e., forside and bakside) have been infelicitous. 
Even if one were willing to assign a FRONT or BACK to a 
virtual, one-dimensional notion as time, assigning a whole 
front or back side may seem undue. In addition, the re-
sponse options “beginning of time” and “end of time” may 
have evoked a notion of time that resembles an (excessively 
long) event rather than the superordinate field the item was 
meant to refer to. And finally, since the time question was 
embedded in questions on events and smaller time units, set 
effects may have led to an overgeneralization of assignment 
patterns that are applied to events. 

The third way in which our findings are surprising con-
cerns cross-linguistic patterns. What we found for speakers 
of Norwegian is more similar to previous findings on Eng-
lish than on Swedish—despite the fact that Norwegian and 
Swedish are much more closely related, and actually mutu-
ally understandable. Besides sharing almost identical pro-
portions of the reflective versus translational variant of the 
relative FoR in the spatial domain (Beller et al., 2015; Bel-
ler & Bender, 2017), speakers of English and Norwegian 
also exhibit a mix of preferences in the event-moving task, 
whereas speakers of Swedish strongly prefer the future-
wards direction (Rothe-Wulf et al., 2015). Only in terms of 
relative preferences of the futurewards over the pastwards 
direction is Norwegian closer to Swedish. 

Two conclusions may be drawn from these patterns. Most 
importantly, they indicate that cultural conventions are in-
deed crucial for establishing concrete frames of reference, as 
they determine how FRONT is assigned to temporal entities 
such as events or to time itself, both for fixed relations and 
for movement. In order to be able to identify which tem-
poral FoRs people actually adopt, these conventions need to 
be assessed independently on an empirical basis. Further-
more, while FRONT assignment and FoR selection obviously 
differ across languages, it is not the languages themselves 
that are decisive here, but rather the agreement among their 
speakers, as attested to by the greater similarity of the Nor-
wegian pattern with the English than the Swedish pattern. 

This, we propose, renders the observed pattern a matter of 
negotiation and consensus, and hence a cultural phenome-
non. 
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Abstract

In many ecologically situated cognitive tasks, participants en-
gage in self-selection of the particular stimuli they choose to
evaluate or test themselves on. This contrasts with a traditional
experimental approach in which an experimenter has complete
control over the participant’s experience. Considering these
two situations jointly provides an opportunity to understand
why participants opt in to some stimuli or tasks but not to
others. We present here a Bayesian model of cognitive and
metacognitive processes that uses latent contextual knowledge
to model how learners use knowledge to make opt-in decisions.
We leverage the model to describe how performance on self-
selected stimuli relates to performance on true experimental
tasks that deny learners the opportunity for self-selection. We
illustrate the utility of the approach with an application to a
general-knowledge answering task.

Keywords: metacognitive control; Bayesian cognitive model;
wisdom of the crowd; opt-in; missing not at random

Background
In traditional approaches to experimental psychology, an ex-
perimenter has unilateral control over which stimuli a par-
ticipant experiences and the tasks that they complete. Yet
in many real-world situations, such as providing ratings to
videos on the Internet, the participant has some or even total
control over the specific stimuli and tasks that they experi-
ence. The choice behavior underlying such self-selection is
an important domain of study called metacognition (Nelson
& Narens, 1990), and the self-selection of activities or stim-
uli is specifically called metacognitive control (Fiechter, Ben-
jamin, & Unsworth, 2016; Finley, Tullis, & Benjamin, 2010).
Some work on monitoring and control processes in mem-
ory tasks focused on confidence judgments as an indicator
of self-selection questions (Kelley & Sahakyan, 2003; Ko-
riat & Goldsmith, 1996). It is unclear precisely how this
self-selection is generated, however. To better understand
metacognitive control behavior, a model is needed that ac-
counts for performance on the task of interest as well as the
choice behavior that leads participants to select only some
stimuli for exposure, evaluation, or testing.

The major difficulty of such an endeavor is that participants
select tasks according to their interests and expertise, and so

the data is missing in a nonrandom fashion (see Little & Ru-
bin, 2014, for a description of other missing data scenarios).
Consequently, participants can only be compared and their
performance fairly evaluated if a model is specified for the
opt-in process. If a participant does not opt in to a partic-
ular question, then we simply do not see that participant’s
response to that question.

A starting point in explaining opt-in behavior is that partic-
ipants have some meta-knowledge of what it is they already
know, and use that knowledge effectively in service of ongo-
ing learning. People provide higher assessments of their abil-
ity to answer inference questions in domains in which they
have greater expertise (Bradley, 1981), and learners often
choose to engage more effective study techniques for material
that is more difficult for them (A. S. Benjamin & Bird, 2006).
Memory reports are also considerably more accurate when
respondents have the option of withholding answers that they
are unsure of or of titrating the grain size of their answers to
their perceived accuracy (Goldsmith & Koriat, 2007).

Self-regulated learning often has substantial benefits in
educational contexts (Mezirow, 1981; Zimmerman, 1989;
Boekaerts & Minnaert, 1999; Paris & Paris, 2001). Learn-
ers use meta-knowledge to allocate time, resources, and ac-
tivities to an array of learning goals, and this application in-
creases overall performance compared to learners who have
their learning activities dictated by an instructor (Winne &
Hadwin, 1998; Finley et al., 2010).

The benefits of self-control extend beyond these con-
strained tasks, however. In causal reasoning experiments, par-
ticipants can more quickly understand the causal structure of
a network if they intervene in the learning process and de-
sign their own “experiments” (Steyvers, Tenenbaum, Wagen-
makers, & Blum, 2003; Sobel & Kushnir, 2006; Lagnado &
Sloman, 2004). Human strategy selection can be explained
in terms of rational metareasoning, wherein humans flexi-
bly choose strategies in accordance with their environment
(Lieder & Griffiths, 2015; Lieder et al., 2014).

The core claim across each of these examples is that self-
selection within a task aimed at measuring performance is
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driven by metacognitive knowledge, which leads to a higher
rate of success, expertise, or interest for the selected items.
This process makes it difficult to evaluate the stimuli and
the participants in an unbiased way. One test-taker may, for
example, outperform another not because they have greater
knowledge but rather because they make more a judicious se-
lection of problems.

Figure 1: Outline of our modeling approach. Latent knowl-
edge and design both explain the performance on the task.
In the case of a subject-chosen design, latent knowledge also
explains the design.

The aim of this project is to develop a cognitive model
of the metacognitive aspect of item selection. In doing so,
it also provides a framework to relate performance on self-
selected materials with performance on an unconstrained set
of items or stimuli. Here we apply this model to data col-
lected from participants answering general knowledge ques-
tions, but the model is considerably more general: the same
principles could apply in other metacognitive control tasks,
such as study time allocation or selection of items for restudy.
We are aware of one current model of metacognitive con-
trol, which takes as a given the state of the world, which then
causes the observed behaviors (Fleming & Daw, 2017). We
take a different approach, which starts with the latent knowl-
edge that the participant is coming to the experiment with
and uses that in both the selection process behind opting-in
and the observed responses to questions, as illustrated in Fig-
ure 1. Performance on the task is explained by both the de-
sign—that is, the particular experience of the participant in
the task—and the latent knowledge of the participant. In the
case of a participant who can opt in to certain questions but
avoid others, the design is also partially informed by the latent
knowledge. We are interested in estimating the latent knowl-
edge of each participant and evaluating how it relates both
to performance on the task and to opt-in behavior. In order
to infer latent knowledge from the observed data, we apply
Bayes’ rule in the equation below, where θ is the latent knowl-
edge, c is the experimenter design, d is the subject-chosen
design, x are the performance data from a true experimental
design (where subjects respond to all or to a random subject
of probes), and y are the performance data from a subject-
chosen design (in which subjects choose which probes to re-

spond to):

p(θ|c,d,x,y) ∝ p(x|θ,c)p(y|θ,d)p(d|θ)p(θ) (1)

In a traditional cognitive model, the important part of the
model is the specification of p(x|θ,c) and p(y|θ,d), termed
the likelihood functions. These functions directly explain the
empirical effect of interest by relating latent knowledge to
performance on the task given the experimental design. The
novel part of the model relates to the specification of the
metacognitive control process p(d|θ), which explains how
the participant self-designs on the basis of their latent knowl-
edge. If we would ignore this model component, we would
likely, and incorrectly, conclude that participants who self-
designed were more knowledgeable than participants subject
to the experimenter’s design because they outperformed their
experimenter-designed counterparts. Such an error could be
catastrophic if we were trying to compare across individuals
or across tests. Because subjects are randomly assigned to
conditions, it is highly unlikely that they differ widely. The
process by which the participants who self-designed outper-
formed those who could not lies in the opportunity to self-
design. Here we see the importance of jointly modeling the
selection process and the task at hand in order to understand
the interplay between latent knowledge, opt-in behavior, and
performance.

Since this is a task in which many participants give judg-
ments to many questions, we also expect to find that aver-
aging across participants leads to higher accuracy–an effect
termed the wisdom of the crowd (Surowiecki, 2004; Steyvers,
Miller, Hemmer, & Lee, 2009). Here we have the opportu-
nity to evaluate whether the opportunity to opt in to a self-
selected portion of the questions will enhance or attenuate
such benefits associated with averaging. Certainly, many par-
ticipants will gravitate towards the same questions when they
can opt in, which would potentially decrease the benefits of
averaging across a crowd by virtue of reducing input to the
more difficult questions. However, based on what is known
about metacognition, we expect that participants will opt in
to questions for which they have relevant knowledge, which
could lead to a more informed set of responses to average with
the remaining crowd. Crowd behavior provides an additional
benchmark against which we can evaluate the performance of
the metacognitive model.

Experiment
Stimuli The question set consisted of 100 general-knowledge
binary choice questions. The questions were drawn from 12
topics: World Facts, World History, Sports, Earth Sciences,
Physical Sciences, Life Sciences, Psychology, Space & Uni-
verse, Math & Logic, Climate Change, Physical Geography,
and Vocabulary. The question set was created by collecting
from multiple sources. Two example questions are shown in
Table 1. Based on the empirically observed accuracy levels,
the first is difficult and the second is easy.

Participants A total of 83 participants were recruited
through Amazon Mechanical Turk (AMT). Each participant
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Table 1: Example questions.

Difficulty Example
Hard The Sun and the planets in our Solar system all rotate in the same direction because: (a) they were all formed from

the same spinning nebular cloud, or (b) of the way the gravitational forces of the Sun and the planets interact
Easy Greenhouse effect refers to: (a) gases in the atmosphere that trap heat, or (b) impact to the Earth’s ozone layer

was compensated $1 for the 30 minutes the experiment was
expected to take, and assigned to one condition.

Design Participants could view the survey description on
AMT. If they selected the survey they were redirected to an-
other website. They were first directed to a study informa-
tion sheet which provided details of the survey and compen-
sation. If they agreed to continue, they were instructed to
answer some demographic questions. Participants were ran-
domly assigned to either a random condition (N = 44) or a
self-selection condition (N = 39), determining the subject’s
role in selecting which questions to answer. Participants were
not aware of the existence of other conditions. Each partici-
pant saw the questions in 5 blocks of 20 questions each. In
each block, they were instructed to rate the difficulty of each
question and then, if they were assigned to the opt-in condi-
tion, instructed to choose 5 of those 20 questions to answer.
The participants in the random assignment condition were
randomly assigned 5 questions from that block to answer. Af-
ter rating the difficulty of all 100 questions and answering 25
of them, participants were thanked for their time and given
instructions on how to receive payment.

Model
The model utilizes an IRT model to generate subjective la-
tent knowledge (the belief of a participant that she can an-
swer a question), which informs all aspects of participants’
responses including the observed accuracy and difficulty rat-
ings, as well as the metacognitive process of question selec-
tion. We describe participants as opting-in to questions for
which they believe they have knowledge, answering with ac-
curacy dependent on whether or not they believe they have
knowledge, and giving lower difficulty ratings when they be-
lieve they have knowledge.

We use an IRT model to generate the subjective latent
knowledge, δi, j, for each participant i (across both the opt-
in and random condition) and question j,

δi, j ∼ Bernoulli(logit−1(θi +η j)) (2)

where θi is the self-perceived skill of participant i, η j is the
perceived familiarity of question j, and logit−1(x) = ex

1+ex .
This latent knowledge is represented as a 0 or 1, indicating
whether or not that participant believes that she has knowl-
edge for that question. We place a Normal prior on the self-
perceived skill, θi ∼ Normal(0,σ), such that participants are
expected to have the same skill (on average) for both the self-
selection and random conditions.

For the self-selection condition, we assume that partici-
pants have a preference to select questions for which they
believe they have knowledge. Let c represent the observed
question selections with ci, j = 1 if question j was selected
by participant i. For each participant and question block, we
model question selection in the opt-in condition by a sam-
pling process:

ci ∼ SampleWR((δi,1 +κ, ...,δi,K +κ),M) (3)

where K is the total number of questions available for selec-
tion in each block (K=20 in our experiment), M is the number
of questions that need to be selected (M=5 in the experiment),
SampleWR(δ,M) represents a sampling without replacement
distribution where M items are sampled with probability pro-
portional to δ, and κ is a fixed parameter that controls the
randomness in the selection process. Higher κ values make
it more likely that questions are selected for which the par-
ticipant has no subjective knowledge. For participants in the
random condition, we assume that the questions are randomly
sampled by a process that is under control of the experimenter
(where M out of K questions are randomly allocated).

Let xi, j represent the observed accuracy for participant i on
question j. We do not assume a fixed relationship between
belief of knowledge and accuracy. For each question, we in-
troduce guessing rate parameters ρ j and λ j that control the
probability of correct responding if the participant does or
does not have subjective knowledge about a question:

xi, j ∼ Bernoulli(δi, jρ j +(1−δi, j)λ j) (4)

For example, with ρ = 0.8 and λ = 0.4, the probability of a
correct response is 0.8 if a participant has subjective knowl-
edge, but 0.4 if the participant does not. The guessing param-
eters are given Beta priors, ρ j ∼ Beta(α,β), λ j ∼ Beta(α,β)
where α and β are hyperparameters that control the variability
in guessing rates across questions.

To model the difficulty ratings, we use an ordered logit
model (Williams et al., 2006). We assume that subjective la-
tent knowledge informs the perceived difficulty of questions.
Questions for which the participant believes they have knowl-
edge are perceived as easier. Let φi, j represent the perceived
difficulty for participant i on question j. We determine the
perceived difficulty by:

φi, j =−δi, j−η jξ+ωi−β j +σi, j (5)

where β j and ωi capture participant and item level effects
(e.g. some participants might find all items easy, some items
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might be judged as easy) independent of subjective knowl-
edge. In addition, we also allow the perceived familiarity of
a question η j to affect the perceived difficulty weighted by a
fixed scaling parameter ξ. Finally, σi, j represent small pertur-
bations centered around 0 to explain the random variability
in difficulty ratings unrelated to any of the previous factors
mentioned. These perceived difficulties feed into the ordered
logit model to generate the difficulty ratings ri, j,

ri, j ∼ OrderedLogit(φi, j,τi) (6)

where τi is the set of criteria cutoffs for participant i.
We used JAGS to perform parameter inference. All pa-

rameters were inferred jointly from the opt-in and random
condition. All model predictions were derived from posterior
predictives where we simulate new participants from the dis-
tribution and assess how they self-select from a new set of
questions.

Results
We examine several empirical effects within the data and ob-
serve that the model captures the appropriate trend in most
cases.

Item selection and latent knowledge. The model cap-
tures the expected relationship between opting-in behavior
and knowledge (see Figure 2). Participants were more likely
to select questions for which they had pre-existing knowl-
edge. Each question was randomly assigned to at least four
participants in the random assignment condition. However,
in the opt-in condition, there were seven questions that no
participant chose to answer. Question selection strongly cor-
responded with the inferred latent knowledge (δi, j) for the
participant-question pair, with participants choosing ques-
tions for which they had latent knowledge. Across conditions,
latent knowledge is distributed in a similar manner: most par-
ticipants have knowledge for popular questions, few partic-
ipants have knowledge for unpopular questions, and some
participants are more knowledgeable than others. However,
the model has substantially more certainty about the localiza-
tion of this knowledge in the opt-in condition compared to
the random condition because it can leverage the opt-in be-
havior. In Figure 2, this certainty is expressed as black or
white squares, while uncertainty is represented in gray. We
see the uncertainty about which participants have knowledge
for which question as a “blurring” of the latent knowledge
space.

Effect of opting-in on participant performance. Average
performance across questions was higher in the self-selection
condition (86.05%) than in the random condition (67.27%).
We computed a Bayes Factor (BF) given a binomial distribu-
tion with a shared or different rate of correct responding and
find a Log10 BF of 21.12 in favor of a higher rate of correct
responding in the opt-in condition. This corresponds to de-
cisive evidence that average accuracy is higher in the opt-in
condition than the random assignment condition. This occurs
even when taking into account the fact that people tend to opt

Figure 2: Latent knowledge is similar between conditions and
corresponds to opting-in behavior. Plotted are the opt-in be-
haviors and average δi, j values across conditions, all sorted by
the popularity of the question in the opt-in condition. White
corresponds to questions that the participant opted in to or the
inferred presence of knowledge.

in to easier questions. In order to perform this analysis, we
took the product of the evidence that performance is higher
in the opt-in condition than the random assignment condition
for each question and find a Log10 BF of 9.02. So, even when
comparing on an item-by-item basis, opting-in provides an
advantage.

Effect of opt-in on model performance. For the model,
the average accuracy for posterior predictive samples in the
self-selection condition (mean = 79.03%) is also significantly
higher than in the random condition (mean = 67.07%), both
across all questions (99.86 % of samples) and even within
questions (68.93 % of sample-question pairs). We observe
this benefit in accuracy despite the average inferred abil-
ity of individual subjects (θi) being equivalent across con-
ditions: θi = 0.00, SD = 0.99 in the opt-in condition versus
θi = −0.09, SD = 2.04 in the random assignment condition.
This means that the benefit to accuracy that the model pre-
dicts is due to downstream consequences of the metacogni-
tive selection process and not an (inaccurate) inference that
participants in one condition were more skillful than in the
other.

Difficulty Ratings. Participants tended to give lower aver-
age difficulty ratings to questions that they opted in to (Log10
BF = 91.89) and higher average difficulty ratings to questions
that they did not opt in to (Log10 BF = 64.09), relative to the
random condition. The model captures, but understates, this
trend (see Figure 3).

Wisdom of the crowd. The left panel of Figure 4 shows
the relationship between crowd size and crowd accuracy for
the two conditions in the experiment, as well as a hybrid con-
dition in which the two groups are combined. The right side
of the Figure shows that the model captures this effect qualita-
tively. Crowd responses were determined by taking the most
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Figure 3: Distribution of difficulty ratings for participants and
model for questions that were selected or not selected in the
opt-in condition and the random condition. Lower ratings in-
dicate lower perceived difficulty.

common response across the participants in the crowd. Since
seven questions went unanswered in the opt-in condition, we
had to consider how unanswered questions impacted crowd
performance. To treat the self-selection condition maximally
conservatively, we graded any question that went unanswered
as incorrect for that crowd. Even with this penalty, the crowd
composed of the participants from the self-selection condition
(79%) outperformed the crowd of subjects from the random
condition (73%).

We also considered the impact of crowd size on perfor-
mance. To do this, we evaluated the average performance of
crowds composed of random samples of participants from a
condition and varied the number of participants drawn to form
the sample. We plot average crowd performance as a function
of the total number of judgments, where a judgment is a per-
son’s response to a question. The hybrid condition provides a
means of improving upon both conditions. To create a hybrid
crowd, we first sampled participants that answered the ques-
tion from the opt-in condition. If a question had no responses,
we added the answer from one participant in the random con-
dition in order to guarantee that all questions received at least
one answer. This hybrid crowd has high performance across
all questions. The model captures the general trends in the
data in that larger crowds result in higher crowd accuracy,
opt-in crowds outperform random-assignment crowds, and
the hybrid crowds perform well across all questions.

Additional simulations. Given our model, we investigated
which circumstances would likely lead to changes in the rela-
tive performance of the self-selection and random conditions
in terms of both average overall accuracy and crowd perfor-
mance. We varied the heterogeneity of perceived question
difficulty (η j) and latent ability (θi). We did this by simu-
lating experiments in which we varied the underlying hyper-
parameter corresponding to the variability of θi and η j by fac-
tors of 0.25, 1, and 4 while keeping other parameters constant

Figure 4: Crowd performance when varying the number of
participants (measured by the total number of judgments)

(see Figure 5). We find that increasing the heterogeneity of
perceived question difficulty increases self-selection accuracy
overall, but decreases it at the crowd level since participants
tend to avoid answering the same difficult questions. Het-
erogeneity in question difficulty does not have an apprecia-
ble impact on performance in the random condition. In both
conditions, higher heterogeneity of participant skill leads to
higher crowd performance and gives resilience to heteroge-
neously difficult questions in the opt-in condition. However,
it detracts from overall accuracy in the self-selection condi-
tion.

Figure 5: Simulated performance depending on variability of
question difficulty (η j) and participant skill (θi).

Conclusions
A comprehensive model of cognition must make allowance
for the fact that cognitive behavior is driven by motivations.
We choose what we attend to and attempt to encode, and
what we attempt to remember. Metacognitive behavior is at
the heart of most learning outside the laboratory, and a fair
amount within it as well (A. Benjamin & Ross, 2008). The
joint modeling of metacognitive behavior–like self-selection
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of items–along with cognitive performance has the potential
to address a wider and more representative range of real-
world learning and testing behaviors, and can serve as the
basis for drawing comparisons across individuals or tests that
would otherwise be hopelessly confounded. Additionally, the
model could be extended to explain various incentives given
to the participant, which would impact how latent knowl-
edge interacts with the task to generate opt-in behaviors. The
model presented here provides a starting point for such an
enterprise. It leads to a relatively good description of per-
formance across a variety of metrics. A single latent knowl-
edge state for each participant-question pair permits an ex-
plicit representation of the metacognitive process that gov-
erns the relationship between opt-in, accuracy, and difficulty
behaviors. The model is successful in describing the nonran-
dom missing nature of the data that we observed by relying on
principled psychological theories about why someone might
choose one question over another.

An additional lesson of the current research can be seen
in the crowd data. Opting in is generally beneficial to crowd
accuracy in both the observed data and our model. This re-
sult indicates that the metacognitive skill of the individuals
in self-selection can be leveraged in order to create a smarter
crowd. This effect is sufficiently robust that it appears to out-
weigh the cost associated with small crowd sizes for some
questions or no volunteered responses at all for a small num-
ber of questions. Such a result is particularly important when
considering the widespread availability of datasets in which
responses are self-selected.
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Abstract 

We tested whether conceptual processing is modality-specific 
by tracking the time course of the Conceptual Modality 
Switch effect. Forty-six participants verified the relation 
between property words and concept words. The conceptual 
modality of consecutive trials was manipulated in order to 
produce an Auditory-to-visual switch condition, a Haptic-to-
visual switch condition, and a Visual-to-visual, no-switch 
condition. Event-Related Potentials (ERPs) were time-locked 
to the onset of the first word (property) in the target trials so 
as to measure the effect online and to avoid a within-trial 
confound. A switch effect was found, characterized by more 
negative ERP amplitudes for modality switches than no-
switches. It proved significant in four typical time windows 
from 160 to 750 milliseconds post word onset, with greater 
strength in posterior brain regions, and after 350 milliseconds. 
These results suggest that conceptual processing may be 
modality-specific in certain tasks, but also that the early stage 
of processing is relatively amodal. 

Keywords: conceptual processing; time; modality switch; 
perceptual simulation; amodal; event-related potentials; ERP 

Introduction 

Research in the cognitive sciences has extensively 

investigated whether conceptual processing is modality-

specific (Barsalou, 2016). In a commonly used paradigm 

known as the Conceptual Modality Switch (CMS), 

participants perform a property verification task in which 

they decide whether certain property words can reasonably 

describe certain concept words. For instance, Pecher, 

Zeelenberg, and Barsalou (2003) presented sentences such 

as Blenders can be loud. Covertly, the conceptual modality 

of consecutive trials was manipulated in order to produce 

specific switches. A sentence like Blenders can be loud, 

which is mainly related to the auditory modality, could 

either be followed by a sentence within the same modality—

e.g., Leaves can be rustling—, or by a sentence in a 

different modality—e.g., Cranberries can be tart 

(gustatory). Pecher et al. found that when the modalities of 

consecutive trials did not match, participants took longer to 

respond. Such an effect suggested that perceptual features of 

concepts (operationalized in the modality shifts) are 

accessed during conceptual processing. More recently, 

however, the CMS effect was reanalysed using a non-

perceptual alternative, language statistics (i.e., how words 

co-occur in a language). Louwerse and Connell (2011) 

found that language statistics were able to approximately 

predict what modality a concept and property pair belonged 

to. Specifically, they could predict a visual/haptic modality, 

an olfactory/gustatory modality, and an auditory modality, 

but they could not predict the subtler differences between 

visual and haptic, and between olfactory and gustatory, 

which seemed to be reserved for perceptual simulations. 

Moreover, when a language statistics explanation and a 

perceptual explanation were compared against one another, 

faster response times (RTs) were best explained by language 

statistics, whereas slower RTs were best explained by 

perceptual simulations (for similar findings with switches in 

emotion, see Tillman, Hutchinson, Jordan, & Louwerse, 

2013). Louwerse and Hutchinson (2012) further replicated 

these findings in an Electroencephalography (EEG) 

experiment in which they showed that those cortical regions 

commonly associated with language processing are 

relatively more active in the beginning of processing, 

whereas those regions commonly associated with perceptual 

processing are relatively more active later on. These studies 

demonstrated that the time course of processing is important 

in the study of language statistics and perceptual simulation. 

Time Course of Effects in Word Processing 

The time course of word processing may be relevant for an 

effect such as the CMS. Hauk (2016) zooms into the one 

second during which a word is processed, proposing the 

following timeline. A reader or listener starts to identify a 

word and to access part of its meaning within around 150 

milliseconds (ms) from word onset. Building on that 

information, working memory processes emerge at around 

170 ms post word onset, followed by response-related 

processes at around 250 ms. Mental imagery and episodic 

memory are the last-emerging processes, both around 400 

ms post word onset. Once started, each of these processes 

extends further, gradually overlapping with each other. This 
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timeline suggests two important things about the earlier and 

the later stages of word processing. First, having an early 

emergence—e.g., at 250 ms—does not make an effect 

lexicosemantic per se because the meaning encoded could 

have gone through working memory before activating the 

actual system of interest, e.g., sensorimotor (Mahon & 

Caramazza, 2008). Second, it suggests that effects emerging 

later face that same challenge and, in addition, the potential 

influence of response-related and forthcoming processes. 

If even an effect measured online with high temporal 

resolution (EEG or Magnetoencephalography) may be 

subject to alternative causation, effects measured with lower 

temporal resolution (functional Magnetic Resonance 

Imaging) or off-line (RT) are arguably more challenged by 

this. With regard to the current topic specifically, sensory 

and motor effects may possibly be epiphenomenal to the 

representation of concepts online, independently of what is 

suggested by the measurements off-line or online lagged. 

There is a technique especially apt for testing the 

causality of cognitive systems, namely, Transcranial 

Magnetic Stimulation (TMS). Willems et al. (2011) found 

that comprehension of hand-related verbs was improved as a 

consequence of stimulating the hand area of premotor 

cortex. It was particularly improved when the TMS was 

applied in the hemisphere controlling the dominant hand. 

More recently, Vukovic et al. found an impairment in the 

processing of action-related words, along with an 

improvement in the processing of abstract words, after TMS 

was applied over motor cortex, 200 ms after word onset. 

The latter finding suggests that the contribution of modality-

specific systems (in this case, motor ones) can emerge 

relatively early (see also Amsel, Urbach, & Kutas, 2014; 

Van Dam, Brazil, Bekkering, & Rueschemeyer, 2014). 

In our view, two interlocked questions stand out in the 

current topic area. The causality question asks whether 

modality-specific effects reflect a functionally relevant 

simulation process or arise only after basic conceptual 

processing has been attained. The compatibility question 

asks whether different processing systems, amodal and 

modal, may compatibly operate in conceptual processing. 

Experiment 

We addressed the causality and the compatibility questions 

by revisiting the CMS paradigm (see most recent previous 

study in Scerrati, Lugli, Nicoletti, & Borghi, 2016). 

Tracking the Time Course of the CMS 

We measured the CMS online by time-locking Event-

Related brain Potentials (ERPs) to the onset of the first word 

in the target trials. We wanted to establish where exactly the 

effect—indexing access to perceptual information—

emerged, how far it extended, and the relative strength over 

the time course. These measures would allow us to 

relatively assess how strongly the CMS may be influenced 

by response-related and other extra-semantic processes (see 

Hauk, 2016). Concerning the compatibility question, 

previous research would predict an increase in the CMS 

effect over time because earlier processing is relatively 

amodal (Louwerse & Hutchinson, 2012). 

The three previous ERP studies on the CMS time-locked 

the measurement to property words placed last in the target 

trials (Hald, Marshall, Janssen, & Garnham, 2011; Collins, 

Pecher, Zeelenberg, & Coulson, 2011; Hald, Hocking, 

Vernon, Marshall, & Garnham, 2013). A potential problem 

of those measurements is a lack of certainty on the 

emergence of the effect, because a switch might reasonably 

emerge already at the first content word in the target trial. 

Therefore, in our design we placed the property word first in 

the target trial, and time-locked ERPs to its onset. This had 

an important advantage, as it helped avoid a confound 

caused by the relation between the property and the concept 

in each target trial (see Hald et al., 2013). The possibility of 

those two confounds—the lagged measurement and the 

within-trial relationship—could explain why the CMS effect 

has sometimes failed to appear in RTs (Hald et al., 2011; 

2013; Collins et al., 2011; Scerrati et al., 2016).  

We did not have clear hypotheses on what we would find 

as the time course of the CMS because we were the first to 

time-lock ERPs to the first word. Nonetheless, the effects 

found in the three ERP studies cited above were generally 

characterized as N400—linked to semantic violation—, with 

more negative amplitudes for modality switches than no-

switches. The earliest emerging effect appeared in Hald et 

al. (2011), in a time window from 270 to 370 ms. 

Different Switches and Processing Speeds 

In order to further explore the compatibility question, we 

drew on Louwerse and Connell (2011). As reviewed in the 

Introduction, they found that quick processing was able to 

pick up most switch types but missed the subtler ones, for 

instance, between haptic and visual. By contrast, slow 

processing had the advantage of picking up even those 

subtler switches. Here we brought these findings to a group 

design. We distinguished a Quick group of participants and 

a Slow group of participants based on their average RT. 

Maintaining the CMS as a within-subjects factor, we 

predicted that the larger modality switches (e.g., auditory to 

visual) would be picked up equally by both groups, whereas 

the subtler switches (e.g., haptic to visual) would be picked 

up only—or more clearly—by the Slow group. 

Method 

Accuracy Pretest The task was validated in a behavioural 

pretest (N = 19; Radboud U., Tilburg U.) revealing that all 

participants but one had an average response accuracy over 

50%, and the overall average was 63% (SD = 48 pp.). 

 

Participants Forty-nine participants—native speakers of 

Dutch with no relevant disorders—were recruited at the 

Max Planck Institute for Psycholinguistics. They were paid 

a small fee after participating. Participants were randomly 

assigned to one of three experimental groups: a Quick 

response group (n = 22), a Self-paced response group (n = 

21), and a Null group who got the same experimental design 

1630



as the Self-paced group but no instructions on response 

speed (n = 5) (see Figure 1). One participant had to 

prematurely leave the experiment. Another participant had 

to be removed from the data due to too noisy ERPs (7 

retained trials out of 108). Under visual inspection, all other 

participants’ waveforms—preprocessed and averaged per 

CMS condition—approximately presented the typical peaks 

of word reading. Last, one participant, the only one with an 

accuracy below 50%—i.e., 37%—, was also removed from 

further analyses. Forty-six participants remained. Because 

the Groups presented rather close, significantly equal RTs, 

we pooled them together and re-split them in two groups on 

the basis of each participant’s average RT. The effects CMS 

and CMS by Group were equally significant with the old 

and new groups in both ERPs and RTs. New groups were: 

Quick (n = 23; mean RT = 568.40 ms, SD = 104.83; age 19–

31, mean = 23.3; 19 females), and Slow (n = 23; mean RT = 

937.21 ms, SD = 265.56; age 18–25, mean = 22.2; 18 

females). The different tests—stimulus norming, pretest, 

and main experiment—did not share any participants. 

 

 
 

Figure 1: Schema illustrating materials, design, and procedure. Note that Groups were pooled and re-split (see Participants). 

Materials and Design As in previous CMS studies, the 

stimuli consisted of pairs of property and concept words, but 

we had a small novelty in this combination. Whereas 

previous studies presented the concept and the property in 

declarative sentences (Pecher et al., 2003; Louwerse & 

Connell, 2011; Hald et al., 2011), or with the concept 

followed by the property alone (Collins et al., 2011), the 

current experiment presented the property followed by the 

concept alone, e.g., Soundless Answer. In this design, as in 

most, the property word took the most relevant position for 

the measurement, because properties are generally more 

modality-specific than concepts (Lynott & Connell, 2013). 

The properties and concepts, all in Dutch, were partly 

based on Lynott and Connell’s (2009, 2013) norms. We 

normed our items similarly too, by asking forty-two 

respondents to rate 0 to 5 the extent to which they 

experienced each property or concept with the senses of 

hearing, touch, and vision. Then we computed the dominant 

modality of each word (Bernabeu, Louwerse, & Willems, in 

prep.). Next, we created 216 trials by joining properties and 

concepts within the same modalities.1 Half of the trials 

contained a fairly related property and concept, while the 

other half presented rather unrelated pairs. These 

                                                           
1 Olfactory and gustatory words were not used because there 

were too few in our candidate stimuli, and were not required.  

relationships served to engage participants in a semantic 

task, yet conveniently did not affect the ERP measurement 

because ERPs were measured before the concept word was 

presented in each trial (Figure 1). In spite of this, we wish to 

acknowledge that some trials came out rather unnatural—

Lukewarm Volume—or fuzzy—Solid Ideal—because they 

were created out of a fixed set of modality norms (Bernabeu 

et al., in prep.). In order to alleviate that problem, the 

instructions of the experiment stated that the accuracy 

feedback following every response was based on the 

answers of previous participants (in reality, it wasn’t). 

Furthermore, the stimuli and the task were validated by the 

accuracy rates in the pretest and in the main experiment. 

For the critical CMS manipulation, trials were covertly 

paired as context and target trials. This was done pseudo-

randomly within participants and CMS conditions by using 

the software PresentationTM. Three conditions were 

created—Auditory-to-visual, Haptic-to-visual, and Visual-

to-visual—, each with 36 context trials and 36 target trials. 

One auditory-to-visual switch for one participant was: 

Soundless Answer | Bumpy Wage (bold added to ERP-target 

word). For another participant, the latter target trial was 

instead preceded by the context trial Loud Welcome. The 

pseudo-randomization ensured that ERP-target words 

(properties) were matched across CMS conditions on the 
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essential criteria—word frequency and length (letters), and 

semantic class. Also, ERP-target words occurred only once. 

 

Procedure The entire experiment was in Dutch. By means 

of written instructions, participants were asked to respond in 

each trial whether the first word, a property, could be used 

to describe the second word, a concept. Two buttons were 

used to respond. An example was provided based on the 

property ‘grey’ and the concept ‘snow.’ Snow is often 

white, but it can also be grey. By contrast, a property that 

would not match is ‘pink.’ Then, the instructions diverged 

for the different groups of participants: while the Quick 

group was asked to respond as quickly as possible in every 

trial, the Self-paced group was asked to respond self-paced, 

and the null group was altogether unconstrained (see design 

constraints for each group in Figure 1). Further, the 

instructions stated that feedback would be provided for each 

response, and that this was based on all preceding answers 

(although it was not), and therefore participants need not 

worry too much about mistakes. Last, they were asked to 

move or blink as little as possible, and do so only while the 

cross was on the screen. Twelve practice trials ensued, after 

which participants could ask questions. The experiment ran 

on PresentationTM. The experiment proper lasted about 20 

minutes, with a break in the middle. Taking into account 

EEG procedures, it lasted about 1 hour and 45 minutes. 

 

ERP Recording and Preprocessing The EEG signal was 

recorded with BrainVision Recorder 1TM, in differential 

mode, utilizing 65 active Ag/AgCI electrodes. The ground 

electrode was positioned just above the nose, at the glabella. 

Three other electrodes were used to register eye movements, 

two placed at the outer canthi of each eye, and one placed 

below the left eye. The remaining 59 electrodes were 

mounted in a custom, equidistant ActiCap cap. Impedance 

was kept below 10 kΩ by applying electrolyte gel at the tip 

of each electrode. The signal was amplified through 

BrainAmp DC amplifiers with a bandpass filter of 0.016–

100 Hz, and an online sampling frequency of 500 Hz (i.e., 

every 2 ms). Afterwards, the signal was preprocessed in 

BrainVision Analyzer 2TM, with the following steps: CMS 

condition segmentation, automatic ocular correction, 200 ms 

baseline correction, artefact rejection via semi-automatic 

segment selection.2 The proportion of segments (trials) 

retained from the 46 final participants was: 77.4% in the 

Visual-to-visual condition, 78.0% in the Haptic-to-visual 

condition, and 78.6% in the Auditory-to-visual condition. 

                                                           
2 Segment selection (partly based on the Brian Vision Analyzer 

tutorials at http://www.erpinfo.org/the-erp-bootcamp.html). The 

critical period spanned from 300 ms before target onset to 800 

ms after target onset (the period before onset is 100 ms longer 

than the general baseline of the ERPs because that improved the 

selection of segments). Gradient: 75 µV/ms. Threshold for 

difference between maximum and minimum voltage in segment: 

±150 µV (this was increased or decreased by up to 40 µV in a 

minority of cases where the automatic selection yielded too 

noisy waveforms), interval length 200 ms. Amplitude: -100 µV, 

+100 µV. Low activity: 0.5 µV, interval length 50 ms. 

ERP Analysis The ERPs, averaged per CMS condition, 

were downsampled to 125 Hz due to computational 

demands. Electrodes were divided into an anterior and a 

posterior area (also done in Hald et al., 2011). Albeit a 

superficial division, we found it sufficient for the research 

question. Time windows were selected as in Hald et al., 

except for the last window, which was extended up to 750 

ms post word onset, instead of 700 ms, because the 

characteristic component of that latency tends to extend 

until then, as we confirmed by visual inspection of these 

results. Window 1 was meant to capture N1-P2 components, 

window 2 the pre-N400, window 3 the N400, and window 4 

the LPC/P600. Analyses were performed in the software R. 

Results 

All final participants responded correctly in over half of the 

trials. The average accuracy was 63% (SD = 48 pp.), nearly 

identical in each participant Group and CMS condition.3 

 

ERPs The ERP results revealed a CMS effect from time 

window 1 on, larger after 350 ms. It appeared with both 

switch conditions, and was characterized by a more negative 

amplitude for the switch conditions compared to the no-

switch condition. In certain parts over the time course, the 

effect appeared in both anterior and posterior areas, and in 

both participant groups, but it was generally stronger in the 

posterior area and in the Slow group (Figure 2). 

The ERPs per window were analyzed with Linear Mixed 

Effects models (lmer R package). Random intercepts and 

slopes, and fixed effects, were tested with the critical factors 

and interactions, as well as with potential confounds, e.g., 

handedness, sex, age. Each inclusion was tested in a 

stepwise fashion based on the significance of the Likelihood 

Ratio. The final models presented good fits, with R2 ranging 

from .748 (time window 4) to .862 (time window 2). Table 

1 sums up the results. First, the CMS effect in time window 

1 was confirmed significant (see detailed waveforms in 

Figure 3). Such an early emergence is unprecedented in the 

CMS literature, and it may have been enabled by the time-

locking of ERPs to the first word in target trials. In this time 

window, the only process not lexicosemantic is possibly 

working memory (Hauk, 2016), and therefore this early 

emergence lends support to the possibility that the CMS had 

a lexicosemantic basis (but see Mahon & Caramazza, 2008). 

Whereas in time window 1 (160–216 ms), the CMS effect 

was circumscribed to an interaction with Brain Area 

(anterior/posterior), by time window 2 (270–370 ms) a main 

effect of CMS emerged. Finally, in window 3 (350–550 ms) 

and window 4 (500–750 ms), the only critical effect was 

CMS. Window 3 presented the largest main effect of CMS. 

Planned ANOVA contrasts into CMS conditions, corrected 

for multiple comparisons, revealed that the no-switch 

condition differed significantly from the switch conditions. 

                                                           
3 Quick group: Auditory-to-visual: 62% (SD=48 pp.). Haptic-to-

visual: 61% (SD=49 pp.). Visual-to-visual: 63% (SD=48 pp.).  

Slow group: Auditory-to-visual: 64% (SD=48 pp.). Haptic-to-

visual: 64% (SD=48 pp.). Visual-to-visual: 64% (SD=48 pp.).  
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Figure 2: Data per Group and Area, with 95% Confidence 

Intervals every 2 ms, and time windows. Negative up. 

 
Table 1: Effect of CMS and its interaction with Ant./Pos. 

brain Area and with Group. ***p < .001; **p < .01; *p < .05. 

 

Time window Factors Effect: χ2 

1) 160–216 ms 

CMS 1.40 

CMS x Ant/Pos Area 48.59*** 

CMS x Ant/Pos Area x Group 23.63** 

2) 270–370 ms 

CMS 6.40* 

CMS x Ant/Pos Area 10.89** 

CMS x Ant/Pos Area x Group  4.13*** 

3) 350–550 ms CMS 9.47** 

4) 500–750 ms CMS 7.58* 

 

By contrast, the switch conditions hardly differed from each 

other—statistically equal in some sections of the data—, 

fitting the CMS effect. The fit of these follow-up ANOVAs 

was high in time windows 1 to 3, and medium in window 4.  

Although the interaction of Group and CMS was only 

significant in time windows 1 and 2, the waveforms in 

windows 2, 3, and 4 presented a pattern that precisely fitted 

 
 

Figure 3: Subset of electrodes from the Slow group at time 

window 1 (the Quick group presented a slightly smaller but 

also significant effect). Y-axis ranges from -1 μV to +4 μV. 

Red labels signal the equivalents in the 10-20 montage.  

 

our predictions based on Louwerse and Connell (2011). 

Whereas the Slow group picked up the switches across all 

modalities similarly, the Quick group picked up the 

Auditory-to-visual switch more clearly than the Haptic-to-

visual switch, fitting with an amodal-modal compatibility. 

 

RTs This design was tailored to measure ERPs. RTs were 

not reliable enough regarding the CMS because the last 

word in the target trials—critical for RTs—had not been 

matched across conditions on the essential criteria (see 

Materials section above). Nonetheless, we analysed RTs, 

statistically controlling for the confounds. No effects 

involving CMS were found, all ps < .05 (model R2 = .552). 

Discussion 

CMS effects are a well-known, replicated demonstration of 

the relevance of modality-specific information for 

conceptual processing. In the current study, we tracked this 

effect online in order to ascertain at what stages perceptual 

information is processed, and in what degree (see Mahon & 

Caramazza, 2008; Hauk, 2016). Time-locking ERPs to the 

onset of the first word in the target trials brought the added 

advantages of cancelling confounds within the target trial 

and measuring the effect at the onset, un-lagged. On the 

other hand, this design had the disadvantage of some 

unnatural stimuli. In spite of these novelties, though, our 

broad randomization of trials and the results found suggest 

that this experiment preserved the essence of the CMS 

paradigm. We found the CMS effect emerging at the start of 

lexicosemantic and working memory processing, then 
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increasing through the rest of word processing. The virtually 

immediate effect upon word recognition offers further 

support for the suggestion that sensory brain regions have a 

functional role in conceptual processing, at least in a fairly 

demanding semantic analysis as in the current task (see 

Louwerse & Hutchinson, 2012). Solving the causality 

question, nonetheless, may require in the future more 

fundamental research on word processing, in addition to 

TMS-based work, in order to qualify the degree of semantic 

and post-semantic processing in an effect (see Hauk, 2016). 

The increase in the CMS effect over the time course 

converges with previous findings in suggesting that 

distributional processing—language statistics—may play a 

greater role earlier on (Louwerse & Connell, 2011; 

Louwerse & Hutchinson, 2012). This early-late distribution 

fits with Hauk’s (2016) word processing timeline, where the 

early stage has a greater relative proportion of 

lexicosemantic processing, which would presumably 

support language statistics. Increasing evidence on the 

compatibility of amodal and modal/embodied processing 

invites further research. Concerning the CMS specifically, 

we still need to establish whether this effect can best be 

explained by language statistics or by perceptual 

simulations. The current work at least demonstrates that it 

emerges early and increases throughout word processing. 
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Abstract 

We propose a theoretical framework for understanding how 
everyday choice objects are represented and how decisions 
involving these objects are made. Our framework combines 
insights regarding object and concept representation in 
semantic memory research with multiattribute choice rules 
proposed by scholars of decision making. We also outline 
computational techniques for using our framework to 
quantitatively predict naturalistic multiattribute choices. We 
test our approach in two-object and three-object forced choice 
experiments involving common books, movies, and foods. 
Despite using complex naturalistic stimuli, we find that our 
approach achieves high predictive accuracy rates, and is also 
able to provide a good account of decision time distributions. 

Keywords: Multiattribute choice, Semantic memory, 
Naturalistic decision making, Judgment and decision making 

Introduction 

Most choices that people make on a day-to-day basis, from 

the books they read to the foods they eat, involve trading off 

attributes, so as to select the object whose attributes are 

overall the most desirable (Keeney & Raiffa, 1993). There 

is, however, a disconnect between the way in which 

multiattribute choices are currently studied, and the way in 

which these day-to-day choices are typically made. Most 

multiattribute choice experiments explicitly present choice 

objects and their attributes to participants in a matrix of 

numerical quantities (e.g. Figure 1a). Everyday decisions, in 

contrast, are not usually composed of objects with a small 

set of explicitly presented and quantified attributes. Rather 

the objects in these decisions are much richer and complex 

(e.g. Figure 1b). Decision makers do have knowledge about 

these objects and their attributes, but this knowledge is 

represented in the decision makers’ minds after having been 

learnt through prior experience with the choice domain.   

 

 
Figure 1a and b. Stimuli presentation in standard multiattribute 

choice experiments (left) and in Study 1 (right). 

 

The divergence between the stylized stimuli used in 

current research and the complex multiattribute choices 

made in real-world settings is problematic. Choice processes 

and resulting behaviors depend greatly on the ways in which 

attributes and objects are presented (e.g. Kleinmuntz & 

Schkade, 1993) suggesting that real-world decisions, which 

seldom involve actual attribute-by-object matrices, may be 

different to the types of decisions observed in current 

experimental work. More importantly, by using artificial 

designs in which the attributes of objects are directly 

presented to decision makers, existing theoretical work has 

largely ignored the role of object representation. Storing, 

retrieving, and processing attribute information about the 

objects in a given choice problem is a pivotal part of the 

decision process, and a complete account of choice requires 

an approach that is able to specify the mechanisms involved 

at this stage in the decision, well as the relationship between 

these mechanisms and the final outcomes of the decision 

(see Bhatia, 2013 for a discussion).  

This paper provides a theoretical framework capable of 

addressing these issues. It relies on insights in semantic 

memory research which suggest that low-dimensional 

attribute spaces are used to represent objects and concepts.  

For example, multi-dimensional scaling (Shepard, 1962) 

passes similarity ratings through a matrix decomposition 

algorithm, resulting in the recovery of a small number of 

latent attributes that best describe the structure of similarity 

for a given domain. Likewise, distributional models of 

semantic memory typically learn low-dimensional word 

representations through natural language. Some approaches, 

like latent semantic analysis, use singular value 

decomposition to perform dimensionality reduction on 

word-context occurrence matrices (Landauer & Dumais, 

1997). Others use Bayesian statistics or convolution based 

associative memory, but also result in low-dimensional 

representations for words (see Jones et al., 2015).   

We suggest that these insights extend to everyday 

multiattribute choice, so that decision makers can be seen as 

using the distribution of observable features across choice 

objects in the environment to uncover low-dimensional 

latent attributes for representing the objects. Furthermore, 

we propose that it is these latent attributes that are evaluated 

and aggregated during the decision process. For simplicity 

we suggest that the recovery of latent attributes can be 

approximated using singular value decomposition on the 

observable feature space (as in e.g. Landauer & Dumais, 

1997), and that the evaluation of the latent attributes can be 

approximated with a linear model with decision weights for 

each latent attribute (as in e.g. Keeney & Raiffa, 1993).  

We also propose computational techniques for uncovering 

the latent attribute representations of common choice 
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objects. Particularly, keywords, tags, and other natural 

language descriptors for choice objects on internet websites, 

can be considered suitable proxies for the observable 

features of these objects. For a sufficiently rich online 

dataset, it is possible to train semantic models and learn the 

latent attribute representations for the objects in a choice 

environment, and subsequently examine peoples’ choices 

between these objects.  

Framework 

Let us consider a choice domain with N total objects. 

Each of these objects has a set of observable features, and 

can be written as a vector of these features. If there are M 

total unique features in the environment, then each for 

object i we have xi = (xi1, xi2, … xiM), with xij = 1 or xij = 0 

based on whether or not feature j is present in object i. 

Singular value decomposition involves processing the 

matrix X = [x1, x2, … xN] to obtain L << M latent attributes, 

corresponding to the L largest singular values of X. Using 

these singular values, we can represent an object i as zi = 

(zi1, zi2, … ziL), with zij corresponding to the association 

between the object and the jth
 latent attribute. Note that M 

can be very large in many naturalistic choice domains, 

whereas L is typically much smaller.  

The use of latent attributes for representing objects 

implies that our approach retains the multiattribute structure 

assumed by theoretical decision making research. Thus we 

can take common multiattribute decision rules and apply 

them very easily to latent attributes. We use a simple linear 

rule, which specifies a decision weight for each attribute and 

aggregates weighted attributes into a measure of utility for 

an object (Keeney & Raiffa, 1993). The object with the 

higher utility is the one that is most frequently chosen. In 

the context of the latent attribute structure outlined here, this 

involves specifying an L dimensional vector of weights w = 

(w1, w2, … wL), and multiplying the latent attributes for an 

object i by these weights, so as to obtain the utility for the 

object Ui = w ∙ zi. In order to permit random noise in the 

choice process we embed our utilities in the logit choice rule 

(Luce, 1959). In a two-object choice this specifies the 

probability of choosing an object i over another object i' as 

Pr[i chosen] = eUi)/(eUi + eUi’) = ew ∙ zi/(ew ∙ zi + ew ∙ zi’). For the 

general case with N’ choice objects we have Pr[i chosen] = 

eUi/(Σn = 1 .. N’ eUn).  

In order to test our approach and illustrate its applicability 

we first need to uncover the actual attribute representations 

that characterize common choice objects. In related 

domains, such representations are usually obtained by 

asking experimental participants to generate features that 

describe the meaning of a given word (e.g. McRae et al., 

2005). However common choice domains are so vast 

(involving thousands of features for thousands of objects) 

that the experimental elicitation of these feature norms may 

not practical. Thus we suggest that user-generated 

keywords, tags, and other descriptors for common choice 

objects on online datasets can be seen capturing the 

observable features that best describe the various objects. 

In this paper, we use three large online datasets: 

www.GoodReads.com, which contains user-generated 

bookshelves for thousands of books; www.IMDB.com, 

which contains user-generated keywords for thousands of 

popular movies; and www.AllRecipes.com which contains 

user-specified ingredients for thousands of dishes. We 

scrapped these websites in 2014, and for each website we 

attempted to obtain as much information (as many objects 

and associated features) as was technically feasible. We 

obtained a total of 372,186 unique shelves for 15,737 books 

for the www.GoodReads.com dataset, a total of 160,322 

unique keywords for 44,971 movies for the 

www.IMDB.com dataset, and a total of 24,688 unique 

ingredients for 39,979 recipes for the www.AllRecipes.com 

dataset. Using these user-generated descriptors as our 

observable features, each of the N objects in each of the 

three datasets can be written as an M-dimensional feature 

vector xi = (xi1, xi2, … xiM), with xij = 1 if object i (a book, a 

movie, or a food dish) has observable feature j (a keyword, a 

shelf, or an ingredient).  A singular value decomposition on 

X = [x1, x2, … xN] can be subsequently performed to obtain L 

<< M latent attributes for the datasets.  

Study 1 

In Study 1 we tested whether our theoretical framework 

and the computational techniques for applying this 

framework, actually predict peoples’ everyday 

multiattribute choices. This is the primary experiment in this 

paper: It involves incentivized choices in the laboratory with 

reaction time measures. In later studies we examine variants 

of this design using non-incentivized online samples.  

Method. In this study, 73 participant made binary choices 

between pairs of popular books. Participants were recruited 

from a university subject pool, and performed the study in a 

behavioral laboratory on computer screens. Participants 

were also incentivized, and one of their chosen books was 

selected at random and given to them at the end of the study. 

Unlike most existing multiattribute choice experiments, 

the choice objects were not presented alongside a set of 

quantifiable attributes (as in e.g. Figure 1a). Rather they 

were shown to participants using just the covers of the 

books and the accompanying titles (as in e.g. Figure 1b). 

Overall, each of the 73 participants made 220 choices 

involving 150 unique books. The books used in this study 

were obtained from 30 different popular genres on 

www.GoodReads.com.  

Model Fitting. We fit participant choices using the latent 

attributes recovered from a singular value decomposition 

(SVD) on the www.GoodReads.com data.  We allowed the 

number of underlying latent attributes, L, to vary across 

participants. For a given value of L, we used the L latent 

attributes with the highest singular values from the SVD on 

the www.GoodReads.com dataset. In order to ensure 

sufficient degrees of freedom for estimating decision 

weights, we restricted L to a maximum of L = 100 (and a 

minimum of L = 2). In essence this leads to a total of 99 

unique models for each participant, corresponding to L = 2, 
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L = 3, … L = 100. with a separate set of best fitting 

participant-level attribute weights for each model. The 

values of the 150 books in our study on the two latent 

attributes with the largest singular values are shown in 

Figure 2. Figure 2 also shows the ten shelves with the 

largest absolute weights for these two latent attributes.  

 

 
 

Figure 2. The values of the 150 books in Study 1 on the two latent 

attributes with the largest singular values, alongside the ten shelves 

with the largest absolute weights for these two latent attributes. 

 

In order to avoid overfitting, we used ten-fold cross-

validation to test predictive accuracy and find the best 

performing model (i.e. best performing value of L) for 

describing each participant’s choices. For model training, 

we recovered the weighting vector w that provided the best 

fit to the training data, with the assumption of a linear 

choice rule embedded in a logistic link function. This vector 

(whose dimensionality depended on the dimensionality of 

the model (value of L) in consideration), was recovered 

using maximum likelihood estimation. For model testing we 

calculated the proportion of choices in the test data 

predicted accurately by the recovered w for each model. A 

choice is considered to be predicted accurately if the utility 

assigned to the chosen option by the model in consideration 

is higher than the utility assigned to its competitor. 

Ultimately, the value of L and corresponding weight vector 

w with the highest accuracy on the test data was considered 

to be the overall best fitting model.  

Results.  The mean accuracy of our approach for 

predicting the test data is 83% (SD = 0.08), significantly 

above a baseline accuracy of 50% (p < 0.01). Additionally, 

the average best fitting value of L across our participants is 

39.67 (SD = 27.95. Table 1 summarizes statistics regarding 

model accuracy. 

 

 
 

Table 1. Summary of model fits. Mean”, “Std. Dev.” and 

“Median” indicate the distribution of best-fitting model accuracy 

rates on test data across participants.  “Best Fit” describes the 

proportion of participants for which the model has the highest 

accuracy (these proportions sum to greater than one as models are 

sometimes tied) and “Significant” indicates the proportion of 

participants that outperform the baseline model with p < 0.05. 

 

One possibility is that our technique achieves its high 

accuracy rates by allowing flexible weights across a large 

number of dimensions. In order to control for this, we 

attempted the above model-fits with randomly generated 

attribute vectors. Particularly, for each participant and each 

object offered to the participant, we artificially created a 

100-dimensional vector with each dimension randomly and 

uniformly distributed in the range [0,1]. We then performed 

a 10-fold cross validation procedure that examined the fits 

of linear models with flexible weights for L dimensions of 

the random vectors. With this approach we found the mean 

accuracy to be 69% (SD = 0.08) Additionally, 84% of 
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participants achieved a higher accuracy rate using the 

recovered latent attributes from www.GoodReads.com, 

compared to the randomly generated vectors (and 8% of 

participants had equal accuracy with both approaches). A 

participant-level paired t-test indicates shows that this 

difference is significant (p < 0.01). Table 1 provides further 

statistics involving the random vectors approach. 

Another alternative to our SVD-based attributes involves 

the use of the raw observable features for the books. Of 

course it is impossible to actually recover separate decision 

weights for each of these observable features. However, we 

can use well-known decision heuristics applied to these 

observable features. For example, using the lexicographic 

heuristic (Tversky, 1969) would involve considering only a 

single feature, and choosing the object that is the most 

desirable on this feature. Likewise, applying the tallying 

heuristic (Russo & Dosher, 1983) would involve counting 

up the positive and negative features of each choice object, 

and choosing the object with highest number of positive 

features relative to negative features. We applied these two 

heuristics to participant-level choice using 10-fold cross 

validation. For the lexicographic heuristic we used the 

training sample to determine which of the object’s features 

has the highest absolute correlation with choice. We then 

used this single feature to predict the choices on our test 

sample. For the tallying heuristic, we used the training 

sample to determine whether each of the features were 

positively or negatively correlated with choice. If they were 

positively correlated with choice, they received a weight of 

+1, and if they were negatively correlated with choice they 

received a weight of -1. These weights were then applied to 

the observable features in the test data to predict choices 

according to the tallying heuristic.  

We found that the lexicographic heuristic achieved a 

mean accuracy rate of exactly 50% (SD = 0.03), indicating 

that it is not a suitable way of making multiattribute choices 

with such large features spaces. In contrast, the tallying 

heuristic achieved a mean accuracy rate of 72% (SD = 0.09). 

When comparing these heuristics with our latent attribute 

approach, we found that all participants were better fit by 

our approach compared to the lexicographic heuristic, and 

that 78% of participants were better fit by our approach 

relative to the tallying heuristic (with another 16% tied). 

The differences in accuracy rates shown here are 

statistically significant when evaluated with a paired t-test 

(p < 0.01 for both heuristics). Table 1 provides further 

statistics involving the lexicographic and tallying heuristics. 

How well do our model fits predict decision time? We can 

perform this test by embedding our best fitting utilities into 

a drift diffusion model (Ratcliff & Rouder, 1978). Our 

utilities are a measure of the desirability of the objects and, 

within the drift diffusion framework, are likely to determine 

the drift rate. We can formalize this by allowing the mean 

drift rate in the drift diffusion model to be a linear function 

of the best fitting utility difference. Thus, for trial a for 

participant b, we can write this mean drift rate as vab = β0 + 

β1∙(Uab
L – Uab

R). Here Uab
L is the predicted utility for the left 

option in the trial for the participant, based on the best 

fitting model for the participant. Likewise, Uab
R is the 

predicted utility for the right option. β1 is a multiplier 

mapping this utility difference on to a drift rate, and β0 is an 

intercept term capturing an absolute bias in drift for the left 

option. In this model, hitting the upper boundary leads to the 

left option being selected, whereas hitting the lower 

boundary leads to the right option being selected.  

We fit this modified drift diffusion model permitting trial-

to-trial variability in starting points and trial-to-trial 

variability drift rates. For this purpose, we adopted a 

hierarchical model fitting approach, as implemented by the 

HDDM toolbox (Wiecki et al., 2013). This approach 

recovers group mean parameters for the decision threshold, 

non-decision time, drift rates, trial-to-trial variability in 

starting points, trial-to-trial variability, and trial-to-trial 

variability drift rates, while also permitting individual 

differences in these parameters. Importantly this toolbox 

makes it easy to fit linear functions for drift rates as we wish 

to do in this paper. The best fitting group mean parameters 

from our specification, as recovered by the diffusion 

analysis, are presented in Table 2. Again β1 represents the 

weight on utility difference in the drift term. As can be seen, 

the bulk of the distribution of this parameter lies above 0, 

indicating that the best fitting utility difference has a strong 

positive relationship with mean drift in the model. Table 2 

also displays the deviance information criterion (DIC) value 

for this fits.  

 

 
 

Table 2. Summary of best fitting group mean parameters for the 

drift diffusion model fits in Study 1.  Here β1 represents the weight 

on utility difference in the drift term, in the full model. The 

restricted model sets this to 0. DIC indicates the deviance 

information criterion value for the fits.  

 

In a related analysis, we fitted a simplified version of this 

model in which β1 = 0, and drift is independent of the 

predicted utility difference. As shown in Table 2, the fits for 

this model, measured through the deviance information 

criterion (DIC), are much lower than those for the extended 

model, suggesting that the utility differences specified by 

our approach do improve reaction time predictions in 

naturalistic multiattribute choice tasks. 
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Studies 2-5 

As a secondary demonstration we applied our approach to 

two other domains: food choice and movie choice. We 

conducted a series of online studies offering participants 

two-object and three-object choices between various food 

dishes and between various movies, and we predicted these 

choices using latent attributes obtained from user-generated 

ingredients on www.AllRecipes.com and user-generated 

keywords on www.IMDB.com. 

Method. In Study 2, 90 participants recruited from 

Amazon Mechanical Turk made 200 binary choices between 

various food dishes. The food dishes were obtained from 

www.AllRecipes.com, and there were a total of 100 unique 

food dishes used in the study (which were the most popular 

dishes on www.AllRecipies.com). Choices in this study 

were presented on the screen using just the names of the 

dishes. Participants had to click on the names in order to 

indicate their choices. In Study 3, 88 participants recruited 

from Amazon Mechanical Turk made 200 three-object 

choices between various food dishes. The dishes used were 

the same as those in Study 2, and their presentation was 

identical to that in Study 2 (except that each screen offered 

three different choices, instead of two). Participants in both 

Studies 2 and 3 were compensated with money.  

In Study 4, 75 participants recruited from an 

undergraduate student participant pool made 200 three-

object choices between different movies. There were a total 

of 100 unique movies used. These were the 100 most 

popular movies on www.IMDB.com (Internet Movie Data 

Base). The choices were presented on the computer screen 

using just the names of the movies and their IMDB movie 

posters. Participants had to click on the movie name or 

poster in order to indicate their choices. Participants were 

compensated with course credit. Study 5 was identical to 

Study 4, except that participants were recruited from 

Amazon Mechanical Turk. There were 223 total participants 

in this study, and they were compensated with a monetary 

payment.  

Model Fitting. The model fitting in Study 2 was identical 

to Study 1, except that the latent attributes were recovered 

from a singular value decomposition on the 

www.AllRecipes.com data. Study 3 used a very similar 

model fitting technique, except that instead of a binary logit 

choice rule, there was a three-object (multinomial) logit 

choice rule. Studies 4 and 5 also used this choice rule, 

applied using latent attributes recovered from a singular 

value decomposition on the www.IMDB.com data.  

Results. The accuracy rates from our analysis for the 

Studies 2-5 are displayed in Table 1.  The mean accuracy 

for Study 2 is 78% (SD = 0.10), the mean accuracy for 

Study 3 is 74% (SD = 0.13), the mean accuracy for Study 4 

is 79% (SD = 0.14) and the mean accuracy for Study 5 is 

80% (SD = 0.12). All of these are significantly (p < 0.01) 

higher than the baseline accuracy of 50% (for Study 2) and 

33% (for Studies 3-5).  

We also found that the best fitting latent attribute models 

have a relatively low dimensionality, for most participants. 

Overall, the average best fitting value of L (i.e. number of 

dimensions) across our participants is 31.95 (SD = 28.55) 

for Study 2, 56.02 (SD = 27.18) for Study 3, 50.05 (SD = 

28.12) for Study 4, and 52.64 (SD = 25.93) for Study 5. 

Table 1 also displays the results of a random vector model 

for these studies. Again it shows that the majority of 

participants are better described by our approach relative to 

the random vector approach. Finally, Table 1 shows the fits 

of the lexicographic and tallying heuristics. For Study 2, 

these fits are performed similarly to Study 1. However, 

Studies 3-5 involve three object choice. Thus the weights 

for the individual features necessary for fitting these 

heuristics cannot be obtained through a simple correlation 

analysis between the relative presence or absence of a 

feature and the choice in a trial. Instead we calculated, for 

each feature in each trial, Relative Presence = C – 0.5[UC1 

+ UC2]. Here C = 1 if the feature is present in the chosen 

option and 0 otherwise. Likewise, UC1 = 1 if the feature is 

present in the first unchosen option and 0 otherwise, and 

UC2 = 1 if the feature is present in the second unchosen 

option and 0 otherwise. For each feature, we summed 

Relative Presence over all the observations in the training 

data for the participant in consideration. This gave us a 

measure of the Total Relative Presence of the feature in the 

chosen options for the participant. For the lexicographic 

heuristic, we then selected the single feature with the 

highest absolute Total Relative Presence for the participant 

in the training data, and used this feature to predict the 

participant’s choices in the test data. For the tallying 

heuristic we recoded the Total Relative Presence for a 

feature to generate a weight of +1 if Total Relative Presence 

was positive and -1 if it was negative. These binary weights 

were then used to predict the participant’s choices according 

to the tallying heuristic. Using this approach, we again 

found that the lexicographic and tallying heuristics were out 

performed by the latent attribute approach, as shown in 

Table 1.  

Discussion 

In this paper we have proposed that decision makers use 

low-dimensional latent attributes in order to make decisions 

in naturalistic multiattribute choice settings. We have 

obtained latent attribute representations for various 

everyday choice objects using user-generated object 

descriptors in large online datasets, and in five experiments, 

have predicted participant choices between these objects by 

fitting linear models with our latent attributes. Our fits 

reveal that our approach provides high accuracy rates, which 

significantly outperform accuracy rates obtained through 

other sophisticated methods (such as linear models with 

random attribute vectors, and lexicographic and tallying 

heuristics). The best fitting models in our analysis often 

have small or moderate number of dimensions. 

Additionally, these models are able to quantitatively predict 

decision times, when their estimated utilities are embedded 

within a drift diffusion process.  
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Our primary theoretical contribution involves the formal 

characterization of the processes involved in choosing 

between everyday choice objects.  In doing so we extend 

insights from semantic memory research to the field of 

multiattribute decision making. The resulting framework 

attempts to describe all key aspects of the decision process, 

from the learning of object representations for common 

choice objects, to the use of these representations for 

evaluation and decision making. This is in contrast to most 

theories of multiattribute choice, which specify the 

mechanisms involved in aggregating decision attributes but 

seldom attempt to describe what these attributes actually are 

(see Bhatia, 2013 for a discussion). 

Our results suggest that dimensionality reduction is not 

only at play in representing words, concepts, and various 

non-choice objects (as in e.g. Landauer & Dumais, 1997; 

Shepard, 1962) but is also a critical feature of multiattribute 

choice object representation in preferential decision making. 

There are many reasons why this would be the case. Firstly, 

common multiattribute choice objects involve a large 

number of observable features, as well as systematic 

relationships between the features. Good decision making 

involves understanding these feature relationships, and 

using these relationships to make inferences about the 

objects. Even though the inferences in preferential choice 

are primarily evaluative, knowledge is used in a very similar 

manner as in categorization, language comprehension, 

object recognition, and other related tasks. Additionally, the 

use of latent attributes also offers a number of distinct 

advantages relative to the use of raw observable features. 

There are fewer latent attributes than there are observable 

features, and for this reason, latent attributes simplify the 

decision process. These attributes also reduce redundancy in 

object representation, and do so in the most efficient manner 

possible. In fact, our approach is not unlike principle 

components regression, which possesses a very similar set 

of statistical benefits (see Draper & Smith, 1981). 

That said, the approach presented in this paper is fairly 

simplistic: It involves a linear technique for dimensionality 

reduction combined with a linear multiattribute utility 

model. Both of these assumptions should be tested, it 

wouldn’t be surprising if more sophisticated and more 

realistic approaches to building semantic representations ( 

Jones et al., 2015) and  making choices (Oppenheimer & 

Kelso, 2015) outperform the current approach. It may also 

be the case that the representations of choice objects depend 

not only on feature co-occurrence, but also on the reward 

structure of the domain in consideration. Individuals may, 

for example, learn object representations that best predict 

rewards, rather those that best predict feature occurrence.  If 

this is the case then it would be necessary to train models of 

object representation alongside models of evaluation and 

choice (rather than training the former separately, as is done 

in this paper). This could be accomplished using neural 

networks with backpropagation from a preference (reward) 

layer to an object representation layer. Supervised topic 

models may also facilitate the learning of such 

representations.  

Despite the need to test more sophisticated representation 

and choice models, the success of our current approach 

nonetheless opens up a new avenue for studying naturalistic 

multiattribute choice. It can be applied to examine whether 

existing multiattribute choice effects also emerge in more 

realistic choice settings, where attribute information is not 

presented numerically (as in Figure 1a). It can also be used 

to extend the psychological analysis of multiattribute choice 

beyond the laboratory and predict real world choice data. 

Ultimately, by combining existing theories of semantic 

representation and multiattribute choice with rigorous 

analysis of large-scale data, this paper has proposed tools to 

capture the large number of important decisions made in the 

real-world, that are not currently within the scope of 

decision making research. This has the potential to 

significantly expand the theoretical, descriptive, and 

practical scope of this area of study.  
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Abstract 

This study investigated the social transmission of memories 
and skills collected from a collaborative cooking task (ravioli-
making) and across transmission chains. The transmission 
over three generations of pairs of participants occurred under 
two conditions. In the interactive condition, transmissions 
over generations occurred in face-to-face conversations, 
whereas in the non-interactive condition, generations video-
recorded their instructions to the next generations. We 
analyzed the effects of verbal and embodied features of 
informational transfer on task performance. Our results show 
that performances improved over generations regardless of 
interactivity. In the discussion we suggest that tools (like 
cooking utensils) may have operated as cultural affordances 
encapsulating and transmitting important cultural knowledge 
for the successful completion of the task.  

Keywords: social transmission; embodied interaction; 
social learning; joint complex task; cultural affordances; 
cooking 

Social learning and the necessary ingredients 
for cumulative cultural evolution 

Social learning (e.g. Bandura, 1977) is learning 
by observing or interacting with another 
individual or a product. Social learning 
mechanisms enable individual improvements in 
the efficiency or productivity of cultural artefacts 
(e.g. Ramstead, Veissière, & Kirmayer 2016) to 
accumulate from one generation to the next (e.g. 
Boyd & Richerson, 1994; Tomasello et al., 
1993;). Such mechanisms include teaching (Kline, 
2015), imitation or emulation (reverse 
engineering) (Caldwell & Millen, 2008). Teaching 
and imitation represent cases of high-fidelity 
transmission, allegedly allowing “complex 
behaviors to disseminate and be retained in 
populations until beneficial modifications occur” 
(Vale, Flynn & Kendal, 2012, p. 223). Currently, 
however, it is unclear whether teaching is a 
necessary ingredient for cumulative culture to 
accrue (Zwirner & Thornton, 2015). The aim of 
our study is to investigate how different variants 
of teaching (interactive vs. non-interactive) affect 
cumulative cultural transmission of skills in a 

complex joint task (collaborative cooking) in a 
laboratory setting.  

Cultural transmission in the laboratory 
Transmission chains are a method used to study 
cultural evolution in the laboratory. Bartlett’s 
(1932) seminal serial reproduction design allowed 
studying how content changes when transmitted 
from individuals of one generation to the next. 
Although Bartlett’s method is more focused on 
constructive remembering of information 
originally provided to the first generation of 
participants and not on the accumulation of such 
information, it has largely inspired modern 
laboratory research on cumulative cultural 
evolution (e.g., Caldwell, Atkinson, & Renner, 
2016; Mesoudi & Whiten, 2008) or the evolution 
of language and other communication systems 
(e.g. Fay, Arbib, & Garrod, 2013; Kirby, Cornish, 
& Smith, 2008). However, the method in its 
standard form prescribes one-way transmission 
without receiver feedback and has thus been 
criticized for neglecting the interactive processes 
germane to conversational remembering (Edwards 
& Middleton, 1987). Indeed, recent work has 
shown that giving participants the opportunity to 
freely interact during transmission improves 
transmission quality (Tan & Fay, 2011). 
Cultural transmission of manual tasks 

In a series of experimental studies using 
transmission chains, individuals built paper 
airplanes or towers made of spaghetti and 
modeling clay (Caldwell & Millen, 2008). For the 
paper plane task, successive generations had 
access to different types of social information: (i) 
information about actions (new generations 
observed what previous generations did); (ii) 
information about results (new generations 
observed final products and their performance 
measured in flying distance); and (iii) information 
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generated through teaching (new and old 
generations interacted about the completed task). 
These three types of social information were 
designed to enable imitation (information about 
actions); emulation (information about results) 
and instructed learning (information generated 
through teaching). The results indicated that 
cumulative learning was found in all three 
conditions (imitation, emulation and teaching).  
Such findings seem to challenge widespread 
claims about the necessity of social transmission 
for cumulative cultural evolution (e.g. Boyd & 
Richerson, 1994).  

Building paper airplanes is arguably an artificial 
task likely to be confounded by prior experience. 
Zwirner and Thornton (2015) extended these 
findings using a more realistic basket construction 
task. They found that teaching increased the 
accumulation of improvements over generations, 
but that it was not necessary for them to occur, 
further supporting the hypothesis that imitation 
and teaching are not “fundamental prerequisites 
for cumulative culture” (Zwirner & Thornton, 
2015, p. 7).  

 
Cultural transmission and social interaction 

A recent study examined the influence of social 
interaction in transmission chains (Tan & Fay, 
2011). In an interactive condition, chains of 
participants interacted freely with one another to 
transmit narrative information from one 
generation to the next. In a non-interactive 
condition, receivers of the information had to 
listen to audio-recordings of narrations produced 
by senders (previous generation) and then 
recorded their own accounts of what they had 
listened to, which were passed on to a new 
generation of receivers for the same procedure. 
Transmission was more accurate in the interactive 
condition than in the non-interactive condition, 
and was due to the effect of receivers’ behavior, 
including backchannels or clarification questions. 
The authors suggested that the motivation or 
ability to interact during information transmission 
may contribute to the emergence of cumulative 
culture.  

 

Our experiment 

In Tan and Fay (2011), it could be the case that 
benefits of the interactive transmission of 
information are related to the nature of the task 
(information transfer) rather than to general 
mechanisms of cultural transmission. Hence, it is 
unclear whether interactivity plays a role in 
transmitting manual skills. Our experiment thus 
investigated the interactive context in which the 
cultural transmission of manual skills occurs. That 
is, we studied whether the teaching behaviors of 
senders who have experience with a skill is 
affected by the presence or absence of receivers 
from a subsequent generation. The experiment 
consisted in the cultural transmission of memories 
and skills collected from a collaborative cooking 
task (ravioli-making) via transmission chains. 
Chains of three generations (G1-G2-G3) of pairs 
of participants made ravioli and transmitted their 
experience to a pair in the next generation. This 
occurred under two conditions (interactive 
condition vs. non-interactive condition). In the 
interactive condition, transmissions occurred in 
face-to-face conversations, whereas in the non-
interactive condition they were video-recorded as 
instructions to the next generation. All 
transmissions were video-recorded in order to 
analyze both verbal and embodied features of 
information transfer (e.g., gestures that depict an 
action), which may be particularly important for 
the transmission of manual skills.  

In line with Caldwell and Millen’s (2008) 
studies using manual tasks, we expect that 
performance will improve over generations due to 
the accumulation of learned improvements. We 
further expect interactive transmissions to allow 
receivers of information to ask questions and 
request clarifications (Tan & Fay, 2011), and thus, 
to stimulate senders to talk and gesture more. This 
in turn may lead to a better transmission of skills. 
As a result, we also expect interactive 
transmissions to lead to better performance than 
non-interactive transmissions. Finally, we expect 
longer transmissions from senders to lead to 
subsequent higher performance in receivers when 
compared to performances following shorter 
transmission.  
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Thus, the hypotheses we tested were: 
H1) Performance improves over generations;  
H2) During transmissions (G1-G2; G2-G3), 
senders gesture more (H2a) and speak more (H2b) 
in the interactive condition than in the non-
interactive condition;  
H3) Performance improves more in the interactive 
condition than in the non-interactive condition;  
H4) Performance is predicted by the number of 
words and the duration of gestures in the 
preceding transmission session. 

Method 
Participants  

Participants (n = 246; 117 men) were recruited 
from the student population of the University of 
Neuchâtel (Age M= 23.2; SD= 4.07). They were 
fluent speakers of French, and reported having 
limited previous cooking experience. They had 
previous practice of simple skills like combining 
and heating ingredients but did not master more 
complex skills (e.g. preparing pie from scratch). 
Participants received 25 CHF compensation each 
for half an hour of their time along with an 
incentive of 0.25 CHF in total for each produced 
ravioli of good quality. There were 41 chains (20 
in the interactive condition and 21 in the non-
interactive condition). Pairs of participants were 
randomly assigned to different conditions 
(interactive vs. non-interactive) and generations 
(G1-G3) in the chains. 
 
Task 

The task consisted of two kinds of sessions, 
performance sessions and transmission sessions 
(Fig. 1). In performance sessions, participants 
from each generation prepared ravioli together in 
pairs. Their goal was to produce as many good-
quality ravioli as possible in 10 minutes. Each pair 
had at their disposal a ball of 150 grams of dough; 
200 grams of filling made of ricotta cheese, 
concentrated tomato paste and salt; a 24-hole 
ravioli mold with zigzag sealing for easy release; 
a pasta maker; a rolling pin; a cutting board; 2 
pizza cutters; 2 knives; 4 teaspoons; 2 kitchen 
cloths and kitchen paper; 250 grams of flour; and 
a stopwatch. Immediately after the time was up, 
the ravioli were evaluated by the experimenter. 

Transmission sessions occurred immediately after 
each performance session (except for the last one, 
see Fig. 1). Pairs who had just completed the task 
explained to next-generation pairs how to prepare 
the ravioli. These sessions were unstructured and 
did not have time constraints (they typically lasted 
2-8 minutes).    

 

Procedure  
Participants signed consent forms upon their 

arrival. G1 pairs watched a 3 min 47 sec video 
tutorial that was recorded for the study (Fig. 1). It 
provided information about the steps to be 
followed to prepare ravioli in pairs. They then 
completed Performance session 1, followed by 
Transmission session 1 (together with G2 pairs). 
Then, G2 pairs completed Performance session 2. 
During this time, G1 pairs were paid, debriefed 
and allowed to leave. After having completed 
Performance session 2, G2 pairs participated in 
Transmission session 2 (together with G3 pairs). 
Then, G3 pairs completed Performance session 3. 
During this time, G2 pairs were paid, debriefed 
and allowed to leave. After performance session 
3, G3 pairs were paid, debriefed and allowed to 
leave. 

Figure 1. Sequence of sessions in the experiment 
and groups involved in each session. 
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Measures  
All sessions were videotaped and transcribed. 

Information transmission (teaching) was 
measured by the total number of words uttered by 
senders as well as the total duration of their 
manual gestures (iconic and pointing gestures) in 
the transmissions. Performance was measured as 
the quantity of “good” ravioli each pair produced. 
The criteria that experimenters considered to 
count ravioli as good exemplars were that they 
should contain enough filling and they should be 
perfectly sealed.  

 
Results 

Descriptive results appear in Tables 1 
(performance) and 2 (transmission).  

 
Table 1. Performance (M, SD) by condition and 

generation 
 

 Interactive  Non-interactive 
G1 8.70 (10.70) 10.67 (9.36) 
G2 10.65 (11.51) 10.33 (9.24) 
G3 14.80 (10.75) 12.57 (8.81) 
 

 
Table 2. Transmission variables (M, SD) by 

condition and transmission 
 
 Interactive  Non-interactive 
 Sender words 
G1G2 872.45 (290.22) 545.14 (222.655) 
G2G3 924.15 (447.53) 480.19 (196.16) 
 Sender gestures 
G1G2 196.19 (69.93) 152.40 (76.00) 
G2G3 216.80 (98.52) 117.27 (57.64) 

Note. G1G2: Transmission session 1. G2-G3: 
Transmission session 2. 
 
We tested our hypotheses using random intercept 
mixed-model regression (in R 3.4, packages lme4 
and lmerTest). We included chains as clustering 
variables. 
 
H1: Performance improves over generations. 
To test H1, we included condition and the linear 
trend of generation as predictors of performance. 

Performance improved marginally (linear trend: B 
= 2.79, SE = 1.41, t = 1.98, p = 0.051). Condition 
was not a significant predictor of performance (B 
= -0.19, SE = 2.13, t = -0.09, p = 0.92). Thus, H1 
is marginally supported. 

 
H2: During transmissions (G1-G2; G2-G3), 
senders gesture more (H2a) and speak more 
(H2b) in the interactive condition than in the 
non-interactive condition. 
To test H2, we included condition as a predictor 
of sender’s gestures (H2a) and words (H2b), 
controlling in each model for transmission 
session. The interactive condition was the 
reference category. H2a was supported (B = -
71.04, SE = 20.59, t = -3.48, p = 0.001). H2b was 
also supported (B = -385.63, SE = 81.16, t = -4.75, 
p < .001). Transmission (reference category: first 
transmission) was not related to the dependent 
variables (for sender’s gestures: B = -7.94, SE 
=12.90, t = -0.615, p = 0.54; for senders’ words: 
B = -8.05, SE = 49.06; t = -0.16, p = 0.87). 
Overall, H2 is supported. 
 
H3: Performance improves more in the 
interactive condition than in the non-
interactive condition.  
To test H3, we included the condition, the linear 
trend of generation and their interaction term as 
predictors of performance. The performance of 
groups in the interactive condition improved 
across generations (linear trend: B = 4.31, SE = 
2.03, t = 2.12, p = 0.04). Groups in the non-
interactive condition do not improve less than 
groups in the interactive condition, as shown by 
the non-significant condition x linear trend of 
generation interaction (B = -2.97, SE = 2.84, t = -
1.04, p = 0.30). Thus, H3 is not supported.  
The marginal improvement in performance in the 
test of H1 is probably driven by the interactive 
condition, as the magnitude of the negative 
interaction term in the test of H3 is close to the 
main effect.  

 
H4: Performance is predicted by the number of 
words and the duration of gestures in the 
preceding transmission session. 
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To test H4, we simultaneously included the 
number of words uttered by senders and their 
gestures during the transmission preceding the 
task as predictors of performance (we did not 
predict the performance of G1), controlling for 
condition and generation. H4 was not supported 
(for senders’ words: B = 0.01, SE = 0.06, t = 0.15, 
p = 0.87; for senders’ gestures: B = 0.03, SE = 
0.02, t = 1.41, p = 0.16). Neither Condition (B = 
1.43, SE = 2.70, t = 0.53, p = 0.60) nor Generation 
(B = 3.44, SE = 2.04, t = 1.68, p = 0.10) were 
related to performance.  
 

Discussion 
We investigated whether the interactive context 

in which cultural transmission occurred affected 
the transmission process and its outcomes. We 
observed that senders behaved differently 
depending on the presence or absence of listeners 
(longer transmissions in terms of talk and 
gesture). However, such differences did not affect 
the subsequent performance of the receivers (see 
Table 1). That is, performance improved over 
generations (albeit marginally) regardless of 
interactivity, further supporting previous findings 
(e.g. Caldwell & Millen, 2008; Zwirner & 
Thornton, 2015) and research on cumulative 
learning in humans (e.g. Boyd & Richerson, 
1994). However, in contrast to the manual tasks 
previously employed (e.g. paper airplanes, 
spaghetti towers, and baskets), our collaborative 
cooking task presented some particularities. Some 
materials that the participants had the possibility 
to use (e.g. ravioli mold; pasta maker and rolling 
pin) may have operated as cultural affordances 
(e.g. Ramstead, Veissière, & Kirmayer 2016) 
already encapsulating relevant information for the 
successful completion of the task. Material 
culture, as transmitted by cooking utensils, has 
played a central role in the evolution of human 
cognition (Malafouris, 2013). Future studies on 
cultural transmission in the laboratory should 
begin to take into consideration the importance of 
such cultural affordances if they want to better 
understand the actual ecologies of teaching and 
learning.  

Tan and Fay (2011) showed that “that 
interaction between senders an receivers promotes 
more accurate recall and transmission of cultural 
information” (p. 405). Our analyses did not deal 
with verbal protocols and the amount of 
information accurate recalled over generations. 
However, based on this previous evidence we 
expected to find more increased performance in 
the interactive condition compared to in the non-
interactive condition.  In other words, if more 
accurate information were produced in interactive 
chains (as previous evidence suggests), it could 
lead to an increase in performance over 
generations in the interactive condition. Against 
our expectations, in our study, this was not the 
case. We did not find an effect of the number of 
words and duration of gestures produced by 
senders on performance of receivers over 
transmission chains (see Table 2). Although, 
senders spoke and gestured more in the interactive 
condition than in the non-interactive condition 
(see Table 2), this did not affect receivers’ 
performance. This result suggests that there is no 
clear correspondence between the quantity of 
information transmitted over generations and 
performance.  

In our analyses we did not examine the content 
of the information transmitted over generations or 
how it was recalled during performance. A 
possible theme for further investigation related to 
our current results is whether better or worse 
performing generations transmit more useful 
information over chains. It may well be the case 
that worse performing generations communicate 
more useful information to next generations if 
they focus their accounts on the errors they 
committed during performance.  

In contrast to Tan and Fay (2011), our findings 
showed that in complex joint tasks having the 
possibility of asking questions and requesting 
clarifications (interactive condition) did not bring 
benefits.  This could be related to the nature of the 
task participants were asked to perform. Whereas 
in Tan and Fay (2011) participants simply relayed 
information received from previous generations, 
in our study participants had the opportunity to 
perform the task before transmitting information 
to the next generation. This involved access to the 
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tools provided as well as the opportunity to test 
different strategies and solve problems. 
Throughout human evolution, “the social 
environment, not just individual minds, 
has become increasingly organized to support the 
flow of information across the 
generations” (Sterelny, 2012, p. 27). Looking at 
the multiple ways in which interactive contexts, 
task specificity, and cultural affordances affect the 
transmission of everyday skills (e.g. cooking) is 
an important step towards better understanding 
the mechanisms of cultural transmission.  
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Language Modality Affects Responses in Left IFG during Processing of
Semantically Ambiguous Sentences

Lena M. Blott
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Abstract: Ambiguity resolution requires high-level interpretation processes, at least some of which are subserved by the
inferior frontal gyrus (IFG), a region that is susceptible to modulation by task demands. This fMRI study investigates the extent
to which ambiguity-related activation in IFG is modulated by the specific cognitive-linguistic demands posed by the modality in
which a sentence is presented. In the present study, ambiguous sentences and matched unambiguous sentences were presented
in three conditions: listening, reading, and rapid serial visual presentation (RSVP). The RSVP modality elicited stronger
ambiguity-related haemodynamic responses than the other two modalities, particularly in left anterior IFG. This indicates
that the RSVP modality cannot be used as a simple substitute for natural reading without taking into account the additional
processing resources it requires.
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Abstract
Analysis of language provides important insights into the un-
derlying psychological properties of individuals and groups.
While the majority of language analysis work in psychology
has focused on semantics, psychological information is en-
coded not just in what people say, but how they say it. In
the current work, we propose Conversation Level Syntax Simi-
larity Metric-Group Representations (CASSIM-GR). This tool
builds generalized representations of syntactic structures of
documents, thus allowing researchers to distinguish between
people and groups based on syntactic differences. CASSIM-
GR builds off of Conversation Level Syntax Similarity Metric
by applying spectral clustering to syntactic similarity matrices
and calculating the center of each cluster of documents. This
resulting cluster centroid then represents the syntactical struc-
ture of the group of documents. To examine the effectiveness
of CASSIM-GR, we conduct three experiments across three
unique corpora. In each experiment, we calculate the cluster-
ing accuracy and compare our proposed technique to a bag-
of-words approach. Our results provide evidence for the ef-
fectiveness of CASSIM-GR and demonstrate that combining
syntactic similarity and tf-idf semantic information improves
the total accuracy of group classification.
Keywords: Syntax; Text Clustering; Syntactic Similarity;
Text Classification; CASSIM.

Introduction
Language lies at the heart of human communication, and
analysis of language has been shown to be an essential lens
for investigating and understanding many different psycho-
logical properties. Language analysis has provided insight
into depression (Ramirez-Esparza, Chung, Kacewicz, & Pen-
nebaker, 2008), moral values (Graham, Haidt, & Nosek,
2009; Dehghani et al., 2016), neuroticism and extraversion
(Mehl, Robbins, & Holleran, 2012), political orientations
(Dehghani, Sagae, Sachdeva, & Gratch, 2014), and cultural
backgrounds (Maass, Karasawa, Politi, & Suga, 2006; De-
hghani, Bang, et al., 2013) among many others.

Most of these studies, however, focus on quantifying word
choice or semantics. While semantics undoubtedly play an
important role in capturing psychological properties, it is vi-
tal to also include analysis of syntax in this process. Prior
research has shown that syntactic structures also capture in-
dividuals and group differences for various demographic and
psychological factors such as educational or regional back-
ground (Bresnan & Hay, 2008), gender (Vigliocco & Franck,

1999), socio-economics (Jahr, 1992), and emotional states
and personality (Gawda, 2010).

Recently, several tools have been developed for automated
analysis of syntactic structures. For example, Lu’s (Lu, 2010)
system analyzes fourteen different measures including the ra-
tio of verb phrases, number of dependent clauses, and T-
units to calculate documents’ syntactic complexity. Similarly,
TAALES relies on several features such as frequency, range,
academic language, and psycholinguistic word information to
measure lexical sophistication (Kyle & Crossley, 2015). By
comparison, Coh-Metrix is a tool which provides measure-
ment for over 200 different facets of syntax (e.g. mean num-
ber of modifiers per noun phrase, mean number of high-level
constituents per word, and the incidence of word classes that
signal logical or analytical difficulty) (Graesser, McNamara,
Louwerse, & Cai, 2004).

While each of these tools provides different mechanisms
for measuring various syntactic features, they all rely on
previously identified features of interest. More recently,
we introduced ConversAtion Level Syntax Similarity Met-
ric (CASSIM) to incorporate constituency parse trees when
calculating the syntactic similarity of documents (Boghrati,
Hoover, Johnson, Garten, & Dehghani, 2017). CASSIM
compares groups of documents based on underlying syntactic
differences between groups of documents.

There are some situations, however, where hypothesis test-
ing about predefined features or groups may not be the only
aim. Instead, researchers may wish to identify new groupings
of documents and the features which tie them together. These
group-level linguistic representations can lead to important,
novel discoveries about how a group communicates. Clus-
tering techniques are widely used for this type of analysis.
There is an extensive literature studying various text clus-
tering approaches and their applications (Song, Li, & Park,
2009; Sasaki & Shinnou, 2005; Lin, Jiang, & Lee, 2014).
This literature demonstrates that many linguistic features fa-
cilitate improvements in text clustering (T. Liu, Liu, Chen, &
Ma, 2003; L. Liu, Kang, Yu, & Wang, 2005), some of which
address the effect of synonymy, hypernymy, syntax, and part
of speech tags on text clustering methods (Sedding & Kaza-
kov, 2004; Lewis & Croft, 1989; Lewis, 1992; Zheng, Kang,
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& Kim, 2009).
In the current paper, we introduce ConversAtion Level

Syntax Similarity Metric-Group Representations (CASSIM-
GR), a tool that captures the generalized representation of
syntactic structure used by individuals in a certain group.
CASSIM-GR groups documents into separate clusters based
on their syntactic similarity scores, and uses the centroid of a
cluster as a generalized representation of the syntactic struc-
tures used in that cluster. These centroid syntax represen-
tation can then be used to understand within-group syntax
similarities and between-group syntax variations. As we will
show, these generalizations of syntactic structures can be use-
ful when analyzing differences between documents written
by different individuals or groups.

This paper is structured as follows: First, we describe our
proposed approach, CASSIM-GR, in more detail. Next, we
validate the approach with a corpus of syntactically similar
documents. Then, we apply CASSIM-GR to two other cor-
pora: documents marked as dogmatic and non-dogmatic (Fast
& Horvitz, 2016) and documents from conservative and lib-
eral weblogs (Dehghani, Sagae, Sachdeva, & Gratch, 2013)
and evaluate the classification accuracy of CASSIM-GR com-
pared to tf-idf approach and a combination of the two ap-
proaches. Finally, we discuss limitation and future directions
of our work.

CASSIM-GR
In this section we describe CASSIM-GR for clustering
groups of documents with similar syntactic structures.
CASSIM-GR includes four general steps: 1. constructing the
syntactic similarity matrix, 2. applying spectral clustering, 3.
calculating the center of clusters, 4. classification. Figure 1
demonstrates the steps involved in CASSIM-GR to compute
the generalized representation of syntactic structures.

First, we use CASSIM (Boghrati et al., 2017) to calcu-
late the syntactic similarity between each pair of documents.
CASSIM relies on edit distance difference of constituency
parse trees. It first generates parse trees for the sentences in
each document. Next, it calculates the edit distance between
each two sentences’ constituency parse trees and matches the
most syntactically similar sentences using Hungarian algo-
rithm. Finally, it provides a score between 0 and 1 where

higher numbers indicate higher similarity between two doc-
uments. Using the syntactic similarity scores measured by
CASSIM, we build a syntactic similarity matrix. With N doc-
uments in our corpus, the syntax similarity matrix is AN×N ;
where Ai, j is the syntactic similarity of the two documents i
and j.

Next, spectral clustering (Shi & Malik, 2000) is used to
cluster documents into a pre-defined number of groups. It has
been shown that spectral clustering often outperforms tradi-
tional clustering algorithms (Von Luxburg, 2007). The gen-
eral idea behind spectral clustering is to apply k-means clus-
tering on eigenvectors of Laplacian matrix of A. The syntac-
tic similarity matrix A, which is constructed in the previous
step, and the number of clusters are provided as inputs to the
spectral clustering method.

Clustering documents leads us to an essential next step
which is extracting general attributes or representation of
clusters. One way to address this concern is to calculate a cen-
troid for each cluster. Clusters’ centers facilitate researchers
to better understand and analyze the syntactic structures used
by a group of people or under certain situations by only ana-
lyzing center documents and without going through hundreds
of documents. Hence, the third step in CASSIM-GR is calcu-
lating a centroid for each cluster. We define a cluster’s center
as the document which has the highest syntactic similarity to
other documents in its cluster. To identify a cluster’s center,
we calculate average syntactic similarity of each document to
other documents in its cluster and return the document with
the highest average similarity. Additionally, we may return
the top n documents with the highest average syntactic sim-
ilarity to other documents in a cluster as representative sam-
ples of that cluster.

Finally, we use cross-validation to test the accuracy and
representativeness of the clusters’ centers. To cross-validate,
our approach uses CASSIM to calculate the syntactic similar-
ity of the left-out document to each centroid and assigns the
document to a cluster with the highest similarity. This pro-
cess is repeated N times and an accuracy of classification is
reported by the method. In the following sections, we eval-
uate CASSIM-GR by performing classification experiments
on three different corpora.
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Experiments
We conducted three experiments to validate CASSIM-GR
and to examine the representativeness of the cluster centroids.
Additionally, we examined how well documents with similar
syntactic structures cluster together and demonstrate the im-
portance of syntactic similarity in classification. Further, we
compare the accuracy of syntactic clustering to bag-of-words
clustering. For this purpose, we use the tf-idf similarity ma-
trix as input to spectral clustering. Lastly, we combined tf-idf
and CASSIM-GR to see how including both sets of informa-
tion affect the classification accuracy. Below, we discuss the
three experiments in detail.

Experiment One

Experiment one was conducted on a corpus of syntactically
similar documents. The corpus was generated by Amazon
Mechanical Turk participants and consists of four groups of
documents; each has high within-group syntactic similarity
and low between-group syntactic similarity.

We used CASSIM-GR along with tf-idf, to group docu-
ments into clusters. Further, we combined these two ap-
proaches and calculated the overall accuracy. We first intro-
duce the dataset and then report the results.

Data 118 MTurk participants answered a set of four ques-
tions. In each question they were asked to generate sentences
with similar grammar rules to the sentence prompts in the
question. Each of the four prompts had a different syntac-
tic structure. Later, two independent coders, coded whether a
sentence generated by a participant was grammatically simi-
lar to its prompt. Sentences which were identified as dissim-
ilar by both coders were excluded from the dataset. Finally,
a total of 272 documents, 68 documents in each group, were
collected. See Boghrati et al. (2017) for more details.

Since participants were asked to write sentences similar to
four different sets of prompts, the corpus is therefore divided
to four separate groups, each associated to a question and its
responses. Documents which are in the same group are con-
sidered to have similar syntactic structures.

Analysis We performed leave-one-out cross-validation for
both of the clustering techniques. Namely, we ran the anal-
ysis on all the documents except for document i. Next, we
labeled the clusters with the name of the group to which most
of the documents belong. Then, we calculated similarity of
document i to each cluster’s center. Finally, document i was
assigned to the cluster with which it had the highest syntac-
tic similarity. The classification was considered successful if
the assigned cluster’s label and the document’s group were
identical.

We used the following approach to combine tf-idf and
CASSIM-GR: First, we used CASSIM-GR and tf-idf ap-
proach separately to cluster documents into k clusters. Clus-
ter j, j ∈ [1,k] in tf-idf approach and cluster j′, j′ ∈ [1,k] in
CASSIM-GR were labeled with the same name, that is, the
majority of documents in cluster j and the majority of docu-

ments in cluster j′ were from the same group (e.g. ‘liberals’).
We averaged the syntactic similarity of document i to cen-
ter of cluster j and the syntactic similarity of document i to
center of cluster j′. We repeated this procedure k times to
measure the similarity of document i to all k clusters and as-
signed document i to the cluster with highest similarity score.
If the cluster’s label and document i’s label were the same,
we would conclude that prediction was successful.

Results Our results demonstrate that CASSIM-GR is able
to accurately cluster the corpus. Following the instruc-
tions discussed in above, we performed leave-one-out cross-
validation on 272 documents. In each step, 271 documents
were clustered in four groups and later the left-out document
was assigned to one of the four clusters based on its similarity
to the center of clusters.

Following this mechanism, CASSIM-GR yielded 95% ac-
curacy while tf-idf approach was only 84.5% accurate. Run-
ning a chi-squared test demonstrates that CASSIM-GR re-
sults in significantly higher accuracy than tf-idf, X2(1) =
17.01, p < .001. Since the dataset consists of groups of syn-
tactically similar documents, it is not surprising that cluster-
ing based on syntactic structures surpasses the word-based
approach and achieves a higher accuracy.

Next, we combined the two approaches and obtained an ac-
curacy of 97.8%. While this result is not significantly higher
than CASSIM-GR accuracy, X2(1) = 2.67, p = .10, we may
conclude that incorporating syntactic and semantic informa-
tion together could potentially improve clustering accuracy.

Experiment Two

In the second experiment, we used the Dogmatism Dataset
collected by Fast and Horvitz (2016). This dataset includes
comments from New York Times which are rated based on
their level of dogmatism. As explained below, we first cat-
egorized the documents as dogmatic or non-dogmatic based
on this ratings. Next, we followed the procedure which was
explained in the first experiment and clustered the documents
using CASSIM-GR and the tf-idf approach. In the following
subsections, we first introduce the dataset and then report the
results.

Data The Dogmatism Dataset includes comments from
New York Times. Amazon Mechanical Turk participants
were asked to rate the level of dogmatism of each of the col-
lected comments on a 5-point Likert scale. More details on
the dataset and the annotation process are available at Fast
and Horvitz (2016).

Analysis Dogmatism is subjective, and consequently inter-
annotator agreement is higher for comments in both extreme
sides of the spectrum. In other words, human coders tend
to agree more on posts rated as very high in dogmatism and
posts rated as very low in dogmatism (Fast & Horvitz, 2016).
Following the method used by Fast and Horvitz (2016), to
have a representative and balanced dataset, we selected the
top 250 and the bottom 250 documents based on the dogma-
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Table 1: Corpora Overview.

Experiment One Experiment Two Experiment Three
Corpus Syntactically Similar Sentences Dogmatism in New York Times Political Weblog Posts
Number of Groups 4 2 2
Number of Documents 272 500 452

Table 2: Accuracy of approaches in three experiments.

Experiment One Experiment Two Experiment Three
CASSIM-GR 95% 54.8% 69.9%
TF-IDF Approach 84.5% 61% 64.4%
Combined Approach 97.8% 66.6% 71.9%

Table 3: Comparison of approaches in three experiments.

Experiment One Experiment Two Experiment Three
CASSIM-GR vs. TF-IDF Approach X2(1) = 17.01, p < .001 X2(1) = 3.94, p < .05 X2(1) = 3.13, p = .07
TF-IDF Approach vs. Combined Approach X2(1) = 29.61, p < .001 X2(1) = 3.39, p = .06 X2(1) = 5.89, p < .05
CASSIM-GR vs. Combined Approach X2(1) = 2.67, p = .10 X2(1) = 14.59, p < .001 X2(1) = .43, p = .51

tism rating. We labeled the top 250 posts as dogmatic and
the bottom 250 as non-dogmatic, hence the final dataset con-
tained 500 posts with 250 in each group.

Results Following the instruction in Experiment 1, we per-
formed leave-one-out cross-validation; we ran the cluster-
ing algorithm with 499 documents and left document i, i ∈
[1,500], out. Then, we predicted to which cluster document
i belonged. CASSIM-GR and tf-idf approach resulted in
55% and 61% accuracy respectively. Even though, the tf-idf
approach outperformed our approach significantly, X2(1) =
3.94, p < .05, combining these two approaches resulted in a
higher accuracy of 66.6%, which is a marginally significant
improvement over the tf-idf accuracy, X2(1) = 3.39, p = .06.

This result provides evidence for the importance of syn-
tactic structure similarity in clustering documents. It demon-
strates that not only what different groups of people say, but
also how they say what they say provide important informa-
tion about the characteristics of the group. This is evident by
the fact adding syntactic similarity to word-level similarity
can improve the clustering accuracy.

Experiment Three

In this experiment, we applied CASSIM-GR on a corpus of
political discussions taken from a set of conservative and lib-
eral weblogs, and focus on the discussion about the Ground
Zero Mosque (Dehghani, Sagae, et al., 2013).

Data The top five popular conservative and liberal news
blogs were selected according to www.blogs.com. Next, a
dataset of these weblogs posts which contained word mosque

and were written in the time frame of the debate, were com-
plied. For more details about the dataset and the data collec-
tion process please refer to Dehghani, Sagae, et al. (2013).

Analysis In this experiment, we randomly selected 250
posts from conservative weblogs posts and 250 posts from
liberal weblogs posts, but due to encoding issues the final
dataset included 226 posts from each group (total of 452
posts).

Results Similar to the previous experiments, we used the
leave-one-out cross-validation procedure described above.
Specifically, we trained the clustering algorithm on 451 doc-
uments and predicted to which cluster the left-out document
belonged. This process was repeated 452 so that each docu-
ment was tested once.

CASSIM-GR was able to successfully predict the correct
cluster for a document with 70% accuracy, while tf-idf was
64.4% accurate. This difference is only marginally signifi-
cant, X2(1) = 3.134, p = .0767. Next, we combined these
two approaches as described in the Experiment section. The
total accuracy was 72% which is significantly more accurate
than tf-idf approach alone, X2(1) = 5.8905, p = .0152.

These results demonstrated that, in some cases, syntac-
tic structures similarity may capture more crucial features
needed for clustering compared to tf-idf approach. However,
there are some features that only tf-idf approach can pick up.
Thus, the combination of these two sets of features is needed
for more accurate clustering.
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Discussion and Future Work
Across three studies, we presented and validated a new
approach called CASSIM-GR. CASSIM-GR clusters docu-
ments into separate groups based on their syntactic similar-
ity and calculates a generalized representation of group-level
syntax usage by performing four general steps: First, it cre-
ates a syntactic structure similarity matrix of documents using
CASSIM. Second, it uses spectral clustering to group the doc-
uments into a pre-defined number of clusters using the syntac-
tic similarity matrix generated in the previous step. Next, the
algorithm selects the document which has the highest syntac-
tic similarity to the other documents within each cluster and
identifies it as the centroid of that cluster. Finally, it can be
used to classify unknown documents based on the document’s
syntactic similarity to the clusters’ centers.

We applied CASSIM-GR to three unique corpora (Table 1)
across three experiments to compare its accuracy to both a
bag-of-words approach and a combined approach incorporat-
ing tf-idf semantic information and CASSIM-GR. As Table 2
demonstrates, tf-idf and CASSIM-GR varied in their relative
strength for clustering accuracy across studies. The combined
approach incorporating both syntactic (CASSIM-GR) and se-
mantic (tf-idf) information resulted in the highest clustering
accuracy across all three experiments. While not a signifi-
cant improvement beyond both single approaches, the com-
bination approach significantly outperformed tf-idf in two of
the three experiments and CASSIM-GR in the second experi-
ment. Therefore, we may conclude that word-level similarity
and syntactic similarity capture different aspects of language,
and consequently, combining the two features’ similarities re-
sults in more accurate clusters.

Our results indicate that methods assessing syntactic sim-
ilarity may more accurately cluster documents than methods
which rely on semantics alone. While there may be situations
in which groups use the same general words to discuss a topic,
syntactic similarity differences could still allow researchers to
distinguish between different subsets of individuals.

More importantly, CASSIM-GR gives researchers an op-
portunity to study syntactic differences between groups by
analyzing the prototypical syntactic structures at the clusters’
centers. The syntactic structures used by a cluster’s center
document is defined as a generalized representation of syn-
tactic structures of the documents in that cluster. Assessing
differences in these structures may help to capture underly-
ing psychological differences between groups in the ways
that they conceptualize a topic or how they communicate with
each other.

A vital component of CASSIM-GR is measuring syntactic
similarity among documents using CASSIM. As mentioned
previously, CASSIM’s general focus is on comparing con-
stituency parse trees. Building on CASSIM, we intend to
compare dependency parse trees among sentences and doc-
uments to add another syntactic similarity measurement to
CASSIM. Unlike constituency parse trees which posit the
connection between part of speech tags, dependency parse

trees reveals the relationship between the words in a sentence.
By incorporating this feature into CASSIM, researchers may
further use CASSIM-GR not only to generalize syntactic
structure of a group of documents, but also their dependency
structures. This extension will help researchers study human
language in finer grained detail by looking at the relationship
between words.

In summary, we introduced a new method for computing
generalized representations of syntactic structures of docu-
ments, allowing researchers to distinguish between groups
of documents based on syntactic differences. Further, In the
three experiments, we demonstrated the benefits of including
syntactic structure similarity scores in clustering documents.
In each experiment, we repeated a clustering procedure, once
using CASSIM-GR and once using tf-idf similarity matrix.
Then, we calculated clustering accuracy of each approach us-
ing leave-one-out cross-validation mechanism. Finally, we
combined the results of these two approaches and calculated
the accuracy when both sets of features were present. Our re-
sults support our assumption and demonstrated that syntactic
similarity scores capture different aspects of language com-
pared to bag-of-words, and therefore help improve clustering
accuracy.
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Abstract

This paper presents an eyetracking during reading experiment
that investigated the role of supportive context on processing
aspectual coercion. Coercion sentences in need of aspectual
enrichment were embedded in discourse contexts providing
the necessary information for successful interpretation. The
findings of the reported experiment show that context infor-
mation can be used immediately without disrupting reading of
coercion sentences. The lack of coercion costs in supportive
discourse contexts provides experimental evidence for the pro-
posed Composition in Context Hypothesis and against theories
that view semantic composition as largely encapsulated from
context. Furthermore, the present experiment investigated the
role of inter-individual differences in verbal working memory
capacity on the immediate use of contextual information in
computing coerced interpretations.

Keywords: Aspectual coercion; Discourse context; Semantic
processing; Eyetracking during reading; Working memory ca-
pacity

Introduction
A central assumption in semantics is that interpretation is
governed by the principle of compositionality (see, e.g., Pel-
letier, 1994). The prinholds that the meaning of a complex ex-
pression is entirely determined by the meaning of its parts and
their syntactic combination. However, linguistic expressions
are at the same time highly context dependent, and the lan-
guage interpretation system is therefore not only dependent
on the parts of complex expressions in a bottom-up fashion,
but also has to be open to top-down influences of the con-
text of utterance. The present study investigates the interplay
between sentential and contextual information during the on-
line composition of the event interpretation. In particular, I
tested whether contextual information is immediately used to
resolve compositional conflicts during online interpretation.

Cases of coercion have prominently figured in studies
on the time course of compositional interpretation, see e.g.
Piñango and Deo (2016) for an overview of studies on com-
plement coercion, and Bott (2010) and Paczynski, Jackend-
off, and Kuperberg (2014) for aspectual coercion. (1) displays
a compositional conflict calling for aspectual coercion.

(1) # Yesterday, Peter jogged in only thirty minutes.

When uttered out of the blue, sentence (1) is hardly inter-
pretable. This is because an in-adverbial requires a telic event
predicate of the accomplishment type (Vendler, 1957), but Pe-
ter jog- expresses an atelic activity. Under a coercion analysis
Peter jog- has therefore to be shifted into an accomplishment,
i.e. the event representation of the activity has to be enriched
by adding a culminating event. The required operation can be
summarized as follows:

(2) [in thirty minutes[Peter jog-]]  coerce [in thirty
minutes[ADD CULMINATION[Peter jog-]]]

The inserted coercion operator ADD CULMINATION is a
function that takes as input an activity and outputs an accom-
plishment (see, e.g., Dölling, 2014, for semantic representa-
tions of various coercion operators). The coercion operation
solves the compositional problem. After the inclusion of the
appropriate type shifting operator the resulting representation
can be interpreted fully compositionally. Interestingly, the
semantic problem in (1) seems to completely disappear once
the sentence is embedded in an appropriate discourse context.
Consider (1) in the context of (3).

(3) Half a year ago, Peter started to jog four kilome-
tersculmination every day. When he began, he was quite
slow but now he is really fast.

Based on the pragmatic literature (Recanati, 2010) two the-
oretical alternatives can be contrasted on how compositional
interpretation might make use of contextual information. The
Composition in Context (CiC) hypothesis predicts immediate
availability of contextual information (e.g., Nieuwland & van
Berkum, 2006). Accordingly, the bounded path four kilome-
ters from the preceding context should be immediately avail-
able when composing the adverbial with the rest of the tar-
get sentence in (1). Alternatively, however, compositional
interpretation may operate in strictly locally in a bottom-up
fashion (Cappelen & Lepore, 2005). According to this view,
which may be characterized as Encapsulated Composition
(EC) hypothesis, contextual information is only considered
when the sentence information is not sufficient: Either to re-
solve compositional conflicts or to interpret context depen-
dent expressions that are context dependent. In fact, in co-
ercion theories it is standardly assumed that coercion opera-
tions are locally triggered by temporary semantic mismatch,
i.e. many coercion analyses employ the EC hypothesis (cf.
de Swart, 1998, p. 8).

According to the EC hypothesis the initial interpretation of
(1) in the context of (3) should result in an aspectual mis-
match that is only resolved in a second processing step. This
should lead to measurable disruption during online interpreta-
tion. The CiC hypothesis, by contrast, predicts no processing
costs of coercion sentences relative to non-coercing controls
because the contextually given culmination can go right into
the composed meaning.

Context effects on coercion have only been investigated in
a small number of online studies so far. Traxler, McElree,
Williams, and Pickering (2005) report a series of self-paced
reading and eyetracking during reading experiments in which
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they presented target sentences involving complement coer-
cion (the student began the book: [begin[the book]] coerce
[begin[to do something involving[the book]]]) and manipu-
lated the preceding discourse context. Here is a sample item
from Traxler et al. (2005, Exp. 3/4); c1/2 correspond to coer-
cion vs. control contexts, t1/2 are coercion vs. control targets,
critical regions underlined.

(4) c1) The student started a book in his dorm room.
c2) The student read a book in his dorm room.
t1) Before he started it, he checked his e-mail.
t2) Before he read it, he checked his e-mail.

Contextual facilitation was found in cases in which the con-
text sentence either itself required complement coercion (c1),
or explicitly introduced the relevant event (c2). In their Exp. 3
and 4, Traxler et al. (2005) observed coercion costs for c1 rel-
ative to c2. Crucially, however, the anaphor it in the coercion
target t1 was read as fast as in the control condition t2 show-
ing that the anaphor could be immediately linked to the rele-
vant event in the discourse representation. This is prima facie
evidence in favour of the CiC hypothesis. However, there is
another explanation consistent with the EC hypothesis too. It
is also possible that it was not interpreted as anaphoric to the
book but rather as an event anaphor, which would make co-
ercion unnecessary in the first place. The following example
adopted from Asher (1993, p. 233) illustrates the difference
between individual and event anaphora.

(5) If Timmyi hits j Johnk, it∗i/ j/∗k will cause a fight.

As for aspectual coercion, Bott (2010, Exp. 3) reports a self-
paced reading experiment investigating whether German con-
texts such as (3) facilitate aspectual enrichment in German
versions of (1). The findings provide preliminary evidence
that supportive context can eliminate coercion costs observed
for this type of sentences when presented out of context. Af-
ter telic contexts such as (3) the reading times of coercion
sentences did not differ from control targets allowing for plain
compositional interpretation. However, this interpretation of
the results is complicated by the fact that the comparison cru-
cially involved a direct comparison between different adver-
bials (German in x time vs. for x time).

Processing along the lines of the EC or the CiC hypothesis
does not have to be an either or choice but could be subject
to inter-individual differences. In particular, verbal working
memory capacity may be an important constraining factor for
being able to employ a highly context dependent processing
strategy as put forward in the CiC hypothesis. Note that the
CiC haypothesis presupposes full accessibility of all the rel-
evant contextual information. Processing along the lines of
the CiC hypothesis can therefore be expected to require more
working memory capacity than the strictly local interpretation
of the EC hypothesis. Existing research on sentential con-
text effects has provided evidence that low-span readers make
even less use of the immediate sentential context than high-
span readers (van Petten, Weckerly, McIsaac, & Kutas, 1997).

Thus, smooth aspectual enrichment in line with the CiC hy-
pothesis may be especially expected for high-span readers,
whereas low-span readers should be more likely to exhibit co-
ercion costs. Inter-individual differences in working memory
capacity have not been taken into account in coercion studies
so far.

The present experiment studied contextual facilitation ef-
fects in aspectual coercion with four major modifications rel-
ative to prior research. First of all, the present study employed
eyetracking during reading – an online method that provides
us with a richer picture about the time course of interpretation
than self-paced reading. Secondly, a larger set of experimen-
tal items was tested, and these materials were set up in such
a way that the critical region was kept identical across con-
ditions. Thirdly, the materials were more carefully pretested
concerning their offline interpretation than the ones used in
Bott (2010, Exp. 3). Finally, contextual facilitation effects
were related to participants’ verbal working memory capacity
as measured by the reading-span task (Daneman & Carpenter,
1980).

The experimental design of the present study included a
coercion and a control condition as well as a mismatch con-
dition. Two kinds of contexts were constructed. Both, telic
contexts such as (3), and atelic contexts such as (6) introduced
a repetitive event (contexts translated from German). The
only difference is that the telic context (3) establishes a se-
ries of telic, bounded events (e.g., jog four kilometers) while
the atelic context (6) introduces a series of atelic, unbounded
activities instead. Both types of contexts put emphasis on the
actual duration of the respective events at reference time now.

(6) Half a year ago, Peter started to jog every day. When
he began, he had to stop after a short time but now he
can run for quite a long time.

Target sentences were of two types manipulating the adver-
bial: telic sentences (7-a) including German in-adverbials,
and atelic sentences (7-b) with German for-adverbials.

(7) a. Als es
When

ihm
he

vorhin
just

gelang,
managed

in
in

nur
only

dreißig
thirty

Minuten
minutes

zu
to

joggen,. . .
jog. . .

‘When he managed to jog in only 30 min. . . . ’
b. Als es

When
ihm
he

vorhin
just

gelang,
managed

ganze
for

dreißig
thirty

Minuten
minutes

zu
to

joggen,. . .
jog. . .

‘When he managed to jog for 30 min. . . . ’
c. . . . war er sehr stolz auf sich.

. . . he was very proud of himself.

Discourse conditions were as follows. The coercion condition
was constructed by combining telic contexts (3) with telic tar-
gets (7-a). The control condition combined atelic contexts (6)
with atelic targets (7-b). For the aspectual mismatch condi-
tion atelic contexts (6) were paired with telic targets (7-a).

1655



Figure 1: Mean judgments in Pretest 1 (left-hand side) and
Pretest 2 (right-hand side). Error bars represent 95% confi-
dence intervals (by-participants analysis).

Pretests
Two pretests were conducted. The first pretest was a sentence
acceptability judgment experiment testing the telic (7-a) and
the atelic (7-b) target sentences out of context. The second
pretest was a discourse acceptability rating experiment that
queried the felicity of the discourses in the coercion, the con-
trol, and the mismatch condition, respectively. The predic-
tions are straightforward. Due to their need of coercion, telic
target sentences should be less acceptable than atelic target
sentences when encountered out of context. Supportive con-
text should increase the acceptability of the coercion condi-
tion, though. After a telic context, a telic target should be-
come as acceptable as the control condition. The mismatch
condition should be judged as infelicitous.

Pretest 1
Method 20 native German speakers (mean age: 26.9 years;
17 female) participated in the pretest for a payment of e5.
Participants rated the acceptability of the telic and atelic tar-
get sentences on a scale from 1–7 from completely unaccept-
able to fully acceptable.

Target sentences were taken from the set of 24 items cre-
ated for the eyetracking study. All were constructed following
the scheme exemplified in (7). Pronouns were replaced by the
proper names from the contexts (3)/(6). Two lists were con-
structed using a Latin square design and 100 filler sentences
were added to each list. 60 of the fillers were infelicitous
(‘bad fillers’) while the others were fully acceptable (‘good
fillers’). Ten participants were randomly assigned to each list.

Paricipants were tested individually in a quiet computer
pool. Sentence materials were presented in randomized or-
der in a single block which was preceded by a short practice
of five trials. An experimental session took less than 30 min-
utes.

Results and discussion The mean judgments are shown in
Figure 1. As predicted, acceptability of telic target sentences
was judged significantly worse than atelic target sentences

(t1(19) =−5.4, p < .01; t2(23) =−9.52, p < .01). The latter
were judged even slightly better than the well-formed fillers
(atelic targets: 5.90; well-formed fillers: 5.70) suggesting that
the target sentences in the control condition are in fact fully
acceptable. The telic target sentences received mean ratings
of 4.24 and were thus well above the nonsensical fillers with
a mean rating of 2.34. Even though the telic target sentences
were perceived as not fully acceptable when presented out of
the blue, participants seemed to be aware of the fact that these
sentences are in fact well-formed if embedded in an appropri-
ate discourse context.

Pretest 2
Method 30 new participants (mean age: 26.2 years; 16 fe-
male), all native speakers of German, took part in the pretest
for a payment of e5. Participants rated the acceptability of
the discourses in the coercion, the control, and the mismatch
condition on a scale from 1–7. In addition to the 24 exper-
imental items 66 filler discourses were included (33 accept-
able and 33 incoherent discourses). 20 of the incoherent filler
discourses were globally incoherent, e.g. Lisa is very bad in
maths. [. . . ] . So, she wasn’t surprised when she got an A.,
and 13 were locally incoherent, e.g. . . . the jockey sat in his
horse . . . . The items plus the fillers were distributed to three
lists in a Latin square design. Ten participants were randomly
assigned to each list. The procedure was the same as in the
previous pretest

Results and discussion The mean judgments are also
shown in Figure 1. As predicted, telic targets preceded by
a telic context made the coercion condition fully acceptable.
Paired t-tests revealed that the coercion condition did not dif-
fer reliably from the control condition (t2(29) = −1.65, p =
.11; t1(23) = −.76, p = .46). Both, coercion (mean rating:
5.10) and control (mean rating: 5.27) received ratings in the
range of the good fillers (mean rating: 5.82). As expected,
the mismatch condition was judged similar to the incoherent
fillers. Repeated measures ANOVAs revealed that mismatch
was judged significantly worse than coercion and control
(F1(2,58) = 81.77, p < .01; F2(2,46) = 122,56, p < .01).1

Taken together, the results of the pretests show that the ma-
terials tested in the eyetracking study fully meet the assump-
tions stated in the introduction. The coercion targets are not
fully interpretable on their own but require contextual sup-
port. Embedded in a telic context, however, the telic targets
become fully acceptable. After atelic contexts, however, telic
target sentences result in aspectually incoherent discourses.

Eyetracking Experiment
The EC and the CiC hypotheses make fundamentally differ-
ent predictions regarding the online processing of the three
discourse conditions.

1In all analyses in the present paper including the three-level fac-
tor DISCOURSE CONDITION the degrees of freedom were corrected
by applying the Greenhouse-Geisser correction. In the text the un-
corrected degrees of freedom are reported.
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According to the EC hypothesis, the coercion operation
is triggered by a temporary semantic mismatch during the
intial interpretation of atelic activity verbs modified by in-
adverbials. Therefore, during first-pass reading the coercion
condition should pattern with the mismatch condition and
lead to processing difficulty relative to the control condition.

By contrast, the CiC hypothesis predicts smooth interpre-
tation of the coercion condition. Coercion should therefore
pattern with the control condition, and it should only be the
mismatch condition that causes processing difficulty.

In order to assess effects of inter-individual differences in
working memory capacity, between group analyses were con-
ducted for high- versus medium- vs. low-span readers.

Methods

Participants 48 new participants (mean age: 24.1 y., range
20 – 32 y.; 40 female) all native speakers of German with
normal or corrected-to-normal vision took part in the exper-
iment for a payment of e8. Based on their performance in
Daneman and Carpenter’s (1980) reading span task they were
divided into three groups. The first group consisted of 10 par-
ticipants with a reading span of 3.0, the median value in the
sample. This group was included as MEDIUM SPAN readers
in ANOVA analyses including the between factor READING
SPAN. The group of LOW SPAN readers consisted of 19 par-
ticipants with a mean reading span of 2.4 (range 2.0 – 2.5).
The group of HIGH SPAN readers consisted of 19 participants
with a mean reading span of 3.7 (range 3.5 – 4.5).

Materials The sentence materials were identical to those
used in the pretest and the items were always presented on
three lines. The first line contained the first context sentence,
the second line the second context sentence, and the third line
the target sentence. The target sentences were split up in ten
regions of interest (ROIs):

(8) Als es ihm| heute| gelang,|adv1 in nur|adv2 dreißig|adv3
Minuten|verb zu joggen,|coda1 war er|coda2 sehr
stolz|coda3 auf sich.|

The critical region was the verb ROI. Note that any aspectual
mismatch only becomes evident at this ROI. For instance, als
es ihm heute gelang, in nur dreißig Minuten vier Kilometer
weit zu joggen, . . . (when he managed today to jog four kilo-
meters in only thirty minutes . . . ) would be fully acceptable
even after an atelic context.

Apparatus and procedure Eye movements of the domi-
nant eye were recorded with an SR Research Ltd. Eyelink
1000 eyetracker. The trial began with the presentation of a
screen which served as calibration check and for drift correc-
tion with a yellow dot in the position where the centre of the
first word would appear. If no fixation on the dot was regis-
tered within five seconds, recalibration was enforced. Other-
wise, texts were presented. After reading, participants had to
move their eyes to a yellow dot in the right bottom corner of
the screen which triggered the presentation of the judgment

screen. Judgments had to be provided by pressing the left or
the right button of a gamepad.

The experiment started with five discourses for practice,
followed by the individually randomized presentation of the
experimental trials in three blocks. A typical experimental
session lasted less than 45 minutes. Immediately after the
eyetracking experiment each participant was subjected to an
experimenter-administered version of the reading span task
(Friedman & Miyake, 2004). Reading span was scored as
follows. The highest stage for which at least two out of a total
of three sequences could be correctly recalled determined a
participant’s basic reading span. If she was able to correctly
recall one sequence from an even higher stage, a value of 0.5
was added to this basic value.

Eyetracking analysis Prior to all analyses the eyetracking
data were preprocessed. Two trials with major track loss were
exluded, and all fixations immediately preceding or following
a blink were eliminated. All fixations shorter than 80 ms and
further than 0.5 degrees from the last or next fixation as well
as fixations longer than 800 ms were eliminated. Preprocess-
ing affected 2.7% of all fixations.

The analyzed measures of first-pass reading included first
fixation durations, first-pass times, and first-pass regression
ratios, i.e. the proportions of regressions made during first-
pass reading.Measures related to rereading included second-
pass time and the proportions of regressions in.

Results

The coercion condition was accepted 83.3% of all trials, con-
trol was accepted 86.9%, but mismatch was rejected 66.5%.
Thus, discourses in the coercion and in the control condition
were generally accepted while the aspectual mismatch con-
dition was generally rejected. The analysis of judment RTs,
corrected for outliers by eliminating all RTs more than 2.5
standard deviations above a participant’s mean RT, revealed
no significant differences between the three discourse condi-
tions (F1/2 < 1).

Table 1 presents the descriptive statistics for the eyetrack-
ing measures related to first-pass parsing. The findings for
the measures related to rereading are shown in Table 2.

First-pass reading Immediately when readers encountered
the verb region, first fixation durations were longer in the
mismatch condition than in the control condition (t1(47) =
2.29, p < .05; t2(23) = 2.12, p < .05). By contrast, verbs in
the coercion condition were read equally fast as verbs in the
control condition (|t1/2|< 1). Before or after the critical verb
ROI there were no significant differences in first fixation du-
rations for any of the ROIs in the target sentences.

The analyses of first-pass times further corroborated this
finding. At the verb ROI a clear mismatch effect was found
(t1(47) = 3.85, p < .01; t2(23) = 3.72, p < .05), but coercion
did not differ from control (|t1/2| < 1). The mismatch effect
was again limited to the verb ROI, and discourse conditions
did not differ reliably from each other at any target ROI.
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Table 1: Mean first fixation durations (FFD), mean first-pass
times (FPT), and mean first-pass regression ratios (FPRR) of
the target sentences in the eyetracking experiment. Note: ROI
a3 corresponds to the final adverbial region, verb to the criti-
cal verb region, and c1–c3 to the three sentence final ROIs.

a3 verb c1 c2 c3
FFD contr. 205 251 238 252 256
(in ms) coerc. 210 247 247 247 264

mism. 213 266 240 243 257
FPT contr. 217 311 290 333 403
(in ms) coerc. 219 317 317 312 424

mism. 219 345 304 307 417
FPRR contr. 14.6 18.5 6.4 25.4 45.8
(in %) coerc. 15.7 16.9 9.3 26.3 48.3

mism. 16.2 27.1 12.2 21.9 51.2

Mismatch not only slowed down reading speed during first-
pass reading, it also gave rise to more regressions from the
verb ROI. The analysis of first-pass regression ratios showed
that readers launched more regressions from mismatching
verbs than from verbs in the control condition (t1(47) =
2.23, p < .05; t2(23) = 3.08, p < .01). Again, coercion did
not differ from control (|t1/2|< 1).

Taken together, the findings from the three measures re-
flecting the first-pass reading of the critical verb ROI show
that the initial interpretation of the coercion targets was as
smooth as that of the control targets. Without a preceding
telic context in the mismatch condition, however, first-pass
reading was severely disrupted.
Rereading The analyses of the proportions of regressions
in revealed that readers regressed back to the three adverbial
ROIs in the mismatch condition. For all three ROIs reliable
mismatch effects were observed (first ROI: t1(47) = 2.52, p <
.05; t2(23) = 2.82, p < .05; second ROI: t1(47) = 2.70, p <
.05; t2(23) = 2.84, p < .01; third ROI: t1(47) = 2.02, p < .05;
t2(23) = 2.16, p < .05). Also, on the verb ROI a mismatch
effect was found that was marginally significant by subjects
and significant by items (t1(47) = 1.87, p = .07; t2(23) =
2.18, p < .05). The coercion analyses showed that the ad-
verbial ROIs did not receive more regressions in the coercion
condition than in the control condition (all |t1/2| < 1). How-
ever, it turned out that readers regressed more often back into
the verb ROI than they did in the control condition. This was
reflected by a (by-items marginally) significant coercion ef-
fect (t1(47) = 2.46, p < .05; t2(23) = 1.97, p = .06).

A similar pattern of effects was observed in the second-
pass times too. The mismatch condition led to longer second-
pass times than the control condition persisting from the ad-
verbial ROIs (first ROI: t1(47) = 2.83, p < .01; t2(23) =
2.23, p < .05; second ROI: t1(47) = 2.40, p < .05; t2(23) =
2.64, p < .05; third ROI: t1(47) = 1.70, p = .10; t2(23) =
1.80, p = .08) to the verb ROI (t1(47) = 4.71, p < .01;

Table 2: Mean second-pass times (SPT), and mean propor-
tions of regressions in (RI) of the relevant ROIs of the target
sentences.

a1 a2 a3 verb c1 c2
SPT contr. 81 106 56 81 88 115
(in ms) coerc. 85 104 59 143 115 132

mism. 129 160 89 167 87 108
RI contr. 35.7 22.8 19.7 4.6 – –
(in %) coerc. 37.9 26.3 22.0 9.2 – –

mism. 47.5 33.5 30.7 8.1 – –

t2(23) = 3.90, p < .01). Also, a coercion effect was present,
and, consistent with what was observed for the regressions in,
this effect was limited to the verb ROI (t1(47) = 3.25, p< .01;
t2(23) = 2.46, p < .05).

Taken together, the analyses of late eyetracking measures –
besides substantial mismatch effects – show that participants
were more likely to reread the verbs in the coercion condition
than in the control condition.

Analyses contingent on reading span In order to investi-
gate whether early and late effects were modulated by inter-
individual differences in working memory capacity ANOVAs
with the within-factor DISCOURSE CONDITION and the be-
tween factor READING SPAN (three levels: HIGH SPAN vs.
MEDIUM SPAN vs. LOW SPAN) were computed analyzing the
first and second-pass times of the verb ROI. Table 3 presents
the mean reading times of the verb ROI split up by groups.

The analysis of first-pass times only revealed a signif-
icant main effect of DISCOURSE CONDITION (F1(2,90) =
4.61, p < .05), i.e. the above reported mismatch effect.
Neither the main effect of READING SPAN nor its interac-
tion with DISCOURSE CONDITION reached significance (both
F1 < .05). Thus, the three reading span groups did not differ
with respect to their first-pass reading times of the verb.

The analysis of second-pass times also revealed no differ-
ences between the three groups. The main effect of DIS-
COURSE CONDITION was reliable (F1(2,90) = 11.88, p <
.01), but neither the main effect of READING SPAN nor the
interaction reached significance (both F1 < 1.3).

To summarize, the three reading span groups had strikingly
similar patterns of results. The three groups showed equally
sized early effects of aspectual mismatch and late coercion
effects that only started during rereading the sentence.

Discussion
The present study investigated whether coercion sentences
embedded in supportive discourse context lead to measurable
processing costs during their initial interpretation. Accord-
ing to the EC hypothesis, the compositional system operates
strictly bottom-up, and the coercion targets should therefore
lead to temporary aspectual mismatch during the initial inter-
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Table 3: Mean first- (FPT) and second-pass times (SPT) of
the verb ROI split up by reading span groups.

FPT (ms) SPT (ms)
low span contr. 325 73

coerc. 324 106
mism. 353 126

medium span contr. 313 72
coerc. 316 158
mism. 344 230

high span contr. 296 95
coerc. 309 171
mism. 338 174

pretation and subsequent context-driven repair. During first-
pass reading target sentences in the coercion and the mis-
match condition should exhibit qualitatively similar process-
ing effects. The CiC hypothesis, by contrast, predicts smooth
interpretation of the coercion targets if embedded in a sup-
portive context because the culminating event from the con-
text should be immediately available.

The findings of the present eyetracking experiment unam-
biguously provide evidence against the EC hypothesis. While
aspectual mismatch led to substantial processing difficulty
during first-pass reading, none of the three analyzed early
eyetracking measures indicated any difficulty in the coercion
condition. The processing of aspectual coercion involved a
qualitatively different time course than aspectual mismatch.

Do the findings support the CiC hypothesis, then? Above,
it was stated that supportive context should completely elim-
inate all coercion costs. The coercion effects observed dur-
ing rereading of the coercion targets may therefore be taken
as prima facie evidence against the CiC hypothesis. How-
ever, the exposition of this hypothesis in the introduction was
grossly oversimplistic. On closer consideration, the hypothe-
sis is fully consistent with overall higher processing demands
in the coercion than in the control condition as long as diffi-
culty only emerges after a smooth first composition step. Two
potential sources of difficulty come to mind. Under the CiC
hypothesis comprehenders still have to be able to exactly re-
call the culmination introduced two sentences before. Note
that in order to make proper sense of the coercion target it is
important to know the exact length of the path. Obviously, to
jog a distance of three miles in half an hour is plausible but
thirty miles is not. Therefore, successful coercion crucially
depends on a precise representation of the context in all its
particulars. Another potential source of difficulty may be at-
tributed to the metalinguistic evaluation demanded from the
participants: since the target sentences were exactly the same
in the coercion and the mismatch condition, the metalinguis-
tic evaluation may have been more difficult in the coercion
than in the control condition.

Both explanations, the (un-)availability of the culminating
event in working memory as well as difficulty during metalin-

guistic evaluation, would be consistent with the CiC hypoth-
esis. The above reported analyses taking into account par-
ticipants’ working memory capacity suggest that the second
explanation is more likely than the first.
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Abstract

Most psychological theories attribute people’s failure to
achieve their goals exclusively to insufficient motivation or
lack of skill. Here, we offer a complementary explanation that
emphasizes the inherent complexity of the computational prob-
lems that arise from the structure of people’s goal systems.
Concretely, we hypothesize that people’s capacity to achieve
their goals can be predicted from combinatorial parameters of
the structure of the network connecting their goals to the means
available to pursue them. To test this hypothesis, we expressed
the relationship between goals and means as a bipartite graph
where edges between means and goals indicate which means
can be used to achieve which goals. This allowed us to map
two computational challenges that arise in goal achievement
onto two classic NP-hard problems: Set Cover and Maximum
Coverage. The connection between goal pursuit and NP-hard
problems led us to predict that people should perform bet-
ter with goal systems that are tree-like. Three behavioral ex-
periments confirmed this prediction. Our results imply that
network parameters that are instrumental to algorithm design
could also be useful for understanding when and why people
struggle in their goal pursuits.
Keywords: decision-making; goals; rational analysis; graph
theory; computational complexity

Introduction
The ability to set and achieve high-level goals, such as creat-
ing a CogSci paper, is a critical feature of human intelligence
and a key challenge for artificial intelligence systems (Newell
& Simon, 1972). Critically, everyday problem solving re-
quires people to juggle multiple goals in parallel (Atkinson &
Birch, 1970; Miller, Galanter, & Pribram, 1960). Concretely,
when people are given ten minutes to list their current pursuits
they will report about 15 goals on average and each of those
goals typically entails multiple subgoals at several levels of
abstraction (Little & Gee, 2007).

It is generally agreed that there are many situations in
which people fail to act on their goals (Baumeister, Heather-
ton, & Tice, 1994). The predominant explanations of such
failures are lack of motivation, lack of planning (Gollwitzer,
1999), failure to delay gratification (Mischel, Shoda, & Ro-
driguez, 1989), or the depletion of the capacity for self-
control (Muraven & Slessareva, 2003). Here, we explore an
alternative explanation for people’s failure to achieve their

goals: the inherent complexity of the underlying computa-
tional problem.

The relationship between means and goals can be for-
malized in a bipartite graph whose vertices are divided into
a set of means M = {m1, · · · ,mk} and a set of goals G =
{g1, · · · ,gl}. In this graph, a mean m is connected to a goal g
if and only if selecting m will achieve the goal g. Such net-
works are called goal systems in the psychological literature
(Kruglanski et al., 2002). For instance, the vertices at the top
of the goal system illustrated in Figure 1 might correspond to
your goals to become a prolific scientist (g1), be a wonder-
ful partner (g2), become a great parent (g3), get physically fit
(g4), and enjoy life to the fullest (g5).

Finding the best configuration of means for achieving a set
of goals can involve considerable computational challenges.
It has been suggested that findings from theoretical computer
science can shed light on how people cope with hard com-
putational problems (Van Rooij, 2008). For example, Van
Rooij (2008) advocated applying the theory of fixed param-
eter tractability to study how people cope with hard compu-
tational problems. Yet, while previous research on problem
solving has investigated which strategies people use to solve
NP-hard problems (MacGregor & Ormerod, 1996; MacGre-
gor, Ormerod, & Chronicle, 2000), this literature has focused
on the Traveling Salesman problem and other problems that
are structurally distinct from those that arise in goal pursuit.1

Here, we will fill this gap by analyzing goal achievement
through the lens of computational complexity theory.

In theoretical computer science, it is well known that the
performance of many combinatorial optimization algorithms
critically depends on certain graph-theoretic properties of the
networks they are applied to (Kleinberg & Tardos, 2006). For
instance, a well-documented phenomenon in algorithm de-
sign, artificial intelligence, and operational research is that
NP-hard optimization problems often become easier on trees
and tree-like graphs. Indeed, when restricted to trees, many

1One exception is the work of Carruthers, Masson, and Stege
(2012) which found that the planarity of graphs has no effect on
human performance in the Vertex Cover problem.
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Figure 1: Example of goal system: means appear at the bot-
tom marked by m1 . . .m4. Goals appear on top marked by
g1 . . .g5. A goal can be attained if at least one mean con-
nected to it is chosen. The set {m1,m3} is a minimal set of
means covering all goals

NP-hard problems can be solved by efficient polynomial-time
algorithms, such as divide-and-conquer methods and greedy
algorithms. Here, we show that human performance on two
goal management tasks is also well predicted by graph the-
oretic measures of the tree-likeness of the underlying goal
system. Our results offer a fresh computational perspective
on why people fail to achieve their goals. Our experimental
results align well with theoretical knowledge from computer
science and highlight that findings from computational com-
plexity are relevant to cognitive psychology.

The plan for the paper is as follows. We start by formal-
izing two common challenges of goal achievement in terms
of two classic NP-hard problems: Set Cover and Maximum
Coverage. Next we derive our theoretical prediction by argu-
ing that people’s performance on these problems should in-
crease with graph theoretic metrics of how tree-like the goal
system is. We then test this prediction in three behavioral ex-
periments and conclude with a summary of our findings and
directions for future work.

Formal analysis and predictions
Here we formalize, as well-defined NP-hard problems, two
computational challenges that arise in means selection prob-
lems where one seeks to choose a set of means that are instru-
mental to the ends one is trying to achieve.

The first problem we consider is trying to achieve as many
goals as possible with a fixed budget that limits the number of
activities that one can perform. We formalize this challenge
in terms of the Maximum Coverage problem (MC). In it, we
are given a bipartite graph H = (C,D,F) where C,D are the
sides of the bipartition, and F is the set of edges connecting
vertices in C to vertices in D. We are also given a nonnegative
integer k ≤ |C|. We seek to find a set C′ ⊆ C, of cardinality
at most k, maximizing the number of vertices in D covered
by vertices in C′ (a vertex b ∈ D is covered by a vertex a ∈C
if (a,b) ∈ F). As a goal system, the set C corresponds to
means, the set D corresponds to goals, and F represents to
interconnections between goal and means. Observe that we
assume that once a goal is covered by a single mean then it
will be achieved. This assumption is made in order to sim-
plify the experimental task, allowing for a simple and clean

description.
The second problem that we study is trying to achieve a

given set of goals as efficiently as possible by selecting the
minimal number of means that will accomplish all goals. We
formalize this challenge in terms of the Set Cover problem
(SC). In the Set Cover problem, we are given a bipartite graph
G = (A,B,E), where A,B are the sides of the bipartition and
E is the set of edges connecting vertices in A to vertices in B.
As a goal system, the set A corresponds to means, the set B
corresponds to goals, and the set E corresponds to intercon-
nections between goals and means. In the SC problem, our
goal is to cover all vertices in B by a set A′ ⊆ A of minimal
cardinality. Both MC and SC are NP-hard not only to solve
exactly but also to approximate (Feige, 1998).

These two computational problems (MC and SC) capture
essential aspects of means selection problems that have been
studied in the psychological literature.

For example, it is generally agreed that people try to se-
lect means in order to maximize the number of attained goals
(Kruglanski et al., 2002; Zhang, Fishbach, & Kruglanski,
2007). Furthermore, representing goals as graphs and assum-
ing interconnectedness between goals appear either explicitly
or implicitly in several papers (Kruglanski et al., 2002; Tha-
gard & Millgram, 1995).

We shall use the following two performance measures in
quantifying how well people do in MC and SC. Our first mea-
sure simply quantifies the ability to find the optimal solution.
This is a binary measure that equals 1 if the person finds the
optimal solution and 0 otherwise. Given an algorithm A for
MC or SC, the second measure, referred to as the solution
quality, ranges between 0 (worst) and 1 (best). For the MC
task, the solution quality is the number of goals achieved by A
divided by maximum number of goals that could be achieved
with k means. For the SC task, the solution quality is the
minimum number of means that achieves all goals divided by
the number of means selected by A. Solution quality (which
is also referred to as the approximation ratio of A) is widely
used in quantifying the quality of approximation algorithms
for NP-hard problems (Vazirani, 2013).

The hardness of MC and SC gives a first indication for
why people might find it difficult to juggle multiple goals
at the same time. Yet, not every instance of these problems
is equally difficult. Next, we introduce graph-theoretic mea-
sures that might be useful for distinguishing harder instances
from easier ones.

Features and predictions
A tree is a connected graph without cycles. Many NP-hard
problems on graphs with small treewidth (Robertson & Sey-
mour, 1986, see below), allow exact or approximate algo-
rithms which are significantly better than what is known to
be achievable on worst-case instances.

The idea that tree-like graphs might be easier for people
to deal with guided our search for features that quantify how
similar a given network is to a tree. Four such features are
presented below.
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• Treewidth. Treewidth (tw) is a combinatorial parameter
that is associated with a graph.2 Low treewidth implies
that the nodes and edges of the network can be arranged in
a way that resembles a tree (e.g., Kloks, 1994; Robertson
& Seymour, 1986). For a precise definition of treewidth
see Kloks (1994).

• Combinatorial expansion. Given a graph G = (V,E) and a
nonempty subset S ⊆V , let ∂(S) be the set of edges cross-
ing the cut (S,V \S) and let N(S) be the set of all vertices in
V \S having a neighbor in S. The vertex-expansion of G is
defined as minS⊆V,0<|S|≤|V |/2

|N(S)|
|S| . The edge-expansion of

G is minS⊆V,0<|S|≤|V |/2
|∂(S)|
|S| . Trees of bounded degree have

expansion O(1/|V |), hence large expansion suggests that
the graph is dissimilar to a tree. We computed both vertex
and edge expansion by solving an integer linear programs
(ILPs) using IBM’s CPLEX.

• Spectral expansion. The adjacency matrices of the graphs
we consider are symmetric, hence have n real eigenvalues
λ1 ≥ λ2 ≥ ... ≥ λn. The classical (discrete) Cheeger’s in-
equality (e.g., Alon and Milman, 1985) implies that the
larger d−λ2 is, the larger the edge expansion of the graph.3

MC and SC instances with low treewidth w are known
to have exact algorithms that run in time O(2wn) (Alber &
Niedermeier, 2002), hence instances with low treewidth are
likely to be easier to deal with algorithmically. Current al-
gorithms that compute tree-decompositions are quite com-
plicated, therefore it seems unlikely that people would use
them to solve SC and MC problems. Nevertheless, treewidth
might affect the performance of people’s heuristics: the sim-
ilarity between low treewidth graphs and trees might make
the kinds of algorithms that people might use, such as greedy
and divide-and-conquer methods, much more effective. Con-
versely, as worst-case instances of MC and SC are hard
even to approximate, and as hard instances often have large
treewidth and expansion (Clementi & Trevisan, 1999), it is
likely that it will be hard not only to solve exactly, but also to
find approximate solutions for instances of large treewidth.
Similar reasoning applies to our expansion measures. We
therefore hypothesize that treewidth, vertex-expansion, edge-
expansion, and the spectral gap of G are negatively correlated
with the quality of people’s solution to SC and MC problems
and frequency with which they find an optimal solution.

Additional predictors
A feedback vertex set (FVS) is a subset of vertices whose
removal from a given graph results in a forest. The size
of a minimal feedback vertex set is an alternative measure
to the similarity of a graph to a tree. Hence we used this

2Here we will only consider undirected graphs.
3We included the spectral gap as it admits an efficient polynomial

algorithm as opposed to the other three predictors which are NP-
hard. As such, it may prove as a practical predictor of performance.

feature as well. We calculated FVS using the implementa-
tion based on (Iwata, 2016; Wahlström, 2014) available at
https://github.com/wata-orz/fvs.

Previous empirical hardness models have found additional
features of graphs to be useful: the diameter, average eccen-
tricity, and average path length (Leyton-Brown, Nudelman, &
Shoham, 2009). We thus included these features. The diam-
eter of a graph is the longest distance between two vertices
in the graph (where the distance, dist(u,v), is the number of
edges in a shortest path connecting u and v; all graphs con-
sidered are connected). The eccentricity ε(v) of a vertex v in
an undirected graph G = (V,E) is the maximal distance of a
vertex in V \ v from v. The average eccentricity (AvgEcc) is
1
n ∑v∈V ε(v) (n is the number of vertices). The average path
length (AvgPath) is 2

n(n−1) ∑dist(u,v) where summation is
taken over all pairs of distinct vertices.

Behavioral experiments
To test how our predictors relate to human performance in
MC and SC, we conducted three crowdsourced behavioral
experiments. We used a between-subjects design where each
participant was assigned randomly to one of twenty graphs
with treewidths varying from 4 to 13. In the first experiment,
participants were asked to solve the SC problem, and in the
second experiment participants were asked to solve the MC
problem. In each case, the problem was graphically repre-
sented as a bipartite graph with 48 vertices. The 24 vertices
at the bottom represent the available means (activities A-Z)
and 24 vertices at the top represent the goals. Each edge from
a means vertex to a goal vertex implies that completing that
activity is sufficient to achieve the goal. In the SC task, par-
ticipants were asked to select a minimal number of activities
to achieve all of the goals. In the MC task, participants were
asked to choose five activities that achieve as many goals as
possible. The third and final experiment asked participants to
solve a SC problem where goals are given semantic content
and real values, and a different visual display is used to elimi-
nate possible visualization effects. In each experiment we re-
stricted our analyses to goal systems in which every goal and
mean vertex had exactly 4 neighbors (i.e., each graph was
4-regular). This restriction meant that each graph required
the same amount of memory to enable processing, ensuring
that any difference between conditions cannot be explained
by working memory limitations.

Experiment 1: Human performance on Set Cover
Methods We recruited 655 participants on Amazon Me-
chanical Turk. Participants were paid $1.25 and could earn
a performance-dependent bonus of up to $2. Each participant
was randomly assigned to one of 20 conditions that differed
only in the graph structure of the SC problem participants
were asked to solve. After consenting to participate, partici-
pants read a cover story about a person trying to choose which
set of activities (e.g., volunteer to improve the company’s
website and work out at the gym) they should perform in or-
der to achieve all their goals (e.g., earn more money, improve
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Figure 2: Interface and instructions for Experiment 1.

relationship with boss, get fit, etc.) with as few activities as
possible because their time is limited. The story highlighted
that some activities achieve multiple goals at the same time.
Next, participants completed a simple practice trial involving
only two means and two goals. Once they had solved this task
successfully, participants proceeded to the Set-Cover prob-
lem they had been assigned to. When participants moused
over an activity, this interface highlighted the goals it would
achieve and the corresponding edges of the graph in green.
Goals that had already been achieved and activities that had
already been selected were highlighted by checkmarks, and
the number of selected activities was shown at the bottom of
the screen. Participants were asked to help a person achieve
their 24 goals with as few activities as possible, and they were
motivated by the prospect of earning a financial bonus of $2
for achieving all goals as efficiently as possible. After submit-
ting their solution, participants completed an exit question-
naire asking them for basic demographic information (age,
gender, and primary language), and four 9-point Likert scales
(anchors: “not at all”, “somewhat”, and “extremely”) measur-
ing the perceived difficulty of the task, motivation to achieve
all goals, motivation to find the optimal solution, and their
motivation to finish the task as quickly as possible. We ex-
cluded 30 participants (4.6%) because their responses did not
achieve all goals suggesting that they did not follow the in-
structions.

Results We found that treewidth alone explained 44.90%
of the variance in the frequency with which people found the
optimal solution across the 20 graphs (F(1,18) = 14.20, p =
0.0012): as we increased the treewidth of the graph the per-
centage of participants who discovered the optimal solution
decreased significantly (ρ = −0.59, p = 0.0058) from more
than 90% on the graph with treewidth 5 to only about 30%
on the graph with treewidth 14. We found that the aver-

age solution quality was negatively correlated with treewidth
(ρ = −0.44, p = 0.0525) suggesting that our participants
achieved fewer goals for goal systems with higher treewidth.
Treewidth explained 17.59% of the variance in the median re-
sponse time across problems (F(1,18) = 3.86, p = 0.0650):
the median amount of time people took to solve the problems
tended to increase with treewidth (ρ = 0.3426) but this effect
was not statistically significant (p= 0.1393), and when we re-
stricted this analysis to correct solutions the correlation was
ρ = 0.3825 (p = 0.1297). Perceived difficulty also tended to
increase with treewidth (ρ = 0.37) but this correlation was
not statistically significant (p = 0.1062). Our participants
were highly motivated to find the optimal solution (average
rating 7.91± 0.06 out of 9). Thus it appears unlikely that
their motivation was a bottleneck to their performance. Fur-
thermore, motivation appeared to be unaffected by treewidth
(ρ =−0.23, p = 0.34). Thus the observed differences in per-
formance appear to result from the inherent difficulties of the
means selection problems posed by different goal systems.

Of the additional predictors evaluated, we found that graph
diameter, average shortest path, and average graph eccentric-
ity all were significantly positively correlated with the fre-
quency of optimal solutions identified by our participants
(graph diameter: ρ = 0.5691, p = 0.0088, avg. shortest path:
ρ = 0.6516, p = 0.0019, avg. eccentricty: ρ = 0.6265, p =
0.0031). In addition, the spectral expansion (measured as
d−λ2) and the size of the graph vertex and edge expansions
showed significant negative correlations with the frequency
of optimal solutions (vertex expansion: ρ = −0.5836, p =
0.0069, edge expansion: ρ = −0.4552, p = 0.0437, spectral
expansion: ρ = −0.6280, p = 0.0030). We also found that
the average shortest path, average graph eccentricity, spectral
expansion, and the size of the graph vertex expansions were
significantly correlated with the average participant solution
qualities (avg. shortest path: ρ= 0.4505, p= 0.0462, avg. ec-
centricity: ρ = 0.4316, p = 0.0574, spectral expansion: ρ =
−0.4496, p = 0.0467, vertex expansion: ρ = −0.4636, p =
0.0395). Finally, only the cardinality of the graph edge ex-
pansions exhibited a significant correlation with the median
response times on the SC task (ρ = 0.4538, p = 0.0445).

Experiment 2: Human performance on Maximum
Coverage
Methods Experiment 2 was identical to Experiment 1 ex-
cept for the task: participants were now instructed to achieve
as many goals as possible subject to the constraint that the
person’s limited time does not permit them to complete more
than five activities. The 20 graphs and financial incentives
were the same as in Experiment 1. The interface of Exper-
iment 1 was modified to prevent participants from selecting
more than five activities at a time. When a participant at-
tempted to add a sixth activity they were told they would first
have to remove one or more of the activities they had already
selected. The cover story and survey were modified slightly
to match the change in the task. We recruited 545 participants
on Amazon Mechanical Turk. Participants were paid $1.25
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and could earn a bonus of up to $2. The consent form speci-
fied that participants must not have participated in the previ-
ous version of this experiment. We excluded 23 participants
(4.2%) because they had selected fewer than five means.

Results The frequency with which people found the op-
timal solution decreased significantly with treewidth (ρ =
−0.4828, p = 0.0311). We found that treewidth alone
explained 20.41% of the variance in the frequency with
which people found the optimal solution across the 20
graphs (F(1,18) = 4.62, p = 0.0455). We found that
treewidth explained 25.25% of the variance in solution qual-
ity (F(1,18) = 6.08, p = 0.0240) which significantly deterio-
rated as treewidth increased (ρ =−0.4972, p = 0.0257). The
median amount of time people took to solve the problems did
not increase significantly with treewidth (ρ = 0.25, p = 0.28)
and treewidth explained only 0.6% of our participants’ me-
dian response times (F(1,18) = 0.10, p = 0.76). When we
restricted the analysis to the time taken by optimal solu-
tions, the relationship was still not statistically significant
(ρ = 0.2994, p = 0.1998; F(1,18) = 0.10, p = 0.76). Fi-
nally, treewidth explained only 8.8% of the variance in the
perceived problem difficulty across the 20 graphs (F(1,18) =
1.74, p = 0.20), and the correlation between treewidth and
perceived difficulty was not statistically significant (ρ =
0.26, p = 0.26). Our participants were highly motivated to
find the optimal solution (average rating 8.11± 0.06 out of
9). Thus it appears unlikely that their motivation was a bottle-
neck to their performance. Furthermore, motivation appeared
to be unaffected by treewidth (ρ=−0.03, p= 0.91). Thus the
observed differences in performance appear to result from the
inherent difficulties of the means selection problems posed by
different goal systems.

In addition, we found that both the size of the graph
edge expansion and the graph spectral expansion (measured
again as d−λ2) were significantly negatively correlated with
the frequency of optimal solutions (edge expansion: ρ =
−0.4802, p = 0.0321, spectral expansion: ρ =−0.4782, p =
0.0330), while the average shortest path and average graph
eccentricity showed a significant positive relationship (avg
shortest path: ρ = 0.4912, p = 0.0279, avg. eccentricity:
ρ = 0.4391, p = 0.0528). In contrast, only the size of the
graph vertex and edge expansions showed a significant cor-
relation with the average solution quality (vertex expansion:
ρ=−0.4431, p= 0.0504, edge expansion: ρ=−0.4832, p=
0.0309), suggesting that in general graph treewidth and com-
binatorial expansions may be more robust predictors of hu-
man performance on the MC problem. None of the metrics
surveyed were significantly correlated with median partici-
pant response times.

Experiment 3: A more realistic Set-Cover task
While Experiments 1 and 2 capture some of the computa-
tional challenges of goal achievement, the tasks were rela-
tively abstract. Experiment 3 addresses this limitation by as-

signing semantic labels to the 24 goals. These labels were
common new-years resolutions such as “get in shape” and
“earn more money”. Similar semantic goals were used in pre-
vious research in goal-system theory (Zhang et al., 2007). We
also used a different interface to avoid possible visualization
effects that arise from graph drawings in the first two experi-
ments.

Methods We recruited 600 participants on Amazon Me-
chanical Turk. Participants were paid $0.38 for about 5min
of work plus a performance-dependent bonus of $0.50 if they
found an optimal solution. Each participant was randomly
assigned to one of the twenty graph structures used in Exper-
iments 1 and 2. For each graph, the order in which the means
were listed and the order in which the goals were listed was
randomized between participants. The participants’ task was
to achieve all goals with as few means as possible. The graph-
ical interface of the task was changed to reduce visual clutter.
Instead of drawing edges between mean and goals, the goals
achieved by each mean were listed next to it (see Figure 3).
The cover story was similar to the one used in Experiment
1 but the training trial used the new task interface shown in
Figure 3. The consent form required that participants had
not participated in any of our previous goal management ex-
periments. All participants were included in the subsequent
analyses.

Results On a scale from 1 to 9 participants rated their mo-
tivation to find a solution that achieves all goals with the
minimal number of means as 7.38, their motivation to fin-
ish the task as quickly as possible and move on as 4.35, and
the difficulty of the task as 5.67. We found that treewidth,
the magnitude of the graph spectral expansion, cardinalities
of the graph edge and vertex expansions, average eccentric-
ity, average shortest path, and graph diameter were all sig-
nificantly correlated with the frequency with which human
participants identified the optimal solution (treewidth: ρ =
−0.756, p = 0.0001; avg. eccentricity: ρ = 0.583, p = 0.007;
avg. shortest path: ρ= 0.651, p= 0.002; graph diameter: ρ=
0.525, p= 0.017; spectral expansion: ρ :−0.708, p= 0.0005;
edge expansion: ρ = −0.7, p = 0.0006; vertex expansion:
ρ = −0.7303, p = 0.0003). Similarly, treewidth, the mag-
nitude of the graph spectral expansion, cardinalities of the
graph edge and vertex expansions, average eccentricity, and
average shortest path were all significantly correlated with
the average solution quality of human responses (treewidth:
ρ = −0.60, p = 0.005; avg. eccentricity: ρ = 0.4872, p =
0.0293; avg. shortest path: ρ = 0.5243, p = 0.0176; spectral
expansion: ρ = −0.5308, p = 0.0160; edge expansion: ρ =
−0.5670, p = 0.0091; vertex expansion: ρ = −0.6047, p =
0.0047). None of the features were significantly correlated
with median participant response times.
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Figure 3: Graphical Interface of Experiment 3.

Conclusions
We demonstrated that people’s performance in Maximum
Coverage and Set Cover can be reliably predicted from graph
theoretic measures for the tree-likeness of the goal system,
such as treewidth and expansion. Our data support the con-
clusion that tree-like goal systems are easier for people to
handle. More generally, our results imply that parameters
that are used in theoretical computer science to differentiate
between hard and easy instances can be leveraged to predict
human performance in NP-hard tasks.

One limitation of our experiments is that their complete,
explicit representation of goals, means, and the connections
between them is a simplifying idealization. In real life, people
are often unaware of some of their goals and means, as well
as some of the connections between goals and means. For
example, maintaining goal systems of moderate size in work-
ing memory when solving means selection problems is likely
to be nontrivial. Hence real-life representations of goals are
likely to make means selection problems as those discussed
here even more challenging to solve. Although such memory
problems are not directly related to how treelike the goal sys-
tem is, they are nevertheless consistent with our hypothesis
that the cognitive difficulty of means selection is an impor-
tant limiting factor for people’s ability to achieve their goals.

In conclusion, our results suggest that even highly moti-
vated people will likely fall short of achieving all their goals
when they have to consider many goals and means in paral-
lel. Our analyses provide a novel approach to predicting how
likely people are to succeed in these settings, with implica-
tions for the design of goal systems that make it easier for
people to meet their objectives.
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Abstract 

The current study examined the impact of agency on college 
students’ emotions and learning during gameplay with CRYSTAL 

ISLAND, a game-based learning environment designed to foster 
microbiology learning. 96 undergraduate students (59% female) 
from a large North American university participated in the study. 
Participants were randomly assigned to one of three experimental 
conditions (i.e., full agency, partial agency, no agency), based on 
the level of control granted during gameplay, and were asked to 
uncover the source, identity, and best treatment for a mysterious 
illness. Results revealed participants in the partial agency 
condition achieved the highest (pre- to post-test) proportional 
learning gain (PLG), even when controlling for session duration. 
Additionally, there was a positive correlation between evidence 
scores of four emotions (anger, fear, confusion, and frustration) 
and PLG within the partial agency condition—meaning the 
higher the evidence of the above emotions, the higher the PLG. 
Further, a stepwise multiple regression showed anger as the sole 
predictor of PLG. Results from this study have important 
implications for understanding the role of autonomy and 
emotions during learning and problem solving with GBLEs 
designed to foster scientific thinking in STEM. The current study 
suggests that although GBLEs offer significant learning benefits, 
they also induce several emotions that can facilitate or inhibit 
learning gains, requiring further examination.  

Keywords: human agency; emotions; learning; game-based 
learning environments; science 

Autonomy is a critical determinant in human learning, 

problem solving, and performance (Bandura, 2001). Despite 

its importance in cognitive science, there is a paucity of re-

search that experimentally manipulates autonomy and ex-

plores its impact on learning and emotions, in STEM game-

based learning environments (GBLEs). Various levels of au-

tonomy likely affect learners’ abilities to monitor and regu-

late their cognitive, affective, metacognitive, and motiva-

tional processes in dynamic, non-linear learning environ-

ments involving planning (e.g., coordinating multiple goals), 

learning activities (e.g., reading scientific texts), and scien-

tific reasoning (e.g., collecting evidence and testing hypothe-

ses) in different ways. Further, little is understood of how au-

tonomy affects emotions in GBLEs, and in turn, how these 

emotions affect learning outcomes (Azevedo, Taub, 

Mudrick, Farnsworth, & Martin,  2016; D’Mello & Graesser, 

2012). Our study focuses on the effects of autonomy on emo-

tions and the impact of both on learning and problem solving 

within the GBLE, CRYSTAL ISLAND.  

GBLEs offer powerful platforms to enhance student 

learning, problem solving, and performance. However, a ma-

jority of the research focuses on engagement and motivation 

and is often criticized for (1) a lack of theoretical framing, (2) 

questionable operationalizations of key constructs (e.g., en-

gagement, motivation), (3) overreliance on self-report 

measures, and (4) dubious empirical support, based on a lack 

of experimental rigor, methodological shortcomings, and in-

appropriate analytical techniques (see Mayer, 2014).  Addi-

tionally, much of this research fails to assess learning gains, 

choosing to take an “everything but learning” approach, such 

as measuring engagement or motivation alone while ignoring 

educational outcomes (Mayer, 2014). Further, GBLEs have 

been criticized for overshadowing educational content with 

game elements that are superfluous and distracting to learn-

ing goals, drawing learner attention away from important ed-

ucational content (Mayer & Johnson, 2010). Interestingly, 

many of these distractors (e.g., game narratives, interesting 

characters) are the very elements thought to increase student 

motivation, engagement and positive emotions (Sabourin & 

Lester, 2014). Further, research has indicted that while dis-

tractors may present opportunities for off-task behaviors, 

leading to decreased learning gains (Rowe, McQuiggan, 

Robison, & Lester, 2009), off-task behaviors could in-fact be 

a strategy to alleviate frustration, allowing the student to re-

duce frustration and thereby increase learning gains (Sabou-

rin, Rowe, Mott, & Lester, 2014). 

Students experience a diverse range of emotions when 

learning, which likely influence cognitive processes and aca-

demic performance (see Calvo, D'Mello, Gratch, & Kappas, 

2014). We address this issue by using online trace methods 

(e.g., facial expression detection software [FACET; Version 

6.2], and logfiles), to assess the impact of autonomy on emo-

tions and learning during gameplay (see Azevedo et al., 2016; 

Calvo et al., 2014), thereby increasing understanding of emo-

tional monitoring and regulation in GBLEs (Rowe, Shores, 

Mott, & Lester 2011). This research can inform the design of 

future intelligent, adaptive GBLEs that not only teach com-

plex instructional material effectively but also train the skills 

necessary to successfully monitor and regulate emotions dur-

ing learning, leading to improved learning outcomes.  
 

Theoretical Framework 
D’Mello and Graesser’s (2012) model of affective dy-

namics suggests certain emotional states arise as the result of 

an impasse during deep learning, creating cognitive disequi-

librium. This model focuses on four learner-centered emo-

tional states: flow/engagement, confusion, frustration and 

boredom. When learners reach a state of disequilibrium (e.g., 

during reading complex text), they are likely to experience 

confusion which if unresolved will likely transition to frus-

tration, which if also left unresolved, will lead to boredom 
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and disengagement from the activity (e.g., reading, inspect-

ing diagrams). This model posits that students systematically 

shift between learning-centered states during complex learn-

ing and that these shifts are predictive of learning, problem 

solving, and scientific reasoning. For instance, frustration is 

much more likely to transition to boredom than to engage-

ment/flow, as learners have not yet transitioned to confusion, 

where through effortful reasoning and problem solving they 

can resolve an impasse and return to equilibrium. However, 

this model has some drawbacks. For instance, it ignores other 

emotional states such as the seven basic emotions (e.g., an-

ger; Ekman, 1973), assuming that other basic emotions are 

unimportant to learning. Lastly, this model has not been used 

to examine autonomy and extended learning with GBLEs 

such as CRYSTAL ISLAND. 
 

 

Current Study 
The goal of the current study was to examine the effects of 

autonomy on emotions and learning during gameplay with 

GBLEs such as CRYSTAL ISLAND. By experimentally ma-

nipulating autonomy, we could empirically observe how dif-

ferent levels of autonomy (e.g., agency conditions) affected 

learning gains as well as emotional states, and in turn, how 

these emotional states affected learning gains. Our research 

questions were as follows: 1) What are the effects of auton-

omy on proportional learning gains with CRYSTAL ISLAND, 

after controlling for session duration? 2) What are the ef-

fects of autonomy on learners’ emotions throughout their in-

teraction with CRYSTAL ISLAND? 3) Do evidence scores of 

emotional states predict PLG during gameplay with CRYS-

TAL ISLAND and are there differences in emotion evidence 

scores between high and low performers?  

 Our hypotheses were as follows. (H1): Participants in the 

partial agency condition will show significant PLG compared 

to the full agency and no agency conditions. (H2): The full 

agency condition will exhibit the highest evidence of positive 

emotions such as joy and the lowest evidence of negative 

emotions such as anger and frustration compared to the par-

tial and no agency conditions. (H3): Higher evidence scores 

of negative emotions such as anger, confusion and frustration 

will lead to increased PLG in all conditions.   

Method 

Participants 
96 undergraduate students (59% female) from a large North 

American university participated in the current study. Partic-

ipants’ ages ranged from 18 to 29 (M = 19.99, SD = 1.79) and 

were randomly assigned to one of three experimental condi-

tion: full agency, partial agency or no agency (see Experi-

mental Procedure). Additionally, they were compensated 

$10/hour for participating. 
 

Materials 
At the start of the experimental session, participants read and 

completed the informed consent, a demographics question-

naire and a series of self-report questionnaires. These ques-

tionnaires probed participants’ emotions and motivation 

(e.g., Emotions and Values; Pekrun, Goetz, Frenzel, 

Barchfeld, & Perry, 2011) as well as achievement goals (El-

liot & Murayama, 2008). Participants also completed a pre-

test (M = 11.94, SD = 2.79; 57% correct) and post-test (M = 

13.92, SD = 2.86; 66% correct) on microbiology knowledge: 

a 21-item, four-choice multiple-choice test, with 12 factual 

and 9 procedural questions. Participants also completed the 

Perceived Interest Questionnaire (Schraw, Bruning, & Svo-

boda, 1995), Intrinsic Motivation Inventory (Ryan, 1982), 

and Presence Questionnaire (Witmer & Singer, 1998). 

 

CRYSTAL ISLAND 
CRYSTAL ISLAND is a narrative-centered GBLE used to foster 

students’ self-regulated learning, scientific reasoning, and 

problem-solving skills (Rowe et al., 2011). Participants expe-

rience the game in first person perspective, arriving on a trop-

ical island where they discover a mysterious illness has in-

fected the community. Taking a protagonist role, participants 

explore the island, seek clues by speaking to residents and 

patients, read content on microbiology and use lab equipment 

to scan for possible transmission sources, all to discover the 

source, identity, and best treatment for the infectious disease.  

Buildings CRYSTAL ISLAND has five buildings, each embed-

ded with a multitude of books, research papers, posters, food 

items, and non-player characters (NPCs). In the infirmary, 

participants interview sick patients and interact with the NPC, 

Kim the camp nurse, who provides the game narrative. 

Through this interaction, they gather pertinent information 

such as overall goals, background information, and clues 

pointing towards possible illness types and transmission 

sources. In the two living quarters (a dorm room and a micro-

biologist’s home), participants converse with microbiology 

experts and another patient, and read books and posters on 

various microbiology topics. In the dining hall, participants 

meet Quentin the camp cook, who offers insight into what 

foods he had prepared and sick patients had eaten prior to the 

outbreak. Using information and clues gathered from these 

buildings, participants can infer which items are the likely 

transmission source and then test these hypotheses by scan-

ning these food items in the laboratory.  

Game Elements Participants complete concept matrices as 

they read about microbiology in books and research articles. 

For example, as they read about E. coli, they must fill in a 

diagram asking questions related to the reading (i.e., where 

E. coli is located, symptoms and common diagnostic tests). 

Additionally, by interacting with NPCs, participants receive 

valuable information (i.e., evidence), such as symptoms and 

food eaten. As participants collect evidence and begin mak-

ing inferences, they can track and organize symptoms, test 

results, and make a final diagnosis via a diagnosis worksheet. 

This worksheet supports problem-solving processes by al-

lowing participants to offload information as they interact 

with the game environment, later using this information to 
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make a final diagnosis, identify the transmission source, and 

propose a treatment plan. For instance, they may read about 

influenza then check the diagnosis worksheet to find the 

symptoms match the current epidemic. Additionally, partici-

pants generate hypotheses regarding which food items are the 

likely transmission source as well as the type of pathogen 

they might carry. These hypotheses are tested by collecting 

and scanning food items, and testing for a virus, bacterium, 

mutagen, or carcinogen. If a test comes back positive for a 

pathogenic substance, the participant can confirm the trans-

mission source and add their finding to the diagnosis work-

sheet. Once participants correctly identify the illness type, 

transmission source, and treatment plan, the mystery is 

solved and the game concludes.  

Experimental Procedure  

Conditions Participants were randomly assigned to one of 

three conditions (i.e., full agency, partial agency, no agency) 

prior to gameplay. These conditions varied in the level of au-

tonomy assigned to each player, ranging from full autonomy 

(full agency), to some autonomy (partial agency), to no au-

tonomy at all (no agency). In the full condition, participants 

were free to explore the game environment and its elements 

as much or as little as they wished, choosing what buildings 

to visit, what books to read, and with which NPCs to interact. 

Conversely, the partial condition contained strict game pa-

rameters with a pre-set order in which players visited build-

ings and a requirement that they interact with all game arti-

facts (e.g., read all books/posters, speak with all NPCs, etc.) 

before advancing to other buildings. In the no condition, par-

ticipants did not play CRYSTAL ISLAND but instead watched a 

narrated video of an expert playing the game. This was an 

optimal instructional path designed to enhance learning with-

out the opportunity to exercise autonomy as participants had 

no control over any aspect of the gameplay or content. 

Experimental Procedure The experimental session lasted 

one to two and a half hours depending on condition (M = 

89.64 min, SD = 18.37 min). Upon arrival, participants were 

greeted, directed to the workstation and asked to review and 

complete the informed consent. Next, they received an over-

view of the study, donned an electro dermal activity (EDA) 

bracelet (Empatica E4), and completed the microbiology pre-

test. Then, the SMI RED 250 eye tracker was calibrated using 

a 9-point calibration.  Following successful calibration, a 

baseline for the facial recognition of emotion software 

(FACET) and EDA were established using Attention Tool 

(Version 6.2).  Participants were then given instructions for 

the experimental session that included an overview of the 

game scenario covering their role as the protagonist, the im-

portance of reading (i.e., books, articles, and posters), inter-

acting with NPCs and scanning food items to solve the mys-

tery. During gameplay, we collected logfiles, eye-tracking, 

facial expressions of emotions, and physiological data on all 

participants in the full and partial agency conditions only. 

Upon game conclusion, participants completed several self-

report measures and the microbiology post-test, after which 

they were debriefed, thanked, and paid for their time.  

Coding and Scoring 

For the purposes of the current study, only logfiles and 

FACET data were used. Additionally, pre- and post-test 

scores (out of 21 possible points) of microbiology content 

knowledge were used to generate a PLG score (see below).  
 

Logfiles Logfile data captured the sequence and timing of 

participants’ movements and actions within the game (e.g., 

talking to NPCs, reading books). For this study, only session 

duration was analyzed. This variable was extracted from the 

trace data. Additionally, logfile data were only captured in 

the full and partial agency conditions as the no agency condi-

tion watched a video play-through (91 min) of CRYSTAL IS-

LAND rather than play, thus not generating any log-file data.  

Facial Expression Data Each experimental session included 

a video of the participant, which was later analyzed using 

FACET, facial expression recognition software included with 

Attention Tool. We used FACET (sampling rate of 30Hz) to 

analyze the following nine basic and learning-centered emo-

tions: joy, anger, contempt, frustration, confusion, surprise, 

fear, sadness and disgust (see, Dente, Küster, Skora, & 

Krumhuber, 2017, regarding the software’s validity). Each 

emotion was given an evidence score automatically gener-

ated by FACET representing the likelihood of an expert hu-

man coder to similarly categorize the expression. This score 

was based on a logarithmic scale (base 10), meaning that a 

score of one indicated the likelihood of 10 human coders cod-

ing for that emotions while a score of two indicated the like-

lihood of 100 human coders coding for that emotion, and so 

forth. For the purposes of the current study, the mean evi-

dence score for the entire session duration was used for each 

participant.  The range of evidence scores for all emotions 

and across participants was 0 to 1.98, excluding negative val-

ues. Negative scores indicated the emotion was not likely pre-

sent, and since we were interested in emotions present, all 

negative values were replaced with zero.  

Proportional Learning Gain (PLG) PLG scores were cal-

culated from pre- and post-test ratios scores of microbiology 

content knowledge, using Witherspoon, Azevedo, and 

D’Mello’s (2008) formula. For example, if a participant 

scored an 11 out of 21 on the pre-test and a 15 out of 21 on 

the post-test then their PLG score was .40.  

Median Split High versus low performers were determined 

through a median split of the PLG variable for the partial 

agency condition. The median for this condition was .40 

(range: -0.17 to 0.70).  
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Results 
 

Research Question 1: What are the effects of auton-

omy on proportional learning gains with CRYSTAL IS-

LAND, after controlling for session duration? 

To investigate the effects of autonomy on PLG, we conducted 

an ANCOVA, using condition as the independent variable 

and session duration as a covariate, see Table 1 for mean ses-

sion duration by condition. Results indicated a significant 

main effect for condition, F(2, 88) = 3.35, p = .003, ηp2 = .13.  

Post hoc LSD analyses indicated that the partial agency con-

dition (M = .35, SD = .23) showed significantly higher PLG 

than both the full (M = .18, SD = .27) and no agency condi-

tions (M = .11, SD = .28); however, there was no difference 

between the full and no agency conditions.  

 

Table 1. Mean session duration (min) by condition.  
 Full Agency  

M (SD) 

Partial Agency  

M (SD) 

No Agency 

M (SD) 

Session 

Duration  
78.69 (21.92) 98.65 (18.43) 91.00 (0) 

 

Research Question 2: What are the effects of auton-

omy on learners’ emotions throughout their interac-

tion with CRYSTAL ISLAND? 

A MANCOVA was conducted using mean evidence scores 

of the basic and learner-centered emotions as the nine de-

pendent variables and condition as the one independent vari-

able. No significant main effect was found by condition; 

Wilk’s λ = .78, F(16, 164) = 1.39, ηp
2 = .12.  Univariate re-

sults revealed that disgust, F(2, 89) = 4.15, p = .02, ηp2 = .09, 

anger, F(2, 89) = 4.12, p = .02, ηp2 = .02, and joy F(2, 92) = 

3.48, p = .04, ηp2 = .07, showed statistically significant dif-

ferences between conditions. No other emotions demon-

strated significant differences. Post hoc LSD analyses indi-

cated that those in the full agency condition exhibited higher 

levels of disgust (M = .22, SD = .34) and anger (M = .55, SD 

= .62) compared to those in the partial agency condition (M 

= .14, SD = .24; M = .37, SD = .49, respectively). Addition-

ally, those in the full agency condition exhibited higher levels 

of joy (M = .25, SD = .44) compared to the partial agency 

condition (M = .06, SD = .13; see Table 2). 

 

Table 2. Mean emotion evidence scores by condition.   

 

   Experimental 

Conditions 
    F-test Results 

Emotional 

State 

Full 

Agen 

Part 

Agen  

No 

Agen 
F-Stat Comparisons 

                      M (SD)   M (SD)  M (SD)   F(p) 

Disgust 
.22 

(.34) 

.14 

(.24) 

.04 

(.12) 

4.15 

(.02) 
(P = F > N = P) 

Anger 
.55 

(.62) 

.37 

(.49) 

.18 

(.35) 

4.12 

(.02) 
(P = F > N = P) 

Joy 
.25 

(.44) 

.06 

(.13) 

.09 

(.27) 

3.48 

(.04) 
(F > P = N) 

Frustra-

tion 

.38 

(.49) 

.20 

(.32) 

.16 

(.31) 

2.88 

(.06) 
(P = F > N = P) 

Surprise 
.16 

(.36) 

.19 

(.32) 

.11 

(.27) 

.48 

(.62) 
(F = P = N) 

Fear 
.18 

(.31) 

.10 

(.15) 

.09 

(.20) 

1.45 

(.24) 
(F = P = N) 

Contempt 
.06 

(.13) 

.06 

(.12) 

.05 

(.14) 

.05 

(.95) 
(F = P = N) 

Sadness 
.23 

(.28) 

.23 

(.29) 

.18 

(.31) 

.32 

(.73) 
(F = P = N) 

Confusion 
.45 

(.52) 

.33 

(.40) 

.26 

(.46) 

1.30 

(.28) 
(F = P = N) 

Note: F = full agency, P = no agency, N = no agency conditions 
 

Research Question 3: Do evidence scores of emo-

tional states predict PLG during gameplay with 

CRYSTAL ISLAND and are there differences in emo-

tion evidence scores between high and low perform-

ers? 

To assess the relationship between emotions and PLG while 

playing CRYSTAL ISLAND, four correlation matrices were 

created: overall (all conditions; n = 92), full agency (n = 

30), partial agency (n = 32), and no agency (n = 30). The 

full and no agency conditions as well as all conditions com-

bined showed no correlations between emotions and PLG; 

however, for the partial condition, four emotions were sig-

nificantly positively correlated with PLG, anger, r(30) = .39, 

p = .03, fear, r(30) = .36, p = .04, confusion, r(30) = .39, p = 

.03, and frustration, r(30) = .39, meaning the higher the evi-

dence of the above emotions, the higher the PLG.   

To determine the predictive power of anger, fear, confu-

sion, and frustration on PLG within the partial agency condi-

tion, a stepwise multiple regression analysis was conducted. 

Results indicated that anger (β = .39, p = .03, R2 = .15) was 

the sole predictor of PLG, meaning that more evidence of an-

ger predicted better PLG, accounting for 15% of the variabil-

ity in PLG.  

Given the regression results for the partial agency condi-

tion, we performed a median split on these participants’ PLG 

to examine whether there were differences between high- and 

low-performers’ experienced emotions. Result of an inde-

pendent samples t-test revealed that high performers exhib-

ited significantly more evidence of facially expressed frustra-

tion, t(18) = -3.75, p < .002, d  = -1.78, anger, t(19) = -3.47, 

p < .003, d  = -1.58, and confusion, t(21) = -2.97, p < .007, d 

= -1.29, compared to low performers.   

 

Discussion 
Results of the current study revealed that students achieved 

the highest PLG in the partial agency condition compared to 

the full and no agency conditions, even after controlling for 

sessions duration. These results support H1, demonstrating 

the positive impacts of seceding partial agency to improve 

learning outcomes in GBLEs. Previous research explains that 

while offering a high degree of user control allows learners 
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to regulate their own learning, constructing knowledge based 

on the representations they find useful, this responsibility can 

lead to disorientation and negative learning outcomes when 

learners are unsure which path to follow (Greene, Bolick, & 

Robertson, 2010), suggesting there may be on optimal level 

of autonomy to improve learning outcomes in GBLE. Future 

research should empirically test different parametrization of 

autonomy on GBLEs to assess the optimal level of autonomy 

to foster learning across domains. 

For research question two, participants in the full agency 

condition were more emotionally expressive than those in 

no and partial agency conditions. For instance, those in the 

full agency condition showed significantly higher evidence 

of joy than those in the partial and no agency conditions, as 

well as significantly higher evidence of anger and disgust 

compared to the no agency condition. These results run con-

trary to our original hypothesis (H2), expecting the full 

agency condition to experience the least negative emotions; 

however, the full agency condition did experience the high-

est evidence of joy, partially supporting H2. A plausible ex-

planation could be that those in the full agency had a greater 

potential to express autonomy which led to more emotional 

expressivity throughout task performance (Azevedo et al., 

2016). A next step involves a micro-level analysis mapping 

specific game events (e.g., reading books, testing evidence, 

etc.) with emotional expressivity (e.g., higher evidence 

scores) and emotional states.   

As for research question three, no correlations between 

emotional states and PLG were found with 1) all conditions 

combined, 2) the full agency condition or 3) the no agency 

condition; however, this was not the case within the partial 

agency condition. The partial agency condition found signif-

icant positive correlations between PLG and evidence scores 

of facially expressed anger, fear, confusion and frustration, 

meaning the higher evidence of the above emotions, the 

higher a participant’s PLG. After imputing the aforemen-

tioned emotions into a stepwise multiple regression con-

ducted within the partial agency condition, anger was the 

sole predictor of PLG. Further, high performers in the par-

tial agency condition exhibited significantly higher evidence 

of anger, frustration and confusion compared to low per-

formers, demonstrating that negative emotions, typically 

thought as unconducive to learning (Sabourin & Lester, 

2014), can have positive effects on learning outcomes. Pre-

vious work has reach similar conclusions, finding confu-

sion, if appropriately regulated and resolved, as beneficial to 

learning (D’Mello, Lehman, Pekrun,& Graesser, 2014).  

In the current study, fear, anger, frustration and confu-

sion had a positive effect on PLG, but only when the partici-

pant seceded partial control of the learning environment 

(i.e., partial agency condition). One explanation for these re-

sults could be explained using the model of affective dy-

namics (D’Mello & Graesser, 2012). For instance, partici-

pants are likely to experience confusion and frustration 

when learning difficult subject matter and will hence experi-

ence cognitive disequilibrium (D’Mello & Graesser, 2012). 

Equilibrium (e.g., engagement/flow state) is regained 

through effortful reasoning, problem solving and reflection; 

however, when left unresolved, learners can digress from 

confusion to frustration and eventually disengage from the 

learning activity (D’Mello et al., 2014).  

In the current study, participants were asked to learn new 

information in order to solve complex problems: what dis-

ease was infecting the community, what was the transmis-

sion source, and how to best treat patients. However, each 

condition offered different paths to learn this information 

(via varying levels of autonomy) and in turn affected emo-

tions and learning differently. For instance, in the no agency 

condition, participants might have felt frustrated at not being 

able to play the game and this frustration may have led to 

boredom and disengagement, explaining poor PLG. In the 

full agency condition, participants could reduce confusion 

and frustration by simply avoiding books, research articles, 

or interactions with aspects of the game they found unap-

pealing; however, even though they would return to equilib-

rium through these actions, they would have missed valua-

ble educational content, thus reducing PLG. Conversely, the 

partial agency condition was forced to interact with all ele-

ments of the game before leaving a room. This stipulation 

may have forced participants to work through the confusion 

and frustration they experienced because they could not pro-

gress with the not step of the game until required actions 

(e.g., finishing a conversion with the NPC, filling in a con-

cept matrix correctly) were completed. Therefore, these par-

ticipants were more likely to engage in the effortful reason-

ing and problem solving necessary for both deep learning 

and a return to equilibrium.  
 

Limitations 
There were a number of limitations with the current study.  

First, the operationalization of autonomy in the partial and 

full agency condition as this was a first attempt to parameter-

ize key assumptions of autonomy in a GBLE. Also, because 

we were looking at autonomy, there may have been other 

metacognitive processes (e.g., motivation) affecting learning 

gains that we did not control for or measure, we only used 

log-files, FACET, and learning outcomes data. Converging 

these data along with EDA and eye-tracking data would fur-

ther elucidate the role of autonomy and emotions during 

learning. For instance, eye-tracking data could be used to ex-

amine what activity a participant was engaged in prior, during 

and after the onset of a certain emotion. Additionally, EDA 

data could be used to validate the presence and relevance of 

emotions. For instance, spikes in EDA data could be mapped 

onto emotion evidence scores to determine when spikes and 

high emotion evidence scores co-occur revealing the quality 

of appraisals mechanisms (Gross, 2015). 

 

 Implications and Future Directions 
These results have important implications for understand-

ing the role of autonomy and emotions during learning and 

problem solving with GBLEs designed to foster scientific 

thinking in STEM. The current study suggests GBLEs induce 

several basic and learning–centered emotions depending on 
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the level of autonomy granted to a learner and that autonomy 

and emotions can either facilitate or inhibit learning. How-

ever, further empirical examination is required. Future re-

search should design and test additional experimental manip-

ulations that operationalize key assumptions of autonomy 

(Bandura, 2001). Further, our results revealed a need to ex-

tend models and theories of affect to include basic emotions 

when considering transitions between emotional states in 

learning environments (D’Mello & Graesser, 2012) and 

would benefit by including Gross’s process model of emo-

tional regulation along with emotion regulation strategies 

(Gross, 2015).   

Methodologically, converging the multimodal multichan-

nel data will allow researchers to examine the impact of au-

tonomy on emotions and their impact on learning, problem 

solving, and reasoning. For example, how do emotions fluc-

tuate during different activities during learning with GBLEs? 

What is their specific behavioral signature in terms of on-

set/trigger event, intensity, duration, evidence of emotion 

regulation strategy, and so forth? How do these emotions re-

lated to specific GBLE activities (e.g., reading books and 

posters, interviewing patients, interpreting results, deriving 

hypotheses)? Such questions can be addressed by traditional 

statistics as well as data mining and machine learning tech-

niques and lead to the design of intelligent GBLEs capable of 

detecting, tracking, modeling, and fostering adaptive, real-

time scaffolding to learners, depending on their individual 

needs, thus ensuring optimal learning.  
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Abstract

Recent studies in the perception of numerosity have indicated
that subitizing (the rapid and accurate enumeration of small
quantities) requires attention. We present a novel computa-
tional model of enumeration in which attention unifies dis-
tinct processes of numerosity approximation, subitizing, and
explicit counting. We demonstrate how this model accounts
for both the reaction time results from the subitizing literature
and the effects of attentional load on subitizing accuracy.

Keywords: attention; subitizing; enumeration; perception of
numerosity; counting; inattentional blindness

Introduction
The perception of numerosity is one of the core faculties un-
derlying much of the human ability to represent, reason, and
communicate about number (Dehaene, 2011), and the preci-
sion and accuracy of this “number sense” is highly dependent
on the amount of attention devoted to it. Imagine that you are
asked to report the size of a small crowd gathered around a
performer in a public park. Glancing at the crowd might suf-
fice to obtain a rough figure (e.g., about thirty), but obtaining
an exact number with high confidence would require look-
ing at individual people and counting them. Converging lines
of evidence suggest that numerical cognition is supported by
two types of representations of numerosity (Feigenson, De-
haene, & Spelke, 2004). The first is an approximate represen-
tation that can be quickly perceived through estimation. The
second is a precise representation, associated with linguis-
tic representations of number (Gelman & Butterworth, 2005)
that are usually generated through a slower process of explic-
itly fixating on and counting individual objects.

Yet, a simple dual-system account of numerosity judgment
is incomplete. Since the 19th century, scientists have ob-
served that the enumeration of small quantities of objects (un-
der five) was both rapid and accurate (Jevons, 1871). This
phenomenon is called subitizing (Kaufman, Lord, Reese, &
Volkmann, 1949). Within the subitizing range, each addi-
tional object requires only 40–100 ms more time to enumer-
ate on average, whereas in the post-subitizing range, each ad-
ditional object requires 250–350 ms to enumerate (Trick &
Pylyshyn, 1994). Previous work has proposed that subitiz-
ing is the result of a parallel and pre-attentive process (Trick
& Pylyshyn, 1994; Mandler & Shebo, 1982) that transitions
into slower, serial counting.

In contrast with this account, recent studies provide a
body of evidence demonstrating that attentional manipula-
tions, such as attentional blink or increased attentional load,
adversely affect subitizing performance (Railo, Koivisto,

Revonsuo, & Hannula, 2008; Olivers & Watson, 2008;
Egeth, Leonard, & Palomares, 2008; Vetter, Butterworth,
& Bahrami, 2008). Therefore, subitizing has an atten-
tional component, and an account of the processes underly-
ing subitizing must explain both (a) why subitizing is sig-
nificantly more rapid than explicit counting and (b) why it
requires attention.

We claim that numerosity judgments of all types are sub-
ject to constraints on attention and that attention flexibly in-
tegrates the results of multiple number-processing capacities.
Both classical and newer results in the subitizing literature
can be explained by combining a capacity-limited, object-
based view of attention with a capacity for approximation that
operates independently of attention. In this paper, we present
a computational model of enumeration in which attention uni-
fies distinct processes of numerosity approximation, subitiz-
ing, and explicit counting. We begin by introducing a compu-
tational cognitive modeling system, ARCADIA (Bridewell &
Bello, 2016b), in which attention features centrally. We then
proceed to present a computational account of enumeration,
proposing a model of rapid, serial subitizing in which the nu-
merosity of objects encoded in visual short-term memory can
be quickly established. We then demonstrate how this model
of subitizing accounts for both the reaction time and the ef-
fects of attentional load. Finally, we discuss the various pro-
cesses involved in the perception of numerosity and the role
of attention in enabling and integrating them.

ARCADIA’s Architectural Features
ARCADIA provides a system in which attention is the pri-
mary organizing mechanism for perception, cognition, and
action. In this section, we provide a brief overview of the
key concepts necessary to understand ARCADIA models and
point to a more detailed introduction by Bridewell and Bello
(2016b). Each ARCADIA model consists of a set of com-
ponents, which carry out all the processing for the model,
that can read from or write to accessible content, a temporary
buffer where components share their output on each cycle.
Whereas representations inside of individual components can
take arbitrary form, every component is designed to read from
and express its results in a common representation called the
interlingua. This shared language pulls together data in dif-
ferent formats so that they can be exchanged among compo-
nents.

ARCADIA operates in discrete, cognitive cycles, each cor-
responding to 25 ms intervals (Bridewell & Bello, 2016a).
During each cycle, an attentional strategy selects an element
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out of accessible content to be the focus of attention. Some
components can respond to the focus of attention, while oth-
ers operate independently of the focus. In this way, ARCA-
DIA has natural resources for distinguishing processes that
require attention from those that do not.

Model of Enumeration
In this section, we present an ARCADIA model of numeros-
ity judgment that includes both estimation and counting pro-
cesses. The core processes within this model are illustrated
in Figure 1. We model counting such that differences in enu-
meration speed result from the attentional and temporal con-
straints necessitated by maintaining count information in dif-
ferent memory stores. The model proposes that a count of the
first set of seen objects can be calculated from visual short-
term memory (vSTM) and represents the subitized count. Af-
ter this, an explicit, symbolic representation of the current
count is maintained that requires rehearsal via subvocaliza-
tion (i.e., inner speech) supported by a phonological loop.

The connection between subvocalization and slow count-
ing has been previously established (Dehaene, 2011), and ev-
idence has shown that articulatory suppression adversely af-
fects counting performance (Logie & Baddeley, 1987). Like-
wise, vSTM capacity-limits have been proposed as an ex-
planation of subitizing (Railo et al., 2008), and there is evi-
dence that vSTM load affects subitizing performance (Cutini
& Bonato, 2012).

Visual Processing
For the sake of brevity, our discussion of these components
is abridged. A more detailed walkthrough of visual process-
ing mechanisms in ARCADIA can be found in Bridewell and
Bello (2016a).
Early Vision: At the first stage of visual processing, image
segmentation produces a set of segments, corresponding to
hypotheses about object locations that we call proto-objects
(Rensink, O’Regan, & Clark, 1997). [Step 1].
Fixation Generation: Highlighter components produce can-
didate fixations on either individual proto-objects or a group
of proto-objects. When a candidate fixation on a single proto-
object becomes the focus of attention, an object-binding pro-
cess begins [Step 2a]. If a candidate fixation for a group of
proto-objects becomes the focus of attention, an estimation
process is triggered [Step 2b].
Object Binding and Storage (vSTM): When a candidate
fixation containing a single proto-object is focused on, a (vi-
sual) feature-binding process occurs, creating an object rep-
resentation containing size, shape, color, and location infor-
mation. This object representation can in turn be focused
on, which updates vSTM. The ARCADIA model of vSTM
has a maximum capacity of four objects (Bridewell & Bello,
2016b).
Task Knowledge (Visual Cues): Task knowledge includes
object property information used as visual cues to identify
and distinguish between different types of task-relevant ob-
jects. This includes size and shape information about objects

that should be enumerated and mask objects that represent the
end of a trial.

Enumeration Components
Various components are responsible for subitizing and subvo-
cal counting, estimation, and then merging these results into
a single numerosity report.
Subitized Numerosity: When vSTM is full, or a mask ob-
ject is detected, or when there are no more uncounted objects,
then the number of objects to be enumerated in vSTM is re-
turned. Note, this may be based on a subset of the objects
in vSTM. Evidence supports the notion that people are able
to selectively enumerate objects in vSTM based on various
object properties (Chesney & Haladjian, 2011).
Lexical Count: For precise numerosity representations to
be remembered, they first must be converted into a lexical-
ized form (e.g., “one,” “four,” “eight”). This happens when
a subitized numerosity representation is focused on [Step
3]. When a lexicalized count representation already exists
in working memory, and a new object is focused on, the next
lexicalized number in the count sequence is returned [Step 5].
The presence of lexicalized number representations triggers
subvocalization in the phonological loop.
Phonological Loop: The phonological loop is implemented
with a component that generates a series of subvocalization
actions over multiple cycles, ensuring that the number of se-
quential subvocalization actions corresponds to a model of
subvocalization time. Currently, the number of ARCADIA
cycles required to subvocalize a word is calculated based on
the approximation from Huss and Byrne (2003): 150 ms per
syllable and one syllable per three characters in a lexeme. For
example, “seventeen” would have three estimated syllabes for
a total subvocalization time of 450 ms.
Approximate Number System (ANS): The ANS responds
when the focus is a fixation on a group of proto-objects, by
producing a noisy number-sense representation [Step 4]. The
result is a normal distribution with a mean of ne (the number
of proto-objects in the group fixation region) and standard
deviation of w · ne, where w is the model’s Weber fraction
parameter (Halberda & Feigenson, 2008).
Numerosity Reporter: The numerosity reporter is responsi-
ble for merging both the results from the ANS and the serial
count into a single numerosity judgment. If time allows for
an explicit count to be fully generated, the explicit count is
recorded. Otherwise, an educated guess is made:

Guess(nc,ne,w) = nc + sample(N (ne −nc,
√

w · (ne −nc)))

where nc denotes the number of explicitly counted objects.
This reflects the basic phenomenon that enumeration error
decreases gradually in conjunction with the number of items
able to be explicitly counted (e.g., Mandler & Shebo, 1982;
Railo et al., 2008). Whether this can be fully explained by ap-
proximation on uncounted fixation candidates or approximate
mathematical operations on partial results (e.g., Gallistel &
Gelman, 2000) is a topic for further investigation.
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Modeling Rapid vs. Slow Counting
In this section, we demonstrate the application of the AR-
CADIA numerosity perception model to a basic enumeration
task (the enumeration of one to eight objects with no effec-
tive time limit). Our goals in examining this base case are
to investigate and account for the origins of the bilinear reac-
tion time curve found in the subitizing literature. To evaluate
the model, we generated 40 videos, each containing a ran-
domized, irregular pattern of one to eight (non-overlapping)
circles. There were five videos for each number of circles,
and the model was run 10 times for each video.

Attentional Strategy
Attentional strategies in ARCADIA determine which element
from accessible content becomes the focus of attention on a
given cognitive cycle. The attentional strategy for the enu-
meration model embodies two constraints and prioritizes se-
lection to jointly satisfy them. First, each task-relevant object
must be counted. As such, after a new candidate proto-object
is focused on, priority is given to processing that updates the
count. Second, objects must not be counted more than once.
Candidate proto-object fixations are ordered in a left-to-right
manner, and the position of the last counted object is tracked.

Results
Figure 2 provides a plot of the simulated reaction times from
the ARCADIA model of counting (25 ms per cycle) with hu-
man subject results from Trick and colleagues (1996) . The
simulated RTs from the model are consistent with human sub-
jects from the 22 year-old group, r2 = .990, p < .001.

The model predicts that enumerating a single object re-
quires at least 375 ms (or 15 ARCADIA cycles). The first
seven cycles are needed to generate a lexicalized representa-
tion of numerosity for report. The first cycle is needed for

image processing to occur and fixation candidates to be gen-
erated [Step 1]. The first fixation candidate is focused on in
the second cycle [Step 2a]. The third cycle is required for
object binding, and the fourth cycle is required to encode the
object representation into vSTM. The fifth cycle is required
for the subitized numerosity process to determine that there
are no more unvisited candidate fixations. Finally, the sixth
and seventh cycles are required for the subitized numeros-
ity process to produce an object count from vSTM [Step 3]
and for this numerosity representation to be converted into
lexicalized form. The remaining eight cycles are required for
subvocalization and generation of the final numerosity report.

When vSTM is below capacity (not filled to its four item
limit) only 50 additional milliseconds are required for each
additional item to be enumerated, which is consistent with
the 40–100ms per additional item result from the subitizing
literature (Trick & Pylyshyn, 1994). During subvocalized
counting each new enumerated object necessitates updating
the last enumerated point in working memory (to keep track
of which points were counted) and an explicit subvocalization
of the updated count. This additional attentional requirement
adds roughly 250–350 ms per item (75 ms for object bind-
ing and inhibition updating and 175–275 ms for subvocaliza-
tion and number report). Simulated RTs from the ARCADIA
model are more consistent with previous human studies that
the Peterson and Simon (2000) ACT-R model of subitizing
(SUBIT-R), which predicts enumerating one to two objects
as taking roughly 200 ms and over 1000 ms for four objects.

Modeling Enumeration: Attentional Effects
As a second test of the model, we replicate the results from
Railo and colleagues (2008). In that study, the authors used a
paradigm originally applied to study inattentional blindness
(Rock, Linnett, Grant, & Mack, 1992). Subjects had two
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potential tasks: (1) report which line of a centrally located
cross is longer and (2) report the number of dots clustered in
a quadrant outside the central cross. Videos consisted of a se-
ries of trials in which the cross appeared, with a critical trial
in which a peripheral dot cluster appeared for the first time
(and subjects were unaware of the enumeration task).

There were three experimental conditions (for more detail
see Bridewell and Bello, 2016a). First, the inattention condi-
tion consisted of the critical trial. Subjects were asked first to
report the results from the length comparison task. After the
third, critical trial, subjects were asked whether they noticed
any dots and, if so, to report their quantity. Next, the divided-
attention condition consisted of trials in which subjects were
asked to perform both tasks. Finally, the full-attention condi-
tion consisted of trials in which subjects were told to ignore
the length comparison task and focus only on enumeration. In
the inattention condition, subjects who were not inattention-
ally blind to the dots (∼80%) had enumeration accuracy close
to 100% for up to two dots, after which accuracy dropped to
under 25%. In the divided attention condition, enumeration
accuracy was at or near 100% for one and two dots, after
which accuracy more gradually declined. In the full atten-
tion condition, enumeration accuracy was at or near 100%
for up to three dots before beginning a decline. Because the
attentional manipulation is the result of a dual task, additional
components are necessary to allow the model to produce re-
sults for both, which we outline below.

Model Configuration
We generated 36 videos to serve as stimuli for our simulation
of the task environment with six videos for each number of
peripheral dots. Each video consisted of a fixation cross pre-
sented for 1500 ms followed by a 200 ms stimulus interval
with a centrally located cross and peripheral dot cluster. Af-
ter the stimulus interval in each video, a mask was displayed
for 500 ms. The model was run on each video 20 times.

Additional Components Bridewell and Bello (2016a)
present a computational model of inattentional blindness ap-
plied to similar stimuli. The current stimuli use the same
paradigm, and as such many of the components from that
early model are reused.1

Attentional Strategies As in the previous enumeration
model, ARCADIA follows a left-to-right prioritization of
candidate fixations for enumeration. However, in the inat-
tention and divided attention conditions, peripheral fixations
are inhibited until a length comparison result is encoded in
working memory (ensuring enumeration processing occurs
after the primary task is complete). After this, in the di-
vided attention condition, group fixations are given prece-

1Specifically, the previous model possessed six components used
to achieve the primary cross-dimension comparison task: the object
height reporter and object length reporter; the length comparator,
which compared the results from the object height/length reporters;
comparison recorder; and the center highlighter and orientation in-
hibitor, which generated a fixation on the center proto-object and
inhibition on peripheral proto-objects, respectively.
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Figure 2: Simulated RT for ARCADIA enumeration model
compared with human data from Trick and colleagues (1996).

dence over individual fixations (until an ANS result is memo-
rized), whereas in the inattention case, group fixations are not
prioritized (reflecting lack of awareness of the dot clusters
and the time limited enumeration task). In the full attention
condition, peripheral inhibition is absent, length comparison
task elements are not prioritized, and group fixations are pri-
oritized over individual fixations.

Results
Bridewell and Bello (2016a) analyzed focus traces generated
by ARCADIA to demonstrate the precise effect attentional
and temporal constraints had on the processing of inatten-
tional blindness stimuli. In Figure 3, we present similar fo-
cus traces for each experimental condition in the dual task.
Because the stimulus interval for the dual task was 200 ms,
only eight ARCADIA cycles were available for completing
both tasks. The primary (length comparison) task required
four cycles to accomplish, leaving only four cycles for any
enumeration or secondary processing. The amount of enu-
meration processing in these four cycles (or eight in the case
of the full attention condition) influences how accurate the
numerosity judgment could be.

In the inattention condition, after the primary task is ac-
complished, there is time to fixate on and encode two dots
into vSTM. However, these fixations are incidental, and be-
cause the attentional strategy in the inattentional case does not
prioritize focus on any group fixations, there are no resulting
estimation results from the ANS. As such, there is no basis for
an educated guess. If there were only one or two dots, then a
correct numerosity judgment would be made. Otherwise, the
system would generate an incorrect report. In constrast, the
system generates an estimate when the attentional strategy
is configured for the divided attention condition. However,
there is time to generate and memorize the ANS estimate only
and not to begin a serial estimation process. Therefore, ac-
curacy begins to drop after one item, which corresponds to
the increased noise associated with the ANS judgment (and
subsequent guess inaccuracy). Finally, in the full attention
condition, estimation can occur in the time that would have
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Figure 3: Focus traces from ARCADIA model of Railo et al.
(2008) dual-task in different attentional conditions.

otherwise been required for the primary task. This provides
time for two dots to be fully encoded in vSTM and explicitly
enumerated. As such, performance does not begin to signifi-
cantly decline until there are four dots or higher.2

The resulting performance curve can be found in Figure 4.
A Weber fraction w of 0.13 was used, which is consistent
with the range observed in normal adults (Halberda & Feigen-
son, 2008). Fischer’s exact tests showed that accuracy in the
full attention condition was significantly higher than in the di-
vided attention condition for dot numbers of two (p = .002),
three (p < .001), four (p < .001), five (p < .001), and six
(p < .001). Qualitatively, this matches the previously de-
scribed attentional effects from the human subjects, with ex-
ception of the two dot results. Railo and colleagues did not
find significant differences in performance for three or five
dots, but ascribed this to potential perceptual difficulties in
their stimuli. Our model may underestimate accuracy for two
dots in the absence of other sources of numerosity informa-
tion (i.e., pattern recognition, which we discuss in the next
section).

Discussion
The boundary between the subitizing range and the post-
subitizing range is commonly found to be four objects
(Atkinson, Campbell, & Francis, 1976). Trick and Pylyshyn
(1994) proposed that the four-object subitizing range (and
the rapid enumeration within this range) emerges out of the
limited capacity of “pre-attentive” individuation mechanisms.
This “pre-attentive” characterization of subitizing stands in
contrast to the serial, attention-bound enumeration mecha-
nisms of explicit counting. However, in light of studies show-
ing attentional effects within the subitizing range (e.g., Railo
et al., 2008), the pre-attentive characterization must be re-
evaluated.

The results from Railo and colleagues (2008) support two
key points about the role of attention in enumeration. First,
subitizing requires serial focus on individual objects. Other-

2When there are three dots, only one dot goes uncounted, which
is approximated with high accuracy.
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wise, there would be no significant performance differences
between the divided and full attention conditions. In other
words, subitizing (at least for arbitrary, irregular patterns) is
unusually rapid, serial counting. The results also support the
notion that even enumeration processes like the ANS have an
attentional dependence, as subject performance in the divided
and full attention conditions declined more gradually than in
the inattention condition. In the inattention case, subjects at-
tended incidentally to one or two dots, but in the absence of
an intention to enumerate, they likely did not engage in ap-
proximation. As such, performance did not gradually decline.
Attention, therefore, is a necessary feature of any unified ac-
count of numerosity perception.

The contrast between parallel and serial processes in enu-
meration may better be characterized by a distinction between
a weak and strong sense of attentional involvement (rather
than “pre-attentive” vs. “attentive”). Enumeration, in gen-
eral, requires an intention to report on the absolute or relative
quantity of objects in a visual scene. Therefore, there is at
least the need to attend to the results of a parallel mechanism
of numerosity judgment (the weak sense). In contrast, precise
enumeration via counting requires attentional focus on each
individual object to be enumerated (the strong sense).3

Other Subitizing Processes Regular and common patterns
of objects (e.g., such as patterns found on dice) enable rapid
and accurate numerosity beyond four objects (Mandler &
Shebo, 1982), suggesting that pattern recognition may play
a role in subitizing performance for certain spatial arrange-
ments of objects. We view the reported model of subitiz-
ing as a complementary rather than competing account to
pattern-recognition based ones (Peterson & Simon, 2000). A
pattern-recognition component could be subsumed into the
ARCADIA model as an alternate (and attentionally priori-
tized) number sensor that responds to focus on groups of
proto-objects. This addition would enable us to make and
model the following prediction: regular patterns such as those

3Our usage of the terms serial and parallel in this paper align with
this strong and weak sense of attentional dependency, respectively.
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presented by Mandler and Shebo (1982) would show min-
imal performance differences between the divided-attention
and full-attention conditions in the dual task from Railo and
colleagues (as compared to the irregular patterns used in the
original study and in this paper).

As such, we view the perception of numerosity as a po-
tentially four-part phenomenon. Estimation provides a rapid,
parallel, but imprecise source of numerosity information,
whereas subvocal counting provides a serial, slow, but accu-
rate enumeration procedure. Subitized counting and pattern
recognition provide both a serial and parallel mechanism, re-
spectively, to achieve rapid and accurate enumeration.

To summarize, we have presented a novel computational
model of numerosity perception in which attention unifies
processes of subitizing, subvocal counting, and estimation.
Attention is the glue that enables and binds these separate
numerosity faculties together. The limits of attention-bound
processes such as object-binding and subvocalization deter-
mine how quickly subjects can report numerosity judgments.
Likewise, serial attentional focus to individual objects and the
need for explicit attention to estimation is necessary to ac-
count for the accuracy of enumeration in dual-task settings.
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Abstract

Two factors seem to play a major role in the cultural evolution
of language. On the one hand, there is functional pressure to-
wards efficient transfer of information. On the other hand, lan-
guages have to be learned repeatedly and will therefore show
traces of systematic stochastic disturbances of the transmission
of linguistic knowledge. While a lot of attention has been paid
to the effects of cognitive learning biases on the transmission
of language, there is reason to expect that the class of possibly
relevant transmission perturbations is much larger. This paper
therefore explores some potential effects of transmission noise
due to errors in the observation of states of the world. We look
at three case studies on (i) vagueness, (ii) meaning deflation,
and (iii) underspecified lexical meaning. These case studies
suggest that transmission perturbations other than learning bi-
ases might help explain attested patterns in the cultural evolu-
tion of language and that perturbations due to perceptual noise
may even produce effects very similar to learning biases.

Keywords: cognitive biases; iterated learning; language evo-
lution

Introduction
Language is shaped by its use and transmission across gen-
erations. Linguistic properties are therefore not necessarily
solely due to functional pressure, such as the selection of
more communicatively efficient behavior. They may also be
effected by a pressure for learnability. In the extreme, an un-
learnable language will not make it to the next generation.
The effects that (iterated) learning has on language are of-
ten seen as stemming from a combination of general learning
mechanisms and inductive cognitive biases (e.g. Griffiths &
Kalish 2007, Kirby et al. 2014, Tamariz & Kirby 2016). Pro-
posals of biases that shape language acquisition abound, e.g.;
mutual exclusivity (Merriman & Bowman 1989, Clark 2009),
simplicity (Kirby et al. 2015), regularization (Hudson Kam &
Newport 2005), and generalization (Smith 2011). But forces
other than learning biases may also systematically perturb the
transmission of linguistic knowledge and thereby contribute
to the shaping of language by cultural evolution (cf. Perfors &
Navarro 2014). In the following we focus on one particular
source of transmission noise: agents’ imperfect perception
of the world. Our overall goal is to give a formalism with
which to study the possible effects of such perturbations and
to apply it to three case studies on (i) vagueness, (ii) meaning
deflation, and (iii) underspecified lexical meaning.

Iterated Bayesian learning
We model the transmission of linguistic knowledge as a pro-
cess of iterated learning (Kirby et al. 2014, Tamariz & Kirby
2016). More specifically, we focus on iterated Bayesian

learning, in which a language learner must infer unobserv-
ables, such as the lexical meaning of a word, from the ob-
servable behavior of a single teacher, who is a proficient lan-
guage user (e.g. Griffiths & Kalish 2007, Kirby et al. 2007).
Concretely, the learner observes instances 〈s,m〉 of overt lan-
guage use in context, where s is a world state and m is the
message that the teacher used in state s. The learner’s task is
to infer which latent type τ (e.g., which set of lexical mean-
ings or which grammar) may have produced a sequence of
such observations. To do so, the learner considers the poste-
rior probability of τ given a data sequence d of 〈s,m〉 pairs:

P(τ | d) ∝ P(τ) P(d | τ) ,

where P(τ) is the learner’s prior for type τ and P(d | τ) =
∏〈s,m〉∈d P(m | s,τ) is the likelihood of type τ producing the
observed data d, with P(m | s,τ) the probability that a type
τ produces message m when in world state s. It is usually
assumed that learners exposed to d adopt type τ with prob-
ability F(τ | d) ∝ P(τ | d)γ, where γ ≥ 1 regulates whether
learners probability match (γ = 1) or tend towards choosing a
maximum of the posterior distribution (γ > 1). If the set Dk
of data a learner may be exposed to is the set of all sequences
with k pairs 〈s,m〉, the probability that a learner acquires type
τi when learning from a teacher of type τ j is:

P(τ j→ τi) ∝ ∑
d∈Dk

P(d | τ j)F(τi | d) .

If a population is a distribution over types, then iterated
Bayesian learning predicts the most likely path of change in
the population due to learning from finite observations.

The prior P(τ) can be understood as encoding learning
biases. For example, learners may have an a priori prefer-
ence for simpler languages over ones with a more complex
grammar, or over ones with larger or more marked lexical
or phonemic inventories (cf. Kirby et al. 2015). Crucially,
even weak biases can magnify and have striking effects on an
evolving linguistic system, especially if learning is fueled by
only limited input (small k). Experimental and mathematical
explorations of iterated learning have consequently suggested
that the linguistic structure evinced by the outcome of this
process reflects learners’ inductive biases (Kirby et al. 2007;
2014).

Iterated Bayesian learning with state-noise
Other stochastic factors beyond learning biases in P(τ) can
influence the adoption of a linguistic type τ based on the ob-
servation of 〈s,m〉 sequences. One further potential source
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Figure 1: State-noise during observation of language use.

of “transmission noise” are regular stochastic errors in the
perception of world states (see Figure 1). Imperfect percep-
tion may lead teachers to produce utterances that deviate from
their production behavior had they witnessed the state cor-
rectly. Similarly, learners may mistake utterances as applying
to different states than the ones witnessed by the teacher who
produced them. For instance, when learning the meaning of
a vague adjective such as tall from utterances like “Jean is
tall”, agents may have diverging representations of how tall
Jean actually is, even if she is in a shared perceptual environ-
ment. The main idea to be explored here is that regularities
in misperceptions of states may have striking and possibly
explanatory effects on language evolution.

We denote the probability that the teacher (learner) ob-
serves state st (sl) when the actual state is sa as PN(st | sa)
(PN(sl | sa)). The probability that sa is the actual state when
the learner observes sl is therefore:

PN(sa | sl) ∝ P(sa) PN(sl | sa) .

Assuming a finite state space for convenience, the probability
that the teacher observes st when the learner observes sl is:

PN(st | sl) = ∑
sa

PN(sa | sl) PN(st | sa) .

The probability that a teacher of type τ produces data that is
perceived by the learner as a sequence dl of 〈sl ,m〉 pairs is:

PN(dl | τ) = ∏
〈sl ,m〉∈dl

∑
st

PN(st | sl) P(m | st ,τ) .

It is natural to assume that learners, even if they (in tendency)
perform rational Bayesian inference of the likely teacher type
τ based on observation 〈sl ,m〉, do not also reason about state-
noise perturbations. In contrast to, e.g., noisy-channel mod-
els that have agents reason over potential message corruption
caused by noise (e.g. Bergen & Goodman 2015), our learners
are not proficient language users that could leverage knowl-
edge about the world and its linguistic codification to infer

likely state misperception.1 In this case the posterior prob-
ability of τ given the learner’s perceived data sequence dl is
as before: P(τ | dl) ∝ P(τ) P(dl | τ). Still, state-noise affects
the probability PN(τ j → τi) that the learner adopts τi given
a teacher of type τ j, because it influences the probability of
observing a sequence dl (with F(τi | d) as before):

PN(τ j→ τi) ∝ ∑
d∈Dk

PN(dl | τ j)F(τi | d) .

In sum, it may be that learner and/or teacher do not per-
ceive the actual state as what it is. If they are not aware of
this, they produce/learn as if what they observed was the ac-
tual state. In particular, the learner does not reason about
noise when she tries to infer the teacher’s type. She takes
what she observes as the actual state that the teacher has seen
as well, and infers which linguistic type (e.g. which set of
lexical meanings or grammar) would have most likely gen-
erated the message to this state. This can lead to biases of
inferring the “wrong” teacher type if noise makes some types
err in a way that resembles the noiseless behavior of other
types. That is, such environmental factors can, in principle,
induce transmission perturbations that look as if there was a
cognitive bias in favor of a particular type, simply because
that type better explains the noise.

Case studies
In what follows we present three case studies that show how
iterated learning under noisy perception can lead to the emer-
gence of linguistic phenomena. The studies are ordered from
more to less obvious examples in which state-noise may be
influential and explanatory: (i) vagueness, (ii) meaning defla-
tion, and (iii) underspecification in the lexicon. No case study
is meant to suggest that state-noise is the definite and only ex-
planation of the phenomenon in question. Instead, our aim is
to elucidate the role that transmission perturbations beyond
inductive biases may play in shaping the cultural evolution of
language. We therefore present minimal settings that isolate
potential effects of state-noise in iterated learning.

Vagueness
Many natural language expressions are notoriously vague
and pose a challenge to logical analysis of meaning (e.g.
Williamson 1994). Vagueness also challenges models of lan-
guage evolution since functional pressure towards maximal
information transfer should, under fairly general conditions,
weed out vagueness (Lipman 2009). Many have therefore
argued that vagueness is intrinsically useful for communica-
tion (e.g. van Deemter 2009, de Jaegher & van Rooij 2011,
Blume & Board 2014). Others hold that vagueness arises
naturally due to limits of perception, memory, or information
processing (e.g. Franke et al. 2011, O’Connor 2014, Lassiter

1To do so, agents would have to infer or come equipped with
knowledge about PN(·|sa), which could itself be subject to updates.
We stick to the simpler case of noise-free inference here, but as long
as the actual state is not always recoverable our general results also
hold for agents that reason about noise.
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& Goodman 2015). We follow the latter line of exploration
here, showing that vagueness can naturally arise under imper-
fect observability of states (see Franke & Correia (to appear)
for a different evolutionary dynamic based on the same idea).

Setup. We analyze the effects of noisy perception on the
transmission of a simple language with 100 states, s ∈ [0,99],
and two messages, m ∈ {m1,m2}. The probability that agents
perceive actual state sa as st /sl is given by a (discretized)
normal distribution, truncated to [0;99], with sa as mean
and standard deviation σ. Linguistic behavior is fixed by a
type τ ∈ [0;99] which is the threshold of applicability of m1:
P(m1 | s,τ) = δs≥τ = (1−P(m2 | s,τ)). In words, if a speaker
observes a state that is as large or larger than its type, then
message m1 is used (tall), otherwise m2 (small).

Results. The effects of a single generational turnover un-
der noisy transmission of a population that initially consisted
exclusively of type τ = 50 is depicted in Figure 2. As learn-
ers try to infer this type from observed language use, even
small σ will lead to the emergence of vagueness in the sense
that there is no longer a crisp and determinate cut-off point
for message use in the population. Instead, borderline re-
gions in which m1 and m2 are used almost interchangeably
emerge. For larger σ, larger borderline regions ensue. The
size of such regions further increases over generations with
growth inversely related to γ and k. As is to be expected, if k
is too small to discern even strikingly different types, then it-
erated learning under noisy perception leads to heterogeneous
populations with (almost) no state being (almost) exclusively
associated with m1 or m2.

Figure 2: Noisy iterated learning (γ = 1, σ = 0.4, k = 20).

Discussion. Transmission perturbations caused by noisy
state perception reliably give rise to vague language use even
if the initial population had a perfectly crisp and uniform con-
vention. Clearly, this is a specific picture of vagueness. As

modeled here for simplicity, each speaker has a fixed and non-
vague cut-off point τ in her lexicon. Still, the production be-
havior of a type-τ speaker in actual state sa is probabilistic
and “vague”, because of noisy perception:

PN(m | sa,τ) = ∑
st

P(st | sa)P(m | st ,τ) .

An extension towards types as distributions over thresholds is
straightforward but the main point would remain: systematic
state-noise perturbs a population towards vagueness.

Of course, convergence on any particular population state
will also depend on the functional (dis)advantages of particu-
lar patterns of language use. Functional pressure may there-
fore well be necessary for borderline regions to be kept in
check, so to speak. Which factor or combination thereof plays
a more central role for the emergence of vagueness is an em-
pirical question we do not address here. Instead, we see these
results as adding strength to the argument that one way in
which vagueness may arise is as a byproduct of interactions
between agents that may occasionally err in their perception
of the environment. If state perception is systematically noisy
and learners are not aware of this, some amount of vagueness
may be the natural result.

Deflation
Meaning deflation is a diachronic process by which a form’s
once restricted range of applicability broadens. Perhaps the
most prominent example is Jespersen’s cycle (Dahl 1979), the
process by which emphatic negation, such as French ne ...
pas, broadens over time and becomes a marker for standard
negation. As argued by Bolinger (1981), certain word classes
are particularly prone to slight and unnoticed reinterpretation.
When retrieving their meaning from contextual cues, learn-
ers may consequently continuously spread their meaning out.
For instance, Bolinger discusses how the indefinite quantifier
several has progressively shifted from meaning a respectable
number to broader a few in American English. We follow
this line of reasoning and show how state confusability may
lead to meaning deflation. Other formal models of deflation-
ary processes in language change have rather stressed the role
of conflicting interests between interlocutors (Ahern & Clark
2014) or asymmetries in production frequencies during learn-
ing (Schaden 2012, Deo 2015).

Setup. The setup is the same as that of the previous case
study, except that we now trace the change of a single mes-
sage m, e.g., emphatic negation, without a fixed antonym be-
ing sent whenever m does not apply. This is a crude way of
modeling use of markers of emphasis or high relevance for
which no corresponding “irrelevance marker” exists. Learn-
ers accordingly observe positive examples of use 〈s,m〉 but
do not positively observe situations in which m did not apply
to a particular state. This causes asymmetry in the learning
data because some types will reserve their message only for
a small subset of the state space and otherwise remain silent.
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Learners take the absence of observations into account but
cannot know what it is that they did not observe. We assume
that learners are aware of k so that:2

P(τ|dl) ∝ Binom(successes = k−|dl |, trials = k,

succ.prob =
τ−1

∑
i=0

P(s = i)) ∏
s∈dl

P(m|s,τ) .

As before, the second factor corresponds to the likelihood of
a type producing the perceived data. The first is the probabil-
ity of a type not reporting k−|d| events for a total of k events.
P∈∆(S) is assumed to be uniform. In words, a long sequence
of data consisting of mostly silence gives stronger evidence
for the type producing it having a high threshold of applica-
bility even if the few state-message pairs observed may be
equally likely to be produced by types with lower thresholds.

Results. The development of an initially monomorphic
population consisting only of τ = 80 is shown in Figure 3.
Even little noise causes a message to gradually be applied to
larger portions of the state space. The speed of meaning de-
flation is regulated by σ, k, and to lesser degree γ. In general,
more state confusion due to higher σ, shorter sequences, or
less posterior maximization will lead to more learners infer-
ring lower types than present in the previous generation.

Figure 3: Noisy iterated learning (γ = 1, σ = 0.4, k = 30).

Discussion. In contrast to the previous case study, we now
considered the effects of noisy perception under asymmetric
data generation where overt linguistic evidence is not always
produced, i.e., acquisition in a world in which not every state
is equally likely to lead to an observable utterance. The out-
come is nevertheless similar to the previous one: Noisy per-
ception can cause transmission perturbations that gradually

2Knowing k allows learners to compute the likelihood of a type
not reporting k−|dl | state observations. A better but more complex
alternative is to specify a prior over k with learners performing a
joint inference on k and the teacher’s type. For simplicity, we opt
for the former, albeit admittedly artificial, assumption.

relax formerly strict linguistic conventions. In contrast to the
case of vagueness, if there are no relevant competing forms,
e.g., small vs. tall, asymmetry in production and noise will
iteratively increase the state space that a form carves out.

Scalar expressions
Scalar expressions have been at the center of many studies
on pragmatic inference. Examples include quantifiers such as
some and most, adjectives such as cold and big, and numerals
such as four and ten. Commonly, their use is taken to prag-
matically convey an upper-bound which is not present in their
lexical semantics (Horn 1972, Gazdar 1979). For instance,
while “Bo ate some of the cookies” is semantically compati-
ble with a state in which Bo ate all of them, this utterance is
often taken to convey that Bo ate some but not all, as other-
wise the speaker would have said all. A semantically weak
meaning is thus pragmatically strengthened by interlocutors’
mutual reasoning about rational language use (Grice 1975).

Why does such pragmatic strengthening not lead to wide-
spread lexicalization of upper-bounded meanings? To ad-
dress this question, Brochhagen et al. (2016) explore an evo-
lutionary model that combines functional pressure and iter-
ated learning. This account assumes a prior that favors a lack
of upper-bounds. Here, we demonstrate that state-noise can
mimic the effects of such a cognitive learning bias.

Setup. The simplest possible model distinguishes two kinds
of lexica and two behavioral strategies to use them, a pair
of which constitutes a type. Both lexica specify the truth-
conditions of two messages in either of two states. Let us
mnemonically label them msome, mall, s∃¬∀ and s∀, where the
former state is one in which natural language some but not all
holds, and the latter one where all holds. In lexicon Lbound,
which lexicalizes an upper-bound for some-like expressions,
message msome is only true of s∃¬∀ and mall only of s∀. In the
English-like lexicon Llack, message mall is also only true of
s∀, but the meaning of msome is underspecified and lexically
holds in both states. Speakers follow one of two strategies of
language use: literal or pragmatic. The former select a ran-
dom true message, whereas the latter prefer to send the most
informative messages from those that are true in the observed
state (Grice 1975). This gives rise to probabilistic speaker
behavior P(m | s,τ = 〈lexicon,use〉) which approximates the
following choice probabilities:3

Lbound Llack

Literal
(msome mall

s∀ 0 1
s∃¬∀ 1 0

) (msome mall

s∀ 0.5 0.5
s∃¬∀ 1 0

)

Pragmatic
(msome mall

s∀ 0 1
s∃¬∀ 1 0

) (msome mall

s∀ 0 1
s∃¬∀ 1 0

)
,

3Concretely, results are obtained for probabilistic speaker behav-
ior following the definitions of Brochhagen et al. (2016). Noth-
ing essential to our main argument and simulation results hinges on
these details, so we background them here for ease of exposition.
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where P(m|s,τ) =M[s,m] with M being type τ’s choice matrix.
As pragmatic users of Llack are (almost) indistinguishable

from types with Lbound, the emergence of a predominance
of Llack in a repeatedly learning population must come from
transmission biases. A learning bias in favor of Llack in the
learners’ priors will select for it (Brochhagen et al. 2016),
but here we assume no such cognitive bias. Rather we as-
sume state-noise in the form of parameters ε and δ. The for-
mer is the probability of perceiving actual state s∃¬∀ as s∀,
P(s∀|s∃¬∀) = ε, and P(s∃¬∀|s∀) = δ. For instance, states may
be perceived differently because different numbers of objects
must be perceived (e.g., quantifiers and numerals) or they
may be more or less hard to accurately retrieve from sensory
information (e.g., adjectives).

Results. To quantify the effects of the dynamics we ran
a fine-grained parameter sweep over ε and δ with 50 inde-
pendent simulations per parameter configuration. Each sim-
ulation started with a random initial population distribution
over types and applied iterated learning with state-noise for
20 generations, after which no noteworthy change was reg-
istered. Mean proportions of resulting pragmatic users of
Llack under different noise signatures are shown in Figure 4.
These results suggest that when δ is small and ε high, iterated
noisy transmission can lead to populations consisting of al-
most exclusively English-like lexica with pragmatic language
use. Similar results are obtained for larger k or γ.

Figure 4: Mean proportion of pragmatic Llack users after 20
generations (γ = 1, k = 5).

Discussion. The main goal of this case study was to show
that noisy perception may mimic effects of learning biases.
In the case of Brochhagen et al. the assumed bias was one for
simplicity; learners had an a priori preference for not codify-
ing upper-bounds lexically, which increased their propensity
to infer pragmatic Llack over Lbound even if the witnessed data

could not tease them apart. We assumed no such bias but nev-
ertheless arrived at evolutionary outcomes that comparable to
those predicted if the bias were present. However, this re-
sult strongly depends on the types involved. Whether a type
thrives under a particular noise signature depends on the pro-
portion of types confused with it during transmission. The
addition or extraction of a single type may therefore lead to
different results.

At present, it is unclear what role noisy perception should
play in the selection of underspecified meaning. These results
should therefore be taken as suggestive but not indicative of a
relationship between the two. In the case of quantifiers, a pos-
sible way to explore this relation may lie in their connection
to empirical work on the verification of quantified statements
(see Szymanik 2016 for a recent overview). The idea being
that some states are easier to verify, e.g., s∀, and therefore less
confusable with other states than others, e.g., s∃¬∀.

General discussion
We proposed a general model of iterated Bayesian learning
that integrates systematic noise in agents’ perception of world
states, giving rise to stochastic perturbations that may influ-
ence and (potentially, partially) explain language change. We
investigated the model’s predictions in three case studies that
show that iterated noisy transmission can lead to outcomes
akin to those found in natural language. As stressed before,
these results are not meant to suggest noisy perception to be
the sole or main determinant of these phenomena. Instead,
our aim was mainly conceptual and technical in nature.

Beyond technical aspects, we foregrounded two inter-
twined issues in the cultural evolution of language. First,
the fact that noise signatures may mimic the effects of cog-
nitive biases has consequences for the interpretation of out-
comes of acquisition processes. Care must therefore be exer-
cised in reading off the influence of possible learning biases
from data obtained “in the wild” or the laboratory. Noisy per-
ception instead offers a neutral model of cultural evolution
that appeals to neither functional competition nor differential
learnability among types (Reali & Griffiths 2009). Second,
and more importantly, these results can be seen as comple-
menting and stressing the pivotal role of systematic transmis-
sion perturbations as explanatory and predictive devices of
language change – independent of the perturbation’s source.
They thereby strengthen and widen the scope of research on
iterated learning by bringing attention to forces beyond in-
ductive biases (cf. Perfors & Navarro 2014).

Conclusion
Acquisition is a central force shaping linguistic structure. The
consideration of the (imperfect) means by which such knowl-
edge is transmitted is therefore crucial to our understanding
of the cultural evolution of language. Here, we focused on
one factor that may give rise to systematic stochastic pertur-
bation in learning —agents’ noisy perception of the world—
and analyzed its effects in three case studies on (i) vagueness,
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(ii) meaning deflation, and (iii) underspecified lexical mean-
ing. Our results suggest that the class of relevant perturbation
sources reaches beyond the well-studied effects of inductive
learning biases. In particular, that some linguistic properties,
such as (i), (ii) and more tentatively (iii), may emerge as a
byproduct of constraints on agents’ perception of the world.
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Abstract 

Color is a critical part of objects representation as well as 
critical cue for recognizing objects. However, it is less clear 
how people represent color in memory. The present study 
aimed at investigating this issue. We designed a procedure 
based on short-term sensory memory load procedure mixed 
with a color-priming paradigm. Participants learned three 
visual stimuli (either non-words – lexical load condition - or 
visual-shapes – visual-shape load condition). Then, they 
performed a color discrimination task on colored patch (e.g., 
a yellow patch). Each target was preceded by a color-related 
concept word either congruent (e.g., word “banana”) or not 
(e.g., word “lettuce”). Finally, they performed a recognition 
task either on non-words or on visual-shapes depending on 
the memory load condition). We showed that color-priming 
effect was selectively disrupted in visual-shape load 
condition. We interpreted this finding as an evidence that 
automatic modal simulations occur during access to the 
meaning of color-related concept.  

Keywords: Color knowledge, perceptual simulation, priming 
effect, visual memory 
 

Introduction 

Color knowledge about object is an important part of 
conceptual representation. Indeed, color is often a critical 
cue for recognizing object (Tanaka & Presnell, 1999) or 
natural scene (Oliva & Schyns, 2000) in everyday life. 
Hansen, Olkkonen, Walter, and Gegenfurtner (2006) 
suggested that research about color should investigate how 
people represent color rather than how people perceive color 
because color of an environment is never stable over the 
time (i.e., dependent of the objects’ illumination) and, as a 
consequence, dependent from color knowledge. The 
question is how do people represent color knowledge? 

 First, color knowledge could be considered as stored in 
an amodal format within conceptual representation of an 
object. In that view, meaning of an object is distributed 
across semantic features (see Masson, 1995) and 
relationships between concepts are explained in term of 

overlapping between semantic features. As soon as two 
concepts share the same semantic color feature, one can 
prime the other. For instance, hearing the word “lips” could 
facilitate the detection of the picture of a strawberry 
(Huettig & Altmann, 2011). However, several studies 
suggest that access to color knowledge depend on the nature 
of the stimuli (i.e., lexical vs. visual, see Nijboer, Zandvoort 
& Haan, 2006). Indeed, because the word “banana” and 
“yellow” co-occurs frequently in everyday language, color 
knowledge could also be stored in a lexical format: a color 
label (see Landauer & Dumais, 1997). In that case, as soon 
as two concepts share the same color label, one can prime 
the other. For instance, hearing the word “pea” could 
facilitate the detection of the picture of a green blouse (see 
Huettig & Altamann, 2011) because both objects share the 
label “green”. In the same vein, Roberson and Davidoff 
(2000) have showed a loss of the categorical perception 
(i.e., better discrimination across color categories than 
within the same color category) when participants had to 
simultaneous discriminate between colors and maintain 
words in memory. This effect was not observed when they 
had to follow a curved line with the eyes. Accordingly, it 
seems that lexical access interferes with categorical 
perception, while visual interference does not. This result 
suggests the implication of lexical units during access to 
color knowledge. Moreover Nijboer and collaborators 
(2006) demonstrated that color-priming effect (from object-
word or object-picture to colored-patch) is dependent of the 
nature of the prime (either picture or word, see also Heurley, 
et al., 2013). This result suggests the existence of both a 
semantic-based and lexical-based representation of color. 
These two formats of color knowledge are not necessary 
incompatible and authors suggested a time-based access 
distinction for accounting existence of both level of 
representation (Heurley et al., 2013). 

 
Alternatively, theories of embodied or grounded cognition 

(see Barsalou, 2008) assume that access to a representation 
is linked with perceptual sensory simulations. In other 
words, performing a conceptual task like verifying that a 
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“banana” is “yellow” is associated with the automatic 
simulation of a former visual experience associated with the 
banana (Pecher, Zeelenberg, & Barsalou, 2003, 2004; Van 
Dantzig, Pecher, Zeelenberg, & Barsalou, 2008; Vermeulen, 
Chang, Corneille, Pleyers, & Mermillod, 2013; Vermeulen, 
Corneille, & Niedenthal, 2008). Thus, access to the meaning 
of concept involves automatic perceptual simulation in 
several sensory modalities and, as a consequence, influences 
processing of stimuli presented in the same modality than 
the simulated one (see Brunel, Goldstone, Vallet, Riou, & 
Versace, 2013; Brunel, Labeye, Lesourd, & Versace, 2009; 
Brunel, Lesourd, Labeye, & Versace, 2010; Vallet, Brunel, 
& Versace, 2010; for a review see Versace, Labeye, Badard, 
& Rose, 2009). In that case, color knowledge could be 
defined as perceptual or modal rather than semantic or 
lexical. Indeed, neuroimagery studies showed that either 
perceiving or conceiving color involves common neural 
substrates (Simmons et al., 2007). Moreover, Richter and 
Zwaan (2009) showed that processing color words (e.g., 
word “red”) involves perceptual simulation of the color. 
They showed that participants were faster at discriminating 
between targets colored-square displayed in the same 
category color (e.g., light red vs. dark red) when the prime 
color word and the targets colored squares match on their 
color rather than mismatch. According to the authors, their 
results ruled out an explanation based on a lexical 
competition since the prime word and the target squares 
shared the same color label. Finally, Yee, Ahmed and 
Thompson-Schill (2012) found a contextual-based color 
priming effect using a semantic priming procedure. Indeed 
they found that color-priming effect is observed only when 
color was sensitized before the priming procedure. 
According to the authors, this result seemed to indicate that 
color knowledge is context dependent rather than stable 
over the time that is consistent with an embodied approach 
but not with a semantic approach (see also Connell, 2007; 
Connell & Lynott, 2009 for a similar conclusion) 

Given existence of empirical evidence for both 
approaches (embodied vs. semantic or lexical), this article 
aims at addressing the issue about the representational 
format of color knowledge in memory. In the present study, 
we designed a single paradigm in order to test 
simultaneously each assumption regarding the nature of 
color knowledge (i.e., perceptual/modal vs. lexical/amodal). 
To do so, we adapted the procedure of Vermeulen and co-
workers (2008, see also Vermeulen, Chang, Mermillod, 
Pleyers & Corneille, in press, Experiment 2). In their 
experiment, they combined a short-term memory task (i.e., 
memory load) with a property verification task. 
Consequently, they manipulated both the nature of the 
memory load (i.e., visual or auditory) and the nature of the 
property (i.e., visual or auditory) during the property 

verification task. First, participants had to learn items 
visually or auditory displayed. Then they had to perform a 
property verification task like verifying that a banana could 
be yellow. After that, they had to recognize the previously 
learnt items from a new list displayed in the same modality. 
The main results of their study is that participants were 
significantly slower at verifying visual properties preceded 
by a visual-shape load than an auditory load and conversely 
for auditory properties. Authors concluded that sensory 
memory and conceptual memory share the same modal 
properties. In our procedure, we changed the nature of the 
items in the short-term memory task and replaced the 
property verification task by a color priming procedure 
(Heurley, et al., 2013). As a consequence, participants 
firstly maintained three stimuli in visual memory either 
meaningless lexical stimuli (i.e., non-words) or meaningless 
visual-shapes (i.e., Gaussian blobs) before performing a 
color discrimination task on colored patches. Each target 
colored patch (e.g., a yellow patch) was preceded by a word 
prime that could represent a color-related concept (e.g., the 
word “banana”) or not (e.g., the word “lettuce”). Heurley 
and collaborators (2013, see also Nijboer et al., 2006) found 
that participant were faster at discriminating the color of the 
patch when prime was congruent rather than incongruent, 
attesting a color-priming effect from color-related concept 
primes to colored targets patches. Finally, participants 
completed a recognition task on the previously learnt 
elements. 

Our procedure should let us to directly test different 
assumptions about the format of the color knowledge. First, 
if accessing to color knowledge from a color-related concept 
involves semantic amodal knowledge about color, we 
should find a significant interaction between Prime Type 
(yellow or green color related concept) and Color Target 
(yellow or green patches) irrespective the nature of the 
memory load. A given word activates its conceptual 
semantic representation in memory (see, Masson, 1995) 
which include diagnostic feature about the concept. Since 
this representation is activated at a semantic level, it should 
not interact with any of the item of the load conditions 
because each item for these conditions is meaningless. This 
result would be a direct replication of Heurley and co-
workers (2013) Experiments. Then, if accessing color from 
a color-related concept involves lexical knowledge (such as 
verbal label), we should find an interaction between Prime 
Type and Color Target and the Nature of the Memory Load. 
In that case, the word prime activates the color 
representation at a lexical level and should interact 
specifically with the items of the lexical load condition. As 
a consequence, we might predict a diminution (or a lost) of 
color-priming effect consecutive to the lexical load 
condition while the color-priming effect should be observed  
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Figure 1: Trial overview for both training and test phase in the visual-shape load condition. Note: The colored patch is represented into 
grey scale but was displayed either in yellow or green during the experiment. 

 
 
with the visual-shape load condition. Finally, if accessing 
color from a color-related concept involves visual 
simulation, we should observe the opposite pattern. In that 
case, processing the word automatically simulates former 
visual experiences associated with the concept and those 
simulations should interact with the items of the visual-
shape load condition. As a consequence, we might predict a 
diminution (or a lost) of color-priming effect consecutive to 
the visual-shape load condition while the color-priming 
effect should be observed with the lexical load condition.  

Experiment 
Participant – Twenty-Four native French speakers (student 
from Université Paul-Valery, Montpellier, France) were 
recruited and received courses credits for their participation. 
All have a normal or corrected to the normal vision and 
none of them reported having atypical color perception 
(Daltonism or synesthesia)  
 
Stimuli & Material – We created 12 Gaussian blobs (6 for 
training and 6 for test) that were equilibrated in term of 
surface, number of angles and of peaks in both sides 
regarding a vertical symmetric axis. We created also 12 
CVC-CVC non-words (6 for training and 6 for test) 
following Reinitz, Lammers, and Cochran (1992) 
methodology. These stimuli were used in the short-term 
memory task, respectively in the visual-shape load and 
lexical load conditions. For the priming phase, we used the 
same material than Heurley and co-workers (2013; see also 
Reilhac & Jiménez, 2006). The 16 priming words (4 for 
training and 12 for test) depicted either animal or vegetable 
typically associated with the color green (e.g., lettuce) or 
yellow (e.g., banana). The target stimuli were yellow (R = 
255; G = 255; B = 0) or green patches (R = 34; G = 163; B 
= 13) according to the RGB color model. We also used a 

mask that was a white screen with 17 lines of 60 black stars 
(i.e., *).  

 
Procedure – After filling out a consent form, participants 
were tested individually in a computer room. Each trial 
started with a fixation-cross lasting on the screen during 
500ms followed by three successive visual stimuli (either 
non-words or visual-shapes depending on the memory load 
condition), each lasting 500ms. Participants were informed 
that they have to learn these stimuli in order to perform a 
later recognition task. Then a prime word was prompted on 
the screen (150ms) and was immediately replaced by a 
visual mask (100ms) itself replaced by a blank screen 
(100ms). A target colored patch followed and participants 
had to judge as quickly and accurately as possible its color. 
After 1500ms blank screen, 3 stimuli (non-words or visual-
shapes) were successively displayed and participants have to 
judge for each stimuli if it corresponded or not to a 
previously learnt stimulus. We set the inter-trial interval at 
1500ms (see Figure 1). Participant indicated their responses 
by pressing different keyboard’s keys for the color 
discrimination task and for the recognition task. The 
responses keys were counterbalanced between participants.  

The experiment started with a training phase (16 trials) 
followed by a test phase composed by 48 trials randomly 
presented: 24 in the visual-shape-load and 24 in lexical-load 
condition. Each prime was seen followed by each target 
patch and for each load condition. For the short-term 
memory task, we have controlled that the number of “same” 
and “different” was identical for each position during test 
compared to the learning and for each conditions: visual-
shape-load and lexical-load.  
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Results   
 
Table 1. Mean correct RT and correct response rates for each experimental condition. Note: Priming effect was calculated by 
subtracting incongruent experimental conditions (e.g., “yellow” prime / green target condition) to the congruent ones (e.g., 
“yellow” prime / yellow target condition). A negative value indicates facilitation (i.e., a gain toward the congruent condition) 
whereas a positive value indicates a cost.  

    Lexical   Visual-shape 

  
"Yellow" Prime 

 
"Green" Prime 

 
"Yellow" Prime 

 
"Green" Prime 

    RT(ms) CR   RT(ms) CR   RT(ms) CR   RT(ms) CR 

Target 
Color 

Yellow 493 (21) 0.965 (.018) 
 
531 (26) 0.971 (.013) 

 
518 (28) 0.978 (.012) 

 
525 (27) 0.942 (.021) 

Green 529 (24) 0.965 (.017) 
 
490 (28) 0.976 (.013) 

 
517 (27) 0.962 (.013) 

 
528 (29) 0.957 (.018) 

  Priming effect -36     -42     1     2   
 
 
 
Color Discrimination Task - The mean correct response 
latencies and mean percentages of correct responses were 
calculated across subjects for each experimental condition. 
Latencies below 250 ms and above 1,250 ms were removed 
(this cut-off resulted in the exclusion of 2.95% of the data, 
see Brunel et al., 2009). The participants performed the test 
color categorization task accurately (overall correct 
response rate of 96.45%, see Table 1). Practice trials were 
removed from the analysis.  

A repeated analysis of variance was performed with 
subjects as random variable, Nature of Memory Load 
(Lexical vs. Visual-shape), Prime Type (yellow-related 
concept vs. a green-related concept) and Target Color 
(Yellow vs. Green) as within-subjects variables.  

Analysis revealed neither significant main effects of the 
Nature of Memory Load, F(1, 23) = 1.79, p = .19, η2

p = .07, 
Prime Type, F < 1, Target Color, F < 1 nor interaction 
between Nature of Memory Load and Prime Type, F < 1, 
and between Nature of memory Load and Target Color, F < 
1. Analysis showed a significant interaction between Prime 
Type and Target Color, F(1, 23) = 7.14, p < .05, η2

 p = .24. 
However, the Nature of Memory Load modulates this 
interaction. Indeed analysis revealed a significant three way 
interaction between Nature of the Memory Load, Prime 
Type and Target Color, F(1, 23) = 7.33, p < .05 , η2

 p =.24. 
This interaction is depicted in Figure 2.  

 

 
Figure 2: Mean correct RT for each experimental condition. 
Error bar represents standard error. 

 
As can be appreciated in Figure 2, the interaction between 

Prime Type and Target Color was observed in the lexical 
load condition, but not in the visual-shape load condition. 
Regarding the lexical load condition, participants were 
significantly faster at judging the green patch preceded by a 
congruent prime (i.e., a green-related concept like a lettuce) 
than an incongruent prime (i.e., a yellow-related concept 
like a banana), F(1, 23) = 7.60, p < .05. The reverse was 
observed for the yellow patch, F(1, 23) = 4.61 , p < . 0.5.  

Regarding the visual-shape load condition. The Prime 
Type did not modulate color discrimination. The difference 
between the primes was not significant for the yellow patch, 
F < 1, as well for the green patch, F < 1.  

 
Recognition Task – A t-test conducted between the correct 

recognition rates of the different memory load conditions 
revealed that participants were significantly worst for the 
memory test in the visual-shape load condition (M = .672, 
SE = .021) than in lexical condition (M = .729, SE = .015), 
t(23) = 3.25 , p < .05.  

 
Correlation Analysis - We also tested the correlation 

between the memory test accuracy and the priming effect 
size (RT congruent – RT incongruent)1 for both condition of 
memory load and each participant. Indeed, Vermeulen and 
collaborators (2008) showed that memory performances 
were selectively influenced by the relation between the 
nature of the load (i.e., visual or auditory) and the nature of 
the to be verified property (i.e., visual or auditory). 
Accordingly, we might expect a negative correlation 
between the priming effect size and the memory 
performance in the visual-shape load condition. In other 
words, less the visual-shape load is efficient (attesting by a 
high recognition rate) the higher is the probability to 
observe a priming effect. Conversely, we should not observe 
any correlation for the lexical load condition.  

                                                             
1 We collapsed congruent RTs (Yellow prime/Yellow target and 
Green prime/Green target) and we did the same for the incongruent 
RTs (Yellow prime/Green target and Green prime/Yellow target. 
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 We found a significant negative correlation (Spearman 
Correlation) between the priming effect size and the 
memory performance for the visual-shape load condition, 
r(22) = -.46, p < .05, but not for lexical load condition, r(22) 
= +.02.  

Discussion 
 
The aim of this study was to propose a procedure for 

disentangling between several conceptions about nature of 
color knowledge in memory. To do so, we combined a 
color-priming paradigm (Heurley, et al., 2013) with a short-
term memory load procedure (Vermeulen, et al., 2008). 
First, participants had to learn three visual elements (either 
non-words or shapes). Then, they had to perform a color 
discrimination task where each colored-target (e.g., yellow 
patch) was preceded by a congruent color-related word 
concept (e.g., “banana”) or not (e.g., “lettuce”). Finally, they 
performed a recognition task on either non-words or visual-
shapes depending on the memory load condition. Our 
results seem to indicate that access to color knowledge 
involves perceptual simulation rather than lexical or 
semantic activation. Indeed, we found that color-priming 
effect (i.e., shorter RTs when the color of the patch was 
congruent with color-related concept word rather than 
incongruent) was incurred in the visual-shape load condition 
while it was observed in the lexical load condition. This 
should be due to a competition for same visual resources 
between the short-term storage of shapes in memory and the 
simulation of the color-related concepts (see Vermeulen, 
Corneille et al., 2008; Vermeulen, Chang et al., in press, for 
a similar conclusion). Moreover, the fact that we found a 
significant negative correlation between priming size effect 
and the accuracy in short-term memory task in the visual-
shape load condition (while the same correlation was not 
significant in the lexical load condition) is consistent with 
our interpretation. Moreover, this result is in accordance 
with Yee and co-workers’ (2012) experiment. Indeed, they 
found a positive correlation between Stroop interference and 
color-priming gain only when the Stroop task was presented 
before the priming procedure. This result attested that color-
priming effect was modulated by the Stroop task. Taken 
together, these results indicate that access to color 
information related to object is not only contextually 
dependent but also sensory-based.  Finally, our results bring 
direct evidence that access to an object concept using words 
involved automatic modal simulation (see also Vermeulen 
et al., in press). Indeed, this paper showed that words 
representing modal concept spontaneously involve 
perceptual simulations (without engaging participant in a 
property verification task) so that a perceptual load (in the 
same modality than the modal concept) selectively incurs 
memory for these words.   

In conclusion, our study provides a strong argument in 
favor of the idea that access to conceptual knowledge is 
linked to the simulation of the sensory dimension captured 
within the concept (see Barsalou, 2008) so that experiencing 

a concept in a given modality involves perceptual 
simulation in the same sensory modality and in the other 
related sensory (Brunel, Lesourd, et al., 2010) or motor 
modalities (Brouillet, Heurley, Martin, & Brouillet, 2010).  
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Abstract: Recursive loops in informal algorithms are difficult to formulate, even for naı̈ve adults (Khemlani et al., 2013).
Children can formulate algorithms that do not require loops (Bucciarelli et al., 2016), and anecdotal evidence suggests that
they can understand loops. As there were no previous studies, we examined how they made deductions of the consequences
of loops, and how they abduced loops in creating informal algorithms in everyday language. We therefore tested fifth-grade
children’s ability carry out both these tasks in algorithms that rearrange the order of cars on a toy railway track with one
siding. Experiment 1 showed that they could deduce rearrangements from algorithms containing loops, and Experiment 2
showed that they could formulate at least some algorithms that contained loops. These abilities are the likely precursors to the
comprehension of recursion and to computer programming.
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Abstract 

Sentence production relies on the activation of both semantic 
information (e.g. noun animacy) and syntactic frames that 
specify an order for grammatical functions (e.g. subject 
before object; Levelt, Roelofs & Meyers, 1999). However, it 
is unclear whether these semantic and syntactic processes 
interact (Gámez & Vasilyeva, 2015), and if this changes 
developmentally. We thus examined the extent to which 
animacy-semantic role mappings in dative prime sentences 
and target scenes influenced choice of syntactic structure. 143 
participants (47 three year olds, 48 five year olds and 48 
adults) alternated with the experimenter in describing 
animations. Animacy mappings for themes and goals were 
either prototypical or non-prototypical and either matched or 
mismatched across the experimenter’s prime scenes and 
participants’ target elicitation scenes. Prime sentences were 
either double-object datives (e.g. the girl brought the monkey 
a ball) or prepositional datives (e.g. the girl brought the ball 
to the monkey). Participants’ target sentences were coded for 
syntactic form. All age groups showed a main structural 
priming effect. For the youngest group, animacy-semantic 
role mappings facilitated prepositional dative priming.  No 
animacy facilitation was found for the older groups.  Our 
results demonstrate the changing influence of animacy cues 
on sentence production through interactions with syntactic 
structure over the course of development. The theoretical 
implications of our findings are discussed. 
 

Keywords: structural priming; animacy; language 
production; semantics; syntax. 

 

Introduction 
In order to communicate ideas, speakers must map concepts 
to syntactic structures. Where one idea can be expressed 
using multiple structures, speakers tend to use the most 
recently heard structure (Bock, 1986). For example, 
structural priming occurs where speakers are more likely to 
describe the transfer of a ball between a girl and a monkey 
using the double-object dative (DOD) sentence the girl 
brought the monkey a ball instead of the prepositional dative 

(PD) structure the girl brought a ball to the monkey, 
following a DOD, rather than a PD prime. This occurs in 
children (Rowland, Chang, Ambridge, Pine & Lieven, 
2012) and adults (Bock, 1986). 

In their residual activation theory, Pickering and Branigan 
(1998) argue that abstract representations of verbs, 
grammatical roles (e.g. direct object) and combinatorial 
notes are activated upon hearing a DOD sentence (i.e. NP-
NP). Structural priming occurs where speakers reuse the 
currently activated NP-NP node to produce another DOD 
construction rather than activating the alternative NP-
prepositional phrase (PP) node to produce a PD sentence. 

The residual activation theory cannot, however, account 
for instances where structural priming is enhanced by 
animacy-syntax interactions. Gámez and Vasilyeva (2015) 
found that priming of passive sentences in children was 
greatest where primes and targets both contained animate 
patients and inanimate agents. For datives, animacy may 
interact with semantic role-grammatical function mappings 
(e.g. theme-direct object), before these mapped constituents 
are ordered, to determine syntactic structures (de Swart, 
Lamers & Lestrade, 2008). Prototypical DOD sentences 
contain animate goals before animate themes, whereas 
prototypical PD sentences feature inanimate themes before 
animate goals (Bresnan, Cueni, Nikitina & Baayen, 2007). 
Demuth, Machobane, Maloi and Odato (2005) found that 
children best understood double object applicatives in 
Sesotho where they contained human, rather than inanimate, 
benefactives before inanimate, as opposed to animate, 
themes.  These studies suggest that structural and semantic 
information may be inseparable and represented at varying 
levels of granularity (Ambridge, Kidd, Rowland & 
Theakston, 2015). 

However, methodological problems with structural 
priming studies have made it unclear whether animacy-
syntax interactions could drive priming effects (Chang, 
Bock & Goldberg, 2003). DOD sentences (e.g. the girl 
brought the monkey a ball) may prime participants to repeat 
the abstract syntactic frame and produce DOD targets. 
Alternatively, they may prime speakers to reuse the 
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animate-inanimate noun ordering, leading them to produce 
PD sentences where targets contain animate themes and 
inanimate goals (e.g. the boy brought the tiger to the zoo). 
Studies manipulating both prime and target animacy cues 
are needed to identify whether semantic processes influence 
structural priming (Goldwater, Tomlinson, Echols & Love 
(2010). 

Priming could be greater with semantically prototypical 
primes (e.g. Vasilyeva & Waterfall, 2015). Alternatively, 
priming might be greater with non-prototypical primes 
because they are more salient, according to Chang, Dell and 
Bock’s (2006) error-based learning theory.	 Error-based 
learning effects may decrease with age due to increased 
exposure to uncommon sentence types (Peter, Chang, Pine, 
Blything & Rowland (2015).  Priming is greater in children 
(Goldwater, et al., 2010) and adults (Cleland and Pickering, 
2003) where primes and targets are semantically similar. 
Sensitivity to animacy and its effects on structural priming 
may also decrease with age (Corrigan, 1988).	

Priming research may provide insight into how children 
extract representations of grammatical functions and 
animacy-semantic role mappings from caregiver speech to 
produce their own sentences (Bock, Dell, Chang & Onishi, 
2007; Pickering & Ferreira, 2008). By investigating possible 
specification of semantic, and not just lexical, information 
in children’s sentence representations, we can more 
accurately conclude whether or not representations are 
entirely abstract (Rowland & Noble, 2010). 

We assessed the extent to which structural priming in 
three year olds, five year olds and adults was influenced by 
interactions between animacy cues and syntax by 
manipulating prime structures (DOD/PD), prime animacy-
semantic role mappings (prototypical [AN goal & IN 
theme]/non-prototypical [AN theme & IN theme]), and 
prime-target match in animacy-semantic role mappings 
(match/mismatch).  

Prior research implies relatively strong interactions 
between animacy and syntax and that these effects on 
sentence processing are greater in younger children than in 
older children and adults. Thus, we tested the following 
hypotheses: (i) structural priming effects will be greater 
where primes have prototypical animacy cues. 
Alternatively, error-based learning may entail greater 
priming with reversed cues, (ii) priming will be greater 
where primes and targets have matching animacy-semantic 
role mappings, (iii) the relative increase in priming where 
animacy-semantic role mappings are prototypical and 
matching across primes and target pairs will decrease with 
age. 

 

Method 

Design 
We used a 3x2x2x2 mixed design. Age (3 years/5 
years/adults) and prime structure (double-object dative 
[DOD]/prepositional dative [PD]) were between-subject 

independent variables. Prime animacy-semantic role 
mappings (prototypical [AN goal & IN theme]/ non-
prototypical [AN theme & IN goal] and prime-target match 
in animacy-semantic role mappings (match/mismatch) were 
within-subjects independent variables. The production of 
DOD target responses was our dependent variable. 
 

Participants 
We tested 143 monolingual British English speakers; 47 
three year olds (24 females), 48 five year olds (25 females), 
and 48 adults (35 females). One three year old was excluded 
for their failure to produce any dative sentences. 

  

Visual Stimuli 
Sixty-eight 10-second animations were created in Anime 
Studio Pro 10 and presented on a laptop using Microsoft 
PowerPoint. Forty-eight (24 for primes and 24 for targets) 
portrayed ditransitive events (e.g. a girl bringing a monkey a 
ball). Twenty depicted intransitive events featuring two 
characters simultaneously acting in the centre of the screen 
(e.g. a boy and girl jumping). Eight of these were used as 
practice scenes (four each for the experimenter and 
participant) and 12 were used as fillers (six each). 
 

Sentence Stimuli 
Eighty- two sentences were created as descriptions for the 
68 animations. These included: 
• Practice Items (4): Intransitive sentences for the 

experimenter’s turn in practice trials to introduce 
participants to the task. 

• Fillers (6): Present-tense intransitive sentences for the 
experimenter’s turn in filler trials to limit priming 
effects across prime-target pairs. 

• Primes (48): Past tense dative sentences which included 
24 DOD and 24 PD counterparts corresponding to the 
24 prime scenes. Six different prime sentences were 
assigned to each of the four experimental conditions. 

• Targets (24): Six different verbs were included in 
sentence initiations for target sentences (e.g. the boy 
brought). Primes and targets always contained the same 
verb and participants completed these sentence 
initiations to produce the full target sentence. See Table 
1 for example prime sentences and target elicitation 
scenes. 

 

Procedure 
The experimenter played the animations on a laptop, 
beginning with four practice-practice trials, followed by 
alternating prime-target and filler-filler trials. She described 
the first scene and produced the first sentence in each pair, 
producing all primes and participants described the second 
scene in each pair, including all targets. On target trials, the 
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experimenter produced initial sentence initiations (e.g. the 
girl brought…) to encourage participants’ use of datives. 
Participants formed their own target structures as they 
finished the sentence (e.g. the monkey a ball or the ball to 
the monkey). Adult participants often produced entire target 
sentences including the initial subject and verb. 
 

Table 1: Example prime sentences and target elicitation 
scenes for each condition 

 

Condition DOD Prime PD Prime 
Target 
Elicitation 
Scene 

Prototypical 
Prime  
(AN goal & 
IN theme) / 
Matched 
Target 

The girl 
brought the 
monkey a 
ball 

The girl 
brought a 
ball to the 
monkey 

Transfer of a 
flower from 
boy to a snail 

Prototypical 
Prime  
(AN goal & 
IN theme) / 
Mismatched 
Target 

The girl 
brought the 
bee a flower 

The girl 
brought a 
flower to 
the bee 

Transfer of a 
monkey from 
a boy to a zoo 

Non-
prototypical 
Prime 
(AN theme & 
IN goal) / 
Matched 
Target 

The girl 
brought the 
zoo a tiger 

 
The girl 
brought a 
tiger to the 
zoo 

Transfer of a 
bee from a 
boy to a zoo 

Non-
prototypical 
Prime 
(AN theme & 
IN goal) / 
Mismatched 
Target 

The girl 
brought the 
garden a 
snail 

The girl 
brought a 
snail to the 
garden 

Transfer of a 
ball between 
a boy and a 
tiger 

 

Coding 
Target responses were coded for syntactic structure (double-
object dative [DOD], prepositional dative [PD] and 
OTHER). Only DOD and PD target sentences were included 
in the analyses.  
 
DOD: sentences with a goal – theme structure (e.g. the boy 
brought the tiger a ball). 
  

PD: sentences with a theme – preposition - goal structure 
(e.g. the boy brought a tiger for the monkey). Both to and 
for were suitable prepositions.  
OTHER: Such responses were excluded from the analyses 
and included: 
1. Sentences without a DOD or PD structure (e.g. 

intransitive and/or incomplete sentences with only one 
noun such as the boy threw the whale, or locatives 
such as the boy threw the way into the sea). 

2. Incomplete sentences with one object and a preposition 
but no second object (e.g. the boy threw the food to) 

3. Sentences where nouns were assigned to the wrong 
semantic role (e.g. the boy brought the ball [goal] a 
tiger [theme], where the target scene actually showed 
the transfer of a ball [theme] between a boy and tiger 
[goal]. A misunderstanding of the target scene may 
influence target structures where animacy cues might 
interact with syntactic structures. 

4. Sentences with incorrectly named nouns, indicating 
participant’s misunderstanding of the event shown in 
the target scene (e.g. the boy brought the zoo/mouse a 
ball instead of the boy brought the tiger a ball). 

The percentage of OTHER target responses was 38% in 
three year olds, 28% in five year olds and 27% in adults. 
This is to be expected because although our events involved 
three participants, it is perfectly acceptable to focus on only 
a subset of these in a linguistic description of the scenes. 
 
 

Results 
The data were analysed using logistic mixed effects models 
in R, using the glmer function of the lme4 package (lme4 
version 1.1-11: R Core Team 2012). Fixed effects for all 
final models included: age (3 years = -1; 5 years = 0; adult = 
1), prime animacy-semantic role mappings (prototypical 
[AN theme – IN goal] = 1; non-prototypical [IN theme – 
AN goal] = 0) and prime-target match in animacy-semantic 
role mappings (match = 1; mismatch = 0). All variables 
were centred to reduce multicollinearity (Neter, Wasserman 
& Kuttner, 1985). Participant was always included as a 
random effect. Sentence item was excluded as a random 
effect and the analyses were separated by age since the 
model initially fitted to the full data set did not converge. 
For each individual age group, the Bonferroni method was 
used with a corrected alpha level of .025 for post-hoc 
analyses. The mean proportion of DOD target responses 
produced in each condition is shown in Figure 1. 
 

Age Three 
The model initially contained only main effects of prime 

structure, prime animacy-semantic role mappings and 
prime-target match, but was significantly improved by 
adding a three-way interaction term and all the two-way 
interaction terms that are derived from it (p = .03). We 
found a significant main effect of prime structure whereby 
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more DOD targets were produced following DOD (M = 
0.27, SE = 0.02) as opposed to PD primes (M = 0.06, SE = 
0.01) and a significant three-way interaction between prime 
structure, prime animacy-semantic role mappings and 
prime-target match.  

To interpret the three-way interaction a model was fitted 
for each level of prime structure (DOD and PD). Analysis of 
DOD primes failed to reveal any significant effect for prime 
animacy-semantic role mappings, β = 0.20 (SE = 0.31), z = 
0.65, p = .518, prime-target match, β = -0.12 (SE = 0.31), z 
= -0.40, p = .688, or the interaction between the variables, 
β = 0.61 (SE = 0.61), z = 1.02, p = .31. Analysis of PD 
primes, however, revealed a significant two-way interaction 
between prime animacy-semantic role mappings and prime-
target match, β = 3.89 (SE = 1.39), z = 2.81, p = .005.  

Two further models were run for PD primes, one for each 
level of animacy-semantic role mapping (prototypical [AN 
goal & IN theme]/non-prototypical [AN theme & IN goal]). 
Where PD primes featured non-prototypical animacy-
semantic role mappings, there was a marginally significant 
effect of prime-target match, β = -2.33 (SE = 1.07), z = -
2.19, p = .029. Fewer DOD responses were produced where 
targets contained matched (non-prototypical) animacy-
semantic role mappings (M = 0.01, SE = 0.03) as opposed to 
mismatched (prototypical) animacy-semantic role mappings 
(M = 0.11, SE = 0.03). However, where PD primes 
contained prototypical animacy-semantic role mappings 
there was no significant effect of prime-target match, β = 
1.47 (SE = 0.85), z = 1.73, p = .08.  
 

Age Five 
The model originally featured only main effects but was 
significantly improved by adding two-way interaction terms 
between the variables (p = .007). There was a significant 
main effect of prime structure whereby more DOD targets 
were produced following DOD (M = 0.30, SE = 0.02) as 
opposed to PD primes (M = 0.02, SE = 0.01) and a 
significant two-way interaction between prime animacy-
semantic role mapping and prime-target match β = 1.15 (SE 
= 0.51), z = 2.28, p = .002.  

To interpret the two-way interaction, a model was fitted 
for each level of prime animacy-semantic role mapping 
(prototypical [AN goal & IN theme]/non-prototypical [AN 
theme & IN goal]). For prototypical prime animacy-
semantic role mappings there was a significant effect of 
prime-target match, β = 0.83 (SE = 0.35), z = 2.35, p = .018. 
DOD production was higher where targets featured matched 
(prototypical; M = 0.18, SE = 0.02) as opposed to 
mismatched (non-prototypical; M = 0.09, SE = 0.02) 
animacy-semantic role mappings. However, where primes 
contained non-prototypical animacy-semantic role mappings 
there was no effect of prime-target match, β = -0.48 (SE = 
0.36), z = -1.35 p = .177. There was no difference in the 
production of DOD targets where targets featured matched 
(non-prototypical; M = 0.14, SE = 0.03) as compared with 

mismatched (prototypical; (M = 0.09, SE = 0.03) animacy-
semantic role mappings. 

 
Figure 1: The mean proportion of DOD responses following 

DOD and PD primes where primes contained either 
prototypical or non-prototypical animacy-semantic role 
mappings and these mappings were either matched or 

mismatched across primes and targets (SE in error bars). 
 
 
Adults 
The model originally featured only main effects but was 
significantly improved by adding two-way interaction terms 
between the variables (p < .001). We found a significant 
effect of prime structure with more DOD targets produced 
following DOD (M = 0.64, SE = 0.02) than PD primes (M = 
0.07, SE = 0.12) and a significant two-way interaction 
between prime animacy-semantic role mapping and prime-
target match.  

To interpret the two-way interaction a model was fitted 
for each level of prime animacy-semantic role mapping 
(prototypical [AN goal & IN theme]/non-prototypical [AN 
theme & IN goal]). For primes with prototypical animacy-
sematic role mappings we found a significant effect of 
prime-target match, β = 2.608 (SE = 0.51), z = 5.09, p < 
.001. DOD production was higher where targets featured 
matched (prototypical; M = 0.43, SE = 0.03) as opposed to 
mismatched (non-prototypical; (M = 0.25, SE = 0.03) 
animacy-semantic role mappings. Where primes contained 
non-prototypical animacy-semantic role mappings, there 
was also a significant effect of prime-target match β = -1.33 
(SE = 0.43), z = -3.12, p < .001. Fewer DOD responses were 
produced where targets contained matched (non-
prototypical; M = 0.30, SE = 0.03) as opposed to 
mismatched (prototypical; (M = 0.40, SE = 0.03) animacy-
semantic role mappings. 
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Results Summary 
All age groups showed an effect of structural priming, 
producing more DOD responses following DOD primes, as 
compared to PD primes. Three year olds also exhibited 
effects of animacy-semantic role mappings on the 
magnitude of structural priming, showing an increase in PD 
sentence priming effects where primes and targets contained 
matching non-prototypical mappings (AN theme & IN goal) 
(although no effects were observed for DOD primes). Our 
hypothesis that priming would be greater with prime-target 
match was met, indicating that animacy mappings were 
represented to a relatively strong degree. However, priming 
increased with non-prototypical rather than prototypical 
primes providing support for error-based learning accounts. 
As expected, animacy effects decreased with age; they had 
no influence on structural priming in five year olds or 
adults. Nevertheless, animacy did influence DOD target 
production in five year olds and adults, independently of 
prime structure. They produced more DOD sentences where 
targets (and also primes in the case of five year olds) 
contained prototypical animacy-semantic role mappings 
(AN goal & IN theme). 
 

Discussion 
Our results support claims of structural priming effects in 
children (Rowland et al., 2012) and adults (Bock, 1986) and 
more importantly, they provide further clarification as to 
how structural priming works. Our results reveal that 
priming relies, first and foremost, on the repetition of 
abstract syntactic frames and not the repetition of animacy 
noun orders. This was previously unclear due to 
methodological issues with earlier research (Chang, Bock & 
Goldberg, 2003). Non-prototypical (AN theme & IN goal) 
DOD primes with an inanimate-animate noun order (e.g. the 
girl brought the zoo a monkey) were just as likely to yield 
DOD targets as prototypical (AN goal & IN theme) DOD 
primes with an animate-inanimate noun order (e.g. the girl 
brought the monkey a ball). Mere repetition of animacy 
noun ordering would have resulted in more prototypical PD 
targets with an inanimate-animate noun order (e.g. the girl 
brought the flower to the snail) following non-prototypical 
DOD targets. All age groups showed a main structural 
priming effect, suggesting that children’s linguistic 
representations do not need to specify animacy-semantic 
role mappings for priming to occur. 

PD sentence priming was enhanced in three year olds 
where there was prime-target match in non-prototypical 
(AN theme & IN goal) animacy-semantic role mappings. 
This is consistent with	 Gámez and Vasilyeva’s (2015) 
finding that prime-target match increased priming in five 
and six year olds. Our results are thus at odds with Pickering 
and Branigan’s (1998) residual activation theory as it cannot 
explain how semantic information could influence structural 
priming. We found that animacy-semantic role mappings 
were specified and represented to a relatively strong degree 
and could influence priming through error-based learning in 

support of Chang, et al (2006). We suggest that error-based 
learning may have been less likely to occur following DOD 
primes as three year olds generally use fewer DOD than PD 
constructions (Rowland, et al., 2012). They might not have 
been sensitive enough to the typical animacy mappings in 
DOD sentences for surprisal priming effects to occur. 

Five year olds and adults showed no evidence of 
increased priming where primes contained non-prototypical 
(AN theme & IN goal), as opposed to prototypical (AN goal 
& IN theme) animacy-semantic role mappings. This 
developmental decrease in error-based learning may be due 
to increased exposure to such lower frequency sentence 
types and is consistent with Rowland, et al., (2012) and 
Peter, et al.’s (2015) results. Our results also complement 
those of Corrigan (1988) who found animacy effects on 
children’s sentence interpretations to decrease with age.  

Nevertheless, five year olds and adults produced more 
DOD targets where targets (and also primes for five year 
olds) contained prototypical (AN goal & IN theme) 
mappings, regardless of prime structure. This indicates a 
preference to use animate goals and inanimate themes in 
DOD as opposed to PD constructions. These data therefore 
support claims that animacy interacts with semantic role-
grammatical function mappings and can influence 
subsequent word order (Zorzi & Vigliocco, 1999; Goldberg, 
1995; Garrett, 1975).  Animate goals tended to be realised 
as indirect objects more than as oblique objects and were 
often placed before inanimate theme-direct objects, resulting 
in DOD constructions (e.g. brought the monkey [animate 
goal] a ball [inanimate theme]).  

Speakers’ tendency to encode animate goals and 
inanimate themes in DOD constructions increased with age. 
Very small surprisal effects may have moderated five year 
olds’ DOD production. Non-prototypical (AN theme & IN 
goal) PD primes may have subtly increased PD sentence 
priming through error-based learning.	 Non-prototypical 
DOD primes may have sometimes primed participants to 
reuse noun animacy orders in prototypical PD constructions. 
E.g. the DOD prime the girl brought the zoo [inanimate] a 
monkey [animate] could have prompted the PD response the 
boy brought the ball [inanimate] to the tiger [animate]). 

We should however, also seek to clarify whether animacy 
could influence word orders in sentence production 
independently of syntax and/or grammatical roles.	 Bock, 
Loebell and Morey (1992) provide evidence to suggest that 
this is possible. Following primes with animate subjects 
before inanimate objects, participants were more likely to 
produce targets with the same noun animacy order than an	
inanimate subject-animate object order. It did not matter 
whether subjects were agents or patients of active or passive 
sentences. Little research has been conducted to address this 
topic in adults and it is yet to be explored in children.  

Conclusion 
In our study animacy-syntax interactions appeared to 
facilitate structural priming in young children but this effect 
was subject to a developmental decrease. The extent to 
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which animacy-semantic role mappings could influence 
speakers’ choice of syntactic structure independent of 
structural priming, rather increased with age. Animacy-
syntax interactions can therefore influence sentence 
production. We consequently propose that theories of 
structural priming and sentence production in general should 
seek to consider the role of animacy-syntax interactions. 
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Abstract 

The Monty Hall Dilemma (MHD) is a well-known cognitive 
illusion. It is often claimed that one reason for the incorrect 
answers is that people apply the equiprobability principle: they 
assume that the probability of the two remaining options must 
be equal. An alternative explanation for assigning the same 
probabilities to options is that they had the same prior 
probabilities and people perceive no significant change. 
Standard MHD versions do not distinguish these possibilities, 
but a version with unequal prior probabilities could. 
Participants were given an unequal probabilities version of 
MHD and told that either the high or low probability option had 
been eliminated. This affected participants’ choices and their 
posterior probabilities. Only 14% of participants’ responses 
were consistent with applying the equiprobability principle, but 
51% were consistent with a “no change” principle. Participants 
were sensitive to the implications of the prior probabilities but 
did not appear to use Bayesian updating. 

Keywords: Monty Hall Dilemma, probabilistic reasoning, 
cognitive illusions, cognitive reflection 

Introduction 

  In the Monty Hall Dilemma (MHD) participants are 

presented with a scenario in which there are three doors, one 

of which conceals a prize. The participant initially chooses 

one and then some mechanism (a game show host in the 

original version) opens one of the other two doors to show 

that it does not conceal the prize. This mechanism never 

opens a door with the prize behind it, knows where the prize 

is, and it always operates. The participant is then offered the 

choice of staying with the original choice or switching to the 

other unopened door. Almost all participants say they would 

stay with their first choice and that the probability of winning 

is 50% (Granberg & Brown, 1995), however the correct 

choice is to switch and the probability of winning is 2/3. 

When Marilyn vos Savant published the MHD in her 

magazine column and gave its correct answer she reports 

having received thousands of letters with 92% of the general 

public disagreed with her, but so did 65% of letters with 

university addresses (vos Savant, 1997). As such the MHD 

has proved to be one of the best examples of a cognitive 

illusion (Piattelli-Palmarini, 1994) and it has been the subject 

of a number of research studies (see Krauss & Wang, 2003; 

Tubau, Aguilar-Lleyda & Johnson, 2015, for reviews). 

Factors driving the illusion 

  Tubau et al. (2015) point out that it has been observed in 

many empirical studies that when participants are given the 

MHD they display a strong tendency to see the two remaining 

doors as equally likely to conceal the prize. Stibel, Dror, and 

Ben-Zeev (2009) found that even in the 100-door version of 

the MHD in which 98 doors were opened, participants still 

tended to say that the last two remaining doors had a 50% 

chance each of concealing the prize. Although Tubau et al. 

point out that a number of factors have been argued to 

contribute to the illusion in MHD, one factor that it has been 

argued is a strong factor is misapplication of the 

equiprobability principle (Falk, 1992; Johnson-Laird, 

Legrenzi, Girotto, Legrenzi, & Caverni, 1999; Falk & Lann, 

2008). Once participants see the options as equally probable 

they then choose to “stay” due to either illusion of control 

(Granberg & Dorr, 1998) or anticipation of regret (Gilovich, 

Medvec, & Chen, 1995). 

 The equiprobability principle suggests that in the absence of 

any apparent reason to differentiate options, all options will 

be assigned the same probability (Johnson-Laird, et al, 1999). 

So if there are just two apparently identical options they must 

each have an equal 50% chances of being correct. The 

equiprobability principle has often been observed when 

people are faced with uncertain options. For example, 

Fischhoff, Parker, Bruine de Bruin, Palmgren, Dawes and 

Manski (2000) found that a large number (over 20%) of US 

16 year olds estimated a 50% chance of dying in the next 

year. Tversky and Kahneman (1974) report that when 

participants were presented with a party made up of people 

with one of two professions, but given a description of an 

individual that the representativeness heuristic could not 

allocate to one of the groups, they said the probability of him 

being in either group was 50% regardless of base-rate. Even 

when Burns and Wieth (2004) presented a variation of the 

MHD that induced 51% participants to see that it was better 

to switch, most still said the probability of wining was 50%. 

Johnson-Laird et al. present ample evidence of the 

equiprobability principle being applied to a number of 

situations, but it appears to be particularly strong in the MHD. 

However the frequency of the 50% answer may not be as 

strong as evidence of application of equiprobability as has 

been assumed because there is more than one path to this 

answer.  

Burns and Wieth (2004) suggested that a major barrier to 

correct reasoning about the MHD is that participants fail to 

understand the causal structure underlying it. Therefore they 

see the host’s action in opening a door as having not having 

changed the underlying probabilities. Thus given that the two 

unopened doors had equal probabilities before any door was 

opened they may still have equal probabilities. Occasionally 

participants have report that each of the two doors now has a 

33% chance of concealing the prize, making this reasoning 
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transparent, although mathematically incoherent. However 

participants may be applying this reasoning to conclude that 

the ratio of the two probabilities of the remaining doors has 

not changed, and thus the probability of winning after 

switching is 50%. Thus participants could come to the same 

answer (i.e., that each door has the same 50% chance of 

concealing the prize) in two different ways: 1) by 

misapplying the equiprobability principle; 2) by assuming no 

change. With the standard version of the MHD it is difficult 

to distinguish which form of reasoning led to the 50% answer, 

but a modification used by Granberg (1999) could. 

MHD with unequal probabilities 

  Granberg (1999) tried to probe how people use conditional 

probabilities in the MHD by giving them an alternative 

version of the MHD with four doors and unequal 

probabilities. The Bayesian analysis shows that whether 

staying or switching has the highest probability of winning 

depends on which door is initially selected and which door is 

opened. The optimal strategy for this version is to first select 

the least likely alternative then switch away from it after a 

door is opened. Granberg gave participants 60 trials of either 

equal or unequal probability 4-door versions of the MHD. On 

the first trial only 11% switched in the equal-probability 

condition but even fewer (7%) switched in the unequal-

probability condition, despite there being a 75% chance of 

winning (on average) if switching in the later condition. Over 

60 trials the switch rates improved in both conditions but at 

similar rates. Participants in unequal-probability condition 

increasingly utilized the optimal strategy, but still only used 

it on an average of about 30% of trials in their last block of 

10. Granberg saw this as evidence that participants were 

satisficing (Simon, 1955). 

  Granberg (1999) did not ask participants about what they 

thought were the probabilities that they would win by 

switching, but by not doing so an opportunity was lost. Few 

participants would be expected to get these probabilities 

correct, given how poor participants are at getting the 

percentage correct in standard version of the MHD (Burns & 

Wieth, 2004, found only 2% did so). However their incorrect 

answers could be windows into their reasoning. In the 3-door 

equal-probabilities version of the MHD the same percentage 

answer could result from either form of the erroneous 

reasoning identified above. If a participant was applying the 

equiprobability principle then they would say there is a 50%, 

but they would answer the same if they thought that Monty 

had changed nothing (except for cutting down the options). 

However in an unequal-probabilities version applying the 

equiprobability principle would still yield a 50% chance of 

winning, but if they applied the “no change” principle then 

the probability of winning would be a function of the unequal 

probabilities. Thus an unequal probability version of the 

MHD can be used to probe to what extent are participants’ 

errors due to either of these principles.  

The current experiment 

  In the experiment presented here participants were given a 

three-door version of the MHD but told that the probability 

that Door A concealed the prize was 30%, the probability that 

Door B did was 60% and the probability that Door C did was 

10%. (These probabilities were chosen because they yielded 

different correct answers to staying or switching depending 

on which door was opened, and because they allowed easy 

calculation of the percentages corresponding to reasoning I 

expected from participants.) They were then told that they 

had initially selected Door A (fixing the first choice 

eliminated the strategic considerations that were not the focus 

of this experiment), then that one of the other doors had been 

opened. Figure 1a shows diagrammatically the scenario for 

the condition in which Door B was the one unopened, and in 

Figure 1b for when Door C was unopened. 

 

 
Figure 1a: Diagrammatic depiction of the scenario presented 

to participants in the Door-B unopened condition. 

 

 
Figure 1b: Diagrammatic depiction of the scenario presented 

to participants in the Door-C unopened condition. 

 

Participants were then asked whether they would stay with 

their first choice or switch to the unopened door, and to 

express their probability of winning if they switched. They 

were also asked if they had ever seen a question like this 

before. There were two conditions: Door-B in which 

participants were told that Door B was unopened; and Door-

C in which participants were told that Door C was unopened. 

Bayes’ Theorem yields the correct answer to the problems 

in the two conditions. In the Door-B condition the optimal 

choice is to switch because there is a 80% chance of winning 

if they switch, but in the Door-C condition participants 
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should stay because they would have only a 40% chance of 

winning if they switched (these answers were confirmed by 

simulations assuming that if the prize was behind Door A 

then there was an equal chance of opening either Door B or 

C). If participants apply the equiprobability principle then 

they should indicate a 50% chance of winning by switching 

in both conditions. If they are applying the “no change” 

principle then in the Door-C conditions they may say 25% 

(.1/(.1+.3)) and in the Door-B conditions 67% (.6/(.6+.3)). 

However they may apply a cruder version of the “no change” 

principle and just repeat the prior probabilities of 10% for the 

Door-C condition or 60% for the Door-B condition.  

Tubau et al. (2015) suggest that use of the equiprobability 

principle may be due to lack of cognitive reflection, so it may 

be possible to analyses reasoning about the MHD in terms of 

dual-system models (see Stanovich, 2011). Applying “no 

change” and repeating prior probabilities may be the least 

reflective response. However “no change” but updating the 

probabilities to maintain the same ratio may be the most 

reflective. Thus responses to the unequal probability MHD 

may also be used to probe how reflective was the thinking 

employed. 

The goal of the experiment was to analyze the type of 

reasoning participants used in an unequal-probabilities 

version of the MHD and thus to investigate what factors are 

behind the cognitive illusion. An improved understanding of 

the MHD can improve understanding of how people reason 

about probabilities.   

Method 

Participants 

  A total of 373 participants completed the experiment as part 

of a class at the University of Sydney. Of these, 105 indicated 

that they had seen a similar question before, so they were 

excluded from this analysis. The remaining sample of 268 

consisted of 160 women and 108 men. 

Materials and procedure 

During a class, participants were presented with the task as 

part of a set of tasks completed on a computer. They were 

told to read the following questions carefully and answer all 

the questions. If there were any they did not know the answer 

to, then they were instructed to guess. 

“Pretend you are on a game show, where you are allowed 

to choose one of three closed doors. Behind one door is a 

prize (a car), and behind each of the other doors is a goat. 

After you have chosen a door, the door remains closed for the 

time being. The game show host, Monty Hall, who knows 

what is behind the doors, now has to open one of the two 

unchosen doors and reveal a goat. After he shows you a goat, 

he asks you to decide whether you want to stay with your first 

choice or switch to the remaining unopened door.” 

“By watching the show many times you have calculated 

that there is a pattern to where the prize is initially placed. 

Door A has the prize 30% of the time, Door B has the prize 

60% of the time and Door C has the prize only 10% of the 

time.” Participants were then instructed to pretend they had 

first chosen Door A and that Monty Hall then opens Door B 

(if in the Door-C condition, otherwise Door C) and reveals a 

goat. Now he asks you whether you want to stick with your 

first choice (Door A) or switch to the Door C (or Door B if in 

the Door-B condition). Participants were also shown Figure 

1a or Figure 1b, which ever was relevant to their condition.  

They were then asked “Would you choose to switch doors 

or stay with your original door (Door A)?” and “What do you 

think is the chance of winning the prize if you switch doors 

(to Door B) [Door C in Door-C condition]? 

Participants also completed the Cognitive Reflection Task 

(CRT) of Frederick (2005) which consists of three problems 

that require participants to reflect on the answers rather than 

give the obvious ones. It is used to assess the extent to which 

participants are reasoning reflective and thus using System 2 

rather than relying on System 1 (in terms of Stanovich, 2011). 

Results 

Choice 

After eliminating participants who reported having seen 

the question before and two with missing responses, there 

were 115 in the Door-B condition and 151 in the Door-C 

condition. Table 1 shows the number of participants choosing 

to stay or to switch depending on which door was left 

unopened. There was a large effect of condition, 2(1) = 

74.35, p < .001. 

This result shows that participants were sensitive to the 

implication of the prior probabilities of the unopened door, 

with 86% correctly switching when the unopened door had a 

high prior probability and 66% correctly staying when the 

unopened door had a low prior probability. This result 

already argues that the equiprobability principle is not being 

commonly applied.  

 

Table 1: Number of participants in each condition (Door-B 

in which the high probability door is left unopened and 

Door-C in which the low probability door is left unopened) 

deciding to stay or switch. 

 

 Choice 

 Stay  Switch 

Door-B (60%) 

unopened 

 

16 99 

Door-C (10%) 

unopened 

 

101 50 

 

A slightly surprising aspect of Table 1 was how high the 

switch rate was for the Door-C condition, given that so few 

participants switch in standard versions of the MHD despite 

it being the correct response. This may be due to the initial 

choice of Door A being allocated to participants rather than 
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being a true choice, which could reduce both the illusion of 

control (Granberg & Dorr, 1998) and the anticipation of 

regret (Gilovich et al, 1995) factors that have been seen as 

driving the excessive number of “stay” decision in the 

standard MHD. Consistent with this is that previous studies 

have found that eliminating participants’ first choice 

increased switch rates substantially (Tubau & Alonso, 2003). 

The large effect of the prior probabilities is also surprising 

in light of the lack of an effect of unequal prior probabilities 

observed by Granberg (1999) on his first trial. Possibly this 

was because the differences in probabilities for Granberg’s 

four doors were quite small: .1, .2, .3 and .4. It is also possible 

that because Granberg’s first trial was the first of 60 

participants were using it to explore rather than thinking 

deeply about the right choice to make. 

Percent 

Participants in the Door-B condition gave higher mean 

percentage (M =. 61, SD = .16) chances of winning by 

switching than did those in the Door-C condition (M = .41, 

SD = .21), t(264) = 8.85, p < .001. Consistent with the choice 

data, participants thought they had a better chance of winning 

by switching if the higher probability door was left unopened.  

Table 2 shows the number of participants giving each 

percentage response depending of their condition and their 

choice. Very few participants gave the correct percentages, 

only 4/266. That these four actually calculated the Bayesian 

posterior probabilities is thrown into doubt by the observation 

that two participants generated these responses even when 

they were incorrect for their condition. Critically, Table 2 

reveals that relatively few participant gave the 

equiprobability response of 50% when asked how likely they 

were to win if they switched. In total only 37/266 (14%) of 

participants did so. Equiprobable responses were no more 

likely in the Door-C than the Door-B condition, 2(1) = 

0.475, p = .47. As expected based on results from the standard 

MHD, equiprobability was associated with more “stay” 

decisions, 2(1) = 5.76, p = .016. 

There was strong evidence that participants followed the 

principle that nothing had changed. A total of 93/266 (35%) 

of participants gave responses consistent with them 

calculating the ratio of the prior probabilities of the opened 

and unopened door (66% when Door B was unopened; 25% 

when Door C was unopened). As expected, the 66% response 

was much more common from participants in the Door-B 

than the Door-C condition, 2(1) = 18.9, p < .001, and the 

reverse was true for 25% responses, 2(1) = 19.2, p < .001. 

There is also evidence of participants using a cruder version 

of the “no change” principle and simply giving the prior 

probabilities as the posterior probabilities (10% in Door C; 

60% for Door B). A total of 50/266 (19%) did this. Again as 

expected, the 60% response was much more common from 

participants in the Door-B than the Door-C condition, 2(1) 

= 31.4, p < .001, and the reverse was true for 10% responses, 

2(1) = 20.1, p < .001. 

Although only generated by 9 participants, the most 

common percent response that is not apparently associated 

with applying equiprobability or a “no change” principles 

was 70%. This answer could be due to participants adding 

together the prior probabilities of the opened and unopened 

doors. Such addition is sometimes proposed as a way to 

explain the correct answer to the standard version of the 

MHD. The unequal probability version of the MHD 

illustrates why this is a poor way to explain the MHD, but it 

is interesting that a small number of participants appeared to 

reasoning using it. If we see the 6 participants responding 

30% as some sort of inversion of the 70% reasoning, this 

leaves only 10 out of 266 other responses which cannot in 

some way be linked to the “sum”, equiprobability, or “no 

change” approaches. 

 

Table 2: Frequencies of different values of reported percent 

chances of winning if participant switched, split by whether 

the participants decided to stay or switch and their condition 

(Door-B or Door-C not opened). Two categories cover 

ranges of responses rather than precise responses. 

 

 

A surprising aspect of the data in Table 2 was that a high 

number of participants in the Door C condition who switched 

gave 66% as the percentage chance of winning. This is 

consist with their choice but given that the prior probability 

Percent 

chance 

of win if 

switch 

            Stay                          Switch 

Door C 

(.10) not 

opened 

Door B 

(.60) not 

opened 

Door C 

(.10) not 

opened 

Door B 

(.60) not 

opened 

0-9% 

 

0 0 0 2 

10% 

 

19 0 5 0 

11-24% 

 

1 0 0 1 

25% 

 

22 0 1 0 

30% 

 

2 0 2 1 

33% 

 

25 2 5 2 

40% 

 

3 0 0 1 

50% 

 

16 7 7 7 

60% 

 

1 3 1 23 

65-67% 

 

8 4 26 52 

70% 

 

3 0 1 5 

75% 

 

0 0 0 1 

80% 

 

0 0 1 1 

100% 0 0 1 2 

Totals 101 16 50 99 
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of this door concealing the prize was 10% and its posterior 

probability was 40%, it is hard to infer the reasoning behind 

this answer. It may just be due to participants who were 

confused about the problem. Alternatively it could be that 

participants who had an intuition to switch, but were unable 

to calculate a probability fell back to using a plausible 

sounding percentage for a problem proposing three entities. 

Consistent with this is the similar number of participants 

giving 33% as the answer, particularly when deciding to stay. 

Another possibility arises from the fact that two-thirds is the 

correct answer to the standard MHD, so it is possible that 

some participants who said that they have not seen a similar 

problem actually had seen the standard MHD and then 

repeated its solution. 

Cognitive Reflection Task (CRT) 

Participants’ responses to the CRT were scored by 

counting how many of the three problems they gave the 

correct answer to. Overall the participants did quite poorly 

given that the maximum score is 3.0 but their mean score was 

0.55 (SD = 0.86).  

There appeared to be an association between CRT scores 

and how participants responded. Those who generated the 

equiprobability percent of 50% did not differ from other 

participants on CRT scores (M=0.43, SD=0.83, n=37 verse 

M=0.57, SD=0.86, n=229), t(264) = 0.92, p = .36. However 

participants repeating the prior probability, either 10% or 

60% depending on their condition, had lower CRT scores 

than other participants, (M=0.30, SD=0.61, n=50 verse 

M=0.61, SD=0.89, n=216), t(264) = 2.34, p = .020. 

Furthermore participants maintaining the ratio of prior 

probabilities, either 25% or 66% depending on their 

condition, had higher CRT scores than other participants 

(M=0.72, SD=0.96, n=116 verse M=0.42, SD=0.74, n=150), 

t(264) = 2.92, p = .004. So it appears that participants’ 

responses to the unequal probabilities MHD reflect not only 

what principles they applied, but also how reflective was their 

thinking. 

Discussion 

The equiprobability principle has often been presented as a 

strong driver of the illusion behind the MHD, yet there has 

been no attempt to test this hypothesis beyond the observation 

that most participants when given standard versions of the 

MHD report that that they would have a 50% chance of 

winning if they switched. To the extent that participants use 

similar reasoning when faced with the equal and unequal 

probability versions of the MHD, the finding here that only 

14% of participants gave equal probability answers throws 

into doubt that the equiprobability principle is a  strong driver 

of this cognitive illusion. In a way, it is also a powerful 

demonstration of just how strong the equiprobability 

principle can be for some individuals, given that it appeared 

to be followed by some participants even when it not only led 

to the wrong answer but it had to be invoked out of thin-air 

(i.e., there are no mentions of 50% and percentages presented 

are unequal). So this principle may explain the illusion of the 

MHD for some people, but they appear to be a small minority. 

The experiment’s findings represent strong evidence that 

what leads participants to think that each remaining door is 

equally probable  after Monty has revealed one  is that there 

has be no change to these doors, so they maintain their equal 

status. Overall 54% of participants gave percentages in which 

they repeated the prior probability or they maintained the 

ratio of the prior probabilities. This is consistent with Burns 

and Wieth’s (2004) argument that the main obstacle to 

correctly seeing the need for conditional reasoning about the 

MHD is failure to recognize that Monty’s actions change 

things beyond just removing an option. Burns and Wieth 

argued that the MHD is difficult because it has a causal 

structure that people have difficulty recognizing and thus 

they fail to see that Monty’s actions have causal 

consequences. We demonstrated this effect by showing 

higher switch rates when the MHD was presented as a 

competition. The finding here using the unequal probability 

MHD show directly that a belief that there has been “no 

change” could be driving many people’s failures to reason 

correctly about the MHD. 

The current results show almost no evidence of Bayesian 

updating by participants. They are sensitive to prior 

probabilities but they do not appear to recognize the problem 

as one involving conditional probabilities. The more 

reflective thinkers (as measured by CRT scores) recognize 

that the posterior probabilities are different from the prior 

probabilities, so have updated their probabilities after a door 

was opened. However they have only accounted for the 

missing door, not taken into account the new conditional 

probabilities.  

The unequal probabilities versions of the MHD have the 

potential to be useful tools for examining the reasoning 

people use in the MHD because they have the potential to 

reveal this reasoning through differential answers. Almost all 

participants gave percent responses which could be 

interpreted as revealing their underlying reasoning. 

Questions concerning both the MHD and probabilistic 

reasoning more generally might be fruitful explored using 

appropriate versions of the unequal probabilities MHD.  

Does this experiment really address the MHD? 

Reviewers of this paper raised some interesting issues 

regarding whether any experiment using an unequal-

probabilities MHD can tell us anything about how people 

reason in the common equal probabilities version of the 

MHD. 

One claim was that the current experiment had nothing to 

do with the MHD because participants were told their initial 

choice and told what door was opened, whereas the common 

description of the MHD allows people to make their own first 

choice. However assigning to participants their first choice 

has been the case in most empirical studies of the MHD going 

back to the first published study by Granberg and Brown 

(1995). Doing so has not eliminated the strong bias to decide 

to stay, so it does not seem to be a critical factor.  
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The question was also raised as to whether assigning 

unequal prior probabilities to the doors in itself invalidates 

the experiment as an examination of reasoning in the MHD. 

However, that the probabilities have to be equal has not been 

presented as a critical aspect of the MHD. If it is, then why it 

is critical needs to be explained. The MHD is a conditional 

probability problem and Bayes’ Law can be as effectively 

applied to the MHD with unequal probabilities as to a MHD 

with equal probabilities. From the point of view of 

conditional probability, it is the equal probabilities 

presentation that is a special case of a more general problem. 

The reasoning described as being behind the MHD does not 

seem to rely on the prior probabilities being equal, although 

it may simplify the calculations. 

An interesting claim made was that the unequal 

probabilities MHD cannot possibly address the 

equiprobability principle because it does not have equal prior 

probabilities. As pointed out earlier the equiprobability 

principle applies when there is no apparent reason to 

differentiate the options, thus the presentation of unequal 

prior probabilities may prevent it from being applied. The 

probabilities of the unopened doors are also not equal in the 

equal probabilities version, but people often don’t perceive 

that to be the case. However this interpretation of the 

principle makes it somewhat circular, that is, it becomes a 

statement that people judge probabilities to be equal when 

they don’t perceive them as unequal. Such an interpretation 

limits the explanatory value of the equiprobability principle. 

(Johnson-Laird et al [1999] also use the equiprobability 

principle to generating mental models, so perhaps the 

principle is better seen as a step in reasoning than as a result.)  

The finding in the current experiment that some participants 

thought the doors to be equally likely despite the prior 

probabilities being unequal suggests that a stronger version 

of the equiporbability principle is used by some people. 
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Abstract

In the history of cognitive science, there have been two com-
peting philosophies regarding how people reason about the
world. In one, people rely on rich, generative models to make
predictions about a wide range of scenarios; while in the other,
people have a large “bag of tricks”, idiosyncratic heuristics that
tend to work well in practice. In this paper, we suggest that
rather than being in opposition to one another, these two ideas
complement each other. We argue that people’s capacity for
mental simulation may support their ability to learn new cue-
based heuristics, and demonstrate this phenomenon in two ex-
periments. However, our results also indicate that participants
are far less likely to learn a heuristic when there is no logical or
explicitly conveyed relationship between the cue and the rele-
vant outcome. Furthermore, simulation—while a potentially
useful tool—is no substitute for real world experience.
Keywords: mental simulation, heuristics, physical reasoning

Introduction
The world is a complex place, yet people are able to nav-
igate it effortlessly. How is the mind able to do so much?
One answer is that the mind builds rich, generative mod-
els of the world (Tenenbaum, Kemp, Griffiths, & Goodman,
2011), which it then uses to “mentally simulate” potential
futures and make inferences about objects and scenes. In-
deed, there is a vast literature on how mental simulation un-
derlies our core reasoning and problem solving abilities, in-
cluding spatial reasoning (Hegarty, 2004; Shepard & Met-
zler, 1971), physical scene understanding (Battaglia, Ham-
rick, & Tenenbaum, 2013; Smith & Vul, 2013), counterfac-
tual reasoning (Gerstenberg, Goodman, Lagnado, & Tenen-
baum, 2014), and language comprehension (Bergen, Lind-
say, Matlock, & Narayanan, 2007; Matlock, 2004). Yet, de-
spite the power and flexibility of mental simulation, there is
a cost associated with its use: running simulations and eval-
uating their results takes time and resources. An alternative
is to rely instead on simple heuristics that usually point to a
good answer (Gigerenzer & Todd, 1999). But, where do such
heuristics come from in the first place?

Previous research has explored the notion of “learning
by thinking” (Lombrozo, in press), demonstrating that peo-
ple have the ability to learn new knowledge or re-represent
old knowledge through internal processes such as simula-
tion. For example, Hamrick, Battaglia, Griffiths, and Tenen-
baum (2016) showed how people can use their mental sim-
ulations to learn about unobservable properties of the world
such as the mass of objects; Khemlani, Mackiewicz, Buccia-
relli, and Johnson-Laird (2013) illustrated how mental sim-
ulations can give rise to algorithmic problem-solving proce-
dures; and Schwartz and Black (1996) demonstrated that peo-
ple can learn simple rules about a physical system on the basis

of mental simulation. Thus, it is clear that people can acquire
new knowledge or heuristics from mental simulation; but, un-
der what circumstances will they do so?

In this paper, we propose that generative models can boot-
strap the discovery of heuristics for novel tasks, but that peo-
ple’s prior biases strongly influence how likely they are to
discover such heuristics. We pose three key questions regard-
ing this claim. First, to what extent are people able to learn
new information from their mental simulations? Second, to
what extent do people use this information to construct new
heuristics? And third, is mental simulation as reliable as real-
world experience in learning such heuristics?

To determine how people learn heuristics from mental sim-
ulation, we designed and ran two experiments adapted from
Hamrick, Smith, Griffiths, and Vul (2015) in which partici-
pants predict whether or not a ball would go through a hole
based on its initial trajectory (see Figure 1). Importantly, we
also manipulated an environmental cue—the color of the box
containing the ball—that perfectly predicted the correct re-
sponse. In the first experiment, we primed participants with
the knowledge that a simple rule existed (but did not tell them
the rule itself); in the second, we primed them with either
weak expectations or no expectations, and then allowed them
to do the task and discover the rule independently. Our results
show that people are capable of crystallizing new rules solely
on the basis of their mental simulations, though they are sig-
nificantly less likely to do so if they are not already entertain-
ing the hypothesis that a rule exists. Moreover, we show that
mental simulation, while an avenue for learning such rules, is
no substitute for real world experience.

Experiment 1: Learning about known cues
In our first experiment, we asked to what extent people are
able to learn heuristics from mental simulation when they are
aware such a heuristic might exist. The heuristic took the
form of an associative cue (see Stimuli) that perfectly pre-
dicted the correct response and that did not require mental
simulation.

Methods

Participants We recruited 119 participants on Amazon’s
Mechanical Turk using the psiTurk experimental framework
(Gureckis et al., 2015). Participants were paid $1.50 for
roughly 14 minutes of work. We excluded 9 participants who
did not finish the experiment and 8 participants who answered
incorrectly on more than one catch trial. This left a total of
102 participants in our analysis.
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Figure 1: Example of a medium trial.

Design We used a 3× 3× 2 mixed design. We manip-
ulated two within-subject variables, CUE and DIFFICULTY.
CUE could take on three values: honest (the cue perfectly
predicts the correct response), neutral (the cue contains no
information), and deceitful (the cue predicts the incorrect re-
sponse). DIFFICULTY could take on three values as well:
easy, medium, and hard (see Stimuli). We manipulated one
between-subjects variable, FEEDBACK, which determined
whether people were allowed to see the full path of the ball
(and thus the correct answer) after making a judgment.

Stimuli The stimuli were animations of a ball moving at a
400px/s in a box with dimensions 900× 650px. As the ball
moved, it traced a gray line to reduce uncertainty about its di-
rection. The initial stimulus presentation consisted of the ball
moving for 0.2 seconds, after which the ball would freeze, re-
maining on screen along with its trace. The feedback anima-
tion picked up where the initial stimulus presentation left off,
and showed the ball bouncing some number of times and then
either (1) passing through the hole (a hit); or (2) bouncing off
the central wall (a miss). The properties of a stimulus de-
pended on the trial’s difficulty. Easy stimuli had one bounce,
a path length of 560px, and a hole size of 300px. Medium
stimuli had one or two bounces, a path length of 880px, and
a hole size of 200px. Finally, hard stimuli had two bounces,
a path length of 1280px, and a hole size of 100px. The color
of the background could be blue, green, or yellow depending
on both the correct response and the value of CUE for that
trial. For each participant, the three colors were mapped to
hit, miss, and neutral (this mapping was counterbalanced).
Thus, on an honest trial, the background would take the hit
color if the ball would go through the hole, and the miss color,
otherwise. This mapping was reversed for deceitful trials. Fi-
nally, on a neutral trial, the background was always the neu-
tral color.

Procedure Participants were first given instructions in
which the task was described. We specifically informed par-
ticipants that they would observe three people playing a game
on three different courts: “Player B” was playing on a blue
court, “Player G” was playing on a green court, and “Player
Y” was playing on a yellow court. We additionally told par-
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Figure 2: Trial structure. The experiment begins with a block
of eight “instruction” trials, shown with feedback regardless
of condition. No cue is present. This is followed by nine
twelve-trial “standard” blocks of increasing difficulty. Fifty-
four unique stimuli are each shown twice (in separate blocks),
once with an honest cue and once with a neutral cue. Feed-
back is displayed on all or no trials depending on condition.
At the end of each standard block, all participants saw their
accuracy from the preceding block and responded to the cue
quiz (see text). The final, “critical” block contains fourteen
trials, shown without feedback. Trials with deceitful cues are
interspersed to minimize the chance of participants noticing
the change in cue reliability.

ticipants that one of the players was playing a game in which
they were trying to get the ball in the hole, one was play-
ing a game in which they were trying to avoid the hole, and
one was playing a game in which they didn’t care whether or
not it went in. This backstory was designed to increase par-
ticipants’ subjective prior probability of and attention to the
hypothesis that the background color was predictive of the
correct response. Crucially, however, the backstory only mo-
tivated the existence of such a predictive relationship; it does
not indicate its direction.

On each trial, participants were shown the scene, includ-
ing the initial position of the ball and the location of the hole.
Participants pressed ‘space’ to begin the trial, after which an
animation of the initial stimulus began. Participants were then
asked, “will the ball go in the hole?”, and were instructed to
press ‘q’ if they thought it would and ‘p’ otherwise. Partici-
pants in the feedback condition then saw “Correct!” or “In-
correct” as well as an animation showing the full remaining
trajectory of the ball.

The structure of the experiment is shown in Figure 2. The
early trials were easy so that participants in the no feed-
back condition had the chance to learn the cue when their
simulation-based judgments were more reliable. The later
trials were hard so they would be discriminative of partic-
ipants’ strategies: participants using simulation should per-
form poorly, while participants using the cue should be in-
sensitive to trial difficulty. To assess declarative knowledge
of the cue, we asked participants three multiple choice ques-
tions (the cue quiz) after each standard block: “Which player
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Figure 3: Accuracy on critical and standard trials in Experiment 1. Error bars in all figures denote 95% confidence intervals
by bootstrapping. (a) Critical trials were displayed either with an honest cue or with a deceitful cue. Participants performed
better when the cue is honest, suggesting that they were relying on the cue rather than using simulation. (b) On standard trials,
participants tended to respond more accurately on honest-cue trials than on neutral-cue trials.

is trying to get the ball into the hole?”, “Which player is try-
ing to avoid the hole?”, and “How confident are you in your
response to the previous two questions?”.

The last (critical) block was designed to provide evidence
that participants were using the cue, as those using the cue
should answer incorrectly on trials with the deceitful cue. The
stimuli used for the first four honest trials and the deceitful
trials were counterbalanced, and we excluded all honest trials
after the first deceitful trial from analysis.

Results
All analyses were planned unless specifically stated oth-
erwise, and all contrasts are adjusted for multiple com-
parisons. All data and analysis code can be viewed at
https://osf.io/ut3xp/
Hypotheses Based on our experimental design, we hypoth-
esized the following: (1) Participants in both the no feedback
and feedback conditions will learn the cue, as determined
by their responses to the cue quizzes and based on their re-
sponses on the critical trials. (2) Participants in both the no
feedback and feedback conditions will use their knowledge
of the cue to respond more accurately in the task. (3) Partic-
ipants in the feedback condition will be more likely to learn
and use the cue than participants in the no feedback condition.
Cue quizzes To gauge whether a participant had success-
fully learned the cue after seeing all standard trials, we re-
stricted our analysis to the final cue quiz. We conducted
three one-tailed proportion tests comparing the proportion
of participants in each condition who answered both ques-
tions correctly on the quiz, with a chance probability of 1

6 .
We found that 56% of participants in the no feedback condi-
tion (χ2(1) = 54.465, p < 0.001) and 68% of participants in
the feedback condition (χ2(1) = 91.204, p< 0.001) correctly
identified the cue. These results suggest that participants were
able to use their simulations to learn about the cue, confirm-
ing our first hypothesis.
Critical trials According to our first hypothesis, we antic-
ipated that participants who learned and used the cue strat-

egy would fail on the four critical trials in which the cue was
misinformative. We constructed a logistic regression model
over accuracy on critical trials with factors for FEEDBACK
and CUE. The results suggest that people in both the feed-
back and no feedback conditions were more likely to answer
incorrectly on deceitful trials than on honest trials (Figure 3).
Specifically, we found a significant main effect of CUE, with
participants responding more accurately on honest trials than
on deceitful trials (χ2(1) = 4.252, p < 0.05). We also found
a significant main effect of FEEDBACK (χ2(1) = 17.124, p <
0.001), as well as an interaction between FEEDBACK and CUE
(χ2(1) = 40.019, p < 0.001). In both feedback conditions
people were more likely to answer incorrectly on deceitful
trials than on honest trials, though this difference was only
marginally significant in the no feedback condition (for feed-
back, LLR = −2.31± 0.23, z = −9.85, p < 0.001; for no
feedback, LLR =−0.41±0.20, z =−2.06, p = 0.08; where
LLR is the log likelihood ratio).

The weak effect of cue honesty for the no feedback condi-
tion could be due to either an inability to identify the cue,
or an inability to use knowledge of the cue to make pre-
dictions. To test these explanations, we conducted a post-
hoc analysis identical to that above but restricting the data to
those participants that passed the quiz. We found highly sig-
nificant effects of CUE (χ2(1) = 10.862, p < 0.001), FEED-
BACK (χ2(1) = 30.657, p < 0.001) (χ2(1) = 17.124, p <
0.001), and the interaction between FEEDBACK and CUE
(χ2(1) = 59.828, p < 0.001). Contrasts revealed a signifi-
cant effect of honesty in both the feedback (LLR = −4.33±
0.40, z = −10.85, p < 0.001) and no feedback (LLR =
−0.88± 0.27, z = −3.26, p < 0.01) conditions. These re-
sults suggest that participants in the no feedback condition
who identified the cue were also able to use it to make pre-
dictions, but not as well as those in the feedback condition.

Standard trials We also looked at the accuracy across
trials during the main part of the experiment. We con-
structed a logistic regression model over accuracy with fac-
tors for FEEDBACK, DIFFICULTY, and CUE. The results are
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Figure 4: Example cue learners. Each subplot shows a differ-
ent participant in the no feedback condition of Experiment 1
who was identified as learning the cue by our model. The blue
lines indicate average accuracy on each block when using the
honest cue, while the gray lines correspond to the neutral cue.
The vertical red lines indicate the trial, C, when our model in-
ferred they switched from using simulation to using the cue.
The title of each subplot displays the log likelihood ratio of
the change model to the no change model, as well as the trial
when they changed strategies.

shown in Figure 3. We found a main effect of difficulty
(χ2(2) = 122.679, p < 0.001), as well as a three-way inter-
action between FEEDBACK, DIFFICULTY, and CUE (χ2(2) =
12.363, p < 0.01).

We investigated differences in accuracy within feedback
conditions and cue types and found that, overall, people were
more accurate on honest trials when they had feedback than
when they did not have feedback (LLR =−0.51±0.07, z =
−7.40, p < 0.001). This supports our third hypothesis that
real data is more reliable than simulated data. We did not de-
tect a difference between feedback conditions on neutral tri-
als, however, indicating that feedback did not affect people’s
accuracy when using simulation (LLR = 0.03± 0.06, z =
0.50, p = 1.00). We also found that people were more ac-
curate when the honest cue was present than when the neu-
tral cue was present, both in the feedback condition (LLR =
−0.83± 0.07, z = −12.24, p < 0.001) and the no feedback
condition (LLR =−0.29±0.06, z =−4.57, p < 0.001).

Modeling individual differences in cue learning

While the group-level effects in the previous sections con-
firmed our first and third hypotheses, we wanted to addition-
ally investigate the individual behavior of participants who
learned the cue. To this effect, we constructed a simple
Markov model that allowed us to identify who actually used
the cue and who did not.

Model For each participant, we defined a Markov model
with observed states Jt representing the participants’ judg-
ment on trial t. For each strategy, we defined a probability
of answering correctly. For the simulation probability, we

fit p(easy)
sim , p(med)

sim , and p(hard)
sim empirically based on the par-

ticipant’s average accuracy on trials without the cue for each
level of difficulty. For the cue probability, we set pcue = 0.95
to reflect a high probability of answering correctly, but not
perfectly. Finally, we introduced a variable C ∈ {1, . . . ,T}
which indicated the “change point” at which participants
switched from using simulation to using the cue heuristic.

The probability of a participant’s judgment was then:

p(Jt = 1 |C) =

{
p(dt )

sim t ≤C,
pcue t >C,

where dt is difficulty of trial t. So, the probability of all re-
sponses was maxC p(J1:T | C) = maxC ∏

T
t=1 p(Jt | C), which

we will refer to as the change model. We fit C in the change
model to each participant separately.

We additionally computed the likelihood of participants’
responses under a no change model, in which we computed
p(J1:T | C = ∞) = ∏

T
t=1 p(Jt | C = ∞), where the infinite

change point C indicates that the participant used the simu-
lation strategy throughout the whole experiment.

Results To determine whether an individual participant
learned the cue, we computed the log-likelihood ratio (LLR)
between the change model and the null hypothesis (the no
change model), and tested whether 2 ·LLR was significantly
greater than zero under the χ2 distribution, with a signifi-
cance threshold of p = 0.001. Using this analysis, we found
that 29 participants in the feedback condition switched to a
cue-based strategy while 8 participants in the no feedback
condition switched. To ensure these numbers were more
than we would expect due to random chance, we addition-
ally performed proportion tests with a probability of chance
at 0.001 (corresponding to the significance threshold above).
Both proportions were significantly different from chance
(for feedback, χ2(1) = 16204, p < 0.001; for no feedback,
χ2(1) = 1068, p < 0.001). The difference in proportions was
also significant (χ2(2) = 17272, p < 0.001)

Figure 4 shows the two participants in the no feedback con-
dition with the highest log-likelihood ratios, and illustrates
the clear effect of the cue: on the honest trials, the partici-
pants have nearly perfect performance, while on the neutral
trials, they are significantly worse.

We additionally looked at the overlap between those par-
ticipants who correctly answered the cue quiz and those who
were identified by our model. The results, shown in Table 1,
indicate that those people who were identified by the model
answered correctly on the quiz, but not necessarily the other
way around. This suggests that, counter to our second hy-
pothesis, not everybody who explicitly identifies the cue is
able to apply that knowledge when performing the task.

Experiment 2: Discovering new heuristics
Based on the results of Experiment 1, it is clear that some
people are able to use mental simulation to learn a cue-based
heuristic—as long as they know that such a cue exists. In
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Table 1: Number of participants identified by the quiz and/or
model as having learned the cue in Experiments 1 and 2.
FB = “Feedback”, No FB = “No Feedback”.

Condition Neither Quiz Model Both
Only Only

1 No FB (52) 20 24 3 5
FB (50) 15 6 1 28

2A No FB (48) 38 10 0 0
FB (49) 31 14 1 3

2B No FB (52) 41 11 0 0
FB (49) 38 9 0 2

Experiment 2, we asked whether participants could discover
and learn the heuristic without being given this information
explicitly. By making two small alterations to the backstory
presented in Experiment 1, we modulated the degree to which
participants would expect the cue. Experiment 2A did not in-
form participants that the colors were predictive; it only as-
sociated the cue (color) with players. We hypothesized that
this would allow participants to frame hypotheses about cue
predictiveness in terms of more familiar concepts: one player
might be more talented or have a different goal. Additionally,
describing the colors in the instructions might increase their
salience. In Experiment 2B, we did not verbally draw atten-
tion to the cue, nor did we provide any semantic meaning for
the cue. Thus we expected participants would be even less
likely to learn the cue, perhaps because they would not even
consider the hypothesis that the colors are predictive.

Methods
Participants We recruited 224 participants on Amazon’s
Mechanical Turk using the psiTurk experimental framework
(Gureckis et al., 2015). Participants were treated in accor-
dance with UC Berkeley IRB standards and were paid $1.50
for fourteen minutes of work. We excluded 15 participants
who did not finish the experiment and 11 participants who
answered incorrectly on more than one catch trial. This left a
total of 198 participants in our analysis.

Design and Procedure The design and procedure were
identical to Experiment 1, with the following exceptions. In
Experiment 2A we told participants that there were three dif-
ferent players, corresponding to three different colors, but not
that they were playing different games. In Experiment 2B we
gave participants a minimal backstory that made no reference
to players or colors. In both experiments we administered the
cue quiz once, at the end of the experiment.

Results
Experiment 2A We performed the same analyses as in
Experiment 1, and found that 35% of people in the feed-
back condition were able to identify the cue in the quiz
(χ2(1) = 10.204, p < 0.001). Without feedback, 21% of par-

ticipants identified the cue, which was marginally significant
(χ2(1) = 1.680, p = 0.10). We did not find an affect of CUE
in the critical trials (χ2(1) = 0.518, p = 0.47), though there
was a trend towards people being more accurate on honest
trials. We found no significant effect of the cue on accuracy
in standard trials either (χ2(1) = 0.160, p = 0.69).

The Markov model identified 4 people in the feedback con-
dition (χ2(1) = 243, p < 0.001) and 0 in the no feedback
condition as having adopted the cue strategy. Together, these
results show that when people are primed with a cover story
that makes the cue plausible, some of them will indeed learn
the cue; however, the majority still will not.

Experiment 2B Whereas in Experiment 2A the cue was ex-
plained with a cover story about people playing a game, in
Experiment 2B the cue was entirely unexplained. The results
suggest that when the cue is unexplained, participants are un-
likely to discover the informativeness of the cue. We again
performed the same analyses as those in Experiment 1, and
found that people were not significantly different from chance
at identifying the cue in the survey, regardless of whether they
saw feedback (21% of participants, χ2(1) = 0.800, p = 0.19)
or not (22% of participants, χ2(1) = 0.465, p = 0.25). We
also found no effect of CUE in the critical trials (χ2(1) =
1.626, p = 0.20), though as in Experiment 2A there was a
trend toward people being more accurate on the honest trials.
Again, we found no significant effect of the cue on accuracy
in standard trials (χ2(1) = 1.269, p = 0.26).

The Markov model identified 2 people in the feedback con-
dition (χ2(1) = 43, p < 0.001) and 0 in the no feedback con-
dition as having adopted the cue strategy. These results sug-
gest that when people are not already entertaining the hypoth-
esis that a heuristic might exist, it is unlikely that they will
spontaneously realize it.

Comparing Experiments Summary results of the three ex-
periments are shown in Table 1 and Figure 5. We consistently
find more evidence for cue-learning when feedback is given.
However, our results suggest that an unexplained cue that has
no intuitive relationship with the outcome is quite difficult to
learn, even when feedback is present.

Conclusion

In this work, we asked three questions: (1) are people able to
learn about auxiliary properties in the world through mental
simulation; (2) do they use their knowledge to make more ac-
curate predictions; and (3) is mental simulation as reliable as
real-world experience? In Experiment 1, we showed that (1)
people can indeed learn a correlated cue through the use of
mental simulation; and (2) people can sometimes apply such
knowledge as a heuristic prediction strategy. However, (3)
both discovery and application of the cue was weaker when
people had to learn from only simulated data. We speculate
on two potential explanations for the advantage of external
over simulated data. First, simulations are noisy; thus, simu-
lated data may not accurately reflect the world. In this study,
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Figure 5: Comparing quiz, accuracy, and model results across experiments. (a) Participants who correctly identified the cue
during the cue quiz. The dashed line indicates chance performance. (b) The difference in accuracy on the honest trials versus the
neutral trials. Positive values indicate that participants were more accurate on honest trials. (c) The proportion of participants
identified as having learned the cue by the Markov model. There are no error bars due to the particulars of this analysis; all
non-zero proportions are significantly different from chance.

the cue was perfectly predictive; however, if one predicted
incorrectly on 25% of trials, the cue would only 75% predic-
tive. Furthermore, if people are aware that their simulations
are error-prone, they may place less faith in the simulated data
and any patterns therein. Second, simulations are costly, and
it is possible that increased attentional and working memory
load may have decreased participants’ ability to simultane-
ously perform the task and pick up on the cue.

In both experiments, there was considerable within-
condition variance in cue learning and use. The alignment
between accuracy on the quiz and the Markov model predic-
tions (Table 1) suggests that this is partly due to individual
differences. It appears that some participants learned and ap-
plied the cue, while others completely ignored the cue. This
between-subject variance could be due to true individual dif-
ferences: perhaps some people are better able to learn asso-
ciative cues (in general or specifically from simulated data).
Alternatively, these differences could be the result of a con-
stant learning ability that is stochastic and only occasionally
expressed. Similar to flashes of intuition that strike seem-
ingly at random, identifying a pattern in simulated data may
be a powerful but rare event in human cognition.

Together, our results suggest that mental simulation on
its own is not sufficient for learning: prior expectations are
hugely important. This result is consistent with the ideas be-
hind the hypothesis of theory-based causal induction (Tenen-
baum, Griffiths, & Kemp, 2006), which posits that inductive
reasoning requires highly structured and systematic systems
of causal knowledge. While it was possible for participants in
our experiments to learn a new piece of causal knowledge (a
heuristic), it was very difficult for them to do so if the cue did
not easily fit into an existing causal framework. Thus, we sug-
gest that while mental simulation can be a powerful tool for
re-representing knowledge, it does not operate in a vacuum,
and must work in tandem with other cognitive processes to
fully realize its potential.
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Abstract

A model of sentence production is presented, which imple-
ments a strategy that produces sentences with more uniform
surprisal profiles, as compared to other strategies, and in accor-
dance to the Uniform Information Density Hypothesis (Jaeger,
2006; Levy & Jaeger, 2007). The model operates at the al-
gorithmic level combining information concerning word prob-
abilities and sentence lengths, representing a first attempt to
model UID as resulting from underlying factors during lan-
guage production. The sentences produced by this model
showed indeed the expected tendency, having more uniform
surprisal profiles and lower average word surprisal, in compar-
ison to other production strategies.
Keywords: information density; sentence production; rational
analysis; connectionist; semantics

Introduction
For a given semantics, humans are able to produce a large
number of surface representations that express its meaning.
However, some constructions are preferred over others, some
sentences are easier to understand, while some others are
more difficult, so people tend to avoid them.

Uniform Information Density Hypothesis (UID, Jaeger,
2010; Levy & Jaeger, 2007) presents one way to rank sen-
tences according to how uniform their surprisal profiles are;
where a sentence is preferred if the surprisal of each of its
words remains uniform. This is explained as a rational strat-
egy of language production at the computational level of
analysis, as such strategy maximizes the probability of suc-
cessful communication in a bandwidth-limited noisy channel
while maximizing information transmission. Alternatively,
and without the assumption of a noisy channel, comprehen-
sion effort is also minimized utilizing a UID strategy (Levy
& Jaeger, 2007), provided that the effect of surprisal on com-
prehension effort is superlinear (Hale, 2001; Levy, 2008).

Empirical evidence supports this hypothesis (e.g., Aylett
& Turk, 2004; Bell et al., 2003), however, as far as one
can tell, no modeling attempts explore this at the algorith-
mic or implementational levels. Here, a mechanistic account
of sentence production is presented, which balances on the
one hand speed of information transmission and on the other
hand comprehension and production effort. The sentences
produced by this strategy present more uniform surprisal pro-
files, compared to other strategies, and thus, represent a first
approximation to UID.

In particular, the model assumes that speakers act under
three different pressures: a first one, pushing speakers to be
fast under time restrictions; a second one, related to produc-
tion effort, pushing speakers to produce available content first
(see Ferreira & Dell, 2000); and a third one, related to com-
prehension effort, pushing speakers to avoid high information

density structures. Here I present a way to balance these pres-
sures in order to obtain sentences with more uniform surprisal
profiles, which could be later linked to a bandwidth-limited
communication channel.

The language production model proposed here extends the
one presented by Calvillo, Brouwer, and Crocker (2016),
which produces sentences describing a given semantics by
maximizing word probabilities. The semantic representations
used are a variation of those defined by the Distributed Situa-
tion Space model (DSS, Frank, Koppen, Noordman, & Vonk,
2003; Frank, Haselager, & van Rooij, 2009). The rest of this
section briefly presents the DSS model as well as the model
described by Calvillo et al. (2016).

Distributed Situation Space
The DSS model (Frank et al., 2003, 2009) defines a mi-
croworld in terms of a finite set of basic events (e.g.,
play(charlie,chess)) —the smallest meaning-discerning
units of propositional meaning in that world. Basic
events can be conjoined to form complex events (e.g.,
play(charlie,chess) ∧ win(charlie)). However, the mi-
croworld poses both hard and probabilistic constraints on
event co-occurrence; as a result, some complex events are
very common, and some others impossible to happen.

A situation-state space is a large set of m microworld obser-
vations defined in terms of n basic events, yielding an m× n
matrix (see Table 1). Each observation in this matrix is en-
coded by setting basic events that are the case in the given ob-
servation to 1 (True) and those that are not to 0 (False). This
matrix is constructed by sampling m observations such that
no observation violates any hard world knowledge constraint,
and such that the m observations approximate the probabilis-
tic nature of the microworld. The resulting matrix encodes
then all knowledge about the microworld, where each col-
umn, also called situation vector, represents the meaning of
each basic event in terms of the observations in which the
basic event is true.

Frank et al. (2009) successfully used these DSS representa-
tions in a connectionist comprehension model. They defined
a microworld consisting of 44 basic events centered around
three people. Then they constructed a situation-state space
by sampling 25,000 observations. As an example, in this
space the situation vector for play(charlie,chess) would cor-
respond to a column in the matrix, where each dimension
corresponds to one observation, and its value would be 1 if
Charlie is playing chess in that observation. Finally, they
reduced the dimensionality of the resulting 25k-dimensional
situation vectors to 150 dimensions using a competitive layer
algorithm.
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Table 1: Situation-state space.

ba
si

c
ev

en
t 1

ba
si

c
ev

en
t 2

ba
si

c
ev

en
t 3

. . . ba
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c
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t n

observation1 1 0 0 . . . 1
observation2 0 1 1 . . . 1
observation3 1 1 0 . . . 0
. . . . . . . . . .
observationm 0 1 0 . . . 0

DSS Language Production

DSS representations were also used by Calvillo et al. (2016)
in a connectionist model of language production, showing
that they are suitable for modeling production.

While Calvillo et al. (2016) used the same microworld as
Frank et al. (2009), the DSS representations were modified in
order to avoid the competitive layer dimensionality reduction.
Instead, the original 25-k dimensional situation vectors were
converted to belief vectors. Each dimension of the latter is
equal to the conditional probability of each basic event given
the original 25k-dimensional DSS representation that is asso-
ciated to each sentence.1 The result is a 44-dimensional vec-
tor that avoids the loss of information associated to the com-
petitive layer algorithm, and consequently renders a higher
performance in a language production task.

The architecture of the model presented by Calvillo et
al. (2016), represented by the dotted rectangle in Figure 1,
implements an extension of a Simple Recurrent Network
(Elman, 1990) with a 45-unit input layer, a 120-unit recur-
rent hidden (htan) layer, and a 43 unit (softmax) output layer.
The input layer contains 44 units corresponding to the 44 ba-
sic events in the microworld, plus one binary unit indicating
whether the model must output an active sentence (1), or a
passive one (0). The output layer contains 43 units matching
the number of available words in the vocabulary.

Time in the model is discrete. At each time step t, the re-
current hidden layer receives as input the DSS representation,
its own activation at time step t− 1 (zeros at t = 0) and the
identity of the word that was produced at time step t−1 (ze-
ros at t = 0). Activation of the hidden layer is then propagated
to the softmax output layer.

The activation of the output layer yields a probability dis-
tribution over the available words, where the word produced
at time-step t is defined as the one with highest probabil-
ity (highest activation). Production stops after an end-of-
sentence marker has been produced.

1This vector is computed by calculating the dot product between
the situation-state matrix and the original 25k-dimensional situation
vector, and then normalizing each dimension of the resulting vec-
tor by the sum over the dimensions of the original 25k-dimensional
situation vector.

The identity of the word that was produced at time-step
t − 1 is forwarded to the hidden layer through monitoring
units connecting the output layer to the hidden layer, where
only the output unit of the word produced at time-step t−1 is
activated (set to 1), while all other units are set to 0.

Finally, the hidden and output layers also receive input
from a bias unit with a constant activation of 1.

UID Model
The here proposed model architecture, shown in Figure 1,
consists of two paths of processing: the first one (above, in-
side the dotted rectangle), computes word probabilities given
the context, and is identical to the model of Calvillo et al.
(2016); and the second one (below), receives the output of
the former and computes derivation length estimations, i.e.,
how long a sentence can be if a particular word is produced.
We call probabilities the layer containing the output of the
first path, and der lengths the layer containing the output of
the second path.

The output of these two paths is then combined in a final
layer (words) that receives unmodified copies of the activa-
tion of probabilities and der lengths and whose activation is a
combination of these two types of information. At this point
the model produces the word with the highest activation in
words, whose identity is then passed to the first hidden re-
current layer through monitoring units in order to process the
next word production. Finally, production stops when an end-
of-sentence marker is produced.

The rest of this section presents in more detail each of these
parts, along with their justification.

Figure 1: UID Production Model.

Semantic and Linguistic Information
The information content or surprisal of a sentence s is defined
as its negative log probability−logP(s). Moreover, sentences
express events in the world, such that a sentence can be paired
with one or more events, and vice versa. Therefore, we can
decompose the probability of a sentence s into:

P(s) = ∑
i

P(s|ei)P(ei)
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where ei is an event in the world that is paired with s.
From this, we can distinguish two kinds of information:

P(ei), related to each event that can be paired with the sen-
tence; and P(s|ei), related to the linguistic elements used in
this particular sentence to express ei.

We call the first one semantic surprisal, and the second one
linguistic surprisal (cf. Frank & Vigliocco, 2011). Semantic
surprisal represents how unexpected the events conveyed by
the sentence are. Linguistic surprisal can be seen as the in-
formation that the sentence conveys, given that the semantics
is already known; thus, it is not information about the world,
but about the sentence itself.

These two types of information cannot be easily disen-
tangled because they are embedded in each sentence/event.
Knowing the identity of an event gives information about
the possible related sentences, and vice versa. Nonetheless,
based on our definition, we can express total semantic sur-
prisal of a sentence s as:

SemSurp(s) =−log∑
i

P(ei)

where ei is each event that can be expressed by s.
While one sentence can be paired with several events, nor-

mally when a speaker produces a sentence, he/she has one
specific event in mind eα. Thus, while total semantic surprisal
is as described above, the semantic information/surprisal that
the speaker is trying to communicate is only:

−logP(eα)

As a result, the relevant information associated with a spe-
cific sentence s assuming that the speaker is trying to com-
municate the event eα is given by:

Surpeα
(s) =−logP(s|eα)P(eα)

=−logP(s|eα)− logP(eα)

where the semantic information −logP(eα) remains constant
across all different surface realizations that could convey it;
in contrast to the linguistic information −logP(s|eα), which
can vary widely depending on the specific syntactic structures
or words that the speaker chooses.

Being Easy to Produce
Surprisal Theory (Hale, 2001; Levy, 2008) states that the cog-
nitive effort associated to the processing of a word is pro-
portional to its surprisal. Evidence supporting this has been
shown for comprehension (e.g., Hale, 2001; Levy, 2008), and
production (e.g., Griffin & Bock, 1998). Therefore, one can
assume that a rational model of production would try to min-
imize effort for both interlocutors.

While comprehension effort is minimized following a UID
strategy, production effort can be minimized by following
an Availability Based Production strategy (ABP, Ferreira &
Dell, 2000), where items are produced as they are available.

In this respect, producing the most probable word, and there-
fore most available, at each time step minimizes (to some ex-
tent) production effort by locally minimizing linguistic sur-
prisal:

wt+1 = argmin
w
−logP(w|DSS,w0, ...,wt)

where w is a word in the vocabulary and DSS is the semantic
representation related to eα. This is already implemented by
the model described by Calvillo et al. (2016), where the word
produced at each time step is the one with highest conditional
probability given the semantics and the previously produced
words. In our model these probabilities are obtained at the
Probabilities layer in Figure 1.

Being Fast

The information contained by a sentence results from the sum
of the information contained by each of its words. Thus,
knowing that the semantic surprisal related to eα should sum
up to −logP(eα), and that this information is distributed
among the words in the sentence, we can calculate average
word semantic information/surprisal with respect to eα:

E[WordSemSurpeα
] =
−logP(eα)

n

where n is the number of words in the sentence. Hence, if
one wants to maximize average semantic information trans-
mission of the desired event eα, it suffices to minimize n.

We hypothesize that in general speakers tend to maximize
information transmission of the desired semantics eα by min-
imizing n, and therefore by favoring shorter sentences.

The model presented minimizes sentence lengths by esti-
mating at each time step a score that reflects the expected
derivation length that would follow the production of a cer-
tain word. This is done by the second path shown in Figure
1, below. This path is constituted by a hidden recurrent layer
followed by a softmax layer. The recurrent layer contains 30
sigmoid units and receives as input the DSS semantic repre-
sentation, the output of probabilities, and its own activation
at time step t − 1 (zeros at t = 0). Activation of this layer
is then propagated to a softmax layer (der lengths) with di-
mensionality equal to the size of the vocabulary(43), and that
calculates for each word a probability value DL, where values
closer to 0 represent longer derivations and values closer to 1
represent shorter derivations, and where probability mass is
distributed among all words that can be produced at the given
time step. Finally, these layers receive also input from a bias
unit with a constant activation of 1.

A model that produces at each time step the word that
maximizes this score would prefer words leading to shorter
derivations, regardless of their information content:

wt+1 = argmax
w

DL(w|DSS, probabilitiest+1)
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Being Easy to Comprehend
A model combining the previous two strategies would pro-
duce sentences with more uniform surprisal profiles, com-
pared to a model that only applies one of them. However,
these strategies do not take into account that world events
with high surprisal represent higher comprehension effort.

Speakers know beforehand how unexpected the event they
are trying to communicate is. Therefore, one can propose
that they balance these two strategies according to this infor-
mation. That is, when the speaker is trying to communicate
an event eα with low surprisal, the speaker would prefer to
be faster; but, when the event represents high surprisal, the
speaker would prefer sentences with lower linguistic surprisal
and possibly longer. Thus, at each time step, the model would
produce the word that maximizes the score:

wt+1 = argmax
w
{(1−P(eα))P(w|...)+P(eα)DL(w|...)}

This final model is expected to produce sentences with
more uniform surprisal profiles, compared to strategies that
only maximize one of these measures, or that do not take into
account semantic surprisal.

In our model this is computed at the words layer (see Fig-
ure 1), which receives P(w|...) values from the probabilities
layer and DL(w|...) scores from the der lenghts layer. The
value of P(eα) is assumed to be known.

Training and Evaluation
Examples Set
We use the same examples set as Calvillo et al. (2016), which
consist of a set of pairs {(DSS1,ϕ1), . . . ,(DSSn,ϕn))} where
each DSSi ∈ [0,1]45 is formed by a DSS representation plus
an extra bit that indicates whether the model must produce a
a passive sentence (0) or an active one (1); and ϕi is the set of
all the sentences that encode the information contained in the
corresponding DSSi and in the expected voice.

The sentences are those generated by the microlanguage
defined by Frank et al. (2009) (see their Tables 5–8). This
microlanguage consists of 40 words that can be combined
into 13556 sentences according to its grammar. After adding
determiners (a,the) and an end-of-sentence marker (.), there
were 43 words, which were encoded at the output layer
probabilities in the form of localist vectors. After ruling out
sentences expressing situations that are not allowed by the
microworld, there were a total of 8201 sentences related to
782 DSS representations.

This set was used because it pairs each semantic repre-
sentation with several sentences, allowing to define different
ranking functions. In future work a new set could be defined
in order to assess more specific phenomena.

Derivation Length Scores. For each DSS representation,
we know beforehand the sentences that can encode it accord-
ing to the grammar. Furthermore, we know at each deriva-
tion point what words can be produced and how long the sen-
tences would be if a particular word is produced. Using this

information, we compute a probability distribution over the
vocabulary that reflects the length of the sentences that one
can expect after producing a particular word.

Given a DSS representation and a derivation point, for each
possible word production wi , we get its minimum derivation
length min dl(wi), which is the length of the shortest sen-
tence that can be produced if wi is produced. Afterwards we
calculate a score dl(wi):

dl(wi) = max
w
{min dl(w)}−min dl(wi)+1

which is equal to the difference between the greatest min dl
value among all the words that can be currently produced and
the min dl associated to each specific word wi, plus 1. Fi-
nally, in order to have a proper distribution, we normalize by
dividing by the sum over all the possible word continuations.

These scores are the values expected at the output layer
of der lengths. According to these, all possible word pro-
ductions at a specific derivation point have some probability
mass that is inversely proportional to the length of the shortest
sentence that can be obtained by following that production.

Semantic Probability. For each DSS representation in the
examples set, a semantic probability value P(eα) was com-
puted. Considering that the model is trained only on the pairs
given in the examples set and that all sentences are presented
an equal number of times during training, then the probability
of a DSS representation is given by the number of sentences
related to that representation divided by the total number of
sentences in the examples set.

However, since P(eα) is used to balance word probabilities
and derivation lengths, less biased values are needed because
as it is, P(eα) is in general very low, and 1−P(eα) is very
high. Therefore instead of normalizing by the total number
of sentences, normalization is done with respect to the high-
est number of sentences that can be related to a DSS repre-
sentation, which is 130. Hence, for each DSS, its probability
P(eα), or henceforth P(DSS), is given by the number of sen-
tences paired with the representation, divided by 130.

Training Procedure
Since the output layer receives unmodified copies from prob-
abilities and der lengths, the connections from the latter to
the former are fixed one-to-one and do not need training. In
other words, the ith unit of probabilities is only connected to
the ith unit of words with a connection weight fixed to 1, and
likewise for the connections between der lenghts and words.

Prior to training, all weights on the projections between
layers (with the exception of those mentioned in the last para-
graph) were initialized with random values drawn from a nor-
mal distribution N (0,0.1). Weights on the bias projections
were initially set to zero.

Training consists of setting the connection weights lead-
ing to the computation on the one hand of probabilities and
on the other hand of der lengths, corresponding to the two
paths of processing. Accordingly, training is performed in
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two phases, in both cases using cross-entropy backpropaga-
tion (Rumelhart, Hinton, & Williams, 1986) with weight up-
dates after each word in the sentence of each training item.

probabilities. The first phase corresponds to the training of
the path leading to probabilities, which is performed as de-
scribed by Calvillo et al. (2016), where the model is trained
to predict the next word given the semantic representation and
the previously produced words.

During this phase, the monitoring units were set at time
t to what the model was supposed to produce at time t − 1
(zeros for t = 0). This reflects the notion that during train-
ing the word contained in the training sentence at time-step
t−1 should be the one informing the next time step, regard-
less of the previously produced (and possibly different) word.
During production, the monitoring units are set to 1.0 for the
word that was actually produced and 0.0 everywhere else.

This path was trained for a maximum of 200 epochs, each
one consisting of a full presentation of the training set, which
was randomized before each epoch. Note that each item of
this set consisted of a DSSi paired with one of the possi-
ble sentence realizations describing the state of affairs rep-
resented in DSSi. Hence, during each epoch, the model saw
all the possible realizations of DSSi. An initial learning rate
of 0.124 was used, which was halved each time there was no
improvement of performance during 15 epochs. No momen-
tum was used. Training halted if the maximum number of
epochs was reached or if there was no performance improve-
ment over a 40-epoch interval.

der lengths. The second path can be trained after the train-
ing of the first one is completed. During this phase, the con-
nection weights calculated during the first phase are fixed, so
that only the second path weights are modified.

At each time step, the DSS is fed into the first path, which
outputs a probability distribution over the vocabulary. This
is fed into the second recurrence, as well as the DSS rep-
resentation. Monitoring units are handled exactly as in the
first training phase. The activation of the second recurrence
is then propagated to der lengths. Its output is compared to
the derivation length values, as defined in the previous sec-
tion, and finally the connection weights are updated.

Training of this path was performed for a maximum of 80
epochs, with the training items arranged in the same way as
in the previous phase. An initial learning rate of 0.24 was
used, which was halved each time there was no improve-
ment of performance during 10 epochs. No momentum was
used. Training halted if the maximum number of epochs was
reached or if there was no performance improvement over a
20-epoch interval.

Evaluation

The model presented defines a production strategy as an in-
teraction between production goals. Thus, in order to assess
the model, its productions were compared to those obtained
by using the following alternative strategies, where at each

time step the model produces the word with:

• Min Linguistic Surprisal

• Min Derivation Length

• Max Word Probability +/* Derivation Length Score

• Complete Model

For each DSS representation in the examples set that was
related to more than one sentence (968), the model generated
a sentence according to each production strategy.

In order to measure surprisal, a language model was trained
implementing a Simple Recurrent Network (Elman, 1990).
This model was trained on the whole set of sentences for 200
epochs with a learning rate of 0.24 which was halved each
time there was no improvement in performance. Using this
language model, surprisal values were calculated for each one
of the words of the produced sentences.

Uniformity of information density was measured in terms
of standard deviation of word surprisal, assuming that com-
plete uniformity would produce a standard deviation of 0.

Results and Discussion
The results can be seen in Table 2, where the columns denote
respectively: production strategy, production accuracy (Acc)
as defined by Calvillo et al. (2016) and denoting how precise
the sentences convey the given semantics, average sentence
length (AvDL), average word surprisal (AvS), and standard
deviation of surprisal (Std).

Table 2: Results of each production strategy.

Acc AvDL AvS Std
Min LS 99.67 9.01 1.0 0.89
Min DL 99.86 7.55 1.20 0.97

Max P(+/*)DL 99.82 7.77 1.16 0.95
Max 3P-2DL 98.23 10.15 0.89 0.84

SemSurp 97.67 10.17 0.89 0.83

As expected, minimizing linguistic surprisal (Min LS) led
to lower surprisal values compared to minimizing derivation
lengths (Min DL). Combining these two strategies by a sum
or product led to results almost identical to each other, and
very close to Min DL, suggesting that derivation length scores
were mostly dominating production.

Given that linguistic surprisal and derivation lengths are
different in nature, one can expect a more complex relation
between them in order for the resulting score to be helpful.
Consequently, grid search was performed in order to find lin-
ear factors that would minimize the standard deviation of sur-
prisal. The resulting model corresponds to the fourth row in
Table 2, where the model produces at each time step the word
that maximizes:

3P(w|DSS,w0, ..,wn)−2DL(w|DSS, probabilities)
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where one can see that minimizing linguistic surprisal is fa-
vored, while minimizing derivation lengths is penalized. As
a result the sentences produced are longer than only minimiz-
ing linguistic surprisal. However, uniformity of information
density is higher than with the previous models and addition-
ally average surprisal is lowest.

The final row in Table 2 presents the results of the model
that incorporates semantic probabilities. For this case grid
search was also used, which led to a model that at each time
step produces the word that maximizes:

(3.5−P(DSS))P(w|...)+(P(DSS)−2.5)DL(w|...)

which is very similar to the previous model, but with some in-
fluence from semantic probabilities. While the performance
of this model is very similar to the previous one, its sentences
present slightly higher uniformity of information density; and
the influence of semantic surprisal is in the expected direc-
tion, where semantics with high surprisal produce longer sen-
tences and vice versa.

The small difference between the last two strategies could
be caused by the nature of the language model, which re-
ceives no semantic information during training, which means
that rather than being a joint model of semantics and sen-
tences, it only considers word sequences. Furthermore, the
production model here proposed uses semantic surprisal at a
sentence level, while speakers can be sensitive to this infor-
mation incrementally at a word level. These issues will be
addressed in future work.

In general the model outlined here shows: first, that as ex-
pected, shorter sentences are more dense in terms of informa-
tion content. Second, that longer sentences present informa-
tion in a more uniform way. Third, that sentences with more
uniform information densities present in average lower word
surprisal, therefore minimizing comprehension effort. And
finally and most importantly, that sentences with higher uni-
formity of information density can be produced by balancing
sentence lengths and word probabilities. In future work, this
can help to address uniformity for a given channel capacity.

Conclusion
This article presents a model of language production that
takes into account word probabilities and sentence lengths
in order to produce sentences with uniform surprisal pro-
files, and in order to model the Uniform Information Den-
sity Hypothesis. The sentences produced by this model were
compared to those produced using other strategies, showing
that the proposed model produces sentences with more uni-
form surprisal profiles and lower average word surprisal. This
model represents a first attempt to model the Uniform Infor-
mation Density Hypothesis at the algorithmic level, where
uniformity arises by balancing word probabilities and sen-
tence lengths in a mechanistic way.
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Abstract

Humans are capable of generalizing and learning new concepts
after very little experience. They have the ability to create se-
mantic structures from concepts they acquire, they can learn
appropriate inductive biases that are later used as priors for dif-
ferent tasks, and they can learn novel categories from very few
examples. While recent advances in neural networks and other
machine learning methods are beginning to approach human-
level capabilities in several tasks, building computational mod-
els that replicate these abilities has proven difficult. We pro-
pose a model that combines powerful features extracted from
a deep neural network with a semantic structure inferred using
probabilistic Hierarchical Bayes. We test and demonstrate the
capabilities of our model in three different tasks: learning a
new concept from a single example of a novel category, learn-
ing new categories from few examples of different categories,
and learning the semantic tree from an unlabeled set of novel
objects.
Keywords: hierarchical bayes; one-shot learning; inductive
bias; neural networks; unsupervised learning

Introduction
Recent advances in neural networks and other machine learn-
ing methods have led to computer vision object-recognition
systems that are beginning to approach human-level perfor-
mance. Trained on thousands of object categories, with thou-
sands of labeled examples for each, deep convolutional net-
works can tell if a new image contains a familiar category al-
most as well as human adults can in a brief glance. Yet, even
young children have abilities to learn and generalize that go
beyond what current machine vision systems can do. Here
we focus on three such abilities:

(1) By age 3, children can learn new object categories from
just a single example. Furthermore, children generalize in dif-
ferent ways as appropriate for different kinds of categories:
labels for artifacts with functionally relevant shapes are pref-
erentially generalized according to those shapes, while labels
for non solid substances or arbitrarily shaped objects are more
likely to be generalized according to material properties.

(2) Children can learn to learn appropriate inductive biases,
such as the shape and material biases described above, from
experience with just a few examples each of a small number
of categories that exemplify these biases in a consistent way.
The shape-bias training studies of Smith and colleagues are
the best known examples (Smith, Jones, Landau, Gershkoff-
Stowe, & Samuelson, 2002).

(3) Children can, in a completely unsupervised way, sort
novel objects into categories and supercategories in a mean-
ingful way, and then use these hierarchical category structures

as strong constraints to learn and generalize names for objects
from just one or a few examples.

Previous attempts to capture these abilities in computa-
tional models have had some success, but not with mod-
els that are “image-computable” on the same stimuli that
people see. These earlier models have used either adult
similarity judgments (Xu & Tenenbaum, 2007) or highly
simplified, idealized feature representations (Kemp, Perfors,
& Tenenbaum, 2007) to build their category hierarchies.
Here we show that a computational framework can come
close to capturing abilities (1-3) by combining two powerful
representation-learning techniques: deep learning for feature
construction and Hierarchical Bayes for unsupervised taxon-
omy construction.

We build on work by Salakhutdinov, Tenenbaum, and Tor-
ralba (2012) who build a Hierarchical Bayesian model that
“learns to learn” by incorporating information from past ex-
perience into a prior when inferring statistical properties of a
novel category. In particular, when presented with a few im-
age examples of a new category, the model infers a supercat-
egory and uses the higher-order knowledge abstracted from
previous categories to identify the relevant features and allow
generalization (Figure 1).

Figure 1: Learning a similarity metric for a new category. The
goal is to identify the correct supercategory and estimate an
appropriate similarity metric.

That work was extended by the same authors, who har-
nessed a two layer Deep-Boltzmann Machine to generate low
level feature representations of the images while learning a
prior using a hierarchical Dirichlet process. (Salakhutdinov,
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Tenenbaum, & Torralba, 2013). Their experimental data
showed that using this prior in combination with more pow-
erful features gave them a distinct advantage over other meth-
ods of classification. This progression of work suggests that
building a model that combines complex feature spaces with
a hierarchical semantic structure may lead to further increases
in performance.

Building on this line of work, we contribute a model that
combines the two components: powerful image represen-
tations extracted from Deep Neural Networks (DNNs) and
a Hierarchical semantic structure that works as a Bayesian
prior. We show how the combination of these two compo-
nents can “learn to learn” in ways that resemble some aspects
of child cognition. Additionally, we explore how this model’s
performance is affected as we vary different aspects of the
model architecture and the structure of the training data.

Other approaches to combine probabilistic graphical mod-
els and DNNs have recently been proposed that focus on
building unsupervised clustering algorithms (Dilokthanakul
et al., 2016; Johnson et al. 2016). Instead, the focus of our
model is to capture certain aspects of human cognition. This
leads to some notable differences. First, representations in
our model are a fixed set of visual relevant features instead
of being learned for the inference task at hand. In addition,
our model’s generative component is limited to a hierarchical
structure that aims to recover the semantic relations between
concepts in a useful and meaningful way while other models
are fully generative but tend to have graphs with simpler se-
mantic structures. We therefore propose a relatively simple
model that is not intended for general unsupervised learning
but that instead focuses on traits of human object and cate-
gory learning.

More specifically, we test our model’s capacity to capture
the previously discussed human abilities (1-3) in an image
recognition framework. First, we evaluate the ability of our
model to learn novel categories from only one or a few ex-
amples. To address this we allow the model to construct a se-
mantic structure from labeled examples in a data set and then
judge the model’s performance on a one-shot learning task.
Second, we assess the models capability to construct induc-
tive biases in low data environments. We test this ability by
repeating the first task but limiting the training data available
to the model when it constructs the semantic tree. Finally, in
a third task, we test the model’s ability to learn a hierarchi-
cal semantic structure of novel objects in a completely unsu-
pervised manner. Results suggest that this approach may be
suitable for modeling certain aspects of cognition.

Model and Learning to Learn
Our model combines two Machine Learning approaches that
have recently been successful at a range of differing tasks. On
one hand, powerful deep networks construct feature spaces
that enable rapid and accurate classification. On the other,
Hierarchical Bayesian Models have proven successful in cre-
ating taxonomies of the different concepts learned from pre-

vious experience. These taxonomies can then be used as a
prior to identify the relevant features for learning a new cat-
egory from one or a few examples based on the distribution
of other similar categories. We create various versions of our
model to compare combinations of feature spaces extracted
from different architectures with variants of the Hierarchical
Bayesian component.

Learning begins by constructing a 2-level tree of categories
and supercategories that best explains the training observa-
tions under a Bayesian framework. The model learns struc-
ture in the observations by first generating useful general fea-
tures from a DNN and then developing hierarchical priors that
allow previous similar experiences to bias the learning of new
concepts and categories. The priors are constructed by infer-
ring the means and variances that define the most relevant
dimensions from the DNN feature representations for each
category and supercategory (Figure 1).

Deep Network Features
We use features extracted from DNNs pretrained for object
classification on ImageNet. We obtain a representation from
each image by passing it through a network and extracting the
response from the penultimate layer consisting of 4096 real-
valued dimensions. In the regular deep network classification
scheme, this response is then passed through a linear weight-
ing and a generalized logistic regression layer. This layer
maps this representation onto probabilities for each class in
the specific classification task for which the network was
trained.

We compare the performance of the different versions of
our model on features extracted from two different DNN
architectures: Alexnet (Krizhevsky, Sutskever, & Hinton,
2012), which was the first implemented Deep Learning
Model that significantly improved object classification on im-
ages; and VGG-16 (Simonyan & Zisserman, 2014), a more
recent architecture with 16 layers that achieves above 90%
top 5 classification performance on ImageNet.

Generative Semantic Organization
After obtaining a useful general image representation from
the DNN, the Hierarchical Bayesian Model’s parameters are
inferred by approximating the posterior via Markov Chain
Monte Carlo methods in the following way.

Consider a two-level hierarchy where N observed inputs
are partitioned into C basic-level categories, these categories
are in turn partitioned into K supercategories. In this hier-
archy of observations, categories, and supercategories, the
higher levels determine a prior over the distribution of the
lower levels. In particular, the distribution over observations
(feature vector representations of images in our case) of each
of the different basic level categories are assumed to be multi-
variate Gaussian with a category specific mean Mc and with
precision terms τd

c that are assumed to be independent across
the D dimensions of the feature space. These precision terms
constitute a similarity metric by determining the relative im-
portance of each of the features. In turn, we place a conjugate
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Table 1: Performance results using the area under the ROC curve (AUROC) on the MSR dataset in the one-shot learning task

# Examples from Withheld Class
Alexnet VGG

1ex 2ex 4ex 20ex 1ex 2ex 4ex 20ex
Oracle .99 1 1 1

HB-Full .91 .96 .98 .99 .92 .97 .98 .99
One Supercategory .87 .94 .97 .99 .88 .95 .98 .99

NearestN .84 .86 .87 .90 .89 .90 .92 .95
T of T* .76 .80 .84 .87

Normal-Gamma prior over {Mc,τc}, this prior is determined
by the supercategory specific level-2 parameters Mk,τk,αk,
where Mk and τk constitute the expected values of the lower
level parameters and αk controls the variability of τc around
its mean. Finally, for the conjugate priors over the level-2 pa-
rameters, we respectively assume Normal, Exponential and
Inverse-Gamma distributions that are further shaped by pa-
rameters α0 and γ0. The full generative model is given in
Figure 2 (Salakhutdinov et al., 2012).

Figure 2: Hierarchical Model

Given a set of observations, the model iteratively performs
Bayesian inference by alternating between sampling the pa-
rameters and inferring the category assignments. When learn-
ing the distributions at each step of the iteration, the supercat-
egory membership is fixed and the parameters are sampled
from posteriors that are analytically computed using the con-
jugate priors1. The supercategory membership for each cate-
gory is learned in a similar way by fixing the currrent param-
eters and the rest of the hierarchical structure. Every category
can be assigned to any of the existing supercategories or to a
newly created one. The posterior probability of belonging to
a supercategory is computed as a combination the likelihood
that the parameters of the category come from the parame-
ters of the supercategory and a Chinese Restaurant Process
(CRP) prior (Griffiths & Tenenbaum, 2004). This nonpara-
metric prior is a distribution over a partition on integers in
which the nth number is assigned to set k with probability:

1For the case of αk, the conditional posterior cannot be com-
puted analytically and the parameter is sampled with the Metropolis-
Hastings rule (Yildirim, 2012).

P(zn = k|z1,z2...,zn−1) =

{
nk

n−1+γ
if nk > 0

γ

n−1+γ
if k is new

Where nk is the number of previous integers assigned to
set k and γ is a concentration parameter sampled from a
Gamma(1,1) distribution.

In an unsupervised setting where the categories of the ob-
servations are also unknown, the model utilizes a similar
strategy to assign observations to categories as is used when
assigning categories to supercategories. The model iterates
through the observations and assigns each either to an exist-
ing or to a newly created category based on the prior and like-
lihood. By utilizing the CRP prior, the model can create an
unbounded number of categories and supercategories. This
entire process constitutes a Gibbs sampling procedure where
both the tree structure and all of the parameters are simulta-
neously learned.

Tests and Results
We test the model in scenarios that attempt to capture aspects
of human cognition related to learning from limited data.
First we measure the model’s ability to generalize previous
knowledge to learn novel categories from only a few exam-
ples. Next, we assess the model on this task when the training
data for all of the categories is also limited to only a few ex-
amples. Finally, we exploit the model’s full hierarchy in a
completely unsupervised setting by exploring how the model
recovers the underlying semantic structure.

One-Shot Learning on MSR
In the first task, we test the model’s ability to learn new cate-
gories form one or a few examples. First, we select a category
that will be held-out for testing. Labeled observations for
all other basic-level categories are provided for training. The
model learns the semantic structure of the training set by clus-
tering the basic categories into supercategories and inferring
the relevant parameters at all levels of the Bayesian Hierar-
chy. The challenge is then to generalize the learned structure
to the held-out category from only one or a few examples.

To do this, the model first infers the best supercategory
from one or a few examples of the withheld category by
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Table 2: Performance results using the area under the ROC curve (AUROC) on the MSR dataset with limited training data.

# Examples from Withheld Class
Alexnet VGG

1 ex 2 ex 4 ex 20 ex 1 ex 2 ex 4 ex 20 ex
# Training Examples

1 ex .87 .87 .88 .89 .90 .90 .90 .92
4 ex .92 .96 .99 .99 .93 .97 .98 .99

10 ex .92 .96 .99 .99 .92 .96 .98 .99
18 ex .92 .95 .98 .99 .91 .96 .98 .99

All examples .91 .96 .98 .99 .92 .97 .98 .99

marginalizing over the category level parameters. Next, the
model uses the supercategory priors and training examples
to estimate the category similarity metric and mean for each
dimension in the feature space.

We evaluate different versions of our model on the MSR
Cambridge dataset (Kohli et al., 2005), which consists of 24
categories with varying numbers of images in each category.
In total this dataset contains roughly 800 images. Figure 3
shows a typical partition over all the categories discovered by
the full model. To quantify the models accuracy, a testset with
unlabeled data from all categories is classified.

We repeatedly trained the model withholding one of the
categories at a time and then inferred the withheld category
parameters and supercategory membership using one or a
few images. Next, we calculated the posterior probability for
each testset image belonging to each category and variated a
threshold to classify images as belonging to the heldout cat-
egory or to any of the other categories. This created true and
false positive rates for each point along our threshold which
traced out a Receiver Operating Characteristic curve (ROC)
for classifying objects from the withheld vs. all the other cat-
egories. The reported results are calculated by averaging the
Area Under the ROC curve (AUROC) for the model trained
with each of the 24 categories withheld (Table 1).

Performance is compared for each combination of an Infer-
ence Model and a Network Architecture. HB-Full is the full
version of the model described above. One Supercategory
places all the categories in the same single supercategory.
NearestN classifies new points with the label of the nearest
neighbor of its feature vector in euclidean distance. Texture
of Textures (T of T)∗ replaces our DNN features with the set
of responses from a three layer convolutional neural network
that uses precomputed weights that resemble Gabor filters2.
Finally, the Oracle is the same than our full model, but uses
the true empirical mean and variances from the whole pop-
ulation (including testset). Table 1 shows the results for the
two different feature spaces used.

2Taken from Salakhutdinov et al. (2012)

Figure 3: MSR semantic tree discovered by the Full Model

The results show that the model performs best when using
the full hierarchy in combination with the feature space ex-
tracted from VGG. HB-Full considerably outperforms alter-
natives under both feature spaces, particularly for trials with
one example from the withheld dataset. As more examples
become available, the performance difference decreases re-
flecting the importance of the prior when little data is avail-
able. The importance of the learned features is highlighted
when comparing with the T of T∗ feature space where per-
formance is considerably lower. It is interesting to note that
the VGG representation improves most over Alexnet when in
combination with NearestN, but the effect is mitigated when
the hierarchy is used.

Limited training data regimes
In a second task, we test the capability of our model to extract
inductive biases from experience with just a few examples.
To evaluative this capability, our full model was limited to
only 1, 4, 10 or 18 examples of each category used for train-
ing. The number of examples from the withheld category was
varied separately. Table 2 shows the average AUROC for the
same “one vs. all” metric used in the previous task3. For com-
parison, the full model performance from the previous table
is included and labeled as “All examples”4.

We can see that the largest jump in performance happens
when moving from 1 to 4 training examples. This likely
reflects the fact that a single example provides information
about the mean of the category but not about the variance or
similarity metric, which has to be inferred completely from

3Averages across 10 random repetitions and all categories are
reported.

4Each category contains a varying number of examples
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the prior. However, 4 examples provide adequate information
about the variance to allow the model to appropriately infer
the parameters for new categories. As the number of training
examples continues to increase, there are no further gains in
performance. This is consistent with literature showing that
children need at least two examples to learn inductive biases
in certain contexts (Smith et al., 2002).

Unsupervised Learning on Gazoobian Objects
Humans and children can sort new objects into categories and
supercategories in a semantically meaningful way. While our
model is also able to of recover meaningful structure from la-
beled examples (Figure 3), real situations often demand learn-
ing where labels are completely absent. Schmidt (2009) ex-
plores this human capability with a dataset composed of 45
novel objects that were generated using a modeling software
to simulate a specific taxonomic structure. The dataset con-
sists of three supercategories supposed to be alien equivalents
of plants, tools and snails from the planet “Gazoob”. The ob-
jects in each supercategory are further organized into a struc-
ture that can be approximated by basic-level categories (gray
box in Figure 4).

Our model has the ability to infer both categories and su-
percategories in an unsupervised manner from observations.
Schmidt (2009) shows that a model based on agglomerative
clustering that uses adult similarity judgments is able to re-
cover the taxonomic tree (Figure 4). Here our model is tested
with the harder task of recovering the taxonomic tree directly
from the same images that people saw. The model accom-
plishes this task in a fully unsupervised manner using a single
image of each object.

This “image-computable” model is able, although with
some mistakes, to recover the three supercategories and most
of the basic-level category structure (Figure 5). Other un-
supervised clustering algorithms were also able to capture
some of the semantic structure, but the hierarchy between cat-
egories and supercategories was not evident.

Discussion
One can think of the task of concept learning as consisting of
two elements. The first involves obtaining relevant features
to represent the objects and categories commonly observed in
the world. The second involves constructing a semantic hier-
archical structure with links between categories that humans
can use to navigate and perform tasks. While recent results
demonstrate the capabilities of DNNs to classify categories
provided a large number of training examples, they strug-
gle to perform tasks that require understanding the seman-
tic relationships between classes. The ability of Hierarchical
Bayesian Models to build these semantic structures can fur-
ther help with understanding and classifying new categories.

We demonstrate how these two approaches can comple-
ment one another by combining them in a computational
model. We tested the model’s abilities tasks designed to
approximate human capabilities that are currently difficult
for computer vision systems such as concept generalization,

learning inductive biases, and constructing semantic struc-
tures. We show results for three tasks involving limited data
availability. The model is able to learn relevant semantic
structures from just a few examples of novel objects and ef-
fectively transfer appropriate similarity metrics from learned
categories in the form of a prior. In all tasks, the compu-
tational framework comes close to capturing human abilities
that other, more complex, machine vision systems struggle to
reproduce.
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Figure 4: Ground Truth Tree of Gazoobian Objects as Generated from Human Similarity Judgments. Each of the three branches
at the top of the tree denotes a supercategoy. The gray box in the lower left hand of the figure denotes a basic-level category.

Figure 5: Model’s Inferred Semantic Hierarchy of Gazoobian Objects. Outer boxes denote supercategories inferred by the
model. Dashed lines separate model generated categories within each supercategory. Colored boxes around each object denote
the ground truth supercategories as shown above.
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Abstract 

Recent studies demonstrate a puzzling decline in relational 
reasoning during development. Specifically, 3-year-olds fail 
in a relational match-to-sample (RMTS) task, while younger 
children (18-30 months) succeed (Walker, Bridgers, & 
Gopnik, 2016). Hoyos, Shao, and Gentner (2016) propose that 
older children fail because of a bias toward individual object 
properties induced by “avid noun learning.” If this is the case, 
children learning a language with a stronger emphasis on 
verbs, like Mandarin Chinese, may show an attenuated 
decline in relational reasoning. We first test this possibility by 
reproducing the causal RMTS task in China, and find that 
Mandarin-speaking 3-year-olds outperform their English-
speaking peers in the U.S. In a second experiment, we show 
that Mandarin speakers exhibit a corresponding bias toward 
relational solutions while English speakers prefer object-
based solutions in an ambiguous context. We discuss possible 
mechanisms through which language and culture may 
promote (or hinder) the early development of relational 
reasoning. 

Keywords: cognitive development, causal learning, relational 
reasoning, overhypotheses, language, culture. 

The puzzling decline of relational reasoning 
Relational reasoning is often cited as a defining feature of 
human cognition (e.g., Gentner, 2003), and a source of the 
differences between the abilities of humans and other 
primates (Penn, Holyoak, & Povinelli, 2008). The ability to 
recognize relational similarities appears surprisingly early in 
human development: 7- and 9-month-old infants distinguish 
the abstract relations “same” and “different,” looking longer 
at novel pairs of objects that differ from a habituated 
relation (Ferry, Hespos, & Gentner, 2015; Tyrrell, Stauffer, 
& Snowman, 1991).  

Toddlers (18-30 months) can also employ these concepts 
to infer abstract causal properties in a relational match-to-
sample task (Walker & Gopnik, 2014). In this task, children 
observe as four pairs of blocks are placed on a toy that plays 
music when “activated.” Two of the pairs contain identical 
blocks (“same”) and the other two pairs contain mismatched 
blocks (“different”). For toddlers in the same condition, the 
toy activates and plays music only when the “same” pairs 
are placed on top, while those in the different condition 
observe the opposite pattern. When shown novel pairs of 
“same” or “different” blocks and asked to choose which pair 

would activate the toy, toddlers succeed in picking the pair 
that is relationally consistent with their training.  

However, this early success in relational reasoning is 
quickly followed by a puzzling decline: 3-year-olds (36-48 
months) fail to select the relational solution in precisely the 
same task (Walker, Bridgers, & Gopnik, 2016). Similar 
difficulties have also been observed in a variety of relational 
reasoning tasks (e.g., Christie & Gentner, 2007; 2010; 2014; 
Gentner, 1988; 2010; Hoyos, Shao, & Gentner, 2016). By 4 
years of age (52-60 months), children once again succeed in 
a standard RMTS task (Christie & Gentner, 2014), but 
continue to neglect relational similarities in other contexts 
even at 5-6 years of age (e.g., Gentner, 1988). This pattern 
of early success, decline, and reemergence suggests that the 
development of relational reasoning may follow a U-shaped 
trajectory, rather than a continuous process of gradual 
improvement, as previously suggested (e.g., Gentner & 
Medina, 1998). What causes this curious dip in children’s 
relational reasoning?  

One possibility is that preschoolers retain an early 
competence to reason about relations, but that this 
competence is overshadowed by a failure to attend to 
relational structure. In particular, Walker et al. (2016) 
suggest that 3-year-olds neglect relational information as a 
result of a learned bias to attend to individual object kinds 
and their properties. This claim is consistent with a large 
literature demonstrating that preschool-aged children attend 
to objects and attributes, and proposals that children must 
overcome an “entity-based view” in order to effectively 
process relations (Christie & Gentner, 2010; also, e.g., 
Christie & Gentner, 2007; 2014; Gentner, 1988; Gentner & 
Rattermann, 1991; Hall & Waxman, 1993). 

Several proposals link this well-documented object bias to 
language development, which has been shown to both foster 
and impair relational reasoning (e.g., Christie & Gentner, 
2014; Hoyos, Shao, & Gentner, 2016). These seemingly 
incongruous findings have led some to regard the 
contradictory effects of language on relational thinking as a 
developmental paradox (Hoyos, Shao, & Gentner, 2016).  

Noun learning and relational development 
In a recent paper, Hoyos, Shao, and Gentner (2016) suggest 
that the decline of relational reasoning may stem from an 
object bias induced by language learning. They reason that 
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“avid noun-learning” in early childhood likely leads to a 
“captivation with objects,” which in turn helps children to 
learn additional nouns. In support of this view, they provide 
evidence that an experimentally induced noun bias interferes 
with relational reasoning. In this experiment, they replicate 
a previously published finding (Christie & Gentner, 2014) 
that 4-year-olds succeed on a standard RMTS task in a 
baseline condition, but show that priming nouns in a 
picture-labeling activity significantly reduces subsequent 
RMTS performance. On its own, this outcome suggests that 
language learning—and an emphasis on nouns in 
particular—may negatively impact relational reasoning in 
toddlers.  

However, earlier work by Christie and Gentner (2014) 
leads to the opposite conclusion, that linguistic concepts—
and nouns in particular—facilitate relational reasoning in 
the standard RMTS task. They find that providing children 
with a novel noun (“truffet”) for pairs of objects improves 
toddlers’ subsequent RMTS performance. Here, and 
elsewhere, the authors argue that young children do not 
initially have access to a hypothesis space that is “sufficient 
to allow for the range of possible semantic categories” but 
instead form hypotheses about relational meanings by 
comparing co-labeled items to identify common structure 
(Christie & Gentner, 2010).  

Taken together, this account and the conflicting findings 
create an apparent paradox, in which a linguistic emphasis 
on nouns orients young learners away from relations, but 
language simultaneously provides the necessary scaffolding 
for relational learning by highlighting relational structure. In 
this way, language learning appears to solve the very 
problem it creates. Accordingly, this account implies that 
language learning may be interpreted as a double-edged 
sword, drawing attention to objects at the expense of 
relations, but in doing so, ultimately helping children to 
construct novel relational categories. 

Language as a driver of children’s hypotheses 
The current research further explores the hypothesis that 
language learning influences the types of concepts and 
categories that young children entertain. Under the paradox 
account presented above, language learning helps children 
develop new relational categories to further populate their 
hypothesis space. An alternative possibility is that children 
have access to both relational and object-based hypotheses 
throughout development, but that the probabilities assigned 
to each type of hypothesis change as a result of prior 
knowledge and past experience, including language 
learning. This account draws on probabilistic models of 
cognitive development in which children are seen as 
Bayesian learners (e.g., Gopnik & Wellman, 2012), who 
weight the likelihood of a given hypothesis (the probability 
of the data given the hypothesis) by its prior probability (the 
general probability of the hypothesis, before any data are 
observed). Consequently, if a hypothesis has high prior 
probability, it will require stronger data to overturn it. This 
reasoning may also be applied to entire categories of 

hypotheses in the form of an overhypothesis, a general 
principle by which the learner assigns higher prior 
probability to particular types of hypotheses (Kemp, 
Perfors, & Tenenbaum, 2007). From this perspective, the 
“noun explosion” in early language learning could motivate 
an object bias—and temporary dip in relational reasoning—
in the form of an overhypothesis that privileges object-based 
hypotheses over relational ones (for a discussion of 
language-induced overhypotheses and their relevance 
beyond language, see Colunga & Smith, 2005). By this 
account, language acts as one of many possible influences 
that affect a learner’s hypothesis space, not by providing for 
new hypotheses (as the paradox view suggests), but by 
adjusting children’s existing prior expectations.  

Despite this distinction, both of these accounts leave room 
for an important role of language in driving children’s 
relational reasoning, and both predict that a noun focus in 
word learning would (at least initially) bias children toward 
object properties and away from relations.  

Previous demonstrations (e.g., Christie & Gentner, 2010; 
Hoyos, Shao, & Gentner, 2016) have tested this hypothesis 
indirectly, showing that immediate exposure to nouns 
modulates success on RMTS tasks, presumably by directing 
the learner’s attention toward or away from relational 
information. However, these findings (which may reflect 
simple priming effects) do not necessarily demonstrate a 
relationship between noun focus in word learning and 
RMTS performance, as the experimental groups all involve 
English speakers, without any systematic between-group 
differences in degree of noun focus.  

Conveniently, not all word learning follows the same 
trajectory. In particular, the “noun explosion” that has been 
documented in English-language learners is not universal 
across languages. In Korean, for instance, there is evidence 
for a comparable “verb spurt” (Choi & Gopnik, 1995). 
Similarly, several studies have found that children learning 
Mandarin Chinese produce more verbs than nouns in their 
spontaneous speech (both types and tokens), in contrast with 
English speakers of the same age, who produce a greater 
proportion of nouns than verbs (Tardif, 1996; Tardif, Shatz, 
& Naigles, 1997).  

If an emphasis on noun learning (relative to other parts of 
speech) indeed drives the dip in relational reasoning by 
fostering an object bias, then children learning a more verb-
centric language should show an attenuated or reversed bias. 
While nouns may direct focus to object properties by relying 
on these in picking out meanings, verbs often signal 
relational meanings across multiple entities, and might serve 
to redirect attention accordingly.  

The difference in noun focus between English and 
Mandarin Chinese therefore presents two natural conditions 
in word learning, which we exploit as a test of the proposal 
that properties emphasized in word learning induce a bias in 
reasoning more generally.  
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Experiment 1: Causal relational reasoning in 
Mandarin-speaking children 

To test for a relationship between noun focus in word 
learning and relational reasoning, we first reproduced 
Walker et al.’s (2016) causal RMTS task (see Figure 1) with 
Mandarin-speaking children (36-48 months) in China.  
 
Methods 

Participants. A total of 64 Mandarin-speaking 36-48-
month-olds (M = 42.1 months; 28 female) took part in 
Experiment 1. This sample size was chosen based on 
previously published studies using the same paradigm. 
Participants were pseudo-randomly assigned to either the 
same or different condition. Five additional participants 
were excluded due to experimenter error or failure to 
complete the study. All participants were native speakers of 
Mandarin Chinese, and were recruited and tested at 
preschools in China.  

Materials and procedure. The materials and procedure 
replicated those used in Experiment 1 of Walker et al. 
(2016), with the exception that instructions were given in 
Mandarin Chinese. The original English instructions 
(described here in English) were independently translated 
and backtranslated to ensure accuracy.  

 Children were tested individually, seated at a table across 
from the experimenter. The causal RMTS task began after a 
brief warmup to familiarize the child with the experimenter. 
During the task, the experimenter placed matching and 
mismatched pairs of painted wooden blocks on top of a box 
which appeared to play music in response to certain blocks. 
In reality, the experimenter activated a wireless doorbell 
inside the box by surreptitiously pushing a button.  

The experimenter began by placing an opaque cardboard 
box on the table, saying “This is my toy! Sometimes it plays 
music when I put blocks on top and other times it does not. 
Should we try some and see how it works?” The 
experimenter then produced two blocks, said “Let’s try!” 
and put both blocks on top of the toy simultaneously. The 
toy played music and the experimenter said “Music! My toy 
played music!” The experimenter picked up the blocks and 
set them back on the toy, which again played music, saying 
“Music! These ones made my toy play music!” She then 
repeated this procedure with a new pair of blocks in the 
opposite relation. The new pair did not make the toy play 
music, and the experimenter responded to the first try with 
“No music! Do you hear anything? I don’t hear anything,” 
and after the second try, said “No music. These ones did not 
make my toy play music.” This pattern was repeated with 
two additional pairs of blocks. The experimenter always 
began with a causal pair (identical blocks in the same 
condition and blocks of differing colors and shapes in the 
different condition), and alternated inert, causal, inert, using 
novel blocks in each new pair, and randomizing the specific 
blocks between participants.  

 
 

Figure 1: Schematic illustration of training and test trials in 
Experiment 1. Reprinted from Walker et al. (2016). 

 
After the four training trials, the experimenter said “Now 

that you’ve seen how my toy works, I need your help 
finding the things that will make it play music. I have two 
choices for you.” The experimenter presented the child with 
two new pairs made of novel blocks, one “same” pair and 
one “different.” Each pair was supported by a tray, which 
the experimenter held up as she said “I have these…and I 
have these. Only one of these trays has things that will make 
my toy play music. Can you point to the tray that has the 
things that will make it play?” They trays were placed on 
either side of the toy, just out of reach of the child, with the 
side of the correct pair and order of presentation 
counterbalanced between participants. The experimenter 
recorded the child’s first point or reach, and scored the 
answer as correct if the child chose the test pair (same or 
different) that corresponded to her training.  

Results and discussion 

Mandarin-speaking preschoolers selected the test pair that 
was consistent with their training in both same (69%; one-
tailed binomial p = .025) and different (72%; one-tailed 
binomial p = .010) conditions (see Figure 2).1  

                                                
1 One-tailed binomial tests reflect the directional nature of our 
hypothesis, but the outcome is comparable with two-tailed tests 
(same: p = .052; different: p = .020).  
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Figure 2: Proportion of correct relational matches selected 
by English- and Mandarin-speaking toddlers. English 
speaker data is reproduced from Experiment 1 of Walker et 
al. (2016). Error bars indicate 95% confidence intervals. 
 

As predicted, Mandarin-speaking preschoolers succeed in 
the RMTS task at an age at which their English-speaking 
counterparts fail (English speakers in the Walker et al. study 
performed at chance in both same (46%) and different 
(43%) conditions).2 Although this outcome is consistent 
with an account in which verb-focused word learning biases 
children toward relational solutions, it is also possible that 
Mandarin speakers succeed at the task for more general 
reasons (attention, etc.), without having a relational bias.  

We can discriminate these two possibilities by examining 
bias in an ambiguous task, with both relational and object 
matches available, and no definitive correct answer. If 
Mandarin-speaking toddlers succeeded in Experiment 1 
because of a general aptitude for test-taking, and not a 
specific bias toward relations, then they should respond at 
chance in a modified RMTS with no correct answer. 
Additionally, if an object bias is responsible for the poor 
performance of English speakers (and not just random 
responding), then we should observe systematic preferences 
for object matches when there is no conflicting evidence for 
relations. In Experiment 2, we assess these possibilities.  

Experiment 2: Comparing relational and 
object focus across cultures 

Experiment 2 tests for baseline differences in bias toward 
relational or object-based hypotheses across Mandarin and 
English speakers. To do this, we created an ambiguous 
paradigm, in which it is unclear whether a particular object 
or the relationship between objects is causal. Specifically, 

                                                
2 We compared performance of Mandarin-speaking preschoolers in 
the current study with English-speaking preschoolers in Walker et 
al. (2016). Considering each condition separately, we find a 
significant difference between Mandarin- and English-speaking 
preschoolers in the different condition (one-tailed p = .022, 
Fisher’s exact) and a marginal difference in the same condition 
(one-tailed p =  .068, Fisher’s exact). Combining across different 
and same conditions, we find that Mandarin-speaking preschoolers 
significantly outperform English speakers (one-tailed p = .004, 
Fisher’s exact). 

we presented children with a “different is causal” condition, 
in which the same object appears in each of the causal pairs 
(see Figure 3). In this case, it is perfectly reasonable to infer 
that either the individual object (i.e., the blue square) or the 
relation (i.e., different) produced the effect. We pit these 
options against each other by presenting the same objects in 
the test pairs. The individual objects come together to create 
a “same” pair—which is correct with respect to the object 
hypothesis, but incorrect with respect to the relational 
hypothesis, and the other objects associated with the effect 
come together to create a “different” pair—which is correct 
with respect to the relational hypothesis and incorrect with 
respect to the individual object hypothesis.  

If a focus on verbs in early language learning induces a 
bias toward relational hypotheses, we should observe a 
tendency toward relational solutions in Mandarin-speaking 
toddlers, and a converse bias toward objects in noun-
focused English-speaking toddlers.  
 
Methods 

Participants. A total of 112 3-year-olds participated in 
Experiment 2, 56 native Mandarin speakers (M = 41.4 
months; 28 female) and 56 native English speakers (M = 
41.4 months; 21 female). An additional 11 children were 
tested but excluded as a result of experimenter error or 
failure to complete the study. Mandarin-speaking children 
were recruited and tested at preschools in China, and 
English speakers at preschools and museums in the U.S. In 
all settings, children were tested individually with the 
experimenter in a private room. 

Materials and procedure. Materials were identical to those 
in Experiment 1, and the procedure closely resembled that 
of the “different” condition, but with several modifications 
to create an ambiguous causal structure (see Figure 3).  
 

 
Figure 3: Schematic illustration of ambiguous training and 
test trials in Experiment 2, in which the evidence was 
consistent with both object and relational solutions. 
  
     First, one of the blocks (represented by the blue square in 
Figure 3) appears in both different pairs. This reoccurring 
block provides the object-based hypothesis (i.e., the blue 
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square is causal). Second, the test trial included two pairs 
composed of blocks that were previously observed in the 
“different” training pairs. Finally, due to the constraints of 
the study design, it was not possible to present an 
ambiguous same condition. As a result, Experiment 2 only 
included the different condition. As in the previous study, 
the experimenter asked the child to choose the pair that 
would activate the machine. The child’s first point or reach 
was scored as consistent with either an object selection or a 
relational selection. 
 
Results and discussion 

Given an ambiguous choice between object and relational 
matches, English-speaking preschoolers selected the object 
match (64%; two-tailed binomial p = .044) and Mandarin-
speaking preschoolers chose the relational match (66%; 
two-tailed binomial p = .022; see Figure 4). 

 
 

Figure 4: Proportion of object and relational matches 
selected by English- and Mandarin-speaking toddlers in 
Experiment 2. Error bars indicate 95% confidence intervals. 

General discussion 
In two experiments, we find that Mandarin-speaking 
children tend to privilege relations whereas English-
speaking children tend to privilege individual objects, often 
missing the abstract relation. 

In Experiment 1, we evaluated whether the noun focus in 
English word learning can account for the dip in relational 
reasoning observed in English-speaking preschoolers. To do 
so, we examined relational reasoning in Mandarin-speaking 
preschoolers, whose early language learning is more 
focused on verbs. Consistent with the noun-focus account, 
we found that Mandarin-speaking preschoolers substantially 
outperform their English-speaking peers in identifying 
shared relational structure in the RMTS.  

In Experiment 2, we tested for the key factor predicted to 
mediate the relationship between language and RMTS 
performance. This study explored whether English- and 
Mandarin-speaking preschoolers exhibit differing biases 
toward relational and object-based solutions. Indeed, we 
found that in an ambiguous context with no correct answer, 
Mandarin speakers tend to favor solutions consistent with 

relational hypotheses and English speakers show a 
contrasting object bias.  

It is important to note that while English-speaking 
preschoolers have often exhibited poor performance in 
relational tasks of the same format, their consistent selection 
of object-based matches in this experiment is not trivial. 
Choosing the object match may indeed present a more 
challenging cognitive task. In order to select the object 
match at test, children must track and remember the relevant 
object (the blue square) throughout the training trials, which 
(perhaps counterintuitively) increases the cognitive load 
compared with learning the abstract relation, which does not 
require tracking of any particular objects. Accordingly, this 
outcome demonstrates a surprising competence on the part 
of English-speaking preschoolers, which may also be 
attributable to their noun-centric language learning.  

Taken together, these findings inform potential sources of 
bias in early learning and the development of relational 
reasoning. In particular, they rule out the possibility that 
language learning in general produces an object bias. 
Instead, we show that preschoolers of the same age in 
different linguistic and cultural contexts may have varying 
degrees of relational and object focus, and that these 
differences correlate with robust population-level 
differences in relational reasoning.  

Our findings stand in contrast to the suggestion that 
language plays a paradoxical role in relational development, 
by both hindering relational reasoning and facilitating it 
(Hoyos et al., 2016). Although this may be true in noun-
focused languages, like English, it does not appear to be a 
general feature of language learning.  

Furthermore, we suggest that language may well act to 
hinder and facilitate relational reasoning, without the need 
to view this phenomenon as a paradox. Instead, it is possible 
that the object bias and the associated dip in relational 
reasoning observed in English speakers result from general 
learning processes with no exceptional role for language. 
Instead, the structures and features of language may be 
interpreted as some of many sources of input informing the 
types of concepts that are privileged during early learning.  

Of course, several questions remain regarding the source 
of the population differences observed here. For example, it 
is certainly possible that cultural factors (other than 
language) play a role in facilitating a relational focus in 
Mandarin speakers. Indeed, there are well-documented 
differences between collectivist and individualist cultures, 
which may similarly result in an emphasis on relationships 
between entities or on characteristics of individual entity 
kinds (e.g., Chiu, 1972; Choi, Nisbett, & Norenzayan, 1999; 
Nisbett, Peng, Choi, & Norenzayan, 2001; Oyserman & 
Lee, 2008; Peng & Knowles, 2003). Our ongoing research is 
aimed at further pulling these hypotheses apart.  

That said, regardless of whether language, culture, or 
some combination of the two is ultimately responsible for 
these effects, the current findings demonstrate that 
preschoolers have the capacity to infer relational properties, 
providing additional evidence that the object bias is learned 
after early competence in relational reasoning is achieved 
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(Walker et al., 2016). More broadly, we have established 
population-level differences in relational focus that occur 
naturally across cultures early in development and predict 
the developmental trajectory of relational reasoning.   
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Abstract

Language provides an important source of information to pre-
dict human personality. However, most studies that have pre-
dicted personality traits using computational linguistic meth-
ods have focused on lexicon-based information. We investigate
to what extent the performance of lexicon-based and grammar-
based methods compare when predicting personality traits. We
analyzed a corpus of student essays and their personality traits
using two lexicon-based approaches, one top-down (Linguis-
tic Inquiry and Word Count (LIWC)), one bottom-up (topic
models) and one grammar-driven approach (Biber model), as
well as combinations of these models. Results showed that
the performance of the models and their combinations demon-
strated similar performance, showing that lexicon-based top-
down models and bottom-up models do not differ, and neither
do lexicon-based models and grammar-based models. More-
over, combination of models did not improve performance.
These findings suggest that predicting personality traits from
text remains difficult, but that the performance from lexicon-
based and grammar-based models are on par.
Keywords: language; personality; traits; machine learning;
computational linguistics; lexicon-based; grammar-based

Introduction
In our daily interactions, we guide our behavior towards other
people using information that is collected throughout these
interactions, but also using knowledge about the world and
social groups (Rich, 1979). These judgments are oftentimes
made unconsciously.

Models of users’ behavior, thinking and feeling typically
rely on the personality traits that can be identified (McCrae &
John, 1992). Trait theory is an approach to the study of human
personality in which it is believed that humans exhibit habit-
ual patterns of behavior, thought and emotion. It is presumed
that there is a relatively small number of dimensions that
can be used to describe personality (O’Connor, 2002). Inde-
pendent analyses have consistently yielded five broad dimen-
sions, called the Big Five (or Five Factor Model): openness
to experience, conscientiousness, extraversion, agreeableness
and neuroticism (McCrae & John, 1992).

Personality traits are generally identified on the basis of
data collected from the users who fill out standardized ques-
tionnaires. However, such an approach has certain draw-
backs. Firstly, it can be costly for the researcher and time-
consuming for the user (Gauch, Speretta, Chandramouli, &
Micarelli, 2007). Secondly, people are not reliable sources

of information about themselves: there is evidence to sug-
gest that self-descriptions are heavily influenced by the social
groups in which a person finds himself (McGuire & Padawer-
Singer, 1976), and dissimulation can be a problem in self-
reports (Wright, 2014).

Automatic inference of personality offers the advantages of
being less intrusive and possibly more environmentally valid.
Indeed, a range of studies have investigated the extent to
which personality traits can be predicted from user behavior.
The lion’s share of these studies use linguistic data as sources
of information, both language and speech (Beukeboom, Ta-
nis, & Vermeulen, 2012; Gawda, 2009; Mairesse, Walker,
Mehl, & Moore, 2007; Mehl, Robbins, & Holleran, 2012;
Oberlander & Gill, 2006; Oberlander & Nowson, 2006). Lin-
guistic data has also shown to indirectly shed light on person-
ality. For instance, linguistic cues have shown to be linked to
deception (Louwerse, Lin, Drescher, & Semin, 2010), and to
different registers of communication (Louwerse, McCarthy,
McNamara, & Graesser, 2004). Furthermore, a person’s emo-
tional state is reflected in language use (Tausczik & Pen-
nebaker, 2009), not only by explicit lexical content but also by
implicit semantic associations (Recchia & Louwerse, 2014).

In considering the cognitive science literature that aims to
extract behavioral information from linguistic data, two ap-
proaches can be distinguished. On the one hand, studies
use lexical cues to extract information from text, for exam-
ple emotional expression (Kahn, Tobin, Massey, & Anderson,
2007), deception (Newman, Pennebaker, Berry, & Richards,
2003), political orientation (Dehghani, Sagae, Sachdeva, &
Gratch, 2013), moral foundations (Graham, Haidt, & Nosek,
2009), romantic relationship outcomes (Ireland et al., 2011),
among others. On the other hand, extracting behavioral in-
formation from explicit lexical information can be problem-
atic. First, in controlled experimental settings it is easy for
participants to carefully monitor their semantic content. For
instance, in deception studies participants might avoid using
specific words. Second, sparsity issues may emerge if algo-
rithms detect specific word use.

An alternative approach lies in using grammar-based cues.
By performing a manual analysis of seven syntax markers,
Gawda (2009) identified an increased use of certain features
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in emotional narratives written by individuals with antisocial
personality disorder. Current computational linguistic tools
are able to extract many grammar-based linguistic features
automatically and efficiently, and it is reasonable to assume
that such features could also carry information about person-
ality. Biber (1988) conducted a study on linguistic variation
across speech and writing, and computed the frequency of
67 linguistic features (e.g. frequency of auxiliary verbs, pro-
nouns, main verbs, adjectives); he was able to identify differ-
ent writing genres using naturally occurring word patterns.
Graesser, McNamara, Louwerse, and Cai (2004) proposed
the tool Coh-Metrix, which allows the user to analyze texts
on discourse, cohesion, and world knowledge. The Suite of
Linguistic Analysis Tools (SALAT) calculates scores for as-
pects such as syntactic complexity (Kyle, 2016) and cohesion
(Crossley, Kyle, & McNamara, 2015). These tools open up a
range of possibilities for the investigation of the relationships
between personality and language use.

In conclusion, two approaches can be identified in extract-
ing personality traits from language use: a lexicon-driven ap-
proach and a grammar-driven approach. As pointed above,
the majority of cognitive science literature has focused on
the lexicon-based approach. The question is to what extent
the findings from a grammar-driven approach are comparable
with the lexicon-driven approach that currently dominates the
literature. We address this question in the current work.

Extracting personality traits from text
Most studies on extracting personality from text focused on
identifying words, collocations and general linguistic features
that occur in texts produced by one group of people versus an-
other group, aiming to uncover which features are informative
when trying to differentiate the groups. Early attempts relied
on word counting and predefined dictionaries that sort words
in categories (Tausczik & Pennebaker, 2009). This approach,
albeit basic, has been used in many studies that show links
between word usage and certain psychological processes and
personalities, e.g. Beukeboom et al. (2012), and Mehl et al.
(2012). Other researchers used bottom-up approaches to as-
sociate linguistic features with personality types. Oberlander
and Gill (2006) collected large corpora of text labeled with
the personality of the author and performed stratified corpus
comparisons. Interesting findings included the fact that peo-
ple who scored high in extraversion used more inclusive ex-
pressions and connectives, while those with low score were
more tentative and used adjectives less frequently. The au-
thors also noted that people with high neuroticism scores had
preference for multiple punctuation.

Another approach is to treat the problem as a supervised
classification task, employing machine learning techniques to
identify the personality of the author of a given text. Oberlan-
der and Nowson (2006) investigated a corpus of weblog posts
from 71 participants, who completed a personality question-
naire online as part of the study. The authors used Support
Vector Machine (SVM) classifiers and feature sets consist-

ing of n-grams extracted from the text and selected accord-
ing to different levels of restriction. The same approach was
later applied to a larger sample of bloggers (Iacobelli, Gill,
Nowson, & Oberlander, 2011). Argamon, Dhawle, Koppel,
and Pennebaker (2005) used SVMs and four sets of lexi-
cal features to differentiate high and low extraversion and
neuroticism, using a corpus of around 2400 student essays
and personality assessments, collected by Pennebaker and
King (1999). Mairesse et al. (2007) also worked on the
same corpus, employing a series of classification and regres-
sion techniques and features from both the Linguistic Inquiry
and Word Count (LIWC) and the Medical Research Council
(MRC) Psycholinguistic Database. Their results confirmed
previous findings and reveal new correlations between lin-
guistic markers and personality, such as use of swear words
and use of pronouns. As for the accuracy of automatic clas-
sification, the authors reported accuracies that are, according
to their evaluation, significantly above chance; however, it is
not clear whether these values are high enough to be useful in
real applications (Mairesse et al., 2007).

Following the work by Mairesse et al. (2007), the task of
automatic identification of personality from text gained a lot
of attention from the research community, mostly due to the
Workshop on Computational Personality Recognition (Celli,
Pianesi, Stillwell, & Kosinski, 2013). As part of a shared
task, the organizers made available two datasets of text la-
beled with the personality traits of the authors – including the
Essay Corpus by Pennebaker and King (1999). As a result,
many researchers tackled the problem with different learning
algorithms (e.g. Naive Bayes, SVM, kNN, ensemble meth-
ods, logistical regression) and using different features such as
n-grams, LIWC, MRC, lexical nuances, part-of-speech tags,
emotional values from the AFINN database, word intensity
scale, sentiment analysis and word associations to emotions
(Celli et al., 2013).

Although the results from these attempts are encouraging,
it had been noted that top-down approaches based on lexical
resources seem to perform better than bottom-up approaches
based only on words or n-grams (Celli et al., 2013). Nev-
ertheless, there are benefits in employing approaches that do
not rely on pre-defined vocabularies, for example allowing
exploration of topics not previously considered, easier appli-
cation in different genres and languages, and saving the effort
of creating the word lists (Schwartz et al., 2013).

Schwartz et al. (2013) used a large dataset of Facebook
posts (over 15.4 million Facebook messages collected from
75 thousand volunteers) to perform an open-vocabulary anal-
ysis of correlations between personality types and vocabulary
use. The goal of the work was to discover unexpected re-
lationships that would not necessarily be evident from using
pre-defined word categories. Although the focus of the work
was mainly to explore and gain insights on the data, the au-
thors also used the approach to predict personality from text,
with results that are comparable to previous literature. Liu,
Wang, and Jiang (2016) also attempted to predict personality
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from text while avoiding to rely on predefined vocabularies.
The authors proposed a model that expands latent Dirichlet
allocation (LDA) to include the assumption that topic distri-
bution depends not only on the characteristics of the corpus
itself, but also on the five personality traits of writers. How-
ever, the topics identified by their model seem to be affected
disproportionally by individuals with less common person-
ality combinations, and for this reason the model must be
trained with a massive, representative corpus for which the
personality of the writers is known. Since obtaining such cor-
pora is difficult, the applicability of their approach seems to
be limited.

In this paper, we investigate how we can predict user per-
sonality from written text by using features that do not rely
on closed-vocabularies, and compare the results to the state
of the art. In the next section, we describe our approach.

Procedure
Dataset
We use the Essay Corpus (Pennebaker & King, 1999), which
consists of 2468 essays, written by introductory psychology
students of the University of Texas as part of their course as-
signments. The students also completed the Five Factor In-
ventory personality questionnaire (John, Donahue, & Kentle,
1991), so that all essays could be marked with five personal-
ity scores for each Big-5 trait (Openness to Experience, Con-
scientiousness, Extraversion, Agreableness, Neuroticism). In
addition to the scores, the corpus contains binary values for
each trait (high/low), which were obtained using a median
split over the scores. The class distribution of the binary val-
ues is shown in Table 1.

Table 1: Class distribution in dataset.

OPN CON EXT AGR NEU

Low 1196
(48.46%)

1214
(49.19%)

1191
(48.26%)

1158
(46.92%)

1235
(50.04%)

High 1272
(51.54%)

1254
(50.81%)

1277
(51.74%)

1310
(53.08%)

1233
(49.96%)

Features
We employed four groups of feature sets, which were cho-
sen to investigate to what extent the performance of lexicon-
based and grammar-based computational linguistic methods
are comparable.

For the lexicon-based features, we used two main ap-
proaches: top-down (LIWC and MRC) and bottom-up (topic
modeling with latent Dirichlet allocation (LDA)). For the
grammar-based features, we selected the original Biber fea-
tures (Biber, 1988).

Lexicon-based, top-down

1) A total of 80 LIWC features were extracted using the
LIWC2007 software, which outputs relative frequencies of

words found in each pre-defined category, and a few struc-
tural features such as word count and words per sentence.

2) The 14 MRC features refer to word length, number of
syllables or phonemes, and values for frequency of use,
imageability, concreteness, meaning, age of acquisition,
among others. The MRC features were calculated by aver-
aging the scores of the essay words found in the database
(as opposed to averaging over total word count).

Lexicon-based, bottom-up For topic modeling, we pre-
processed the corpus by lemmatizing the words using
NLTK’s WordNet lemmatizer, and removing non-English
words (i.e. words that were not found in Wordnet). Given the
relatively small size of the corpus, we did not filter out words
based on frequency. Then, we trained three LDA models with
different number of topics (30, 65 and 100). Each document
in the dataset was converted to a vector that represents the
proportion in which each topic appears in the document. To
train the model, we used the library Gensim, with 10 passes
and default hyperparameters.

To illustrate the topics found in the corpus, these are the ten
most relevant words for each of the three most frequently ap-
pearing topics extracted by the 30-topic LDA model: “think,
go, get, really, like, write, minute, time, wonder, need”; “go,
get, really, time, friend, home, want, much, like, miss”; and
“life, people, thing, know, think, time, one, make, feel, way”.

Grammar-based, top-down For this study, we use the
67 features selected by Biber (1988) to reflect the linguis-
tic structure of the text. These features primarily operate
at the word level, such as parts-of-speech, and fall into cat-
egories such as tense and aspect markers, adverbials, pro-
nouns, questions, nominal forms, passives, subordination fea-
tures, prepositional phrases, coordinations and negations, and
so on. These features were extracted from the text using soft-
ware developed in-house.

Combinations In addition to considering these models sep-
arately, we investigated the model combinations in order to
determine their complementary value.

Classifiers
We trained five Support Vector Machine (SVM) classifiers
with linear kernel, one for each personality trait. SVMs were
chosen due to previous reports of them performing better on
this task than other algorithms (Mairesse et al., 2007), and
linear kernels were employed to retain interpretability of the
model. For the implementation, we used the machine learn-
ing library Scikit-learn, which in turn uses an implementation
based on Libsvm. The classifiers were trained without param-
eter tuning (i.e. penalty parameter C=1.0).

Results
Reservations have been expressed by the scientific commu-
nity on the application of null-hypothesis statistical testing
for comparison of machine learning algorithms for many rea-

1729



Table 2: Average accuracy, precision and recall for each classifier, with 95% confidence interval.

Baseline Lexicon, top-down Lexicon, bottom-up Grammar Combinations
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Openness Acc .515 .617±.006 .602±.006 .613±.005 .613±.006 .602±.006 .576±.007 .606±.006 .602±.006
P .515 .634±.006 .617±.006 .633±.006 .630±.006 .603±.005 .586±.007 .619±.006 .615±.006
R 1. .611±.010 .605±.010 .593±.010 .603±.010 .669±.009 .607±.010 .614±.009 .612±.010

Conscientiousness Acc .508 .547±.006 .551±.006 .556±.007 .544±.006 .534±.006 .551±.006 .546±.006 .548±.007
P .508 .550±.005 .553±.006 .553±.006 .546±.005 .536±.006 .554±.006 .550±.006 .551±.006
R 1. .607±.009 .611±.010 .653±.011 .610±.010 .615±.011 .599±.010 .588±.010 .598±.009

Extraversion Acc .517 .562±.007 .545±.006 .546±.006 .555±.006 .551±.006 .546±.007 .553±.007 .557±.007
P .517 .570±.006 .554±.005 .544±.004 .551±.004 .550±.004 .553±.006 .562±.006 .563±.006
R 1. .624±.010 .624±.010 .764±.009 .756±.010 .731±.011 .635±.010 .614±.010 .644±.010

Agreeableness Acc .531 .545±.007 .552±.007 .557±.005 .548±.006 .542±.006 .549±.006 .552±.006 .553±.007
P .531 .561±.006 .567±.005 .554±.003 .555±.004 .546±.004 .562±.005 .570±.005 .570±.006
R 1. .651±.011 .664±.010 .843±.007 .758±.012 .821±.009 .678±.010 .636±.010 .649±.010

Neuroticism Acc .500 .565±.007 .571±.006 .532±.007 .527±.007 .520±.006 .545±.006 .552±.006 .545±.007
P 0. .563±.007 .571±.007 .529±.006 .527±.008 .519±.006 .545±.006 .552±.006 .544±.006
R 0. .577±.012 .571±.011 .581±.014 .531±.012 .540±.011 .535±.010 .551±.011 .550±.011

sons, not the least of which the fact that any difference be-
tween two algorithms, no matter how small, can be shown to
be statistically significant, provided that enough data are used
(Japkowicz & Shah, 2011). For this reason, instead of tradi-
tional hypothesis testing, we chose to adopt error-estimation
techniques to obtain relatively robust estimates of the perfor-
mance of the algorithms, which in turn allows us to compare
the results considering their practical differences.

Table 2 shows the performance scores of the classifiers
trained using the eight different sets of features discussed ear-
lier. We focus our discussion around accuracy (Acc), but we
also report precision (P) and recall (R) to give a better overall
indication of the performance of the classifiers1. The per-
formance of a simple majority classifier (i.e. it always pre-
dicts the class with the highest number of instances) is used
as baseline. We report the estimated mean of the scores, cal-
culated by running 10 x 10-fold cross-validation, using all
100 individual scores to estimate the mean and variance, and
using 10 degrees of freedom to calculate the 95% confidence
interval, as suggested by Bouckaert (2003).

As can be seen in Table 2, the performance scores of the
classifiers vary for different traits, with the best accuracies
ranging from approximately 56% for Agreeableness and Con-
scientiousness to 62% for Openness to experience (accuracies
are highlighted in the table, and the highest accuracy scores
for each trait are marked in bold). Nevertheless, we can make
some general observations on the overall performance of the
different sets of features, which we list below.

Confirming previous findings, top-down lexicon-based ap-

1Precision and recall scores consider the “high” class as positive
label.

proaches generally provide the best accuracies. The top-down
approach proposed in the literature, which uses MRC features
in addition to LIWC, does provide a small added value for
classifying Extraversion and Openness to experience. Con-
versely, for the other three traits, MRC features do not seem
to provide any real improvement.

We note that bottom-up lexicon-based approaches can of-
fer comparable accuracies to top-down approaches, with per-
formance being basically equivalent among top-down and
bottom-up over all traits but Neuroticism. Furthermore, the
number of topics matters, as accuracy degrades with 100 top-
ics (when the features are likely to become more sparse).

We can observe that a grammar-based approach on its own
seems to give a slightly worse accuracy than lexicon-based
approaches for three of the five traits: around 2% less accu-
rate for Neuroticism and Extraversion, and 4% less accurate
for Openness to experience. Nevertheless, for the other two
traits (Conscientiousness and Agreeableness), the accuracies
are basically the same.

Finally, combining grammar and lexicon approaches does
not lead to significant improvements in accuracy. In fact, it
even seems to degrade the results of the top-down lexicon-
based approach slightly.

In summary, Table 2 shows that lexicon-based top-down
features and bottom-up features do not seem to differ in a
practical way, and while grammar-based features seem to
have slightly worse accuracies than lexicon-based features,
the difference can be considered too small to be of practi-
cal significance. Furthermore, the accuracies of our proposed
sets of features are on par with the results obtained by previ-
ous studies.
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General Discussion

The differences in performance between the different algo-
rithms are very small. Using different feature sets yields simi-
lar results, and combining different features does not improve
the performance in any meaningful way.

One possible reason could be a floor effect, in which the
questionnaire used to assess personality traits in this corpus
would not be able to distinguish reliably between subjects at
the lower end of the scale. This is unlikely, since the test used
in this corpus is a standardized questionnaire that has been
validated and used in numerous studies (John et al., 1991).

It is also possible that the use of self-assessments of per-
sonality makes this task particularly difficult due to the poten-
tial unreliability of self-reports, as discussed in the introduc-
tion. Future investigation could incorporate personality as-
sessments made by human observers, to evaluate to which ex-
tent self-assessment and observed scores differ, and whether
the algorithms could match the performance of human judges.
Furthermore, replicating the study with other corpora could
also indicate whether different text types could be more suit-
able for detecting certain personality traits.

In this study, we used a relatively limited set of non-top-
down features, namely the features proposed by Biber (1988)
and topic modeling. Future work could investigate whether
applying other grammar-based and bottom-up lexicon-based
features (e.g. cohesion, syntactic complexity, n-grams, skip
grams, Word2Vec, semantic similarities) would result in bet-
ter performances. In addition, we could try to improve the
models by using non-linear kernels, performing parameter
tuning, and employing ensemble machine learning methods
for combining different sets of features.

However, the difficulty of identifying personality traits
from text could signal a more fundamental issue. Mischel and
Shoda (1995) have argued that individual differences in social
behaviors are actually variable across different situations (sit-
uationism), and not completely stable as it is proposed by trait
theory. As such, if personality scales and textual analyses tap
into different social situations, tasks that use questionnaire
scores as gold standard will not be able to achieve accept-
able performance. Further research is needed to investigate
this hypothesis, and whether other stable patterns of behav-
ior could be used as gold standard for automatic personality
inferences.

The current study has used the most common personality
traits classification, the Big Five, and the most commonly
used corpus to identify personality traits, the Essay Corpus,
in order to compare the difference between top-down and
bottom-up lexicon-based and grammar-based computational
linguistic techniques. Our findings show that no differences
were obtained between lexicon-based and grammar-based or
between top-down and bottom-up approaches, nor comple-
mentary advantages for combinations of models, despite the
fact that all methods were on par with the performance previ-
ously reported.
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Abstract

Hindi/Urdu (HU) numbers 10–99 are highly irregular, unlike
the transparent systems of most languages. I investigate the
morphological decomposability of HU numbers using a series
of computational models. While these models classify most
forms accurately, problems are encountered in high-frequency
forms of low cardinality, suggesting that some HU numbers are
more transparent (i.e., morphologically decomposable) than
others. These results are compatible with a dual-route access
model proposed for the processing of numeral forms.
Keywords: numerals; computational modeling; Bayesian
learning; Hindi/Urdu; phonology; morphology

Introduction
Hindi/Urdu (HU, officially considered separate languages but
differing in little other than orthography and high-register vo-
cabulary) and most other modern Indic languages are unusual
in that the numbers through 99 are highly opaque and irreg-
ular, undoubtedly posing difficulties in production and pro-
cessing for language users. This phenomenon is understud-
ied, and raises interesting questions regarding the design prin-
ciples of cross-linguistic number systems, as well as the pro-
cessing of complex morphological forms by language users.

In this paper, I investigate the mechanisms by which HU
users extract structure and meaning from HU number terms.
I address this issue using a series of unsupervised computa-
tional models designed to approximate HU users’ process-
ing of the numerals 10–99. While it is generally agreed that
number terms are acquired as individual lexical items, there
is good reason to hypothesize that many numbers above a cer-
tain threshold of frequency are not accessed as individual lex-
emes during processing, but rather via their component parts,
in line with a dual-route model of lexical storage and access
(cf. Baayen, 1993). I expect that despite the irregularity of the
HU number system, users can find regular patterns in various
cues to numerical identity in the input, particularly in low-
frequency numbers, thus facilitating easier comprehension.

My methodology investigates the extent to which HU
numbers can be morphologically decomposed. Brysbaert
(2005) tentatively proposes a dual-route access model for En-
glish numeral storage, hypothesizing that frequent, opaque
items like twelve are accessed directly, while morphologically
transparent numbers of lower frequency (e.g., eighty-nine) are
processed through decomposition. In line with this view, I
predict that less frequent HU numbers can be segmented and
labeled more accurately by a computational model, indicating
greater morphological transparency.

I find that a model using n-grams as phonological features
successfully assigns most HU numeral forms to the proper
TENS/DIGITS cohort, but that, rather unsurprisingly, some
highly opaque forms are misclassified. Major errors occur

among numbers of lower magnitude. Since these forms are
highly frequent, this state of affairs is compatible with a dual-
route account of processing. I find that in general, the model
faces difficulties in capturing relationships between simplex
(i.e., monomorphemic) forms (e.g., /@ssi/ ‘80’) and their
complex counterparts (e.g., /cOrAsi/ ‘84’), where a more so-
phisticated model of phonology might succeed. These results
provide an important baseline for future investigations into
mental representations of HU numerals.

Background
The full list of numerals (taken from Comrie, n.d.) is given in
Table 1. When encountering a datum like /b@jAlis/ ‘42’, lis-
teners must infer the value of the TENS and DIGITS place with
the aid of cues in the input, and must be able to contend with
highly noisy allomorphy: TENS{40} and DIGITS{2} have
multiple surface realizations. In some cases, this allomor-
phy is suppletive (i.e., variants bear no phonological resem-
blance to each other). Listeners may possess the knowledge
that HU is head-final, and that higher-order numerical infor-
mation generally occurs closer to the root (Hurford, 1987),
i.e., to the right. For some numerals, it seems plausible that
high frequency facilitates access; for instance, HU /sola/ ‘16’
is quite unlike other numerals with the feature DIGITS{6}, all
of which are /ch/-initial. This is a diachronic artifact; /sola/
faithfully continues Sanskrit s. od. aśa-, while other forms with
DIGITS{6} contain reflexes of an unattested dialectal variant
*ks.(v)at.- of attested Sanskrit s. as. - ‘6’ (Turner, 1962–1966).
It is also the only member of the teens which shows /l/ in
its allomorph of /d@s/ ‘ten’. All the same, it may be used
frequently enough that this twofold suppletion does not pose
problems to speakers and listeners.

A major attempt to explore synchronic regularities among
HU numbers is that of Bright (1969), who concludes that
despite a lack of economy, implicit rules governing the sys-
tem are available to language users. Berger (1992) outlines
the complex historical development of HU numbers; spo-
radic phonological reduction, analogy, and language contact,
among other phenomena, have resulted in a highly irregu-
lar and opaque system compared to the relatively transpar-
ent numbers of Sanskrit, HU’s ancestor. These works aside,
many aspects of the HU numeral system remain untreated.

Representational issues
Abstract representation of HU numerals
Above, I adopt the canonical abstract numerical representa-
tion found in much of the literature, where each surface form
comprises two underlying factors corresponding to the TENS
and DIGITS place. I make the assumption that DIGITS{0}
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Table 1: HU numbers 1–99; rows represent the tens place, columns the digits place
0 1 2 3 4 5 6 7 8 9

0 — ek do tin cAr pÃc chE sAt Aúh nO
10 d@s gjAr@ bAr@ ter@ cOd@ p@ndr@ sol@ s@tr@ @úhAr@ Unnis
20 bis Ikkis bAis teis cObis p@ccis ch@bbis s@ttAis @úúAis Untis
30 tis Ik@ttis b@ttis tæ̃tis cÕtis pæ̃tis ch@ttis sæ̃tis @ótis UntAlis
40 cAlis IktAlis b@jAlis tæ̃tAlis c@VAlis pæ̃tAlis chIjAlis sæ̃tAlis @ótAlis UncAs
50 p@cAs IkjAV@n bAV@n tIrp@n c@uV@n p@cp@n ch@pp@n s@ttAV@n @úúhAV@n Uns@úh

60 sAúh Iks@úh bAs@úh tIrs@úh cÕs@úh pæ̃s@úh chIjAs@úh s@rs@úh @ós@úh Unh@tt@r
70 s@tt@r Ikh@tt@r b@h@tt@r tIh@tt@r cOh@tt@r p@ch@tt@r chIh@tt@r s@th@tt@r @úhh@tt@r UnjAsi
80 @ssi IkjAsi b@jAsi tIrAsi cOrAsi p@cAsi chIjAsi s@ttAsi @úúhAsi n@VAsi
90 n@Ve IkjAnVe bAnVe tIrAnVe cOrAnVe p@cAnVe chIjAnVe s@ttAnVe @úúhAnVe nInjAnVe

does not map to any overt phonological information. Ad-
ditionally, for forms such as /UntAlis/, there is a mismatch
between the abstract representation TENS{3} DIGITS{9} and
the phonological form, since the morpheme representing the
tens place closely resembles /cAlis/ ‘40’, not /tis/ ‘30’; this
suggests an intermediate calculation TENS{4} DIGITS{−1}.
I assume that the representation DIGITS{−1} is an integral
part of HU numerical computation and is reflected explicitly
in the morphology.

Surface representation of HU numerals
Brysbaert hesitates to draw a categorical distinction be-
tween transparent and opaque English numerals, citing semi-
transparent forms like thirteen. Along these lines, I seek to
situate HU numerals along a cline between mild and extreme
opacity. I quantify a number’s transparency or decomposabil-
ity via the performance of a computational model designed to
segment and label HU numbers, both in terms of (1) accuracy
of the labeling and (2) low posterior uncertainty.

At the outset, I lack a principled means of separating sup-
pletive and non-suppletive allomorphy found in the system.
Numbers 11–18 exhibit three allomorphs for TENS{1}, /-d@/,
/-r@/ and /-l@/, all from the diachronic source -daśa-, though
synchronic /d/ ∼ /r/ ∼ /l/ alternations are not well known
in HU. Numbers 49–58 show multiple bases for TENS{5},
all descended from Sanskrit pañcāśat- ‘50’ but formally very
dissimilar. I make no a priori assumptions about the status of
suppletive allomorphy in the morphological system, and al-
low the model to simply group together forms according to
the configuration it infers. I do, however, treat DIGITS{−1}
as a separate morpheme, given its systematic occurrence.
Nonparametric models (which assume an unbounded number
of underlying morphological labels) may alleviate some of
the problems that result from forcing suppletive allomorphs
to be classified together, which I set aside for future work.

A model of HU numerical processing should character-
ize the morphological structure of the data encountered. HU
numbers are highly fusional, exhibiting the effects of millen-
nia of phonological and morphological change. As Bright
reports, no economical set of rules helps to derive the surface
representations from their morphological bases. There is of-
ten unpredictable allomorphy between simplex and complex
forms of a given decade: for instance, /s/ alternates with /h/

in complex forms of /s@tt@r/ ‘70’ < Sanskrit saptatı́-, but not
in complex forms of /sAúh/ ‘60’ < Sanskrit s. as. t.i-; however,
the latter decade’s complex forms contain a reduced vowel
/@/, alternating with /A/. The short vowel and geminate con-
sonant found in /@ssi/ ‘80’ alternate with a long vowel and
singleton consonant in derived /-Asi/, but the short vowel
found in /n@Ve/ does not appear in derived forms.

Despite these challenges, listeners should be able to form
a probability distribution over possible morphemes contained
in a complex input datum. HU’s highly fusional phonology
notwithstanding, listeners should be able to approximate the
location of morpheme boundaries. This question is a key
part of this paper’s computational inference, and should be of
broad interest to phonological theory, as it has the potential to
incorporate a number of strategies for morphological bound-
ary detection. The models introduced in this paper draw mor-
pheme boundaries on the basis of what is most likely under
the current parameters of the model, and are dependent on
distributional information found in other numerals. This task
is easier than that of many types of unsupervised segmenta-
tion in that at most one boundary must be located per input
datum; however, the model must contend with a wider distri-
bution of allomorphs which must be unified. This model does
not use external distributional information for the purpose of
segmentation (as do Harris, 1955; Saffran et al., 1996).

A question relevant to this paper concerns the types of mor-
phological segmentation that should be permitted. Cross-
linguistically, a morphological segmentation of the type
[b][@jAlis] might be permissible, but non-inflectional mor-
phemes in HU tend to consist minimally of a unit with
prosodic weight. As such, I restrict the proposal distribu-
tion for segmentations of HU numbers to exclude morpheme
boundaries following the first and penultimate segments; this
additionally speeds up inference and ensures that short forms
like /bis/ ‘20’ will be treated as monomorphemic.

Phonological features
The methodology developed in this paper must capture al-
lomorphy in the HU numeral system, inferring that differ-
ent surface strings such as /-jAlis/ and /cAlis/ correspond
to the same underlying morpheme, TENS{4}. I cluster al-
lomorphs together on the basis of phonological features us-
ing essentially the same likelihood formula used in unsuper-
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vised Naı̈ve Bayes/Dirichlet-Multinomial classifiers, popular
in bag-of-words models of document classification. This is a
model of convenience which I find fairly effective, though it
is admittedly crude; it is insensitive to positional information
and alternations, and does not strongly penalize the absence
of potentially crucial morpheme-level information.

The model described in this paper lends itself to the use
of different types of phonological features, and provides op-
portunities to investigate model performance under features
with differing degrees of abstraction. In this paper, I limit
myself to domain-general string-based features, namely n-
grams. In many contexts, I expect segmental bigrams to
fare well in assigning cohort membership. However, there
are some cases where I fear that bigrams may fail to capture
alternations caused by (among other things) deletion or in-
sertion, as between the base /n@Ve/ ‘90’ and /-nVe/, found
in complex forms. A unigram model will be sensitive to the
co-occurrence of /n/ and /V/, whereas a representation con-
sisting solely of bigrams will not (on the use of separate au-
tosegmental tiers for consonants and vowels, see Goldsmith
& Riggle, 2012). I attempt to circumvent this problem with a
phonological representation that uses both unigrams and bi-
grams (though this technically violates the independence as-
sumption of Naı̈ve Bayes). This allows the model to capture
some similarities between paradigmatically related forms that
would otherwise be lost in a strict bigram model.

Model
Here, I introduce the core model employed in this paper, de-
signed to approximate a HU speaker’s recognition of numbers
10–99 (I assume that 1–9 are primitives). When encountering
a numerical form, the listener must determine whether it is
simplex or complex. If simplex, the value of the TENS place
must be inferred; if complex, the DIGITS place must be as
well. The model assumes that a complex form is generated
by independent draws from two mixtures, a DIGITS mixture
(the labels of which correspond to the values {−1,1, ...,9})
and a TENS mixture (the labels of which correspond to the
values {1, ...,9}). Because HU morphology is generally con-
catenative, I make the simplifying assumption that phonolog-
ical elements generated by a given mixture are adjacent to
one another — i.e., that a morpheme boundary can be lo-
cated somewhere in a complex form, however approximately.
I make the assumption that the lefthand morpheme is gen-
erated by the digits mixture and the righthand morpheme is
generated by the tens mixture; this convention essentially in-
corporates Hurford’s insight that higher numerical elements
occur closer to the root, which in turn can be interpreted as
prior knowledge of a morphosyntactic headedness parameter.
This system of numerical classification is schematized in Fig-
ure 1.

Inference
This paper’s basic model of numeral classification assigns
each form to one or two mixtures, given a 10× F matrix
Ω

D and a 9×F (where F is the number of feature types in

DIGITS{2}
↘

b@j|Alis
↖
TENS{4}

Figure 1: Schema of a proposed morphological segmentation,
tens classification, and digits classification for form /b@jAlis/

the input) matrix Ω
T (specifying a prior over feature distri-

butions associated with each label of the DIGITS and TENS
place, respectively), as well as a word-level vector µ repre-
senting a prior over morpheme boundary locations. I initial-
ize these matrices with symmetric concentration parameters
αT αD,αµ, set to .1 in order to encourage sparseness, such
that unshared features from unrelated labels are not clumped
together. The generative model draws probability simplices
φ

D
j ∼Dirichlet(ωD

j ),φ
T
i ∼Dirichlet(ωT

i ) representing the fea-
ture distributions associated with levels j and i of the DIGITS
and TENS place, and assumes that for every word w,

ς ∼ Dirichlet(µ) (a simplex of morpheme boundary proba-
bilities is drawn, including the probability p(m = /0), i.e.,
the probability that there is no morpheme boundary)

m∼Categorical(ς) (a morpheme boundary is drawn from ς)
If m = /0,

zD
j = 0

for each feature f ∈ w
f ∼ Categorical(φT

i ), i ∈ {1, ...,9}
If m 6= /0,

For each feature f ∈ w1,...,m (through index m)
f ∼ Categorical(φD

j ), j ∈ {−1,1, ...,9}
For each feature f ∈wm+1,...,|w| (from index m+1 through
the end of the word)

f ∼ Categorical(φT
i ), i ∈ {1, ...,9}

I marginalize out the parameters ς,φT
i ,φ

D
j to ob-

tain collapsed Dirichlet-Categorical updates for
p(m|µ), p(zT |ΩT ), p(zD|ΩD). For a given word, this yields
the following conditional probability if m = /0 (adopted from
Yin & Wang, 2014):

P(m = /0,zT
i ,z

D = 0|zT
−i,z

D
−0,Ω

T ,ΩD,µ) ∝

∏ f∈w ∏
c( f )w
n=1 c( f )−w

zT
j
+αT +n−1

∏
|w|
k=1 c(·)−w

zT
j
+FαT + k−1

(1)

If m 6= /0:

P(m,zT
i ,z

D
j |zT
−i,z

D
− j,Ω

T ,ΩD,µ) ∝

∏ f∈λl
m

∏

c( f )
λl

m
n=1 c( f )−w

zD
j
+αD +n−1

∏
m
k=1 c(·)−w

zD
j
+FαD + k−1

·
∏ f∈λrm ∏

c( f )
λrm

n=1 c( f )−w
zT
i
+αT +n−1

∏
|w|−m
k=1 c(·)−w

zT
i
+FαT + k−1

(2)
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Above, c( f )−w
zT
i

denotes the number of instances of f currently

associated with label zT
i , and c(·)−w

zT
i

the number of instances

of any item currently associated with label zT
i (both terms

exclude any instances contributed by w); c( f )σ signifies the
number of instances of f in element σ. For simplicity, I write
λl

m for w1,...,m and λr
m for wm+1,...,|w|. Once new values of

m,zT
i ,z

D
j are chosen for word w, counts for the features in λl

m

(if m 6= /0) and λr
m can be allocated to zD

j and zT
i , respectively.

Priors on morphological segmentation
For this paper’s most basic inference procedures, the prior
over morpheme boundaries is symmetric, with equal proba-
bility allocated to all possible segmentations of word w. In
certain inference regimes, I employ one of two priors on seg-
mentation incorporating the principle of Minimum Descrip-
tion Length, popular in unsupervised morphological segmen-
tation (Goldsmith, 2001; Creutz & Lagus, 2007); these priors
favor the insertion of morpheme boundaries which minimize
the length of the code that generates the data. There are a
number of ways to interpret this principle. Most intuitively,
the “code” can be construed as the list of morph types, or al-
ternatively, the sum of the lengths of morph types. Hence, an
MDL or exponential prior on morphological segmentations
disfavors analyses that add to the list, or the sum of (string)
lengths of types in the list.

The first prior (MDL1), designed to keep the list of an-
alyzed morphs short, assigns probability to a morphologi-
cal segmentation for word w proportional to the inverse of
the number of morph types as currently analyzed, including
the proposed segmentation for w; under the second approach
(MDL2), the prior probability is inversely proportional to the
sum of lengths of current morph types. I have employed these
priors due to the importance of MDL in the literature on unsu-
pervised segmentation, but remain somewhat skeptical as to
whether HU numeral morphology can be rendered compact
in the same manner as the morphology traditionally analyzed
with MDL priors (e.g., of English, Finnish, Turkish, etc.),
given the noisy allomorphy seen.

Priors on cluster membership
Readers may note that the above formulae depart from tradi-
tional Dirichlet-Multinomial mixture models in that the Chi-
nese Restaurant Process prior (a rich-get-richer scheme) over
cluster membership is excluded. This prior, which makes it
more likely for an item to be assigned to a cluster that al-
ready has many data points, seems inappropriate for this pa-
per’s model, which iterates over one token of each number,
and should learn classes of roughly equal size. In one sam-
pling regime, I place an exponential prior on TENS and DIG-
ITS label membership, inversely proportional to the number
of items currently assigned to the label in question (plus a
concentration parameter). The intention here is to introduce
a pressure toward clusters of uniform size.

Inference procedure
Inference is carried out via Markov chain Monte Carlo. I run
different versions of the model on three chains for 10000 iter-
ations, discarding the first half of samples as burn-in. Each
chain is initialized by randomly segmenting and assigning
each item to a TENS and DIGITS label. Parameters are up-
dated via Gibbs Sampling; for each number in 10–99, a mor-
phological segmentation m, a TENS label zT and if relevant,
a DIGITS label zD are drawn conditional on the labels cur-
rently assigned to all other data points (see eqq. 1–2). I use a
simulated annealing procedure, raising each vector of update
probabilities to the power of a constant 1

γ
, with γ decreasing

from 10 to 1 over the course of the burn-in. Code can be
found at github.com/chundrac/HUnumerals.

I carry out an inference procedure using only bigrams as a
phonological feature representation (2g); this is followed by
a regime using unigrams and bigrams (1+2g). I modify the
1+2g procedure to incorporate an MDL prior sensitive to the
length of the current list of morph types (MDL1), followed by
an MDL prior sensitive to the sum of their lengths (MDL2).
I attempted to see how the MDL1 prior (which showed better
performance) affected the bigram model. Additionally, I ran
a simulation which augmented the 1+2g/MDL1 model with a
prior over component membership designed to keep clusters
uniform (denoted by U).1

Results
I use the overall F-measure (Fung et al., 2003) and the V-
measure (Rosenberg & Hirschberg, 2007), two evaluation
metrics designed to quantify the similarity between two clas-
sifications, in order to monitor convergence and measure
overall accuracy (convergence was also assessed via chain
log-likelihoods). I compute pairwise F- and V-measures be-
tween the maximum a posteriori (MAP) configuration of each
chain to assess the degree to which chains return the same
classification, interpreting values greater than .9 as a token
of convergence between two chains. I evaluate each chain’s
accuracy by computing the F- and V-measures between the
chain’s MAP configuration and the true classification of the
numbers. These values are found in Table 2. In general, MDL
priors do not appear to improve inference for bigrams, and do
not significantly improve inference for 1+2grams.

Table 3 displays the MAP configuration for the top
chain (2) in the regime with highest overall accuracy
(1+2g/MDL1/U). To measure the ACCURACY with which
this regime decomposes individual numbers, I calculate the
F-scores for each number’s MAP TENS and DIGITS classifica-
tions with respect to its true TENS and DIGITS classifications,
averaging these values. The resulting values are then aver-
aged across chains. I calculate POSTERIOR UNCERTAINTY

1I also experimented with a procedure that excluded any
TENS/DIGITS pairs from the proposal distribution for a given form
that were assigned to any previous forms within a window of arbi-
trarily chosen size. However, this exacerbated the label-switching
problem (a trivial issue); less trivially, it was difficult to motivate a
window size which plausibly paralleled working memory.
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by averaging the entropy of the posterior sample (comprising
blocked draws of m,zT ,zD) for each chain.

I extract numeral frequencies from the EMILLE Hindi
Webnews corpus (Baker et al., 2002). For each number, ac-
curacy and posterior uncertainty are plotted according to fre-
quency in Figure 2, along with correlation coefficients and
p-values. Both correlations are significant (albeit noisy), pro-
viding support for the idea that the HU numbers can be pro-
cessed via a dual-route model. As seen in the lefthand plot,
the majority of HU numbers occupy a quasi-Pareto frontier,
indicating an efficient trade-off between decomposability and
frequency. Several numbers in the teens (seen in the upper
righthand corner of the plot) are both highly frequent and de-
composable. These outliers in no way contradict the dual-
route model, since a form’s decomposability does not pre-
clude the possibility that it is stored whole. However, a hand-
ful of numbers are found beneath the frontier (near the lower
lefthand corner), meaning that they are both relatively infre-
quent and difficult to parse. These items can be viewed as
vulnerable points in the grammar of HU numbers, and may
be prone to “leakage” or analogical restructuring.

Table 2: F-/V-measures for different inference regimes
TEN DIG TEN DIG TEN DIG

convergence chain 1–2 chain 1–3 chain 2–3
2g .88/.87 .77/.74 .86/.86 .81/.78 .92/.91 .95/.93
2g,/MDL1 .77/.80 .86/.82 .78/.81 .85/.84 .87/.84 .90/.88
1+2g .88/.86 .89/.88 .90/.88 .90/.89 .99/.98 .99/.99
1+2g/MDL1 .93/.89 .95/.95 .94/.91 .95/.95 .99/.98 1/1
1+2g/MDL2 .94/.92 .95/.94 .94/.92 .95/.94 1/1 1/1
1+2g/MDL1/U .88/.87 .92/.92 .89/.89 .92/.92 .97/.96 1/1
over. accuracy chain 1 chain 2 chain 3
2g .81/.81 .76/.74 .82/.84 .86/.84 .87/.88 .92/.89
2g/MDL1 .78/.79 .82/.80 .80/.82 .89/.88 .80/.81 .85/.83
1+2g .87/.86 .89/.87 .91/.91 .90/.88 .91/.91 .92/.89
1+2g/MDL1 .90/.89 .88/.86 .91/.91 .9/.88 .91/.91 .9/.88
1+2g/MDL2 .88/.87 .90/.88 .91/.91 .9/.87 .91/.91 .9/.87
1+2g/MDL1/U .91/.89 .9/.9 .93/.91 .92/.89 .91/.9 .92/.89

Table 3: MAP configuration for 1+2g/MDL1/U, chain 2.
Rows represent tens classification; columns represent digits
classification. Numbers are represented by cardinality for
readability. Asterisks (∗) mark numbers where the numerical
representation TENS{i}, DIGITS{9} maps to the representa-
tion TENS{i+1}, DIGITS{−1}

35 34 31 29∗ 32 36 38 30
75 77,

70
74 71 73 69∗ 72 76 78

15 17,
16

14 13 12 18 11 10

65 67 64 61 63 59∗ 62 66 68 60
44,
45

47,
27

40 41 43 39∗,
49∗

42 46 28,
48

25 37 24 21 33,
23

19∗ 22 26 20

95 97 94 91 93 92 96 98 90,
99

55 57 54 51 53 52 56 58
50,
85

87 84 81 83 79∗ 82 86 88,
80

89

Discussion
The models presented in this paper show that although HU
numerals 10–99 are morphologically irregular, a large num-
ber can be classified according to their component parts.
However, quite a few forms are difficult to decompose, most
of them of low magnitude and high frequency. In general, the
models handled some types of allomorphy well, and others
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Figure 2: Log frequency as a predictor of model accuracy
(ρ=−.55, p< .001) and post. uncertainty (ρ= .38, p< .001)

poorly. Forms containing the TENS{5} allomorphs /-p@n/ ∼
/-V@n/ are grouped together, due to their agreement in two out
of three segments. Surprisingly, /sol@/ ‘16’ was recognized
as a member of the teens, despite the unique allomorph /-l@/;
however, the model failed to properly classify it according
to its digits place. Other forms with highly suppletive allo-
morphy (e.g., /UncAs/ ‘49’) were misclassified. Additionally,
many simplex forms were not analyzed as monomorphemic,
unless only a monomorphemic analysis was permitted under
the proposal distribution.

As stated above, my results show that the HU numeral sys-
tem’s design is largely compatible with a dual-route model of
access. In general, high-frequency items were more difficult
for a computational model to decompose, indicating greater
opacity. (Berger shows that many of these numbers were his-
torically subject to erosion and evidently resistant to analog-
ical changes that would otherwise make them more transpar-
ent and perceptually distinct.) At the same time, there are ex-
ceptions to this generalization: certain high-frequency items
in the teens showed high accuracy, though this does not rule
out the possibility that they are stored whole. Additionally,
some problematic items are more opaque than would be ex-
pected, given their low frequency. It is likely that such vul-
nerable forms cause problems in planning and production.

The EMILLE Spoken Hindi corpus contains intrigu-
ing numeral variants (e.g., /iúhjAnVe/ ‘91’ by speaker
ehinsp041, /sIntIjAnVe/ ‘97’ by ehinsp035, /UnAnVe/ ‘89’ by
ehinsp044), though the data are too sparse to serve as the
basis of a rigorous quantitative study. Many numbers are
missing in the corpus; furthermore, the variation observed
may stem from sources other than production difficulty, in-
cluding transcriber error, multilingualism (with another In-
dic language; for example, speaker ehinsp017 utters the form
/bAvis/ ‘22’, standard in Marathi but not HU), and stylis-
tic factors. Studies of variability in the production of HU
numerals — either in experimental contexts or naturalistic
speech — will serve as a valuable research direction, par-
ticularly with an eye to whether vulnerable forms (i.e., sub-
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optimal forms with higher opacity than expected relative to
frequency) are subject to greater instability.

Conclusion
In this paper, I have employed a simple and somewhat crude
model of allomorphy, inspired in part by bag-of-words mod-
els used in document classification and intended to serve as a
baseline for future work. A goal of this study was to test the
limits of a simple mixture model in a HU numerical recogni-
tion task. A more sophisticated model of phonological pro-
cesses may relate potential allomorphs to each other in terms
of edits, as has been done in some MDL approaches (Virpioja
et al., 2010). However, while such models can contend with
or recover relatively regular allomorphy, no model has been
designed, to my knowledge, to capture the highly noisy allo-
morphy found in the HU numeral system.

A true test of any computational model’s value is in how
well it agrees with human performance. A future direction for
this work will involve carrying out experimental research to
see how HU speakers process and produce numerical forms.
It will serve us well to see how model inaccuracy fares as
a predictor of greater response latency in psycholinguistic
tasks. A joint approach which considers limitations in both
experimental performance and computational simulation will
help us identify weak points in this and other complex mor-
phological systems that can potentially (though not obligato-
rily) undergo analogical change.

I have shown that frequency may facilitate the processing
of more opaque HU numbers, but the question remains as
to why most Indic number systems are on average more ir-
regular than exact number systems found in other languages.
Sociocultural factors may be partially responsible,2 and their
role in shaping cross-lingustic number systems should be
taken into account along with that of functional need (cf. Xu
& Regier, 2014).
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Abstract: Early vocabularies in most languages tend to contain more nouns than verbs. Yet, the strength of this noun bias has
been observed to vary across languages and cultures. Two main hypotheses have aimed at explaining such variations; either
that the relative importance of nouns vs. verbs is language- specific, or that socio-cultural influences shape early vocabulary
structures. The present study compares the relative distribution of verbs and nouns, in English, between two groups of bilingual
infants and toddlers; Malay-English and Mandarin- English. We found that early English lexicons of Mandarin- English
bilinguals contained more verbs than in the English lexicon of Malay-English bilinguals, in both comprehension and production.
We discuss the potential role of socio-cultural influences on the vocabulary structure in young users of a language.
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Abstract 

To become a proficient reader, children have to learn 
mappings between print, sound and meaning. There is 
debate over whether reading instruction should focus on the 
relations between print and sound, as in phonics, or on the 
relationship between print and meaning, as in sight word 
reading. In a study where participants learned a novel 
artificial orthography, Taylor, Davis and Rastle (2017) 
compared print to sound focused or print to meaning 
focused reading training, demonstrating that sound training 
was superior for learning to read. However, a benefit from 
sound focused training is likely dependent on prior 
acquisition of effective sound to meaning relations of words. 
To explore this issue, we developed a connectionist model 
of reading. We exposed the model to a sound or a meaning 
focused training, but varied the model’s pre-acquired oral 
language skills. The simulation results showed that 
proficiency in oral language is a determinant of the 
advantage of print to sound focused reading training, 
suggesting that reading training should address both oral 
language skills and print to sound mappings. 

Keywords: reading instruction; oral language; reading 
development; computational modelling; word learning. 

Introduction 
Learning to read requires mastery of a set of complex 

skills involving encoding phonology (P), semantics (S), and 
learning to map orthographic (O) forms onto those 
representations of sound and meaning. Even for alphabetic 
orthographies, where a letter, or set of letters, corresponds 
approximately regularly to a phoneme in the word, learning 
to read is effortful and frequently fraught with difficulties 
(Seidenberg, 2017). Effective early reading instruction is 
therefore critical to help children become proficient readers. 
There has been a vigorous debate over whether reading 
instruction should focus on the relations between print and 
sound or on the relationship between print and meaning. The 
former is typically characterized by phonics-style training, 
where the phonemes associated with particular letters or 
letter clusters are trained intensively, enabling children to 
decode letter-by-letter. The latter is often referred to as 
meaning-focused or whole-word language instruction, 
where the meaning and pronunciation of the whole word is 
provided to the child during training.  

Proponents of the phonics method argue that reading 
instruction should focus on learning spelling-to-sound 
mappings because exploiting the systematicity of alphabetic 
writing systems ought to be substantially easier than 
acquiring more arbitrary spelling-to-meaning mappings, 
where the arbitrariness of the sign is dominant and learning 
can only be accomplished word by word, without the benefit 
of generalising from one learned word to the next. Evidence 
for the strong predictive relation between phonological 
decoding skills and reading acquisition (see, e.g., Rayner et 
al., 2001, for a review) demonstrates that phonological skills 
are key to reading success.  

Alternatively, researchers who advocate the meaning-
focused method (see, e.g., Davis, 2013, for a review) argue 
that the primary goal of reading is to access the meanings of 
words and so this ought to be the priority of reading training 
approaches. Although spelling-to-meaning mappings are 
hard to learn, they may still be acquired early in reading 
development (Nation, 2009; Taylor et al., 2015). For 
example, Nation and Cocksey (2009) demonstrated that 7-
year-old children could access semantic categories of words 
from orthography very quickly without evidence that the 
phonological form of the words mediated responses. 

Effectiveness of sound-focused and meaning-
focused reading instruction 

According to the Simple View of reading (Gough & 
Tunmer, 1986), reading comprehension is the product of 
phonological decoding and oral vocabulary. During reading 
training, learners acquire mappings from print to sound, and 
access meaning based on their knowledge of sound-to-
meaning mappings acquired pre-literacy. There is some 
evidence that both print to sound mapping skills (as indexed 
by pseudoword reading tasks) as well as sound to meaning 
mapping skills (as reflected in oral vocabulary tasks) are 
predictors of silent reading comprehension performance 
(e.g., Curtis, 1980; Nation & Snowling, 2004; Ouellette & 
Beers, 2010; Ricketts, Nation, & Bishop, 2007). However, 
the Simple View of reading does not consider an alternative, 
which involves the role of accessing meaning directly from 
print (Taylor et al., 2015). 

Within the connectionist view of reading (Seidenberg & 
McClelland, 1989; Harm & Seidenberg, 2004; Plaut et al. 
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1996), learning to acquire the meaning of written forms of 
words could be via developing direct orthographic to 
semantic mappings. Alternatively, acquisition could be 
indirect, through the learner developing orthographic to 
phonological mappings, which then map, via oral language 
knowledge, onto semantic representations. Computational 
modelling investigations have established that there is 
division of labour along these direct and indirect pathways 
from orthography to semantics over development (Harm & 
Seidenberg, 2004; Plaut et al. 1996).  However, comparisons 
between reading training that focuses on developing the 
direct orthographic-to-semantic, versus the indirect 
orthographic-to-phonological, pathways have not as yet 
been undertaken. 

One exception to this is a recent study by Taylor, Davis 
and Rastle (2017). In a laboratory study using adults, Taylor 
et al. compared reading acquisition when training was 
biased toward orthography-to-semantics (OS) mappings 
versus orthography-to-phonology (OP) mappings. They 
trained literate adult participants to read two sets of 24 novel 
words which were written in two different unfamiliar 
alphabetic orthographies (in each orthography, one character 
related to one phoneme) – see Figure 1. Each novel word 
was assigned a familiar concrete noun meaning (e.g., /gɛd/ 
referred to camel, and /kɛs/ referred to parsnip), and the 
mappings between novel words and their referents were 
counterbalanced across participants).  

 

 
Figure 1. /gɛd/ and /kɛs/ in the artificial orthography from 

Taylor et al. (2017).  
 

Prior to reading training, participants were exposed to the 
mappings between phonology and semantics for the novel 
words. Then, participants learned orthographic-to-
phonological and orthographic-to-semantic mappings for 
both orthographies. For one orthography, participants 
received OP focused training, which involved three times as 
many orthographic-to-phonological training trials as 
orthographic-to-semantic training trials, whereas for the 
other orthography they received OS focused training, which 
involved three times as many orthographic-to-semantic as 
orthographic-to-phonological training trials. The results 
demonstrated that OP focused training led to better accuracy 
and speed in reading aloud, and it also had a transferable 
benefit to reading comprehension. By contrast, OS focused 
training resulted in faster but not more accurate reading 
comprehension, and showed no transferable benefit for the 
reading aloud task. 

Taylor et al. (2017) demonstrated that both reading aloud 
and reading comprehension accuracy could be promoted by 
focusing on OP mappings during reading training. However, 
unlike children learning to read for the first time, 
participants were acquiring an orthography which very 
likely piggy-backs on the reading system that the 
participants already have. Thus, an outstanding question is 
the extent to which prior language skills, particularly 

between phonology and semantics, are critical to the OP 
versus OS focused reading training differences. 

Furthermore, a key aspect of Taylor et al.’s (2017) study 
design was that participants were pre-trained on mappings 
between phonological and semantic forms for the novel 
words. This previously tuned phonology-semantics system 
is crucial to allow the transference of knowledge from 
training on OP mappings to access meaning from print, 
since this requires using not only the OP but also the PS 
routes within the reading system. 

According to the connectionist view of reading, then, 
phonics instruction will be most successful if the participant 
has acquired an effective level of oral language knowledge. 
Thus, in relating the laboratory-based studies of reading 
acquisition to the child’s task of learning to read, the relative 
contribution of training from OP and OS on reading 
acquisition needs to be considered alongside the 
contribution of pre-literate oral language skills. 

Computational models of reading 
Computational models of reading have converged on an 

architecture involving two different pathways that are active 
during reading – a subword orthographic to phonological 
pathway and an orthographic whole word pathway, which 
may map onto a whole-word phonological representation 
and/or a semantic representation of the word (Coltheart et al. 
2001; Plaut et al. 1996). There are also mappings between 
phonological and semantic representations, meaning that 
words can be comprehended both by direct OS mappings, 
and also indirectly via OP then PS mappings.   In the 
connectionist tradition, the relative contribution for 
generating phonology or semantics via different reading 
pathways is flexible, and can be determined by properties of 
individual words, such as high-frequency words more likely 
to be read via direct OS mappings, or due to properties of 
the orthographic system itself, such as ideographic writing 
systems more likely to utilize the direct OS mappings than 
alphabetic writing systems (Chang, Welbourne & Lee, 2016; 
Harm & Seidenberg, 2004; Plaut et al. 1996).  

In this study, we implemented the two reading schemes 
tested in Taylor et al.’s (2017) study, in order to determine 
whether the connectionist triangle model of reading is able 
to replicate the behavioural effects of an OP focused versus 
an OS focused training regime. Furthermore, we examined 
whether the advantage for the OP focused training 
demonstrated in Taylor et al.’s (2017) study was present 
even for the model with poor oral language skills, or only 
when well-established mappings between phonological and 
semantic representations were in place. Tracking the relative 
benefit of OP and OS focused training according to pre-
literate oral language skills enables greater clarity on how 
different reading training schemes may benefit readers with 
varying language abilities. 

Following Harm and Seidenberg (2004), we developed a 
fully implemented connectionist model of learning to read, 
that mapped between representations of orthography, 
phonology, and semantics of words. The model was 
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pretrained to different degrees of proficiency in mapping 
between phonological and semantic representations of 
words, to simulate pre-literate oral language skills. We 
tested three different quantities of pre-training to reflect a 
model with moderate, medium, and high levels of oral 
language skills, in terms of the overall fidelity of 
phonological and semantic representations within the model, 
and the proportion of words in the language for which the 
model was able to generate the correct semantic and 
phonological representations. We then compared the effects 
of two reading training regimes with different focuses of 
reading instruction – orthography to phonology (OP) 
focused model or orthography to semantics (OS) focused 
model. Prior to learning to read, both models received three 
different amounts of pretraining (i.e. 500, 1000, or 2000 
epochs) on mappings between semantics and phonology. 
The OP focused model then received three times as much 
training on the OP mappings, while the OS focused model 
received three times as much training on the OS mappings. 
We evaluated the model’s performance under these different 
training regimes using tasks of reading aloud and reading 
comprehension. 

 

 
Figure 2. The architecture of the developmental model of 

reading. 

Method 

Network Architecture 
The architecture of the model is shown in Figure 2, which 

was the same as the developmental model of reading 
implemented in Monaghan, Chang, Welbourne, and 
Brysbaert et al. (2017) and Chang, Monaghan, and 
Welbourne (2016). The model consisted of three key 
processing layers representing orthographic, phonological 
and semantic representations respectively, and four hidden 
layers that learned to map between the processing layers. An 
attractor layer, which contained 50 hidden units, was 
connected to and from the phonological layers. Similarly, 
there was a set of 50 hidden units for the semantic layer. The 
use of attractors was to help the model to develop stable 
phonological and semantic representations of words. The 
semantic layer was connected to the phonological layer 
through a set of 300 hidden units, and the phonological layer 
was connected back to the semantic layer through another 

set of 300 hidden units. The orthographic layer was 
connected to both the phonological and semantic layers 
through different sets of 500 hidden units. 

Training Corpus: Artificial Words 
The training corpus comprised 24 artificial words, taken 
from the materials in Taylor et al. (2017). For the 
phonological forms, all items were monosyllabic consonant-
vowel-consonant pseudowords. All items were constructed 
from 12 consonants (/m/, /t/, /g/, /b/, /k/, /d/, /n/, /s/, /z/, /v/, 
/p/, and, /f/) and four vowel phonemes (/ɛ/, /I/, /ɔ/, and, /ʌ/). 
For phonology, each word was represented in the 3rd, 4th and 
5th slots of a set of eight phoneme slots, with each slot 
consisting of 25 phonological features. Each word was thus 
positioned with its vowel at the fourth phoneme slot. The 
first three slots were for onset consonants, and the last four 
slots were for coda consonants, but because all words in the 
set had one onset and one coda consonant, only one of these 
slots was used during training (so for the word “tep” its 
phonology was represented as _ _ t ɛ p _ _ _, where _ 
indicates an empty slot). For orthographic forms, the 
correspondence between letters and phonemes was 
transparent (i.e., there was a one-to-one correspondence). 
For orthography, each word was represented across a layer 
containing 14 letter slots with each slot comprising 26 units, 
each of which could represent a distinct letter, so an 
alphabet up to 26 letters could be represented. Words were 
positioned with their vowel aligned on the fifth slot. 
Consonants preceding the vowel were positioned in slots 
right before the vowel and consonants following the vowel 
were positioned starting from the seventh slot. This 
representation was in alignment with Chang et al. (2016), 
which enabled words up to 14 letters to be represented. 
However, because all words were three letters in length, 
with one onset and one coda consonant, words occupied 
only the 4th, 5th, and 7th slots (so for the word “tep” its 
orthography was represented as _ _ _ t e _ p _ _ _ _ _ _ _). 
Note that we use here Roman alphabet as a short hand to 
reflect the alphabet used in the laboratory-based study. 
There is nothing particular in the representations used in the 
model regarding the particular alphabet used, only that the 
model is able to distinguish the letters from one another 
from the outset, but does not know the properties of the 
letters in other respects in advance of commencing training. 
   For semantics, a set of familiar objects consisting of six 
fruits and vegetables, six vehicles, six animals, and six tools 
were randomly assigned to the 24 artificial words. The 
semantic representation for each word was derived from 
Wordnet (Miller, 1990), following Harm and Seidenberg 
(2004). Each semantic representation was composed of 2446 
semantic features. The presence of semantic features was 
encoded as 1 and the absence of semantic features was 
encoded as 0 in the respective slot. 
  
Training Procedure 

The model was trained on the 24 artificial words. All the 
training parameters were exactly the same as those used in 
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our previous modelling work (Chang et al., 2016). The 
training process had two phases: pretraining and reading 
training. For the pretraining, the model learned to map from 
phonological to semantic (PS) representations in an oral 
vocabulary task and from semantic to phonological (SP) 
representations in a meaning naming task (e.g. picture 
naming). To investigate how oral language skills affected 
literacy development, three different amounts of pretraining 
were used – 500, 1000, or 2000 learning trials. For the oral 
vocabulary (PS) task, the phonological representation of the 
word was clamped at the phonological layer for eight time 
steps, and the model generated a semantic representation at 
the semantic layer. The difference between the actual and 
the target semantic representation was then calculated, and 
the weights on connections between all the layers were 
adjusted according to gradient descent backpropagation 
through time in order to reduce the error. The training rate 
was 0.1. Similarly, for the meaning naming task (SP), the 
semantic representation was clamped at the semantic layer 
for eight time steps, and the model was required to produce 
a phonological representation. In pretraining, the model 
additionally learned to develop a stable phonological 
attractor (PP), and a stable semantic attractor (SS), by 
presenting the phonological or the semantic representation 
for two time steps, then allowing the model to cycle 
activation for a further six time steps to reproduce the initial 
representation. During pretraining, these four tasks (PS, SP, 
PP, and SS) were interleaved, with 40% of trials for the oral 
vocabulary task, 40% of trials for the meaning naming task, 
10% of trials for the phonological attractor and 10% for the 
semantic attractor. For each trial, a word was randomly 
selected.  

After pretraining, the weights on connections between the 
semantics and the phonology layers were frozen. The model 
was then trained to learn to read with different focuses of 
reading instruction, in two separate simulations as either the 
OP focused or OS focused model. For the OP focused 
model, there were three OP trials for every OS trial, and for 
the OS focused model the reverse was true. For an OP trial, 
the model’s error at the phonological layer at the final time 
step was computed and then backpropagation with gradient 
descent adjusted the weights to reduce this error. For an OS 
trial, error was propagated from the semantic representation. 
Each model was trained for 1000 reading trials. For each 
reading learning trial, a word was randomly selected and 
presented at the orthographic layer for 12 time steps. Five 
versions of each model were trained with different random 
initial weights and different random samplings from the 
words. 

Testing Procedure 
For testing the model’s phonological output, we 

determined the number of words for which all phonemes 
were correctly produced. The closest phoneme 
representation from the set of all phonemes in the language 
was derived from the model’s actual production and this was 
then compared against the target phoneme. If the actual and 

target phonemes were the same, then the model was judged 
to have spoken the word correctly. For testing the model’s 
semantic output, the activation of units at the semantic layer 
was recorded. Accuracy was measured by computing the 
Euclidean distance between the model’s actual semantic 
representation and the semantic representation of each word 
in the training corpus. If the smallest distance was for the 
target representation then the model was judged to be 
correct. We examined how the different training focuses 
affected reading performance at various stages during 
training. 

Results 

Network Performance     
For the pretraining tasks, the model that was trained with 
500, 1000, and 2000 presentations achieved 74%, 89.6%, 
and 100% accuracy on the meaning naming (PS) task and 
41.7%, 80.2% and 97.9% accuracy on the oral vocabulary 
(PS) task, respectively. This pattern of results is in line with 
performance of the model when trained with a substantially 
larger vocabulary (Monaghan et al., 2017). The three 
training schedules thus reflect different levels of pre-literate 
oral language skills, from poorer through to near-perfect 
vocabulary knowledge. 

Figure 3 shows the average performance of the OP and 
OS focused models with the different amounts of pretraining 
at different stages of reading training. We analysed the 
model’s performance by using generalized linear mixed 
effects models with accuracies in reading aloud or reading 
comprehension as the dependent variable, depending on the 
task. Item and simulation (simulations one to five) were 
included as random factors, and training focus (OP or OS), 
reading time (epoch 100 to 1000) and pretraining (500, 1000, 
or 2000) were included as fixed factors.  

Overall, the model performed better on the tasks for 
which it had undergone intensive training. For reading aloud, 
the OP focused model performed better than the OS focused 
model. Adding training focus as a fixed factor resulted in a 
significant improvement in model fit compared to a model 
with random effects of item and simulation and with fixed 
effects of reading time and pretraining, χ(1) = 398.86, p 
< .001. For reading comprehension, the OS focused model 
performed better than the OP focused models, as again 
indexed by the fact that adding training focus improved 
model fit, χ(1) = 314.25, p < .001. 

However, the effect of pretraining had an asymmetric 
effect on the reading aloud and reading comprehension tasks, 
according to whether the model had been trained with OP or 
OS focus. For reading aloud, the effect of different levels of 
pretraining, reflecting oral language skills, had a null effect 
on performance for both the OP and the OS focused models. 
Adding pretraining as a fixed factor did not result in a 
significant improvement in model fit compared to a model 
with random effects of item and simulation and with fixed 
effects of reading time and training focus, p > .05. Note that 
the trajectories of the lines for the OS focused model for 500 
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and for 2000 pretraining trials are very close together, as 
they are for the OP focused model. In contrast for reading 
comprehension, the effect of pretraining had a substantial 
effect on the OP training focused model - adding pretraining 
as a fixed factor improved model fit compared to a model 
with random effects of item and simulation and with fixed 
effects of reading time and training focus, χ(2) = 34.42, p 
< .001. Specifically, after substantial pretraining (2000 
pretraining trials, producing close to 100% in oral 
vocabulary and meaning naming tasks), the performance of 
the OP focused model began to converge with that of the OS 
focused model. The beneficial effect of the OP training 
focus is strongest for the model with advanced oral skills 
prior to literacy onset. This observation was confirmed by 
the fact that adding the interaction between pretraining and 
training focus as a fixed factor improved model fit compared 
to the model containing random and fixed effects, χ(2) = 
9.86, p < .001. Looking at each level of pretraining, the 
difference between the OP focused model and the OS 
focused model was the smallest for 2000 pretraining trials, β 
= 1.47, followed by 1000 pretraining trials, β = 1.81, and 
then 500 pretraining trials, β = 2.01.   

These results for the skilled oral language model are in 
tune with the behavioural results from Taylor et al. (2017). 
Figure 3 (right) shows the performance of the participants 
trained with the OP versus OS focus languages on each day 
taken from Taylor et al.’s figures 3 and 4. Similar to the 
behavioural data, the performance of the OP and OS focused 
models converged after substantial training and this is likely 
due to the fact that the training sample was relatively small. 

 

 
 

Figure 3. The performance of the OP and OS focused 
models with different amounts of pretraining over the time 

course of the reading training (Left). The performance of the 
participants trained with the OP and OS focus languages on 

each day from Taylor et al. (2017, right). The error bars 
indicate ±SEM. 

Discussion 
   We developed a fully implemented connectionist model of 

reading that mapped between orthography, phonology, and 
semantics and explored the influence of oral language on the 
effectiveness of different types of reading instruction. The 
laboratory study on which this work was based indicated 
that focusing on learning mappings between print and sound 
also transferred to promote mapping between print and 
meaning, whereas focusing on learning print to meaning 
mappings resulted in deficiencies in learning print to sound 
and had little advantage for mapping from print to meaning. 
The consequences of this, if they extend to children’s 
learning, are that, given limited instructional time, learning 
should focus on phonics, rather than on meaning-based 
strategies for reading acquisition. 
    Our model replicated these effects: a model which 
focused on print to meaning (i.e., OS training focused model) 
had deficiencies in learning to map from print to sound, 
whereas a model which focused on print to sound (i.e., OP 
training focused model) was better at learning reading aloud 
tasks, and converged in performance for reading 
comprehension tasks with the OS training focused model 
which had three times as much experience of 
comprehension trials during training. 
   However, importantly this convergence was dependent 
upon the model’s preliteracy training. Only when the model 
had high accuracy in its mappings between phonology and 
semantics was it able to transfer performance from OP 
training trials to perform well on reading comprehension. 
This pattern of performance from the OP training focused 
model with high oral language skills was similar to the 
behavioural data reported in Taylor et al. (2017). Our 
computational results demonstrate that the advantage of OP 
focused training only pertains in cases where good oral 
language skills are present. This is because the transfer from 
OP training trials to OS task performance requires effective 
mappings from phonology to semantics. If these are not 
present then the effective learning of OP mappings in the 
model stops just there – any high fidelity representation of 
phonology cannot then accurately activate the target 
semantic representation. OP training, then, is only 
advantageous for reading comprehension when the learner 
has good oral language knowledge, consistent with the view 
that addresses the role of oral language in reading (Gough & 
Tunmer, 1986; Harm & Seidenberg, 2004; Plaut et al. 1996).  
   The results are thus far compatible with empirical 
evidence of the benefit of both print to sound decoding skills 
and oral language skills on reading ability (e.g. Curtis, 1980; 
Nation & Snowling, 2004; Ouellette & Beers, 2010; 
Ricketts, Nation, & Bishop, 2007), which relate to the two 
segments of the indirect route from orthography to 
semantics via phonology. Further investigation of the 
model’s performance will enable us to determine whether 
this is the way in which the model functions to solve the 
mapping tasks. We suggest that, for reading aloud, the direct 
OP pathway is likely to be most effective for performing the 
task regardless of the training focus, because the systematic 
mappings are easier to learn compared to the indirect OSP 
pathway which requires two arbitrary mappings. Thus, more 
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training of the direct OP pathway is likely to be beneficial. 
In contrast, for reading comprehension, the indirect OPS 
pathway may again be more effectively used, because it 
exploits a regular OP mapping and a previously learned 
arbitrary PS mapping, whereas the direct OS pathway is 
arbitrary and needs to be acquired. We might then expect the 
indirect pathway to have a substantial contribution to 
reading comprehension performance for both OP and OS 
focused training, in the context of highly accurate PS 
mappings.  
   Previous studies have showed that the division of labour 
between the phonological and semantic pathways in 
connectionist models of reading could be shaped by word 
properties or orthographic systems (Chang, Welbourne & 
Lee, 2016; Harm & Seidenberg, 2004; Plaut et al. 1996). In 
this work we show that reading instruction and prior oral 
language skill also seem to alter the division of labour. This 
is likely due to the broadly systematic versus arbitrary 
nature of OP versus OS mappings in English.  
   In summary, our simulation results have demonstrated that 
oral language skills mediate the effectiveness of reading 
instruction in early literacy development. In particular, the 
beneficial effects of print to sound instruction for reading 
comprehension depend on high levels of oral vocabulary 
knowledge. Thus, in line with the Simple View of reading, 
our modelling work suggests that teaching children about 
spelling-to-sound mappings needs to be accompanied by 
substantial training on oral vocabulary, in order to promote 
reading comprehension. Interventions based on promoting 
print to sound skills should also ensure effective oral 
language skills, in order to exploit the benefit of enhancing 
the regularities available in OP mappings in alphabetic 
writing systems. 
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Abstract

Vector-space representations provide geometric tools for rea-
soning about the similarity of a set of objects and their relation-
ships. Recent machine learning methods for deriving vector-
space embeddings of words (e.g., word2vec) have achieved
considerable success in natural language processing. These
vector spaces have also been shown to exhibit a surprising ca-
pacity to capture verbal analogies, with similar results for nat-
ural images, giving new life to a classic model of analogies as
parallelograms that was first proposed by cognitive scientists.
We evaluate the parallelogram model of analogy as applied to
modern word embeddings, providing a detailed analysis of the
extent to which this approach captures human relational sim-
ilarity judgments in a large benchmark dataset. We find that
that some semantic relationships are better captured than oth-
ers. We then provide evidence for deeper limitations of the par-
allelogram model based on the intrinsic geometric constraints
of vector spaces, paralleling classic results for first-order simi-
larity.
Keywords: analogy; word2vec; GloVe; vector space models

Introduction
Recognizing that two situations have similar patterns of rela-
tionships, even though they may be superficially dissimilar,
is essential for intelligence. This ability allows a reasoner to
transfer knowledge from familiar situations to unfamiliar but
analogous situations, enabling analogy to become a power-
ful teaching tool in math, science, and other fields (Richland
& Simms, 2015). Computational modeling of analogy has
primarily focused on comparing structured representations
that contain labeled relationships between entities (Gentner
& Forbus, 2011). However, the questions of where these re-
lations come from and how to determine that the relationship
between one pair of entities is the same as that between an-
other pair are an unsolved mystery in such models. Some
models, such as DORA (Doumas, Hummel, & Sandhofer,
2008) and BART (Lu, Chen, & Holyoak, 2012), try to learn
relations from examples, but have only demonstrated success
on comparative relations such as larger.

Another possibility is that the representations of entities
themselves contain the information necessary to infer rela-
tionships between entities and that relations do not need to
be learned separately. An instantiation of this hypothesis is
the parallelogram model of analogy (see Figure 1), first pro-
posed by Rumelhart and Abrahamson (1973) over 40 years
ago. In this model, entities are represented as points in a Eu-
clidean space and relations between entities are represented
as their difference vectors. Even though two pairs of points
may be far apart in the space (i.e., they are featurally dissim-
ilar), they are considered relationally similar as long as their
difference vectors are similar. Although Rumelhart and Abra-
hamson found that this simple model worked well for a small

domain of animal words with vectors obtained using multidi-
mensional scaling, little progress was made on the parallelo-
gram model after the initial proposal, with the exception of a
handful of reasonably successful applications (see Ehresman
& Wessel, 1978).

However, in the past few years, the parallelogram
model was reincarnated in the machine learning literature
through popular word embedding methods such as word2vec
(Mikolov, Sutskever, Chen, Corrado, & Dean, 2013) and
GloVe (Pennington, Socher, & Manning, 2014). These word
representations enable verbal analogy problems such as king
: queen :: man : ? to be solved through simple vector arith-
metic, i.e., vqueen− vking + vman results in a vector very close
(in terms of cosine distance) to vwoman. Word embeddings like
word2vec and GloVe have also been used successfully in a
variety of other natural language processing tasks, suggesting
that these representations may indeed contain enough infor-
mation for relations to be inferred from them directly. Re-
cently, researchers in computer vision have been successful
in extracting feature spaces that exhibit similar properties in
both explicit (supervised) (Radford, Metz, & Chintala, 2015)
and implicit (unsupervised) (Reed, Zhang, Zhang, & Lee,
2015) ways, yielding linearized semantic image transforma-
tions such as object rotations and high-level human face inter-
polations. The potential for applying the parallelogram model
of analogy to vector space models appears to be domain-
agnostic, broadly applicable to both semantic and perceptual
domains. This suggests a promising cognitive model and pro-
vides the opportunity to evaluate a classic theory in large-
scale, ecologically valid contexts.

man
woman

king

queen

Figure 1: The parallelogram model of analogy completes the
analogy king : queen :: man : ? by adding the difference
vector between king and queen to man. This forms a parallel-
ogram in the underlying vector space.

In this paper, we evaluate the parallelogram model of anal-
ogy as applied to modern vector-space representations of
words. Focusing on the predictions that this approach makes
about the relational similarity of words, we provide a new
dataset of over 5,000 comparisons between word pairs that
exemplify 10 different types of semantic relations. We find
that the parallelogram model captures human relational sim-
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ilarity judgments for some semantic relations, but not others.
We then show that human relational similarity judgments for
pairs of words violate the geometric constraints of symme-
try and triangle inequality, just as Tversky (1977) showed for
judgments of first-order similarity between words. This cre-
ates a challenge for any vector space model that aims to make
predictions about relational similarity.

Relational Similarity
One way to evaluate vector space models such as word2vec
and GloVe as accounts of analogy is to compare their as-
sessments of relational similarity – the similarity of the re-
lation between one pair of words to that of another – with
human judgments. A good foundation for this task is the
SemEval-2012 Task 2 dataset (Jurgens, Turney, Mohammad,
& Holyoak, 2012), which contains prototypicality scores
based on human data for word pairs that exemplify 79 dif-
ferent semantic relations. These relations were taken from a
taxonomy of semantic relations (Bejar, Chaffin, & Embret-
son, 1991) and are subtypes of 10 general types, such as
CLASS-INCLUSION, SIMILAR, and CONTRAST. Participants
were given three or four paradigmatic examples of a relation
and asked to generate additional examples of the same rela-
tion. A total of 3,218 unique word pairs were generated for
the 79 relations, with an average of 41 word pairs per rela-
tion. A prototypicality score for each participant-generated
word pair was calculated based on how often a second group
of participants chose the word pair as the best and worst ex-
ample of the relation among a set of choices. Table 1 shows
examples illustrating two representative subtypes of each of
the ten general types of relations.

According to the parallelogram model, two pairs of words
(A : B and C : D) are relationally similar to the extent that
their difference vectors (vB − vA and vD − vC) are similar.
How appropriate is this geometric relationship for the var-
ious semantic relations? As a preliminary investigation of
this question, we projected the 300-dimensional word2vec
vectors into a two-dimensional space using principal compo-
nents analysis separately for each relational subtype in the
SemEval dataset, and visualized the difference vectors for the
participant-generated word pairs from each relation. Figure 2
shows the difference vectors for the 20 relational subtypes
that are shown in Table 1.

Examining the difference vectors for each relation shows
that the parallelogram rule does not appear to capture all re-
lations. CASE RELATIONS Agent:Instrument (e.g., farmer :
tractor) shows a nearly perfect correspondence with what we
would expect under the parallelogram model, with all differ-
ence vectors aligning. However, many of the relations ap-
pear to have no clear geometric pattern. Nevertheless, simply
looking at projections of the difference vectors is not suffi-
cient to evaluate the power of geometric models of relational
similarity to capture various relations, because information is
lost in the projections. What is required is a detailed evalua-
tion on judgments of relational similarity between word pairs

Table 1: Examples of word pairs instantiating each of two
representative subtypes from each general relation type in the
SemEval-2012 Task 2 dataset

Relation type Subtype Example

1. CLASS- Taxonomic flower : tulip
INCLUSION Class:Individual river : Nile

2. PART-WHOLE
Object:Component car : engine
Collection:Member forest : tree

3. SIMILAR
Synonymy car : auto
Dimensional Simi- simmer : boil
larity

4. CONTRAST
Contrary old : young
Reverse buy : sell

5. ATTRIBUTE
Item:Attribute beggar : poor
Object:State coward : fear

6. NON-ATTRIBUTE
Item:Nonattribute fire : cold
Object:Nonstate corpse : life

7. CASE Agent:Instrument soldier : gun
RELATIONS Action:Object plow : earth

8. CAUSE-PURPOSE
Cause:Effect joke : laughter
Cause:Compensa- hunger : eat
tory action

9. SPACE-TIME
Location:Item library : book
Time:Associated winter : snow
Item

10. REFERENCE
Sign:Significant siren : danger
Representation diary : person

within each relation.
Although the SemEval-2012 dataset contains prototypical-

ity scores for the participant-generated word pairs within each
relation, which have been interpreted as the relational similar-
ities between the participant-generated pairs and the paradig-
matic pairs, prototypicality is influenced by other factors such
as the production frequencies of words (Uyeda & Mandler,
1980). Moreover, because participants were encouraged to
focus on the relation illustrated by the paradigmatic exam-
ples, the prototypicality scores may not have much to do with
the particular word pairs chosen as paradigmatic examples.
Experiment 1 aims to address these problems.

Experiment 1: Benchmarking Relational Similarity
To overcome the limitations of the SemEval-2012 Task 2
dataset for our purposes, we collected a new large dataset
that directly measures human judgments of relational simi-
larity between word pairs, focusing on comparisons between
word pairs with similar relations.

Participants We recruited 823 participants from Amazon
Mechanical Turk. Participants were paid $2.00 for the 20-
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1. CLASS-INCLUSION 
 Taxonomic

1. CLASS-INCLUSION 
 ClassIndividual

2. PART-WHOLE 
 Object:Component

2. PART-WHOLE 
 Collection:Member

3. SIMILAR 
 Synonymity

3. SIMILAR 
 Dimensional Similarity

4. CONTRAST 
 Contrary

4. CONTRAST 
 Reverse

5. ATTRIBUTE 
 ItemAttribute

5. ATTRIBUTE 
 ObjectState

6. NON-ATTRIBUTE 
 Item:Nonattribute

6. NON-ATTRIBUTE 
 Object:Nonstate

7. CASE RELATIONS 
 Agent:Instrument

7. CASE RELATIONS 
 Action:Object

8. CAUSE-PURPOSE 
 Cause:Effect

8. CAUSE-PURPOSE 
 Cause:Compensatory Action

9. SPACE-TIME 
 Item:Location

9. SPACE-TIME 
 Time Associated Item

10.  REFERENCE 
 Sign:Significant

10.  REFERENCE 
 Representation

Figure 2: Visualizations of difference vectors for 20 relational subtypes using two-dimensional projections of word2vec word
vectors obtained separately for each relation using principal components analysis.

minute study. We excluded 158 participants from the data
analysis because they failed two or more of the attention
checks (see below).

Stimuli The stimuli for this study were taken from the
SemEval-2012 Task 2 dataset. We were mainly interested in
how people rate relational similarities between participant-
generated word pairs within each of the 79 relational sub-
types. However, because the total number of such “within-
subtype” pairwise comparisons is still enormous, we selected
the most representative subtype for each relation type out of
the two shown in Table 1. The subtype we chose is the first
of each pair of subtypes that appears in Table 1. We then
randomly chose 30 word pairs out of the entire participant-
generated set for each of the 10 subtypes and formed all
possible within-subtype comparisons between these word
pairs. This created a set of 4,350 within-subtype compar-
isons. Finally, in order to encourage participants to use the
entire rating scale, we added 925 “between-subtype” com-
parisons, which are comparisons between word pairs from
different subtypes within a type (e.g., Object:Component and
Collection:Member, both subtypes of PART-WHOLE), and
925 “between-type” comparisons, which are comparisons be-
tween word pairs from the representative subtypes of differ-
ent relational types (e.g., Object:Component and Taxonomic
CLASS-INCLUSION).

Procedure Participants were given instructions about re-
lational similarity, which included an example of two word
pairs that have similar relationships (kitten : cat and chick
: chicken) and an example of word pairs with dissimilar re-
lationships (chick : chicken and hen : rooster). Participants
then viewed two pairs of words side-by-side on each page and
were asked to rate the similarity of the relationships shown by
the two word pairs on a scale from 1 (extremely different) to 7
(extremely similar). They rated 100 comparisons in a random
order, 70 of which were within-subtype, 15 of which were
between-subtype, and 15 of which were between-type. The
left-right order of the two word pairs on the screen was chosen
randomly (but order within pairs was of course maintained).
After every 20 trials, there was an attention check question
that asked participants to indicate whether two words are the
same or different.

Results & Discussion We obtained at least 10 good rat-
ings for each comparison, with an average of 10.74 ratings
per comparison. The mean rating across all comparisons was
4.52 (SD = 2.17). As expected, we obtained the highest re-
lational similarity ratings for within-subtype comparisons (M
= 5.01, SD = 1.98), mid-level ratings for between-subtype
comparisons (M = 4.02, SD = 2.14) and the lowest ratings for
between-type comparisons (M = 2.70, SD = 1.93).

We calculated relational similarity for each comparison us-
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ing word2vec and GloVe word representations. We used
the 300-dimensional word2vec vectors trained on the Google
News corpus that were provided by Google (Mikolov et al.,
2013), and the 300-dimensional GloVe vectors trained on
a Common Crawl web crawl corpus that were provided by
Pennington et al. (2014). We tested two measures of simi-
larity between difference vectors, cosine similarity and Eu-
clidean distance. Specifically, for a given comparison be-
tween two word pairs, A : B and C : D, letting r1 = vB− vA
and r2 = vD− vC, we calculated the cosine similarity,

r1 · r2

‖r1‖‖r2‖
,

as well as a similarity measure based on Euclidean distance,

1−‖r1− r2‖.

Cosine similarity is typically used to measure similarity in
vector spaces such as word2vec and GloVe. However, using
Euclidean distance corresponds more closely to the original
parallelogram model, in which not only the directions but also
the lengths of the difference vectors needed to be similar for
two word pairs to be considered relationally similar.

Figure 3 shows Pearson’s correlations between predicted
relational similarity scores and average human relational sim-
ilarity ratings on each relation type (including both within-
subtype and between-subtype comparisons) for each vector
space and similarity measure. There is considerable variation
in the performance of word2vec and GloVe in predicting hu-
man relational similarity ratings. As might be expected from
examining Figure 2, cosine similarity performs the best on
CASE RELATIONS (relation 7). However, cosine similarity
completely fails on SIMILAR (relation 3), CONTRAST (rela-
tion 4), and NON-ATTRIBUTE (relation 6). Euclidean distance
boosts performance on the latter two relations, but still under-
performs overall compared to most other relations. Neverthe-
less, Euclidean distance does perform very well on SPACE-
TIME (relation 9).

These results indicate that a single relational comparison
strategy cannot capture all semantic relations in the spaces
provided. It is unclear if such a result is a reflection of the
word embeddings or actual variation in human analogical
strategies. Next, we turn to the broader question of the ap-
propriateness of the class of geometric models in general for
representing human relational similarity behavior.

Violations of Geometric Constraints
Distance metrics in vector spaces must obey certain geomet-
ric constraints, such as symmetry (the distance from x to y
is the same as the distance from y to x) and the triangle in-
equality (if the distance between x and y is small and the dis-
tance between y and z is small, then the distance between x
and z cannot be very large). Cosine similarity, used to mea-
sure similarity between word2vec representations, also obeys
symmetry and an analogue of the triangle inequality (Grif-
fiths, Steyvers, & Tenenbaum, 2007). However, psycholog-
ical representations of similarity do not always obey these

constraints (Tversky, 1977). The famous example of this is
that people judge North Korea to be more similar to China
than the other way around, a violation of symmetry. Griffiths
et al. (2007) examined the word representations derived by
Latent Semantic Analysis (Landauer & Dumais, 1997), an-
other well-known vector space model, and found that these
representations are unable to account for violations of sym-
metry and the triangle inequality in human word association
data. Nevertheless, all prior work has focused on first-order
similarity between words, and second-order (relational) sim-
ilarity between word pairs might be expected to follow a dif-
ferent pattern. In this section, we show that human judgments
of relational similarity also do not satisfy the geometric con-
straints of symmetry and the triangle inequality. Vector space
models such as word2vec and GloVe cannot account for these
violations.

Experiment 2: Symmetry

In this experiment, we examined whether there were any
pairs of word pairs for which participants’ judgments of
relational similarity changed when the presentation order
was reversed. We might expect such asymmetry to occur
when a word pair has multiple relations and shares ones
of its less salient relations with another word pair. For
example, when presented with angry : smile – exhausted
: run, one might think, “an angry person doesn’t want to
smile” and “an exhausted person doesn’t want to run,” but
when presented with exhausted : run – angry : smile, one
might think,“running makes a person exhausted, but smiling
doesn’t make a person angry.” Thus, participants might give
high relational similarity ratings in the first presentation
order and low ratings in the second order.

Participants We recruited 1,102 participants from Amazon
Mechanical Turk, who gave informed consent and were paid
$1.00 for the 10-minute study. We excluded 99 participants
from the data analysis because they failed two or more of the
attention checks (see below).
Stimuli We randomly selected 220 within-subtype, 220
between-subtype, and 60 between-type comparisons from all
possible comparisons formed using the entire SemEval-2012
Task 2 dataset. We created two versions of each comparison,
in which the order of the word pairs were switched.
Procedure Participants were given instructions about rela-
tional similarity and the two examples used in Experiment 1
illustrating similar and dissimilar relationships. They saw one
word pair in each comparison first and were asked to think
of the relationship between the words. Then after a 600 ms
delay, the other word pair was shown and participants were
asked to rate the similarity of the relationships on a 7-point
scale. Participants rated 50 comparisons, including 22 within-
subtype, 22 between-subtype, and 6 between-type compar-
isons. Each participant viewed each comparison in only one
of its presentation orders. After every 10 trials, there was
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Figure 3: Pearons’s r between human relational similarity ratings and model predictions on different relation types for (a)
word2vec and (b) GloVe. The name and examples of each numbered relation type are shown in Table 1.

an attention check question that asked participants to indicate
whether two words are the same or different.
Results & Discussion We obtained about 50 ratings for
each comparison in each presentation order. We conducted
a t-test for each comparison to see if the two presentation
orders resulted in significantly different relational similarity
ratings. 77 of these t-tests were statistically significant at the
.05 level. The number of t-tests that we would expect to be
significant at the α = 0.05 level if presentation order did not
matter for any of the comparisons is 25. Assuming that the
t-tests are independent, a binomial test reveals that this devi-
ation is statistically significant, p < .001.

Examining the comparisons for which different presenta-
tion orders resulted in significantly different relational sim-
ilarity ratings confirms our guess as to when people’s judg-
ments of relational similarity might not obey symmetry. The
previously mentioned example of angry : smile and exhausted
: run indeed elicited higher ratings in the direction shown
here (4.76 mean rating) than in the opposite direction (2.36
mean rating). As another example, people rated hairdresser :
comb – pitcher : baseball as more relationally similar (6.10
mean rating) than pitcher : baseball – hairdresser : comb
(4.84 mean rating). In the first presentation order, participants
might be thinking that “a hairdresser handles a comb” and “a
pitcher handles a baseball,” whereas in the second presenta-
tion order, they might be thinking “a pitcher plays a specific
role in baseball,” which doesn’t fit with hairdresser : comb.

Experiment 3: Triangle Inequality

For this experiment, we created triads of word pairs for which
we expected people’s relational similarity judgments to vio-
late the triangle inequality, such as nurse : patient, mother :
baby, and frog : tadpole. This triad violates the triangle in-
equality because nurse : patient :: mother : baby is a good
analogy (relationally similar), and so is mother : baby :: frog
: tadpole, but nurse : patient :: frog : tadpole is not. In this
example, the middle pair has multiple relations and shares
one of them with the first pair and a different one with the
last pair. We presented the two word pairs in each analogy
together and asked participants to rate the quality of the anal-
ogy rather than relational similarity, because we wanted to
encourage participants to consider the two relations together
rather than using one relation as a reference.

Participants We recruited 71 participants from Amazon
Mechanical Turk, who gave informed consent and were paid
$0.50 for the 5-minute study. This group of participants did
not overlap with the participants in Experiment 2. We ex-
cluded 11 participants from the data analysis because they
failed one of the attention checks (see below).

Stimuli We created twelve triads of word pairs for which
analogy quality judgments are likely to violate the triangle
inequality. For every triad, the analogy formed between the
first and third word pairs was expected to be rated low and the
other two analogies were expected to be rated highly.

Procedure Participants were given instructions about ver-
bal analogies and the two examples used in Experiments 1
and 2 as examples of good and bad analogies, respectively.
They were then asked to rate the quality of each analogy on
a scale from 1 (very bad) to 7 (very good). For each of the
twelve triads, each participant viewed one of the three analo-
gies. Each participant received four analogies formed be-
tween the first and second word pairs of various triads (anal-
ogy type 1-2), four formed between the second and third word
pairs (type 2-3), and four formed between the first and third
word pairs (type 1-3). Because two thirds of these analogies
are expected to be rated highly, participants also viewed four
“filler” analogies expected to be given low ratings. Finally,
there were two attention check questions that asked to partic-
ipants to simply choose 1 (or 7) for a bad (or good) analogy.

Results & Discussion We obtained 20 ratings for each
analogy. We calculated the mean participant rating for each
analogy and conducted a one-way between-subjects ANOVA
to test if there was an effect of the analogy type (1-2, 2-3, or
1-3) on the mean analogy quality rating. This revealed a sig-
nificant effect of analogy type, F(2,33) = 45.57, p < 0.001.
Post hoc comparisons using the Tukey HSD test indicated
that the mean ratings for both type 1-2 analogies (M = 5.44,
SD = .99) and type 2-3 analogies (M = 5.43, SD = .63) were
significantly higher than the mean rating for type 1-3 analo-
gies (M = 2.99, SD = .46), p < .001, whereas the mean rat-
ings for type 1-2 and type 2-3 analogies did not differ signif-
icantly from each other. This is consistent with our expec-
tation that types 1-2 and 2-3 analogies would both be rated
highly, whereas type 1-3 analogies would be rated lowly.
These results indicate that participants’ analogy quality rat-
ings violated the triangle inequality.
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Figure 4: Mean human ratings and predicted relational simi-
larities (scaled to the range 0-1) for the triad lawyer : books,
chemist : beakers, and librarian : books. Error bars indicate
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We obtained the predicted relational similarity between the
word pairs in each analogy by calculating the cosine simi-
larity between difference vectors using word2vec and GloVe
representations. Then we conducted separate ANOVAs for
the two representational spaces to test whether there was an
effect of analogy type on the predicted relational similarity in
each space. Neither ANOVA indicated a significant effect of
analogy type. For word2vec, F(2,33) = 1.20, p = .31. For
GloVe, F(2,33) = .24, p = .79. These results indicate that
the predictions of relational similarity made by word2vec and
GloVe do not violate the triangle inequality for our stimuli.

Because each participant contributed ratings to more than
one analogy (although only one per triad), the observations
are not entirely independent in the first overall ANOVA that
we conducted on the participant data. Thus, we conducted
a separate between-subjects ANOVA for each of the twelve
triads to test if there was an effect of analogy type (1-2, 2-
3, or 1-3) on the analogy quality ratings for each triad. All
twelve ANOVAs were significant, with every p < .01. We
then conducted post hoc comparisons using the Tukey HSD
test. The pattern we expected was that types 1-2 and 2-3
analogies would have significantly higher ratings than type
1-3 analogies, but would not differ significantly from each
other. We observed this pattern for seven of the twelve tri-
ads. For every one of the remaining triads, the mean ratings
for the type 1-2 and type 2-3 analogies were higher than the
mean rating for the type 2-3 analogy, but which differences
were statistically significant differed among the triads. Fig-
ure 4 shows an example of one of the seven triads with the
expected pattern and compares the mean participant ratings
and predicted relational similarities for the three analogies.

Conclusions
Our results provide a clearer picture of the utility of vector-
space models of analogy. The parallelogram model makes
good predictions of human relational similarity judgments for
some relations, but is less appropriate for others. For exam-
ple, consider the word pairs represented as vectors in Fig-
ure 2. As one would expect, relation SIMILAR seems to be
best represented by a short difference vector rather than the
direction of the difference vector. More generally, in more
complex analogies with the source and target each consist-

ing of many points in the vector space, one could imagine
many ways of describing relationships between the two sets
of points.

More challenging are the constraints posed by the geomet-
ric axioms. In our datasets, we found considerable violations
of two of these axioms, which cannot be overcome through
better embedding methods. In light of this, it would be inter-
esting to follow the history of models of first-order similarity
in considering the use of featural representations (Tversky,
1977), exploring methods of measuring similarity in vector
spaces that are no longer subject to the constraints imposed
by the metric axioms (Krumhansl, 1978), or reformulating
the problem as probabilistic inference (Griffiths et al., 2007).
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Abstract 
 
Distributional learning research has established that humans 
can track the frequencies of sequentially presented stimuli in 
order to infer the probabilities of upcoming events (e.g., Hasher 
& Zacks, 1984). Here, we set out to explore anticipation of a 
stimulus after implicit distributional learning. We hypothesize 
that as people learn the category frequency information 
implicitly, response times will scale according to the relative 
frequency of the stimulus category. Twelve adult participants 
viewed photographs of faces, tools, and buildings while 
performing a simple classification task. We found that response 
times significantly decreased with greater frequencies in the 
distribution of stimulus categories. This result suggested that 
distributional information about the internal representations of 
the stimuli could be learned and indicated the possibility that 
participants anticipated the stimuli proportional to the 
probability of the category appearing and thereby reduced 
response times for the more frequent categories.  
 
Keywords: statistical learning; implicit distributional learning; 
anticipation; classification 

 
Introduction 

Although complicated and dynamic, our sensory 
environment contains regularities distributed both spatially 
and temporally. Previous studies have shown that humans 
can acquire information from a probabilistic structure, and 
they are able to predict the upcoming stimulus using 
distributional knowledge. In this study, we used behavioral 
methods to investigate anticipation prior to object 
classification after distributional learning of the object 
category frequencies.  

People are known to be sensitive to the distributional 
information, and they are able to actively use this information 
to make complex inferences, such as identifying underlying 
structures in sequences. Explicit probabilistic information 
can aid human decision-making in many situations (Arkes, 
Dawes, & Christensen, 1986; Wiggs, 1993; Lin, Kung, & 
Lin, 1997). In addition to explicit distributional learning, in 
fact, it is well established in the fields of human development, 
language acquisition, attention, and perception that people 
are sensitive to implicit distributional information (e.g., 
Attneave, 1953; Fiser & Aslin, 2002; Hasher & Zacks, 1984; 
Saffran, Aslin, & Newport, 1996; Tryk,1968; Turk-Browne, 
Scholl, Chun, & Johnson, 2009; Pelucchi, Hay, & Saffran, 

2009). In these studies, distributional information was not 
explicitly provided to participants, but the results showed that 
participants could track the stimulus input to infer its 
underlying causal structure and therefore make accurate 
predictions or judgments about which stimuli potentially fit 
or violate this structure. Thus, even when these statistical 
relationships are not explicitly presented and the stimuli are 
too numerous to be explicitly counted, people can discover 
an accurate distributional model of the input.  

Particularly, classification tasks have been used to test 
implicit distributional learning (Forster & Chambers, 1973; 
Stanners, Forbach & Headley, 1971; Stanners, Jastrzembski, 
& Westbrook, 1975; Whaley, 1978). Classifying responses 
can reflect distributional learning processes, as learned items 
can be recognized and discriminated from other items faster 
than unfamiliar items can.  For example, Whaley (1978) 
found that response times for word and non-word 
classification were substantially faster with high-frequency 
initial and final consonants than for words with low-
frequency consonants in initial or final position or both. 
Although in the context of language, this finding shed lights 
on the correlation between implicit distributional learning 
and response times, and it demonstrated the methodology of 
using a classification task to test this correlation.  

Response time has been used to measure anticipation in 
many studies (Haith, Hazan, & Goodman, 1988; Hinrichs & 
Krainz, 1970; Todorovic, van Ede, Maris, & de Lange, 2011; 
Turk-Browne, Scholl, Johnson, & Chun, 2010, Poulton, 
1950). Some of these studies have found that when 
participants were instructed to predict the upcoming stimulus, 
response times were faster for correct predictions than for 
incorrect predictions (Bernstein & Reese, 1965; Hinrichs et 
al., 1970). This finding suggests that anticipation of an 
upcoming stimulus influences the response time in the 
subsequent trial.  

However, the effect of adult observers’ use of implicit 
distributional learning on anticipation of the category of an 
upcoming stimulus remains largely unexplored. Most studies 
have focused on effect of frequency information about 
stimulus-stimulus association (e.g. Conway & Christiansen, 
2005; Kirkham, Slemmer, Johnson, 2002; O’Brien & 
Raymond, 2012; Olson & Chun, 2001; Turk-Browne, Jungé, 
Scholl, 2005), and little research have looked into the effect 
of the overall distributional information about the internal 
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representation of the stimuli (e.g. the categorical 
representation of the object).  

Here, we aimed to establish evidence for anticipatory 
representations of the category of the upcoming stimulus 
emerging from distributional learning. Turk-Browne et al. 
(2010) investigated implicit anticipation triggered by 
probabilistic information. Their behavioral result showed that 
when the participants observed and made classification 
responses to every trial, the participants reacted faster to the 
trials that can be predicted from their immediate preceded 
trials. Based on this finding, in the experiment, we measured 
participants’ anticipation of an object category by measuring 
the response times in a sequential classification task. We 
examined the anticipatory effects of the underlying 
distribution and predicted that response times for 
classification would decrease with greater category 
frequencies, suggesting that as people learned the category 
distributional information implicitly, anticipation was scaled 
according to the probability of the category appearing. 

Methods 
Participants  
Twelve participants were recruited (mean age = 20 years; SD 
= 1.7 years; 7 females, 5 males) and were compensated $10 
per hour. All participants were undergraduate students at the 
University of Rochester. All participants reported being 
right-hand dominant. The experiment took around 45 minutes 
to complete. The study procedures were approved by the 
Institutional Review Board of the University of Rochester, 
and participants received an informed consent document 
prior to the study.  

Materials 
We chose three categories of stimuli: faces, buildings, and 
tools.  Each category has specific brain areas that reliably 
respond to one of these categories but not the others (Epstein 
& Kanwisher, 1998; Kanwisher, McDermott, & Chun, 1997; 
Chao & Martin, 2000). The images from each of these 
categories were grey-scaled and edited to be the same size 
(640 × 480 pixels) using Preview software in Mac OSX. The 
images appeared in the middle of a 27ʺ iMAC monitor with 
1920 × 1080 resolution. The images appeared in the middle 
of the screen against a white background. Face images were 
acquired from the Chicago Face Database (Ma, Correl, & 
Wittenbrink, 2015); Building images were downloaded by 
Google Image search with the keywords “building” and 
“house”; Tool images were obtained from the BOSS database 
(Brodeur, Dionne-Dostie, Montreuil, & Lepage M, 2010). 

The frequency of each category (60%, 30%, or 10%) was 
counterbalanced across six different distributional conditions 
using Latin Squares (Winer, 1962). This manipulation 
counterbalanced carryover effects between conditions and 
ensured that participants see each of the conditions in the 
study. We chose 60%, 30%, and 10% as frequencies 
considering the number of trials in each block (30 trials) and 
condition (90 trials). These frequencies produce integer 
instead of the decimal number of trials in each condition. The 

complete information about these six conditions is shown in 
Table 1. 

Three adjacent buttons on the computer keyboard were 
marked as “F”, “H” and “T”. To exclude the motor-related 
confounds that were the interest of this study, the key 
mapping was counterbalanced across subjects. Subjects were 
asked to always use the same three fingers (index, middle, 
and ring fingers) for the same keys. 

 
Table 1: Distribution of categories in each condition 

 Faces Buildings Tools 
Num. of 

Trials 
Condition 1 60% 30% 10% 90 
Condition 2 60% 10% 30% 90 
Condition 3 10% 60% 30% 90 
Condition 4 30% 60% 10% 90 
Condition 5 10% 30% 60% 90 
Condition 6 30% 10% 60% 90 

Num. of 
Trials 180 180 180 540 
 

Procedure   
Subjects were asked to perform a simple classification task. 
The presentation of stimuli was programmed using 
MATLAB Psychophysics toolbox (Brainard, 1997; Kleiner, 
Brainard, Pelli, Ingling, & Murray, 2007; Pelli, 1997). The 
experiment took place in a behavioral testing cubicle. During 
each condition, the participants were instructed to press a 
designated key to indicate the category of each presented 
stimulus. A score was given based on the reaction time 

Figure 1: Illustration of the experiment experimental 
protocol of first three trials in one condition. After 

participants read the instructions, images appeared on the 
screen and participants responded accordingly by pressing 

corresponding buttons. A score would appear above the 
picture after the participant pressed a button. 
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immediately after each response (zero for inaccurate or 
missing trials), and a total score was presented after each 
condition. The scores were presented in order to provide 
feedback and motivate participants to give faster and more 
accurate responses, and they were not used in the analysis. 
Stimulus-onset asynchrony (SOA; 2000, 4000, and 6000 ms) 
was varied to prevent participants from predicting when the 
next stimulus would appear on the screen. Each trial had a 
fixed image duration of 1000 ms, and the image would not 
disappear after a response was recorded. Inter-trial interval 
(ITI) varied based on the SOA of that trial. Each subject went 
through all 6 conditions. Each condition had 3 blocks, and 
each block displayed 30 images. In total 90 images were 
presented in each condition, and 540 images in the whole 
experiment. The breaks between blocks were 15000 ms, and 
the breaks between conditions were two minutes. Instructions 
between each condition were designed to cue the participants 
to the new distributional information of the next condition: 
“Thank you for finishing the task. Please take a short break. 
A new but similar task will start in two minutes.” The 
illustration of the experiment experimental protocol of first 
three trials in one condition is shown in Figure 1. 

Results 
In total, 6480 responses were recorded (M = 521 ms; SD = 
107 ms; Accuracy = 0.948). For analysis, we excluded the 
trials with incorrect responses or no responses. And across all 
participants, 336 out of 6480 trials (0.05%) were excluded for 
this reason. Paired two-tailed t-tests showed that for all 
twelve subjects, mean response times of block 2 for each 
condition were significantly less than those of block 1, 
t=2.255, p=0.038<0.05; average response times of block 3 for 
each condition were significantly less than those of block 1, 
t=2.585, p=0.019<0.05; but average response times of block 
3 for each condition were not significantly less than average 
response times of block 2, t=-0.683, p=0.504. It is possible 
that subjects needed several trials to acquire the distributional 
information of the current condition and to replace the 
carryover distributional information from previous 
conditions. And after obtaining the current distributional 
information, the participants were able to perform the task 
using this knowledge. Thus, we excluded all trials from block 
1 of each condition. The analyses only contained correct 
responses from block 2 and block 3. Mean, standard 

deviation, and accuracy of response times for each category 
in each frequency are shown in Table 2.  

Using linear mixed-effects models in R, we compared 
response times for different stimuli in each distribution. We 
first used a 3-way interaction model (SOA × category × 
frequency), but did not find any significant 3-way interaction. 
Instead, a reduced 2-way interaction model (category × 
frequency + SOA × category + SOA × frequency) was 
estimated and reported in Table 3. Face was chosen as the 
arbitrary baseline category by R to prevent multi-collinearity 
in the indicator variables for the stimulus category. 

SOA did not significantly interact with Frequency, and 
only marginally varied across Category (p = 0.07). A main 
effect of SOA was also significant (p = 0.006). Therefore, 
although SOA was not a variable of particular interest, we 
retained it in the model to control for the possible effects of 
the pre-stimulus waiting period on the anticipatory 
representation and thus on the change in response times. 

Similarly, no main effect for Category was found, but we 
retained this term due to its significant interaction with 
Frequency (see below) and to account for Category-specific 
differences in baseline response rate (e.g., participants 
responded to faces faster than tools and buildings).  

The main effect of frequency was highly significant (p < 
0.001), consistent with our hypothesis that response times 
would differ as a function of the stimulus distribution. The 
post-hoc paired t-tests on subject-level mean response times 
found that response times indeed significantly decrease as the 
frequency of the stimulus category increased (60% vs. 30%: 
t(11) = -6.08, p < 0.001; 30% vs. 10%: t(11) = -5.01, p < 
0.001). 

The interaction between frequency and condition was also 
significant, so we examined the frequency effects specific to 
each category of the stimuli. We found that within each of the 
categories, response times generally decreased as its 
frequency increased (see Figure 2 for the summary of tests), 
although many of these tests would not survive correction for 
multiple comparisons. With the results from the linear mixed-
effect models and the t-tests, we can conclude that this effect 
is in line with our hypothesis that participants’ response times 
reduced proportionally to the increasing frequency of the 
category. 

We also looked at the estimated slopes for the frequency × 
category interaction in the model (Figure 3), which was 

Table 3: ANOVA performed on linear mixed-effects model with 2-way interactions 

 SS MS Num. DF Den. DF F p-value  

SOA 0.38 0.38 1 6119.5 7.644 0.006 ** 
Category 1.63 0.82 2 6119.3 0.676 0.509  
Frequency 4.72 4.72 1 6119.5 40.628 <0.001 *** 
Category × Frequency 0.34 0.17 2 6119.2 6.224 0.002 ** 
SOA: Category 0.14 0.07 2 6119.3 2.574 0.076 . 
SOA: Frequency 0.05 0.05 1 6119.5 1.963 0.161  

Notes. . p < .1; * p < .05; ** p < .01; *** p < .001	
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highly significant in the ANOVA. Steeper slopes indicate a 
stronger influence of frequency on that category. It is clear 
that frequency influenced face more than it influenced tool, 
and it influenced tool more than it influenced building 
(slope(face) = -2.123; slope(building) = -1.156; slope(tool) = 
-1.395).  

Discussion 
In this study, we showed behavioral evidence that response 
times decreased with the higher frequency of occurrence of 
the upcoming stimulus. The evidence consisted of lower 
response times for categories with the higher frequencies of 
occurrence in the input as opposed to the category with lower 
frequencies of occurrence. Higher probability could be 
reasonably more predictable and therefore facilitated 

classification response and reduced response times. This 
result could be explained if the response to each category 
engaged anticipatory processes that completed with the 
overall probability information across all categories. The 
results were in line with our hypothesis that the anticipatory 
representation acquired through distributional learning 
affects responses in a classification task by allowing faster 
response times according to the frequency of a category 
appearing.  

Previous studies have been focused on frequency 
information learning between specific stimulus-stimulus 
associations (e.g. Conway et al. 2005; Kirkham et al. 2002; 
O’Brien & Raymond, 2012; Olson & Chun, 2001; Turk-
Browne et al. 2005). However, no study, to our knowledge, 
has looked into the effect on distributional information about 
the internal representations of the stimuli. And here we 
present robust evidence that implicit distributional 
information about the internal representations of the stimuli 
could be learned, subsequently facilitated responses to trials 
of the more frequent category, and therefore caused the 
anticipation effect.  

We also found that participants could learn new 
distributional information and this new information could 
override the previously learned distribution relatively quickly 
(i.e., within 30 trials or one block of the experiment). 
Although our finding gives a rather coarse estimate of 
distributional learning efficiency due to the use of response 
times as an index of learning with relatively low resolution, 
this result provides strong evidence for on-line learning, 
because the participants were required to give a response on 
every trial. Some previous studies relied on off-line learning 
tests so that they have not been able to study the speed of the 
distributional learning. Other studies that looked into the on-
line learning of probabilistic information also suggested that 
probabilistic information could be obtained quickly (Abla, 
Katahira, & Okanoya, 2008; Turk-Browne et al., 2009), 
although these studies used probabilistic information about 
stimulus-stimulus associations instead of the overall 
distributional pattern of the stimuli.  

Additionally, results showed that building and tool 
categories were less affected by frequency than faces were. 
Humans are highly experienced at recognizing faces for 
evolutionary purposes (Leopold & Rhodes, 2010; Little, 
Jones, & DeBruine, 2010; Sheehan & Nachman, 2014), and 
therefore it is possible that human faces can be more quickly 
recognized and distinguished than other categories can. The 
perception of faces might have a lower minimal response 
time in the high-frequency condition, and thus participants’ 
performance for faces was far faster than the other conditions 
at the 60% frequency.  

At the beginning of the paper, we intended to measure the 
anticipation of the probabilistically distributed category using 
comparisons between response times. The above results, 
using response times as the indication of the anticipation 
effect, showed that the participants successfully learned and 
used the distributional information. However, although 
response time has been used in some studies as an indication 

Figure 3: Frequency × Category Effect 

	
Notes. * p < .05; ** p < .01; *** p < .001;  

ns: no significance 
Figure 2: Average response times for each category in each 
frequency. The error bars were indicated by one standard 

error of the mean. 
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of anticipation (Haith et al., 1988; Hinrichs et al., 1970; 
Todorovic et al., 2011; Poulton, 1950), it does not directly 
measure the neural response to anticipatory effect after 
distributional learning. It is possible that the categories were 
also directly encoded or primed at relative magnitudes in the 
brain as a function of frequency, producing this response time 
effect. This promising result from this behavioral experiment 
points to the possibility of a future experiment using 
neuroimaging techniques (e.g., fMRI) to test the hypothesis 
that probabilistically weighted brain activity also corresponds 
to the category frequencies, and can be found in the neural 
activity immediately prior to each trial.  

Further studies can combine our behavioral results with the 
ability to detect categorical specific activation using fMRI to 
explore the neural basis of anticipation after implicit 
distributional learning. The adaptive nature of human 
categorization assumes that categorization reflects the 
optimal estimates of the probability of unseen features of 
objects (Anderson & Milson, 1989). Turk-Browne et al. 
(2010) identified a neural mediator of anticipation for stimuli 
as a consequence of implicit distributional learning of paired 
and unpaired images using fMRI. A region of interest 
analysis of this study found increased activation of the 
category-specific brain area from the anticipation of that 
category and suppressed activation of the area when the 
predictive stimulus was from another category. These 
findings suggest that category-specific cortical activation due 
to implicit perceptual anticipation after implicit probabilistic 
learning is detectable in the category-specific brain regions 
using fMRI.  

In sum, our study gave behavioral evidence that 
anticipation for the category of the upcoming stimulus is 
proportional to the distribution over all the categories. In the 
future, we hope to see neuroimaging experiment that shows 
anticipation after distributional learning can be measured in 
brain activity, and the representation is proportional to the 
learned distribution. 
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Abstract 

The present paper examines what domain-general causal 
knowledge reasoners need for at least some outcome-variable 
types to construct useable content-specific causal knowledge. 
In particular, it explains why it is essential to have analytic 
knowledge of causal-invariance integration functions: 
knowledge for predicting the expected outcome assuming that 
the empirical knowledge acquired regarding a causal relation 
holds across the learning context and an application context.  
The paper reports two studies that support the hypothesis that 
preschool children have such knowledge regarding binary 
causes and effects, enabling them to generalize across 
contexts rationally, favoring the causal-invariance hypothesis 
over alternative hypotheses, including interaction (e.g., linear) 
integration functions, heuristics, and biases. 

Keywords: Causal induction; causal learning; causal 
invariance, rationality; cognitive development 

Introduction 
How do we humans best represent the world so that we 

are able to achieve desired outcomes? A basic requirement 
is that the world knowledge we acquire be useable.  
Whenever we use our past knowledge to achieve a desired 
outcome (e.g., avoid a certain food to prevent a skin or 
intestinal reaction), we are inevitably generalizing from the 
learning context (e.g., items for meals at home preceding 
past allergic reactions) to a subsequent new context (lunch 
at work the next day, food during foreign travel).  By 
contexts with respect to a cause in question, we mean 
occasions or settings where (known or unknown) enabling 
conditions and alternative causes of the target outcome may 
occur with different probabilities.  

By adulthood, humans appear to make causal judgments 
that suggest they assume causal invariance – namely, that 
causes operate in an invariant manner across the learning 
and application contexts – as a default and as a criterion for 
revising causal knowledge (e.g., Cheng, 1997; Liljeholm & 
Cheng, 2007; Lu, Rojas, Beckers & Yuille, 2016; Lu, 
Yuille, Liljeholm, Cheng & Holyoak, 2008). If the concept 
of causal invariance is essential to the construction of 
useable causal knowledge, we would expect young children 
to use it just as adults do. Alternatively, if the concept 
operates as an acquired strategy or heuristic in causal-
knowledge construction, young children would be less 
likely to use it, especially when its use requires 

mathematical skills that are far beyond the children’s 
general level of mathematical capability.  

A large literature on children’s causal reasoning shows 
that children are able to reason causally from a young age 
(e.g., Gopnik, 2009; Gweon & Schulz, 2011; Legare, 2012; 
Rakison & Krogh, 2012). For example, like adults, children 
can learn deterministic conjunctive or disjunctive causal 
relationships and generalize the relationship that better fits 
the evidence to other variables (Lucas, Bridgers, Griffiths & 
Gopnik, 2014). However, there has been little work on the 
essentiality of the causal-invariance concept in the shaping 
of causal knowledge.  In particular, it is not known whether 
children use that concept, rather than simple approximations 
or heuristics. Young children’s use of a probabilistic form of 
causal invariance would provide especially strong support 
for its essentiality.  

To see why knowledge of causal invariance is essential 
for constructing useable causal knowledge, consider 
situations in which a) there may be background causes 
present, b) these causes may vary from context to context, 
and c) the set of candidate causes under evaluation may not 
include one that generalizes well across contexts. Natural 
settings often hold these challenges.  When we want to infer 
what cures an illness, for example, the illness must have 
some non-zero probability of occurring due to some 
background generative cause. The illness need not occur 
across all individuals, suggesting that background 
alternative preventive causes may be present. And the 
illness may be more or less prevalent in different contexts 
(e.g., countries). The fact that the “no confounding” 
condition is a standard principle in experimental design is an 
indication of the pervasive need for the influence of a target 
cause to be teased apart from that of background causes. A 
further challenge is that our initial parsing of events to 
isolate distinct candidate causes may not yield predictions 
that generalize to application contexts. Moreover, 
generalizability is a matter of degree (Woodward, 2000, 
2003). We may encounter occasions on which a relation that 
we have assumed to be generalizable unexpectedly fails to 
hold (e.g., when on a trip up a tall mountain we find that 
eggs boiled the usual amount of time remain uncooked). 
The replicability crisis in medical research is a reminder of 
failures to generalize even in costly planned investigations, 
not to say in everyday inferences.  The need to go beyond 
one’s current set of candidate causes is ever present.  
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Given the goal of formulating useable causal knowledge, 
information about a failure to reach that goal – failure 
indicated by a notable deviation from the outcome expected 
assuming that the acquired knowledge generalizes when 
applied – would be useful for assessing whether to retain or 
revise that knowledge. Along with our colleagues, we have 
proposed that mathematical functions characterizing the 
sameness of influence of a cause across contexts – functions 
which differ depending on the form of the cause and effect 
variables (e.g., binary vs continuous) rather than their 
content (e.g., tobacco smoking causes lung cancer) – play a 
critical role in the construction of causal knowledge (e.g., 
Cheng, Liljeholm & Sandhofer, 2013; Cheng & Lu, in 
press). We term these causal-invariance functions. 
Whenever there are too many possible causal models to 
exhaustively evaluate, causal invariance is a helpful signal.  

We have further noted that the vastness of the search 
space of possible causal representations renders the use of 
causal invariance not merely helpful but essential. A basic 
tenet of cognitive science -- that our perception and 
conception of reality are our representations -- implies that 
the search space of the representation of reality is infinite. In 
an infinite search space, an exhaustive evaluation of the 
possible causal models is not merely practically infeasible, 
but in principle impossible.  Given the nature of the problem 
of causal knowledge construction, the need to go beyond 
one’s current candidate causes becomes clear. Deviation 
from the outcome expected based on causal-invariance 
functions serves as an essential navigating device. 

What if the need for revision is signaled instead by 
deviation from a causal-interaction (i.e., non-causal-
invariance) criterion?  In that case, that is, if candidate c’s 
influence on target effect e is expected to vary depending on 
the state of the background causes, there would be a 
deviation from expectation -- signaling a need to revise 
causal knowledge -- when the influence of c in fact 
generalizes across contexts. Conversely, no deviation from 
expectation would confirm that c interacts with background 
causes (its inferred influence therefore should not generalize 
across contexts). But no deviation from expectation means 
no signal to revise. Given an inverted signal to revise, in the 
infinite search space of possible representations of reality, 
the acquired causal knowledge is unlikely to hold when 
applied or to replicate when further tested. 

If our thesis on the essentiality of the concept of causal 
invariance is correct, we would expect young children to use 
the concept, even when its use requires mathematical skills 
that are far beyond the children’s general level of 
mathematical competence, and even though such usage 
contradicts an irrational but common practice in medical or 
business research. Our two studies on preschool-aged 
children tested their use of a causal-invariance versus a 
causal-interaction criterion. 

Analytic Knowledge of Causal Invariance 
For all situations, every observed outcome is inherently 

the outcome due to the totality of its causes; the contributing 

causal relations are not differentiable by observation. When 
background causes are present, the unobservability of 
causation requires that causal learners adopt an assumption 
(either tacitly or explicitly) regarding how the total causal 
influence that results in the observed outcome is 
decomposed into the influences by the candidate and the 
background causes. The functions characterizing the 
decomposition are often called integration functions.  
Causal invariance functions are integration functions that 
specify the sameness of causal influence across contexts. 
Different integration functions yield different causal 
conclusions (e.g., see Lu et al, 2008). Our Study 1 presents a 
situation where multiple integration functions yield 
qualitatively different causal recommendations. 

One might argue, however, “Why would a particular 
integration function have a special status? Which integration 
function is appropriate depends on the domain. Although 
causal-invariance functions explain the results from many 
experiments (e.g., see Lu et al., 2008), perhaps due to 
reasoners’ prior knowledge of how some causes combine 
their influences in certain scenarios, other integration 
functions may be more appropriate for describing how 
causal influences combine in other domains.” Even if 
causal-invariance functions are the default integration 
functions, the argument may go, “whenever these functions 
do not fit the data from a domain, they would be – and 
should be – given up in favor of a better-fitting integration 
function. Causal-invariance functions may be a 
convenience, but the key factor is how well an integration 
function explains causation in a domain.  Adherence to 
particular integration functions regardless of domain would 
be irrational.” This argument may appear to have empirical 
support: Adults and even children have been shown to be 
able to learn various causal integration functions and 
generalize their learning to novel variables presented in the 
experiments (e.g., Lucas et al., 2014; Melchers et al., 2004).  

To explain the relation between our work and work on 
integration-function learning, we make two distinctions: 1) a 
distinction between analytic and empirical knowledge (cf. 
Hume’s, 1739, “truths of reason” and “matters of fact”) and 
2) a part-whole distinction, between a “whole” cause 
(elemental or complex) and an interactive component within 
a whole cause. Whereas empirical knowledge is content-
specific and justified by experience or data, analytic 
knowledge is content- and domain-general (i.e., formal) and 
is justified by reason, by what deductively follows based on 
the meaning of the concepts in question. Previous work has 
studied the generalization of acquired empirical (data-based) 
integration functions.  In contrast, our work studies the role 
of a causal-invariance function as analytic knowledge, 
operating as a default and a revision criterion in causal-
knowledge construction, with both roles motivated by the 
(tacit) goal of formulating useable causal knowledge.   

The combination of biological factors that lead to 
“healthy forest growth” is a whole cause of that outcome; 
adequate nitrates in the forest soil is an interactive 
component in that complex whole cause. Arsonists and the 
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lumber industry are two other whole causes that influence 
that outcome. Likewise, the gravitational force from a 
celestial body y on a celestial x is a whole cause of x’s 
motion; the masses of bodies x and y and the distance 
between them are interactive components within that whole 
cause. The gravitational forces from other celestial bodies 
on x are other contributing whole causes of x’s motion, 
independently influencing that motion.  

Note that within the same domain (e.g., gravitational 
force), an interaction function (i.e., Newton’s law of 
universal gravitation) integrates the influences from specific 
component factors (e.g., the masses of the two celestial 
bodies in a pairwise gravitational force) and a causal-
invariance function (vector addition) integrates the 
influences from multiple whole (presumably non-
interacting) causes (e.g., the gravitational forces from 
multiple bodies on a target body simply sum up).  To enable 
prediction, the aim of causal-knowledge construction is to 
formulate whole causes (elemental or complex) that are 
teased apart from, that do not interact with, other causes 
(e.g., whole causes in the background). 

Because causal-invariance and causal-interaction 
functions exist within the same domain, empirical 
integration functions are content- or context-specific rather 
than domain-specific. Whether an acquired interaction-
integration function generalizes to other candidate causes 
depends on the perceived similarity between the relevant 
causal mechanisms (e.g., Lucas & Griffiths, 2010, Expt. 5; 
Wheeler, Miller, and Beckers, 2008, Expt. 3) as well as on 
situational variables (e.g., Wheeler et al., 2008, Expts 1 & 2; 
the demand characteristics of an experiment).  In contrast, 
causal-invariance functions (e.g., vector addition, the noisy-
AND-NOT function in Eq. 2) are formal, specific to 
variable types (vectors & binary variables, respectively), but 
general across domains, contents, and contexts. As 
explained earlier, for the goal of constructing useable causal 
knowledge, only causal-invariance functions can serve as a 
default and a revision criterion for integrating the influence 
of ideally whole candidate causes with the influence of 
(potentially unknown) other causes.  

Causal-Invariance Functions for Binary Variables 
The causal-invariance functions for two binary causes of a 

binary effect – a candidate cause of an outcome and the 
background causes as group – are as follows (e.g., Cheng, 
1997; Pearl, 1988). There are different but logically 
consistent functions for potentially generative and 
potentially preventive candidate causes. 

For a candidate cause c that potentially generates effect e 
and does so independently of alternative causes in the 
context, denoted a as a group, the probability of observing e 
is given by a “noisy-OR” integration function, 

 
where c ∈{0,1} denotes the absence and the presence of 
candidate cause c, e ∈ {0,1} denotes the absence and the 
presence of effect e, qc represents the generative power of 
the candidate cause c, and wa represents the probability that 

e occurs due to all background causes, known and unknown. 
For a candidate cause c that potentially prevents effect e, the 
probability of observing e is given by a “noisy-AND-NOT” 
integration function: 

where pc is the preventive causal power of c.  These “noisy-
logical” integration functions (terminology due to Yuille & 
Lu, 2008), under the assumption that there is no 
confounding [i.e., when P(a = 1|c = 1) = P(a = 1|c = 0)], 
imply respectively equations for estimating qc and pc. The 
equation for estimating preventive power pc, for example, is: 

 
Our experiments test preschoolers’ use of noisy-logical 

functions, the probabilistic version of disjunction, in their 
role as analytic knowledge of causal invariance for binary 
variables. Testing for knowledge of probabilistic causal 
invariance rather than deterministic disjunction provides a 
stronger test of our thesis. 

Preschooler Experiments 
Our two studies with preschool children tested our causal-

invariance hypothesis against alternative hypotheses, 
including ones in addition to the linear-integration rule 
tested in Liljeholm and Cheng (2007). The linear rule states 
that the observed value of the outcome is explained by the 
sum of the individual causal influences present. Our studies 
concern evaluating the effects of two treatments for 
removing (or preventing) an undesirable outcome, to decide 
which treatment best removes the outcome. Generalizing 
across contexts in the scenario involves generalizing from a 
farm context to a zoo context.  Study 1 tested a situation in 
which the noisy-AND-NOT and linear integration rules 
yield opposite recommendations for action, and the 
divergence does not diminish with increased sample size.   

Unlike the event frequencies in Liljeholm and Cheng’s 
experiments, the event frequencies in Study 1 (see Table 1) 
were constructed so that logistic regression and the linear 
rule recommend the same action (see Cheng et al., 2003 for 
an explanation of the shared recommendation), contrary to 
that recommended by the noisy-AND-NOT rule. Logistic 
regression is a widely used statistical procedure in the 
medical sciences for evaluating the causal effects of 
treatments for binary outcome variables.  Binary variables 
are common in medicine (e.g., whether or not a bone is 
fractured, a tumor is malignant, a woman is pregnant, a 
patient survives).  
    In both Studies 1 and 2, the children listened to an 
interactive story that concerns two brothers – a farmer and a 
zookeeper – who noticed that some of their animals had red 
dots on their faces.  They were told, “The animals didn’t 
seem sick at all, but the red dots made them look kind of 
funny.” They heard that two “really tasty” and healthy 
treats, one a grain and the other leaves, might make the red 
dots go away.  The brothers decided to figure out whether 
the treats work.  First, they visited the farm, and fed the 
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grain treat to every farm animal; later they visited the zoo, 
and fed both treats to every zoo animal.  
  Table 1 displays the pattern of event frequencies at the 
farm and at the zoo for Study 1. The critical “transfer” 
question is:  To relieve red dots on new farm and zoo 
animals that have red dots on their faces, if one has to 
choose one and only one treat, what is one’s best bet on 
which treat to use, grain or leaves?  Assume that neither 
treat has any bad effects. 

 

 Table 1:  Event frequencies for Study 1  

 
Intervention 

Farm 
Grain 
only 

 Zoo 
Grain &  
leaves 

Animals with dots: 
Pre intervention  

9/10  4/10 

Animals with dots: 
Post intervention  

6/10  1/10 

Number Cured 3  3 
Fraction Cured 3/9  3/4 
	
    Regardless of how “sameness of influence” is defined, the 
rationale underlying the choice is:  Assuming the grain 
operates the same way across contexts (i.e., farm and zoo), 
then if the influence of the intervention (grain at farm vs. 
both treats at zoo) is observed to be the same across 
contexts, one’s best guess would be that leaves had no 
influence – grain alone would already explain the outcome.  
But, if the influence of the intervention varied across 
contexts, one would attribute the difference to leaves.  

Whereas the causal-invariance function predicts 
recommending leaves, models adopting a linear integration 
rule, frequentist or Bayesian, recommend using grain.  Here 
we briefly sketch inferences according to the two rules (for 
prediction details see Cheng et al., 2013). 

First, according to the noisy-AND-NOT integration rule 
(using Bayesian maximum-likelihood estimates of causal 
strengths as the predictor), the outcomes at the farm suggest 
that the grain removes red dots in a farm animal with a 1/3 
probability. Assuming the grain’s efficacy remains the same 
for the zoo animals as for the farm animals, grain would be 
expected to remove red dots with a probability of 1/3 in 
every zoo animal. It should be clear that the treat ingested 
by each animal does not “know” what the treat does in other 
animals (the independent-trials assumption).  It follows that 
only 1/3 of the 4 zoo animals with red dots would be 
expected to have their red dots removed by the grain.  
Because in fact 3 of these 4 animals had their red dots 
removed, considerably more than 1/3 of the 4, the leaves 
must be explaining the large difference between the 
expected and the observed outcome.  The causal-invariance 
function therefore predicts recommending leaves for the 
new animals. Note the use here of deviation from invariance 
as a criterion for revising one’s causal beliefs, from grain as 
a preventive cause to leaves as a preventive cause also. 

In contrast, according to the linear integration rule, 
because 3 of 10 animals were “cured” both at the farm and 

at the zoo, the addition of the leaves treat at the zoo does not 
result in any additional cured animals. This rule therefore 
predicts that the leaves treat is noncausal, and recommends 
giving the new animals grain. 
  The transfer question can be equivalently stated in terms of 
an interaction with something in the context.  Both variants 
of the question address whether one’s initial causal belief 
regarding relieving red dots requires revision.  

Study 1 

Method 
Participants The participants were 29 children (13 male 

and 16 female) Children’s mean age was 3.42 years (range 
2.61 to 4.84 years, SD = .60 years). One additional child 
was excluded for failure to complete the task. Children were 
recruited from preschools in Los Angeles, CA. All children 
were fluent speakers of English and were learning English 
as a primary language. 

Procedure As mentioned, children first listened to the 
story about the farm and zoo animals with and without red 
dots on their faces. The farm animals received a grain treat 
intervention and the zoo animals received a simultaneous 
grain and leaves treat intervention. In the last part of the 
study, children were shown new farm and zoo animals and 
asked to choose between two potential interventions. 

Storybook Task The task was presented in a child 
friendly format, as an interactive storybook. The “reader” of 
the book was blind to any hypotheses of the study. Children 
were read the following cover story: 

“Once upon a time there were two brothers, one was a 
farmer and the other a zookeeper. The two brothers loved 
their animals very much and took very good care of them. 
One day, the brothers noticed that some of their animals had 
red dots on their faces.”  

After being reassured that the animals were not sick, the 
children were told about the two treats, and were asked to 
determine their efficacy. They were told that both tasty 
treats would be loved by the animals. 

“The two brothers decided to figure out whether the treats 
work.  First, they went together to the farm.  Then, they 
went over to the zoo.  Let’s look at what happened and see 
if YOU can figure out if the grain makes the red dots go 
away and if the leaves makes the red dots go away.” 

The farm context and the zoo context were presented 
separately, and the change in context was highlighted and 
emphasized. Animals in the farm context received the grain 
intervention only, whereas those in the zoo context received 
the grain and the leaves intervention in combination.  

Figure 1 depicts examples of the pre- and post- 
intervention pictures that children saw. Because it was 
critical for children to attend to 1) the presence or absence 
of the red dots and 2) the administered intervention, those 
aspects of the story were interactive. For example, children 
were told “Here is a cow before it ate anything today” and 
then were asked “Does this cow have any red dots?” 
Children’s responses were acknowledged (e.g., “You’re 
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right he does have red dots”). Children were then handed a 
cut-out of the treat to feed to the animal. Next, children were 
asked to make a prediction (e.g., “Do you think the cow will 
have red dots on its face now that it ate the grain?”) After 
the child replied, the experimenter said, “Let’s see!” and 
showed the picture of the treat inside the animal’s tummy, 
and the presence or absence of red dots was noted regardless 
of how the child answered (e.g., “Look no more red dots!”). 
This procedure was repeated with all twenty animals. 

	
Figure 1: Examples of the pre- and post- intervention 
pictures. 

Treat Selection The critical test was presented to children 
at the conclusion of the story. Children were shown two 
new animals (one farm and one zoo animal) with red dots on 
their faces and were asked to select only one of the treats, 
either the grain or the leaves, to make the animals’ red dots 
go away. 

Event Frequency Table 1 depicts the event frequencies 
for the Study 1. To control for primacy and recency effects, 
the first trial at the farm and at the zoo showed the same 
event type; likewise, the last trial at the two locations 
showed the same event type. (A replication of the study 
randomized trial order; see note at end of Study 2.) As 
explained earlier, the noisy-AND-NOT integration rule 
predicts choosing leaves, but the linear integration rule 
predicts choosing grain.  Note that the linear prediction 
requires a subset of the arithmetic steps required by the 
noisy-AND-NOT prediction. The linear rule also predicts 
the outcome at the zoo perfectly assuming fewer causes than 
the noisy-AND-NOT rule, namely, a single cause rather 
than two causes.   
 

Results 
Children were attentive during the storybook reading and 

rarely responded incorrectly about the presence or absence 
of red dots. Across all children and all questions there were 
7 initial incorrect responses (out of 360 total queries). For 
these seven responses children were corrected (e.g., “Look 
here are red dots”) and queried again. 
  The critical result concerned which treat children selected 
to make the animals’ red dots go away. As Figure 2 shows, 
children overwhelmingly chose the leaves X2 (1) = 12.4, p 
=.0004, suggesting that children’s responses fit with the 

noisy-AND-NOT rule rather than with the linear rule.  They 
did so despite the linear rule’s relative arithmetic simplicity 
and its perfect accuracy predicting the outcome at the zoo 
using fewer causes.  

 
Figure 2: Results from Study 1 depicting the number of 

children selecting the grain treat versus the leaves treat. 

Study 2 
There are alternative explanations for why the children 

selected leaves in Study 1.  The children’s attention could be 
biased toward the newer second treat.  The children might 
simply have a bias toward leaves. Or they might have used a 
heuristic: pick the treat uniquely associated with the fewest 
animals with red dots after the intervention. Previous related 
experiments have not ruled out analogous hypotheses. To 
rule out all three alternative explanations, Study 2 presented 
the same story but with the event frequencies in Table 2 to a 
separate group of preschoolers. As should be clear, the 
heuristics and biases still predict choosing leaves.  For 
example, as before, fewer animals had red dots after the 
intervention at the zoo than at the farm (one and two, 
respectively).  The noisy-AND-NOT rule predicts choosing 
grain this time; the “treatment” maintained the same 
preventive strength of ¾ at the farm and at the zoo.  Along 
with the above heuristics and biases, the linear rule predicts 
no change from the recommended action in Study 1. 

 
 

Table 2.  Event frequencies for Study 2 
  

 
Intervention 

Farm 
Grain 
only 

 Zoo 
Grain &  
leaves 

Animals with dots: 
Pre intervention  

8/8  4/8 

Animals with dots: 
Post intervention  

2/8  1/8 

Number Cured 6  3 
Fraction Cured 6/8  3/4 
	
 Method 

Participants The participants were 28 preschool-aged 
children (M= 4.38 years, range 2.61 years – 5.18 years, SD 
= .66 years). 14 were male and 14 were female. An 
additional two children were excluded for failure to 
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complete the task and/or attend to the story. Children were 
recruited similarly using the same criteria as for Study 1.  
  Procedure The procedure replicated that in Study 1 except 
that there were 16 trials in total, with the event frequencies 
for the farm and zoo animals as specified in Table 2. 
 

Results As before, the critical result concerned which treat 
children selected to make the animals’ red dots go away. 
Figure 3 shows that children’s pattern of responses reversed 
in Study 2: children were now significantly more likely to 
select the grain treat, X2 (1) = 5.14, p =.02. 

We replicated the pattern of results in Studies 1 and 2 in a 
variant in which the children were randomly assigned to the 
two studies, and the order of trials in each context (farm and 
zoo) was randomized for each child.  

 
Figure 3: Results from Study 2 depicting the number of 

children selecting the grain treat vs. the leaves treat. 

Discussion 
Our results favor young children’s use of a causal-

invariance function over use of the simpler linear function, a 
preference for one of the candidate causes, or a heuristic to 
choose the candidate more frequently paired with the 
desired outcome. Only the noisy-AND-NOT rule 
representing causal invariance can explain the opposite 
predominant choices across both our studies. More complex 
alternative hypotheses, such as use of the linear function in 
combination with a bias toward the candidate with the more 
frequent pairing, await further study. 

The goal of our present paper is to provide support for the 
essentiality of the concept of causal invariance, as a default 
and a criterion for belief revision, in the construction of 
useable causal knowledge, when the set of possible causal 
representations is too large to exhaustively evaluate.  Our 
findings indicating the early use of a probabilistic causal-
invariance function -- embodying the rather abstract concept 
of the unchanging nature of the forces of change -- suggest 
that the generalizability of causal knowledge, along with 
parsimony and logical consistency, is not a mere wish but a 
constraint in the rational construction of causal knowledge. 
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Abstract 

Fairness, or the ability to distribute resources in a manner that 
accords with societally recognized principles of justice, is a 
hallmark of human cooperation. Young children rapidly 
develop the ability to enact fairness, but the cognitive 
underpinnings of this ability remain unknown. The present 
study investigated 4-7-year-olds’ acquisition of three 
principles of fairness -- equality (the principle that all parties 
should have the same), merit (the principle that those who 
work harder should get more), and starting opportunity (the 
principle that those who started with less should get more)  -- 
in relation to their emerging cognitive control and memory for 
numerical information (numerical accuracy). Cognitive 
control predicted children’s equal sharing, whereas numerical 
accuracy predicted merit-based sharing. Children up through 
the oldest age we tested ignored starting opportunities. The 
results suggest that different principles of fairness may be 
underpinned by distinct cognitive processes.  

Keywords: fairness; cognitive control; resource distribution; 
children; social and cognitive development 

Introduction 
Fairness, or the ability to distribute resources in a manner 

that accords with societally recognized principles of justice, 
serves as a foundation for human cooperation and is a 
critical cognitive achievement of early childhood. In spite of 
the fact that the concept of fairness itself is ubiquitous, its 
specific manifestation varies across individuals, cultures, 
and social groups  (Schafer, Haun, & Tomasello, 2015). 
Even within a given cultural group, many possible 
principles of fairness exist. For example, people endorse the 
idea that principles of equality and merit are both fair. The 
key empirical question is how people shift between different 
potential principles of fairness and what accounts for the 
acquisition of these different forms of fairness. In this work, 
we explored the cognitive predictors of young children’s 
fairness behavior in a third-party resource allocation task. 

Recent work in developmental psychology finds that even 
infants possess rudimentary concepts of fairness  (Sloane, 
Baillargeon, & Premack, 2012; Schmidt & Sommerville, 
2012). Throughout preschool and middle childhood, 
children appreciate at least three distinct principles of 
fairness: equality  (Rakoczy, Kaufmann, & Lohse, 2016; 
Smith, Blake, & Harris, 2013), merit (Baumard, Mascaro, & 
Chevallier, 2012; Damon, 1975; Jara-Ettinger, Gibson, 
Kidd, & Piantadosi, 2015; Kanngiesser & Warneken, 2012), 
and starting opportunity  (McCrink, Bloom, & Santos, 2010; 
Ng, Heyman, & Barner, 2011). However, children do not 
always use these principles consistently. For example, 
although 3-year-olds pay attention to merit-based 
information (Baumard et al., 2012) and are able to 
incorporate it into their resource allocation decisions even 

when doing so is costly  (Hamann et al., 2011; Kanngiesser 
& Warneken, 2012), they often ignore information about 
merit and enact equal distributions instead  (Baumard, 
Mascaro, & Chevallier, 2012; Damon, 1975; Rizzo, 
Elenbaas, Cooley, & Killen, 2016).  

One possibility for these discrepant results may be that 
different principles of fairness are underpinned by unique 
cognitive processes. In this work, we investigated two 
potential cognitive processes underlying children’s resource 
distribution: children’s memory for numerical information 
and children’s cognitive control. Accurately encoding 
quantitative information is essential for both equality-based 
and merit-based allocation. Numerical skills operate at two 
levels for resource distribution tasks. First, a general 
numerical ability is necessary for children to execute even a 
simple division into two equal subsets that are matched on 
cardinal equivalence (see Muldoon, Lewis, & Freeman, 
2009; Sarnecka & Wright, 2013). Indeed, counting abilities 
have been proposed and also recently found to relate to 
children’s abilities to share resources equally  (Chernyak, 
Sandham, Harris, & Cordes, 2016; Frydman & Bryant, 
1988; Squire & Bryant, 2002). 

Merit-based distribution also requires attending to 
quantitative information about relative effort (i.e., that one 
person worked twice as hard as another) and subsequently 
incorporating that information into decisions about resource 
allocation (i.e., that the harder worker must therefore receive 
twice as much). Similarly, information about starting 
opportunities must be encoded in order to be used. Thus, 
sharing between two recipients based on merit or starting 
opportunity requires trial specific numerical encoding. In 
this work, we looked at whether children encoded exact 
numerical information for each trial or whether the 
information was encoded only approximately. 

Finally, we looked at children’s emerging cognitive 
control. Distributing resources according to merit or starting 
opportunity requires holding in mind multiple -- and often 
conflicting -- pieces of information and “rules” regarding 
resource distribution  (Zelazo, Helwig, & Lau, 1996). For 
example, a child must keep in mind that one person worked 
harder, but also that that person had a greater starting 
opportunity to begin with (McCrink et al., 2010). Prior work 
has found relationships between children’s inhibitory 
control and their abilities to execute the normatively 
appropriate resource allocation in costly first-party tasks  
(Blake, Piovesan, Montinari, Warneken, & Gino, 2015; 
Steinbeis & Over, 2017). In third-party tasks of the type that 
we investigated, cognitive control may serve as a behavioral 
tool through which they may control their behavioral 
responses and implement a target distribution. 
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In this study, we presented 4-7-year-old children with a 
series of trials in which children were presented with stories 
about animal characters that had expended either equal or 
unequal amounts of work in order to acquire resources that 
would be jointly sold. Each character also had either equal 
or unequal amounts of starting opportunities. After hearing 
each story, children were provided with a set of resources to 
split between these characters. We tested children’s memory 
for numerical information by asking children to recall the 
amounts of work and starting opportunities for each 
character after each trial. We also tested children’s cognitive 
control by administering the Happy/Sad Stroop task  
(Lagattuta, Sayfan, & Monsour, 2011). 

Method 

Participants 
Participants were 67 children (35 female, 32 male) between 
the ages of 4 and 7. This age-range included a younger age 
group of 33 4-5-year-olds (Mean age = 5.00; Range = 4.11 - 
5.82) and an older age group of 34 6-7-year-olds (Mean age  
= 7.10, Range = 6.00 - 8.03). Children were tested either in 
the laboratory or at a local preschool or elementary school. 

Materials 
Materials were 12 sets of storybook panels (described 
below), 8 sets of plastic cookies for the resource allocation 
tasks, and a set of 24 black and white pictures of smiley 
faces (12 representing sad faces and 12 representing happy 
faces) for the Happy/Sad Stroop Task. 

Procedure 
Children completed 3 pretest trials, followed by 8 focal 
resource allocation trials, followed by the Happy/Sad Stroop 
Task. All children were tested in a quiet room in the 
laboratory or at their local school by an experimenter. All 
children were videotaped with the exception of 6 children 
whose parents did not provide video consent and 4 due to 
technical issues. The experimenter or a trained research 
assistant also transcribed answers as children during test. 

 
Pretest Trials All children began were introduced to the 
structure of the storybook task via 3 pretest trials aimed at 
making children understand the relevant components of 
each story. In the first panel, the experimenter showed the 
child two dinosaurs and said that sometimes in the stories 
some characters will have different amounts. She then 
indicated that one dinosaur had way more candy than 
another, and asked the child to recount which dinosaur had 
more. In the second panel, the experimenter showed the 
child two dinosaurs and said one worked harder than 
another and asked the child to recount which one worked 
harder. Finally, in the last panel, the experimenter showed 
the child two dinosaurs and said both had the same and 
worked the same amounts. She then asked the child to 
recount whether either of the dinosaurs had more and also to 

recount if one had worked harder. Incorrect responses were 
followed with corrective feedback and re-prompts. 

 
Test Trials In each resource allocation trial, children were 
presented with two animal characters  (e.g., two cats) who 
each acquired resources to achieve a shared goal (e.g., 
catching fish to sell at the market). The characters 
contributed either equal or unequal amounts of work 
towards the shared goal (e.g., one cat caught 4 fish the other 
caught 2). The characters also had either the same or 
different starting opportunities (e.g., one cat fished from a 
pond with 4 fish whereas the other cat fished from a pond 
with only 2 fish).  
An example of the materials and wording of the task is 
shown in Figure 1 below. 

We used a 2 (Starting Opportunity: Equal or Unequal) x 2 
(Work Expended: Equal or Unequal) design in which we 
presented each child with 4 different trial types (2 of each 
type totaling 8 trials per child): (a) all equal trials (i.e., trials 
in which characters had exactly the same starting 
opportunity and expended the same amounts of effort); (b) 
equal opportunity, unequal work trial, (c) unequal 
opportunity, equal work trials (e.g., a trial in which two cats 
both obtain 2 fish, but one started with a pond that only had 
2 and another started with a pond that had 4), and (d) 
unequal opportunity, unequal work trials. In these last trials, 
characters produced unequal amounts of work, but also had 
different starting opportunities. For example, one cat caught 
2 out of 4 fish and another caught 1 out of 2 fish. The ratio 
of opportunity to work expended was thus equal.  

 
Figure 1: Example of a Resource Allocation Trial 

The types of trials and numbers used in each trial are 
summarized Table 1 below. As may be noted in this table, 
the work ratios between the two characters were 1:1 if equal 
and always 2:1 if unequal (i.e., the character who worked 
more obtained twice as much). Additionally, ratios between 

1765



 

 

a given character’s starting opportunity and work expended 
were also either 1:1 or 2:1. 

Each of these four trial types were presented in 2 blocks: 
a large number block in which we used relatively large 
numbers of starting opportunities and work expended (e.g., 
8 and 4 fish), and a small number block in which we used 
relatively small numbers of starting opportunities and work 
expended (e.g., 4 and 2 fish). Within each block, the 
presentation of the four different trial types were 
counterbalanced with a Williams Latin Square design. We 
also counterbalanced which block type (large vs. small) was 
presented first as well as whether the larger vs. smaller 
numbers appeared on the child’s right or left side. Each trial 
used one of four possible animal pairs: cats that fished fish, 
rabbits that grew carrots, bears that picked apples, and 
monkeys that picked bananas. Presentation of animal types 
and colors of animal characters were fixed.  
 
Resource Allocation After being read each scenario (trial 
type), children were shown 6 plastic cookies that the 
characters earned from their joint effort. Children were told 
that they had to decide which characters should get which 
cookies. Cookies were arranged in a linear array in between 
two cardboard boxes that depicted the two animal 
characters. We note that we used 6 cookies specifically 
because they enabled either distribution according to 
equality (i.e., 3 cookies to each character) or distribution 
according to a 2:1 merit ratio (i.e., 4 cookies to the harder 
worker and 2 to the less hard worker). We recorded the 
amount children gave to each character. 

 
Table 1: Numbers used in each trial type 

 
Trial Type  Starting 

Opportunity 
Work 
Expended 

Block 
Type 

All equal 
 

(8,8) (4,4) large 

Equal opportunity, 
unequal work 
 
Unequal opportunity, 
equal work 

(8,8) 
 
 
(8,4) 

(8,4) 
 
 
(4,4) 

large 
 
 
large 

 
Unequal opportunity, 
unequal work 

 
(8,4) 

 
(4,2) 

 
large 

All equal 
 

(4,4) (2,2) small 

Equal opportunity, 
unequal work 
 
Unequal opportunity, 
equal work 
 
Unequal opportunity, 
unequal work 

(4,4) 
 
 
(4,2) 
 
 
(4,2) 

(4,2) 
 
 
(2,2) 
 
 
(2,1) 

small 
 
 
small 
 
 
small 

Numerical Accuracy Following resource distribution for 
each trial, boxes and materials were closed and put away, 

and children were asked four questions to assess their 
memories for the numerical information presented to them 
in the trial: two questions asking them to recall the 
characters’ starting opportunities (e.g. “How many fish did 
green Kitty have in green Kitty’s pond? How about red 
Kitty?”) and two questions asking them to recall the 
characters’ work expended (e.g., “And how many fish did 
green Kitty get out of green Kitty’s pond? How about red 
Kitty?”). For each of these, we computed a continuous 
accuracy measure reflecting the Percent Absolute Error that 
children’s answers displayed  (Siegler & Booth, 2004). 
Percent Absolute Error (PAE) was calculated via the 
following formula: 
 

PAE =
|𝑐ℎ𝑖𝑙𝑑!𝑠 𝑎𝑛𝑠𝑤𝑒𝑟 − 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑎𝑛𝑠𝑤𝑒𝑟|

𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑎𝑛𝑠𝑤𝑒𝑟  
 
This score reflected the deviation of the child’s answer 

from the correct answer. For example, a child who answered 
that there were 5 fish when the correct answer was 4 would 
receive a PAE score of |5-4|/4 = 25%. Thus, high PAE 
scores indicated lower accuracy, and low PAE scores 
reflected higher accuracy (with a score of 0 indicating 
having correctly recalled the exact number). On each trial, 
each child was given two scores assessing trial specific 
numerical encoding: a Starting Opportunity PAE reflecting 
the average PAE of the two opportunity questions, as well 
as a Work Expended PAE reflecting the average PAE of the 
two work expended questions on that trial. These are labeled 
as trial specific because they reflected children’s accuracy 
for numbers on that specific trial only.  

Additionally, children received an Overall PAE reflecting 
numerical accuracy average across all 32 questions asked (4 
per trial), which reflected general numerical memory. This 
was referred to as general numerical memory because it 
reflected children’s tendency to correctly estimate numbers 
overall, not on any given trial. 
 
Cognitive Control After completion of all 8 resource 
distribution trials, children were administered a version of 
the Happy/Sad Stroop Task. Following procedures used in 
(Lagattuta et al., 2011), children were introduced to a happy 
and a sad face and asked to label them. They were then told 
they would be playing an “opposite” game in which they 
had to label happy faces as “sad” and sad faces as “happy”. 
After ensuring all children understood task instructions, 
children completed 4 practice trials (corrective feedback 
was provided) followed by 20 test trials (no corrective 
feedback). Children were given a Cognitive Control Score 
between 0-20 reflecting the number of correct test trials. 

Results 
Preliminary results showed no effects of gender or block 

type, so we collapsed data across these variables. We first 
sought to characterize children’s resource allocation 
decisions by coding the outcomes as equal, merit, or other 
(unequal for equal trials or against merit; see Figure 2).  
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We ran separate models predicting children’s tendency to 
share resources equally. We ran a within-subjects mixed 
linear model using equal sharing allocation as the dependent 
variable and Age (entered continuously), Work Expended 
(equal or unequal), Initial Opportunity (equal or unequal) 
and all interaction effects as the predictors. There was a 
significant main effect of Work Expended, F(1,528) = 
9.102, p = .003 a significant Age x Work Expended 
interaction, F(1,528) = 18.07, p < .001, and no other 
significant effects (p’s > .15). Thus, equal allocations were 
predicted by age and whether the characters had expended 
equal amounts of work. 

Figure 2: Allocation Types Across Trials 

 
Note. Merit-based sharing is impossible in Equal Work 

Expended Trials 
 
We also looked at predictors of merit-based sharing. 

Children were coded as having given a merit-based 
allocation if they had given more resources to the harder 
working character (i.e., one who produced a greater amount 
of resources). Because merit-based sharing was not possible 
in the All Equal trial, we excluded this trial from that 
analysis. There was a significant Age x Work Expended 
interaction, F(1,396) = 4.81, p = 0.03, and no other 
significant effects (all p’s > .09). Thus, children made more 
merit-based allocations with age. 

To better characterize these interactions, we explored how 
age impacted merit-based and equality-based sharing 
separately in each trial type. We thus ran follow-up models 
for equal work expended and unequal work expended trials 
using Age as a predictor. The results of these analyses are 
summarized in Table 2 (Model 1). We ran separate models 
using equal sharing as a response and then merit-based 
sharing as a response. 

As shown in Table 2, Age predicted equal sharing in the 
trials in which characters produced equal amounts of work 
(top panel of Table 2; All Equal and Unequal Opportunity, 
Equal Work trials), whereas Age predicted merit-based 
sharing in trials in which characters produced unequal 
amounts of work (bottom panel of Table 2). 

Therefore, confirming the previous analyses, all children 
ignored starting opportunities. However, age predicted 
children’s likelihood of selecting the “correct” allocation 
type in each trial - equal-based sharing in the trials in which 

characters produced equal amounts of work, and merit-
based sharing in the trials in which characters produced 
unequal amounts of work. 

We next investigated whether these age-related changes 
were explained by numerical accuracy or cognitive control. 
In particular, we first looked at whether children’s 
numerical accuracy predicted their resource allocation 
decisions. Recall that on each trial, each child was given 
two scores: a Starting Opportunity PAE and a Work 
Expended PAE. Preliminary analyses revealed no 
differences between the two PAE types, suggesting that 
children were equally adept at encoding both types of 
information. 

We first looked at the predictors of each PAE type. For 
each model, we ran a mixed linear model using Age, Work 
Expended, and Initial Opportunity as predictors. We also 
included Cognitive Control Total Correct as a covariate to 
ensure that any potential age-related changes in encoding 
accuracy were not simply attributable to changes in 
cognitive control. 

For Starting Opportunity PAE, there was a significant 
effect of Age, F(1,464) = 93.71, p < .001, with older 
children showing lower PAE (higher accuracy) for initial 
opportunity and no other significant effects (all p’s > .25). 

For Work Expended PAE, there was a significant effect of 
Age, F(1,464) = 43.89, p < .001, and a significant effect of 
Work Expended Trial Type, F(1,464) = 20.05, p < .001, 
with children showing worse encoding of work expended 
when the characters put in unequal amounts of work. 
Therefore, both age and trial type also predicted children’s 
recall of the work expended. Children were better at 
encoding numerical information when characters had 
expended equal amounts of work. 

Finally, we looked at predictors of Overall PAE. Age 
significantly predicted Overall PAE, F(1,55) = 24.32, p < 
.001, and Cognitive Control did not (once accounting for 
age; p = 0.42). Therefore, numerical accuracy and cognitive 
control were dissociable, despite both getting better with 
age. 1 

We next investigated whether these age-related 
differences in encoding accuracy might explain age-related 
changes in children’s resource allocation decisions. Because 
children ignored starting opportunities, we do not further 
consider the Starting Opportunity PAE. Recall that each 
child could be coded as giving either an “equal split”, 
“merit-based split”, or neither split (“other”). For the 
separate analyses we coded these as equal split or not and 
merit-based split or not. 

We first looked at predictors of equal sharing. Preliminary 
analyses revealed significant interactions between various 
predictors for the trial types. Therefore, we first considered 
the equal work trials only. We ran two mixed binary logistic 
regression models using equal sharing as a response variable 
and Age, Work Expended PAE, Overall PAE and Cognitive 

                                                             
1 In order to avoid biasing the results with children who were 

responding with nonsensical numbers, we excluded responses on 
which PAE scores were over 500% (n = 2) for this analysis. 
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Control as the predictors.2 The critical question was whether 
either Work Expended PAE or Cognitive Control might 
predict children’s equal resource allocation.  

As shown in Table 2, in the Equal Work Expended trials, 
Cognitive Control and Overall PAE (general numerical 
memory - the average error across the 32 questions asked) 
predicted children’s equal sharing behavior. Once Cognitive 
Control and Overall PAE were accounted for, there was no 
longer any significant effect of age. Therefore, both 
cognitive control and general numerical memory explained 
age-related changes in sharing resources equally. 

We then looked at predictors of merit-based allocation. 
As shown in Table 2, Work Expended PAE was related to 
the propensity to split resources meritoriously, but cognitive 
control and Overall PAE were not. Age continued to be 
related to the propensity to make merit-based splits. 
 

Table 2: Beta Coefficients (and Standard Errors)  
Response: Equal Sharing Equal Work 

Expended 
Unequal Work 
Expended 

Model 1 
        Age 

 
.40 (.13)** 

 
-.34 (.11)** 
 

Model 2 
Age 

       Cognitive Control 
       Work Expended PAE 

 
-.22 (.18) 
0.15 (.06)* 
-.46 (.35) 

 
-.50 (.14)** 
.11 (.06)* 
-.16 (.21) 

 
Model 3 

Age 
      Cognitive Control 
      Overall PAE 

 
 
-.24 (.18) 
.14 (.06)* 
-.28 (.13)* 

 
 
-.50 (0.14)** 
.13 (.05)* 
-.08 (.12) 

 
Response: Merit Sharing Equal Work 

Expended 
Unequal Work 
Expended 

Model 1 
        Age 

 
–  

 
-43 (.11)*** 
 

Model 2 
Age 

       Cognitive Control 
       Work Expended PAE 
 
Model 3 
       Age 
       Cognitive Control 
       Overall PAE 

 
– 
– 
– 
 
 

– 
– 
– 
 

 
 .35 (.15)* 
.006 (.06) 
-.89 (.40)* 
 
 
.40 (.15)** 
.006 (.06) 
.11 (.16) 

*p < .05; ** p < .01; *** p < .001 
 
The Table 2 results suggest two things: first, cognitive 

control and general numerical accuracy predicted 
propensity to make equal splits. Second, trial specific 
numerical accuracy for work expended (ability to properly 
encode merit-based information specifically) predicted 
children’s abilities to make merit-based splits on trials that 
called for merit-based splits (i.e., trials in which characters 
produced unequal splits). Both sets of results held when 
controlling for age, suggesting that age-related changes in 

                                                             
2 Because Overall PAE and Work Expended PAE were highly 

collinear and conceptually and empirically confounded, we ran 
separate models using each PAE type (see Table 2). 

equal sharing may be explained by changes in cognitive 
control and numerical accuracy, and that age-related 
changes in merit-based sharing may be partly explained by 
changes in encoding of merit-based information. 

Discussion 
Recent work has taken an interest in the cognitive 

predictors of fairness. Our findings are consistent with prior 
work showing a mostly equality-based principle during the 
preschool age shifting to a merit-based principle by middle 
childhood. We extend these findings by showing that 6 and 
7-year olds actively create merit-based distributions even 
when making equal allocations is a viable alternative. Most 
importantly, we point to two cognitive predictors of sharing 
behavior: children’s numerical encoding ability, and their 
emerging cognitive control, each of which exerted a unique 
effect on children’s abilities to make resource allocations. 

One possibility for why young children often do not 
employ merit-based resource allocations may be that they 
fail to encode trial-specific numerical information to begin 
with. Our findings show that this may be the case: encoding 
accuracy for the amount of work that each character 
expended predicted merit-based resource distribution on 
trials that called for such distribution. Interestingly, 
numerical encoding accuracy for starting opportunity 
information did not predict allocations based on this 
information. Thus, 6- and 7-year olds specifically encoded 
information about starting opportunity but did not use this 
information when allocating resources. 

 The effect of numerical accuracy held even when 
controlling for changes in age and cognitive control. Prior 
work has found that, in third-party unequal work tasks, 
younger children can and do distribute resources according 
to merit but under simplified conditions such as when an 
unequal allocation is the only option (Baumard et al., 2012). 
Three- and 5-year olds are also capable of using merit in 
first person distributions but the strategies used vary widely 
(Kanngiesser & Warneken, 2012).We propose that these 
individual differences may be explained by differences in 
the ability to accurately encode numerical information 
inherent in meritocratic situations.  

In contrast to the cognitive processes for merit-based 
allocations, equal allocation decisions depended on general 
numerical encoding. This result falls in line with prior work 
finding that general numerical cognition (i.e., counting 
ability) predicts equal sharing among preschool-aged 
children (Chernyak et al., 2016). General numerical 
accuracy and counting ability may tap into the same 
underlying construct of numerical fluency and 
understanding of numbers, which may then help children 
with creating equal sets of resources. 

We also found that children’s emerging cognitive control 
predicted equal, but not merit-based, allocations across all 
trial types. This suggests that cognitive control serves as a 
general behavioral tool that allows children to choose equal 
outcomes in spite of inequalities present in the scenarios. 
One possibility for why this might be the case is that older 
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children have acquired and might therefore need to inhibit 
other potential principles (e.g., merit) in order to enact the 
equality. Alternatively, cognitive control may simply help 
children ensure that two equal sets have been created. Most 
importantly, cognitive control failed to predict merit-based 
resource distribution, suggesting a dissociation between the 
types of cognitive mechanisms required for equality and 
merit-based resource allocation.  

Few children used the information about starting 
opportunities, despite encoding this information. Although 
work has found that children are able to make evaluations of 
others’ work based on their starting opportunity (McCrink et 
al., 2010; Ng et al., 2011), to our knowledge, there is no 
current work that has shown that children then use those 
evaluations to make resource allocation decisions. We 
therefore propose that children may be well aware of 
existing inequalities, but do not actively use such 
information when making resource allocation decisions. 

Overall, our work points to two important cognitive 
predictors for different fairness principles. We propose that 
searching for individual differences in children’s cognitive 
abilities may help account for and ultimately shape their 
social preferences. 
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Abstract 

Prior studies on older adults’ risk taking have paid little 
attention to the healthcare domain or social influences on 

decision making. This study examined age-related differences 
in medication risk taking and the effects of a collaborative 
decision-making experience on individuals’ tendency to take 

risks. We recruited 24 younger (mean age = 19.50, SD = 1.41) 
and 24 older adults (mean age = 70.54, SD = 2.30), and asked 
them to choose between hypothetical medications that 

differed in probabilities and outcomes of treatment success. 
To investigate the effects of risk-neutral versus risk-
advantageous trials, participants chose between a risky option 

and a sure option that had equal expected values (risk-neutral) 
or between a risky option and a sure option that had a lower 
expected value (risk-advantageous). Participants completed 

the decision task first individually (the pre-collaboration 
phase), then in dyads (the collaboration phase), and once 
again individually (the post-collaboration phase). During the 

pre-collaboration phase older adults showed a smaller 
increase in risk-taking tendency in response to risk-
advantageous trials compared to younger adults. The pre-and 

post-collaboration data showed that older adults’ risk 
preferences converged towards their partner’s preference to a 
greater extent following collaboration relative to younger 

adults. These findings highlight the importance of designing 
decision aids to encourage older adults to take risks when risk 
taking is beneficial, and considering how social processes 

influence patients’ medication decisions. 

Keywords: risky decision making, health, aging, social 
influence 

 

When choosing between options in health care, the degree 

of risk involved is an important consideration that younger 

and older individuals must make. For example, an 

individual may have to choose between painkillers that have 

different probabilities of treatment success. A National 

Health Interview Survey in 2012 showed that 86% of US 

older adults aged 65 or older have at least one chronic 

condition, and 61% have at least two chronic conditions, 

compared to 27% and 7% of US adults aged 18 to 44 

(Ward, Schiller, & Goodman, 2014). As older adults are 

more likely to have multiple chronic conditions, they may 

need to make more medical choices involving risks. 

Individuals often discuss their health care decisions with 

family members, friends, or physicians. Despite the plentiful 

literature on shared decision making between patients and 

physicians, the emphasis is rarely on how a collaborative 

experience would affect subsequent health-related behavior 

of individuals. The lack of research on this area demands 

attention because it is common for individuals to make a 

number of choices on their own after their discussion with 

other people. There is evidence that family and friends 

influence the health-related attitudes and beliefs of patients, 

particularly those who are less educated and non-white 

(Thompson, 2013). Therefore, research should consider how 

discussions about health care decisions take place within 

patients’ social networks and how to improve the resulting 

decisional outcomes. One of the most common health care 

decisions facing patients is medication risk taking. 

Age-related Differences in Risk Taking 

Risk-Neutral Decisions 

Most studies on aging and risk taking asked participants to 

make risk-neutral choices, which involve a risky option and 

a sure option that have equal expected values. The expected 

value of an option is calculated by multiplying outcomes by 

their respective probabilities, and taking the sum of the 

products (Bernoulli, 1954). A higher expected value 

represents a higher average value in the long run assuming 

the same option is chosen repeatedly. 

A recent meta-analysis of these studies found that older 

adults were more risk averse than younger adults in making 

positively framed decisions (Best & Charness, 2015). 

Positively framed decisions refer to choices in which 

positive aspects of the scenarios are highlighted using 

wordings such as “keep” and “save”. This finding can be 

explained by fuzzy-trace theory. 

Fuzzy-trace theory postulates that people simultaneously 

store and access two types of representations (Reyna & 

Brainerd, 2011). A verbatim representation reflects the 

precise information. In contrast, a gist representation 

captures the subjective interpretation of information based 

on emotion, experience, level of development, and is vague 
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and qualitative. In the context of the Asian disease problem 

(Tversky & Kahneman, 1981), a gist representation of a sure 

option of “saving 200 people” would be “saving some 

people” whereas a gist representation of a risky option of “a 

one-third probability of saving 600 people and a two-thirds 

probability of saving no people” would be “some 

probability of saving some people and some probability of 

saving no people.” Hence, fuzzy-trace theory suggests that 

people would choose the sure option when they represent 

the positively framed situation at the gist level. Older adults 

are more likely than younger adults to rely on gist 

processing because they may have learned that it is a more 

effective means of making decisions (Peters, Hess, Västfjäll, 

& Auman, 2007). In addition, gist processing is relatively 

well preserved with normal aging although verbatim 

processing declines as people age (Reyna & Brainerd, 

2011). Older adults’ decisions are more gist-based, which 

may account for their tendency to be more risk averse in the 

positive frame. 

The meta-analysis revealed that the presence of the age 

effect depended on the amount and the scenario type (Best 

& Charness, 2015). That is, the age effect was found in 

small-amount financial and large-amount mortality 

scenarios, but not in large-amount financial and small-

amount mortality scenarios.  Younger and older adults’ 

levels of risk taking depended on the scenario. Owing to the 

primary use of either financial risk seeking scenarios or the 

Asian disease problem in the aging literature, past findings 

on age-related differences in risk taking may not generalize 

to medication decision making. 

Risk-Advantageous Decisions 

Studies have also explored younger and older adults’ risk 

taking tendencies in situations where risk seeking is 

advantageous and disadvantageous. From an economic 

perspective, an option with a higher expected value is better 

than an option with a lower expected value. Analyzing trials 

on which the expected value of the risky option was more 

favorable than that of the sure option, older adults were 

shown to be more risk averse than people of age 5 to 64 

(Weller, Levin, & Denburg, 2011). That is, older adults 

were less risk taking than younger adults when risk taking 

was beneficial. However, that study used very broad age 

ranges. 

Based on Peters et al. (2007), and Reyna and Brainerd 

(2011), older adults have an increased tendency to use gist 

processing relative to younger adults. Thus, they may be 

less sensitive to the expected values of the sure and risky 

options and more likely to stick to their preferred options on 

risk-neutral trials than younger adults. 

Collaborative Decision Making 

If we consider how common it is for people to exchange 

views with others in everyday situations of making health 

care decisions, it is necessary to understand medical 

decision making in a collaborative context. Collaboration in 

patient-physician relationships is not emphasized in the 

traditional care model, which depicts patients as passive 

followers of the orders set by physicians. However, a new 

collaborative care model is replacing the traditional model 

(Mitzner, McBride, Barg-Walkow, & Rogers, 2013). In the 

collaborative model, patients and physicians share the 

primary caregiving responsibility and make decisions 

together. Hence, investigating collaborative decision making 

and how it influences decision makers’ subsequent decisions 

would help people make better use of others’ opinions. 

Collaborative decision making has been studied in social 

psychology. Group decision-making phenomena that have 

been observed include group polarization and group 

convergence. The former occurs when the decisions made 

by groups are more extreme than the initial position of its 

members (Sunstein, 2002). Group convergence was found 

in Bixter, Trimber, and Luhmann’s (2017) study that 

focused on intertemporal monetary preferences. Individuals’ 

post-collaboration decisions converged towards their 

respective group decisions. The social comparison process 

was proposed to explain the findings. Participants might 

have changed their preferences in accordance with their 

group members’ preferences because they viewed others’ 

behavior as a source of information about normatively 

appropriate behavior. Using a risky decision task, another 

study demonstrated a similar behavioral change (Suzuki, 

Jensen, Bossaerts, O’Doherty, 2016). Participants’ risk 

preferences shifted towards the observed person’s 

preferences. Research is needed to better understand 

whether a group polarization or group convergence effect 

would be present in medication risky decision-making 

scenarios. 

Age Differences in Susceptibility to Social Effects 

Given evidence suggesting age-related differences in 

decision making between younger and older adults, it is 

reasonable to ask whether younger and older adults’ 

experience of making decisions in a group would influence 

their individual decisions differently. Age-related 

differences in the tendency to be influenced by others have 

been investigated for young age groups. In Gardner and 

Steinberg’s (2005) study, participants made riskier decisions 

and exhibited more risky behavior when in peer groups, and 

the influence of peers on risky decision making and risk 

taking was stronger among adolescents and youths than 

adults. However, no research has assessed age-related 

differences between younger adults and older adults. 

One finding which suggested that older adults might be 

more prone to social influence than younger adults in 

making decisions is the age-related difference in perceived 

decision-making competence. Older adults rated themselves 

as less competent decision makers than did younger adults 

(Bruine de Bruin, Parker, & Fischhoff, 2012). Despite older 

adults’ accumulation of experience, they may have rated 

their decision-making competence based on perceived 

declines in their fluid cognitive abilities. Owing to their 

lower perceived competence, older adults might change 

their decisions more easily when different views are 
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presented. This prediction is supported by the finding that 

participants who lacked confidence in their answers to 

health knowledge questions were significantly more likely 

than those who were confident to change their answer after 

receiving online social feedback (Lau & Coiera, 2008). 

Furthermore, previous research has demonstrated that higher 

uncertainty strengthened social effects on memory reports 

(Walther et al., 2002). If older adults are less confident and 

thus more uncertain about their decisions, they might be 

more susceptible to social influence. 

Overview of Study 

Although older adults often have multiple medical 

conditions and need to make health care choices involving 

risks, past research has not assessed age-related differences 

in risk taking for medication decision tasks. The goal of the 

current study was to study age differences in medication risk 

taking when risk taking was advantageous or neutral. 

Younger and older adults were asked to make choices 

between medications that involved varying probabilities and 

outcomes of treatment success. On risk-neutral trials, they 

chose between options that were equally favorable. On risk-

advantageous trials, they chose between options that favored 

risk taking. To investigate the effect of collaboration on 

subsequent individual decisions, they were asked to 

complete the decision task first independently, then in 

dyads, and finally independently. Hypotheses were: 

H1: older adults are less risk taking than younger adults. 

H2: people are more risk taking on risk-advantageous 

trials than on risk-neutral trials. 

H3: there is an age by trial type interaction such that older 

adults show a smaller increase in risk taking when risk 

taking is beneficial. 

H4: older adults, compared to younger adults, are more 

likely to be influenced by others. 

Method 

Participants 

Participants were 24 English speaking younger adults (14 

females) between the ages of 18 and 23 (M = 19.50, SD = 

1.41) and 24 English speaking older adults (14 females) 

between the ages of 67 and 74 (M = 70.54, SD = 2.30). 

Participants in each age group formed 12 age-group 

matched dyads. All participants had at least 20/50 visual 

acuity for near vision (corrected or uncorrected) to ensure 

that they could see the stimuli. The majority of older adults 

were highly educated, with 83% reporting having some 

college or higher. Other descriptive variables were 

demographics and health, numeracy (Lipkus, Samsa, & 

Rimer, 2001), personality (Gosling, Rentfrow, & Swann, 

2003), social intelligence (Silvera, Martinussen, & Dahl, 

2001), perceived decision-making competence (Greene, 

Hibbard & Tusler, 2005), processing speed (Wechsler, 

1997), verbal working memory span (Wechsler, 1997), and 

verbal ability (Shipley, 1986). Due to limited space, results 

involving some of these variables are not included in this 

paper. Table 1 provides descriptive data. 

 

Table 1: Younger and older adults’ scores on health and 

cognitive measures. 

 

 Younger 

Adults 

Older Adults t-

value 

 M SD M SD 

Healtha 4.05 .54 3.79 .60 1.59 

Numeracyb 10.55 .67 7.04 3.29 5.10*** 

Processing 

speedc 

72.45 9.63 45.83 13.84 7.51*** 

Verbal 

working 

memoryd 

8.86 2.30 7.63 2.50 1.75 

Verbal 

abilitye 

32.08 3.28 32.96 4.85 -.726 

aSelf-reported health (1=poor, 5=excellent); bNumeracy 

(number of correct items from 0 to 11 on the numeracy 

scale); cProcessing speed (number of correct items on the 

digit-symbol substitution task from 0 to 100); dVerbal 

working memory (number of correct items from 0 to 14 on 

the digits backward task); eVerbal ability (number of correct 

items from 0 to 40 on the Shipley institute of living scale); 

***p<.001. 

Materials 

The experiment had three phases : pre-collaboration, 

collaboration, and post-collaboration. Participants made 

decisions independently in the pre- and post- collaboration 

phases, but in dyads in the collaboration phase. 

Participants were asked to choose a medication for a 

family member who is the same age as them. We asked 

them to give advice to a family member rather than choose 

one for themselves because this was more ecologically valid 

with respect to the collaboration phase in which they have to 

interact with each other and reach a consensus. Every trial 

of the decision task consisted of a choice between two 

medications which had different probabilities and outcomes 

of treatment success. The sure option had 100% chance of 

some treatment success whereas the risky option had a 

variable outcome of treatment success. 

There were two trial types, 20 risk-neutral trials and 20 

risk-advantageous trials in each phase. On risk-neutral trials, 

the medications had equivalent expected values. On risk-

advantageous trials, the medication with a sure outcome had 

a lower expected value than the medication with a variable 

outcome. Figures 1 and 2 show an example of each trial 

type. For both trial types, the risk magnitudes were 20%, 

40%, 60%, and 80% on different trials and the number of 

days of sickness were 20, 30, 40, 50, and 60 on different 

trials. Within each phase of the experiment, the decision 

trials were presented in a randomized order to minimize 
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order effects. The percentage of time that participants chose 

the riskier option indicated their level of risk taking. 

 

 
 

Figure 1: An example of a risk-neutral trial. 

 

 
 

Figure 2: An example of a risk-advantageous trial. 

Design 

Age was a grouping variable. Trial type and decision-

making phase were the independent variables. Level of risk 

taking and difference in risk taking between dyad members  

were the dependent variables. 

Procedure 

Before the experiment, participants received a consent form 

explaining the research study. After consent, they completed  

a questionnaire regarding demographics and health, and four 

ability tests. After that, participants were given both oral and 

written instructions about the decision task. Collaboration 

with other participants was not mentioned at this stage. The 

first phase of the experiment was  the pre-collaboration 

phase. Participants made medication decisions involving 

risks individually. When the pre-collaboration phase was 

completed, participants moved on to the collaboration 

phase. They were notified that each of them would have to 

collaborate with another participant to give one answer as a 

group. The process of collaborative decision making was 

videotaped (with permission from the participants) for 

analysis in a separate study. When the collaboration phase 

was completed, participants entered the post-collaboration 

phase. Once again, they made similar decisions individually. 

After all decision trials were completed, participants filled 

out the self-report items, followed by other questionnaires, 

and then they were debriefed. 

It took younger adults approximately one hour and older 

adults approximately two hours to complete the entire 

experiment.  

Results 

Individual Medication Risk Taking 

First, individual risk taking data in the pre-collaboration 

phase were analyzed. Mixed-design ANOVA was 

conducted with age as the between-participants variable, 

and trial type as the within-participants variable. 

As expected, older and young adults were significantly 

more risk taking on risk-advantageous trials (M = .77, SD = 

.26) than on risk-neutral trials (M = .41, SD = .32), F(1, 46) 

= 82.66, p < .001, ηp
2 = .64. Overall, older adults (M = .58, 

SD = .30) were not significantly less risk taking than 

younger adults  (M = .60, SD = .18), F(1, 46) = .024, p = 

0.877, ηp
2 = .001. However, there was an age by trial type 

interaction such that older adults showed a smaller increase 

in risk taking in response to risk-advantageous trials  than 

did younger adults , F(1, 46) = 8.52, p < .01, ηp
2 = .16. 

Figure 3 shows the results. 

 

 
 

Figure 3: Younger and older adults’ level of risk taking on 

risk-neutral and risk-advantageous trials (error bars 

represent the standard error). 

Social Influence Effects 

Risk taking data in the pre- and post-collaboration phases 

were compared. Mixed-design ANOVA was conducted with 

age as between- and phase as within-participants variable. 

The absolute difference between dyad members’ level of 

risk taking was the dependent variable. 

The difference in risk taking between dyad members was 

smaller in the post-collaboration phase (M = .20, SD = .19) 

than in the pre-collaboration phase (M = .33, SD = .22), F(1, 

22) = 7.80, p < .05, ηp
2 = .26. The overall within-dyad 

difference in risk taking was not significantly different 

between younger (M = .22, SD = .12) and older adults (M = 

.31, SD = .16), F(1, 22) = 2.54, p = 0.125, ηp
2 = .10. By 

contrast, the age by phase interaction was significant, F(1, 

22) = 10.41, p < .01, ηp
2 = .32. Older adults’ risk 

preferences converged towards their partner’s preferences to 

a greater extent following collaboration relative to younger 

adults’. Figure 4 shows the results. 
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Figure 4: Younger and older adults’ within-dyad difference 

in risk taking in pre- and post- collaboration phases (error 

bars represent the standard error). 

Discussion 

Findings from the present study provide insights into 

younger and older adults’ individual risky decision making 

for medications, and the effects of collaborating with a 

partner on subsequent risk-taking tendency. Confirming our 

expectation, younger and older adults took more risks when 

risk taking was beneficial than when risk taking and risk 

aversion were equally favorable. However, this effect of 

trial type differed between the two age groups such that the 

increase in risk taking among older adults was smaller than 

the increase in risk taking among younger adults when the 

risky option was favored. Regarding social influence effects, 

dyad members’ risk-taking tendency was more similar to 

each other’s after the collaborative decision-making 

experience compared to their initial difference. Older adults 

demonstrated a convergence effect, whereas the younger 

adults did not. 

Theoretical Implications 

The present study adds to the literature in that it investigated 

age differences in risk taking in the medical domain, which 

has heretofore been understudied. Based on fuzzy-trace 

theory, when people represent positively framed scenarios at 

the gist level, they tend to be risk averse. Therefore, we 

predicted that older adults would be less likely to take risks 

than younger adults when choosing between medications 

that had different probabilities and outcomes of treatment 

success, consistent with the recent meta-analytic findings on  

age differences in the risky-choice framing effect (Best & 

Charness, 2015). In our study, which focused on decision 

making in the medical domain, older adults were not 

significantly less risk taking than younger adults in making 

medication decisions. Because prior research mainly 

focused on financial and mortality domains, the pattern of 

finding in the present study could be additional evidence 

that age differences in risk preferences are context 

dependent (Best & Charness, 2015).  

Additionally, an interaction was found in the present 

study between age and trial type.  Younger adults exhibited 

a substantially larger increase in risk taking than did older 

adults when comparing risk-advantageous trials with risk-

neutral trials. This finding is consistent with our expectation 

that younger adults are more sensitive to the expected values 

of options. When presented with a risky option and a sure 

option with a lower expected value, younger adults were 

more likely to choose the risky option that maximized their 

expected value gain in terms of the number of days 

protected from sickness. Relative to younger adults, older 

adults showed a more similar risk-taking tendency on risk-

neutral and risk-advantageous trials, suggesting that they 

were not as sensitive as younger adults to the expected 

values of options. This is consistent with the idea that older 

adults are more likely to use gist processing whereas 

younger adults are more likely to use verbatim processing in 

making medication risky decisions. 

The present study demonstrated that people’s medical ris k 

taking propensities were prone to social influence effects. In 

addition, it explored the effects of collaborative decision-

making on subsequent individual decisions in two different 

age groups. Consistent with prior studies on intertemporal 

choices (Bixter et al., 2017) and financial risky decisions 

(Suzuki et al., 2016), we found a group convergence effect 

following collaboration in older adults’ medication risky 

decisions. Importantly, older adults’ convergence effect was 

larger than younger adults’. This might reflect their greater 

tendency to conform to others. Older adults might change 

their decisions more easily when different views are 

presented because of their lower perceived decision-making 

competence (Bruine de Bruin et al., 2012). However, it 

could also be due to the greater initial difference within 

older dyads observed in the present sample. Future research 

should attempt to better understand age differences in social 

influence effects in risky decision-making contexts. 

Limitations and Future Directions 

Several limitations have to be noted. The decision task may 

not resemble an everyday medical context and thus makes 

the results less generalizable to ecological settings. Asking 

participants to make third-person medication decisions 

might introduce bias. Moreover, people might perceive 

avoiding sickness as categorically different than shortening 

the duration of sickness. Additionally, numeracy differed 

between the age groups, and could be an alternative 

explanation for the individual risk taking and social 

influence findings. Future research should address these 

issues. 

Practical Implications 

Findings from the current study offer some insights into 

how age and collaboration influence medication risk taking. 

Examining age differences in medical risk seeking would 

enable us to devise appropriate decision aids for people of 

different ages. In particular, it is important to encourage 

older adults to take risks when risk taking is beneficial. 
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Examining age differences in choice shift due to social 

influence would inform the public how social interactions 

alter patients’ subsequent decisions as a function of their 

age. Current findings suggest that other people might be 

able to play a significant role in influencing older patients 

and helping them make improved decisions. 
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Abstract 

Finding creative new ideas requires both release from fixation 
and a productive search mindset. Recent research has shown 
that messy desks, walking, and mind-wandering can lead to 
more new uses for old objects. Here we show that a human-
centric mindset is superior to mind-wandering for generating 
more alternative uses and more creative uses because it 
provides both release from fixation and an effective search 
strategy. A human-centric mindset entails perspective-taking, 
and perspective-taking is likely to be an effective general 
strategy for enhancing creativity, problem-solving and 
innovation.  
 
Keywords: creativity; design; mindset;  

Introduction 
How do you get an original idea? One way to catalyze the 
creative process is to recombine or transform old ideas into 
new ones.  But starting with established ideas can often be 
counter-productive, leading to fixation (e.g., Jansson & 
Smith, 1991; Finke, Ward, & Smith, 1992; Smith, Ward, & 
Schumacher, 1993; Purcell & Gero, 1996; Chrysikou & 
Weisberg, 2005).  Finding new associations is regarded as 
key to overcoming fixation (e. g., Finke, 1990; Finke, Ward, 
& Smith, 1992; Jansson & Smith, 1991; Mednick, 1962; 
Smith, Ward, & Finke, 1995).   
   Recent studies have shown a variety of ways to stimulate 
new ideas for alternative uses of ordinary objects, a classic 
creativity task (Guilford, Christensen, Merrifield & Wilson, 
1978) that is also frequently used in design classes as a 
warm-up activity.  Messy desks in contrast to tidy ones have 
enabled people to think of more new uses for ping-pong 
balls (Vohs, Redden, & Rahinel, 2013). Messy desks create 
ambiguous configurations and ambiguous configurations are 
deliberately used by designers to generate new ideas and 
successful in doing so (Tversky & Suwa, 2009). Taking a 
walk rather than sitting has helped people generate more 
novel uses for common objects (Opezzo & Schwartz, 2014); 
taking a walk exposes people to new stimuli that might 
inspire new associations. Mind-wandering has facilitated 
creative incubation for finding new uses for common 
objects (Baird, Smallwood, Mrazek, Kam, Franklin, & 
Schooler, 2012; Smallwood & Schooler, 2006) though this 
strategy has not always been successful (Hao, Wu, Runco, 
& Pina, 2015). The proponents of mind-wandering use 
neuroscience research on the default network to argue for 
mind-wandering (Baird, et al., 2012).  The default network 

is activated when the mind turns inward rather than 
responding to external stimuli (Mason, Norton, Van Horn, 
& Wegner, 2007; Smallwood, Beach, Schooler, & Handy, 
2008). Wandering in the mind, like wandering in the world, 
can bring new stimuli, and consequently new responses.  
   Messy desks, taking a walk, and mind wandering succeed 
in releasing thinkers from fixation by bring in new stimuli. 
An even simpler manipulation, interleaving different design 
problems rather than blocking them, accomplishes the same 
(Tversky & Chou, 2010)—remember the old adage: Take a 
break.   But bringing in new stimuli doesn’t by itself provide 
a productive way to search for new ideas. Innovators need 
effective search strategies as well as release from fixation.  
Designers in prominent design firms, notably IDEO, have 
developed a systematic approach, Human-Centric design, to 
do exactly that. They have instituted elaborate practices to 
enable their designers to put themselves in the shoes of 
potential users in order to design effective systems, 
procedures or products for the target community (Kelley & 
Littman, 2006). Although widely adopted, the human-
centric approach has not been systematically evaluated. 
   Here we evaluate the Human-Centric approach by using a 
design task that laypeople frequently need to do, finding 
new uses for everyday objects. In our daily lives we often 
find ourselves improvising, to grasp an object out of reach 
by twisting a coat hanger or to tie a shoe together with a 
paper clip when a shoelace has snapped. This improvised 
design requires finding new uses for familiar objects. The 
new uses task has been used in considerable previous 
research, including the studies that stimulated our own. It is 
also used as a warm-up exercise in design course typically 
asking students to come up with many ways to use a brick. 
We asked participants to find new uses for ordinary objects 
under three mindsets: Human-Centric, Mind-Wandering, 
and a control condition with no special mindset. For the 
Human-Centric mindset, for each object, we directed 
participants to think of how different human roles might use 
the object. We chose roles that participants would be 
familiar with in their everyday interactions, such as artist, 
chef, physician, mechanic, and athlete. We pretested the 
roles to make sure our intuitions were correct. We selected 
six objects, also after pretesting to make sure that laypeople 
could generate alternative uses for the objects.  
   Adopting the perspectives of many roles should fulfill 
both requirements for original ideas. Changing perspective 
should lead to release from fixation and taking new 
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perspectives should provide effective ways to search for 
new ideas. The Human-Centric group was asked “to 
imagine how different people in different roles might reuse 
the objects in their activities.” The Mind-Wandering group 
was given the instructions of Baird et al. (2012) “to simply 
relax and let your mind wander.” The control group was 
given no special mindset.  

Measuring Fluency and Originality of Ideas 
Here ideas generated by participants were evaluated on 
quantity or fluency and on creativity, that is degree of 
originality. The primary interest is in fluency, as in design 
evaluating suitability can only come after ideas are 
generated. Evaluating originality or creativity has typically 
been based either on judgments of creativity or on statistical 
rarity in the larger group (e.g. Hennessey & Amabile, 2010; 
Runco & Jaeger, 2012; Runco, 2004). Judgments of 
creativity can be biased and unstable (e.g. Kaufman, Baer, 
Cole, & Sexton, 2008). Here we use the Sample-Specific 
Percentage Score of Mouchiroud and Lubart (2001) derived 
from Torrance's classic paradigm (1968). One point is given 
to each idea given by 2-5% of the sample and two points to 
each idea given by less than 2% of the sample. This method 
has been criticized for failing to differentiate the quality of 
originality from the fluency of responses. For example, a 
participant who gave 10 common responses might get a 
higher total originality score than a participant who gave 
only 2 answers, even if the 2 answers were more unusual. 
However, this did not seem to be a problem in the present 
study as the people who gave original ideas also gave many 
ideas.  

Methods 

Participants 
Participants (N=105) were recruited through Amazon 
Mechanical Turks Web service, receiving $5 for 
approximately 40 minutes of time. Participants’ ages ranged 
from 21-65, with a mean of 33.19 and came from a wide 
range of educational backgrounds. Participants were 
randomly assigned to the three mindset conditions. There 
were 18 women and 17 men in the Mind-Wandering Group, 
15 women and 20 men in the Human-Centric Group, 18 
women and 17 men in the Control Group. 

Stimuli 
The objects were selected from a review of objects in 
previous research and from a pilot study to make sure that 
they could be decomposed and would stimulate new uses 
from ordinary people: broom, flashlight, chair, umbrella, 
shoe, and smartphone. A smartphone is representative of 
contemporary and future design challenges. 

Procedure 
The first screen that greeted participants described everyday 
ingenuity, such as using a hanger to grab an out of reach 

object or rolling up a magazine to swat flies. Then 
participants were invited to discover and generate 
uncommon uses for six ordinary objects. All three mindset 
conditions next read general instructions: “On each trial you 
will be presented with the name of the object. Your job is to 
produce as many different novel uses as you can, uses that 
are different from the normal use. You will type your ideas 
in a text box, using only a few words, one idea at a time. 
Please do not repeat ideas. Eventually, you may run out of 
new ideas and then you will have a chance to proceed to the 
next object and generate new ideas for it. There are SIX 
objects. You will have 5 minutes to generate novel uses for 
each object. Please do not use any resources besides your 
own creative mind in this task.” Participants were also told: 
“It's OK to use more than one of the objects and it’s OK to 
use parts of the object.” 

Participants in the Mind-Wandering group were told that 
“One proven way to generate new ideas is to simply relax 
and let your mind wander. Please use that mindset to 
generate as many new uses as you can think of.” 
Participants in the Human-Centric group were told that 
“One proven way to generate new ideas is to imagine how 
different people in different roles might reuse the objects in 
their activities. Other roles might include various kinds of 
athletes, gardeners, artists, chefs, musicians, mechanics, 
craftspeople, dancers, teachers, police, firefighters, 
plumbers, tailors, architects, physicians, writers and more. 
Please imagine the mindset of a variety of roles to generate 
as many new uses as you can think of.”  The Control group 
was not given any specific strategy or exemplars. Each 
participant had a practice trial with clothes hanger for 3 
minutes before starting the real experiment.  The screenshot 
of the human-centric mindset condition are shown after 
participants entered responses in Figure 1. Each response 
was assigned a position number by the system. 
 
 

 
 
 
 
 

 
 
 
 

Figure 1: Screenshot of the Human-Centric mindset 
condition after entering new responses. 

 
Participants were then presented with the names of six 

objects, one at a time, for the unusual uses task: Broom, 
Flashlight, Chair, Umbrella, Shoe, and Smart Phone. Each 
of those 5 objects except for Smart Phone was randomly 
ordered for each participant. For each object, the common 
use was presented under the name of the object on the 
screen After generating ideas for those 5 objects, the Smart 
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Phone was presented along with a new instruction by adding 
a paragraph, “Now that you’ve warmed up generating new 
uses for old objects, try your mind at generating new uses, 
including new apps, for a smart phone.”   

After participants finished generating new uses, 
participants responded to a questionnaire asking whether 
they used the mindset strategy suggested and how easy, how 
helpful it was to follow.  The control group was asked if 
they used a mindset strategy, and if so, what? 

Results 
Coding  Counting ideas was a two-step process. Responses 
were first put through a spreadsheet that (a) counted the 
total number of answers, and (b) identified the likely 
original answers by eliminating all duplicates (repeated 
identical answers). During the initial examination, all 
duplicate answers were removed; total numbers generated 
for each participant were accurate, and all the unusual / 
unique answers were identified. Generalized items (e.g., “a 
broom to clean off the cobweb on the ceiling”) were 
counted toward a participant’s total number of responses but 
were not coded as original. To measure the originality of 
ideas, the task was coded with Sample-Specific Percentage 
scoring method derived from the classic Torrance's (1968) 
paradigm.  Examples of both original and ordinary examples 
are provided in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Examples of original and ordinary ideas  
 
Fluency of Ideas  The 3 mindsets differed substantially in 
fluency (i.e. total number of ideas); the Human-Centric 
group (M = 54.06, SD = 27.30) generated far more ideas 
than the Mind-Wandering (M = 38.77, SD = 15.52) and 
Control groups (M = 36.54, SD = 17.05) in Figure 3. 
Because Levene's test was significant (p < .001), revealing 
that variances in the Human-Centric group were differed, 
violating the assumption of homogeneity of variance, a 
more robust Games-Howell method (instead of Tukey HSD) 

was applied to interpret the F statistics for the post hoc 
results.  

Welch's Robust ANOVA showed significant differences 
in fluency of three mindset groups, F (2, 65.38) = 5.407, p = 
.007. Continuing, the Games-Howell post hoc testing 
revealed that the Human-Centric mindset group generated 
more ideas than the mind-wandering mindset group a mean 
increase of 15.229, 95% CI [2.18 to 28.27]. There was also 
a mean increase of 17.514, 95% CI [4.42 to 30.61] between 
the Human-Centric and Control groups, but there was no 
significant mean difference between the Mind-Wandering 
and Control groups, 2.229, 95% CI [-7.11 to 11.57]. The 
mean number of ideas generated by each mindset condition 
for each object can be viewed in Figure 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: The Human-Centric mindset group generated 
more uses than Mind-Wandering and Control groups. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: The Human-Centric mindset group generated 
more uses than the other groups for each object. 

 
Originality of Ideas  For originality, Levene's test was 
significant, and the assumption of homogeneity of variance 
was violated. The Welch test table was applied. There was a 
significant effect for the three mindset conditions differed 
significantly in originality of ideas F (2, 67.21) = 4.34, p = 
.017. The post-hoc comparison using the Games-Howell test 
indicated that the mean score of originality for the Human-
Centric group (M = 31.89, SD = 21.67) was significantly 
different from the Mind-Wandering group (M = 20.43, SD = 
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16.61) and from the Control group (M = 18.77, SD = 17.12). 
There were no differences between the Mind-Wandering 
and Control conditions, as shown in Figure 5. 
 
Fluency of Original Ideas  Two Pearson’s product-moment 
correlations were run to assess the relationship between the 
quantity and originality of ideas. The first correlation refers 
to the total number of ideas, a summation of the number of 
ideas that each participant generated across 6 objects (5 min 
per object) and the sum of the originality score for those 
ideas. There was a strong correlation between the quantity 
of ideas generated by a participant and the overall 
originality scores irrespective of mindset conditions in the 
study, r (103) = .885, p < .001. The overall originality score 
(i.e. 2 points for each idea given by less than 2% of the 
sample; 1 point for each idea with a frequency seen in 2% to 
5% of the sample; 0 points for ideas given more than 5% of 
the sample) is a summation of the originality score for 6 
objects. The average participant generated approximately 43 
ideas in the 30 minutes of the idea generation task. The 
second correlation refers to the total number of ideas and the 
average originality of ideas for each participant. There was a 
moderate positive correlation between the quantity of ideas 
and the mean originality score (sum of originality score 
divided by total number of ideas), r (103) = .434, p < .001.  
   There were no differences in quantity of ideas and 
originality of ideas for the different objects.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: The Human-Centric mindset group generated 
more original ideas than the Mind-Wandering and Control 

groups. 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6: Participants who generated at least 10 ideas for 
any object were more likely to produce more original ideas. 

Position of Ideas: Original Ideas Come Later Many 
studies have found that ideas generated later tend to be 
better than early ideas since Christensen, Guilford, & 
Wilson (1957) first demonstrated the effect. This result 
aligns with those from prior studies (Beaty & Silvia, 2012). 

Two methods were used to confirm that original ideas do 
come later. The graph in Figure 6 shows the mean score of 
originality (from 0 to 2) for ideas that appear in the ith 
position, i = 1, 2,...10, regardless of conditions and objects 
for this study. It was reasonable to choose 10 positions, 
because about half of the sample size generated at least 10 
ideas. It appears that participants came up with more 
original ideas at the later position.  Another bar graph Figure 
7 is to show the percentage of ideas that were original (less 
than 5% of the sample generated the idea) for each position.  
 
 

 
 
 
 
 
 
 
 
 

 
Figure 7: Original ideas tended to come later. 

 
Self Report / Manipulation Check Regarding whether 
participants used the suggested mindset strategies to 
generate ideas; it appears that more than 75% of participants 
in both Human-Centric and Mind-Wandering groups 
claimed that they did follow the instruction.  69% of 
participants in the Human-Centric group and 60% of 
participants in the Mind-Wandering group did think it was 
helpful with the suggested strategy. Regarding how easy 
participants used the suggested mindset strategies to 
generate ideas; it appears that more than 50% of  
participants in both Mind-Wandering and Human-Centric 
groups self-reported it was easy for them to use the mindset. 
89% of participants in the Control group self-reported that 
they simply let things come to mind, using a mind-
wandering mindset strategy. 

Discussion 
Designers and problem solvers--and we are all designers 
and problem solvers--often get stuck. They/we get fixated 
on one idea or a set of them and then thinking goes in 
circles. Breaking fixation, breaking that circle, finding new 
ideas requires new associations. Messy desks, walks, and 
mind-wandering have all proven helpful for finding new 
uses for familiar objects. They work because each leads to 
new stimuli and new stimuli can bring new associations and 
perhaps new ideas.     

Although wandering eyes, wandering bodies, and 
wandering minds can expose us to new stimuli, the paths of 
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search are still wandering, not directed in any meaningful 
way. There is no guarantee that the meandering and the 
associations are in any way related to the design or problem. 
Designers and problem solvers also need productive ways to 
search for and generate new ideas that are relevant to the 
problem at hand. The human-centric mindset does just that. 
The human-centric approach entails taking the perspectives 
of others, here diverse roles that participants are familiar 
with. Participants could make use of their knowledge of the 
roles to generate relevant uses: what could a gardener do 
with an umbrella? An artist with a shoe? An athlete with a 
chair? Participants with the Human-Centric mindset did use 
the roles that we gave them, and invented new roles of their 
own. Using a high criterion for relevance, nearly half the 
ideas generated by the group using the Human-Centric 
approach were directly related to one of the roles provided 
and another 10% derived from roles they invented, 
presumably because they used the mindset to take the 
perspectives of various roles. The most productive role was 
artist, followed by gardener, athlete, policeperson, 
mechanic, chef, and musician. 
   Consistent with that analysis, the Human-Centric mindset 
yielded more ideas than either the Mind-Wandering mindset 
or the no-mindset control. In fact, the Mind-Wandering 
mindset was no more successful than the no-mindset control 
group at generating new uses. This turns out to be 
unsurprising; in response to a question about how they 
searched for new ideas, many in the control group reported 
that they just let their minds wander.  
   Participants using the Human-Centric mindset generated 
more new uses and also generated more original new uses 
than those who adopted the other mindsets. Original new 
uses tended to come later; it’s as if participants have to first 
get the ordinary alternative uses out of their heads in order 
to free their minds to find unusual ones. Sadly, one of the 
most common uses suggested for most of the objects was 
weapon. The vast majority of original responses were not 
only reasonable and appropriate, but clever, even if unusual. 
Remember that the instructions allowed using more than 
one of the objects. For a shoe, sound-proofing; for a chair, a 
water strainer; for a smart phone, a wrist splint, for a 
flashlight, a martini shaker.   
   Because of the overall quality of the original ideas, it is 
apparent that participants were editing their own responses. 
That process, of generating ideas and evaluating them, is 
supported by neuroscience research (Beaty, Benedek, Silvia, 
& Schacter, 2016; Chrysikou, in press; Ellamil, Dobson, 
Beeman, & Christoff, 2012; Mason, Norton, Van Horn, 
Wegner, Grafton, & Macrae, 2007). The neuroscience 
findings suggest that creative problem solving is 
characterized by alternating activation in the default 
network, indicative of internal processing, and the frontal 
system, indicative of executive control. This iterative 
process, of generating ideas and evaluating them coincides 
with the experience of designers and problem solvers. It 
remains to be seen whether the neuroscience tools are 
sensitive enough to detect the large differences in mindset 

demonstrated here. In the meantime, it should be clear that 
Mind-Wandering is not to be recommended as a general 
mindset for finding innovative ideas. A Human-Centric 
mindset is far more productive. 
   The Human-Centric mindset clearly has wide 
applicability. Diplomats negotiating peace agreements take 
the perspectives of each party, as do lawyers. Writers of 
books and screenplays take the perspectives of their readers 
or viewers. Product designers think deeply about the ways 
different users will interact with their products. Using the 
Human-Centric mindset entails adopting relevant and 
varying human roles. Yet there are many problems that 
demand creative solutions but do not involve humans, 
except as thinkers. Problems in mathematics or physics. 
Design of machines or robots for tasks that do not involve 
humans, except as designers. Taking different human 
perspectives might help, but that is probably not be the best 
way for those problems. However, taking different human 
perspectives is at its foundation taking different 
perspectives, and that mindset might just work for 
everything. Or nearly everything. Mathematicians reframe 
problems algebraically or geometrically. Temple Grandin, 
in designing runways for cattle, famously adopts the 
perspective of the cattle (Grandin & Deesing, 2008). Taking 
different perspectives might sound simple, but deciding 
which alternative perspectives are relevant and productive 
also requires creative thought. 
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Abstract 

Perceptual learning is a key perceptual skill that people possess, 

in particular, it contributes to their ability to distinguish between 

faces thus recognize individuals. Recently, we showed that anodal 

transcranial Direct Current Stimulation (tDCS) at Fp3 abolishes 

the inversion effect (that would otherwise exist) for familiar 

checkerboards created from a prototype. Because of the close 

analogy between the inversion effect obtained with checkerboards, 

which we use as a marker for perceptual learning, and the 

traditional face inversion effect (upright faces recognized better 

than inverted ones), we investigated the effects of anodal tDCS at 

Fp3 during an old/new recognition task for upright and inverted 

faces. Results showed that stimulation significantly reduced the 

face inversion effect compared to controls. The effect was 

strongest in reducing recognition performance to upright faces. 

This result supports our account of perceptual learning and its role 

as a key factor in face recognition.  

 

Keywords: TDCS; Perceptual learning; Face inversion effect; 

Old/new recognition task; Face recognition 

Introduction 

Perceptual learning refers to an enhanced ability to 

distinguish between similar stimuli as a consequence of 

experience with them or stimuli like them. It also plays a 

key role in learning to identify stimuli as specific exemplars 

of a category, and not confuse one stimulus with another 

similar one (e.g. wine experts and wines, or bird watchers 

and warblers; James, 1890; see Hall, 1980 for a review). We 

know that people (and other animals) can improve their 

perceptual skills as a result of experience with stimuli, and 

recent studies have shown this phenomenon to be 

responsible for some key perceptual skills that people 

possess. In particular, it contributes to our ability to 

distinguish between faces and recognize individuals. For 

example, if we pre-expose someone to a set of 

checkerboards, all of which are produced by imposing 

random variation on one original prototype checkerboard, 

then this will have the effect of making them better able to 

distinguish between exemplars generated in this way – a 

basic perceptual learning effect. They will now be able to 

tell two otherwise similar checkerboards apart where once 

they might have found it difficult to do so, and such pre-

exposure improves their ability to identify checkerboards 

they have been asked to memorize in a subsequent 

recognition test (McLaren, Leevers & Mackintosh, 1994). 

McLaren (1997) extended this result to show that the same 

procedures could also produce an inversion effect, with 

upright exemplars discriminated better than inverted ones.  

Civile et al. (2014) further developed the case for 

perceptual learning as a contributor to the face inversion 

effect (i.e. that upright faces are recognized much better than 

inverted ones), by showing that these results can be obtained 

with the kind of old/new recognition paradigm 

conventionally used in such studies (Yin, 1969; Diamond & 

Carey, 1986; see Maurer, Le Grand, & Mondloch, 2002 for 

a review).  Participants were trained to categorize 

(categorization task) checkerboard exemplars from two 

prototype-defined categories (the pre-exposure phase), 

before being shown an equal number of checkerboard 

exemplars (which they had not previously encountered) 

drawn from either one of the now familiar categories or a 

novel category, half of which were upright and half 

inverted. Participants were then tested for recognition of 

these exemplars after this study phase. The results 

confirmed the inversion effect for checkerboard exemplars 

drawn from a familiar category, and its absence for 

exemplars drawn from a novel category, strengthening the 

case for perceptual learning contributing to the inversion 

effect found with faces.  

In a recent study, Civile et al. (2016) demonstrated 

that tDCS to dorsolateral prefrontal cortex (DLPFC) at Fp3 

site significantly affected perceptual learning and reduced 

the inversion effect that can otherwise be obtained with 

checkerboards.  The authors adopted the same old/new 

recognition task as in Civile et al.  (2014)’s study which 

uses a categorization task to pre-expose participants to the 

stimuli i.e. checkerboards. A previous study by Ambrus et 

al., (2011) had found that anodal tDCS (compared to sham) 
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applied to the Fp3 during the training phase of a 

categorization task where participants had to identify 

prototype and low-distortion patterns as category members 

reduced classification accuracy for the prototype. Thus, as 

Civile et al. (2014)’s study used prototype-defined 

checkerboard categories and formation of a strong 

representation of the prototype is a prerequisite for 

perceptual learning (McLaren, Kaye, & Mackintosh,1989), 

Civile et al. (2016)’s study adopted the same Fp3 montage 

as that adopted by Ambrus et al. (2011). Civile et al. (2016) 

showed that the control condition (sham tDCS stimulation 

over Fp3 delivered during the pre-exposure phase, i.e. the 

checkerboard categorization task) replicated the usual 

inversion effect for checkerboards drawn from a familiar 

category, but, as expected, not for checkerboard exemplars 

drawn from a control (novel) category that had not been pre-

exposed. Critically, anodal tDCS to the same brain region 

changed this pattern, as there was now no inversion effect 

for stimuli drawn from either familiar or unfamiliar 

category, and the upright exemplars drawn from a familiar 

category were less well recognized than those drawn from 

the novel category, an indication that perceptual learning 

may even have been reversed. This remarkable and 

informative result suggested that perceptual learning in 

humans could be turned 'on' and 'off".  

Civile et al.’s (2016) study is the first evidence that 

anodal tDCS administered during the pre-exposure phase 

can affect perceptual learning later on when participants are 

asked to memorize and recognize exemplars of 

checkerboards drawn from the checkerboard categories seen 

in during the pre-exposure phase (categorization task). The 

next important question to address is whether or not the 

same tDCS procedure would also affect perceptual learning 

that has already taken place. Given the lifelong expertise we 

have for faces, and given the already established analogy 

between the inversion effect obtained with checkerboards 

(McLaren, 1997; McLaren & Civile, 2011; Civile et al., 

2014; Civile et al., 2016) and that usually obtained with 

faces (for a review see Maurer et al., 2002), in the current 

study we extended the tDCS paradigm used in Civile et al.’ 

(2016) to the inversion effect for faces. We expected to 

obtain a strong inversion effect for familiar faces in the 

sham tDCS group, but a significantly reduced inversion 

effect for familiar faces in the anodal tDCS group because, 

as was the case for Civile et al.’s (2016) familiar upright 

checkerboards, we expected anodal tDCS over Fp3 to 

disrupt recognition performance for familiar upright faces.  

 Such a result would advance our understanding of 

both the mechanisms controlling perceptual learning and the 

face inversion effect in a number of ways. We would have 

found an experimental procedure (anodal tDCS at Fp3 brain 

site) able to selectively affect perceptual learning and its 

expression, and this would help in discriminating between 

competing theories.  Furthermore, we would have additional 

evidence that perceptual learning is a contributor (at least in 

part) to the face inversion effect. Finally, this would be the 

first demonstration in the literature of how relatively brief 

tDCS stimulation could reduce our ability to recognize 

upright familiar faces.  

Method 

We adopted the tDCS montage used in Civile et al. 

(2016). Each subject was randomly assigned to either sham 

or anodal tDCS conditions. In the sham condition, the tDCS 

stimulation was only delivered for 30s, to evoke the 

sensation of being stimulated, without causing 

neurophysiological changes that may influence 

performance. In the anodal tDCS condition, the stimulation 

was delivered for 10 mins while the subjects were 

completing an old/new recognition computer task that used 

images of faces. In both sample groups, the sham and tDCS 

stimulation started when the computer task began.  In the 

first part of the computer task, the study phase, subjects 

were asked to memorize a set of upright and inverted faces 

presented one at a time. Following this, subjects were given 

a recognition task where they pressed one key if they 

thought they had seen the face before, and another key if 

they thought they had not seen the face before. All the faces 

seen in the study phase were presented again intermixed 

with an equal number of new faces of each type (i.e. upright 

faces, and inverted faces). This old/new recognition task is a 

standard method of assessing face processing and the 

inversion effect (Yin, 1969; Diamond & Carey, 1986; 

Civile, McLaren, & McLaren, 2016; Civile, McLaren, & 

McLaren, 2014). Our main measure was accuracy scores 

during recognition converted into signal-detection d-prime 

“d´”. We also examined reaction time responses to check for 

any speed-accuracy trade-off that could affect our 

interpretation of the results.  

Subjects 

Forty-eight students (39 women; mean age = 18.9, 

age range = 18-22 years) from McMaster University 

participated in this experiment. Twenty-four subjects were 

randomly assigned to each of two groups (sham tDCS, 

anodal tDCS). All subjects were right-handed and were 

given course credits for their participation. The experiment 

was approved by the research ethics committee at McMaster 

University. Written informed consent was obtained after the 

nature and possible consequences of the study were 

explained. Sample size was determined in advance based on 

previous studies (Civile et al., 2014; McLaren 1997) that 

found the original inversion effect for checkerboards and 

that showed a clear effect of tDCS on perceptual learning 

(Civile et al., 2016; McLaren, Carpenter, Civile, McLaren, 

Zhao, Ku, Milton, Verbruggen, 2016), as well as previous 

studies that adopted the same old/new recognition task and 

face stimuli that we used here (Civile, McLaren, McLaren, 

2014; and Civile, McLaren, McLaren, 2016 obtained a 

strong face inversion effect with group samples of 24 

subjects). Additionally, we conducted a post-hoc power 

analysis using G*power software (Faul, Erdfelder, Lang, & 

Buchner, 2007) that revealed a statistical power of 0.92, in 
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line with the recommended 0.80 level of power (Cohen, 

1988). 

Materials 

The study used 128 images of male faces. Only male 

faces were used because they allowed the inclusion of ears 

in the images as well. Men tend to have shorter hair with 

ears visible whereas women often have longer hair covering 

the ears, making the visibility of these features rather 

variable. The faces were standardized in gray-scale format 

and cropped around the hairline in Adobe Photoshop. The 

same set of faces was previously used in studies that 

adopted the same old/new recognition task with upright and 

inverted faces that we used in the study here reported 

(Civile, McLaren, & McLaren, 2014; Civile, McLaren, & 

McLaren, 2016). 

Transcranial Direct Current Stimulation (tDCS)  

All participants first completed a brain stimulation 

safety screening questionnaire. Stimulation was delivered by 

a battery driven, constant current stimulator (Neuroelectrics) 

via a pair of surface sponge electrodes (25 cm2), soaked in a 

saline solution (0.9% NaCl), and applied to the scalp at the 

target areas of stimulation. Electrodes delivered a constant 

current of 1.2 mA (current density: 0.048 mA/cm²); the 

choice of the intensity is in line with Civile et al. (2016)’s 

study (see Neuroelectics website for a review of clinical 

studies that suggest keeping the average current densities in 

electrodes below 0.06 mA/cm2). As in Civile et al. (2016)’s 

study, we adopted a bilateral bipolar-non-balanced montage 

with one of the electrodes (anode/target) placed over the left 

PFC (Fp3) and the other (Ambrus et al., 2011; Kincses et 

al., 2003) was placed on the forehead, just above the right 

eyebrow. In the anodal tDCS condition, the current was 

applied for 10 mins (fade-in and fade-out of 5 s) from when 

the subjects began the computer task and throughout the 

old/new recognition task. Sham received the same 5 s fade-

in and fade-out, but only 30 s stimulation between them, 

which terminated shortly after the computer task started. 

The electrodes were left on the participant throughout the 

experiment (see Figure 1, Panel A).  

Behavioral Task 

The old/new recognition task consisted of two 

parts: a ‘study phase’ and an ‘old/new recognition phase’ 

(Civile, McLaren, & McLaren, 2014; Civile, McLaren, & 

McLaren, 2016). In the study phase, each subject was 

shown upright and inverted faces with 32 images for each 

type (64 images in total). Faces were presented one at a time 

in random order. In the old/new recognition phase, 64 novel 

faces split into the same stimulus types were added to the 64 

faces seen in the study phase, and all 128 images were 

presented one at a time in random order. Each face never 

appeared in more than one condition during the experiment 

for the same participant. 

Trial Structure 

Following the instructions, in each trial of the study 

phase subjects saw a fixation cross in the center of the 

screen presented for 1 second. After this, one of the faces 

was presented on screen for 4 seconds. The next trial started 

with the presentation of a fixation cross again. After all 64 

faces had been presented, the program displayed another set 

of instructions, explaining the recognition task. In this task, 

subjects were asked to press the ‘.’ key if they recognized 

the stimulus as having been shown in the study phase on 

any given trial, or press ‘x’ if they did not (the keys were 

counterbalanced). During the recognition task, the faces 

were shown for 4 seconds during which time subjects had to 

respond. The experiment was implemented using SuperLab 

4.5 installed on a PC (see Figure 1, Panel B).  

 

Figure 1: Panel a shows the electrode configuration of the 

tDCS and the stimulation set up on the Neuroelectrics 

software (NIC). Panel b shows the structure of the trials 

presented during the old/new recognition task. 
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Data Analysis 

Our primary measure was performance accuracy in 

the two recognition tasks. The data from all the participants 

was used in the signal detection d' analysis of the 

recognition task (old and new stimuli for each stimulus 

type) where a d’ = of 0.00 indicates chance-level 

performance (Stanislaw & Todorov, 1999). Each p-value 

reported in this paper is two-tailed, and we also report the F 

or t value along with measures of variability (SE or SEM) 

and effect size (Cohen’s d followed by the 95% confidence 

interval [CI] for d). The study had a 2 x 2 mixed model 

design using as a within-subjects factor Face Orientation 

(upright, inverted) and the between-subjects factor tDCS 

(sham, anodal). Follow up, paired t-tests analyses were 

conducted to compare performance on upright and inverted 

faces (the inversion effect) in each tDCS group (sham, 

anodal). We also assessed performance against chance (d' of 

0) to show that both upright and inverted faces in the tDCS 

sham and anodal groups were recognized (for all four 

conditions we found a p < .001). 

 

Results 

The statistical analysis (ANOVA) using the factors 

Face Orientation (upright/inverted) x tDCS (anodal/sham) 

revealed a significant interaction, F(1, 46) = 7.45, MSE = 

0.12, p = .009, d = 0.78, CI = 0.98, 0.58. We decomposed 

the interaction by looking at the inversion effect (upright 

faces – inverted faces) in each tDCS group (sham, anodal) 

separately. Following Civile et al’s (2016) study, we 

expected to find the usual inversion effect for faces in the 

tDCS sham group. As predicted, a planned comparison 

showed a significant inversion effect with upright faces (M 

= 1.09, SE = 0.11) being recognized significantly better than 

inverted faces (M = 0.35, SE = 0.07), t(23) = 7.48, SE = 

0.09, p < .001, d = 1.59, CI = 1.78, 1.41. Critically, we 

found a reduced (but still significant) inversion effect in the 

tDCS anodal group, recognition of upright faces (M = 0.78, 

SE = 0.11) compared to inverted faces (M = 0.44, SE = 

0.08), t(23) = 3.19, SE = 0.11, p = .004, d = 0.69 , CI = 0.89, 

0.49 (see Figure 2). Thus, the inversion effect in the tDCS 

sham group was significantly greater than that in the tDCS 

anodal group, a similar result to that previously found in 

Civile et al. (2016)’s study using prototype-defined 

categories of familiar checkerboards.  

Importantly, in Civile et al. (2016)’s study 

(Experiment 1) statistical analysis showed recognition of 

upright familiar checkerboards in the tDCS anodal group 

was reduced compared to that for familiar checkerboards in 

the tDCS sham group. We computed an additional analysis 

in our study to directly compare the recognition 

performance for upright faces in the two tDCS groups 

(sham, anodal). The results were that recognition for upright 

faces in the tDCS anodal group was reduced compared to 

that in the tDCS sham group, t(46) = 1.95, SE = 0.14, p = 

.028 (1-tail), d = 0.56, CI = 0.78, 0.34. Thus, in both Civile 

et al. (2016)’s study (Experiment 1) and in our current 

study, we have some evidence that anodal tDCS may affect 

the recognition of upright familiar stimuli (checkerboards in 

Civile et al, 2016, and faces in the current study). We 

calculated the Bayes factor using the procedures outlined by 

Dienes (2011) for this effect with faces using the effect for 

checkerboards in Civile et al. (2016)’s study (Experiment 1) 

as the prior, setting the standard deviation of p (population 

value |theory) to the mean for the difference between 

recognition for familiar upright checkerboards in the tDCS 

sham group vs that in the tDCS anodal group (0.359). We 

used the standard error and the mean difference for tDCS 

sham upright faces vs tDCS anodal upright faces effect 

found in our study and assumed a one-tailed distribution for 

our theory and a mean of 0. This gave a Bayes factor (B) of 

3.65. This factor is greater than 3, providing good support 

for this component of the reduction in the inversion effect 

(for Bayes factor calculator see Dienes, 2011).  

Statistical analysis (ANOVA) of the response 

latencies was also conducted. Simple comparisons showed a 

significant inversion effect for both Anodal (p <.001) and 

Sham (p =.009) groups, and the inversion effect was 

numericaly larger for the Anodal group, but no significant 

interaction (p = .63) was found. For completeness, we report 

the mean latencies for each stimulus condition: Sham 

upright faces, 1.37 s; Sham inverted faces, 1.47 s; Anodal 

upright faces, 1.48 s; Anodal inverted faces, 1.61 s. 

Finally, we also report here the SDT Bias estimates for 

each of the four stimulus’ conditions: Sham upright faces, 

β= 1.33; Sham inverted faces, β= 1.12; Anodal upright 

faces, β= 1.70; Anodal inverted faces, β= 1.04. 

 

Figure 2: The y-axis gives d’ means for the old/new 

recognition task (higher _ better, 0 _ chance), and the 

different stimulus’ conditions in the two tDCS groups 

(sham, anodal) are shown on the x-axis. The dimensions of 

the stimuli were 6.95 cm × 5.80 cm. Participants sat 1 m 

away from the screen on which the images were presented. 
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Discussion 

We adopted the same procedures used in Civile et 

al. (2016) employing the old/new recognition task for faces 

that is a standard in the literature. The results indicate that 

anodal tDCS impaired recognition performance for upright 

faces, and as a consequence, the inversion effect was 

significantly reduced compared to the usual inversion effect 

found with faces that can be seen in the sham condition.  

The MKM model (McLaren, Kaye and 

Mackintosh, 1989) and its later development in McLaren 

and Mackintosh (2000) and McLaren, Forrest and McLaren 

(2014) can explain the inversion effects reported by 

McLaren (1997) and Civile et al (2014) by appealing to 

perceptual learning as a consequence of experience with the 

category. But if the salience modulation based on prediction 

error implemented by this model is disrupted (by anodal 

tDCS), then the MKM model turns into one more akin to 

McClelland and Rumelhart’s (M&R) (1985) model of 

categorization, and enhanced generalization between 

exemplars as a consequence of familiarity with that category 

is predicted rather than the enhanced discriminability that is 

the hallmark of perceptual learning. The result is the 

elimination of the inversion effect seen with artificial 

stimuli (that we take to be entirely due to perceptual 

learning), and even some reversal of the perceptual learning 

effect, explaining the pattern observed by Civile et al 

(2016). This interpretation of the results from Civile et al. 

(2016)’s study also applies to Ambrus et al. (2011)’s finding 

that tDCS reduces learning to the prototype, and increases 

generalization to random patterns. This would result in the 

elimination of the prototype effect, which is what we would 

expect if the MKM model of perceptual learning were, in 

effect, to be turned into the M&R model of categorization 

by turning off the error-based modulation of salience that is 

the hallmark of MKM.  
Our present data imply that anodal tDCS to Fp3 not 

only affects perceptual learning for artificial stimuli (the 

checkerboards in Civile et al., 2016) that were novel until 

encountered in the experimental setting but can also affect 

the long established perceptual learning for faces that is a 

result of experience over many years. This is a truly striking 

result that suggests that perhaps anodal tDCS over Fp3 may 

prevent individuals from exploiting “expertise” when called 

on to discriminate between stimuli of a class they are very 

familiar with.  

These data strengthen the analogy between our 

checkerboard experiments and those with faces. In both 

cases, anodal tDCS reduces the inversion effect and reduces 

performance on upright exemplars taken from a familiar 

category. This suggests that the inversion effect obtained 

with what were novel, artificial stimuli, and that we attribute 

to perceptual learning, is at least one component of the face 

inversion effect. True, the inversion effect was completely 

eliminated by anodal stimulation in Civile et al (2016) but is 

still present in our stimulation group when we use faces. 

This could mean that any disruption of perceptual learning 

(which might be expected to be stronger after many years of 

experience) is not complete in the current experiment, or it 

might be that there is a component of the face inversion 

effect that is not due to perceptual learning. We cannot say 

at present. What we can say is that the theory we have of 

how anodal tDCS to Fp3 works predicted a reduced 

inversion effect, and our salience modulation via error 

account of perceptual learning is, to that extent, further 

validated. We have also shown that we can turn perceptual 

learning in humans on and off, which opens the door to 

future applications. 

These data also contribute to a recent line of 

studies that tested that effects of tDCS stimulation delivered 

at occipital brain regions on face recognition tasks. In one 

study the authors tested tDCS stimulation on an orientation 

judgment task for faces while recording brain activity with 

EEG. Results showed that anodal tDCS compared to sham, 

significantly reduced the N170 for both upright and inverted 

faces, despite not affecting the size of the inversion effect 

(Yang et al., 2014, Experiment1). In the same study 

(Experiment 2) the authors also showed that the same tDCS 

paradigm applied before a composite face effect task (the 

effect refers to an impairment at recognizing the top half of 

a familiar face when matched with the bottom half of 

another face) can significantly reduce the composite effect 

by enhancing performance for incongruent faces (composite 

faces created by mismatched top and bottom halves). In a 

similar vein, another study found that off-line (stimulation 

delivered before the task) anodal tDCS enhances memory 

performance for both upright faces and objects (inversion 

was not tested). In contrast, no enhancement was found for 

online (stimulation delivered during task execution) and 

sham tDCS stimulation (Barbieri et al., 2016). Together, the 

results from these studies show that tDCS at occipital 

regions seems to be effective at enhancing recognition 

performance (at least when tDCS is delivered off-line). 

Thus, this suggests that tDCS at occipital brain regions 

could possibly enhance perceptual learning in our 

experimental paradigm (either with checkerboards or faces). 

Future studies should test this and directly compare the 

effect of tDCS at Fp3 with that of tDCS at occipital sites 

during (and off-line) using Civile et al. (2016)’s 

checkerboard paradigm and our face paradigm.  
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Abstract

What is the best way of figuring out the structure of a causal
system composed of multiple variables? One prominent idea
is that learners should manipulate each candidate variable in
isolation to avoid confounds (known as the “Control of Vari-
ables” strategy). Here, we demonstrate that this strategy is not
always the most efficient method for learning. Using an opti-
mal learner model which aims to minimize the number of tests,
we show that when a causal system is sparse, that is, when
the outcome of interest has few or even just one actual cause
among the candidate variables, it is more efficient to test mul-
tiple variables at once. In a series of behavioral experiments,
we then show that people are sensitive to causal sparsity when
planning causal experiments.

Keywords: information search; causal learning; hypothesis
testing

Introduction
To develop a causal understanding of the world, we often
need to find out how multiple candidate variables affect an
outcome of interest. This problem arises in everyday situa-
tions (e.g., “Which of these switches can turn on the bath-
room fan?”), during scientific exploration (“Which of these
chemicals affect reaction x?”), and plays a role in answering
economic and social questions (“How do these policies af-
fect GDP?”). Often, the quickest and most effective method
of resolving the causal relationships between variables and
outcomes is to conduct experiments that manipulate variables
(e.g., turning switches on or off) and help to decouple causa-
tion and correlation (Pearl, 2009).

In this paper, we explore how people interact with a novel
causal system to understand how it works by manipulating
multiple independent variables over a series of trials. We start
by introducing two strategies for causal experimentation, one
of which is so well known that it is codified in contemporary
STEM education standards. We then describe an analysis of
an optimal experimenter (i.e., an ideal actor model) which
shows how the most informative strategy for learning criti-
cally depends on a learner’s knowledge about the number of
causes among the variables. We then evaluate the predictions
of this model in three behavioral experiments.

Test one variable at a time
The problem of disambiguating the effects of multiple vari-
ables has a long history in developmental psychology and ed-
ucation. Starting with Piaget (Inhelder & Piaget, 1958), many
educators and psychologists have stressed the importance of
controlling or isolating variables. One important procedural
component of this approach is the experimental strategy of
changing one variable at a time and observing its effect while
holding all other variables constant. In the STEM education

literature, considerable emphasis has been placed on teach-
ing children this controlling variables strategy (e.g., Chen &
Klahr, 1999; Kuhn & Brannock, 1977). In fact, it even ap-
pears in national standards for science education (National
Academy of Sciences, 2013). A common finding from em-
pirical studies is that children require extensive training to
acquire the CV principle (e.g., Kuhn et al., 1995; Klahr,
Fay, & Dunbar, 1993; Kuhn & Phelps, 1982). Adults and
adolescents, although more likely to use the strategy spon-
taneously, sometimes also have a tendency to test multiple
features at once instead of testing them one-by-one (Kuhn et
al., 1995). Interesting exceptions have been found in more
complex tasks. For example, Bramley, Dayan, Griffiths,
and Lagnado (2017) tested people’s intervention strategies in
completely unconstrained multivariate systems (with no dis-
tinction between potential causes and outcomes) and found
that participants often focused on testing one causal relation-
ship at a time by holding most variables at a constant value.

In sum, CV is a widely regarded epistemic principle for
learning about causal systems composed of multiple vari-
ables. A key advantage of a CV strategy is that it results in
unconfounded data that is easy to interpret. Empirical work
suggests that acquiring the ability to use the CV principle can
be challenging, but adults sometimes adopt it more in com-
plex tasks.

Test half or test multiple variables
Changing variables one-by-one has the benefit of isolating the
effect of every variable without confounding influence of the
others. It is therefore particularly helpful when one believes
that many variables are causes of the outcome. However, con-
sider the case in which a learner expects only very few, and
perhaps just a single variable to have a causal relationship to
the outcome, but is faced with a number of equally plausi-
ble candidate variables. In that case, an alternative strategy is
to test multiple variables at once to see if any of them affect
the outcome at all. For example, imagine trying to figure out
which out of 20 switches in a poorly labeled basement fuse-
box controls the bedroom fan. An optimal strategy for finding
this switch is to turn on exactly half (10) of the switches to
find out which half contains the target switch and then con-
tinue halving the remaining possibilities until only one switch
remains. Compared to testing switches one-by-one, this will
dramatically reduce the number of trips needed for checking
what effect the current switch setting has on the fan.

This Test Multiple or (more specifically) Test Half strategy
has been studied by psychologists in a slightly different type
of information-seeking task, often based on popular games as
“Twenty questions” or “Guess who?”. In these games, chil-

1788



dren or adults have to identify a target object, person or cause
among a given set by asking as few yes/no questions as pos-
sible. Here too, the optimal strategy (in terms of expected in-
formation gain, see next section) is to ask about features that
apply to half the possibilities under consideration (e.g., “Is
the person female?”, if the hypotheses are people and half are
each sex), since it can reduce the number of possibilities more
rapidly than asking about specific identities directly (e.g.,
Navarro & Perfors, 2011). Both children and adults have
been shown to use this method successfully (Nelson, Div-
jak, Gudmundsdottir, Martignon, & Meder, 2014; Ruggeri
& Lombrozo, 2015). Interestingly, any Test Multiple strategy
would be considered an error from the perspective of the ed-
ucation literature (e.g., a student adopting this strategy might
be coded as failing an STEM education assessment), because
by changing many things at once it momentarily confounds
the influence of individual variables.

The Test One and Test Multiple/Half strategies are typi-
cally studied in different kinds of psychological tasks. How-
ever, as the switch example from above illustrates, they can
both be reasonable approaches for testing the causal impact
of multiple variables. Next, we show how the effectiveness
of each strategy depends on the structure of the task.

Sparsity determines effectiveness of strategies
As the switch example shows, an important factor that de-
termines the effectiveness of a Test One or a Test Multiple
strategy is the sparsity of a causal system. We define spar-
sity as the proportion of causes among variables (for related
definitions and discussions of the importance of sparsity for
hypothesis testing, see e.g., Navarro & Perfors, 2011; Langs-
ford, Hendrickson, Perfors, & Navarro, 2014). In sparse en-
vironments (e.g., when we know that only one in 20 switches
controls the fan), a learner can quickly narrow in on an ef-
fective cause by trying many variables at once. In contrast, if
there are (known to be) many causes, trying many things at
once will tend to be uninformative as the effect will almost al-
ways be generated and little will be learned about which vari-
able(s) were responsible. The choice of an effective testing
strategy in a particular situation is thus a question of ecologi-
cal rationality.

Modeling the effect of sparsity To formalize this intuition,
assume that a learner is faced with a simple causal system
with N binary independent input variables, I, and a single
binary outcome, o. Given the subset of input variables, C ⊆
I that, when active, can cause the outcome to happen, the
probability of the outcome given the current setting of inputs
is

P(o = 1) =

{
1, if ∃ c ∈C (c = 1),
0, otherwise

In other words, the outcome occurs if and only if any of the
input variables in C are currently active.

The learner must now decide how to manipulate the input
variables to best figure out which of them are causes (i.e.,
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Figure 1: Effect of the number of causes, |C|, and the number
of variables, N, on the number of variables tested.

which are members of C). We assume that the learner’s op-
timal strategy lies in choosing a switch setting, s ∈ S, that
maximizes the expected Information Gain with respect to the
system. Information gain is a common metric for quantify-
ing the value of information-seeking actions, including causal
interventions. It is computed as the expected difference of
a learner’s current uncertainty over their hypotheses H, and
their expected new uncertainty after having made an inter-
vention on the system and observed an outcome. In this case,
a learner’s hypotheses H are all possible compositions of the
set of causes, C, and there are two possible outcomes (o = 1
or o = 0). Thus a learner’s expected information gain is

EIG(s|H) = SE(H)−
1

∑
j=0

P(o = j|s) SE(H|s), (1)

where SE denotes the Shannon Entropy over a distribution
of beliefs (Shannon & Weaver, 1949). To investigate the im-
pact of causal sparsity, we use this model to explore how a
learner’s belief about sparsity affects the optimal strategy.

Figure 1 shows model predictions for the number of vari-
ables an optimal learner should manipulate upon their first
encounter with a system of variables, based on their knowl-
edge about the number of causes, |C|, and the number of vari-
ables in the system, N, assuming a uniform belief over all re-
maining hypotheses. In line with the intuition outlined above,
when a learner expects only one cause the model predicts a
Test Half strategy. As the number of causes increases (that
is, as causal sparsity decreases), the optimal number of ma-
nipulated variables decreases and quickly reaches the strat-
egy of changing only a single variable. This relationship is
modulated by the total number of variables, which increases
the degree of causal sparsity and consequently the number of
variables that should be manipulated.

These results show that the causal sparsity of an environ-
ment should affect a learner’s strategy for manipulating bi-
nary variables to find out how they affect some outcome of
interest. This means that, even in the same task, there can ex-
ist a continuum of optimal strategies with respect to the num-
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Figure 2: Wooden box used in Experiment 1.

ber of variables changed, which ranges from a Test Half to a
Test One method. This observation leads to the core predic-
tion we test in this paper. We hypothesize that when learning
a causal system, people will use different strategies depend-
ing on their belief about the sparsity of the system. This result
would offer a further demonstration that human intervention
strategies are ecologically rational, in the sense of being well
matched to the environment within which they are needed.

Experiments
We now present three experiments that investigate how
knowledge about sparsity affects people’s causal testing
strategies. Sparsity is manipulated in two ways, both sug-
gested by the model results shown in Figure 1. We first vary
the number of causes (i.e., variables that affect the outcome)
in a system (Exp. 1 & 2) and second the number of total
variables available for testing (Exp. 2). We also investigate
what strategies people select given no prior instructions about
sparsity (Exp. 3).

Experiment 1 - manipulating number of causes
Participants 30 participants were recruited via the subject
pool of New York University’s Department of Psychology.
Participants were paid at a rate of $5 per hour and could win
an additional bonus of up to $3 (see below).

Stimuli Participants were presented with the wooden box
depicted in Figure 2. The box had six different switches (in-
puts), a yellow wheel (output) and a red activation toggle.
Each switch could be turned to the left (off) or the right (on).
The activation toggle controlled whether the entire box was
turned on or off. Participants were randomly assigned to one
of two experimental conditions. In the sparse condition, only
one of the switches caused the wheel to spin, whereas the
remaining five switches were broken. In the non-sparse con-
dition, five switches caused the wheel to spin and one switch
was broken. A single working switch was sufficient to acti-
vate the wheel, and the position of the broken switches had
no effect whatsoever. The wheel could only be activated if
the activation toggle was currently in its on-position. Other-
wise, participants were told that the box was turned off. The
working and broken switches were chosen randomly for each
participant. At the beginning of the experiment, participants

were given six plastic tokens, each of which was worth $0.50.
Participants had to pay one token every time they wanted to
turn on the box via the activation toggle (see below).

Procedure Participants were first familiarized with the
components on the box. They were told about the the binary
(on/off) nature of the switches, and the difference between
broken and working switches. Depending on the condition,
participants were then told that they had to to identify
the one broken switch (non-sparse condition) or the one
working switch (sparse condition). Before starting the task,
participants in both conditions were shown the same two
demonstration trials. First, while the activation toggle was
turned off, the experimenter turned all six switches to their
on position and subsequently turned on the activation toggle,
causing the wheel to spin. Second, after turning the activation
toggle off again, the experimenter set all switches to their off
state and turned the activation toggle back on, which did not
cause the wheel to spin. In the main part of the experiment,
participants could repeatedly test different settings of the
switches to find out which one was broken/working. On each
trial, they could change the switches in any way they liked
while the activation toggle was off. They could then test
their chosen switch setting by turning the activation toggle
on and observing the effect on the wheel. Before the start of
each new trial, the activation toggle had to be turned off again.

To incentivize participants to use as few trials as possible,
they had to pay one of their six plastic tokens (worth $0.50
each) for each time they performed a test by inserting it into
a coin slot on the box. Participants could test the box up to
six times (hence the use of six tokens), but could stop when-
ever they thought they had identified the one broken/working
switch. After their final test, they indicated to the experi-
menter which of the switches was broken/working. If their
choice was correct, they could trade in any remaining tokens
for their corresponding monetary value. If it was incorrect or
they used up all their tokens, they received no bonus.

Results To characterize participants’ trial-by-trial behav-
ior at a strategy level, we used the following classification
scheme. In the non-sparse condition, participants’ strategies
were classified as Test One if they turned on one switch on
every trial, while leaving all other switches turned off. If
a participant manipulated multiple switches or kept testing
the same switch more than once, their strategy was classi-
fied as Other. In the sparse condition, participants’ strategies
were classified as Test One if participants turned on one new
switch each trial, even when they left previously tested, but
ineffective, switches turned on. This is because these past
switches would have shown to be broken and therefore could
not contribute confounding evidence on future tests. Partic-
ipants’ strategies were classified as Test Multiple if partici-
pants tested half or multiple of the switches. As a sequen-
tial strategy, Test Half does not have a meaningful defini-
tion for participants in the non-sparse group, who would al-
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Figure 3: Strategy use in Experiment 1

ways encounter confounding evidence when changing mul-
tiple switches. Note that we also classified participants as
Test One or Test Multiple if they had some interspersed trials
with zero Information Gain (e.g., from repeating the same test
twice), assuming that they were using a more noisy version of
the respective strategy.1

Figure 3 shows the number of participants using each
testing strategy in the two conditions. For the purposes of
this figure, the classification was based on a participant’s
sequence of tests up to the point at which an optimal learner
would have been able to correctly identify the working or
broken switch (some participants made further unnecessary
tests). Note that, among participants classified as “Test
Multiple”, everyone actually manipulated exactly half of the
switches (i.e., they used the optimal strategy according to our
optimal model). We kept the more general classification as
Test Multiple, to stay consistent with the results presented
in the next experiment. The number of participants using a
Test One strategy was lower in the sparse condition (4 in 15
vs. 14 in 15, Fisher’s exact p < 0.001). However, even in the
sparse condition around a quarter of the participants decided
to change one variable at a time.

In sum, as predicted by the optimal learner model pre-
sented above, Experiment 1 found that instructing partici-
pants to expect either a sparse (one cause) or a non-sparse
(five causes) environment, had an effect on how they pro-
ceeded to manipulate a set of six variables. However, even
in the sparse condition, we found that some use of the less ef-
fective Test One strategy persists. The following experiments
explore possible explanations for this finding.

Experiment 2 - manipulating number of variables
Experiment 2 explores whether increasing the amount of
sparsity by adding more variables would lead to more partici-
pants to adopt a Test Half strategy. In Experiment 1, the bene-
fit of testing multiple variables over testing variables one-by-
one was relatively modest. In fact, testing half of the variables
in the sparse condition would save participants less than one

1The precise details of the strategy classification had to be omit-
ted from this paper for space reasons, but will appear in a longer
version of this manuscript that is currently under review.
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Figure 4: Expected number of trials needed to find the work-
ing switch in the sparse condition, when using a Test One or
Test Half strategy.

step (2/3 of a step) on average, compared to testing variables
individually (this difference translated to an average saving of
∼$0.33). This may have not provided sufficient incentive for
participants to realize that a Test Half strategy would be more
advantageous. As discussed above, one way to amplify the
sparsity manipulation is to add more variables (see Figure 1).
To illustrate the effect on the expected payoff from the two
strategies, Figure 4 shows the average number of tests needed
to find the working switch for a learner in a sparse (one cause)
environment employing either a Test One or a Test Half strat-
egy. It shows that as the number of switches increases, so
does the benefit of the Test Half strategy over the Test One
strategy.

To test if people are sensitive to the degree of sparsity, Ex-
periment 2 manipulated the number of variables (switches).
Participants on Amazon Mechanical Turk completed the
same task as in Experiment 1, but were presented with either
4, 6, 10, or 20 switches (all manipulations were between-
subjects). As before, they were given either sparse (one
switch working) or non-sparse (one broken) instructions. Al-
though adding variables should have no effect on behavior
in the non-sparse condition, we decided to keep the manip-
ulation to ensure that adding variables does not encourage a
general increase in the number of variables participants would
test on each trial. By including the 6 switches condition again,
this experiment also served to replicate the results from Ex-
periment 1 with an online sample.
Participants 120 participants were recruited on Amazon
Mechanical Turk. Recruitment was restricted to AMT work-
ers within the United States aged 18 or above. Participants
were paid $0.50 for their participation, with the possibility of
earning an additional bonus of up to $1 (see below).
Stimuli The task from Experiment 1 was adapted as faith-
fully as possible to be run on the web with some minor
changes. Instead of a wheel, the outcome of interest was
a light bulb, which lit up when it was turned on, and re-
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Figure 5: Strategy use in Experiment 2

mained gray otherwise. All switches were of the same kind
and would turn green when on and red when off.
Procedure The experiment followed a 4 x 2 between-
subjects design. Participants received different versions of the
task with either 4, 6, 10, or 20 switches, and were given ei-
ther the sparse or the non-sparse instructions. The procedure
was the same as in Experiment 1. Participants received sim-
ilar instructions and were also asked to perform two demon-
stration trials in which first all and then none of the switches
were turned on, to show that the light bulb would turn on and
stay off, respectively. The per-trial payment was adjusted de-
pending on condition, such that participants had to pay either
$0.25, $0.16, $0.1, or $0.05 per additional test in the 4, 6, 10,
or 20 switches conditions, respectively. These payments were
chosen so that the total potential bonus (starting at $1) would
be zero if participants decided to test every single switch in
isolation.
Results Figure 5 shows the frequency of the Test One, Test
Multiple, and Other strategies by condition. In the non-sparse
group a large majority of participants changed a single vari-
able at a time, irrespective of the number of switches. In the
sparse condition, however, the proportion of Test One users
varied with the number of switches (Fisher’s exact, p < .05),
such that participants confronted with more switches (10 or
20) were less likely to test individual switches than those
confronted fewer (4 or 6). This development was also
accompanied by the expected increase in strategy efficiency,
such that the number of trials participants saved on average
in the sparse condition compared to the non-sparse condition
increased from 0.15 trials in the 4 variable condition to 6.53
trials in the 20 variable condition, in line with the predictions
in Figure 4.

These results provide further evidence that information
about sparsity affects how people learn actively in multiple-
variable settings. Again, participants in the sparse group
were more likely to manipulate multiple variables at a time,
whereas those with in the non-sparse group chose to manip-
ulate variables one-by-one. Furthermore, participants in the
sparse condition, in which there is only one cause, were sensi-
tive to the total number of variables. The more switches were
presented to participants (the more sparse the environment),

the more prominent was their use of a Test Multiple strat-
egy. Nevertheless, this experiment also replicated the finding
from Experiment 1 that in the absence of a strong incentive to
do otherwise, people have a tendency to change single vari-
ables, rather than multiple. In fact, the web sample revealed,
if anything, an even stronger tendency to use a Test One strat-
egy in the sparse condition, particularly when the number of
switches was small.

Experiment 3 - no sparsity information
Experiments 1 and 2 suggest that testing one variable at a
time might serve as a default strategy that is only overridden,
to some degree, by knowledge about the number of causes.
To explore this possibility further, Experiment 3 asked what
strategy people would use to test a multi-variable system
when they had no prior information about the number of
causes to begin with. By giving participants vague instruc-
tions, we aimed to instill an approximately flat “prior” over
all possible combinations of working and broken switches.

Participants 57 participants were recruited on Amazon
Mechanical Turk. Recruitment was restricted to AMT work-
ers within the United States aged 18 or above. Participants
were paid $0.50 for their participation, with the possibility of
earning an additional bonus of up to $1.

Stimuli Materials were the same as the 6-switch condition
of Experiment 2. In a between-subject design participants
were again randomly assigned to a switchboard that either
had one broken or one working switch.

Procedure The procedure was the same as in the previous
Experiment, with the exception that participants were given
the same set of instructions about the number of causes in
both conditions. Instead of being told to find the one bro-
ken or one working switch, they were instructed to “find
out which switch(es) are working or broken”. After the
switch testing phase, participants were asked to indicate
which switch(es) were working or broken, now being able
to make multiple selections.

Results Figure 6 shows the proportion of participants that
chose to turn on any possible number of switches on the very
first trial. Data is collapsed over both conditions, since the
initial instructions were the same and hence the first trial
should not lead to different behaviors. The vast majority of
participants (%58) chose to manipulate a single switch, with
only a small number (%10) manipulating half.

This experiment verified that with no instructions about
sparsity, the majority of participants chose to manipulate vari-
ables one-by-one. Note that an optimal learner initialized
with a flat prior (which translates into 26 hypotheses, given
6 switches, each with a prior probability of 1

26 ) also assigns
higher expected Information Gain to testing one over testing
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Figure 6: Number of switches tested on the first trial of Ex-
periment 3.

multiple variables. Therefore, the Test One “default” shown
by some participants in earlier experiments, could stem from
them ignoring the constrained prior that they were instructed
on and instead acting as if they knew nothing about the spar-
sity of the system. This behavior would still be in line with
the optimal learner analysis presented above.

General Discussion
In a series of experiments, we found that, in line with an op-
timal learner model, people’s strategies to manipulate multi-
variate causal systems take into account the causal sparsity
of the system. In non-sparse environments (e.g., only one
non-cause) the majority of participants adhered to a strategy
of testing one variable at a time, in line with a “Control-
ling Variables” principle (Kuhn & Brannock, 1977). When
causes were sparse (e.g., only one cause) participants were
more likely to manipulate multiple (often half) of the candi-
date variables. We also found that increasing the degree of
sparsity, by increasing the total number of variables, ampli-
fied this effect on people’s strategy choices.

These findings demonstrate that people adaptively change
their causal experimentation strategies in response to knowl-
edge about the environment. Our study thus offers an ex-
ample of the importance of “ecological learning” that allows
people to flexibly adapt their inquiry strategies to the infor-
mation structure of the task (Ruggeri & Lombrozo, 2015).
This idea tallies with other recent work on causal interven-
tions showing that people’s strategy choices were made adap-
tively with respect to internal constraints, like cognitive load,
and external factors like the match of a strategy and the task
environment (Coenen, Rehder, & Gureckis, 2015). In find-
ing that sparsity affects behavior, the experiments above also
add to recent evidence from other (spatial) information search
tasks, in which hypothesis sparsity was shown to affect peo-
ple’s hypothesis testing strategies (Hendrickson, Navarro, &
Perfors, 2016).

Interestingly, we also found that even in sparse environ-
ments a proportion of participants chose to test variables in-
dividually, despite the fact that changing multiple variables
would have been more efficient. This is somewhat surprising
since prior work has often found that the Controlling Vari-
ables principle is difficult to teach and often violated even

by adults (Kuhn et al., 1995). It is thus intriguing to think
about why we found such pervasive use of a CV strategy.
One possibility is that a Test One strategy is less risky than
changing multiple variables under a wide range of possible
prior beliefs about the system. If the underlying system is not
sparse, changing multiple variables can result in ambiguous
evidence and often no information gain. However, chang-
ing variables one-by-one will be informative even in a sparse
environment. With some degree of uncertainty about the cur-
rent environment, a learner might therefore just be better off
testing one variable at a time. Another contributing factor
might be the that changing one variable at a time is explic-
itly taught in schools as a principle of scientific experimenta-
tion (National Academy of Sciences, 2013). It is interesting
to consider whether this curriculum standard might actually
in some cases hinder efficient experimentation by promoting
a narrow focus on the idea of testing variables individually,
irrespective of situation specifics.
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Abstract 
Languages differ in the way they convey paths. S-languages 
conveying manner of motion directly in a main verb, while V-
languages require a separate verb. This difference has been 
shown to influence the conceptualization and narration of 
motion events. We therefore asked: would this difference arise 
in the paths that people draw, particularly in visual narratives? 
We annotated the representations of path information (source, 
trajectory, goal) in a corpus of 35 comics from S- and V-
languages. We found that panels from S-languages depicted the 
path of an action more often than those from V-languages, 
consistent with previous research on increased motion event 
salience for S-languages. These findings suggest that the 
conceptualization of paths from spoken language may 
influence the graphic depiction of paths.  

Keywords: visual language; motion events; linguistic 
relativity; paths; attention 

 

Introduction 
Expressing information about the paths of actions is a 

challenge to communication systems. Spoken language 
expresses spatial relations with symbolic units. Languages 
break down actions as moving from a source (starting point) 
to a goal (endpoint) with some sort of manner (characteristic 
of the path, i.e., bouncing, wiggling, sauntering, etc.) (Talmy, 
1985). This can be encoded in a sentence using a satellite-
framed construction, which places both manner and motion 
into one verb (go, run), while a “satellite” expresses the path 
in a preposition (out, in), as in She ran out of the room. 
Alternatively, a verb-framed construction includes both 
motion and path in a verb (Spanish: salir–“exit”, entrar–
“enter”), and separating manner into an additional verb 
(corriendo–“running”), as in She exited the room running. 
Corpus analysis has suggested that languages differ in which 
of these constructions they primarily use (see Slobin, 2003 
for summary). Satellite-framed “S-languages” (English, 
German, Dutch, Mandarin) allow a main verb to contain 
information about manner of motion, while verb-framed “V-
languages” (Spanish, French, Japanese, Hebrew) express this 
in a separate verb.  

This difference in typology thus varies the salience of paths 
in motion events between languages. For example, in a 
sentence like He ran out of house, across the street, into the 
bar, an S-language can easily covey one main verb, and 
extend the manner of the path (running) across several event 
segments using prepositions. In contrast, V-languages would 
require a separate verb for each path (He exited the house, 

crossed the street, entered the bar) and would need to add a 
verb repeatedly to each clause to specify manner (running).  

Because V-languages frame manner in a separate verb, 
they demand extra effort and attention in contrast to the 
increased salience of paths in motion events by S-languages 
(Slobin, 2000, 2003). This difference in salience has 
manifested in studies of mental imagery, translation, and 
narration—often elicited from reading wordless visual 
narratives. Narratives told by speakers of S-languages tend to 
create units of successive events and draw focus to the 
manner of motion, while those by speakers of V-language 
often frame the setting and environment where motion events 
happen, leaving both paths and their manner to inference 
(Slobin, 2000, 2003).  

Given that much previous work examined participants’ 
verbalized narration of wordless, drawn visual narratives, 
would path salience be reflected in the drawing systems that 
appear in visual narratives themselves? In drawings, motion 
needs to be converted from dynamic movement into a static 
depiction. Such information is implied by the postures of 
figures in actions, and further clarified by graphic devices, 
like motion lines, which overtly depict the path of an action 
by trailing a moving object (Cohn, 2013; McCloud, 1993). 
Motion lines differ in the “visual languages” used to draw 
visual narratives throughout the world (Cohn, 2013; 
McCloud, 1993) and their understanding is learned over time 
(Friedman & Stevenson, 1975) and conditioned by 
experience with comics (Cohn & Maher, 2015; Nakazawa, 
2016). In addition, both behavioral and neurocognitive 
research suggests that actions are more easily understood 
when motion lines depict their paths than without motion 
lines (Cohn & Maher, 2015; Ito, Seno, & Yamanaka, 2010). 

Given that S- or V-languages differ in how they encode 
properties of paths, might this salience of paths in visual 
depictions differ based on a drawer’s spoken language? That 
is, might the conceptualizations from one domain (e.g., 
speaking) “permeate” those of another domain (e.g., 
drawing) as a reflection of shared conceptual resources 
(Cohn, 2016)? 

A study by Tversky and Chow (2009) sampled panels out 
of one comic each from Japan, Italy, America, and China. 
These books crossed distinctions of Western cultures 
(America and Italy) and Asian cultures (China and Japan), in 
addition to crossing linguistic typology of S-languages 
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(Chinese and English) and V-languages (Japanese and 
Italian). Panels were then rated on a scale of “action” vs. 
“setting the scene” by American and Japanese participants. 
Participants rated panels from China and America (S-
languages) as more “active” than those from Japan and Italy 
(V-languages), but within these contrasts panels from Asian 
countries (China, Japan) were rated as more active than those 
from Western countries (America, Italy). These results 
provide preliminary evidence that path information encoded 
differently in S- and V-languages could influence the 
drawings of speakers of those languages. Nevertheless, this 
work was limited in that it included panels from only single 
comics per group, and did not directly examine the depiction 
of paths within those works, instead using “action” as a proxy 
for paths. 

We therefore further investigated this issue by coding the 
component parts of paths directly in panels from various 
comics from around the world. Paths were analyzed for their 
component segments: a source (the start of the path), the goal 
(the endpoint of the path), and the trajectory (the path 
traversed). The manner is typically encoded in the trajectory. 
In Figure 1, the ball is bouncing, but without that middle 
segment, the ball would appear to move in a straight path. As 
in Figure 1, an image could depict all three of these path 
segments at once, or a panel could frame isolated segments 
of a path (imagine each dotted box as images on their own, 
or combining them for Source-Trajectory or Trajectory-Goal 
segments).  

We coded the properties of path information in 35 comics 
from around the world, drawn by speakers of S-languages 
(English, Mandarin, German) and V-languages (Japanese, 
Korean, French). However, we also considered the possibility 

that path information could vary as a function of the influence 
of comics traditions. For example, American and Japanese 
comics have been observed to use different types of motion 
lines to depict the paths of moving objects (Cohn, 2013; 
McCloud, 1993, 1996). Yet, motion lines were a highly 
borrowed element from the Japanese Visual Language into 
mainstream American comics during the influx of manga into 
America in the 1990s. In addition, Original English Language 
(OEL) manga are comics drawn in the “style” of Japanese 
manga, but are created by speakers of English (an S-
language). This is contrasted by Korean “manhwa,” which 
are also imitative of the visual language of Japan, but come 
from Asia and speakers of Korean—another V-language. 
Chinese manhua (including “wuxia” from Hong Kong) are 
also from Asia, but do not necessarily imitate the Japanese 
Visual Language.  

Following previous work, we reasoned that representations 
from visual narratives produced by speakers of S-languages 
(and optimized for those readers) would depict more paths 
than those from V-languages. Specifically, they should depict 
more trajectories, since that path segment illustrates its 
manner. 

Methods 

Materials 
We selected 35 books for analysis, with 5 from each of our 

primary groups which varied in their continent of origin 

Table 1. Characteristics of comics included in our corpus study. 

Comic type Continent Original 
Language 

Language 
path type 

Total 
pages 

Total 
panels 

Average 
panels/page 

American Mainstream America English S-language 106 541 5.16 
OEL Manga America English S-language 137 768 5.62 

Chinese manhua Asia Mandarin S-language 131 772 5.92 
German comics Europe German S-language 136 772 5.78 

French bande desinée Europe French V-language 100 769 7.73 
Japanese manga Asia Japanese V-language 106 563 5.62 
Korean manhwa Asia Korean V-language 118 579 5.2 

TOTAL       834 4,763 5.86 
 

 
Figure 1. A path depicted by a motion line segmented into its component parts. 
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(America, Europe, Asia) and path language type (S-language, 
V-language), as listed in Table 1. A full listing of works 
analyzed appears in the Appendix. We attempted to retain the 
same general genre (action, adventure, superhero, fantasy, 
sci-fi) throughout all the books as best as possible. Coders 
analyzed either a single issue, chapter, or episode in each 
book, 25 pages, or 150 panels, whichever came first. This 
amounted to an average of 23.8 pages and 136.1 panels per 
book, across a total of 4,763 panels in 834 pages (see Table 
1). All annotations were incorporated into the Visual 
Language Research Corpus (VLRC: 
http://www.visuallanguagelab.com/vlrc/index.html). 

Data Analysis 
Trained coders independently analyzed each book panel-

by-panel across the areas of analysis with 60% of books were 
annotated by two coders. Coders were trained through an 
extensive course on visual language linguistics and prior to 
coding scored above an 85% agreement on assessments of 
their coding ability. 

Coders identified whether a represented path depicted its 
source (starting point), trajectory (midpoint and the path 
itself), and/or goal (endpoint). Panels could involve an 
isolated path segment (just source, trajectory, or goal) or 
multiple segments together (ex. source-trajectory, trajectory-
goal). We also annotated the cues used to signal these paths, 
be they graphic devices like motion lines, or the postural cues 
of figures in motion. We recorded the total number of path 
segments in a given panel, and calculated the mean number 
of instances by dividing the sum of path segments divided by 
the total number of panels per book. Final analyses averaged 
the means for each book between coders’ scores.  

Our analyses looked at panels which included any path 
segments (e.g., a panel with a trajectory, and/or both a 
trajectory and goal), and those that panels depicting only an 
isolated path segment (source, trajectory, or goal). Path 
segments were analyzed using repeated-measures ANOVAs 
that set path segment (i.e., source, trajectory, goal) as the 

within-groups factor and comic type (Table 1), continent of 
origin (America, Asia, Europe) or language type (S- vs. V-
language) as the between-groups factor. Follow up analyses 
examined the differences of each area of analysis within and 
between groups. 

Results 
Our initial 2 x 3 repeated-measures ANOVA examined the 

difference between path segments (source, trajectory, goal) 
between different language types (S- vs. V-). We found main 
effects of path segments and language type, as well as an 
interaction between them (see Table 2). These analyses were 
carried out both for panels with any path segment, and those 
with isolated path segments. The main effect of path segment 
arose because, across language types, trajectories were used 
more than goals, which were used more than sources (all 

ps<.05; see Figure 2). However, across both 
analyses comics originally produced by 
speakers of S-languages used significantly 
more trajectories than those by V-languages 
(all Fs > 7.3, all ps < .01), but neither sources 
nor goals differed on the basis of language 
types (all ps > .134). 

In line with Tversky and Chow’s (2009)  
contrasts between cultures, we also analyzed 
path segments collapsed across continents 
(America, Europe, Asia) with a 3 x 3 repeated-
measures ANOVA. Consistent with our other 
analyses, we again found main effects of path 
segments, but found no significant main 
effects of continent or interaction between 
path segments and continents. This held for 
analyses of all path segments and isolated path 
segments (Table 2).  

Table 2. Results of ANOVAs for comparisons of path segments between 
language types, continents, and comic types. 

   All path 
segments 

Isolated path 
segments 

  df F-value η² F-value η² 
Language Types      
 Path Segment (PS) 2,66 33.0*** 0.5 47.2*** 0.59 
 Language Type (LT) 1,33 5.9* 0.15 5.3* 0.14 
 PS*LT 2,66 6.8** 0.17 7.0** 0.18 
Continents      
 Path Segment (PS) 2,64 30.7*** 0.49 47.9*** 0.60 
 Continents (C)  1,32 0.59 0.04 1.95 0.11 
 PS*C 4,64 0.60 0.04 1.76 0.10 
Comic Types      
 Path Segment (PS) 2,56 92.8*** 0.77 60.7*** 0.68 
 Comic Type (CT) 1,28 6.5*** 0.58 6.4*** 0.58 
 PS*CT 12,56 6.9*** 0.60 5.8*** 0.56 
***p<.001, **p<.01, *p<.05 

 
Figure 2: Path segments isolated to individual panels 

averaged across language types. Standard error is depicted. 
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Finally, to assess the differences between each comic type, 
we used a 3 x 7 repeated-measures ANOVA to compare path 
segments across all comic types. We found main effects of 
path segments and comic type, and an interaction between 
them (Table 2). As in Figure 3, in almost all types of comics, 
trajectories appeared more than goals, which appeared more 
than sources (all ps < .05). The exception to this was Japanese 
manga, which depicted near equal amounts of trajectories and 
goals. Follow up analyses showed comic types did not differ 
in their depiction of isolated sources or goals when isolated 
in panels (all ps > .364), but did differ for trajectories in both 
analyses (all Fs > 7.3, all ps <.001) and between goals in 
panels depicting any paths, F(6,28)=2.6, p<.05. Specifically, 
the difference in isolated trajectories seemed to be motivated 
by Chinese manhua, which used more trajectories than all 
other comics (all ts > 4.1, all ps <.01) except French and 
German comics (all ps > .16), while panels with any paths 
including trajectories were higher in Chinese manhua than all 
other comics (all ts > 3.5, all ps < .05), except trended higher 
than German comics (p = .076). In addition, isolated 
trajectories in Japanese manga and Korean manhwa were 
fewer than in French and German comics (all ts > 3.1, all ps 
<.05).  

Discussion 
This corpus analysis examined comics from seven different 

types of comics from around the world to investigate whether 
the depiction of path information varied on the basis of 
culture and/or spoken language typology. Though we found 
that path segments differed between comics, such variation 
did not vary based on the comics’ continent of origin. 

However, they did vary based on a comics’ original language 
type. 

On the whole, the trajectories of paths—i.e., the path 
itself—were depicted more than the goals (endpoint) of the 
paths, which in turn appeared more than the sources (starting 
point). The prominence of goals over sources aligns with 
findings that the endpoints of paths are more salient than 
starting points in verbal language, and in perception and 
attention (Lakusta & Landau, 2005; Regier, 1996, 1997). 
However, the fairly consistent depiction of trajectories 
beyond sources and goals suggests an importance for the 
visual depiction of paths themselves in motion events, more 
than their start or endpoint. This is consistent with the idea 
that motion lines disambiguate actions by depicting their 
paths (Cohn & Maher, 2015). 

In addition, we found that trajectories isolated to their own 
panels appeared more in the depictions of paths from visual 
narratives from S-languages than V-languages. These 
findings are also consistent with findings that the 
conceptualization and narration of motion events are more 
salient for speakers of S-languages than those of V-languages 
(Slobin, 2000, 2003), and with previous work (Tversky & 
Chow, 2009) showing panels from S-languages (English, 
Chinese) are as rated more action-oriented than those from 
V-languages (Japan, Italy). These findings support the idea 
that the framing of path information in a spoken language 
may influence its depiction in a drawn visual language. 

Despite our finding of differences between comic panels 
on the basis of spoken language typology, we found no 
significant differences based on the comics’ continent of 
origin. This differed from Tversky and Chow’s (2009) 
finding of a split between how “active” panels were rated in 

 
 

Figure 3: Path segments isolated to individual panels from various comics. Standard error is depicted. 
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Western and Asian comics. However, inspection of Tversky 
and Chow’s reported data suggests that Chinese panels may 
have driven the effect of higher ratings of “action” compared 
to all others type. We too found that manhua exceeded the 
depiction of paths of all other types of comics, though here it 
may have offset differences between continents given the 
relational similarities otherwise between pairs of books from 
Asia (Korean, Japanese), America (US mainstream, OEL 
manga) and Europe (French, German). The difference 
between manhua and other types of comics—including those 
from other S-languages—may support the classification of 
Mandarin as variant from the binary split of S- and V-
language types (Chen & Guo, 2009). 

The absence of variation between depictions of paths on 
the basis of culture contrasts from findings across other 
aspects of structure from the visual languages used in comics. 
For example, previous corpus analyses have suggested 
differences between cultures on the basis of comic panels’ 
attentional framing structure (Cohn, Taylor-Weiner, & 
Grossman, 2012), narrative patterns across panels (Cohn, In 
press), semantic transitions between panels (McCloud, 
1993), and visual morphology like speech balloons 
(Forceville, Veale, & Feyaerts, 2010). Combined with prior 
findings, our results suggest that cross-cultural variation in 
visual narrative systems may involve a diverse number of 
factors including cultural specificity, visual language 
patterns, and possibly influence from spoken languages.  

Finally, given the differences between depictions of paths 
on the basis of S- versus V-languages, this work hints at 
“permeability” between the conceptualization made in 
expressive domains, here between spoken languages and 
drawings. This initial work could thus be followed by more 
extensive corpus research, in addition to experimental 
methods further examining these preferences. For example, 
both behavioral and neurocognitive work has shown that 
comic panels containing motion lines are easier to process 
than those omitting such visualized paths (Cohn & Maher, 
2015; Ito et al., 2010). While comic reading expertise 
modulated these costs (Cohn & Maher, 2015), our findings 
here might suggest cross-cultural variation in such 
processing. Given the greater salience of paths for S-
languages, would speakers of these languages be more 
sensitive to the absence of motion lines than speakers of V-
languages, for whom depicted paths may be less salient? 
Might path information thus be a factor in translations or 
interpretations of comics across languages? This work can 
hopefully sponsor further research into the potential 
permeability between the conceptualizations in spoken and 
visual languages. 

 

Works Analyzed  

American Mainstream 
Jenkins, Paul, Dale Keowen, & Matt Milla. 2004. Darkness 

Resurrection. Vol 4. Top Cow Comics. 
Larsen, Erik. 2013. Savage Dragon: The End. Image Comics.  

Love, Jeremy & Robert Love. 2004. Fierce. Vol. 1. Dark 
Horse Comics 

Mignola, Mike & Guy Davis. 2005. B.P.R.D.: The Black 
Flame. Dark Horse Comics. 

Morris, Steve. 2006. Blessed Thistle. Dark Horse Comics. 

OEL manga 
Bair, Katie & Robby Bevard. 2006. Ninja High School 

Hawai’i. Vol 1. Antarctica Press. 
Clugston, Chynna. 2005. Blue Monday. Vol. 4. Oni Press.  
Espinosa, Rod. 2001. Chronicles of the Universe. Vol. 1. 

Antarctica Press. 
Gunstone, Kevin & Benn Dunn. 2003. The Agents. Antarctica 

Press. 
Reid, Christopher & John Kantz. 2003. Legends from 

Darkwood. Vol. 1. Antarctica Press. 

Japanese 
Kazue, Kato. 2010. Ao no Exorcist. Vol. 4, Chapter 28. Kazé. 
Mashima, Hiro. 2007. Fairy Tail. Vol. 4, Chapter 26. Del 

Rey. 
Naoshi, Komi. 2012. Nisekoi. Vol 4, Chapter 32. Jump 

Comics. 
Otaka, Shinobu. 2012. Magi: The labyrinth of magic. Viz 

Media. 
Saito, Kenji & Nao Akinari. 2013. Trinity Seven. Vol. 7. 

Chapter 34. 

Korean 
Geuk-Jin, Jeon & Jin-Hwan Park. 2010. The Breaker New 

Waves. Chapter 36. 
Han Yu-Rang. 2007. Boy of the Female Wolf. Vol 11, 

Chapter 69. Samyang Publisher. 
Hwa, Kim Dong. 2009. The Color of Earth. Vol 1, Chapter 

1. First Second. 
Jung, Jee-Yun. 2004. Kwaidan. Dark Horse Comics. 
Wann. 2006. 9 Faces of love. Vol 1. Netcomics. 

Chinese 
Cha, Louis & Wing Shing Ma. 2002. Heaven Sword and 

Dragon Sabre. Vol. 1. Comics One. 
Ma, Wing Shing. 2002. Storm Riders. Vol. 1. Comics One 
Wong, Tony. 2002. Mega Dragon & Tiger Future Kung Fu 

Action. Vol. 5. Comics One. 
Seto, Tony & Ying-Hsiang Lin. 2002. Saint Legend: The 

Prelude. Comics One. 
Yan, Win, King Tung, Bryce Gunkel, & Calvin Chai. 2004. 

The King of Fighters. Vol. 3. DGN Productions. 

French 
Dieter, Viviane Nicaise, & Dina Kathelyn. 2004. La Vie En 

Rose. Glénat. 
Galandron, Laurent & Viviane Nicaise. 2010. Le Cahier à 

Fleurs. Cycle I. 
Godard, Christian & Various. 2003. Une Folie Très 

Ordinaire. Glénat. 
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Lapière, Denis, Pierre-Paul Render, & Mathieu Reynès. 
2011. Alter Ego: Fouad. Dupuis. 

Recht, Robin & Jean Bastide. 2012. Notre Dame. Glénat. 

German 
Fil, Bei. 2001. Larry Potter. 
Greulich, Jonas. Moga Mobo. Vol. 2. Kostenlos. 
Gronle, Thomas. Moga Mobo. Vol. 3. Kostenlos. 
Mawil, Markus. 2004. Die Band. Repordukt. 
Sobottke, Bela. 2009. König Kobra. Gringo Comics. 
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Abstract 
The predictive performance equation (PPE) is a mathematical 
model of learning and retention that uses regularities seen in 
human learning to predict future performance. Previous research 
(Collins, Gluck, Walsh Krusmark & Gunzelmann,, 2016) found 
that prior data could be used to inform PPE’s free parameters 
when generating predictions of a group’s aggregate performance, 
allowing for more accurate initial performance predictions. Here 
we investigate an extension of this methodology to predict 
performance of individuals, rather than aggregate samples. This 
paper documents the results of that investigation, which is on the 
critical path to the use of this cognitive technology in education 
and training.  
 
Keywords: Mathematical model; Performance predictions; Skill 
learning; Parameter generalization; Educational data mining, 
Individual predictions 
 
Introduction 
It is typical in training and education for instructors to have 
little to no information about the people who are about to 
begin the curriculum. Rather, individuals must complete 
some portion of the curriculum before for their knowledge 
can be assessed. This assessment period can lead to an 
increase in the overall amount of time that training and 
education takes, and can lead to individuals practicing 
skills that have already mastered (Beck & Chang, 2007). 
Ideally, instructors could be able to estimate the future 
performance of both the incoming cohort of students as a 
whole in addition to the specific individuals based on the 
past performance of those who learned the same 
curriculum. This would allow instructors to better adjust a 
given curriculum to fit the needs of the cohort and of 
specific students.   
 In cognitive science, models of learning and retention 
have been developed to account for particular regularities 
in human learning such as the power law of learning 
(Newell & Rosenbloom, 1981) and power law of decay 
(Rubin & Wenzel, 1996), and the spacing effect (Bahrick, 
Bahrick, Bahrick, & Bahrick, 1993 Although many of 
these models were created based on basic laboratory 
phenomena, they can also be used to generate predictions 
of future human performance (Anderson & Schunn, 2000; 
Jastrzembski, Gluck, & Gunzelmann, 2006; Mozer, 
Pashler, Cepeda, Lindsey, & Vul, 2009; Pavlik & 
Anderson, 2008; Raaijmakers, 2003). These models hold 
promise in training and education to increase mastery and 
/or decrease instruction time. 

 
The Predictive Performance Equation 
The model discussed in this paper is the Predictive 
Performance Equation (PPE; Walsh et al, submitted). PPE 
is a mathematical model of human learning and retention 
that can generate performance predictions on declarative 
(know-what) and procedural (know-how) tasks. Prior 
research has validated PPE across a variety of different 
laboratory tasks (Walsh et al., submitted) as well as 
complex human performance data from F-16 fighter pilot 
training research (Jastrzembski et al., 2006) and education 
and training data (Collins, Gluck, & Jastrzembski, 2015). 

PPE represents the effects of three factors on 
knowledge acquisition and retention: recency of practice, 
frequency of practice, and the distribution of practice over 
time (i.e., spacing). The first factor, recency (Tn), captures 
the amount of elapsed time since training began. Tn is 
calculated as a weighted sum of the elapsed time since each 
of each previous training opportunities (ti) (Equation 1). 
The weight (wi) applied to the amount of time that has 
passed since a particular event decreases exponentially 
with time (Equation 2). Although in principle a free 
parameter, prior model exploration has found that the 
exponent, x, can be set to 0.6, which we do in the analyses 
presented here.  

          		𝑇 = 𝑤% ∗ 𝑡%(
%)*                                 (1) 

                          𝑤% = 	−𝑡%,-
*
./
01

(
2)*                           (2) 

The second factor, frequency (Nn), represents the number 
of times that a particular knowledge or skill has been 
rehearsed. These two factors, elapsed time and frequency 
of practice, have a multiplicative effect on activation (Mn), 
which is the strength of a particular memory or skill 
(Equation 3). Amount of practice is scaled by the learning 
rate c, which is fixed to 0.1. As the amount of practice 
increases, activation rises at a decreasing rate, producing 
the power law of learning. The second term, comprised of 
T and d, captures the effects of the power law of decay. The 
decay rate, d, captures spacing effects (Equation 4).  
 
                               		𝑀( = 𝑁5 ∗ 𝑇,6                        (3) 
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The precise effect of spacing on performance is determined 
by the summation term within the decay parameter. When 
lags between successive training opportunities (lagj) are 
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short, the summation term in Eq. 4 approaches 1 and decay 
increases, leading to a greater amount of forgetting. When 
the lags between training opportunities are long, and the 
summation term approaches 0, the decay term decreases, 
leading to less forgetting over time. The decay rate 
equation includes a decay intercept parameter (b) and a 
decay slope parameter (m). The activation value from Eq. 
3 is scaled to performance through a logistic function 
(Equation 5). The function contains two additional free 
parameters controlling its slope (s) and the intercept (𝜏).  
 
                             		𝑃( = 	

*

*BGHI	 J0	KLM
                         (5) 

 
In summary, PPE has four free parameters (i.e., b, m, s, 𝜏). 
These parameters can be calibrated based on existing 
performance data. Once a set of best fitting parameters 
have been found, PPE can use these parameters to predict 
future performance. 
 
Motivation 
Reliable and valid parameter estimates for PPE cannot be 
found with PPE when calibrating to fewer than three 
training opportunities. There are two reasons for this. First, 
when fewer than three data points are available, multiple 
combinations of free parameter values that can fit the 
available training data equally well. This makes it difficult 
to determine which set of parameter values should be used 
to generate out-of-sample predictions (Beck & Cheng 
2007). Second, when calibrating PPE to so little data, PPE 
will likely fit to both the performance of the individual as 
well as to noise in the data (Geman, Bienenstock, & 
Doursat, 1992). This overfitting, in turn, will reduce the 
accuracy of out-of-sample predictions. The combination of 
these two factors are likely to lead to inaccurate and 
uncertain out-of-sample performance predictions. To 
overcome this limitation, Collins et al. (2016) developed a 
method for using prior data (i.e., records of performance 
data collected from previous classes) to inform a subset of 
PPE’s free parameters (prior predictions), under cases 
where there were not enough data points for accurate 
calibration. By using prior data to inform a subset of PPE’s 
free parameters, PPE fits the available training data with a 
constrained parameter set. In circumstances where there is 
little training data, this increases PPE’s prediction accuracy 
for early performance events.  

This prior-informed prediction method was based on 
work from the Educational Data Mining (EDM) literature. 
EDM research applies data mining and statistical learning 
methodologies to educational data to improve student 
learning outcomes (Romero, Ventura, & Baker, 2010). 
EDM methods are primarily data driven, meaning they 
require large amounts of data to develop predictions within 
a specific domain (Webb, Pazzani, & Billsus, 2001). In 
contrast PPE is primarily theory driven, meaning that its 
predictions are based on mechanisms that account for 
general characteristics of human learning and retention. 

The development of PPE’s prior-informed prediction 
method balances the data-driven and theory driven 
approach of these two methods.  

Although Collins et al. (2016) found that prior data 
could be used to generate predictions of the aggregate 
performance of multiple students attempting a single skill, 
their results did not indicate how accurate the predictions 
are at an individual student level of analysis. Using prior 
data to predict the initial performance at a finer level of 
aggregation is more difficult for two reasons. First, the 
performance of a single individual is characterized by 
greater variability, as compared to learning curves 
aggregating across the performance of multiple students, 
making performance of a single student more difficult to 
predict. Second, students are likely to learn skills at 
different rates, meaning that best fitting parameters for an 
aggregate learning curve may not generalize to account for 
the performance of a specific student attempting a 
particular skill.  

In spite of these additional complexities when 
predicting the performance of individual students, 
educational data mining research has shown that prior data 
can be used to inform valid model parameter estimates for 
models used to account for the performance of individual 
students on single skills (Cen, Koedinger & Junker 2007; 
Beck & Chang 2007; Ritter et al., 2009). These findings 
suggest that prior data can serve as a useful tool that can be 
used to inform predictions of individual students and not 
just aggregate samples. In summary, we sought to expand 
our previous research by examining the extent to which our 
method for predicting early performance of groups of 
students generalizes to the individual student level of 
analysis. To evaluate the prior-informed method, we 
compare it against predictions to PPE’s standard non-prior 
predictions during an individual student’s first 4 attempts 
on a new skill.  

 
Method 

The data used in this report were obtained from 
Learnlab.com’s DataShop (Koedinger, Baker, 
Cunningham, Skogsholm, Leber, & Stamper 2010), which 
is an online educational data repository for student log data. 
DataShop contains a collection of publicly available 
datasets from different math, science, and English 
classroom and tutoring studies. The data used in our 
analyses, consisted of log files of performance metrics of 
students completing their homework for an introductory 
physics class during six different semesters. Students used 
the ANDES tutoring system to complete their homework 
(VanLehn et al, 2005) at the United States Naval Academy 
(USNA). We chose these datasets because they contain the 
largest collection of data from multiple semesters collected 
from the same domain currently available on DataShop, 
allowing us to better investigate the utility of using prior 
data to inform PPE’s performance predictions.  

A single semester’s worth of data on DataShop is 
called a dataset, which is composed of a record of the 
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performance of individuals who attempted to solve 
problems in a specific domain within a specific period of 
time. Each dataset contains the record of all of the students’ 
actions across the curriculum’s content. A curriculum is 
made up of problems, defined as “a task [attempted by] a 
student usually involving several steps.” An example of a 
problem would be calculating the difference in velocity 
between trains A and B. Successfully solving a problem 
involves completing a series of steps, which are “an 
observable part of a solution to a problem”, such as finding 
the velocity of train A. We choose to examine the 
performance of students while completing particular steps 
for two reasons. First, steps were the smallest level of 
resolution of data available on Datashop. Second, each step 
isolates a particular knowledge component. Because 
learning occurs at the level of individual knowledge 
components (Anderson & Schunn, 2000), comparing 
analogous steps across problems is the proper way to 
observe the change in performance over time. 	

 
Prediction Procedure 
We systematically selected one of the six datasets as the 
prediction sample, and used the remaining five datasets as 
prior data to inform predictions for an individual on a 
particular step. Then the performance data of a single 
student on a particular skill was selctecd, from the 
prediction sample. All of the students from the prior data 
who also attempted the same skill were selected (relevant 
sample) and used to inform PPE’s predictions. Due to the 
fact that the data collected from the ANDES tutoring 
system are data from homework assignments, the students’ 
first exposure to the curriculum was during class and was 
not their first attempt on a particular step within the 
tutoring system. For this reason, we assumed a six-hour lag 
between class and when a student began to complete their 
homework. This assumption of a lag between class and 
home time allowed for a better estimation of PPE’s model 
time as calculated from PPE’s time variables (Eq. 1and 4). 
For the relevant sample to be able to inform a prediction, 
the average performance and model time variables across 
each participant during each event was calculated. Based 
on aggregate performance and model time computed from 
the relevant samples, PPE model parameters were 
estimated, and then used to make individualized 
predictions of a student’s performance on a particular skill 
on the 2nd, 3rd, and 4th event.  
 For the analysis in this paper, we used PPE to generate 
predictions for two metrics of the students’ performance: 
time to complete a particular step (seconds) and the number 
of incorrect attempts made by a student during a particular 
event. To generate a prior prediction, PPE first calibrated 
to the performance (i.e., completion time in seconds or 
number of incorrect attempts) of the first two events from 
the aggregate performance of the relevant sample. This 
yields a set of best fitting parameters values. The best 
fitting b (bprior) and m (mprior) parameters are then 
generalized to inform PPE’s prior informed prediction of 

an individual student’s performance on the 2nd event given 
their performance on the 1st event. This is done by setting 
PPE’s b and m free parameters to the bprior and mprior values 
and fitting PPE’s remaining two free parameters s and τ to 
the student’s performance during the first event. After PPE 
is fitted to the student’s performance on the 1st event, the 
model is used to generate a prediction of the student’s 
performance on the second event. This procedure was then 
repeated to generate predictions of the 3rd and 4th event, by 
increasing the number of events that PPE is calibrated to 
with the prior sample and the predicted individual before 
generating a performance prediction of the next event.  

In addition to generating prior predictions, we used 
PPE to generate predictions of each student’s performance 
on the 2nd, 3rd, and 4th events without using data from past 
participants. This involved fitting the model with the 
sparse, individual-specific data, and using the model to 
predict performance for the following event.  

Across all of the six datasets collected from Datashop, 
a total of 10,499 predictions were made across 430 students 
and 161 individual steps across the 2nd, 3rd, and 4th 
performance event. 

Results 
To examine the accuracy of PPE’s prior and non-prior 
predictions the average model predictions from the 2nd, 3rd, 
and 4th events were compared to the average observations 
from students whose performance was predicted (Figure 
1).  

In addition to the looking at the average performance, 
the students’ performance and PPE’s predictions were 
separated in to two groups (i.e., canonical and non-
canonical learning). The students in the canonical learning 
groups were students whose performance either improved 
or remained the same over the four observed learning 
events (Figure 2-A, 2-C). Students in the non-canonical 
learning group were students whose performance 
decreased during at least one of the four learning events 
(Figure  2-B, 2-D). The students’ performance was 
separated into canonical and non-canonical learning 
groups, due to the fact the variability in the students’ 
performance effects PPE’s performance predictions. 
Additionally, we wanted to observe to test if PPE’s could  
account for the two types of learning profiles.  
Completion Time  

As seen in Figure 1, when predicting a student’s 
performance on the 2nd event, given their performance on 
the 1st event, there is a significant difference between the 
mean completion time between PPE’s prior (M = 45.50, 
SD = 85.50) and non-prior (M = 192.199, SD = 196.78; 
t(10497) = 90.932, p < .01) predictions compared to the 
students’ average completion time (M = 37.85, SD = 
70.43). Examining the root mean squared deviation 
(RMSD) between PPE’s prior (RMSD = 98.49) and non-
prior predictions (RMSD = 250.18), we see that PPE’s 
prior-informed predictions were more accurate than non-
prior predictions. These results show that informing PPE’s 
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predictions using prior data can improve prediction 
accuracy when prediction performance of the 2nd event 

  
When predicting the students’ performance on the 3rd 

event, given their performance on the first 2 events, again 
a significant difference between PPE’s prior (M = 36.79, 
SD = 81.76) and non-prior (M = 66.85, SD = 143.21; 
t(10497) = 22.78, p < .01) predictions is observed, 
compared to the students’ average performance (M = 
73.96, SD = 179.11). As was seen when predicting the 
students’ average performance on the 2nd event, a similar 
pattern is seen when predicting the 3rd event. A lower 
RMSD was found between the students’ average 
performance and PPE’s prior (RMSD = 99.66) compared to 
non-prior predictions (RMSD = 151.80).  

Finally, when predicting the students’ performance on 
the 4th event, given their performance on the previous 3 
events, again a difference between the PPE’s prior (M = 
35.76, SD = 73.11) and non-prior (M = 71.63, SD = 172.86; 
t(10497) = 22.63, p < .01) predictions are observed, 
compared to the students’ average performance (M = 
33.56, SD = 68.26). Again PPE’s prior informed 
predictions had a lower RMSD (RMSD = 92.13) compared 
to the non-prior predictions (RMSD = 181.53) when 
predicting the students’ performance on the 4th event.  

 
Correct Attempts: Canonical and Non-Canonical 
Learning Profile 

Separating the students’ performances into those who 
displayed canonical and non-canonical learning profiles, 
reveals two different sets of completion times. The 
performance of students who displayed a canonical 
learning profile was found to be monotonically improve 
over the course of the three events (Figure 2-A). Students 
who the non-canonical learning profile, on average 

displayed non-monotonic improvement in their 
performance over the four events (Figure 2-B). 
Additionally, it is seen that the accuracy of PPE’s prior and 
non-prior predictions varied based on the performance of 
the students’ learning profile. When predicting the 
performance of students’ who showed a canonical learning 
profile, PPE’s prior and non-prior predictions became more 
accurate as PPE was calibrated to additional events before 
generating a prediction, during the 2nd (Prior: RMSD = 
117.97; Non-prior: RMSD = 310.42), 3rd (Prior: RMSD = 
82.90; Non-prior: RMSD = 132.78), and 4th(Prior: RMSD = 
56.31;Non-prior: RMSD  =91.52) event (Figure 2-A). 
However, PPE’s accuracy decreased when it was calibrated 
to each additional event when predicting performance of 
students’ whose performance was found to have a non-
canonical learning profile. When predicting the 
performance of students’ who showed a non-canonical 
learning profile, PPE’s prior and non-prior prediction 
accuracy decreased as PPE calibrated to additional events, 
during the 2nd (Prior: RMSD = 41.26; Non-prior: RMSD = 
95.67), 3rd, (Prior: RMSD = 101.62; Non-prior: RMSD = 
154.06 ) and 4th(Prior: RMSD = 95.80; Non-prior: RMSD  
= 190.80) event (Figure 2-B). Although, PPE’s prediction 
accuracy varied based on the students’ learning profile, 
PPE’s prior performance predictions were more accurate 
than PPE’s non-prior predictions.  
 
Number of Incorrect Attempts  

Examining the average students’ number of incorrect 
attempts on the 2nd event given a students’ previous 
performance on the first event (Figure 2), a large difference 
is observed in the predicted average number of incorrect 
attempts in PPE’s prior (M = .47, SD = 1.25) and non-prior 

Figure 1. The average performance metric, completion time 
(seconds) (left plot) and number of incorrect attempts (right 
plot) on the 2nd, 3rd, and 4th event, across human data (solid 
black line), prior informed predictions (dashed blue line), 
and non-prior informed predictions (dashed red line).  
	

Figure 2. The average performance metric, completion time 
(A, B) and number of incorrect attempts (C, D) for both 
students who fit the canonical (A, C) and non-canonical (B 
D) learning profile, for both the human data (solid black 
line), non-prior predictions (dashed red line) and prior 
predictions (dashed blue line) on the 2nd, 3rd, and 4th event.  
	

A

B

C

D

1803



(M = 2.19, SD = 4.58; t(10496) = 38.97, p < .01) 
predictions, compared to the students’ average number of 
incorrect attempts (M = .38, SD = 1.09). Looking at the 
RMSD between PPE’s predictions and the students’ 
performance, PPE’s prior (RMSD = 1.51) predictions had 
a lower RMSD than PPE’s non-prior informed predictions 
(RMSD =4.87).  

When predicting the students’ average number of 
incorrect attempts (M = .39, SD = 1.63) on the 3rd event, 
again a significant difference between PPE’s prior (M = 
.49, SD = 1.63) and non-prior predictions is observed (M = 
1.20, SD = 3.58;	 t(10496) = 20.92, p < .01). However, 
unlike when predicting performance on the 2nd event, the 
RMSD of PPE’s prior informed predictions increased 
(RMSD = 2.14). While as well as PPE’s non-prior (RMSD 
= 3.91) decreased slightly.  

Finally, when predicting the students’ number of 
incorrect attempts on their 4th event, given their 
performance on the previous three events, a similar pattern 
of predictions is seen. A significant difference was 
observed between PPE’s prior (M = .52, SD = 2.13) and 
non-prior predictions (M = 1.24, SD = 3.79; t(10496) = 
22.62, p < .01), compared to the students’ average 
performance was observed (M = .39, SD = 1.63). 
Additionally, the RMSD between the PPE’s prior (RMSD 
= 2.22) and non-prior predictions (RMSD = 3.87) were not 
seen to improve. However, the PPE’s prior informed 
predictions were lower than PPE’s non-prior informed 
predictions.   
 
Incorrect Attempts: Canonical and Non-Canonical 
Learning Profile 

Separating the students’ performance into those who 
displayed canonical and non-canonical learning profiles, 
two different sets of the students’ number of incorrect 
attempts are seen. From students who displayed a 
canonical learning profile, number of incorrect responses 
decreased over the course of the four learning events 
(Figure 2-C). Conversely, students who displayed a non-
canonical learning profile on average displayed a non-
monotonic performance over the four events (Figure 2-D). 
The accuracy of PPE’s prior and non-prior predictions 
varied based on the type of learning displayed by the 
students. When predicting the performance of students who 
showed a canonical learning profile, PPE’s prior and non-
prior predictions became more accurate when PPE 
calibrated to additional events, during the 2nd (Prior: RMSD 
= 1.04, Non-Prior: RMSD = 4. 69), 3rd, (Prior: RMSD = .68 
Non-Prior: RMSD = 2.27) and 4th(Prior: RMSD = .56 Non-
Prior: RMSD =1.29) event (Figure 2-C). However, PPE’s 
accuracy decreased when it calibrated to additional events 
of students with a non-canonical learning profile. When 
predicting the performance of students’ who showed a non-
canonical learning profile, PPE’s prior and non-prior 
predictions became less accurate as PPE calibrated to 
additional events, during the 2nd (Prior: RMSD = 2.03; Non-
Prior: RMSD = 5.14), 3rd (Prior: RMSD = 3.30; Non-Prior: 

RMSD = 5.57), and 4th(Prior: RMSD = 3.34; Non-Prior: 
RMSD = 5.96) (Figure 2 –D). Although, prediction 
accuracy varied based on the students’ average 
performance based on the learning profile of the student, 
PPE’s prior performance predictions were more accurate 
than PPE’s non-prior predictions.  

 
Discussion 
 The primary goal of this paper was to describe our 
assessment of the accuracy of PPE predictions of 
performance in the tutoring data available on DataShop, 
both with and without the use of informative priors.  We 
find evidence that incorporating prior data into PPE’s 
predictions at a lower (individual student) level of 
aggregation, slightly improves prediction accuracy, 
depending on the performance measure, the event being 
predicted, and the student’s learning profile.  
 When predicting a student’s completion time on the 2nd, 
3rd, and 4th event, we  found that PPE’s prior informed 
predictions were more accurate than PPE’s individualized 
predictions. Additionally, we found that PPE’s predictions 
varied based on the student’s learning profile. When 
predicting the performance of students’ who were found to 
have a canonical learning profile, the accuracy of PPE’s 
increased as PPE was calibrated to additional events. 
However, the opposite results were observed when 
predicting the performance of students’ who were found to 
have a non-canonical learning profile. Here it was observed 
that PPE’s ability to predict performance depended on the 
variability of the students performance history in their 
performance. When variability in a student’s performance 
history was low and improved regularly (i.e., canonical 
learning profile), PPE was better able to predict their future 
learning. When variability was high and a student’s 
performance history showed both improvement and 
forgetting (i.e, non-canonical learning), the increased 
uncertainty in performance hindered the PPE’s predictions 
from accurately predicting future performance. Although, 
the benefit of using priors was observed in PPE’s 
predictions in each of these cases. 
 These results are partially consistent with results from 
Collins et al. (2016), where we found an initial benefit of 
using prior predictions to generate initial performance 
predictions of the 2nd event, as was found when predicting 
the student’s completion time. Without information from 
prior data, PPE’s parameters must  be estimated with sparse 
data from the student’s prior performance during the first 
event. Because the model is under constrained in this case, 
the parameter estimates are likely unreliable. 

Additionally, when predicting the average completion 
time and the number of incorrect attempts, a benefit of 
using a priors was found. When predicting a student’s 
future performance, PPE is able to utilize information from 
other students who have previously performed the skill 
before, allowing for a better estimate of the student’s future 
performance will be. These findings are in line with our 

1804



previous findings that PPE’s prior predictions benefit 
PPE’s predictions beyond the 2nd event.  
 
Conclusion 
The benefits of using prior data are not new to cognitive 
science. However, within the context of the PPE line of 
investigation, little previous research has been conducted 
on how prior data can be used to inform predictions, 
especially within the context of early performance 
predictions of individual students. In summary, we find 
evidence that our previously proposed method of 
incorporating information from prior data into PPE’s free 
parameters (Collins et al. 2016), can add some benefit to 
prediction accuracy when attempting to predict the 
performance of individual students on particular skills. The 
results suggest that prior data is a useful source of 
information about the performance of individual students 
when generating predictions with PPE. Future work should 
attempt to incorporate information from prior data to 
generate initial performance predictions in order to 
decrease overall training or education time. 
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Abstract 

This study investigates how judgments of explanatory power 
are affected by (i) the prior credibility of a potential 
explanation, (ii) the causal framing used to describe the 
explanation, and (iii) the generalizability of the explanation. 
We found that the prior credibility of a causal explanation 
plays a central role in explanatory reasoning: first, because of 
the presence of strong main effects on judgments of 
explanatory power, and second, because of the gate-keeping 
role prior credibility has for other factors. Highly credible 
explanations were not susceptible to causal framing effects. 
Instead, highly credible hypotheses were sensitive to the 
generalizability of an explanation. While these results yield a 
more nuanced understanding of the determinants of 
judgments of explanatory power, they also illuminate the 
close relationship between prior beliefs and explanatory 
power and the relationship between abductive and 
probabilistic reasoning. 

Keywords: Explanation; Prior credibility; Causal framing; 
Generalizability; Abduction 

Introduction 

Explanation is a central concept in human psychology. It 

supports a wide array of cognitive functions, including 

reasoning, categorization, learning, inference, and decision-

making (Lombrozo, 2006; Keil & Wilson, 2000; Keil, 

2006). When presented with an explanation of why a certain 

event occurred, how a certain mechanism works, or why 

people behave the way they do, both scientists and 

laypeople have strong intuitions about what counts as a 

good explanation. Yet, more than sixty years after 

philosophers of science began to elucidate the nature of 

explanation (Hempel & Oppenheim, 1948; Hempel, 1965; 

Salmon, 1989), the determinants of judgments of 

explanatory power remain unclear. 

In this paper, we present three experiments on factors that 

may affect judgments of explanatory power. Motivated by a 

large body of theoretical results in  epistemology and 

philosophy of science,  as well as by a growing amount of 

empirical work in cognitive psychology  (for respective 

surveys see Woodward, 2014; Lombrozo, 2012), we 

examined how judgments of explanatory power are affected 

by  (i) the prior credibility of a potential explanation, (ii) the 

causal framing used to describe the explanation, and (iii) the 

generalizability of the explanation. 

First we hypothesized that the prior credibility of a causal 

explanation predicts judgments of explanatory power. Thus, 

throughout all three experiments, we manipulated the prior 

credibility of different explanations, and examined the 

effects of this manipulation on explanatory judgments. 

Our focus on the prior credibility of causal explanation 

was motivated by the fact that most philosophical and 

psychological analyses of explanatory power agree that 

powerful explanations provide information about credible 

causal relationships. Credible causal information facilitates 

the manipulation and control of nature (Pearl, 2000; 

Woodward, 2003; Strevens, 2008) and plays distinctive 

roles in human psychology (Lombrozo, 2011; Sloman & 

Lagnado, 2015). For example, credible causal information 

guides categorization (Carey, 1985; Murphy & Medin, 

1985; Lombrozo, 2009), supports inductive inference and 

learning (Holyoak & Cheng, 2011; Legare & Lombrozo, 

2014; Walker et al. 2014), and calibrates metacognitive 

strategies involved in problem-solving (Chi et al., 1994; 

Aleven & Koedinger, 2002). 

Our second, related hypothesis was that presenting an 

explanatory hypothesis in causal terms predicts judgments 

of its explanatory power. Thus, we wanted to find out 

whether people’s explanatory judgments are sensitive to 

causal framing effects. 

The importance of this issue should be clear in the light of 

the fact that magazines and newspapers very often, even 

when it’s not warranted, describe scientific explanations in 

terms of causal language (e.g., ‘Processed meat causes 

cancer’ or ‘Economic recession leads to xenophobic 

violence’) with the aim of capturing readers’ attention and 

boosting their sense of understanding (Entmann 1993; 

Scheufele & Scheufele, 2010). By combining prior 

credibility and causal framing as predictors of judgments of 

explanatory power, Experiment 1 and 2 examined the 
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impact of causality on the explanatory power of scientific 

hypotheses. 

With Experiment 3, we tested the hypothesis that the 

generalizability (or scope) of a hypothesis determines its 

explanatory power. While the generalizability of scientific 

results is an obvious epistemic virtue that figures in the 

evidential assessments made by scientists, its relation to 

explanatory power is less clear. Previous psychological 

findings about the role of generalizability in explanatory 

reasoning are mixed. Read & Marcus-Newhall (1993) found 

that generalizability predicts explanatory judgments. Preston 

& Epley (2005) showed that hypotheses that apply to a wide 

range of observations are judged as more valuable. 

However, these studies involved no uncertainty about 

whether or not a causal effect was actually observed  (cf., 

Khemlani, Sussman, & Oppenheimer, 2011). So, whether or 

not generalizability is a robust determinant of explanatory 

judgment remains unclear. 

In summary, bringing together different strands of 

research from philosophy and psychology, our study asks: 

How do the credibility, causal framing, and generalizability 

of a hypothesis influence judgments of explanatory power? 

The pattern of our experimental findings supports the 

hypothesis that the prior credibility of a causal explanation 

plays a central role in explanatory reasoning: first, because 

of the presence of strong main effects on judgments of 

explanatory power, and second, because of the gate-keeping 

role it has for other factors. Highly credible explanations 

were not susceptible to causal framing effects. Instead, 

highly credible hypotheses were sensitive to the effects of 

factors which are usually considered relevant from a 

normative point of view like the generalizability of an 

explanation. 

Overview of the experiments and pre-tests 

To warrant the validity of the experimental material, we 

conducted a series of pre-studies, where participants 

evaluated different levels of causal framing, credibility, and 

generalizability. Materials which corresponded to high, low, 

and neutral levels of these three factors were implemented 

in the vignettes of our three experiments, either as 

independent variables or as control variables. 

Material evaluation and main experiments were both 

conducted online on Amazon Mechanical Turk, utilizing the 

Qualtrics Survey Software. We only allowed workers with 

an approval rate > 95% and with a number of HITs 

approved > 5000 to submit responses. Instructions and 

material were presented in English. 

 

Causal Framing 
A sample of N = 44 participants (mean age 30.5 years, SD = 

7.3, 28 male) from America (n = 27) and other countries 

rated eight brief statements, expressing relations between X 

and Y of the type “X co-occurs with Y”; “X is associated 

with Y”, and so on. Participants judged how strongly they 

agreed or disagreed that a certain statement expressed a 

causal relation between X and Y. Judgments were collected 

on a 7-point scale with options: "I strongly disagree" (-3), "I 

disagree", "I slightly disagree", "I neither agree nor 

disagree" (0), "I slightly agree", "I agree", "I strongly agree" 

(3). Based on participants’ ratings, we selected three types 

of statements for our main experiments: statements with a 

neutral causal framing (“X co-occurs with Y”), with a weak 

causal framing (“X is associated with Y”), and with a strong 

causal framing (“X leads to Y" and "X causes Y”). 

 

Prior Credibility 
We identified the prior credibility of different hypotheses by 

asking a new sample of N = 42 participants (mean age 30.7 

years, SD = 7.5, 16 male) from America (n = 29) and other 

countries to rate a list of 24 statements. Participants judged 

how strongly they disagreed or agreed that a certain 

hypothesis was credible. For all hypotheses, we used the 

phrasing "... co-occurs with..." to avoid the influence of 

causal framing. Based on participants’ ratings, we selected 

four statements to use in our main experiments: two were 

highly credible, two were highly incredible (Table 1). 

 
Table 1: The four hypotheses rated as least credible and as most 

credible. 

Credibility Hypothesis 

Low Eating pizza co-occurs with immunity to flu. 

Low Drinking apple juice co-occurs with 

anorexia. 

High Well-being co-occurs with frequent smiling. 

High Consuming anabolic steroids co-occurs with 

physical strength. 

 

Generalizability 
This pre-study included two questionnaires, which were 

administered to two different groups of participants. One 

questionnaire presented descriptions of the samples used in 

scientific studies, which varied with regard to the number of 

people involved. The other questionnaire presented sample 

descriptions that varied with regard to the type of people in 

the sample. 

Forty-two participants (mean age 33.5 years, SD = 10.8, 

27 male) from America (n = 38) and other countries  were 

presented with a list of six statements about a sample of a 

certain number of participants, e.g. "The study investigates 

five people"; "The study investigates 500 people".We found 

that the perceived generalizability of a study increased with 

the number of people in the sample of the study. 

A new group of N = 41 participants (mean age 33.0 years, 

SD = 9.7, 26 male) from America (n = 36) and other 

countries was presented with a list of nine statements about 

samples of particular types of people, e.g. "The study 

investigates a group of people who sit in a park"; "The study 

investigates a group of people who work at a university". 

However, focusing on the number instead of the type of 

people in the sample allowed for a neater distinction 

between narrowly and widely generalizable results. 

Therefore, we characterized generalizability as a function of 

the number of participants in the main vignettes of the 

experiment. 
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Vignettes of the Main Experiment 
All experiments were performed using a 2х2 (within-

subject) design with explanatory power as dependent 

variable and prior credibility of the hypothesis being one of 

the independent variables. The other independent variable 

was either causal framing, or generalizability. 

Participants were presented with four short reports about 

fictitious research studies. Two of these reports involved 

highly credible hypotheses, the other two reports involved 

incredible hypotheses. Two reports showed a high level of 

the other independent variable, while the other two reports 

showed a low level of that variable. 

Each vignette in our experiments followed the same 

format as in this sample vignette. 

 

Consuming anabolic steroids leads to physical strength 

A recent study by university researchers investigated the 

link between consuming anabolic steroids and physical 

strength. The researchers studied 240 persons. The level of 

physical strength was higher among participants who 

regularly consumed anabolic steroids than among the 

participants who did not regularly consume anabolic 

steroids. Family health history, age, and sex, which were 

controlled by the researchers, could not explain these 

results. The study therefore supports the hypothesis that 

consuming anabolic steroids leads to physical strength. 

 

In all experiments, we varied the level of prior credibility 

of a hypothesis. In Experiment 1 and 2, we also varied the 

causal framing and interchanged “leads to” with “causes” 

and “is associated with”, while we kept generalizability at 

its control. In Experiment 3, we varied the sample size 

(=generalizability) and controlled for causal framing by 

using the predicate “co-occurs with” in the headline and the 

conclusion. Participants were asked to rate our dependent 

variable: the explanatory power of the stated hypothesis for 

the results of the study. 

Experiment 1 and 2.                             

Credibility x Causal Framing 

Participants, Design, and Material 

Two-hundred-three participants (mean age 34.7 years, SD = 

10.5; 121 male) from America (n= 130), India (n = 67) and 

other countries completed Experiment 1 for a small 

monetary payment. A new sample of two-hundred-eight 

participants (mean age 34.56 years, SD = 9.97; 124 male) 

from America (n = 154), India (n = 43), and other countries 

completed Experiment 2 for a small monetary payment. 

In both experiments, participants were presented with 

four short reports about fictitious research studies along the 

lines of the above vignette. Across vignettes, we 

manipulated the causal framing of the relationship between 

hypothesis and evidence as well as the choice of the 

hypothesis (credible vs. incredible). Generalizability was 

controlled for by setting it to its medium value (i.e., 240 

participants). Two of the four reports involved highly 

credible hypotheses, the other two involved incredible 

hypotheses. Similarly, two of these reports used weak causal 

framing (Experiment 1 and 2: “X is associated with Y”) 

while the other two used strong causal framing (Experiment 

1: “X leads to Y”, Experiment 2: “X causes Y”). In other 

words, Experiment 1 used implicit causal language and 

Experiment 2 used explicit causal language, while the 

experiments were identical with respect to design, materials, 

and procedure. 

To account for the possible influence of the content of a 

particular report, we counterbalanced the allocation of weak 

and strong causal framing conditions to the credibility 

conditions across the items, and created two versions of the 

experiments. The order of reports was individually 

randomized for each participant. 

Participants judged each report in terms of the explanatory 

power of the hypothesis it described. Specifically, 

participants considered the statement: “The researchers’ 

hypothesis explains the results of the study”,  and expressed 

their judgments on a 7-point scale with the extremes (-3) "I 

strongly disagree" and (3) "I strongly agree", and the center 

pole (0) "I neither disagree nor agree". 

Analysis and Results 

Separate two-way ANOVAs were calculated with the 

factors Credibility (low, high) and  Causal Framing (weak, 

strong). ANOVA of Experiment 1 (implicit causal 

language) revealed a main effect of Credibility, F (1, 202) = 

84.5; p < .001; ηpart
2
 = 0.30. There was no main effect of 

Causal Framing (p = .37), and no interaction (p = .08). Pair-

wise comparisons showed that incredible hypotheses were 

rated significantly lower than credible hypotheses, 

independently of the value of Causal Framing (incredible 

hypotheses: M = 0.26; SEM = 0.10; credible hypotheses: M 

= 1.14; SEM = 0.09; t-test: t(202) = -9.2; p < 0.001; d = 

0.67). The results of Experiment 1 therefore indicate that the 

prior credibility of a hypothesis was a strong predictor of 

judgments of explanatory power (Figure 1). Instead, 

framing a hypothesis with implicit causal language did not 

have effects on explanatory judgment. 

 

 
Figure 1: Explanatory power ratings for credible and incredible 

statements in Experiment 1. Error bars show standard errors of the 

mean, and are expressed numerically, in parentheses next to the 

mean value. 
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ANOVA of Experiment 2 (explicit causal language) 

revealed main effects of Credibility (F (1, 207) = 286.9; p 

<.001; ηpart
2
 = 0.58) and Causal Framing, F (1, 207) = 31.0; 

p <.001; ηpart
2 

= 0.13, as well as a significant interaction 

Credibility х Causal Framing, F (1, 207) = 37.6; p <.001; 

ηpart
2 

= 0.15. Figure 2 shows the effect sizes and the 

interaction between both factors as well as the relevant 

descriptives. 

 

 
Figure 2: How explanatory power ratings vary with regard to 

Credibility and Causal Framing (Experiment 2). Error bars show 

standard errors of the mean and are expressed numerically, in 

parentheses next to the mean value. 

 

The results of Experiment 2 confirm that the prior 

credibility of a hypothesis is a strong predictor of judgments 

of the hypothesis’ explanatory power. Incredible hypotheses 

received negative explanatory power ratings, credible 

hypotheses receive positive ratings. The results also showed 

that explicit causal framing can increase ratings of 

explanatory power, but only for incredible hypotheses. 

While this effect may lead explanatory judgment astray, in 

most practical cases of explanatory reasoning, people are 

interested in the explanatory power of hypotheses which 

they find, at least to a certain extent, credible. As Figure 2 

shows, there was no effect of causal framing on explanatory 

power in this important case. 

This pattern of results confirms that the prior credibility of 

a hypothesis plays a gate-keeping-role in explanatory 

reasoning: only credible causal hypotheses qualify as 

explanatorily valuable. By contrast, implicit or explicit 

causal framing plays a small to negligible role in influencing 

judgments of explanatory power. 

Experiment 3: Credibility х Generalizability 

Participants, Design, and Material 
Two-hundred-seven participants (mean age 33.4 years, SD = 

9.1; 123 male) from America (n = 156), India (n = 37) and 

other countries completed Experiment 3 for a small 

monetary payment. 

The experiment resembled Experiment 1 and 2. Four 

vignettes, each of which included a headline and five 

sentences, presented credible and incredible hypotheses. 

The relation between hypothesis and evidence was 

expressed by using the causally neutral wording "X co-

occurs with Y". The critical manipulation concerned the 

sample descriptions used in the vignettes, which expressed 

either narrow or wide generalizability of the study’s result. 

For narrowly generalizable results, the second sentence of a 

report indicated that the sample of the study encompassed 

around 5 people (e.g. "The researchers studied 6 people"). 

For widely generalizable results, the sample included about 

10,000 people (wide generalizability condition, e.g. "The 

researchers studied 9891 people"). 

To control for the possible influence of the content of a 

particular report, we counterbalanced the allocation of 

narrow and wide generalizability conditions to the 

credibility conditions across the items, and created two 

versions of the experiments. The order in which reports 

were presented to the participants was individually 

randomized for each participant. 

Participants were asked to carefully assess each report 

with regard to Explanatory Power. Participants’ ratings were 

collected on 7-point scales, with the extreme poles (-3) "I 

strongly disagree" and (3) "I strongly agree", and the center 

pole (0) "I neither disagree nor agree". 

Analysis and Results 

The ratings were analyzed with a two-way ANOVA with 

the factors Credibility (low, high) and Generalizability 

(narrow, wide). ANOVA revealed significant main effects 

of Credibility, F (1, 206) = 83.830; p <.001; ηpart
2 

= 0.289; 

and Generalizability, F (1, 206) = 29.593; p < .001; ηpart
2 

= 

0.126, and no interaction Credibility х Generalizability (p = 

.085, n.s.). 

As with Experiment 1 and 2, credible hypotheses 

achieved significantly higher ratings than incredible 

hypotheses (incredible hypotheses: M = -0.01; SEM = 0.10; 

credible hypotheses: M = 0.95; SEM = 0.08; t-test: t(206) = 

-9.2; p < .001; d = 0.72). Furthermore, reports with wide 

generalizability achieved significantly higher ratings 

compared to reports with narrow generalizability (narrow: 

M = 0.21; SEM = 0.10; credible hypotheses: M = 0.73; SEM 

= 0.08; t-test: t(206) = -5.4; p < .001; d = 0.40). Figures 3 

and 4 show the main effects for both variables. 

Figure 3: Explanatory power ratings as a function of Credibility. 

Error bars show standard errors and are also expressed 

numerically, next to the mean value. 
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Figure 4: Explanatory power ratings as a function of 

Generalizability. Error bars show standard errors and are also 

expressed numerically, next to the mean value. 

Discussion 

We examined the impact of three factors---prior credibility, 

causal framing, and generalizability---on judgments of 

explanatory power. In a series of three experiments, we 

varied both the subjective credibility of an explanation and 

one of the other factors: causal framing and generalizability. 

In Experiments 1 and 2 we found that the impact of causal 

language on judgments of explanatory power was small to 

negligible. Experiment 3 showed that generalizable 

explanations with wider scope positively affected judgments 

of explanatory power. 

Across all experiments, we found that the prior subjective 

credibility of a hypothesis had a striking effect on how 

participants assessed explanatory power. In particular, the 

credibility of an explanatory hypothesis had an important 

gate-keeping function: the impact of generalizability on 

explanatory power was more significant when credibility 

was high. On the other hand, the high credibility of a 

hypothesis controlled for the potentially misleading effect of 

causal framing on explanatory judgment. 

This pattern of findings is consistent with existing 

psychological research demonstrating that people resist 

endorsing explanatory hypotheses that appear unnatural and 

unintuitive, given their background common-sense 

understanding of the physical and of the social world 

(Bloom & Weisberg 2007). Our findings are also consistent 

with the idea that stable background personal ideologies 

(often referred to as “worldview”) can reliably predict 

whether people are likely to reject well-confirmed scientific 

hypotheses  (Lewandowsky et al., 2013; Colombo, Bucher, 

& Inbar, 2016). 

So, scientific hypotheses that are inconsistent with our 

prior, background, common-sense beliefs or in tension with 

personal ideologies are likely to be judged as implausible, 

and may not be endorsed as good explanations unless they 

are supported by extra-ordinary evidence gathered by some 

trustworthy source. On the other hand, for hypotheses that 

fit our prior, background belief or ideology, we often focus 

on information that, if the candidate explanatory hypothesis 

is true, would boost its goodness (Klayman & Ha 1987). 

This kind of psychological process of biased evidence 

evaluation and retention might have led participants to give 

the highest ratings of explanatory power, across different 

experiments, when, in addition to a credible hypothesis, the 

report was widely generalizable. In comparison, the impact 

of causal framing was negligible in these cases. This result 

confirms that a good explanation has to be credible and 

widely generalizable, and that credible, widely generalizable 

explanations are not subject to misleading causal framing 

effects. 

The interplay we observed between prior credibility and 

explanatory power is also relevant to understanding the 

relationship between abductive and probabilistic reasoning. 

Highly credible hypotheses were sensitive to the effects of 

factors which are usually considered explanatory virtues like 

the generalizability of an explanation. 

In abductive reasoning, explanatory considerations are 

taken to boost the credibility of a target hypothesis while 

inducing a sense of understanding (Lipton, 2004). Previous 

psychological studies investigated the effect on people’s 

assessments of explanatory power of factors like simplicity 

(Lombrozo, 2007; Bonawitz & Lombrozo, 2012) and 

coherence (Koslowski et al. 2008). Our results advance this 

body of literature by suggesting that the generalizability of a 

hypothesis will boost the acceptability of the hypothesis, 

when the hypothesis has a high prior subjective credibility. 

High prior credibility may also insulate an explanation 

from causal framing effects, which may produce a deceptive 

sense of understanding leading to erroneous explanatory 

judgments (Rozenblit & Keil, 2002; Trout, 2002). 

Overall, our experiments show that explanatory power is 

a complex concept, affected by considerations of prior 

credibility of a (causal) hypothesis, and its generalizability. 

These factors also figure prominently in (normative) 

philosophical theories of explanation. For instance, the D-N 

model (Hempel, 1965) stresses the generality of the 

proposed explanation, and the causal-mechanical account 

(Woodward, 2003) requires a credible causal mechanism. 

On the other hand, the multitude of relevant factors in 

explanatory judgment explains why it has been difficult to 

come up with a theory of abductive inference that is both 

normatively compelling and descriptively accurate: after all, 

it is difficult to fit diverse determinants of explanatory 

judgment into a single unifying framework. In that spirit, we 

hope that our results will promote an interdisciplinary 

conversation between empirical evidence and philosophical 

theorizing, and about the “prospects for a naturalized 

philosophy of explanation” in particular (Lombrozo 2011, 

549; Schupbach, 2015; Colombo, 2016). 
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Abstract

Generating new concepts is an intriguing yet understudied
topic in cognitive science. In this paper, we present a novel
exemplar model of category generation: PACKER (Producing
Alike and Contrasting Knowledge using Exemplar Representa-
tions). PACKER’s core design assumptions are (1) categories
are represented as exemplars in a multidimensional psycholog-
ical space, (2) generated items should be similar to exemplars
of the same category, and (3) generated categories should be
dissimilar to existing categories. A behavioral study reveals
strong effects of contrast- and target-class similarity. These
effects are novel empirical phenomena, which are directly pre-
dicted by the PACKER model but are not explained by existing
formal approaches.
Keywords: Categorization, exemplar models, category gener-
ation, creative cognition, computational modeling.

Introduction
The creation of new concepts and ideas is among the most
interesting – yet infrequently studied – capabilities of human
cognition. This paper focuses on one topic within the broader
field of creative cognition: category generation. Foundational
work on this topic (e.g., Smith, Ward, & Schumacher, 1993;
Ward, 1994, 1995; Ward, Patterson, Sifonis, Dodds, & Saun-
ders, 2002) has focused on the role of prior knowledge in gen-
erating novel concepts. A core phenomenon is that people
generate categories with similar distributional properties as
existing categories. For example, Ward (1994) asked partici-
pants to generate species of plants and animals that might ex-
ist on other planets. Generation was strongly constrained by
prior knowledge of Earth species: People generated species
with the same features as those found on Earth (e.g., eyes,
legs, wings) and possessing the same feature correlations ob-
served on Earth (e.g., feathers co-occur with wings).

Recent work has proposed and tested formal models to ex-
plain these observations. Jern and Kemp (2013) trained par-
ticipants on experimenter-defined categories composed of ex-
emplars within an artificial three-dimensional domain. Af-
ter a short training phase, participants were asked to generate
exemplars from a new category. Participants were provided
with a set of scales to adjust the feature values of each gen-
erated stimulus, and were given unlimited time to create each
example. As in the classic Ward (1994) experiment, Jern and
Kemp (2013) found that generated categories possessed the
same feature variance and correlations as the experimenter-
defined categories in the domain.

Jern and Kemp (2013) tested several different computa-
tional models on their data. Most relevant to the present in-
vestigation, they tested a ‘copy-and-tweak’ model that gen-
erates items by copying and changing previous observations,
and a hierarchical Bayesian model that uses the structure of

known categories to infer the structure of new ones. They
found that the hierarchical Bayesian model provided the
strongest account of the behavioral results.

In this paper, we introduce a novel exemplar-based ap-
proach to category generation, PACKER (Producing Alike
and Contrasting Knowledge using Exemplar Representa-
tions), which creates categories by balancing two constraints:
(1) new categories should be different from known cate-
gories (minimizing between-class similarity), and (2) new
categories should be internally coherent (maximizing within-
class similarity). As such, PACKER is a significant departure
from previous accounts of generation – rather than propos-
ing that people create categories by abstracting and re-using
knowledge of related categories, PACKER first considers how
the generated category should differ from related categories.
Further, it does so using the well-studied mechanics of exem-
plar representations and therefore possesses a rich connection
to the wider body of research on category learning.

In the sections below, we formally describe the PACKER
model and explore its predictions in a behavioral experiment.
We compare its performance to copy-and-tweak and hierar-
chical Bayesian models by examining their fits to aggregate
results and individual differences.

PACKER: An Exemplar Model
The PACKER model is an extension of the Generalized Con-
text Model of category learning (GCM; Nosofsky, 1984). It
assumes that each category is encoded by a set of exemplars
within a k-dimensional psychological space, and that genera-
tion is constrained by both similarity to members of the target
category (the category in which a stimulus is being generated)
as well as similarity to members of other categories.

As in the GCM, the similarity between two examples,
s(xi,x j), is an inverse-exponential function of distance:

s(xi,x j) = exp

{
−c∑

k

∣∣xik− x jk
∣∣wk

}
(1)

where wk is the attention weighting of dimension k (wk ≥ 0
and ∑k wk = 1), accounting for the relative importance of each
dimension in similarity calculations, and c (c > 0) is a speci-
ficity parameter controlling the spread of exemplar general-
ization. For simplicity, our simulations will use uniform at-
tention weights, except when otherwise noted.

To generate a new example, the model considers both the
similarity to examples from contrast categories as well as the
similarity to examples (if any exist) in the target category.

1812



{c = 1,γ = 0,θ = 3}

A

B

(a) Contrast Influence

{c = 1,γ = 1,θ = 3}

A

B

(b) Target Influence

{c = 1,γ = 0.5,θ = 3}

A

B

(c) Combination

Lowest
Probability

Greatest
Probability

Figure 1: PACKER generation of a category ‘B’ example, following exposure to one member of category ‘A’ and category ‘B’.
The panels differ in how the trade-off between within- and between-category similarity is managed (via the γ parameter).

The aggregated similarity a between generation candidate y
and stored exemplars x is:

a(y,x) = ∑
j

f (x j)s(y,x j) (2)

where f (x j) is a function specifying the extent to which each
exemplar contributes to the generation. A negative value for
f (x j) produces a ‘repelling’ effect (items are less likely to be
generated nearby x j), and a positive value produces an ‘at-
tracting’ effect (items are more likely to be generated nearby
x j). When f (x j) = 0, the exemplar does not contribute to
generation.

PACKER sets f (x j) depending on exemplar j’s category
membership: f (x j) = γ if x j is a member of the target cat-
egory, and f (x j) = γ− 1 if x j is a member of a contrast
category. γ is thus a free parameter (0 ≤ γ ≤ 1) controlling
the trade-off between within- and between-category similar-
ity. PACKER’s core proposal is that new categories should
be different from existing categories, and same-category ex-
emplars should be similar to one another. This is realized
when γ assumes an intermediate value: For example, when
γ = 0.5, f (x j) = 0.5 for members of the target category and
f (x j) = −0.5 for members of other categories; thus, the
model is likely to generate items that are similar to members
of the target category but are not similar to members of other
categories. However, more extreme values can be used to
produce different behavior, see Figure 1.

The probability that a given candidate y will be generated
is evaluated using an Exponentiated Luce (1977) choice rule.
Candidates with greater values of a are more likely to be gen-
erated than candidates with smaller values:

p(y) =
exp(θ ·a(y,x))

∑i exp(θ ·a(yi,x))
(3)

where θ (θ≥ 0) controls response determinism.

Summary
The proposed PACKER model suggests people generate cat-
egories by minimizing between-category similarity and max-
imizing within-category similarity. The underlying processes
assumed by PACKER are highly similar to those in the GCM.

The main difference is that PACKER aggregates positive-
and negative-valued similarities, rather than only aggregat-
ing positive-valued similarities. In later sections, we will ex-
plore the unique predictions yielded by these design princi-
ples. First, however, we contrast PACKER with other cate-
gory generation models.

Previous Accounts of Category Generation
Previous models of category generation focus on capturing
the tendency for people to produce new categories that have
similar distributional properties to existing categories. To the
best of our knowledge, Jern and Kemp (2013) were the first
to evaluate computational models of generation. Based on
their work, we describe two alternative models: a formaliza-
tion of the Path of Least Resistance hypothesis (later termed
copy-and-tweak, see Jern & Kemp, 2013), and the hierarchi-
cal sampling hypothesis (Jern & Kemp, 2013).

Copy-and-Tweak
The copy-and-tweak model, based broadly on the earlier Path
of Least Resistance view (Ward, 1994, 1995), proposes that
participants generate categories by retrieving an observation
of the target class from memory, and then tweaking it to make
something new. Jern and Kemp (2013) interpreted this pro-
posal in terms of an exemplar model using the GCM (Nosof-
sky, 1984). Formally, their model is equivalent to PACKER
with γ = 1 (see Figure 1). In this case, f (x j) = 1 for members
of the target category and f (x j) = 0 for members of other
categories; thus, the model considers only target-class simi-
larity, and when no members of the target class are known,
the model generates items at random.

In our work we provide simulations from the copy-and-
tweak account, realized as a variant of PACKER with a fixed
γ parameter. Formalizing a model family where PACKER
and copy-and-tweak are different parameterizations within
the same framework is useful because comparison between
the models provides a test of the explanatory value of the con-
trast mechanism: The account provided by copy-and-tweak
will only equal that of PACKER if the contrast mechanism
does not offer an advantage (i.e., if γ < 1 significantly im-
proves model fits).
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Hierarchical Sampling
Based on several results inconsistent with the copy-and-tweak
account, Jern and Kemp (2013) advocated a hierarchical
Bayesian model. Exemplars of each category were gener-
ated from a multivariate Normal distribution over the dimen-
sions of stimulus space. The mean of each category was
independently generated, but the covariance matrix (encod-
ing feature variances and correlations) was generated from a
common prior distribution. New categories are produced by
generating a new mean (uniform over stimulus space) and co-
variance matrix from the common prior distribution. Because
the shared prior distribution’s parameters were unobserved, a
hierarchical Bayesian model uses information from the pre-
vious categories (their feature variances and correlations) to
generate the covariance matrix of the new category.

Each category’s exemplars are assumed to be a multivari-
ate Normal distribution with parameters (µ,Σ). Each cate-
gory’s covariance matrix is assumed to be inverse-Wishart
distributed with parameters (v, κ, and ΣD).1 ΣD is the co-
variance matrix shared between categories. We assume the
shared covariance matrix ΣD is generated from a Wishart dis-
tribution (for conjugacy) with parameters v0, κ0, and Σ0. We
set ν0 = 4, and Σ0 = λI, where λ is a free parameter control-
ling the expected variance of dimensions (dimensions of the
shared covariance matrix are expected to be uncorrelated) and
I is the identity matrix.

To simplify the model predictions, we used maximum a
posteriori (MAP) estimates for the hidden parameters and
then generated new categories based on those estimates. Due
to conjugacy, the MAP estimate for the shared covariance ma-
trix ΣD = Σ0 +∑c Cc, where Cc is the empirical covariance
matrix of category c. The MAP estimate of the covariance
matrix for the target category B is

ΣB =

[
ΣDν+CB +

κnB

κ+nB
(x̄B−µB)(x̄B−µB)

T
]
(ν+nB)

−1

(4)
where ν (ν > k−1) is an additional free parameter (from the
Inverse-Wishart prior on ΣB) weighting the importance of ΣD.
When the target category has no members (i.e., nB = 0), items
are generated at random.

Generated exemplars are drawn from a multivariate Nor-
mal distribution specified by (µB,ΣB). Thus, p(y) is

p(y) =
exp(θ ·Normal(y;µB,ΣB))

∑i exp(θ ·Normal(yi;µB,ΣB))
(5)

where θ is a response determinism parameter and
Normal(y;µ,Σ) denotes a multivariate Normal density
evaluated at y.

Behavioral Experiment
The copy-and-tweak and hierarchical sampling models were
designed to explain effects of prior knowledge on the struc-

1Note that Jern and Kemp (2013)’s model is slightly different, as
they used a non-conjugate model. Their model acts very similar to
our version of it and receives comparable fits.

A A
A A

Bottom

A A
A A

Middle

Figure 2: Conditions tested in the behavioral experiment.

ture of categories, but they do not make any assumptions
about the role of between-category contrast. Indeed, when
there are no known examples of the target category, both
models assume that generation is random. PACKER is thus
unique in its prediction that contrast categories should influ-
ence both the structure and location of generated categories.
The behavioral experiment described below was designed to
test this key prediction.

The experiment follows the paradigm developed by Jern
and Kemp (2013): first, participants learn members of a
known category (‘Alpha’, or ‘A’), and are then asked to gen-
erate exemplars belonging to a new category (‘Beta’, or ‘B’).
We developed two Alpha categories (see Figure 2): the ‘Bot-
tom’ Alpha category is a tight cluster in the bottom-center of
the space, and the ‘Middle’ Alpha category is identical except
that it lies in the center of stimulus space.

Although our manipulation is minimal, the PACKER
model predicts strong between-condition differences. Ac-
cording to PACKER, the nature of the space not occupied by
the Alpha category should determine where members of the
Beta category are likely to be generated. Thus, the lower ar-
eas of the stimulus space should be less frequently used for
generation in the Bottom condition compared to the Middle
(as these areas possess greater similarity to the Bottom Alpha
category). Conversely, the upper areas of the stimulus space
should be used for generation more frequently in the Bottom
condition compared to Middle.

More generally, PACKER proposes that the probability a
stimulus y will be generated is a function of its similarity to
contrast categories and to members of the target category.
Two more general predictions (not specific to either condi-
tion) follow from this proposal: (1) the location of Beta exam-
ples should be positively related to distance from the Alpha
category, and (2) Beta examples should be more similar to
one another than they are to members of the Alpha category.

Participants & Materials We recruited 122 participants
from Amazon Mechanical Turk from the US equally assigned
to each condition. Stimuli were squares varying in color
(grayscale 9.8%-90.2%) and size (3.0–5.8cm). The assign-
ment of perceptual features (color, size) to axes of the domain
space (x, y) was counterbalanced across participants.

Procedure Participants began the experiment with a short
training phase (3 blocks of 4 trials), where they observed ex-
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Figure 3: Sample generated categories.

emplars belonging to the ‘Alpha’ category. Participants were
instructed to learn as much as they can about the Alpha cat-
egory, and that they would answer a series of test questions
afterwards. On each trial, a single Alpha category exemplar
was presented, and participants were given as much time as
they desired before moving on. Exemplars were randomly or-
dered within each block. Participants were shown the range
of possible colors and sizes prior to training.

Following the training phase, participants were asked to
generate four examples belonging to another category called
‘Beta’. Participants were instructed that members of the Beta
category could be quite similar or different depending on
what they think makes the most sense for the category, but
that they were not allowed to make the same example twice.
As in Jern and Kemp (2013), generation was completed using
a sliding-scale interface. Two scales controlled the features of
the generated example. An on-screen preview of the example
updated whenever one of the features was changed. Partic-
ipants could generate any example along an evenly-spaced
9x9 grid, except for any previously generated Beta exemplars.
Neither the members of the Alpha category nor the previously
generated Beta examples were visible during generation.

Results Several sample Beta categories are depicted in Fig-
ure 3. Because the conditions differ only in their location
along the y-axis, we first focus on how Beta exemplars are
generated above and below the contrast category. As is ev-
ident in Figure 3, we observed broad individual differences
in generation strategy: Whereas some participants generated
all four Beta examples within a narrow y-axis range, others
generated Beta examples along a wide range.

To evaluate the key predictions of PACKER, we deter-
mined the number of participants in each condition who
placed at least one Beta exemplar on the top and bottom
‘rows’ of the space (the maximum and minimum possible y-
axis value, respectively). The resulting contingencies data are
shown in Table 1. Fisher’s Exact Tests reveal that more Mid-
dle participants generated a Beta exemplar in the bottom row
, p < 0.001, but the conditions did not differ in use of the top
of the space, p = 0.16. More Middle participants placed Beta
exemplars in the top and bottom rows, p = 0.038.

To evaluate PACKER’s other predictions, we computed the

Table 1: Behavioral results.

Middle Used top row No top row
Used bottom row 28 18
No bottom row 11 4

Bottom Used top row No top row
Used bottom row 16 8
No bottom row 31 6

number of exemplars produced at different distances to the
center of the Alpha category. These data (Figure 4 left) reveal
a strong preference for stimuli that are dissimilar to the Alpha
category members: maximally distant items were by far the
most frequently generated.

Finally, we computed for each participant the average dis-
tance between exemplars belonging to the same and opposite
categories. These data (Figure 4 right) show that, as observed
by Ward (1994), most people generated Beta categories in
which members are closer to one another than they are to
members of the Alpha category (i.e., more between- than
within-category distance). We did however, observe a no-
table subset of individuals with greater within-class distance.
These individuals tended to adopt a ‘corners’ approach, in
which Beta examples were placed almost exclusively in the
corners of the space.

Summary
Our results support PACKER’s predictions: People tend to
generate items that are dissimilar from the contrast category
and similar to the target category. We observed considerable
differences in generation between the Middle and Bottom
conditions: Participants in the Bottom condition were less
likely to use the bottom row of the stimulus space for gen-
eration, and participants in the Middle condition were more
likely to create categories spanning the entire y-axis (utiliz-
ing the top and bottom row of the space). This latter result
is especially interesting as it conflicts with previous results:
Qualitatively different types of categories were generated, de-
pending only on the location of the Alphas.

Some aspects of the results described above are somewhat
commonsense: They demonstrate that the location of existing
categories imposes constraints on generation because people
tend to generate examples in areas not occupied by existing
categories. This principle, however, is novel and not pre-
dicted by existing models of generation – these models were
designed to explain distributional correspondences between
generated and existing categories, not effects of contrast.

Model Evaluation
To obtain an overall sense of each model’s ability to ex-
plain our results, we fit each model by maximizing the log-
likelihood of the model’s predictions of the human results.
The c, γ, and θ parameters were fitted for PACKER; c, and θ
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Figure 4: Behavioral results. Left: Frequency of exemplar
generation as a function of distance from the Alpha cate-
gory normalized by the maximum possible distance. Right:
Within- vs. between-category distance for every participant.

were fitted for the copy-and-tweak model (γ was fixed at 1),
and κ, λ, ν, and θ were fitted for the hierarchical sampling
model. Note that each model possess a θ parameter fulfilling
the same role (response determinism). Attention in PACKER
and copy-and-tweak was set uniformly. Parameters were not
allowed to vary between participants or conditions – the goal
was to obtain the best-fitting values to our entire dataset.

Each model’s best-fitting parameterization is shown in Ta-
ble 2. Overall, PACKER outperformed copy-and-tweak and
the hierarchical sampling model by a considerable margin
(∼ 11% improvement in log-likelihood). The parameter set-
tings associated with PACKER’s best fit are exactly as ex-
pected: a strong preference for items that are similar to mem-
bers of the target category but are dissimilar to members of
the contrast category. A similar pattern of results was ob-
tained when we only considered the second to fourth exem-
plars generated by each participant.

Our model-fitting results make sense given the assumptions
made by each model. As the copy-and-tweak and hierarchical
sampling models are not influenced by the location of contrast
categories within the space, they do not capture the broad ten-
dency for generated items to be dissimilar to existing classes.

Relation Between Category Structure & Location
Generally, our behavioral results showed that members of
generated categories are dissimilar to opposite categories, and
similar to members of their own category. However, we also
observed a great deal of individual differences in generation
style. Manually inspecting the data reveals four typical pat-
terns (see Figure 3): ‘corners’ categories with one Beta exam-
ple in each corner of the space, tight clusters, ‘column’-like
categories, and ‘row’-like categories. This informal inspec-
tion also reveals that each of these category types tended to
be generated into distinct regions of the domain, suggesting a
link between category location and distributional structure.

To more systematically evaluate this possibility, we com-
puted, for each stimulus in the domain, the difference in range
between the features (range(size)− range(color)) across ev-
ery generated category that had the stimulus as member. Ag-

Table 2: Model-fitting results.

PACKER Copy & Tweak Hierarchical
Sampling

AIC = 3474 AIC = 3914 AIC = 3972
c = 0.565 c = 4.894 κ < 0.001
γ = 0.469 γ = 1 (fixed) ν = 4.660
θ = 6.632 θ = 3.712 λ = 0.423

θ = 2.771

gregating over these range differences yields a gradient de-
scribing how categories tended to distributed for each stimu-
lus. These data (Figure 5) reveal a systematic relationship be-
tween category structure and location. Whereas column-like
categories more often include stimuli to the left or right of
the Alpha class, row-like categories appear above and below
the Alpha class. Thus, participants modify the distributional
structure of new categories to the maximize distance from the
contrast category.

To simulate this finding, we set the attention weight param-
eters in PACKER and copy-and-tweak per participant. The
other free parameters were set as in Table 2. While there ex-
ist methods to find the optimal attention weights for a given
classification (see Vanpaemel & Lee, 2012), for simplicity we
approximated the weights using proportionally to inverse of
each feature’s range: Thus, the Alpha and Beta categories
are assumed to be distinct along dimensions that the Betas do
not vary on. To simulate the hierarchical sampling model we
set the domain covariance prior, Σ0, proportional to the range
(not inverted) of each feature: Thus new categories were dis-
tributed more widely along the features that each participant
used more widely. We then simulated 50 Beta categories with
each participant’s weighting scheme to obtain a sense of how
the relative importance of each dimension affects what types
of categories are generated and where they are generated. The
results of these simulations are depicted in Figure 5.

When the x-axis is weighted more, PACKER creates col-
umn categories to the sides of the Alphas. Conversely, when
the y-axis is weighted more, PACKER creates row categories
above and below the Alphas. This behavior falls out from
the nature of selective attention: Dimensions weighted more
have a sharper similarity gradient. For example, when the x-
axis is weighted more, PACKER favors Beta categories with
more within-class similarity (less range), and less between-
class similarity along the x-axis, resulting in column-like cat-
egories that differ from the Alphas along the x-axis.

Although differentially weighting the features results in
different types of categories from the hierarchical sampling
and copy-and-tweak models, the location of the Alpha cate-
gory does not affect where items will be generated by these
models. Thus, row- and column-like categories are not sys-
tematically generated in different areas of the stimulus space,
resulting in the uniform predictions shown in Figure 5.
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Figure 5: Generated category structure as a function of location. Orange areas in each gradient correspond to stimuli that were
commonly generated into category possessing greater y-axis range (columns). Purple areas correspond to categories possessing
greater x-axis range. White areas correspond to equal range along both features (or infrequent generation).

Discussion

The creative use of conceptual knowledge is a fascinating yet
understudied topic in categorization. In this paper, we pre-
sented a novel exemplar-based approach to explaining cat-
egory generation. The PACKER model proposes that cate-
gories are represented as a collection of exemplars stored in
memory, and that members of generated categories should be
similar to one another, yet dissimilar to members of opposing
categories. Exemplar models can be viewed as Importance-
Sampling approximations of Bayesian models (Shi, Griffiths,
Feldman, & Sanborn, 2010). So, PACKER can be viewed as
a rational process model, approximating the expected density
of a new category based on a contrast category.

In a behavioral study and subsequent formal modeling, we
found broad support for the PACKER model. Participants
in our study more frequently generated items that are distant
from members of contrast categories, and they tended to gen-
erate categories with more within-class than between-class
similarity. Likewise, we found that the location of contrast
categories (as opposed to their structure) shapes generation by
imposing constraints on the areas of space that remain avail-
able for a new category. Formal simulations reveal that exist-
ing models (see Jern & Kemp, 2013), making no assumptions
about category-contrast, do not account for these effects.

The PACKER model is, in general, highly expressive in its
performance. Under different parameter settings it is capa-
ble of generating tightly clustered or highly distributed cate-
gories, and adjusting the distribution of categories along each
feature. Future work will focus on exploring the broad de-
gree of individual differences we observed in generation, and
whether PACKER can explain previous results in the field
(Jern & Kemp, 2013; Ward, 1994).
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Abstract

Managing disagreement in conversation requires subtle
linguistic and pragmatics skills. One key dimension is the
degree of ‘knowingness’ with which people present their
stance on an issue. It has been hypothesised that framing
stances as ‘knowing’, i.e. with higher implied levels of
speaker certainty limits the potential for challenge by others.
We present the first experimental test of this hypothesis. Using
a text based chat-tool paradigm and a debating task we are
able to systematically manipulate how ‘knowing’ people’s
turns appear to one-another. The results show that ‘knowing’
stances tend to close off discussion leading to less carefully
formulated, truncated turns, but do not reliably affect the range
of solutions considered. Unknowing stances, by contrast,
do not affect turn length or formulation but do encourage
more deliberation and include more signals of certainty in the
message contents.

Keywords: Dialogue; Interaction; Disagreement; Stance;
Deliberation.

Introduction
During a debate people have choices about how they present
their contributions. Amongst other things they can simply
assert their position, they can modify it with a propositional
attitude verb such as ‘know’ or ‘think’ or they can turn an
assertion into a question rephrasing “’I think X” as “Do you
think X?”. These choices of attitude and modality all help to
establish what a person’s stance is and, in combination with
the choices made by their interlocutor, set the tone and di-
rection of a debate. One of the most important hypotheses
about the impact of different stance markers on dialogue re-
lates to expressions of epistemic certainty; framing of a stance
as ‘knowing’ or ‘unknowing’ appears to significantly alter the
deliberative quality of a discussion Heritage (2012a).

Although the interactional dimensions of stance have been
discussed in some detail (Du Bois, 2007; Englebretson, 2007;
Kärkkäinen, 2003), this work is based on case studies and cor-
pus analyses. The causal effects of adopting different stance
markers on the subsequent trajectory of a dialogue has not, as
far as we are aware, been directly tested. One key reason for
this is the practical difficulty of manipulating stance mark-
ers in a live dialogue. Here we use a technique introduced
by Healey et al. (2003) that takes advantage of the potential
of text-chat for enabling selective manipulation of people’s
turns, including the addition of stance markers, without their
awareness. We use this technique to to assess how the epis-
temic status of a stance, i.e. whether it is framed as either
unknowing or knowing, impacts on the quality of the joint ac-
tion and deliberation in discussion dialogues.

Knowing vs unknowing epistemic status

Heritage (2012a) defines ‘epistemic status’ as the relative po-
sitioning in which “persons recognize one another to be more
or less knowledgeable concerning some domain of knowl-
edge”. Knowing all (K+) is typically conveyed through
declaratives, while interrogative grammatical format is the
most explicit way that a speaker can embody an ‘unknowing’
(K-) epistemic status. For example, the question ’what time
is your appointment’ positions the speaker in request of infor-
mation, where as ‘your appointment is at 3pm’ positions the
speaker in a K+ position. However, as highlighted by Drew
(2012), how much speakers know relative to one another is
not only encoded in the grammatical format, but also in in-
congruities between epistemic status and grammatical format,
for example in posing a question to which you already know
the answer (e.g. ‘Aren’t you going to be late?’). Speakers’
relative positioning can alter from moment to moment, and
be “disassembled by persons who deploy epistemic stance
to appear more, or less knowledgeable than they really are”
(Heritage, 2012a). There are significant potential social and
interactional implications of positioning ourselves or others
as either knowing or unknowing (Levinson, 2012).

In issuing a question the requester assumes an unknow-
ing epistemic status and positions the recipient in a knowing
one (Heritage, 2012a), creating an obligation for the recipient
to respond (Levinson, 2012). Levinson (2012) observes that
people prefer polar questions to other forms that require more
knowledge-rich responses and often disguise them as asser-
tions, thus demonstrating an unwillingness to locate oneself
in an unknowing position, nor to impose too greatly upon an
interlocutor by demanding a response. However, in a discus-
sion context, in which individual contributions on the topic
under discussion are warranted and expected, the ways in
which requests are made could be influential to the deliber-
ative quality of the discussion.

Furthermore, between the most explicit formats of K+ and
K- constructions (i.e. declaratives and interrogatives), there
are a range of other ways that speakers can encode epistemic
stance, such as modals, hedges and epistemic adverbs, which
can convey levels of speaker certainty, e.g. ‘It was definitely
red’, and commitment ‘I absolutely think...’ and evidential
markings which convey the source of a knowledge claim (i.e.
direct evidentials based on sensorial/ visual evidence and in-
direct evidentials, such as inference and hearsay). Particu-
larly within a discussion context the management of imbal-
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ances in epistemic status is particularly pertinent as partic-
ipants’ contributions must necessarily negotiate alternative
stance positions.

Stance and Disagreement
Work in the emergent field of interactional linguistics posits
that stance-taking is a fundamentally intersubjective process,
with stance positions being co-constructed through interac-
tion (Englebretson, 2007; Du Bois, 2007). This process of
stance co-construction relies upon the expression of opposi-
tions and alternatives. Disagreement is one perspicuous so-
cial activity which denotes the negotiation of differing stances
and a potential process by which a shift in stance can oc-
cur. Disagreement is generally minimised in conversation
(Pomerantz, 1984; Concannon et al., 2015a), and tends to
be problematic when issued without mitigation (Chiu, 2008;
Concannon et al., 2015b). However, in certain contexts, such
as problem solving and discussion tasks, it can be important
for advancing the deliberative quality of a dialogue and en-
couraging novel contributions (Chiu, 2008).

There is thus a delicate balance between mitigating the so-
cially problematic aspects of disagreement while still being
able to identify and resolve differences of opinion. This bal-
ance can be achieved in many different ways. Resources such
as ‘well’-prefacing (Pomerantz, 1984), stance markers such
as ‘I think’ (Kärkkäinen, 2003) and reported speech (Holt &
Clift, 2007; Concannon et al., 2015b) all provide less explicit
ways of marking what follows as potentially incongruous or
in opposition to what went before.

Marking Stance in the Balloon Task
The task chosen for the experiment reported below is the Bal-
loon Task. Participants are presented with a fictional scenario
in which an hot air balloon is losing altitude and about to
crash. The only way for any of three passengers to survive
is for one of them to jump to a certain death. The three pas-
sengers are: Dr. Nick Riviera, a cancer scientist, Mrs. Susie
Derkins, a pregnant primary school teacher, and Mr. Tom
Derkins, the balloon pilot and Susie’s husband. The advan-
tages of this task are that it is effective at generating debates
between subjects and there is good scope for deliberation. To
ensure we chose a relatively natural manipulation of epis-
temic stance for this task an initial analysis was conducted
using control condition transcripts from previous balloon task
discussions. Twelve transcripts were analysed for markers
that conveyed ‘knowing’ or ‘unknowing’ states in relation to
stance marking. ‘I think’ was frequently used as a resource
to mark a stance position. ‘I think’ has been attributed a dual
function, and can can also act as a hedge (Holmes, 1990),
however in the discussion context it was used most frequently
to convey a knowing stance, particularly when at the begin-
ning of a turn.

(1) a. I think Tom should definitely stay in the balloon

b. I think Nick should definitely be the one to go

c. I think because there’s an element of risk with whether
Nick will actually end up coming up with a cure for
cancer ... There’s no point taking two risks by then
letting go of Tom

d. i think we have a couple mins left

e. A: so tom has to jump?
B: i think so

In 1a, 1b and 1c the marker ‘I think’ serves to accentuate
the propositional content and emphasise the speaker’s com-
mitment to their proposition and focuses on a substantive as-
pect, namely, who should be sacrificed. In 1d and 1e, how-
ever, the marker performs the opposite effect and suggests a
lack of speaker commitment and acts as a hedging marker.
There were 44 instances of ‘I think’ in the transcripts, 34 in-
stances (77.27%) served to emphasise the propositional con-
tent it was associated with, eight instances (18.18%) acted in
a ‘hedging’ or unknowing capacity, and the two remaining in-
stances made manifest the cognate processes (e.g.“whenever
i think that nick should go, i think ‘Are susie and tom really
that important?’”). Of the 44 instances, 25 were turn-initial
(56.82%), 19 of which served to emphasise the speaker’s
ownership and commitment to the content that followed. Four
instances of turn-initial ‘I think’ (20%) were constructed in
such a way that ‘I think’ functioned as a hedging marker
and two instances were not possible to classify due to insuffi-
cient context (e.g. ‘I think overall’). Closer inspection of the
use cases showed that all instances of turn-initial ‘I think’,
in which the proceeding content featured a character from
the scenario, conveyed a ‘knowing’ stance. As such, using
‘I think’ as a turn-initial insertion for turns which contain a
mention of one of the scenario’s characters, should increase
the likelihood of a consistent effect of framing the utterance
as ‘knowing’, rather than performing a hedging effect.

While looking for markers which served to downgrade the
epistemic strength of assertions, ‘do you think’ was one such
‘unknowing’ device that was used in the transcripts.

A: do you think the married couple would gang up on
the doctor and throw him out
B: maybe. he is their friend though

‘Do you think’ makes a minimised contrast pair with ‘I think’
and can be inserted at a turn-initial position without changing
the content of the turn. Consequently, ‘I think’ and ‘do you
think’ were selected as our turn-initial inserts, to perform the
role of framing the proceeding content as more or less ‘know-
ing’.

Hypothesis
Following Heritage (2012b) our general hypothesis is that
framing a proposition as unknowing invites elaboration, se-
quence expansion and further discussion of the topic at hand
(Heritage, 2012b). Conversely, a more knowing epistemic
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stance, creates pressure for confirmation and sequence clos-
ing. As such, we predict that inserting ‘knowing’ and ‘un-
knowing’ stance markers will have different impacts on the
course of a conversation even where, counterfactually, noth-
ing about the content of the modified assertions is changed.

The analysis of previous dialogues enables us to opera-
tionalise our general hypothesis about the level of knowing-
ness with which opinions are presented and inform the fol-
lowing predictions:

1. Fewer possible solutions will be considered when contribu-
tions are framed as knowing and responses will be less con-
sidered; this should affect turn formulation, with shorter
typing times and less editing of turns. Framing contribu-
tions as knowing will close down the dialogue, as indicated
by shorter and fewer turns.

2. Framing contributions as unknowing will open up dia-
logues, leading to longer turns and more possible solutions
considered.

3. More possible solutions will be considered and more care
will be taken in the construction of turns, as evidenced by
slower typing times and more edits when contributions are
introduced with an unknowing preface (‘do you think X’).

4. Framing contributions as unknowing will lead to higher
frequencies of certainty and uncertainty markers.

Method
In this experiment, to see how the epistemic framing of a
contribution affects levels of deliberation in dyadic text-based
conversations, participant contributions were manipulated us-
ing the DiET chat tool.

The DiET chat tool
The participants communicate via a specially programmed
chat tool, similar to other instant messenger interfaces they
may have used previously. The Dialogue Experimental
Toolkit (DiET) chat tool is a text-based chat interface facil-
itating real time manipulations of the dialogue. It is possible
to programme several different types of interventions using
the chat tool: turns may be altered prior to transmission, turns
may not be relayed, and additional turns may be added, (e.g.
Healey et al. (2003), insertion of spoof clarification requests).
These manipulations occur as the dialogue progresses, thus
making them minimally disruptive to the sequence of dia-
logue.

Design
The experiment was conducted in pairs, with 10 dyads per
condition. Pairs of participants were presented with a dis-
cussion task and instructed to discuss for 30 minutes and
attempt to come to an agreement. Each pair of participants
was assigned at random to one of three conditions; i) Control
ii) Knowing iii) Unknowing. In the Control condition there
were no interventions performed by the server; participants

received the dialogue turns exactly as they were typed. In
the Knowing condition turn-Initial ‘I think’ insertions were
made and in the Unknowing condition ‘Do you think’ inser-
tions were added turn-initially. Manipulations were carried
out every four turns, if and only if the turn included a ref-
erence to one of the characters in the scenario (e.g. Doctor,
Susie, etc.). Interventions are not visible to the individual
whose turn has been manipulated, only the recipient, so that
there is no awareness that turns are being intercepted before
being relayed. A pilot study was conducted to establish the
acceptable frequency of interventions.

Subjects and materials
The experiment was carried out on thirty pairs of students (41
females and 19 males) from the University of London who
each received £7.50 or course credits for providing an hour
of their time. They were invited to attend with someone they
already knew to increase the likelihood that inter-pair partic-
ipants were acquainted. All subjects were native speakers of
English. Pairs of participants were seated at separate comput-
ers, at opposite ends of shared office1 and given an instruction
sheet detailing the balloon task (see above for a description).
Participants were told to take as much time as they needed to
read the summary of the situation and then discuss with their
partners via a chat tool set up on the computer at which they
were seated.

Analysis
The DiET chat tool records all interventions and key presses,
including edits made before participants press ENTER. For a
simple measure of authorial commitment counting frequen-
cies of epistemic adverbials, modals and hedges were col-
lected. Epistemic adverbials are separated into two categories
(adapted from Biber et al. (1999); Biber & Finegan (1988)):
those which express certainty (e.g., surely, obviously) and
those which express anything less than certainty, such as pos-
sibility or probability (e.g., maybe, probably). Our separa-
tion between those that express certainty and possibility is
to acknowledge that through probability there is less autho-
rial commitment. Uncertainty Markers therefore include un-
certainty adverbials as well as modals (‘may’, ‘might’ and
‘could’) and hedges (‘quite’, ‘sort of’, etc.), but certainty
and uncertainty adverbials are also presented individually for
comparison2 Obvious typographical errors were corrected to

1The experiment took place in an open plan office and there were
other colleagues working quietly in the room. Participants were
made aware of this before the experiment started, so that they were
not distracted by this.

2The full list of words and phrases used for each category, are
as follows:- Certainty adverbials: absolutely, actually, certainly,
clearly, plainly, definitely, evidently, indeed, obviously, really, surely,
undoubtedly, unquestionably, for certain, for sure, of course; Uncer-
tainty adverbials: allegedly, apparently, arguably, conceivably, inex-
plicably, likely, maybe, perhaps, possibly, potentially, presumably,
probably, reportedly, seemingly, supposedly; Uncertainty modals:
may, might, can, could and Hedges: quite, sort of, kind of , might,
a bit, a little bit, just, at least, approximately, about, around, some-
thing like, almost, pretty, sometimes.
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increase the accuracy of the frequency counts (e.g. possibiliyt
–> possibility). The inserted fragments were also removed
from the transcripts before frequency counts were conducted,
to ensure that the figures reflected only what the participants
actively contributed.

The decision processes were hand labelled for each con-
versation to detect the decision patterns for each participant.
The transcripts were hand coded for the solutions being con-
sidered (for example, Undecided, Kill Tom, Kill Susie, Kill
Nick) and the number of shifts from one solution to another
during the conversation (e.g. Kill Susie –> Undecided –>
Kill Tom). Furthermore, turns were counted in which partic-
ipant A and B had matching or opposing stance states. Time
spent in an undecided state, even if both participant A and B
both were undecided is not counted as a matching stance as
it is unclear what their current stance is. A matching stance
would only be A: Tom B: Tom; A: Nick B: Nick or A: Susie
B: Susie.

Results
Table 1 provides the means for total number of words typed,
turns and average words per turn per participant, the mean
typing time in milliseconds, the speed of typing and details
of the various self-edits participants made during turn con-
struction, such as deletion and insertion of characters before
pressing send to relay the message to their partner. Standard
Deviations are provided in parentheses.

Table 1: Message construction data, per participant

Control Unknowing Knowing
Total Words 618.30

(182.12)
641.95
(160.28)

649.05
(196.08)

Total Turns 81.05 (35.91) 74.35 (34.57) 94.65
(37.50)

Words/Turn 8.71 (4.43) 9.45 (3.62) 6.65 (1.87)
Type Time 16005.50

(8118.06)
17279.88
(10793.22)

12988.29
(5300.58)

Type Speed 3.09 (0.88 ) 3.71 (1.17) 3.26 (0.81)
Self-
edits(Ins)

0.25 (3.79) 0.31 (0.68) 0.03 (0.10)

Self-
edits(Del)

53.32
(125.10)

73.38
(169.25)

20.41
(49.01)

Word counts A nonparametric Kruskal Wallis independent
samples test shows that there is a significant omnibus effect
of condition on the number of words typed per turn (H(2)
= 7.475 , p= 0.02). A post hoc pairwise comparison using
Dunn’s test shows that there is a significant difference in the
number of words per turn between the Knowing and Unknow-
ing cconditionondition, with Knowing dialogues containing
fewer words per turn and Unknowing dialogues containing
more words per turn (p= 0.02). There is no significant dif-
ference between the number of words typed per turn in the

Control and Unknowing conditions (p= 0.74), nor Knowing
and Control conditions (p= 0.35). A nonparametric Kruskal
Wallis independent samples test shows that the total number
of words typed was not significantly affected by the condition
(H(2) = 0.283, p= 0.87) and there is no significant effect of
condition on the number of turns per dialogue (H(2) = 3.556 ,
p= 0.17).
Typing time Typing time averaged by participant was anal-
ysed using a Generalised Linear Mixed Models analysis
(GLMM) with a Gamma distribution because the timing data
was positively skewed. Participants was included as a ran-
dom factor and condition as a fixed factor. This shows a clear
main effect of condition (F(2,59)=13.18, p<0.00). The es-
timated marginal means are: Control: 12,139, Unknowing:
13,404 and Knowing: 8,813. Pairwise Contrasts show that
the Knowing condition has shorter typing times than Control
(t = -3.606, p<0.00) and shorter than the Unknowing condi-
tion (t = -4.87, p<0.00) but Unknowing and Control are not
reliably different (t = 1.16, p=0.25).
Self-edits The mean number of self-edit insertions per turn
is substantially lower in the Knowing condition than the Con-
trol and Unknowing conditions. A Kruskal Wallis test shows
that there is a significant omnibus effect of condition on the
number of Self-edits (Inserts) per participant (H(2) = 7.761,
p=0.02). A post hoc pairwise comparison using the Dunn’s
method shows that there are significantly fewer Self-edits (In-
serts) in the Knowing condition than the Unknowing condi-
tion (p=0.04), but no significant difference between Know-
ing and Control (p=0.06), nor Unknowing and Control con-
dition (p=1.0). The mean number of self-edit deletions per
turn is higher in the Unknowing condition than the Control
and Knowing conditions. However, a non-parametric Kruskal
Wallis test shows that there is no significant effect of condi-
tion on the number of Self-edits (Deletions) (H(2) = 4.560,
p=0.10).
Epistemic Strength Table 2 provides mean frequencies
of epistemic markers, adverbials of certainty, adverbials
of uncertainty and combined uncertainty markers (adver-
bials,hedges,modals) per 100 words. A non-parametric

Table 2: Epistemic marker mean frequencies

Condition Certainty
Adverbials

Uncertainty
Adverbial

Uncertainty
Markers

Control 0.28 (0.25) 0.54 (0.32) 4.69 (1.12)
Knowing 0.33 (0.34) 0.55 (0.21) 4.60 (1.19)
Unknowing 0.67 (0.35) 0.65 (0.39) 4.69 (0.88)
Total 0.43 (0.35) 0.58 (0.31) 4.66 (1.04)

Kruskal Wallis test shows that there is an omnibus effect
of condition on the frequency of certainty adverbs (H(2) =
7.501 p=0.02). A post-hoc pairwise comparison Dunn’s test
shows that there are significantly more certainty adverbs in
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the Unknowing condition compared to the Control condi-
tion (p=0.04), but no significant difference in frequencies be-
tween the Control and Knowing (p=1.00), nor Knowing and
Unknowing conditions (p=0.08). A non-parametric Kruskal
Wallis test shows that there is no omnibus effect of condi-
tion on the mean frequencies of uncertainty adverbials (H(2)
= 0.742 p=0.690) or combined uncertainty markers (H(2) =
0.148 p=0.93).

Deliberation quality Table 3 details the mean number of
changes from a given stance position to another per partic-
ipant over the course of the dialogue for each condition, as
well as the total number of possible alternatives considered.

Table 3: Mean stance shifts during dialogue and possible so-
lutions considered per participant by condition

Condition Shifts in Stance Solutions Considered
Control 4.85 (1.84) 3.10 (0.97)
Unknowing 6.80 (2.63) 3.30 (0.66)
Knowing 4.55 (1.61) 2.75 (0.55)
Total 5.40 (2.27) 3.05 (0.77)

There are a third more stance shifts in the Unknowing con-
dition than the Control and Knowing conditions. A Kruskal
Wallis non-parametric test shows that there is a significant
omnibus effect of condition on the number of stance shifts
traversed by a participant (H(2) = 9.559 p=0.008). A planned
pairwise post hoc comparison using the Dunn’s test shows
that there are significantly more stance shifts in the Unknow-
ing condition than the Knowing condition (p=0.01) but no
confirmed significant effect between Unknowing and Control
(p=0.06). There is an omnibus effect of condition on num-
ber of possible solutions considered (H(2) = 6.146 p<0.05).
There are more possible solutions considered in the Unknow-
ing condition than the Knowing condition (p=0.044). There
is no significant difference between Knowing and Control
(p=0.33) and nor Control and Unknowing (p=.1.00).

Table 4 provides details of the mean percentage of turns in
which participant A and B had matching and opposing stance
states across conditions.

Table 4: Mean percent of dialogue in which participant A and
B had matching and opposing stances

Condition Turns: Matching Turns: Opposing
Control 39.42% 60.58%
Unknowing 48.27% 51.73%
Knowing 32.74% 67.26%
Total Mean 40.15% 59.85%

Although, the distributions show approximately 16% dif-
ference in the ratio of opposing and matching stances be-
tween Knowing and Unknowing conditions, with more turns
covered with opposing stances in the Knowing condition and

more matching stances in the Unknowing condition. A non-
parametric Kruskal Wallis test find no significant effect of
condition on the distribution of oppositional and matching
stance states amongst participants (H(2) = 3.850 p=0.15).

Discussion
In line with our prediction, the results show that framing
statements as unknowing led to more deliberation in the di-
alogues. Not only was there a higher numbers of shifts in
stance, indicating a thorough deliberation going back and
forth over the possible solutions, there was also a fuller ex-
ploration of the total possible solutions (i.e. participants in
the Unknowing condition were more likely to consider all of
the four possible outcomes, and consider each person to be
ejected rather than just sticking to one or two).

The results show that the introduction of the knowing
stance marker ‘I think’ leads to fewer words per turn, i.e.
shorter, or more terse responses. In part this may be so to the
declarative format, compared to the question format of ‘do
you think’, which obligates a reply. The greater efficiency
in the construction of dialogue turns suggests that the intro-
duction of the knowing stance marker leads to more direct ex-
change of opinions, which is supported by the fewer edits dur-
ing turn construction in this condition. Less care is taken in
the Knowing condition to alter the message prior to relaying it
to a conversational partner, perhaps leading to less delicately
constructed or polite turns, but more direct and less guarded
opinion exchange. The results show that prefacing statements
with a knowing preface (i.e. ‘I think’) forecloses the con-
versation, while the framing of the contribution with do you
think leads to more considered and extended responses.

Counter to our predictions there was no significant ef-
fect of condition on the frequency of expressions of uncer-
tainty. However, significantly more certainty adverbials are
employed by participants in the Unknowing condition com-
pared to the Control condition. This suggests that framing
contributions as unknowing creates an environment in which
participants are more likely to make manifest their commit-
ment to a stance by upgrading the epistemic strength of a
statement through certainty adverbials; as solutions are dis-
cussed more and potentially co-constructed, once a stance is
established it can be committed to with greater conviction
by participants in the Unknowing condition. So, although
the Knowing condition features less guarded and more direct
messages as indicated in the manner in which they are con-
structed, it is in the Unknowing condition that participants
commit more firmly to the substantive essence of their utter-
ance.

Interpreting these results together suggests that the intro-
duction of ‘Do you think’ opens up the dialogue, inviting
further elaboration of the topic at hand, while introducing ‘I
think’ closes down the dialogue and limits the deliberative
quality of the discussion. ‘Do you think’ positions the speaker
in a position of unknowing epistemic status, and also directly
invokes the hearer to collaborate in the co-construction of a
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joint stance. In the Unknowing condition stance positions are
more explicitly emphasised through certainty adverbials, i.e.
when something is important, participants take care to make
clear the focus of their stance and their strength of commit-
ment to a given proposition. In part this may be due to the
fact that ‘do you think’ directly invites input and therefore
greater care is taken to make clear exactly what the opinion
to which they are attaching themselves is. The interactive ne-
gotiation of the stance is more exaggerated. Conversely, the
introduction of ‘I think’ to the dialogue has the opposite ef-
fect: the presentation of a knowing stance, leads to less con-
sideration and more conviction among participants, demon-
strated through fewer edits when constructing responses and
more terse and direct turns. Opinions are expressed plainly
and without additional specification.

Conclusion
In this paper the causal effects of epistemic status, as ex-
pressed through particular stance markers, on the deliberative
quality of a dialogue were investigated using an experimental
approach. Framing a statement as unknowing has a signifi-
cant impact on the deliberative quality of a dialogue and in-
creases the likelihood that participants will consider multiple
possible solutions, shifting their opinion more times before
reaching a concluding stance. Furthermore, participants in
the Unknowing condition, spent a larger proportion of dia-
logues considering one another’s stance. This suggests that,
within a discussion dialogue, the framing of a statement in
a unknowing way can lead to a more flexible deliberation
process and a greater willingness to engage with alternative
viewpoints. Furthermore, while being more considerate of
one another’s views, this was not to the detriment of express-
ing a position with conviction, and actually led to greater dis-
plays of speaker commitment to a stance through certainty
adverbials.

Framing a statement as knowing affects the ways in which
individuals produce messages; specifically, they construct
shorter and less edited responses. This suggests that there
is less care taken in the construction of messages, and less
conscientious effort put into producing polite, or considered
turns. Shorter messages are typically more direct and the lack
of editing may reflect decreased guardedness. By prefacing
statements with ‘I think’, the context is set for the exchange of
opinions; by introducing a stance with a knowing marker, the
appropriateness for a response which is equally direct is es-
tablished. Overall it seems that marking stances with a know-
ing preface leads to more direct and unguarded exchanges,
but does not improve the deliberative quality of the dialogues.
Conversely, prefacing statements with the unknowing preface
‘do you think’ encourages a more collaborative deliberation,
in which more possible solutions are considered in turn be-
fore a final decision is reached.
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Abstract 
Research on the continued influence effect has consistently 
shown that people continue to rely on false causal information 
despite being corrected by more recent information.  
Corrections are most effective when paired with an alternative 
explanation that ‘fills the causal gap’ left by the correction. 
However, it may not always be possible provide an alternative 
explanation. Previous research suggests people more readily 
discount unreliable information. Two experiments examined 
whether corrections to false causal information in a news 
report are more effective when the correction explains why 
the source of the false information was unreliable. The results 
showed that a correction did not fully eliminate reliance on 
false information and that an explanatory correction was no 
more effective than a non-explanatory correction. People also 
continued to rely on false information when there was limited 
information to support its validity. Possible explanations for 
the ineffectiveness of explanatory corrections are discussed. 
 
Keywords: False Information; Continued Influence; 
Corrections; Inference; Explanations; Reasoning; Memory 

Introduction  
Many news organizations now report breaking news via 
social media platforms. Although social media helps to keep 
people up to date, breaking news can be based on mistaken, 
inaccurate, or incomplete information. When false 
information1 is reported news organizations would 
ordinarily issue a correction, revising their original account. 
Provided that the false information has not proliferated, 
being aware of a correction should normatively neutralize 
belief in the false information. In contrast, numerous 
experiments on the continued influence effect (CIE) have 
shown that causal false information continues to be 
influential beyond a correction (Ecker, Lewandowsky, & 
Apai, 2011; Ecker, Lewandowsky, Swire, & Chang, 2011; 
Ecker, Lewandowsky, & Tang, 2010; Johnson & Seifert, 
1994; Wilkes & Leatherbarrow, 1988). 

The standard experimental paradigm for studying the CIE 
involves reading a series of messages describing a fictional 
news story over time. Explanatory target information is 
presented and subsequently corrected for one group of 
participants, but remains uncorrected for a control group. 
Inferences and memory for the news report are then 
assessed through a series of open-ended questions. In 
Johnson and Seifert (1994), participants read a story about a 
warehouse fire wherein target information implies that 

                                                             
1 In this context the term ‘false information’ refers to incorrect or 

inaccurate information that is initially presented as true. 

carelessly stored flammable materials (oil paint and gas 
cylinders), were a likely cause of the fire.  Later in the story, 
some participants learn that no such materials had actually 
been found. A comprehension test follows, which includes 
indirect inference questions (e.g., “what could have caused 
the explosions?”), and questions assessing recall of basic 
facts (e.g., “what was the cost of the damage done?”). 
Inference responses are then coded in order to measure the 
extent to which the target information (oil paint and gas 
cylinder) has been discounted. Responses are coded 
according to whether they are consistent with the 
explanatory theme implied by the target information (e.g., 
“exploding gas cylinders”) or not (e.g., “electrical short 
circuit”).  

The key finding from CIE studies (for reviews see 
(Lewandowsky, Ecker, Seifert, Schwarz, & Cook, 2012; 
Seifert, 2014) is that corrections do not fully eliminate 
reliance on false information. People continue to rely on 
false information despite recalling the correction, when 
given prior warnings about false information in news 
reports; whether corrections are repeated, or appear 
immediately after the false information (Ecker, 
Lewandowsky, & Apai, 2011; Ecker et al., 2011; Ecker et 
al., 2010; Johnson & Seifert, 1994). The CIE has been 
replicated using various types of news stories, types of false 
information (e.g., Ecker et al., 2011), and using direct or 
indirect measures of reliance on false information (Connor 
Desai & Reimers, 2016; Rich & Zaragoza, 2016). 
Identifying the cognitive mechanisms underlying the 
successful correction of false information has timely, real-
world implications in a wide variety of domains (e.g., news 
stories, public health information, in the courtroom).  
Filling the causal gap One explanation for the CIE is that 
corrections are ineffective because a correction alone leaves 
a causal gap in a person’s mental model of the reported 
event (e.g., Johnson & Seifert, 1994; Wilkes & 
Leatherbarrow, 1988; Lewandowsky et al., 2012). In this 
view, people maintain the false information because they 
prefer an inconsistent to an incoherent mental event model. 
In the warehouse fire example, an individual might infer 
that a fire started by an electrical short circuit was a result of 
negligence, based on information suggesting that flammable 
liquids were carelessly stored. Correcting a key piece of 
causal information (i.e., no flammable liquids) results in an 
incoherent mental model. People might continue to draw 
causal inferences from the false information because it is the 
only explanation available to them. In line with the mental 
models account, combining a correction with an alternative 
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explanation to ‘fill the causal gap’ considerably reduces the 
degree to which people rely on false information (e.g., there 
was evidence the fire was caused by arson; Ecker et al., 
2011; Johnson & Seifert, 1994a; Rich & Zaragoza, 2016; 
Tenney, Cleary, & Spellman, 2009).  

In the real world it is not always possible to provide a 
single, coherent, alternative explanation to replace corrected 
false information (e.g., the true cause the Flight MH370 
disappearance still remains unknown). Due to the fact that 
alternative explanations are not always available, it is 
important to identify other means of increasing the 
effectiveness of corrections.  
Explanatory corrections One way of increasing the 
impact of corrections is to explain why the original 
information is no longer relevant or useful. For example, 
Bush, Johnson, and Seifert (1994) found that explaining that 
target information had been of poor quality (the storeroom 
actually contained cans of coffee and soda canisters), or 
was no longer relevant (a delivery of paint and gas cylinders 
was expected but never arrived), enhanced the effectiveness 
of the correction statement compared to a correction alone, 
but an explanatory correction was still not as effective an 
offering an alternative explanation. Bush et al., also found 
that ruling out the involvement of the corrected information 
(there was clear evidence that no paint or gas were ever on 
the premises) without providing an explanation actually 
decreased the effectiveness of the correction. These findings 
can be understood by the pragmatic inferences people draw 
about the conversational implications of the original 
statement (cf. Seifert, 2014). The validity of corrected 
information might be reinforced because people assume that 
a speakers only offer true (maxim of quality) and relevant 
(maxim of relevance) information (Grice, 1975). Bush et 
al’s findings suggest that the person issuing the correction 
must explain why the original information should no longer 
be believed in order ensure the correction is understood. 
Legal decision-making studies support the idea that 
explaining why initial information is unreliable can enhance 
the effectiveness of a correction. For example, Kassin and 
Sommers (1997) found that mock-jurors who learned a key 
piece of incriminating evidence was inadmissible because it 
was unreliable (a taped confession secured without a 
warrant) were more likely to convict a defendant than 
mock-jurors who were told that the evidence was unreliable 
(the tape was inaudible). Similarly, Fein, McCloskey and 
Tomlinson (1997) found mock-jurors discounted 
inadmissible incriminating testimony when its reliability 
was called into question. Finally, Lagnado and Harvey 
(2008) showed that people providing evidence that an 
eyewitness has a ‘longstanding grudge’ against the suspect 
resulted in participants discounting that testimony. These 
studies suggest that explanatory corrections could be as 
effective as combining a correction with an alternative 
explanation when the correction explains why the initial 
source of the false information is unreliable.  

Pilot study 
The pilot study tested whether explanatory corrections are 
more effective than a correction alone when the correction 
explains why the original source of the false information is 
unreliable (i.e., mistaken or intentionally deceptive). There 
were two main predictions: 1) Explanatory correction 
groups would produce fewer target information consistent 
inferences than the correction alone group, and 2) 
Correction only group would produce fewer target 
information consistent inferences than a group who was 
never exposed to a correction. 
Methods 
Participants Forty-five U.S. based participants were 
recruited from Amazon Mechanical Turk (17 female, age 
36.3±9.70). Participants were paid $1 and took an average 
of 14 minutes to complete the experiment.   
Design Participants were randomly assigned to either the no 
correction (11), correction only (10), explanatory correction 
error (10), or explanatory correction lie (14) correction 
groups. There were four main dependent measures: 1) 
references to target information on inference questions, 2) 
recall on filler items, and 3) awareness of the correction.  
Materials and Procedure Participants read a news story 
describing a warehouse fire, displayed as a series of 
sequentially presented short messages. Materials were 
reconstructed from an experiment by (Johnson & Seifert, 
1994; Exp 3a). There were 12 discrete messages (1, target 
message, 1 critical message, 1 causal detail message, 9 
additional messages), in the style of ‘Tweets’ from the 
social media platform Twitter, an approach inspired by 
Hardwicke, Manning and Shanks (2016). The ‘Tweets’ 
originated from the same fictional news outlet, called “news 
now” and each message was no longer than 140 characters. 
Messages appeared one a time for a minimum of 5 seconds 
each; there was no maximum time. Participants clicked a 
button to proceed to the next message; they were unable to 
return and view previous messages.  

Participants completed an instructional attentional check 
(e.g., Oppenheimer, Meyvis, & Davidenko, 2009) before 
starting the experiment. The explanatory theme implied by 
the target message was that flammable materials had been 
carelessly stored in a storeroom. The target message, 
containing information about a possible cause of the fire 
(there were cans of oil paint and gas cylinders present in a 
storeroom), was presented at Message 5. The causal detail 
containing information consistent with the explanatory 
theme implied in the target message (thick, oily smoke + 
sheets of flames hinder firefighters efforts, intense heat has 
made the fire difficult to bring under control) appeared at 
Message 8. The critical message varied depending on 
condition and appeared at Message 11. The remaining 
(filler) messages provided event information, which was 
neutral with respect to the explanatory theme implied by the 
target message (e.g., Three warehouse workers working 
overtime, have been taken to St Columbus Hospital, due to 
smoke inhalation).    
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In the three correction conditions Message 11 corrected 
earlier information about the contents of the storeroom; 
participants in the no correction condition learned instead 
that warehouse workers taken to hospital had been released. 
The explanatory correction groups either learned that the 
target information had been corrected because an employee 
confused the soda canisters and coffee cans for paint and 
gas (error) or that an employee lied that there were 
flammable materials in the storeroom (lie). There were four 
narrative versions in total.  

After reading all of the ‘Tweets’ participants completed a 
questionnaire consisting of seven inference questions, seven 
filler questions and two questions assessing awareness and 
understanding of the correction. Inference and filler 
questions were presented in a random order. Inference 
questions asked participants about information not explicitly 
mentioned in the news report (e.g., “Is there any evidence of 
careless management in relation to this fire?”), and included 
a question querying participants about what they thought the 
most likely cause of the fire was. Filler questions enquired 
about the explicit details included in additional (filler) 
messages included in the news story (e.g., “Which hospital 
were the workers taken to?”). Two further questions 
assessed awareness and understanding of the correction 
message.  Participants typed a response to each of 16 
questions in a text box, were required to use a minimum of 
25 characters, and encouraged to answer using full 
sentences. 

 Pilot study: Results 
Coding of Responses 

 The main dependent variable extracted from inference 
question responses was ‘references to target information’. 
References that explicitly stated, or strongly implied, that 
the fire was caused by gas and oil paints were scored a 1 on 
the target information measure, and were otherwise scored 
as 0. The maximum individual score for inference questions 
was 7. Filler question responses were scored for accuracy. 
Correct or partially correct responses were scored 1 and a 
score 0 was given for an incorrect response. The maximum 
individual score for filler questions was also 7. Awareness 

of correction scores were computed using the same criteria; 
the maximum individual awareness of correction score was 
2. One-way ANOVA analyzed differences between the 
correction conditions for all three measures. 2 Fig 1 shows 
mean inference, filler and awareness of correction as a 
function of correction condition. 
Inference scores There was significant effect of correction 
on the number references to target information, F (3, 41) = 
3.32, p <. 05, η2 = .20. Planned contrasts showed a 
correction reduced references to target information 
compared to no correction, t (19) = -2.98, p < .01, d = 1.46. 
However, neither an error explanatory correction, t (19) = -
0.55, d = 0.23, nor a lie explanatory correction, t (23) = -
1.45, d = 0.53, reduced references to target information 
compared to no correction.  

Filler recall accuracy There was a significant effect of 
correction on filler recall accuracy, F (3, 41) = 4.39, p < .01, 
η2 = .24. Tukey’s tests showed the no correction group 
recalled significantly more filler details than the lie 
explanatory correction group, t (23) = -3.34, p =. 009, d 
=1.14. None of the other differences were significant (p’s > 
.05). 

Awareness of correction There was a significant effect of 
correction on awareness of correction scores, F (2, 31) = 
6.52, p < .01, η2 = .30. Tukey’s tests revealed that the 
correction only group showed more awareness of the 
correction than the error, t (18) = -3.09, p = .01 d = 1.62, or 
lie, t (22) = -3.24, p < .01, d = 1.22 explanatory correction 
groups. The two explanatory correction groups did not 
significantly differ, p = .10.  

                                                             
2 Planned contrasts are reported for predicted differences. Tukey’s post-

hoc tests are reported when no difference between conditions was 
predicted.  

Table 1 Example questions and responses from pilot study 

Figure 1: Mean target information inference scores (left 
panel), filler accuracy scores (top right panel), and 

awareness of correction scores (bottom right panel) as a 
function of correction. Error bars represent 95% confidence 

interval of the mean.  
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Interim Discussion 
A correction alone reduced, but did not fully eliminate, 

target information references when compared to no 
correction. Pilot results also showed that an explanatory 
correction did not reduce references to target information 
compared to no correction. On average both explanatory 
correction groups made more target information references 
than the correction only group, although these differences 
were not significant. These results are inconsistent with 
previous findings showing that an explanatory correction 
was more effective at reducing reliance on target 
information than a correction alone (cf. Bush, Johnson & 
Seifert, 1994).  

The most likely reason that an explanatory correction was 
less effective than a correction alone is that participants in 
the explanatory correction groups showed poorer awareness 
and understanding of the correction, than the correction only 
group. Only 40% of the error explanatory correction group, 
and 21% of the lie explanatory correction group understood 
and were aware of the correction, compared to 90% of the 
correction only group. Both explanatory correction groups 
also recalled fewer story details on average than the 
correction only group. Some participants’ responses 
indicated doubts about the credibility of the correction 
message (e.g., questioning whether the employee really lied 
about the contents of the storeroom), and other responses 
suggested misunderstanding of the correction message (e.g., 
the employee thought there was soda and coffee but there 
was actually paint and gas). A lack of clarity of the 
explanatory correction messages could explain poorer 
awareness and understanding in explanatory correction 
conditions could also explain why the current results do not 
replicate previous findings (cf. Bush et al., 1994). The main 
experiment sought to rectify these issues by enhancing the 
clarity of the correction messages.  

 

Main Experiment 
The same general setup was employed in the main 
experiment except that a number of changes were made to 
rule out explanations identified in the interim discussion. 
The hypotheses and predictions were also the same as the 
pilot study.  
Participants Three-hundred and twelve U.S. based 
participants were recruited from Amazon Mechanical Turk 
(146 female, age 39.67±12.31). Participants were paid $1 
and took an average of 20 minutes to complete the 
experiment.   
Design, materials and procedure Participants were 
randomly assigned to either the no correction (71), 
correction only (87), explanatory correction error (71), or 
explanatory correction lie (83) groups. Dependent measures 
were the same as in the pilot study.  

Content of the critical messages was modified from the 
pilot study in order to make it unequivocally clear that the 
target information was being corrected (see Fig 2). Unlike 
previous studies, the critical message for the correction 
conditions explicitly stated that the target information was 
being corrected.  

Results 
Additional coding and analysis was performed on one of the 
filler questions to the total number of references indicating 
flammable substances had been in the storeroom before the 
fire. The additional ‘discounting’ measure further assessed 
the extent to which the false information had been 
disregarded. Responses were scored 1 if the response 
indicated there were flammable substances in the storeroom 
before the fire and 0 otherwise. One-way ANOVA analyzed 
differences between conditions for all four dependent 
measures.   
Inference scores There was a significant effect of 
correction on references to the target information, F (3, 308) 
= 23.23, p < .001, η2 = .18. Planned contrasts revealed a 
correction significantly reduced the number of references to 
target information, t (156) = -6.84, p < .001, d = 0.98. 

Figure 2: Content of critical messages in main experiment. In 
contrast to previous studies, the critical message in each of the 
correction conditions explicitly stated that the message was a 

correction. 
 

Figure 3: Mean target information inference score as a 
function of condition in main experiment. Error bars represent 

the 95% confidence interval of the mean. 
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Likewise, the error, t (140) = -6.90, p < .001, d = 1.02, and 
lie, t (152) = -6.99, p <. 001, d = 1.01., explanatory 
correction groups, made significantly fewer references to 
the target information than the no correction group. Mean 
target information inference scores are shown in Fig 3.  

Filler recall accuracy There was no effect of correction on 
filler recall accuracy, F (3, 308) = 0.64, p = .90, η2 = .01, so 
it was not necessary to perform contrast analysis. Mean 
filler recall scores ranged from 4.58 to 4.96 (out of 7).  
Awareness of correction No correction group responses 
were excluded from analysis because their responses to 
awareness of correction questions were meaningless. There 
was a significant effect of correction condition on awareness 
of correction scores, F (2, 238) = 3.76, p < .05, η2 = .03. 
Tukey’s tests showed a significant difference between the 
correction only and explanatory correction error group, t 
(168) = -2.39, p = .05, d = 0.37. There were non-significant 
differences between the explanatory correction error and 
correction only groups (p =.06), and both the explanatory 
corrections groups (p = 1). Given the small effect size the 
difference is considered negligible. 
Discounting false information The inference scores 
suggest that explanatory corrections are treated the same as 
a correction alone. If this is the case, then the number of 
references indicating the storeroom contained flammable 
substances before the fire should be equivalent to inference 
scores. There was a significant effect of correction on the 
number of responses indicating the storeroom contained 
flammable substances before the fire, F (3, 308) = 57.25, p 
< .001, η2 = .36. Planned contrasts confirmed the same 
pattern of results as inference scores; there were 
significantly higher number of references stating that 
flammable substances had been in the storeroom before the 
fire in the no correction than the correction only group, t 
(156) = 9.22, p < .001, d = 1.49, the error correction group, t 
(140) = -12.27, p < .001, d = 2.81, or the correction lie 
group, t (152) = -9.99, p < .001, d = 1.68.  A closer 
inspection of the responses suggested that explanatory 
corrections were not treated the same as a correction alone. 
Fig 4 shows the mean number of responses indicating that 
flammable substances were in storeroom before the fire. 
Tukey’s tests showed that the explanatory correction error 
group significantly differed to the correction only, t (156) = 
-3.66, p < .01, d = 0.55, and explanatory correction lie 
group, t (152) = -2.75, d = -.45. The difference between the 
correction only and explanatory correction lie groups was 
not significant, p = .80.  

Discussion  
The results show a clear continued influence effect; a 

correction significantly reduced, but did not eliminate, 
references to target information. A correction appeared to 
have a similar impact on inferences whether accompanied 
by an explanation as to why the original source of the false 
information should not be trusted, or not. A closer 
inspection of responses suggested fewer people continued to 
think that flammable substances had been in the storeroom 

before the fire when the correction replaced the contents of 
the storeroom (i.e., there were soda cans and gas canisters in 
the storeroom) than when the correction left the storeroom 
empty before the fire (i.e., the employee had lied about 
flammable materials in the storeroom). In addition, the 
continued influence effect was still observed despite the fact 
that the correction to target information was explicitly stated 
in the correction message.  
 

General Discussion 
The experiments reported in this paper examined the impact 
of explanatory corrections on inferences about false 
information in the context of breaking news reports on 
social media. The findings reported here are consistent with 
previous studies showing that corrections do not fully 
eliminate reliance on false information (Ecker, 
Lewandowsky, Swire, et al., 2011; Ecker et al., 2010; 
Johnson & Seifert, 1994; Wilkes & Leatherbarrow, 1988). 
These results also provide a novel contribution to the 
literature on the continued influence effect. Specifically, a 
correction that explained why the original source of the false 
information was unreliable was no more effective in 
reducing reliance on false information, than a correction 
alone. Participants made an equivalent number of references 
to target information whether the correction provided an 
explanation for why the target information should no longer 
be believed (i.e., the current inaccuracy of the target 
information was directly attributed to a mistaken or a 
deceptive individual), or not.  

Despite this finding there was evidence to suggest that 
corrections were not treated equally. People were less likely 
to say that flammable substances (oil paint and gas 
canisters) were in the storeroom before the fire when the 
contents of the storeroom were replaced with other objects 
(soda canisters and coffee cans) than when the contents of 
the storeroom were not replaced (i.e., the employee lied that 
there were flammable items in the storeroom). One 
explanation for this inconsistency between inferences and 

Figure 4: Mean number of references to presence of 
flammable substances in the storeroom before the fire as a 
function of correction condition. Error bars represent 95% 

confidence interval of the mean. 
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memory of the storeroom contents is that people who 
received the error correction updated their representation of 
the contents of the room whilst maintaining an inconsistent 
mental model of the event. In contrast, people did not 
update their representation of the storeroom when the 
contents were not replaced with alternative materials. These 
results do not support previous findings showing that 
explanatory corrections are more effective than a correction 
alone (Bush, Johnson, & Seifert, 1994).  

The main methodological difference between the current 
study and previous study is that the explanatory correction 
conditions in this study involved an additional source of 
information. In addition to making a judgment about 
whether the correction sufficiently negated the false 
information participants had to establish why or how the 
original source of the information (i.e., the employee) 
provided the information in the first place. Without knowing 
why the employee lied about the flammable materials or 
how the employee was able to confuse flammable for non-
flammable substances, people might still assume the false 
information is relevant. Another possible reason for the 
inconsistent results could be that in at least one of Bush et 
al’s conditions the correction made it logically impossible to 
continue to rely on the false information whereas this was 
not the case in the current study. These findings further 
demonstrate that pragmatic inferences play an important 
role in successfully correcting false information.  

The current studies also showed evidence of the continued 
to rely on false information even though the report only 
contained one piece of information that reinforced the false 
information explanatory theme. This suggests that people 
construct a mental model of the incident on the basis of 
limited causal information. If there is no information to 
indicate an alternative explanation then people fall back on 
the only explanatory information available to them. It is also 
possible that people interpret (or re-interpret) information as 
supporting their leading hypothesis (e.g., Carlson & Russo, 
2001). Future studies are necessary to address whether 
people re-interpret neutral information to fit false causal 
information or whether people construct their mental event 
model based on limited information. 

While the current study provides initial steps, there is a lot 
more left to explore. It will be necessary to further explore 
why explaining why the information was unreliable was no 
more effective than withdrawing the false information and 
why the current findings are discrepant with previous 
continued influence (Bush et al., 1994) and legal decision 
making studies (e.g., Lagnado & Harvey). Future studies 
will further investigate the role of source reliability in 
correcting false information, and use a wider range of 
scenarios as well as types of false information. 
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Abstract 
Current theories of relational learning on structure mapping 
emphasize the importance of compositional representations, 
based on the concept’s components and the relations among 
them. We consider the possibility that relational concepts can 
also be represented unitarily, whereby the concept is a 
property of the stimulus as a whole.  The distinction between 
compositional and unitary representations of relational 
concepts is a natural consequence of structure-mapping 
theory, but its psychological implications have not been 
explored. We report two experiments in which we examine 
how encouraging subjects to represent relational concepts 
compositionally versus unitarily affects learning on 
classification- and inference-based category learning tasks. 
Our findings show that unitary representations lead to better 
learning than compositional representations, especially for the 
inference task. We conclude that unitary representations incur 
less cognitive load than structural alignment of compositional 
representations, and thus may be the default for everyday 
relational reasoning. 

Keywords: Relational Learning; Relational Structure; 
Concept Representation; Category Learning; Inference. 

Introduction 
On a daily basis, people encounter many complex concepts 
that are defined by a relational structure – the specific 
pattern in which two or more objects are bound together by 
interconnected relations (Corral & Jones, 2014). For 
instance, consider a simple scenario in which a dog chases a 
cat. In this example, the dog and the cat share a specific 
relationship with one another, such that it is the dog that fills 
the role of the chaser and the cat fills the role of being 
chased (chase(dog, cat)). Critically, this structure is 
different from a scenario in which a cat chases a dog 
(chase(cat, dog)). These types of concepts differ from those 
that are defined by features, which can be identified by the 
presence of a given set of attributes (Estes, 1986). For 
example, a bird might be identified by the presence of 
certain prototypical features, such as {feathers, beak, wings 
…}. Although feature-based representations can provide 
extensive knowledge about a given scenario, they do not 
convey structural information (Markman, 1999). Thus, a 
feature-based representation does not allow one to readily 
distinguish a simple scenario in which a dog chases a cat 
from an instance in which a cat chases a dog (Markman & 
Gentner, 2000), as both would be represented as an 
unstructured set: {dog, cat, chase}. 

The ability to recognize and reason about structured 
concepts has been posited to be one of the cornerstones of 
human cognition (Penn, Holyoak, & Povinelli, 2008). 
According to structure-mapping theory, the dominant theory 

of relational learning, structured concepts are acquired via 
structure mapping, wherein the elements of two analogous 
scenarios are put into alignment in a way that preserves their 
common roles. For example, in the hypothetical scenarios 
described below, the dog in the first scenario maps to the cat 
in the second scenario because both fill the role of the 
chaser. Alignment of two scenarios highlights their common 
structure and facilitates abstraction of new relational 
concepts (Gentner, 1983; Hummel & Holyoak, 2003).  

Importantly, structure-mapping theory1 makes the implicit 
assumption that a relational concept can be represented in 
two fundamentally different ways: (1) as a system of 
relations, with meaning derived both from the identities of 
those relations and from how they are interconnected by 
shared role-fillers (Corral & Jones, 2014); or (2) as a 
primitive, atomic relation that is explicitly represented. We 
refer to these as compositional and unitary representations. 
Although this logical distinction has been noted (Gentner, 
1983), its potential psychological implications have largely 
been neglected. 

To elaborate further, the first of these representational 
assumptions is premised on the idea that representations are 
constructed from two basic types of building blocks: objects 
and relations. The second assumption is based on the idea 
that a relation operates on a set of n objects, that is, for 
every ordered set of n objects, the relation returns a truth-
value indicating whether the objects satisfy the relation. 
Equivalently, for every ordered set of n objects (o1…,on) for 
which the relation holds, there is an explicit token of that 
relation: R(o1…,on). We refer to any relation of this sort as a 
unitary relation. 

In recent work, Corral, Kurtz, and Jones (under revision) 
raise the possibility that subjects might indeed represent 
some relational concepts unitarily, such that the concept is a 
component or a property of the stimulus as a whole. This 
type of representation would lack explicit structure and 
could be recognized directly in a stimulus, similarly to a 
feature. This idea is perhaps best exemplified in language 
comprehension, where people appear to seamlessly 
understand a multitude of rich relational concepts, without 
explicitly representing their substructure. For example, 
consider the concept of investigation. An investigation 
consists of an agent, a given question, the approach the 
agent takes to answering that question, and the specific 

                                                             
1 It is important to note that there are numerous domains within 

cognitive science that formalize representation in various ways.  In 
the present paper, we work within the framework of structure-
mapping theory. 
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pattern of interconnections among these components. 
Nevertheless, people can likely recognize this concept 
without explicitly representing its structure. Likewise, a t-
test involves a complex structure of mathematical elements 
and relations (as many hapless introductory statistics 
students will attest), but for experienced scientists it is easily 
conceived of as a unitary event—one can hear the sentence 
“I ran a t-test” and immediately comprehend its meaning 
without needing to invoke the concept’s substructure. 

The literature on structure-mapping theory has focused on 
compositional representations, through its emphasis on the 
alignment process. Furthermore, it has been proposed that 
people must use compositional representations in order to 
learn relational concepts (Markman & Gentner, 2000). 
Compositional representations are computationally 
expensive (Forbus, Gentner, & Law, 1995) and can place a 
high strain on working memory (Kintsch & Bowles, 2002). 
They are also unnecessary for learning feature-based 
concepts (Markman, 1999), which can be recognized 
(without regard to structure) by attending to a stimulus’ 
defining attributes (e.g., Nosofsky, 1986). Similarly, 
relational concepts that are represented unitarily can be 
explicitly recognized as a global attribute of the given 
scenario, and thus can be learned in an unstructured manner. 
Such representations allow for computationally efficient 
processing (Forbus et al., 1995), and based on principles of 
cognitive economy, it follows that people should avoid 
compositional representations and structural alignment 
whenever a unitary representation and setwise (feature-
style) comparisons are adequate. 

Evidence from related literatures suggests that people in 
fact do not use compositional representations as much as 
might be expected based on structure-mapping theory. One 
prediction that follows from compositional representations 
is that people should be able to report the structural 
elements of the relational concepts they are familiar with. 
However, despite subjects reporting high confidence in their 
comprehension of various types of common relational 
systems (e.g., how helicopters fly), they are often mostly 
unaware of their structural elements (Keil, 2003; Rozenblit 
& Keil, 2002). Another prediction from compositional 
representations is that, because relational structure must be 
explicitly represented (Kintsch & Bowles, 2002), it should 
take longer to comprehend and recognize structured 
information than information that is not structured. 
However, various studies have found no differences in the 
time it takes subjects to comprehend structured (metaphors) 
and non-structured statements (e.g., “the ball is blue”) 
(Glucksberg, Gildea, Bookin, 1982). Related work has 
shown that subjects can often understand metaphors 
automatically, with minimal explicit processing 
(Glucksberg, 2003). Taken together, these findings suggest 
that many relational concepts may not typically be 
represented compositionally. 

Due to the representational flexibility that humans possess 
(Chalmers, French, Hofstadter, 1992), it seems plausible 
that relational concepts can be represented both unitarily 

and compositionally. For instance, a person might represent 
a concept such as investigation based on a global attribute 
(e.g., an inspection), but can also likely represent its 
relational substructure when necessary (explicitly 
representing the agent, question, line of inquiry, and their 
interrelations). This idea leads to the question of which type 
of representation people use by default when learning a 
relational concept. The main hypothesis of the present paper 
is that, because unitary representations should allow for 
more efficient processing, subjects will use such 
representations when they are available. We test this 
prediction by giving subjects relational category learning 
tasks and encouraging them to represent the stimuli either 
compositionally or unitarily. If people typically learn 
relational concepts from structural alignment, then 
encouraging subjects to use compositional representations 
should aid learning. However, if people instead learn more 
efficiently with unitary representations, than the opposite 
outcome should be expected.  

Half the subjects in our experiments were given a 
classification task, in which they were shown a series of 
stimuli and asked to make categorization judgments. 
Unitary representations seem especially well-suited for such 
a task, because they should enable subjects to directly 
recognize the diagnostic property in a stimulus, just as with 
feature-based categories. The other subjects were given an 
inference task, in which they were asked on each trial to 
determine a missing property of a stimulus that was 
presented together with its category label. Research with 
feature-based categories has shown that classification and 
inference learning tend to yield different category 
representations, with inference tasks encouraging learning 
of internal category structure, such as correlations among 
features (Markman & Ross, 2003; Yamauchi & Markman, 
2000). This finding suggests that compositional 
representations should be particularly well-suited for 
inference learning with relational categories, as such 
representations highlight the internal structure of stimuli. 
The inference conditions of our experiments thus provide a 
more stringent test of our hypothesis that people can learn 
relational concepts better through unitary representations.  

Experiment 1 
Experiment 1 examines how providing unitary and 
compositional descriptions of relational concepts affects 
learning on classification and inference tasks (description 
and task type both manipulated between subjects). Subjects 
were provided either a unitary or compositional hint at the 
start of learning and again after every third error, in order to 
assess whether each type of hint can improve learning. 
Control groups who were given no hints were also included 
in order to assess baseline performance in both tasks. 

The stimuli used in this study were taken from Corral, et 
al. (under revision), which were adopted and modeled after 
those used by Rehder and Ross (2001). A stimulus consisted 
of three sentences, each of which describes a different 
component of a machine that works to remove waste 
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material: (1) the location of where the machine operates, (2) 
the waste material the machine removes, and (3) the 
instrument the machine uses.  

Stimuli were sampled from two categories: coherent and 
incoherent. Each category consisted of 18 exemplars. The 
categories were determined by how a machine’s 
components were related to one another. For exemplars 
from the coherent category, the machine’s instrument is 
suited for collecting the waste material that the machine 
works to remove, which can be found in the location where 
the machine operates. Consider the following example: 
“Operates on the seafloor, works to remove lost fishing nets, 
and has a hook.” This exemplar is coherent because of the 
secondary relations among the machine’s component parts 
(presumed to be known by subjects), such that lost fishing 
nets can be found on the seafloor and a hook can be used to 
retrieve lost fishing nets. In contrast, exemplars from the 
incoherent category do not satisfy either of these second-
order relations (i.e., the machine’s tool cannot be used to 
collect the machine’s target waste material and that material 
cannot be found where the machine operates). Non-Morkels 
were thus made to be as incoherent as possible so as to 
maximally differentiate the categories and better facilitate 
learning of the task. Figure 1 illustrates the abstract 
relational structure of the two categories. 

Half of the subjects completed an A/¬A classification 
task (in which each stimulus was to be categorized as either 
a category member or a nonmember), and the other half 
completed an inference task. On each trial, the subject was 
presented a single stimulus and asked to make an inference 
or classification judgment (depending on the condition). 
After the response, the subject was shown whether the 
response was correct along with the correct answer.  

 

 
 
Figure 1. Illustration of the relational structure for items in 
the coherent and incoherent categories in Experiment 1. The 
structures differ in that coherent items satisfy the relations 
indicated by diagonal lines: the machine’s implement can 
remove the target, and the target is found in the machine’s 
location. Recreated from Corral et al. (under revision).  

Method 
Two hundred eighteen undergraduates from the University 
of Colorado Boulder participated for course credit in an 
introductory psychology course. Subjects were randomly 

assigned to six conditions. Type of hint (compositional vs. 
unitary vs. control) was crossed with task type 
(classification vs. inference). 

Subjects were told that they would be shown short 
descriptions of various types of cleaning machines, some of 
which were made by the Morkel Company (coherent 
category) and some were not (incoherent category). Subjects 
were provided a positive example of a Morkel (randomly 
selected) and told that all Morkels share a certain 
commonality and it was their job to figure out what it was.  

Subjects in the unitary condition were shown the 
following hint: “On each trial try to think about how "well 
suited" the machine is for performing its task. Keep in mind 
that consumers say machines from Morkels are built 
"intuitively" in a way that makes sense.” This hint was 
intended to shift subjects’ attention toward finding a global 
attribute of the stimulus and away from the explicit 
relationships among its components. Using this hint, it is 
possible for subjects to learn how to distinguish the 
categories without explicit knowledge of their relational 
structure. This hint can therefore be said to encourage 
subjects to represent each stimulus unitarily.  

Subjects in the compositional condition where shown the 
following hint: “On each trial try to think about the specific 
manner in which the machine's 1st property relates to its 2nd 
and 3rd properties, as well as how its 2nd property relates to 
its 3rd property.” This hint was intended to focus subjects’ 
attention on the relationships among the component parts of 
the stimulus, and thus to encourage them to represent the 
stimulus compositionally.  

Subjects were presented the appropriate hint during the 
initial task instructions, after the first trial, during rest 
breaks, and following every third error the subject 
committed (on a blank screen after corrective feedback was 
shown). Subjects were asked to read the hint carefully and 
press the spacebar when they were ready to continue. 
Subjects in the control group were not shown a hint and 
were instead asked to continue to try their best; this 
reminder was presented on every third error the subject 
committed and on rest breaks. 

Each subject completed 72 trials. The order in which the 
items were presented was randomized for all subjects. In 
each block of 18 trials, all 18 stimuli appeared in a random 
order. After each block, subjects were given a self-paced 
rest break and were shown the proportion of correct 
responses they answered correctly over those trials, along 
with the number of trials they had completed and the 
number that remained. 

On each trial in the classification condition, a single, 
complete stimulus was presented and the subject was asked 
to type “A” if the machine was a Morkel or “L” if it was 
not. On each trial in the inference condition, the category 
label for a stimulus was shown (Morkel or non-Morkel) 
directly above an incomplete stimulus consisting of two of 
its three components (i.e., sentences). Below the stimulus 
were two response options, one of which was the missing 
component and the other was a lure. The component the 
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subject was asked to infer (i.e., implement, target material, 
or location) was randomly selected on each trial. Subjects 
were asked to select which was the missing component by 
typing “A” if the correct choice was the top option or “L” if 
it was the bottom option. The order in which the two options 
were presented was randomized on every trial. For items 
that were Morkels, the correct response was the option that 
shared secondary relations with the given stimulus 
components. The lure did not share secondary relations with 
either of the stimulus components. For items that were non-
Morkels, the correct response was the component that did 
not share any secondary relations with either of the stimulus 
components. The accompanying lure shared at least one 
secondary relation with one of the stimulus components. 
Figure 2 shows an example trial from the inference 
condition. 
 

 
 
Figure 2. Example of a stimulus display from the coherent 
category (Morkels) from the inference task in Experiment 1.  

Results & Discussion 
Figure 3 shows average learning curves for subjects in each 
group. An ANOVA was conducted to examine differences 
in performance among groups. The analysis showed a main 
effect of hint, F(2, 212) = 42.14, p  < .0001, MSE = .014, 
and an interaction, F(1, 212) = 8.90, p  = .0002, MSE = 
.014, indicating that the main effect of hint depends on the 
type of task that subjects completed. On the classification 
task, control subjects (M = .61, SE  = .017) were 
outperformed by subjects in the compositional (M = .775, 
SE = .014; p < .0001) and unitary groups (M = .83, SE = 
.016; p < .0001). In the inference condition, only subjects 
who received a unitary hint (M = .716, SE = .012) 
performed better than control subjects (M = .585, SE = .012; 
p < .0001), as no differences were observed between 
subjects who were presented a compositional hint (M = 
.587, SE = .011) and subjects in the control group. 

Planned t-tests were conducted to compare the unitary and 
compositional groups, separately for each task. On the 
classification task, subjects in the unitary condition (M = 
.83, SE = .014) outperformed subjects in the compositional 
condition (M = .775, SE = .014), t(71) = 1.85, p = .068, d = 
.45. This same pattern was observed in the inference 
condition (unitary M = .716, SE = .012; compositional M = 
.587, SE = .012), t(67) = 5.28, p < .0001, d = 1.29. An 

additional 2 (unitary vs. compositional) × 2 (classification 
vs. inference) ANOVA was conducted, which excluded 
control subjects. This analysis revealed an interaction, F(1, 
138) = 4.01, p = .047, MSE = .013, indicating that the 
unitary advantage was stronger in the inference task than in 
the classification task. 

Taken together, the findings presented here suggest that 
unitary and compositional representations can both be used 
to acquire relational concepts. However, subjects who were 
encouraged to represent the stimuli unitarily showed more 
robust learning than subjects who were encouraged to 
represent the stimuli compositionally, especially in the 
inference task. These findings thus provide support for our 
main hypothesis that, when both types of representations are 
available, subjects learn better with unitary than with 
compositional representations. 

 

 
Figure 3. Average learning curves and standard errors 
across blocks of nine trials for each condition in Experiment 
1. 

Experiment 2 
Experiment 2 builds on the findings from Experiment 1 and 
examines how category learning is affected when subjects 
represent a relational concept one way (either unitarily or 
compositionally) and are subsequently made aware of an 
alternative representation. Experiment 2 used the stimuli 
from Experiment 1, and all subjects performed the 
classification task. All subjects were either provided a 
unitary or compositional hint prior to the start of learning. 
For half of the subjects, the hint was changed after the 18th 
trial (i.e., the unitary hint was replaced with the 
compositional one and vice versa). For the other half of 
subjects, the hint they were shown remained the same 
throughout the study. These latter conditions were identical 
to the unitary and compositional classification conditions in 
Experiment 1.  

Method 
One hundred fifty-seven subjects were randomly assigned 

to four conditions: unitary/switch (N = 40), 
compositional/switch (N = 39), unitary/no-switch (N = 39), 
and compositional/no-switch (N = 39). After the 18th trial 
(i.e., in the first rest break), the screen was cleared and 
subjects in the switch conditions were shown a prompt that 
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notified them that Morkels could be represented differently 
from the initial hint and were shown the other hint. 
Following the 19th trial, this hint was presented once more 
and subjects were reminded to use it to try to figure out 
what constitutes a Morkel. Subjects in the switch conditions 
were shown this hint for the remainder of the study (i.e., on 
rest breaks and following every 3rd error), whereas no-
switch subjects continued to see the hint they had seen at the 
beginning. The rest of the procedure was identical to that of 
Experiment 1. 

Results & Discussion 
Figure 4 shows average learning curves for subjects in each 
condition. A t-test showed that subjects in the unitary/no-
switch condition (M = .79, SE = .017) outperformed subjects 
in the compositional/no-switch condition (M = .716, SE = 
.017), t(76) = 2.23, p = .03, d = .50. This finding directly 
replicates the results from the classification condition in 
Experiment 1, which showed a unitary learning advantage. 

 

 
Figure 3. Average learning curves and standard errors 
across blocks of nine trials for each condition in Experiment 
2. 
 

In addition to this analysis, a series of planned 
comparisons were conducted to examine differences among 
groups from the point at which subjects were introduced to 
the other hint (trials 19-72). The first analysis showed that 
subjects in the compositional/switch condition (M = .82, SE 
= .017) outperformed subjects in the compositional/no-
switch condition (M = .743, SE = .017), t(76) = 2.26, p = 
.027, d = .51. Additionally, subjects in the unitary/switch 
condition (M = .802, SE = .018) marginally outperformed 
subjects in the compositional/no-switch condition, t(77) = 
1.77, p = .08, d = .45. However, no differences in 
performance were observed among any of the three groups 
that were presented a unitary hint at some point in the study. 
Thus, it seems that as long as a unitary hint is presented, 
regardless of whether it is the only hint that is shown or if it 
is presented before or after a compositional hint, subjects 
are able to benefit from it. Taken together, these findings 
support the conclusion from Experiment 1 and suggest that 
subjects indeed learn better when they rely on unitary 
representations. 

General Discussion 
We report two experiments that test how encouraging 
subjects to represent relational stimuli unitarily or 
compositionally affects concept learning. The findings from 
Experiment 1 showed that both types of hints can aid 
learning on a classification task, but only the unitary hint 
was a useful learning aid on the inference task. These 
findings provide support for the idea that subjects can 
indeed use both types of representations to understand and 
learn relational concepts, but that unitary representations are 
as or more effective than compositional ones. This latter 
conclusion challenges the emphasis on compositional 
representations at the core of most research on analogical 
reasoning.  

Experiment 2 used only a classification task and was able 
to replicate the findings from the classification condition in 
Experiment 1, as subjects who received only a unitary hint 
outperformed subjects who received only a compositional 
hint. Furthermore, the results from this study showed that 
subjects who received a unitary hint at any point in the 
study (with a compositional hint coming before, after, or not 
at all) outperformed subjects who did not receive a unitary 
hint at all. No differences in performance were found among 
subjects in the groups who received a unitary hint. These 
results lend more support to the dominance of unitary 
representations, in that subjects will abandon or ignore 
suggestions for compositional representations if they have 
discovered a unitary one. 

One surprising finding from Experiment 1 was that the 
unitary advantage was stronger for the inference task than 
for classification. The effect size for the inference task was 
actually quite dramatic (Cohen’s d of 1.29). We had 
predicted that, if anything, the interaction would go in the 
opposite direction, given that inference tasks encourage 
learning the relationships among a concept’s components 
(Markman & Ross, 2003; Yamauchi & Markman, 2000). 
One speculative possibility is that inference learning 
encourages a top-down approach, in that subjects must 
reason from the category label to the stimulus, whereas 
classification encourages a bottom-up approach of reasoning 
from the stimulus to the category label. Likewise, a unitary 
representation is top-down in that it embodies a global 
property of a stimulus that can be used to deduce its internal 
structure, whereas a compositional representation is bottom-
up in that the local structure is explicitly represented and the 
global property emerges only implicitly from the relational 
system. Under this view, there might be a congruency effect 
between the stimulus representation and the processes 
involved in carrying out the task. In particular, a unitary 
representation might be more congruent with an inference 
task, because it facilitates conceiving of a concept by a 
single attribute that can then be used to infer missing parts 
of a stimulus. 

These speculations aside, the main conclusion of the 
present studies is that, although relational concepts are 
defined by the interconnections among their component 
parts, subjects seem to learn these concepts better when they 
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can be represented unitarily, which might facilitate a global 
understanding that is easier to discover and use than an 
explicitly structured one. Furthermore, although 
compositional-based instruction can help subjects classify a 
given concept, it might not be optimal for inference-based 
reasoning. 

These findings seem particularly applicable to education 
and instruction, as they might provide insight into how 
different types of descriptions for a given relational concept 
can affect students’ representations, as well as how such 
representations affect learning. Indeed, students are often 
required to learn various types of structured concepts, and 
must often engage in both classification and inference. For 
instance, in mathematics, students must recognize various 
instantiations of a given problem type, a process that relies 
on classification, and must also make inferences about how 
to apply a given solution. These findings thus hold the 
potential to improve how relational concepts are taught in 
the classroom. 

Furthermore, the present findings have theoretical 
implications for relational concept learning and 
representation, and have the potential to affect current 
theories of analogical reasoning and learning. In particular, 
research within the theoretical framework of structure 
mapping (Doumas, Hummel, & Sandhofer, 2008; Hummel 
& Holyoak, 2003) has placed a heavy emphasis on 
alignment processes operating on compositional 
representations, but our findings suggest that subjects more 
naturally represent such concepts unitarily, and that such 
representations produce a greater and more robust benefit to 
learning. During comparison of two scenarios, if the critical 
information can be represented unitarily, then there is no 
need for structural alignment, because the two can be 
recognized through the same sort of processing that is 
possible with feature-based representations, that is, flat 
(setwise) comparison to identify which properties they have 
in common. To be clear, this proposal is not intended to 
argue against the idea that structural alignment of 
compositional representations plays a prominent role in the 
more impressive feats of human reasoning (e.g., creativity 
or scientific discovery), but rather to point out that in more 
mundane cases, simpler processes and representations may 
be involved. Nevertheless, further work is necessary to 
better understand which conditions facilitate unitary and 
compositional representations. 

Lastly, we note one potential shortcoming of the present 
studies. Although subjects were encouraged to represent the 
stimuli unitarily or compositionally, we cannot know for 
certain whether subjects adopted either of these 
representations. This issue has historically plagued 
researchers in this domain of study and highlights the need 
for improved assessment on concept representation. We 
welcome suggestions in helping us to address this challenge. 
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Abstract 

Conversation partners’ assumptions about each other’s 
knowledge (their partner models) on a subject are important 
in spoken interaction. However, little is known about what 
influences our partner models in spoken interactions with 
artificial partners. In our experiment we asked people to name 
15 British landmarks, and estimate their identifiability to a 
person as well as an automated conversational agent of either 
British or American origin. Our results show that people’s 
assumptions about what an artificial partner knows are related 
to their estimates of what other people are likely to know - 
but they generally estimate artificial partners to have more 
knowledge in the task than human partners. These findings 
shed light on the way in which people build partner models of 
artificial partners. Importantly, they suggest that people use 
assumptions about what other humans know as a heuristic 
when assessing an artificial partner’s knowledge.  

Keywords: knowledge estimation, human-computer interac-
tion, partner modelling, theory of mind, human-computer 
dialogue 

Introduction 
Psycholinguistic research on human-human dialogue (HHD) 
has shown that our language choices are affected by the 
assumptions we make about our partners as communicative 
and social beings (i.e. our partner models) (Branigan, 
Pickering, Pearson, McLean, & Brown, 2011): People tend 
to estimate their conversational partner’s knowledge and 
communicative abilities, and formulate their utterances 
accordingly. This complex set of judgements is simplified 
by using a range of heuristics such as accent and social cues 
(Clark, 1996; Nickerson, 1999) as well as our beliefs about 
the social distribution of knowledge, i.e., assumptions about 
what information is likely to be known to whom (e.g., 
students, residents of Dublin, opticians, birdwatchers) 
(Fussell & Krauss, 1992a).  

 
Such perspective taking is critical to successful 
communication and is not solely the preserve of HHD. 
People consistently perceive the flexibility and ability of 
automated artificial (computer) partners as far lower than 
those of a human dialogue partner, leading us to categorise 
them as ‘at risk’ listeners in dialogue (Oviatt, MacEachern, 
& Levow, 1998). Moreover, our initial expectations about 
artificial partner’s abilities affect our language choices in 
Human-Computer Dialogue (HCD) (Branigan et al., 2011; 
Edlund, Gustafson, Heldner, & Hjalmarsson, 2008). Yet we 
know little of how people come to have these expectations: 
What factors impact people’s preconceptions and 
expectations about what an artificial partner is likely to 
know, before they have even begun to interact with it? In 
other words, what determines people’s initial partner 
models for artificial partners? 
 
Understanding what governs and impacts our partner 
models when interacting with artificial partners, especially 
in speech-based interactions, has important theoretical and 
applied implications (e.g., in developing robust and 
effective speech-based interfaces). In this paper, we 
investigate whether our initial assumptions about what an 
artificial speech-based interaction partner knows are related 
to the sense we have of the social distribution of knowledge. 
We also look at how our initial beliefs about partner 
knowledge are influenced by (1) partner type (humans vs. 
artificial) as well as (2) the partner’s signalled nationality. 

Perspective-Taking in Dialogue 
Imagine that a stranger asks for directions to a local 
landmark. How do we ensure that the information we 
include and the language we use to communicate the 
message is appropriate for them? Research suggests that we 
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use verbal and non-verbal cues to assess our conversational 
partner’s characteristics, e.g. where they are from, their 
language proficiency, their age, profession etc., and use 
these cues to construct a partner model to guide our 
language choices (Nickerson, 1999).  
 
This initial global partner model (Brennan, Galati, & 
Kuhlen, 2010), which is consulted at the stage of initial 
interaction, is formed through relatively superficial cues 
(e.g., stereotypes and pre-conceived expectations and 
assumptions that are in place prior to the dialogue) and 
assumptions about the social distribution of knowledge 
(Fussell & Krauss, 1992a). These initial inferences act to 
give a speaker an initial model of common ground between 
interlocutors, i.e., a representation of mutual knowledge, 
assumptions and beliefs shared between the interlocutors in 
a conversation, crucial to successful and effective 
communication (Bromme, Rambow, & Nückles, 2001; 
Clark, 1996). Although our partner models may be 
subsequently updated by local experiences within the 
dialogue interaction (e.g. feedback about comprehension, 
via verbal and non-verbal cues) (Brennan et al., 2010), the 
global model acts as a guide for our initial interaction, 
especially before feedback has been gathered from within 
the dialogue (Fussell & Krauss, 1992a).  

 
Understanding how we develop and form these initial 
models is important, as research shows that they guide our 
language choices. We tend to adjust our language based on 
our assumptions about our addressees’ knowledge. For 
instance, when people are asked to describe items for their 
friends, they adapt their descriptions to their friend’s 
knowledge – and these adjustments lead to better 
communication, i.e., higher accuracy in identification 
(Fussell & Krauss, 1989). Crucially, studies also show that 
we are very accurate at assessing others’ knowledge and that 
these assessments guide how we construct our initial 
message in communication (Fussell & Krauss, 1991, 
1992a). 
 
Similar effects of partner models on language choice are 
thought to drive our dialogue interactions with artificial 
dialogue partners. People tend to see artificial partners as 
poorer interlocutors and alter their language choices and 
speech behaviours as a result (Branigan et al., 2011; Oviatt, 
Bernard, & Levow, 1998). For example, people are more 
likely to converge (or align) with their partner’s choice of 
referring expression when they believe their partner to be a 
computer rather than a human. In addition, they adjust their 
behaviour more in this way when they are led to believe that 
the artificial partner is a ‘basic’ interlocutor with restricted 
capability than a partner with more advanced capability 
(Branigan et al., 2011). Similarly, people’s linguistic 
choices in a telephone conversation concerning air-fares and 
timetables change depending on whether they believe their 
partner to be a human or a computer (Amalberti, Carbonell, 
& Falzon, 1993). Similar findings have been reported in 

other work (Bell & Gustafson, 1999; Kennedy, Wilkes, 
Elder, & Murray, 1988). Compared to HHD, users tend to 
use simpler grammatical structures, use more words in their 
descriptions, use fewer pronominal anaphors (e.g. her/him; 
he/she), and use simpler lexical choices (Amalberti et al., 
1993; Kennedy et al., 1988). Such research assumes that 
people’s perceptions and beliefs about their partner’s 
abilities affect their language choices in these contexts. Yet 
it is not clear what factors determine these beliefs in the first 
place, and thus what may be driving people’s global partner 
model during their initial interaction with an artificial 
partner. Our work aims to shed light on this question. 
 
Research on robotic agents has shown that the perceived 
nationality of the agent, and the content that it is being 
asked to process, both influence participants’ judgements 
about its abilities (Lee, Lau, Kiesler, & Chiu, 2005). 
Participants used these cues in a similar way to that which 
they are used in HHD: When they were asked to judge the 
likelihood that a robot ‘from New York’ or ‘from Hong 
Kong’ would know and recognize a set of New York and 
Hong Kong landmarks, they judged that the robot would be 
more likely to identify landmarks associated with its 
perceived nationality (Lee et al., 2005). In this context, 
accent can play an important role. It acts as a strong signal 
of identity and a speaker’s linguistic background (Ikeno & 
Hansen, 2007), and allows listeners to identify 
characteristics such as age, gender and geographic 
affiliation, as well as stimulating specific stereotypes (Ryan, 
Giles, & Sebastian, 1982).  

Research Aims and Hypotheses 
There is currently little understanding of what factors affect 
people’s assumptions about partner knowledge and abilities 
in HCD contexts. The limited existing research on people’s 
perceptions of artificial dialogue partners tends to focus on 
affective factors such as interface likeability rather than on 
assumptions about a computer’s knowledge and abilities. 
Other work in tangential fields such as HRI cannot be 
assumed to hold more widely as the embodiment of robots 
tend to facilitate the mapping of human abilities to a robot 
partner (Kiesler, 2005).   

 
We present a study using a similar method to previous work 
investigating how people initially estimate human partners’ 
knowledge (Fussell & Krauss, 1992a), in order to 
investigate how people estimate artificial partners’ 
knowledge. People are asked to name landmarks and judge 
the identifiability of those landmarks’ names to others.  We 
hypothesise that people will use the same heuristics to 
estimate partner knowledge for artificial partners as they use 
for human partners. That is, people will rate both human and 
artificial partners as more likely to know the name of those 
landmarks that are generally more accurately identified by 
other people (H1). This would be evidence that people have 
a sense of the spread of knowledge about a topic in the 
population (i.e., the social distribution of knowledge) with 
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this being related to their assessment of a partners’ likely 
knowledge, including artificial partners.  We also expect a 
strong positive correlation between judgements of humans’ 
and artificial partners’ knowledge (H2), giving support to 
the idea that our judgements of artificial agents are related 
to our judgements of humans in this context. Based on the 
intimated difference in partner models between humans and 
artificial partners in the literature we also hypothesise that 
there will be a statistically significant difference between 
people’s judgements of how likely a person versus an 
artificial agent is to know the name of the stimuli (H3). We 
also hypothesise that people will make different judgements 
about partner knowledge based on the relation between the 
system’s signalled nationality (UK or US) and the type of 
content being judged in the experiment (i.e., UK landmarks) 
(H4). 

METHOD 

Participants  
32 (16 F, 16 M) Native British English speakers with a 
mean age of 32.0 years (S.D.=12.1) from a UK university 
community took part in the study. The majority (N=26) of 
participants had previously spoken to an automated system. 
Those who had used such systems were asked to rate how 
frequently they used them on a 7 point Likert scale (Very 
Infrequently-Very Frequently). The mean rating suggests 
that their level of experience with these types of interfaces 
was low (M= 2.73, SD= 1.43). 

Items 
Fifteen UK landmarks were used as the stimuli in the study, 
selected based on the frequency of accurate naming in a pre-
study. This was to ensure that there was variation in the 
frequency of accurate naming across the items in the 
experiment.  

Conditions  
Partner Type All participants were asked to judge both an 
artificial partner’s (i.e. automated agent) and a human 
partner’s (within participants) likely knowledge of the 
landmark names. The order in which participants were 
asked to judge the artificial and the human partner was 
randomised. Participants judged all 15 landmarks in each 
condition. The display of the 15 landmarks in each partner 
condition was randomised to reduce potential order effects. 
 
Nationality Participants were asked to judge how likely 
either an American (N=14) or British (N=18) partner 
(between participants- randomly assigned) would be to 
know the landmarks. When in the human partner condition, 
participants were asked to rate how identifiable the 
landmarks’ names would be to either a British or American 
person (participants were told that ‘identifiable’ referred to 
the likelihood of knowing the landmark name). When in the 
artificial partner condition, participants were told that the 

researchers were developing a British-based (British 
nationality condition) or a US-based (US nationality 
condition) automated agent. They then listened to a sample 
audio clip taken from the system. Participants listened to a 
sample audio introduction from the agent (e.g. “Hello, my 
name is Laura. How can I help you?”), simulating the type 
of content that would guide people’s initial partner models 
in these types of interactions. To further emphasise the 
nationality, the introductory message from the service was 
played in either a British or a US accent. This procedure 
was used to make sure that participants who lacked previous 
experience with agents had a frame of reference for their 
ratings. 

Measures 
Participant’s ability to name landmarks To identify the 
spread of knowledge within the sample, all participants 
were initially asked to name the 15 landmarks used in the 
study. A 300x250 pixel image of each landmark was 
displayed along with a textbox. Participants were asked to 
name the item. They were informed that if they did not 
know the name of the item they could leave this box blank. 
The lead author then marked the names given by the 
participants as either accurate or inaccurate. 
 
Others’ knowledge of the landmark names Based on 
scales used in previous research on perception of others’ 
knowledge in HHD (Fussell & Krauss, 1992b) and human-
robot interaction (HRI) (Lee et al., 2005), participants were 
asked to judge how identifiable they felt the name of each 
landmark would be to others. This was measured using a 7-
point Likert scale from Not Identifiable (1) to Very 
Identifiable (7). 

Procedure 
Participants were recruited via email from a British 
university community. Upon responding to the email 
participants were sent a link to the online survey. 
Participants completed the demographic section of the 
survey. They were then asked to name the 15 landmarks, 
and subsequently asked to judge how identifiable the name 
of the landmarks would be to a human (either a British or 
US person), and then how identifiable the name of the 
landmark would be to a computer (either British or US 
accented automated agent).  Again, the order of these was 
randomised. They were then debriefed as to the purpose of 
the experiment. 

RESULTS 

Social Distribution of Knowledge 
Following previous work on knowledge estimation in HHD 
(Bromme et al., 2001; Fussell & Krauss, 1992b) we ran 
analysis on the item level data to test H1 and  2. Using the 
item level data means we can see whether landmarks that 
were more accurately named across the sample were rated 

1838



as more likely to be known to both human and artificial 
partners. This would give us a sense of how people’s 
assumptions of knowledge for each item relate to actual 
levels of knowledge in the group of participants for each 
item. This type of fine grained insight would not be possible 
using the participant level data as we would only have a 
measure of accuracy for each participant, giving us no sense 
of the spread of knowledge of each item in the sample as a 
whole.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Relationship between percentage accurate item 
naming and human partner identifiability rating 

There was a strong positive correlation between the 
percentage of accurate responses for an item and 
participants’ mean judgements of other people’s [r (13)= 
.85, p<.001] (Figure 1) as well as an artificial partner’s 
knowledge of its name [r (13)= .86, p<.001] (Figure 2). 
There was also a strong positive correlation between 
judgments of other people’s knowledge of the names and an 
artificial partner’s knowledge [r (13)= .78, p<.001] (Figure 
3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Relationship between percentage accurate naming 

and artificial partner identifiability rating 

These correlations support our hypotheses (H1 and 2). They 
suggest that people have relatively accurate awareness of 
the actual distribution of knowledge (with respect to which 

knowledge is more or less likely to be known) and that this 
has a strong relationship to their judgements of how likely 
the name is to be known to a person and an artificial partner.  

 
Figure 3: Relationship between human and artificial partner 

identifiability ratings 

Moreover, people’s assessment of how identifiable a 
landmark’s name is to an artificial partner seems related to 
how identifiable they believe it is to a human partner. This 
supports the idea that people’s initial model of an artificial 
partner’s knowledge is related to their initial model of other 
people’s knowledge, with both closely reflecting people’s 
actual rates of accuracy in naming each item. 

The Effect of Partner Type & Nationality 
To test H3 and H4, we analysed the data at the participant 
level using a 2x2 Mixed ANOVA looking at the effects of 
partner type (Human vs. Artificial -within participants) and 
nationality (US vs. British- between participants) on 
people’s knowledge estimation. We saw a statistically 
significant main effect of partner type on people’s 
knowledge estimations [F (1, 30)= 6.43, p=.016, η2

G= 
0.058]. People rated item names in general to be more 
identifiable to an artificial partner (M=4.60, S.D.=1.06) than 
to a human partner (M=4.19, S.D.=0.74), supporting our 
hypothesis but contradicting the direction intimated by 
previous HCD work. There was no statistically significant 
main effect of nationality [F (1, 30)= 0.31, p=.58, 
η2

G=0.007] or interaction effect between partner type and 
nationality [F(1, 30)=2.94, p=.097, η2

G=0.028]. Therefore a 
partner’s nationality did not affect people’s knowledge 
judgements of human or artificial partners in relation to the 
landmarks; H4 was therefore not supported. 

DISCUSSION 
We found that people have a strong sense of the social 
distribution of knowledge and this relates to people’s 
judgements about others’ knowledge, irrespective of the 
other being an artificial agent or a human. The number of 
times each item was named correctly correlated strongly and 
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positively with people’s estimations of both artificial and 
human partners’ knowledge of landmark names. We also 
found that people in general judged the names of the 
landmarks in the experiment to be more identifiable to a 
computer than a person. Surprisingly, partner nationality did 
not have statistically significant effects on knowledge 
estimation.  
 
Our research highlights that people are relatively accurate at 
estimating what other people are likely to know based on a 
sense of the general distribution of that knowledge, similar 
to previous research (Fussell & Krauss, 1992b; Lau, Chiu, 
& Hong, 2001). But importantly, these effects also apply to 
our estimates of artificial partners’ knowledge. The actual 
percentages of correct responses for each item correlated 
highly and positively with the knowledge estimates for both 
artificial and human partners. We therefore seem to use our 
estimates of what other people will know to inform our 
judgements of what an artificial partner will likely know. 
That is, people seem to use their perceptions of the social 
distribution of knowledge among humans to anchor their 
perceptions of an artificial partner’s knowledge.  
 
We also see that people judged an artificial partner as being 
more likely to know the name of the landmark in the study 
than a human partner. It is important to note that our finding 
may reflect users’ assumptions about one specific 
dimension of an artificial partner’s abilities (i.e., their 
knowledge of proper names) rather than their 
communicative capabilities or knowledge as a whole. 
Participants were asked to judge how identifiable the name 
of a landmark (e.g., Stonehenge) would be. Proper names 
pick out unique entities in the world. As such, they do not 
require any complex inferencing, knowledge of ontologies, 
conceptual relations between categories. They can (usually) 
be captured by a simple association between the name and a 
unique object, the kind of data that are prototypically 
perceived as easy for computer systems to store, index, and 
retrieve. This may explain why a computer was judged more 
likely than a human to know the name of the landmarks that 
we used. Other types of knowledge that involve more 
complex conceptual relationships, or operations over 
elements might not show the same pattern. Note however 
that people did not attribute complete omniscience to the 
artificial partner; their judgements about its knowledge were 
strongly related to the social distribution of knowledge. 
 
There is also likely to be a distinction between what we 
perceive artificial partners to know and what we believe 
they can do with this knowledge in dialogue, or even 
whether these names will be recognised effectively in the 
first place. For instance people may assume that artificial 
partners know the proper names of landmarks but may not 
be sufficiently confident that these names will be recognised 
during speech recognition. Although vast improvements on 
error rates have been made in speech technology research, 
there may still be a perception within people’s partner 

models that recognition is poor and inflexible. Hence rather 
than artificial partners being seen as ‘at risk’ dialogue 
actors, people’s partner models are likely more nuanced and 
multi-dimensional, presumably encompassing assumptions 
about both underlying knowledge and processing abilities. 
 
To be clear, this study focused on how people establish 
estimates of knowledge in their initial global partner 
models, in the absence of dialogue interaction with the 
system. Our findings are particularly relevant to how people 
form a priori partner knowledge assumptions in a dialogue 
context. Yet when in dialogue, our perspective taking is 
likely to be informed by both the global models we create of 
our partner (e.g. assumptions of their knowledge and 
abilities formed by stereotypes and expectations before 
interaction) and local experiences within the dialogue (e.g. 
feedback of comprehension via verbal and non verbal cues) 
(Brennan et al., 2010). Indeed these factors are likely to 
interact in dialogue interactions. Work on HHD interaction 
has shown that behaviours within a dialogue that do not 
match our expected partner models impact our speech 
(Kuhlen & Brennan, 2010). Research suggests that these 
models should be considered as being dynamic and 
adaptable over time (Fussell & Krauss, 1991; Nickerson, 
1999). Investigating the dynamism of partner models across 
the course of an interaction is a critical issue for future 
research in HCD as it has been in HHD.  
 
In addition, although partner models are assumed to be 
important in influencing people’s language choices and 
linguistic processing in HCD (Edlund et al., 2008), more 
research is needed to fully explore the role that they play. 
This question has received considerable attention in research 
on HHD, with particular reference to the extent to which our 
partner models impact processing: Is their influence 
immediate and pervasive, or delayed and restricted? (see 
Brennan et al., (2010) for summary of the main theoretical 
positions). Within HCD research, partner models have been 
invoked to explain the differences in language use between 
HHD and HCD (Branigan et al., 2011; Edlund et al., 2008), 
but recent research has shown that this may not be true in all 
contexts (Cowan & Branigan, 2015; Cowan, Branigan, 
Bugis, Obregon, & Beale, 2015). Clearly, partner models 
affect language choice and processing in both HHD and 
HCD – but it is not yet clear whether they do so in the same 
ways and to the same extent.  An interesting possibility for 
future research is that partner models may play a more 
pervasive and far-reaching role in HCD than in HHD.  

Implications & Conclusions 
Our research set out to investigate the factors that affect 

people’s expectations about what an artificial partner is 
likely to know, before they have begun to interact with it. 
Our findings suggest that we come to interactions with an 
existing presumption of what an artificial partner is likely to 
know that is based on assumptions of how knowledge is 
socially distributed. Moreover we found that under some 
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circumstances they may have the preconception that an 
artificial partner knows more than a human partner.  These 
results suggest that models of human-human 
communication are applicable in important ways to 
communication with artificial agents. They also have 
important applied implications for HCD, by casting light on 
factors that can lead users towards or away from an 
appropriate mental model of a partner’s abilities and 
intentions, with implications for successful communication 
(Kiesler, 2005). When designing artificial systems, 
developers should be aware that people bring with them 
assumptions about the social distribution of knowledge, 
which could significantly affect their interaction. 
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Abstract 

Influential theories in social psychology, philosophy, and 
linguistics assume that ordinary people judge many mental 
states as outside voluntary control, yet few studies have directly 
investigated these claims. We report four studies suggesting 
that, contrary to several prominent models, ordinary people 
attribute at least moderate intentional control to others over a 
wide variety of mental states. Furthermore, it appears that 
perceived control may vary systematically according to mental 
state type (e.g. emotions vs. desires vs. beliefs). These results 
point to several important directions for future research in 
behavior explanation and moral judgment. 

Keywords: mental states; control; intentionality; agency 

Introduction 
Mental states are not just used to explain and predict others’ 
observable behavior, they are also often treated much like 
behaviors themselves in that we talk about them, care about 
them, and try to influence them (Frankfurt, 2004). For 
instance, when we learn that someone doesn’t like us or 
respect us, it hurts and we feel angry (Leary, Springer, Negel, 
Ansell, & Evans, 1998). When we dislike certain attitudes, 
either our own or someone else’s, we try to change them 
(DeMarree, Wheeler, Briñol, & Petty, 2014). And when 
we’re exposed to someone’s highly immoral emotions, 
desires, and thoughts, we form negative impressions of that 
person and try to avoid them (Ames & Johar, 2009; Gromet, 
Goodwin, & Goodman, 2016; Cohen & Rozin, 2001). 

Despite the importance of mental state evaluation and 
regulation in social life, very little research has studied how 
ordinary people think about others’ agency over their own 
minds. This omission is particularly striking in light of years 
of research demonstrating that perceptions of behavioral 
control predict judgments of blame and responsibility, 
feelings of anger or pity, and helping or punishing behavior 
(see, Alicke, 2000; Malle, Guglielmo, & Monroe, 2014; 
Weiner, 1995 for reviews).  

One possible reason for this omission is a long-held 
assumption, based on early work in linguistics, that mental 
states are perceived as involuntary. In one of the first 
investigations on this topic, Katz and Postal (1964) argued, 
based on the observation that mental state verbs seem to be 
ungrammatical in the imperative form (e.g. compare “Want 
this pear!” and “Pick up this pear!”), that “being in such 
psychological states as belief, understanding, wanting and 
hoping is not subject to a person’s will” (p. 77; see also Miller 
& Johnson-Laird, 1978). Despite other work arguing that 
many mental states can be used in the imperative form (e.g. 
Huddleston, 1970), many linguists continued to assume that 

mental states are involuntary (e.g., Brown & Fish, 1983; 
Corrigan, 1988).  

This work also influenced social psychology. For instance, 
Gilovich and Regan (1986) assumed that, unlike actions, 
mental states “do not necessarily involve any choice on the 
part of the person from among alternatives; they just happen” 
(p. 349). Similarly, Malle and Knobe (1997a) took as given 
that “prototypical actions… are both intentional and 
observable, whereas prototypical experiences (e.g. ‘Ben is 
excited’) are both unintentional and unobservable” (p. 289; 
emphasis added). These claims about ordinary attributions of 
intentionality and voluntariness play an important role in 
psychological models of behavior explanation. For instance, 
Malle & Knobe (1997a) argued that people will be less 
motivated to try and explain others’ mental states because 
they are unintentional. Gilovich & Regan (1986) argued that, 
because mental states are involuntary and uncontrollable, 
people offer more dispositional (as opposed to situational) 
explanations for them (see also Lock & Pennington, 1982). 
Finally, Malle (2004)’s model of behavior explanation posits 
that people provide mechanistic cause explanations (as 
opposed to reason explanations) for emotions, desires, 
beliefs, and other mental states, on the premise that ordinary 
people judge these as unintentional. 

Scholars in philosophy and anthropology also frequently 
make assumptions about ordinary people’s judgments of 
mental state voluntarism, but they often differentiate between 
mental states types. In his ‘folk model of mind’, D’Andrade 
(1987) claimed, similarly to Katz and Postal (1964), that 
people view desires as entirely involuntary and 
uncontrollable. However, D’Andrade (1987) also claimed 
that people view emotions as somewhat controllable and 
beliefs as highly controllable. A similar pattern emerges in 
philosophical theories. For instance, the idea that ordinary 
people judge beliefs as voluntary is echoed in Alston (1988), 
who invoked this point to explain why people blame each 
other for unjustified beliefs, while the idea that people view 
desires and other attitudes as involuntary is common in moral 
philosophy (see, e.g. Adams, 1985; Smith, 2008). 

Despite the ubiquity of claims about the perceived 
controllability of mental states, only a handful of studies have 
been conducted which directly ask people about how they 
perceive them, and the evidence from these studies conflicts. 
In one study, Malle and Knobe (1997b) asked participants to 
rate the intentionality of 20 behaviors, three of which were 
mental states (e.g. “Anne was in a great mood”). Each of 
those mental states was rated low in intentionality (e.g. M = 
2.54 on a 1-7 scale). In contrast, Schlesinger (1992) asked 
people to rate how much control (Studies 1-4, 6) or 
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intentionality (Study 5) the experiencer of a mental state had 
over that state and found that people attributed a moderately 
high degree of control and intentionality (e.g. M = 4.58 on a 
1-7 scale, Study 6). However, Schlesinger (1992) relied on 
scenarios that were interpersonal and highly abstract (e.g. “A 
fears B”), making it unclear whether the results reflect 
prototypical attributional processes.  

In light of this, we sought to test how much control and 
intentionality people typically attribute to others over their 
mental states. We improved over prior studies by testing a 
wide range of mental states and, following the possibility 
raised by D’Andrade (1987) and others, testing for 
differences between mental state categories. In the studies 
below, we also include observable behaviors including 
intentional acts (e.g. talk, avoid), accidents (e.g. slip, fall), 
and uncontrollable behaviors (e.g. sneeze, shiver), as foils. 
These foils acted as benchmarks, allowing us to test how 
judgments of mental states compared with judgments of 
prototypical controllable and uncontrollable behaviors, while 
also ensuring that participants used the control measure 
concepts in a predictable way.  

Study 1 
The purpose of Study 1 was to measure prototypical 
judgments of control for a variety of mental states, and to 
compare these judgments with those for clearly intentional, 
unintentional, and uncontrollable behaviors. To obtain 
ecologically valid materials, we solicited vignettes from one 
sample of our population (University of Pennsylvania 
undergraduates), selected frequent examples, and then used 
them in a rating task for a separate sample from the same 
population. 

Methods 
Stimulus generation and selection. We solicited stimuli for 
43 items in total. These items consisted of 28 mental states, 
including four beliefs (believe that, conclude that, feel that, 
think that), four desires (crave, desire, hope, want), four 
emotions (anger, anxiety, embarrassment, happiness), four 
intentions (goal, intend, plan, resolve), four deliberations 
(consider, deliberate, speculate, think about), four 
evaluations (value, love, hate, appreciate), two imaginations 
(imagine, visualize), and two memory events (forget, 
remember). In addition to these 28 mental states, we included 
five intentional acts (play with, eat, say, search for, avoid), 
five accidents (fall off of, trip over, slip on, run into, drop), 
and five uncontrollable behaviors (sneeze, yawn, sweat, 
shiver, faint) as our foils. 

80 University of Pennsylvania students participated (57 
female) in a sentence completion task for course credit. 
Participants were provided with sentence fragments 
containing an ambiguous subject and a mental (or behavioral) 
verb, but no object (e.g. "He believed that…", "She 
wanted…", "He intended to…"). They were instructed to 
complete each sentence fragment in a way that made sense 
given the words provided and to avoid humor. The mental 
states were split across five lists and combined with 

observable behaviors and 12-13 filler trials. Participants were 
randomly assigned to one of these lists, yielding 13-17 
contents per item. 

As expected, many of the topics participants wrote about 
were relevant to their lives as undergraduate students, 
including concerns about school (e.g. "She felt anxious about 
her upcoming exam", "He planned to do better on the next 
test"), romantic relationships (e.g. "She felt angry with her 
boyfriend", "She thought that she wasn’t good enough for 
him"), and food (e.g. "He craved chocolate", "She thought 
about the lunch she would be having soon"). Similar 
responses appeared across item categories. 

We selected five completions for each of the 28 mental 
states and 15 behavior foils, yielding 215 scenarios total, 
based on the frequency of similar completions. For items that 
produced few or no duplicate responses, we selected 
responses so as to maximize the diversity of content.  

 
Main rating task. 143 University of Pennsylvania students 
(94 female) were recruited for an experiment about 
“understanding others’ behavior” and completed the task for 
course credit.  

The 215 scenarios were distributed across five lists. Each 
list contained one scenario from each of the 28 mental states 
and 15 behaviors yielding 43 trials total. Scenarios were 
presented on separate pages in a random order. For each trial 
participants responded to eight questions which, to avoid 
possible order effects, were presented in a new random order 
for each trial.  

Four questions assessed how much agency participants 
attributed to the agent for the ascribed mental state. Two of 
these questions assessed general control: (1) How much 
control the agent had over that behavior; and (2) Whether, if 
desired, the agent could have done otherwise. The other two 
probed intentionality: (3) Whether the agent acted 
intentionally; and (4) Whether the agent chose to 
act/think/feel (etc.) that way.  

Two questions probed participants’ evaluations of the 
mental state, including (5) How good or bad the agent’s 
behavior was; and (6) Whether the agent should have 
behaved in the manner described. Two final questions probed 
judgments of agent themselves: (7) How responsible the 
agent was for the behavior or mental state; and (8) How 
revealing it was of the agent. All questions used a 7-point 
rating scale. 

To minimize ambiguity, all questions contained explicit 
reference to the mental or physical content (e.g., "How much 
control did she have over believing that she did well on the 
exam?”). At the end of the experiment, participants reported 
demographic variables including age, sex, political 
orientation, religiosity, and religious affiliation.  

Results 
We combined our two control (1-2, rs = 0.74 – 0.81), and two 
intentionality (3-4, rs = 0.83 – 0.89) measures into single 
measures of control and intentionality (Table 1 shows means 
and standard deviations for each behavior and mental state 
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category). To test degrees of agency, we ran a series of 
mixed-effect linear models comparing mental state categories 
to uncontrolled, accidental, or intentional behaviors, on by-
subject means for each category.  

Participants used the control concepts expected: accidents 
were seen as more controlled (b = 0.78, SE = 0.11, t = 7.26, 
p < 0.001) but not more intentional (b = -0.15, SE = 0.11, t 
= -1.39, p = 0. 165) than uncontrollable behaviors. With two 
exceptions, mental states were seen as more controlled and 
intentional than the uncontrollable and unintentional 
behaviors (ps < 0.001). Only intentions were not see as less 
controlled (p = 0.338) or intentional (p = 0.832) than 
intentional action foils (see Figure 1).  

We also conducted a set of exploratory analyses to test 
whether any mental state categories were significantly 
different from one another. We conducted a regression 
comparing each mental state category to its adjacent category 
based on the overall control and intentionality means. Results 
showed that, on average, most mental state category ratings 
were different from their adjacent category: emotions were 
less intentional than desires (b = 0.79, SE = 0.08, t = 10.07, p 

< 0.001), desires were less intentional than beliefs (b = 0.39, 
SE = 0.08, t = 4.92, p < 0.001). Beliefs and evaluations were 
not significantly different from each other (b = 0.11, SE = 
0.08, t = 1.42, p = 0.157), however evaluations were different 
from deliberations (b = 0.44, SE = 0.08, t = 5.58, p < 0.001). 
This pattern was replicated in participants’ control ratings. 

Finally, we examined item-level means for each of the 28 
mental state concepts and found that judgments of control and 
intentionality were highly correlated with one another (r(26) 
= 0.95), and with judgments of responsibility (r(26) = 0.98 
and r(26) = 0.92, respectively). 

Discussion 
Results from this study provide evidence that, contrary to the 
theories cited above, many ordinary mental states are 
perceived to be moderately controllable and intentional. It 
also suggests that perceived agency might differ as a function 
of the type of mental state: emotions were judged as less 
voluntary than desires, beliefs, and other states.  

However, this study has several notable shortcomings. 
First, the mental state scenarios were presented without the 
immediate context in which they occurred. It is possible that 
when possible proximate or situational causes for mental 
states are made salient, perceived control and choice is 
diminished. Second, the nature of our design was such that 
the content of the mental states was not held constant across 
mental state type: desires tended to be “about” different 
things than beliefs, evaluations, and so on. It is therefore 
possible that differences in control were due to what the 
mental states were about. Study 2 was designed to address 
these limitations.  

Study 2 
Study 2 used a set of experimenter-generated stimuli to 
investigate judgments of three different measures of 

Table 1: Means (and SD) for agency responses in Study 1 
 

Behavior  Control Intentionality Responsibility 
Uncontrolled Act   2.51 (1.53) 2.13 (1.40) 2.66 (1.70) 
Accident  3.30 (1.51) 2.29 (1.41) 3.72 (1.73) 
Emotion  3.71 (1.51) 3.32 (1.58) 3.89 (1.68) 
Memory  3.53 (1.52) 2.94 (1.52) 4.13 (1.67) 
Desire  4.03 (1.63) 4.11 (1.71) 4.28 (1.70) 
Evaluation  4.59 (1.63) 4.62 (1.64) 4.70 (1.65) 
Belief  4.54 (1.56) 4.50 (1.61) 4.70 (1.60) 
Deliberation  4.99 (1.43) 5.04 (1.39) 5.07 (1.43) 
Imagination  5.05 (1.35) 5.16 (1.37) 5.03 (1.41) 
Intention  5.88 (1.22) 5.97 (1.15) 5.89 (1.19) 
Intentional Act  5.98 (1.18) 5.99 (1.13) 5.86 (1.28) 

Figure 1: Mean ratings (and standard errors) for each of the 43 item categories (black) with mean rating for each of the five 
scenarios (color) from Study 1. Each shape represents the mean one of the five scenarios. 
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voluntariness with more detailed and comparable vignettes. 
Because control measures were divided between subjects, 
Study 2 comprised three separate experiments: Study 2a 
investigated judgments of intentional choice, Study 2b 
investigated general control, and Study 2c investigated the 
ability to choose to stop thinking, feeling, or wanting 
something once it has started.  

We predicted that, despite the additional constraints 
imposed in this experiment (see below), participants would 
still view mental states as moderately voluntary – more 
controllable than passive behaviors such as coughing or 
sweating – but not as fully controllable as intentional actions 
and, second, that there would be a step-wise increase in 
perceived control between emotions, desires, beliefs, and 
thoughts. 

Methods 
Participants. A total of 442 participants were recruited from 
Amazon’s Mechanical Turk to participate in Study 2. 146 
individuals (65 female, 81 male; mean age = 35) participated 
in Study 2a (“Choice”), 149 (66 Female, 78 Male, 5 
unreported; mean age = 34) participated in 2b (“Control”), 
and the remaining 147 (60 Female, 85 Male, 2 unreported; 
mean age = 35) participated in 2c (“Choose to stop”). No 
participants were excluded.  
 
Stimuli. To generate contexts, we constructed 30 scenarios 
describing someone in an ordinary or believable situation 
(such as repairing a bike, photographing a wedding, walking 
down the street, and so on). Unlike Study 1, each scenario 
provided a great deal of context about the person and 
situation leading up to the mental state or behavior. Our 
primary manipulation was the last element of each scenario, 
which was either (1) an observable uncontrollable reaction, 
(2) an emotion, (3) a desire, (4) a belief, (5) thinking or 
ruminating on some idea, or (6) an observable intentional 
action. Below is one of the 30 scenarios with each of the six 
conditions: 

Katy is nearing the end of her third year in college. She's 
studying chemistry and biology in order to eventually apply 
to medical school. Any low grade will hurt her chances at 
getting into the top medical schools. Today, however, she 
struggled through the final exam in her chemistry class. 
She did not complete it in time and had to guess on the 
entire last page of questions.  
Walking out of the exam, Katy…  

1. begins shivering in the cold. (uncontrollable reaction) 
2. feels angry at her professor. (emotion) 
3. wants to leave her professor a poor course evaluation. 

(desire) 
4. believes that her professor deserves a poor course 

evaluation. (belief) 
5. thinks about leaving her professor a poor course 

evaluation. (thinking) 
6. fills out a negative course evaluation on her phone. 

(intentional act) 

As this example illustrates, the context prior to the 
manipulation was held constant, and the attitudinal content of 
each mental state (and the intentional behavior) was also held 
as constant as possible (e.g., in the item above, a negative and 
retaliatory attitude towards the professor is conveyed in each 
case). There was, of course, no such content for the 
uncontrollable foils (shivering, sneezing, coughing, etc.). We 
varied the kind of emotion experienced by the agent in the 
scenario: across the 30 sets, the emotion condition featured 
the agent feeling either angry, sad, afraid, excited, or pleased. 
Given 30 scenarios, each of which split into six behavior 
conditions, there were 180 items in the whole experiment. 

 
Design. The items were distributed across six lists (of 30 
items each) using a Latin-square design. Each list had one 
item category from each of the 30 scenarios, yielding a total 
of five trials within each list for each item category. We 
balanced the distribution of emotion trials so that each of the 
five different emotions appeared in each list. 

 
Dependent measures. In Study 2a, the main dependent 
variable was whether the agent chose the particular mental 
state he/she had at the end of the story. Participants indicated 
their answer on a rating scale ranging from 1 (definitely did 
not choose) to 7 (definitely did choose). As in Study 1, the 
full content of each item was included in each question and 
was italicized (e.g. “Did Katy choose to feel angry at her 
professor?”).  

Study 2b measured perceptions of how much control the 
agent had over whether he/she had the particular mental 
state (or over the behavior). For instance, in the Katy vignette 
above, participants were asked “How much control did Katy 
have over whether she felt angry at her professor?” on a scale 
from 1 (no control at all) to 7 (complete control).  

Finally, 2c, measured perceptions of the degree to which 
the agent could stop the particular mental state (or behavior) 
once it had started. In the Katy vignette above, participants 
were asked “Can Katy choose to stop feeling angry at her 
professor?” on a scale from 1 (definitely can not choose) to 7 
(definitely can choose). 
 
Procedure. At the beginning of the experiment participants 
were randomly assigned to one of the six stimulus lists. 
Participants were provided brief instructions that they would 
read 30 stories about different characters and answer a 
question about a behavior that the character performed. Each 
trial was presented on a separate page in a new random order 
for each participant. At the end of the study, participants 
filled out a brief demographics questionnaire. No other data 
was collected. 

Results 
All analyses were performed by running a linear mixed-effect 
model (LMEM) regressing ratings on the within-subject, 
within-scenario behavior manipulation. We included random 
intercepts for participant and scenario ratings, as well as 
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random slopes for by-subject and by-scenario variation in the 
effect of condition. For each control measure, Intentionality, 
Control, and Stopping, we ran three sets of analyses. One 
analysis compared the means of the four mental state 
categories to the uncontrollable behavior foil (dummy coded 
as the reference level); one analysis compared the means of 
the four mental state categories to the intentional act behavior 
foil; and finally one analysis compared mental state 
categories to each other following our hypothesized step-
wise increase in control through emotions, desires, beliefs, 
and thinking. See Figure 2 for condition means and standard 
error across control measures. 
 
2a: Choice. Replicating results from Study 1, emotions (M = 
3.95, SD = 2.08), desires (M = 5.48, SD = 2.08), beliefs (M 
= 5.43, SD = 1.73), and thinking (M = 5.29, SD = 1.77) were 
all judged significantly more intentional than uncontrollable 
reactions (M = 1.67, SD = 1.37; ps < 0.001). These states 
were also all judged significantly less chosen than intentional 
acts (M = 6.45, SD = 1.13; ps < 0.001). Also replicating Study 
1, emotions were rated as less chosen than desires (b = 1.534, 
SE = 0.08, t = 19.243, p < 0.001) but, contrary to 
expectations, there were no differences between desires and 
beliefs or beliefs and thinking (ps > 0.07). 
 
2b: Control. Emotions (M = 4.26, SD = 1.44), desires (M = 
4.96, SD = 1.85), beliefs (M = 5.09, SD = 1.72), and thinking 
(M = 5.00, SD = 1.81) were all judged significantly more 
controllable than uncontrollable reactions (M = 2.09, SD = 
1.44; ps < 0.001) and significantly less controllable than 
intentional acts (M = 6.32, SD = 1.23; ps < 0.001). Similar to 
Study 2a, we observed a significant difference between 
emotions and desires (b = 0.692, SE = 0.076, t = 9.125, p < 
0.001), but not between desires, beliefs, or thinking (ps > 
0.07). 
 
2c: Choosing to Stop. Again, Emotions (M = 4.44, SD = 
1.99), desires (M = 4.74, SD = 1.98), beliefs (M = 4.77, SD = 
1.93), and thinking (M = 5.08, SD = 1.84) were all judged 
significantly easier to stop than uncontrollable reactions (M 

= 2.03, SD = 1.58; ps < 0.001) and significantly harder to stop 
than intentional acts (M = 6.08, SD = 1.54; ps < 0.001). 
Participants judged emotions as more difficult to stop than 
desires (b = 0.306, SE = 0.084, t = 3.662, p < 0.001), and 
beliefs more difficult to stop than thinking (b = 0.305, SE = 
0.084, t = 3.638, p < 0.001) but did not distinguish between 
beliefs and desires (b = 0.03, SE = 0.084, t = 0.359, p = 0.72). 

Discussion 
Study 2 replicated the main findings from Study 1: people 
attribute moderate to high agency to others over their 
emotions, desires, beliefs, and deliberative thoughts, whether 
that agency is conceptualized as “choice”, general “control”, 
or an ability to “choose to stop”. This finding replicated in 
spite of more explicit portrayals of relevant situational 
constraints. We also replicated the finding that this control is 
not perceived as complete: individuals were granted less 
agency over all mental states (even traditionally “active” 
processes such as thinking) compared to observable 
intentional acts.  

We also found that emotions were perceived as less 
voluntary than desires. Unexpectedly, once holding mental 
state content constant, the other differences in perceived 
agency, namely, those between desires and beliefs, and 
between beliefs and thinking, did not replicate except in the 
“choose to stop” condition. This may reflect the improved 
design in this study (i.e., the fact that background context and 
focal content were held constant), but suggests that some 
variation in general control may come from the kinds of 
content different mental states are usually about.   

General Discussion 
Our results pose a challenge to a common assumption in 
linguistics, anthropology, and social psychology, namely that 
people view others’ mental states as largely uncontrollable. 
Contrary to this assumption, we report that people judge 
many mental states to be quite controllable: they clearly do 
not perceive mental states as just happening (cf. Gilovich & 
Regan, 1986), completely outside voluntary control (cf. Katz 

A B C

Figure 2: Mean (and SE) ratings for (A) Choice, (B) Control, and (C) Choose to stop measures of agency across behavior 
conditions in Study 2 
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& Postal, 1964), nor as uniformly unintentional (cf. Malle & 
Knobe, 1997a).  

In line with models like those proposed by D’Andrade 
(1987), our results also suggest that people attribute different 
degrees of voluntary control to different mental state 
categories (even holding context and content constant). 
However, as D’Andrade (1987) never empirically tested his 
model, his specific predictions were wrong: for instance, we 
found that people viewed desires as moderately controllable, 
more controllable, on average, than emotions, whereas 
D’Andrade (1987) posited that desires were uncontrollable 
(while emotions were partially controllable). Future work 
should investigate the sources of variation in control both 
between (e.g. why beliefs easier are to control than 
emotions), and within mental state categories (e.g., why 
particular beliefs differ in their perceived controllability).  

Finally, a great deal of work has shown that people are held 
accountable for their moral wrongs (e.g. Alicke, 2000; Malle 
et al, 2014). To date, however, notwithstanding some related 
work inferring poor character from knowledge of noxious 
mental states (see, e.g. Ames & Johar, 2009; Gromet et al., 
2016), no one has investigated the possibility that people hold 
each other accountable (i.e., blameworthy) for their immoral 
beliefs, desires, or emotions. Given that people apparently do 
attribute agency to others over everyday mental states, and 
control predicted judgments of responsibility in Study 1, 
future work should investigate whether these results replicate 
for immoral mental states, and whether perceived agency 
predicts blame, anger, and punishment. 

To conclude: assumptions about the perceived agency of 
mental states are common, yet direct empirical investigations 
are rare. Across several studies, we found that these 
assumptions fail to track ordinary judgments of the 
controllability of mental states. Accordingly, our results may 
have important implications for a range of debates in social 
and cognitive psychology, and open up new questions about 
the sources of variation in perceptions of mental control.  
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Abstract 

Theories about the role of emotions in moral cognition make 
different predictions about the relative speed of moral and 
affective judgments: those that argue that felt emotions are 
causal inputs to moral judgments predict that recognition of 
affective states should precede moral judgments; theories 
that posit emotional states as the output of moral judgment 
predict the opposite. Across four studies, using a speeded 
reaction time task, we found that self-reports of felt emotion 
were delayed relative to reports of event-directed moral 
judgments (e.g. badness) and were no faster than person-
directed moral judgments (e.g. blame). These results pose a 
challenge to prominent theories arguing that moral 
judgments are made on the basis of reflecting on affective 
states. 

Keywords: affect, emotion, moral judgment, reaction time 

Introduction 
There is broad agreement that affective phenomena play an 
important role in moral cognition; there is widespread 
disagreement, however, over the particular role that affect 
plays. Many theories suggest that emotion acts as an input 
to moral judgment:  that affective states help distinguish 
moral from non-moral events (Nichols, 2002), indicate the 
severity of the transgression (Haidt, 2001), or bias 
downstream cognitive processes (Alicke, 2000). In contrast 
to these “emotion-as-input” (em-in) models, “emotion-as-
output” (em-out) models argue that, very often, 
considerations of rules, norms, risk or caused harm, and 
causal and mental information, guide moral judgments 
without any necessary causal precedence of affect (Huebner, 
Dwyer, & Hauser, 2009; Mikhail, 2011). According to these 
models, emotions are typically connected to moral 
judgments because as they motivate and scale our social 
responses. 

The focus of our paper is on a prominent subset of the em-
in theories, which claim that emotions precede and influence 
moral judgment through felt affect. For example, Schnall 
Haidt, Clore, and Jordan (2008) claim, “When making 
evaluative judgments, people attend to their own feelings, as 
if asking themselves: How do I feel about it?” (p. 1097, 
emphasis added). Similarly, Miller et al (2012) argue that 
“the likelihood of judging an action wrong is determined… 
by how upsetting you consider the action itself to be” (p 

574). That is, moral judgments of some event are formed by 
recognizing and reporting one’s emotional response to that 
event. This is why, according to these theories, the 
experience of negative affect on its own (i.e. absent 
appraisals of harm or risk) can yield negative moral 
evaluations (e.g. Haidt, 2001). The primary source of 
evidence for this comes from affect misattribution 
experiments in which inducing feelings of disgust (unrelated 
to the stimulus) both amplified the perceived wrongness of 
target behaviors (Schnall, et al., 2008; Cheng, Ottati, & 
Price, 2013) and appeared to cause ordinarily permissible 
behaviors to be judged as wrong (Wheatley & Haidt, 2005).  

Though initially promising, many of the findings in favor 
of the em-in model of moral judgment have been called into 
question. First, it appears as though many moral judgments 
can be made absent any affective experience (Niedenthal, 
Rohmann, & Dalle, 2003) and, conversely, many strong 
emotional reactions occur without any corresponding moral 
judgment (Royzman, Goodwin, & Leeman, 2011). 
Additionally, the primary source of evidence for the causal 
role of felt affect has been called into question: a recent 
meta-analysis reports that, across dozens of experiments, 
there is not reliable effect of incidental disgust on moral 
judgment (Landy & Goodwin, 2015).  

However, even though these findings are consistent with 
em-out models, a major challenge in assessing any of the 
theories regarding the role of emotion in moral judgment is 
the dearth of experimental paradigms that get at the heart of 
the causal primacy question—whether the routine causal 
sequence is, according to one set of theories, event → 
emotion → moral judgment or, according to the other set of 
theories, event → moral judgment → emotion.  What is 
needed are independent and time-locked measurements of 
the relevant moral and affective processes as they emerge in 
response to a range of different moral violations.  

Because causality implies temporal precedence, we 
reasoned that if attended emotions cause moral evaluations, 
then participants ought to experience (and be able to report) 
certain emotions (such as feeling angry or upset) before 
being able to judge the moral status of that behavior. In 
contrast, if moral judgments guide affect or emotions based 
on perceived norm violations, causal and mental 
information, and so on, then felt emotions should follow 
moral judgments.  

1848



Experimental Paradigm 
To examine questions of causal primary, we conducted a 
series of reaction time experiments to test the relative speed 
of moral, non-moral, and affective reactions to value-laden 
events. We relied on a variant of the simultaneous inference 
paradigm (SIP, Smith & Miller, 1983; Malle & Holbrook, 
2012) to measure the speed at which people make different 
judgments in response to short descriptions of moral 
transgressions. In the SIP, participants learn to associate a 
question with a short cue (or, hereafter, “probe”) which is 
then used to elicit responses in a speeded-judgment task. 
These probes minimize the latency between the presented 
question and the participant’s comprehension, as well as 
differences in the length and complexity of full questions.  

Prior research using the SIP trained participants on 
dichotomous Yes-No judgments (e.g. “Did the behavior 
reveal a certain goal the actor has?”), which required 
modification for two reasons: First, many moral and 
affective reactions are graded: stabbing someone is worse 
than keying their car, which is worse than stealing their 
pencil. A simple Yes-No judgment does not indicate that 
someone is sensitive to these differences. Second, and 
relatedly, a prediction of em-in models is that the extremity 
of the affective reaction predicts the perceived severity of 
the transgression (e.g. Miller et al, 2012), which makes the 
best test of these models one in which both moral and 
affective judgments require reporting this more specific, 
nuanced information. To do this, we presented each probe 
along with a 7-point rating scale from which participants 
selected their response as quickly as they could.   

We also varied the type of moral scenario participants 
would react to. Different kinds of events reliably lead to 
different moral and affective reactions (e.g. people blame 
transgressors more for intentional harms relative to 
unintentional ones), and these different outputs are thought 
to reflect different underlying cognitive processes 
(Cushman, 2013; Malle et al, 2014). Furthermore, variation 
in encountered behavior better reflects the experience of 
encountering random morally relevant behaviors in the real 
world and generates variation that requires participants’ 
attention. To this end, studies 1-2 mixed intentional and 
unintentional violations, while studies 3 and 4 mixed 
intentional, unintentional, and non-agent caused events.  

Across four experiments, we measured reaction times for 
four response types: (1) non-moral judgments (e.g 
“Intentional?”), (2) moral evaluations of the event (e.g., 
“Bad?” or “Good?”), (3) moral judgments of the person 
(e.g., “Blame?”), and (4) reports of one’s own affective state 
(e.g., “Angry?”). As argued above, the em-in models predict 
that people’s responses to the affective probes should be 
faster than the responses to the moral probes, whereas the 
em-out models predict the opposite. For the purpose of the 
current report, we will focus on these a priori contrasts of 
response times, setting aside the speed of other probes and 
the specific ratings people provided. 

Study 1 

Methods 
Participants. 241 people (130 self-reported as female, mean 
age = 35) recruited from Amazon’s Mechanical Turk 
(AMT) participated in this experiment.  

 

Stimuli. We constructed 24 short descriptions of an agent 
causing harm either intentionally or unintentionally (e.g. 
“When she walked by a homeless man asking for money, 
Lisa spit on the ground in front of him”). Intentionality was 
verified through pretesting (mean intentionality ratings for 
intentional and unintentional descriptions were 8.17 and 
2.35 respectively on a 1-9 scale). The 12 intentional and 
unintentional sentences were matched on length (15.3 and 
15.8 words for intentional and unintentional conditions, 
respectively) and varied in moral severity (valence ratings -
1.1 to -4.0, M = -2.45, for intentional transgressions, and -
0.65 to -3.88, M = -2.00 for unintentional transgressions on 
a -4 to +4 scale). 

 

Judgments. Our non-moral, social judgment probed 
intentionality (Cue: INTENTIONAL? Full: Was the main 
character's behavior INTENTIONAL?) on a [1] definitely 
not intentional to [7] definitely intentional scale. Our event-
directed moral evaluation probed “badness” (Cue: BAD? 
Full: How BAD was the thing that happened? Scale: [1] not 
at all bad – [7] the most bad possible), while our person-
directed moral judgment probed judgments of 
blameworthiness (How much BLAME does the main 
character deserve? Scale: [1] no blame at all – [7] the most 
blame possible). Finally, to assess participants’ affective 
states, we used a general feeling probe (Cue: FEEL? Full: 
How much did the story make you FEEL something? Scale: 
[1] no feeling at all – [7] the most feeling possible). 
 

Design. The study crossed two within-subject factors: 
behavior type (intentional vs unintentional) and judgment 
type (INTENTIONAL, BAD, BLAME, FEEL). The 24 
experimental stimuli and four judgments types were 
distributed over participants such that they were probed for 
each judgment type 6 times, (three for intentional behaviors, 
three for unintentional behaviors). We used a Latin-square 
design to pair each of the four judgments with each of the 
24 stories across four lists. The order of stimuli and probes 
was randomized for each participant within each list. 

Procedure. The entire experiment was conducted through 
the participant’s web browser. At the beginning of the 
experiment, participants received instructions, including a 
description of the cues and their associated meanings, as 
well as the fact that they would be doing a speeded-
judgment task and so would have limited time to read and 
respond to the vignettes. They then completed a training 
session in which they were taught the single-word cues for 
the associated judgments (e.g. “BAD?” for “How bad was 
the thing that happened?”).  

During the experiment, for each trial, a one-sentence 
description of a transgression was displayed in the center of 
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the screen. It remained for 4.5s and was replaced by the 
probe and a seven-point rating scale (participants did not 
know which probe would be displayed for any trial). 
Participants were instructed to place their fingers on the 
number row of the keyboard and press the corresponding 
number to respond. Once they indicated their response, the 
cue and scale disappeared and the next trial automatically 
started. At the end of the experiment, participants filled out 
a brief demographics questionnaire indicating their gender, 
age, and language background. 

Results 
We removed all trials with reaction times greater than 10 
seconds (0.7% data loss). Otherwise, no other trials or 
participants were removed from data analysis.  

Following previous studies (Malle & Holbrook, 2012), we 
conducted simple effects tests comparing RTs for the affect 
probe with RTs for other judgment types separately within 
intentional and within unintentional behaviors. Our primary 
question was whether reaction times to the affective 
judgment probe were slower than to other judgment probes. 
We used linear mixed-effect models (LMEM) to regress 
RTs on judgment type, which was dummy coded with 
affective judgment (here, FEEL) as the baseline. Finally, due 
to the within-subject design, each model included random 
intercepts and slopes for each participant as well as a 
random intercept for each scenario. 

When judging intentional behaviors, reaction times for 
FEEL judgments (M = 2563, SD = 1246) were significantly 
slower compared to INTENTIONAL (M = 2113, SD = 985, b = 
-452.52, SE = 62.9, t = -7.19, p < 0.001), BAD (M = 2332, 
SD = 1204, b = -233.04, SE = 57.49, t = -4.054, p < 0.001), 
and BLAME (M = 2355, SD = 1211, b = -214.44, SE = 
55.964, t = -3.832, p < 0.001). However, when judging 
unintentional transgressions, we observed no significant 
difference between FEEL (M = 2640, SD = 1267) and 
INTENTIONAL (M = 2540, SD = 1240, b = -98.71, SE = 
59.936, t = -1.647, p = 0.1), BAD (M = 2545, SD = 1244, b = 
-96.17, SE = 59.09, t = -1.63, p = 0.104), or BLAME (M = 
2647, SD = 1339, b = 13.88, SE = 60.93, t = 0.23, p = 0.82).  

Discussion 
Study 1 provides preliminary support against em-in models 
in favor of em-out models. Reaction times for the emotion 
probe FEEL were slower than those for judgments of 
INTENTIONALITY, BAD, and BLAME, at least when 
considering intentional norm violations. There were no 
comparable RT differences between the affect probe and the 
remaining probes in response to unintentional violations, 
perhaps because relevant moral rules are more difficult to 
access, harm more difficult to calculate, or responsibility 
more complicated to assess (e.g. Malle, et al., 2014).  

One possible reason for the slow unfolding of affective 
reactions is that participants found it difficult to respond to a 
vague probe such as “feel”. To address this possibility, we 
conducted another experiment using a more concrete easily 
identifiable and morally relevant emotion probe: angry.  

 
Figure 1: Reaction time (and standard error) for 

participants’ responses to probes in study 1 (A) and 2 (B) 

Study 2 

Methods 
Participants, Materials, & Procedure. 237 people (134 
self-reported as female, mean age = 35) recruited from 
Amazon’s Mechanical Turk (AMT) participated in this 
experiment. Study 2 was identical to Study 1 except that the 
affective judgment probe assessed anger (Cue: ANGRY? 
Full: How ANGRY are you at the main character? Scale: 
[1] not at all angry to [7] the most angry possible). 

Results 
Reaction times from Study 2 were analyzed identically to 
Study 1. Before conducting analyses, we removed all trials 
with RTs greater than 10s (2.8% data loss). No other data 
were removed.  

Replicating Study 1, we found that, in the intentional 
condition, INTENTIONAL (M = 2111, SD = 1119) and BAD (M 
= 2133, SD = 1091) judgments were both significantly faster 
than ANGER judgments (M = 2313, SD = 1150; 
INTENTIONAL: b = -203.90, SE = 52.32, t = -3.90, p < 0.001; 
BAD: -183.18, SE = 52.90, t = -3.46, p = 0.001). We did not 
observe significant differences between ANGER (M = 2448, 
SD = 1300) and other judgments for unintentional violations 

A

B
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(INTENTIONAL: M = 2358, SD = 1189, -88.43, SE = 56.65, t 
= -1.561, p = 0.119; BAD: M = 2382, SD = 1291, b = -61.22, 
SE = 59.91, t = -1.02, p = 0.307). Finally, we detected no 
significant difference between ANGER and BLAME for either 
intentional (M = 2231, SD = 1214, b = -80.41, SE = 52.94, t 
= -1.52, p = 0.129) or unintentional (M = 2426, SD = 1229, 
b = -18.10, SE = 55.28, t = -0.33, p = 0.743) behaviors (see 
Figure 1).  

Discussion 
Study 2 largely replicated the findings from Study 1. 
However, both studies are limited in several respects. First, 
the behaviors were always negative, and the agent in every 
description always a causer of harm. It is possible under 
these conditions that moral norms become more salient and 
accessible or that expectations of high causal agency sped 
up moral evaluations. Additionally, anger is typically 
directed at persons, and a different emotion term may be 
more appropriate for affective reactions to events. Finally, 
the studies did not limit participants’ response time. While 
most responses occurred within several seconds, it is 
nevertheless possible that judgments are consciously 
accessible before then without an incentive to reveal these 
judgments as soon as they are accessible. The next two 
studies were designed to address these shortcomings. 

Studies 3 and 4 

Methods 
Participants. 111 people (58 self-reported as female, mean 
age = 37.4) in Study 3 and 193 people (90 self-reported as 
female, mean age = 33.4) in Study 4, recruited from AMT 
participated in this experiment. 

 
Stimuli. We constructed 28 single-sentence descriptions, 14 
featuring a good event and 14 featuring a bad event. For 
each valence condition, we constructed four stimuli that had 
an agent with no causal role (Non-causal) in the good or bad 
event, four in which an agent unintentionally did a good or 
bad thing (Unintentional), and a final six in which an agent 
intentionally did something good or bad (Intentional). 
Pretesting ensured that these items were matched on 
intentionality and length across valence, and that all agency 
conditions were comparable (see Table 1).  
 
Judgments. We modified the full questions associated with 

each cue to accommodate the greater variety of stimulus 
events. Similar to Studies 1-2, we included measures of (1) 
intentionality (Cue: INTENTIONAL? Full: “Was it 
intentional (what the character did)?” Scale: [1] definitely 
not intentional - [7] definitely intentional), and (2) the 
badness of the event (Cue: BAD? Full: “How bad was it 
(what happened)?” Scale: [1] not at all bad - [7] extremely 
bad). We also included a measure of (3) the goodness of the 
event in order to accommodate the positive valence items 
(Cue: GOOD? Full: “How good was it (what happened)?” 
Scale: [1] not good at all - [7] extremely good).  

Studies 3 and 4 were identical except for the affective 
judgment probe. Study 3 measured anger (Cue: ANGRY? 
Full: "How angry were you (about what happened)?" Scale: 
[1] not at all angry – [7] extremely angry), whereas Study 4 
measured “upset” (Cue: UPSET? Full: "How upset were 
you (about what happened)?" Scale: [1] not upset at all – [7] 
extremely angry). 
 
Design. Studies 3 and 4 crossed two within-subject factors: 
event type (non-causal, intentional, and unintentional) and 
judgment type (INTENTIONAL, BAD, GOOD, and UPSET or 
ANGRY). The 28 experimental stimuli and four judgment 
types were distributed over participants in the following 
pattern:  across the 28 items, participants responded to eight 
INTENTIONAL probes, four for intentional behavior 
conditions, two for unintentional behavior conditions, and 
two in the non-caused behavior conditions. This distribution 
meant that roughly half the probes would results in low 
intentionality ratings and the other half would result in high 
intentionality ratings. Affect probes were also distributed 
this way: four for intentional behavior stimuli, two for 
unintentional behavior stimuli, and two for non-caused. 
These probes were evenly divided between valence 
conditions. Finally, participants saw six BAD probes and six 
GOOD probes, which were matched to valence. That is, 
participants made BAD judgments only following 
negatively-valenced stimuli and GOOD judgments only 
following positively-valenced stimuli. The twelve moral 
evaluation probes (6 BAD and 6 GOOD) were evenly divided 
between event type conditions.  

Probes were distributed across four stimulus lists 
according to a Latin-square design. At the beginning of the 
experiment, participants were randomly assigned to one of 
the four lists and, during the experiment, the order of the 
stimulus sentences and probes was randomized. 
 
Procedure. The training and overall experiment procedures 
were the same as in Studies 1 and 2, with one exceptions: 
For each trial, the judgment screen containing the cue (e.g. 
“BAD?”) and the rating scale disappeared after five seconds 
after being displayed. If no response was offered before 
then, no response was recorded for that trial. Participants 
were informed of the time restriction in the instructions. 
Prior to the experiment, participants conducted five practice 
trials to get accustomed to the procedure. 

Table 1: Pretest ratings for stimuli in Studies 3 & 4 
     

Behavior Types Pretest Values 
Valence Agency Intentionality Valence Words 
Negative Intentional 8.41 -2.58 16.83 
 Unintentional 2.40 -2.57 16.00 
 Non-causal  -2.70 13.75 
Positive Intentional 8.22 2.57 15.17 
 Unintentional 2.03 2.64 18.75 
 Non-causal  2.79 12.50 

1851



Results 
We removed all trials in which the participant did not 
provide an answer within the time constraint (1.6% data loss 
in Study 3, 3% data loss in Study 4). No other data were 
removed. Similar to Studies 1 and 2, we conducted separate 
analyses on the Intentional, Unintentional, and Non-Causal 
behaviors, using the same mixed-effect regression models 
and adding the Valence (positive vs. negative) term, which 
predicted changes in the dummy variable (affect) as a 
function of positive or negative behaviors. Across all 
models in both studies, valence was not significant and did 
not improve model fit, and so was removed as a predictor.  
 

 
 

Figure 2: Reaction time (and standard error) for 
participants’ responses to probes in study 3 (A) and 4 (B) 

 
Intentional Behaviors. In Study 3, moral evaluations were 
faster than ANGER (M = 1746, SD = 739; BAD: M = 1601, 
SD = 647, b = -178.46, SE = 37.35, t = -4.78, p < 0.001; 
GOOD: M = 1438, SD = 645 , b = -294.32, SE = 38.32, t = -
7.68, p < 0.001), while INTENTIONAL ratings were not (M = 
1687, SD = 739, b = -57.65, SE = 36.01, t = -1.60, p = 
0.109). Similarly, in Study 4, INTENTIONAL (M = 1656, SD = 
675), BAD (M = 1560, SD = 607), and GOOD (M = 1456, SD 
= 642) judgments were significantly faster than UPSET (M = 
1822, SD = 682; INTENTIONAL: b = -163.51, SE = 42.7, t = -
3.83, p < 0.001; BAD: b = -273.68, SE = 48.50, t = -5.64, p < 
0.001; GOOD: b = -366.28, SE = 48.19, t = -7.60, p < 0.001).  
 
Unintentional Behaviors. In Study 3, moral evaluations 
were significantly faster than the ANGER ratings (M = 1837, 

SD = 714; BAD: M = 1682, SD = 694, b = -174.2, SE = 
43.07, t = -4.05, p < 0.001; GOOD: M = 1601, SD = 647, b = 
-193.3, SE = 43.86, t = -4.41, p < 0.001), while 
INTENTIONAL was slower (M = 1932, SD = 775, b = 115.11, 
SE = 41.88, t = 2.75, p = 0.006). In Study 4, UPSET (M = 
1760, SD = 617) was significantly slower than GOOD (M = 
1603, SD = 624, b = -157.62, SE = 53.89, t = -2.93, p = 
0.003), and significantly faster than INTENTIONAL (M = 
1972, SD = 769, b = 212.92, SE = 53.78, t = 3.96, p < 
0.001), but not reliably different from BAD (M = 1673, SD = 
686, b = -82.75, SE = 53.86, t = -1.54, p = 0.124). 
 
Non-Caused Behaviors. Moral evaluations of uncaused 
good and bad events were significantly faster than the 
ANGER judgments (M = 1728 , SD = 653; BAD: M = 1561, 
SD = 611, b = -163.31, SE = 38.24, t = -4.27, p < 0.001; 
GOOD: M = 1335, SD = 541, b = -390.61, SE = 37.89, t = -
10.31, p < 0.001), while INTENTIONAL ratings were slower 
(M = 1969, SD = 749, b = 241.79, SE = 39.55, t = 6.11, p < 
0.001). In Study 4, UPSET (M = 1659, SD = 616) was 
significantly slower than GOOD (M = 1340, SD = 505, b = -
309.67, SE = 50.41, t = -6.14, p < 0.001) and BAD (M = 
1556, SD = 639, b = -103.24, SE = 50.39, t = -2.05, p = 
0.04), but significantly faster than INTENTIONAL (M = 1947 , 
SD = 723, b = 292.20, SE = 50.56, t = 5.78, p < 0.001). 

Discussion 
Results from Studies 3 and 4 replicated our previous 
findings (see Figure 2): Moral evaluations of intentional 
violations were reliably faster than reports of felt anger and 
upsetness. For unintentional violations, reporting feeling 
upset was not significantly slower than negative moral 
evaluations, but anger was. Perhaps upset feelings are more 
globally sensitive to any unfortunate outcome and therefore 
converge with (but on average do not precede) badness 
judgments. Lastly, intentionality judgments were slowed in 
response to unintentional and uncaused events—which is 
not entirely surprising given that those events are clearly not 
intentional; the detection of negation may take time. 

General Discussion 
Across four experiments, participants were reliably slower 
at reporting their emotional states in response to norm 
violations compared to reporting their moral judgments.  
More specifically, the results from these studies showed a 
clear speed advantage for event-directed judgments of 
badness and, often, intentionality judgments. These results 
fit both with theoretical models of moral judgment arguing 
that moral appraisals precede emotion, as well as prior work 
showing that intentionality and norm violation detection can 
occur extremely quickly (Malle & Holbrook, 2012; Van 
Berkum et al, 2009). These findings did not extend to 
person-directed moral judgments (blame), consistent with 
theories that blame is more complex than event-directed 
evaluations (e.g. Cushman, 2013; Malle et al, 2014). 

One important limitation of these studies comes from the 
observation that, while we are interested in characterizing 
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the cognitive processes underlying moral judgment when 
people are exposed to a morally relevant stimulus, we 
measured people’s reaction times to probes that were 
displayed after the stimulus had been shown. It is possible 
that participants attended to their affective reactions when 
they were first exposed to the stimulus, which resulted in a 
moral judgment, which they later more quickly retrieved 
during the post-stimulus probe. However, while we cannot 
rule this out, it is not clear why affect would be more 
difficult to retrieve post-stimulus as opposed to during-
stimulus (when one’s attention is presumably directed 
outward toward reading the stimulus). Additionally, this 
account does not explain why the speed of retrieving 
affective information would change as a function of the 
behavior (Study 4). Finally, prior work using a simultaneous 
inference paradigm found that post-stimulus reaction times 
directly recapitulated online measures (Malle & Holbrook, 
2012).  

Second, affect may have been slower relative to moral 
and social judgments because of an attention switching cost: 
the non-affect judgments targeted the stimulus while the 
affect judgment targeted oneself. Because em-in models 
explicitly predict a shift in attention from the behavior to 
one’s affective state, a delay in reporting due to switching 
attention is not, in principle, a confound for our test. That 
said, this cost may have been exacerbated by the relative 
balance of event-directed (75%) versus self-directed (25%) 
probes, and future studies should use an even balance of 
affect and moral judgments. 

Finally, even if we accept that felt emotions do occur after 
explicit moral judgment, our data do not rule out the 
possibility that pre-conscious affective processes play a role 
in moral judgment formation (say, by interfering with 
cognitive processes, Alicke, 2000). It is also possible that 
conscious affect may play a causal role when judging more 
ambiguous situations, in which relevant harm or rule 
information is difficult to access. Consistent with this, 
badness and blame judgments were not reliably faster than 
emotion reports when judging accidental bad behavior. 
Thus, our results may only hold for relatively common or 
extreme, but not unusual or novel situations. 

In summary, we found that people could report moral 
evaluations of norm-violating events more quickly than their 
emotional reactions to these events. These results pose a 
challenge to models claiming that felt affect plays a 
necessary role in forming moral judgment.  
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Abstract 

The present study examined throughout three experiments the 
nature of stimulus-response compatibility (SRC) effects 
related to affordance perception in situations wherein object 
affordances and response effectors are irrelevant to each 
other. In the first experiment, using a foot-press response 
dispositive, we found a SRC effect between the orientation of 
the graspable part of the presented object and the laterality of 
the response. In Experiment 2a, we showed that constraining 
the subject hands in a given position (i.e., a Lego hand shape) 
during the same task interfered with the SRC effect. In 
Experiment 2b, participants performed a short training phase 
with their hands constrained before performing the 
experiment. This resulted in an inversion of the direction of 
the SRC effect previously observed. We discuss these results 
and provide arguments in favor of a specific motor activation 
account.  

Keywords: Visual Perception; affordances; categorization; 
motor constraints 

Introduction 

In stimulus-response compatibility (SRC) paradigms related 

to affordance perception (see Michaels, 1988), participants 

are usually faster and more accurate to categorize stimuli 

when the response hand and the presented objects are 

located on the same side (i.e., compatible) rather than on the 

lateral opposite side (i.e., incompatible). The present study 

aimed at disentangling between two alternatives 

explanations of this specific SRC effect. 

The affordances 

Stimulus-response compatibility paradigms were first 

designed to highlight affordance effects. These affordances 

were defined as what a given environment offers the animal, 

what it provides or furnishes in terms of action possibilities 

(Gibson, 1979). These action possibilities are properties of 

the subject-environment system and emerge from the 

relation between an object and a subject (Stoffregen, 2003). 

For instance, stairs can afford an action of climbing only 

when their size does not exceed a certain proportion of the 

riser leg height (Warren, 1984). In SRC paradigms, 

participants generally performe a perceptual categorization 

task using a specific motor response. The critical 

manipulation is the compatibility (or congruence) between 

the motor response setting and the perceptual configuration  

of this object. For instance, Tucker and Ellis (1998) showed 

that participants were faster and more accurate to categorize 

the orientation (i.e., upright or downright) of daily life 

graspable objects when object handles  and motor responses 

referred to the same side (i.e., compatible) than when they 

referred to the opposite side (i.e., incompatible). These 

results were interpreted as evidences of the affordance 

effects. This interpretation was further supported by 

electrophysiological recording such as analyses of 

lateralized readiness potentials (LRP) during categorical 

judgments (Goslin, Dixon, Fischer, Cangelosi, & Ellis, 

2012), or studies about the link between the affordance 

perception and the dorsal stream activation through 

transcranial mental stimulations (Buccino, Sato, Cattaneo, 

Rodà & Riggio, 2009). 

Specific motor activation versus abstract space 

coding 

Despite the multiplication of experimental works 

concerning affordance perception for about twenty years, 

the nature of affordance-related SRC effects is still debated. 

For Tucker and Ellis (1998), SRC effects were observed 

because interactions with an object involve a representation 

about the range of actions that we can perform with and 

thereby, potentiate them. The nature of these representations 

was discussed in later works by the same authors including 

through micro-affordances (e.g. Tucker & Ellis, 2001). 

However, other authors provided evidences that an 

alternative explanation of SRC effects might be considered. 

(Anderson, Yamagishi, & Karavia, 2002). These authors 

interpreted such effects as a consequence of an attentional 

bias induced by a stimuli perceptual asymmetry (i.e., 

attention might be oriented to the left or the right depending 

on the perceptual configuration of the stimulus). This 

attentional orientation could be responsible for spatial-

related motor activations without requiring the potentiation 

of action-related properties of an object. This hypothesis is 

also in line with location-coding theories (e.g., Cho & 

Proctor, 2011). In order to disentangle between specific 

motor activations and abstract location coding as 

mechanisms responsible for affordance related SRC effects, 

Phillips and Ward (2002) developed a method wherein a 

prime graspable object and the orientation of its handle were 

irrelevant to the participants’ task. In this study, the handle 

of the priming object was oriented to the left or to the right 

side. Furthermore, the object handle was presented with an 

apparent depth towards or away from the participant. 

Participants had to respond to a target that appeared in the 

center of a computer screen. Authors found a main effect of 

the handle orientation congruent with common SRC studies 

but no significant effects involving its apparent depth. 

Nevertheless, this result could be attributed to 

methodological issues. Indeed, such proximity-related 

effects have been reported since (see Fischer & Dahl, 2007). 

A more interesting point is that Phillips and Ward (2002) 

proposed another experiment in which participants had to 

respond to the same task pressing using foot switches with 

their left or their right foot. Like in the first experiment, 
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authors found a significant main effect of correspondence. 

Therefore, participants were faster to categorize stimuli 

when both the foot and the handle of the object were 

localized on the same side. The authors concluded that 

response facilitation effects arise from an abstract location 

coding. 

However, if observing SRC effects with feet during the 

presentation of graspable objects seem to be inconsistent 

with the motor specific activations account, this is not 

sufficient to reject it. Indeed, grasping an object does not 

imply a single hand gesture but a more global engagement 

of the body. It is unclear in what extend the body is engaged 

during the perception of graspable objects and further 

investigations are necessary to question the implications of 

such generalized activations. Therefore, finding SRC effects 

while the response effector (i.e., the foot) and the action 

associated with the presented object (i.e., hand use) are 

seemly not directly related is not sufficient to conclude that 

no specific motor activations occurred.  

The current study 

In the present study, we aimed at showing that motor 

activations could constitute the core mechanism of SRC 

effects. For this purpose, we conducted three experiments in 

which subjects had to categorize a common graspable object 

with foot-press responses. The experimental design was 

similar to the one used by Tucker and Ellis (1998) and 

consisted in a classical SRC paradigm. In the three 

experiments, participants had to categorize with their feet 

the orientation (i.e., upright or inverted) of a common mug 

displayed on a computer screen. In the first experiment, they 

responded while keeping their hands placed on the table in 

front of them. In the second experiment, participants were 

wearing gloves during the task, constraining their hands in 

an opened position (i.e., such as the Lego hand shape). 

Finally, in a third experiment, a last group responded while 

wearing the same gloves but after performing a short 

training phase. 

Experiment 1 

The aim of this experiment was to replicate the SRC 

effects observed in Tucker and Ellis (1998) tasks using 

Phillips and Ward (2002) response setting. 

Method 

Participants Twenty undergraduates students (17 women) 

from Paul Valéry Montpellier University aged from 18 to 36 

years old (M = 23.1, SD = 4.72) took part to this experiment 

and received course credits. All had normal or corrected to 

normal vision and were naïve to the purpose of the study. 

The experiment was realized in accordance with the Code of 

Ethics of the World Medical Association (Declaration of 

Helsinki). 

Apparatus and materials The experiment was performed 

using E-Prime 2 software (Schneider, Eschman, & 

Zuccolotto, 2002). The visual material consisted of pictures 

of a common mug disposed sideway on a white background 

and centered on the display. The mug dimensions were 340 

x 320 pixels. All pictures were realized using the software 

Maya 16.0 (Palamar, 2014). The orientation of the initial 

picture was manipulated to produce two horizontal and two 

vertical orientations of the mug. Additionally, a second filler 

picture was presented in order to increase the difficulty of 

the task. The two stimuli are depicted in Figure 1.  

 

 
 

Figure 1: The two visual stimuli used in all our experiments 

(in one orientation condition). The right panel object acted 

as a filler object. 

As with the realistic mug, we reoriented the original 

picture of the filler object to produce four final pictures. The 

depicted objects were presented with an apparent size 

similar to their real size which is about 11 cm high and 7.5 

cm wide and the participants performed the task at a 

distance of 45 cm from the screen and a visual angle of 

about 15°. All results associated with the filler object were 

not included into the analyses. Each of the eight pictures 

was presented ten times in the experiment so that a 

participant responded to an overall of 80 trials presented 

randomly. Trials wherein the object was presented with its 

handle oriented on the same side that the response effector 

were considered as compatible and incompatible when it 

was the reverse situation. 

Procedure After filling out a consent form, participants sat 

in front of a computer and were asked to rest their hands on 

the table in front of them and their foots above the pedals. 

Then, they were asked to perform a forced choice 

categorization task on a computer by pressing a left or a 

right switch of a pedalboard. They had to determine as fast 

as possible if the displayed objects were disposed upright or 

inverted. Each pedal was attributed to a response category. 

This attribution was counterbalanced for the half of the 

sample. Each picture was displayed until the response and 

preceded by a fixation point which remained on the screen 

during 200 milliseconds. 

Results  

First, we observed that participants have accurately 

performed the categorization task (less than 5% of error 

rate). Thus, we only considered latencies for analysis. We 
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excluded RTs above 1250 milliseconds (This cut-off led to 

the exclusion of 11.37% of trials). Thus, We performed a 

RT analysis between Compatible and Incompatible 

situations for responses exclusively related to the realistic 

mug pictures. Mean response times for the Compatible 

situations (M = 713 ms, SD = 76.77 ms) were faster than 

mean response times for the Incompatible situations (M = 

750 ms, SD = 93 ms). Using a bilateral paired t-test, we 

found that this difference was significant, t(19) = 2.55, p < 

.05, d = .43. 

Discussion 

The results clearly demonstrated a SRC effect. Indeed the 

participants were faster to categorize objects when their 

graspable part was oriented on the same side as the response 

effector rather than the opposite side. With the same pattern 

of results, Phillips and Ward (2002) concluded that such 

facilitation effects had to be consecutive to an attentional 

shift and could not be associated with premotor activations. 

This conclusion is congruent with the fact that the graspable 

part of objects like the mug we used constitutes a visual 

protrusion that could capture the subject attention. 

Furthermore, a foot-press response seems to be not related 

to the perception of the affordance of the mug. However, to 

conclude that facilitation effects emerging from unsuited 

limb responses are not related to specific motor activations, 

this experimental design is insufficient. Indeed, contrary to 

the experimental context, the tool use in daily life implies a 

more global generation of movements and might involve 

that perception of graspable objects potentiate a higher 

range of muscles that the hand or even the arm. If the 

affordance theory is unclear to specify such implications, it 

is necessary to control the hand disposition during this kind 

of tasks for rejecting this motor hypothesis. If such of a 

hand constraint results in an alteration of facilitation effects 

as those observed in the experiment 1, this would constitute 

evidence that such response facilitations are dependent on 

the subject action possibilities. 

Experiment 2a 

In this experiment, we aimed at constraining subject hands 

to a certain position which is incompatible with the usual 

grasp of the object used in Experiment 1. The gloves used in 

this experiment were conceived to induce a large grasping 

position incompatible with the handle of the mug. If SRC 

effects such as the ones revealed by Tucker and Ellis (1998, 

2001) or Phillips and Ward (2002) arise well from an 

abstract representational coding, this manipulation should 

not impact the effect. On the contrary, if the previous effect 

is a consequence of perceived affordances traduced by more 

general potentiations, wearing gloves inducing a particular 

grasp should invert the stimulus-response compatibility 

effect in the direction of the tank of the mug. This is 

precisely our hypothesis: considering that a large hand 

position is fitter with the manipulation of the tank of the 

mug and not anymore with its handle, the effects will be 

inverted regarding Experiment 1 and the incompatible 

situation should be facilitating for the subjects. 

Method 

Participants Twenty undergraduate students (19 women) 

from Paul Valéry Montpellier University aged from 18 to 41 

years old (M = 22.45, SD = 6.15) took part to this 

experiment and received course credits. All had normal or 

corrected to normal vision and were naïve to the purpose of 

the study. Among them, four left-handed were distributed 

into the two groups. 

Apparatus and Materials The experimental setup and the 

materials remained the same as Experiment 1. The only 

change in the experimental design was that participants had 

this time to wear specific gloves. We constructed these 

gloves with Plaster bands in such a way that the 

participant’s hands adopt the form of a large grasping 

position (i.e., a necessary position to grasp a mug by its 

tank). 

Procedure The instructions were the same as Experiment 1. 

Nevertheless, participants were asked to wear the gloves and 

to place their hands on the table in front of them before 

beginning the experiment. Their hands were placed 

shoulder-width apart and with palms facing inward. Once 

the participants felt comfortable with the gloves and the 

pedalboard, they could begin the experiment. 

Results 

Response errors accounted for 4.62% of the total of trials. 

There were no significant differences between error rates in 

compatible and incompatible situations. As in experiment 1, 

all response times exceeding 1250 milliseconds were 

removed from the analysis. Theses exclusions represented 

17% of trials. The response time analysis between 

Compatible and Incompatible situations showed not 

statistically significant differences (p > .05). 

Discussion 

Apart from the fact that participants were wearing 

constraining gloves inducing a large grasp shape during the 

task, the second experiment was identical to experiment 1. 

This single difference has seemly altered the results in the 

way that there was no significant SRC effect anymore. 

However, contrary to our hypothesis, the hand constraint did 

not reverse the result’s pattern but seemed to have interfered 

with the previous effect. This interference could represent 

an argument which is not in favor of the abstract coding. 

Indeed, if facilitation effects arise from an abstract spatial 

coding, there is no rational that a change applied to subject 

hands during foot-press responses impacts the facilitation 

effect. Nevertheless, this null result cannot be fully 

interpreted as it stands and there is a doubt as to whether the 

gloves acted on subjects. While the purpose of the gloves 

was to potentiate a large grasping position and thus promote 
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a facilitation effect directed toward the location of the mug 

tank, they may have been perceived by the subjects as a 

simple immobilization. 

Experiment 2b 

Experiment 2a showed that a constraint applied to subject 

hands during a categorization task with foot-press responses 

seems to have significantly altered the facilitation effect 

previously observed in Experiment 1. It is unclear that this 

was due to a simple interference or to a conflict between a 

specific motor activation of the feet on one side and of 

another activation of hands on the other side. This could 

stem for an insufficient subject integration of the gloves 

possibilities. Indeed, in Experiment 2a, no rationales about 

the glove shaped were given to participants. Thus, in the 

present experiment, we proposed to new participants to 

perform a five minutes training in which they had to move a 

real mug along several drawn points on a sheet while 

wearing the gloves. The purpose of this training was to 

strengthen the potential disposition to grasp the mug tank 

with hands during the task. Our hypothesis is that a better 

integration of the grasping possibility of the gloves will 

produce a facilitation effect in favor of the side of the mug 

tank and thus, will facilitate incompatible responses 

regarding the handle location. 

Method 

Participants A new sample of twenty undergraduate 

students (12 women) from Paul Valéry Montpellier 

University aged from 17 to 29 years old (M = 21.5, SD = 

4.32) took part to this experiment and received course 

credits. All had normal or corrected to normal vision and 

were naïve to the purpose of the study. Among them, two 

left-handed were distributed into the two groups.  

Apparatus and materials The experiment itself remained 

unchanged. The participants were preforming the same task 

while wearing the same gloves that in Experiment 2a. The 

difference was that they had to perform a training phase 

during which they had to move a real mug (with the same 

appearance that the one modelised for the experiment) on a 

sheet plotted course. The plotted course consisted in nine 

drawn circles. These circles were numbered from 1 to 9. To 

ensure that participants remain focused during this phase, 

the mug was filled with water. 

Procedure To perform the training phase, participants 

manipulated the mug while wearing the gloves (see Figure 

2). They were told to move the filled mug circles by circles 

in the ascending and then in the descending order on the 

sheet with the left hand and after that, with the right hand. 

They had to put down the mug on each circle before moving 

on the next one. This course was repeated two times. 

Regarding the shape of the gloves, the participants were 

obliged to grasp the mug by its tank. No instructions were 

given concerning the better way to grasp the mug in this 

situation. The participants spontaneously grasped it by the 

tank and performed the training without dropping the mug. 

After this training phase, they performed the same 

categorization task than the one proposed in the two 

previous experiments. 

 

 
 

Figure 2: Plotted course for the training phase 

Results 

Response errors accounted for 6.25% of the total of trials. 

There were no significant differences between error rates in 

compatible and incompatible situations. Response times 

exceeding 1250 milliseconds were excluded and represented 

also 6.25% of trials. Regarding the compatibility between 

response feet and handle locations, mean responses for the 

Incompatible situations (M = 686 ms.14, SD = 111.44 ms) 

were faster than mean responses for the Compatible 

situations (M = 713.66 ms, SD = 126.76 ms). A dependent t 

test revealed that the difference was statistically significant, 

t(19) = 2.64, p < .02, d = .23. This pattern was therefore the 

reverse than the one observed in Experiment 1 (see Table 1). 

 

Table 1: Summary of the chronometric results in 

milliseconds (with the standard deviations in parentheses) 

and associated p-values for the three experiments 

 

  Compatible Incompatible p 

Experiment 1 713 (76.77) 749.96 (93) .02 

Experiment 2a 766.41 (105.80) 786.73 (127.22) n.s. 

Experiment 2b 713.66 (126.76) 686.14 (111.44) .01 

 

Complementary analysis We calculated the mean effect 

size differences between Compatible and Incompatible 

situations by subtracting the mean response times related to 

the Incompatible situation from the ones related to the 

Compatible situation for each subject and for each 

experiment. This allowed us to produce a value for each 

subject (i.e. positive if he was faster to respond in 

Compatible situations and negative if he was slower) and 

the size of this difference (see Figure 3). Regrouping those 

values for each experimental condition, we conducted a one-

way between subjects ANOVA to compare the effect of 
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Experiments 1, 2a and 2b on mean effect size differences. 

There was a significant effect of the Experimental 

Conditions on subject Response times for the three 

conditions, F(2, 57) = 7.42, p < .002, η²p = .21.  

Post hoc comparisons using the Tukey HSD test indicated 

that the mean effect size for the Experiment 1 condition (M 

= 36.93, SD = 64.62) was significantly different than the 

one of the Experiment 2b condition (M = -27.51, SD = 

46.54). The test indicated too that the mean effect size of the 

Experiment 2a condition (M = 20.32, SD = 52.07) was 

significantly different than the one of the Experiment 2b 

condition. However, the mean effect size of the Experiment 

1 condition did not significantly differ from the one of the 

Experiment 2a. 

Finally, considering that in the three experiments, our 

samples were quite inhomogeneous with respect to age, we 

performed the same analysis while excluding subjects older 

than 30 years. The results stayed unchanged. 

 

 
 

Figure 3: Mean effect size differences (in milliseconds) as a 

function of the experimental conditions. Errors bars depict 

standard deviations. 

General Discussion 

In Experiment 2b, subjects manipulated a real mug with 

constraining gloves before performing the categorization 

task. The only way to proceed was to grasp the mug by its 

tank and not by its handle which is in accordance with the 

purpose of the shape applied to the gloves. Results showed 

that a facilitation effect emerged from the incompatible 

situation regarding the classic stimulus-response 

compatibility paradigms. Thus, the training seems to have 

strengthened a potential reach to grasp gesture oriented to 

the mug tank and facilitated subsequent categorizations in 

situations wherein the responses and the mug tank were on 

the same side. 

Taken together, the results suggest that facilitation effects 

observed in stimulus-response compatibility paradigms 

could well arise from specific motor activations instead of 

abstract coding like Philipps and Ward (2002) suggested it. 

Indeed, if the results observed in Experiment 1 were due to 

a representational abstract coding, no differences would be 

found applying a hand constraint during foot-press 

responses. Yet, in experiment 2a, the effect was still in the 

right direction but this time, it was not significant 

suggesting an interference in the subject disposition to 

respond. Furthermore, a real manipulation of a mug with a 

specific constraint inverted the location of the effect in 

Experiment 2b. This implies that the manipulation seems to 

have led to a sensorimotor integration changing the location 

of the potentiating part of the object. This result is also 

particularly interesting because it seems that no rationales 

can be found in the attentional shift hypothesis. Indeed, in 

all of our experiments, the stimulus stayed unchanged and 

hence, the perceptual asymmetry cannot be taken as the 

origin of these results. 

Nevertheless, an alternative explanation could be as well 

proposed. Indeed, due to the manipulation phase, 

participants may have learnt to pay attention to the tank of 

the mug which could conduct to an attentional shift in the 

direction of this one. For further investigations, it would be 

interesting to expound on this by proposing a new 

experiment in which participants would realize the training 

but then, take off the gloves for the SRC experiment. This 

design should allow knowing if the results of the 

Experiment 2a and 2b are due to the wearing of the gloves 

or by sensorimotor integrations. 

Regarding this possibility and considering that only a 

short training impacted the SRC effect directions. It is 

nevertheless possible that such attention-related effects be 

rooted in a sensorimotor process. For instance, a possible 

explanation could emerge if we replace our results within 

the framework of the premotor theory of attention (see 

Craighero, Fadiga, Rizzolatti & Umiltà, 1999). According to 

this theory, orienting of attention implies an activation of 

basic circuits associated with the action goal. Therefore, the 

results of the Experiments 2a and 2b could arise from an 

attentional effect determined by the motor preparation 

induced by the training phase. This interpretation is in phase 

with both the specific motor activation account and the 

general ecological approach to perception. In this context, 

attentional shifts could be consecutive to premotor 

activations and be constitutive parts of the action-perception 

coupling. 

In conclusion, the present study represents a further 

argument in favor of specific motor activations during 

perception of graspable objects. Nevertheless, it carries also 

some questions about its results and further works will be 

necessary to investigate such SRC modulation effects. More 

broadly, it underscores some imprecisions about the original 

propositions made by Gibson (1979). For instance, how a 

specific affordance can be perceived instead of another and 

how much the physical disposition to act in a given time 

impacts the subject’s tendency to perceive them. 
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Abstract 

We trust that the uncertainty regarding the outcome of a coin 
toss makes it a fair procedure for making a decision. Small 
differences in the force used to toss a coin should not affect this 
uncertainty. However, the voluntary movement involved in 
tossing a coin is subject to motivational influences arising from 
the anticipation of the value of the outcome of the toss. 
Presented here are measurements of hand velocities during 
coin tossing when the outcomes entail monetary gains and 
losses. Finger position measurements show that hand velocities 
are proportional to the amount of money at stake. Coin toss 
movements are faster and larger for higher stakes than for 
smaller monetary stakes.  

Keywords: motor control, decision-making, affect, behavioral 
economics 

Introduction 
Animals move faster to acquire larger rewards than to acquire 
smaller rewards (Kawagoe, Takikawa and Hikosaka, 1998; 
Choi, Pavan and Shadmehr, 2014). Delays in acquiring a 
reward decrease the probability of being successful and, since 
future rewards are temporally discounted, they may also 
decrease the subjective value of the reward. It has been 
demonstrated that the vigor of a movement, which is overtly 
expressed as the reaction time and velocity of the movement, 
are influenced by motivation effects arising from the cost or 
value of the outcome (Turner and Desmurget, 2010). For 
example, people show faster eye saccades when they are in 
more rewarding environments (Haith, Reppert & Shadmehr, 
2012) and monkeys make faster arm movement to higher 
reward targets (Opris, Lebedev & Nelson, 2011). It is 
hypothesized that the purpose of the larger vigor observed in 
movements for greater rewards is to increase the probability 
of success and decrease the time to acquire the reward (Choi, 
Pavan and Shadmehr, 2014; Turner and Desmurget, 2010; 
Guitart-Masip, Duzel, Dolan & Dayan, 2014). An open 
question is whether this vigor effect would be observed even 
when it is independent of the movement outcome. Such as in 
situations where changes in movement vigor do not influence 
the probability or timing of reward acquisition. For example, 
when tossing a coin for a monetary wager.  

   Coin tosses are used in sporting events such as cricket and 
American football to determine which team goes first. They 
are even used to settle the results of tied mayoral races in 
accordance with the law of many US states. When a game of 
chance is used to make a decision, the assumption is that there 
is sufficient uncertainty about the outcome to make the 
procedure fair. Even though coin tosses are the textbook 
example of uncertainty, coin tosses are entirely deterministic 

physical processes. The coin trajectory can be predicted from 
initial conditions with Newton’s laws of motion and Euler’s 
equation for rigid body dynamics. However, small 
differences in the initial velocity and spin of the coin result in 
different outcomes. Mahadevan and Yong (2011) performed 
a phase space analysis of the probability distributions of coin 
outcomes as function of initial spin and vertical speed. The 
analysis reveals a high sensitivity of the coin’s outcome to its 
initial spin and vertical velocity. We can assume that most 
coin flippers have no knowledge of how initial toss 
conditions map onto outcomes. Stewart (2014) suggested that 
perhaps the precision of human hand control is not accurate 
enough to reliably affect the outcome given the thin 
alternating regions in the phase space between heads and 
tails. Perhaps the smallest possible motor error in voluntary 
movement to toss a coin is spread across two or more 
outcome distributions in the phase space. Considering this 
possibility, one might conclude that the coin toss procedure 
itself is deterministic, but the initial conditions are random. 
Therefore, coin tossing is a special case where the movement 
vigor is independent of the outcome.  

   The outcomes of bodily movements produce the 
substantive consequences of behavior. It is therefore not 
surprising that organisms have adapted to perform 
movements precisely and efficiently. The escape vectors of 
cockroaches (Domenici, Blagburn & Bacon, 2008), the 
foraging paths of bees (Reynolds et al., 2007) and the 
reaching arm movements of humans (Flash & Hogan, 1985) 
all demonstrate optimal or near optimal movement 
performance. Experimental measures of human movement 
performance are predicted well by mathematically optimal 
models of movement behavior (Körding and Wolpert, 2006; 
Todorov and Jordan, 2002; Dam and Körding, 2009).  

The success of optimal models for understanding 
movement stands in contrast to the descriptive models used 
to understand human judgment and decision-making. People 
demonstrate a variety of persistent and systematic biases in 
many domains of decision-making. A large body of research 
has shown that people are particularly prone to error during 
economic decisions. For example, in many situations people 
are loss averse, where they are about twice as unhappy with 
a monetary loss than they are happy with an equal magnitude 
monetary gain (Kahneman and Tversky, 1979). This leads to 
errors in decision making, such as a greater willingness to 
take a risk when potential losses are looming than when there 
is an equal potential gain to be had. Deviations from 
normative models have been traditionally attributed to 
distortions of judgments of value and probability made by the 
decision maker. Interestingly, the irrational distortions 
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observed in economic decision tasks are only partially 
present in mathematically equivalent motor tasks and 
demonstrate qualitatively different judgements of probability 
(Wu, Delgado and Maloney, 2009). This suggests that 
decision makers use information about the outcome value and 
probability differently when making economic decisions than 
when making motor decisions.   

Tossing a coin for a monetary stake combines a voluntary 
movement with a cognitive evaluation of the outcome. For a 
person that has learned the motor skill of coin tossing, the 
movement is simple and involves little effort or deliberate 
planning. The hypothesis here is that the vigor of coin tosses 
will be affected by both the amount and valence (loss or gain) 
of the outcome. Specifically, the prediction is that the 
velocity and size of the coin tossing movements would be 
larger when the monetary stakes where higher. Additionally, 
considering loss aversion, movement velocities should be 
roughly twice a high when tossing a coin for a potential loss 
than for a potential gain of equal value.  

 

 
Figure 1: An illustration of the coin toss movement made by 
participants during the experiment. Tosses were made with 
the coin placed on the back of the hand in a palm down 
position. This procedure for coin tossing increased the 
accuracy of measurements of hand velocities by allowing the 
tracking of individual finger tips. 

Method 

Participants 
The experimental protocol was approved in accordance with 
Indiana University’s policy statement on the use of human 
participants. Informed consent was obtained from fifty right-
handed participants (21 male, 29 female). Participants were 
compensated a $5 stipend prior to beginning the experiment. 
In addition to this stipend, participants were compensated 
according to the outcomes of the coins tosses as described 
below. 

 
Design 
Each participant tossed a standard US quarter dollar coin with 
their dominant hand. The hand movements of the toss were 

performed above an instrument designed to measured finger 
and hand position. There were six conditions resulting from 
a 2 (valence of outcome: loss or gain) X 3 (amount: 10¢ or 
25¢ or $1) factorial within-subjects design. The dependent 
variable was the vertical velocity of the right hand during the 
coin tossing movement.   

 
Materials 
A Leap Motion Controller was used to measure hand 
movements during the experiment. The controller uses three 
infrared LED emitters and two cameras to track finger and 
hand position, directions of movement and velocities. The 
device’s resolution is below 0.78 mm of movement (Oliveira 
& Andrade, 2015). The cameras capture more than 290 
frames a second from which position, velocity and direction 
of movement are computed to provide a sampling rate of 
145Hz. 
 
Procedure 
The experiment was designed to measure whether the stakes 
of a coin toss would influence how the coin is tossed. At the 
beginning of each trial participants placed a quarter on the 
back of their dominant hand near the fingernails while 
standing. Participants were instructed to position their 
dominant arm with their elbow bent at 90 degrees and with 
their hand extended in the pronated position (palm down). 
The device was attached to a tripod that was adjustable 
vertically in height and placed 5 cm below the hand so that 
the tossing movement would take place within its effective 
workspace. This was done to assure accurate measures of 
hand position.  

   Figure 1 illustrates how the coin tosses were performed. 
Participants tossed the coin by accelerating it vertically into 
the air and then allowing the coin to bounce on the floor. The 
result was read from the coin as it lay on the floor. Each 
participant performed 30 coin tosses. Altogether 1378 coin 
tosses were measured from 1500 trials. The missing trials are 
due to participants performing the movement outside the 
device’s effective workspace. Although some participants 
had a higher tendency to perform the toss outside of the 
devices’ effective range, the missing trials are randomly 
distributed across conditions with 23, 24, 31, 16, 24 and 34 
trials missing data from conditions +10¢, -10¢, +25¢, -25¢, 
+$1, and -$1 respectively 

   During each trial the outcome of a single coin flip 
determined a monetary gain or loss to the participant. Half of 
the trials were gain conditions, where the participant stood to 
make money contingent on the outcome of the coin toss. 
During the other 15 trials, participants faced a potential 
monetary loss. The outcomes of all coin tosses were added to 
determine the total stipend for participation with a mean 
stipend of $5.67 ranging from $5 to $9.20. The presentation 
of trial condition was randomized and fully balanced with  
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Figure 2: Hand velocities during three coin tosses. The two graph panels labeled ‘typical toss’ were chosen to represent the 
most common coin toss velocity profiles. The third panel labeled ‘atypical toss’ includes a pre-toss preparatory movement. 
Such pre-movement artifacts were excluded from the statistical analysis by using the maximum velocity as a measure of coin 
toss velocity.  

 
each condition appearing exactly 5 times during the 
experiment. 
At the beginning of each trial, the participant was informed 
of the trial condition by text that appeared on a 21’ computer 
screen at a distance of 32 cm from their face. For example, 
the text: “If you lose this coin flip, you will lose $1” would 
appear during the -$1 trial conditions. Additionally, the text 
was read aloud by the experimenter prior to commencing the 
coin toss movement. Before each toss movement, the 
participant called the toss, choosing either ‘heads’ or ‘tails’ 
by pressing the corresponding key ‘H’ or ‘T’ on a computer 
keyboard. If the coin landed heads up and the participant 
called heads, then the toss was regarded as a win. If the coin 
result did not match the call, the coin toss was regarded a loss. 
During gain conditions (+10¢, +25¢ or +$1), if the coin toss 
was won, the monetary amount at stake was added to the total 
stipend. If the outcome didn’t match the call, the stipend 
remained unchanged. During loss conditions (-10¢, -25¢ and 
-$1), participants stood to lose the monetary amount if the 
toss was lost, or leave the stipend unchanged in the case of a 
match in outcome and call.  

The current total monetary stipend amount was displayed 
on the screen and updated after each coin toss. If the total 
stipend at the completion of 30 coin tosses was higher than 
$5, then participants were paid the difference in cash before 
completing the experiment. On the other hand, if participants 
finished with a total amount less than $5, they were allowed 
to keep the $5 show-up stipend. This was done to ensure that 
participants were not penalized for the outcomes of their 
tosses. On average, participants received $5.42 (SD = 1.51).  

   Economic decision making is often studied by measuring 
preferences between two or more lottery choices (Kahneman 
and Tversky, 1979). A lottery is a probability of obtaining an 
outcome that has an explicit value and can be expressed with 
the notation: [probability(outcome); value(outcome)]. For 
example, consider which lottery you would prefer: (a) five 
dollars for sure, or (b) a 50% chance of winning ten dollars 
and nothing otherwise. This choice between lottery can be 

expressed as a choice between (1, $5) or (0.5, $10; 0.5, 0), 
and most people prefer the sure outcome although according 
to rational choice theory we should be indifferent to the 
choice. Physically flipping a coin to decide an outcome is 
analogous to having selected a single lottery choice. If we 
assume that the procedure used for the coin toss is fair, then 
the probability will approach 0.5 as the number of tosses 
increases. For example, if a person cares about the outcome 
of a coin toss during the beginning of a sporting event, the 
coin toss lottery can be expressed as (0.5, my team gets the 
ball; 0.5, the other team gets the ball). How people value 
different prospects can be estimated by their preferences in 
lottery selections. The assumption in the current experiment 
is that the utility assigned to the potential outcome of the coin 
toss is reflected in the manner in which the movement is 
made.  
 
Data collection and measures 
Position and velocity measurements were collected for 10 
seconds after the participant called the toss and indicated that 
they were going to make the movement. The average duration 
of the coin tossing movement for all participants across all 
conditions was 157.37 milliseconds (SD = 65.94), providing 
an average of 22.81 position measurements per movement. 
Since the instrument’s measurements of fingertip positions 
are more accurate than for palm position, participants 
performed tosses with their palm down which allowed for the 
independent tracking of an average of 3.87 fingertips (SD = 
1.23) on each toss. The vertical velocity of the hand was 
calculated as the mean vertical velocity of all fingertip 
positions captured by the cameras during the toss.   
 
Results 
Figure 3 shows mean hand velocities as a function of time 
with 95% confidence intervals. The mean hand velocity 
profiles are similar in shape to typical toss movements. 
However, hand movements in preparation for the toss are 
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Figure 3: Mean hand velocities with 95%CIs across participants as a function of time. The six conditions are collapsed by 
amount into three groups: ±10¢, ±25¢ and ±$1.  

 
included in the analysis. In order to quantify the velocity of 
individual coin tosses, the maximum vertical velocity of the 
hand was computed for each toss. Analyses using maximum 
acceleration and integrated velocity across the entire 
movement produced similar results to those described below. 

   Overall, the tossing movement is highly conserved across 
participants as is evident in the aligned and averaged coin 
tosses displayed in Figure 3. However, there is systematic 
variance in toss velocities evident in the tendency by some 
participants to consistently toss the coin with more or less 
vigor than the average participant. 

 

 
 
Figure 4: Mean maximum hand velocities with 1±SEM bars 
for all six toss conditions.  

 
Maximum hand velocities were analyzed using linear 

mixed-effects regression (LMER) with the lme4 package in 
R (Bates, Maechler, Bolker & Walker, 2013). LMER allows 
for the controlling of random factors, such as the systematic 

variability in toss force between participants. The monetary 
amounts at stake for each toss were modeled as fixed effects. 
A main positive effect of monetary value on hand velocities 
was observed, F(1, 1297)=3.82, p = 0.022. Figure 4 shows 
the mean maximum velocity ± 1 SEM for all six conditions 
ordered so that an effect of loss aversion is visible. However, 
the effect of valence (gain or loss) on hand velocity was not 
significant, F(1, 1297)=2.15, p = 0.14. The interaction effect 
was non-significant, F(1, 1297) = 0.35, p > .55. 
The mean maximum hand velocities for the ± 10¢, ± 25¢ and 
± $1 conditions were 1463.17, 1482.23 and 1603.01 mm/sec 
with 95% CIs [1335.44, 1590.71], [1090.95, 1873.56] and 
[906.69, 2299.48] respectively. The Cohen’s d effect sizes for 
monetary amount on maximum movement velocity were d = 
0.022, for the difference between ± 10¢ and ± 25¢ conditions, 
d = 0.13, for the difference between 25¢ and ± $1 conditions, 
and d = 0.15 for the difference between the ± 10¢ and ± $1 
conditions. Overall, the money at stake explains less than 8% 
of the variance in the maximum velocity of hand movements.  

Discussion 
This study was designed to investigate the effects of the 
anticipation of monetary outcomes on the movements for 
coin tossing a coin. As hypothesized, larger monetary stakes 
resulted in higher velocities of the hand during coin flipping. 
Prospect theory predicts that people are often twice as 
sensitive to monetary losses than to equal magnitude gains. 
In the context of coin tossing for a potential loss, prospect 
theory predicts twice as large an effect of outcome valence 
than outcome magnitude on movement velocity. This 
prediction was not observed. One possibility is that the 
current experiment may lack sufficient statistical power to 
demonstrate a loss aversion effect on coin tossing 
movements. However, the results suggest that the 
hypothesized effect is much smaller than predicted by the 
results from traditional behavioral economics experiments 
(Kahneman, Knetsch and Thaler, 1990). Previous studies 
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have demonstrated that voluntary movements are not subject 
to distortions of value to the same degree as financial 
decisions as predicted by prospect theory, but are instead 
more subject to distortions of judgments of probability (Wu, 
Delgado and Maloney, 2009). Evidence from the current 
experiment provides further evidence that simple movements 
are not influenced by the same mechanisms that are involved 
in making explicit financial decisions.  
   An impressive analysis of over 2.5 million golf putts of 
professional golfers at PGA golfing championships 
demonstrated that golfers putt more accurately when they are 
behind than when they are leading (Pope and Schweitzer, 
2011). The analysis of laser measured golf putts revealed that 
golfers are more likely to make a shot when they are in a loss 
frame (i.e. a par putt) than when they are in a gain frame (i.e. 
a birdie putt). Unlike coin flipping, golf putting is a complex 
skill that is made possible by a variety of cognitive functions 
such as attention to task, planning, and explicit decisions 
about the movement. Pope and Schweitzer (2011) suggested 
that golfers deliberately consider that hitting the ball too 
softly may decrease the probability of a success, but nearly 
guarantee good placement for the subsequent putt, a desired 
position if one is ahead putting for birdie, but not desired if 
one is behind putting for bogey. These explicit forecasts of 
potential outcomes are subject to influences from the current 
and predicted affective states of the golfer (Kermer, Driver-
Linn, Wilson & Gilbert, 2006). However, it is reasonable to 
assume that no such deliberate movement planning occurs 
during coin tossing.  
   Russell (1980) proposed a two-dimensional circumplex 
model of emotion where emotions are classified according to 
arousal and valence. Applying this model to the current 
experiment, the monetary value of the outcome corresponds 
to the arousal associated with the outcome. Valence 
corresponds to whether the outcome is a loss or a gain.  A 
large body of research on approach-avoidance motor 
behavior has shown an effect of emotional valence on the 
automatic activation of movements (Markman & Brendl, 
2005; Lavender and Hommel, 2007 Maxwell & Davidson, 
2007). Research has shown that reaction times are quickest 
for approach movements towards positive stimuli (i.e. high 
valence) and for avoidance movements away from negative 
stimuli (i.e. low valence). In these studies, images are most 
often used to elicit emotions rather than money.  
   Experimentally manipulating both valence and arousal with 
image stimuli is difficult, because images that are rated as low 
valence are typically, if not exclusively, also rated as high 
arousal. For example, there are no images or sounds rated as 
low valence and low arousal in the over 1200 stimuli 
available in International Affective Systems (IAPS and 
IADS). It remains a possibility that arousal ratings of 
emotional stimuli may have a larger effect on approach-
avoidance movement response times and force than do 
valence ratings.  
   The experiment presented here was designed to 
independently measure the effects of monetary amount and 
valence on the velocity of coin tossing movements. The 

results show that the magnitude of the outcome has a small 
effect on movement vigor. However contrary to prospect 
theory’s prediction, the valence of the outcome has little or 
no additional effect on the coin tossing movement. This 
provides further evidence that outcome value is assessed 
differently during movement planning than during financial 
decision-making.  

Notes 
The movement data, MATLAB analysis code and 
experimental protocol code are available at:  
https://www.researchgate.net/project/People-
toss-coins-with-more-vigor-when-the-stakes-
are-higher 
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Abstract 

We investigated whether speakers’ referential communication 
benefits from an explicit focus on addressees’ perspective. 
Dyads took part in a referential communication game and were 
allocated to one of three experimental settings. Each of these 
settings elicited a different perspective mindset (none, self-
focus, other-focus). In the two perspective settings, speakers 
were explicitly instructed to regard their addressee’s (other-
focus) or their own (self-focus) perspective before construing 
their referential message. Results indicated that eliciting 
speakers’ self- versus other-focus did not influence their 
reference production. We did find that speakers with an elicited 
egocentric perspective reported a higher perspective-taking 
tendency than speakers in the other two settings. This tendency 
correlated with actual referring behavior during the game, 
indicating that speakers who reported a high perspective-taking 
tendency were less likely to make egocentric errors such as 
leaking information privileged to speakers themselves. These 
findings are explained using the objective self-awareness 
theory. 

Keywords: perspective-taking; referential communication; 
egocentricity bias; privileged information. 

Introduction 

Engaging in successful referential communication implies 

that addressees are able to select the intended referent on the 

basis of speakers’ descriptions. For this, speakers are 

expected to design their message optimally (i.e., audience 

design in Clark & Murphy, 1982), adhering to addressees’ 

informational need (Clark, 1992). Speakers are supposed to 

exchange just the right amount of information, neither too 

little nor too much (Grice, 1975), and base their contributions 

on the knowledge, beliefs and assumptions that are shared or 

salient between themselves and their addressee (i.e., 

common-ground information). This is necessary, because 

addressees will rely on this shared, salient knowledge when 

interpreting the referential message (Arnold, Kaiser, Kahn, & 

Kim, 2013). Referential communication thus relies a great 

deal on interlocutors’ ability to accurately engage in the 

process of perspective-taking; the ability to take into account 

the knowledge and attentional state of their interaction 

partner at each step in the conversation. The questions that 

arise here are whether interlocutors are inclined to regard the 

other’s perspective accurately during interaction, and if this 

is not the case, whether a stimulated attention to another’s 

perspective would be beneficial for the referential 

communication process. 

The literature shows a puzzling picture with regard to 

speakers’ ability and propensity to accurately regard 

addressee’s perspective and, thus, to engage in an accurate 

audience design. On the one hand, studies evidenced that 

speakers succeed at assessing and adapting their 

communication to their addressees’ knowledge (needs) 

(Heller, Gorman, & Tanenhaus, 2012; Nadig & Sedivy, 

2002), whereas others have indicated that these adjustments 

are not always accurate (Horton & Keysar, 1996; Keysar, 

Barr, Balin, & Brauner, 2000). According to these latter 

studies, language production is not necessarily anchored to 

addressees’ needs, but more to speakers’ own knowledge and 

attentional state, resulting in utterances that are based on 

information immediately accessible to speakers themselves. 

Following this approach, addressee’s knowledge is only 

considered in a later, optional stage in which speakers can 

consciously choose whether to adjust their language 

production to the common ground status (Horton & Keysar, 

1996). Scholars defending the latter view argue for speakers’ 

egocentricity bias (Keysar, Barr, & Horton, 1998), entailing 

that speakers use their own mental state as a representational 

default to infer the one of their addressee (Epley, Keysar, Van 

Boven, & Gilovich, 2004). Engaging in perspective-taking is 

then considered to be a cognitive effortful process that can 

result in egocentric anchor mistakes when speakers do not 

correct their automatic response. Research indicated that 

these errors are likely to occur in social interactions, as 

speakers sometimes refer to information not known to their 

addressee (Horton & Keysar, 1996), or even leak privileged 

information that should have stayed confidential (Kaland, 

Krahmer, & Swerts, 2014; Wardlow Lane, Groisman, & 

Ferreira, 2006). 

In a referential communication task, Wardlow Lane et al. 

(2006) evidenced speakers’ informational leakage even when 

it bore negative consequences. During the task, speakers 

described geometrical objects to their addressees, with the 

goal of earning both of them points if the addressee correctly 

identified the referent. Before every description, speakers hid 

one object from their addressee’s view. This object always 

differed in size from the target object speakers had to 

describe. Addressees could earn additional points by 

correctly guessing the identity of the hidden object. Although 

speakers were instructed not to let their addressee gain 

additional points, results showed that speakers were likely to 

cue the identity of their privileged object by referring to the 

size contrast they themselves were seeing. This was 

especially the case when the target object and speakers’ 

privileged object were similarly rather than differently 

shaped, as the size contrast presented to speakers was then 

most relevant (i.e., salient) for speakers to discern.  

Subsequent studies replicated findings of Wardlow Lane et 

al. (2006) by showing that speakers also leak information 
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non-verbally (Kaland et al., 2014), and especially when they 

do not have enough cognitive resources left to correct 

perspective mistakes (Wardlow Lane & Ferreira, 2008). 

Intriguingly, speakers are even more likely to refer to 

privileged information when they are motivated to keep it 

confidential. The motivation to keep private information 

privileged further enhances its salience which, as a 

consequence, can result in it being revealed (Wardlow Lane 

& Liersch, 2012). 

It seems that despite their efforts speakers are not always 

able to monitor for perspective mistakes or to adjust their 

egocentric errors to addressees’ informational need. The 

question raised here is whether speakers’ audience design 

would benefit from a constant reminder of interlocutor’s 

informational need (i.e., perspective). Research has 

suggested that audience design is more likely to occur when 

speakers are made aware that such design is needed (Horton 

& Gerrig, 2002). We therefore suggest that guiding speakers 

through a perspective-taking process might inhibit egocentric 

anchoring, and might boost their monitoring for perspective 

mistakes. This might incite speakers to correct for egocentric 

errors such as the leakage of privileged information (Horton 

& Keysar, 1996), resulting in a references that are more 

accurately based on addressee’s perspective, and less on 

speakers’ own knowledge and attentional state. 

Current Study 

This study examines whether speakers’ elicited attention to 

addressee’s perspective influences their reference 

production. Following the assumptions of the egocentricity 

hypothesis (Keysar et al., 1998), we expect speakers in a 

baseline setting (i.e., in which perspectives are not induced) 

to automatically anchor their referential expressions to their 

private knowledge, increasing the likelihood they will refer 

to this information, compared to other-focused speakers 

whose attention is focused on their interlocutor’s perspective. 

We further hypothesize that self-focused speakers who are 

made explicitly aware of their own perspective will be more 

likely to leak privileged information than speakers referring 

in the baseline setting.  

 Based on the findings of Wardlow Lane et al. (2006), we 

additionally expect that speakers will be more likely to leak 

privileged information when this information is salient versus 

non-salient to them. That is, if speakers refer to a common-

ground figure (e.g., a circle) that has a size-contrasting match 

(e.g., a bigger circle) in their privileged ground, the size 

difference is relevant and, thus, salient to speakers themselves 

to discern. This in contrast to situations in which speakers are 

presented with a size-contrasting mismatch (e.g., a bigger 

triangle) in their privileged ground. The salience of the size 

contrast presented by matching rather than mismatching 

figures makes speakers more likely to add contrasting 

adjectives in their description of the target figure (e.g., “the 

small circle”), by which they leak privileged information. 

Finally, we expect that the salience of privileged information 

will interact with the induced perspective. Self-focused 

speakers are expected to be more likely to leak information 

when it is salient versus non-salient, compared to the baseline 

setting. Since other-focused speakers explicitly focus on 

addressee’s perspective, we expect these speakers to be less 

influenced by the salience of their private information, 

compared to the baseline setting. 

Method 

Participants  

In total, 93 student-dyads (N = 186) participated in this study. 

The data of three dyads were excluded from analyses, due to 

an error in the experimental procedure (N = 2), or due to a 

low proficiency in the language of the experiment (Dutch) (N 

= 4). The analyses were based on 90 dyads in which the 

participants were randomly assigned either the role of the 

speaker (55 women, 35 men, Mage = 22.0 years; age range 18-

34 years) or the role of the addressee (59 women, 31 men, 

Mage = 21.3 years; age range 17-27). All participants were 

fluent in Dutch, did not experience problems at discerning the 

colors used in the study, and received a small remuneration 

for their participation. 

Design  

The experimental design and procedure were replicated from 

Kaland et al. (2014), which in turn were inspired by Wardlow 

Lane et al. (2006). The experiment consisted of a referential 

communication task in which speakers were asked to 

describe mutually visible geometrical figures in such a way 

that the addressee could indicate the intended one out of a set 

of four. These four figures were physically presented on the 

table in between both interlocutors, and depicted on speakers’ 

private computer screen. From their private computer screen, 

speakers were instructed to block one figure and, 

subsequently, to identify another figure on the table in front 

of them (figure 1). The occluded figure differed either in size 

or color from the three mutually visible figures. In our 

experiment, we replicated Kaland et al. (2014) privileged 

situation and added a perspective-taking manipulation. In this 

privileged setting, one object was always blocked from 

addressee’s view and thus belonged to speaker’s privileged 

ground.  

 

 
 

Figure 1: The experimental setting in which the speaker (on 

the bottom) identified figures to the addressee (on the top). 
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Materials 

Eliciting Self- Versus Other-Focus Speakers’ self- versus 

other-focus was manipulated by asking them explicitly to 

either regard their own (self-focus) or their addressee’s 

(other-focus) perspective before they identified the target 

object. Participants were randomly assigned to one of the 

three communication settings (self-focus, other-focus, 

baseline), resulting in 30 speakers per setting. The self- 

versus other-focus was operationalized by asking speakers to 

answer a perspective question portrayed on the computer 

screen next to them. In the self-focus setting, speakers 

answered the question reinforcing their egocentric 

perspective: “Which four figures are visible to you?”. This in 

contrast to the speakers in the other-focus setting who were 

asked to regard the perspective of their addressee: “Which 

three figures are visible to your addressee?”. Speakers 

answered the question by selecting the figures on their private 

computer screen. To eliminate the possibility that the self-

focused speakers would simply select all figures as a response 

to the question, a fifth figure was added to the figures 

presented on the computer screen.  

To investigate the influence of our perspective 

manipulation, we allocated one third of the speakers to a 

baseline setting. In this setting, we did not reinforce speakers’ 

self- versus other-focus. In this way, we were able to examine 

how speakers’ reference production in the self- versus other-

focused settings would diverge from a baseline situation. 

 

Salience of Privileged Information The salience of 

speakers’ privileged knowledge was manipulated within 

communicative settings. Participants were confronted with 

40 experimental trials, consisting of 20 salient and 20 non-

salient trials. In the salient trials, speakers’ privileged figure 

was identically shaped to the target figure (e.g., both were 

circles) whereas in the non-salient trials both figures were 

differently shaped (e.g., a circle and a triangle). The salient 

trials were designed to elicit utterances that contrasted the 

target figure with the privileged one, whereas the non-salient 

trials assessed how often speakers included adjectives 

irrespective of the contrast presented. Figures in successive 

trials were never identically shaped, and half of the figures 

contrasted in size (big, small) and the other half in color (red, 

blue, green, black, grey, yellow) (Kaland et al., 2014). The 

figures’ shape, color, and position were balanced across all 

trials. This resulted in 3 x 2 x 2 design, with communication 

setting (self-focus, other-focus, baseline) as a between 

subjects’ factor, and trial type (salient, non-salient), and 

contrast type (color, size) as within subject factors. 

Procedure   

  A throw of a dice decided which participant took the role 

of the speaker. Participants were told that, when the addressee 

was able to correctly identify the target figure, both the 

speaker and the addressee would obtain one point. 

Participants were told that failing to identify the target figure 

would result in zero points obtained, and the goal of the game 

was to obtain the maximum number of points. 

 Speakers and addressees sat down on opposite sides of a 

table. Speakers were seated next to a computer screen on 

which the experimental trails were presented using E-Prime 

version 2. At the beginning of each trial, addressees closed 

their eyes while the experimenter placed four cards on the 

table. When the four cards were put in place, speakers (a) hid 

one figure from their addressee’s view by placing an occluder 

between the figure and their addressee. Subsequently in the 

other- and self-focused setting, speakers (b) answered a 

perspective question by selected either the three figures 

visible to their addressee (other-focus) or the four figures 

visible to them (self-focus). Hereafter, speakers (c) described 

the target object with just enough information so that their 

addressee was able to identify the intended figure. Speakers 

were instructed to look at the four cards on the table when 

referring to the target object. While hearing speakers refer to 

a figure, addressees opened their eyes and pointed at the 

intended figure on the table in front of them. Speakers 

subsequently (d) informed their addressee whether their 

selection was correct. Since speakers in the baseline setting 

were not confronted with a perspective-taking manipulation, 

these speakers only performed actions (a), (c), and (d). To 

ensure all steps of the procedure were executed correctly, the 

experimenter was present during the entire game. 

The experimental game ended after 40 rounds. After the 

final round, speakers indicated on a ten-point scale to what 

extent they took into account their addressee’s perspective 

during the game (1 = not at all, 10 = very much). Since audio 

recordings were made of all sessions, participants’ consent to 

making these recordings and using them for scientific 

purposes were collected. Afterwards, all participants were 

debriefed. 

Coding  

To measure speakers’ reference to privileged information 

(RPI), we counted the adjectives that matched the contrast 

between the target and privileged figure. Adjectives that did 

not contrast the target figure to the privileged one were not 

taken into account. Speakers’ RPI was calculated as a 

proportion (1 = contrasting adjective uttered; 0 = no 

contrasting adjective uttered).  

Results 

All dyads obtained the maximum of 40 points, indicating that 

they were able to correctly identify all targets. In figure 2, the 

mean proportions of speakers’ informational leakage (RPI) as 

a function of the perspective manipulation (baseline, other-

focus, self-focus), whether the target and speakers’ privileged 

figure were similarly (salient trials) or differently (non-

salient trials) shaped, and whether these contrasts were 

presented in either color or size are shown. Overall, speakers 

in the baseline setting referred to privileged information in 

half of the produced references (50%), followed by the other-

focused (45%), and self-focused speakers (29%). Across the 

three communicative settings, speakers seem to have referred 

to privileged information to the same degree for salient (43%) 

and non-salient (40%) trials.  
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Figure 2: Mean proportions of speakers’ RPI. Error bars 

represent 95% confidence intervals. 

 

The influence of the perspective manipulation and the 

interplay with the salience of speakers’ privileged 

information on the probability of privileged information to be 

mentioned was analyzed using a generalized linear mixed 

model analysis with a binomial distribution. For this we used 

the GLMER function from the lme4 package (Bates, 

Maechler, & Bolker, 2011) in R (version 3.3.0; www.r-

project.org). We constructed a maximal model that included 

a full random effect structure (Barr, Levy, Scheepers, & Tily, 

2013). This maximal model included the perspective 

manipulation (self-focus, other-focus, baseline), the salience 

of the trials (salient, non-salient), and the contrast (color, 

size) presented in the trials as fixed factors. We included 

random intercepts and slopes for both speakers and 

experimental trials. The probability distribution was set on 

binomial with a logit link function and we used parametric 

bootstrapping over 100 iterations to estimate the confidence 

intervals and p-values. When the maximal model did not 

converge, we excluded random slopes with the lowest 

variance until convergence was reached. We report the results 

of the models that were the first to converge (Barr et al., 

2013). An alpha level of .05 was used for all statistical tests. 

The models treated the baseline setting as the reference 

category, to which speakers’ RPI in the other- and self-

focused settings were contrasted. 

 
Influence of Perspective on Speakers’ RPI Speakers’ RPI 

in the self- and other-focused setting did not significantly 

differ from speakers’ RPI in the baseline setting. For non-

salient size trials, speakers in the other-focused (M = .33, SD 

= .45, b = 0.80, SE = 2.07, CI: [-3.02, 5.11]), and self-focused 

setting (M = .24, SD = .41, b = 1.28, SE = 1.66, CI: [-1.98, 

4.52]), were just as likely as the baseline speakers (M = .44, 

SD = .50) to refer to privileged information. The same held 

for non-salient color trials: other-focused (M = .55, SD = .47, 

b = 1.24, SE = 1.90, CI: [-1.67, 5.76]), and self-focused 

speakers’ RPI (M = .31, SD = .43, b = -3.31, SE = 4.41, CI: [-

12.06, 5.21]) did not significantly differ from the baseline (M 

= .54, SD = .50). This pattern also held for salient size trials: 

speakers’ RPI in the other- (M = .34, SD = .44, b = -0.07, SE 

= 1.61, CI: [-2.92, 3.38]), and self-focused setting (M = .24, 

SD = .41, b = 0.98, SE = 1.56, CI: [-1.86, 4.25]) did not 

significantly differ from the baseline (M = .46, SD = .50). 

Finally, speakers’ RPI on salient color trials in the other- (M 

= .58, SD = .46, b = 0.57, SE = 2.36, CI: [-3.38, 5.88]), and 

self-focused setting (M = .35, SD = .42, b = -3.26, SE = 4.41, 

CI: [-12.64, 4.67]) did also not significantly differ from the 

baseline (M = .55, SD = .49). 

 

Influence of Salience on Speakers’ RPI In the baseline 

setting, the salience of privileged information did not 

influence speakers’ RPI. Baseline speakers were just as likely 

to refer to privileged information on non-salient (M = .44, SD 

= .50) and salient (M = .46, SD = .50) size trials (b = 1.53, SE 

= 0.81, CI: [-0.33, 2.86]), and on non-salient (M = .54, SD = 

.50) and salient (M = .55, SD = .49) color trails (b = 0.46, SE 

= 2.04, CI: [-3.05, 4.93]). 

Baseline speakers’ RPI was also not influenced by the 

contrast presented in the trials. Speakers were just as likely to 

refer to privileged information on non-salient size (M = .44, 

SD = .50) and non-salient color (M = .54, SD = .50) trials (b 

= -1.91, SE = 1.93, CI: [-6.59, 0.97]), as on salient size (M = 

.46, SD = .50) and salient color (M = .55, SD = .49) trials (b 

= -1.91, SE = 2.23, CI: [-6.81, 1.95]).  

When the two perspective settings were contrasted to the 

baseline setting, no significant differences were found. Like 

the speakers in the baseline setting, other-focused speakers’ 

RPI did not differ between salient (M = .34, SD = .44) and 

non-salient (M = .33, SD = .45) size trials (b = -0.88, SE = 

0.90, CI: [-2.61, 0.93]), nor between salient (M = .58, SD = 

.46) and non-salient (M = .55, SD = .47) color trials (b = -

0.79, SE = 1.13, CI: [-3.10, 1.32]). The same held for the self-

focused speakers. Their RPI did not differ significantly 

between salient (M = .24, SD = .41) and non-salient (M = .24, 

SD = .41) size trials (b = -0.30, SE = 0.90, CI: [-2.03, 1.51]), 

nor between salient (M = .35, SD = .42) and non-salient (M = 

.31, SD = .43) color trials (b = -0.24, SE = 1.16, CI: [-2.58, 

1.97]).  

Like the baseline speakers, other- and self-focused 

speakers’ RPI did not depend on the contrast presented in the 

trials. Other-focused speakers’ RPI did not significantly 

differ between salient size (M = .34, SD = .44) and salient 

color (M = .58, SD = .46) trials (b = 0.64, SE = 2.71, CI: [-

4.33, 6.27]), nor between non-salient size (M = .33, SD = .45) 

and non-salient color (M = .55, SD = .46) trials (b = 0.64, SE 

= 3.45, CI: [-5.32, 8.20]). Further, self-focused speakers’ RPI 

did not significantly differ between salient size (M = .24, SD 

= .41) and salient color (M = .35, SD = .42) trials (b = -4.24, 

SE = 4.43, CI: [-13.71, 3.64]), nor between non-salient size 

(M = .24, SD = .41) and non-salient color trials (M = .31, SD 

= .43) (b = -4.24, SE = 5.11, CI: [-14.67, 5.37]). 

 

Speakers’ Self-Reported Perspective-Taking A one-way 

between-subjects ANOVA revealed that speakers’ self-

reported perspective-taking tendency significantly differed 
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between settings, Welch’s F (2,57) = 4.43, p < .05. Tukey 

HSD post-hoc comparisons revealed that self-focused 

speakers (M = 7.73, SD = 2.94) reported a significant higher 

perspective-taking tendency than both other-focused (M = 

5.62, SD = 3.63) and baseline speakers (M = 5.60, SD = 3.51) 

(both p < .05). Perspective-taking tendencies did not 

significantly differ between the other-focused and the 

baseline setting (p > .05). To investigate whether speakers’ 

self-reported perspective-taking tendency corresponded with 

their actual behavior during the game, a follow-up logit 

mixed model analysis was conducted. This model included 

speakers’ SELF-REPORT as fixed effect, a random intercept for 

subjects, and a by-subject random slope for the effect of SELF-

REPORT. P-values were obtained using the Likelihood Ratio 

Test (LRT). The LRT revealed that speakers’ SELF-REPORT 

was a significant predictor of their actual RPI, χ2 (2) = 9.90, 

p < .001. As speakers’ perspective-taking tendency increased, 

they were less likely to have leaked privileged information 

during the game, b = -2.75, SE = 0.45, p <.001.  

Discussion 

In this paper we studied whether eliciting speakers’ self- 

versus other-focus would influence their subsequent 

reference production. We found that speakers in the other- 

and self-focused settings were just as likely to refer to 

privileged information as the speakers whose perspective-

taking was not manipulated (i.e., in the baseline setting). 

Further, we did not replicate the results of (Kaland et al., 

2014; Wardlow Lane & Ferreira, 2008; Wardlow Lane et al., 

2006; Wardlow Lane & Liersch, 2012) who found that the 

salience of privileged information can boost the probability 

of it being leaked. In our study, speakers were just as likely 

to refer to private information, regardless of its salience. 

Perhaps speakers’ tendency to retain a certain reference 

strategy throughout the game could have interfered with their 

audience design (Horton & Gerrig, 2002), and the extent to 

which they were influenced by the elicited perspective and 

the salience of their privileged knowledge. 

In our study, 66% of speakers (N= 59) either referred to 

color and size contrasts on all trials, or they refrained from 

including any adjectives throughout the game. Speakers’ 

consistent referring behavior has been supported by previous 

research (Brennan & Clark, 1996), and is strengthened by 

addressees’ ability to identify the referent on the basis of 

speakers’ descriptions (Clark & Krych, 2004). Addressees 

partaking in our study were always able to correctly identify 

the intended object, regardless of the presence or absence of 

speakers’ informational leakage. Each time addressees 

correctly identified the target object, they signaled to 

speakers that the reference had been successful. This could 

have inspired speakers to keep hold of their referential tactic 

and to base their references on previous formulated 

descriptions. This tendency to be consistent could have 

interfered with our perspective-taking manipulation and the 

extent to which speakers were influenced by (the salience of) 

their privileged knowledge. Furthermore, in our study 

speakers’ leakage did not bear negative consequences. As a 

result, egocentric errors were not detected and speakers were 

not encouraged to adjust their reference production. This 

implies that increasing speakers’ awareness of the negative 

consequences associated with their leakage could reduce the 

extent to which they would leak such information. However, 

as previous research has shown (e.g., Kaland et al., 2014; 

Wardlow Lane et al., 2006) incentives to keep privileged 

information confidential might increase speakers’ attention to 

this information, thereby ironically boosting the likeliness of 

it being mentioned. Enhancing speakers’ awareness of the 

negative consequences of their leakage thus might not be the 

right solution. There are, however, other factors that should 

be considered with regard to addressing speakers’ 

consistency in reference production. 

One of these factors is the self-paced method by which 

speakers were confronted to the instructions and perspective 

manipulation. The self-paced method could have induced the 

routineness by which speakers performed the instructions and 

completed the trials. Moreover, the fact that the perspective-

taking manipulation was posed on speakers’ private 

computer screen in which perspectives were not visibly 

marked could have reduced the intrusiveness of the elicited 

mindsets. Although speakers were explicitly trained to return 

their attention from their private screen to the physical 

context shared between them and their addressee before they 

identified the target figure, the possibility exists that speakers 

were still regarding their private screen (in which 

perspectives were not marked) while formulating their 

reference. These issues could be addressed in a future study 

by allowing the experimental leader to pace the experiment 

and to expose speakers in the shared physical context to the 

perspective-taking manipulation. For example, speakers 

could be explicitly asked to indicate which figures are visible 

to their addressee (i.e., eliciting an other-focus) or visible to 

themselves (i.e., eliciting a self-focus) by using the figures 

lying between them and their interlocutor. 

Moreover, following the design of Kaland et al. (2014), 

speakers were confronted with six color manipulations 

compared to the two size manipulations. The obtrusive use of 

color could have induced speakers to refer to color contrasts 

on all of the experimental trials (Koolen, Goudbeek, & 

Krahmer, 2013), irrespective of the elicited perspective or the 

salience of privileged information. A future study could 

explore this possibility by equalizing the number of colors 

used to the number of size contrasts employed in the game. 

An interesting finding of this study that merits further 

attention is the result of speakers’ self-reported perspective-

taking tendency and its relation to their reference production. 

Ironically, speakers with an elicited self-focus reported to 

have regarded their addressee’s perspective more than the 

speakers in the other two settings. This self-reported tendency 

correlated negatively with speakers’ previous leakage 

behavior, indicating that speakers with a high perspective-

taking tendency were less likely to have leaked private 

information during the game. It thus seems that not an elicited 

other- but instead a self-focus activated speakers’ awareness 
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of their interlocutor’s informational need, reducing the 

likelihood of egocentric perspective errors to occur. 

Differences in speakers’ self-report and leakage between 

the self-focused and baseline setting can be explained by the 

presence or absence of the perspective manipulation. In the 

self-focused setting, speakers answered a question that 

enhanced their own mental representation of the scene, 

whereas in the baseline setting, perspective enhancements 

were absent. A more intriguing finding, however, is the 

occurrence of a stronger perspective-taking tendency by the 

self-focused speakers than by the other-focused speakers. 

This tendency can be explained using the objective self-

awareness theory (Wicklund, 1975). According to this 

theory, self-aware persons reflect on themselves as if they are 

an object under scrutinization. Under this scrutinization, the 

difference between their actual and required behavior, 

derived from the standards that apply to the interaction, 

becomes salient. Our self-focused speakers could have found 

themselves in such a reflective state, especially since a cue of 

their addressee’s different perspective was present (Gendolla 

& Wicklund, 2009). Speakers were able to see which figures 

were available for addressee’s selection process (and which 

one was not). As a consequence, self-focused speakers could 

have been more aware of addressees’ informational need than 

other-focused speakers, reducing the extent to which they 

were influenced by privileged information. This possible 

explanation needs further examination by exploring how 

much the self- versus other-focus perspective questions used 

in this study elicited speakers’ self-awareness. For this, the 

validated Situational Self-Awareness Scale can be employed 

(Govern & Marsch, 2001).  
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Abstract 

How do covert emotional stimuli affect decision-
making? We investigated this question by exposing par-
ticipants to subliminal visual stimuli during a computer-
ized version of the Iowa Gambling Task (IGT) to assess 
whether different categories of images (negative, neutral, 
or positive emotional evaluations) would influence deci-
sion-making behavior. Results did show sex-group inter-
actions for IGT scores. In decision learning model simu-
lations, it was found that different models were more ap-
propriate to explain the task performance for different 
sex-group pairs. Overall, women showed more of an 
ability to integrate the additive negative signals from the 
stimuli to make more advantageous decisions than the 
men; consequently, this made the men more resilient to 
the negative effects of the positive stimuli on task-
performance. When taken with existing research, the re-
sults indicate that subliminal emotional stimuli can have 
subtle, potentially sex-dependent, effects on behavior 
during the decision-making process. 

Keywords: Decision-Making, IGT, Emotion, Simulation 

Introduction 
How do covert emotional stimuli affect decision-
making and choice behavior? There have been several 
studies that have explored the processes involved in, 
and the outcomes of, decision-making behavior (e.g., 
see Lerner et al., 2015; Weber & Johnson, 2008), but 
relatively few studies that explore decision-making 
have also explicitly introduced emotional stimuli 
(Phelps & Sokol-Hessner, 2012) and even fewer have 
sought to understand the interaction between uncon-
sciously presented emotional stimuli and decision-
making. One decision-making study by Winkielman et 
al. (2005) found that subliminally presented images 
(emotional faces) influenced judgment and choice dur-
ing a series of decisions directly following the masked 
image exposure (with happy faces increasing the 

amount of a beverage poured and consumed, and the 
purchase price a participant would be willing to pay). 
These images affected the decision despite not being 
consciously perceived or semantically related to the 
series of decisions made after the exposure. Subliminal 
image presentation can also cause changes in peripheral 
physiology that may not be perceived, particularly 
measures related to activation of the LC-Noradrenergic 
system and amygdala, for example heart-rate and eye-
blink response  (e.g., Ruiz-Padial et al., 2011). These 
effects on peripheral physiology are important, as the 
areas of the brain that are shown to respond to these 
subliminal stimuli are likely causing these cascades of 
changes (Öhman & Mineka, 2001; Tamietto & de 
Gelder, 2010).  

 The Iowa Gambling task (IGT) has been used to bet-
ter explain links between changes in peripheral physi-
ology and choice behavior, as well as to better under-
stand some of the brain areas key to decision-making 
and related physiological behavior during the decision-
making process (Bechara et al., 1999).  

IGT subjects repeatedly chooses cards from 4 decks 
of cards. The payoff per card varies, and the subject is 
asked to maximize their payoff.  The decks differ in the 
payoff they give for each card; some decks give better 
average payoffs than others, although all have variabil-
ity.  The task is used to study how subjects learn to use 
the payoffs in their decision-making.  For some cogni-
tive deficits the choices are not learned very quickly. 

An important finding from Bechara et al. (1999) is 
that normal participants exhibited different skin con-
ductance response (SCR) behavior than clinical patients 
with amygdala lesions and those with lesions in the 
ventromedial prefrontal cortex (VMPFC). These dis-
tinct clinical groups exhibited different SCRs both prior 
to selecting a card from a deck and in response to re-
ceiving a net gain or loss after selecting a card; this 
difference is especially apparent in the disadvantageous 
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decks (those decks that had a negative average payoff). 
The group with amygdala lesions exhibited both a re-
duced SCR prior to selecting a card from a deck and a 
reduced SCR after receiving a reward or loss, while the 
VMPFC group showed a more attenuated SCR prior to 
the selection of a card from a deck, indicating that 
amygdala nuclei may play an important role in giving 
affective value to representations in decision-making. 
SCR response patterns by those with amygdala lesions 
indicated a difficulty with coupling an affective value 
with the different decks and the cards from those decks. 

 We sought to better understand behavioral effects of 
this unconscious emotion perception and decision-
making interaction by exposing study participants to 
subliminal emotional stimuli while they completed the 
IGT. Behavioral responses to the affective value of ob-
jects are mediated by cognitive processes that are mod-
ulated by neural processing in the amygdala 
(Moscarello & LeDoux, 2013; Panksepp et al., 2011; 
Phelps, 2006). Given that the amygdala is also im-
portant for the processing of unconsciously presented 
emotional stimuli (Tamietto & de Gelder, 2010), the 
unconscious perception of emotional stimuli may have 
behavioral effects on decision-making even if the stim-
uli are not integral to the decisions being made (e.g., 
Winkielman et al., 2005).  

We expected that decision-making would differ de-
pending on whether the subliminal image presented had 
negative, neutral, or positive evaluations. We present a 
study to test this hypothesis. Normally, in non-
pathological populations, IGT performance is largely 
dependent upon learning deck contingencies over-time. 
This can be represented somewhat as a reinforcement 
learning process (e.g., with the expectance-valence 
model or the prospective-valence model; Ahn et al., 
2008). To further explore the potential differences be-
tween groups (and, later, participant sex), we developed 
decision learning models (e.g., Ahn et al., 2008) that 
were run in simulations1; this gave us the opportunity to 
understand potential computational processes affected 
by the treatment. 

Method 
97 undergraduate students were recruited as partici-

pants for this study (52 males; 45 females). The average 
ages of males and females were similar at 20.7 and 19.8 
(respectively). Electrodermal Activity (EDA) data were 
collected for the final 66 (37 males and 29 females) 
participants (data not reported here). All participants 
were given college course extra credit.  

A filter process that removed participants who com-
pleted less than 20% of their trials due to time re-

                                                        
1 Software available at gitlab.bucknell.edu/AI-

CogSci-Group/IGT-Open/ 

strictions (max 3.5s per trial) resulted in the removal of 
4 participants’ data from further analysis; data from 93 
total participants were analyzed. The negative, neutral, 
and positive (image) groups each had 31 participants. 
We ceased participant enrollment in the study after we 
crossed a 31 per-group threshold for task-related behav-
ioral analysis and all volunteers had the opportunity to 
participate. 

Participants used a version of the IGT that included a 
fixed reward and punishment schedule for each deck 
that was the same as the schedule used for the original 
IGT by Bechara et al. (2000). A modified computerized 
version of the IGT was used that runs in Matlab and 
uses the Psychtoolbox Matlab extensions (Brainard, 
1997), which were used due to their high timing accu-
racy, community support, and cross-platform availabil-
ity. The specific software used has had IGT-specific 
timing tests done to confirm timing accuracy (Dancy & 
Ritter, 2017). 

The visual stimuli presented during the IGT were ob-
tained from the International Affective Picture System 
(IAPS; Lang et al., 1997). Table 1 lists the images used 
in the image sets used by the groups. Male and female 
pictures were matched so that, for each group, they had 
similar valence/arousal/dominance ratings and had a 
similar content subject; for example, some snake pic-
tures had different ratings between sexes within the 
IAPS manual, so those images with lower va-
lence/higher arousal ratings among the same category 
were chosen. Given that picture ratings in all categories 
differed between sexes, this method allowed more con-
sistency in mean measured quantitative ratings among 
participant sexes. 

Table 1. The IAPS images used in the experiment. 

Picture-Set Picture Numbers 
NegativeMale 1050, 1202, 1220, 1304, 1525 
NegativeFemale 1050, 1120, 1201, 1202, 1525 
NeutralMale 1670, 7006, 7010, 7080, 7175 
NeutralFemale 1670, 7004, 7010, 7012, 7175 
PositiveMale 4180, 4210, 4232, 4664, 8501 
PositiveFemale 4505, 4525, 4660, 8001, 8501 

Procedure 
Before participating in the study, all participants read 

and signed a consent form approved by the Office of 
Research Protections (ORP) at Penn State. After con-
senting to the form, all participants filled out a Positive 
and Negative Affect Schedule (PANAS) questionnaire. 
All participants who had their EDA recorded were then 
fitted with a Q sensor EDA device (Ming-Zher et al., 
2010).  

Each participant was assigned to one of three groups 
that determined which set of images they were shown: 
(a) a negative image group that consisted of images 
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with a low rated valence, and a high arousal; (b) a neu-
tral image group that consisted of images with a medi-
um rated valence and a low arousal (c) a positive image 
group that consisted of images with a high rated va-
lence and a high arousal.  

In this version of the IGT, participants had a maxi-
mum of 3.5 seconds to select a card from one of the 
four decks and if they failed to make a selection in the 
allotted time on any trial, a random deck was selected 
for them. After a card was selected from a deck, a red 
or black card was shown for 4 seconds. A (group-
dependent) image was shown in place of the back-
ground image of the box where the reward and losses 
were shown for 17 ms when the participant selected 
from deck A or B. If the participant made a selection 
from deck C or D, a plain gray background image was 
shown for 17 ms. Directly after this 17 ms, the reward 
and loss that the participant received in response to 
their deck selection was presented in the same box for 
3.5 seconds.  All images used from the image set, as 
well as the background image used throughout the task, 
were converted to gray scale. Each intertrial break last-
ed 3.5 seconds, except every 20th trial, after each of 
which the participant was asked two questions to assess 
their awareness of the task itself.  

After the IGT was completed, participants filled out a 
second PANAS questionnaire and then (as needed) had 
the EDA device removed. Participants were then asked 
“Did you discover anything new by the end of the 
game?” and were partially debriefed on the task itself. 
Participants then completed the Affective Neuroscience 
Personality Scales (ANPS) questionnaire and were fully 
debriefed before ending the study session.  

Results 
To understand the results, we used both traditional 

statistical techniques (e.g., one-way and repeated meas-
ure ANOVAs), as well as results from decision learning 
models. While the ANOVAs were useful for under-
standing general differences between participant 
groups, the decision-learning models allowed us to ex-
plore potential differences in the computational pro-
cesses that may govern group differences. 

Analysis of Initial Hypotheses 
We hypothesized that the score would be different 

between the negative, neutral, and positive image 
groups, and that performance would be highest in the 
negative image group and lowest in the positive image 
group. A one-way ANOVA for cumulative score (total 
score at the end of the IGT) did not show a statistically 
significant difference between groups (𝐹(2,90) 	=
	0.81, 𝜂. = 	 .02). We also hypothesized that score 
would improve over the course of the task (indicating a 
learning of the advantageous decks) and that this im-

provement would also differ between groups. A 3 (im-
age group) x 5 (block) mixed-model ANOVA for score 
revealed a statistically significant block factor, showing 
that learning occurred (𝐹 4,360 = 	13.22, 𝑝 <
.0001, 𝜂4. = .13), but did not show a statistically signif-
icant block:group interaction (𝐹(8,360) 	= 	0.40, 𝜂4. =
.01).  

Post-hoc Analysis 
Additional analysis of the data indicated that partici-

pant sex was a behavioral factor. Figure 1 shows mean 
cumulative scores by group for both males and females. 
The distribution of mean scores on the task among 
groups is mirrored between males and females; the 
mean cumulative score for the positive group among 
females (−2.4) is closer to the negative group mean 
cumulative score in male participants (−3.4) than the 
positive group mean score in male participants (11.6). 

 

Figure 1 Cumulative score for male (left) and female 
(right) participants at the end of the task. (The error 

bars represent the standard error means) 

A 2 (sex) x 3 (group) ANOVA for cumulative score 
showed a marginally statistically significant sex:group 
interaction (𝐹 2,87 = 	2.77, 𝑝	 = 	 .07, 𝜂4. = .06). A 
2x3x5 mixed-model ANOVA for score showed a sta-
tistically significant block factor (𝐹 4,348 =
	13.55, 𝜂4. = .13) and a statistically significant 
block:sex:group interaction (𝐹 8,348 = 	2.12, 𝑝 =
	.034, 𝜂4. = .05) indicating a difference in trends be-
tween sex:group pairs. 
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Thus, we see that the effect of stimuli valence had an 
effect on the cumulative score on this task, but that the 
positive and negative valence images appear to have 
different effects on men and women. 

Using Decision-Learning Models 
Though using methods such as those used above are 

useful for finding differences between groups, simula-
tions of decision-learning models can also be useful as 
they allow one to explore theoretical aspects of the 
computation leading to learning and decision-making 
performance. We ran simulations of decision-learning 
models to explore how different groups may have eval-
uated positive and negative payoffs (utility), how they 
learned these utilities after experiencing them (learning 
rule), and how these learned expectations may have 
influenced participants’ actual choice (choice probabil-
ity rule). This resulted in simulation parameter sweeps 
on 8 total models (2 per category); each model was run 
100 times during the parameter sweep using the Mind-
Modeling@Home cognitive research system.  

Functions Used to Construct the Models The two 
utility functions used were the expectancy utility 
function (hereinafter referred to as EU) and the prospect 
utility function (hereinafter referred to as PU). EU 
contains a parameter meant to specify a model’s 
attention to loss (𝑤 in eq. 1). Instead of assuming a 
subjective utility that is linearly proportional to the 
payoff amount, PU uses a non-linear function (e.g., 
Tversky & Kahneman, 1992) to better account for the 
gain-loss frequency effect (whereby multiple small 
losses have a larger effect on choice behavior than a 
single loss equal to the sum of the smaller losses. In 
(eq. 2) 𝑛𝑒𝑡(𝑡) represents the net amount gained (or lost) 
on trial 𝑡, 𝑤 is a loss-aversion parameter, and γ governs 
the shape of the equation.  

𝑢 𝑡 = 1 − 𝑤 ∗ 𝑟𝑒𝑤 𝑡 − 𝑤 ∗ 𝑙𝑜𝑠𝑠(𝑡)                      (1) 

𝑢 𝑡 =
𝑛𝑒𝑡(𝑡)B																				∀	𝑛𝑒𝑡 𝑡 	≥ 0	
–𝑤 ∗ 	 𝑛𝑒𝑡 𝑡 B					∀	𝑛𝑒𝑡 𝑡 	≥ 0

               (2) 

For learning, the Rescorla-Wagner, or delta, rule 
(Rescorla & Wagner, 1972) and the decay reinforce-
ment rule (Erev & Roth, 1998) were used in separate 
decision models. In the Rescorla-Wagner rule (eq. 3) α 
represents a learning rate that determines the effect of 
the the prediction error (the utility minus the current 
expectancy). The same parameter provides a slightly 
different representation for the decay reinforcement rule 
(shown in e. 4). Here, the rule represents a recency pa-
rameter, which determines discount of past expectancy 
when updating with the new utility. Both the delta and 
decay rules are represented in Table 2 as Del and Dec, 
respectively. 

𝐸G 𝑡 = 	𝐸G 𝑡 − 1 + 	𝛼 ∗ (𝑢 𝑡 −	𝐸G 𝑡 − 1 )               (3) 

𝐸G 𝑡 = 	 	𝛼 ∗ 𝐸G 𝑡 − 1 + 𝑢 𝑡                (4) 

Finally, every model had one of two choice rules: tri-
al-dependent and trial-independent. These rules define a 
parameter that affects the probability of selecting a card 
from each deck θ in equation 5. In this case, θ affects 
the propensity to explore or exploit the problem space. 
When the parameter is low, the model is more likely to 
explore and select a random deck, and when it is higher 
it will exploit its knowledge and be more likely to select 
the decks that have a higher utility. The trial-dependent 
rule (eq. 6) is affected by the number of trials which the 
model has completed and the consistency parameter c, 
while the trial independent rule (eq. 7) is only affected 
by the parameter c (and thus static during the task).  

𝑃 𝐷G 𝑡 + 1 = 	 𝑒L M ∗	NO M 𝑒L M ∗	NP MQ
RST               (5) 

𝜃 𝑡 = (𝑡 10)V                  (6) 

𝜃 𝑡 = 3V − 1                 (7) 

Model Results As one may predict from the human 
results reported above, the models that best matched 
human behavior differed between sex-group pairs. To 
find the best matching models we calculated the R2 for 
each model-parameter-set combination using the 
proportions of cards selected from each deck during 
that particular block (i.e., four proportions adding to 1.0 
in each of the five blocks). This measure was chosen 
because it allowed us to further specify how different 
processes (i.e., models) may explain not only the 
overall performance (i.e., score), but the proportions of 
cards selected from decks in each block that define the 
overall performance. Table 2 lists the top model (and 
related parameters) for each sex-group combination. 

Table 2. Models and corresponding parameters that best 
matched each sex:group pair. Dec = Decay; Del = 

Delta; TI = Trial Independent; TD = Trial Dependent. 
All R2 (19) p < .01  

Sex:Group Model c 𝒘 𝜸 𝜶 R2 

Male:Neg PU-Dec-TI -9.25 5.2 .35 .15 .87 
Male:Neu PU-Dec-TD -8.25 4.1 .20 .93 .89 
Male:Pos PU-Del-TI -1.50 .13 .00 .75 .88 
Female:Neg PU-Del-TI -5.50 2.5 .65 .43 .87 
Female:Neu PU-De1-TI -6.75 6.8 .15 .30 .92 
Female:Pos PU-Dec-TI -2.50 0.5 .25 .25 .89 

 
While there were varying parameters for all models a 

variant of the prospect utility (PU) model showed the 
greatest match to all of the sex:group pairs. The same 
model had the highest R2 for the negative scoring per-
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formance group for each sex (females in the positive 
group and males in the negative group). The 
male:neutral group was the lone group pair to show the 
highest R2 with a trial dependent model. 

Discussion and Conclusion 
These data indicate that the subliminal emotional 

stimuli had an effect on decision-making. There appears 
to be an important interaction between sex and emo-
tional decision-making. Even though the stimuli were 
presented subliminally and were non-integral to the 
choices made, participants exposed to affectively 
charged stimuli responded differently to the outcomes 
of deck selections and performed better or worse on the 
task, depending on sex and the valence of the stimuli.  

We did not find statistically significant evidence for a 
between group (negative, neutral, or positive) differ-
ence in IGT scores. However, we did find that there 
were significant differences between groups for IGT 
scores when factoring in participants’ sex. What’s 
more, mean scores among males showed a trend oppo-
site of females across groups. These results seem to 
indicate that the stimuli had opposite effects on males 
and females. 

This may be due to these stimuli affecting portions of 
the affect-memory coupling portion of the decision-
making process that can go unnoticed without con-
scious reflection by the decision-maker. This seems 
likely given the mirrored distributions, but with similar 
performance between men and women in the neutral 
group. Indeed, the simulation model results showed that 
males in the negative group and females in the positive 
group were similar to the same class of model. 

Similar to the results from a previous study by Aïte et 
al. (2013), the image-deck congruency also affected the 
participant’s decision-making behavior, albeit different-
ly in men and women. Though females exhibited a pat-
tern similar to Aïte et al. (2013) with the cumulative 
score for the negative image group being the highest 
and the cumulative score for the positive group being 
the lowest, males exhibited the opposite behavior and 
the image effect was intensified. Indeed, a more recent 
review points to a difference between men and women 
in decision-making behavior during the IGT (van den 
Bos et al., 2013). In the study presented here, women 
perhaps showed more of an ability to integrate the addi-
tive negative signals from the stimuli to make more 
advantageous decisions than the men; this explanation, 
would also apply to men, making them more resilient to 
the negative effects of the positive stimuli on task-
performance. The difference in this affective signal 
integration may be partially due to the differences in 
amygdala activity found in men and women (e.g., 
Cahill, 2006; Hamann et al., 2004). These differences 
may have also led to a difference in memory processes 

predominantly used to make decisions, as the differ-
ences in models (particularly learning processes) may 
suggest. A decay-based learning rule would better lend 
itself to a more hippocampal/declarative memory, time-
dependent (e.g., Anderson et al., 1999) emphasized 
decision-making process. 

While this study yields interesting and worthwhile 
results, there were limitations in the study that restricted 
the scope of analysis and discussion. Our study is 
somewhat limited in that we were unable to compliment 
the results with neuroimaging data (e.g., fMRI). Neu-
roimaging data could allow more comment on the neu-
ral process mediated reasons that we found a difference 
in decision-making performance between groups that 
was dependent on participant sex. 

Furthermore, the model analysis could be expanded 
in the future. Indeed, it may also be interesting to inte-
grate an affective component into the simulations to 
more directly account for the stimuli. This would allow 
a finer analysis of the computational processes at work, 
albeit with a more complex model. 

The aim of this study was to better understand how 
non-integral, subliminal stimuli may affect decision-
making behavior and physiological responses during 
decision-making.  Though we found some expected 
image-deck congruency effects, these were not as prev-
alent as originally hypothesized and participant sex also 
played a role in how decision behavior was uncon-
sciously moderated by the stimuli. More study is neces-
sary to better understand how these unconsciously per-
ceived stimuli are affecting the process of decision-
making.  

Nonetheless, this work provides evidence that non-
integral subliminal stimuli may affect decision-making 
behavior at several points in the process depending on 
stimuli characteristics relative to the decision-maker, 
and reward and punishment contingencies present in the 
series of decisions. The work also provides evidence 
that methods of affective intervention during decision-
making (e.g., presentation of an emotionally charged 
image to an individual as a part of a decision to pur-
chase an item) should take into consideration the poten-
tial effects of the stimulus on males and females. The 
stimulus will likely have dissimilar effects and may 
have completely contrasting effects on individual 
choices based upon the sex of the decision-maker; this 
could lead to unintended behavioral consequences. 
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Abstract 

To familiarize herself with a user-interface of a software 
system, a user needs practice. With practice, a user's think 
time gradually decreases—the novice to expert transition. We 
propose a queueing model that accounts for this transition in 
analyzing the performance of a distributed software system. 
We solve the model using deterministic simulation. Our 
model captures system performance in terms of system 
response time. We use the model to demonstrate how users—
who are at various experience levels in the novice to expert 
continuum—may affect the system response time. 

Keywords: User Think Time; System Response Time; 
Queueing Network, Novice to Expert Transition. 

Introduction 

Nowadays, distributed systems are getting deployed in 

cloud since cloud computing allows for dynamic scaling of 

computational resources as required on a pay-per-use basis. 

This relieves the providers of cloud system services from 

buying and maintaining data centers thereby reducing the 

operational cost. 

The performance of a cloud system can get affected due 

to novice to expert transition as the end users of the system 

learn to use the system through its user interface. When a 

user learns, gradual decrease in her think time occurs. Once 

a software system has responded to a request that was 

submitted by an end user (through a user interface), the user 

think time (UTT) refers to the number of seconds the user 

takes to plan before submitting the next request to the 

system. The request submission is usually accomplished by 

clicking an icon on a computer screen. This think time is 

negatively correlated to the user’s expertise level—lower 

expertise level leads to larger think time and higher 

expertise level leads to smaller think time. The system 

workload is affected as a user continues to learn using a 

system. A novice (one having lower expertise level) requires 

larger UTT and therefore submits less number of requests 

per unit time (to the system) compared to an expert (one 

having higher expertise level). Consequently, as UTT of a 

user gradually decreases with practice (i.e. repeatedly using 

the system), the number of requests submitted to the system 

gradually increases, thereby impacting the system response 

time (SRT). 

Performance evaluation of distributed systems has always 

considered the UTT as a random variable with a constant 

mean that does not change with practice (Trivedi, 2005). It 

never considered novice to expert transition during 

evaluation. 

In this work, we focus on cloud-based systems where the 

number of computer terminals is fixed at any given point of 

time. Examples abound—ATMs for a banking system, 

check-in terminals for an airline at an airport, navigation 

training simulators for aircraft pilots—that are deployed in 

cloud. For our modeling purpose, we assume a hypothetical 

scenario of a tutorial that is run from inside a classroom. 

The tutorial consists of learning the fixed locations of 

buttons on a graphical user interface (GUI) of a cloud 

system. The classroom has a fixed number of computer 

terminals, one per student, for the tutorial. No sooner a 

student finishes the requirements of the tutorial, she is 

replaced by a new one who is assumed to be at the lowest 

expertise level. 

To realize the above tutorial scenario, we choose a closed 

queuing network as our system performance model. Choice 

of a closed queuing network helps us in two ways—one, it 

allows us to conform to the number of terminals being 

constant at any given point of time during the tutorial. 

Secondly, it enables us to account for the decreasing UTT of 

a user that could occur with repeated use of the interface. 

The key contribution of our work is as follows: We 

demonstrate the effect of novice to expert transition on SRT 

of distributed systems. We accomplish this through a 

queueing model. The model accounts for novice to expert 

transition. Through our model, we show how users—who 

are at various experience levels in using a system—may 

affect the system response time. 

Novice to Expert Continuum: In the Context of 

Human Computer Interaction 

We briefly explain what a learning curve is in the 

traditional context of human computer interaction (HCI). 

Any new skill takes time to learn. End users take a while 

to ramp up on a new user interface; software designers take 

a while to ramp up on a new project. Learning refers to the 

acquisition of skill in performing a task through repeatedly 

executing the same task over time. People get faster and 

make fewer errors with practice—i.e. with repeated task 

execution. 

In the domain of user interface, the core focus is always a 

human-centered approach to design—be it the design of a 

smartphone interface or the interface of a desktop screen. 

By doing so, we concede that the target of our user 

interfaces is a population of users with a wide span of skills. 

We must be aware that these skills change over time as a 

result of learning. If there are multiple users, they may 

operate at different expertise levels at the same time due to 

differences in their experience (Ritter, Baxter, Kim, and 

Srinivasmurthy, 2013). Such variation in user expertise 

often calls for a planning of computational resources that 

would ensure usability satisfaction with respect to SRT for 

users across all expertise levels. 

To take learning into account, what we need is a graph 

that plots UTTs at different practice sessions for a given 
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task. A graph like this is popularly referred to as the 

learning curve—the novice to expert continuum. Figure 1 

elucidates the three level hypothesis of learning postulated 

by Fitts (1964), Anderson (1982), and Kim and Ritter 

(2015). The hypothesis posits that a learning curve is 

roughly divided into three levels of user expertise. The first 

level is where a user is a novice trying to acquire the 

knowledge to execute a trial. The UTT is usually high at this 

level. The next level is the intermediate level. At this level, 

the user tries to consolidate the knowledge acquired in the 

novice stage. The final level is the expert level. At this third 

level, the user fine tunes the existing knowledge—users still 

get faster at the trial, although the improvements get 

diminishingly smaller (Ritter, Baxter, Kim, and 

Srinivasmurthy, 2013). 

 

In HCI, a learning curve for a user interface task is often 

obtained through empirical studies. Here, an interface under 

study is evaluated in a standalone mode of the client device 

such that the client software does not have to depend on 

anything other than the device it is hosted on.  As a result, 

the delay between the submission of a user request (in form 

of a finger-press or mouse-click on the interface) and the 

corresponding response is assumed 0. The interface is 

evaluated through an interactive task. Multiple human 

subjects are sampled from a population of novice users of 

the task. The task involves completing a set of trials—let a 

trial be the submission of a user request to the software 

system (in the context of this paper). Each of the users is 

given equal number of practice sessions to perform the task. 

The time to complete every trial of the task is measured at 

each practice session. This measurement is taken for every 

subject over all the practice sessions. The mean time to 

complete a trial at a given practice session—mean trial 

completion time—is then obtained by averaging over the 

trial completion times measured across all the subjects at 

that session. Since the delay between every user request and 

its response is assumed 0, the mean trial completion time at 

a given practice session (which normally would have been 

the sum of mean user think time and mean system response 

time at the session) reduces to the mean user think time at 

that session. 

Closed Queueing Network 

A queueing network can be thought of as a network of 

servers with a queue of jobs (e.g. requests submitted due to 

mouse-click actions) at each server (Trivedi, 2001). We 

think of a server as being a world-wide-web server (web 

server), an application server (app server) or a database 

server (DB server).  

In this work, we exploit a type of queueing network 

known as closed queueing network. An interactive terminal 

driven system is often modeled as a closed queueing 

network with a fixed set of terminals assumed to be part of 

the network. Each terminal models a delay center in the 

network. A terminal submits a request and waits for the 

response. It cannot submit another request until the response 

of the previous request returns. At any given point of time, 

the number of terminals in the network remains fixed.  

A notion of think time exists in a closed queueing 

network. It is the time at each terminal between receiving 

the response of a request and sending out the next request. 

The idea of think time in a closed queueing network makes 

it a natural candidate for modeling an interactive system 

where a user ponders between the completion of a service 

request and the initiation of a new service request—the time 

to ponder thus being the UTT. 

A hypothetical Scenario to predict the 

Learning Effect on System Performance 

Our hypothetical scenario consists of the followings: a 

tutorial that enables a student to learn the fixed locations of 

buttons on a GUI; a location learning task that is repeatedly 

executed by a student in the tutorial; and a software system 

that is used to conduct the tutorial. The tutorial involves the 

learning of button locations on the GUI only. It does not 

involve learning of any other type of content. 

Note that the task of learning stable layouts of GUI items 

is not uncommon in real life. While such tasks are routinely 

executed on banking ATMs and interactive kiosks on a daily 

basis, they are also prevalent in aviation training, command 

and control scenarios, and process control plants (Waldron 

et al., 2005). 

Tutorial scenario 

The focus of this paper is to demonstrate the effect of a 

learning curve on the performance of a 3-tier cloud system. 

To do so we imagine a tutorial scenario. We assume that a 

student attending the tutorial interacts with the system 

through a web-based user interface at a dedicated computer 

terminal. 

The aim of the tutorial is to learn the location of buttons 

on a stable GUI of the system. The tutorial involves a given 

Figure 1. Three Level Hypothesis—Change in 

user think time across three levels of learning. 

The thick continuous line indicates continuous 

practice.  (Figure adapted from Kim and Ritter 

(2015)). 
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number of practice sessions. The practice sessions are 

assumed to be separated from one another by a constant 

period of inactivity. Each student is required to complete all 

the practice sessions. 

The tutorial is conducted inside a classroom having a 

fixed number of computer terminals. We assume that one 

student uses one terminal only for her practice sessions. The 

tutorial begins with one student at every terminal. 

Different students may complete their practice sessions at 

different points of time. It is assumed that when a student 

completes all her practice sessions, she is replaced by a new 

student joining the tutorial at the lowest expertise level—the 

first practice session. 

Location learning task 

We assume a simple location learning task that a student 

will repeatedly perform across multiple practice sessions in 

the aforementioned tutorial scenario. A location learning 

task is one where a student learns the locations of graphical 

items present on a user interface, given that the position (i.e. 

location) of the items on the interface do not change. We 

adopt such a task from Ehret's empirical study (Ehret, 

2002). The interface on which the task is performed is a 

graphical layout that consists of 12 unlabelled square 

buttons arranged along the periphery of a circle. The 

locations of these square buttons are to be learned through 

practice. We refer to this interface as Unlabelled Interface. 

The twelve square buttons are mapped to twelve distinct 

colors. The colors are not visible; they stay hidden. The 

circle of square buttons surrounds a centrally located 

rectangular button. While every square button in the 

periphery acts as a potential target, the rectangular button at 

the centre of the circle acts as a cue color. 

We refer to the task performed in learning the Unlabelled 

Interface as "Ehret's task". One practice session of Ehret’s 

task consists of twelve trials. Each trial involves first 

locating and then clicking a square button that corresponds 

to a color displayed on the rectangular cue button. In a given 

practice session, the cue color is different for each of the 

twelve trials—every trial in a practice thus involves finding 

a target that is different from the rest eleven targets. In a 

trial, if the cue color is the color that is associated with the 

clicked square button, the user has found the target—the 

trial is therefore considered complete; otherwise the trial is 

to be repeated. For example, in a trial when the color in the 

rectangular cue button is green, the trial would be deemed 

complete only if the square button mapped to green is 

clicked by the user, not otherwise. 

When Ehret conducted this task, he considered only the 

completed trials. We do the same while considering human 

learning in our model—we assume that every trial ends up 

finding the desired target. This helps us keep our model 

simple. 

In Ehret's study, several human subjects had performed 

multiple practice sessions of Ehret's task on a standalone 

desktop computer with no internet connection. As a result 

the delay between the submission of a user request (in form 

of a mouse-click) and the corresponding response was 

assumed 0. We therefore consider a trial completion time in 

Ehret's study to be essentially a user think time (UTT) for 

the modeling purposes in this paper. 

In our model, we utilize the mean trial completion time 

corresponding to each practice session of Ehret's task as the 

mean user think time for that session. We incorporate a 3-

tier, cloud-based distributed system that is responsible for 

processing a submitted user request (mouse-click on a 

square button). We assume that this system processes the 

mouse-click and returns the response—the cue color for the 

next trial—after a non-zero delay (the delay being the 

system response time, SRT). 

Software System 

Figure 2 shows the software architecture of our 

hypothetical cloud-based distributed system that is used for 

conducting the aforementioned tutorial. We analyze this 

system in this work. 

 

 
The system consists of 3 tiers. One or more Web servers 

run in the first tier (tier-1), one or more application servers 

(App servers) run in the second tier (tier-2) and one or more 

database servers (DB servers) run in the third tier (tier-3). 

The servers run of virtual machines (VMs). VM is a term 

used in cloud computing. It refers to a virtual (i.e. emulated) 

host. Similar to a physical host (computer), a VM can run an 

operating system as well as other processes. A VM can be 

acquired, networked, or released on demand through 

software based mechanisms. We assume that at any given 

tier, one or more VMs can be provisioned, each running a 

single instance of a server relevant to that tier. 

Students and their 
web-based user 

interfaces 

  

 Web Server 

VM 
 Web Server 

VM 

 App Server 

VM 
 App Server 

VM 

 DB Server 

VM 
 DB Server 

VM 

 

balanced load  

balanced load  

balanced load  

Figure 2. Our hypothetical 3-tier, cloud-based 

distributed system that is used to accomplish our 

tutorial scenario. 

 Tier-1  

 Tier-2  

 Tier-3  
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We assume that the workload is equally distributed 

among the servers at any given tier. We indicate this in 

Figure 2 using the phrase "balanced load".  

The student users access the application at the web 

servers through their web-based user interfaces. 

Control flow of a trial 

A trial refers to first locating and then clicking a target 

square button on Ehret's Unlabelled Interface. In a trial, first 

a user spends time in reasoning and planning where the 

target square button would be. Then she submits a request 

to the system by clicking the potential target. Here, a 

request refers to a job that is generated due to a button-click 

and that is to be subsequently processed by the software 

system (Figure 2) starting from tier-1 and until tier-3. We 

assume that a request will be processed exactly once (in a 

server) at each tier. After completion of processing at the 

third tier, a response corresponding to the processed request 

is returned to the user. We assume that a request incurs a 

waiting time in the server’s queue before being processed, if 

the server is busy. The request then incurs a service time for 

getting processed in the server. 

The request is first sent to a Web server in tier-1 for 

processing. If the Web server is busy then the request needs 

to wait in the server’s queue before getting processed.  

Once the processing of the request at tier-1 is finished, the 

request is redirected to an App server in tier-2. If the App 

server is busy then the request needs to wait in the server’s 

queue before getting processed.  

Once the processing of the request at tier-2 is finished, the 

request is redirected to a DB server in tier-3. If the DB 

server is busy then the request needs to wait in the server’s 

queue before getting processed.  

Once the processing of the request is finished at the DB 

server, the response corresponding to the request is sent 

back to the user. At this point, the trial is complete. We 

assume that the response returned to the user contains the 

information about a new cue color whose associated button 

is to be located (on the interface) in the next trial. 

A trial thus incurs two delays. One is the time spent by a 

user in reasoning and planning where the target square 

button is located, given a cue color. This delay period is the 

user think time (UTT). The other is the system delay due to 

waiting times and service times incurred by the request 

between the click of a target button on the user interface and 

the return of the response. This second delay is the system 

response time (SRT). 

Once all the trials of a practice session are complete, there 

is period of inactivity before the first trial of the next 

practice session begins—this period of inactivity is the inter 

practice time. 

A Queueing Model Considering the Effect of 

Novice to Expert Continuum 

A user with lower expertise level requires larger UTT and 

therefore submits less number of requests per unit time to 

the system. In contrast, a user with higher expertise level 

requires smaller UTT and therefore submits more number of 

requests to the system. Thus, as UTT of a user gradually 

decreases with practice, the number of requests submitted to 

the system gradually increases. The decreasing UTT thus 

influences the system workload which in turn affects the 

waiting times of the requests and consequently, the SRT. 

Keeping this in mind, we model our hypothetical distributed 

system as a closed queuing network. 

The queuing model parameters, their meaning and their 

values are summarized in Table 1. The parameter values are 

specified inside bold parenthesis in the right column of the 

table. Each parameter is explained in due context as our 

work unfolds. Since the queueing network is a closed one, 

the total number of terminals (concurrent users) N in the 

system is constant at any point of time. An individual 

terminal user initiates a practice session p by first thinking 

for a certain amount of time with mean up (mean user think 

time per trial of practice session p) and then submitting the 

first request of that session to the system. After the 

completion of the request, the user thinks again for a time 

with mean up and then submits the subsequent request of the 

practice session p. 

Once a user finishes T number of trials needed to 

complete a practice session, she takes a break for some time 

with mean  (mean inter practice time). The user then 

proceeds with the next practice session. The user completes 

P practice sessions in total before leaving the system.  A 

departing user is replaced by a new novice user who begins 

her practice at practice session 1. 

We assume that 1 is the mean service time of each Web 

server replica at tier-1, 2 is the the mean service time of 

each App server replica at tier-2, and 3 is the mean service 

time of each DB Server replica at tier-3. 

 
Table 1. Model Parameters 

Parameter Meaning 

P 

Total number of practice sessions assumed to be 

completed by a user before leaving the system 

(     ).           (P = 15 sessions) 

N 

Number of computer terminals (concurrent 

users). Once a user completes P practice sessions, 

she leaves the system and a new novice user 

occupies the terminal. The new user begins her 

practice at practice session 1. N thus stays fixed 

during a simulation run, thereby abiding by the 

“constant number of customers” requirement for 

a closed queueing network. (     ).    

(Simulation data collected at N = 120 

simulated concurrent users) 

Np 

Number of concurrent users at practice session p 

at the start of a simulation run (     ) where 

N1 + N2 + ... + NP = N. This is applicable when 

human learning is considered. 

T 

Number of trials to be completed in a practice 

session. This is assumed to be equal for all 

practice sessions. (T = 12 trials per session) 

ri,p 
Actual number of completed trials in practice 

session p at terminal i during the simulation. 
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 Mean inter practice time (1 sec) 

1 Mean service time at tier-1  (0.5 sec) 

2 Mean service time at tier-2  (0.5 sec) 

3 Mean service time at tier-3  (0.5 sec) 

up 

Mean User Think Time per trial of 

practice session p   (u1 = 12.5, u2 = 10.6,  u3 = 

8.9,   u4 = 6.8,   u5 = 6.5, u6 =  6.1,   u7 = 5.1,    u8 

= 4.2,   u9 = 4.3,   u10 = 4.3, u11 = 3.1,  u12 = 2.7,   

u13 = 2.9,  u14 = 2.5,  u15 = 2.2. The values are in 

seconds. They are obtained from Figure 3) 

 

The system response time of a request is the time between 

the arrival of the request at a tier-1 server to the completion 

of the request at a tier-3 server. This time includes the 

waiting times at the queues of the relevant servers at 

different tiers and the service times of those servers. This 

implies that the SRT of a request is affected by the rate of 

request submissions (i.e. the number of requests submitted 

to the system per unit time) in addition to the service times 

of the servers. 

User Think Time when human learning is not 

considered: When human learning is not considered, the 

think times of a user across all practice sessions will be 

identically distributed random variables with same mean u1 

= u2  ... = uP. 

User Think Time when human learning is considered: 
When human learning is taken into account, the think times 

of a user across all practice sessions will be identically 

distributed random variables with unequal means u1 ≠ u2  ... 

≠ uP. Here, we take unequal means instead of purely 

decreasing means because of the following reason: 

Although a learning curve obtained through empirical 

studies show an overall decreasing trend in user think time 

with practice, sometimes it may exhibit exceptions in form 

of increased user think times at some practice sessions 

possibly owing to user fatigue. 

We accomplish the analysis of our queuing model through 

deterministic discrete-event simulation. For simplicity, we 

assume that the user think times, the service times of the 

servers, and the inter practice time are deterministically 

distributed. 

Let si,j,p denote the system response time for a trial j of 

practice session p by a user at terminal i. During every 

simulation run, we record the response times si,j,p. Let ri,p 

denote the number of completed trials of practice session p 

at terminal i. 

 

The Mean System Response Time (Mean SRT) per trial     

of practice session p,  where p = 1,2, …, P can be estimated 

as: 

    
        

    
   

 
   

     
 
   

 

The numerator of the above equation denotes the total 

system response time of all the trials of practice session p 

completed from all the terminals. The denominator 

represents the number of those trials. 

Model Results 

We use the human learning curve observed by Ehret 

(2002) as an input to our model.  This empirical curve of 

human learning was measured when human subjects 

executed Ehret's task—the task to learn the locations of 

square buttons on an Unlabelled Interface explained earlier. 

Figure 3 shows the learning curve. The curve is in terms of 

the mean user think times across the first 15 practice 

sessions completed by the sixteen human subjects. Subjects’ 

point of regard was measured as they performed the task. 

The eye data was collected via an ASL 5000 eye-tracker. 

Our simulated users are assumed to execute the 

aforementioned Ehret’s task. The simulation emulates the 

hypothetical tutorial scenario explained earlier. 

The simulated tutorial is assumed to start with a fixed 

number of computer terminals—one student using one 

terminal only. Once a user completes all the 15 practice 

sessions she leaves the system.  A departed user is then 

replaced by a new novice user who begins her practice at 

practice session 1. 

 
 

We show how users—who are at various experience 

levels in using a system—may affect the system response 

time. To do so, we run our simulation model with an initial 

proportion of users who are at various expertise levels.  

We refer to the learning curve of Ehret's task (Figure 3). 

Let [N1 / N6 / N11]  denote the initial proportion of users 

where N1 users begin their practice at session 1, N6 users 

begin their practice at session 6, and N11 users begin their 

practice at session 11 at the start of a simulation run. We 

assume that there are no users at other expertise levels at the 

start of the simulation run, i.e. N1 + N6 + N11 = N. Here, we 

choose the practice sessions 1, 6 and 11 assuming that 

novice-level experience starts at session 1, intermediate-

level experience starts at session 6 and expert-level 

experience starts at session 11. Our choice is dictated by the 

Figure 3.  Human learning curve for Ehret's task 

(Ehret, 2002). 
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three level hypothesis of learning (discussed earlier; see 

Figure 1) applied on the learning curve of Figure 3. 

We consider 120 concurrent users in the system, i.e. N1 + 

N6 + N11  is 120. We perform one logical-hour analysis for a 

VM configuration where every tier of our three-tiered 

system has 6 VM replicas. 

Table 2 shows mean SRTs                  ,                                and  

                  for two initial proportions of users [120/0/0] and 

[40/40/40]. Here                   refers to    , the Mean SRT at 

practice session 1;                                refers to    , the Mean SRT 

at practice session 7; and                     refers to         , the Mean 

SRT at practice session 15. 

With respect to analyzing the initial user proportion 

[120/0/0] for one logical-hour, the reason for low mean SRT 

per novice trial (2.25 sec) but high mean SRT per expert 

trial (7.22 sec) is as follows: In this case, the system is 

transiting from all-novices to all-experts. The user think 

times (UTTs) at the novice level are substantially higher 

than those at the expert level. Therefore when all the users 

are at novice level, the rate of request submissions (to the 

system) is lower compared to all-experts. This leads to less 

waiting times during novice request executions and higher 

waiting times for expert request executions. 

 

Table 2. Mean SRTs                   (i.e.      ),                                (i.e. 

     ) and                     (i.e.        ) for different initial proportions 

of users. One logical-hour analysis. VM configuration 

consists of 6 VM replicas per tier.  N = 120 users. 

Initial User 

Proportion 

[N1 / N6 / N11] 

                 
(sec) 

                              
(sec) 

                 

(sec) 

[120/0/0] 2.25 5.12 7.22 

[40/40/40] 4.36 4.5 5.03 

 

On the contrary, the mean SRT of 5.03 sec per expert trial 

is less in case of [40/40/40] in comparison to 7.22 sec for 

the proportion [120/0/0]. This is found from a one logical-

hour analysis. The reason is as follows: In case of [120/0/0], 

all the users start at the novice level. They then transition to 

the intermediate level almost at the similar time. Finally, all 

the users transition from the intermediate to the expert 

level—again, almost at the similar time. Once at the expert 

level, the rate of request submissions by a user is higher in 

comparison to her rate of submissions either at the 

intermediate or at the novice level. On top of that, since 

almost all the users have transitioned to the expert level, an 

expert trial has no choice but to compete for resources 

against majority of the trials which are also occurring at the 

expert level. In contrast, for the case [40/40/40], an expert 

trial competes for resources against a mixture of novice, 

intermediate and expert trials. Consequently, the mean SRT 

for an expert trial is higher in case of [120/0/0] than the 

proportion [40/40/40]. 

Let an example SRT requirement be as follows: “The 

mean SRT should be less than or equal to 5.5 sec”. Table 2 

suggests that the VM configuration (6 VM replicas per tier) 

will satisfy the threshold of 5.5 sec for only the proportion 

[40/40/40] in one logical-hour analysis since all of                 ,  
                              and                     are below the threshold for that 

proportion. The other proportion [120/0/0] will not satisfy 

the threshold since                    = 7.22 sec being more than 5.5 

sec, the proportion will not be able to meet the SRT 

threshold for the expert trials. 

This analysis of the effect of user proportion on SRT can 

be used by the system analysts when the workload trend for 

the system under analysis is known. An example workload 

trend could be a plot of initial user proportions of 120 

concurrent users of the system against different times of the 

day obtained from the historical data of the system's usage. 

Suppose the plot shows an initial user proportion [120/0/0] 

at 8am and [40/40/40] at 3pm. Our aforementioned one 

logical-hour analysis predicts that from 8am to 9am, the 

configuration of 6 VM replicas per tier would not satisfy the 

threshold SRT of 5.5 sec. But, the same configuration would 

ensure usability satisfaction (with respect to SRT) across all 

expertise levels from 3pm to 4pm. 

Conclusions 

We propose a queueing model that accounts for novice to 

expert transition in analyzing the performance of a 

distributed software system. Our model captures system 

performance in terms of system response time. We use the 

model to demonstrate how users—who are at various 

experience levels in the novice to expert continuum—may 

affect the system response time. 
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Abstract 

Dialogism provides the grounds for building a comprehensive 
model of discourse and it is focused on the multiplicity of 
perspectives (i.e., voices). Dialogism can be present in any 
type of text, while voices become themes or recurrent topics 
emerging from the discourse. In this study, we examine the 
extent that differences between self-explanations and think-
alouds can be detected using computational textual indices 
derived from dialogism. Students (n = 68) read a text about 
natural selection and were instructed to generate self-
explanations or think-alouds. The linguistic features of these 
text responses were analyzed using ReaderBench, an 
automated text analysis tool. A discriminant function analysis 
using these features correctly classified 80.9% of the students’ 
assigned experimental conditions (self-explanation vs. think 
aloud). Our results indicate that self-explanation promotes 
text processing that focuses on connected ideas, rather than 
separate voices or points of view covering multiple topics. 
 

Keywords: comprehension; discourse analysis; dialogism; 
polyphonic model; self-explanation; think-aloud 

Introduction 
Research on text comprehension suggests that skilled and 
less skilled readers differ in the frequency and type of 
strategies they employ while processing texts (Millis, 
Magliano, & Todaro, 2006; Oakhill & Yuill, 1996). Skilled 
readers, for instance, generate more inferences while 
reading, which allows them to establish connections 
between information in the text and their prior knowledge 
(Kintsch, 1998). Although not all readers naturally make 
these connections while reading, students can be prompted 
to generate inferences through instructions to self-explain 
(McNamara, 2004). Self-explanation is a response to text or 
discourse that is directed toward oneself, with an explicit 
purpose to construct meaning from the text. Explanations 
are statements generated aloud, through text, or silently to 
oneself, that go beyond the information provided explicitly 

in the text to explain the ideas, their relations, and their 
underlying meaning.  

In the context of text comprehension, self-explanation can 
improve readers’ understanding of complex topics 
(McNamara, 2004, in press). From the point of view of 
theories within the field of text and discourse 
comprehension, the benefits of self-explanation have been 
attributed to increased bridging and elaborative inferences 
(i.e., making connections to prior ideas in the text or to prior 
knowledge) and to increased causal inferences (e.g., making 
connections to causal events; (Allen, McNamara, & 
McCrudden, 2015).  

Instructions to self-explain can be contrasted with those to 
think-aloud, which ask readers to report whatever thoughts 
are available to them while reading a text (e.g., readers 
report these thoughts after reading each sentence). Asking a 
reader to think-aloud reveals their use of comprehension 
strategies, including any inferences they generate while 
reading, but does not alter a reader’s natural comprehension 
processes (McNamara & Magliano, 2009). 

In this study, we compare the comprehension processes 
associated with self-explanation and think-aloud from the 
lens of dialogism. Dialogism refers to a wider perspective of 
dialogue which is assumed to be present within any verbal 
or non-verbal language activity. Dialogism originates from 
the Russian philosopher and philologist Mikhail Bakhtin 
(1981, 1984) who proposed that there is an implicit and 
multi-voiced dialogue underlying sense-making, 
communication, actions, and interactions (Linell, 2009). 
Accordingly, voices represent distinct positions, points of 
view, or ideas, that impact the nature and outcome of a 
discourse. Multi-voicedness, may drive to polyphony, which 
is a central concept within dialogism, and a focus of the 
polyphonic model, which is essential to this study (Trausan-
Matu & Rebedea, 2009).  

Dialogue traditionally refers to communication between 
two or more individuals. Indeed, within the context of 
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Computer Supported Collaborative Learning, dialogism has 
been considered better suited as a theoretical framework for 
multi-party conversations than classic Natural Language 
Processing theories that focus on phone-like interactions 
between two interlocutors (Trausan-Matu & Rebedea, 
2009). 

Bakhtin, however, stressed the point that all text is multi-
vocal, wherein our speech (all of our utterances) is filled 
with others’ words (Bakhtin, 1986, p. 89). In this view, the 
concept of dialogue can be extended to include a wider 
variety of language activities. For instance, it may also refer 
to an internal dialogue within oneself or a dialogue amongst 
inner voices contrasting and debating ideas (Marková, 
Linell, Grossen, & Salazar Orvig, 2007, ch. 6).  

The polyphonic model is a generalization of Bakhtin’s 
ideas in the sense that voices may not be only associated to 
an individual person. Voices may also be themes, or 
recurrent topics emerging from the discourse. They enter in 
inter-animation patterns which generate a polyphonic 
weaving characterized by a multitude of voices, each with 
its individuality, but which give birth to a coherent whole 
(Trausan-Matu & Rebedea, 2009).  

In this study, we apply the polyphonic model to analyze 
the presence of voices and their interactions within students’ 
think-alouds and self-explanations. Think-aloud, by 
definition, is the externalization of the inner voice of the 
student, including voices that correspond to ideas, 
justifications, and assumed positions. Expressions of the 
text comprehension process by a student, in the form of 
think aloud or self-explanation, can be expected to include 
positions, reasons, ideas, all which may be viewed as voices.  

We have operationalized the polyphonic model within the 
ReaderBench framework, which provides automated text 
and conversational analysis (Dascalu, 2014; Dascalu, 
Dessus, Bianco, Trausan-Matu, & Nardy, 2014; Dascalu, 
Trausan-Matu, McNamara, & Dessus, 2015). In 
ReaderBench, voices are identified using Natural Language 
Processing (NLP). Lexical chains (Galley & McKeown, 
2003), or sequences of repeated or related words, are 
merged into semantic chains by using relatedness calculated 
using Latent Semantic Analysis (Landauer & Dumais, 1997) 
and Latent Dirichlet Allocation (Blei, Ng, & Jordan, 2003). 
The previous semantic models play an important role in our 
polyphonic model as they are used to identify voices 
through semantic relatedness, thus highlighting cohesive 
contexts. 

In addition, polyphonic inter-animation considers 
relations between voices, or points of view, along two 
dimensions: longitudinal along time, and transversal across 
time, using voices’ co-occurrences within and across text 
segments (Trausan-Matu, Stahl, & Sarmiento, 2007). The 
longitudinal dimension follows the continuation of ideas 
throughout the discourse, similar to a voice's individual 
melodic line in music. Simultaneously, voices co-occur in a 
vertical manner and, as in polyphonic music, this generates 
specific discourse contexts consisting of potential 
dissonances that need to be solved toward consonances. 

This transversal effect, or voice overlap, supports the 
integration process that can create both unity across various 
themes, as well as differences or variations in points of 
view. 

Specifically, we examine the extent to which differences 
between participants’ expressions of self-explanation and 
think-aloud can be detected using the computational text 
analyses provided by ReaderBench, and in turn, how this 
theoretical perspective informs our understanding of text 
and discourse comprehension. 

Discourse Analysis within the Polyphonic Model 
The polyphonic model can be used to analyze discourse in 
both conversations and plain texts (Trausan-Matu & 
Rebedea, 2009). Bakhtin (1984) stated that polyphony 
occurs in any text, similarly to polyphonic music, composed 
under counterpoint rules. That means that there is a 
multitude of voices, each with its own individuality, whose 
sum comprises a coherent whole: “the voices of others 
become woven into what we say, write, and think” 
(Koschmann, 1999, p. 308). Meanwhile, the polyphonic 
discourse should also bring novelty, voices should inter-
animate in order to foster creativity. Following this 
perspective, the polyphonic approach to discourse analysis 
identifies voices in text and then investigates how voices are 
woven and how they inter-animate (Trausan-Matu, Stahl, et 
al., 2007). 

Our automated process of voice identification starts by 
building lexical chains that are merged into semantic chains 
through semantic relatedness (Dascalu et al., 2015). Lexical 
chains can be identified using a disambiguation graph in 
which nodes are word instances having assigned their most 
probable sense, while weighted edges are semantic distances 
from WordNet (Galley & McKeown, 2003). However, this 
approach is inherently limited because it only includes 
words from the same part of speech. Thus, we have used an 
iterative agglomerative hierarchical clustering algorithm that 
begins with the identified lexical chains as groups of 
clustered words and uses the semantic similarity between 
lexical chains as a distance function (Dascalu et al., 2015). 
If the semantic relatedness value is greater than an imposed 
threshold or if identical lemmas are identified in two word 
clusters, the latter are automatically merged.  

Voices emerge as central topics of each text and rely on 
the occurrences of the underlying cohesive and semantically 
related words. The longitudinal dimension of voices 
becomes the context in which the voices span throughout 
the entire discourse. In contrast, the transversal dimension 
highlights different co-occurrence and inter-animation 
patterns of voices present within the same textual element, 
i.e., sentence or paragraph. 

After voices are identified, a cohesion (or utterance) 
graph is constructed from the links between utterances 
(Dascalu, 2014; Dascalu, Dessus, Trausan-Matu, Bianco, & 
Nardy, 2013; Trausan-Matu, Dascalu, & Dessus, 2012; 
Trausan-Matu, Rebedea, Dragan, & Alexandru, 2007) 
Within the cohesion graph, utterances are the nodes and 
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links consist of adjacency pairs, repetitions, or lexical and 
semantic chains, which are detected using NLP.  

As such, voices can be identified as threads in the graphs 
(Trausan-Matu, Dascalu, & Rebedea, 2014). Each utterance 
has an inner voice that inter-twines with other voices from 
the same thread or from different ones, but with less 
strength. Any new utterance in a dialogue is expressed as a 
voice, including its degree of interconnection with other 
utterances, relevance within the discourse, and potential 
impact within the overall discussion. Examining different 
semantic chains within the same textual fragment (sentences 
or paragraphs) reveals the transversal dimension of voice 
inter-animation. 

Current Study 
This study comprises an analysis of a corpus of self-
explanations and think-alouds previously described in Allen 
et al. (2015). University students (n = 68) read a text about 
natural selection and were randomly assigned to one of two 
conditions related to their reading instructions: self-
explanation (n = 33) and think-aloud (n = 35). Students in 
the self-explanation and think-aloud conditions were 
prompted to generate typed responses on 16 occasions (i.e., 
on 16 of the 41 sentences). The self-explanation instructions 
asked students to explain the information they had just read 
to themselves, whereas the think-aloud instructions asked 
students to state whatever they were thinking. We 
aggregated students’ 16 text responses (their self-

explanations or think-alouds) following the procedure 
described in Allen et al. (2015). 

The individual files were then analyzed using 
ReaderBench. We calculated 29 voice indices related to: 
a) span (distances between word occurrences within the 

same semantic chain),  
b) recurrence (average and standard deviation in terms of 

distance between two consecutive words pertaining to the 
same voice, measured in number of in-between words 
from the initial text),  

c) coverage of these semantic chains (average number of 
contained concepts per sentence or paragraph), and 

d) information theory entropy (Shannon, 1948) based on the 
probability that a voice appears in a given text segment. 
 
The previous indices relate to the longitudinal dimension 

of our analysis, while voice inter-animation relates to the 
transversal effect, which is computed in terms of co-
occurrence patterns. As operationalization of the transversal 
dimension, we rely on: a) counting the number of concepts 
pertaining to different voices, but present in the same text 
segment, and b) pointwise mutual information (PMI) that 
measures the degree of association between voice 
distributions (Dascalu et al., 2015). These dialogic indices 
provide insights in terms of a text’s overall cohesion, as 
voices help build a higher cohesion through lexical and 
semantic relatedness. 

 
Self-explanation (SE) Think-aloud (TA) 

In our lives, there are so many types of people around us to our lives 
colorful. also, in our daily lives, we meet different people who have 
different story to tell. some of them are happy, wealthy. Some of them have 
to worry about how to survive in this society. they are components to make 
our lives fascinates. 

Life around us is fascinating because of the force of nature. those creatures 
around us are differently designed. Some of them are capable of seeing 
stuffs because they are given an unique thing-eye. that's one of the things to 
make them special, to make their lives fancy. 

Life fascinates us because we have eyes. And eyes have precise 
arrangement so that eyes make us see things. This is also true for other 
organs, they are complexly design to make our body function. 

Organs are not designed in advance for a specific purpose. organs are 
formed by the activities people do in their everyday-lives. organs are 
formed for the destination to make people survive, to make people's body 
function well. the two animals with cloudy lenses must give their next 
generation cloudy lens. and the generation of cloudy lens animal and clear 
lens animal will be hard to tell. because the offspring are given clear lens 
due to those who gave birth to it. Because a replicator is something that can 
make a copy of itself, with most of its traits duplicated in the copy, 
including the ability to replicate. The offspring's parents survived and pass 
this replicator to it, so that the offspring's eyes are the same as its parent's. 

The surroundings we cannot to change, but we can our heart to adopt. 
In my mind, the human also as one of the animals in the world, we have 
only different from the other animals because we have a thought. 

The eyes is difference with the other organs. The animals eyes may be less 
important than other organs. 

The author cannot to believe that the organs must have been designed in 
advance for a specific purpose is right. Used an example to support his ideal. 
According to the example, I feel that the offspring has clear lenses and can 
see well which is incorrect. in some way, their eyes has different with their 
parents' eyes. 

That's mean the their another eyes is usedness. the better vision can help 
these animals to reproduce and get better generation. It's to point out the 
ideal which is the author want to explain. 
The living surrounding makes natural selection in order to get better next 
generation. that's mean we can change or direct the selection to product. 
replicators try to use-up material to find their the great copies and energy to 
power replication. the most of the copying is worse that causing less 
efficient just the less of the copying is better and useful, back to the 
viewpoint. the apparent well engineered body is result by the replicator to 
make the natural selection. 

Organisms is the standard by the natural selection. 

Figure 1. Sample inter-animation of voices within a self-explanation and a think-aloud protocol. 
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Table 1: MANOVA results. 
Index Self-explanations 

M (SD) 
Think-alouds 

M (SD) 
F p Partial Eta 

Squared 
Average span of lexical chains 2.10 (0.29) 1.69 (0.22) 45.325 <.001 .407 
Average paragraph voice co-
occurrence 

6.00 (2.22) 2.99 (1.51) 43.296 <.001 .396 

Average sentence voice co-occurrence 3.08 (0.81) 1.84 (0.94) 33.212 <.001 .335 
Standard deviation of paragraph voice 
co-occurrences 

2.93 (1.08) 1.93 (0.97) 15.984 <.001 .195 

Average sentence entropy of voices  1.32 (0.23) 1.14 (0.25) 10.202 <.01 .134 
Average span of voices  6.37 (1.64) 5.25 (1.41) 9.184 <.01 .122 
Standard deviation of paragraph voice 
mutual information (PMI) 

0.58 (0.07) 0.65 (0.13) 5.755 <.05 .080 

Percentage of words that are included in 
lexical chains  

0.10 (0.02) 0.09 (0.03) 5.291 <.05 .074 

Standard deviation of distributions per 
paragraph  

0.75 (0.04) 0.72 (0.06) 4.994 <.05 .070 

Standard deviation of sentence voice co-
occurrences 

1.51 (0.35) 1.39 (0.47) 4.497 <.05 .064 

 
Figure 1 presents an example of inter-animation of voices 

within a self-explanation and a think-aloud verbal protocol. 
Several threads that can be considered as voices, ranging 
from simple word repetitions (i.e., “organs”) to semantically 
related concepts (i.e., “eye – lens”, “generation – parent – 
offspring”, “copy – replication – duplicate – replication”), 
co-appear and inter-animate. Additional voices can be 
identified in both texts, but it is important to observe 
differences in terms of distributions: denser, more cluttered 
and more elaborated voices are present in self-explanations 
versus more varied and more spread-out voices in think-
alouds. 

In addition, the texts exhibit different discourse structures: 
longer, more elaborated and more cohesive paragraphs in 
self-explanations versus shorter, more condensed phrases 
introducing multiple ideas in think-alouds. These latter 
discourse specific traits also directly influence the 
distribution of voices within the underlying analysis element 
(paragraph or sentence) as the chance of voice co-
occurrence inherently increases in longer texts (e.g., self-
explanations). 

Results 
Statistical analyses were conducted to assess the extent to 
which the dialogic indices related to voices and in turn, 
accurately classified students based on their experimental 
condition. Because ReaderBench reports raw voice counts, 
indices were also checked for multicollinearity with text 
length. Any index that was highly collinear (r > .90)  with 
text length was removed. We then conducted a MANOVA 
to identify which indices exhibited significant differences 
between the self-explanation and think-aloud conditions. 
Indices that were highly collinear (r > .90) were flagged, 
and the index with the strongest effect size in the 
MANOVA was retained while the other indices were 
removed (see Table 1).  

Longer spans of both lexical chains and voices, as well as 
higher paragraph and sentence voice co-occurrences, are 
indicative of longer, more elaborated texts (i.e. self-
explanations). Self-explanations also have higher standard 
deviations of co-occurrence patterns at both sentence and 
paragraph levels which reflect a greater variety of voices, as 
well as a more diverse and unequal overlap of voices. 
Higher voice entropy at sentence level and higher standard 
deviation of voice distributions at paragraph level also 
support the latter finding. Moreover, self-explanations have 
a slightly higher coverage of words that are integrated in 
longer semantic chains, thus denoting a more connected 
discourse. In contrast, think-alouds exhibited a higher 
standard deviation of paragraph voice pointwise mutual 
information. This was specific to the generation of new 
ideas which may or may not be intertwined with other 
voices. This result is indicative of a wider spread of synergic 
effects - either new, more isolated voices, or ones that inter-
animate more with the previous voices. 

Based on the MANOVA, we selected the four indices 
with the strongest effect sizes to enter into a stepwise 
discriminant function analysis (DFA): Average span of 
lexical chains (SE > TA), Average paragraph voice co-
occurrence (SE > TA), Average sentence voice co-
occurrence (SE > TA), and Standard deviation of paragraph 
voice co-occurrences (SE > TA). 

 
Table 2: DFA results. 

 
Type 

Predicted Group 
Membership Total 

  
SE TA 

 Original SE 25 8 33 
TA 5 30 35 

Cross-
validated 

SE 25 8 33 
TA 6 29 35 

Note: SE = self-explanation; TA = think-aloud 
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The DFA yielded a significant model, χ2(df = 1, 
n = 68) = 34.243, p < .001, correctly allocating 55 (25 + 30) 
of the 68 students (accuracy = 80.9%, see Table 2). To test 
the stability of our model, we conducted a leave-one-out 
cross-validation analysis, which also yielded an accuracy of 
79.4%. The measure of agreement between the actual 
instructional group and that assigned by our model produced 
a weighted Cohen’s Kappa of .616, demonstrating 
substantial agreement. 

Discussion and Conclusions 
In the current study, we examined the differences from a 
dialogism perspective between self-explanations and think-
alouds generated in response to a text. In previous research 
on this dataset (Allen et al, 2015), we examined the causal 
and referential cohesion differences between self-
explanation and think-aloud. The results of the latter study 
indicated that causal cohesion, but not referential cohesion 
differentiated students who were in the self-explanation and 
think-aloud conditions. In the current study, we build on this 
prior research by examining how textual indices related to 
dialogism relate to students’ processing of text based on 
their text reading instructions. 

Our results indicate that students who self-explained the 
text generated longer voices (lexical or semantic chains with 
a higher span) that inter-animate more (higher voice co-
occurrences at sentence and paragraph levels). This suggests 
that students who were prompted to self-explain responded 
to the text by maintaining semantic connections of the 
concepts within the text. 

We interpret these results to indicate that self-explanation 
promotes specific comprehension processes that are 
fundamentally different from responses generated during 
think-aloud protocols, evidenced by students’ generation of 
more conceptually related and cohesive text responses, 
rather than multiple, separate “voices” or points of view 
covering multiple topics. Previous research indicates that 
self-explanation can enhance students’ understanding of 
complex concepts; however, it is less clear how these 
instructional differences manifest in the linguistic properties 
of students’ text responses. 

By adopting a Natural Language Processing approach, 
this study examines on-line comprehension processes at a 
more fine-grained level and also contributes to a better 
understanding of how these processes may be automatically 
detected via computational linguistic analyses. The 
polyphonic model, built on dialogism and integrating 
advanced NLP techniques, represented a viable alternative 
to analyze students’ discourse and differentiate among 
instructional settings. 

As a limitation of our approach, voices need to account 
for more than word clustering based on distance, lexical and 
semantic overlaps which are currently used to operationalize 
our polyphonic model. In addition, many voice indices are 
multicollinear with text length. We need to develop methods 
to normalize raw voice score to help control for text length 
constraints. Voices represent a generalization of emerging 

topics and should consider the corresponding sentiment 
valences in order to create a clearer perspective whether 
convergence or dissonances are encountered in the 
discourse. In order to address this issue, opinion mining 
techniques will be integrated in a follow-up iteration of our 
implemented model. 

The dialogical framework offers new perspectives in the 
context of this study because both self-explanation and 
think-aloud be perceived as different kinds of dialogues. 
Self-explanations on the one hand include positions, 
reasons, ideas, all of which may be viewed as voices while 
the overall discourse can be regarded as an ‘internal 
dialogue within the self’ (Linell, 2009, ch. 6). On the other 
hand, think-alouds are more condensed, centered on 
generating new ideas and can also be perceived a ‘dialogue 
between ideas’ (Marková et al., 2007, ch. 6), a dialogue in 
which the debating voices are ideas. However, in both cases 
reflexive and cognitive processes are needed in order for 
students to express themselves. 

As Linell (2009) stated, dialogues occur ‘in and through 
words.’ Certainly, there is more to dialogue and 
communication – for example, gestures, facial expressions, 
emotions, movement, all play crucial roles in dialogue; but 
here, because it is printed text, we can only examine words. 
Nonetheless, dialogism is tightly connected to the notion of 
sense-making as meaning is constructed by interacting with 
others and with the world, as well as with oneself via 
internal dialogue. As such, dialogism has a strong 
connection to cognition, which is sometimes ignored. Figure 
2 represents this viewpoint. Cognition reflects prior and 
intrapersonal (individual) information and knowledge about 
the world, while meaning is constructed through social 
interactions and language within the dialogical context. 
Communication, both explicit interpersonal dialogue and 
implicit to oneself (i.e., internal dialogue), becomes a 
facilitator in terms of interaction, therein generating 
meaning in discourse. 

 

 
Figure 2. Dialogical framing and interdependencies with 
core concepts. 
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Abstract

Bayesian models of cognition posit that people compute prob-
ability distributions over hypotheses, possibly by construct-
ing a sample-based approximation. Since people encounter
many closely related distributions, a computationally efficient
strategy is to selectively reuse computations – either the sam-
ples themselves or some summary statistic. We refer to these
reuse strategies as amortized inference. In two experiments,
we present evidence consistent with amortization. When se-
quentially answering two related queries about natural scenes,
we show that answers to the second query vary systematically
depending on the structure of the first query. Using a cog-
nitive load manipulation, we find evidence that people cache
summary statistics rather than raw sample sets. These results
enrich our notions of how the brain approximates probabilistic
inference.

Keywords: Amortization; hypothesis generation; Bayesian in-
ference; Monte Carlo methods

Introduction
Many theories of probabilistic reasoning assume that people
are equipped with a general-purpose inference engine that
can be used to answer arbitrary queries for a wide variety
of probabilistic models (Griffiths et al., 2012). The flexibil-
ity and power of a general-purpose inference engine trades off
against its computational efficiency: by avoiding any assump-
tions about the query distribution, the inference engine relin-
quishes the opportunity to reuse computations across queries.
Conversely, an inference engine may gain efficiency by incur-
ring some amount of bias due to reuse—a strategy we refer to
as amortized inference (Stuhlmüller et al., 2013; Gershman
& Goodman, 2014). We propose that people employ some
form of this strategy, flexibly reusing past inferences in order
to efficiently answer new but related queries.

The experiments reported in this paper explore amortiza-
tion in sets of related queries that involve probabilistic in-
ference over a very large space of possibilities. These pos-
sibilities are not all explicitly provided and have to be gen-
erated by the participant in order to carry out the inference.
We frame amortization as the reuse of hypotheses that have
already been generated in response to previous queries. We
model the process of hypothesis generation with a stochas-
tic sampling mechanism (Lieder et al., 2012; Dasgupta et al.,
2016). One way to implement amortization in this framework
is to directly reuse samples across different queries. Alterna-
tively, amortization could be implemented by reusing some
summary statistic compiled from previous samples. One goal
of our experiments is to tease apart these different mechanis-
tic assumptions. The basic logic of our experiments is to hold

one query fixed while manipulating an earlier query, allowing
us to interrogate reuse of computations across queries.

Stochastic hypothesis generation
For complex hypothesis spaces, exact probabilistic inference
is typically intractable. Several lines of evidence point to
the idea that humans approximate inference by constructing a
Monte Carlo approximation of the posterior distribution (see
Griffiths et al., 2012; Sanborn & Chater, 2016, for a review).
This “sampling hypothesis” can be realized algorithmically
in a number of ways. Recent studies have shown how a num-
ber of apparent probabilistic fallacies can be understood as a
consequence of resource-bounded sampling using a Markov
chain Monte Carlo (MCMC) algorithm (Lieder et al., 2012;
Dasgupta et al., 2016). Because we build on those studies in
this paper, we briefly describe the theoretical framework.

A Monte Carlo approximation uses a set of N samples
{h1, . . . ,hN}, drawn from a hypothesis space H , to approx-
imate a target distribution. In our case, the target is the pos-
terior distribution over hypotheses given data d, P(h|d) ∝

P(d|h)P(h). The Monte Carlo approximation is defined by:

P(h|d)≈ 1
N ∑

N
n=1 I[hn = h], (1)

where I[·] = 1 if its argument is true (0 otherwise). MCMC
algorithms generate samples by simulating a Markov chain
whose stationary distribution is the posterior (MacKay,
2003). This approach is asymptotically exact (the approxi-
mation converges to the posterior as the number of samples
approaches infinity) but under time or resource constraints
only a small number of samples may be generated. Although
this gives rise to systematic deviations from exact inference,
it may in fact be the computationally rational sampling policy
(Lieder et al., 2012; Vul et al., 2014; Gershman et al., 2015).

In our prior research (Dasgupta et al., 2016), we applied
this model to a scene inference domain, using a database of
natural object co-occurrence statistics compiled by Greene
(2013). The task facing subjects in our experiments was to
judge the probability of a particular set of latent objects in a
scene conditional on observing another object (the cue). By
manipulating the framing of the query, we showed that sub-
jects gave different answers to formally equivalent queries.
Specifically, by partially unpacking the queried object set
(where fully unpacking an object set means to present it ex-
plicitly as a union of each of its member objects) into a small
set of exemplars and a ‘catch-all’ hypothesis (e.g., “what is
the probability that there is a book, a box, or any other object
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beginning with B?”), we found that subjects judged the prob-
ability to be higher when the unpacked exemplars were typ-
ical (a “subadditivity” effect; cf. Tversky & Koehler, 1994)
and lower when the unpacked exemplars were atypical (a “su-
peradditivity” effect; cf. Sloman et al., 2004) compared to
when the query is presented without any unpacking. To give
a concrete example, in the presence of say a ‘table’, the typ-
ically unpacked query “what is the probability that there is
also a chair, a curtain, or any other object beginning with C?”
generates higher probability estimates, and the atypically un-
packed query “what is the probability that there is also a cow,
a canoe, or any other object beginning with C?” generates
lower probability estimates, when compared to the packed
query “what is the probability that there is also another ob-
ject beginning with C?”.

These effects could be accounted for by the MCMC model
under the assumption that the unpacked exemplar(s) initialize
the Markov chain(s) that form the sample set. Because the
initialization of the Markov chain transiently determines its
future trajectory, initializing with typical examples causes the
chain to tarry in the high probability region of the queried ob-
ject set, thereby increasing its judged probability (subadditiv-
ity). However, initializing with atypical examples causes the
chain to get easily derailed into regions outside the queried
object set and thus generate more hypotheses that are not in
the queried object set. This decreases the judged probabil-
ity of the queried object set (superadditivity). The strength
of these effects diminishes with the number of samples, as
the chain approaches its stationary distribution (which is the
same for all conditions). Accordingly, response time and cog-
nitive resource availability modulate the effect size (Dasgupta
et al., 2016).

Amortized inference in hypothesis generation
We will consider two simple amortization schemes within the
MCMC framework described above.1 In sample reuse, peo-
ple may simply add samples generated in response to one
query (Q 1) to the sample set for another query (Q 2). So
if N1 samples were generated in response to Q 1, and N2
new samples are generated in response to Q 2, the response
to Q 2 is given by a calculation carried out over all N1 +N2
equally weighted samples. Under this scheme, all the com-
putations carried out for Q 1 are available for flexible reuse
in the computation for Q 2. In summary reuse, people may
reuse a summary statistic computed from Q 1. This strategy
is only applicable to problems where the answer to Q 2 can
be expressed as the composition of the answer to Q 1, and an
additional simpler computation. To make this viable in our
experiments, Q 2 queries a hypothesis space that is the union
between the hypothesis space queried in Q 1 and a disjoint
hypothesis space. For example if Q 1 is “What is the proba-
bility that there is an object starting with a C in the scene?”,

1Although more sophisticated amortization schemes have been
developed in the machine learning literature (e.g., Stuhlmüller et al.,
2013; Rezende et al., 2014; Paige & Wood, 2016), they are difficult
to test experimentally in humans.

Q 2 could be “What is the probability that there is an object
starting with a C or an R in the scene?”. In this case, the
N1 samples generated in response to Q 1 are summarized into
one probability (“the probability of an object starting with
C”), N2 new samples are generated in response to a simpler
query (“the probability of an object starting with R”), and
these two numbers are then composed (in this case simply
added) to give the final estimate for Q 2 (“the probability of
an object starting with C or R”). Under this scheme, only the
final product of the computation carried out for Q 1 is reused
in the calculations for Q 2. These two models are the two
extremes between very flexible and very rigid reuse; interme-
diates are of course possible.
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Figure 1: Simulation of subadditivity and superadditivity effects un-
der sample-based (top) and summary-based (bottom) amortization
schemes. In all panels, the y-axis represents the effect size for Q 2.
Left panels show the effects of changing the sample size for Q 1;
right panels show the effects of changing the sample size for Q 2.
When, sample size for Q 2 is changed, sample size for Q 1 is held
fixed at 230, and vice versa.

Sample-based and summary-based amortization schemes
make different predictions about how subadditivity and su-
peradditivity change as a function of the sample size (Figure
1). Increasing the sample size for Q 1 amplifies the effects for
Q 2 under a sample-based scheme, because this leads to more
Q 1 samples being reused for Q 2. This effect can be coun-
teracted by increasing the sample size for Q 2, which pushes
the effects down (the effects go to 0 as the sample size for
Q 2 tends to infinity, since the Markov chain will converge
to the same posterior for all conditions). Under a summary-
based scheme, increasing the sample size for Q 1 will actu-
ally diminish the effects for Q 2, because the bias from Q 1
is strongest when the chain is close to its starting point. In
other words, the subadditivity and superadditivity effects for
Q 2 derive from the same effects in Q 1, which themselves
are primarily driven by the initialization (see Dasgupta et al.,
2016). In Experiment 2, we test these different predictions
by placing people under cognitive load during either Q 1 or
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Table 1: Experimental stimuli and queries.

Cue Q 1 Q 1-Typical Q 1-Atypical Q 2

Table C
chair, cannon,

C or Rcomputer cow,
curtain canoe

Tele-
D

display case, drinking fountain,
D or Lphone dresser, dryer,

desk dome

Rug B
book, bird,

B or Sbouquet, buffalo,
bed bicycle

Chair P
painting, porch,

P or Aplant, pie,
printer platform

Sink T
table, trumpet,

T or Etowel, toll gate,
toilet trunk

Lamp W
window, wheelbarrow,

W or Fwardrobe, water fountain,
wine rack windmill

Q 2, a manipulation that is thought to reduce the number of
samples (Dasgupta et al., 2016; Thaker et al., 2017).

Experiment 1
Our first experiment pursued a basic carryover effect from
one query (Q 1) to the next (Q 2). We assessed two putative
signatures of sampling—subadditivity and superadditivity—
for a fixed Q 2 while changing the structure of Q 1. Specifi-
cally, we compared three conditions that differed only in how
Q 1 was framed: packed, unpacked-typical, and unpacked-
atypical. In order to encourage amortization, we specified
Q 2 as a union of the hypothesis space queried by Q 1 and an-
other hypothesis space—i.e., a disjunctive query. The design
is summarized in Table 1.

Participants
84 participants (53 males, mean age=32.61, SD=8.79) were
recruited via Amazon’s Mechanical Turk and received $0.5
for their participation plus an additional bonus of $0.1 for
every on-time response.

Procedure
Participants were asked to imagine playing a game in which
their friend sees a photo and then mentions one particular ob-
ject present in the photo (the cued object). The participant is
then queried about the probability that another class of objects
(e.g., “objects beginning with the letter B”) is also present in
the photo.

Each participant completed 6 trials, where the stimuli on
every trial corresponded to the rows in Table 1. On each trial,
participants first answered Q 1 given the cued object, using a
slider bar to report the conditional probability (Figure 2). The
Q 1 framing (typical-unpacked, atypical-unpacked or packed)
was chosen randomly. Participants then completed the same

Figure 2: Experimental setup. Participants were asked to estimate
the conditional probability using a slider bar within a 20-second time
limit.

procedure for Q 2, conditional on the same cued object. The
framing for Q 2 was always packed.

Results
Consistent with our prior studies (Dasgupta et al., 2016), we
find both subadditivity and superadditivity effects for Q 1, de-
pending on the unpacking (Figure 3): probability judgments
were higher for unpacked-typical queries than for packed
queries (a subadditivity effect; t(77) = 4.029, p < 0.001) and
lower for unpacked-atypical than for packed queries (a super-
additivity effect; t(77) =−6.4419, p < 0.001)
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Figure 3: Experiment 1 results. Mean probability estimates by
condition. Error bars represent the standard error of the mean.

Crucially, we also saw effects of Q 1 unpacking on re-
sponse to Q 2, even though these queries were all presented
as packed hypotheses. In particular, estimates for Q 2 were
lower when Q 1 was unpacked to atypical exemplars (t(77) =
−5.0789, p < 0.001), demonstrating a superadditivity effect
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that carried over from one query to another. We did not
find an analogous carry-over effect for subadditivity (t(77) =
0.72, p > 0.4), possibly due to the subadditivity effect “wash-
ing out” more quickly (i.e. with fewer samples) than super-
additivity, at least within this domain (see Dasgupta et al.,
2016).

Next, we explored whether responses to Q 1 predicted trial-
by-trial variation in responses to Q 2. As shown in Figure 4,
we found significant positive correlations between the two
queries in all conditions when aggregating across participants
(p < 0.01). The same conclusion can be drawn from an-
alyzing correlations within participants and then testing the
average correlation against 0 (average correlation: r = 0.55,
p < 0.01). Moreover, the within-participant effect size (the
response difference between the unpacked conditions and the
packed conditions) for Q 1 was correlated with responses
to Q 2 for both atypical (r = 0.35, p < 0.01) and typical
(r = 0.21, p < 0.05) unpacking conditions. This means that
even though the subadditive condition did not significantly
differ from the unpacked condition for Q 2 overall, partici-
pants who showed greater subadditivity or superadditivity for
Q 1 also showed correspondingly greater effects for Q 2.
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Figure 4: Experiment 1 trial-by-trial analyses: Relationship be-
tween aggregated Q 1 and Q 2 responses. Lines show the least-
squares fit with standard error bands.

Experiment 2
Experiment 1 showed strong evidence for reuse of inferen-
tial computations across queries when the evidence is fixed.
Two questions naturally arise from this finding. First, how
adaptive is amortization? Are samples reused promiscuously
across queries (potentially leading to rampant memory-based
biases), or is reuse sensitive to conditions where it is likely
to be accurate? This is a delicate point, since it is impossible
to know with certainty whether amortization is useful with-
out knowing some properties of the problem (e.g., decompos-
ability of the conditional distribution). Nonetheless, humans

may be able to utilize heuristics for constructing amortization
strategies whose errors can be corrected by additional experi-
ence or computation (Stuhlmüller et al., 2013). We address
this question by manipulating the “amortizability” of Q 1,
in order to test the hypothesis that carry-over effects across
queries will only occur under high amortizability conditions.
We operationalize amortizability in terms of whether or not
the hypothesis space queried by Q 1 is a subset of the hypoth-
esis space queried by Q 2.

The second question concerns resource allocation. Theo-
ries of computational rationality argue that computations are
selected to balance accuracy and cost (Lieder et al., 2012;
Gershman et al., 2015). In the context of sampling, this
means that fewer samples will be generated when cognitive
resources are scarce. This hypothesis is consistent with the
observation that subadditivity (Sprenger et al., 2011) and or-
der effects (Thaker et al., 2017) are amplified under cognitive
load. We pursue this question by manipulating cognitive load
at both Q 1 and Q 2. As discussed in the Introduction, the
different amortization schemes make different predictions for
these manipulations (see Figure 1).

Participants
80 participants (53 males, mean age=32.96, SD=11.56) were
recruited from Amazon Mechanical Turk and received $0.5
as a basic participation fee and an additional bonus of $0.1
for every on time response as well as $0.1 for every correctly
classified digit during cognitive load trials.

Procedure
The procedure in Experiment 2 was largely the same as in
Experiment 1, with the main difference being that participants
had to remember a sequence of digits. On half of the trials the
cognitive load manipulation occurred at Q 1 and on half at
Q 2. The digit sequence was presented prior to the query, and
then following their response to the query they were asked
to make a same/different judgment about a probe sequence.
Half of the probes were old and half were new.

To probe adaptive amortization, we added several Q 2
queries to the list shown in Table 1. These queries were
deemed less amortizable because they lack any of the letters
queried in Q 1 (for example, ’T or R’ instead of ’C or R’ in the
trial shown in the first row in Table1). In other words, these
queries could not be decomposed and hence could not benefit
from reuse. Half of the Q 2 trials were randomly chosen to
provide hypotheses with low amortizability.

Results
As shown in Figure 5, we replicated and extended the re-
sults from Experiment 1, showing both subadditivity and su-
peradditivity effects for Q 1 that carried over to Q 2. Ana-
lyzing only amortizable queries (averaging across load con-
ditions), we found that probability judgments for Q 1 were
higher for unpacked-typical compared to packed (subaddi-
tivity; t(79) = 4.38, p < 0.001) and lower for unpacked-
atypical compared to packed (superadditivity t(79) =−4.94,

1893



p < 0.001). These same effects occurred for Q 2 (unpacked-
typical vs. packed: t(79) = 2.44, p < 0.01; unpacked-
atypical vs. packed: t(79) =−1.93, p < 0.05).
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Figure 5: Experiment 2 results. Mean probability estimates for Q 2
by condition. Error bars represent the standard error of the mean.

As in Experiment 1, there was strong correlation between
responses to Q 1 and Q 2 overall conditions (r = 0.44, p <
0.001), for the packed (r = 0.44, p < 0.001), the typically
unpacked (r = 0.45, p < 0.001), as well as the atypically un-
packed condition (r = 0.35, p < 0.01); see Figure 6. More-
over, Q 1 and Q 2 were also highly correlated within partici-
pants (mean r = 0.31, p< 0.01) and participants who showed
higher subadditivity or superadditivty effects for Q 1 also
showed higher effects for Q 2 overall (r = 0.31, p < 0.001),
for the superadditive (r = 0.3, p < 0.001), and for the sub-
additive condition (r = 0.29, p < 0.001). This replicates the
effects of amortization found in Experiment 1.
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Figure 6: Experiment 2 trial-by-trial analyses: Relationship be-
tween aggregated Q 1 and Q 2 responses. Lines show the least-
squares fit with standard error bands.

Finally, we assessed how the carryover effects were mod-
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Figure 7: Experiment 2: differences between responses for each
condition and an average packed baseline. Bars represent a mean
within-participant absolute effect. Error bars represent the standard
error of the mean.

ulated by cognitive load and amortizability. To highlight the
effects more clearly, we calculated each participant’s mean
response to all packed hypotheses for Q 2 over all trials as a
baseline measure. We then calculated the difference between
each condition’s mean response and this mean packed re-
sponse. This provides us with a measure of an average effect
size within Q 2-responses (how much each participant under-
or overestimates different hypotheses as compared to an av-
erage packed hypothesis). Results are shown in Figure 7.

If cognitive load occurred during Q 2 and amortizability
was low, none of the conditions produced an effect signifi-
cantly different from 0 (all p > 0.5). If cognitive load oc-
curred during Q 2 and amortizability was high, only typi-
cally unpacked hypotheses produced an effect significantly
higher than 0 (t(38) = 2.14, p < 0.05). If cognitive load
occurred during Q 1 and amortizability was low, again none
of the conditions significantly differed from 0 (all p > 0.05).
Crucially, if cognitive load occurred during Q 1 and amortiz-
ability was high, both conditions showed the expected subad-
ditive (t(38) = 4.18, p < 0.05) and superadditive (t(46) =
−1.89, p < 0.05) effects. Moreover, calculating the av-
erage effect size for the different quadrants of Figure 7,
the high amortizability-cognitive load at Q 1-condition pro-
duced the highest overall effect (d = 0.8), followed by the
high amortizability-cognitive load at Q 2-condition (d = 0.56)
and the low amortizability-cognitive load at Q 1-condition
(d = 0.42). The low amortizability-cognitive load at Q 2-
condition did not produce an effect higher than 0. Moreover,
highly amortizable trials were more strongly correlated with
responses during Q 1 than trials with low amortizability (0.15
vs 0.41, t(157) =−2.28, p < 0.05).
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Intriguingly, on trials with cognitive load at Q 2, partici-
pants were on average more likely to answer the probe cor-
rectly for high amortizability trials compared to low amortiz-
ability trials (t(36) = 3.16, p < 0.05). This is another signa-
ture of amortization: participants are expected to have more
resources to spare for the memory task at Q 2 if the compu-
tations they did for Q 1 are re-usable in answering Q 2. This
also indicates that these results cannot be explained by simply
initializing the chain for Q 2 where the chain for Q 1 ended,
which would not have affected computation time. Our results
suggest that the transfer actually makes the second computa-
tion easier by re-using previous computations.

In summary, Experiment 2 replicates the effects found in
Experiment 1 and the increased effect for the high amorti-
zability condition provides further evidence that this effect
is actually driven by amortization. These experiments also
give us some insight into how amortization is implemented.
Based on our simulations (Figure 1), we argue that the ef-
fect of cognitive load at Q 1 on Q 2 responses is more con-
sistent with summary amortization than with sample amor-
tization. These results suggest an active process of Q 2 be-
ing expressed in terms of the results to Q 1, when possible.
This approach is more structured and less flexible than sam-
ple amortization but trades in this inference limitation for an
increase in memory-efficiency and is thus consistent with be-
liefs about cost-efficient resource-rational inference strategies
in humans.

Discussion

In two experiments, we provided empirical support for amor-
tized hypothesis generation. Participants not only exhibited
subadditive and superadditive probability judgments in the
same paradigm (replicating Dasgupta et al., 2016), but also
carried over these effects to subsequent queries. Importantly,
Experiment 2 demonstrated that such carry-over effects only
occur when amortization can exploit shared structure across
queries. Experiment 2 also demonstrated that cognitive load
exerts its strongest effect when applied to the first query, sug-
gesting (based on our simulations) that the carry-over ef-
fects are driven by some kind of summary-based amorti-
zation, whereby a summary statistic is computed from the
samples and then reused to answer subsequent queries that
can be expressed in terms of already completed calculations.
This implies a structured amortization strategy, over one that
reuses all old samples, and thus gives up some flexibility
for memory-efficiency. Building on earlier results (Gersh-
man & Goodman, 2014), our results support the existence
of a sophisticated inference engine that adaptively exploits
past computations. While reuse can introduce error, this er-
ror may be a natural consequence of a resource-bounded sys-
tem that optimally balances accuracy and efficiency (Lieder
et al., 2012; Vul et al., 2014; Griffiths et al., 2015; Gershman
et al., 2015). The incorporation of reuse into a Monte Carlo
sampling framework allows the inference engine to preserve
asymptotic exactness while improving efficiency in the finite-

sample regime.
Future studies could use similar methods to study amorti-

zation in other domains, such as in concept learning (Good-
man et al., 2008) or reinforcement learning tasks (Daw et al.,
2011). There is also a much larger space of more sophis-
ticated amortization schemes (e.g., Stuhlmüller et al., 2013;
Rezende et al., 2014; Paige & Wood, 2016) that we have not
yet tried to test. Pinning down the computational details of
amortization will be an important task for future work.
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Abstract
Although the causal graphical model framework has achieved
success accounting for numerous causal-based judgments, a
key property of these models, the Markov condition, is con-
sistently violated (Rehder, 2014; Rehder & Davis, 2016). A
new process model—the causal sampler—accounts for these
effects in a psychologically plausible manner by assuming
that people construct their causal representations using the
Metropolis-Hastings sampling algorithm constrained to only
a small number of samples (e.g., < 20). Because it assumes
that Markov violations are built into people’s causal represen-
tations, the causal sampler accounts for the fact that those vio-
lations manifest themselves in multiple tasks (both causal rea-
soning and learning). This prediction was corroborated by a
new experiment that directly measured people’s causal repre-
sentations.
Keywords: causal learning, causal reasoning, sampling

Introduction
The representation and use of causal knowledge is a central
object of investigation in the cognitive sciences. Causal mod-
els have been found to affect cognition in a wide variety of
inference problems, from reasoning and learning to decision-
making and categorization (for a summary, see Rottman &
Hastie, 2014; Waldmann & Hagmayer, 2013). One formal
model of the representation of causal information — causal
graphical models — has achieved success in modeling be-
havior across these tasks.

A foundational feature of causal graphical models is the
Markov condition, which stipulates that the value of a node
is independent of its non-descendants, conditional on its par-
ents. This principle is crucial for statistical inference from
causal graphical models (Pearl, 1988; Koller & Friedman,
2009), and has been argued to be necessary for a rigorous
account of interventions (Hausman & Woodward, 1999).

Given the success of the causal graphical model formal-
ism, one might expect to find the Markov condition satisfied
in human behavior. In contrast, the causal inferences that peo-
ple draw consistently violate the independence relationships
implied by the Markov condition (Rehder, 2014; Rehder &
Burnett, 2005; Rehder & Waldmann, 2016).

One explanation for Markov violations is that they rep-
resent a flaw in people’s causal reasoning process. On this
account, Markov violations would not necessarily manifest
themselves on other causal-based tasks (e.g., causal learn-
ing). Rehder and Davis (2016) investigated this possibility
by testing whether people honor the Markov condition dur-
ing a causal hypothesis testing task. In fact, the hypothesis
they favored reflected the same independence violations that
characterize causal reasoning (details below).

Together, these findings pose a problem for current theo-
ries of causal cognition. We propose that the generality of
these errors suggests that a reorientation is needed in our un-
derstanding of how people represent causal relationships. To
this end, we propose a process model that conceives of causal
cognition as based on simulation, rather than analytic calcu-
lation. The model outperforms traditional Bayes nets across
tasks, and we test its predictions in a novel task.

Process Model
Building on recent work in cognitive science that investigates
the role of sampling methods in accounting for judgments
in a variety of domains (Hertwig & Pleskac, 2010; Lieder,
Griffiths, & Goodman, 2012; Vul et al., 2014), we propose a
model for resource-constrained inference using causal mod-
els. In particular, we propose that, when reasoning about
causal systems, people attend to concrete cases and shift
attention between those cases systematically. This process
yields a joint distribution as a representation of the causal sys-
tem, which can be used for inference in any task that can be
modeled with causal graphical models.

Formalization
The proposed model is a variant of Metropolis-Hastings
(MH) Markov Chain Monte Carlo, a computationally effi-
cient rejection sampling method (Hastings, 1970). MH is de-
fined by two components: a proposal distribution Q(q′|q) and
a transition probability a(q′|q), where q is the current state
and q′ is the proposal state in the random walk. Whereas MH
models often deal with a continuous state space, the proposed
model samples over the discrete states of a causal model. Fig-
ure 1B presents the eight states for the three variable graph
shown in Figure 1A.

The sampling process uses the standard MH transition
probability:

a(q′|q) = min
(

1,
π(q′)
π(q)

)
where π(q) is the joint probability of the graph being in state
q given the graph’s parameters (see the Appendix for an ex-
ample of how π(q) is calculated). The parameters reflect the
particular beliefs of the participant (e.g. the causal strength
between cause and effect).

We assume a proposal distribution Q(q′|q) that restricts
reachable states q′ to those that differ from the current state q
by one binary variable. Each reachable state has an equal
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probability of being selected. Edges in Figure 1B denote
reachable states for a node.

Note that this proposal distribution confers additional ef-
ficiency benefits. Because only one variable is changed, the
ratio π(q′)

π(q) simplifies to

π(v′i,v−i)

π(vi,v−i)
=

π(v′i|v−i)π(v−i)

π(vi|v−i)π(v−i)
=

π(v′i|v−i)

π(vi|v−i)

where vi is the value of node i in q, and v′i is the value in
q′. This reduces the problem to calculating the relative condi-
tional probabilities of two states, rather than representing the
entire joint distribution. That calculating conditional prob-
abilities only requires consideration of the node’s Markov
blanket further aids efficiency (Koller & Friedman, 2009).

The model thus far is simply an efficient MH model for es-
timating a causal graph’s joint distribution. Importantly, how-
ever, we introduce a bias in the starting point for sampling: It
always starts sampling from ‘prototype’ states, those in which
nodes are either all 0 or all 1 (bottom left and top right cor-
ners of Figure 1B). This assumption is inspired by Johnson-
Laird’s influential Mental Models theory, in which the most
easily represented state is the one where antecedent and con-
sequent are both true (Johnson-Laird & Byrne, 2002). We
propose that prototype states are the most easily represented
states of a causal graph.

Regardless of our proposal distribution and biased initial
samples, with many samples (e.g., 106), the causal sampler
will converge to the normative distribution. However, we as-
sume that people are resource-constrained and thus can only
take a few samples (on the order of less than twenty). In
this range, an MH model will overestimate the probability
of states near the starting point (as it did not have time to
fully explore the state space) and underestimate the remain-
ing states. This effect is shown in Figure 2.

Figure 1: (A) Common effect network. (B) Possible concrete
states of a common effect network. Filled in circles indicate
a value of 1, empty circles indicate a value of 0.

Figure 2: Joint distributions with causal strength = .5, causal
prevalence = .5, strength of background causes = .33. The
blue line (solid points) represents the joint distribution en-
tailed by the normative model. Red lines (open points) rep-
resent the joint distributions simulated by the causal sampler,
with thicker lines meaning fewer samples (thick = 4 samples,
medium = 8, thin = 32).

An important prediction of the causal sampler model is that
Markov violations are not resultant from a particular reason-
ing or learning process. Instead, these violations are built into
the representations of causal graphs and so will propagate to
any task that used the representation. To test this prediction,
we compared our model to standard Bayes nets on existing
data sets in causal learning and reasoning, as well as a new
task introduced at the end of this paper.

Task 1: Causal Reasoning
The causal sampler model accounts for the independence vi-
olations found in human causal reasoning. For example, Re-
hder and Waldmann (2016) assessed the inferences people
draw with the simple common effect graph in Figure 1A.
Subjects were first instructed on two causal relationships that
formed a common effect graph in the domains of economics,
sociology, or meteorology (see the new experiment below
for examples of these materials). The causal relationships
were described as generative (a cause makes the effect more
likely) and independent (each cause can bring about the ef-
fect on its own). Subjects were then asked to draw a num-
ber of causal inferences. For example, they were asked to
estimate both p(YA = 1|YB = 1) and p(YA = 1|YB = 0) and
also the same questions with the role of YA and YB reversed;
thus, these inferences will be referred to as p(Yi = 1|Yj = 1)
and p(Yi = 1|Yj = 0). The Markov condition stipulates that
the two Y s should be conditionally independent, that is, that
p(Yi = 1|Yj = 1) should equal p(Yi = 1|Yj = 0). The empiri-
cal results shown in the left hand side of Figure 3 (gray bars)
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reveal that subjects judged that p(Yi = 1|Yj = 1) > p(Yi =
1|Yj = 0) instead. This violation of independence is also il-
lustrated by the normative fit of the common effect graphical
model in Figure 1A (blue solid line) to the ratings of Re-
hder and Waldmann’s subjects (which included conditional
probability queries other than those shown in Figure 3)1. As
expected, the normative model is constrained to predict that
p(Yi = 1|Yj = 1) = p(Yi = 1|Yj = 0). This apparent expecta-
tion that the causes of a common effect graph are positively
correlated has been observed in other studies (e.g. Rehder &
Burnett, 2005; Rehder, 2014; Rottman & Hastie, 2016) and
violations of the Markov condition have been observed with
other graph topologies (see Hagmayer, 2016, and Rottman &
Hastie, 2014, for reviews).
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Figure 3: Data from Rehder & Waldmann (2014), Experi-
ment 1. Sampler (red lines) and normative (blue lines, solid
points) fits to conditional probability judgments. Error bars
denote 95% confidence intervals.

Figure 3 also presents the best fit of the causal sampler to
these data (red solid line) and shows that an average of 17.9
samples in fact reproduces subjects’ belief that p(Yi = 1|Yj =
1)> p(Yi = 1|Yj = 0)2. It does so because the two prototype

1Fits were carried out per subject and identified parameters that
minimized squared error. The parameters were wY (the marginal
probabilities of YA and YB), wY X (the strength, or causal power, of
the links between the Y s and X), and wX (the strength of alterna-
tive causes of X). Predicted conditional probabilities [0-1] were
multiplied by a scaling parameter s to bring them into the range of
subjects’ ratings [0-100]. The best fitting parameters averaged over
subjects were wY = .401, wY X = .483, wX = .178, and s = 158.6.

2Rather than explicit sampling, the causal samplers predictions
for a given chain length has an analytic solution involving repeated
multiplication of the matrix of transition probabilities between graph
states defined by the Metropolis-Hastings rule. Fractional values of
chain length involve computing the weighted average of the joint
probability distributions that obtain when chain length is rounded
up and down. The best fitting parameters averaged over subjects

states are such that the causes are congruent (Yi = 1 & Yj = 1)
or (Yi = 0 & Yj = 0). As was shown in Figure 2, the causal
sampler overestimates these states, resulting in an inflated
probability for states where the causes are congruent (e.g.
p(Yi = 1|Yj = 1)), and underestimates states where the causes
are incongruent (e.g. p(Yi = 1|Yj = 0)).

Note that the sampler also accounts for another reason-
ing error that subjects commit with the graph in Figure 1A.
Explaining away is a signature property of common effect
graphs. If X is observed to occur then the probability that YA is
present of course increases. But if it is then further observed
that the second cause YB is present then the probability that YA
is present should decrease. (Conversely, if YB is observed to
be absent then the probability of YA should increase.) In fact
however, research finds that subjects often explain away too
little or not at all (Morris & Larrick, 1995; Rehder, 2014; see
Rottman & Hastie, 2014, for a review). The right three bars
in Figure 3 illustrate the three conditional probability judg-
ments relevant to explaining away: p(Yi = 1|X = 1,Yj = 0),
p(Yi = 1|X = 1), and p(Yi = 1|X = 1,Yj = 1). The fits of
the normative model to these data points reveal that explain-
ing away with Rehder and Waldmanns subjects was indeed
too weak (the slope of the blue line is steeper than the em-
pirical ratings). In contrast, the fit of the sampler predicts
this too-weak explaining away (the slope of the red line is
shallower). Because it predicts both independence violations
and weak explaining away, the sampler achieves a better fit to
these data according to a measure (AIC) that corrects for its
extra parameter (30.3 vs. 33.6).

Task 2: Causal Learning
The causal sampler also outperforms the normative model in
a causal learning experiment. Rehder and Davis (2016) tested
for the presence of independence violations in a hypothesis
testing task by presenting subjects with a candidate theory
that took the form of the graph in Figure 1A (again, in either
the domain of economics, meteorology, or sociology). Sub-
jects were then presented with hypothetical data and asked
to rate the likelihood of observing the data if the theory was
true. The correlation between YA and YB that obtained in the
data was manipulated to be either negative, zero, or positive
(all other aspects of the data, e.g., causal strengths, were held
constant). The empirical results shown in Figure 4 (gray bars)
revealed that subjects’ ratings were largest when the inter-Y
correlation was positive and smallest when it was negative.

The normative model’s predictions for this task were de-
rived by, for each of the three data sets, identifying the max-
imum likelihood parameters for the graph in Figure 1A to
that data set. Using simple linear regression, the three maxi-
mum log-likelihoods were then scaled and translated onto the
subjects’ 0-100 ratings. The fitted predictions averaged over
subjects (blue line in Figure 4) show the expected result that
the data set with a zero inter-Y correlation is more likely than

were wY = .440, wY X = .469, wX = .233, s = 137.7, and chain length
= 17.9.
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those with non-zero correlations, reflecting the independence
between the causes stipulated by the normative model.3

The same process was followed for the causal sampler with
the elaboration that we performed a grid search on the num-
ber of samples from 1 to 32. The fitted predictions (red line
in Figure 4) reveal that the model, like the subjects, judged
that the data set with the positive YA-YB correlation is most
likely to be generated by the candidate theory (chain length
averaged over subjects was 2.3). As in conditional probability
judgments, it makes this prediction because biased sampling
(starting at the prototypes) combined with a limited number
of samples naturally generates the expectation that YA and YB
will be positively correlated.

Figure 4: Rehder & Davis (2016). Sampler (red lines) and
normative (blue lines, solid points) fits to data likelihood
judgments. Error bars denote 95% confidence intervals.

Task 3: Expected Distributions
Recall that when the causal sampler’s number of samples is
limited, it warps a causal graph’s joint distribution, overes-
timating prototype states and underestimating others (Figure
2). The following experiment tests this account using a novel
methodology, one that directly asks participants to generate a
distribution for a causal graph.

Method
Materials. Participants were presented with causal hy-
potheses in one of three domains: meteorology, sociology, or
economics. Each domain had three variables (in economics:
interest rates, trade deficits, and retirement savings; in meteo-
rology: ozone levels, air pressure, and humidity; in sociology:

3Our lab has subsequently extended these finding to a more tra-
ditional hypothesis testing task in which subjects rate the posterior
probability of the graph in Figure 1A relative to alternative hypothe-
ses (those formed by removing one or both of the causal links).

urbanization, interest in religion, and socioeconomic mobil-
ity). Each variable could take on two possible values. One
of these values was described as “Normal” and the other was
either “High” or “Low”. The values of the variables were
mixed to prevent domain-specific beliefs from affecting the
results (alternate values were either all “High”, all “Low”, or
a mixture of “High” and “Low”). All hypotheses were of the
form shown in Figure 1A, with two causes of one effect.
Procedure. Participants first studied screens of information
that defined the variables, provided a mechanism describing
how each cause could independently generate the effect, and a
diagram of the causal relationships. They were then required
to pass a multiple-choice test of this knowledge.

Next, participants were asked to generate a data set that
they would expect to result from the causal graph. The causal
relationship between smoking and lung cancer was used as an
example. Subjects were shown the four cells formed by cross-
ing smoker/non-smoker with lung cancer/no-lung cancer and
how (in terms of how hypothetical people were allocated to
the four cells) a greater proportion of smokers had lung cancer
as compared to non-smokers. Subjects were asked to gener-
ate an analogous distribution in their assigned domain (eco-
nomics, etc.). Specifically, they were given 50 pennies and
asked to distribute them among the cells formed by crossing
the three binary variables. They did so by placing the coins
on a large sheet that contained the eight possible states (the
position of the states on the sheet was randomized).
Design and Participants. The experiment consisted of a
3 (domain) by 4 (variable senses, e.g., all “High”) between-
subjects design. 60 New York University undergraduates re-
ceived course credit for participation.

Results

Figure 5 presents how subjects allocated the 50 pennies to
the eight states of the graph in Figure 1A (gray bars). Be-
cause these raw data are difficult to interpret, we computed
measures that reflect the statistical relationships among the
three binary variables implied by the pennies. In particular,
we first normalized a subject’s distribution and then computed
the phi coefficients between a Y and an X (φ(Yi,X); the pen-
nies were aggregated so that the two Y s are interchangeable),
between the Y s themselves (φ(YA,YB)), and between the Y s
conditioned on the presence of X (φ(YA,YB|X = 1)). These
measures averaged over subjects are presented in Figure 6.
First, the fact that φ(Yi,X) >> 0 indicates that subjects un-
derstood that the Y s were generative causes of X . Of greater
theoretical importance is the fact that φ(YA,YB) was also sig-
nificantly greater than 0, t(59) = 3.62, p < .001. This corrob-
orates our claim that the violations of independence that ob-
tain during causal reasoning (Figure 3) and hypothesis testing
(Figure 4) are also manifested in peoples’ causal representa-
tions (Figure 5).

The best fit of the normative model is shown superimposed
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Figure 5: Causal sampler (red line) and normative (blue line,
solid points) fits to participant-generated expected distribu-
tion judgments. Error bars denote 95% confidence intervals.

on the empirical data in Figure 5 (blue line)4. The figure in-
dicates that the normative model tends to underpredict sub-
jects’ judgments for the two prototype states (111 and 000)
and overpredict the remaining states. Phi coefficients com-
puted for these fits (blue line in Figure 6) show the expected
result that the normative model requires that φ(YA,YB) = 0,
at odds with subjects’ distributions. Moreover, it sharply un-
derpredicts φ(YA,YB|X = 1). Because of the explaining away
phenomenon described above, the normative model requires
that φ(YA,YB|X = 1) is negative (one cause is less likely when
the other is present). Figure 6 shows that subjects’ distribu-
tions implied a value of φ(YA,YB|X = 1) that is less negative
(i.e., explaining away was again too weak).

The best fit of the causal sampler (red lines in Figs. 5 and 6)
shows that it accounts for the fact that, relative to the norma-
tive model, the number of pennies is generally too large for
the prototype states and too small for other states5. Of course,
this pattern was expected on the basis of the theoretical pre-
dictions in Figure 2. Like the subjects, the causal sampler
predicts that φ(YA,YB) > 0 and that explaining away (as rep-
resented by φ(YA,YB|X = 1) is too weak relative to the nor-
mative model. As a result, it achieved a better fit to these data
than the normative model (AIC of 3.2 vs. 10.8).

Discussion
Although causal graphical models have enjoyed success in
explaining causal cognition, people consistently violate key
predictions of these models. That independence violations
manifest themselves in multiple tasks suggests that they arise
from the causal representations that people construct. This

4The best fitting parameters (wY = .519, wY X = 0.440, wX = .243
averaged over subjects), were those that maximized the likelihood
of the distribution of pennies.

5wY = .534,wY X = 0.410,wX = .328, chain length = 10.1.

Figure 6: Causal sampler (red line) and normative (blue line,
solid points) fits to participant-generated expected distribu-
tion judgments. Error bars denote 95% confidence intervals.

conjecture was confirmed in an experiment using a new
methodology that assessed, in a relatively direct way, people’s
causal representations. This result suggests that the fault lies
not in how we reason or learn but how we represent.

This paper has proposed a process model that naturally
constructs faulty causal representations. Importantly, it does
so in a manner that is computationally efficient and psycho-
logically plausible. The Metropolis-Hasting rule combined
with the proposal distribution we advocate implies that at any
one time reasoners only need to consider the relative likeli-
hood of two graph states that differ by one variable, a com-
putation that can be carried out very efficiently (because it
involves only those nodes in the variable’s Markov blanket;
Koller & Friendman, 2009). Yet further efficiencies can be
achieved for conditional probability queries (because sam-
pling can be limited to those graph states that instantiate a
query’s antecedent). Note that this view suggests that humans
could construct veridical causal representations—if only they
had the cognitive resources to do so. The fault thus lies
not in our causal representations per se but rather in the fact
that causal judgments must be computed in finite time and
with limited resources. Independence violations are thus an
unavoidable consequence of the tradeoff between accuracy,
speed, and effort.

The causal sampler perhaps gains some credence given
the property it shares with the well-known Mental Model
theory, namely, that reasoning is based on concrete states
of the world (Goldvarg & Johnson-Laird, 2001; Johnson-
Laird & Byrne, 2002). There are, however, some differ-
ences. Whereas the model theory never represents cause-
present/effect-absent situations, the causal sampler, as a prob-
abilistic model, merely asserts that such situations are un-
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likely (depending on the causal graph’s parameters) and thus
rarely sampled (cf. Khemlani, Barbey, & Johnson-Laird,
2014). There are also differences regarding which states rea-
soners initially consider (initial mental models are similar but
not identical to the causal sampler’s starting samples).

The causal sampler accounts for independence violations
with other graph topologies. For example, suppose the direc-
tion of causality in Figure 1A is reversed, yielding a common
cause graph. Independence is then captured by the screen-
ing off principle whereby the effects (YA and YB) are indepen-
dent conditioned on the cause X . In fact, people judge that
p(Yi = 1|X = 1,Yj = 1) > p(Yi = 1|X = 1,Yj = 0) instead
(Rehder, 2014; Rehder & Waldmann, 2016; Rehder & Bur-
nett, 2005). The causal sampler predicts this result as well
(because biased sampling induces a positive correlation be-
tween the Y s conditioned on X).

There are many possible directions for future research. For
one, current models do not attempt to model the substan-
tial variability in peoples causal inferences (Rehder, 2014;
Rottman & Hastie, 2016). The stochastic nature of sampling
may shed light on this important aspect of behavior. The
causal sampler also makes predictions about reaction times.
For example, it would predict that longer reaction times im-
plies a less warped joint distribution (because more samples
were taken).

Research in the causal graphical model tradition has rarely
considered the cognitive processes involved in causal-based
judgments. A limited sampling approach to building causal
representations (a) is psychologically plausible, (b) accounts
for the key discrepancy between graphical models and hu-
man judgments (Markov violations), and (c) explains why
those discrepancies manifiest themselves in multiple causal-
based tasks. Yet, it doesn’t deny that people are sophisticated
causal reasoners—they are, however, limited ones. As a pro-
cess model, the causal sampler allows the causal graphical
model framework to be extended to new phenomena, such as
within- and between-subject variability and response times.
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Appendix
To calculate π(q) (the probability of being in some state q),
we simply use the normative calculation for each potential
state. For example, when causal relations are generative, op-
erate independently, and combine according to a noisy-or in-
tegration rule, π(q) is defined as:

1− (1−b j) ∏
qi∈Pak(q j)

(1−mi j)
ind(qi)

where b j is the strength of causes exogenous to the model
on the node, Pak(q j) denotes the parents of q j in the causal
model, mi j denotes the causal strength between node j and
parent i, and ind(qi) is an indicator function that yields 1 if
feature qi is present, 0 otherwise.
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Abstract

In this paper, we propose a flexible modeling framework for
studying the role of perception in language learning and lan-
guage evolution. This is achieved by augmenting some novel
and some existing evolutionary signaling game models with
existing techniques in machine learning and cognitive science.
The result is a “grounded” signaling game in which agents
must extract relevant information from their environment via
a cognitive processing mechanism, then learn to communi-
cate that information with each other. The choice of cogni-
tive processing mechanism is left as a free parameter, allow-
ing the model to be tailored to a wide variety of problems
and tasks. We present results from simulations using both a
Bayesian perception model and a neural network based per-
ception model, which demonstrate how perception can “pre-
process” environmental data in a way that is well suited for
communication. Lastly, we discuss how the model can be ex-
tended to study other roles that perception may play in lan-
guage learning. Keywords: Evolutionary Signaling Games,
Perception, Language Evolution, Reinforcement Learning

Introduction
In this paper, we are interested in studying three broadly de-
fined types of interaction between perception and language
learning. The first, and perhaps most obvious, is how our per-
ceptions of the world constrain and affect our ability to learn
language. The second type of interaction is the reverse of
the first- how does learning a language shape our perceptions
of the world? The third interaction, with a long history of
philosophical inquiry, is how differing cognitive representa-
tions between agents affects their ability to communicate with
each other. We propose a flexible modeling framework that
can be used to represent and study all three types of interac-
tions between perception and language learning.

This framework has two core components. The first are
evolutionary signaling games which have been used exten-
sively to explain a wide variety of communication phenom-
ena in animals, from mating calls and warning calls in mam-
mals and birds, to pheromone signaling in insect communi-
ties. More recent work has applied these models to the evo-
lution of human language and human linguistic phenomena,
such as compositionality (Franke 2015) and convex percep-
tual categories (Jager 2007, O’Connor 2014). These mod-
els typically represent a situation in which two agents must
coordinate their behavior in such a way as to achieve some
common goal, but without any pre-defined common language
with which to communicate.

We shall see, however, that the standard signaling game
model is not well suited for studying interactions between
cognition and language learning. In order to represent percep-
tion and language in the same model, we derive a “grounded”
signaling game, in which agents respond to raw sensory
inputs, rather than cleanly-defined information states. We

achieve this using unsupervised learning techniques from
Machine Learning and Cognitive Science.

In the following section, we present the relevant back-
ground in signaling games and reinforcement learning, and
briefly discuss why the standard model is not yet equipped for
studying interactions between perception and language learn-
ing. We then present our grounded signaling game model,
and draw on literature in Deep Reinforcement Learning to de-
rive an effective learning rule. In order to avoid introducing
too much complexity at once, we first present the model with
a “trivial” perception mechanism, consisting of the identity
map on sensory inputs. After deriving the learning rule for
this model, we then outline how to incorporate a non-trivial
perception mechanism, and briefly discuss the two percep-
tion mechanisms we will test. We then present results from
a battery of experiments in which the agents must learn to
communicate structured visual information from a synthetic
image environment. These results provide insights into the
role of perception as a “pre-processing” step for communi-
cation, and reveal some interesting interactions between the
type of environment and perception mechanism. Lastly, we
discuss how the current model can be extended to study all
three types of interaction addressed in the introduction.

Background and Related Material
Signaling Games
In a two-player signaling game, the sender observes an infor-
mation state d ∈D , drawn from some probability distribution
P(D). The sender then chooses a signal x ∈ X according to
some decision rule, and transmits the signal to the receiver.
The receiver then observes the signal, and chooses some act
a ∈ A according to the receiver’s decision rule. Both players
then receive a payout R(d,a), which is a function of the state,
and act, but not the signal. The game is fully cooperative, in
that both players receive the same payout every round.

The sender’s decision rule can be represented by a func-
tion assigning each state d to a probability distribution Ps(x|d)
over signals, and likewise for the receiver’s rule Pr(a|x). With
this notation, the expected reward for both players is given by

E[R|Ps,Pr] = ∑
d∈D,x∈X ,a∈A

P(d)Ps(x|d)Pr(a|x)R(d,a) (1)

An evolutionary signaling game is played for many rounds,
and after each round, players update their strategies accord-
ing to some learning rule. The most well-studied and of-
ten used form of reinforcement learning in signaling games
is Roth-Erev reinforcement learning. A Roth-Erev learning
agent (the sender, for this example) is represented by a set of
decision parameters W s, one parameter for each state-signal
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pair. Each weight ws
i, j represents the sender’s unnormalized

probability of choosing signal xi given state d j, and the Roth-
Erev update rule is very simple. If in one round of play the
sender observes state d j, chooses signal xi, and receives re-
ward R, then the sender updates weight ws

i, j by some fixed
proportion of the reward, ∆ws

i, j = αR, and leaves all other
weights unchanged.

In a signaling game with two equiprobable states, Roth-
Erev reinforcement learning will always converge to a sig-
naling system equilibrium, in which the correct act is always
chosen. In games with more than two states, or with non-
uniformly distributed states, Roth-Erev learning will some-
times converge to a partial pooling equilibrium, in which
some states are communicated accurately, and others are
“pooled” into a single signal. Such outcomes are Nash Equi-
libria, meaning that neither player can improve the outcome
by unilaterally changing their own strategy. The probability
of converging to such partial pooling equilibria increases with
the number of states (Huttegger, Skyrms, Smead, & Zollman
2010).

While our general framework is compatible with any sig-
naling game model, the experiments for this paper will be
based on the Sim-Max game (Jager 2007), a variation of the
standard signaling game. In a Sim-Max game, the receiver’s
goal is to guess which state the sender observed, and the re-
ward function is a distance metric representing “similarity”
between states. Such models are used when the state space is
much richer than the signal space, and one-to-one state-signal
mappings are no longer possible. An example of this is color-
even though colors vary continuously, we employ a relatively
small number of words for describing them.

Limitations of the Standard Model
The Roth-Erev reinforcement learning model is favored in
signaling games for its simplicity and minimality of cogni-
tive assumptions. However, there are two factors that prevent
us from using the standard model for our purposes. The first
factor is entirely practical. In particular, Roth-Erev reinforce-
ment learning, while simple and well studied, does not scale
well to larger problems, as it requires a single decision param-
eter for each state-signal pair. This makes Roth-Erev learn-
ing prohibitively slow to converge on large problems, and re-
stricts us to relatively small simulations.

The second problem with the standard model is more con-
ceptual. In the standard treatment of signaling games, states
are represented as uniform, discrete “labels,” or in the usual
Sim-Max game as a uniformly distributed compact subset of
Euclidean space. The key feature in these models is that
there is no internal structure to the states themselves. That
is, the players cannot discriminate between two states except
through the reward function- two different states are either
identical or not, but any further delineation between states can
only be inferred from their effect on the payout. This, how-
ever, is often regarded as an advantage of the standard rep-
resentation, rather than a limitation. The agents need not be

endowed with an inner mental language (Skyrms 2010), they
need not know what the game is “about,” or even that they are
playing a game at all. It is certainly important, if we wish to
study interactions between perception and language-learning,
that we not make any restrictive cognitive assumptions which
would “screen off” the cognitive details of interest. However,
outside of very simple or tightly controlled experimental set-
tings, the standard representation actually imposes some very
strict assumptions about the agents’ perceptions, albeit im-
plicitly.

To illustrate this, consider the following two very similar,
but not identical signaling games: in Game 1, the sender ob-
serves one of ten cards C1, . . . ,C10, each of which depicts a
digit 0− 9, and sends one of ten signals. The receiver must
pull on one of ten levers, each of which bears a digit 0−9. If
the card and chosen lever show the same number, both play-
ers receive a reward of 1, otherwise they receive no payout.
This game fits exactly into the signaling game framework de-
scribed above.

Now consider Game 2: in Game 2, the signals and the re-
ceiver’s actions are the same as Game 1. However, instead of
observing one of ten cards, the sender now observes a card
depicting a handwritten digit 0−9. How would we represent
the state space for Game 2? A first guess might be to repre-
sent it as having the same state space as Game 1, since each
observation depicts one of 10 digits. But unlike Game 1, we
cannot guarantee uniformity across separate instances of the
same digit. Not all instances of 0 will look the same, and
so they are distinct information states. To assume that they
are not distinct information states is to assume that the sender
perceives them as the same, or recognizes that they are of the
same category. But these are acts of cognition. Seeing a digit
handwritten on a card is not the same an recognizing which
digit it depicts, or even recognizing that it is a digit at all. In
this sense, the standard approach of representing states and
acts as finite sets of distinct labels implicitly imposes presup-
poses a fixed way in which agents perceive, recognize, and
process their environments.

This brings us to the two underlying principles of our
framework. First, in order to represent all of the informa-
tion available to agents, without explicitly assuming how
they perceive or represent that information, we must repre-
sent states as raw sensory inputs, rather than discrete infor-
mation states. Second, because sensory inputs tend to be
high-dimensional, it is no longer the case, as with the stan-
dard signaling game, that states cannot be distinguished ex-
cept through the reward function. In particular, Unsupervised
Learning algorithms can infer informational structure from
high-dimensional sensory inputs without any feedback or su-
pervision. Thus, by integrating an unsupervised perception
model into a “grounded” signaling game, we can represent
the evolution of both the external signaling language and the
agents’ internal representations in the same framework.
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The Model
In this section, we present the model used in the experiments
for this paper. We first present the model with a “trivial” per-
ception mechanism, which performs no significant cognitive
processing. Once we derive the learning rule for this model,
we then outline how a non-trivial perception mechanism can
be incorporated. The framework is designed to place no re-
strictions on what perception model we use, and so we will
test two mechanisms, representing two schools of thought on
modeling cognitive processing.

The Grounded Signaling Game
In the experiments we present here, the state space D will be
a synthetic image environment, presented to the sender as a
vector of raw pixel values, and the signal space X = {0,1}k

will consist of binary vectors of length k. As with the Sim-
Max game, the receiver’s action will be produce a guess dout

as to which state din, the sender initially observes, based on
the sender’s signal x. The reward function will be a distance
metric representing similarity between images.

Recall that a Roth-Erev learning agent requires one param-
eter for each state-signal pair. In these experiments, however,
we will use 36-pixel binary images, and signals between 4
and 36 bits in length. Even though only a small number of
possible images d ∈ {0,1}36 will ever appear with non-zero
probability, the players do not know ahead of time which im-
ages are present, or how many appear with positive proba-
bility. This is an important distinction, as the receiver must
reconstruct the original image pixel-by-pixel, rather than sim-
ply guessing from a list of potential images. Therefore, defin-
ing a Roth-Erev reinforcement learning agent for this game
would require up to 272 separate decision parameters for each
player. Clearly this is intractable even for small images, and
we must look elsewhere to derive a tractable learning rule. To
this end, we draw on the representational flexibility of Artifi-
cial Neural Networks (ANNs).

d1

dn

d1

dn

x1

xk

Ws Wr

Sender’s decision:  
Ps(x|d)

x1

xk

X

signal

Receiver’s decision:  
Pr(d|x)

din dout

Figure 1: Information flow for one round of the signaling
game

Figure 1 depicts a single round of the signaling game.
Rather than defining the sender with one decision parameter
per state-signal pair, we define a decision rule Ps(x|din,W s)
with one parameter per state-signal coordinate pair. Given a
state d, we define, for each signal-coordinate xi:

Ps(xi = 1|d) = σ

(
n

∑
j=1

W s
i, jd j

)
(2)

where σ is the standard sigmoid activation function σ(x) =
1/(1+ e−x). Those familiar with ANNs will note that this
is the standard expression for the activation value of a unit
with sigmoid activation function. In the stochastic network
corresponding to this game, the activation value is treated
as a probability, and the output of unit xi is sampled from
the Bernoulli distribution xi ∼ Bernoulli(Ps(xi = 1|d)). Each
weight W s

i j determines, in some sense, the “importance” of
coordinate j in determining the value of signal component
xi. The sender then generates the signal x by first comput-
ing the activation probability for each signal coordinate, then
independently sampling each coordinate from the computed
Bernoulli distribution. Thus, the sender’s probability of send-
ing signal x given object d factors as:

Ps(x|d) =
k

∏
i=1

(Ps(xi = 1|d))xi(1−Ps(xi = 1|d))1−xi (3)

The receiver’s distribution is defined similarly, with the roles
of d and x being reversed. With Ps and Pr defined as above,
the expected reward function in equation (1) can be inter-
preted as an objective function J(Ws,Wr) = E[R|Ps,Pr] to a
multi-agent optimization problem, where both players wish
to maximize J(Ws,Wr), but each player directly controls only
one set of parameters. For this experiment in particular, the
cooperative objective is to output an image that is most sim-
ilar to the input image, which is the same objective used in
training certain types of auto-encoders (a type of unsuper-
vised ANN, trained to accurately reconstruct its own inputs).
Thus, we can efficiently represent a single round of this sig-
naling game as a single forward pass through the three-layer
stochastic-sigmoid auto-encoder network shown in figure 1.

The Learning Rule
An auto-encoder, like most feed-forward neural networks, is
generally trained using some variation of gradient descent
via back-propagation of errors 1. In each step of the back-
propagation algorithm, an input vector is passed through the
network, generating a hidden representation (in this case sig-
nal) from which the latter half of the network attempts to
reconstruct the original input. The error signal (difference
between input and output) at each unit is “propagated” back-
wards, and each weight is adjusted according to its “effect” on
the resulting error. Back-propagation algorithms have been
extremely successful in training neural networks to perform
highly complex tasks, so it is tempting to co-opt the back-
propagation algorithm as a “learning rule” for our two agents.
However, even though we can represent our signaling game
with a three-layer feed-forward network, a key assumption of
the model prevents us from using back-propagation directly.
In particular, the back-propagation algorithm computes the
update to layer l as a function of the parameter and activation

1Technically, exact back-propagation cannot be applied to a
stochastic network, though there are several versions of “approxi-
mate” back-propagation for stochastic networks, e.g. (Gu, Levine,
Sutskever, & Mnih 2015)
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values of layer l + 1. In this scenario, however, each layer
represents a separate human agent, who cannot share param-
eter information with each other, thus preventing the requisite
gradient information from flowing across agents.

Because of this, we instead use a REINFORCE learn-
ing rule, first named in Williams (1992). Consider a sin-
gle round of the signaling game in which sender observes
state d = (d1, . . . ,dn), sends signal x = (x1, . . . ,xk), receiver
guesses state d′ = (d′1, . . . ,d

′
n), and both players receive re-

ward R(d,d′). We define ∆W s
i, j and ∆W r

i, j, the weight updates
for sender and receiver, as

∆W s
i, j = ε(R(d,d′)−bi j)(xi−Ps(xi = 1|d))d j (4)

∆W r
i, j = ε(R(d,d′)−bi j)(d′i −Pr(d′i = 1|x))x j (5)

where ε is a learning rate and bi j is a reinforcement base-
line. The main property of REINFORCE rules, as shown in
(Williams 1992), is that the weight updates shown in equa-
tions (4) and (5) are unbiased estimates of the true gradi-
ent of J(Ws,Wr), the expected reward function. That is,
(R(d,d′)− bi j)(xi−Ps(xi = 1|d))d j is an unbiased estimate
of ∂J/∂W s

i j, and (R(d,d′)−bi j)(d′i−Pr(d′i = 1|x))x j is an un-
biased estimate of ∂J/∂W r

i j. This allows the two players to
cooperatively implement an approximate gradient descent al-
gorithm, despite the fact that neither player is explicitly com-
puting any gradients. This rule is both computationally inex-
pensive and avoids the information-sharing problem of back-
propagation, so it is well suited to our task.

Even though equations (4) and (5) are unbiased estimates
of the true gradient, they can be very high variance estimates,
so outside of very simple tasks, the “pure vanilla” REIN-
FORCE rule (i.e. bi j = 0) can be hopelessly slow to converge.
We therefore use a minimum variance, unit-specific baseline
derived in Bengio (2013), given by the expression.

bi j =
E[(hi−σ(ai))

2R]
E[(hi−σ(ai))2]

(6)

where hi is the output value and σ(ai) the activation value of
unit i. This can be easily computed on the fly by maintaining
moving averages of weight updates and rewards over time.

Adding Perception to the Model
The signaling game model we just introduced is “grounded,”
in the sense that states are represented as sensory inputs, but
we have yet to incorporate a perception mechanism. While
perception is a broadly defined and widely studied subject, we
will adopt a very general stance on what constitutes “percep-
tion.” We will take perception to be any map F : D→Z from
states (represented as sensory inputs) to lower-dimensional
internal representations Z. These internal representations
can be interpreted as the features, categories, concepts, pat-
terns, rules, etc. from which our higher-level decisions are
made. For these particular experiments, we shall use percep-
tion models that learn both a recognition map and a gener-
ative map. The recognition map F : D → Z infers a latent

representation z from an object d, while the generative map
F−1 : Z → D generates an object d from an internal repre-
sentation z (this is a slight abuse of notation, as the generative
map will not in general be the inverse of the recognition map).

d
Zs

Zs
d

din

Sender’s Recognition Model

d

d

Sender’s Generative Model

Fs Fs-1

d
Zr

Zr
d

din

d

d

Fr Fr-1

Receiver’s Recognition Model Receiver’s Generative Model

1. Pre-training:

• Players interact with environment 
separately, perform unsupervised 
learning 

• Perception mechanism learns low-
dimensional representation of data 
(recognition model), and generative 
model from representations to 
objects 

d
Zs

Zs
d

din

Fs(din)

x1

xk

Ws

Sender’s decision:  
Ps(x|Zs)

X

signal

X

d
Zr

Zr
d

dout

Fr(Zr)-1

x1

xk

Wr

Receiver’s decision:  
Pr(Zr|x)

2. Playing the signaling game

• Signaling game proceeds as 
usual, but decisions are 
functions of internal 
representations

• REINFORCE learning applies 
using same reinforcement 
signal as original game

Figure 2: Perception as a pre-processing step prior to signal-
ing game

In the experiments we present here, perception will take
the form of a pre-processing step (figure 2). Prior to play-
ing the signaling game, each player will independently sam-
ple images from their environment, engaging in unsuper-
vised learning, training their recognition maps Fs,Fr as well
as generative maps F−1

s ,F−1
r . Once the perception mech-

anisms have been trained, the signaling game proceeds as
usual, except that the sender now makes their signaling de-
cision Ps(x|zin

s ,W
s) as a function of the sender’s internal rep-

resentation Fs(din) = zin
s of the state din. The receiver then

observes the signal, and first generates an internal represen-
tation zout

r , which is then mapped to output image dout
r . The

reward value is then computed as usual, and we apply the
same REINFORCE updates in (4)-(5) to the player’s decision
parameters.

Representing Perception
There has been surge of interest in computational models of
perception, from both Machine Learning and Cognitive Sci-
ence. We will test two different models, representing two
main approaches that have been taken in studying perception.
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The first are Bayesian models, which represent perception as
a rational inference problem. Given object d, we infer a la-
tent representation z by maximizing the posterior probability
P(z|d) ∝ P(d|z)P(z) using Bayes’ rule. This requires an ob-
ject model P(d|z), as well as a prior distribution P(z) over all
possible latent representations. We shall use an Infinite Latent
Feature Model, which learns a binary feature representation
of visual data, without having to pre-define a fixed number of
latent features. This is achieved using an Indian Buffet Pro-
cess (IBP) prior, which defines a probability distribution over
binary vectors with an unbounded number of features (Grif-
fiths & Ghahramani 2005). While exact inference over this
distribution is intractable, MCMC sampling methods can be
used to perform tractable inference.

The second perception mechanism we shall test a
Helmholtz Machine (Dayan et al 1995), representing a neuro-
computing model of perception. A Helmholtz Machine
is a type of variational auto-encoder, which learns a low-
dimensional representation of sensory inputs by iteratively
inferring latent representations from data, then reconstruct-
ing simulated data from internal representations. These two
steps are iterated in an alternating “wake-sleep” cycle, with
the objective of minimizing the Kullback-Liebler divergence
between the true distribution and the generative distribution.
The result is a low-dimensional binary representation of the
data, encoded on the hidden units of the network. While the
Helmholtz Machine in its original form has been rendered
largely obsolete by more powerful methods, we use this ar-
chitecture for its relative simplicity and pedagogical value in
the context of our goals.

Experiments and Results
In this section we describe the environments and experimen-
tal conditions we tested, present the results of these experi-
ments, and discuss their implications.

Experimental Conditions
We tested three different 36-pixel synthetic image environ-
ments, each intended to represent a different kind of informa-
tional structure. For the first environment (PICTURE), we de-
fined 8 specific 36-pixel images, each equally likely to appear,
and assign 0 probability to all other images. These 8 images
were chosen so as to avoid recurring components or features
across images. This serves as a baseline evaluation for the
perception mechanisms- we can think of the PICTURE envi-
ronment as representing a “traditional” signaling game setup,
in which the “true” state space consists of 8 discrete states
that share no common internal structure. In the context of our
project, “there are only 8 things here” represents prior knowl-
edge or recognition, and so the players must learn that their
environment contains only these 8 images directly through
their sensory inputs.

The second environment (FEATURE) consists of compo-
sitionally distributed images. We define four 3×3 pixel pat-
terns (features), and generate each 6× 6 pixel image by ran-
domly selecting any number of the four features and compos-

ing them into a single image. This construction is based on an
experiment in Griffiths & Ghahramani (2005). The third en-
vironment (HIERARCHY) is hierarchically distributed over
two categories: there are 12 images with non-zero probabil-
ity, depicting either horizontal or vertical bars. Images are di-
vided into category A (vertical) and category B (horizontal).
Within each category, each image is equally likely to appear,
but images from category A are twice as likely to appear as
images from category B. The FEATURE and HIERARCHY
environment test the agents’ abilities to learn non-trivial in-
formational structure from the environment.

For each environment, we test a noiseless version, in which
images are presented to the sender with binary pixel values,
as well as two levels of corrupting noise, in which each pixel
is independently perturbed before being shown to the sender.
For a reward function, we test three different distance metrics-
Hamming (L1), Euclidean (L2), and a patch-specific function
that depends only on certain regions of the image.

Results
Figure 3 shows a summary of results across our experiments,
using the Hamming metric reward function (we observed no
significant differences across reward functions). Convergence
rates indicate the number of iterations required to achieve a
threshold 90% of optimal performance, averaged over 5 runs
for each condition. The Bayesian and Helmholtz columns
correspond to the two perception models, while the Identify
column indicates the trivial perception mechanism that per-
forms no cognitive processing.

Conditions Bayesian Helmholtz Identity
Environment Noise Level1 Signal Size2 Convergence 

Rate
Signal Size2 Convergence 

Rate
Signal Size2 Convergence 

Rate
PICTURE 0 8 1.1x105 8 1.4x105 8 *4.5x105

0.25 8 1.2x105 8 1.4x105 8 *5.0x105

0.35 8 1.2x105 8 1.5x105 8 *4.8x105

FEATURE 0 4 0.3x105 6 0.8x105 6 0.8x105

0.25 4 0.4x105 6 0.9x105 6 0.8x105

0.35 4 0.4x105 6 0.9x105 6 1.1x105

HIERARCHY 0 4 1.0x105 4 0.6x105 4 1.0x105

0.25 4 1.2x105 4 0.8x105 4 1.5x105

0.35 4 1.3x105 4 0.8x105 4 1.3x105

1Value indicates SD of mean-zero Gaussian noise
2Smallest bit-size that converged to optimum (best pooling outcome if optimum not achieved) across all runs

*Indicates partial pooling outcome

Figure 3: Results

In the PICTURE environment, both perception mecha-
nisms drastically improved convergence speed, by effectively
reducing the scale of the problem from 236 to 8 states. This
pre-processing also smoothed over irregularities that would
occur under the trivial perception mechanism, where the re-
ceiver would fix the value of certain pixels across all images.
Introducing the perception mechanism allows the receiver to
reconstruct the image based on their own internal representa-
tions of the environment, rather than by individually choosing
the value of each output pixel.

In the FEATURE environment, convergence to the opti-
mum was fast and reliable through all levels of noise, even
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with the trivial model. The fact that communication is eas-
ier to learn in the FEATURE environment than the PICTURE
environment, even though the former contains twice as many
states as the latter, shows that it is not just the number of dis-
tinct states that affects learning, but the content of the states
themselves. However, the trivial model was only able to con-
verge to the optimum using a 6-bit signal, which is not mini-
mal. The Bayesian perception mechanism, however, allowed
the agents to correctly identify 4 latent features in their envi-
ronment, which enabled them to learn to communicate using
a minimal 4-bit signal. The Helmholtz model did not lead to
any reduction in signal size. This is because the Bayesian
model learns the number of latent features from the data,
while the Helmholtz Machine uses a fixed number of hidden
units. Thus the Bayesian model was able to learn a more effi-
cient 4-feature representation than the network-based model,
enabling more efficient communication.

In the HIERARCHY environment, convergence was fast
and reliable under all 3 models, using a minimal 4-bit sig-
nal. The Helmholtz model is able to learn the more efficient
representation in this environment, using one hidden unit to
code for the category, and 6 more for each image within a
category. This reduced convergence time by up to half. The
Bayesian model, however, learns a less efficient representa-
tion, identifying 1 binary feature for each of the 12 images in
the environment, and does not significantly improve conver-
gence speed.

Discussion and Future Work

The results from the previous section demonstrate how a per-
ception mechanism can be incorporated into a signaling game
model, and shed some light on the first interaction we raised
in the introduction. In particular, we saw that a perception
pre-processing step can enable faster and more robust coop-
erative learning from high-dimensional sensory inputs. We
also saw that certain perception models can learn more effi-
cient representations in certain environments. In this section,
we discuss how the existing model can be extended to address
the other types of interactions we wish to study.

Other Roles of Perception

In the experiments presented here, perception was used
strictly as a pre-processing step, but in order to better under-
stand how language-learning can affect perception, we must
allow the perception mechanisms to be trained in parallel with
the signaling game. While the REINFORCE rule we present
here does not scale well to very deep models with multiple
hidden layers, recent advances in Deep Reinforcement Learn-
ing and Deep Q-learning allow us to scale the basic architec-
ture up to very large tasks. Additionally, we may be inter-
ested in fixing the behavior of one agent, so that the non-fixed
player learns the language of the fixed player. This would
allow us to observe any influence that the fixed player’s lan-
guage has on the non-fixed player’s learned representations.

Perceptual Similarity in Communication
The model we present here already has most of what we need
to address the third type of interaction, relating to perceptual
similarity across agents. That is, we already represent the
evolution of both the external language and the internal repre-
sentations, so all we need is a means of quantifying “percep-
tual similarity” across multiple agents. To this end, we can
use cross-systems analysis techniques like Representational
Similarity Analysis (Kriegeskorte, N., Mur, M., & Bandet-
tini, P. A. 2008), a method for quantifying “representational
similarity” between two different representation systems, re-
gardless of the underlying topologies of the systems them-
selves. This would allow us to study inter-agent learning per-
formance as a function of the similarity between their inter-
nal representations, and perhaps identify a “communicability
threshold” of perceptual similarity below which no commu-
nication is possible.
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Abstract 

The present study provides evidence for far analogical 
retrieval, i.e., analogical retrieval across disparate task 
domains, as a result of analogical comparison. Participants 
read source stories, which were then retrieved after a filled 
delay through abstract letter-string cues that matched the 
relational form of key parts of stories. They then generated 
responses to an ambiguous letter-string analogy problem. 
Evidence was found for far analogical retrieval of higher-
order relations because 1. comparison of letter-string 
analogies cued source stories specific to the relations showed 
in the letter-strings, and then 2. those same relations formed 
the basis for how subjects solved novel letter-string problems. 
The experiment offers support for the schema induction 
account of analogical retrieval, and suggests that people are 
more sensitive to relational structures than was previously 
thought. 

Keywords: analogy; memory; reasoning; analogical retrieval; 
letter-string analogies  

Introduction 
Analogical retrieval leads to many important insights in 

science and design. It appears that these insights often 
emerge as a result of analogical retrieval from vastly 
different domains to one’s present situation. Despite this, 
studies of schema induction in analogical thinking have 
primarily focused on the relatively narrow domain of 
semantic differences between stimuli, and cross-domain 
effects have been rare. The schema induction account of 
analogical retrieval (Gentner et al., 2009) suggests that 
cross-domain analogical retrieval should be facilitated by a 
comparison of analogues, by promoting a structural 
alignment of common relations. A more general principle, 
or schema, is then assumed to be available as a memory 
probe for future mapping in analogous situations. Evidence 
for the schema induction account was established through a 
comparison of target analogues, i.e., late analogical 
abstraction. This effect has been demonstrated in both 
studies of cued-retrieval (Gentner et al., 2009) and problem 
solving (Kurtz & Loewenstein, 2007).  

The effect was demonstrated in the domain of negotiation 
with a controlled memory set (Experiment 4; Gentner et al., 

2009). Undergraduates read seven negotiation scenarios, 
with only one containing the target negotiation principle. 
After 30 minutes of a filled delay, half of the participants 
were given two example cases of a certain negotiation 
principle and were explicitly asked to compare them, noting 
the key parallels. The other half were given the two cases to 
read separately. They were subsequently asked to recall a 
source case that best matched the two target comparison 
cases. Participants that explicitly compared target cases 
were significantly more likely to retrieve the source cases 
than participants that read the target cases separately. It 
appeared the explicit comparison made the abstract schema 
directly available as a retrieval cue to the original story. 

The main limitation to this literature is that most studies 
have only varied what Barnett and Ceci (2002) call the 
knowledge domain of the analogues, despite the possibility 
for retrieval across different task domains. Inherent to the 
schema induction account is the assumption that analogical 
comparison highlights relational structure regardless of 
surface features.  That is, it allows a cross-domain mapping. 
However, as information is often relevant across different 
tasks, it is important to understand whether and how cross-
task retrieval can occur. This is an important hole to fill in 
the literature.  

In addition to investigating whether we can elicit 
remindings across task domains, we can further investigate 
whether the cross-task commonalities that can serve as the 
basis for analogical remindings are limited to specific levels 
of abstraction. That is, the present study investigated 
retrieval rooted in common surface features, first-order 
relations, and higher-order relations (respectively). 
Including these different levels of abstraction as controls for 
each other in the analyses ensured a more adequate test of 
analogical retrieval. That is, a retrieval based in surface 
features across task domains without relational controls is 
not very surprising, given people’s sensitivity for retrieval 
of surface features (Gentner, Rattermann, & Forbus, 1993). 
Further, retrieval of relational content across task domains is 
more valid when controlled for by the possibility of a 
surface feature retrieval. That is, it is more likely that a 
source story was retrieved because of a relational match to 
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the letter-string cue when a surface feature alternative was 
also possible. 

The schema induction account assumes that analogical 
comparison abstracts one’s stimulus representation, i.e., 
relational commonalities are highlighted, and mismatches of 
features are ignored. To further test this account it is 
important to examine the representation formed from the 
comparison independently from the test of retrieval. Gentner 
et al. (Experiment 1; 2009) used a post-retrieval transfer 
task to confirm participant representations, but scoring was 
based on how well participants’ descriptions matched a 
target schema, not directly analyzing the schema used by the 
participants. Hofstadter’s (1995) letter-string proportional 
analogies could be used as a clearer way of determining the 
type and level of representation a person currently has. For 
instance, if asked “Suppose the letter-string abc were 
changed to abd; how would you change the letter-string 
mrrjjj in ‘the same way’?” (Hofstadter, p. 238), one answer 
could be mrrkkk, if succession relation is used because k 
follows j, just as d follows c. A higher-order response 
represents abc as 1-2-3 and abd as 1-2-4, as per their order 
in the alphabet.  The quantity of different letters in the string 
mrrjjj can also be represented numerically as 1-2-3.  This 
higher-order relational mapping leads to the inference that 
the fourth term in the analogy should be a quantity 
successor of mrrjjj that can be numerically represented as 1-
2-4, i.e., mrrjjjj. 

Present study 
The present study extends the late analogical abstraction 

effect (Gentner et al., 2009) to investigate far analogical 
retrieval, i.e., retrieval across disparate task domains. Letter-
string analogies were used as cues to retrieve story 
narratives (see Figure 1). This will be referred to as far 
analogical retrieval, as analogues are retrieved across task 
domains, a significantly more disparate – and conceptually 
far – retrieval than in previous studies. Each comparison cue 
had one analogous initial source story that matches the 
underlying schema. A pilot study (Dekel, 2016) showed that 
these source stories could be retrieved by analogous stories, 
replicating the late analogical abstraction effect (Gentner et 
al.). In the present study, correct source story retrieval after 
the letter-string comparison provided evidence for far 
analogical retrieval. A subsequent transfer task with a novel 
letter-string analogy determined participant schema 
representation for each level of abstraction (surface features, 
first-order relations, and higher-order relations). 

The main hypothesis was that participants that compare 
two target letter-string analogies that share a particular 
schema would retrieve the source story that emphasizes the 
same schema, significantly more than participants 
comparing target stories that do not share this schema. For 
the transfer task, it was hypothesized that participants will 
respond to the transfer task according to their schema 
condition (see Figure 4).  
 

 
Figure 1: Comparison of simplified designs in Gentner et al. 
(2009) and the present study. While participants in Gentner 

et al. retrieved source stories from a comparison of story 
cues, participants in the present study retrieved source 

stories from a comparison of letter-string cues. 

Method 

Participants 
One hundred and eighty-one first-year undergraduates 

from the University of Sydney subject pool were recruited 
online, and were given course credit for their participation. 
Participants were randomly allocated to one of three schema 
conditions: surface schema, first-order relational schema, 
higher-order relational schema. One participant did not 
complete the first filler task and another did not complete 
the analogy example page (both due to computer error), so 
their data was excluded from the analysis of retrieval rates.  

Materials 
The experiment was completed online and all materials 

were webpages coded with HTML and JavaScript. 
Source stories The three source stories, shown in Table 

1, were designed to differ in semantic content, but be 
equivalent in structure and length. Each story presented an 
initial conflict, and a subsequent resolution. Critically, the 
resolution of each story also provided the information that 
made up the target schema for that story, which would then 
either match or mismatch with the later letter-string 
analogies. The first story schema is simply changing an E to 
an F. It is considered a surface story because its similarity to 
the later cues is based on an identical change. The second 
story schema is succession (of Valerie by Sylvia), 
considered to be a first-order relational story because it is 
related to the later cues by virtue of one relation 
(succession) and no surface features. The third story schema 
is the correspondence of quantity to an order (number of 
staff to a day’s order in the week), considered to be a 
higher-order story because it relies on a mapping of first-
order relations. That is, numerical representation connects 
the first-order relational structure of two types of 
succession: ordinal succession, as in the order of days in the 
week, and quantity succession, as in the number of staff 
allocated. 
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Table 1: Source Stories and Explicit Principles. 
 

Schema 
condition  Story text Explanation text 
Surface John is an owner of a small-town computer company and wanted to 

advertise his company to the town.  He printed out some flyers with 
large font size to put up.  However, there was a typographical error in 
the flyers, with the title printing out as ‘Elash Computers’ instead of 
‘Flash Computers’, which John knew would confuse potential 
customers if put up around town.  As such, he had to rewrite the 
company name for the posters, changing the ‘E’ to an ‘F’, and printing 
them again.  There was only a typo in the word ‘Elash’, so only the 
letter ‘E’ was changed from the letter ‘E’, to the letter ‘F’, correcting 
the word ‘Elash’ to ‘Flash’. 
 

Both pairs rely on the same rule: 
Change E to F. 
 

First-order 
relation  

Jerome is an advisor to the King of a large nation and wanted to 
confirm the successor to the throne.  He thought of Valerie, who was 
the king’s eldest daughter.  However, the advisor found out that despite 
being the next in line to the throne, Valerie had run away to a mountain 
town because she did not want to take on the responsibilities associated 
with being a Queen.  As such, he worked out that Sylvia should be the 
next in line to the throne as she is the second-oldest sibling.  The order 
of succession in the kingdom is found by birth order, so if the first born 
child is not able to uphold the throne, then the second born is next in 
line. 
 

Both pairs rely on the same rule: 
Succession. For example: 
Triangle changes to square 
because of the number of sides, 
and G to H because of 
alphabetic order. 
 

Higher-order 
relation  

Julia is a manager at a local information centre and wanted to staff her 
centre efficiently.  She usually has about three people working every 
day.  However, the number of visitors to the centre increases 
consistently each day, with almost no visitors on Mondays and peak 
number of visitors on Sundays, so most days the centre is either 
overstaffed, or understaffed.  As such, she decided that she will roster 
on an amount of staff that corresponds with the order of that day in the 
week.  The centre will have one staff member on Monday, being the 
first day of the working week, two on Tuesday, and so on, with seven 
people working on Sundays. 
 

Both pairs rely on the same rule: 
Order corresponds to quantity. 
For example: E (fifth in the 
alphabet) changing to F (sixth in 
the alphabet) = five symbols 
(letters or shapes) changing to 
six symbols. 

 
Letter-string analogue comparison	 Participants 

received one of three pairs of proportional letter-string 
analogies to compare, as shown in Figure 2. In the figure, all 
three pairs are presented together to facilitate comparison of 
the differences between each pair. The first pair was 
designed to induce the surface schema, the second the first-
order schema, and the third the higher-order schema. The 
same basic structure and symbols (letters and shapes) were 
used for all three of the comparisons. Below this 
comparison, participants read a short explanation of the 
target principle, shown in Table 1 and then completed a 
short test of the principle. 

Procedure.  The experiment was run as an online study 
through a series of webpages. Participants read three one-
paragraph narratives and typed how each story was 
resolved. They then completed two minutes of an unusual 
uses task (Diamond, 2013) and a page designed to inform 
and train participants about the structure and function of 
proportional analogies. 

Participants then completed the comparison task, as per 
their schema condition, and on the subsequent page were 
asked to retrieve the source story that matched the 
comparison they just did. They then completed two minutes 
of a new unusual uses task. Participants then responded to 
the letter-string proportional analogy Suppose that the letter-
string A B C was changed to A B D; how would you change 
the letter-string C S S N N N in the same way?  Following 
this, participants rated some prototypical responses to the 
analogy, and then a subsequent follow-up page asking 
participants to indicate the extent to which they used any of 
the letter-strings or stories when generating the letter-string 
analogies. Figure 3 shows this procedure. 
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Figure 2: The three pairs of comparison cues. The surface 
comparison (a) makes it apparent that the critical change is 

that from E to F, regardless of position in the string or 
presence of shapes. In the first-order relational schema 

comparison (b) the increase in the letters’ alphabetic order 
and shape’s number of sides, expresses the concept of 

succession. The higher-order relational schema comparison 
(c) connects the alphabetic succession of the initial strings to 

the ordinal succession of the latter shape or letter strings. 
The higher-order relationship numerical representation 

connects these two forms of succession. 

Results 

Far analogical retrieval 
A chi-square test was conducted for the cross-tabulation 

of retrieval by schema condition (Table 2). The retrieval 
variable had four levels: null retrieval, surface story, first-
order story, and higher-order story. Schema condition had 
three levels: surface schema, first-order schema condition, 
and higher-order schema condition. The overall effect was 
significant, c2 (6, N = 179) = 46.55, p < .001, suggesting an 
association between people’s schema condition and story 
retrieval rates. To investigate the specific effects, the 
conditions were collapsed into 2 x 2 tables for each 
predicted effect. For each effect, schema condition was 
recoded into a dichotomous variable of those in the target 
schema condition and those that are not. Retrieval condition 

was recoded into a dichotomous variable of those that 
retrieved the target schema story and those that did not.   

 

 
Figure 3: Experimental procedure. 

 
Participants in the surface schema condition retrieved the 

surface schema story (86.4%) significantly more than those 
not in the surface schema condition (40%), c2 (1, N = 179) = 
34.51, p < .001. Those in the first-order schema condition 
retrieved the first-order schema story (31.1%) significantly 
more than those not in the first-order schema condition 
(13.6%), c2 (1, N = 179) = 7.91, p < .001. Those in the 
higher-order schema condition retrieved the higher-order 
schema story (37.3%) significantly more than those not in 
the higher-order schema condition (10.8%), c2 (1, N = 179) 
= 17.6, p < .001. The main hypothesis was thus supported 
by these results as a comparison of letter-string analogies 
facilitated correct retrieval of source stories with the same 
underlying schema. 
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Table 2: Frequency of Story Retrievals by Schema 
Condition. 

 

 

Transfer response 
Responses were coded through the schema they 

presumably expressed. As in Burns (1996), letter-string 
responses generated by two or fewer participants were 
collapsed into the category Other. Figure 4 shows the 
structural hierarchy of the three prototypical responses to 
the letter-string analogy task. Participant response of 
DSSNNN was considered a Surface response, since it only 
takes into account the C changing into D. Participant 
responses of CSSOOO, CSSNNO, CSTNNO were collapsed 
into category First-order, since they all use the first-order 
principle of succession. Participant response of CSSNNNN 
was considered Higher-order, since it takes into the higher-
order correspondence of numerical representation. Table 3 
shows the frequencies of these responses for each schema 
condition. 

A chi-square test was conducted of letter-string response 
by schema condition. Letter-string response had four levels: 
surface, first-order, higher-order, and other. Schema 
condition had three levels: surface schema, first-order 
schema condition, and higher-order schema condition. The 
overall effect was significant, c2 (6, N = 176.04) = 176.04, p 
< .001, suggesting an association between people’s schema 
condition and letter-string response rates.  To probe the 
specific effects, the conditions were collapsed into 2 x 2 
tables for each predicted effect. For each effect, schema 
condition was recoded into a dichotomous variable of those 
in the target schema condition and those that are not. Letter-
string response condition was recoded into a dichotomous 
variable of those in that generated the target letter-string 
response and those that did not.  

The surface schema response was generated significantly 
more by those in the surface schema condition (70%) than 
those not in the surface schema condition (0.03%), c2 (1, N 
= 181) = 94.12, p < .001. First-order schema responses were 
generated significantly more by those in the first-order 
schema condition (82%) than those not in the first-order 
schema condition (26.7%), c2 (1, N = 181) = 49.91, p < 
.001. The higher-order schema solution was generated 
significantly more by those in the higher-order schema 
condition (60%) than those not in the higher-order schema 
condition (0.006%), c2 (1, N = 181) = 108.16, p < .001. As 
per the initial hypothesis, the selective generation of letter-

string responses were congruent with one’s schema 
condition. 

 
 

 
Figure 4: A representation of three responses to the analogy 
ABC:ABD::CSSNNN:?. The surface response (a) considers 
the change from C to D, per se, so merely changes the C in 

CSSNNN to a D. The first-order relational response (b) 
considers the change from C to D as one of ordinal 

succession, as per their order in the alphabet. Since C is the 
last term in the string, NNN, as the last string of CSSNNN, 
is also changed to its successor in the alphabet: OOO. The 
higher-order response (c), on the other hand, considers the 

entire string and each letter’s position in the alphabet, 
representing ABC as 1-2-3 and ABD as 1- 2-4. The change 
is still an ordinal succession, as C and D are successors in 

the alphabet, but the letters have been represented 
numerically. The quantity of different letters in the string 

CSSNNN can also be represented numerically as 1-2-3. This 
numerical representation allows this first-order relation to 

map to the ordinal succession relation of ABC. This higher-
order relational mapping leads to the inference that the 

fourth term in the analogy should be a quantity successor of 
CSSNNN that can be numerically represented as 1-2-4, i.e., 

CSSNNNN. 
 

 

Story 
retrieval 

Schema Condition 
Surface First-

order 
Higher-
order 

Total 

Surface 51 28 20 99 
First-order 5 19 11 35 
Higher-order 1 12 22 35 
Null 2 2 6 10 
Total 59 61 59 179 
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Table 3: Frequency of Letter-string Responses by Schema 
Condition. 

 

Discussion 
Successful cross-domain analogical retrieval is rare.  

Despite this, the results of the present study provide 
evidence that schema induction can facilitate far analogical 
retrieval, i.e., analogical retrieval across disparate task 
domains. The effect was found for surface, first-order 
relational, and higher-order relational schemas. As well as 
providing support for a schema induction account of 
analogical retrieval, the results of the present study also 
address the three limitations in this literature were identified 
above. First, there is now evidence that analogue 
comparison can facilitate analogical retrieval across stimuli 
that share no surface features, except for the presence of 
alphabetic characters. Second, while prior research usually 
neglects to consider different levels of abstraction in 
analogical retrieval, the present study investigated retrieval 
of surface features, first-order relations, and higher-order 
relations. Third, the present study used a transfer task to 
probe the way participants were representing their schema. 

The main limitation of the present study is that the 
apparent retrieval effects, might actually be mapping 
effects. The combination of a relatively small number of 
source stories and short delay might mean that participants 
were considering each source story as a potential match to 
their comparison cue and then actively deciding on the best 
perceived mapping. Future replications of the present study 
should therefore include a larger set of source stories and a 
longer delay between source story encoding and the 
retrieval phase. Further, it is not clear what exact role the 
explicit principle played in cuing the source stories. In 
general, it seems that explicit principles are not sufficient to 
induce a schema, but do seem to facilitate induction. Thus, 
future replications should systematically manipulate the 
explicit principle and its inclusion with comparison to 
determine its role as a retrieval cue for the far analogical 
retrieval. 

Relational priming is sometimes used to explain 
analogical retrieval effects (Holyoak, 2012). It is unlikely to 
explain all of the present retrieval results because most 
relational priming effects are demonstrated using individual 
word pairs of highly familiar relations. There is little 
evidence to suggest that a higher-order relation can be 
primed in the same way, and the participants in our study 
had little to no previous experience with the specific 

relations presented to them. Further, pilot data (Dekel, 2016) 
shows that changing the explicit principle in the higher-
order condition to a more specific form does not 
significantly impact retrieval rates. This suggests a lesser 
role of explicit principle wording in any potential priming. 
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Abstract 

People avoid changing subject abruptly during conversation. 
There are reasons to think that this constraint is more than a 
social convention and is deeply rooted in our cognition. We 
show here that the phenomenon of topic connectedness is an 
expected consequence of the maximization of unexpectedness 
and that it is predicted by Simplicity Theory. 

Keywords: Conversation, topic change, simplicity, 
unexpectedness, interestingness. 

Introduction  
A few decades ago, attempts were made to understand how 
and why conversational topics are almost systematically 
connected to each other, while abrupt topic shifts are 
avoided or even socially repressed. Jerry Hobbs (1990), for 
instance, describes several connection patterns that topics 
must respect to come next to each other in conversation and 
he wonders whether these mechanisms are due to cognitive 
constraints or are mere social conventions. The constraint of 
topic connectedness is so strong that abrupt topic change is 
classically considered characteristic of pathological 
conversation. The inability to respect topic connectedness 
during conversation has been for instance described in 
autism (Hale & Tager-Flusberg, 2005; Volden et al., 1997) 
and in schizophrenia (Harrow et al., 1983). Even in these 
conditions, it is not clear whether patients merely ignore the 
constraint or still respect it covertly. The latter possibility 
would result from the patients’ inability to realize that some 
elements needed for connecting topics lie only in their mind 
and have not been made public (Harrow et al., 1983). 

Though authors had an intuition about what a 
conversational topic is and about how an utterance can be 
appropriate, the lack of proper definitions made the problem 
of topic connectedness difficult to address formally. When 
commenting on his maxim ‘be relevant’, Grice wonders  

“what different kinds and focuses of relevance there may 
be, how these shift in the course of a talk exchange, how to 
allow for the fact that subjects of conversation are 
legitimately changed, and so on. I find the treatment of 
such questions exceedingly difficult” (Grice, 1975). 

Conversation has often been described either at the 
surface level, with notions like repairs and adjacency pairs, 
or at the sociological level, with notions like involvement, 
face preservation or gender talk. The present study adopts a 
rather different perspective, a cognitive one. The point is to 
show that the problem of topic connectedness can be 
derived as a natural consequence of conversational 
mechanisms operating at the cognitive level. 

The remainder of the text starts by making a distinction 
between two fundamentally different conversational modes: 

narratives and argumentative discussions. The way 
narratives connect to each other is particularly intriguing. 
We will observe patterns of topic connection using data 
taken from a corpus of spontaneous conversations. I will 
then introduce the Simplicity Theory (ST) framework and 
show how it can be used to explain the topic connectedness 
phenomenon. 

Conversational Topics 
For long, it was hardly possible to study spontaneous 
conversations by making any hypotheses beyond what could 
be objectively observed. No assumptions were made about 
the participants’ beliefs or desires. As a consequence, the 
existence of two sharply contrasted conversation modes, 
narratives and argumentative discussions, was considered 
unimportant. Though these two modes may be observed in 
pure form during conversations, they are sometimes 
intertwined, making the distinction less apparent at the 
surface level. If one takes a cognitive perspective, however, 
the distinction cannot be overlooked. The first explicit 
description of the narrative/argumentation dichotomy was 
apparently given by Jerome Bruner (1986), though many 
authors (e.g. Sacks, 1992; Tannen, 1984; Eggins & Slade, 
1997) implicitly distinguished between stories and other 
forms of verbal interaction. 

Conversational stories 
People tell stories during conversations, i.e. they mention past 
events that are supposed to have occurred. Despite early 
studies (Sacks, 1992; Labov & Fanshel, 1977:105; Polanyi, 
1979; Tannen, 1984), the importance of the phenomenon has 
rarely been acknowledged until more recently (Norrick, 
2000), as it only occurs among people who are already 
acquainted and is absent from most corpora recorded in the 
lab. Typical conversational narratives are easy to recognize. 
They are most often about past events (the past tense is used 
in English) for which the four w’s (when, where, what, who) 
get instantiated. Consider the following conversation from my 
corpus. It involves two French women who had some trouble 
buying butter (‘beurre’ in French) during their stay in Spain 
[translated from French]. 

D: […] she was with her cousin in Spain. And so… they wanted to 
buy butter. And then [laugh] her cousin said to her, she didn’t 
speak one word of Spanish, but she said to her: “I can speak 
Italian; Italian and Spanish, that’s the same”, and then 

O: Oh là là! Oh là là!  
D: So she enters the store, and she says ‘Burro’. And then [laugh] 

then everyone was staring at her, and so ‘burro’ means ‘donkey’.  
O: Oh! [laugh]. It means ‘donkey’! She wanted to say ‘Butter’! 

Burro. [laugh] It plays tricks, isn’t it? 
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This story is definitely reporting a situated event: the 
‘when’, ‘where’, ‘what’, ‘who’ are supposed to be constants 
and not variables. However, being situated is not sufficient 
for an event to be worth telling.  

“if you come home and report what the grass looked like 
along the way, that there were four noticeable shades of 
green some of which appeared just yesterday because of 
the rain, then there may well some tightening up on the 
part a your recipient. And if you were to do it routinely, 
then people might figure that there's something odd about 
you” (Sacks 1992:219) 

“We would intuitively reject such introductions as ‘Let me 
tell you something ordinary that happened yesterday…’ A 
narrative that is in fact judged to be ordinary may be 
rejected after it is told by expressions equivalent to ‘So 
what!’” (Labov & Fanshel 1977:105) 

The missing ingredient that is required to turn an event into 
a story has been informally described by several authors in 
similar terms: narratable events should be ‘problematic’ 
(Ochs et al., 1992), ‘different from ordinary experience’ 
(Labov & Fanshel 1977:105), ‘unexpected, deviant, extra-
ordinary, or unpredictable’ (van Dijk, 1993), ‘abnormal’ 
(Schank, 1979), ‘odd or unexpected’,’ rare’, ‘impossible or 
unheard of’, be ‘the violation of a norm’ (Polanyi, 1979), 
‘depart from expectations’, be a low probability event (Agar, 
2005). The ‘burro’ story above definitely matches many of 
these criteria. We will subsume all these properties by saying 
that an event must be unexpected to be storyworthy. This 
notion will be refined below. 

Languages offer means to emphasize unexpectedness, 
ranging from adjectives like odd, funny to specific markers 
like the wo particle in Cantonese (Luke 1990). 
Unexpectedness is the key element that controls 
storyworthiness. Emotional events are of course interesting, 
but happy or tragic situations do not arouse emotion unless 
they are unexpected (Saillenfest & Dessalles, 2012). We 
will see that the unexpectedness requirement is also the very 
reason why narrative topics are connected. 

Argumentative discussion 
A significant amount of conversational time is devoted to an 
activity that radically differs from story telling, namely 
argumentative discussion. The argumentative mode seems 
to be the prevalent one, at least in my corpus of family 
conversations. During an argumentative discussion, people 
deal with problems, i.e. incompatibilities between beliefs 
and/or desires1. The following conversation deals with TV 
and radio power consumption (translated from French). 

P- When you put it into standby mode using the remote control 
with the small red dot on. 

L- mmm 
P- Does the TV remain switched on? 
L- Yes. 

                                                           
1 The word ‘argumentation’ in English sometimes conveys an 

idea of dispute or may refer to situations in which some individual 
tries to convince another. We do not consider such restrictions. 

P- So it is to be avoided, 
L- No. 
P- leaving it that way permanently? 
L- No. People would say yes, but, it is quite irritating; you don’t 

take advantage of having a remote control, and, uh, I mean, you 
will save six month or one year on the TV’s life expectancy. Pff. 

D- [to P] Not at all. And anyway, it sets…, it damages tubes a lot to 
set them on and off.  

L- No but anyway, the tube is switched off when you put in 
standby mode.  

D- I don’t think so. 
L- No, one should not compare consumer electronics and 

professional tubes. 
D- Because, still, when you [really] switch it on, you can hear quite 

a discharge. 
L- Yes, well, the tube warms up. When you put it…, No, no, the 

tube is switched off, but because it is consumer electronics, uh, 
otherwise you burn the tube, if it is consumer electronics. 

O- A totally unrelated issue: when I put, I leave my radio plugged 
in, knowing that it is also a cassette recorder,  

L- Yes. 
O- I can hear something. […] Should I switch… should I pull off 

the plug each time or it cannot damage the engine. 

The problem here is the apparent incompatibility between 
the standby mode and the wish to keep the TV undamaged 
(the last utterances show the transition to the next topic). 
Discussions function as consistency maintaining devices: 
participants point to an incompatibility (like standby mode 
vs. no damage) or try to resolve a previously mentioned 
incompatibility. 

What counts as a topic? 
Based on the argumentative/narrative dichotomy, the notion 
of topic can receive a proper definition.  

 The topic of a narrative is the unexpected event it refers 
to. 

 The topic of an argumentative discussion is the logical 
inconsistency that motivates it. 

One could be tempted to consider that stories and 
argumentation are just two extremes in a continuum. An 
utterance like (talking about a toddler) “She is going down 
the stairs by herself!” might seem hard to classify either as 
narrative or as argumentative, as the event is both unexpected 
and potentially problematic (the child may fall down). And 
how would this injunction to a child: “Don’t touch it!” or an 
exclamation like “Oh, that’s wonderful!” be classified? There 
are reasons, though, to stick to the narrative vs. argumentation 
dichotomy. The most important one comes from the 
conviction that human conversational behaviour cannot be 
based on a wide gamut of unrelated cognitive devices. The 
narrative competence, as described by Simplicity Theory (see 
below), and the argumentative competence, as described in a 
minimal way in (Dessalles, 2016) can account for the 
relevance of most conversational utterances.  

The crucial element that helps decide in which mode we 
are is negation. If the speaker has the negation of the state of 
affairs in mind (the child [should] not go down the stairs by 
herself; the child should not touch the object), then the 
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move is argumentative; if the event is regarded as 
unexpected, it is a narrative move2.  

Topic shift and topic drift 
Respecting transitions between conversational topics seems 
almost as important as making appropriate moves. 

Not only are there socially sanctioned rules for appropriate 
topics of conversation, but also, in the course of a 
conversation, it is impolite to make an abrupt change of 
topic even to another socially sanctioned topic. To make a 
change of topic one must usually create some link to the 
previous topic, or one must drift to another topic in a 
stepwise fashion. (Shiller 1995:184) 

Hobbs (1990) identified several patterns through which 
successive topics connect to each other. One of them is 
‘semantic parallelism’. Two topics may share a common 
predicate p applied to different (but similar) arguments a1 
and a2: p(a1) and p(a2). For instance, two stories about an 
accident share this common feature, though the different 
roles (driver, victim…) would differ. Conversely, two 
stories may be connected by an argument instead of by the 
predicate: p1(a) and p2(a), e.g. if successive stories involve a 
same protagonist. 

Hobbs then considers connections that apply to 
argumentative discussions. It is often artificial to talk about 
topic change in argumentative discussion. Hobbs prefers to 
talk about topic drift. Since argumentative discussions go 
around problems (i.e. logical inconsistencies between beliefs 
and/or desires), a solution to a previous problematic issue 
may be regarded itself as problematic. This may lead to topic 
drift: People stack problematic topics on top on each other, 
and may or may not revert to a previous one. When there is a 
‘main issue’, the topic can be clearly identified. For instance, 
in my main corpus of French conversation, one discussion 
about preparing a meal that would suit North American 
visitors consists of 255 utterances and lasts for twenty 
minutes. In many cases, however, discussions drift with no 
intent to reconsider the initial issue. 

Observing topic shifts 
Stories tend to cling to each other, forming what Deborah 
Tannen (1984:100) calls story rounds. During a 
conversation among friends, she counted 48 narratives, 21 
of which where told in five rounds: two stories about sex 
differences for language learning, five stories about adopted 
children, five about summer camps, five about strange 
accidents and four about child discovery of sexuality. The 
‘burro’ story (see above) is part of a story round as well. 
This story round in detailed in Table 1. Transitions between 
topics (here, association or analogy) are shown. 

As mentioned above, argumentative discussions tend to 
drift through logical connections. However, in some cases, 
discussions can be connected to each other in much the 

                                                           
2 Note that speaker and hearer may adopt different attitudes, e.g. 

if the latter proposes a solution (go and grab the child) to what was 
a ‘look at this!’ utterance. 

same way as narratives. Table 2 shows an example of what 
we may call argumentation rounds. The above discussion 
about the TV in standby mode is included in this round. 
Note that a story is embedded in this sequence, as it is used 
as an argument (independently from its unexpected 
character that makes it a story in its own right). 

Table 1: Example of story round    

L compliments his mother on the 
salad dressing she made [19 sec.] 
P tells a story that happened during a 
group travel in Italy. Salad was served 
without dressing in restaurants, and 
one had to dress it for the whole 
group. P tells the extreme contrast in 
the quantities of oil and vinegar 
depending on who did the dressing, 
and the ensuing frictions within the 
group [207 sec.] 
Discussion about cheese [118 sec.] 
P tells another story about the same 
trip in Italy. Two members of the 
group tried to ask for more milk at 
breakfast, trying to say milk in 
various languages (French, English, 
Latin), without success, until one of 
them said ‘moo’ (“meuh” in French) 
[44 sec.] 
L tells how people looked at him with 
puzzlement as he merely tried to ask 
the way by giving his hotel address 
during his recent trip in Italy [52 sec.] 
D tells a story about word confusion 
during a trip in Spain. The two friends 
wanted to buy butter. One of them 
tried the Italian word ‘burro’, 
claiming that the two languages were 
close enough. But ‘burro’ means 
donkey in Spanish [44 sec.] 
L remembers that a friend prepared a 
dish of spaghetti for L and D. The 
recipe was called ‘doppio burro’. 
[16 sec.] 
P tells a story about having 
complimented two German friends on 
their dresses using a German word 
that sounds like an insult in French 
[100 sec.] 

 
It is interesting to observe the different categories of topic 

transition, as they are described for instance in (Hobbs, 
1990), at work in real conversations. The point is not to 
make precise quantitative assessments, as we expect 
significant variance depending on the kind of corpus we 
observe (number and age of participants, degree of 
acquaintance, situation and so on). Rather, we would like to 
get just some rough idea of the relative importance of the 
different forms of topic connections. 

The corpus chosen here is a set of conversations recorded 
during family gatherings during three years. The total 
duration is 17h50min. Participants are mostly the same 

association

association

analogy

analogy

association

analogy
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across recordings. In order to avoid selection bias, a 
sampling method has been used. Two-minute long slices 
were selected around 139 randomly defined time locations. 
8 of these slices were ignored as no one was talking at the 
central time. 18 more were discarded as unintelligible. 
Reasons for unintelligibility are multiple and include noises, 
simultaneous loud conversations and child screams. The 113 
remaining excerpts can be classified as shown in Table 3. 

Table 2: Example of argumentation round  

P explains the strange 
intermittent failure of Z’s 
brand new TV set and asks 
for advice [50 sec.] 
P and Z give an account of 
how the failure first appeared 
and then disappeared, without 
the service engineer having 
done anything [147 sec.] 
Discussion about possible 
causes for the failure [87 sec.] 
Discussion about the low 
qualification of service 
engineers [107 sec.] 
Narrative about a child 
[32 sec.] 
Back to discussion about the 
failure [230 sec.] 
Small discussions about the 
dishes [58 sec.] 
Discussion about the 
robustness of modern TV sets 
[19 sec.] 
Discussion about P’s TV 
getting damaged when it is in 
standby [68 sec.] 
Discussion about a radio 
making a noise when in 
standby [107 sec.] 

 
Several comments have to be made about these results. 

The main observation is that very few topics are introduced 
out of the blue in this kind of corpus. This may suggest that 
the number of abrupt topic change observed in other corpora 
(e.g. Nordenstam, 1992) might be overestimated, either 
because some crucial connecting piece of knowledge might 
be unknown to the external observers, or because 
conversations elicited in the lab might lack the spontaneous 
aspect of normal conversation. 

Almost any connection seems possible between narratives 
(the term ‘signal’ refers to mentions of unexpected events 
that are ‘here and now’3). The most represented topic 
connection in this corpus is analogy, which means that these 
narratives occurred in typical story rounds. The connection 
might be less tight, as when only one element is common 
with the parent topic. 

                                                           
3 One such signalled event is a news about the near future. It is 

listed as ‘narrative’, though narratives are typically about past 
events. 

Another observation is that the most basic pattern: 
problemsolution or solutionproblem, is the majority 
argumentative connection but is not the only one. Problems 
may also refer to the current situation (e.g. I am missing a 
fork) or to an element from a preceding narrative. 
Surprisingly, a problem may also refer to another problem. 
This occurs in a problem-solution-problem-problem pattern, 
in which the last problem suggests that not adopting the 
solution is a problem as well (see (Dessalles, 2016) for a 
minimal model of relevant argument generation). 

Table 3: Topic shift counts 

 Topic type Link with parent topic # / 113 

Problem None 1 

Problem Situation 12 

Problem solution, refutation 13 

Problem Problem 6 

Problem Narrative 3 

A
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Solution Problem 33 

Signal Situation 14 

Narrative None 3 

Narrative Situation 2 

Narrative Temporal 1 

Narrative Common item 4 

Narrative Close association 3 

Narrative Analogy 13 

Narrative Problem 1 

N
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ti

v
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Narrative Explanation, refutation, 
solution 

4 

Explaining topic connectedness 
In this section, we go beyond description and ask why 
conversation topics are so systematically connected. The 
suggestion will be that topic connectedness is the expected 
outcome of the quest for unexpectedness and that it is 
predicted by Simplicity Theory. 

Simplicity Theory 
Simplicity Theory (ST) has been developed to explain event 
narratability. As discussed above, the core notion is 
unexpectedness: events must be unexpected to be tellable, and 
conversely unexpected events are systematically tellable. The 
notion of unexpectedness is not intrinsic to the event. It 
depends on the observer and on the current context. Previous 
attempts to define unexpectedness as ‘low probability’ failed 
to incorporate this necessary relation to the context. 

ST is based on the notion of abnormal simplicity. Imagine 
that the numbers 1, 2, 3, 4, 5 and 6 are drawn in the National 
Lottery. Tough the probability of this outcome is exactly the 
same as for any other draw, the news would be considerably 
more thrilling. Intuitively, the consecutive draw is 
interesting because it is abnormally simple. Simplicity is 

story as  
argument 

follow-up

drift

association

analogy

follow-up

drift 
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obvious here as the sequence 1, 2, 3, 4, 5, 6 is compressible. 
The underlying theoretical notion is a cognitive (i.e. 
resource-bounded) version of Kolmogorov complexity4. 
Complexity here means ‘minimal description length’. 1, 2, 
3, 4, 5, 6 can be described using a much shorter code than a 
‘normal’ draw like 3, 17, 27, 28, 33, 45. The consecutive 
draw can be described using the ‘increment’ operation, 
which is one of the simplest operations in the context of 
numbers, whereas the ‘normal’ draw cannot be 
‘compressed’ down to a shorted description than itself. 

Unexpectedness (or abnormal simplicity) U results from a 
contrast between causal complexity Cw (the circumstances 
or choice points that brought the event to happen) and 
description complexity C. Formally: 

 U = Cw  C.  (1) 

Though ST was initially developed to account for specific 
situations such as lottery draws or coincidences, we were 
surprised to find that the complexity drop between causality 
and description generalizes to all narratable situations 
(Dessalles, 2008). For instance, a fortuitous encounter is all 
the more narratable as the place of the encounter is complex 
(or hard to reach) and the encountered person is simple (a 
close acquaintance or a celebrity). The former parameter 
(location remoteness) controls the causal complexity, while 
the latter (minimal description of the person) controls the 
description complexity (see www.simplicitytheory.science 
for further examples). ST also accounts for problems 
underlying argumentative topics: the intensity of the 
problem corresponds to a high value of causal complexity 
Cw (Dessalles, 2013). 

Simplicity Theory accounts for many aspects of 
interestingness that are left otherwise unexplained. It 
explains why recent events are more interesting if they are 
closer in time and space, why ‘round’ anniversaries (after 
exactly 1, 10 or 100 years) make past events worth talking 
about, why mishaps concerning celebrities might be as 
interesting for certain audiences as if they concerned own 
family, why people are fond of exceptions, norm-breaking 
behaviour and record-breaking performances, why 
collectors value items that are remarkable due to a simple 
feature (e.g. an inverted image on a stamp), and so on. All 
these predictions are derived from the equation U = Cw – C 
(Dessalles, 2008; 2013; Saillenfest & Dessalles, 2015; see 
www.simplicitytheory.science). 

Context and simplicity 
Context plays a prominent role in the phenomenon of topic 
connectedness. ST not only defines this role, but also defines 
what the context is. In ST’s framework, the context is defined 
as the set of properties that contribute to making the event 
unexpected. Formally, such properties can be written as: 

 f(s, c1, c2, …), 

                                                           
4 Note that the ‘resource-bounded’ restriction makes the notions 

of complexity and of unexpectedness computable (Saillenfest & 
Dessalles, 2015). 

where s is the event, f is a predicate and ci are constants. 
Note that a property may represent a conjunction of 
properties: f(s, c1, c2, …) = /\ fi(s, ci1, ci2, …). For instance, a 
property of the event might be takes_place(s, Spain). The 
unexpectedness of s is: 

 U(s) = Cw(f(s, c1, c2, …)) – C(f(s, c1, c2, …)). (2) 

It is easy to define context based on (2): 

 Context = 
properties and constants involved in complexity drop. 

Using complexity chain rule, we can write: 

 C(f(s, c1, c2, …)) < C(f) + C(c1|f) + … + C(s|f, c1, …). (3) 

Conditional complexity C(x|y) means the minimal 
description length of x when the description of y is 
available. (3) generalizes easily to conjunctions /\ fi.  

We see from (2) and (3) that when telling a story or 
pointing to a problematic situation, the mention of 
contextual elements such as f or ci encroaches on 
unexpectedness, as it diminishes the gap between causal 
complexity and description complexity.  

Topic connectedness explained 
Topic connectedness offers an opportunity for con-
versational narrators to save on the description side under 
the following hypothesis: 

Hypothesis: Elements of the previous context  
are available for free for further descriptions. 

For instance, if T–1 represents the preceding context and if 
f and c1 are part of it, then C(f|T–1) = 0 and C(c1|f, T–1) = 0. 
They disappear from (3). Since T–1 has no reason to have a 
causal effect on s, Cw(s|T–1) = Cw(s), and (2) becomes: 

 U(s | T–1) = Cw(s) – C(s | f, c1, T–1).  (4) 

We can see that if f and c1 are part of the current context (i.e. 
contribute to the complexity drop in (1) and are thus relevant): 

 U(s | T–1) > U(s).  (5) 

We can conclude that the situation is more unexpected after 
T–1 than in the absence of any context, and that the presence 
of f in T–1 makes it (more) relevant. As a consequence, an 
event that would be impossible to introduce out of the blue 
may get enough unexpectedness to be worth telling. 

For instance, in the ‘burro’ story, elements like ‘trip’, 
‘foreign country’ or ‘communication failure’ are available 
for free from the previous story about attempts to ask for 
milk at breakfast in Italy (see Table 1). Moreover, ‘butter’ 
appears simple as ‘milk’ was previously mentioned, and 
‘Spain’ would appear simpler than most other countries 
(seen from France) as ‘Italy’ was mentioned. The second 
story would have been less unexpectedness without these 
elements already available. Similarly, in the argumentation 
round of Table 2, the close analogy between the TV and the 
radio getting possibly damaged in standby mode makes the 
second discussion much easier to introduce. The analogy 
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spares the complexity of describing some elements of the 
second discussion (consumer electronics, standby mode, 
getting damaged), making the problem worth discussing 
about. In the excerpt, note that despite the close analogy, the 
speaker still feels the additional precaution ‘A totally 
unrelated issue’ (original: “une question tout à fait à côté”) 
to be necessary when introducing her topic. 

Discussion 
Hobbs (1990) wonders “to what extent topic drift [is] a 
matter of cognition and to what extent a matter of 
convention”. The above development suggests that social 
conventions play hardly any role, beyond the mere control 
of the unexpectedness threshold (as a result, switching topic 
might be easier in relaxed or intimate situations).  

Could it be that the reuse of contextual elements from one 
context to the next would just be due to some sort of 
cognitive laziness or inertia on the speaker’s side? We can 
exclude this possibility: as we saw, topic connectedness is not 
only a fact, but also a requirement. A same topic that would 
be interesting during a story round or an argumentation round 
may appear inappropriate or even pathological when 
introduced out of the blue (Sacks, 1992). The present paper 
suggests that a cognitive determinism is involved. 

When introducing a topic abruptly, bringing concepts and 
names into the new context adds to descriptive complexity 
and, as a result, diminishes unexpectedness, up to a point 
that the new topic is at risk of loosing all relevance. Already 
mentioned concepts or names are, by contrast, descriptively 
costless. The very existence of ‘story rounds’ or 
‘argumentation rounds’ seems to be entirely due to the 
temptation of using elements of the previous context to 
enhance the unexpectedness of the next one. The demand 
for unexpectedness appears to be a universal property of 
human spontaneous conversation. Topic coherence through 
conversation seems to be a side-effect of this requirement. 
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Abstract 

In this manuscript, we summarize the results of our research 
program aiming at describing the cognitive architecture 
underlying the representation of recursive hierarchical 
embedding. After conducting a series of behavioral and fMRI 
experiments in the visual, musical and motor domains, we 
found that, behaviorally, the acquisition of recursive rules 
seems supported by cognitive resources that are general 
across domains. However, when we test well-trained 
participants in the fMRI, their representation of recursion 
seems supported by activating schemas stored in (visual, 
musical and motor) domain-specific repositories. This 
suggests that the resources necessary to acquire recursive 
rules are different from those necessary to utilize these 
rules after extensive training.  

Keywords: recursion; hierarchy; embedding; visual; motor; 
music 

 

Recursion is a fascinating concept that has inspired 

researchers from many disciplines because of its associations 

with language, music and mathematics, which are uniquely 

available to the cognitive repertoire of humans (Hauser, 

Chomsky, & Fitch, 2002). 

The definition of recursion is much discussed, and the term 

is currently used with many different possible meanings 

(Fitch, 2010). In the original mathematical terminology, 

recursive functions are those that take their own output as 

input for the next iteration, such as the function generating the 

natural numbers:  

N0 = 1 

Ni = Ni-1 + 1, for i > 0  

One of the properties of these functions is the capacity to 

generate an infinite set of outputs. 

Empirically, this property of infinity is impossible to verify 

(Lobina, 2011). However, there are other properties of 

recursion that make it interesting for empirical cognitive 

sciences. For instance, when we combine recursion with 

hierarchical embedding, we can generate complex hierarchies 

using simple rules (Martins, 2012). In fact, recursion has been 

discussed as a necessary condition to generate hierarchical 

structures of unbounded depth, and the most efficient 

procedure to generate multiple hierarchical levels (Berwick & 

Chomsky, 2016). For instance, in language, even though the 

use of recursive computations cannot be directly verified, it is 

inferred from the ability to generate hierarchical structures, as 

it is thought to be the only plausible mechanism to generate 

sets of sets (Berwick & Chomsky, 2016), without which there 

can be no multiple levels of embedding. The same standard 

has been proposed for the visual-spatial domain (Martins, 

2012). 

Complex hierarchical structures occur in language, music 

and action planning (Fitch & Martins, 2014). In these 

domains, it is difficult to establish the empirical boundaries of 

the generative capacity. This is especially true when external 

memory and recording devices are available, as for example, 

in written language or in large scale engineering projects, such 

as those involved in building a particle accelerator. 

Independently of how complex a base structure is, it is always 

possible to embed it within a higher-order hierarchy. 

The investigation of these properties of human cognition 

pose several challenges, which we tried to address in a 

systematic 6-year long research program. The first challenge 

was the definition of a clear theoretical framework to make 

recursion empirically tractable and consistent with a number 

of different domains (Martins, 2012; Martins & Fitch, 2014). 

Crucially, the availability of recursion must be tested 

experimentally and neither simply assumed nor deduced from 

pure analytical methods (Martins & Fitch, 2015). The crucial 

behavioral signature of a computational capacity of recursion 

is the ability to generate muliple new hierarchical levels 

(Martins, 2014; Berwick & Chomsky, 2016). This relation is 

independent of particular algorithmic and biological 

implementations (Berwick & Chomsky, 2016).  

Thus, the second challenge was the development of 

experimental techniques that could be used to test the ability 

to represent recursive hierarchical embedding in different 

domains. Once these two challenges were met, we could start 

answering two central questions: (1) in which domains of 

cognition recursion is available, and (2) if recursion were 

available in more than one domain, would it be instantiated by 

a domain-general capacity, or by multiple domain- specific 

abilities?  

 

Recursion in the visuo-spatial domain 

 

In our previous work, we were able to establish that in 

addition to language (Roeper, 2011), the ability to represent 

recursive hierarchical embedding is available in the visual 

domain (Martins, Martins, & Fitch, 2015) (Figure 1). We have 

shown that both human adults and children (Martins, Martins, 

& Fitch, 2015; Martins, Laaha, Freiberger, Choi, & Fitch, 

2014) are able spontaneously acquire a hierarchical self-

similarity rule of the kind A  A [A] and to use it to make 

judgments about well-formed visual fractals and violations 
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(Figure 2A). Crucially, this ability differed cognitively from a 

control, iteration task (Martins, Martins, & Fitch, 2015), in 

which participants made judgments about similar fractals 

which were not generated via a hierarchical embedding rule 

(Figure 2B). In particular, while visual iteration correlated 

strongly with visuo-spatial working memory and non-verbal 

intelligence, recursion correlated weakly with these measures, 

correlating instead with performance in the Tower of Hanoi, a 

recursive planning task (Martins, Martins, & Fitch, 2015). 

 

 
 

Figure 1: Examples of both ‘recursive’ and ‘iterative’ 

processes generating a visual fractal. While recursive 

hierarchical embedding steps generate new hierarchical 

levels, embedded iteration adds elements to fixed 

hierarchical levels, without generating new. 

 

 
 

Figure 2: In both tasks participants are exposed to the first 

three steps generating a fractal (top row) and asked which 

image from the bottom row is the correct continuation. 

Despite using the same pairs of test images, the visual 

recursion and iteration tasks correlated with different 

abilities (Martins, Martins, & Fitch, 2015). 

As in language (Roeper, 2011), the development path 

towards the acquisition of visual recursion requires the 

induction of simpler iterative (conjunctive) representations 

first, before recursive embedding becomes available (Martins, 

Laaha, Freiberger, Choi, & Fitch, 2014). However, we also 

found that the representation of visual recursion is 

independent of verbal resources (Martins, Mursic, Oh, & 

Fitch, 2015) and that it is not instantiated by the classical brain 

networks supporting language (Martins, Fischmeister, et al., 

2014). Using fMRI, we found that the capacity to represent 

recursion in the visual domain is supported by the visual 

ventral stream and by structures (e.g. Medial Temporal Lobe) 

associated with the episodic memory system (Figure 3). 

Interestingly, we found that in comparison with non-recursive 

iterative procedures, recursion hinges mostly on top-down, 

internal representations (Fischmeister, Martins, Beisteiner, & 

Fitch, 2016), associated with the Default Mode Network and 

Semantic Memory. These findings provide some cues 

concerning the basic mechanisms underlying recursive 

hierarchical embedding and its usefulness for human 

cognition: by providing strong top-down priors, recursion can 

facilitate the processing of complex hierarchical structures. 

 

 
 

Figure 3: Brain networks supporting the representations 

of Recursion>Iteration (red) and Iteration>Recursion (blue) 

in the visiuo-spatial domain (thresholded at a voxel-wise 

FDR-adjusted p < .05 with a 10-voxel extent threshold). 
 

Recursion in the music and motor domains 

 

Recently, we have extended this research to the musical and 

motor domains, where the availability of recursion has been 

previously suggested (Corballis, 2014; Jackendoff & Lerdahl, 

2006). We found that both musicians and non-musicians can 

acquire rules governing recursive embedding in tonal 

hierarchies (Figure 4A) (Martins, Gingras, Puig-Waldmueller, 

& Fitch, 2017), and that this capacity shares resources with 

visual recursion and with recursive action planning (Tower of 

Hanoi). This suggests some degree of domain-generality. 

However, when we measured the brain activity underlying this 
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musical capacity in well-trained participants (using fMRI), we 

found little overlap between the musical and visual domains.  

Here, we exposed 15 non-musicians to the first three steps 

forming a tonal fractal, either using recursive or iterative rules 

(Figure 4B and 4C), then gave them 4 seconds to try to 

imagine how the correct continuation (4th step) would sound 

like. This 4-second period was the ‘generation phase’. After 

the 4 seconds, they were exposed to a test stimulus (‘test 

phase’) and asked to judge whether this was a correct 

continuation or a foil. Overall, participants performed 4 

sessions of 18 trials each (6 trials of Fractal, 6 of Iteration and 

6 of Repetition) 

 

 
Figure 4: (A) Example of music fractal with tonal 

relations between levels, which were identical across all 

levels. (B) Cross-level fractal (recursive) rule, (C) Within-

level (iterative) rule. 
 

By contrasting Recursion>Iteration in the “generation 

phase” (while controlling for the activations in steps I, II and 

III) we found that recursive hierarchical embedding in music 

is supported by the primary and secondary Auditory Cortices 

in the left hemisphere and by the right Superior Temporal 

Gyrus, an area known to encode complex tonal relations 

(Figure 5) (Martins, Fischmeister, et al., in prep.). 

Interestingly, despite differences in the specific pattern of 

activation, we found again evidence that the representation of 

recursive embedding is supported by top-down processing: 

These activations occur in anticipation to a certain tonal 

sequence before it is played (“generation phase”), but only 

when the sequence was generated recursively (vs. iteratively). 

There were no task differences in the “test phase”, only a main 

effect of correctness (i.e. violation>well-formed structures). 

 
 

Figure 5: Brain network supporting the representation of 

recursive hierarchical embedding in tonal sequences during 

the “generation phase” (FWE-adjusted pcluster < .05, pvoxel < 

.001).  The Repetition task was a working memory task, in 

which participants simply had to buffer step 3 (a complete 

and well-formed fractal) and then determine whether step 4 

was a repetition of step 3. The opposite contrasts 

(Iteration>Recursion and Repetition>Recursion) yielded no 

activations. 
 

Finally, we tested participants in the motor domain (Figure 

6). Here we asked 20 (non-musician) participants to execute 

motor sequences on a 16-keys keyboard as depicted on a 

computer screen. Similar to the music domain, we exposed 

participants to the first two steps of a process generating 

motor fractals, then asked them to plan the next correct step 

(the “planning phase”) for 6 seconds. After the planning phase 

they were asked to execute the correct sequence on the 

keyboard without visual assistance (‘execution phase’). 

Iteration and Repetition baseline tasks were devised, similar to 

the music domain. Each participant performed 4 sessions of 

20 trials each (8 Fractal, 8 Iteration and 4 Repetition trials). 
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Figure 6: A) Example of a recursive process generating 

sequences of (silent) finger movements. Red, Green and 

Blue denote key presses with the thumb, index and middle 

fingers, respectively. On each step N, each key press is 

substituted by a sequence of 3 key presses with less than 

one third of the duration dn. B) Example of an Iterative 

process generating the same motor fractal. 
 

 

We found that during the planning of hierarchical motor 

sequences using recursive rules, participants activated a 

network known to instantiate motor planning and imagining, 

comprising the Somato-Motor and Premotor cortices 

bilaterally, Cerebellum and Basal Ganglia (Figure 7) (Martins, 

Bianco, Sammler, & Villringer, in prep.). Furthermore, we 

found that the underlying generating rule 

(Recursive>Iterative) changed how the execution of identical 

motor sequences were neurally represented: During the 

execution of a sequence formed using iterative rules, we found 

a strong activation in the primary motor hand area (x = -52, y 

= -18, z = 50, Z = 6.06, FWE pcluster < .05, pvoxel < .001). In 

contrast, when the sequence was formed recursively, we did 

not find a direct activation in the motor cortex, but a 

modulation of this area from a fronto-striatal cluster (PPI: 

Recursion>Iteration: x = -36, y = -24, z = 48, cluster extent = 

182 voxels, Z = 3.96, pvoxel = .016). 

 

 

 

 
 

Figure 6: Brain network supporting the representation of 

recursive hierarchical embedding in the motor domain 

(FWE-adjusted pcluster < .05, pvoxel < .001). 
 

 

 

Discussion 

Taken together, these results suggest several things: (1) The 

acquisition of recursive rules is probably supported by 

cognitive resources that are general across domains; (2) 

However, when we test participants that are well-trained and 

at ceiling performance in the fMRI, their representation of 

recursion is instantiated by domain-specific neural systems; 

(3) In contrast with other (iterative) rules applied to 

hierarchies, recursion seems to allow a controlled top-down 

processing, in both discrimination (visual and tonal) and 

production (motor) of well-formed hierarchical structures. 

This result is consistent across several domains. 

The apparent contradiction between points (1) and (2) can 

be solved if we surmise that the resources necessary to acquire 

recursive rules are different from those necessary to utilize 

these rules after extensive training. We hypothesize that 

acquisition requires domain-general resources, which are 

perhaps slow and effortful, while expert use is instantiated by 

activating schemas stored in domain-specific repositories, 

which are formed after a process of automatization. The 

answer to this question requires novel research investigating 

the neural networks supporting the acquisition of recursive 

rules. 
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Abstract 

Previous research has found that people are seen as more 
attractive when they appear in a group rather than in isolation. 
The present study asks whether faces that surround us in time 
also affect how attractive we appear to be.  Participants rated 
the attractiveness of famous female faces presented in a 
sequence of three and in isolation. We found that people do 
integrate information about attractiveness over time, but that 
temporal context has the opposite effect of static context. 
People perceived faces as less attractive in a series than in 
isolation. We also varied the attractiveness of surrounding 
faces in order to examine how the serial position of contextual 
information might figure into people’s judgments. We found 
that faces presented earlier in the sequence figured more 
heavily into people’s judgment than did faces presented later 
in the sequence. These findings highlight the role of temporal 
context in perceptions of attractiveness.  

Keywords: face perception, attractiveness, serial position 
effects, ensemble coding, cheerleader effect 

Introduction 
In a 5th season episode of the American comedy television 
series The Office, the employees of Dunder Mifflin paper 
company spend an entire day debating whether actress 
Hilary Swank is “hot” or not. The office workers are torn on 
the issue, battle lines are drawn, and emotions get heated. 
Though in part a satirical referendum on the public’s dark 
obsession with – and objectification of – celebrity, the 
plotline of this episode raises an important question: What 
factors influence perceptions of attractiveness?  

The intrinsic features of individual faces certainly 
contribute to the perception of attractiveness, for both 
evolutionary and cultural reasons. Female faces, for 
example, are rated as more attractive the more sexually 
dimorphic and prototypically “female” they are (Valenzano, 
Mennucci, Tartarelli, & Cellerino, 2006), and the more 
symmetrical they are (Perret et al., 1999). However, certain 
situational factors such as amount of exposure to a face 
(Rashidi, Pazhoohi & Hosseinchari, 2012) as well as the 
perceived market value of the person making the judgment 
(Morgan & Kisley, 2014) can also impact attractiveness 
judgments.   

Researchers have also examined whether contextual 
factors can influence attractiveness ratings.  Recent work, 
for example, has uncovered a so-called “cheerleader effect” 
in which people are rated as more attractive when they 

appear in a group than when they appear in isolation 
(Walker & Vul, 2013). Walker and Vul explain these 
findings as a sort of perceptual averaging phenomenon.  The 
idea is that people spontaneously extract an ensemble code 
when viewing a group of faces, and because average faces 
are seen as highly attractive (Langlois, Musseman, & 
Roggman, 1994), attractiveness ratings for the faces that 
contributed to the ensemble receive a boost. This suggests 
that perceptions of attractiveness are in part constructed 
online, in the moments we experience another person’s face.    

Often the faces we encounter in a crowded place are 
processed serially, rather than all at once. For example, 
faces come in and out of sight as we walk down the street, 
scan a room, or swipe through profile pictures on social 
media websites. Interestingly, evidence from studies of 
object perception suggests that the visual system is capable 
of constructing average representations over time in addition 
to space. Albrecht and Scholl (2010) found that people’s 
estimates of the average diameter of a growing or shrinking 
disc depended on which part of the disc received the most 
screen time. Participants overestimated the average when 
frames on the larger end of the spectrum hung on the screen 
longer than did frames on the smaller end of the spectrum, 
and vice versa.  

Is information from faces spontaneously integrated over 
time in a similar way? The present study asks whether the 
cheerleader effect extends to faces that appear near one 
another in time in addition to space. Importantly, the study 
was also designed to address whether serial position 
influences how information about attractiveness is 
integrated over time. Do all faces in a sequence figure 
equally into the ensemble code, or is the average 
representation that people extract weighted more heavily by 
faces appearing early or late in the series?  

Though research suggests the visual system computes 
ensemble codes of information presented close in space and 
time, the data is often inconsistent with a simple averaging 
account. For example, studies of the perception of serially 
presented lines have reported a recency effect in people’s 
judgments: Estimates of line length were biased toward 
lines that appeared toward the end of the sequence (Weiss & 
Anderson, 1969). And while Walker and Vul (2013) 
concluded that an averaging effect best captured the data 
they observed in their work on the cheerleader effect, not all 
of their findings are consistent with this interpretation. For 
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example, if the cheerleader effect results from simple 
averaging, then the more faces that contribute to the 
ensemble code, the more attractive the resulting average 
should be (i.e., increasing the number of faces in a group 
photograph should strengthen the cheerleader effect).  
Walker and Vul (2013, Experiment 4) tested this hypothesis 
with set sizes ranging from two to 16. Although they found 
a cheerleader effect within each set size, the magnitude of 
the effect did not increase with the number of faces in the 
set.  

In light of these findings, the present study was designed 
to differentiate between different possible accounts of the 
temporal cheerleader effect we investigated. On the one 
hand, it is possible that faces appearing at the end of a 
sequence bias the perceived attractiveness of faces earlier in 
the sequence (i.e., a recency effect). This would be 
consistent with the work of Weiss and Anderson (1969) on 
line perception. However, it is also possible that the first 
face might influence the perceived attractiveness of faces 
appearing later in the sequence. There are at least two 
reasons we might expect such a primacy effect. First, there 
might be a contrast effect (Kenrick & Gutierres, 1980; 
Pegors, Mattar, Bryan, & Epstein, 2015), such that seeing a 
highly attractive face may make subsequent faces seem less 
attractive by contrast, and vice versa.  Second, there might 
be an anchoring effect, such that subsequent faces appear to 
have a similar attractiveness level as a previously presented 
face (Pegors, Mattar, Bryan, & Epstein, 2015; Taubert, Van 
Der Burg, Alais, 2016; Tversky & Kahneman, 1974).  

Both contrast and anchoring effects have been observed in 
recent studies examining the effects of the attractiveness of 
the previous face on online judgments of serially presented 
faces (Pegors et al. 2015; Taubert et al., 2016).  Pegors and 
colleagues suggest that the contrast effect derives from 
perceptual components of the judgment, whereas the 
anchoring effect derives from a bias to respond in the same 
way as in the previous trial.  The present study extends this 
work to offline judgments of facial attractiveness.  Does the 
temporal context in which a face appears affect later 
memory of how attractive that face was?  Offline judgments 
further allow us to examine any serial position effects more 
fully.  Specifically, this design element allows us to test 
whether faces that follow us in time can retroactively 
meddle with how attractive we are judged to be.    

In order to (a) determine whether or not an offline, 
temporal cheerleader effect exists, and (b) understand the 
mechanisms underlying such an effect, participants in the 
present study rated the attractiveness of a variety of famous 
female faces. On each trial, faces were presented either in 
isolation or in a series of three faces. Afterward, participants 
were cued by the name of each celebrity they saw and asked 
to rate how attractive the person looked in the photograph.  
Celebrity faces were used (as opposed to non-famous faces) 
to allow for offline attractiveness ratings to be collected 
after all faces disappeared from view.  The celebrity’s name 
uniquely picked out which face participants were being 
asked to rate. 

The stimulus set included two versions of each celebrity: 
an “attractive” version where the celebrity was 
photographed favorably, and an “unattractive” version 
where the celebrity was photographed uncharitably (see 
Figure 1 for example stimuli). On trials where faces were 
presented in a series, the middle face was always an 
attractive face and was either preceded by or followed by an 
unattractive face.  Therefore, in the unattractive first 
condition, participants first saw an unattractive face 
followed by two attractive faces. In the unattractive last 
condition, participants saw two attractive faces followed by 
an unattractive face.  

To the extent that people do integrate information about 
attractiveness over time, offline judgments of a given face 
should depend on whether the face was presented in 
isolation or in the middle position of a series of three faces. 
If the mechanism by which information is integrated is a 
contrast effect, then viewing an unattractive face in the first 
position of the sequence should cause the middle face to 
seem more attractive than it does in isolation, and vice 
versa.  Alternatively, if the mechanism is anchoring, then 
seeing an unattractive face in the first position of the 
sequence should make subsequent faces seem less attractive 
than they do in isolation, and vice versa.  Finally, if the 
mechanism is simple averaging, then all faces should appear 
more attractive when they are presented in a sequence, since 
research suggests that averaged faces appear more attractive 
(Langlois, Musseman, & Roggman, 1994). However, since 
there are only three faces being averaged together here and 
one was specifically chosen to appear highly unattractive, it 
could be the case that the average of this small set would 
actually appear less attractive. What’s more, these effects 
may depend on where the unattractive face appears in the 
sequence.  If the averaging effect is subject to primacy 
effects, then the first face in the sequence will figure more 
heavily into the average. However, if the averaging effect is 
subject to recency effects, then later faces in the sequence 
will figure more heavily into the average. This study will 
help to rule out some of these possibilities.  

Experiment 
Methods 
Participants 50 “master-level” participants were requested 
from Amazon’s Mechanical Turk worker pool for this 
study.  68 people actually followed the link to the 
experiment and began the study, but 17 of those people did 
not complete the task. The remaining 51 participants were 
included in the study. There were 27 males and 23 females 
in the sample, with a mean age of 41.20 (SD = 12.67). One 
participant declined to provide demographic information. 
Each participant received $1.50 for their time spent on the 
study.  
 
Stimuli and Procedure  Participants rated the attractiveness 
of faces in three within-subjects conditions: isolation (a face 
shown by itself), unattractive first (an unattractive face 
followed by two attractive faces in sequence), unattractive 
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last (two attractive faces followed by an unattractive face in 
sequence). 

 

 
 
Figure 1. Example stimuli used in this study. On the left is 
the “unattractive” photograph of Debra Messing that 
participants saw, and on the right is the “attractive” 
photograph of the same celebrity. 
 

Photographs of 75 unique female celebrities made up the 
stimulus set for this study.  Two photographs were collected 
for each celebrity: an “attractive” version in which the 
person was made up for an event, and an “unattractive” 
version in which the celebrity was captured poorly (i.e., 
photographs found in tabloids claiming to have “shocking” 
pictures of the person; see Figure 1 for example stimuli).  
Therefore, the final stimulus set consisted of 150 celebrity 
photographs. Each participant saw a subset of 75 faces 
sampled from this full stimulus set (50 attractive faces and 
25 unattractive faces). Participants saw either the attractive 
version or the unattractive version of each unique celebrity, 
and never both. Whether a celebrity was presented as 
attractive or unattractive was counterbalanced across 
participants.      

The study was conducted using Qualtrics survey building 
software.  On each trial, participants saw female celebrity 
faces presented either in isolation or in a series of three 
faces. Each face was presented along with the celebrity’s 
name and remained on the screen for one second.  
Afterward, participants were instructed to rate the 
attractiveness of each face they had just seen, cued only by 
the celebrity’s name. Participants entered their responses 
using a continuous sliding scale without numbers on it.  
This was designed to prevent participants from tracking the 
specific ratings they assigned to faces throughout the study.  
The scale ranged from “very unattractive” to “very 
attractive”.  Participants were allowed to take as much time 
as they needed to enter their ratings. The order in which 
participants were prompted to rate each celebrity was 
randomized on each trial. See Figure 2 for a schematic 
representation of the trial structure in this task.   

Each participant completed 125 trials. 75 trials consisted 
of faces presented in isolation, and 50 trials consisted of 
faces presented in a series. Of the 50 trials in which the 
faces were presented in a group, 25 were unattractive first 
trials, and 25 were unattractive last trials.  The middle face 
in the sequence was always attractive.  Which face appeared 
in which position in the sequence was counterbalanced 

across participants.  All trial types were interleaved, and 
trials were presented to participants in random order.   
 
A. 

 
B. 

 
 
Figure 2. Trial structure for the conditions in which faces 
were presented in a sequence (A) and in isolation (B).  Part 
A depicts an example unattractive first trial. 

 
Participants rated each attractive photograph at two 

critical points in the study: once in isolation and once in the 
middle position of a series of three faces.  We wanted to 
know whether attractiveness ratings for each photograph 
depended on this contextual manipulation, so we limited our 
analyses to the 50 attractive faces each person saw, as well 
as to ratings of the face presented only in the middle 
position on group trials.     

  At the end of the study, participants supplied 
information about their gender, race/ethnicity, and age. We 
also included a manipulation check designed by 
Oppenheimer, Meyvis, and Davidenko (2009) to ensure that 
all participants in our sample read task instructions 
carefully.  

Results 
All 51 participants in this study correctly answered the 
instructions manipulation check, so data from all 
participants were analyzed. One participant declined to 
provide demographic information and therefore was not 
included in analyses that examined effects of gender.  

To confirm that our participants found the “attractive” 
faces to be more attractive than the “unattractive faces,” we 
compared participants’ raw attractiveness ratings between 
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these two stimulus types.  Indeed, participants rated the 
attractive faces more favorably on a scale from 1-100 (M = 
70.91; SD = 13.12) than they did the unattractive faces, M = 
34.46; SD = 16.46; t(50) = 15.83, p < .001.  

For each participant, responses on analyzed trials were 
converted to z-scores. For each attractive face that a given 
subject saw, we subtracted the standardized rating of that 
face presented in isolation from the standardized rating of 
that same image shown in a group. Therefore, positive 
difference scores indicate that faces were rated as more 
attractive when presented in a group compared to isolation, 
and negative difference scores mean faces were rated as less 
attractive when presented in a group compared to isolation. 
Overall, participants rated celebrity faces as significantly 
less attractive when they were presented in a series than 
when they were presented in isolation (Mgroup-isolation = -
0.098, SDgroup-isolation = 0.16 ), t(50) = -4.24, p < .051. 

 

 
 

Figure 3: Shift in standardized attractiveness ratings for 
faces presented in a sequence from those same faces 
presented in isolation.  Error bars represent 1 SEM. 
 

The differences in z-scores were submitted to an ANOVA 
with one within-subjects factor (order of attractiveness: 
unattractive first vs. unattractive last) and one between-
subjects factor (gender of participant: male vs. female). The 
ANOVA revealed a significant main effect of order of 
attractiveness on the attractiveness deficit for faces 
presented in a group relative to isolation. Specifically, the 
effect was stronger when participants saw an unattractive 
face first in the sequence (M = -0.16, SD = 0.23) than it was 
when participants saw an unattractive face last in the 
sequence (M = -0.03, SD = 0.23), F(1, 48) = 9.78, p < .005 
(see Figure 3). These effects were similar in men and 
women: The attractiveness deficit did not depend on the 

                                                
1 Due to an error in setting up the study, one trial was lost in the 

unattractive last condition in one third of participants. Therefore, 
only 24 trials instead of 25 went into data analysis for those 
participants in that condition.   

gender of the participant (F(1, 48) = 0.04, p > .50), and 
there was also no interaction between gender and order of 
attractiveness, F(1, 48) = 1.97, p > .05. 

Post-hoc analyses revealed that seeing an unattractive 
face at the beginning of the sequence caused the middle face 
to appear less attractive than it did in isolation (Mgroup-isolation 
= -0.16, SDgroup-isolation = 0.23), t(50) = -5.07, p < .001. While 
the presence of an unattractive face at the end of a sequence 
produced a numerical reduction in attractiveness of the 
middle face relative to isolation, this shift did not reach 
statistical significance (Mgroup-isolation = -0.03, SDgroup-isolation = 
0.23), t(50) = -1.03, p > .05. 

Discussion 
The purpose of this study was to determine whether and 
how people integrate information from faces over time 
when judging the attractiveness of others. In our 
experiment, participants viewed a series of attractive and 
unattractive female celebrity faces in isolation and in a 
series of three images. They were then asked to rate the 
attractiveness of each face (cued only by their name) on a 
sliding scale from very unattractive to very attractive. The 
results indicate that people do integrate information over 
time when judging the attractiveness of faces. Contrary to 
the “cheerleader effect,” which suggests that faces are 
perceived as more attractive when they are presented in a 
group, the results from this experiment suggest that faces 
are perceived as less attractive when presented in a series 
than when they are presented in isolation. The results further 
show that this effect is stronger when an unattractive face is 
presented first in the series compared to when it is presented 
last.  

There are a number of reasons why attractiveness ratings 
might be different for faces presented in a series compared 
to isolation. For example, seeing faces in a sequence may 
lead to a contrast effect, where seeing an attractive face 
causes a subsequent face to appear less attractive (and vice 
versa). Or there could be an anchoring effect where people 
rate subsequent faces to be similarly attractive to the initial 
face. Finally, there could be an averaging effect where all 
faces in the sequence contribute to an ensemble code that 
figures into attractiveness judgments for each face in the 
sequence. The results from the present study help to rule out 
one of these three possibilities: the contrast effect. Had our 
manipulation produced a contrast effect, then seeing an 
unattractive face first would have caused the middle face in 
the series to seem more attractive. Instead, our results 
showed the opposite pattern: viewing an unattractive face 
made the subsequent face appear to be less attractive than 
when it was viewed in isolation.     

The data are partially consistent with an anchoring effect.  
An attractive anchor face should cause subsequent faces to 
seem more attractive than usual, and an unattractive anchor 
should cause subsequent faces to seem less attractive than 
usual. Indeed, unattractive faces at the beginning of the 
sequence caused subsequent faces to appear less attractive 
than usual, but the opposite pattern did not obtain for 
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attractive faces presented early in the sequence. Therefore 
these data are only partly in line with the findings of Taubert 
et al. (2016). 

Pegors and colleagues (2015) concluded from their study 
examining sequential attractiveness judgments that contrast 
effects result from stimulus (perceptual) bias, whereas 
anchoring effects result from response bias.  The present 
findings are not consistent with this explanation as the study 
design itself rules out response bias as a possible 
contributor.  On trials in which faces were presented in a 
group, participants saw all three faces before responding to 
any one of them.  They then entered their responses in a 
different order than the one in which the faces were 
presented.  We analyzed the data based on the stimulus 
order and not the response order, so the partial anchoring 
effect should not necessarily be interpreted as a result of 
response bias. Furthermore, the lack of a contrast effect is a 
departure from the findings of Pegors and colleagues, 
suggesting there may be a qualitative processing difference 
between online and offline judgments of serially presented 
faces that persists well beyond the presentation of the face.      

The findings presented in this paper are perhaps most 
consistent with an averaging effect. By including an 
unattractive face in the sequence of three, we may have 
reduced the attractiveness of the ensemble code participants 
extracted from the series, which then biased subsequent 
ratings of individual faces in the sequence. Furthermore, it 
appears that the serial position of the unattractive face 
influenced how the average representation was constructed. 
Contrary to the findings of Weiss and Anderson (1969), our 
results revealed a primacy effect on perceptual averaging. 
Namely, unattractive faces presented at the beginning of the 
series figured more heavily into the average than did 
unattractive faces presented at the end of the series. 
However, because averaging faces together generally 
increases perceived attractiveness, this account depends on 
the possibility that averaging only a small number of faces 
together (three), one of which is especially unattractive, can 
sometimes reduce rating attractiveness (perhaps, for 
example, when the faces are of familiar people, as in the 
present study). Indeed, morphs containing familiar 
(celebrity) faces are rated as less attractive than are the 
component faces used to generate the morph (Halberstadt, 
Pecher, Zeelenberg, Ip Wai, & Winkielman, 2013).  
Therefore, using celebrity face may itself have lowered the 
attractiveness of the average face people constructed over 
time in the present study. Future work is required to confirm 
this possibility, however.  

In order to preserve the design element in this study that 
no participant saw both the attractive and unattractive 
versions of the same celebrity, we did not include trials in 
which all faces in a sequence were attractive, nor did we 
include trials in which all faces were unattractive. Future 
work will examine these trial types so as to build a more 
complete picture of the way in which attractiveness in faces 
is integrated over time.   

One ongoing study attempts to further differentiate 
between an anchoring and averaging account of our findings 
by replicating the present study with unattractive faces in 
the target (middle) position on group trials. If our findings 
reflect a cheerleader effect, then the results from this new 
study should mirror the results in the present study. 
Specifically, the middle face in the sequence would be rated 
as less attractive than a face presented in isolation, but this 
effect would only appear in the unattractive first condition.  
However, if our current findings reflect an anchoring effect, 
we should predict that the unattractive last condition in this 
ongoing study would produce the strongest anchoring effect 
– the condition in which an attractive face appears in the 
first position of the sequence. After all, this is the condition 
where the difference in attractiveness is largest between the 
first and middle faces. Therefore, an anchoring effect in this 
new version of the task predicts that the middle face would 
be rated as more attractive in a series than it is in isolation. 

Our judgments about the attractiveness of others factor 
into a variety of important decisions we make every day.  
For example, whether a candidate would make a good fit for 
a job (Dipboye, Fromkin, & Wilback, 1975), or whether to 
ask a person out on a date can be influenced by how we 
perceive the attractiveness of that individual. This study 
highlights one way in which such important decisions might 
be influenced by the faces that happen to surround us in the 
moments leading up to them. 
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Abstract 

We present the project aimed at creating a database of 
detailed architectural process models of memory-based 
decision models. Those models are implemented in the 
cognitive architecture ACT-R. In creating this database, we 
have identified commonalities and differences of various 
decision models in the literature. The model database can 
provide insights into the interrelation among decision models 
and can be used in future research to address debates on 
inferences from memory, which are hard to resolve without 
specifying the processing steps at the level of precision that a 
cognitive architecture provides. 
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Introduction 

How do we infer which of two cars will be more durable? 

Which company will be more successful in the coming 

year? To address such questions, in a typical two-alternative 

forced-choice task of inference from memory (Gigerenzer & 

Goldstein, 1996), two objects (e.g., two companies) are 

presented on a computer screen. A subject has to infer 

which of the two objects scores higher on a criterion of 

interest (e.g., the company growth in the next year) by 

relying on knowledge stored in memory.  

Models of inference describe how subjects make 

inferences by using attributes of objects (e.g., who is the 

company’s CEO) as cues. Many inferential models have 

focused on describing not just what the outcome of the 

inference would be, but also which processing steps a 

decision maker would take to reach a decision. These 

models include, among others, the various fast-and-frugal 

heuristics from the adaptive toolbox of heuristics 

(Gigerenzer, Todd, & the ABC Research Group, 1999), 

parallel constraint satisfaction (PCS; Glöckner & Betsch, 

2008) and sequential sampling models (e.g., Lee & 

Cummins, 2004).  

Such process models have increased substantially our 

understanding of how people make inferences (e.g., Bröder, 

2012) and why the inferential process is successful 

(Gigerenzer & Brighton, 2009), but perhaps more 

importantly they have raised other questions and fueled 

important debates: Do people rely on a repertoire of 

strategies or on a single strategy (e.g., Lee & Cummins, 

2004; Marewski, Schooler, & Gigerenzer, 2010; Newell, 

2005; Glöckner & Betsch, 2008)? Which types of models 

(e.g., heuristics vs. more complex models) describe better 

people’s decision processes (e.g., Goldstein & Gigerenzer, 

2002; Newell & Bröder, 2008) and under what 

circumstances? When do people rely on non-compensatory 

as opposed to compensatory strategies (Glöckner & Bröder, 

2011)?   

One major barrier to addressing those and related 

questions is that many models are almost always 

underspecified compared to the data that they are tested 

against. Specifically, process models of decision making 

often remain silent about components of cognition that are 

the foundation of decision making, such as perception, 

motor action, or memory. We argue that specifying relevant 

cognitive-behavioral processes will help those models make 

more precise predictions about, for example, response time 

and other process data. The increased precision, in turn, will 

not only allow researchers to more easily tell potentially 

competing models apart, but also aid in addressing ongoing 

debates and open research questions.  

In fact, a significant amount of research has already 

started to embed existing decision models into detailed 

cognitive theories (Dimov, Marewski, & Schooler, 2013; 

Fechner, Pachur, Schooler, Mehlhorn, Battal, Volz, & Borst, 

2016; Marewski & Mehlhorn, 2011; Marewski & Schooler, 

2011; Nellen, 2003; Thomas, Dougherty, Sprenger, & 

Harbison, 2008; Schooler & Hertwig, 2005). The aim of the 

current line of work is to expand upon these efforts by 

systematically implementing existing models of inference in 

the cognitive architecture ACT-R (Anderson, 2007).  

In what follows, we will briefly introduce ACT-R and 

present a summary of the model database that we are in the 

process of constructing. We will then explain in detail what 

knowledge each of the decision strategies requires for its 

functioning. We will conclude by discussing the advantages 

and shortcomings of our models. Once finalized, we plan to 

make the database of architectural process models of 

decision making available to the public.  

ACT-R 
ACT-R is arguably the most advanced integrated theory 

of cognition. It has been used to construct models of very 

diverse tasks and phenomena, which include, among others, 

associative recognition (Schneider & Anderson, 2012), 

analogy making (Salvucci & Anderson, 2001) and 

multitasking (Salvucci & Taatgen, 2008).   
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Table 1: Outline of the database of architectural process models of decision making, together with summaries of 

hypothesized procedural and declarative, symbolic and subsymbolic knowledge.   

 

Model Source 
Declarative 

knowledge  
Procedural knowledge  

Information at the subsymbolic  

level 

Recognition 

Heuristic 

Goldstein & 
Gigerenzer 

(2002) 

Alternatives 
Try to retrieve chunks representing alternatives. 
Select alternative corresponding to successfully 

retrieved chunk. 

Activation of chunks of alternatives 
(proportional to occurrence frequency in 

environment) 

Fluency Heuristic 
Schooler & 

Hertwig (2005) 
Alternatives 

Retrieve chunks representing alternatives and time 

retrieval using timing module. 
Select alternative with faster retrieval time. 

 

Exemplar Fluency 

Juslin & Persson 

(2002); 

Nosofksy (1984) 

Cue profiles 

Retrieve cue profile most similar to alternative’s cue 

profile and time retrieval using timing module. 
Select alternative with faster retrieval time. 

 

Exemplar Average 

Cue profiles 

Cue profiles with 

direct criterion 

knowledge 

Producing an average criterion value through 
blending over cue profiles similar to alternatives’. 

Select alternative with larger blended criterion value. 

 

Exemplar 

Individual 

Cue profiles 

Cue profiles with 
direct criterion 

knowledge 

Retrieve cue profile with direct criterion knowledge 

most similar to alternative’s cue profile . 
Select alternative with higher population of most 

similar cue profile. 

 

Set of rules 

Prototype 

Johanson & 

Kruschke (2005) 

Cue profiles 

 

Separate productions firing for each cue-profile-pair 

difference. 
Variable utility of evaluative productions 

Prototype Fluency  

Cue profiles 

High criterion 
value prototype 

Retrieve an alternative’s cue profile.  

Retrieve high-criterion-value prototype and time 

retrieval using timing module. 
Select alternative, for which high-criterion-value 

prototype was retrieved more quickly. 

 

Instance-based 

learning theory 

average 

Gonzalez, Lerch, 
& Lebiere 

(2003);  

Logan (1988) 

Cue profiles 
Cue profile pairs 

 

Retrieve cue profiles of both alternatives.  
Produce an average response by blending over 

choices with similar cue profile pairs. 

 

Instance-based 

learning theory 

individual 

Cue profiles 

Cue profile pairs 
 

Retrieve cue profiles of both alternatives.  

Retrieve cue profile pair most similar to cue profile 
pair of current alternatives. 

 

Parallel constraint 

satisfaction 

Glöckner & 
Betsch (2008) 

Cue profiles 

Cue profile pairs 
Cue profile pair 

prototypes 

Retrieve cue profiles of both alternatives.  

Retrieve cue profile pair prototype most similar to 

cue profile pair of current alternatives. 

 

Take-the-best 

reinforcement 

Gigerenzer & 
Goldstein (1996) 

Cues 

Cue values 

Determine which cue to consider by firing 

production with highest utility. 
Decide as soon as cue values differ. 

Different production utility for each cue 

Take-the-best 

declarative 

Cues 

Cue values  
Cue validity pair  

Retrieve next most valid cue. 

Decide as soon as cue values differ. 
 

Tallying 
Cues 
Cue values  

Retrieve cue with highest activation. 

Stop retrieval upon retrieval failure. 

Count positive cue values. 

 

Unit-weight linear 

model 

Cues 
Cue values 

Retrieve cue with highest activation. 

Stop retrieval upon retrieval failure. 

Count positive and subtract negative cue values. 

 

Weighted additive 

Cues  

Cue values 

Cue validities 

Retrieve cue with highest activation. 

Stop retrieval upon retrieval failure. 

Compute weighted sum of positive cue values. 

 

Weighted linear 

model 

Cues 
Cue values 

Cue validities 

Retrieve cue with highest activation. 
Stop retrieval upon retrieval failure. 

Weighted sum of positive and negative cue values. 

 

Take-the-first-cue 
Marewski & 
Schooler (2011) 

Cues  
Cue values 

Retrieve cue with highest activation. 
Decide as soon as cue values differ. 

Activation of chunks of cues proportional 
to occurrence frequency in environment 

Minimalist 
Gigerenzer & 
Goldstein (1999) 

Cues  

Cue values 

Retrieve cue with highest activation. 

Decide as soon as cue values differ. 
Activation of chunks of cues equal 

Take-the-last 
Cues  

Cue values 

Retrieve cue with highest activation. 

Decide as soon as cue values differ. 
 

Sequential 

sampling model 
Lee & Cummins 

(2004) 

Cue values 
Retrieve cue with highest activation. 
Count positive cue values. 

Stop retrieval upon reaching threshold. 

 

Weighted 

sequential 

sampling model  

Cue values  

Cue validities 

Retrieve cue with highest activation. 
Weighted sum of positive cue values. 

Stop retrieval upon reaching threshold. 
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ACT-R describes cognition as a set of modules that 

communicate through a procedural module realized as a 

central production system. The production system consists 

of production rules (i.e., if–then rules) whose conditions (the 

“if”-parts) are matched against the modules. If a rule’s 

conditions are met, then the rule can fire and the specified 

action can be carried out. Modules model different cognitive 

processes, such as vision (visual module), motor action 

(motor module), declarative memory (declarative module), 

short-term information storage (imaginal module) and time 

tracking (timing module; Taatgen, van Rijn, & Anderson, 

2007). Productions send commands to modules to perform 

an action or change their state, or to access content placed in 

modules’ buffers. In fact, because productions can only 

access content placed in the buffers, these can be thought of 

as processing bottlenecks. For instance, a production rule 

cannot access all information stored in the declarative 

module, but only the information placed in its associated 

retrieval buffer.  

Productions are the representation of choice for 

procedural knowledge, while declarative knowledge, such 

as factual and episodic knowledge, is represented as chunks. 

Perceptual and memory modules, respectively, perceive and 

retrieve information in the form of chunks. A chunk consists 

of a set of slots, where each slot is (a pointer to) another 

chunk. For example, a chunk containing information about a 

company’s annual revenue will have a slot with the 

company’s name and another slot with its revenue.  

ACT-R distinguishes a symbolic and a subsymbolic 

system. Productions, modules and buffers constitute the 

symbolic system, whose dynamics are governed by a set of 

equations, describing ACT-R’s subsymbolic system. At the 

subsymbolic level, chunks’ activations determine, for 

example, retrieval time or recall probability; productions’ 

utilities reflect which productions were more successful in 

the past and therefore more likely to fire; visual parameters 

determine the time needed to shift visual attention to an 

object in the visual field, while motor parameters determine 

the time to generate a motor response.   

Each ACT-R model is essentially composed of 

specifications of how declarative and procedural knowledge 

interact, both at the symbolic and subsymbolic levels. We 

will now focus on describing the declarative and procedural 

knowledge used in defining the models in the database. We 

refer those interested in a detailed exposition of ACT-R to 

Anderson (2007). 

Model building blocks 
The models of inference that we will consider are presented 

in Table 1. In implementing these models in ACT-R, we 

relied on the building blocks that this cognitive architecture 

provides.  

Perceptual and motor processes 

All models have equivalent perceptual and motor 

processes, involving visual perception from a screen and 

manual action on a keyboard. The models first perceive 

each of the alternatives presented on a computer screen and, 

after executing a sequence of cognitive steps, they make a 

response by pressing the appropriate key on a keyboard. The 

primary contribution to behavioral predictions of the 

perceptual and motor processes in our models is to add a 

realistic estimate of perceptual-motor latency. 

Declarative chunks 

The factual knowledge (e.g., “Berlin is a capital”) that a 

model relies upon to make a decision is stored in declarative 

memory. Ten types of chunks are needed to construct the 

models in the database. Table 2 provides a summary of 

those chunk types and examples in Lisp code for each. Note 

that the examples are given for the city-size task, in which 

cities act as alternatives and subjects need to infer which of 

two cities is larger. 

The simplest chunk type contains just the name of the 

alternatives. For example, if the alternatives are cities, 

whose relative sizes need to be inferred, such a chunk 

contains the city name (e.g., “Berlin”). These chunks are all 

that is required for inferential models, which rely on 

accessibility information, such as the recognition and 

fluency heuristics. 

The second chunk type contains an entire cue profile of an 

alternative (i.e., the set of cues associated with an 

alternative). Such chunks are used, among others, by 

exemplar and prototype models. Some exemplar models 

also require chunks with direct criterion knowledge in 

addition to the cue profile. Moreover, prototype models 

require not only cue profiles, but also a stored prototype of 

an object with a high criterion value.  

 
Table 2: Declarative knowledge categories.  

 

Chunk type label Chunk examples in Lisp code 

Alternative (berlin name Berlin) 

Cue profile (berlin name Berlin airport yes capital 

yes ...) 

Cue profile with 

direct criterion 

knowledge 

(berlin name Berlin population 

4000000 airport yes ...) 

High criterion value 

prototype 

(big-city name prototype airport yes 

capital yes ...) 

Cue profile pair (pair1 airport1 yes airport2 no 

capital1 yes capital2 no …) 

Cue profile pair 

prototype 

 (prototype-left airport1 yes airport2 

no capital1 yes capital2 no …) 

Cue (cue1 type airport) 

Cue value (berlin-airport city Berlin cue airport 

value yes) 

Cue validity  (airport-validity cue airport validity 

90) 

Cue validity pair   (cue-pair first airport second capital) 

Note. In these examples, chunk names, used for convenience, are 

presented in bold; slot names, indicating a specific attribute, are in 

italics, while slot values, representing the attribute values, are in 

normal font.  
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 Resembling exemplar and prototype models, instance-

based learning theory and parallel constraint satisfaction 

consider cue configurations to make inferences. However, 

they differ from the former in that they require chunks, 

which contain pairs of cue profiles. For example, the model 

“Instance-based learning theory individual” retrieves the cue 

profiles of both alternatives and then retrieves a cue profile 

pair from a successful previous trial. It then makes an 

inference based on the decision outcome of the retrieved cue 

profile pair. Similarly, our implementation of the parallel 

constraint satisfaction model requires a prototype of a 

successful cue profile pair. 

 Unlike configural models, like exemplar models, cue-

abstraction models (Newell & Bröder, 2008) operate on 

individual cues. Such models, like take-the-last, retrieve 

cues one by one. Take-the-last requires separate chunk types 

for a cue and for the values of the alternatives on that cue. In 

addition to these chunks, other models, like take-the-best, 

require information about cue validities (i.e., the probability 

of making a correct inference using only this cue if the cue 

discriminates; see, Gigerenzer, Hoffrage, & Kleinbölting, 

1991), which, if taught in the experiment (e.g., Bröder, & 

Schiffer, 2003), are stored numerical values. Finally, in 

some experiments one is provided only with the validity 

hierarchy, which can be represented as validity pairs of 

subsequent cues.  

Procedural knowledge: The sequence of processing steps 

The procedural knowledge of a model consists of a fine-

grained sequence of processing steps (i.e., productions) that 

the model relies upon to make a decision. In all models, the 

sequence of processing steps includes commands to the 

visual module to encode the information presented on the 

screen and to the motor module to press a key to respond in 

a computerized experiment. As for the rest, the exact 

sequence of processing steps follows the original model 

definitions. 

For example, fast-and-frugal heuristics usually rely on 

separate cues, on which detailed search, stopping and 

decision rules operate. Those models often theorize about 

the order, in which cues are considered. This ordering can 

be modeled through productions. In addition, productions 

can also determine if the model weighs cues equally, as in 

tallying, or differently, as in the weighted additive model, 

and execute this process. If cues are weighted equally, 

productions are required to send a request to declarative 

memory to retrieve the cue values. Productions then 

increment by 1 the number, which tracks the count of cues 

with a positive cue value of the alternative of interest. Other 

models, such as exemplar models, rely on all available cue 

information stored in a single chunk to make a decision. In 

such models, procedural knowledge is more peripheral to 

the decision process and mostly focuses on retrieval 

attempts.  

Productions not only initiate retrieval, but are also 

dependent on what is retrieved, because a key determinant 

of which productions can fire is the available declarative 

knowledge. Specifically, at each point in time only those 

productions, whose condition match the buffer states, will 

be considered to fire. Ultimately, which chunks are retrieved 

from memory will determine what could be placed in the 

buffers and therefore which productions will match.  

Information at the subsymbolic level 

At the subsymbolic level, there is continuously valued 

information, which is necessary for the execution of some 

inferential strategies. However, productions cannot directly 

read out subsymbolic values. Instead, the model needs to let 

subsymbolic values guide symbolic knowledge. Thus far, 

we have identified four ways in which subsymbolic values 

play a key role in the execution of strategies. 

First, the activation of chunks representing alternatives 

contains information about the alternatives’ occurrence 

frequency in the environment. Specifically, base-level 

activation is a function of prior history of a chunk, which 

partially depends on environmental occurrence frequency, 

which, in turn, is related to many criteria of interest 

(Hertwig, Herzog, Schooler, & Reimer, 2008). 

Accessibility-based strategies, such as the fluency heuristic, 

track the retrieval speed of alternatives as determined by 

their activation and choose the alternative, which was 

retrieved noticeably faster. 

Second, activation can order cues, because cues which 

have a higher occurrence in the environment likely will have 

a higher activation. Thus, these cues may be more likely to 

be considered first in lexicographic strategies, such as  

take-the-first-cue or a sequential sampling model. 

A third way in which information at the subsymbolic 

level can be used is as an implicit cue weighting 

mechanism. This weighting can take place through 

spreading activation, which is determined by the degree of 

association between the chunks placed in buffers and the 

chunks in declarative memory. If the cue profile of one of 

the alternatives is currently placed in the imaginal buffer, 

then it will activate cue profiles in memory through 

spreading activation. Those cue profiles will then have 

precedence in retrieval. Exemplar models rely on this 

process to make an inference about the alternative’s 

criterion value. 

Finally, production utility contains information about 

prior success. Production utility determines which 

production is more likely to fire when two or more 

productions are competing. If such a competition takes place 

between productions, which select which cue will be 

considered next, the utility of these productions can act as a 

cue’s importance (e.g., as its validity, see Gigerenzer, 

Hoffrage, & Goldstein, 2008, for the hypothesis that such a 

reinforcement learning process can teach cue validities) in 

lexicographic cue-abstraction models. This is the 

mechanism used in the model “Take-the-best 

reinforcement”, which encodes the selection of each cue 

with a separate production and then learns the success of 

those cues through trial and error. 
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Discussion and conclusion 

We aim to provide a database of ACT-R implementations of 

decision models used in the literature on inferences from 

memory. We have divided these models into their key 

components. The models can serve as a basis for model tests 

and further model developments. Specifically, this database 

can be used, first, in model comparison simulations on the 

outcome and process level, whereby one identifies regions 

in the parameter space where these models diverge. Second, 

this database can be used in future studies to identify 

decision processes using both behavioral and neural data. 

This is an important advantage of ACT-R, because any 

ACT-R model can generate fMRI predictions on top of 

behavioral process predictions, such as response time, 

because of the established module-to-brain mappings (for an 

introduction, see Borst & Anderson, 2015). 

In addition, we think that the systematic examination of 

the building blocks of existing decision models will help us 

gain insights into how the models are related to each other. 

For example, through these implementations, we see that the 

parallel constraint satisfaction model can be conceived as 

functionally similar to an instance-based learning model, 

which stores and retrieves prototypical cue profile pairs. 

It is important to note that in creating our ACT-R models 

we were forced to work with the mechanisms that ACT-R 

provides. For example, the original parallel constraint 

satisfaction model is cast as a connectionist network, in 

which connection weights are iteratively updated after each 

decision. This leads to cues effectively changing their 

validities as trials progress. As currently conceived, our 

model does not reproduce this behavior. Nevertheless, the 

model “Instance-based learning theory average”, which in 

our database is very similar, effectively provides such a 

mechanism and can be thought as functionally analogous to 

the original parallel constraint satisfaction. 

Such redefinitions and novel distinctions introduced in 

our modeling endeavor were due to the partial overlap 

between the various decision models in the literature. 

Another such distinction that we decided to introduce was in 

the declarative representation, which cue-abstraction 

models, like take-the-best and the sequential sampling 

model introduced by Lee and Cummins (2004), rely on. 

Originally, both models were conceived as, first, 

considering a cue, and only then examining the values of 

that cue for both alternatives. We have kept this definition 

for take-the-best and other heuristics. However, we have 

decided to label those models, which retrieve cue values 

directly, in a manner purely determined by declarative 

principles, sequential sampling models. These models can, 

for example, consider the value of cue 2 for alternative A, 

followed by the value of cue 4 for alternative B, and so on. 

Another remark concerns the high degree of detail, which 

ACT-R introduces when decision models are implemented 

in it. The fine-grained way in which ACT-R models are 

specified has forced us, in many cases, to make assumptions 

about processes, about which the original models remained 

silent. For example, we had to rely on assumptions about 

how cues are ordered in take-the-best. We have considered 

two ways to order cues in this work. Our first 

implementation relies on declarative retrieval to order cues, 

while the second one relies on procedural knowledge and 

utility learning. These assumptions reflect, so we hope, 

realistic ways of learning. On the one hand, in many 

experiments on take-the-best, one is explicitly taught the cue 

hierarchy, which is then stored as declarative knowledge. 

On the other hand, in natural settings, ordering cues 

according to validity is likely to occur through 

reinforcement learning, whereby one has had significant 

experience with considering several cues in the same 

setting.  

To conclude, we would like to stress that Table 1 does, 

naturally, not include all possible tweaks and modifications 

that one can introduce when constructing models in ACT-R. 

It will be left to input from the different researchers working 

on inference from memory to determine which of our 

current ideas will survive, and which ones will be replaced 

or extended by others.   
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Abstract 

Is self-directed speech critical to cognitive processes 
supporting complex, goal-directed behavior? If so, how? An 
influential developmental hypothesis is that children talk to 
themselves to support cognitive control processes, and that 
with age this speech becomes increasingly covert and 
strategic. However, while many studies suggest language 
supports cognitive control, evidence that self-directed speech 
gradually internalizes has been mixed. Moreover, extraneous 
factors that could co-vary with self-directed speech, age, and 
cognitive control, such as talkativeness, have not been 
systematically tested. In this cross-sectional study of 86 5- to 
7-year-old children we measured overt, partially covert, inner, 
and strategic speech on four cognitive tasks, along with task 
performance and child talkativeness. We did not find 
consistent evidence that self-directed speech changes with 
age; however, we did find consistent associations between 
self-directed speech and talkativeness. Partially covert and 
strategic speech predicted performance on one task, and inner 
speech was implicated on another. Self-directed speech 
tended to correlate across tasks, and these correlations held 
controlling for talkativeness. Taken together, these findings 
suggest 5- to 7-year-old children may use different forms of 
self-directed speech to support cognitive control, and that the 
form this speech takes depends in part on factors beyond age, 
such as the cognitive demands of a task and child 
characteristics like talkativeness.  

Keywords: cognitive control; executive functions; self-
directed speech; language and thought 

Introduction 
What role does language play in our ability to flexibly 
override impulses and achieve goals? An influential 
developmental hypothesis is that language is key to the 
emergence and exercise of cognitive processes supporting 
goal-directed behavior (Luria, 1961; Vygotsky 1934/2012; 
Winsler, Fernyhough, & Montero, 2009). On this view, 
children’s control processes are initially supported by the 
speech of others (e.g., parents and teachers), and later by 
children’s own external speech, which is gradually 
internalized as inner speech (i.e., verbal thought) during 
childhood. Self-directed speech is thought to change 
qualitatively with internalization (e.g., becoming more 
condensed), allowing it to more effectively support 
cognitive control (Alderson-Day & Fernyhough, 2015; 
Vygotsky 1934/2012). 

This hypothesis fits with a large body of research 
indicating that language supports cognitive control across 
development. Children use their own speech to support 
many aspects of cognitive control, including planning (Al-

Namlah, Fernyhough, & Meins, 2006; Fernyhough & 
Fradley, 2005;), working memory (Al-Namlah et al., 2006; 
Flavell, Beach, & Chinsky, 1966), and task switching 
(Karbach & Kray, 2007). Moreover, linguistic interventions 
in which labels or other kinds of linguistic input are 
provided to children have been found to support cognitive 
control performance both in the moment (e.g., Kray, Eber, 
& Karbach, 2008) and in the longer-term (Doebel, 
Dickerson, Hoover, & Munakata, 2017; Doebel & Zelazo, 
2016). Experiments using articulatory suppression during 
cognitive tasks suggest older children and adults use inner 
speech when engaging cognitive control (e.g., Emerson & 
Miyake, 2003; Kray, et al., 2008).  

Key questions remain concerning the extent to which self-
directed speech changes with age, and the kinds of speech 
children use to support cognitive control. Evidence for the 
hypothesis that self-directed speech gradually internalizes 
has been mixed. For example, while some studies have 
found that overt, task-relevant speech decreases with age 
(Winsler & Naglieri, 2003), others have not (Al-Namlah, et 
al., 2006; Flavell et al., 1966). And external forms of self-
directed speech do not always predict performance (e.g., 
Doebel, et al., 2017; Winsler & Naglieri, 2003). Moreover, 
key variables that might account for the presence or absence 
of different forms of self-directed speech have not been 
systematically examined. For example, how talkative a child 
is may co-vary with age, performance, and self-directed 
speech, and thus could explain any relations found among 
these variables. Consistent with this idea, previous work has 
found correlations between self-directed speech and social 
speech/talkativeness (Al-Namlah et al., 2006; Fernyhough 
& Fradley, 2005). 

Gaining further insight into factors that predict self-
directed speech in childhood is critical both to 
understanding the role of language in cognitive control and 
how it can be improved in those who struggle with it. For 
example, if self-directed speech does generally internalize 
with age across a particular age window, this could suggest 
that training children to internalize their speech might help 
them better engage control.  

The current study aimed to clarify relations between self-
directed speech, age, performance, and talkativeness in 
children 5 to 7 years of age, a developmental period posited 
to reflect key transitions in self-directed speech  
(Gathercole, 1998; Winsler & Naglieri, 2003; Winsler et al., 
2009). We assessed children’s use of task-relevant overt, 
partially covert, inner, and strategic speech during four 
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cognitive tasks tapping control processes. The study 
evaluated two contrasting hypotheses. If self-directed 
speech becomes more internalized and strategic with age, 
then age-related changes in speech should be found across 
tasks, and self-directed speech should be associated with 
cognitive performance. However, if self-directed speech 
does not generally change across childhood and manifests 
differently depending on task demands and child 
characteristics, then inter-task correlations among self-
directed speech indices may be present, and possibly 
correlated with talkativeness, but relations with age should 
be less consistent. 

Method 

Participants 
Eight-six 5- to 7-year-old children (Mage = 5.99 years SDage 
= .61, range = 5.0 – 7.1; females = 47) were recruited from a 
database of families who had previously indicated interest in 
participating in research. Four additional children were 
excluded from the study due to uncooperativeness (n = 3) 
and developmental delay (n = 1). Some children did not 
complete all tasks due to failure to demonstrate 
understanding during practice or uncooperativeness. In total, 
84, 83, 72, and 76 children completed the delayed serial 
recall task, selective attention task, Tower of London, and 
the immediate serial recall task, respectively. Most 
participants (> 90%) had at least one parent with a four-year 
college degree and were Caucasian and non-Hispanic.  

Measures 
Children completed four cognitive measures across two test 
sessions. The tasks were completed in the following order: 
delayed serial recall, selective attention, Tower of London, 
and immediate serial recall. A fixed order was used to 
minimize variation between subjects in task performance 
due to differences in order (Friedman, et al., 2008). The first 
three measures were used to assess external self-directed 
speech in addition to cognitive performance. The last 
measure was used to index inner speech.  
 
Delayed Serial Recall Task (adapted from Flavell, 
Beach, & Chinsky, 1966; Fig. 1) Children were presented 
with pictures of objects serially on a computer screen, and, 
after an eight second delay, were asked to recall the order in 
which they were presented. At test, the three items were 
presented together in a new order, and children had to point 
to the pictures in the order that they saw them. Following 
three practice trials, children completed 10 test trials. 
 
Selective Attention Task (adapted from Manfra & 
Winsler, 2006; Fig. 2) Children were shown a page of three 
pictures that matched on one of three dimensions (shape, 
color, number), and were asked to search a box for a picture 
card that reflected the matching dimension. The box 
contained 18 picture cards depicting a single dimensional 
value (e.g., a purple splotch or a silhouette of a star). 

Following three practice trials, children completed 12 test 
trials. 
 

 
Figure 1: Delayed serial recall task. 

 
 

Tower of London planning task (adapted from 
Fernyhough & Fradley, 2005; Fig. 3) Children were 
presented with two apparatuses, each of which had three 
wooden pegs of different lengths and three colored wooden 
spheres on the pegs. The spheres were configured in a 
different arrangement on each apparatus, and children were 
instructed to make one apparatus look like the other in as 
few moves as possible. They were also instructed that they 
could only move one sphere at a time and had to keep all 
spheres on the pegs (i.e., not holding a sphere in their hand 
while making moves with another sphere). Children 
completed six trials in total, half of which could be 
completed in three moves, and the other half of which could 
be completed in four moves. Performance was indexed by 
the total number of moves children made in excess of the 
minimum number required, divided by the total number of 
trials completed. If children broke rules or asked to start 
over, the trial was restarted. Only the final attempt at a trial 
and trials that were successfully completed were included in 
our analyses.  

 
Immediate Serial Recall (adapted from Al-Namlah et al., 
2006; Tam, Jarrold, Baddeley, & Sabatos-DeVito, 2010) 
This task was identical to the delayed serial recall task 
except that 1) there was no delay between the stimuli 
presentation and the test phase; 2) children were instructed 
not to label the pictures overtly while they were being 
initially presented (Al-Namlah et al., 2006); and 3) children 
completed two ten-trial blocks instead of one: a 
phonologically similar block and a phonologically 
dissimilar block. The phonologically dissimilar block 
involved the same items presented in the delayed serial 
recall task. The phonologically similar block involved items 
that had similar-sounding names (e.g., clock, clown, cat). 
Inner speech was indexed as the accuracy rate on the 
phonologically similar block subtracted from the accuracy 
rate on the phonologically dissimilar block, with the 
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expectation that children who used inner speech (i.e., verbal 
coding of the to-be-remembered objects) would perform 
worse on the phonologically similar block because verbal 
coding would make the items more confusable.   

 
 

Figure 2: Selective attention task. 
 

 
Figure 3: Tower of London planning task. 

 
 
 Talkativeness Parents were asked to rate their child’s level 
of talkativeness with people he or she does not know on a 5-
point scale, with 1 indicating that the child is not at all 
talkative, and 5 indicating that the child is very talkative. 
This approach was adapted from prior work in which 
teachers were asked to rate children’s general talkativeness 
(Fernyhough & Fradley, 2005). We opted to ask more 
specifically about talkativeness with unfamiliar people in 
order to reduce the likelihood that parents’ evaluations 
would reflect how talkative their child is at home, which we 
expected would result in a less sensitive measure. 

Self-directed Speech Coding  
Our coding scheme was based on prior work in this area 
(Winsler & Naglieri, 2003; Flavell et al., 1966). Speech 
during each trial of each cognitive task was coded from 
videos by a research assistant who was blind to the 
experimental hypotheses. Ten percent of the videos were 
coded by a second blinded research assistant and inter-rater 
agreement was high, rs > .85. Each task was coded for non-
social overt speech, defined as normal volume speech not 
directed at another person that could support task 
performance (rather than meta-comments about the task or 
stimuli, or comments unrelated to the task) and partially 
covert speech, such as whispering, muttering, and lip 
movement.  

In addition, task-specific speech strategies were coded. 
On the delayed serial recall task, labeling at the onset of a 
trial (when the stimuli were being presented) and rehearsal 

(during the presentation and test interval) were coded. On 
the selective attention task, labeling the matching dimension 
(e.g., “They’re all purple”) at the onset of or during the test 
trial was coded. On the Tower of London task, labeling the 
sphere and the location the child was placing or planning to 
place it was coded (e.g., “This one goes here for now”). For 
analyses, the number of trials on which a child used each 
coded form of speech was scaled by the number of trials the 
child completed. 

Results 

Self-directed Speech Variability and Frequency 
As expected, all cognitive tasks elicited some self-directed 
speech (Table 1), and there was variability across tasks in 
the kinds of speech children used. However, numerous 
children did not use overt or partially covert self-directed 
speech on the tasks: 20 of 84 on the delayed serial recall 
task; 21 of 84 on the selective attention task; and 29 of 77 
on the Tower of London task. This is comparable to rates of 
self-directed speech found in prior work (Fernyhough & 
Fradley, 2005; Flavell et al., 1966; Manfra & Winsler, 2006; 
Winsler & Naglieri, 2003). Children showed evidence of 
inner speech on the immediate recall task, performing 
significantly worse on the phonologically similar block 
(Maccuracy = 65%, SD = 22%) than on the phonologically 
dissimilar block (Maccuracy = 72%, SD = 24%), Mdiff = .07 
SDdiff = .17, t(76) = 3.74, p  < .001, consistent with previous 
findings (Al-Namlah et al., 2006; Tam, et al., 2010). 

Relations Between Self-directed Speech and Age 
We found minimal support for the hypothesis that self-
directed speech changes with age (Table 2). Zero-order 
correlations indicated that only partially covert speech on 
the selective attention task was related to age, such that as 
children got older they used less partially covert speech  

Table 1: Prevalence of Different Forms of 
External Self-directed Speech Across Measures 

 

Self-directed Speech 
Task and Index 

Mean % of 
trials on which 

speech used  

N 
children 

using 
speech 

Delayed serial recall    
Overt speech .30 (.42) 35 
Partially covert speech .31 (.35) 52 
Rehearsal  .27 (.35) 42 
Labeling .44 (.44) 48 

Selective attention   
Overt speech .24 (.35) 38 
Partially covert speech .28 (28) 58 
Labeling .28 (.34) 47 

Tower of London   
Overt speech .16 (.27) 28 
Partially covert speech .22 (.26) 44 
Labeling .15 (.24) 28 
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(Table 2). All other age/self-directed speech correlations 
were not significant. 
     
   These analyses were followed up with linear regressions 
predicting age from self-directed speech, with related 
speech indices simultaneously included in models to control 
for one another’s effects, and the results were unchanged. 
On the selective attention task, partially covert speech 
remained a significant predictor, B = -7.36, SE = 2.82, t = 
2.60, p = .01, whereas overt speech was not, t < 1, p > .25. 
On the delayed serial recall task and Tower of London, 
neither overt nor partially covert speech were associated 
with age, ts < 1.38, ps >.17.  Similarly, neither rehearsal nor 
labeling changed with age on the delayed serial recall task, 
ts > 1.5, ps >.13.  

Relations Between Self-directed Speech and 
Talkativeness 
Across tasks, children who tended to use external forms of 
self-directed speech also tended to be more talkative (Table 
2). Talkativeness was correlated with overt speech on all  
tasks, partially covert speech on the Tower of London (but 
not the delayed serial recall or selective attention tasks), and 
labeling (but not rehearsal) on the delayed serial recall and 
selective attention tasks. Inner speech on the immediate 
recall task was not associated with talkativeness. 
Talkativeness was not associated with age, r = -.06, p > .25, 
nor was it associated with performance on any of the tasks, 
rs < .16, ps > .14. As such, it was not included as a control 
variable in any models involving these factors. 
 

Relations Between Self-directed Speech and 
Performance 
Children performed well on the four tasks (Table 3) and 
examination of histograms did not reveal floor or ceiling 
effects. Self-directed speech predicted performance on the 
delayed serial recall task. Zero-order correlations indicate 
partially covert speech and rehearsal were associated with 
performance on the delayed serial recall task, and also 
indicated a marginally significant association between 
labeling and performance on that task (Table 2). These 
findings were confirmed with linear models. Partially covert 
speech was a significant predictor of performance on 
delayed serial recall, controlling for overt speech, B = .22, 
SE = .07, t = 3.2, p = .002, whereas overt speech was not 
predictive when controlling for partially covert speech, t <1, 
p > .25. Similarly, rehearsal was a significant predictor of 
performance on the delayed serial recall task, controlling for 
labeling, B = .18, SE = .07, t = 2.62, p = .02, consistent with 
prior work (Flavell et al., 1966). There was also a non-
significant trend such that labeling tended to predict 
performance on the delayed serial recall task, controlling for 
rehearsal, B = .09, t = 1.59, p = .11. However, self-directed 
speech on the selective attention task and Tower of London 
was not predictive of performance on those tasks, ts < 1, ps 
> .25.  
 

Table 3: Performance on Cognitive Measures 
 
Measure M SD Range 
Delayed recall .75 .22 0 – 1 
Selective attention .94 .13 .33 – 1 
Tower of London .65 1.48 0 – 11 
Immediate recall –    
  phonologically similar block 

 
.65 

 
.22 

 
0 – 1  

Immediate recall –  
  phonologically dissimilar block 

 
.72 

 
.24 

 
0 – 1  

Correlations Between Self-directed Speech Indices 
Within and Across Tasks 
Many self-directed speech indices were correlated across 
tasks (Table 3). For example, children who used partially 
covert speech on the delayed serial recall task also tended to 
use it on the selective attention and Tower of London tasks, 
and children who used rehearsal on the delayed serial recall 
task tended to label on the selective attention task. These 
findings generally held when controlling for talkativeness, 
with the exception that some of the correlations between 
partially covert speech on Tower of London and other 
indices (partially covert speech and labeling on delayed 
serial recall, and labeling on selective attention) were no 
longer statistically significant, rs < .18, ps >.10. 

We also found many correlations between self-directed 
speech indices within tasks. Some correlations were very 
strong, suggesting that certain strategies tend to be 
expressed more or less covertly.  

 

 
 
 
 
 
 

Table 2: Correlations Between Self-directed Speech 
Indices and Age, Talkativeness, and Task Performance 

 
Self-directed 

Speech Measure 
and Index 

Age Talkativeness Task 
Score 

Delayed recall    
Overt  -.17 .19^ .04 
Partially covert  .13 .14 .33** 
No speech .03 -.32** -.28* 
Rehearsal .18 .09 .31** 
Labeling -.13 .28* .19^ 

Selective attention    
    Overt  -.03 .32** .01 
    Partially covert  -.28* .16 -.06 
   No speech .18 -.32** .06 
   Labeling -.08 .31** .02 
Tower of London    

Overt  .08 .17 .14 
Partially covert  -.03 .28* .05 
No speech .10 -.20^ -.10 
Labeling .05 .26* -.07 

Immediate recall .00 .02 - 

Note. *p < .05; **p < .01; ***p <.001; ^p < .10 
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Discussion 
The current study provides several new findings related to 
the role of self-directed speech in developing cognitive 
control. We did not find evidence that self-directed speech 
undergoes a general internalization process with age. 
Instead, our findings suggest that the format  of self-directed 
speech may depend in part on other factors like child 
talkativeness and the specific cognitive demands of a task. 
We found that 5- to 7-year-old children used inner, partially 
covert, and strategic speech while engaging cognitive 
control on different tasks, and that more overt forms of 
speech tended to be related to talkativeness. The finding that 
external forms of self-directed speech predicted 
performance on the delayed serial recall task but not the 
selective attention and Tower of London tasks suggests that 
children may have been supporting cognitive performance 
on the latter tasks with internalized speech. The delayed 
serial recall task likely had the highest working memory 
demands of all the tasks (given the need to maintain three 
items in mind in a particular order across time) and as such, 
external speech may have been necessary to support 
performance. Conversely, the working memory demands of 
the selective attention and Tower of London tasks may have 
been lower, and thus inner speech may have been sufficient 
to support performance on those tasks. For example, on the 
selective attention task children needed to identify a 
common dimension among three objects on a page and keep 
that dimension in mind to guide their searching, but they 
could always look back at the objects on the page to recall 
the dimension, and they only had to maintain one dimension 
in mind.  

These findings are consistent with an alternative view of 
how linguistic input influences developing cognitive 
control, and highlight the possibility that inner speech may 
play a role in cognitive control from early in development. 
For example, teaching 5-year-old children labels that can be 
used to support cognitive control helps children later engage 
control; however, children’s tendency to vocalize the labels 

when engaging control does not predict performance 
(Doebel, et al., 2017), consistent with the possibility that 
children can rapidly internalize speech used to support 
control. Foundational cognitive control processes begin to 
develop very early in life (Munakata, 1998), and continue to 
develop rapidly in early childhood, between 3 and 5 years of 
age (Diamond, 2013). Internalized forms of self-directed 
speech could be critical to the emergence of these processes. 

An alternative interpretation of our findings is that there 
are indeed robust age-related changes in self-directed 
speech, but that our age range and sample size were too 
constrained to detect them. For example, prior work has 
found age differences in the use of rehearsal to support 
serial recall when the age groups being compared were 5, 7 
and 10 years (Flavell et al., 1966), and that overt self-
directed speech decreases with age in a large sample aged 5 
to 17 years (Winsler & Naglieri, 2003). However, given the 
frequency and variability in speech use in the current study, 
and that our sample spanned an age range identified as a 
transition period in the use of self-directed speech (e.g., 
Winsler & Naglieri, 2003; Winsler, et al., 2009), it was 
surprising that age was not a significant predictor of speech 
on most tasks. Another possibility is that age-related 
patterns only manifest when cognitive demands are high and 
inner speech is insufficient to maintain the goal 
representations guiding performance. Future experiments 
can test this by manipulating the maintenance demands in a 
task and testing associations between age and self-directed 
speech.  

Our findings are correlational, leaving open alternative 
explanations for the relation between self-directed speech 
and cognitive control. For example, it is possible that 
developmental increases in cognitive control lead to changes 
in self-directed speech (and that self-directed speech is 
epiphenomenal). Or a third, unmeasured variable may 
explain the relation between self-directed speech and 
cognitive control. Experiments manipulating cognitive 
control and testing influences on self-directed speech, and 
vice versa, could address this causal issue. 

 
Table 3:  Correlations Between Self-directed Speech Indices Within and Across Cognitive Tasks 

 
Task and Speech Index 1 2 3 4 5 6 7 8 9 10 

1. DR overt            
2. DR partially covert -.17          
3. DR rehearsal .06 .74***         
4. DR labeling .82*** .26* .27*        
5. SA overt .03 .25* .21^ .13       
6. SA partially covert .03 .28* .09 .21^ .02      
7. SA labeling .00 .33** .24* .19^ .87*** .30**     
8. TOL overt -.08 .08 .00 -.08 .55*** .08 .37**    
9. TOL partially covert .10 .20^ .16 .22^ .27* .24* .23* .33**   

   10. TOL labeling -.09 .13 .09 -.03 .33* .22^ .29* .53** .66**  
   11. IR difference score .06 .07 .00 .15 .16 .12 .12 .10 .04 -.09 

Note. DR = Delayed recall task; SA = Selective attention task; TOL = Tower of London; IR = Immediate recall task 
*p < .05; **p < .01; ***p <.001; ^p < .10.  
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Self-directed speech may be a good target for 
interventions to improve cognitive control. Given that 
cognitive control develops dramatically in early childhood 
and predicts success in life across a range of outcomes (e.g., 
academics, health, and wealth; Moffitt, et al., 2011), there 
has been great interest in developing effective interventions 
to improve it. However, results of interventions to date have 
been mixed (e.g., Melby-Lervag & Hulme, 2013). One 
potential reason is that approaches to date have not 
optimally targeted the processes that support developing 
cognitive control. Training children to use different forms of 
self-directed speech to support cognitive performance, such 
as labeling, rehearsal, and partially covert speech, may be a 
fruitful approach to improving control in children.1  

The current study advances knowledge on the role of self-
directed speech in cognitive control by suggesting that the 
kinds of speech children use to support cognitive 
performance in childhood may depend on a range of factors 
beyond age, such as child talkativeness and the cognitive 
demands of a task. Future work can further test how self-
directed speech relates to cognitive control and how it can 
be targeted in cognitive control interventions. 
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Abstract 

Objective Self-awareness Theory (Duval & Wicklund, 
1972) proposes that self-evaluation increases an individual’s 
awareness of any discrepancy between their current 
performance and an internal goal. In the current study we 
prompted self-evaluation throughout an intelligence test 
(Analysis-Synthesis Test – AST) using confidence ratings 
(CR). AST performance, the extent to which participants 
incidentally learnt task-relevant rules (learning rules was 
unnecessary because they were provided), self-efficacy, and 
goals, were assessed. The results indicated an effect of 
performing CR on both performance and rule learning, but 
the effect depended on self-efficacy. Compared to matched 
controls (n=45), participants who performed CR (n=41) and 
had high self-efficacy performed better on the AST but 
learnt fewer rules. Performing CR had no effect on 
participants low in self-efficacy. This suggests that self-
evaluation interacts with self-efficacy to modify 
participants’ goals, specifically CR appear to shift 
individuals high in self-efficacy from a mastery goal to a 
performance goal. 

Keywords: reasoning, intelligence, reactivity, goal 
orientation, self-efficacy 

 
The Interplay Between Self-evaluation, 

Goal Orientation, and Self-efficacy on 
Performance and Learning 

 
Accurate self-knowledge is a highly valued attribute and 
important to everyday functioning. Awareness of our own 
abilities and past performance facilitates realistic goal 
selection and allows us to better direct our future behavior. 
There is some evidence that self-evaluation occurs almost 
continuously when we perform a demanding cognitive 
activity, and this self-evaluation may occur both 
spontaneously and unconsciously. Self-evaluation in this 
context is often referred to as performance monitoring or 
alternatively error detection. Performance monitoring is 
vital to learning outcomes as it allows the learner to identify 
errors so that they can avoid repeating them in the future 
(Yeung & Summerfield, 2012). Performance monitoring is 
also important for the effective allocation of cognitive 

resources (Carter et al., 1998). Accurate performance 
monitoring is central to an individual’s ability to regulate 
their own cognitive behavior (Nelson & Dunlosky, 1991) 
and, in particular, effectively make decisions about study 
time (e.g. Metcalfe & Finn, 2008; Son & Metcalfe, 2000). 
Furthermore, learners need to continually evaluate the 
effectiveness of different study activities on their learning in 
order to select the best possible study behaviors (Flavell, 
1979).  

Given the importance of accurate self-knowledge, 
individuals such as students and employees are often 
encouraged to self-reflect and self-evaluate their 
performance so that they can better identify their strengths 
weaknesses and detect issues or errors (Carver & Scheier, 
2001). However, there is little direct evidence that self-
evaluation leads to more accurate self-knowledge (Silvia & 
Gendolla, 2001). Indeed, self-assessment is often 
systematically inaccurate and flawed, which can often lead 
to negative outcomes and ineffective decision making 
(Dunning, Heath, & Suls, 2004). Objective self-awareness 
theory (OST; Duval & Wicklund, 1972, 1973) contends that 
self-focused attention does not necessarily lead to accurate 
self-knowledge, instead it directs individuals’ attention to 
discrepancies between their current performance or behavior 
and their internal standards or goals (Silvia & Duval, 2001), 
referred to here as goal discrepancies. OST theory argues 
that when an individual becomes aware of a goal 
discrepancy, they either modify their behavior to bring it in 
line with their goal, modify their goal, or disengage from the 
activity, which reduces their awareness of the goal 
discrepancy (Silvia & Duval, 2001). For example, upon 
reflecting on their studying, a student may determine that 
they have not been working hard enough to prepare for an 
upcoming exam, which may lead them to study more or set 
a more modest goal for the exam, alternatively they may try 
to distract themselves to avoid thinking about studying for 
the exam.  

Which of these three strategies an individual adopts is 
largely determined by their self-efficacy, if an individual 
has high self-efficacy they will believe that they can 
improve their performance to match their goal and will act 
accordingly, whereas individuals low in self-efficacy may 
lower their goals or disengage from the task because they do 
not believe they can implement the necessary improvements 
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in their performance. We can conceptualize these expected 
changes in terms of the goals we expect participants to 
adopt. We hypothesize that self-evaluation will lead high 
self-efficacy participants to focus on improving their 
performance, whereas low self-efficacy participants will 
either disengage from the task or lower their goal, both of 
which are likely to impair their performance on the task. 
These hypotheses therefore relate to changes in a 
participants goal orientation.  

Goal orientation is a well-studied concept that broadly 
concerns the distinction between mastery goals that concern 
development, improvement, and learning compared with 
performance goals which prioritize performing well and 
demonstrating ability (VandeWalle, 1997). Generally 
speaking mastery goals are considered advantageous for a 
range of outcomes including academic engagement (Ames 
& Archer, 1988; Pintrich, 2000; Wolters, 2004), job 
performance (Janssen & Van Yperen, 2004; VandeWalle, 
Brown, Cron, & Slocum Jr, 1999), and cognitive ability 
(Eison, 1981). Although some have conceptualized goal 
orientation as a trait or at least a quasi-trait like concept 
(DeShon & Gillespie, 2005), goal orientation is domain 
specific and can equally be considered as state-like 
(VandeWalle, Cron, & Slocum Jr, 2001). The goal 
orientation that an individual selects for a particular 
situation is somewhat determined by an individual’s self-
efficacy (Diseth, 2011). Individuals with high self-efficacy 
tent to pursue their goals with more effort and endeavor to 
develop from the experience of goal pursuit (DeGeest & 
Brown, 2011). Given this, a number of studies have 
expectedly shown a positive relationship between high self-
efficacy and mastery goal orientation (Bell & Kozlowski, 
2002; Diseth, 2011).  

 
H1: In the control group (without self-evaluation), high 

self-efficacy participants will display mastery goal 
orientated behavior, whereas low self-efficacy participants 
will show performance goal orientated behavior. 
 

The rationale behind encouraging self-evaluation in 
schools and workplaces has often been that they will elicit 
greater effort and goal driven behavior. However, as 
previously mentioned, when an individual becomes aware 
of a goal discrepancy they can either change their behavior 
or alternatively they can modify their standard/goal. With 
regards to modifying a goal, this may occur quantitatively 
(e.g. changing from a goal of a 75 on an exam to a 65) or 
qualitatively changing the nature of the goal (e.g. changing 
from try to master the material in a class to focusing on 
passing the exam). Based on this OST framework we expect 
that self-evaluation will lead participants with high self-
efficacy to shift to a performance orientation in order to 
improve their performance and reduce the goal discrepancy. 
As previously stated, participants with low self-efficacy are 
likely to naturally adopt a performance goal-orientation and 
therefore self-evaluation should have little effect on the 
goal-orientation they adopt.  

There is some previous evidence that self-evaluative 
prompts lead to such changes in goal orientation. A recent 
study by Mitchum, Kelley, and Fox (2016) using a word-
pair learning paradigm found that, if the list of word-pairs 
participants were learning contained both difficult and easy 
items, then performing judgments of learning (i.e. rating 
how likely it is that they will recall a word-pair on a later 
test) resulted in participants spending more of their study 
time on the easier items rather than the difficult items. This 
resulted in participants who performed judgments of 
learning recalling fewer word-pairs on a subsequent test. 
The authors suggested that in the presence of both easy and 
hard items, judgments of learning make participants aware 
of the fact that they will inevitably fail to remember all of 
the words on the list, so they adopt a performance 
orientation rather than a mastery orientation and over study 
the easier items. 

 
H2: Self-evaluation will result in participants adopting a 

performance goal orientation, regardless of their level of 
self-efficacy 

 
In the current study we induce self-focused attention by 

asking participants to self-evaluate their performance after 
each item on an intelligence test, by providing confidence 
ratings (CR). CR direct participants’ attention to their 
current subjective belief in their performance by require 
participants to reflect on, evaluate, and quantify their 
performance. A previous study which examined the effects 
of eliciting confidence ratings from participants while they 
completed an intelligence test found that participants who 
provided CR, performed better than participants who 
performed the task without providing ratings (Double & 
Birney, 2017). Crucially, a subsequent experiment showed 
that this effect depended on the confidence/self-efficacy of 
participants, with CR facilitating the performance of high 
self-confidence participants but hindering the performance 
of low self-confidence participants. 

 
H3: Performing CR will facilitate performance in high-

self-efficacy participants and impair performance in low 
self-efficacy participants 

 
In the current experiment participants completed a 

deliberately difficult task so that they would be likely to 
experience a performance discrepancy when they self-
evaluated their performance. Of primary interest is whether 
this self-evaluation causes participants to improve their 
performance and/or change their goal orientation. 

 
Method 

Participants 
A community sample of 85 participants (80% female) was 

recruited using an advertisement placed in a newsletter of 
the Australian Broadcasting Corporation as part of a 
research partnership with the University of Sydney (Mage = 

1944



63.75, SD = 9.83). Participants received no remuneration for 
participating in the study. Participants were randomly 
allocated to the confidence ratings group (CR group; n = 42) 
or a control group that did not provide confidence ratings 
(No-CR group; n = 43). 

Materials and procedure 
Participants completed the following measures online 

from their own personal computers using Qualtrics 
(Qualtrics, 2015) and Inquisit (Inquisit, 2016). All materials 
were programmed to display in a standardized fashion.    

Analysis Synthesis Task (AST; Woodcock, McGrew, 
Mather, & Schrank, 2001): A modified computerized 
version of the AST tasks was performed by participants. 
The AST task requires participants to solve problems by 
combining a series of tiles using a set of simple rules (e.g. a 
red triangle and purple square make blue circle). The rules 
are displayed continuously in the form of a key at the top of 
the screen. Figure 1 presents a typical question. One tile is 
blank and participants must decide which tile correctly fills 
the blank. Participants could combine any two tiles that are 
next to each other either horizontally or vertically.  

As the task was expected to be difficult for a community 
sample, participants were given a series of practice items 
and were allowed to continue to practice until they felt they 
were ready to progress to the test phase (minimum of 12 
practice items, maximum 36). The test block consisted of 20 
items that were approximately ordered according to their 
difficulty. There were 5 rules in each of the practice and test 
blocks (different rules/stimuli were used in the practice and 
test phases).  

Participants in the CR group were asked to rate their 
confidence that they answered the previous item correctly 
using a scale from 0-100%. In order to reduce any response 
time effect on performance, participants in the control group 
were shown a blank screen for 2000ms after each trial.  

 

 
 

Figure 1: A typical question drawn from the AST task. 
that were used in the test block.  

 
 

Self-efficacy: As self-efficacy is domain specific we used 
a particularly proximal measure of self-efficacy by having 
participants predict their score on the test block as a 
percentage after completing the practice block.  

Rule Recall Test: After finishing the test block 
participants unexpectedly performed a recall test of the rules 
Participants had been given no prior warning that they 
would need to recall the rules on the later task and it was not 
necessary that participants memorize them as they had been 
displayed on the screen continuously during the AST task. 
The recall test asked participants questions such as “what 
color is the combination of the red triangle and blue 
circle?”. 

 
Results 

 
All data analysis was performed using R version 3.2.3 (R 
Core Team, 2015). Table 1 presents summary statistics for 
key study variables. The number of practice trials performed 
did not differ significantly between the CR group and the 
No-CR group, F(1,83) = .17, p = .683. Participants’ initial 
predictions of their performance did not differ significantly 
between the CR group and the No-CR group, F(1,83) = 
.002, p = .967. 
 

Table 1: Descriptive statistics for key study variables. 
 

Variable N M SD 
Predicted performance 85 31.5 21.7 
Number of practice trials 85 23.1 9.7 
AST practice score 85 10.6 4.9 
AST test score 85 10.3 2.7 
Rules recalled 74 2.2 1.7 

 
AST Performance 

Performance was analyzed using a linear regression 
model with number of correct items as the criterion variable. 
Experimental group and self-efficacy were entered as 
predictors along with the relevant interaction. In addition, as 
we were primarily interested in the moderating effect of 
self-efficacy, over and above ability, we included 
participants’ practice scores and number of practice trails as 
covariates. Overall there was no main effect of experimental 
group, β = .08, t(79) = .89, p = .378. Self-efficacy was a 
significant negative predictor of performance, β = -.27, t(79) 
= 2.02, p = .047. Practice score and practice trial count were 
both positive predictors of test performance; β = .68, t(79) = 
7.19, p < .001 and β = .35, t(79) = 4.03, p < .001 
respectively. Crucially, the group X predicted performance 
interaction was a significant predictor of test performance, β 
= .27, t(79) = 2.07, p = .042, see Figure 2.  
A simple slopes analysis indicated that self-efficacy was a 
significant negative predictor for the No-CR group, β = -.18, 
t(79) = 2.02, p = .047, but not a significant predictor of 
performance for the CR group, β = .06, t(79) = .74, p = .464. 
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As shown in Figure 2, participants with high self-efficacy 
performed better in the CR group than the NO-CR group, 
whereas there was no group difference for participants with 
low self-efficacy.   
 

 
 

Figure 2: Average number of correct items on the analysis 
synthesis task as a function of experimental group and 
predicted performance. The values used for high and low 
predicted performance are 1 standard deviation above and 
below the mean respectively. Error bars represent +1 
standard error of the mean. 
 
Rule Recall  

 11 participants did not complete the rule recall test and 
were therefore excluded from the analysis. Rule recall was 
analyzed using a second linear regression with number of 
correctly recalled rules as the criterion variable. 

 Experimental group, self-efficacy, and the interaction 
between the two were entered as predictor variables. In 
addition, to control for performance on the analysis 
synthesis task, AST test performance was entered as a 
covariate. Again there was no significant main effect of 
experimental group, β = -.16, t(69) = 1.54, p = .128. Self-
efficacy and AST performance were both significant 
positive predictors of rule recall performance, β = .47, t(69) 
= 2.94, p = .004 and β = .33, t(69) = 3.03, p = .003 
respectively. Again the hypothesized group X self-efficacy 
interaction was significant, β = -.36, t(69) = 2.25, p = .028, 
see Figure 3. Simple slopes analysis indicated that self-
efficacy was a significant positive predictor of recall 
performance for the No-CR group, β = .31, t(69) = 2.94, p = 
.004, but not for the CR group, β = -.01, t(69) = .11, p = 
.911. As shown in Figure 3, participants with high self-
efficacy in the No-CR group outperformed all other groups 
in terms of rule recall.  

 
Figure 3: Average number of rules recalled as a function 

of experimental group and predicted performance. The 
values used for high and low predicted performance are 1 
standard deviation above and below the mean respectively. 
Error bars represent +1 standard error of the mean. 

 
Discussion 

 
Self-evaluation is often assumed to be an effective method 
to obtain accurate self-knowledge about one’s abilities and 
performance. Organizations and educators often pursue 
formal and informal opportunities for feedback and 
evaluation, such as performance reviews, testing etc. These 
procedures may have many benefits such as improving 
communication, identifying ongoing issues, and providing 
feedback. However, in terms of the effect of self-evaluation 
on performance the current results reveal two important 
caveats in determining whether there is a benefit to 
performance/learning outcomes as a result of self-
evaluation. The first is the importance of self-efficacy, our 
results show that self-evaluation improved the performance 
of participants with high self-efficacy but had no effect on 
participants with low self-efficacy. The second finding of 
note is that the effect of self-evaluation may depend on the 
nature of the outcome you are assessing. For participants 
high in self-efficacy, self-evaluation improved performance 
but impaired incidental learning, whereas there was no 
effect on either outcome for low self-efficacy participants.  

According to OST, self-efficacy moderates the way in 
which we behave when confronted with goal discrepancies. 
The theory suggests that when high self-efficacy 
participants are confronted with goal discrepancies they 
work to improve their performance, whereas low self-
efficacy participants may disengage from the task (thereby 
reducing awareness of the goal discrepancy). Our results 
conform to this general pattern with high self-efficacy 
participants improving their performance in response to CR 
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and low self-efficacy participants obtaining no benefit. This 
is in keeping with the previous finding by Double and 
Birney (2017), who demonstrated that performing CR 
during Raven’s Progressive Matrices improved the task 
performance of high-confidence participants and impaired 
the performance of low-confidence participants. Our results 
have similarly found an asymmetry in the effect of CR on 
performance as a function of self-efficacy. Although we 
found no evidence of impaired performance in low self-
efficacy participants, our results demonstrated that CR were 
beneficial only to participants high in self-efficacy. The 
difference in findings between this and Double and Birney 
(2017) in terms of low self-efficacy participants needs 
further exploration but may be a result of differences in how 
self-efficacy/self-confidence was assessed or the nature 
/difficulty of the task. 

The current results suggest that high self-efficacy 
participants ordinarily adopt a mastery goal orientation, but 
shifted to a performance orientation when asked to perform 
CR. The finding that high self-efficacy participants tend to 
adopt a mastery goal is in keeping with the established 
relationship between goals and self-efficacy (Bell & 
Kozlowski, 2002; DeGeest & Brown, 2011; Diseth, 2011). 
Importantly, to our knowledge the results of the current 
study are the first to show that self-evaluation prompts high 
self-efficacy participants to adopt a performance orientation, 
which benefits performance but hinders incidental learning. 
When individuals high in self-efficacy are made aware of 
goal discrepancies they are likely to be motivated to reduce 
that discrepancy by attempting to improve their 
performance (Silvia & Duval, 2001). The current results 
indicate that this focus on performance may come at the cost 
of a shift away from learning in line with the classic goal 
orientations paradigm (VandeWalle, 1997). It may be that, 
as a result of the evaluative nature of CR, they prompt high 
self-efficacy participants to direct attention to task relevant 
information and ignore task-irrelevant (rule) information.  
This suggests that appropriateness of using self-evaluation 
may depend on the outcomes of interest. In classrooms and 
workplaces self-evaluation has often become commonplace, 
but this may be problematic given the current body of 
evidence suggesting that a mastery orientation has many 
relative advantages in such settings (Janssen & Van Yperen, 
2004; Pintrich, 2000; Wolters, 2004). Although self-
evaluation may be beneficial, the current results indicate 
that both self-efficacy and whether the valued outcomes are 
learning or performance based need to be considered before 
advocating self-evaluation. 

Metacognitive interventions are often encouraged in the 
education literature and have obtained some positive results 
(Berardi-Coletta, Buyer, Dominowski, & Rellinger, 1995; 
Desoete & Roeyers, 2006). The current results, however, 
raise the possibility that such interventions are selectively 
benefiting students with high self-efficacy. Metacognitive 
prompts encourage individuals to monitor and evaluate their 
performance. Although the metacognitive literature has 
argued that such behaviors are important for error 

monitoring, strategy selection and allocating cognitive 
resources, such behaviors also induce self-focused attention 
and may have an interactive effect with self-efficacy. 
Metacognitive prompts encourage individuals to monitor 
and evaluate their performance but do not necessarily 
provide a framework for doing so accurately. Although 
individuals are generally able to monitor their performance 
effectively, there are significant individual differences in the 
accuracy of such monitoring. It may be that in the current 
study, participants’ evaluations of their own performance 
were shaped by their self-efficacy (i.e. high self-efficacy 
participants were likely to evaluate their performance 
positively and vice versa) and as such self-evaluation may 
reinforce existing beliefs in ability and thereby benefit only 
those who have a positive view of their own ability.  

The current study has provided evidence that self-
evaluative practice interact with self-efficacy to affect 
performance and incidental learning in an intelligence test. 
Given that self-evaluation is widely encouraged in both 
schools and workplaces, these results provide much needed 
research into the factors that affect the benefits of self-
evaluation. The current results suggest that self-evaluation is 
beneficial to the performance of high self-efficacy 
individuals, but impairs incidental learning, most likely as a 
result of encouraging such individuals to adopt a 
performance goal orientation. For individuals low in self-
efficacy, however, self-evaluation appears to have no effect 
on either their performance or learning outcomes. 
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Abstract 
 

The current study incorporates concepts from dynamical 
systems theory (DST) and embodied cognition to 
propose a novel method of answering traditional 
questions in social psychology. Namely, we were 
interested in understanding postural sway complexity 
during the important interpersonal task of disclosing a 
hidden stigmatized identity (e.g., mental health disorder, 
history of sexual abuse). Using detrended fluctuation 
analysis and multifractal detrended fluctuation analysis, 
we captured postural activity while people shared their 
personal secrets to an imagined other. Results suggest 
that disclosure context, defined by both disclosure 
confidant and antecedent goals, is indeed embodied in 
our complex postural activity. 

 
Keywords: Postural Sway; Concealable Stigmatized Identities; 
Detrended Fluctuation Analysis; Multifractal Detrended 
Fluctuation Analysis 
 

Introduction 
 

The current project applied concepts from dynamical 
systems theory (DST) to common social-psychological 
phenomenon through the analysis of complex postural 
activity. Postural sway refers to subtle, unintentional 
movements that all people exhibit even when standing 
still. These nearly imperceptible fluctuations have 
demonstrated a functional role in maintaining balance 
and even efficiently exploring the environment (i.e., 
detecting depth) (Era & Heikkinen, 1985). Generally, 
healthy adults tend to sway approximately 1 cm in the 
anterior-posterior (AP) direction and .5 cm in the medio-
lateral (ML) direction during quiet stance leading to 
great variability in postural activity within individuals 
(Baldan et. al., 2014). Research has found that there is 
meaningful structure to this movement variability in both 

the AP and ML planes that exhibits fractal scaling, or 
self similarity across different timescales (Delignières, 
Torre, & Bernard, 2011). This complex structure of 
postural sway allows us to adapt to different types of 
constraints—either personal, task relevant, or 
environmental—that exist across different time scales. 
The current project utilized two nonlinear data analytic 
techniques well suited to postural sway time series 
including detrended fluctuation analysis (DFA), and 
multifractal detrended fluctuation analysis (MFDFA) to 
characterize the spatio-temporal structure of postural 
activity during a social psychological event. 

The complex (i.e., fractal) structure of postural 
variability can be influenced by a number of factors 
including schizophrenia (Kent et al., 2002), age, and 
movement disorders such as Parkinson’s disease and 
Huntington’s disease (lipsitz, 2004). A change in 
complexity is characterized by shifts from persistent 
pink noise to either anti-persistent white noise, or 
deterministic Brownian motion. As such, fractal, or pink 
noise, in postural sway has been consistently found in 
healthy adult populations, and a decline in complexity 
towards either white or Brownian noise is associated 
with a decline in health (Lipsitz, 2004). 

While a change in the complex structure of postural 
variability is typically associated with poor health, recent 
research has found that cognitive activity can also impact 
postural behavior. For example, Riley, Baker, and 
Schmit (2003) found that postural sway standard 
deviation was reduced when participants were asked to 
complete a difficult digit rehearsal task. This change in 
postural sway as a function of a cognitive tasks, paired 
with the fractal nature of sway suggests a functional link 
between the brain and the body whereby the dynamics of 
human perceptual, motor, and cognitive processes are 
interaction-dominant (Riley, Shockley, van Orden, 
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2012). Interaction dominant-dynamics further suggest 
that each component system are coupled and therefore 
are reciprocally linked. This means that the behavior of 
each component, in this case the brain, the motor system, 
and the environment, depends on the activity of the other 
components (van Orden, Hollis, & Wallot, 2012). To 
examine this phenomenon in a social psychological 
context, we will determine how postural activity changes 
while people disclose a concealable stigmatized identity 
(CSI) to an imagined other.  

 
Concealable Stigmatized Identity Disclosure 

 
A CSI is any identity that is not immediately available to 
others, but could be socially devaluing if revealed, for 
example a mental health disorder, LGBT status, or a 
history of sexual abuse. While avoiding discrimination 
through concealment seems like an ideal solution, the 
extant literature has noted the numerous positive 
outcomes to disclosing (e.g., building trust, greater 
quality of life, etc.) as well as the negative impact of 
concealing (e.g., social isolation, anxiety, etc.) (Chaudoir 
& Quinn, 2010).  

Disclosure of a CSI, or the interpersonal process of 
sharing personal information, is a complicated process. 
The discloser must first decide how and when they want 
to share their identity with someone. Further, the 
discloser should be constantly evaluating their 
confidant’s reaction to determine if they can expect a 
positive reaction with the desired social support, or a 
negative reaction and little or no support. Research 
suggests that, when disclosing a CSI to a confidant 
people will have specific goals for disclosing such as to 
build intimacy in a relationship, or to explain certain 
behaviors. Research suggests that the numerous goals for 
disclosure are either approach oriented—focused on 
achieving positive outcomes—or avoidance oriented—
focused on avoiding negative outcomes (Chaudoir & 
Fisher, 2010). 
 
Approach and Avoidance Goal Motivation Research 
on goal motivation suggests that approach and avoidance 
systems result in differential exploration of the 
environment such that those who possess approach goals 
are interested in “reducing the discrepancy between 
themselves and their goal” (e.g., closing the gap between 
the discloser and the confidant; Chaudoir & Fisher, 
2010). Further, individuals who utilize approach goals in 
their disclosure may attend to positive stimuli in the 
environment. Conversely, when utilizing avoidance 
goals, individuals are interested increasing the distance 
between themselves and potential negative outcomes 
(e.g., increasing distance between the discloser and the 
confidant; Carver & White, 1994). As research from 
embodied cognition suggests, changes in emotional or 
motivational systems would be reflected in behavioral 

outcomes. Therefore, postural sway behavior provides a 
unique look into the embodiment of goal during the 
disclosure of a CSI. Further, as research has found a loss 
of complexity in postural sway as a function of increased 
cognitive load, it is likely the case that avoidance 
motivation, which is associated with attuning to negative 
environmental cues and less relaxed behaviors, would 
also lead to a loss of complexity. Further, there are many 
people in our lives with whom we can disclose such as 
with our friends and family (close others) and with our 
coworkers and bosses (professional others). 
 
Disclosure Confidant Disclosure of a CSI can occur 
across all life domains and within different types of 
relationships. Our relationships with others can vary 
greatly as a function of domain context (e.g., workplace, 
family life, and social setting, etc.). Often, our 
relationships with family members will be different from 
our relationships with a boss or a coworker due to social 
norms associated with these contexts. Therefore, the 
level of detailed disclosure of a CSI is likely less for 
those we have a professional relationships with 
compared to our close friends or family members. In 
fact, many people may feel motivated to keep a CSI 
hidden completely from their coworkers as revealing 
such information could have a detrimental impact on 
their career path and job outcomes (Jones & King, 
2014). 

Despite the potential for negative outcomes due to CSI 
disclosure, disclosure in the workplace should not be 
discounted. Research suggests potential negative 
workplace consequences of concealing including less job 
satisfaction and attention (Day & Scheonrade, 1997). 
With a large portion of the workforce continuously 
making decisions about the information they reveal and 
conceal in a workplace setting, it is becoming 
increasingly apparent that a better understanding of 
workplace disclosure is necessary. However, the 
increased tension and threat involved with disclosing 
across different life domains might also impact the 
behavioral expression via postural sway behavior. 
 
Postural Activity While the current literature has noted 
the importance of positive interpersonal disclosure 
outcomes across multiple life domains (i.e., home life, 
work life) utilizing different goals, little is known about 
how these different contexts impact the embedded nature 
of our cognitive and behavioral systems within the 
world. The present study is the first of its kind to 
examine the disclosure experience through the lens of 
embodied cognition in order to understand how the 
disclosure context is differentially manifested in 
measurable behavioral outcomes (i.e., postural activity).  

Despite attempts to understand the impact of 
nonverbal behaviors on personal self-disclosure (see 
Derlega & Berg, 2013), the existent literature has 
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focused on general self-disclosure, not disclosure of a 
CSI specifically. Further, nonverbal behaviors have 
typically been characterized by discrete, observable 
behaviors (e.g., facial expression, nods, and openness). 
The current project examines time dependent postural 
sway by utilizing dynamic data analytic tools that can 
capture the disclosure process as it occurs. By examining 
postural sway behavior during the disclosure of a CSI we 
can gain a better understanding of how our mental 
processes are manifested in our bodies relationship with 
the environment. Further, support for this claim would 
suggest that shifting motivation systems might lead to 
more positive behaviors, both verbal and nonverbal, 
during a disclosure event, and therefore more positive 
disclosure outcomes. 
 
Current Project 
 
This project hopes to be the first to bridge the gap 
between the three discussed areas of research: disclosure 
context (i.e., close other and professional other 
disclosure), antecedent goals for disclosure events, and 
embodied cognition during the disclosure of a CSI. With 
this project, we hope to integrate theory from stigma, 
embodied cognition, and interaction-dominant dynamics 
to capture a holistic understanding of the cognitive and 
movement processes at play during CSI disclosure. As 
such, this project will utilize theory unique to postural 
sway literature, and measurement and data analytic 
techniques novel to disclosure. Finally, our results and 
discussion will be presented in such a way that both 
social and ecological psychologists might be able to 
utilize theory and methods from each other in future 
research endeavors. Based on previous postural sway 
research, we expect disclosures utilizing approach goals 
to close others would exhibit pink noise compared to 
avoidance disclosures to professional targets.  
 

Method 
Design 
 
This study employed a 2 (goal motivation: 
approach/avoidance) × 2 (target: close other/professional 
other) mixed design with goal motivation is the between 
subjects variable and disclosure target the within 
subjects variable. The primary dependent variables are 
postural sway dynamics measured at the head and waist 
(via mono-fractal and multi-fractal scaling) and 
responses on the Behavioral Approach 
System/Behavioral Avoidance System (BIS/BAS) scale. 
 
Participants 
 
43 undergraduates were recruited from a large 
Midwestern University to participate in this study. Prior 

to recruitment, participants were prescreened to 
determine their eligibility. In order to participate in this 
study, participants had to self-identify as living with a 
CSI. One participant was excluded from data analysis 
due to technical errors resulting in a sample of 42 
participants. The majority of participants were female 
(36) and identified as white (35). The mean age was 
20.21 (SD = 3.09). See table 1 for a breakdown of each 
CSI represented in this study. 
 

Table 1. Table 1 shows the number of 
participants with each CSI type 
CSI Type N 
Mental Health Disorder 16 
Sexual Assault 7 
Gender/Sexual Minority 10 
Eating Disorder 4 
Multiple CSI’s 2 
Other 3 

 
Procedure 
 
In the first portion of the study participants were seated 
at a computer equipped with Media Lab software 
(Empirisoft, 2014) where they completed the majority of 
the experiment. They were first asked to think about and 
describe a secret that they often keep hidden. Each 
participant was then instructed to write two disclosure 
letters sharing this secret to a close friend/family 
member and the other to someone with whom they have 
a professional relationship. Specifically, they were asked 
to think about a person in their life that they have not 
told this secret, but would like to. Prior to writing each 
letter, participants were told to write 3-5 goals they have 
for their disclosure. To manipulate approach and 
avoidance goals, participants were simply told to either 
“think about achieving positive outcomes with their 
letter” or “think about avoiding negative outcomes with 
their letter” respectively. 

After writing both disclosure letters, participants acted 
out their disclosure as if the person they wrote the letter 
to was standing in the room. During the disclosure event, 
two Polhemus sensors (one attached to a headband on 
the back of the head, the other attached to a belt just 
bellow the belly button) recorded postural activity at 60 
Hz (FASTRAK, Polhemus, VT, USA). The 
experimenter explained that they should act as though 
they were talking to the person that they chose, using 
their letter as a guide. After completing the disclosure for 
both written letters, participants completed a number of 
self-report measures including the BIS/BAS scale 
(Carver & White, 1994). 
 
Data Analysis 
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To capture the time dependent structure of postural 
variability as a function of both goal priming and 
disclosure confidant during the disclosure of a CSI, both 
DFA and MFDFA were used. Because postural data 
exhibits non-stationary, time-dependent variation, these 
data are characterized by fractional Brownian motion 
(fBm) making it particularly well suited to DFA (et al., 
2000; Delignières, Torre, & Bernard, 2011).  

DFA provides the scaling exponent, α, which 
describes the fractal scaling of a time series whereby: α 
≈ .5 indicates random, white noise scaling; α ≈ 1 
suggests persistent pink noise scaling; and α ≈ 1.5 
indicates Brownian motion. 

MFDFA is an extension of the DFA and examines 
differences in the scaling exponents between small and 
large fluctuations. The relevant outcome parameter of 
interest in MFDFA is a characterization of the width of 
the multifractal spectrum hMAX-MIN. Because MFDFA 
tells us whether there are different scaling exponents that 
exist at fast and slow fluctuations, if hMAX-MIN is greater 
than 0, we can assume the time series exhibits 
multifractality. See Ihlen (2012) for a detailed 
description of both DFA and MFDFA procedures. 

Finally, Prior to analyzing each postural sway time 
series in the AP plane at the head (APHEAD) and waist 
(APWAIST) and the ML plane at the head (MLHEAD) and 
waist (MLWAIST), the data were downsampled from 60 
Hz to 30 Hz, linearly detrended, and, low-pass filtered at 
20Hz using a 2nd order Butterworth filter. A surrogate 
analysis (detailed below) was also performed for DFA 
and MDFA for validation purposes. 
 

Results 
A series of separate mixed method ANOVA’s were 
performed on all relevant outcome parameters for DFA, 
and MFDFA to test our hypotheses that approach and 
avoidance goal motivation and target confidant would 
impact the dynamical structure of postural activity 
during a disclosure event. Four separate 2 (goal: 
approach/avoidance) × 2 (target: close other/professional 
other) ANOVA’s were performed on all outcome 
parameters, one each for APHEAD, MLHEAD, APWAIST, and 
MLWAIST sway. Prior to statistical analysis, outliers 3 SD 
above and below the mean were identified and replaced 
with the mean value.  

 
Detrended Fluctuation Analysis 
 
A series of ANOVAs were performed to capture 
differences in sway as a function of α. To verify that 
there was a difference between the original time series 
and the randomly reshuffled, surrogate time series, a 
third 2 level term in the ANOVA (data: 
original/randomly reshuffled) was included making the 
analysis a 2 ×	2 ×	2 design. There was a main effect of 

data type for all APHEAD, APWAIST, MLHEAD, and 
MLWAIST,,  (for all F(1,40) > 2097, p < .0001) such that 
the original data results were significantly larger from 
the randomly reshuffled, surrogate time series. That is, 
the original time series produced an average α around 
1.3 for all directions of sway and the reshuffled time 
series produced α of .5 for all directions of sway. There 
were 2-way interactions of goal and data type for 
MLHEAD, and MLWAIST (F(1,40) = 5.52, p = .024, and 
F(1,40) = 4.74, p = .035, respectively), however, these 
results simply reflect a main effect of goal priming for 
the original data; no differences emerged in the 
reshuffled time series as a function of goal priming. As 
such, below is the planned 2 ×	2 ANOVAs on the 
analysis of real (non-shuffled) data. 

The ANOVA comparing the α exponent for APHEAD 
revealed a significant target by group interaction, 
F(1,40) = 4.32, p = .04, ηp

2 = .098. Bonferroni post hoc 
comparisons were used to examine differences between 
α for close other and professional other disclosures for 
each approach and avoidance primed disclosures 
separately. Results indicate a marginally significant 
difference in the α exponent between close other and 
professional other target disclosures in the avoidance 
primed condition, whereby close other disclosures 
exhibited less persistent fractal scaling in their postural 
sway (M = 1.36, SD = .11) compared to professional 
other disclosures; which were more persistent and closer 
to pink noise (M = 1.3, SD = .1). There was no 
difference between close other and professional other 
disclosures during approach primed disclosures (T(21) = 
.49, p > .05). There were no other main effects for 
APHEAD sway (all F(1,40) < 1.8, p > .05).  

Next, an ANOVA comparing the alpha exponent from 
MLHEAD revealed a significant main effect of goal 
priming (F(1,40) = 5.81, p =.02, ηp

2 = .13) such that 
approach primed disclosures exhibited more persistent 
fractal scaling in their postural sway (M = 1.28, SD = 
.13) compared to avoidance primed disclosures; which 
were less persistent and closer to Brown noise (M = 1.35, 
SD = .13). There were no other main or interaction 
effects for MLHEAD (all F(1,40) < 2.1, p > .05). Similar to 
the results found in MLHEAD sway, a significant main 
effect of goal priming emerged in MLWAIST sway 
(F(1,40) = 4.56, p = .04, ηp

2 = .1), whereby those in the 
avoidance condition exhibited a loss of complexity 
compared to those in the approach primed condition (M 
= 1.34, SD = .14 and M = 1.28, SD = .14 respectively). 
No other main effects or interactions were significant for 
MLWAIST (all F(1,40) < 1.9, p > .05). Finally, there were 
no significant effects of α on APWAIST sway (all F(1,40) 
< 2.47, p > .05) (see Figure 1). 
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Figure 1: This figure represents mean α.  
* p < .05, ** p < .01 

 
Multifractal Detrended Fluctuation 
Analysis 
 
The final series of ANOVA’s compared the hMAX-MIN 
value for each independent variable. To check that there 
is a difference between the original time series and the 
surrogate time series, a third 2 level term (data: 
original/surrogate) was included in the initial analysis. 
The surrogate time series was developed by shuffling the 
time series using an inverse amplitude-adjusted Fourier 
transform to maintain the same scaling relation α (see 
Ihlen & Vereijken, 2010 for detailed description) There 
was a significant main effect of data type for all MLHEAD, 
MLWAIST, APHEAD, and APWAIST (all F(1,40) > 54.7, p < 
.0001) whereby the hMAX-MIN was greater in the original 
data compared to the phase reshuffled time series. There 
were no 2-way interactions including data type 
suggesting there was no impact of goal priming or target 
confidant on results of the surrogate analysis (all F(1,40) 
< 3.9, p > .05). Therefore, results of the planned 2-way 
ANOVA examining goal priming and target confidant 
are reported below.  

The analysis of hMAX-MIN for APHEAD revealed a main 
effect of goal priming (F(1,40) = 4.95, p = .03, ηp

2 = .11) 
such that the width was larger for approach primed 
disclosures (M = .97, SD = .04) compared to avoidance 
primed disclosures (M = .85, SD = .04). There were no 
other significant results for APHEAD (all F(1,40) < 3.01, p 
> .05). The same pattern of significant results emerged 
for MLHEAD and MLWAIST, such that a main effect of goal 
motivation was revealed for both (F(1,40) = 8.57, p = 
.006, ηp

2 = .18 and F(1,40) = 7.62, p = .009, ηp
2 = .16 

respectively). The width for MLHEAD was larger for 

approach-primed disclosures (M = 1.04, SD = .22) than 
avoidance primed disclosures (M = .89, SD = .22). 
Similarly, the MLWAIST width was larger for approach-
primed disclosures (M = 1.02, SD = .18) than avoidance 
primed disclosures (M = .9, SD  = .18) (Figure 2). 

	 
Figure 2: This figure demonstrates mean hMAX-MIN. 

p < .05, ** p < .01 
 

Discussion and Conclusion 
 

Taken together, these results support our hypotheses that 
both goal motivation and disclosure confidant would 
impact unintentional postural activity. We sought to 
examine the disclosure event on a very small scale (i.e., 
postural behavior) in order to understand how context 
shapes the way people communicate through behavior. 
These results broadly support the idea that our cognition 
and emotional content are manifested and embodied in 
measureable behavioral outcomes (Marsh, Ambady, & 
Kleck, 2005). Most notable in these results is the 
influence of antecedent goal priming on the structure of 
postural variability. By utilizing nonlinear data analytic 
techniques novel to disclosure research, we have 
provided support that our cognitive and motor systems 
are functionally linked as a complex dynamical system. 

Specifically, the significant interaction of the scaling 
exponent α, which revealed that close other disclosures 
exhibited more deterministic behavior than professional 
other disclosures at APHEAD, is contrary to our hypothesis 
that professional other disclosures would be more 
deterministic. However, since this effect was only found 
in the avoidance condition, which is associated with 
negative outcomes, these results may indicate that 
participants expected greater threat to their intimate 
relationships during close other disclosures when they 
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were utilizing avoidance goals. Because this effect was 
only found in the AP direction, it is important that future 
work seek to replicate these results. 

Finally, results of the MFDFA support the mounting 
evidence that postural sway behavior exhibits multiple 
scaling exponents, as well as our hypothesis that 
disclosure context would functionally impact movement 
variability. Importantly, a significant difference in the 
hMAX-MIN parameter suggests that approach primed 
disclosures exhibit a wider range of scaling exponents 
than avoidance primed disclosures. This supports the 
theory that approach systems are associated with 
attuning to more positive stimuli in the environment. As 
theory of postural sway variability suggests, our postural 
system aids in efficiently exploring the environment. 
Because we see differences in the smallest and largest 
scaling exponents, this suggests participants are able to 
explore different stable states in the approach condition 
compared to the avoidance condition. This could make 
approach primed disclosures more adept at adjusting 
behaviors with new information.  

The results of this project provide evidence that both 
disclosure confidant and antecedent goals can affect the 
disclosure event itself. Further, this research suggests 
that postural sway behavior is an emergent property of a 
complex system and serves a functional role in both 
attaining environmental information and embodying 
ones cognitive and emotional processes. This has 
implications for developing tools for people who want to 
disclose a CSI. For example, by simply shifting internal 
motivation from avoidant to approach a reciprocal 
distribution across behaviors at different time scales 
could cascade, from very fast processes including 
postural sway, to slower timescale behaviors such as 
gross body movement, language, and confidant 
reactions. Future research should examine this 
relationship as well as how number of disclosures or fear 
of disclosure impacts these effects. 
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Abstract 
Responding to similarity, difference, and relative magnitude is 
ubiquitous in the animal kingdom. However, humans seem 
unique in the ability to represent relative magnitude and 
similarity as abstract relations that take arguments (e.g., 
greater-than (x,y)). While many models use structured 
relational representations of magnitude and similarity, little 
progress has been made on how these representations arise. 
Models that use these representations assume access to 
computations of similarity and magnitude a priori. We detail a 
mechanism for producing invariant responses to “same”, 
“different”, “more”, and “less” which can be exploited to 
compute similarity and magnitude as an evaluation operator. 
Using DORA (Doumas, Hummel, & Sandhofer, 2008), these 
invariant responses can serve to learn structured relational 
representations of relative magnitude and similarity from pixel 
images of simple shapes. 
 
 

Introduction 
Reacting to similarity, and magnitude (“same”/ 

”different”, “more”/”less”; SDML) are hallmarks of 
complex organisms. For example, gerbils use the retinal 
size of a stimulus to estimate its distance (Goodale, 
Ellard, & Booth, 1990), rats choose the larger of two food 
rewards (Kim et al., 2015), and pigeons learn to group 
pictures of 16 identical items in one set, and pictures of 
16 different items in a different set (Young, Wasserman, 
& Garner, 1997).  

Humans, however, go beyond simple detection of 
relative magnitude and similarity. We make an analogies 
between a nucleus and the sun because they are both 
larger than their orbiting bodies (electrons and planets). 
We infer this relationship because we represent relative 
magnitude and similarity as abstract relations that take 
arguments (i.e., as predicates; see Holyoak, 2012).  

Our ability to reason about abstract SDML manifests 
in a variety of domains such as analogy (e.g., Holyoak & 
Thagard, 1995), categorisation (e.g., Medin, Goldstone, 
& Gentner, 1993), and concept learning (e.g., Doumas & 
Hummel, 2013). While models that use structured 
representations have had success in accounting for how 
humans use abstract SDML, these models say little about 
where the representations they use come from in the first 
place. For example, SME (Falkenhainer, Forbus, & 
Gentner, 1989), STAR (Halford et al., 1998), and LISA 
(Hummel & Holyoak, 1997, 2003) account for many 
phenomena from the analogy literature, but require the 
relations they use to make these analogies be hand-coded 
by the modeler. Similarly, Bayesian models of concept 
development and learning (e.g., Kemp, 2012; Kemp & 
Tenenbaum, 2007, 2009; Lake et al., 2016) assume 
relational structures a priori, starting with a vocabulary 

of objects and relations and learning new concepts by 
building new combinations of these innate elements. 

Some models attempt to account for the origins of 
abstract concepts without assuming innate 
representations of relational concepts. For example, 
BART (Lu, Chen, & Holyoak, 2012) uses feature lists 
generated by human subjects or corpora analysis to find 
properties associated with items in the world which 
instantiate particular relations. BART has difficulty with 
some edge cases of relational cognition (e.g., reasoning 
about something like an atom being bigger than 
something else when it has not experienced instances 
where an atom was bigger than anything), but the model 
makes a serious effort to account for development of 
analogy-making with minimal assumptions about the 
starting representations of the learning system.  

In a similar vein, DORA (Doumas, Hummel, & 
Sandhofer, 2008) explains how structured 
representations (i.e., predicates) can be acquired from 
unstructured representations (i.e., feature vectors). While 
DORA learns relational representations that can take any 
arguments (including edge cases and completely novel 
arguments ; Doumas et al., 2008), DORA assumes a 
system to detect the invariant features that underlie the 
abstract concepts that it learns.  

A complete account of how people acquire structured 
representations of abstract SDML relations must solve 
three problems. First, there must be some invariant 
features which remain constant across instances of the 
relation which the perceptual/cognitive system can learn 
to detect. Second, the system must isolate these 
invariants from other properties of the objects engaged in 
the relation to be learned. Third, the system must learn a 
predicate representation of the relational properties (i.e., 
an explicit entity that can be bound to arbitrary, novel 
arguments).  

We solve the first problem with an extension to DORA 
which produces invariant responses to similarity and 
relative magnitude. We have previously shown how 
DORA can solve the second and third of these problems 
(Doumas et al., 2008). We begin with a brief overview 
of DORA, describe the process which produces invariant 
features for SDML, and provide simulations 
demonstrating how DORA solves all three problems to 
learn structured relational representations of SDML.  
 

Model 
DORA  

DORA (Doumas, et al., 2008) is a symbolic-
connectionist model, based on the LISA (Hummel & 
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Holyoak, 1997, 2003) model of analogy. DORA learns 
structured relational representations from unstructured 
representations of objects (e.g. feature vectors).  
 
LISAese Representations We begin by describing 
the end state of DORA’s representations (i.e., its 
representations after it has gone through learning). 
Relational propositions are represented by a hierarchy of 
distributed and localist codes (see Figure 1). At the 
bottom, semantic units code the features of objects and 
roles in a distributed fashion. In the next layer, localist 
predicate-object (PO) units representing individual 
predicates (or roles) and objects, are connected to these 
distributed semantic representations. In the next layer, 
localist role-binding (RB) units link predicates and 
objects into specific role-filler pairs. At the top of the 
hierarchy, localist proposition (P) units link RB units into 
complete relational propositions. Importantly, while we 
use different names for the units in different layers, and 
different shapes to distinguish these units in diagrams, 
we do so only for the purposes of expositional brevity. 
These are just nodes in different layers of a network. RB 
units are just like PO units, except for the fact that they 
are in a different layer, and, therefore, take input from 
and pass input to different layers of units.  
 

 
Figure 1. Complete relational proposition in DORA. 

Units in different layers are coded using different 
shapes for the purposes of exposition. 

 
Propositions in DORA are divided into four mutually-

exclusive sets of layered networks: a driver, one or more 
recipients, long-term memory (LTM), and the emerging 
recipient (EM). Each set consists of a layered network of 
PO, RBs, and P units (i.e., there are specific layers coding 
for PO, RB, and P units in the driver, and another set of 
layers coding for PO, RB, and P units in the recipient). 
Semantic units are shared across all networks (i.e., driver 
and recipient units are connected to the same pool of 
semantic units). The driver  corresponds to the current 
focus of attention and controls the flow of activation. 
Units in the driver pass activation to the semantic units. 
Because the semantic units are shared by all sets, 
activation flows from the driver to the other three sets. 
DORA operations (e.g., mapping and relation learning, 
detailed below) proceed as a product of units in the driver 
activating their semantic units, which in turn activates 
units in the various other sets.  

When a relational representation enters the driver the 
binding of roles to their fillers must be represented 

dynamically without violating their independence (i.e., it 
is not sufficient to represent bindings using only 
conjunctive units; see, e.g., Doumas & Hummel, 2005; 
von der Malsburg, 1999). DORA uses systematic 
asynchrony of firing to dynamically bind roles to their 
fillers (see Doumas et al., 2008). As a relational 
representation in the driver becomes active, bound 
objects and roles fire in direct sequence. Information 
about role-filler bindings is carried by proximity of firing 
(e.g., with roles firing directly before their fillers). This 
sequence-based binding keeps roles and their fillers 
distinct and thus independent. Using the example in 
Figure 1, in order to bind bigger to block and smaller to 
ball (and so represent larger (block, ball)), the units 
corresponding to bigger fire directly followed by the 
units corresponding to block, followed by the units for 
coding smaller followed by the units for ball. 
 
Mapping DORA uses LISA’s mapping algorithm (see 
Hummel & Holyoak, 1997; Doumas et al., 2008). DORA 
learns mapping connections between units of the same 
type in the driver and recipient (e.g., between PO units in 
the driver and PO units in the recipient). These 
connections grow whenever corresponding units in the 
driver and recipient are active simultaneously. The 
connections act as mappings between corresponding 
structures in separate analogs. They also permit 
correspondences learned in mapping to influence 
correspondences learned later. 
 
Relation Learning DORA uses comparison to isolate 
shared properties of objects and to represent them as 
explicit structures. DORA begins with simple feature-
vector representations of objects (i.e., a node connected 
to a set of semantic features describing that object). 
When DORA compares two objects, the two 
representations are activated simultaneously. For 
instance, if DORA compares a block that is larger than 
some object to a plate that is larger than some other 
object (e.g., when the block is larger than a ball and the 
plate is larger than a fork), then the nodes representing 
the block and plate fire together (Figure 2a). Semantic 
features shared by the compared objects (i.e., features 
common to the block and the plate) receive twice as 
much input and thus become roughly twice as active as 
features connected to one but not the other (Figure 2b). 
DORA then learns connections between a newly 
recruited PO unit and active semantic units via Hebbian 
learning (Figure 2c). In Hebbian learning the strength of 
a learned connection is a function of unit activation (i.e., 
stronger connections are learned to more active units). 
Consequently, the new PO unit becomes most strongly 
connected to the highly active semantic units. The new 
PO becomes an explicit representation of the feature 
overlap between the block and plate. In this example, 
DORA forms an explicit representation of the semantics 
of bigger things (i.e., the features common to both the 
block and plate). The new PO functions as a predicate 
representation of bigger because it can be dynamically 
bound to fillers via an RB unit (Figure 2d).  
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Figure 2. Comparison-based predication in DORA. 

DORA learns a representation of bigger by comparing a 
block that is bigger than some object to a plate that is 
bigger than some other object.  (a) DORA compares a 

block and a plate. Units representing both become 
active.  (b) Feature units shared by the block and the 

plate become more active than unshared features 
(darker grey).  (c) A new PO unit learns connections to 

features in proportion to their activation (solid lines 
indicate stronger connection weights).  The new unit 
codes the featural overlap of the block and plate (i.e., 

the role “bigger”). (d) This new PO unit functions as a 
predicate when dynamically bound to fillers. 

 
DORA learns representations of multi-place relations by 
linking sets of co-occurring role-filler pairs into 
hierarchical relational structures. Continuing the 
example, when DORA compares a plate that is larger 
than a fork to a block that is larger than a ball, it will map 
larger (plate) to larger (block) and smaller (fork) to 
smaller (ball) (Figure 3a). When constituent sets of role-
filler pairs are mapped, a distinct pattern of firing 
emerges—namely, mapped RB units fire together and 
out of synchrony with any other RB units; Figure 3b-d). 
This pattern is a reliable signal that DORA exploits to 
combine sets of role-filler pairs into multi-place 
relations. In response to the pattern, DORA recruits a P 
unit that learns connections to any active RB units in the 
recipient (Figure 3e-g) via Hebbian learning. The result 
is a P unit linking the RB units in the recipient into a 
complete relational structure (larger (block, ball); Figure 
3i).  
 
Producing invariant responses for basic SDML  

A comparison-based solution to the problem of 
learning an invariant feature coding for “more”, “less”, 
and “same” requires the assumption that initially 
available magnitude information is coded by a direct 
neural proxy: All else being equal, higher magnitude 
items are coded (at least early in processing) by more 
neurons than comparatively lower magnitude items. For 
example, a larger item will be coded by more neurons 

than a smaller item. There is a preponderance of evidence 
for this assumption. In visual processing, larger items 
take up more space on the retina (e.g., Wandell, 1995) 
and are coded by larger swaths of the visual cortex (e.g., 
Engel et al., 1994).   
 

 
Figure 3. DORA learns a representation of the whole 

relation larger (block, ball) by mapping bigger(plate) to 
bigger(block) and smaller(fork) to smaller(ball).  (a) 

The units coding bigger fire; (b) the units for plate and 
block fire; (c) the units for smaller fire; (d) the units for 

fork and ball fire.  (e) DORA recruits a P unit in the 
recipient. (f-g) DORA learns a connection between the 
new P unit and the active RB unit (the unit coding for 
bigger(block)).  (h-i) The P unit learns connections to 

the active RB unit (coding for smaller(ball)).  The result 
is a structure coding for larger(block, ball). 

 
Basic magnitude calculation is accomplished by 

comparison. When the model attends to two 
representations with specific magnitude values (e.g., two 
POs attached to absolute size are present in the driver 
together; Figure 4a), the representations of the absolute 
magnitude semantics are co-activated and the PO units 
attached to these semantic units compete via lateral 
inhibition (Figure 4b). The POs will eventually settle, 
with either one PO becoming more active and inhibiting 
the other to inactivity, or, when both POs code for the 
same absolute magnitude, with both POs in a steady state 
of co-activation.  More semantic units can then respond 
to the particular pattern of firing in the driver POs. Some 
units are excited by two active POs in the driver, others 
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are excited by a single highly active PO early in firing, 
or by a single highly active PO late in firing (these 
regions of excitement are easily learnable via simple 
neural threshold tuning). The active POs learn 
connections to the active semantic unit by Hebbian 
learning. If a single PO is active, that unit will learn 
connections to the semantics that are activated by a 
single highly active driver PO early in firing (which 
becomes the invariant signal for “more”; Figure 4c). 
When the active PO becomes inhibited (because of 
asynchronous binding), the second PO (the one inhibited 
by the winning PO) will become active (Figure 4d). That 
unit learns connections to the semantics that are activated 
by a single highly active driver PO late in firing (which 
becomes the invariant signal for “less”; Figure 4d). 
Otherwise, if two POs are co-active (i.e., they code the 
same magnitude), then they will learn connections to the 
semantics which are activated by two active driver POs 
(which becomes the invariant signal of “sameness”. 
 

 
 
Figure 4. The SDML detector working on POs coding 
different values on a dimension. For the purposes of 

clarity, only the predicate POs and their semantics are 
depicted in this figure. (a) Two POs coding for different 
heights are in the driver. (b) The semantics coding for 
absolute dimensional information become active and 
the two POs compete to become active. (c) The unit 
coding for the greater value on the dimension (here 
height-6) becomes active first, thus marking it as 

“more”. The PO learns a connection to the semantic that 
responds to winning the SDML competition (i.e., the 

invariant of “more”). (d) The unit coding for the lesser 
value on the dimension (here height-3) will become 

active last, thus marking it as “less”. The predicate is 
connected to the semantic unit coding for losing the 

SDML competition, or the invariant of “less”. 
 
In short, comparing different magnitudes in a network 

in which magnitude information is coded by an absolute 

proxy (as in the human neural system) produces one of 
three patterns. (1) Both units settle into a state of similar 
co-activation—which occurs when two representations 
of the same magnitude are compared. (2) One unit 
becomes more active and forces the second unit to 
inactivity—which occurs when a unit codes for a greater 
magnitude. (3) One unit becomes active after it has been 
inhibited by a winning unit—which occurs when a unit 
codes for a lesser magnitude. Whatever units respond to 
these patterns naturally or through tuning become 
implicit invariant codes for the presence of “sameness”, 
“moreness”, and “lessness”, respectively. Vitally, the 
same patterns will emerge and the same codes will 
become active when specific relative magnitudes are 
present even cross dimensionally. That is, the same 
patterns emerge and units become active during an 
instance of different absolute height, or width, or colour. 
What is left for the system is to learn explicit 
representations of these invariant semantics that are not 
tied to any specific magnitudes (e.g, a PO connected to 
semantics encoding ‘more’ & ‘height’, without strong 
connections to any specific height) and can take other 
POs as arguments. In other words, exactly the learning 
that DORA does.  
  

Simulations 
Simulation 1 

We tested whether DORA could learn structured 
representations of relative SDML relations starting with 
information about sets of shapes with features 
representing absolute values on dimensions. This 
simulation mirrored what happens during development 
when a child learns from experience without a teacher or 
guide.  

The model began with pixel images of basic shapes 
(differing in shape, colour, size, width, and height). 
These images were pre-processed with a feedforward 
neural network that learned via back-propagation to 
deliver absolute shape, colour, size, width, and height 
information (akin to that information delivered by early 
visual processing). Each processed image was 
represented by a PO attached to the delivered features. In 
addition, each shape was also attached to a set of 10 
extraneous features selected randomly from a set of 100 
features, included as noise (as objects in the world 
contain several features extraneous to any particular 
learning goal). Each shape was then randomly paired 
with another to create pairs of shapes over which 
relations were learned. We created 100 pairs of objects 
in this manner and placed them in DORA’s LTM.  

We then allowed DORA to attempt to learn from these 
basic representations. On each learning trial, DORA 
selected one pair of objects from LTM at random and ran 
(or attempted to run) retrieval, mapping, SDML 
comparison, predication, and multi-place relation 
learning, and stored any representations that it learned in 
LTM. In short, we are testing whether unguided learning 
from simple shape objects is sufficient for DORA to 
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learn structured representations of relative SDML 
relations.  

We defined a relational quality metric as the mean of 
connection weights to relevant features (i.e., those 
defining a relative magnitude on some specific 
dimension (e.g., ‘more’+‘height’, or ‘less’+‘width’)) 
divided by the mean of all other connection weights + 1 
(1 was added to the mean of all other connection weights 
to normalize the quality measure to between 0 and 1). A 
higher quality denoted stronger connections to the 
semantics defining a specific SDML relation relative to 
all other connections. We measured the relational quality 
of the last 100 items DORA had learned after each 100 
learning trials for 1000 total learning trials. Importantly, 
we tested all representations that the model learned (not 
just those that instantiated the relevant relations) and 
included these in the relational selectivity calculation.  

Figure 5 shows the quality of the representations that 
DORA learned. DORA learned representations of whole 
relational structures encoding relative magnitudes and 
similarity on all the encoded dimensions. DORA learned 
representations of bigger (one predicate PO connected 
most strongly to the semantics ‘more’ & ‘size’, the other 
connected to ‘less’ & ‘size’), wider (predicate POs 
connected to ‘more’ & ‘width, and ‘less’ & ‘width’), 
taller (predicate POs connected to ‘more’ & ‘height, and 
‘less’ & ‘height), same-size (predicate POs both 
connected most strongly to ‘same’ & ‘size;), same-width 
(predicate POs both connected most strongly to ‘same’ 
& ‘width’), same-height (predicate POs both connected 
most strongly to ‘same’ & ‘height’), same-colour 
(predicate POs both connected most strongly to ‘same’ 
& ‘colour’), and same-shape (predicate POs both 
connected most strongly to ‘same’ & ‘shape’). The 
results indicate that DORA can learn structured 
representations of relative SDML relations from objects 
that include only absolute values on dimensions even 
with the addition of extraneous noise. 

 
Figure 5. Results of DORA’s learning.  

 
Simulation 2 

A crucial question remains: do the representations 
DORA learns meet the requirements of relational 
representations? Some hallmark of relational 
representations (see Holyoak, 2012) are that they, (i) 
form the basis of solving cross mappings; (ii) support 

mapping similar, but non-identical predicates; and (iii) 
form the basis of overcoming the n-ary restriction.  

During cross-mapping, an object (object1) is mapped 
to a featurally less similar object rather than a featurally 
more similar object because it (object1) plays the same 
role as the less similar object. Cross-mappings serve as a 
stringent test of the structure sensitivity of a 
representation as they require violating featural or 
statistical similarity.  

We tested the relations that DORA had learned in the 
previous simulations for their ability to support finding 
cross-mappings. We selected two of the refined relations 
that DORA had learned during the previous simulation 
at random. We bound the relations to new objects, 
creating two new propositions, P1 and P2 such that the 
agent of P1 was semantically identical to the patient of 
P2 and patient of P1 was semantically identical to the 
agent of P2, and allowed DORA to attempt to map P1 
and P2.  We repeated this procedure 10 times, each time 
with a different randomly-chosen pair of relations. All 10 
times DORA successfully mapped the agents and 
patients of P1 and P2.  The relations DORA learned in 
the first simulation satisfy the requirement of cross-
mapping.  

We also tested whether the relations that DORA has 
learned would support mapping to similar but non-
identical relations (such as mapping higher to greater-
than). Humans successfully map such relations (e.g., 
Bassok, Wu, & Olseth, 1995; Gick & Holyoak, 1983), an 
ability that Hummel and Holyoak (1997, 2003) have 
argued depends on the semantic-richness of relational 
representations. We selected one of the refined relations 
that DORA had learned during the previous simulation, 
R1, and constructed a new relation, R2, that shared 50% 
of its semantics (in each role) with the selected relation. 
So that mappings could not be based on object similarity, 
none of the objects that served as arguments of the 
relations had any semantic overlap. We repeated this 
process 10 times. Each time, DORA mapped the agent 
role of R1 to the agent role of R2 and the patient role of 
R1 to the patient role of R2, and, despite their lack of 
semantic overlap, corresponding objects always mapped 
to one another (because of their bindings to mapped 
roles).  

Finally, we tested the model’s ability to find mappings 
that violate the n-ary restriction: the restriction that an n-
place predicate may not map to an m-place predicate 
when n ≠ m. Almost all models of structured cognition 
follow the n-ary restriction (namely, those that represent 
propositions using traditional propositional notation and 
its isomorphs; see Doumas & Hummel, 2005). However, 
the restriction does not appear to apply to human 
reasoning, as evidenced by our ability to easily find 
correspondences between bigger (Sam, Larry) on one 
hand, and small (Joyce), big (Susan), on the other 
(Hummel & Holyoak, 1997).  

To test DORA’s ability to violate the n-ary restriction, 
we randomly selected a refined relation (R1) that DORA 
had learned in the previous simulation. We then created 
a single place predicate (r2) that shared 50% of its 
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semantics with the agent role of R1 and none of its 
semantics with the patient role. The objects bound to the 
agent and patient role of R1 each shared 50% of their 
semantics with the object bound to r2. DORA attempted 
to map R1 to r2. We repeated this process 10 times, and 
each time DORA successfully mapped the agent role of 
R1 to r2, along with their arguments. We repeated the 
simulation such that r2 shared half its semantic content 
with the patient (rather than agent) role of R1. In 10 
additional simulations, DORA successfully mapped the 
patient role of R1 to r2 (along with their arguments).  In 
short, in all our simulations DORA overcame the n-ary 
restriction, mapping the single-place predicate r2 onto 
the most similar relational role of R1.  
 

Conclusion 
We have shown how structured relational representations 
of magnitude and similarity can be learned from objects 
with only absolute magnitude values. Our model exploits 
regularities that emerge in a connectionist network when 
distributed representations are compared or co-activated. 
These regularities serve as invariant signals that the 
model can learn to exploit to bootstrap the detection of 
relative magnitude differences and similarities. When 
linked with the DORA predicate learning algorithm, the 
system learns structured predicate representations of 
these relative magnitudes and similarities, and then can 
exploit the resulting representations to solve problems.  

Our account provides a trajectory for similarity 
cognition that maps to cognitive complexity across 
species and maturational trajectories in humans. This 
trajectory reveals three distinct levels of abstraction in 
SDML computation; (i) implicit detection of SDML 
(responding based on the regular firing that occurs when 
absolute magnitudes are compared), (ii) implicit 
generalization of SDML (or learning based on the 
presence or absence of a particular feature; e.g., learning 
to respond based on the presence or absence  of the 
‘more’ feature), and (iii) predicate representations of 
SDML (or full-fledged relational representations that 
support complex cognitive capacities like analogy and 
reasoning).  

This distinction may explain why humans solve some 
tasks involving similarity judgments without the 
extensive training that other animals require (e.g., 
Young, Wasserman, & Garner, 1997). Humans may 
solve the task relationally rather than relying on 
generalized implicit similarity judgments.  

Many cognitive architectures and task models rely on 
stimulus recognition. This theory explains how stimulus 
recognition might be computed. We believe that 
providing a computational account for a function 
existing models depend on represents a significant 
architectural contribution. 
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Abstract

During a music lesson, participants need to co-ordinate both
their turns at talk and their turns at playing. Verbal and musical
contributions are shaped by their organisation within the turn-
taking system. When lessons are conducted remotely by video
conference, these mechanisms are disrupted by the asymmet-
ric effects of delay on the interaction; in effect a “non-mutual
reality” comprised of two different conversations at each end
of the link. Here we compare detailed case studies of a co-
present and a remote music lesson, in order to show how this
effect arises, and how it impacts conduct during the lesson.

Keywords: video mediated communication; conversation
analysis; music education; distance learning

Introduction
When a student and tutor come together for the purpose of an
instrumental music lesson, intuition suggests that the prin-
cipal activity would be playing. However conversation is
important, not just as a way to analyse musical contribu-
tions, but to organise them within the lesson flow. Partici-
pants may respond to talk with performance and vice versa,
or even spend periods of time exchanging purely musical con-
tributions (Duffy & Healey, 2014). For example the tutor
could give a verbal instruction that the student should action
through performance, or the student could ask a question that
the tutor answers through demonstration with their instru-
ment. Activities are managed conversationally; discussion
interleaved with performance, demonstration and musical ex-
perimentation, resulting in a rich multi-modal social interac-
tion. The musical contributions include unscripted exchanges
of short musical fragments intertwined with lesson dialogue.
Analysis of their shape and timing shows that they are man-
aged in ways analogous to conversational turn-taking. For
example, a tutor’s musical contribution can be used to initi-
ate student self-repair in their performance (Duffy & Healey,
2013). Non-verbal communication such as gaze, or maintain-
ing spatial configurations with respect to each other and the
music stand, are also an important part of student-tutor inter-
action (Duffy & Healey, 2012).

The transition between speakers is an essential part of the
organisation of turn-taking in conversation (Sacks, Schegloff,
& Jefferson, 1974). The preference for just one person to
talk at a time requires participants to work together to min-
imise gaps and overlaps. Anticipating the possible end of a
speaker’s turn allows a listener to prepare to take the floor
when an opportunity presents itself. Interactive turn-taking

phenomena such as backchannels, or making a bid for the
floor for a turn at talk, require very precise timing. The tim-
ing of the transition between speakers is sometimes referred
to as turn offset. It is usually reported as positive if there is
a pause between speakers, and negative if there is an overlap
(Stivers et al., 2009). Longer pauses and overlaps do occur,
but the average turn offset in natural speech tends towards a
short pause. A positive turn offset in the range of 0-200ms is
most likely to be perceived as a smooth turn transition (Stivers
et al., 2009; Heldner & Edlund, 2010).

Remote music tuition using video conferencing is a popu-
lar way to support music education in geographically remote
areas but has also become an important part of urban main-
stream conservatoires, for example to manage temporary sep-
aration when students or tutors have to travel to perform, or
to manage international auditions. However the medium of
communication is known to change aspects of conversational
turn-taking, and this has important implications for video-
mediated remote music tuition (Duffy et al., 2012). Even
minor disruptions to the transmission characteristics of the
medium of communication, such as the latency and delay as-
sociated with video mediated communication, can seriously
affect turn-taking (Whittaker, 2003).

Qualitative video analysis and conversation analysis (CA)
have been used to examine video-mediated workplace com-
munication (Heath & Luff, 1991) and how participants com-
plete collaborative tasks in video-mediated environments
(O’Conaill, Whittaker, & Wilbur, 1993; Heath, Luff, &
Sellen, 1997; Ruhleder & Jordan, 2001). However there have
been relatively few studies of the detailed effects of video-
mediated communication (VMC) on the timing of conver-
sational turn-taking, and the results are inconsistent, driven
by subtle differences in experimental set up. For example,
some studies include signal delay (Ruhleder & Jordan, 2001)
whilst others exclude it (Sellen, 1992); in some cases specif-
ically to isolate other interactional factors. Some studies
compare video-mediated interaction (with or without delay)
to same-room conditions, whilst others compare it to other
lower quality remote communication systems or audio only
scenarios (O’Conaill et al., 1993; O’Malley, Langton, Ander-
son, Doherty-Sneddon, & Bruce, 1996). Studies which have
included delay as part of their experimental set-up (O’Conaill
et al., 1993; Ruhleder & Jordan, 2001) suggest a further sub-
tle effect; changes in the time of arrival of utterances with
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respect to ‘local’ sound. Ruhleder and Jordan (2001) suggest
that two people having two fundamentally different conver-
sations with each other raises serious questions about what it
means to ‘share’ a conversation in distributed settings. This
leads to some interesting questions in terms of remote music
lessons. How might the medium change the turn transitions
observed in co-present lessons when they are mediated by
video conference? How might the transition between ‘speak-
ers’ be affected by the inclusion of musical contributions?

In order to investigate these questions, a detailed study was
made of student-tutor interaction during a co-present and a
remote music lesson, using CA and qualitative video anal-
ysis. CA has previously been used to examine aspects of
instrumental music tuition (Ivaldi, 2014; Nishizaka, 2006;
Szczepek Reed, Reed, & Haddon, 2013), as well as the effect
of medium on conversational turn-taking. This fine grained
analysis of a same-room and a separated lesson allows us to
examine both the turn-taking characteristics unique to a music
lesson, and how these are affected by the medium of video.
This work is part of a larger study of a number of co-present
and remote music lessons (Duffy, 2015).

Methodology
Two one-to-one lessons featuring woodwind instruments
were observed, filmed and analysed in detail; a co-present
(‘same room’) lesson and a video-mediated remote les-
son. The co-present lesson featured a male student studying
ABRSM grade 8 clarinet performance and was filmed during
one of his regular weekly lessons at the junior school of a
London Conservatoire. The female tutor had taught the stu-
dent for many years. The remote lesson featured a female
oboe student taking part in an ensemble residency with Alde-
burgh Young Musicians, filmed during a remote music tuition
study at Aldeburgh Music in Suffolk (Duffy et al., 2012).
The student had been working with the tutor during the resi-
dency, but had not previously taken regular lessons with her.
Both students had advanced to a similar level of proficiency;
they were largely comfortable with the technical challenges
of their instrument and capable of exploring musicality and
expression. Both tutors were experienced in one-to-one tu-
ition, but not video mediated tuition. The scope of this study
was to examine student-tutor interaction, and did not consider
teaching effectiveness between conditions.

Conversational turns are defined as the period during which
a participant holds the floor, until there is a change in speaker
(Sacks et al., 1974, pp.702-703). Turns in the footage from
each lesson were coded using ELAN (Brugman, 2004). A
separate tier was created for analysis of each of the following
types of contribution: student talk, tutor talk, student play and
tutor play. This data was exported as a transcript with time-
code information so that calculations could be made such as
turn frequency, mean turn duration and turn onset in relation
to the preceding turn. Pauses between turns were coded as a
positive offset, and overlap as a negative offset, similar to the
approach used by Stivers et al. (2009). This allowed calcula-

tion of a net offset for a period of time or subset of turn types.
Backchannels were excluded from the distribution, similar to
the approach used by Sellen (1992), since they are not a bid
for the floor or intended to initiate a change in speaker. As
discussed, a difference between this analysis and existing lit-
erature is that we consider the transitions between musical, as
well as verbal contributions. As a result, the following cate-
gories of turn transition were identified:

1. Talk following talk.
2. Talk following play.
3. Play following talk.
4. Play following play.

Established notation for conversation analysis, as de-
scribed in the appendix of Sacks et al. (1974), was adapted
to analyse musical contributions to lesson dialogue (Table 1).

(0.2s) Elapsed time (seconds) used to denote pauses or silence
(1.4s) Long single note and duration
(2.3s) Individual notes in a musical phrase and phrase duration

↑ Rising passage of notes
↓ Falling passage of notes
’ ’ ’ (1.2s) in-breath in preparation to play, and duration

// onset of ‘talk over play’ overlap
{first octave} Additional information for music notation
[ 0.6s ] duration of period of overlap
= Latching (no interval between two pieces of talk)

Table 1: Transcription notation.

The two rooms used for the remote lesson were adjoining
suites at the same organisation (see Duffy et al. (2012) for
more details). A separate video camera was placed in each
suite, in addition to the video conference equipment, in or-
der to capture student and tutor position with respect to the
screen and provide a separate audio recording for each loca-
tion. There was a small delay in visual processing caused by
additional software being tested during the lesson. A delay
was added to the audio so that audio and visuals arrived syn-
chronised in each location. Audio samples from each room
were synchronised and analysed using clearly visible audio
transients which did not overlap with local sounds. Whilst
the rooms were geographically close, the delay was of the
same order as the latency experienced in a typical transat-
lantic video call (0.9s). This delay was constant, but in reality
the magnitude of the delay would vary somewhat over the
duration of the call, depending on the signal journey through
different servers and exchanges.

Results
First we will look at some general effects of the medium
on the lessons analysed. Whilst the co-present lesson was
slightly longer than the consolidated sections of the video-
mediated class analysed, they both contained similar propor-
tions of instances of turns at talk (73% and 71% table 2) and
instances of musical contributions (27% and 29% table 2).
However the turn structure within this was quite different.
The co-present lesson contained 753 turns in total whilst the
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video mediated lesson contained just 234, and the average
length of both turns at talk and musical contributions were
significantly longer for the video-mediated lesson. Net mean
offset for the remote lesson was 337ms, 143ms longer than
the co-present lesson offset of 194ms (table 3). These re-
sults are consistent with findings that video-mediated conver-
sations are characterised by fewer turns of greater length and
reduced overlapping speech (Cohen, 1982; O’Conaill et al.,
1993; Sellen, 1992).

Table 2: Turn structure of co-present vs. remote lesson.

co-present remote

instrument clarinet oboe
total duration (mins) 36 27
number of turns at talk 550 165
as a % of total turns 73% 71%
number of musical contributions 203 69
as a % of total turns 27% 29%
total lesson contributions 753 234
average length of turns at talk (s) 2.0 4.4
average length of musical contributions (s) 4.7 6.7
total lesson average contribution length (s) 2.8 5.1

Table 3: Net offset duration (ms) by transition type.

talk talk play play total
following following following following lesson

talk play talk play

co-present
n 345 129 134 50 658

% 52% 20% 20% 8%
mean (ms) 287 -61 297 -70 194

remote
n 64 55 62 4 185

% 35% 30% 34% 2%
mean (ms) 39 -40 993 124 337

Next we examine the net offset by transition type. In the
co-present lesson, the net offset for turn transition type talk
following talk, representing periods of student-tutor discus-
sion, was 287ms (table 3). This was slightly outside the range
of 0-200ms from the literature, but still showed a preference
for a pause of the same order of size. For transition type play
following talk, for example a student performing in response
to a verbal instruction from the tutor, the co-present net offset
was again in line with the literature (297ms, table 3). In the
remote lesson, the net offset for transitions of talk following
talk decreased to 39ms in line with our expectations from the
literature, but the net offset for play following talk lengthened
considerably to 993ms.

Looking specifically at overlap by participant, the student
showed a preference to play over tutor talk (33 instances of
student play over talk overlap compared to 2 tutor instances -
table 4). One explanation for this is that in co-present lessons
tutors were found to make long instructional turns to initi-
ate student play, comprised of several utterances separated by

pauses, interspersed with backchannels by the student. The
backchannels were placed with precision to show attentive-
ness without making a bid for the floor or disrupting the tu-
tor’s turn. Non-verbal cues enabled the student to determine
when these turns were complete and they should start to play
(Duffy, 2015, pp. 140-148). As the next example shows, in
the remote lesson the student found this more difficult.

Table 4: Overlap duration (ms) by activity by participant

talk talk play play total
over over over over lesson
talk play talk play

co-present student n 47 1 33 15 96
mean (ms) 330 65 637 524 463

tutor n 42 46 2 9 99
mean (ms) 317 489 391 436 409

total n 89 47 35 24 195
mean (ms) 324 480 623 491 436

remote student n 12 1 5 2 20
mean (ms) 780 1,326 615 466 735

tutor n 10 16 1 - 27
mean (ms) 1,113 478 1,234 - 741

total n 22 17 7 2 48
mean (ms) 877 528 647 467 703

Instructional turns
The tutor asked the student to play a scale. When the tu-
tor paused after her first utterance, the student made physical
preparations to play such as stepping back from the screen
and raising her hands to the instrument body (transcript 1:
line 1 and transcript 2: line 2). However the tutor retained
the turn, choosing to demonstrate by playing the scale herself
(transcript 1 and 2: line 3). Towards the end of the scale the
student raised her clarinet to her mouth again, this time plac-
ing the reed in her mouth (transcript 1: line 4 and transcript
2: line 5). However the tutor started a new utterance “so I
mean you go C sharp to C sharp” and the student lowered her
oboe again. This was the second abandoned attempt to play.
At the end of this utterance the student nodded and raised her
oboe for a third time. She placed the reed in her mouth and
took an in-breath whilst the tutor talked (transcript 1: line 6).
The tutor made no further utterances and finally the student
moved into playing the scale. From the tutor room footage it
was not clear why the student made two preparations to play
which could not be followed through. From the student room
footage it was clear that the student was placing these actions
in the pauses that were interpreted as the end of the tutor’s
instructional turn. This happened several times, and towards
the end of the lesson the student exclaimed “sorry sorry it’s
hard to know when to play”. This example is analysed in
more detail in Duffy (2015, pp. 350-359).

Bidding for the floor to provide feedback
Transitions involving turns following play did not follow the
literature. Both talk following play and play following play
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1. T: can you just play me a scale [starting on top A?]

[((S steps back from screen))]

[(1.0s)]

[((S lifts second hand onto instrument body))]

2. T: [u::m in fact]

[((S steps back from screen))]

[((T raises oboe))]

(0.4s)

((sucks reed loudly twice))

(0.9s)

[((S raises oboe))]

3. T: [↓{A} (0.6s) _ ] [_ _ _ _ ]_ _ _ _ _ _=

[(( * ))] [ ((**)) ]

4. T: =↑{C]}_ _ _ _ _ _ _ _ [_ _ _ _] _ _ [ ]

[ ((*)) ] [((***))]

5. T: [so I mean you go C]] to [C] [it’s still A major]]

[(( ** ))] [ (( S nods )) ]

[ (( * )) ]

6. T: [it’s just A major] [let’s just have a listen]

[ (( *** )) ] [((S takes an in-breath))]

Transcript 1: The tutor initiates a scale - student room audio.

1. T: can you just play me a scale starting on top A?

2. T: [(1.0s)]

[((S steps back from screen))]

[uuum] in fact

[((S lifts second hand onto instrument body))]

(0.4s)

((sucks reed loudly twice))

(0.9s)

3. T: ↓{A} (0.6s) _[_ _ _] _ [_ _ _ _ _ _]=

[((*))] [ ((**)) ]

4. T: =↑{C]}_ _ _ _ _ _ _ _ _ _ _ _[ _ _ ]

[ ((*)) ]

5. T: [so I mean you go C]] [to C]] [its still A major]

[((***))] [((**))] [((S nods))]

6. T: [[it’s just A major]] [let’s just have a listen]

[ (( S nods )) ]

[ ((*)) ] [ (( *** )) ]

*S lifts oboe to playing position

**S lowers oboe, keeping both hands on keys

***S places reed in mouth

Transcript 2: The tutor initiates a scale - tutor room audio

tended towards overlap in the co-present lesson, rather than a
short pause (-61ms and -70ms table 3). Talk following play
tended towards overlap in the remote condition (-40ms table
3). Play following play tended towards a pause in the remote
condition (net offset 124ms) but the proportion of this type of
turn was significantly reduced to just 2%, or 4 turns. All but
one incidence of talk over play overlap was made by the tutor,
in both the co-present and remote lesson (table 4), evidencing
the tutor’s preference to talk over student play when a prob-
lem was been diagnosed in order to provide feedback. This
did not appear to be as disrupted by the medium as the pre-
vious example, perhaps because the length of the note during
which the tutor bid for the floor was often of the same order
as the duration of the delay (Duffy, 2015, pp. 245-263), so
the tutor’s interruption still arrived before the student could
start the next musical phrase. What is beginning to emerge is
asymmetry in the preferences for taking a turn to talk or play
between the participants, some of which are disrupted more
by the medium than others.

Local differences in turn placement
Next we will look at an example which demonstrates the ef-
fect of the delay on the placement of a single turn. Audio
waveforms from each room illustrate the effect in addition to
the transcripts (figure 1). Coloured blocks have been anno-
tated using Logic Pro 9 to highlight the different position of
parts of the dialogue shown in transcript 3. The tutor wave-
form is narrower because the camera in the tutor room was
further away from where the tutor was positioned, as a result
the waveform has smaller amplitude (vertical height repre-
senting volume). This does not affect our analysis. The two
audio samples were synchronised using the visual transients
in the tutor’s utterance “ba ba ba ba ba ba” (line 3 of tran-
script 3). Transcript 3 shows the difference in turn transition
and sequence between the two rooms.

Audio from the camera in the student’s room

1. T: ’cause the A sharp is always there from the crotchet rest ((*))

2. S: yeah fine

(0.2s)

3. T: You’ve just got it so actually you think ba ba ba ba ba ba

Audio from the camera in the tutor’s room

1. T: ’cause the A sharp is always there from the crotchet rest ((*))

(0.8s)

2. S: [yeah fine]

3. T: [You’ve just got it] so actually you think ba ba ba ba ba ba

* a door slams shut as an observer leaves the room

Transcript 3: Turn sequence discrepancy between rooms

There are two main differences between the audio samples.
The first relates to the student’s utterance “Yeah fine” in line
2 (circled section of the waveform in figure 1). This utterance
was made with respect to the tutor’s turn in line 1. In the stu-
dent room audio the response followed straight on, after the
noise of a door slamming at the end of the tutor’s turn. In the
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Figure 1: Audio discrepancy between rooms.

tutor room audio there was a 0.8 second pause after the tu-
tor said “Cause the A sharp is always there from the crotchet
rest”. When the student utterance “Yeah fine” arrived, the tu-
tor had already started talking again, so it overlapped with the
start of the tutor’s next comment “You’ve just got it”. From
the student’s perspective, she had replied as soon as she heard
the tutor’s comment. However her reply was delayed in its re-
turn to the tutor by 0.9s. When the student’s response arrived,
the tutor had already started to talk again having only heard
silence, and so she talked over the student’s response. As a
result, the student’s utterance “Yeah fine” was placed within
a pause in the tutor’s speech, but transformed into an overlap
with tutor speech when received in the tutor’s room. Sev-
eral examples of similarly misapplied feedback are reported
in Ruhleder and Jordan (2001).

The next example shows how turn sequence can be
changed. Examining the student audio first, the musical
phrase in line 1 of transcript 4 includes a pause notated in
the score before a phrase is repeated. The student makes this
pause 0.4 seconds in duration and starts the repeated phrase
in line 2. However the tutor appears to talk over this sec-
ond phrase with “May-maybe a” (line 3). This is unusual,
the tutor usually waits until the end of a musical phrase to
start talking, the only overlap being with the final note (Duffy
& Healey, 2013); here the tutor starts talking mid-phrase. It
is also unusual that the student does not stop playing, instead
the tutor stops talking and the student continues. The tutor in-
terjects again with “yeah” but the student still continues. The
tutor then talks again straight after the last note of the phrase.
Now the student stops playing, immediately looking up from
the music and at the screen.

Looking at the tutor room audio, shown in the second half
of transcript 4, we see that the tutor started the utterance
“May-maybe a” during the notated pause in the student’s per-
formance (transcript 4: line 2a). However the delay in trans-

Audio from the camera in the student’s room

1. S: ↑_ _ _ _ ↓ _ _ _ _ ↑
(0.4s)

2. S: ↑_ _ _[_ ] ↓ _ [ _ ] _ _ ↑ =

3. T: [May-maybe a] [yeah]

4. T: =Just a thought maybe make the four a little slower

Audio from the camera in the tutor’s room

1a S: ↑_ _ _ _ ↓ _ _ _ _ ↑
(0.2s)

2a T: May-may[be a

3a S: [↑_ _ _ _ [ ] ↓ _ _ _ [_ ↑
4a T: [yeah] [Just a thought maybe make

the four a little slower

Transcript 4: Relative position of tutor interruption.

mission of this utterance to the student room, meant that it
arrived after the student had started to play the next phrase in
line 2. In the tutor’s room “May-maybe a” was interrupted by
the student starting her second phrase in line 3a and the tutor
stopped talking. Her next utterance “yeah” in line 4a started
during a long note played by the student, which could be in-
terpreted as a bid for the floor. However when this utterance
arrived in the student room, the long note was already com-
plete and the student had moved on to the next phrase. From
the tutor’s perspective she had tried unsuccessfully to take the
floor at the end of the first phrase.

Discussion
The short fragments of music which occur during an instru-
mental lesson have been shown previously to be managed
conversationally, and share some characteristics with turns at
talk. Here we see that participants exhibit different prefer-
ences for how they manage transitions between verbal and
musical contributions. The tutor more often leads lesson
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flow, placing more of the responsibility for turn placement
onto the student in their responses. The tutor is also more
likely to bid for the floor during student play, whereas the
student rarely interrupts the tutor in talk or play. Differences
in preferences have also been reported in turn-taking associ-
ated with the roles of the teacher and students in a classroom
(McHoul, 1978). The signal delay associated with VMC dis-
rupts these preferences, exhibiting a greater effect on the stu-
dent. Ruhleder and Jordan (2001) suggest that the mecha-
nisms which are most affected by signal delay are conver-
sational turn-taking, sequence organisation and repair; af-
fecting trust and confidence between the participants. The
phenomenon analysed here may explain student frustrations
previously reported during remote music lessons (Duffy &
Healey, 2012). This study highlights a number of opportuni-
ties for further work. For example, it is not known if partici-
pants could acclimatise to aspects of the disruption to lesson
interaction over time. A longitudinal study is recommended
which follows student-tutor pairs taking both co-present and
remote lessons. In this way, any effect caused by change in
participants across conditions will also be controlled. There
may also be different, more effective, ways to represent the
naturalistic teaching interaction remotely through alternative
technologies (Duffy & Healey, 2017).
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Abstract 

Recent emphases on differences between metaphors and 
similes pose a quandary. The two forms clearly differ in 
strength, but often seem to require similar interpretations. In 
Experiment 1 we show that ratings of comprehensibility are 
highly correlated across simile and metaphor sentences 
differing only in the presence or absence of “like”. In 
Experiment 2 we show that comprehensibility ratings for 
figurative forms predict both early (first pass) and late 
(second pass) fixation durations for metaphor vehicle, but 
only late fixation durations for vehicles in similes. Simile 
vehicles appear to initially be processed similarly to literal 
comparisons, with figurative interpretation occurring later. 
These observations are consistent with the different pragmatic 
strengths, and similar interpretations of the two forms. 

Keywords: simile; metaphor; analogy; career of metaphor, 
implicature, eye-movements 

Introduction 
Theories of figurative speech differ in emphasizing either 
(abstract) categorization (e.g., Glucksberg & Keysar, 1990) 
or analogical comparison across domains (e.g., Tourangeau 
& Sternberg, 1982).  Bowdle and Gentner (2005) proposed 
that unfamiliar figurative usages tend to be preferred in 
simile form (“Moonlight is like bleach”) whereas familiar 
ones are preferred in metaphor form (“Alcohol is a crutch”). 
They suggest that the surface form of a simile mirrors the 
cognitive processing (analogical reasoning) needed for an 
unfamiliar figurative meaning. 

But it isn’t the case that mere comparison captures 
analogical comparison. Aristotle is sometimes described 
dismissively as a comparison theorist (e.g., Tourangeau & 
Sternberg, 1982), but Israel, Harding and Tobin (2004) 
rightly point out that Aristotle is a metaphor-first theorist. 
Aristotle has also been characterized as considering 
metaphors to be implicit analogies (Levin, 1982). Similes, 
on this view, might be figurative to the extent that they 
require cross-domain implicit analogical reasoning. 

Glucksberg and Haught (2006) observed that adding an 
off-category adjective (e.g., “Moonlight is (*like) romantic 
bleach”) disrupts the preference scheme identified by 
Bowdle and Gentner (2005).  From this Glucksberg and 
Haught seek to argue that figurative categorization is the 
only plausible account of metaphor.  They argue that their 
adjectival noun-phrases are dis-preferred in simile form 

because similes refer to literal referents. But non-existing 
categories like “romantic bleach” block comparison 
generally, and do not differentiate literal from figurative 
comparison. Moreover, they seem to violate the need for 
distinct domains required for analogy to work. 

In this paper we will adopt the strategy of contrasting 
online comprehension of similes both with metaphor and 
with literal comparisons (as recommended by Israel et al., 
2004). By this means we will test whether similes are 
simply interpreted literally, as Glucksberg and Haught 
(2006) argued, or if they also differ from literal comparisons 
in ways that clarify their normal designation as figurative. 

In Experiment 1 we will show how similar the 
comprehensibility ratings of associated metaphor and simile 
forms are. Despite previously recognized differences in 
strength (e.g., Glucksberg & Keysar, 1990), aptness (e.g., 
Kennedy & Chiappe, 1999), and preference (e.g., Bowdle & 
Gentner, 2005), we find that comprehensibility judgments 
are relatively similar across both simile and metaphor forms 
for simple vehicles without adjectival modification. This 
suggests similar interpretations are reached for the figurative 
meaning of the vehicle in each figurative form. 

In Experiment 2, we will use measures of gaze during 
reading to show that initial reading of similes more closely 
resembles that for literal comparisons than that for 
metaphors. Metaphors show reliable effects of figurative 
comprehensibility during initial first-pass reading; similes 
and literal comparisons do not show such comprehensibility 
effects early on. However, during second-pass reading, 
fixation durations on simile and metaphor vehicle both show 
strong correlations to ratings of figurative 
comprehensibility. This suggests that the figurative 
interpretation of a simile vehicle may simply be computed 
later than that of a metaphor. 

Experiment 1: Comprehensibility Ratings 

Methods 
Materials (for Experiments 1 and 2) Seventy-five 
metaphors were gathered or updated from previous studies 
(Katz, Paivio, Marschark & Clark, 1988; Bowdle & 
Gentner, 2005; Thibodeau and Durgin, 2011). For gaze 
analysis (Experiment 2), each sentence was extended with a 
few words intended to be largely neutral with respect to 
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interpreting the sentence (e.g., “A smile is (like) a magnet 
for people.”). A set of literal comparison statements was 
developed using the same vehicles (e.g., “A black hole is 
like a magnet in space.”). To balance the number of 
sentences that did not include “like” and were not figurative, 
we also included 25 literal categorization statements filler 
sentences unrelated to the 75 experimental items. Three lists 
of 100 items were constructed in which one third of the 75 
items appeared in each of the three forms (metaphor, simile, 
literal comparison) along with the 25 fillers. 
 
Participants and Task A total of 91 adults were recruited 
through Amazon’s Mechanical Turk to make ratings of 
comprehensibility of the critical word in each sentence. A 
third were assigned to each of the three lists of stimuli.  

Results and Discussion 
As shown in Figure 1, comprehensibility ratings of 
metaphor and simile vehicles were highly correlated across 
items, R73 = 0.85, p < .001. A common factor, produced by 
averaging the figurative rating sets by item accounted for 
92% of the variance in the simile ratings and 93% of the 
variance in the metaphor ratings. There was, of course, no 
correlation between this common rating measure for 
figurative vehicles and the ratings given for the same words 
in literal comparisons with the same vehicles, R73 = 0.01, ns. 

It appears that ratings for both figurative sentence forms 
are typically based on similar figurative meaning, defined in 
relation to the topic. 
 

3

4

5

6

7

3 4 5 6
Metaphor fluency (comprehensibility ratings)

S
im

ile
 fl

ue
nc

y 
(c

om
pr

eh
en

si
bi

lit
y 

ra
tin

gs
)

Simile and metaphor (p > .001)

3

4

5

6

7

3 4 5 6
Figurative forms fluency (comprehensibility ratings)

Li
te

ra
l c

om
pa

ris
on

 fl
ue

nc
y 

(c
om

pr
eh

en
si

bi
lit

y 
ra

tin
gs

)

Literal and figurative (ns)

 
Figure 1.  Correlation between comprehensibility ratings for 

each figurative vehicle across figurative sentence forms. 

Experiment 2: Gaze Measures when Reading 
Comparisons, Similes and Metaphors 

The rating data of Experiment 1 are consistent with the 
assumption of many scholars that there is good reason to 
suppose that similar figurative meanings are often achieved 
by sentences in simile and metaphor forms, even if they may 
sometimes diverge in understanding.  However the rating 
data reflect post-interpretive evaluations and do not bear on 
the question of whether the initial cognitive encounter with 

the vehicle (e.g., during reading of the metaphor) is 
substantially different in similes and metaphors. In order to 
better understand how comprehension may unfold 
differently for the two figurative forms, we next measured 
gaze patterns during reading of these same sentences. 

Methods 
Participants Thirty-six Swarthmore College undergraduate 
students who were native English speakers participated in 
partial fulfillment of an introductory course requirement. 
 
Design and Procedure The linguistic materials were 
identical to those used in Experiment 1, except that 6 
practice items were developed to allow participants time to 
adapt to the task. One third of the 75 experimental items 
appeared in each of three forms (metaphor, simile, literal 
comparison) for each participant, according to one of three 
lists, and were randomly ordered and intermixed with 25 
(filler) literal categorization sentences. Sentences were 
presented one at a time on a monitor in front of the 
participant after first establishing gaze on a fixation point 
just to the left of the presentation of the sentence. 
Participants were to read the sentence and respond by 
pressing a key when they had comprehended it. The 
sentence was then removed, and an easy multiple-choice 
comprehension test followed, asking which of four terms 
was most relevant to the meaning of the sentence they had 
just read (e.g., for “A smile is (like) a magnet for people”, 
the correct answer was “attract”). Subjects made their 
choice using a game-pad with an appropriate spatial 
mapping to the choices on the screen. The entire 
experimental session took about 20 minutes. 
 
Gaze Recording Gaze was tracked at 1000 Hz, using an 
Eyelink 1000 (SR Research). The experimental code was 
implemented in Experiment Builder (SR Research), and 
gaze parameters during reading were extracted using custom 
software in conjunction with the area-of-interest definition 
tools provided by Experiment Builder. 

Results and Discussion 
Analysis Strategy Our principal interest was to compare the 
immediate processing of similes to the processing of 
metaphors, as measured by gaze parameters, and to 
secondarily use literal comparisons as an alternative 
comparison condition for similes. We used item-wise rating 
data from Experiment 1 as a predictor in LMER models. For 
the figurative items these ratings were averaged across 
figurative conditions. For gaze variables, we first used 
model comparisons to test whether the ratings had 
predictive value that differed between figurative sentence 
types. For example, if metaphor vehicles are treated as 
figurative words, while simile vehicles are treated as literal 
words, we might expect ratings of figurative interpretability 
from Experiment 1 to predict only the metaphor forms, and 
not the simile forms. To test for this we compared LMER 
models that included an interaction term (between ratings 
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and sentence type) with those that did not. Such model 
comparisons produce a Chi-square statistic. We also used 
LMER modeling to compare similes with literal 
comparisons. For overall comprehension time, we 
conducted a single overall analysis since comprehension 

time was expected to be correlated with comprehensibility 
ratings for all sentences. 
 
Comprehension Time Participants’ main task was simply 
to indicate comprehension of the sentence after reading it by 
pressing a key. The distribution of times was skewed, so 
centered log transformations of these times were used for 
statistical modeling. The main LMER model included 
sentence type (metaphor, simile and comparison) and 
comprehensibility ratings from Experiment 1 as predictors.  

Error terms included subjects and item as well as the 
slopes for sentence form by subjects and by items, and the 
slopes of ratings by subjects. Model comparisons showed 
that including the interaction between sentence type and 
rating did not explain reliably more variance than a model 
without the interaction, X2(2) = 0.27, p = .875, indicating 
that the relation to ratings did not differ by sentence type. 
Rather for all three sentence types, ratings predicted 
comprehension time, t(117.3) = 3.54, p < .001 
(Satterthwaite approximations of df will be reported 
throughout; see Luke, 2006). However, compared to the 
similes, response times were reliably longer for the literal 
comparison sentences, t(48.6) = 3.94, p < .001. Consistent 
with effects previously observed for apt or conventional 
figurative vehicles (e.g., Bowdle & Gentner, 2005; 
Glucksberg & Haught, 2006), comprehension time was 
marginally shorter for the metaphors than similes, t(35.1) = 
1.93, p = .062.  The observed relationship of rated 
comprehensibility and comprehension time is shown in 
Figure 2 separately for each sentence type. These data 
reflect the expected relationships between comprehensibility 
ratings and comprehension time. 
 

Gaze Behavior: Overview. The analysis of gaze behavior 
data is organized into five reading events relative to the 
target word (i.e., the vehicle) region: (1) Duration of initial 
fixation(s) on the critical word, (2) the subsequent frequency 
of regressions back out to the left  (3) the duration of time 

between first fixating the critical word and finally reading 
past the word, (4) the likelihood of refixating the word after 
passing it, and (5) if refixation occurred, the total time taken 
fixating the word after first passing it. 

Our primary interest is in differences associated with the 
presence of “like” in advance of the figurative word, since 
the simile and metaphors forms used are otherwise identical. 
Comparisons between the literal comparisons and similes 
are also of interest, however, given that we are asking 
whether the figurative vehicle words in similes are initially 
processed literally. 
 
Gaze Data Transformation and Truncation Duration data 
associated with gaze patterns were also log transformed to 
reduce skewing and were centered for analyses. 
Transformed durations that were more than 4 standard 
deviations above the transformed mean for that measure 
were truncated to 4 SDs. The proportion of data affected by 
this method was less than 1% each measure discussed. 
Ratings were centered (by subtracting off the mean) prior to 
analysis. 
 
Gaze Behavior 1: First Fixation Duration. If participants 
initially seek to understand metaphor vehicles figuratively, 
but simile vehicles literally, the duration of their first 
fixation on the critical word might correlate with ratings of 
comprehensibility for figurative items only for metaphors. 
 Consistent with this hypothesis, comparison of LMER 
models of the figurative sentence data, with and without 
interactions terms, showed that the relationship of FFD to 
ratings differed for the two figurative forms, X2(1) = 7.32, p 
= .007. As expected, separate models of the two condition 
indicated that FFD for the figurative vehicle was related to 
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Figure 2.  Mean comprehension times (mean response latency computed in log space by item) for metaphors (left), similes 

(middle), and literal comparisons (right) as a function of item comprehensibility (ratings). Best fit and SE shown. 
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the rated comprehensibility in the metaphor form, t(35.6) = 
4.06, p < .001, and not in the simile form, t(68.0) = 0.10, ns. 
Models of FFD contrasting the two comparison sentence 
forms (literal comparisons and similes), found no 
differences in FFD between the two forms (X2(2) = 2.74, p = 

.254. The data for each form are plotted in the top panels of 
Figure 2. This pattern is consistent with the idea that the 
figurative vehicle in a simile is initially treated as a literal 
referent, as argued by Glucksberg and Haught (2006a). In 
contrast, initial encounters with metaphor vehicles produced 
effects consistent with an immediate search for a figurative 
interpretation. 
 
Gaze behavior 2: Go past time. Go past time (GPT) is 
defined as the entire duration from first entering the critical 
word until finally passing to the right of the critical word. 
GPT for each sentence form is shown in bottom panels of 
Figure 3 as a function of comprehensibility rating. Because 
GPT includes FFD, FFD was included as a covariate in 
LMER analyses of GPT (the analyses come to the same 
conclusions without the covariate). 

Again, we first sought to test whether there were reliable 
relationships between GPT and rated comprehensibility for 
figurative items, and, if so, whether these differed between 

the various forms.  Indeed, model comparisons indicated 
that the relation of GPT to rated comprehensibility differed 
reliably between simile and metaphor forms, X2(1) = 9.8, p 
= .002. In these models, GPT was also reliably longer for 
metaphors than similes, t(37.6) = 2.84, p = .007. Separate 

LMER models showed that, for metaphor sentences, GPT 
was reliably related to figurative comprehensibility ratings, 
t(64.4) = 2.60, p = .011. This was not the case for similes, 
t(74.1) = 1.49, p = .141 (where the trend was in the opposite 
direction, consistent with delays for highly conventional 
metaphors presented as similes).  

Models comparing GPT for the similes and literal 
comparison sentences5 indicated that including the 
interaction of ratings and sentence type in the models made 
no reliable difference, X2(1) = 2.75, p = .097.  A separate 
model of literal comparisons confirmed that here was also 
no reliable relationship between GPT and rated 
comprehensibility, t(76.9) = 0.70, p = .486. Thus, prior to 
exiting the critical word to the right in the simile form, the 
figurative vehicle may still be treated primarily as a referent 
to the literal comparison category as the reader passes on the 
rest of the sentence. 
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Figure 3.  Top row: First fixation duration (FFD). Bottom row: Go Past Time (GPT). Geometric means (by item and 

sentence type) for the figurative vehicle (or equivalent) are shown as a function of mean rated comprehensibility. 
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Gaze Behavior 3: Returns to the Target Word From the 
Right Participants often returned to the critical word after 
they had already read beyond it.  Indeed, this happened in 
roughly 59% of trials (60% of metaphor trials, 58% of 
literal comparison trials and 57% of simile trials). Is the 
likelihood of such Regressions In (RI: if the critical word 
was refixated on a given trial after exiting to the right) 
related to rated comprehensibility?  LMER models of RI for 
the figurative sentences showed a reliable relationship 
existed between rated comprehensibility and the likelihood 
of RI, t(59.9) = 2.29, p = .026, and that this effect did not 
reliably differ between metaphors and similes, X2(1) = 
0.003, ns.  But LMER models of RI for comparison 
sentences also showed a reliable main effect of rated 
comprehensibility, t(38.4) = 2.27, p = .029, and no evidence 
of an interaction, X2(1) = 0.04, ns. Thus, RI was more likely, 
for all sentence forms, as comprehensibility decreased. 
 
Gaze Behavior 4. Second Pass Total Time (P2TT) Given 
that a reader had refixated the critical word after having read 
more of the sentence, was the total time spent refixating it 
before responding related to rated comprehensibility?  Total 
comprehension time was included as a covariate because it 
was highly correlated with P2TT. Whereas FFD and GPT 
both distinguished similes from metaphors, understanding a 
simile typically requires reaching a similar understanding to 
the understanding required for a metaphor. When during 
reading comprehension might this happen? 

LMER models of P2TT for the figurative sentences 
indicated that the relation between P2TT and 
comprehensibility ratings was highly reliable for these two 
forms, t(63.0) = 2.77, p = .007), but did not differ between 
the figurative sentence forms, X2(1) = 0.37, p = .548.  Thus, 
P2TT appears to be similarly related to comprehensibility 
ratings for similes and metaphors, as shown in Figure 4. In 
contrast, LMER models of the comparison statements (i.e., 
similes and literal comparisons analyzed together) failed to 
show reliable relationship between ratings and P2TT, t(39.9) 

= 1.71, p = .095, but also failed to detect reliably different 
effects of ratings for similes and literal comparisons, X2(1) = 
0.36, p = .548. 

To resolve the mixed evidence regarding similes in these 
two analyses, we modeled the effect of ratings on each 
sentence type separately, both with and without the total 
comprehension time as a covariate.  For literal comparisons, 
there was no evidence that P2TT was related to 
comprehensibility ratings either with the covariate included, 
t(64.3) = 0.56, p = .580, or without it, t(59.9) = 0.99, p = 
.327. Conversely, consistent with overall analyses of 
figurative sentences, in individual analyses of each of the 
figurative forms P2TT was similarly, but weakly related to 
comprehensibility when the covariate was included 
(metaphor: t(49.3) = 1.82, p = .075; simile: t(37.5) = 1.94, p 
= .060) and highly reliably related to comprehensibility 
when the covariate was not included in the models 
(metaphor: t(34.4) = 3.13, p = .004; simile: t(58.0) = 2.92, p 
= .005). Recall that the overall relationship of 
comprehensibility and P2TT for figurative items in our 
combined analyses was reliable even with total response 
time included as a covariate (i.e., p = .007, above). A similar 
analysis without the covariate also provided strong evidence 
of an overall relationship, t(52.4) = 2.99, p = .004. 

Does P2TT help to explain overall response time 
differences for figurative items? To test whether P2TT, 
itself, can account for longer overall overt comprehension 
responses, a new analysis of overall response time was 
conducted (for trials displaying RI) with and without P2TT 
as a covariate. Without P2TT included, there was strong 
evidence of a relationship between ratings of 
comprehensibility and comprehension time for these trials, 
t(23.7) = 3.08, p = .005, but when P2TT was included as a 
covariate, no evidence of the relationship between response 
time and comprehensibility remained, t(58.1) = 1.50, p = 
.138. For figurative items, then, it appears that P2TT likely 
represents time used for computing a figurative 
interpretation of the sentence. 
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Figure 4.  Geometric mean second pass total gaze duration (P2TT) by item as a function of rated comprehensibility for 

each sentence form. Only the 1431 trials where regression into the critical word occurred are included. 
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General Discussion 
In Experiment 1, we observed that ratings of 

comprehensibility for vehicles in simile or metaphor form 
were highly correlated. The average figurative ratings from 
Experiment 1 were used in Experiment 2 to try to predict 
gaze variables related to the figurative vehicle during 
reading. We reasoned that the similar comprehensibility 
ratings of similes and metaphors observed in Experiment 1 
reflected similar ease or difficulty with deriving the 
appropriate figurative meaning of the vehicle; we sought 
evidence of when this might unfold during reading. 

Gaze patterns for metaphor vehicles, but not simile 
vehicles, reflected rated figurative comprehensibility from 
the very first fixation. Metaphor vehicles that were judged 
less comprehensible were subjected to longer initial periods 
of analysis. In contrast, similarly-rated similes, did not show 
immediate effects.  For similes, as for literal comparisons, 
initial measures of processing time for their vehicles in 
similes were unrelated to rated comprehensibility. 

But simile processing resembled metaphor processing 
during second-pass reading of the sentence.  Both simile and 
metaphor vehicles showed comprehension-related durations 
of fixation. These second-pass durations were related to the 
rated comprehensibility of the word in the sentence both for 
metaphors and for similes. This pattern was not found for 
literal comparisons. 

The difference between similes and metaphors at first 
fixation might be regarded as reflecting the weaker 
pragmatic assertion involved in declaring that something is 
like something rather than that it is something (Rubio-
Fernández, Geurts & Cummins, 2016). To say that 
something is like something else implies that it is also 
unlike it. In this sense similes are sensibly experienced as 
weaker than metaphors at first pass, even if the ultimate 
interpretation of what is being said about the topic 
ultimately requires accessing a figurative or abstract 
interpretation of the vehicle. 

Overall, these data suggest that similes are initially treated 
similarly to literal comparisons, consistent with the 
arguments of Glucksberg and Haught (2006). However, the 
second pass data and the ratings data both suggest that 
sentence comprehension for simile forms still requires 
identifying a figurative interpretation. We think this 
supports Aristotle’s assertion of the figurative nature of 
simile that is embedded within his longer discussion of 
metaphor. Aristotle (400 BC/1991) wrote “A simile is also a 
metaphor, for there is little difference.” This quote clearly 
implies that metaphor (literally a “carrying-over” of 
meaning) is the larger category.  

Our study has used similes derived from metaphors. The 
data show that reading such similes differs substantially 
from reading their corresponding metaphors. However, the 
data also support the idea that the interpretive demands for 
the figurative vehicle may ultimately be similar in both 
forms. This distinguishes simile from literal comparison.  
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Abstract 

The principal aim of a cognitive model is to infer the process 
by which the human mind acts on some select set of 
environmental inputs such that it produces the observed set of 
behavioral outputs. In this endeavor, one of the central 
requirements is that the input to the model be represented as 
faithfully and accurately as possible. However, this is often 
easier said than done. In the study of recognition memory, for 
instance, words are the environmental input of choice—yet 
because words vary on many different dimensions, and 
because the problem of quantifying this variation has long 
been out of reach, modelers have tended to rely on idealized, 
randomly generated representations of their experimental 
stimuli. In this paper, we introduce new resources from large-
scale text mining that may improve upon this practice, 
illustrating a simple method for deriving feature information 
directly from word pools and lists. 

Keywords: recognition memory; word frequency; word 
length; feature frequency; orthographic similarity; semantic 
similarity; corpus analysis; vector space models 

Introduction 
 In cognitive modeling, there is a close interdependence 
between representation and process. A model consists in both a 
data structure (an abstract representation of environmental 
input), and an algorithm (the process that operates over the 
data to simulate behavior). The choice of structure for the 
underlying data is critical, as it can profoundly influence the 
choice of algorithm. Valid representational assumptions are of 
vital importance, in that they reduce the degrees of freedom 
available to the modeler, thereby constraining model selection. 
 Since the inception of memory research, psychologists have 
relied on verbal stimuli to study learning and forgetting 
(Ebbinghaus, 1885). In episodic and semantic memory, the 
majority of data has been—and is still—generated from 
experiments with word lists, and memory models are routinely 
assessed in terms of their ability to fit data on verbal 
remembering (Monsell, 1991). However, when it comes to 
words, the choice of data structure is complicated by the fact 
that words vary on a remarkable number of lexical and 
semantic dimensions (Baayen, Milin, & Ramscar, 2016), which 
may or may not contribute to how they are learned and 
remembered. Historically, it has been impossible to reliably 
quantify all these points of variation. Memory modelers have 
thus tended to rely on randomly generated representations, 
which have been carefully selected to preserve the relevant 
properties of the data. 
 While this practice has been expedient, it is no longer strictly 
necessary. As large-scale corpora—and the technology to mine 
them—have become widely available (Gilquin & Gries, 2009; 
Halevy, Norvig, & Pereira, 2009; Recchia & Jones, 2009), it 
has become not only possible, but relatively straightforward, to 
construct not merely plausible, but accurate representations of 
the stimuli used in a given experiment (Baayen, 2010). This is 
an important advance, as problems can arise when the selected 

representation does not faithfully reflect the environment. For 
instance, global matching models of episodic memory have 
considerably more difficulty reproducing behavioral data when 
supplied with realistic semantic representations (Johns & Jones, 
2010). Improving the quality of our data structures could thus 
improve the quality of our process models. 
 Further, while the words selected for memory experiments 
are commonly assumed to vary randomly, in line with their 
selection procedure, this may not always be the case. For one, 
certain properties — such as semantic similarity — may be 
systematically skewed, and thus poorly represented by a normal 
distribution (Johns & Jones, 2010). For another, there may be 
accidental variation between the word pools used by different 
research groups (van Heuven et al., 2014), which could 
produce conflicting results. Given renewed interest in 
replicability in the psychological and brain sciences (Open 
Science Collaboration, 2015), providing a more detailed 
account of the stimulus properties that produce a given effect 
should be a principal research aim (Ramscar, 2016). 
 The overarching goal of this paper is to enumerate a simple 
technique for investigating the lexical and semantic 
characteristics of a specific word pool, and to discuss how this 
can be fruitfully applied to the interpretation of empirical 
results in episodic memory. 

Word Frequency 
 Word frequency is a measure of a word’s occurrence in the 
language, and a proxy for an individual subject’s experience 
with that word. Frequency has long been a variable of central 
importance in cognitive models, as it is one of the strongest 
predictors of verbal processing and remembering (Baayen, 
Milin, & Ramscar, 2016; Balota et al., 2007). In some models, 
frequency is treated as a causal variable—e.g., in a model of 
visual word recognition, frequency might function as an 
internal counter, in which each occurrence of an item 
increments its baseline activation upward (Coltheart et al., 
2001). In others models, frequency is treated as an informative 
correlational variable, and items of a given frequency class are 
assigned specific feature values (Shiffrin & Steyvers, 1997).  
 Setting the details aside, virtually all models incorporate 
frequency in one respect or another. Given the significance of 
frequency as an explanatory variable, its accuracy of 
measurement, relation to other lexical and semantic variables, 
and instantiation in cognitive models are all matters of some 
theoretical importance. Yet in spite of this, many researchers 
are still working with outdated measurements and methods, 
which are not being updated as the field advances. One 
particularly remarkable example of this is that the Kučera-
Francis norms (1967), collected fifty years ago, are still widely 
used among psychologists to determine word frequency. This is 
the case even though they have been known for decades to be 
unreliable (particularly for lower frequency words), and are, on 
assessment, consistently the worst performing norms across an 
array of lexical processing tasks (Brysbaert & New, 2009). 
Frequency values collected today are derived from corpora 
orders of magnitude larger. 
 Another source of concern is that word frequency itself is 
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routinely treated as a categorical variable, rather than a 
continuous one, even though dichotomizing a random variable 
can seriously jeopardize reliability (MacCullum et al., 2002; 
Hemmer & Criss, 2013). Further contributing to this problem, 
the standard method for binning words into high and low 
frequency bands fails to take into account the skewed nature of 
the distribution. Indeed, in an analysis of several classic 
studies, high frequency items were found to have considerably 
larger standard deviations than their low frequency 
counterparts, and a sizeable percentage of ‘low’ frequency 
items were shown to fall at, or above, what should have been 
the border between the groups (van Heuven et al. 2014).  
 That influential psychometric tests have been predicated on 
such unreliable measures raises serious questions about their 
validity (Ramscar et al. 2014). Nevertheless, this binary 
division remains common in both experimental design and in 
modeling. 

Word Frequency Effects in Recognition 
 One domain in which it is still commonplace to bin 
experimental items into high (HF) and low frequency (LF) 
bands is recognition memory. Models of recognition offer an 
illustrative test case for why representational assumptions are 
important to cognitive modeling, and how they might be 
refined with simple data mining techniques. To clarify this 
example, we first briefly review recognition memory as an 
experimental paradigm and as a modeling domain. 
 In tests of single item recognition, subjects study a list of 
words, and then at test, are asked to discriminate words 
encountered at study (targets) from non-studied words (foils). 
The difficulty of the task lies in the fact that subjects must 
differentiate between words seen at study and words 
encountered in everyday life—i.e., they must distinguish 
between general familiarity with the test items and familiarity 
that is specific to the recognition task. 
 Global matching models have predominated as explanatory 
models of recognition performance (Hintzman, 1988; Murdock, 
1982; Shiffrin & Steyvers, 1997). These models are premised 
on the idea that item recognition depends not only on the 
characteristics of the item itself, but also on other items present 
concurrently in memory. When a specific item is presented at 
test, the available item and context cues form a joint probe of 
memory. This search process yields a match value between the 
test item and the contents of memory. If this value exceeds 
some threshold, the item is recognized as ‘old’; if it fails to 
meet this criterion, the item is rejected as ‘new’. A grounding 
assumption of global matching models is that studied items will 
have higher match values, on average, than unstudied lures. 
However, item recognition is rarely perfect, and much effort 
has been expended in identifying how interference can arise at 
retrieval. Noise sources are frequently categorized into two 
types: item noise (McClelland & Chappell, 1996; Shiffrin & 
Steyvers, 1997) and context noise (Dennis & Humphreys, 
2010). Item noise arises from spurious feature matches with 
other studied items; context noises arises from interference 
from extra-experimental contexts in which the tested item has 
occurred. 
 Among the findings that global matching models are 
designed to capture, one of the hallmarks is the mirror effect 
for word frequency: This is the finding that when HF and LF 
words are present in equal numbers at study, LF items are 
better recognized at test, garnering both more hits and fewer 
false alarms (Glanzer & Adam, 1985). One way to capture this 
frequency effect is to assign different parameter values to HF 
and LF words, thereby generating different distributions of 
feature values, and hence, of featural similarity between items. 

Such a  representational choice reflects the fact that words are 
comprised of an array of surface and semantic properties that 
are known to vary with frequency, and to affect processing and 
remembering (Landauer & Streeter, 1973; Schulman, 1967).  
 For example, in the Retrieving Effectively from Memory 
(REM) model, the parameter settings generate HF items with 
more common, overlapping features than LF items (Steyvers & 
Shiffrin, 1997). Because these features are less diagnostic, the 
self-match between HF targets and their own memory traces is 
weaker than for LF targets; because they are more common, the 
likelihood of a chance feature match between HF targets and 
HF foils will be greater. This yields the canonical lower hit-rate 
and higher false-alarm rate for HF items. 

Representational Assumptions 
 Global matching models have shown considerable success in 
capturing the relevant empirical data, ranging from word 
frequency effects to differential forgetting (Clark & Gronlund, 
1996). Despite these undisputed successes, there are potential 
drawbacks in how they represent their list items. For one, these 
representations commonly lump together semantic, phonemic, 
and orthographic features into a single, indistinguishable 
feature set, making it impossible to tease apart how each 
dimension contributes to recognition performance. For another, 
representations are randomly generated, rather than empirically 
derived. 

In the influential REM model, for example, a single 
parameter controls the mean and variability of the distribution 
that item features are sampled from (Steyvers & Shiffrin, 
1997). To capture qualitative differences in item similarity 
between word frequency bands, the parameter is adjusted 
separately for high and low frequency items. However, the 
specific parameter settings are unconstrained by the actual 
properties of the stimulus set. Instead, parameters are set either 
by convention or by best fit to the behavioral data.  

Concerns have been raised with this type of practice. In 
particular, such flexibility leaves the resulting models open to 
the criticism that they could be made to fit a wide variety of 
results (Roberts & Pashler, 2000). Conversely, they might 
require significant theoretical adjustments to account for the 
results when supplied with a realistic representation of the list 
items (see Johns & Jones, 2010 for an illustration). Finally, if 
different experiments produce contradictory results, there is no 
straightforward way to trace back these differences to the 
characteristics of the lists.  

The theoretical claims of this class of models could be 
strengthened by deriving the model parameters directly from 
the lexical and semantic characteristics of the experimental 
word pool, or test list. This could be accomplished in a number 
of ways. In the simplest case, the actual feature distribution of 
the stimuli could be used to determine the closest choice of 
parameter settings. Another option would be to generate the 
input representation directly from the stimuli, using either the 
real feature values, or adjusted feature values (which could be 
made more robust by incorporating noise, or various smoothing 
mechanisms; see e.g., Chen & Goodman, 1999). Here, we 
detail a simple procedure for deriving feature information for 
lexical items as a function of their frequency class. 

Corpus Investigation 
 The following investigation was conducted 1) to illustrate 
how various lexical and semantic feature information can be 
derived directly from word pools and recognition lists, 2) to 
examine how these feature values can be expected to vary as a 
function of item frequency, and 3) to assess whether standard 
word pools mimic these differences (and each other). 
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Verbal Properties and Frequency Class 
 In the study of semantic and episodic memory, different 
word pools make use of somewhat different sampling 
procedures and controls. Thus, our first goal was to establish a 
neutral, independent baseline, in which words were sampled 
without any special consideration other than frequency. 

Figure 1: The Zipf scale is a logarithmic scale that divides the 
frequency spectrum into seven discrete classes (van Heuven et al. 
2014). 

Word Frequency Words and their frequencies were extracted 
from the state-of-the-art 51 million word SUBTLEXus corpus 
(Brysbaert & New, 2009). Frequency classes were assigned 
according to the Zipf scale, which is calculated for an 
individual item as log10 (frequency per billion words). The Zipf 
scale has a number of advantages over the typical binary 
division between HF and LF words, namely that it is a 
logarithmic scale reflecting the psychological interpretation of 
frequency, and its divisions are fine-grained, creating seven 
distinct classes rather than  the traditional two (van Heuven et 
al., 2014). For purposes of comparison, a Zipf value of 3 or 
lower corresponds to LF words; 4 or higher to HF words 
(Figure 1). 

Recognition Lists To create recognition lists, 10 items were 
selected at random (without replacement) from a given 
frequency bin. Half of these items were labeled targets, and the 
other half foils, replicating the standard list construction 
procedure. This sampling procedure was repeated until there 
were 1000 such lists for each frequency class.  
 The aim was to compare lists created in each band on four 
dimensions: word length, feature frequency, and orthographic 
and semantic similarity of targets to foils. These particular 
dimensions were chosen to be illustrative, and because they are 
known to be important contributing factors to item recognition. 
For word length and feature frequency, counts were computed 
for each item, and averaged over the entire list. For 
orthographic and semantic similarity, the similarity of each 
target to the distractors present at test was computed, and 
similarly averaged.  
 To preface, these analyses successfully replicate well-
established findings on each of these dimensions, while 
providing a straightforward method for determining the actual 
empirical trends of a given frequency range, or item set. 

Methodology Notably, the comparatively small number of 
types in the higher frequency ranges placed constraints on the 
construction of recognition lists (Figure 2). Specifically, list 
length was necessarily kept small, and while lists were created 
for Zipf values 1-6, 7 was excluded, as it comprised only 13 
distinct word types, all of them function words. 
 This type distribution is a consequence of the universal 
scaling law for word frequencies, commonly known as Zipf’s 
Law (1949). The idea is this: Say, an English text is selected, 
and each of the word types that occur in the text are arranged in 
order of their frequency, from most to least common, and 
assigned a numerical rank. Then, the full contents of the text – 
that is, all of its word tokens – are thrown into a bag, shook, 

and one word is selected at random. Zipf’s Law states that the 
probability of drawing a given word is inversely proportional to 
that word’s rank ordering. The law formalizes the notion that 
while a few words in a language are very common, the greater 
part are exceedingly rare. 

Figure 2: The number of distinct word types in the SUBTLEXus 
corpus for each value of the Zipf scale. 

Word Length Word length, whether computed in terms of 
letters or phonemes, has an inverse relationship with frequency, 
with word lengths tending to increase as frequency declines 
(Piantadosi et al., 2011; Sigurd, Eeg-Olofsson, & Van Weijer, 
2004; Wright, 1979; see Figure 3). 

Figure 3: Average word length of list items increases as frequency 
declines. 

Feature Frequency Feature frequencies represent the 
empirical n-gram frequencies of individual letters and letter 
combinations, and can be conceptualized as a measure of 
orthographic distinctiveness (Figure 4). 
 Feature frequency is known to vary with word frequency. On 
average, rarer words contain both more unusual letters, and 
more unusual combinations of letters (Malmberg et al. 2002; 
Zechmeister, 1969). 

Orthographic similarity Orthographic similarity was 
computed as Levenshtein edit distance, a string metric that 
calculates the minimum number of edits (such as insertions, 
deletions, or substitutions) required to transform one word into 
the other (Figure 5). 

Given that rare words are more orthographically distinctive 
(Landauer & Streeter, 1973; Andrews, 1992), it stands to reason 
that in a recognition list context, they should be less 
orthographically similar to frequency-matched distractors than 
more common words (Hall, 1979). 
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Figure 4: The five panels depict the average feature frequencies of list 
items in SUBTLEXus as a function of their Zipf value. The overall 
trend indicates that higher frequency items are comprised of higher 
frequency features. Moreover, the larger the n-gram, the greater the 
separation between frequency classes. For unigrams, a more 
pronounced pattern of separation between Zipf bands is observable 
when minimum (rather than average) feature frequency is used. 

Figure 5: Average orthographic similarity between targets and 
distractors declines as a function of frequency. 

Semantic similarity Semantic similarity values were obtained 
from word2vec trained on the 300 billion word Google News 
corpus. word2vec is a two-layer neural network that produces 
word embeddings (Mikolov et al., 2013), and is considered 
state of the art in semantic space modeling (Baroni, Dinu, & 
Kruszewski, 2014). word2vec was implemented with gensim, a 
Python framework for vector space modeling (Řehůřek & 
Sojka, 2010), which adopts the continuous skip-gram 
architecture. The skip-gram model weights proximate context 
words more highly than distant ones, yielding better results for 
lower frequency words. 

In a recognition task in which list items are randomly 
sampled from a given frequency band, the semantic similarity 
between targets and distractors should tend to decrease with 
frequency (Figure 6). This outcome is all but assured by the 
distributional properties of the lexicon: In the SUBTLEXus 
corpus, LF words comprise 80% of word tokens (van Heuven 
et al., 2014) and fully 94% of word types (Figure 2). The 

semantic spread from which LF words are sampled will thus be 
far greater than that for HF items. 

Figure 6: Average semantic similarity between targets and distractors 
declines across the HF range of the Zipf scale, implying that a set of 
randomly sampled words will be less semantically similar, on average, 
the lower their frequency class.  

Figure 7: Average semantic similarity between targets and distractors 
across the LF range of the Zipf scale. While a slight (ns) trend in the 
opposite direction is observable in the lower range of the scale, this is 
almost certainly a methodological artifact. If the missing data in Figure 
8 is included as 0-counts, the apparent trend reverses, and the pattern 
resembles that seen in Figure 6. 

In making these calculations, there is an important 
methodological issue to consider—in particular, the problem, 
well-known to linguists, of data sparsity (Sinclair, 1997): 
While any given sample of language will provide ample 
evidence about its common words and phrases, it will provide 
little or none about its rarer, more informative elements 
(Church & Gale, 1995). Not only will many perfectly 
legitimate words (and word co-occurrences) fail to occur in 
even very large swaths of text, but even most of those that do 
will occur only a few times, making their estimation unreliable. 
This is the basic problem of data sparsity and it is one that 
plagues semantic similarity analyses in the lower frequency 
ranges (Figures 7, 8).  

Figure 8: Data loss for the semantic similarity analyses as a function 
of frequency class. Semantic similarity values were not available for 
all the words sampled, and the proportion of words with no data points 
grew as frequency decreased. For Zipf rank 1, fully 25% of data was 
lost. 
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Figures 6 and 7 show the similarity distributions for item 
pairs that were known to our word2vec model. However, given 
the significant data loss for LF items, looking solely at returned 
values constitutes selection bias, as it implies that unobserved 
pairs—for which the model cannot supply a score—likely have 
the same distributional properties as observed pairs. In fact, it is 
reasonable to assume that unobserved pairs are much less 
similar, on average. One way of addressing this issue is to 
assign item pairs with null values a similarity score of 0. When 
these scores are included, the trend observable in the HF range 
(Figure 6) is also clearly observable in the LF range.  

In the absence of knowledge, assigning 0-counts is a useful 
heuristic. However, given that problems with data sparsity 
increase as frequency declines, this solution may 
disproportionately penalize the lowest frequency words. In 
future work, similarity-based smoothing techniques might be 
used to better estimate similarity values for unobserved pairs 
(c.f. Yarlett, 2007). 

Interim Summary Our analyses of words in the SUBTLEXus 
corpus replicates and extends a number of well-known findings 
on the relationship between a word’s frequency and its lexical 
and semantic features, including that: 

1) word length increases as word frequency declines,  
2) feature frequency increases with word frequency, with 
the rate of increase dependent on feature length,  

3) orthographic similarity between targets and foils 
increases with word frequency, 

4) semantic similarity between targets and foils increases 
with word frequency (though the calculation of similarity 
scores for LF item pairs requires careful consideration). 

Available Analyses In the analyses reported here, pure lists 
were created for each frequency class, average feature 
information was extracted, and similarity measures were 
computed as a function of the mean similarity of a target to its 
foils. The purpose of this was largely illustrative; many 
variations on this procedure are possible, depending on the 
requirements of the model, or the empirical task.  
 One obvious choice point is the sampling method. For 
example, word selection could be constrained by specific 
lexical properties (e.g., limited to nouns, or words of length n), 
as is common practice in the design of word pools. Similarly, 
list composition could be varied by sampling specific 
proportions of words from different frequency bands.   
 Another matter of some importance concerns the choice of 
comparisons and statistical measures. Similarity can be 
computed relative to other targets, distractors, or both; it can 
also be calculated as an average, or in terms of “max” 
similarity (e.g., the top 10% of most confusable items). 
Likewise, when assessing the use of rare letters and rare letter 
combinations, it may be more useful to know the minimum 
feature frequency, or the median, rather than the mean.  
 Finally, while we chose to delimit our focus to just a few 
dimensions, there are many more lexical properties that 
systematically vary with frequency. For instance, rare words 
are more likely to be judged as abstract (Galbraith & 
Underwood, 1973; Pavio, Yuille, & Madigan, 1968), to be 
acquired later (Carroll & White, 1973), and to be regular 
(Bybee & Hopper, 2001).  

Word Pools 
 In the study of semantic and episodic memory, different 
word pools make use of somewhat different sampling 
procedures and controls. One concern is that different word 

lists may vary in systematic ways from each other,  producing 
variability in results; another is that they may have distinctly 
different properties from the language ‘at large’. To check the 
validity of these worries, we compared the word pools of two 
representative cognitive memory labs, with an average h-index 
among the principle investigators of 20, and published 
theoretical disagreements. These word pools were compared 
against a recognition word list devised by Dye, Jones, & 
Shiffrin (2017) (Figures 9, 10). 
 The Dye et al. (2017) word list was deliberately constructed 
to increase the semantic and orthographic similarity of LF 
items, as reflected in Figures 9 and 10. In a recognition list 
experiment, this had the predicted effect of diminishing the 
standard mirror effect for word frequency, by bringing the false 
alarm rate for low and high frequency items into line. 

Figure 9: A comparison of average semantic similarity of  targets to 
foils across three word pools. 

 Notably, while the Dye et al. word list clearly differs from 
the two standard word pools, these word pools are not identical 
to each other either. In particular, though both pools are 
similarly distributed in terms of frequency and semantic 
similarity among items, in Word Pool 2, orthographic similarity 
among items is substantially increased compared to Word Pool 
1, and is matched across HF and LF items. This may produce 
differences in reported results, as orthographic similarity is 
known to modulate false alarm rates (Malmberg, Holden, & 
Shiffrin, 2004).  
 Finally, it is worth noting that none of these ‘controlled’ 
word pools reflect the properties expected from random 
sampling, as illustrated in our exploration of the SUBTLEXus 
corpus. In particular, while the distribution of orthographic and 
semantic similarity values for LF and HF items are largely 
overlapping for the standard word pools (Figures 9, 10), a truly 
random selection of these items shows significant separation 
between frequency bands (Figures 5, 6). 

These examples illustrate how the properties of word lists 
can be readily and fruitfully compared both to each other, and 
to larger corpora. In future work, we plan to expand this 
analysis to include more widely used word pools, such as the 
Toronto word pool (Friendly, Franklin, Hoffman, & Rubin, 
1982), a modified version of the Kucera & Francis word pool 
(1967), and a categorized word pool (Murdock, 1976). 
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Figure 10: A comparison of average orthographic similarity of  targets 
to foils across three word pools. 

General Discussion 
While work in text mining and natural language processing 

has considerably refined our understanding of the statistical 
nature of language, not all of these insights have successfully 
crossed over to memory research. This problem is not without 
remedy. In this paper, we have taken seriously the problem of 
furnishing an adequate description of the linguistic 
environment, in keeping with the roboticist Rodney Brook’s 
famous injunction that “the world is its own best model”. 
Analyses such as those reported here are useful in a number of 
different dimensions: they can be employed to deliberately 
control the properties of episodic word lists; they can yield a 
principled means for adjusting model parameter settings to 
reflect the properties of the specific stimulus set; and they may 
be useful in explaining discrepancies in published empirical 
results, aiding replicability. Our broader hope is that integrating 
more realistic representations of verbal stimuli into models of 
episodic memory may inform the design and interpretation of 
experiments and constrain the choice of process model. 
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Notes 
The density plots presented in Figures 3-7 are generated by the 
ggplot2 library in R, and visualize the distribution of items in 
each frequency class over specific dimensions of interest, using 
a kernel smoothing function. 
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Abstract

Considerable behavioral evidence has been cited in support of
the COVIS dual-system model of category learning (Ashby &
Valentin, 2016). The validity of the inferences drawn from
these data critically depend on the accurate identification of
participants’ categorization strategies. In the COVIS literature,
participants’ strategies are identified using a model-based anal-
ysis inspired by General Recognition Theory (Maddox, 1999).
Here, we examine the accuracy of this analysis in a model-
recovery simulation. We find that participants can appear to
be using implicit, procedural strategies when their responses
were actually generated by explicit rule-based strategies. The
implications of this for the COVIS literature are discussed.

Keywords: categorization; COVIS; dual-systems accounts;
model-recovery; GRT

Introduction
Categorization studies rarely examine individual differences.
Rather, researchers look at group performance to draw con-
clusions about the likely underlying mechanisms of category
learning (Kurtz, 2015). For these inferences to be valid, the
participants in each group must all learn in a qualitatively
similar way (Maddox, 1999). Then, relatively little infor-
mation is lost by averaging. However, severe interpretative
difficulties can arise if participants learn in a variety of ways,
as then the average will likely not represent the behaviour of
any single person (Siegler, 1987).

This issue is more than hypothetical, as there is substan-
tial evidence, and a degree of consensus, that different partic-
ipants use qualitatively different strategies in categorization
tasks (e.g., Nosofsky & Zaki, 2002; Raijmakers, Dolan, &
Molenaar, 2001; Wills, Inkster, & Milton, 2015). For exam-
ple, some participants categorise stimuli on the basis of just
one stimulus dimension (as in Figure 1B), or do so initially,
even if optimum performance on the task requires using mul-
tiple stimulus dimensions (as in Figure 1B, where the partici-
pant’s strategy is single-dimensional but the optimal classifi-
cation strategy is diagonal).

COVIS (COmpetition between Verbal and Implicit Sys-
tems; Ashby & Valentin, 2016) is one model that aims to
predict when and why participants use different strategies.

COVIS assumes that categorization is mediated by two, par-
allel, competing systems: an Explicit System and a Proce-
dural System. The Explicit System is assumed to implement
rule-based strategies (such as in Figure 1B). Therefore, CO-
VIS predicts this system will optimally learn category struc-
tures that are implementations of simple rules (such as in
Figure 1A). If rule-based strategies result in poor accuracy—
because the category structure is not rule-based and thus diffi-
cult to verbalise—COVIS predicts the Procedural System will
gain control of responding. As the Procedural System is pre-
dicted to implement a variety of strategies (including the one
demonstrated in Figure 1A), it is capable of implementing the
optimum strategy for information-integration category struc-
tures (the structure, but not the strategy, shown in Figure 1B).

Typical COVIS-supporting experiments look for a differ-
ential effect of an experimental manipulation (e.g. feed-
back timing) on rule-based and information-integration cat-
egory structure learning (for a review, see Ashby & Valentin,
2016). The category structure manipulation is hoped to elicit
a switch in the learning system controlling responding: be-
cause participants are learning a rule-based or information-
integration category structure they will use the appropriate
strategy and so be using the Explicit or Procedural System,
respectively. If the experimental manipulation affects one
category structure condition more than the other, the exper-
imenter infers that it affects the accuracy of one system more
than the other, thereby providing evidence for a dual-system
model of category learning.

For these experiments, the presence of subsets of
qualitatively-different participants can be particularly prob-
lematic. Critically, the conclusion that the experiment sup-
ports a dual-system model depends on the assumption that
the participants in each category structure condition used the
most appropriate system to learn those structures. In other
words, that participants used the Explicit System to learn the
rule-based category structure, and the Procedural System to
learn the information-integration category structure. If this
is not the case, any differences in overall accuracy between
category structure conditions might be due to varying rates of
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Figure 1: Two example strategies implemented on two category structures: A) a unidimensional category structure with a
diagonal (GLC) strategy applied, B) an information-integration category structure with a unidimensional rule applied. Category
structure: dots represent Category A, and squares Category B. Responses: Filled symbols indicate a participant responded “A”,
open symbols indicate they responded “B”.

sub-optimum strategies between conditions, rather than to the
existence of two category learning systems.

To illustrate this point, consider an experiment that exam-
ined the effect of deferring feedback and found it caused a
reduction in performance by 10% for a particular category
structure (such as in Smith et al., 2014). In the ideal case, all
participants classifying a particular category structure would
be using the same optimum strategy and all those in the rel-
evant condition would be similarly affected by the manipu-
lation; participants with deferred feedback would score 10%
less than those with immediate feedback. Here, we could use
standard group-accuracy analyses validly. However, if some
participants were using other, sub-optimum strategies then
drawing conclusions from the experiment is harder. One pos-
sibility is that the manipulation, within a given category struc-
ture, changes the relative proportions of different strategies
used in each condition (feedback type). This would change
average accuracy because, given a particular category struc-
ture, the highest accuracy for each strategy varies. A sec-
ond possibility is the manipulation has a differential effect
depending on the strategy type being used. For example, the
manipulation could have had no effect on people using the
optimum strategy, but could severely affect performance re-
liant on sub-optimum strategies (see Schnyer et al., 2009, for
a similar argument).

To avoid the possibility that any dissociation in accuracy
is due to the effects of sub-optimum strategies rather than

two competing systems, COVIS-supporting experiments use
a strategy analysis informed by General Recognition Theory
(GRT; Ashby & Gott, 1988). This analysis is used as a ma-
nipulation check to determine which strategy each participant
is using. This approach (hereafter, GRT analysis) assumes
that strategies can be modeled by a (usually linear) decision
bound that passes through stimulus space (such as those in
Figure 1). For each participant, a variety of strategy models
are fitted to their responses. The one that best represents that
participant’s pattern of responding is selected. Then, each
participant’s strategy is compared to the category structure
they were assigned to learn. If enough participants are found
to be using the optimum strategy for the category structure
they were assigned, then the category structure manipulation
is assumed to have elicited a corresponding shift in category
learning system. Under this assumption, any dissociations in
accuracy can be validly ascribed to the existence of two sys-
tems.

Using GRT analysis as a manipulation check is logically
valid if and only if GRT analysis consistently and accurately
identifies participants’ strategies. In other words, GRT anal-
ysis must be able to correctly identify strategies under a va-
riety of circumstances such as differing category structures,
experimental manipulations and levels of noise. Unfortu-
nately, recent evidence from our lab suggests that GRT anal-
ysis does not accurately recover the strategies participants
use for information-integration category structures. For in-
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stance, Edmunds, Milton, and Wills (2015) extended an ex-
periment by Ashby, Maddox, and Bohil (2002) looking at
feedback type by asking the participants to verbally describe
their strategies. A substantial number of responders classified
as using the Procedural System on the basis of GRT analy-
sis nevertheless reported using an explicit rule-based strategy
(which have been predictive of behaviour in other procedures;
Wills, Milton, Longmore, Hester, & Robinson, 2013).

One possible explanation for this contradiction is that par-
ticipants did not accurately report their strategies. Two pieces
of evidence speak against this interpretation. First, verbal re-
ports successfully predict participants’ performance in other
tasks (Lagnado, Newell, Kahan, & Shanks, 2006). Second,
Carpenter, Wills, Benattayallah, and Milton (2016) found
more frontal and medial temporal lobe activation for partic-
ipants learning an information-integration category structure
than for participants learning a rule-based structure. These
brain regions are typically associated with explicit process-
ing (Nomura et al., 2007), implying that classification of an
information-integration category structure is at least as ex-
plicit in their study as classification of a rule-based structure.

A more interesting explanation for the disparity in strate-
gies found by Edmunds et al. (2015) is that the GRT analysis
is wrong. For example, because GRT analysis normally uses
just the training stimuli rather than a broad range of trans-
fer stimuli, perhaps it is biased towards the optimal strat-
egy for each category structure? Work by Donkin et al.
(2015) provides some support for this conjecture. Specifi-
cally, Donkin et al. found that including transfer stimuli from
across the stimulus space reduced the proportion of partici-
pants classified as using the optimal (diagonal) strategy for
an information-integration category structure.

The possibility that GRT analysis does not accurately
recover the strategies participants use makes determining
whether category learning is mediated by two learning sys-
tems more difficult. Consider an experiment that found
that feedback delay harmed information-integration category
learning but had no effect on unidimensional rule-based cate-
gory learning. Furthermore, suppose that GRT analysis found
that all the participants used the optimum strategy for the cat-
egory structure they were presented with. If GRT analysis
were accurate, we might conclude that the source of this inter-
action was the presence of two different systems. However, if
GRT analysis was inaccurate this inference would not be the
only one we could make. For example, if GRT analysis, in
the information-integration conditions, falsely identified an
explicit conjunction rule strategy as a diagonal (procedural)
strategy, an alternative account might be that feedback delay
impacts learning once participants are using sufficiently com-
plex rules. This would be consistent with a single-system ac-
count and would potentially cast doubt on all of the COVIS-
supporting studies that used this method.

However, a limitation of all work to date is that one
can never be sure whether GRT analysis contains significant
flaws, because one does not know which strategy participants

were actually using. When employing data from real partic-
ipants, all we have are multiple forms of assessment of their
strategy (GRT analysis, verbal reports, brain activations etc.),
all of which provide indirect and potentially flawed informa-
tion. Using one measure to assess the quality of the others
includes the circularity of assuming one of the measures is
correct. In the current article, we use a model-recovery ap-
proach to break out of this loop.

Model recovery involves simulating hypothetical partici-
pants’ responses according to the strategy models defined by
the strategy analysis. By simulating responses we circumvent
many of the problems with Donkin et al. (2015) and Edmunds
et al. (2015), as now we know exactly which model each (sim-
ulated) participant is using. From these hypothetical, sim-
ulated participants we can then use GRT analysis to identify
the strategies from the responses to see whether GRT analysis
is capable of recovering the correct generating model. This
model-recovery procedure is recommended as best practice
for any cognitive modeling analyses (Heathcote, Brown, &
Wagenmakers, 2014) but has yet to be done for GRT analy-
sis.

Simulation of Smith et al. (2014)
Below, we use model-recovery techniques to demonstrate that
current GRT analyses misidentify participants’ strategies in
the context of levels of performance accuracy reported in pub-
lished work. Further, we demonstrate that it is possible for all
participants to be using rule-based strategies but to still find
a) an interaction between an experimental manipulation and
category structure, and b) that the majority of participants are
(incorrectly) identified by GRT analysis as using the optimum
strategy for each category structure.

The experiment we chose for this demonstration is by
Smith et al. (2014); a recent, representative example of empir-
ical work within the COVIS framework (Ashby & Valentin,
2016). This experiment investigated the effect of defer-
ring feedback on category learning. Participants were ran-
domly assigned to learn either a rule-based or information-
integration category structure (as in Figure 1) with one of two
possible reinforcement schedules. In the immediate feedback
condition, on each trial participants were shown a stimulus,
then made their response and were immediately given correc-
tive feedback for that trial. In the deferred feedback condi-
tion, the stimuli were shown in groups of six. The participants
made responses for all six stimuli but only received correc-
tive feedback at the end of the block. Smith et al. found that
learning of the rule-based category structure was unaffected
by this change in feedback timing, whereas learning of the
information-integration category structure was “eliminated”
(p. 454) with deferred feedback.

As well as being representative of the majority of COVIS
experiments (Ashby & Valentin, 2016), the work reported in
Smith et al. (2014) is interesting to simulate as it is represen-
tative of the direction that the role of GRT analysis is begin-
ning to take in newer COVIS experiments (see also, Smith
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et al., 2015). In these newer studies, the authors move away
from using the GRT analysis to ensure that participants were
using the optimum strategy, and therefore category learning
system, in each condition. Instead, they use the GRT analysis
to determine the strategies that participants use in order to dis-
cern whether deferring feedback alters the strategies partici-
pants use in “a theoretically meaningful way” (p. 452). Smith
et al. (2014) conclude that deferred feedback pushed par-
ticipants in the information-integration condition away from
classification via the Procedural system towards classification
via the Explicit system. These conclusions would of course
be substantially undermined if their GRT analysis failed to
correctly identify the strategies participants used.

The possibility of a misidentification of participant strate-
gies would also open the way for an alternative, single-
system, account of their results. As previously discussed,
verbal report data from Edmunds et al. (2015), and neu-
roscience evidence from Carpenter et al. (2016), indicate
that participants sometimes learn information-integration cat-
egory structures using complex, verbalisable rules—despite
the GRT analysis pointing towards procedural (GLC) strate-
gies in these cases. Perhaps this is also happening in Smith
et al. (2014)? Specifically, we hypothesize that the major-
ity of participants in the immediate information-integration
category structure condition of Smith et al. are using a con-
junction or another two-dimensional rule-based strategy, but
this is mis-identified as an implicit (GLC) strategy by Smith
et al.’s GRT analysis. The possibility of this kind of mis-
identification seems particularly acute in this study because
those authors did not include a conjunction rule (or any other
complex rule) in the set of models for their GRT analysis. Re-
search by Donkin et al. (2015) suggests that failing to include
complex rules in a GRT analysis increases the proportion of
participants that are identified as procedural (GLC) respon-
ders.

Method
To see whether it was possible that all the participants in
Smith et al. (2014) were using rule-based strategies, we first
generated a set of hypothetical participants. These partic-
ipants’ responses were generated from unidimensional and
conjunction strategy GRT generating models that best fit ei-
ther the unidimensional or information-integration category
structures used by Smith et al. The unidimensional models
where straight lines that passed perpendicularly through ei-
ther the x-axis or the y-axis. Stimuli that lay on one side of
the line were assigned “Category A” and those on the other
“Category B.” The conjunction models consisted of two lines
perpendicular to each other that partitioned off a quarter of
the space. The stimuli in that quarter were assigned “Cate-
gory A” and those outside “Category B.”

We then added various levels of noise to these hypothet-
ical participants and calculated their accuracy. Twenty par-
ticipants were generated for each level of noise, category
structure and generating strategy. Then we performed the
GRT analysis, which included three model types: unidi-
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Figure 2: Simulation of Smith et al. (2014); bars are empiri-
cal data; plot points are the simulation. Smith did not report
standard deviation.

mensional, diagonal (GLC) and random models (Maddox &
Ashby, 1993). Note that although some simulated partici-
pants’ responses were generated by a conjunction strategy,
this strategy type was not included in the GRT analysis. This
was to keep the GRT analysis as similar as possible to the
one conducted by Smith et al. (2014). We then selected 21
simulated participants (i.e. the same N as Smith et al., 2014)
for each condition such that, as far as was possible, they had
a) the same average accuracy as that reported by Smith et al.
(p. 451, their paper; Figure 2, current paper), b) the same
number of “strong learners” (p. 541, their paper), and c) were
identified by GRT analysis as using the same distribution of
strategy types reported by Smith et al. (p. 452-453, their pa-
per; Table 1, this paper).

Results
In addition to the simulated participants having the same
average accuracy (see Figure 2) and same distribution of
GRT-recovered strategies (see Table 1) as the real partici-
pants in Smith et al. (2014), it was also possible to repli-
cate Smith et al.’s statistical tests. For the simulated partici-
pants, the critical interaction between category structure and
task was significant, F(1,80) = 10.64, p = .002. Further-
more, as in Smith et al. (2014), performance in the two rule-
based conditions were statistically indistinguishable, t(40) =
0.44, p = .663, as was the comparison between the unidi-
mensional and information-integration immediate conditions,
t(40) = 1.22, p = .228. Whereas, the difference between the
two information-integration category structure conditions did
reach significance, t(40) = 4.98, p < .001

Table 1 shows that it is possible to generate the statisti-
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cal pattern and strategy model results reported in Smith et al.
(2014), without resorting to a second Procedural System. In-
stead, all the so-called implicit responders found by Smith
et al. (2014) could have been using rule-based strategies that
were misidentified by the GRT analysis.

Table 1: GRT analysis of simulated participants for Smith et
al. (2014). Counts in bold are from real participants, as re-
ported by Smith et al. (2014), and are also the simulation
results (the simulation exactly reproduces the observed dis-
tribution of recovered models). Remaining counts show how
the two groups of generating models used in this simulation
(UD and CJ) were recovered by the GRT analysis. So, for ex-
ample, of the 18 UD generating models used in the UD-Imm
condition, 13 were correctly recovered as UD.

Recovered strategies
UDx UDy GLC RND

UD-Imm. 13 1 1 6
Gen. model: UD 13 1 1 3
Gen. model: CJ 0 0 0 3

UD-Def. 15 2 0 4
Gen. model: UD 15 2 0 2
Gen. model: CJ 0 0 0 2

II-Imm. 0 3 16 2
Gen. model: UD 0 3 0 1
Gen. model: CJ 0 0 16 1

II-Def. 2 13 3 3
Gen. model: UD 2 4 0 0
Gen. model: CJ 0 9 3 3

Strategies: UDx = Unidimensional based on the x-dimension, UDy = Unidimen-
sional based on the y-dimension, GLC = General linear classifier, RND = Ran-
dom.

General Discussion
The influential COVIS model of category learning is sup-
ported by a great deal of behavioural data (Ashby & Valentin,
2016). Predominantly, this evidence comes from a single ex-
perimental methodology which examines the effect of a factor
on rule-based and information-integration category learning.
COVIS predicts that its two systems can implement different
strategy types, and so each will learn one of these category
structures better than the other. Critically, the validity of the
inferences from this paradigm hangs on correctly identify-
ing the strategy each individual used to complete the learning
task. This is because the experiments investigating COVIS
cannot directly control which system participants use to re-
spond. Instead, they manipulate the category structures and
hope that this encourages participants to use the optimum sys-
tem, and thus the correct strategy, for that category structure.
Of course, participants may continue to use the sub-optimum
system for a particular category structure. Thus, identifying
the strategies participants use is crucial: if the participants are
using the correct strategy for that category structure, then the
experimenters assume that they must also be using the cor-

rect learning system for that structure. Then, any differential
effects of a manipulation on each category structure can be at-
tributed to the existence of two systems of category learning,
not differing numbers of sub-optimal responders.

Despite its importance for the COVIS model, there is ex-
perimental (Edmunds et al., 2015) and modeling (Donkin et
al., 2015) evidence to suggest that GRT analysis may be bi-
ased towards concluding that participants were using the opti-
mum strategy for the category structure. To explore this pos-
sibility, we simulated an experiment by Smith et al. (2014)
and showed that it was possible to reproduce their means,
inferential statistics and strategy analysis using only partic-
ipants who used rule-based strategies. Simulated participants
classified the information-integration category structure using
a conjunction rule, but were recovered by the strategy analy-
sis as using a diagonal (GLC) strategy. This raises the possi-
bility that participants in Smith et al. were, correspondingly,
using rule-based strategies in classifying the information-
integration category structure. In other words, Smith et al.
cannot be construed as clear evidence for dual-system ac-
counts of category learning, as a single-system (rule-based)
account also fits all the data (accuracy and GRT analysis) they
presented.

Implications for the COVIS model

The reported simulation demonstrates an inferential weak-
ness in experiments argued to support COVIS: GRT analy-
sis is not accurate enough to act as a manipulation check. It
cannot determine whether manipulating the category struc-
ture successfully elicited a corresponding switch in the cate-
gorisation system underlying participants’ responses. Conse-
quently, it is difficult to judge whether a particular COVIS-
supporting dissociation is due to the existence of two dis-
tinct learning systems, or rather due to participants using
different explicit strategies to learn each category structure.
This increases uncertainty over conclusions of a swathe of
COVIS-supporting studies that rely on comparing rule-based
and information-integration category structures (see Ashby &
Valentin, 2016, for a partial list).

In relation to the experimental work by Edmunds et al.
(2015), and Edmunds, Wills, and Milton (2016), this sim-
ulation also strengthens the evidence that participants can
correctly report their categorisation strategies. In those ex-
periments, participants learning information-integration cat-
egory structures consistently reported using complex, rule-
based strategies. In contrast, the GRT analysis identified these
participants as using the correct (i.e. diagonal) strategy. In the
above simulation, it was shown that participants using a con-
junction rule were likely to be misidentified in GRT analysis
as using a diagonal (GLC) strategy. Therefore, it seems plau-
sible that all participants learn information-integration cate-
gory structures explicitly, using rule-based approaches, but
GRT analysis misidentifies some of these as using an implicit
(GLC) strategy.
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Conclusions

The simulation reported above indicates that drawing conclu-
sions from GRT analysis is risky. This has a knock on effect
on the COVIS-supporting studies that rely on this analysis as
a manipulation check. More investigations need to be done to
understand which strategies participants use and how they are
affected by the category structure being learned before we can
be sure that experimental dissociations in this literature sup-
port a dual-system model of categorization. In other words,
we advocate closer attention to due process in the evaluation
of dual-system (and single-system) models.
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Abstract

Past studies reported that language-specific color focality has
substantial influence on the short-term memory (STM) perfor-
mance of colors of the speakers of the language, which we call
the ”focality effect.” This study attempts to clarify the contin-
uous pattern of this effect, that is, the manner in which correct
recognition possibilities and misrecognition error distances of
colors, which are two aspects of the STM performance for col-
ors, change in a gradual fashion along the continuum of color
focality. Our experiment, which tests the Japanese language,
finds that a U-shaped relationship exists between the focality
and the possibility of correct recognition, and that the mis-
recognition error distance increases as the focality decreases.
We speculate that the subjects’ frequent and conscious employ-
ment of the memorization strategy of coding colors using lin-
guistic categories is one important cause of the detected effect
patterns.
Keywords: color focality; short-term memory; continuous
pattern; color discriminability; basic color terms

Introduction
While color sensation changes gradually along the perceptual
dimensions of hue, lightness, and chroma (Munsell, 1919),
in languages, this is conceptualized into a series of cate-
gories. Every language contains a set of basic color terms
in its lexicon, such as black, white, red, green, blue, yellow,
brown, gray, orange, pink, and purple in the English language
(Berlin & Kay, 1991). The categories signified by the basic
color terms (called ”basic color categories” for short) are nat-
ural categories that have their inner structures formed around
their prototypes. This means that within a basic color cate-
gory, the member colors differ in their focality, namely their
”closeness” to the prototype, or in other words, their good-
ness as a typical example of the category (Rosch, 1973).

In this case study, which tests the Japanese language,
we aim to experimentally evaluate the universality of the
phenomenon that language-specific color focality influences
short-term memory (STM) for colors of the speakers of the
language, which we call the ”focality effect.” More impor-
tant, we attempt to clarify the continuous pattern of this effect
if its existence turns out to be supported in our experiment.

The focality effect first appears in the English language
in Heider (1972). In her experiment, Heider used a simpli-
fied version of the color array that Berlin and Kay (1991)
used. The array was composed of 160 Munsell color chips,
24 of which were selected as test chips. Eight of these chips
were focal colors, that is, the colors of the highest focality for

each of the eight chromatic basic color categories that were
shared by numerous languages but generally corresponded to
the English categories Red, Green, Yellow, Blue, Brown, Pur-
ple, Pink, and Orange (Roberson, Davies, & Davidoff, 2000;
Roberson, J. Davidoff, & Shapiro, 2005). The other 16 chips
were of lower focality for these categories, and thus were
classified as nonfocal colors. The selection and categorization
of the test chips were based on the color-naming data gathered
by Berlin and Kay (1991). In each trial in Heider’s experi-
ment, a subject was required to watch a color chip for 5 s and
then search for it in the color array after a 30-s interval, where
the chip was hidden from the subject. For either stimulus
type, two indexes of STM performance were measured. The
first index was the ”memory accuracy score (MAS),” which
was defined as the mean number of correct recognitions for
this stimulus type across the subjects. The second index was
the ”error distance score (EDS),” which measured the mean
error distance across the incorrect trials of this stimulus type.
The English-speaking subjects showed superior performance
for both measures of the focal colors relative to the nonfocal
ones. Roberson et al. (2000) employed the same experimental
paradigm and stimuli. Regarding the English-speaking sub-
jects, a focality effect similar to that reported by Heider was
detected in terms of MAS. However, no focality effect was
found in terms of EDS. Roberson et al. (2005), which also
used this experimental paradigm and stimuli, found that the
mean d’ score (a modified version of MAS) of the test chips
that were focal only in Himba (a language mainly spoken in
Southern Africa) were significantly higher than that of the test
chips that were focal only in English. This effect was also de-
tected in the language of Berinmo, which is mainly spoken in
Papua New Guinea. The index of EDS was not used in this
study.

Overall, these studies have provided some evidence for the
universal existence of the focality effect across languages in
terms of MAS. On the other hand, no robust focality effect
has been observed in terms of EDS. More empirical evidence
is necessary to test whether the focality effect exists for these
two STM performance measures. Because no Asian language
has been studied in this field, we regard the Japanese language
to be suitable as our target language. Furthermore, in these
studies, color focality was treated as a categorical variable
with only two values: ”focal” and ”nonfocal.” This precluded
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any elaborate descriptions of the focality effect. Therefore,
in this study, we quantified the concept of color focality in a
continuous fashion and delved into the continuous pattern of
the focality effect, that is, how STM performance for colors
changes gradually along the continuum of color focality.

Experimental Settings
Participants, Materials and Environment
Twenty-two subjects (11 males and 11 females of ages M =
31.45 and SD = 14.34, all native Japanese speakers with no
color-related art experience), who are either undergraduate
or graduate students at Waseda University, took part in the
experiment. They all passed the Ishihara Color Vision Test
(38 plates, International Edition), and no one reported having
color vision deficiencies. Hence, these subjects were consid-
ered to have normal color vision.

A color array of Heider (1972)’s design was used. Its lay-
out is shown in Figure 1. This array was made of cardboard
(58.5 cm * 28.5 cm), and had color chips embedded in its
white surface. Thirty colors (called ”test colors” for short)
were tested in the formal trials of Session 1. These colors
were mounted on the white surface of a 5.0 cm * 5.0 cm piece
of cardboard when being presented to the subjects. Chips in
the Munsell Book of Color (Glossy Edition) were used.

Figure 1: Layout of color array.

The experiment was performed indoors with fluorescent
lighting (type: National FHF 32EX-N-H, daylight color,
color temperature: 5000 K). The experimenter and subject
being tested sat opposite each other at a table. The distance
between the stimuli and the subject’s eyes was controlled at
50 cm. A cardboard separating the two persons was erected
along the middle of the table, making the subject unable to
see the experimenter’s face when observing the stimuli, wait-
ing during the 30-s interval, and filling out the answer sheets.

Procedure
The entire experiment, which was carried out in Japanese,
consisted of two sessions.

Session 1, which used a procedure similar to that used by
Heider (1972), aimed to measure the subjects’ STM perfor-
mance for the test colors. This consisted of 33 trials. In each
trial, a test color was presented to the subject for 5 s and then

retrieved by the experimenter. After a 30-s interval, the color
array was presented to the subject, and the subject was asked
to report which color in the array he/she thought was the pre-
viously presented one by writing the coordinates of the color
on an answer sheet. There was no conversation between the
experimenter and the subject. Each test color was tested at
least once with each subject, and for each subject, the order
of color testing was randomly determined. Thus, for each
subject, there were three repeated trials, which were intended
to prevent the subject from using a strategy of excluding the
already tested colors. Before the formal experiment began,
a two-trial training session using a different set of test colors
was conducted. For each subject, the colors tested during the
training were randomly selected.

After all 33 formal trials were completed, a questionnaire
was given to the subject. This questionnaire asked the sub-
ject to report freely on the strategies that he/she adopted to
memorize the test colors during this session.

Session 2 was targeted to elicit the coverage of six ba-
sic color categories corresponding to the six Japanese ba-
sic color terms akairo (red), pinkuiro (pink), kiiro (yellow),
orenjiiro (orange), chairo (brown), and murasakiiro (purple)
(Uchikawa & Boynton, 1987). Then, the focality of each test
color was quantified using a modified version of Berlin and
Kay (1991)’s method. First, the subject was required to write
on six answer sheets (one for each basic color term) all colors
that he/she thought could be named by the term. The answer
sheets were provided to each subject in random order. Next,
the subject was asked to report the colors they thought were
the best examples of each of the six basic color terms. This
was accomplished by writing the coordinates of the colors
on an answer sheet. Multiple answers were allowed for each
term, but the subject was instructed to narrow his/her selec-
tions as much as possible.

Statistical Analysis and Results
Variable Definitions
Focality Score We used the data obtained from Session 2
to specify the coverages of the six basic color categories over
the array, and quantified the focality of the test colors. We
first computed the six attributes for each test color: Red In-
dex, Pink Index, Yellow Index, Orange Index, Brown Index,
and Purple Index. These attributes measured the intersubject
naming consistency of the color in terms of each basic color
term. The Red Index was defined as the percentage of sub-
jects who named the color as red, and the other five indexes
were similarly defined. Then, we designated the Overall In-
dex (OI) of a color as the largest of the six single-term-based
indexes of the color. We classified a color into the color cate-
gory Red if its OI was its Red Index, the color category Pink
if its OI was its Pink Index, and so forth. Figure 2 shows
the distribution of the nonzero OIs and the partition of the six
basic color categories.

For each basic color category, most of the colors having the
largest OIs were also frequently selected as the best examples
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during the second part of Session 2. Thus, it is reasonable to
deem the OI of a color as reflecting the appropriateness of the
color as a typical example of the category to which the color
belongs. In this manner, we defined the focality score (FS) of
a color as its OI value.

Figure 2: Distribution of Overall Indexes of test colors (col-
ors within area covered by thin diagonal stripes) and other
relevant colors, and partition of the six basic color categories.
Color depth represents Overall Index magnitude. [*: Orange
Index = Brown Index]

Discriminability Score We defined the discriminability
score (DS) of a test color on the color array as the average of
the color differences between the test color and its eight adja-
cent colors. In this study, a color difference was defined as a
Euclidean distance in the CIE L*a*b* color space. Thus, be-
fore calculating color differences, we transformed the Mun-
sell coordinates of all relevant colors into CIE xyY coordi-
nates using the O.S.A.-developed conversion tables (Newhall,
Nickerson, & Judd, 1943), then XYZ coordinates, and finally
the L*a*b* coordinates. In the final transformation step, the
parameter values of the CIE D50 standard illuminant, which
resembled the light source used in this experiment, were used.

STM Performance Index 1: Memory Accuracy Score
We adopted MAS as one index of STM performance. It mea-
sures the probability for which a color can be accurately rec-
ognized. Since FS is continuous in our study, it is necessary
to take MAS also as continuous. We defined the MAS of a
test color as the percentage of the trials where the subjects
correctly recognized the color.

STM Performance Index 2: Error Distance Score The
EDS is adopted as another index of STM performance. EDS
measures the expected error extent in the case of misrecog-
nition. As in Heider (1972)’s and Roberson et al. (2000)’s
studies, the EDS for a test color is defined as the mean of the
color differences between the test color and the colors mis-
taken for the test color in the incorrect recognition trials.

The Relationship Between FS and MAS

In order to determine the continuous pattern of the relation-
ship between FS and MAS, we first conducted regression
analyses on the FS data and the original MAS data of the

test colors to obtain a general impression of the relationship
pattern. No statistically significant linear relationship could
be detected (R2 = 0.066, P = 0.171 [BFS = 0.152, P = 0.171]),
but a significant quadratic relationship was found (R2 = 0.237,
P = 0.026 [BFS = -1.064, P = 0.045; BFS∗FS = 1.073, P =
0.021]).

Brown and Lenneberg (1954) found that color discrim-
inability could facilitate STM performance for colors, which
we call the ”discriminability effect.” Later, Heider (1972) and
Lucy and Shweder (1979) pointed out that because the col-
ors in the color array were unequal in discriminability, it was
possible that it was color discriminability, not color focal-
ity, that caused the detected variance in STM performance
for colors. This possible source of distortion was checked
by using the following procedure. First, we looked into the
relationship between DS and MAS. A significant positive lin-
ear regression model could be established between these two
variables (R2 = 0.353, P = 0.001 [BDS = 0.024, P = 0.001]).
Then, regression analyses investigating the relationship be-
tween FS and DS were conducted. These analyses produced
neither a significant linear model (R2 = 0.014, P = 0.534 [BFS
= 1.710, P = 0.534]) nor a significant quadratic one (R2 =
0.029, P = 0.675 [BFS = -7.032, P = 0.618; BFS∗FS = 7.712, P
= 0.527]). Nevertheless, we noticed that a slight U-shaped re-
lationship could be recognized when we scrutinized the scat-
ter plot. This means that the possibility that DS mediated the
FS-to-MAS relationship could not be ruled out. Hence, we
conducted partial linear and quadratic regressions on FS and
MAS while excluding the influence of DS on MAS. No sig-
nificant linear relationship was found (R2 = 0.054, P = 0.217
[BFS = 0.111, P = 0.217]), but a significant quadratic one was
detected (R2 = 0.233, P = 0.028 [BFS = -0.893, P = 0.037;
BFS∗FS = 0.885, P = 0.018]. This is plotted in Figure 3A).
This is similar to the results of the initial regressions, and in-
dicates that a significant quadratic relationship exits between
FS and MAS even if DS has been treated as a control variable.

Figure 3: (A)Relationship between Focality Score and Mem-
ory Accuracy Score (corrected);(B)Relationship between Fo-
cality Score and Error Distance Score (corrected) in the gen-
eral case, with a data point unexplained by the regression
model depicted by a magenta-colored rhombus.
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The Relationship Between FS and EDS
The continuous pattern of the relationship between FS and
EDS was investigated in the following manner. First, to ob-
tain a preliminary impression of what the relationship pat-
tern looks like, we carried out linear and quadratic regres-
sion analyses on the FS data and the original EDS data. Only
the quadratic model reached statistical significance (quadratic
model: R2 = 0.250, P = 0.027 [BFS = -30.113, P = 0.019;
BFS∗FS = 22.376, P = 0.041]; linear model: R2 = 0.110, P
= 0.084 [BFS = -4.694, P = 0.084]). Then, a positive linear
relationship was found between DS and EDS through a re-
gression analysis (R2 = 0.299, P = 0.003 [BDS = 0.692, P =
0.003]). In order to remove the distorting influence of the dis-
criminability effect (as in the case of MAS), the regressions
on the FS and EDS data were repeated but with the impact
of DS on EDS partialed out. A significant quadratic model
appeared (R2 = 0.221, P = 0.044 [BFS = -22.166, P = 0.041;
BFS∗FS = 15.895, P = 0.085]), but not a linear one (R2 = 0.121,
P = 0.070 [BFS = -4.110, P = 0.070]). This resembles the re-
sults of the initial regressions.

Nevertheless, there exists a test color that appears to be iso-
lated from the cluster of other high-FS test colors at the EDS
coordinates. Owing to the employment of the least squares
method, this data point could have exerted a disproportion-
ately strong influence on the relationship pattern. In order to
determine what pattern the relationship actually takes in the
general case, we reran the regressions on the corrected dataset
but did not include this data point. This time we obtained a
linear relationship (R2 = 0.236, P = 0.010 [BFS = -5.669, P =
0.010], which is plotted in Figure 3B), instead of a quadratic
one. (When adding FS*FS to the regression as a predictive
variable, neither BFS nor BFS∗FS achieved significance, al-
though the model remained significant). The removed color
is 5YR 4/8. It was mistaken as the color one-unit above it
(5YR 5/12) in all its misrecognition cases. This misrecogni-
tion pattern is difficult to explain by the strategy of linguistic
categorical color coding which will be discussed later. We
thus conjecture that it might result from other memorization
strategies, which needs further exploration.

Memorization Strategies
In the questionnaire conducted at the end of Session 1, the
subjects reported a total of six memorization strategies. For
each strategy, Table 1 offers a brief description and shows
how many subjects reported it.

General Discussion
The Continuous Patterns of the Focality Effect
Our experimental results demonstrated that in the Japanese
language, color focality can affect STM performance for col-
ors in a statistically significant way in terms of both cor-
rect recognition possibility and misrecognition error distance.
With regard to the continuous patterns of the focality effect, a
significant U-shaped quadratic regression function can be es-
tablished between FS and MAS, which implies that STM per-

Table 1: Memorization Strategies Reported by Subjects in
Questionnaire.

Number of Reports Brief Description
16 Use basic color concepts as refer-

ence points, and then fine-tune along
the dimensions of lightness and/or
saturation

14 Associate the test color with the
color of a familiar object, e.g., the
banner of Waseda University, a Bor-
deaux wine, or lipstick, and then
fine-tune along the dimensions of
lightness and/or saturation

3 Directly memorize the visual image
of the test color

2 Use the degree of preference for the
test color as a cue

1 Use the color of an object located in
the experimental environment, e.g.,
an answer sheet, as a reference
point, and then fine-tune along the
dimensions of lightness and/or satu-
ration

1 Use a previously presented test color
as a reference point, and then fine-
tune along the dimensions of light-
ness and/or saturation

formance is best for colors at the two terminals of the focality
continuum, and begins to decrease as the focality moves to-
ward the intermediate level. In addition, a significant negative
linear regression function can be established between FS and
EDS under general circumstances. This suggests that the av-
erage error distance in the case of misrecognitions for a color
decreases as its focality increases.

One Cause of the Focality Effect Patterns
To determine what caused the continuous patterns, we exam-
ined the memorization strategies reported by the subjects (Ta-
ble 1). We noticed that the strategy of encoding colors using
linguistic color categories, which has the highest number of
reports, might have played an important role in the formation
of the detected focality effect patterns.

A detailed description of the procedure of this strategy in a
single trial is as follows: The subjects consciously encoded
the test color using the basic color terms while observing
the test color. The basic color terms were used as reference
points, which means that the subject anchored the test color
to the central points of the basic color categories, namely, the
most typical colors of these categories. The subject then re-
tained this linguistic code in his/her STM during the waiting
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period. Finally, during the phase of color searching, the sub-
ject decoded the code to recover the test color.

For convenience of discussion, color focality is generally
divided into the levels of ”high,” ”medium,” and ”low,” and
their respective ways of being coded are described as follows:
A high-focality color can be encoded using only one basic
color term since it is, or is substantially close to, the central
point of the basic color category. With regard to a medium-
focality color, its coding needs some modifiers in hue and
(or) lightness besides a basic color term, for example, bright
orange, dark brown, and purplish pink. For a low-focality
color, because it is situated at the border region between two
basic color categories, the two basic color terms correspond-
ing to the two categories are used to constitute the code for
this color.

With the employment of this strategy, it is obvious that
the correct recognition possibility for a color is mainly de-
termined by 1) how easily the code for the color can be re-
tained in STM during the waiting period, and 2) the semantic
ambiguity of the code for the color, or in other words, how
accurately the encoded color can be recovered from the code.
Since codes for colors of all three types can be formed by just
a few words, they will not cause a memory burden. This im-
plies that the rate of successful retaining should be high for
each color type. On the other hand, the variable of seman-
tic ambiguity bears a much larger intertype variance, which
indicates its chief role in mediating the impact of color fo-
cality on STM performance for colors. For a high-focality
color, its code generally consists of a sole basic color term,
which possesses a fairly plain meaning since any Japanese
speaker is able to understand the definition of a basic color
term. Thus, during the searching phase, the signifier of the
code can be pinpointed in high precision. By contrast, the
modifiers in the code for a medium-focality color have much
vaguer meanings. Even if the subjects have carried the code
into the decoding phase without mistakes, they will find them-
selves lost in numerous candidates, all of which more or less
match the description. This will surely lower their chances
of finding the one that they have actually coded. Following
this logic, the code for a low-focality color, which involves
basic color terms but no modifiers, should also be regarded
as unequivocal in meaning. The central points of the basic
color terms, as in the case of a high-focality color, can serve
as reliable reference points for the localization of the encoded
color. In brief, the semantic ambiguity of color codes, which
negatively influences the likelihood of correct recognition for
colors, is low for high- and low-focality colors and high for
medium-focality colors. Thus, high- and low-focality colors
tend to have higher rates of correct recognition than those of
medium-focality ones. This is exactly what our experimen-
tal results have shown. In addition, owing to the fact that for
any color the semantic ambiguity of its code is a language-
inherent and thus subject-independent attribute, this continu-
ous pattern can be expected to have a high degree of intralan-
guage consistency, or in other words, a high likelihood to be

replicated if the experiment is repeated using the same lan-
guage.

With regard to the misrecognition error distance of a color,
within the framework of linguistic categorical coding, this
mainly depends on which parts of the code the subjects have
forgotten, and how many times each of these parts have been
forgotten. For a high-focality color, once a subject has for-
gotten the sole basic color term during the waiting period, in
the searching phase he/she is unable to tell the basic color
category to which the test color belongs. His/her selection
will thus be random, although other memory clues, such as
the visual image of the test color, can be of help. It is easy to
imagine that under this circumstance, a large error will occur.
The loss of the basic color term for a medium-focality color
or both of the basic color terms for a low-focality color will
lead to similar consequences. For a medium-focality color,
when only the modifiers have been forgotten, given that the
basic color term has become the only guide, the central point
of this basic color category may pull the subjects’ selections
toward it. In this case, a misrecognition is expected to oc-
cur, but within a moderate error range that is approximately
half the ”category radius.” Following the same logic, with re-
gard to the code for a low-focality color, when one of its two
basic color terms has been forgotten, the remaining one will
tend to drag the subjects’ selections toward the central point
of the category it represents. On this occasion, because the
test color is situated at the border region of the category, a se-
lection with a error distance of approximately one category-
radius long might take place. Note that owing to the small to-
tal number of memory losses suggested by the small memory
burden imposed by the color codes, it is possible that some
of these ”forgetting types” did not occur in our experiment.
Thus, one explanation for the focality effect pattern that we
detected is that our subjects have never forgotten the basic
color terms in the codes for the high- and medium-focality
colors. In addition, the small sample size of memory losses
means that the distribution of occurrence frequency across
the forgetting types can hardly be consistent across experi-
ments even when using the same language. In other words, if
the experiment is repeated, a substantially different frequency
distribution across the forgetting types will occur, which will
lead to a very different focality effect pattern.

The Universality of the Focality Effect Patterns
Several past studies on STM performance for colors, which
used English-speaking subjects, also recorded their subjects’
memorization methods. Lucy and Shweder (1988) recorded
the subjects’ incidental remarks on memorization strategies
during the course of their experiments, and they carried out
a questionnaire on memorization strategies when the exper-
iments were finished. They provided a quantitative report
which showed that the strategy of linguistic categorical cod-
ing was the most frequently adopted, followed by the strate-
gies of direct retention of visual image, present object asso-
ciation, and absent object association. This coincides well
with the results of our questionnaire. Brown and Lenneberg

1989



(1954), Lucy and Shweder (1979), and Garro (1986) also re-
ported the use of linguistic categorical coding by their sub-
jects, although they did not provide detailed statistics. The
fact that linguistic categorical coding is employed as a chief
memorization strategy by both Japanese speakers and English
speakers suggests that its applicability is possibly universal
across languages. Moreover, considering the hypothesized
close ties of this strategy to the formation of the continuous
patterns of the focality effect, this further implies that all lan-
guages may share a common language-based mechanism for
focality-effect generation.

In terms of the focality effect pattern for the possibility of
correct recognition, considering its presumed intralanguage
consistency, it can be expected to be observed in other lan-
guages. This conjecture is supported by the agreement be-
tween the FS-to-MAS relationship detected in our experi-
ment and the superiority of focal colors to nonfocal colors in
correct recognition possibilities reported by Heider (1972),
Roberson et al. (2000) and Roberson et al. (2005). On the
other hand, even if the use of the strategy of linguistic cate-
gorical coding is universal across languages, because of the
lack of intralanguage consistency, it is difficult to find a con-
sistent focality effect pattern across languages in terms of the
misrecognition error distance. A comparison of the results of
Heider (1972)’s and Roberson et al. (2000)’s studies and our
study demonstrated such interlanguage inconsistency.

A trivial case as it might be, reports show that there
exit languages that possibly lack basic color terms, e.g., Pi-
raha and Warlpiri (Everett, 2005; Wierzbicka, 2008; but see
Regier, Kay, & Khetarpal, 2009). This means that the linguis-
tic definition of color focality and the memorization strategy
of linguistic categorical coding possibly cannot be applied to
such languages. Thus, the discussions in this section may be
unsuitable for these languages.

Conclusion and Implications for Future Work
This study is the first to probe into the continuous patterns of
the focality effect. Our experiment confirmed the existence of
the focality effect in the Japanese language, and clarified its
continuous patterns in terms of correct recognition possibility
and misrecognition error distance, which were two aspects of
short-term memory performance. Correct recognition possi-
bility is highest at the ends of the continuum of color focal-
ity, and decreases as color focality moves toward the medium
region from either end. In addition, misrecognition error
distance for colors, in the general case, decreases as color
focality increases. We speculate that the subjects’ frequent
and conscious use of memorization strategies, especially the
strategy of encoding colors using linguistic color categories,
played an important role in the formation of focality effect
patterns. The interstudy agreement on the recordings of mem-
orization strategies suggests that the employment of linguis-
tic categorical coding is possibly universal across languages.
For this reason, and also owing to its likely high intralan-
guage consistency, we expect that the focality effect pattern

for correct recognition possibility that we detected can also
be found in other languages. Empirical evidence for more
languages is needed to evaluate this hypothesis. In addition,
it is also interesting to see whether this focality effect pattern
can also be found in the categories of other domains. These
domains can be simple perceptual categories such as shapes
and phonemes, complicated multimodal concepts such as an-
imals and tools, or even emotionally or socially meaningful
signals such as human facial expressions.
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Abstract 
This paper experimentally tests the contribution of two 
distinct aspects of social interaction to the creation of 
shared symbols: behaviour alignment and concurrent 
partner feedback.  Pairs of participants (N= 120, or 60 
pairs) completed an experimental-semiotic game, 
similar to Pictionary, in which they tried to communicate 
a range of recurring meanings to a partner by drawing 
on a shared whiteboard (without speaking or using 
numbers of letters in their drawings).  The opportunity 
for sign alignment and/or concurrent partner feedback 
was manipulated in a full factorial design.  Each process 
made a distinct contribution to the evolution of shared 
symbols: sign alignment directly influenced 
communication success, and concurrent partner 
feedback drove sign simplification and symbolization.  
These complimentary processes led to the interactive 
evolution of effective and efficient human 
communication systems. 

Keywords: Human Communication, Interaction, Icon, 
Symbol, Cultural Evolution, Language Evolution 

Introduction 
Human cognition and behaviour is dominated by 
symbol use, evident from our everyday use of numeric 
and linguistic systems.  But where do these symbols 
come from?  This question is presented by Harnad 
(1990) as the symbol grounding problem: how shared 
meanings can arise from arbitrary symbols in the 
absence of a pre-established shared symbol system.  
A solution to the symbol grounding problem was 
offered by Peirce (1931), who suggested that symbols 
evolved from iconic signs that share a non-arbitrary 
correspondence between the sign and its meaning.   

This icon-to-symbol transition has been convincingly 
demonstrated in experimental-semiotic communication 
games.  These experiments examine the creation of 
novel human communication systems under controlled 
laboratory conditions (for reviews see Fay, Ellison, & 
Garrod, 2014; Galantucci, 2017; Tamariz, 2017).  They 
do this by using a paradigm in which human 
participants communicate without using their existing 
shared language.  Typically, participants communicate 
in a novel modality, for example, through drawing 
(Galantucci, 2005; Garrod, Fay, Lee, Oberlander, & 
MacLeod, 2007; Healy, Swoboda, Umata, & King, 
2007; Roberts, Lewandowski, & Galantucci, 2015) or 

by gesture (Christensen, Fusaroli, & Tylén, 2016; Fay, 
Arbib, & Garrod, 2013; Schouwstra & de Swart, 2014; 
Stolk, Verhagen, & Toni, 2016) and the experimenters 
examine how the communication systems arise and 
evolve over repeated interactions. 

A key finding is the importance of iconic signs and 
social interaction to the creation of shared symbols 
(Galantucci, 2005; Garrod et al., 2007).  In Garrod et 
al. (2007), pairs of participants tried to communicate a 
set of recurring meanings to their partner by drawing 
on a shared whiteboard.  Like the game Pictionary, 
participants were not allowed to speak or use letters or 
numbers in their drawings.  This procedure forced 
participants to create a novel communication system 
from scratch.  Over repeated interactions three things 
happened: communication success improved, the 
signs used were transformed from complex iconic 
signs to simpler, more symbolic signs, and participants 
increasingly used the same signs to communicate the 
same meanings (i.e., their signs aligned; see Figure 
1).  This pattern, the creation of an effective inventory 
of shared symbols, has been widely replicated 
(Caldwell & Smith, 2012; Fay, Garrod, Roberts, & 
Swoboda, 2010; Garrod, Fay, Rogers, Walker, & 
Swoboda, 2010; Theisen, Oberlander, & Kirby, 2010). 

These studies indicate that social interaction is 
crucial to the creation of effective and efficient human 
communication systems, but they are not clear on the 
precise mechanisms driving these outcomes. To better 
understand this, the present experiment isolates two 
important aspects of social interaction – behaviour 
alignment and concurrent partner feedback – and 
investigates the contribution of each to the evolution of 
shared symbols. 

Pickering and Garrod (2004) argue that linguistic 
alignment drives successful communication.  While 
there is a correlation between referential alignment 
and communication success (Fay, Lister, Ellison, & 
Goldin-Meadow, 2014; Fusaroli et al., 2012; Reitter & 
Moore, 2014), the causal role of referential alignment 
on communication success is unclear.  If referential 
alignment directly influences communication success, 
then prohibiting interacting participants from aligning 
their signs will lower communication success. 

Concurrent partner feedback can take a variety of 
forms.  During conversation, listeners are co-narrators 
who provide verbal feedback (e.g., saying “mhm” while 
listening to a speaker) and visual feedback (e.g., 
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frowning or nodding), that improves the flow of 
conversation (Bavelas, Coates, & Johnson, 2000; 
Clark & Krych, 2004; Mein, Fay, & Page, 2016).  Like 
listeners in a conversation, participants engaged in an 
experimental-semiotic game can signal their attention 
and understanding by annotating their partner’s sign, 
e.g., by adding a tick mark (see Figure 1).  During 
conversation listeners can indicate a communication 
breakdown and initiate a repair (e.g., by asking the 
speaker for clarification; Dingemanse et al., 2015; 
Schegloff, 2000).  In addition to these information 
expansion requests, listeners can drive information 
contraction by indicating their understanding (e.g., by 
saying “yeah, yeah”).  So, concurrent partner feedback 
during an experimental-semiotic game may drive 
communication success and sign 
simplification/symbolization.  

The present experiment examined the influence of 
sign alignment and concurrent partner feedback on 
communication success and sign symbolization.  It 
also tested if each process operates independently or 
if they interact. 

 

 
Figure 1.  Sign simplification and alignment for the 
meaning ‘Museum’ across 6-games between a pair of 
participants in the present experiment.  Participants 
alternated drawing and identifying roles from game to 
game.  At Game 1 Museum was communicated using 
a complex iconic sign that included a dinosaur, an 
exhibit space and two viewers.  By Game 6 the sign 
has lost much of its initial iconicity, evolving into a 
simpler, more symbolic representation, communicated 
by the dinosaur’s spine.  In addition, partners’ signs 
became increasingly similar, or aligned, across games. 

Method 
The experiment received approval from the University 
of Western Australia Ethics Committee. All participants 
viewed an information sheet before giving written 
consent to take part in the study. The information 
sheet and consent form were both approved by the 
aforementioned Ethics Committee. 

Participants 
One-hundred and twenty undergraduate students (84 
females) participated in exchange for course credit or 
payment.  Participants were tested in unacquainted 
pairs in testing sessions lasting 1 hour.  All participants 
were free of any uncorrected visual impairment. 

Task and Procedure 
Participant tried to graphically communicate a series of 
confusable meanings to their partner.  Like the game 
Pictionary, participants were prohibited from speaking 
or using letters or numbers in their drawings.  The 
Director would draw each meaning from their ordered 
list (16 targets plus 4 distractors; see Table 1 for a 
complete listing) and their partner, the Matcher, would 

try to identify each meaning from their randomly 
ordered list of the same meanings. 

The task was administered using a virtual 
whiteboard tool (Healy, Swoboda, & King, 2002), 
which recorded all drawing activity.  Each participant 
sat at a computer terminal where drawing input and 
meaning selection was made via a standard mouse.  
For the Director, each to-be-communicated meaning 
was highlighted in white text on a dark background at 
the top of the interface.  Holding down the left mouse 
button initiated drawing.  Director drawing was 
restricted to black ink and Matcher drawing was 
restricted to green ink (to distinguish between 
participants).  By clicking an erase button on the 
interface participants were able to erase parts of the 
drawing.  All drawing and erasing activity was 
displayed simultaneously on the Director and 
Matcher’s shared virtual whiteboards.  When the 
matcher believed they had identified the director’s 
intended meaning they clicked the relevant button at 
the top of their interface, where there was a list of 
buttons corresponding to the competing meanings.  
Meaning selection brought the current trial to an end 
and initiated the next trial.  No time limit was imposed, 
and participants were given no explicit feedback with 
regard to their communication success.  Participants 
communicated remotely across networked computers 
and were unaware of their partner’s identity. 
 
Table 1.  The set of meanings that Directors 
communicated to Matchers (distractor meanings given 
in italic).  Target and distractor meanings were fixed 
across conditions and throughout the experiment. 
Places  People Entertain-

ment 
Objects Abstract 

Art Gallery Arnold 
Schwarzenegger 

Cartoon Computer 
Monitor 

Homesick 

Parliament Brad Pitt Drama Microwave Loud 
Museum Hugh Grant Sci-Fi Refrigerator Poverty 
Theatre Russell Crowe Soap Opera Television Sadness 
 

The experiment examined the contribution of 
behaviour alignment and concurrent partner feedback 
to communication success and sign symbolization.  
Participants were randomly assigned to one of four 
conditions that represented a combination of the 
factors of interest: +Alignment +Feedback (N= 30, or 
15 dyads), +Alignment -Feedback (N= 30, or 15 
interacting), -Alignment +Feedback (N= 30, or 15 
dyads) and -Alignment -Feedback (N= 30, or 15 
dyads).  In the -Alignment conditions participants were 
instructed not to copy their partner’s drawings.  They 
were told they would have to use a different sign to 
that used by their partner to communicate each 
meaning.  In the -Feedback conditions Matchers were 
unable to provide within-trial feedback.  Specifically, 
they were unable to draw while acting as the Matcher 
(this functionality was removed from the virtual 
whiteboard tool).  In this condition the Director clicked 
a send button when they had finished their drawing.  
Once done the list of competing meanings became 
available for selection by the Matcher.  Thus, Matchers 
were unable to interrupt the Director’s communication 
and bring the trial to an end. 
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Results 
Participants followed the instructions not to align their 
signs (manipulation check).  Not being able to align 
their signs reduced communication success.  By 
contrast, eliminating the opportunity for concurrent 
partner feedback did not directly affect communication 
success.  Concurrent partner feedback affected sign 
simplification; when feedback was eliminated the signs 
produced were more complex.  Sign alignment also 
affected sign simplification, but the effect was much 
weaker compared to the effect of concurrent partner 
feedback.  See Figure 2 for examples of sign 
alignment and simplification in the different conditions. 

 

 
Figure 2.  Sign alignment, simplification and 
symbolization for the meaning ‘Parliament’ across 6-
games between participants in the different 
experimental conditions.  Participants instructed not to 
copy their partner’s sign for each meaning did so: one 
participant drew a building with a flag to communicate 
‘Parliament’ and their partner drew a speaker at a 
podium (-Alignment +Feedback condition); another 
drew a parliamentary speaker with a hammer, and 
their partner drew a series of buildings (-Alignment -
Feedback condition).  When permitted to copy their 
partner’s signs, sign alignment was observed: onto a 
flag (+Alignment +Feedback condition), or people 
seated around a table (+Alignment -Feedback 
condition).  These examples highlight the diversity of 
signs used to communicate the same meaning in the 
present study.  Concurrent partner feedback had a 
strong effect on sign simplification and symbolization: 
with feedback the signs were dramatically simplified 
across games (+Feedback conditions), and without 
feedback they retained considerable sign complexity 
(-Feedback conditions). 

Manipulation Check: Sign Alignment 
Participants in the -Alignment conditions were 
instructed not to copy the drawings produced by their 
partner.  Sign alignment was quantified by rating the 
similarity of pairs of drawings of the same meaning 
from each pair (at Game 1-2, 2-3, 3-4, 4-5, 5-6) on a 
Likert scale from 0-9, where 0= very dissimilar and 9= 
very similar (BW).  4800 pairs of drawings were rated 
for similarity (16 meanings X 5 pairs of adjacent 
games X 15 pairs X 4 conditions).  Sign alignment 
scores for the drawings produced in the different 
conditions are shown in Figure 3.  The results indicate 
that participants followed the -Alignment instructions: 
those permitted to copy their partner’s signs showed 

increasing sign alignment across games, whereas 
those not permitted to copy their partner’s signs 
returned lower overall sign alignment scores that did 
not change across games. 

Drawing alignment scores were entered into a 
mixed-design ANOVA that treated Alignment 
(+Alignment, -Alignment) and Feedback (+Feedback,  
-Feedback) as between-participant factors and Game 
(1-2, 2-3, 3-4, 4-5, 5-6) as a within-participant factor.  
This returned a statistically significant Alignment by 
Game interaction [FLinear(1,56)= 50.849, p< 0.001, η2

p= 
0.564].  The interaction effect is explained by the 
increase in sign alignment scores across games in the 
+Alignment conditions [FLinear(1,29)= 131.622, p< 
0.001, η2

p= 0.819] and a null effect of Game in the 
-Alignment conditions [FLinear(1,29)= 0.851, p= 0.364].  
The Alignment manipulation worked. 
 

 
Figure 3.  Change in sign alignment scores (plotted for 
each pair) for the different conditions across games 
1-6.  The horizontal dashed red line indicates neutral 
sign alignment.  The dark blue straight line is the linear 
model fit and the light grey shaded area is the 95% 
confidence interval. 
 

No outliers were identified using the Interquartile 
Range rule (Moore, McCabe, & Craig, 1993).  Drawing 
alignment scores were entered into a mixed-design 
ANOVA that treated Alignment (+Alignment, -
Alignment) and Feedback (+Feedback,  
-Feedback) as between-participant factors and Game 
(1-2, 2-3, 3-4, 4-5, 5-6) as a within-participant factor.  
This returned a statistically significant Alignment by 
Game interaction [FLinear(1,56)= 50.849, p< 0.001, η2

p= 
0.564].  The interaction effect is explained by the 
strong increase in sign alignment scores across 
games in the +Alignment conditions [FLinear(1,29)= 
131.622, p< 0.001, η2

p= 0.819] and a null effect of 
Game in the -Alignment conditions [FLinear(1,29)= 
0.851, p= 0.364]. 

The Alignment manipulation worked: participants 
who were allowed to copy their partner’s drawings did 
so, and increasingly did so across games, whereas 
those who were prohibited from doing so did not copy 
their partner’s drawings. 
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Communication Success 
Communication success was operationalized as the 
percentage of meanings accurately identified by the 
Matcher.  Figure 4 shows the change in 
communication success (%) across games 1-6 in the 
different conditions.  The results show an increase in 
communication success across games in all 
conditions, but the increase is stronger in the 
+Alignment conditions compared to the -Alignment 
conditions. 

One outlier (0.28% of data) was identified using the 
Interquartile Range rule (see Moore et al., 1993).  This 
value was replaced by next lowest value.  The 
communication success scores were then entered into 
the same mixed-design ANOVA used previously.  This 
returned a statistically significant Alignment by Game 
interaction [FLinear(1,56)= 135.151, p< 0.001, η2

p= 
0.707].  In all conditions communication success 
improved across games: +Alignment conditions 
[FLinear(1,29)= 117.268, p< 0.001, η2

p= 0.802] and 
-Alignment conditions [FLinear(1,29)= 38.435, p< 0.001, 
η2

p= 0.570]. However, the improvement in 
communication success (differences score: game 6 - 
game 1) was stronger in the +Alignment conditions 
(M= 24.17, SD= 12.031) compared to the -Alignment 
conditions (M= 13.96, SD= 13.993), t(58)= 3.030, 
p=0.004, d= 0.782.  The same pattern of results was 
returned when the communication success data was 
analyzed using logistic mixed effects modeling. 

Sign alignment improved communication success, 
establishing a causal link between behaviour 
alignment and communication success.  By contrast, 
concurrent partner feedback did not directly influence 
communication success [p= 0.871]. 
 

 
Figure 4.  Change in communication success (plotted 
for each pair) for the different conditions across games 
1-6.  The dark blue straight line is the linear model fit 
and the light grey shaded area is the 95% confidence 
interval. 

Sign Simplification and Symbolization 
Following Garrod et al., (2007) simpler signs were 
considered to be more symbolic.  Sign complexity was 
measured using Pelli et al.’s (2006) information 

theoretic measure of perimetric complexity [Perimetric 
complexity = (inside + outside perimeter)2/ink area].  
Previous work indicates this to be an effective scale-
free measure of drawing complexity (Fay et al., 2010; 
Garrod et al., 2007; Tamariz & Kirby, 2014).  Sign 
complexity scores for the drawings produced in the 
different conditions are shown in Figure 5.  Sign 
complexity tended to decrease across games in all 
conditions, but sign complexity was lower in the 
+Feedback conditions compared to the -Feedback 
conditions. 
 

 
Figure 5.  Change in sign complexity (plotted for each 
pair) for the different conditions across games 1-6.  
The dark blue straight line is the linear model fit and 
the light grey shaded area is the 95% confidence 
interval. 
 

Ten outliers (2.78% of data) were identified using 
the Interquartile Range rule.  These values were 
replaced by the next highest value.  The sign 
complexity scores were then entered into the same 
mixed-design ANOVA used previously.  This returned 
a statistically significant three-way Alignment by 
Feedback by Game interaction [FLinear(1,56)= 4.140, p= 
0.047, η2

p= 0.069].  To understand the three-way 
interaction separate Alignment by Game ANOVAs 
were carried out for each level of Feedback.  For the 
+Feedback conditions this returned a main effect of 
Game [FLinear(1,28)= 73.809, p< 0.001, η2

p= 0.725] with 
no other effects reaching statistical significance (ps> 
0.304).  So, both +Feedback conditions showed a 
similarly strong decrease in sign complexity scores 
across games, and there was no statistical evidence 
that sign alignment affected sign symbolization.  A 
different pattern was returned by the -Feedback 
conditions.  ANOVA returned a statistically significant 
Alignment by Game interaction [FLinear(1,28)= 6.608, 
p< 0.016, η2

p= 0.191].  This interaction effect is 
explained by the statistically significant decrease in 
sign complexity scores across games in the 
+Alignment -Feedback condition [FLinear(1,14)= 34.912, 
p< 0.016, η2

p= 0.714] and the null effect of Game in 
the -Alignment -Feedback condition [FLinear(1,14)= 
2.825, p= 0.115].  So, in the absence of concurrent 
partner feedback, sign alignment reduced sign 
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complexity.  Without either interactive process there 
was no statistical evidence of a reduction in sign 
complexity across games. 

Receiving concurrent partner feedback was 
important to sign simplification and symbolization.  In 
the absence of concurrent partner feedback sign 
alignment reduced sign complexity, but not to the 
extent of concurrent partner feedback. 

Discussion 
The present study investigated the precise role played 
by two distinct aspects of social interaction to the 
evolution of effective and efficient human 
communication systems: behaviour alignment and 
concurrent partner feedback.  By experimentally 
manipulating the opportunity for behaviour alignment 
and concurrent partner feedback in a full factorial 
design, the experiment demonstrated that each 
process made a distinct contribution to the evolution of 
shared symbols: sign alignment directly influenced 
communication success and concurrent partner 
feedback drove sign simplification and symbolization.  
See Lister and Fay (in press) for a theoretical model of 
this process. Together, these complimentary 
processes explained the interactive evolution of 
effective and efficient human communication systems. 

Our findings provide a solution the symbol grounding 
problem (Harnad, 1990).  Complex iconic signs ground 
shared meanings.  Once grounded, social interaction 
drives sign simplification and alignment, the 
mechanisms through which effective and efficient 
shared symbols arise.  This explanation offers a 
convincing candidate process through which iconic 
signs evolve into symbols, as originally proposed by 
Charles Sanders Peirce over 100 years ago. 

Other-initiated repairs are a frequent feature of 
conversation, and similar repair mechanisms are seen 
across a range of different languages (Dingemanse et 
al., 2015).  Repairs – from a generic ‘huh’, to specific 
information requests – signal trouble and correct 
breakdowns in communication (Schegloff, 2000; 
Schegloff, Jefferson, & Sacks, 1977).  Other-initiated 
repairs were a frequent feature of communication in 
the +Feedback conditions, especially in the early 
games of the task (25.83%, 17.92%, 13.75%, 11.25%, 
7.91%, 2.91% of trials at Game 1-6).  Yet, there was 
no evidence that this feedback directly affected 
communication success (19.16%-point improvement in 
communication success from game 1 to 6 with partner 
feedback, and a 19.95%-point improvement in 
communication success from game 1 to 6 without 
partner feedback (collapsed across the alignment 
conditions).  By contrast, concurrent partner feedback 
was crucial to sign simplification and symbolization. 

Why might other-initiated repairs not directly affect 
communication success?  A simple answer is that 
people may not be sensitive to problems in 
communication in the first place.  This was examined 
in a study in which conversation partners, who 
communicated via text-chat, were swapped with 
participants engaged in a separate and unrelated 
conversation (Galantucci & Roberts, 2014).  
Participants failed to notice their conversation partner 
had changed (beyond chance level), despite the 
incoherent change in topic.  This finding suggests that 

communication is noisy and error-prone, and that 
people tend to be insensitive to communication 
problems.  Perhaps our task is too simple to be able to 
detect the positive influence of other-initiated repairs 
on communication success. Against this, our 
experimental paradigm was sensitive to the positive 
influence of behaviour alignment on communication 
success. 

Our experimental findings demonstrate that 
behaviour alignment directly influenced communication 
success.  By contrast, there was no statistical 
evidence that other-initiated repairs directly affected 
communication success.  This pattern of results 
supports models of dialogue that downplay the role of 
high-level cognitive processes, and stress the 
importance of behaviour alignment, via low-level 
processes such as priming, to successful 
communication (Garrod & Pickering, 2004; Pickering & 
Garrod, 2004).  In the present study, although partner 
feedback did not directly affect communication 
success, it proved crucial to sign simplification and 
symbolization, which improved the smooth and 
efficient flow of communication (see also Bavelas et 
al., 2000; Mein et al., 2016). 
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Abstract

We propose a neural network model that accounts for the emer-
gence of the taxonomic constraint in early word learning. Our
proposal is based on Mayor and Plunkett (2010)’s neurocom-
putational model of the taxonomic constraint and overcomes
one of its limitations, namely the fact that it considers arti-
ficially built, simplified stimuli. In fact, while in the original
model the visual stimuli are random, sparse dot patterns, in our
proposed solution they are photographic images from the Im-
ageNet database. In our model the represented objects in the
image can be of different size, color, location in the picture,
point of view, etc.. We show that, notwithstanding the aug-
mented complexity in the input, the proposed model compares
favorably with respect to Mayor and Plunkett (2010)’s model.

Introduction
A central issue in the current understanding of early lexical
acquisition concerns how infants learn the reference of words.
Quine (1960) famously raised the point that for every word
heard in a given circumstance, there are several possible ref-
erences: in order to infer the appropriate one, infants have
to rule out several possible alternatives. An influential so-
lution to the issue has been proposed by Markman (1989),
suggesting that infants rule out inappropriate references by
means of three constraints. By the whole object constraint
children assume that novel words refer to objects as a whole,
rather than to their parts, substance, color, or other properties.
By the mutual exclusivity constraint children assume that two
labels usually do not refer to the same object. Last, but cen-
tral to this paper, by the taxonomic constraint children extend
words to taxonomically-related objects (at the level of basic
categories): when a child hears the word “dog” pronounced
by a caregiver while pointing at a specific dog, she general-
izes the reference of “dog” to all dogs, not just to the one in
front of her.

Here we propose a neural network model that accounts
for the emergence of the taxonomic constraint in early word
learning, and can process realistic visual stimuli1. This is the
first step towards the development of a model able to cope
with visual and auditory stimuli that are both realistic.

1For the time being we leave the question of realism of the acous-
tic part to future work.

Our starting point is Mayor and Plunkett (2010)’s neuro-
computational model of the taxonomic constraint. The model
consists of two self-organizing maps (a visual and an acous-
tic map) connected with Hebbian connections. The model
successfully explains how it is possible to generalize a single
word-object association to a whole class of objects. Essen-
tially, this is the result of Hebbian learning creating word-
object associations over a previous conceptual organization
of the visual and acoustic space.

Here we want to go beyond one limitation of Mayor and
Plunkett (2010)’s model, namely the fact that it considers
artificially built, simplified stimuli: in their model the vi-
sual stimuli are random, sparse dot patterns, in the style of
(Posner, Goldsmith, & Welton Jr, 1967), whereas the acous-
tic stimuli are manipulations of acoustic signatures extracted
from sounds produced by a speaker, leading to a simplified
acoustic input stimulus.

Would the model still work if we considered realistic visual
inputs, instead? In order to address this question, we have
expanded the original model’s visual component making it
able to process realistic visual stimuli, that in our case are
images taken from the ImageNet dataset. More precisely, we
have added to the visual component of Mayor and Plunkett
(2010) an InceptionV3 deep network (Szegedy et al., 2015)
which is at the state of the art in the image classification task.
The deep network processes the visual scene in the image,
builds a representation for it, and feeds the representation to
the visual self-organizing map.

In order for the whole model to work, these representations
need to contain a description of the main object of the visual
scene, independent from the context. Understanding the na-
ture of the image representations built at the various levels
of the network is indeed one of the main points of debate in
deep neural networks (Zeiler & Fergus, 2014; Zhou, Khosla,
Lapedriza, Oliva, & Torralba, 2014; Agrawal, Girshick, &
Malik, 2014). In order to assess whether the InceptionV3
deep network feeds into the visual self-organizing map mean-
ingful object representations, we performed several clustering
experiments. These experiments investigated whether repre-
sentations deriving from images of objects can be clustered
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together by off-the-shelf clustering algorithms. They showed
that the representations provided by InceptionV3 are reason-
ably well organized. A further test investigated whether the
visual self-organizing map could organize the representations
received from the deep neural networks in a topologically sat-
isfactory manner.

We then tested the whole model to see if it still exhibits
a taxonomic responding, generalizing learned word-object
associations to the whole category. Results show that our
model, despite starting from more realistic visual stimuli,
does replicate Mayor and Plunkett (2010)’s success on tax-
onomic responding when few joint word-object associations
are considered.

Mayor and Plunkett (2010)’s model
Mayor and Plunkett (2010) neurocomputational model of tax-
onomic constraint (Figure 1) is based on two Self-Organizing
Maps (SOMs): a visual map and an acoustic map, represent-
ing the primary visual cortex and the primary auditory cortex
respectively.

Figure 1: Mayor and
Plunkett (2010) model

The stimuli presented to the
two maps are artificially built:
the visual stimuli are random
dot patterns, whereas the audi-
tory stimuli are extracted from
the acoustic signatures of ut-
tered words; the acoustic signa-
tures are manipulated in order
to create simpler inputs.

Learning is a two-phase pro-
cess. First, the two maps are independently trained to learn
to categorize the visual and the acoustic stimuli. This first
learning phase is preliminary to word learning, and unsuper-
vised. The two maps are trained using the standard learning
algorithm for self-organizing maps. In short, a stimulus x is
presented to each neuron of the map, and the Best-Matching
Unit (BMU) is selected: this is the unit i whose weight vector
wi is closest to the stimulus x (i.e. i = argmin j ‖x−w j‖).

The weights of the best matching unit and of its surround-
ing units are updated in order to maximize the chances that
in the future the same unit (or the surrounding units) will be
selected as the best matching unit for the same stimulus or
for similar stimuli. At iteration n+1, the weights for neuron
j are updated as follows:

w j(n+1) = w j(n)+η(n)hi, j(n)(x−w j(n)) (1)

where η is the learning rate, and hi, j is the neighborhood
function between i and j hi, j(n) is defined as hi, j(n) =
exp(−d2

i, j/2σ(n)2), where di, j is the distance between i and j
on the map’s grid, and σ(n) is the width of the gaussian.

After a while, the two maps learn to adequately represent
the stimuli of their training set in a topologically significant
way: close units respond similarly to similar stimuli. The
neural activation a j of a neuron j in response to a stimulus x

is defined as: a j = e−
q j
τ , where q j is the quantization error

(i.e., the distance between the input vector x and j′s weight
vector: q j = ‖x−w j(n)‖)), and τ is a normalization constant.

Once the visual and acoustic maps have stabilized into
a topological organization, proper word learning can start.
This is the Hebbian Learning phase, in which the two kinds
of stimuli are simultaneously presented to the model. For
each joint presentation of a visual and acoustic stimulus, the
synapses between the two maps are strengthened. In partic-
ular, for each neuron v on the visual map and neuron p on
the acoustic map, the Hebbian connection uv,p is strengthened
proportionally to the resulting neural activations av and ap, as
follows:

uv,p(n+1) = uv,p(n)+1− e−λavap (2)

where λ is the Hebbian training learning rate.
A single Hebbian learning event, combined with the pre-

viously acquired categorization capabilities of the visual and
acoustic SOMs, allows the model to generalize the associa-
tion to other stimuli belonging to the same category.

Once training is complete, the model is tested for its abil-
ity of comprehension and production. Comprehension is as-
sessed by considering what visual category is retrieved when
a word is presented to the auditory map and activation is prop-
agated via Hebbian connections. Production is assessed by
considering what word is produced by the auditory map when
a visual stimulus is presented to the visual map, and activation
is propagated through Hebbian connections.

The ability of the model to extend the learned word-object
associations to other words and objects belonging to the same
category is measured by the Taxonomic Factor which is the
percentage of correct word-object associations generated by
the model. Results show that when the SOMs are adequately
trained the Taxonomic Factor reaches 80% after a single Heb-
bian learning trial.

One of the limitations of Mayor and Plunkett (2010)’s orig-
inal model is that it uses artificially built input stimuli that are
much simpler than what would derive from realistic contexts.
Here we address this limitation, for what concerns the visual
module, by introducing deep convolutional neural networks
as shown in the next sections.

Deep Convolutional Neural Networks
In the last few years research on deep networks contributed
to reach human (sometimes super-human) performances on
several difficult tasks (Hinton et al., 2012; Li & Wu, 2015;
Socher, Bauer, Manning, & Ng, 2013; Yue-Hei Ng et
al., 2015). In particular, in 2011 a deep convolutional
model achieved for the first time super-human performances
in a visual pattern recognition task and, in the following
year, the AlexNet Convolutional Neural Network (CNN)
model won the ImageNet competition by a significant mar-
gin (Krizhevsky, Sutskever, & Hinton, 2012) over traditional
competitors. These successes contributed to a growing inter-
est in deep networks and today deep-network-based models
are at the forefront of research in many different areas and are
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setting performance records in tasks of interest for the cogni-
tive sciences community such as image (e.g., (Russakovsky et
al., 2015)) and speech recognition (e.g., (Xiong et al., 2016)).

Despite unheard performances achieved in many different
tasks, deep models present important shortcomings that are
far from being completely addressed. The most important
problem from the point of view of the forthcoming discus-
sion is the difficulty they present for what concerns the under-
standing of their internal working. Consequently, recent re-
search investigated ways to make sense of the contents of the
network providing interesting insights. For instance, Zeiler
and Fergus (2014) use “deconvolution networks” to visual-
ize the patterns that causes the activation of nodes in each
layer; in Zhou et al. (2014) scenes are iteratively simplified
or occluded to investigate which image patches and which ob-
jects contribute to the activation of nodes in a given layer; in
(Agrawal et al., 2014) the authors investigate the presence of
grand-mother-cells and of distributed representations in deep
networks.

While the understanding of the representations built by
these networks is still scattered and incomplete, some of the
insights seem to be well supported. An important one con-
cerns the hierarchical organization of the features: low-level
(coarser) features are nearest to the network input, while
higher-level (more abstract) features are nearest to the output
(for an idea of the kind of features extracted at the different
levels see for instance (Zeiler & Fergus, 2014)). Interestingly
this organization mirrors a well known characteristic of the
representations in the primate inferior temporal (IT) cortex,
and hence it hints at a possible cognitive justification of this
computational model. To this regard it is interesting to men-
tion that recent research investigated the connection between
the representations built by several computational models and
the representations in the IT cortex and found that deep neural
networks are among the best models (Serre, 2016; Kriegesko-
rte, 2015). For instance, in (Khaligh-Razavi & Kriegeskorte,
2014), the authors investigate a wide range of computational
models and suggest that deep CNNs are, not only the best
performing in term of accuracy, but also the best at explain-
ing the IT representation (albeit still in an incomplete way).

Given the great accuracy they achieve and the possible cog-
nitive plausibility of the CNNs, we have chosen to use these
particular models as the visual component of the word-object
association model we propose in the next section.

Proposed model
In order to solve the problem of the lack of realism in the
visual stimuli in the Mayor and Plunkett (2010) model, we
propose to replace the input of the visual SOM with a repre-
sentation built by a CNN as shown in Figure 2.

The long term objective of this research is to find a cog-
nitively plausible model able to reproduce the word-object
association abilities observed in infants using realistic image
and audio stimuli. In this paper we keep a simplified auditory
input and focus instead on providing a visual module capable

h

Figure 2: The proposed model: the visual component con-
tains a deep convolutional network (InceptionV3) in order to
process realistic images. The representation built by the deep
neural network is then fed into the visual SOM. The acoustic
component, on the contrary, only contains an acoustic SOM,
as in Mayor & Plunkett (2010)’s model, and can only process
simplified acoustic stimuli.

of handling realistic images. In fact, in this proposal the au-
ditory input is a mere placeholder that does not provide any
real processing ability.

In practice, we shall assume that an oracle provides the
auditory SOM with a perfect representation of the auditory
stimulus, or label, in the form of a binary vector. The vec-
tor contains a 1 in position i if the utterance provided to the
auditory module corresponds to the i-th label; it contains a 0
otherwise.

The visual module shall, on the contrary, be able to cope
with realistic images and, while we still assume that each im-
age contains a main object corresponding to the concept to be
learned, we pose no additional constraints. Images for a given
concept can, for instance, be of different size, color, location
in the picture, point of view, etc.. For instance, the “dogs”
concept may be represented by images of dogs of different
size, color, breed and be portrayed in different contexts, un-
der different illuminations and poses.

The visual module is the concatenation of the InceptionV3
network and the SOM network we already introduced. Incep-
tionV3 is a stack of Inception Modules, which parallelize and
combine several convolution and pooling operations provid-
ing a richer output while still maintaining a small number of
parameters. At the end of the stack of inception modules the
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model contains a pooling layer of length 2048 which is fully
connected with a shallow feed-forward neural network which
is then used to classify the input image.

In the Inception architecture a representation of the input
is propagated through the layers up to the top of the network
where it is used to train the classifier. A question worth inves-
tigation is if and where a good representation of the concept
in the input image is created by the deep network. In this
paper we work under the assumption that such representation
exists and argue that it has to be found in the last pooling layer
(just before the fully connected neural classifier). Based on
this assumption, we propose to use the vector containing the
value of the 2048 neurons in that layer as the representation of
the stimuli for the visual SOM. To verify the validity and the
consequences of this assumption, we performed two sets of
experiments: in the “Representation Quality” sub-section of
the Experiments section we investigate the nature of the pro-
posed representation, while in the subsequent section (Word
Learning) we investigate the quality of the complete model.
In our simulations we used the pre-trained Inception network
provided by the TensorFlow library2.

The complete system is trained as outlined in the “Mayor
and Plunkett (2010)’s model” section. In summary, given the
representation from the CNN and the simplified auditory in-
put, the two SOMs (composed by 20× 30 neurons each) are
trained to cluster together similar representations using the
standard SOM training algorithm. In our tests, the two SOMs
attain their best topological organization of the objects in the
training set after 60 epochs (the learning rate is set to 0.3 and
decreases linearly at each epoch). Afterwards, the associa-
tion between the visual and the auditory input is created us-
ing Hebbian connections between the two maps: two stimuli
belonging to the same category are presented together to the
model, the visual stimulus is processed to extract its repre-
sentation and presented along with the auditory stimulus to
the corresponding SOMs. Finally the SOMs activations are
used to update the Hebbian connections using the update rule
in Formula 2.

To better cope with the variability in the input represen-
tation, we introduce two variations to the Hebbian training
(with respect to the procedure outlined in (Mayor & Plunkett,
2010)): i) we allow the network to learn from an increasing
number of stimuli pairs (in the original paper a single pair of
stimuli is presented to the network), this allows us to study
how performances increase as the number of presentations
grows; ii) we suppress the activation of a neuron in a SOM if
its activation value is below 0.6.

Experiments
In the following two sub-sections we investigate two impor-
tant facets of the proposed model. In particular, in the “Rep-
resentation Quality” Section we show that the representation
found in the last pooling layer of the InceptionV3 network al-

2https://github.com/tensorflow/models/tree/master/
inception

lows one to cluster the input images into groups that correlate
well with the classes assigned with the images themselves.
This is arguably an evidence that such a representation can
be usefully exploited as the input of the SOMs. In the “Word
Learning” Section we focus on the complete model, repli-
cate part of the experiments in (Mayor & Plunkett, 2010),
and compare our results with those reported in that paper.

All the experiments have been performed on two datasets.
A first dataset is composed by 10 classes associated with
100 stimuli each, for an overall 1.000 stimuli. A sec-
ond dataset contains 100 classes associated with 100 stim-
uli each, for an overall of 10.000 stimuli. Since the re-
sults for the two datasets are very similar, for the sake of
readability we focus on the smaller dataset and refer to
(Fenoglio, 2016) for the details of the experiments on the
larger dataset. The code for the complete model along with
the datasets used can be found at https://github.com/
ml-unito/NNsTaxonomicResponding.

Representation Quality
In order to assess the quality of the representation found in
the last pooling layer of the InceptionV3 model, we investi-
gate how well these representations can be clustered together.
For each image we extract the representation found in the last
pooling layer of the deep network, we then cluster the result-
ing representations using a K-means and an agglomerative
algorithm. For both algorithms the number of clusters is set
to 10. The clustering experiments have been conducted using
the scikit-learn python library3.

Figures 3 and 4 report results for K-means clustering.
Analogous results hold for agglomerative clustering. In par-
ticular, Figure 3 reports, for each class, a bar showing how
the class objects are partitioned among clusters; Figure 4 re-
ports, for each cluster, a bar showing the distribution of the
classes within it. We then investigate the topological organi-
zation provided by the visual SOM out of the representations
created by the deep model. We report in Figure 5 a repre-
sentation of the topology found by the visual SOM after 60
learning epochs.

Discussion The experiments show that the two clustering
algorithms are able to find good, albeit not perfect, partitions
for the representations. In particular, Figure 3 shows that the
objects in 7 out of 10 classes are mostly assigned homoge-
neously to a single cluster: in two of the remaining cases the
objects are almost all distributed among two classes, while in
a single case (and only for the k-means clustering algorithm)
the objects are distributed on three clusters. Figure 4 shows
a similar picture, but from the point of view of the clusters:
in almost all cases (8 out of 10) we have clusters which are
almost pure. The remaining two clusters conglomerate ob-
jects from different classes acting almost as folders where all
uncertain objects are put.

Overall, it seems that the clustering algorithms do find a
way to partition the representations of the objects into co-

3http://scikit-learn.org/stable/modules/clustering
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Figure 3: Per class distribution of objects into clusters (K-
means clustering). Colors represents different clusters. Blue
is used to represent the cluster containing the majority of the
objects of a given class; orange, yellow, and green are used
to represent the second, third, and fourth most represented
clusters.

Figure 4: Distribution of classes among clusters (K-means
clustering).

herent clusters. This is consistent with what happens for the
topological organization that the SOMs create for the repre-
sentations provided by the deep networks. Figure 5 shows
that, with the exception of few cases, the visual SOM is able
to group all related objects into nearby spaces.

Word Learning

In order to evaluate the performance of our model in the task
of word learning, we calculate the Taxonomic Factor of the
model as defined in (Mayor & Plunkett, 2010). We do so by
testing the model for its production skills: for each class, 100
images are presented to the visual module, the activation is
propagated through the deep neural network, then fed into the
visual SOM. The activation of the visual SOM’s best match-
ing unit is propagated through the Hebbian connections up
to the acoustic SOM. At the end of the process the resulting
most active unit on the acoustic map is identified. It will be
considered correct if it belongs to the area of the acoustic map

Figure 5: SOM clustering of the visual stimuli representations

associated to that word4. The percentage of correct words
produced by the model when tested through all the classes is
the Taxonomic Factor.

We have performed a number of experiments where we
varied the number of presentations per class used to update
the Hebbian connections. Specifically we let the number of
presentations vary from 1 to 15. For each experiment we
repeated the test over 1.000 different training sets (we kept
fixed the SOM and let vary the images presented to the Heb-
bian learning module) and report the average taxonomic fac-
tor over an independent test set composed by additional 1000
images (100 images per class). Results are shown in Figure
6.

Figure 6: Taxonomic factor of the model, using an increasing
number of pairs of stimuli per class during the training of the
Hebbian Connection (on the x-axis).

Discussion The experiments show that the Taxonomic Fac-
tor steadily grows as more word-object associations are pre-
sented and reaches an accuracy above 80% (which is compa-
rable with results in Mayor and Plunkett (2010)) at the fourth
joint presentation.

4An area in the map is associated to a word if the activation of the
neurons within it are at their peak when they respond to a stimulus
of that particular word.
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Conclusions

In this paper we have proposed an extension of the Mayor and
Plunkett (2010) model for taxonomic responding. We have
addressed the issue of adding realism to the visual stimuli.
As a difference with respect to the original model in which
these inputs were random dot patterns, the model can now
deal with realistic images as those in the ImageNet dataset.
This is possible thanks to the insertion of a deep convolu-
tional neural network in the visual component of the model.
Notwithstanding the higher complexity of the stimuli consid-
ered, our model exhibits taxonomic responding with perfor-
mances comparable to the original one.

In our future work we will address the issue of making the
acoustic module work with realistic stimuli. It can be inter-
esting to explore whether a deep neural network for acoustic
processing, as for instance the one proposed in (Xiong et al.,
2016), could be nested into the acoustic part of the model in a
way similar to what we already did for the visual component.

We will also explore whether the model proposed here can
be used to provide a mechanistic account of the whole object
constraint proposed by Markman (1989) by which a word is
associated to the whole object instead of anyone of its prop-
erties. We conjecture that a model as the one proposed, with
the deep component that extracts a representation of an object
out of a more complex visual scene, can be adequate to the
purpose: the whole object constraint may naturally emerge
from the association of the word to the object’s representa-
tion formed by the deep network. Important to this regard
is the current discussion about the nature of the object repre-
sentation built by deep networks (Ullman, Assif, Fetaya, &
Harari, 2016; Tang & Kreiman, 2017).
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Abstract 

The representation of the distribution of knowledge guides 
information gathering, help seeking, and communication. The 
research aimed to explore adults’ and 4-year-olds’ 
representation of the distribution of common (conventional 
and procedural) knowledge and expert knowledge associated 
with five occupations in their community. In addition, we 
examined estimates of occupation-related everyday (non-
expert) knowledge. Both groups estimated that common 
knowledge is more widely held than expert knowledge, with 
everyday knowledge in between. For adults, but not children, 
the distribution of expert knowledge was correlated with 
estimates of the proportion of people in each occupation.   

Keywords: knowledge distribution; expertise; children; 
development 

Introduction 
People act competently and adaptively in their physical and 
social surroundings. Yet, their understanding of the physical 
and social worlds is staggeringly shallow. The solution of 
this paradox likely rests in the social embedding of human 
behavior: we rely on each other to fill the holes in our 
understanding (Keil, 2003). Understanding who knows what 
and how knowledge is structured is thus a critical aspect of 
human social cognition. Equally important, though less well 
understood, is understanding the distribution of knowledge 
in the population. Distinguishing widely distributed from 
narrowly distributed knowledge could affect both the 
selectivity of our interpersonal interactions and the structure 
of our social networks.  

Knowledge is clearly unevenly distributed. Some 
knowledge, such as conventional knowledge of common 
object labels and functions, is shared by all members of a 
community. Similarly, some experientially derived 
knowledge, e.g., that grass is green, can be expected to be 
known by all in virtue of shared bodily experience. In 
contrast to this “common knowledge,” other knowledge is 
privy to only groups of people within the community. The 
division of labor that characterizes most modern 
communities leads to concentration of different expertise in 
different people. 

Surprisingly, the question of the relative spread of 
different kinds of knowledge has received little attention. 
Most of the literature on expertise has focused on explaining 
the attainment of expertise in various domains of activity 
(Feltovich, Ford, & Hoffman, 1997) and on understanding 
of the clustering of knowledge in different kinds of experts 
(Danovitch & Keil, 2004; Keil, Stein, Webb, Billings, & 
Rozenblit, 2008). For instance, preschoolers appear to 
recognize that expertise is topic-specific and that being an 

expert in one domain does not entail being an expert in 
other domains (Koenig & Jaswal, 2011). Furthermore, by 
age 5, children appear to be able to link their skeletal 
understanding of knowledge domains (psychology, physics, 
biology) with how knowledge is clustered in individual 
minds. That is, they can make an inference from what a 
person knows to what other things the person is likely to 
know (Keil et al., 2008). 

With respect to the spread of knowledge, previous 
research on children’s understanding of expertise provides 
evidence exclusively for the existence of understanding of 
non-overlaps in knowledge. For instance, Lutz and Keil 
(2002) presented 3- to 5-year-old children with a list of 
items representing the expertise of doctors and car 
mechanics. Children were asked questions like “Who would 
know more about how to fix a broken arm?” While children 
identified above chance the relevant expert, this suggests 
sensitivity to non-overlaps in knowledge and that not 
everyone knows a given item. The data do not speak to the 
question of whether children recognize that expert 
knowledge is relatively narrowly distributed in the 
population. 

Similar issues arise with other studies that have addressed 
children’ understanding of differences in knowledge. For 
instance, a number of studies address children’s 
understanding of the difference between child and adult 
knowledge (Aguiar, Stoess, & Taylor, 2012; Fitneva, 2010; 
Fitneva, Ho, & Hatayama, 2016; Taylor, Cartwright, & 
Bowden, 1991; VanderBorght & Jaswal, 2009). 
Nevertheless, these studies only reveal that children identify 
non-overlaps of knowledge between social groups. They 
don’t address children’s representation of the size of social 
groups and therefore fail to capture children’s representation 
of the spread of different kinds of knowledge. Perhaps the 
only study that allows such an inference, Burton and 
Mitchell (2003) showed that by age 7, children limited 
private knowledge to the self and denied its possession by a 
range of adults and children. 

The question of children’s representation of the 
distribution of knowledge has been also examined for 
conventional knowledge such as word meaning (Graham, 
Stock, & Henderson, 2006; Henderson, Weighall, Brown, & 
Gaskell, 2013). The dominant method here involves 
examining whether children extend novel conventional 
knowledge (e.g., of an object label or a game rule) to a new 
person. Although the young children in these studies appear 
to appropriately extend conventional knowledge to others 
but restrict idiosyncratic knowledge such as desires to 
individuals, it is not clear that they see conventional 
knowledge as widely distributed. The reason is that in these 

studies, new individuals are generally not introduced as 
randomly sampled from the population.  

Recent evidence does suggest, however, that children are 
sensitive to indices about the spread of knowledge. For 
examples, Cimpian and Scott (2012) tested the beliefs of 4 
to 7 year olds on how many people would know generic and 
non-generic facts. Children associated generic facts with 
“many” and non-generic facts with “few” people. 
Presumably this performance implies that children assume 
that generic information concerns how the world works and 
see adults as experts about the world (Cimpian & Scott, 
2012).  

The question of how knowledge is distributed in the 
population highlights the social embeddedness of expertise. 
Experts function within a community. The division of labor 
– in many cases the motivator for the development of 
expertise – would not be feasible and workable if it were not 
for the social relations allowing for exchange of goods, 
services, and ideas. Communicating and interacting with 
various experts both rests upon and develops relevant 
knowledge. This knowledge is neither conventional nor 
shared in the same way perception of color is.  In contrast to 
conventional and common experiential knowledge, it can 
show considerable individual differences based on 
experience with the problem domains and/or access to 
experts. We call this knowledge “everyday knowledge.” 

To sum up the goal of this study was to examine young 
children’s understanding of the distribution of expert, 
everyday, and conventional knowledge. In particular, we 
had three questions: 1) Do children associate expert 
knowledge with a smaller proportion of the population than 
common knowledge? 2) Do they associate it with a smaller 
proportion of the population than everyday knowledge? 3) 
Is the perceived distribution of expert knowledge related to 
the perception of number of experts in the community?   

Even though past research has documented that by age 
four children understand that the knowledge of adult experts 
is not co-extensive (Lutz & Keil, 2002), they may 
nevertheless associate expert knowledge with large portions 
of the population and not recognize that expert knowledge is 
more narrowly distributed than common and everyday 
knowledge. This would be consistent with children seeing 
adults as omniscient (Piaget, 1959), or at least people 
capable of  exceptional performance in more than one 
domain. Alternatively, we expected that even 4-year-olds 
might associate expert knowledge with a smaller portion of 
the population than everyday and common knowledge. This 
is because even very young Canadian children have first 
hand contact with experts (e.g., doctors) and observe the 
exchange of goods, services, and ideas ensuing from the 
division of labor. 

There are a number of ways in which people can develop 
understanding of the spread of expertise. One of them is 
keeping track of the people they encounter in different 
occupations. If this is the case, participants’ estimates of the 
proportions of experts among adults would correlate with 
their estimates of the proportion of people with expert 

knowledge. Thus, the study included questions asking 
participants to estimate the prevalence of different 
occupations in their community. 

The study included adults and 4-year-old children who are 
among the youngest to demonstrate recognition of non-
overlaps in the knowledge of adults (Lutz & Keil, 2002). At 
this age, children are also sensitive to relative magnitude.  

Method 

Participants 
Thirty-six 4-year-old children and 18 adults participated in 
the study. The children lived in the mid-size urban 
community of Kingston, Ontario and the adults were 
students at Queen’s University in the same city. Six children 
were excluded due to not completing the study (2), self-
professed silly attitude (1) and clear pattern in responding 
(i.e., going up / down the scale, 3).  Thus the final sample 
included 30 children (average age 54 months, range 48-60; 
19 girls, 11 boys).  

Materials 
We asked participants to indicate their perception of the 
distribution of expert knowledge, everyday knowledge in 
the same domains, and common knowledge. The expert 
knowledge pertained to five occupations: farmers, builders, 
pilots, car mechanics, and doctors. These occupations 
include the ones frequently appearing in the literature and 
vary in frequency in the community (more builders, car 
mechanics and doctors relative to farmers and pilots). An 
example of an expert knowledge question is “How many 
grown-ups know how to fix a broken arm?”. The 
corresponding everyday knowledge question was “How 
many grown-ups know how to take their temperature?”  

The five common knowledge items referred to 
conventional knowledge, e.g., “How many grown-ups know 
how to use a fork?” and procedural knowledge, e g., “How 
many grown-ups know how to lock their front door?” To 
examine whether the reported spread of expert knowledge 
corresponded to participants’ perceived number of experts 
in the community, we also asked an occupation-focused 
question in each domain, e.g., “How many grown-ups in 
Kingston are doctors?” Participants were also presented 
with 12 questions about the distribution of various 
individual characteristics and behaviors, e.g., “How many 
grown ups in Kingston go to work / have pets?” These 
property questions aimed to further prompt thinking about 
wider and narrower sets of the population. 

Children answered the questions on a 5-point scale with a 
slider. The five points depicted with pie charts 0%, 25%, 
50%, 75%, and 100% of the population. Note that this scale 
was not designed for recording realistic estimates of 
prevalence. This would have required a logarithmic scale 
and we were not aware of evidence of successful use of such 
a scale with children.  

For the adults, the questions were presented on a piece of 
paper. The instructions and a figure representing a 0-100 
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scale with the pie charts used with the slider appeared on 
top of the page.  

Procedure 
Adults Adult participants answered the questions by writing 
down their answers next to each question. They were free to 
answer the questions with any number they wished in the 0-
100 range. Adults received course credit for participating. 

 
Children The experiment began by explaining to children 
that they will be asked questions about grown-ups. After 
that, the experimenter informed them that they were to 
answer the questions by moving the slider to the pie chart 
that showed the relevant proportion of grown-ups who 
know. As a warm-up, children were asked to position the 
slider in the all, none, and half positions. Children were also 
asked “How many grown ups in Kingston are shorter/taller 
than you?” to provide practice answering with the slider.  

Children were asked the experimental questions in the 
same random order, with the property questions interspersed 
among them. Although children were free to position the 
slider anywhere on the 0-100 scale, they used the five 
points, consistent with the directions they received. 

Subsequently, children were asked whether or not their 
parents knew the items, e.g., “Do mom and dad know how 
to fix a broken arm?” These questions aimed to provide an 
assessment of whether children encountered the relevant 
information in their homes. The study included several 
additional questions the data from which have not yet been 
analyzed. These questions were presented later and do not 
affect the current results. Parents also answered questions 
regarding their child’s familiarity with a large set of 
occupations.  

Results 
Figures 1 and 2 show respectively adults’ and children’s 
responses to the questions about adults in the occupations of 
builder, car mechanic, doctor, farmer, and pilot, and related 
expert and everyday knowledge. In addition, they show the 
groups’ estimates of the prevalence of common knowledge.  

The research questions identify two key comparisons in 
the data: expert – common knowledge and expert – 
everyday knowledge. In addition, we examined the 
correspondence between participants’ estimates of the 
proportion of people in the five occupations and the 
distribution of expert knowledge related to these 
occupations in the population. Thus, the analytical approach 
included a combination of targeted t-tests and analyses of 
variance and correlation. 

Adults 
As Figure 1 suggests, on average, adults associated expert 
knowledge with a significantly smaller proportion of the 
population than common knowledge (Mexpert = 9.93; Mcommon 
= 92.16; t(17) = 36.36, p < .001). 

 

 
 

Figure 1. Adults’ estimates of the proportion of the 
population in five occupations and of the distribution 
of related expert and everyday knowledge. Adults’ 
estimate of the distribution of common knowledge 
appears on the right. Error bars represent ± 1 SE. 

 
 

 
 
Figure 2. Children's estimates of the proportion of 
the population in five occupations and of the 
distribution of related expert and everyday 
knowledge. Children’s estimate of the distribution of 
common knowledge appears on the right. Error bars 
represent ± 1 SE.  

 
We conducted an area (5) x question (occupation-

focused, expert knowledge, everyday knowledge) repeated 
measures ANOVA to assess the differences in adults’ 
assessments of the prevalence of the five occupations, 
expert knowledge, and everyday knowledge. Both main 
effects and the interaction effect were significant. The effect 
of area (F(4, 68) = 42.7, p < . 01) reflected that some 
occupations and related knowledge were perceived as more 
common in the community than others. Of key interest, was 
the effect of question, F(2, 34) = 138.2, p < . 01. As Figure 
1 suggests, there was a significant difference in the 
estimates of the distribution of expert and everyday 
knowledge (Mexpert = 9.93; Meveryday = 41.42; t(17) = 11.66, p 
< .001). Furthermore, there was no difference in 
participants’ responses to the occupation and expert 

knowledge questions, t(17) = 1.08, p = 0.295. Given the 
significant interaction effect between area and question 
(F(8, 136) = 47.7, p < . 01), we conducted two follow-up 
analyses. First, we examined the difference between expert 
and everyday knowledge items in each area. Although 
always in the expected direction, this difference was 
significant in three of the five areas (the exception being 
farmer and pilot).  

Second, as we were interested in the relationship 
between participants’ perceptions of the proportion of 
professionals and of the distribution of expert knowledge, 
we calculated the correlation between these variables (rather 
than their difference). The correlations ranged from .45 to 
.89 (p’s ≥ .06) suggesting an overall significant relation 
between these variables.  

In sum, adults recognized that expert knowledge is less 
prevalent than common knowledge. Furthermore, their 
estimates of the distribution of expert knowledge was tightly 
linked to their beliefs about the proportion of people in each 
occupation.  

Children 
As Figure 2 suggests, 4-year-olds associated the common 
knowledge items on average with 79% of the population, 
which was significantly larger than their estimate of the 
prevalence of expert knowledge 53%, t(29) = 5.1, p < 0.01. 

As for the adults, we conducted an area (5) x question 
(professional, expert knowledge, everyday knowledge) 
repeated measures ANOVA on children’s responses to the 
questions about the distribution of expert and everyday 
knowledge and occupations. The analysis only showed a 
significant effect of question type, F(2, 58) = 6.2, p < .01. 
Children associated expert knowledge with a significantly 
smaller proportion of the population than everyday 
knowledge (Mexpert = 53; Meveryday = 67; t(29) = 3.61, p < 
.01). The difference in children’s estimates of the number of 
professionals in the population and the distribution of expert 
knowledge was not significant, t(29) = 1.35, p = 0.19. The 
correlations between children’s answers to these two 
questions in the individual areas ranged between .3 and .45 
and with the exception of highest (for farmer domain) failed 
to reach significance.  

Interestingly, children’s estimate of the proportion of 
people in the five occupations was on average of 58%. It 
was higher than their estimate of the proportion of people 
with related expert knowledge (53%) but lower than their 
estimate of the distribution of everyday knowledge (67%).  

The next analysis examined 4-year-old’s responses to the 
questions regarding their parents’ knowledge. Children’s 
answers were averaged across area. Common knowledge 
was attributed to parents on average 90%, significantly 
more often than either expert or everyday knowledge (both 
t’s < .01). Everyday knowledge was more likely to be 
attributed to parents than expert knowledge (Mexpert = 35; 
Meveryday = 64; t(29) = 4.86, p < .01). The difference between 
expert and everyday knowledge was significant for all areas 
except car mechanic. 

Discussion 
The present findings enrich our understanding of children’s 
and adults’ representation of the spread of different kinds of 
knowledge. Adults showed clear differentiation between 
expert knowledge and related everyday knowledge as well 
as between expert knowledge and common knowledge. 
Furthermore, their estimates of the distribution of expert 
knowledge closely corresponded to their estimates of the 
frequency of different occupations. Children also indicated 
that expert knowledge is less widely distributed than 
everyday knowledge and common knowledge. Past research 
has revealed that children recognize that different adults 
know different things (Keil et al., 2008; Lutz & Keil, 2002). 
The current study extends these findings to demonstrate that 
both children and adults see differences in the spread of 
different kinds of knowledge.   

It is important to note that children’s responses in the 
present study are unlikely to be affected by generic 
language that distinguishes knowledge that most people 
have from idiosyncratic knowledge of individuals. As 
mentioned, children can use generic language to distinguish 
widely and narrowly known novel facts (Cimpian & Scott, 
2012). Generic language did not distinguish the stimuli in 
the different conditions in present study. Thus, 4-year-olds 
not only judge widely and narrowly held knowledge based 
on linguistic cues but have built representations of how 
knowledge in their environment varies in its spread. 

How do people arrive at these representations, especially 
with regards to expert knowledge? One possible route to 
representing the spread of expert knowledge is through 
considering the frequency of different occupations. Indeed, 
there was a clear relationship between adults' estimates of 
the proportion of people with the target occupations and the 
proportion of people with occupation-related knowledge.  

However, no such relationship was evident in the 
children's data. In fact, children’s estimates of the frequency 
of different occupations were in-between the spread of 
expert and everyday knowledge. This finding suggests that 
children may not arrive at a representation of the 
distribution of knowledge considering the frequency of 
experts. It is possible that children’s estimates of the 
distribution of expert knowledge and people in related 
occupations derive from different sources. Naturally, the 
occupation questions focused on social actors while the 
expert knowledge questions focused on mental states 
associated with activities. For young children, tracking 
activities may be easier (given that their estimates were 
lower and thus more realistic) than the social agents 
associated with those activities.  

Another route children can take to developing 
understanding of whether something is widely or narrowly 
known is through observations of adults in the family. 
Indeed, the analyses revealed that children crisply 
differentiated expert, everyday, and common knowledge 
when asked whether their parents have that knowledge. 

Children appear to believe that the number of people in 
each of the five occupations targeted by the study is over 
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50%. This conflicts with a number of assumptions adults 
make about expertise, e.g., that a person does not have an 
opportunity to develop professional expertise in many areas, 
but is consistent with findings suggesting that children 
extend expertise to other domains (Taylor et al., 1991). It 
may not be warranted, however, to make much of the 
absolute value of these numbers. First, children may have 
very well been providing relative answers (e.g., “many” vs. 
“few”) and, second, the scale was not conducive to 
capturing realistic estimates of the small proportion of the 
population in the target professions. It will be useful to 
explore in future research whether children can work with a 
logarithmic scale.  

On the flip side, even though high, children’s estimate of 
the number of people in different occupations suggests that 
they realize that not everyone has the same profession (only 
half do!). In other words, although they may consider adults 
to be well rounded, they do not consider them omniscient. 

Clearly, the present conclusions are limited by the 
occupations that were represented and the associated items 
chosen for the study. As the analyses suggested, the 
magnitude of the difference between expert and everyday 
knowledge varied substantially across areas. The domains 
were intentionally chosen to vary in the representation of 
the different occupations in the community. This could have 
affected the results, as the low frequency of pilots and 
farmers could have led to floor effects in the answers to both 
knowledge questions. It is also possible that the variability 
by area is due to the particular items chosen for the study. 
Nevertheless, even though the effect sizes varied across 
occupation for both age groups, their direction was 
consistent.  

In conclusion, the present study is one of the first to 
provide clear evidence pertaining to adults’ and children’s 
beliefs about the relative spread of common, expert, and 
everyday knowledge. Even 4-year-olds discriminated 
between what everyone in their community is likely to 
know and expert knowledge, i.e., knowledge obtained 
through extensive experience and training. These findings 
complement our current understanding of people’s 
representation of the clustering of knowledge (Danovitch & 
Keil, 2004; Keil et al., 2008) and help build a 
comprehensive picture of the social landscape in people’s 
minds which supports adaptive behavior in the face of 
incomplete knowledge.  
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The Effects of Shared Storybook Reading on Word Learning: A Meta-Analysis
Zoe Flack

University of Sussex

Andy Field
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University of Sussex

Abstract: Although a rich literature documents pre-literate children’s word learning success from shared storybook reading,
a full synthesis of the factors which moderate these word learning effects has been largely neglected. This meta-analysis
included 37 studies with 2,256 children, reflecting 104 effect sizes, investigating how the number of target words, tokens,
story repetitions, reading styles and related factors moderate children’s word comprehension. Dialogic reading styles, tokens,
the number of words tested and story repetition all moderated word learning effects. Children’s age, who read, number of
target words and time between story and test were not moderators. These results provide information to guide researchers and
educators alike to the factors with the greatest impact on improving word learning from shared storybook reading.
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Abstract 

Two experiments tested how the number of illustrations in 
storybooks influences 3.5-year-old children’s word learning 
from shared reading. In Experiment 1, children encountered 
stories with either two illustrations, one illustration or one 
large illustration (in the control group) per spread. Children 
learned significantly fewer words when they had to find the 
referent within two illustrations presented at the same time. In 
Experiment 2 a gesture was added to guide children’s 
attention to the correct page in the two illustrations condition. 
Children who saw two illustrations with a guiding gesture 
learned words as well as children who had seen only one 
illustration per spread. Results are discussed in terms of the 
cognitive load of word learning from storybooks. 

Keywords: word learning; cognitive load; extraneous 
information; storybooks; illustrations. 

 
Sharing illustrated storybooks is a common activity for 
parents and young children (e.g., Rideout, Vanderwater, & 
Wartella, 2003) and provides a richer source of vocabulary 
than everyday conversation (Montag, Jones, & Smith, 
2015). Several studies demonstrate that the styles of 
illustrations influence how well children learn from books 
(e.g., Tare, Chion, Ganea, & DeLoache, 2010). However, 
little is known about how the number of illustrations 
influences learning. The current experiments investigate 
how well children learn new words from storybooks when 
they view one or two illustrated scenes at a time.  
 Pre-literate children rely on illustrations to help them 
make sense of the story content (for a review see, Wagner, 
2013). Specifically, in an eye-tracking study, Justice, 
Skibbe, Canning, and Lankford (2005) found 4-year-old 
kindergarten children looked longer at the illustrations than 
the print that accompanied texts, indicating that even with 
some emerging print awareness, children look primarily at 
illustrations. In another eye-tracking study, Evans and Saint-
Aubin (2005) found that even with a range of illustration 
styles, preschool children spent the majority of their time 
looking at illustrations and only 6% of their time looking at 
the printed text (see e.g., Roy-Charland, Perron, Boulard, 
Chamberland, & Hoffman, 2015; Roy-Charland, Saint-
Aubin, & Evans, 2007). 

Pre-literate children have a growing awareness of reading 
conventions, such as, print conveys meaning and is read 
from left-to-right and top-to-bottom (for a review see 
International Reading Association & The National 

Association for the Education of Young Children, 1998; 
Snow, Burns, & Griffin, 1998). However, because they 
cannot yet read, young children are unlikely to know when 
the reader has moved from the left-hand page to the right-
hand page. That is, children may be unable to determine 
which illustrated scene represents which part of the story. 
Thus, multiple illustrated scenes displayed simultaneously 
may make it more challenging to associate new words with 
their illustrated representations. 

Evidence suggests that word learning is even more 
challenging for children when increasing amounts of 
perceptual information are presented simultaneously. For 
example, children struggle to learn object names when 
target objects are presented in less predictable locations 
(Benitez & Smith, 2012), with many extraneous objects 
(Horst, Scott, & Pollard, 2010) and with multiple 
combinations of extraneous objects, rather than the same 
combinations repeatedly (Axelsson & Horst, 2014). Such 
findings are consistent with cognitive load theory (Sweller, 
1998, 1989 or see, Paas, Renkl, & Sweller, 2003 for a 
review), which explains how working memory capacity is 
inherently limited and is especially problematic in situations 
with extraneous information. Thus, reducing extraneous 
perceptual information helps children focus on the target 
information, which then improves learning. For example, 
Son, Smith, and Goldstone (2008), reduced cognitive load 
by providing simplified depictions of novel objects and 
found that this promoted better generalization of novel 
objects than more complex examples. Whether decreasing 
the number of illustrated scenes presented simultaneously in 
a storybook also decreases the cognitive load of word 
learning from shared storybook reading remains unknown.  
 In the current experiments we investigate whether 
decreasing the number of storybook illustrations presented 
simultaneously increases preschool children’s ability to 
learn words incidentally from shared storybook reading. All 
children were presented with three storybooks that included 
illustrated scenes of a family’s activities. The same two 
novel objects were included across the scenes and were 
named on the pages on which they were depicted (four 
pages for each object). Critically, all children heard the 
same three stories and saw the same 10 illustrations per 
story, however, the number of illustrations presented 
simultaneously and guidance varied across conditions. In 
Experiment 1, children saw either two illustrations (one 
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scene on each page of the open book) or one illustration 
(only on the right-hand page with the other side blank). 
Children in a control condition saw a large storybook (cf. 
Big Book Reading, Tse & Nicholson, 2014) with one 
illustrated scene the same size as the two illustrations 
combined because we were concerned that another 
difference between the other conditions was the length of 
time needed to visually scan the two illustrations rather than 
one illustration. If decreasing the number of illustrations 
also decreases the cognitive load of word learning from 
storybooks then children should learn more words when 
they see only one illustration at a time. In contrast, if the 
number of illustrations does not affect cognitive load, then 
children should learn words equally from one- or two-
illustration books.  In Experiment 2, we investigate whether 
guiding children’s attention to the correct page with a 
simple gesture helps children focus on the correct page and 
improves word learning—even with two illustrations. 

Experiment 1 

Method 
Participants Thirty-six 3.5-year-old children (M = 41.99 
months, SD = 1.76 months, range = 38.87-45.14 months) 
participated. Children were monolingual, British-English 
speakers from predominantly middle-class families. All 
children were typically developing with no reported speech 
or language difficulties. Twelve children each were 
randomly assigned to one of the three conditions: one 
illustration (M = 41.87, SD = 0.65, 6 girls), two illustrations 
(M = 42.85, SD = 0.43, 6 girls), or control condition (one 
large illustration, M = 41.92, SD = 0.45, 6 girls). There was 
no difference in maternal education levels between 
conditions, Fisher’s Exact Test = 3.71, p = .98. Two 
mothers each in the one and two illustrations conditions and 
three mothers in the control condition had completed high 
school (GCSEs and/or A-levels) and/or completed a 
vocational diploma or access course. Eight mothers each in 
the one and two illustrations conditions, and six in the 
control condition had an undergraduate degree and/or an 
undergraduate degree with a postgraduate certificate (e.g., 
Postgraduate Certificate in Education (PGCE), an additional 
teaching qualification). One mother each in the one 
illustration and control conditions had a Master’s degree and 
one mother in each condition had a doctoral degree. One 
mother in the two illustrations condition and one mother in 
the control condition declined to answer this question. 
Parents were reimbursed for travel costs and children chose 
a small gift as a thank you for participating (e.g., a colouring 
book).  
 
Storybooks. Stimuli included three 10-page storybooks 
slightly modified from Horst, Parsons, and Bryan (2011) 
The Very Naughty Puppy, Nosy Rosie at the Restaurant, and 
Rosie’s Bad Baking Day. Each storybook depicted and 
named the same two novel objects four times. Each object 
had a function: the orange inverted slingshot functioned like 

a hand mixer (tannin) and the metal kinetic wheel was used 
like a rolling pin (sprock). Throughout each story, objects 
were named incidentally and were not the focus of the story. 
The objects appeared twice on their own pages and twice 
together. We used real photographs edited with the poster 
edges feature in Photoshop to make them look like drawings 
typical of a commercially available children’s book. Across 
storybooks there was no difference in the number of words 
per page, M = 45, SD = 9.34, F(2,24) = 0.98, p = .39. 

All children heard the same stories and saw all the 
illustrations for each story. The only difference between 
conditions was the way storybooks were printed (see Figure 
1): children either heard stories with two A4 illustrated 
scenes per open spread, one A4 illustrated scene per spread 
(i.e., the left-hand page was always blank), or one A3 
illustrated scene per spread. In the ISO A-series paper 
system (i.e., European standard), A3 pages (29.70 x 42.00 
cm) are twice the size of A4 pages (21.00 x 29.70 cm), thus 
the A3 condition served as a control condition where the 
storybooks included only one illustration per spread (as in 
the one A4 illustration condition) but included the same 
overall illustrated area as the two A4 illustrations condition). 
Because the one illustrations condition differed from the 
two illustrations condition in both surface area and amount 
of items/details, we wanted to include a control condition to 
disentangle which of these was driving any potential effects. 
Equating the number of items/details would have precluded 
presenting all children with the same illustrations; therefore, 
we tested surface area as the control condition. Data from all 
three conditions were collected at the same time.  

Figure 1. Page 5 in Rosie’s Bad Baking Day as seen by 
children in the 2 illustrations, 1 illustration and 1 large 
illustration conditions, respectively. Note, in the 2 
illustrations condition page 4 is viewed at the same time as 
page 5. 
 
Test stimuli. An A4 test booklet with images of four novel 
objects per right-hand page was used on the test trials (the 
left-hand pages were blank). On each page, four objects 
were presented on a plain white background without any 
other contextual information. Across test trials the targets 
(tannin and sprock) were presented with four additional 
novel objects that the children had not previously seen, so 
that each trial would present children with a different 
combination and it would not appear that a question was 
being repeated. Finally, a practice trial page included 
images of four known objects: a dog, a plane, a duck and a 
chair.  
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Procedure. Each child was tested individually in a 
children’s lab at the university. During the reading phase, 
the experimenter sat opposite the child and held the 
storybook upright, to her side, with the pages facing the 
child, like a preschool teacher would when reading to a 
group of children during “circle time.” The parent sat on a 
seat in a different corner of the room. All children were read 
each of the three stories. For each child all three stories were 
presented in the same format (e.g., two illustrations per 
spread). No dialogic techniques, such as giving definitions 
for novel words or pointing, were used during the readings. 
Story-order was counterbalanced across children. 
 After reading the final story, the experimenter proceeded 
to the test phase, which began with four warm-up trials to 
get the child used to pointing to pictures in the test booklet 
and to ensure the child understood the task. The 
experimenter opened the test booklet to one of the warm-up 
trial pages and asked the child to point to one of the familiar 
objects (e.g., “can you point to the plane?”). Across the four 
counterbalanced warm-up trials, children were asked to 
point to an object in each quadrant of the page. Next, the 
experimenter tested word learning. On each trial the 
experimenter turned to a different test page and asked the 
child to point to one of the novel objects. In total children 
were asked to point to each target novel object twice (see 
also Werchan & Gómez, 2014). On half of the trials one 
target was present (e.g., sprock with three other novel 
objects) and on half of the trials both targets were present 
(e.g., sprock and tannin with two other novel objects). 
These latter trials ensured that children were not simply 
choosing the correct object because it had been the only one 
they had previously seen (for a review of this issue see 
(Axelsson & Horst, 2013). Trial order, page and quadrant 
were counterbalanced across participants.  
 To confirm that children do not dislike books with only 
one illustration per page, we also asked children to rate their 
enjoyment of the individual stories and found no differences 
in enjoyment across stories or conditions, therefore for 
brevity these data are not included here but are available 
from the authors upon request.  

Results 
Children in the one illustrations condition (M = 0.75, SD = 
0.34, t(11) = 5.14, p < .001, d = 1.48) and in the control (one 
large) condition (M = 0.75, SD = 0.30, t(11) = 5.75, p < 
.001, d = 1.66), chose the target object more than expected 
by chance (.25) see Figure 2, Left Panel. However, with 
Bonferroni’s correction (p = .017), children in the two 
illustrations condition did not chose the target object more 
than expected by chance (M = 0.44, SD = 0.28, t(11) = 2.28, 
p = .04, d = .66). To test for differences between illustration 
formats, children's proportions of correct choices were 
entered into an ANOVA with illustration format (two, one, 
one large) as between-subjects factor. The ANOVA yielded 
a main effect of illustration format, F(2, 33) = 4.10, p = .03, 
partial η2 = 0.20. Planned contrasts showed that children 
who saw two illustrations learned fewer words than children 

who saw one illustration per spread, t(33) = 2.87, p = .007, 
partial η2 = 0.20. There was no difference in word learning 
between one illustration in A4 or one illustration in A3 t(33) 
= 0.00, ns. Thus, illustration size did not affect word 
learning, but the number of illustrations did. 
 

 
 
Figure 2. Proportion of correct word learning trials for 
Experiment 1 (left) and Experiment 2 (right). Error bars 
represent +1 SEM. 

Discussion 
Many illustrated storybooks are printed with two 
illustrations per spread (e.g., In the Night Kitchen by 
Maurice Sendak or Dinosaur Roar! By Paul and Henrietta 
Stickland)—if not more (e.g., The Incredible Book Eating 
Boy by Oliver Jeffers contains 6 illustrations on pages 7-8). 
Further, some books include a combination of one or more 
illustrations per spread (e.g., The Smartest Giant in Town by 
Julia Donaldson). Our goal is not to suggest that all of these 
books be reprinted. Therefore, we conducted a 
supplementary experiment to provide children with 
additional support so that they can learn from storybooks 
with multiple illustrations.  

Because young children do not necessarily know when the 
text is referring to the left- or right-hand page, they may 
benefit from a non-verbal gesture to look to the correct 
page. Specifically, a non-verbal signal may help children to 
focus on the correct illustration at the correct time, thus 
improving their chances of learning new words from the 
storybook (cf. Booth, McGregor, & Rohlfing, 2008).  

Thus, in Experiment 2 we again read children storybooks 
with two illustrations per spread, but included a quick 
sweeping hand gesture to indicate which page we were 
reading from. We chose a sweeping gesture over other 
possible techniques to keep the manipulation visual without 
additional auditory information. We did not use a pointing 
gesture because we wanted to perform the same gesture on 
every page and some pages did not include a novel object, 
while others included both novel objects. Thus, this 
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sweeping gesture allowed us to maintain an incidental word 
learning task, rather than providing ostensive reference. If 
storybooks with one illustrated scene per spread are more 
helpful than storybooks with two illustrated scenes because 
children do not know which page to look at, then guiding 
them towards the correct page should improve word 
learning to similar levels as those from single illustration 
displays.  

Experiment 2 

Method 
Participants An additional twelve 3.5-year-old children (M 
= 40.45 months, SD = 1.30 months, range = 38.45 to 45.03 
months, 6 girls) participated. Children were monolingual, 
British-English speakers with no reported speech or 
language difficulties. Two mothers had completed high 
school (GCSE’s and/or A-levels), seven had an 
undergraduate degree or an undergraduate degree with a 
postgraduate certificate. One mother had completed a 
Master’s degree, one a doctoral degree and one declined to 
provide this information. Parents were reimbursed for travel 
costs and children chose a small gift as a thank you for 
participating (e.g., a colouring book). 
 
Stimuli. The same stimuli were used as in the two 
illustrations condition in Experiment 1. 
 
Procedure 
All children were read the three storybooks with two 
illustrations per spread. The procedure was the same as in 
Experiment 1 except that before reading each page, the 
experimenter smoothly swept her open hand from the top of 
the page to the bottom, thereby drawing children’s attention 
to the correct page.  

Results  
Children learned the words from the story (see Figure 2, 
Right Panel). Specifically, children chose the target object 
more than expected by chance (M = 0.88, SD = 0.17, t(11) = 
12.84, p < .001, d = 3.71). Our goal was to determine 
whether adding a simple gesture would be sufficient to 
improve children’s word learning from storybooks with two 
illustrations per spread. Thus, we compared the word 
learning performance of children in the current study to 
children in the two illustrations condition of Experiment 1. 
Children who had the additional support to guide their 
attention to the correct page learned words significantly 
better than children who did not have that support, t(22) = 
4.58, p < .001, d = 8.78. 

Discussion 
In Experiment 2 we investigated whether orienting 
children’s attention to the correct storybook page with a 
simple gesture while reading could diminish the effects of 
cognitive load from multiple illustrated scenes found in 
Experiment 1. Adding the gesture did not significantly 

increase the amount of time needed to read the story, but did 
significantly improve children’s word learning compared to 
reading without a guiding gesture.  

The rates of word learning observed in Experiment 2 are 
similar to other studies using dialogic reading techniques, 
such as pointing or asking questions (Walsh & Blewitt, 
2006). For example, Ard and Beverly (2004) read 
storybooks to 3- and 4-year-old children either verbatim or 
with one of three dialogic techniques; added questions, 
added comments, or both questions and comments. Children 
learned approximately 75% of the new vocabulary with the 
dialogic reading techniques included but only 53% with 
verbatim readings. Although the efficacy of the use of 
dialogic techniques to improve children’s word learning 
from storybooks is not in doubt, multiple dialogic 
techniques are often employed in combination, making it 
harder to compare effects across the literature for individual 
techniques (see Wasik, Hindman, & Snell, 2016 for a recent 
review). It is therefore particularly exciting to see that such 
a simple gesture could have such powerful effects on 
children’s learning.   

General Discussion 
Across two experiments we investigated whether decreasing 
the number of storybook illustrations presented 
simultaneously increases preschool children’s ability to 
learn words from shared storybook reading.  In Experiment 
1 we read children 10-page stories with either one, two, or 
one large illustration per spread. Children learned the new 
words better when presented with only one illustration per 
spread, regardless of the image size, even though all 
children saw the same number of illustrations overall. In 
Experiment 2 we read children the same stories with two 
illustrations per spread, but added a small sweeping gesture 
to indicate which page we were reading. Although children 
in this condition were presented with multiple illustrations 
at once, they were able to learn more words than expected 
by chance and more words than children presented with the 
same number of illustrations but no guidance on which page 
to attend to. Taken together these findings suggest that 
children’s word learning is improved by helping children 
focus on the relevant information by either reducing the 
number of illustrations presented (Experiment 1) or 
directing their attention to the correct illustration 
(Experiment 2).   
 These findings are consistent with cognitive load theory 
(Paas et al., 2003; Sweller, 1988, 1989), which suggests that 
extraneous information can prevent optimal learning.  The 
more information children need to think about, the more 
challenging the task. Consequently, removing extraneous 
perceptual information may improve learning (see, e.g., Son 
et al., 2008). For example, kindergarten children are better 
able to learn information from science lessons when the 
extraneous information of a highly-decorated classroom is 
removed (Fisher, Godwin, & Seltman, 2014). Similarly, 
reducing the amount of extraneous information in graphs 
improves children’s mathematics skills (Kaminski & 
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Sloutsky, 2013) and removing extraneous information in 
ABC books improves alphabet learning (Chiong & 
DeLoache, 2012). In the current study, in the two 
illustrations format, children are faced with processing 
additional materials—which in some cases may even 
provide conflicting information—slowing down the process 
of word learning.  Children do not know when the story 
moves from one illustration to the other. In contrast, in the 
one illustration format, the child is provided with only the 
relevant scene, which corresponds with the text they are 
currently hearing, thereby reducing the cognitive load 
associated with understanding the story and the new words.  
Similarly in Experiment 2, children are directed towards the 
relevant scene, thereby reducing cognitive load.  

Although children in the current studies learned target 
words better when presented with single illustrations, there 
may be benefits for other types of learning from multiple 
illustrations.  For example, story comprehension may be 
better supported by having more to look at, particularly as 
visual attention to illustrations during storybook reading 
predicts story comprehension (Kaefer, Pinkham, & Neuman, 
2016).  
 The current findings may also be informative for research 
comparing e-books (i.e., storybooks presented on screens) 
with traditional two-illustration paper storybooks. Some 
studies report a deficit in learning from e-books (e.g., 
Segers, Takke, & Verhoeven, 2004) while others do not 
(e.g., Korat & Shamir, 2007). One explanation for this 
discrepancy is that e-books often contain added 
manipulative features, which may hinder learning.  For 
example, e-books often contain additional games (e.g., de 
Jong & Bus, 2002) or interactive dictionary features (e.g., 
Korat, 2009). Previous research indicates that added 
manipulative features such as pull-tabs hinder learning from 
paper books (Tare et al., 2010), however some features of e-
books may be helpful in the same way as dialogic 
techniques by highlighting key information at the right time. 
Another explanation is that e-books are often presented only 
one illustration at a time (e.g., Verhallen & Bus, 2011), 
which could be an additional confounding factor when 
comparing between storybook media types. The current 
findings suggest that such single illustrations help children 
focus their attention on relevant information and may aid 
learning especially when children are exploring books 
without an adult.  

The current experiments demonstrate that reducing the 
number of simultaneous illustrations to just one at a time 
improves children’s word learning from shared storybook 
reading.  This has important implications for educational 
research and suggests that even seemingly minor differences 
in illustration format can result in significant differences in 
how well children learn. These findings should help shape 
future storybook research design, and provide useful 
practical solutions, which could be used by teachers and 
parents alike and may inform our understanding of how to 
create eBooks and other media that children may encounter 
without an adult. Furthermore, in an age of seemingly 

endless possibilities, they provide a stark reminder that less 
is sometimes more. 
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Abstract

Some studies hypothesize a strong interdependence between
speech and tool use development in the first two years of life.
To help understand the underlying mechanisms, we present
the first robotic model learning both speech and tool use from
scratch. It focuses on the role of one important form of body
babbling where exploration is directed towards self-generated
goals in free play, combined with imitation learning of a con-
tingent caregiver. This model does not assume capabilities for
complex sequencing and combinatorial planning which are of-
ten considered necessary for tool use. Yet, we show that the
mechanisms in this model allow a learner to progressively dis-
cover how to grab objects with the hand, how to use objects
as tools to reach further objects, how to produce vocal sounds,
and how to leverage these vocal sounds to use a caregiver as
a social tool to retrieve objects. Also, the discovery that cer-
tain sounds can be used as a social tool further guides vocal
learning. This model predicts that the grounded exploration of
objects in a social interaction scenario should accelerate infant
vocal learning of accurate sounds for these objects’ names.
Keywords: tool use; speech development; free play; explo-
ration; imitation learning; social tool use; goal babbling

Introduction
Some studies hypothesize that there might be a strong in-

terdependence between speech and tool use development in
the first two years of life (Gibson, Gibson, & Ingold, 1994).
Tool use and language seems to require similar information
processing capabilities allowing the production and percep-
tion of sequential combinations of increasing complexity,
from reaching to spoon self-feeding and from words to sto-
ries. In addition to showing similar compositional proper-
ties, speech and tool use might share some neural correlates
involving Broca’s area (Higuchi, Chaminade, Imamizu, &
Kawato, 2009). Those common neural correlates could have
an evolutionary origin in the hominid lineage, where a selec-
tion pressure for complex tool use, language and social be-
haviors might have together driven the increase in brain plan-
ning capabilities (Morgan et al., 2015). In particular, the de-
velopment of tool use precursors follows several overlapping
phases of behaviors: 1) body babbling, where babies learn to
control their body parts, 2) interacting with a single object,
and 3) exploring object-object interactions (Guerin, Kruger,
& Kraft, 2013). From pointing movements to the control of a
rake, new representations and physical understanding are de-
veloped to allow the planning of tool use actions composed
of combinations of more simple actions, e.g. grasping the
rake. During the same period, infants progressively learn how
to efficiently use their vocal tract, comprising many complex
actuators from the larynx to the lips. At birth, they produce
immature protophones like squeals, growls or quasi-vowels,
and by the end of their first year they are able to produce the
speech-like syllables of their native language (Oller, 2014).
Those syllables then form words which become the basis

of syntactic combinations essential to language expressive-
ness. Infants do not only explore tool use and vocalizations
by themselves, driven by intrinsic motivations (Moulin-Frier,
Nguyen, & Oudeyer, 2013), but also spend a great part of
their time interacting with their parents and other social peers
where imitation is thought to be one of the important develop-
mental pathways (Meltzoff, 1999). For instance, infants im-
itate the vowels produced by an adult speaker by 6 month of
age (Kuhl, 2004), and 1.5-year-olds imitate demonstrations of
a rake-like tool function to retrieve an out-of-reach toy (Chen
& Siegler, 2000).

In order to investigate hypotheses about the joint develop-
ment of speech and tool use, we seek to build an embodied
model of tool use and speech learning. Existing robotic mod-
els of tool use showed first insights into how relations be-
tween tools and other objects could be learned from grounded
experimentation. In (Stoytchev, 2005), a robotic arm fo-
cused on learning rake-like tool affordances from the explo-
ration of already implemented stereotyped arm behaviors. In
(Tikhanoff, Pattacini, Natale, & Metta, 2013), the iCub robot
was given its arm’s forward model and inverse optimization
methods which led to stereotyped grasping. A recent series
of robotic models considered the learning of tool use from
scratch, without any kind of pre-programmed reaching skills
(Forestier & Oudeyer, 2016a, 2016b, 2016c). Those models
studied the developmental progression of robotic agents be-
tween phases of behaviors with objects, and the evolution of
their strategies to reach goals. They have shown interesting
similarities with infant development in terms of developmen-
tal trajectories and strategy choice dynamics.

Recent computational models of vocal development make
use of a simulated vocal synthesizer that the learning agent
must control in order to produce vocalizations, with human
sounds as targets to be imitated (Warlaumont, Westermann,
Buder, & Oller, 2013; Philippsen, Reinhart, & Wrede, 2014).
In (Moulin-Frier et al., 2013), the agent chooses the strat-
egy that shows the best competence progress: either au-
tonomously training to reach phonetic goals, or trying to im-
itate human sounds. They show that the intrinsic motivation
for learning progress self-organizes coherent infant-like de-
velopmental sequences. Those models of language acquisi-
tion study several developmental pathways to the learning of
forward and inverse models of a simulated vocal tract, from
autonomous exploration to human sounds imitation. How-
ever, agents are not situated into a physical environment
where vocalizations have a meaning related to objects.

Several works study joint action and language learning
(Cangelosi et al., 2010), but give an advanced knowledge of
the linguistic interaction protocol to the learning agent who
has to associate predefined actions or objects to predefined
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labels and learn the semantic compositionality. Also, agents
learn actions without a nested tool use property.

In this paper we describe the first model that jointly consid-
ers the early development of both tool use and speech. Such a
model could allow the investigation of hypotheses about the
mechanisms underlying the observed links between tool use
and speech development. In a previous work, we showed
that the Model Babbling learning architecture (Forestier &
Oudeyer, 2016b) allows the development of tool use in a
robotic setup, through several fundamental ideas. First, goal
babbling is a powerful form of exploration to produce a di-
versity of effects by self-generating goals in a task space
(Baranes & Oudeyer, 2013). Second, the possible movements
of each object define a task space in which to choose goals,
and the different task spaces form an object-based represen-
tation that facilitates prediction and generalization, as ex-
plained by (Chang, Ullman, Torralba, & Tenenbaum, 2016).
Also, cross-learning between tasks updates all skills while ex-
ploring one in particular. A novel insight was that early de-
velopment of tool use could happen without a combinatorial
action planning mechanism: modular goal babbling in itself
allowed the emergence of nested tool use behaviors.

Here we extend this architecture so that the agent can im-
itate caregiver’s sounds in addition to autonomously explor-
ing. We hypothesize that these same algorithmic ingredients
allow a joint unified development of speech and tool use. Our
learning agent is situated in a simulated environment where a
vocal tract and a robotic arm are to be explored with the help
of a caregiver. The environment is composed of three toys,
one stick that can be used as a tool to move toys, and a care-
giver moving around. The caregiver helps in two ways. If the
agent touches a toy, the caregiver produces this toy’s name,
but otherwise produces a distractor word as if it was talking
to another adult. If the agent produces a sound close to a toy’s
name, the caregiver moves this toy within agent reach.

We show that our learning architecture based on Model
Babbling allows agents to learn how to 1) use the robotic arm
to grab a toy or a stick, 2) use the stick as a tool to get a toy, 3)
learn to produce toy names with the vocal tract, 4) use these
vocal skills to get the caregiver to bring a specific toy within
reach, and 5) choose the most relevant of those strategies to
retrieve a toy that can be out-of-reach. Also, the grounded
exploration of toys accelerates the learning of the production
of accurate sounds for toy names once the caregiver is able to
recognize them and react by bringing them within reach, with
respect to distractor sounds without any meaning in the envi-
ronment. Our model is the first to allow the study of the early
development of tool use and speech in a unified framework.

Methods
Learning Environment
The learning environment1 is composed of a simulated 2D
robotic arm and a simulated vocal tract that the agent controls

1Source code and notebooks available as a Github repository at
https://github.com/sebastien-forestier/CogSci2017

to interact with a caregiver and toys. In each trial, the agent
observes the current environmental state and then executes a
motor trajectory, either corresponding to moving the motors
of the arm or of the vocal tract, and gets the associated sen-
sory feedback composed of the trajectory of each object and
the sound produced by the agent or the caregiver (see Fig.1).

Simulated Robotic Arm The simulated 2D robotic arm has
3 joints, with its base fixed at position [0,0]. Each joint ro-
tates from −π rad to π rad and the 3 segments of the arm
have length 0.25, 0.15 and 0.1, so the arm has length 0.5.
The framework of Dynamical Movement Primitives (Ijspeert,
Nakanishi, Hoffmann, Pastor, & Schaal, 2013) is used to gen-
erate smooth joint trajectories from motor parameters. Each
of the 3 joints is controlled by a DMP starting at the rest posi-
tion of the joint (position 0) and parameterized by 7 weights:
one weight on each of 6 basis functions and one weight rep-
resenting the end position of the joint trajectory. To sum up,
the agent provides a set of 21 trajectory parameters which are
translated through DMPs to a set of smooth 50-steps trajec-
tories for the arm’s joints which gives a smooth 2D trajectory
to the robotic hand.

Tool and Toys In the environment of the robotic arm, 3 toys
can be grasped with the hand or with the help of a stick. The
stick has length 0.25 and is considered grasped as soon as the
hand reaches the handle side (orange) within a distance of 0.1.
At the end of the movement the stick is dropped and stays at
its current position while the arm is reset to its rest position
for the next iteration. The toys are reset to a random location
every 20 iterations, at a distance between 0 and 1 from the
center so possibly at an unreachable position.

Simulated Vocal tract A vocal tract is simulated through
the DIVA model (Guenther, 2006) and allows the production
of different sounds that we can classify into vowels. In the
DIVA model, a set of parameters defines a vocal tract contour
where each represents one component of a Principal Com-
ponent Analysis of midsagittal MRI vocal tract profiles (see
Fig.1b), from the jaw and tongue to the lips position. Here we
use only the first 7 articulatory parameters, controlling most
of the vocal tract shape’s variability. From a vocal tract con-
tour defined by a set of parameters, the DIVA software com-
putes the corresponding sound and outputs its first 2 formants,
which are often considered to give enough information to dis-
tinguish common English vowels. The DMP framework gen-
erates smooth trajectories of vocal parameters, as described
above for arm parameters, to allow the simulated vocal tract
to produce simple words composed of several vowels. Each
of the 7 articulators is controlled by a DMP parameterized
by 4 weights: the starting and end position of the parame-
ter trajectory, and weights on 2 basis functions. Given a set
of 28 trajectory parameters provided by a learning agent, the
DMPs output a set of smooth 50-steps trajectories for the 7
articulators that we use in the DIVA model, which through
the DIVA software generates a smooth trajectory of the first
two formants (called F1 and F2).
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Figure 1: Agent’s robotic and vocal environment. (a) Agent’s 3 DOF arm, controlled with 21 parameters, grabs toys with
its hand, or uses the stick to reach toys. Caregiver brings a toy within reach if the agent says its name. (b) Agent’s vocal
environment representing sounds as trajectories in the two first formants space. Agent’s simulated vocal tract produces sounds
given 28 parameters. When agent touches a toy, caregiver says toy’s name. Some sounds corresponding to random parameters
are plotted in red, and some sounds produced when imitating caregiver’s /uye/ word in blue (best imitation in bold, error 0.3).

Sounds: from Vowels to Words The simulated vocal tract
controlled through DMPs has the potential to produce words
composed of a sequence of 3 vowels in the set {/o/, /u/, /i/,
/e/, /y/}. See Fig. 1 (b), ”Motor babbling” condition, for an
example of 200 trajectories corresponding to random sets of
28 parameters. We define a set of 6 words that the caregiver
produces perfectly: {/yeo/, /euy/, /iuo/, /uye/, /eou/, /oey/}.
A sound trajectory produced by the vocal tract is recognized
if its distance to the perfect word is lower than 0.4.

Caregiver’s guidance A simulated caregiver is given two
roles to help the learning agent. First, at the beginning of the
experiment, the caregiver chooses randomly a label for each
toy from the set of 6 words. When the agent touches a partic-
ular toy with its hand, the caregiver then produces the sound
trajectory corresponding to the label of this toy. If the agent
does not touch any toy with the arm, the caregiver produces
one of the distractor sounds, as if she was talking to another
adult. Second, if the agent produces a sound trajectory rec-
ognized by the caregiver as the label of a toy, the caregiver
moves the corresponding toy in between herself and the agent
so that it becomes reachable by the agent with the hand. The
caregiver is reset to a random position at each iteration.

Sensory Feedback Before choosing a motor command, the
agent receives the state of the environment (or context) as the
2D position of the caregiver, the stick and the 3 toys (so 10D).
At the end of the movement, the agent receives a sensory
feedback s in the sensory space S (60D), from the different
objects in the environment. First, the trajectory of the hand is
represented as its x and y positions at 5 time points: steps 1,
13, 25, 38, 50 of the 50-steps trajectory (SHand , 10D). Sim-
ilarly, the trajectories of the stick and the 3 toys during the
movement are represented in 10 dimensional sensory spaces

(SStick, SToy1 , SToy2 , SToy3 , 10D each). Sound, either produced
by the agent or by the caregiver, is represented by the position
of the first two formants at 5 time points (SSound , 10D).

Unified Modular Learning Architecture
The goal of a learning agent is to use its robotic arm and vocal
tract to discover a diversity of sensory effects, and collect data
to learn repertoires of skills in the form of inverse models al-
lowing to reproduce these effects. Consequently, the agent is
not given a priori a single target task to be solved, but a mod-
ular object-based representation of task spaces. The agent
learns a set of sensorimotor models mapping a motor space
to one particular sensory space (see Fig. 2). For instance,
model 1 learns to move the hand from arm parameters, model
2 learns to move the stick, model 3, 4, and 5 learn to move
one of the toys, and model 6 how to produce sounds with the
arm, which will be possible by touching one of the toys with
the hand so that the caregiver produces the corresponding la-
bel. Controlling vocal tract, model 7, 8 and 9 learn to move
one of the toys by involving caregiver’s help, and model 10
learns to produce diverse sounds autonomously.

Exploration through Model Babbling In order to ac-
tively explore and learn the 10 sensorimotor models from
experimentation with the environment, learning agents use
the Model Babbling architecture developed in (Forestier &
Oudeyer, 2016b) that we extend to handle the 2 motor spaces:
the robotic arm and the vocal tract. First, the agent per-
forms some random exploration of motor spaces, 500 with
the robotic arm and 500 with the vocal tract, to get an ini-
tial sampling of those spaces. Then, at each iteration, the
learning agent first chooses to train one of the 10 models,
chosen randomly (e.g. from the robotic arm to the hand sen-
sory space). A particular goal is then randomly chosen in
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Figure 2: Learning Architecture. Agent controls 2 motor
spaces and receives sensory feedback about 6 objects. Each
arrow represents one of the 10 sensorimotor models learned.

the sensory space corresponding to the chosen model (e.g. a
particular 2D trajectory of the hand). The agent then uses the
corresponding inverse model to infer a motor command in the
corresponding motor space (e.g. arm parameters) to reach the
goal. Exploration happens in goal choice and in the new mo-
tor parameters that inverse models infer with generalization
mechanisms and adding exploration noise.

Imitation of Sounds When the agent is choosing to train
to produce sounds with its vocal tract (model 10), instead of
always choosing random goals, it does this for half of the iter-
ations (chosen randomly), and the other iterations are focused
on trying to imitate the caregiver, by randomly choosing one
of the sounds previously produced by the caregiver as a goal.

Forward and Inverse Models Each sensorimotor model
provides a forward model and an inverse model, with the
same implementation as in (Forestier & Oudeyer, 2016b).
The forward model predicts which sensory trajectory would
be observed given the current context and a motor command
to execute. The inverse model infers a motor command that
could reach a desired goal given the current context. When a
motor command m is executed (either 21 parameters for the
robotic arm or 28 for the vocal tract) in a context c and a sen-
sory feedback s is received in S, all the sensorimotor models
that share the same motor space are updated. New informa-
tion comes as a tuple (m,ci,si) with si being a subset of s
variables corresponding to the respective sensory space, and
ci being the subset of c relevant for this sensorimotor model.
The relevant context for models 1 and 10 is empty, which
means that hand trajectories and vocal sounds produced by
the agent do not depend on the current position of other ob-
jects. The context for model 2 is the position of the stick,
and for models 3, 4, and 5, the position of the stick and of
the corresponding toy. For model 6, all toys are relevant, and
for models 7, 8 and 9, the caregiver and the toy is useful.
Given a database of (m,ci,si) experiments, an inverse model
infers a probable motor command m to reach a goal sg in a
context ci by looking for the nearest neighbor sNN in Si of sg
and retrieving the associated motor parameters mNN that were
used to reach sNN . It then outputs mNN plus Gaussian noise
(σ = 0.05) to explore new parameters.

Results
We ran 500 independent trials of 80000 iterations (or robot
experiment) each. We measured how agents learned to move
objects by giving them new goals in new contexts, and we
analyzed the accuracy of the learned vocalizations.

Competence to Reach Toys
After 80000 iterations of training, we measured the perfor-
mance of each agent to retrieve a toy depending on its current
position with its preferred method: with the hand, with the
stick used as a tool or involving caregiver’s help. Fig. 3 shows
the mean competence of all agents to retrieve toys depending
on the current position of the toys. The competence error to
retrieve a toy is measured by the distance between a goal tra-
jectory given to the agent, where the toy is moved towards
the center, and the actual trajectory that the agent succeeds
to give to the toy. The agent chooses the strategy expected
by its inverse models to best reach the goal trajectory for the
toy given the current context (position of the stick, toys and
caregiver) and its past experience of 80000 iterations.

In most toy locations, the normalized competence of learn-
ing agents is significantly better (46% on average) than the
normalized competence of a random agent (0%). Our learn-
ing architecture thus allows to successfully reach new goals
in multiple sensory spaces with multiple available strategies.
Local variations reflects differences in strategy preferences
and performances. For instance, where the hand cannot reach
for the toy anymore, the agent still thinks this is a good strat-
egy as it worked in a similar context (before the limit), but the
hand strategy leads there to a bad performance. More training
would refine the inverse models and the choice of strategy.
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Figure 3: Competence after 80000 iterations. 0% means that
competence to retrieve a toy there is as bad as with random
agents, 100% says that agents perfectly retrieve a toy there.

Three Strategies to Reach Toys
Fig. 4 shows the preference for the hand, tool and vocal
strategies to retrieve a toy depending on the distance of the
toy. In the center region, where agents can retrieve toys with
all three strategies, agents choose most often the hand strat-
egy (around 65% of the trials) and less the other two (around
15% to 20% each). In the second region, unreachable with
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the hand, this strategy is still used around 50% of the trials,
and the two other between 20% and 30%. In the last region
where the only useful strategy is to say the name of the toy
so that the caregiver brings it closer, the vocal strategy is used
more often: at distance 1 from center, it is used in 49% of
trials, hand strategy in 38%, and tool strategy in 13%.
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Figure 4: Strategy preferences depending on the distance of
the toy. The two vertical bars shows the hand and stick limits.

Vocal Learning with Caregiver’s Feedback
The agents learn to produce vocalizations both with goal bab-
bling and imitation of the caregivers’ sounds. For each agent,
three of caregiver’s sounds (randomly selected) are toy names
and the three others are distractors: sounds that have no spe-
cial meaning for the agent. We measure errors to reproduce
caregiver’s sounds as the distance between the sound trajec-
tory produced by the caregiver and the best imitation of the
agent. We group the results into two categories: errors of
sounds that serve as toy names and as distractors. From the
500 runs we could retrieve error data for 1482 toy names and
1482 distractors. Fig. 5 shows the distribution of errors after
80000 iterations. First, 88% of sounds have an error lower
than 0.4, and thus are successful imitations. Second, the me-
dian error for toy names is 0.23 and for distractors is 0.30.
Imitations of toy names are more accurate than of distractors:
a Mann-Whitney U test gives p < 10−72. Errors distribution
above 0.4 is similar for the two categories, but few toy name
sounds have an error just below 0.4 compared to distractors:
their distribution is shifted towards smaller errors.

Discussion
This unified robotic model allows to study the interaction be-
tween the early development of tool use and speech. Results
show that agents learn to 1) use the robotic arm to grab a toy
or a stick, 2) use the stick as a tool to get a toy, 3) learn to pro-
duce toy names with the vocal tract, 4) use these vocal skills
to get the caregiver to bring a specific toy within reach, and
5) choose the most relevant of those strategies to retrieve a
toy, for instance preferring to use caregiver’s help when the
toy is out-of-reach. Interestingly, learning the production of
accurate sounds for toy names was faster than for distractor
sounds because inverse models often select the use of vocal-
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Figure 5: Distribution of accuracy of imitations of caregivers’
sounds after 80000 iterations. Below 0.4 vocal error, sounds
are recognized as imitations by the caregiver. Imitations of
toy names are more accurate than imitations of distractors.

izations to retrieve toys through the caregiver. Grounding vo-
cal interaction between agent and caregiver in a play scenario
thus accelerated the learning of toys’ names production.

The proposed unified Model Babbling architecture does
not integrate sequencing and combinatorial planning mech-
anisms and agents were not given initial teleological under-
standing of speech or tool use. However, with goal babbling
and an object-based representation of task spaces, our ar-
chitecture still allowed agents to learn behaviors showing a
nested tool use structure, e.g. reusing movements of the stick
to move a toy, or sound trajectories produced with the vocal
tract so that the caregiver brings a toy. This suggests that ob-
serving infants using tools or asking for help with toys should
not necessarily be interpreted as a correlate of capabilities for
combinatorial sequencing and planning of actions.

It should be noted that for the agents in our model, involv-
ing the caregiver to move toys through vocalizations is a strat-
egy with no special status with respect to the other strategies.
This social interaction emerges from the same drive to refine
sensorimotor models as in the learning of hand or stick move-
ments. The production of sounds that can be understood by
the caregiver as toy names to make it react and help can thus
be interpreted as an emergent form of social tool use.

Those results offer a new prediction: exploration and play
with objects in a grounded interaction scenario with a care-
giver accelerates infant vocal learning of accurate sounds for
the names associated to these objects. This hypothesis is con-
sistent with experimental data from infant development re-
search. First, (Clerkin, Hart, Rehg, Yu, & Smith, 2017) shows
that the objects that are frequent in the visual field of 8 1/2 to
10 1/2 mouth-old infants are also the objects for which in-
fants acquire the name early. They explain that the particular
distribution of object frequency in visual field can help link-
ing the heard label to the good object in a scenario where the
caregiver says the name of an object. However, this data is
also consistent with our hypothesis: the most frequent objects
in the visual field are the ones that the infant will most often
choose goals for, and will engage caregiver’s help by trying to
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vocalize those toys’ names. Infants could thus receive more
vocal feedback for those words and learn to produce them
earlier. This view also fits with recent data about the body-
object interaction measure. In (Thill & Twomey, 2016), the
authors use a measure of the extent to which adults could eas-
ily interact with a named item and show that it predicts better
the age of acquisition of the name of an item than its concrete-
ness or imageability. In other words, the easier the interaction
with an object is, the sooner its name will be acquired. Fur-
thermore, caregiver’s nonvocal feedback can also help vocal
learning. Indeed, (Goldstein, King, & West, 2003) provides
evidence that a nonvocal feedback mechanism such as react-
ing to infant’s vocalizations by smiling, or touching the infant
can shape vocal babbling in real time. In our experiment, the
caregiver reacts to a toy’s name by giving the toy to the agent,
which guides vocal learning. Such a mechanism could also be
an important pathways to infant vocal development.

Our unified robotic model of speech and tool use gives a
basis for future research in modeling interactions between
their early development. From this study, we derived experi-
mental predictions that could drive new experiments with in-
fants and allow us to test and refine the model.
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Abstract

What do people think of when they think of “math?” We pro-
pose that individuals may have very different working defini-
tions of the category of math, and that those with broader math
conceptions may have less math anxiety. In Study 1, we intro-
duce a method for indexing the “breadth” of individuals’ math
conceptions, and show that there is an inverse relation between
conception breadth and math anxiety. These results suggest
that math anxiety is related both to how expansive individuals
perceive math to be, and how skillful they feel at the activities
they think it could involve. Study 2 attempts an intervention on
students’ conceptions of math with a sample of middle school
students. We find the same inverse relationship in students be-
tween math conception breadth and math anxiety as found in
adults. We discuss ongoing work that further explores quali-
tative variation in math conceptions, and the lessons this may
hold for intervening on math anxiety.
Keywords: math anxiety, conceptual structure, intervention

Introduction
Recent U.S. initiatives in early science, technology, engineer-
ing, and math (STEM) highlight the growing importance of
STEM education (e.g., White House Press Briefing, 2016),
as well as the need for professionals in those fields to bet-
ter represent the population. However, multiple barriers to
an educated and diverse STEM workforce remain. One such
barrier is psychological: an estimated 25–50% of U.S. col-
lege students are math anxious (Jones, 2001; Yeager, 2012),
with women disproportionately affected (Hembree, 1990).
Math anxiety refers to the tension or fear associated with
the prospect of doing math (Ashcraft, 2002). In addition to
being associated with lower math performance, math anxi-
ety causes math-anxious individuals to generally avoid math.
Given the national goal of broadening STEM participation,
math avoidance might be the most devastating byproduct of
anxiety about math, as it implies that math-anxious individ-
uals will choose to end their formal math training as soon as
possible.

Here, we are interested in how individuals’ ideas of what
math is–i.e., their math conceptions—might be a factor in
their math anxiety and avoidance. “Math” can be used to refer
to a wide range of activities, involving diverse skill sets and
forms of reasoning. Individuals may differ in how they im-
plicitly define the category of math, however, and properties
of those definitions may be linked to their math anxiety.

Of particular interest in the present studies is what we will
call the “breadth” of an individual’s math conception. Guided
by the idea that category structures can differentially license
inferences (e.g., Ross & Murphy, 1999), our studies test the

hypothesis that having a working math conception that is nar-
row (i.e., limited to a few branches of the math taxonomy, like
arithmetic operations and numeric notation) might facilitate
generalization of negative associations across the category. If
this makes individuals confident about disliking math, rather
than disliking only arithmetic or algebra, it could make them
wary of future topics labeled as “math” that might have other-
wise been appealing. In contrast, anxiety about the math cate-
gory, and any new topics that are labeled as “math,” might be
harder to maintain if it encompasses many diverse subtopics
and skills, ranging from the concrete (e.g., algebraic notation)
to the abstract (thinking about infinity). In other words, inso-
far as math anxiety consists of anxiety generalized across the
category of things construed as math, having a “broad” math
conception may serve as a protective factor against the prop-
agation of math anxiety.

As a first test of these ideas, we explore whether adults and
children have different conceptions of what counts as math,
and whether individuals with broader math conceptions may
be less susceptible to math anxiety, such that math conception
breadth and math anxiety will be inversely related.

Origins of Math Anxiety
The origins of math anxiety are unclear. While research on
math anxiety is motivated in large part by its impact on math
performance, there is evidence suggesting the reverse direc-
tion of causation, as well. Much of this evidence comes from
longitudinal studies where performance in an earlier year is
more strongly correlated with math anxiety in a later year
than earlier anxiety is with later performance (see Carey, Hill,
Devine, & Szücs, 2016, for a review). The relation between
math anxiety and performance might be most accurately de-
scribed as reciprocal, with early math difficulty leading to
math anxiety, and math anxiety in turn leading to low per-
formance, via avoidant behavior and increased constraints on
processing (Carey et al., 2016).

In thinking about the relation between math conception and
anxiety, we have thus far focused on a particular direction of
causality, namely that narrow math conceptions might be a
risk factor for developing math anxiety. But one could imag-
ine a reciprocal relationship here, too. A child could acquire a
math conception that is narrow, maybe via their early school-
ing, and find that they dislike or struggle with the contents of
the category of math, leading them to become math anxious.
Their math anxiety could in turn lead them to avoid engaging
with new aspects of math that they might otherwise like or ex-
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cel at, leading them to maintain both their narrow conception
of math and their math anxiety.

In light of recent findings that math anxiety can be trans-
mitted between generations, it is just as important to alleviate
math anxiety in adults (i.e., so that they don’t transmit it to
children) as it is to intervene directly in children. Prior work
has found that teachers’ math anxiety may “spread” to their
students (Beilock, Gunderson, Ramirez, & Levine, 2010).
This is especially problematic because aspiring teachers with
math anxiety tend to gravitate toward teaching earlier grades,
where they will be able to engage less with math (see Hadley
& Dorward, 2011), but where they will also be interacting
with students in the early school years, when children are
most impressionable. Parents’ math anxiety can also affect
their children. In one study, children of math anxious parents
learned less during the school year than did children of non–
math-anxious parents—but only if these parents frequently
gave their children homework help (Maloney, Ramirez, Gun-
derson, Levine, & Beilock, 2015). Given this evidence for
the intergenerational transmission of math anxiety, our stud-
ies focus both on adults and children.

Relating Math Conceptions and Math Anxiety
In principle, individuals could have ‘math conceptions’ that
range from narrow (Math is the symbolic operations one
learns in school) to broad (Math relies on logic, spatial rea-
soning, and pattern recognition).

Here, we develop a new measure to characterize the
breadth of math conceptions. This measure presents par-
ticipants with a diverse list of activities or topics, ranging
from “sewing” to “playing soccer” or “physics.” Partici-
pants are asked to indicate whether each item “could involve
math,” and, in some cases, to explain why. The idea is that
when asked to answer whether a given activity “could involve
math,” individuals will be encouraged to come up with some
rationale for how it could or could not involve math, and that
their flexibility in categorizing activities as “math” will de-
pend on the breadth of their (implicit) definition of the cat-
egory. The point here is not that individuals typically con-
strue an activity like “playing soccer” as involving math. In-
stead, our interest is in whether individuals vary in how flexi-
ble they are in categorizing activities that are not convention-
ally thought of as “math” as involving math. We present a
diversity of activities to math, that can be related to math via
diverse aspects of mathematical reasoning or subtopics, thus
revealing the capacity and/or bounds of an individual’s math
conception. If an individual’s conception of math is itself
broad and diverse, we expect that it will be able to support
explanations for the math-involvement of a wide range of ac-
tivities. We thus operationalize breadth of math conception
in the following studies as the number of activities that in-
dividuals say “could involve math.” In Study 1, we also ask
participants to rate their own skill at these same activities.

We hypothesize that broader math conceptions will relate
to lower math anxiety in that they will afford individuals with
more opportunities to recognize their own math engagement

or expertise, and dilute the negative impact of components
of math that individuals have negative associations with. Re-
lated to this, we expect self-assessed skill with activities clas-
sified as involving “math” to mediate the proposed relation
between conception breadth and math anxiety. Study 1 exam-
ines the relation between math conception and math anxiety
in adults, taking subjective skill into account. Study 2 tests for
the same relation in middle-school children, within the con-
text of a intervention study that tests the effect of broadening
math conceptions.

Study 1: Adult Math Conception & Anxiety

Study 1 examined the relation between math conception and
math anxiety in adults via an online survey composed of
seven counterbalanced blocks probing participants’ math at-
titudes and associations.

Stimuli & Methods

Participants A total of 62 U.S. adults were recruited via
Amazon’s Mechanical Turk (31 female, 19–74 years, M =
33.24, SD = 10.25). Participants were compensated for their
participation, and the study took approximately 15 minutes to
complete.

Math Conception In one block, participants saw a ran-
domized list of topics and activities (e.g., “architecture,”
“cooking,” “exercising”). Participants were asked to indicate
whether. . . each activity or topic listed involves math or does
not involve math. They responded by dragging each item
into one of three boxes, labeled “Math,” “Not Math,” and
“Not Sure.” The more items categorized as involving math,
the broader we considered their math conception to be (see
above). We included the item “Math” as a control.

Activity Skill In another block, participants saw the same
items in a new randomized order, and rated their skill at each
item (How good would you say you are at each of these
things?). They responded on a five-point Likert scale from
‘Not at all good’ to ‘Very good.’ We included a control item
(For this question, respond ‘Good’), as well as an opt-out
scale option (‘NA’) for participants who had no experience
with the item.

Math Anxiety We assessed participants’ math anxiety us-
ing the single item math anxiety scale (SIMA; Núñez-Peña,
Guilera, & Suárez-Pellicioni, 2013). This measure asks sim-
ply, On a scale from 1 to 10, how math anxious are you?
The SIMA has been validated on a large sample of U.S. col-
lege students. It shows the expected negative correlation with
math achievement measures, high test-retest reliability, and is
consistent with lengthier, established measures of math anxi-
ety, like the Shortened Math Anxiety Rating Scale (sMARS;
Alexander & Martray, 1989, r = .77).

Other Measures We collected several other measures of
participants’ attitudes toward and history with math. One
block assessed participants’ “math mindset:” an analogy
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to intelligence mindsets made specific to math (Yeager &
Dweck, 2012). Five items probed participants’ beliefs about
the fixedness of math ability (e.g., Math is a gift: you either
have it or you don’t.), which they responded to using a five-
point Likert scale of agreement. Two blocks consisted of a
single, open-ended question, one asking participants for an
informal definition of math (Please describe what you think
math is in the space below), and one eliciting their personal
math history (Please write a brief summary of your experi-
ence with math from childhood until now). In the final block,
we collected demographic information, including the number
of semesters of college they had completed, and a list of all
math classes they had taken.

Results & Discussion
Qualtitative Variation in Math Conceptions There was
substantial variation in the activities that participants catego-
rized as involving math (Figure 1). All participants appropri-
ately responded that “Math” involved math, which we took
as confirmation of their attention to the task. Items obviously
involving math were categorized as such by the vast majority
of participants (e.g., finance), while those representing related
disciplines (e.g., biology), daily activities (e.g., cooking), and
abstract, creative and language-related tasks (e.g., compos-
ing music, reading) received the fewest math-categorizations.
In a separate study, we elicited explanations for participants’
categorizations of a similar list of items. In that study, both
adults and children frequently used contrast categories (e.g.,
“No, that’s music!”), often from the humanities, to explain
why items could not involve math. This type of explanation
implies that participants perceived the categories of music,
art, and even science as exclusive with math. Such a picture
of what math is (and isn’t) is consistent with the idea of a nar-
row math conception, and echoes what mathematician Paul
Lockhart famously lamented as the sorry byproduct of Amer-
ican math education:

The first thing to understand is that mathematics is an art.
The difference between math and the other arts, such as
music and painting, is that our culture does not recog-
nize it as such. [. . . ] Nevertheless, the fact is that there
is nothing as dreamy and poetic, nothing as radical, sub-
versive, and psychedelic as mathematics. It is every bit
as mind-blowing as cosmology or physics (mathemati-
cians conceived of black holes long before astronomers
actually found any), and allows for more freedom of ex-
pression than poetry, art, or music (which depend heav-
ily on properties of the physical universe). Mathematics
is the purest of arts as well as the most misunderstood.
(Lockhart, 2009).

Math Conception & Anxiety To answer whether breadth
of math conception and math anxiety are related, we con-
ducted a linear regression on individuals’ math anxiety and
the number of items they categorized as math, controlling
for the number of semesters of college they had completed.

Table 1: Descriptive statistics for four blocks in Study 1.
‘Items Categorized as Math’ is out of a total of 32, and was
analyzed as a proxy for the breadth of participants’ math con-
ceptions. ‘Math Anxiety’ is on a 10-point self-report scale.
‘Self-Assessed Skill’ represents the mean skill rating on a 5-
point Likert scale, across all items for all participants. ‘Math
Mindset’ is coded to be on a 5-point scale indexing how fixed
individuals believe math ability to be, with larger values indi-
cating more fixed mindsets.

Variable M SD
Items Categorized as Math 13.10 5.35

Math Anxiety 4.44 3.04
Self-Assessed Skill 3.28 0.44

Math Mindset 2.13 0.99

In accordance with our predictions, math anxiety was neg-
atively related to the number of items participants catego-
rized as math, even controlling for education (F(1,61) = 6.44
p < .05 with an R2 of .082; see Figure 2). This supports the
idea that individuals with broader math conceptions are less
likely to experience math anxiety, and that this relation may
not be attributable to exposure to topics in math alone.

To address whether the relation between math conception
and anxiety is due in part to individuals’ perception of their
own skill at things they think might involve “math,” we ana-
lyzed self-assessed skill and anxiety. For each individual, we
took the mean skill of the items they had categorized as in-
volving math and those they had categorized as not involving
math. We dropped items for which participants reported hav-
ing had no experience. A linear regression on self-reported
skill and math anxiety revealed a significant negative corre-
lation between math anxiety and mean self-assessed skill for
items the individual was able to relate to math (β = −1.98,
SE = 0.60, t = −3.29, p < .01), but no correlation between
math anxiety and self-assessed skill for items judged to not
involve math (β = 0.11, SE = 0.69, t = 0.154, p = .88). This
asymmetry is important because it suggests that it is not just
individuals who are less confident overall who suffer from
math anxiety—if this were the case, we would have expected
to find that lower skill related to higher anxiety for both items
judged to involve math and items judged to not involve math.

In Study 1, both the number of items construed as involv-
ing math and participants’ perceived skill at those items were
related to math anxiety. As discussed above, one of the most
dangerous features of math anxiety is its tendency to make in-
dividuals avoid math and thus fail to take advantage of oppor-
tunities to discover new aspects of mathematics they might
excel at or appreciate. The fact that mean self-assessed skill
at activities categorized as involving math was negatively re-
lated to math anxiety lends support to the idea that broad con-
ceptions may be a protective factor in math anxiety, attenuat-
ing the impact of negative associations that individuals might
have with activities they think could involve ‘math.’ Having a
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Figure 1: Number of participants in Study 1 who labeled each
activity as involving math.

Figure 2: Plot of linear regression line showing relationship
between breadth of conception and math anxiety in Study 1,
controlling for education (α = 6.93, β =−0.18, p < .05).

broad math conception does not mean that an individual has
to feel confident and have positive associations with all ac-
tivities that they think involves math, but it could mean that
negative associations with specific topics (like geometry or
algebraic notation) will have less of an impact on their asso-
ciations with the category as a whole.

Study 2: Middle School Intervention
We were interested in whether students would exhibit the
same qualitative variation in math conceptions and link be-
tween breadth and anxiety that we had seen with adults in
Study 2. Additionally, as a first pass at investigating the
causal relation between math conception and anxiety, and po-
tential educational implications, we designed a brief interven-
tion intended to broaden students’ math conceptions.

Stimuli & Methods
Study 2 consisted of an interactive origami activity fol-
lowed by four measures administered to participants in two

between-subjects conditions, BASELINE and BROAD. Only
participants in the BROAD condition received an explanation
for the ways in which the activity had involved math before
completing the other assessments.

Participants A total of 80 6th, 7th, and 8th grade students
at a school in Gujarat, India participated (33 6th-graders, 7
girls; 21 7th-graders, 9 girls; 26 8th-graders, 9 girls). All 6th-
grade participants were excluded for sharing answers (n =
33), leaving 47 7th-8th grade students in our sample. Partic-
ipants were tested in groups of 10–15 assigned to the BASE-
LINE or BROAD conditions in a classroom at their school.

Origami Activity Students sat in a circle on the floor
around two experimenters who guided them through folding
an origami crane. A third experimenter circulated to answer
any questions, and students could also refer to printed, dia-
grammatic instructions distributed before the activity. All ex-
perimenters avoided using explicit math language during the
folding instruction (e.g., reference to “angles,” “half,” “diag-
onal”), opting instead for generically narrated demonstration
(e.g., “fold the paper like this”). Each student folded a paper
crane, which they got to take home.

Construal Following the origami activity, students in both
conditions answered whether the activity they just did could
involve math (Yes/No/Not Sure), and to explain why. In ad-
dition, they rated how enjoyable and difficult they had found
the activity, on a five-point Likert scale (from ‘Not at all—’
to ‘Extremely—’).

Intervention In the BROAD condition–but not in the BASE-
LINE condition–an experimenter then gave a brief explanation
of how the origami activity involved and related to math (e.g.,
. . . you have to think about spatial relations, and things like
measurements of the different sides and angles. When de-
signing new pieces of origami, you have to think creatively
and flexibly, and use what you already know to come to new
conclusions, like you have to do in math).

Avoidance The next measure participants completed was
intended to indirectly access their math avoidance. The sur-
vey consisted of 6 items, each asking about a different school
subject (e.g., How excited are you to learn a new topic in
[math/Hindi] class?). Participants responded on a 5-point
scale (from ‘Not at all excited’ to ‘Extremely excited’).1

Math Anxiety We administered a child math anxiety ques-
tionnaire adapted from Ramirez, Gunderson, Levine, and
Beilock (2013) by Barner et al. (2016), for use in India. The
questionnaire consisted of 16 questions regarding students’
experiences with math, which students responded to using a
5-point face scale (from ‘Not nervous at all’ to ‘Very, very
nervous’). The experimenter explained the scale and com-
pleted three warm-up questions with the students beforehand

1Because participants were on average enthusiastic to learn new
topics in math (M = 4.29, SD = 0.94), more so even than other top-
ics, we did not further analyze the results of this measure.
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Figure 3: Number of participants in Study 2 who answered
“yes” when asked whether each item could involve math.

Table 2: Means and standard deviations for each condition.

Concept Anxiety
Condition M SD M SD

BASELINE 20.96 7.24 1.78 0.47
BROAD 24.61 5.96 1.60 0.36

to ensure understanding of the measure.

Math Conception The math conception measure was a
variant of the one used in Study 1. We included 40 age- and
place-appropriate items, and adjusted the wording used in the
prompt from Study 1. Here, participants answered Could this
activity involve math? (Yes/No/Not Sure), which we antici-
pated would encourage flexible thinking about the items and
about math.

Results & Discussion
Qualitative Variation in Math Conceptions Participants
indicated that an average of 22.74 out of 40 items could in-
volve math. As in Study 1, there was considerable varia-
tion across items in the proportion of participants who judged
them as involving math (Figure 3).

Math Conception & Anxiety Participants received an av-
erage math anxiety score of 1.69 (out of 5). We were in-
terested again in whether math anxiety scores were related
to conception breadth, which we examined in our total sam-
ple, collapsing across condition. In middle-schoolers, as with
adults, math anxiety was negatively related to the number
of activities students categorized as math, (F(1,44) = 4.15,
p < .05 with an adjusted R2 of 0.07; see Figure 4).

Conception Intervention We next analyzed math concep-
tion and math anxiety for our two conditions separately. If
such a brief intervention were successful, we should expect
conception scores to be higher in the BROAD condition, and
anxiety scores to be lower. While conception and anxiety

Figure 4: Linear regression showing relationship between
breadth of conception and math anxiety in Study 2 (α = 2.10,
β =−0.02, p < .05).

(a) (b)

Figure 5: (a) Boxplot of anxiety scores by condition. (b) Box-
plot of conception score by condition.

might be slightly different in the anticipated direction be-
tween the two conditions (Table 2), the differences between
group means is not significant (as determined by one-way
ANOVAs for math conception: F(1,45) = 3.54, p = .066,
and anxiety: F(1,45) = 2.31, p = .14). The trend for math
conceptions in particular is promising (see Figure 5): in
the BASELINE condition, there was more spread in the
magnitude of participants’ conception scores, while those in
the BROAD condition had generally ‘broader’ conceptions.
Thus, it may be that with a different or merely more sustained
intervention, students’ math conceptions could be broadened.

Influence of Construal Out of the 47 participants ana-
lyzed, 36 said that the origami activity could involve math.
Participants on average enjoyed the activity (M = 4.43, SD =
0.62) and did not find it difficult (M = 2.28, SD = 0.71).
This raises the possibility that we may not have found a ro-
bust intervention effect because our elicitation of construals
of the origami activity as math itself served as an interven-
tion on breadth of conception. In particular, given that all
participants—including those in the BASELINE condition—

2023



were asked to consider whether an enjoyable and easy activ-
ity could involve math before completing any of the surveys,
they may have been primed to think more broadly and favor-
ably of math.

Discussion & Future Directions
The above studies offer preliminary evidence for the intu-
ition that individuals may have substantially different ideas
of what constitutes math. Here, we have introduced the idea
of math conceptions to describe these qualitatively different
definitions of the category of math, and focused especially on
their “breadth” to explain why certain types of math concep-
tions might make math anxiety more or less likely. Strikingly,
the measure we introduced as a proxy for the breadth of indi-
viduals’ math conceptions showed the hypothesized inverse
link to math anxiety, in both adults and children, though it
should be noted that the samples for Studies 1–2 differed in
more than age. We see the remarkable dissimilarity of the two
populations and contexts as adding strength to our results.

While this link between our measure of math conception
breadth and math anxiety is promising, we imagine there is
a great deal of additional variation among math conceptions
that could be captured in future studies. Eliciting and ana-
lyzing participants’ explanations for their categorization deci-
sions may be one especially fruitful way to access other qual-
itative dimensions of math conceptions, alongside canonical
methods to access category structure, like primed similarity
judgments.

Without robust evidence for the efficacy of our interven-
tion (Study 2), we cannot speak to the potential directional-
ity of the math conception-anxiety relationship. Our ongoing
work is exploring this question through an interactive inter-
vention on adults’ math conceptions, as well as an adaptation
of the math conception measure for use with young children
prior to being formally educated in math. Exploring math
conceptions in young children, as well as directly assessing
math skill in future studies with adults, will also address the
heretofore unconsidered possibility that a third variable (like
actual proficiency in math) is responsible for both responses
on our current conception measure and levels of math anxiety.
The ultimate goal of these lines of research is to understand
and describe the character of individuals’ implicit math cat-
egories, and leverage this knowledge to inform interventions
aimed at reducing math anxiety in adults and children.
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Abstract 

The Associative Read-Out Model (AROM) suggests that 

associations between words can be defined by the log likelihood 

that they occur together more often in sentences than predicted by 

their single-word frequency. Moreover, semantic relations can be 

defined by associative spreading across many common associates. 

Here, we addressed developmental effects of associative and 

semantic priming. Thus, we manipulated sentence-co-occurrence-

based direct (syntagmatic) and common (paradigmatic) 

associations between prime and target words in 2nd and 4th graders. 

Syntagmatic associations decreased response times and error rates 

in both, 2nd and 4th graders. Paradigmatic associations increased 

errors rates in 2nd graders, whereas they decreased errors rates in 

4th graders. These results suggest that 2nd graders profit from 

syntagmatic, i.e. contiguity-based associations, while a benefit 

from paradigmatic-semantic relationship probably develops from 

generalizing across many of these simple associations.  

 

Keywords: Interactive Activation Model, Associative Read-Out 

Model, Semantic Priming, Computational Models, Syntagmatic-

Paradigmatic shift 

 

Introduction 
Starting with pioneer work of Meyer and Schvaneveldt 

(1971) a wide range of studies revealed that a target word 

(e.g. “chair”) is processed faster and more accurate when a 

semantically associated prime word (e.g. “table”) was 

presented before (e.g. Bentin et al., 1985; Neely, 1976). 

Interestingly, studies differentiating between various types 

of associations (e.g. Becker, 1980; Lucas, 2000; McNamara, 

2005) and/or individual differences like age (e.g. review 

Chapman et al., 1994, McCauley et al., 1976) revealed 

inconsistent results with regard to the size and direction of 

the semantic priming effect. From a developmental 

perspective, the presence (or absence) of the semantic 

priming effect may be an indicator of the development and 

organization of semantic knowledge (e.g. Lucas, 2000; 

McCauley et al., 1976; Meyer & Schvaneveldt, 1971).  

On the one hand, recent research revealed greater semantic 

priming effects (i.e. greater difference between primed and 

non-primed condition) for younger children and elder 

people (see review Chapman et al., 1994). On the other 

hand, various studies, investigating processes of different 

types of relations in semantic priming tasks, revealed that 

younger children show priming effects if words are directly 

associated only, and not if they exclusively provide a 

category relation (e.g. McCauley et al., 1976). So far, 

empirical evidence points towards a greater facilitation by 

functional/associative relations in comparison to pure 

semantic relations in children, but also an increasing 

sensitivity for thematic and taxonomic relationships over 

age (Arias-Trejo & Plunkett, 2013). In line with this, 

younger children tend to freely associate words that have a 

syntagmatic relation from mere common occurrence in 

sentences relation (e.g. “good” and “boy”) rather than a 

paradigmatic relation due to the same form class (e.g. 

“good” and “bad”) in comparison to older children and 

adults (e.g. White, 1985; Woodrow & Lowell, 1916). This 

effect is also known as the syntagmatic-paradigmatic shift 

that occurs in an age range between 5 and 9 years (e.g. 

Brown & Berko, 1960; Entwisle, 1966, Nelson, 1977).  

 

To our knowledge, however, the relative reliance on 

syntagmatic and/or paradigmatic information has not yet 

been addressed during visual word recognition. As German 

children start reading at the age of 6, we hypothesized that 

word-decoding abilities sufficient for syntagmatic effects 

should be apparent around the age of 7 years, i.e. in the 2nd 

grade, while a stronger reliance on paradigmatic information 

should be observable around the age of 9, i.e. in the 4th 

grade. So far, most semantic priming studies used free 

association performance of adults to predict semantic 

priming (e.g., Lucas, 2000), though already Jung (1905) 

stated that free associations are diagnostic for 

interindividual differences. Therefore, it is questionable 

whether its usage as an independent variable for the study of 

children is appropriate (see Hofmann & Jacobs , 2014). To 

derive a semantic long-term memory structure from 
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experience with a sample of text (Hofmann et al., 2011), a 

recent interactive activation model (IAM; McClelland & 

Rumelhart, 1981) relies on co-occurrence statistics. The 

Associative Read-Out Model (AROM, Hofmann et al., 

2011) is the first IAM with an implemented semantic layer. 

It defines two words as associated, if they co-occur more 

often together in sentences than predicted by their single 

occurrence frequency (Dunning, 1993; Quasthoff et al., 

2006). Thus, it reflects a symbolic Hebbian learning 

approach (Hebb, 1949) by suggesting higher association 

strengths for words that are occurring more often together 

than predicted by the frequency-driven orthographic 

activation. 

 

The AROM already successfully predicted behavioral and 

electrophysiological data for tasks, in which memory is 

explicitly required. Hofmann et al. (2011) showed that the 

correct identification of studied words as well as the false 

recognition of non-studied words is significantly higher for 

words with many associations in a recognition memory task. 

This result has recently been extended by Stuellein et al. 

(2016) in an EEG study by showing significant response 

time, P200 and N400 effects for words with many 

associations. It was an open question, however, to what 

extend these results were induced by pure direct 

associations and/or indirect associations like semantic 

feature overlap (Stuellein et al., 2016). As the AROM 

defines words as associated by the frequency of their 

common occurrence, it is in line with localist theories 

proposing direct associative links between symbolic 

representations to capture the meaning of a word (e.g., 

Anderson, 1983; Collins and Loftus, 1975). Whereas 

distributed models define the meaning of a word by a 

distribution across subsymbolic ‘hidden’ units (e.g. 

McClelland and Rogers, 2003), this assumption is in line 

with other co-occurrence based models, defining the 

meaning of a word by latent factors determining with which 

words they co-occur (e.g. Landauer and Dumais, 1997). In 

the tradition of distributed models, one can assume that 

words that often occur together in similar sentence contexts 

might share similar semantic features. In line with the idea, 

that the meaning of a word is determined by its surrounding 

context (Firth, 1957; Harris, 1951), common associates of 

two words can possibly be considered as common features 

(Hofmann and Jacobs, 2014). As a consequence, a more 

complex AROM, that would be able to simulate the 

dynamic co-activation of such semantic features, was 

discussed to be a plausible option to accommodate both 

perspectives (Stuellein et al., 2016). 

 

In a recent study, Roelke et al. (2016, subm.) also tested the 

AROM in an implicit memory task. During primed lexical 

decision, a full factorial manipulation of direct association 

(strong/no) and the number of common associates 

(many/no) of prime and target revealed strong effects in 

adult participants. Prime and target words with direct and 

many common associates facilitated visual word 

recognition. In contrast, we also have preliminary evidence 

of inhibitory priming effects at a very long SOA (Schmidt, 

2015). These results are in line with recent studies, showing 

only facilitating effects for pure associative relations and 

inhibitory or facilitatory effects for semantic relations that 

are dependent on the time that the prime is processed (e.g. 

see Plaut & Booth, 2000).  

 

The present study  
To investigate whether the AROM can be used to address 

the syntagmatic-paradigmatic shift by relying on direct 

(associative, syntagmatic) and indirect (semantic, 

paradigmatic) relations, we tested 2nd  and 4th  grade students 

from two German elementary schools, using primed lexical 

decision. In line with recent results, we expected smaller 

semantic priming effects for younger children for semantic 

(indirect) relations. Furthermore, we expected greater 

semantic priming effects for associative (direct) relations in 

comparison to semantic (indirect) relations for all children, 

because these depend on an abstraction of experience-based 

knowledge.  

 

Methods 

  
Subjects  
For all participating students, parents signed written consent 

in advance.  

 

Second grade. Behavioral data were collected for 95 2nd  

grade students of two primary schools in Solingen, 

Germany. Two students did not complete the experiment 

due to the task difficulty. Another eleven participants had to 

be excluded because of reading/writing disorders and two 

participants because of lacking German skills. The mean age 

of the remaining 75 students (female=45) was 7.46 years 

(SD=.502). According to their parents, 62 (82.7%) 

participants had learned German as their first language. 

Three children (4%) learned Turkish as their first language, 

followed by Italian (N=2, 2.7 %) and Russian (N=2, 2.7%). 

The remaining students came from a variety of linguistic 

background. For one student, data for the native language 

was missing. 

 

Fourth Grade. Behavioral data were collected for 86 4th  

grade students of two primary schools in Solingen, 

Germany. Ten students had to be excluded because of 

reading/writing disorders. The mean age of the remaining 76 

students (female=52) was 9.54 years (SD=.738). According 

to their parents, 62 participants (81.6%) had learned German 

as their first language. Five children (6.6 %) learned Turkish 

as their first language, followed by Italian (N=4, 5.3%) and 

Polish (N=2, 2.6 %). The remaining students came from a 

variety of linguistic background.  
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Materials  

 
Corpora. The word stimuli were taken from the word 

corpus “childLex”, which is based on approximately 5000 

German books for children between 6 and 12 years 

(Schroeder et al., 2015; status: September 2014). The books 

vary in length and content with about 5000 to 15,000 

words per book. We used words that were among the list for 

6 to 10 year old children. As the childLex corpus is not 

openly available for analyses, co-occurrence statistics were 

taken from the German corpus of the “Wortschatz” project 

(status: December 2006; Quasthoff et al., 2006). This corpus 

is largely composed of online newspaper (1992-2006). 

Based on 800 million tokens and 43 million sentences, two 

words were considered to be directly associated when they 

co-occurred more often together in sentences than predicted 

by their single occurrence frequency (Dunning, 1993). 

Indirect associations were defined as the number of 

common direct associates. 

  

Stimuli. The stimulus set consisted of 160 primes and 160 

targets. The 160 primes and 80 targets were German nouns. 

The remaining 80 targets consisted of 40 pronounceable 

pseudowords and 40 random letter strings. Pseudowords 

were created by changing one to three consonants of real 

nouns. 80 targets were German nouns that were split into 

four word conditions in a 2x2 design with the factors direct 

association (high vs. low) and indirect relation (high vs. 

low). Prime and target were considered to provide a low 

direct association, when they were not associated at all 

(association strength=0) and as high directly associated, 

when they were beyond a 2,5%-quantile criterion 

(association strength > 3) of all possible stimuli (N=6,975; 

cf. Hofmann et al., 2011, for a formal definition of 

association strength). They were considered to provide a 

low indirect relation, when they had less than 65 common 

associates (below a 2,5%-quantile criterion of all possible 

stimuli) and were considered to provide a high indirect 

association, when they had more than 300 common 

associates (beyond a 2,5%-quantile criterion of all possible 

stimuli; cf. Bordag, 2007, for counts of common associates).  

From the childLex corpus, the word features frequency, 

word length and Orthographic Levenstein Distance 

(Yarkoni et al., 2008) were counterbalanced between the 

four word conditions for prime and target words to rule out 

confounding effects (condition differences p > .05). Raw 

Lemma-Frequency was log10 transformed and words below 

and beyond a 2,5%-quantile frequency criterion of all 

possible stimuli were excluded. Word and nonword length 

was limited from 3 to 6 letters. Before counterbalancing to 

rule out confounding variables, a manual examination of the 

stimulus set excluded inappropriate words for children (e.g. 

those with sexual content), prime and target pairs with the 

same first letter and compounds (e.g. “snowball”).  

 

 

 

Procedure  

 
Cover story. The instruction was embedded in a cover 

story, adapted from a children’s lexical decision task by 

Richter et al. (2013). Children were asked to help an 

extraterrestrial named Reli, who came to earth to learn the 

language of the earthlings, to distinguish between real words 

and nonwords (Target). To further explain the appearance of 

the prime words, students were told that another 

extraterrestrial named Gudra also wanted to learn the 

language of the earthlings (Prime). Students were told that 

other children were helping Gudra, so that they had to read 

her word but that they did not have to react.  

 

Semantic Priming Task. The semantic priming task was 

performed by groups of eight to ten students at the same 

time in a quiet room, separated from the rest of the class. 

Before the experiment started, the time course of the 

experiment was written on the blackboard and the task was 

explained to the children in front of the class. Each student 

worked on his/her own on a separate laptop. Students were 

asked to put on headphones and to leave on the headphones 

during the whole task. Before the task started, a detailed 

instruction was presented once more in a videoclip with the 

extraterrestrial Reli.  

 

First a fixation cross was presented for 1000 ms on the 

screen. Then a prime word was presented in grey letters for 

600 ms. The students were asked to read the prime but not 

to press a button. After the prime word, a blank screen 

appeared for 200 ms, after which the target word was 

presented in black letters. Students were asked to press a 

green button with their right forefinger on the keyboard 

(“K”), if the presented stimulus was a real word and to press 

a red button with their left forefinger on the keyboard (“D”) 

if the presented stimulus was a nonword. The target word 

stayed on the screen until the student pressed one of the two 

buttons. Following another blank screen for 500 ms, the 

word “Bereit?” (‘ready?’) was presented in red letters on the 

screen and students were asked to press a yellow button 

(“space”) with one of their thumbs on the keyboard, if they 

wanted to go to the next trial (s. Figure 1).  

To get used to the task, five exercise trials were presented at 

the beginning. For the exercise trials, feedback was 

provided whether the response was correct or not. For the 

main task, no feedback was provided. During the main task, 

two breaks were included, each after 56-57 trials. The 

students decided on their own by pressing the yellow button 

when to continue with the main task.  
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Figure 1: Time course of the experiment 

 

At the beginning of the main task and after every break two 

“icebreaker trials” were included, that were excluded from 

data analyses. For every participant, the order of the 

presented prime-target pairs was randomized. Students were 

asked to react as fast and as accurate as possible.  

 

Data Analysis. Results were analyzed using general linear 

mixed-effect models with the fixed effects grade (2nd vs. 4th 

class), direct association (low vs. high) and indirect 

association (low vs. high), their interaction terms and the 

random intercepts subject and item. The dependent variables 

were accuracy and response times. For accuracy analysis we 

used binary logistic regression and for response time 

analysis we used linear model. Because the degrees of 

freedom are not exactly known in LMM analyses, we chose 

2 standard errors as significance criterion (i.e. t >= 2; cf. 

Baayen et al., 2008, footnote 1; Masson & Kliegl, 2013). 

Incorrect responses and those plus/minus a 3 standard 

deviation criterion from average for each subject and 

condition were excluded from response time analyses. We 

only report main effects and interactions between the 

experimental factors that are significant. When models 

revealed significant interactions between at least two of the 

experimental factors, post-hoc t-tests were conducted. 

 

Results  

 
Accuracy  
Grade and direct association and the significant interactions 

grade*direct association and grade*indirect association led 

to significant contributions to the model (all t‘s>= 2). The 

positive effects of grade (β=1.273, t=7.08, SE=.18) and 

direct association (β=1.191, t=3.12, SE=.382) indicate that 

direct associations increased accuracy, and that 4th  grade 

students made fewer mistakes than 2nd  grade students (s. also 

Figure 2). The analysis also revealed a significant 

interaction between direct associations and grade (β=-

0.360, t=-2.95, SE=.122). Moreover, we obtained an 

interaction of indirect association and grade (β=-0.395,  

t=-3.33 SE=.119).  

Post-hoc t-tests revealed that for 2nd graders words that were 

high directly associated (M=3.50, SD=1.90) led to fewer 

errors (t=-9.89, p=.000) than words that were low directly 

associated (M=5.71, SD=2.60). For 4th graders high directly 

associated words (M=1.74, SD=1.24) led also to 

significantly fewer errors (t=-12.32, p=.000) than words that 

were low directly associated (M=3.95, SD=2.08). 

Furthermore, for 2nd graders words with many common 

associates (M=4.84, SD=2.29) led to significantly more 

errors (t=2.481, p=.015) than words with few common 

associates (M=4.37, SD=2.16). Whereas for 4th graders 

words with many common associates (M=2.68, SD=1.82) 

led to significantly fewer errors (t=-2.116, p=.038) than 

words with few common associates (M=3.01, SD=1.48). 

 

 

Response time  
Grade and direct association led to a significant 

contribution to the model (all t ‘s>=2). The positive effects 

of grade (β=1.103,t= 8.99,  SE=.12) and direct association 

(β=0.19, t= 3.06, SE=.08) indicate that 4th grade students 

responded faster than 2nd  grade students and in general 

students responded faster for words that were directly 

associated (s. Figure 3).  

 

 

 
Figure 2: Mean accuracy (error rates) in 2nd  and 4th  grade 

students  
Note: Error bars are standard errors.  
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Figure 3: Mean response times in 2nd  and 4th  grade students  
Note: Error bars are standard errors. 

 

Discussion  
To test whether the AROM can account for a developmental 

shift from associative-syntagmatic (direct) to semantic-

paradigmatic (indirect) relations during visual word 

recognition, we analyzed the performance of 75 2nd grade 

and 76 4th grade children of two German elementary schools 

in a semantic priming task. Direct (syntagmatic) 

associations decreased errors in 2nd graders as well as in 4th  

grade students. The analysis of indirect (paradigmatic) 

relations revealed a significant interaction of grade and 

paradigmatic associations: while paradigmatic associations 

led to inhibitory effects in 2nd graders (more errors), they led 

to facilitating effects in 4th graders (fewer errors). Thus, 

children may develop the ability to generalize across 

common associations between the second and the fourth 

grade.  

 

Our results fit into a reading development model, in which 

category knowledge is gradually abstracted and develops 

from functional, event-based knowledge. Response 

differences may result from the addition from new 

structures within an associative network, instead of a 

complete reorganization (e.g. McCauley et al., 1976). 

Consistent with this, Nelson (1977) assumed that children 

first represent semantic knowledge as spatial or temporal 

scripts (e.g. “eating lunch”) and gradually abstract and 

define categories from this script-based knowledge.  

Our results also show that the Associative Read-Out Model 

(Hofmann et al., 2011) is sufficient to define both, 

associative-syntagmatic and semantic-paradigmatic 

perspectives by co-occurrence statistics, and thus provides a 

computational window into developmental effects of visual 

word recognition. Future more explicit simulations with an 

AROM thus may capture individual differences such as age 

by differential associative excitation and inhibition scaling 

parameters within the semantic representation layer.  

 

The syntagmatic-paradigmatic shift in children is well 

known (e.g. Entwisle, 1966). De Saussure’s (1959) coined 

the term “syntagmatic” as an associative relation between 

words that typically co-occur in a linear combination (cf. 

Hofmann & Jacobs, 2014). He further proposes a second 

type of relation, i.e. that words are associated when “they 

have something in common” (1959, p. 123). In 

computational linguistics, the number of common associates 

is used to define paradigmatic relations: “For example, the 

semantic similarity of the words red and blue can be derived 

from the fact that they both frequently co-occur with words 

like color, flower, dress, car, dark, bright, beautiful, and so 

forth” (Rapp, 2002, p. 1). We think that simple within-

sentence co-occurrence provides an intelligible, transparent 

and performance-independent explanation of differential 

effects during reading development.  

 

We are aware of the fact, that the priming effects might also 

be driven by factors like positional-syntactic information 

(e.g. Hofmann, Biemann, & Remus, 2017). Thus, future 

studies may also investigate the influence of syntactic 

information by using not only simple nouns from the word 

corpora, but also words from other syntactic classes or 

prime-target pairs spanning differential word classes (e.g., 

verbs, adjectives etc.). Further studies may also investigate 

whether computational models that reduce the amount of 

latent semantic dimensions can provide generalization 

capabilities that may account for more variance than the 

simple amount of common associates (e.g. Landauer & 

Dumais, 1997).  
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Abstract 

Even newborn infants are able to extract structure from a 

stream of sensory inputs and yet, how this is achieved remains 

largely a mystery. We present a connectionist autoencoder 

model, TRACX2, that learns to extract sequence structure by 

gradually constructing chunks, storing these chunks in a 

distributed manner across its synaptic weights, and 

recognizing these chunks when they re-occur in the input 

stream. Chunks are graded rather than all-or-none in nature. 

As chunks are learned their component parts become more 

and more tightly bound together. TRACX2 successfully 

models the data from four experiments from the infant visual 

statistical-learning literature, including tasks involving low-

salience embedded chunk items, part-sequences, and illusory 

items. The model also captures performance differences 

across ages through the tuning of a single learning rate 

parameter. These results suggest that infant statistical learning 

is underpinned by the same domain general learning 

mechanism that operates in auditory statistical learning and, 

potentially, in adult artificial grammar learning.1  

 

Introduction 
We live in a world in which events evolve over time. 

Consequently, our senses are bombarded with 

information that varies sequentially over time. One of 

the greatest challenges for cognition is to find structure 

within this stream of experiences. Even newborn infants 

are able to do this (Teinonen, et al. 2009; Bulf, Johnson 

& Valenza, 2011), and yet, how this is achieved remains 

largely a mystery.  

  Two possibilities have been suggested (see Theissen, 

et al., 2013 for a detailed discussion). The first, 

characterised as statistical learning, involves using 

frequency and transition probabilities to construct an 

internal representation of the regularity boundaries 

among elements encountered. The second possibility 

suggests that elements that co-occur are recalled and 

simply grouped together – or chunked – into single 

units. Over time, these chunks can themselves be 

grouped into super-chunks or super-units. According to 

this view behaviour is determined by the recognition of 

these chunks stored in memory and associated with 

particular responses. What distinguishes these accounts 

                                                        
1 This article is an abridged, modified version of Mareschal, D. 

& French, R. M. (2017) TRACX2: a connectionist 

autoencoder using graded chunks to model infant visual 

statistical learning. Phil. Trans. R. Soc. B 2017 372 20160057; 

DOI: 10.1098/rstb.2016.0057.  

 

is that the former argues that it is the probabilistic 

structure of the input sequence that is represented and 

stored, whereas the later argues that specific co-

occurring elements are stored, rather than the 

overarching statistical structure. Ample evidence in 

support of both of these views has been reported. 

  We will argue that this is a false dichotomy: both 

transitional probability learning (statistical learning) and 

chunking co-exist in one system that smoothly 

transitions between these apparent modes of behaviour. 

The appearance of two modes of learning is an illusion 

because only a single mechanism underlies sequential 

learning; namely, Hebbian-style learning in a partially 

recurrent distributed neural network. Such a system 

encodes exemplars (typical of chunking mechanisms) 

while drawing on co-occurrence statistics (typical of 

statistical learning models). An important corollary of 

this approach is that chunks are graded in nature rather 

than all-or-none. Moreover, interference effects 

between chunks will follow a similarity gradient typical 

of other distributed neural network memory systems.   

  Chunks are most frequently thought of as all-or-

nothing items. Who thinks of "cups" and "boards" when 

they see the word "cupboard"? Or "foot" and "ball" 

when they encounter the word "football"? Indeed, 

chunks like these have essentially the same status as 

"primitive" words like "boat" or "tree", which are not 

made of component sub-words. But new chunks do not 

suddenly appear ex nihilo in language. Rather, they are 

generally formed gradually, their component words 

becoming more and more bound together with time and 

usage. For example, when we encounter the words 

"smartphone", "carwash", or "petshop", we still clearly 

hear the component words. We hear them less in words 

like "sunburn" and "heartbeat". We hear them hardly at 

all in "automobile." How long did it take for people to 

stop hearing "auto" and "mobile" when they heard or 

read the word "automobile"? Like "automobile", it is 

likely that in a few years the current generation will no 

longer hear "smart" and "phone" when they hear the 

word "smartphone". This simple observation involving 

the graded nature of chunks is at the heart of the 

chunking mechanism in TRACX2. 

  These ideas were implicit in our initial presentation of 

the TRACX model (French et al., 2011). In TRACX we 

showed that a connectionist autoencoder, augmented 

with conditional recurrence, could extract chunks from 

a stream of sequentially presented symbols. TRACX 
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had two banks of input units, which it learned to 

autoencode onto two banks of identical output units. 

Sequential information was encoded by presenting 

successive elements of the sequence, first on the right 

input bank, then on the left input bank on the next time 

step. Thus, the sequence of inputs was presented in a 

successive series of right-to-left inputs, with learning 

occurring at each time step. However, if the output 

autoencoding error was below some pre-set threshold 

value (indicating successful recognition of the current 

pair of input elements), then, on the next time step, 

instead of the input to the right input bank being 

transferred to the left input bank, the hidden unit 

representation was put into the left input bank. The next 

item in the sequence was, as always, put into the right 

input bank. Weights were updated and the input 

sequence would then proceed as before. The result of 

this was that TRACX learned to form chunks of 

elements that it recognised as co-occurring (see French 

et al., 2011 for full details). TRACX successfully 

captured a broad range of data from the adult and infant 

auditory statistical learning literature and outperformed 

existing models of both chunking, notably, PARSER 

(Perruchet & Vinter, 1998) and statistical learning 

(SRNs, Cleeremans & McClelland, 1991).  

  TRACX2 (French & Cottrell, 2014), which we use in 

this paper to segment and chunk sequential visual items, 

is an updated version of TRACX. TRACX2 removes 

the use of an all-or-nothing error threshold that 

determines whether or not the items on input are to be 

chunked. This effectively removes a conditional jump 

(i.e. an if-then-else) statement from the model, jump 

statements of this kind not being natural to neural 

network computation. In TRACX2, the contribution of 

the hidden-unit activation vector to the left bank of 

input units is graded and depends on the level of 

learning already achieved. TRACX (French et al., 2011) 

and TRACX2 (French & Cottrell, 2014) were used to 

successfully model the segmentation of syllable (i.e., 

auditory) streams. In the present article, we use 

TRACX2 to model four experiments from the infant 

visual statistical learning literature. Visual statistical 

learning paradigms involve showing infants sequences 

of looming colored shapes with varying degrees of 

statistical regularity embedded in the sequences. It was 

first developed as a visual analogue of the auditory 

statistical learning experiments (Kirkham, Slemner & 

Johnson, 2002) and has yet to be captured by any 

modeling paradigm. 

 

The TRACX2 Architecture 
TRACX2 was initially introduced by French and 

Cottrell (2014). The key to understanding TRACX2 is 

to understand the flow of information within the 

network. Over successive time steps, the sequence of 

information is presented item-by-item into the right-

hand bank (RHS) of input units. The left-hand bank 

(LHS) of input units is filled with a blend of the right-

hand input and the hidden unit activations at the 

previous time step, as shown in the following equation:   

LHSt+1 = (1- tanh(Δt))*Hiddenst + (tanh(Δt))*RHSt 
 

where Δt is the absolute value of the maximum error 

across all output nodes at time t, LHSt is the activation 

across the left-hand bank of input nodes, Hiddenst are 

the hidden-unit activations at time t, RHSt is the 

activation across the right-hand bank of input nodes, 

and  is the sigmoid-"steepness" parameter, always set 

to 1 in the simulations presented here. If at time t, Δt is 

small, this means that the network has learned that the 

items on input are frequently together (otherwise Δt 

could not be small). The contribution to the left-hand 

bank of input units at time t+1 of the hidden-unit 

activations, which constitute the network's internal 

representation of the two items on input at time t, is, 

therefore, relatively large and the contribution from the 

right-hand inputs will be relatively small. Conversely, if 

Δt is large, meaning that the items on input have not 

been seen together often, the hidden-layer's contribution 

at time t+1 to the left-hand input bank will be relatively 

small and that from the right-hand inputs will be 

relatively large. At each time step, the weights are 

updated to minimise output error (Fig. 1). 

  In layman's terms,  this  means  that  as you experience  
 

 
Figure 1. Architecture and information flow in TRACX2. In all simulations reported in this paper,  = 1. When 

Δ is large (items not recognized as having been seen together before on input), almost all contribution to LHS 

comes from RHS. When Δ is small (items recognized as having been seen together before on input), almost all 

contribution to LHS comes from the Hidden layer (Hid). 
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items (visual, auditory, tactile) together over and over 

again, these items become bound to each other more 

and more strongly into a chunk until we no longer 

perceive its component parts.  

 

Modeling infant statistical learning 
In this section we report on a total of four different 

simulations using TRACX2 of infant visual statistical 

learning behaviour. We used  (the learning rate) as a 

proxy for development, with  set to 0.0005 for 

newborns, 0.0015 for 2-month-olds, 0.0025 for 5-

month-olds, and 0.005 for 8-month-olds. This is a 

typical parameter used to model age related differences 

in early learning (e.g., Thomas & Johnson, 2006). 

There was a bias node on the input and hidden layers 

and momentum was always set to 0. The key 

developmental hypothesis here is that, with increasing 

age, infants are progressively better at taking up 

information from an identical environment. This is 

consistent with the well-established finding that the 

average rate of habituation increases with increasing 

age during infancy (e.g., Bornstein et al., 1988; 

Colombo & Mitchell, 2009; Westermann & Mareschal, 

2013). Finally, as has been used repeatedly elsewhere, 

we take network output error as a proxy for looking 

time in the infant (Mareschal & French 2000; 

Mareschal, French, Quinn, 2000; Mareschal, Quinn, & 

French, 2002; Mareschal & Johnson, 2002; French, 

Mareschal, Mermillod & Quinn, 2004; Westermann & 

Mareschal, 2013). The idea here is that the amount of 

output error correlates with the number of cycles 

required to reduce the initial error, which corresponds 

to the amount of time or attention that the model will 

direct to a particular stimulus. 

  We begin by modeling the seminal Kirkham et al. 

(2002) visual statistical learning experiment 

demonstrating that age-related effects in the efficacy of 

learning can be accounted for by a simple and plausible 

parameter manipulation in TRACX2. We then show 

that TRACX2 can capture statistical learning in 

newborns, as well as their dependency on the 

complexity of the information stream (Bulf et al., 2011).  

  Finally, we show that, like 8-month-olds (Slone & 

Johnson, 2015), TRACX2 forms illusory conjunctions, 

normally taken as evidence of a statistical learning 

mechanism, but also shows decreased salience of 

embedded chunk items, normally taken as evidence of 

chunking. It, therefore, reconciles two apparently 

paradoxical behaviours within a single common 

mechanism. 

 

Visual statistical learning 

Kirkham et al (2002) developed a visual analogue of 

the auditory statistical learning tasks initially developed 

by Saffran et al. (1996) and Aslin et al. (1998). Instead 

of listening to unbroken streams of sounds, infants were 

shown continuous streams of looming colorful shapes 

in which successive visual elements within a “visual 

word” were deterministic, but transitions between 

words were probabilistic (see Fig. 2, leftmost panel). 

Infants at three different ages were first familiarized to 

this stream of shapes, then presented with either a 

stream made up of the same shapes but with random 

transitions between all elements, or a stream made up of 

the identical visual words as during habituation. 

Kirkham et al. found that infants from 2 months of age 

subsequently looked longer at the random sequence 

than the structured sequence (even though elements are 

identical between streams) suggesting that the infants 

had learned the statistical structure of the training 

sequence.                                    

  We modelled this experiment by training the model 

with a sequence of inputs containing the identical 

probability structure to that used to train infants. The 

training sequence was identical in length to that used by 

Kirkham. The transitional probability within a visual 

word was p=1.0, and between visual words p=.33. 

Shapes were coded using localist, bipolar (i.e., -1, 1) 

orthogonal encodings in order minimize effects due to 

input similarity. The RHS and LHS input vectors were  

comprised of 12 units.  

  Network performance was evaluated by averaging 

output error over all three of the possible two 

image ”visual words" in the sequence. This was then

 

 

 

 

 

 

                                                           

 

 

 

 

Figure 2. (leftmost panel) Illustration of visual sequences used to test infants (after Addyman & Mareschal, 

2013). (middle and rightmost panels) Left-hand panel: Infant performance reported in Kirkham et al. (2002) and, 

right-hand panel: TRACX2 performance with the familiar structured and novel non-structured sequences. (Error 
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is the maximum error of the network over all output units; SEM error bars.)  

 

compared to the average output error for a set of three 

randomly selected two-image “visual non-words” that 

were neither words nor part-words, and, consequently, 

occurred nowhere in the training sequence. This is 

analogous to the word/non-word testing procedure used 

in auditory statistical learning studies (e.g., Saffran et 

al., 1996), and completely equivalent to testing the 

networks with a structured sequence (from which they 

would have extracted visual words) and a fully random 

sequence (in which no previous words or part-words 

exist). The model, like infants of all ages, looked longer 

at the randomised sequence than the structured 

sequence (Fig. 2, rightmost panel). 

 

Visual statistical learning in newborns 

Bulf, Johnson, and Villenza (2011) asked whether the 

sequence-learning abilities demonstrated by Kirkham et 

al (2002) were present from birth. They tested 

newborns (within 1 week of birth) on black and white 

sequences of streaming shapes. In their “High Demand 

Condition”, the sequence had the same statistical 

structure as in Kirkham et al. That is, the sequences 

were made up of 3 visual words, each made up of two 

shapes with a constant transition probability of 1.0 

defining the word, and transitional probabilities of .33 

between words. They also introduced a “Low Demand 

Condition” in which the sequences were made up of 

only two words ( each consisting of two shapes with 

internal transition probabilities of 1.0) leading to 

transition probabilities at word boundaries of 0.5 

(instead of the .33 previously used). The reasoning here 

was that newborns had more limited information 

processing abilities and may therefore struggle with a 

more complex sequence, already proving to be a 

challenge for 2 month olds. 

 
 

Figure 3. Newborn performance as reported in Bulf & 

Johnson (2011) in left panel and TRACX2 performance 

in right panel for familiar structured and novel non-

structured sequence.  
 

  Again, we modelled this study using TRACX2, in the 

same way as above, but by (1) reducing the learning 

rate to 0.0005, and (2) creating both high-demand and 

low-demand sequences. In the low-demand condition 

(LDC), there were two pairs of images, each made up 

of two different images (i.e., a total of 4 separate 

images). In the high-demand condition (HDC) there 

were three pairs of images, each made up of two 

different images (i.e., a total of 6 separate images). In 

the simulation for both the high-demand and low-

demand conditions, TRACX2 saw sequences of 120 

words. Statistics were averaged over 30 runs of the 

program, with each run consisting of 10 simulated 

subjects. Figure 3 shows both the infant data and the 

model results. As with the infants, TRACX2 did not 

discriminate between the structured training sequence 

and the random sequence in the high demand condition 

(with the lower learning rate) but did discriminate 

between the two sequences in the low demand 

condition.  

 

Learning embedded and illusory items. 

One consequence of chunking is that elements within a 

chunk become less salient as the chunks are 

increasingly consolidated. In contrast, statistical 

learning mechanisms predict that learners should form 

illusory items from elements that accidentally appear 

together on occasion. Slone & Johnson (2015) explored 

whether infants’ learning mechanisms would lead to the 

reduced salience of embedded items or to the 

emergence of illusory chunks, as a means of testing 

whether chunking or statistical learning underpins 

infant learning. To do this, they presented 8-months-

olds with sequences structured as depicted in Figure 4a. 

Infants in the “Embedded Pair Experiment” did not 

differentiate embedded pairs from part-pairs that 

crossed word boundaries, but both were differentiated 

from the word pairs. Infants in the “Illusory Item 

Experiment” did not differentiate the illusory triplets 

from the part triplets, but both were differentiated from 

the actual triplets. This is perplexing because one result 

suggests that infants utilize chunking, whereas the other 

results suggests that they engage in statistical learning. 

TRACX2 captures both of these results well, with the 

caveat that the model is designed to produce the 

smallest error on the best learned patterns. (Figs. 4b, 4c). 

If we consider output error to be a measure of attention 

(the higher the error, the more attention the infant pays 

to that item), then we can say that TRACX2 is designed 

to orient to novel test patterns most (i.e., shows a 

novelty preference). In short, when modeling a novelty 

preference, the greater TRACX2's Error on output, the 

longer the looking time for infants. 

  Familiarity preferences are, in some sense, the inverse 

of novelty preferences. This means that the smaller the 

error for an item, the more attention the infant pays to 

that item. Thus, to model familiarity preferences we 

subtract the error on output from the maximum possible 
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error and call this "Inverse Error" (Fig. 4c). So, when 

modeling a familiarity preference, the greater TRACX's 

Inverse Error, the longer the infants' looking time.  

  Such shifts in orienting behaviour are common in 

infant visual orienting, and have been related to the 

complexity of the stimuli and the depth of processing 

(Roder, Bushnell, & Sassville, 2000; Hunter & Ames, 

1988; see Sirois & Mareschal, 2004, for a process 

account of the familiarity-to-novelty shift in a neural 

network model of habituation). Thus, TRACX2 

captures both the reduced salience of embedded chunk 

items and the appearance of illusory conjunctions 

within a single mechanism, thereby reconciling 

apparently paradoxical infant behaviours. 

 

Discussion 
TRACX2 (French & Cottrell, 2014) is an updated 

version the TRACX architecture (French et al. 2011). 

As in the original architecture, TRACX2 is a memory-

based chunk-extraction architecture. Because it is 

implemented as a recurrent connectionist autoencoder 

in the RAAM family of architectures (Pollack, 1989), it 

is also naturally sensitive to distributions statistics in its 

environment. In TRACX2, we replace the arbitrary all-

or-none chunk-learning decision mechanism with a 

smooth blending parameter. TRACX2 learns chunks in 

a graded fashion as a function of its familiarity with the 

material presented. An implication of this is that chunks 

are no longer to be thought of as “all-or-none" entities. 

Rather, there is a continuum of chunks whose elements 

are bound together more or less strongly. 

 TRACX2 was used to model a representative range of 

infant visual statistical learning phenomena. No 

previous models of these behaviours exist. As with the 

auditory learning behaviours, TRACX2 captures 

infants' apparent use of forward and backward 

transitional probabilities, the diminishing sensitivity to 

embedded items in the sequence, and the emergence of 

illusory words. However, it is important to understand 

that TRACX2 is not simply internalising the overall 

statistical structure of the  sequence,  but  encoding, 

remembering and recognizing previously seen chunks 

of information. This is a fundamentally different 

account of infant behaviours than has previously been 

proposed (Krogh, Vlach & Johnson, 2013).   

  TRACX2 can use frequency of occurrence or 

transitional probabilities equally well and fluidly to 

learn a task (as is the case with 8-month-olds; 

Marcovitch & Lewkowicz, 2009). This would suggest 

that categorizing learning either as statistical or 

memory-based is a false dichotomy. Both can happen in 

a single system, with different behaviours seeming to 

appear depending on the constraints of the task, the 

level of learning and the level of prior experience. 

Moreover, the idea that infant looking time is 

determined by the recognition of regularly re-occurring 

items (chunks or individual items) is consistent with the 

recent evidence suggesting that local redundancy in the 

sequences is the prime predictor of looking away in 

infant visual statistical learning experiments (Addyman 

& Mareschal, 2013).  

TRACX2 also suggests that there are no 

specialised mechanisms in the brain dedicated to 

sequence learning. Instead, sequences emerge from the 

application of fairly ubiquitous associative mechanisms, 

coupled with graded top-down re-entrant processing.  
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Figure 4. (a) Familiarisation and testing items for embedded pairs (left panel) and illusory items (right panel) (after 

Slone & Johnson, submitted). (b) Infant data (left-hand side of figure, familiarity preference, Experiment 1) and 

TRACX2 performance (right-hand side, SEM error bars). (c) Infant data (left-hand side of figure, novelty preference, 

Experiment 2) and TRACX2 performance (right-hand panel, SEM error bars). (Figure (a) permission pending).
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Although there may be differences in the

speed and richness of encoding across modalities, there 

is nothing intrinsically different in the way TRACX2 

processes visual or auditory information. This suggests 

than any modality-specific empirical differences 

observed can be attributed to encoding differences 

rather than core sequence-processing differences.  

  In conclusion, we believe that chunking cannot be 

viewed as an all-or-nothing phenomenon. Chunks are 

learned and over the course of being learned their 

component parts become more and more tightly bound 

together. This is a fundamental principle of TRACX2. 

The results of the present paper suggest that infant 

statistical learning is underpinned by the same domain 

general learning mechanism that operates in auditory 

statistical learning and, potentially, also in adult 

artificial grammar learning. TRACX2, therefore, offers 

a parsimonious account of how infants find structure in 

time. 
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Abstract 

According to the dual systems model, adolescence is a period 
of imbalance between cognitive and motivational systems that 
results in increased tendency towards risk. In the study, we 
investigated the effects of rewards on risk-taking and 
cognitive control in 90 adolescents (13-16) and 96 adults (18-
35). Our results challenge the assumptions of the model as we 
observed that rewards lead adolescents to more conservative 
decisions in one of the risk tasks used in the study. We also 
observed that in cognitive control tasks, rewards influenced 
reaction latencies, but not the efficiency of control processes. 

Keywords: risk taking strategy, cognitive control, sensitivity 
to rewards, dual systems model 

Introduction 

As a developmental period, adolescence is commonly 

characterized by risk-taking, sensation seeking, impulsivity 

and the importance of peers. Such characteristics clearly 

serve an adaptive function during the transition to 

adulthood, fostering tendencies towards independence, 

novel experiences and social networks (Spear, 2000). At the 

same time, they expose adolescents to the negative 

consequences of their actions, with typical examples being 

reckless driving, experimenting with psychoactive 

substances or unprotected sex. In our study, we investigated 

adolescent sensitivity to rewards and its consequences for 

risk-taking and cognitive control. 

The Dual Systems Model 

The dual systems model by Steinberg (2008) is one of the 

most influential propositions attempting to explain 

adolescent behavior that is well established in cognitive and 

neurodevelopmental research (Defoe, Dubas, Figner, & van 

Aken, 2015; Geier, 2013). According to the model, 

adolescence can be characterized by a functional imbalance 

between the hyperactive motivational system, responsible 

for increased sensitivity to rewards, and the still maturing 

cognitive control system, responsible for reaction inhibition 

and effective management of information. In both human 

and animal adolescents, greater sensitivity towards pleasure, 

positive feedback and rewarding effects of social 

interactions are observed (Somerville & Casey, 2010; Spear, 

2011). In humans, it has been established that early (11-13 

years old) and middle adolescence (14-16 years old) are the 

periods of highest sensitivity to rewards. The presence of 

salient incentives coupled with the immaturity of control 

processes is believed to result in increased tendency towards 

risk. 

Risk-taking, defined as a propensity towards actions ―with 

the highest outcome variability‖ (Defoe et. al., 2015), is the 

most studied consequence of adolescent sensitivity to 

rewards. More precisely, risk-taking is a preference for 

actions leading to a big gain of low probability over actions 

leading to a small gain of high probability. According to the 

dual systems model, adolescents take more risks in the 

presence of salient incentives and when they are 

emotionally aroused. Studies focusing on age differences in 

risk-taking show that adolescents do manifest stronger 

tendency towards risk than adults, but only under specific 

task demands or in specific social contexts. A meta-analysis 

by Defoe et al. (2015) revealed that in studies using 

probabilistic gambling tasks (e.g. Iowa Gambling Task, 

Columbia Card Task, Balloon Analogue Risk Task), these 

specific task demands include primarily immediate outcome 

feedback, i.e. participants are informed of their gains and 

losses immediately after each decision. In studies using fast-

paced driving tasks (e.g. Stoplight Task, driving simulators), 

it is usually the presence of a peer observer that encourages 

adolescents to take risks (e.g. Chein, Albert, O’Brien, 

Uckert, & Steinberg, 2011; Cascio et al., 2015). It seems 

unclear whether these two types of risk task measure one or 

more types of risky behavior. The use of probabilistic 

gambling tasks allow a better understanding of economic 

risk preference. In fast-paced driving tasks, the risk is more 

impulsive and more similar to everyday situations. 

Beyond the risk context, the assumptions of the dual 

systems model are tested in a rewarded vs. neutral 

antisaccade paradigm. Interestingly, some results show that 

cognitive control is enhanced in adolescents, but not in 

adults, where it is financially rewarded (Geier, Terwilliger, 

Teslovich, Velanova, & Luna, 2010; Padmanabhan, Geier, 

Ordaz, Teslovich, & Luna, 2011). Such an effect does not 

correspond to the implication of the model that adolescent 

risk-taking stems from weaknesses of control processes. 

Rather, it indicates that adolescent sensitivity to rewards can 
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in fact be adaptive and promote cognitive efficiency. 

Unfortunately, the effect seems to be difficult to replicate. 

Subsequent studies show individual differences such as 

increase, decrease or no change in cognitive control in 

adolescent response to rewards (Geier & Luna, 2012; 

Paulsen, Hallquist, Geier, & Luna, 2015). One study using 

the Continuous Performance Test showed a similar increase 

of performance in children, adolescent and adults in the 

rewarded condition (Strang & Pollack, 2014). 

The Challenges for the Dual Systems Model 

Despite the fact that the dual systems model does not 

specify whether tendency towards risk is adaptive or 

maladaptive (Strang, Chein, & Steinberg, 2013; Shulman et 

al., 2016), it is criticized mainly for its generality and the 

fact that it adopts a deficit perspective on adolescence 

(Pfeifer & Allen, 2012; Telzer, 2016). Actually, results from 

many studies contribute to the image of adolescence as the 

period of greatest lability, vulnerability to social evaluation, 

and decision making which may be suboptimal or even life-

threatening. However, a high propensity towards risk may 

not be the domain of all but the most susceptible adolescents 

(Bjork & Pardini, 2015). An interesting new development 

for the model might be offered by research demonstrating 

that adolescent sensitivity to rewards can lead not only to 

risk-taking, but can also be channeled towards safe (Cascio 

et al, 2015; Telzer, Ichien, & Qu, 2015) or prosocial 

behavior (Telzer, Fuligni, Lieberman, & Galvan, 2013; 

2014). 

The conceptualization of adolescent risk-taking within the 

model and beyond it remains, however, the most intriguing 

issue. Are adolescents impulsive risk-takers, who, due to the 

immaturities of their control processes, cannot override 

risky tendencies in the presence of salient incentives 

(Willoughby, Good, Adachi, Hamza, & Tavernier, 2013)? 

Or is risk-taking rather a decision strategy adopted 

whenever it seems profitable? When we view risk-taking as 

a strategy, we can also see adolescents as having more 

control over their behavior than is assumed in the model. 

Decision strategies can vary depending on the task and the 

type of risky behavior (e.g. economic risk, driving risk). 

Adolescent sensitivity to rewards (e.g. financial rewards, 

immediate outcome feedback) can be similar or different in 

various risk tasks. Nevertheless, it seems to be associated 

with emotional arousal. Finally, an issue worth examining is 

whether cognitive control in adolescents is indeed weaker 

than in adults and more sensitive to rewards. 

Hypotheses 

To sum up, we expected that adolescents would be more 

sensitive to rewards than adults and that the difference in 

sensitivity would manifest in more efficient cognitive 

control and a higher tendency towards risk when 

performance is rewarded. Also, as the dual systems model 

does not provide a direct link between the presence of 

reward and its possible effect on risk-taking and cognitive 

control, we hypothesized that the effect may be mediated by 

the most obvious variable: emotional arousal. 

Taking into consideration all of the above, we can 

formulate the following predictions. 

Risk (1) When rewarded according to their performance, 

people will manifest more risk-taking compared to a no- 

reward condition. 

Cognitive control (2) When rewarded, people will exhibit 

more efficient cognitive control. 

Developmental changes (3) The simple effects expected in 

hypotheses (1) and (2) will be larger for adolescents than for 

adults. 

Arousal (4) People will report higher arousal when 

rewarded according to their performance, compared to a no-

reward condition. (5) The arousal level will be a substantial 

mediator between the type of condition, risk level and 

cognitive control efficiency. 

Procedure 

The one hundred and eighty six subjects (81 men) were 

recruited either via parent-teacher conferences in local 

schools (adolescents) or online advertisements (adults) from 

two groups: adolescents (N = 90, mean age = 13.82, SD = 

0.89, range = [13, 16]), and adults (N = 96, mean age = 

25.04, SD = 4.03, range = [18, 35]). Parental consent was 

obtained for all under age participants. The study was 

conducted in schools (adolescents) and the university 

psychological laboratory (adults). Participants were 

informed that the anonymized data would be used only for 

the scientific purposes of the study and that they could ask 

questions, withdraw their participation at any moment, and 

receive performance feedback after the study was 

completed. 

The session lasted for about 90 minutes and consisted of 

two conditions, with a fifteen-minute break in between: (a) a 

set of tasks with rewards depending on the performance and 

(b) a set of tasks without any rewards. In each condition, 

participants performed four tasks, each preceded by a 

training session. Two tasks were cognitive control tasks 

(Stroop task, Antisaccade task), while the other two 

measured the tendency to take risks (Spaceride task and 

Stock Market task). The order of conditions and of the tasks 

within sets were randomized. In the middle of each 

condition (after performing two computer tasks), 

participants were asked to complete the SUPIN arousal 

scale. Therefore, each person performed four computer tasks 

and the SUPIN scale twice, once in a rewarded and once in 

an unrewarded condition. 

Participants were paid for their attendance with vouchers 

(to a clothing store, a bookstore, or a movie theatre). The 

value of the vouchers depended on performance in each task 

in the rewarded condition and varied from $5 to $15 (mean 

$10, equivalents in PLN). 

The Tasks 

The tasks were selected so as to measure different aspects of 

risk-taking and cognitive control. In contrast to the Stock 
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Market task, which investigates the tendency to make risky 

decisions based mostly on deliberative thinking, the 

Spaceride task was designed to detect the tendency to take 

risk in emotionally stimulating conditions. As two aspects 

of cognitive control, interference inhibition and response 

inhibition were measured separately by the Stroop task and 

the Antisaccade task. The SUPIN Scale was introduced to 

control the level of positive and negative affect during each 

research condition, as a possible moderator of task results. 

Stock Market The task resembles a financial game in 

which participants use virtual currency to buy shares in two 

fictitious companies. In each turn of the game it was 

possible to buy a number of shares of one or two companies 

or no shares at all. The only restriction was the amount of 

money the participant had at a given moment, which was 

shown on the right side of the screen. The participant had 60 

seconds to take a single decision, and 20 decisions to make 

during the game, which was also displayed on the screen. 

During the game the participant could see the history of 

changes of the prices of each companies’ shares displayed 

on a chart. After each decision they also saw a table 

showing the current values of stocks and how much money 

they had earned or lost so far. The price changes were 

probabilistic (independent and normally distributed). The 

expected gain (mean price change) from investing in any of 

the companies was the same; however, the variance of the 

price changes was small for one company (safe) and large 

for the other (risky). The difference between the companies 

was revealed to participants at the beginning of the task. 

Spaceride The task fulfilled a function similar to the 

―Stoplight‖ task (Chein et al., 2011), in which participants 

in a car-driving context had to quickly decide whether or not 

to take a risk to reach their destination as quickly as 

possible. The Spaceride task has the form of a game in 

which the participant controls a spaceship seen from above. 

The task was to fly as quickly as possible to the end of the 

cosmic route. There were a number of danger zones where 

there was a risk of collision with asteroid. Those zones were 

marked by a sound signal, a light on a radar, and the 

appearance of distant asteroids in the background. A cloud 

of fog also sometimes appeared and covered the spaceship 

and its surroundings, making it impossible to see asteroids 

approaching. In each danger zone, the participant had to 

decide whether to slow down and avoid a collision or speed 

ahead, risking a collision with an asteroid. A collision 

would immobilize the spaceship for longer than it would 

take to fly through a danger zone. 

Stroop task The task (Stroop, 1935) was used to evaluate 

participants’ ability to inhibit interference. In each trial of 

the task, one of four words (―red‖, ―brown‖, ―blue‖ or 

―green‖) appeared on the screen displayed in one of the four 

colors (also red, brown, blue, or green). In congruent trials 

(50% of trials), the color was the same as the meaning of the 

word (e.g. the word ―brown‖ written in brown), while in 

incongruent trails the word was written in one of the other 

three colors (e.g. the word ―red‖ written in blue, meaning 

interference was present). The participants had to press one 

of four keys corresponding to the displayed color of the 

word as quickly as possible and ignore the meaning of the 

word. To motivate the participants for a better response, a 

status bar visible on the top of the screen was additionally 

introduced. After every response the bar changed color to 

green when the response was correct, or to red when it was 

wrong. The faster the response, the shorter the bar, so the 

participant could see the accuracy and speed of every 

reaction during the game. 

Antisaccade task The task (Unsworth, Schrock, & Engle, 

2004) served as a measure of response inhibition. The 

participant had to inhibit the tendency to look at a sudden 

presentation of a peripheral lure stimulus and instead look at 

its mirror location in order to perceive the target stimulus 

(arrow) and correctly react to it (press one of three keys 

depending on the direction of the arrow). Feedback was 

additionally introduced in the present task to inform 

participants of their accuracy. The feedback took the form 

of a screen-wide rectangle displayed in green (in the case of 

a correct response) or red (when the reaction was wrong). 

Modified SUPIN Scale The scale (Brzozowski, 2010) was 

derived from Watson & Clark’s Positive and Negative 

Affect Schedule. Both positive and negative affect were 

measured, forming two subscales of the questionnaire. The 

scale consisted of 20 adjectives describing various 

emotions. Participants indicated on a five-point Likert scale 

(from 1 – ―very slightly or not at all‖ to 5 – ―extremely‖) 

how well each adjective described their current state. On the 

basis of the results of our preliminary study, we altered 

seven items of the scale to achieve better psychometric 

characteristics. The modified version of the scale was used 

in the present study. 

Results 

Statistics and data analysis One person did not finish the 

whole set of tasks, while 60 had their results removed for 

one task due to low accuracy (in the Antisaccade task) or 

outlying value; however, their remaining results were still 

used in the analysis.  

A generalized linear mixed model using binomial 

distribution was fit to the Antisaccade task. The 

―Mediation‖ package in R was used for mediation analysis. 

Multi-factor analysis of variance with repeated measures 

was applied in all other analyses. 

Condition (rewarded or not rewarded), group (adolescents 

or adults), and interaction between condition and age group 

were independent variables. The condition factor was 

applied within subjects while the age group was applied 

between subjects. We also controlled for position in series 

(first or second) and performance in analysis concerning 

risk tasks. Dependent variables (DV) were: number of 

correct responses in the Antisaccade task; Stroop effect in 

the Stroop task; proportion of high risk stocks in all stocks 

purchased (risk measure), and number of stocks purchased 

(alternative DV) in the Stock Market task; duration of 

pressing the break button (risk measure) and duration of 

pressing the break or accelerate button (alternative DV) in 
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the Spaceride task. Alternative DV in the Spaceride task 

was logarithmized due to its skewness (γ1 =2.17 before and 

0.29 after transformation). The performance measure in the 

Stock Market task was the amount of ―money‖ in the last 

trial, and in the Spaceride task it was the negative time of 

the journey. DV in the Antisaccade task was accuracy, and 

in the Stroop task it was Stroop effect. We also examined 

reaction latencies in Antisaccade and Stroop tasks. 

Cognitive control There was neither an effect of condition 

nor an interaction between condition and age group in the 

Antisaccade task (β = 0.027, p = .47; and β = -0.03, p = .56 

respectively, deviance = 1695.8) and the Stroop task 

(F[1,136] = 0.2, p = .66; and F[1,136] = 1.75, p = .19, 

respectively, η
2
 = .037). However, there was a significant 

difference between adolescents and adults in reaction 

latencies in the Antisaccade task (734 ms for adolescents 

and 695 ms for adults, F[1,164] = 10,84, p = .001) and a 

nearly significant difference between conditions (707 ms for 

not rewarded and 719 ms for rewarded, F[1,152] = 3.58, p = 

.06, η
2
 = .19). There also was a significant difference 

between the rewarded and unrewarded condition in reaction 

latencies in the Stroop task (936 ms for unrewarded and 906 

ms for rewarded, F[1,136] = 101.97, p < .001, η
2
 = .12). 

Risk The performance in the Stock Market task did not 

depend on condition (F[1,180] = 0.1, p = .75), age group 

(F[1,182] = 0.59, p = .44), nor interaction between these 

two factors (F[1,180] = 1.65, p = .2, η
2
 = .032). Neither did 

the performance in the Spaceride task depend on any of 

these predictors (F[1,182] = 0.13, p = .72; F[1,183] = 2.52, 

p = .11; F[1,182] = 1.24, p = .27, respectively, η
2
 = .051). 

There also was neither effect of condition (F[1,182] = 

0.81, p = .37), age group (F[1,183] = 0.87, p = . 35), nor 

interaction between condition and age group on risk 

(F[1,182] = 0.008, p = .93, η
2
 = .0078) in the Stock market 

task or (F[1,182] = 0.028, p = .88; F[1,183] = 1.57, p = .21; 

and F[1,182] = 0.26, p = .61, respectively, η
2
 = .01) in the 

Spaceride task. 

However, there was a significant effect of condition (242 

for the unrewarded condition and 223 for the rewarded 

condition, F[1,181] = 8.96, p = .0031) and age group (200 

for adolescents and 262 for adults, F[1,182] = 18.65, p < 

.001) and a nearly significant effect of interaction between 

condition and age group (F[1,181] = 3.43, p = .065, η
2
 = 

.35) when alternative DV was used in the Stock Market task 

(see Figure 1), as well as an effect of interaction between 

condition and age group in the Spaceride task (F[1,182] = 

4.75, p = .031). The effect of condition or age group in the 

latter task was not significant (F[1,182] = 1.08, p = .3; 

F[1,183] = 0.44, p = .14, respectively, η
2
 = .019, see Figure 

2). 

Arousal The arousal differed significantly depending on 

condition (2.34 for not rewarded condition and 2.5 for 

rewarded condition, F[1, 180] = 43, p < .001, η
2
 = .034), but 

it was not a mediator between condition and alternative DV 

in the Stock Market task (proportion mediated = -.06, 95% 

CI = [-.44, .25], p = .63). 

 

 

Figure 1: Quantity of stock purchased in the Stock 

Market task (alternative DV) in unrewarded and rewarded 

condition for adolescents and adults. Error bars indicate 

95% confidence intervals. 

 

 

Figure 2: Logarithm of total time for which the accelerate 

or break buttons were pressed in the Spaceride task 

(alternative DV) in unrewarded and rewarded conditions 

for adolescents and adults. Error bars indicate 95% 

confidence intervals. 

2040



Discussion 

The first important observation made in the present study is 

that participants were sensitive to rewards in risk tasks, but 

this sensitivity leads adolescents and young adults to 

different decision strategies, depending on the context of the 

task. Adolescent decisions, however, cannot be interpreted 

as an increase in tendency towards risk, which challenges 

the assumption of the dual systems model (Geier, 2013). In 

the Stock Market task we observed that adolescents 

generally purchased less stocks than adults and the number 

of purchased stocks decreased even more in the rewarded 

condition (Fig. 1). In the Spaceride task there were no 

differences between adolescents and adults in time taken to 

press the break or accelerate button in danger zones in the 

no-reward condition. However, in the rewarded condition 

adolescents pressed the brake and accelerator buttons more 

than adults, making the difference between the groups 

significant (Fig. 2). It is interesting why the presence of 

rewards led adolescents to purchase less stocks in the 

market and steer the spaceship more boldly through danger 

zones. Possibly, when they had the opportunity to earn real 

money, participants chose a strategy that leads, as they 

believe, to better performance in the task. If purchasing 

stocks in the market is generally perceived as leading to 

both big gains and big losses—the option with ―the highest 

outcome variability‖ as Defoe et al. (2015) define risk—

then purchasing less stocks when real money is earned can 

be interpreted as a strategy that protects participants from 

loss. Otherwise, flying more boldly through danger zones 

cannot be seen as a strategy preventing collisions. It should 

be noted that while in the Stoplight task (Chein et al., 2011) 

participants decide whether to stop at a yellow light or drive 

through the crossroads, in the Spaceride task it is possible to 

brake and accelerate through the entire length of danger 

zones. Flying more boldly (such as the ―speed-brake-speed‖ 

strategy) in dangerous areas is related to maintaining high 

speed and attempting to slow down just before asteroids. 

Less bold flying is slower, but makes attempts to avoid 

collision more effective. Summing up these results, it 

appears that adolescents made more conservative decisions 

than adults in one of the tasks and more risky decisions in 

the other. The context of tasks is therefore a variable that 

determines whether adolescents manifest risk-taking or risk-

aversion. We can speculate that more conservative decisions 

could be caused by a lack of familiarity with the contexts in 

which risk can occur (e.g. economic risk). 

According to our hypothesis, participants reported higher 

emotional arousal in the rewarded condition. Such results 

suggest that the presence of a salient incentive leads to a 

greater motivational effort that manifests itself in higher 

reported arousal. We failed, however, to show that arousal 

mediates the relation between the presence of reward and 

risk-taking (or other decision strategy). As adolescents are 

viewed as impulsive risk-takers (Willoughby et al., 2013), 

the dual systems model predicts that high arousal in the 

rewarded condition enhances risk-taking because highly 

aroused adolescents cannot override risky tendencies. In our 

study, however, participants seemed to be able to make 

decisions irrespective of their arousal and did not allow it to 

negatively influence their performance. It might be the case 

that arousal leads to impulsive decision-making only in 

specific circumstances. For example, high arousal may 

trigger risk-taking only in individuals in a negative 

emotional state (such as anxiety) or under high cognitive 

load (see, e.g., Zangeneh, Blaszczynski & Turner, 2008). If 

the participants were in optimal emotional and cognitive 

state, reward-related arousal alone might not have been 

sufficient to cause a break-down in control processes and an 

increase in risk-taking. It is also possible that rewarding 

participants resulted in a higher but still optimal level of 

arousal, increasing not risk-taking, but effort. These 

explanations remain speculative and need further studies, 

but it seems that the dual systems model may oversimplify 

the proposed link between arousal and risk-taking. 

Interesting results that challenge the dual systems model 

assumptions were also observed for the cognitive control 

measures. Firstly, adolescents were less accurate and slower 

in the Antisaccade task, while no differences between 

adolescents and adults were observed in the Stroop task. 

Thus, the antisaccade task seems to be more difficult for 

adolescents, a result which is consistent with previous 

studies (Geier & Luna, 2012; Paulsen et al., 2015) showing 

that performance in the Antisaccade task improves with age. 

Secondly, we found that reward had no effect on both the 

accuracy in the Antisaccade task and the Stroop effect. 

However, in the rewarded condition participants exhibited 

longer latencies in the Antisaccade task and shorter latencies 

in the Stroop task. These results are not surprising given the 

fact that participants were informed that they were being 

rewarded for accuracy in the first task and for response 

speed in the second. The intriguing issue here is why the 

presence of rewards influenced not the measures of 

cognitive control efficiency (reaction inhibition and 

interference control), but reaction latencies in the tasks. It is 

possible that rewards enhance not a measured skill (i.e. 

control processes) that might be difficult to improve, but the 

motivational effort to do well in the task. Such an 

interpretation seems to be consistent with the effects of 

reward observed in the risk tasks, where again not the 

performance (e.g. money earned in the Stock Market, 

driving time in the Spaceride), but the decision strategies 

(e.g. purchasing more or less stocks, driving more or less 

dynamically) were enhanced. Additionally, we failed to 

observe interaction between age, condition and cognitive 

control efficiency, which is contrary to the dual systems 

model and consistent with the behavioral results of Paulsen 

et al. (2015). The effects of reward on reaction latencies in 

both tasks were similar in adolescents and adults. 

To conclude, the results obtained in the study challenge 

the assumptions of the dual systems model about the 

universality of adolescent risk-taking. Risk-taking as a 

consequence of the weakness of control processes and 

sensitivity to incentives possibly manifests itself in certain 

circumstances. In our study, adolescents made decisions 
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which cannot be considered unequivocally risky or 

impulsive, despite the rewards. Further studies should help 

determine more precisely what set of circumstances triggers 

different behavioral responses in the presence of incentives 

and thus contribute to the development of the model. 
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Abstract 

Previous studies have shown that one can exploit “wisdom of 
crowds” by oneself. This is achieved by aggregating multiple 
“quasi-independent” estimates from the same person. However, 
previous methods were not necessarily easy to utilize. Therefore, 
we propose an efficient method based on perspective-taking. The 
procedure is as follows: First, one makes her/his own estimation. 
Second, one estimates again based on a different perspective 
(“general public”). Then these two estimations were averaged. 
Two experiments revealed that our method effectively induced the 
wisdom of crowds by oneself. More importantly, participants in 
our method made estimations more quickly than those in a 
previously proposed method, suggesting that our method required 
a relatively diminished cognitive load for participants. Further 
investigation suggested that our method was immune to adverse 
effects of confidence. Therefore, the present findings show that our 
method could be effective and efficient method for inducing the 
wisdom of crowds in one mind. 
 
Keywords: Estimation; Judgments under uncertainty; 
Perspective taking; Judgment aggregation; Wisdom of crowds; 
Wisdom of crowds in one mind 

Introduction 
“Wisdom of crowds” (Surowiecki, 2004) is the well known 
phenomena, such that the aggregation of multiple estimates 
made by large number of people is more accurate than the 
estimate of a single individual. Recently, an intriguing 
concept, termed “wisdom of crowds in one mind” has been 
discussed in the research field of judgment and decision 
making (e.g., Rauhut & Lorenz, 2011). In examining this 
issue, researchers have discussed how a single person can 
exploit “wisdom of crowds” in her/his mind. Herzog and 
Hertwig (2014a) argued that this is achieved by averaging 
“quasi-independent” multiple estimates from the same 
person. A person’s estimate is not always constant and has 
some variance, even for the same problem. Using such 
inconstancy and variance, s/he can exploit the “wisdom of 
crowds in one mind”. For example (see Figure 1), there is a 
question with correct answer 50%. A person’s first estimate 
was 30%. Imagine that s/he was asked to make the second 
estimate, then her/his second estimate was 80%. The 
average of two estimates would be 55%; a result more 

accurate than the first estimates. Previous studies have 
proposed some methods about how to exploit the wisdom of 
crowds in one mind. Vul & Pashler (2008) proposed a 
method in which individuals make estimations for the same 
problem twice, with a time lag (2-weeks) between 
estimations. Herzog & Hertwig (2009) proposed the method 
called dialectical bootstrapping. In this method, people are 
asked to make an estimation twice. In the second estimation, 
they are provided an instruction (shown in Table 1, see 
“dialectical” condition). This instruction asks individuals to 
provide a different estimation from the first one, by 
considering new knowledge that was once overlooked, or 
searching out incorrect assumptions or considerations 
present in the first estimate. These studies generally showed 
that the average of the first and second estimates were more 
accurate than the first estimate, and that the benefit of 
averaging was larger than in the control condition (i.e., just 
making estimations twice without any time lag or 
instructions). Effectiveness of these methods has been 

confirmed repeatedly in subsequent studies (see Herzog & 
Hertwig, 2014b for review). 

However, these methods are not necessarily easy to 
utilize. In the method proposed by Vul and Pashler (2008), 

 
Figure 1. An example of wisdom of crowds in one mind. 
The red numbers indicate the distance between first or 
averaged estimate and correct answer. 
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the time lag suggested (i.e., 2 weeks) is necessary to exploit 
the wisdom of crowds within the mind of a single individual. 
In the dialectical bootstrapping proposed by Herzog and 
Hertwig (2009), a rather complicated instruction (Table 1) is 
necessary. Furthermore, the first estimate has to be 
presented to the person, which may not be necessarily 
efficient as a method for inducing the second estimate. In 
the present study, we propose a new method for exploiting 
the wisdom of crowds in one mind, based on previous 
findings on perspective-taking. 

Perspective-taking of the “general public” for 
exploiting the wisdom of crowds in one mind 

Perspective-taking 
Perspective-taking is the cognitive action to take another 
point of view. This topic has been examined mainly in the 
research field of social psychology. Previous studies have 
revealed that perspective-taking changes peoples’ subjective 
judgment or preference, such as stereotypes about a person 
(Galinsky & Moskowitz, 2000). Furthermore, recent studies 
have indicated that perspective-taking prompts people to 
change estimates about objective values (e.g., the population 
of the city or the date of historical event). Yaniv & 
Choshen-Hillel (2012) implemented a perspective-taking 
procedure in the advice-taking paradigm	 (for more 
information on the advice-taking paradigm, see Bonaccio & 
Dalal, 2006 for review). In this experiment, participants 
were asked to generate an estimate about questions by 
taking into account estimated values by others (these values 
were given as advice). At this point, participants who were 
asked to generate estimation at the point of another person’s 
perspective tended to accept advice more than those who 
were asked to generate their own estimation. 

Based on these findings, it is predicted that estimations 
vary depending on the perspective an individual takes. 
Accordingly, we propose a method for utilizing wisdom of 
crowds in one mind by taking others’ perspective. In our 
method, we implemented a perspective-taking procedure in 
the multiple estimates for the same question, to exploit the 
wisdom of crowds in one mind. Specifically, we propose the 
following procedure:  
(1): A person makes her/his own estimation. 

(2): S/he makes a second estimation based on a different 
perspective. Specifically, s/he takes perspective of the 
“general public” (Table 1, see “self-others” condition).  
(3): Averaging the first and second estimations. 

Merits of perspective-taking of the “general public” 
We believe that taking the perspective of the "general 
public” has some merits. First, different estimation may be 
easily induced. Although estimations by the same person 
tend to be analogous (e.g., control condition in Herzog & 
Hertwig, 2009), people tend to believe that they differ from 
the general public in some ways. For example, in comparing 
driving ability, people tend to think that their ability is better 
than the general public (e.g., Svenson, 1981), suggesting 
that they believe “I am different from the general public!” 
Thus, a different estimation may be induced by taking the 
perspective of "general" individuals. Second, a different 
estimate may be induced irrespective of confidence about 
the first estimate. In making estimations, if people are 
confident about their estimates, they may not change their 
estimate when they are asked to make the second estimate. 
Previous studies on overconfidence (e.g., Koriat, 
Lichtenstein, & Fischoff, 1980) reveal that people tend to be 
overconfident about the accuracy of their estimation. Thus, 
in inducing a different estimate from the same person, 
confidence (especially, as individuals tend to be 
overconfident) may adversely affect results, as s/he may be 
reluctant to change her/his first estimate when s/he is 
confident about the first estimate. For example, in the 
dialectical bootstrapping method (e.g., Herzog & Hertwig, 
2009), people are asked to make the “self” second estimate, 
even though they are provided an instruction to make a 
“different” estimate. Therefore, this method may be affected 
by the confidence in the first estimate, and an appropriately 
different estimate may not be induced in the second estimate. 
However, our method may correct for this. The current 
procedure asks individuals to make the second estimate 
from “other” people’s perspective. Hence, it is expected that 
our method is relatively immune to the adverse effect of 
confidence, and the nature of changing the estimate, 
irrespective of confidence, may result in the effective 
utilization of the wisdom of crowds in a single mind. Third, 
anyone can imagine the general public. Leboeuf, Shafir, & 
Bayuk (2010) showed that when participants were asked to 

Table 1. Full text in instruction about three conditions. 
Condition Instruction in the second estimate 
Self-others How do you think people in general estimate about the following question? Make a second 

estimate after considering fully how people in general estimate about this. 
 

Dialectical First, assume that your first estimate is off the mark. Second, think about a few reasons why that 
could be. Which assumptions and considerations could have been wrong? Third, what do these 
new considerations imply? Was the first estimate rather too high or too low? Fourth, based on 
this new perspective, make a second, alternative estimate. 
 

Self-twice No instruction 
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take the perspective of a particular group (“family” in Study 
2), the participants who actually identified with this group 
(“have a family” in Study 2) preferred the choice 
corresponding to the perceived group perspective (e.g., a 
family vacation). However, participants who were not 
associated with this type of group (e.g., single) were not 
influenced by this perspective-taking, suggesting that a 
perspective-taking procedure cannot work effectively for 
individuals that are not actually associated with the group. 
Given that people can compare their driving ability with 
general public (Svenson, 1981), people may be able to 
imagine the “general” public. 
 In the following sections, we shall report two behavioral 
experiments and discuss the effectiveness of our method.  
 

Experiment 1 
We conducted a web-based behavioral study in order to 
examine whether our method effectively induced wisdom of 
crowds in one mind. 

Method 
Participants A total of 452 participants were recruited for 
this experiment through a Japanese internet research 
company. Participants were randomly assigned into one of 
three experimental conditions (self-others, n = 150; 
dialectical, n = 151; self twice, n = 151). 
Tasks and materials Participants were asked to answer 
eight general knowledge questions, such as “What percent 
of the world's airports are in the United States?” (Vul & 
Pashler, 2008). Participants answered questions twice 
following instructions (specific content will be reported the 
below). 
Procedure In all conditions, participants first provided their 
own estimates about the questions. After answering all the 
eight questions, participants provided second estimates 
following the instruction for each condition (see Table 1). In 
the self-others condition, we instructed participants to take a 
“general public” perspective. In the dialectical condition, we 
gave the instruction of the dialectical bootstrapping based 
on Herzog & Hertwig (2009). In the self-twice condition, no 
instruction was provided and participants just made second 
estimate again. 

The order of the questions for the first estimate was 
randomized across participants and that for the second 
estimate was the same as in the first estimate. 

 
Analysis 
In the following analyses, we calculated “% MAD (= mean 
absolute distance) reduction averaging” (Herzog & Hertwig, 
2014a) as an index for the gained accuracy of averaging. 
First, absolute distance between an estimate and the correct 
answer was calculated per question for each participant. The 
mean values of these were computed as MAD. MAD1 
indicated MAD of the first estimates, and MADavg 
represents the MAD of the averaged estimates. Then, “% 
MAD reduction averaging” was calculated for each 

participant level as follows: (MAD1-MADavg)/MAD1.1 See 
Figure 2 for examples.  

 

Results and discussion 
Figure 3 shows % MAD reduction averaging for each 
condition. In the self-others and dialectical conditions, % 
MAD reduction averagings were significantly higher than 
zero (self-others: M = 2.52, CI = [0.08, 4.75]; dialectical: M 
= 2.20, CI = [0.50, 4.03]). Therefore, averaged estimates 
reduced error compared to first estimates in these conditions. 
In contrast, in the self-twice conditions, % MAD reduction 
averaging was not significantly higher than zero (M = -
1.34%, 95% CI = [-3.43, 0.67]). Thus, this method did not 

                                                             
1  In this paper, a 95% confidence interval was calculated by 
bootstrapping, based on 1000 sampling, with replacement. 

Figure 3. % MAD reduction averaging. 
 

Figure 2. Examples of AD (absolute distance) and 
formula of % MAD reduction averaging. (a) is an 
example when averaged estimate is more accurate than 
first estimate and (b) is an example when averaged 
estimate is less accurate than first estimate. 
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significantly reduce error compared to the first estimates. A 
pairwise Wilcoxon rank sum test using a Bonferroni 
correction revealed that in the self-others condition and 
dialectical condition, % MAD reduction averagings were 
significantly higher than that in self-twice condition (p 
< .01; p < .05, respectively). These results indicate that our 
method can exploit accuracy of averaging more effectively 
than the method without any instruction, as with the method 
proposed in Herzog & Hertwig (2009). 

Although no significant differences between self-others 
and dialectical condition was found (p > .1), our method can 
exploit accuracy of averaging at least as effectively as the 
method proposed by Herzog & Hertwig (2009) given that 
the mean value of % MAD reduction averaging in the self-
others condition was higher than that in the dialectical 
condition.  

Experiment 2 
In Experiment 2, we used the same procedure with the 
following two exceptions. First, we measured the response 
time for the second estimate. Second, participants rated 
confidence about their first estimates, and we analyzed the 
relationship between the confidence and difference in the 
two estimates (i.e., first and second estimates). 

Method 
Participants Japanese graduates and undergraduates from 
the University of Tokyo (N = 77; 56 men and 21 women; 
age M = 20.90, sd = 2.52) participated in this experiment. 
They were randomly assigned into one of three 
experimental conditions (self-others, n = 25; dialectical, n = 
24; self-twice, n = 28). 
Tasks and materials Participants were asked to answer 
twenty questions about general knowledge based on Herzog 
& Hertwig (2014a). Questions were answered twice, with 
instructions, as in Experiment 1. In addition, in making first 
estimations, participants were also asked to rate their 
confidence for each estimation.  
Procedure The experiment was individually conducted 
using a computer. In all conditions, participants first 
answered their own estimates about the questions, and rated 
confidence about their estimates on a 100-point scale. After 
answering all 20 questions, second estimates were made, 
following instructions, as in Experiment 1. In the self-others 
condition, we instructed participants to take the “general 
public” perspective. In the dialectical condition, we gave the 
instruction based on Herzog & Hertwig (2009). In the self-
twice condition, no instruction was given, and participants 
simply provided a second estimation. 

The order of the questions for the first estimate was 
randomized across participants and that for the second 
question was the same as in the first estimate.  

 
 

Results and discussion 

Accuracy of averaging 
In the following analysis, as in Experiment 1, we calculated 
“% MAD reduction averaging” as an index for the gained 
accuracy of averaging. Figure 4 shows % MAD reduction of 
the averaging for each condition. In the self-others 
condition, % MAD reduction averaging was significantly 
higher than zero (M = 5.51%, 95% CI = [1.26, 9.56]). In 
contrast, in the dialectical and self-twice conditions, % 
MAD reduction averagings were not significantly higher 
than zero (dialectical: M = 2.14, CI = [-1.18, 5.42]; self-
twice: M = 1.60, CI = [-0.24, 3.54]). Thus, these methods 
did not significantly reduce error compared to the first 
estimates. 
 Although a pairwise Wilcoxon rank sum test using a 
Bonferroni correction revealed that in the self-others 
condition, % MAD reduction averaging was not 
significantly higher than that in the dialectical and the self-
twice conditions (ps > .1), the % MAD was higher in the 
self-others condition compared to the dialectical and the 
self-twice conditions. Given that the % MAD reduction of 

Figure 4. % MAD reduction averaging. 
 

Figure 5. Total response time in the second estimate. 
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the averaging was significantly higher than zero only in the 
self-others condition, our method could exploit accuracy of 
averaging effectively, compared to other methods. 
 

Response time in the second estimates 
We analyzed total response time for the second estimate. 
Figure 5 shows total response time for each condition (self-
others: M = 262.27, CI = [222.80, 303.69]; dialectical: M = 
412.19, CI = [327.23, 499.90]; self-twice: M = 193.30, CI = 
[164.67, 234.09]. 

Total response times were log-transformed and a pairwise 
t-test using a Bonferroni correction was conducted. It was 
found that in the self-others condition, participants finished 
second estimates more quickly than the dialectical condition 
(p < .05). Total response time in self-others condition was 
longer than that in self-twice condition (p < .001). These 
results suggest that participants in the self-others condition 
could exploit wisdom of crowds in one mind with 
diminishing more cognitive load than those in the dialectical 
condition. 

Further examination about the three methods 
The difference in first and second estimates To confirm 
that our method exploited the difference of estimates, in the 
following analysis, we calculated median absolute distance 
(AD) to examine the distance between first and second 
estimates (Herzog & Hertwig, 2014a). Median AD refers to 
the median absolute distance between the first and second 
estimates across 20 questions. 
 Figure 6 shows Median AD for each condition. In the 
self-others and dialectical conditions, median ADs were 
both larger than that in the self-twice condition (self-others: 
M = 8.18, CI = [7.02, 9.28]; dialectical: M = 10.02, CI = 
[8.48, 11.79], self-twice; M = 2.45, CI = [1.46, 3.46]; 
pairwise Wilcoxon rank sum test using a Bonferroni 
correction: ps < .001). There was no difference between 
self-others and dialectical condition (p > .1). Therefore, 
these results showed that our method could induce the 
difference of estimates as in the dialectical bootstrapping. 
 
Relationship between the difference in first and second 
estimates and confidence We examined the relationship 
between differences in the first and second estimates and 
confidence. Generally, if a person is confident about the first 
estimate, s/he may not change the second estimate. We 
predicted that since the participants in the dialectical and 
self-twice were asked to make “self” estimations, a negative 
correlation might be observed between the difference in the 
first and second estimates and confidence (i.e., s/he might 
not change the second estimate when s/he was confident 
about the first estimate). However, this might not be true for 
the self-other condition because a person was asked to make 
estimate from other people’s perspective in her/his second 
estimate.  

We analyzed the relationship between the difference in 
the first and second estimates and the confidence about first 

estimate. Absolute distance between the two estimates was 
calculated for each question within participants, and a 
correlation coefficient between the absolute difference and 
confidence in the first estimate was calculated for each 
participant. 2 
 Figure 7 shows distributions of correlation coefficients 
for each condition. In the dialectical and self-twice 
conditions, 95% confidence intervals about correlation 
coefficients were less than zero (dialectical: M = -0.19, CI = 
[-0.29, -0.086]; self-twice: M = -0.13, CI = [-0.21, -0.060]). 
In contrast, for the self-others condition, 95% confidence 
intervals about correlation coefficients included zero (self-
other: M = 0.03, CI = [-0.040, 0.10]). These results indicate 
that participants in the self-other condition tended to make 
different estimations between the first and second 
estimations, irrespective of their confidence. However, 

                                                             
2 Two participants in self-others, two in dialectical, and one in self-
twice conditions were excluded from analysis, as confidence data 
was not collected. 

 
Figure 6. Median absolute distance. 
 
 
 

 
Figure 7. Correlation between confidence and distance.  
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participants in the dialectical condition made analogous 
estimation in the second estimate as in that in the first 
estimate when they were confident in the first estimate. 
Given that wisdom of crowds in one mind tends to work 
when a person makes different estimations in the two 
estimations (e.g., Herzog & Hertwig, 2009), our method is 
relatively immune to the adverse effect of confidence 
compared to the dialectical bootstrapping.  

Furthermore, we analyzed the relationship between the 
accuracy and the confidence in the first estimate. The 
absolute distance between the correct answer and the first 
estimate were calculated for each question within 
participants, as an index for accuracy, and then we 
calculated a correlation coefficient between these two values 
for each participant. Figure 8 shows distributions of 
correlation coefficients. 95% confidence intervals included 
zero (M = -0.0032, CI= [-0.013, 0.0080]). This result 
indicates that confidence was not related with the actual 
accuracy. 

 
 

General discussion 
In the present study, we proposed a new method for 
utilizing the wisdom of crowds in one mind, and we 
examined whether our method was effective when 
compared to another method proposed in previous studies. 
Our findings were summarized as follows: First, we found 
that our method effectively induced the wisdom of crowds 
in one mind. Second, it was found that participants in our 
method made estimations more quickly compared to those 
in the previous method, suggesting that our method 
diminished cognitive load for participants. Third, we found 
that our method was relatively immune to adverse effects 
(e.g., confidence), given that the previous methods require a 
time lag or presentation of the first estimate (Vul & Pashler, 
2008; Herzog & Hertwig, 2009). 

Taken together, we believe that our method can be a more 
effective and efficient method for inducing wisdom of 
crowds in one mind.  
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Abstract 

Graph comprehension requires both bottom-up processing 
from the graph representation and top-down processing guided 
by knowledge and attitude. In the current study, we 
investigated which of the bottom-up process phases: extraction, 
interpretation, and decision: were affected by the top-down 
processing derived by the impressions and social attitudes. The 
experimental results showed that the top-down processing 
driven by impressions temporarily formed in specific contexts 
affected both the extraction of information and the following 
decision phase whereas top-down processing driven by attitude 
formed over a long time based on social norms affected only 
the decision phase. In the latter case, a decision was made 
without any need for bottom-up processing. 

Keywords: graph representation, decision, bottom-up 
processing, top-down processing 

Introduction 

People make decisions by perceiving and understanding 

external resources. Visual representations such as graphs are 

effective for such processes. Visual representations are 

known for making the understanding of information easier, 

as graphs and diagrammatic presentations including scatter 

plots reduce cognitive errors (Ancker, Senathirajah, Kukafka, 

& Starren, 2006; Lipkus & Hollands, 1999). On the other 

hand, graphical representations can also bias interpretation: 

e.g., Woller-Carter et al. (2012) confirmed that an 

intentionally biased graph produces information reading 

errors. 

Previous studies have confirmed that understanding graphs 

is best achieved from both top-down and bottom-up 

processing. Freedman and Shah (2002) proposed a CI model 

for graph comprehension based on the text understanding CI 

model proposed by Kintsch (1988). The model assumed that 

there was an interaction between the two information 

processing stages; bottom-up from the visually represented 

information encoded in the external resources and top-down 

from knowledge stored in long-term memory. 

Many studies have shown that the bottom-up processing of 

graphs depends on the graphical representations. Shah and 

Carpenter (1995) found that the contents of reading 

information changed depending on which of the independent 

variables were assigned to the x-axis or the graph legend. 

Sanchez and Wiley (2006) found that fascinating and 

attractive visual information distracted participant focus from 

the crucial information related to the primary task, which 

implied that such information should be carefully restrained 

to ensure participant focus on the target information. 

In top-down processing, many experimental findings have 

been reported that have found that a participant’s knowledge 

and attitudes toward the topics significantly influence an 

understanding of the information in the graphs. Freedman and 

Smith (1996) found in their experiments with scatter plot 

graphs that the participants read the information not only 

using the bottom-up processing that arises from perceiving 

plot patterns in the graph, but also using top-down processing 

which is based on pre-formed knowledge. Kanzaki and Miwa 

(2012) found that in experiments with line graphs, 

information reading was performed with both bottom-up and 

top-down processing, but the top-down processing did not 

violate the reading of the bottom-up processing. 

CaMeRa (Tabachneck-Schijf, Leonard, & Simon, 1997) 

demonstrated two stages of bottom-up processing. In the 

preceding extraction stage, primary symbolic information 

was drawn from the visual representation of the graph: e. g., 

a y-axis value in the experimental condition in which an 

experimental manipulation was made was greater than the 

value in the control condition, and there was a substantial 

difference between the two conditions. Such difference 

perceptions at this stage were formed based mainly on the 

perceptual information processing in the working memory 

without accessing domain knowledge in declarative memory. 

In the following interpretation stage, the experimental results 

represented on the graph were interpreted with an integration 

of the symbolic information drawn from the graphical 

representation and knowledge stored in declarative memory: 

e.g., a medical material x is effective for improving activity 

y. 

In actual situations, the final decision stage, may follow 

from an understanding of the information drawn from the 

graph: e. g., sales promotion for the medical material x was 

decided on.  

Figure 1 shows the bottom-up processing series: extraction, 

interpretation, and decision. 

The first aim of the current study was to confirm the 

bottom-up processing series shown above. In particular, we 

examined whether internally extracted information, such as 

mentally represented difference between experimental 

conditions, that is constructed from information represented 

on the graph as an external resource, drove the following 

bottom-up information processing. We should note that how 

information is extracted from external resources is generally 

different for each person who reads the graph, implying that 

there is a possibility that different internal information could 

be extracted from identical external resources. Therefore, in  
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this study, we set up difference perception stage in which 

internal information is constructed from “extracted” 

information on the graph.  

In Experiment 1, we constructed an experimental setting in 

which we had participants represent perceived difference 

independently from the external resource. Through the 

experiment, we explicitly confirmed that based on the 

internally represented information, the following 

interpretation and decision stages were performed. 

Next, we considered impressions and attitudes to be the 

factors that drove the top-down processing. Impressions are 

usually temporarily constructed with insufficient information 

based on stimuli presented in a situation or a context (Wang 

& Nelson, 2014). On the other hand, attitudes seem to be 

more continuously formed based on social and moral norms, 

and are directed toward people, places, and social policies 

(Greenwald & Banaji, 1995). 

The second aim of this study was to understand which of 

the initial or final bottom-up processing stages was affected 

by the top-down processing derived from impressions and 

attitudes. The research question was whether top-down 

processing affected only the final decision stage, or also 

affected the initial extraction. Many studies on human 

perception have indicated that top-down processing derived 

from beliefs and knowledge bias human perception; however, 

previous studies on graph comprehension have investigated 

top-down processing using the dependent variables related to 

the latter bottom-up processing phases. 

In Experiment 2, we performed an experiment to examine 

the top-down processing derived from impressions; and in 

Experiment 3, we further investigated the top-down 

processing based on attitudes. 

Experiment 1 

Experiment 1 consisted of Experiments 1a and 1b. 

Participants 

56 undergraduates (29 males and 27 females: Mage = 18.64, 

SDage = 0.82) from Nagoya University participated in 

Experiment 1a. The experiment was performed in small 

groups of at most eight members. 54 undergraduates from 

Nagoya University (30 males and 24 females: Mage = 18.46, 

SDage = 0.97) participated in Experiment 1b. The experiment 

was performed as class practice in a cognitive science class.  

Materials 

In Experiment 1a, an experimental context was introduced in 

which an ingredient A that was expected to improve 

biological vitality was assumed, and the effect of ingredient 

A was examined using a laboratory rat experiment with a 

hamster wheel. Participants were presented with a graph that 

indicated the number of cases out of 20,000 in which the rats 

continued to perform the hamster wheel task for more than 

three minutes. Figure 2 shows the presented graphs in which 

there is a substantial difference in the number of cases for the 

experimental rat group in which ingredient A was given to 

the rats and the control group in which it was not.  

Figure 3 shows the graphs used in Experiment 1b. The 

graphs had perceptual features identical to those in 

Experiment 1a but the information content was different. The 

perceptual features of the graphs implied that there was a 

difference in the number of cases between the two conditions; 

however, the reality was the same. The scalability of the y-

axis of the graphs was manipulated; as a result, across all 

graphs, the numbers of cases were only 1190 (5.95%) for the 

experimental group and 1110 (5.55%) for the control group. 

Procedure 

Based on the presented graphs, participants were instructed 

to indicate their opinion as an expert advisor about a nursing 

tonic that an assumed company was developing to improve 

biological vitality. 

The experimental procedure consisted of the following 

four stages. 

 Graphical presentation Participants were assigned to one 

of three groups. Each group consisted of 18, 19, and 19 

participants respectively in Experiment 1a and 19, 18, and 17 

Figure 2: Graphs used in Experiment 1a. 

Figure 1: Top-down/ bottom-up processing model of 

graph comprehension and decision. 
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participants in Experiment 1b. The participants in each group 

were presented with one of the three graphs shown in Figures 

2 or 3. A score of 1 to 3 was assigned to each of the three 

types of graphs for the following regression analysis. 

Difference perception After the graphical presentation, 

participants estimated the degree of difference in the number 

of cases between the two conditions and were asked if there 

were any differences in the two conditions on a five-point 

scale from 1 (strongly disagree) to 5 (strongly agree). 

Interpretation Then, the participants were required to 

estimate to what degree ingredient A was effective in 

improving biological vitality on a five-point scale. 

Decision Finally, the participants were asked whether 

ingredient A should be included in the nursing tonic the 

company was developing on a five-point scale. 

The experiment took about 30 minutes. 

Result 

Single regression analyses were performed with the score 

recorded in one of the four experimental stages as the 

independent variable and the score in the following stage as 

the dependent variable. Figure 4 shows the results of 

Experiment 1a. There were significant relationships found 

between the presented graphs and the difference perceptions 

(β = .51, t(54) = 4.36, p < .001, R² = .26), the difference  

perceptions and the interpretations (β = .42, t(54) = 3.35, p 

< .01, R² = .17), and the interpretations and the decisions (β 

= .48, t(54) = 4.01, p < .001, R² = .23). The same analyses 

were performed for Experiment 1b and Figure 5 shows the 

results, in which there were significant relationships found 

between the difference perceptions and the interpretations (β 

= .42, t(52) = 3.30, p < .01, R² = .17), and the interpretations 

and the decisions (β = .58, t(52) = 5.11, p < .001, R² = .33); 

however, no significant relationships were detected between 

the presented graphs and the difference perceptions (β = .14, 

t(52) = 1.01, p = .32, R² = .02). 

Experiment 2 

Experiment 2 was performed to investigate how top-down 

processing driven by impressions affected each of the 

bottom-up processing phases confirmed in Experiment 1. 

Experiment 2 consisted of the former and the latter sessions. 

For each participant, the former session was followed by the 

latter session; and between the two sessions, a 5 minute break 

was inserted. 

Participants 

60 undergraduates (30 males and 30 females: Mage = 18.87, 

SDage = 0.65) from Nagoya University participated in 

Experiment 2. The experiment was performed in small 

groups of at most eight members. 

Materials 

The former session in Experiment 2 was performed to 

replicate Experiment 1b. In the latter session, the graphs were 

the same as those in Experiment 1b, but a further 

experimental setting was introduced to manipulate the 

participants’ impressions toward the medical material in 

which a fictional ingredient, a “proten” or a “rubison,” rather 

than ingredient A was assumed. For the manipulation, 

reading material that described one of the two pharmaceutical 

companies was used to give the participants positive 

impressions about the one company developing the “proten” 

and negative impressions of the other company developing 

the “rubison.” 

In Experiment 2, two experimental contexts were 

introduced, with the assignment of each of the two contexts 

to the former or the latter session being counterbalanced. One 

context was the same as that in Experiment 1: i.e., the 

development of a medical ingredient to improve biological 

vitality was introduced. The other context was the 

Figure 3: Graphs used in Experiment 1b. 

Figure 4: Results of the single regression analyses for 

Experiment 1a. 

Figure 5: Results of the single regression analyses for 

Experiment 1b. 
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development of an ingredient to recover physical strength 

after fatigue. In the latter case, a rat experiment was assumed 

with a 100 meter running test. 

Procedure 

Based on the graphs that indicated the experimental results, 

participants were instructed to indicate their opinion as an 

expert advisor about a nursing tonic to improve biological 

vitality, or as an expert advisor about an energy drink to 

recover physical strength after fatigue. 

The experimental procedure consisted of the following 

five phases. 

Impression manipulation Before the graphical presentation 

stage, in the former session, participants answered a 

questionnaire about their impressions of an ingredient A that 

had been developed by an company X they belonged to. In 

this stage, no information about the ingredient was provided. 

They estimated, on a five-point scale, their impressions about 

ten items, such as “ingredient A is reliable,” with a higher 

estimation score meaning more positive impressions toward 

ingredient A. 

 The following four experimental stages, graphical 

presentation, difference perception, interpretation, and 

decision, were the same as in Experiment 1. Participants were 

assigned to one of three groups. Each group consisted of 20 

participants respectively. The participants in each group were 

presented with one of the three graphs. In the final decision 

stage, participants were asked to decide whether ingredient A 

should be included in the nursing tonic or the energy drink, 

on a five-point scale. 

In the latter session, the impressions of the ingredients 

“proten” or “rubison” were manipulated using reading 

materials in which information about company Y which is 

developing the ingredient was given. First, the participants 

were presented with a text describing the information about 

the company Y. One text included characteristics of an 

excellent company (e.g., There is an excellent welfare 

program in company Y.), to persuade participants to have a 

positive impression of the ingredient “proten.” The other text 

had characteristics of an evil company (e.g., There is no 

welfare program in company Y.), and persuaded participants 

to have negative impressions toward the ingredient “rubison.” 

One of the two texts was presented to each participant. Then, 

the participants answered the same questionnaire as used in 

the former session, in which they were asked to give their 

impressions of the ingredient “proten” or “rubison.” 

From the graphical presentation through to the decision 

stages, the same procedure was utilized as in the former 

session. 

The total time for Experiments 2 was about an hour. 

Result 

Multiple regression analyses were performed with two 

independent variables; i.e., a score recorded in one of the four 

experimental stages and an impression score; and a 

dependent variable; i.e., a score from the following phase. 

Figure 6 shows the results from the former session. The 

results replicated Experiment 1b. There were significant 

relationships found between the difference perceptions and 

interpretations (β = .59, t(57) = 5.50, p < .001, R² = .38), and 

the interpretations and the decisions (β = .66, t(57) = 6.30, p 

< .001, R² = .42); however, no significant relationship was 

detected between the presented graphs and the difference 

perceptions (β = .23, t(57) = 1.82, p = .07, R² = .11). There 

were no relationship found between the impressions and any 

of the three bottom-up processing phases; difference 

perception, interpretation, or decision (β = .24, t(57) = 1.95, 

p = .06, R² = .11; β = .09, t(57) = .84, p = .40, R² = .38; β = .05, 

t(57) = .49, p = .63, R² = .42). 

The same analysis was performed for the latter session. 

Figure 7 shows the results, from which it can be seen that the 

difference perceptions were affected by the impressions (β 

= .28, t(57) = 2.25, p < .05, R² = .11) but not by the graphical 

presentations (β = .18, t(57) = 1.42, p = .16, R² = .11), the 

interpretations were not affected by the impressions (β = .21, 

t(57) = 1.99, p = .05, R² = .44) but by the difference 

perceptions (β = .58, t(57) = 5.61, p < .001, R² = .44), and the 

decisions were affected by both the impressions (β = .31, 

t(57) = 3.27, p < .01, R² = .57) and the interpretations (β = .58, 

t(57) = 6.20, p < .001, R² = .57). 

Experiment 3 

Experiment 3 was performed to investigate how top-down 

processing driven by attitudes affected each of the bottom-up 

processing phases. In Experiment 3, we investigated how the 

participants’ social attitudes toward smoking affected their 

decisions about a smoking cessation policy. 

Figure 6: Results of the multiple regression analyses for 

the former session in Experiment 2. 

Figure 7: Results of the multiple regression analyses for 

the latter session in Experiment 2. 
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Participants 

55 undergraduates (33 males and 22 females: Mage = 18.51, 

SDage = 0.86) from Nagoya University participated in 

Experiment 3. The experiment was performed as class 

practice in a cognitive science class.  

Materials 

An experimental context was introduced in which a health 

survey was conducted in an assumed city X. Participants 

were presented with graphs that indicated the survey results. 

Specifically, the graph showed how many of the 20,000 

respondents suffered from pulmonary problems. The 

perceptual features of the graphs were the same as those in 

the preceding experiments. It was assumed that one group 

had a family with a smoker and the other group did not. 

Procedure 

One week before the experiment, the participants answered a 

questionnaire to measure their social attitudes toward 

smoking. They estimated, on a five-point scale, their attitudes 

toward smoking behavior for 10 items, such as “smoking is 

only malevolent for society,” with a higher estimation score 

indicating greater negative attitudes toward smoking. 

Participants were assigned to one of three groups. Each 

group consisted of 18, 17, and 19 participants respectively. 

The participants in each group were presented with one of the 

three graphs. In the final decision stage, participants were 

asked to indicate their opinion, as a health consultant, about 

whether or not employees in an assumed company should be 

prohibited from smoking both inside and outside the 

company. 

Result 

The same multiple regression analyses as those in 

Experiment 2 were performed. Figure 8 shows the result. The 

difference perceptions were not affected by the graphical 

presentations or by the attitudes (β = .03, t(52) = .23, p = .82, 

R² = .002; β = .03, t(52) = .20, p = .84, R² = .002), the 

interpretations were affected only by the difference 

perceptions (β = .66, t(52) = 6.61, p < .001, R² = .48) but not 

by the attitudes (β = .16, t(52) = 1.63, p = .11, R² = .48), and 

the decisions were affected only by the attitudes (β = .50, 

t(52) = 4.18, p < .001, R² = .28) but not by the interpretations 

(β = .09, t(52) = .71, p = .48, R² = .28). 

Discussion 

The first aim of this study was to confirm a series of the 

bottom-up process phases, information extraction from 

graphs as an external resource, interpretation, and decision. 

In Experiment 1a, bar graphs with assumed experimental 

results in two conditions were used. In Experiment 1a, we 

manipulated the differences in the values of the independent 

variable in two experimental conditions, and confirmed that 

bottom-up processing was driven by internally represented 

differences extracted from the graph as the external resource. 

In Experiment 1b, we used another set of graphs in which the 

values for the independent variable were equivalent, and 

obtained the same results as in Experiment 1a, indicating that 

bottom-up processes also arise based on the participants’ 

internally represented differences. It is important that bottom-

up processing is performed from internally represented 

information that is extracted from an external resource, and 

independent of the actual information represented in the 

external resource. 

In Experiment 1b, we used graphs in which the visually 

represented differences were equivalent to the actual 

differences in the graphs used in Experiment 1a, even thought 

there was no actual difference in the two conditions. As a 

result, no correlation was found between the internal 

differences represented by the participants and the pseudo 

differences in the graphs. This indicated that the participants 

in this study were not affected by the visual biases included 

in the external resource when extracting the information in 

the graphs. Previous studies have found that the reading 

quality of graphical information depends on critical thinking 

capabilities (e.g., Woller-Carter et al., 2012). The critical 

thinking abilities of the participants in our experiments 

appeared to be relatively high, which needs to be considered 

when interpreting the experimental results in this current 

study. 

In Experiment 2, we manipulated the participants’ 

impressions of the target topic. First, we found the same 

bottom-up process that had been confirmed in Experiment 1b 

in which top-down processing was not assumed. 

The first finding was that the final decision was made 

based on both top-down processing derived from impressions 

and bottom-up processing from the extraction of information 

from the external resource. Previous studies have consistently 

confirmed that impressions significantly affect decision 

making. Kostopoulou et al. (2017) experimentally found that 

in medical diagnoses by home doctors, the first impression of 

the patients affected diagnostic planning decisions. Jaros et 

al. (2000) reported that a perceptual impression of foods at a 

glance affected food selection. 

The latter session in Experiment 2 confirmed that top-

down processing using impressions affected the extraction 

phase in the initial bottom-up processing phase. The halo 

effect is when the impressions about one specific 

characteristic affect the estimation of other characteristics 

that may not even be related to the initial characteristic (e.g., 

Murphy et al., 1993). In the latter session, we manipulated 

the impression of the office environments of an assumed 
Figure 8: Results of the multiple regression analyses for 

Experiment 3. 
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company that had developed a medical ingredient. The 

participants’ estimation about the ingredient depended on the 

manipulated impressions, even though the efficacy of the 

ingredient had no explicit relationship with the office 

environments. 

In Experiment 3, we manipulated another factor that drives 

top-down processing; that participant attitudes are formed 

over a long period based on moral and social norms. The 

experimental results showed that different from Experiment 

2, the final decision was made only based on the participants’ 

attitudes toward the target topic, rather than depending on the 

interpretation drawn from the bottom-up processing. 

This finding about the relationship between attitude and 

decision was consistent with findings in previous studies. It 

has been found that attitudes are crucial in predicting 

behavior (Conner & Armitage, 1998), and that there is a 

strong relationship between attitudes and behavior (Fazio et 

al, 1982). 

An important point from Experiment 3 is that when making 

the final decision, top-down processing was not concerned 

with the bottom-up processing output. The topic dealt with in 

the current study was smoking; therefore, as this was a 

familiar social topic for everyone, this may have driven the 

strong top-down processing. 

The results in Experiment 3 showed that the top-down 

processing did not affect the bottom-up processing initial 

extraction phase, implying that such initial bottom-up 

processing may be isolated by top-down processing. 

In the current study, we examined two factors; impressions 

and social attitudes; that drive top-down processing. In 

summary, when one factor that is formed temporarily is 

followed by a specific context, impressions take a central role 

in the comprehension and decision making about graphical 

information, indicating that bottom-up processing functions 

are compatible with top-down processing. On the other hand, 

when another top-down factor is socially formed over a long 

period, such as social attitudes, bottom-up processing tends 

to be separated from top-down processing, with top-down 

processing predominating. 
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Abstract 

A crucial aspect of everyday conversational interactions is our 
ability to establish and maintain common ground. 
Understanding the relevant mechanisms involved in such 
social coordination remains an important challenge for 
cognitive science. While common ground is often discussed 
in very general terms, different contexts of interaction are 
likely to afford different coordination mechanisms. In this 
paper, we investigate the presence and relation of three 
mechanisms of social coordination – backchannels, 
interactive alignment and conversational repair – across free 
and task-oriented conversations. We find significant 
differences: task-oriented conversations involve higher 
presence of repair – restricted offers in particular – and 
backchannel, as well as a reduced level of lexical and 
syntactic alignment. We find that restricted repair is 
associated with lexical alignment and open repair with 
backchannels. Our findings highlight the need to explicitly 
assess several mechanisms at once and to investigate diverse 
social activities to understand their role and relations. 

Keywords: Social coordination, common ground; 
conversational repair; interactive alignment; backchannel. 

Introduction 
A key question in cognitive science is how people 
coordinate knowledge and behavior in social interaction, a 
process sometimes referred to as grounding (Clark & 
Brennan, 1991; Dale, Fusaroli, Duran, & Richardson, 2013). 
Research over the past decades has highlighted processes 
like backchannels, conversational repair, and interactive 
alignment, but progress has been hampered by two 
challenges. First, these processes are rarely considered 
together, limiting our view of possible interrelations. 
Second, the study of such processes has been spread across 
disciplines and data types, limiting the possibilities for 

prediction and generalization (de Ruiter & Albert, 2017). 
Here we report on a principled comparison of backchannels, 
repair, and interactive alignment in two quite different types 
of contexts: free (FC) and task-oriented conversations 
(TOC). Engaging in conversation is a collaborative effort 
involving timely coordination at many levels. In their 
seminal 1991 article, Clark and Brennan (1991) suggest 
such coordination to be contingent on common ground, 
comprising mutual knowledge, beliefs and assumptions. The 
main mechanism for establishment and maintenance of 
common ground explored in their work is backchannels 
(Yngve, 1970). Backchannels are phatic signals such as 
head nods, eye blinks and vocal expressions of the type uh-
huh, yeah, and okay (Bangerter & Clark, 2003; Schegloff, 
1982). In this study, we are concerned with vocal 
backchannels only. Even if such signals are often quite 
subtle, research suggests that speakers are very sensitive to 
these kinds of cues as ways of providing and monitoring 
positive evidence of mutual understanding, and their 
interruption can have detrimental effects on communication 
(Clark & Krych, 2004).      

A related phenomenon is conversational repair. While 
backchannels are mostly concerned with positive evidence 
of understanding, conversational repair refers to the 
interactional practices by which people signal and solve 
trouble in conversation (Schegloff, Jefferson, & Sacks, 
1977). Here we focus on the most interactive form of repair: 
other-initiated repair, a highly frequent conversational 
sequence where one participant initiates the repair procedure 
by means of a request for clarification like huh? or who?, 
and the other completes it. Formats for other-initiated repair 
frequently show lexical and syntactic repetition (Jefferson, 
1972; Sacks, 1992), with a recent cross-linguistic study of 
informal conversation finding that 48% of all repair 
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initiating turns repeated part or whole of the prior turn 
(Dingemanse et al., 2015). Repair initiations can be ordered 
along a cline from weak (providing little indication of what 
or where the problem is, such as huh?) to strong 
(highlighting a specific element of a prior turn for 
clarification or confirmation, as in who?). While weak 
repair initiation is always possible, and so might be 
expected to be a default option, it has been suggested that 
the selection of repair formats follows a ‘strongest initiator 
rule’ (Clark & Schaefer, 1989), according to which people 
select the most specific repair format possible, given 
constraints like noise and joint attention. 

While backchannels and conversational repair are often 
thought to be of a more explicit, inferential character, the 
theory of interactive alignment in conversation suggests 
common ground to be established through low-level 
automatic priming processes (Pickering & Garrod, 2004). It 
has been observed across many contexts and studies that 
interlocutors engaged in conversation often tend to adapt to 
each other’s linguistic behaviors on many levels from 
prosody to syntax (Fusaroli & Tylén, 2016). If an 
interlocutor, for instance, uses the phrase “I’m sure” to 
express confidence, there is an enhanced probability that the 
conversational partner will use similar wording later in the 
conversation even if other expressions would work just as 
well in that context (Fusaroli et al., 2012). Alignment is 
thought to percolate between levels of linguistic 
representation. Lexical alignment can for instance facilitate 
the alignment of other levels (e.g. syntactic choices), 
eventually leading to alignment of situation models of the 
ongoing activity, that is, common ground (Pickering & 
Garrod, 2004). According to Pickering and Garrod, more 
explicit negotiation of common ground such as repair and 
backchannels are only recruited in cases of communication 
problems or misunderstandings. It should be noticed that a 
few alternative perspectives have been suggested: Brennan 
and Clark (1996) associate alignment with more explicit 
negotiations of shared conceptual representations, while 
others suggest a context-sensitive mechanism, which 
strategically selects for alignment or divergence according 
to the functional needs of the ongoing activity (Fusaroli, 
Raczaszek-Leonardi, & Tylén, 2014; Healey, Purver, & 
Howes, 2014). Common ground is often discussed as a 
unified concept foundational to conversation in general. 
However, different contexts of conversation are likely to 
afford different degrees of explication as well as different 
processes and mechanism for the establishment of common 
ground. Conversations among pilots and airport control 
towers thus require high levels of referential precision 
(Prinzo & Britton, 1993), while the average dinner 
conversation may be more concerned with maintenance of 
social relations (Dunbar, Marriott, & Duncan, 1997), to the 
point of ignoring referential misalignments (Galantucci & 
Roberts, 2014).  

To establish a more refined framework for the 
investigation of common ground, we propose an integrative 
approach comparing backchannel, alignment and repair 

across diverse social activities. In particular, we focus on 
free spontaneously occurring interactions – traditionally 
favored by conversation analytic approaches – and a well-
defined spatial navigation task to be jointly solved through 
conversation – traditionally favored by more cognitive and 
quantitative approaches. The investigation aims to 
determine how common ground is negotiated and 
maintained, and whether these processes are modulated by 
the social context. Moreover, we will investigate how the 
suggested mechanisms of common ground relate to each 
other: e.g. if repair and alignment are associated 
(Dingemanse et al., 2015), then measures of alignment will 
be tapping into both mechanisms. 

We predict that (i) the different social contexts involve 
distinctive patterns in the dynamics and mechanisms of 
common ground, such that they allow an accurate 
classification of conversations as free or task-oriented. More 
specifically, (ii) baseline frequency of repair, interactive 
alignment, and backchannels may be higher in task-oriented 
interactions due to requirements for referential precision. 
(iii) The quality of the dynamics at work is also predicted to 
be different. Particularly, task-oriented conversations, aimed 
at coordinative precision and more tightly constrained by 
the lab context, will feature more restricted forms of repair. 
By contrast, free interactions, which often happen in more 
noisy environments and incorporate a wider range of 
activities, will involve more open forms of repair. (iv) The 
different indices of common ground are not independent 
from each other. For instance, we expect repair and 
alignment to be related because the repetition of linguistic 
forms across speakers is a key formal measure of both. The 
latter point underlines the importance of considering 
possible relations between repair and alignment when 
discussing measures and mechanisms of social coordination.  

Methods 

Free Social Conversations  
We used 18 conversations from the DanTIN corpus 
(Steensig et al., 2013), 10 minutes per conversation, for a 
total of 4954 speech turns. Data collection was limited to 
spontaneous, naturally occurring conversations between 
families and friends. Participants often engaged in 
additional activities during these conversations (e.g., eating, 
or playing games). The average conversation involved 275 
speech turns (SD=55 turns), with an average of 58 turns per 
interlocutor (SD=52). All conversations were in Danish. 
The corpus reflects the diversity of free social interactions, 
with seven conversations involving 2 participants, seven 
with 3, two with 4, two with 5 participants, and one with 7 
participants. We are currently extending this corpus to be 
better able to model the effects of number of interlocutors 
and participation framework.  

Task-oriented Conversations 
We used the 44 task-oriented conversations that make up the 
DanPass corpus (Grønnum, 2009), totaling 9448 speech 
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turns. The conversations were aimed at solving the Map 
Task (Anderson et al., 1991). The average length of each 
conversation was 7.4 minutes (SD=3), with an average 214 
turns per conversation (SD=85), and 107 per interlocutor 
(SD=42). All conversations were in Danish and involved 
only 2 participants in separate booths. We are currently 
extending this corpus to include co-present interlocutors. 

Backchannels  
Backchannels were manually coded in 10% of the 
transcripts (2 free social and 5 task-oriented conversations). 
Based on this, an automatic procedure for coding 
backchannels was developed, based on turn length (< 4 
words) and presence of the words "ja", "nej", "okay", "nå", 
"jo", "mmhm", "jamen", "mmm", and "åh". The system 
achieved substantial intercoder agreement with the manual 
coding (Kappa=0.62). As we are currently extending and 
validating the coding scheme, results based on the current 
version of this measure should be treated with caution. 

Conversational Repair 
A trained analyst identified sequences of other-initiated 
repair and classified them according to three cross-
linguistically attested format types: open request, which 
signals a problem while leaving open what or where it is; 
restricted request, which restricts the problem space by 
requesting clarification of a specific element of the 
problematic turn; and restricted offer, which offers a 
candidate perception or understanding for confirmation 
(Dingemanse & Enfield, 2015). In addition, 10% of the 
transcripts (3 free social and 5 task-oriented conversations) 
were analyzed by a second coder. We obtained substantial 
intercoder reliability, corresponding to a Kappa of 0.67 for 
repairs in general, and 0.79 respectively for open and 
restricted repairs (the latter breaking down to 0.4 for 
restricted requests and 0.38 for restricted offers). 

Interactive Alignment  
We calculated lexical and syntactic interactive alignment on 
a turn-by-turn basis. Each turn was lemmatized using the 
CST lemmatizer for Danish (Jongejan & Haltrup, 2005) and 
parts of speech tagged using DKIE (Derczynski, Field, & 
Bøgh, 2014). Lexical alignment was calculated as the cosine 
similarity between lemmatized words in adjacent speech 
turns uttered by different interlocutors. Syntactic alignment 
was calculated as the cosine similarity between 2-grams 

parts-of-speech in adjacent speech turns uttered by different 
interlocutors. To avoid possible lexical alignment confounds 
we regressed it out of syntactic alignment as in (Hopkins, 
Yuill, & Keller, 2016). 

Data Analysis  
To assess whether the free social vs. task-oriented nature of 
the conversations affected the development and 
maintenance of common ground, we employed mixed 
effects regression models to predict the presence of 
conversational repair (binomial variable), interactive 
alignment (continuous variable) and backchannels (binomial 
variable) on a turn-by-turn basis. We employed Task 
(binomial variable, FC vs. TOC), and Time within 
conversation (count variable, quantified as number of turns 
from the start) as fixed effects and conversation as random 
effects, including a random slope for Time. When the model 
did not converge, we removed first the random slope, then 
the fixed effect of Time. To determine whether the different 
social coordinative mechanisms are related to each other, we 
employed two mixed effects regressions. The first predicted 
the overall amount of repair initiations in a conversation 
(count variable) from the amount of backchannels and 
alignment, controlling for the offset of overall amount of 
conversational turns. The second predicted the presence of 
repair at a turn level (binomial variable) from the presence 
of backchannel and the level of alignment of that same turn. 
Finally, to establish how distinctive these mechanisms are, 
we produced a 5-fold cross-validated predictive regression 
assessing whether one could use the presence and amount of 
conversational repair, interactive alignment and 
backchannels to identify the nature of the conversation. All 
analyses were run using R 3.3.2, RStudio 1.0.136, lme4 1.1-
12, irr 0.84 and tidyverse 1.1.0. 

Results 

Backchannels 
Backchannels were highly frequent in the corpora (54% of 
the speech turns), and more so in TOC (58% of speech 
turns), than in FC (48% of speech turns): β = 0.6, SE = 0.04, 
p < .001 (see Figure 1). Backchannels also increased over 
time (β = 0.07, SE = 0.03, p = .03), but not differently in the 
two corpora (β = -0.02, SE = 0.04, p = .57).  

Figure 1: Differences in frequency of backchannel, levels of lexical and syntactic alignment and frequency of repair 
across the two corpora.  
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Conversational Repair 
Conversational repair was highly frequent across both 
corpora, in line with previous findings in 12 other languages 
(Dingemanse et al., 2015). Repair initiations made up 3% of 
speech turns, with an average 45.59 seconds (SD = 54.8) 
and 34.03 speech turns (SD = 41.83) between successive 
repairs. Task Oriented Conversations showed a higher 
frequency of repair (β = 0.4, SE = 0.18, p = .0274) than Free 
Conversations, with 31.13 turns (51.13 seconds) between 
repair initiations in the former and 39.65 turns (61.3 
seconds) between repair initiations in the latter; see Figure 
1. Time was not a significant main effect (β = -0.0007, SE = 
0.0006, p = .3), nor did it interact with Task (β = 0.0007, SE 
= 0.001, p = .6).  

Open repair was much more frequent (38.5% of repair) in 
free social interactions, than in task oriented interactions 
(4% of repair): β = -2.82, SE = 0.39, p < .001. Open repair 
tended to decrease in frequency as conversations proceed (β 
= -0.005, SE = 0.003, p = .0607), with no interaction with 
interaction type (β = 0.007, SE = 0.004, p = .1275). 
Restricted request repair was not significantly different 
between corpora (FC: 17%, TOC: 22%): β = 0.4, SE = 0.34, 
p = .23). There was a marginal tendency for restricted 
request repair to increase over time (β = 0.003, SE = 0.0016, 
p = .0804), with no interaction with interaction type (β = 
0.002, SE = 0.004, p = .5), but the model did not converge 
with these factors. Restricted offer repairs were more 
frequent in TOC (74% of repair) than in FC (45% of repair): 
β = 1.97, SE = 0.48, p < .001. There was no significant main 
effect of time (β = 0.003, SE = 0.0024, p = .185), but a 
significant interaction with interaction type (β = -0.006, SE 
= 0.003, p = .0415) indicating a decrease in the TOC over 
time, but not in FC (see Figure 2). 

 

 
 

Figure 2: Distribution of repair types in the two corpora. 

Interactive alignment 
As illustrated by Figure 1, syntactic and lexical alignment is 
significantly lower in TOC than FC (lexical: β = -0.14, SE = 
0.15, p < .001; syntactic: β = -0.04, SE = 0.009, p < .001). 
Alignment significantly decreases over time for lexical (β = 
-0.0002, SE = 0.00001, p < .001), but not syntactic (β = -
0.00005, SE = 0.00004, p = .8), and the decrease 
significantly interacts with Task, being smaller in TOC 
(lexical: β = 0.0001, SE = 0.00007, p = .008; syntactic: β = 
0.007, SE = 0.00005, p < .001). These patterns hold when 
varying distance between speech turns (alignment over 
longer stretches of conversation, up to 5 turns of distance); 
increasing the unit of analysis (up to 4-grams of lexical or 

syntactic units); or controlling for increased alignment in 
repair turns. 

Relations between repair, alignment and 
backchannels 
The general level of conversational repair in a conversation 
was positively associated with the level of backchannel (β = 
0.01, SE = 0.003, p < .001) and syntactic alignment (β = 
0.44, SE = 0.18, p = .014) and negatively associated with 
lexical alignment (β = -0.46, SE = 0.19, p = .014). At a turn 
level, conversational repair was associated with increased 
lexical alignment (β = 0.98, SE = 0.19, p < .001), a result 
driven by the two restricted repair formats. A follow-up 
explorative analysis indicates that in TOC, alignment is 
indeed much higher for turns containing repair initiations 
than for other turns (Lexical: 0.168 vs. 0.102; Syntactic 
0.091 vs. 0.048), but not so in FC (Lexical: 0.113 vs. 0.112; 
Syntactic: 0.074 vs. 0.087). Interactions between the 
different indexes did not significantly improve the 
likelihood of the model. 

Social coordinative mechanisms as discriminative 
patterns 
Employing a combination of repair, interactive alignment 
and backchannels information, we were able to classify the 
transcripts according to their interaction type with an 
accuracy of 83.82% (95% CIs: 77.46%–88.97%), a 
sensitivity of 84.71% and a specificity of 82.95%, over 
chance accuracy of 51.46%. General levels of repair in a 
conversation alone gave an accuracy of 61.4% (95% CIs: 
53.7%–68.74%). Interactive alignment gave an accuracy of 
80.7% (95% CIs: 73.98%-86.33%). Backchannel gave an 
accuracy of 63.16% (95% CIs: 55.46%-70.39%). 

Discussion 
In this study, we compared different ways in which common 
ground may be established and maintained across both task-
oriented and free conversations. We predicted that (i) we 
would find distinctive patterns of repair, backchannels and 
alignment. In particular, (ii) task-oriented conversation 
should show higher rates of repair, backchannels and 
alignment; (iii) task-oriented conversation should show 
lower rates of open requests for clarification; (iv) repair and 
alignment should be correlated because of the high 
frequency of repetition in restricted repair formats.  

We found full support for (i): knowing the amount of 
repair, backchannels and alignment present in a 
conversation enables accurate (> 80%) discrimination 
between task-oriented and free conversations. We also 
found partial support for (ii): higher rates of backchannels 
and repair in TOC but not alignment; full support for (iii): 
lower rates of open requests, making restricted offers the 
most frequent in task-oriented interaction; partial support 
for (iv): lexical, but not syntactic alignment, is correlated 
with repair, an effect driven particularly by restricted repair 
formats. As such, our preliminary findings shed new light 
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on the relations between backchannels, conversational repair 
and interactive alignment as measures of social 
coordination. If further confirmed with a more controlled 
dataset, they might also help clarify the relations between 
informal and task-oriented interactions. 

Four findings stand out. First, FC and TOC present clear 
differences in the mechanisms employed to negotiate and 
maintain common ground. As solving the MapTask requires 
the construction of a shared representation of the space to 
navigate and its landmarks, we observe more explicit 
negotiation (repair) and confirmation of common ground. In 
line with our previous work, we also find that alignment 
seems less crucial in TOC. This could be a consequence of a 
division of labor leading to complementary rather than 
repeated lexical and syntactic structure among individuals 
solving a task (Fusaroli, et al., 2012; Fusaroli & Tylén, 
2016). The higher alignment in FC might also indicate the 
prevalence of less explicit mechanisms to negotiate 
common ground, less likely to lead to face-loss (Bjørndahl, 
Fusaroli, Østergaard, & Tylén, 2015; Brown & Levinson, 
1978). However, as a previous study reports an opposite 
result with TOC showing higher alignment than FC, 
ongoing work is implementing more conservative and 
comparable techniques, such as the use of surrogate pair 
(composed of interlocutors from different conversations) 
baselines (Healey, Purver, & Howes, 2010; Hopkins, et al., 
2016). Analogously, further investigation of the temporal 
decrease of alignment is warranted. 

Second, repair in task-oriented interaction is strongly 
skewed towards restricted formats and particularly the 
restricted offer format. This provides novel support for the 
‘strongest initiator rule’ (Clark & Schaefer 1989), according 
to which participants initiate repair using the strongest 
repair initiator possible given the circumstances. Prior work 
based on informal interaction found that noise and parallel 
involvements increased the likelihood of open repair 
(Dingemanse & Enfield, 2015; Dingemanse et al., 2015), 
essentially by making it comparatively harder to initiate 
repair using restricted formats, which require having heard 
and understood as least part of the problematic source turn. 
Here we replicate this finding in an informal corpus of 
Danish interaction, and add a direct comparison with task-
oriented interaction. The task-oriented condition takes away 
some common causes of perceptual and attentional 
difficulties, which should push people towards using more 
specific repair formats. This prediction is indeed met: in 
task-oriented interaction, the most specific (‘strongest’) 
repair initiation format is also the most commonly used.  

Third, repair and alignment are intertwined. For instance, 
consider the following example, in which the restricted 
request consists in the repetition of all the words of the 
previous sentence, albeit in a slightly different order: 

 
A: Vi var i Ikea [We were at Ikea] 
B: Var I i Ikea, dig og ? [You were at Ikea, you and ?] 
A: mmh 

While alignment has often been cast as an implicit, 
automated background process, and repair as its explicit, 
and much rarer, “friend in need,” our parallel investigation 
of repair and alignment reveals that widely used formal 
measures of alignment also pick up many restricted repair 
sequences. This is no surprise —after all, the crucial role of 
repetition in repair sequences has long been known— but it 
does point to the need for a reappraisal of the relationship 
between repair and alignment. Our findings suggest that the 
evidential base for a large part of the alignment literature 
may include many explicit repair sequences, belying the 
common assumption that alignment is an automated, low-
level process. 

Fourth, the combination of backchannels, repair and 
alignment allows us to classify interaction type with a high 
degree of accuracy. While these results still need to be 
generalized to a wider range of social activities and 
contexts, they open up new avenues for the possibility of 
classifying discourse data and contributing to the growing 
field of computer-assisted studies of dialog structure. 

Although very encouraging, our findings should be 
viewed as preliminary. The two corpora differ in several 
aspects: the presence of a task: interlocutors’ physical co-
presence (in FC but not TOC), number of interlocutors 
involved in the conversations (2 in TOC, 2 or more in FC), 
and familiarity (possibly higher in FC). All these aspects are 
likely to affect conversational dynamics. We are currently 
extending the corpora to include full variation along these 
dimensions and account for them in the statistical analyses. 

Conclusions 
A comparative assessment of three mechanisms for the 
negotiation of common ground – backchannels, 
conversational repair and interactive alignment – highlights 
important differences in free and task-oriented 
conversations, plausibly related to situational features and 
task demands. Our results point to interactions between 
these mechanisms, e.g. with restricted repair feeding lexical 
alignment, which suggests future research should further 
disentangle their reciprocal role. As a theory-driven 
quantitative comparative study of conversations, our 
approach shows how insights from conversation analysis, 
cognitive science and natural language processing can be 
combined to contribute to a cumulative science of human 
interaction. 

Acknowledgments 
We thank Amalie Staggemeier for her help with the coding 
of the materials, Nina Grønnum for sharing the DanPass 
corpus, and Andreas Roepstorff for insightful discussions. 
The project was funded through a seed grant from the 
Interacting Minds Center, Aarhus University. 

References  
Anderson, A. H., Bader, M., Bard, E. G., Boyle, E., 

Doherty, G., Garrod, S., . . . Miller, J. (1991). The 

2059



HCRC map task corpus. Language and speech, 
34(4), 351-366. 

Bangerter, A., & Clark, H. H. (2003). Navigating joint 
projects with dialogue. Cognitive Science, 27(2), 
195-225. 

Bjørndahl, J., Fusaroli, R., Østergaard, S., & Tylén, K. 
(2015). Agreeing is not enough: The constructive 
role of miscommunication. Interaction Studies, 
16(3), 495-525. 

Brennan, S. E., & Clark, H. H. (1996). Conceptual pacts and 
lexical choice in conversation. Journal of 
Experimental Psychology: Learning, Memory and 
Cognition, 22(6), 1482-1493. 

Brown, P., & Levinson, S. C. (1978). Universals in 
language usage: Politeness phenomena Questions 
and politeness: Strategies in social interaction: 
Cambridge University Press. 

Clark, H. H., & Brennan, S. E. (1991). Grounding in 
communication. In L. B. Resnick, J. M. Levine & 
S. D. Teasley (Eds.), Perspectives on Socially 
Shared Cognition. Washington, DC: American 
Psychological Association. 

Clark, H. H., & Krych, M. A. (2004). Speaking while 
monitoring addressees for understanding. Journal 
of memory and language, 50(1), 62-81. 

Clark, H. H., & Schaefer, E. F. (1989). Contributing to 
discourse. Cognitive Science, 13, 259-294. 

Dale, R., Fusaroli, R., Duran, N., & Richardson, D. C. 
(2013). The self-organization of human interaction. 
Psychology of Learning and Motivation, 59, 43-95. 

de Ruiter, J. P., & Albert, S. (2017). An Appeal for a 
Methodological Fusion of Conversation Analysis 
and Experimental Psychology. Research on 
Language and Social Interaction, 50(1), 90-107. 

Derczynski, L., Field, C. V., & Bøgh, K. S. (2014). DKIE: 
Open Source Information Extraction for Danish. 
Paper presented at the EACL. 

Dingemanse, M., & Enfield, N. J. (2015). Other-initiated 
repair across languages: towards a typology of 
conversational structures. Open Linguistics, 1(1), 
96-118. 

Dingemanse, M., Roberts, S. G., Baranova, J., Blythe, J., 
Drew, P., Floyd, S., . . . Manrique, E. (2015). 
Universal principles in the repair of 
communication problems. PLOS ONE, 10(9), 
e0136100. 

Dunbar, R. I. M., Marriott, A., & Duncan, N. D. C. (1997). 
Human conversational behavior. Human Nature, 
8(3), 231-246. 

Fusaroli, R., Bahrami, B., Olsen, K., Rees, G., Frith, C. D., 
Roepstorff, A., & Tylén, K. (2012). Coming to 
terms: an experimental quantification of the 
coordinative benefits of linguistic interaction. 
Psychological Science, 23, 931-939. 

Fusaroli, R., Raczaszek-Leonardi, J., & Tylén, K. (2014). 
Dialog as interpersonal synergy. New Ideas in 
Psychology, 32, 147-157. 

Fusaroli, R., & Tylén, K. (2016). Investigating 
conversational dynamics: Interactive alignment, 
Interpersonal synergy, and collective task 
performance. Cognitive Science, 40(1), 145-171. 

Galantucci, B., & Roberts, G. (2014). Do we notice when 
communication goes awry? an investigation of 
people's sensitivity to coherence in spontaneous 
conversation. PLOS ONE, 9(7), e103182. 

Grønnum, N. (2009). A Danish phonetically annotated 
spontaneous speech corpus (DanPASS). Speech 
Communication, 51(7), 594-603. 

Healey, P., Purver, M., & Howes, C. (2010). Structural 
divergence in dialogue. Paper presented at the In 
Proceedings of the Conference on Architectures 
and Mechanisms for Language Processing. 

Healey, P., Purver, M., & Howes, C. (2014). Divergence in 
dialogue. Plos One, 9(6). 

Hopkins, Z., Yuill, N., & Keller, B. (2016). Children with 
autism align syntax in natural conversation. 
Applied Psycholinguistics, 37(2), 347–370. 

Jefferson, G. (1972). Side sequences. In D. N. Sudnow 
(Ed.), Studies in social interaction. New York, NY: 
Free Press. 

Jongejan, B., & Haltrup, D. (2005). the CST Lemmatiser. 
Center for Sprogteknologi, University of 
Copenhagen version, 2. 

Pickering, M. J., & Garrod, S. (2004). Toward a mechanistic 
psychology of dialogue. Behavioral and Brain 
Sciences, 27, 169-190. 

Prinzo, O. V., & Britton, T. W. (1993). ATC/pilot voice 
communications-a survey of the literature: DTIC 
Document. 

Sacks, H. (1992). Lectures on Conversation, 2 Vols, ed. G. 
Jefferson, with introductions by EA Schegloff: 
Oxford: Blackwell. 

Schegloff, E. A. (1982). Discourse as an interactional 
achievement: Some uses of ‘uh huh’and other 
things that come between sentences. Analyzing 
discourse: Text and talk, 71, 93. 

Schegloff, E. A., Jefferson, G., & Sacks, H. (1977). The 
preference for self-correction in the organization of 
repair in conversation. Language, 361-382. 

Steensig, J., Brøcker, K. K., Grønkjær, C., Hamann, M. G. 
T., Hansen, R. P., Jørgensen, M., . . . Pedersen, H. 
F. (2013). The DanTIN project–creating a platform 
for describing the grammar of Danish talk-in-
interaction. Paper presented at the New 
Perspectives on Speech in Action: Proceedings of 
the 2nd SJUSK Conference on Contemporary 
Speech Habits, Samfundslitteratur, Frederiksberg. 

Yngve, V. H. (1970). On getting a word in edgewise. 
Papers from the Sixth Regional Meeting of the 
Chicago Linguistic Society, 567-577. 

 

2060



How do Speakers Coordinate Planning and Articulation? Evidence from Gaze-
Speech Lags 

 
Chiara Gambi (cgambi@exseed.ed.ac.uk) 

Department of Psychology, 7 George Square 
Edinburgh, EH8 9JZ UK 

 
Matthew Crocker (crocker@coli.uni-sb.de) 

Department of Computational Linguistics and Phonetics, C7.1 University Campus 
Saarbrücken, 66123 Germany 

 
 

Abstract 

How do speakers coordinate planning and articulation of 
more than one word at the same time? Here, we test whether 
they dynamically estimate how long it takes to (i) plan and 
(ii) articulate the words they intend to produce as a means of 
achieving such coordination. German speakers named two 
pictures without pausing, while their eye-movements were 
recorded. In line with previous reports, after their gaze left the 
first picture, speakers took longer to start speaking (i.e., the 
gaze-speech lag was longer) when the name of the first 
picture was shorter. But while gaze-speech lags were also 
longer when the second picture was harder to name, the two 
effects did not interact. We argue that speakers’ flexible 
planning abilities might be accounted for by reactive, rather 
than proactive planning mechanisms. 

Keywords: planning; estimation; duration; coordination; 
gaze-speech lag. 

Introduction 
Speakers plan ahead of articulation (Griffin & Bock, 2000; 
Levelt, Roelofs, & Meyer, 1999) and usually complete 
lexico-semantic planning for at least a whole phrase 
(Martin, Crowther, Knight, Tamborello, & Yang, 2010; 
Smith & Wheeldon, 1999), phonological planning for a 
whole word (Meyer, 1996; Smith & Wheeldon, 2004), and 
articulatory planning for a whole syllable (Meyer, Roelofs, 
& Levelt, 2003) before beginning to speak. While this 
allows for rapid and fluent speech production, the 
incremental nature of planning also raises the question of 
how speakers manage the timely coordination of planning 
and articulatory processes.  

Mechanisms for Flexible Advance Planning 
Several studies have uncovered regularities in speakers’ 
amount of advance planning; for example, suggesting that 
speech onsets are comparable across short and long words 
because speakers usually complete articulatory processing 
for only the first syllable of a word prior to speech onset 
(Damian, Bowers, Stadthagen-Gonzalez, & Spalek, 2010; 
see also Meyer, Roelofs, & Levelt, 2003). Importantly, in 
recent years it has also become clear that the amount of 
advance planning speakers perform is not fixed, but rather 
varies with properties of both the utterance and the 
speaker’s recent experience (Konopka, 2012; Van de Velde, 

Meyer, & Konopka, 2014), or task context (Meyer et al., 
2003). 

We thus know a great deal about factors that can 
influence the coordination of planning and articulatory 
processes. On the contrary, we know very little about the 
mechanisms that underlie the timely coordination of these 
processes. For example, we know that planning style is 
influenced both by the accessibility of linguistic units, and 
by the ease-of-apprehension of the referent (Konopka & 
Meyer, 2014). This suggests that the mechanism involved 
must be sensitive to the difficulty of the planning process at 
different stages, but there are at least two ways in which 
such a mechanism could operate.  

One possibility is that a flexible planning system operates 
reactively. Once speakers encounter some difficulty, a 
compensatory mechanism is triggered. For instance, if 
accessing a particular word is difficult (i.e., takes time), 
attention might be (temporarily) shifted to another process 
(e.g., retrieving a different word). But in addition, the 
planning system might, at least in part, allocate resources to 
different processes in a proactive manner. Such a proactive 
planning mechanism could be learnt from previous 
experience with producing language (in general, or within a 
particular task), and indeed there is evidence that planning 
style can be primed by previous experience with the same 
sentence structure (Van de Velde et al., 2014). A proactive 
planning mechanism would of course be beneficial in 
maximizing fluency, as it may allow speakers to avoid 
future difficulties, by anticipating their likely occurrence 
and taking appropriate steps before they even arise. This 
idea is reminiscent of some models of motor control (e.g., 
Wolpert and Flanagan, 2011). 

Proactive Planning: Candidate Evidence? 
To our knowledge, no language production study has 
investigated this issue directly. However, in one seminal 
study, Griffin (2003) suggested that speakers might estimate 
how long both planning and articulating a word will take, 
and then combine such estimates to determine how to time 
one process with respect to the other in order to minimize 
future disfluencies (i.e., to plan proactively). 

To illustrate, imagine a speaker of German preparing to 
produce Abschlussballkleider (dresses for the high-school 
prom). Let us assume, for the purpose of illustration, that 
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the speaker retrieves Abschlussball (prom) and Kleider 
(dresses) separately (Sandra, 1990)1. If so, the speaker will 
need to get the first syllable of Kleider ready to be 
articulated by the time articulation of Abschlussball is 
ending. To do this, the speaker could estimate both how 
long it will take her to get Kleider ready (i.e., retrieval 
difficulty) and how long it will take her to say Abschlussball 
(i.e., articulation duration). She could then determine that 
she will probably have enough time to prepare Kleider 
while saying Abschlussball (a long word), so she can start 
speaking right away. But if the first word is short, such as 
Sport in Sporttitelseite (sport title page), she might instead 
have to delay speech onset in order to prepare more of the 
second word before starting to speak. Similarly, she may 
need to delay speech onset if the second word is particularly 
difficult to retrieve. 

 However, the evidence in support of Griffin’s proposal is 
currently somewhat mixed. Griffin (2003) asked speakers to 
name two pictures one after the other, without pausing, 
while their eye-movements were recorded. Critically, the 
name of the picture that was mentioned first (word1) could 
be either short (monosyllabic) or long (plurisyllabic). In this 
task, speakers usually shift their gaze from the first to the 
second picture as soon as they have retrieved the 
phonological representation for word1 (Griffin, 2001; Meyer 
& Van der Meulen, 2000). The gaze shift generally occurs 
before overt articulation of word1. Importantly, the interval 
between this gaze shift and speech onset (i.e., the gaze-
speech lag) is longer when word1 is shorter (a reversed 
word-length effect). According to Griffin (2003), this shows 
that speakers estimate word1 duration: they begin speaking 
earlier (with respect to the gaze shift, thus leading to a 
longer gaze-speech lag), when word1 is shorter in order to 
have more time to retrieve the second picture’s name 
(word2) before, rather than during, articulation of word1.   

However, while Meyer, Belke, Häcker, and Mortensen 
(2007) replicated Griffin’s finding2, they also provided a 
different explanation. We know that speakers may begin 
retrieving the articulatory code of the first syllable of a word 
as soon as they complete phonological processing for this 
syllable (i.e., without waiting for phonological processing of 
the whole word to be completed); in turn, as soon as they 
have retrieved such code, they can begin speaking. But if 
word1 is monosyllabic, the moment of the gaze shift (which 
coincides with completion of phonological processing for 
the whole word; see above) also happens to coincide with 
the start of articulatory retrieval. As a result, the gaze-
speech lag will last at least the time it takes to perform 

                                                           
1 In reality, compound words (especially very frequent ones) 

might be planned as a single phonological sequence (Jacobs & 
Dell, 2014). This does not affect the interpretation of our results, as 
we did not ask our participants to produce compounds, but rather 
sequences of two unrelated words. 

2 While Griffin (2003) found a reversed word-length effect on 
speech latencies (i.e., longer latencies when word1 was shorter) as 
well as on gaze-speech lags, Meyer et al. (2007) only found this 
effect on gaze-speech lags.  

articulatory retrieval for one syllable. By contrast, for a 
polysyllabic word1 the gaze shift occurs only later (once 
articulatory retrieval of the first syllable is already 
underway), thus leading to a shorter lag. 

This study 
If Meyer et al.’s (2007) explanation is correct, then the 
reversed-length effect on gaze-to-speech lags is not 
evidence that speakers estimate duration, contrary to 
Griffin’s (2003) suggestion. Moreover, neither study 
demonstrates that speakers can combine estimates of 
retrieval difficulty with estimates of duration, because they 
did not manipulate the difficulty of retrieving word2

3. Here, 
we provide a test of this hypothesis: If speakers take into 
account not only word1 length (monosyllabic vs. 
polysyllabic words), but also word2 retrieval difficulty, 
gaze-speech lags should be affected by both variables. 
Moreover, the effects of the two variables should interact, 
reflecting the workings of a proactive planning mechanism 
underlying the tight coordination of articulation (of word1) 
and planning (of word2).  

For word2, we chose a manipulation that is both known to 
reliably affect the earliest stages of picture naming, and very 
easy to identify for participants: Pictures were either 
visually intact or degraded (see Figure 1). We reasoned this 
would provide the most favorable test of Griffin’s proposal, 
as speakers were placed in ideal conditions for estimating 
the difficulty of retrieving word2; although degradation does 
not affect the difficulty of retrieving word2 directly, it makes 
accessing the corresponding concept more difficult, which 
then has a knock-on effect on the time it takes to fully 
prepare word2. To give speakers ample opportunity to adjust 
to the relevant level of difficulty, and to avoid carryover 
effects, degradation varied between participants.  

As in previous studies, the gaze-speech lag should be 
longer when word1 is shorter. In addition, if speakers can 
estimate retrieval difficulty, it should also be longer when 
word2 takes longer to retrieve. Crucially, there should be a 
significant interaction, with word2 difficulty having a larger 
effect when word1 is shorter. As there is less scope for 
completing word2 retrieval during the articulation of word1 
when word1 is short, speakers should aim to complete most 
of word2 retrieval before speech onset; instead, when word1 
is long, the speaker can benefit from extra time after the 
onset of articulation, and increases in word2 retrieval 
difficulty may not affect the gaze-to-speech lag as strongly. 

If Meyer et al.’s proposal is correct, however, the gaze-
speech lag should only depend on word1 length, and the 
reversed-length effect on gaze-speech lags would not be 
evidence for a proactive planning mechanism. Given the 
potential theoretical relevance of Griffin’s (2003) original 
interpretation of her findings, testing her claim in full, as we 
do in this study, would advance our understanding of the 

                                                           
3 Although Griffin (2003) varied word2 frequency and length, 

between-items differences were very small. 
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mechanisms underlying flexible planning in language 
production. 

Method 

Participants 
Thirty-two native speakers of German (24 female, Mage = 
23.8 yrs, SD = 2.6), with self-reported normal vision and no 
language impairments, were paid 8 euros/hour to participate 
in this and another eye-tracking experiment (not reported 
here). One participant was replaced because of excessive 
head movements. Sample size was determined on the basis 
of previous research (Griffin, 2003; Meyer et al., 2007) 

Materials 
We selected 128 black and white line drawings from the 

picture naming norms of Bates, et al. (2003). Of these, 64 
pictures with high name agreement were used as left 
pictures. Left pictures were named first, so we refer to the 
left picture names as word1. For half the items (Long), 
word1 ranged from 2 to 4 syllables (15 2-syllable words, 11 
3-syllable words, and 6 4-syllable words)4, with a mean 
length of 2.31 syllables (SD = 0.64). The other 32 pictures 
had monosyllabic names (Short). Short and long names 
were yoked in pairs matched for name agreement (Short: 
.93(.10), Long: .91(.10); t(31)= 1.17, p > .2), log-frequency 
(Short: 2.62(.46), Long: 2.54(.45); t(31)= 1.51, p > .1) in 
SUBTLEX-DE (Brysbaert et al., 2011), and initial 
phoneme.  

Sixty-four additional pictures were used as right pictures, 
and were always named second in the task (word2). Two 
right pictures were associated with each pair of left pictures. 
Right pictures had high name agreement (M = .94, SD = 
.11); word2 had a mean length of 2.14 syllables (SD = .71), 
a mean frequency of 2.53 (SD = .64), and was semantically 
and phonologically unrelated to each word1 it was paired 
with. We created degraded versions of all right pictures by 
superimposing a mask of ten parallel white lines (about 35pt 
apart, and about 15pt-thickness; see Figure 1); on average 
the mask deleted 35% of all non-white pixels (SD = 2.3 %, 
min = 30%, max = 41%). 

Design and Procedure 
Length varied within participants and items, whereas 

Degradation varied within items but between participants. 
To control for differences due to uninteresting properties of 
the right pictures, we constructed two lists of items, 
reversing pairings of left and right pictures (e.g., if in list 1 
Bank was paired with Hund, and Brücke with Krone, list 2 
featured Bank – Krone and Brücke – Hund); 8 random 
orders were generated for each list. 

 
                                                           
4 Variation in the Long condition was not sufficient to allow 

treating this variable as a continuous predictor in the analyses. 
Instead, Length was treated as a categorical predictor (Short vs. 
Long) throughout. 

 
Participants were first familiarized with picture names. 

After identifying their dominant eye, they were seated about 
60 cm from a 24-inch LCD monitor. A head-mounted 
Eyelink 2000 recorded data from the dominant eye (pupil-
only, sampling frequency: 250 Hz). Participants were asked 
to avoid head movements and blinking, and named the 
pictures in left to right order. It was stressed they should 
avoid pausing between the two words. A high-quality 
microphone (Philips SBC ME 570) recorded participants’ 
productions for the entire duration of the trial (5.5 seconds); 
speech onset latencies, and the duration of the pause 
between names (if present) were then measured offline (in 
Praat; Boersma & Weenink, 2010).  

 
Figure 1: A sample trial illustrating manipulations of 

word1 length (short vs. long) and word2 retrieval difficulty 
(intact vs. degraded pictures). 

 
 Presentation was controlled using Experiment 
Builder (Version 1.10.165). Before each trial, a fixation dot 
was presented where the left picture would subsequently 
appear. As soon as the participant fixated it, the 
experimenter triggered presentation of the stimuli (this was 
also used for drift correction). The left and right pictures 
were then displayed simultaneously on opposite sides of the 
screen, 324 pixels (or about 9° of visual angle) apart. All 
pictures were scaled to a dimension of 290x290 pixels, with 
surrounding interest areas measuring 405x307 pixels (i.e., 
11° of visual angle horizontally, 9° vertically). 
 The eye-tracker was calibrated twice using a nine-
point calibration grid, first after two practice trials, and then 
halfway through the session. The first trial after the practice 
session was a warmup trial, and was not analyzed. A session 
lasted 15-20 minutes.  

Results 
Only trials in which both pictures were named fluently 

(i.e., with no repetitions or filled pauses, and with a silent 
pause no longer than 200ms between the words) and using 
the expected names were analyzed (intact group: 87.99%; 
degraded: 83.01%). Following Meyer et al. (2007), we also 
discarded trials on which the pictures were not fixated in the 
order of mention (only one trial, degraded group), and trials 
on which the right picture was not fixated before speech 
onset (intact: 148 trials, or 16.43%; degraded: 34 trials, or 
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4.00%)5, as on such trials the gaze-to-speech lag would have 
been negative.  

For the remaining trials we analyzed speech onset 
latencies, first-pass gaze to the left picture (the sum of all 
fixations to the left picture before the shift of gaze to the 
right picture), and the gaze-speech lag (time between the 
end of the first-pass gaze to the left picture and speech 
onset). In all analyses, we fit linear mixed-effects models 
using the lme4 package (D. Bates, Maechler, & Dai, 2014) 
in R (R, Version 3.1.3). Fixed effects were contrast coded 
and centered. Random effects structure was maximal (Barr, 
Levy, Scheepers, & Tily, 2013). All p values are from log-
likelihood ratio tests; 95% confidence intervals for model 
estimates are from the confint function (method=“Wald”). 
We report the critical speech-gaze lag analyses first. 

Gaze-Speech Lag 
As expected, the gaze-speech lag was both shorter when 

word1 was long than when it was short (B=65ms, SE=12, t= 
5.56, χ2(1)=21.46, p<.001, CI=[42,88]) and longer for 
participants naming degraded than intact right pictures (B=-
140ms, SE=62, t=-2.24, χ2(1)=4.63, p=.031, CI=[-262,-17]; 
see Table 1, top). Crucially, however, there was no 
interaction between Length and Degradation (B=-14ms, 
SE=21, t=-.69, χ2(1)=0.47, p=.491, CI=[-55, 26]). 

Speech Onset Latencies 
After removing a further 7 (0.40%) outliers (longer than 

2500ms), we found speech onset latencies were not affected 
by Length, whether alone (B=-14ms, SE=27, t=-.50; 
χ2(1)=0.21, p=.645, CI=[-67,40]), or in interaction with 
Degradation (B=5ms, SE=25, t=.19; χ2(1)=0.04, p=.846, 
CI=[-44,54]). However, speech onset latencies were longer 
for participants in the degraded than in the intact group (B=-
125ms, SE=60, t=-2.09; χ2(1)=4.80, p=.028, CI=[-243,-8]; 
see Table 1, middle). 
 

Table 1: Mean gaze-speech lag, speech onset latency, and 
first-pass gaze to the left picture, in milliseconds (standard 
deviation of participants’ means in brackets), as a function 

of word1 Length and Degradation. 
 

Gaze-speech lag 
 Degraded Intact 
Long 437(201) 311(150) 
Short 504(210) 362(158) 

 

Speech onset latency 
 Degraded Intact 
Long 1108(169) 985(166) 
Short 1102(211) 979(201) 
First-pass gaze to the left picture 
 Degraded Intact 
Long 678(77) 699(100) 
Short 619(71) 635(100) 
                                                           
5 Perhaps parafoveal information was sufficient for speakers to 

identify intact right pictures more often than degraded ones.  

First-Pass Gaze to the Left Picture 
The time spent looking at the left picture before gaze was 

shifted to the right was not affected by Degradation, 
whether alone (B=17ms, SE=27, t=.63; χ2(1)=0.35, p=.555, 
CI=[-36,71]; see Table 1, bottom) or in interaction with 
Length (B=-10ms, SE=24, t=-.43; χ2(1)=0.18, p=.668,  
CI=[-58,37]). However, left pictures were fixated for longer 
if they had long than short names (B=-66ms, SE=25, t=-
2.70; χ2(1)=7.21, p=.007, CI=[-115,-18]), confirming that 
speakers shifted their gaze as soon as they completed 
phonological retrieval for word1.  

Discussion 
We asked speakers to produce fluent two-word utterances 

and showed that the way they coordinate planning of the 
second word and articulation of the first word depends on 
both the length of the first word and the difficulty associated 
with retrieving the second word. The gaze-speech lag was 
shorter when participants were preparing to produce a long 
word1 and longer when word2 was harder to retrieve. 

However, we found no evidence for an interaction 
between word1 length and word2 retrieval difficulty. As 
expected, speakers in both groups took longer to articulate 
word1 when it was polysyllabic (554ms for the intact group, 
539ms for the degraded group) than when it was 
monosyllabic (401ms for the intact group, 393ms for the 
degraded group). This difference (about 150ms) is actually 
larger than the difference in speech onset times between the 
two groups of speakers (about 125ms). So, speakers in the 
degraded group could have had sufficient extra time during 
the production of a long word1 to compensate for the 
additional difficulty associated with retrieving the name of a 
degraded picture. In other words, if these speakers had 
planned proactively, they could have started speech earlier 
(with respect to the gaze shift) when word1 was long than 
when it was short, as only in the latter case delaying speech 
onset would have benefitted fluency. Had they done so, 
gaze-speech lags would have been longer for participants in 
the degraded group than participants in the intact group (as 
we observed) but more so when participants were preparing 
to produce a short word1, than when they were preparing a 
long word1. 

This is not what we observed. Instead, participants in the 
degraded group appear to have used a different strategy, 
delaying speech onset regardless of word1 length. Therefore, 
a strong version of Griffin’s (2003) proposal is ruled out by 
our findings, as our speakers did not appear to be able to 
combine estimates of articulation duration with estimates of 
retrieval difficulty in order to precisely time articulation (of 
word1) with respect to planning (of word2).  

Meyer and colleagues (2007)’s proposal, instead, is 
compatible with our results. First, it provides an alternative 
explanation of the reversed word-length effect on the gaze-
speech lag, which does not require a proactive planning 
mechanism. In addition, it may also explain the later speech 
onsets for speakers in the degraded group, as Meyer et al. 
(2007) recognized that speakers may not always start 
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articulation as soon as the articulatory code of the first 
syllable of a word has been retrieved.  

We suggest that speakers in the degraded group buffered 
the first syllable of word1 when word2 representations failed 
to reach some activation threshold sufficiently early, or 
levels of competition within the production system (see 
Nozari, Dell, & Schwartz, 2011) remained too high.6 
Importantly, this type of planning mechanism can be 
considered reactive rather than proactive: It deals with 
difficulties (with word2 retrieval) as they arise. It need not 
involve a mechanism that dynamically anticipates the 
likelihood of future difficulties, deploying different planning 
strategies depending on this likelihood being higher (i.e., 
when word1 is short) or lower. 

Interestingly, based on our findings, it appears that speech 
is not planned proactively at the level of whole words. This 
appears to contrast with what we know about planning at the 
level of single sounds or syllables (e.g., Hickok, 2012), 
where there is evidence that speakers build forward models 
of upcoming speech movements that allow them to 
anticipate (and quickly correct, if necessary) what they are 
going to sound like (e.g., Niziolek, Nagarajan, & Houde, 
2013). 

What might account for such discrepancy? We see at least 
two possibilities. First, research into forward models for 
speech has largely focused on speakers’ ability to correct a 

                                                           
6 Alternatively, retrieval difficulties with word2 could have 

interfered with preparation of the articulatory code for the first 
syllable of word1, and slowed it down. However, note that 
articulatory retrieval does not appear to impose huge demands on 
central attention (Roelofs & Piai, 2011). Also, this interference 
account would have also predicted a smaller effect of degradation 
on the gaze-speech lag when word1 was long, because with long 
words the temporal overlap between articulatory encoding for the 
first syllable of word1 and word2 retrieval should have been shorter. 

distortion in the spectral properties of the sounds they 
generate. We are not aware of any studies that investigated 
whether speakers anticipate and correct for the duration of a 
sound in a similar way as they do for spectral properties 
(e.g., pitch).  

Second, in order to show the expected behavior under a 
proactive planning account, our speakers would have had to 
anticipate not just duration, but also retrieval difficulty. The 
latter is, unlike duration or pitch, a property of the process 
of planning itself, rather than an externally perceivable 
outcome of the planning process. As such, anticipating 
retrieval difficulty might involve a kind of “second-order” 
forward model. Speakers might be able to learn such 
forward models, but perhaps only with extensive training.  

In conclusion, the reversed word-length effect cannot be 
interpreted as evidence that the flexibility of speakers’ 
planning reflects the workings of a proactive mechanism. 
However, speakers are able to reactively compensate for 
retrieval difficulty, delaying speech onset when the need 
arises.  
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Abstract 
A key goal of cognitive science is to understand and map the 
relationship between cognitive processes. Previous works 
have manually curated cognitive terms and relations, 
effectively creating an ontology, but do they reflect how 
cognitive scientists study cognition in practice? In addition, 
cognitive science should provide theories that inform 
experimentalists in neuroscience studying implementations of 
cognition in the brain. But do neuroscientists and cognitive 
scientists study the same things? We set out to answer these 
questions in a data-driven way by text-mining and automated 
clustering to build a cognitive ontology from existing 
literature. We find automatically generated relationships to be 
missing in existing ontologies, and that cognitive science does 
not always inform neuroscience. Thus, our work serves as an 
efficient hypothesis-generating mechanism, inferring 
relationships between cognitive processes that can be 
manually refined by experts. Furthermore, our results 
highlight the gap between theories of cognition and the study 
of their implementation. 

Keywords: ontology; cognitive neuroscience; text-mining; 
neuroinformatics, meta-analysis 

Introduction 

Ontology: Key Challenge in Cognitive Science 
    One of the fundamental goals of cognitive science is to 
study the set of processes that combine to give rise to 
“cognition”. These processes can be thought of as 
abstractions to common, overlapping sets of behaviors. 
Constrained by methodological behaviorism, we can only 
observe behavior and label underlying cognitive processes 
after the fact. As such, they do not have direct grounding in 
the physical world, and thus need to be defined by the 
relational structure that link each other – an ontology. For 
example, attention and working memory are processes with 
different labels but are nonetheless woven together through 
behavior: one cannot allocate “working memory” without 
“paying attention”. Thus, as we collect more observations to 
fill up the space of cognitive processes, we must be attentive 
in organizing what we know. This is the problem of 
mapping the ontological structure of cognitive processes, 
and has received extensive consideration previously (see, 
e.g., Poldrack & Yarkoni, 2016). 

Neuroscience: Studying the Substrate of Cognition? 
If cognitive processes are viewed as algorithms 

performing a set of computations, there must then exist a 

physical substrate that is performing the computations. In 
the case of computer algorithms, the substrate consists of 
transistor elements. The brain, on the other hand, is a large 
part of the computational substrate of human cognition 
(along with our body and environment). Cognitive 
neuroscience, with the aid of neuroimaging, has revealed 
much about our cognitive processes, such as timing between 
consecutive steps in a cascade of processes. However, 
neuroimaging studies are almost always conducted in the 
laboratory, with specific physical and task constraints. 
Hence, one cannot be certain that cognitive neuroscience 
actually measures, or even attempts to measure, the full 
array of cognitive processes at play. For example, the 
consolidation of long-term memory is quite difficult to 
measure within the span of a single experiment, while visual 
perception can be easily studied. Conversely, observations 
in neuroscience may provide constraints for cognitive 
theories, but only if there is an overlap of interest in the 
same processes. Thus, we should understand the degree to 
which we are over- and under sampling cognitive processes 
while measuring the brain. This is the problem of adequate 
sampling of cognitive processes in cognitive neuroscience. 

Frameworks for Ontology-Mapping  
The problem of ontology has been addressed previously. 

Notably, Poldrack and colleagues (2011) started a 
monumental effort in charting the ontological space of 
cognitive processes, as well as their related experimental 
tasks and disease correlates, aptly named the Cognitive 
Atlas. These authors hand-crafted hundreds of terms and 
their relations with each other, and invited researchers to 
contribute to documenting new relations – like a Wikipedia 
for cognitive science. While quality-controlled, curating 
these processes by hand relies on massive participation of 
the community, and must match the speed at which new 
evidence linking old processes is published. A 
complementary approach to human-generated relations is to 
let experts judge the validity of machine-generated relations, 
which can cover much more ground very quickly, saving 
human time and resources. 
 
 

Automated Generation of Cognitive Ontology 
Here, we present an automated text-mining algorithm that 

scans through relevant literature databases and builds an 
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ontology through co-occurrences of cognitive terms mined 
from the Cognitive Atlas. In particular, we apply the mining 
algorithm to PubMed, as well as the proceedings to the 
Annual Meeting of the Cognitive Science Society, in an 
attempt to automatically generate an ontological structure 
supplementing the Cognitive Atlas. Furthermore, we search 
PubMed for cognitive terms in conjunction with 
neuroimaging terms to establish the cognitive ontology 
viewed through neuroscience. We note here that previous 
neuroinformatic works have tackled related challenges. In 
particular, Yarkoni et al. (2011) created Neurosynth as a 
meta-analysis of fMRI studies. Its strength lies in providing 
voxel-level identification of the neural support of cognition, 
though it necessarily ignores the massive body of 
electrophysiological research (EEG, MEG, etc.) in favor of 
certainty in spatial location. In addition, Voytek & Voytek 
(2012) built BrainSCANR, an automated PubMed text-
mining application for similar purposes. However, that work 
focused primarily on aspects of neuroscience, with inclusion 
of brain regions and neurochemicals as keywords, while 
having a limited set of cognitive terms. 

In the following sections, we describe the text-mining 
procedure, as well as an analysis of the word-relations 
constructed from the automatically generated databases. We 
present similarities of term-frequency in 4 databases: 
CogSci (CS), PubMed Cognitive (PMCog), and PubMed 
Neuro (PMNeu & PMNeuMeth). We further explore latent 
structures within each database via hierarchical clustering to 
automatically generate an ontology of cognitive processes. 

Methods 
All code available online at: 
https://github.com/voytekresearch/IdentityCrisis 

Data Collection 
Term Collection 803 cognitive terms were scraped from 
the “Concepts” page from the Cognitive Atlas. These were 
used as the main search terms below, and will thus be 
referred to as “cognitive terms.” 
 
CogSci Abstracts This database is constructed from the 
title and abstracts of the Presentations, Tutorials, Symposia, 
and Papers of the Annual Meeting of the Cognitive Science 
Society from 2010 to 2016. We look for the cognitive terms 
in each document, constructing a term-document matrix. 
We then built a co-occurrence matrix by noting all pair-wise 
co-occurrences of cognitive terms in each document. Data 
from all 7 years are aggregated. Terms with 50 or more 
occurrences are included in the clustering analysis (86). 
 
PubMed Cognitive This database is constructed by 
searching in PubMed for pairs of cognitive terms in 
quotations, such as “attention”AND“working memory”, 
plus a base phrase: ('AND("cognitive"OR"cognition")'), to 
ensure searches are constrained to hits relevant to cognition. 
Counts are recorded as the number of articles that include 
the search terms in the title or abstracts. Prior to pairs 

search, we built a term-frequency vector measuring the 
occurrence of all 803 cognitive terms. Only individual terms 
with 500 or more hits (217 terms) were included in the pairs 
search to decrease search time. The number of hits for each 
pairs of terms (i & j) are recorded in the co-occurrence 
matrix as element aij. Search code was built upon the 
PubMed EUtils Tool API. 
 
PubMed Neuro Method & Neuro These databases are 
created as the one above, but in conjunction with a base 
phrase reflecting neuroimaging techniques,  
('AND('+ '("fmri"OR"neuroimaging")OR'+ 
'("pet"OR"positron emission tomography")OR'+ 
'("eeg"OR"electroencephalography")OR'+ 
'("meg"OR"magnetoencephalography")OR'+ 
'("ecog"OR"electrocorticography")OR'+ 
'("lfp"OR"local field potential")OR'+ 
'("erp"OR"event related potential")OR'+ 
'("single unit"OR"single-unit"OR"single neuron")OR'+ 
'("calcium imaging")'')'). 
138 terms remained after thresholding at 500 hits. 
As suggested by reviewers, we further included a “general 
neuroscience” database that was not exclusively techniques, 
using ("neural"OR"neuroscience") as base phrase. 

Data Analysis 
Term-Frequency Term-frequency for each cognitive term 
were calculated as a fraction by dividing the number of hits 
a term generated by the total results returned for the base 
phrase alone (for PubMed databases) or the total number of 
abstracts (for CogSci database). To visualize differences in 
term usage, we take the term-frequency difference between 
pairs of databases and find the terms with the highest 
absolute difference. 
 
Hierarchical Clustering We use the SciPy hierarchical 
clustering module  (scipy.cluster.hierarchy) to cluster terms 
based on their normalized co-occurrence matrix, where each 
row is divided by the diagonal of that row (co-occurrence 
with self). Dendrograms are generated and leaves are cut 
(colored) to generate ~N/4 clusters, where N is the total 
number of terms in tree. 

Results 
In summary, we find that:  
1) there are discrepancies between prevalent terms 
discovered in the CogSci database and the PubMed Neuro 
database, with the former leaning towards more theoretical 
constructs, and the latter, experimentally tangible; 
2) hierarchical clustering reveals reasonable yet novel 
groupings of cognitive terms that are undocumented in the 
Cognitive Atlas. 

Term-Frequency Across Databases 
First, we address the question: do cognitive scientists and 
neuroscientists study the same underlying processes? Table 
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1 presents the top 20 most frequent cognitive terms in each 
database. 
 
Table 1: Proportion of term occurrence for the top 20 terms 
in each database. Green boxes denote terms unique to that 
database, while red boxes denote terms unique to Neuro. 

 
 
First, we note the general trend that CogSci proceedings 

are much more likely to contain one of several popular 
terms, with 3 terms appearing in more than 20% of the 
abstracts and 9 terms in more than 10%. In contrast, only 
one word in the PMNeuro database is contained in more 
than 10% of the abstracts (“activation”), which may be 
artificially inflated due to usages of the word in contexts not 
describing cognitive activation (e.g., fMRI activation). This 
suggests that the terms we deem to describe “cognitive 
processes” do indeed see more usage in the cognitive 
science community.  

On an individual term level, several striking patterns 
prevail. First, “learning” appears in about 25% of CogSci 
abstracts, but only 10% in PMCog, 7% in PMNeu, and 3% 
in PMNeuMeth. This reveals that the concept of “learning” 
is a rather popular theoretical construct, while being harder 
to study empirically via neuroimaging. Additionally, 
“search”, “language”, and “logic” all appear in more than 
15% of CogSci abstracts, but do not crack the 5% mark in 
PMNeuro, further suggesting the difficulty or reluctance in 
studying these theoretically important but empirically ill-
defined concepts in a neuroscientific context. 

On the other hand, “attention”, “perception”, and 
“movement” occur in all 4 databases with relatively low but 
similar proportions. This is unsurprising, as physical 
processes are much more easily studied in neuroscientific 
experiments.  

 
Figure 1: Term frequency results for each database. Note 
that y-axis is in log scale. 

 
We saw from Table 1 that term usage distribution for the 

most frequent terms are not the same across the 4 databases. 
Figure 1 plots these distributions for the top 250 terms used. 
We see that CogSci proceedings are not very diverse in 
terms of their topics of investigation, as the more common 
terms are much more represented in the abstracts. This may 
be due to the small number of CogSci abstracts available, 
compared to around 100 times more results returned from 
PubMed searches. However, PMCogs is less drastic but 
follows a similar trend, suggesting that cognitive science as 
a whole refers to these cognitive terms much more 
frequently than neuroscience. 
 

 
Figure 2. Terms used most differently between Cognitive 
Science (CogSci, left, PMCogs, right) and Neuroscience. 
 

Finally, we find terms with the biggest usage proportion 
difference between cognitive science and neuroscience. 
These results recapitulate the top terms we see in Table 1, 
where an overwhelming proportion of high-level, 
conceptual terms are overrepresented in the 2 cognitive 
datasets. Overall, these analyses demonstrates that, while 
cognitive terms are adopted more frequently in CogSci 
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abstracts than the general body of literature in PubMed, 
many of the processes that are focused on in the CogSci 
community has not seen as much empirical investigation in 
the neuroscience community. 

Hierarchical Clustering 
Having shown a difference in the frequency of cognitive 
term usage between cognitive science and neuroscience, we 
turn to the term co-occurrence data to generate ontologies. 
Here, we can address the question of, in addition to being 
used with differing frequencies, whether the terms are used 
in different ways in relation to each other, which suggests a 
difference in term “meaning”. Figure 3 shows dendrograms 
generated from the CogSci database and PMNeuMeth 
database. The length of the colored lines (starting from the 
right) when they merge reflect the similiarity of the the 
merged terms: the shorter the lines, the more similar they 
are. As such, pairs of terms like “acuity” and “visual 
acuity”, or “memory” and “working memory” are merged 
very early on due to the overlap in words, which is a 
limitation of the text-mining method employed. 

Barring these overlapping terms, very reasonable clusters 
emerge at the mid-level. For example, at the lower end of 
the CogSci tree exists a language group (red & green) and a 
learning group (teal). Interestingly, “learning” and 
“generalization” are very closely tied. Moving up a few 
clusters, a reasoning cluster emerges (black), including 
“reasoning”, “inference”, “induction”, and “rule”. Similar 
clusters existing in the PMNeu tree, where the top clusters 
reflect all forms of perception, then attention, transitioning 
to speech processing, and finally to language understanding. 
“Theory of mind” is grouped with “empathy” and “social 
cognition”, while “discrimination” is grouped with 
“categorization” and “judgement”.  

Due to the difference in term prevalence between these 
two databases, some clusters exclusive to one or the other 
appear. “Logic”, “analogy”, and “schema” exist as one 
cluster in the CogSci database, while “anxiety”, “fear” and 
“extinction” emerge as a cluster in the PMNeu database. 
These clusters clearly reflect the theoretical vs. experimental 
nature of works published in these two fields. Furthermore, 
“learning” in CogSci, as mentioned above, talks about a 
high-level, mental process (tied to “category learning”), 
while it is linked to “skill”, “navigation”, and “expertise” in 
neuroscience. Overall, these examples qualitatively 
demonstrate that an automated mining and clustering 
process can tease out: 1) similarity of cognitive terms by 
grouping them within clusters, and 2) contextualized 
meaning of terms by grouping them into different clusters 
specific to cognitive science or neuroscience. 

Finally, in keeping with our original goal, we examine 
whether clusters discovered with our automated process can 
be used to supplement information in the Cognitive Atlas. 
Figure 4 demonstrates one example concept: “learning”. We 
observe that the only populated relationship is “are kinds 
of”, in which more specific types of learning are listed. 
However, the ontological mapping does not capture 

categorically similar terms described above, such as 
“generalization” or “categorization”. Other examples of 
missed relationships are more nuanced. For example, under 
“addiction”, the Cognitive Atlas currently includes “reward 
processing” as a part of addiction (also discovered in our 
clustering). However, it does not mention “anticipation” and 
“impulsivity”, both of which are key factors in the 
continuation of addictive behavior. Hence, we conclude that 
automated clustering of related concepts can greatly aid in 
the curation of an extensive cognitive ontology.  
 

 

  
 

 

 
 

Figure 4: “learning” and “addiction” as curated by 
Cognitive Atlas, supplemented by clusters generated 

automatically (from Fig. 3).  
 

Discussion 

Summary 
In this study, we created a text-mining and clustering 
pipeline that aims to automate the process of aggregating 
information from existing literature to create an ontological 
structure for cognitive processes. We searched for cognitive 
keywords curated by the Cognitive Atlas, and analyzed 
databases created by scraping the proceedings to the Annual 
Cognitive Science meeting, as well as PubMed articles, 
containing these keywords. We find a prevalent usage of 
these terms in all the databases, particularly so in the CogSci 
abstracts. The frequency of term usages differ between 
CogSci abstracts and PubMed neuroscience articles, likely 
reflecting the methodological preferences in each field. 
Hierarchical clustering on pairwise term co-occurrence data 
group terms relating to each other, demonstrating 
practicality in serving as a hypothesis-generating procedure 
to further populate manually-maintained ontologies, such as 
the Cognitive Atlas. 
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Figure 3: hierarchical clustering results for CogSci and PubMed Neuro Method database.
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Implications for Cognitive Science 
The current work presents two main contributions. First, the 
tool itself is completely open-sourced and depends on 
publicly available databases. Domain-specific researchers 
can utilize this tool to find common associations to their 
process of choice, such as addiction. This will be especially 
useful for beginner researchers, like undergraduate and early 
graduate students, to quickly situate their topic in the 
broader context. Furthermore, on a larger scale, this tool can 
serve as a complementary approach to hand-curated 
ontologies, saving experts time from manually filling in 
blanks. One point worth noting is that our work does not 
attempt to build the ontological structure of cognitive 
processes as it exists in our minds, similar to ideas 
suggested by Newell’s universal theory of cognition (UTC). 
Rather, it is a meta-analysis of how cognitive scientists 
decide to investigate the latent structure of our cognitive 
processes through their work, with no claims on whether or 
how this ontological structure actually exists. 
   Second, the theoretical contribution of this work is that it 
points to the discrepancy between how cognitive science 
and neuroscience study cognition. One simple explanation is 
that neuroscience only partially overlaps with cognitive 
science, as genetic, molecular, and cellular investigations 
often do not relate to cognitive phenomena. This is clearly 
true, however, given that the PubMed Neuro Method 
database is built specifically with keywords relating to 
animal neuroimaging techniques, this is unlikely to be the 
explanation here. Furthermore, the gap similarly exists 
between PubMed Cognitive and PubMed Neuro databases, 
so it is not simply a difference in the source of data. Thus, 
this gap raises the alarming possibility, as one reviewer 
pointed out, that theories in cognitive science are not 
testable in the realm of neuroscience, and/or that 
neuroscience is simply not interested in or ready for the 
grand theories of cognition. 
 

Limitations & Future Work 
While the algorithm returns reasonable and novel results, a 
few methodological and data-collection limitations must be 
raised. First, in building the databases, CogSci abstract were 
collected only up to the annual meeting in 2010, as further 
archives were unavailable. In contrast, PubMed searches 
return all hits dating back 30 or more years. As such, it is 
possible that trends observed in the term-frequency analysis 
may be due to a temporary peak in interest in certain areas 
of research, such as “learning”. This can be easily 
ameliorated, however, by rebuilding the PubMed databases 
while constraining the included search years. In fact, we can 
analyze different decades (or other periods of time) to see 
how ontological structure develops over time. 

Second, due to the scraping method applied, terms with 
overlapping words, such as “memory” and “procedural 
memory” will co-occur with much higher frequency, 
possibly leading to inflated inferred relationships. Since 

terms with overlapping words are very likely to have a 
superset-subset relationship, the over-interpretation of 
relationship is unlikely to create false positives. However, 
the artificial increase in co-occurrence may lead clustering 
to exclude related but now suppressed terms, leading to 
false negatives. This may be circumvented by making 
queries for specific terms, i.e., accessing specific rows in the 
co-occurrence matrix, and ranking related words in their rate 
of co-occurrence. Hierarchical clustering is simply one 
method to visualize the co-occurrence data, and many others 
may be applied on the same dataset to further tease out 
latent structures, such as Multi-Dimensional Scaling. 

Lastly, the co-occurrence matrix is built on the 
assumption of a bag-of-words model, i.e., word-order and 
semantic relations don’t matter, simply their shared 
presence in a document. This may lead to spurious linkages, 
if a document contained a phrase like “attention is not a type 
of memory.” This is likely to be rare, and ultimately, still 
useful knowledge, as it implies that at some point these 
terms were wrongfully linked. This last point, however, 
raises a larger, philosophical question: can automated text 
mining of existing literature get at the ontology of cognitive 
science, and if so, is that the same ontology that exists in our 
minds? We may never know the answer to the latter, but the 
former is certainly an issue worth investigating. Regardless 
of whether or not the structure can be recovered from the 
model presented here, the knowledge structure clearly exists 
within the minds of practicing cognitive scientists. As such, 
we may leverage other sources of information, such as 
citation links, to trace out the ontology, which ultimately 
just represents a consolidation of knowledge across the 
broad, interdisciplinary study of cognition. 
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Abstract 

This paper explores whether social desirability affects the 
illusion of explanatory depth (IEOD) by comparing the 
magnitude of this illusion in topics with different levels of 
social desirability within several domains. This question was 
chosen because prior literature shows that social expectations 
about how much a person should know about a certain topic 
affect the magnitude of the IOED. Previous research shows 
also that social desirability has an effect on a similar illusion 
related to argumentation, and that the IOED is affected by the 
way a person thinks knowledge is distributed in his or her 
social group. In order to do so, 184 participants were assigned 
randomly to three knowledge domains (history, economics, 
and devices) and in each domain they rated their 
understanding of a high-desirability and a low-desirability 
topic following a standard IOED procedure. Results show that 
social desirability has an effect on the IOED magnitude and 
that overestimation of understanding varies among domains. 
Particularly, participants tend to overestimate their 
understanding of high desirability topics only. This effect was 
stronger in the historical domain. 

Keywords: Illusion of explanatory depth; social desirability 
of knowledge; feeling of knowing; metacognition; motivated 
cognition. 

Introduction 
There is extensive evidence that people are often 
overconfident regarding the quality and accuracy of their 
knowledge (Moore & Healy, 2008; Zell & Krizan, 2014). 
This metacognitive bias has been consistently found in the 
context of tasks as diverse as recalling memorized 
information (e.g., Koriat, Lichtenstein, & Fischhoff, 1980), 
solving general-knowledge questions (e.g., Atir, 
Rosenzweig & Dunning, 2015), evaluating text 
comprehension (e.g., Jaeger & Wiley, 2015), and making 
consumer decisions (e.g., Alba & Hutchinson, 2000).  

The discrepancy between what people think they know 
and what they really know seems to be more conspicuous in 
certain kinds of knowledge. Thus, Rozenblit and Keil 
(2002) found that college students are prone to overestimate 
their ability to explain the mechanisms of devices or natural 
processes, but not their understanding of facts, narratives or 
procedures. This “Illusion of Explanatory Depth” (IOED), 
have been robustly documented in recent years, both in 
experts and non-experts (Lawson, 2006; Fisher & Keil, 
2015) as in young children (Mills & Keil, 2004). The IOED 

has also been found in both physical (Lawson, 2006; 
Fernbach, Sloman, St. Louis & Shube, 2013; Fisher & Keil, 
2015) and social mechanisms (Alter, Oppenheimer & 
Zemla, 2010; Fernbach, Rogers, Fox & Sloman, 2013). 
These previous works have focused on demonstrating how 
pervasive is the IOED in different domains of knowledge 
and on searching for conceptual properties of objects/topics 
associated to different degrees of this phenomenon. 
However, when people evaluate how much they know about 
a particular topic, it is still possible they do not just keep in 
mind what they do know, but also the representation of what 
they should know. This representation can be inferred 
explicitly or implicitly from contextual and motivational 
cues, such as the perceived social desirability of knowledge. 
In the following sections, we review some empirical results 
from research both on IOED and metamemory that are 
consistent with this interpretation. 

 

IOED and Social Desirability of Knowledge 
Fisher and Keil (2015) investigate whether expertise in a 
given domain of knowledge is associated to a more accurate 
self-evaluation of the understanding of objects and 
processes. In order to do so, they distinguish between 
passive and formal expertise; passive expertise refers to 
knowledge coming from the “exposure through life 
experience and the position one occupies in a society or 
culture” (p.1251; e.g., specific knowledge or skills 
culturally associated to gender or age), whereas formal 
expertise is the final outcome of systematic, continued and 
deliberate training in a specific domain with definite 
milestones (e.g., academic degrees). Fisher and Keil found 
that participants with less formal expertise (e.g., with no 
college major) overestimated more their understanding of 
topics related to their passive expertise than they did 
regarding their understanding of other topics. This 
difference was not replicated in the group with more formal 
expertise. In this group, participants overestimated their 
understanding of topics related to their area of formal 
expertise more than of other topics. These results suggest 
that people tend to overestimate their ability to explain 
topics related to their area of expertise. In the case of people 
with formal education, it happens with topics related to their 
formal expertise; in the case of people with no formal 
training, it happens with topics related to their passive one. 
In both cases, a critical factor affecting the IOED magnitude 
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seems to be the participants’ beliefs about how much they 
should know about certain topics because of his or her type 
of expertise, regardless of how that knowledge was 
acquired. 

In the same vein, Fisher and Keil (2014) asked their 
participants to write their arguments supporting their 
position about controversial topics. Before and after this 
task, they were asked to evaluate how well they could 
support their own positions. Additionally, participants 
judged how important the topics were for them. Using an 
experimental paradigm quite similar to that of the IOED 
research, they found evidence of an “Illusion of 
Argumentative Justification” (IAJ): participants’ ratings of 
their ability to support their point of view decreased after 
writing their arguments. Importantly, caring for each topic 
was positively associated with both previous and posterior 
evaluations of the ability to rationally justify their own 
position, and this pattern was not replicated when arguments 
were rated by a different group of participants. In short, IAJ 
seems to be stronger in topics that matter to participants.  

In apparent contradiction with these more recent findings, 
Rozenblit and Keil (2002, study 11) reported that perceived 
social desirability of explanations was not associated with 
the magnitude of overconfidence in any domain of 
knowledge (facts, procedures, narratives, or explanations). 
They even claim that “if anything, high desirability may 
cause people to more carefully assess their self-knowledge 
in a domain and, therefore, be more accurate.” (p. 547).  
However, at least one important difference between 
Rozenblit and Keil (2002) and Fisher and Keil (2014) 
studies can account for this discrepancy: whereas Rozenblit 
and Keil compare differences in overconfidence between 
kinds of knowledge (e.g., facts, procedures, narratives, and 
explanations), Fisher and Keil contrast the IAJ magnitude 
between topics with different degrees of personal 
significance, within a same kind of knowledge (e.g., 
arguments). From a methodological point of view, 
comparing between kinds of knowledge could be not the 
optimal strategy to establish whether social desirability and 
IOED are related, as far as the latter is a phenomenon 
essentially linked to explanations. In this context, 
comparing the IOED magnitude between more or less 
socially desirable topics or explanatory domains might be 
more informative than contrasting the effect of social 
desirability between explanations and other kinds of 
knowledge (e.g., arguments). Exploring this alternative is 
the main purpose of this study.  

The influence of social cues in the process of knowledge 
self-assessment is not an exclusive finding of the IOED 
paradigm. In the next section, we review some evidence 
from metamemory research suggesting the inferential nature 
of such process, and identifying a number of contextual 
factors affecting perceptions about how likely some specific 
content is to be recalled from memory. 
 
 
 

Social Desirability and the Feeling of Knowing 
The research on metacognitive judgments in memory tasks 
has inquired about the sources of information people use to 
infer whether a particular content can be learned or recalled. 
Specifically, the “feeling of knowing” (FOK) has been 
extensively investigated. In general, this feeling is 
experienced by an individual when he or she thinks to have 
certain items stored in memory and the ability to recall or 
recognize them in the future, even when they cannot do it at 
the present (Hart, 1965). 

In order to elucidate the metacognitive mechanism 
underlying to FOK, researchers have explored factors 
associated to the accuracy of these judgments. Consistently, 
it has been found that FOK is not the output of a unique 
mechanism. Instead, diverse factors can affect the 
metacognitive processes driving to it, depending on both 
recovery timing and task restrictions (for review, see 
Thomas, Lee & Hughes, 2016). For example, whereas 
perceived familiarity with items can increase the FOK 
before the recall phase, related information accessibility has 
a major role when recalling is not successful (Koriat & 
Levy-Sadot, 2001). These findings support the hypothesis 
that the FOK mechanism is not an encapsulated direct-
access module (Hart, 1965), but the result from multiple 
inferential processes, working with information derived 
from cues previously or simultaneously generated along 
with the recall process (Thomas et al., 2016). 

Supporting this hypothesis, Costermans, Lories and 
Ansay, (1992, exp. 2) explore several cues related to the 
magnitude of FOK judgments. In particular, they find that 
confidence is a better predictor of answers accuracy than 
FOK. Interestingly, both question familiarity and the 
estimated amount of people knowing the correct answer 
were positively associated with the FOK magnitude. In the 
same vein, De Carvalho and Yuzawa (2001) report that the 
FOK magnitude in college students with low levels of 
metacognitive ability increases when they are provided with 
information about fictitious students having high 
performances in a similar task and, correspondingly, 
diminishes it when these fictitious performances were 
presented as low. These results are compatible with the Self 
Consistency Model of Subjective Confidence (SCM; Koriat, 
2012), which postulates that correlation between confidence 
and accuracy in FOK judgments is positive when people 
agree on the correct answer. In contrast, the confidence-
accuracy correlation is negative when there is a similar level 
of consensus about an answer that is ultimately wrong. Once 
again, these results confirm that FOK is not directly 
computed, but inferred from internal cues such as 
familiarity, processing fluency, and the perceived 
distribution of knowledge in the population. 

Although the effect of social desirability of knowing the 
correct answer has not been directly tested on the FOK 
paradigm, there are reasons to think it might well be an 
informative cue about how likely a content in memory is to 
be recalled (Gruneberg, Monks & Sykes, 1977). In a related 
area of research, Soderstrom and McCabe (2011) found that 
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college students judge that they will be more able to learn 
items whose successful recall is better rewarded in the 
experimental setting. In the same vein, the predicted grades 
of college students in a course exam are biased by their 
desired level of performance (Serra & Demarree, 2016).  

On the other hand, though experimental paradigms of 
FOK differ from IOED in that they had used pieces of non-
explanatory knowledge (e.g., historical events, dates, names, 
places, etc.), this fact does not rule out the possibility that 
both IOED and FOK engage analogous or common 
metacognitive mechanisms. If that is the case, factors 
related to the FOK magnitude might be responsible of 
differences in the IOED magnitude between topics and 
domains. Examining the influence of inferential cues such 
as social desirability on the IOED will allow us to identify 
the conditions that lead to the overestimation of the 
explanatory knowledge about a certain topic. In turn, this 
information would be useful in creating cognitive strategies 
to help people to re-calibrate their understanding and 
monitoring their own learning processes of specific contents 
in more accurate and effective ways (Dunlosky & Thiede, 
2013). In this context, the aim of this study is to determine 
whether social desirability of knowledge is used by 
participants as an informative cue when they are assessing 
their understanding of mechanisms in different domains of 
explanatory knowledge. 

 

Method 
 

The experiment has two goals: First, we intend to establish 
whether social desirability of knowledge about a specific 
topic predicts the IOED magnitude. Second, we want to 
know whether the relationship between IOED magnitude 
and social desirability differs among explanatory domains 
(e.g., historical, economic, and devices).  

 

Participants 
In this study participated one hundred and eighty-four 
students from a large research university (88 women) 
attending different undergraduate programs, with ages 
ranging from 18 to 42 years (M = 20.7, SD = 2.04). Most of 
them received academic extra-credit for their participation 
in this study. 

 
Design 
A mixed experimental design, 3x2x2, was used, with 
explanatory domain (historical, economic and devices) as 
the between-subjects factor, and social desirability of topics 
(high and low), and pre-post measures as within-subjects 
factors. The dependent variable was the IOED magnitude, 
measured as the rating of understanding of each topic. 

 
Materials and Procedure 
The same procedure used by Rozenblit and Keil (2002, 
study 11) was used to select high and low desirability topics 
for each domain. In a preliminary study, one hundred and 
ninety-four participants (117 women) evaluated the 

perceived social desirability of knowledge about 21 topics 
(seven in each domain). Specifically, they reported how 
embarrassed they would feel if they did not have a good 
understanding on each topic in a 7-point scale, ranging from 
1 (“If someone asked me to explain this topic and I had a 
poor understanding of that item, I would not feel 
embarrassed at all”) to 7 (“If someone asked me to explain 
this topic and I had a poor understanding of that item, I 
would feel very embarrassed”). Six items -the two topics 
showing greater difference in the desirability scale within 
each domain- were selected for the main study (see Table 
1).  

 
Table 1: Means of social desirability of each topic in the 

preliminary study 
 

Domain Topic M SE 

95% CI 

Lower 
bound 

Upper 
bound 

Historical Long duration 
of the 
Colombian 
armed conflict 

5.02a .135 4.76 5.29 

Creation of 
the FARC-EP 
guerilla 

4.58b .132 4.32 4.84 

Economic Why inflation 
rises in 
Colombia 

4.37b .133 4.11 4.63 

How the stock 
market works 

3.65c .128 3.39 3.90 

Devices How a fishing 
rod works 

3.40c .151 3.10 3.70 

How a jet 
engine works 

2.43d .130 2.18 2.69 

Note: M = mean; SE = standard error; CI = Confidence 
interval; Means marked with different letters differed 
significantly from each other (p < .01) 

 
In an isolated and noise-free room, participants did the 

experimental task at their own pace in individual cubicles. 
For task presentation and response recording, the Qualtrics 
web-based survey software was used. During the session, it 
was verified that participants did not check other websites. 
After registering their demographic information, 
participants completed an instructional manipulation check 
(Oppenheimer, Meyvis & Davidenko, 2009) to ensure the 
careful reading of the instructions. The following phases 
were aligned with the IOED experimental paradigm: 
initially, participants evaluated their knowledge about 
twelve topics (six of which were not part of the design), 
using a 7-point scale, with 1 meaning “vague or poor 
understanding” and 7 “detailed and fine-grained 
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understanding”. The instructions to use this rating scale 
were adapted from Rozenblit and Keil (2002) and Fernbach, 
Rogers, et al. (2013). Next, participants were randomly 
assigned to one of the three domains (historical, economic, 
and devices), and they were asked to explain in a step-by-
step way the causal mechanism of one of the object/topic in 
this domain (explanation phase). In particular, they were 
provided with the following instruction: 

“We want to know your explanation of some topics. The 
aim of this explanation is to show clearly how each step 
causes the next one, placing them in a sequence from the 
emergence of the causes until the moment when the 
phenomenon occurs. In other words, try to tell a story as 
complete as you can (with no plot holes) that might be 
understood by anyone.”  

 When the explanation was completed, participants 
evaluated again their understanding of the object/topic they 
had previously explained (post-evaluation phase). The 
sequence explanation-post evaluation was then repeated for 
the second object/topic. The presentation order of high and 
low desirability topics within each domain was randomly 
assigned.  
 

Results 
 

A mixed ANOVA was conducted as the main analysis, with 
judgment timing (pre and post explanation) and perceived 
social desirability of knowledge on the topic (high and low) 
as within-subject factors, and both domain of knowledge 
and presentation order as the between-subjects factors. The 
dependent variable was the rating in the 7-point 
understanding scale.  

Replicating the IOED phenomenon, a main effect of 
evaluation time was found. Ratings of understanding before 
the elaboration of explanations (M = 3.42, SE = .105) were 
higher than those produced after explanations (M = 2.81, 
SE= .10), F (1, 178) = 52.43, p < .001, η2

p = .23. 
Additionally, there was a significant interaction between 
judgment timing and domain of knowledge, F (2, 178) = 
3.33, p < .05, η2

p = .03. Post hoc analysis (Tukey’s HSD) 
revealed that the decrease of understanding ratings was 
higher for the historical domain, p <.01 (see Table 2). 

Additionally, social desirability of knowledge interacted 
with judgment timing, F (2, 178) = 56.27, p < .001, η2

p=.24. 
In particular, it was found a decrease on understanding 
ratings between judgments before and after the elaboration 
of explanations, only for high desirability topics (see Figure 
1). 

It was also found a marginally significant three-way 
interaction between judgment timing, social desirability and 
domain of knowledge, F (2, 178) = 3.06, p = .049, η2

p = .03. 
Specifically, the reduction of understanding after generating 
explanations in low social desirability topics is slightly 
greater in the historical domain (why FARC-EP guerrilla 
was created), than both in devices (how a jet engine works) 
and economic topics (how stock markets work; see Figures 
2 and 3). 

Table 2: Means of understanding in each domain 
of knowledge by judgment timing. 

 

Domain Time M (SE) 
95% CI 

Lower 
bound 

Upper 
bound 

Historical Pre 4.20 (.182) ** 3.84 4.56 

Post 3.35 (.171) ** 3.01 3.68 

Economic Pre 2.90 (.182)  2.54 3.26 

Post 2.26 (.171)  1.92 2.59 

Devices Pre 3.16 (.185)  2.79 3.52 

Post 2.83 (.174)  2.48 3.17 

** p < .01 
 
 

 
 
Figure 1. Means of understanding in high and low social 
desirability topics by judgment timing. Bars represent 95% 
confidence intervals. 

 
 

 
 
Figure 2. Means of understanding in each domain on high 
social desirability topics) by judgment timing. Bars 
represent 95% confidence intervals. 
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Figure 3. Means of understanding in each domain on low 
social desirability topics by judgment timing. Bars represent 
95% confidence intervals.  

 
Finally, there was a robust and unexpected three-way 

interaction between judgment timing, social desirability, and 
topic order, F (2, 178) = 31.03, p < .001, η2

p = .14. 
Particularly, when low social desirability topics were 
evaluated first, the understanding ratings for the second 
(high desirability) topic showed a lower IOED (Mpre = 3.85, 
SE=.186; Mpost = 3.05, SE=.171) than when high desirability 
topics were evaluated first (Mpre= 4.35, SE=.187; Mpost=2.68, 
SE=.172) 

Discussion 
In the present study, we examined the relationship between 
IOED magnitude and social desirability of knowledge about 
specific topics in three different domains. Our results show 
that people overestimate their knowledge about causal 
mechanisms related to physical devices, as well as to 
economic and historical phenomena. Furthermore, the IOED 
seems to be stronger in the historical domain and that 
difference might be related to the higher social desirability 
of this domain. 

Within each domain, the IOED was exhibited for the 
highly desirable but not for the less desirable topics. This 
finding confirms that perceived social desirability of 
knowledge is a relevant cue in the processes of knowledge 
self-assessment, as it is suggested by previous research on 
metamemory judgments. It is possible however that other 
factors like familiarity, accessibility or perceived 
distribution of information about topics play a role 
moderating the IOED effect. This could explain, for 
instance, why the initial understanding of unfamiliar and 
non-accessible topics (like the low desirability topic in the 
domain of devices) could be underrated rather than 
overrated. In this vein, future studies should separate the 
effect of social desirability from that of potential confounds 
as far as possible. Even if the influence of other informative 
cues is demonstrated, it would support the idea that the 
IOED is not only a consequence of the coarseness of 
intuitive theories (Rozenblit & Keil, 2002), but also a by-

product of the inferential nature of metacognitive 
mechanisms. In other words, people overestimate their 
ability to explain objects and phenomena because they use 
multiple cues to assess how well they know them (including 
social desirability of that knowledge), and not only because 
they confuse their skeletal understanding with full-detailed 
representations of mechanistic knowledge.  

Fernbach, Rogers, et al. (2013) found that the IOED 
magnitude correlated positively with the moderation of 
extreme political attitudes on controversial issues. 
Accordingly, if the social desirability of knowledge about a 
political issue enhances the related IOED, it is possible that 
extreme attitudes about more desirable topics to be also 
more likely to be moderated after trying to explain them. 
However, if an individual holds an extreme position about a 
socially relevant topic (e.g., abortion, gay marriage, gun 
control, etc.) and this position is relevant to his or her 
identity, previous evidence suggests that he or she will 
engage in a form of ideologically motivated cognition, 
making the related attitude more resistant to change (Kahan 
2013). Eventually, this motivational bias could affect the 
metacognitive processes involved on the IOED. Thus, in 
some cases, social desirability of knowledge and motivated 
cognition could influence the IOED magnitude in opposed 
directions, depending on the personal relevance of topics 
related to extreme political attitudes. Testing empirically 
this potential interaction would shed light on the 
motivational mechanisms involved in the self-assessment of 
explanatory knowledge. This is important not only in 
theoretical terms, but also in applied situations like the 
decision making on complex policies in core political 
moments (e.g., Brexit referendum or Colombia’s peace 
plebiscite). 

Finding that highly desirable knowledge about relevant 
topics is more likely to be overestimated is not encouraging 
for deliberative democracies. However, our results suggest 
that asking participants to explain less desirable topics first 
can make them less willing to re-calibrate their initial 
ratings of knowledge about highly desirable topics. Further 
studies manipulating social desirability of topics between- 
rather than within-subjects- would be useful to determine 
whether previous exposure to low IOED magnitudes can 
improve the accuracy of understanding estimation about 
socially desirable topics.   

Our purpose in this paper is to bring together the FOK 
and IOED literatures in order to identify social desirability 
as an inferential cue in the process of understanding self-
assessment. Exploring other interactions between cognitive, 
motivational and pragmatic factors in metacognitive 
processes can provide us with a more comprehensive picture 
of how we know that we know. Although social desirability 
cannot be randomly assigned, this study shows how it 
relates to the IEOD in natural settings. Separating social 
desirability from other factors might be impossible in 
natural settings and non-ecological in experimental ones. To 
give an extreme example, separating social desirability from 
social relevance be done if the former depends intrinsically 
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of the latter. So we consider that the manipulation here 
exposed is enough for to establish the relationship between 
both variables. Further experimental research is required to 
check if the relationship stands in experimental 
environments.  
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Abstract 

People often withdraw previously drawn conclusions in light 
of new information. This defeasible reasoning is also im-
portant for law, where judges often have to change their ver-
dicts in light of new evidence. Here we investigate defeasibil-
ity in the context of conflicting fundamental rights. When, for 
instance, law to property conflicts with law to information, 
can one of these rights be “defeated” by the other? We em-
bedded conflicting fundamental rights in inference tasks (Ex-
periment 1) and in elaborated vignettes (Experiment 2). Re-
sults show that people decide between two conflicting funda-
mental rights in a rational way. Case by case, participants pro-
tected that fundamental right whose violation evoked the 
highest moral outrage (Experiment 1) or whose violation was 
considered to be more serious (Experiment 2). We discuss the 
implications of our findings for law theory and psychology.  

Keywords: defeasibility, legal reasoning, conditionals 

Introduction 

Are humans rational? This question has concerned psy-

chologists and philosophers for a long time. Philosophers 

have developed norms for rational thinking and psycholo-

gists have tested them empirically. In many of these exper-

iments, classical logic was used as a norm for rationality. 

Participants were confronted with inference tasks, consisting 

of a conditional and a fact, and asked to indicate what fol-

lows necessarily. One example is Modus Ponens (MP):  

If Ann is hungry (p) then she gets something to eat (q). 

Ann is hungry (p). 

Ann gets something to eat (q). 

MP is a valid inference because in classical logic the ante-

cedent (p) is sufficient (but not necessary) for the conse-

quent (q) (e.g., Thompson, 1994; 1995). Yet, many partici-

pants made logical errors in such inference tasks, rejecting 

otherwise valid conclusions. Nowadays, however, it is 

known that these “errors“ are only a consequence of the 

complexity of human everyday reasoning. In everyday sit-

uations, many factors that are irrelevant for classical logic 

have to be considered and weighted in order to arrive at a 

reasonable conclusion. For instance, if Ann is on a strict 

diet, it may be rational to conclude that she will not get 

something to eat even if she is hungry. Contrary to classical 

logic, where no additional information can make a conclu-

sion false, everyday reasoning is non-monotonic and defea-

sible (e.g. Oaksford & Chater, 1995; 2013; Stenning & van 

Lambalgen, 2005). 

This phenomenon called defeasibility is also very im-

portant in legal reasoning (e.g., Bäcker, 2010; Prakken & 

Sartor, 2004). Judges are often confronted with complex 

cases, in which they have to arrive at rational verdicts. At 

first sight, we might thus think that classical deduction is an 

appropriate norm for legal reasoning. For instance, consider-

ing that the penal code says that “If a person kills another 

human, then the person has to be punished for manslaugh-

ter” we can conclude from the fact that a person killed an-

other human that the person has to be punished for man-

slaughter. However, in many cases there are exculpatory 

circumstances that make it rational to reject this conclusion. 

There are different exculpatory circumstances defined in 

penal code, such as self-defense, necessity or psychological 

disorders. In light of those circumstances, judges know that 

the otherwise valid conclusion of punishment has to be de-

feated in favor of acquittal. But what happens if there are no 

clear rules on how to reason? Although this might sound 

counterintuitive for legal contexts, this nonetheless happens 

in federal constitutional courts, when two fundamental 

rights are in conflict. Imagine, for instance, that you live in a 

foreign country and the only way to hear news from your 

hometown is to mount a parabolic antenna on the facade of 

your rented flat. The landlady nonetheless prohibits it to 

you. Your right to receive information thus conflicts with 

the property law of the landlady. In general terms, all fun-

damental rights are equally important and have to be grant-

ed. So, which fundamental right has to be preferred over the 

other? Can one fundamental right “defeat” the other? 

The aim of this paper is to investigate how people reason 

with conflicting fundamental rights. For this, we will first 

discuss the psychological literature on defeasible reasoning 

and then the law theoretic framework on fundamental rights. 

Withdrawing from valid conclusions  

Many factors influence defeasible reasoning. One important 

factor is background knowledge. Just as shown in the intro-

duction of this paper, when people know circumstances that 

prevent the consequent to occur although the antecedent is 

true, they reject otherwise valid conclusions. These circum-

stances are often called disablers or defeaters. But not only 

the availability of defeaters is important, also is their 

amount (e.g., Cummins, 1995; De Neys, Schaeken, & 

d’Ydewalle, 2003a), their relative strength (De Neys, 

Schaeken, & d’Ydewalle, 2003b), and their frequency of 

occurrence (Geiger & Oberauer, 2007). The more defeaters 

there are, the more associated or salient these defeaters are, 

and the more often they occur, the more readily a conclusion 

is withdrawn. However, another important factor are utili-

ties. Bonnefon (2009; Bonnefon & Hilton, 2004) showed 
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that when people make inferences about actions, they con-

sider the costs and benefits of this action given the conse-

quences. For instance, when presented with the conditional 

“If Mary’s TV is broken, she will have it fixed” and the fact 

that “Mary’s TV is broken” participants refuse to conclude 

that Mary will have their TV fixed when presented with the 

additional information that “If Mary has her TV fixed, she 

will not be able to pay the electricity bill”. The considera-

tion of utilities during reasoning illustrates the closed con-

nections between reasoning and decision making. When 

people reason in their daily lives, it is not just for the sake of 

reasoning per se, but to reach a goal – may this goal be 

something simple like getting a TV fixed or something rele-

vant for society like reaching a legal verdict. Because goals 

are also relevant in law we expect utilities to play a similarly 

important role in legal reasoning. 

Legal reasoning 

Law is defeasible in several ways (cf. Prakken & Sartor, 

2004): during police investigations when new evidence “de-

feats” previous insights, during trials when attorneys and 

prosecutors defeat each other’s arguments, and in the appli-

cation of legal rules in light of exculpatory evidence. The 

role of utilities in the application of legal rules has been 

tested by Gazzo Castañeda and Knauff (2016). In several 

experiments, laypeople and lawyers were confronted with 

legal conditionals embedded in MP inferences, which were 

presented together with exculpatory evidence (e.g., “If a 

person kills another human, then the person should be pun-

ished for manslaughter; Bob killed another person; Bob is 

schizophrenic and had a delusion of an attack against him; 

Should Bob be punished for manslaughter?”). As expected, 

lawyers considered exculpatory circumstances as prescribed 

by the penal code and irrespective of how morally outraging 

the offence was, deciding not to punish in light of exculpa-

tory circumstances. Laypeople, instead, had difficulties in 

accepting exculpatory circumstances when the offence was 

highly morally outraging (e.g., maltreatment of wards), but 

not if the moral outrage was only low (e.g., illegal gam-

bling). We argued that utilities might be responsible for this 

moral outrage effect. People can only feel secure in a socie-

ty where they can be sure that the important rules are re-

spected and offenders punished. The benefit of saving one’s 

own feeling of security is thus weighted more than the costs 

of punishing somebody erroneously. This overweighing of 

one’s own feeling of security is known from the belief in a 

just world literature (see Lerner, 1970), where people even 

tend to blame the victims of offences only to preserve their 

belief that people get what they deserve and that bad things 

only happen to bad people. From a utilitarian point of view, 

the punishment of offenders is thus of high utility – and the 

higher the moral outrage, the higher this utility is. Is it there-

fore possible that moral outrage also affects the weighing of 

fundamental rights? 

Fundamental rights are generally coded in the constitu-

tion. The most known examples are right to dignity, liberty, 

freedom of thought and of expression, or right of property. 

All of these have to be respected and protected. However, 

there are instances when two or more fundamental rights are 

in conflict, such as in the introductory example when the 

right to information conflicts with right to property. Judges 

in the federal court are thus faced with the problem that they 

have to decide which one deserves more importance, alt-

hough both are theoretically equally important. This 

weighting of fundamental rights is called balancing and is 

an important case by case decision with no clear rules on 

how to decide. That is, cases with the same conflicting fun-

damental rights can (and should) end up with different ver-

dicts due to case-specific details. Because of these missing 

rules, some law theorists argue that balancing cannot be 

rational (e.g., Habermas, 1992). Alexy (2003), however, 

argues that balancing can be rational by comparing for every 

single case the detriment of one fundamental right i with the 

importance of satisfying the other fundamental right j. This 

is done by the so-called weight formula, which computes 

the ratio between the case-specific weights Ii and Ij (Gij = Ii/ 

Ij). The first weight Ii stands for the violation intensity of 

fundamental right i by protecting fundamental right j, and 

the second weight Ij stands for the importance of protecting 

fundamental right j by violating fundamental right i. Ap-

plied to our concrete example, this would result in the fol-

lowing two questions: How serious is the invasion of the 

right to information by prohibiting the installation of the 

parabolic antenna? How important is it to protect the right to 

property by prohibiting the installation of the parabolic an-

tenna? Already Darley showed in several experiments that 

the perceived seriousness or severity of offences is highly 

correlated by moral outrage (e.g., Alter, Kernochan, & Dar-

ley, 2007; Carlsmith, Darley, & Robinson, 2002; Darley, 

Carlsmith, & Robinson, 2000). Therefore, we also expect 

that the case-specific weights of fundamental rights will 

depend on moral outrage: If the invasion of fundamental 

right A is considered more morally outraging than the inva-

sion of fundamental right B, then fundamental right A 

should be protected over B.  

In this paper, we combine the domains of defeasible rea-

soning from psychology with the concept of balancing from 

legal theory. In Experiment 1, we embedded two fundamen-

tal rights into conditional reasoning tasks and asked partici-

pants what should follow. In Experiment 2, we embedded 

conflicting fundamental rights into longer vignettes and 

asked participants for the case-specific weights Ii and Ij. 

Experiment 1 

Methods 

Participants We tested 40 people (21 male) without legal 

expertise. They were on average 26.62 years old (SD=6.93). 

Material We took 16 real conflicts of fundamental rights 

from the German constitutional court and embedded them in 

defeasible inference tasks. Each problem started with a con-

ditional containing one fundamental right A. Next, we pre-

sented a concrete situation as second premise in which the 

fundamental right A was involved, followed by a third 
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premise in which the fundamental right A is applied to this 

concrete situation (MP). Then, the second fundamental right 

B was presented as a defeater that is in conflict with the 

previous information. Finally, the conclusion was presented 

as a question asking either for the application of fundamen-

tal right A (Example 1) or fundamental right B (Example 2):  

If a person’s personal security is endangered, then its protec-

tion has to be warranted.  

Person A’s house has to be searched and seized because A is 

suspected to have death threatened person B. 

To protect B this search and seizure can be authorized.  

The suspect A has nonetheless right to privacy. 

Should the house of suspect A be searched and seized?  

If the personality rights are in danger, then their protection has 

to be warranted. 

A celebrity is photographed without permission. 

Due to the personality rights, all people’s privacy has to be 

protected. 

The press has nonetheless right to freedom of the press. 

Should the celebrity be photographed by the press without 

permission? 

Participants gave ratings from 1 (not at all) to 7 (definitely). 

Therefore, the higher a rating was, the more the participants 

preferred one fundamental right over the other. We refer to 

this as “preference rating”. 

We created two versions of the experiment by changing 

the order of the fundamental rights A and B (version 1 and 

2). If in one version one fundamental right was presented as 

the conditional and the other as the defeater, then in the oth-

er version it was the other way around. The conclusion, 

however, always asked for the same fundamental right. This 

allowed us to control for order effects. 

To measure moral outrage we conducted a norming study 

in which participants (N=34) rated on a seven point Likert-

scale how morally outraged they would feel if the funda-

mental rights from the inference tasks were violated (e.g., 

“How outraging do you find it when a celebrity is photo-

graphed without permission?”). Because in each conflict 

situation there were two fundamental rights involved, this 

resulted in 32 violation ratings, ranging from 2.65 to 6.09.
1
  

Procedure and Design The experiment was programmed 

on Superlab 4.5. Participants were tested individually on a 

desktop computer and were instructed that no right or wrong 

answers exist. The instructions included one practice prob-

lem. All 16 problems were presented randomly and separat-

ed by fixation crosses. The single premises were presented 

sequentially on separate screens. Participants could switch 

to the next premise by pressing the space bar. The last prem-

ise was always the question about the conclusion. It was 

                                                           
1
We have the original raw data file from the norming study, but, alas, 

have lost the handwritten surveys on paper. We therefore conducted a 
second norming study with the same materials. The results were similar 

and so we used the data from the original norming study. Interestingly, the 
few items were we found slight differences were the ones related to immi-

gration – a topic that recently became highly controversial in Germany and 

many other countries. 

written in red font and was presented together with the 7-

point-Likert scale. The experiment was thus one factorial 

with “version” as a between subject variable.  

Results 

Comparisons between the two versions of the experiment 

revealed no differences in preference ratings, t(38)=1.36, 

p=.181. That means that regardless of whether a fundamen-

tal right was presented as the conditional or as the defeater, 

this did not affect its evaluation in the conclusion. This al-

lowed us to test the effect of moral outrage on preference 

ratings. For this, we first compared the two fundamental 

rights in each problem on the basis of the moral outrage 

ratings they got in the norming study. We looked at which 

fundamental right violation got higher moral outrage ratings 

and should thus be preferred. These predictions were then 

compared with the actual preference ratings participants 

gave in the experiment. Mean preference ratings over 4 (i.e., 

the scale midpoint) were classified as in favor, and ratings 

below 4 against the fundamental right presented in the con-

clusion (no mean preference rating = 4). Descriptively, the 

moral outrage ratings allowed us to correctly predict 11 out 

of the 16 conflict situations. To corroborate this statistically, 

we tested the preference ratings of each inference task 

against 4 with one sample t-tests and a Bonferroni adjusted 

alpha of 0.0031. Results are in Table 1. Of the 16 compari-

sons, 6 were not significantly different from 4, meaning that 

participants were neither in favor nor against the fundamen-

tal right presented in the conclusion. From the remaining 10 

problems, however, we were able to predict statistically 8 

conflict situations.  

 
Table 1: Predicted and actually preferred fundamental rights. Predic-

tions were based on the moral outrage (MO) ratings from the norming 

study. Preference ratings of the actually preferred rights were tested 

against the scale midpoint 4 (Sign., Bonferroni adjusted alpha: 0.0031). 
 

Item MO of A MO of B Predicted Preferred Sign. 

1 3.15 5.44 B A <.001 
2 4.88 5.59 B A <.001 

3 3.88 3.32 A A .001 
4 3.85 4.21 B B .001 

5 3.71 4.59 B A .147 

6 3.29 4.71 B B <.001 
7 5.79 4.38 A A <.001 

8 3.76 5.26 B A .008 
9 4.41 5.06 B B .386 

10 3.24 5.53 B B <.001 

11 3.82 3.74 A A .103 
12 5.76 4.06 A A <.001 

13 5.18 5.44 B B .309 
14 2.65 6.09 B B <.001 

15 3.39 3.26 A B .305 

16 5.32 5.29 A A <.001 

 

As an additional measure of the relevance of moral out-

rage for balancing, we took the moral outrage ratings from 

the norming study and used these ratings to classify the fun-

damental rights in each problem as either low (ratings from 

2.65 to 3.76), medium (from 3.82 to 4.88), or high (from 

5.06 to 6.09) morally laden (the cut offs resulted from the 

division of our fundamental rights into these three groups). 
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An analysis of the respective preference ratings showed that 

when high and medium morally laden fundamental rights 

were in conflict, participants gave higher preference ratings 

for conclusions asking for the highly morally laden right 

(M=5.39; SD=1.20) than for conclusions asking for the me-

dium morally laden right (M=4.46; SD=1.36), t(39)=3.06, 

p=.004. The same was the case for problems where medium 

and low morally laden fundamental rights were in conflict: 

conclusions asking for the medium morally laden right got 

higher preference ratings (M=4.5; SD=1.89) than their coun-

terpart (M=3.25; SD=1.01), t(39)=3.72, p=.001. We also 

found the same pattern for problems with high and low 

morally laden fundamental rights, but the difference in pref-

erence ratings (M=4.15; SD=1.09 vs. M=3.73; SD=1.36) did 

not reach significance, t(39)=1.38, p=.176 (Bonferroni ad-

justed alphas: 0.0167).  

Discussion 

Moral outrage was an important predictor when deciding 

between two fundamental rights in a defeasible reasoning 

paradigm. Participants protected more often that fundamen-

tal right whose violation provokes the highest moral out-

rage. A fundamental right was therefore only considered as 

a defeater if its violation was morally outraging enough.  

Our results demonstrate the defeasibility of human rea-

soning. Even in contexts where we expect people to reason 

deductively – such as in law – reasoning is often defeasible. 

In fact, it is difficult to describe balancing through deduc-

tion. Deduction would imply that it should be (in principle) 

possible to enumerate all defeaters beforehand as part of the 

antecedent (e.g., If right to property is in danger and it does 

not conflict with right to information, then we have to pro-

tect it). Yet, this is not possible for balancing because cases 

with the same conflicting fundamental rights can end up 

with different verdicts due to case-specific details. An im-

portant task for cognitive psychologists therefore is to un-

derstand the cognitive processes behind balancing. Our re-

search is a first step in this direction. 

An open question is, however, whether participants are 

indeed capable to consider these case-specific details during 

balancing. Is balancing just a theoretical concept from legal 

theory? Or do people in fact balance and defeat fundamental 

rights differently depending on case-specific details? We 

tested this in Experiment 2.  

Experiment 2 

In Experiment 2 we used a new experimental paradigm. 

First, we embedded the conflicting fundamental rights in 

elaborated vignettes. The vignettes described many case-

specific details and were thus more realistic than the infer-

ence tasks from Experiment 1. Second, half of our partici-

pants were people with legal expertise. This allowed us to 

investigate balancing in a more realistic “court like” setting. 

Methods 

Participants We tested 40 laypeople (17 male) and 40 law-

yers (already graduated ones and advanced law students; 18 

male). On average, laypeople were 24.3 years old (SD=4.2; 

one missing value) and lawyers 24.8 years old (SD=3.1). 

Material We constructed our material by summarizing 8 

real cases from the German federal constitutional court (i.e., 

BVerfGE), and embedding these into vignettes. Each vi-

gnette contained case-specific details such as the matter of 

facts, the case history (e.g., accusations, levels of jurisdic-

tion involved), and the parties’ arguments in favor or against 

the different fundamental rights. We selected our cases in 

such a way that two of them always contained the same con-

flicting fundamental rights, but received different verdicts 

from the constitutional court. These final verdicts were, 

however, not included in the vignettes. We had thus four 

pairs of cases: two cases of right to information vs. right to 

property, two cases of personality rights vs. right to freedom 

of press, two cases of personality rights vs. right to freedom 

of speech, and two cases of right to bodily integrity vs. the 

public interest to legal action. The vignettes were 324 to 506 

words long and were developed by an advanced law student 

with the supervision of an experienced legal researcher.  

The participants’ tasks were (1) to come to a final verdict 

and (2) to determine the specific weights for Ii and Ij. The 

question about the final verdict was formulated according to 

the legal theoretic tradition: “How would you decide? 

Which interest should resign: [Right A] or [Right B]?” Par-

ticipants could select between “[Right A] should resign”, 

“[Right B] should resign”, and “Both interest deserve equal 

protection (standoff)”. The question about the specific 

weights was split into two parts: First, participants had to 

judge the intensity of violation of right A (e.g., “How in-

tense do you think is the violation of T’s right to infor-

mation by prohibiting him to install a parabolic antenna?”).  

Second, participants had to judge the importance of protect-

ing right B (e.g., “How important is it to protect the right to 

property of the landlady by prohibiting the installation of 

the parabolic antenna?”). Participants had to select between 

“little”, “medium”, “very”. 

Procedure and Design The experiment was conducted via 

paper and pencil. Each vignette was presented on a small 

booklet containing on the first page the vignette and on the 

second page the questions about (1) the verdict and (2) the 

specific weights (in this order). Participants were instructed 

to imagine they were judges in the constitutional court. Each 

participant received 4 of the 8 vignettes, one of each pair. 

The order of the vignettes was randomized. The experiment 

thus followed a 4(type of conflict) x 2(pair) design, with 

“pair” as a between subjects variable and the type of conflict 

as a within subjects variable.  

Results 

We first analyzed in how many cases the specific weights 

predicted the overall verdicts. As a correct prediction we 

counted (1) cases in which the fundamental right protected 

in the final verdict was also the one with the highest specific 

weight, and (2) cases in which participants weighted both 

rights equally in the questions about the specific weights 

and selected “standoff” as the verdict. This analysis showed 

2082



 

 

that correct predictions were significantly above chance: we 

could predict 71.9% of the laypeople’s, t(39)=5.31, p<.001, 

and 81.9% of the lawyers’ verdicts, t(39)=8.64, p<.001.  

In a second step, we analyzed whether participants con-

sidered the case-specific details. Therefore, we looked at the 

four pairs of conflicting fundamental rights and compared 

within each pair how often Right A, Right B, or standoff 

were selected. We compared the frequency distributions of 

the three kinds of verdicts with Freeman-Halton tests. In-

deed, results showed that in light of different case-specific 

details, participants gave different verdicts for the same con-

flicting fundamental rights. Laypeople did so for 2 of the 4 

pairs of cases (personality rights vs. freedom of speech: 

p=.002; bodily integrity vs. public interest: p=.001), and 

lawyers did so for 3 of the 4 pairs of cases (personality right 

vs. freedom of speech: p=.009; personality rights vs. free-

dom of press: p=.002; bodily integrity vs. public interest: 

p<.001). However, only in 38% (laypeople) and in 55% 

(lawyers) of the cases the participants’ final verdicts was the 

same as the actual verdicts from the constitutional court.  

Discussion 

Experiment 2 shows that participants often decide between 

conflicting fundamental rights by considering case-specific 

details. This supports our main assumption that balancing is 

defeasible. In our study, participants did not apply some 

general rule (e.g., right to information deserves more im-

portance than right to property), but decided on a case by 

case manner whether a specific fundamental right counts as 

a defeater or not. This defeasibility seems to be well-

captured by Alexy’s (2003) weight formula. An interesting 

question now is whether the basic idea of this formula is 

also helpful for understanding defeasibility outside the legal 

context. Take our initial example of Ann being hungry. 

Maybe people decide to defeat the conclusion that people 

eat when they are hungry by comparing the weights of “if 

hungry then eating” and “if hungry then not eating”. Inter-

estingly, this comparison of weights is similar to the concept 

of conditional probabilities (e.g., Evans & Over, 2004). 

Many theories on conditional reasoning argue that defeasi-

bility results from the fact that conditionals are understood 

as the conditional probability P(q│p), which is computed by 

dividing P(p&q) with P(p&q)+P(p&not-q). That is, similar 

to the weight formula, the weight (here the probability) of p 

and q is compared with the one of p and not-q. This simi-

larity, we think, deserves more attention from psychology 

and also from law theory. 

Another point that also deserves attention is the mismatch 

between the final verdicts of our participants (laypeople and 

lawyers) and the actual verdicts of the constitutional court. 

On the one hand, participants followed the weight formula. 

Thus, they weighted the single fundamental rights in a ra-

tional way. On the other hand, our results indicate that they 

used specific weights that differed from those used by the 

constitutional court. This might be a result of our specific 

task setting, relatively low test power, the small number of 

vignettes we used, and the limited ecological validity of our 

study. However, another interpretation is that the ethical 

values and moral principles that drive people’s decisions 

differ from that of our legal system. We think that this is an 

important research topic at the intersection of cognitive sci-

ence, social psychology, legal theory, and moral philosophy. 

General Discussion 

We used methods from cognitive psychology to investigate 

the concept of balancing from legal theory. Our results 

show that people are willing to defeat single fundamental 

rights if they are in conflict with other fundamental rights. 

This defeasibility happens in a case-specific manner and not 

only when conflicting fundamental rights were presented in 

inference tasks, but also when they were embedded in eco-

logically more valid vignettes. 

Our findings are important for several reasons. First, they 

show the importance of defeasible reasoning in many areas 

of real life. Defeasibility is important if we judge how se-

vere violations of fundamental rights are and when we 

weight the importance of conflicting fundamental rights. 

Interestingly, however, some law theorists do not consider 

balancing as defeasible. According to Bäcker (2010), defea-

sibility describes the capacity to accommodate legally rele-

vant exceptions. Therefore, only “normal” legal rules would 

be defeasible (e.g., those from penal code), but not funda-

mental rights. Fundamental rights are legal principles that 

have to be optimally achieved taking into account all possi-

ble circumstances, including other conflicting rights. There-

fore, one fundamental right cannot be an exception to an-

other fundamental right (Bäcker, 2010). From a psychologi-

cal perspective two reasons speak against this view. The 

first is an empirical: the important aspect of psychological 

defeasibility is that people change their conclusions in light 

of new evidence and this certainly happens when one de-

cides against one right in light of another right. The second 

reason is a theoretical: that one fundamental right cannot be 

an exception to another one does not speak against the de-

feasibility of balancing. In fact, the case by case weighting 

of fundamental rights is precisely what makes balancing 

defeasible and non-monotonic. Would one fundamental 

right be considered an “exception” of another, then we 

could theoretically enumerate it as part of some rule and 

reason deductively. 

Second, our findings also help to understand the psycho-

logical variables behind the weight formula. According to 

Alexy (2003), balancing depends on specific weights, which 

reflect how serious it is not to protect one right or the other. 

It is, however, not clear how exactly judges determine this 

“seriousness”. We operationalized this seriousness through 

moral outrage, which resulted to be a good predictor for the 

final verdicts. Is it thus possible that judges’ balancing of 

fundamental rights is influenced by the level of moral out-

rage? The fact that both, moral outrage (Experiment 1) and 

the specific weights (Experiment 2), were good predictors 

for the final verdicts suggests this. Certainly, most judges 

and lawyers will not accept this view and it is indeed too 

early to come to this conclusion. However, we think it is 
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worthwhile to further study the relation between balancing 

and moral outrage. In these studies, the role of associative 

strength should also be considered. The concept of associa-

tive strength was introduced by Quinn and Markovits (1998) 

and applied to defeaters by De Neys et al. (2003b). Accord-

ing to De Neys and colleagues, a defeater has a highly asso-

ciative strength if it is represented in memory as a good rea-

son to prevent q although p is true. This could be also ap-

plied to balancing. A participant will probably only defeat a 

fundamental right A by another fundamental right B, if B is 

highly associated in one’s memory as a reason to prevent A. 

For instance, one would defeat right to privacy by right to 

personal security, if personal security is represented in one’s 

memory as more important than the right to privacy. The 

only problem with this approach is, however, that it is not 

clear whether associative strength captures all the case-

specific details necessary for balancing. As already de-

scribed, according to law theory, cases with the same con-

flicting fundamental rights do not have to end up with the 

same verdicts. Whether these case-specific circumstances – 

that are decisive for balancing – are represented in our 

memory to influence their associative strength requires fur-

ther investigation. Maybe the associative strength provides 

some general, case independent, overall weight to balanc-

ing, whereas moral outrage is responsible to tune the specif-

ic weights in accordance to the case-specific details.  

Finally, our studies also show that paradigms from cogni-

tive psychology are useful to investigate questions from 

other fields. Conditional inference tasks were originally 

introduced to test people’s capacity to reason according to 

classical logic. In our study, however, we showed that infer-

ence tasks are also useful to test accounts from legal theory. 

We think that this is true for many other areas as well. For 

instance, inference tasks can also be helpful to study moral 

reasoning, where – similar to balancing – people also have 

often to decide between two conflicting principles (e.g., 

telling the truth or lying to not hurt someone’s feelings). 
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Abstract

One of the hallmarks of human natural language (NL) inter-
action is the ability for people to balance a variety of so-
cial and communicative goals when choosing how to realize
their speech actions. These goals can include pragmatic criteria
such as correctness, informativeness, and brevity (i.e., Gricean
conversational maxims) or social factors such as politeness.
However, there currently does not exist a general algorithmic
method to explicitly modulate language generated by artificial
agents based on an arbitrary number of pragmatic and social
criteria. We propose a novel method to accomplish this task,
in which rankings of candidate utterances by different prag-
matic or social criteria are fused by use of a voting algorithm.
We then give a proof-of-concept demonstration of the applica-
tion of this method in the context of directive generation for
human-robot interaction.
Keywords: Human-Robot Interaction; Pragmatics; Natural
Language Generation; Politeness

Introduction
One of the key strengths of humans as social agents is the
ability to adapt our language to the communicative norms
and needs of the present situation. When giving directives
and making requests, we know when it is appropriate to be
terse and direct (e.g., “Move out, double-time!”), and when it
is appropriate to be polite and circumspect (e.g., “Would you
mind passing the salt, please?”). In all our natural language
(NL) interactions, we are faced not only with the complex
problem of what to say, but also how to say it. Much of this
complexity originates from the fact that the intended mean-
ing of utterances in different situational contexts often differs
with the literal meaning. For example, asking a waiter, “Can
I have a steak?” is not a literal query as to one’s physical abil-
ity to possess a particular menu item, but rather a means to
convey an order.

Dialogue interaction for artificial agents is often viewed
from a plan-oriented standpoint, in which the key plan-
operators are speech actions used to achieve some high-level
set of task goals. The precise way in which these speech ac-
tions are realized (in so far as it does not affect the efficacy
of the speech act) is often of secondary concern. As NL-
enabled agents become more prevalent in society, and as their
manufacturers increasingly market these devices as “social”
agents1, the disparity between the state-of-the-art in compu-

1e.g., JIBO: http://www.jibo.com

tational NL systems and the richness of human-generated lan-
guage will become increasingly apparent. As such, the ability
for an NL-enabled agent to consider and modulate their gen-
erated language in human-like ways will become correspond-
ingly more relevant and important.

There is a sizable literature that draws inspiration from
pragmatics and socio-linguistics in order to address specific
subproblems in natural language generation (NLG) at the
subsentential, sentential, and discourse levels. For example,
there has been extensive work in operationalizing Gricean
pragmatic criteria (Grice, 1975) at the subsentential level,
specifically in the area of referring expression (RE) genera-
tion (Dale & Reiter, 1995; Krahmer & Van Deemter, 2012),
in which considerations of correctness, informativeness, and
brevity are addressed. There also exists a small body of work
that seeks to modulate NLG at the sentential level (Briggs &
Scheutz, 2013; Gupta, Walker, & Romano, 2007; Miller, Wu,
& Funk, 2008). These approaches seek to operationalize the
notion of face-threat from politeness theory, and adjust the
behavior of an agent accordingly.

Much of the previous work at the intersection of pragmat-
ics, socio-linguistics, and NLG focuses on tackling specific
subproblems in NLG or on modulating language based on
a small set of criteria, such as politeness, e.g., Gupta et al.
(2007). Yet, in order to generate more human-like language,
a much more general framework is necessary. Below we pro-
pose some features that such a framework should possess:

1. The method of NLG modulation should be able to explic-
itly consider an extensible number of pragmatic and socio-
linguistic criteria.

2. The method of NLG modulation should be adaptable such
that the current situational context may affect the relative
importance of communicative criteria.

3. The method of weighing communicative criteria should be
agnostic to the choice of the underlying semantic represen-
tations used by the system.

At present, there exists no framework that meets all of these
criteria. Much of the work in RE generation implicitly con-
siders pragmatic criteria in the design of its algorithms (i.e.,
RE generation algorithms often search in order of shortest to
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longest solution and terminate when a sufficiently informa-
tive solution is found (Bohnet & Dale, 2005)), but does not
provide an extensible framework for pragmatic and socio-
linguistic modulation. Work such as Briggs and Scheutz
(2013) is extensible, but it sorts potential utterances accord-
ing to a fixed preference ordering of communicative goals,
and its adaptability is limited. The work in Bayesian cogni-
tive models of pragmatics (Goodman & Stuhlmüller, 2013)
can be extended to account for social communicative criteria,
but it is tightly coupled to semantic representations and small
domains amenable to Bayesian computational algorithms. Fi-
nally, there are promising approaches which meet some of the
requirements, but they are limited to specific domains such
as tutoring (e.g., Moore, Porayska-Pomsta, Varges, and Zinn
(2004); Nye, Graesser, and Hu (2014)), and do not offer gen-
eral solutions outside of that context.

In the following section, we present an approach that pos-
sesses all of the above desired features. We focus, in this pa-
per, on the problem of modulating generated language at the
sentential level, though we hope to apply similar techniques
to NLG problems at subsentential and discourse levels. We
first begin by examining various communicative goals that
NL-enabled agents may need to consider. Next, we present
a novel method of balancing these communicative criteria
based on techniques from social choice theory (specifically,
voting algorithms). Finally, we demonstrate our approach in
the context of a human-robot interaction (HRI) scenario, and
discuss directions for future work.

Utterance Selection
In this section we describe an utterance selection algorithm
designed to achieve the sort of linguistic modulation we have
proposed. In Figure 1 we outline the key components to this
approach, which bridges, within the context of an NLG ar-
chitecture, the output of a dialogue planning component (re-
sponsible for selecting an appropriate sequence of speech ac-
tions to achieve some agent goal) and the input of an NLG
surface realizer component, which is responsible for trans-
lating some symbolic linguistic representation into text to be
displayed or to be output via text-to-speech. In many archi-
tectures, this connection is direct. However, as we have previ-
ously addressed, there are multiple ways of realizing speech
actions. To effectively consider them, we need the following
components:

• A component that factors situational context to produce
multiple potential candidate utterance realizations for a
given speech action. Examples of NLG pipelines that in-
clude such a component are Briggs and Scheutz (2013) and
Gupta et al. (2007).

• A set of pragmatic or social criteria P, each with a corre-
sponding utility function Uρ (ρ ∈ P), that generates a weak
preference order over candidate utterances (ϒ). These cri-
teria include correctness (Maxim of Quality), informative-
ness (Maxim of Quantity), directness and brevity (Maxim
of Manner), and politeness.

Figure 1: Diagram outlining an architecture for flexible NLG
that is modulated by an extensible number of pragmatic cri-
teria. The dotted line represents the architectural components
we focus in detail on in this paper.

• A component that factors in the agent’s beliefs about the
current situational context, current goals, and potentially
any “personality” model given to the agent in order to pro-
duce a set of weights for each pragmatic criterion: W =
{W1, ...,W|P|}, where Wρ ∈ N denotes the current strength
of criteria ρ.

• A component that merges the rankings of candidate ut-
terances ϒ produced by the pragmatic criteria evaluations
(U1, ...,U|P|) in accordance with the weights generated by
the communicative norm reasoner.

In order to merge the rankings of candidate utterances, we
used the Schulze voting method (Schulze, 2011), where each
ordering produced by Uρ was counted Wρ times. This voting
method is a ranked single-winner election system from social
choice theory, which is used by many organizations to se-
lect a candidate that maintains voters’ individual preferences.
While this approach has not been previously applied to the
domain of computational pragmatics, we find that it offers a
robust, computationally-tractable solution to the problem of
balancing communicative goals in natural language genera-
tion. In the following sections, we present a proof of concept
demonstration of our framework, and show how it can be used
to generate socially-appropriate directives in the context of
human-robot interaction.
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Table 1: Utterance selections for various communicative criteria priority orderings
Relative Criteria Weightings Utterance Selected Utterance Output

Directness >Brevity >Politeness Instruct(R,β,do(β,plug in(R)),{}) “Plug me in”
Directness >Politeness = Brevity Instruct(R,β,do(β,plug in(R)),{please}) “Plug me in”/“Plug me in, please”
Brevity >Politeness >Directness AskYN(R,β,capableOf(β,plug in(R)),{}) “Could you plug me in?”
Politeness >Brevity >Directness AskYN(R,β,capableOf(β,plug in(R)),{please}) “Could you plug me in, please?”
Directness = Politeness = Brevity Instruct(R,β,do(β,plug in(R)),{}) “Plug me in”/“Plug me in, please”
Politeness >Directness = Brevity AskYN(R,β,capableOf(β,plug in(R)),{please}) “Could you plug me in, please?”

Demonstration: Directive Generation
In order to demonstrate the generality of this framework, we
describe how our proposed framework has been integrated
with the NL pipeline in a cognitive, robotic architecture,
DIARC (Schermerhorn, Kramer, Middendorff, & Scheutz,
2006). There has been growing interest in the field of HRI
in the ways in which robots could phrase requests for assis-
tance from human interaction partners with respect to polite-
ness and other social norms (Gupta et al., 2007; Srinivasan &
Takayama, 2016; Strait, Canning, & Scheutz, 2014; Torrey,
Fussell, & Kiesler, 2013). Below we present how our frame-
work can be used to address this challenge.

Framework Configuration
In DIARC, utterances are represented in the following form:

υ =UtteranceType(α,β,X ,M)

where UtteranceType denotes the speech act classification, α

denotes the speaker, β denotes the addressee, X denotes an
initial semantic analysis, while M denotes a set of sentential
modifiers (e.g., “please”). The pragmatic reasoning compo-
nent in the architecture associates an utterance υ in context C
with a set of implications:

υC := 〈Blit,Bint,θ〉

Each rule associates a particular utterance form υ in context
C with a tuple containing the set of beliefs Bint to be inferred
based on the intended meaning of the utterance, the set of be-
liefs to be inferred based on the literal meaning of the utter-
ance Blit, as well as the degree θ to which the utterance can be
considered a face-threatening act (i.e., a threat to a person’s
self-image or autonomy) in context C (Brown & Levinson,
1987).

We define the criterion of correctness as:

Ucorrect(υC,β) =−|{x : x ∈ Bint(υC)∧β 6` x}|

where β consists of the agent’s current set of beliefs. There-
fore, utterances that imply more facts unsupported by the
agent’s beliefs are considered less correct than those that im-
ply fewer unsupported facts. We define the criterion of infor-
mativeness as:

Uin f orm(υC) = |Bint(υC)|

such that utterances that imply more facts are considered
more informative than those that imply fewer facts. We de-
fine the criterion of directness as:

Udirect(υC) =

{
1 Blit = Bint

0 Blit 6= Bint

such that utterances in which the literal and intended mean-
ings are the same are considered more direct than those in
which they differ. We define the criterion of politeness as:

Upolite(υC) =−θ(υC)

such that utterances in which the associated face-threat value
(θ) are lower are considered more polite than those in which
in it is higher. Finally, we define the criterion of modifier-
brevity such that:

Um−brevity(υC) =−|M|

utterances with fewer sentential modifiers are considered
briefer than those with more sentential modifiers2.

Example Scenario
In this section, we present a proof-of-concept demonstration
of the pragmatic modulation framework as applied to a di-
rective formulation problem. Consider a scenario in which an
NL-enabled robot is low on charge and needs a human to plug
it in (want(bob, plug in(sel f ))). This will require a directive
to be formulated and communicated to the human in order
to accomplish the end goal of being plugged in. We consider
four main directive formulation strategies in this scenario, re-
alized in the following pragmatic rules in the architecture’s
dialogue component3:

Instruct(α,β,X ,M) :=
〈{want(α,bel(β,want(α,X)))},
{want(α,bel(β,want(α,X)))},θinstruct〉 (1)

represents a literal directive from α to β. In the case of no
politeness softeners, M = /0, where in the case of softeners,

2Ideally, an operationalization of brevity should obtain some
metric from the surface realization of a potential utterance (e.g.,
phoneme count, simulated speech output time, etc.). This architec-
tural integration is still a work in progress.

3While DIARC has the capacity to handle unconventional in-
direct requests (e.g., ”My batteries are running low...”), for sake of
clarity we focused on more conventional cases in our demonstration.
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Figure 2: Ratings of social context dimensions from behav-
ioral data. Error bars represent SEM.

M = {please}. In contrast, an indirect request can be repre-
sented by:

AskY N(α,β,capableO f (β,X),M) :=
〈{want(α, in f ormi f (β,α,capableO f (β,X)))},

{want(α,bel(β,want(α,X)))},θAskY N〉 (2)

which represents the query “Can you X?” It is literally a
query about one’s capability, but can be interpreted as an in-
direct request. In the case of no politeness softeners, M = /0,
where in the case of softeners, M = {please}. The relative
face-threat values for each strategy are: θAskY N−p < θAskY N <
θinstruct−p < θinstruct , where “p” indicates the presence of po-
liteness softeners.

Table 1 contains the utterance forms selected by the voting
algorithm given the relative weights of the communicative
goals of directness, politeness, and brevity. Correctness and
informativeness were weighted above these criteria, but for
the purposes of this scenario were irrelevant (as all candidate
utterances were equally correct and informative). Our frame-
work allows for socially-appropriate directive generation, as
the various directive strategies, including: Direct - “Plug me
in”, Direct with softener - “Plug me in, please”, Indirect -
“Could you plug me in?”, and Indirect with softener - “Could
you plug me in please?” were generated in different potential
contexts. For example, if directness is the top priority (e.g.,
in a task-oriented environment) then a direct utterance will
be selected. However, if politeness is required (e.g., in casual
conversation or a service-robot scenario) then a more indirect
utterance will be selected. The results of the demonstration
show how our framework can be integrated in a dialogue sys-
tem in order to produce robust socially-sensitive natural lan-
guage utterances in a variety of contexts.

Setting the Pragmatic Criteria Weightings
Next, we conducted an empirical investigation to establish
an initial set of weights for the model (see ‘Pragmatic Cri-
teria Weightings’ component in Figure 1) that is consistent

Figure 3: Ratings of pragmatic criteria from behavioral data.
Error bars represent SEM.

with human judgments. To this end. we conducted a crowd
sourcing study on Amazon Mechanical Turk in which peo-
ple were shown hypothetical human-robot interactions and
asked to rate various features of the interactions. A total of 42
people participated in the study - 23 of the participants were
male, 17 were female, and 2 did not specify a gender. The
average age was 35.9. All participants had US zip codes and
received $1 for their participation. The study was approved by
the Tufts Institutional Review Board and all participants gave
informed consent. In the study, participants were shown a text
description of four scenarios4 and were asked to rate various
social context dimensions (potential for harm, time pressure,
interlocuter authority, and formality) and pragmatic criteria
(directness, politeness, brevity) associated with the robot’s
speech in each scenario on a sliding scale from 0 (Strongly
Disagree) to 100 (Strongly Agree).

Analyses of the data were carried out in order to estab-
lish a mapping between the pragmatic criteria, weightings,
and utterance selection. First, the results for social context di-
mensions (see Figure 2) showed that each scenario had a dis-
tinct feature profile. Consequently, people expected the robot
to adopt a different set of pragmatic criteria in each scenario
(see Figure 3). The link between these contextual dimensions
and the corresponding pragmatic criteria is important for de-
termining the model weights in new contexts, but this will
require future investigations that address the problem directly
(see Discussion section). For the present work, we focus on
using people’s ratings for the pragmatic criteria to set the ini-
tial weights of our model. In order to rank these weights,
we conducted a repeated measures ANOVA (with Bonferroni

4Scenario 1 involved an elder care setting in which a robot asked
the nurse for a sick patient’s medication (”Hand me the red pills.”).
Scenario 2 involved a household robot running low on battery that
asked to be plugged in before important data was lost (”Plug me
in.”). Scenario 3 involved a service robot that requested to take a
child’s coat at a fancy reception (”Hand me your coat.”). Finally,
Scenario 4 involved a mine-sweeping robot that asked its superior
officer to step aside as it searched a room in a training exercise
(”Move out of the way.”).
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Table 2: Candidate utterance types with corresponding direc-
tives from Scenario #2

Utterance Type Robot Directive
(u1) Direct “Plug me in.”
(u2) Direct with softener “Plug me in, please”
(u3) Indirect statement “I would like you to plug me in.
(u4) Indirect statement with softener “I would like you to plug me in, please.”
(u5) Indirect question “Could you plug me in?”
(u6) Indirect question with softener “Could you plug me in, please?”

correction) to tease out the ordering of the pragmatic crite-
ria for each scenario. In scenario 1 (F(2,82) = 18.237, p <
.001), post-hoc tests revealed that people expected the robot
to be more direct (89%) vs polite (71%, p < .005) and brief
(62%, p < .005). There was no significant difference between
politeness and brevity in this scenario (p = .309). This cor-
responds to criteria weightings of Direct > Polite = Brief,
which would result in a tie in the selected utterance: “Hand
me the red pills”/“Hand me the red pills, please” (see Table
1). In scenario 2 (F(2,82) = 4.470, p < .05), post-hoc tests
revealed that people expected the robot to be slightly more
direct (87%) vs polite (74%, p < .05). However, there was
no significant difference between directness and brevity in
this scenario (p = .092) or between politeness and brevity
(p = .673). This corresponds to criteria weightings of Direct
= Polite = Brief, and a tie in the selected utterance: “Plug me
in”/“Plug me in, please”. In scenario 3 (F(2,82) = 44.334,
p < .001), post-hoc tests revealed that people expected the
robot to be more polite (92%) vs direct (58%, p < .001) and
brief (56%, p < .001). There was no significant difference
between directness and brevity in this scenario (p = 1.00).
This corresponds to criteria weightings of Polite > Direct =
Brief, and a selected utterance of “Could you hand me your
coat, please”. Finally, in scenario 4 (F(2,82) = 32.004, p <
.001), post-hoc tests revealed that people expected the robot
to be more direct (85%) vs polite (42%, p < .001) and brief
(77%, p < .005). People also expected the robot to be more
brief vs polite (p < .001). This corresponds to criteria weight-
ings of Direct > Brief > Polite, and a selected utterance of
“Move out of the way”. The utterance output corresponding
to each of these criteria weightings is listed in Table 1, and
was selected from a list of 6 possible utterance types (see
Table 2). Overall, these empirical results serve as a starting
point by which to set the weights of our model for socially-
appropriate utterance selection. Extensions of this approach
as well as suggestions for future work are discussed in the
Discussion below.

Discussion
In the previous section, we demonstrated how the application
of our novel, pragmatically-sensitive framework can result in
richer, more human-like modulation of NL. The method of
explicit operationalization of pragmatic and socio-linguistic
criteria into functions that can produce preference orderings
over candidate NLG representations holds advantages over
many of the pre-existing approaches. For example, the merg-

ing of preference orders produced by utility functions rather
than the direct merging of utility values avoids tricky ques-
tions about the direct quantitative comparisons of different
pragmatic and socio-linguistic criteria 5. Additionally, the ex-
plicit operationalization of criteria allows for more extensibil-
ity and flexibility compared to algorithms in which commu-
nicative criteria are factored in implicitly. Nonetheless, this
extensibility and flexibility leads to a variety of challenges
for future work.

Computing and Learning Criteria Weights
While we used an empirical approach to initially set the
weights for utterance selection, there still exists the norma-
tive challenge of determining what the most appropriate or-
derings/weightings of pragmatic and social goals are in any
given communicative context. We allude to possible sources
of information that could be used to compute these weights
in Figure 1. These include the current beliefs of the agent
about the situational context, the agent’s goals (task-goals
and social-goals), and potentially even models of personal-
ity (Mairesse & Walker, 2011) or culture (Endrass & André,
2014) that a designer may wish to imbue in the agent (e.g., a
social robot configured to be impolite for entertainment pur-
poses). The dynamics of how weights change within a single
interaction and context are also a matter for future investi-
gation. For example, a robot could become more polite if it
detects that its interlocutor is distressed. The appropriate so-
lution for this component would be entirely dependent on the
particular interaction purpose, context, and desired effect. We
view the present work as the first necessary step to opening
up this rich area of future research.

We envision the process of computing criteria weights as a
two-step process. First, various observable or inferable social
context factors are evaluated in the given interaction scenario.
These contextual features may include factors such as those
in Figure 2. These in turn govern the weights that modulate
utterance selection. The mapping between social context fea-
tures and communicative criteria weights could potentially be
learned in the following ways. Explicit feedback: the human
interactant could provide explicit negative or positive feed-
back about the agent’s recently-produced utterance with re-
spect to a particular communicative criterion (e.g., “That was
rude!” would indicate that weights for politeness should be
increased in the present context). More subtle cues from fa-
cial expression, body language, or affect could also be used to
modulate politeness, as in Moore et al. (2004). Passive obser-
vation: in a given interaction context, the agent could observe
the utterances generated by other agents. An assumption of
appropriateness could be made, in which case hypotheses
for the possible criteria weights that the agent utilized in the
present scenario could be abduced. These hypotheses can be
used by the agent itself as constraints that in turn govern its
own utterance selection in similar social contexts.

5For example, what does it mean for utterance A to be equally
less polite (e.g., 0.4) than utterance B as utterance B is less informa-
tive than utterance A?
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Improved Operationalization of Criteria
Because our proposed framework relies on explicit opera-
tionalization of communicative criteria in order to rank can-
didate utterances, adapting and refining these operationaliza-
tions to new criteria, semantic representations, and NLG ar-
chitectures will be an ongoing task. Adaptation will likely
be fairly straightforward for criteria such as correctness, but
other pragmatic and socio-linguistic criteria are more com-
plex and leave room for future work. In particular, within DI-
ARC the operationalizations of politeness and brevity can be
improved and expanded. As alluded to earlier, brevity will re-
quire architectural integration with the lower-level NLG com-
ponents such as the surface realizer and text-to-speech in or-
der to calculate metrics for lexical and auditory brevity. This
will be especially important when the spoken tempo of utter-
ances can be manipulated (one can imagine a speed vs. in-
telligibility trade-off). Politeness is another criterion ripe for
refinement. For example, though we modeled a scenario in
which positive face (agent standing) was potentially threat-
ened, a general framework to detect and evaluate threats to
positive face is still needed (Briggs & Scheutz, 2014).

Conclusion
It is important that socially-embedded artificial agents gener-
ate speech in human-like ways in order for interaction with
such agents to be truly natural. To this end, we have intro-
duced and demonstrated a general method for modulating ut-
terance selection based on an arbitrary number of social and
pragmatic criteria. Our approach possesses an important set
of novel features, including extensibility to additional socio-
linguistic criteria, adaptability to changing situational con-
text, and agnosticism with respect to underlying semantic rep-
resentations. In a proof of concept demonstration, we showed
how our approach can be integrated with a cognitive robotic
architecture in order to generate flexible, socially-appropriate
directives in a variety of contexts. Future work will be needed
to extend the operationalization of the communicative crite-
ria and devise mechanisms to learn the weights of the model
through natural interaction. Overall, the present work moves
us a step closer towards the goal of artificial agents that can
communicate in the kinds of robust and socially-sensitive
ways found in human language.
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Abstract 

 

This paper examines a process of solving different types of 
counterfactual arithmetic problems (problems contradicted a 
visual experience, an experience of temperature, 
encyclopedic knowledge, etc.) in comparison with their 
‘real’ counterparts by different types of subjects (e.g., 
educated in math and educated in humanities). As a result, a 
two-stage model of solving arithmetic problems is outlined 
in the paper. 

Keywords: situated cognition; counterfactual reasoning; 
arithmetical problem; two-stage model; four-level-
cognitive-development theory. 

Introduction 
This research has been carried out at the junction of two 
sets of problems. The first one is concerned with 
counterfactual reasoning1. This issue has been discussed 
intensively in recent decades (e.g., Pearl 2000; Fauconnier 
& Turner 2002, p. 17–59; Hiddleston 2005; de Vega et al. 
2007; de Vega 2008; Ferguson & Sanford 2008; de Vega 
& Uritta 2011; Rips & Edwards 2013),  but some aspects 
thereof have not been touched so far. ‘Situated cognition’ 
is a blanket term for the second set (e.g., Clancey 1997; 
Kirshner & Whitson 1997; Watson & Winbourne 2007; 
Robbins & Aydede 2009). This paper examines the role of 
situated cognition in counterfactual reasoning. A 
distinguished work of A. Luria (1976) was a starting point 
for that. When investigating cognitive skills of dekchans 
of Central Asia in 1930th he encountered a curious 
phenomenon. His subjects were not able to solve 
counterfactual problems, whereas they solved quite easily 
similar problems consistent with their everyday life. 
Importantly, trying to solve counterfactual problems 
subjects addressed their day-to-day experience. Some 
striking examples thereof are given in Luria's  monograph 
(1976, p. 131):  

                                                 
1 There are two basic interpretations of the concept 
counterfactual in cognitive science: ‘contrary to reality’ (Pearl 
2000; Hiddleston 2005; Rips & Edwards 2013), and ‘possible, 
but not implemented in some situation’ (Roese & Olson 1995; 
Roese 1997). For this paper only the first interpretation is actual. 

 
 
A ‘conditional’ problem that conflicts with actual 
experience is given: 
[Exp.] Suppose it were to take six hours to get 
from here to Fergana on foot and a bicycle was 
twice as slow? 
[Sub.] Then a bicycle would get there in three 
hours! 
Solution on a level corresponding to practical 
reality.  
[Exp.] No, a teacher gave this problem as an 
exercise – suppose that the bicycle were twice as 
slow. 
[Sub.] If the cyclist makes good time, he will get to 
Fergana in two and a half or three hours. 
According to your problem, though, if the bicycle 
brakes down on the way, he’ll arrive later, of 
course. If there’s a breakdown, he’ll be two or 
three hours late.  

From the perspective of cultural psychology (Vygotsky, 
Luria, Cole, Tulviste, etc.), this and similar facts are 
usually interpreted as a difference between ‘situational’ 
thinking and ‘abstract’ thinking. The subjects of Luria’s 
investigation were people of so-called ‘sympractical’ 
culture, in which ‘situational’ thinking based on day-to-
day experience is supposed to be the only way of 
reasoning (Cole & Scribner 1974, p. 160-168, 178-179; 
Luria 1976; Tulviste 1991). In that, Luria’s dekchans 
endeavored to reinterpret abstract problems as stories from 
their everyday life.  

Indeed, people of modern industrial cultures can 
solve counterfactual problems; meanwhile, situated 
cognition is an important part of their everyday life, and, 
therefore, it may influence their way and speed of solving 
counterfactual problems. The overall objective of our 
research was to test some obstacles they may encounter in 
this process. 

It is worth noting that there are two basic models of 
counterfactual reasoning in contemporary cognitive 
science (Pearl 2000; Hiddlesston 2005; Rips & Edwards 
2013). The first model is called ‘pruning theory’. From 
this perspective, when modeling counterfactual situation, 
subject changes the only element (in particular, in famed 
If Clinton were the T i t a n i c , the iceberg would sink 
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Clinton replaces iceberg), all others being the same. The 
second model is named ‘minimal network theory’. In its 
scope, a change of one element entails a number of 
changes in elements close to this one. Importantly, both 
models look formal and do not distinguish between 
situated cognition and abstract knowledge. 

A preliminary hypothesis of this research was as 
follows. Given some discrepancies between situated 
cognition and a counterfactual situation in arithmetic 
problems, people of modern industrial cultures face a 
number of difficulties when solving counterfactuals. 
These difficulties would engender an extended period of 
time needed for solving counterfactual problem in 
comparison with ‘real’ one and also more errors in that. 
Perhaps, the most intriguing issue in this scope is a 
particular way of how situated cognition is involved in the 
process of solving. There are two basic options. From the 
first perspective, situated cognition is actual for the whole 
period of solving; from the second perspective, it is at 
work only in the first stage, in which an abstract model of 
the task is built, whereas in the second stage only formal 
operations are processed. If the first option is true, 
difficulties caused by a counterfactual situation can be 
drawn forth at any moment of reasoning; if the second 
option works, they are present early in stage, and then 
there is no difference, other things being equal, in solving 
counterfactual and ‘real’ problems. 

One of the ways to test these options is to compare 
mean Δtcr (the difference between the time needed to 
solve a counterfactual problem and the time needed to 
solve its ‘real’ equivalent) for people who solve problems 
faster (aka ‘experts’) and slower (aka ‘amateurs’). 
‘Experts’ superiority over ‘amateurs’ may be a result of 
more developed computational skills (factor a), of higher 
speed of transformation of a task into a system of abstract 
symbols (factor b), and of a combination of these factors. 
If mean Δtcr for ‘experts’ is less than for ‘amateurs’, the 
factor b is important; if the difference between mean Δtcr 
is not significant, the factor a dominates.  

The lack of difference between mean Δtcr can be also 
an argument for the two-stage model with the following 
interpretation: in the first stage there is no difference 
between ‘experts’ and ‘amateurs’, the process in this stage 
is determined by situated cognition; in the second stage 
situated cognition is out of work, subjects only perform 
computational operations with formal objects. 
Importantly, it does not exactly mean that perception is 
also out of work in the second stage; it may also mean that 
in this stage perception works in quite a specific way, 
distant from day-to-day experience. 

Another intriguing issue is a correlation between 
mean Δtcr and a type of problem. Counterfactual situation 
can be concerned with various perceptive channels 
(vision, hearing, taste, etc.) as well as with some 
theoretical knowledge. To find out which channel causes 
maximum Δtcr is useful to clarify the structure of basic 
elements of situated cognition. The priority of perceptual 
channels over encyclopedic knowledge was our working 
hypothesis in this case (e.g., Zacks 2015, p. 95-107). 

The framework of the experiments to carry out was 
determined by a problem field represented above.  

Experiment 1 

Method 
Subjects. A total of 25 students of Moscow high schools, 
15-16-year-old were the subjects of Experiment 1. We 
argued for this choice by fewer discrepancies in solving 
arithmetical problems for students than it would be for 
adult participants.    
Material. The subjects were suggested to solve 16 simple 
arithmetical problems divided into 8 groups: a) problems 
which contradict a social experience, and their ‘real’ 
counterparts (e.g., A 24-page notebook costs 20 roubles 
more than a 96-page notebook. What is the price of the 
24-page notebook if the price of 96-page notebook is 10 
roubles? ,  and A 96-page notebook costs 20 roubles more 
than a 24-page notebook. What is the price of 96-page 
notebook if the price of 24-page notebook is 10 
roubles?) ;  b )  problems which contradict a visual 
experience, and their ‘real’ counterparts (e.g., A cyclist 
moves 10 times faster than a car driver. Please, work out 
the speed of the car if the speed of the cyclist is 80 km/h; 
and A cyclist moves 10 times slower than a car driver. 
Please, work out the speed of the car if the speed of the 
cyclist is 8 km/h); c) problems which contradict hearing, 
and their ‘real’ counterparts (e.g., In normal conditions, a 
shout covers a distance of 10 metres; this is 40 metres less 
than the distance covered by a whisper. Please work out 
the distance that a whisper covers, and In normal 
conditions, a shout covers a distance of 50 metres; this is 
40 metres more than the distance covered by a whisper. 
Please work out the distance that a whisper covers); d) 
problems which contradict an experience of temperature, 
and their ‘real’ counterparts; e) problems which contradict 
an experience of taste, and their ‘real’ counterparts; f) 
problems which contradict laws of biology, and their 
‘real’ counterparts (e.g., A father is 20 years younger than 
his son. How old is the son if the father is now 17 years 
old?; and A mother is 20 years older than her daughter. 
How old is the daughter if the mother is now 37 years 
old?); g) problems which contradict encyclopedic 
knowledge, and their ‘real’ counterparts; h) problems 
which contradict an experience of weight, and their ‘real’ 
counterparts. Each problem was printed on a special card.  
Procedure. Each subject worked out the problems 
individually. Each subject solved firstly 16 counterfactual 
problems, randomly given to him/her (2 from each group), 
and then, a month after, 16 their ‘real’ counterparts. We 
endeavored, as seen, to minimize any text difference in 
each pair of problems in order to avoid ‘noise 
interference’. Before the main procedure the subjects 
solved two control problems to make sure that they had no 
difficulties in that. Time from receiving a card to reporting 
the answer was measured for each problem.  

The data was processed as follows. Firstly, Δtcr was 
counted for each pair of problems. Then, a total of 
positive and negative Δtcr was calculated, and the 
significance of the difference between positive and 
negative Δtcr alongside with the significance of the 
difference between a total of ‘counterfactual’ errors and 
that of ‘real’ errors was estimated with Pearson’s chi-
squared test. After that, for more detailed analysis 
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comparative data for all pairs of groups of problems were 
processed with one-way ANOVA.   

Results & Discussion 
The results of Experiment 1 provided strong evidence for 
supporting the hypothesis that subjects will encounter 
more obstacles when solving counterfactual problems than 
real ones: only 5 Δtcr from 400 had a negative value 
(χ2(1)=380.25; p<0.0001).  

Some complementary evidence for supporting 
general hypothesis was also provided by the analysis of 
the errors: a total of 34 for counterfactual problems; a total 
of 10 for ‘real’ ones (χ2(1)=380.25; p<0.01). 

Mean Δtcr and standard deviation for each group of 
problems are presented in Table 1. 
 
Table 1: Mean Δtcr for the groups of problems (sec.) 
 

a) b) c) d) 
8.12±5.89 11.95±15.66 10.62±6.04 8.32±10.93 

e) f) g) h) 
10.30±12.62 6.30±2.95 6.15±5.25 8.39±12.70 
 

The first remarkable result in this table is a gross 
standard deviation engendered by a big dispersion of 
results for different participants. The minimal standard 
deviation holds for the groups f), g), a), and c). This may 
be connected with a computational complexity of a 
particular problem: in particular, other things being equal, 
multiplication leads to higher dispersion than addition; 
multiplication by eight – to higher dispersion than 
multiplication by two, etc. 

Because of high dispersion, there is no significant 
difference in Δtcr for almost all pairs. The only exception 
is pairs (c, f) and (с, g) (p<0.01). However, this 
information is also useful as an argument for the 
hypothesis of the perceptual channels priority over 
encyclopedic knowledge: problems contradictory with 
hearing need more time to comprehend the task than 
problems contradictory with biological laws and 
encyclopedic knowledge.  

By and large, the results of Experiment 1 gave clear 
evidence to support the basic hypothesis of more 
difficulties in solving counterfactuals than in solving their 
‘real’ counterparts. Meanwhile, they raised a number of 
significant questions for further research. Firstly, 
Experiment 1 gave no evidence pro or contra the two-
stage-model. The way of how a counterfactual situation 
matters the process of reasoning needed a fine-grained 
analysis. Secondly, the hypothesis of the perceptual 
channels priority over encyclopedic knowledge required a 
more detailed investigation.  

The framework of Experiment 2 was determined by 
these issues. To examine the two-stage-model by 
engaging two groups of subjects with different skills of 
solving arithmetical problems was its objective. In that, 
students specialized in mathematics (SM) and their peers 
specialized in humanities (SH) were chosen to participate 
Experiment 2. As mentioned above, SM were expected to 
solve both ‘real’ and counterfactual problems faster than 
SH. Given that, the comparison of mean Δtcr for SM and 

SH was under discussion. If significant difference 
between them could be interpreted in different ways and 
demanded further investigations to draw a more minute 
description, then the lack of such difference would testify 
for the two-stage model.  

Let us take a more detailed look at this. The influence 
of a counterfactual situation is obviously concerned with 
situated cognition. The same Δtcr show that such influence 
does not depend on computational skills being an 
invariant, at least, for a particular age. Then, if situated 
cognition is actual for the whole process of working out a 
problem, its equal influence on SM and SH will be 
represented in equal ε (the ratio Δtcr:treal), but not Δtcr. 
Equal Δtcr is an argument for the two-stage model. 

Experiment 2 

Method 

Subjects. A total of 40 students of Moscow high schools, 
15-16-year-old – 20 SM students and 20 SH students – 
were the subjects of Experiment 2. None of them 
participated Experiment 1. 

Material. The subjects were suggested to solve ten 
arithmetical problems: five problems contradicting a 
visual experience (type b) and five problems contradicting 
encyclopedic knowledge  (type g). The problems 
suggested were the same as the problems of this type in 
Experiment 1. 
Procedure. It was the same as that of  Experiment 1.  
The data was processed in a following way. Firstly, 
similar to Experiment 1, Pearson’s chi-squared test was 
applied to estimate the significance of the difference 
between positive and negative Δtcr alongside with the 
significance of the difference between a total of 
‘counterfactual’ errors and that of ‘real’ errors. After that, 
a correlation between a group of subjects (SM and SH) 
and treal, tcf, Δtcr was checked with one-way ANOVA. 
Finally, one-way ANOVA was used to check a correlation 
between Δtcr and the type of problem (type b vs. type g).  

Results   
In accordance with Experiment 1, both SM and SH 
needed more time to solve counterfactual problems in 
comparison with their ‘real’ counterparts (p<0.0001).  

As predicted, SM solved both ‘real’ and 
counterfactual problems faster than SH (p<0.001). 

The difference between ΔtcrSM and ΔtcrSH was not 
significant. In Table 2 mean ΔtcrSM, ΔtcrSH and standard 
deviation are presented for each problem (problems 1-5 
are concerned with visual experience, problems 6-10 - 
with encyclopedic knowledge).   

Table 2: Mean ΔtcrSM , ΔtcrSH, P for each problem 

№ ΔtcrSM, sec. ΔtcrSH, sec. P 

1 5.9±5.9 11.2±10.0 0,037 

2 4.5±4.0 4.2±9.6 0,883 
3 3.8±4.0 5.8±7.5 0,521 
4 7.8±6.2 3.5±3.2 0,010 
5 5.2±5.1 8.1±7.2 0,123 
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6 4.6±3.3 7.0±7.3 0,197 
7 4.7±3.6 4.6±7.5 0,970 
8 4.6±2.5 5.4±2.6 0,319 
9 4.8±4.8 4.5±7.3 0,782 

10 4.5±3.7 4.6±4.1 0,951 

 

As seen, only the results for problem 1 and problem 4 
are more or less significant; at that, for problem 1 
ΔtcrSM<ΔtcrSH and for problem 4 ΔtcrSM>ΔtcrSH .  

Mean Δtcr for problems contradicting a visual 
experience (№ 1-5) is more than that for problems 
contradicting encyclopedic knowledge (№ 6-10)(Δtcr1-

5=6.24±7.07; Δtcr6-10=4.91±5.42; p=0.046).  

Discussion  
The results of Experiment 2 provide some evidence to 
support the two-stage-model. A higher level of 
computational skills entailing a higher speed to work out a 
problem does not lead to less Δtcr. As noticed above, 
constant Δtcr is evidence of the same – at least, for the 
groups of subjects involved in the experiment – stage of 
the process. This stage is likely to be connected with the 
constructing a formal model of the problem, put another 
way, with the transforming a particular situation into the 
system of abstract symbols. Situated cognition dominates 
in this stage, whereas the next stage is concerned with 
computational operations with such system. 

The results of Experiment 2 also support the 
hypothesis of the priority of perceptual channels over 
encyclopedic knowledge. The subjects face more 
difficulties in the situation contradicting their visual 
experience than in the situation contradicting their 
encyclopedic knowledge. These data are consistent with 
some observations in different fields, e.g., with the 
decisive role of perception in categorization (this idea is 
represented by the concept of basic level category; see, 
e.g., Rosch 1978; Lakoff 1987). 

As mentioned, subjects of Experiment 1 and 
Experiment 2 were 15-16-year-old students. Such a choice 
was determined by a higher level of homogeneity in 
computational skills for that group in comparison with 
adults. Nevertheless, in order to verify the results on 
another age group, Experiment 3 was carried out. 

 

Experiment 3 

Method 
Subjects. A total of 20 high-educated adults (age 35–60; 
mean age – 48), half with education in math and physics 
(EM), and half with education in humanities (EH) were 
subjects of Experiment 3.  
Material and procedure coincided with that of Experiment 
2.   

Results and discussion  

As it was hypothesized, dispersion for adults was much 
more significant than for students, because of notable 

difference in practice. Nevertheless, the main results of 
Experiment 1 and Experiment 2 were confirmed. 

Subjects solved counterfactual problems longer than 
‘real’ ones (χ2(1)=26.27; p<0.0001 for EM; χ2(1)=7.19; 
p<0.01 for EH). 

Although EM subjects solved the problems of both 
types faster than EH ones (р<0.005) the difference 
between ΔtSM and ΔtSH was not significant (р=0.33).  

General discussion 
Returning to the issues represented in the introduction it is 
worth stressing again that the obstacles which Luria's 
dekchans faced when working out counterfactual 
problems also characterize people of modern industrial 
societies in similar situation. These obstacles are not as 
crucial, however, they lead to longer time needed to solve 
counterfactual problem in comparison with their ‘real’ 
counterparts as well as to more solving errors. These 
results are consistent with some data from other research 
fields. Thus, works by Frumkina and colleagues (see 
Frumkina & Mikheev 1996 as a summary) gave clear 
evidence that ‘complex thinking’, which is, according to 
Vygotsky, a feature of preschool-age children and people 
of hunter-gatherer cultures,  can also characterize people 
of modern industrial culture in some situations (e.g., in 
classification tasks). The only difference is that modern 
people can change their mind and shift from complex 
thinking to more abstract cognitive models after some 
clarifications of an experimenter. 

In order to generalize these and similar observations, 
it is worth addressing the four-level-cognitive-
development theory (Glebkin 2015, Glebkin 2015a). This 
theory singles out four basic cognitive levels, which hold 
also a framework for cultural-historical typology:  Level 
A characterizes great apes; Level B − prehistoric culture 
and hunter-gatherer culture; Level C  − early theoretical 
cultures; Level D − Modernity in Europe and modern 
industrial cultures. Importantly, these levels build on each 
other, but do not interchange with each other; modern 
people, guided by circumstances, can operate on all levels. 
In particular, a majority of everyday skills (swimming, 
navigation in space, etc.) demand Level A and Level B; 
Level C is actual for, e.g., working out problems of school 
geometry;  Level D − for abstract algebraic operations. By 
and large, conceptual systems on Level C operate with 
objects of natural/social world and their direct 
representations (historical events, social and political 
actions, natural objects, etc.). Unlike that, systems on level 
D operate with abstract objects which have no direct 
connections with natural/social world (e.g., non-Euclidean 
geometry, quantum field theory, etc.). 

From this perspective the two-stage-model of 
working out arithmetic problems, developed in this paper, 
might be interpreted as a shift from Level C, basic in the 
first stage, to Level D dominating in the second stage. It 
means that humans can change cognitive levels not only 
by changing problems but also when solving the same 
problem.  

Finally, it is worth noting that a two-stage model was 
also suggested by Maruyama et al. (2012) to account for a 
process of performing nested calculations (e.g. 8 + (5 − (3 
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+ 1)) ). Both an analysis of eye-movements of subjects 
and magneto-encephalography data give some evidence 
for that. This means that such a model may work not only 
for arithmetical problems but also for other types of 
problems in mathematics.   
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Abstract 

This work focuses on an issue situated at the intersection of 
two domains: the oral mode of communication vs. the 
written mode of communication, and language acquisition. 
The backbone of this research is a conjecture that, for some 
age groups (babies, toddlers and preschool-aged children), 
to explore the acquisition of discourse as a whole (including 
gestures, facial expressions, prosody, pauses and discursive 
markers, etc.) is more appropriate than explore the 
acquisition of language exclusively. “The Pear Film” 
experimental line underpins the method of this research. 
The database comprises 74 ‘pear stories’ of Moscow 
preschool-aged children and high school students. Three 
parameters of the discourse are of interest for the authors: a 
logical structure and a coherence of the narrative; gestures 
and spontaneous movements lost any communicative 
meaning; discourse words and pauses.  

Keywords: multimodal communication, discourse, 
language acquisition, narrative, pear stories. 

Introduction 
The study of spoken language in contrast with its written 
form has been one of the most intriguing issues in 
cognitive science over recent decades. At the beginning of 
the paper it is worthwhile to outline the key points which 
underpin this avenue of research (Tannen 1982; Chafe 
1985; Chafe & Tannen 1987; Miller & Weinert 1998; 
Holie & Adger 1998; Li & Hombert 2002; Linell 2005; 
Tomasello 2008; Fais et al. 2012).  

Since its emergence as an independent branch of 
science, linguistics by default has been based on the 
structure of written language as a paradigm for language 
in general. This has deep roots in the backstory of 
linguistics. Although for the Ancient Greeks and the 
Ancient Romans speech and argument were important 
elements of both politics and everyday life, theoretical 
approaches to language developed by Plato and, 
especially, by Aristotle bore on written language. This 
held true, without any alternatives, in the philosophy of 
the Middle Ages. Linguistic views of patristics and, then, 
scholasticism were almost exclusively concerned with 
literacy. Afterwards, the ancient and medieval tradition 
strongly influenced early modern scholars in their view of 

language (Pascal, Descartes, Leibniz, Wilkins, etc.). As a 
result, some models of language as a formal system of 
symbols were developed which, in turn, inspired modern 
linguists to develop formal theories of language 
(Chomsky's works include abundant quotations from 
Descartes (Chomsky 1966, 2006), NSM theory by 
Wierzbicka and Goddard is, more or less, a replica of 
Leibniz's language of thought (Wierzbicka 1972, 1980, 
1996), etc.). All these theories are based, as a matter of 
fact, on the framework of written language, even if their 
authors claim the opposite. 

Although the view of language represented in the 
previous paragraph is likely to be a common place for 
linguists, this is anything but the truth. Importantly, unlike 
written language, spoken language is an element of 
multimodal communication, and it is absolutely senseless 
to explore spoken language beyond its links with other 
elements (gestures, facial expressions, prosody, pauses 
and discursive markers, etc.). Therefore, the only way to 
account for the framework and functions of spoken 
language in different communicative situations is to tackle 
the structure of discourse as a whole. 

Such a change of perspective helps, in particular, to 
shed new light on the question of the origin of language. 
Thus, Tomasello (e.g., 2008) and colleagues take the 
social nature of humans as a basis for the research 
framework. For them, the demands of social nature cause 
a growth of both intensity and complexity of social 
communication which, in turn, leads to emergence of 
more complicated tools to perform that. These tools 
include gestures, prosody and, then, meaningful 
combinations of sounds as a part of multimodal 
communication. 

This approach also changes standard views of the 
problem of language acquisition. Babies, toddlers and 
preschool-aged children acquire not exclusively language, 
but rather different types of discourse in which language is 
an extremely important but not the only element. 
Language acquisition goes for them in line with gesture 
acquisition, prosody acquisition, mimicry acquisition, etc.  

This provides a theoretical framework of our 
research, whereas its experimental framework is based on 
"The Pear Film" research line. It is reasonable to outline 
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the milestones of "The Pear Film" story before proceeding 
to the structure and the results of the experiment. 

"The Pear Film" is a six-minute movie made by 
Wallace Chafe and his colleagues in 1975. The film 
includes actions, pictures and sounds, but no words. In 
that, it deploys the same chain of events for all viewers. 
Therefore, a comparison of "the Pear Film" retellings, i.e. 
‘pear stories’, by people of different cultures and 
languages can provide the researcher with important data 
of how language and culture influence a way people 
conceptualize a stream of events. Since 1975 a lot of 
investigations have been carried out to compare retelling 
strategies for people of different cultures (Du Bois 1980; 
Tannen 1980; Orero 2008; Matzur & Mickievicz 2012; 
Blackwell 2015), for people with intellectual disability 
(Cummings 2015, 59–63); some investigations have 
explored peculiarities of referential choice in retellings 
(Downing 1980; Clancy 1980), work of consciousness in 
narration (Chafe 1980; Bernardo 1980), a structure of 
multimodal discourse (Fon et al. 2011; Kibrik et al. 2015).  

As mentioned, a structure of multimodal discourse is 
also the main object of interest for the authors of this 
paper. In general, we follow the model developed by 
Kibrik and colleagues (2015), but we are interested in a 
process dynamics rather than a static picture.  

Let us proceed directly to the research presented in 
this paper. The ‘pear stories’ of Moscow preschool-aged 
children in comparison with similar stories of high school 
students were in the focus of our interest in this research. 
In other words, we addressed a particular type of 
multimodal discourse in order to explore the process of 
discourse acquisition by focusing on a logical structure 
and a coherence of the narrative, gestures and spontaneous 
movements lost any communicative meaning, discourse 
words and pauses. Before dealing this issue at hand, some 
clarifications are needed. 

Firstly, the discourse of the pear film retellings is not 
an informal situation for subjects, especially, for kids. 
Indeed, in natural contexts kids communicate and, in 
particular, retell stories in different way. At the same time, 
this situation is not completely unnatural for them. This is 
a type of a public talk they encounter in kindergartens, at 
schools and some other public places. They acquire this as 
they acquire many other types of multimodal 
communication. So, despite obvious restrictions, this kind 
of discourse can provide important data on the way of 
acquiring particular elements of multimodal 
communication by preschool and early school-age 
children.  

In order to monitor quality of acquiring particular 
discourse skills, a sample for comparison is needed. 
Adults are expected to be such sample; however, the work 
with 14-16 year old students shows that they are as skillful 
in "The Pear Film" retellings as adults are. In that, because 
of some practical reasons a group of such students was 
taken as a control group for our research. 

In our analysis we focused on three discourse 
elements which need more precise description. 

A. A logical structure and a coherence of the 
narrative.  There are a lot of works investigating the 
narrative development in preschool age children which 
use a wide range of criteria to check this process (Peterson 

& McCabe 1983; Stein & Albro 1997; Sedov 2004; 
Nicoladis et al. 2009; Laurent et al. 2015; Levy & 
McNeill 2015). A commonly used parameters to check 
narrative development are as follows: the length of story 
in words; the number of different words used to tell the 
story; a total of scenes in retellings; presence of basic 
semantic components of the story (beginning, setting and 
ending) (Nicoladis et al. 2009; Laurent et al. 2015). 
However, these characteristics seem to provide only a 
coarse-grained picture of the process failing to verify how 
subjects represent a logical structure of the narrative, i.e. 
causal links connecting the events within it. A more 
precise model to evaluate exactly this factor was 
elaborated in Sedov 2004. In order to check to what extent 
subjects represent a logical structure of stories they retell, 
the author examines such variables as the frequency of 
deictic words in the retellings, the frequency of anaphoric 
repetitions, the frequency of introductory model words, 
referential models the subjects apply, the appearance of 
retrospective and perspective views in the retellings, etc.  

Taking into account these and similar works, in our 
research we focused on the following characteristics: the 
total number of words exploited in retelling, discounting 
selfrepetitions and false starts (TW); a total of scenes 
presented in retelling (TS); a total of errors in action 
description standardized on 100 words (FA)  (e.g., ‘guys 
picked up pears’ instead of ‘the boy hands pears to one of 
the guys’); a total of errors in object description 
standardized on 100 words (FO) (e.g., ‘apples’ instead of 
‘pears’); a total of incorrect description of causal chain of 
events and sub-events standardized on 100 words (FC) 
(e.g., ambiguous reference, missing connections within an 
event and between events); a total of interpretations (TI) 
(e.g., ‘stole a basket of pears’ instead of ‘picked up a 
basket of pears’); a total of dependent words standardized 
on 100 words (TD) (such as ‘who’, ‘which’, ‘because’, 
etc.).  

 
B. Gestures and spontaneous movements lost any 

communicative meaning. As mentioned, a number of 
works has been published over recent years to explore 
various aspects of correlation between gesture 
development and spoken language development in 
narratives of preschool age children (Nicoladis et al. 2009; 
Laurent et al. 2015; Levy & McNeill 2015). Meanwhile, 
in our knowledge there are no works focusing on 
spontaneous movements lost any communicative 
meaning. Of great importance is the fact that kids, when 
retelling the story, perform a lot of unconscious 
movements which do not address their interlocutors. 
These movements are not gestures in the strict sense; the 
only function of such movements is to help kids in their 
reasoning and speaking. This is no metaphor to say that 
kids not only think with their brains and speak with their 
tongues, but they also think and speak with their bodies. 
Some evidence of this can be also found in students’ and 
adults’ retellings, but in this case such movements are 
presented in a restricted mode.  

Again, in our knowledge this is a novel research 
domain which demands, first of all, a correct typology of 
spontaneous movements. A version of this is suggested 
below. Another important task is to measure the difference 
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in spontaneous movements of preschool age kids and that 
of high school students. This procedure is also presented 
below in the description of experimental method. 

 
C. Discourse words and pauses. An important 

aspect of language acquisition is also, so to speak, 
smoothness of speech. Adults avoid pauses in 
communication and use different strategies to fill them 
(stretching out first and last sounds of the word, use of 
discourse words and single sounds, etc.). At the same 
time, kids are not embarrassed by gaps in communication. 
Their speech, at least, in this particular type of discourse, 
is, as it were, ragged. In the experiment we measured this 
difference. Also we compared a number of and a mean 
length of EDU (elementary discourse units) for the two 
groups of participants.      

Experiment  

Method 
Subjects.  50 5-7 year old children (22 m, 28 f) attending 
Moscow kindergartens (CH), and 24 (10 m, 14 f) 14-16 
year old Moscow high school students (S). All subjects 
were monolingual.  
Material. "The Pear Film" by Wallace Chafe (6 min 32 
sec). 
Procedure. Each subject was processed individually. At 
the beginning the subjects were asked for watching the 
film closely in order to retell it as precisely as they can. 
Then they watched the film and after a minute retold it to 
some people who have not seen this film before. For 
kindergarten kids it was their kindergarten teacher, for 
students - their peers. At the same time, in order to check 
how the choice of addressee may influence the results, 
five students were asked to retell the story to the school 
principal in her office. When retelling, all subjects were 
sitting on high chairs for recording not only hand 
movements but also leg movements.  

The retellings were filmed by a hidden camera for 
CH subjects and overtly for S subjects. Because of some 
technical problems only 37 from 50 CH video-retellings 
fitted for further examination (at the same time, all CH 
tape recordings were made properly).  

Then the data were processed with ELAN to examine 
gestures and spontaneous movements. Also the retellings 
were recorded with unite-based discourse transcription 
system. 

In order to work out TS we asked 10 independent 
participants to divide the film into episodes, and premised 
on their choice singled out eight basic scenes which 
formed the narrative framework.        

Results 

A. The results for narrative skills are presented in 
Table 1 and Table 2. 

 

 

 

Table 1. Mean TW, TS, TI, ЕС for CH and S 

 TW TS TI TD 

CH 88.2±45.9 5.3±1.6 1.5±1.0  1.0±1.2  

S 298.6±138.2 7.8±0.7 4.7±1.9 2.4±1.1 

Table 2. Mean FA, FO, FC for  CH and S 
 FA FO FC 

CH 1.9±2.1 1.5±2.2  2.0±2.2  

S 0.1±0.4 0.1±0.3 0±0.2 

 
All these results are statistically significant 

(p<0.001). 
Concerning five students retelling the pear story to 

the school principal, there were no significant difference 
between them and other students in the scope of this 
experiment. Retellings in the principal office were likely 
to be less detailed and more formal, but in comparison 
with CH subjects these discrepancies were not important.   

The quantitative data can be complemented by some 
qualitative analysis. Let us begin with TW. As this can be 
seen from Table 1, the mean length of the narrative is over 
three times more for the students than for the preschool-
aged children. It means that the CH subjects lose a lot of 
content when describing any episode. Importantly, they 
only point at actions not focusing on appearance, clothes, 
scenery, etc. In turn, S subjects provided more or less 
detailed description of the picker, and also briefly 
characterized appearance of other characters.  

FO values are consistent with this observation. In 
contrast with S subjects, CH subjects confused not only 
pears and apples, but also, and much more often, they 
confused age (‘man’ instead of ‘boy’) and gender (‘boy’ 
and even ‘man’ instead of ‘girl’) of the characters. 

TS, FA and FC values points to notable difficulties in 
representing causal chain of the narrative. TS values show 
that two, in average, basic scenes get lost in ‘pear stories’ 
of preschool-aged children. This means that the story is 
often broken up into independent fragments which are 
linked with the conjunction ‘then’. To be more precise, a 
majority of CH subjects missed the episode with a goat, 
which does not ‘work’ later on in the film (only 8 subjects 
from 50 remembered this), many of them missed also the 
girl on a bike approaching the boy, and sometimes the 
final scene was missed as well. Also, almost in all stories 
of CH subjects there were some ambiguities in reference 
because their use of pronouns sometimes did not allow 
determine a subject correctly. 

 Data for EC are consistent with that point. S subjects 
often used dependent words (mainly, ‘who’, ‘which’, but 
also ‘when’, ‘where’, ‘what’, ‘why’, etc.) in order to 
clarify reference. If there are some objects with the same 
nomination (e.g., ‘boy’), exploiting of such constructions 
is useful tool for reference clarification. Meanwhile, CH 
participants can hardly use this tool. 
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Let us proceed to exploring some correlations within 
CH group. First of all, there is a positive correlation 
between the age of participants (AP) and TW, TI, TD and 
a negative correlation between the age of participants and 
FA, FO, FC. However, only the correlation between AP 
and TW; AP and FO are significant (r(AP, TW) = 0.35, 
r(AP, FO) = -0.27, p<0.05; r(AP, TI) = 0.14, r(AP, TD) = 
0.23, r(AP, FA) = -0.25, r(AP, FC) = -0.13). 

In the meantime, there is a significant positive 
correlation between TW and TI, TW and TD, and also a 
significant negative correlation between TW and FA, TW 
and FC, TW and FO (r(TW, FA)=-0.44, r(TW, FC)= -
0.46, p<0.01; r(TW, TI)= 0,34, r(TW, TD)=0.33, r(TW, 
FO) = -0,29, p<0.05). This gives some evidence for the 
point that all narrative skills represented by the variables 
of the subset A develop consistently.  

In order to complete the spectrum of problems CH 
subjects encountered it is worth noting that ten of them 
(20%) were not able to retell the pear film on their own, 
and the experimenters were made to help them with 
leading questions. 

 
B. As mentioned, spontaneous movements were in 

focus of our interests. We singled out three general types 
of body movements according to body parts which 
provide them: hand movements (HM), leg movements 
(LM), torso movements (TM). Also for hands and legs we 
distinguished implicit movements (e.g., slight finger 
movements) and explicit movements (e.g., open 
movements of the whole hand). So, we used five 
combinations: IHM, EHM, ILM, ELM, TM. We measured 
the total time of each kind of movement in ratio to the 
time of the whole story presented in percent. The results 
are expressed in Table 3. 

Table 3. Mean IHM, EHM, ILM, ELM, TM for CH and S 

 IHM EHM ILM 

CH 31.9±22.2 5.5±10.1 7.0±11.6 

S 20.0±21.4 0.2±0.8 4.6±9.6 

 ELM TM Σ 

CH 6.9±16.9 15.7±17.3 65.8±18.2 

S 0 0.6±1.1 24.5±21.1 

As can be seen from Table 3, there is a significant 
difference in performing spontaneous movements during 
the retelling between CH and S groups (the use of one-
way ANOVA to compare Σ for these groups gives 
p<0.001). CH subjects perform such movements during 
over a half-time period of the retelling, and over a quarter-
time period of the retelling the movements are explicit. 
The spectrum of their movements is really wide: kids put 
their hands under the legs, fidget in their seats, lift their 
legs up to their mouths, etc. All this almost totally 
disappear in retellings of S subjects. The only spontaneous 
movements they perform are implicit hand movements 

such as to finger over and, to some extent, implicit leg 
movements. Other types of movements are extremely rare.  

Importantly, there is no significant correlation 
between Σ (the sum of IHM, EHM, ILM, ELM, TM) and 
TW for CH subjects (r=-0.14). This can be interpreted as 
some evidence against the conjecture that narrative skills 
and body experience in discourse develop coherently.  

The picture of gestures for CH and S groups is 
strictly opposite. Only 8 from 50 (16%) CH subjects 
exploited gestures as a more or less important tool in 
communication. At the same time, almost all S subjects 
resorted to the permanent use of gestures during their 
retellings. The total time of gesture performance in ratio to 
the time of the whole story presented in percent is 2.4±5.2 
for CH subjects and 68.5±23.7 for S subjects (p<0.001). 

Addressing again S subjects who retold the pear story 
to the school principal, it is worthwhile to note that they 
performed less gestures and more spontaneous movements 
than their peers but this difference cannot change the 
picture drawn above. 

C. The last group of parameters we worked out is 
concerned with discourse words, pauses and an EDU 
length. We measured the total number of discourse words 
in ratio to TW (DW, %), the total length of pauses in ratio 
to the time of the whole story (LP, %)1, and a mean EDU 
length (EDUL, words). The data are presented in Table 4. 

 
Table 4. Mean DW, LP, EDUL for CH and S 

 DW LP EDUL 

CH 3.0±2.0 38.2±11.2 3.2±0.5 

S 4.1±3.1 25.3±10.4 4.2±0.6 

 
These data give clear evidence that CH subjects in 

comparison with S ones are less skillful in filling pauses 
in communication (p<0.001). Also it is worthwhile to 
point at more extensive EDU for S subjects (p<0.001).The 
difference between DW for CH subjects and S subjects is 
not significant.  

Importantly, there is significant positive correlation 
between TW and DW for CH subjects (r (TW, DW) = 
0,32, p<0.05). Meanwhile, the correlation between TW 
and LP and between TW and EDUL is not significant (r 
(TW, LP) =-0,23; r (TW, EDUL) = -0,02). 

Discussion 
The results of the experiment support the basic 

hypothesis of significant obstacles which preschool-aged 
children encounter when acquiring the discourse of 
retelling story in formal situation. In the experiment three 
basic components of this discourse were examined: a 
logical structure and a coherence of the narrative; gestures 
and spontaneous movements lost any communicative 
meaning; and EDU, discourse words and pauses. In all 
these components CH subjects experienced more or less 
serious difficulties in comparison with a control group 
presented by high school students. Furthermore, the 

                                                 
1 Only 37 from 50 recordings were valid for the pause 
measuring. 
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experiment provided some evidence that these 
components are acquired coherently, that is, the progress 
in one component correlates with positive shifts in others.   

It is worth classifying the problems CH subjects face 
and cognitive skills behind these problems. Two basic 
domains can be picked out in "The Pear Film" retelling 
discourse. The first one is concerned with the ‘content’ of 
the discourse (to make sense of the story and to present 
this correctly in speech), the second one − with ‘right’ 
mode of communicative behavior. Cognitive skills behind 
the first domain can be also divided into two parts. The 
first part is based on situated cognition. A lack of practical 
knowledge entails increasing FO value which 
characterizes flaws in recognizing particular objects (as 
mentioned, kids confused pears with apples, goat with 
caw, girl with boy, boy with man, etc.) The second set of 
problems points at an inability to figure out a causal chain 
of events and to represent this chain in the retelling. In 
consistency with Sedov’s (2004) results our data show 
that a majority of CH subjects in their retellings get 
plunged into the stream of events, and they are unable to 
change the perspective and to look at the story from the 
bird’s eye view. This also determines their view of an 
addressee. They usually take for granted that an addressee 
is also familiar with all details of the story and he can 
easily reconstruct those following restrained comments of 
a storyteller. TS, TI, FA, and FC values characterize this 
issue. 

CH subjects have also obvious problems with the use 
of language. “The Pear Film” retelling as a kind of 
discourse is close to writing, and writing skills are widely 
used by S subjects in their retellings. More or less 
consciously, they rest on texts studied at school as a 
paradigm for ‘pear stories’ they make up. CH subjects 
have no such experience. An influence of literacy on their 
retellings is trifling, if it is at all. As a result, their 
language is extremely poor, with minimum of extended 
and subordinate constructions. TC value is responsible for 
this set of factors. 

The ‘communicative’ domain of the discourse is 
characterized by values of variables which constitute 
subsets B and C. In particular, LHM, EHM, LLM, ELM, 
and TM values point at a flaw in discourse competence 
connected with some lack of body control in 
communication.  

  Although three sets of factors presented above 
address different cognitive domains and function more or 
less independently, there is some coherence in their 
development (e.g., significant positive correlation between 
TW and DW give some evidence for such coherence).  

Also LHM, EHM, LLM, ELM, TM data need more 
detailed commentary. This sounds nowadays as a common 
point that body movements in discourse have nothing but 
communicative function. Nevertheless, this is not so for 
kids. Again, the behavior of CH subjects gives robust 
evidence that they not only think with their brains and 
speak with their tongues, but they also think and speak 
with their bodies. The spontaneous movements which they 
perform intensively during the retelling are not directed to 
their interlocutors, but these movements do rather 
produce, as it were, ‘nutrient medium’ for the process of 
speaking. Their speech is a vivid and striking illustration 

of theoretical postulates of embodiment theory (Barsalou 
1999; Krois 2007; Barsalou 2010). 

Finally, we venture to make a conjecture in this 
scope. The comparison of communicative models of CH 
and S subjects indicates a substantial shift from 
spontaneous movements to gestures. This shift is likely to 
be consistent with Vygotsky's (1986) theory of inner 
speech. According to Vygotsky, cognitive development in 
ontogeny is concerned with the transition from egocentric 
speech to inner speech which cognitive function is to 
mediate between speech and thought. From this 
perspective, inner speech is interpreted as interiorization 
of egocentric speech. Similarly, implicit spontaneous 
movements can be treated as interiorization of explicit 
spontaneous movements. Such interiorization comes to the 
end in thought which includes words and movements in a 
‘converted’ mode similarly to how synthesis includes 
thesis and antithesis in Hegel's philosophy. On the 
opposite stage, thought deploys into a communicative 
utterance directed to an addressee and formed by words, 
gestures, prosody and other elements of multimodal 
communication. In this scope, gestures not just 
accompany words in communication, but rather they are 
equally meaningful element of communicative behavior. 

Another possible domain to apply the results of our 
research is the theory of origin of language developed by 
Tomasello and colleagues. As mentioned, they point at 
gestures as at an important predecessor of vocal 
communication, but they do not take into account 
spontaneous movements. A precise analysis of 
spontaneous movements of children and great apes might 
shed new light on this issue.   
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Abstract
Zoonoses (diseases that enter the human population via animal
contact) are a major global health concern. Because of how
zoonoses emerge, understanding human reasoning about the
risk factors associated with animal contact is central to com-
bating their spread. However, little is known about the factors
that influence perception of these risks. We present an induc-
tive account of zoonosis risk perception, suggesting that it is
influenced by beliefs about the range of animals that are able to
transmit diseases to each other. In Study 1, we find that partic-
ipants who endorse higher likelihoods of cross-species disease
transmission have stronger intention to report animal bites. In
Study 2, adapting real world descriptions of Ebola virus from
the WHO and CDC, we find that communications conveying
a broader range of animals as susceptible to a disease increase
intentions to report animal bites and decrease perceived safety
of wild game meat. These findings suggest that cognitive fac-
tors may be harnessed to modulate zoonosis risk perception
and combat emerging infectious diseases.
Keywords: Induction; categorization; risk perception; public
health; premise number; premise diversity

Introduction
Emerging infectious diseases are a major economic and pub-
lic health concern. A majority of such diseases are of
zoonotic origin (i.e. come from animals, Jones et al., 2008),
with drivers including animal bites, consumption of wild
game meat, and contact with livestock (Daszak, Cunning-
ham, & Hyatt, 2000). Human-animal interaction is central
to all these drivers, but little is known about how people rea-
son about potential risks in such scenarios (Janes, Corbett,
Jones, & Trostle, 2012). Similarly, research on cognitive fac-
tors is largely absent from public health initiatives targeting
zoonoses, including interdisciplinary approaches such as One
Health (Heymann & Dar, 2014). The present work aims to
bridge this gap by examining cognitive principles that influ-
ence zoonosis risk perception and how they can be harnessed
to shape communications regarding disease transmission risk.

The literature on zoonoses lacks extensive research on the
role of human reasoning, though several recent studies have
examined factors that determine whether people will eat wild
game meat (Kamins et al., 2015) and report adverse animal
contact, such as bites, to a health professional. One partic-
ularly suggestive study (Bingham, Budke, & Slater, 2010)
found that survey respondents were more likely to report dog
bites if they knew that bats could transmit rabies to humans.
At first glance, this seems surprising – people’s inferences
about the risk associated with one species appear to be influ-
enced by their knowledge of a completely different species.

The finding that knowlege about one animal can affect
beliefs about other animals may be partly accounted for
by two principles from the literature on inductive reason-
ing, namely premise number and premise diversity (Hayes,
Heit, & Swendsen, 2010; Osherson, Smith, Wilkie, Lopez,
& Shafir, 1990). According to the premise number principle,
people are more confident in inferences that apply to a large
number of category members (Li, Cao, Li, Li, & Deak, 2009;
McDonald, Samuels, & Rispoli, 1996), where for example a
property known to hold for both lions and giraffes will be
more likely to hold for rabbits as well. According to the
premise diversity principle, people find inferences sound to
the extent that they hold for a wider range of category mem-
bers (Heit & Feeney, 2005; Lopez, 1995), where for example
a property known to hold for lions and giraffes is more likely
to generalize to rabbits, compared to one that holds for lions
and tigers. In terms of zoonosis risk perception, knowing that
both dogs and bats can transmit rabies may increase percep-
tions of human risk because they are often viewed as very
different members of the mammal category.

Although premise number and diversity are plausibly re-
lated to the previous observations surrounding bite reporting
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intentions, research on inductive reasoning has not been ex-
tended to many concrete domains such as work on risk per-
ception in health or real-world decision making about health
behaviors. Similarly, while people’s judgments regarding
contagion have been studied in social and health psychology
research (Nemeroff, 1995), these studies have focused on af-
fective and cultural factors as opposed to underlying cognitive
processes such as inductive reasoning.

In the present work, we test two specific hypotheses
from our theory that inductive reasoning principles influence
zoonosis risk perception. First, consistent with the afore-
mentioned rabies study, individual differences in perceived
risk from animal contact should be associated with individ-
ual differences in beliefs about interspecies disease transmis-
sion. Second, perceptions of risk to humans should increase
as a result of being presented with communcations depicting
transmissibility amongst a wider range of species.

Study 1
The goal of Study 1 was to examine whether perceived dis-
ease risk (measured by intentions to report animal bites) is as-
sociated with beliefs about interspecies disease transmission
likelihood. Based on the premise number principle, we hy-
pothesized that individuals who endorse stronger likelihoods
of disease transmission between a number of different animal
species would be more likely to perceive human risks from
animal bites. To test this hypothesis, we conducted a survey
measuring intentions to report bites from common mammals
and birds along with judgments of interspecies disease trans-
mission likelihood for a ficticious novel disease.

Method. Participants were 289 adults (55% men; mean age
= 33.6, SD = 10.2) who completed an online survey and were
recruited through the Mechanical Turk crowdsourcing plat-
form. The survey was available to Mechanical Turk work-
ers in the following countries where English is the primary
language: USA, Australia, Canada, Great Britain, Ireland,
New Zealand, and the Bahamas. The majority of participants
had undergraduate (48.8%) or advanced degrees (8.7%). The
sample was predominantly White (80.6%), with 5.9% Asian,
3.8% Black, 6.9% Hispanic, 1% Native American or Alaska
Native, and 1.7% other ethnicities. A majority of the sample
(73.4%) reported currently owning a pet. Participants were
compensated $2 for participation in the survey. Informed con-
sent was obtained from all individual participants in the study,
no participants were excluded from the survey results, and all
protocols were approved by the Texas Tech University IRB.

Design. The study materials consisted of an electronic
survey containing sections on demographics, bite reporting
intentions, and species-to-species disease transmission be-
liefs. Demographics questions included sex, sexual orienta-
tion, ethnicity, education level, parents’ education level, lan-
guage(s) spoken, and pet ownership.

In the bite reporting section, participants were asked to
judge their likelihod of reporting bites from various target
animals to a health professional (of any type). Participants
judged likelihood of reporting for each animal using a slider
that could be adjusted in units of 1 from 0–100 and also
contained descriptive labels ranging from “Very Unlikely” to
“Very Likely”. Mammal and bird reporting were presented
in a random order on separate screens. Mammals included
dogs, skunks, monkeys, bats, and squirrels. Birds included
grackles, swans, robins, blue jays, and peacocks.

The species-to-species disease transmission beliefs section
employed the same sliding scales as the bite reporting section,
but participants were asked to rate the likelihood of between-
animal disease transmission for a hypothetical new disease.
Each question took the following form:

Scientists discover that a new disease can infect the liver
tissue of [premise animal]. How likely is it that this
disease can infect the following animals?

The conclusion animals were listed on separate lines, each
with their own response slider. Premise animals included
bats, dogs, skunks, monkeys, grackles, blue jays, swans, and
peacocks. Conclusion animals included bats, dogs, skunks,
monkeys, squirrels, grackles, robins, blue jays, swans, and
peacocks. Fewer premise animals were used so that less time
would be required to complete the survey and to reduce par-
ticipant attrition. Animals only appeared as conclusion cate-
gories when they were not the premise. Premises were pre-
sented in a random order on separate screens.

Results. Intentions to report bites were highly reliable
within person (mammals: Cronbach’s α = 0.86; birds α =
0.95), as were judgments of interspecies disease transmission
likelihood (mammal-to-mammal: α = 0.96, bird-to-bird: α

= 0.97; between birds and mammals: α = 0.99). Nonethe-
less, linear mixed effects models revealed that intentions to
report bites varied considerably between different species
[Mammals: F(4,1152) = 111.1, p < .001,ηp

2 = 0.28; Birds:
F(4,1152) = 35.23, p < .001,ηp

2 = .11] and ratings of in-
terspecies disease transmission likelihood varied between
the different premise types [mammal-to-mammal, bird-to-
bird, between birds and mammals; F(2,576) = 356.3, p <
.001,ηp

2 = 0.55]. Intentions to report bites were stronger
for mammals than for birds [t(288) = 27.06, p < .001,d =
1.59; Figure 1A], and diseases were rated as more likely
to be transmissible within mammals or birds than between
them [mammal-to-mammal vs. between birds and mammals,
t(288) = 18.77, p < .001,d = 1.10; bird-to-bird vs. between
birds and mammals, t(288) = 23.42, p < .001,d = 1.38].
Consistent with previous work suggesting bats are viewed as
similar to both mammals and birds (Davis et al., 2013), bats
were rated as more likely than other mammalsto share dis-
eases with birds [t(288) = 7.03, p < .001,d = 0.41].
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Figure 1: (A) Intentions to report animal bites. (B) Associa-
tion between intentions to report mammal bites and mammal-
to-mammal disease transmission ratings. (C) Association be-
tween intentions to report bird bites and between bird and
mammal disease transmission ratings. Error bars reflect 95%
within-subject confidence intervals.

In support of our primary hypotheses, we found that
individual differences in endorsement of bird-to-bird and
mammal-to-mammal disease transmission were both posi-
tively associated with individual differences in intentions to
report mammal bites [Mammal-to-mammal: Kendall’s τ =
.147, p < .001 (Figure 1B); Bird-to-bird, τ = .140, p < .001;
Between birds and mammals: τ = .009 (Pearson’s r of .21,
.21 and .009 respectively)].

Consistent with the premise number principle, endorsing
greater odds of interspecies disease transmission was as-
sociated with stronger intentions to report mammal bites.
For bird bites, only ratings of disease transmission between
birds and mammals were associated with reporting intentions
[Mammal-to-mammal τ = .043, Bird-to-bird τ = .077, Be-
tween birds and mammals τ = .219, p < .001 (Pearson’s r of

.04, .05, and .26 respectively) (Figure 1C)]. Coupled with
weaker intentions to report bird bites overall, these results
suggest that people may only judge birds as risky to the extent
that they believe birds and mammals can share diseases.

Discussion. Study 1’s results suggest that inductive reason-
ing principles may underlie people’s perceptions of zoono-
sis risk. Although the correlations are between a small and
medium correlation given Cohen’s (1992) criteria, they are
within those expected between general health attitudes and
behaviors (Azien & Timko, 1986; Glasman & Albarracin,
2006). However, because the results are correlational, it is
difficult to infer the causal direction between the beliefs about
interspecies disease transmission risk and bite reporting. It is
possible that both are influenced by a common underlying
factor, such as beliefs about contagion (Haidt, McCaluey, &
Rozin, 1994) or risk attitudes (Dohmen et al., 2011). More-
over, because the results examine individual differences, it is
not clear from Study 1 whether such inductive reasoning prin-
ciples could be harnessed to influence people’s beliefs about
the risks associated with animal contact.

Study 2
The goal of Study 2 was to test whether it is possible to influ-
ence people’s perceptions of zoonosis risk through framing
communications to portray a greater number of animals as
susceptible to a disease. As a case study, real-world commu-
nications about Ebola virus vary in terms of how they describe
the range of animals susceptible to the disease. The Cen-
ters for Disease Control’s factsheet (CDC, 2016) lists con-
tact with fruit bats and nonhuman primates (apes and mon-
keys) as sources of human Ebola infection. Contrastingly, the
World Health Organization’s factsheet (WHO, 2016) lists a
much wider range of animals: chimpanzees, gorillas, fruit
bats, monkeys, forest antelope, and porcupines.

According to the premise diversity principle, the WHO’s
factsheet should lead to stronger perceptions of Ebola risk
from animal conact because it lists a broader range of animals
as sources of human Ebola infection. To test this hypothesis,
in Study 2 we gave particpants two different communications
about Ebola derived from the CDC and WHO factsheets (tai-
lored to control all other differences in wording).

Method. Participants were 152 adults recruited from Me-
chanical Turk in the same manner as for Study 1. Sample
demographics were comparable to those in Study 1; addition-
ally 94.7% of the sample in Study 2 reported eating meat. No
participants were excluded from the results, and all protocols
were approved by the Texas Tech University IRB.

Design. The study materials consisted of an electronic sur-
vey containing a demographics section, an experimentally
manipulated reading prompt about Ebola (derived from CDC
and WHO factsheets), an Ebola susceptibility section, a bite
reporting intentions section, and a meat safety section.
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For the reading prompt, participants were given the follow-
ing description about Ebola and asked to fill in a blank box
by detailing the animals listed in the description:

The Ebola virus causes an acute, serious illness which is often
fatal if untreated. Ebola virus disease (EVD) first appeared in
1976 in 2 simultaneous outbreaks, one in what is now Nzara,
South Sudan, and the other in Yambuku, Democratic Republic
of Congo. The latter occurred in a village near the Ebola River,
from which the disease takes its name. Ebola is introduced into
the human population through close contact with the blood,
secretions, organs, or other bodily fluids of infected animals
such as [animal 1], [animal 2], [animal 3], and [animal 4].

The animals listed in the description were experimentally
manipulated between participants. Participants were ran-
domly assigned to read either a CDC-inspired set of animals
with lower premise diversity (fruit bats, gorillas, monkeys,
and chimpanzees; n=81) or a WHO-inspired set with higher
premise diversity (fruit bats, monkeys, forest antelope, and
porcupines; n=70). To verify that these prompts did indeed
differ in premise diversity, we had a separate group of partici-
pants (N=53) provide pairwise similarity judgments between
each of the premise animals. Consistent with our expecta-
tions, participants judged the CDC prompt animals to be sig-
nificantly more similar (i.e. less diverse, t(52) = 14.56, p ¡
.001).

Next participants completed the Ebola susceptibility ques-
tionnaire. For each question, participants were asked “How
likely is it that [animal] can get Ebola?” (1 = Very Unlikely,
7 = Very Likely). Animals included both mammals and birds:
bats, monkeys, zebras, meerkats, anteaters, giraffes, gazelles,
storks, flamingos, cranes, vultures, and parrots.

Next participants completed the bite reporting question-
naire. Participants were told to “imagine that you are on safari
and get bitten by an animal, but the bite just barely breaks the
skin” when considering whether they would report a bite to
a health professional. Each question asked them to rate (1 =
Very Unlikely, 7 = Very Likely), “how likely would you be to
report being bitten by a [animal]?”

Last, participants completed the meat safety questionnaire.
Participants were asked to rate (1 = Very Unsafe, 7 = Very
Safe), “how safe you think it is for people in general to eat
meat from each animal” and to “consider only immediate
health risks from disease transmission.”

Results. The results were consistent with predictions based
on the premise diversity principle. Participants in the WHO
(diverse) wording condition rated individual mammals as
more susceptible to Ebola [t(150) = 3.70, p < .001,d =
0.6; Figure 2A], were more likely to report mammal bites
[t(150) = 2.85, p = .005,d = .46; Figure 2B], and perceived
mammal meat as less safe [t(150) = 2.66, p = .009,d = .434;
Fiture 2C].

The WHO (diverse) wording condition also increased per-
ception of birds’ susceptibility to Ebola [t(150) = 2.06, p =
.040,d = 0.33] but did not significantly increase intentions to
report bird bites [t(150) = 1.10,d = 0.18] or lower percep-
tions of meat safety [t(150) = 1.28,d = 0.21].

We additionally used linear regression to test whether the
effect of wording condition on bite reporting and percep-
tions of meat safety was mediated by its effect on Ebola sus-
ceptibility ratings. First, we found that Ebola susceptibil-
ity was significantly associated with bite reporting and meat
safety perceptions for both mammals and birds, even after
taking into account the effect of wording condition [Mammal
bites: standardized b = 0.47; t(149) = 6.40; p < .001; Mam-
mal meat: standardized b = −0.43; t(149) = 5.67, p < .001;
Bird bites: standardized b = 0.51; t(149) = 7.32, p < .001;
Bird meat: standardized b =−0.45; t(149) = 6.01, p < .001].
Next, we found that including Ebola susceptibility in the re-
gression model with the effect of wording condition made
the effect of condition non-significant for all models [Mam-
mal bites: b = 0.18, t(149) = 1.20; Mammal meat: b =
−.18, t(149) = −1.16; Bird bites: b = .009; t(149) = 0.063;
Bird meat: b = −0.06; t(149) = 0.43], suggesting that the
effects of condition on meat safety and bite reporting were
fully mediated by the effect of the different wordings on par-
ticipants’ perceptions of Ebola susceptibility. Finally, using a
bootstrapping procedure (Preacher & Hayes, 2008), we found
that the indirect pathways between wording condition and
the bite reporting and meat safety ratings were significant for
both birds and mammals.

General Discussion
Results from both studies indicate an important role that cog-
nitive research can play in combating emerging zoonoses. Al-
though rarely studied in the public health literature, humans’
inferences about risk are central to their interactions with po-
tential disease vectors. We found that cognitive principles
related to premise number and diversity impact perceptions
of zoonotic disease transmission risk and associated health
behaviors. To the extent that people believe it is possible for
many diverse species to transmit diseases to one another, they
become more wary of their own risk of infection.

An experiment based on CDC and WHO Ebola factsheets
further revealed that individuals’ inductive reasoning strate-
gies can be harnessed to make communications about disease
risk more effective. Through the use of cognitive framing
strategies, it may be possible to reduce adverse contact with
animals and increase rapid reporting of potential disease ex-
posure. Such approaches may be particularly effective for
rural communities that are difficult to reach with other inter-
ventions. These results have the potential to contribute goals
of identifying low-cost strategies for reducing emerging dis-
ease risk before outbreaks occur (Heymann & Dar, 2014).

To our knowledge, the present results are the first to sug-
gest that inductive reasoning processes studied in cognitive
psychology also influence health behaviors. With such con-
nections established, future studies on disease transmission
risk perception would benefit from even stronger connections
with cognitive research. One question is how people judge
risks from different species. Here we focused on person-level
characteristics that relate to perceived risk of animal contact
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Figure 2: Effect of communication wording on (A) Perceived susceptibility of animals to Ebola, (B) Intentions to report animal
bites, and (C) Perceived meat safety. Error bars reflect 95% within-subject confidence intervals.

(bites and game meat), averaging over differences between
species. However, not all animals are associated with the
same zoonosis risk, and it will be important to understand
how to tailor communications to impact species selectively.
For example, bats have a very strong association to emerg-
ing zoonosis (Calisher, Childs, Field, Holmes, & Schountz,
2006), and it may be useful to tailor messages to focus on
bats specifically. Although bats were associated with high
levels of intended bite reporting and were perceived as being
unsafe to eat, participants also may have underestimated the
risks bats pose to other animals – indeed, participants rated
disease transmission risk between bats and other mammals
as lower than for more typical mammals. Because wildlife-
livestock interactions are a major driver of emerging zoonosis
(Jones et al., 2008), this finding suggests that people may un-
derestimate the risk of keeping livestock near bat habitats.

One limiation of our second study is that much of the sam-
ple is not at high risk for Ebola virus. However, because
zoonoses are common within the countries surveyed and can
be transmitted via many different interactions with animals
all of our participants were at some risk of zoonosis expo-
sure. Still, future research should examine whether risk level
or other variables may moderate the effect of inductive rea-
soning principles on risk perception. We anticipate that peo-
ple’s personal experience with zoonosis, as opposed to pure
risk level per se, may strengthen the relationship between be-
liefs and health intentions. Indeed, in the broader attitudes
and public health literatures, many associations between atti-
tudes and behaviors are rather weak in the general population,
but are much stronger in groups with direct experience (Fazio
& Zanna, 1978; Glasman & Albarracin, 2006). Thus while

many people in these studies do not have direct experience
with Ebola virus, we would expect attitudes and health inten-
tions to be even stronger in those who do.

The present research is primarily aimed at building inter-
disciplinary connections between public health research (par-
ticularly inerdisciplinary efforts such as One Health) and cog-
nitive psychology. Still, the current results may have im-
plications for basic psychological research on contagion and
induction as well. The law of contagion is a prominent so-
cial psychology construct that describes people’s tendencies
to believe that negative (and positive) properties, including
diseases and social ills, can be transmitted to objects or peo-
ple through mere contact (e.g. Rozin and Royzman (2001)).
Current theories of sympathetic magical thinking often make
distinctions between the law of contagion and the law of sim-
ilarity, a separate construct that describes the belief that ob-
jects that share surface features also share deeper common
essences (e.g., leading to disgust with fudge shaped like dog
feces, and beliefs that voodoo dolls can affect the person they
resemble; Rozin, Markwith, and Ross (1990)).

The present results suggest that the laws of contagion and
similarity may not be fully separate, and similarity-based ef-
fects may influence perceptions of contagion. Indeed, theo-
ries suggest that inductive reasoning principles like premise
number and diversity can increase generalization of proper-
ties (such as disease susceptibility) via similarity relation-
ships between known and novel/unknown examples. For ex-
ample, the diverse prompts in our second experiment may
have increased perceptions of Ebola susceptibility by increas-
ing the likelihood that the unknown examples would match
the known examples in some respect. A major question in
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cognitive psychology is how different respects in which items
can be similar (Medin, Goldstone, & Gentner, 1993) impact
generalization of novel/unknown properties. Although our
data does not distinguish between different candidate theo-
ries for similarity-based transfer of contagion, the results are
suggestive that beliefs about contagion can be transferred via
such similarity relationships.

In conclusion, emerging diseases from animals pose a sub-
stantial public health concern, yet little is known about how
people judge risks associated with different drivers of zoono-
sis. The present studies illustrate that basic cognitive princi-
ples related to inductive reasoning not only impact individu-
als’ perceptions of disease risk and associated health behav-
iors, but also can be harnessed for tailoring messages to prop-
erly convey risks associated with emerging diseases.
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Abstract 

We focused on the controversy whether high-performing 
readers consistently underestimate their comprehension or are 
prone to detrimental overestimations as much as less skilled 
readers are. Therefore, we conducted an experiment (N = 105 
university students) to investigate judgment bias as a function 
of reading skill and text difficulty in terms of text cohesion. 
Results showed that the easy text produced underestimation of 
comprehension, whereas the hard text led to overestimation. 
Furthermore, readers with higher reading skills were less prone 
to overestimate their comprehension of a hard text than less 
skilled readers. However, we also found that more skilled 
readers showed lower sensitivity in discriminating between 
correct and incorrect answers than less skilled readers. Overall, 
our results do not support the idea that high-performing readers 
consistently underestimate their text comprehension. Findings 
are discussed with respect to readers’ awareness of different 
text-based judgment cues and their (beliefs about their) reading 
skill. 

Keywords: judgment bias; metacognitive sensitivity; text 
difficulty; reading skill; high-performing readers 

Introduction 

Successful learning from text requires readers to accurately 

judge their text comprehension because false judgments (e.g., 

overestimation) can hamper the learning process. It is well 

acknowledged that readers in general are prone to 

overestimations, whereas particularly high-performing 

readers (i.e., readers who achieve high scores on a text 

comprehension test) might more likely underestimate their 

comprehension (de Bruin et al., 2016; Dunlosky & Rawson, 

2012). However, the methodology used to unveil 

underestimation by high-performing readers is not fully 

undisputed. Therefore, it remains unclear whether high-

performing readers’ underestimation is psychological reality 

or rather an artifact. We present an experiment that was 

conducted to advance our understanding about how high-

performing readers judge their text comprehension. 

Comprehension Judgments and the Learning 
Process 

Learning from text involves constructing a mental 

representation of the information provided in a text and 

retrieving the learned information at a later time. The learning 

process heavily depends on a reader’s metacognitive ability 

to monitor comprehension (i.e., metacomprehension), which 

is mirrored in the correspondence between a reader’s 

comprehension judgment and actual performance on a 

comprehension test (Wiley, Griffin, & Thiede, 2005). 

Comprehension judgments can occur at different times in 

the learning process. Accordingly, research uses different 

types of comprehension judgments (Griffin, Jee, & Wiley, 

2009). The first type is the prospective judgment of 

comprehension that readers make after reading a text to 

predict how well they will perform on yet unknown test 

questions about the text. Furthermore, when readers complete 

test questions, they can use information about their 

(perceived) performance in answering the test questions to 

evaluate their comprehension. Thus, the second type of 

comprehension judgments is readers’ confidence in their 

retrieved answers on single test questions (i.e., response 

confidence). The third type is the retrospective judgment of 

comprehension that refers to a whole set of test questions 

(i.e., how many of the test questions were answered 

correctly). The three types of judgment are assumed to reflect 

(slightly) different aspects of metacomprehension but 

complement each other (Schraw et al., 2014).  

When readers make comprehension judgments, they 

normally use available cues (Koriat, 1997). These cues can 

arise from the learning material (e.g., text difficulty), a 

reader’s (self-perceived) skills and resources (e.g., prior 

knowledge, reading ability) and a reader’s experiences when 

reading the text or answering test questions. All types of cues 

can be useful for precise judgments when they are valid 

indicators of the required level of comprehension. 

To support learning, judgments of comprehension need to 

be precise because they influence readers’ subsequent 

learning activities. Imprecise judgments, especially 

overestimations, have a detrimental effect on learning 

(Dunlosky & Rawson, 2012). For example, overestimation 

means that readers do not realize that their comprehension of 

text is worse than they think. Therefore, they might abstain 

from engaging in remedial activities. In contrast, 

underestimation might be less problematic for learning but it 

can hamper learners in allocating their learning time 

appropriately. 
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Controversy Over High-Performing Readers’ 
Underestimation 

Numerous studies have shown that readers typically provide 

imprecise judgments. Most readers overestimate their 

comprehension of text and are overconfident in the 

correctness of their retrieved information when answering 

test questions about the text (Dunlosky & Rawson, 2012; 

Maki et al., 2005). 

However, concerning high-performing readers, it is 

sometimes reported that they tend to underestimate their 

comprehension (de Bruin et al., 2016; Zabrucky, 2010). This 

underestimation is often interpreted as a result of specific 

metacognitive or cognitive processes. For example, high 

performers are assumed to not give very high judgments of 

their comprehension to avoid being perceived as arrogant or 

to have negatively skewed misperceptions of their abilities, 

both resulting in underestimation (Zabrucky, 2010). 

A completely different explanation of this phenomenon 

refers to a statistical bias of the measure used to unveil 

overestimation and underestimation (i.e., judgment bias) that 

becomes relevant when readers’ level of performance is 

determined by their performance in the experimental 

comprehension test. More specifically, judgment bias uses 

the signed difference between a reader’s prospective or 

retrospective judgment of comprehension and his/her actual 

performance on a comprehension test. Therefore, the reader’s 

judgment bias is constrained by his/her performance (Griffin 

et al., 2009; see also Kruger & Dunning, 1999). That is, 

readers who achieve the maximum or a very high 

performance score on a comprehension test (i.e., high-

performing readers) are much more likely to show 

underestimation than readers with lower performance scores. 

Conversely, readers who have a very low performance score 

are much more likely to overestimate their comprehension. 

Furthermore, if the performance-level of readers is 

determined by their performance on the comprehension test 

– that is also part of the measure of judgment bias – both 

measures are statistically dependent on each other and 

normally show high negative correlations (i.e., higher 

performance on the comprehension test is associated with 

lower/more negative scores of judgment bias). Thus, the 

finding that high-performing readers underestimate their 

comprehension could also be a statistical artifact and, hence, 

might not reflect their actual ability to judge comprehension. 

To disentangle the effect of the level of comprehension on 

judgment bias, it seems useful to investigate judgment bias as 

a function of both readers’ general reading skill and test/text 

difficulty. 

The Effect of Text Difficulty and Reading Skill 

Maki et al. (2005) investigated judgment bias (i.e., 

overestimation or underestimation) as a function of text 

difficulty – determined by the readability of the texts – and 

students’ general reading skill. Their findings did not support 

the view that high performers generally underestimate their 

comprehension. Instead, for difficult texts (i.e., lower 

readability), it was found that high-ability readers were 

precise when making prospective judgments. Only when 

making postdictions, they underestimated their 

comprehension but so did medium-ability readers as well. 

Conversely, for easier texts (i.e., higher readability but still in 

the range between difficult and standard texts), all readers 

provided overoptimistic predictions of comprehension but 

precise postdictions. 

This latter finding on easier texts is intriguing with regard 

to Schraw and Roedel’s (1994) study that determined 

difficulty by the mean item difficulty of the test questions. 

They found that readers were overconfident on their answers 

in response to difficult and moderately difficult items but 

precise on items with low difficulty. Because high-ability 

readers in Maki and colleagues’ study (2005) solved about 

70% of the test items on the easier text, these test items were 

of low difficulty for them. Hence, their postdiction judgments 

were precise. But why did the (high-ability) readers 

overestimate their comprehension when making prospective 

judgments on the easier text? It appears as if the higher 

readability of the text might have induced readers – at any 

level of reading ability – to be overoptimistic. This 

interpretation is supported by findings from Weaver and 

Bryant (1995) who revealed that predictions of 

comprehension are not highly correlated to actual 

performance for texts with high or low readability. 

Thus, previous studies showed that high-performing 

readers do not consistently underestimate their 

comprehension. Therefore, these studies provide useful hints 

about the controversy on high-performing readers. However, 

at the same time, the studies only provide information about 

the effects of item difficulty (Schraw & Roedel, 1994) or text 

difficulty in terms of readability (Maki et al., 2005; Weaver 

& Bryant, 1995). Readability that depends on, for example, 

word length, number of words per sentence, or passive/active 

structure is a salient text-based cue and a more distal indicator 

of the difficulty of the text content than, for example, text 

cohesion. With regard to theories on text comprehension (see 

e.g., Wiley et al., 2005), varying text difficulty in terms of 

readability might not discriminate well enough between 

readers with different levels of reading proficiency. Hence, it 

would be interesting to focus on cohesion as a different 

indicator of text difficulty and investigate judgment bias as a 

function of this text feature and reading skill.  

The Present Study 

We examined the precision of comprehension judgments as a 

function of text difficulty and reading skill. In contrast to 

previous studies, we determined text difficulty in terms of 

text cohesion. To assess judgment bias, we used the signed 

difference between a reader’s prospective or retrospective 

judgment of comprehension and his/her actual performance 

on a comprehension test. Moreover, we assessed readers’ 
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metacognitive sensitivity and response bias as additional 

indicators of metacomprehension. 

As main effects of text difficulty on performance, we 

expected that the easy text resulted in higher performance on 

the test questions than the hard text. Regarding the effect of 

text difficulty on judgment bias, we based our hypotheses on 

findings about item difficulty instead of texts’ readability. 

Therefore, given the statistical dependence of performance 

level and judgment bias, we hypothesized that the easy text 

would lead to significant underestimation whereas the hard 

text should result in significant overestimation. Hence, using 

a within contrast, the easy text should result in a lower bias 

score of prospective and retrospective judgments than the 

hard text. Furthermore, we investigated in an exploratory way 

how reading skill was linked to readers’ judgment bias for the 

easy text compared with the hard text. To do so, we computed 

multiple linear regressions that included reading skill and 

prior knowledge as relevant predictors of prospective 

judgment bias for the easy text and the hard text. In case of 

the retrospective judgment bias, we also used readers’ 

metacognitive sensitivity and response bias that are based on 

readers’ response confidence for the test questions as 

additional predictors. With regard to the relationship of 

reading skill with metacognitive sensitivity and response 

bias, we inspected their correlations with each other. 

Method 

Design 

The experiment followed a two-factorial design with reading 

skill as a metric between-subjects factor and text difficulty as 

the within-subjects factor with two levels: one text with lower 

text difficulty (easy text) and one text with higher text 

difficulty (hard text) in terms of cohesive relations within the 

text (see also Materials). The order of the texts was 

counterbalanced across all participants. 

As dependent variables, we assessed: 1) text 

comprehension (i.e., number of correctly answered questions 

about the text), 2) the bias of prospective and retrospective 

judgments, 3) metacognitive sensitivity, and 4) response bias. 

Furthermore, we assessed participants’ prior knowledge 

about the topics of the text materials. 

Participants 

Participants were 105 university students from educational 

science. They had a mean age of 22.78 (SD = 4.95) years and 

82% of them were female. 

Materials 

Table 1 displays the main characteristics of both texts. Given 

the scope of this study, we selected texts that represented 

different levels of text difficulty in terms of cohesion. 

Cohesion refers to the extent to which relations between ideas 

in a text are made explicit by using, for example, textual 

features such as causal, temporal, or additive connectives. We 

determined cohesion by the proportion of sentences that 

contained a cohesive device on how the sentence is connected 

to previous ones. As displayed in Table 1, the cohesion score 

for the hard text was considerably lower than the score for the 

easy text. Thus, the hard text required readers to engage more 

deeply in comprehending the text compared with the easy 

text. Apart from cohesion, the texts were equivalent with 

respect to other characteristics including surface cues, such 

as readability or text length, as well as the domain of the texts 

(i.e., biology, see Table 1). 

We used six open-ended comprehension questions for each 

text. The questions tapped information explicitly stated in the 

text. 

 

Table 1: Characteristics of the texts. 

 

Characteristic Easy text Hard text 

Topic Reproduction Immunology 

No. of words 380 397 

No. of sentences 25 30 

Flesch-Indexa 46 41 

Cohesion 0.67 0.38 

Note. aTexts with a Flesch-Index (i.e., flesch reading ease 

score) between 30 and 50 reflect difficult texts in terms of 

readability that are typically used in higher education. 

Instruments and Measures 

Prospective and Retrospective Judgments Participants 

indicated how many of the six text comprehension questions 

they think they would answer correctly (= prospective 

judgment) or had answered correctly (= retrospective 

judgment; value between 0 and 6). 

Judgment Bias We used the signed difference between a 

reader’s prospective or retrospective judgment of 

comprehension and the actual performance on the text 

comprehension test. Hence, the bias score could range 

between -6 (i.e., maximum underestimation) and +6 (i.e., 

maximum overestimation). 

Response Confidence For each question, participants 

indicated how confident they were that their answer was 

correct (Likert scale from 1 = very uncertain to 7 = very 

certain). 

Metacognitive Sensitivity (d´) Sensitivity reflects the ability 

of readers to distinguish between correct and incorrect 

responses on test questions. It uses readers’ performance on 

single test questions and their response confidence on these 

test questions. We determined metacognitive sensitivity via 

d´ that is based on signal detection theory (see Fleming & 

Lau, 2014; Schraw et al., 2014) using the hit rate (i.e., number 

of questions that a reader answered correctly and rated as 

correct, divided by the total number of correctly answered 

questions) and the false alarm rate (i.e., number of questions 

that a reader did not answer correctly but rated as correct, 

divided by the total number of incorrect answers). The 

measure of d´ is the difference between the standardized hit 
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rate and the standardized false alarm rate. A value of zero 

means that the reader could not discriminate between correct 

and incorrect responses, a positive value (i.e., higher hit rate 

than false alarm rate) reflects good sensitivity, and a negative 

value (i.e., higher false alarm rate than hit rate) suggests that 

the reader considered rather a false answer as correct than a 

correct answer. 

Response Bias (c) The response bias c is based on the 

sensitivity measure d’ [c = -0.5 * (standardized hit rate + 

standardized false alarm rate)]. The response bias represents 

the tendency of a reader to accept false alarms (c < 0) or to be 

cautious when giving confidence judgments on single test 

questions in order to avoid false alarms (c > 0). 

Reading Skill We used a subtest of a computer-based 

German reading comprehension test for adults (ELVES; 

Richter & van Holt, 2005). The subtest assessed higher-order 

processes of text comprehension. 

Prior Knowledge There was a total of 12 open-ended 

questions that assessed readers’ prior knowledge on 

immunology and reproduction. These questions were not 

identical to the text comprehension questions. 

Procedure 

At the beginning, participants answered the prior knowledge 

test and proceeded with the reading comprehension test 

ELVES. After that, participants read the first experimental 

text and then judged their comprehension by predicting how 

many of the six text comprehension questions they think they 

would answer correctly. After the judgment, they answered 

the comprehension questions and rated their response 

confidence for each question. After answering all 

comprehension questions, participants made a retrospective 

comprehension judgment by indicating how many of the six 

questions they thought they had answered correctly. 

Subsequently, participants proceeded with the second 

experimental text in the same manner as they did for the first 

one. 

Results 

To test the hypotheses regarding the main effect of text 

difficulty on performance and judgment bias, we performed 

(paired) t-tests (for descriptive statistics, see Table 2). In line 

with our hypotheses, we found that the easy text resulted in 

higher performance on the text comprehension questions, 

t(104) = 13.73, p < .001, Cohens d = 1.49 (large effect), than 

the hard text. Moreover, the mean scores of prospective and 

retrospective judgment bias for both texts (see Table 2) were 

significantly different from zero (i.e., the value of perfect 

judgment), all p’s < .004. Thus, the easy text resulted in 

significant underestimation for both prospective and 

retrospective judgments. In contrast, the hard text resulted in 

significant overestimation for both types of judgment. A 

paired t-test confirmed that the easy text resulted in lower bias 

scores of prospective judgments, t(104) = -12.96, p < .001, 

Cohens d = -1.42 (large effect), and lower bias scores of 

retrospective judgments, t(104) = -6.13, p < .001, Cohens d = 

-0.68 (medium effect), than the hard text. 

Furthermore, we performed multiple linear regressions to 

examine our research question regarding the relationship of 

reading skill with judgment bias for the easy and the hard text. 

For each type of judgment bias (i.e., prospective vs. 

retrospective bias), we computed separate multiple 

regressions for the easy and the hard text. Predictors were 

entered in one step. 

 

Table 2: Means (and standard deviations) for dependent 

variables as a function of text difficulty. 

 

Dependent variable Easy text  Hard text 

Text comprehension  4.90 (1.31) 2.99 (1.25) 

Prospective judgment 

bias 

-0.79 (1.42) 1.21 (1.40) 

Retrospective judgment 

bias 

-0.35 (1.18) 0.49 (1.29) 

 

Regarding prospective judgment bias, we included prior 

knowledge on the topic of the text and reading skill as 

predictors. The results (see Table 3) showed that neither prior 

knowledge nor reading skill were statistically relevant 

predictors of prospective judgment bias for the easy text. 

However, for the hard text, reading skill was a statistically 

significant negative predictor of prospective judgment bias. 

That is, participants with higher reading skills were less likely 

to overestimate their comprehension of the hard text. 

However, as descriptive statistics revealed (see Table 2), we 

cannot conclude that these participants generally showed 

underestimation because only 12% of the total sample 

underestimated their comprehension of the hard text when 

making prospective judgments. 

 

Table 3: Predictors of prospective judgment bias 

for easy and hard text. 

 

Predictor b SE b t(101) p 

Easy text 

Constant -0.39 0.53 -0.74 .462 

Reading skill -0.02 0.03 -0.65 .516 

Prior 

knowledge 
 0.00 0.01 -0.32 .749 

Hard text 

Constant  2.43 0.49  4.96 < .001 

Reading skill -0.08 0.03 -2.83 .006 

Prior 

knowledge 
 0.00 0.01 -0.15 .881 

Note. For easy text: R2 = .01, F(2, 102) = 0.32, p = .730. For 

hard text: R2 = .08, F(2, 102) = 4.16, p = .018. 

 

Moreover, regarding retrospective judgment bias, we 

included prior knowledge, reading skill as well as 
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metacognitive sensitivity and response bias as predictors. The 

multiple regression analyses revealed (see Table 4) that 

metacognitive sensitivity and response bias significantly 

predicted the retrospective judgment bias for the easy text. 

That is, the better a reader discriminated between correct and 

incorrect responses and the more the readers avoided false 

alarms in the confidence rating, the less likely this reader was 

to overestimate comprehension when making retrospective 

judgments on questions about an easy text. This result was 

also found for the hard text. Additionally, reading skill also 

predicted retrospective judgment bias for the hard text. 

 

Table 4: Predictors of retrospective judgment bias for 

easy and hard text. 

 

Predictor b SE b t(99) p 

Easy text 

Constant -0.02 0.41 -0.05 .958 

Reading skill -0.03 0.02 -1.30 .222 

Prior knowledge  0.00 0.01  0.31 .761 

Sensitivity -0.24 0.08 -2.96 .004 

Response bias -0.59 0.14 -4.13 < .001 

Hard text 

Constant  1.51 0.46  3.30 .001 

Reading skill -0.06 0.02 -2.34 .022 

Prior knowledge  0.00 0.01 -0.48 .632 

Sensitivity -0.16 0.09 -1.78 .078 

Response bias -0.78 0.16 -5.04 < .001 

Note. For easy text: R2 = .22, F(4, 104) = 6.83, p < .001. For 

hard text: R2 = .23, F(4, 99) = 7.30, p < .001. 

 

Furthermore, we explored the relationship of reading skill 

with metacognitive sensitivity and response bias, 

respectively. As displayed in Table 5, we found that 

participants with higher reading skills were less cautious 

(measure of response bias, c) when giving confidence ratings 

on the comprehension questions about the easy text. In 

addition, they were less able to discriminate between correct 

and incorrect answers (measure of metacognitive sensitivity, 

d´) in response to questions about the hard text. Given the 

magnitude of the correlation coefficients, these relations are 

small effects. However, it appears that more-skilled readers 

were metacognitively less aware and, therefore, more 

overconfident when answering the test questions. 

 

Table 5: Pearson’s r correlations between reading skill, 

sensitivity (d´), and response bias (c) for easy and hard text. 

 

 Easy text  Hard text 

Measure d´ c d´ c 

Reading skill .10 -.22* -.27** -.16 

Note. *p < .05. **p < .01. 

 

To sum up, we found that reading skill was a relevant 

predictor of prospective and retrospective judgment bias in 

case of the hard text, but not in the case of the easy text. 

Hence, participants with higher reading skills were less likely 

to overestimate their comprehension of the hard text. 

Moreover, we found that response bias and sensitivity 

influenced retrospective judgment bias for the easy and the 

hard text. Thus, the better participants discriminated between 

correct and incorrect answers or the more cautious they were 

when rating their answers as correct, the less likely they made 

overoptimistic retrospective judgments. In addition, we 

found that sensitivity and response bias were more negative 

for readers with higher reading skills, although these effects 

were rather small. 

Discussion 

This study aimed to shed further light on the question whether 

high-performing readers adhere to judgment processes that 

lead them to consistently underestimate their comprehension 

across materials with different levels of difficulty. The results 

of our study do not support this assumption. Instead, our 

results suggest that readers with higher reading skills are 

better calibrated because they are less prone to overestimate 

their comprehension of a hard text compared with readers 

with lower reading skills. Kwon and Linderholm (2014) also 

found this relationship for texts with standard readability. 

The finding that participants with higher reading skills 

were better calibrated supports the notion that higher reading 

skills include better monitoring during reading. Readers who 

actively monitor their text comprehension obtain a more 

comprehensive mental model of the text and are therefore 

more precise at judging their comprehension (Wiley et al., 

2005). Furthermore, although a relationship between reading 

skill and judgment bias is evident, the magnitude of the 

relationship we found in our study is rather small. This 

indicates that other characteristics of the reader are also or 

even more relevant for judgment bias, for example, the self-

perceived reading skill (Kwon & Linderholm, 2014).  

In contrast to the hard text, there was no relationship 

between reading skill and judgment bias on the easy text. This 

finding can be explained by the low difficulty of the test 

questions. Therefore, general reading skill was not predictive 

of test performance on the easy text and, thus, reading skill 

was not related to judgment bias on the easy text. 

Another important finding in our study were the negative 

relations of reading skill with metacognitive sensitivity and 

response bias. This finding suggests that readers with higher 

reading skills may be metacognitively unaware when 

responding to the type of test questions we used in the present 

study. Therefore, despite their good calibration with respect 

to the hard text, participants with higher reading skills 

showed a flawed discrimination performance. To explain this 

lower discrimination, it can be speculated that their beliefs 

about their reading skill tempted high-ability readers to 
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proceed less mindfully with the test questions and, thus, to be 

overconfident on their answers. 

This interpretation does not necessarily contradict the 

findings on the positive influence of reading skill and the 

negative impact of sensitivity and response bias on 

retrospective judgment bias because the strength of these 

relations was rather small. Moreover, it can be assumed that 

other factors influence judgment bias as well. Therefore, the 

seemingly contradicting relations between reading skill, 

discrimination performance, and retrospective judgment bias 

might simply indicate complex interactions between readers’ 

characteristics and judgment processes that still need to be 

further uncovered (Schraw et al., 2014). 

The findings of this study also contribute to the 

understanding of the effects of text-based cues on judgment 

bias. In our study, the easy text (i.e., higher cohesion) resulted 

in underestimation. Given that performance on test questions 

about the easy text was rather high, this underestimation was 

very likely to occur due to probabilistic assumptions (Schraw 

& Roedel, 1994). Likewise, the observed overestimation on 

the test questions about the hard texts was also expected. In 

contrast, the easy text (i.e., higher readability) in Maki and 

colleagues’ (2005) study resulted in overestimation of 

prospective judgments for all readers. Only when readability 

of texts was low, readers, except for weak readers, adjusted 

their comprehension judgments. Thus, we can conclude that 

texts that are easy to read – and, therefore, often preferred in 

instructional contexts because they increase performance – 

are more likely to seduce readers to be overoptimistic. 

Conversely, high text cohesion does not seem to have such 

an effect on metacognitive judgment. Therefore, readers, 

including high-ability readers, are apparently unaware of the 

low validity of good text readability as a cue to judge their 

comprehension. With respect to readers’ sensitivity for text 

cohesion, we aim to analyze our data in more depth 

addressing possible anchor effects based on the within-

subjects design and also examine the role of reading skill in 

this regard. 
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Abstract 

Attention plays a fundamental role in higher-level cognition.  

In this paper we develop a computational model for how 

auditory spatial attention is distributed in space.  Our model 

builds on the assumption that attentional bias has bottom-up 

and top-down components.  We represent each component 

and their synthesis as a map, associating a level of attentional 

bias to locations in space. The maps and their interaction are 

modeled using an artificial intelligence approach based on 

constraints. We describe the behavioral task we have 

designed to measure the attentional bias and discuss the 

results.  We then test different hypotheses on the shape and 

interaction modalities of the maps in terms of how well they 

fit our behavioral data.  The findings showed that combining 

top-down and bottom-up spatial attention gradients that differ 

in their spatial properties produced the best fit to behavioral 

data, and suggested several novel mechanisms for future 

testing. 

Keywords: auditory attention; computational modeling; 
saliency map; constraints.   

Cognitive engineering problems and attention 

Humans evolved in a dynamic environment of shifting 

opportunities and threats.  Consequently, we are well-

equipped to organize and frequently change goals and 

priorities to effectively deal with events in the natural and 

social worlds.  High-level cognitive attributes, such as 

intelligence, creativity, and imagination presumably evolved 

to capitalize on these dynamics to promote survival (Flinn, 

Geary, & Ward, 2005).  A key aspect of higher-level 

cognition is attention.  An important role for attention-like 

selection in information processing may not be limited to 

human cognition.  For example, Helgason and colleagues 

proposed that attention is an essential element for systems to 

exhibit generalized intelligence, regardless of whether it is a 

biological or artificial intelligence system (Helgason, 

Thorisson, Garrett, & Nivel, 2014).   

 In this article we broadly consider attention as a flexible 

means of enhancing specific aspects of information 

processing, as determined by factors such as the current goal 

(top-down) or stimulus characteristics important to the 

organism (such as unexpected loud sounds)(Chun, Golomb, 

& Turk-Browne, 2011).  This flexibility is assumed to be 

implemented by specific cognitive processing routines that 

were selected during the course of human evolution 

(Cosmides & Tooby, 2013).  Differences between sensory 

modalities in terms of how the adequate stimulus and receptor 

transduction relate to the kinds of information that can be 

detected in the environment is one factor relevant to the 

design of attentional processes.  Consequently, in at least 

some respects attentional processing may sharply differ 

between sensory modalities. 

 We focus on the auditory system, and consider 

implications of the idea that the auditory system has a 

comparative advantage over other modalities in the ability to 

panoramically monitor the environment.  Hearing provides 

an early warning system (Scharf, 1998) that allows organisms 

to prepare for, or evade, threats and to capitalize on prey or 

mating opportunities.  This “3-D sphere” of spatial sensitivity 

for hearing is unique among sensory modalities because it can 

detect environmental events that are at a distance from the 

body (cf. somatosensation, gustation, to some degree 

olfaction) and out of sight (vision). 

 

Stability-flexibility dilemma and attentional systems 
 Most attention models consider attention that is directed by 

a conscious choice (“top-down” or “voluntary”) to differ in 

important ways from attention that is involuntarily 

“captured” by an event in the world that has a salient property 

(Petersen & Posner, 2012).  Salience can be due to physical 

properties, such as a loud sound, or by having personal 

meaning such as one’s name (Moray, 1959) or taboo words 

(Arnell, Killman, & Fijavz, 2007),  

and other aspects that may depend on the situation (Gygi & 

Shafiro, 2011).  The distinction between top-down and 

bottom-up attentional functions is both useful and 
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meaningful, even though top-down and bottom-up attentional 

processes are highly interactive (Folk, Remington, & 

Johnston, 1992). 

 One of the defining features of the top-down aspect of 

attention is that it is limited.  Either by design, such as 

matching the limitations in the number of actions that can be 

done at one time, or by overload from having too much 

information to be processed at one time, or both, voluntary 

attention is limited (Allport, 1989; Posner, 1978).  Spatial 

attention has been intensively studied, in part, because it 

vividly illustrates limitations in attentional capacity.  The 

limited capacity of spatial attention can be expressed as a 

spatial gradient relative to an attended location (reviewed in 

(Cave, 2013).  The classic way to consider this gradient is that 

it reflects decreased investment of attentional resources with 

greater distance from an attentional focus, and the extent of 

the gradient can be adjusted based on the current task 

(Eriksen & St. James, 1986). 

 The fundamental problem with including top-down and 

bottom-up attention in one general attention system that 

distributes attentional resources across space is that attention 

cannot be simultaneously both focused and diffuse.  This kind 

of trade-off has been termed the “stability-flexibility 

dilemma (Liljenström, 2003), the “shielding–shifting 

dilemma” (Thomas Goschke & Bolte, 2014), and a trade-off 

between organization and flexibility (Baars, 1997).  The 

problem is compounded by not knowing when something 

will happen outside of the attentional focus that is critical for 

survival, thus preventing an anticipatory shift by top-down 

attention.  Both top-down and bottom-up attention have clear 

survival value, but limited attention capacity implies trade-

offs between resources devoted to top-down vs. bottom-up 

attention functions.  Similar issues concerning cognitive 

trade-offs have been explored in the context of cognitive 

control and task switching (Goschke, 2000), automatic vs. 

controlled processing (Schneider & Chein, 2003), various 

dual process models of cognition (Evans, 2008), long-term 

knowledge (Caramazza & Shelton, 1998), and memory 

systems (Sherry & Schacter, 1987). 

 

Methods and computational modeling 

The present study addresses the stability-flexibility dilemma 

posed by needing attention to be both focused on a task while 

also monitoring the environment for potential threats or 

opportunities by modeling auditory spatial attention bias as 

the net result of two attention modules and their output 

(Figure 1).  Our aim is to develop a rigorous quantitative 

theory of auditory spatial attention.  One module, called the 

“goal map” is devoted to top-down attention necessary to 

perform the current task.  The other module, termed the 

“saliency map”, is specialized to monitor, in parallel, the 

environment and, when needed, engage bottom-up orienting 

that overrides current attentional focus based on top-down 

processes.  We combine novel parametric behavioral 

measures to map-out auditory attention over space with a 

computational model to explain how specific top-down and 

bottom-up mechanisms jointly determine the shape of 

auditory spatial attention gradients. 

 
Figure 1.  Proposed attentional model architecture. 

 

 Relative to existing models of auditory attention, the 

current model is designed to help understand somewhat 

higher levels of cognitive processing.  Others have modeled 

perceptual features and how they are combined to generate a 

saliency map.  There is overlap with our model at the level of 

saliency map.  Prior work computes perceptual features such 

as stimulus location, frequency, intensity, and saliency as an 

output that is computed from a raw sensory input (Coensel & 

Botteldooren, 2010; Kayser, Petkov, Lippert, & Logothetis, 

2005).  Instead, we start with perceptual features as a given 

input and model how  top-down and bottom-up modules 

interact in the context of working memory.  Note also that the 

choice of modeling auditory spatial attention in the frontal 

plane has the benefit of needing to explain attentional bias in 

only one-dimension (the azimuth plane at a constant distance 

from center of head), which simplifies modeling.  In contrast, 

visual studies of saliency maps use two-dimensional models 

(Kalinli & Narayanan, 2007). 

 
Model design  The model is designed using constraints, a 

very general and powerful artificial intelligence framework 

for problem modeling and solving.  (Rossi, Van Beek, & 

Walsh, 2006).  Constraints lie at the core of many successful 

applications in several domains such as scheduling, planning, 

vehicle routing, configuration, networks, and bioinformatics.  

The basic idea in constraint-based modeling is that the user 

states the constraints and a general-purpose constraint solver 

is used to solve them.  Constraint solvers take a real-world 

problem, represented in terms of decision variables and 

constraints, and find, if it exists, an assignment to all the 

variables that satisfies all the constraints.  A constraint 

concerns a subset of variables and defines which 

simultaneous assignments to those variables are allowed.  

Solutions are found by searching the solution space either 

systematically, as with backtracking or branch and bound 

algorithms, or use forms of local search which may be 

incomplete, that is, there is no guarantee they will return a 

solution.  Systematic methods often interleave search and 

inference, where inference consists of propagating the 

information contained in one constraint to other constraints 

via shared variables. Constraints have been used before in the 

context of human cognition for example to model skilled 

behavior (Howes, Vera, Lewis, & McCurdy, 2004).  Recently 

an implementation of the cognitive architecture ACT-R 
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based on constraint handling rules, which are a closely related 

to constraints, has been proposed in (Gall & Frühwirth, 

2014).  To the best of our knowledge, this is the first time 

constraints  are employed at this level of cognitive modeling 

and in the context of attention. 

 The model makes several assumptions regarding proactive 

and reactive control.  According to Braver’s dual mechanisms 

framework (Braver, 2012), proactive control generates a 

sustained attentional bias in accordance with task goals, such 

as focusing on a pianist about to begin their recital.  Reactive 

control, as the name suggests, is attentional orienting in 

response to a stimulus, such as if the pianist plays their first 

chord and everybody realizes that the piano is out of tune.  In 

our model the goal map is the mechanism for proactive 

control.  The spatial focus of the goal map can also be 

redirected in response to stimuli, and so could have a role in 

reactive control too.  In contrast, the saliency map codes for 

reactive control.  The relation between the saliency map and 

proactive control is only indirect.  The focus of the saliency 

map is designed to be away from the goal map focus, thus 

any proactive shifts in the goal map focus will consequently 

lead to a similar shift in the saliency map focus. 

 

Task and data to be modeled  Young adult subjects (n=42) 

listened to 25 and 75 Hz amplitude modulated white noise, 

and responded with left/right hand (counterbalanced across 

subjects). Virtual stimuli were delivered via headphones to 

one of 5 locations in the frontal horizontal plane (L→ R 

locations: -90°, -45°, 0°, +45°, +90°; 2.4 sec SOA).  In each 

6 min block subjects attended to a standard location (either -

90°, 0°, or +90°).  Most stimuli were given at the standard 

location (p=.84), with occasional shifts to the other 4 

locations (p=.04/location).  Analysis of variance (ANOVA) 

was used to examine reaction time as a function of standard 

condition (3) and stimulus location (5).  Data were collapsed 

across AM rates (ns).  We note that the following model is 

designed from general principles based on the attention and 

working memory literature, but the actual modeling here is 

very specific to our task.  This is common in other areas such 

models of canonical visual search tasks.  Future work will 

expand this model to include other tasks and situations. 

 

The model  Behavioral results were modeled using a 

constraint-based representation made up of three 

components: goal map, saliency map, and priority map. The 

maps represent the attentional bias across the horizontal 

frontal plane (-90° to +90°) (see heat-map in Figure 2, top-

left) .  The priority map is the weighted sum of the goal and 

saliency maps and represents the total attentional bias at each 

degree location.  Operationally, attention bias in the priority 

map relates to reaction time by equation 1: 

 

Eq. 1 Attentional bias = (2,000-reaction time)/(2,000) 

 

The “2,000” value was chosen as an upper limit on reaction 

times to be analyzed (both in ms), and included nearly every 

correct trial in every subject.  The units of attention bias are 

arbitrary, but index reaction time with a range of between 

approximately 0.90, which corresponds to a an extremely fast 

reaction time of 200 ms, to 0.0, which indicates a 2,000 ms 

reaction time.  Thus, larger attention bias values in the 

priority map reflect short reaction times and efficient 

processing, and longer reaction times have smaller values.   

Figure 2: Variables and constraints that represent the 

interactions between the three maps in the model. 

 

Each map is represented by a collection of variables, one for 

each 2-degree (the minimum distinguishable by a human ear) 

location in the range {-90°,…,+90°}, and a set of constraints 

over the variables.  Figure 2 (left) shows a portion of the 

constraint graph of the model where nodes correspond to 

variables and edges to constraints.  These constraints limit the 

simultaneous assignments of the constrained variables as 

indicated in the equations below, where  VG
i, VS

i, and VP
i 

represent the i-th variables of the goal, saliency and priority 

maps.  The constraints defining each map  involve the 

variable corresponding to the attended location (A) and the 

variables corresponding to a location.  The variables 

associated with the goal map (blue nodes in Figure 2) are 

constrained to represent a standard Gaussian distribution with 

its peak at level GG and located at the attended location A. An 

example of one such distribution is shown in Figure 2 right 

above the set nodes representing the goal map variables.  

Each node represents the 2 degree portion of the x-axis right 

above it and the associated attentional bias value (y-axis) is 

the value assigned to the variable corresponding to the node. 

Similarly, for the saliency (where the distribution is shown 

below the nodes) and the priority map. Note that parameter 

dG is the standard deviation of the Gaussian and is used to 

model a symmetrical decrease in top-down attentional 

resources away from the goal location.  Likewise, the 

variables corresponding to the saliency map have values 

compatible with an inverted Gaussian distribution with peak 

level –GS at attended location A and   standard deviation dS 

representing a symmetrical increase in bottom-up attention 

away from the attended location. Finally, each priority map’s 

variable takes as value the weighted sum of the values of the 

corresponding goal map and saliency map variables. The 
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graph at the bottom-right of Figure 2, shows an example of a 

goal map bias (green), saliency map bias (blue) and the 

associated priority map (purple). Weights  and , are used 

to model the magnitude of contribution of, respectively, the 

goal and saliency maps to the priority map. 

𝐺𝑜𝑎𝑙 𝑀𝑎𝑝: (𝐴 = 𝑎, 𝑉𝐺
𝑖 = 𝐺𝐺𝑒

−|𝑎−𝑖|2

2𝑑𝐺
2

) 

𝑆𝑎𝑙𝑖𝑒𝑛𝑐𝑦 𝑀𝑎𝑝: (𝐴 = 𝑎, 𝑉𝑆
𝑖 = 𝐺𝑆 − 𝐺𝑆𝑒

−|𝑎−𝑖|2

2𝑑𝐺
2

) 

 

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑀𝑎𝑝: (𝑉𝐺
𝑖 = 𝑢, 𝑉𝑆

𝑖 = 𝑣, 𝑉𝑃
𝑖 = 𝛼𝑢 + 𝛽𝑣) 

 

We note that the constraint based model allows an easy 

extension to a 2D or 3D bias distribution. This can be 

achieved in two ways: either by increasing the number of 

variables (e.g. for the planar case a set for each concentric 

hemisphere), or by increasing the complexity of the domain 

values, e.g. 2D bias distributions over  2 degree sectors. 

 

Results 
We first describe and discuss the results of the behavioral 

experiment in the previous section, and then the results of 

applying our computational model to the behavioral data.  

The goal map and saliency map each had two parameters for 

fitting: attention bias and standard deviation.  

 

Behavioral results 
Reaction time curves for angular shifts had an inverted-u 

shape at all 3 standard locations (p’s<.01)(Figure 3).  

Attending to the right (+90° standard) had an attenuated 

inverted-u curve vs. -90° and 0° standards (p<.01).  Results 

show comparable reaction time increases to the nearest shift 

location for the 0° and -90° standards, and then decreases in 

reaction time at the most distant locations.  For the +90° 

standard there was a more gradual increase and decrease in 

reaction time across shift locations.  Accuracy was high for 

all stimulus locations and conditions (> 94%) and will not be 

analyzed here. 

 

 

Figure 3.  Behavioral results showing mean reaction times 

for standard locations at the far left (-90°), midline (0°), and 

far right (+90°) locations.  A) Reaction time as a function of 

location for the three standard locations.  B)  Normalized 

reaction times plotted relative to the standard location, here 

denoted by “0°”. 

 

 

Computational modeling results 
Stochastic local search was used to find parameter values for 

dS, dG, GS and GG, that minimize the root-mean-square (rms) 

error between the priority map and behavioral data.  

Bootstrapping methods were used to compare model fit as the  

parameters for the goal and saliency maps varied.  There were 

100 runs for each standard location to assess the consistency 

of results.  On each run half of the subjects (n=21) were 

randomly selected to train the model.  The model was then 

tested for fit using root-mean square error on the grand 

average of the remaining subjects (n=21). 

 
Comparison of two vs. three-component models  Having 

attention bias centered on the standard location and 

decreasing with distance was modeled with only the goal map 

having input to the priority map.  This two-component model 

had a poor fit to the reaction time data, with rms values nearly 

100x worse than models with both goal and saliency map 

inputs to the priority map (Figure 4).  Models with both top-

down (goal map) and bottom-up (saliency map) spatial 

attention bias fit the data well, with rms values ranging from 

0.0040 to 0.0035 for left or right standard locations (±90°) 

and 0.0011 and 0.0012 for the 0° standard.  The fits at each 

standard location were all significantly different from each 

other (p’s < .001).  By contrast, rms values with only the goal 

map in the model were 0.3137 ((-90° standard), 0.3060 (+90° 

standard), and 0.1191 (0° standard). We note that a model 

based only on the saliency map was not tested as it would 

have not been able to model the increased bias at the attended 

location.  The results clearly show that a simple attention 

gradient that decreases with distance from the attended 

standard location (goal map only) is unable to account for the 

behavioral data.  Models with both goal and saliency maps 

provided a good fit to the behavioral results.  It is unclear why  

 

Figure 4.  Model fit with only the goal map (GM) 

representing top-down attention bias vs. the addition of a 

bottom-up component (saliency map, SM).  Models 

examined whether goal and saliency maps had either equal 

influence on the priority map (“GM & SM) or their levels 

were included as a parameter in the model (“free levels”).  

Model fit was measured using root-mean-square error (rms). 
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the fit for the 0° standard is even better than the ±90° 

standards, but this may relate to the truncated range of 

locations on either side (±90°). 

 

Standard deviation parameters  The range of spatial 

attention bias for the goal and saliency maps was quantified 

with separate standard deviation parameters (Figure 5).  

When only the goal map was included in the model the best 

fits had standard deviations of ~100°, which produced a 

gradual decrease of attentional bias from the standard 

location.  As shown above, only including the goal map 

produced a poor fit to the behavioral data.  In all models with 

goal and saliency maps the standard deviations had, large, 

progressive reductions from standard locations on the left, to 

midline, and to the right (p<.001).  This pattern was evident 

for both the goal and saliency map SD parameters.  Analysis 

of both fixed and free bias models showed main effects of 

map type, with significantly larger SD values in the saliency 

map (p’s < .001).  There were interactions between standard 

location and map type, indicating that the difference between 

the SD of goal and saliency maps varied among standard 

locations (p’s < .001). 

 

Figure 5.  Standard deviation (SD) parameters in the models 

with goal map (GM) and saliency map (SM) components.  

Standard deviation units are in degrees. 

 

Attention bias level  Lastly, we tested a model where the 

attention bias levels from the goal and saliency maps to the 

priority map were free to vary.  The findings from when bias 

parameters were added to the model are shown in Figure 6 

for each standard location.  For the ±90° standards the goal 

map had a significantly greater bias than the saliency map, 

indicating a greater influence over the priority map outcomes.  

This was most evident for the -90° standard, which had little 

variability among modeling runs (p<.001).  In contrast, for 

the 0° standard there was substantial variability over 

modeling runs, and there was no significant difference 

between goal and saliency map bias. 

 

Note that the range of attentional bias levels in the goal and 

saliency maps is much larger than the priority map (data not 

shown).  This is the result of the model solutions having SD  

Figure 6.  Attention bias level results in the free level models.  

Bias indicates the overall level of inputs from the goal and 

saliency maps to the priority map.  Greater bias indicates 

more influence over the priority map values. 

 

parameter values that were both narrow enough to 

individually have bias levels near asymptote within the 

degree range tested.  The model sums the contributions of 

goal and saliency maps to generate the priority map, which in 

turn is proportional to reaction time.  The goal and saliency 

curves over space overlapped such that when one map had 

low bias the other had a large amount of bias.  This additive 

approach in combination with moderate SD ranges forces 

many locations to have large differences between goal and 

saliency map values while retaining a much smaller range of 

priority map values.  For perspective, the range of biases of 

between .76 - .70 corresponds to reaction times between 480-

600 ms. 

 

Discussion and conclusions 
In this paper we have studied spatial attention of the auditory 

system from a behavioral and computational modeling point 

of view.  The main findings were that a traditional top-down 

attention gradient could not account for the behavioral data, 

but a model with two gradients corresponding to top-down 

and bottom-up bias worked well.  The model is based on 

structuring the overall allocation of attentional bias as the 

sum of bottom-up and a top-down components.  We have 

presented behavioral results aimed at describing the effect of 

the overall attentional bias and we have provided an 

experimental evaluation of different model hypothesis in 

terms of how well they fit the data. There was a pronounced 

left-right asymmetry in the reaction time profiles as a 

function of location that was accounted for by progressive 

reductions in the SD parameters of goal and saliency maps.  

The results support our approach which constitutes, to the 

best our knowledge, the first computational model that 

integrates top-down and bottom-up auditory spatial attention 

processes.  
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Abstract  

Many different functional roles have been ascribed to the 
motor system due to its prevalent recruitment in perceptual 
and cognitive tasks other than motor production. We discuss 
findings that suggest the motor system might take on multiple 
roles that vary with context and the brain networks involved. 
Using single-pulse TMS, we measured the corticospinal 
excitability of the FDI muscle in primary motor cortex as 
participants viewed words that were either typed or 
handwritten. We observed consistent facilitation of 
corticospinal excitability during reading of handwritten text. 
Although we observed facilitation in corticospinal excitability 
during the presentation of typed text, this effect decreased 
with repetitive presentations of stimuli. We suggest that the 
facilitation during presentation of typed words is a case of 
action simulation, and that the diminishing facilitation in the 
case of typed stimuli is representative of sensory prediction 
by the motor system. These findings suggest that we should 
consider multiple roles for motor recruitment during the 
observation of visual stimuli, taking context into 
consideration.  
Keywords: Action observation, motor involvement in 
reading, sensorimotor prediction.  

Introduction  
The motor system is involved in a large number of cognitive 
and perceptual domains, including action observation, 
perception of object affordances, speech perception, 
language and metaphor, and social cognition. There are 
many theories aimed at explaining this widespread use of the 
motor system. We will introduce some of these theories here 
and work supporting each of them. Then we provide an 
alternative hypothesis: that there is no one particular role for 
the motor system in perception and cognition, but that it 
plays many roles decided, in part, by situational context.  

Outside of its role in moving the body, the most common 
and widely posited role of the motor system is in 
observation-execution mapping. A network which includes 
several motor regions of the brain is responsible for mapping 
observed actions onto one’s own motor system, which is said 
to underlie action understanding. The neurological 
underpinnings of this system rely on particular neurons in 
motor cortex, called mirror neurons, that fire during both 
observation and performance of a motor act in macaque 
monkeys and in humans. (Rizzolatti et al. 1988, di Pellegrino 

et al., 1992; Gallese et al., 1996; Mukamel et al., 2010). 
Umiltà et al. (2001) found that some subset of mirror 
neurons fire during the final part of an observed action, even 
if that final part of the action is occluded from view, 
suggesting that mirror neurons code the goal-related 
execution of an action. This also suggests that mirror 
neurons respond to action-related situations where 
determining the actor and situation involves more inference, 
suggesting a role in deeper understanding of action. Kohler 
and colleagues (2002), recording from single neurons in 
monkey premotor cortex, found that some of the same 
neurons that fire during observed action will also fire when 
monkeys are only hearing the auditory information from the 
action (i.e., the cracking of a peanut). Again, this involves 
inference to the presence of the actor without visual 
recognition.   

Motor activation during action observation is also called 
motor resonance (Iacoboni, 1999), due to its time-
dependent and effector-specific nature. It is said that the 
motor system of the observer “resonates” with that of the 
actor, allowing the observer to use their own body to 
understand the action being performed. Gangitano, 
Mottaghy, and Pascual-Leone (2001) applied transcranial 
magnetic stimulation (TMS) to record motor-evoked 
potentials (MEPs) from the first dorsal interosseus (FDI) 
muscle on the right hand during the observation of a cyclic 
hand movement. They found that at the time when the FDI 
muscle of the observed hand was most contracted, MEPs in 
the observer were highest, and when the muscle was least 
contracted, MEPs were lowest. Thus, the motor resonance 
occurring in the observer is timelocked with specific 
muscle activity in the observed agent.   

A related theory of motor system involvement is that of 
overt action simulation (Barsalou, 2009; Gallese and 
Lakoff, 2005). This is related to the above mentioned 
position and not mutually exclusive, as observation-
execution matching could involve low-level simulation of 
an actor. Simulation theories, however, posit explicit 
ongoing simulation underlying perceptual and cognitive 
processes as a sort of online enactment, particularly for 
understanding semantics of action language. In other 
words, linguistic phrases such as “the boy caught the ball” 
are understood by low level simulation of the action in the 
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sentence. Numerous studies have shown that action 
language activates the motor system.  
In an fMRI experiment, Hauk, Johnsrude, and 

Pulvermuller (2004) found that when participants read 
action words related to the arm, leg, or face, the 
corresponding regions of the motor somatotopy were active. 
Oliveri et al. (2004), using single pulse TMS, found that 
motor cortex activation increased for both action nouns and 
action verbs when compared to activation during non-action 
words. Candidi and colleagues (2010) found that verbs 
conjugated in the future tense induce higher corticospinal 
excitability than verbs conjugated in the past. Finally, Yang 
and Shu (2016) performed a meta-analysis on a large 
number of fMRI experiments where subjects were listening 
to literal action sentences, fictive motion sentences, 
metaphorical action sentences, and idioms, and found 
increased activation in motor regions during metaphorical 
action sentences. This activation is thought to contribute to 
understanding and mapping metaphors onto their concrete 
reference. Simulation theories are often associated with 
embodied cognition, proposing that we use our brains and 
bodies to ground conceptual and abstract content in 
sensorimotor systems.   

The third theory we discuss is sensory prediction. In this 
case what is being coded for in the motor system is 
sensorimotor prediction, or continuous online prediction of 
the very next state of the stimulus. A predictive role for the 
motor system is suggested in Clark’s (2015) theory of 
“embodied prediction”, in which motor activation during 
action observation would entail prediction of the upcoming 
sensory signal based on the current sensory information. In 
this case, motor cortex would be active during the 
observation of a grasping action, because the observer’s 
brain would be actively predicting the very next movement 
via motor regions. Thus, a predictive role can account for the 
findings from the action-observation network literature. 
Wilson and Knoblich (2005) outline a version of the 
perceptual prediction role of motor areas that uses what they 
call perceptual emulators. An emulator is a mental 
simulation that models the external world. The emulator 
continues updating the model online, and the output from 
this emulator can be compared to the actual state of the 
external world to verify that expectations are being met. 
Emulators running in the motor system would internalize a 
model of the biomechanics of the human body, allowing 
observers to model the movements of an observed agent as 
they unfold in time. Importantly, these emulators are running 
one step ahead of sensory input, predicting the upcoming 
external state before it happens and then comparing real to 
modeled state afterward.  

If the motor system uses these emulators, it should also be 
able to model predictable sensory information that isn’t 
human-made, such as rhythmic waves or the bouncing of a 
ball, by internalizing a model for the observed system. 
Supporting research comes from Schubotz (2007), whose 
work suggests that even observation of movements coming 

from non-animate entities recruits the motor system. In a 
number of fMRI experiments, they find that particular types 
of perceptual prediction tasks involving such things as pitch 
identification, spatial or object-related identification tasks 
activates premotor areas in a somatotopic way, similar to 
effector-related observation/execution tasks. For instance, 
object-related tasks recruited regions of premotor cortex that 
share activation in hand-related execution and observation 
tasks. As there isn’t a common repertoire to humans and 
rolling waves, these findings could not be explained under 
the motor resonance account.   

We propose that the role of the motor system varies 
depending on context. For instance, during the perception of 
action language, the motor system might serve to provide the 
motor component of covert simulation that occurs in the 
embodied processing of language. During the observation of 
very well practiced movements by an outside actor, the 
motor system may serve the purpose of driving motor 
resonance in the observer to quickly map the actions to the 
observer’s body and understand the action. Finally, during 
perceptual processing of non-human movements, the motor 
system might serve to assist in perceptual processing by way 
of predictive emulator models.   

One potential way of differentiating between prediction 
and simulation is by observing how the modulation of the 
motor system changes over repetitive viewing of stimuli. If 
the observer is simulating the observed action, then we 
should see a steady facilitation of MEPs across repetitions of 
a stimulus, indicating simulation at each occurrence. If 
motor system facilitation is due to predictive processes, 
however, might expect a different pattern of modulation. 
Because less error correction takes place as a stimulus 
becomes more predictable, we can predict that the neural 
populations underlying the predictive processes will be less 
active for more predictable sensory stimuli. Thus, we should 
see a decrease in corticospinal excitability over multiple 
repetitions of a stimulus, as it becomes more predictable and 
leads to lower error correction..  

In this experiment we look at corticospinal excitability 
using single-pulse transcranial magnetic stimulation (TMS) 
during the perception of written language to examine the 
extent of motor involvement in a few variations of the 
stimuli. Subjects viewed videos of words being written out 
with a stylus and of words being typed letter by letter. 
Previous analyses in our lab have shown that observation of 
handwriting leads to motor simulation, while observation of 
typed words does not. We proposed that this is because 
while it is apparent that the handwritten text are human 
created, this is less apparent for text created on a keyboard. 
We repeat all stimuli four times over the course of the 
experiment. We predicted that MEPs in the handwritten 
stimuli trials would show an even facilitation across all 
presentations of the stimuli, because simulation should be 
consistent no matter how predictable it is. We hypothesized 
that the MEPs in the typed stimuli trials would show initial 
facilitation, which would lessen as the stimuli are repeated 

2121



  3  

and there is less prediction error. This would be expected 
because the first presentations of the stimuli, appearing letter 
by letter, should be difficult to predict, resulting in a large 
error in perceptual prediction. As stimuli are presented more 
often, perceptual prediction should become easier and less 
effort required on the part of error correction.  

   
Methods  

Participants: 	 			 
Twenty-four right-handed normal participants (8 males, 16 
females, mean age ~ 19.5) were recruited in this study 
through UC Merced’s SONA research system. All 
participants passed a safety screen and gave written, 
informed consent. The experimental procedure was 
approved by the UC Merced Institutional Review Board. 
Participants received 2 research credits that can be used for 
credit in some undergraduate courses.	 			 
	 			 
TMS and EMG recording: 	 			 
Corticospinal excitability was measured by the amplitude of 
motor evoked potentials (MEPs) recorded using 
electromyography (EMG) on the first dorsal interosseus 
(FDI) muscle of the right hand. Two small adhesive 
electrodes (1cm^2) were placed over the belly of the 
recorded muscle and a ground electrode was placed over a 
bone on the participant’s elbow. A bandpass filter (50 
Hz1,000 Hz) was applied to the EMG signal, which was 
digitized at 1,000 Hz for offline analysis. MEPs were 
elicited by applying single-pulse TMS to the FDI region of 
the left motor cortex. Pulses were delivered using a Magstim 
Rapid² with an attached 70-mm figure-of-eight coil 
positioned over the optimal scalp location with the handle 
pointing backward at 45 degrees from the midline. The 
procedure was as follows. Subjects were fitted with a swim 
cap that was covered by a grid of dots placed 1 cm² apart. 
Optimal scalp position was determined by moving the coil 
by one centimeter intervals until the location eliciting the 
best MEPs was identified. This location was marked on the 
swim cap worn by the participant. Resting motor threshold 
was determined as the percent of machine output that 
produced 5 out of 10 MEPs of at least 50 µV peak-topeak 
amplitude. The stimulation intensity during the experiment 
was set to 120% of a participant’s resting motor threshold. 
The coil was held steady at the optimal position throughout 
the experiment. Subjects were instructed to keep their head 
still and remain relaxed for the duration of the experiment. 
				 
	 			 
Experimental paradigm:	 			 
The visual stimuli consisted of videos of either handwritten 
or typed words or nonwords appearing letter by letter at a 
variable typing speed averaging 3-4 letters per second. 
Words were chosen that did not relate to any actions or 
manipulable objects, to ensure that our measurement would 
not be influenced by the effects of semantic processing of 

action. We also included 10 baseline trials, which consisted 
of a single black box for the same duration as the stimuli. 
We chose to randomize the baseline trials in with the rest of 
the trials so that the baseline measure would not be biased 
by a lack of attention that can occur when baseline measures 
are all recorded pre-experiment. Stimuli included ten 
linguistic stimuli, which appeared four times in each of the 
conditions. This resulted in 80 stimuli trials and 10 baseline 
trials, or a total of 90 trials. Eight seconds passed in between 
individual trials, and the total experiment length was 
approximately 12 minutes. We chose to apply stimulation 
two seconds into the ongoing video, so that as the stimuli 
were repeated, they were more highly predictable (by the 
presence of the first few letters) by the time stimulation 
occurred. Because TMS stimulation would occur two 
seconds into the video, we ensured that the typed stimuli 
would display one of the following letters at that time [N, H, 
U, M, J, I], so that if subjects were simulating the typing in 
proper typing position, FDI would be the simulated muscle.	 

The stimuli appeared on a computer screen in front of the 
participants. Participants were instructed to attend to the 
stimuli on the screen and were given notice when the  
experiment was one-third and two-thirds of the way finished 
to prevent loss of attention. 	 			 

TMS pulses were delivered 2 seconds after video onset. 
The interval between trials was 8 seconds, to avoid any 
cumulative effects of single-pulse TMS. After the 
experiment, subjects were asked whether they were able to 
stay attentive during the length of the experiment. 
Participants who said they were not were excluded from 
analyses (5 subjects).  

  

 
  
Figure 1: Examples of stimuli used in the experiment. 
Handwritten stimuli are on the left and typed stimuli on the 
right. In the experiment, participants saw the stimuli appear 
as a video as they were written or typed.  

Results  
The average raw MEP amplitude for handwritten stimuli 

was 1.126 mV, with a standard deviation of 1,303. The 
average for typed words was 1098 mV, with a standard 
deviation of 1.295. Because of the large variations between 
participants, raw MEP amplitude values were z-scored to 
allow inter-individual comparisons. The resulting z-scores 
indicate the distance (in standard deviations) that a particular 
MEP score is from the mean. Figure 2 shows the average z-
score in each condition. The average z-score for handwritten 
stimuli was .1, while that for typed stimuli was -.06.   

A two-way repeated-measures analysis of variance 
(ANOVA) was computed on the standardized MEPs to test 
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for significant effects. The considered factors were condition 
(handwritten or typed) by order (nth time that a stimulus 
appeared). We observed a significant main effect for 
condition, with handwritten stimuli producing greater 
facilitation of MEP amplitude with respect to typed stimuli, 
F(1,23) = 7.62, p < .01. We also observed a significant 
interaction effect of condition by order of presentation, 
F(3,184) = 3.77, p = .05. In particular, there was a consistent 
facilitation in MEPs in the handwritten stimuli regardless of 
how many times the stimulus has been presented. In the 
typed stimulus condition, however, there was an initial 
facilitation in the MEP amplitude that decreased with each 
repetition of the stimuli. This pattern of results confirms our 
hypothesis of typed stimuli showing an initial facilitation of 
corticospinal excitability, followed by a decrease in that 
facilitation. This also confirms our hypothesis that the 
handwritten words would induce consistent facilitation of 
corticospinal excitability.  

A linear regression of presentation number on baseline 
zscore  was performed in order to evaluate whether the 
baseline MEPs changed with multiple presentations of the 
stimuli. The regression came out non-significant (t = -1.1, p 
> .3). This indicates that overall MEP amplitudes are not 
varying as a function of time or number of repetitions to 
stimuli.   

  
   
Figure 2: Standardized (Z-scored) MEP amplitudes for each 
condition. X-axis shows presentation number (nth time a 
stimulus was presented). Motor evoked potentials in the 
handwritten condition show consistent facilitation, while 
those in the typed condition show initial facilitation that 
decreases with presentation number.  

  
Discussion  

In this experiment we observed a differential pattern of 
motor facilitation dependent on word reading condition. In 
particular, the observation of actively handwritten words 
produced a persistent facilitation in MEP amplitudes. This is 
consistent with the action observation research, where 

subjects view actions produced by others over multiple trials 
and produce consistent MEP facilitation. When subjects are 
exposed to actively typed words, however, the pattern of 
MEP facilitation changes, with repetitive exposure to the 
stimulus resulting in a decrease in observed corticospinal 
excitability. In previous work, we hypothesized that typed 
stimuli might not show simulation because of two reasons. 
Either the act of typing has weak or no sensorimotor 
association, or the discrete nature of typed words does not 
invoke simulation the same as the continuous strokes of 
handwriting.   

Evidently the motor system is doing something different 
from motor simulation during the observation of words that 
are actively typed. One potential hypothesis is that 
corticospinal excitability in the typed condition is influenced 
by attentiveness. As subjects are repeatedly exposed to 
words, they might lose interest and thus exhibit lower 
attention. We included in the experiment a baseline measure 
appearing randomly throughout, consisting of a solid black 
box that appears instead of the language stimuli. There were 
10 baseline trials used. If corticospinal excitability was 
picking up on a measure of attention, we should see a 
predictable decreasing trend in MEP amplitudes across 
repetitions of the baseline trials as well. No such decreasing 
trend was observed over the repeated baseline trials. Though 
we cannot rule out the possibility entirely, this does suggest 
that there is something happening for the typed stimuli other 
than decreased attentiveness.  

We suggest that the decrease in excitability across 
repetitions of stimuli is due to sensory prediction by the 
motor system. When the stimuli are less predictable (i.e., the 
first presentations), the sensory prediction error is large, 
resulting in higher motor activation. As the stimuli are 
repeated and become more predictable, the sensory 
prediction error becomes lower and we observe less 
corticospinal excitability in the motor system. This account 
is consistent with Schubotz’s (2007) findings of motor 
activation during serial prediction tasks and Wilson and 
Knoblich’s (2005) emulator account.   

If our theoretical formulation is correct, this implies that 
the study of motor involvement in perception and cognition 
should take into account that the motor system is playing 
multiple processing roles that are network and 
contextdependent. The action observation based recruitment 
of the motor system is well established. Strong evidence 
suggests that this is due to motor resonance that is both 
effectorspecific and time-dependent. We contend that the 
role of motor cortex in action-observation is for low-level 
activation of one’s own motor repertoire. Under our account, 
motor activation during perceptual processing of non-
human-created stimuli, reported by Schubotz and colleagues, 
is not at odds with the resonance account of action 
observation. The particular information processing role of 
motor regions does not need to be identical across contexts. 
The functional network underlying action observation 
includes bilateral mid-temporal gyrus (MTG) and left 
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inferior parietal lobule as well as left premotor cortex. 
(Gazzola, Aziz-Zadeh, & Keysers, 2006). Other brain 
regions active during figurative language include the left and 
right inferior frontal gyrus (IFG), bilateral medial frontal 
gyri (medFG), left temporal lobe, and amygdala. (Bohrn, 
Altmann, & Jacobs, 2012). The function of motor activation 
in each of these different networks can be defined by its 
connections and interactions, allowing a motor predictive 
system or motor simulation system when appropriate.  

How would this region have multiple functional roles? 
Evidence from single-unit recording of neurons in premotor 
areas suggests that there is a wide variety of neurons that 
respond to different contexts. For example, during the 
discovery of mirror neurons, many types of such neurons 
were identified (Di Pellegrino et al., 1992). Some of these 
are called “strictly congruent” mirror neurons, which 
respond to action observation and action execution only to 
the same exact movement. More common were “broadly 
congruent” mirror neurons, which respond to action 
observation and action execution during similar types of 
movements, encompassing a broader response range. We 
postulate that the first type is responsible for driving motor 
resonance-related activation, while the latter type could 
potentially underlie the sort of sensory prediction we discuss. 
Finally, a third type of neuron they observed was called a 
“canonical neuron”, which respond to the observation of 
manipulable objects. Perhaps these neurons could play a role 
in mental simulation, or affordance processing. These 
examples are all speculative and not grounded by any 
evidence in the present work, but they aim to push intuitions 
toward a fresh perspective. Future work using single-neuron 
recording would be needed to directly test such hypotheses. 
At a brain region level, however, we can learn more by 
observing how activation in local regions changes with 
repetition of sensory stimuli or changes in stimuli.  

Future research that we are currently engaged aims to 
explore how sensorimotor contingencies are learned by 
training participants on novel sensory to motor mappings. 
We will then use these controlled artificial mappings to 
explore sequential prediction and/or simulation using the 
motor system.    
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Abstract

Winner-take-all (WTA) mechanisms are an important compo-
nent of many cognitive models. For example, they are often
used to decide between multiple choices or to selectively di-
rect attention. Here we compare two biologically plausible,
spiking neural WTA mechanisms. We first provide a novel
spiking implementation of the well-known leaky, competing
accumulator (LCA) model, by mapping the dynamics onto a
population-level representation. We then propose a two-layer
spiking independent accumulator (IA) model, and compare its
performance against the LCA network on a variety of WTA
benchmarks. Our findings suggest that while the LCA net-
work can rapidly adapt to new winners, the IA network is bet-
ter suited for stable decision making in the presence of noise.
Keywords: Neural Engineering Framework; Nengo; winner-
take-all; decision making; mutual inhibition; neural competi-
tion; dynamical systems

Introduction
Winner-take-all (WTA) networks are mechanisms that se-
lect the largest value among a number of inputs. More pre-
cisely, given a D-dimensional vector corresponding to the
non-negative utility of D different choices, the desired out-
put is positive for the dimension with highest utility (i.e., the
“winner”) and zero for all others. This mechanism is regu-
larly employed as a component of cognitive models involving
selective attention (e.g., Itti, Koch, & Niebur, 1998; Standage,
Trappenberg, & Klein, 2005) and decision making, where
the action with the highest utility is selected to drive be-
haviour (e.g., O’Reilly, 1998).

A large body of literature examines the optimality of WTA
mechanisms and their consistency with neurobiological and
psychological data (e.g., Bogacz, Brown, Moehlis, Holmes,
& Cohen, 2006; Gold & Shadlen, 2007; Smith & Ratcliff,
2004). Here, we investigate the suitability of two different
WTA mechanisms in the context of neurally plausible cogni-
tive modelling. In particular, we map each mechanism onto
a network of spiking neurons, and then compare them using
a set of functional benchmarks that are normative in nature.
The first mechanism we consider is an implementation of the
leaky, competing accumulator (LCA) model from Usher and
McClelland (2001). The LCA model and variants have been
widely used, for example in versions of the Temporal Context
Model (Sederberg, Howard, & Kahana, 2008), and in work
on the Remote Associates Test models (e.g., Kajic, Gosmann,
Stewart, Wennekers, & Eliasmith, 2017). The second mecha-
nism we consider is the independent accumulator (IA) model
that we propose here, which involves a secondary threshold-
ing layer that is recurrently connected to a primary integrating
layer.

To implement each model, we use the Neural Engineering
Framework (NEF; Eliasmith & Anderson, 2003) to map the
model’s dynamics onto populations of spiking neurons. In
the remainder of the paper, we provide a short introduction to
the NEF, describe our implementation of the two WTA mech-
anisms, present our benchmarks, and finally discuss some re-
sulting implications for cognitive modelling.

Methods
The Neural Engineering Framework
The Neural Engineering Framework (NEF; Eliasmith & An-
derson, 2003) is a method for mapping a cognitive model, de-
scribed using mathematical equations, onto a spiking neural
network. We now describe the aspects of this framework that
are relevant to this work, by summarizing its three principles:
representation, transformation, and dynamics.

Principle 1: Representation We define the representation
of a scalar value x(t) by an encoding and decoding with re-
spect to some population of neurons. The encoding of x(t)
into a spike train ai(t) for neuron i is given by:

ai(t) = Gi

[
αieix(t)+ Jbias

i

]
, (1)

where αi is a gain factor, ei is an encoder that determines a
neuron’s tuning curve, Jbias

i a bias current, and Gi [·] is the
neural nonlinearity. Here, we use spiking, leaky integrate-
and-fire (LIF) neurons for Gi [·], and set the encoders to one.
Decoding weights di are then used to approximate the repre-
sented value x̂(t) from the activity of the population of neu-
rons by:

x̂(t) = ∑
i

di
[
(ai ∗h)(t)

]
, (2)

where h(t) = τ−1
s exp(−t/τs) is an exponentially decaying

synaptic filter with time-constant τs, and ∗ is the convolution
operator. The decoding weights are obtained by least-squares
optimization of the error Ex = |x− x̂|. For the transmission
of a value from one population to another, the connection
weights are given by:

Wi j = α je jdi. (3)

Principle 2: Transformation By finding alternate decod-
ing weights d f

i with the error given by E f (x) =
∣∣ f (x)− x̂

∣∣, arbi-
trary linear and nonlinear functions f (x) can be approximated
in the connections between neural populations.
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Principle 3: Dynamics Given some desired nonlinear dy-
namics for the state variable x(t):

∂x
∂t

= g(x), (4)

we can map these dynamics onto a recurrent transformation,
by harnessing the synaptic filter mentioned in Principle 1. In
particular, for the exponentially decaying h(t) we may apply
Principle 2 to the recurrent transformation f (x) = τsg(x)+ x
to ensure that x(t) obeys Equation 4.

Leaky, competing accumulator model
Using the principles of the NEF, we have implemented the
widely-used leaky, competing accumulator (LCA) model pro-
posed by Usher and McClelland (2001). The dynamics (see
Fig. 1a) for each state variable xi(t), 1 ≤ i ≤ D, where D is
the number of choices, are given by:

∂xi

∂t
=

ρi− kxi−β ∑
j 6=i

x j

 1
τ
, xi ≥ 0, (5)

where ρi is each external input, k is the leak rate, β the lateral
inhibition, and τ the integration time-constant. This model
essentially integrates each input ρi with a leak term (−kxi),
minus competition from every other variable (β∑ j 6=i x j). Sup-
posing ρi > ρ j for all j 6= i, a WTA mechanism should indi-
cate that i is the winning choice. Setting k = β = 1 will guar-
antee that the winning state xi converges to the value of the
largest input ρi, while each losing state x j ( j 6= i) converges
to zero. Other choices of k merely alter the effective τ and
the effective gain on the input, while other choices of β will
produce unwanted behaviours (see supplementary analysis).

We implement Equation 5 with the NEF by using one pop-
ulation of neurons for each xi, and applying Principle 3 to
each population. By appropriately selecting the gain and bias
parameters from Principle 1, we ensure that each state vari-
able is rectified (xi ≥ 0) as required. We believe this imple-
mentation is novel as it does not interpret each xi as a distinct
neural firing rate, but rather as a population-level represen-
tation distributed across any number of spiking neurons. In
effect, heterogeneous spike trains are weighted by optimal
decoding weights to precisely implement the stated dynam-
ics. This allows us to attain greater biological realism without
altering the dynamics prescribed by Equation 5.

Independent accumulator model
The other WTA mechanism that we investigate is our pro-
posed independent accumulator (IA) model (see Fig. 2). We
use the term ‘independent’ to refer to the fact that there are
no direct interactions between each accumulator, unlike in the
LCA model which has direct competition between states. To
enable a form of competition, we add a second thresholding
layer that projects back to self-excite and mutually-inhibit the
first layer. We now provide the details of each layer – again
implemented using the principles of the NEF.
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Figure 1: Example time course of the state variables in
the LCA (top) and IA (bottom) networks with three choices
(D = 3). The vector of inputs is [0.8,0.7,0.6].

The first layer consists of a separate integrator population
(i.e., accumulator) for each state variable xi(t), 1 ≤ i ≤ D.
The second layer consists of independent, non-recurrent pop-
ulations that receive input from the first layer in a one-to-
one fashion. From the second layer, we decode the func-
tion x̄i := Θ(xi−ϑ) where Θ is the Heaviside function, and
ϑ = 0.8 is a fixed threshold value that determines how much
evidence needs to be accumulated to produce an output. The
Heaviside decoded output of layer 2 projects back to layer 1
to add x̄i− β̄∑ j 6=i x̄ j to the input of xi. Since intuitively the
largest input will accumulate the fastest, once this reaches the
threshold ϑ it will self-excite and inhibit all other state vari-
ables. Fixing β̄ = 2 ensures that the losing state variables will

ρ1 x1 x̄1

ρ2 x2 x̄2

...
...

ρD xD x̄D

Layer 1 Layer 2Inputs

Figure 2: Independent accumulator (IA) network. Neural
populations are denoted by circles labelled with their repre-
sented state variable. Arrows denote excitatory connections,
while lines ending in circles denote inhibitory connections.
The second layer computes x̄i := Θ(xi−ϑ).
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go to zero (see supplementary analysis). This is summarized
more precisely by the following dynamics (see Fig. 1b):

∂xi

∂t
= ρi

1
τ1

+

x̄i− β̄ ∑
j 6=i

x̄ j

 1
τ2
, xi ≥ 0. (6)

Notably, this takes the form of Equation 5 after substituting
τ = τ1, k = −τ1/τ2, and β = β̄τ1/τ2, with the only remain-
ing difference being the Heaviside nonlinearity applied to the
state feedback. Thus, in contrast to the continual competition
occurring in the LCA model, the threshold ϑ is a free param-
eter that controls how much evidence needs to be integrated
before enabling any competition between states. Instead of
directly manipulating ϑ, we opt to change τ1, which has a
comparable effect due to the leak-free integration.

Note that the decoded output from layer 2 of the IA net-
work has higher variance than the LCA network (Fig. 1), but
the separation of the output for different choices is more rel-
evant than the variance in interpreting the output.

Benchmarks
To test and compare the two WTA mechanisms we provide
an input of ρi = u− s(1−δ1i)+ηi, where u is the magnitude
of the largest input, s > 0 is the target separation relative to
all other inputs, δ is the Kronecker delta, and ηi is Gaussian
(white) noise with standard deviation σ. Thus, without loss
of generality, the first state variable receives the largest in-
put u plus noise, and all other state variables receive a noisy
input that is smaller by s. It is important to note that u not
only determines the size of the largest input, but also the gen-
eral baseline of inputs. Since all of the runner-ups have equal
magnitude, this represents the most difficult scenario for the
networks, where all potential choices must be considered. As
s→ 0 the problem also becomes more difficult because the
utilities of the choices are closer together. We use u = 1 un-
less indicated otherwise, and set the number of choices to
D = 10. Furthermore, we increment the noise variance to
highlight successes and failures as the task becomes increas-
ingly difficult with more noise. This allows us to determine
which functions are performed robustly by each network. In
both WTA models we use 200 neurons per choice. In the IA
network this is split into 150 neurons for each layer 1 popula-
tion and 50 neurons for each layer 2 population. All remain-
ing network parameters are summarized in Table 1.

To evaluate the two mechanisms on the previously defined
input, we use a number of separate metrics. First, we deter-
mine whether the model is able to form a clear decision within
one second. To be counted as ‘clear’, at least one output must
remain above 0.15 across the time interval (1s,2s] while all
other outputs remain below this threshold. This lower bound
of 0.15 was chosen to ensure that noise on a zero output is
not mistaken for a non-zero output. Note that this metric re-
quires that the decision does not change throughout the time
interval. This does not take into account whether the winning
output actually corresponds to the largest input. However, for

Table 1: Summary of parameter values.
LCA time-constant τ = 0.1s
LCA recurrency parameters k = β = 1
IA accumulation time-constant τ1 = 0.1s, 0.5s
IA feedback time-constant τ2 = 0.1s
IA threshold ϑ = 0.8
IA recurrency parameters β̄ = 2
Recurrent synaptic time-constant τs = 0.1s
Feed-forward synaptic time-constant τs = 0.005s
Output decoding synaptic time-constant τs = 0.01s

some models it is more desirable to produce a clear incorrect
decision than an unstable incorrect decision. In other situa-
tions, though, the correctness of the decision may be of higher
importance. Thus, we consider a trial ‘correct’ if the model
forms a clear decision, and the largest output corresponds to
the true largest input. Measurement of correct trials forms our
second benchmark.

We use two additional benchmarks on the set of all trials
with a clear decision. First, it is important to consider the
speed at which the network can make decisions. We there-
fore define the ‘decision time’ as the length of time it takes to
fulfil the conditions of a clear decision. Second, the correct-
ness metric only considers the final averaged output during a
time interval. It is possible for a network to produce transient
outputs before the final decision is reached. In the context of
a larger model, this can become a problem because the tran-
sient output might be prematurely interpreted as a decision.
Thus, we define it as the ‘highest output of a losing choice’
during the whole simulation.

Results
We find that the ability to form a clear decision of the LCA
network decreases with more noise and less target separation
(see Fig. 3). Also, the magnitude of the inputs has an im-
portant influence. For a small inputs with u = 0.2 the winner
will mostly not exceed the 0.15 threshold with noise present.
The best performance is achieved with medium inputs with
u = 0.6. Higher inputs make it more likely that runner-ups
will exceed the 0.15 threshold, especially with a small target
separation. In contrast to the LCA network, the IA network
manages to form a clear decision in every trial (not explicitly
shown in Figure 3, but all data points fall on the grey line).

Interestingly, for all clear decisions the correct winner was
determined by the LCA network. Thus, a plot of correct tri-
als looks identical to Figure 3, with slightly different error
bars. While always reaching a clear decision, the decisions of
the IA network are not always correct. Overall, the IA perfor-
mance tends to be worse than the LCA performance for a high
input magnitude, but better for smaller inputs (Fig. 4a, b). We
can greatly improve the IA performance by increasing τ1 to
0.5 s which slows down the integration of evidence (Fig. 4c).
This improves the IA performance to be above the LCA per-
formance for high baselines, but it will also increase the de-
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Figure 3: Fraction of trials with a clear decision for the LCA network (which also exactly matches the fraction of correct trials).
Each plot shows data for a different input magnitude u. Error bars denote bootstrapped 95% confidence intervals. The grey
horizontal line indicates the optimum, which coincides with the performance of the IA network.

cisions times of the IA network. For a low baseline with
u = 0.2, it makes the IA network unable to decide within the
allocated time frame, but given more time it would still reach
a decision.

As shown in Fig. 5a, the time required to reach a decision
in the LCA network depends mostly on the size of inputs and
target separation. We averaged over the different noise condi-
tions because the noise influence on the timing was minor. In
the IA network the largest input is the most important factor
(dashed vs. solid lines in Fig. 5b). Depending on this magni-
tude, the network can either be faster or slower than the LCA
network, but it will need more time given a value of τ1 that
achieves the same fraction of correct responses as the LCA
network. There is also a slight influence of target separation
and input noise, with an interaction of these two parameters
(solid lines in Fig. 5).

Finally, looking at the transient responses indicates that
both models might produce outputs of losing choices. For the
LCA network the magnitude of the transient response mainly
increases with the amount of noise (Fig. 6a). For the IA net-
work, transient outputs are smaller in noisy conditions, but
can be higher than for the LCA network in less noisy condi-
tions with small target separations. The magnitude of such
transient responses is reduced by adjusting τ1 to 0.5, at the
cost of a slower decision.

Discussion
We have shown that neither network performs better on all
benchmarks, but rather each is better suited for different pur-
poses. For instance, the LCA network can determine the cor-
rect winner more quickly, and, given that a conclusive deci-
sion was made, it always selects the correct winner. However,
under noisy conditions it may fail to produce a clear output at
all, and thus not make a decision. This can be problematic for
cognitive models that must form a clear decision (even when
it may be incorrect). The IA network might not be able to
identify the correct winner as quickly or as reliably (depend-
ing on the choice of τ1), but given enough time it will eventu-

ally arrive at a decision and produce a clear output. This is a
direct consequence of the thresholding on the state feedback,
which prevents competition from occurring until a sufficient
amount of evidence has accumulated. This also enables the
IA network to react to small inputs. In addition, the IA net-
work is easily extendible to allow dynamic control of the de-
cision speed, by supplying an external bias to layer 2 to adjust
the ϑ threshold.

The LCA network is especially well-suited for situations
where a decision needs to be continuously adjusted. The dy-
namics constantly push the winning state variable to the mag-
nitude of the largest input, while adapting to input changes
along a time-scale of τ. This makes it quick to respond to
changes in the input for smaller τ, but leads to randomly
switching outputs due to noise.

In contrast, the IA network is better suited for situations
where a discrete sequence of decisions is required. After se-
lecting a winner, the model’s decision will persist due to self-
excitation, even in the absence of input. Thus, after making
a decision, it is necessary to reset the model by inhibiting the
winning accumulator. This limits how quickly successive de-
cisions can be made and reduces the ability to react to chang-
ing inputs. However, once a decision is made, the network
provides a stable output. For example, we intend to use the
IA network in a model of free recall to output a sequence of
WTA responses. In this case, the model requires stable recall
in the presence of noise, even if each response may not be the
“true” winner.

Both models might produce a transient response that may
be interpreted as a decision, which can make the detection
of decisions problematic. This is of special relevance when
incorporating the networks into larger cognitive models. For
the LCA network, the transient behaviour is inherent to its
design; there will always be an initial rise of all state vari-
ables (that receive input) before the mutual inhibition grows
strong enough to push them back to zero. In the IA network,
however, such transient responses may be avoided by choos-
ing appropriate τ1 and ϑ. It should be noted that other recur-
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Figure 4: Fraction of correct trials for the IA network. Each plot shows data for a different combination of input magnitude u
and integration time-constant τ1. Error bars denote bootstrapped 95% confidence intervals. The grey horizontal line indicates
the optimum.
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Figure 5: (Left) Mean decision times for the LCA network. Shown data is averaged across all noise levels, since noise had
minimal effect on decision times. (Right) Mean decision times for the IA network with input magnitude u = 0.2 (solid) and
u = 1 (dashed). Error bars denote bootstrapped 95% confidence intervals.

rently connected readout mechanisms have been proposed for
the two choice case that produce bursting outputs somewhat
comparable to the IA network (Lo & Wang, 2006). However,
the evidence integration in the Lo and Wang (2006) model
uses competition via pooled inhibition, making it more simi-
lar to the LCA then the IA network.

We have not yet investigated the agreement of these mech-
anisms with neurobiological and behavioural data, although
this has been done before for other WTA networks (Gold &
Shadlen, 2007; Smith & Ratcliff, 2004). The implementation
in spiking neurons, however, provides some basic biological
plausibility and more readily permits comparisons with neu-
ral data. In particular, the IA network predicts that the firing
rates for neurons in the first layer will rise up to a threshold,
and that neurons in the second layer will not become active
or inhibit the first layer until reaching this threshold. Neurons
in the macaque lateral intraparietal area exhibit a similar step
response (Latimer, Yates, Meister, Huk, & Pillow, 2015). In
contrast, the LCA network predicts that the firing of any neu-
rons will proportionately inhibit all other neurons that do not
represent the same state. With regard to behavioural data, dif-
ferent effects for decision times are predicted as the number

of choices increases: for the LCA network decisions become
slower due to the mutual interaction, but for the IA network
decisions will take less time because only a single accumula-
tor needs to exceed the threshold. Nevertheless, evidence for
one network does not exclude the possibility that the other
network is employed for different tasks or by different brain
areas. Relatedly, it might be more plausible to distribute the
representation of all state variables over a single population of
neurons. This is directly supported by the NEF, but we chose
to leave this to future work to keep the current analysis free
from potential interactions of the state variables introduced
by such a distributed representation.

We also did not look at at the influence of the number of di-
mensions D in detail. For higher D, we see reduced accuracy
overall since each additional choice has a baseline chance to
win due to noise. Nevertheless, the results that we discuss
here are qualitatively similar.

One critique of non-leaky accumulator models is that their
ability to discriminate the largest input increases indefinitely
with time (Usher & McClelland, 2001) and that there is no
sensible stopping criterion. However, this assumes that the
time to reach a decision has no cost. If time-to-decision has a
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Figure 6: Transient response (highest output of losing choices) for the LCA and IA network. Error bars denote bootstrapped
95% confidence intervals. The grey horizontal lines show the optimum.

cost, then it will at some point exceed the gain achieved from
making a correct decision. Furthermore, this argument as-
sumes integration with perfect accuracy. But, with networks
built using the NEF, the representation of each state variable
has limited precision, and so an ideal trade-off must be found.

To conclude, we investigated two spiking neural networks
computing a winner-take-all function based on the leaky,
competing accumulator model and a novel two-layer inde-
pendent accumulator model. While both perform the same
basic tasks, they fail in different ways as each task scales
in difficulty via increased noise or less separation between
choices. From a modelling perspective, this makes each net-
work more useful for different situations. The LCA model
is better for continuous updating of decisions, whereas the
IA network is better suited for more discrete decisions in
the presence of noise. It is left to future work to investigate
whether these two distinct mechanisms can be identified from
either behavioural or neurophysiological data.

Notes
Source code and supplementary analysis are available at
https://github.com/ctn-waterloo/cogsci17-decide.

Acknowledgments
This work was supported by the Canada Research Chairs pro-
gram, the NSERC Discovery grant 261453, Air Force Office
of Scientific Research grant FA8655-13-1-3084, CFI, OIT,
and NSERC CGS-D.

References
Bogacz, R., Brown, E., Moehlis, J., Holmes, P., & Cohen,

J. D. (2006, October). The physics of optimal decision
making: A formal analysis of models of performance in
two-alternative forced-choice tasks. Psychological Review,
113(4), 700–765. doi: 10.1037/0033-295X.113.4.700

Eliasmith, C., & Anderson, C. H. (2003). Neural engineer-
ing: Computation, representation, and dynamics in neuro-
biological systems. Cambridge, MA: MIT Press.

Gold, J. I., & Shadlen, M. N. (2007). The neural basis of
decision making. Annual Review of Neuroscience, 30(1),
535–574. doi: 10.1146/annurev.neuro.29.051605.113038

Itti, L., Koch, C., & Niebur, E. (1998, November). A model
of saliency-based visual attention for rapid scene analysis.
IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 20(11), 1254–1259. doi: 10.1109/34.730558

Kajic, I., Gosmann, J., Stewart, T. C., Wennekers, T., & Elia-
smith, C. (2017). A spiking neuron model of word asso-
ciations for the Remote Associates Test. Frontiers in Psy-
chology, 8(99). doi: 10.3389/fpsyg.2017.00099

Latimer, K. W., Yates, J. L., Meister, M. L. R., Huk, A. C.,
& Pillow, J. W. (2015, July). Single-trial spike trains
in parietal cortex reveal discrete steps during decision-
making. Science, 349(6244), 184–187. doi: 10.1126/sci-
ence.aaa4056

Lo, C.-C., & Wang, X.-J. (2006, July). Cortico–basal gan-
glia circuit mechanism for a decision threshold in reac-
tion time tasks. Nature Neuroscience, 9(7), 956–963. doi:
10.1038/nn1722

O’Reilly, R. C. (1998, November). Six principles for bi-
ologically based computational models of cortical cogni-
tion. Trends in Cognitive Sciences, 2(11), 455–462. doi:
10.1016/S1364-6613(98)01241-8

Sederberg, P. B., Howard, M. W., & Kahana, M. J. (2008).
A context-based theory of recency and contiguity in free
recall. Psychological Review, 115(4), 893–912. doi:
10.1037/a0013396

Smith, P. L., & Ratcliff, R. (2004, March). Psychology and
neurobiology of simple decisions. Trends in Neurosciences,
27(3), 161–168. doi: 10.1016/j.tins.2004.01.006

Standage, D. I., Trappenberg, T. P., & Klein, R. M. (2005,
July). Modelling divided visual attention with a winner-
take-all network. Neural Networks, 18(5–6), 620–627. doi:
10.1016/j.neunet.2005.06.015

Usher, M., & McClelland, J. L. (2001). The time course
of perceptual choice: The leaky, competing accumulator
model. Psychological Review, 108(3), 550–592. doi:
10.1037/0033-295X.108.3.550

2130



Folk intuitions about consciousness
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Abstract: In science and philosophy, there is still no general agreement on what ‘consciousness’ is. But how do normal
people (with no education in psychology or philosophy) use the term in their everyday life? What is the folk understanding
of the word “conscious”? We conducted an online study on how the general public uses the word “consciousness” in their
daily life. Participants (n=445) answered the question “What is consciousness?” in four different formats: they (1) generated
free definitions in their own words, (2) generated many synonyms, (3) generated one synonym, or (4) selected one alternative
description in a multiple choice task. The most frequent words were: alertness, clarity, I-sensation, knowledge, perception,
reflecting, and thinking. The word perception was provided most often across all formats. There was also a high correlation
between all response formats. We discuss these findings and their implications for the scientific study of consciousness.
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Abstract 

Across languages, back is produced earlier and more 
frequently than front. This asymmetry has been attributed 
either to a conceptual/semantic asymmetry in the early 
meanings of these locatives (with back being more basic than 
front; conceptual immaturity account) or to the fact that Back 
configurations are inherently more ‘noteworthy’ than Front 
configurations (pragmatic account). Here, we tested the two 
accounts. In Study 1, children and adult speakers of English 
and Greek described Front/Back motion events. In Study 2, 
adult speakers of 10 additional languages described the same 
events. Despite cross-linguistic differences, speakers of all age 
and language groups typically used more Back than Front 
adpositions; furthermore, they often encoded Back information 
in occlusion verbs (e.g. hide) but no such verbs were available 
for Front. Thus, the front/back asymmetry is not due to 
children’s conceptual immaturity but should be linked to 
pragmatic factors that also shape adult spatial language 
production cross-linguistically. 

Keywords: front; back; motion events; spatial cognition; 
language production; pragmatics; theories of acquisition 

Introduction 
It is widely recognized that children acquire spatial locatives 
in a consistent order cross-linguistically (e.g., E. Clark, 1980; 
E. Clark, 1977; Johnston & Slobin, 1979; Parisi & Antinucci, 
1970). In many cases, patterns of language use in children, 
especially when these emerge cross-linguistically, have been 
argued to point to shared (possibly universal) conceptual 
asymmetries in underlying representations (Bowerman, 
1996). For instance, the early emergence of prepositions such 
as in and on has been considered to reflect the early 
development of the notions of containment and support 
(Johnston & Slobin, 1979; Piaget & Inhelder, 1967). 

However, it remains unclear whether patterns of spatial 
language use in children can be attributed merely to 
conceptual factors. For instance, unlike their positive 
counterparts in and on, ‘negative’ containment and support 
prepositions such as out and off are used extremely 
infrequently by children to mark locations, although, in 
principle, both ‘positive’ and ‘negative’ prepositions should 
present the same level of conceptual difficulty for the learner 
(compare The egg is in the cage vs. The egg is out of the cage; 
Papafragou, Viau, & Landau, 2013). By contrast, a pragmatic 
explanation seems more adequate to account for these facts: 
‘negative’ prepositions are used less frequently because their 

informational contribution is low (they do not specify where 
something is) unless they can be interpreted as indicating a 
change of location (The bird is out of the cage is more 
felicitous than The egg is out of the cage; ibid.). Even though 
it is often acknowledged that both conceptual and pragmatic 
factors shape the way spatial language is used and acquired 
(e.g., E. Clark, 1973; Levinson & Wilkins, 2006), the exact 
contribution of each factor remains open. The objective of the 
current study is to contribute to this debate. 

Case study: the acquisition of front and back 
The acquisition of the locatives front and back presents a 
particularly good domain to explore the division of labor 
between pragmatic and conceptual explanations of spatial 
language acquisition and use. A number of studies have 
shown that, across different languages, the locative back is 
produced earlier and appears more frequently in children’s 
speech than the locative front (Johnston, 1984; Johnston & 
Slobin, 1979; Kubena, 1968). Some researchers have 
suggested that this asymmetry should be attributed to the 
conceptual immaturity underlying children’s early 
representations of the relations front and back. According to 
this view, although the adult meanings of front/back are 
geometric and semantically symmetrical (“first/second in-
line-of-sight”), children’s early meanings are immature, 
function-based and asymmetrical: front means “visible” and 
back means “occluded”. This conceptual/semantic 
asymmetry in the early meanings of Front and Back results in 
the asymmetric acquisition of the locatives (Johnston, 1984; 
Johnston & Slobin, 1979).  

Other researchers have argued that the asymmetry in the 
acquisition of front and back should be attributed to the 
pragmatics of these spatial expressions (Hill & Vandeloise, 
1991; Tanz, 1980). On this view, occlusion and visibility 
characterize typical Back and Front configurations, with 
occlusion (the functional corollary of Back) being, typically, 
more informative than visibility (the functional corollary of 
Front). Thus, children use back more frequently than front 
because the communicative need to mark that an object is 
occluded is (in most cases) more pressing than the need to 
mark that an object is visible.  

The two explanations converge on the view that children 
should encode Back more frequently than Front but, 
crucially, they differ on whether adults should also exhibit a 
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similar asymmetry. If the asymmetry is due to early, 
immature meanings for the prepositions front and back (i.e., 
visibility and occlusion), as posited by the conceptual 
immaturity account, adults, having mature spatial semantics, 
should use the two terms equally frequently. By contrast, if 
the front/back asymmetry is driven by the inherent 
‘noteworthiness’ of occlusion, as proposed by the pragmatic 
account, adults–just like children–might also exhibit the 
asymmetry. 

Furthermore, the two accounts share the assumption that 
the meanings of the prepositions front and back involve the 
notions of visibility and occlusion, but they disagree on 
whether adults should entertain such meanings. On the 
conceptual immaturity account, adults (unlike children) 
should not have a bias to mark occlusion (as opposed to 
visibility) with expressions beyond front and back (e.g., with 
verbs such as hide, etc.) because such function-based 
representations should characterize only the early immature 
child semantics. By contrast, on the pragmatic account, 
adults–just like children–might also show a bias to mark 
occlusion. 

Current study 
In the current study we test the predictions of the conceptual 
immaturity and pragmatic explanations. In Study 1, we elicit 
descriptions of Front/Back motion events from children and 
adult speakers of two typologically distinct languages 
(English and Greek). In Study 2, adult speakers of 10 
additional languages describe the same events.  

To evaluate the predictions of the conceptual immaturity 
and pragmatic explanations we compare Front/Back motion 
descriptions in both children and adults. Although previous 
research, surprisingly, did not include adults, adult data, 
especially if they represent a wide cross-linguistic sample, are 
crucial for validating theories of spatial language acquisition 
and use.  

Furthermore, we look at elicited descriptions of motion 
paths. Unlike prior work on locative front/back, the choice of 
motion paths allows us to compare not only the use of ‘front’ 
and ‘back’ adpositions (prepositions and postpositions) 
across the languages in our sample but also the use of 
functional information (occlusion/visibility) encoded in 
verbs (see Landau & Jackendoff, 1993; Miller & Johnson-
Laird, 1976; Talmy, 1983, on the role of spatial verbs). To 
ensure cross-linguistic validity, we include both satellite-
framed languages that tend to encode motion paths in 
particles/non-verb elements, and verb-framed languages that 
tend to encode motion path information in the verb (Talmy, 
1985). In study 1, we compare English (a satellite-framed 
language) to Greek (a verb-framed language). In study 2, our 
language sample contains an equal number of verb-framed 
and satellite-framed languages. For completeness in path 
descriptions, each Front or Back path has a goal variant (e.g., 
figure moving in front of/ behind the reference object) and a 
source variant (e.g., figure moving from front of/ from behind 
the reference object). In the case of Back paths, figures 
undergo a dynamic change of state from visibility to 

occlusion (for goals) or vice versa (for sources).  In the case 
of Front paths, figures undergo a change of location without 
a change of visibility (e.g., when figure X moves to/from 
front of Y, X moves along a trajectory while being 
continuously visible). 

Study 1 

Methods 
Participants Participants were 40 native English speakers 
and 40 native Greek speakers. They fell into two age groups 
(Children, Adults) with 20 participants in each age group for 
each language. The English-speaking children were recruited 
at daycares in Newark, DE and ranged between the ages of 
3;8 and 5;5 (M=4;6). The English-speaking adults were 
undergraduate students at the University of Delaware and 
received course credit for their participation. The Greek-
speaking children were recruited at daycares in Evia, Greece 
and ranged between the ages of 3;9 and 5;3 (M=4;6). The 
Greek-speaking adults were University students or young 
professionals and were recruited in Evia and Athens, Greece. 

Materials The stimuli consisted of a total of 48 dynamic 
motion events presented in Microsoft PowerPoint. Each 
event consisted of a Figure, which was always the same 
soccer ball, and a Reference object, which was selected from 
a set of simple, abstract 3D objects. We chose to use very 
simple schematic stimuli to elicit only or mainly path 
information (even from speakers of a language such as 
English which regularly encodes manner of motion). 

The motion events depicted a total of eight different spatial 
relations, each with a source and a goal version. This battery 
was part of a larger project investigating cross-linguistic 
descriptions of motion paths. In the present study, we focus 
on Front (IN FRONT OF/FROM IN FRONT OF) and Back 
(BACK/FROM BACK). Stimuli depicting the Back relation 
always involved occlusion but stimuli depicting the Front 
relation never did (see Fig.1).  

 

 
 

Figure 1: Schematic examples of test events. In 
FRONT/FROM FRONT scenes, the ball is always visible 
but in BACK/FROM BACK scenes it is occluded at the 

endpoint (goal scenes) or the beginning (source scenes) of 
the event. 
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The remaining relations were Containment (IN/OUT OF), 
Cover (UNDER/FROM UNDER), Support (ONTO/OFF 
OF), Contact (TO/FROM), Vertical Proximity (TOWARDS 
THE SIDE OF/AWAY FROM THE SIDE OF), and 
Horizontal Proximity (TOWARDS THE TOP OF/AWAY 
FROM THE TOP OF). 

Six events were shown for each relation (3 exemplars, each 
with a goal and a source version). The source and goal 
versions of the same exemplar were identical except for the 
color of the Reference object and the direction of the motion 
path. The motion events lasted for three seconds and then the 
end state of the event remained on the screen until a key was 
pressed.  

Procedure The adult participants were told that they would 
see a series of motion events involving a ball and another 
“toy.”  After viewing each event, the participants had to 
describe, in their native language, what the ball did in each 
event. Events remained on the screen until a key was pressed. 
The adult participants performed one practice trial. 
Children were told that they were going to play a game where 
animals play with balls and “toys.” They were then shown a 
screen with all Reference objects, and were told to call them 
all “toys.” In order to help children maintain attention, a slide 
with a small cartoon animal in one of the bottom corners was 
presented before each motion event. The children’s attention 
was drawn to the animal by the experimenter saying “Look 
at the (animal)! Let’s see what the (animal)’s ball will do!”. 
The motion clip was then played and remained on the screen; 
then the experimenter asked the child to describe what the 
animal’s ball did. The children completed at least three 
practice trials before beginning the experiment.  

Coding Each linguistic description for the Front and Back 
relations was first coded for the presence of a target 
preposition that had to correspond to the type of scene 
(goal/source). For Front (goal scenes), the target prepositions 
were in front of/to front of in English and brosta apo/brosta 
sto ‘in front of’ in Greek.  For Front (source scenes), target 
prepositions included from (in) front (of) in English and (apo) 
brosta (apo) ‘(from) front (of)’ in Greek. For Back (goal 
scenes), the target prepositions included behind, to back/in 
back in English and piso (apo)/apo piso ‘behind’ in Greek. 
For Back (source scenes), the target prepositions included 
from behind in English and apo piso (apo) ‘from behind (of)’ 
in Greek.  

The linguistic descriptions were also coded for the 
presence of spatial expressions of visibility or occlusion.  For 
the Front relation, there were no expressions encoding 
visibility.  This fact is highly significant, and we return to it 
in the Results section. For the Back relation, we coded 
predominantly appearance/disappearance verbs that encoded 
occlusion (or, more accurately, a change of state from or to 
occlusion): disappear and hide (goal scenes), appear,  
emerge (source scenes) in English, and hanome ‘disappear’, 
krivome ‘hide’ (goal scenes) and emfanizome ‘appear’, 
apokaliptome ‘reveal oneself’ (source scenes) in Greek.  

Finally, all linguistic descriptions of Front and Back 
relations were coded in terms of the total target spatial 
information they contained (i.e., target preposition or 
occlusion expression).  This was done because there was 
often overlap in the use of target prepositions and other 
expressions to describe an event (e.g., in Greek I bala krivete 
piso apo to pehnidi ‘the ball is hiding behind the toy’), so 
analyzing each separately might not accurately represent the 
way Front and Back relations are linguistically represented.  

Results and discussion 
In three separate analyses, we test the competing predictions 
of the conceptual immaturity and the pragmatic account in 
terms of (a) the use of front/back prepositions, (b) the use of 
a broader set of visibility/occlusion expressions, (c) the use 
of the devices in (a) and (b) combined.  

Use of front vs. back prepositions 
Beginning with prepositions, we performed a mixed 2 ×2 ×2 
ANOVA with Relation (Front, Back) as a within subjects 
factor, Age (children, adults) and Language (English, Greek) 
as between subjects factors, and the proportion of target 
prepositions as the dependent variable. The analysis yielded 
a significant main effect of Relation (F(1, 76) = 11.29, p = 
.001, η2 = .13): participants, overall, mentioned Back 
prepositions more frequently than Front prepositions (MF = 
.35, MB = .45). The analysis also yielded a main effect of Age 
(F(1, 76) = 70.65 , p < .001, η2 = .48): unsurprisingly, adults 
used more prepositions than children (MCH = .17, MAD = .65). 
Finally, the analysis returned a marginally significant effect 
of Language (F(2, 76) = 3.55, p = .063, η2 = .05) in the 
expected direction: English speakers exhibited a small 
tendency to use more target prepositions than Greek speakers 
(MENG = .50, MGR = .29). The ANOVA did not show any 
other effects or interactions.  

Use of visibility vs. occlusion terms 
We moved beyond front/back prepositions in the two 
languages under study to consider a broader set of 
expressions encoding visibility for Front and occlusion for 
Back relations. As already mentioned, across ages and 
languages, there was a great variety of expressions encoding 
occlusion in Back scenes in the present dataset, but no 
expressions encoding visibility in Front scenes. We, thus, 
analyzed only expressions marking occlusion (since visibility 
was not encoded). A two-way factorial ANOVA, with the 
proportion of occlusion expressions as the dependent variable 
and Age and Language as factors, returned a main effect of 
Language (F(1, 76) = 10.51, p = .002, η2 = .12): because the 
occlusion expressions were mainly verbs, Greek speakers 
used occlusion expressions more frequently than English 
speakers (MENG = .38, MGR = .60). Crucially, the ANOVA did 
not yield an effect of Age (F(2, 76) = 0.87, p = .769, n.s.): 
adults used occlusion expressions as frequently as children. 
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Use of total Front vs. Back information 
Finally, to explore the predictions of the conceptual 
immaturity and pragmatic accounts at a more comprehensive 
level of spatial encoding, we analyzed the proportion use of 
total spatial information (target prepositions and occlusion 
expressions) to mark Front and Back relations. We conducted 
a mixed 2 ×2 ×2 ANOVA with Relation (Front, Back) as a 
within subjects factor, Language (English, Greek) and Age 
(children, adults) as between subjects factors, and the 
proportion of total spatial information as the dependent 
variable (see Fig.2). Results yielded a significant main effect 
of Relation (F(1, 76) = 137.42, p < .001, η2 = .64) and a main 
effect of Age (F(1, 76) = 52.19, p < .001, η2 = .41), qualified 
by an Age by Relation interaction (F(1, 76) = 11.53, p = .001, 
η2 = .13). T-tests within each relation revealed that the 
interaction was due to the fact that although adults used a 
higher amount of spatial information for both the Front and 
Back relations than children (ps < .001), this difference was 
smaller for the Back relation (MFRONT_DIFF = .47 vs. 
ΜBACK_DIFF = .22). Importantly for present purposes, spatial 
information was used more frequently to encode Back 
compared to Front relations by both age groups (children: 
t(39) = -10.33, p < .001; adults: t(39) = -6.22, p < .001).  

 
 

 
 
Figure 5: Proportion of total spatial information given by 

English and Greek speakers for the Front and Back 
relations. Error bars represent standard error. 

 
Overall, these results show that both children and adults 

encode Back information more frequently than Front 
information at the three levels of spatial encoding. The 
analysis of Front and Back prepositions showed an 
asymmetry in the use of ‘front’- and ‘back’-denoting 
prepositions in both age and language groups.  Furthermore, 
the asymmetry generalized to a broader range of 
occlusion/visibility expressions: Back scenes often elicited 
expressions encoding the change to or from occlusion (e.g., 
verbs denoting appearance/disappearance), and these 
expressions were used equally frequently by adults and 
children. By contrast, Front scenes did not elicit any 
expressions encoding visibility in any age or language group. 
Finally, an examination of the total spatial information 
offered in Front and Back paths confirmed the conclusion that 

asymmetries in encoding the two types of path are largely 
informational: both children and adult speakers of English 
and Greek marked Back paths more frequently than Front 
paths. These findings are in accordance with the pragmatic 
hypothesis, which allows for the asymmetry to be present in 
various age groups and at any level of spatial encoding. 

Study 2 
In Study 2, we tested 14 native speakers of 10 languages 
(Cantonese, Dhivehi, German, Javanese, Korean, Pashto, 
Malay, Spanish, Swahili, Turkish) on a paradigm almost 
identical to that in Study 1. We included both satellite-framed 
languages that, like English, tend to encode motion paths in 
particles/non-verb elements, and verb-framed languages that, 
like Greek, tend to encode motion path information in the 
verb (Talmy, 1985). Our new sample was split almost evenly 
between these two language types (Spanish, Turkish, Korean, 
and Swahili are verb-framed, German, Cantonese, and 
Javanese are satellite-framed, and Dhivehi, Malay, and 
Pashto are of unknown type). 

Methods 
Participants Native speakers of 9 languages (Cantonese, 
Dhivehi, German, Korean, Malay, Pashto, Spanish, Swahili, 
Turkish) were recruited from the graduate student population 
of the University of Delaware. All students were proficient in 
English as well as their native language and had spent on 
average 5 years in the US. Data from one additional language 
(Javanese) were collected at a site abroad (Jakarta, 
Indonesia); see Table 1 for all 10 languages and language 
families. One to two informants from each language were 
tested. The average age of the informants was 26 years. 
Participants received a $10 gift certificate as compensation 
for their participation. 
 

Table 1: Languages sampled in the cross-linguistic survey 
(with number of participating speakers), language families, 

countries of origin and typological classification in the 
motion domain 

 
Language Language Family Country Motion Typology 
Cantonese 
(n=1) 

Sino-Tibetan China S-Framed 

Dhivehi 
(n=1) 

Indo-Aryan/Indo-
European 

Maldives Unclassified 

German 
(n=2) 

Indo-European Germany S-Framed 

Indonesian/
Malay (n=2) 

Austronesian Malaysia Unclassified 

Javanese 
(n=1) 

Austronesian Central Java S-Framed 

Korean 
(n=1) 

Altaic Korea V-Framed 

Pashto 
(n=1) 

Indo-Iranian/Indo-
European 

Pakistan Unclassified 

Spanish 
(n=2) 

Indo-European Mexico, 
Columbia 

V-Framed 

Swahili 
(n=1) 

Niger-Congo Tanzania V-Framed 

Turkish 
(n=2) 

Altaic Turkey V-Framed 
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Materials The same motion events as in Study 1 were used 
but with one additional event for each relation (shown in both 
a source and goal version) for a total of 64 stimuli. 

Procedure The procedure was the same as in Study 1 except 
that participants entered the descriptions of the events in a 
spreadsheet using their native language. These descriptions 
were glossed at a later stage by the participants and coded by 
the experimenters. Further interviews with participants were 
held to resolve any coding questions. 

Results 
To compare the two contrasting predictions of the conceptual 
immaturity and pragmatic accounts, we recorded how 
frequently ‘front’ and ‘back’ adpositions (prepositions and 
postpositions) and visibility and occlusion expressions were 
used in Front and Back scenes cross-linguistically, averaging 
across informants of the same language (see Table 2). 
Beginning with adpositions, numerical data showed that in 6 
out of 10 languages (German, Javanese, Korean, Malay, 
Spanish, and Turkish) ‘back’-denoting adpositions were 
mentioned more frequently than ‘front’-denoting adpositions, 
while in 3 languages (Dhivehi, Pashto, and Swahili) both 
types of adpositions were mentioned equally frequently. The 
opposite pattern was exhibited in the remaining language 
(Cantonese).  

We also inspected the proportion of expressions indicating 
visibility (in the context of Front scenes) and occlusion (in 
the context of Back scenes). This inspection revealed that 
there were no visibility expressions for Front in any of the 
languages surveyed but occlusion expressions for Back 
occurred in 8 of the 10 languages in the sample (e.g., verbs 
with meanings such as ‘hide’, ‘appear’/‘disappear’ etc.).   
 

Table 2: Percentage of adpositions and expressions of 
visibility and occlusion used for the FRONT and BACK 

relations across languages 
 

Language 
FRONT 

Adpositions 
BACK 

Adpositions 
Visibility 

Expressions 
Occlusion 

Expressions 
Cantonese 
(n=1) 

62.5 
 

50 
 

0 
 

0 
 

Dhivehi 
(n=1) 

100 
 

100 
 

0 
 

50 
 

German 
(n=2) 

75 
 

100 
 

0 
 

0 
 

Javanese 
(n=1) 

0 
 

50 
 

0 
 

37.5 
 

Korean 
(n=1) 

12.5 
 

100 
 

0 
 

100 
 

Malay 
(n=2) 

25 
 

100 
 

0 
 

12.5 
 

Pashto 
(n=1) 

100 
 

100 
 

0 
 

100 
 

Spanish 
(n=2) 

87.5 
 

100 
 

0 
 

100 
 

Swahili 
(n=1) 

100 
 

100 
 

0 
 

12.5 
 

Turkish 
(n=2) 

87.5 
 

100 
 

0 
 

62.5 
 

 

Overall, the present cross-linguistic data largely replicated 
the key findings from Study 1. Adult speakers of 9 different 
languages (with the exception of the Cantonese speaker) used 
‘back’-denoting adpositions and/or occlusion expressions 
more frequently than ‘front’-denoting adpositions. Similarly 
to the English and Greek data, there were no expressions 
denoting visibility for Front scenes in any of the languages in 
this wider cross-linguistic dataset. Despite the limitations of 
working with such low numbers of informants, this set of data 
presents suggestive evidence that our developmental 
conclusions from Study 1 generalize across languages. 

General discussion 
Previous research shows that the acquisition of spatial 
language follows a stable, potentially universal, cross-
linguistic timetable. However, the precise factors involved 
are not always clear. The acquisition of the locatives front 
and back is a case in point. Across languages, the locative 
back is produced earlier and is more frequent than the 
locative front. This asymmetry has been attributed either to a 
conceptual/semantic asymmetry in the early meanings of 
these locatives (with back being more basic than front; 
conceptual immaturity account) or to the fact that Back 
configurations are inherently more ‘noteworthy’ than Front 
configurations (pragmatic account). The present study put 
these two accounts to test.  

Results showed that, in Study 1, both children and adult 
speakers of English and Greek typically used more Back than 
Front prepositions. Furthermore, speakers of all age and 
language groups often encoded Back information in 
occlusion verbs (e.g. hide) but no such verbs were available 
for Front. Study 2 provides suggestive evidence that the 
English and Greek developmental findings extend to a wider 
cross-linguistic sample of adult speakers of 10 additional 
languages. Taken together, these data support the predictions 
of the pragmatic hypothesis over those of the conceptual 
immaturity hypothesis.  

Why do speakers prefer to encode Back over Front? On a 
pragmatic account that treats spatial language production as 
a form of communication governed by broadly Gricean 
(1975) or post-Gricean (Herskovits, 1985; Levinson, 2000; 
Sperber & Wilson, 1985/1995) pragmatics, speakers need to 
mark occlusion (or the change to/from occlusion in our 
dynamic stimuli) so that the location (or path) of the Figure 
can be identified correctly by a hearer, even if the hearer has 
no visual access to the scene. By contrast, visibility for Front 
(or no change of visibility in our stimuli) is a default situation 
that speakers are less likely to mark. In our stimuli, speakers 
used many other alternatives instead of ‘front’ (e.g., ‘beside’, 
‘near’, ‘to/from the middle of’). It is possible that the bias 
favoring Back might be supported by non-linguistic factors 
relating to how occlusion is represented (e.g., see Hespos, 
Gredebäck, von Hofsten, & Spelke, 2009; Spelke & von 
Hofsten, 2001).   

The present results have intriguing implications about the 
nature of spatial language acquisition and use. According to 
traditional theories of linguistic and cognitive development, 
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the order in which children acquire spatial locatives (and 
other non-spatial vocabulary) is considered as an index of 
conceptual growth (e.g., see E. Clark, 1973; Bowerman, 
1996; Huttenlocher, Smiley, & Charney, 1983; Johnston & 
Slobin, 1979). Our results raise the possibility that pragmatic 
pressures, which are active in adult communicators as well, 
can also shape the way spatial language is acquired and used. 
Furthermore, our findings suggest that pragmatic factors may 
also yield cross-linguistically stable, and potentially 
universal, patterns of spatial language use. Interestingly, the 
pragmatic preference to encode Back over Front may also 
affect the shape of cross-linguistic spatial semantic systems. 
In an extensive cross-linguistic report, Levinson and Wilkins 
(2006) state that, if a language has a ‘front’-denoting locative 
it will necessarily have a ‘back’-denoting locative but the 
reverse pattern does not occur. The way pragmatic 
considerations interact with conceptual and other factors to 
shape spatial language acquisition and use cross-
linguistically is a rich avenue for future research. 
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Abstract 

Magicians often rely on misdirection to fool their audience. A 
common way to achieve this is for the magician to provide a 
plausible and intuitive (but false) account of how an effect is 
performed in order to prevent spectators from uncovering the 
truth. We hypothesized that analytical thinkers would be more 
likely than intuitive thinkers to seek alternative explanations 
when observing a mental magic effect because generating a 
coherent explanation requires analytical thought. We found 
that while intuitive thinkers often espoused explanations for a 
magic trick similar to one provided by the magician, 
analytical thinkers tended to generate new explanations that 
echoed rational principles and relied on physical mechanisms 
(rather than mental capabilities).  This difference was not 
predicted by differences in numeracy skills or need for 
cognition.  

Keywords: cognitive style, misdirection, CRT, dual process 
theory of reasoning. 

Introduction 
Renewing a research program as old as scientific 
psychology itself (Binet, 1894; Triplett, 1900), in the last 
decade a new research program has emerged that uses 
illusionism and magical effects to investigate how the mind 
works (Kuhn, Amlani, & Rensink, 2008; Kuhn & Land, 
2006; Kuhn, Olson & Raz, 2016; Macknik, Martinez-
Conde, & Blakeslee, 2010; Rensink & Kuhn, 2015). Such 
efforts have mainly focused on the roles of perception, 
attention, and visual cognition, though a limited number of 
studies have examined the relationship between higher-level 
cognition and illusionism (Danek et al., 2014; Olson et al., 
2015; Subbotsky, 2010). Nonetheless, there may be a deep 
connection between cognitive styles of thinking and the way 
in which people explain a magical effect. 

Ekroll and Wagemans (2016) wrote “[illusionists’] 
ultimate aim is to design miracles, not mere illusions. That 
is, the magician's first question is how they can create the 
illusion of impossibility. Relatedly, the magician's second 
question is how they can make sure that nobody is able to 
figure out how it was done. That is, they are essentially 
aiming to construct a problem that is as difficult to solve as 
possible, given the fundamental principles of human 

problem solving” (p. 486). These goals are mainly 
addressed by using misdirection: the act of manipulating the 
spectator’s attention away from the actual cause of a magic 
effect (Kuhn et al., 2014). From a psychological point of 
view, misdirection can be achieved through the 
manipulation of variables related to at least three different 
processes: perception, memory and reasoning.  

Kuhn et al. (2014) describe the role of perception and 
memory in detail, but the authors pointed out that 
misdirection of reasoning and beliefs is loosely defined and 
harder to describe. However, virtually all areas of 
illusionism employ techniques based on the dual process 
theory of thought (Evans & Over, 1996; Sloman, 1996; 
Stanovich & West, 2000) distinction between analytical 
(i.e., a slow and effortful form of deliberative thought) 
versus intuitive (i.e., a fast and effortless form of associative 
thought) thinking. When a magician interacts directly with a 
spectator, their actions, dialogue, and other aspects of the 
performance are aimed at prompting fast, effortless, 
associative, and nearly-automatic responses. For example, 
in the classic force, a spectator is asked to pick a card. The 
choice appears to be at the discretion of the spectator; 
however, the magician has actually chosen a predetermined 
card that he “forces” the spectator to pick. The force is 
obtained by placing the chosen card directly in the hand of 
the spectator in a way that seems as if it were a random 
choice. The timing and the naturalness of the magician’s 
movements are crucial factors in getting the participant to 
“choose” the predetermined card. From a psychological 
point of view, the success of the force depends on triggering 
an intuitive-based response—that the participant actually 
has a choice—and crucially, avoiding an analytical response 
that could lead the participant to choose a different card 
(such as one located at the extremities of the fan of cards). 
The renowned card magic conjuror Roberto Giobbi suggests 
a series of verbal and non-verbal techniques  that stimulate a 
quick and automatic response (Giobbi, 1995). For example, 
make a person feel comfortable and then abruptly ask for a 
card. When this happens in front of an audience, the person 
may feel pressured to comply quickly or risk embarrassment 
in front of the public for not having completed such a 
simple assignment.  
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Mental magic attempts to create the illusion of 
impossibility by simulating supernatural mental abilities 
(e.g., telepathy, clairvoyance, psychokinesis, mediumship, 
and so on) and, as opposed to more traditional magic areas 
(such as card magic), sleight-of-hand or object manipulation 
skills cannot be taken into account as a possible explanation. 
More recently, given the cultural and educational changes in 
Western society, supernatural-based explanations have 
become unrealistic for a general audience—although 
intuitive thinkers are more likely to hold supernatural 
(Bouvet & Bonnefon, 2015) and paranormal (Pennycook et 
al., 2012) beliefs. Instead, the mental magic effects are 
explained in terms of natural skills, such as the ability to 
reliably read non-verbal signals, body language and 
subliminal manipulation of others behaviors by means of 
psychological suggestion. Even if such abilities are not 
100% reliable and in many cases are not sufficient for 
explaining the observed effect, people generally accept that 
mental magic is due to highly trained psychological skills. 
Mentalists will adopt many subtle techniques in order to 
promote the default, most intuitive or automatic explanation 
and to avoid promoting alternative explanations. Analytical 
thinking could help the observer to contemplate alternative 
hypotheses (such as the use of physical devices or the 
presence of an accomplice) as well as the weaknesses of the 
assumed explanation based on the highly developed 
psychological ability of the mentalist (such as the 
unreliability of method).  

Because magicians rely on intuitive explanations to sell 
the illusion, individuals prone to analytical thinking may be 
less susceptible to these tricks. Can individual differences in 
cognitive style predict the explanations given to a mental 
magic performance? Adopting a common methodology 
adopted from the dual process theory literature (Gronchi et 
al. 2016; Zemla, Steiner, & Sloman, 2016), it is possible to 
investigate the relation between cognitive style 
(predisposition to adopt analytical vs intuitive thinking) 
with the explanation given to a mental magic effect. We 
seek to establish whether analytical thinking affects the 
explanations produced by spectators of a magic trick. We 
predict that observers adopting an analytical cognitive style 
are more able to inhibit the default, mental power-based 
explanation suggested by the mentalist.   

Experiment 
We investigated whether an individual’s cognitive style 

affects judgments about a mental magic effect. Participants 
watched a video where an expert mentalist performed a 
prediction effect (predicts a purported “free” choice made 
by the spectator), and were then prompted to explain the 
effect they just witnessed. In addition, participants made 
several judgements, such as whether it was easy to generate 
an explanation, whether they were surprised by the outcome 
of the effect, and whether they enjoyed the trick. On a 
separate day, participants completed an extended version of 
the cognitive reflection test (CRT; Frederick, 2005) used to 
measure the cognitive style and other related measures.    

Method 
Participants  335 freshmen college students (71 male, 29 
unknown) enrolled in the Psychology major of the 
University of Florence were recruited for course credit. The 
sample mean age (in years) was 19.5 (sd = 2.3), range 18-46 
(29 of unknown age).   

 
Materials and procedure Participants completed a Mental 
Magic Task and four other questionnaires: an extended 
version of the CRT questionnaire, the Need for Cognition 
(NFC) questionnaire, an abbreviated Numeracy Scale, and 
three questions about Science Interest. All materials were 
presented to participants in Italian and are translated here for 
the reader.  

On day 1 of the experiment, participants completed an 
extended version of the CRT questionnaire (Toplak, West & 
Stanovich, 2014; Zemla, Steiner, & Sloman, 2016). The 
CRT scale is comprised of questions that have a wrong but 
intuitive answer in addition to a correct answer that requires 
analytical thinking. For example, one question states: In a 
lake, there is a patch of lily pads. Every day, the patch 
doubles in size. If it takes 48 days for the patch to cover the 
entire lake, how long would it take for the patch to cover 
half of the lake? The default, intuitive response is 24 days 
(if 48 days is the time necessary to cover the entire lake, half 
of 48 should be intuitively the time necessary for covering 
half the surface). However, if the responder inhibits such 
response, it is relatively easy to see that every day the patch 
doubles in size, so on the 47th day the lake was half covered 
and on the 48th the lily pads will cover the entire surface. So, 
the inhibition of the most obvious response allows to adopt 
a deliberation-based form of thinking. The number of 
correct answers on the CRT measures the degree to which 
participants engage in analytical thinking and inhibit 
intuitive responses. Participants completed the 7-item CRT 
scale in an open-ended format (except for the last item 
which was a multiple choice question). 

On the same day, participants also completed three 
multiple choice questions about Science Interest inspired by 
the Science Curiosity Scale (Landrum et al., 2016): 1) 
Which of the following do you most like to read? Possible 
answers: fiction, science, sports, politics, history, other. 2) 
Let’s suppose that it’s necessary to take a mandatory class 
(which will not influence your grade; only attendance is 
necessary). Which of the following topic would you like to 
take? Possible answers: Contemporary history, Creative 
writing, Physics and Astronomy, Cinema and Arts. 3) Let’s 
suppose that you are travelling for business in an abroad 
city that you have already visited and known. You have a 
free afternoon and you have time to do only one of the 
following activities (free and equally near to your hotel): 
Possible answers: Visiting the science museum, visiting the 
contemporary art museum, watching a show in a square, 
relaxing in a park, stay in the hotel to rest. Thus, for each 
question, there was an answer indicating interest toward 
science. The scale is intended to avoid socially desirable 
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responses that may be elicited from other science interest 
scales. 

On day 4, participants completed a six-item numeracy 
scale (Weller et al., 2013) that evaluates one’s competence 
in solving numerical problems (i.e., basic numerical 
operations, percentages). Given that CRT also measures 
numerical abilities as well as of inhibition of the intuitive 
response, we included the Numeracy Scale in order to 
exclude the possibility that an effect is due to numeracy and 
not cognitive style. On the same day, participants also 
completed the Need for Cognition scale (NFC; Cacioppo & 
Petty, 1982). The NFC measures the tendency to enjoy and 
engage in challenging cognitive activities. Indeed, some 
people have little motivation and tend to avoid effortful 
cognitive activities whereas other individuals consistently 
seek opportunities to engage such kind of tasks.  

On day 8, participants watched a video about a mentalist’s 
performance. The mentalist is talking with a spectator about 
free will and the possibility of predicting others’ behavior. 
The mentalist then shows a chessboard with the pieces in 
the starting position and asks the spectator to choose one of 
the pieces. The spectator, following the mentalist’s 
directions, announces the chosen piece (a white bishop) and 
places it in the middle of the chessboard. The mentalist 
takes the chosen piece in his hands and begins to speculate 
about the factors that could have influenced the participant’s 
choice: Did the white bishop have a particular significance? 
Was that particular bishop closer to the spectator compared 
to other bishops? Finally, the mentalist declares that he 
knew in advance that the spectator would take that particular 
piece and then invites the spectator to take another piece. 
The video ends with the revelation that every other piece 
besides the white bishop is stuck to the chessboard, so it 
would appear impossible that the participant could have 
chosen any other piece. Participants observed the video in a 
group, but they were also able to re-watch it using a 
smartphone or tablet. After watching the video, participants 
were individually asked to provide an explanation for the 
effect they just saw in an open-ended format. In addition, 
they answered each of the following questions on a 5-point 
Likert scale (from “not at all” to “extremely” for questions 
1, 2 and 4 and from “strongly disagree” to “strongly agree” 
for questions 3, 5, 6, 7): 1) How much did you enjoy the 
effect you just saw? 2) How much did it surprise you? 3) I 
tried to predict what the magician would do before he did it 
4) How confident are you in your explanation? 5) It is easy 
to think of many alternative explanations for this effect 6) I 
would like to know how the effect actually works 7) I would 
like to see other magic effects.  

  
Data Analysis 
For each participant, four scores were computed: a CRT 
score (the number of correct analytical responses out of 7), 
an NFC score, and a science interest score (giving 1 point 
for each answer related to science), and a numeracy score. 
The open format question (“How do you explain the effect 
you just saw?”), was coded using two different criteria. The 

first criterion was based on physical explanation vs mental 
explanation. Physical explanations often contained reference 
to a physical device, such as glue or a magnet, but also 
include trivial solutions such as collusion between the 
mentalist and the spectator. Mental explanations were based 
on the possibility of behavior conditioning, the power of 
gestures, and the possibility of genuinely predicting in 
advance the spectator’s choice (including supernatural 
powers). A third “other” category included no response, 
incomplete responses, and explanations not suitable to be 
categorized in previous terms (such as “I don’t know”/“no 
idea”). 

A second criterion coded explanations as rational or 
irrational. Rational explanations included all the physical 
explanations that are actually feasible in practice, but also 
included statistical-based reasoning such as the possibility 
of predicting behavior with high probability on the basis of 
modal choices (obtained from experience). Irrational 
explanations were the same as the mental explanations 
excluding interpretations based on the statistical properties 
of people’s choices (by means of previous empirical 
observations). Since all reported physical explanations were 
feasible ways of obtaining the effect, no physical 
explanations were coded as irrational. Again, an “other” 
category was included for coding no response, incomplete 
responses or other explanations not suitably categorized in 
previous terms. Two independent judges coded each 
explanation according to the two criteria. A third, 
independent judge broke any ties (5 out of 335 for the first 
criterion and 22 out of 335 for the second criterion).  

Results 
Explanations of the magic effect With regard to the 
physical/mental dichotomy, the most common explanation 
(about 70%) was a mental explanation based on the belief 
that the magician could systematically influence other 
people choices, such as “the mentalist implicitly and 
secretly conditioned the choice of the spectator.” In several 
cases, participants added details such as “with gestures”, 
“with his voice”, “with his gaze”, “with his mind”, “with his 
movements,” and so on. Only 13% of participants explained 
the effect in terms of a physical device (e.g., a special, 
delayed-effect glue; a magnet-based mechanism) or with a 
trivial solution (the spectator is an accomplice). The 
remaining 17% of responses were classified as “other”.  

With regard to the rational/irrational dichotomy, all of the 
physical explanations were included in the rational category 
and the majority of the mental explanations were 
categorized as “irrational”. However, some of the mental 
explanations were included in the “rational” category. These 
were explanations based on the belief of influencing other’s 
choice by subtle psychological techniques together with 
some rational considerations. For example: “The mentalist 
did a lot of trials before with other people to look for the 
most chosen piece. When facing the spectator, the mentalist 
someway suggested with his gaze to take the most likely 
piece. I think the mentalist has been very lucky.” or “The 
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mentalist knows which piece is generally chosen most often. 
He exploited such knowledge together with his ability to 
influence spectator choice. Maybe he was not certain of the 
final result, but it was the most likely result.” According to 
the rational/irrational dichotomy, the rational explanations 
were about 20% and the irrational explanations were about 
63%. The remaining 17% were classified as “other”.   

 
Explanations types and analytical style We evaluated 
whether CRT scores were correlated with the type of 
explanation produced (Figures 1 and 2). As predicted, those 
who generated a physical explanation (compared to a mental 
explanation) tended to have higher CRT scores, t(70.1) = 
12.89, p < .001. Likewise, participants who wrote a rational 
explanation had higher CRT scores compared to those who 
wrote an irrational explanation t(105.7) = 13.61, p < .001.  

 

 
Figure 1: Participants who generated physical explanations 

typically had higher CRT scores (more analytical). 
 

 
Figure 2: Participants who generated rational explanations 

typically had higher CRT scores (more analytical). 
 
Explanations types and Numeracy Scale Unlike CRT, 
numeracy scores did not predict the explanation type that 

participants generated. Participants who generated physical 
compared to mental explanations did not differ in numeracy, 
t(34.2) = .33, p = .74, nor did participants who generated 
rational compared to irrational explanations, t(73.9) = .27, p 
= .79. This rules out the possibility that the observed CRT-
related differences can be due to disparity in numerical 
ability.  

 
Explanations types and Need for Cognition There were 
no differences in the NFC score between those who 
generated physical and mental explanations, t(33.2) = .11, p 
= .91, or between those who generated rational/irrational 
explanations, t(80.8) = 1.26, p = .21. This rules out the 
possibility that the observed CRT-related differences can be 
due to different inclination towards effortful cognitive 
activities.  

 
Explanations types, science interest and analytical style 
Participants that wrote a physical explanation had a greater 
score in Science Interest compared to those that wrote a 
mental explanation, t(55.3) = 2.65, p = .011. Similarly, 
participants who wrote a rational explanation had a greater 
interest in science, t(94.97) = 2.36, p = .021. Science 
Interest was also significantly correlated with the CRT, r = 
.35, p <  .001. 
 
Explanation types and correlations among the questions 
of the Mental Magic task We expected that the way in 
which participants explained the effect would influence their 
response and enjoyment of the effect. However, we found 
that the type of explanation produced did not predict 
enjoyment of the effect, the surprise experienced, the 
attempt to predict the effect, the confidence in the 
explanation given, the ease of thinking of different 
explanations, the desire to know how it works, or the desire 
to see a new effect (all p > .1). Similar results were obtained 
for the rational/irrational dichotomy. However the questions 
about the Mental Magic effect were correlated among 
themselves (Figure 3). Having enjoyed the effect correlated 
with all other variables in the mental magic task except the 
confidence of the given explanation. The degree of surprise 
was highly correlated with enjoyment of the trick (r = .45), 
the desire to know how the trick was performed (r = .33) 
and desire to see new magic effects (r = .34). Attempts to 
predict the mentalist’s actions during the effect was weakly 
correlated with the ease of generating an alternative 
explanation after the effect (r = .07), the desire to know how 
the trick was performed (r = .14), and desire to see new 
magic (r = .12). The highest correlation was between the 
desire to know how the trick was performed and the desire 
to see new magic (r = .65). All correlations reported above 
were significant with p < .05, uncorrected for multiple 
comparisons.  
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Figure 3: Correlations among the enjoyment of the effect 
(enjoyment), the surprise experienced (surprise), the attempt 

to predict the effect (prediction), the confidence in the 
explanation given (confidence), the easiness of thinking of 
alternative explanations (ease of explanation), the desire to 
know how it was performed (know the trick) and the desire 

to see a new effect (new). Correlations with CRT, NFC, 
Numeracy skills and Science Interest are also reported. 
 

Analytical style and Mental Magic task questions The 
CRT was marginally correlated with the interest in seeing 
new magic (r = .10, p = .08), significantly correlated with 
attempts to predict how the trick was done (r = .11, p = 
.004), and significantly correlated with enjoyment of the 
mental effect (r = .14, p = .01).  

 
NFC and Mental Magic task questions Similarly to CRT, 
Need for Cognition was correlated with the interest in 
seeing new magic (r = .21, p = .01), attempts to predict the 
next move of the mentalist (r = .21, p = .01), and with the 
enjoyment of the mental effect (r = .18, p = .04). The NFC 
was also marginally correlated with the interest in how the 
trick was performed (r = .15, p = .07). 

 
Science Interest and Mental Magic task questions 
Science Interest was significantly correlated with attempts 
to predict the actions of the mentalist (r = .12, p = .029). 
 

Discussion 
We found that analytical thinking predicts the way people 
explain a mental magic effect: intuitive thinkers were more 
inclined to explain a mental magic effect in the same terms 
suggested by the mentalist (e.g., conditioning the spectator’s 
choice or advanced psychological ability), whereas 
analytical thinkers were more likely to explain the observed 

effect by referring to a physical device or trivial tricks (such 
as collusion, i.e., a previous agreement between the 
mentalist and the spectator). The same pattern also held 
when “rational” considerations were taken into account in 
the categorization of the explanations: analytical thinkers 
were more inclined to seek an alternative explanation and 
reject an irrational explanation offered by the mentalist. We 
also found that these same differences in explanation type 
were predicted by interest in science, perhaps due to an 
aversion towards non-scientific (irrational) explanations. 
Moreover, we observed that such differences between 
analytical and intuitive thinkers were not due to related 
constructs such as numeracy skills or need for cognition  

Although the explanation that a participant offered did not 
affect the way they perceived the trick (i.e., it was not 
correlated with any of the mental magic task questions), 
analytical style did predict differences. Analytical thinkers 
were more likely to predict the next step of the performance, 
suggesting that they were trying to go deeper into the effect 
not only at the end of the performance but also during the 
trick itself. This deeper level of engagement may be the 
reason why analytical thinkers also enjoyed the magic effect 
more, and expressed more interest in seeing new magic. We 
also found that being an analytical thinker was associated 
with an interest in science. 

A limit of the present study is its reliance on correlational 
data. We are planning to further investigate this topic by 
manipulating the cognitive style to verify whether inducing 
analytical thinking will prompt participants to generate 
alternative rational explanations. Moreover, it is important 
to note that the sample was composed of Italian freshmen 
psychology students in their first days of college: 
commonly, those students have high expectations about the 
capabilities of psychology, including the skills that 
mentalist’s performance suggests. This may explain the bias 
to provide mental explanations in our sample, although it 
does not explain the main effect of analytical thinking on 
explanation type. Another critical aspect is that we 
employed a single performance that was either interpretable 
in terms of advanced psychological skills and in physical-
device terms in a relatively easy way. In other kinds of 
performances, it could be more difficult to think of 
rational/physical device-based explanations. 

This work represents a first-step in the psychological 
investigation of magical effects in cognitive terms going 
beyond the more common perception and attention-based 
perspectives. The already existent but still limited literature 
about high-level cognition and magic may greatly benefit 
from our understanding of reasoning-based misdirection in 
terms of dual process theory of thought. In particular, such 
benefits can go in two opposite directions: psychological 
studies on cognitive styles (and dual process theory) may 
employ mental magic effects and magician’s misdirection 
techniques to create unique and innovative experimental 
settings and, at the same time, conjurors may rely on the 
dual process theory of thought to improve their 
performance.   
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Abstract 

An experiment aiming to assess the use of stopping rules in 
information acquisition was performed. Participants were 
requested to make a decision in 24 financial scenarios with 
the possibility of buying information pieces. Behavioral and 
EEG data were recorded for analysis. Results showed that 
participants followed Bayesian calculations in order to 
determine a stop on information acquisition and decide. 
Moreover, the information acquisition strategies were 
consistent with prospect theory, in which participants will 
weigh information pieces differently and seek more or less 
information given different manipulations in scenario 
probability and consequences. EEG data suggest Slow 
Cortical Potentials at fronto-central electrodes. 

Keywords: decision making; information acquisition; EEG; 
slow cortical potential. 

Introduction 
As Taghavifard, Damghani and Moghaddam (2009) discuss, 
it is only possible to know the risks inherent in a decision if 
the individual has a relatively small degree of uncertainty. 
One way to diminish levels of uncertainty is by reducing 
residual uncertainty (Courtney, Kirkland & Viguerie, 1997) 
through information acquisition. To acquire information is 
to search both internally and externally for elements that can 
affect the decision process. In their daily lives individuals 
receive a considerable amount of information through 
various modalities. Auditory, visual, tactile, emotional 
stimuli can be sources of new information. Each piece of 
information has some importance toward deciding either by 
improving the quality and quantity of information or by 
impairing an individual´s ability to decide given that the 
amount of information is so great that the performance will 
be deteriorated (Di Caprio, Santos-Arteaga, & Tavana, 
2014). When information reveals itself and is processed by 
the decision maker, we find a transition from a situation of 
uncertainty to a situation of risk. In other words, the 

decision maker now knows enough information about the 
problem so that he is able subjectively infer a probability for 
each outcome (Di Caprio et al., 2014). 

Pretz, Naples, and Sternberg (2003) discuss the role of 
experts and the fact that too much information can actually 
impair the decision process. They propose that when an 
expert (a person that possesses a great deal of knowledge, 
acquired by experience and information gathering) in chess 
plays with slightly different rules, his performance might 
actually be worse than that of a player that is new to chess 
and plays the same modified game as the expert. This 
suggests that when an otherwise static environment 
becomes dynamic, a difficulty in deciding might appear. 
Too much information may be suboptimal for a decision 
maker (Di Caprio et al., 2014), whereas not enough 
information will prevent him from calculating risks properly 
and brings the decision process to one of most uncertainty 
(Taghavifard, Damghani & Moghaddam, 2009). On the 
other hand, Frey, Hertwig and Rieskamp (2014) propose 
that there is no way to determine when the right amount of 
information is reached and no further acquisition needs to 
be done, at least in decisions from experience, although they 
also say that there may be benefits in small samples and 
frugal search. The question that remains is: how does a 
decision maker knows that he/she acquired enough 
information to go through with the process? 

Many researchers are investigating the subject of 
information acquisition and how and when individuals stop 
searching for new information and proceed to decide. 
Gigerenzer (2000) proposes a fast and frugal way to decide 
in environments where both time and knowledge are 
restricted. By searching past information and knowledge in 
order to recognize elements regarding the decision and cues 
about those elements, the Take the Best (TTB) heuristic 
searches for the best cue in order to make a choice. In the 
experiments by Gigerenzer (2000), when people where 

2144



asked which of two German cities was the most populated, 
individuals would most likely use TTB in order to decide. 
Even so, the individual might seek other cues about each 
city from memory (i.e., perhaps if he saw the city on the 
news). According to the subjective validity of the cues, the 
one with the highest ranking is considered the best and thus 
appropriate for a decision. Little information search and 
acquisition are performed. Stern, Gonzalez, Welsh, and 
Taylor (2010) conducted and experiment in which 
individuals were presented with two decks with varying 
proportions of red and blue cards. Four draws of cards were 
made and at each draw the individual would have to state 
from which deck the card had been drawn from. Each draw 
represented acquiring a new piece information about the 
decision. After all four draws the individual would have to 
make a final decision between the decks or they could 
decline to choose. It is clear that each new information 
presented changed or reaffirmed the decision made by the 
individual. When conflicting information was presented 
(two draws were red cards and two were blue) individuals 
mostly declined to choose, inferring a 50% chance to each 
deck. When all draws were the same color, by the third draw 
individuals were already 100% confident from which deck 
the draws were made. This experiment poses that 
information acquisition can update individual beliefs about 
the outcome and that searching for information might 
improve the decision making process by incrementing it 
with a better view about the problem at hand. 

Fifić and Buckmann (2013) probed the use of stopping 
rules by individuals. Stopping rules might determine the 
moment where the decision maker stops, or should stop, 
searching for information and actually decide. The authors 
reviewed some options of stopping rules that might require 
higher or lower cognitive demands. The first one is the so-
called optimal stopping rule for evidence accumulation. It is 
based on Bayesian inference and implies that there should 
be an optimal number of pieces of information that need to 
be acquired. In their example the optimal stopping rule is 3. 
This number represents that the individual will search for 
positive (+1) and negative (-1) pieces of information and 
will only stop searching when the sum of the search reaches 
either +3 or -3, in which case the individual will choose the 
option represented by the positive or negative sum, in their 
example to proceed or not with a risky cancer treatment. 
There is criticism regarding this rule, in order to calculate 
the optimal number there is a need to have a perfect 
knowledge of the situation and enough calculating skills to 
solve it through Bayesian probability (Fifić & Buckmann, 
2013).  This option requires great amounts of time, 
knowledge and cognitive effort. In most cases in the real 
world there are limited amounts of each available to the 
decision maker. They then propose a stopping rule selection 
theory based on bounded rationality. 

Two rules are suggested that do not depend on high 
amounts of knowledge about the environment and the 
situation. The first one is the fixed sample size. This rule 
entails that the decision maker will determine a sample size 

before the beginning of the information search process, for 
example five. The individual will then search for 
information and will make the choice based on the valence 
that appears the most (positive or negative). The other rule 
is called runs stopping rule. In this case the decision maker 
will begin the search for information without determining a 
fixed sample. She will stop searching when a streak of 
either positive or negative pieces of information is found, 
three consecutive positive opinions for example. 

The stopping rule selection theory proposes that each 
individual might use different stopping rules given time and 
cognitive efforts available (Fifić & Buckmann, 2013). That 
is because there is no evidence that one single stopping rule 
can account for all responses from individuals.  According 
to Fifić and Buckmann (2013) each individual will search a 
decision operative space in which the rules and values are 
stored. Given a decision situation the individual will then 
retrieve a stopping rule – a process that the authors call cast-
net retrieval. Much like fishing, each individual will select a 
space and a net size to cast and retrieve a stopping rule that 
will be applied. What is considered in order to cast a net in 
the decision operative space is the level of uncertainty with 
the environment, time frame, cognitive demand, and 
accuracy expectancy (Fifić & Buckmann, 2013). After the 
stopping rule is selected, the individual will then proceed to 
collect information and finally decide.  

Cognitive demand and the search for a stopping rule might 
reflect high levels of task engagement. That is, the 
individual is fully focused on solving the problem and 
anticipates the outcomes of the decision given each new 
information. This situation represents higher use of brain 
resources, especially in frontal areas. Few studies focus their 
analysis on pre-stimulus ERPs, especially when decision 
making is concerned. Böckner, Bass, Kenemans and 
Verbaten (2001) studied one form of Slow Cortical Potential 
(SCP). They found a Stimulus-Preceding Negativity at 
fronto-central electrodes in fear-induced trials. Oswald and 
Sailer (2013) found fronto-central SCPs before and after 
response in a temporal discounting task. 

Other elements also influence the information acquisition 
process. Frey, Hertwig and Rieskamp (2014) found that 
both a facial expression of fear or the subjective feeling of 
fear may cause an individual to search more information. 
Söllner, Bröder, Glöckner and Betsch (2014) discovered 
that when intruding incompatible information appears, 
individuals trained in the TTB heuristic would not stop 
searching for information when they were supposed to if 
following TTB. Individuals rather adapted their information 
search, choice and confidence judgment processes to the 
content of such intruding information. It is widely 
recognized that the amount of information available and 
acquired by each individual will augment complexity levels 
in the decision situation, much like what happened with the 
intruding information. 
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Methods 
The objective of this study was to probe, based on the 
models of Fifić and Buckmann (2013), Stern et al. (2010) 
and Söllner et al. (2014), the use of stopping rules in the 
information acquisition and evidence accumulation 
processes and its electrophysiological correlates. A financial 
decision task was devised so that the use of stopping rules 
could be measured by the amount of information acquired 
by the individuals in each of the scenarios. As with real 
world decisions, scenarios were presented with varying 
levels of risk, uncertainty and consequences. During the 
task, EEG was continuously recorded to investigate 
correlates of information acquisition and decision behavior 
processes. A total of 47 (mean age: 18.89, SD: 1.68, 33 
females) undergraduates from the University of Michigan 
Pysch Pool participated. Data was collected from 50 
participants, however 3 were discarded because of poor 
electrode readings interfering with the EEG data. This study 
was approved by the University of Michigan's Institutional 
Review Board.  

Financial decision task 

Each participant was presented with all 24 financial decision 
scenarios. The scenarios were presented written in a single 
paragraph. In all scenarios participants would have to 
choose whether to accept or reject the proposed situation, 
but they could also choose not to decide at all (a 
procrastination behavior). For every scenario there were 20 
information pieces (or advices) that a participant may or 
may not buy in order to help them decide. Participants were 
instructed to press the “I” key on the keyboard whenever 
they wanted to buy information in a scenario. All 
information was presented in a crescent and pseudorandom 
order. The order of information appearance was made to 
resemble the stopping rules tested by Fifić and Buckmann 
(2013). Each new information was presented using simply 
the words "positive" or "negative", thus diminishing the 
probability of bias. The words mean a positive or negative 
opinion about accepting or rejecting the proposition in the 
scenario. Each information had a price ($1 for the first 10 
pieces and $2 for the other 10). There was a fixed fictional 
amount of $480 available to any participant to complete the 
experiment – this amount was created specifically to refrain 
participants from always buying all 20 pieces of 
information. They were instructed not to use all the money 
available. 

Each scenario showed a situation involving aspects of 
financial decisions such as investments, purchases, asset 
management, losses, etc. After reading the description of the 
situation, participants could obtain (buy) information 
regarding that scenario. Even if not buying any information, 
participants would be required to make a decision for each 
scenario. They could decide to buy/invest/pay (Positive), not 
to buy/invest/pay (Negative) or to not decide at the moment 
(Procrastination). After a decision, there was no feedback on 
the success of it, and the next scenario was presented. 
Participants did not receive any instructions regarding a 

maximum period of time to decide at each scenario. They 
were free to use as much time as they wanted to read the 
scenario description, seek information and make a decision.  
The 24 scenarios were divided as such: 1) 12 scenarios with 
stated probabilities (risk scenario) in the description, 
composed of 3 scenarios with low negative consequences, 3 
with high negative consequences, 3 with low positive 
consequences and 3 with high positive consequences; 2) 12 
scenarios with unstated probabilities (uncertainty scenario) 
in the description, composed of 3 scenarios with low 
negative consequences, 3 with high negative consequences, 
3 with low positive consequences and 3 with high positive 
consequences.  

One example of a stated probability, low positive 
consequence scenario is: "You are thinking about buying a 
bicycle. There is a model that is 35% better than the 
alternative. You don't know what the average maintenance 
costs might be. You must decide if you: buy the bicycle, 
don't buy the bicycle or rather not decide now.", as shown in 
Figure 1. The stated probability is the 35% chance depicted, 
low consequence is due to the amount (35% is considered a 
low chance), positive consequence is the referred chance of 
being better than the alternative. Scenarios differ in the 
presence or not of the stated probability, consequences and 
valences of consequences. That means that the example 
above might be presented in another form, representing an 
unstated probability, high negative consequence scenario, 
like: "... There is a model that is much worse than the 
alternative ". Phrasings of probabilities and consequences 
were randomized. That means that the object of the scenario 
would be the same (bicycle, student loan, car fixing, etc.), 
but the probabilities (stated or not), and consequences (high 
or low and positive or negative) were randomized across 
participants for any given object. 

EEG data was recorded through Acknowledge 4.4 
software using an ABM B-Alert X10, with a 9 channel 
setup (Fz, F3, F4, Cz, C3, C4, Pz, P3 and P4) using linked 
mastoid as reference. Data was collected at a sampling rate 
of 256 Hz. Electrode scalp impedances were kept below 5 
kΩ. Behavioral data and stimulus presentation was made via 
PST E-Prime Professional 2.0. The data was analyzed using 
ERPLab (Lopez-Calderon & Luck, 2014). Data went 
through moving window artifact detection and filtered for 
both low and high pass (0.1 Hz and 30 Hz, respectively). 
ERP epoch was from -2000 ms before the decision was 
made and 200 ms after the decision was made, giving the 
possibility of observing variations that occurred in a 
window of time before the actual decision. The use of this 
epoch is justified given that the information acquisition 
process is over before the decision is actually made, so in 
order to analyze event related potentials of stopping rules it 
is necessary to observe what happens before the decision. 
Target electrodes were located at fronto-central sites in 
order to search for SCPs (Oswald & Sailer, 2013). Mean 
voltage over a specific time epoch was used to analyze the 
data. 
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Figure 1: Example of a scenario. 

Results 
In order to determine the use of stopping rules and strategies 
for information acquisition we focus our analyses on two 
measures: information quantity (QTY) and balance (BAL). 
Information quantity is the mean amount of information 
pieces that each individual bought during each scenario. The 
balance is, just as Fifić and Buckmann (2013) proposed, one 
of the stopping rules, the Bayesian calculation of the 
valences for each information bought. That is, if an 
information is positive, then the value considered is +1, if an 
information is negative, then the value considered is -1. At 
the end of a given scenario, for example, if the pieces of 
information acquired were 3 positives and 2 negatives 
(independent of order of appearance), the balance will be 
+1. The conditions compared to the two measures were: 
decision (positive, negative and procrastination), probability 
(risk and uncertainty), and the combination of consequences 
(high or low) and valence of consequences (positive or 
negative) in risky and uncertainty. 

Information acquisition 

Of the total of possible scenarios, 40.63% were decided 
without any kind of information acquisition, thus without 
the use of stopping rules. This behavior might emerge given 
the objects of the scenarios at hand. In order to better 
control the conditions, the objects of decision (car, bicycle, 
motorcycle purchase, student financial aid, home and car 
repair, investments) were less complicated. That might have 
made the decisions easier based on each individual set of 
preferences. However, there is no data to back this 
hypothesis. Next, there were 44.88% of the scenarios that 
were decided using 1 through 5 information pieces. The 
14.50% of cases left used 6 through 20 information pieces. 

Decision 

Regarding the decisions available for the participants, the 
mean information quantity gathered when a decision was 
positive is 4.11, when a decision was negative also 4.11 and 
when participants decided to procrastinate the mean quantity 
was 5.04. That shows that, despite the fact that participants 
had up to 20 information pieces available they sought only a 
small amount. Also it shows that the procrastination 
behavior was observed with more acquisition of 
information. On the other hand, when the balance is 
considered, a positive decision was made with a mean 
balance of +1.13, negative decisions -0.73 and 

procrastination decisions -0.05. That means that the 
information acquisition stopping point behavior is more 
influenced by the so called balance of the valences, 
regardless of the quantity of information acquired. A one-
way ANOVA was conducted to test for differences between 
each decision. The test revealed that there is a difference 
between the decisions both for QTY and BAL, 
F(2,1146)=189.9, p<0.001 and F(2,1149)=6.35, p<0.01, 
respectively. Post-hoc analysis using Tukey HSD test 
revealed significant differences between all interactions: 
positive-negative (p=0.001), negative-procrastination 
(p<0.001) and positive-procrastination (p<0.001) for the 
BAL measure and only negative-procrastination (p<0.05) 
and positive-negative (p<0.05) for the QTY measure.  

Probability 

Analyzing only if the scenario presented risk or uncertainty, 
the only significant difference was observed in the BAL 
measure, F(1,1150)=4.75, p<0.05. The mean BAL for risk 
scenario was 0.031. For uncertainty scenario the mean BAL 
was 0.262. As for the QTY measure the mean value for the 
risk scenario was 4.263 and 4.100 for the uncertainty 
scenario. 

Combining the conditions 

The conditions were not presented isolated to the 
participants. Combining the conditions yielded 8 possible 
scenarios, as it was previously explained, that were 
randomly presented three times each for the participants. If 
all conditions are analyzed there is a significant difference 
for the BAL measure (F(7,1128)=8.090, p<0.001). A post 
hoc Tukey HSD test revealed significant differences 
between several of the possible combinations. However, two 
differences between conditions are of particular interest. 
The first one is between scenarios with uncertainty, low 
positive consequence (M=0.118) and scenarios with 
uncertainty, low negative consequence (M=0.326), with 
p<0.001. The second one is between scenarios with risk, 
high positive consequences (M=0.007) and scenarios with 
risk, high negative consequences (M=0.181) with p<0.001. 

EEG 

EEG analysis focused on risky and uncertain scenarios and 
both of the combined conditions highlighted previously. As 
was discussed earlier SCP might emerge in a situation 
where there might be prolonged use of cognitive control and 
resources in fronto-medial electrodes (Oswald & Sailer, 
2013). As it was seen, BAL has significant differences in 
risky and uncertain scenarios and also in scenarios with 
different valences and consequences. That might point to the 
fact that prior to a decision individuals may exert more 
thought and allocate more cognitive resources to decide 
given the conditions presented. 

The comparison between risky and uncertain conditions 
showed SCP negativity for the uncertain condition and a 
positivity for the risky condition in F4 between -950 ms and 
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-500 ms, with statistically significant difference 
(F(1,98)=5.847, p<0.05) as shown in figure 2.  
 

 
Figure 2: SCPs in risk x uncertain condition in F4. Black 
line represents uncertain condition, red line risk condition. 
The ellipsis shows the point of the significant difference. Y 
axis represents micro voltages, X axis represents the epoch 
in milliseconds. 
 

As for the comparison between risky and uncertain 
scenarios in a low consequence condition, we found a SCP 
negativity for the uncertain condition and a positivity for the 
risky condition in Fz and F4 between -1290 ms and -490 
ms, with statistically significant differences for both 
electrodes (F(1,98)=3.631, p=0.05 and F(1,98)=4.720, 
p<0.05, respectively) as shown in figure 3. 
 

 
Figure 3: SCPs in risk x uncertain, low consequence 
condition. Top part represents Fz electrode. The bottom 
panel depicts voltages in the F4 electrode. Black line is 
uncertain condition, red line is risk condition. The ellipsis 
shows the point of the significant difference. Y axis 
represents micro voltages, X axis represents the epoch in 
milliseconds. 
 

When high consequences are observed, there is a marginal 
statistical significance between a SCP positivity in risky 
conditions and a negativity in uncertain conditions in F4 
between -920 ms and -500 ms (F(1,98)=3.517, p=0.06) as 
shown in figure 4.  

 
Figure 4: SCPs in risk x uncertain, high consequence 
condition in F4. Black line represents uncertain condition, 
red line risk condition. The ellipsis shows the point of the 
significant difference. Y axis represents micro voltages, X 
axis represents the epoch in milliseconds. 

Discussion 
Behavioral data suggests that the balance of acquired 
information (BAL), according to Bayesian calculations 
(Fifić & Buckmann, 2013), is a preferred stopping rule. 
EEG data supports this conclusion given the fact that where 
BAL represented significant differences, there was the 
emergence of SCPs. According to Oswald and Sailer 
(2013), the SCPs are task-related and the negativity might 
mean conflict processing and the usage of cognitive 
resources to resolve such conflicts. Even though there was 
also a significant difference for the quantity of information 
bought and the decisions, consciously or not participants 
behave according to Bayesian calculation in order to 
determine the end of the information acquisition process.  

This holds up even if the conditions are considered 
(combined or isolated). This means that the participants will 
take into account the valences of the information pieces 
acquired and when they reach a particular threshold 
(depending on the scenario characteristics), the decision is 
made. That becomes clearer when the threshold is 
approximately +1 for a positive decision, approximately -1 
for a negative decision and approximately zero for a 
procrastination decision. The procrastination decisions show 
that even though there are more pieces of information 
acquired, participants often would feel more uncertain and 
would rather skip the decision. This means that that 
particular scenario and the set of information acquired 
would not diminish the residual uncertainty acknowledged 
by the participant, thus making it harder to assess which 
decision is better given the probabilities and consequences.  

Uncertain scenarios needed less QTY and a higher BAL 
in order to reach a decision than risk scenarios. The 
appearance of the SCP negativity for uncertain scenarios 
can reflect a higher conflict in this condition given that, 
even though participants seek less information, they need 
higher valences to resolve the conflict. This conflict may 
arise due to the difficulty to assign a value to the unstated 
probability described in the scenarios. As in Stern et al. 
(2010) each new information can change the subjective 
probability that the participant assigns to the outcome. 
These changes can require more BAL and result in more use 
of cognitive resources in order to decide. 
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When conditions were combined, especially the two 
highlighted previously, the same effect is also present. In 
uncertain low negative consequence conditions there is the 
need for more BAL and there is also a SCP negativity 
although with higher amplitude than the one described on 
the last paragraph. This, according to Oswald and Sailer 
(2013), mean that there is an expanded cognitive effort in 
resolving the conflict that the valences and the condition 
might imply. 

Lastly, in high negative consequence conditions, risky 
scenarios need more BAL, however, in high consequence 
conditions the SCP negativity is seen for uncertain 
scenarios. We hypothesize that the lack of stated probability 
in a high consequence scenario might mean that the 
information has a higher weight for the participants and 
therefore there is no need to allocate as much cognitive 
effort as with risky conditions. In this case, a stated 
probability might introduce some level of ambiguity given 
that the risk is apparent and the consequences can be large. 

Conclusion 
We developed an experiment aiming to observe different 
strategies, or stopping rules, that individuals might use in 
order to cease information acquisition and make a decision 
in a given scenario. Departing from the stopping rules 
proposed by Fifić and Buckmann (2013), we manipulated 
scenarios in order to show or not show probabilities, high or 
low consequences and positive or negative consequences.  
The data suggests that individuals do not actually follow a 
particular stopping rule, rather they tend to use, consciously 
or not, Bayesian calculations in order to consider all the 
information that was bought in a scenario, when considering 
the decisions participants made. Moreover we found SCP 
waves for different conditions in the experiment. That can 
mean that for those conditions there was an expanded 
allocation of cognitive resources in order to solve conflicts 
that emerged from the information acquisition and the 
scenario description. Those manipulations showed that the 
information acquisition behavior resembled prospect theory 
(Tversky & Kahneman, 1992)  in that different levels of risk 
or uncertainty combined with high/low and 
positive/negative consequences will directly affect the 
quantity of information bought and the weight that the 
information will have in order for a participant to feel 
satisfied and proceed to a decision. 

This was an exploratory experiment in order to study the 
moments leading to a decision in an information acquisition 
task. Further studies should focus on confirming the 
behavior and electrophysiological correlates of each 
condition separately. Also, there is an opportunity for the 
use of integrated psychophysiological measures in order to 
confirm task engagement and cognitive effort in those 
conditions (ECG and eyetracking, for example) 
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Abstract 

Young children use informal strategies to solve arithmetic 
word problems. The Situation Strategy First (SSF) framework 
claims that these strategies prevail even after instruction. The 
present study was conducted with second grade students in 
order to investigate the persistence of intuitive, situation-
based strategies, on word problems that do not involve 
dynamic temporal changes. This is challenging for the SSF 
framework, since the lack of this dimension might bypass 
intuitive strategies. The results revealed that intuitive 
strategies persist, are valid for these types of problems, and 
impact the problems' difficulty. Indeed problems that require 
the application of arithmetic principles remain hard, even 
though they have been practiced at school. These findings 
provide complementary evidence to how mental calculation 
strategies articulate with arithmetic word problem solving and 
call for the extension of the SSF framework. 
 
Keywords:arithmetic word problems; problem solving; 
informal strategies; solution strategies; education. 

Introduction 

Even before instruction young children can solve 

arithmetic word problems by usinginformal strategies 

(Verschaffel& De Corte, 1997). These informal strategies 

reflect the situation described in the problem and preclude 

the flexible application of mathematical principles like 

commutativity, inversion or distributivity (Verschaffel & De 

Corte, 1997).During the early years of elementary school, 

children improve their numerical competencies and acquire 

certain mathematical principles, which could lead us to 

expect that newly acquired arithmetic competencies would 

take place over the informal strategies. 

Indeed, numerous mental calculation strategies that 

schooled children develop to solve problems when 

presented in their arithmetic expression (e.g.'8 - 5=') have 

been documented (e.g. Carpenter, Ansell, Franke, Fennema, 

& Weisbeck, 1993; Torbeyns, De Smedt, Ghesquière, & 

Verschaffel, 2009). They are mainly determined by the 

arithmetic operation that provides the solution. For 

subtraction problems, the principal distinction bears 

between direct subtraction strategies in which the 

subtrahend is straightforwardly taken away from the 

minuend (e.g. in which '42 - 39 =' is solved by '42 - 39'), and 

indirect addition strategies in which the calculation consists 

in finding how much needs to be added to the minuend to 

reach the subtrahend (e.g. in which '42 - 39 =' is solved by 

'39 + . = 42'). In both of these strategies, the arithmetic 

operation that is used is subtraction, it is just the arithmetic 

format that is different (Campbell, 2008). In order to 

describe how students use the two strategies, Peters, 

DeSmedt, Torbeyns, Ghesquière, and Verschaffel (2013) 

provided empirical support for their Switch model. 

According to this model,students solve two-digit subtraction 

problems by switching between direct subtraction and 

indirect addition depending on the combination of the 

magnitude of the subtrahend and the numerical distance 

between the subtrahend and the minuend. 

Brissiaud and Sander (2010) investigated how these 

mental calculation strategies articulate with the informal 

strategies students use on arithmetic word problem solving. 

They proposed a Situation Strategy First (SSF) framework 

which posits that the initial representation of a problem 

activates asituation-based strategy, both before and after 

instruction. Only when this strategy is not efficientthe 

representation of the problem may be modified and a set of 

arithmetic principles may be applied in order to provide an 

adequate solution in a more efficient way. In their 

experiments, each problem was presented to second and 

third grade students in two versions. The first version could 

be efficiently solved by mentally simulating the actions 

described in the problem - situation strategy problems (Si-

problems). For example: 

I. Luc is playing with his 42 marbles at recess. 

During the recess, he loses 3 marbles. How many 

marbles does Luc have now? [42 - 3 =  .] 

Problem I is an Si-problem because simulating the action 

of losing 3 marbles through mentally counting down from 

42 is easy to perform(41 (1), 40 (2), 39 (3)). Thus, a 

situation-based solving strategy, modeling the described 

situation - the Si-strategy - is efficient. 

For each Si-problem, a Mental Arithmetic counterpart 

was introduced (MA-problem). MA-problems are problems 

for which mental simulation is too costly to attain the result 

– thus for which the Si-strategy is not efficient. On the 

contrary, the  use and application of arithmetic knowledge is 

efficient and makes the problem easy (MA-strategy). For 

example: 

II. Luc is playing with his 42 marbles at recess. During 

the recess, he loses 39 marbles. How many marbles does 

Luc have now? [42 - 39 =  .] 

The solution to problem II cannot be efficiently obtained 

by using the same procedure as for the first one; mentally 

simulating the action by counting down 39 marbles would 

be too costly. However the mental subtraction 42 – 39 is 
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easy when the complement principle is mastered and leads 

to counting up from 39 to 42.  

The findings revealed that even after instruction, the Si-

problems remained systematically and significantly easier 

than the corresponding MA-problems. Furthermore, a 

higher use of informal strategies was observed on Si-

problems, while arithmetic principles were almost 

exclusively used on MA-problems. For instance, when 

students succeeded to solve an Si-problem such as Problem 

I, they exclusively used a direct subtraction strategy, which 

is the Si-strategy in this case. However, when they 

succeeded to solve an MA-problem such as Problem II,even 

though Si-strategies were (scarcely)observed, they were 

solved to a greater extent by MA-strategies, such as looking 

for a missing addend in the previous example (‘39 + . = 

42’). This was never observed for Si-problems: no child 

tried to solve a problem such as Problem I by the missing 

addend'3+ . = 42'. 

Indeed, the arithmetic computations of both Si- and MA-

strategies on subtraction problems are executed by the 

aforementioned mental computation strategies. The Switch 

model could accurately account for how the various 

arithmetic characteristics of the problems tested so far by 

the SSF framework yield a clear computational advantage 

for one strategy over another. However, the Switch model 

does not provide an explanation for why students fail to 

apply arithmetic principles, such as it is observed through 

the significantly lower success rates on MA-problems. 

Indeed, even though the Switch model accurately describes 

the numerical conditions that require a switch between 

direct subtraction and indirect addition, it does not account 

for the mental re-representation needed in order to make this 

switch when a presented strategy cannot be easily 

performed in the same format as the one it is presented in. 

We propose that the attainment of a mental re-

representation would reflect an underlying conceptual 

metaphor that guides the interpretation and application of 

arithmetic principles. Conceptual metaphors are based on 

everyday human experience. The underlying mathematical 

ideas are constructed through cognitive mechanisms called 

fictive motion, which refer to the conception of static 

entities in dynamic terms (Lakoff & Núñez, 2001). One of 

the main representations of arithmetic is object collection 

(Lakoff & Núñez, 2001). The most widespread conceptual 

metaphor of subtraction that can be drawn from itis "taking 

away" (Fischbein, 1989; Lakoff and Núñez, 2001). 

Alternatively, arithmetic can be considered as motion along 

a path (Lakoff & Núñez, 2001). The conceptual metaphor of 

subtraction that can be drawn from this conception is 

subtraction as a measuring stick (Lakoff & Núñez, 2001), or 

as "determining the difference" (Selter, Prediger, 

Nührenbörger & Hußmann, 2012). As Selter and 

collaborators (2012) pointed out, the "taking away" model 

might be more widespread, however seeing subtraction 

solely as "taking away" is too one-sided, and both models 

are required in order to be flexible in mental arithmetic.  

We consider that the failure to apply arithmetic principles 

on MA-problems is due to a restrictive representation of 

arithmetic, an intuitive representation(such as the "taking 

away" model), which entails a limited interpretation of the 

arithmetic situation embedded in the problem statement. 

Such an extension of the SSF framework would also 

challenge the most commonly used classification of 

arithmetic word problems introduced by Riley, Greeno and 

Heller (1983). Their classification determines the difficulty 

of a problem based on the semantic category it belongs to, 

while the SSF framework puts emphasis on situation-based 

strategies and proposes thatthe efficiency of such strategies 

would be also a determining factor of difficulty. 

Yet, all the subtraction problems that were tested by 

Brissiaud and Sander (2010) belonged to one same category 

of subtraction problems from Riley, Greeno and Heller's 

(1983) classification - change problems. These problems are 

dynamic in nature and describe an action with a temporal 

dimension,soliciting a mental simulation. However, the 

other problem categories do not involve this temporal 

dimension. They have been identified as more difficult than 

change problems, especially "compare" problems, in which 

a comparison between two quantities is involved and the 

question bears on the difference or on one of the compared 

quantities. It therefore remains an open issue if the mental 

simulation advocated by the SSF framework is still relevant 

for problems that do not unfold along a temporal dimension. 

Indeed, if the mental simulation of the problem was not 

solicited, then we could expect that the distinction between 

Si- and MA-problems among these categories would lose its 

relevance. It therefore remains an open issue if the mental 

simulation advocated by the SSF framework is still relevant 

for problems that do not unfold along a temporal dimension. 

If it would be demonstrated that the efficiency of the mental 

simulation influences a problem’s difficulty even when it 

does not develop along a temporal timeline, it would 

warrant a broader view of Si-strategies and provide a new 

criterion for the assessment of problem difficulty, not based 

only on the semantic category, but also on the efficiency of 

the Si- strategy. 

Aim of the study 

The purpose of the study was to demonstrate that the 

mental simulation of the arithmetic relations is not a mere 

consequence of a dynamic semantics of the problem, but an 

intrinsic property of arithmetic problem solving. Firstly, we 

conducted a longitudinal study in order to test the 

distinction between Si- and MA-problems in contexts less 

favorable for a mental simulation. Secondly, we conducted 

individual verbal reports in order to gather confirmatory 

evidence of situation-based strategies for Si-problems and a 

switch to non-situation-based strategies for MA-problems. 
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Table 1: Example of the problems for the number set (31, 27, 4)presented with different contexts 

 

Problem categories Si problems MA problems 

Comparison 

problems 

D[b+ . =a] 
There are 27 roses and 31 daisies in the 

bouquet. How many daisies are there more 

than roses in the bouquet? 

There are 4 roses and 31 daisies in the 

bouquet. How many daisies are there 

more than roses in the bouquet? 

D[a- . =b] 
There are 31 oranges and 27 pears in the 

basket. How many pears are there less than 

oranges in the basket? 

There are 31 oranges and 4 pears in the 

basket. How many pears are there less 

than oranges in the basket? 

C[b+b'= . ] 
James has 27 marbles. Steve has 4 marbles 

more than James. How many marbles does 

Steve have? 

James has 4 marbles. Steve has 27 

marbles more than James. How many 

marbles does Steve have? 

C[a-b= . ] 
Anna has 31 euros. Susan has 4 euros less 

than Anna. How many euros does Susan 

have? 

Anna has 31 euros. Susan has 27 euros 

less than Anna. How many euros does 

Susan have? 

Equalizingproblem

s 

E[b+ . =a] 
There are 27 oranges and 31 pears in the 

basket. How many oranges should we add 

to have as many oranges as we do pears? 

There are 4 oranges and 31 pears in the 

basket. How many oranges should we add 

to have as many oranges as we do pears? 

E[a- . =b] 

There are 31 roses and 27 daisies in the 

bouquet. How many roses should we take 

away in order to have as many roses as we 

do daisies? 

There are 31 roses and 4 daisies in the 

bouquet. How many roses should we take 

away in order to have as many roses as we 

do daisies? 

Combine problems 

S[b+ . =a] 

Mary has 27 euros in her piggybank and she 

has euros in her pocket. In total, Mary has 

31 euros. How many euros does Mary have 

in her pocket? 

Mary has 4 euros in her piggybank and 

she has euros in her pocket. In total, Mary 

has 31 euros. How many euros does Mary 

have in her pocket? 

S[b+b'= . ] 
There are 27 blue marbles and 4 red 

marbles in Marc's bag. How many marbles 

are there in Marc's bag? 

There are 4 blue marbles and 27 red 

marbles in Marc's bag. How many 

marbles are there in Marc's bag? 

 

Experiment 1 

Method 

Participants 

269 second grade students from 13 classes in 7 schools 

from working-class neighborhoods participated in the study. 

The average age of the children in January, when the first 

test was passed, was 7.62 years (sd = 0.32, 138 girls). 

Material  

There were 8 addition and subtraction problem types 

belonging to 3major categories: 

- compare problems: difference set(D[b+ . =a],  

 D[a- . =b]) and compared set (C[b+b'= . ], C[a-

 b= . ]), 

- equalizing problems(E[b+ . =a], E[a- . =b]), 

- combine problems(S[b+ . =a], S[b+b'= . ]). 

The subtraction problems involved two numbers, a and b 

(a>b). The numerical values for a were either 42, 41, 33 or 

31, while in order to differentiate between Si- and MA-

problems the values for b were either kept small (3 or 4) or 

were close to a (39, 38, 29 or 27). To create Si-problems the 

small value of b was used for the C[a-b= . ], while the b 

value close to a was used for D[b+ . =a], D[a- . =b],  

C[b+b'= . ], E[b+ . =a], E[a- . =b]n S[b+ . =a],  

S[b-b'= . ]. To create MA-problems the opposite b value was 

respectively used for each problem, since it would make the 

Si-strategy costly. 

Addition problems S[b+b'= . ] and C[b+b'= . ] involved 

two numbers, b and b'. Both numbers had the same 

characteristics as b for subtraction problems, while the 

unknown value was equivalent to a. To create Si-problems 

the b value close to a was presented first, while the small b 

value (b') was presented second. To create MA-problems 

they were presented in the opposite order. 

Thus the numbers involved in the data and the solution 

are (31, 27, 4), (33, 29, 4), (41,38, 3), and (42, 39, 3). 

Note that the number size was not the determining factor 

in the Si vs. MA-problem distinction. In the Si- versions one 

problem had the b value close to a, while others had small b 

values
1
. Also the second experiment was conducted to 

support this, by directly investigating students' strategy use. 

                                                           
1 Furthermore, in the princeps study that introduced the SSF 

framework, the small b values, and the ones close to a were 

equally present in the Si- and MA-versions of the problems. 
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Four different contexts were used for the wording of the 

problems: marbles, euros, flowers and fruits.  

Table 1 provides examples of each problem category. 

Design 

Children solved a total of 8 problems created by 

combining the 8 problems categories in either their Si- or 

MA- version. Each student therefore solved 4 Si-problems 

and 4-MA-problems.To control for the impact of position, 

numerical sets and context, 8 different problem sets were 

created. Another 8 problem sets were 'mirror' sets in which 

the Si-version of one problem would be presented in its MA 

counterpart, while the MA-problem would be presented in 

its Si-counterpart. Thus, 16 groups of problem sets were 

created altogether and counterbalanced across classrooms. 

Procedure 

The experiment was composed of two sessions. The first 

conducted in January and the second one, strictly identical 

to the first one, 6 months later, in June. It was administered 

in the students' classrooms. Each child received an 8 pages 

booklet. There was a square in the middle of each page in 

which they wrote their answer. Each problem was read 

aloud twice to the whole classroom and children had one 

minute to write down the number that was the solution. 

Scoring  

The solutions provided by the children were scored with 1 

point when the numerical answer was exact, or within the 

range of plus or minus one of the exact value, in order to 

take into account mistakes in counting procedures. Any 

other answer received 0 points. The average of the sum of 

the scores on Si- and MA-problems was used as the 

dependent variable and analyses on these scores were 

carried out. 

Results 

A first analysis was conducted in order to compare 

children's average success rates on Si- and MA-problems at 

the beginning of the year, followed by a second set of 

analyses in order to compare the success rates on the 

problems at the end of the school year. A third analysis bore 

on the progression over the year. 

Repeated measure ANOVAs, with the 'Si- versus MA-

problems' variable (further referred to as Problem type)as 

within-participant independent variables, were conducted 

for each session. The analyses of the scores obtained in 

January showed a highly significant main effect of Problem 

type on performance (F(1, 268)=98.39, p< 

0.001,ƞ²=0.11).Table2displays the average success rates. 

Indeed the Si-problems had a 19.57% higher success rate 

than MA-problems. 

In June, there was a significant difference in performance 

between the two times of testing on Si-problems  (F(1,268)= 

86.39, p<.001, ƞ²=0.06) and on MA-problems 

(F(1,268)=36.58, p<.001, ƞ²=0.05). Yet, in accordance with 

our hypotheses, the results still revealed a highly significant 

main effect of Problem type on performance in June 

(F(1,268)=119.57, p<.001, ƞ²=0.13).As displayed in Table2, 

the Si-problems had a 24.38% higher success rate than MA-

problems in June (experiment 2). 

Table 2: Average success rates 

 

Averagesuccess rate January June 

Si-problems 47.86% 64.53% 

MA-problems 28.25% 40.15% 

Indeed, after performing a repeated measure ANOVA 

with the Problem type and the times of testing as within-

participant independent variables, the results confirmed that 

there was a significant main effect of Problem type 

(F(1,268)=171.64, p<.001, ƞ²=0.12) and a main effect of the 

Time of testing (F(1,268)=106.19, p<.001, ƞ²=0.05), but 

most importantly there was no interaction between the two 

variables (F(1,268)=3.51, p>.1, ƞ²=0.001). Thus, as 

hypothesized, despite the progress made on each problem 

type throughout the year, the gap in performance persisted 

between Si- and MA-problems. 

In order to test the hypotheses problem per problem, 

univariate ANOVAs, with the Problem type variable, were 

conducted for each of the eight problem categories and 

showed that almost all of the Si-problems were significantly 

easier than the corresponding MA-problems both in January 

and in June: D[a - . =b], C[b + b'= . ], C[a - b= . ], E[b + . 

=a], E[a - . =b] and S[b + . =a] (3.843 <F(1, 267)<72.501, 

p< .01, 0.01<ƞ²<0.20. The D[b+ . =a] seemed to be 

particularly hard in January when no difference was 

observed (F(1,267)=0.23, p>.1,ƞ²=0.001) (27.6% success 

rate on Si- and 25% on MA-problems), but the Si- versus 

MA-distinction was valid at the end of the year 

(F(1,267)=15.63, p<.001, ƞ²=0.06)(47% success rate on Si- 

and 24% on MA-problems). The single exception for which 

no difference was observed on either time of testing was the 

combine superset problem S[b+b'= . ] (January 

F(1,267)=2.69, p>.1, ƞ²=0.01, June F(1,267)=1.223, p>.1, 

ƞ²=0.005), for which a difference was observed in the 

expected direction but not confirmed by the test (75% and 

83% success rate on Si-problems and 66% and 77% on MA-

problems, in January and June respectively). 

Discussion 

The results revealed that the distinction between Si- and 

MA-problems remain relevant for subtraction and addition 

word problems that do not evolve along a temporal time-

line. Our study shows that indeed, problems efficiently 

solved by direct modeling strategies remain easier for 

students even after they acquired more advanced skills in 

mathematics at the end of the year. The progression between 

the two sessions did not obliterate the distinction between 

Si-and MA-problems. The similar progression on Si- and 

MA- problems might be explained by the advances children 

made in computational execution of the calculations, or 

regarding their general comprehension skills. 

A second experiment was conducted in order to provide 

confirmatory evidence that the difference in difficulty 

between Si- and MA-problems actually results from the 

preferential use of Si-strategies when they are efficient and 

for the lack in the application of arithmetic principles when 

this strategy is inefficient. 
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Table 3 : solving strategies for each problem category (with an example of the number set (31, 27, 4)) 

 

Experiment 2 

We collected additional information concerning the 

strategies children actually use when solving Si- and MA-

problems. We asked them to solve problems and then to 

describe their solving strategy aloud. We predicted that the 

solution strategies which directly model the problem would 

be predominant for Si-problems but that alternative 

strategies would emerge for MA-problems. 

Method 

Participants 

42 Grade 2 students from 4 classes in2 different schools 

from working-class neighborhoods participated in the study. 

The test occurred in June and the average age of the children 

on the test was 7.93 years (sd = 0.26, 23 girls). None of the 

participants participated in the previous experiment. 

Material & Design 

The same material and design was used as in the first 

experiment. 

Concerning the evaluated strategies, if we take the D[a- . 

=b] problem as an example, the Si- strategy used to solve it 

is to start from the largest presented quantity (31) and to 

double-count downwards until the second quantity is 

reached: in the Si-problem this would not be costly. The 

students would describe their solving process as starting 

from 31 and counting down30(1), 29(2), 28(3), 27(4), 

bearing the answer 4, and noted by the experimenter as 31- . 

= 27.Yet using the same Si-strategy of double-counting 

downward in the MA-problem to get from 31 to 4 is a costly 

procedure. When students would use this strategy they 

would describe the same solving process: starting at 31 and 

counting down30 (1), 29(2), 28(3), ... 5(26), 4(27), bearing 

the answer 27 and noted by the experimenter as 31- . = 4. 

Nevertheless, when applying arithmetic knowledge we 

can easily know that taking away 4 from 31 provides the 

correct numerical answer to this MA-problem. One of the 

possible descriptions of the students' solving process would 

be to start from 31 and take away 4, with the result no 

longer being the number of times they counted down, but 

the number they reached. This Non-Si-,mental arithmetic 

strategy (MA-strategy) would be noted as '31- 4 = .'. 

Procedure 

The procedure was identical to the first experiment, 

except that the test was conducted individually in the school 

library and that after writing down the numerical answer, 

the student was asked to explain aloud how he or she found 

the solution. The possible strategies were established 

beforehand and there was no ambiguity in their coding. The 

strategies that the students reported were classified 

according to table 3 into Si-strategies when the strategy 

directly modeled the wording of the problem, or into Non-

Problem 

category 

Si-problems MA-problems 

% correct 

responses 

with 

described 

strategy  

Si-strategy Non-SI-strategies % correct 

responses 

with 

described 

strategy  

Si-strategy Non-SI-strategies 

Direct 

modelling 

strategy 

MA-

strategy 
Other 

Direct 

modelling 

strategy 

MA-

strategy 
Other 

D[b + . =a] 

 27+ . =31 31-27= . 31- . =27   4+ . =31 31-4= . 31- . =4 

66.67% 92.86% 0% 7.14% 19.05% 50% 50% 0% 

D[a - . =b] 

 31- . =27 31-27= . 27+ . =31  31- . =4 31-4= . 4+ . =31 

55.56% 50% 0% 50% 33.33% 16.67% 83.33% 0% 

C[a - b= . ] 

 31-4= . 4+.=31 31- . =4  31-27= . 27+ . =31 31- . =27 

47.62% 100% 0% 0% 19.05% 50% 50% 0% 

E[b + . =a] 

 27+ . =31 31-27= . 31-.=27  4+ . =31 31-4= . . +4=31 

47.62% 100% 0% 0% 38.10% 50.00% 25.00% 25.00% 

E[a - . =b] 

 31- . =27 31-27= . 27+ . =31  31- . =4 31-4= . 4+ . =31 

66.67% 71.43% 14.29% 14.29% 38.10% 12.50% 75% 12.50% 

S[b + . =a] 

 27+ . =31 31-27= . 31- . =27  4+ . =31 31-4= . 31- . =4 

47.62% 90% 0% 10% 33.33% 28.57% 71.43% 0% 

S[b + b'= . ] 

 27+4= . 4+27= .   4+27= . 27+4= .  

85.71% 100% 0%  90.48% 5.26% 94.74%  

C[b + b'= . ] 

 27+4= . 4+27= .  23.81% 
4+27= . 27+4= . 

 

61.90% 100% 0%     0% 100%   

2154



Si-strategies when the strategy that the student described did 

not directly model the problem. 

Scoring  

For both Si- and MA-problems, we computed a score of 

Si-strategies (Si-score) and Non-Si-strategies (Non-Si-

score). If a pupil provided a correct answer and explained a 

strategy, the nature of this strategy was assessed and 

contributed 1 point to either the Si-strategy score or the 

Non-Si-strategy score of the problem type. No points were 

attributed if a student did not provide a correct response 

and/or did not describe any strategy after providing the 

correct answer (only 7.5% of the correct responses were not 

accompanied by a strategy description). Given that children 

solved 4 problems of each type, the scores ranged from 0 to 

4. 

Results  

The experiment replicated the previous findings, 

confirming that Si-problems were easier for children than 

MA-problems. The success rates were 67.2% and 41.5% 

respectively, and the variance analysis revealed that this 

difference was significant (F(1,41)=17.86, p<.001, ƞ²=0.13). 

Table 3 shows strategy use for each problem category and 

the disparities between the two kinds of strategies, among 

students that provided the right numerical solution and 

described a strategy. 

We further performed two variance analyses using the Si-

strategy score and the Non-Si-strategy score as the 

dependent variables, and Problem type as the within factor 

variable. The average scores are presented in table 4.As 

expected, both differences were significant. Si-strategies 

were used significantly more on Si-problems (F(1,38)=79.1, 

p<.001, ƞ²=.5), as well as Non-Si-strategies on MA-

problems (F(1,38)= 20.06, p<.001,ƞ²=.2). 

 

Table 4 : Si- and Non-Si-score for solving strategies 

Discussion  

The variance analyses confirmed that solution strategies 

which directly model the situation were predominant for Si-

problems and that solution strategies which required 

arithmetic knowledge were predominant for MA-problems. 

These findings suggest that the selected strategy drives the 

difference in performance on top of the problem category or 

factors such as mental calculation competences. 

General Discussion and Conclusion 

The experiments conducted in the present study account 

for the spontaneous and intuitive modeling of the situation 

described in arithmetic word problems, which leads to a 

primary use of situation strategies and the application of 

arithmetic principles only when the first one is too costly. 

The significant difference that was observed between Si- 

and MA-problems fits with the previous findings on change 

problems (Brissiaud & Sander, 2010), and confirms that this 

problem distinction is not specific to problems that evolve 

along a temporal timeline. These findings complement the 

traditional classification of arithmetic word problems 

according to which problem difficulty depends mostly on 

the problem category. They also provide evidence that 

situation strategies are not only tied to the semantic wording 

of a problem, but could be a fundamental property solicited 

by arithmetic problems. 
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Abstract 

Prior research yielded conflicting findings regarding 

whether older adults show a greater processing cost than 

younger adults when encountering unpredicted semantic 

material during language processing. Here, we 

investigated whether age-related differences in recovery 

from prediction error are influenced by increased 

demands on working memory. We used a dual task 

design: a primary sentence comprehension task in which 

semantic predictions were fulfilled or violated, and a 

concurrent driving task, thought to limit working memory 

resources in resolving prediction errors. In the dual task, 

older participants showed an increase in comprehension 

accuracy for sentences with semantic violations, while 

demonstrating a decrease in driving accuracy. Thus, when 

working memory resources were limited, older adults 

focused exclusively on the language task and neglected 

the driving task. This could be related to an age-related 

increase in generating semantic predictions, or to a 

general inability among older adults to divide attention 

between two cognitively demanding tasks.  

Keywords: aging, semantic expectancy, dual tasking, 
attention allocation 

Introduction 

Prediction of upcoming linguistic material is pervasive 

during language comprehension. Recent theories hold that 

expectations at higher levels of processing (e.g., syntactic, 

contextual) generate hypotheses and facilitate low-level 

processing, for example in word recognition (Kuperberg & 

Jaeger, 2016).  

Frequently, however, people encounter unpredicted 

linguistic content and must recover from unexpected events 

that violate their expectations. Indeed, research has shown 

that this recovery phase often involves a processing cost. 

For example, Federmeier and Kutas (1999) analyzed the 

N400 EEG component (for review, see Kutas & Federmeier, 

2000) to index comprehension difficulties when participants 

were reading unexpected sentence continuations. Sentences 

contained either an expected word, an unexpected word 

from the same semantic category, or an unexpected word 

from a different semantic category (e.g., They wanted to 

make the hotel look more like a tropical resort. So along the 

driveway, they planted rows of palms (expected) / pines 

(unexpected same category) / tulips (unexpected different 

category)). According to the results, the N400 was reduced 

for expected and semantically related words, indicating that 

processing of predicted (palms) and semantically related 

words (pines) was facilitated. In contrast, for semantically 

unexpected words (tulips) the N400 amplitude was high, 

suggesting comprehension difficulties among participants 

when predictions based on context were violated.  

 However, an unanswered question is whether older adults 

(65 years or older) use context to anticipate upcoming 

content during language processing in a similar fashion as 

younger adults do. Some studies have shown that older 

adults are more disturbed by unpredicted semantic material 

than younger adults, which suggests that older adults may 

rely more heavily on prediction making during language 

processing (DeLong, Groppe, Urbach, & Kutas, 2012; 

DeDe, 2014; Rayner, 2006; Borges & Coco, 2015). For 

example, Borges and Coco (2015) investigated age 

differences in visual object detection by using a priming 

paradigm in which prime and search scene were either 
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congruent (e.g., kitchen-kitchen) or not (e.g., bathroom-

kitchen). In addition, visual target objects (e.g., bread 

basket) were presented in a semantically consistent 

condition (e.g., on a restaurant table) or in an inconsistent 

condition (e.g., on a pool table). According to the results, 

older adults were less successful at detecting target objects 

when prime and search scene were semantically congruent, 

but the target was inconsistent with the search scene. The 

authors concluded that older adults rely more heavily on 

contextual expectations than younger adults by generating 

very specific predictions based on consistent information. 

Consequently, they showed a greater processing cost when 

expectations based on context and new information are 

inconsistent.  

Other studies, in contrast, have shown that older adults 

generally appear less likely than younger adults to use 

context and engage in pre-activating information during 

sentence processing (e.g., Federmeier & Kutas, 2005; 

Federmeier, Kutas, & Schul, 2010). For example, 

Federmeier and Kutas (2005) compared younger and older 

adults’ N400 amplitude for sentence-final words in highly 

and weakly constraining contexts (e.g., highly constraining: 

No one at the reunion recognized Dan because he had 

grown a beard; weakly constraining: At the children’s park 

next to the beach she saw a man with a beard). Even though 

both age groups showed a similar N400 for weakly 

constraining sentences, the older adults' brain response for 

strongly constraining sentences was delayed and diminished 

in shape. The authors concluded that older adults were 

unable to make use of the richer information available from 

strongly constraining contexts to guide semantic processing; 

possibly because age-related declines in working memory 

prevented older adults from quickly constructing and 

updating an ongoing message-level representation while at 

the same time processing new input (see Huettig & Janse, 

2016, for a similar account). 

Given Federmeier and Kutas’ (2005) implication of 

working-memory capacity, the goal of the present study was 

to examine whether age-related changes in predictive 

processing are influenced by increasing demands on 

working memory. We used a dual-task paradigm with a 

primary language comprehension task and secondary 

driving task, thought to limit cognitive resources that 

participants can expend to resolving semantic prediction 

errors. To our knowledge, only one previous study has 

investigated how aging affects dual-task performance during 

language processing and driving, and that particular study 

found an age effect that was limited in scope.  

Becic et al. (2010) investigated story-retelling ability in 

younger and older adults while participants were engaged in 

a secondary driving task. According to the results, younger 

adults achieved high accuracy in both story retelling and 

driving, suggesting high capacity in this participant group to 

divide attention between the language and the driving task. 

For older adults, no reliable effects emerged in the primary 

analysis. However, there was a trend in the data (revealed 

by post-hoc tests), which suggested that better driving (less 

variability in velocity and lane keeping) was associated with 

worse retelling. In other words, older adults who drove 

better also performed more poorly in the language task. 

Since the group of older adults showed worse story-retelling 

ability overall, it seemed that older adults primarily focused 

on getting the driving task right, while neglecting the 

language task. The authors suggested that, due to age-

related declines in working-memory capacity, older adults 

may be more likely to protect their driving by giving up on 

the story retelling task. However, the Becic et al. (2010) 

study remains somewhat mute with respect to age 

differences in predictive processing (the primary focus of 

the present study), since this question was not specifically 

addressed by that paper. 

In the present study, we sought to adress age-related 

differences in recovery from prediction error more directly, 

by presenting stimuli in a low- vs. high-surprisal condition 

(e.g., Since Petra didn’t have anything to wear for the 

barbeque, she bought a dress (low surprisal) in a nearby shop; 

vs. Since Petra didn’t have anything to drink for the 

barbeque, she bought a dress (high surprisal) in a nearby shop). 

High-surprisal sentences were thought to induce a strong 

cognitive conflict since the second clause violated semantic 

predictions based on contextual information provided by the 

first clause (i.e., drink-dress).  

Based on prior research on semantic surprisal in younger 

adults (DeLong, Troyer, & Kutas, 2014; Kutas & 

Federmeier, 2000), we predicted that younger adults should 

be sensitive to violations of semantic expectancies 

(probably indexed by lower accuracy for high-surprisal 

sentences in the language comprehension task). In addition, 

we expected stable performance in this participant group 

regardless of whether sentences were processed in the single 

or dual task, indicating high capacity in younger adults to 

divide attention even under conditions of high linguistic 

load (cf. Becic et al., 2010).  

In contrast, for older adults our predictions were less clear 

based on previous research. If, on the one hand, older adults 

generate more specific predictions during language 

processing, we expected to find large processing costs in 

response to high-surprisal sentences, in particular under 

dual-task conditions, when less cognitive resources are 

available to resolve the semantically unexpected event. If, 

on the other hand, older adults are less efficient at 

generating predictions, we expected only minimal 

processing costs for high-surprisal sentences, with only 

small differences between single and dual-task condition. 

Method 

Participants 

Thirty-six older adults (mean age = 72 yrs; 18 female) from 

the Saarbrücken community participated for compensation. 

The control group consisted of 34 younger adults (mean age 

= 23; 20 female), mostly students at UdS. All participants 

were native speakers of German, reported no hearing 

problems and had normal or corrected-to-normal vision.  
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Procedure 

We investigated age-related differences in recovery from 

prediction errors while participants were engaged in a single 

and dual task. The dual task consisted of a language 

comprehension and continuous driving task. The single task 

consisted of the driving or language task only. Overall, the 

experiment consisted of six major blocks – two dual-task 

blocks for simultaneous language comprehension and 

driving, two single-task blocks for single driving, and two 

single task blocks for language comprehension. 

 

Language Task. The language comprehension task 

consisted of a sentence verification task for 192 spoken 

sentences, half of them presented in a low-surprisal 

condition (low processing effort) and high-surprisal 

condition (high processing effort). Each sentence was 

constructed of two clauses, with the verb of the first clause 

providing a semantic context and the noun of the second 

clause either matching (low-surprisal condition) or violating 

this semantic context (high-surprisal condition), for 

example, Since Petra didn’t have anything to wear (low 

surprisal)  / drink (high surprisal)  for the barbecue, she bought a 

dress in a nearby shop. Participants were instructed to 

carefully listen to the sentences, which were presented to 

them over speakers, and asked to judge whether each 

sentence was meaningful and correct by verbally answering 

“Yes” or “No”, while the researcher recorded their 

responses. In order to minimize prosodic differences among 

items, all sentences were synthesized prior to the 

experiment using MARY TTS (Schröder, Charfuelan, 

Pammi, & Turk, 2008) and pauses manipulated so that the 

duration of the disambiguating word (dress) was always 

identical. To avoid stereotyped responses, we also presented 

72 filler items in a low- and high-surprisal condition, 

involving syntactic violations. All items were randomized 

using a Latin Square randomization, with surprisal (high-

low) as blocking factor, to ensure that each participant 

encountered each experimental item in only one of its 

experimental conditions. 

 

Driving Task. We used the Continuous Tracking and 

Reaction Task (ConTRe Task; Mahr, Feld, Moniri & Math, 

2012), a highly controlled driving task which measures 

rapid changes in steering deviation from a target. As such, 

the ConTRe task allows for continuous and very fine-

grained measurement of online changes in task performance 

over time (e.g., Becic, Dell, Bock, et al., 2010; Demberg, 

Sayeed, Mahr, & Müller, 2013). Participants were seated in 

front of a steering wheel and saw a 3D road on a screen, 

with two vertical color bars moving laterally across the 

screen at a continuous speed. Participants were instructed 

that they could control one of the bars (the blue one) by 

turning the steering wheel whereas the other bar (the yellow 

one) was controlled by the computer. Their task was to 

continuously track the yellow bar so as to keep the distance 

between the two bars minimal at all times. Participants’ 

driving performance was assessed by measuring their 

steering deviation (indicated in meters) when processing 

low- and high-surprisal sentences. 

Results 

We constructed separate linear mixed effects models for 

response accuracy and steering deviation, as implemented in 

the lme4 library (Bates & Sarkar, 2007) in R (R 

Development Core Team, 2013). Fixed effects for response 

accuracy were sentence type (low surprisal vs. high 

surprisal), task condition (single vs. dual), and age group 

(younger vs. older). Fixed effects for steering deviation 

were sentence type and age group. Since raw steering 

deviation was coded in positive and negative values, 

indicating left- and right-sided deviations, we squared its 

values to obtain a final measure. For the LMER model for 

steering deviation, p-values were approximated from the 

model coefficients using the normal distribution (see Barr, 

Levy, Scheepers, & Tily 2013). Categorical predictors were 

sum coded. All models contained participants and items as 

crossed random effects, and random slope adjustments for 

subjects and items. In the event that a model failed to 

converge, we simplified the random slope structure 

progressively until convergence was achieved (for 

guidelines, see Barr et al., 2013). Higher-order interactions 

involving the factor age group were followed up with 

planned model splits between younger and older adults.  

Response accuracy 

The model for response accuracy showed a significant 

interaction between sentence type and age group, as well as 

a significant interaction between sentence type and task 

condition (see Table 2). To locate the source of these 

interactions, we computed two follow-up models in which 

items were split by age group. Thus, we computed one 

model for younger adults, and another model for older 

adults.  

The model for the younger adults showed nothing but a 

significant main effect of sentence type (b = -0.62, SE = 

0.14, t = -4.29, p < .001 ***), indicating that, regardless of 

task condition, younger adults responded less accurately to 

high-surprisal than low-surprisal sentences (see Figure 1, 

left panel). In contrast, the model for the older adults 

showed a significant interaction between sentence type and 

task condition (b = -0.86, SE = 025, t = -3.4, p < .001 ***). 

An inspection of the plot for this interaction (see Figure 1, 

right panel) suggested that older adults responded equally 

accurately to high- than low-surprisal sentences in the single 

task condition, but showed a selective increase in response 

accuracy for high-surprisal sentences in the dual-task 

condition. These observations were confirmed by additional 

follow-up models, in which we split items by task condition: 

As predicted, only the model for the dual-task condition 

showed a significant main effect of sentence type (b = 0.77, 

SE = 0.18, t = 4.28, p < .001 ***), indicating an increase in 

response accuracy for high-surprisal sentences.  

Thus, the data for response accuracy showed two main 

things of interest: First, younger adults responded less 
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accurately to high-surprisal sentences, regardless of task 

condition, indicating stable performance in this participant 

group even when working-memory load was high (i.e. the 

dual-task condition). Older adults, in contrast, responded 

more accurately to high-surprisal sentences in the dual-task 

condition, indicating that they selectively focused on 

resolving the semantic conflict in these items (cf. Becic et 

al., 2010), presumably by giving up driving. To support this 

view, we now turn to the driving performance in both age 

groups. 

 

 
 

Figure 1: Response accuracy (± SEM) in younger and older 

adults, depending on task condition and sentence type.  

 

Table 1: Effect sizes (b), standard errors (SE), t-values, and 

p-values for the logistic LMER model for response 

accuracy. Significance codes: *** .001 | ** .01 | * .05 

 

 b SE t p 

Sentence Type -0.12 0.10 -1.26 ns 

Task Condition -0.03 0.10 -0.35 ns 

Age Group 0.34 0.15 2.24 * 

SentType:Task -0.58 0.19 -3.03 ** 

SentType:Group -0.98 0.19 -5.11 *** 

Task:Group -0.24 0.19 -1.27 ns 

SentType:Task:Group 0.59 0.38 1.53 ns 

Random Effects Variance 

Subject 0.23 

 

Steering deviation 

The model for squared steering deviations showed a 

significant interaction between sentence type and age group 

(see Table 2). The plot of this interaction (see Figure 2) 

suggested that younger adults showed stable driving 

performance regardless of whether sentences were highly 

surprising or not, whereas older adults demonstrated higher 

steering deviations when high-surprisal sentences were 

presented. To confirm these observations, we again 

computed follow-up models in which we split items by age 

group. As expected, only the model for older adults showed 

a main effect of sentence type (b = 0.24, SE = 0.06, t = 4.05, 

p < .001***; younger adults: b = -0.02, SE = 0.03, t = -0.70, 

p > .05).  

Thus, the analysis of the driving data supported our 

hypothesis based on the response data. First, younger adults 

showed constant steering deviations regardless of semantic 

violations, suggesting that even under conditions of high 

linguistic load, they maintained high driving acuity. Older 

adults, in contrast, demonstrated greater steering deviations 

in response to high-surprisal sentences, suggesting increased 

effort to recover from semantic violations.  

In sum, whereas younger adults maintained a stable 

pattern of performance even under conditions of high 

linguistic load, older adults devoted all attentional resources 

to resolving semantic violations, while neglecting the 

driving task. 

 

 
 

Figure 2: Steering deviations in the dual task (± SEM) for 

younger and older adults, depending on sentence type.  

 

 

 

Table 2: Effect sizes (b), standard errors (SE), t-values, 

and bootstrapped p-values for the logistic LMER model for 

steering deviation. 

 

 b SE t p 

Sentence Type 0.11 0.03 3.53 *** 

Age Group 0.31 0.17 1.80 ns 
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SentType:Group 0.26 0.06 4.18 *** 

Random Effects Variance 

Subject 0.50 

SentType | Subject  0.06 

Item 0.01 

Age Group | Item 0.05 

Discussion 

Prior research has yielded conflicting findings with respect 

to predictive processing in aging. Some studies have shown 

that older adults are impaired at using context to generate 

predictions about upcoming content during language 

comprehension. Other studies have indicated that older 

adults form strong and semantically specific predictions 

during language processing, resulting in effortful recovery 

when such predictions are violated.  

In this study, we investigated age-related differences in 

recovery from prediction error under conditions of increased 

working-memory load. By using a secondary driving task, 

we limited working-memory resources participants could 

devote to resolving prediction errors. To manipulate 

prediction error, we presented sentences in a high- and low-

surprisal condition. In high-surprisal sentences, participants 

were expected to experience integration difficulties when 

encountering unpredicted semantic content. Low-surprisal 

sentences, in contrast, were thought to induce only minimal 

processing effort.  

Two key findings emerged. First, even though younger 

adults were sensitive to violations of semantic predictions 

overall (indicated by lower response accuracy for high-

surprisal sentences), they maintained a stable behavioral 

pattern in both response accuracy and driving performance. 

Thus, younger adults were able to resolve the semantic 

violation in high-surprisal sentences without experiencing 

trade-off effects between primary and secondary task. This 

suggests high working-memory capacity in this participant 

group to split attention even under conditions of maximal 

linguistic load. Second, we found that older adults allocated 

all processing resources towards resolving the unexpected 

sentence continuation in high-surprisal sentences. This 

increased their response accuracy in the sentence 

verification task, but it came at the expense of driving 

accuracy: When high-surprisal sentences were presented, 

older adults demonstrated a strong increase in steering 

deviation.  

Thus, our results are more in line with studies suggesting 

that older adults form strong predictions during language 

processing, and that violations of these predictions induce 

maximal processing effort to resolve the prediction error. 

Unlike younger adults, however, older adults may not have 

sufficient working-memory capacity to integrate 

semantically unexpected material into an unfolding sentence 

context and to additionally perform a secondary task 

without a substantial drop in task performance.  

A second interpretation of our results is that older adults 

are inable to successfully divide attention between two 

cognitively demanding tasks. Thus, they might globally 

shift attentional resources towards one cognitive goal when 

multiple tasks have to be performed at the same time. This 

interpretation is in line with prior research suggesting that 

older adults can relevel their task priorities in a case-by-case 

manner that follows principles of selective optimization, by 

taking into account the subjective difficulty of each task and 

choosing the one which is most likely to garner success (see 

Li, Baltes, Staudinger, & Lindenberger, 1999; Miles & 

Stine-Morrow, 2004; Stine-Morrow, Miller & Hertzog, 

2006). Here, older adults might have adopted a strategy of 

selective performance optimization, by neglecting the high 

demands in the bar-tracking task and focusing exclusively 

on the sentence verification task. Overall, the language task 

may have seemed more likely to yield success, given older 

adults’ increased verbal knowledge and linguistic capacity 

(Glisky, 2007).  

Finally, a somewhat open question is to what extent our 

data have real-life implications on older adults’ car driving 

security. On the one hand, our results are supported by prior 

studies using simulated but also naturalistic driving 

scenarios, suggesting that driving ability suffers most under 

conditions of high working-memory load (Cantin, 

Lavallière, Simoneau, et al., 2009; Strayer, Cooper, Turrill, 

et al., 2013), and that older adults are more likely to adapt to 

such situations by selectively focusing their attention on one 

task and disregarding the other (Becic et al., 2010). In 

addition, there is evidence from research on car driving 

safety (Strayer et al., 2013) indicating that behavioral results 

obtained in simulated driving environments are largely 

identical to real-life driving.  

On the other hand, car driving involves a range of 

cognitive-behavioral demands the bar tracking task in the 

present study was lacking, for example reactions to road 

signs or traffic lights, overtaking maneuvers and lane 

changes, or braking for other cars. In fact, the contrast 

between the present results and those obtained by an earlier 

study using a similar dual-task paradigm (Becic et al., 

2010), shows that differences in design might impact the 

results to a large extent. According to the results of Becic et 

al. (2010), older adults showed a reversed pattern of task 

prioritizing than observed here, by focusing exclusively on 

the driving task and neglecting the language task. However, 

the experimental set-up in Becic et al. (2010) was more 

naturalistic than the one in the present study, since that 

study used an actual car dummy and a wrap-around 

projection screen that displayed realistic images of road 

situations and naturalistic driving scenarios. This set-up 

might have induced a more realistic feeling of car driving, 

where accidents can actually be fatal. The older adults in 

that study might have employed a task solving strategy that 

followed the rule of safety-first, by focusing their attention 

on the task which seemed most dangerous to them. In 

contrast, poor performance in the bar tracking task in the 

present study had no such real-life implications, possibly 

rendering this task somewhat negligible to older adults.  

In sum, our data support studies arguing that recovery 

from prediction errors is more effortful for older adults, and 
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that older adults allocate attentional resources differently 

from younger adults when task demands are high, by 

prioritizing one cognitive goal over others. We discussed 

two possible causes for these age-related differences, i.e. 

older adults' increased rate of forming semantic predictions 

based on context, and/or impaired working-memory 

resources normally associated with aging. Future work in 

our lab will further investigate these possibilities by also 

exploring the pupillary response as a measure of cognitive 

load, and by taking into account individual differences in 

executive functions.  
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Abstract 

Variance of the outcomes associated with an option often 
provides a measure of the riskiness of that option. Hence, it is 
important for organisms are able to detect any sudden changes 
in outcome variance. In Experiment 1, we presented people 
with graphs of share price time series or water level time 
series. In half the graphs, variance (financial or flooding risk) 
changed at some point. People were better at detecting 
increases than decreases in risk - maybe because it is more 
important to detect increases in danger than decreases in it. 
However, in Experiment 2, people were still better at 
detecting increases than decreases in variance even when 
those changes did not reflect altered levels of risk. Our 
findings may reflect the fact that the actual change in variance 
exceeds the change needed to identify a regime change in 
variance by a larger amount for upward than for downward 
changes. 

Keywords: volatility; variance; risk; change detection; 
judgment 

Introduction 

In many domains, variance of outcomes associated with an 

option is taken as a measure of level of risk of that option. 

For example, in modern finance theory, level of risk 

associated with an asset is defined as the standard deviation 

of the returns on that asset (Jorion, 2006). Similarly, as 

variability in water levels increases, so does the risk of 

flooding or drought (Crowell, Coulton, Johnson, Westcott, 

Bellomo, Edelman, and Hirsh, 2010). Finally, in foraging 

theory, the risk associated with different food sources is 

defined in terms of the variance of the energy gains that an 

animal can derive from those sources (Kacelnik and 

Bateson, 1996). In all these cases, higher variance in the 

data is treated as a signal that risk levels are higher. 

Most work in these and other domains has been based on 

the assumption that the riskiness of different options 

remains constant over time. For example, Diacon and 

Haseldine (2007), Duxbury and Summers (2004, 2017), 

Sobolev and Harvey (2016), and Weber, Siebenmorgen and 

Weber (2005) have used various methods to examine the 

relation between volatility of financial indicators (e.g., 

returns) and financial risk perception. However, level of risk 

can change: variance of outcomes may increase or decrease, 

often quite suddenly. As far as we are aware, there have 

been no studies of people’s ability to perceive a change in 

volatility and, hence, to detect onset of a new level of risk. 

Here we ask how easily people are able to detect such a 

change when they are given a graphical record of the 

outcomes that have occurred. More specifically, we 

examine how well people are able to detect a structural 

break in the variance of a time series and study whether the 

level of their ability is influenced by whether that variance 

is framed as representing level of risk.  

We varied task frame. In Experiment 1, any structural 

break in the series signified an increase or decrease in the 

level of risk over time. Changes in financial trading risk and 

water flooding risk were of this type. In Experiment 2, any 

structural break in the series did not represent any change or 

difference in risk level. Instead, participants needed to 

detect it because it represented an opportunity rather than a 

risk. These experiments were used to address two questions. 

First, is there any asymmetry in ability to detect increases 

and decreases in volatility? Second, is any such asymmetry 

limited to tasks in which changes in volatility should be 

interpreted as temporal changes in level of risk? It can be 

argued that it is more important to detect an increase in risk 

so that protective measures can be adopted. Removing those 

protective measures when there is a decrease in risk is likely 

to be less critical. 

Experiment 1 

In this first experiment, participants performed the task 

within a temporal risk frame. They were presented with one 

of two scenarios: a finance scenario and a flooding scenario. 

Method 

Participants One hundred and sixty-five students acted as 

participants: 59 were assigned to the financial risk scenario 

and 106 were assigned to the flooding risk scenario. 

Stimulus materials Each graphically presented series 

comprised 50 data points generated uniquely for each 

participant. They were drawn from a Gaussian distribution 

with a mean of 500 and a standard deviation of either 5.00 

(low volatility) or 15.0 (high volatility). Of the 60 graphs 

seen by each participant, 15 were of low volatility 

throughout, 15 were of high volatility throughout, 15 

contained a change from low volatility to high volatility, 

and 15 contained a change from high volatility to low 

volatility. The 60 graphs were presented in random order. 

When there was a change in volatility, it occurred between 

points 11 and 40 inclusive and with equal likelihood. One 

third of the graphs of each of the four types contained no 

trend, one third contained a shallow upward trend, and one 
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third contained a shallow downward one. When there was a 

trend, the series still started at 500 but was then incremented 

or decremented by 0.1 on each successive point. Labelling 

of graphs depended on the task frame. 

Procedure In the financial risk scenario, the vertical axis 

was labelled as ‘price’ and the horizontal axis as ‘hours’ 

(Figure 1). Participants were told that the series represented 

a record of recent stock prices and told that increased 

volatility represented increased trading risk. They needed to 

detect whether a change in risk had occurred because their 

trading strategy would need to change if it had done.  

 

Figure 1: Example graph from the finance scenario in 

Experiment 1 showing prices that change every hour for a 

period of 50 hours and volatility shifting from high to low. 

 

 
In the flooding risk scenario, the vertical axis was labelled 

as water depth and the horizontal axis as ‘hours’. 

Participants were told that each graph represented a record 

of water levels in various locations and that increased 

volatility represented increased risk of flooding. They 

needed to detect whether a change in flood risk had 

occurred in order to implement flood control measures if it 

had increased or to stand them down if it had decreased. 

For each graph, participants first gave a yes/no response 

to signal whether they had detected a change in the volatility 

in it. They then estimated the likelihood that their response 

was correct on a 50-100% scale.  

Results 

Here we report analyses of participants’ detection responses 

using signal detection theory (Macmillan and Creelman, 

1991). We extracted measures of sensitivity (d) and 

response criterion (β) for a) trials starting with low volatility 

on the left of the graph that either stayed low or that 

changed to high volatility and b) trials starting with high 

volatility on the left that either stayed high or that changed 

to low volatility. Data were analysed in this way so that we 

could use the signal detection measures to compare 

detection of change when the series started with low 

volatility to that when it started with high volatility. To 

obtain d and β, the z-transformations of the hit rate (z(H)) 

and false alarm rate (z(F)) were first obtained. Then 

 d = z(H) – z(F) 

 β = exp((z(F)
2
 – z(H)

2
)/2) 

The sensitivity measure d’ reflects how discriminable 

signal (change) trials are from noise (no change) trials, with 

higher values indicating better detection performance. The 

response criterion measure β reflects the relative strength 

the evidence has to reach in order for the organism to 

respond that the trial was a change trial, with a value of 1 

indicating no response bias, while values below 1 indicating 

a bias towards responding ‘change’ (i.e., the evidence for 

‘no-change’ has to be stronger than the evidence for 

‘change’).  

As we are interested only in the effect of increasing as 

compared to decreasing volatility, we collapse the data over 

the presence and types of trend. Also, note that the signal 

detection measures are based on both signal (change) and 

noise (no change) trials, and hence we cannot compare 

sensitivity and response bias between change and no-change 

trials.  

 

Table 1: Mean values of sensitivity (d) and response 

criterion (β) in the two types of scenario for detection of 

changes in volatility in graphs that started with low 

volatility and in those that started with high volatility. 

 

 Sensitivity (d) Response criterion (β) 

 Low 

Starting 

Volatility 

High 

Starting 

Volatility 

Low 

Starting 

Volatility 

High 

Starting 

Volatility 

Financial 

risk 

scenario 

(n = 59) 

.95 .26 .22 .19 

Flooding 

risk 

scenario 

(n = 106) 

.79 .43 .10 .22 

 

Mean values of d and β are shown in Table 1. A two-way 

analysis of variance on d using starting volatility as a 

within-participant variable and temporal frame as a 

between-participant variable revealed a strong main effect 

of starting volatility (F (1, 163) = 43.82; p < .001; η
2
 = .21) 

and some evidence of an interaction between this variable 

and frame type (F (1, 163) = 4.57; p = .034; η
2
 = .03).  

An ANOVA using the same variables on β failed to reveal 

any significant effects. 

Discussion 

The experiment showed that people find it easier to detect 

increases in volatility than decreases in volatility. Given that 

increases in volatility in the task scenarios corresponded to 

increases in risk, this result can be interpreted as showing 

that people are better at detecting increases than decreases in 

risk. This corresponds to what would be expected from a 

functional perspective: it is more important to be sensitive 

to increases in risk (so that protective measures can be 
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implemented) than to decreases in risk (as removal of 

protective measures is less urgent). Differences in the size 

of the effect in the two scenarios may be related to beliefs 

about the nature of the risks and the ease of managing them 

in the two cases.  

Before committing to this risk-based interpretation of the 

effects, it is important to ascertain whether they appear 

when the same graphs are presented within a scenario that 

does not involve risk. 

Experiment 2 

In this experiment, participants were presented with a 

version of the task in which risk assessment was not 

involved. Results were then compared to those obtained in 

the previous experiment. 

Method 

Participants A total of 80 new participants drawn from the 

same pool as before performed a risk-free version of the 

task.  

Procedure Participants were told that the data points 

represented the contours of a mountain range. The vertical 

axis represented height in meters and the horizontal one 

degrees of visual angle. Mountains could be formed of soft 

rock that had eroded (low variance) or harder rock that had 

not (high variance). They were told that they needed to 

detect differences in the contours of the mountains because 

mineral deposits tended to occur at the interface of hard and 

soft rocks. Identifying such interfaces would trigger ground-

based surveys to confirm the presence of mining 

opportunities. Thus, a left/right difference in variance was 

associated with identification of an opportunity rather than a 

risk. 

In all other respects, the experiment was the same as 

Experiment 1. 

Results 

In the same way as before, the d and β values were 

extracted from the data (Table 2). Then an ANOVA was 

used to compare the values obtained from the temporal risk 

scenarios of Experiment 1 with those obtained from the 

risk-free scenario in the current experiment. Starting 

volatility (low versus high volatility on the left side of the 

graph) was a within-participants variable and task frame 

(risk-free versus temporal risk scenarios) was a between-

participants variable. 

Again, there was a strong main effect of starting volatility 

(F (1, 243) = 30.00; p < .001; η
2
 = .11). However, in this 

case, though there was an effect of frame type (F (1, 243) = 

10.34; p = .001; η
2
 = .04), there was no interaction between 

frame type and starting volatility. Thus, while people were 

better at detecting differences in volatility in the risk-free 

scenario, they were better in both types of scenario at 

detecting changes in volatility from low to high (assuming 

left-to-right scanning in the risk-free scenario) than at 

detecting volatility changes from high to low.  

As before, an ANOVA using the same variables on β 

failed to reveal any significant effects. 

 

Table 2: Mean values of sensitivity (d) and response 

criterion (β) in the two types of scenario for detection of 

changes in volatility in graphs that started with low 

volatility and in those that started with high volatility. 

 

 Sensitivity (d) Response criterion (β) 

 Low 

Starting 

Volatility 

High 

Starting 

Volatility 

Low 

Starting 

Volatility 

High 

Starting 

Volatility 

Temporal 

risk 

scenario 

(n = 165) 

.85 .37 .15 .21 

Risk-free 

scenario 

(n = 80) 

1.01 .75 .17 .24 

 

Discussion 

We obtained the same effect reported in Experiment 1 

when participants performed the task within a risk-free 

scenario. Assuming left-to-right attentional scanning of the 

graphs (Bergen and Lau, 2012; Eviater, 1995; Maas and 

Russo, 2003), we can say that they were more sensitive to 

an increase in volatility than to a decrease in volatility. 

Furthermore, this was true whether or not greater volatility 

represented greater risk. The asymmetry uncovered in 

Experiment 1 is of a more general nature than we originally 

assumed. However, its implications for detection of changes 

in levels of risk remain. 

There was also a main effect of scenario type on d: 

sensitivity was higher in the risk-free scenario. Focusing on 

opportunities rather than risks appears to have made the task 

simpler for participants. 

General discussion 

The experiments show that people find it easier to detect an 

increase than a decrease in the variance of a graphically 

presented time series. Though changes in risk are realized as 

changes in variance in many domains, Experiment 2 

indicated that increases in variance are easier to detect than 

decreases in variance even when changes in variance do not 

correspond to changes in risk level. Here we will outline 

two possible explanations for our findings: an explanation in 

terms of the processes needed to detect upward and 

downward changes in variance and a functional explanation 

based on the relative importance of upward and downward 

changes in variance. 

 

A process-based account 
 

It is possible that our findings arose because increases in 

variance are statistically easier to detect than decreases in 
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variance. For example, we could ask whether it is 

statistically easier to detect the presence of a data point 

outside a given distribution (an outlier) than to detect the 

absence of a data point expected within that distribution. 

Conceivably, more data might be needed to perform the 

latter detection reliably.  

In fact, to detect an increase in variance, it is not 

sufficient to detect a single anomaly: in normal 

distributions, we expect one in 22 data points to be more 

than two standard deviations away from the mean. To detect 

a change in variance, the presence of unexpected data points 

outside a reference distribution or the absence of expected 

data points within that reference distribution must be 

persistent. In other words, there must be evidence of a 

regime shift in the variance of the distribution. 

There are many different approaches to detecting regime 

shifts in the mean of time series but relatively few have 

been developed for detecting shifts in the variance of series. 

Downton and Katz (1993) developed a non-parametric 

bootstrap technique to compute confidence intervals for 

discontinuities in variance. However, their approach 

requires the series containing the putative regime shift in 

variance to be compared to a separate reference series 

known to be characterized by homogeneous variance. We 

presented our participants with series in which variance did 

not change but we did not inform them of this constancy for 

particular series. Thus they had no series that they could 

treat as a reference series in the manner that Downton and 

Katz (1993) require. 

Rodionov (2004) developed a sequential algorithm for 

early detection of regime shifts in the mean of series. The 

advantage of his approach is that it does not require large 

amounts of data to be accumulated and can automatically 

detect regime shifts in real time. Later, Rodionov (2005) 

extended his approach so that it could be used to detect 

regime changes in variance in short series in real time. 

These features of his approach render it a suitable one for 

modeling detection of variance change in our experiments. 

The first step is to identify the regime length (l). In our 

task, this value would initially be set to 10 because 

participants knew there was no shift in the first 10 data 

points. The next step is to use an F-test to determine the 

critical variance ratio (Fcrit) of two successive regimes that 

would be statistically significant. For an l value of 10 and a 

p-value of 0.05 (one-tailed), this ratio is 4. The variance of 

the initial l values of the series is then used to estimate the 

variance of the current regime (Vcur). For the new regime to 

be statistically different from the current regime, its 

variance (Vnew) should be equal to or greater than the critical 

variance (Vcrit↑) if the variance is increasing or equal to or 

less than the critical variance (Vcrit↓) if the variance is 

decreasing, where 

 Vcrit↑ = Vcur ∙ Fcrit 

 Vcrit↓ = Vcur / Fcrit↓ 

The variance, Vcur, is the sum of squares of zi, where i 

spans from the first point of the current regime to i = tcur – 1. 

If, at time tcur, the current value zcur satisfies either z
2
cur > 

Vcrit↑ or z
2

cur < Vcrit↓, this time is marked as a potential point 

where a regime shift in the variance has occurred. 

Subsequent values (zcur+1, zcur+2 …) are used to verify this 

hypothesis by using a Residual Sum of Squares Index 

(RSSI).  

𝑅𝑆𝑆𝐼 = 1/𝑙 ∑ (𝑧𝑖
2

𝑚

𝑖=𝑡𝑐𝑢𝑟

− 𝑉𝑐𝑟𝑖𝑡),  

where m = tcur, tcur  + 1, …, tcur  + l - 1. 

If, at any time during the testing period from tcur to tcur  +  l 

– 1, the index turns negative for the case where Vcrit = Vcrit↑ 

or positive for the case where Vcrit =  Vcrit↓, the hypothesis of 

a regime shift in variance at time tcur is rejected and zcur is 

included in the current regime. Otherwise, time tcur is taken 

as a break point at which a regime shift in variance 

occurred.  

In essence, Rodionov’s (2005) approach first detects an 

anomaly and then goes on to determine whether that 

anomaly persists over time. A regime shift in variance is 

identified only when it does. Because his approach is simple 

and requires little accumulated data, it is appropriate for the 

statistical detection of regime changes in variance in the 

type of task that our participants completed.  

In our task, the value of the lower variance was 25 and, 

hence, Vcrit↑ = 25 x 4 = 100. The value of the higher 

variance (225) exceeded this critical value by a large 

amount (125). The value of the higher variance was 225 

and, hence, Vcrit↓ = 225/4 = 56.25. The value of the lower 

variance (25) was less than this critical value by only a 

small amount (31.25). However, the relative difficulty of 

two comparative judgments does not depend on the size of 

the absolute difference between the stimuli.  

According to Weber’s Law, “The stimulus increase which 

is correctly discriminated in any specified proportion of 

attempts (except 0 and 100 per cent) is a constant fraction of 

the stimulus magnitude" (Thurstone, 1959, p. 61).  In the 

case of upward changes in variance, the change in variance 

that participants had to detect (125) as a proportion of the 

critical variance (100) was 1.25. In the case of downward 

changes in variance, the change in variance that participants 

had to detect (31.25) as a proportion of the critical variance 

(56.25) was 0.56. Hence the task of deciding whether there 

was evidence of a new variance regime would have been 

more difficult when the variance decreased from the high to 

the low value than when it increased from the low to the 

high value. 

In terms of Rodionov’s (2005) approach, for each current 

value, zcur, it would have been harder to determine whether 

z
2

cur was less than Vcrit↓ than to determine whether it was 

greater than Vcrit↑. As a result, the initial assessment of 

whether a potential anomaly had occurred at tcur would have 

been harder for a downward than for an upward anomaly. 

Furthermore, using the RSSI to verify whether the potential 

anomaly should be confirmed would have been less 

effective for a downward than for an upward anomaly. 

We have outlined this process-based account using the 

parameters of our experimental task but it could be applied 

to any task in which comparative judgments of variance are 

made. Of course, other process-based accounts are possible: 
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the strategy outlined by Rodionov (2005) is not the only 

statistical approach to detecting regime change in variance. 

Indeed, it is possible that no unitary process-based 

explanation would be appropriate to account for the 

asymmetry in our data. We may have evolved so that the 

characteristics of the processes that detect upward and 

downward changes in variance are different. It is to this 

possibility that we turn next.  

 

A functional explanation 
 

A sudden increase in volatility can be regarded as a signal 

onset and a sudden decrease in volatility as a signal offset. 

Work in psychophysics indicates that people are better at 

detecting the onset of a signal than the offset of one (e.g., 

Ahumuda, Marken, and Sandusky, 1975). This phenomenon 

can be given a functional interpretation, albeit a more 

general one than that we proposed when discussing the 

results of Experiment 1.  The onset of a signal is likely to be 

of greater importance to an organism than the offset of one. 

Signal onsets (e.g. the appearance of a predator) are more 

likely to require urgent and rapid action than signal offsets 

(e.g., the disappearance of a predator). 

One objection to this account is that differences in signal 

importance should be expected to affect response bias (β) 

rather than sensitivity (d). If a signal is more important, the 

response criterion should be shifted to the left to increase 

the proportion of hits. In other words, there should be no 

difference in d values for detecting signal onsets and 

offsets. Instead, responses should be more biased in favour 

of saying there is a change when signals start low but may 

change to high (potential signal onset) than when they start 

high but may change to low (potential signal offset). 

The problem with this approach is that shifting the 

response criterion to the left will also serve to increase the 

proportion of false alarms. Responding to these false alarms 

is likely to be costly. For example, animals reacting to a 

non-existent predator may lose foraging time and flee into a 

more dangerous environment. These high costs would tend 

to force the response criterion rightwards and so counteract 

the benefit-driven increase in hit rate arising from moving it 

leftwards. According to this functional account, evolution 

resolved this dilemma over time by increasing sensitivity to 

signal onsets.  Such a strategy would avoid the increased 

costs arising from the additional false alarms associated 

with a laxer response criterion while still assuring the 

benefits of a high hit rate.   

Implications 

Although the phenomenon that we have identified is not 

specific to identification of changes in risk, it still has 

implications for risk perception. In finance, sudden changes 

in series variance occur (Hammoudeh and Li, 2008; Todea 

and Petrescu, 2012). Although attempts to predict these 

changes have been made using autoregressive conditional 

heteroskedasticity (ARCH) and generalized autoregressive 

conditional heteroskedasticity (GARCH) models 

(Bollerslev, 1986; Engle, 1982), severe problems in 

forecasting them remain.  

For Mandelbrot (1997), this was not surprising. He argued 

that bursts of high volatility are inherently unpredictable and 

emerge naturally as a consequence of the nonlinear 

processes responsible for generation of financial series. He 

claimed that these series do not meet the assumptions of 

modern financial theory (e.g., Markowitz, 1959; Sharpe, 

1964; Black and Scholes, 1973) but are, instead, fractal. If 

he is correct, technical analysts and traders cannot possibly 

predict sudden volatility changes in financial series. Instead, 

all they can do is to be alert to the possibility that such 

changes will occur and then react to them appropriately as 

soon as possible.  

Assuming that sudden volatility changes in financial 

series are not predictable, how would the asymmetry that we 

have identified here affect trading behavior? Increases in 

risk may lead investors to sell winning shares to lock in 

their profits but to keep losing ones in the hope that high 

volatility will provide an opportunity of selling them later at 

a higher price. Decreases in risk should lead to investors 

keeping their winning shares because nothing untoward will 

happen but to sell their losing shares because there is no 

chance of their bringing in a higher price later if they are 

retained. Easier detection of an increase than a decrease in 

volatility will lead responses to increases in risk to dominate 

responses to decreases in risk. In other words, the tendency 

to sell winning shares but to retain losing ones will 

dominate. This is the disposition effect (Shefrin and 

Statman, 1985). While we would not wish to claim that 

easier detection of increases than decreases in risk is the 

only driver of the effect, it may be contributory. 

In our experiments, we presented time series graphically. 

We could explain our results by assuming a) that graphs 

were scanned left to right so that earlier data points were 

encountered before later ones, and b) that signal onsets are 

easier to detect than signal offsets. Both these assumptions 

are supported by existing evidence in the literature. 

Consider now the case where the data points are 

encountered sequentially in real time. We would no longer 

need to make the first assumption: the earlier points would 

be encountered before later ones anyway. Hence, given that 

the second assumption holds, we would expect the 

asymmetry to be maintained. In other words, our findings 

could be expected to generalize to situations in which 

people experience data points successively over a period in 

real time. 

For example, situations in which operators of some 

system receive readings in this way but assess volatility 

judgmentally rather than formally may produce a greater 

tendency to implement measures to protect against 

increased risk than to remove those measures once the 

period of increased risk has passed. Such situations could 

include those associated with natural hazards, such as 

evacuation decisions in the case of potential volcanic 

eruptions or hurricanes.  

We would not wish to claim that asymmetric tendencies 

to respond to increases and decreases in risk in such cases 
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should be characterized as cognitive biases. In line with the 

functional approach discussed above, they may represent 

sensible ways of responding to changes in risk levels.  
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Abstract

This study investigated how the expectations of others (i.e.,
top-down processes) and actual perceived behavior (i.e.,
bottom-up processes) influence negotiations during human-
agent interactions. Participants took part in several sessions of
the ultimatum game; we investigated the bargaining strategies
directed toward the computer agent. To investigate the influ-
ence of top-down and bottom-up processes on performance,
we designed an experiment wherein (1) participants expected
their partners were humans or agents, and (2) agents used dif-
ferent types of algorithmic behavior. Results revealed that ir-
rational decisions, which are characteristic of human-human
interactions, emerged when participants believed their oppo-
nents were human and when opponent behaviors were ambigu-
ous. Further, we found participants adopted different bargain-
ing strategies according to their expectations and the agent’s
specific algorithmic behavior. We discuss interplay of the two
types of cognitive processing in human-agent interaction.
Keywords: human-agent interaction; top-down/bottom-up
processes; social interaction; ultimatum game

Introduction
Studies in human-computer interaction have revealed that
how people engage with systems depends on how the agents
are perceived (Nass, Moon, Fogg, Reeves, & Dryer, 1995).
The human user responds to social cues (Johnson, Veltri, &
Hornik, 2008) and to the apparent level of agency of the sys-
tem (Blascovich et al., 2002). Studies have focused on how
users adaptively interact based on their developing represen-
tation of the agent, which can be driven by the use of prior
knowledge, such as using heuristics (top-down processing),
and which can be modified based on the agent’s actual behav-
ior (bottom-up processing) (Hayashi & Miwa, 2008). How-
ever, it is still unclear how the interdependence of these cogni-
tive processes emerges, and it is not fully understood in which
situations such interdependence occurs. To investigate these
issues, we conducted a human-agent experimental study that
involved negotiation in an ultimatum game.

Two types of cognitive processing in human-agent
interaction
Under what circumstances human-like traits such as agency
are assigned to computers has been investigated in the fields
of human computer interaction and interfaces (Kiesler, Wa-
ters, & Sproull, 1996; McEneaney, 2013; Nass et al., 1995;
Johnson et al., 2008; Blascovich et al., 2002). Theoreti-
cal studies of human computer interaction (e.g., Nass et al.

(1995)) have noted that people unintentionally respond to
technology that exhibits social traits as if it were human, as a
way to conserve cognitive resources and maximize response
efficiency. HCI studies also suggest that how people per-
ceive computers depends on the social cues that are designed
into the system. For example, human facial features (Gong,
2008), embodied gestures (Buisine & Martin, 2007), and lan-
guage use (McLaren, DeLeeuw, & Mayer, 2011) provide for
a human-like agent that evokes social responses. However,
there is controversy associated with this theory: such auto-
matic responses have been suggested to be aberrant behaviors
that result from situational inattention or inappropriate over-
generalization (McEneaney, 2013).

Recent studies in human-agent interaction (HAI) have
pointed out the importance of top-down and bottom-up cog-
nitive processing (Miwa & Terai, 2006). Top-down process-
ing is based on the socialized knowledge of others, i.e., in-
terpersonal schemas or stereotypes (Fisk & Taylor, 1991).
Such processing is essential for developing representations
of others in the initial stage of interaction, and can be used as
supplemental information when representations are difficult
to develop based on other’s behaviors. However, the repre-
sentation of others may change over time due to their ongo-
ing behavior and the context in which the interaction occurs
(Hayashi & Miwa, 2008). Such behavior-based processes are
examples of bottom-up processing.

It is important to note that in interpersonal communication
between humans, people flexibly use both types of cognitive
processing to economically process information when devel-
oping representations of others and deciding upon a response.
However, few studies have investigated the relationship be-
tween the two types of processing in HAI, and it is unclear
how such processing plays a role in interactions. Accord-
ingly, in this study we used the Ultimatum Game (UG), a
bargaining game that is commonly used in behavioral eco-
nomics (Guth & Tietz, 1990), to investigate how the combina-
tion of expectations and actual behavior influences cognitive
processing during decision making.

Influence of top-down and bottom-up processing in
an ultimatum game
The ultimatum game is often used to investigate behaviors
that are not self-regarding, such as choice inequity and reci-
procity (Yamagishi et al., 2009). This game is played by two
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players a proposer and a responder. Typically, one individ-
ual actively participates at any given time (i.e., it is a turn-
taking game).

First, the proposer receives a sum of money from the exper-
imenter and then makes a proposal concerning how to share
the money with the responder. The responder is given two
alternatives, namely to either reject or accept the proposal. If
the proposal is accepted by the responder, both players re-
ceive money according to the proposal, but if the responder
rejects the proposal neither receives any money. As such, the
self-regarding profit-motivated behavior is to accept any pro-
posal.

Interestingly, respondents tend to reject proposals that are
not distributed fairly, even when doing so results in a loss of
profit for both players (Guth & Tietz, 1990). In the current
study, it is assumed that if the respondent (participant) per-
ceives the proposer (agent) as human, the former may react
accordingly, such as by rejecting proposals and abandoning
profit as in human-human studies. We controlled the expecta-
tions (i.e., top-down processing) of the participants and deter-
mined whether expectations of their partner, such as believing
the partner is human or non-human, would produce irrational
behavior.

H1: When given an unfair proposal, the rejection rate by
the respondent will increase when he/she thinks the partner is
human compared to a computer agent.

However, as mentioned previously, actual behavior dur-
ing interactions is used to update the representation of oth-
ers (i.e., bottom-up processing). To investigate this issue, we
used a multi-period version of the ultimatum game (mUG)
(Guth, 1995). Studies have revealed that over repeated tri-
als, players learn to expect that the proposer will suggest a
fair deal in some future trial; as such, proposal rejections
tend to decrease. That is, the number of rejections decreases
due to understanding the strategy of the opponent (Slembeck,
1999). Therefore, we hypothesized that if the agents (pro-
posers) showed concessional bargaining behaviors, and par-
ticipants could perceive such behavior, respondents would
perform more rationally by reducing the frequency of rejec-
tions.

H2: The rejection rate will decrease when participants un-
derstand that the proposer will provide concessional propos-
als.

Assuming that top-down and bottom-up processing are in-
terdependent, it can be further assumed that the effect of ex-
pectations will emerge only when others’ behaviors can be
explicitly interpreted. To investigate this issue, we produced
agents with different algorithmic behaviors, which will be de-
scribed in more detail in the following section.

Method
Participants and procedure
Seventy-six (male: 30, female: 46, Mage: 21.38, SD: 1.03)
Japanese university students majoring in psychology volun-
tarily participated in the task; 3 were subsequently excluded

from data analysis because they discovered that their partner
was not human.

Participants collected in small groups in a computer room
and were instructed how to play the mUG game. They were
told that they would play the role of either the proposer or
responder; however, all were actually assigned the role of re-
sponder and the computer agent played the role of the pro-
poser.

Figure 1: Example screenshot the task.

After the brief introduction to the task, participants were
told to start the program, which appeared to connect to a ran-
domly chosen peer in the computer room. They were told
that 1,000 Japanese yen (approximately 12 dollars) was pro-
vided to the proposer. On the left hand side of the screen, the
participant was required to input his or her IP address, which
was nominally for connection to the opponent. Below were
simple instructions including what he or she would/would not
receive based on his or her decision. On the right hand side,
the current proposal was shown. Below were decision buttons
and a send button to transmit the result to the proposer.

First, a screen appeared that prompted the participant to
wait until the proposer finished entering the amount of the
proposal. After a short delay, the screen changed to that
shown in Figure 1. Then, the participant chose to either
accept or re ject the proposal.

A proposal and subsequent decision constituted one trial
and a total of 15 trials were conducted in one set of this task;
two sets of this task were conducted in total. After completing
the task, the participant wrote down a description of how he
or she felt about his or her partner.

Experimental conditions
This study examined mUG performance changes due percep-
tion of the partner as human or non-human and the partner’s
actual behavior. We used a 2 (perceived partner: human vs
agent) X 4 (actual behavior: random vs adaptive [simple, ego-
centric, exocentric]) experimental design. The perception of
the partner was controlled by telling the participant that the
partner was either human or a computer agent. The former
was called the human condition and the latter the agent con-
dition.
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In each set of the task, the announcement that the part-
ner was human or computer was announced and the order of
such announcements was counterbalanced between the small
groups. There were no differences in rejection rates accord-
ing to the order.

To investigate the effect of agent behavior, we implemented
agents that utilized (1) algorithmic behavior or (2) no such
algorithmic behavior (random condition). To determine how
participants change their interactive strategies based on per-
ceived behavior and ongoing interactions, we implemented
three different types of behavior for (1). We examined dif-
ferent algorithms, including those that were likely to be per-
ceived as offering generous or fair proposals. If bottom-up
processing predominated in this task, the participant would
likely adopt the rational strategy of accepting all proposals
from these types of agent.

Behavior of agent
In this section we describe the parameters that defined the
agent behaviors. Table 1 shows all possible responses that
could be generated by the agent for each trial. In the first
trial, the agent always selected response type 4 in all condi-
tions. Then, in the next and subsequent trials, the probability
of generating each different response type differed according
to the condition.

Table 1: Types of response(proposals) by the agent

In the random condition, the agent selected fair/unfair pro-
posals (response type 1-7) randomly, with equal probability.
This allowed for the investigation of ambiguous behaviors
(i.e., restricting bottom-up processing). In egocentric, exo-
centric, and adaptive conditions, the agent proposed conces-
sional and generous responses based on the participant’s de-
cisions.

In the simple adaptive condition(hereinafter referred to as
adaptive condition) the agent repeated the proposal if it was
accepted, and otherwise proposed the completely opposite
monetary strategy (i.e., fair versus unfair). This was based on
the Pavlo f strategy in social games, wherein the basic rules
are “win-stay” and “lose-shift” (Nowak & Sigmund, 1992).
In Figure 2, SAME denotes repeating the same proposal as in
the prior trial.

The egocentric and the exocentric conditions were based
on the adaptive condition. In the egocentric condition, the
agent responded such that the proposal was clearly biased to-
ward the computer agent(see Figure 3). More specifically, the

� �
[r1− r3]
”accept” −> %SAME%
”re ject” −> r5− r7 : 33.33%
[r4]
”accept” OR “re ject ′′ −> r1− r3,r4− r7 : 16.66%
[r5− r7]
”accept” −> %SAME%
”re ject” −> r1− r3 : 33.33%� �

Figure 2: Algorithm schematics of the adaptive condition.

agent reacted economically, such as proposing r3 if the par-
ticipant kept accepting this proposal. The agent behavior in
the egocentric condition is shown below. The agent decided
on the next proposal depending on whether the participant
accepted or re jected the previous proposal. For example, in
the first trial the agent always proposed r4 (see Table 1). On
trial 2, if the participant selected accept, then the agent gen-
erated the next proposal based on the following probabilities:
r1 (10 %), r2 (20 %), r3 (70 %).� �

[r1]
”accept” −> r1 : 10%,r2 : 20%,r3 : 70%
”re ject” −> r5 : 10%,r6 : 20%,r7 : 70%
[r2]
”accept” −> r2 : 30%,r3 : 70%
”re ject” −> r5 : 10%,r6 : 20%,r7 : 70%
[r3]
”accept” −> r3 : 100%
”re ject” −> r5 : 10%,r6 : 20%,r7 : 70%
[r4]
”accept” −> r1 : 10%,r2 : 20%,r3 : 70%
”re ject” −> r5 : 10%,r6 : 20%,r7 : 70%
[r5]
”accept” −> r5 : 10%,r6 : 20%,r7 : 70%
”re ject” −> r1 : 10%,r2 : 20%,r3 : 70%
[r6]
”accept” −> r6 : 30%,r7 : 70%
”re ject” −> r1 : 10%,r2 : 20%,r3 : 70%
[r7]
”accept” −> r7 : 100%
”re ject” −> r1 : 10%,r2 : 20%,r3 : 70%� �

Figure 3: Algorithm schematics of the egocentric condition.

In the exocentric condition the agent responded such that
it sought less profit than in the egocentric condition(see Fig-
ure 4). If the participant kept accepting the proposals, the
agent gradually proposed r1 more frequently, and even un-
fair, agent-biased proposals were most often r5 (i.e., relatively
modestly favoring the agent).
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� �
[r1]
”accept” −> r1 : 100%
”re ject” −> r5 : 70%,r6 : 20%,r7 : 10%
[r2]
”accept” −> r1 : 70%,r2 : 30%
”re ject” −> r5 : 70%,r6 : 20%,r7 : 10%
[r3]
”accept” −> r1 : 70%,r2 : 20%,3 : 10%
”re ject” −> r5 : 70%,r6 : 20%,r7 : 10%
[r4]
”accept” −> r1 : 70%,r2 : 20%,r3 : 10%
”re ject” −> r5 : 70%,r6 : 20%,r7 : 10%
[r5]
”accept” −> r5 : 100%
”re ject” −> r1 : 70%,r2 : 20%,r3 : 10%
[r6]
”accept” −> r5 : 70%,r6 : 30%
”re ject” −> r1 : 70%,r2 : 20%,r3 : 10%
[r7]
”accept” −> r5 : 70%,r6 : 20%,r7 : 10%
”re ject” −> r1 : 70%,r2 : 20%,r3 : 10%� �

Figure 4: Algorithm schematics of the exocentic condition.

Results

Performance of participant: Rejection rate
The participants’ percentage rejections are shown in Figure
5. The vertical axis represents the average percentage of pro-
posals rejected during the 15 trials, the horizontal axis shows
each behavioral condition, and the different bar shading de-
notes the different instructions.

A 2 instructions (human or agent) x 4 agent behaviors
(random, adaptive, egocentric, or exocentric) mixed factorial
ANOVA revealed a significant interaction between the two
factors (F(3, 72) = 4.535, p = .0057). Analysis of simple
main effects indicated that in the random condition, proposals
by an apparently human opponent were rejected more often
than those of a computer opponent (F(1, 72) = 18.144, p =
.0001), whereas there were no differences for the adaptive,
egocentric, and exocentric conditions (F(1, 72) = 0.504, p =
.4800; F(1, 72) = 2.016, p = .1600; F(1, 72) = 0.165, p =
.6862, respectively).

The simple main effect of instruction (human or agent)
was also significant for each behavior condition (F(3, 72)
= 9.543, p = .0001; F(3, 72) = 3.388, p = .0198). Multi-
ple comparisons using Ryan’s method for the human instruc-
tion and showed that rejections were higher for the random
condition than the adaptive, egocentric, and exocentric con-
ditions (p = .0001; p = .0001; p = .0076, respectively). For
the agent instruction, the random condition only differed from
the egocentric condition (p = .0052). Also, when they were
instructed that their partners were agents, the egocentric con-

dition was associated with less rejections than the exocentric
condition (p = .0092).

To summarize, the effect of instruction was significant
when the behavior of the agent did not have any intention
(i.e., the agent engaged in non-adaptive behavior). This indi-
cates that H1 is supported only when others’ behaviors can-
not be used to understand their strategy (i.e., bottom-up pro-
cessing is not possible). In contrast, the effect of the behav-
ior markedly influenced the participants’ performance; there-
fore, H2 is supported. However, participants’ performance
changed contingent on how they perceived their partner. That
is, instruction and behavior interacted.
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Figure 5: Ratio of rejections.

Behavior of agent: ratio of proposal types
To further understand how the agents adaptively changed
their behavior due to the participants’ decisions, we exam-
ined the actual proposals made by the agents. Figure 6 shows
the distribution of proposals for each condition. We then con-
ducted an ANOVA that included the three behavioral condi-
tions that adaptively changed their behavior based on the par-
ticipants’ decisions.

For the human condition, we conducted a 7 x 3 mixed fac-
torial ANOVA with the seven selected responses (r1, r2, r3,
r4, r5, r6, or r7) and adaptive conditions (adaptive, egocentric,
or exocentric) as independent factors. There was significant
interaction between the two factors (F(12, 324) = 22.147,
p = .0001). Since we wanted to investigate which response
appeared most frequently within each condition we only con-
ducted simple main effects analysis for each level of condi-
tion. Significant main effects were present for all conditions
(adaptive: F(6, 324) = 5.211, p = .0001; egocentric: F(6,
324) = 45.798, p = .0001; exocentric: F(6, 324) = 18.403, p
= .0001).

Next, multiple comparisons using Ryan’s method were
conducted for the adaptive condition. Response types r1, r2,
and r3 were used more frequently than r3, r4, r5, and r6 (p
= .0001, for each comparison). For the egocentric condition,
response r3 was used more often than all other responses (r1,
r2, r4, r5, r6, and r7; p = .0001, for each comparison). For the
exocentric condition, response r1 was chosen more frequently
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than r2, r3, r4, r6, and r7 (p = .0001, for each comparison) and
response r5 was used more frequently than r2, r3, r4, r6, and
r7 (p = .0001, for each comparison).

For the agent condition, we conducted the same analysis
and found a significant interaction between the two factors
(F(12, 324) = 27.581, p = .0001). Focusing on the same
simple main effects, responses differed according to condi-
tion (F(6, 324) = 4.541, p = .0001; F(6, 324) = 52.996, p =
.0001; F(6, 324) = 22.469, p = .0001). Multiple comparisons
revealed exactly the same pairwise differences were signifi-
cant as in the human condition (p = .0001, in each case).

To summarize: (1) in the adaptive condition, r1, r2, and
r3 were used most frequently; (2) in the egocentric condi-
tion, r3 was most commonly used; and (3) in the exocentric
condition, r1 and r5 were the most frequent proposals. This
shows that agents responded differently to the participants’
decisions and that the agent frequently generated proposals
that did not favor itself in the exocentric condition.
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Figure 6: Ratio of generated proposal(top: human condition,
bottom:agent condition).

Discussion
Influence of the expectation of the other
The rejection rate data revealed that when the opponent had
no strategy (i.e., random condition) the effect of expectations
played an important role (i.e., human condition vs. agent con-
dition). This shows the influence of top-down and bottom-up
processing and their interdependence, whereby participants
used initial expectations to generate a representation of their

opponent when the opponent’s behavior was not clearly inter-
pretable.

However, why did participants reject the proposer’s offer
most frequently when the proposer was believed to be hu-
man? Past research on economic behaviors using the UG has
provided various explanations as to why participants reject
proposals, even when doing so is not rational (Guth & Tietz,
1990). Fehr and Schmidt (1999) proposed ”inequity aversion
theory,” which posited that people are sensitive to unfair pro-
posals, regardless of who profits most. People aim to balance
inequities by rejecting unequal proposals. Furthermore, Falk,
Fehr, and Fischbacher (2003) suggested that following unfair
proposals, rejections will rise due to the interpretation of how
the proposal was decided upon. I.e., there is an attribution of
intentionality or animosity by others. As such, participants
may have attributed the same types of intentions to their op-
ponent in this study. However, when they believed their op-
ponent was non-human, such human-specific effects did not
occur and rejections decreased.

Influence of the types of adaptive behaviors

The agent’s behavior strongly affected rejection rates,
whereby participants tended to reject proposals less fre-
quently when the opponent adopted consistent and adaptive
strategies, compared to the inconsistent random condition.
This tendency was most pronounced when the partner was
believed to be human. This indicates that participants decided
upon a strategy based on their understanding of the adaptive
behavior (i.e., using bottom-up processing), but relied on ini-
tial expectations (i.e., using top-down processing) when the
opponent’s behavior was unpredictable.

Interestingly, participants tended to behave more rationally
(i.e., accepting the proposals) when they expected to interact
with an agent only when the agent used an egocentric strategy.
This indicates that expectations of such egocentric agents
may have suggested that the system was non-negotiable to-
ward fairer proposals, and thus the best strategy was to accept
their proposals.

Surprisingly, compared to the egocentric condition, partic-
ipants behaved more irrationally in the exocentric condition
by rejecting proposals that were beneficial to them, such as
r1. Figure 6 shows that participants oscillated between r1 and
r5 as a consequence of their pattern of rejection and accep-
tance of proposals. However, why did they reject proposal r1?
This can be interpreted as rejection to reduce the dissonance
(Festinger, 1957) associated with an unfair proposal, regard-
less of who profits. Further, this could be a result of adopt-
ing social norms, such as inequity aversion (Fehr & Schmidt,
1999). Such a socially interactive approach may be the result
of perceiving the agent as a social actor (Nass et al., 1995).

These findings cast new light on how decisions in human-
agent interaction change based on the compound effects of
who an actor believes his or her opponent is, and the actual
behavioral strategy observed.
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Conclusions
This study investigated the influence of top-down (i.e., ex-
pectations of others) and bottom-up processing (i.e., the ob-
servation of human-like strategic behavior) on human-agent
interaction. This aim was to determine the interdependence
of such processing, and to investigate how these processes
influence rational decision making in a mUG.

Based on evidence that people reject unfair proposals in
human-human interactions, we hypothesized that believing
one’s partner is human will influence the rejection of other’s
proposals, if the other’s intentions are difficult to interpret
(i.e., bottom-up processing cannot be used). By conducting a
virtual human-agent experiment, we controlled participants’
expectations via agent behavior that followed simple algo-
rithms. The results supported our hypothesis and show that
people rely on expectations of the opponent’s behavior when
the latter’s actual behavior is ambiguous. This highlights the
interdependent relationship of top-down and bottom-up pro-
cessing in human-agent interaction.

In addition to the effects of the two types of processing in
the mUG, results suggest that people try to avoid inequity;
that is, to reject unfair proposals even if they are profitable
for themselves. Such a tendency was observed here, even
when the participant believed their opponent was a computer
agent. This indicates that people treat their counterparts as
social actors, even when the goal of the interaction is self-
regarding.

In summary, this study supports the interdependent influ-
ence of two types of cognitive process, and captures the emer-
gence of irrational decision making in human-agent interac-
tion.
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Abstract 

Previous research conducted by Bergus et al. (2002) identified 
that treatment evaluations are more negative when risks are 
presented last. Extending discussion of this order effect, the 
current studies investigate this effect in tabular style displays, 
manipulating both order and orientation; and using eye-tracking 
methodology, explores the effect of these variables on the 
information search process.  Analysis from eye-tracking data 
revealed a tendency to read information sets sequentially (i.e. 
read all risk information before transitions to the other set), 
which is stronger for the vertical orientation where switching 
between information sets is less common.  Further, while 
balanced search was observed when benefits presented first, 
when presented with the risks first, search becomes more risk-
heavy.  Eye-tracking measures did not strongly predict treatment 
evaluations, although, when holding other variables constant, 
time proportion spent on benefits positively predicted treatment 
evaluations. 

Key words: Eye-Tracking; Information Search; Order 
Effects; Information Design 

 Introduction 

Previous research conducted by Bergus et al. (2002) 

investigated the role of order on judgements and decisions 

about a treatment. In their study, they investigated the effect 

that presenting either the risks last (benefits then risks 

presentation) or benefits last (risks then benefits 

presentation) had on favourability ratings of a treatment and 

choice about whether they would consent to a treatment. For 

their low risk Aspirin scenario, they found that when the last 

set of information read was about the risks (i.e. those 

presented with benefits then risks), ratings of favourability 

decreased (from pre-task favourability) compared to those 

who learned about the benefits last (i.e. presented with risks 

then benefits).  Those presented with the risks last were also 

less likely to consent to a treatment. 
 

Further evidence of this type of reliance or influence of the 

last piece of information processed (potentially because of 

its prevalence in one’s memory) can be seen in a similar 

study by Ubel et al. (2010; who presented breast cancer 

patients with information about the benefits and risks of 

tamoxifen) and in other decision making tasks involving 

sequential information processing where individuals play an 

active role in searching out the information for themselves 

(Rakow, Denes & Newell, 2008; Ashby & Rakow, 2014). 
 

When presented with this type of information in a medical 

setting or when people search for health information online, 

this information can often be presented using tabular-style 

displays (where risk and benefit information is separated 

into clear columns or rows either using a lined table or 

bullet point display).  One such example, where this type of 

tabular style information format has been used is on the UK 

National Health Services (NHS) Choices website, where a 

fact sheet for prostate cancer screening (PSA) testing, which 

uses such separated, and bullet pointed display of the risks 

and benefits, is used (NHS Choices, 2016). 
 

With such tabular displays (or any display allowing people 

to see the information simultaneously about the risks and 

benefits), the order in which people read the information is 

to some extent open to the individual. Research on 

information and picture search however reveals that people 

tend to examine information in an order consistent with 

their reading system, with those in western cultures starting 

in the top left and showing a bias to the left side of space 

and horizontal saccades made more frequently than vertical 

saccades (Foulsham et al., 2013; Foulsham, Kingstone & 

Underwood, 2008).   
 

These differences in search lead to questions of how these 

differences may generalize to more specific differences in 

perceptions of health information.  For example, how such a 

bias to reading the left side (or top) first may indicate that 

information read in this position is likely to be read first and 

thus make order important. Or, how, with horizontal 

saccades being more common than vertical saccades, a 

choice of orientation (whether blocks are presented side-by-

side (i.e. horizontal arrangement) or above-and-below (i.e. 

vertical arrangement) may impact on search differences 

across information blocks.   

Current Study 

Focusing on these types of tabular displays where 

information is presented simultaneously, the current 

research investigates whether such effects replicate across 

four low-risk (non-invasive) medicinal scenarios and 

whether orientation interacts with order. 
 

Further, to understand the effect that such design choices of 

order and orientation have on pre-decisional information 

search strategies when presented with this information, eye-
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tracking methodology was used to investigate information 

acquisition (search) processes.  In particular, measures of 

looking order, proportion of time spent on the benefits 

number of transitions between reading the benefits and risks 

were calculated from the eye-fixation data.   
 

Such measures allow a range of questions to be answered 

about people’s search:  
 

1) Is search consistent with the manipulated order or 

do people switch between searching between 

information sets frequently when given the choice? 

2) How is search behavior affected by changes to the 

order and orientation? 

3) Does this search behavior map onto subsequent 

treatment evaluations? 

 

Predictions:  Three main predictions were made, based on 

the literature presented above: 
 

 Based on Bergus et al (2002), a recency effect is 

predicted.  Thus, people should be more influenced by 

the information presented last. 

 Despite simultaneous presentation, people will read 

information according to the manipulated order (i.e. in 

the order consistent with reading patterns). 

 From findings that horizontal saccades occur more 

frequently than vertical saccades (Foulsham et al., 

2008), reduced switching in the vertical orientation is 

predicted, which may lead to a stronger order 

manipulation in this orientation. 

Methods 

Participants 

One hundred and fifty two students (108 in Study 1; 44 in 

study 2) from the University of Essex participated for course 

credit or payment. 

Materials and Procedure 
 

Evaluation Task 

In both experiments, participants were presented with four 

hypothetical situations: 

 Aspirin therapy treatment for mild carotid stenosis 

 Statins for high cholesterol 

 ACE (angiotensin converting enzyme) inhibitors 

for high blood pressure 

 Anticoagulant medicine for deep vein thrombosis 
 

Each scenario began with an introductory page, explaining 

the situation which led to the hypothetical medical 

diagnosis, the medical diagnosis is (and means) and what 

one of the recommended treatments is.   
 

Next, participants were presented with three risk and three 

benefit statements for that treatment scenario (which were 

closely matched for characters/word length).  These were 

presented in one of four orientation X order presentations, 

such that either the risk information or benefit information 

is presented first (either on the left or top) and with either 

information presented in a vertical (figure 1a: up/down) or 

horizontal (figure 1b: left/right) orientation.  
 

 
 

Irrespective of presentation order (orientation) after each  

risk (benefit) presentation, participants were presented with 

six treatment evaluation questions (3 positive & 3 negative): 
 

 P1: How favourable would you rate the treatment? 

 P2:  Would you choose the treatment? 

 P3:  Would you recommend this treatment? 

 N1: How concerned would you be about the side 

effects? 

 N2: Would you avoid this treatment? 

 N3: If you were to choose this treatment, how 

likely do you think it is that you would 

experience one of its side effects? 
 

For each of these questions, rating responses were made on 

a 7-point scale.  For the analysis, because of a high 

Cronbach’s alphas (α-range .87-.92 in study 1; α-range .85-

.92 in study 2), responses from across these six questions 

(after reverse coding the scores for the three negative 

questions) were combined for each participant to form an 

overall treatment evaluation rating. 
 

Eye tracking 

In Study 2, eye-tracking was conducted during the risk and 

benefit presentation phase of the study using the EyeLink 

1000.  The study was conducted within the associated 

Experiment Builder software application.   Interest areas 

were defined around the six statements (3 risks, 3 benefits) 

and the two titles (Benefits, Risks).   
 

From the eye-tracking data that was recorded, three main 

measures were calculated: SMRD order scores, time 

proportion (on Benefits) and number of transitions, and are 

explain below: 
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SMRD Order: This was chosen as a way of measuring 

whether actual looking order is consistent with the 

“manipulated order” (i.e. that when the risks are presented 

first according to our design, people look at the risks first).   

To create our measure of looking order, the formula used by 

Johnson, Häubl and Keinan (2007) was adapted1.  While 

they used it to examine the order of thoughts (which they 

had people write down), we adapted it to examining looking 

order by replacing thoughts with fixations in the formula. 
 

To calculate this, the formula below (Figure 2) was used 

(where MR represent median rank):              

 

 
 

To allow this calculation of ranks to be conducted, fixations 

were coded for order.  For example, the first fixation coded 

as “1”, the second as “2” and so forth until all fixations 

included.  Taking an example, looking mainly at the risk 

first lead to a positive SMRD score, and mainly benefits 

first a negative SMRD score. 

 

Time Proportion: Another potentially relevant variable in 

determining people’s subsequent choices is the proportion 

of time spent looking at the different types of information 

(i.e. risk and benefits), which helps to represent a measure 

of attention (i.e. amount of attention paid to each type of 

information). 
 

Using the interest areas that were preset into the eye-link 

analysis software, this measure calculated the time spent 

looking in each interest area.  This was then transformed 

into a proportion of time by dividing the time spent in the 

interest area by total time spent.  From this, the proportion 

of time spent on the benefits was calculated by summing the 

proportion of time spent on the four relevant interest areas 

(i.e. the three benefits and benefit title for time spent on the 

benefits).    Thus, at the end, a percentage score out of 100 

was calculated and represented the balance of time spent on 

the benefits (versus the risks). 

 

No of Transitions: This also represented a measure of 

attention, but this measured how people switched their 

attention between information sets.  This was chosen to 

investigate the findings from the search literature of a 

tendency to make horizontal rather than vertical saccades 

(see introduction and prediction 3 for details). 
 

For our purposes, this measured the number of times people 

switched between reading the risk information block to 

reading the benefit information block.   A transition was 

                                                         
1  This formula has been adapted across a range of studies, such 

as in political psychology research (Hardisty, Johnson & Weber, 
2010). 

coded every time two adjacent fixations in the time-ordered 

fixation sequence were from different information blocks 

(i.e. one was from the risk block, while the other was from 

the benefits block). 

Results  

Eye-tracking Information Search Analysis 

Each analysis was conducted collapsing the four scenarios2 

and using a generalized estimating equations (GEE) model3 

(with exchangeable correlation matrix, robust standard 

errors and Gaussian identity matrix). 
 

Order SMRD Score 

As can be seen from the graph in figure 3 (note: scores of 1 

denote reading all risks before all benefits, while -1 denotes 

reading all benefits before all risks), our manipulation of 

order was successful (B=0.80, Z=24.44, p<.001), with those 

presented with the risks first (i.e. on top or on the left hand 

side) reading the risks first (and therefore having a positive 

SMRD scores) and those  shown the benefits first showing a 

negative SMRD order score.  

 

 
 Although no significant main effect of orientation was 

found, a significant interaction between order and 

orientation was identified (B=0.08, Z=2.59, p=.009).   As 

this shows, what is happening is that SMRD scores are 

closer to 0 in the horizontal orientation.  As such, supporting 

our third prediction that the effect of order would be 

stronger in the vertical orientation (i.e. SMRD scores closer 

to extremes of +1 and -1). 
 

Time Proportion Spent on Benefits 

As can be seen from the graph in figure 4, only small 

differences are seen between the different orientations.  One 

                                                         
2 In each analysis 175 responses were analyzed (4 responses for 

each participant, one for each scenario, apart from one participant 
whose responses were not recorded for the final scenario due to an 

eye-tracking malfunction). 
3 GEE model was chosen as it represents a flexible approach to 

handling correlated data structures.  A full discussion of this 
method can be found in Honish Edwards, Elden & Leonard (2010). 

Figure 2: SMRD Order Formula 

Figure 3: The effect of order and orientation on looking 

order (as measured by order SMRD Score) 
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would predict that people would look evenly at the 

information and, as figure 2 shows, this is the case when the 

benefits are presented first (Horizontal: t(40)=1.09, p=.283.  

Vertical: t(46)= -0.79, p=.43)4.  However when risks are 

presented first, the time spent on the benefits drops and 

search becomes risk heavy (Horizontal: t(32)=-5.17 p<.001; 

Vertical: t(54)= 5.65, p=.001). 
 

 
No of Transitions 

As Figure 5 below demonstrates, while order (whether risks 

or benefits first) played little role in how many times 

participants transitioned between risk and benefit 

information, orientation made a big different to how many 

time people switched between reading the different 

information sets (B=-0.85, Z=-4.09, p<.001).   When 

participants were presented with the information side by 

side (the horizontal orientation), participants were more 

likely to switch between reading information about the risks 

and reading information about the benefits.  For the vertical 

orientation (where information was presented above and 

below), switching occurred less commonly. 
 

 
 

Effect on Overall Treatment Evaluations 
 

“Manipulated Order” Analysis:  As figure 3 reveals, 

people look in the manipulated order (i.e. generally looked 

                                                         
4 Analysis conducted via a one-sample t-test with test value of 

50. 

at the benefits before the risks in the benefits then risks 

conditions), as such it is appropriate to investigate the effect 

of these different order X orientation conditions on 

treatment evaluations.   Across both experiment 1 and 2,  

only in 1 of the 8 scenarios did an effect of order reach 

significance (ACE Study 1, F(1,102)=7.90, p=.006, 

η2=.072) all others F<1.30, p>.275). No main effects of 

orientation (all F<2.27, p>.135) or interaction between order 

and orientation (all F<1.96, p>.170) were found.5     Thus, in 

most cases, the treatment evaluation ratings across these 

four conditions were similar, often sitting close to the 

middle of the scale. 
 

Eye-tracking Analysis:  Holding all other eye-tracking 

variables constant (i.e. SMRD order and orientation), time 

proportion on benefits positively predicted treatment 

evaluations (B=0.02 Z=2.28, p=.023). 

Discussion 

Considering the original study by Bergus et al. (1992), they 

found a recency order effect with the most recent 

information having the biggest effect on subsequent 

perceptions of a treatment.  Unlike those researchers, our 

results did not support such a recency order effect, finding 

instead no consistent pattern of recency or primacy.  The 

search data discussed later however does hint at a primacy 

advantage for negative information as a more likely 

possibility.   Three suggestions are made to explain why 

such a disparity in results may have been found. 
 

First, returning to Bergus et al.’s (2002) aspirin scenario, it 

is not clear that the list lengths (i.e. lists of risks and 

benefits) were matched for either word or character length. 

In particular, the risk list length appeared longer6.  Such 

differences may have enhanced any order effects.   
 

Second, such difficulties in finding consistency in order 

effects has been discussed by Hogarth and Einhorn (1992).  

One factor that they highlight of particular relevance for 

comparing this study to the previous study is the role of 

evaluation task (or response mode) differences, particularly 

in short information scenarios. These researchers have 

argued that differences in the response mode can change the 

way people evaluate information and what information is 

used as an anchor.  Considering this anchor in particular, 

while Bergus et al (1992) had an initial evaluation question 

which provides people with an initial anchor, our study use 

only an end of sequence response, with no initial anchor 

specified.  With no anchor provided, it is the first piece of 

information which provides the anchor value.  Figure 6a 

provides an illustration of how these differences in anchor 

and processing strategy may predict the different pattern of 

results found in these studies.  In particular, as Figure 6 

                                                         
5  Degrees of freedom for each study scenario:   

 Study 1 df’s: between (1, 101-104)   Study 2 df’s: (1,39-40) 
6 Indeed, in our study, as the one risk introduced four different 

side effects, we used information about three of the four of these as 
our three separate risks. 

Figure 5: The effect of order and orientation on number 

of transitions between information sets 

 

Figure 4: The effect of order and orientation on time 

proportion spent searching the benefits information 
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shows, while a clear recency order effect is seen for Bergus 

et al. (2002), for our study, by using the first piece of 

information as an anchor, very little difference between final 

evaluation scores is predicted.   

 

  
Figure 6a: 

Bergus et al. (2002) 

with initial anchor 

judgement 

Figure 6b: 

Current Experiment 

No Initial anchor 

judgement 

 

Third, in particular, it is worth noting that in keeping our 

scenarios simple and thereby short, this may have attenuated 

the size of any potential overall order effects on treatment 

evaluations.  This may have occurred since with such short 

scenarios, it is not unreasonable to think that people could 

keep all 6 pieces of information (i.e. 3 risks and 3 benefits) 

in their memory at once, at least once the items’ “gist” 

meaning had been processed (Miller, 1955; Reyna, 2008).  

Further, such differences in response mode appear to 

become less important as the scenario length increases and 

primacy becomes the predicted order effect irrespective of 

response mode. 
 

Despite these factors, which may affect people’s processing 

of the information in order to make a decision, the search 

data responses should be relatively unaffected by the 

strategy choice variable (which should affect starting 

position and information integration rather than search).  

Further, at longer scenario lengths, differences would be 

predicted to be more pronounced with the effect of the 

response mode diminished.  
 

Looking at this search data reveals that changes in order and 

orientation do appear to change how people search the 

information presented.  First, providing support that our 

external manipulation of order was successful, actual search 

order (as measured by the order SMRD) mapped onto the 

manipulated order that the scenario was assigned to.  When 

participants were presented with the benefits “first” (at top 

or left side), they generally read the benefit information 

first, therefore having a negative SMRD value.  When risks 

were shown “first”, risk information was read first and 

participants had a positive SMRD value.   
 

Thus, even with simultaneous presentation of information 

(and therefore no external constraints on order of search), 

people are still affected by a decision aid designer choice of 

where to place the information in a table. Rather than 

switching between reading the risks and benefits, 

participants generally chose to read each information set 

sequentially.   Such effects suggest that typical reading 

patterns (i.e. the tendency to start reading at the top left) in 

some way constrains how people will read information even 

when presented simultaneously (Foulsham et al., 2013). 

Thus, suggesting that use of simultaneous presentation 

format do not automatically remove presentation order 

effects from consideration. 
 

Of note within this effect of order, the addition of 

orientation as a variable in our study highlights a further 

dimension to consider with this effect.  In particular, 

orientation appears to affect the strength of the search order 

effect, with a stronger order effect seen in the vertical 

orientation than the horizontal orientation.    Thus, a clearer 

sequential processing strategy - following the manipulated 

order (thereby reading all risks then all benefits, or vice 

versa) - is seen in this vertical orientation. When risks and 

benefits are presented side-by-side however in the 

horizontal orientation, this is weakened and switching 

between information sets (i.e. between risk and benefit 

information) becomes more common.    Such results support 

our third prediction of a stronger order effect in the vertical 

orientation, based on previous search evidence by Foulsham 

et al. (2008) which found that in picture search horizontal 

movements are more common than vertical movements.    

Such an effect is further supported in the analysis of 

transitions between information sets where, switching 

between sets is significantly higher in the horizontal 

orientation than the vertical orientation.   
 

Considering our final attention-based search measure taken, 

time proportion spent reading the benefits, this revealed that 

while an equal proportion of time is spent (approximately 

50%) on the risks and benefits when benefits are presented 

first, when risks are presented first,  the time spent on the 

benefits drops and search becomes risk heavy (closer to a 

60/40 split).  This asymmetric difference may suggest that 

risk information is particularly attention “grabbing” and 

difficult to engage from, thereby sustaining attention for 

longer and reducing the time left to spend reading the 

benefits.   Support for such a finding can be seen in the 

negativity bias literature, where a propensity to attend to, 

learn from and use negative information more than positive 

information has been found, Vaish, Grossmann, & 

Woodward, 2008).  
 

Further, such a finding would predict a primacy advantage 

for the risk information rather than a recency effect, since 

the extra attention placed on this information as the 

negativity literature suggests, should lead people to “learn” 

and “use” this negative information to a greater extent.  

Thus, leading to more negative treatment evaluations.  Such 

an effect is supported by analysis of the effect of the eye-

tracking variables, where only time-proportion was a 

significant predictor of treatment evaluations when holding 

the other variables constant.  

 

Future Directions 

In future research looking at more complex scenarios, we 

predict that the search order and orientation differences 
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would become more pronounced as the amount of 

information presented is increased and aggregating 

information in a sequential fashion becomes essential.         
 

Given more complex risk and benefit presentation scenarios, 

we predict that with such scenarios should lead to a primacy 

rather than a recency advantage.  Such is predicted from our 

finding of a risky heavy search when risks are presented 

first (a primacy advantage), evidence that longer scenarios 

force toward a primacy advantage (Hogarth and Einhorn, 

1992) and a reduced role of response mode in these longer 

scenarios.  
 

For a second type of more complex scenario, multi-attribute 

(multi-option) choice, the role of orientation on search may 

be of particular importance.   We predict that such 

orientation changes may change whether a more within-

option search or between option-search processing strategy 

is taken.   Such differences in search tend to lead to the 

adoption of different choice strategies, which may 

ultimately affect which option is preferred (Hills & Hertwig, 

2010). 

Conclusion 

These results highlight the role that seemingly arbitrary 

choices about the design of a decision aid, informational 

leaflet or website, such as order or orientation of the 

information can affect how information is searched.  In 

certain situations, these search differences may subsequently 

affect judgements and choices made using such information 

as a basis for knowledge about a choice scenario. 
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Risk and Rationality in Decisions to Commit Crime
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Abstract: Criminal behavior and related disorders have been associated with abnormal neural activity when experiencing
or anticipating risks and rewards, as well as when exercising inhibition. However, behavioral and neural substrates of risk
preferences and criminality have received scant attention when unconfounded with experience, anticipation, and inhibition. We
test predictions of fuzzy-trace theory (FTT) in two experiments using a risky-choice framing task. Behavioral results show that
individuals with a greater history of criminal behavior are less likely to engage in simple meaning-based processing and are
less confident when doing so. These findings are supported by fMRI results showing a greater history of criminal behavior
is associated with increased activation in regions associated with cognitive control when engaging in simple meaning-based
processing. These results provide insight into the cognitive processes and brain mechanisms that are associated with criminal
behavior.
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Abstract 

Planning is an everyday activity that is extended in time 

and space, yet is frequently studied in the absence of 

interactivity. Successful planning relies on an array of 

executive functions including self-control. We 

investigated the effects of interactivity and self-control 

on planning using a sequential-task paradigm. Half of 

the participants first completed a video-viewing task 

requiring self-control of visual attention, whereas the 

other half completed the same task without the self-

control constraint. Next, and within each of these 

groups, half of the participants manipulated cards to 

complete their plan (high-interactivity condition); for the 

other half, plans were made with their hands down (low-

interactivity condition). Planning performance was 

significantly better in the high- than in the low-

interactivity conditions; however the self-control 

manipulation had no impact on planning performance. 

An exploration of individual differences revealed that 

long-term planning ability and non-planning 

impulsiveness moderated the impact of interactivity on 

planning. These findings suggest that interactivity 

augments working memory resources and planning 

performance, underscoring the importance of an 

interactive perspective on planning research. 

 

Keywords: personal planning, time management, 

distributed cognition, self-control, ego depletion 

Introduction 

Planning is an essential cognitive process that is key to 

achieving productive time management. Successful 

planning depends on the ability to anticipate a sequence 

of operations intended to achieve one or more goals, 

requiring the capacity to effectively delay and resume the 

pursuit of goals, according to current resources and 

constraints (Hayes-Roth & Hayes-Roth, 1979; Patalano & 

Seifert, 1997). The planning process may involve initial 

planning; a systematic, rational approach where solutions 

are formulated ahead of plan execution (Morris & Ward, 

2004). As such they are subject to constraints on 

processing, including working memory resources. An 

alternative to this top-down model is opportunistic 

planning where the plan develops in situ driven by 

incoming information, rather than being entirely goal-

directed in advance of any moves (Davies, 2005). 

Selection of initial or opportunistic planning is based on 

the problem complexity and environment, and individual 

differences (Davies, 2005). 

Efficient planning depends on the coordination of a 

variety of executive functions, ranging from formulating a 

sequence of sub-goals that together embody a plan, 

storing and updating the plan, consciously monitoring, up 

to controlling and coordinating the plan to effect the 

desired outcome (Morris & Ward, 2004). This view 

suggests that successful planning depends on two key 

cognitive concepts: working memory and self-control. 

Self-control is defined as “the exertion of control over the 

self by the self” (Muraven & Baumeister, 2000, p. 247), 

occurring when a person attempts to override or inhibit 

the way they would otherwise think or behave. Working 

memory is a memory system for temporal information, 

and is a key theoretical concept for understanding how a 

limited amount of information is kept temporarily highly 

available, integrating external and previously-stored 

information in order to facilitate cognition and complex 

behaviour (Logie & Cowan, 2015). Working memory 

capacity has been linked with the ability to control 

attention (Engle & Kane, 2004) and avoid impulsive 

interferences. These are important requisites of self-

control (Broadway, Redick, & Engle, 2010). With 

multiple perspectives and potential actions held in 

working memory during planning, self-control seems key 

to planning appropriate actions and suppress 

inappropriate ones.  This conception of planning, 

however, assumes that people solely rely on their mental 

resources when they engage in planning tasks. Yet real-

life planning admittedly involves more than just mental 

processing: people who plan do so by making notes, 

writing and rearranging “to-dos” in lists, emails or index 

cards. In other words, they not only access but also 

interact with external information by manipulating to-dos 

while they plan. 

Distributed Cognition and Interactivity 

Traditionally, thinking is considered to occur in the head, 

sandwiched between perceptual inputs and behavioural 

outputs (to adapt Hurley, 2001). More recently an 

epistemological shift to a distributed cognition 

perspective proposes a dynamic cognitive system whose 

structure is distributed across the internal resources of the 

individual (such as acquired knowledge) and the 

resources external to the individual (such as material 

representations and tools; e.g., Kirsh, 2010). Studies of 

planning are conventionally conducted in the absence of a 

distributed cognitive system and with a focus on the 
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“temporal ordering of action” (Kirsh, 1995, p. 31). 

Interactivity, by contrast, configures a dynamic agent-

environment system scaffolded from resources internal 

and external to the agent. In all likelihood, interacting 

with the physical feature of a problem results in a simpler 

problem configuration that engages perceptual and pattern 

matching processes. In addition, by changing the spatial 

rearrangement, non-strategic manipulations may 

serendipitously determine what to do next. In mental 

arithmetic, for example, moving number tokens when 

performing long sums enhances accuracy and improves 

efficiency (Vallée-Tourangeau, 2013); congenial, easy-to-

remember interim totals can be identified and physically 

segregated, action affordances shift as the problem 

configuration is transformed, the allocation of attentional 

resources is governed by dynamic changes in the 

problem. Similarly, in a Bayesian reasoning task, 

manipulating cards representing elements of a statistical 

sample led to a sharp increase in performance (Vallée-

Tourangeau, Abadie, & Vallée-Tourangeau 2015). One 

possible explanation for the positive impact of 

interactivity on performance is that increasing 

interactivity reduces the processing burden on an agent’s 

working memory. If this is the case, we should expect that 

higher levels of interactivity and resulting opportunities to 

manipulate and rearrange information in a planning task 

should promote better planning performance.  

Self-control 

Self-control is required to maintain goal intentions and 

plans over time, and resist the conflicts of immediate 

impulses such as attending to tempting stimuli. 

(Hofmann, Friese, & Strack, 2009).  Research into 

failures of self-control (acting on impulses) proposes that 

it is a finite mental resource that limits self-regulatory 

capability. Motivated by this approach Baumeister and 

colleagues (e.g., Baumeister, Bratslavsky, Muraven, & 

Tice, 1998) developed the strength model of self-control 

with the central tenet that willpower is a limited resource 

akin to energy, which becomes fatigued or depleted with 

use, temporarily reducing the capacity for subsequent 

self-control. Baumeister et al. (1998) termed this state of 

reduced self-control ego depletion. Support for the model 

comes from research using a sequential-task paradigm; 

participants are required to engage in an initial task of 

self-control, and decrements in their performance are then 

measured on a second, unrelated task of self-control. A 

meta-analysis of 83 sequential-task studies reported a 

medium effect size (Cohen’s d = .62) of ego-depletion 

(Hagger, Wood, Stiff, & Chatzisarantis, 2010). 

More recently, the ego-depletion effect has been called 

into question with studies failing to detect the 

phenomenon (e.g., Lurquin et al., 2016). A reanalysis of 

the Hagger et al. (2010) data and another meta-analysis 

identified small-study bias and an inflated effect size 

(Carter & McCullough, 2014). This was followed by a 

multi-lab Registered Replication Report (RRR) involving 

23 labs worldwide which found an overall ego-depletion 

effect of close to zero (Hagger et al., 2016). This RRR 

used just one combination of tasks, and the present study 

responds to the recent calls for further replications using 

different combinations of tasks, increased sample sizes, 

and to investigate potential moderating variables (e.g., 

Lurquin et al., 2016). 

Since planning involves self-control activities such as 

monitoring and coordinating actions, we should expect 

ego depletion to impair planning performance. Yet, as 

interactivity may offer a platform for offloading some of 

the cognitive processing required to monitor and 

coordinate action, we anticipate that the impact of ego 

depletion on planning performance will be tempered 

when cognitive agents are free to physically interact with 

their plan.  

The Present Experiment 

Despite its ubiquity and importance in everyday life, 

planning research to date has tended to focus on planning 

dysfunctions and the order of actions, ignoring both the 

environment in which planning takes place and the 

cognitive state with which the participant comes to the 

task. This research typically uses one of two general types 

of tasks: puzzle-based tasks, which involve simple, 

mechanistic, easily-controlled procedures (e.g., the Tower 

of London), or real-world planning tasks, which invoke 

familiar procedures and contexts of a complexity 

analogous to everyday activities (Morris & Ward, 2004; 

e.g., the Virtual Planning Task, Miotto & Morris, 1998). 

The present experiment adopted a distributed-cognition 

perspective to determine how the manipulation of task 

interactivity and ego-depletion would affect performance 

on a real-world planning problem. We designed a low-

interactivity condition using a static paper presentation 

during which participants had to keep their hands down, 

while in the high-interactivity conditions cards 

corresponding with to-be-executed tasks could be 

manipulated and re-arranged as participants saw fit. Both 

conditions required working memory and self-control to 

switch and control attention between remembering plans 

and actioning them. We hypothesised that the inflexible, 

unmodifiable environment offered in the low-interactivity 

condition would lead to poorer performance relative to 

the high-interactivity condition. Since planning is 

reflected in physical changes in the environment, we 

hypothesised that the high-interactivity condition would 

lead to improved performance relative to the low-

interactivity condition.  

A secondary aim of this experiment was to test whether 

the offloading of cognitive processing afforded by highly 

interactive environments could act as a buffer for the 

negative impact of depleted self-control resources on 

planning performance. We selected a widely-used ego-

depletion task (e.g., Schmeichel, 2007), along with a 
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planning task that is demanding of executive control in 

order to maximise the chances of demonstrating the ego-

depletion effect. The experimental set-up replicated as 

closely as possible that of the original author (Brendan 

Schmeichel), including a verbatim script of the original 

task that was obtained with the help of the authors of the 

recent replication study (Lurquin et al., 2016). We nearly 

doubled the sample size used in typical ego-depletion 

studies. Participants were allocated to either a control or 

an experimental ego-depletion group, the latter requiring 

self-control in order to direct attention towards an 

interviewee and away from distracting words presented 

on the screen. In order to understand what participants in 

both conditions were really doing during the video-

viewing task, and to ensure the two conditions were 

indeed distinct, supplementary measures such as a word 

memory task to test adherence to instructions and 

additional questions regarding the ego depletion task were 

included. Based on the resource model of self-control 

participants in the ego-depletion condition, who 

performed the initial act of self-control, should perform 

worse in the subsequent planning task than participants in 

the control condition. Though, given the conflicting 

findings in the extant literature, and our new combination 

of tasks, we set out with an exploratory perspective on the 

effect of this frequently-used video-viewing task 

combined with our planning task. 

In addition, we included self-report measures of flow, 

planning, and impulsivity to explore whether they would 

moderate the impact of interactivity on planning 

performance. 

Method 

Participants 

One hundred participants (73 women, 27 men, Mage = 

31.90 years, SD = 11.77) were recruited; some received 

course credits. All participants were naive to the purpose 

of the research.  

Procedure 

The experiment employed a 2 (interactivity: high or low) x 

2 (ego depletion: depletion or control) between-groups 

design. Participants were randomly allocated to one of the 

four experimental conditions (n = 25 per group). All tasks 

were completed in a single testing session, lasting 

approximately 45 min, which was divided into three 

phases. Participants first watched the ego-depletion video. 

This was followed immediately by the planning task. 

Finally, participants completed a series of self-report 

measures. 

Ego-depletion task. Participants watched a 6 min, silent 

video featuring a woman being interviewed by an off-

screen interviewer, as the initial task in a sequential-task 

paradigm (Schmeichel et al., 2003). During the video 36 

common, one-syllable words (e.g., “play”) appeared at the 

bottom of screen for 10 s each. Words appeared in black 

font on a white background and took up approximately one 

quarter of the screen.  

In the ego-depletion condition participants were 

instructed to focus attention on the woman’s face and not 

to look at the words that appeared on the screen. The 

control condition was identical except, crucially, no 

instructions were given regarding the words that appeared 

on the screen and participants were asked to watch the 

video as if they were “sitting at home watching TV”. 

While participants viewed the video, the experimenter 

moved outside the room. Two modifications were made to 

the original task. First, distance between participant and 

screen was standardised at 40cm. Second, to increase their 

saliency, the position of the words was changed from 

bottom right to bottom centre. The size, colour and font 

remained unchanged. 

Planning task. Next, participants completed an adapted 

version of Miotto and Morris’s (1998) planning task in 

either the low-interactivity list condition, or the high-

interactivity board game condition. The object of the task 

was to plan and execute a sequence of specified activities 

on the four days of the week preceding a trip abroad. 

Twenty-eight activities were offered for completion, 16 of 

which were relevant to the trip. The remaining 12 activities 

were not relevant and were termed “distractors”. To 

simulate the constraints of real world planning, once the 

participant had executed the activities for a given day they 

could not change their plan and had to move on to the next 

day. Participants were seated at a desk and instructed on 

the main features and rules of the task. They were advised 

that they could carry out four tasks per day; two in the 

morning and two in the afternoon and that not all tasks 

could be completed. There was no time limit but 

participants were instructed to complete the task as quickly 

and as accurately as possible. Two measures were used to 

calculate planning performance: (1) accuracy – a choice of 

task was considered correct if it was one of the 16 relevant 

activities, and where applicable, completed on the 

specified day and time; (2) latency per correct task – 

calculated as overall latency divided by accuracy.  

 

 
Figure 1: The experimental setting, high-interactivity 

condition (left), and low-interactivity condition (right). 

 

High-interactivity condition. The 28 activities were 

printed on individual action cards (55 x 88mm). These 

action cards could be selected by moving the card into a 
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central day frame split into sections representing the 

morning and afternoon. As in the low-interactivity 

condition, a summary card which specified which activities 

needed to be done during the week was always available. 

Finally, an execution board was used to place cards that 

had been selected and representing tasks that have been 

completed (see Fig. 1, left panel). Participants were handed 

the 28 activity cards in a randomly ordered pack and were 

free to move the cards as desired in the working area. 

Participants could monitor their goal progress at any stage 

by checking the execution board.  

Low-interactivity condition. The low-interactivity 

condition used a list of 28 activities to be performed (see 

Fig. 1, right panel). In this condition participants were 

instructed not to touch any task materials and to keep their 

hands on the desk for the duration of the task. To choose a 

task for completion participants verbally instructed the 

experimenter of their selection.  

Additional Measures. Upon completion of the planning 

task, participants answered a flow questionnaire developed 

to gauge participant’s enjoyment and engagement during a 

task (Vallée-Tourangeau et al., 2015). Next, all 

participants were given a surprise memory test for the 

words presented during the video in the first part of the 

experiment. The test compromised 36 words: 18 that 

appeared during the initial video-viewing task, and 18 that 

did not (the same test designed by J. H. Lurquin, personal 

communication, 2 March 2016). Participants then judged 

whether they had seen the words previously by circling 

either yes or no. The memory test was followed by a series 

of manipulation checks for the ego depletion task. 

Participants were asked to rate the difficulty of complying 

with the video task instructions they were given prior to 

watching the video (1 = not at all difficult to 10 = very 

difficult). Following Lurquin et al. (2016) participants also 

rated how much effort they had put in to the task, and how 

hard they had tried to ignore or remember the words (1 = 

none to 10 = a lot).  

Finally, participants completed individual differences 

measures of planning and impulsivity as an independent 

measure of planning ability. Participants completed  

Simons and Galotti’s (1992) planning survey, a 31-item 

scale measuring everyday planning style, and Lynch, 

Netemeyer, Spiller and Zammit’s (2009) propensity to plan 

for time short run and long run 6-item scales. This is a 30-

item scale, scored using three sub-scales: attentional, 

motor and non-planning. 

Results 

Depletion participants rated the video task as more 

effortful (M = 7.38, SD = 1.99) than did the control 

participants (M = 6.74, SD = 2.32), however the difference 

was not significant, t(98) = -1.48, p = .142. Participants in 

the depletion condition remembered significantly fewer 

words (M= 4.66, SD = 4.31) than control participants (M = 

12.78 = SD = 3.72), t(98) = 10.09, p  < .001, which 

suggests that they complied, in part, with the task 

instructions. Although, if the depletion participants had 

fully complied with the instructions then they would not 

have remembered any words. 

The main dependent measure in the planning task was 

accuracy, the maximum possible score being 16; the data 

are reported in Figure 2. Participants in the high-

interactivity condition were more accurate than those in the 

low-interactivity condition, but the ego-depletion paradigm 

appeared to have no effect on planning performance. A 2 x 

2 between subjects analysis of variance (ANOVA) 

revealed a significant main effect of interactivity, F(1, 96) 

= 78.03, p  < .001, but neither the main effect of ego 

depletion nor the interaction effect were significant (Fs < 

1). 

 Figure 2: Mean accuracy (left panel) and mean latency per 

correct task (in seconds, right panel) as a function of level 

interactivity and the experience of the ego depletion task 

(error bars are standard error of the means). 

 

Latency per correct task was calculated as total latency 

divided by accuracy; lower scores reflect better 

performance. Figure 2 shows that generally participants in 

the high-interactivity condition were faster than those in 

the low interactivity condition. A 2 x 2 independent 

ANOVA revealed a significant main effect for interactivity 

F(1,96) = 25.72, p  < .001. Again, neither the main effect 

of ego depletion nor the interaction effect were significant 

(Fs < 1). 

We explored whether individual differences in planning, 

impulsiveness, and experience of flow moderated the 

impact of interactivity on planning performance. Planning 

performance was positively associated with flow,  = .22, 

t(96) = 2.45, p = .016, although flow was not a moderator 

of the interactivity effect on planning performance;  = 

.03, t(96) = 0.36, p = .72. More interestingly, the impact of 

interactivity on planning performance was moderated by 

individuals’ propensity to plan in the long-run,  = -.15, 

t(96) = -2.08, p = .04. Specifically, higher propensity to 

plan in the long-run was associated with higher 

performance under low interactivity but it did not predict 

performance under high interactivity (see Figure 3, left 

panel). The impact of interactivity on performance was 

also moderated by non-planning impulsiveness,  = .16, 

t(96) = 2.22, p = .03. In this case, higher scores of non-

planning impulsiveness were associated with higher 
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planning performance under high levels of interactivity 

and lower planning performance under low levels of 

interactivity (see Figure 3, right panel).   

Figure 3: Relationship between planning accuracy 

(Performance) and propensity to plan in the long run (left 

panel) and non-planning impulsiveness (right panel) as a 

function of interactivity levels (High vs. Low). Note. CF = 

Centred Form or mean deviation form. 

Discussion 

In this experiment participants completed a planning task 

in two different interactivity conditions, one which 

permitted spatial rearrangement of the task, and one which 

did not. Generally, participants were more accurate and 

achieved faster latency per correct answer in the high-

interactivity condition. These results can be explained in 

terms of the affordances provided by the different task 

environments. In the low-interactivity condition 

participants were forced to manipulate information 

mentally, relying on executive function-directed initial 

planning. As such, performance was limited by the 

participants’ working memory capacity. 

In contrast, the dynamic interface of the high-

interactivity condition facilitated new affordances for task 

completion and paved the way for opportunistic planning, 

where task selection was guided, in part, by the physical 

changes in the configuration of the problem. Planning was 

interspersed with physical execution, alleviating the load 

on the participants’ working memory compared to the 

complex initial planning in the head required by the low-

interactivity constraints. The significant increase in task 

performance in this condition could not be attributed to 

individual differences since there were no condition 

differences on measures of planning. Instead, the high-

interactivity environment allowed participants to re-

structure and simplify the problem presentation in a way 

that was conducive to solving the task. For example, 

reorganising the activity cards made it possible to collate 

related activities, discard distractor cards and constantly 

track the state of the task. Furthermore, when participants 

planned all time-specific tasks first, they then perceived 

the gaps left in the plan, thus placements for single item 

tasks were physically discovered (Kirsh, 2010).  

We sought to explore cognitive individual differences 

that would predict performance in both conditions of the 

planning task. We hypothesised that the skills implicated 

when planning in the head would be different from the 

skills employed when planning in a distributed 

environment. Long Run Planning ability only mattered for 

those participants in the low interactivity condition; it had 

no effect on performance in the high interactivity 

condition. Conversely, high levels of non-planning 

impulsivity put people at an advantage under high 

interactivity, and at a clear disadvantage in the low 

interactivity condition. The fact that planning performance 

was superior in the high-interactivity, in the absence of a 

difference in self-reports of planning ability, suggests that 

the manipulation of cards augmented planning abilities 

(via working memory) above those measured with 

planning scales. This finding supports previous work (e.g., 

Vallée-Tourangeau, Sirota, & Vallée-Tourangeau, 2016) 

and suggests that interactivity may functionally augment 

cognitive resources.  

Self-Control and the Elusive Ego Depletion Effect 

The present experiment also examined the effect of ego 

depletion on planning. As advocated by Lurquin et al. 

(2016) we used a larger than average sample size (N = 

100) and explored a new combination of tasks. Despite 

making these and other modifications to this highly-

replicated depletion task, the main effect of ego depletion 

was not significant. This result is inconsistent with the 

strength model (Baumeister et al., 1998), and many 

previous studies, including those from the laboratory 

where the term ego depletion was first coined, and where 

the video-viewing task was developed. However, it is 

consistent with more recent research that has failed to 

detect the ego-depletion effect, and most notably Lurquin 

et al. (2016), which used the same initial video-viewing 

task.  

A critical pre-requisite of the sequential-task paradigm is 

that both tasks require the use of self-control. The present 

planning task has not been used as a second task in the 

sequential task paradigm: one possible explanation for the 

absence of ego depletion is that the outcome planning task 

did not require self-control. Yet, there is little doubt that 

planning requires the deliberate control of actions across 

time, and Baumeister and Vohs (2016) argue that planning 

draws on the same limited resource as self-control. 

Additionally, in the present study, task constraints such as 

adhering to activities stipulated on the summary card 

required that impulses to follow habitual holiday-planning 

responses be overridden using self-control. Further, it 

could be argued that the low-interactivity instructions 

demand self-control by requiring participants to keep their 

hands down on the table. Despite apparently meeting the 

conditions necessary to induce the ego-depletion, we found 

no evidence of an effect. Since the video-viewing task 

lacks an objective measure of task performance (Lurquin 

& Miyake, 2017), we included the word memory task and 

assume that performance here points to adherence to the 

video task instructions. Participants in the ego-depletion 

condition remembered some words, indicating that they 
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looked at them and so did not fully adhere to the task 

instructions. If participants in this condition did not inhibit 

their natural impulse to respond to the attention-capturing 

words, they were not using self-control in the first task and 

thus would not be, and indeed were not, depleted in the 

second task. Without substantial modification to the task 

procedure and an objective measure of performance, our 

findings indicate that the video-viewing task does not 

operationalise ego-depletion as intended. 
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Abstract 

When faced with a moral dilemma, following your head 
versus your heart can result in very different decisions. Earlier 
work has argued that people who “self-locate” in the head 
tend to make more rational and less emotional decisions to 
moral dilemmas than those who “self-locate” in the heart. We 
replicate this finding, suggest an alternative interpretation of 
the result, and then extend it with a novel experiment. In a 
metaphor framing task, we manipulated the salience of the 
head/heart metaphors—by using them (a) in a single sentence, 
(b) a more elaborate paragraph, or (c) by emphasizing one in 
contrast to the other. We found that people who received the 
head metaphor made more rational decisions than those who 
received the heart metaphor, but only in the high salience 
condition that contrasted the two metaphors. This finding 
illustrates the communicative value of metaphor, which can 
be enhanced through comparison. 

Keywords: metaphor; decision making; rationality; emotion 

Introduction 
In the novel and movie Sophie's Choice, a Polish woman, 

Sophie Zawistowska, is arrested by the Nazis and sent to the 
Auschwitz death camp. On arrival, she is "honored" for not 
being a Jew by being allowed a choice: One of her children 
will be spared the gas chamber if she chooses which one 
should be killed. If she does not choose, both of them will be 
killed.  

Many moral dilemmas, like Sophie’s, can be construed as 
a contrast between two extremes, involving a rational, 
utilitarian option (choose one child to die so that only one 
life is lost) and an emotional option (forgo choosing; both 
children die, but you did not play a direct role in either 
death). Why do some people decide to use their head to 
make the rational choice, while others follow their heart in 
choosing the emotional option? 

One possibility for why some people make more rational 
decisions than others appeals to a role for conceptual 
metaphor (Fetterman & Robinson, 2013; Lakoff & Johnson, 
1980). In English, the “head” is associated with cold, 
rational decision making. We use instructions like “use your 
head” to encourage emotional detachment in favor of 
carefully deliberated judgment. The “heart,” on the other 
hand, is associated with hotter, more emotional thinking. 
Telling someone to “follow their heart” often implies that 

they should ignore a cost-benefit calculus in favor of a more 
impulsive decision.  

Recent work has argued that these “head” and “heart” 
metaphors (or metonymies) do more than describe different 
modes of thinking. They may also represent different ways 
of thinking about the self: some people “self-locate” in their 
head; others “self-locate” in their heart (Fetterman & 
Robinson, 2013). On this view, people who conceptualize 
thinking as a process that happens in their head will tend to 
make more rational decisions, while people who 
conceptualize thinking as something that happens in their 
heart will tend to make more emotional decisions.  

Evidence for this theory comes from a series of studies in 
which people were asked: “Irrespective of what you know 
about biology, which body part [the head or heart] do you 
more closely associate with your self?” Then participants 
completed personality measures, general knowledge 
questions, or they answered a series of moral dilemmas. 
Fetterman and Robinson (2013) found roughly a 50-50 split 
in how people identified with the head versus the heart, 
which, in turn predicted responses to the other measures: 
head-locators characterized themselves as more rational and 
interpersonally cold on the personality measures, answered 
more of the general knowledge questions correctly, and 
suggested more utilitarian responses to the moral dilemmas, 
compared to the heart-locators.  

Given the study design, however, it is difficult to know 
whether people really self-locate in the head or heart, and 
whether individual differences in self-location tendencies 
predict behavior. That is, an alternative interpretation of the 
finding is that people have some sense of their typical 
cognitive style—whether they tend to base their decisions 
on more rational or emotional motivations—which is what 
people report for the self-location question. On this view, 
one might expect the same results if participants had been 
asked if they consider themselves to be more rational or 
emotional decision makers (as opposed to a question about 
self-location). In addition, how people respond to the self-
location question may influence their performance on 
subsequent measures. People who say that they self-locate 
in their “head” may be inclined to demonstrate their 
headiness by adopting a more rational strategy to the moral 
dilemmas, for example.  
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These concerns relate to long-standing questions about 
what can be inferred about mental representation from 
patterns of language use (Keysar & Bly, 1995; McGlone, 
2011; Murphy, 1996). For example, when someone says, “I 
followed my heart” are they really imagining that their 
decision was made in their heart? Or is this phrase merely a 
conventional expression that has come to mean something 
like “I made the emotional choice”?  

In the current paper, we explore these concerns, and 
address novel theoretical questions about metaphor framing, 
by manipulating the salience of instructions to “use one’s 
head” or “follow one’s heart” in moral decision making. 
There were three conditions in the experiment. In the low-
salience condition, the phrase “use your head” or “follow 
your heart” was embedded in the instructions of the task—
which involved responding to the five moral dilemmas that 
were used by Fetterman and Robinson (2013). In the 
medium salience condition, participants were presented with 
a discussion about Plato’s theory of the self, which was said 
to emphasize the head or the heart; the given metaphor was 
repeated in different ways throughout a paragraph that 
preceded the moral dilemmas. In the high salience 
condition, participants received the same information as 
those in the medium salience condition, with an additional 
explicit contrast: they were told either that the “head and not 
the heart” or the “heart and not the head” is where the self is 
located. 

We expected that the high-salience condition would elicit 
the strongest effect: with the emphasis on head-location, in 
explicit contrast to heart-location, leading to more rational 
responding (and vice versa). An explicit comparison 
between the two metaphors should highlight the underlying 
difference between a rational and emotional approach to the 
moral dilemmas (Edwards, Williams, Gentner, & 
Lombrozo, 2014; Markman & Gentner, 1996).  

This result would support an alternative interpretation of 
Fetterman and Robinson (2013)’s work. First, it would 
illustrate that, at least in some circumstances, more salient 
metaphors are more influential. In the original study, the 
metaphors were highly salient, since they were explicitly 
contrasted with one another in a forced choice task. Second, 
it would suggest that these particular metaphors are 
informative because of their conventional, idiomatic 
meaning, rather than their role in the mental representation 
of self-location (Keysar, Shen, Glucksberg, & Horton, 2000; 
Thibodeau & Durgin, 2008).  

This result would also represent a novel contribution to 
the metaphor framing literature, which has found that 
linguistic metaphorical frames can shape how people think 
about issues like immigration (Landau, Sullivan, & 
Greenberg, 2009; Jia & Smith, 2013), cancer (Hauser & 
Schwarz, 2013; Hendricks & Boroditsky, 2015), and crime 
(Thibodeau & Boroditsky, 2011, 2013). For instance, 
metaphorically framing crime as a “virus” has been found to 
increase support for societal reform as a means of crime-
reduction, whereas a “beast” frame leads people to support 
more enforcement-oriented approaches to crime-reduction 

(Thibodeau & Boroditsky, 2011, 2013). The current work 
extends these findings by investigating whether an explicit 
contrast, designed to make the underlying entailments of the 
metaphor more salient, leads to stronger metaphor framing 
effects.  

Before conducting the experiment, we first replicated the 
original study (Fetterman & Robinson, 2013). We present 
the results of the replication, which confirm the original 
findings, and then discuss the results of our follow-up 
experiment.  

Methods 

Participants 
500 and 1,000 people were recruited from Amazon’s 
Mechanical Turk to participate in Studies 1 and 2, 
respectively. Data was excluded from participants who did 
not submit a correct completion code and from participants 
who answered more than 3 (of 5) attention check questions 
incorrectly, leaving data from 484 and 945 participants for 
analysis in Study 1 and Study 2, respectively. Participants 
who completed Study 1 were not eligible to participate in 
Study 2. 

Procedure 
Study 1 Study 1 was a replication of Fetterman & Robinson 
(2013, Study 5). At the beginning of the study, participants 
were asked: “Irrespective of what you know about biology, 
which body part do you more closely associate with your 
self?” They were required to choose either the head or the 
heart. Next participants considered five moral dilemmas, 
similar to and including the Sophie’s Choice example from 
the introduction. Each dilemma had one rational response 
and one emotional response (see Appendix). After the five 
dilemmas they answered an attention check question about 
each dilemma, and finally completed the Big Five Inventory 
(BFI; John & Srivastava, 1999). The BFI measures 
individuals’ extraversion, agreeableness, conscientiousness, 
neuroticism, and openness to experience. In the original 
studies, Fetterman and Robinson (2013) included the 
measure of conscientiousness as a predictor of how people 
responded to the moral dilemmas. For consistency, we also 
include conscientiousness in the analyses below, although 
the results do not differ if this measure is excluded. 

 
Study 2 The procedure for Study 2 was identical to Study 1, 
except that instead of choosing the body part that they most 
associate with the self, participants randomly received one 
of the two metaphorical frames at one of three salience 
levels. 

In the low salience condition, the metaphor was 
instantiated only in the instructions for responding to the 
moral dilemmas:  

Next you will read short scenarios and should 
report what you would do if you were in them. 
There are no right or wrong answers to the 
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questions. Just [follow your heart/use your head] to 
make the judgment that you think is right. Please 
read each carefully because you will be asked to 
answer other questions about them later. 

The medium and high salience conditions included 
passages that instantiated the metaphors more explicitly than 
the low salience condition. The beginning of the medium 
and high salience passages were identical:  

Plato said that there are three parts of the soul. The 
first is our appetites or desires; the second is hot-
blooded emotion; and the final is rational, 
conscious awareness. But these three parts of 
ourselves do not play equal roles in making us who 
we are. The [head/heart] is the most crucial for 
defining who we are. The [head/heart] is where we 
find our true self. 

The medium salience passage continued:  

If we are to live a long and prosperous life, we 
must always listen to our [head/heart]. George 
Washington, Abe Lincoln, and Michelle Obama 
are just a few of the incredibly successful people 
who have followed Plato’s advice in never losing 
sight of the fact that their [head/heart] holds the 
key to who they truly are.   

In the high salience condition, the emphasized metaphor 
was explicitly contrasted with the alternative. Thus, the high 
salience passage instead said:  

If we are to live a long and prosperous life, we 
must always listen to our [head/heart, even if it 
conflicts with our heart/head]. George Washington, 
Abe Lincoln, and Michelle Obama are just a few of 
the incredibly successful people who have 
followed Plato’s advice in never losing sight of the 
fact that their [head/heart] holds the key to who 
they truly are, even if it means disregarding what 
their [heart/head] tells them. 

After the passages, all participants responded to the same 
five dilemmas used in Study 1 and answered the same 
attention check questions. They were then asked whether 
they remembered encountering the phrase “follow your 
heart” or “use your head” earlier in the experiment. This 
recognition memory question was included as a test of the 
salience manipulation. As expected, participants were more 
likely to remember the metaphor in the more salient 
conditions, B = .75, SE = .10, p < .001.   
 
Analysis Mixed effect logistic regression models were used 
to analyze the data from both studies (Jaeger, 2008). 
Metaphor (head versus heart) was treated as a between-
subjects fixed effect in both studies; salience (low, medium, 
high) was treated as a between-subjects fixed effect for the 
analysis of Study 2; participants and moral dilemmas were 
treated as random effects in both studies. We compare 

nested models and present standardized regression 
coefficients to conduct hypothesis tests (Menard, 2002).  

Results 

Study 1: Replication 
In Study 1, more people identified with the head metaphor 

(63%) than the heart metaphor (37%), χ2(1) = 32.80, p < 
.001. We tested whether participants’ choice of metaphor 
predicted how they solved the moral dilemmas by 
comparing two nested models. In the first, 
conscientiousness was included as a predictor of 
participants’ judgments; in the second model, participants’ 
chosen metaphor was added, which significantly improved 
fit, χ2(1) = 19.84, p < .001. People who identified with the 
heart metaphor solved the moral dilemmas more 
emotionally (M = .52, SD = .25) than people who identified 
with the head metaphor (M = .41, SD = .29), B = .68, SE = 
.15, p < .001, as did more conscientious participants, B = 
.28, SE = .11, p = .012. These findings replicate the basic 
patterns reported by Fetterman & Robinson (2013). 

We also conducted analyses by item to test whether 
particular dilemmas were driving the effect. We found an 
effect of metaphor for dilemmas that elicited more 
ambivalent responses overall. That is, there was a stronger 
consensus among participants on how to respond to 
dilemmas 1 (rationally) and 3 (emotionally); there was no 
effect of participants’ choice of metaphor on these 
dilemmas, ps > .3. There was less consensus among 
participants on how to respond to dilemmas 2, 4, and 5; 
these dilemmas showed differences as a function of which 
metaphor people chose, ps < .001 (see Table 1).  
 
Table 1. Proportion of emotional responses overall, for 
head-locators, and for heart-locators by dilemma.  

Dilemma Overall Heart Head 
1 .70 .73 .69 
2 .36 .49 .29 
3 .14 .13 .14 
4 .50 .61 .44 
5 .57 .66 .51 

 
In other words, head-locators did not simply choose the 

rational response to each dilemma (and vice versa for heart-
locators). They were also sensitive to the content of the 
dilemmas. For this reason, we focus on responses to 
dilemmas 2, 4, and 5 in the experiment.  

Study 2: Metaphor Framing 
We tested whether the metaphor used to describe the task 
and the salience of the metaphor affected participants’ moral 
judgments. We focus on data from dilemmas 2, 4, and 5, 
since these dilemmas elicited more ambivalent responses 
overall, and were influenced by participants’ choice of 
metaphor in Study 1.  

2189



The analysis revealed no main effect of metaphor, χ2(1) = 
1.73, p = .189, or salience condition, χ2(1) = 0.53, p = .467. 
But it did reveal an interaction between metaphor and 
salience condition, χ2(1) = 4.34, p = .037, as well as an 
effect of conscientiousness, χ2(1) = 9.52, p = .002. 

As shown in Figure 1, there was no effect of the metaphor 
frame in low, B = .01, SE = .19, p = .964, or medium, B = 
.08, SE = .21, p = .681, salience conditions. There was an 
effect of the metaphor in the high-salience condition, B = 
.70, SE = .27, p = .011. When the instructions emphasized 
the “heart” in explicit contrast to the “head,” people 
responded to the dilemmas more emotionally (and vice 
versa). 

 

 
Figure 1. Proportion of dilemmas solved emotionally in 

Study 1 (choice) and in Study 2 by metaphor and salience 
conditions. Error bars denote standard errors of the means. 
 
The effect of the salience manipulation appeared to be 

fairly linear for the “heart” condition—with people 
responding more emotionally as the salience of the “heart” 
metaphor increased, B = .21, SE = .10, p = .030. The effect 
of the salience manipulation seems to have been more 
abrupt in the “head” condition. There was no difference in 
how participants responded to the low- and medium-salient 
versions of the instructions that emphasized the “head” 
metaphor, p = .311; participants responded marginally more 
rationally to the high-salient version, compared to medium-
salient version, of the instructions that emphasized the 
“head” metaphor, p = .057.  

Figure 2 illustrates the effect of metaphor preference 
(Study 1) or metaphor frame (from the high-salience 
condition of Study 2) on each of the moral dilemmas. It 
shows that the metaphor people identified with in Study 1 
had the biggest effect on judgments of the 2nd, 4th, and 5th 
moral dilemmas. These were the same dilemmas that were 
most influenced by the salient metaphor frames in Study 2. 

 

 

 
 
Figure 2. Effect size by item (moral dilemmas 1-5) for the 

metaphor preference task in Study 1 and bin the high-
salience condition of Study 2. The further the bar extends to 

the right (from 0), the more congruent the responses (i.e. 
heart and emotional responding; head and rational 

responding). Bars extending to the left (of 0) indicate a 
pattern of incongruent responding (i.e. heart and rational; 

head and emotional). 

Discussion 
In this work, we first replicated prior work by Fetterman & 
Robinson (2013) showing that people who identified with a 
heart metaphor for the self responded more emotionally to 
moral dilemmas, while people who identified with a head 
metaphor for the self responded more rationally to moral 
dilemmas. The original finding was interpreted as evidence 
for an individual difference in self-location grounded in 
conceptual metaphor. However, we have argued that there 
are alternative interpretations of the finding. Most notably, 
the heart and head metaphors are conventional expressions 
that correspond to emotional and rational modes of thinking, 
respectively. People have some self-awareness about how 
they make decisions—more rationally or more emotionally. 
When asked to choose between identifying with the heart or 
head, emotional decision makers choose the heart, while 
rational decision makers choose the head. 

In a follow-up experiment, we examined whether 
metaphorically framing the locus of a person’s decisions as 
either in the head or in the heart would lead them to make 
more rational decisions (in the case of the head) or 
emotional decisions (in the case of the heart). We also 
explored the role of salience in this process: using the 
metaphors in a single phrase (low salience), a more 
elaborate paragraph (medium salience), or by emphasizing 
one in direct contrast with the other (high salience). 
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We found an effect of the metaphor framing manipulation 
in the high-salience condition but not the low or medium 
salience conditions, suggesting that an explicit contrast 
between the metaphors was important for influencing 
behavior on the decision making task. In the high salience 
condition, since people were exposed to both metaphors, 
they had the opportunity to compare the two metaphors. In 
fact, in order to truly comprehend the passage, they needed 
to compare their passage’s dominant metaphor to the 
alternative. In Fetterman & Robinson’s (2013) work and in 
our Study 1, choosing the locus of the self also encourages, 
and perhaps even requires, participants to explicitly 
compare the two metaphors’ entailments in order to choose 
the one they believe describes them most accurately. 
Comparison has been found to be particularly effective in 
communicating the intended meaning of analogies 
(Edwards, Williams, Gentner, & Lombrozo, 2014; 
Markman & Gentner, 1996). This work suggests that 
explicitly comparing metaphor frames to each other may 
similarly highlight their differences and amplify their effects 
on cognition. In other words, we found that the head and 
heart metaphors used in this work were both conceptual and 
communicative.  

All participants in these experiments were in the United 
States, so the implications about heart and head metaphors 
for decision making may not generalize to members of other 
cultures. It may be productive for future research to 
investigate interactions between cultural background and 
metaphor frames for decisions. 

In addition, this work may have implications for the 
development of Deliberate Metaphor Theory (DMT; Steen, 
2008), which argues that metaphors are most influential 
when they are used deliberately. That is, DMT emphasizes 
the social and pragmatic context in which figurative 
language is used, although the details of the theory  (e.g., 
what constitutes a deliberate metaphor?) have yet to be 
ironed out, and empirical tests of the predictions made by 
the theory have received limited support (see, e.g., Gibbs, 
2015a, 2015b; Thibodeau, In press). Thus, the current work 
may give researchers a novel case for thinking about one 
pragmatic signal—explicitly negating one metaphor in favor 
of another—that a metaphor has been used deliberately. 
Explicitly contrasting metaphors clearly signals deliberate 
use.  

To advance Deliberate Metaphor Theory, it would be 
worthwhile to try and provide a more mechanistic account 
of the effect we have demonstrated. For instance, one might 
argue that the metaphors were used “deliberately” in all 
three salience conditions of the experiment. But we only 
found an effect when the two metaphors were contrasted 
with one another. An open question, therefore, is whether 
the contrast served as more of a pragmatic cue for 
participants to use the emphasized metaphor, or whether the 
contrast served to bring out the meaning of the head and 
heart metaphors more clearly—by highlighting an alignable 
difference between and the underlying meaning of the 
phrases (Gentner & Markman, 1994). 

Future work should also explore the role of comparison in 
metaphor processing more generally. Experiments that 
examine metaphor framing—for persuasion, instruction, and 
explanation—typically present participants with only one 
frame (e.g., Jia & Smith, 2013; Landau, Sullivan & 
Greenberg, 2009; Thibodeau & Boroditsky, 2011, 2013). 
The current work suggests that explicitly contrasting 
metaphors may facilitate metaphorical reasoning.  
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Appendix: Moral Dilemmas 
1.You are an inmate in a concentration camp. A sadistic 
guard is about to hang your son who tried to escape and 
wants you to pull the chair from underneath him. 

He says that if you don’t he will not only kill your son but 
some other innocent inmate as well. You don’t have any 
doubt that he means what he says. What would you do? 

Rational = I would pull the chair                             
Emotional = I would NOT pull the chair 
 

2.A pregnant woman leading a group of people out of a cave 
on a coast is stuck in the mouth of that cave. In a short time 

high tide will be upon them, and unless she is unstuck, they 
will all be drowned except the woman, whose head is out of 
the cave. Fortunately, (or unfortunately,) someone has with 
him a stick of dynamite. 

There seems no way to get the pregnant woman loose 
without using the dynamite which will inevitably kill her; 
but if they do not use it everyone will drown. What would 
you do if you were in this situation? 

Rational = I would let them light the stick of dynamite    
Emotional = I would NOT let them light the stick of 

dynamite 
 
3.A trolley is running out of control down a track. In its path 
are five people who have been tied to the track by a mad 
philosopher. Fortunately, you could flip a switch, which will 
lead the trolley down a different track to safety. 
Unfortunately, there is a single person tied to that track. 
Would you flip the switch or do nothing? 

Rational = I would flip the switch           
Emotional = I would do nothing 

 
4. In the novel and movie Sophie's Choice, a Polish woman, 
Sophie Zawistowska, is arrested by the Nazis and sent to the 
Auschwitz death camp. On arrival, she is "honored" for not 
being a Jew by being allowed a choice: One of her children 
will be spared the gas chamber if she chooses which one 
should be killed. If she does not choose, both of them will 
be killed. Would you choose one of your children to be 
killed in the same situation? 

Rational = I would choose a child to be killed    
Emotional = I would NOT choose a child to be killed 

 
5. In 1842, a 23ship struck an iceberg and more than 30 
survivors were crowded into a lifeboat intended to hold 7. 
As a storm threatened, it became obvious that the lifeboat 
would have to be lightened if anyone were to survive. The 
captain reasoned that the right thing to do in this situation 
was to force some individuals to go over the side and drown 
or everyone would drown. Would you support pushing 
some people off the boat so at least some people could 
survive? 

Rational = I would support pushing people off the boat  
Emotional = I would NOT support pushing people of the 

boat 
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Abstract 
Languages exhibit striking semantic diversity, but different       
languages often share core metaphors. Conceptual Metaphor       
Theory (Lakoff & Johnson, 1980) claims that universal        
human experiences give rise to conceptual representations       
that are then expressed in language. But languages change         
slowly, making it difficult to observe implicit       
conceptualization affecting linguistic convention in real      
time. Here, we describe a shared conceptualization       
previously absent from speech that has now become        
conventionalized in linguistic metaphors. In two studies, we        
document how members of the US military talk about time          
using conventionalized lateral metaphors (e.g., ‘push the       
meeting right’ to mean ‘move the meeting later’). We show          
that military members, unlike civilians, consider such       
sentences to be acceptable—sometimes even more      
acceptable than more standard phrases. Moreover, military       
personnel seem unaware that these lateral metaphors are        
specific to their linguistic sub-community. Our findings       
suggest that implicit mental representations can become       
conventionalized metaphors in language. 
Keywords: time; metaphor; linguistic convention; semantic change 

Introduction 
Every language uses metaphor (Kövecses, 2005), and many        
of these metaphors appear universal or nearly universal.        
Core metaphors like AFFECTION is WARMTH occur in        
many languages, while the reverse, AFFECTION is COLD,        
does not (Kövecses, 2010). Why? The leading explanation        
is that these cross-linguistic regularities reflect universal, or        
nearly universal, human experiences (e.g., Clark, 1973;       
Lakoff & Johnson, 1980). For instance, since being held by          
a caregiver is likely a nexus of warmth and affection, human           
infants learn to associate these experiences. On this account,         
recurring correlations in experience lead to mental       
representations that relate the two domains. And these        
representations, in turn, spill out into language, so that the          

same experiences come to be described similarly across the         
world’s languages. 

However, this is not the only way in which mental          
representations and linguistic metaphors could have come       
into alignment. For instance, the causal direction may have         
been reversed: widespread, recurring patterns of thought       
may have arisen from exposure to linguistic metaphors,        
rather than the other way around (see Gibbs, 2011 for          
review). Indeed, there’s substantial evidence that, at least in         
the short term, exposure to linguistic metaphors primes        
conceptualization (e.g., Thibodeau & Boroditsky, 2011).  

In fact, there is a surprising dearth of evidence that shared           
mental representations can give rise to novel linguistic        
conventions. While the historical record is replete with        
changes in linguistic semantics that appear, in retrospect, to         
be driven by conceptualization (Sweetser, 1991), we cannot        
assess the conceptual representations of historical people in        
a lab. If implicit patterns of thought give rise to linguistic           
conventions, we should be able to observe the emergence of          
new linguistic metaphors in real time. But the pervasiveness         
of core, cross-linguistic metaphors means that it’s rare to         
find people who lack either the linguistic or conceptual         
manifestation of an otherwise universal metaphor.  

To determine whether metaphor spreads from thought to        
language, we need to observe a linguistic community        
beginning to use metaphorical language that aligns with        
their prior conceptual representations. This would shed light        
on why so many languages share linguistic and conceptual         
metaphors. We believe we have found one such case. 

The coupling of language and thought about time 
Of all the concepts that we understand metaphorically, the         

best studied is time. Within a given culture or community,          
individuals think and talk about time in ways that are both           
stable and shared. This often involves using space to         
structure their speech and understanding of time (for        
reviews, see Boroditsky, 2011; Núñez & Cooperrider,       
2013).  

Specifically, English speakers think and speak about time        
as though it were represented along the sagittal (front-back)         
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axis. The future is ‘ahead’ and the past is ‘behind,’ and these            
manners of speaking align with physical behavior. When        
English speakers make decisions about events, they are        
faster to respond to future events by moving forward, and          
faster to respond to past events by moving backward (Sell &           
Kaschak, 2011; Ulrich et al., 2012; Rinaldi et al., 2016).          
They are faster to make time judgments when future-related         
words are shown in front of an image of a person and past             
words behind (Torralbo et al., 2006). When imagining the         
future, people lean forward, and when thinking about the         
past, they lean back (Miles et al., 2010). And they gesture           
forward when talking about the future, but backwards when         
talking about the past (Casasanto & Jasmin, 2012).  

This use of the sagittal axis has been documented in many           
languages around the world (Núñez & Cooperrider, 2013).        
Most follow the same pattern as English, but not all: In           
Aymara, past events are in front and future events behind, in           
both language and gesture (Núñez & Sweetser, 2006).  

Similarly, Mandarin Chinese uses vertical (up/down)      
terms systematically and productively to talk about time.        
Earlier events are up and later events are down. Native          
Mandarin speakers also think about time vertically, with        
earlier events above later ones (Boroditsky et al., 2010;         
Fuhrman et al., 2011; Miles et al., 2011; Yang & Sun,           
2015).  

Thus, there is often a tight coupling of the spatial          
language used to talk about time and spatial thought used to           
conceptualize time. There is empirical evidence that this        
alignment can originate in linguistic metaphors (Hendricks       
& Boroditsky, 2015). After English-speaking participants      
learned metaphors that placed earlier events either above or         
below later ones (i.e., breakfast is above dinner or breakfast          
is below dinner; Hendricks & Boroditsky, 2015), they then         
exhibited metaphor-consistent responses on an implicit      
measure of their mental space-time associations. Language       
can be a formative force for mental representations. 

Despite overlaps between temporal language and      
temporal thought, there is not a one-to-one correspondence        
between the two. In addition to their sagittal (front-back)         
mental time-line, English speakers also map time to the         
lateral (left-right) axis. For instance, when asked to arrange         
physical depictions of sequences of events, they arrange        
them from left to right (Tversky, Kugelmass & Winter,         
1991; Boroditsky & Gaby, 2010). During natural speech,        
they gesture to the left for earlier events and to the right for             
later ones (Cooperrider & Núñez, 2009; Casasanto &        
Jasmin, 2012). And English speakers are faster to indicate         
that one event occurred earlier than another by responding         
on their left side, and faster for later events when responding           
on their right (Fuhrman & Boroditsky, 2010; Miles et al.,          
2011; Weger & Pratt, 2008; Walker et al., 2014). 

However, these left-right mental timelines are absent from        
language. English speakers can look ‘back’ on the past, but          
never ‘to the left.’ There is a linguistic gap, therefore, where           
a widespread conceptual metaphor has not surfaced as a         
linguistic metaphor. If a cognitive representation were to        
leap to a linguistic representation, it would most likely first          
take hold in a sub-community of English speakers who use          
left-right linguistic metaphors to talk about time. 

Case Study: The US Military 
Anecdotal evidence from members of the authors’ own        

families suggests that one community of English speakers        
has started to use left-right metaphors when talking about         
time: members of the United States military. According to         
anecdote, one might propose to move a meeting to a later           
time by asking to ‘move the meeting to the right.’ If these            
reports were true, then this group would provide an         
opportunity to study a system of conceptual metaphors as it          
takes linguistic hold in a language community. Here, in two          
empirical studies, we sought to document this apparent        
linguistic innovation. In particular, we aimed to understand        
whether left-right linguistic metaphors are more acceptable       
to members of the military than to civilians, as well as the            
linguistic conventions association with these metaphors. 

In Study 1, military and civilian participants rated the         
acceptability of sentences about time. The sentences were        
presented in four main conditions: Standard (The meeting        
was moved two days earlier, from Friday to Wednesday),         
Dynamic-Lateral (The meeting was moved two days to the         
left from Friday to Wednesday), Static-Lateral (The meeting        
on Wednesday is two days to the left of the meeting on            
Friday), and Ungrammatical (From the meeting was two        
earlier days, Friday to Wednesday pushed). We included        
lateral metaphors in two conditions (Dynamic and Static)        
because anecdotal evidence suggested that Dynamic uses       
may be more acceptable than Static.  

Study 2 replicated the findings from Study 1 in a new           
sample of military and civilian participants. In addition, we         
investigated whether military personnel are aware that these        
metaphors are specific to their linguistic subcommunity.       
Together, these studies create a snapshot of the early stages          
of a shift from an exclusively cognitive representation to a          
novel linguistic convention.  

Study 1 
In Study 1, participants rated the acceptability of sentences.         
Features of the sentences allowed us to measure whether,         
when, and to whom lateral (left-right) linguistic metaphors        
are acceptable.  
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Methods 
Participants: Active Duty members of the US military (n =          
23) participated for $10, and civilian undergraduates at UC         
San Diego (n = 31) participated for course credit. The          
military participants included 4 Army, 1 Navy, and 18 Air          
Force. They included 8 Officers and 15 Enlisted members.  
Materials: There were four types of sentences: a) Standard:         
using earlier or later to reschedule; b) Dynamic-Lateral:        
using left and right to reschedule; c) Static-Lateral: using         
left and right, but no rescheduling; d) Ungrammatical.  

An equal number of sentences referred to events that were          
a) earlier and later; b) on the timescale of hours, days, and            
months; and c) required crossing a temporal boundary        
(events take place in different days, weeks, or years; i.e.,          
Friday to Monday) and were within a temporal boundary         
(i.e., Tuesday to Friday). These additional features allowed        
us to examine whether conventionality differed in these        
various contexts.  
Procedure: The study was completed on a computer.        
Participants were instructed to imagine a new colleague        
whose native language was not English and rate the         
acceptability of sentences (n = 48) uttered by this colleague,          
based on how participants would normally talk at work.         
Acceptability ratings used a 7 point Likert scale (1=totally         
unacceptable, 7=totally acceptable). Each sentence was      
presented on its own page. Participants then supplied        
standard demographic information (education, age), and      
military participants reported their service branch (Army,       
Navy, etc.), rank, and years of service. No other measures          
were collected. 
Exclusions and Analyses: We subtracted each person’s       
mean Ungrammatical rating from their mean Standard       
rating. Three participants (1 military, 2 civilians) did not         
rate Standard sentences at least one point higher than         
Ungrammatical ones, and were eliminated. Ratings were       
standardized by participant (i.e., z-scored), and then       
analyzed in a linear mixed-effects model. All hierarchical        
models used the maximal converging random effects       
structure justified by the experimental design (Barr et al,         
2013), with random intercepts and slopes for both        
participants and items. 

Results 
Figure 1 shows military personnel and civilians’       

acceptability ratings for the four sentence types. We first         
verified that participants from both populations rated the        
Standard phrases as most acceptable and the Ungrammatical        
phrases the least acceptable, with the Lateral phrases in         
between. Ratings were analyzed with a mixed-effects model        
with a fixed effect of Sentence Type (Standard >         
Dynamic-Lateral > Static-Lateral > Ungrammatical); we      

used forward difference coding to test for pairwise        
differences between consecutive levels. Ratings did not       
differ by timescale (i.e., hours, days, and months; p = .80),           
so we collapsed timescales for all subsequent analyses.        
Standard items were rated as more acceptable than        
Dynamic-Lateral phrases (b = 0.75 ± 0.14 SEM, t = 5.5, p <             
.001), which were more acceptable than Static-Lateral       
phrases (b = 0.44 ± 0.10 SEM, t = 4.6, p < .001), which in               
turn were more acceptable than Ungrammatical phrases (b =         
0.71 ± 0.13 SEM, t = 5.3, p < .001).  

We next tested our critical prediction: That these patterns         
of acceptability would differ systematically by population.       
We thus added a fixed effect of population (civilian = 1,           
enlisted = 2, officer = 3; centered so the mean was 0).            
Standard phrases were used as a baseline. Once again, every          
type of sentence (Dynamic-Lateral, Static, Ungrammatical)      
was less acceptable than Standard (all bs < -0.75, p < .001).            
As predicted, there was no evidence that military and         
civilian participants differed in their ratings of Standard        
phrases (b = -0.07 ± 0.08 SEM, t = -0.8, p = .4), nor was               
there evidence that the relative unacceptability of       
Ungrammatical phrases differed by population (b = -0.14 ±         
0.12 SEM, t = -1.3, p = .2). Similarly, military and civilian            
participants did not differ in the acceptability of        
Static-Lateral phrases, compared to Standard phrases (b =        
-0.14 ± 0.12 SEM, t = -1.3, p = .2).  

Acceptance of Dynamic-Lateral phrases, however,     
differed across populations (b = 0.32 ± 0.14 SEM, t = 2.3, p             
= .027). To make sense of this effect, we zoomed in on            
Dynamic-Lateral items and used forward-difference coding      
to compare the three populations. Civilians gave the lowest         
rating to the Dynamic-Lateral items (M = 0.0), while         
enlisted military participants rated these items as more        
acceptable (M = 0.17, b = -0.22, p = .07), and military            
officers rated these items as even more acceptable than         
enlisted military personnel (M = 0.51, b = -0.43, p < .001).  

Discussion 
Study 1 confirmed that a specific subset of lateral         

metaphors has become conventionalized among a subculture       
of American English speakers: members of the US Military.         
If this reflected a more general conceptual       
difference—perhaps a willingness among military personnel      
to think about time along a left-to-right timeline—then this         
should have been reflected in increased acceptability for all         
lateral expressions. Instead, military personnel were      
especially accepting of lateral metaphors that used the        
dynamic language of movement, suggesting that this is a         
genuine linguistic convention, subject to the quirks and        
idiosyncrasies of cultural norms.  
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Figure 1. In Study 1, compared to civilians, military         
personnel were more accepting of Dynamic-Lateral phrases       
(e.g., ‘meeting was moved to the left’). There was no          
difference in civilians’ and military members’ acceptance of        
Static-Lateral phrases. Error bars = SEM. 

Study 2 
Study 2 was designed to replicate and further explore this          

linguistic conventionalization. In addition, we sought to       
determine whether military personnel are aware that lateral        
metaphors are specific to the dialect of English spoken in          
the military, and not shared with the larger civilian         
population. Anecdotal evidence suggested that military      
personnel might be unaware that this system of linguistic         
metaphors is not shared widely among English speakers.  

Methods 
Participants: Members of the US military (n = 14)         
participated for $10. Civilian undergraduates (n = 27)        
participated for course credit. Military participants included       
3 Army, 1 Navy, and 10 Air Force; 5 were Officers, 5 were             
Enlisted, and 4 did not identify their rank.  
Materials: Materials were identical to Study 1 with two         
differences. First, based on anecdotal evidence that lateral        
metaphors were commonly used with the verb push, we         
included items with push (e.g., pushed two months). Second,         
to reduce the total number of items, we did not vary the            
timescale, since it had no effect on acceptability in Study 1.  
Procedure: Participants completed two randomly-ordered     
tasks: the Acceptability Rating task from Study 1, and a          
forced choice Sentence Completion task. 

The Acceptability Rating task was based on Study 1, with          
one critical difference: participants completed two      
randomly-ordered blocks of acceptability ratings, one in       
which they were asked to imagine all their colleagues were          

in the military, and another in which they imagined all of           
their colleagues were civilians. Manipulating the utterances’       
context in this way allowed us to test whether military          
participants were sensitive to the community-specificity of       
the lateral-dynamic metaphors.  

In the Sentence Completion task, participants read the        
same sentences as in the Acceptability Rating task, but with          
a blank in place of month (e.g., The meeting was moved two            
months to the right, from November to ___.) Choices         
included all odd-numbered months (January, March, etc.)       
and I don’t know. Because of space limitations, we must          
analyze these data elsewhere.  

To refresh participants between these tasks, they       
completed a brief “spot the differences” game, in which         
they had 45 seconds to count as many small differences as           
possible between two nearly identical images. 
 
Exclusions and Analyses were unchanged from Study 1.        
No participants were excluded. 

Results 
As in Study 1, we first verified that participants from both           
populations rated the Standard phrases as most acceptable        
and the Ungrammatical phrases the least acceptable, with        
the Lateral phrases in between. Once again, Standard items         
were rated as more acceptable than Dynamic-Lateral       
phrases (M = 0.91 vs. M = 0.21; b = 0.73 ± 0.14 SEM, t =                
5.4, p < .001), which were more acceptable than         
Static-Lateral phrases (M = -0.10; b = 0.31 ± 0.07 SEM, t =             
4.3, p < .001), which in turn were more acceptable than           
Ungrammatical phrases (M = -1.03; b = 0.83 ± 0.16 SEM, t            
= 5.3, p < .001).  

We next attempted to replicate our main finding from         
Study 1: That military participants had a selective        
preference for lateral metaphors, compared to civilians.       
First, we replicated the finding that, overall, every type of          
sentence (Dynamic-Lateral, Static-Lateral, Ungrammatical)    
was rated as less acceptable than the Standard phrases (all          
bs < -0.69, ps < .001). Next, we replicated our critical           
finding that the populations differed in their preference for         
Dynamic-Lateral phrases (b = 0.57 ± 0.05 SEM, t = 10.6, p            
< .001). While civilians thought the Dynamic-Lateral       
phrases were far worse than the standard ones (b = -0.96           
± 0.05 SEM, t = -20.2, p < .001), for enlisted military           
personnel the difference was more than half of what it was           
for civilians (b = -0.47 ± 0.08 SEM, t = -5.9, p < .001),             
while for military officers the Dynamic-Lateral phrases       
were actually considered to be significantly better than the         
Standard ones (b = 0.18 ± 0.06 SEM, t = -3.0, p < .01).  

There was no evidence that the populations differed in         
their judgements of Ungrammatical phrases (p > .7).        
However, unlike in Study 1, the populations did differ in          
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their acceptance of Static-Lateral phrases (b = -0.43 ± 0.05         
SEM, t = -8.1, p < .001). As with the Dynamic-Lateral           
phrases, civilians were the most dismissive (M = -0.28),         
followed by enlisted personnel (M = 0.15), and finally         
officers (M = 0.43) — although note that, here, officers did          
not prefer Static-Lateral phrases to the Standard phrases.  

Finally, we investigated whether an utterance’s context —        
whether it was uttered in a military or civilian context          
— had a significant effect on its acceptability (Figure 2).         
This full model replicated the findings reported above.        
There were only two other significant effects. The first was          
an interaction between context and population (b = 0.18         
± 0.06 SEM, t = 2.9, p < .001), driven by an ‘opposite            
context’ effect: military participants thought phrases were       
generally less acceptable in a civilian context, and vice         
versa. This may be due to participant uncertainty about         
norms in unfamiliar environments. The second was a        
three-way interaction between population, context, and      
Static-Lateral (vs. Standard) phrases (b = -0.20 ± 0.09        
SEM, t = 2.3, p = .02). This was driven by the fact that              
officers did not exhibit the ‘opposite context’ effect for         
Static-Lateral phrases — they liked them equally in both        
contexts. Thus, even in a hypothetical civilian context,        
military participants thought the lateral phrases were       
significantly more acceptable than actual civilians did.  

 

 
Figure 2. In Study 2, military personnel were again more          
accepting of lateral phrases, this time for both static and          
dynamic versions. This pattern was repeated both when the         
phrases were uttered in a civilian context (left panel) or a           
military context (right panel). In other words, military        
participants thought that rescheduling a meeting ‘to the        
right’ is acceptable among civilians. Error bars = SEM. 

Discussion  
Conventionalized linguistic structures and cultural     

patterns of thought are often consistent (e.g., Boroditsky et         
al., 2010; Fuhrman et al., 2011; Winter, Marghetis, and         
Matlock, 2015), and prior work has provided evidence that         
learning new metaphors for talking about time can create         
new mental representations (Hendricks & Boroditsky,      
2015). However, there is little direct evidence of the         
purportedly more pervasive, reverse relationship: cultural      

patterns of thought creating new conventionalized linguistic       
structures. In two studies, we provided evidence that one         
subset of American English speakers—members of the US        
military—have adopted a conventionalized system of      
metaphors for expressing mental representations that are       
pervasive in the minds of English speakers in general, but          
otherwise absent from language. Specifically, we found that        
members of the US military, especially Officers, consider        
sentences containing left-right metaphors (and only these       
types of sentences) as more acceptable than civilians do.  

We also explored the nuances of the left-right metaphors         
based on military members’ acceptability ratings for       
sentences with different features. In general, military       
personnel judged Dynamic-Lateral sentences — which     
express an event moving from one time to another — to be           
more acceptable than similar Static-Lateral sentences that       
express the same relationship without movement. This       
nuance in military members’ acceptance of left-right       
metaphors is evidence that these new left-right linguistic        
conventions do not merely reflect a broad association of         
time with the lateral axis, but instead reflect specific         
linguistic conventions. 

By showing that at least one subculture of American         
English speakers has conventionalized left-right linguistic      
metaphors for time, we demonstrate that the relationship        
between conventionalized structures in language and      
patterns in thought is bidirectional: not only can language         
shape mental representations, but our mental representations       
can also make their way into conventionalized language. 

Why have military members adopted lateral metaphors       
that are absent from civilians’ language? One hint may lie in           
the artifacts they use. Duty Rosters are documents that keep          
track of the work assignments for each each member of a           
military unit. Duty Rosters are standardized and governed        
by instruction manuals (Army Regulation [AR] 220-45).       
Each row represents an individual. Each column represents        
a successive date, ordered from left to right. Each cell thus           
indicates the task that was assigned to that individual (row)          
on that day (column). Unlike a standard American calendar,         
in which each row only has 7 days across, Duty Rosters           
arrange days in a continuous line extending rightward,        
potentially endlessly. One duty roster, for instance, had        
hundreds of columns, each representing a successive day. 

The current work cannot distinguish between two       
explanations for how this linguistic innovation has spread.        
On the one hand, new linguistic conventions could have         
emerged spontaneously through the interaction with      
frequently consulted artifacts like Duty Rosters in a        
relatively linguistically encapsulated community. On a      
complementary account, these conventions may be the       
product of top-down, institutional decrees, where linguistic       
decision-makers within a community—affected no doubt by       
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the same convergence of conceptualization and material       
artifacts—themselves influenced linguistic habits through     
prescriptions for ways to talk about time. Future work will          
continue to document the history and use of these left-right          
linguistic conventions to distinguish between these two       
accounts. Similarly important to explore are the cognitive        
consequences of adopting lateral metaphors for time. Can        
adopting lateral linguistic metaphors facilitate reasoning      
about temporal change? Does it reduce miscommunication       
(e.g., allowing speakers to avoid ambiguous descriptions       
like Wednesday’s meeting was moved forward two days)?        
Or might it increase other kinds of miscommunication, for         
example when English speakers communicate with Hebrew       
and Arabic speakers, whose mental timelines run right to         
left, counter to English speakers’ (Tversky et al., 1991)? In          
sum, this work reveals a potentially fertile new way to          
study the give and take between individual conceptual        
metaphors and community-wide, conventionalized linguistic     
structure.  
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Abstract 

Dialog game tools are text chat applications which aim to 
structure and promote students' collaborative learning by 
having them select a label and sentence-opener for each 
message they type to their learning partner. In this 
experiment, we compared students’ learning from discussions 
via a dialog game tool to their learning via a standard freechat 
application. Students discussed topic questions with a 
learning partner. They then individually completed a multiple 
choice test, for assessing knowledge-gain, and a short-answer 
test, to assess readiness for knowledge-building. Results 
suggest that dialog games applications lead to increased 
readiness for knowledge-building, in the form of integrating 
distinct pieces of learned knowledge, than freechat 
applications. Follow-up analyses suggest that the degree of 
concept overlap between students' dialog messages and topic 
keywords, as measured by a "semantic fingerprint" system, is 
a potentially useful metric for predicting students' 
knowledge-building. Implications and potential applications 
of our findings are discussed. 

Keywords: collaborative learning; generative learning; 
knowledge-building; metacognition; dialog games 

Introduction 
 
One technique that aims to enhance collaborative learning 
activities among students, and to promote their 
communicative interaction skills, is to employ the dialog 
games approach. Dialog-game applications are 
computerized education-tools that structure students’ 
interactive text chats by having them select the function of 
each dialog act they make. For each dialog act they also 
choose a sentence opener “scaffold” from a set of options 
available for the dialog act type. Such applications have 
been demonstrated to facilitate construction of structured 
communication behavioral patterns such as helping, 
information-seeking, probing, and instructing, between 
online learners (e.g., Ravenscroft, Wegerif, & Hartley, 
2007; Wells, 2014).  

Analyses of learners’ dialog patterns in their use of dialog 
games applications suggest several avenues by which they 
potentially may lead to more effective collaborative 
learning. In particular, the structure of communication 
promoted by dialog games implementations may improve 
common understanding of the knowledge perspective of 
one’s dialog partners, more effective and coherent 

argumentation, and more critical thinking (e.g., Carlson, 
2012; Weigand, 2016).  

Along these lines, one possibility is that dialog games 
applications may encourage more metacognition. 
Metacognition in this context refers to thinking about 
knowledge states, including insufficient knowledge, 
whether one’s own or one’s learning partner. It is a core 
factor for self-regulated learning patterns, which involve 
targeting one’s misconceptions and effectively integrating 
newly learned information with prior knowledge (Azevedo 
et al., 2009). In a collaborative learning context, in addition 
to metacognition encouraging self-correction of one’s 
misconceptions, it may elicit explanation and 
re-representation of one’s knowledge to one’s learning 
partners that in turn may support the construction of more 
robust knowledge-representations. 

In other words, several patterns of behavior encouraged 
by dialog games applications may align with those that 
promote generative learning. Generative learning is learning 
which goes beyond mere memorization, involving deeper 
cognitive processing, manipulation, and restructuring of 
information (e.g., Fiorella & Mayer, 2015). The outcome is 
new knowledge that can be applied in novel situations. Self-
explaining and re-representing information in order to teach 
others are examples of learning strategies which can lead to 
generative learning. Experimental evidence supports the 
notion that self-explaining can increase one’s integration of 
learned knowledge and inferring of new knowledge (e.g., 
Ainsworth & Burcham, 2007).   

Tied to the notion of generative learning are the levels of 
learning in Bloom’s taxonomy that go beyond remembering 
and understanding learning-domain information (Bloom, 
1956). In particular, the “apply” and “analyze” levels 
involve transferring learned knowledge in order to solve 
problems and infer new knowledge. Related to this notion, 
in tutor-learner dialogs, tutor behaviors that encourage 
knowledge-building, or inference of new knowledge from 
existing knowledge, rather than shallow knowledge-telling 
behaviors (e.g., when the tutor immediately jumps to correct 
a learner’s misconception, rather than eliciting the learner to 
figure out his or her own misconception) entail more 
generative learning (Roscoe & Chi, 2007). The analysis of 
tutor-learner dialogs by Chi et al. (2001) indicates that 
certain dialog patterns, namely those which are interactive 
in nature, (which means that they contain joint-actions), 
encourage more generative learning, whereas dialogs that 
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are dominated by the tutor lead to more shallow learning. 
Whereas self-explaining is a constructive learning activity, 
i.e. one that encourages knowledge inference, it is not an 
interactive constructive activity. According to Chi et al., 
(2001) behaviors that are at-once both interactive and 
constructive are the core drivers of effective tutor-learner 
interactions. That is, the most effective tutor-learner dialogs 
are ones in which new knowledge is jointly constructed for 
the learner. In particular, their extensive analysis of tutor-
learner dialogs suggests distinct interactive patterns that 
define effective knowledge-construction. An example of 
such a pattern is a tutor providing scaffold prompts (e.g., 
hints and highlights of relevant information) for the learner 
to figure out the solution to a learning-domain question or 
problem. Chi et al. (2001) further crafted categories of 
questions intended to assess whether a learner has acquired 
information laid out in a learning-text (text-explicit 
questions), has effectively integrated information from 
different places in the learning text (text-implicit questions), 
or has successfully constructed and applied a mental model 
for the learning domain, not explicitly described in the 
learning text (model-implicit questions). Ainsworth et al. 
(2007) in their self-explanation learning studies have 
adopted some of these questions, referring to the latter two 
categories as “implicit” and “knowledge-inference” 
questions. However, we would argue that the integration of 
disparate pieces of domain knowledge toward figuring out 
the answer to a question, as opposed to arriving at the 
answer by mere recall, is itself also a form of 
knowledge-inference, even if it does not involve an implicit 
mental model. Thus, we regard successful answering of both 
text-implicit and model-implicit questions as entailing some 
form of knowledge-building. 

Our hypothesis for the study was that the patterns of 
communicative interaction promoted by a dialog-games 
application would elicit more generative learning among 
peer-learners than a free chat application. We developed a 
dialog-games application and a control free chat application 
and designed an experiment to evaluate students’ 
collaborative learning outcomes. This included evaluating 
students’ basic knowledge-gain through their performance 
on multiple-choice items assessing (text-explicit) recall and 
understanding of the learning material. Critically, to test our 
generative learning hypothesis we assessed participants’ 
readiness for knowledge-building, through their 
performance on short-answer items that required them to 
either integrate pieces of existing knowledge (recalled from 
the learning-material) or to infer the answer by applying an 
accurate implicit mental model based on recalled 
learning-material information. We utilized three 
text-implicit questions for the first category of knowledge-
building questions, and three model-implicit questions for 
the second kind. Our study thus extends prior research by 
investigating whether specifically the scaffold functions of 
dialog game applications enhance collaborative learning and 
increase the potential for knowledge-building. Additionally, 
we also explored the possibility of applying a natural-

language processing system to obtain dialog metrics that 
effectively predict better knowledge-building from students, 
in order to investigate the feasibility of integrating such 
features into dialog-games tools. 

Method 

Participants 
Participants included in the analyses were 56 9th grade 
students across three secondary schools in Singapore. 
Signed parental consent was obtained for these students to 
participate at a pre-scheduled school-day time in school 
classrooms or computer labs that had been made available 
for the experiment, with laptops set up at desks in the 
rooms.1 

Materials 
The learning domain was the human circulatory system that 
was adapted from the Chi et al. (2001) peer-tutor dialog 
study. Each of the 13 subsections was designed on the 
computer screen to describe each topic (e.g., “The Blood 
Flow in the Heart”). Diagrams were added to facilitate 
comprehension. Bullet points under the diagrams described 
the main concepts. 

The topic questions that students discussed via text chat 
are shown in Table 1. Topic 1 corresponds to questions in 
the Chi et al. taxonomy which require integration of distinct 
pieces of explicitly learned knowledge. That is, the two sub-
questions for Topic 1 are text-implicit knowledge-building 
questions. Topic 2 question, in addition, requires the correct 
mental model of circulation (as a double-loop) to answer the 
question effectively. Thus, it is a model-implicit knowledge-
building question. Topic 3 provided students a general 
discussion about the learning-domain concepts. 

There were pretest and posttest multiple choice questions 
to gauge students’ prior knowledge, and their recall and 
understanding of the learning material. Also for the posttest, 
students received six knowledge-building questions. They 
are shown in Table 2. The first 3 are text-implicit questions, 
and the latter 3 are model-implicit questions, as developed 
and utilized by Chi et al. (2001) and Ainsworth (2007). 

There were two conditions of the dialog games text chat 
tool employed for this experiment. For the Scaffold 
condition, the application included dialog act labels for 

                                                             
1 Three of the 62 students who initially participated were 

excluded from the analyses due to a technical error (one leading to 
a posttest log not being created, and the other to one of the topics 
between a pair not being discussed). There was a procedure error 
for two additional participants (i.e. they had kept their learning-
material window open and used it for the posttest). Lastly, one 
student withdrew participation assent during the posttest.   In 
addition, of the remaining 56, due to an ID entry error one 
participant lacked a pretest log, and therefore was excluded from 
the multiple-choice question analysis, and for two participants we 
could not link their short-answer log IDs to their dialog screen IDs; 
they were excluded from the dialog metric analyses.  
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students to select, and corresponding sentence openers. 
These message types were based on speech-act theory and 
were adopted from those used in other dialog game 
implementations (Weigand, 2016). Students were also 
provided with a sheet that defined the different dialog acts 
to guide them (see Table 3). Table 3 also shows examples of 
sentence-openers that students could choose for each dialog 
act. Figure 1 illustrates the design of the dialog game 
window, with labels numbered indicating the steps for 
entering and sending a dialog message, as follows: (1) The 
topic question that defines the parameters of a given dialog 
is at the top of the screen. (2) Users may click on a bubble 
next to a dialog message to make a reply to the specific 
message (which can also be used to reply to earlier 
messages in the chat history). Reply messages are indented 
relative to the original message. If no reply bubble is 
clicked, the entered text message will appear below all the 
text messages in the chat window, with no indentation. (3) 
Users select one of the six communicative act labels, and 
then select a linked sentence opener from a dropdown menu. 
The selected sentence opener appears at (4). (5) Users type 
in the rest of their message into the text box. Note that only 
one user may type into his or her text entry box message at a 
time. If it is the other user’s turn, the shadow text in the box 
says “Please wait your turn.” If it is the given user’s turn, it 
says “Enter your text.” In addition, if a user has failed to 
first select a dialog act label and sentence opener, on 
clicking the text entry box a reminder message will appear, 
and the user is unable to type into the box until making 
these selections. (6) When a user has completed a message, 
he or she clicks the “Send” button. 

The Freechat application was of similar design and 
appearance as the Scaffold application, and included the 
turn-by-turn use features, but did not feature the dialog act 
label buttons and sentence-opener display. Thus, users took 
turns simply entering messages, without the scaffold steps.  

 

 
 

Figure 1: Dialog Game Screen.   

Table 1: Topic discussion questions 
 

Topic No. Discussion Question(s) 

1 a) Why do we have valves in veins, but not in arteries 
and capillaries? 

b) Why don’t we have valves in pulmonary veins? 
2 Why do we sometimes refer to the heart as a “double 

pump”? 
3 What do you think are the most interesting aspects of 

the structure and function of the human circulatory 
system? Please discuss. 

 

Table 2: Posttest questions to assess Knowledge-Building 
 

Item 
No. 

Short-Answer Question  

1 Why is there an artery that carries deoxygenated blood? 

2 Why do vessels get increasingly smaller as they get close to 
the body cells, and increasingly larger as they get nearer to the 
heart? 

3 In which kind of blood vessels (arteries, veins, or capillaries) 
is the blood pressure the lowest? Why? 

4 Why is your right ventricle less muscular than your left 
ventricle? 

5 The artery that carries blood from the right side of the heart to 
the lungs (the pulmonary artery) carries about the same 
amount of blood as the artery that carries blood from the left 
side of the heart to the rest of the body (aorta). Why do they 
carry the same amount of blood? 

6 What would happen if the valves between the atria and the 
ventricles got stuck open and wouldn’t close? 

 

Table 3: Descriptions of communicative act labels, with 
example sentence-opener choices (Scaffold condition) 

 
Dialog Act Description Example Sentence Opener 

Choices 
Information To provide or 

describe relevant 
facts or knowledge. 

Let me explain… 
Some facts are… 

My understanding is that… 
Propose To bring up a new 

idea to consider. 
I suggest that… 

Let us focus on… 
I think it makes sense to… 

Challenge To argue against, or 
provide evidence 
against a dialog 

statement. 

I disagree because… 
A counter-argument is… 
An alternative view is… 

Question To ask your dialog 
partner about 

something you don’t 
know. 

Why is it… 
Can you explain… 

What do you think about… 

Agreement To agree with a 
statement made by 
your dialog partner. 

I agree, … 
Good point, … 

Support To argue for, or 
provide evidence for 
a dialog statement. 

I think this view is supported 
by, … 

To give an example, … 
 

Procedure 
Students were randomly assigned to the Scaffold condition, 
involving the text chat application that required them to 
select dialog act labels and sentence openers, or to the 
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Freechat condition. There were 28 students for each 
condition. Within each condition, the students were again 
randomly assigned to dialog-discussion pairs. Students in 
each condition  were taken to separate rooms for the study 
(Scaffold or Freechat). To minimize verbal and indirect 
interaction, no student sat next to any other student. Each of 
two experimenters was also randomly assigned to conduct 
the session for each condition.  
 
In each study session room, pre-arranged laptops were 
placed on the desks. The experimenter overviewed the 
session, which consisted of the following tasks:  

 
1) Students were given up to 7 minutes to individually 

complete the multiple-choice pretest (could click 
“submit” if they finished early). (The timer for all tasks 
was viewable at the top of the application window). 

2) Following the pretest, students were taken to the 
learning material screen where they had 15 minutes to 
read and study the learning material.  

3) Then the experimenter went over how to use the 
system. For the Scaffold condition, the experimenter 
went over the different communicative act labels, and 
the steps for entering in a message including a sentence 
opener. Students also received a dialog act description 
sheet (Table 3).  

4) The students were given a five-minute demo dialog 
session to help them get accustomed to the application. 

5) Next, the students (with their randomly assigned 
learning partner) discussed the dialog questions for the 
3 topics. For both conditions, students took turns 
entering in a dialog message. They could also open a 
pop-up window that contained the learning-material, 
which they could refer to for the discussions. For each 
topic, students had a 10 minute dialog discussion. 

6) Following the end of their dialogs discussion, the 
students completed the post-test individually. These 
consisted of the same multiple-choice questions as in 
the pre-test (6 minutes). In addition, they had to answer 
the short-answer questions (as in Table 2) to assess 
knowledge-building, for which they were given 25 
minutes. For each portion of the posttest, students could 
click a “submit” button if they finished early. 
 

Measures 
Knowledge-gain. To assess students’ knowledge gain from 
reading the learning material and engaging in the dialog 
discussions, their scores on the posttest multiple choice (out 
of 10 points) were compared to their pretest scores. 
 
Knowledge-building. A scoring guide was developed that 
allowed for 2 points maximum on each of the three 
text-implicit questions, and 3 points maximum on each of 
the three model-implicit questions. Basically, a point was 
awarded for each piece of information relevant for inferring 
the answer to the question, and for each correct inference. 

For example, for Question 4, one point would be awarded 
for an accurate description of the function of the left 
ventricle, one for the right ventricle, and one point for the 
inference that the right ventricle doesn’t need to pump blood 
with as great force as the left, as the blood travels less 
distance. Two raters, familiar with the scoring guide and the 
learning material and related concepts, scored participants’ 
answers to these questions. They were kept naïve to the 
experimental condition for all the short-answer logs. The 
scores were averaged across the two raters. The intraclass 
correlation for absolute agreement on the items was 
computed as ICC (1, 128) = 0.87 for the text-implicit items 
and ICC (1, 128) = 0.96 for the model-implicit items. 
 
Topic adherence. We conducted exploratory follow up 
analyses that utilized the “semantic fingerprint” system 
developed by the Cortical.io Company (with the API 
available on their website). The goal was to assess the 
feasibility of utilizing natural-language processing methods 
to predict students’ capacity for knowledge-building 
(short-answer performance) from their dialog messages. 
Such functions, if predictive, could be useful to incorporate 
into dialog game applications, for teachers and students to 
track (in an automated fashion) learning outcomes implicitly 
from dialogs. The Cortical.io system represents the meaning 
of words in terms of their distributional overlap in a large 
linguistic corpus (i.e., Wikipedia). Its theoretical basis is the 
notion of distributional semantics, or “word spaces” (e.g., 
Sahlgren, 2006). The more frequently that words co-occur 
in near proximity in the corpus, the higher is their computed 
“semantic fingerprint overlap.” The metric can also be 
extended by the system to compute the degree of semantic 
fingerprint overlap among text segments and documents, 
rather than of single words. For implementation details, 
refer to De Sousa Webber (2015). 

Dialog file inputs were first corrected for spelling errors 
and abbreviations. What we refer to as “topic adherence” is, 
for each topic dialog and participant, the semantic 
fingerprint overlap between the participant’s dialog 
messages (entered into the system as a single “document”) 
and pre-selected keywords intended to represent important 
concepts related to the topic question. Refer to Table 1 for 
the Topic questions. For Topic 1, the keywords were: 
“valves,” “veins,” “arteries,” “capillaries,” “pulmonary,” 
and “pressure.” For Topic 2, they were:  “heart,” “lungs,” 
“oxygen,” “blood,” and “pump.”  For Topic 3, they were 
“valves,” “veins,” “arteries,” “heart,” “lungs,” “oxygen,” 
“blood,” and “circulatory.” The additional dialog metrics of 
mean number of words-per-turn, and total number of turns, 
were used. 

Findings and Discussion 

Knowledge-gain scores 
Figure 2, on the two pairs of bars on the left, shows the 
mean scores across the Scaffold and Freechat conditions on 
the pre-test and post-test multiple choice for assessing 
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students’ level of recall and understanding of the domain 
material. It also displays the proportion-scores, so that tests 
with different scales can be displayed on the same chart. 
Participants did not differ significantly on their pretest 
scores, t (53) < 1. Across both conditions, participants 
showed improvement on their post-test multiple-choice 
scores relative to their pre-test scores, t (55) = 5.22, p < 
.001, with an effect size of d = 0.76. The knowledge-gain 
(post- minus pre- test score difference) in the Scaffold 
condition (M = 1.07) did not significantly differ from the 
Freechat knowledge-gain (M = 1.14), t (53) < 1. The two 
conditions also did not differ significantly on the mean post-
test multiple-choice scores, t (53) < 1. 

Knowledge-building scores 
To assess our hypothesis of increased knowledge-building 
for the Scaffold condition, we first conducted a MANOVA 
on the text-implicit and model-implicit scores. There was an 
overall effect of condition, F (2, 53) = 3.19, p < .05.  Figure 
2, on the two pairs of bars on the right, shows the mean 
proportion-scores across the two sets of knowledge-building 
questions (text-implicit and model-implicit). The follow-up 
tests indicated no effect of condition on the model-implicit 
questions, t (54) < 1. However, for the text-implicit 
questions, the mean score was higher in the Scaffold than 
the Freechat condition, t (54) = 2.39, p = .02, with an effect 
size of d = 0.64. 

 

 
 

Figure 2: Mean scores (+/- SE) in the Scaffold and Freechat 
for the multiple-choice pretest and posttest, and the 

knowledge-building tests (text-implicit and model-implicit). 
 

Dialog metrics for knowledge-building 
We conducted follow-up multiple-regression analyses to 
explore whether the topic adherence scores obtained by the 
semantic fingerprint system, along with the metrics of 
words-per-turn and number of turns, could be of use for 
predicting students’ readiness for knowledge-building (i.e., 
their short-answer scores). Scores were averaged for each 
participant across the three dialog topics. Tables 4 and 5 

show the regressions separately on the Scaffold and the 
Freechat cases, respectively. For the Scaffold condition, the 
overall regression trends toward statistical significance, and 
the coefficient for topic-adherence reaches statistical 
significance. Total-turns trends in the direction of predicting 
increased knowledge-building scores. For the Freechat 
condition, the overall regression also trends toward 
statistical significance, but with a non-significant coefficient 
for topic adherence, and with the total-turns coefficient 
trending in the direction of predicting reduced knowledge-
building. Overall, across both regressions words-per-turn 
appears to be a relatively weak predictor. 

 
Table 4: Multiple regression for predicting knowledge-

building (Scaffold condition) 
 

Predictor B SE B β t p 

Topic adherence 19.53 7.64 0.55 2.56 0.02* 

Words-per-turn 0.06 0.07 0.24 0.97 0.34 

Total turns 0.42 0.21 0.52 1.96 0.06 

R2 = 0.27, F (3, 22) = 2.72, p = 0.07 
 
 
Table 5: Multiple regression for predicting knowledge-

building (Freechat condition) 
 

Predictor B SE B β t p 

Topic adherence 4.62 6.09 0.16 0.76 0.46 

Words-per-turn -0.01 0.04 -0.08 -0.34 0.74 

Total turns -0.13 0.08 -0.41 -1.62 0.12 

R2 = 0.23, F (3, 24) = 2.32, p = .10 
 

Discussion 
Our hypothesis was partially supported. Namely, students in 
dialog-games interactions to discuss topic questions in the 
learning domain exhibited a higher readiness for 
knowledge-building, in the form of making text-implicit 
inferences, than students in the freechat discussions. There 
was no significant improvement on model-implicit 
questions. The increased knowledge-building readiness was 
also over and above any knowledge-gain, which did not 
significantly differ between conditions. 

In addition, the multiple-regression results suggest that 
natural-language processing methods may hold some 
promise in producing dialog metrics with predictive utility 
for knowledge-building. The predictive value (in terms of 
the standardized Beta coefficient) of our topic-adherence 
metric was particularly more prominent for the Scaffold 
condition than for Freechat condition. Also of interest, 
though more caution is warranted for interpretation of non-
statistically significant trends, is that the total-number of 
dialog turns went in the direction of predicting more 
knowledge-building for Scaffold condition, and less 
knowledge-building for Freechat condition. These trends 
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may be indicative of qualitative differences in the nature of 
dialogs with versus those without scaffolds, with a tendency 
for scaffolds to raise the potential learning value of each 
dialog turn, and to increase the potential knowledge-
building when dialog  partners jointly discuss core concepts 
in the learning domain. One possibility is that the dialog 
game scaffold functions in effect promote more self-
explanation in the process of developing explanations and 
arguments to one’s dialog partner. An extensive study of 
collaborative learning dialogs by Asterhan & Schwarz 
(2009), on the other hand, suggests that the process of 
argumentation itself may be essential for driving conceptual 
change from the joint construction of explanations. In the 
current context, if the dialog game scaffold functions 
encouraged more structured argumentation, this would open 
the door for dialogs that are more focused on the main topic 
concepts to generate improved conceptual understanding of 
the learning domain.   

The conceptual foundation for applying the framework of 
dialog-games to learning is grounded in the notion of 
learning as a dialectical, social, and interactive process (cf. 
Mercer & Littleton, 2007). Structuring a learning-discussion 
as dialog-game is therefore seen as a means to encourage 
effective argumentation and critical thinking (e.g., 
McAlister, Ravenscroft, & Scanlon, 2004). In terms of 
Bloom’s taxonomy, the potential, more immediate benefits 
of dialog-games can be viewed as focused on the application 
and analysis levels of learning. However, effective learning 
at these levels requires first a solid groundwork of basic 
understanding of concepts in a learning domain, and in turn 
takes time. Reaching even higher levels of learning, and 
unlocking creativity, is an ever increasing long-term process 
(cf. Bloom, 1956). Thus, dialog games may be beneficial for 
developing students’ creativity, but this would need to be 
evaluated by an extended use of such applications for 
learning, e.g. over weeks or months. 

Along these lines, one limitation of the current study is 
that it was a “single-shot” learning and evaluation session. 
For generative learning more time for absorbing, 
processing, and transforming information may be an 
essential element (Fiorella & Mayer, 2015). Thus, even on 
the text-implicit questions, for which there was a 
medium-sized effect for the difference between conditions, 
the mean proportion of total points obtained was for both 
conditions only about half of the total possible. In addition 
to being constrained by time for the current study, another 
note is that dialog-games are often applied for conversations 
among small-groups (Ravenscroft, 2007). It is possible that 
learning-dialogs for groups of 3 or 4 may allow for more 
argumentation and perspective-taking opportunities than 
two-way dialogs. Future research directions are indicated 
for “scaling” up dialog-games applications for 
knowledge-building, both in terms of time (over a long-term 
learning period) and in terms of group-size (e.g., from 
learning-pairs to learning-groups). Such extensions may 
lead to larger-scale knowledge-building effects, and increase 

the predictive value of dialog metrics for 
knowledge-building.  
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Abstract

Past mechanistic accounts of children’s word learning
claim that a simple type of cross-situational learning is
powerful enough to match observed rates of learning,
even in quite ambiguous situations. However, a limita-
tion in some of these analyses is their reliance on an un-
realistic assumption that the learner only hears a word in
situations containing the intended referent. This study
analyzed a more general type of cross-situational learn-
ing based on the relative frequency of word-object pairs,
and found it to be slower than the simple mechanism
analyzed in prior work. We then analytically explored
whether relative-frequency learning can be improved by
incorporating the mutual exclusivity (ME) principle–
an assumption that words map to objects 1-to-1. Our
analyses show that with a certain type of correlation in
word-to-word relationship, ME makes relative frequency
learning as efficient as fast-mapping, which can learn a
word in one exposure.

Keywords: Word learning; Cross-situational learning
models; Mutual exclusivity; Language acquisition

Introduction
To a new learner of a language with a completely
unknown word-referent mapping system, determining
which words refer to which referents in any given scene
may seem impossible on the face of it, since a word could
refer not only to an object (e.g., ‘apple’), but to a class
of objects (e.g., ‘fruit’), a property (‘red’), or any one of
endless possible combinations or configurations of fea-
tures in the scene–an unconstrained problem of logical
induction (Quine, 1960). In contrast to this theoretical
observation about referential uncertainty, children are
thought of as efficient learners, and in fact most human
children do learn to understand and use an impressive
number of words within the first years of life, achiev-
ing a vocabulary of roughly 60,000 by 18 years of age
(Bloom, 2000). Developmental researchers have theo-
rized that children use a variety of lexical constraints
to limit the number of possible mappings they consider,
and a number of empirical studies support these claims
(Clark, 1987; Markman, 1990, 1992; Golinkoff, Hirsh-
Pasek, Bailey, & Wegner, 1992). One lexical constraint,
used here as in past theoretical accounts–and supported
by empirical developmental data, is that learners are bi-
ased to map words to entire objects, rather than to a
feature of an object, or a group/configuration of objects
(Markman, 1990).

Beyond lexical constraints that reduce the number of
hypothesis meanings considered for a given word in a
given situation, another possible remedy for the contra-
diction between the difficulty of the unconstrained in-
ductive account of word learning and the ease of the
observed process is that learners also reduce uncer-
tainty in the word-object map by statistical inference
over time, based on observing word-object pairs across
multiple situations. Cross-situational learning (Pinker,
1984; Akhtar & Montague, 1999; Siskind, 1996) is a
type of learning based on this idea, which has been an-
alyzed both empirically and theoretically over decades
(Yu, 2008; Blythe, Smith, & Smith, 2010). Blythe et al.
(2010) formally quantified the effect of a type of cross-
situational learning in terms of the rate of vocabulary
growth. More recent studies (Blythe, Smith, & Smith,
2016; Vogt, 2012) further showed that this type of cross-
situational learning can be considerably slowed down for
certain types of word co-occurrence distributions, includ-
ing power-law distributions in which most words are seen
relatively rarely, which describe word frequency distribu-
tion in natural languages (Zipf, 1949).

These theoretical analyses are still quite limited in
their generality. The class of cross-situational learning
analyzed in these past studies is called eliminative learn-
ing. In this scheme, when a learner is exposed to a set
of referents, a correct word is spoken–never is a word
spoken when its intended referent is not present. In this
case, the learner can safely “eliminate” the possibility
of word A being associated to the object B, if he or
she experiences one episode that the word A is spoken
without the object B. As this special assumption does
not generally hold in real-world learning, the estimates
on the speed of cross-situational learning in past stud-
ies give only an optimistic upper bound for its learning
efficiency.

In this study, we consider a more general type of cross-
situational learning, called relative frequency learning,
of which eliminative learning is a special case. In the
relative frequency learning scheme, it is assumed that
a language system encodes the word-object pair with
frequency higher than the other candidate pairs as the
correct one, and the learner infers such relatively more
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frequent word-object pairs from the sample. Under this
assumption, the eliminative learning scheme is identified
with the special case of seeing the correct word-object
pair with probability 1. In general, however, the elim-
inative learning rule cannot apply (or will mislead the
learner if it is forced to apply) in word learning of a
relative-frequency language system.

Therefore, relative frequency learning is generally
slower than the eliminative learning. Thus, the main
problem considered in this study is what plausible fac-
tor might make this type of learning more efficient – and
can it be made efficient enough to be a realistic account
for children’s word learning? Specifically, we analyze the
beneficial effect of learners applying a general principle
of mutual exclusivity (ME), an assumption of a word-
object regularity requiring that no two objects are associ-
ated to one word. Application of a ME principle has long
been theorized to be a constraint that can speed chil-
dren’s word learning (Markman & Wachtel, 1988), and
has found empirical support in both children (Halberda,
2003) and adults (Yurovsky & Yu, 2008; Kachergis, Yu,
& Shiffrin, 2012). We then consider a word-word statis-
tical relationship in which a group of distractor objects
tend to co-occur with a word and thus slow learning.

In the following, we first outline the theoretical frame-
work in which we provide a series of analyses of relative
frequency learning. Second, we evaluate the basic learn-
ing efficiency in this scheme. Then we extend this eval-
uation of learning efficiency to multiple scenarios with
different word-to-word statistical relationships.

Relative-frequency learning

Basic framework

In this study, we consider the following word learning
scenario. The learner is exposed to multiple words and
objects in each situation. In each situation, the learner
does not know which word refers to which object, and
the correct word-object mapping can only be inferred
by integrating evidence across observations of multiple
situations. Let W = {1, . . . , n} be a set of words and
O = {1, . . . ,m} a set of objects (or referents) which
appear in these situations. In this study, we consider
a language structure with one-to-one word-object map-
ping, in which n = m and the word i refers to object
i. This is a quite strong assumption, which may not be
considered entirely realistic as it is. It offers, however, a
first approximation upon which we can base the analysis
and later extend it.

Here, we consider a particular word learning scheme,
called relative frequency learning, in which each object’s
to-be-associated (i.e., ‘correct’) word is spoken in its
presence with greater frequency than any other word.
This is a code in the sense of information theory – the
signal, the correct word-object mapping, is encoded in
the statistical regularity in observation across situations

(channel), and the learner decodes (infers) the correct
word-object map using the underlying regularity: the
correct word-object pair is the most frequent among the
others.

There are theoretical analyses of a special case of this
relative frequency learning, in which the correct word
is spoken only in the presence of the corresponding ob-
ject (i.e., p(object|word) = 1). In this special case, the
learner can use not only the knowledge that the correct
pair is more frequent, but also the quite strong rule that
any object which does not appear with a spoken word
cannot be the intended referent of that word. Thus, this
learning scheme, which eliminates any word-object pair
with probability less than 1 is called eliminative learning
(Blythe et al., 2010). In this study, beyond this special
case, we analyze a more general case of language and
learning coded on the basis of relative frequency.

Formulation

Denote the frequency of object o given word w by f(o |
w). Then, suppose the learner (decoder) declares that
the object o ∈ O is the referent of the word w ∈W with
probability

P (o | w) =
ef(o|w)∑

o∈{O} e
f(o|w)

.

In this scheme, the error, wrong declaration of the
correct object, for word w with the number of ob-
served situations n is proportional to ε(n,w) :=∑

o 6=w e
f(o|w)−f(w|w). The sum of the errors for all words

ε(n,w) :=
∑

w∈W ε(n,w) is an exponential function of
the number of situations. Let us denote the rate of
the exponential function as R, and thus ε(n) = e−Rn.
For a code with rate R encoding less than eRn signals,
limn

∑
w∈W P (o | w) = 1, and thus it is said to be learn-

able (reachable in information-theoretic terminology). If
the rate satisfies ε(n) = e−Rn < e−Cn for any code, the
constant C is said to be the capacity of this channel in
information-theoretic terms (Shannon, 1948). The rate,
or the exponent coefficient of the error function, is a fun-
damental characteristic of the language-learning system
when viewed as a signal transmitting process.

Efficiency

In the relative frequency learning scheme, the object o
with the second largest probability given the word w,
pw|w > po|w > po′|w for o′ 6= o, w, is a key parameter
giving the asymptotic time to learn the word w. With
objects with the largest and second largest probability,
the sample frequency can be written as follows. Let p =
1 − p. Specifically, consider that the sample frequency
fnow = fn(o|w) follows the binomial distribution

P (fnow|n, pow) =

(
n

fnow

)
pfnow
ow · pn−fnow

ow
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with probability pow.
Given this, the error probability in learning is char-

acterized as follows. The probability for the word w to
be associated with the object o is proportional to efnow .
For a sufficiently large n, the difference between the two
random variables asymptotically approaches

lim
n→∞

efnow−fno′w

en∆o,o′|w
= C,

where ∆o,o′|w := pow−po′w
pow p̄ow+po′w p̄o′w

. If there are m ob-

jects with the second largest probability pow > q >
maxo′ 6=w, po′w for the word w, the error probability is

1− P (w|w)→ Cme
−n

pow−p
o′w

powp̄ow+p
o′wp̄

o′w . Thus, the rate of
the relative-frequency code is R = minw ∆w|w where

∆o|w :=
pow −maxo′ 6=o po′w

powpow + maxo′ 6=o po′wmaxo′ 6=o po′w
.

This analysis implies that the word-object pair with the
smallest margin to second largest probability decides the
learning rate in the relative frequency code.

Incorporating mutual exclusivity (ME)

In the above analysis of the relative frequency code,
the lexical constraint of one-to-one word-object mapping
is not taken into consideration in the learning process.
However, if the learner exploits the fact that no two ob-
jects are associated with the same word, namely correct
word-object pairs are mutually exclusive, the learning is
expected to be more efficient than the alternative with-
out the knowledge. Let us call this ME learning. The
difference in the rate of learning assuming ME and gen-
eral relative frequency would be the effect of introducing
a ME constraint in cross-situational learning.

With ME, the learner can exclude object o when learn-
ing word w, if the object o is likely to be associated
with some other word w′ 6= w. Thus, the learning or-
der of the words has considerable impact in learning un-
der ME. As the previous analysis shows that the sec-
ond most probable objects for word w is the key fac-
tor giving the learning rate, let us call them distractors
against the word w, and denote the set of distractors by
D(w) := {w′|maxo 6=w fo|w = fw′|w}.

Best- and worst-case scenarios

Here let us analyze ME learning under a simplification
that the learning time for the words with no distractor
is T0 and that for the words with one more distractors
is T1. The former case with no distractor is said to be
fast mapping, in which a particular word-object pair is
presented alone in a situation, and the learner learns
the pair in a single shot (Carey & Bartlett, 1978). The
latter case is analyzed in the previous section in case of
the relative frequency learning. In this case, if all the
distractors has been eliminated, by the effect of ME, the

corresponding object can be uniquely identified, which
is effectively the same as fast mapping. Thus, the worst-
case learning time approaches that of relative frequency
learning, and the best-case learning time approaches that
of fast mapping, as the number of words is sufficiently
large.

Randomly distributed distractors

Random learning order Consider the case that each
word is learned in a serial order and each has k distrac-
tors. Furthermore suppose that the learning order is
a random permutation, namely any order is uniformly
sampled. Figure 1 shows a schematic co-occurrence ma-
trix of the five such word-object pairs (filled markers)
with k = 2 randomly distributed distractors (open mark-
ers) for each pair. In this case, one expects that one word
is likely to be learned after the k distractors with prob-
ability 1/(k + 1). This is exactly true, if the number of
words n approaches to infinitely large. Therefore, the
sum of expected learning time for all the words is

T = n

(
k

k + 1
T1 +

1

k + 1
T0

)
. (1)

Thus, when the learning order is a random permuta-
tion, the expected learning time is only the factor of

1
k+1 shorter than the original time nT1 at shortest.

Word Objects #D
“Circle” ● △ ☆ 2
“Triangle” ▲ □ ◇ 2
“Square” ○ △ ■ 2
“Star” ○ ★ ◇ 2
“Diamond” △ □ ◆ 2

Figure 1: A schematic word-object co-occurrence matrix
in the case with random learning order and randomly
distributed distractors.

Shared distractors

Best and worst learning order Let us consider the
best and worst case by manipulating which words the
k distractors are associated. In one of the best cases,
every word shares the same set D of k distractors. Fig-
ure 2 shows a schematic co-occurrence matrix of the five
such word-object pairs (filled markers), and each pair
has k = 2 distractors (open markers) and most of words
share the same two distractors. In this case, the short-
est learning time is obtained by a sequence of learned
words in which the k words with the k distractors as
their correct objects first (required about T1 time each)
and the others later (required T0 time each). In the ex-
ample (Figure 2), one of the best order is to learn the
word “Circle” and “Triangle” at the first two rows in the
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matrix, and then learn the other words. In this case, the
total learning time is

T = kT1 + (n− k)T0.

As the number of words n gets larger with a constant k,
the learning time approaches to that of the fast mapping
(T0 per word), which is the lower bound of learning time.

In one of the worst cases, on the other hand, the
longest learning time is obtained by the reversed se-
quence, in which the words with the k distractors as their
correct objects are learned last. In total, the longest
learning time is

T = nT1.

As the number of words n gets larger with a constant
k, learning time approaches that of relative frequency
learning, which is the upper bound of learning time.

Random learning order Thus, this analysis with the
best and worst case scenario suggests that the learning
order of words has a large impact on learning time. How-
ever, the expected learning time with the shared distrac-
tors is, again, exactly 1/(k+ 1), which is no better than
the learning time of the case with k random distractors
(Equation (1)):

T = n

(
k

k + 1
T1 +

1

k + 1
T0

)
.

This analysis suggests that even systematically shared
distractors cannot improve the learning time on average,
if the learning order is uniformly at random.

Word Objects #D
“Circle” ● △ □ 2
“Triangle” ○ ▲ □ 2
“Square” ○ △ ■ 2
“Star” ○ △ ★ 2
“Diamond” ○ △ ◆ 2

Figure 2: A schematic word-object co-occurrence ma-
trix in the case with random learning order and k = 2
distractors shared by all the words systematically.

Correlation in word-to-word relationship

Mixture of two groups of words

As the previous analysis suggests that the relative fre-
quency learning of a one-to-one word-object map in the
cross-situational setting is as slow as independent learn-
ing even by incorporating ME. This result is largely due
to the statistical structure of the word-word relationship
– in the previous analysis, each word has k other ran-
dom words as distractors. In this section, we consider a

specific class of statistical regularity in the word-word re-
lationship. Specifically, suppose there are two groups of
words: in the one group of words, each word has no dis-
tractor, and in the other group of words, each word has
k distractors, whose referring words have no distractor
(Figure 3). Thus, the learner is exposed to a mixture of
two groups of words with and without distractors. Fig-
ure 3 shows a schematic co-occurrence matrix of such
five word-object pairs, in which each of the first group of
words (“Circle” and “Star”) has no distractors, and each
of the other group of words has two distractors whose re-
ferring words are the members of the first group.

Although this statistical regularity in word-to-word
relationships looks similar overall to the previous case
(compare Figure 2 and 3), this new case is substantially
different from the previous cases. The key observation
here is that no distractor words have any distractors
against themselves. Thus, the first group of words (po-
tential distractors to the other group of words) would
be learned via fast mapping, and the other group would
be learned also via fast mapping after their distractors
are learned before their learning. The learning timing of
these two groups are probabilistic, but the first group of
words are expected to be learned earlier on average than
the other group.

Word Objects #D
“Circle” ● 0
“Triangle” ○ ▲ ☆ 2
“Square” ○ ■ ☆ 2
“Star” ★ 0
“Diamond” ○ ☆ ◆ 2

Figure 3: A schematic word-object co-occurrence matrix
in the case with the two groups of words. Each of the
first group of words (“Circle” and “Star”) has no distrac-
tors, and each of the second group of words (“Triangle”,
“Square” and “Diamond”) has k = 2 distractors, whose
referring words (“Circle” and “Star”) has no distractors.

Efficiency analysis

Specifically, suppose that each word in the group with
distractors is learned at the time step t by the probability

pt = (qt + qtp)pt−1,

where p is the probability to learn this word with dis-
tractors at each step, and qt is the probability to learn
it without distractor at step t, or is said the probability
for the learning at step t to be fast mapping. By set-
ting

∑∞
t=1(1 − p)pt−1t = T1 and qt = 0 for any t, this

learning time with k > 0 distractors is identified with
the previous analysis.
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Suppose that there are n0 words without distractors,
and t0 < t samples out of the all t−1 samples are drawn
from this group of words with equal probability. Then,
according to Hidaka (2014), as n0 →∞, the probability
to learn the m words of this group with the t0 samples
asymptotically approaches to the binomial distribution

n0∑
m=0

(
n0

m

)
rmt rt

n0−m

where rt := 1− (1− 1/n0)t0 . If each word in the group
with distractors is associated to k distractive words uni-
formly at random, the fast-mapping probability is

qt =

n0∑
m=0

(
n0

m

)
rmt rt

n0−m
(
m

k

)
/

(
n0

k

)
.

As the hypergeometric distribution1 approaches the bi-
nomial distribution as n0 →∞, we obtain∥∥∥∥∥

(
m

k

)
/

(
n0

k

)
−
(
m

k

)(
k

n0

)k (
1− k

n0

)m−k
∥∥∥∥∥→ 0.

Using these asymptotic distributions for n0 → ∞, we
obtain the binomial distribution

qt →
n0!

k!(n0 − k)!

(
rt
k

n0

)k (
1− rt

k

n0

)n0−k

.

With further transform for a sufficiently large n0, we
obtain the fast-mapping probability to be

qt ≈
(
t0
n0

)k

.

This expression thus implies that the probability qt of
learning via fast mapping with k distractors approaches
1, if the sample of the words without distractors t0 is
comparable to the number of such words n0.

Implications

Suppose the number of words without distractors is n0 =
γn with a certain constant 0 < γ < 1, and the number of
samples t0 = γt. In this case, as t0/n0 = t/n, after the
point when the number of samples is comparable with
the number of words, this learning is sufficiently treated
as the fast mapping. Thus, the learning time of a word
with k distractors asymptotically approaches the speed
of fast-mapping after some constant number of samples
for each word. In other words, in the long run, any
words would be considered learned in the fast-mapping
manner, if any distractor word has no distractors against
itself.

1Gives the probability of k successes in n draws, from a
population of size N with exactly K successes. Thus, similar
to the binomial distribution, but drawing without replace-
ment.

This analytic implication is striking in that cross-
situational learning on the basis of relative frequency,
which itself is as slow as independent learning with a
random word-word relationship, can become as efficient
as fast-mapping, up to a constant time per word. At the
very least, this analysis implies that the nature of the
word-to-word relationships is a critical factor in deter-
mining the efficiency of relative-frequency based cross-
situational learning.

Discussion

In this paper, we studied cross-situational word learn-
ing from a theoretical perspective as the formation of a
one-to-one word-object map. Our formulation of cross-
situational learning is defined as learning on the basis of
the relative frequency of objects for each word, which
is a more realistic alternative model than eliminative
learning, a model analyzed in past studies (Blythe et
al., 2010, 2016) that is anyhow a special case of rela-
tive frequency learning. Thus, our analysis of relative
frequency learning is both more general and more re-
alistic than previously-proposed frameworks. Our anal-
ysis shows that its total learning time depends on the
minimal difference between the most frequent and the
second-most frequent objects among all the words, and
that it is quite slow.

Given that relative frequency learning alone is ineffi-
cient, we next analyzed the case when the learner applies
the lexical constraint that no two referents are associated
to a single word. This principle of mutual exclusivity
(ME) has been hypothesized to be an important means
of reducing ambiguity for children learning language
(Markman & Wachtel, 1988; Markman, 1990, 1992), and
empirical work has found that both children (Golinkoff et
al., 1992; Halberda, 2003; Markman, Wasow, & Hansen,
2003) and adults in cross-situational word learning ex-
periments (Yurovsky & Yu, 2008; Kachergis et al., 2012)
show a preference for learning mappings consistent with
ME. Using ME, a word can be learned via fast mapping
(learned on its first sample), if all the distracting words
appearing with it are already learned. However, the ef-
fect of ME on the average learning time is quite limited
– the same (up to a constant multiplier) as that of in-
dependent relative frequency learning, if the distractors
for each word are distributed uniformly. In summary,
this analysis suggests that the order in which words are
learned is related to the statistical nature of the word-
to-word relationship–i.e., the structure among the co-
occurring distractors.

Therefore, we finally analyzed the case in which a set
of words is composed of two word groups: in one group,
each word has no distractors, and in the other group
each word has k distractors, which are the words with-
out any distractors. Here, it is not just a mixture of
two types of words, but the distracting words have no
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distractors to themselves, and thus they are likely to
be learned earlier than the other group. Thus, in this
schematic word structure, the expected learning order is
correlated to the number of distractors for the group of
words. We hypothesize that, with this statistical reg-
ularity, relative frequency learning can be as efficient
as learning via fast-mapping, which has been observed
in young children (Mervis & Bertrand, 1994; Gershkoff-
Stowe & Hahn, 2007). Our analysis suggests that this
hypothesis is supported: the learning time is comparable
with that of fast mapping learning up to a constant num-
ber of samples per word, when a certain ratio of words
has no distractors. We expect that this analytic result
can be extended to a more general case, such that there
are multiple groups with different numbers of distractors
up to k and a group of words with k distractors that has
no distractors which have k or more distractors against
themselves.

In summary, we have analyzed a more general and
more realistic class of word learning models, relative fre-
quency learning. Although we showed that learning in
this more general framework can be quite slow, we then
examined learning under assumptions of mutual exclu-
sivity and word-to-word correlations that might more
closely approximate learning situations in the natural
language environment. By modifying situations to in-
clude realistic variants of these two factors, we showed
that learning a full-sized vocabulary could be accom-
plished on a realistic timescale. Although this work is
preliminary, the analytical techniques employed here can
be applied to other, yet more realistic cross-situational
learning schemes, incorporating better approximations
of the language environment, of the problem faced by
the learner, and of the biases employed by the learner.
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Abstract 

Psychological momentum (PM) and the hot hand are related 
concepts describing people’s beliefs regarding streaks of 
superior performance. This study examined the susceptibility 
of perceptions of PM to changes in the streakiness of 
otherwise equivalent series. Fifty-five male participants (31 
basketballers and 24 control) completed a ‘hot-cognition’ 
experiment where they rated individual and team momentum 
and assessed the likelihood of a future shot’s success after 
watching sequences of basketball shots. The experimental 
manipulation of the order of shots strongly affected 
participants’ ratings of momentum and, less strongly, the 
probability they assigned to the future shot (i.e. the hot hand 
effect). Basketballers showed stronger reactions to 
manipulations of order than the controls, which could be 
attributed to greater investment in the task. The results 
demonstrate the importance of distinguishing between PM 
and the hot hand and also provide a valuable extension of 
prior work showing such effects into more realistic scenarios. 

Keywords: hot hand; psychological momentum; basketball. 

Introduction 

The ‘hot hand’ is regarded as a crucial determinant of 

success by coaches (Raab, Gula, & Gigerenzer, 2012), fans 

(Markman & Guenther, 2007) and players (Gilovich et al., 

1985) – with players altering the frequency and difficulty of 

their shot attempts after making a series of shots in a row.  

Early research, however, mostly suggested that the hot 

hand in basketball was a ‘fallacy’, finding field and ‘free-

throw’ shooting streaks did not significantly deviate from 

what was expected by chance (Gilovich, Vallone, & 

Tversky, 1985). Conversely, some studies support the hot 

hand in intercollegiate (Mace, Lalli, Shea, & Nevin, 1992) 

and professional basketballers, but some had issues of 

limited sample size and questionable method of analysis. 

Failures to detect a hot hand, however, have also been 

questioned on several fronts. For example, the complexity 

of the basketball environment, wherein the ‘hot’ player may 

start to take lower probability shots due to their increased 

confidence or the opposing team may pay additional 

attention to a ‘hot’ player thereby disguising any effect.  

Attempts to counter such objections include analysis of 

free-throws (e.g., Gilovich et al., 1985) but others (Koehler 

& Conley, 2003) have argued that free throws are not 

conducive for a hot hand due to their relatively high 

probability of success (~75% for professionals) and the time 

lag between free throw attempts for the same individual. In 

fact, given the hot hand is considered a temporary 

phenomenon (Hamberger & Iso-Ahola, 2004), which breaks 

disrupt (Mace et al., 1992), the conditions of ordinary NBA 

games – with time outs, substitutions and a single player 

rarely making 15 shots in a game - may not be conducive to 

its occurrence. This suggests that, if the hot hand exists, its 

existence is overgeneralized – that is, occurs less often than 

it is perceived to have. Indeed, Koehler and Conley’s (2003) 

analysis of the National Basketball Association (NBA) 

Long Distance Shootout Contest - in which a shooter is 

unguarded but the available time and number of shots is 

constrained – failed to detect non-random shooting patterns, 

despite commentator’s accounts to the contrary. 

However, people have demonstrated an ability to 

discriminate between streaky and steady shooters in 

basketball shot sequences where statistical tests could not 

(Hammack, Cooper, Flach & Houpt, 2017). While observers 

have the tendency to be sensitive to runs, this does not 

necessarily indicate cognitive error, but perhaps rational 

mechanisms for processing complex information. That is, 

observers will act as if the hot hand exists and they are 

capable of accurately perceiving and harnessing its effects. 

Iso-Ahola and Mobily (1980) proposed psychological 

momentum (PM) as a construct to account for these 

perceptions and subsequent behaviors: “an added or gained 

psychological power that changes a person’s view of 

him/herself or of others, or others’ views of him/her and 

themselves” (p. 392). In competitive scenarios, PM is a 

zero-sum game: obtained at the expense of a competitor.  

Importantly, PM does not reflect superior performance i.e. 

a hot hand, as suggested by Avugos and Bar-Eli (2015), but 

rather a psychological phenomenon (Iso-Ahola & Dotson, 

2015). The key distinction stems from an individual 

experiencing improved neurophysiological performance, as 

opposed to just changes in psychological components (e.g. 

confidence, internal attributions, perceived superiority over 

opponents). For example, an athlete may experience 

improved belief in their ability due to previous success, but 

not have this result in meaningful changes in skill execution. 

Furthermore, it cannot be assumed that improvements to 

confidence necessarily result in a greater probability of 

subsequent success. As noted above, initial success could 

lead to ‘over-confidence’, causing athletes to make riskier 

decisions than normal (Jones & Harwood, 2008). 

With this in mind it is important to distinguish between 

psychological momentum, the perception of hot hand 

effects, and actual hot hand effects in experimental tasks. 

Examining the thoughts and attitudes of athletes during 

live play is, of course, unfeasible. Accordingly, this study 

focusses on the perception of PM by spectators and the 
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implications of this for their predictions/behaviors – that is, 

their expectations regarding the effects of such 

psychological momentum (e.g., the Hot Hand). Previous 

studies examining people’s perceptions about sequences 

have presented hypothetical scenarios (e.g. Ayton & 

Fischer, 2004), but context is important to making 

inferences about sequences (Matthews, 2013) and actual 

sporting experiences are thought to be more conducive to 

perceptions of PM (Jones & Harwood, 2008). Therefore, the 

intent was to maximize participant engagement, without the 

difficulties arising from assessing participants during live 

play. A 'hot cognition' experiment was, therefore, devised 

wherein both basketballers and non-basketballers watched 

actual footage of basketball games with varied presentation 

of sequences of successful and unsuccessful shots. 

Aims and Hypotheses 

1. Reordering series of basketball plays with the same 

number of successes and failures will alter the psychological 

momentum assigned by observers to a featured team/player. 

2. This will alter the probability assigned to a future 

outcome following the observed sequence (Hot Hand). 

3. Basketballers, with greater investment in the game, will 

react more strongly to manipulations of momentum. 

Method 

Participants 

Participants were 55 male, English speakers with at least a 

basic understanding of basketball rules and terminology, 

aged 18-31 (M = 21.4, SD = 3.2) and recruited from three 

sources: local basketball clubs (n=22), 1
st
 year Psychology 

students (n=7) and the general public (n=26). Participants 

were grouped as basketballers (N = 31) or control (N = 24) 

by their self-reported frequency of involvement in 

basketball. The basketballers were somewhat younger (M = 

20.6, SD = 2.6) than the control group (M = 22.4, SD = 3.7).  

The psychology students participated for course credit. 

Additional participants, recruited via emails to basketball 

clubs, flyers posted on the Adelaide University campus and 

Facebook advertising, received a $10 gift card for their 

participation or chance to win a $50 gift voucher. 

Materials 

Online Survey 

Prepared in SurveyMonkey, the survey asked for 

demographic details and required participants to indicate 

how often (daily, several days a week, weekly, fortnightly, 

monthly and rarely/never) they engaged with various 

aspects of basketball: playing, watching or taking an interest 

in (e.g., reading about). The survey also included measures 

of: representation bias, numerical reasoning, perception of 

sequences, susceptibility to outcome bias, risk-attitudes, 

impulsivity and hot hand beliefs as described below. These 

were included as potential covariates/confounds that might 

differ between the groups and thus need to be controlled for: 

Representativeness Bias. Four items were used to assess 

respondent’s beliefs about sequences in random processes: 

Lambos, Delfabbro and Puglies’ (2007) coin toss scenario, 

where participants judge which of three series of outcomes 

(e.g. HTHTTHTHTHTH) is most likely; and three items 

adapted from Ayton and Fischer (2004) asking whether 

sequences of 16-digit long binary outcomes with equal hits 

and misses but different alternation rates (0.81, 0.31 and 

0.19) were generated by random or human processes.    

Cognitive Reflection. Frederick’s (2005) 3-item CRT was 

used to measure participants’ tendency to override 

predictable, but incorrect intuitive responses. Lower CRT 

scores indicate greater susceptibility to decision-making 

biases (Toplak, West & Stanovich, 2011) and lower 

numeracy (e.g., Welsh, Burns & Delfabbro, 2013). 

Outcome Bias. Two scenarios described a physician’s 

decision to conduct surgery on a suffering patient (based on 

Baron & Hershey, 1988). These were near identical but the 

first described an 8% chance of death but a good outcome 

(successful operation) while the second gave a 2% chance of 

death but bad outcome (patient death). Rating the 1
st
 

decision as better therefore displays outcome bias. 

Risk Attitude. As belief in a hot hand is greater in those 

who regularly gamble and demonstrate a willingness to take 

greater risks in these scenarios (Wilke, Scheibehenne, 

Gaissmaier, McCanney & Barrett, 2014), the 12-item 

gambling Domain-Specific Risk-Attitude Scale (Weber, 

Blais, and Betz, 2002) was used to assess risk attitudes 

towards:  likelihood of gambling; perception of gambling 

risk; and expected benefits of gambling. 

Impulsivity. The BIS-15 (Spinella, 2007) was used to 

assess impulsivity.  

Hot Hand Beliefs. A 2-item, self-report measure 

developed by Gilovich, Vallone and Tversky (1985), which 

assesses a respondent’s endorsement of sequential 

dependence among shots in basketball. 

 

Hot Cognition Task 

The experimental task was composed of four sequences of 

basketball edited from footage of American college 

basketball games. The broadcast scoreboard was blurred out 

in the video footage to control for outcome bias, and the 

audio was removed to prevent crowd and broadcast 

commentator reactions influencing participant’s responses. 

All the plays within a sequence featured the same player. 

Each sequence condition included three made shots (H) 

and three missed shots (M) but a different order of shot 

outcomes (see Table 1). All were followed by the identified 

player being fouled in the process of making another, 

successful shot: resulting in a free throw (AND1 outcome), 

but the outcome of this was not shown. Given the absence 

of audio, the researcher indicated when the identified player 

was fouled – signaling the end of the video.  

Looking at Table 1, one sees that the conditions convey 

varying senses of psychological momentum (PM). The 

Positive Recency (PR) and Negative Recency (NR) 

conditions have low alternation rates of hits versus missed 

shots and, therefore, longer outcome runs. Prior to the 
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AND1 outcome, the PR sequence contains a streak of three 

hits, while the NR sequence contains a streak of three 

misses to convey lower momentum (although weakened by 

the need to have the same successful, fouled basket at the 

end of the sequence). The two other conditions were 

intermediate between these – with greater alternation. 

 

Table 1: Shot sequence outcomes for experimental 

conditions. 

 

Condition Order of Shot sequence 

 1 2 3 4 5 6 7 

Negative Recency H H H M M M H 

Alternation H M H M H M H 

Weak Positive M H M H M H H 

Positive Recency M M M H H H H 

Note: H = hit, M = miss. 

Procedure 

Participants completed the survey detailed above prior to 

taking part in the experiment – either online or in person. 

The experiment was conducted individually for each 

participant to avoid confounds arising in groups (e.g. verbal 

commentary influencing responses). Participants were 

provided information regarding the nature of the experiment 

and screened for (basic) understanding of basketball rules 

and terminology used for various self-report measures.  

The experiment was conducted within-subjects, with 

participants shown the four, Hot Cognition Task sequences 

(in a randomized order). Following each, participants were 

asked 4 questions assessing their beliefs around:  

1) a player’s likelihood of making the free throw resulting 

from the last play (Free Throw); 

2) the player being ‘on a roll’ (Individual Momentum);  

3) how difficult his shots were (Difficulty); and 

4) the team having momentum (Team Momentum).  

Responses were scored on a 5-point Likert scale: 1 (not at 

all) to 5 (extremely). These questions - based on a pilot 

study and previous qualitative research e.g. Koehler & 

Conley (2003) - measure the participant’s perception of 

individual and team momentum, and perceived difficulty 

due to theorized mediation effects. 

Results 

The first two Hypotheses were that perceptions of 

psychological momentum would vary with the patterns of 

hits and misses in the four different conditions. To examine 

this, the mean ratings given by participants to each of the 

four dependent measures under each of the four conditions 

are shown in Figure 1. Looking at this figure, a clear 

distinction can be seen between the pattern of results for the 

measures of psychological momentum (Individual and 

Team Momentum) and the remaining measures – Free 

Throw likelihood and Shot Difficulty. Starting with the last 

it seems that, as would be hoped, participants’ perceptions 

of shot difficulty did not vary across conditions in any 

obvious manner. A One-Way RM ANOVA, however, 

indicated that the differences across conditions were 

significant, F(3,162), p <.001, indicating that Shot Difficulty 

needed to be included as a covariate in the analyses 

described below. Analysis of the Free Throw ratings look 

similar, F(3,162), p <.001, but here Bonferroni post hoc 

tests confirmed that  two positive conditions (Weak Positive 

and Positive Recency) produced significantly higher ratings 

than the conditions with more recent negative outcomes.  
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Figure 1. Mean ratings of dependent measures by condition. 

Note: NR = negative recency; Alt = alternating; WP = weak 

positive recency; and PR = positive recency. 

 

By contrast, the measures of individual and team 

momentum both show clear, linear trends with participants 

giving higher ratings in those conditions with more, recent 

positive outcomes. One-way Repeated Measures ANOVAs 

confirmed these differences as significant F(3, 162) = 63.4 

& 26.7, respectively, p < .001 in both cases and Bonferroni 

post hoc tests indicated that all conditions differed 

significantly from all others.  

Covariates 

Correlational and principal component analyses (excluded 

for reasons of space) were used to determine which 

covariates should be accounted for in comparisons between 

basketballers and controls. This indicated only five 

variables/factors related significantly to the dependent 

measures: 1) Representation bias (coin toss); 2) 

Representation bias (high alternation rate); 3) CRT; 4) 

Outcome bias; and 5) Outcome perceptions (a factor 

composed of beliefs about hot hand and momentum). 

Basketballers vs Non-Basketballers 

Our third hypothesis was that basketballers, due to their 

relative investment in the sport, thus responding to the 

experimental manipulations more strongly. That is, that 

their ratings would tend to be more extreme than non-

basketballers – lower in the conditions with more negative 
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outcomes and/or higher in conditions with more positive 

outcomes prior to the final observation.  

To examine potential differences, the ratings provided by 

the two groups for the dependent measures are shown in 

Figure 2. Looking at the three subplots of Figure 2, one sees 

two distinct patterns. The first is in the Free Throw data 

(subplot a), where, in every condition, the basketballers rate 

the likelihood of the free throw being successful as higher 

than the non-basketballers – reflecting perhaps a better 

understanding of the difference in accuracy between field 

shooting and free throw shooting. 

In subplots b and c, by comparison, we see the pattern 

predicted by Hypothesis 3 – with Basketballers’ responses 

being more extreme than control subjects – i.e., lower when 

there has been a run of missed shots (NR condition) and 

higher following a series of successful shots (PR condition). 
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Figure 2. Comparisons between Basketballer and Control 

subject ratings of dependent measures by condition.  Note: 

NR = negative recency; Alt = alternating; WP = weak 

positive; and PR = positive recency. 

 

Group by Condition Repeated Measures ANCOVAs were 

run for each dependent measure, incorporating the 

covariates noted above. The results of these are shown in 

Table 2. Looking first at the data for Free Throw 

probability, one sees that, despite the pattern in Figure 2, the 

main effect of Group in the ANCOVA just fails to reach 

significance (p = .07, 2-tailed). The effect of condition was 

clearly non-significant (p = .84, 2-tailed) and there was no 

interaction between the two factors.  

For Individual Momentum perceptions, by contrast, a 

significant main effect was found for condition (p < .001, 2-

tailed) but not between groups (p = .67, 2-tailed). However, 

in line with our hypothesis, there was a significant Group × 

Condition interaction (p = .03, 2-tailed). Bonferroni post 

hoc tests indicated that Basketballers perceived more 

individual momentum than the Controls in the PR (d = 0.16) 

and WP (d = 0.30) conditions, and perceived less in the NR 

(d = 0.14) and Alt (d = 0.20) conditions. There was also a 

significant covariate interaction: Condition × Representation 

bias (high alternation), F(3, 46) = 2.60, p < .05. This 

suggests that Individual Momentum is predicted by 

susceptibility to attribute random outcomes to human action. 

For Team Momentum, a significant difference was found 

between groups (p < .05, 2-tailed), but the main effect of 

condition and the Group × Condition interaction just failed 

to reach significance (p = .07 and .13, respectively, 2-

tailed). Given the directionality of our hypotheses, these 

near significant results were examined with post hoc 

Bonferroni tests, which indicated that Basketballers 

perceived less momentum than the control group in the NR 

(d = 0.25) and Alternation conditions (d = 0.35), but no 

more in the PR (d = 0.11) and WP (d = 0.04) conditions, 

which partially support the hypothesis. 

 

Table 2: Summary of ANCOVAs for dependent measures 

 

 Group Condition Interaction 

 F p η
2
 F p η

2
 F p η

2
 

FT 3.48 .07 .07 0.29 .84 .01 0.07 .98 .00 

IM 0.19 .67 .00 6.89 <.001 .13 3.02 .03 .06 

TM 4.12 .05 .08 2.60 .07 .05 2.01 .13 .04 

Note: FT = Free throw, IM = Individual momentum, TM = 

Team momentum. Greenhouse-Geisser corrections applied. 

Degrees of Freedom. Two-tailed p values in all cases. 

Discussion 

The above results provide support for all three Hypotheses. 

There is strong evidence that reordering the same number of 

successful and failed basketball plays to produce streaks of 

hits and misses affected the participants’ perceptions of 

psychological momentum – for both the individual player 

and their team (H1). The evidence that this perception of 

momentum translates into a belief in a hot hand in the 

statistical sense (H2) – that is, altering the probability of a 

future shot is, however, weaker. Finally, there are 

significant differences between the responses of 

basketballers and non-basketballers and clear interaction 

effects between group membership and the strength of our 

psychological momentum manipulation (H3). These results 

are discussed, individually and in greater detail, below. 

  

Perception of Psychological Momentum 

As noted above, Hypothesis 1, that perceptions of 

psychological momentum (PM) could be influenced by 

simple reordering of sets of basketball plays, was supported 

by the results. Specifically, participants rated the 

momentum of both the individual player and their team as 

significantly higher when the plays were ordered so as to 

have longer strings of hits at the end. 

Parker, Paul & Reinholtz (2016) similarly found that 

changes in perceived momentum of a contrived guessing 

game were greater as outcomes alternated. While perhaps 

not surprising, building upon the findings from hypothetical 
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manipulations is a valuable extension of such work – 

demonstrating that the effect holds in a task more closely 

approximating real world situations but which removed a 

number of cues for momentum that would exist in real-

world situations. For example, the broadcast scoreboard in 

the game footage shown to participants was blurred to 

control for potential outcome bias and prevent the score 

being used as a reference point by participants regarding a 

team’s actual momentum. The footage was also played 

without sound so as remove the crowd reaction which might 

provide another cue to a team’s momentum. 

While these were confounds for the present study, their 

omission is also expected to have dampened the extent to 

which participants identified patterns of team momentum. 

That is, in equivalent, real world situations their effects seen 

here might well be stronger. 

 

Expectations Regarding the ‘Hot Hand’ 

Given the clear distinctions drawn by participants between 

the momentum of the individual players and their teams 

across the different order conditions, the weaker effect of 

the experimental manipulation on their predictions of future 

success requires some explanation. While there was some 

evidence that people who had seen longer sequences of 

successful shots tended to rate the probability of the 

following free throw succeeding more highly than those 

who had seen more failures at the end of the task, this 

relationship was weak and non-significant when controlling 

for several covariates and did not follow the clearly linear 

pattern seen in the perceptions of momentum. 

Had no relationship been seen, that could have supported 

the notion that PM is just a performance label used to 

evaluate whether past performances were successful or not 

(Cornelius et al., 1997) with no relevance to the future. The 

partial relationship, however, requires more explanation. 

A possibility is that the experimental task, which had 

participants watch a series of seven field shots but then 

asked them to rate the likelihood of a following free throw 

being successful acted to limit the perceived transferability 

of momentum. That is, not only does the foul and 

subsequent free throw provoke a break in play (thereby 

potentially ending a hot hand effect, as described in 

Hamberger & Iso-Ahola, 2004) but also introduces a change 

in the type of task. Participants may have recognized that a 

free-throw is a markedly different shot than any field goal 

attempt and thus, regarded the player’s shooting form as less 

relevant, reducing the strength of any effect. 

 

Group Differences 

As predicted in our third hypothesis, basketballers’ 

responses differed significantly from those of non-

basketballers. The first observation, while not hypothesized, 

is that basketballers rated the chance of the free throw being 

successful higher in every case than the non-basketballer, 

reflecting their superior understanding of the actual success 

rates for elite level athletes. Other than this, though, their 

pattern of free throw predictions across the four conditions 

is near-identical to that of the non-basketballers. 

Of course, the fact that results supporting Hypothesis 3 

are seen for perceptions of individual and team momentum 

– with basketballers being more strongly affected – but this 

fails to be converted into greater predicted likelihood of free 

throw success could fit with explanation given above 

regarding the overall weakness of these results. That is, if 

basketballers have a stronger belief in the separation 

between field shooting and free throw shooting 

performance, that would tend to flatten out their estimates of 

free throw likelihood more than is seen in the non-

basketballers – thereby counteracting their stronger 

perceptions of momentum.  

As to why basketballers showed these stronger effects: 

perhaps simple interest in the game increases investment 

and thus cues greater attention to the scenario and patterns 

within it; or seeing such patterns calls to mind prior 

experiences of momentum and, within the experimental 

context, basketballers have more than non-basketballers. 

Covariates 

As a brief note: as ANCOVAs were used to eliminate the 

possibility that results might be driven by differences 

between the groups. In these analyses, one covariate (a 

measure of representativeness bias) was highlighted as 

predicting individual momentum ratings: i.e., participants 

who attributed random sequences to human agents were 

more likely to rate the player as being ‘on a roll’. However, 

none of the four measures of representativeness bias 

differed significantly between the groups. 

 

Caveats and Future Directions 

While providing interesting results and at least some support 

for all of our hypotheses, there are a number of limitations 

of the study, which could be addressed in future work. 

The first is the limited sample size. This resulted from 

difficulties in recruiting sufficient basketballers and was 

exacerbated by the decision to limit recruitment to males so 

as to eliminate the potential for gender moderation effects of 

PM (Iso-Ahola & Dotson, 2014). Extending the study to 

include women (while taking into account how perceptions 

of may PM differ between men and women) and widening 

the recruitment (via online participation, for instance) could 

address this and assist in determining whether the less 

convincing results herein result from insufficient power. 

A secondary concern lies in how the experimental 

measures were scored - on a 5-point scale from ‘not at all’ 

to ‘extremely’. The question arising here is whether ‘not at 

all’ was regarded as a neutral (e.g., not on a roll) or negative 

(e.g., on a losing streak) response by participants. This 

should be clarified in future work. 

Participants’ responses to the dependent variables may 

have been influenced by undertaking several cognitive bias 

measures. To avoid this potential confound the hot 

cognition experiment could be conducted prior to 

completing relevant individual differences measures. 

Finally, as noted above, while the use of a free throw as 

the shot to be predicted was done purposely – in order to 
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minimize other contextual factors for the predicted shot (e.g. 

in any differences in distance, angle, and opposition actions) 

– this may have undermined the transference of perceived 

momentum into future outcomes. This could be avoided in a 

number of ways – none, however, simple. For example, an 

exhaustive pre-test assessment of plays could have experts 

rate their equivalency prior to constructing the scenarios. 

Alternatively, it might be possible to stage specific plays 

– either using real players or within a basketball game, for 

example. All of these, however, would require a significant 

amount of pilot work prior to any experimentation. 

 

Conclusions 

While most research into momentum and the hot hand has 

been concerned with directly substantiating or refuting their 

existence, the present study aimed, instead, to explore 

participant’s beliefs and perceptions regarding these - within 

the context of basketball shot sequences. Consistent with 

much of literature regarding PM, the ordering of sequential 

outcomes affected participant perceptions: positive recency 

sequences increased the likelihood that the focal team and 

player had momentum; while negative recency sequences 

were considered by participants as evidence of the player 

and team not being on a roll. These effects were more 

strongly reported by basketballers across conditions in the 

present study, compared to the control group, suggesting 

that domain-specific experience influences the perception of 

these patterns. The results also illustrate that further research 

is warranted to clarify why differences exist between 

participant’s perceptions of momentum and their predictions 

of future success (i.e., hot hand beliefs). 
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Abstract 

Computational psychiatry applies advances from 
computational neuroscience to psychiatric disorders. A core 
aim is to develop tasks and modeling approaches that can 
advance clinical science. Special interest has centered on 
reinforcement learning (RL) tasks and models. However, 
laboratory tasks in general often have psychometric 
weaknesses and RL tasks pose special challenges. These 
challenges must be addressed if computational psychiatry is to 
capitalize on its promise of developing sensitive, replicable 
assays of cognitive function. Few resources identify these 
challenges and discuss strategies to mitigate them. Here, we 
first overview general psychometric challenges associated with 
laboratory tasks, as these may be unfamiliar to cognitive 
scientists. Next, we illustrate how these challenges interact 
with issues specific to RL tasks, in the context of presenting a 
case example of preparing an RL task for computational 
psychiatry. Throughout, we highlight how considering 
measurement issues prior to a clinical science study can inform 
study design. 

Keywords: computational modeling; reinforcement learning; 
measurement; psychometrics; computational psychiatry 

 

A core aim of the emerging field of computational psychiatry 

is to translate tasks and modeling approaches from 

computational neuroscience into sensitive assays that can 

advance clinical treatment, diagnosis, practice, and theory 

(Hitchcock, 2017; Redish & Gordon, 2016). New assays may 

advance clinical science by facilitating early illness detection, 

predicting illness progression, separating patients into 

subgroups, predicting type and extent of treatment indicated, 

and allowing measurement of the effects of emotion 

regulation strategies (Huys, Maia, & Frank, 2016). 

 The effort to develop laboratory tasks into assays has been 
ongoing for years, but the use of computational cognitive 

models that describe the trial-by-trial behavior of subjects 

(Daw, 2011) is newer to clinical science. In theory, 

parameters derived from these models should compactly 

describe individual or group differences by revealing aspects 

of cognitive processing that are obscured in behavioral 

measures (Huys et al., 2016). An especially promising 

domain in this regard is reinforcement learning (RL). RL 

refers to a broad class of trial-and-error learning tasks 

wherein learning is driven mainly by a scalar reinforcement 

signal (Sutton & Barto, 1998). Over the past twenty years, 
computational models of RL have grown in sophistication 

and maturity (O’Doherty, Cockburn, & Pauli, 2017). In 

addition, there has been a string of successful applications of 

RL modeling to clinical problems. These early successes may 

portend widespread use of RL assays in clinical science 

(Maia & Frank, 2011).  

 Yet the history of converting laboratory tasks to clinical 

assays suggests caution is warranted. Laboratory tasks tend 

to have substantial (and often underappreciated) 

psychometric weaknesses (Lilienfeld, 2014). Consider the 

example of the dot probe task, an attention paradigm 

introduced over 30 years ago (Bar-Haim, Lamy, Pergamin, 
Bakermans-Kranenburg, & Van Ijzendoorn, 2007). By 2007, 

35 clinical studies using the task had been conducted. A meta-

analysis that year concluded the task reliably detects attention 

differences between anxious and non-anxious groups (Bar-

Haim et al., 2007). Dozens of studies subsequently tested 

“modification” variants of the task (which aim to retrain 

attention) (Hallion & Ruscio, 2011). Yet recent meta-

analyses suggest modification training produces very small 

effects and that extant modification studies evince 

publication bias (e.g., Heeren, Mogoașe, Phillippbot, & 

McNally, 2015). These disappointing results prompted re-
examination of the evidence for reliable, stable group 

differences per the original dot probe. Recent critiques, which 

have referenced a slew of null findings since 2007, concluded 

that the evidence for such differences is weak (Rodebaugh et 

al., 2016; Van Bockstaele, Verschuere, Tibboel, De Houwer, 

Crombez, & Koster, 2014).  

 What went wrong? It is noteworthy that, although 

researchers have been employing the original dot probe since 

the 1980s, the first examination of its test-retest reliability 

was not published until 2005 (Schmukle, 2005). That study 

and others (e.g., Price et al., 2015) found the dot probe 

exhibits close to 0 test-retest reliability when analyzed using 
standard methods. These results suggest it is not possible to 

extract stable measures of differences in attention using the 

standard versions/analyses of the task (Rodebaugh et al., 

2016; Van Bockstaele et al., 2014). 
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Developing Computational Psychiatry Tasks with 

Strong Psychometric Properties 

The dot probe paradigm provides a cautionary tale about 

pushing too quickly from a lab paradigm to applied research. 

The computational psychiatry community can learn from this 

example. Fortunately, the community appears aware of the 

challenges posed by laboratory tasks. For instance, Paulus, 

Huys, and Maia (2016) proposed a pipeline (Figure 1) for 

turning a task into an assay that can ultimately be used for 

assessment or as a treatment target in randomized control 

trials (RCTs). The authors emphasize establishing 

psychometric properties early in the pipeline—before relying 

on the task as a primary measure in RCTs.  

Yet researchers entering computational psychiatry from the 
cognitive sciences may be unfamiliar with how the 

psychometric challenges of laboratory tasks interact with 

clinical design issues. Thus, this paper offers an overview of 

the relevant issues. Specifically, the rest of paper is part 

theoretical overview and part annotated case example of 

preparing a specific RL task for use in clinical science. We 

begin with a theoretical issue that may be unfamiliar to many 
in cognitive science. 

General Psychometric Challenges Associated with 

Laboratory Tasks. A general—and formidable—challenge 

for extrapolating from laboratory task behavior is that 

subjects naturally vary in the state that they are in (e.g., tired, 

distraught, cognitively taxed) when they arrive at the 

laboratory. A classic solution to this random state variation 

problem—a problem that confounded social and personality 

psychologists for decades (Kenrick & Funder, 1988)—is to 

assess the same subject at many time points and average over 
measurements. This approach can dramatically increase the 

convergent validity of lab tasks with self-report measures, 

presumably because an average over many time points yields 

a more stable, trait-like measure than one-time measurement 

(as the latter is often biased by state variation; Epstein, 1979). 

However, assessing a single subject at many time points can 

be infeasible. First, much time is often needed to complete 

lab tasks, and thus repeating assessments on many occasions 

can substantially raise subject burden. Second, in some cases 

it is unrealistic to ask subjects to complete the task more than 

once. For example, a researcher may wish to examine how 

depressive rumination—repetitive, negative, self-referential 

thinking—alters cognitive processing. This could be done by 

asking depressed subjects to complete a laboratory task while 
under the effects of a rumination induction. Many past studies 

have experimentally induced rumination in this way but, as 

far as we are aware, none has asked subjects to ruminate on 

more than one occasion. Indeed, it seems unreasonable and 

unrealistic to ask depressed subjects to undergo more than 

once a manipulation that—by design—provokes distress.  

The effects of random state variation can be mitigated 

through study design. For example, a researcher investigating 

the effects of rumination on some task might ask subjects to 

perform the task once before and once while under the effects 

of rumination. Such a design should increase the ratio of 

systematic variability (variability due to induced rumination) 
to unsystematic variability (variability due to subjects being 

in different states when they enter the lab) because it delivers 

pre- as well as post-induction measures for each subject. A 

subject is unlikely to dramatically change the state she is in 

from pre- to post-induction (an unusually tired subject at 

baseline will likely remain so while under the effect of 

rumination induction). Thus the within-subject design 

controls for some of the unsystematic variability due to state 

variation. However, note that individual differences in 

susceptibility to the experimental perturbation (e.g., 

propensity to ruminate upon receiving the induction) will be 
affected by subjects’ states. Thus this approach is helpful in 

minimizing noise but does not solve the random state 

variation problem.  

The random state variation problem entails that a subject’s 

parameter estimates in a laboratory measure will be corrupted 

by noise with respect to the subject’s “true” parameter value, 

when the true parameter value is conceived of as a 

psychological variable akin to a trait. This noise will limit the 

predictive power of measures. Thus, when random state 

variation is expected (e.g., when a design only permits 

administering the task once or a few times), it is critical that 

the psychometric properties of the task are strong so that 
other sources of noise are minimized. For a more general 

discussion of how computational modeling may help remedy 

the random state variation problem, see Hitchcock (2017). 

In the rest of this paper, we give a case example of 

preliminary efforts to establish the psychometric properties 

of a multidimensional RL task known as the Dimensions Task 

(Niv et al., 2015; Leong, Radulescu, Daniel, DeWonskin, & 

Niv, 2017; Radulescu et al., 2016). The task itself is not the 

paper’s focus, but we briefly describe it, our approach to 

modeling it, and its promise for clinical science in the next 

Figure 2. The Dimensions Task (Niv et al., 2015), designed 

to investigate the role of attention in reinforcement learning.  

Figure 1. Pipeline for a computational psychiatry assay 

proposed by Paulus et al. (2016). 
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section. The description will make subsequent sections, on 

the task’s measurement properties and their relation to 
modeling issues, easier to follow.  

The Dimensions Task. Trial-and-error learning in the real 

world often requires learning about a small set of stimulus 

features embedded in a milieu of irrelevant stimuli. Imagine 

telling (what you hope is) an amusing story to a friend and 

attempting to learn about the effects of specific actions—

dramatic pauses, rhetorical flourishes, funny faces, etc. 

Learning about the effect of these actions requires attending 

to just a few fleeting features on the face of and in the body 
language of your friend while ignoring many irrelevant 

features—pimples on your friend’s forehead, your computer 

screen flickering behind you, your internal dialogue about 

what to say next, etc. (Niv et al., 2015).  

The Dimensions Task was designed to study such a scenario 

where only some aspects of the task are relevant and most can 

be ignored, as is so often required in the real world. Briefly 

(see Niv et al., 2015 for details), on each trial of the task 

subjects must select one of three possible stimuli. Each 

stimulus is composed of 3 features defined on 3 stimulus 

dimensions (for example, color, shape, and pattern) (Figure 
2). Subjects play a set of games that can vary in length from 

15-30 trials. Within a game, features of only one dimension 

(e.g., color) determine the probability of reward. Within this 

relevant dimension, one target feature (e.g., red) leads to 

reward with 75% chance whereas the other 2 features in the 

dimension (e.g., yellow, green) lead to reward with 25% 

chance. The target feature and relevant dimension change 
every game. The start of a new game is signaled to subjects. 

Computational Model. Previous work (e.g., Niv et al. 2015; 

Radulescu et al., 2016) tested various computational models 

designed to reproduce subjects’ trial-by-trial behavior in the 

task and found that human behavior is well described by a 

feature-level RL (fRL)+decay model. The fRL+decay model 

maintains weights reflecting the values of each of the 9 

features. It linearly sums these weights to calculate the 
estimated value of each (3-feature) stimulus 

                            V(S) = W(f)          f S                    (1) 

For example, the model’s estimate of the value of yellow- 

waves-triangle in the above trial is equal to the sum of the 
weights of yellow, waves, and triangle. Once a reward is 

received (0 or 1 points), the weights of the 3 features of the 

selected stimulus are updated based on the discrepancy 

between the obtained reward, Rt, and the model’s estimate of 

the chosen stimulus’s value, V(SChosen), with update rate 

controlled by a learning rate free parameter, η  

Wnew(f) = Wold(f) + η[Rt – V(Schosen)]     f  Schosen     (2) 

For the other 6 features on a trial—those comprising the 2 

stimuli not selected—the model decays the associated 

weights with a second free parameter, d 

Wnew(f) = (1–d)Wold(f)     f  Schosen                (3) 

The decay parameter reflects the fact that subjects are 

selectively attending to (and learning about) few dimensions 

(Leong, Radulescu et al., 2017). The “forgetting” of the 

weights of unchosen features allows the model to “undo” 

learning about features not chosen on a trial. 
Finally, the model assumes that the subject’s probability of 

choosing each stimulus is proportional to the estimate of the 

value of the stimulus, as defined by a softmax equation with 
a third free parameter, β  

p(choose Si)  eβV(Si)                                              (4) 

The model thus has three free parameters: softmax action 

selection noise β, learning rate η, and decay parameter d. See 
Niv et al. (2015) for more details. 

Stage in the Assay Development Pipeline. With respect to 

Paulus et al.’s (2016) pipeline (Figure 1), most prior studies 

using the Dimensions Task and fRL+decay model fall into 

the Preclinical and Phase1a phases. 

Notably, Radulescu et al. (2016, study 2) also provided a 

test of the task’s promise for measuring group differences. 

Radulescu and colleagues found older adults were less 

accurate (p = .001, g = .94) than younger adults. These 

behavioral results appeared to derive in part from differences 

in the decay parameter (median = .52 v .42 for older vs. 

younger adults, respectively), implying that differences in 
this parameter may reflect meaningful differences in 

selective attention. These results suggest the task has promise 

as a sensitive measure of neuropsychological and clinical 

differences. Per Paulus et al.’s (2016) pipeline, this study 

marks the entrance into Phase 1b: examining clinical validity 

(see Radulescu et al., 2016 for discussion).   

Although the task has promise as a computational 

psychiatry assay, a number of modeling and psychometric 

obstacles must first be overcome. In the following sections, 

we report on efforts to explore the properties of the 

Dimensions Task and fRL+decay model using two previously 
collected datasets. The results have implications for the use 

of the Dimensions Task in computational psychiatry and thus 

are of specific interest to researchers interested in the 

construct of attention learning in computational psychiatry. 

But the more general interest aim of the following sections is 

to use this case study to illustrate some of the issues that arise 

in translating RL tasks to computational psychiatry.  

Methods 

Datasets are from Niv et al. (2015; hereafter D1) and 
Radulescu et al. (2016, study 2; hereafter D2).  

Specifications. In D1 (N = 22), subjects played 500 trials 

(number of trials per game was drawn from a Uniform(15,25) 

distribution, for a total of M=22.27, SD=1.45 games per 

subject). In D2 (N = 54), subjects played ~1400 trials 

(M=46.43, SD=5.41 games; subjects stopped playing after 
exactly 40 min.; all games 30 trials). 

Results 

Parameter Identifiability. A challenge in fitting RL 

parameters to individual subject behavior is that parameters 
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can be coupled and thus not fully identifiable. In the 

fRL+decay model, equations 1–4 show that the role of each 

parameter depends on the settings of the other parameters. 

Specifically, the values of the stimuli in equation 4 (in which 

choice is governed by β) depend—via equation 1—on the 
weights of the chosen and non-chosen stimuli. Those weights 

are in turn respectively governed by the learning rate (η, 

equation 2) and decay rate (d, equation 3).  

Coupling of the parameters modulating value estimation 

and choice is characteristic of many RL algorithms (Daw, 

2011; Gershman, 2016). Coupling comes in two flavors: 

severe and moderate (Daw, 2011). Under severe coupling, 

parameters can trade off; for example, increases in one 

parameter can be perfectly compensated by decreases in 

another. As a result, parameter values may not—even in 

principle—be uniquely identifiable. Severe coupling can be 

tested for by repeatedly run an off-the-shelf optimizer from 
different initial parameter settings and checking whether 

optimization converges on the same estimates every time. If 

parameters are structurally coupled (i.e., there is no unique 

set of estimates), the optimizer will find different estimates 

on different runs, provided initializations allow the optimizer 

to cover sufficient territory in likelihood space. In D1 and D2, 

an optimizer repeatedly converged on the same parameter 

estimates, suggesting identifiability issues are not too severe 

to prevent finding a unique optimum. 

However, there may still be more moderate identifiability 

issues. Intuitively, this is because maximum 
likelihood/maximum a posteriori (ML/MAP) estimates are 

tantamount to finding the highest point on the “hill” that 

defines the parameter surface in likelihood/posterior 

probability space. Yet they do not reveal the shape of the hill 

below: specifically, the shape of equal-likelihood ridges in 

the 3D likelihood space. If these ridges are diagonally shaped, 

they indicate covariance between the parameters. Intuitively, 

if changing a parameter in one direction (e.g., η from 0.08 to 

0.1) can be compensated for by changing another (e.g., β 

from 6.2 to 5.1), with only miniscule changes in the 

likelihood, then one cannot safely draw conclusions from the 
point estimate of either parameter.  

Identifiability and Computational Psychiatry. 
Identifiability poses a special challenge in the computational 

psychiatry domain, wherein the aim is often to derive 

parameters that can be used as predictors or outcome 

measures (Huys et al., 2016). Derived parameters whose 
point estimates have much uncertainty about them due to 

identifiability issues are unlikely to be useful for precision 
applications, such as prediction or diagnostic subtyping. 

Probing Identifiability. A first helpful step for probing 

identifiability is to examine and visualize the Pearson 

correlations between pairs of estimates. Figure 3 plots point 
estimates for pairs of parameters in D1 and D2, with 

regression lines drawn to aid visualization.  

Sets of parameters can fall along an elliptical contour in the 

likelihood space if there are identifiability issues, in which 

case the parameters will correlate. Thus, if parameter pairs 

closely correlate for most subjects in a dataset, this may 

indicate identifiability issues. However, correlations should 

only be a first step in checking for identifiability issues, for a 

couple reasons. First, to the extent that the parameters reflect 

meaningful psychological differences between individuals, 

we should expect they will correlate to some degree, because 

psychological variables often correlate within-subject 
(Lykken, 1968). Thus it can be difficult to determine whether 

correlations reflect modeling noise or true correlations 

between parameters. Second, correlations will not detect non-

linear relationships between parameters or other subtle 

identifiability issues (Gershman, 2016). Still, correlations are 

easily interpretable and a good place to start. 

Figure 3 shows that, in both D1 and D2, {d and β} and {d 

and η} modestly correlate whereas {η and β} strongly 

correlate. In particular, in D2, {η-β} estimates are nearly 

perfectly collinear for many subjects. Note also that, for all 

parameter pairs, the correlations are higher in D2, where there 
were more data, than in D1. In the test-retest reliability 

section below, we will present evidence suggesting that the 

parameter estimates may be more reliable in D2 than D1. Yet 

the higher correlations may also suggest more identifiability 

problems in D2. In fact, both possibilities—better parameter 

estimates and more identifiability problems—may be true. As 

noted, the equations in which the parameters are embedded 

dictate dependencies—and hence identifiability issues—

between the parameters. If the true parameters are correlated, 

then when the model does a better job of recovering their 

values from noisy behavioral data, the observed data will also 

correlate more strongly. Thus, the increased correlations may 
actually be good news from a parameter recovery 

perspective. However, the {η-β} collinearity does mean we 
should not treat these variables as independent.  

Diagnosing Issues with Model Fit. Plots also allow 

visualization of outlying values, which may reflect model fit 
issues for specific subjects. For example, the arrows in the 

second row, second column plot in Figure 3 point to subjects 

Figure 3. Parameter estimates in D1 (blue) and D2 (green). 
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with outlying η values. Outlying values might indicate 

fRL+decay does not well describe specific subjects’ choices 

in some or all of the task. However, the points could also 

reflect important individual differences, so additional checks 

are necessary to make a differential diagnosis.  
We do not delve into model fit issues for individual subjects 

(as such specifics would not generalize beyond the 

samples/data in D1 and D2), but offer some general 

guidelines for probing these issues. First, another useful 

diagnostic is to plot likelihoods for each potentially 

problematic subject. For example, Daw (2011) provides an 

example of a 2D heat map of likelihood values. A more 

quantitative assessment is the variance—covariance structure 

of parameter estimates; these structures can be examined by 

taking the inverse of the Hessian from optimization. On- and 

off- diagonal elements of H–1 respectively give the variance 

and covariance of parameters. Large values indicate poor 
parameter estimates (Daw, 2011). Finally, problematic 

subjects’ behavioral (and physiological, if available) data can 

be checked to see if these data are informative about the 

source of outlying parameter values (e.g., if reaction times 

were recorded, it can be useful to check if a subject responded 

atypically quickly or slowly during a subset or all of the task).  

Ultimately, if outlying parameter values for a subject do not 

appear to be due to individual differences, but rather to issues 

with model-fit, the researcher may wish to treat these 

parameters as missing: Parameter estimates derived from a 

model that poorly describes a subject’s behavior are 
meaningless. However, such decisions should be made—then 

adhered to—before inferential statistics, to avoid the “garden 
of forking paths” (Gelman & Loken, 2013). 

Subject-Specific Model Fit Issues and Computational 

Psychiatry. Our identification of apparent model fit issues 

among subjects illustrates the value of collecting data under 
different tasks specifications prior to attempting to develop a 

computational psychiatry assay. For instance, in the 

Dimensions Task, the presence of multiple individuals with 

apparently poor model fits suggests that some subjects in 

future clinical science designs will likely have missing data 

for model parameters (because, as noted, values from a model 

that poorly describes participant behavior should not be 

used). This is important information in the design phase of a 

clinical science study, as it may influence factors such as 

recruitment target, or collection of other data to aid 
estimation of anticipated missing values. 

Test-retest reliability. As the cautionary tale of the dot probe 

task suggests, it is critical to establish the test-retest reliability 

of potential outcome measures. High test-retest reliability 

scores increase confidence that the measure is tapping a 

stable psychological construct (Hitchcock, Radulescu, Niv, 

& Sims, 2017). Establishing stability of a measurement is a 
prerequisite for computational psychiatry designs that seek to 

use the measure to assess the effects of some experimental 

perturbation or group or individual differences. Nevertheless, 

the basic requirement of establishing test-retest reliability 

goes unmet with striking frequency in laboratory tasks 
(Lilienfeld, 2014). 

Table 1 presents test-retest reliability data for D1 and D2. 

These estimates were derived from splitting the data into 

approximately equal halves (specifically at the first game 

change after half of trials elapsed) and fitting the model to 

each (approximate) half. The test-retest reliabilities for {d 
and η} in D1 were quite low. This is likely because subjects 

only played 500 trials, and ~250—the approximate number 

of trials per half—may be too few trials to reliably estimate 

the parameters. In contrast, the D2 data suggest that ~700 

trials allows for better parameter estimation, as reflected in 

the fact that test-retest scores for {d and η} are much higher. 

 Universal norms for intra-class correlation coefficients 

(ICCs) are arguably not justifiable (Weir, 2005) and at 

present there are no ICC benchmarks for RL tasks. But, in all 

domains, uncertainties around parameters increase as ICCs 

decrease (Weir, 2005). Thus, the above data are relevant to 

clinical science designs because they show how ICCs can 
increase with more data (see also Hitchcock et al., 2017). 

Gathering this information before designing a computational 

psychiatry assay is useful because computational psychiatry 

designs must often balance competing goals. On one hand, 

parameter estimates tend to improve with more trials. On the 

other, it may be infeasible to have subjects complete too long 

a task. For instance, individuals with certain disorders may 

fatigue easily. Experimental manipulations (e.g., rumination 

inductions) may also quickly dissipate. Test-retest reliability 

data can help negotiate the tradeoff between optimizing 

parameter estimates and keeping time on task feasible. 

Conclusions  

Computational psychiatry promises to improve measurement 

and refine theory in clinical science (Hitchcock, 2017). 

Ultimately it may advance understanding of psychiatric 

disorders (Redish & Gordon, 2016). Yet there are significant 

barriers to developing computational psychiatry assays. 

These barriers are diverse; hence this paper was part 

theoretical overview and part case study. The overview part 

of the paper first built motivation by discussing the dot probe 

paradigm, a case in which failure to attend to measurement 

issues in a laboratory task had disastrous results. Dozens of 
studies were conducted and vast resources were expended, 

over decades, before the poor properties of the task measures 

were realized. Next, we reviewed why laboratory tasks are so 

vulnerable to measurement issues: Task performance is often 

skewed by random state variation. That is, behavior collected 

only once or a few times from a single subject is often 

corrupted by situational factors. These review parts of the 

paper highlighted that minimizing noise in laboratory task 

measures is imperative. In the case study part of the paper, 

we overviewed modeling issues in RL tasks that can add 

Table 1. Intraclass correlation coefficients of parameters. 
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noise to parameter estimates, using two datasets for 

illustration. We concluded by presenting test-retest reliability 

data from the Dimensions Task, using this example to 

illustrate how time-on-task can improve reliability. 

We should note that we have presented only some of the 
steps that should be taken when applying an RL task in 

clinical science. Other options include applying empirical 

priors (Gershman, 2016), using physiological data to aid 

parameter estimation (e.g., Leong, Radulescu, et al, 2017), 

and employing hierarchical modeling to weight parameter 

estimates by group statistics (Gelman & Hill, 2006), which 

can reduce the variance of parameter estimates (Daw, 2011). 

As computational psychiatry develops, we predict that 

psychometric, study design, and parameter estimation issues 

will come increasingly to the fore. 
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The Meanings of Morality: Investigating the psychometric properties of
distributed representations of latent moral concepts
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Abstract: People’s beliefs about what is morally right and wrong vary widely between individuals, contexts, and cultures;
however it is thought that they are governed by core latent constructs. While there is evidence that these constructs are reflected
in natural language, this requires further testing. We demonstrate that the structure of moral values in natural discourse can be
modeled by applying factor analyses to distributed representations of morally relevant terms learned by a neural network. We
first demonstrate that robust latent constructs can be estimated from the covariance of distributed representations of construct
exemplars. We then test whether the factor structure proposed by Moral Foundations Theory (MFT) is reflected in natural
language. Finally, we conduct a bottom-up investigation of the structure of moral values in natural language using free-
responses reported by participants. Ultimately, we find evidence that the representation of moral values in natural language
partially corresponds to MFT.
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Abstract

This paper investigates a fundamental conflict in the literature
on people’s probability estimation. Research on ‘perception’
of probability shows that people are accurate in their estimates
of probability of various simple events from samples. Equally,
however, a large body of research shows that people’s probabil-
ity estimates are fundamentally biased, and subject to reliable
and striking fallacies in reasoning. We investigate this con-
flict in an experiment that examines the occurrence of the con-
junction fallacy in a probability perception task where people
are asked to estimate the probability of simple and conjunc-
tive events in a presented set of items. We find that people’s
probability estimates are accurate, especially for simple events,
just as seen in previous studies. People’s estimates also show
high rates of occurrence of the conjunction fallacy. We show
how this apparently contradictory result is consistent with a
recent model of probability estimation, the probability theory
plus noise’ model.

Keywords: Conjunction fallacy; Disjunction fallacy; Percep-
tual probabilities; Probability estimation

Introduction
The ability to reason under uncertainty (to estimate proba-
bilities) is fundamental to human cognition. Humans exist
in a world of stochastic processes, both stationary and non-
stationary. They are regularly required to produce estimates
for discrete events often with their own hidden parameters. It
shouldn’t be surprising then that humans are often very ac-
curate in the probability judgements that they provide. This
paper investigates a fundamental contradiction in the litera-
ture on people’s probability estimation. Research on people’s
perception of probability shows that people are quite accurate
when required to give estimates of the probability of simple
events. Equally, however, a large body of research shows that
people’s probability estimates are fundamentally biased, and
subject to reliable and striking fallacies in reasoning (such as
the conjunction fallacy). To investigate this contradiction, we
present an experiment that examines conjunction and disjunc-
tion fallacy rates and accuracy of probability estimates simul-
taneously. We find that while probability estimates are accu-
rate, they are biased in specific ways. We also find that high
conjunction and disjunction fallacy rates can co-exist with ac-
curate probability estimation.

Probability perception

Early research on probabilistic reasoning involved present-
ing participants with sequences or sets of simple events that
varied on one particular dimension (sets of different shapes,

for example), and asked participants to estimate the probabil-
ity of one particular event or outcome in that set (the prob-
ability of seeing a triangle in that set, for example). Re-
sults from these studies of ‘probability perception’ showed
that the relation between subjects’ mean estimates of prob-
abilities and the sample proportions are described well by
the identity function: people’s probability estimates agreed
well with the true objective probabilities (Peterson & Beach,
1967). Later work on perceptual probabilities has suggested
that humans have computational mechanisms that provide
them with reasonably accurate judgements of simple prob-
abilities (Balci, Freestone & Gallistel, 2009). Participants are
both accurate in their probability judgements and quick to de-
tect large step changes in probabilities when required to give
repeated estimates for non-stationary Bernoulli processes in
real time (Gallistel, Krishan, Liu & Miller, 2014). Similarly,
Zhao, Shah, and Osherson (2009) used this ‘probability per-
ception’ paradigm to examine people’s judgements of condi-
tional probability. Their participants observed shapes of dif-
ferent colours on screen for 4 seconds. These were static but
appeared at new coordinates after a second had elapsed. Rela-
tively small discrepancies between objective probabilities and
conditional probability estimates were observed in this task.

Fallacious reasoning
By contrast, research on errors in probabilistic reasoning
(mainly in the ‘heuristics and biases’framework) has uncov-
ered many reliable and systematic errors or biases in people’s
judgement of probability. Over 50 such biases have been
recognised, including the conjunction fallacy and disjunction
fallacy (Baron, 2008). The conjunction fallacy, which arises
when subjects judge some conjunction of events A ∧ B to
be more likely (more probable) than one of the constituent
events of that conjunction, A, has gained the most attention
since its discovery. Probability theory, which requires that
P(A ∧ B) ≤ P(A) and P(A ∧ B) ≤ P(B) must always hold
(simply because A∧B cannot occur with A or B themselves
occurring). The conjunction, A∧B, under the probabilistic
laws, cannot be more likely than the single constituent A,
thus when a participant chooses the conjunction A ∧ B as
more probable, they are committing a fundamental violation
of rational probabilistic reasoning. The ‘Linda problem’of
Tversky and Kahneman (1983) is probably the best known
example of this fallacy. The Linda problem is as follows:

Linda is 31 years old, single, outspoken, and very bright.
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She majored in philosophy. As a student, she was deeply
concerned with issues of discrimination and social justice,
and also participated in anti-nuclear demonstrations.

Which is more probable?

A. Linda is a bank teller
A∧B. Linda is a bank teller and is active in the feminist
movement

Tversky and Kahneman found that when presented with
simple conjunction problems over 80% of their participants
made an erroneous judgement, judging A∧B as more likely
than A. A similarly reliable disjunction fallacy occurs when
participants judge the constituents A,B as more likely than
the disjunction, A ∨ B (Bar-Hillel & Neter, 1993). These
widely replicated fallacy results were taken as an indication
that humans do not reason in a normative fashion that
is, they dont apply probabilistic rules to real-life contexts.
Instead, it was suggested that people employ heuristics -
mental short cuts - to solve these problems. The conjunction
fallacy, for instance, was suggested to occur because people
employed a “representativeness heuristic” when reasoning
about conjunctive problems (Tversky et al., 1983). Under
this theory, the fallacy occurs as the person described in
the conjunction is more representative of the information
presented in the character sketch. However, research has
called the validity of the representativeness account into
question (Bonini, Tentori & Osherson, 2004; Sides et al,
2002). Experiments that manipulated class inclusion, for
instance, demonstrated that the fallacy occurs regardless of
whether the conjunction is representative or not (Gavanski &
Roskos-Ewoldsen, 1991). While fallacy rates are generally
quite high, a frequent observation among this research is
that a small number of participants do not seem overly
susceptible to the fallacy. In addition, over a number of
conjunction problems, participants rarely have 100% error
rates. Stanovich and West (1998) recognized that individuals
can differ greatly on their performances on cognitive bias
eliciting tasks. They found that subjects with higher cognitive
ability were disproportionally likely to avoid committing a
number of cognitive biases including the conjunction fallacy.

Previously, weighted models based on component proba-
bilities such as the Signed Summation and Low-component
models were popular as a means to explain the range of
results that were consistently observed in fallacy research
(Thüring & Jungermann, 1990; Yates & Carlson, 1986).
However, these were limited in the scope of results that they
could predict. A more successful iteration of these weighted
models is the Configural Weighted Average (CWA) model
(Nilsson, Winman, Juslin & Hansson, 2009). This sophis-
ticated weighted model includes a “noise component” that
randomly disturbs probability judgements. More recently
formal probabilistic models have sought to show that a range
of biases can be explained as a function of quasi-rational

probabilistic reasoning instead of a heuristic process. Hilbert
(2012) proposed a theoretical framework based on noisy
information processing. Under this framework, memory
based processes convert observations stored in memory into
decisions. By assuming that these processes are subject to
noisy deviations and that the noisy deviations are a generative
mechanism for fallacious decision-making it provides an
explanation for a number of cognitive biases . Costello
and Watts (2016) proposed the Probability Theory plus
Noise (PTN) model which can account for this variability in
occurrence of the conjunction fallacy. In this model, people
do reason in a normative fashion according to probability
theory but are subject to random error in the reasoning
process. The reasoner’s decision-making processes, which
are memory based, reliably apply the conjunction rule
during the probability estimation process, but random noise
causes fluctuations in judgement that sometimes lead to
the subjective probability of a conjunction exceeding the
subjective probability of the constituent. Costello and Watts
showed that a simulation implementing this model produced
a wide range of fallacy rates (from less than 10% to close to
70%) and produced conjunction fallacy rates for a given set
of materials that closely matched those seen in experimental
studies for the same materials.

Aims of this paper
These two lines of research use different paradigms (direct
perception of probability in controlled sets of events versus
questions about the probability of events given descriptions)
and lead to two contradictory conclusions (people’s proba-
bility estimates are fundamentally accurate versus people’s
estimates are fundamentally flawed). In this paper, we de-
scribe an experiment that aims to reconcile these two strands
of research by using using a perceptual probability task to
examine conjunctive and disjunctive probability judgements
and the occurrence of the conjunction and disjunction fal-
lacy. We ask whether these fallacies will occur reliably in
direct probability perception even though people’s estimates
in probability perception tasks are typically accurate. We also
investigate the predictions of the (PTN) model that attempts
to simultaneously explain both relatively accurate estimation
and reliable fallacy occurrence (Costello et al, 2016).

This model assumes that people estimate probabilities us-
ing a fundamentally rational process which is, however, sub-
ject to the systematic biasing effects of random noise in the
reasoning process. Importantly, this model proposes that the
rate of random noise is greater for more complex conjunc-
tive and disjunctive events than for simple events (as a conse-
quence of simple propagation of error: because conjunctions
and disjunctions are more complex, they have more points
of ‘failure’ at which random noise can have an effect). This
model thus predicts relatively accurate probability estimates,
especially for simple events (as seen in the ‘probability per-
ception’ literature), but stronger systematic bias due to noise
for conjunctive and disjunctive events (producing the con-
junction and disjunction fallacy).
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Experiment
This experiment involves repeatedly presenting participants
with images where each image contains a relatively large
number of shapes differing in colour (red, white or green)
and configuration (solid or hollow). For each image partic-
ipants are asked to estimate the probability of some event
(e.g., a randomly selected shape being red, for example). The
true probability of events in these images were held constant
across multiple presentations (but with the images themselves
varying as to the position of the different shapes on the screen
each time), as described below. Each participant saw multiple
presentations of the same probability question (multiple ques-
tions for which the objectively correct probability was the
same), allowing us to estimate the degree of random variation
in participants estimates. Some questions asked about sim-
ple events (a shape being red, being hollow, etc.) while other
questions asked about conjunctive and disjunctive events (a
shape being red and solid, a shape being white or hollow, etc.)
Two distinct sets of images were used, with objective prob-
abilities of single and conjunctive probabilities held constant
in each set (see below). The images from these two sets were
interspersed with each other. Participants answered questions
about 460 images in total. Images were only on screen for a
short time (2 seconds), and so participants did not have time
to count the occurrence of shapes of different types. Images
were presented in randomised order.

Materials
The images consisted of shapes of three colours - colours A,
B, and C respectively - and 2 shape configurations - X and
Y - with fixed probabilities. The actual colour varied from
image to image, so sometimes colour A was white, sometimes
colour A was red and sometimes colour A was green. The
colours varied in the same way for colour B and colour C.
The actual configuration of the shapes also varied from image
to image so sometimes configuration X was solid shapes and
sometimes configuration X was hollow shapes. Conjunction
and disjunctions were created for a number of combinations
of colour and configuration such as P(A∧X), P(A∧Y) and
P(B∨X).

For each type A, B, C, X, Y, A∧X, A∧Y etc, there were
20 images asking people to estimate the probability of that
type. In practise, this meant that the participants saw 20 im-
ages asking them to estimate the probability of colour A, 20
images asking them to estimate the probability of colour B,
20 images asking them to estimate the probability of config-
uration X and so on.

Set 1
In set 1, colour A had a fixed probability of 0.7, colour B had
a fixed probability of 0.2 and colour C had a fixed probability
of 0.1. Configuration X had a fixed probability of 0.9 and con-
figuration Y had a fixed probability of 0.1. The conjunctions
for set 1 were created using the following colour and config-
uration combinations: P(A∧X), P(B∧X), and P(B∧Y). These
corresponded to the objective probability values of 0.63, 0.18

and 0.02. The disjunctions for set 1 were created using the
following colour and configuration combinations: P(A∨X),
P(B∨X), P(A∨Y), and P(B∨Y). These disjunction combina-
tions corresponded to the the objective probability values of
0.97, 0.92, 0.73, and 0.12. Participants viewed 220 images of
20 geometric shapes on a computer screen.

Set 2
For set 2, colour A had the fixed probability of 0.333, colour
B had the fixed probability of 0.333 and colour C had the fixed
probability of 0.333. Configuration X had the fixed probabil-
ity value of 0.5 and configuration Y had the fixed probabil-
ity value of 0.5. The conjunction for set 2 had the value of
0.17. Any combination of A,B,C and X,Y would give this
value. The disjunction had the objective probability value of
0.67. Again, any combination of A,B,C or X,Y would give
this value.

Participants viewed 240 images of geometric shapes in a
computer screen. Each image consisted of 12, 24, or 36
shapes. Each objective probability values of 0.333, 0.5, 0.17,
and 0.67 were presented 20 times for each of the 12, 24 and
36 shape images.

Each image presentation included a question to elicit a
probability judgement. For the colour probability questions,
participants were presented with questions in the form “What
is the probability of picking a shape that is [colour A]?” or
“What is the probability of picking a shape that is [colour
B]?” Colour C was excluded from the probability questions.
For the configuration questions, participants were presented
with questions in the form: “What is the probability of pick-
ing a shape that is [configuration X]? or “What is the proba-
bility of picking a shape that is [configuration Y]?” The con-
junction and disjunction questions took the same form. For
instance, the question to elicit a probability judgement for the
objective probability of 0.63 would be: “What is the proba-
bility of picking a shape that is [colour A AND configuration
X]?”.

Procedure
Participants were seated at a screen. Each participant began
with a training trial of sample stimuli to familiarize them-
selves with the task (see figure 1). Once the participants were
comfortable with the task, they moved onto the experimental
trials. The static image and the probability question appeared
on screen simultaneously. The image was replaced with a
blank screen once 2 seconds had elapsed to prevent the partic-
ipants from counting the shapes. The associated question re-
mained on-screen until the participants had made their guess.
The participants indicated their estimate by moving dial on
a slider using their mouse or arrow keys. This slider had a
minimum value of 0 and a maximum value of 1. A box in the
corner indicated the exact value of the participants’ estimate
and dynamically updated as they moved the slider. When the
participant was satisfied with their answer, they submitted it
by clicking on a Next button. This also triggered the succeed-
ing image and probability question.
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[Probability Question]

50%

Next
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Figure 1: The figure above displays example stimuli image
from set 1 in grey scale. While the shape types changed
between sets, the underlying proportions remained constant.
The image above has a shape configuration of 0.9 for solid
shapes and 0.1 for hollow shapes. The colours have fixed
probabilities of 0.7, 0.2 and 0.1.

Results
A total of 9 participants made 460 probability judgements
each. Their responses and response time was recorded for
each judgement. Two of the participants were excluded from
the final analysis for failing to answer 20% of the questions.
The number of participants is in line with other studies of
probability perception (e.g. Gallistel et al, 2014).

Error and variance The initial analysis determined
whether an estimate was an actual estimate or whether an er-
ror had occurred in the response (such as the participant mis-
takenly submitting an estimate). To do this, the standard de-
viation for each participants’ estimates were calculated. Any
estimate that fell ± 3 standard deviations from the mean es-
timate of a probability was excluded. In total, this comprised
of 1% of responses.

Estimated probability vs true probability
For each of the 11 probability values in set 1, each partici-
pant gave 20 estimates for its value. In set 2, the 4 proba-
bility estimates were questioned at 3 different levels; 20 es-
timates were given for each probability value at each level.
The relationship between mean probability estimates and ob-
jective probability are displayed in figure 2. For each prob-
ability value, the participants’ average estimate and standard
deviation was calculated. The average estimate and standard
deviation were also calculated for the sample. The average
deviation from the true probability was calculated in terms
of percentage points. Some noticeable trends were observed,
participants tended to overestimate the low probabilities and
underestimate the higher probabilities. The degree of overes-
timation for the low constituents was much less than for the
low complex statements. For instance, the constituent with a
true probability of 0.1 have an average estimate of 0.13, while
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Figure 2: The above graph displays the average probabil-
ity estimate vs the objective probability value by type. Any
value falling above the line represents an overestimation of
the probability value, while the values falling below the line
represent underestimations of the true value. Largely, con-
junctions were overestimated and disjunctions were underes-
timated. Constituents tended to have accurate estimates.

the conjunction with a probability of 0.02 had an average es-
timate of 0.14 and the disjunction of 0.12 had an average es-
timate of 0.26. Overall, conjunctions were overestimated and
disjunctions were underestimated. The conjunctions and dis-
junctions averaged 10 percentage points away from their true
probability while the constituent average was 4 percentage
points. Figure 2 shows the average estimate for each type.

For set 2, the conjunctions were overestimated on all occa-
sions, with the average estimate increasing as the stimulus set
became more complex. The disjunctions were consistently
underestimated. Participants were more accurate in their esti-
mates for the constituents. The 12-shape combinations had
the lowest average estimates, the 24-shape estimates were
higher than the 12-shape and lower than the 36-shape esti-
mates. The 36-shape images had the highest mean estimates.

Fallacy rates
Each conjunction and constituent was presented 20 times to
each participant. To evaluate the rate at which the partici-
pant had committed the conjunction fallacy, each conjunction
judgment 1 . . .20 was matched in order with its correspond-
ing constituent judgments (1 . . .20), so the first conjunction
judgement was matched with the first constituent judgements,
and so on. If a particular conjunction judgement exceeded the
estimate of either of the corresponding constituent values, an
instance of the conjunction fallacy was recorded. For each
participant, there were six conjunction questions where the
fallacy could be committed, three from set 1 and three from
set 2. The average conjunction fallacy rate was 30%. Fal-
lacy rates ranged from 13% to 69%: a range that is in-line
with those seen in description based studies (e.g. Stolarz-
Fantino, Fantino, Zizzo, & Wen, 2003). The set-up of this ex-
periment allows us to categorise conjunctions based on their
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Table 1: Fallacy rates occurrences by objective probability
for the conjunction and disjunction problems.

Set 1 Set 2

Conjunction fallacy

Conjunction probability 0.02 0.18 0.63 - 0.17 0.17 0.17
(12-shapes) (24-shapes) (36-shapes)

Fallacy rate 43% 21% 68% - 19% 13% 14%

Disjunction fallacy

Disjunction probability 0.12 0.73 0.92 0.97 0.67 0.67 0.67
(12-shapes) (24-shapes) (36-shapes)

Fallacy rate 34% 28% 49% 71% 40% 25% 24%

Fallacy rates varied quite significantly for the conjunctive and
disjunctive judgements. The highest fallacy rates were ob-
served for the highest objective probabilities. However, the
objective probability value was necessarily an accurate pre-
dictor of fallacy occurrence as high fallacy rate were also ob-
served for low objective probabilities.

actual probabilities and their underlying constituent probabil-
ities. The participants showed marked differences in perfor-
mances for each of the six conjunctions they were presented
with. Table 1 displays the fallacy rate breakdown by con-
junction type. The highest fallacy rates are seen for the con-
junction with the highest probability value. High fallacy rates
were also observed for the conjunction with the lowest prob-
ability value. The other conjunctions had low fallacy rates.

As for the conjunction fallacy, each disjunction judgement
was matched with the constituent judgements in sequence,
so the first disjunction judgement was matched with the first
instances of the relevant constituent judgements. If a disjunc-
tive estimate was less than either of its constituent estimates
then it was counted as a disjunction fallacy. The average dis-
junction fallacy rate was 39%. The fallacy rate ranged from
25% to 71%, which is consistent with the results from de-
scription based research. The average fallacy rate for the each
of the 7 possible disjunctions is displayed table 1. As for the
conjunctions, the objective probability value of the disjunc-
tion was not an indicator of fallacy rate occurrence.

Conjunction and disjunction fallacy occurrence varied over
the course of presentation, however, there was no obvious
trend of improvement or deterioration in the participants abil-
ity to avoid committing the fallacies (fallacy rates did not de-
cline with familiarity).

Variance
Since each conjunction, disjunction and constituent was pre-
sented 20 times to each participant, we can estimate the de-
gree of variance (standard deviation) in estimates for type.
Recall that the PTN model predicts greater variance would
exist for the complex combinations than the constituents.
Results showed that the complex combinations were more
variable than their constituent counterparts for 68% of the
comparisons. The conjunctions were noisier than their con-

Table 2: Average standard deviation for constituents, con-
junctions and disjunctions

A B A (SD) B (SD) A∧B (SD) A∨B (SD)

0.1 0.2 0.050 0.072 0.070 0.102
0.1 0.7 0.050 0.083 - 0.091
0.9 0.2 0.073 0.072 0.071 0.120
0.9 0.7 0.073 0.083 0.085 0.095
0.5 0.33 (12) 0.088 0.090 0.086 0.145
0.5 0.33 (24) 0.101 0.080 0.075 0.126
0.5 0.33 (36) 0.060 0.098 0.096 0.111

The table above displays the average variability scores for the
single constituents, conjunctions and disjunctions. In nearly
all the cases, the complex judgement (conjunction or dis-
junction) was more variable than one if not both of its con-
stituents.

stituents counterparts for 50% of the comparisons. Disjunc-
tions were more variable than their constituent counterparts
for 83% of the comparisons. The average variance for con-
stituents was 0.77, conjunctions had an average variance of
0.81 and disjunctions had an average variance of 0.11.

Variance and fallacy rate Participants variability was pos-
itively correlated with their fallacy rates, small positive cor-
relations were observed for the conjunction fallacy rates,r =
0.25 and the disjunction fallacy rates, r = 0.36 for set 1. For
set 2, a strong positive correlation was observed for the con-
junction fallacy rate and variability, r = 0.89 and a mild pos-
itive correlation for the disjunctions, r = 0.32. This supports
the PTN model assumption that conjunction and disjunction
fallacies arise due to variability in conjunction and disjunc-
tion estimates. Table 2 displays the average standard devia-
tion values for each constituent, conjunction and disjunction.
Overall, the complex combinations had higher average stan-
dard deviations than the constituents.

Timings

Participants had slower response times for their initial esti-
mates but these decreased and plateaued rapidly. To inves-
tigate whether there was a difference in response times for
type - constituent, conjunction, and disjunction - the average
time for each type was calculated. Then a repeated measures
ANOVA was performed to examine whether a difference ex-
isted for the average reaction times for judgement type. The
ANOVA found a significant difference in reaction speed for
judgement type, F(2, 278) = 8.478, p < 0.05. Pairwise
comparisons showed that constituents judgements were sig-
nificantly faster than conjunctions judgements. Constituent
judgements were also significantly faster than disjunctions
judgements. No significant different was observed between
the judgements speeds for the conjunctions and disjunctions.
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Discussion

This paper investigated an apparent conflict in the literature
on probability estimation, which shows accurate estimates
when people estimate probabilities from directly presented
samples, but systematic occurrence of the conjunction and
disjunction fallacy when people estimate the probability of
described events. Our experimental results show accurate es-
timates, and frequent fallacies in judgement for conjunctions
and disjunctions, occurring simultaneously when probabili-
ties are estimated from samples. This pattern of results is pre-
dicted by the PTN model (Costello & Watts, 2016), in which
people estimate probabilities by following standard frequen-
tist probability theory, but with random noise in judgement.
Fallacies in judgement such as the conjunction and disjunc-
tion fallacy are caused by increased rates of random error
for conjunctions and disjunctions, while accurate estimates
for constituents are produced because people follow stan-
dard probability theory in making estimates, and because con-
stituent estimates are subject to lower rates of random error.

The results here demonstrate that producing accurate prob-
ability estimates (especially for constituents) and producing
conjunction and disjunction fallacy responses are not mutu-
ally exclusive states: both patterns of results can occur si-
multaneously, and are naturally explained in a model where
people reason according to standard probability theory but are
subject to random noise in the reasoning process

While the wide range of fallacy results observed in the lit-
erature (approximately 10% to 80% depending on task type)
is challenging, this experiment demonstrates that a range of
fallacy rates from low to high can occur for the same task and
are a consequence of the objective values of the constituents,
the conjunctions or disjunctions and the rate of variability
in estimates. We observed complex combination estimates
that were consistently more variable than the constituent es-
timates. While both the CWA and PTN models predict that
fallacy rates will be effected by noise, they make divergent
predictions. The CWA model predicts a negative correlation
with variability and fallacy rates, that is, the rate of fallacy
errors should increase as the rate of noise decreases. Here,
both conjunction and disjunction fallacy rates correlated pos-
itively with variability. These results are consistent with the
PTN model which predicts that we should observe a positive
relationship between fallacy rates and variability.

The results of this experiment seem to resolve the conflict
between studies of probability perception and the studies of
fallacies in reasoning. Participants were accurate probabilis-
tic reasoners - their judgements of probabilities were good
especially for the constituents. However, these judgements
are still systematically biased and depending on the problem
type, noisy. People’s estimates are more variable for conjunc-
tions and disjunctions than the constituents and this variance
causes the occurrences of the conjunction and disjunction fal-
lacy. This account of accurate estimates with consistent fal-
lacy occurrences is consistent with the PTN model.
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Abstract
Disfluencies such as self-repairs, filled pauses such as ‘um’
and silent pauses are pervasive in dialogue, but there is no con-
sensus in the literature as to whether they reflect internal pro-
duction pressures, or interactive issues – or how their effects
are manifest in dialogue. It is well-known that patients with
schizophrenia have problems with language and social cogni-
tive skills, yet little research has investigated how these impact
interaction. We report a study on the disfluency behaviours of
patients with schizophrenia and their interlocutors who were
unaware of the patient’s diagnosis, compared to healthy con-
trol groups. Results show that patients use fewer self-repairs
than either their partners or controls and fewer filled pauses
(‘er’, ‘um’) than controls. Furthermore, the presence of the pa-
tient also affects patients’ partners, who use fewer filled pauses
than controls and more unfilled pauses than both patients and
controls. This suggests that smooth coordination of turns is
problematic in patients’ dialogues.
Keywords: Disfluency; Dialogue; Schizophrenia

Introduction
Disfluencies, such as self-repair, pauses and filler non-words
such as er and um (filled pauses) are pervasive in dialogue
(Schegloff, Jefferson, & Sacks, 1977). Such disfluencies are
conventionally regarded as symptomatic of problems with
communication, caused by self-monitoring or production is-
sues (Levelt, 1983). However, disfluencies also highlight the
interactive nature of dialogue – many disfluencies occur as
we tailor our talk for specific addressees, or as a direct result
of feedback from our interlocutors (Goodwin, 1979).

Furthermore, different types of disfluencies have been hy-
pothesised to contribute differently to the individual and
shared actions that must be coordinated in successful dia-
logue. For example, in route following experiments, dif-
ferent distributions of filled pauses and self-repairs suggest
that self-repairs occur because of production difficulties, but
filled pauses fulfil an interpersonal function (Bortfeld, Leon,
Bloom, Schober, & Brennan, 2001; Nicholson, Eberhard, &
Scheutz, 2010; Brennan & Schober, 2001).

Other research suggests that disfluencies should be cate-
gorised according to whether they make changes to the mean-
ing of an utterance or not, e.g. reformulations and false starts
are backwards-looking disfluencies, whilst word repetitions
and filled pauses are forwards-looking (Ginzburg, Fernández,
& Schlangen, 2014; Allwood, Nivre, & Ahlsén, 1990).

In addition to signalling difficulties that the speaker may
be experiencing, different types of disfluency have been
shown to have conventionalised meanings with respect to
turn-taking. Filled pauses may indicate a break in the infor-
mation (for example while the speaker searches for a word

or phrase) but an intention to retain the floor, whilst unfilled
pauses may signal that the speaker does not intend to continue
speaking (Clark & Fox Tree, 2002; Allwood et al., 1990).

Recent work suggests that disfluencies have measurable ef-
fects on the dialogue – even if this is not necessarily the in-
tention of the speaker (Finlayson & Corley, 2012; Ginzburg et
al., 2014). For example, in contexts where informational ex-
change is key, such as the Map Task (Anderson et al., 1991),
more self-repair may be indexing one’s own production dif-
ficulties, and how hard people are working to be understood
by (and for) their interlocutors (Colman & Healey, 2011).

Further evidence that disfluencies do not just function as
markers of miscommunication but contribute to improving
the effectiveness of interaction comes from psycholinguistic
studies. For example, referential success and ambiguity res-
olution are aided by the presence of disfluencies (Brennan &
Schober, 2001; Bailey & Ferreira, 2007). Communications
training interventions also indicate that talk between psychi-
atrists and patients with schizophrenia is improved when the
psychiatrist uses more self-repair (McCabe et al., 2016).

As can be seen from the above discussion, there is no gen-
eral consensus in the literature about either which disfluen-
cies should be focused on, how different types of disfluency
should be categorised, or the effects they have in dialogue.

It is well documented that people with a diagnosis of
schizophrenia have problems with language and social cogni-
tive skills, including with self-monitoring (Johns et al., 2001)
and turn-taking (using role-play; Mueser, Bellack, Douglas,
and Morrison, 1991), yet little research has investigated how
these impact interaction. The few studies that do find that
less patient self-repair is associated with verbal hallucinations
(Leudar, Thomas, & Johnston, 1992), more patient other-
initiated repair (clarification of the doctor’s talk) is associ-
ated with better adherence to treatment (McCabe et al., 2013),
and clinicians’ use of self-repair has positive clinical conse-
quences (McCabe et al., 2016). Research into disfluencies
therefore has the potential to be used in diagnostic tools, and
feed into training for psychiatrists to detect when a patient is
in difficulty or shape their own talk more effectively.

However, there is conflicting evidence regarding disfluen-
cies in patients with schizophrenia and whether this differs
from non-clinical populations. In consultations, patients use
more self-repair than psychiatrists (McCabe et al., 2013) and
this is higher than found in general dialogue in the demo-
graphic portion of the British National Corpus, or Map Task
dialogues (Howes, Purver, McCabe, Healey, & Lavelle, 2012;
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Colman & Healey, 2011). This might be expected in the clin-
ical domain where patients are explaining and providing up-
dates on their health and treatment. In contrast, in a con-
trolled study where subjects described the experimenters ac-
tions, frequency of repair did not differ between patients and
matched controls (Leudar et al., 1992).

These differences may reflect interactional factors, such as
domain, or role, and not differences between schizophrenia
patients and non-clinical populations per se. Additionally, in
these studies, patients’ interlocutors were aware of their di-
agnosis, which could have influenced the way they interacted
with the patient (Doyen, Klein, Pichon, & Cleeremans, 2012).

We report an analysis of a unique corpus of 40 triadic dia-
logues (Lavelle, Healey, & McCabe, 2013) that avoids these
potential confounds (see Method, below). Given that the lit-
erature suggests patients produce more self-repairs than their
psychiatrists in dialogues during clinical consultation, and
more so than people in natural corpora from the general popu-
lation, and with the assumption that turn-taking cues (includ-
ing offering the floor to another participant, or retaining it for
oneself) partially consist of filled and unfilled pauses (Maclay
& Osgood, 1959), we expect the following:

Hypotheses
1. Compared to healthy control conversational groups and

their healthy conversational partners, patients will produce
more disfluent talk, with more self-repairs.

2. Compared to controls and their conversational partners, pa-
tients will produce fewer turn-taking cues (filled and un-
filled pauses).

3. Compared to patients and controls, patients’ partners will
produce more turn-taking cues.

Method
Participants
The data consist of transcripts of twenty patient interactions,
involving one patient conversing with two healthy controls
who were unaware of the patient’s diagnosis, and twenty con-
trol interactions (3 healthy participants). Twenty patients with
a diagnosis of schizophrenia (6 male, 14 female) and one hun-
dred non-psychiatric healthy participants, forty in the patient
condition (21 m, 19 f) and sixty in the control condition (34
m, 26 f), participated. Participants within each triad were un-
familiar to each other. Due to technical issues one patient
interaction and one control conversation could not be tran-
scribed and are excluded from the analysis, resulting in data
from 57 individuals in control groups (19 triads), and 19 pa-
tients and 38 healthy controls in patient interactions.

Non-psychiatric healthy participants were recruited
through advertising on local community websites. Of those
who responded to the advertisement, 40% participated. Par-
ticipants with a diagnosis of psychosis or affective disorders
in themselves, or any first-degree relatives, and those who
were not fluent English speakers were excluded.

Patients were recruited at routine psychiatric outpatient
clinics under supervision of their psychiatrist. 25% of all
patients approached agreed to participate. Patients were tak-
ing anti-psychotic medication which fell within the low dose
range (Chlorpromazine equivalents 50-200mg/day). Non-
native English speakers and patients presenting with motor
side effects from antipsychotic medication were excluded
based on a clinician’s assessment.

The distribution of gender did not significantly differ be-
tween patient and control conditions (P: n = 60: female
= 53.33%, C: n = 60: female = 43.33%; χ2 = 1.20, p =
0.27). Patients were significantly older than controls (P:
M = 41s.d.= 8.6, C: M = 31s.d.= 9.6; t119 = 4.51, p< 0.01)

Symptoms were assessed using the Positive And Negative
Symptom Scale for Schizophrenia (Kay, Flszbein, & Opfer,
1987). Patients displayed relatively low PANSS scores for
positive symptoms – additional features that occur with the
disorder such as hallucinations or delusional beliefs (M =
15.8;s.d.= 6.76), and negative symptoms, which represent a
reduction in usual function such as social withdrawal, dimin-
ished affect, apathy and anhedonia (M = 9.95;s.d.= 3.36).

Ethics
All procedures were approved by a UK NHS Research Ethics
Committee (07/H0711/90). All participants gave written in-
formed consent and were free to withdraw at any time.

Procedure
Participants were brought into the laboratory in threes and
seated in a triangular formation so that they all had good vi-
sual access to each other (see Figure 1). The researcher read
aloud a fictional moral dilemma, the ‘balloon task’ (see Task
section, below), which has been used for studying dialogue,
and is known to stimulate discussion (Howes, Purver, Healey,
Mills, & Gregoromichelaki, 2011). The group was provided
with an opportunity to ask questions before the researcher left
the interaction space and the task began. Interactions ended
when participants reached a joint decision. Groups that failed
to reach agreement had their interaction terminated at approx-
imately 450 seconds (7 minutes 30 seconds).

Figure 1: Participants engaged in triadic interaction
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Task
The balloon task is an ethical dilemma requiring agreement
on which of four passengers should be thrown out of a hot air
balloon, which is losing height and about to crash into some
mountains killing all on board unless one of them jumps to
their certain death in order to save the other three. The four
passengers are described to the participants as follows:

Dr. Robert Lewis – a cancer research scientist, who be-
lieves he is on the brink of discovering a cure for most
common types of cancer.

Mrs. Susanne Harris – who is not only widely tipped as the
first female MP for her area, but is also over the moon be-
cause she is 7 months pregnant with her second child.

Mr. William Harris – husband of Susanne, who he loves
very much, is the pilot of the balloon, and the only one
on board with balloon flying experience.

Miss Heather Sloan – a 9 year-old music prodigy, consid-
ered by many to be a “twenty first century Mozart”.

Participants were instructed to debate the reasons for and
against each person being saved, and reach mutual agreement
about who should jump.

Analysis
Participants’ speech was transcribed in ELAN (Brugman &
Russel, 2004), allowing us to map the transcriptions to the
video and precisely time pauses.

Self-repair Self-repairs were annotated automatically us-
ing STIR (STrongly Incremental Repair detection; Hough
and Purver, 2014);1 which detects speech repairs on tran-
scripts word-by-word incrementally. It uses a pipeline of clas-
sifiers to tag each word of the transcript as either fluent, or in
an element of the three-part repair structure below, according
to the manual by (Meteer, Taylor, MacIntyre, & Iyer, 1995):

John [ likes︸ ︷︷ ︸
reparandum

+ {er}︸︷︷︸
interregnum

loves ]︸ ︷︷ ︸
repair

Mary (1)

STIR uses features from n-gram language models in a
pipeline of classifiers which classify whether the current word
constitutes a boundary of each part of the repair structure.
STIR is trained on the Switchboard corpus (Godfrey, Hol-
liman, & McDaniel, 1992) and achieves an F-score accu-
racy for self-repair detection of 0.81 on conversational data
(Howes, Hough, Purver, & McCabe, 2014). It has previously
been applied to therapeutic dialogue, with high rates of cor-
relation to human coders in terms of self-repair rate (Howes
et al., 2014), so is adequate for our annotation purposes.

Filled pauses In this data, filled pauses were found to be
inconsistently spelt (aammm, er, eerrrrmm, uhmmm etc). A
find-and-replace operation was applied to the corpus prior to
analysis to give these a standardised spelling, i.e. ‘er’ (Howes
et al., 2014). For the analyses we used a count of the number
of filled pauses used by each participant.

1https://bitbucket.org/julianhough/stir

Unfilled pauses Following e.g. Zellner (1994), we defined
unfilled pauses as speech-free spaces between segments of
speech by the same speaker of greater than 200 milliseconds.
Pause segments were automatically extracted from the ELAN
transcripts. For the analyses we used a count of the number
of unfilled pauses used by each participant.

As patients produce fewer turns than their interlocutors,
per-turn rates for these measures were calculated for each in-
dividual participant as the total number of self-repairs, filled
or unfilled pauses produced divided by the total number of
turns. Patients’ turns are also typically shorter – as longer
turns are expected to have more repair (Bortfeld et al., 2001),
we also calculated measures per 100 words (see Table 1).

Statistics Analyses were run in SPSS using Generalised
Linear Mixed Models (GLMMs) to control for both fixed and
random effects. In all reported models, condition was a fixed
effect and participant ID was a random effect with individu-
als clustered by their conversation group. For each model we
used random intercepts and the maximal random effect struc-
ture justified by the sample (Barr, Levy, Scheepers, & Tily,
2013), using a gamma distribution with a log link function.
We report exact p-values throughout, but take p < 0.05 to be
the criterion of significance.

Results

Table 1 shows statistically significant main effects of condi-
tion. Pairwise comparisons are reported in the text below.

Number of turns Patients (P) produced significantly fewer
turns than their partners (PP) (t1,102 = −3.247, p = 0.001).
There was no significant difference between patients and
controls (C) or patients’ partners and controls (P/C t1,102 =
−1.574, p = 0.118; PP/C t1,102 =−0.213, p = 0.832).

Number of words Patients produced fewer words in to-
tal and per turn than either their partners or controls (Total:
P/PP t1,102 = −3.914, p < 0.001; P/C t1,102 = −2.481, p =
0.015; PP/C t1,102 = 0.172, p = 0.864; Per turn: P/PP t1,102 =
−3.823, p < 0.001; P/C t1,102 = −2.183, p = 0.031; PP/C
t1,102 = 0.979, p = 0.330).

Table 1: Overview.

Patient Partner Control F p

to
ta

l

Turns 43.78 56.22 57.43 6.822 0.001
Words 247.67 439.03 399.63 10.069 <0.001
Self-repair 3.563 10.125 10.490 7.825 0.001
Filled pause 2.111 4.472 8.078 7.825 0.001
Unfilled pause 14.944 32.917 22.000 7.372 0.001

pe
rt

ur
n Words per turn 5.58 7.99 7.21 7.141 0.001

Self-repair 0.081 0.186 0.181 10.708 <0.001
Filled pause 0.046 0.081 0.140 4.338 0.016
Unfilled pause 0.362 0.650 0.426 5.342 0.006

pe
r1

00
w

or
ds Self-repair 1.330 2.203 2.507 6.472 0.002

Filled pause 0.774 1.004 1.811 5.936 0.004
Unfilled pause 6.582 7.691 5.929 2.038 0.136
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(a) STIR per turn (b) Filled pauses per 100 words (c) Unfilled pauses per turn

Figure 2: Estimated marginal means. Error bars show 95% confidence intervals

Self-repair For all three measures of repair –total, per turn
(shown in Figure 22a) and per 100 words– patients use fewer
repairs than either their partners or controls (Total: P/PP
t1,96 = −3.265, p = 0.002, P/C t1,96 = −3.394, p = 0.001,
PP/C t1,96 = −0.528, p = 0.599; per turn: P/PP t1,96 =
−3.476, p = 0.001, P/C t1,96 = −3.643, p < 0.001, PP/C
t1,96 = −0.094, p = 0.926; per 100 words: P/PP t1,102 =
−2.508, p = 0.014 P/C t1,102 = −3.280, p = 0.001, PP/C
t1,96 =−0.796, p = 0.428).

Filled pauses Patients use fewer filled pauses than con-
trols, with patients’ partners levels of filled pauses lying
somewhere in between. For the total model, patients’ part-
ners use significantly more than patients, and in the per
100 words model (shown in Figure 22b) patients’ part-
ners use significantly fewer than controls (Total: P/PP
t1,102 = −2.685, p = 0.008, P/C t1,102 = −3.644, p < 0.001,
PP/C t1,102 = −1.751, p = 0.083; Per turn: P/PP t1,102 =
−1.310, p = 0.193, P/C t1,102 = −2.720, p = 0.008, PP/C
t1,102 = −1.729, p = 0.087; per 100 words: P/PP t1,102 =
−1.544, p = 0.126, P/C t1,102 = −3.353, p = 0.001, PP/C
t1,102 =−2.364, p = 0.020).

Unfilled pauses Patients’ partners use more unfilled pauses
in total and per turn (see Figure 22c) than either patients
or controls. This is not significant for the per 100 words
model (Total: P/PP t1,102 = −3.750, p < 0.001, P/C t1,102 =
−1.996, p = 0.049, PP/C t1,102 = 2.361, p = 0.020; Per turn:
P/PP t1,102 = −3.235, p = 0.002, P/C t1,102 = −0.750, p =
0.455, PP/C t1,102 = 2.483, p = 0.015, per 100 words: P/PP
t1,102 = −1.106, p = 0.272, P/C t1,102 = 0.644, p = 0.521,
PP/C t1,102 = 1.926, p = 0.057)

Discussion

The results show differences in disfluencies between the
groups, such that patients use fewer self-repairs than either
their partners or controls and fewer filled pauses (‘er’) than
controls. Furthermore, the presence of the patient also affects
patients’ partners, who use fewer filled pauses than controls
and more unfilled pauses than both patients and controls.

These results take a coarse-grained view of the data at the
level of the individual, and the groups are unbalanced (with

57 controls, 19 patients and 38 patients’ partners) which nec-
essarily means that any interpretation is suggestive rather than
definitive. However, despite these caveats, we see marked dif-
ferences between the ways in which the different groups use
the different types of disfluency. This suggests several av-
enues for research which takes a finer-grained approach, by
looking at the interactions at the level of the utterance.

For self-repairs, patients produce fewer than either their
partners or controls, which is contrary to our expectation (Hy-
pothesis 1) given that patients are known to produce more
self-repairs than their psychiatrists in clinical consultations,
and than in the demographic portion of the British National
Corpus. This may be due to context – patients’ engagement
is likely to be higher in their psychiatric consultations, com-
pared to first meetings with unfamiliar individuals discussing
an abstract topic. The nature of the task is clearly different,
with introspective therapy requiring different contributions
from the patients in terms of speech production and planning
than rational problem solving. Furthermore, participant roles
and task demands are more symmetric in the current task
compared to clinical consultations. However, if self-repairs
are only due to self-monitoring problems, which patients are
known to have difficulties with (Johns et al., 2001) we would
still expect consistent self-repair patterns across a range of
contexts, which does not appear to be the case.

This suggests that we may need to consider the distinc-
tion of backwards and forwards looking repair, as proposed
in Ginzburg et al. (2014). If repetitions are more like filled
pauses, and function as a turn-holding strategy whilst refor-
mulation repairs are backwards-looking, then we expect a dif-
ference in the distributions of the different repair types such
that patients use fewer repetitions (in line with their rarer use
of filled pauses), and that self-repairs that patients do pro-
duce are likely to be reformulations, due to patients’ self-
monitoring problems. It would also be instructive to see if the
distributions in patients’ partners and controls self-repair are
equivalent. The differences in the filled pause data suggests
they might not be, which is an avenue for future research.

Partial support for Hypotheses 2 and 3 comes from the data
on pauses, although there is conflicting evidence. Patients
produce fewer filled pauses than controls, as do their part-
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ners when normalised by number of words. As filled pauses
may indicate a wish to retain the floor during a turn (Clark
& Fox Tree, 2002), it may be that patients are less likely to
employ these turn holding techniques. A similar pattern of
filled pauses in patients’ partners demonstrates the impact of
the presence of the patient on the behaviour of their inter-
locutors. The specific reason for this is unclear. It may be
due to them aligning their own talk to the speech pattern of
the patient (Garrod & Pickering, 2009) in a similar way to
alignment in nonverbal behaviours (Lavelle, Howes, Healey,
& McCabe, 2013). However, this possibility is contrary to
evidence suggesting no differences in patterns of disfluen-
cies between monologue and dialogue (Finlayson & Corley,
2012). It may also be indicative of the reduced competition
for the floor in patient interactions, such that turn holding cues
are less necessary.

The pattern of unfilled pauses supports this theory, with pa-
tients’ partners producing more than either the patients they
are interacting with, or controls, but not when normalised by
number of words, suggesting this is a difference at the level
of the turn. Taken together, this suggests a breakdown in turn-
taking in dialogues containing a patient. Within-turn pauses
may occur at points where patients’ partners have reached a
transition relevance place (TRP), where turn change is nor-
mally licensed (Sacks, Schegloff, & Jefferson, 1974), and
are expecting (or encouraging) the patient to take the floor.
In the control dialogues, turn-taking is undertaken smoothly,
hence there are fewer unfilled pauses and more floor-holding
filled pauses. Similarly, where a patient pauses, this may be
taken as a turn-change cue, resulting in patients also pro-
ducing fewer unfilled pauses. The effect would then only
be apparent within patients’ partners’ turns, and could indi-
cate that patients are less responsive to turn taking cues or
more reluctant to select as next speaker. This explanation is
consistent with the observation that patients produce fewer
turns, evidence that patients are less able to coordinate their
behaviour with others during interaction (Kupper, Ramseyer,
Hoffmann, & Tschacher, 2015; Lavelle, Healey, & McCabe,
2014), and work that suggests that one of the social skills
deficits in patients with schizophrenia manifests in poor turn-
taking (Mueser et al., 1991). Note however that the 200ms cut
off for unfilled pauses is arbitrary, and this analysis does not
differentiate between long and short unfilled pauses which are
expected to have different interactive consequences; for ex-
ample short pauses may simply reflect within-turn phrasing,
and not turn-taking issues per se.

In future work, we intend to exploit the fact that the current
dataset gives us the opportunity to explore turn-taking in in-
teractions between patients and partners who are unaware of
their diagnosis directly and at a much finer-grained level. For
example, we intend to examine unfilled pause distributions
between speakers. Based on the preliminary results reported
above, we would expect that there would be more ‘inappro-
priate’ turn changes in the dialogues with patients (charac-
terised in opposition to the “no gap no overlap” model; Sacks

et al., 1974), in addition to the increase in within-turn pauses
observed for patients’ partners. Other turn-taking cues that
may be less likely to be responded to by patients include non-
verbal behaviours such as gesture and gaze, and future work
will investigate these behaviours at points where there are un-
filled pauses or potential TRPs.

The evidence suggests that smooth coordination of turns
is problematic in patients’ dialogues. We know that patients
have difficulty coordinating their nonverbal behaviour with
others, which is associated with difficulty building relation-
ships (Kupper et al., 2015). Therefore patients’ turn-taking
difficulties may also contribute to their poor social function-
ing, which is one of the most debilitating and poorly under-
stood aspects of schizophrenia. Understanding the nature of
these deficits and their interactional relevance would provide
a focus that could be targeted through psychosocial interven-
tions, such as those that have proven effective in autism (Wert
& Neisworth, 2003). It would also provide a measurable be-
havioural marker of social deficit, which could be monitored
for improvement. This line of research would provide a step
change in an area of great clinical need.

Conclusions
This unique data demonstrates that not only are there com-
munication difficulties in schizophrenia but they also impact
on social interactions more broadly, thus providing new in-
sights into the social deficits of this complex disorder. The
data also support the idea that disfluencies are communica-
tive solutions, not problems.
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Abstract 

Mind perception is studied for three different agents: a human, 
an artificial human, and a humanoid robot. The artificially 
created agents are presented as being undistinguishable from a 
human. Each agent is rated on 15 mental capacities. Three mind 
perception dimensions are identified - Experience, Agency, 
and Cognition. The artificial agents are rated higher on the 
Cognition dimensions than on the other two dimensions. The 
humanoid robot is rated lower than the human on the 
Experience dimension. These results show that people ascribe 
to artificial agents some mental capacities more than others. In 
a second experiment, the effect of agent’s moral action on mind 
perception is explored. It is found that when the artificial agents 
have undertaken a moral action, they are perceived to be 
similar to the human agent. More interestingly, the presentation 
of the moral action leads to a restructuring of the dimensions 
of mind perception.  

Keywords: mind perception; moral agency; artificial agents; 
utilitarian moral actions; moral dilemmas 

Introduction 

Mind Perception and Artificial Cognitive Agents 
The problem of mind perception is central to many debates in 
psychology and philosophy and has been extensively studied 
in cognitive science in the last years (see e.g. Arico et al., 
2011; Gray et al., 2007). The questions of how people know 
that other people are conscious or what are their intentions, 
feelings and thoughts have large implications in the way 
people make judgments and decisions, and act. This problem 
is so interesting and difficult because mental states are not 
observable. Moreover, mind attribution and mind perception 
concern not only human or animal agents but also inanimate 
entities, e.g. geometrical shapes moving in at various speeds 
and in various directions (Heider & Simmel, 1944). 

The question of how people attribute mental states to others 
– humans and other entities is also related to whether there is 
a single continuum of mind perception and what are its 
dimensions. 

In the influential study of Gray et al. (2007), participants 
had to evaluate several characters including a human, a robot, 
and a computer with respect to the degree of possessing 
various cognitive capacities. Using factor analysis, they 
found two dimensions, which correlate with mind perception: 
'Agency' (exhausting 88% of the variance) and 'Experience' 
(exhausting 8 % of the variance).  

The Experience dimension includes the following 
capacities: hunger, fear, pain, pleasure, rage, desire, 
personality, consciousness, pride, embarrassment, and joy. 
The Agency dimension includes self-control, morality, 

memory, emotion recognition, planning, communication, and 
thought. Further, the authors establish that moral judgments 
about punishment correlate more with the Agency dimension 
than with the Experience dimension: perceived agency is 
correlated with moral agency and responsibility. On the other 
hand, desire to avoid harming correlates with the experience 
dimension: perceived experience is connected with moral 
patience, rights and privileges. One result of Gray et al. 
(2007), relevant for the present paper, is the evaluation of a 
human as having the highest scores in experience and agency 
and the evaluation of the robot to have practically zero score 
on the experience dimension and half the maximal score on 
the agency dimension. This will mean that following the 
interpretation given by Gray et al. (2007), robots will be 
judged as less morally responsible for their actions. On the 
other hand, the opposite should be also true. If an agent is 
judged to be able to be a moral agent, this will reflect in her 
score on the mind perception dimensions. The latter is 
explored in the present paper. 

In a recent study (Takahashi et al., 2014), the perception of 
the participants about five agents – a human, a human-like 
android, a mechanical robot, an interactive robot, and a 
computer – was investigated. The study found that 
participants position the agents in a two dimensional space 
spanned by “Mind-holderness” (the possibility for the agent 
to have a mind) and “Mind-readerness” (the capability to 
“read” other agent minds). The results showed that the 
appearance and the capability for communication lead to 
different beliefs about the agents’ closeness to human social 
agents. The humanoid robot was very close to the human 
agent, while the computer was at the same level in terms of 
“Mind-readerness” but very low relative score on “Mind-
holderness”. An interesting result for the present study is fact 
that the ordering in terms of “Mind-holderness” is based on 
appearance of the agent – the human and the human-like 
android having the highest score and the mechanical robot 
having the lowest. 

The results of Takahashi et al. (2014) show that social 
interaction with human-like or potentially intelligent agents 
could activate selectively our social brain and lead to 
behavior similar to the one people have with other humans. 
Thus, Takahashi et al. (2014) demonstrated that people can 
infer different characteristics related to various cognitive 
abilities based on short communication sessions and act 
accordingly. One can ask the question addressed in the 
present paper: can people be influenced by short stories of 
moral action of agents, instead of actual interaction with an 
agent, in their mind perception? 
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Moral Agency and Mind Perception 
As discussed in the previous section, mind perception is 
based on a number of dimensions, which depend on the 
specific experimental settings – ‘Agency’ and ‘Experience’ 
in Gray et al. (2007), when agents are directly evaluated and 
‘Mind-readiness’ and ‘Mind-holderness’ in Takahashi et al. 
(2014), following a similar procedure but after interacting 
with the agents. Both papers discuss the relation of mind 
perception to social interaction, which includes moral agency 
to various degrees. 

In law and philosophy, moral agency is taken to be 
equivalent to moral responsibility, and is not attributed to 
individuals who do not understand or are not conscious of 
what they are doing (e.g. to young children). Sullins (2011) 
states that moral agency can be attributed to a robot when it 
is autonomous, and it has intentions to do good or harm. The 
latter is related to the requirement that the robot behaves with 
understanding and responsibility with respect to other moral 
agents. If the perceived action are morally harmful or 
beneficial and are “seemingly deliberate and calculated”, the 
robot can be regarded as a moral agent.  

On the other hand, it is well known that people easily 
anthropomorphize nonhuman entities like animals and 
computers and thus would ascribe to some degree moral 
agency, intentions, and responsibilities to them (Waytz, 
Gray, Epley, & Wegner, 2010). Several studies, explore the 
attribution of mind and moral agency to artificial cognitive 
systems. In Arico et al. (2011), it is shown that entities 
displaying simple features like eyes, distinctive motions, and 
interactive behavior, are categorized as agents and that 
categorization triggers the attribution of conscious mental 
states to those entities, including individuals.  

In Ward, Olsen, Wegner (2013), it was shown that people 
can perceive mind in entities like corpses, people in a 
persistent vegetative state, or robots, if they are subject to 
intentional harm. According to the authors, the evidence of 
mind can be related to observation or interaction with entities, 
which exhibit intention, emotion or behavior but also to 
indirect evidence related to the moral or social interaction 
surrounding those entities. 

Current research 
The results summarized above show that moral agency is 
closely related to mind perception and give evidence that 
perceived mental capacities or actions influence moral 
agency evaluation. Some of the results suggest that the 
inverse influence is also taking place, namely from perceived 
moral agency to infer mental capacities.  

Recently, the behaviour of artificial cognitive agents 
became central to research and public debate in relation to the 
rapidly increasing usage of robots and intelligent systems in 
our everyday	life. Several important questions must find their 
answers as the use of artificial cognitive agents has many 
benefits but also many risks. Some of those questions concern 
moral agency - if those agents should be allowed to make 
moral decisions and how such decisions are judged and 
evaluated. 

The goals of the present paper are the following. First, to 
explore the dimensions of mind perception for human agents 
and fictitious artificial agents that are identical to humans. 
Here, the artificial agents are described as undistinguishable 
from a human, but as being created from organic materials - 
one of them is labeled as an artificially created human and the 
other one - as a robot. The rationale of using artificial agents 
is that in such a way dimensions of mind perception can be 
better explored as people do not have previous knowledge or 
experience with those agents.  

The second goal is to explore the moral judgments about 
utilitarian moral action undertaken by of those three agents. 
This goal is a continuation of previous research (Hristova & 
Girnberg, 2015; Hristova & Grinberg, 2016) on moral 
judgments about the actions of artificial cognitive agents. 
Moral judgments can be studied in their purest form using 
hypothetical situations in which there is a conflict between 
moral values, rules, rights, and agency (Foot, 1967; 
Thomson, 1985). Such moral dilemma is used in the paper -  
a hypothetical situation in which several people will die if the 
agent does not intervene in some way. The intervention will 
lead to the death of another person but also to the salvation of 
the initially endangered people. The moral actions used in the 
presented experiments are decisions of the agents to sacrifice 
one person and save five. 

The third goal of the research is to test the influence of a 
moral action of an agent on mind perception for that agent. 
The expectation is that an agent performing a moral action 
will be perceived as possessing mental capacities to a higher 
degree. This especially applies to the artificial agents which 
are expected to be perceived as more human-like when they 
have undertaken an utilitarian action. 

Experiment 1 
Goals and Hypothesis 

Experiment 1 aims to achieve the first two goals described 
above. First, to test the dimensions of mind perception of 
artificial agents (described as being undistinguishable from a 
human, but as being created from organic materials) and to 
compare them to the mind perception of a human being. 
Second, to explore the moral judgments about utilitarian 
actions undertaken by those agents. The hypothesis is that 
although described as being identical to a human, the 
artificial agents will be perceived as equal to humans on more 
cognitive dimensions (e.g. perception and planning) but 
lower than humans on the experiential dimensions (e.g. 
emotions and consciousness). 

Method 

Design and Procedure 
Mind perception is studied for three different agents: a 
human, an artificial human, and a humanoid robot. The 
artificially created agents (the artificial human and the 
humanoid robot) were presented to participants as being 
undistinguishable from a human, but as being created from 
organic materials). Their descriptions are provided in 
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Table 1. The only difference between the artificial human 
and the humanoid robot conditions is in the word used to 
label the created individual – a human or a robot. The identity 
of the agent is varied in a between-subjects design – each 
participant was presented with only one description of an 
agent (human, artificial human, or humanoid robot). The data 
was collected using web-based questionnaires. The 
questionnaires had two parts – a mind perception task and a 
moral judgment task. Participants were not informed 
beforehand that there are two different tasks. 
Mind perception task. After the description of the agent, the 
participants had to rate the mental capacities and mental 
states of the agent on 32 Likert scales (ranging from ‘1 – 
completely disagree’ to ‘7 – completely agree’). Questions 
assessed 15 mental capacities: psychobiological (hunger & 
thirst; physical pain; physical pleasure), perception (vision & 
hearing; taste & smell; touch), cognitive functions (thinking 
& reasoning; learning, memory & knowledge; judgment & 
choice), planning (goal formulation, action planning); 
emotional experience (emotional pain; emotional pleasure), 
affective states (feels emotions like anger, joy, happiness, 
sadness, fear; feels love; feels sympathy and compassion), 
agency (intentions; autonomous decisions; understanding 
consequences of own actions), moral agency (knows right 
from wrong; tries to do the right thing; responsible for own 
actions), beliefs (beliefs, expectations), desires (desires; 
dreams), theory of mind (understanding others’ thoughts; 
understanding others’ feelings), communication (ability to 
communicate thoughts and feelings to others), conscious 
experience (conscious experience), self-control (control of 
desires, emotions, impulses),  and personality (unique 
personality).  
Moral Judgment task. In the second part of the survey, each 
participant is again presented with the description of the agent 
followed by a description of a moral dilemma in which the 
protagonist is the same agent as in the previous task. The agent 
has to make the moral decision whether to push a control button 
and kill a person in order to save five people. The full text of the 
dilemma is given in Table 2. The agent is described to make the 
utilitarian decision and to undertakes the utilitarian action (the 
agent pushes the control button and kills one person but saves 
five other). After that the participants judged the moral rightness 
of the action (‘yes’ or ‘no’), rated the moral permissibility of the 
action (on a scale ranging from ‘1 = not permissible at all’ to ‘7 
= it is mandatory’) and the blameworthiness of the agent (on a 
scale ranging from ‘1 = not at all blameworthy’ to ‘7 = extremely 
blameworthy’). 

Participants 
70 participants filled in the questionnaires online. They were 
randomly assigned to one of the three experimental 
conditions. Data of 13 participants were discarded as they 
failed to answer correctly the question assessing the reading 
and the understanding of the presented scenario. So, 
responses of 57 participants (47 female, 10 male; 36 students, 
21 non-students) were analyzed – 22 for the human agent 

condition, 17 for the artificial human condition, 18 for the 
humanoid robot condition. 
 
Table 1. Descriptions of the agents used in the experiments. 

Human: 
The year is 2100. Mark is a young man. 
Artificial Human: 
The year is 2100. Technology has advanced so much that all 
parts and organs of the human body, including the brain, can 
be created from organic materials and are identical to natural 
ones. Mark is a human created like this. All his organs are 
created from organic matter and are the same as those of a real 
human. His brain is also created from organic matter and is 
functioning as the brain of a real human. Mark could not be 
distinguished by anything from a human. 
Humanoid robot: 
The year is 2100. Technology has advanced so much that all 
parts and organs of the human body, including the brain, can 
be created from organic materials and are identical to natural 
ones. Mark is a robot like this. All his organs are created from 
organic matter and are the same as those of a real human. His 
brain is also created from organic matter and is functioning as 
the brain of a real human. Mark could not be distinguished by 
anything form a human. 

 
Table 2. Moral dilemma used in the experiments 

Mark is responsible for a system controlling the movement 
of containers with cargo in a metallurgical plant. Mark notices 
that the system is faulty and a heavy container had become 
uncontrollable and headed at high speed toward five 
technicians who are in a tunnel. They do not have time to get 
out of there and are going to die, crushed by container. 

No one but Mark can do anything in this situation. 
The only thing that Mark can do, is to activate a control 

button and to switch off the security system of another 
technician who is on a high platform. The technician will fall 
down in front of the container. Together with his equipment, 
the technician is heavy enough to stop the moving container. 
He will die crushed by the container, but the other five 
technicians will remain alive. 

Mark decides to activate the control button and to switch 
off the security system of the technician who is on the 
platform. The technician falls on the path of the container and 
as the technician, together with his equipment, qis heavy 
enough, he stops the moving container. He dies, but the other 
five technicians stay live. 

Results 

Dimensions of Mind Perception 
Mind perception is assessed with respect to 15 mental 
capacities involving 32 rating scales. When a mental 
capacity is assessed using more than one rating scales, the 
average value from the ratings is calculated. The ratings on 
these 15 capacities were subjected to a principal components 
factor analysis with varimax rotation (Kaiser normalization). 
The rotated solution yielded 3 factors with eigenvalues 
greater than 1 that explained 77.4% of the variance.  

The first factor accounted for 31.7% of the variance and 
included 7 capacities – desires, affective states, emotional 
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experience, beliefs, psychobiological, personality, conscious 
experience. This factor is further named Experience. 

The second factor accounted for 24.1% of the variance and 
included 5 capacities - self-control, communication, theory of 
mind, moral agency, agency – and is called Agency. 

The third factor accounted for 21.6% of ratings variance 
and included 3 of the capacities – perception, cognitions, 
planning - and is named Cognition.  

Those factors are considered as Dimensions of Mind 
Perception (DMP). 

To obtain ratings for each DMP, the ratings of all capacities 
that load on that DMP were averaged. Those average ratings  
were subjected to a 3 x 3 Repeated-Measures ANOVA with 
DMP (Experience vs. Agency vs. Cognition) as a within-
subjects factor and identity of the agent (human vs. artificial 
human vs. humanoid robot) as a between-subjects factor. The 
results are presented on Figure 1. 

 
 
Figure 1: Average ratings on each Dimension of mind 
perception (Experience, Agency, Cognition) for each agent 
(human, artificial human, humanoid robot) on 7-point scales 
(1 = ‘completely disagree’, 7 = ‘completely agree’). Error 
bars represent standard errors. 

 
The main effect of identity of the agent is not statistically 

significant. 
The analysis revealed a main effect of DMP, F(2, 108) = 

15.94, p < .001. A Bonferroni post-hoc test revealed that 
agents receive higher ratings on the Cognition dimension (M 
= 5.28) than on the Experience dimension (M = 4.54, p = 
.001) or on the Agency dimension (M = 4.36, p < .001). 

The effect was qualified by a significant interaction 
between DMP and identity of the agent, F(4, 108) = 4.29, p = 
.003. The interaction is as follows. There is no significant 
difference between the ratings of the agents on the Agency 
dimension – human (M = 4.5), artificial human (M = 4.3), 
humanoid robot (M = 4.3). There is also no significant 
difference between the ratings of the agents on the Cognition 
dimension – human (M = 5.2), artificial human (M = 5.3), 
humanoid robot (M = 5.3).  Only for the Experience 
dimension there is a significant effect of the identity of the 
agent (F(2, 54) = 4.07, p = .023) – the humanoid robot is rated 
lower (M = 3.8) than the human (M = 5.3) on the Experience  
dimension (p = .019). 

For the human agent, there is a significant effect of DMP on 
the ratings (F (2, 42) = 5.59, p = .007). The human agent received 
lower ratings on the Agency dimension (M = 4.5) than on the 
Experience (M = 5.3, p = .02) or on the Cognition dimension (M 
= 5.2, p = .02). The effect of DMP is also significant for the 
artificial human (F(2, 32) = 13.03, p < .001): the artificial human 
is rated higher on the Cognition dimension (M = 5.3) than on the 
Experience dimension (M = 4.5, p = .008) or on the Agency 
dimension (M = 4.4, p < .001). For the humanoid robot, the 
effect of DMP is also significant (F(2, 34) = 8.44, p = .001): the 
humanoid robot is rated higher on the Cognition dimension (M= 
5.3) than on the Experience dimension (M = 3.8, p = 0.008) or 
on the Agency dimension (M = 4.3, p = .039). 

Moral Judgments 
The proportion of participants choosing the option that the 
agent’s utilitarian action (activating a control button, thus 
sacrificing one person, and saving five people) is morally 
right is 0.55 for the human, 0.53 for the artificial human, 0.5 
for the humanoid robot. Chi-square test shows that the 
differences are not significant. The effect of the identity of 
the agent is not significant neither for the moral permissibility 
ratings (p = .71) nor for the blameworthiness ratings (p = 
.74). The data is presented in Table 3. 
 
Table 3: Mean and standard deviation of the ratings about 
moral permissibility of the action (‘1 = not permissible at all’ to 
‘7 =  it is mandatory’) and the blameworthiness of the agent (‘1 
= not at all blameworthy’ to ‘7 = extremely blameworthy’). 

Agent Moral permissibility Blameworthiness 
Human 4.3 (1.8) 3.1 (1.6) 

Artificial human 4.2 (1.8) 3.1 (1.9) 

Humanoid robot 3.8 (1.9) 3.8 (1.9) 

Summary of the Results in Experiment 1 
In Experiment 1, three dimensions of mind perception are 
identified – Experience (desires, affective states, emotional 
experience, beliefs, psychobiological, personality, conscious 
experience), Agency (self-control, communication, theory of 
mind, moral agency, agency), Cognition (perception, 
cognitions, planning).  

The artificial human and the humanoid robot are rated as 
similar to the human agent on Agency and Cognition 
dimension. The humanoid robot is rated lower on the 
Experience dimension than the human agent. 

The identified dimensions of mind perception are ascribe 
to different agents in a different pattern. Human agent is 
judged higher on the Experience and Cognition dimensions 
than on the Agency dimension. The artificially created agents 
(artificial human and humanoid robot) are judged higher on 
the Cognition dimension than on the Agency or Experience 
dimensions. People more readily ascribe cognitive mental 
capacities to artificially created agents than mental capacities 
belonging to the Experience or Agency dimensions. 
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No differences among the agents were found with respect 
to moral judgments. This result is not surprising as all agents 
are perceived as having similar agency (p = .93) and moral 
agency (p = .38). 

Experiment 2 
Goals and Hypothesis 

As stated above, the third goal of the current research is to 
test the influence of a moral action of an agent on mind 
perception for that agent. In order to accomplish this goal, a 
second experiment is conducted. In that experiment, the 
ratings of mental capacities are preceded by the moral 
judgment task in which the agent is described as undertaking the 
utilitarian action of killing one person in order to save five. The 
hypothesis is that an agent performing a moral action will be 
perceived as possessing a higher degree of mental capacities. 
This especially applies to the artificial agents.  

Method 

Design and Procedure 
The design of Experiment 2 is similar to that of Experiment 
1, the only difference being the inverse order of task 
presentation: the moral judgment task was presented first and 
then – the mind perception task. 

Participants 
64 participants filled in the questionnaires online. They were 
randomly assigned to one of the three experimental conditions. 
Data of 4 participants were discarded as they failed to answer 
correctly the control question. So, responses of 60 participants 
(48 female, 12 male; 36 students, 24 non-students) are analyzed 
– 20 for the human agent condition, 22 for the artificial human 
condition, 18 for the humanoid robot condition. 

Results 

Dimensions of Mind Perception 
As in Experiment 1, mind perception is assessed with respect 
to 15 mental capacities with 32 rating scales. Again, when a 
mental capacity was assessed using several questions, the 
average value from the ratings was calculated. The ratings on 
these 15 capacities were subjected to a principal components 
factor analysis with varimax rotation (Kaiser normalization). 
The rotated solution yielded 3 factors with eigenvalues 
greater than 1 that explained 80% of the variance.  

The first factor (Factor 1) accounted for 32% of the 
variance and included 7 capacities – beliefs, conscious 
experience, agency, desires, planning, affective state, moral 
agency. It seems that the first dimension is a combined 
Experience-Agency dimension. 

The second factor (Factor 2) accounted for 26.7% of the 
variance and included 5 capacities – personality, 
communication, self-control, theory of mind. 

The third factor (Factor 3) accounted for 21.2% of ratings 
variance and included 3 of the capacities – cognitions, 
emotional experience, perception, psychobiological. 

The average ratings on each factor were calculated and 
subjected to a 3 x 3 Repeated-Measures ANOVA with DMP 
(Factor1 vs. Factor2 vs. Factor3) as a within-subjects factor 
and identity of the agent (human vs. artificial human vs. 
humanoid robot) as a between-subjects factor. The analysis 
revealed a main effect of DMP, F(2, 114) = 10.52, p < .001. 
A Bonferroni post-hoc test revealed that agents receive lower 
ratings (M = 4.55) on the second dimension than on the first 
dimension (M = 5.25, p < .001) and on the third dimension 
(M = 5.31, p = .003).  

The main effect of identity of the agent is not statistically 
significant. The interaction is aslo not significant. 

Moral Judgments 
Proportion of the participants answering that the utilitarian 
action undertaken by the agent, is morally right is 0.5 for the 
human agent, 0.41 for the artificial human, 0.5 for the 
humanoid robot. Human, artificial human, and humanoid 
robot receive mean moral permissibility ratings of 3.1, 3.7, 
and 3.7 and blameworthiness ratings of 3.4, 3.3, and 3.0, 
respectively. No significant differences are found. 

Summary of the Results in Experiment 2 
In Experiment 2, again three dimensions of mind perception 
are revealed, but they are different from the dimensions 
identified in Experiment 2. The difference is attributed to the 
utilitarian moral action undertaken by the agent before the 
mind perception ratings being made. First dimension 
identified here combines mental capacities from Experience 
and Agency dimensions identified in Experiment 1. 

No differences are found between agent’s ratings on each 
of the identified dimensions in Experiment 2. It seems that 
undertaking the utilitarian moral action makes the artificial 
agents to be perceived as similar to the human agent. 
 

Influence of Moral Action on Mind Perception 
In order to explore further the influence of moral action on 
mind perception, we compared the ratings for each of the 15 
mental capacities between Experiment 1 and Experiment 2. 
Description of the agent undertaking the utilitarian moral 
action preceded mind perception ratings in Experiment 2 so 
this is considered as moral-action condition.  

Ratings for each mental capacity were analyzed in a 3x2 
ANOVA with identity of the agent (human vs. artificial 
human vs. humanoid robot) and agent’s moral action (‘no’ or 
‘yes’) as between-subjects factors. Only the significant 
results are reported here. 

Identity of the agent had an effect on the ratings of the 
following mental capacities: conscious experience (p = .016), 
affective states (p = .002), emotional experience (p = .020) 
and desires (p < .001). The human agent was rated higher 
than the humanoid robot on all of those mental capacities (all 
p’s < .05). The human agent was rated higher than the 
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artificial human on affective states (p = .051) and desires (p 
= .017). For beliefs the effect was marginally significant (p = 
.054): human agent was rated higher than the humanoid robot 
(p = .065). 

Agent’s moral action had an effect on the ratings of the 
following mental capacities: agency (p = .014), moral agency 
(p = .029), beliefs (p = .024), conscious experience (p = .056), 
and planning (p = .058). The result is interesting, as it 
demonstrated that the agent’s moral action have an effect not 
only on his agency and moral agency ratings, but also on the 
rating of other mental capacities. 

Discussion and Conclusions 
The paper investigates the dimensions of mind perception for 
human agents and fictitious artificial agents (an artificial 
human and a humanoid robot) that are identical to humans 
and how mind perception is affected by the agent being 
presented as moral agent.  

In Experiment 1, three dimensions of mind perception are 
identified – Experience, Agency, and Cognition. The 
identified dimensions of mind perception are ascribed to 
different agents in a different pattern. The artificially created 
agents are judged higher on the Cognition dimension than on 
the Agency or Experience dimensions. The human is judged 
higher on the Experience and Cognition dimensions than on 
the Agency dimension. The artificial agents are rated as 
similar to the human agent on Agency and Cognition 
dimension but not on the Experience dimension. 

 People more readily ascribe cognitive mental capacities to 
artificially created agents than mental capacities belonging to 
the Experience or Agency dimensions. 

In Experiment 2, the goal was to explore the influence of a 
utilitarian moral action undertaken by the agent on mind 
perception for that agent. The three dimensions of mind 
perception here are restructured – the first dimension 
regroups mental capacities that seem influenced by the 
preceding agents’ moral action description like agency, 
moral agency, consciousness, planning and affective states. 
The second factor is related to communication and social 
interaction, while the third to cognition and psychobiological 
capacities. Now the artificial agents are rated to be similar to 
a human.  

The results of the two experiments show that a utilitarian 
moral action undertaken by an agent has a strong effect no 
only on the evaluation of moral agency but also other mental 
capacities.  

Another goal of the study was to explore the moral 
judgments about utilitarian moral action undertaken by those 
three agents. It turns out that there are no differences in the 
moral judgments for the human or the artificially created 
agents. This result is in line with the finding that similar 
agency and moral agency is ascribed to the human and to the 
artificial agents. 

In conclusion, our results provide support for the idea that 
some mental states and capacities (especially cognitive ones) 
are more readily ascribed to non-human agents; while other 
mental states (related to conscious experience) are ascribed 

to a lesser extend to non-human agents. They also give 
evidence that mind perception space is sensitive to and 
dependent on the actions performed by an agent. 
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Abstract: Previous studies have found a processing difference between unaccusative sentences and unergative sentences. They
argued that the difference is derived from a syntactic difference, i.e. an unaccusative sentence involves movement whereas an
unergative sentence does not. In this study, we are going to show that those studies are uninterpretable due to uncontrolled
stimuli and confounds in the materials. After examining their data anlysis, we argue that the effects they found does seem to be
stable. This reopens the question whether there is a syntactic difference between unaccusative and unergative verbs.
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Abstract 

Existing models of statistical learning involve computation of 
conditional probabilities over discrete, categorical items in a 
sequence. We propose an alternative view that learning occurs 
through a process of tracking changes along physical 
dimensions from one stimulus to the next within a “perceptual 
similarity space.” To test this alternative, we examined a 
situation where it is difficult or impossible to label stimuli in 
real time, and where the two assumptions lead to conflicting 
hypotheses. We conducted two experiments in which human 
participants passively listened to a familiarization sequence of 
frequency-modulated tones and were then asked to make 
familiarity judgments on a series of test bigrams. Behavioral 
results were broadly consistent with a conceptualization of 
learning as tracking trajectories through perceptual similarity 
space. We also trained a neural network that codes stimuli as 
values along two continuous dimensions to predict the next 
stimulus given the current stimulus, and show that it captured 
key features of the human data.  
 
Keywords: statistical learning; similarity space; connectionist 
modeling 

Introduction 
In as little as two minutes of exposure to a stream of stimuli, 
humans are able to absorb an underlying pattern based on 
statistical regularities (Saffran, Aslin & Newport, 1996). 
This phenomenon of learning through passive observation is 
called statistical learning and it has been observed in 
humans of all ages including neonates (Gervain, Macagno, 
Cogoi, Pena, & Mehler, 2008), infants (Saffran et al., 1996; 
Aslin, Saffran & Newport, 1998), and adults (Saffran, 
Johnson, Aslin, & Newport, 1999, inter alia).  

Statistical learning is generally understood by assuming 
that learners are able to extract information from the 
environment by subconsciously recording and computing 
statistical relationships in sequences. By predicting 
upcoming stimuli from prior stimuli, for example, learners 
track transitional or conditional probabilities—that is, the 
probability of “x given y” (Aslin et al., 1998). These 
models, such as PARSER (Perruchet & Vinter, 1998) or the 
simple recurrent network (Elman, 1990; 1991), therefore 
rely on discrete representations of stimuli to segment a 
stream using statistics. All of these models assume that 
participants are quickly and accurately categorizing stimuli 
according to labels intended by the experimenter.  

It may be problematic to assume that learners are able to 
make these categorical judgments in real time, in particular 
if statistical learning is thought to extend to natural stimuli, 

which are often ambiguous and highly dependent on context 
to identify (Hockett 1960). Here we present a novel 
approach to understanding statistical learning that does not 
assume participants are categorizing stimuli in real time. We 
propose that participants rely on situating stimuli within a 
perceptual similarity space and learn by tracking the change 
from one stimulus to the next within this similarity space 
(Emberson et al., 2013; Wang & Zevin, submitted).  

We propose that by continuously tracking the perceived 
change from one stimulus to the next in a sequence, the 
learner represents stimuli relative to one another along a 
number of perceptual dimensions (for example, two 
dimensions were used in our experiments and simulations). 
Thus, each stimulus can be situated in a feature space 
defined by these dimensions (Shepard, 1965), where 
transitions from one stimulus to the next can be understood 
as the trajectory between two locations in this space. 
Concretely, we can model this by coding stimuli in two or 
more continuous dimensions. Rather than predict a discrete, 
symbolic stimulus from the current stimulus, such a model 
would predict the next location in terms of continuous 
values on its dimensions. A simple connectionist model 
provides a logical approach to simulating the phenomenon.  

 

 
 

Figure 1: The angles of all possible trajectories from 
each point in the acoustic space following the grammar 
for Experiment 1 (ABCD). 
 
For our experiments, we adapted stimuli from Holt and 

Lotto’s studies of auditory categorization (2006). Stimuli 
were frequency-modulated tones uniformly distributed over 
a two-dimensional acoustic space that can be visualized as a 
grid with carrier frequency on the y-axis and modulation 
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frequency on the x-axis. Each stimulus was assigned a 
category based on its location in this space by dividing the 
grid into four quadrants, labeled A, B, C, and D (see Figure 
1). During the familiarization phase of the experiments, 
stimulus tones were presented as a stream of bigrams 
organized by the four experimenter-defined categories (e.g. 
a tone from quadrant A was always followed by a tone from 
B). In this way, the sequences can be described alternatively 
as a sequence of category labels, or as a sequence of 
trajectories through similarity space, leading to different 
predictions about how participants should process the test 
stimuli. For example, some test stimuli violate predictions 
based on a sequence of category labels, but are broadly 
consistent with the direction of change in similarity space. 

A neural network simulation provided a qualitative fit to 
the results from two experiments with different sequences. 
In fact, the model fit a difference between the two 
experiments that we did not predict when designing the 
stimuli. 

Experiment 1: ABCD 
Experiment 1 was motivated by a desire to replicate, with 
more power, an earlier study on the same topic (Wang & 
Zevin, submitted). Twice as many subjects were recruited 
and an extraneous test condition was excluded for the new 
version of the experiment. The experiment was designed to 
test the different predictions made by the two accounts 
discussed in the introduction: the categorization-based 
approach and the similarity space approach. Specifically, 
two different types of non-words were created: one for 
which the items violate the grammar but whose transition 
trajectory was similar to other transition trajectories in the 
training (Correct Trajectory Non-Word), and one for which 
the items never occurred in the training and the transitional 
trajectory was very dissimilar to other transitional 
trajectories in the training (Incorrect Trajectory Non-Word). 
If participants relied on identifying the incoming units as 
categories A, B, C or D, they would treat words better than 
non-words and treat both types of non-words as equally 
unfamiliar. If participants made use of the transition 
trajectories, Correct Trajectory Non-Words should not be as 
good as Words but Incorrect Trajectory Non-Words should 
be much worse than both Words and Correct Trajectory 
Non-Words. 
 
Methods 
Participants: 78 undergraduate students from The 
University of Southern California were recruited from the 
Psychology Department subject pool. They received either 
course credit or a payment of $5 for their participation. Due 
to technical errors, data was only collected for 72 of the 78 
who participated.  
 
Stimuli: The stimuli were frequency-modulated tones 
adapted from the studies of Holt and Lotto (2006). 64 tones 
were uniformly distributed over a two-dimensional acoustic 
space in perceptually equivalent steps (30 Hz in carrier 

frequency, 18 Hz in modulation frequency). The stimuli 
were divided into four even quadrants each containing 16 
tones and labeled A, B, C, and D. Each stimulus comprised 
300ms of sound and 300ms of silence.  

 
Familiarization Phase: The entire experiment was 
controlled using Paradigm (Perception Research Systems, 
2007) on a Windows desktop computer. Participants were 
allowed to read the material of their choice while passively 
listening through headphones to 10.5 minutes of a sound 
stream. The sound stream consisted of a total of 512 AB 
words and 512 CD words, such that all possible A-B 
transitions and C-D transitions were presented twice. Only 
half of all possible part-word transitions (from B to A or C 
and from D to A or C) occurred. The stimuli were chosen 
using a recursive algorithm to ensure even sampling from 
the distribution. Consequently, the transitional probability of 
a tone from B following one from A is 1, while the 
probability of a tone from A following one from B is 0.5.  
 
Testing Phase: Immediately following the training phase, 
participants were instructed to make a series of familiarity 
judgments on 36 pairs of tones. During each trial, 
participants clicked anywhere on the screen to begin and a 
consecutive sequence of two tones was played. Following 
presentation of the sequence, participants were asked to 
indicate their familiarity with the pair of tones. A text 
prompt was displayed (“Do you think that you heard this 
sequence in the previous section?”) and participants 
responded by clicking on one of five ratings (“Definitely”, 
“Maybe”, “Not Sure”, “Maybe Not”, “Definitely Not”), 
ending the trial. There were a total of 36 trials, 12 of each 
from 3 test conditions: Word, Correct Trajectory Non-Word, 
and Incorrect Trajectory Non-Word. Each test category had 
4 unique test items that were repeated 3 times each, for a 
total of 12 trials per condition. To maintain consistency 
across conditions, all test items were novel (i.e. none of the 
bigrams were present in the familiarization sequence) and 
followed trajectories with a length of 3 arbitrary units from 
the first to second tone in the bigram. The Word condition 
contained two AB and two CD pairs, where bigrams that 
started in quadrant A followed the median angle for 3 units 
from the starting stimulus, terminating in quadrant B. In the 
Correct-Trajectory Non-Word condition, each pair of 
stimuli began and ended in the same quadrant (e.g. AA or 
BB) but followed a trajectory along the median angle 
established during the training phase (in general, towards 
the center of the acoustic space). The Incorrect Trajectory 
Non-Word condition contained the same pairs of sounds 
from the Correct Trajectory condition, but reversed the 
order in which they were played such that they followed the 
opposite, more unfamiliar trajectory (i.e. outwards from the 
center of the acoustic space). To reiterate, although the 
distance in feature space between each tone of a bigram 
remained at a constant 3 units, only items in the Word 
condition crossed a quadrant boundary.  
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Figure 2: Visualization of the 4 test items from each of 
the 3 test conditions for Experiment 1 (ABCD).  

 

Results and Discussion 
Inferential tests for both experiments are based on linear 
mixed effects models created in Stata (StataCorp, 2013). 
Words were rated as significantly more familiar than items 
in both of the non-word conditions: Correct Trajectory (β = 
0.27, z = 5.01, p < 0.05) and Incorrect Trajectory (β = 0.37, 
z = 6.91, p < 0.05). This result demonstrates that learning 
has occurred, as participants treated the grammatical 
bigrams as different and more familiar than the other 
sequences. The difference between ratings for Correct 
Trajectory Non-Words and Incorrect Trajectory Non-Words 
was marginally significant (β = 0.10, z = 1.90, p = 0.057). 
Although the increase from Correct to Incorrect Trajectory 
Non-Words was only marginally significant, it is important 
to note the overall trend of increasing unfamiliarity across 
the 3 conditions (see Figure 3) is consistent with data from 
Wang & Zevin (submitted).  

 
Figure 3: Ratings by test category for Experiment 1. 
Each dot in the scatter represents a subject’s mean 
rating on a scale from 1 to 5 (where 1 is most familiar 
and 5 is most unfamiliar) for that category. The line and 
shadow indicate the mean rating and 95% confidence 
interval for all subjects in that category.  

Experiment 2: ABDC 

In Experiment 1 (ABCD), words were defined as transitions 
from a tone in quadrant A to one in B or from a tone in 
quadrant C to one in D, such that words could always be 
recognized as going down in carrier frequency. In other 
words, participants could have used a single dimension to 
learn the regularities in Experiment 1. However, we wanted 

to examine how participants would learn when the grammar 
was more complicated. So, in Experiment 2 (ABDC), words 
were defined as transitions from A to B or D to C, making it 
necessary to use both carrier frequency and modulation 
frequency to identify grammatical bigrams. This more 
complicated grammar should be harder for subjects to learn 
because it requires tracking two dimensions rather than one.  

Methods 
Participants: 84 undergraduate students from The 
University of Southern California were recruited from the 
Psychology Department subject pool. They received either 
course credit or a payment of $5 for their participation. Due 
to technical errors, data was only collected for 72 of the 84 
who participated.  

 
Stimuli: Stimuli were taken from the same acoustic space as 
Experiment 1. Each stimulus comprised 300ms of sound 
and 300ms of silence.  

 
Familiarization Phase: In Experiment 2, words were 
defined as transitions A-B and D-C (rather than C-D as in 
Experiment 1). The sound stream contained a total of 512 
AB words and 512 DC words, such that all possible A-B 
transitions and D-C transitions were presented twice. The 
procedure used was identical to Experiment 1, where 
participants listened to the familiarization stream passively. 

 
 

Figure 4: The angles of all possible trajectories from 
each point in the acoustic space following the grammar 
for Experiment 2 (ABDC). 

 
Testing Phase: The testing procedure for Experiment 2 was 
consistent with Experiment 1, but used a different set of test 
items. There were a total of 36 trials, 12 of each from the 
same 3 test conditions: Word, Correct Trajectory Non-
Word, and Incorrect Trajectory Non-Word. Each test 
category had 4 unique test items that were repeated 3 times 
each, for a total of 12 trials per condition. All test items 
were novel and followed trajectories with a length of 3 
arbitrary units from the first to second tone in the bigram. 
As before, the Correct-Trajectory Non-Word pairs of stimuli 
began and ended in the same quadrant (e.g. AA or DD) but 
followed a trajectory along the median angle established 
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during the training phase (in general, towards the center of 
the acoustic space). The Incorrect Trajectory Non-Word 
condition contained the same pairs of sounds from the 
Correct Trajectory condition, but reversed the order in 
which they were played such that they follow the opposite, 
more unfamiliar trajectory (i.e. outwards from the center of 
the acoustic space).  
 

 
 

Figure 5: Visualization of the 4 test items from each of 
the 3 test conditions for Experiment 2 (ABDC).  
 

Results and Discussion 

 
 

Figure 6: Ratings by test category for Experiment 2. 
Each dot in the scatter represents a subject’s mean 
rating on a scale from 1 to 5 (where 1 is most familiar 
and 5 is most unfamiliar) for that category. The line and 
shadow indicate the mean rating and 95% confidence 
interval for all subjects in that category.  
 

As in the previous experiment, there is robust evidence of 
statistical learning in Experiment 2. Unlike in Experiment 1, 
however, there was only a marginally significant difference 
between average ratings for Words and Correct Trajectory 
Non-Words (β = 0.11, z = 1.96, p = 0.05). As before, Words 
were rated as significantly more familiar than Incorrect 
Trajectory Non-Words (β = 0.30, z = 5.62, p < 0.05). 
Further, Correct Trajectory Non-Words were rated as 
significantly more familiar than Incorrect Trajectory Non-
Words (β = 0.20, z = 3.66, p < 0.05), which indicates 
sensitivity to the direction of change.  

Thus, results from both Experiment 1 (ABCD) and 
Experiment 2 (ABDC) follow the same general trend: words 
were rated as most familiar, followed by Correct Trajectory 
Non-Words, with Incorrect Trajectory Non-Words rated as 
most unfamiliar, although particular pairwise contrasts 

differ in significance across experiments. Curiously, and 
contrary to our initial predictions, the difference between 
ratings for Words and Correct Trajectory Non-Words is 
smaller in Experiment 1 than in Experiment 2, (β = -0.17, z 
= -2.20, p < 0.05).  

Computational Modeling 

Design and Procedure 
In order to simulate learning in our experiments, we 
developed a simple feed-forward back-propagation, neural 
network using PDPTool (McClelland 1986; 2015). The 
neural network used a logistic activation function and had 
two input units, two output units, a two-unit hidden layer 
and a bias. Two versions of the model were trained ten 
times each: ABCD and ABDC, which were identically 
constructed but received different inputs corresponding to 
the 1024 stimulus sequences from Experiment 1 and 2, 
respectively. Each stimulus was coded as a pair of 
coordinates representing its location in the acoustic 
space. Inputs and outputs were scaled to fit within the valid 
range of input [-1,1] and output [0,1] values. The model was 
trained to predict the next stimulus from the current 
stimulus as bigram pairs, including both Words and Part-
Words, so for example the sequence ABCD would be 
presented to the model in three discrete trails: AB, BC, and 
CD. As an initial measure of learning, we trained multiple 
runs for 100 epochs, collecting pattern sum of squares (pss) 
on the training items after each of the first ten epochs, and 
every fifth epoch thereafter. We observed that the model 
reached asymptote by this measure after ten epochs, to an 
error of 0.12 for ABCD and 0.14 for ABDC. 

Error scores for the test items were generated by 
presenting the first stimulus in each test pair to the model 
and calculating the summed squared error (pss) for the 
model’s output relative to the second item in the test bigram. 
This measure was taken for all 12 test items every 5 epochs 
from the 10th to the 50th, and the mean of these 
observations taken for each run. Means of all ten runs and 
standard deviations across runs are reported in Tables 1 and 
2.  

Results and Discussion 
 

 
 

Figure 7: Average error by test category over 10 runs of 
the model for ABCD (right) and ABDC (left).  
 

Word% Correct%Tr.%NW% Incorrect%Tr.%NW%
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The computational models for ABCD and ABDC 
qualitatively replicated the human data. Figure 7 displays 
each model’s error by test condition, measured as the 
squared distance between the model’s prediction and the 
target (i.e. the second point in the test item). Thus, the 
higher the error for a test item, the further away in feature 
space the second tone in the pair was from the model’s 
prediction. As such, the model’s error on each test item 
parallels the measures of familiarity collected from the 
human data. As in the human data, both ABCD and ABDC 
display the overall increasing trend across the three test 
conditions, with the Incorrect Trajectory Non-Words treated 
as significantly different than the Words. Furthermore, there 
is a difference in the Correct Trajectory Non-Word 
condition between ABCD and ABDC. The ratio of the 
errors between the categories Word and Correct Trajectory 
Non-Word is larger in ABCD (0.0955) than in ABDC 
(0.0387), and it is clear from Figure 7 that this increase is 
larger for ABCD than ABDC. This difference qualitatively 
mimics the observed discrepancy between ratings for 
Correct Trajectory Non-Words in Experiments 1 and 2.  

 
Table 1: Average error and standard deviation by test 
category over 10 runs of the simulation for ABCD. 

 
Condition Avg. Error Std. Deviation 

Word 0.0229 0.0094 
Correct Tr. NW 0.2399 0.0165 

Incorrect Tr. NW 0.5484 0.0333 
 

Table 2: Average error and standard deviation by test 
category over 10 runs of the simulation for ABDC. 

 
Condition Avg. Error Std. Deviation 

Word 0.0052 0.0007 
Correct Tr. NW 0.1342 0.0051 

Incorrect Tr. NW 0.5060 0.0039 
 

General Discussion 
The behavioral results from the two experiments 

presented here are broadly consistent with our 
conceptualization of statistical learning as occurring by 
situating stimuli in a perceptual similarity space. Further, 
the computational model we designed according to this 
conceptualization fits the data quite well. The auditory 
stimuli were specifically designed to be difficult to 
categorize, yet participants were able to distinguish between 
words and non-words after brief, passive familiarization 
with a sequence of grammatical bigrams. Although results 
for the Correct Trajectory Non-Word condition differed 
between Experiments 1 and 2, the overall trend of 
increasing unfamiliarity across conditions indicates that 
learners are sensitive to the trajectory from one stimulus to 
the next in feature space.  

Using the same stimuli – indeed, the same ABCD 
familiarization sequence used in the current Experiment 1 – 

Wang and Zevin (submitted) observed a small difference 
between Words and Correct Trajectory Non-Words, and a 
much larger difference between Correct and Incorrect 
Trajectory Non-Words. Across a number of experiments we 
are not reporting here due to space limitations, the general 
pattern of decreasing familiarity from Words to Correct to 
Incorrect Trajectory Non-Words is always present, although 
different contrasts are significant by inferential tests under 
different conditions. We therefore suggest that this overall 
pattern is the most critical feature of the data to simulate. 

Interestingly, there are more subtle differences between 
Experiments 1 and 2 that are also captured by the 
simulation. Both the model and the human participants 
treated Correct Trajectory Non-Words as more similar to 
Incorrect Trajectory Non-Words in Experiment 1, but more 
similar to Words in Experiment 2. Until examining the 
simulation results, we failed to consider an idiosyncrasy 
with how the test items were chosen between experiments. 
The test items for ABCD and ABDC differed slightly in 
how they were sampled from throughout the feature space. 
As shown in Figures 2 and 5 above, the four non-word pairs 
for ABCD were taken from each of the four quadrants while 
in ABDC the four non-word items were drawn from only 
two quadrants (two from A and two from D). Therefore, 
half of the Correct Trajectory Non-Words in ABCD 
followed the correct trajectories for words and the other half 
for part-words while in ABDC they all followed trajectories 
for words. This could explain why the Correct Trajectory 
items were rated as more unfamiliar in ABCD than in 
ABDC for both the human experiments and the 
computational models.  

Interestingly, the simulation’s overall error, especially for 
Words, is lower in ABDC than ABCD. One possible 
explanation is that having two meaningful dimensions to 
define words provides the model with more information 
over which it can track probabilities, increasing its ability to 
learn the grammar. In contrast, the extra dimension 
introduces additional complexity that makes the sequences 
more difficult for humans to learn. This gets at one of the 
problems with the model: it is almost too good at learning 
the pattern. While humans must approximate each 
stimulus’s location in similarity space, the model receives 
exact coordinates so naturally the model will produce more 
accurate and precise predictions. A further problem with the 
simulation lies in the fact that connectionist models like the 
SRN (Elman, 1990) and the one presented here all learn 
with supervision. While the model receives feedback on its 
predictions for every stimulus, human learners are thought 
to be dependent on unsupervised mechanisms under similar 
conditions (McClelland, 2006).  

Furthermore, because the model was designed for a very 
specific experimental setting, it has limited applications. We 
have proposed elsewhere (Wang & Zevin, submitted) that 
the trajectory-tracking approach may provide an explanation 
for statistical learning phenomena hitherto unaccounted for 
by existing models. For example, word segmentation during 
initial language acquisition is a real-life situation in which 
category labels are not readily available and the sequence 
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signal may be ambiguous due to natural variation in human 
speech (Shannon, 1948; Hockett, 1960).  

However, there is no reason to believe that the trajectory-
tracking model tells the whole story. It is more likely that 
learners utilize different mechanisms, either simultaneously 
or individually, depending on the situation and the 
information that is readily available in the stimuli sequence. 
Relying on perceptual similarities is useful when stimuli are 
defined on the same dimensions and low-level physical 
features are readily extracted. When it is easy to abstract and 
divide stimuli into categories, however, there may be 
situations in which stimuli are readily recognizable, and it is 
simpler (i.e. involves lower computational load) to compute 
transitional probabilities over labels. 

In conclusion, the results of this series of experiments and 
their remarkably close fit to the simulations provide 
overwhelming support for our theory that learning occurs by 
tracking changes in perceptual features from one stimulus to 
the next in a sequence. Although we observed a difference 
in one of the test conditions between the two experiments, 
the simulations reproduced the phenomenon, leading us to 
believe that it was a result of an idiosyncrasy in our test 
stimuli. Results from both experiments were otherwise 
consistent with our assertion that participants are situating 
stimuli within a perceptual similarity space and learn the 
pattern by tracking their trajectories through this space.  
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Abstract 

Referential success depends on choice of referring expression. 
The choice of referring expression will depend on contextual 
factors as well as factors related to speaker and addressee 
knowledge. A shared-learning paradigm was used in which 
partners learned names of objects together and separately before 
a referential task. Items differed on commonality, with some 
independently rated as more common and some as more rare. 
Speakers were less likely to use names versus other forms when 
items were rare than common (p<0.001) and less likely to use 
names when items were new than learned together (p<0.001). 
Asymmetry effects showed that speakers were more likely to 
use a name when the addressee was deemed more 
knowledgeable in post-test ratings (p<0.01). Together, we take 
this to show speakers choose to use a name versus a description 
based on the likelihood that their interlocutor will know the 
name. Factors affecting the likelihood include prior knowledge 
of what a typical addressee will know and shared experience, 
which includes inferring an interlocutor’s expertise, as 
dynamically updated during a dialog.  
 
Keywords: interactive conversation; referring expressions; 
common ground; expertise, belief updating 

Introduction 
In interactive conversation, the likelihood of a speaker’s 
referential success depends on choice of referring expression. 
A speaker’s choice to refer to a picture as, say, a “dog” 
versus a “Bernese Mountain dog” or “the large black dog 
with a white chest and tan marking”, depends on factors 
relevant to the context, the speaker, and the addressee. If, for 
example, the referential domain includes multiple dogs, a 
more specific label will be needed to pick out a unique 
object; whereas a domain with a single dog and several cats 
is likely to elicit the basic label “dog”. A speaker’s 
knowledge, or lack of knowledge, of dog breeds will restrict 
the name alternatives the speaker will have readily available, 
as will the speaker’s assessment of the addressee’s 
knowledge—e.g., if the speaker is aware that the addressee 
does not know a breed of dog, the speaker may choose to 
describe the dog rather than use the name of the breed. 

Speakers readily distinguish between differences in 
knowledge when they learn novel names for novel objects 
with a partner (Wu & Keysar, 2007; Heller et al. 2012; 

Gorman et al., 2013). In this shared-learning paradigm, 
participants learn some novel names together (shared names) 
and then one participant, who is subsequently the director in 
a referential task, learns additional names alone (privileged 
names). This creates a situation of knowledge asymmetry that 
the speaker may use to inform choice of referring form in the 
referential task. Speakers indeed track shared experience 
when the objects are novel, i.e., when they have not seen the 
objects prior to the experiment. They use more names than 
descriptions for those objects that have been learned together. 
(Wu & Keysar, 2007); and rarely use the name-alone form 
for privileged names (Heller et al. 2012; Gorman et al., 
2013).  

In related work, Gegg-Harrison (2016, also see Gegg-
Harrison & Tanenhaus, 2016) embedded name learning in 
the context of a toy world.  In a role-playing game, certain 
levels were always encountered before others. The 
participant’s choices made regions of the world and the 
information contained there inaccessible. Therefore, a 
participant who displayed knowledge of a particular name 
would implicate that she would know some names but not 
others.  The participant then interacted with a game expert in 
several tasks that involved characters from the toy world. 
Interactions with the expert showed that the participant 
modified her name use and assessment of what the speaker 
knew based on the expert’s use of names.  

In most conversations, especially with a relatively 
unfamiliar addressee, a speaker will not have direct, shared 
experience. If we assume that speakers choose to use a name 
because it is the least resource demanding, shortest, and 
richest referring expression, then a rational speaker would 
take into account the likelihood that the addressee would 
know the name.  That likelihood would be based on both the 
likelihood that any addressee would know that name 
(baseline likelihood) and evidence specific to that addressee, 
much of which is gleaned from the ongoing conversation.   

To lay the groundwork for explicitly evaluating the 
likelihood hypothesis, we modify the shared-learning 
paradigm by using pictures of real entities that vary in 
baseline likelihood and by having the learning be interactive, 
which allows the director to have assessed the expertise of 
the matcher.  We hypothesize that name use will be affected 
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by both baseline likelihood and shared experience, including 
inferred level of expertise, with larger effects of shared 
learning for less commonly known (rare) names and lower 
name usage for matchers who are judged to have lower 
expertise, especially for rare names, even when they have 
been learned together. If we can establish that the paradigm is 
sensitive to expertise, then this allows for more targeted 
questions about the factors, including prosody and choice of 
lexical expressions, that interlocutors use to signal and infer 
which names are likely to be know to each other. 

Using novel names and novel objects is well-suited for 
asking basic questions about whether speakers can form 
item-specific memories of shared experience that can be used 
as a basis for common ground. However, limitation of using 
novel objects and novel names is that it abstracts away from 
two important characteristics that influence choice of 
referential forms. The first is the speakers’ prior beliefs about 
how likely any interlocutor is to know a name. For example, 
any speaker of English can assume that her interlocutor will 
know the general category of dogs and its base-level name. 
The second is that it doesn’t capture the dynamic aspect of 
interactive conversation. A speaker is unlikely to know the 
full extent of her addressee’s knowledge about a topic prior 
to an interaction. Rather she may draw inferences based on 
what her interlocutor reveals during the interaction. For 
example, if a speaker learns that his interlocutor is a gourmet 
cook, he can assume that she will know the names for even 
relatively rare kitchen utensils. This assumption is possible 
even without direct evidence of knowledge of particular 
names by attributing to that interlocutor knowledge that is 
likely known by most gourmet cooks.   

The present study extends the shared-learning paradigm in 
two important ways. First, we use real objects drawn from 
categories, in particular dog breeds and kitchen utensils, in 
which there are commonly known names (e.g., “tongs”) and 
less common (rare) names (e.g., “mandoline”). We normed 
items as common or rare to the average person but chose 
categories that might differ in expertise given broad 
designations of communities (i.e., cooks and dog lovers).   
Second we modify the shared-learning paradigm to create 
conditions where participants have the opportunity to assess 
each other’s expertise in a domain. This will allow one to 
tease apart whether assessment of addressee knowledge is 
acquired throughout the interaction by cues separately from 
the shared experience of learning names together. 

Specifically, we ask whether the evidence that shared 
learning of novel objects informs referential choice can be 
interpreted as a part of a larger likelihood computation that 
also incorporates common knowledge, shared experience and 
inferred expertise. It could be the case that shared experience 
effects seen with novel objects can be attributed to the 
triggering of episodic traces, such that when a speaker 
chooses to refer to an object, the memory of having learned it 
with a specific addressee is activated, which in turn informs 
referential choice (Horton & Gerrig, 2005). The low-level 
trace is enough to explain the shared learning effects. A 
speaker, however, may come into the experiment with a prior 

belief about a partner’s likely knowledge that gets updated as 
more evidence is presented. Thus, when the partners learn 
novel names together, the speaker updates the belief that the 
addressee knows the name, having learned it together. In the 
paradigm with novel objects, this belief is likely binary: they 
either learn it together in the experimental context or not. The 
present study, however, in its incorporation of real-world 
objects, creates a situation in which interlocutors not only 
may have different prior beliefs about the addressee’s 
knowledge at the beginning of the experiment but may also 
dynamically update those beliefs throughout the interaction. 
The assessment of a partner’s knowledge via shared 
experience as well as its updating, of course, also involves 
memory processes. However, it is not clear how memory 
traces with a specific partner could account for how beliefs of 
the overall commonality of an object interact with that shared 
experience. Furthermore, as the interaction unfolds, it is not 
clear whether further updating of this belief occurs given 
evidence from the interaction. An episodic trace would not 
predict its effect on referential choice for new items, for 
example. If episodic traces are driving the effects of shared 
learning, then speakers will be equally sensitive to the shared 
experience of learning names in the context of the 
experiment. However, if commonality and inferred expertise 
combine with shared experience to determine the overall 
likelihood of an addressee knowing a name, then one cannot 
only appeal to episodic-based explanations.  

The present study concerns itself with the following 
questions: 1) Does the commonality of an object impact the 
effect of shared learning with a partner? 2) Do interlocutors 
dynamically update their beliefs about their partner’s 
expertise in a subject? If so, does this expertise interact with 
commonality and shared learning to inform the speaker’s 
choice of referring form? 

We predict that if items are more likely to be known prior 
to the experiment, shared experience in the experiment is less 
likely to affect choice of referring expression. Conversely, if 
rare items are similar to novel items in past studies (i.e., 
associated with low or no prior knowledge), then the shared 
experience effects are likely to be strongest in this group. 
Furthermore, if expertise is inferred throughout the 
interaction, then the effects of commonality and/or shared 
experience, if any, should differ according to whether the 
addressee is deemed to be knowledgeable in the domain or 
not. Finally, although the effects of shared experience will be 
smaller for common names, we should still see some effects; 
this would suggest that shared experience enters into 
likelihood calculations, even for commonly known names. 

Methods 
The experiment consisted of three parts: a learning phase, in 
which the participants learned the name of items in two 
categories--dog breeds & kitchen utensils; a test phase, in 
which one participant directs the other to pick out a target 
item in a referential task; and a post-test, in which 
participants rate their partner’s, and their own, knowledge of 
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the items as well as identify the context of learning. See 
Figure 1 for an illustration of these three parts. 

 

Figure 1: Experimental procedure consisting of the Learning 
phase (i.e., Training), the Test phase, and Post-test phase. 

Norming 
The items used in this experiment were normed and rated as 
either common or rare from two categories on which people 
often differ in expertise (dog breeds and kitchen utensils). 
See Figure 2 for sample stimuli of kitchen utensils. The 
norming procedure consisted of a presentation of 8 images 
(4 dog breeds, 4 kitchen items, with 2 common and 2 rare of 
each category). Each image was presented one at a time and 
participants were tasked to 1) label the image, 2) provide a 
confidence rating for that label, and 3) indicate how likely it 
is that the average person would know the label. 

There were 80 unique images normed, separated into 10 
lists of 8 items. 600 total participants were tested (roughly 
60 people per list) with an average of 58.8 data points per 
item, due to some blank responses for single items. 

Of the 80 unique items normed, we chose 36 experimental 
items: 12 for shared learning; 12 for director-alone learning; 
and 12 new items to be tested but not trained on. Half of all 
items (n=18) were dogs and the other half (n=18) were 
kitchen items. Within each of these categories, half (n=9) 
were rare, and half (n=9) were common. 

We chose the items by first sorting by largest sample. For 
common items, we then took the items with the highest 
average rating (i.e., the knowledge rating for the “average 
person”) with the highest accuracy of labeling (above 70% 
accuracy). For rare items, we took the items with the lowest 
average rating (i.e., the knowledge rating for the “average 
person”) with the highest accuracy (above 10% accuracy). A 
minimum of 10% accuracy was implemented in order to 
remove items that had a name that was incorrect but 
confidently rated (e.g., “Greyhound” was a highly repeated 
label for an Azawakh, resulting in 0% accuracy). 

 
 

 

 
 

 
 
 

Figure 2: Sample stimuli of rare and common kitchen 
utensils. 

The Learning Phase 
The learning phase allowed participants to observe each 
other’s expertise. We manipulated whether names were 
shared or privileged by dividing the phase into shared 
learning among the two partners and director-alone learning. 
This allowed us to observe how a speaker combines shared 
experience with general likelihood of knowing a name and 
modulates choice of referring expression by perceived 
differences in expertise. 

At the beginning of the learning phase, participants sit 
together at a table with the experimenter standing in front of 
them. Based on seating arrangement, each participant is 
assigned as either the Director or the Matcher. 

For the shared-learning portion of the learning phase, the 
experimenter explains to the participants that they will be 
learning names of items together and that the images will be 
of different dogs and different kitchen items which they 
may or may not be familiar with. The experimenter then 
presents a flashcard with an individual image one at a time. 
After presenting the image, participants discuss with one 
another whether they know the name of the image. If they 
know it, they say the name aloud. After given some time to 
guess, the experimenter states the correct name of the item. 
This procedure is done for 12 items, presented in three 
blocks of four items. After each block, the items are 
repeated once more before moving to the next block. After 
all three blocks, the participants go through the whole stack. 

For the second half of the learning phase (Director-alone 
learning), the Matcher sits at a computer in the same room 
and is instructed to wear headphones playing instrumental 
music while engaging in a game of Solitaire. During this 
time, the experimenter presents the Director with 12 
additional images. The procedure is as above, with three 
blocks of four items. Thus, together with the shared learning 
portion, a total of 24 items were presented in the learning 
phase, holding out the last 12 items for the test phase. 

Both portions of the learning phase (shared and Director-
alone) are recorded and transcribed. 

The Test Phase 
Following the learning phase, the participants began the test 
phase, which was a referential task in which the Director 
verbally leads the Matcher to pick out a target item from an 
array. The test phase created a situation for the Director to 
refer to the items of varying commonality and ground status 
that were introduced in the learning phase in a controlled 
referential task.  

Both Matcher and Director sat at their own computer 
facing one another. The Director was shown one image on 
the screen, which could be an image that was learned 
together with the Matcher, learned alone, or never presented 
during the learning phase. The Matcher, on the other hand, 
was presented with three images. All three images were of 
the same category (i.e, all dogs or all kitchen items), and they 
are of same commonality (i.e., all rare or all common). The 
difference among the images is in their ground status (i.e., 
one is shared, one is learned by Director alone, and one is 

Rare Kitchen 
Mandoline 

Common Kitchen 
Tongs 
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new to both participants). The Director was instructed to 
identify the image on her screen with explicit instruction that 
there is no restriction on language (i.e., she can name or 
describe as needed), and the Matcher was tasked to click on 
the target image. The Matcher was also allowed to ask 
questions and interact freely with the Director as needed. 

This procedure was followed for 24 test items: 8 Shared, 
8 Alone, and 8 New targets. Half the targets in each ground 
status (n=4) are dog breeds; half (n=4) are kitchen items. 
Furthermore, half the dog items (n=2) are rare; the other 
half (n=2) are common; half the kitchen items (n=2) are 
rare; the other half (n=2) are common. 

Each trial was recorded and the form of referring 
expression was coded as either Name Alone, Description, 
Name + Description, or Description + Name. 

The data below are from 24 pairs of participants. 

The Post-test  
After the test phase, both participants individually took a 
post-test. Participants were asked to rate their partner’s 
knowledge of each domain (dog breeds/kitchen utensils), as 
well as rate their own knowledge in the domain. Next, 
participants were shown a single item and were asked to type 
in the label for the item, if known, and rate their confidence 
in their label. They were also asked to rate their confidence 
that their partner would know the label for that object. This 
procedure was repeated for all test items as well as new 
items. These measures of confidence were implemented to 
measure general expertise as well as presumed relative 
expertise between the two participants (i.e., whether the 
Director was more knowledgeable than the Matcher, or vice 
versa) in order to assess knowledge asymmetry.  

Lastly, they were asked to identify the context of learning 
the item: learned with partner, alone (applicable for director 
only), learned prior to the experiment, or never learned. The 
items tested varied in context of learning; they could be an 
item from shared learning, Director-alone learning, or New 
items. This measure was used to observe whether participants 
were tracking context of learning by specific item. 

Results 
We focus on speakers’ Name-Alone use. We fit a GLM 
model predicting Name use against a single category 
combining other forms. Fixed effects were Commonality 
(Rare/Common), Ground Status (Privileged/Shared/New), 
and Knowledge Asymmetry (More/Less knowledgeable  
Matcher, as determined by post-test ratings) with Pair as a 
random effect (Table 1). Below we address our particular  
predictions. 

 
Table 1: GLM model ouput 

 
Does the commonality of an object impact the effect of 
shared learning with a partner? 

A main effect of Commonality demonstrates less name use 
for Rare than Common names (p<0.001). In regard to 
Ground status, speakers are less likely to use a Name when 
the item is New than when Shared (p<0.001), but for learned 
names, the main effect of Ground was not significant.  

Figure 3 shows Name use by the speaker across 
Commonality and Ground. The main effect of commonality 
can be seen by the larger proportion of name use in the right 
three columns of the graph (Fig 3). Although there was no 
effect of Ground Status across learned items, when looking at 
Rare items in comparison to Common items, one can see that 
differences in name use across Ground status conditions are 
more apparent for Rare than Common objects, similar to 
results in past work with novel objects. Indeed, in separate 
models, effects of Ground were significant for Rare items, 
such that names are used less for privileged items than for 
shared items. Common objects show the same pattern but to 
a much lesser extent. Thus, the speaker is less likely to use 
names when referring to rare objects than common ones and 
this preference is further reduced if the rare objects are 
privileged or new.  

 

 
 

Figure 3: Overall use of names by the Director across 
Ground Status (Shared, Privileged, New) and Commonality 
(Common, Rare) conditions. 

 
 

Name ~ Asymmetry + Ground 
* Commonality + (1|Pair) 

β Std 
Error 

P-value 

AsymmetryM+ 0.73 0.29 <0.01 
AsymmetrySAME -0.22 0.33 0.49 
CommonalityRare -3.36 0.43 <0.001 
GroundShared 1.13 0.69 0.10 
GroundNew -1.53 0.42 <0.001 
GroundPriv:CommonalityRare -0.47 0.76 0.53 
GroundNew:CommonalityRare 0.67 0.56 0.23 
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Does inferred expertise inform the speaker’s choice of 
referring form? 

A main effect of Asymmetry showed that speakers were 
more likely to use a Name when the Director presumes the 
Matcher to be more knowledgeable than herself (p<0.01) 

Figure 4 shows Expertise effects across Ground Status and 
Commonality conditions. The main effect is shown by an 
overall larger proportion of name use when the Matcher is 
deemed more knowledgeable than the speaker (M+) than 
when the Matcher is deemed less knowledgeable (M-). These 
effects are carried most strongly in two conditions: for Rare 
objects that are learned together (Shared), and for Common 
objects that are New (not learned at all in experiment). 

 

 
 
Figure 4: Proportion of Names when Matcher deemed more 
(M+) or less (M-) knowledgeable than the Director. 
 

Data gathered from the post-test, in which participants 
had to identify the context in which a particular item was 
learned (e.g., alone, shared, or neither) revealed high 
accuracy for tracking ground status (Table 2). This measure 
was recorded to assess memory of ground status across the 
course of the experiment. Table 2 shows highest accuracy of 
context identification for Rare Shared items and lowest 
accuracy for Common Shared, but this is not significantly 
different across the categories. 
 

Context Identification Accuracy (Post-Test) 

Common Alone 86.1% 

 
Shared 85.4% 

Rare Alone 86.1% 

 
Shared 91.7% 

 
Table 2: Post-test accuracy 

 

Discussion 
Speakers’ choice of names is strongly affected by the prior 

likelihood that an interlocutor will know a name. When items 
are more common, shared learning has weaker effects on 

name use than when an object is rare. As in previous studies 
with novel objects, common ground effects are more 
apparent for less commonly known items. This is taken to 
show that a speaker’s reliance on shared learning as a means 
to assess partner knowledge is reduced when the objects are 
likely to be commonly known. This provides evidence that 
the basis of common ground in an interaction relies on 
assessments of prior knowledge as well as shared experience. 
The strongest version of the memory-based account would 
expect ground effects regardless of commonality, as long as 
partners have shared experience. However, our post-test data 
show that speakers are highly accurate in identifying the 
context of learning, suggesting that they are not less sure 
about whether a name was shared but they are using that 
information in combination of other information: i.e, prior 
knowledge.  

Furthermore, we see general expertise effects, such that 
name use is increased when the addressee is deemed to be 
more knowledgeable than the speaker. This provides 
evidence of dynamic updating of knowledge assessments. 
Future directions would include a more controlled way of 
assessing when exactly expertise judgments as this might 
help in teasing apart whether this is confined to the learning 
phase, or whether participants indeed continue to update 
beliefs throughout the test phase. However, even with 
assessments taken post test, we see expertise effects driven 
from interaction. 

Having established expertise effects using this paradigm, 
we are currently carrying out follow-up work that uses the 
paradigm to explore further questions. For instance in an 
ongoing experiment we ask whether expertise assessments 
derived from the interaction are more strongly weighted than 
expertise assessments derived from top-down knowledge 
(e.g., telling the speaker his partner is an expert). Our current 
study asks this very question by having a director complete 
the collaborative task in the test phase without any prior 
interaction with her partner and given only top-down 
information about the partner’s status as an expert in the 
domain. 

Another avenue of research study explores the signals in 
the interaction that contribute to the assessments of expertise. 
Specifically, we are testing normed markers of uncertainty 
modeled on the types of utterances we observed during the 
learning phase. A confederate matcher will, in the learning 
phase, reveal her expertise through use of these uncertainty 
cues. If naïve directors attribute expertise to their partner as a 
function of these cues, it will be an important step in further 
understanding the particular components of an interaction 
that inform beliefs of partner knowledge. 

Overall, the contribution of the current study is in 
embedding the previous evidence on shared experience into a 
larger computation of the likelihood of addressee knowledge. 
The effect of commonality on choice of referring expression 
may not be surprising on its own but together with evidence 
of inferences of expertise throughout the interaction, one can 
get a better understanding of how speakers may be 
combining these different sources of information to compute 
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this likelihood. Future studies will examine the factors that 
shift around the likelihood rather than to only appeal to low-
level processes (i.e., memory traces) that contribute to the 
individual factors. We then can evaluate quantitative models 
to compare likelihood models that combine multiple cues 
with other classes of models. 

Lastly, this study explores expertise in domains given 
interactions about particular items. We argue that the 
generalization of presumed expertise to a larger domain 
given updated beliefs about particular objects is tied to 
beliefs about groups of people and the presumed knowledge 
of particular communities. For example, dog kennel owners 
are likely to be presumed to know a lot of about dog breeds 
and not so much about cat breeds. However, if the relevant 
community were veterinarians, a member of that community 
might be presumed to know about both dog breeds and cat 
breeds. We argue that assessments about expertise are 
necessarily tied to the community applied, and this constraint 
is utilized by speakers to narrow in on the dimensions that are 
relevant for both generalization to new interlocutors and 
generalization to new items in a given domain.  
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Abstract

The aim of this paper is to argue that models in cognitive
science based on probabilistic computation should not be re-
stricted to those procedures that almost surely (with probabil-
ity 1) terminate. There are several reasons to consider non-
terminating procedures as candidate components of cognitive
models. One theoretical reason is that there is a perfect cor-
respondence between the enumerable semi-measures and all
probabilistic programs, as we demonstrate here (generalizing
a better-known fact about computable measures and almost-
surely halting programs). One practical reason is that the line
between almost sure termination and non-termination is elu-
sive, as well as arbitrary. We argue that this matters not only
for theorists, but also potentially for a learner faced with the
task of inducing programs from experience.

Introduction
The metaphor of cognition as computation provides a fruitful
and flexible foundation for cognitive science. While compu-
tation can be understood broadly to encompass many differ-
ent paradigms and formats (Rescorla, 2015), it is generally
presumed that an upper bound on what can be computed by
the human mind is that which can be computed by a Turing
machine, or a program in any other universal model of com-
putation, such as lambda calculus, recurrent neural networks
with rational weights, combinators, Java programs, and so on.

Some early proponents of the computational theory of
mind (e.g., Putnam 1967) focused attention on probabilistic
computation, allowing randomization in state transitions; and
random mechanisms have been central in psychological mod-
els going back at least to stimulus-response theory, which
had formal connections to probabilistic automata (Suppes,
1969). In recent work, computation with random elements
has taken on new significance, where mental representations
themselves are characterized in terms of probabilistic proce-
dures or programs (Goodman et al., 2014), and noise is seen
not just as a nuisance, but as deeply tied to an agent’s ca-
pacity for prediction and induction. Although probabilistic
machines cannot compute any more functions than determin-
istic machines, this shift in emphasis raises new and distinct
questions. For instance, how expressive is a given class of
probabilistic machines for representing useful distributions?

Much of the recent theory of probabilistic computation—
particularly that motivated by application to cognition—has
focused on computable probability distributions, specifically
restricting to procedures that terminate almost surely (a.s.),
that is, with probability 1. This has given rise to a rich body
of work. For instance, it can be shown that the computable
distributions correspond to the a.s.-terminating probabilistic
Turing machines (see, e.g., Freer et al. 2012), as well as to
the a.s.-terminating stochastic lambda terms (Dal Lago and
Zorzi, 2012). The limits of computability in the context of

conditioning continuous distributions have also been thor-
oughly investigated (Ackerman et al., 2011).

These important advances notwithstanding, the aim of the
present paper is to argue that in cognitive science the focus
on a.s.-termination is overly restrictive. As a foundation for
theorizing about cognitive processes we should consider the
class of all probabilistic computations, not just those that a.s.
halt. To use terminology introduced more formally below,
cognition should be modeled on the more general class of
enumerable semi-measures, rather than the smaller class of
computable probability measures. We offer two arguments
for this claim, one practical and one theoretical.

The practical argument is that the line between a.s. ter-
mination and non-termination is elusive and arbitrary. This
point is illustrated with a simple example, where the bound-
ary can be studied concretely. The theoretical argument is
that the correspondence between the semi-measures definable
by probabilistic machines and enumerable semi-measures is
more basic and canonical than that between measures defin-
able by a.s.-terminating machines and computable measures.
We give a simple, self-contained proof of this first correspon-
dence (Theorem 1), which subsumes the second as a special
case (Corollary 1). This proof is elementary, and is arguably
simpler than direct proofs of the corollary. We also discuss
some connections to program induction, and possible reper-
cussions for probabilistic inference.

Background on Probabilistic Computation
Consider any universal language for describing computations.
Allowing programs in one of these languages access to an
unlimited source of iid samples from a Bernoulli(0.5) distri-
bution brings us to the setting of universal probabilistic lan-
guages. For instance, a Turing machine might have an ad-
ditional read tape with an infinite sequence of random bits,
while a lambda term might make use of a choice operator ⊕,
where M⊕N reduces to M or N, each with probability 0.5.
Just as the Church-Turing Thesis states that any two reason-
able deterministic models of computation will be equivalent,
one might hypothesize that any reasonable way of adding fair
coin flips to these models will give rise to an equivalent model
of probabilistic computation. For the rest of this paper we will
remain neutral about which of these versions we adopt.

Non-termination, even for very simple, e.g., monitoring
processes, is of course a desirable feature of many mecha-
nisms involved in control, where inputs are continually pro-
cessed (Botvinick and Cohen, 2014). However, our interest
here is non-termination even for stand-alone programs with-
out input, so we restrict attention to this setting.

A probabilistic program π, in any machine language, gen-
erates an output w—let us suppose outputs are (or at least
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encode) binary sequences, so that w ∈ {0,1}∗—with some
probability, which we will write µπ(w). That is, µπ(w) is the
sum of the probabilities of all the execution sequences that
halt with output w. The program π implicitly represents a
distribution on binary strings; however, this distribution may
not be a proper probability distribution on {0,1}∗, as it may
be that ∑w µπ(w)< 1. This will happen if the program fails to
halt with some probability 1−∑w µπ(w)> 0. A function µ for
which ∑w µ(w)≤ 1 is called a (discrete) semi-measure, and it
is called a probability measure if this holds with equality.

A semi-measure µ is (computably) enumerable if it is ap-
proximable from below; that is, if for each w ∈ {0,1}∗ there
is a computably enumerable weakly increasing sequence
q0,q1,q2, . . . of rational numbers, such that lim

i→∞
qi = µ(w).

Most semi-measures are not enumerable, but for any prob-
abilistic program π, the semi-measure µπ will be enumer-
able. To approximate µπ(w) from below, consider the set Wi
of strings v with length l(v) ≤ i, such that π accesses (ex-
actly) the bits of v before terminating with output w. Letting
qi

∆
= ∑v∈Wi 2−l(v), it is then evident that lim

i→∞
qi = µ(w). The-

orem 1 below states the converse of this observation, that in
fact every enumerable semi-measure µ is µπ for some π.

A semi-measure µ is called computable if it is enumerable
and for each w there is also a computably enumerable weakly
decreasing approximating sequence q0,q1,q2, · · · → µ(w).
There are computable semi-measures that are not probability
measures, but every enumerable probability measure is com-
putable: we can enumerate the sum ∑w′ 6=w µ(w′) by dovetail-
ing to obtain q∗0,q

∗
1,q
∗
2, . . . , and then 1−q∗0,1−q∗1,1−q∗2, . . .

converges from above to 1−∑w′ 6=w µ(w′) = µ(w). Corollary
1 below states that the computable probabilities measures are
exactly those of the form µπ for some a.s.-terminating pro-
gram π (see, e.g., Freer et al. 2012; Dal Lago and Zorzi 2012).

In addition to encompassing the space of randomized algo-
rithms, probabilistic programs are of special interest in cog-
nitive science because of their ability to provide compact rep-
resentations of quite complex distributions, e.g., over com-
binatorially rich spaces (Goodman et al., 2014; Piantadosi
et al., 2016). By encoding these distributions only implicitly
through the program’s objective probability of returning dif-
ferent outputs, they make an attractive candidate for plausible
representations of subjective probability (see Icard 2016 for
discussion). Moreover, it is often possible to define programs
for automatically representing conditional distributions, and
thus to apply and adapt the tools of Bayesian statistics to this
setting (Tenenbaum et al., 2011; Freer et al., 2012).

Why Non-Terminating Programs?
The enumerable semi-measures form a larger, and arguably
more natural, class than the computable measures, but what
is the reason to include them in our study of cognitive agents?

The claim of this section is that there is a tension between
allowing rich, interesting programs and ensuring those pro-
grams a.s. terminate. It is well known that testing whether a
deterministic program halts is an undecidable (Σ0

1) problem,

and verifying a.s. termination of a probabilistic program is of
even higher complexity (Π0

2, see Kaminski and Katoen 2015).
It follows that the only way to ensure a.s. termination is to re-
strict to smaller, controlled fragments. This is confining both
for the cognitive scientist proposing psychological models,
and for the learning agent who may need to construct and in-
duce programs on the fly.

Between Termination and Non-Termination
The boundary between a.s.-terminating programs and non-
terminating programs often looks quite arbitrary. To illus-
trate, we use a very simple example close to recent work on
intuitive physics (e.g., Sanborn et al. 2013; Battaglia et al.
2013). This work models people’s ability to understand and
predict physical events using probabilistic programs for con-
structing internal “simulations” that operate in rough accor-
dance with physical laws. The example here is far less so-
phisticated, merely concerning speed along a single spatial
dimension. Consider a proverbial tortoise-and-hare scenario,
where the tortoise is moving ahead at a constant rate follow-
ing a slight head start, and the erratic rabbit is nonchalantly
racing to catch up. We might suppose that the hare leaps for-
ward some random distance about every fourth step that the
tortoise takes. The question is when, if ever, the hare will
catch up. Imagine this prediction arising from mental simu-
lations of something like the following program π↓:

t = 5; h = 0

while (h < t):
t = t + 1

if (flip(0.25)): h = h + Uniform(1,7)

return t

For instance, a person observing a rabbit chasing a tortoise
might extract a program like π↓ in order to make predictions
about what will happen some number of steps later.

Where Hk is the distance traveled by the hare at stage k,
consider the random variable Xk = (5+ k)−Hk, measuring
the extent of the tortoise’s current lead. It is easy to show
that the sequence {Xk} forms a random walk martingale, and
specifically that E[Xk+1 | X1, . . . ,Xk] = Xk, and so E[Xk] = 5
for all k. By the recurrence property for symmetric random
walks, we reach Xk ≤ 0 at some stage k almost surely. Thus
this program π↓ halts with probability 1. (Cf. Chakarov and
Sankaranarayanan 2013 for powerful a.s.-termination proof
techniques that cover examples like this.)

While π↓ as written terminates, small changes in the pa-
rameters of the program lead to positive probability of non-
termination. For instance, if t is instead incremented by 1+ε

at each step, or if the increase in h is drawn uniformly from
an interval (1,7− ε), for ε > 0, then the resulting program
π↑ may not halt because the expected distance between the
tortoise and hare constantly increases. In particular, there
will be a constant C > 0, such that for any fixed xk, we have
E(Xk+1|xk)− xk = C. Hence E(Xk+1) = E(E(Xk+1 | Xk)) =
E(Xk)+C, from which it follows E(Xk) = 5+ kC for each k.
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This means that the long run expected value of Xk is infinite,
and the program fails to halt with some positive probability.

One might suspect that this theoretical distinction could
have practical repercussions. Would we not want some guar-
antee that our program would eventually halt? The problem
with this line of thought is that, from a practical perspective,
non-termination is not any worse than eventual termination
but only after an inordinate amount of time. Simulating the
program π↓ above—and terminating computation whenever
the number of steps reaches an upper bound of, say, 107—we
see that the program reaches this upper bound about .01% of
the time. Though a large majority (∼75%) of runs end within
100 steps, the empirical average runtime is in the tens of thou-
sands.1 Thus, in some small number of cases we would pre-
sumably have to terminate computation anyway. From this
simulation perspective, the behavior of π↑, taking ε > 0 to be
very small, is empirically nearly indistinguishable. The fact
that some of these runs might never terminate is immaterial,
practically speaking.

This argument is about possible non-termination, and it
does not distinguish between computable and merely com-
putably enumerable distributions. If we increment t by a
computable real number 1+ ε, then, though π↑ might never
halt, µ

π↑ is actually a computable semi-measure, with a com-
putable probability of not halting. However, this situation
again may be practically no different from a situation in
which 1+ ε can only be approximated from below. This pa-
per is a plea mainly for non-terminating programs, and one
could in principle accept non-termination but still insist on
computability. There may be contexts where insistence on
computability may be appropriate (see the section below on
conditioning); the claim of this paper, however, is that we
ought not make this restriction in general.

A Remark on Levels of Analysis
The argument that π↓ and π↑ are practically indistinguishable
assumes that we may have to terminate computation beyond a
certain point no matter which one we run, and that the result-
ing behavior will look nearly indistinguishable. A possible
objection at this stage is that by enforcing an upper bound on
computation time, we are effectively only considering pro-
grams that a.s. (in fact, always) halt anyway. That is, the
larger program encompassing both the simulation model it-
self and whatever controls the simulations always terminates
after a bounded amount of time.

This objection is fine as far as it goes, but it undercuts the
motivation for considering rich, e.g., recursive, probabilistic
programs to begin with. When we write the program π↓ above
in Java, for example, we understand it as encoding an ab-
stract procedure that could in principle run for any amount of
time, even though we know no concrete implementation of π↓

has this property. Indeed, π↓ abstracts away from many de-

1It is even possible for an a.s.-terminating program to have in-
finite expected run time. Consider a program defining a geometric
distribution that repeatedly flips a fair coin until first flipping a heads
after n steps, then continutes for 2n more steps thereafter.

tails about how the program might be implemented. The idea
that we can construe some psychological models in a sim-
ilar manner is very familiar in cognitive science (Marr and
Poggio, 1976). Characterizations of mental phenomena us-
ing grammars, recursive constructions, and other devices that
license unbounded computations are legitimized by potential
gain in conceptual clarity and modularity. We understand
while-loops, models of Newtonian mechanics, and so on, in
a very general way: we have a good sense of what they can
do, what problems they can be used to solve, and how they
can be combined with other tools to form even more power-
ful devices. From this perspective it is unsurprising that such
devices would make their way into our cognitive models.

Such issues about levels of analysis are beyond the scope
of this paper. The present suggestion is simply that the best
arguments favoring liberal use of a.s.-terminating probabilis-
tic machines as cognitive models should extend to the class
of all probabilistic machines. Just as there may be practical
reasons to avoid computable, but algorithmically intractable,
procedures in practice, so it may make sense in many cases to
avoid use of procedures that might not terminate. That does
not delegitimize their use in cognitive modeling.

Program Induction
The argument up to this point has been largely negative, that
there is no reason to exclude effective semi-measures as pos-
sible components of a cognitive model. But there also may
be good positive reasons to include them when we consider
the learning problem of inducing programs from observations
(see, e.g., Lake et al. 2017 for application of this idea to hu-
man cognition). Given the high complexity of verifying a.s.-
termination, the learner seems to be faced with a dilemma:
either restrict search to a small fragment of possible programs
or risk hypothesizing programs that may not halt.

For example, it is difficult to imagine a sufficiently flexible
class of programs—say, a class built out of a few primitive
constructions such as while-loops and simple arithmetical
operations like addition—from which one could easily ob-
tain the program π↓ above, but not one of the variants π↑ that
might have some probability of not halting. It is not that one
would prefer to construct π↑ over π↓, but that they are equally
preferable and that separating them in a principled way might
be difficult, no matter what method is used to perform the in-
duction. That is, even if the goal is to construct an a.s.-halting
program, flexibility in program construction might require the
possible construction of non-halting programs.

In light of this possibility, a natural suggestion is to con-
sider enriching program induction frameworks with more ex-
pansive classes of programs. Consider Bayesian approaches
to program induction. Where C is some class of (semi-)mea-
sures on a space X , e.g., on {0,1}∗—so that we can ask about
P(X) for any P ∈ C and X ∈ X —we could have a prior mea-
sure ν over C that induces a mixture distribution Pν on X :

Pν(X)
∆
= ∑

P∈C
ν(P)P(X).
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Thanks to Theorem 1, we can always think of each element
of C as a semi-measure µπ defined by a probabilistic program
π from some class Π, so ν defines a prior on programs in Π.

Hierarchical Bayesian models fit this description, where C
is typically a parametrized family of distributions and ν is a
hyperprior over those parameters (though hierarchical mod-
els may include more levels), and they are often explicitly
encoded as probabilistic programs. Provided one can define
appropriate likelihood functions ν(Y |P) and P(Y |X), it makes
sense to condition such a mixture distribution on data Y using
Bayesian inference:

Pν(X |Y ) = ∑
P∈C

ν(P|Y )P(X |Y ). (1)

By updating ν alongside candidate ground-level distributions
P, such methods capture effects of learning at multiple levels
of abstraction, such as the ability to transfer general principles
inferred in one domain to novel but related domains.

Probabilistic programs generalize hierarchical Bayesian
models to allow wider classes C of measures. For instance,
work by Piantadosi et al. (2016) considers learning in a con-
text where C is defined by logical expressions of the sort typ-
ically used in natural language semantics. Evidently, there is
no reason we could not consider classes that include enumer-
able semi-measures as well. An alluring possibility is to take
C to be the class of all enumerable semi-measures—i.e., all
programs—with ν assigning a weight to each. Because C is
then computably enumerable, there are many effective semi-
measures ν assigning positive weight to all probabilistic pro-
grams, and even here Pν is guaranteed to be an enumerable
semi-measure, and thus definable by a program. Learning in
this setting is somewhat fraught (see below), but at least such
a semi-measure can be represented. By contrast, when C is
the class of computable measures there is no computable ν

with support exactly C , since that set is undecidable.

Simplicity Bias
In this broader setting of program induction, as in hierarchi-
cal models, it is presumed that a good prior on C is one that
favors simpler hypotheses. This might be achieved, for in-
stance, by defining ν with a probabilistic grammar so that
shorter programs are automatically given higher probability.
A very general proposal for biasing simpler functions, known
as Solomonoff induction, is based on ideas from Kolmogorov
complexity. In brief, the proposal is to assign probability to a
string w in proportion to the shortest (deterministic) program
that, when run on a universal Turing machine U , produces w
as output. The intuition is, data that could be produced by
simpler mechanisms should be a priori more likely.

As an aside, there are other applications of simplicity-
based constructions inspired by Kolmogorov complexity that
make use of enumerable semi-measures. As an example, in
their generalization of Shepard’s Universal Law of General-
ization, Chater and Vitányi (2003) assume enumerable “con-
fusability” probabilities, P(Ra|Sb)—specifying how likely it
is that a subject will give a response appropriate to a when

presented with b—to develop a notion of similarity between
arbitrary representations. The basic idea is that similarity is
roughly proportional to the length of the shortest (determin-
istic) program that would be required to transform one rep-
resentation into the other. Enumerability is exactly what is
needed to derive (a generalized version of) the Universal Law.

But what about simplicity-based Solomonoff induction?
There are several issues with Solomonoff induction (includ-
ing the variant here for semi-measures, due to Zvonkin and
Levin 1970). One well known problem is that the resulting
prior is very sensitive to the choice of universal Turing ma-
chine U . In fact, it has been shown that there is a perfect
correspondence between weightings ν on the class of enu-
merable semi-measures and choices of universal Turing ma-
chines U for the Solomonoff prior (Wood et al., 2011). In
other words, the class of Solomonoff priors just is the class of
mixture semi-measures Pν in which ν assigns positive weight
to all the enumerable semi-measures. It is therefore question-
able whether this framework really does provide a foundation
for understanding simplicity, since it is not clear what an “un-
biased” choice of U or ν would be (see Sterkenburg 2016).

A larger problem with Solomonoff induction, however,
concerns the complexity of conditional inference. Whereas
each Solomonoff prior is itself computably enumerable, con-
ditioning on data leads to a function that is not even enumer-
able (specifically, we go from Σ0

1 to ∆0
2, see Leike and Hut-

ter 2015, cf. also the next section). Since the whole point
of Solomonoff induction is to learn, this is a disappointing
result. In particular, it means that no probabilistic program
can represent a conditioned Solomonoff prior. Given the cen-
trality of induction, we would like to understand better what
we can do with conditioning, and whether Bayesian program
induction is even possible when some of the candidate pro-
grams have positive probability of not halting. This leads us
to the next section.

Conditioning Enumerable Semi-Measures
The fact previously mentioned—that effective semi-measures
are not closed under conditioning—appears problematic, at
least for Bayesian applications of probabilistic programs. It
is especially noteworthy given that the computable measures
are closed under conditioning in the discrete setting. While
a full discussion of conditionalization is beyond the scope of
this paper, it is worth briefly clarifying the issue. (Of course,
for non-Bayesian approaches to learning programs, e.g., Nee-
lakantan et al. 2016, this may not even be problematic.)

Conditioning an effective semi-measure may produce a
function that is only “limit computable” (Leike and Hutter,
2015), meaning the conditional probability of each string can
be approximated, but the sequence of rationals need not ap-
proach its limit (even weakly) monotonically. The intuition
behind this is clear. To determine µ(X |Y ) we must compute
µ(X ,Y )/µ(Y ). If all we can do is approximate each of µ(X ,Y )
and µ(Y ) from below, and we know nothing about how fast we
are converging to the correct values, then we know absolutely
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nothing about the ratio µ(X ,Y )/µ(Y ) at any finite stage.
In the computable setting, as Freer et al. (2012) explain, it

is straightforward to define a single Turing machine QUERY
that takes a program π and a Boolean condition κ (also repre-
sented as a probabilistic program), and produces a representa-
tion of the posterior distribution QUERY(π,κ). The idea is to
divide the infinite random bit stream into infinitely many ran-
dom bit streams, and find the first one that satisfies κ. Then
run π using this bit stream to generate an output w. As long as
κ a.s. terminates and returns ‘true’ with positive probability,
µQUERY(π,κ) correctly defines the posterior distribution.

By the aforementioned result, we know there can be no
machine that conditions an arbitrary semi-measure µπ on an
arbitrary condition κ. Nonetheless, provided κ stipulates a
computable condition, even when µπ is merely computably
enumerable, QUERY(π,κ) will correctly represent the condi-
tioned semi-measure, which shows that the conditional distri-
bution is also enumerable. Thus, enumerable semi-measures
are closed under conditioning with computable queries.

In this sense the situation for enumerable semi-measures
is no worse than that for computable measures: both can be
conditioned with computable observations in a uniform way.
For many settings this does not seem at all limitative. As a
simple example, we could imagine conditioning the program
π↑ on the statement that the tortoise reached at least 15 steps.
This is an easily, indeed finitely, verifiable proposition.

The main limitative result is rather the one we already
mentioned: though we can represent complex semi-measures
such as Solomonoff priors, the probabilities of even basic ob-
servations like “the first object is a 0” are not computable.
Nonetheless, we can hope for something in this direction.
Sufficient conditions for a conditional mixture semi-measure
Pν to be semi-computable are not terribly stringent. First, the
prior ν over semi-measures µ∈ C should be computable (e.g.,
this holds if the semi-measures/programs are generated by a
probabilistic grammar). Second, as above, the specific data
Y must be computably verifiable for each µ ∈ C . If both of
these are satisfied, then the adapted version of (1)

Pν(X |Y ) = ∑
µ

(
ν(µ)µ(Y )

∑µ′ ν(µ′)µ′(Y )
µ(X ,Y )

µ(Y )

)
=

∑µ ν(µ)µ(X ,Y )

∑µ ν(µ)µ(Y )

is enumerable, and thus representable by a single program,
e.g., using an operation like QUERY. Though this falls short
of full Solomonoff-style induction, it does generalize what is
usually done with Bayesian program induction. It also re-
veals a distinctive positive reason to entertain specific effec-
tive semi-measures as candidate cognitive models. Granted
our previous suggestion that it might be beneficial for learn-
ing to consider wide classes of programs, putting a com-
putable prior on such a class will result in a enumerable mix-
ture semi-measure Pν that can be conditioned.

Questions about conditioning in this more general setting
clearly merit further attention, especially in relation to more

realistic inference methods such as MCMC (see, e.g., Good-
man et al. 2008). Algorithmic tractability is an obvious worry,
but this is already a worry when everything is computable,
and it is not obvious that including effective semi-measures
exacerbates the problem. Moreover, even in the computable
case, for the continuous setting conditionalization is not in
general a computable operation (Ackerman et al., 2011).
Consequently, as computational-level models of learning and
inference, it appears that the effective semi-measures fare no
worse than the computable measures.

Universality

In this final section we offer a proof of the correspon-
dence between probabilistic machines and enumerable semi-
measures. Specifically, we show that every enumerable semi-
measure can be represented by a probabilistic machine. The
proof is similar to proofs for the computable case (e.g., Freer
et al. 2012), but we can only use enumerability and must al-
low for probability of non-halting executions. The exposition
is intended to be accessible and intuitive.

Let µ be an enumerable semi-measure on {0,1}∗. That is,
for each word w ∈ {0,1}∗, there is a computably enumerable
weakly increasing sequence q0,q1,q2, . . . of rational numbers
such that lim

i→∞
qi = µ(w). Assume without loss that q0 = 0.

Note then that µ(w) = ∑
∞
i=0(qi+1− qi). Our aim is to show

that µ = µπ for some machine π.
Let 〈 , 〉 : N×N→ N be a fixed (computable) bijective

pairing function with first projection ρ1(n) = k when n =
〈k, i〉. Let w0,w1,w2, . . . be a fixed enumeration of {0,1}∗,
each with a fixed enumeration of approximating rationals
qk

0,q
k
1, . . . converging from below to µ(wk). We define a se-

quence of rational (thus computable) numbers as follows:

r0
∆
= q0

0 = 0

rn+1
∆
= rn +

(
qk

i+1−qk
i
)

where we assume 0 = 〈0,0〉 and n+1 = 〈k, i〉.
Our machine π works in stages, observing a random se-

quence of bits a0, . . . ,a j−1 while producing an enumeration
r0, . . . ,r j−1. At each stage j, we observe a bit a j and add a
rational r j, then check whether, for any n with 0≤ n < j, the
following condition (2) is satisfied:

rn <
j

∑
i=0

ai2−i−2− j and rn+1 >
j

∑
i=0

ai2−i +2− j (2)

That is, where p̃ = ∑
j
i=0 ai2−i is the rational generated so far,

we know our randomly generated real number will lie some-
where in the interval (p̃− ε, p̃+ ε), and (2) tells us that this
interval sits inside the interval (rn,rn+1). If this holds, output
wρ1(n+1). Otherwise, move on to stage j+1.

Each word w has its probability mass µ(w) distributed
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across different intervals in [0,1]. Specifically:

µ(wk) = ∑
n:ρ1(n+1)=k

rn+1− rn

=
∞

∑
i=0

(qk
i+1−qk

i ).

The procedure generates approximations p̃ = ∑
j
i=0 ai2−i to a

random real number, and as soon as we are guaranteed that
this random number is in one of our intervals between rn and
rn+1 = rn +(qk

i+1− qk
i ), i.e., that no further bits will take us

out of that interval (condition (2) above), we halt and output
the string wk corresponding to the interval, with k= ρ1(n+1).
Clearly, the probability of outputting w is exactly µ(w), and
the probability of not halting at all is 1−∑w µ(w).
Theorem 1. Probabilistic machines correspond exactly with
the enumerable semi-measures.

As every enumerable probability measure is computable,
we have the following well-known corollary.
Corollary 1. A.s.-terminating probabilistic machines corre-
spond exactly with the computable measures.

Conclusion
Defining distributions by means of programs in a universal
probabilistic language yields exactly the computably enumer-
able semi-measures. Our claim has been that this wider class,
going beyond a.s.-terminating programs, provides a sensible
foundation for theorizing about representation, inference, and
learning in cognitive science. Assuming we want to make a
clean separation between computational and algorithmic lev-
els of analysis—which is evidently necessary to justify use
of anything beyond (probabilistic) finite-state automata in the
first place—we see no reason to restrict attention to programs
that a.s. terminate, neither for the theorist nor for the learner.
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Abstract

Behavioral studies demonstrate the influence of speaker
gaze in visually-situated spoken language comprehension.
We present an ERP experiment examining the influence of
speaker’s gaze congruency on listeners’ comprehension of ref-
erential expressions related to a shared visual scene. We
demonstrate that listeners exploit speakers’ gaze toward ob-
jects in order to form sentence continuation expectations:
Compared to a congruent gaze condition, we observe an in-
creased N400 when (a) the lack of gaze (neutral) does not al-
low for upcoming noun prediction, and (b) when the noun vi-
olates gaze-driven expectations (incongruent). The later also
results in a late (sustained) positivity, reflecting the need to up-
date the assumed situation model. We take the combination
of the N400 and late positivity as evidence that speaker gaze
influences both lexical retrieval and integration processes, re-
spectively (Brouwer et al., in press). Moreover, speaker gaze
is interpreted as reflecting referential intentions (Staudte &
Crocker, 2011).
Keywords: ERP; N2; N400; late sustained positivity; gaze;
prediction; referential expressions

Introduction
The gaze of a speaker toward objects present in a shared scene
in a face-to-face interaction provides a visual cue that ex-
presses the speaker’s focus of visual attention and may draw
the listener’s attention as well (Emery, 2000; Flom, Lee, &
Muir, 2007). This visual cue can be used by the listener
to ground and disambiguate referring expressions, infer the
speaker’s intentions and goals, and thus facilitate comprehen-
sion (Hanna & Brennan, 2007). As most research conducted
on the influence of speakers’ gaze on listeners’ language com-
prehension focused on behavioral data (e.g.: reaction times,
eye movements), little is known about the precise time course
for the integration of visual and linguistic information, or
which underlying mechanisms are involved.

We therefore conducted an ERP-study to investigate how
listeners integrate cues provided by the speaker’s gaze when
it is time-aligned to an utterance containing statements about
the visual context. We monitored listeners’ event-related po-
tentials (ERPs) as they observed a stylized face performing
gaze actions toward simple objects preceding their mention-
ing in a simultaneously presented utterance that compared ob-
jects in the scene with one-another. The gaze cue correspond-
ing to the second object in the sentence was either Congruent
(toward the named object), Incongruent (toward the object

that remains unnamed in the sentence) or Neutral (toward an
empty position at the bottom of the screen). This manipula-
tion was intended to shed light on how listeners use speakers’
gaze to anticipate and integrate subsequently mentioned ref-
erents.

Previous eye-tracking studies have shown that, when a vi-
sual context is present, speakers orient their gaze toward an
object about 800 - 1000ms before mentioning it (Griffin &
Bock, 2000; Kreysa, 2009). However, it is less clear to what
extent such speaker gaze affects listeners’ sentence compre-
hension.

Staudte and Crocker (2011) showed in an eye-tracking
study that participants used gaze cues to disambiguate a sen-
tence with multiple same-type referents as soon as it was pro-
vided, expressed by a higher inspection rate to the gazed-at
object compared to the competitor. Furthermore, a mislead-
ing gaze cue lead to a longer reaction time while judging
whether the sentence was true or false given the visual scene.

For our ERP study, we hypothesized that listeners integrate
gaze cues in a situation model to anticipate which objects
are likely to be subsequently mentioned, influencing the re-
trieval and integration of the noun. Specifically, we expect an
N400 modulation will occur as a function of predictability,
such that neutral gaze, and even more so incongruent gaze,
will increase the amplitude of the N400 compared to a con-
gruent gaze condition. Additionally, we hypothesized that the
naming of objects that were previously eliminated based on
(incongruent) speaker gaze should lead to a higher cost of
integration, possibly reflected by a increased late positivity
(Brouwer, Crocker, Venhuizen, & Hoeks, in press).

Experiment
In our experiment, German native speakers judged the truth-
fulness of an auditorily presented sentence given a visual con-
text while their EEG was recorded. Each trial contained a
stylized face that performed gaze actions timed to the sen-
tence that was to be evaluated. Every gaze action was per-
formed 800ms prior to the naming of the corresponding noun.
The first gaze was always Congruent toward the object that
was named first in the sentence. Gaze to the second object
was manipulated such that is was either toward the second
named object (Congruent), toward a distractor object that was
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never named during the course of the trial (Incongruent) or to-
ward the bottom of the screen where no object was situated
(Neutral).

We hypothesized that (1) Congruent gaze toward the up-
coming object leads to facilitated retrieval of the correspond-
ing noun, and a reduced N400, as it is highly predictable
given the visual scene. (2) Incongruent gaze on the other
hand is hypothesized to evoke an increased N400 modulation,
as the visual information favors predictions of the unnamed
object and thereby hinders word retrieval. Additionally, the
elimination of the named object based on the visual informa-
tion demands an update of the situation model and thereby
might increases integration costs reflected by a late positivity.
(3) As Neutral gaze does not highlight one object more than
the other, both remaining objects are equally predictable in
the sentence. This might lead to an intermediate retrieval cost
of the noun.

Participants
Forty-five right-handed native speakers of German (Mean
age: 24; Age range: [18, 32]; SD: 3.39; Male: 8; Female:
37) took part in the ERP experiment. 15 participants were re-
moved from the analysis due to their behavioral data (3) and
too high numbers of eye artifacts (12).1 Participants gave in-
formed consent. All participants had normal or corrected-to-
normal vision and had no hearing problems. All participants
were compensated with e15 for their participation.

Stimulus Materials and Procedure
We created 24 pictures of objects of masculine, feminine and
neuter gender (8 per gender). The pictures were pretested to
ensure that they (a) were recognized as the intended objects
and (b) were equally complex in their appearance.

Participants were presented with a picture containing three
objects of the same gender that varied either in size or bright-
ness arranged in positions above, left and right of the cen-
ter of the screen. Each screen contained a large, medium,
and small object (or bright, medium, and dark object respec-
tively). After 3000ms, a stylized face appeared in the mid-
dle of the screen with a straight gaze toward the participant.
The face then performed gaze actions timed to an auditory
presented sentence of the form “Verglichen mit dem Auto,
ist das Haus verhältnismäßig klein, denke ich” (Compared to
the car, the house is relatively small, I think). The utterance
was a synthesized German sentence using the CereVoice TTS
systems Alex voice (Version 3.2.0). We created different ver-
sions of example utterances that varied in intonation contour
and turn internal pause length. A Google Form was used to
collect responses of seven participants, who listen to those ex-
amples with the task to rate their naturalness and order them
from most natural to least natural. We selected the version
with the most natural rating for the experiment.

In order to keep the influence of the first noun on the sec-
ond gaze cue as well as on the second noun the same across

1For a concrete description of the removal see Section ”Data
Analysis” on the following page.

all items, a pause of variable length was introduced after
the first noun, so that the distance of the onset of the first
noun to the onset of the second half of the sentence always
was about 1000ms. At sentence onset, the face retained its
straight gaze but opened the mouth to evoke the impression
of the face being the speaker of the sentence. The first gaze
cue appeared approximately 800ms before the first noun was
mentioned. This gaze cue was always Congruent toward the
named object for all experimental trials. Also, in order to
ensure the participants’ attention throughout the entire sen-
tence, the first named object in the experimental items was
always the medium sized object (or object of medium bright-
ness when brightness was manipulated). If the first mentioned
object were the smallest/brightest or biggest/darkest object in
the scene, it would not matter which of the other objects were
named second, as for both the same comparative adjective
would render the sentence true or false.

An example of the visual scene provided in Figure 1 dis-
plays the time line of an example trial, with a small house,
medium car and a large t-shirt. If the t-shirt was mentioned
first in this context, both of the remaining objects would be
smaller. The second, manipulated gaze cue then appeared
again 800ms prior to the onset of the second noun. The gaze
was redirected toward the participant 400ms before the end
of the sentence, and the mouth closed on the offset of the sen-
tence.

Each item appeared in three conditions (Congruent / In-
congruent / Neutral). In the Congruent condition, the gaze
preceding the second noun was directed toward the subse-
quently named object. In the Incongruent condition, the gaze
cue went toward the object that remained unnamed in the sen-
tence. In the Neutral condition, gaze was directed toward the
bottom of the screen where no object was present, in order
to still present a gaze cue induced by the eye-movement of
the face. Additionally, we created versions of those manip-
ulations that were counterbalanced for naturalness. Natural-
ness was defined as the truth value of the utterance in real-
ity. For example, the in-reality invalid utterance “compared
to the car, the house is relatively small, I think” was counter-
balanced with the utterance “compared to the house, the car
is relatively small, I think”. This counterbalancing also led to
a swap of the size of the named objects in the visual scene.
Using a Latin-square design, this led to a total of six lists.

Each list contained 72 experimental items (24 per condi-
tion) and 72 fillers with mentioning of an object other then
the medium object as the first noun and gaze patterns differ-
ent from the gaze patterns in the experimental items. As in
the experimental items only the second gaze cue was manip-
ulated, 25% of the fillers (18) contained a manipulation of
the first gaze cue instead of the second gaze cue. This version
of the fillers still started with a mentioning of the medium
object as the first noun in the sentence. The first gaze cue
was always neutral and never incongruent in order to enforce
the validity of the gaze cues. The remaining fillers were of
the same form as the experimental items with the difference
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Figure 1: Timeline of an item in the Congruent condition.

that the first mentioned object was either the small or large
(bright/dark) object. The second named object in these fillers
was the medium object half of the time and the remaining
size/brightness the other half. The gaze patterns performed
on these fillers always started with a congruent gaze, as in
the experimental items, followed by another congruent gaze
towards the second named object half of the times (36) and
a quarter of the times each by an incongruent or neutral gaze
cue (18). This distribution of gaze patterns throughout the
experiment led to an overall ratio of congruent gaze actions2

of 70% (204). Another 18% (51) of the gaze actions were
Neutral and only about 12% (33) of the gaze actions were In-
congruent. This way, the validity of the gaze cue was strongly
enforced in order to avoid that participants would start to ig-
nore the gaze cues altogether throughout the course of the
experiment.

The stimuli were presented using the E-prime software
(Version 2.0.10. Psychology Software Tools, Inc.). Each
participant was seated in a sound-proof, electro-magnetically
shielded chamber in front of a 24” Dell U2410 LCD moni-
tor (resolution of 1280x1024 with a refresh rate of 75 Hz).
The distance between the participant and the screen was al-
ways 100 cm in order to keep all objects in a 5◦ visual angle
from the center of the screen. This was done to minimize
eye movements throughout the experiment. While the partic-
ipants were prepared for the recording, they were presented
with all objects that occurred throughout the experiment and
their naming. The Alex voice of the CereVoice TTS was
also used for the naming of the objects. After this, partici-
pants were presented with written instructions and completed
six practice trials. The items were pseudo randomized for
each list and presented in 7 blocks with breaks after each
block. After each item, the participants were asked to indi-
cate whether the sentence was true given the visual context
they were presented with by pressing one of two buttons. An-
swers were recorded using a Response Pad RB-834 (Cedrus

2As every trial contained two gaze actions, one aligned to the
first noun and one aligned to the second noun, the total number of
gaze actions throughout the course of the experiment was 288 per
list/participant.

Corporation). The experiment lasted approximately 45 min.

Data Analysis

The EEG was recorded by 24 Ag/AgCl scalp electrodes (acti-
CAP, BrainProducts) and amplified with a BrainAmp (Brain-
Vision) amplifier. Electrodes were placed according to the
10-20 system (Sharbrough et al., 1995). Impedances were
kept below 5kΩ. The ground electrode was placed at AFz.
The signal was referenced online to the reference electrode
FCz and digitized at a sampling rate of 500 Hz. The EEG files
were re-referenced offline to the average of the mastoid elec-
trodes. The horizontal electrooculogram (EOG) was moni-
tored with two electrodes placed at the right and left outer
canthi of each eye and the vertical EOG with two electrodes
below both eyes paired with Fp1 and Fp2. During recording
an anti-aliasing low-pass filter of 250Hz was used. The EEG
data was band pass filtered offline at 0.01-40Hz in order to at-
tenuate skin potentials and other low voltage changes as well
as line noise and EMG noise (Luck, 2014). Single-participant
averages were computed for a 1100ms window per condition
relative to the acoustical onset of the noun following the ma-
nipulated gaze cue and the manipulated gaze cue itself. All
segments were aligned to a 100ms pre-stimulus baseline. We
semi-automatically screened offline for artifacts.

Due to the nature of the task and the experimental setup
containing various eye movements performed by the dis-
played face, the number of eye artefacts was relatively high.
Therefore, we set a threshold of 30% rejection rate per con-
dition for participant exclusion (i.e.: participants’ data with
more than 7 rejected trials out of 24 in one or more condi-
tions were removed. On average 5.3 trials per participant and
condition (22%) were rejected due to eye movements). This
led to the removal of 12 participants from the analysis. Ad-
ditionally, the data of 3 participants was removed due to their
behavioral data. Participants’ data was removed if they gave
wrong answers to more than 10% of the questions. Overall,
the two criteria led to the removal of the data of 15 partic-
ipants. The averaged data of the remaining 30 participants
(Mean age: 23.7; Age range: [18, 32]; SD: 3.49; Male: 4) was
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exported using BrainVision Analyzer (Version 2.1) BESA ex-
port function.

We analyzed the ERP data time-locked to the onset of the
second noun following the manipulated gaze cue. We used R
(R Core Team, 2015) to perform repeated measures analysis
of variance (ANOVA) using Greenhouse-Geisser correction.
We report F values, Greenhouse-Geisser corrected p values
and η2 (partial eta-squared) values as a measure of effect size.
All ANOVAs were computed on the F3, Fz, F4, FC5, FC1,
FC2, FC6, C3, Cz, C4, CP5, CP1, CP2, CP6, P7, P3, Pz, P4,
P8, O1 and O2 electrodes including ROIs for frontal (F3, Fz,
F4, FC5, FC1, FC2, FC6), central (C3, Cz, C4, CP5, CP1,
CP2, CP6) and posterior (P7, P3, Pz, P4, P8, O1, O2) distri-
butions.

Critical Region (Second Noun)
We analyzed the influence of experimental condi-
tion (Congruent, Incongruent, Neutral gaze) time
locked to the onset of the second noun, includ-
ing electrode site (frontal/central/parietal) as within-
subject factors. An ANOVA of time window between
150 and 400ms showed a main effect of condition
(F(2,58) = 3.99, p < 0.05,η2 = 0.12). There is a glob-
ally distributed, significantly larger negativity for both
the Incongruent and Neutral condition compared to the
Congruent condition ((F(1,29) = 5.66, p < 0.05,η2 = 0.16)
and (F(1,29) = 4.86, p < .05,η2 = 0.14) respectively).
However, further Visual inspection revealed that the Neutral
condition contains two distinct, frontally distributed peaks
within this time window (see Figure 2 for comparison). This
is coherent with previous findings by, e.g., Hagoort and
Brown (2000). This led to the analysis using a moving time
window in this epoch in order to determine whether those
peaks are indeed distinct. We split the data of the previous
time-window in four overlapping sub-time-windows of
100ms length with a distance of 50ms each and introduced
those time-windows as a factor in an ANOVA, where the
interaction of time-window, longitude and condition showed
a significant effect (F(12,348) = 1.95, p < 0.05,η2 = 0.06).
We find a main effect of condition only in the time windows
between 150 - 300ms (F(2,58) = 3.93, p < 0.05,η2 = 0.12)
and 300 - 400ms (F(2,58) = 3.38, p < 0.05,η2 = 0.1).
This indicated that the two peaks are indeed distinct. A
pairwise comparison of the conditions in the time window
of the earlier peak (150 – 300ms) showed that both the
Incongruent and Neutral condition retain their significantly
larger negativity (((F(1,29) = 5.82, p < 0.05,η2 = 0.17)
and (F(1,29) = 4.93, p < .05,η2 = 0.15) respectively).
A pairwise comparison in the time window of the sec-
ond peak also shows that both the Incongruent and
Neutral condition contain a significantly larger neg-
ativity ((F(1,29) = 4.22, p < 0.05,η2 = 0.13) and
(F(1,29) = 5.99, p < .05,η2 = 0.17) respectively).
Additional to the findings in the early time-window, we
analyzed the time-window between 600 - 1000ms. The
analysis revealed a main effect of experimental condition
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Figure 2: ERP time-locked to the Second Noun Onset sep-
arated by the Experimental Conditions (Congruent (black),
Incongruent (red) and Neutral (blue)). Reported regions are
highlighted by boxes. The data presented shows the electrode
subset Fz and Pz filtered at 20Hz (low-pass) for presentation
purposes only.

(F(2,58) = 3.38, p < 0.05,η2 = 0.16). A pairwise anal-
ysis of the conditions showed that the late long-lasting
positivity is only present in the Incongruent condition
(F(1,29) = 7.24, p < 0.05,η2 = 0.2).

Table 1: Summary of the pair-wise computed differences be-
tween the (C)ongruent, (I)ncongruent and (N)eutral condi-
tions split by the analyzed epochs. Significance is indicated
by *

Time Window C - I C - N N - I

150 - 400ms * * -
150 - 300ms * * -
250 - 350ms –
300 - 400ms * * -

600 - 1000ms * - *

Discussion
Research from Van Berkum, Koornneef, Otten, and Nieuw-
land (2007) suggests that comprehenders predict the upcom-
ing course of a sentence based on the previously gathered in-
formation that they integrated in a situation model (Zwaan &
Radvansky, 1998). Various studies have further shown that
not only linguistic information is used to form predictions
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about upcoming sentence content but also visual information
(Staudte & Crocker, 2011; Ferreira, Foucart, & Engelhardt,
2013). It therefore seems reasonable to suggest that such vi-
sual cues contribute to the construction of the situation model.
We interpret the two main components (N400, late positivity)
found in terms of the retrieval-integration approach (Brouwer
et al., in press): The N400 is modulated by the retrieval dif-
ficulty of the upcoming noun, influenced by its predictability
given the visual context. Further, the positivity is influenced
by the integration difficulties founded in the need to update
the situation model.

N400
Parviz, Johnson, Johnson, and Brock (2011) showed that the
N400m, representing the N400 as measured by magnetoen-
cephalography (MEG), is modulated by the information con-
tent that is conveyed by a word in a given context. A simi-
lar interpretation can be attributed to findings from Willems,
Frank, Nijhof, Hagoort, and Van den Bosch (2015). In their
study participants listened to spoken narratives. Their results
show that words with a higher surprisal let to an increased
activation in the left temporal lobe, which has been identi-
fied as source of the N400 effect (e.g., Van Petten and Luka
(2006)). Additionally, an ERP study from Frank, Otten, Galli,
and Vigliocco (2015) revealed a correlation between the am-
plitude of the N400 and word surprisal. In the current study,
the gaze cue preceding the second noun leads to predictions
for the upcoming noun. In the Congruent condition, those
predictions are fulfilled, which leads to an effortless retrieval
of the noun and thus leads to a reduced N400 amplitude com-
pared to both Neutral and Incongruent conditions. In the
Neutral condition, participants have two possible upcoming
nouns active. The information conveyed by the noun there-
fore is higher than in the Congruent condition, as the set of
candidates is reduced to the actual target. In the Incongruent
condition, the information conveyed by the noun contradicts
the prediction made using the visual information. This results
in an increase of the retrieval cost of the noun and thus to an
increased N400 effect compared to the congruent condition.

The early onset of the negativity (150ms after noun onset)
suggests we may in fact be observing modulation of the N2
component, as well as N400. This is supported by the analy-
sis using a moving time window, which revealed two distinct
peaks between 150-300ms and 300-400ms respectively, es-
pecially prominent in the Neutral condition (see Figure 2 for
comparison), and is discussed below.

N2
The globally distributed, early negative component between
150 and 300ms can be interpreted as a reminiscent of the
Phonological Matching Negativity (PMN) as described by
Connolly and Phillips (1994). Similar results have been found
by Hagoort and Brown (2000). They explain this early ef-
fect with a peak around 250ms as a mismatch between the
expected word form given a context and the actual activated
word candidates given the speech signal listeners perceive. In

this study, the context was built up by the gaze towards an
object present in the visual scene. The following word now
either confirms the expectation (Congruent), which in turn
leads to no PMN modulation, or disconfirms them (Incongru-
ent), which evokes a large PMN modulation.

Following the account of Hagoort and Brown (2000),
which states that ’the N250 effect might reflect the lexical se-
lection process that occurs at the interface of lexical form and
contextual meaning’, the effect in our Neutral condition could
also be explained as such an selection process. Given our vi-
sual scene, at the second noun, two of the three objects are
still valid targets. The Neutral gaze cue, directed downwards,
does not provide any further information about the upcoming
word. As both remaining objects are equally plausible, a de-
cision for either one has to be made using the first phoneme of
the uttered word, which leads to the discard of one of the two
predictions. This selection process elicits the negativity in
the N2 region found in the Neutral condition. It is important
to highlight that all of the previously named studies establish
the predictive context using language. Our study differs in
that predictive context is determined solely on the basis of vi-
sual information: the linguistic context does not contribute a
preference for either of the valid nouns.

Positivity (600 - 1000ms)
The relation between updating of a situation model and the
occurrence of a late positivity has been demonstrated in var-
ious studies (Burkhardt, 2007; Donchin, 1981). Following
those accounts, we can interpret our findings in the later time
window starting at 600ms as similarly reflecting the cost of
updating the situation model, and integration more generally
(Brouwer et al., in press). In both the Congruent gaze and In-
congruent gaze condition participants can exploit the gaze cue
towards an object in their situation model to make predictions
about the upcoming noun. In the Congruent condition, this
leads to no violation of those predictions and thereby doesn’t
require an update of the situation model.

In the Incongruent condition however, the violation of the
predictions leads to the need to update the situation model:
the gaze cue toward an object leads to the listener’s interpre-
tation of the gazed-at object to be the upcoming noun. This
in turn leads to the elimination of the remaining object as rel-
evant to the situation model. As the upcoming noun however
shows that the previously discarded object is in fact relevant,
the situation model has to be updated, which leads to higher
integration costs expressed by the late positivity.

The Neutral condition does not draw the focus to one single
object but leaves two objects (the so far unnamed objects) as
equally possible targets. The prediction of this set of objects
is not violated and therefore does not require an update of the
situation model.

Conclusion
We suggest that the N400 and late positivity are most natu-
rally interpreted in terms of the retrieval-integration approach
(Brouwer et al., in press): The N400 findings suggest that
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gaze is used to anticipate the upcoming noun, resulting in in-
creased retrieval cost when gaze is absent or incongruent. In-
terestingly, the late positivity for incongruent gaze, suggests
that gaze is interpreted as conveying referential intentions, re-
sulting in integration difficulty only when gaze is misleading.
This is consistent with eye-tracking data from Staudte and
Crocker (2011). Additionally, we found an N2 modulation
preceding the N400, suggesting gaze leads listeners to antic-
ipate specific word forms. More specifically, we argue that
the gaze cue preceding the second noun is used in combina-
tion with the unfolding situation model to make predictions
about the continuation of the sentence. Those predictions are
then matched with the auditory input. If the initial phoneme
of the input is in line with the prediction, this phoneme pro-
vides little new information and therefore facilitates word re-
trieval. If however the phoneme provides more information,
either by helping to reduce the set of predictions to a single
target (Neutral condition) or through violation of the predic-
tions (Incongruent condition), an N2 modulation is elicited.
In both cases, a subsequent N400 modulation is evoked. If the
predictions are completely violated (Incongruent condition),
the situation model needs to be updated, which increases the
integration cost of the corresponding noun, expressed by a
late positivity. Given the findings in the N4 time-window and
the late positivity, a classical semantic integration (N4) and
reanalysis (P6) account seems unlikely. The integration of
the word in the Neutral condition should not lead to a strong
N4 modulation as both possible words fit the context with-
out a semantic violation. This predicted modulation for only
the Incongruent condition however can be found in the later
time-window reflected in the late positivity. Additionally, the
late positivity should not be evoked, according to the classic
account, as no syntactic reanalysis is needed in any condi-
tion. In sum, our findings demonstrate a robust influence of
non-verbal gaze cues on several underlying processes, includ-
ing auditory processing, lexical retrieval, and integration with
sentence meaning.
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Abstract 

Studies of dyslexics, whose implicit memory is impaired, 
suggest that their implicit inference of sound statistics and its 
integration into perception is inefficient. Specifically, 
dyslexics' implicit memory decays faster and consequently 
only accumulates information over shorter temporal windows. 
We now ask whether this abnormal dynamic is domain general 
by measuring its cortical distribution. We measure the 
dynamics of behavioral context effects and the concurrent 
neural adaptation during fast acquisition fMRI. We find a 
similar pattern of fast decay of adaptation across a broad range 
of cortical areas, though most significant effects are found in 
auditory cortex. This broad neural distribution suggests that the 
relevant aspect of implicit statistical inferences is not the nature 
of stimuli, but their temporal distribution. 

Keywords: implicit memory; adaptation; fMRI; dyslexia, 
anchoring hypothesis of dyslexia; Bayesian inference; 
statistical learning. 

Background 
Implicit statistical learning has a profound measurable effect 
on performance in perceptual discrimination tasks. 
Seemingly simple and unbiased, serial discrimination places 
an asymmetric memory load on sequentially presented 
stimuli. The stimulus presented first has the highest memory 
load, since it needs be retained until the subsequent stimulus 
is presented. Hence, relying on priors to compensate for noisy 
representations is crucial for accurately inferring the 
perceived stimulus. Priors can be utilized to modify noisy 
representations into a maximum likelihood estimate of 
stimuli, those based on previous exposures that led to the 
formation of priors. The integration of priors has been 
modeled computationally in the context of auditory 
perception for signal detection tasks (Treisman & Williams, 
1984) and recently for 2-tone frequency discrimination 
(Raviv et al., 2012, 2014; reviewed in Bausenhart, Bratzke, 
& Ulrich, 2016). Raviv et al. (2012) model asserts that 
participants do not compare the representations of the first 
and second tones, as requested to do and as they 
introspectively do. Rather, they compare the representation 
of the second tone to the integrated representation of the first 
tone with the estimated mean (prior) of previous stimuli. 
Thus, the representation of the first tone is contracted towards 
the mean of previous trials, and when this contraction is in 

the direction of the correct response, the success rate will 
increase.  

Accordingly, trials in this serial discrimination task can be 
divided into those in which contraction increases the 
perceived difference between the two stimuli, hence 
increasing success rate (Bias+), and trials in which 
contraction decreases the perceived difference, and decreases 
the success rate (Bias-). The magnitude of the contraction can 
be quantified as the difference in performance on these two 
types of trials.  

Contraction bias in serial comparison tasks has been 
observed in the visual (Ashourian & Loewenstein, 2011; 
Fischer & Whitney, 2014; Lages & Treisman, 1998; 
Liberman, Fischer, & Whitney, 2014), auditory (Lu, 
Williamson, & Kaufman, 1992; Raviv et al., 2012; Treisman 
& Williams, 1984) and tactile (Hairston & Nagarajan, 2007) 
modalities, and was even observed in tactile velocity 
discrimination tasks in rats (Fassihi, Akrami, Esmaeili, & 
Diamond, 2014) and vibro-tactile discriminations in 
monkeys (Romo, Hernández, Zainos, Lemus, & Brody, 
2002). 

Dyslexia is a wide spread learning disability which poses 
an obstacle in acquiring academic education. It is probably 
the most prevalent learning disability. Defined as a “specific 
and significant impairment in the development of reading 
skills that is not accounted for by mental age, visual acuity 
problems, or inadequate schooling” (WHO, 2010), it affects 
5% of the world’s population (Lindgren, De Renzi, & 
Richman, 1985). 

Dyslexics are diagnosed by their reading difficulty but are 
also consistently found to have difficulties in non-linguistic 
perceptual tasks (McAnally & Stein, 1996; Sperling, Lu, 
Manis, & Seidenberg, 2005). Specifically, dyslexics exhibit 
poorer utilization of implicit memory to compensate for noisy 
observation (Ahissar, Lubin, Putter-Katz, & Banai, 2006; 
Jaffe-Dax, Raviv, Jacoby, Loewenstein, & Ahissar, 2015; 
Oganian & Ahissar, 2012). We recently accounted for this 
deficient memory usage by faster recovery from neural 
adaptation, as measure in Event Related Potential (ERP; 
Jaffe-Dax, Frenkel, & Ahissar, 2017). Importantly, dyslexics 
also exhibit poorer utilization of implicit memory in visual 
discrimination tasks (Jaffe-Dax, Lieder, Biron, & Ahissar, 
2016). Namely, their implicit memory impairment is not 
modality-specific, but rather general multi-modal. 
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Importantly, even in linguistic tasks, compared to good 
readers, dyslexics perceptual performance is adequate when 
the stimuli are equally unfamiliar to both groups, and only 
differ from peers in familiar contexts (Perrachione, Del Tufo, 
& Gabrieli, 2011). This accumulative body of research stands 
in contrast to both the traditional phonological deficit theory 
of dyslexia (Snowling, 2000) and the claim for dyslexics’ 
overall noisy neural representation (Hancock, Pugh, & Hoeft, 
2017). 

Implicit memory is an inaccessible cognitive module 
which has precise resolution, large capacity and long term 
retention (Schacter, 1987). Contemporary studies define 
implicit memory as a memory which does not depend on 
Medio-Temporal lobe activity, or inaccessible to subject’s 
awareness. This negative definition has been recently 
challenged by a general theory of wide-spread cortical 
plasticity in response to perceived events (Reber, 2013). 
Implicit memory utilization has been recently quantified 
using a heuristic approximation of Bayesian inference in 
simple perceptual task (Raviv et al., 2012). This well-defined 
grounded model of high level cognitive aptitude paved a way 
for a search for well-defined neural mechanism which would 
give rise to implicit memory. 

While neural adaptation has a long history of research and 
has been studied intensively in human and animals (Khouri 
& Nelken, 2015), its cognitive role and behavioral 
implication are yet poorly understood. The time scale of 
recovery from neural adaptation has been linked with the time 
scale of implicit memory trace (Lu et al., 1992). Our 
preliminary findings of fast decay suggest that this rate of 
decay of adaptation is a crucial machinery for statistical 
learning. Though traditionally adaptation was considered as 
reflecting fatigue, we gradually understand that it is used for 
statistical learning and updating of categories (Kleinschmidt 
& Jaeger, 2016). 

In the current study, we used fMRI to localize dyslexics’ 
cortical site of fast decay of adaptation. We expected that, if 
their deficit was specific to speech sounds, the difference in 
dynamics would affect only specific areas of the temporal 
lobe, and perhaps also some parietal areas. However, if their 
deficit was domain general, then all areas activated by these 
stimuli would show a similar pattern compared with controls.  

Our results show, that all active regions exhibit faster 
recovery from adaptation among dyslexics. We also found 
additional support to the relation between implicit memory 
and the time-scale of recovery from adaptation by replicating 
the parallel finding of shorter adaptation and shorter implicit 
memory in a special population - dyslexics. Our findings 
suggest that neural adaptation in cortical areas that 
correspond to the specific perceptual event carries implicit 
memory. 

This current study shows that dyslexics’ implicit memory 
impairment is dictated by the dynamic decay of their 
representation throughout the cortex and not by a modality-
specific difficulty. 

Results 
We administered two-tone frequency discrimination to 20 
dyslexics and 19 good readers in four conditions of trial 
intervals: 3, 6, 9 and 15 seconds (trial onset to trial onset; 
TOA). Implicitly, the representation of the first tone is 
degraded and contracted towards the mean of previously 
experienced tones (contraction bias). In Bias+ trials this bias 
extended the perceived difference between the current pair 
and improve their detectability; while in Bias- trials this bias 
decreased the perceived difference between the current two 
tones and hence hampered performance (Raviv et al., 2012). 
We previously found that this implicit memory impact 
decayed with the extension of inter-trial intervals – it was 
weaker in conditions of longer inter-trials intervals than in 
conditions with short inter-trial intervals (Jaffe-Dax et al., 
2017). We measured implicit memory as the difference in 
sensitivity (d’) between Bias+ and Bias- trials and modelled 
its decay using an exponential decay: 𝛥𝑑′ 𝑇𝑂𝐴 = 𝑎 +
𝑏 exp −𝑇𝑂𝐴 𝜏 , where 𝑎 denotes the estimated 𝛥𝑑′ at 𝑡 →
∞ (asymptotic level); 𝛽 denotes the difference between the 
𝛥𝑑′ at 𝑡 = 0 and at 𝑡 → ∞ (decay magnitude); 𝜏 denotes the 
time it takes for 𝛥𝑑′ (at 𝑡 = 0) to decay to 1 𝑒 (~37%) of its 
initial value (temporal slope parameter). A small 𝜏 indicates 
fast decay. 

In this current study, we replicate faster implicit memory 
decay among dyslexics outside of the magnet (in a training 
session), but surprisingly not in-scan. In the training session 
dyslexics’ implicit memory decay was faster than controls’ 
(group 𝜏 ± IQR: controls: 2.3 ± 3.4; dyslexics’: 0.4 ± 0.4; z = 
2, p < 0.05, Mann-Whitney U-test). Figure 1 shows the 
difference in d’ between the trials that benefit from prior 
integration and trials that loose from it as a function of inter-
trial interval. For both groups, we did not observe a 
significant decay of implicit memory in the scanner, Perhaps 
the scanner noise forced the subjects to compensate for their 
noisy perception in all TOA conditions. 

 

 
 

Figure 1. Implicit memory decay is faster among 
dyslexics in the training session, but not in-scan. Controls in 

blue; dyslexics in red. 
 
We expected an attenuation of neural activity in the 

conditions with short inter-trial interval relative to the 
conditions with long inter-trial intervals, as neural adaptation 
decays. Specifically, we fitted their BOLD activity in the four 
ITI conditions to an exponential decay model (𝛽 𝑇𝑂𝐴 =
𝑎 + 𝑏 exp −𝑇𝑂𝐴 𝜏 ) and searched for regions in which the 
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Figure 2. Estimated groups’ model parameters for exponential BOLD decay across the cortex. A. Controls’ asymptote level 
(𝑎). B. Dyslexics’ asymptote level (𝑎). C. Controls’ magnitude of decay (𝑏). D. Dyslexics’ magnitude of decay (𝑏). E. 

Controls’ decay time (𝜏). F. Dyslexics’ decay time (𝜏). 
 

model parameters (𝑎, 𝑏 or 𝜏) differed significantly between 
the groups. Figure 2 shows the average groups’ parameters of 
the exponential decay model. Throughout the cortex, 
dyslexics’ estimated decay rate was faster than controls’ (i.e. 
shorter 𝜏). This confirms our prior hypothesis regarding their 
faster recovery from adaptation. Unexpectedly, the 
asymptote level (𝑎) of the model also differed between the 
groups. Specifically, the overall BOLD level of controls was 
higher than dyslexics’. This could be attributed to overall 
lower signal-to-noise ratio in dyslexics’ BOLD signal, but 
surely worth further investigation and verification. 
We compared the individually estimated parameters of 
BOLD decay between the groups and found that the decay 
time differed significantly in the left primary auditory cortex 
(group 𝜏 ± IQR: controls: 25.4 ± 990.9; dyslexics’: 9.1 ± 
113.2; z = 2.2, p < 0.05, Mann-Whitney U-test). 
Unexpectedly, the asymptotic level differed significantly in 
this region (group 𝑎 ± IQR: controls: 10.4 ± 298; dyslexics’: 
9.1 ± 113.2; z = 2.5, p < 0.05), in the left central gyrus 
(controls: 7.7 ± 230.9; dyslexics’: 3.9 ± 12.5; z = 2, p < 0.05) 
and in the right ventral frontal cortex (controls: 6.6± 180.1; 
dyslexics’: 2.2 ± 55; z = 2.1, p < 0.05, Mann-Whitney U-
tests). Figure 3 shows the clusters which revealed significant 
difference in estimated parameters between the groups. 

These significant group differences were mostly apparent 
in the cortical regions that are known to be most active during 
this task (Daikhin & Ahissar, 2015). Recent study with 
multiple types of stimuli reported reduced stimulus specific 
adaptation in dyslexics across all related cortical regions 
(Perrachione et al., 2016). In line with these findings, we 

argue that shorter time scale of recovery from adaptation is a 
general property of dyslexics’ cortex, which accounts for 
their shorter retention of implicit memory. 

Discussion 
Adaptation is a simple, well defined candidate for the neural 
basis of implicit memory. Assuming a labelled line of input 
units, adaptation from previous stimuli should attenuate 
responses to upcoming stimulus as a function of its proximity 
to the previous stimuli. This proximity has both temporal and 
parametric dimensions, such that similar stimuli should yield 
a more attenuated response than dissimilar stimuli, and rapid 
repeating stimuli should yield a more attenuated response 
than slow repetitions. 

In this work, we have presented evidence that neural 
adaptation in modality specific cortical region decayed faster 
in a special population of subjects, who also exhibited faster 
decay implicit memory to the same modality. Taken together, 
these parallel findings support the purposed model for 
implicit memory. 

A recent imaging study compared adaptation to similar 
stimuli within a category among dyslexics and good readers. 
Our suggestion is in line with the researchers’ findings of 
deficient adaptation in dyslexics in every category-specific 
cortical region that was measured (Perrachione et al., 2016). 

Our findings suggest that the property of adaptation which 
is impaired in dyslexics is the temporal dimension rather than 
the similarity between stimuli. Namely, their adaptation 
decay as a function of time and not as a function of 
representational similarity (which was recently found intact 
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Figure 3. Group effect in estimated decay model parameters. A. Controls’ estimated decay time (𝜏) was longer than 
dyslexics’ in superior temporal gyrus. B. Controls’ estimated asymptote level (𝑎) was higher than dyslexics’ in central sulcus 

and in ventral frontal cortex. 
 

in dyslexics ;Boets et al., 2013). Thus, it is this dynamic 
feature that governs implicit memory skills and deficits. 

Methods 
The demographic, cognitive and reading assessments of this 
cohort is described in Jaffe-Dax et al., 2017. 

In the two-tone frequency discrimination task, subjects 
were asked to indicate which of the two tones had a higher 
pitch. The tones were drawn from a uniform distribution 
between 800-1250 Hz and the frequency difference within 
each pair was randomly drawn between 1-20%. Each subject 
performed 12 blocks of 16 trials. Each block had a constant 
Trial Onset Asynchrony (TOA) of 3, 6, 9 or 15 seconds (in 
random order). Subjects performed the task outside of the 
scanner (training) and in-scan. 

Stimuli were digitally constructed using Matlab 2015b 
(The Mathworks Inc., Natwick, MA) and administered 

through inserted sound attenuating MR compatible S14 
earphones (Sensimetrics Corporation, Malden, MA). 

Prior to the functional scan, a high-resolution (1 × 1 × 1 
mm resolution) T1-weighted magnetization-prepared rapid 
acquisition gradient-echo (MPRAGE) images were acquired 
using a 3-T Magnetom Skyra Siemens scanner and a 32-
channel head coil, at the ELSC Neuroimaging Unit (ENU). 
The functional MRI protocols were based on a multislice 
gradient echo-planar imaging and obtained under the 
following parameters: TR = 1 s, TE = 30 ms, flip angle = 90°, 
imaging matrix = 64 × 64, field-of-view = 192 mm; 42 slices 
with 3 mm slice thickness and no gap, were oriented in AC-
PC plane, covering the whole brain, with functional voxels of 
3 × 3 × 3 mm and multiband parallel imaging with 
acceleration factor = 3 (Moeller et al., 2010). 

Each condition was modelled separately to account for its 
contribution to the measured BOLD signal in each voxel, i.e., 
its 𝛽 values for each TOA condition. A spherical searchlight 
with 4 voxels radius was performed centered at each voxel to 
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average 𝛽 values for each condition. An exponential decay 
model (see Results) was fitted to the smoothed 𝛽 values and 
its parameters were estimated for each center voxel. 
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Abstract 

The study assessed the auditory processing abilities and the 

cognitive skills in children with specific learning disability. It 

investigates the top-down or bottom-up influence on auditory 

processing. Using a test battery approach, the association 

between cognitive skills (verbal working memory and 

attention) and auditory processing abilities (auditory closure, 

binaural integration and temporal processing skills) has been 

measured. The results revealed that cognitive processes 

significantly affect the bottom-up auditory perception. The 

effect of cognition was more evident in speech processing than 

non-speech signal processing. These findings may be useful in 

designing appropriate therapeutic protocol for children with 

specific learning disability. 

Keywords: dyslexia; learning disability; psychoacoustics; 

speech perception. 

Introduction 

Auditory processing involves the ability of the auditory 

system to localize and lateralize sounds, discriminate and 

recognize auditory patterns, temporal aspects of signal, and 

understanding the auditory information in degraded listening 

environments (ASHA, 1996; Bellis, 2003; Chermak & 

Musiek, 1997), efficiently and effectively. Any disturbance 

in perceptual processing of the auditory information is 

referred to as auditory processing disorders (ASHA, 1996). 

Auditory processing is affected in individuals with 

peripheral hearing loss (Neijenhuis, Tschur, & Snik, 2004), 

elderly population (Atcherson, Nagaraj, Kennett, & Levisee, 

2015), with certain neurological disorders (Klein et al., 

1995), psychological disorders (Iliadou et al., 2013), 

developmental disabilities like attention deficit hyperactive 

disorders (Chermak, Somers, & Seikel, 1998), dyslexia 

(Hugdahl et al., 1998), learning disability (Kraus et al., 1996), 

specific language impairment (Cohen, Campbell, & 

Yaghmai, 1989), and others. Studies have indicated that 

children with learning disability show inability in processing 

complex auditory information (Merzenich et al., 1996). This 

processing problems have been attributed to the 

neurophysiological encoding of the speech stimuli and higher 

level processing deficits (Studdert-Kennedy & Mody, 1995). 

Lui et al. (2009) have suggested top-down processing deficit 

of semantic tasks in auditory modality in children with 

reading disability. Verbal working memory, which is the 

ability to store acoustic information for a short period and 

plays important role in speech perception (Ingvalson, Dhar, 

Wong, & Liu, 2015), is affected in LD children (Alloway & 

Alloway, 2010; Wiguna, Wr, Kaligis, & Belfer, 2012).  

Attention deficits have also been found to be prominent in 

children with learning disability (Finneran, Francis, & 

Leonard, 2009). Pinheiro et al. (2010) have reported that LD 

children have displayed poor divided attention abilities in 

dichotic listening tasks. In auditory stroop task, selective 

attention, i.e.,  the ability to focus on relevant auditory 

information while ignoring the irrelevant information, has 

been found to be affected in these children (Faccioli, Peru, 

Rubini, & Tassinari, 2008).  

Researchers have reported that deficits in the cognitive 

abilities in the form of verbal working memory and auditory 

attention have been found in case of LD children. Therefore, 

it was hypothesized that the cognitive abilities may be 

associated with auditory processing disorders in LD children. 

Hence, in the present study, some auditory processing 

abilities and cognitive skills were assessed in children with 

specific learning disability. 

Methodology 

Participants 

A standard group comparison research design was adapted. 

31 children (17 males and 14 females) diagnoses as specific 

learning disability (SLD) by qualified speech language 

pathologist as per DSM-5 criterion (American Psychiatric 

Association, 2013) were included. Equal number of typically 

developing children (TD) were also selected (n=31). The 

children in both SLD and TD group were native Kannada 

speakers and belonged to similar socio-economic and cultural 

background. All the children were within the age range of 8-

10 years and were having normal hearing sensitivity 

(PTA<15 dBHL; SRT+10 dB of PTA; SIS>90%). All 

children had average or above average intelligence (I.Q.>90) 

as assessed by the school psychologist. None of the child had 

any associated speech, language, otological, psychological 

and/or neurological problems. The study adhered to the rules 

of the institutional ethical board and approved to test human 
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subjects. An informed written consents were obtained from 

either parents or teachers of all the participant before 

commencing the tests. 

Assessment of Auditory Processing Abilities 

Tests to assess auditory closure, binaural integration, 

temporal resolution, temporal pattern recognition and 

temporal masking were selected. Auditory closure is the 

ability to fill-in the missing auditory information when the 

external redundancy in the acoustic signal is reduced. Time 

compressed speech test (TCST) and word recognition in 

noise test (WRS) were used to assess auditory closure 

abilities. TCST comprised of 40 standardized Kannada 

sentences (a Dravidian language) with 3-4 words. These 

sentences were divided into 2 sets by randomly assigning the 

sentences into sets, i.e. 20 sentences per set. The sentences 

were processed to have 50%, 60%, 70% and 80% of temporal 

compression. The participants were expected to repeat the 

complete sentence as the compressed sentences were 

presented. 

WRS consisted of five lists with 30 standard Kannada 

words per list. Each list was processed with steady-state noise 

to obtain a SNR of -9, -6, -3, 0 and +3 dB. The participants 

were expected to repeat the words as they heard. A detailed 

description of the stimulus parameter is available elsewhere 

(Jain, Vasudevamurthy, & Raghavendra, 2015).  

Auditory fusion test was used to measure binaural 

integration skills. The test comprised of standardized 

Kannada bisyllabic words, where first syllable of the word 

was presented in to one ear and the corresponding second 

syllable was presented in other ear, simultaneously. The 

participants were expected to say the whole word. Two lists 

of 30 words each, were presented randomly. The lists were 

constructed in such a way that a syllable which was in the 

initial position in one word would also occur in the final 

position of any other word. This reduced the syllabic position 

effect.  

Temporal resolution abilities were measured using 

temporal modulation transfer function (TMTF) at 8, 60 and 

200 Hz modulation frequencies. The stimulus was a 500 ms 

Gaussian noise that was modulated at specific frequency. 

Using a two alternative force choice method, the participants 

were asked to identify the interval containing a modulated 

noise. 90 sound sequences were presented by adapting the 

maximum likelihood procedure which was implemented 

using Matlab (Grassi & Soranzo, 2009).  

Temporal pattern recognition was measured using duration 

pattern test. The test stimuli, as suggested by Musiek (1994), 

consisted of a 1000 Hz pure tone generated using audacity 

software (ver. 1.3.14 beta). Two tones, one with 500 ms and 

another with 250 ms, were used. The tones were patterned in 

six different combinations such that one tone was presented 

once while other tone was presented twice, with an inter-tone 

interval of 300 ms. The participants were asked to repeat the 

sequence in which tones were presented. Each tone sequence 

was presented at least five times.  

Temporal masking skills were measured using backward 

masking test by following the maximum likelihood 

procedure implemented using Matlab (Grassi & Soranzo, 

2009). The test stimulus was a 1000 Hz tone of 20 ms 

duration which was presented immediately before a 300 ms 

band pass noise (400-1600 Hz). The participants were asked, 

using a two alternative force choice method, to identify the 

noise interval which had a tone. 90 pair of sounds were 

presented. 

Assessment of Cognitive Skills 

The cognitive skills were assessed in terms of verbal 

working memory, divided attention and selective attention. 

Auditory digit span test (Blackburn, 2011) and operation 

span test (Kane et al., 2004) were used to assess verbal 

working memory. In digit span test, sequence of digits were 

presented binaurally and participants were asked to repeat the 

sequence in either the same order (forward digit span) or in 

the reverse order (backward digit span) of presentation. The 

stimuli were presented in the increasing order of the number 

of digits. The testing started from two digits level and moved 

up to ten digit level. Three trials at each level were given and 

when the participant responded 2/3 trials correctly, the next 

level of test was administered. The maximum number of 

digits repeated correctly were considered as the thresholds.  

The operation span test based on the study of Kane et al. 

(2004),  has been standardized in Kannada by Jain and Kumar 

(2016). In this test, the target stimuli (phrases varying from 

two to five bi-syllabic words) were presented along with a 

secondary task (a mathematical operation). Participant’s task 

was to solve the mathematical problem and label it as correct 

and incorrect and subsequently say the word in the order of 

presentation. For two word sentences, each correct word 

repeated was given a score of 0.5; for three word sentence, 

each correct word repeated was given a score of 0.33; and so 

on, till five word sentence where each correctly repeated 

word was given a score of 0.2. In total, 12 such sentences 

were presented (three in each phrase length) and the scores 

were given out of 12 (each sentence carried a total score of 

one, when all the words were correctly repeated).  

The attention skills were measured for divided attention 

and selective attention task using dichotic digit test (Musiek, 

1983). The test comprised of pair of digits presented 

binaurally. In the divided attention task (free recall), the 

participants were expected to repeat all the digits presented 

to them. In selective attention tasks (force recall), the 

participants focused their attention to one ear only and 

repeated the digits presented to that ear while ignoring the 

digits being presented to other ear. Total 30 pair of digits 

were presented randomly for each task. 
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Procedure 

The testing was carried out in a sound treated room. The 

stimuli were presented binaurally at the participant’s 

comfortable loudness level which varied from 65 dB to 80 dB 

HL, using TDH-39 headphones connected to computer based 

audiometer (Interacoustics AD-629). The testing took at least 

2-2.5 hours for each participant and was conducted in two 

sitting for the consecutive days. Using this procedure, 

participants of both the groups were tested and data was 

collected. 

Data Analysis 

Logistic regression with linear or non-linear interpolation 

was used to measure SNR-50 (SNR level at which 

participants’ responded correctly, at least for 50% stimuli) for 

word recognition scores in noise and compression-50 

(compression level at which 50% correct identification of 

sentences was obtained) for time compressed speech test. The 

data was normally distributed across groups as per Shapiro-

Wilk test for normalcy (p>0.05) and hence parametric 

statistics was used. One way analysis of variance was used 

estimated the significance of differences of scores for 

auditory processing and cognitive tests between SLD and TD 

children. The test scores were dependent variables whereas 

group distribution was independent variable. The partial least 

square regression-structured equation modeling was used to 

note the relationship between the test carried out for cognitive 

skills and auditory processes. Further, it was also used to find 

out the correlation between cognitive abilities and auditory 

processes in SLD children. 

Results 

The data obtained from descriptive statistical analysis for 

auditory processing tests and cognitive tests are presented in 

Figure 1 and 2, respectively as box plots. The mean scores for 

all the tests (except DPT) were better for TD children in 

comparison to SLD children. The results of one way ANOVA 

are shown in Table 1. Statistically significant differences, 

between TD and SLD groups were found in all the tests of 

auditory processing and cognitive skills, except for DPT. It 

was also specific learning disability accounted for more than 

50% variance in the test scores (partial eta square was greater 

than 0.5). An exception to this was word recognition in noise 

scores and forward digit recall scores, where the effect size 

was greater than 0.3 only.  

The correlation between cognitive skills and auditory 

processing abilities were measured using partial least square 

regression. A formative model was created where working 

memory and attention were considered as latent variables and 

the measures to assess working memory (digit and operation 

span) and attention skills (dichotic digit test scores) as 

observed variables. The effect was seen on three measures of 

auditory processing i.e., auditory closure, binaural integration 

and temporal processing. The model had good fit with 

standardized root mean residual of 0.036 (Hu & Bentler, 

1998). 

 

Figure 1: Box plots are representing the scores obtained for 

tests to assess auditory processing abilities.  

 

 

Figure 2: Box plots are representing the scores obtained for 

tests to assess cognitive skills. 
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Table 1: The F-values and significance of difference (p-

values) for tests to assess auditory processing abilities and 

cognitive skills, between SLD and TD children.  

 
Test Procedures df F-value p-value 

Tests to assess auditory processing abilities 

Time Compressed Speech Test 1 126.34 0.000 

Word recognition Scores (in noise) 1 51.13 0.000 
Auditory Fusion Test 1 160.75 0.000 
TMTF (8 Hz) 1 579.00 0.000 
TMTF (60 Hz) 1 753.11 0.000 
TMTF (200 Hz) 1 446.50 0.000 
Duration Pattern Test 1 1.87 0.176 

Backward Masking Test 1 579.55 0.000 

Tests to assess cognitive skills 

Digit Span Test (Forward) 1 27.79 0.000 

Digit Span Test (Backward) 1 166.70 0.000 

Operation Span Test 1 57.64 0.000 

Dichotic Digit Test (Free Recall) 1 256.47 0.000 

Dichotic Digit Test (Force Right) 1 149.95 0.000 

Dichotic Digit Test (Force Left) 1 94.89 0.000 

 

The regression model is presented in Figure 3. It was noted 

from the figure that the adjusted R2 indicated 71.6% of 

variance in the auditory closure abilities were associated with 

attention skills and working memory. Similarly, 67.5% 

variance in binaural integration abilities, and 91% variance in 

temporal processing abilities were attributed to cognitive 

skills. It was also noted that attention was highly correlated 

to auditory processing than with working memory. Among 

the working memory tests, backward digit recall represented 

the working memory skills maximally. Attention skills were 

better represented in terms of divided attention. Similarly, 

TCST was found to be a more reliable measure to assess 

auditory closure. The temporal processing abilities were 

better represented by backward masking test. 

Discussion 

The present study measured the association between 

cognitive skills and auditory processing in SLD children. The 

results of ANOVA revealed significant differences on all the 

measures of auditory processing and cognition between SLD 

and TD children (except DPT). Many researchers have 

reported disorders of auditory processing in LD children 

(Cohen et al., 1989; Dawes & Bishop, 2010; Kraus et al., 

1996). Therefore the assessment of SLD, using series of tests 

of auditory processes, like in the present study may provide 

better information about SLD. Further, cognitive abilities 

have also being examined previously in such children 

(Alloway & Alloway, 2010; Faccioli et al., 2008; Finneran et 

al., 2009; Pinheiro et al., 2010; Wiguna et al., 2012), but the 

relationship between cognition and auditory processing has 

not been investigated intensively. Such investigations, like in 

the present study, would lead to better understanding of the 

relative contribution of top-down or bottom-up processes 

involved in auditory perception.  

At times, it seems that the structured equation modeling 

used in the present study is under powered, as the sample size 

is small. However, the power analysis run with effect size of 

0.5 and the power coefficient of 0.95, for five predictor 

variables (the variables assessed the cognitive skills) 

indicated that total sample size should be 42. In the present 

study, although the sample size for SLD children is 31 only, 

is it is not much lesser than the suggested sample size. Thus, 

it was considered that SEM should be a reasonable tool to 

assess the association between auditory processing abilities 

and cognitive skills.  

The association between cognitive skills and auditory 

processing are highly significant. Both attention and working 

memory seems to be influencing auditory processing, and the 

contribution of attention seems to be more than working 

memory, especially for temporal processing. Therefore, the 

findings of the present study may be considered as suggesting 

the influence of cognitive skills on auditory processing. 

Similar findings have been reported by other researchers 

(Moossavi et al., 2014; Murphy et al., 2013) in normal 

children. Based on the present results, it may be extended to 

SLD children also.  

In the present study, most of the tests used speech stimuli, 

and the results suggest that the cognition was influencing the 

auditory processing of speech than auditory processing of 

tonal/noise perception. ….speech test and cognition 

(correlation) Similar findings have been investigated by 

several other investigator (Fedorenko, 2014; Hällgren, 

Larsby, Lyxell, & Arlinger, 2001; Larsby, Hällgren, Lyxell, 

& Arlinger, 2005). Word recognition in noise required the 

processing of both speech and non-speech stimuli, showed 

the path coefficient of WRS (in noise) was 0.379. This also 

suggest the contribution of cognition in auditory processing 

of speech more than for non-speech stimuli. This further 

strengthen the conclusion that the cognition has greater 

influence on auditory processing of speech.  

Conclusion 

The present study examined the association between 

cognitive abilities and auditory processing, and highlights the 

cognitive influence on auditory processing. The findings of 

the study indicate that the cognitive abilities are associated 

with auditory processing in SLD children also like in normal. 

It has also been found that the cognition is associated with 

auditory processing of speech more than non-speech signal. 

These findings may be useful in understanding speech 

perception in SLD children and may be used in designing 

appropriate speech and language intervention techniques.
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Figure 3: The structure equation model showing the association of cognitive skills (in terms of working memory and attention 

skills) with auditory processing (in terms of auditory closure, binaural integration and temporal processing).  The eclipse and 

rectangle are used to represent latent and observed variables, respectively. In the eclipse, adjusted R2 values are given, and 

those between the arrow bars are path coefficients of the model. 
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Abstract
Difficult tasks should be attempted one at a time, while easy
tasks can be undertaken in parallel. Reinforcing our previ-
ous conclusion that people are surprisingly poor at applying
this logic, we find people fail to select standing positions that
maximize their probability of success in throwing a beanbag
into one of two possible hoops. We asked participants to ex-
plicitly report their odds of successfully throwing a beanbag
into each hoop from the location they had chosen to stand,
and estimates were highly accurate. Nonetheless, participants
failed to use estimates of success appropriately to maximize
success, suggesting a failure of insight, rather than limited or
inaccurate information, can account for suboptimal decisions
about standing position.

Keywords: Bounded Rationality; Optimal Behaviour;
Awareness; Decision Making.

Introduction
Human skill is limited, and effective decisions must take
these limitations into account. In Chess and Go, for exam-
ple, it is impossible to select the optimal move by mentally
simulating every possibility. An effective strategy must take
into account the constraints of ones own memory capacity.
Simon (1990) used the term bounded rationality to describe
decisions that are rational given known constraints.

We recently reported a surprising failure to make effective
decisions about whether to pursue one goal or two (Clarke
and Hunt, 2016). In one experiment from that study, partic-
ipants had to throw a beanbag into one of two hoops. The
distance between the hoops varied and participants were told
which one of the two hoops had been randomly selected to
be the target only after they chose a place to stand. The opti-
mal strategy when the hoops are relatively close together is to
choose a standing position equidistant from both hoops, mak-
ing an accurate throw possible irrespective of which hoop is
the target. However, as the hoops move further apart, the

probability of a successful throw from the center position
drops below 50%. Now the best strategy is to stand close
to one of the two hoops and hope it is the target on that trial.
Despite the availability of this simple strategy, the distance
between the hoops had no systematic effect on where people
stood, demonstrating a profound failure to optimize throwing
accuracy. The same failure to adjust strategy in response to
difficulty was observed in deciding where to fixate to detect
one of two targets (see also Morvan and Maloney, 2012) and
in allocating attention when trying to memorize digit strings.
These experiments took into account each individuals perfor-
mance limitations by measuring throwing ability, visual acu-
ity, and memory capacity in a separate session involving only
single targets with no decisions. This allows for an individ-
ualized estimate of when a given participant should switch
from attempting both goals to prioritising one. Nonetheless,
bounded rationality could explain this failure as participants
could be unaware of, or incorrect about, their own abilities
(Schraw and Dennison, 1994).

In the current experiment, we repeated the beanbag-
throwing task but explicitly asked participants to report on
their expected accuracy before each throw. This allows direct
comparison of estimated and actual throwing performance.
Three outcomes are possible, all of which are informative
about the cause of suboptimal decisions in this task. First,
consistent with bounded rationality, participants may be un-
aware of their throwing ability and therefore fail to account
for it when selecting standing positions. Second, participants
may not adequately attend to their own abilities. Self-talk
can improve throwing (Chang et al., 2014), suggesting ex-
plicitly reporting about ones own ability can improve task
performance. Third, participants may have an accurate rep-
resentation of their own skill, and drawing their attention to
this information may not influence their standing position de-
cisions. In this case, the results would suggest failure to max-
imize success in this paradigm is an example of a more fun-
damental limitation in decision competence.
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Methods

Participants
Twenty-four participants (17 female) were recruited via the
SONA systems at the University of Aberdeen and took part
in return for course credit. The sample size of 24 (12 in each
group) was based on our previous experiment (Clarke and
Hunt, 2016). Average age was 19 years (SD = 1.5).

Procedure
We used a similar protocol to that of Experiment 2 in Clarke
and Hunt (2016). The experiment was carried out over two
sessions, with participants carrying out Session 2 a week after
Session 1. Both sessions took place in the same sheltered
paved area. The paving slabs were used as a convenient unit
for measuring distances as they were approximately the same
size as the hoops (the slabs measured 0.46 x 0.61m and the
hoops had a diameter of 0.4m).

The aim of Session 1 was to measure how well each par-
ticipant could throw a bean bag into hoops placed at seven
evenly-spaced distances from three (1.38m) to fifteen (6.90m)
slabs away, in two different directions (direction was counter
balanced). A total of 84 throwing trials were completed in
this session (12 beanbags for each of the 7 target distances).
The data gathered from the first session were used to model
how participants accuracy decreases as the distance to the tar-
get hoop increases (see Figure 1).

In Session 2, participants were again throwing beanbags
into hoops, but there were now two hoops, and either one
could be the target. Participants were asked to choose a
place to stand before throwing, and were not told which hoop
would be their target until after they had made this decision.
To avoid having to re-position hoops from trial to trial, the
area contained six hoops of three different colours, with blue
hoops at the furthest distance, yellow at an intermediate dis-
tance, and red at the closest distance. The actual distance of
each hoop colour depended on performance in the first ses-
sion, with each colour corresponding to an estimate of the
participants throwing accuracy from the centre: Blue hoops
were placed at the slab distance where accuracy was expected
to be closest to 10%, yellow hoops at 50%, and red hoops at
90% (see Figure 2). The beanbag on each trial was randomly
drawn from a bag, which initially contained nine beanbags,
three of each colour. The colour of the beanbag drawn from
the bag determined which hoop pair was the target on that
trial. Once all nine had been thrown they were replaced. This
process was repeated 5 times for a total of 45 trials.

On each trial in Session 2, participants retrieved a beanbag
and then chose somewhere to stand (the participants were told
that they could stand anywhere on the paved area). The ex-
perimenter then informed them about which hoop (north or
south) was their throwing target on that trial. The direction
was randomised, with each direction equally likely on every
trial. It was made clear to the participants that the direction

Figure 1: This shows the set up for session 1 from the partic-
ipant’s point of view.

of each throw was random and had been predetermined, with
each direction being equally likely. They then performed the
throw and their standing position and throwing accuracy were
recorded.

All participants followed the protocol described above, and
half of the participants were also instructed to give an es-
timate (in percentages) of their expected throwing accuracy
for both hoops from the location they had chosen to stand.
They were prompted to provide this estimate after they chose
a place to stand but before they actually threw the beanbag.
This group will be referred to as the Online Estimation Group.
This condition was included to test whether drawing the par-
ticipants attention to this component of the problem they were
faced with would help them to perform better.

Upon completion of the 45 trials in Session 2, all partici-
pants then performed a task similar to Session 1, but instead
of throwing, they were required to give an estimate of their ac-
curacy, in percentages, for each distance that had been tested
in the first session. Participants stood in one spot, and one
hoop was moved to different distances from them in either
direction. The distances were split into two sets: 3, 7, 11,
15 and 5, 9, 13. One set was presented to the participants
first, in ascending order (i.e. getting further from the partici-
pant); then the other set was presented to them in a descend-
ing order (i.e. getting closer). The order of sets was coun-
terbalanced across participants so each set was presented first
equally often. Results were analysed in R (R Core Team,
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Figure 2: The setup for session 2

2016) and modelled using the lmer function from the lme4
package (Bates et al., 2014).

Results

Actual accuracy vs. Estimated accuracy

Participants throwing performance in Session 1 is shown in
Figure 3. The relationship between accuracy and distance for
each participant was modelled using logistic regression. Par-
ticipants estimate of their own throwing ability is superim-
posed in blue. The majority of our participants were accurate
in their ability to estimate their own throwing ability. This
can be summarised by looking at the correlation between ac-
tual and estimated accuracy for each individual. This gives a
median Pearsons correlation coefficient r of 0.89 (min=0.72,
max=0.96).

Figure 3: These graphs illustrate the accuracy (proportion
correct) over the various distances for each participant (ac-
tual, in red), and their estimates of their own accuracy over
the same distances (in blue).

Standing position

The optimal strategy for the closest hoop distance in Session
2 would be to stand in the middle, as the expected accuracy
is 90% regardless of which hoop was selected as the target.
For the farthest hoop distance, the optimal strategy would be
to stand next to one of the two blue hoops, as this means that
they would be approximately 100% accurate for that hoop
and 0% accurate for the other hoop. Considering that each
hoop was equally likely to be selected, this means that stand-
ing next to one blue hoop gives the participant a 50% chance
of success, which is much greater than the 10% accuracy they
would achieve by simply standing in the middle. The point
where participants should switch between a centre and a side
strategy is marked by a blue line in Figure 3 (the 50% point in
their reported estimate of accuracy is shown by the red line).
For the majority of the participants, it makes no difference
whether we use their actual accuracy or their estimated accu-
racy to determine the ideal switch point, given the resolution
of our experiment. The black dots illustrate the chosen stand-
ing positions on each trial: it is clear from these results that
participants do not switch their strategy at either point; in fact,
generally speaking, participants do not alter their standing po-
sition systematically with the distance of the hoops. These
data are similar to those from the throwing task reported in
Clarke and Hunt (2016). Interestingly, we can see that one
participant (participant B11 in Figure 4) approaches the opti-
mal strategy, particularly with respect to their estimated accu-
racy. Taken in aggregate, however, participants did not tend
to stand closer to the hoop when they were further apart (a
paired samples t-test comparing standing position for farthest
to the closest hoop distance was non-significant; t(23)= -.49).

Standing positions across groups

To explore whether being asked to estimate the probability
of successfully completing both possible throws had an effect
on participants decisions, we compared the standing positions
for the control group (Group A) to the online estimate group
(Group B). For the closest hoops, participants in Group A
stood on average 0.13 (standard deviation = 0.21) of the way
from the central point to one of the two hoops, and partici-
pants in Group B stood at 0.14 (standard deviation = 0.27).
Similarly, there was little difference between the two groups
for the blue (far) hoops: participants chose to stand slightly
further away from the central point (Group A: M= 0.128, SD=
0.17, Group B: M= 0.2, SD= 0.22). We conclude that being
prompted to verbally report estimated accuracy for each trial
had no effect on the strategies participants used to complete
the task (close; t(22) = .09, far; t(22) = .895).

Analysis was also carried out to examine whether the accu-
racy of a participant’s estimate of their own ability was cor-
related with how closely they followed the optimal strategy.
To do this, the r value for each participant (representing the
accuracy of their estimate) was correlated with a normalised
value for the average distance of the standing position from
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Figure 4: Black dots show the standing positions of each par-
ticipant on each trial in Session 2 as a function of distance of
the hoops from the centre (x-axis). Standing position was nor-
malised so that 0 represents having stood at the centre and 1
being one of the side hoops . Red lines represent the distance
at which participant should have switched between standing
at 0 and standing at 1 based on their actual accuracy, and the
blue lines is the switch point based on their own estimates of
their accuracy.

the optimal position (in the 10% accuracy and 90% accuracy
trials). The Pearson’s correlation coefficients were very weak
for both the 10% accuracy (r = -0.12) and the 90% accuracy
conditions (r = -0.12). To clarify, had there been an effect
of accuracy of estimates, there should have been a negative
correlation for both accuracy conditions. The lack of a rela-
tionship suggests that participants with a greater awareness of
their ability were not better at making using this information.

Discussion

Participants do not select standing positions that maximize
their throwing performance, reinforcing the conclusion that
participants fail to solve this task, as previously found by
Clarke and Hunt (2016). This experiment was designed to
test whether limitations in self-awareness of throwing ability
could account for participants poor choices in standing posi-
tions. The results suggest participants were highly accurate
in reporting on the expected outcome of their decision, but
failed to make use of this information when deciding where
to stand.

The second possibility we considered in the introduction is
that participants have an accurate representation of their own
skill, but fail to use this information in making their decision.
If this is the case, asking participants to explicitly judge their
expected accuracy before each throw should prompt them to
make better decisions about where to stand. However, com-
pared to the control group, the standing positions selected by
participants who were explicitly asked about their accuracy
before each throw were not more optimal. We asked partici-

pants only to state their expected accuracy for each hoop from
the position they had selected; it may be that this was too in-
direct to cause participants to actually use this information
in deciding where to stand. In future studies, it may be of
interest to ask more probing questions. For example, asking
them to explain why they choose to stand may lead to better
decisions.

We conclude that participants fail to adopt an optimal strat-
egy despite having highly accurate information about the ex-
pected outcome of their decisions. It is possible that the par-
ticipants were not aware that this information was relevant to
making a decision and therefore did not pay it due attention
(Gegenfurtner et al., 2011) or were unable to use the infor-
mation in an effective manner (Hardman and Cowan, 2016).
It is also possible that participants were distracted by other,
less relevant information. Gaissmaier and Schooler (2008)
suggest that some people may engage in searching for a pat-
tern that they may be able to exploit in order to form their
decisions even when there is no pattern to the task. With this
in mind, it may be of interest to investigate what informa-
tion people deem to be relevant to a task they are performing.
Finally, our sample did not widely vary in throwing ability
and in self-awareness. A sample of participants with a wider
range of throwing ability, and particularly including highly
skilled throwers, may provide further insight into whether
confidence in the relevant information can elicit optimal de-
cisions for maximising accuracy.

We encounter situations with multiple goals and targets fre-
quently in daily life, from deciding which locations to moni-
tor while driving, to deciding how to invest time and resources
in various projects. It is therefore surprising that our partic-
ipants are so poor at making these decisions. In daily life
these situations tend to be far more complex than the situa-
tion we have constructed here, and the expected outcomes of
possible decisions would be similarly complex to calculate.
Heuristics are simple rules of thumb to cope with decision
making in complex environments. They can often lead to
near-optimal behavior using less computation and informa-
tion. For example, an effective rule for intercepting a high
ball (e.g. in baseball) is to keep the ball at a fixed gaze po-
sition as you run towards it (Gigerenzer and Brighton, 2009).
This simple heuristic allows a fielder to behave as if they had
solved the differential equations that govern the balls move-
ment. However, in our task the optimal solution can be fully
described by a simple heuristic (i.e., always stand in the cen-
ter when the hoops are close, and switch to one hoop when
they are far apart). Our results suggest that participants are
nonetheless unsystematic in their decisions.

Acknowledgements

This research was supported by a James S. McDonnell
scholar award (A.R.H.).

2282



References
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Abstract

Appraising one’s own performance after a task, known as self-
assessment, has been studied from a cognitive science perspec-
tive in domains such as humor, trivia, and logic. Previous stud-
ies have found that participants are systematically poor at judg-
ing their own performance, though sometimes self-assessment
varies based on actual performance. We explored calibration
of self-assessment on algebra problems, a domain where peo-
ple have typically received explicit instruction. In this domain,
we found that people do not behave as they do in other do-
mains previously studied: they are generally well-calibrated in
judging their algebra performance. This suggests that in the
course of learning to solve algebra problems, people have also
learned to accurately judge their performance, both absolutely
and relative to others.

Keywords: self-assessment; algebra; intelligent tutor; calibra-
tion

Introduction
Providing personalized and well-designed educational tools
for online learners is a necessity. One important feature
of online learning is that it is self-directed. Learners they
guide their own way through the plethora of available mate-
rials (e.g., Song & Hill, 2007). How can we design effective
tools to help these kinds of learners be even better at gaining
new knowledge through this medium? In order to be self-
directed, learners need to know what information they are
lacking. Thus, it is important to find out what learners ac-
tually know and use this data to motivate them in an online
setting. We can learn more about what learners know simply
by asking them to evaluate their performance on a task af-
ter completing it, known as self-assessment. Self-assessment
has been studied in both cognitive science (e.g., Dunning &
Kruger, 1999; Krueger & Mueller, 2002) and educational do-
mains (e.g., Bol & Hacker, 2001). Here we seek to use the
methods from cognitive science on an education-related task,
focusing on online learners.

In psychological studies of self-assessment, it has been ob-
served that people systematically misjudge how they perform
relative to others. These studies have used tasks not formally
taught and subsequently tested in a school setting, such as
humor and logical reasoning (Dunning & Kruger, 1999) or

trivia (Burson, Larrick, & Klayman, 2006). Miscalibration
has been observed across all of these domains.

The dependence on tasks such as trivia knowledge raises
the question of whether similar patterns of perceived abil-
ity exist for domains in which people have already received
a good deal of instruction. Given the increasing opportuni-
ties for people to engage in self-directed study online, we are
interested in self-assessment in an instructed online setting.
Based on previous research, we might expect that people will
be poorly calibrated to their own performance.

We investigate this question through two online experi-
ments. Experiment 1 replicates previous findings with an on-
line population, specifically by using methods from the sec-
ond study of Burson et al. (2006). As in the original paper,
we find that people are poorly calibrated when self-assessing
their performance on trivia problems. In Experiment 2, we
turn to an instructed domain to see what links might exist be-
tween actual performance, perceived performance (both ab-
solute and relative), and perceived difficulty. Specifically, we
study algebraic equation solving, an area where we would ex-
pect our participants to have had much practice and instruc-
tion. In contrast to the trivia domains, we find that people are
relatively accurate in their self-assessment about their alge-
braic equation solving abilities.

Background
In the cognitive science literature, there is a general finding
that people are miscalibrated in their performance judgments
(e.g., Krueger & Mueller, 2002). Yet there have been differ-
ent interpretations of who is driving the trend of poor calibra-
tion and why. Dunning and Kruger (1999) originally explored
this quandary, finding that those in the lowest quartile of per-
formance appeared to judge themselves as performing much
better than they truly did and that those in the highest quartile
were more accurate in their judgments. They interpreted the
poor perceived performance on the part of the lowest-scoring
individuals as a metacognitive deficit – the worst performers
lacked both the skills needed to correctly do the task and also
to judge their performance on the task. Yet in later studies,
participants have been observed to systematically misinter-
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pret their performance regardless of actual score on a task
(e.g., Krueger & Mueller, 2002). While Dunning and Kruger
found that calibration improved with actual performance, this
is not the case in other studies such as in Burson et al. (2006).

In Burson et al. (2006), twelve trivia-like domains with
varying levels of difficulty were studied. The authors found
that regardless of the task and difficulty, participants at all lev-
els of performance were equally inaccurate in judging their
ability relative to others. However, they did find that for eas-
ier tasks, participants judged themselves as performing better
than on more difficult tasks. This makes it appear that those
with higher actual scores were more accurate in their judg-
ments on easier tasks and that those with lower scores were
more accurate in their judgments on difficult tasks.

Knowledge of one’s own performance has been explored
in educational contexts. In a study with graduate students in
education, Bol and Hacker (2001) found that low-achieving
students were less able to accurately calibrate ratings of their
own performance on their final exam than high-achieving
students. This is consistent with results from Dunning and
Kruger (1999). However, they did not ask students to evalu-
ate their performance relative to others. In another study, Bol,
Hacker, O’Shea, and Allen (2005) observed that overt prac-
tice with self-assessment does not help increase accuracy. Yet
they did see that high-achieving students are more accurate
than low-achieving students in their performance predictions.
They also found that higher achieving students are undercon-
fident in their predictions while lower achieving students are
overconfident.

Metacognitive skills have been found to be helpful for al-
lowing students to improve their own learning processes (e.g.
White & Frederiksen, 2005). White and Frederiksen (2005)
argue that working towards metacognitive understanding of
one’s own learning process motivates them to learn. This
is important for online learners as well. As they are self-
directed, they need motivation to feel capable of learning on
their own. In one study, White and Frederiksen (1998) found
that including metacognitive training in a curriculum signifi-
cantly increased low-achieving students’ performance.

Experiment 1: Trivia
First, we sought to replicate previous findings from Burson
et al. (2006) that showed people were poorly calibrated in a
trivia task. We aimed to confirm that the same results held
in an online population. Our experiment replicates Study 2
from Burson et al. (2006). Plots (a) and (c) of Figure 1 show
recreated versions of their original findings. In this study, all
participants were poor at estimating their performance, re-
gardless of true performance on a task. Burson et al. (2006)
also found that difficulty had an effect on self-assessment ac-
curacy, where estimated performance was on average lower
for the more difficult domains than for the easier domains.

Methods
Participants. A total of 40 participants (19 female, mean
age = 30.9) in the USA were recruited from Amazon’s Me-

chanical Turk and compensated $1.50.

Materials. Materials from two of the five domains in the
original study were included. Two domains were excluded
based on Burson et al.’s (2006) findings that they were too
difficult or too easy, resulting in floor or ceiling effects, and a
final domain about the length of time pop songs remained on
the charts was excluded due to inconsistent data from Bill-
board.com. We were thus left with two domains: college
acceptance rates and dates of Nobel prizes in literature. For
each domain there were two subsets of 10 questions each, one
easy and one difficult. The more difficult version required
participants’ estimates to fall within a narrower range to be
considered correct (e.g., within 5 years of the correct date for
the harder version vs. within 30 years for the easier version).

Procedure. Participants responded to all four sets of ques-
tions, and the order of difficulty was counterbalanced across
participants. For each subset, participants answered 10 ques-
tions about one domain with instructions stating they would
get credit for an answer if it was within a certain range of the
correct answer. Then, they were asked to rate their percentile
performance, or how well they believed they performed rela-
tive to others on that set (out of 100), as well as how difficult
it was for themselves and for other participants in the study
(out of 10). Following the four sets of questions, they com-
pleted a survey about their demographics. The entire study
took participants an average of 12.8 minutes.

Results and Discussion

We performed similar analyses to Burson et al.’s to confirm
that our findings were consistent (see Figure 1 (a) and (c)).
For both tasks (estimates of years a Nobel prize in litera-
ture was received and of college acceptance rates), scores
were much lower on the difficult versions than for the easy
versions (Nobel: Mhard = 1.60 vs. Measy = 6.93; College:
Mhard = 1.63 vs. Measy = 6.53, all out of 10). A two-way
analysis of variance (ANOVA) on true score with domain and
difficulty as within-participant variables shows a main effect
of difficulty (F(1,156) = 294.54, p < .001). Consistent with
the difference in scores, harder trivia sets were rated as more
difficult for participants than easy trivia (Nobel: Mhard = 9.08
vs. Measy = 8.15; College: Mhard = 8.13 vs. Measy = 6.90,
all out of 10). An ANOVA on perceived difficulty for one-
self shows a main effect of true difficulty (F(1,157) = 8.06,
p < .05) and of domain (F(1,157) = 8.44, p < .05). Ad-
ditionally, the average Nobel prize estimates were perceived
as more difficult for the self than the college acceptance rate
estimates (Mnobel = 8.6125 vs. Mcollege = 7.5).

Percentile estimates. Users were asked to rate their per-
centile estimate after completing a task, or how well they
think they did relative to others on a scale of 0 to 100. Over-
all, a participant’s true score was weakly correlated with their
percentile estimate (Pearson’s r = .17, p < .05). The mean
percentile estimate across all four tasks was 34.04, which
is consistent with the average found in the original study of
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Figure 1: Perceived percentiles broken out by domain (a and b) and difficulty (c and d). (a) Participants’ estimates of percentile
by quartile of actual performance for questions about Nobel prize winners and college acceptance rates in Burson et al. (2006)
and (b) in Experiment 1. ‘Nobel’ refers to Nobel prizes in Literature, and ‘College’ refers to college acceptance rates. (c)
Participants’ estimates of percentile by quartile of true performance for easier and more difficult tasks in Burson et al. (2006)
and (d) in Experiment 1. Note that the difficult tasks in the original study included a third domain, number of weeks pop
songs were on the charts, which is not included in our study. Vertical bars represent one standard error. This information was
unavailable for the original study by Burson et al.

37.04. An ANOVA on percentile estimate showed a main ef-
fect of difficulty (F(1,157) = 11.95, p < .05) and of domain
(F(1,157) = 6.74, p < .05). For the Nobel tasks, percentile
ratings on the difficult version were lower than for the easy
version (Mhard = 22.28 vs. Measy = 34.98). The college ac-
ceptance rate tasks showed the same pattern (Mhard = 31.88
vs. Measy = 44.05). On average, the percentile ratings for the
Nobel tasks were lower than for the college tasks (Mnobel =
28.63 vs. Mcollege = 37.96). As found in the original study,
perceived performance was lower for more difficult tasks.

Quartiles. As in Burson et al. (2006), we divided all par-
ticipants into four quartiles based on performance. As shown
in Figure 1, we see very similar results to the original study
– estimates of percentile performance on the test sets about
dates Nobel prizes were won tended to be lower than esti-
mates of percentile performance on the test sets about college
acceptance rates. Additionally, the easier test sets were given
higher percentile estimates than the more difficult ones.

Just as Burson et al. (2006) replicated Krueger and

Mueller’s (2002) result that participants of all skill levels mis-
calibrate their performance relative to others, we observe a
similar characteristic pattern in online users. On the easier
tasks, participants at all skill levels are equally inaccurate in
their estimates and on the difficult tasks, the highest perform-
ers do even worse than the lowest performers on judging their
relative performance.

Experiment 2: Algebra
In our next study, we aimed to compare results from previ-
ously researched trivia-based domains to a school-taught do-
main: algebraic equation solving. What is interesting about
this domain, as opposed to others previously used in experi-
mental psychology studies of self-assessment, is that partic-
ipants have all received feedback about their performance in
the past. We could thus imagine that participants might have
more awareness of how well they have historically done com-
pared to their peers and calibrate their estimates based on how
much time has passed since they last solved algebraic equa-
tions.
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Figure 2: Interface of Emmy’s Workshop.

We made use of Emmy’s Workshop (Rafferty & Griffiths,
2015), an adaptive algebra tutor designed to glean more in-
formation about users than just number of problems solved
correctly (see Figure 2). Participants enter in their work step
by step when solving each problem. The goal is to determine
where in problem-solving users are faltering and then to of-
fer them personalized feedback on a skill they are struggling
with (Rafferty, Jansen, & Griffiths, 2016).

Methods
Participants. A total of 41 participants in the USA were
recruited from Amazon’s Mechanical Turk and compensated
$6. They had not completed postsecondary mathematics
courses beyond algebra. Two were excluded who acciden-
tally exited the study and had to start again from the begin-
ning. We thus had 39 participants (17 female, mean age =
33.2 years).

Procedure. Participants first completed a survey where
they rated their knowledge of algebraic equation solving and
how important it is for them to know a great deal about this
domain. Then they completed 24 problems in Emmy’s Work-
shop. They received no feedback about their problem solv-
ing. Next, they estimated their performance in both abso-
lute terms (“How many of the 24 algebraic equations you just
completed do you think you answered correctly?”) and in rel-
ative terms (“Think about the 24 equations you solved. Com-
pared to other participants in this study, how good are you at
solving algebraic equations? Marking 90% means you will
do better than 90% of participants, marking 10% means you
will do better than only 10%, and marking 50% means that
you will perform better than half of the participants.”). They
also rated how difficult the task was for them and how diffi-
cult they thought it was for others. Finally, they completed
the same demographics survey as in Experiment 1, but with
additional questions about their mathematics education back-
ground.

Results and Discussion
On average, participants solved 9.28 problems correctly (out
of 24). The average perceived score was 10.38, and the aver-
age percentile estimate was 39.38. Overall, participants accu-
rately estimated both number correct and percentile rankings
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Figure 3: Perceived scores and percentiles in Experiment 2.
(a) Participants’ estimates of score (out of 24) by quartile of
actual performance. (b) Participants’ estimates of percentile
by quartile of actual performance. Vertical bars represent one
standard error.

(see Figure 3). While both total score and percentile esti-
mates are examining distinct measures of performance, we
see a similar pattern. The correlations between true score and
estimated score, and between true score and percentile esti-
mates were both high, unlike in the previous study (Pearson’s
r = 0.66 for both comparisons, p < .001). Algebra is a do-
main where people have received feedback in the past, which
has trained them to know how they compare to their peers.
In contrast, people have not generally practiced and received
feedback about their trivia performance to the same degree.
In a school-taught domain where a learner might have a better
sense of how they have done in the past, they are better able
to estimate their performance, unlike in the domains tested in
previous cognitive studies of self-assessment.

Difficulty. On average, participants perceived the task as
being easier for others than for themselves: average perceived
difficulty was 8.18 for the self and 7.36 for others (out of 10).
As shown in Figure 4 (a), the more someone finds the task to
be difficult for themselves relative to others, the more they
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underestimate their performance (F(1,37) = 8.1, p < .05,
R2 = 0.18).

Experiment 1 included easy and difficult sets of questions
in each domain. Mirroring this design would be difficult for
algebraic equation solving because skills are likely to vary
widely across participants. Instead, we divided the partici-
pants into two groups based on a median split of their per-
ceived difficulty. Perceived difficulty was measured by tak-
ing perceived difficulty for the self minus perceived difficulty
for other participants. The easy group perceived the task as
easier for them than for others (N = 18, Mdifficulty =−1.28)
and the hard group perceived the task as harder for them than
for others (N = 21, Mdifficulty = 2.52). In the easy group,
scores were 10.6 on average, score estimates were 15 on aver-
age, and the mean percentile estimate was 54.83. In the diffi-
cult group, scores were 8.14 on average, score estimates were
6.43 on average, and the mean percentile estimate was 26.14.
Those with a positive perceived difficulty (who believed the
task was more difficult for themselves than for others) tended
to underestimate their performance, while those with a nega-
tive perceived difficulty (who believed the task was easier for
themselves than for others) tended to overestimate their per-
formance (see Figure 4 (b)). Though these results suggested
that users are accurate at estimating their performance, we see
that this is actually not the case – self-assessment is adjusted
either positively or negatively based on perceived difficulty of
the task.

There are qualitative characteristics of these data which
are consistent with the findings of the first experiment – per-
centile estimates are lower for tasks perceived as more diffi-
cult. However, people are much better calibrated in this do-
main than in the trivia domains. It is not that users systemat-
ically have metacognitive deficits, but that if they perceive a
difference between their own ability and that of others, then
they demonstrate systematic miscalibration, either positively
or negatively.

General Discussion
In these two studies, we aimed to explore how online partici-
pants perceive their performance in an algebra setting, assum-
ing we would discover poor calibration in participants’ esti-
mates. Interestingly, we see that people are well-calibrated
in judging their algebra performance, both absolute and rela-
tive to others. Crucially, we do not see overestimation by the
worst performers as observed by Dunning and Kruger (1999)
and in other studies: people seem in particular to know when
they are performing poorly.

Possible Explanations
One explanation is that people have been well-trained to self-
assess in school-taught domains such as math, both in terms
of raw scores and occasionally with respect to others (e.g. via
standardized tests and classes that are curved). Better accu-
racy in self-assessment tasks through training has been noted
in work on superforecasters (e.g., Mellers et al., 2015). In
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Figure 4: Interaction of perceived difficulty relative to oth-
ers and amount of over or underestimation in Experiment 2.
(a) Plot of linear regression equation predicting amount of
overestimation (measured by taking estimated number cor-
rect minus actual number correct) from perceived difficulty
(measured by taking perceived difficulty for oneself minus
perceived difficulty for others). (b) Participants’ estimates of
percentile by quartile of true performance grouped by per-
ceived difficulty.

this body of work, a small subpopulation has demonstrated
high predictive ability about international events. Members
of this group exhibit a variety of good habits and have largely
been able to train to be well-calibrated in their judgments. If
people can be trained to make accurate judgments about the
world, they can also conceivably be trained to make accurate
judgments about themselves. In the domain of algebra, we
seem to have trained, through feedback on performance, to
link feelings after a task to true performance. This enables us
to calibrate more accurately. Perhaps if we had similar kind
of experience in doing trivia quizzes, then we would be better
calibrated in that domain too. We can ask questions simi-
lar to those posed by Mellers et al. (2015), such as whether
it is possible to transform students into top-performing alge-
bra problem-solvers via labeling them as “high potential late-
bloomers” meaning capable of gaining expertise later in life.
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This mindset-related intervention (e.g., Yeager & Dweck,
2012) or other interventions may be effective at impacting
a learner’s self-assessment and thus metacognitive skill. This
does, however, come in conflict with the results of Bol et al.
(2005) who saw that practicing self-assessment did not help
increase accuracy.

Effective self-directed learners are aware of what they need
to learn. Training learners to accurately evaluate their abil-
ity has the potential to help them seek out necessary mate-
rials. Knowing that through training learners have the abil-
ity to properly self-diagnose in a domain means they have
the opportunity to select what is necessary for them to learn.
With education being increasingly made available online,
self-motivated learners need to be well-calibrated to their
knowledge of domains in general.

Future Directions
We would like to further investigate what types of people are
miscalibrated in their performance judgments in an online al-
gebra setting. In light of the results presented in this paper, we
will run another study with an increased sample size, primar-
ily to see if there are gender differences in self-assessment. At
present, there is a trend of high-performing women underes-
timating their performance in comparison to high-performing
men, but an increased sample size will be necessary to judge
the validity of this conclusion.

To probe further into students’ perceptions of their ability,
we will run a similar study asking how well students believe
they perform on individual skills relevant to algebraic equa-
tion solving. Emmy’s Workshop contains an inverse planning
algorithm that assesses ability on six different skills such as
arithmetic and distribution (Rafferty et al., 2016), so we will
be able to compare actual ratings on these skills by said algo-
rithm to a user’s perceived ability on each individual skill.

Additionally, develop models of self-assessment, in a simi-
lar vein to Labutov and Studer (2016). As self-assessment in-
volves making an inference about one’s own ability based on
one’s performance, we can think about using Item Response
Theory (IRT), a family of models commonly used by educa-
tion researchers, to estimate the ability of students, both over-
all and on individual skills. This will help inform how per-
ceived performance on each problem individually will predict
actual performance on subsequent problems.

Conclusion
Self-assessment has been studied in both cognitive science
and educational contexts. Our experiment connects methods
from the self-assessment literature to applications in educa-
tion, specifically aimed at studying the self-evaluations made
by online learners of varying ability and backgrounds. We
find that, on average, participants solving algebraic equa-
tions are well-calibrated in their estimates of their own perfor-
mance, both absolute and relative. This stands in contrast to
previous work in both cognitive science and education where
miscalibrations have been observed by participants of all abil-
ity levels. However, participants who perceive the task as

excessively difficult tend to underestimate their performance,
marking them as a possible group to develop intervention for
improving their self-assessment skills.
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Abstract 
 

Previous research showed that individual tendency to believe in 

conspiracy theories is related to numerous social, personality, and 
cognitive variables. Moreover, such a tendency may reflect a 

broader trait for epistemic irrationality, which drives other pseudo-

scientific and paranormal beliefs. However, the relationship 

between conspiracy belief and reasoning ability (fluid intelligence; 
Gf) was not sufficiently studied to date, even though Gf level 

strongly influence the way in which individuals think and reason. 

Using confirmatory factor analysis, we found the robust link 

between conspiracy belief and other irrational beliefs. All those 
irrational beliefs were also substantially related to the close-

minded cognitive style. However, even though Gf significantly 

predicted other irrational beliefs, it explained less than 2% of 
variance in conspiracy belief. This result suggests that effective 

reasoning cannot prevent even highly intelligent people from 

endorsing conspiracy theories.  

Keywords: rationality; intelligence; conspiracy theory; 
paranormal beliefs; pseudoscience;  

Introduction 

Conspiracy theory is an explanation of a significant event, 

like the sudden death of famous person, terrorists attack, or 

catastrophe, as resulting from some secret plot made by a 

powerful organization or a group of powerful individuals. 

Although, in principle, such theories may be true (e.g., the 

Watergate scandal), usually they are insufficiently supported 

by facts, disregarded by experts, and based on pseudo-

scientific assumptions.  

Importantly, the belief in conspiracy theories (henceforth, 

conspiracy belief) pertains not only to advocates of extreme 

ideologies or to paranoid and delusional individuals, but is 

prevalent in diverse cultures and societies (Raab, Ortlieb, 

Auer, Guthmann, & Carbon, 2013). Although to date most 

of research on the topic was conducted in Western 

countries, some studies showed that conspiracy belief is a 
widespread phenomenon among people all over the world 

(e.g. Raab et.al., 2013; Goertzel, 1994; Swami et al., 2011; 

Bruder, Haffke, Neave, Nouripanah, & Imhoff, 2013). 

Certain people are more likely to hold conspiracy belief 

than others. What is important, this tendency may be a part 

of more general mindset, worldview or mentality (Goertzel, 

1994; Dagnall, Drinkwater, Parker, Denovan, & Parton, 

2015; Imhoff & Bruder, 2014). People who believe in one 

conspiracy theory are also more likely to believe in another 

one, even if the theories are unrelated (Swami, Chamorro-

Premuzic, & Furnham, 2010), contradictory (Wood, 

Douglas, & Sutton, 2012), or the second one is fictional and 

encountered for the first time (Swami et al., 2011). Such a 
kind of conspiratorial mentality was associated with 

numerous socio-psychological variables, including anomie, 

powerlessness, feeling of meaninglessness, distrust, 

authoritarianism, political cynicism, low self-esteem, and 

schizotypy (Goertzel, 1994; Abalakina-Paap, Stephan, 

Craig, & Gregory, 1999; Swami et al., 2010; Swami et al., 

2011). Moreover, conspiracy belief is closely related to 

other epistemically dubious beliefs, like paranormal and 

pseudoscientific claims and theories (Lobato, Mendoza, 

Sims, & Chin, 2014). Altogether, paranormal, pseudo-

scientific, and conspiracy beliefs may result from one and 

the same irrational worldview/mindset. 

The problem that we investigated was how are various 

instances of irrational thought, and particularly conspiracy 

belief, related to reasoning ability (fluid intelligence; Gf), 

which is defined as the ability to solve novel problems by 

means of abstract reasoning. As Gf strongly predicts many 

socio-psychological variables (see Deary, 2012), can Gf also  
predict individual tendency for irrational beliefs? At least 

intuitively, it seemed reasonable to expect that more intelli-

gent people, because of their more powerful reasoning, 

would be more sceptical toward dubious, unsupported 

beliefs, including conspiracy theories. Besides intuition, 

numerous premises can be found in existing literature.  

First, positive correlations between intuitive thinking style 

and conspiracy belief were reported. Also, experimentally 

induced willingness to engage in analytic reasoning reduced 

this belief (Swami, Voracek, Stieger, Tran, & Furnham, 

2014). Thus, a disposition for reflective thinking may help 

to embrace more sceptical stance towards irrational claims 

and theories, and may affect one’s worldview even counter 

to cultural factors (Pennycook, Fugelsang, & Koehler, 

2015). Moreover, tendency for analytic thinking may 

prevent people from relying on intuitions and “gut feelings” 

that often lead to cognitive biases and heuristics, which 
may, at least to some extent, drive conspiracy belief. For 

example, Clarke (2002) argued that such a belief may stem 

from attribution bias, which consists of overestimating the 

influence of personal factors, and ascribing responsibility 

primarily to agents, instead of explaining events in terms of 

situational factors and coincidence. Likewise, it was argued 

that this belief may be related to representativeness 

heuristic, which leads people to seek explanations that 
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possess salience proportional to the very significance of 

events (Leman & Cinnirella, 2007). Since major events need 

major explanations, people may see ordinary causes of 

great-impact events as unsatisfying and thus unlikely, and 

thus may embrace conspiracy theories instead. Finally, 

Brotherton and French (2014) showed the people displaying 

conspiratorial mentality to be more prone to conjunction 

fallacy, which is a reasoning error consisting of assessing 

the probability of two co-occurring events as being more 
likely than the joint probability that these events will occur 

alone. As the tendency for analytical thinking is at least 

moderately related to intelligence (Pennycook et al., 2015), 

a negative relationship between intelligence and conspiracy 

belief may also exist.  

On the other hand, the relationship between intelligence 

and biased/irrational thinking is not straightforward. 

Although some biases might be attenuated by higher 

reasoning ability, some may not be related to intelligence at 

all (Stanovich & West, 2008). High reasoning ability may 

not be enough to prevent people from embracing dubious 

theories. A research program aimed at understanding the 

relationship between intelligence and rationality, started by 

Stanovich, put emphasis on the need to distinguish between 

these two mental qualities. Although there can be a positive 

relationship between the two, what is essential for 

rationality may be such thinking dispositions as the 
willingness to think reflectively and open-mindedly. 

Consistently, the relationship between intelligence and 

irrational beliefs might be at least partially mediated by 

cognitive style. Although such a possible mediation so far 

has never been studied in the context of conspiracy theories, 

some supporting evidence comes from studies on para-

normal and religious beliefs (Pennycook, 2014).  

Finally, studies showed a moderate negative link between 

paranormal/pseudoscientific beliefs and intelligence (e.g., 

Rindermann, Falkenhayn, & Baumeister, 2014), but the 

relationship between intelligence and conspiracy belief in 

conspiracies has not been studied sufficiently enough. 

Only one study to date examined this relationship (Swami 

et al., 2011). First, it showed a negative, though weak, 

correlation between conspiracy belief and self-assessed 

intelligence. However, this result does not seem reliable, as 

this measure of intelligence had low validity. Second, the 
study reported weak negative correlation of conspiracy 

belief and crystallized intelligence (Gc) – the ability to use 

acquired experience and knowledge. However, Gf may be 

even more important for the rejection of conspiracy theories 

than Gc, because higher Gf levels allow more effective 

processing of relations among objects, events, and facts 

(Chuderski, 2014). Such relations can be used to create 

counterexamples in a reasoning process (Johnson-Laird, 

2006).    

Study 

The main goal of the study was to fill in the gap in existing 

data on the relationship between Gf and conspiracy belief. 

We expected reasoning ability to at least weakly predict 

belief in conspiracy theories. Furthermore, we intended to 

replicate the results that show moderate positive correlations 

between different kinds of dubious beliefs: conspiracy, 

paranormal, as well as pseudoscientific ones (Labato et al., 

2014; Brotherton & French, 2014; Swami et al., 2011).  

In order to test the strength of the conspiracy-reasoning 

link as well as to examine the strength of relationship 

between conspiracy and paranormal/pseudoscientific belief 

we used multiple measures of each belief, as well as we 
applied latent variable modelling by means of confirmatory 

factor analysis (CFA). Applying more than one measure of 

each construct. and calculating latent variables enables a 

more valid and reliable measurement of the constructs in 

question as well as the relationships between them, as 

compared to using single measures (see Kline, 1998).  

We applied two measures of conspiracy belief to a large 

sample of Polish adults. Because many conspiracy theories 

are strongly culture-specific, one scale was created to 

measure belief in a particular conspiracy theory pertaining 

to political situation in Poland: the theory about catastrophe 

in Smolensk. The Smolensk conspiracy is probably the most 

distinctive case of conspiracy theory in the Polish society, 

and it is similar to conspiratorial themes that are vivid in 

other societies (e.g., the death of President Kennedy and 

Princess Diana). However, it is possible that some specific 

factors may play a crucial role for the Smolensk conspiracy 
(e.g. most of its advocates are right-wing/conservative), 

which might not drive other conspiracy theories, and which 

thus may bias the relationship between reasoning ability and 

conspiracy belief. To avoid such a bias, we also applied a 

measure of general conspiratorial beliefs and attitudes – The 

Generic Conspiracist Beliefs Scale (GCB) (Brotherton et al., 

2014). Importantly, GCB does not concern any particular 

conspiracy theory, but deals with common conspiratorial 

themes (e.g. governments totally controling the information 

flow), that enables broader generalization of the results. 

Also, we used one questionnaire to measure paranormal 

beliefs, and another for pseudoscientific beliefs. 

In addition, we measured open-minded cognitive style, 

understood as mental flexibility and openness toward the 

alternative views, perspectives, and counter-evidence. To do 

so we applied two questionnaires: NEO-openness subscale 

and open-minded thinking scale. Open-minded thinking was 
previously shown to be negatively (though rather weakly) 

related to conspiracy belief (Swami et al., 2014). Finally, Gf 

was measured with two visuospatial tests and one numerical 

test that involved abstract reasoning. 

Method 

Participants 
A total of 318 voluntary participants (218 women, 100 men) 

were recruited via ads in publicly accessible websites. The 

participants were paid an equivalent of 20 euros in Polish 

currency. The mean age was 24.4 years (SD = 6.02, range 

18 - 45). Four participants did not complete all the applied 

questionnaires and were excluded from the analysis. 
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Materials 

Smolensk Conspiracy Scale 
Conspiracy theories are cultural phenomena. Studying 

particular conspiracy theories requires that the participants 

are familiar with them and their cultural context. Our choice 

of a theme for well-known conspiracy theory was the 2010 

catastrophe in Smolensk (the Russian Federation), in which 

the Polish President’s plane crashed, and all of the 96 crew 

and passengers, including President Lech Kaczynski, died. 
The Smolensk catastrophe was judged by official aviation 

experts (PCINAA, 2011) to result from the pilot’s error as 

well as the improper organization of the flight. The crash 

had a specific political context: The death of President 

Kaczynski, who travelled across Russian territory, in order 

to commemorate Polish officers killed by Soviets during 

WWII, despite his tense political relations with the Russian 

government of President Vladimir Putin. Furthermore, 

President Kaczynski and his conservative camp strongly 

opposed the Polish government and its supporting liberal 

party, while the presidential campaign in Poland was about 

to start. All of this made an excellent context for various 

accusations and plot hypotheses, even though the expla-

nation of the catastrophe is straightforward. Consequently, 

five years after the catastrophe, a public opinion survey 

(CBOS, 2015) showed that about 30% members of the 

Polish society considered the hypothesis of assassination of 
Lech Kaczynski plausible (among them 8% were convinced 

it was true). Thus, the Smolensk catastrophe made a crucial 

and interesting case of conspiracy belief (henceforth we call 

it the Smolensk conspiracy). So, a twelve-item questionnaire 

was developed, with seven items measuring belief in the 

Smolensk conspiracy, and five reverse-scored items probing 

belief in the official explanation of the catastrophe. 

 

The Generic Conspiracist Beliefs scale 
We used the validated 15-item scale of Brotherton et al. 

(2014) to measure the general tendency for conspiracy 

belief. The scale covers general conspiratorial assumptions 

such as beliefs in prevalent government misconduct, secret 

groups exerting the control over global events, dangers to 

personal health and liberties (e.g., the mind control 

experiments), extraterrestrial cover-up, and the full 

censorship over information. The sample item was “The 
governments are involved in the murder of innocent citizens 

and/or well-known public figures, and keep this a secret”. 

 

Pseudoscientific Belief Scale 
We created an 18-item questionnaire to measure pseudo-

science belief and disapproval of scientific knowledge. The 

items covered range of topics (medicine/health, natural 

science, evolution, psychology, sexuality), and were mixed 

with 9 filler items dealing with general scientific know-

ledge. Sample test items were “Mercury in vaccines may 

increase probability of acquiring autism among small child-

ren” and “Crystals possess qualities which protect against 

negative influence of electromagnetic radiation”. 

Paranormal Belief Scale 
Our measure of paranormal belief was based on Revised 

Paranormal Belief Scale (Tobacyk, 2004). We removed four 

items concerning religious belief, as we applied a separate 

religious beliefs questionnaire in the session (not analysed 

in the present study). We removed another three items 

concerning extra-ordinary life forms (e.g. Loch Ness 

monster), as being outdated and possibly unfamiliar to our 

participants. The final version contained 20 items such as 
“In some cases it is possible to communicate with the dead”. 

 

Fluid intelligence tests 
We applied three Gf tests. The classic Gf test – Raven’s 

Advanced Matrices (Raven, Court, & Raven, 1983), as well 

as Figural Analogies (Chuderski & Necka, 2012), were 

administered in shortened versions (18 items each). Each of 

the two tests was composed of odd numbered items from 

respective standard 36-item versions. Their administration 

time was half of the standard one (20 and 15 minutes 

respectively). The third test was Number series, in which the 

task was to find the rule according to which the number 

sequence or the array is constructed, and to complete the 

sequence/array with the missing number. Participants were 

given 18 minutes to solve the 18 number series problems. 

 

Open-mindedness cognitive style questionnaires 
The first questionnaire measuring open-minded thinking 

included 14 items from Actively Open-minded Thinking 

scale (Stanovich & West, 2007), selected on the basis of our 

previous data. All 14 items were scored in such a way that 

higher scores represented a larger tendency toward rigid, 

dogmatic, categorical thinking, as well as the trend for 

sticking to one’s beliefs even in the face of counterevidence 

(e.g., “Changing your mind is a sign of weakness”). The 

total score on the scale was reversed, so that higher total 

scores indicated more open-minded, flexible thinking. The 

second questionnaire was an 12-item openness to experience 

subscale of the Polish adaptation of the NEO-Five Factor 

Inventory (Costa & McCrae, 1992). 

In all of the questionnaires except the cognitive style 

measures, participants judged whether the given statements 

are true or false using a seven-point scale (0 = false for sure, 

3 = uncertain, 6 = true for sure). Five-point (1 = definitely 
disagree, 5 = definitely agree) and a four-point scale were 

used in the Open-minded Thinking and the NEO-openness 

scales, respectively.  

 

Procedure 
Participants were tested in a psychological laboratory, in 

groups of six participants on average. The Gf tests were 

applied in the fixed order (Raven APM, Figural Analogy 

Test, Number series test). All the questionnaires were 

completed via computers at the end of the study session. At 

the course of the session participants completed other tasks 

(working memory and cognitive control tests, religiosity 

questionnaires, etc.) unrelated to the topic of this study.  
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Results  

All the measures applied had at least satisfactory internal 

consistency (Cronbach’s alphas > .71), including Smolensk 

conspiracy and GCB scales (Cronbach’s alpha = .88, and 

.94, respectively), and all of them fitted well the normal 

distribution (max. skew = -0.28, max. kurtosis = -0.82). 

Firstly, the endorsement of the most extreme form of 

conspiracy theory, the assassination theory, was examined. 

Answers on the respective item (“The cause of the 

catastrophe was an assassination.”) of the Smolensk 

Conspiracy scale showed that about 10% (N = 32) of the 

participants considered it a possible option (answered “it is 

probably true”), 5% (N = 16) answered “it is true”, and 4% 

(N = 12) answered “it is true for sure”. Thus, the support for 

Smolensk conspiracy in our sample was rather low. 

The CFA model (Figure 1) correlated four latent variab-

les: Conspiracy Belief (loading Smolensk Conspiracy scale 

and GCB), Irrational Belief (Paranormal and Pseudo-
science), Gf (the three reasoning tests), and Open-

mindedness (NEO-openness and Open-minded Thinking).  

The model fit was assessed with three indices (see Kline, 

1998): χ
2
 statistic (its value divided by the number of 

degrees of freedom should not exceed χ
2
/df = 2.0), Bentler’s 

comparative fit index (CFI should exceed .92), and the root 

mean square error of approximation (RMSEA should be less 

than .08). The fit of the model was good: χ
2
(21) = 36.01, 

CFI = .981, RMSEA = .047 (90% CI = [.017, .074]).  

All factor loadings (see Table 1) showed satisfactory 

validity of the applied measures, except for NEO-openness. 

Importantly, belief in Smolensk conspiracy was substan-

tially related to GCB. Thus, Smolensk Conspiracy scale 

seems to be a valid measure of conspiracy belief.  

In line with our expectations, the correlation between the 

Conspiracy Belief and Irrational Belief factors was strong,  

r = .72, p < .001. However, the negative link between the 
Conspiracy Belief and Gf was very weak (r = –.13), and 

despite our large sample it was not statistically significant  

(p = .08). Thus, Gf predicted only a negligible amount of 

variance (2%) in conspiracy belief. However, as expected, 

there was a negative correlation between Gf and Irrational 

Belief, r = –.31, p < .001. In addition, the open-minded  

 

Table 1. Factor loadings from the CFA model (all ps < .001) 

 

Latent variable Measure 
Factor 

loading 

Gf 

Raven Matrices 0.84 

Analogies 0.78 

Numbers 0.66 

Irrational  

Belief 

Pseudoscience 0.84 

Paranormal 0.74 

Conspiracy 

 Belief 

Generic conpiracist beliefs 0.87 

Smolensk conspiracy 0.50 

Open-mindedness 
NEO-openness 0.36 

Open-minded thinking 0.96 

cognitive style showed the substantial negative correlation 

with Conspiracy Belief and Irrational Beliefs. Thus 

cognitive style was a much stronger predictor of conspiracy 

and irrational beliefs than Gf. 

Discussion 

We aimed to test whether conspiracy belief weakens with an 

increased reasoning ability (Gf). Contrary to our expect-

ations, results showed that it virtually did not; Gf explained 

less than 2% of variance in conspiracy belief, and despite 

our large sample the link was not significant. On the other 

hand, Gf predicted about 9% of variance in paranormal and 

pseudoscience belief. Although the relationship was weaker 

than in previous studies, it is in line with these studies 

(Rindermann, Falkenhayn, & Baumeister, 2014). Moreover, 

irrational beliefs shared half of variance with conspiracy 

belief, also replicating similar findings (Lobato et al., 2014; 

Brotherton & French, 2014; Swami et al., 2011).  

The robust relationship between conspiratorial, para-
normal, and pseudoscientific beliefs suggests that they rely 

on a common underlying mindset/worldview, which reflects 

the tendency to believe in irrational, epistemically dubious 

claims and theories. There probably are specific social and 

cognitive factors (e.g. anomie, political cynism, distrust, 

radicalism) that seem to induce the conspiratorial mindset, 

and, to a lesser extent, the other kinds of dubious beliefs. 

However, the general tendency to believe in the irrational 

most likely stems primarily from interrelated personality 

traits and thinking dispositions, such as intuitive thinking 

and close-mindedness (the latter shown by the present data). 

If so, why is conspiracy belief unrelated to Gf, as compa-

red to paranormal and pseudoscientific beliefs? First, 

although more intelligent people more frequently hold to 

proper scientific explanations of facts (what makes them 

less likely to believe in pseudoscience), most of conspiracies 

(also the Smolensk conspiracy) needn’t be inconsistent with 
the body of scientific knowledge (though are unsupported 

by facts). Plots, evil politicians, and secret organisations 

undoubtedly exist, but usually they are not the reasonable  

 

 

 

Figure 1. Correlations between four latent variables in the 

CFA model. All correlation are significant at ps <  .001, 

except for the one presented in the dashed line. 
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explanations of complex phenomena. Thus, even though 

intelligent people may easily suppress their intuitions 

favouring paranormal/unscientific phenomena as being 

unlikely and contradicting the general scientific knowledge, 

they may let their intuitions about political/social issues 

develop more freely. 

Second, endorsing conspiracy theories may be seen as a 

process of motivated reasoning (Kunda et al., 1990; 

Saunders, State, & Farhart, 2016), which is a kind of biased 
reasoning directed by motivation to arrive at the desired 

conclusions. In context of conspiracy theories, this process 

may satisfy the ideological and psychological needs such as 

the loyalty toward ideological groups (Saunders, State, & 

Farhart, 2016). Conspiracy belief seems to be strongly 

motivated personally as well as engaging, as it touches the 

basic political and social opinions and values. Thus, people 

may have stronger motivation to rationalize their conspiracy 

beliefs, comparing to paranormal or pseudoscientific beliefs. 

Importantly, myside/confirmation bias – the tendency to 

evaluate and provide arguments in a manner biased towards 

our own views – is basically unrelated to intelligence 

(Stanovich, West, & Toplak, 2013). Also, the more subject-

ively important the issue, the more strongly motivated the 

reasoning process becomes. Thus, intelligent and curious 

individuals may perform better at finding quality arguments 

supporting their worldview and prior beliefs, but they are 
not more inclined to objectively consider counterevidence 

and alternative perspectives, especially in cases of highly 

engaging issues. Moreover, more politically knowledgeable 

individuals may be even more likely to embrace conspiracy 

theories than the less knowledgeable ones (Saunders et al., 

2016). Similarly, although providing relevant scientific 

information may change people’s opinion on global 

warming (Ranney & Clark, 2016), general scientific 

literacy/numeracy is unrelated to differences in opinion on 

global warming risk, but is related to a greater opinion 

polarization on the issue (Kahan et al., 2012). The opinion is 

instead well predicted by different values sets/worldviews. 

Also, at least in some cases, a high level of reasoning 

ability/reflective thinking may actually lead to more 

motivated reasoning (Kahan, 2013), and thus leading to 

greater polarization of prior beliefs, rather than alleviating 

their influence. To sum up, whether an individual embraces 
a conspiracy theory may be primarily dependent on his/her 

prior worldview and mindset, which directs the reasoning 

process to conclusions consistent with this worldview, and 

high intelligence may rather serve this process instead of 

hindering it. Consequently, sheer high intelligence may not 

be enough to prevent people from endorsing dubious 

conspiracy theories. Even some highly intelligent 

individuals may believe in conspiracies, as did some of our 

participants who scored really high on intelligence tests, but 

regardless of their high ability believed in assassination as 

the major cause of the Smolensk catastrophe.   

More generally, our results serve as another example that 

intelligence and rationality should be treated as dissociable 

constructs (see Stanovich et al., 2013). Although some 

irrationality indices (e.g., paranormal and pseudoscience) 

may be moderately related to intelligence, other may be 

weakly related, as probably is in the case of at least some 

conspiracy beliefs.  

On the other hand, we should notice that conspiracy 

theories are not homogenous phenomena, and are also not 

irrational by definition. In some cases lack of healthy 

skepticism toward official information from seemingly 

reliable sources may be as harmful as unreflective belief in 
dubious conspiracy theories, and thus we do not think the 

less ones score on a conspiracy questionnaire the better. 

However, confidence in questionable conspiracy beliefs 

may be interpreted as irrational, as is confidence in dubious 

paranormal or pseudoscientific beliefs. Secondly, although 

we think that use of two measures of conspiracy belief 

dealing with different conspiratorial attitudes and beliefs 

provides a good measure of general conspiratorial mindset, 

we cannot exclude that the relation between belief in 

conspiracies and cognitive dispositions might be different in 

cases of some particular conspiracy theories.  

In conclusion, our results make an important contribution 

to the conspiracy and rationality research, by showing 

conspiracy belief to be virtually unrelated to reasoning 

ability. Given the present data as well as numerous other 

cognitive, social, and personality variables that play role in 

prevalence of such complex socio-cultural phenomena as 
conspiracy theories, it seems that intelligence alone cannot 

prevent people from believing in conspiracy theories. 

Additionally, they provide more evidence for the strong 

conspiracy-irrationality relationship, supporting the view 

that the individual tendency to think in an irrational/ 

conspiratorial way may constitute a stable and important 

personality trait/cognitive style. 
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Abstract 

Previous work shows that people often believe, contrary to 
actual physics, that objects travelling in a curved path through 
a tube will continue to travel in a curved path after exiting the 
tube. In the present study, previous work was replicated, but 
accuracy increased in a new condition in which people were 
asked to catch an actual ball emerging from a tube. That is, in 
this case there is a discrepancy between how we believe the 
world works, and how our motor system responds to events in 
the world. This finding supports the theory that the perception 
and action systems of the brain use different methods to 
predict how things move in the world, and that the abstract 
reasoning systems used to explain how the world works are 
often in conflict with the action systems.  

Introduction 
People are not only brains, they are bodies too, and these 

bodies experience the world and the laws that govern its 
physics every day. Both children and adults make similar 
mistakes when verbally describing how they would crawl on 
their hands and knees – even after they have just physically 
crawled (Piaget, 1976). With something so fundamental to 
our everyday experience, we should easily be able to 
describe its physics and procedures. The systematic 
discrepancies observed between the ability to do a physical 
task and the inability to accurately describe or depict it has 
been studied under the umbrella term of folk or “naïve 
physics.”  

Since Piaget (1976) detailed several of these phenomena, 
one of the most notable instances of this effect is the 
curvilinear impetus belief: the incorrect assumption that an 
object travelling in a circular motion will continue this 
curved path upon exiting a spiral. In previous studies the 
average percentage of curved lines predicted had been 
around 36%, and 49% for participants that had no formal 
physics education (McCloskey, Caramazza, & Green, 1980; 
McCloskey & Kohl, 1983; Cook & Breedin, 1994; Freyd & 
Jones, 1994; Kaiser, Jonides, & Alexander, 1986).     

Some have suggested that the abstractness of the task 
affected accuracy (Freyd & Jones, 1994; McCloskey & 
Kohl, 1983). For instance, when people are presented with 
the spiral problem on paper, but are told it is a garden hose 
and water as opposed to a ball and tube, they accurately 
predict the straight trajectory of the water, but continue to 
make incorrect predictions about the ball (Catrambone, 
Jones, Jonides & Seifert, 1995). Freyd and Jones (1994) 
theorized that in order to understand the abstract diagrams 

presented on paper, the participants may be generating 
abstract theories that are separate from their experiences in 
the real world, or on patterns of motion observed in living 
objects as opposed to inanimate objects. Thus, even though 
the problem is essentially the same, a physical example that 
has likely been experienced by the participants before (the 
garden hose), generates more correct answers. Therefore, 
previous experience from seeing an object in motion may be 
recruited to solve abstract problems. If this is true, then it 
would indicate that people can make good predictions about 
situations they have seen, but have trouble transferring that 
skill to new domains. 

To test whether observing motion could influence 
accuracy, McCloskey and Kohl (1983) presented 
participants with 3 conditions designed to alter the degree of 
motion in a curvilinear task. Participants viewed three 
training conditions: no motion (a paper and pencil diagram), 
dynamic rotation (where the ball on-screen simply orbited 
around the circumference), and dynamic trajectory (where 
the ball left the orbit). The trajectory condition produced 
both correct and curvilinear trajectories. Surprisingly, there 
was no significant difference between these groups. The 
perceptual experiences failed to facilitate accurate 
trajectories. The authors argued that visual information was 
not sufficiently embodied to produce accurate responses.   

This led to postulating whether physical touch improved 
the accuracy of participants’ responses. McCloskey and 
Kohl (1983) asked participants to physically push a puck 
through a slightly curved ‘C’ shaped path. The task could be 
accomplished if a straight-line method was used. The task 
was designed to add a motor component to test whether 
participants used curvilinear strategies to try to complete the 
exercise, which would result in a failure to complete the 
task. Still, 25 percent of the participants demonstrated some 
curvilinear impetus belief, and participants who failed to 
pass the puck through the curved area with the correct 
straight-line method demonstrated on a post-test 
questionnaire that an alternative method might have been 
curvilinear. Previous research, such as work on the 
Ebbinghaus Illusion, showed that the physical grasping of 
two identically sized objects was completed accurately by 
the motor system, while the perceptual system 
simultaneously perceived one as substantially bigger. This 
would suggest that the action system of the brain would not 
be fooled by perceptual illusions (Haffenden, Schiff & 
Goodale, 2001). However, curvilinear impetus types of 
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problems are not visual illusions, but internal 
misconceptions involving object motion, which seem to 
form the basis of our understanding of object physics. 

Reliance on curvilinear impetus concepts today may seem 
counterintuitive, but in the past they were part of a dominant 
theory of physics in Medieval Europe. It was believed that 
moving objects were imbued with their own force, or 
impetus, that compelled them to behave in a certain way 
(Kozhevnikov & Hegarty, 2001). But the fact that most 
present-day people are ignorant of this theory suggests that 
these impetus beliefs are systematic and consistent between 
human beings. Impetus theories may provide a way of 
conceptualizing the world when no analogy or previous 
experience is accessible – a default physics in want of 
physical experience (Kozhevnikov & Hegarty, 2001).  If 
this is true, then these errors should persist even when 
people have abstract, rule-based physics knowledge. 
Kozhevnikov and Hegarty (2001) tested this by giving 
physicists and non-physicists a spiral diagram and asking 
them to draw the trajectory. In one condition, participants 
were given as much time as they needed to answer, and in 
the other condition they had to answer as quickly as 
possible. Interestingly, both groups fell back on curvilinear 
impetus beliefs in the time-pressured condition. Thus, even 
people who possess expert physics knowledge still fall back 
on impetus theory when under time constraints. 

There is now some evidence that impetus theories, 
specifically curvilinear impetus theories, are part of a 
default physics. However, many experiments tested impetus 
beliefs using abstract stimuli, and were testing the 
production or prediction of trajectories rather than how 
people responded to them. For instance, people do not 
regularly predict where water will exit from a coiled hose; 
however, they do respond to it physically and accurately 
without effort. 

Many of the experiments on curvilinear impetus belief 
overlook the way our motor system, which tends to respond 
to the environment accurately, predicts the motion of objects 
in the world (Oberle, McBeath, Madigan & Sugar, 2005; 
Zago & Lacquaniti, 2005). The ability of the motor system 
to respond to moving objects may be an entirely embodied 
phenomena, one that has been explained with complex 
abstract terms, but is easily accomplished with simple, 
embodied perception-action rules (Wilson & Golonka, 
2013).   

For instance, complex motion problems like the outfielder 
problem can be easily explained with perception-action 
rules, rather than with abstract, representational 
explanations. The outfielder problem asks the question, 
‘how does an outfielder know where to be to catch a fly 
ball?’ The traditional cognitive approach would suggest 
reasoning based on a model or rules—for example, that the 
outfielder calculates initial speed and angle, and uses laws 
of projectile motion to predict where the ball will land and 
moves there in a straight line. The embodied approach, on 
the other hand, would state that as the outfielder moves, 
they utilize a combination of their motion through space as 

well as the ball’s motion through space. The embodied 
approach claims that the outfielder simply follows two 
elementary, perceptually based rules; first, move in a curved 
path that mirrors the path of the ball, so that it appears that it 
is moving in a straight line, and second, match speed so that 
it appears that the ball is moving at a constant velocity 
(Wilson & Golonka, 2013). Furthermore, most outfielders 
run in curved lines. There have been many elaborations on 
these simple embodied rules to catch a fly ball that rely 
entirely on reactionary rules (Chapman, 1968; McLeod, 
Reed, Dienes, 2006; Tresilian, 1995). To further add to the 
evidence that the motor system responds in real time to the 
environment, rather than following a previously simulated 
prediction, outfielders can catch fly balls in virtual reality 
whose paths actually defy physics, where it is impossible to 
predict trajectories (Fink, Foo & Warren, 2009).  

The apparent discrepancy between the motor system 
responding to a trajectory and the abstract prediction or 
production of one could explain why multiple studies report 
surprisingly high prediction errors in schematized spiral 
problems. This effect may be due to there being separate 
pathways for perception and action of visual stimuli 
(Goodale & Milner, 1992; Haffenden, Schiff & Goodale, 
2001). For example, when a ball is dropped from a certain 
height, regardless of the weight, participants will react 
accordingly and catch the ball, and their implicit motor 
knowledge will even account for the mass by demonstrating 
stronger muscle activity in anticipation of a heavier object 
(Oberle et al, 2005; Zago & Lacquaniti, 2005). Interestingly, 
the same participants will make incorrect Aristotelian 
assumptions about which ball will hit the ground first when 
posed the question abstractly, but will demonstrate implicit 
motor knowledge of Newton's Laws of Dynamics when 
responding physically. These results demonstrate that the 
motor system is responsible for accurately responding and 
accomplishing a task that the same participants are unable to 
accurately describe conceptually. 

 This discrepancy between being able to do something 
and being able to accurately describe it has produced some 
interesting theories to account for it. Rather than the 
embodied/abstract distinction, Tresilian (1995) proposes a 
dual system of object motion that is treated separately in the 
mind, using different mechanisms to process information: 
the cognitive-perceptual and the action-oriented. The 
cognitive-perceptual pathway would deal with more abstract 
information, based on prediction or using rule-based 
algorithms, whereas the action-oriented pathway mirrors 
what embodiment researchers have called the perception-
action loop. This action-oriented pathway would consist of 
simple, automatic, and reactionary rules that utilize 
relational information between the body and the 
environment – information that sophisticated robots use to 
locomote or otherwise interact with their surroundings, or 
how an outfielder catches a fly ball (Raibert et al., 2008, 
Tresilian, 1995; Wilson & Golonka, 2013). Tresilian 
proposed that we naturally conceptualize the world via the 
cognitive-perceptual pathway, and physically respond to the 
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world via the action-oriented pathway. The errors observed 
in folk physics research may be due to the cognitive-
perceptual pathway processing information that is more 
naturally suited to processing by the action-oriented 
pathway. In Tresilian’s model, the errors that are observed 
in curvilinear impetus belief problems are the result of the 
cognitive-perceptual pathway being forced to perform an 
inherently artificial task that it is not biologically suited to, 
whereas a real spiral and ball would have the action-oriented 
pathway perform as intended – quickly, accurately, and 
situated in the real world.  Thus, a cognitive-perceptual 
pathway set opposite to an action-oriented pathway would 
account for all types of object motion perception, as well as 
the errors observed in the literature. 

The goal the present study was to test the distinction 
between the cognitive-perceptual pathway and the action-
oriented pathway by systematically increasing the degree of 
embodiment on variations of the spiral tasks used in 
McCloskey et al. (1980). The curvilinear impetus belief was 
tested in the abstract sense on paper, as well as in an 
embodied sense where participants were instructed to reach 
for a ball as it rolled out of a physical spiral. An 
intermediate condition was presented so that the spiral 
device was present, but the participant chose from multiple-
choice correct and incorrect trajectories drawn on paper in 
front of the physical spiral. We hypothesize that, in the 
abstract condition, the brain will use the cognitive-
perceptual pathway, which will result in many errors.   In 
the prediction condition, both the cognitive-perceptual 
pathway and the action-oriented pathway will be engaged, 
which will result in fewer errors.  In the action condition, 
only the action-oriented pathway will be engaged, resulting 
in the fewest errors of the three conditions. 

Method 
The first group of participants were given a diagram from 
McCloskey et al. (1980) to control and replicate the 
findings, and to provide an abstract condition.  They were 
asked to draw the trajectory of an imagined ball exiting a 
spiral on the diagram. 

The second group was presented with a spiral device 
designed to carry a small metal ball, and the participants 
were asked to select a labeled trajectory similar to 
McCloskey and Kohl (1983), thus providing data for a 
prediction condition between abstract and action conditions, 
as the spiral no longer had to be imagined but was 
physically instantiated in front of them.  

Participants in the third group, the action condition, were 
presented with the device and were asked to catch the ball as 
it exited the spiral. We recorded the distance from their 
hands to the correct trajectory of the ball.  

All responses were recorded categorically as correct or 
incorrect.   

Participants: 
A total of 72 adults, all undergraduate students were 

recruited to participate from February 28, 2015, to 

November 27, 2016 through the online recruitment site at 
Carleton University in exchange for extra credit in a class. 
Two participants were excluded from the dataset due to a 
misunderstanding of the instructions. From the remaining 
participants, there were 40 females and 30 males. The 
average number of physics courses taken was 1.6, and the 
average year of university of the participants was 2.2. 
Participants were split into three groups: an abstract 
condition, a prediction condition, and an action condition.  
There were 24 participants for the abstract condition, 23 for 
the prediction condition, and 22 for the action condition, 
with a mean age of 20.6.  All participants had normal or 
corrected to normal vision. 

Materials: 
Participants in the abstract condition were provided with a 

pen, and a spiral diagram that was used in McCloskey et al. 
(1980) on 8.5” x 11” white standard weight paper. 

The prediction and action conditions were presented with 
the physical device sitting on a table, positioned 
approximately 45cm to the left of the participant. The 
device was 90cm tall, with a diameter of 44cm (See Figure 
3). For the prediction condition, the device was set 
alongside pre-drawn predictions of correct and incorrect 
trajectories on a large sheet of 61 x 90.2 cm graph paper, 
placed so that they appeared to emerge from the exiting end 
of the tube.  The spiral was made of one inch clear tubing, 
3-inch PVC pipe, and wood fittings.  The metal bearing 
used in Condition 3 weighed 28.3 grams.   

To determine where the participants were reaching in 
Condition 3, a Nikon P7700 Powershot video camera was 
placed above the area on a tripod so as to include the 
participant’s hand, as well as 1-inch measurement marks to 
measure correct or incorrect responses. 

Stimuli: 

The stimuli for the abstract condition was taken from 
McCloskey et al. (1980) in order to verify that the groups of 
students used in our experiment produced similar errors to 
the students in the previously mentioned paper, as well as 
provide data for an abstract condition (Figure 1). 

In the prediction condition, participants were seated in the 
same orientation to the apparatus as the action condition to 
select from set trajectories. The participants were presented 
with the spiral apparatus (rather than solely a picture) and 

 

Figure 1: Spiral figure for the Abstract condition 
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were asked to verbally make a selection from the set of 
predefined trajectories. The trajectories were taken from the 
most likely errors in McCloskey et al. (1980) that were 

subsequently used in the multiple-choice condition in 
McCloskey and Kohl (1983) (Figure 2).  

In the action condition, participants were presented with 
the spiral apparatus and were asked to catch the ball as it 
exited the tube (Figure 3).  A camera was employed to 
measure the reactions and catalogue the accuracy of the 
motor response.  

Procedure:  
In the abstract condition, the participants were presented 

with a paper and pencil test with the diagram from 
McCloskey et al. (1980), hidden beneath the short 
demographic questionnaire. They were then given the 
following instructions:  

 
“This diagram is intended to show a curved tube.  In the diagram 

you are looking down on the tube from above.  A metal ball is put 
into the end of the tube indicated by the arrow.  The ball is then 
shot out of the other end.  Your task is to draw the path the ball 
will follow after it comes out of the tube.  Please flip the page and 
proceed.” 

 

In the prediction condition, after completing the 
questionnaire, the participants were shown the physical 
apparatus and were asked to choose from 6 set trajectories 
from McCloskey and Kohl (1983).  The participants in this 
condition were instructed as follows: 

 
“This device will allow a small metal ball to travel down the 

tube.  The ball will then exit the tube and travel on its trajectory.  
Your task is to pick which labeled trajectory the ball will most 
likely follow without using your hands.  Please verbally indicate 
your answer.” 

 
In the action condition, after completing the 

questionnaire, the participants were shown the physical 
spiral device and given the following instructions: 

 
“This device will allow a small metal ball to travel down the 

tube.  Once the ball is inserted into the tube, your task is to reach 
for the ball only when it passes the marked area in red so as to 
catch it in the palm of your hand.  Please move your hand in a 
straight line away from you.” 

 
Participants were asked to wait until the ball had passed 

the marked area so that their hand would have to move late 
and fast, to prevent them from moving their hand in 
response to the perceived trajectory—we wanted to measure 
where their motor system thought the ball would go, not 
how it might change trajectory on the fly. 

Measures: 
We counted any curved lines drawn in the abstract 

condition as erroneous and took them to indicate a 
curvilinear impetus belief. Similarly, we categorized as 
incorrect any curved responses selected in the prediction 
condition. 

In the action condition, we coded any deviations away 
from the correct trajectory as erroneous. This was 
accomplished by measuring, on the video, how far the 
participant’s knuckle on the index finger was from the 
correct trajectory. When the participants reached for the ball 
after it had passed the marker, any deviations from the 
correct trajectory exceeding 1 inch away from the zero line 
were recorded as errors. If while attempting to catch the 
ball, the knuckle of the hand was within one inch on either 
side of the zero line, the response was categorically correct.   

Design: 
Participants were assigned to the three conditions in the 

order of abstract, prediction and action, in a between 
subjects design.  A Chi Square Test for Independence was 
conducted for all three conditions, and between paper and 
prediction, paper and action, and prediction and action as 
post hoc analyses.  The number of physics courses was split 
into three arbitrary groups of None (0), Some (1-3), and 
Many (3 or more), and were analyzed with the Chi Square 
test for independence as well. All post-hoc tests were 
corrected using the Bonferroni correction. 

 

Figure 3: Spiral device for the prediction and action 
conditions. Side view (left) and top view (right) 

Figure 2: Spiral figure used in conjunction with spiral 
device for the Prediction condition 
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Results 
Participants in the action condition, where people actually 

reached for the ball rolling out of a curved tube, were much 
more accurate than participants who merely predicted the 
path of the ball on paper. 

Over all three conditions, the accuracy of responses 
differed significantly between the conditions, though not in 
the predicted increasing fashion. A Chi Square test for 
Independence between the three groups produced χ² = (2, N 
= 68) = 26.31, p < .001, Cramer’s V = .43, which is 
statistically significant and indicates a large effect size.  

   
Post hoc analysis illustrates that the main effect, between 

all three conditions, was primarily driven by the difference 
between the prediction condition and the action condition, 
as can be observed in Figure 4. Post hoc testing using the 
Bonferroni Correction for pairwise comparisons with the 
Chi Square test determined that there was a significant 
difference between the abstract and prediction comparison, 
χ² = (1, N = 47) = 10.55, p < .017, the abstract and action 
comparisons, χ² = (1, N = 47) = 16.42, p < .017, as well as 
the prediction and action comparisons, χ² = (1, N = 46) = 
25.66, p < .017.   

There was no relationship between the number of physics 
courses taken, χ² = (2, N = 70) = 1.59, p = .45.  Post Hoc 
tests with the Bonferroni Correction also revealed no 
significant differences between groups, p > .017.  

 
Discussion 

These results have provided some support for the original 
hypothesis that the degree of embodiment significantly 
influences the accuracy of responses.  However, we did not 
observe the stepped increase from the abstract condition to 
the action condition. There was no effect of the number of 
physics courses on the number of correct responses, which 
supports Kozhevnikov and Hegarty’s (2001) finding that 
physicists and non-physicists alike seem to rely on an 
incorrect default curvilinear physics for abstract problems. 
In the abstract condition, 62.5% of the respondents 
produced incorrect trajectories compared to the 36% and 
49% reported in McCloskey et al. (1980). 

The original hypothesis that the difference between the 
abstract condition and the action condition would produce 
significantly different responses was supported. 
Surprisingly, however, the prediction condition had the 
fewest correct responses, with most participants choosing 
between two of the 6 options (E and D in Figure 2), whereas 
it was hypothesized that the prediction condition would 
have more correct responses than the abstract condition. 
Lastly, the action condition had the most correct responses, 
which supported our hypothesis that there is a dissociation 
between our action-oriented pathway and our cognitive-
perceptual one.   

With this paradigm in mind, the finding that many of the 
prediction condition responses were incorrect might be 
explained by the fact that both the cognitive-perceptual and 
the action-oriented pathways were in conflict, causing more 
errors.  Alternatively, there was no participant motion 
involved, and this lack of a motor aspect in the prediction 
condition might have hindered its validity as a medium 
embodied condition. Also, the relatively high number of 
correct responses in the action condition suggests that 
physical responses are more biologically adapted for 
accuracy.  Taking these findings into account, the act of 
drawing in the abstract condition may have allowed the 
action-oriented pathway to provide more correct paths of the 
imaginary ball, while the stationary aspect of the prediction 
condition may have only allowed the cognitive-perceptual 
pathway to be used.  Thus, the abstract condition may have 
been more embodied than the prediction condition, which if 
true, would demonstrate the stepped increase hypothesized. 

The significant differences observed in this experiment 
have illustrated the degree to which our minds are divided 
depending on the task and level of physical action. 
However, future research could expand the prediction 
condition of this experiment by investigating how 
participant motion, for example pointing to the correct 
trajectory or producing it alongside the spiral might increase 
the number of correct responses by activating the action-
oriented pathway.  Other areas of research may include 
asking participants to imagine the trajectory of the ball 
before choosing or drawing their prediction, to more 
accurately determine the capacities of the cognitive-
perceptual pathway.  Furthermore, the method for coding 
accuracy was done categorically and was measured 
differently between conditions, posing some reliability 
concerns. Because of these limitations, future projects 
should investigate the production of the trajectories, as in 
the abstract condition, in a setup identical to the prediction 
and action conditions, thereby increasing the 
generalizability of the results. 

The implications of this research are broad. The 
pedagogical implications for teaching elementary physics 
could be substantial. Participants were largely incorrect 
when presented with abstract, as well as non-dynamic 
examples of this physics problem (i.e. prediction condition), 
so it might be beneficial for educational authorities to 
encourage more embodied examples of physics problems to 

Figure 4: Number of Correct and Incorrect Responses per 
Condition 
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facilitate student understanding. The results partially support 
Tresilian’s (1995) model that the cognitive-perceptual 
pathway demonstrates poorer performance on abstract 
physical tasks, whereas the action-oriented pathway does 
better on responsive and physical tasks. 

These results have provided evidence for one of the 
cornerstones of embodied cognition: that cognition evolved 
for action (Wilson, 2002). This is not usually the case in 
many research papers, as much embodied research that is 
publically received involves associations between mental 
representations and bodily postures, types of movement, and 
even the types of clothes people wear (Adam & Galinsky, 
2012; Markman & Brendl, 2005; Reutner, Hansen, & 
Greifeneder, 2015). Although the results from these 
associational studies are interesting, they support a weaker 
version of embodied cognition; one that implies that 
cognition is merely influenced by the brain, the body and 
the environment.  This study suggests a distributed view of 
the mind, one that engages the action-oriented pathway 
when solving embodied motion problems, yet falls back on 
the cognitive-perceptual pathway when motion is absent.  

At present there is evidence for a dual-pathway system: 
one utilized when the mind is processing abstract 
conceptualizations, and one that utilizes the motor system 
when the mind is processing motion problems, using 
perception-action loops in a reactionary fashion. The 
classical view of the mind within cognitive science as a 
symbol manipulator falls apart when real world motion is 
involved, and embodied cognition and Tresilian’s dual 
pathway system for object motion may provide a new way 
of conceptualizing how minds react and think about object 
motion.  
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Abstract 

The focus of this paper is to examine differences in semantic 
network structure of late talkers and typical talkers to elucidate 
potential learning strategies used by late talking children. To 
address this question, we conducted network analysis on the 
vocabularies of 2,912 children, with 566 of those being late 
talkers. Contrary to previously reported findings, the results 
show that late talkers have well-connected vocabularies as 
measured by median degree, clustering coefficient, and mean 
distance, with more well-connected networks in some cases 
than their typical talking peers. Further analysis of word order 
suggests that late talkers may be selecting based on frequency 
and connectivity of the words in the learning environment, 
more so than typical talkers. The language processing 
difficulties in late talkers appear not to be associated with their 
semantic network properties. In sum, late talkers may initially 
benefit from using word frequency and word connectivity 
strategies to build well-connected vocabularies. 

Keywords: semantic networks; network analysis; corpus analysis; 

language acquisition; late talkers; word frequency 

 

Introduction 

Children start learning words within the first and second year 

of life.  Some children are slower than others, and some of 

the slowest children go on to show lifelong learning 

difficulties.  These children, called late talkers, have been the 

subject of extensive research, both to understand how they 

learn but also to understand how their learning might be 

better facilitated to prevent lifelong problems.  One of the 

outstanding questions in late talker research is to what extent 

late talkers are simply ‘slower’ versions of typical talkers?  

The alternative is that they show different learning strategies 

and therefore not only learn words more slowly but learn 

different words.  In the present work we address this question 

using network analysis on the largest currently available 

sample of children’s vocabularies. The aim is that by 

identifying similarities and differences in vocabulary 

acquisition, we can better identify the strategies that late 

talkers might be using, if indeed they are using strategies 

different from typical talkers. Before we explain our 

methods, we first briefly review the literature on network 

analysis and late talkers.  

Network Analysis in Language Acquisition 

Semantic network analysis has allowed researchers to 

explore language processing in adults (Wachs-Lopes & 

Rodrigues, 2016) and language acquisition in children (Hills, 

Maouene, Riordan & Smith, 2010; Hills, Maouene, 

Maouene, Sheya & Smith, 2009). In network analysis, also 

known as graph theory, words are modelled as vertices and 

relationships between words are modelled as edges. Semantic 

relatedness amongst words is the focus of the present study, 

however, other relationships have been used in the past, 

including features, phonology, and free associations (e.g., Li 

, Farkas & MacWhinney, 2004, Hills, Maouene, Maouene, 

Sheya & Smith, 2009).  

 According to Watts & Strogatz (1988) small world 

networks are “highly clustered, like regular lattices, yet have 

small characteristic path lengths, like random graphs”. Small-

world properties have been reported not only in adult 

vocabulary but also in toddlers as young as 15 months 

(Beckage, Smith, & Hills, 2011). Local structure, where 

words are connected in clusters, may represent semantic 

categories (Hills, Maouene, Maouene, Sheya & Smith, 

2009b).  Words between clusters may facilitate transitions 

between clusters, and therefore are believed to be critical in 

language processing (Cancho & Solé, 2001; Banavar, 

Maritan & Rinaldo, 1999).  

Networks statistics can be computed to evaluate the 

connectivity of a lexical network. Three of them are 

considered in this work.  The degree of a word is the number 

of ties that word has with other words. Calculating the mean 

or median of this measure provides the overall level of 

cohesion in a network. The clustering coefficient explores the 

degree of clustering of nodes within a network. Finally, the 

mean distance of a network shows the average of the shortest 

paths between all pairs of words which gives an idea of its 

global access. Many studies have included these statistics in 

their analysis to examine research questions related to 

language acquisition, e.g. studies on lexical growth (Hills, 

Maouene, Riordan & Smith, 2010), categorical memberships 

in the lexicon (Hills, Maouene, Maouene, Sheya & Smith, 

2009b), and the influence of bilingual first-language learning 

on early English acquisition (Bilson, Yoshida, Tran, Woods 

& Hills, 2015). 

Language Acquisition in Typical and Late Talkers 

Extensive research has already taken place around those 

children with small vocabularies compared to their normed 

peers (for a review, see Desmarais, Sylvestre, Meyer, Bairati 

& Rouleau, 2008). Whereas many late talkers catch up with 

their peers in word production (so called ‘late bloomers’; 

Thal, Tobias & Morrison,1991), some others will have 

language difficulties that drag on, to be later diagnosed with 

Specific Language Impairment (SLI) (Leonard, 2000). For 
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the latter group, language problems will continue with 

comprehension, production and/or pragmatics (Leonard, 

2000). Despite late bloomers’ vocabulary improvement, they 

may still be more likely to experience difficulties in 

language-related tasks, such as reading (Rescorla, 2009). 

Defining and understanding the characteristics and strategies 

of late talker’s vocabulary could help to develop effective 

early interventions.  

The starting point for our research is Beckage, Smith and 

Hills (2011). In their study, network analysis was used to 

characterize the vocabularies of 66 typical and late talking 

children. Semantic relatedness of words, computed from 

word co-occurrence derived from the CHILDES database 

(MacWhinney, 2000), was used to connect the words in the 

child’s vocabulary. Results showed that both typical and late 

talkers exhibit small-world structure, although late talkers 

present this to a lesser degree. The study suggests the 

existence of a relationship between the child’s rate of lexical 

development and the connectivity of her individual network. 

This finding led the authors to hypothesize the possibility of 

an ‘oddball’ strategy used by late talkers: a preference to 

learn words that have lower semantic relatedness with words 

they already know. Thus, late talkers may use different 

learning strategies or have differences in their ability to 

discriminate word referents.  

A later study by Nematzadeh, Fazly & Stevenson (2014) 

challenged these results. By means of computational 

modelling, the authors simulated typical and late talking word 

learners to explore differences in their semantic networks. 

Surprisingly, neither type of simulated word learner showed 

a small-world structure. Referring to Beckage, Smith and 

Hills’ work (2011), the authors questioned the use of the same 

edges to link words of the networks of both typical and late 

talkers as it assumes that both groups learn the same 

knowledge about words. Moreover, the authors called into 

question the ‘oddball strategy’ alleging that late talking 

children do not possess enough information about the words 

to discern similarities and dissimilarities between words. 

However, their methodological differences may also explain 

the differences in the results. Whereas in Beckage, Smith and 

Hills’ study (2011) the co-occurrence of words in child-

directed speech generated semantic relatedness between 

words, Nematzadeh, Fazly & Stevenson (2014) used 

associative semantic information provided by a custom 

lexicon to link words with similar meanings. 

Word frequency has also been investigated as one of the 

main influences in word learning.  In Stokes (2010), two-year 

old typical talking children tended to acquire more high 

frequency words than late talking children, who in turn 

learned more words with a higher phonological 

neighborhood density. However, the question remains 

whether there is a difference between the two groups with 

respect to preferences for acquiring some words earlier than 

others, which may have given a different perspective of the 

learning strategies used by each group. 

The present work further investigates the difference 

between early and late talkers using vocabularies taken from 

the open repository website Wordbank (Frank, Braginsky, 

Yurovsky & Marchman, in press), providing a sample of 

2,912 children, of which 566 are considered late talkers. The 

methodology followed and the words selected are identical to 

those in Beckage, Smith and Hills (2011), the only 

differences being the number of children and the diversity of 

their backgrounds as they come from nine different American 

studies. Our principle question is, how does the semantic 

vocabulary structure differ between typical and late talkers? 

We ask two additional questions: (1) what is the relationship 

between word frequency and order of word learning for the 

two groups, and (2) what is the relationship between word 

frequency in the language learning environment and the 

connectivity between the words. These allow us to investigate 

additional pathways for language learning in late talkers.  

 

Methods 

Vocabulary 

Publicly available vocabulary data for 5,450 children aged 16 

to 30 months was downloaded on October 2016 from 

Wordbank (Frank et al., in press). Data is contributed by 

various researchers using the MacArthur-Bates 

Communicative Development Inventory (MCDI) (Fenson, 

Dale & Reznick, 1993). The data set used in this work was 

downloaded by selecting ‘Words & Sentences’ under forms 

and ‘English’ under language. To facilitate comparisons 

between late and typical talkers, we limited vocabulary sizes 

to between 20 and 220 words, a range where typical and late 

talkers overlapped that also allowed for meaningful network 

statistics. Few late talkers had a productive vocabulary size 

greater than 220 words. After limiting the vocabulary size, 

the final total number of children remaining was 2,912. Of 

the 2,912 children (aged 15 to 30 months), 566 have a 

vocabulary size atypical for their age and 2,346 presented a 

normal vocabulary size for their age. Late talkers were at or 

under the 20th percentile of their same-age peers. To calculate 

this, each child was assigned to a decile grouping according 

to their age and vocabulary size reported in the MCDI 

instrument. The decile grouping was looked up from a table 

of estimated percentiles on the Wordbank website created 

using a quartile regression with monotonic polynomial spline 

as the base function.  Although the total number of words that 

can be recorded in the MCDI questionnaire is 680, in 

Beckage, Smith and Hills’ study (2011) only 291 words were 

used which appeared on both the toddler and infant forms, 

allowing comparison across ages. The same words were 

selected in this study. The 291 words consist of  207 nouns, 

50 verbs, 14 adjectives, 12 pronouns, 6 adverbs, 1 quantifier 

and 1 demonstrative. All categories in the MCDI were 

included except for ‘Sound Effects and Animal Sounds’, 

‘Helping Verbs’, and ‘Connecting Words’. 

Semantic Relationships Between the Words 

To link the words in each child’s productive vocabulary, 

semantic relatedness between words was computed using co- 
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occurrence statistics derived from an American English 

corpus of child-directed speech, CHILDES (MacWhinney, 

2000). A surface proximity approach (see 

Evert, 2008) was used to determine the 

frequency in which each distinct word (node) 

in the corpus co-occurred with other words 

(collocates). An empty co-occurrences  matrix 

was created and then populated by moving a 

window of span size 5 words forward through 

the corpus. As co-occurrences were 

encountered the count for that pair was incremented. A subset 

of this large matrix was created where the rows and columns 

intersected with the 291 words selected from the MCDI 

forms. Finally, the count values were converted to a simple 

binary representation. 

Random Acquisition Networks 

In order to compare each individual child’s network with 

similar size networks, 300 random acquisition networks were 

generated for each child. These networks have the same 

number of words n as the child’s network, but the words are 

selected randomly from the set of 291 words. Then, each 

random network was linked using the values from the 

CHILDES matrix explained above. The same statistical 

properties computed for each child’s vocabulary network 

were also computed on the 300 random acquisition networks 

and then averaged. These random network statistics provide 

the structure inherent in the language context without 

including the particular word learning pattern of the child, 

thus providing a point of comparison for each child’s 

network, allowing us to compare children with different size 

vocabularies against a ‘random’ learner.  

 Word Frequency and Connectivity 

Preferences for learning certain words over others was 

assessed with respect to vocabulary size. First, the sample 

was divided into two groups: late talkers and typical talkers. 

Then each group was ordered by increasing vocabulary size, 

creating subgroups. Within each subgroup and for each word 

a count was made of children that produced the word. Words 

were ranked based on their count. Differences in ranking 

between late and typical talkers was calculated by subtracting 

the respective ranking value for each word, allowing us to 

identify differences between the groups in their preference 

for learning certain words. 

Only words with a minimum ranking difference of 20 or 

more are presented, but the results are not sensitive to this 

number. The frequency of each word was taken from 

CHILDES and compared between the two groups (see 

MacWhinney, 2000; Li & Shirai, 2000). Within the 291 x 291 

matrix of co-occurrences, some words are better connected 

(have higher degree) than others. This was calculated directly 

from the matrix by counting the total number of occurrences 

of a word with other words.  

 

Table 1: Distribution of the children’s vocabulary and mean 

age (in parenthesis) 

 

Results 

Network Analysis 

Analysis was carried out using R and the igraph package, 

version 1.0.1 (Csárdi & Nepusz, 2006). Connectivity was 

assessed by computing three statistics of each directed 

network: median in-degree, clustering coefficient, and mean 

distance. Late talkers are unequally distributed across the 

sample: they have higher representation at lower vocabulary 

sizes and low or no representation at the higher vocabulary 

sizes. Therefore, the sample was divided into bins of children 

with similar vocabulary sizes in ranges of 20 words. The size 

of the bin does not influence our results, but does facilitate 

their visual presentation. Table 1 shows the number of late 

talkers (LT) and typical talkers (TT) in each bin, as well as 

the mean age in each group.   

Stepwise linear mixed effects analysis (lm4 package, 

version 1.1-12; Bates, Mächler, Bolker & Walker, 2015) was 

performed to explore the relationship between each of the 

three network statistics and type of talker. The final three 

models  includes vocabulary size and type of talker as fixed 

effects to predict each network statistic. No collinearity of 

these predictors was found (VIFs < 1.02). Intercepts were 

allowed to vary across vocabulary sizes as the values of each 

network statistic varies across the size contexts. The inclusion 

of vocabulary size as a fixed effect allowed us to control for 

network size and led to a better statistical fit. No significant 

difference in the model resulted when allowing slopes to vary 

by either vocabulary size or type of talker. The significant 

main effect for type of talker reveals a positive relationship 

between LT and median indegree (Estimate=.061, SE=.025, 

p=.014). A marginal main effect for type of talker indicates 

that being a late talker leads to higher clustering coefficient 

(Estimate=.003, SE=.002, p=.063). A negative main effect 

was observed for late talkers on mean distance (Estimate= -

.014, SE=.004, p=.0008). These results indicate that LT’s 

vocabularies are better connected and have better global 

access than TT’s vocabularies when considering all the 

vocabulary sizes together. 

We compared the observed networks statistics with those 

from the vocabulary size-matched random acquisition 

networks by calculating ratios (Figures 1, 2 and 3). Linear 

mixed effect analysis was also carried out to examine the 

relationship between these ratios and type of talker. The 

model had the same structure as used in the previous analysis. 

Vocabulary size 

 20-40 40-60 60-80 80-

100 

100-

120 

120-

140 

140-

160 

160-

180 

180-

200 

200-

220 

LT 133 
(23) 

70 
(24.5) 

74 
(25) 

60 
(26.1) 

55 
(27.2) 

46 
(27.7) 

36 
(28.3) 

46 
(28.5) 

25 
(29.2) 

21 
(29.9) 

TT  427 

(17.1) 

304 

(17.9) 

213 

(18.5) 

197 

(19.6) 

191 

(20.4) 

159 

(20.8) 

187 

(21.4) 

190 

(22.7) 

205 

(23.4) 

262 

(24.5) 
Total 560 374 287 257 246 205 223 236 230 283 
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Results indicate no main effect for the type of talker on in-

degree ratio (Estimate=.024, SE=.014, p=.078). Significant 

main effects were found on clustering coefficient 

(Estimate=.009, SE=.005, p=.044) and mean distance ratios 

(Estimate=-0.008, SE=0.002, p=.0007), indicating that late 

talking children tend to have higher clustering coefficient and 

lower mean distance in their networks.  

 

 
 

Figure 1. Median degree ratio of the observed data to the 

RAN. Note: * p < 0.05 

 

 
 

Figure 2. Clustering coefficient ratio of the observed data to 

the RAN. Note:  * p < 0.05 

 

  
 

Figure 3. Mean distance ratio of the observed data to the 

RAN. Note: * p < 0.05, ** p < 0.01 

Table 2: Difference between typical and late talkers 

compared to random acquisition networks 

 

  Networks 

M(SD) 

RAN 

M(SD) 

t(df) d 

LT In-degree 

 

23.89 

(12.56) 

20.81 

(12.61) 

12.6 

(565) 

*** 

.530 

Clustering 

coefficient  

.58 

(.07) 

.54 

(.01) 

13.9 

(565) 

*** 

.584 

Mean 

distance 

1.68 

(.1) 

1.73 

(.02) 

10.33 

(565) 

*** 

.434 

      

TT In-degree 26.7 

(13.44) 

25.01 

(14.56) 

13.81(

2345) 

*** 

.285 

Clustering 

coefficient 

0.57 

(.06) 

0.55 

(.01) 

18.81 

(2345) 

*** 

.388 

Mean 

distance 

1.7 

(.09) 

1.72 

(.02) 

10.23 

(2345) 

*** 

.211 

Note: *** = p < .001.  

 

Standardized residual plots were visually inspected for the 

linear mixed models to check for homoscedasticity and 

normality, and a violation of these requirements was noted.  

To confirm these results, we carried out more analysis. T-

tests were conducted to detect differences between LT and 

TT regarding the ratio of the observed statistics to the 

statistics of the size-matched RAN. Late talker’s vocabularies 

have higher values of median in-degree (M= 1.28, SD= .39) 

and clustering coefficient (M= 1.08, SD= .140) than typical 

talking children (in-degree: M= 1.20, SD= .37), t(817) = -

4.54, p < .001, d =-.22; clustering coefficient: M= 1.05, SD= 

0.13), t(820) = -4.72, p=  p < .001, d =-.23 ). Late talking 

children also had lower values of mean distance (M= .97, 

SD= .06) than typical talking children (M= .99, SD= .063), 

t(815) = 5.18, p < .001, d = .25.  

Further analysis using the ratio data was conducted to 

check whether the same differences between LT and TT are 

also observed within each bin of vocabulary size. Significant 

results are signaled with an asterisk in Figures 1, 2 and 3. Late 

talkers obtained higher in-degree and higher clustering 

coefficient than TT in the vocabulary range 40 to 60 words. 

Significant differences in mean distance were found in three 

groups of vocabulary size, all of them present lower values 

for LT: 40 to 60 words, 60 to 80 words, and 140 to 160 words. 

The same t-test analysis in each bin was performed using only 

the observed data. Apart from mean indegree, in which any 

difference between the type of talkers were found, similar 

results were obtained in clustering coefficient and mean 

distance in the same vocabulary sizes. These results show that 

LT’s vocabularies are better connected than TT’s 
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vocabularies in certain vocabulary ranges, and also that TT 

resembles their RAN more than LT do in these ranges. 

Paired t-tests were conducted to compare the properties of 

LT and TT networks with their corresponding size-matched 

RAN. Results can be seen in Table 2. Both LT and TT 

showed significantly higher values of median in-degree and 

clustering coefficients and significantly lower values for 

mean distance than their size-matched RAN. Thus, LT and 

TT seem to present vocabularies which are well connected 

and have good global access. 

Word Frequency and Connectivity 

To investigate differences in the order in which LT and TT 

learn words, we examined the correlation between word order 

and word frequency in CHILDES. The order in which all 291 

words are learned across vocabulary size is not correlated to 

word frequency for either type of talker (LT: rₛ= -.10, p= .082, 

TT: rₛ= -.063, p= .28). When the same analysis is performed 

on each vocabulary size bin, word order in LT was 

significantly related to word frequency in vocabulary sizes of 

20 to 40 words (rₛ= -.13, p= .023), and 40 to 60 words (rₛ= -

.16, p= .006). Thus, the order in which LT learn words seems 

to be related to their frequency during the first stages of 

vocabulary development. Further correlation analysis 

revealed a relationship between connectivity and word order 

(rₛ= -.13, p= .026) in LT but not in TT (rₛ= -.11, p= .071). 

Analysis on each bin shows that, only for LT, this 

relationship is present in vocabulary sizes of 20 to 40 words 

(rₛ= -.16, p= .008), 40 to 60 words (rₛ= -.18, p= .002), 100 to 

120 words (rₛ= -.13, p= .032), 120 to 140 words (rₛ= -.13, p= 

.024), 180 to 200 words (rₛ= -.12, p= .043), and 200 to 220 

words (rₛ= -.12, p= .041). In view of these results, it seems 

that connectivity and frequency of the 291 words are 

somehow related to word order in LT but not in TT. In 

addition, word connectivity seems to be more strongly related 

to word order in LT than word frequency. 

Further analysis considered only those words that differed 

considerably in word order between LT and TT. That is, there 

were some words that were learned earlier by one of the type 

of talker groups compared to the other group, we refer to 

them here as ‘preferred words’.  Figure 4 shows significant 

differences between the two types of talkers: LT learned more 

words that are highly frequent in the language environment 

(M= 3588, SD= 897) than TT (M= 1060, SD= 687), t(16.9) = 

7.08, p < .001, d = 3.16. The connectivity within the matrix 

of co-occurrences of preferred words was compared between 

LT and TT. Children with language delay learn words that 

are well connected in the matrix (M= 101, SD= 11.4), more 

so than TT (M= 75.8, SD= 12.01), t(17.9) = 4.79, p < .001, d 

= 2.14. These results are consistent with this studies analysis 

of the network statistics, with LT learning more well-

connected words than TT. Results from a logistic regression 

using the preferred words indicated that frequency is not a 

good predictor of the type of talker (B= .007, SE=.008, p=.38, 

Homes-Lemeshow R₂=.85), contrary to connectivity, which 

was a significant predictor (B= .14, SE= .055, p=.009, 

Homes-Lemeshow R₂=.50, 95% CI [1.06, 1.33]). 

Additionally, we wanted to see whether word frequency in 

CHILDES and the connectivity of the 291 words within our 

matrix of co-occurrences are correlated. Results showed that 

these two measures are strongly related (rₛ= .91, p < .001). 

These results suggest that LT children may be more 

susceptible to these two word properties, however only the 

connectivity of the preferred words can predict the type of 

talker. 

 

 
Figure 4. Word frequency by vocabulary size. Numbers at 

each point reflect number of preferred words used for 

analysis in each group. 

 

Discussion 

The present study uses network analysis on a large sample of 

children’s vocabulary to explore the idea that late talkers may 

have a different word learning strategy than typical talkers. 

Multiple results from different analysis fail to agree with the 

findings in Beckage, Smith and Hills (2011). The authors 

reported that children with language delay have networks 

with less clustering coefficient and less mean distance than 

their vocabulary size-matched RAN. Furthermore, the 

authors hypothesized that this may be due to LT using an 

‘oddball strategy’ to learn words, i.e. late talkers may be 

attracted to those words that are not well connected in the 

learning environment, as opposed to the idea of ‘preferential 

acquisition’, in which the tendency is to learn earlier on the 

most contextually diverse words in the learning environment 

(Hills, Maouene, Riordan & Smith, 2010). However, the use 

of a larger sample in this study suggested that LTs do not use 

an ‘oddball strategy’, rather they seem to learn words that are 

well connected in the environment. 

 Analysis of the frequency of these preferred words in the 

learning environment showed that LT learn a good proportion 

of highly frequent words earlier than TT. However, the 

relationship between word frequency and language delay is 

still unclear as it seems to not be a good predictor for type of 

talker. Nevertheless, these results seem to contradict the 

findings by Stokes (2010), who found that two-year old 

typical talkers learn more high frequency words than LT do. 

However,  the inclusion of function words may partly explain 
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the difference between the present study’s results and Stokes’ 

results as their frequency in the learning environment is 

higher than open class words. The connectivity of the 

preferred words within the 291 words used in the present 

study indicate that LT also happened to learn well connected 

words earlier. 

 One of the reasons behind the findings may be that late 

talking child are more passively influenced by word 

frequency, consequently, learning more highly frequent 

words that happen to be well connected in the learning 

environment. As knowing these high frequency words can 

deliver a degree of communication success, the requirement 

to acquire advanced strategies may be further delayed. 

In sum, the evidence reported in this study suggests that 

children with language delay have well connected 

vocabularies and good global access, in many cases better 

than the typically developing children. Late talkers may be 

more influenced by word frequency or connectivity, perhaps 

using a strategy to learn words that are contextually diverse 

in the learning environment as noted in previous work (Hills 

et al., 2009a). In order to elucidate whether these two types 

of talkers are using different word learning strategies, future 

research will need to examine the longitudinal development 

of vocabularies in LT and TT and a different approach to 

assign a more individualistic semantic relatedness between 

the words. 
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Abstract 

Accounts of spatial language aim to address both the meaning 
of a spatial term and its usage patterns across diverse cases, 
but do not always clearly distinguish these from one another. 
Focusing on the case of English prepositions in and on, we set 
out to disentangle spatial language meaning from spatial 
language use by comparing judgments on a series of linguistic 
tasks designed to tap each aspect of spatial language. We 
demonstrate that judgments of truth-conditional meaning and 
patterns of naturalistic use show different distributional 
signatures, with judgments of meaning giving rise to a more 
uniform distribution than use patterns. We explore a third 
aspect of spatial language: lexical choice, and propose that 
choice is a key factor in shaping the distribution of spatial 
expression use. Our analyses reveal that the distribution of 
lexical choice judgments is highly correlated with the 
distribution of expression use in spatial descriptions for the 
same spatial scenes, supporting a model of spatial language 
that differs from traditional accounts of meaning and 
categorization. 
 

Keywords: Spatial cognition; spatial language; semantics; 
language use  

Introduction 
Spatial terms in languages of the world tend to constitute 

a small closed class set (Landau & Jackendoff, 1993; 
Talmy, 1985). In English, for example, this set is typically 
limited to the spatial prepositions, including in, on, over, 
above, etc. To linguistically encode spatial relations with 
this limited inventory, a speaker must systematically 
abstract over fine-grained properties of objects and 
configurations and attend to coarse-grained spatial and/or 
mechanical properties of their relations. Modeling the nature 
of this abstraction remains a long-standing problem in the 
cognitive sciences. The systematic ways in which speakers 
encode relations (i.e., generate descriptions) is often 
confounded with the ways in which they decode spatial 
descriptions (i.e., understand the meaning of descriptions).  

This problem has been exacerbated by a lack of 
separation between definitional questions about the meaning 
of a spatial term like in or on and categorization questions 
about the use of a term by a population of speakers – 
questions that may ultimately have different answers. 
Meaning and use represent distinct and separable aspects of 
many semantic domains (Cruse, 2011). In keeping with this 
observation, we suggest that the task of formally defining 

spatial terms such as in and on is separate from, albeit 
related to, the task of specifying the conditions under which 
speakers will use a spatial term to describe a location or 
configuration. For example, formal accounts of spatial 
meaning come under fire when proposed meanings cannot 
accommodate peripheral uses (see e.g., Bennett, 1975 for 
examples and e.g., Feist, 2000, and Herskovits, 1986 for 
commentary), while accounts of spatial categorization based 
on language usage patterns often propose all-or-none 
category boundaries that mimic binary truth conditional 
judgments (Regier, Khetarpahl, & Majid, 2013). In this 
paper, we aim to disentangle spatial language meaning from 
spatial language use by comparing judgments on a series of 
linguistic tasks across the same sets of spatial stimuli, 
including a task designed to directly assess speakers’ lexical 
choices, which we propose are key in accounting for spatial 
term use but are not necessarily active in spatial term 
meaning. 

Below, we review a selection of research on spatial 
language categorization, focusing mainly on the 
prepositions in and on. We organize the review into work 
that explicates the formal meaning of spatial terms and work 
that targets speakers’ use of spatial terms for categorization. 
We then introduce recent work that suggests that speakers’ 
choice of spatial term from among candidates is a critical 
variable in reconciling categories of spatial term meaning 
with patterns of speakers’ spatial term use. The current 
study addresses these relationships – between meaning, 
choice, and use – directly for the English prepositions in and 
on, evaluating two complementary hypotheses, outlined 
below. 

Defining spatial terms 
Past and present, accounts of spatial meanings have also 

had to shoulder the burden of accounting for detailed 
patterns of spatial expression use (and, in some cases 
abstract uses of spatial expressions, see e.g., Jamrozik & 
Gentner, 2015). Traditional simplified accounts of 
prepositional meaning such as Bennett (1975)1 attempt to 
define spatial prepositions as a function of geometric 

                                                             
1 As just one example, Bennett (1975, p. 71) defines in and on 

using the notions of location at the interior of an object (for in), 
and location at the surface of an object (for on). 

 
2 We examined the 7 items for which the rate of expression use  
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properties of configurations as a means of abstracting away 
from specific objects. These definitional theories have been 
consistently criticized for being, on the one hand, too vague 
and allowing unlikely cases into the definition (e.g., an 
apple under an upside-down bowl fits Bennett’s denotation 
of “in the bowl”) and for failing, on the other hand, to 
predict the range of peripheral cases for which in and on can 
apply (e.g., an apple on top of other fruit contained by a 
bowl, cf. Feist, 2000).  These accounts have been replaced 
by proposals that incorporate large sets of features in order 
to narrow and specify the meaning of in and on based on 
usage patterns (see e.g., Feist, 2000; Vandeloise, 2010; Xu 
& Kemp, 2012), and by proposals that prioritize world 
knowledge and pragmatic inference (Herskovits, 1986), so 
as to preserve narrow denotations for in and on while 
accounting for peripheral cases that depend on additional 
processes such as chaining (Malt, Sloman, Gennari, Shi, & 
Wang, 1999). The current study examines whether 
accounting for frequent or infrequent uses of a spatial term 
is a necessary goal for accounts of spatial meaning. 

Spatial categories inferred from language use 
Studies of spatial language categorization typically 

measure speakers’ usage of spatial terms for different spatial 
scenes and, based on these data, one can infer possible 
category boundaries for single terms and/or semantic 
structure across multiple terms. Many of these accounts do 
not start from any initial hypotheses about the semantic 
content or meaning of particular spatial terms, and instead 
use spatial descriptions to infer systematic groupings of 
scenes under spatial terms. One prevailing assumption, 
however, is that a given spatial scene will fall “all-or-none” 
into only one spatial term category (e.g., the same scene 
cannot be categorized as both in and on). 

For example, Levinson and colleagues (Levinson et al, 
2003) and Regier and colleagues (Regier et al., 2013) 
examined spatial descriptions for a diverse set of spatial 
scenes from the Topological Relations Picture Series 
(Bowerman and Pederson, 1993). Across a large sample of 
languages, both groups analyzed the spatial term(s) used by 
the majority of speakers in a language group to encode a 
given scene – a point we will return to shortly.  

Levinson et al. used multidimensional scaling on these 
data and proposed underlying spatial categories that are 
shaped by a handful of “attractors” – salient spatial scenes 
that are encoded in similar ways across languages. 
Similarly, Regier et al. employed an inferential (semantic 
map) analysis to come to a similar solution. Both studies are 
agnostic to the lexical content of particular spatial terms, but 
the researchers’ analytical choices reflect a critical 
assumption about how spatial language use relates to 
underlying spatial categories. Specifically, researchers in 
both studies identified the modal term used by the majority 
speakers of each language for each scene, treating language-
internal variation as noise. The result of this modal 
assumption is binary, all-or-none categorization of a scene 
by spatial terms in a language, partitioning spatial scenes 

into language-based equivalence classes, reminiscent of 
binary truth-conditional meaning.  

This all-or-none semantic category structure limits the 
inferences that can be made about the relationship between 
the meaning of a spatial term and its use in encoding 
different spatial scenes. In particular, it ignores the 
possibility that spatial terms might overlap in the spatial 
scenes they apply to, leading to probabilistic use of multiple 
spatial terms, and, in a similar vein, precludes the idea that 
spatial terms can compete with one another to encode the 
same spatial scene.   

Recent work from Johannes and colleagues (Johannes, 
Wilson & Landau, 2016; Johannes 2015; Landau, Johannes, 
Skordos, & Papafragou, 2016) demonstrates that multiple 
spatial terms are used by English speakers to encode the 
same spatial scenes. Moreover, they find that tracking the 
fine-grained use of a single spatial term across a diverse set 
of spatial relation scenes reveals a graded, non-uniform 
distribution of expression use across scenes, suggesting that 
some terms are a “better fit” to a spatial scene than others. 
In this paper, we extend the observations of Johannes and 
colleagues, proposing that speakers’ choice of spatial term, 
among many candidates, to describe a configuration is a 
critical variable in accounting for the non-uniform 
distribution found in spatial expression usage patterns. 

The Current Study 
In the current study, we pursue two related hypotheses 
aimed at exploring how speakers evaluate the meanings of 
spatial terms and how this process differs from their 
decisions to use specific terms in spatial descriptions. We 
propose implicit lexical competition – speakers’ choice of a 
particular spatial term among viable candidates – as a way 
of accounting for differences in speakers’ judgments of 
spatial expression meaning and patterns of spatial 
expression use.  

We test these hypotheses using the spatial terms in and 
on as a case study and compare data from three different 
linguistic tasks, outlined in Table 1, conducted using the 
same diverse sets of containment and support scenes 
(originally from Johannes, 2015, and Johannes, Wilson, 
Landau, 2016; see Figures 1 and 2). A truth-value judgment 
task is used to assess speakers’ binary truth conditions for 
different expressions by simply asking whether a given 
expression applies to a given spatial scene. A spatial 
description task is used to observe speakers’ self-generated 
spatial descriptions for each spatial scene. Finally, a forced-
choice judgment task is used to measure speakers’ 
judgments about which of two (true) spatial expressions is a 
better fit to a given spatial scene. 
 
Hypothesis 1: Speakers’ judgments of the truth-conditional 
meaning of spatial expressions are subject to different 
criteria than their decisions to use these expressions in 
spatial descriptions. We predict that tasks that separate these 
two types of judgments (see Table 1) will show different 
distributional signatures across the same set of diverse 
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scenes, with usage patterns yielding a more articulated, non-
uniform distribution. Moreover, speaker’s truth value 
judgments for a given spatial expression are not necessarily 
predicted to correlate with their use of the same spatial 
expression for the same spatial scenes, as tasks are 
hypothesized to engage different linguistic processes. 
 
Hypothesis 2: Speakers’ truth-value judgments and patterns 
of spatial descriptions differ due to implicit competition 
among felicitous candidates, which at play in spatial 
description tasks but not in truth-value judgment tasks. We 
predict that the distribution of judgments from a lexical 
choice task (Table 1), wherein speakers must choose 
between two felicitous spatial terms for diverse spatial 
scenes, will align with speakers’ usage pattern in a spatial 
description task for those same scenes, but are not predicted 
to correlate with truth-value judgments. 

Experiment 

Methods  
Design. The experiment was structured as a between-
subjects design with five separate groups of adult 
participants. Each group completed a different pairing of a 
linguistic task with a spatial stimulus set (see Table 1).  
 
Linguistic tasks. Table 1 provides an example of each of 
the linguistic tasks, along with the range of possible 
responses.  
 

Table 1. Linguistic tasks used with each stimulus set, 
including example prompts and possible responses. 

 
Task Example Prompt Responses 

Truth value 
judgment 
(Stimulus 
sets 1 & 2) 

Is the following sentence true of 
the scene? 

 

“The sandwich is on the plate.” 
 

 
 

Binary 
judgment: 

{Yes or No} 

Spatial 
description 
(Stimulus 
sets 1 & 2) 

Where is object A in relation to 
object B in the scene? 

 
[A: strawberries; B: bag] 

Natural 
language 

description: 
“The 

strawberries are 
in the bag.” 

Forced-
choice 

judgment 
(Stimulus 
set 1 only) 

Which of these two sentences is 
a better description of the scene? 

 
 
 
 
 

A: “The tape is on the box” 
B: “The tape is stuck to the box” 

Binary 
judgment: 
{A or B} 

Participants. A total of 175 adults (mean age = 19.6 years) 
participated in the experiment through a series of self-paced 
online interfaces in return for course credit. Table 2 shows 
the number of participants that provided data for each 
linguistic task. 
 
Table 2. Participant breakdown across tasks and stimuli sets. 
 

Stimulus set 1 Tasks N 
Truth value judgment 50 
Spatial Description 50 

Stimulus set 2 Tasks N 
Truth value judgment 25 
Spatial Description 25 

Forced-choice judgment 25 
 
 
Materials. We used two sets of stimuli to elicit linguistic 
judgments and descriptions.  Stimulus set 1 was developed 
by Johannes (2015) and consisted of 64 containment scenes 
and 64 support scenes, for a total of 128 items (Figure 1). 
Stimulus set 2 came from Johannes, Wilson, and Landau 
(2016; adapted from Landau et al., 2016) and consisted of 
18 containment scenes and 15 support scenes, for a total of 
33 items (Figure 2).  
 

 
Figure 1. Example containment (left) and support (right) 

scenes from Stimulus set 1. 
 

 
Figure 2. Example containment (left) and support (right) 

scenes from Stimulus set 2. 
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Procedure. Participants completed each task using a self-
paced online interface. Tasks included critical trials, which 
probed linguistic judgments for the prepositions in and on 
for containment and support scenes (see Figures 1 and 2), 
respectively, as well as filler trials, which elicited judgments 
for other prepositions or descriptions for scenes depicting 
other types of spatial relationships (e.g., proximity). The 
number of critical trials in each task varied depending on the 
stimulus set: tasks employing Stimulus set 1 had 128 critical 
trials and 62 filler trials, while tasks that employed Stimulus 
set 2 had 33 critical trials and 11 filler trials.  

Results 
We first examined the relationship between truth-

conditional meaning and expression use by comparing the 
patterns of participants’ truth-value judgments to their 
expression usage patterns from the spatial description task, 
both carried out using Stimulus set 1. We then explored the 
relationship between participants’ truth-value judgments, 
spatial descriptions and lexical choice patterns for tasks 
carried out with Stimulus set 2. We compared patterns of 
spatial expression use, from the spatial description task, 
across spatial scenes to patterns of truth-value judgments, 
from the truth value judgment task, and patterns of lexical 
choice, from the forced-choice task. Although participants 
judged, or described, both containment scenes and support 
scenes, we present, analyze, and discuss these spatial 
categories separately. 
 
Comparing distributions of truth value judgments to 
spatial descriptions: Stimulus set 1. Figure 3 presents a 
subset of containment and support items side by side and 
respectively shows participants’ average rates of use of in or 
on (i.e., proportion of descriptions using in or on) in the 
spatial description task (top black bars) and average truth-
value acceptance rates (i.e., proportion of “True” 
judgments) on the truth-value judgment task (bottom white 
bars). Truth-value acceptance rates were greater than or 
equal to rates of expression use for all but 5 containment 
items and all but 2 support items2.   

We tested whether measures of spatial expression 
meaning and spatial expression use show similar 
distributional signatures across the same spatial scenes. Our 
reasoning was as follows: if participants are using the same 
knowledge in similar ways to make judgments about spatial 
expression meaning and decisions about expression use, 
then the resulting pattern of truth-value judgments for in and 
on should systematically relate to the pattern of in and on 
use in descriptions of the same scenes. That is, scenes that 
are frequently described with in or on should also show 
higher rates of acceptance on the truth value judgment task, 
and scenes for which in and on are used infrequently should 
show low rates of truth value acceptance. We tested this 

                                                             
2 We examined the 7 items for which the rate of expression use 

exceeded the truth-value acceptance rate and found that, for all but 
one item, the absolute difference between use and acceptance was 
less than 0.3. 

prediction using Pearson correlations, computed separately 
for containment and support items, between rates of in and 
on use in the spatial description task and rates of in and on 
acceptance in the truth value judgment task. The pattern of 
spatial descriptions and the pattern of truth-value judgments 
for containment items showed a weak, negative, but reliable 
correlation (r = -.383, n = 64, p<.01), while support items 
showed no reliable correlations between usage and 
acceptance judgment patterns (r=.059, n=64, ns). The weak  
relationship between participants’ truth-value judgments 
and spatial descriptions aligns with the picture in Figure 3, 
wherein truth-value judgments show a uniform distribution 
across scenes, while spatial expression use in descriptions 
shows a more articulated usage profile.  

Our analysis supports a disconnect between participants’ 
judgments about the meaning and felicity of in and on, on 
the one hand, and their decision to use the expressions to 
describe containment and support scenes, on the other. 
While it is clear that meaning and use must be linked in 
some way (that is, speakers must have implicit knowledge 
of the meaning of a spatial expression in order to 
successfully use it to communicate), we suggest that this 
link is not direct and explore lexical choice – a speaker’s 
decision about which of multiple expressions apply to a 
given situation – as an intervening process between meaning 
and use. 

 

 
 Figure 3. Patterns of expression use and truth-value 

judgments (bottom) of in (left panel) and on (right panel) 
across a subset of containment and support items.   

 
Exploring lexical choice as an intervening variable 
between truth value judgments and spatial descriptions: 
Stimulus set 2. We collected descriptions and judgments 
for items in Stimulus set 2 (33 items total). Participants’ 
responses are displayed separately for containment (Figure 
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4) and support (Figure 5) items, which present patterns of 
responses from the spatial description task, forced-choice 
judgment task, and truth-value judgment task. As before, 
participants produced descriptions with in and on non-
uniformly across containment and support items (top panels 
of Figures 4 and 5) and showed near-uniform truth value 
judgments across the same items (bottom panels of Figures 
4 and 5). Participants’ patterns of responses on the forced-
choice judgment task, like their patterns of spatial 
expression use, showed a non-uniform distribution across 
items (middle panels of Figures 4 and 5).  
 

 
 

Figure 4. Patterns of use (top), forced choice judgments 
(middle), and truth value judgments (bottom) for in across 

containment items.  Items on the y-axis are presented in the 
same order in all three plots. 

 
Following our previous analysis, we first measured the 
relationship between participants’ average rates of in and on 
use in their spatial descriptions and acceptance rates in their 
truth-value judgments. Pearson correlations between 
language use and truth value judgments were non-
significant for both containment items (r=.306, n=18, ns) 
and support items (r=.159, n=15, ns). 

Next, we explored the hypothesis that lexical choice, 
operationalized here as forced-choice judgments, serves as 
an implicit process in the generation of spatial descriptions 

but not truth-value judgments. Forced-choice judgments 
were not reliably correlated with truth value judgments for 
either containment or support. However, forced-choice 
judgments were strongly related to patterns of in and on use 
for both containment (r=.538, n=18, p<.01) and support 
items (r=.736, n=15, p<.01), suggesting similar variation in 
speakers’ constrained (forced-choice) decisions about which 
of two expressions best applies to a spatial scene and their 
unconstrained decisions about how to describe the same 
spatial scene. 
 

 
 

Figure 5. Patterns of use (top), forced choice judgments 
(middle), and truth value judgments (bottom) for on across 

support items.  Items on the y-axis are presented in the same 
order in all three plots. 

Discussion 
In this paper, we compared behavior across three 

commonly used linguistic tasks in order to examine and 
elucidate the relationship between judgments of meaning, 
lexical choice and language use as they apply to spatial 
terms like in and on. We found that truth-value judgments 
of the meaning of in and on are nearly uniform across 
diverse containment and support scenes, demonstrating that 
these terms are true of the scenes. Speakers’ use of these 
terms, however, is not uniform: some scenes are described 
more frequently by in and on than others.  
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Consistent with this distributional difference, we found no 
strong reliable statistical relationship between judgments of 
meaning vs. use for the same spatial scenes. However, when 
we measured judgments of lexical choice (between in and 
on and other truth-conditionally feasible alternatives), we 
discovered a non-uniform distribution of choices, similar to 
the distribution evidenced for spatial expression use. Our 
analyses confirmed a strong statistical relationship between 
participants’ responses on these tasks across the same set of 
containment and support scenes.These results support a 
view of spatial expression meaning as partially distinct from 
spatial expression use.  

 

Consequences for the possible meanings of spatial 
expressions. Early accounts of the meaning of terms like in 
and on (e.g., Bennett, 1975) came under fire (and were 
subsequently replaced) owing to the underspecified nature 
of their proposed denotation. The reasoning behind the 
critical reception of these theories was that a useful 
definition of a term like in should apply to exactly those 
cases that we most often use the term for and should rule out 
cases for which the term is rarely used. However, including 
a layer of lexical choice in the spatial encoding system, as 
we suggest here, allows for underspecified meanings that 
may over-extend to cases where the term is rarely used 
precisely because other better-suited terms are used in its 
place.  For example, Johannes (2014, 2015, 2016) suggests 
an underspecified account of meaning for spatial terms like 
in and on, whereby speakers’ use of these preposition is 
blocked by the presence of more informative lexical verbs 
(e.g., hang, attach). 
 

Consequences for the study of spatial categorization 
through language use. The majority of studies on spatial 
categorization start by identifying a single form class – for 
example, prepositions in English – that serves as the 
primary vehicle for spatial meaning. In contrast to this, the 
results of the current study suggest that fine-grained spatial 
categorization is a function of speakers’ choices between 
multiple felicitous expressions and not only dependent on 
the truth-conditional meaning of a single expression. Thus, 
future work on spatial categorization should expand the 
spatial language inventory (beyond e.g., prepositions, see 
Johannes, Wilson, & Landau, 2016) and focus on how 
categories carved out by individual spatial terms may 
overlap to give rise to a complex graded semantic space for 
this domain.    

Conclusions 
We have demonstrated that, for English, speakers’ 

judgments of the truth-conditional meanings of a spatial 
term are not necessarily aligned with their use of that term 
to describe the same spatial scene. We propose that the 
process of choosing a spatial term among a set of felicitous 
competitors gives rise to speakers’ non-uniform distribution 
of spatial expression use. 
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Abstract 

Economic choices depend on our predictions of the future. 
Yet, at times predictions are not based on all relevant 
information, but instead on the single most likely 
possibility, which is treated as though certainly the case—
that is, digitally. Two sets of studies test whether this 
digitization bias would occur in higher-stakes economic 
contexts. When making predictions about the future asset 
prices, participants ignored conditional probability 
information given relatively unlikely events and relied 
entirely on conditional probabilities given the more likely 
events. This effect was found for both financial aggregates 
and individual stocks, for binary predictions about the 
direction and continuous predictions about expected values, 
and even when the “unlikely” event explicitly had a 
probability as high as 30%; further, it was not moderated 
by investing experience. Implications for behavioral 
finance are discussed. 

Keywords: Judgment & decision-making; probabilistic 
reasoning; explanatory reasoning; behavioral economics. 

Introduction 
Investors aim to buy low and sell high. Alas, this adage 
requires investors to predict the future—a feat known to 
be difficult for mortals (and even for economists). 

People are famously biased in making predictions 
(Kahneman & Tversky, 1973), relying on a variety of 
useful but fallible heuristics. In economic contexts, a 
particularly worrisome bias would be belief digitization, 
as found in some other contexts (Johnson, Merchant, & 
Keil, 2015; Murphy & Ross, 1994). That is, when a 
reasoner is presented with data more consistent with one 
hypothesis than another, the reasoner acts as though the 
higher-probability hypothesis is certainly true when 
making predictions following from the hypothesis. 

For example, in one study (Johnson et al., 2015), 
participants read about a pond that had ecological 
problems explainable either by an infestation of one type 
of snail (a simple explanation), or by an infestation of two 
types simultaneously (a complex explanation). The simple 
explanation was, reasonably, seen as more likely (about a 
66% chance) than the complex explanation (about 34%). 
Yet, when using those explanations to make further 
predictions (e.g., about bacteria proliferation), people 
ignored this uncertainty. Manipulating the probability of 
bacteria proliferation given the simple explanation had a 
large effect on predictions about proliferation, but 
manipulating the probability given the complex 
explanation had no effect at all. People digitized the 
simple explanation, tacitly assigning 100% of their 
probabilistic weight to that possibility. Even though 

people often explicitly quantify uncertainty, this 
uncertainty does not propagate to subsequent 
computations but is instead rounded, in effect, to 0 or 1. 

Such findings pose a challenge to probabilistic theories 
of cognition that treat humans as Bayesian thinkers who 
integrate across possibilities rationally (e.g., Anderson, 
1991). Nonetheless, in many contexts, this strategy may a 
reasonably adaptive way to solve an otherwise intractable 
problem. The inference in this case (from ecological 
problems to snail infestation to the probability of bacteria 
proliferation) involves a fairly short chain of reasoning, 
yet people treated the first step in the inference as certain 
when making the second step. But we often rely on 
lengthy chains of reasoning, and propagating uncertainty 
through the entire chain may well be beyond our 
cognitive limits. If we must limit the complexity of these 
computations by prohibiting the consideration of multiple 
possibilities at each stage (e.g., thinking only about the 
consequences of the one-snail explanation or the two-
snail explanation, but not integrating across both), then it 
is best to focus on the single most likely possibility. A 
person could do worse than this kind of belief digitization, 
even as it leads us astray relative to the optimal answer. 

The current studies test whether such a digitization bias 
would influence judgments in economic contexts. In 
particular, digitization could affect predictions about 
future asset prices. Consider the impact of some piece of 
news, such as information about the government budget. 
Such information often has uncertain implications for 
future valuations, so rational investors would assign 
distributions over these possible futures and value assets 
according to their expected value. If voters elect a 
conservative populist (to take an example that is, of 
course, entirely hypothetical), this introduces uncertainty 
about the probability of fiscal stimulus. Perhaps there is a 
70% probability of stimulus (with one set of implications 
for future valuations) and a 30% probability of fiscal 
austerity (with a different set of implications). Investors 
should rationally incorporate both possibilities into their 
valuations of the market, with a 70% weight on one 
possibility and a 30% weight on the other. Yet, if 
investors digitize, they would treat the likely event as 
certain when predicting the future value of the market. 
Rather than considering both possible futures, they would 
value assets assuming only the single most likely future.  

Although previous studies using non-financial stimuli 
are consistent with this possibility, it is not clear that 
digitization effects would generalize to these contexts. 
First, people are likelier to rely on multiple categories in 
category-based prediction tasks when the categories are 
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dangerous or threatening rather than emotionally neutral 
(Zhu & Murphy, 2013). If people adopt a more reflective, 
normative strategy under higher-stakes situations, perhaps 
they also do so when making economically relevant 
predictions. Second, and related, people are sometimes 
more rational when making decisions rather than logically 
equivalent inferences (Johnson, Zhang, & Keil, 2016). 
These two factors could lead people to integrate 
probabilities across potential futures. 

Two sets of studies test whether people nonetheless 
make digitized predictions in economic contexts. 
Experiment 1 provides an initial test, asking participants 
to make probabilistic predictions about the direction of 
asset prices, given uncertain information. Experiment 2A 
tests whether digitization effects would occur only for 
binary predictions (i.e., will a price go up or not?) or 
would instead extend to predictions of expected value on 
a continuous scale. Finally, Experiment 2B tests a 
possible boundary condition by giving participants 
explicit posterior probabilities for the market’s future 
direction. After examining these studies individually, we 
pool the data to examine whether expertise can combat 
digitization biases. In the General Discussion, we assess 
the implications of these findings for behavioral finance. 

Experiment 1 
Participants in Experiment 1 made predictions about 

the future prices of financial assets in light of information 
with uncertain implications. Experiment 1A looked at 
predictions about market aggregates (e.g., the S&P 500) 
and Experiment 1B looked at predictions about individual 
stocks (e.g., GE). Given that individual stocks seem to be 
priced more efficiently than the market as a whole (see 
Shiller, 2005), perhaps digitization mechanisms do not 
apply as robustly to predictions about individual stocks. 

Participants predicted the probability of an increase in 
an asset price, denoted as P(Z), based on information 
about two mutually exclusive possibilities, A and B. For 
instance, A might represent a stimulatory fiscal policy and 
B an austere fiscal policy. Participants were given 
information implying that P(A) > P(B) > 0, so that both A 
and B are possible even as A is likelier—the government 
may not have made a decision on its fiscal policy, but a 
stimulus is probable. In addition, participants were given 
information about the probability of Z conditional on A 
and B—P(Z|A) and P(Z|B). If people take both more and 
less likely possibilities into account, then they should rely 
on both P(Z|A) and P(Z|B) when predicting P(Z). In 
contrast, if people digitize, relying only on the single most 
likely possibility, then only manipulations of P(Z|A) 
should propagate to predictions of P(Z).  

Methods 
We recruited 200 participants from Mechanical Turk, 
divided between Experiments 1A and 1B. 

Participants each completed three items. For each item, 
participants read about an uncertain event, where one 

possibility (A) seemed more likely than the other (B), 
given the available information. These likely and unlikely 
possibilities differed in their implications for future prices 
of financial assets. In the high/low condition, the more 
likely event A would have a high chance of leading to an 
increase in asset values (i.e., P(Z|A) is high), whereas the 
less likely event B would have a low chance of leading to 
an increase (i.e., P(Z|B) is low). One item in the high/low 
condition of Experiment 1A read: 

 

Imagine that a foreign government is deciding what level of 
spending to adopt in the next fiscal year. 
 

If they increase public spending, the value of the US stock 
market is likely to go up. 
 

If they decrease public spending, the value of the US stock 
market is unlikely to go up. 
 

Suppose that the leader of this government is concerned about 
the distribution of wealth in the country and is considering 
increasing public spending. 
  

Participants reading this information should conclude that 
possibility A (public spending increase) was likelier than 
possibility B (public spending decrease). For instance, an 
investor might assign an 80% probability to possibility A 
and a 20% probability to possibility B. 

Whereas P(Z|A) was high and P(Z|B) was low in the 
high/low condition, both P(Z|A) and P(Z|B) were low in 
low/low condition: 

 

If they increase public spending, the value of the US stock 
market is unlikely to go up. 
 

If they decrease public spending, the value of the US stock 
market is unlikely to go up. 
  

Rationally, the probability of a price increase is lower in 
the low/low than the high/low condition, since possibility 
A has positive (indeed, high) probability of being correct. 
Thus, both rational and digitizing investors would 
distinguish between the low/low and high/low conditions. 

A third condition, however, generates different 
predictions for these two groups of investors. In this 
low/high condition, P(Z|A) is low and P(Z|B) is high:  

 

If they increase public spending, the value of the US stock 
market is unlikely to go up. 
 

If they decrease public spending, the value of the US stock 
market is likely to go up. 
  

In this low/high condition, a rational investor would judge 
the probability of a price increase likelier than in the 
low/low condition, since possibility B has positive 
probability (albeit lower than A). In contrast, if people 
digitize, tacitly assigning 0% weight to B, then the 
low/high and low/low conditions would not differ. 

After reading each item, participants rated P(A) and 
P(B) (e.g., “Government intends to increase public 
spending” and “Government intends to decrease public 
spending”) on a 0 to 100 scale. This measure was taken to 
ensure that people did not explicitly place a 0% weight on 
B, in which case rational prediction and digitization do 
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not diverge in their predictions. Further, explicitly 
quantifying uncertainty in the task produces a task 
demand to incorporate this uncertainty into predictions, 
working against our hypothesis. 

Finally, on the same page, participants predicted P(Z) 
(“What do you think is the probability that the US stock 
market will go up?”) on the same scale used above. 

Experiments 1A and 1B differed only in the asset being 
judged. In Experiment 1A, the asset was the overall value 
of the US stock market and in Experiment 1B, the asset 
was the share price for stock in specific corporations. 

The three probability conditions were counterbalanced 
with three different vignettes (one on fiscal policy, one on 
monetary policy, and one on regulatory policy) using a 
Latin square. The items were presented in a random order.  

After the main task, participants completed 10 check 
questions and were excluded from analysis if they 
answered more than one-third incorrectly (N = 19). 
Another 14 participants were excluded because their total 
probability ratings for at least one item were not between 
80% and 120%. However, including these two types of 
participants does not alter the pattern of results. Finally, 
49 participants were excluded because they did not rate 
the A more likely than B for at least one of the items, 
since our predictions are predicated on participants’ belief 
that P(A) > P(B). (See Experiment 2B for a version that 
did not require the latter two categories of exclusions.) 

 
Table 1: Results of Experiment 1 

 
Condition Predicted P(Z) 

P(Z|A) P(Z|B) Exp. 1A Exp. 1B 
Low Low 28.8 (28.7) 30.1 (27.4) 
High Low 73.0 (17.7) 75.6 (12.8) 
Low High 30.3 (26.5) 32.3 (26.0) 

Note. Entries are probabilistic predictions, expressed as 
percentages. SDs in parentheses. 

Results and Discussion 
As shown in Table 1, participants digitized in both 
Experiments 1A and 1B. 

In both experiments, participants relied on P(Z|A) for in 
their predictions of future asset prices. The high/low and 
low/low conditions differed only in P(Z|A), and these 
conditions differed sharply in predictions [t(62) = 10.38, p 
< .001, d = 1.85 and t(54) = 10.98, p < .001, d = 2.13 for 
Experiments 1A and 1B]. Thus, people take account of 
high-probability possibilities when making predictions—
consistent with both rational and digitizing strategies. 

These two strategies differ, however, in their 
predictions about the low/high condition. This condition 
differs from the low/low condition only in P(Z|B). Thus, if 
people take account of less likely possibilities, they 
should differentiate between these two conditions, but if 
they digitize, these conditions should be rated similarly. 

Supporting the latter possibility, there was no difference 
between these conditions for either experiment [t(62) = 
0.50, p = .62, d = 0.06 and t(54) = 0.47, p = .64, d = 0.08, 
respectively]. Since we predicted null effects for these 
comparisons, we also computed Bayes Factors (Rouder et 
al., 2009; scale factor 1), which strongly favored the null 
hypothesis [BF01 = 8.9 and 8.5, respectively]. Further, 
based on participants’ other judgments, we can calculate 
the normative mean difference between the low/high and 
low/low conditions (which would produce Ms = 37.6 and 
40.3 for low/high, respectively). In both cases, the actual 
differences were less than these benchmarks [t(62) = 2.41, 
p = .019, d = 0.30 and t(57) = 1.73, p = .089, d = 0.23]. 

Together, these results show that people fail to account 
for low-probability possibilities when making economic 
predictions. This was true both when predicting the 
overall level of financial aggregates as well as the value 
of stock shares in individual companies. 

That said, one may raise some concerns about these 
results. Perhaps of most concern, the information given in 
the problem could plausibly have implied near-certainty 
in its predictions (e.g., “the leader of this government is 
concerned about the distribution of wealth in the country 
and is considering increasing public spending”). To assess 
this possibility, we looked at participants’ explicit 
judgments about P(A) and P(B). Unlike their implicit 
judgments, which assigned essentially a 100% probability 
to A, participants assigned more reasonable probabilities 
when asked explicitly (83% and 82% in Experiments 1A 
and 1B, respectively). Nonetheless, we address this 
concern head-on in Experiment 2B. 

Experiment 2 
Experiment 2 examines two possible boundary conditions 
on belief digitization in economic contexts.  

First, Experiment 1 asked for predictions about the 
probability of binary events (increases or decreases in 
value). The direction of future gains or losses is likely to 
be the dominant factor in real investing decisions, but the 
extent of these predicted gains or losses is also important. 
In some cases, people are better at reasoning about 
continuous rather than binary events (e.g., in covariation-
based causal reasoning; Alloy & Tabachnik, 1984). 
Experiment 2 therefore tests whether digitization effects 
extend to continuous judgments of expected value. 

Second, participants in Experiment 1 arrived at 
estimates of P(A) and P(B) on the basis of other, 
ambiguous information, as has been the case in most prior 
work finding digitization effects (Johnson et al., 2015; 
Murphy & Ross, 1994). Would such effects occur even 
when the problem explicitly quantifies the uncertainty? 
Experiment 2B addresses this question by assigning a 
30% probability to the less likely event. This further rules 
out the concern that participants may have rationally 
ignored a low probability. This also addresses the concern 
that participants in Experiment 1 may have actually 
assigned extremely low explicit probabilities to the 
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unlikely events and reported biased explicit judgments 
due to task demands. In that case, it would not be their 
implicit judgments that are biased (for interesting reasons) 
but their explicit judgments (for deflationary reasons). 

Methods 
We recruited 200 participants from Mechanical Turk, 
divided between Experiments 2A and 2B. 

The procedure of Experiment 2A was identical to 
Experiment 1A, except that the dependent measure was a 
continuous price, on either the NASDAQ, DJIA, or S&P 
500, instead of the probability of a directional change. 
Participants were given approximately the current value 
of one of these indices (e.g., “Suppose the current value 
of the United States stock market, as indexed by the S&P 
500, is $2,000”) and then asked to predict the future value 
of that index (“Please estimate what you think the value 
of the S&P 500 will be 3 months from today”) on a scale 
ranging from 10% lower than its current value (e.g., 
$1800) to 10% higher than its current value (e.g., $2200). 

Experiment 2B was identical, except explicit 
probabilities were given for A and B (“Analysts say there 
is a 70% chance that this foreign government will 
increase public spending, and a 30% chance that it will 
decrease public spending”) and thus participants were not 
asked to rate the probabilities of these events. 

After the main task, participants completed 10 check 
questions and were excluded from analysis if they 
answered more than one-third incorrectly (N = 14). 
Another 7 participants from Experiment 2A were 
excluded because their total probability ratings for at least 
one item were not between 80% and 120%. Finally, 31 
participants from Experiment 2A were excluded because 
they did not rate P(A) higher than P(B) for at least one of 
the items. Since Experiment 2B explicitly provided these 
probabilities, participants were not excluded for this 
reason. Analyses including all participants found similar 
results for both experiments. 

 
Table 2: Results of Experiment 2 

 
Condition Predicted Change 

P(Z|A) P(Z|B) Exp. 2A Exp. 2B 
Low Low –0.21% 

(2.96%) 
0.33% 

(3.44%) 
High Low 2.86% 

(3.50%) 
3.57% 

(2.89%) 
Low High –0.32% 

(3.18%) 
0.37% 

(3.54%) 
Note. Entries are predicted changes in stock market value. SDs 
in parentheses. 

Results and Discussion 
As shown in Table 2, participants once again digitized. 

In Experiment 2A, participants predicted a significantly 
higher change in asset price in the high/low condition than 

in the low/low condition [t(56) = 6.59, p < .001, d = 0.95]. 
Thus, participants did consider the likely event when 
making predictions. However, participants again ignored 
the less-likely event B, since they did not use P(Z|B). 
Predicted changes did not differ across the low/high and 
low/low conditions [t(56) = –0.23, p = .82, d = –0.04, 
BF01 = 9.4]. Further, as in Experiment 1, the difference in 
predicted changes between the low/high and low/low 
conditions was marginally lower than it normatively 
should have been (for a low/high mean of 0.59%), based 
on the other judgments [t(56) = 1.93, p = .059, d = 0.26]. 
Thus, digitization occurs even for predictions made on a 
continuous scale rather than probabilities of binary events. 

Experiment 2B provided explicit probabilities of P(A) 
and P(B), ensuring that the “unlikely” event B had a rather 
serious chance of occurring (30%). Nonetheless, the 
results are similar to Experiment 2A. While participants 
again differentiated between the high/low and low/low 
conditions [t(90) = 7.06, p < .001, d = 1.02], they did not 
differentiate between the low/high and low/low conditions 
[t(90) = 0.08, p = .93, d = 0.01, BF01 = 12.0]. Further, the 
difference between conditions was dramatically lower 
than it normatively should have been (for a low/high 
mean of 1.75%) [t(90) = 3.41, p < .001, d = 0.36]. Thus, 
people are willing to ignore even a 30% probability of an 
event’s occurrence when predicting assets’ future value. 

One possible objection is that participants may have 
been giving an appropriate answer, depending on their 
interpretation of the question. That is, whereas 
participants’ judgments of probabilities in Experiment 1 
normatively should accommodate the possibility of lower-
probability events (as is provable from the laws of 
probability), predictions of future value may be reports of 
the most likely single value, rather than the expected 
value. In fact, the single most likely value of the market 
does depend greatly on P(Z|A), given that A is the single 
most likely event, but to a much lesser degree on P(Z|B). 

However, there are two reasons to doubt this 
interpretation. First, although the maximum-probability 
and expected value interpretations of the question are both 
reasonable, participants would have to uniformly adopt 
the maximum-probability interpretation to produce our 
results. That is, if half of participants took the maximum-
probability interpretation and therefore did not use P(Z|B) 
in their predictions, the other half of participants were still 
making a mistake in failing to use P(Z|B). 

Second, even though ignoring P(Z|B) is appropriate in 
estimating the maximum-probability value of the price, 
people tend to probability-match rather than maximize in 
tasks of this sort. For example, suppose there is one 
button that has a 70% chance of giving a positive payoff 
and another button that has a 30% chance of giving the 
payoff. If you are supposed to predict which button will 
produce the payoff on a given trial, the rational thing to 
do would be to choose the 70% button every time. In fact, 
people will predict the 30% button a significant fraction 
(roughly 30%) of the time. The only way to reconcile this 
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result with the current task is to assume that participants 
have tacitly assumed that the 30% probability event has a 
0% chance of occurrence and can thus be safely ignored. 

Overall, Experiment 2 helps to address alternative 
interpretations of Experiment 1, and shows that people do 
not need to arrive at estimates of event probabilities 
themselves in order to digitize them. Together, these two 
experiments demonstrate that digitization effects may be a 
pervasive force in investors’ judgments of future value. 

Expertise Effects 
Amateur investors are often referred to as “noise traders” 
in financial models (Shleifer & Summers, 1990) and the 
behavior of these models depends greatly on these 
traders’ beliefs and choices (Shleifer, 2000). Although 
professional investors may use different strategies from 
amateurs (but see Tuckett, 2011), the behavior of 
amateurs contributes to market dynamics and is therefore 
important to characterize. Given that our participants are 
laypeople, but some have investing experience whereas 
others do not (about half of Mechanical Turk participants 
own financial assets and about half have taken at least one 
finance course; Johnson & Tuckett, 2017), would we see 
expertise effects within this sample? 

Participants in both studies were asked to rate their 
investing experience and knowledge. If people who have 
more domain expertise are likelier to consider low-
probability events in making predictions, then the effect 
of P(Z|B)—converted to a z-score to aggregate data across 
studies—ought to be larger for individuals with more 
experience and knowledge. This was not the case, either 
for self-reported experience [r(264) = .02, p = .72] or for 
knowledge [r(264) = –.02, p = .70]. 

This result, although preliminary, suggests that domain 
expertise may not be sufficient to overcome digitization 
effects even in a context like financial prediction that has 
obvious real-world implications. This does not necessarily 
undermine the argument often advanced by economists 
that highly incentivized individuals can avoid such biases, 
nor the possibility that in market contexts corrective 
forces can emerge if a subset of investors exploit the 
suboptimal behavior of others. Nonetheless, this result 
does suggest that quite extensive expertise—outside the 
range of experience of our sample—is necessary for such 
mechanisms to apply. Digitization appears to be a robust 
cognitive bias at the individual level, and is therefore 
likely to cause suboptimal performance from investors at 
a variety of skill levels unless explicitly checked. 

General Discussion 
Economic choices, such as investment allocations, depend 
on our predictions about the future. Rational predictions 
require us to integrate over multiple uncertain 
possibilities; failing to do so leads to overconfident 
predictions that are too near to 0% or 100%. Yet, 
participants in our studies consistently failed to account 
for lower-probability possibilities in making predictions. 

Digitization is broadly consistent with conviction 
narrative theory (e.g., Tuckett, 2011), the idea that 
decisions in highly uncertain environments are made by 
constructing a narrative to explain the past, projecting this 
narrative into the future, and using emotional reactions to 
the projected narratives to guide choices. For example, 
amateur investors use company performance news to 
guide predictions and choices even once the market has 
had time to “price in” that information, particularly if the 
news concerns the future rather than the past (Johnson & 
Tuckett, 2017). This follows from narrative thinking, 
since narratives are emotionally valenced and temporally 
oriented. Another important feature of narrative thinking 
is that it is linear—it concerns a single sequence of events 
rather than a web of possibilities. The current work shows 
that people indeed focus on a single narrative to explain 
the past and project the future, rather than integrating 
across multiple possible narratives.  

In addition to this theoretical contribution, these results 
have two kinds of practical implications. First, these 
biases may persist at the market level, leading to 
mispricing. A previous study examined explanatory 
biases in the context of Wall Street Journal headlines 
(Johnson, 2016). For instance, one headline read “ECB 
Move Crushes Hopeful Markets.” There had recently 
been a downturn in European markets because the 
European Central Bank (ECB) had chosen to follow a less 
inflationary monetary policy than markets had expected. 
Had investors been “counting on” monetary expansion, 
tacitly assigning it a 100% probability? Or had the market 
priced in this uncertainty already (as mainstream financial 
theory suggests; e.g., Malkiel & Fama, 1970)?  

Investors made an uncertain diagnosis (the meaning of 
the ECB chair’s statements) and a prediction based on 
that diagnosis (the implications for monetary policy). 
Normatively, uncertainty about the interpretation of ECB 
statements should propagate to any predictions based on 
such inferences. If the market digitizes at an aggregate 
level, however, this could have led the market to react 
strongly to disconfirmed expectations: If the expectations 
are formed based on uncertain information treated as 
certain, the market would be overconfident. This could 
lead prices to be either too high or too low—and indeed to 
oscillate between those extremes. New information may 
cause an investor to rationally move from predicting, say, 
a 70% probability to a 30% probability of some event. If 
these probabilities are treated as 100% and 0%, 
respectively, this will lead to a much larger shift in asset 
valuation than is justified by fundamentals. 

That said, such an interpretation of these experimental 
results is controversial, as are many efforts in behavioral 
finance to generalize from individual behavior to market-
level behavior (Shleifer, 2000). A common rejoinder from 
a neoclassical approach is that behavioral biases can often 
be neutralized in market contexts. Markets create 
incentives for accuracy, which are often lacking in 
behavioral experiments. Markets allow for specialization 
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so that investors can learn over time to correct their biases 
(though our expertise analysis suggests that such learning 
is non-trivial). And perhaps most importantly, self-
correcting market-level phenomena may emerge. If some, 
potentially small, subset of investors comes to understand 
the biases of other investors, they can trade against that 
bias and capitalize on others’ irrationality. Because of 
these mechanisms, market prices may be less likely to be 
seriously afflicted by digitization biases than are 
individual investors’ decisions. However, given that  
stock markets appear to be more volatile than is justified 
by fundamentals (de Bondt & Thaler, 1985; Shiller, 
1981), digitization of hypotheses could be a partial 
explanation of this excess volatility. Nonetheless, this 
issue will not be adjudicated by lab experiments alone. 

Second, however, these biases are troubling not only 
because of potential market inefficiencies they might 
cause. Even if financial markets do have self-correcting 
forces that lead experienced investors to profit from the 
errors of novice investors, the losses of these novices are 
still cause for concern. Digitized predictions of asset 
prices can lead to several errors in the investing strategies 
of amateur “noise traders.” First, if one has a high 
valuation of an asset relative to the market, one may 
overpay for that asset. For instance, if one is purchasing a 
house and has an unreasonably high valuation of that 
house, the buyer may not adequately negotiate the price. 
Second, extreme asset valuations may potentially lead to 
suboptimal patterns of diversification. A very bullish 
assessment of the tech industry accompanied by a very 
bearish assessment of the financial sector may lead one to 
prioritize the former over the latter, when a diversified 
investor would spread her exposure over all sectors. 
Third, if one’s valuations are oscillating faster than the 
market’s valuations, this may lead investors to overtrade, 
which leads to portfolio value loss due to transaction 
costs. Finally, overconfident predictions about asset prices 
may lead investors to inadequately hedge: If the cost of 
insurance is high relative to the perception of the risk 
being insured, there is less incentive to insure. This may 
lead some investors to be overexposed to unexpected 
downturns in the market—why hedge against something 
that is deemed, at some level, to be impossible? 

Nassim Taleb (2010) warns of “black swans”—
“unknown unknowns” of high impact that we discount on 
the basis of their low probability. Our participants 
exemplified this problem, and indeed took it one step 
further: An event with a 30% chance is not exactly on the 
tail of a distribution. Investors would do well to consider 
all the swans—both black and white. 
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Abstract: The Linguistic Category Model (LCM) was developed as a manual coding scheme for quantifying abstract mindsets
in human language. Previous attempts to computationally automate the LCM have relied primarily on pre-coded semantic
features, which fail to incorporate important contextual information integral to the LCM coding scheme. In this paper, we
introduce Syntax-LCM, a novel method for automating LCM coding using syntax and dependency tree features as predictors of
construal level. We compare the accuracy of Syntax-LCM to that of two previously used automated methods: LIWC LCM and
Brysbaert concreteness ratings. We find support that the Syntax-LCM approximates the hand-coded LCM with higher accuracy
compared to both the Brysbaert and the LIWC LCM. We also provide evidence that the syntactic features accounted for by
Syntax-LCM mirror the inclusion criteria in the original coding manual and support theoretical relationships between distance
and abstract thinking.
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Abstract 
Iconicity, i.e. resemblance between form and meaning, is a 
widespread feature of natural language vocabulary (Perniss, 
Thompson, & Vigliocco, 2010), and has been shown to 
facilitate vocabulary acquisition (Imai, Kita, Nagumo, & 
Okada). But what kind of advantage does iconicity actually 
give? Here we use cross-situational learning (Yu & Smith, 
2007), to address the question for sound-shape iconicity (the 
so-called kiki-bouba effect, Ramachandran & Hubbard, 
2001). In contrast to Monaghan, Mattock, and Walker (2012), 
Experiment 1 suggests that the iconicity advantage comes 
from referential disambiguation rather than more efficient 
memory encoding. Experiments 2 and 3 replicate this result, 
and moreover show that the kiki-bouba effect is roughly 
equally strong for sharp and rounded shapes, a property that 
classic experiments were unable to confirm, and which has 
implication for the effect’s mechanism 

Keywords: iconicity; cross-situational learning; kiki-bouba, 
vocabulary acquisition; artificial language learning; sound-
symbolism 

Introduction 

Iconicity as Widespread in Natural Language 
The meaning of a word does not determine its form, but 
wordforms are often motivated by iconic relationships with 
meaning. In English, iconicity can be found in 
onomatopoeia, (e.g. bang, miaow). Outside the Indo-
European family, iconicity is more pervasive. Large iconic 
lexica are reported for many unrelated languages, signed 
and spoken (see Perniss et al., 2010). 

Such iconicity is not limited to sounds. In Japanese 
reduplication of syllables indicates repetition of an event, 
and voicing of an initial consonant indicates object size (e.g. 
gorogoro – heavy object rolling repeatedly; korokoro – light 
object rolling repeatedly; Perniss et al., 2010).  

Iconicity and Word Learning 
Experimental work shows that Japanese sound-symbolic 
words are easier for 3-year-olds to learn than non-iconic 
words, whether the children are Japanese or English 
speakers (Imai et al., 2008; Kantartzis, Imai, & Kita, 2011; 
Yoshida, 2012). 

Observational research suggests a role for iconicity in 
vocabulary acquisition outside the lab. Japanese children 
acquire iconic words early (Maeda and Maeda, 1983), and 
in keeping with this Saji and Imai (2013) find that Japanese 
caregivers use more sound-symbolic and onomatopoeic 
words speaking to their toddlers than to adults.  

Perry, Perlman, and Lupyan (2015), analysing English 
and Spanish, found a negative correlation between iconicity 
and age of acquisition: even in Indo-European languages, it 
may play a role in acquisition. 

However, substantial questions remain about what 
advantage iconicity confers on word learning. Does 
iconicity kick in after the problem of identifying a word’s 
meaning has already been solved, with iconic words being 
encoded in memory more quickly or efficiently? Or does 
iconicity help by facilitating referential disambiguation? 
Experiment 1 will begin to address this question. 

Sound-Shape Iconicity 
A near-universal form of iconicity is the association 
between certain sounds (e.g. back vowels and high sonority 
consonants) with heavy, slow, rounded objects; and others 
(e.g. front vowels and low sonority consonants) with small, 
quick, jagged objects (Ramachandran & Hubbard, 2001). In 
standard demonstrations, participants  are given images of 
two 2-dimensional shapes, one round, the other spiky. The 
majority pairs ‘kiki’ with a spiky shape, and ‘bouba’ with a 
rounded shape. (Dingemanse & Lockwood, 2015). 

The mechanism of sound-shape iconicity is, however, 
uncertain. The effect could arise from correlated input from 
different sensory modalities. Alternatively, Ramachandran 
and Hubbard (2001) suggest it is a reflection of cross-modal 
analogy between the articulatory gestures required to 
produce the labels and the visual properties of the shapes (p. 
19). They also suggest that ‘cross-wiring’ (p. 21) of auditory 
and visual brain maps may create an unmediated link. 

Another possible explanation is more literal 
correspondences between speech sounds and lip shape. 
‘Bouba’ involves literal rounding of the lips – visual or 
motoric representations of lip rounding could mediate 
between ‘round’ sounds and objects. This account predicts 
an asymmetry: round sound-shape associations should be 
stronger than spiky ones, because round sounds involve 
literal rounding of an articulator, whereas spiky sounds do 
not involve any comparable spikiness. Some prior ERP 
evidence suggests that the round association may be 
stronger than the spiky one in processing (Kovic, Plunkett, 
& Westermann, 2010 – though their paradigm could not 
separate the associations behaviourally). This dissociation is 
not something that the classic kiki-bouba experiment is able 
to test: with two words and two shapes, one (hypothetically 
stronger) sound-shape pairing would automatically 
determine the other (weaker or absent) pairing. However our 
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Experiments 2 and 3 will represent some of the first work 
ever to address this question. 

Cross-Situational Learning 
Monaghan, Mattock, and Walker (2012) established that the 
classic kiki-bouba effect is found using the cross-situational 
learning (CSL) paradigm. CSL takes the form of a series of 
trials where a word is appears along with a number of 
possible referents (Yu & Smith, 2007). Any single trial is 
ambiguous, and initially participants must guess, but 
information can be integrated across trials to solve this trial-
level referential ambiguity. 

Monaghan et al.’s referents were round and spiky shapes, 
and their names were iconically round or iconically spiky 
nonwords. Half of shapes received iconically congruent 
names (e.g. rounded shape-round name), and the other half 
iconically incongruent (e.g. rounded shape-spiky name). In 
each trial the participant saw two shapes, heard one name, 
and indicated which shape the name belonged to. Would 
accuracy in choosing the correct referent would be higher 
for congruently named items? 

Monaghan et al. found that congruence was no advantage 
in the first block, but became advantageous in later blocks. 
Moreover the advantage was only present in trials where the 
unnamed shape (the foil) was from the opposite category to 
the target. From the first result they concluded that iconicity 
indeed supports word learning (perhaps e.g. in the sense of 
facilitating more rapid or robust memory encoding of iconic 
names); from the second they that the advantage pertains to 
category level information, and not to information 
distinguishing individual words within categories. 

These results are somewhat surprising. The classic kiki-
bouba experiment involves guessing names. If iconicity is 
expressed there, then why wouldn’t it be expressed in the 
first block, when participants are forced to guess name-
referent pairings? If that bias were expressed from the start, 
then iconicity might support referential disambiguation. 
Experiment 1 takes up this question. Experiments 2 and 3 
attempt to tease apart effects of round vs. spiky iconicity. 

Experiment 1 
Methods 
Participants 24 adult native English monolinguals (13 
women, M = 29.7 ± 10.0). 
 
Visual Stimuli (Shapes) Sixteen shapes were created using 
the GNU Image Manipulation Program. Eight ‘spiky’ 
shapes were created using randomised parameters. Eight 
‘rounded’ shapes were created by taking each spiky shape 
and using its corners as fixed points for Bezier curves, then 
scaled by eye to match for perceived size (see Figure 1). 
Stimuli were 600*600 pixel images comprising the shape in 
black on a white background. 

  
Auditory Stimuli (Names) Names were constructed on the 
basis of LetterScore, a text-based index of sound-shape 
iconicity: All consonant-vowel pairings in English 

orthography that feature consonants with only one canonical 
pronunciation (N = 85; c, g, q, and x were excluded) were 
rated by monolingual Anglophones who did not participate 
in other studies (N = 28, 12 women, 28.5 ± 12.0 years old) 
on a ten-point scale anchored by a circle (1) and a star (10).  

Eight of the names were constructed using syllables that 
received the spikiest ratings (example: tikiza), eight using 
the syllables that received the roundest ratings (example: 
mujo). For each category of name, two were one syllable 
long, four were two, and two were three. Recordings were 
made by a female native speaker of North American 
English, pronouncing the words as she considered natural. 

Subsequently, word recordings were normed as part of a 
wider norming study. 101 native English speakers (M = 32.4 
± 9.7, 41 women) were each given 118 speech tokens to rate 
(largely from another study), meaning that each speech 
token was rated about ten times.  The study was performed 
using Qualtrics (2015). In each trial, the participant saw a 
seven-point ratings scale. ‘1’ represented the roundest 
rating, and ‘7’ the spikiest (counterbalanced for half of 
participants). The mean of each token’s ratings was then 
taken. This was its WordScore. Names for Experiments 2 
and 3 were also rated for WordScore (see below). T-tests 
confirm that spiky names (M = 4.71 ± 0.53) were rated as 
significantly spikier by WordScore than round names (M = 
2.90 ± 0.43) (p < .001, t(13.4) = 7.54, difference = 1.81, 
95% CI [1.29 ,2.33]; Cohen’s d = 3.77). 
 
Apparatus and Procedure The study was run using Matlab 
7.4.0 on an IBM compatible PC equipped with a 15” 
monitor (resolution: 1024×768). For each participant, half 
the shapes in each category received congruent names (e.g. 
round names for round shapes). The other half received 
incongruent names (e.g. spiky names for round shapes). 
Assignment of names to shapes was counterbalanced 
between participants. 

The experiment took the form of a series of 256 trials, 
each featuring two shapes on screen (one to the left and one 
to the right – see Figure 1) and one name (played through 
headphones). The name belonged to one of the two shapes 
(this shape was the target, the unnamed shape being the 
foil). The participants stated which shape the name belonged 
to (by pressing the left or right arrow). Participants received 
no feedback and had to guess at first, but in time could infer 
which name belonged to which shape by noting that each 
name only consistently appears with one shape. 

  

 
Figure 1: A cross-situational learning trial (note that 

names were presented aurally, not in text) 
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Trials were grouped into four blocks of 64 trials, as in 
Monaghan et al.. Within each block each name appeared 
four times, and each shape appeared four times as a target 
and four times as a foil. The number of times each shape 
appeared on each side of the screen in each role was 
counterbalanced, as was the number of appearances by each 
shape as a foil for a target from its own category vs. the 
opposite category. The same name was not permitted two 
trials in a row. Otherwise trials were randomised. 

Results 
Trials with reaction times of less than 0.5 seconds or more 
than 25 seconds were removed.  
 
Statistical Methods Data was analysed using the LMEM 
package lme4, version 1.1-12 (Bates, Maechler, Bolker, & 
Walker, 2015) running in R version 3.2.1 (R Core Team, 
2015). In addition to random intercepts for names and 
participants, we also included random slopes. We aimed for 
a design-driven maximal random effects structure (see Barr, 
Levy, Scheepers, & Tily, 2013), but were limited in the 
number of random effects we could fit. For participants we 
included random slopes for linear block, congruence, 
category of foil (coded as same or different to category of 
target), and the congruence-category of foil interaction. For 
names, we were limited to random effects slopes for 
congruence, category of foil, and their interaction.  Block 
was coded linearly (1 = -1.5, 2 = -0.5, 3 = 0.5, 4 = 1.5), and 
both other variables were contrast coded (incongruent = -
0.5, congruent = 0.5; same category foil = -0.5, different 
category foil = 0.5). Our predictor was accuracy: i.e. 
whether participants answered correctly on given trials. 
 
Overall Analysis The omnibus model showed reliable 
effects only of linear block  (β = 0.84, 95% CI [0.658, 
1.022], z = 9.066): participants learned; and congruence (β = 
0.417, 95% CI [0.128, 0.706], z = 2.826): participants 
performed better with congruent names (see Figure 2). The 
congruence-category of foil interaction was also significant 
(β = 0.702, 95% CI [0.203, 1.201], z = 2.759): congruence 
represents more of an advantage when the foil shape is from 
the opposite category to the target. 
 

 

Figure 2: Graph of the predictions by block and 
congruence of the final omnibus model for Experiment 1. 

Error bars represent 95% CIs. 
 
See https://github.com/JMJofficial/Jones_Vigliocco_2017 
more graphs, and for graphs of Experiments 2 & 3. 
 
Block 1 Monaghan et al. found that congruence interacted 
with block. Crucially, there was no congruence advantage in 
the first block, implying that the benefit of congruence was 
to memory encoding rather than kiki-bouba style response 
bias. By contrast, we found no interaction between 
congruence and block (z < 0.7), suggesting an advantage 
from the first block. To test this, we fitted a model for the 
first block only. There were reliable effects of congruence 
(β = 0.328, 95% CI [0.047, 0.609], z = 2.288): performance 
was better in congruent trials; and of the interaction between 
congruence and category of foil (β = 0.842, 95% CI [0.368, 
1.316], z = 3.484): the benefit of congruence was stronger in 
different-category-foil trials. Note that this cannot be 
attributed to differences in design, as the number and 
structure of our trials was identical. 

To exclude the possibility that this is the result of learning 
within the first block, we took the 187 trials with a different 
category foil where a participant encountered a name for the 
first time, and fitted a LMEM featuring only a fixed 
intercept, and random intercepts by participant. On 56.1% of 
trials participants chose the iconically congruent referent for 
the name. The model’s intercept was not reliably different 
from zero under two-tailed interpretation (β = 0.247, 95% 
CI [-0.048, 0.549], z = 1.678), but under a one-tailed 
interpretation, the intercept was significantly different from 
zero at p = .047. Thus though this analysis has low power, it 
suggests a sizable bias towards iconic matches before 
learning has taken place, which can only be explained by the 
bias/referential disambiguation account. 

In conclusion, we largely replicated Monaghan, Mattock, 
and Walker’s (2012) findings, but found an advantage of 
iconicity from the first block. This difference with 
Monaghan et al. – and the fact that iconic congruence is 
only an advantage when the foil is from the opposite 
category – is consistent with the possibility that iconicity 
biased participants towards the right answer in trials where 
they were forced to guess, effectively assisting with 
referential disambiguation. The discrepancy with Monaghan 
et al. may be due to name stimuli: while we tailored ours to 
maximize iconicity, they created theirs on the basis of 
phonetic features, which do not correlate perfectly with 
iconicity (e.g. Monaghan et al. used plosives as spiky 
sounds, but [b] – a plosive – is widely deemed to sound 
round, cf. bouba). Next we move on to two further 
experiments aimed at testing the relative contribution of 
roundness and spikiness to sound-shape iconicity. 

Experiments 2 and 3 
Experiment 2 and 3 aim to clarify the mechanism of sound-
shape iconicity by modifying Experiment 1 in order to test 
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the effect of round-to-round and spiky-to-spiky iconicity 
separately, something previous experiments have been 
unable to do.  This is achieved by using iconically neutral 
names as well as round and spiky names. Experiment 2 
yielded marginally significant results, so Experiment 3 was 
a replication to attempt to verify whether the effect was real. 
Both were then submitted to omnibus Bayesian statistics. 

We opted for a two-condition design. Each condition is of 
the same format as Experiment 1, and each features both 
round and spiky shapes, but one condition features round 
and neutral names only, the other features spiky and neutral 
names only, thus avoiding problems related to tasks that 
involve discrimination between a round and spiky 
alternative. If one class of name is less iconic  then we 
would expect minimal benefit of one class of shape being 
paired with that class of name vs. a neutral name. 

Experiment 2: Methods 
Participants were 32 adult native English monolinguals (17 
women, M = 23.3 ± 4.4). 
 
Visual Stimuli (Shapes) The eight round and eight spiky 
shapes used in Experiment 1 were combined with an 
additional eight of each, created in the same manner. 

 
Auditory Stimuli (Names) 32 names were generated using 
previously normed syllables (see Experiment 1) - eight from 
round syllables, eight from spiky, and 16 from neutral; and 
recorded as in Experiment 1. T-tests confirm that the spiky 
names (M = 4.71 ± 0.53) were rated as spikier than the 
round names (M = 2.90 ± 0.43) (p < .001, t(13.4) = 7.54, 
difference = 1.81, 95% CI [1.29, 2.33]; Cohen’s d = 3.77). 
Moreover, neutral names (M = 3.77 ± 0.80) were rated as 
less spiky than spiky names (p = .002, t(20.0) = 3.46, 
difference = 0.94, 95% CI [0.37, 1.51]; Cohen’s d = 1.31), 
and less round than round names (p = .002, t(21.8) = 3.46, 
difference = 1.04, 95% CI [0.35, 1.39]; Cohen’s d = 1.24). 

 
Apparatus and Procedure Every participant took part in a 
round and a spiky condition. Each condition was of identical 
form to Experiment 1. One of the two conditions was the 
‘round’ condition. In this condition half of the shapes were 
round and half spiky (eight of each), and, crucially, half of 
the names were round and half neutral. The other condition 
was the ‘spiky’ condition – which again had eight round and 
eight spiky shapes, but by contrast had eight neutral names 
and eight spiky names (fresh shapes and neutral names were 
used in the second condition). Shapes, neutral names, and 
condition order were counterbalanced across participants. 

Here congruence is defined within whichever half of the 
putative round-spiky spectrum of sounds the condition in 
question covers. E.g. in the round condition, round name-
round shape pairings were considered congruent and round 
name-spiky shape pairings were considered incongruent. 
However, neutral name-spiky shape pairings were 
considered congruent for the purposes of the following 
analysis. The reverse was done for the opposite condition. 

This format was so that we could apply the same kinds of 
analysis as for Experiment 1 to keep results comparable. 

Experiment 2: Results 
Data were analysed as in Experiment 1. The additional 
variable of condition was coded Round = -0.5, Spiky = +0.5. 

In the omnibus model, both linear (β = 0.722, 95% CI 
[0.619, 0.824], z = 13.835) and quadratic block (β = -0.11, 
95% CI [-0.179, -0.041], z = -3.116) were reliable 
predictors: performance improved over the blocks, with 
improvement being faster between early than late blocks. 
Category of foil was also a reliable predictor (β = 0.162, 
95% CI [0.015, 0.309], z = 2.163): performance was better 
on trials with foils from the opposite category to the target. 
Finally, the interaction between congruence and category of 
foil was reliable (β = 0.286, 95% CI [0.013, 0.56], z = 2.05): 
performance was better on congruent trials as long as the 
target and foil were from different categories (the main 
effect of congruence was not reliable: β = 0.027, 95% CI [-
0.14, 0.194], z = 0.317; perhaps because iconic contrast was 
less pronounced than in Experiment 1). 

The crucial interaction between condition and congruence 
was marginally reliable in the expected direction, implying 
that congruence was more of an advantage in the round 
condition (β = -0.208, 95% CI [-0.482, 0.066], z = -1.486): 
an inconclusive result (though the same was not true for the 
three way interaction adding category of foil: β = -0.047, 
95% CI [-0.377, 0.283], z = -0.277). 

As with Experiment 1, we analysed Block 1 in isolation. 
There was a reliable effect of condition (β = 0.177, 95% CI 
[0.001, 0.354], z = 1.967): performance was better in the 
spiky condition. Though there was no overall effect of 
congruence (z < 1.3), there was a reliable effect of category 
of foil (β = 0.173, 95% CI [0.022, 0.325], z = 2.246): 
performance was better when the foil and target were from 
different categories, and a reliable interaction between 
congruence and category of foil (β = 0.39, 95% CI [0.105, 
0.675], z = 2.679): that congruence was advantageous when 
foil and target were from different categories. Given that 
previous results suggest that the congruence advantage is in 
different-category-foil trials, this means that as in 
Experiment 1, and in contrast to the results of Monaghan et 
al., iconic congruence was an advantage from the outset. 
Finally, there was a reliable interaction between congruence 
and condition: for Block 1 (as was marginally the case for 
the omnibus model), the effect of congruence was stronger 
in the round condition (β = -0.315, 95% CI [-0.628, -0.002], 
z = -1.975). 

To summarise, Experiment 2 largely replicated the results 
of Experiment 1. Additionally, we did not find an 
unambiguously reliable difference between round and spiky 
conditions in terms of iconicity advantage. However, the 
marginally reliable interaction is possible evidence for 
round iconicity being stronger. Experiment 3 is a near-
replication aimed at clarifying this. 

Experiment 3: Methods 
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Participants were 32 adult native English monolinguals (21 
women, M = 21.8 ± 3.2). 

 
Visual Stimuli (Shapes) Were as Experiment 2. 
 
Auditory Stimuli (Names) A fresh set of 32 names (eight 
round, eight spiky, and 16 neutral) were generated as in 
Experiment 2. An additional factor was controlled: number 
and distribution of phonemes in each category of name. 
Names were recorded as in Experiments 1 and 2. 

T-tests confirm that the spiky names (M = 4.80 ± 0.39) 
were rated for WordScore as spikier than the round names 
(M = 2.90 ± 0.63) (p < .001, t(11.7) = 7.19, difference = 
1.90, 95% CI [1.32, 2.47]; Cohen’s d = 3.60). Moreover, 
neutral names (M = 3.80 ± 0.86) were rated as less spiky 
than spiky names (p < .001, t(22.0) = 3.91, difference = 
1.00, 95% CI [0.47, 1.53]; Cohen’s d = 1.35), and less round 
than round names (p = .01, t(18.5) = 2.89, difference = 0.90, 
95% CI [0.25, 1.55]; Cohen’s d = 1.24). 
 
Apparatus and Procedure Were as in Experiment 2. 

Experiment 3: Results 
Data were analysed as in Experiment 2. The omnibus model 
featured reliable effect of linear block (β = 0.739, 95% CI 
[0.589, 0.889], z = 9.641): participants learned. However, it 
featured no other significant predictors (|z| < 2.0). In this 
respect, it was different from Experiments 1 and 2, both of 
which showed some advantage of congruence. However, the 
coefficients for both congruence (β = 0.177, 95% CI [-
0.003, 0.357], z = 1.929) and the congruence-category of 
foil interaction (β = 0.178, 95% CI [-0.081, 0.437], z = 
1.346) were in the expected direction, with congruence 
qualifying as marginally reliable. Crucially, the congruence-
condition interaction did not approach reliability (β = -
0.047, 95% CI [-0.326, 0.233], z = -0.327), and neither did 
the interaction between congruence, category of foil, and 
condition (β = -0.147, 95% CI [-0.464, 0.17], z = -0.908) 
suggesting that if there was an effect of congruence, it was 
no stronger in the round condition. 

Again we analysed Block 1 in isolation. This time there 
were no reliable predictors (z < 1.3 in each case). However 
note that this parallels the omnibus model, which featured 
no reliable predictors except block. Thus these results are 
silent on the question of the nature of the iconic advantage 
as the advantage failed to show up overall (probably due to 
a smaller iconic differences between words than in 
Experiment 1 leading to a weaker effect and Type II error). 

Thus Experiments 2 and 3 gave somewhat contradictory 
results, with Experiment 2 showing a marginally reliable 
interaction between condition and congruence in the 
expected direction, and Experiment 3 showing no such 
thing. To attempt to resolve this, we submitted both sets of 
results to Bayesian statistics, which have the capability to 
confirm the null, and make it unproblematic to add more 
data to an analysis as one goes along (Kruschke, 2011). 

Experiments 2 and 3: Bayesian Analysis 

Models Not having a clear prior for the alternative 
hypothesis, we opted for Bayesian parameter analysis 
(Kruschke, 2011). We use the R package rstanarm (Gabry & 
Goodrich, 2016). We examined 95% Highest Density 
Intervals for parameter estimates (HDIs): the highest 
average density continuous interval containing 95% of 
posterior probability distribution. If this region excludes 
zero we can treat a predictor as reliable. 

We based our priors on Gelman, Jakulin, Pittau, and Su’s 
(2008) recommendations. All variables were centred at zero 
and scaled so as to have a standard deviation of 0.5. Priors 
(which were defined for the log odds ratios used as the 
models’ parameters rather than for raw probabilities) took 
the form of Cauchy distributions. 

Models were similar to the models used for Experiments 
2 and 3, but a predictor and a by-subjects random slope 
were added for condition order. All two- and three-way 
interactions were included. 

 
Results There were credible effects of linear (β = 1.638, 

95% HDI [1.45, 1.835]) and quadratic (β = -0.155, 95% 
HDI [-0.255, -0.06]) block, condition order (β = 0.472, 95% 
HDI [0.322, 0.620]), and category of foil (β = 0.091, 95% 
HDI [0.019, 0.164]): participants performed better on trials 
where the target and foil shapes came from different 
categories. The HDIs for the main effect of congruence 
encompass zero (β = 0.087, 95% HDI [-0.022, 0.198]), 
albeit narrowly. However, there is a credible interaction 
between congruence and category of foil (β = 0.242, 95% 
HDI [0.114, 0.369]), indicating that an advantage for 
congruence is present when the target and foil are from 
different categories. There were interactions between 
condition order and both linear (β = 0.329, 95% HDI [0.196, 
0.462]) and quadratic (β = -0.213, 95% HDI [-0.333, -
0.094]) block, indicating that initial learning was faster in 
the second condition. There was also a difficult-to-interpret 
interaction between quadratic block, condition order, and 
congruence (β = -0.253, 95% HDI [-0.498, -0.009]). 
However, overall, the Bayesian analyses confirm the earlier 
inferential statistics. 

Turning to the crucial interaction of congruence with 
condition type: the posterior distribution for the interaction 
between congruence and condition type is narrow compared 
to the prior, and centred close to zero (β = -0.022, 95% HDI 
[-0.165, 0.125]). If we assume the largest absolute value in 
the HDI, and take the intercept as our baseline, the 
difference between the levels of the interaction is 84.2% 
versus 85.3%. This is the same as the difference when the 
main effect of congruence is examined in the same way, 
assuming the mean of the posterior. 

Even if we assume that the extreme values of the HDI are 
correct, the effect of the congruence-condition interaction is 
no bigger than that of congruence tout court (which applies 
to both conditions). Thus there is clearly less support for the 
interaction between congruence and condition type than for 
the effect of congruence across conditions, and given the 
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HDIs encompass zero, our results are consistent with their 
being no congruence-condition interaction. 

Discussion 
We presented evidence that iconicity enhances performance 
in a statistical learning paradigm. Experiment 1 was a 
replication of Monaghan et al. (2012), and thus in a sense 
not novel, but (as small but theoretically interesting 
differences in our respective results underscore) the value of 
replication is increasingly recognised in cognitive science. 
Close analysis of the beginning of Experiment 1 (supported 
by the results of Experiment 2), and the consistent tendency 
for iconicity to be a greater advantage when the foil 
presented during the trial does not also match the name, 
suggest that the benefit of iconicity in these experiments is 
to do with picking out the right referent during a particular 
trial rather than in to do with learning in some other sense 
(contra Monaghan et al.). Thus one role of iconicity in 
vocabulary learning may be in referential disambiguation, in 
line with evidence that people guess iconic word meanings 
in unfamiliar languages above chance (Imai et al., 2008). 

The second set of findings relate to the relative 
importance of rounded-rounded and spiky-spiky mappings 
in sound-shape iconicity. One hypothesis is that rounded 
sounds are associated with rounded lip shape, and that the 
iconicity arises from sound-shape correspondences during 
speech production and comprehension (Ramachandran and 
Hubbard, 2001). If this is indeed the mechanism for sound-
shape iconicity, we would expect rounded associations to be 
primary, and spiky associations to arise later through 
something like a principle of contrast. If this were the case 
then rounded associations should be stronger than spiky 
associations (as suggested in Kovic. et al., 2010). 

Experiment 2 and 3 tested this possibility by separating 
round and spiky iconicity into two separate conditions, and 
seeing whether iconic congruence exerted a stronger effect 
in one or the other. Experiment 2 appeared to suggest (with 
marginal reliability) that iconicity improved performance in 
the round condition, but not the spiky. However, this 
asymmetry failed to replicate in Experiment 3. We therefore 
submitted data from both experiments to a Bayesian 
analysis. Though the results were somewhat inconclusive, 
they suggest that any asymmetry between the conditions is a 
smaller effect than the overall influence of iconic 
congruence, and indeed they are consistent with there being 
no asymmetry at all. However, this may be different in the 
case of production, which would force motoric and 
perceptual engagement with lip shape (Jones et al., in prep.). 

Our results advance our understanding of iconicity’s role, 
suggesting it supports referential disambiguation. 
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Abstract 

During mindfulness-based interventions participants can be 
invited to bring aversive stimuli to mind while practicing 
mindfulness. This is thought to help the stimuli become less 
aversive. However, the mechanisms underlying this process 
are not fully understood. In this study we explored these by 
examining the effects of mindfulness practice and stimulus 
visualization on stimuli associated with electric shocks. 
Participants were trained on a discrimination between two 
visual stimuli using a standard electrodermal conditioning 
procedure, in which one stimulus (CS+) was paired with 
shock and the other (CS-) was not. They then visualized either 
the CS+ or CS-, while practicing mindfulness or performing a 
control activity. Following a number of extinction trials, the 
impact of these manipulations was assessed during a 
reacquisition test-phase. Both mindfulness and visualization 
of the CS+ led to slower reacquisition of the CS+/shock 
association, when measured physiologically, and their effects 
were additive. Moreover, these effects dissociated from 
participants’ expectancy of shock. If confirmed in future 
work, these findings may have implications for the treatment 
of stimulus-specific anxiety.  

Keywords: mindfulness, associative learning, extinction, 
reacquisition 

Introduction 
In recent years there has been a rapid growth of interest in 
mindfulness (e.g. Mindfulness All-Party Parliamentary 
Group, 2015). This has been driven in part by the growing 
evidence for the efficacy of mindfulness-based therapeutic 
interventions, such as mindfulness-based cognitive therapy 
(Segal, Williams & Teasdale, 2013), which has been shown 
to reduce the risk of relapse of depression relative to 
treatment as usual and more active controls (Kuyken et al., 
2015). However, much remains to be understood about the 
nature and mechanisms of action of mindfulness (Tang, 
Holzel & Posner, 2015; van der Velden et al., 2015). In this 
paper, we attempt to further this understanding in one 
particular area, namely how mindfulness interacts with basic 
human learning processes (cf. Treanor, 2011). To set the 
stage for this, it is helpful to first consider mindfulness in 
more detail. 

Mindfulness 
Kabat-Zinn’s (1994) frequently cited definition of 
mindfulness describes it as ‘paying attention in a particular 
way: on purpose, in the present moment, and non-
judgmentally’. Mindfulness meditation practice is seen as a 
means of cultivating this way of attending. In a typical 
practice, ‘mindfulness of the breath’, participants are invited 
to pay attention to and be curious about their moment-by-
moment experience of breathing, and to be gentle with 
themselves should their attention wander away from this 
(Kabat-Zinn, 1990).  

In mindfulness-based interventions, such as mindfulness-
based cognitive therapy, after participants have developed 
some experience at practicing mindfulness, they are invited 
to deliberately bring attention to a difficult experience 
during mindfulness practice (Segal et al., 2013). Frequently 
this can be a memory or image associated with feelings of 
anxiety and/or low mood. This is thought to help 
participants learn to not engage in unhelpful rumination and 
worry when faced with a difficulty (cf. Segal et al., 2013), 
and to help them to build their ability to tolerate distress (cf. 
Lotan, Tany & Bernstein, 2013). In addition, theories of 
associative learning would suggest that basic associative 
learning processes should be in play (cf. Treanor, 2011). 
However, the latter aspect has yet to be adequately 
investigated empirically. A laboratory model that can be 
used to examine such processes further is the electrodermal 
fear conditioning paradigm. 

Electrodermal Fear Conditioning 
In this paradigm, a neutral stimulus, referred to as the 
conditioned stimulus (CS), becomes capable of eliciting fear 
through its repeated pairing with an aversive unconditioned 
stimulus (US), such as electric shock (see McAndrew et al., 
2012 for details of the procedure used here). Participants’ 
learning of this CS-US association is typically measured in 
two ways. The first is through their ‘conditioned response’ 
(CR), which in this case usually includes increased arousal 
following the CS, due to increased anxiety at the prospect of 
being shocked. This can be detected by measuring the 
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conductance of electricity between two electrodes on the 
skin, and is typically referred to as the skin conductance 
response (SCR). Secondly, when presented with the CS, 
participants can be asked to rate how much they expect a 
shock.  
Under certain conditions, dissociations can be obtained 
between SCRs and expectancy ratings (e.g. Knight, Nguyen, 
& Bandettini, 2003; Tabbert, Stark, Kirsch, & Vaitl, 2006; 
McAndrew et al., 2012). These can be explained by dual 
process models of human learning, such as that proposed by 
McLaren, Green and Mackintosh (1994), and further 
developed in McLaren, Forrest, McLaren, Jones, Aitken and 
Mackintosh (2014). They argue that people can learn using 
both associative processes, which are similar to those found 
in other animals, and through rule-based processes capable 
of symbolic manipulation (though Lovibond and Shanks, 
2002 take an alternative view). Thus, as well as having the 
potential to provide a useful laboratory model to investigate 
mindfulness further, the fear conditioning paradigm enables 
an examination of the degree to which mindfulness interacts 
differently with different learning processes. 

The current study 
Therefore, in the current study we aimed to embed 
mindfulness practice in a human electrodermal, fear 
conditioning procedure. More specifically, we planned to 
train people to learn a ‘CS’-> shock association (along with 
an appropriate comparison) before inviting them to practice 
mindfulness while visualizing the CS, in a similar way to 
how distressing events can be brought into attention during 
mindfulness practice. We then planned to examine what 
effects, if any, this mindfulness visualization had on the 
learning of the CS -> shock relationship, relative to various 
comparison groups. Furthermore, we sought to examine 
whether such mindfulness-based visualization had 
differential effects on the different learning processes tapped 
by SCR and expectancy. We hoped that this investigation 
would provide us with a better understanding of the learning 
processes in play during mindfulness practice, which in turn 
could help contribute to improving the efficacy of 
mindfulness-based interventions for anxiety.  

Method 

Participants 
Ninety-six University of Exeter students participated in this 
experiment. There were 72 women and 24 men and their 

ages ranged from 18 to 30 years, with a mean of 20.4 years 
(SD=2.75). All were paid £6. Participants were randomly 
allocated to the groups described below, constrained to 
ensure equal group sizes (N=24 in each group). The study 
received ethical approval from the University of Exeter, 
Psychology Ethics Committee. 

Design  
The study began with a training phase during which all the 
participants learnt an A+ B- discrimination; that is, they 
learnt that one conditioned stimulus (the CS+), which we 
will refer to as A, was always followed by an electric shock, 
while a second, the CS- (B), never was.  

Following this, each of the four groups received a 
different manipulation, as illustrated in Table 1. In the 
mindfulness visualization plus (MV+) condition, 
participants were invited to visualize the CS (i.e. A) that had 
been previously paired with shock while they practiced 
mindfulness. In the mindfulness visualization minus (MV-) 
condition, they visualized the unpaired CS (i.e. B) while 
practicing mindfulness. The two control conditions were 
identical to the mindfulness ones, with the exception that, 
instead of practicing mindfulness, participants were asked to 
listen to an excerpt from an audio book. Thus, in the control 
visualization plus (CV+) condition, participants listened to 
the audiobook while visualizing stimulus A, and in the 
control visualization minus (CV-) condition, participants 
listened to the audiobook while visualizing stimulus B.  

Following this manipulation, all the groups received an 
extinction test phase, during which A and B were presented 
but neither were paired with shock. This was followed by a 
reacquisition test phase, during which all participants were 
again trained on the original A+ B- discrimination; that is, A 
was once again followed by a shock, whereas B was not. 
This second test phase was included, as pilot work 
suggested it was more sensitive to the effects of the 
manipulation. This may be because extinction happens 
relatively quickly in this paradigm, resulting in very few 
trials that provide useful data from the extinction test phase. 

Therefore, there were three independent variables; namely 
practice type (mindfulness vs. control), stimulus visualized 
(A vs. B), and stimulus tested (A vs. B), with the former two 
being between-subject factors and the later being a within-
subject factor. 

 
 

 

Table 1: The study’s design 

Group Training Manipulation Extinction Reacquisition  

MV+ A+ B- Mindfulness & A A- B- A+ B- 

MV- A+ B- Mindfulness & B A- B- A+ B- 

CV+ A+ B- Control & A A- B- A+ B- 

CV- A+ B- Control & B A- B- A+ B- 
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Stimuli  
The two CSs were a brown cylinder 4.5 x 6cm onscreen, 
and a pink square 5.5 x 5.5cm onscreen. Each CS 
presentation lasted for 5 seconds. The use of these stimuli as 
CS A and CS B was counterbalanced across participants. 

The unconditioned stimulus (US) was a 500ms shock 
administered with a PowerLab 26T generator using stainless 
steel electrodes attached to the left proximal and medial 
phalanges of the index finger. At the beginning of the 
experiment, participants set their own shock level between 5 
and 20mA, to a level that was “definitely uncomfortable but 
not painful”.  

Visualization Guidance  
Mindful Visualization This period of practice began with 
7.5 minutes of ‘mindfulness of the breath’ guided by audio 
CD. This practice was of the sort used in mindfulness-based 
cognitive therapy (Segal et al., 2013), and the CD had been 
recorded by the first author (who has a postgraduate 
qualification in teaching mindfulness). The intention of this 
initial period of practice was to help establish a more 
mindful state of mind before the participant began stimulus 
visualization. After 7.5 minutes, the CD guidance asked the 
participant to open their eyes, if they were closed, and look 
at the name (either ‘pink square’ or ‘brown cylinder’, as 
appropriate to the condition) that the experimenter had 
placed in front of them. The audio CD then invited them to 
close their eyes and continued as follows:  

‘… as best you can, remembering what this shape looked 
like in the first part of the study, and seeing if it is possible 
to hold an image of this shape in your mind. [pause] Don’t 
worry if you find it hard to picture this shape, as this is 
more difficult for some of us than others, [pause] just doing 
your best to bring to mind whatever memories and images 
you have of this shape from the first part of the study. 
[pause] And if it seems to help, you might want to 
sometimes say the name of the shape to yourself. [pause] 
And if there are any feelings or bodily sensations that 
accompany the memory or image of the shape, just 
acknowledging those and allowing them to be present as 
you hold this shape in mind. [pause] And if at any point you 
forget which one of the shapes you are being invited to hold 
in mind, opening your eyes again briefly and re-reading the 
piece of paper.’  

The CD guidance subsequently invited participants to 
expand their attention so that they both held in mind an 
‘image or memory’ of the shape and attended to ‘the 
experience of breathing’. This was followed by periods of 
silence, interspersed with guidance to the same effect. In 
total, the audio CD lasted 13 minutes 20 seconds. 

 
Control Visualization In the control visualization 
conditions, participants were asked to listen to an excerpt 
from an audiobook by Bill Bryson. This material was 
chosen as the calm tone of delivery was similar to that for 
the mindfulness visualization guidance and the content was 
likely to be experienced as engaging but uncontroversial. As 

with the mindfulness visualization conditions, after 7.5 
minutes participants were asked to look at the name of the 
shape that the experimenter had placed in front of them, and 
then hold an image of this shape in mind. The wording and 
timing of the stimulus visualization instructions were 
identical to the mindfulness visualization conditions, with 
the exception that guidance pertaining to attending to the 
breath was omitted. In between visualization guidance, the 
audiobook continued to play. Each control visualization 
condition lasted for the same amount of time as each 
mindfulness visualization condition. 

Measures  
Skin conductance Skin conductance response (SCR) was 
measured using LabChart software via MLT116F GSR 
electrodes attached to the medial phalanges on the left third 
and fourth fingers.  
 
Expectancy Expectancy ratings for the US were recorded 
using a Contour Shuttle Xpress device. Participants were 
required to make an expectancy rating about the extent they 
thought the shock would happen during presentation of the 
CS. The device had five buttons and fitted nicely into one 
hand such that one button corresponded to one finger. The 
different expectancy values were: 1 “There will definitely 
not be a shock”, 2 “There might not be a shock”, 3 “Not 
sure either way”, 4 “There may be a shock”, and 5 “There 
will definitely be a shock”.  A continuously available legend 
explained which buttons represented which ratings. 
 
State mindfulness As a manipulation check, the State 
Mindfulness Scale (Tanay & Bernstein, 2013) was 
administered to all participants immediately after the 
visualization stage. This 21-item, self-report measure asks 
participants to rate how well each item (e.g. ‘I felt closely 
connected to the present moment’) describes their 
experience over the past 15 minutes. It has satisfactory 
psychometric properties, for example Cronbach’s α = .95 
(Tanay & Bernstein, 2013). Higher scores indicate higher 
levels of state mindfulness. Therefore, if the mindfulness 
visualizations were successful at inducing a more mindful 
state of mind than the control visualizations, participants in 
the former conditions should score significantly more highly 
on this measure than those in the latter.  

Procedure 
With the exception of the visualization stage (see below), 
the participants were told they would receive shocks to 
some of the visual stimuli throughout the experiment. They 
were asked to rate their expectancy that the shock would 
occur during each stimulus presentation, using the Shuttle 
Xpress device. Otherwise they were asked to remain still to 
avoid motion artefacts in the SCR. On shock (A+) trials, a 
500ms US was administered after 4500ms of CS A being on 
screen, whereas on no shock (B–) trials no US occurred. 

SCR recordings were taken on every trial, during the five 
seconds prior to CS onset (Pre-CS), five seconds while the 
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CS was on screen and five seconds after the CS (Post-CS). 
The inter-trial interval (ITI) was randomly varied between 
30 and 40 seconds in order to stop participants timing the 
onset of the CS. Long ITIs were required to allow the SCR 
recording to reach baseline after the previous US.  

This experiment had an initial training phase of 12 trials: 
six each of A+ and B-, in a random order. This was 
followed by either the mindfulness visualization guidance or 
control visualization guidance, as appropriate for the 
condition. Participants were advised that there would be no 
stimuli on the screen and no shocks, during this stage of the 
experiment. Participants were then given a copy of the state 
mindfulness scale, with its name removed. They were asked 
to tell the experimenter their rating of each statement, rather 
than write it, so that they could keep their hands still and 
remain wired to the electrodes.  

After this, participants were advised that the stimuli 
would be appearing on the screen again, and that some of 
these would be accompanied by shock. They were asked to 
rate their expectancy of shock in the same manner as 
previously. There were four extinction trials, in the order A, 
B, B, A, (counterbalanced) during which no shocks were 
administered. These were followed immediately by eight 
trials of re-acquisition, comprising four A+ trials and four 
B- trials, in a random order. During this reacquisition phase, 
CS A was accompanied by shock and CS B was not, in 
exactly the same manner as during the initial training. 
Participants were then asked whether they had previous 
experience of mindfulness practice. The word mindfulness 
had not been used up to this point, in case it influenced 
participants’ responding, given the frequency with which 
this topic is currently covered in the UK mainstream media. 
Finally, participants were debriefed, thanked for their time 
and paid. 

Data Preparation 
The SCR data were recorded in micro-Siemens in LabChart 
and exported to Excel. For each trial, a mean SCR was 
calculated for both the ‘pre-CS’ and ‘CS’ periods. These 
data were then transformed using a log transformation to 
reduce the variability between participants. In order to 
measure the change in SCR associated with the occurrence 
of the CS, for each trial a ‘CS-SCR minus pre-CS-SCR’ 
difference score was then calculated. This score was taken 
to be a measure of the conditioned response to the CS, and 
henceforth is simply referred to as the ∆SCR (change in skin 
conductance response). For the expectancy data, the rating 
in the CS period was used as the participant’s expectancy of 
the US on that trial. Subsequent data analysis was conducted 
using SPSS version 22.  

Results 

Training Data  
The ∆SCR data from training were analyzed using a 
stimulus (A vs. B) by group (MV+, MV-, CV+, CV-) 
ANOVA. The main effect of stimulus was significant 

(F(1,92)=12.46, p<0.005), with participants exhibiting 
higher SCR scores after A+ (mean=0.069, SE=0.007) than 
B- (mean=0.048, SE=0.007). This difference in SCR scores 
did not significantly differ between the groups 
(F(3,92)=1.14, n.s.), as their training regime was the same. 
 This pattern was also observed in a stimulus by group 
analysis of the expectancy ratings from training. 
Specifically, participants had a significantly 
(F(1,92)=396.56, p<0.001) higher expectation of shock on 
A+ training trials (mean=4.1, SE=0.06) than on B- training 
trials (mean=1.9, SE=0.07). Furthermore, this difference did 
not significantly differ across the groups (F(3,92)=0.37, 
n.s.). Thus, as expected, participants showed learning of the 
A+ B- discrimination in both the ∆SCR and expectancy 
data, and this did not differ between groups. 

Manipulation Check  
The state mindfulness scale data were analyzed using a 
practice type (mindfulness vs. control) by stimulus 
visualized (A vs. B) ANOVA.  Participants in the 
mindfulness conditions had significantly higher state 
mindfulness scores than those in the control conditions 
(F(1,92)=9.37, p<0.01; respective means: 76.2 (SE=1.72) 
and 68.7 (SE=1.72)). This difference did not significantly 
differ across stimulus visualized (F(1,92)=0.01, n.s.). Thus, 
as intended, the mindfulness practice appeared to have 
increased state mindfulness levels relative to control, and 
regardless of whether stimulus A or B was visualized. 

Test Data  
The focus here is on the ∆SCR and expectancy data from 
the reacquisition test-phase, as pilot work suggested this 
would provide a more sensitive test of any effects than the 
data from the extinction phase. It also included twice as 
many trials as the extinction phase, and so should produce 
less noisy data.  

Figure 1: Mean change in skin conductance by Group and 
by CS tested, from the reacquisition test-phase. Error bars 
represent the standard error. 

 
Considering the ∆SCR data first, these were analyzed 

using a stimulus tested (A vs. B) by practice type 
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ANOVA. The means can be seen in Figure 1; note that in 
this figure the four combinations of practice type and 
stimulus visualized are represented by the four groups on the 
x-axis. As would be expected given the contingencies, there 
was a significant main effect of stimulus tested 
(F(1,92)=18.32, p<0.001), with higher ∆SCRs to stimulus A 
than stimulus B. In addition, there were significant two-way 
interactions between stimulus tested and practice type 
(F(1,92)=6.71, p<0.05), and between stimulus tested and 
stimulus visualized (F(1,92)=6.10, p<0.05). None of the 
other main effects, nor the three-way interaction, were 
significant (all p>0.4). Thus the findings suggest that 
practice type and stimulus visualized had additive effects on 
the difference in ∆SCR between A and B. More specifically, 
practicing mindfulness appeared to decrease the difference 
in ∆SCR between the two, as did visualizing stimulus A. 
Hence the condition (MV+) containing both mindfulness 
and visualization of stimulus A had the smallest difference 
between A and B; the condition containing neither (CV-) 
had the biggest difference between the two; and the other 
two conditions were somewhere in between. 

 

 
Figure 2: Mean expectancy ratings by Group and by CS 
tested, from the reacquisition test-phase. Error bars 
represent the standard error. 

 
Turning to the reacquisition expectancy data (Figure 2), 

these were analyzed using the same three-way ANOVA as 
above. As with the ∆SCR data, there was a main effect of 
stimulus tested (F(1,92)=677.26, p<0.001), with a correct, 
higher expectation that a shock would follow stimulus A 
than B. However, none of the other main effects or 
interactions were significant (all p>0.1). Thus, in contrast to 
the ∆SCR data, none of the manipulations had a measurable 
effect on the participants’ expectation of shock.  

Discussion 
There are a number of results that emerge from this study. 
Perhaps the first point to make is that training was very 
effective, and produced good conditioning both in terms of 
conscious cognitive expectancy and in terms of change in 
skin conductance.  There were no confounding differences 
during training across groups, and the manipulation check at 

the end of the interposed activity indicated that mindfulness 
practice was also successful. We can be fairly confident, 
then, that the study we set out to conduct has actually taken 
place. We can now ask what the effects of mindfulness 
practice and visualization are on differential fear 
conditioning.  

Starting with expectancy ratings for shock to the CS+ and 
CS- during re-acquisition, the answer is equally 
straightforward. Our manipulations had no differential 
effect. All groups showed the same (highly significant) level 
of differential conditioning on this measure. Any account 
that would claim that conscious expectancy is what drives 
changes in skin conductance would thus have to postulate a 
similar pattern of results in the ∆SCR measure, but this was 
not what we observed. Instead, ∆SCR varied across groups, 
and in particular the extent to which differential 
conditioning was re-acquired differed across groups. Group 
MV+, which received mindfulness practise and visualised 
the CS+ at the same time, showed no differential 
conditioning. Group CV-, which listened to the audio book 
and visualised the CS- at the same time, showed strong 
differential conditioning, actually stronger than that during 
initial training. The difference, then, between these groups 
was considerable, and our analysis produced results that 
suggested that both mindfulness practise and visualisation 
of the CS+ had some protective effect against re-acquisition 
of differential fear conditioning. 

This contrast between effects on expectancy and on ∆SCR 
suggests that after mindfulness practise and visualisation of 
the CS+, even though people knew that a shock was likely 
to occur to A and not to B, this had no effect on their 
physiological response to those stimuli. In some sense, then, 
their autonomic response has become decoupled from their 
conscious cognitive appraisal of the situation. We can argue 
that this has happened to a lesser extent for Groups MV- and 
CV+, and not at all for CV-. This is not the only possible 
interpretation of these results, however, and we need to 
consider others that might generate the same pattern on our 
two measures.  

One such possibility is that rather than visualisation of the 
CS+ having a protective effect, it was in fact visualisation of 
the CS- that simply extinguished any fear generalising to 
that stimulus and so led to stronger differential conditioning. 
We cannot rule this possibility out, but would expect 
visualising the CS+ to have had an even stronger effect than 
visualising CS-. This is because the CS+ would have had 
stronger associations to shock after training, and the 
extinction would be expected to have been proportional to 
the strength of the association. This mechanism could, then, 
explain why visualising the CS+ seemed to impair 
differential conditioning, and visualising the CS- seemed to 
(relatively speaking) help it. On this account, the 
visualisation effect was just one of imagined extinction 
feeding through into re-acquisition. But understanding the 
effect of mindfulness practise in this way is probably not 
helpful. The effect was additive with visualisation, which 
indicates a different source for it, and claiming that listening 
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to Bill Bryson potentiated fear conditioning does seem a 
little unlikely (as well as unkind). 

We can ask, however, why the effect we observed was on 
differential conditioning, and why the ∆SCR for B was so 
high in the MV+ group. This was undoubtedly a 
contributory factor to our result, though the stronger effect 
across groups may have been the effect of our manipulations 
on A. In fact, it is quite striking that the average ∆SCR to A 
and B was roughly the same in each group. Thus, we can 
argue that the overall physiological reactivity of each group 
was approximately constant, it was just how that was 
distributed over A and B that varied. If it was the case that 
the training data were mostly based on conscious 
expectancy of shock (and that would not be surprising in 
such a simple preparation), then the implication is that this 
factor was no longer effective in Group MV+ during re-
acquisition, since if participants’ expectancies had driven 
their physiological reactivity in that case, we would have 
seen a difference in ∆SCR to A and B equivalent to that in 
the other groups, but we did not. It is possible that instead 
we observed the effects of the underlying associative 
learning as a result of training, extinction and re-acquisition 
and that this had become decoupled from control by 
conscious cognitive expectancy. It is also possible that one 
belief about the contingencies had been replaced by another, 
though our expectancy rating data argues against this. 
Further research will be needed to establish exactly what the 
effective contribution of the mindfulness practise is here. 

 
Conclusion 

We ran this experiment to try to understand what effect 
mindfulness might have on the processes underlying 
conditioned fear (and hence anxiety). We can be confident 
that it does have an effect, and that this effect appears to be 
separate from that of visualisation. Whatever the exact 
mechanism involved, mindfulness practise appears to 
protect against re-acquisition of conditioned fear after 
extinction, a result that must be worth pursuing and that 
may have implications for the treatment of stimulus-specific 
anxiety. 
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Abstract 

Creativity is the ability to produce work that is both novel and 
appropriate. The study, funded by Indian government, 
analyzed the effect of one-year chess training on the creativity 
of children. A pretest and posttest with control group design 
was used, with 31 children in experimental and 32 in control 
group. The experimental group underwent weekly chess 
training. Wallach-Kogan Creativity Test (Indian Adaptation) 
was used. Analysis revealed that only the experimental group 
had statistically significant gains in total creativity and two 
nonverbal subtests. The authors conclude that systematic 
chess training inculcates in the child the ability to think 
divergently and creatively. 

Keywords: Abstract Thinking; Chess Training; Creativity; 
Innovation; Divergent Thinking 

Introduction 

Creativity is defined as the tendency to generate or 

recognize ideas, alternatives, or possibilities that may be 

useful in solving problems, communicating with others, and 

entertaining ourselves and others (Franken, 1982). Typically 

creativity is defined as “the ability to produce work that is 

both novel (i.e. original, unexpected) and appropriate (i.e. 

adaptive concerning task constraints)” (Sternberg, 1999). 

These definitions emphasize both the concept of fluency and 

novelty in the responses that have been generated. 

Most theorists agree that the creative process involves a 

number of components, most commonly: 

1. Imagination 

2. Originality (the ability to come up with new and 

original ideas and products) 

3. Productivity (the ability to generate a variety of ideas 

through divergent thinking) 

4. Problem solving (application of knowledge and 

imagination to a given situation) 

5. The ability to produce an outcome of value and worth 

Creativity is commonly utilized divergent thinking. A 

creative or divergent thinker is described as the person who 

pushes the boundaries of ability and knowledge and is able 

to reconsider the problem to find different perspectives and 

solutions and ignore distractions that can negatively affect 

his or her productivity (Saccardi, 2014).  Creativity among 

children emerges gradually between grades one to three 

(Torrance, 1964). In general, the broad and complex 

multidimensional concepts of creativity can be measured by 

the Torrance Tests of Creative Thinking (TTCT: Torrance, 

1964, 1990a, 1990b) and the Wallach–Kogan Creativity 

Tests (WKCT: Wallach & Kogan, 1965). 

There is a fairly common belief that creativity can be 

developed through training. Various recent studies that have 

assessed the effects of programs for stimulating creativity 

confirm this belief (Antonietti, 2000; Fleith, Renzulli, & 

Westberg, 2002; Komarik & Brutenicova, 2003; Saxon, 

Treffinger, Young, & Wittig, 2003). Consequently, many 

countries are increasingly placing a high priority on 

stimulating creative thinking at the school level. 

Since chess helps in developing strategic thinking and 

problem-solving skills of children, it may also be effective 

in improving their cognitive skills (Sigirtmac, 2016). Chess 

builds problem-solving abilities, enhance strategic thinking 

skills, and even improves self-esteem as well as higher-

order thinking skills, which are known as meta-cognitive 

skills. In countries, where chess is intensely played by 

students, practicing students become among the top students 

in mathematics and science and they are able to recognize 

complicated patterns (Milat, 1997).  

While a number of other models of creativity have 

brought out the steps involved in the creative process, Avni 

(1998) posited a four-step model specific to chess playing. 

According to him, an intelligent process in playing chess 

consists of four different steps: synthesis (opinion forming 

and plan shaping), gathering (collecting the raw materials 

during position evaluation), enlightenment (a sudden 

observation of an idea), and realization (translating the idea 

into practical lines of play). Thus, these four steps can be 

2333



used for a creative process that could also work in some 

other areas (Bushinsky, 2009). 

 India has a long history of chess playing but there are 

only a few studies on chess as a strategy to increase 

cognitive abilities. Further, there are no studies assessing the 

impact of chess intervention on the creativity of children. If 

research can establish that chess training can facilitate 

creativity, it can significantly impact educational programs 

to increase creative thinking. 

The objective of the study was, therefore, to analyze the 

effect of one-year chess training program on the creativity 

of school-going children of both genders and to assess its 

effect on the verbal and nonverbal components of creativity. 

It was hypothesized that chess training would significantly 

increase creativity in children. 

Methodology 

The research design used for the study was pretest and 

posttest with control group design. The independent variable 

was the Chess training program, and the dependent variable 

was Creativity of children.  

The sample consisted of 63 children, 31 in the 

experimental group and 32 in the control group. The 

children in the experimental group were selected 

purposively and comprised children who volunteered for the 

chess program. The children in the control group were 

randomly selected using random numbers table generated 

online. The children in the control group were selected on 

the basis of no chess knowledge and were not given chess 

training. During the time of chess intervention for the 

experimental group, the control group children were 

engaged in other activities such as music, arts and in 

outdoor sports such as cricket, football, basketball, etc. The 

mean age for experimental group was 11.86 years (SD = 

1.44) and for control group was 12.03 years (SD = 1.14). 

The experimental group consisted of 9 girls and 22 boys, 

and the control group consisted of 7 girls and 25 boys.  

Tools 

Creativity was assessed by Indian adaption of Wallach-

Kogan Creativity Test. The WKCT (Wallach & Kogan, 

1965) is similar to the TTCT in that it focuses on divergent 

thinking and assesses both visual and verbal content. It 

includes three verbal subtests—Instances (e.g., name all the 

round things you can think of), Alternative Uses (e.g., for a 

newspaper), and Similarities (e.g., How are a cat and mouse 

similar?)—and two figural subtests—Pattern Meanings and 

Line Meanings (interpreting abstract patterns and lines). It is 

scored for fluency (number of ideas) and uniqueness (ideas 

not offered by others in the group being tested). Wallach 

and Kogan’s (1965) major contribution was their belief that 

standardized test procedures were not conductive to creative 

performance and their insistence on a more relaxed and 

game-like atmosphere. The test is given individually, and no 

time limits are imposed. However, in the present 

administration, a time limit of three minutes was given for 

each subtest. The number of valid responses for each subtest 

was summed to obtain the subtest totals. The total creativity 

scores comprised the sum of the subtest scores. 

Chess Training Methodology 

The children were grouped into small clusters based on the 

chess ability and learning capacity and were trained for an 

hour starting from the basics. The training methodology 

comprised Winning Moves Chess Learning Program 

(Joseph, 2008) Episodes 1–22, lectures with the 

demonstration board, on-the-board playing and training, 

chess exercise through workbooks (Chess School 1A, Chess 

School 2, and tactics), and working with chess softwares. 

Further students’ games were mapped and analyzed using 

score sheets and Chess software. The children were taught 

the ideas behind chess openings, and exposure to classical 

games was also given. The children participated in mock as 

well as regular tournaments. On an average, the children 

underwent one hour per week chess intervention for about 

25-30 sessions. One coach was assigned for 8 students. 

Procedure 

Baseline creativity assessment was done after obtaining 

informed consent, from the parents and the school 

authorities. The research was carried out on the approval of 

government of India, department of science and technology, 

Task force and the doctoral committee. Reassessment was 

carried out after an average duration of one year. The 

assessment environment was quiet without any disturbance 

and kept standardized. Psychologists were trained to 

administer the test in a uniform standardized method to 

minimize the testing error. 

Clustering technique was used to form the training groups 

of six to eight children. The chess training consisted of 

once-a-week chess classes conducted for one hour during 

the end of school hours for a year (about 30 hours of chess 

training). The children were given a standardized Winning 

Moves Chess Learning Program (Joseph, 2008), and they 

played at tournaments also. 

Results 

The analysis was carried out using SPSS. Paired t-test was 

carried out to analyze differences within groups, and 

independent t-test was used to assess differences between 

groups in the mean total creativity scores and mean subtest 

scores. Pre-intervention equivalence of groups on creativity 

was established for total creativity scores and the subtest 

scores. 

 

Table 1: The Significance of the Difference between the 

Means of the Experimental and Control Groups on the 

Creativity Test using the Independent t-Test. 
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*p < .05; **p < .01. 

 

Table 1 indicates that there was a significant difference 

between the means of the post-intervention total creativity 

scores (p < .05) Cohen’s d indicated an effect size of (0.52), 

indicating that chess training had significantly increased 

creativity. Significant differences between the post-

intervention means were observed on the Line Drawing 

subtest (p < .01) Cohen’s d effect size (0.84) and the Pattern 

Meaning subtest (p < .01) Cohen’s d effect size (0.68) , 

indicating that chess training had significantly increased the 

scores on these two subtests. No significant differences were 

observed on any other subtest. 

Discussion 

It can be inferred from Table 1 that systematic chess 

intervention increases creativity in children. As research has 

clearly established, chess is a game that stimulates cognitive 

processes and strengthens intellectual abilities and cognitive 

skills (Aciego, García, & Betancort, 2012; Bilalic, McLeod, 

& Gobet, 2007; De Bruin, Kok, Leppink, & Camp, 2014). 

Moreover, it has shown that the intellectual gains have 

translated into increases in both IQ and academic scores 

(Aydın, 2015; Barrett & Fish, 2011; Joseph, Easvaradoss, & 

Solomon, 2016; Romano, 2011). Large Effect Sizes for 

Total Creativity (0.52), Line Drawing (0.84) and Pattern 

Meaning (0.68) where seen, indicating that chess had a 

significant impact on Total Creativity, Line and Pattern 

subsets of the experimental group. This finding was in line 

with Sigirtmic (2016), findings who found a statistically 

significant difference between elaboration, resistance to 

premature closure and total creativity score of children in 

favour of those who received chess training.  

In the present study, the children were taught chess 

systematically. They did not merely play chess but were 

strongly encouraged to challenge their own standards and 

also to play competitively. They analyzed their own games, 

identified their strengths, and understood their mistakes. 

They were also given opportunities to pit their skills against 

others as they played in tournaments. It is clear that the 

outcome of this rigorous, yet enjoyable, training 

methodology was the enhanced cognitive abilities that were 

reflected in increased creativity scores. 

The intellectual strategies underlying chess playing have 

been spelt out by Avni (1998). According to him, chess 

playing involves an intelligent process that consists of four 

different steps: synthesis (opinion forming and plan 

shaping), gathering (collecting the raw materials during 

position evaluation), enlightenment (a sudden observation of 

an idea), and realization (translating the idea into practical 

lines of play). The child thinks beyond the usual solutions 

using divergent thinking, thinking abstractly, weighing 

options, evaluating outcomes, and making decisions. 

Insightful thinking also appears to play a role. 

The Wallach-Kogan Test, which was used in the present 

study, requires the child to think divergently, quickly, and 

fluently, generating as many responses as possible on the 

different tasks. It is evident that similar abilities are utilized 

in playing chess where innovativeness and accuracy and 

both broad-based and precise thinking are required. The 

experimental group, which had undergone one-year training, 

in chess appears to have acquired these skills as indicated by 

a significant increase in overall creativity compared to the 

control group. Earlier studies have pointed to the positive 

impact that chess has had on academic scores, especially 

language and reasoning (Joseph et al., 2016). The 

components of creativity studied on the test are the ability to 

name objects that have common properties involving 

abstraction ability (Instances), to identify multiple uses for 

common objects involving divergent thinking (Alternate 

Uses), to perceive similarities between two different objects 

utilizing generalizing and abstracting ability (Similarities), 

to perceive meaning in meaningless stimuli involving 

innovativeness (Line Drawing), and to perceive meaning in 

structures stimuli involving the ability to form association 

(Pattern Drawing). The children in the experimental group 

have shown increases in all the post-intervention scores, 

though not all increments have reached significance. 

Significant increases have been observed on the Line 

Drawing subtest (p < .01) and the Pattern Meaning subtest 

(p < .01) as seen in Table 1. On the Line Drawing subtest, 

the child is shown a line drawing for 30 seconds and is 

asked to generate as many responses as possible about what 

the drawing means to him or her. On the Pattern Meaning 

subtest, the child is shown a design (which is more 

Scores Assess

ment 

Mean and 

Standard 

Deviation 

t 

  Experi

mental 

Control  

Total 

creativity 

Pre 54.19 

16.98 

53.93 

12.38 

0.06 

 Post 16.90 

18.77 

52.40 

17.12 

2.09* 

Instances Pre 13.74 

6.34 

15.81 

   5.26 

-1.41 

 

 Post 17.41 

6.79 

16.78 

5.92 

0.39 

Alternate 

Uses 

Pre 9.09 

3.66 

10.09 

3.03 

1.17 

 Post 10.87 

3.66 

9.46 

4.22 

1.40 

Similariti

es 

Pre 7.74 

3.51 

7.96 

3.52 

0.25 

 Post 9 

4.47 

7.93 

3.74 

1.01 

Line 

Drawing 

Pre 11.77 

4.98 

9.96 

3.99 

1.58 

 Post 12.12 

4.22 

8.65 

4 

3.34** 

 

Pattern 

Meaning 

Pre 11.83 

4.68 

10.09 

3.74 

1.63 

 Post 12.80 

4.81 

9.87 

4.11 

2.59** 
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structured) and is asked to generate as many responses as 

possible about what the design means to him or her. This 

test measures fluency and the ability to uncritically generate 

ideas and possibilities, both commonplace and unique. The 

game of chess uses primarily visuospatial strategies. 

Systematic chess training inculcates in the child the ability 

to think divergently, visualizing the pros and cons of the 

various chess moves. 

Garaigordobil (2006) studied the impact of a play 

program on the verbal and graphic-figural creativity. Results 

showed a positive effect of the intervention, as the 

experimental participants significantly increased their verbal 

creativity and graphic-figural creativity. This research 

primarily focused on structured cooperative play. The chess 

intervention in the present study also has structural 

characteristics that corroborate the finding of other studies 

that had indicated positive effects of play on the 

development of creativity. This structured quality helps the 

child to systematically visualize all the possible options and 

outcomes available to him or her. This ability, which has 

been acquired through chess training, has led to the 

increased total creativity scores and the increases on the 

visuospatial subtests. 

Implications 

It is evident that systematic chess intervention increases 

creativity in children. The child thinks beyond the usual 

solutions—using divergent thinking, thinking abstractly, 

weighing options, evaluating outcomes, and making 

decisions. Significant improvement in the Line Drawing and 

Pattern Meaning subtest substantiates the fact that the game 

of chess primarily uses visuo-spatial strategies. Systematic 

chess training inculcates in the child the ability to think 

divergently, visualizing the pros and cons of various chess 

moves. It allows the child to conceptualize all the possible 

options and outcomes available to him or her. Increasing the 

creativity of children has possible far-reaching benefits for 

academic performance and generally for life skills. 

Systematically learning chess as part of school activities 

appears to have a broad spectrum of positive outcomes. The 

child who develops the ability to think in creative ways in 

playing chess is likely to transfer this learning to dealing 

with life challenges creatively. 
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Abstract 

Modeling text document similarity is an important yet 

challenging task. Even the most advanced computational 

linguistic models often misjudge document similarity relative 

to humans. Regarding the pattern of misjudgment between 

models and humans, Lee and colleagues (2005) suggested that 

the models’ primary failure is occasional underestimation of 

strong similarity between documents. According to this 

suggestion, there should be more extreme misses (i.e., models 

failing to pick up on strong document similarity) than extreme 

false positives (i.e., models falsely detecting document 

similarity that does not exist). We tested this claim by 

comparing document similarity ratings generated by humans 

and latent semantic analysis (LSA). Notably, we implemented 

LSA with 441 unique parameter settings, determined optimal 

parameters that yielded high correlations with human ratings, 

and finally identified misses and false positives under the 

optimal parameter settings. The results showed that, as Lee et 

al. predicted, large errors were predominantly misses rather 

than false positives. Potential causes of the misses and false 

positives are discussed.   

Keywords: text document relatedness; semantic similarity; 
latent semantic analysis (LSA)  

Introduction 

Modeling how humans judge the semantic similarity of text 

documents is an interesting topic in cognitive science with 

numerous practical implications. In an effort to better model 

human document similarity judgments, Lee, Pincombe, and 

Welsh (2005) compared several models of document 

similarity, including latent semantic analysis (LSA). They 

found that LSA’s cosine similarity scores yielded higher 

agreement (r = .60) with aggregate human ratings than other 

models, such as Tversky’s (1977) ratio model (r = .50). 

Considering that the inter-rater correlation among human 

raters is also about .60, LSA seems to judge about as well as 

a single human rater. However, the moderate correlation 

between humans and LSA also suggests that LSA does not 

fully capture human similarity judgments1.  

                                                           
1 For the document pairs used in Lee et al. (2005), the highest 

reported correlation between a model and humans was .77 (Yeh, 

Ramage, Manning, Agirre, & Soroa, 2009). 

To better understand the weaknesses of LSA, and thereby 

improve models of text document similarity, this study 

investigated the pattern of discrepancy between LSA and 

humans with respect to their document similarity ratings. 

Specifically, we examined the frequency and degree of 

underestimation (misses) and overestimation (false positives) 

made by LSA relative to humans under favorable parameter 

settings of LSA.  

Misses vs. False Positives 

Regarding the nature of the misjudgment by models, Lee et 

al. (2005) suggested that extreme misses would be a stronger 

cause than extreme false positives. They made this suggestion 

based on an observation that the common features model (Lee 

& Navarro, 2002) occasionally misses the high similarity 

between documents that is readily apparent to humans. In a 

scatterplot of the model ratings against human ratings for 

each document pair, the authors found a cluster of points 

(document pairs) with low model ratings but high human 

ratings. That is, the model missed some of the strong 

document similarities that humans detected. 

Lee et al.’s (2005) analysis above was based on the 

common features model, but it might apply to LSA as well.  

The common features model judges document similarity 

primarily based on the proportion of common features 

(words) shared by two documents. Notably, LSA’s 

underlying model, the vector space model, determines 

document similarity in a similar manner. Therefore, Lee et 

al.’s findings suggesting more extreme misses over extreme 

false positives may also apply to LSA. This interesting 

hypothesis, if validated, would provide a valuable clue to 

improving models of text document similarity. However, it 

has not yet been rigorously tested. 

Testing the hypothesis seems straightforward at first 

glance: compare human and LSA’s document similarity 

ratings for a set of documents pairs. Then, document pairs 

with especially low LSA ratings compared to human ratings 

should be considered as misses and the reverse as false 
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positives. However, LSA’s document representation depends 

on the parameters used such as the quantity and quality of the 

background documents (Bullinaria & Levy, 2006), the 

dimensionality (Dumais, 1991; Landauer & Dumais, 1997), 

and the local-global weighting schemes (Lintean, Moldovan, 

Rus, & Mcnamara, 2010; Nakov, Popova, & Mateev, 2001). 

Therefore, LSA’s misjudgments relative to human judgments 

could vary depending on the parameters.  

In this study, we attempted to investigate the nature of 

misjudgment by LSA under its optimal parameter settings. 

Therefore, we first identified LSA’s optimal parameter 

settings by employing as many as 441 unique parameter 

combinations. Then, under the selected optimal parameter 

settings, we identified misjudgments by LSA as misses or 

false positives. Finally, we measured the degree of 

misjudgment of the two types using normalized scores.  
The remainder of this paper has the following structure: (1) 

introduction to LSA, (2) an experiment identifying optimal 

parameter settings, (3) identification of misjudgments as 

misses and false positives under the optimal parameter 

settings, and (4) discussion of the underlying causes of the 

misses and false positives.   

LSA 

LSA is based on a vector space model in which documents 

are first transformed into a word-by-document matrix. Rows 

of the matrix correspond to the unique words across 

documents, whereas columns correspond to individual 

documents. Cell values are the frequencies of words within 

each document. The cell values can be weighted in two 

respects: to what degree a word is important in representing 

a document’s topic (local weighting), and to what degree a 

word is important in distinguishing one document from 

another according to their topics (global weighting). Using 

the weighted cell values, each document can be represented 

as a vector in a multidimensional space, where the 

dimensions correspond the unique words. Finally, the 

sematic similarity between two document vectors is typically 

measured using the cosine similarity score. 

The core process that distinguishes LSA from the vector 

space model is singular value decomposition (SVD) 

implemented on the word-by-document matrix. SVD is a 

matrix factorization method that decomposes an original 

matrix (A) into three sub-matrices, USVT, where U is a 

unitary w * r matrix (word-by-dimension matrix), S is an r * 

r diagonal matrix with non-negative real numbers on its 

diagonal (singular value matrix), and VT is a unitary r * d 

matrix (dimension-by-document matrix). By multiplying 

these three sub-matrices, the original matrix can be retrieved, 

and this type of SVD is called full SVD.  

In a modified version of the full SVD, called reduced SVD, 

small singular values located in the lower right corner of S 

are intentionally discarded, while preserving the first k largest 

                                                           
2  Background documents are included in the original corpus 

subject to LSA, along with the target documents. They are employed 

only for constructing the multidimensional space in which the target 

singular values. The corresponding columns and rows of U 

and VT, respectively, are discarded, too. The original USVT, 

after discarding some values, then can be denoted as 

U’S’(VT)’, where U’ is a w * k matrix whose columns are the 

first k columns of U, S’ is a k * k diagonal matrix whose 

diagonal elements are the k largest singular values of S, and 

(VT)’ is a k * d matrix whose rows are the first k rows of VT. 

By multiplying these three reduced sub-matrices, one can 

obtain the least squares approximation of the original matrix. 

Finally, documents can be represented as vectors on a k 

dimensional singular-value-space, which has k orthogonal 

axes. These dimensions are constructed so that the first axis 

explains the largest amount of variance of A, and the second 

axis explains the second largest amount of variance of A, and 

so on. 

Furnas et al. (1988) was the first to apply the reduced SVD 

to the vector space model. This method was later called latent 

semantic analysis by Deerwester, Dumais, Furnas, Landauer, 

and Harshman (1990), who also demonstrated that LSA 

retrieves information better than traditional word-matching 

methods. Deerwester et al. argued that SVD uncovers latent 

semantic relations across documents that are buried in the 

corpus by removing noise (small singular values) in the 

original word-by-document matrix.  

Identification of Misses and False Positives 

under LSA’s Optimal Parameter Settings 

Stimuli and Procedure 

Target Text Documents We used the 1,225 document pairs 

from Pincombe (2004), which Lee et al. (2005) also adopted. 

These document pairs were generated by pairing 50 target 

news articles selected from Australian Broadcasting 

Corporation’s news mail service. Each news article had a 

single paragraph containing 51 to 126 words (average: 82 

words). They covered a variety of topics, such as terrorism 

and hunger in Africa. For each of the 1,225 document pairs, 

Pincombe collected about 10 human ratings by asking 83 

university students to each rate the relatedness of a subset of 

the document pairs. Participants used a five-point scale, with 

one indicating “highly unrelated” and five indicating “highly 

related”. 

 

Background Documents Lee et al. (2005) used 314 news 

articles from the same Australian news corpus as background 

documents2. In this study, to explore the optimal parameter 

settings of LSA, we employed 4,172 additional news articles 

from the same news corpus (total of 4,486). These new 

background documents contained a single paragraph 

(average: 152 words). They also covered a variety of topics 

as the 50 target news articles did. In addition to the 

background document size used in Lee et al. (314) and the 

maximum size available in this study (4,486), we examined 

documents are represented. It is generally regarded that LSA's 

performance improves as the number of background documents 

increases (Bullinaria & Levy, 2006). 
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five intermediate background document sizes by randomly 

selecting the following numbers of documents from the new 

set of 4,172 articles: 314, 750, 1,000, 2,000, and 3,000 (see 

Table 1).  

 

Table 1. Seven background document conditions. 

 

Size Source 

314 The same 314 news articles as in Lee et al. (2005) 

314 Randomly selected from the 4,172 articles 

750 Randomly selected from the 4,172 articles 

1,000 Randomly selected from the 4,172 articles 

2,000 Randomly selected from the 4,172 articles 

3,000 Randomly selected from the 4,172 articles 

4,486 
Combination of the 314 news articles from Lee et 

al. and the new 4,172 articles 

 

Dimensionality Regarding the dimensionality of the reduced 

SVD, the maximum possible dimension for a given 

background document size corresponds to the total number 

of documents subjected to SVD (50 + the number of 

background documents). For example, in the 314-

background document condition, the maximum dimension is 

364 (= 50 + 314). In most of the background document 

conditions employed in this study, higher dimensions than 

364 were possible. However, following some researchers’ 

arguments for the importance of maintaining 300 dimensions 

(Landauer & Dumais, 1997), we selected the following seven 

dimensions for the reduced SVD (i.e., LSA): 50, 100, 150, 

200, 250, 300, and 364.  

 

Other LSA Parameters Stemming, normalization, and 

removal of stopwords and alphanumeric words are known to 

improve LSA’s document representation (Pincombe, 2004; 

Stone, Dennis, & Kwantes, 2011). Therefore, they were 

applied to all LSA runs. Three local weighting schemes (tf, 

log, and alt-log) and three global weighting schemes (idf, 

entropy, and p-inverse) were selected based on their 

significant effects observed in a pilot study (not reported 

here). 

LSA cosine scores were computed for every possible (441) 

combination of the above parameters: 7 background 

document sizes * 7 dimensions * 3 local weighting schemes 

* 3 global weighting schemes. 

 

Identifying Misses and False Positives To classify LSA 

ratings as misses and false positives relative to human ratings, 

we first normalized the human ratings and LSA’s cosine 

scores using z-score 3 . The degree of misjudgment was 

measured as the absolute difference between the two 

normalized scores for a given document pair. If a document 

pair’s normalized cosine score was smaller than the 

                                                           
3 We considered the approach of transforming scores into a 0-1 

scale, as in Lee et al. (2005). However, this approach is overly 

sensitive to the minimum and maximum values. On the other hand, 

normalized human rating by at least 1.0, then the LSA’s 

cosine score was considered a miss. But if a document pair’s 

normalized cosine score was greater than the normalized 

human rating by 1.0, then the LSA cosine score was 

considered a false positive.  

Results and Discussion 

Optimal Parameters of LSA To determine which parameter 

settings are optimal for LSA’s document similarity 

representation, we examined the correlation between LSA 

cosine scores and human ratings. The correlation was 

affected more systematically and strongly by the interaction 

of background document size and dimensionality than the 

local-global weighting schemes. Therefore, for the sake of 

simplicity, we merged the correlations across the nine 

weighting schemes at a given background document size and 

dimensionality. As shown in Table 2, the correlation 

increased markedly as we added more background 

documents, consistent with previous research (Bullinaria & 

Levy, 2006). But this effect was more prominent at relatively 

high dimensions than at low dimensions.  

Table 2. Correlations between human ratings and LSA 

cosine scores as a factor of the background document size 

and dimensionality. Correlations were merged across the 

nine local-global weighting schemes at a given background 

document size and dimensionality. Relatively high 

correlations (r ≥ .67) are shaded. 

 Dimension 
 

Background 50 100 150 200 250 300 364 Average 

314 0.53 0.55 0.55 0.56 0.56 0.57 0.59 0.56 

New 314 0.62 0.59 0.58 0.56 0.57 0.58 0.61 0.59 

750 0.65 0.66 0.63 0.61 0.61 0.60 0.59 0.62 

1000 0.62 0.66 0.66 0.64 0.62 0.61 0.60 0.63 

2000 0.51 0.61 0.64 0.68 0.67 0.68 0.67 0.64 

3000 0.53 0.61 0.64 0.64 0.66 0.67 0.69 0.63 

4486 0.58 0.65 0.67 0.69 0.68 0.68 0.66 0.66 

Average 0.58 0.62 0.62 0.63 0.62 0.63 0.63 0.62 

 

To identify optimal parameter settings of LSA, we first 

selected the 10 combinations of background document size 

and dimension that yielded correlations of at least .67, 

averaged across all weighting schemes (see the shaded cells 

in Table 2). Then, for each of these 10 combinations, we 

chose the local-global weighting scheme that yielded the 

highest correlation with human ratings. Table 3 shows the 

specific parameter settings of these 10 selected combinations 

as optimal parameter settings. The table also shows the 

correlation, number of misses and false positives, and the 

average absolute z-score errors.  

the z-score normalization yields more reliable results with respect to 

the frequency of misses and false positives.  
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Table 3. Ten optimal parameter settings of LSA selected for the identification of misses and false positives. The parameters, 

correlation with human ratings, number of misses and false positives, and the average of the absolute z-score errors are shown. 

 

Background 

document 

size 

Dimension 
Local 

Weighting 

Global 

Weighting 
Correlation 

Number 

of misses 

Number 

of false 

positives 

Average 

misjudgment 

(absolute z-score 

error) for misses 

Average 

misjudgment 

(absolute z-score 

error) for false 

positives 

2000 200 tf p-inverse 0.70 112 86 1.57 1.43 

2000 250 tf p-inverse 0.68 121 67 1.60 1.56 

2000 300 tf idf 0.68 117 72 1.61 1.56 

2000 364 alt-log p-inverse 0.68 118 78 1.60 1.54 

3000 300 tf p-inverse 0.68 115 86 1.63 1.47 

3000 364 alt-log entropy 0.69 104 76 1.61 1.42 

4486 150 alt-log p-inverse 0.68 119 95 1.57 1.42 

4486 200 tf p-inverse 0.70 120 83 1.62 1.48 

4486 250 tf p-inverse 0.68 124 78 1.64 1.58 

4486 300 tf idf 0.68 119 69 1.61 1.49 

   Average 0.69 117 79 1.57 1.43 

 

Nature of Misjudgments by LSA To determine the nature 

of LSA’s misjudgments under optimal parameters, we used 

the z-score errors obtained from the 10 parameter settings 

shown in Table 3. As shown at the bottom of the table, misses 

(MMiss = 117) were much more common than false positives 

(MFalse Positive = 79), χ2 (1, N = 1,959) = 73.324, p < .001, just 

as suggested by Lee et al. (2005). Also, as the error 

magnitude increases, the ratio of misses to false positives also 

increases, which is consistent across the 10 optimal parameter 

settings. Figure 1 shows the frequency of the two types of 

errors (misses vs. false positives) as a function of the absolute 

z-score error.  

 

 

Figure 1. The frequency of the two types of misjudgment by 

LSA as a function of the absolute z-score error.  

 

Effect of the Parameters on the Frequency of Misses and 

False Positives Although the distribution of the two types of 

errors by LSA at optimal parameters was the primary focus 

of this study, we also examined the ratio of misses to false 

positives across all the 441 parameter settings. The results 

showed that the ratios were systematically affected by the 

interaction between the background document size and 

dimensionality. That is, the ratio of misses to false positives 

increased as the dimensionality increased. However, the 

degree of increase is getting less prominent as the background 

document size increases. In other words, although there were 

more misses than false positives in general, the disproportion 

of misses over false positives is more prominent at high 

dimensions with small number of background documents. 

 

Effect of the Number of Background Documents on 

Correlation between Humans and LSA One of the most 

striking findings above was the strong effect of background 

document size on LSA’s document similarity representation. 

As shown in Table 2, employing more background 

documents (combined with an appropriate dimensionality) 

tends to significantly improve LSA’s document similarity 

judgments. To illustrate the significant effect of background 

documents, we plotted the correlation between LSA and 

human ratings for three background document sizes (0, 314, 

and 4,486) and the nine weighting schemes as a function of 

dimensionality (Figure 2). The graph illustrates (a) the strong 

effect of the number of background documents, (b) important 

effect of dimensionality when the background document size 

is small (i.e., the left side of the graph), and (c) the relative 

unimportance of weighting schemes.   
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Figure 2. The correlation of ratings between humans and 

LSA for three background document conditions (0, 314 and 

4,486) and nine weighting schemes as a function of 

dimensionality. 

One may suspect that including even more background 

documents would further increase the correlation. However, 

to make a positive impact on LSA's performance, the 

background documents should not only be numerous but also 

relevant to the content of the target documents (Foltz, Britt, 

& Perfetti, 1995). For example, Stone, Dennis, and Kwantes 

(2011) tested the effect of various kinds of background 

documents on LSA's document similarity judgments, using 

the same 50 target news articles examined in this study. They 

tested 55,021 Canada Toronto Star newspaper articles 

(miscellaneous gossip paragraphs, from the year 2005) and 

10,000 articles selected by the researchers from online 

encyclopedia, Wikipedia (http://www.wikipedia.org/). 

However, the highest correlation between humans and LSA 

obtained was about .10 with the gossip news articles as 

background and .40 with the Wikipedia background 

documents. These correlations were significantly lower than 

the highest correlation of .60 obtained in Lee et al. (2005) and 

.70 in the current study, despite utilizing only 314 and 4,486 

background documents, respectively. Therefore, not only the 

size but also the relevance of background documents to the 

target documents seem to be critical for LSA’s document 

similarity judgments. 

 If target documents came from a certain population (e.g., 

specific news corpus), we recommend using documents from 

the same population as background documents. In our case, 

employing background documents of 4,172 news articles that 

came from the same population as the target articles increased 

the correlation between humans and LSA from .60 to .70. 

 

Conclusion 
Lee et al. (2005) suggested that the primary weakness of 

computational models of document similarity is failing to 

pick up on some of the strong document similarities that 

humans easily detect. To test this hypothesis, we compared 

the document similarity ratings made by humans and LSA 

based on a range of parameter combinations. Then we 

identified the frequency and degree of large misses and large 

false positives under optimal parameters of LSA. The results 

confirmed that LSA makes more misses than false positives, 

especially among the most severe errors.  

The results also suggest that if one attempts to further 

improve models of text document similarity by reducing its 

errors relative to humans, the misses rather than the false 

positive would be the primary focus of the revision. More 

specifically, one should look for ways to help models pick up 

on some of the strong semantic similarities that they currently 

miss.  

Potential Causes of Misses and False Positives 

An obvious follow-up question of this study is what causes 

LSA’s greatest misses and false positives. Considering that 

LSA’s basis, the vector space model, judges document 

similarity based on the overall word similarity between two 

documents, a potential cause of error is that LSA misses or 

falsely overestimates the semantic similarity of some word 

pairs from two documents. In fact, there are various cases 

where LSA cannot help but miss some of the word 

similarities, which in turn would cause one type of error, 

miss. For example, although “United States”, “US”, “U.S.”, 

and “U.S.A” refer to the same country, they may not be 

recognized as the same entity in the word-by-document 

matrix for various reasons: because they are not a single word 

(United States), too short to be included (US or U.S. after the 

special character removal), or happen to match an excluded 

stop word (US and the pronoun us). However, humans would 

correctly recognize them and utilize these words for 

document similarity judgment. 

Also, some words (especially proper nouns including 

human names) may occur in the target documents but not in 

the background documents, preventing LSA from utilizing 

those words in judging document similarity. However, those 

words could be critical for humans to judge the document 

similarity. Then, LSA may judge document pairs including 

those words to be less related than humans would do (i.e., 

leading to a miss). 

The above-mentioned potential cause of misses (i.e., LSA 

misses document similarity because it misses word similarity 

in document pairs) could be further supported if LSA’s 

document similarity scores do correspond to the overall word 

similarity between two documents. To confirm this, we 

calculated the correlation between the 1,225 document pairs’ 

LSA cosine scores and the average LSA cosine scores of 

every possible word pair from each of the document pairs. 

We found a correlation of .73 from this analysis, indicating 

that LSA’s document similarity is heavily relying on the 

overall word similarity in document pairs. 

Similar to the potential cause of misses by LSA addressed 

in the above, a potential cause of false positives by LSA is 

that LSA mistakenly perceives semantic similarity between 

words that are in fact unrelated. Table 4 shows 10 word pairs 

that were judged to be highly related by humans and LSA, 

respectively in one of the document pairs used in this study. 

Although LSA does generally make reasonable judgments on 
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word relatedness, some word pairs judged to be highly related 

by LSA do not seem to have a meaningful relationship. For 

example, design and document were the most strongly related 

word pair to LSA, despite being seemingly unrelated. Thus, 

LSA will occasionally overestimate the relatedness of the 

document pairs that include this word pair. 

Table 4. The 10 most related words pairs to humans and 

LSA from a pair of news articles. 

Highly related 

word pairs by 

human 

Ratings                                  

(1-5 scale) 

Highly related 

word pairs by 

LSA 

Ratings  

(z-score) 

dollar-money 5.00 design-document 6.87 

job-money 5.00 increase-rise 5.61 

angrily-attack 4.90 paid-worker 3.97 

plan-target 4.83 effect-target 3.38 

increase-profit 4.80 group-work 3.37 

money-profit 4.80 effect-increase 3.08 

cost-lawsuit 4.78 disclosure-profit 2.89 

job-meet 4.75 disclosure-financial 2.83 

agreement-plan 4.73 commonwealth-deal 2.41 

job-paid 4.73 australia-target 2.32 

 

An alternative hypothesis regarding the misses and false 

positives of LSA is that, when judging document similarity, 

humans do not rely on the overall word similarity as much as 

LSA does. As Griffiths, Steyvers, and Tenenbaum (2007) 

suggested, humans may catch the gist of each document and 

compare the semantic representations of the gist rather than 

relying on the overall similarity of words in the documents. 

Then, two documents with a large overlap of words but with 

different topics would be regarded unrelated by humans 

although they could be highly related to LSA (resulting in 

false positives). To assess to what degree human document 

similarity judgments rely on the overall word similarity, one 

could examine the correlation between human document 

similarity ratings and the average of the human similarity 

ratings for all the possible word pairs in a given document 

pair. If humans do not rely on the overall word similarity as 

much as LSA does, then the correlation would not be as high 

as the corresponding correlation of LSA. 
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Abstract 

Previous research suggests that semi-realistic animation films 
such as The Polar Express are representative of the uncanny 
valley (UV) hypothesis, which predicts that highly human-
like artificial characters can appear eerie. In the present study, 
we investigated the extent to which critical film reviews can 
influence the perceived eeriness of such films. The reviews 
were adopted from authentic ones and expressed either 
negative or positive attitudes towards the animation 
techniques. Audiovisual speech asynchrony, which is known 
to induce eeriness, was included as an objective manipulation. 
Our results showed large review tone effects for both implicit 
and explicit eeriness evaluations. In contrast, speech 
asynchrony failed to elicit significant effects. These results 
demonstrate that critical film reviews representing opposite 
attitudinal poles can elicit consistent changes in the viewers’ 
evaluations of semi-realistic animations. The present findings 
cannot, however, be taken as evidence against the UV 
hypothesis itself in computer-generated characters. 

Keywords: Uncanny Valley hypothesis; anthropomorphism; 
social influence; animation films 

Introduction 

Realistic computer-generated (CG) characters are 

commonly used in lieu of human actors when creating social 

signal stimuli for neurocognitive experiments. Although this 

practice has several advantages such as the ease of creating 

and manipulating stimuli, it is conceivable that subtle flaws 

in highly realistic CG characters could elicit unintended 

negative reactions in human participants. The Uncanny 

Valley (UV) hypothesis predicted such reactions already in 

the 1970s. The original hypothesis suggested that observing 

highly realistic robots or other mechanical devices can elicit 

negative feelings characterized by eeriness and lack of 

familiarity (Mori, 1970/2012). 

Empirical Evidence for Uncanny Valley 

Although the UV hypothesis is compelling and it seems to 

have plentiful anecdotal evidence (see below), empirical 

evidence for its existence is still elusive (Kätsyri, Förger, 

Mäkäräinen, & Takala, 2015; S. Wang, Lilienfeld, & 

Rochat, 2015). A lack of commonly agreed-upon 

operationalization is a fundamental problem for testing the 

hypothesis. According to a conservative interpretation, any 

artificial-to-human stimulus continuum should elicit a non-

linear evaluation curve in which the most negative 

evaluations occur at levels preceding the full degree of 

human-likeness. The bulk of empirical studies have, 

however, shown that increasingly human-like stimuli simply 

tend to elicit more positive evaluations in a linear manner 

(Kätsyri et al., 2015).  

Although the UV is apparently not triggered by all 

artificial-to-human continua, it could still occur under some 

specific conditions. Accumulating evidence has shown that 

negative evaluations can be elicited by a mismatch between 

artificial and realistic features (Seyama & Nagayama, 2007; 

MacDorman & Chattopadhyay, 2016) or by categorization 

difficulty (Burleigh & Schoenherr, 2015; Yamada, Kawabe, 

& Ihaya, 2013; however, see MacDorman & 

Chattopadhyay, 2016). Almost all of this evidence comes 

from rigorous manipulations of CG and human faces. A few 

other studies using naturalistic – and plausibly more 

ecologically valid – stimuli have provided evidence for the 

UV in pictures of prosthetic hands (Poliakoff, Beach, Best, 

Howard, & Gowen, 2013) and real-world robot faces 

(Mathur & Reichling, 2016). 

Uncanny Valley and Animated Film Characters 

The UV hypothesis was rediscovered at the beginning of the 

present millennium (e.g., MacDorman, 2005) and has since 

received increasing research interest. First fully computer-

animated films with deliberately realistic characters, 

including Final Fantasy (Aida, Lee, Sakai, Sakaguchi, & 

Sakakibara, 2001) and The Polar Express (Goetzman, 

Starkey, Teitler, & Zemeckis, 2004), were released roughly 

around the same time. Perhaps not coincidentally, these and 

some other animation films have been adopted as anecdotal 

examples of the UV, with frequent citations in scientific 

research reports (e.g., Piwek, McKay, & Pollick, 2014) and 

popular scientific magazines (e.g., Spinney, 2017). 

It seems plausible that semi-realistic animated film 

characters could appear eerie in the sense of the UV. Early 

computer graphics methods in particular tended to suffer 

from shortcomings in modeling light reflections from the 

skin and eyes, for example (e.g., Wechsler, 2002). These 

and other subtle flaws on otherwise quite realistic characters 

could elicit sufficient featural mismatch to make them 

appear uncanny. In general, semi-realistic animated film 

characters stand out from the intentionally caricatured and 

exaggerated characters that are the norm in traditional 

animation (Kaba, 2012). 

To our best knowledge, semi-realistic animated film 

characters, cartoonish animated film characters, and human 

actors have been explicitly compared with each other only 

recently in our own previous study (Kätsyri, Mäkäräinen, & 

Takala, 2017). The results showed that semi-realistic 

characters are considered more eerie and selected more 

often as representative examples of the UV hypothesis than 

cartoonish characters or human actors. These results suggest 

that semi-realistic animated film characters capture some 

aspects of the UV hypothesis. 
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Critical Film Reviews and Uncanny Valley 

Semi-realistic animation films, which are a rare exception 

among the traditional computer-animated films, have 

attracted a mixed but predominantly negative critical 

reception. Some of the published reviews have explicitly 

characterized the realistic characters as “soulless” and 

“creepy” (e.g., Savlov, 2004). In the present study, we 

explore the extent to which this kind of critical reviews can 

influence the evaluation of animated characters in semi-

realistic films. 

A research tradition in social psychology has shown that 

individuals’ attitudes and behavior are influenced by those 

of others (Bohner & Dickel, 2011). In one form of social 

influence, credible information from others is accepted as 

valid evidence about reality (Deutsch & Gerard, 1955). 

Perceived expertise on the subject matter has long been 

considered as one source of credibility (Kelman, 1956). On 

the other hand, negative attitudes are known to exert greater 

influence than equally intense positive attitudes (Cacioppo, 

Gardner, & Berntson, 1997). An excellent demonstration of 

this is that negative peer reviews exert greater influence than 

positive reviews on individuals’ attitudes towards consumer 

products (Lee, Park, & Han, 2008). Taken together, negative 

reviews from film experts should exert an influence. 

Consistently, negative film reviews are known to elicit 

decreased box profit especially during early presentation 

weeks (Basuroy, Chatterjee, & Ravid, 2003). 

Present Study 

The present study aims to compare the effects of critical 

film reviews and objective differences between films on the 

UV phenomenon in semi-realistic animation films. When 

comparing small sets of individual films (as in Kätsyri et al., 

2017), confound effects cannot be fully excluded. Instead, in 

the present study, we decided to manipulate audiovisual 

speech asynchrony in the same set of films. Audiovisual 

speech asynchrony was selected as the objective 

manipulation since a previous study has shown that it elicits 

eeriness in virtual characters (Tinwell, Grimshaw, & Nabi, 

2015). Increased eeriness was observed at a 200-ms 

asynchrony at the earliest, and it was more pronounced 

when the auditory stream preceded rather than followed the 

visual stream. These findings are consistent with 

psychophysics literature, in which simultaneity judgments 

for audiovisual speech occur roughly in the time frame of  

–130 ms (audio first) to +220 ms (vision first) (Conrey & 

Pisoni, 2006). 

Participants were asked both to rate the eeriness of films 

immediately after viewing them (implicit evaluations) and 

to score how representative each film was of UV after 

having received full debriefing (explicit evaluations). Our 

main hypotheses were: 

H1: Majority negative reviews will elicit higher implicit 

and explicit eeriness than majority positive reviews. 

H2: Asynchronous audiovisual speech will elicit higher 

implicit and explicit eeriness than synchronous audiovisual 

speech. 

Method 

Participants 

Forty participants (20 women) with a mean age of 29.7 

years (SD = 8.5) took part in the study. All participants were 

native Finnish speakers with a good command of written 

English. Three participants who scored poorly in a post-

experimental reading comprehension test were replaced 

with new participants. Participants reported having normal 

hearing, normal (or corrected) visual acuity, and no history 

of dyslexia. Participants were compensated with two movie 

tickets. Study protocol was approved by the Aalto 

University Research Ethics committee. 

Stimuli 

Animation Film Scenes Stimuli were four film scenes from 

animation films Final Fantasy (Aida et al., 2001), The Polar 

Express (Goetzman et al., 2004), Beowulf (Rapke, Starkey, 

& Zemeckis, 2007), and Tintin (Jackson, Kennedy, & 

Spielberg, 2011). Films were selected on the basis of our 

previous evaluation (Kätsyri et al., 2017). All films were 

fully computer-animated and used motion-capture 

techniques for character animation (most character motions 

were captured from real actors). Film scenes were extracted 

from official DVD releases, depicted spoken dialogue, and 

did not contain violence or nudity. These copyrighted 

materials were presented under an external license. 

Audiovisual Speech Synchrony Original audiovisual 

tracks for the predominantly spoken film scenes were used 

for the synchronous speech condition. For the asynchronous 

condition, auditory stream in each film scene was modified 

to precede the visual stream by 200 ms.  

Film Reviews For each film, six fictional but plausible film 

reviews (three positive and three negative) were created. For 

authenticity, all reviews were displayed in English. 

Available reviews were first extracted from Metacritic 

database (http://www.metacritic.com). Brief statements 

expressing positive and negative attitudes towards 

animation techniques were then extracted and modified to 

produce an initial set of 12 reviews (half positive). These 

reviews were evaluated by 19 additional participants for 

expressed attitude (−4 very negative to +4 very positive). 

Negative and positive reviews were clearly differentiated 

(M = −2.1 and +2.6, SD = 1.2 and 0.8), F(1, 18) = 114.95, p 

< .001, ηp
2
 = .87. 

Final selected stimuli were three positive and three 

negative reviews with roughly similar lengths (M = 82 and 

79 words) and similar mean ratings across films. The 

reviews focused on either specific visual features (e.g., “[…] 

their eyes, supposedly the windows to the soul, are more 

often dead than alive”) or the overall impression generated 

by highly realistic animations (e.g., “[…] the soft-edged, 

photorealistic style – suspended somewhere between live-

action and animation, fairy tale and reality – feels entirely 

appropriate in this context”). 
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Table 1: Counterbalancing between films and conditions. 

 

Group Negative/ 

Asynch. 

Positive/ 

Asynch. 

Negative/ 

Synch. 

Positive/ 

Synch. 

1 F1 F2 F3 F4 

2 F2 F3 F4 F1 

3 F3 F4 F1 F2 

4 F4 F1 F2 F3 

Procedure 

Film preference evaluation was used as a distractor task to 

avoid making the true study objectives too obvious. 

Specifically, participants were explained that the study 

aimed to investigate the effects of critical film reviews on 

attitudes and consumer behavior. Full debriefing was given 

at the end of the study. 

Participants were assigned randomly to the conditions of a  

4 (group) × 2 (majority review tone: negative, positive) ×  

2 (speech synchrony: asynchronous, synchronous) mixed 

model design. Majority review tone and speech synchrony 

were counterbalanced with films using a 4 × 4 Latin square 

as shown in Table 1. Participants were asked to read film 

reviews carefully and told that a memory task would follow 

the evaluation. Each trial proceeded as follows: 

 Title and a brief description of the film were presented 

with a minimum reading time of 20 s. 

 Four reviews were presented (min. 10 s per each). For the 

majority negative/positive condition, three reviews were 

negative/positive and one was of the opposite valence. 

Reviews were paired randomly with fictional reviewer 

names (half female) and well-known magazine titles. 

 An overview of the film scene was presented (min. 20 s). 

 The movie scene was played back (164 s to 182 s). 

 The participant answered a series of self-report questions. 

The experiment was carried out on a desktop computer 

running Psychtoolbox (Brainard, 1997) for Matlab. Film 

stimuli were displayed on a 24” wide-screen display (Eizo 

ColorEdge CG241W) at horizontal resolution of 1024 pixels 

and vertical resolution depending on aspect ratio (424 to 548 

pixels). Participants were seated 80 cm from the display. 

Auditory sound tracks were standardized at –5 dB and 

played on closed earphones at a loud but comfortable level. 

The whole experiment took approximately 60-90 mins. 

Dependent Variables 

Film Preference For attitude towards the film (cf. 

Voorveld, 2011), participants rated whether they enjoyed 

each film, were content with it, and found it interesting. This 

scale had a good internal reliability (Cronbach’s α = 0.96). 

For consumption intent (cf. A. Wang, 2006), participants 

rated whether they would like to see the full film (again if 

seen), recommend it to a friend, and pay for seeing it (good 

reliability: α = 0.91). These and all other ratings were given 

on a 7-step Likert scale ranging from total disagreement (1) 

to total agreement (7). 

Table 2: Means (and SEMs) by majority review tone. 

 

Variable Negative Positive F(1, 36) p ηp
2
 

Film attitude 4.6 (0.2) 5.0 (0.1) 6.94 .027 .13 

Consumption intent 3.8 (0.2) 4.4 (0.2) 8.72 .006 .19 

Human-likeness 4.7 (0.2) 5.0 (0.1) 8.08 .007 .18 

Eeriness 3.2 (0.2) 2.8 (0.2) 7.46 .010 .17 

Representativeness 10.5 (0.7) 8.2 (0.8) 6.52 .015 .15 

 

Eeriness (Implicit) and Human-likeness For eeriness, 

participants rated whether the characters appeared eerie, 

creepy, and strange (good reliability: α = 0.84). Although 

not included in any hypothesis, human-likeness scale was 

also included because it is a focal dimension of the UV 

(Mori, 1970/2012). Participants were asked to rate whether 

the characters appeared realistic, cartoonish, and similar to 

real people (adequate reliability: α = 0.71).  

 

Representativeness (Explicit Eeriness) After finishing the 

film evaluation task, participants received a full debriefing 

of the experiment and the UV hypothesis. Participants were 

then given four plastic cards depicting the four animation 

films and asked to place these cards on a cardboard 

depending on how representative the films were of the UV 

(left side: not at all, right side: perfectly). Responses were 

scored from 0 to 100 based on the cards’ physical positions. 

Analysis 

Data were subjected to a mixed-design GLM analysis in 

SPSS (version 24). Effect sizes were quantified using partial 

η
2
 values and classified as large (η

2
 ≥ .14), medium (η

2
 ≥ 

.06), or small (η
2
 ≥ .01) based on Cohen’s (1992) guidelines. 

Results 

Manipulation Checks 

After the experiment, participants were asked to read 12 

review statements for each film, and to tell whether they had 

read these reviews during the experiment (yes/no). 

Statements included four correct and eight incorrect options 

and an equal number of positive and negative reviews. 

Recognition performance, as indexed by d’ sensitivity score 

(Stevens & Pashler, 2002), was well above chance level (M 

= 1.47, SD = 0.59), t(39) = 15.80, p < .001, showing that 

participants had attended and comprehended the reviews. 

Negative Reviews 

As can be seen in Table 2, majority review tone elicited 

significant effects for all dependent variables. Supporting 

H1, majority negative reviews elicited higher eeriness 

ratings and representativeness scores than majority positive 

reviews. In the distractor task, majority negative reviews 

elicited decreased film attitude and consumption intent 

ratings. Human-likeness ratings were decreased for majority 

negative review reviews. Review tone had a medium effect 

for film attitude and a large effect for all other variables. 
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Table 3: Means (and SEMs) by speech synchrony. 

 

Variable Asynch. Synch. F(1, 36) p ηp
2 

Film attitude 4.8 (0.2) 4.8 (0.2) 0.02 .884 .00 
Consumption intent 4.2 (0.2) 4.0 (0.2) 0.46 .503 .01 
Human-likeness 4.8 (0.2) 4.9 (0.2) 0.21 .650 .01 
Eeriness 3.0 (0.2) 3.0 (0.2) 0.07 .790 .00 
Representativeness 9.9 (0.8) 8.7 (0.9) 1.26 .269 .03 

Speech Asynchrony 

As shown in Table 3, speech synchrony failed to elicit 

significant main effects on eeriness, representativeness, or 

any other variable. Asynchrony elicited slightly higher 

representativeness scores than synchrony; however, this 

effect was small and clearly non-significant. Hence, the 

results did not support hypothesis H2. 

Interactions 

Fig. 1 illustrates interaction effects between review tone and 

speech synchrony. Visual inspection suggests that review 

effects for some variables were qualified by an interaction 

with speech synchrony. Consistently, significant and large 

interaction effects were observed for film attitude, F(1, 36) 

= 7.05, p = .012, ηp
2
 = .16, consumption intent, F(1, 36) = 

6.42, p = .016, ηp
2
 = .15, and human-likeness, F(1, 36) = 

7.59, p = .009, ηp
2
 = .17. Simple effect tests revealed that for 

these variables, negative reviews elicited lower ratings than 

positive reviews only in the asynchronous condition (p ≤ 

.001, ηp
2
 ≥ .254). Importantly, interaction effects were not 

significant for eeriness, F(1, 36) < 1, p = .643, ηp
2
 = .01, or 

representativeness, F(1, 36) = 1.21, p = .278, ηp
2
 = .03. 

Hence, H1 was not affected by this interaction. 

Confounds 

The following confound effects were tested and excluded 

using mixed model analyses (Hoffman & Rovine, 2007): 

previous familiarity (film seen or not seen), awareness of 

UV, awareness of review manipulation, and awareness of 

asynchrony manipulation. A mixed model equivalent to 

GLM was first specified, and confounds were then added 

and tested individually. The pattern of significant results 

was not changed by the inclusion of any tested confound 

into the model. 

Awareness variables were derived from a semi-structured 

interview conducted the end of the experiment. Briefly, UV 

awareness meant that participants (18%) had heard about 

the UV hypothesis, were able to explain it correctly, and 

associated it with this experiment. For review awareness, 

participants (30%) noticed that films were preceded 

unequally by positive and negative reviews, were able to 

choose which films received majority positive/negative 

reviews, and were aware of the manipulation. For 

asynchrony awareness, participants (30%) mentioned 

audiovisual asynchrony spontaneously and were aware of 

the manipulation. Notably, only 8% of participants were 

able to choose asynchronous films correctly, however. 

 
Figure 1: Means (and SEMs) by majority review tone and 

speech synchrony. Note that representativeness scores are 

truncated to 0–20. 

Discussion 

The aim of the present study was to provide an objective 

comparison of the effects of critical reviews and objective 

differences (audiovisual speech synchrony or asynchrony) 

on the UV phenomenon in semi-realistic animation films. 

We hypothesized that critical film reviews focusing on the 

appearance of realistic animation technologies would exert 

an influence on both implicitly and explicitly evaluated 

eeriness. Indeed, our results showed that review tone 

(majority positive or negative) elicited large effects both on 

eeriness ratings given immediately after film viewing 

(implicit evaluations) and representativeness scores given 

after full debriefing of the UV (explicit evaluations). 

Unexpectedly, audiovisual speech asynchrony failed to elicit 

significant effects. 

The present results demonstrate that social influence 

(Bohner & Dickel, 2011) originating from critical reviews 

can exert a large influence on the subjective eeriness of 

semi-realistic animated film characters. Results from 

explicit evaluations are particularly important because they 

demonstrate that critical reviews can affect individuals’ 

attitudes specifically in the UV context. A closer inspection 

of the results suggests that participants did not consider the 

animation films as particularly eerie: 95% confidence 

interval for the overall eeriness ratings was [2.7, 3.3] on the 

7-step scale (i.e., below midpoint) and for the overall 

representativeness scores [8.1, 10.5] on the visual scale from 

0 to 100. In the absence of strong effects in the stimuli, 

participants may have relied on information from the film 

reviews instead.  

Although not predicted beforehand, majority negative 

reviews also elicited lower human-likeness ratings than 

majority positive reviews – but only in film scenes with 

asynchronous audiovisual speech dialogue. This result 

differs clearly from eeriness evaluations, which were not 

sensitive to the interaction between review tone and 

synchrony. This suggests that review effects were more 

robust for evaluated eeriness than for evaluated human-

likeness. 

The failure to find significant effects for the 200-ms 

audiovisual speech asynchrony is surprising given that such 

delay should be noticeable on human faces (Conrey & 

Pisoni, 2006) and elicit eeriness in virtual characters as well 
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(Tinwell et al., 2015). We note that several participants 

(30%) commented spontaneously upon asynchrony in the 

films even though much fewer (8%) were actually able to 

identify which films were truly asynchronous. A possible 

explanation for this discrepancy is that animated lip 

movements were sufficiently inaccurate to begin with in 

some of the films so that additional delay had little or no 

effect on the perceived asynchrony. It is also possible that 

asynchrony effects may have been concealed by the stronger 

review tone effects. In partial support, secondary 

evaluations – but not eeriness evaluations – were affected by 

the interaction between review tone and asynchrony. 

A significant limitation of the present study is that, in the 

absence of statistically significant effect for asynchronous 

speech, the magnitude of critical review effect cannot be 

meaningfully interpreted. Hence, the present results can tell 

us that critical film reviews exert a large influence on the 

perceived eeriness of semi-realistic animated film 

characters, but it cannot tell us whether these effects are 

weaker or stronger than those elicited by genuine physical 

differences in the stimuli. 

The present results are nevertheless relevant for the UV 

phenomenon because semi-realistic animated film 

characters have already been linked to this phenomenon 

previously (Kätsyri et al., 2017). Methodological limitations 

in this previous study warrant some caution in interpreting 

the findings; for example, eeriness ratings were close to 

minimum for all film characters. It is particularly clear that 

semi-realistic animation films do not elicit any such 

aversion that could be implicitly or explicitly likened to 

human corpses or zombies (cf. Mori, 1970/2012). 

Nevertheless, semi-realistic animated characters received 

slightly but statistically significantly higher eeriness ratings 

and were considered more often as being representative of 

the UV hypothesis than other types of films. Hence, these 

previous findings provide support for subtle UV effects in 

semi-realistic animated film characters. The present results 

add to this by demonstrating that such effects can also be 

elicited by critical film reviews. It should be emphasized 

that the present study did not aim to “find” the UV for 

animated characters, as this was already done previously. 

Precisely for the same reason, the present results should 

be considered meaningful even though the review effect was 

not tested for cartoonish animated characters or real human 

actors. In fact, the present film reviews that focused 

explicitly on the disadvantages of realistic animation 

techniques could not have been paired with any other types 

of films, at least not without arousing suspicion in the study 

participants. Although fictitious negative reviews focusing 

on the disadvantages of traditional animation could possibly 

have been created, it is likely that such stimuli would have 

been considered implausible as this kind of reviews do not 

appear to exist in reality. 

Taken together, the present findings demonstrate that 

critical film reviews representing opposite attitudinal poles – 

negative or positive – towards realistic animation techniques 

can elicit consistent changes in individuals’ evaluations.  

In this sense, the UV phenomenon in semi-realistic 

animation films could be characterized as being bipolar. 

The present findings should obviously be interpreted with 

caution when it comes to explaining the complexities of 

attitude formation in real life. Allowing some speculation, it 

is possible that critical film reviews might have contributed 

to the wide-spread adoption of specific animation films as 

anecdotal examples of the UV. The present results 

empathetically cannot be taken to mean that the UV would 

be just a media phenomenon, however. First, the present 

study does not allow comparing the effects of critical film 

reviews to genuine differences between stimuli. Second, 

empirical evidence for the UV phenomenon has already 

begun to accumulate, especially from studies with featurally 

mismatching (Seyama & Nagayama, 2007; MacDorman & 

Chattopadhyay, 2016) and naturalistic stimuli (Mathur & 

Reichling, 2016; Poliakoff et al., 2013).  

Overall, the present findings highlight the importance of 

social factors in evaluating contemporary technological 

artefacts, in particular those that involve human-like 

characteristics. 
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Abstract

During interaction with others, we perceive and produce so-
cial actions in close temporal distance or even simultaneously.
It has been argued that the motor system is involved in both
processes, but how does it distinguish in this processing be-
tween self and other? In this paper, we present a model of
self-other distinction within a hierarchical sensorimotor sys-
tem that is based on principles of perception-action coupling
and predictive processing. For this we draw on mechanisms as-
sumed for the integration of cues to generate sense of agency,
i.e., the sense that an action is self-generated. We report re-
sults from simulations of different social scenarios, showing
that the model is able to solve the problem of the dual use of
the sensorimotor system.

Keywords: perception-action coupling; social cognition; mir-
roring; dual-use; sense of agency; predictive processing

Introduction
In everyday social interaction we constantly try to deduce
and predict the underlying intentions behind others’ social
actions, like facial expressions, speech, gestures, or body
posture. This is no easy problem and the underlying cog-
nitive mechanisms and neural processes even have been
dubbed the ,,dark matter” of social neuroscience (Przyrembel,
Smallwood, Pauen, & Singer, 2012). Action recognition
is commonly believed to rest upon principles of prediction-
based processing (Clark, 2013), where predictions about ex-
pected sensory stimuli are continuously formed and evaluated
against incoming sensory input to inform further processing.
Such a predictive processing does not only inform our per-
ception of actions of others, but also our action production in
which we constantly predict the sensory consequences of our
own actions and correct them in case of deviations.

Both of these processes draw on the human motor sys-
tem constituting a perception-action coupling (Prinz, 1997).
However, in dynamic social interaction, perception and pro-
duction often need to be at work simultaneously and for both,
actions of self and other. How does the sensorimotor system
distinguish between self and other? And how does it inter-
play with higher-level cognitive processes like mentalizing to
solve this social differentiation problem?

As of yet, it is not clear how exactly self-other distinction
is implemented within the motor system, but there is evidence
for a differentiated involvement supporting the motor sys-
tem’s key role in social cognition (Schütz-Bosbach, Mancini,
Aglioti, & Haggard, 2006). We aim to contribute a com-
putational modeling perspective. In previous work we de-

vised a model of the interplay of mentalizing and prediction-
based mirroring during social interaction. It demonstrated
how mentalizing – even with minimal abilities to account for
beliefs, desires and intentions – affords interactive grounding
and makes communication more robust and efficient (Kahl &
Kopp, 2015). In that work two virtual agents interacted in a
communication game, each of which equipped with models
of a mirroring system and mentalizing system, respectively.

In this paper we present an extension of the prediction-
based model of the sensorimotor system to enable it to dif-
ferentiate actions of its own from the interaction partner’s
actions. We start with briefly introducing the hierarchical,
prediction-based model of a sensorimotor system. Then we
discuss how this model can be extended to deal with con-
current perception and production in social situations. This
includes a basic ability to integrate predictive and postdictive
cues to form a sense of agency (SoA) that helps to differen-
tiate between self and other. Finally, we present and discuss
results from simulation studies of different simple scenarios,
which test the model’s ability to infer SoA for its own actions.

Computational model of a sensorimotor system
Like other attempts to model the motor system, we chose to
make use of a hierarchical representation of increasing ab-
stractions over motor commands (Wolpert, Doya, & Kawato,
2003; Sadeghipour & Kopp, 2010). In a three-level hier-
archy (see Figure 1), we represent motor primitives on the
lowest level (MPrim), followed by a motor sequence layer
(MSeq), and motor schemas on the topmost level of abstrac-
tion (MSchema). Motor primitives represent single move-
ment segments in space, motor sequences store lists of motor
primitives, while motor schemas represent abstract clusters of
motor sequences grouped by similarity. We assume that these
representations are the basis for a prediction-based model of
sensorimotor processing which underlies both action percep-
tion and production. To this end, we assume the representa-
tions to be multimodal, i.e., combining visual, motor and pro-
prioceptive aspects of action, if available. Consequently, they
are used as more or less high-level or visuomotor represen-
tations of action and their outcomes. During action percep-
tion, we further assume that the correspondence problem is
solved in the sense that an observed action by another agent
is mapped into one’s own self-centered frame of reference.
That is, we feed the perceived action trajectory directly and
bottom-up into the sensorimotor system.
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Figure 1: The predictive sensorimotor hierarchy, based on
predictive processing and perception-action coupling. Pre-
dictions are sent top-down from state nodes (S) and will be
compared to sensory evidence in error nodes (E) in order to
drive updates within the hierarchy.

Sequence matching

In the current model motor primitives are matched against
sensory input, which is assumed to consist of a sequence of
the last two perceived input coordinates. Motor sequences
are matched against a temporary motor sequence concur-
rently collected from the motor primitive layer, yielding a
best match and a prediction of the next motor primitive in the
sequence. Motor schemas are likewise matched against the
currently best matching motor sequence. In the case of the
motor primitives, before the best match is searched, the input
sequence is linearly interpolated to match the length of the
motor primitives and it is scaled and translated to match the
motor primitive’s position and size in its coordinate system.
Sub-sequence matching is solved by applying euclidean dis-
tance measures, which provides high accuracy in our domain
size. The same matching algorithm is used for comparing
motor sequences in the motor schema layer.

Predictive sensorimotor hierarchy
The model realizes a predictive processing account resting
upon assumptions of the predictive brain hypotheses (Clark,
2013). To that end, it stores representations in the form of
discrete probability distributions that can be influenced both
bottom-up, in the form of evidence for its last prediction from
the next lower layer, and top-down in the form of a prediction
by the next higher layer. Following the assumption that the
main flow of information is top-down and that motor control
is also just top-down sensory prediction, described as ”action-
oriented predictive processing”, or ”active inference” (Clark,
2013), all layers receive the next higher layer’s prediction and
evaluate it for their own bottom-up prediction in the next time
step.

As shown in Figure 1, in any time step, the top layer is the
first to update its discrete probability distribution in the state
node (S), given its prior distribution (St−1) and the likelihood,
calculated in the error node (E) based on the evidence from
the layer below. The updated state node (St ) will be used as
a prediction for the current time step, influencing the layer
below as a prior, and a copy will be stored in the error node
for comparison in the next time step:

S(MSchema)t = S(MSchema)t−1E(MSeq)t−1.

Next, the state node at the layer of motor sequences will be
updated given its prior distribution, the prediction from the
motor schema layer and the likelihood, calculated from the
evidence in the layer below:

S(MSeq)t = S(MSchema)tS(MSeq)t−1E(MPrim)t−1.

The resulting posterior distribution will be sent as prediction
to the layer below, and as evidence to the layer above. Finally,
the state node at the motor primitive layer will receive an up-
date given its prior from the last time step, the posterior from
the motor sequence layer and the likelihood of the received
sensory evidence (o) given all motor primitives:

S(MPrim)t = S(MSeq)tS(MPrim)t−1E(o).

For a better understanding of the process of how the model
matches the input to its hierarchical representation, see Fig-
ure 2. We have recorded handwritten capital letters using
a graphical tablet. All sequences of drawing the 26 char-
acters of the alphabet are stored with a sampling rate of 25
frames per second. From this dataset (12 primitives, mapping
onto 26 sequences, mapping onto 26 schemas) we can trigger
the model to draw a character, and simulate the model per-
ceiving somebody’s drawing of a character in real-time (by
simply feeding the trajectories into the system as input one
coordinate after the other). Figure 2 depicts three steps in
the prediction-based recognition process that leads to a high
probability of perceiving the drawn character.

Precision
The sensorimotor hierarchy learns motor sequences and mo-
tor schemas online, with each layer having to decide whether
to add a new representation or not. One cognitively plausible
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Figure 2: Prediction-based recognition process of the charac-
ter L being drawn: black dots indicate input coordinates, red
dotted lines represent matched motor primitives.

way to determine the need to extend upon the available mo-
tor representations is to calculate the precision of each layer’s
prediction against the evidence in the next time step. Friston
and Frith (2015) used precision (the inverse of the variance
between prior and posterior probability distributions) as a sort
of cortical gain control or neuro-modulation, as to control the
influence of the feedback that their Songbird models received
upon their song production. We use it as a measure of how
well our model can predict its environment and update or ex-
tend it according to how similar the prior (P = St−1) and pos-
terior (Q = St ) are:

Pr(P,Q) = 1
Var(Q−P)

This enables each layer to evaluate its predictive power and,
by thresholding, to decide whether to extend its repertoire.

Active inference

Following the assumption that overt action is basically action-
oriented predictive processing (Friston, Daunizeau, Kilner,
& Kiebel, 2010), we allow high-precision prediction at the
layer of motor primitives to be acted out. This leads to overt
and automatic enactment of correctly predicted actions, sim-
ilar to the automatic imitation seen in patients suffering from
echopraxia (Ganos, Ogrzal, Schnitzler, & Münchau, 2012).
To control this motor execution, we introduced a signal into
the top-layer of the hierarchy, which acts as a motor intention
for a specific motor schema, including a strong boost of this
motor schema’s probability. This percolates down the hierar-
chy to boost associated representations and informs about the
intention to act. Once it reaches the lowest layer of the hierar-
chy, and combined with the high precision threshold, the act
to produce the motor representation will be allowed.

With the hierarchical model in place, we set out to find
mechanisms to distinguish activations that stem from own ac-
tion from those arising due to the interaction partner’s action.
One way is to make sure that the perceived action outcomes
are correctly attributed. That is, we need to look at creating
SoA, i.e., the sense that an action is self-generated.

Self-other distinction and sense of agency
How does the human brain distinguish between information
about ourselves and others? Or to be more specific, how can
we distinguish ourselves from others so that we do not falsely
attribute an action outcome to ourselves? These questions
pertain to the more general mechanisms that give rise to a
sense of “feeling of control”, agency, and “self”. Generally,
a person’s SoA is believed to be influenced through predic-
tive and postdictive (inferential) processes, which when dis-
turbed can lead to misattributions of actions as in disorders as
for example in patients suffering from schizophrenia (van der
Weiden, Prikken, & van Haren, 2015). We aim to identify
mechanisms in order to model these processes and their inte-
gration into a combined SoA.

The predictive process makes use of people’s ability to an-
ticipate the sensory consequences of their own actions. It al-
lows to suppress, i.e., decrease the intensity of incoming sig-
nals which enables people to distinguish between self-caused
actions and their outcomes and those actions and outcomes
caused by others. One account to model these processes is
based on inverse and forward models to account for disor-
ders of awareness in the motor system and delusion of control
(Frith, Blakemore, & Wolpert, 2000). This view suggests that
patients can no longer link their intentions to their actions,
that is they are conscious of their intention, but not of the sen-
sory consequences of the action. As research into schizophre-
nia has shown, reliable and early self-other integration and
distinction is important not only for the correct attribution of
SoA, but also in turn for the correct attribution of intentions
and emotions in social interactions. This even suggests that
the attenuation of perceived sensory outcomes correlates with
activation in the mirror neuron system (van der Weiden et al.,
2015). Weiss, Herwig, and Schütz-Bosbach (2011) showed
that there is a social aspect to predictive processes that influ-
ence SoA by comparing perceived loudness of auditory action
effects in an interactive action context. They found that atten-
uation occured also in the interactive context, comparable to
the attentuation of self-generated sound in an individual con-
text.

The postdictive process relies more on inferences drawn af-
ter the movement in order to infer whether our intentions are
contingent and consistent with the observed events (Wegner
& Wheatley, 1999) and is also influenced by higher-level
causal beliefs and thoughts. One important aspect of this
inferential process relies on the temporal aspects of action-
outcome integration. It was shown that increasing action out-
come delay decreases feeling of control (Sidarus, Chambon,
& Haggard, 2013). This is related to the “temporal binding
window” (Colonius & Diederich, 2004), in which the sensory
signals related to the outcome of an action are integrated. The
width of the window is dependend on the predictability of the
action outcome. Since we have more experience in predicting
our own body, the temporal binding window is more narrow
for own action outcomes than for other people’s actions. Be-
ing able to make such a distinction allows people to monitor,
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infer and distinguish between causal relations for own and
other’s behavior. Another aspect informing the postdictive
process relies on the valence attributed to an action outcome,
where positive valence of an action outcome leads to stronger
SoA (Yoshie & Haggard, 2013).

In sum, there are two processes that can inform SoA and
hence can help to distinguish actions of self and other in so-
cial interaction. A predictive process works on the content
of the action, e.g., the motor command and utilizes forward
models as a mechanism to predict the to-be-produced mo-
tor command. A postdictive process works with higher-level
causal beliefs like the intention to act and temporal binding as
mechanisms to infer the consistency of the action outcome.

But how do these two processes work together to inform
SoA and what if their cues are unreliable? Cue integration
was first studied by Moore, Wegner, and Haggard (2009) who
found that when predictive cues are absent external cues be-
come more influential. Nahab et al. (2010) found in an imag-
ing study that there is a leading and a lagging network that
both influence SoA prior to and after an action. The lead-
ing network would check whether a predicted action out-
come would be perceived, while the lagging network would
make use of these cues to further process SoA leading to
its conscious experience. It seems that in order to generate
SoA, both systems do not necessarily have to work perfectly
together, as there is evidence for a weighted integration of
cues for agency based on their reliability (Moore & Fletcher,
2012). Also, if the reliability of the predictive process was
reduced, the system put more weight on the postdictive infer-
ential processes (Wolpe et al., 2014). Furthermore, the flu-
ency of action-selection processes may also inform the self-
other distinction, because the success of repeatedly predicting
the next actions seem to accumulate over time to inform SoA
(Chambon, Sidarus, & Haggard, 2014).

Modeling self-other distinction in social
interaction

During online social interaction, the sensorimotor system po-
tentially gets involved in simultaneous action perception and
production processes. Our goal is to investigate how the
prediction-based model can be extended to cope with the so-
cial differentiation problem during such dual-use situations.
To this end, we integrate three cues from the predictive and
postdictive processes into SoA for produced actions: In the
predictive process, we have the match or mismatch of the pre-
dicted action-outcome. In the postdictive process, we have
the intention to act and the delay in the action-outcome for
temporal binding. However, it is not obvious how these cues
are being integrated. As a first step, we test two simple ways
to do so, namely, to connect them conjunctively or disjunc-
tively. A conjunctive connection allows SoA to occur only if
it is supported by both processes; in a disjunctive connection
only one cue suffices to inform SoA, in a more flexible but
potentially more error prone manner.

The predictive mechanism to differentiate self and other

works based on the content of the predictions that are being
sent down the hierarchy. As described above, the predictabil-
ity of actions by itself provides a predictive cue for a feeling
of control, or SoA. Thus, the model needs to quantify the suc-
cess of a prediction about the outcome of an acted-out motor
representation. Since we already have a layer’s precision as a
measure of success of its predictions, we can directly utilize
it as a cue to model SoA.

As the postdictive inferential mechanism we model the
temporal binding window as a Gaussian with its mean (µ) at
the predicted delay, which is informed by the perceived action
duration during learning. The Gaussian’s standard deviation
(σ) is scaled by the model’s layer’s predictive precision.
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Figure 3: A model of self-other distinction based on the pre-
diction of the consequence of an action and the postdictive
integration of an intention to act with the perceived conse-
quence of the action during a predicted temporal binding win-
dow, scaled by the predicting layer’s precision.

In Figure 3 you can see a sketch of how the predictive and
postdictive mechanisms work together to infer SoA for the
produced action and its consequence that is perceived. The
postdictive mechanism for temporal binding will be triggered
by the sensorimotor hierarchy’s intention to produce an ac-
tion, in that it will receive a reference to the motor represen-
tation to anticipate. Information from this motor representa-
tion will then be used to model the temporal binding window.
Now, when the anticipated motor representation is perceived
the delay until this perception occurred (x) will be used to cal-
culate the likelihood in the temporal binding window’s Gaus-
sian,

lh(σ,µ,x) = 1
lhmax

1
σ
√

2π
e−

x−µ2

2σ2 ,

with σ being scaled by precision (Pr), i.e., trust in the model’s
predictions. The resulting likelihood will be scaled to lhmax,
the Gaussian’s peak. This postdictive cue has to be combined
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with the predictive cue of the general precision of the pre-
dictions. We do this by assuming a winner takes all estimate
for the predictive and postdictive cues, with a threshold at
50% probability. Postdictive and predictive cues will then
be connected conjunctively or disjunctiveley to reach an es-
timate for a combined SoA. Since fluency is important for
SoA (Chambon et al., 2014), we will integrate this estimate
over time. The agency estimate will add to the overall SoA
through a simplified Kalman filter,

agencyt(agencyt−1,agencyestimate) =
agencyt−1 +Pr∗ (agencyestimate−agencyt−1).

By allowing the agency estimate (agencyestimate) to influ-
ence the overall SoA (agencyt ) only through this filter, strong
fluctuations are dampened and with a gain controlled by pre-
cision (Pr) the influence of the estimate will strongly depend
on the success of previous predictions. This means that an
agency estimate will either have a strong influence if preci-
sion is high, or SoA can only accumulate slowly if precision
is low.

This is our integrated model of predictive and postdictive
mechanisms which will enable the hierarchical sensorimotor
system to differentiate between actions initiated from self and
others.

Simulations and Results
To test the combined model’s ability to solve the problem of
the dual use of the sensorimotor system and differentiate be-
tween self and other we simulate a limited social situation. In
this situation, the model will write a character while it either
receives the correct action-outcome as feedback, or it receives
delayed or different feedback than expected. This way we
simulate the effect of concurrent perception of an interaction
partner’s action.

We test three scenarios for each combination of predictive
and postdictive cues to form SoA. In the first scenario we
trigger the intent to act out a motor schema and the model
will perceive its own correct output as feedback. Here, the
model will receive both cues correctly. In the second scenario
we trigger the same intent to act, but now the model receives
feedback with a delay, disrupting the postdictive cue. In the
third scenario the model will again be triggered to act, while
this time it receives unpredicted action-outcomes. Here, the
model can receive correct cues only accidentally. The model
will be triggered to produce and perceive the letter L in sce-
nario one and two. In scenario three, the model will perceive
the letter M being produced instead. We log the calculated
SoA over time for each scenario.

The resulting plots in Figure 4 show SoA in the different
scenarios. The upper row shows the resulting plots for the
conjunctive and the lower row for the disjunctive cue integra-
tion. In scenario one, the integration of cues jumps strongly
because predictive precision is high and small irregularities
in timing have a strong effect. The conjunctive connection
of cues does not allow for SoA in scenarios two and three,
because both cues are not available simultaneously. The dis-
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Figure 4: Resulting sense of agency over time for each sce-
nario and each connection between predictive and postdictive
cues.

junctive connection between cues fares better, since it allows
for SoA even when only one of the cues is available.

In dynamic scenarios of concurrent perception and produc-
tion, with feedback either from own or from other’s actions, a
more flexible distinction may be supported by results reported
in the literature. A disjunctive integration is sound with re-
gard to results where the reliability of the predictive process
was reduced and the system put more weight on postdictive
processes (Wolpe et al., 2014). Also, Moore and Fletcher
(2012) found evidence for a weighted integration based on the
cues’ reliability. Another aspect which we found to also influ-
ence our results, was the fluent correct prediction of actions
(Chambon et al., 2014). Especially in the conjunctive sce-
nario one and the disjunctive scenario two, the accumulation
of agency estimates over time was disrupted either through
prediction-error or temporal binding errors.

Taken together, the results show that the model can cor-
rectly attribute its own action outcomes to itself, which con-
tributes to distinguishing itself from an interaction partner.
This differentiating role of the motor system and its strong in-
volvement in social cognition was also proposed by (Schütz-
Bosbach et al., 2006). Our cognitive model and its simulation
results support this suggestion.

Conclusion
We have presented a predictive hierarchical model of the sen-
sorimotor system, integrated with a model of self-other dis-
tinction that can solve the dual-use problem in dynamic social
situations. Furthermore, we presented simulation results of
different scenarios of simultaneous perception and produc-
tion. We compared them to the literature on SoA and the
influence of the motor system on social cognition. This com-
parison suggests that our model can correctly attribute SoA
for its own actions, using a more flexible (disjunctive) inte-
gration of predictive and postdictive cues.

Taken together, our modeling approach supports the mo-
tor system’s role in social cognition. Still, the literature on
the social brain suggests that motor cognition, as well as the
distinction of self and other are influenced by higher level
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processes, causal beliefs, and by the mentalizing network.
We agree that the interplay between mentalizing and mir-

roring needs to be incorporated to meet the demands of truly
social systems in interaction scenarios with multiple agents.
In earlier work, we already combined our previous model of
the sensorimotor system with a mentalizing model in a social
scenario with two virtual agents (Kahl & Kopp, 2015).

In future work, we want to improve our setup by making
use of the differentiating information provided by the present
model to inform higher-level cognition through an interplay
with the mentalizing system. We conjecture this interplay can
yield the distinction between one’s own and an interaction
partner’s beliefs needed in social interaction, where informed
reciprocity is the key to efficient and successful communica-
tion.
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Abstract 

This study examined learning and transfer of a simple 
mathematical concept when learning a symbolic sentential 
format versus learning a diagrammatic format. Undergraduate 
college students learned an instantiation of a cyclic group and 
were then given a test of a novel isomorphic group of the 
same order followed by a test of a novel non-isomorphic 
group of a higher order. The results were that both the 
sentential and the diagrammatic formats led to successful 
learning and transfer to the novel isomorphic group.  
However, only learning from the diagrammatic representation 
produced successful transfer to the non-isomorphic group.  
These findings suggest that learning a diagrammatic 
representation of a mathematical concept can have transfer 
advantages over learning strictly sentential formats. 

Keywords: Learning; Transfer; Mathematics; Diagrams.  

 

Introduction 
Mathematical concepts are often difficult for students to 
acquire.  Part of this difficulty may be related to the fact that 
mathematics is generally expressed with abstract symbols, 
such as variables. Mathematical symbols can be challenging 
for students to interpret and use, leading to misconceptions 
and obstacles to learning.  For example, many algebra 
students believe that if x is an integer, then y is the next 
larger integer (Wagner, 1981, 1983). Another common 
misconception is that equivalent equations with different 
variables, such as 7×𝑤 + 22 = 109 and 7×𝑛 + 22 = 109, 
have different solutions (Wagner, 1981, 1983). 

Other evidence for the difficulty of using symbols comes 
from comparing performance on purely symbolic tasks to 
analogous contextualized tasks and finding an advantage for 
reasoning and problem solving in the contextualized formats 
(e.g. Saxe, 1988; Koedinger & Nathan, 2004; Koedinger, 
Alibali, & Nathan, 2008). For example, students are 
frequently more successful solving simple algebra problems 
when presented as story problems than when presented as 
symbolic expressions (Koedinger & Nathan, 2004; 
Koedinger, et al, 2008).  The advantage of contextualized 
situations may be that when contexts are familiar to 
students, they can derivate mathematical structure from the 
context itself (Bassok, 1996, 2003).  For instance, given a 
situation involving 12 tulips and 3 vases, students tend to 
divide 12 by 3 instead of performing another arithmetic 
operation because a group of flowers is typically divided 
between a number of vases. Familiar contextualization may 
also facilitate learning of new concepts (e.g. Kaminski, 
Sloutsky, & Heckler, 2013).   

Although contextualized representations of mathematics 
may sometimes facilitate reasoning, problem solving, and 
initial learning, such representations can hinder transfer of 
mathematical knowledge to novel situations (Kaminski, 
Sloutsky, & Heckler, 2008, 2013).  When college students 
learned an algebraic system through a familiar context that 
facilitated initial learning, they were unable to transfer 
knowledge to a novel analogous domain. However, students 
who learned the same concept through a generic symbolic 
format successfully transferred knowledge.  Transfer failure 
may be due to the fact that contextualized real-world 
instantiations of mathematics communicate more 
nonessential information than simple symbolic 
instantiations (Kaminski et al, 2013).  This nonessential 
information is often salient and may divert attention from 
the less salient mathematical structure, making it difficult to 
recognize the mathematical structure in novel, superficially 
dissimilar situations (Kaminski, et al, 2008, 2011, 2013). 

However, an important question remains.  Does all 
extraneous information hinder transfer? Perhaps some 
representations of mathematics have extraneous information 
that can facilitate transfer.   One possible type of 
representation is a visual display that helps communicate the 
relevant global relational structure. Such displays are 
diagrams, and include graphs, matrices, tables, as well as 
some nonstandard representations.  These visual displays 
instantiate a system with minimal extraneous information, 
but contain perceptual information that helps spatially 
organize the elements of the system according to the 
relevant relational structure. Previous research has 
demonstrated that diagrams may have advantages over 
sentential representations for reasoning and problem solving 
(e.g. Cheng, 2002; Lakin & Simon, 1987), analogical 
transfer (e.g. Gick & Holyoak , 1983; Pedone, Hummel, & 
Holyoak, 2001), and non-isomorphic transfer (Novick & 
Hmelo, 1994).  

The advantage of an effective diagram over a sentential 
representation may be increased salience of the relations 
between elements and an ability to accommodate a different 
number of relevant elements. Consider the example of 
probability.  A sentential format would list relevant 
probabilities of events 𝐴,𝐵,𝐶, as 𝑃 𝐴 ,𝑃 𝐵 ,𝑃(𝐴 𝐶), etc. 
A tree diagram could visually highlight the relationships 
between events and could be modified to include additional 
events.  By doing so, diagrams may help to communicate 
higher-order structure, which may allow the learner to 
transfer knowledge not only to isomorphic situations (i.e. 
structurally analogous situations) but also to non-isomorphic 
situations of the same structural class.   
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For pedagogical reasons, it is important to examine 
conditions that promote both isomorphic and non-
isomorphic transfer because application of mathematical 
knowledge involves both isomorphic transfer (e.g. transfer 
of solution strategies to analogous story problems) as well 
as non-isomorphic transfer (e.g. solution techniques for 
systems of two variables applied to systems of more than 
two variables). From a theoretical perspective, it is 
important to understand how both types of transfer 
processes are related. Many theories of analogical transfer 
posit that successful transfer requires alignment of structure 
across a familiar domain and an isomorphic target domain; 
this alignment places analogous elements in a one-to-one 
correspondence across domains (e.g. Gentner, 1983, 1988; 
Gentner & Holyoak, 1997; Holyoak & Thagard, 1989, 
1997). From multiple instances, learners may form abstract 
schematic representations that reflect commonalities of the 
instances (Gick & Holyoak, 1983; Novick & Holyoak, 
1991; Reed, 1993). These theories can account for transfer 
of mathematical knowledge across isomorphs.  However, it 
is unclear how they can account for transfer across non-
isomorphic domains in which structure cannot be aligned 
across instances. If learning of diagrams allows transfer to 
non-isomorphic situations, do learners align structure when 
transferring to an isomorphic situation? 

The goal of the present research was to examine learning 
and transfer of a novel mathematical concept from a strictly 
sentential symbolic representation versus a diagrammatic 
representation.  This study examined both isomorphic 
transfer (transfer to another system with the same relevant 
structure and the same number of elements) and non-
isomorphic transfer (transfer to another system with the 
same relevant structure but a different number of elements).    
When learning the strictly sentential representation, 
participants may acquire only knowledge of isolated 
relations between elements and may not gain insight into the 
higher-order mathematical structure. When learning the 
diagrammatic representation, participants may learn more 
than isolated relations between individual elements.  They 
may acquire a structural representation of the concept that 
can be modified to include more elements than initially 
learned.   As such, the diagram may help communicate 
higher-order structure, and learning this diagram may 
facilitate recognition of this structure in novel isomorphic 
domains as well as non-isomorphic domains of the same 
type of structure.  Therefore, it is hypothesized that both the 
sentential and diagrammatic representations will result in 
successful learning and isomorphic transfer, but only the 
diagrammatic representation will result in successful non-
isomorphic transfer.  

The concept under consideration was that of a cyclic 
group (defined in the Method section).  Participants learned 
an instantiation of a cyclic group of order 3 (i.e. three 
unique elements) with or without the inclusion of a diagram. 
Participants were then tested on a novel cyclic group of 
order 3 to examine isomorphic transfer. They were also 
asked to match analogous elements across domains to 

investigate whether there are differences in structural 
alignment when learning a strictly sentential versus a 
diagrammatic representation. Afterward participants were 
tested on a novel cyclic group of order 4 (i.e. four unique 
elements) to examine non-isomorphic transfer.   

Experiment 

Method 
Participants Fifty-eight undergraduate students from a 
large Midwestern university participated in the experiment 
and received partial credit for an introductory psychology 
course.  
 
Materials and Design The experiment included three 
phases: (1) training and testing in a learning domain, (2) 
testing in an isomorphic transfer domain, and (3) testing in a 
transfer domain of the same structure as the learning domain 
but higher order.  Participants were randomly assigned to 
one of three conditions (Diagram, No Diagram, or 
Baseline).  Participants in the Diagram and No Diagram 
conditions learned different instantiations of a cyclic group 
of order 3 during the first phase of the experiment.  
Participants in the Baseline condition proceeded directly to 
phase 3, omitting phases 1 and 2. The purpose for the 
Baseline condition was to measure spontaneous 
performance in the non-isomorphic transfer domain, without 
prior instruction on the concept.  The isomorphic transfer 
domain (phase 2) was used in several previous studies 
(Kaminski, et al, 2008, 2013); without first learning an 
isomorphic domain, participants were unable to score above 
chance on this transfer domain.  

The learning domain and two transfer domains were 
artificially constructed instantiations of the concept of a 
cyclic group.  The learning domains and the first transfer 
domain were of order 3 (i.e. had three unique elements), and 
the second transfer domain was of order 4 (i.e. had four 
unique elements). A Cyclic Group of Order n is a set of n 
elements, or equivalence classes, and an associated binary 
operation over which the following algebraic properties 
hold:  associativity, commutativity, existence of identity, 
and existence of inverses.  This means that if the operation 
is denoted by “+”, then the following are true.  The 
Associative Property states that for any elements, x, y, z, of 
the set, (x + y) + z  = x + (y + z).  The Commutative 
Property states that for any elements x, y of the set, x + y = 
y + x.  Also, there is an element, I, in the set called the 
Identity Element, such that for any element, x, x + I = x. 
Finally, for any element, x, there exists an Inverse Element, 
y, such that x + y = I. In addition, a cyclic group is a group 
that can be generated by a single element. This concept is 
equivalent to addition modulo n. 

The concept of a cyclic group can be instantiated in an 
unlimited number of ways. The instantiations used for both 
the Diagram and No Diagram conditions involved three 
arbitrary symbols,      ,      , and       .  Participants learned 
the principles of a cyclic group instantiated as associations 
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between the symbols. The difference between the conditions 
was the presence or absence of a diagram, the procedure for 
using the diagram, and the associated cover stories.  

In the No Diagram condition, the instantiation was 
described to participants as rules of a symbolic language in 
which combinations of two or more symbols yield a 
predictable resulting symbol. Statements were expressed as 
symbol 1 symbol 2 à resulting symbol.  Table 1 shows the 
symbols, the specific rules, and examples.  In the Diagram 
condition, the cyclic group was described to participants as 
rules for a code-breaking device that can be used to decode 
sequences of symbols. The decoding device appeared as a 
circle with three equally spaced positions marked.  One 
symbol was placed at each position.  Given a sequence of 
two or more symbols, the decoder could be used to 
determine a resulting symbol by starting at the first symbol 
and moving clockwise around the dial shown in Figure 1. 
Figure 1 also presents the procedure for using the decoder, 
the specific rules, and an example.  

In both conditions, participants were taught the same 
associations between sequences of symbols and saw the 
same sentential statements, symbol 1 symbol 2 à resulting 
symbol.   The rules, examples, and test questions were 
identical in both conditions.  Aside from different cover 
stories, the only difference between the conditions was the 
inclusion of the diagrammatic representation (i.e. the 
decoding device) and its associated procedure in the 
Diagram condition. At the end of phase 1, participants were 
tested with a 24-question multiple-choice test.   

The second phase of the experiment was testing of an 
isomorphic transfer domain. This transfer domain was 
identical for both conditions and was also a cyclic group of 
order 3 involving three images of perceptually rich objects.  
It was described as a children’s game where children 
sequentially point to objects and “the winner” points to a 
final object (see Transfer Domain 1 in Table 1).  
Participants were told that the correct final object is 
specified by the rules of the game (which were the rules of a 
cyclic group).  Furthermore, in both conditions they were 
told that the rules were like those of the system they just 
learned.  No explicit training in the transfer domain was 
given; instead, participants were shown a series of examples 
from which the rules could be deduced (see operands and 
results for Transfer Domain 1 in Table 1). Participants were 
asked to figure out the rules of the game by using their 
knowledge of the learned system.  Then they were tested 
with a 24-question multiple-choice test, isomorphic to the 
test in the learning phase of the Diagram and No Diagram 
conditions, but using the elements of the transfer domain.   

Following the test, participants were asked to match 
analogous elements across the learning and transfer 
domains.  Correct matching of elements was taken as an 
indicator of correct structural alignment between the 
learning and transfer domains. For cyclic groups of order 3, 
there are two possible correct mappings between groups. 
The identity element is unique; therefore a correct mapping 
must align these two elements across domains. However, 

the mapping between remaining two elements is not unique. 
Therefore, a response was considered correct if (a) the 
mapping was one-to-one and onto (i.e., each learning 
element corresponded to a single transfer element and each 
element of the transfer elements were used) and (b) the 
mapping preserved the identity element. In other words, if a 
participant used each of the group elements and mapped the 
identity element correctly, then the response was correct.  
Because the critical aspect was correctly choosing the 
identity element and most participants were expected to 
form mappings that were onto, 33% accuracy was used as a 
conservative measure of chance for a group of participants.   

The third phase of the experiment was testing of a non-
isomorphic domain of the same structure as the learning 
domain (i.e. a cyclic group of order 4).  Participants were 
given a paper and pencil ten-question multiple-choice test 
(see Table 2) and told that the knowledge of the system they 
learned first can help them figure out the new system. They 
were also given five example statements (the operands and 
results shown in Table 2) from which the complete set of 
rules could be deduced.  
 

 
Table 1: Stimuli for the learning and isomorphic transfer 

domains. 
 

   
 

   
      

 Learning Domain 

Cyclic group of order 3 

Transfer Domain 1 

Cyclic group of order 3 

Elements  

           

Identity   

 
 

Associations  
between 
elements 

(Presented as rules) (Presented as examples) 

Operands Result Operands Result 

    
    

    
    

        

    
    

Example 
Test 
Question 

Find the resulting 
symbol. 
 

        à ___ 
 

 
 

Answer:   

If children pointed to 
these object,  

       , 
what object did the 
winner  point to? 

Answer:   
   

	

C	
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Figure 1: Diagram used in the Diagram Condition 

 
 
 

Table 2: Stimuli for non-isomorphic transfer domain. 
 

 Transfer Domain 2 
Cyclic group of order 4 

Elements S   ★  ¤  £  
Identity S 
Associations 
between 
elements 

(Presented as examples) 

Operands Result 

     S , ★   ★ 

S , ¤ ¤ 
 ★ , ★   ¤ 
¤ , ¤ S 
★ , ¤ £  

Example        
Test Question 

Find the resulting symbol. 

S, ★, ¤,£  à ? 
 

Answer:  ¤ 
 

 
 
Procedure Participants were seen individually in a lab on 
campus.  Phases 1 and 2 were presented on a computer. 
Participants proceeded at their own pace, with their 
responses recorded by the computer.  The learning phase 
consisted of approximately 80 slides and required 
approximately 15 minutes to complete.  The transfer phase 
(phase 2) consisted of 48 slides and took on average 10 
minutes to complete.  The second transfer phase (phase 3) 
took participants approximately 8 minutes to complete. All 
material in phase 3 was presented on paper.  

Results  
Four participants (two Diagram and two No Diagram) 

were removed from the analysis because they failed to learn  

Table 3. Mean accuracy (percent correct) on learning and 
isomorphic transfer. Note: Standard deviations are presented 

in parentheses. Chance performance is 37.5% 

  Learning Transfer 
No Diagram 78.9 (14.5) 78.5 (17.8) 

Diagram 85.2 (8.95) 74.5 (22.1) 
 
 
the concept in phase 1; their learning scores were less than 
11 and no different than the chance score of 9 (i.e. 37.5%). 

Note that for the following analyses, learning scores and 
isomorphic transfer scores were not normally distributed in 
the Diagram condition; the distributions were negatively 
skewed  (SWs <.89, dfs = 18, ps < .04).  In addition, non-
isomorphic transfer test scores had bimodal distributions in 
both conditions. Therefore, non-parametric analyses were 
done to examine each of these scores.   

Participants in both conditions successfully learned the 
concept (see Table 3).  Learning scores were above chance 
in both conditions, Wilcoxon Signed Ranks Test, Zs > 3.72, 
ps < .001. There were no significant differences in learning 
levels between conditions, Mann-Whitney U test, U = 123.5, 
p = .22. 

In phase 2 (i.e. testing of an isomorphic transfer domain), 
participants also performed well in both conditions (see 
Table 3). Scores were above a chance score of 37.5%, in 
both conditions, Wilcoxon Signed Ranks Test, Z s > 3.63, ps 
< .001.  Note that previous research demonstrated that 
without initially learning an isomorphic domain, 
participants were unlikely to score above chance on this 
transfer task (Kaminski, et al, 2008, 2013).  Therefore, it 
appears that participants in both conditions successfully 
transferred structural knowledge acquired in phase 1 to 
answer questions about the isomorphic domain in phase 2. 
No significant difference in transfer scores between the two 
conditions was found, Mann-Whitney U test, U = 151.0, p = 
.74. 

In addition, most participants in both conditions 
accurately matched analogous elements across the learning 
and isomorphic transfer domains (83% in the Diagram 
condition and 78% in the No Diagram condition), 
suggesting that they successfully aligned analogous 
structure across the two domains.  The percent of 
participants in both conditions was well above chance of 
33% and not different between conditions, Fisher Exact test, 
ps = 1.00.  

While there were no differences in performance levels 
between conditions for phases 1 and 2, there were 
significant differences in performance in phase 3 (i.e. testing 
on a non-isomorphic domain of similar structure).  Scores in 
the Diagram and No Diagram conditions had bimodal 
distributions; Table 4 presents the frequency of scores at 
different levels.  Transfer scores were higher in the Diagram 
condition (M = 67.8, SD = 9.69) than in the No Diagram 
condition (M = 41.1, SD = 7.79), Mann-Whitney U test, U =  
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Table 4. Percent of participants in each condition scoring 
at different levels on the non-isomorphic transfer task. 

 Accuracy Level 
 Low 

(0-40%) 
Middle 

(50-70%) 
High 

(80-100%) 

Baseline 61 33 6 
No Diagram 61 17 22 

Diagram 39 0 61 
 
 
97.5, p < .04. Furthermore, scores in the Diagram condition 
were higher than scores in the Baseline condition (M = 
41.1%, SD = 19.1%), Mann-Whitney U test, U = 107.0, p < 
.04, one-tailed. However, scores in the No Diagram condition 
were not significantly different than those in the Baseline, U 
= 144.5, p = .58. This finding suggests that the majority of 
participants in the Diagram condition were able to transfer 
knowledge of the cyclic group order 3 to the non-isomorphic 
cyclic group of order 4, but the majority of participants in the 
No Diagram condition were not able to do so.  
 

Discussion 
The goal of the present study was to investigate transfer of 
mathematical knowledge when learning a strictly sentential 
representation versus learning a diagrammatic 
representation. This study considered transfer to a novel 
isomorphic domain as well as transfer to a novel non-
isomorphic domain of the same structural class.  Both 
formats resulted in equally successful learning and 
isomorphic transfer.  However, participants who learned the 
diagram were more successful at non-isomorphic transfer 
than those who learned only the sentential format.  These 
findings suggest that although the diagram added non-
essential information, this information did not hinder 
learning or isomorphic transfer.  Moreover, the inclusion of 
this information resulted in a clear advantage for non-
isomorphic transfer.   

Previous research has demonstrated that learning 
instantiations that include extraneous information hinder 
transfer of mathematical knowledge to novel isomorphs 
because the extraneous information is generally salient and 
likely diverts attention from the relevant structure 
(Kaminski et al, 2008, 2011, 2013).   Compared to strictly 
sentential representations, diagrams also communicate 
nonessential information to the learner.  For example, in the 
present study, it is not necessary to include the diagram; the 
same rules and associations were learned equally well in the 
No Diagram condition.  Clearly standard diagrams such as 
tree diagrams, matrices, and graphs also communicate 
nonessential information.  However while the information 
added by a diagram is nonessential, it is not necessarily 
irrelevant.  Effective diagrams use visual information to 
spatially organize elements of a system in a way that 

highlights relations and relevant structure and does not 
divert attention from the structure.  Such diagrams may help 
to communicate global structure of the system in manner 
that can be modified if necessary to incorporate a different 
number of elements.  

In the current study, the diagram was circular and likely 
helped to communicate the cyclic nature of the group and 
the fact that any element can be obtained as a result of 
operations involving the other elements. It is more difficult 
to recognize the cyclic nature of the relationship between 
elements in the strictly sentential format.  Even if learners 
had constructed a schematic representation of the concept 
from the sentential format without the diagram, the schema 
appears to reflect only local associations between three 
elements and not a more global structure that can be 
modified and applied to non-isomorphic situations.  

With regard to structural alignment, participants in both 
conditions were equally accurate at matching analogous 
elements, possibly suggesting structural alignment. 
However it is not clear that this element-level matching is 
necessary when learning the diagram or whether global 
structure can be mapped from learned to target domains 
without one-to-one correspondence of elements.   

Successful non-isomorphic transfer from learning the 
diagram suggests that participants have formed a more 
sophisticated internal representation of a structural class of 
mathematical entities, in this case cyclic groups of different 
orders.  Recognizing that different mathematical entities can 
fall into the same structural categories is an important part 
of advancing mathematical knowledge.  For example, 
algebra students should be able to modify techniques for 
solving systems of equations of two variables to solve 
systems of equations of more than two variables.  Similarly, 
college students should recognize that slope of a line is an 
instance of derivative of a function.  An effective diagram, 
if available, may help illuminate structure in a way that 
allows modification of the number of elements.   Standard 
mathematical diagrams such as matrices, graphs, networks, 
and Venn Diagrams do precisely this.  

At the same time, there may be limitations to the benefit 
of diagrams. The inclusion of diagrams may not always 
facilitate initial learning.  Correct interpretation and use of 
diagrams requires additional learning beyond learning 
standard sentential representations.  For some combinations 
of concepts, diagrams, and learners, such as those 
considered in this study, a diagram is easily learned.  
However, this is not always the case. For example, in 
middle school students, diagrams provided a benefit for 
solving algebraic word problems only for older students and 
high-achieving students, but not for younger students and 
lower-achieving students (Booth & Koedinger, 2012). Some 
concepts may be simple enough to be learned without such 
additional representations.  For more difficult concepts, 
some learners may be unable to fully learn the diagram and 
the relationship between the diagram and standard sentential 
formats such as equations.   
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It is also important to note that while a diagram is a visual 
representation of the elements and relations of a system, it is 
meaningless without knowledge of how to interpret it. The 
diagram used in the present study involved the visual 
representation in Figure 1 along with the procedure of how 
to use it.  The same is true for common mathematical 
diagrams such as multiplication tables and Cartesian graphs. 
These well known diagrams easily communicate 
information to us only because we have been explicitly 
taught procedures for constructing and interpreting them.     

Learning diagrams in addition to standard sentential 
mathematics may require additional effort.  For some 
learners and some diagrams, this may be challenging.  
However, the benefit of well-designed diagrams is likely 
worth the effort. Once learned, diagrams likely can provide 
advantages for transfer to isomorphic situations and many 
non-isomorphic situations.    
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Abstract 

Recent experimental evidence suggests that adults incorporate 
speaker knowledge into the derivation of pragmatic 
implicatures.  Developmental studies report that 5-year-old 
children also succeed in taking speaker knowledge into 
account in implicature computation, but 4-year-olds fail.  The 
present study investigated the pragmatic competence of 4-
year-olds, specifically the ability to incorporate speaker 
knowledge into the derivation of ad hoc scalar implicatures. 
Using a simple paradigm inspired by referential 
communication, we found that 4- year-olds are able to 
incorporate speaker knowledge into implicature derivation. 
These results have implications for our understanding of the 
linguistic, pragmatic, and epistemic abilities of young 
children. 

Keywords: implicatures; pragmatics; speaker knowledge  

Background 
As established by Grice (1989), communication involves 

partners in a conversation working towards the same 
cooperative goal (cf. also Sperber & Wilson, 1986).  To that 
end, speakers must be as informative as required by the 
purpose of the exchange.  If a speaker is less than fully 
informative, as in (1), the listener will assume that – as far 
as the speaker knows - the stronger alternative in (2) is not 
true.   

 
(1)   Some chipmunks collect acorns. 
(2)   All chipmunks collect acorns. 
 
The inference that the stronger statement in (2) does not 

hold is known as a scalar implicature and requires 
pragmatic reasoning.  Scalar implicatures take their name 
from the fact that they rely on a comparison to a lexical item 
on an informativeness scale that the speaker could have used 
but did not (Grice, 1989).  In the case of (1) and (2), the 
lexical alternatives involved form a scale ordered in terms of 
logical strength (Horn, 1998). Furthermore, this logically 
ordered scale is a feature of the language that needs to be 
accessed in order for the hearer to compute an implicature.  
Other types of scalar implicatures rely on ad hoc scales that 
depend upon contextual information. For instance, a speaker 
can utter (3) to communicate that the stronger statement in 
(4) does not hold: 

 
(3)   Chip and Dale collect acorns. 

(4)   Chip, Dale and Max collect acorns.  
 

Past findings in the literature have indicated that children 
struggle with deriving scalar implicatures until late in 
development: unlike adults, they fail to reject weak 
(underinformative) statements when a stronger alternative is 
true (Chierchia et al, 2001; Noveck, 2001). Eye-tracking 
methods have also revealed weaknesses in early implicature 
computation (Huang & Snedeker, 2009).  However, 5-year- 
olds have increased success in computing scalar 
implicatures when task demands set up an expectation of a 
stronger utterance (Papafragou & Musolino, 2003; Skordos 
& Papafragou, 2016; Katsos & Bishop 2011; see 
Papafragou & Skordos, 2016 for a review), and even 3-year-
olds succeed in deriving ad hoc scalar implicatures in a 
simple referent selection task (Stiller, Goodman, & Frank, 
2015; cf. also Barner, Brooks, & Bale, 2011). At present, 
there is much discussion in the field about whether early 
failures with implicatures were due to children’s increased 
pragmatic tolerance in judgment tasks (Katsos & Bishop, 
2011), lack of linguistic processing abilities (Chierchia et al, 
2001; Reinhart, 2004), inability to access stronger lexical 
alternatives (Barner et al., 2011), failures in assessing which 
alternatives are conversationally relevant (Skordos & 
Papafragou, 2016), or some combination of these factors.   

The present study seeks to incorporate speaker knowledge 
into the task of implicature derivation (Sauerland, 2004; 
Fox, 2007; Chierchia, Fox, & Spector, 2009). There is 
evidence that adults consult the speaker’s knowledge state 
when computing implicatures (Bergen & Grodner, 2012; 
Breheny, Ferguson & Katsos, 2013).  For instance, the 
hearer upon encountering a statement such as (1) or (3) is 
justified in concluding that the listener does not know 
whether the stronger alternative is true (or, in other cases, 
that the speaker knows that the stronger alternative is false). 
However, developmental studies have shown that young 
children have difficulties with such epistemic aspects of 
implicature computation. Hochstein and colleagues (2016) 
conducted a study with 4- and 5-year-olds investigating 
their ability to compute non-scalar “ignorance” implicatures 
which require the incorporation of the speaker’s knowledge 
state into their derivation.  They found that 5-year-olds were 
able to succeed on this task but 4-year-olds failed.   

In a study most closely related to the present experiment, 
Papafragou, Friedberg and Cohen (in press) found a similar 
pattern. In that study, 4- and 5-year-old children watched 
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short videos of two twins.  In one video, an observer only 
saw part of one twin’s action, and in the other video, the 
observer saw the whole action.  Children themselves had 
access to the completed action that was the same in both 
videos (e.g., a girl colored a star). Children then heard a 
statement made by one of the observers about the action 
(e.g. ‘The girl colored some/all of the star’) and had to 
decide which observer said it. Five-year-olds were able to 
successfully incorporate speaker knowledge into their 
pragmatic reasoning, attributing weak statements to the 
partly informed observed and strong statements to the fully 
informed observer, but 4-year-olds struggled. In later 
manipulations, when the observers’ access to the actions 
was identical to the children’s (and hence there was no need 
to reason about someone else’s belief), 4-year-olds’ 
performance improved.  

The present paper revisits the issue of whether 4-year-olds 
can incorporate the speaker’s knowledge state into the 
computation of implicatures, as 5-year-olds and adults have 
been shown to do.  The task designed for this experiment 
was created with the goal of keeping task demands as 
simple as possible.  The design borrows from the referential 
communication paradigm (see, e.g., Nadig & Sedivy, 2002). 
In this paradigm, speaker knowledge is established through 
the speaker’s visual perspective without the need to set up 
an elaborate background scenario (cf. also Matthews et al., 
2006). The task also has a clear goal (referent selection; see 
Stiller et al., 2014) and targets ad hoc scalar implicatures 
that rely on contextual knowledge set up within the 
experimental scene.  

Experiment 

Participants 
Thirty-one 4-year-olds (mean age: 4;6, range: 4:0 to 4:11, 

16 female) participated.  Children were recruited from 
Newark (DE) preschools.  A control group of 26 adult 
participants was also tested. Adult participants were 
recruited with a HIT posted on MTurk. 

Method 
For the test phase, participants were shown pairs of 

pictures displayed side by side on a laptop screen (see 
Figure 1). Within a pair, each picture showed the same 
person sitting across a table behind a two-compartment box 
with identical objects (e.g. a spoon and a bowl), facing the 
camera. In one picture, the girl could see the contents of 
both compartments in her box (full access box), but in the 
other, she could only see the content of one compartment 
(e.g. the spoon) because the other compartment was blocked 
(limited access box).  The participants could see the full 
contents of both boxes. Within a pair, the first (leftmost) 
picture was displayed for 2 seconds, followed by the 
appearance of the second picture that remained on the 
screen for 2 seconds. Then an audio recording of a sentence 
was heard (both pictures remained on the screen). The 

sentences were either weak (e.g. “I see a spoon”) or strong 
(e.g. “I see a spoon and a bowl”).  
 

 
 
Figure 1. An example stimulus. 
 

Before the test phase, children were introduced to the 
limited access box and an explanation of how it worked.   
The explanation involved showing a picture of the girl with 
the limited access box in front of her and one object in the 
hidden compartment. The children were asked whether they 
could look through the open and closed compartments.  For 
the closed compartment, the children were then asked why 
they could not look through it (answers typically mentioned 
that it was closed or blocked). They were asked if they 
thought the girl could look through the blocked 
compartment.  The children were then asked whether the 
girl knew there was a hidden item in the blocked 
compartment. To remind children of the properties of the 
boxes, after the first 4 test trials, children were again asked 
whether they could look through both compartments of the 
limited access box and whether they thought the girl could 
look through both sides and knew there was an object there 
(for the importance of such reminders of the visual 
properties of the display, see Nadig & Sedivy, 2002).  
Children who answered “yes” both times to the question of 
whether the girl knew there was an object in the hidden 
compartment were excluded because they did not 
understand the nature of the limited-access box (N = 6).   

The participants were given two pre-test trials. These 
trials involved a two-picture set-up, as in the test phase. 
Participants were told that they would see some pictures of 
the girl looking at a box that was open on both sides, and 
then looking at a box that was open on one side and closed 
on the other.  The participants were told that the girl was 
going to talk about only one of the boxes.  They were 
instructed that they would hear a sentence and would have 
to decide which box she was talking about. For the first pre-
test trial, the items in the two boxes were different across 
boxes rather than identical as in the test trials (a book and a 
cup in one box; an orange and a spoon in the other). The 
sentence unambiguously described the full access box (“I 
see a book and a cup”). For the second pre-test trial, the 
boxes had different objects again: the full access box had 
two objects but the limited access box only had an object in 
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the closed compartment, but no object in the open 
compartment. The sentence was: “I see nothing.” Neither of 
the pre-tests involved perspective taking. One child failed 
both pre-tests and was excluded.  
  The test phase was identical to the pre-test trials, but with 
identical objects in the two boxes. After hearing either the 
weak or strong sentence, participants were asked, “Which 
box is she talking about?”, and had to point to the correct 
picture. The pictures were counterbalanced in terms of 
whether the limited access box was on the left or the right 
within the pair.  Participants were given 4 strong and 4 weak 
sentences in a mixed order. Two presentation lists were 
created; assignment of Type of Sentence (strong, weak) to 
pairs of pictures was counterbalanced across lists.   
   In order to succeed on the task, participants had to inhibit 
their own perspective, since both boxes had identical 
contents from the children’s point of view.  If participants 
successfully incorporated the perspective and knowledge of 
the speaker, they should say that the strong statement “I see 
a spoon and bowl” described the full access box, because 
the spoon was not visible to the speaker in the limited access 
box.  For weak statements, such as “I see a spoon,” 
participants should pick the limited access box because, 
although the full access box also had a spoon, it would be 
underinformative to only mention the spoon if the speaker 
could also see a bowl.     

Results 
Results are presented in Table 1. In accordance with our 

predictions and adult judgements, correct answers were 
defined as choosing the full access box for the strong 
sentences and the limited access box for the weak sentences. 
For each of the participants, a mean score across the four 
trials was calculated for both the strong and weak 
conditions.  Because most of the 4-year-olds received a 
score of 0 or 1 in the critical weak condition (21 out of 26), 
participants were divided into passers (score ≥ .75) and 
failers (score ≤ .50). 

Adults performed at ceiling in both the strong and weak 
conditions. For the 4-year-olds, Fisher’s exact test revealed 
a marginally significant difference in the number of passers 
and failers for the strong vs. weak condition (p=.05, 2-
tailed).  Comparisons across age groups revealed a 
significant difference between adults and 4-year-olds in the 
weak condition (p=.01), but no significant difference in the 
strong condition (p=1). Nevertheless, in the critical 4-year-
old weak condition the number of passers was significantly 
different from the expected ratio due to chance (p=.029).   

 
 

Table 1: Task performance. 
________________________________________________ 
  Classification Condition___________ 
    Strong  Weak 
Adults  Passers  26  26 
  Failers  0  0 
Children  Passers  25  19 
  Failers  1  7 
   

Discussion 
This experiment investigated 4-year-olds’ ability to 

incorporate speaker knowledge into the computation of ad 
hoc scalar implicatures.  The results suggest that 4-year-olds 
display the ability to incorporate speaker knowledge into 
implicature derivation.  These findings lower prior age 
estimates of children’s ability to take the epistemic step 
during implicature computation – but align with reports in 
the literature about the epistemic ability of very young 
children in non-linguistic tasks (Surian, Caldi & Sperber 
2007; Baillargeon, Scott & He, 2010). Notice that epistemic 
stance per se was not as demanding (see strong sentences): 
when taking someone else’s perspective was combined with 
computing an implicature that this person could have 
intended, given their knowledge state (weak sentences), 
performance dropped. 

An interesting question is why 4-year-olds were able to 
succeed at this task when they failed at prior studies 
targeting sensitivity to the speaker’s epistemic stance in 
implicature-computation (Hochstein et al., 2016; 
Papafragou et al., in press).  In the present experiment, 4-
year-olds needed to compute implicatures, but they also 
needed to reason about what a person had access to, 
determine how that would affect the speaker’s utterances, 
and inhibit their own perspective. Nevertheless, our 
paradigm was based on a simple, clear way of establishing 
that someone’s knowledge differs from the child’s own; 
furthermore, the present paradigm included a clear 
conversational goal (the identification of the box that the 
speaker is talking about). In both of these respects, the 
current study is simpler than past attempts to link the 
informativeness of a sentence to a speaker’s mental state. 

These findings and the paradigm used in this experiment 
provide fertile ground for a continued investigation into the 
pragmatic ability of young preschool children.  It is possible 
that children younger than 4 could be found to demonstrate 
these abilities with an even simpler task.  We are currently 
pursuing this possibility in ongoing work. 
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Abstract 

In production, frequently used words are preferentially 
extended to new, though related meanings. In comprehension, 
frequent exposure to a word instead makes the learner 
confident that all of the word’s legitimate uses have been 
experienced, resulting in an entrenched form-meaning 
mapping between the word and its experienced meaning(s). 
This results in a perception-production dissociation, where the 
forms speakers are most likely to map onto a novel meaning 
are precisely the forms that they believe can never be used 
that way. At first glance, this result challenges the idea of 
bidirectional form-meaning mappings, assumed by all current 
approaches to linguistic theory. In this paper, we show that 
bidirectional form-meaning mappings are not in fact 
challenged by this production-perception dissociation. We 
show that the production-perception dissociation is expected 
even if learners of the lexicon acquire simple symmetrical 
form-meaning associations through simple Hebbian learning. 

Keywords: Hebbian learning; word learning; mental lexicon 

Introduction 

Extension of frequent forms to novel uses is one of the most 

common processes in language change, and results in the 

robust correlation between frequency and polysemy: upon 

examining a dictionary, it quickly becomes evident that it is 

the most frequent words that have the largest number of 

uses (compare get vs. obtain, Piantadosi et al., 2012; Zipf, 

1949). Extension of familiar words and constructions to new 

uses is also one of the major mechanisms driving 

grammaticalization, a largely unidirectional process through 

which grammatical morphemes evolve out of lexical sources 

(Bybee, 2003, 2010). A well-studied example in English is 

the verb will, which was gradually extended from volitional 

lexical uses (e.g., I will it to happen) to grammatical future 

tense uses that no longer imply volition (e.g., I will get fired 

for suggesting this).  

Extension can be observed not only in diachrony but also 

in online language use. In particular, novel extensions are 

frequently observed in children’s use of both referential 

terms and verb-argument structure constructions. For 

example, a child may name a cow a kitty or extend the verb 

giggle to transitive use, as in don’t giggle me (e.g. Naigles 

& Gelman, 1995; Pinker 1989). The words that are so 

overextended tend to be the frequent ones, or else ones that 

are highly accessible in the moment because they have just 

been used (Gershkoff-Stowe et al., 2006; for adults, see also 

Ferreira & Griffin, 2003; Burke et al., 2004). These patterns 

parallel the diachronic tendency for frequent words to 

acquire novel uses.  

Crucially, a child can overextend a word in production 

without overextending it in comprehension. When presented 

with a word she over-extends in production and asked to 

pick out all the objects the word can refer to, the child often 

does not select the objects to which she over-extends the 

word in production as its possible referents (Naigles & 

Gelman, 1995). 

In fact, frequency appears to have opposite effects in 

comprehension and production. Whereas frequent words are 

extended to new uses in production, frequent words are 

likely to be restricted to the uses in which they have been 

experienced. For example, Xu & Tenenbaum (2007) show 

that experiencing fep paired with a Dalmatian once leads 

children to think it plausible that fep refers to all dogs, but 

three fep-Dalmatian pairings are enough to restrict the set of 

referents to Dalmatians (see also Ambridge et al., 2008; 

Brooks & Tomasello, 1999; Theakston, 2004; Wonnacott et 

al., 2008, for related results with syntactic constructions). 

Frequent exposure to a form-meaning pairing appears to 

convince learners that the form always co-occurs with this 

meaning. 

 

The Data 

In recent work, we have confirmed the existence of this 

dissociation in adult learners of a miniature artificial 

language (Harmon & Kapatsinski, submitted; Experiment 

1). In our study, participants were exposed to a language 

with two plural suffixes (-dan and -sil) and two diminutive 

suffixes (-nem and -shoon). For each participant, one suffix 

was more frequent than others. Each participant was tested 

on both comprehension and production. 

Participants experienced the language through passive 

exposure, with nouns bearing the suffixes (e.g. ostodan, 

zutishoon) presented auditorily, paired with pictures of their 

referents. Each trial began with a picture of the referent, 

followed 500 ms later by the spoken word. After the offset 

of the spoken word, the experiment advanced to the next 

trial, which began 400 ms later. 

 Nouns bearing plural suffixes were paired with pictures 

of multiple large creatures (with the kind of creature 

determined by the stem), whereas each noun bearing a 

diminutive suffix was paired with pictures of a single small 

creature.  

For half of the participants (n = 35), those in the Dan 

condition, the form -dan was more frequent than the others. 

For the other half, assigned to the Nem condition (n = 35), 

the frequent form was -nem. The competing -sil and -shoon 
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forms were always equally frequent. The unsuffixed stems 

constituted the singular non-diminutive form of the noun.  

After exposure, participants were tested on both 

production and comprehension. In the production test, were 

presented with meanings and asked to express them. 

Crucially, one of the meanings was a novel one, plural 

diminutive (multiple small creatures).  Each trial began with 

the presentation of the picture of a novel singular object on 

the computer screen. The name of the novel object was 

presented auditorily over headphones as in the training 

stage. Once the sound finished playing, the picture was 

removed and replaced with a display of four pictures 

representing four different meanings: a single object of the 

same type, a miniature version of the same object, multiple  

objects of the same type, and multiple miniature objects of 

the same type. Three of these pictures disappeared, leaving 

the participants with the one target picture to name (i.e., 

meaning to express). Participants were asked to generate the 

form for the target meaning using the stem that was 

presented and say the form aloud. They had five seconds to 

do so.  

Data were analyzed using logistic mixed-effects models 

with maximal random-effects structure using the lme4 

package (Bates et al., 2015) in R (R Core Team, 2015). 

Significance was assessed by comparing models with and 

without a predictor using a log likelihood test. Participants 

were significantly more likely to use a given form if it was 

the frequent form during exposure (Figure 1; χ2 (1) = 21, p < 

.0001). This was not simply an effect of semantic feature 

frequency, i.e. DIM.PL in Dan, where PL was frequent, was 

not simply interpreted as PL: the synonym of a frequent 

form (-sil in Dan and -shoon in Nem) was no more likely to 

be used to express the novel meaning than the synonym of 

the infrequent form (-sil in Nem and -shoon in Dan; p = .9). 

 

 
Figure 1: An illustration and results of the production test. 

A suffix is produced more often when it has been 

experienced more frequently (-dan in Dan and -nem in 

Nem), both to express the meaning with which it was 

experienced and to express the novel related meaning 

(DIMPL) 

 

In the comprehension test, participants were presented 

with forms and asked to click on the corresponding meaning 

using the four-picture display briefly flashed in production. 

The meanings included the familiar meanings as well as the 

novel meaning. In this task, participants were less likely to 

click on the novel meaning given a form that was frequent 

during exposure (Figure 2; χ2(1)= 17, p = .000037). As in 

production, these effects could not be accounted for by the 

relative frequencies of the meanings because the synonym 

of a frequent form was significantly more likely to be 

mapped onto the novel meaning than the synonym of the 

infrequent form (p <.001). Thus, participants are not simply 

more likely to click on the more familiar meanings, rather 

they are more likely to click on familiar meanings in 

response to the forms that have been frequently paired with 

them in training. For forms that have been paired with the 

frequent meaning less frequently, the novel meaning is 

preferred, despite the fact that these forms are as frequent as 

synonyms of infrequent forms. 

 

 
Figure 2: An illustration of the comprehension test and 

the corresponding results from Harmon & Kapatsinski 

(submitted). Responding ‘DIMPL’ meant clicking on 

multiple small creatures; ‘PL’ meant clicking on multiple 

large creatures, and ‘DIM’ meant clicking on a single small 

creature. When a suffix occurred frequently in training (-dan 

in Dan Condition and -nem in Nem Condition), it became 

less likely to be mapped onto the novel meaning, DIMPL, 

and more likely to be mapped onto the meaning it was 

paired with during exposure. 

 

The results therefore show a production-comprehension 

dissociation: the forms participants were most likely to use 

to refer to the novel meaning in production were the forms 

they were least likely to map onto the novel meaning in 

comprehension. 

Thus, frequency of a form-meaning pairing appears to 

have opposite effects in production and comprehension. 

These results therefore appear, at first glance, to be 

problematic for simple Hebbian models of word learning 

(McMurray et al., 2012; Yu & Smith, 2012) that learn 

symmetrical bidirectional form-meaning mappings based on 

form-meaning co-occurrence as well as for the notion, 

nearly universally accepted in linguistics (cf. Ramscar et al., 

2010), that linguistic contructions, whether lexical or 

grammatical, are Saussurean signs – i.e., that there is a form 

representation that mediates the auditory-to-semantic 

mapping in comprehension and the  semantic-to-articulatory 

mapping in proeuction. The aim of the present paper is to 
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show that, somewhat counterintuitively, the observed 

dissociation actually falls out of simple Hebbian learning of 

bidirectional form-meaning associations. 

The baseline model: Frequency counter 

According to Hebb (1949), neurons that fire together wire 

together. We assume a distinction between cues and 

outcomes, where outcomes follow cues. On every trial, 

associations between the cues present on that trial and the 

following outcomes strengthen. How much they strengthen 

is determined by the salience of the cue, the salience of the 

outcome, and the learning rate. During the exposure trials in 

Harmon & Kapatsinski (submitted), forms began 500 ms 

into the presentation of the referent. Therefore, we assume 

cues to be the semantic features of the referents (BIG, 

SMALL, MANY and ONE) plus a context cue, present on 

every trial (Pavlov, 1927; Rescorla & Wagner, 1972). This 

order of presentation was chosen to reflect the temporal 

dynamics of real-life word learning (Pereira et al., 2014). 

Unlike error-driven models such as Rescorla & Wagner 

(1972), we did not multiply the increment in association 

strength by prediction error. This is part of what makes the 

model Hebbian: it does not learn less on trials with 

unsurprising (or no-longer-surprising) outcomes, and would 

not exhibit cue competition effects such as blocking or 

overshadowing. 

In essence, this base model is simply counting frequencies 

of form-meaning mappings. When it encounters a cue 

(meaning) followed by an outcome (form), it simply 

increases the weight of the link between them by a constant 

number, which we set to 1 in order to emphasize the 

model’s nature as a simple frequency counter. The results 

do not change depending on what the number is. 

Linking hypotheses 

In order to connect the model’s knowledge to the 

experimental results, we need a set of linking hypotheses 

connecting the weights and activations of the model to the 

participants’ responses in the experimental tasks. We 

assumed that production involves activating forms given the 

semantic features present on that test trial and the context 

cue. The activation of a form is simply the sum of 

connection strengths from the semantic and context cues 

present on the test trial to that form. The choice of the form 

is then determined stochastically (Luce, 1963): the form is 

chosen in proportion to its activation value relative to the 

sum of all forms’ activation values given the cues present. 

Stochastic choice implements probability matching, an 

empirical universal in tasks that demand repeatedly 

choosing between the same alternatives (Azab et al., 2016). 

The linking hypothesis for comprehension is more 

controversial. Note that the model, like the subjects, was 

trained only in the meaningform direction. However, the 

comprehension task required participants to choose 

meanings given forms, reversing the cueoutcome 

mappings they were trained on. Participants were extremely 

accurate in the comprehension task, suggesting that they 

were able to bring the knowledge they acquired to the task. 

The model must be able to do the same. We propose that the 

associations participants learn obey the Symmetry Principle: 

a cueoutcome association is as strong as the 

corresponding outcomecue association (Asch & 

Ebenholtz, 1962; Kahana, 2002). This is another way in 

which the proposed model differs from models that perform 

using prediction error, such as  Rescorla & Wagner (1972). 

This difference, however, is crucial for the model’s ability 

to simulate the comprehension data. 

We assume that a choice between two meanings depends 

on the difference in activations between the two meanings’ 

contrasting features. For example, the probability of clicking 

on [small;plural] rather than [big;plural] when presented 

with -dan is proportional to the difference in association 

strengths between –dan~SMALL (=SMALL ~ -dan) and -

dan ~ BIG (=BIG ~ -dan). The bigger this difference, the 

more likely participants are to click on the meaning that 

actually was paired with the form in training (Miller & 

Matzel, 1988). 

Models between frequency and contingency 

Besides the connections between the cues and outcomes 

present on a particular trial, there are three other sets of 

connections that could potentially be updated. Alternative 

theories of associative learning differ in their claims about 

whether these connections are indeed updated.  

First, there are connections from the cues present on a 

trial to the outcomes absent from that trial. It is usually 

thought that these connections’ weights are reduced, so that 

cues that are consistently paired with the absence of a 

certain outcome develop inhibitory connections to that 

outcome, with the subject learning the negative contingency 

present in the environment. Second, there are connections 

from the absent cues to the present outcomes. These 

connections are assumed not to be updated by Rescorla & 

Wagner (1972). However, van Hamme & Wasserman 

(1994) and Tassoni (1995) argued that – if participants 

know the set of cues that could occur on every trial – the 

absence of a cue could be salient. In other words, learners 

may notice the consistent absence of a cue on trials 

containing a certain outcome and develop a negative 

association between that cue and the outcome. Finally, one 

could argue that connections from absent cues to absent 

outcomes may also be updated, gaining strength: when a cue 

and an outcome are absent together, the learner is in a 

position to learn that absence of the cue predicts absence of 

the outcome (Tassoni, 1995). Thus, models of learning can 

be arranged from simplest (wiring together present cues and 

outcomes only) and least veridical – least able to faithfully 

reproduce environmental contingencies – to most complex 

and most veridical (updating all connections on every trial). 

In what follows, we examine the types of updating that are 

needed to capture the experimental results by independently 

varying whether each distinct set of connections undergoes 

updating. Table 1 summarizes the possible models from a 

simple frequency counter that updates only the connections 
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between present cues and present outcomes to a fully 

veridical contingency tracker that updates all four sets of 

connections (in the normative direction). We will refer to 

the models we evaluate with the abbreviations shown on the 

left sides of the table cells. For example, the Rescorla-

Wagner model updates only the sets of connections in the 

top row and can therefore be abbreviated as (pc). 

 

Table 1: The four distinct sets of cue-outcome 

connections on every trial and whether their weights should 

become more positive (+) or more negative (-) in a model 

that is able to capture environmental contingencies 

veridically. The two subscripts c and o refer to cue and 

outcome respectively. Presence is denoted by p and absence 

by a. 

 

 Outcome Present Outcome Absent 

Cue Present (pcpo) + (pcao) - 

Cue Absent (acpo) - (acao) + 

 

Extension of frequent forms in production 

Table 2 shows predicted activations of the frequent suffix, 

its synonym, and the two other suffixes (which are always 

activated equally) by the semantic features of the novel 

meaning (MANY and SMALL) under all logically possible 

models of associative learning. The left column represents 

the simplest possible model, a frequency counter (Bybee, 

2010). Columns 2-4 represent association sets that can be 

added to the frequency counter in order to make 

contingency learning more veridical, incorporating learning 

of connections involving absent cues and/or outcomes. 

Column 5 is the model that learns only from present cues (a 

Hebbian version of Rescorla & Wagner, 1972). Column 6 is 

the full model that learns about all associations, including 

associations between absent cues and absent outcomes (a 

Hebbian version of Tassoni, 1995). Extension of frequent 

forms to novel meanings is predicted if the activation of the 

frequent form exceeds that of all other forms, including the 

frequent form’s synonym. In other words, a preference to 

extend the frequent form to novel meanings is predicted 

whenever the largest number is in the top row. 

As seen in Table 2, extension of the frequent form is 

predicted by increasing the weights of connections from 

present cues to present outcomes, as well as by decreasing 

the weights of connections from present cues to absent 

outcomes. Updating connections from absent cues (in the 

normative direction) acts against extension.  

For the simulations reported in this table, it was assumed 

that an absence of a cue or outcome is noticed only half the 

time while its presence is always noticed. Associative 

learning in conditioning paradigms tends to be slower when 

reinforcement is signaled by the absence of a cue than when 

it is signaled by the presence of a cue (e.g. Wasserman et 

al., 1990). However, one might question whether absences 

are missed or ignored that often, and wonder whether 

noticing absences more would eliminate extension. It turns 

out not to matter much: ac does not overpower pc even if 

absences are as salient as presences. All extant models of 

learning agree that absent stimuli are no more salient than 

stimuli that are actually presented and therefore all predict 

(over-)extension of frequent forms to related meanings in 

production.  

 

Table 2: Activations of the frequent suffix, its synonym, 

and the other two suffixes given the novel diminutive plural 

meaning under alternative models. 

 

DIM.PL pcpo pcao acpo acao pc all 

Frequent 72 -42 -18 15 30 24 

Synonym 24 -66 -6 21 -42 -12 

Other 24 -66 -6 21 -42 -12 

 

Entrenchment in comprehension 
 

Table 3 reports activation differences between features that 

distinguish the novel meaning from the familiar meaning 

paired with a form in training. Because of the Symmetry 

Principle, the activation differences correspond to 

meaningform connection weights involving the semantic 

features in question. For example, the activation difference 

between the non-diminutive and diminutive plural for –dan 

is the weight of the connection between –dan and BIG 

minus the weight of the connection between –dan and 

SMALL. The activation difference between the singular and 

plural diminutive for –nem is the weight of the connection 

between –nem and ONE minus the weight of the connection 

between –nem and MANY (cf. Miller & Matzel, 1985). 

Entrenchment is observed if this difference is larger (more 

positive) for a frequent form compared to the ‘other’ forms, 

i.e. if the value in the top row in Table 3 is larger than the 

value in the bottom row.  

 

Table 3: Comprehension effects. Each cell contains 

activation difference between the meaning paired with a 

form in training and the novel, diminutive plural, meaning. 

Activations of shared features of the competing meanings 

cancel out. Therefore, for plural suffixes this is the 

difference in activations between BIG and SMALL, and for 

diminutive suffixes it is the difference between ONE vs. 

MANY. Entrenchment is predicted if Frequent > Other. 

 

Right-New pcpo pcao acpo acao pc all 

Frequent 36 0 36 6 36 78 

Synonym 12 -12 12 -6 0 6 

Other 12 12 0 0 24 24 

 

Table 3 shows that entrenchment is favored by 

strengthening pcpo connections between present cues and 

present outcomes, weakening acpo connections between 

absent cues and present outcomes, and strengthening acao 

connections between absent cues and outcomes. Because 

updating pcpo and pcao weights pull in different directions, 

entrenchment only occurs if absent outcomes are less salient 
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than present outcomes. In other words, weights of 

connections to absent outcomes must change less than the 

weights of connections to present outcomes. This appears to 

be a reasonable assumption (e.g. Tassoni, 1995), though not 

all extant models make it. For example, the Naïve 

Discriminative Learner (Baayen et al., 2011), which uses 

equilibrium equations for the Rescorla & Wagner (1972) 

model from Danks (2003: 116), does not show 

entrenchment because the learning rates for present and 

absent outcomes in Danks’ equations are equal, a 

simplifying assumption (Danks, 2003: 115-116). 

 

Conclusion 

Studies of comprehension suggest that frequently 

encountering a form-meaning pairing convinces the learner 

than the form cannot be used in any other way (Braine & 

Brooks, 1995; Brooks & Tomasello, 1999; Regier & Gahl, 

2004; Stefanowitch, 2008; Xu & Tenenbaum, 2007). 

Nonetheless, frequent forms are the ones most likely to be 

extended to new uses. Using a frequent form in a novel way 

seeds the process of language change because that novel use 

can then be picked up by others, spreading through the 

speech community. As the novel use diffuses through the 

community, it becomes conventional. Over historical time, 

extension of frequent forms results in the well-documented 

correlation between frequency of use and number of senses: 

in every language, it is the most frequent forms that are 

most polysemous (Piantadosi et al., 2012; Zipf, 1949). 

Conventionalization of extensions is the primary 

mechanism behind the diachronic process of 

grammaticalization (Bybee, 2010; Heine, 2011). The 

importance of this diachronic process can hardly be 

overstated as it is the primary source of grammar: almost all 

grammatical morphemes, whether bound affixes or 

independent functors like prepositions, determiners or 

auxiliaries are former lexical words that have been gradually 

extended to new and new uses (Bybee, 2003; 2010; 

Christiansen & Chater, 2016).  

Despite the correlation between frequency and semantic 

extension, the causal mechanisms behind 

grammaticalization remain controversial. For example, 

Haspelmath (1999) has argued that increases in frequency 

seen in grammaticalization are caused by the extension of 

the grammaticalizing form to new uses, which are in turn 

caused by semantic broadening. Bybee (2003) agrees that 

semantic broadening causes extension but suggests that high 

frequency causes semantic broadening. Like Haspelmath 

(1999), Heine (2011) does not allocate frequency a causal 

role in the process but suggests that extensions result in 

broadening. 

In our recent experimental work, we have documented 

that the same speaker may extend a frequent form to a new 

meaning in production despite being least likely to map it 

onto the new meaning in comprehension. This suggests that 

the speaker may extend a form to a new meaning, thereby 

seeding the process of language change, without necessarily 

considering the form to be the best way to express that new 

meaning. Use in a new context can therefore be caused by 

high frequency and precede semantic broadening. 

In the present paper, we have argued that this production-

comprehension dissociation falls out of simple, Hebbian 

associative learning models, which acquire symmetrical 

form-meaning associations based on cue-outcome co-

occurrence (Hebb, 1949; Miller & Matzel, 1985; see also 

McMurray et al., 2012; Yu & Smith, 2012). While such 

dissociations have previously been used to support the idea 

that formmeaning associations are distinct from 

meaningform associations (Kapatsinski, 2009), the 

present results indicate that a single set of bidirectional 

associations suffices.  

Remarkably, all that is required to obtain the divergence 

between frequency effects in production and comprehension 

– entrenchment of the frequent in comprehension, and 

extension in production – is the assumption that cue and 

outcome absences to be less salient than present cues and 

outcomes, an uncontroversial assumption (Tassoni, 1995; 

Wasserman et al., 1990) that is also normatively justified: 

almost every stimulus is absent more often than it is present, 

hence the presence of a stimulus is typically more 

informative about the contingencies in the learner’s 

environment than its absence (McKenzie & Mikkelsen, 

2007). Despite being surprising to human theorists, 

frequency-driven semantic extension is predicted by every 

associative learning theory.  
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Abstract 

Deaf children born to hearing parents are exposed to 
language input quite late, which has long-lasting effects on 
language production. Previous studies with deaf individuals 
mostly focused on linguistic expressions of motion events, 
which have several event components. We do not know if 
similar effects emerge in simple events such as descriptions 
of spatial configurations of objects. Moreover, previous 
data mainly come from late adult signers. There is not much 
known about language development of late signing children 
soon after learning sign language. We compared simple 
event descriptions of late signers of Turkish Sign Language 
(adults, children) to age-matched native signers. Our results 
indicate that while late signers in both age groups are 
native-like in frequency of expressing a relational encoding, 
they lag behind native signers in using morphologically 
complex linguistic forms compared to other simple forms. 
Late signing children perform similar to adults and thus 
showed no development over time. 
 

Keywords: sign language; late acquisition; spatial 
relations; left right 

Introduction 
The most frequently preferred way of spatial encoding in 
sign languages requires the use of morphologically 
complex linguistic forms and use of signing space 
analogue to how the entities are located with respect to 
each other in the real space (e.g., Emmorey, 2002). In 
these forms, called classifier predicates (CLs), signers use 
their hands to represent the location and motion of the 
entities, as shown in Figure 1a below. Morphological 
complexity of these forms comes from the need for 
choosing the correct handshape for the entities (e.g., index 
finger for long and thin entities) and simultaneous 
coordination of both hands in the signing space to express 
their locations (e.g., Supalla, 1982). The relative spatial 
location of these forms in signing space represents spatial 
relations among entities in an analogue way – unlike the 
categorical forms (i.e., ad positions or spatial nouns) in 
spoken languages. 

Earlier studies on spatial language acquisition of native 
signing deaf children, mostly focused on motion events, 
have claimed such morphological complexity to be a 
hindering factor compared to hearing children (e.g. 

Engberg-Pedersen, 2003; Slobin, 2003). However, recent 
work has found that Turkish Sign Language (TİD) 
acquiring deaf children learn to encode static location of 
the objects placed on a lateral axis (e.g., pen left to paper, 
apple right to box) earlier than their hearing peers (Sümer, 
2015; Sümer, Perniss, Zwitserlood, Özyürek, 2014). Even 
though these children mostly used classifier predicates, 
they also used specific lexical signs (i.e., relational 
lexemes) for left and right, which are body-anchored in 
TİD (see Figure 1b), as frequently as the native signing 
adults. Thus, classifier predicates and/or body anchored 
relational lexemes seem to facilitate the learning of static 
spatial relations for deaf children who have been exposed 
to sign language input since birth (native signers).   
 

   

          (a) RH: CL (paper)locR       (b) RH: LEFT 

 LH: CL (pen)locL                     LH: LEFT 
 

Figure 1: Descriptions from adult native signers of TİD 
for the spatial relation of the pen with respect to the paper 

using (a) classifier predicates and (b) body anchored 
relational lexeme for ‘left’ (Sümer et al., 2014).  

 
It is not known however if similar patterns also emerge 

in language development of deaf children with delayed 
sign language exposure (late signers). A previous study 
with deaf children (ages 5-6 yrs.) who were never exposed 
to a sign language (i.e., home signers) found no evidence 
of relational encoding for spatial relation (Gentner, 
Özyürek, Gürcanli, Goldin-Meadow, 2013). Here, we 
investigate whether spatial encodings of a similar type 
studied by Sümer and her colleagues (2014) can also be 
learned within a short time by late signing children after 
brief exposure (2 years) to sign language (after the age of 
6) or whether late exposure to sign language is a 
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drawback in mastering spatial language in general. 
Moreover, we investigate the effects of delayed language 
exposure on both late signing children as well as adults to 
see if any developmental pattern emerges in such delayed 
exposure to language and if yes how. 

A body of evidence on the effects of late sign language 
acquisition by deaf individuals posits that adult late 
signers lag behind adult native signers in several domains 
such as general cognitive abilities (Bebko & McKinnon, 
1990; Mayberry & Waters, 1991; Parasnis et al., 1996; 
Wilson, Bettger, Niculae, & Klima, 1997) and sign 
language comprehension (Emmorey, 1993; Emmorey & 
Corina, 1992; Mayberry & Eichen, 1991). Nevertheless, 
most of the studies were restricted only to sign language 
comprehension, and there are only a few studies on sign 
language production which focus only on adult patterns. 
Question of how late signing children perform in 
production compared to late adult signers and also to their 
age-matched native signing peers could be informative in 
understanding the impact of delayed language exposure 
for adult and child late signers, and to what extent 
development plays a role in delayed language acquisition. 

 In series of studies, Newport (1988; 1990) investigated 
language production of adult late signers through 
descriptions of motion events. She found that they 
described motion events by using fewer classifier 
predicates (CLs) than native signers, but rather preferred 
simple forms such as lexical verbs. Given that the motion 
events consist of several components, such as Figure, 
Ground, Path, Manner (Talmy, 1985), it raises the 
question of whether similar patterns emerge for late 
signing children and adults in describing static events 
which has fewer components, such as only Figure and 
Ground. In addition, a previous study (Sümer, 2015) 
revealed that adult-like descriptions of static spatial 
relations are acquired earlier for static locations than for 
motion event descriptions in TİD by native signing deaf 
children. We do not know if these patterns also apply to 
late signing children and adults of TİD and if there are any 
developmental patterns in late signers. 

The Present Study 
To answer above questions, this study investigates the 
effects of late sign language exposure on the ability to 
encode static spatial events for left-right spatial relations 
by late signers of TİD and compares them to those of 
native TİD signers, which were already reported by Sümer 
et al. (2014) and Sümer (2015). We also compare the 
descriptions of late signing children and adults to those of 
native children and adults obtained earlier by Sümer 
(2015) to see if there is any developmental pattern in late 
signers. 

Participants 
Seven adult late signers (30;0 - 49;0, M = 39.14 years), 7 
child late signers (7;3 - 10;9, M = 7;8), 10 native adult 
signers (18;5 - 45;10, M = 31;4), and 10 native child 

signers (7;2 - 9;10, M = 8;3)1 participated in the study. 
All late signers had learned TİD after age 6 when they 
started a school for the deaf. Late signers did not have any 
prior exposure to sign language because according to the 
Turkish Education System, age 6 is the earliest age for 
starting school in Turkey. Before starting school, these 
signers mainly stayed at home with their non-signing 
parents. As a result, late signing children participated in 
this study, had exposure of 2 years of sign language at the 
time of testing. Before starting to school, both children 
groups got two hours of speech therapy every week. At 
the end of the study, adult participants received a small 
monetary compensation; child participants received a 
gender neutral color pencil kit. 

Stimuli and Procedure 
Stimuli included a set of 36 displays. In each display, 
there were 4 pictures2 consisted of two entities placed in 
various spatial configurations (Left, Right, In, On, Under, 
Front and Behind) to each other. Within each display 
(four-picture set), only one picture was considered to be 
the target, which was marked with a red outer frame. The 
experimental displays we focused on in this study 
consisted of 6 displays, in which the target picture 
depicted either Right or Left configurations (Figure 2). 
 

 
 

Figure 2: Example of a display. The target picture (apple 
to the right of the box) to be described is framed in red.  

 
Participants were seated across a confederate deaf 

addressee who was a native signer of TİD.  Stimuli were 
presented through a 15" MacBook Pro computer. 
Computer screen was only visible to the participants. 
Participants were asked to describe the target pictures to 
the addressee and were not instructed to use any specific 
strategy. In order to create an interactive nature, addressee 
was given a booklet containing the same displays and was 
asked to point at the picture that the participant described. 
At the end of the experiment, participants filled out 
demographics and language background surveys. 

                                                           
1 Data of native signers were collected as part of a bigger project 
conducted between 2010 and 2015 (Sümer, 2015). 
2 Pictures used in the study were originally developed by Dr 
Jennie Pyers and were adapted further for the purposes of this 
present study. 
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Coding 
Descriptions for the target items were coded for the 
presence of spatial encoding and choice of linguistic 
strategies used to describe spatial relationship between 
two entities by using ELAN, a free annotation tool 
(http://tla.mpi.nl/tools/tla-tools/elan/) for multimedia 
resources developed by the Max Planck Institute for 
Psycholinguistics, The Language Archive, Nijmegen, The 
Netherlands (Wittenburg et al., 2006).  We categorized 
three main linguistic strategies used to encode, 
specifically, Figure object’s relation to Ground object: 
Classifier predicates CLs (Figure 1a), Relational Lexemes 
like LEFT and RIGHT (Figure 1b), and other alternative 
linguistic forms. Other forms included showing the 
location of objects through pointing (59% of the cases; 
Figure 3), placing the objects in the signing space through 
virtually drawing by hand (SASS), using a lexical verb to 
infer objects (e.g. using sign for “to sit” to represent 
location of a boy).  
    Annotation of data from the native signers were done 
by hearing research assistants and a native TİD signer and 
coded by the second author of this study. Annotation of 
data from the late signers were done by hearing research 
assistant and coded by the first author of this study. Later, 
all annotation and coding was checked by the second 
author of this study. All annotators and coders had 
knowledge of TİD.  

 

     
(a) RH: Point (cat)locR 

             LH: CL (boat)locL 
 

   
(b) RH: CL(house)locR 

              LH: Point (horse)locL 
 

Figure 3: Descriptions from late signers of TİD for two 
objects located on the lateral axis by using pointing by (a) 
an adult TİD signer (middle finger point) and (b) a child 

TİD signer (index finger point). 

Results 
Mean proportions of linguistic strategies were calculated 
for each participant. Arcsine transformation was applied 
to all data to ensure normality. The mean proportions and 
standard errors (SEs) in the table and the graphs are 
reported from the untransformed data. 

First we investigated the frequency of encoding a 
spatial relation of entities by different groups in each 
language status. Results of the 2 (Age: Adults, Children) 
X 2 (Status: Native, Late) Between Subjects ANOVA on 
mean proportions of encoding a spatial relation revealed 
no main effect of age, F (1,30) = 2.918, p = .098, η2 = 
.089, MSE = .381, no main effect of status, F (1,30) = 
.373, p = .546, η2 = .012, MSE = .049 and no interaction, F 
(1,30) = 768, p = .388, η2 = .023, MSE = .100. These 
results indicate that all groups of participants generated 
equal amount of relational encodings (Table 1). 
 

Table 1: Mean Proportions and SEs of frequency of 
encoding a spatial relation as a function of Age and 

Status. 
 

Participants Native Signers Late Signers 

Adults  0.97 (.02) 0.98 (.03) 

Children 0.92 (.05) 0.81 (.11) 

 
 As the next step, we investigated what types of 

linguistic strategies were preferred by each age group and 
status. The results of a 2 (Between Subject, Age: Adults, 
Children) X 2 (Between Subject, Status: Native, Late) X 3 
(Within Subject, Linguistic Strategy: CLs, RLs, Other) 
Mixed ANOVA yielded a main effect of Linguistic 
Strategy, F (1.32,12.42) = 37.114, p < .001, η2 = .533, 
MSE = .314, no main effect of age, F (1,30) = .347, p = 
.560, η2 = .011, MSE = .008, no main effect of Status, F 
(1,30) = 1.385, p = .249, η2 = .044, MSE = .008. Due to a 
marginal interaction between Linguistic Strategy and 
Status, F (1.32,12.42) = 3.628, p = .053, η2 = .108, MSE = 
.314, separate analyses were conducted for each Status. 

Linguistic Strategies used by Native Signers 
The results of 2 (Between Subjects, Age: Adult, Child) X 
3 (Within Subjects, Linguistic Strategy: CLs, RLs, Other) 
mixed ANOVA showed no main effect of age, F (1,18) = 
1.214, p = .285, η2 = .063, MSE = .028 but a main effect 
of Linguistic Strategy, F (1.25,22.53) = 60.186, p < .001, 
η2 = .770, MSE = .183, without an interaction between 
them, F (1.25,2.53) = .251, p = .674, η2 = .315, MSE = 
.183. Tests of within subject comparisons showed that 
classifier predicates were preferred more frequently than 
relational lexemes (p < .001) and other linguistic forms (p 
< .001). The frequency of using relational lexemes and 
other forms found to be similar to each other (p > .05). 
The lack of main effect for age indicated that deaf 
children used the linguistic forms in three different 
categories as frequently as deaf adults. See Figure 4 
below.  
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Figure 4: Mean proportions and SEs of linguistic 
descriptions of native signers as a function of age. 

Linguistic Strategies used by Late Signers 
The results of 2 (Between Subjects, Age: Adults, 
Children) X 3 (Within Subjects, Linguistic Strategy: CLs, 
RLs, Other) mixed ANOVA showed no main effect of 
age, F (1,12) = .097, p = .761, η2 = .008, MSE = .015 but a 
main effect of Linguistic Strategy, F (1.18,14.10) = 6.771, 
p = .017, η2 = .036, MSE = .588, without an interaction 
between them, F (1.18,14.10) = .450, p = .544, η2 = .036, 
MSE = .588. Tests of within subject comparisons showed 
that relational lexemes were used less frequently than 
classifier predicates (p < .01) and other forms (p < .05). 
The frequency of using classifier predicates and other 
forms are found to be similar to each other (p = 573). The 
results indicate that late signers -unlike native signers- use 
other forms as frequently as classifier predicates. See 
Figure 5 below. 

Results showed that native and late signers show 
different production patterns in their descriptions of the 
location of the objects when they are placed to left or right 
to each other. Namely, native signers show a significant 
preference over using the morphologically complex CLs 
in describing, however, late signers employ other simpler 
forms as frequently as CLs. Moreover, this tendency is 
significant for all age groups.  

 

 
 

Figure 5: Mean proportions and SEs of linguistic 
descriptions of late signers as a function of age. 

Discussion and Conclusion 
Our study has two key findings. First, late signing adults 
and children differ from native signing adults and children 
in their linguistic descriptions. Namely, late signers do not 

show a preference for CLs. Rather they employ simpler 
other forms as frequently as CLs compared to native 
signers. These findings clearly indicate that late exposure 
to sign language by deaf individuals has long-term effects 
on their production patterns. Second, late signing children 
perform similar to late signing adults in their static spatial 
event descriptions and show no further developmental 
trajectory in their preferred linguistic devices. 

Results of this study complement the previous literature 
– yet in another sign language – showing a tendency 
towards decreased preference for CLs and increased 
preference for other simpler forms not only for complex 
event descriptions, as found in ASL (Newport, 1988; 
1990), but also for simple static events (Sümer et al., 
2014; Sümer, 2015). In the case of native signers of TİD, 
both adults and children prefer CLs more than RLs and 
other forms while the nature of this distribution is 
different for late signers of TİD, who use CLs and simpler 
other forms such as pointing in similar amounts while 
they prefer RLs for left and right less frequently. The 
body-anchored relational lexemes in TİD were very rarely 
used by late signing adults and not at all by the late 
signing children. Thus, the use of CLs and RLs did not 
seem to ease acquisition for these children as they did for 
native children. However, we should be cautious in 
generalizing the effects of these comparisons due to 
relatively few number of participants we could investigate 
especially from late signing group. 

Considering the high proportion of relational encodings 
shown on Table 1, 2-year exposure to sign language after 
age 6 seems to be enough to initiate spatial language 
production in late signing children to become adult like. 
This is a rather striking finding since Gentner and her 
colleagues (2013) found that home signing children (deaf 
children never exposed to a sign language) in similar age 
range do not produce gestures in a way that would encode 
spatial relations, which indicates the necessity of sign 
language input for relational encoding to emerge at all. 
This pattern also shows that while relational encoding 
might emerge as the earliest feature of encoding a spatial 
event, and as less sensitive to delayed exposure, 
morphologically complex forms or body anchored 
relational lexemes such as LEFT and RIGHT might be more 
resistant to the timing of the input to develop. 

The difference in the preference for linguistic forms to 
encode spatial relations between native signers and late 
signers provides evidence for the role of maturational 
constrains in language acquisition. Moreover, previous 
studies have been mostly on comprehension of sign 
language (e.g., Mayberry & Eichen, 1991), our results 
indicate that these effects are not only restricted to 
comprehension, but also observed in production, as also 
shown by Newport (1988; 1990). Furthermore, it shows 
that these results on motion event expressions can be 
extended to those of static events. 
     Our study also uniquely displays these patterns for late 
signing children for the first time in the literature. 
Although, late signing adults of TİD have lengthier 
language experience compared to late signing children, 
who have only a 2-year of sign language exposure, we 
still observed similar preferences in how frequently they 
prefer CLs and other forms. It seems that the hindering 
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effects of delayed language exposure persist in language 
production despite many years of language use. This 
finding is also in line with other studies that show the 
significance of age of acquisition, rather than the length of 
exposure, in both sign and spoken language development 
(Mayberry, 2010). 
     Finally, late signing children were not only exposed to 
sign language late but also the kind of language they were 
exposed to, that is the language used by their late signing 
peers in the primary school, was also non-native. Thus, 
future research should also investigate the effect of type of 
language input (i.e., non-native input) in addition to age of 
acquisition in late signing children and adults on late 
signers’ language production.   
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Abstract 

Since its design in 2003, the joint Simon task and corollary 
joint Simon effect (JSE) have been invaluable tools towards 
the study of joint action and the understanding of how 
individuals represent the action/task of a co-actor. The 
purpose of this meta-analysis was to systematically and 
quantitatively review the sizeable behavioural evidence for 
the JSE. Google Scholar was used to identify studies citing 
the first report of the joint Simon task (Sebanz, Knoblich, & 
Prinz, 2003) up until June 23, 2015. After screening, thirty-
nine manuscripts were included in the meta-analysis, thirteen 
of which included individual go/no-go (IGNG) control data. 
Separate random-effects models were conducted for both the 
joint Simon and IGNG datasets, and meta-regression models 
were used to assess potential moderators that may impact the 
strength of the JSE. The results provide an important 
quantitative summary of the literature and serve as a 
foundation for future research surrounding the JSE. 

Keywords: joint action; spatial compatibility; co-
representation 

Introduction 
Throughout the day, people engage in a variety of social 
interactions that mold our behaviour, and even independent 
events can be shaped by those around us. In recent years, 
much research has been devoted to better understanding 
how individuals mentally represent the presence, tasks, and 
actions of others, and how such representations influence 
one’s own behaviour, in contrast to matched behaviours 
performed alone. A valuable experimental paradigm 
towards this end has been a spatial compatibility task, more 
specifically the Simon task, which can be performed in an 
individual (e.g., Simon, 1969) or joint setting (e.g., Sebanz, 
Knoblich, & Prinz, 2003).  

The (Joint) Simon Task 
In a typical two-choice Simon task, stimuli are presented to 
the left or right of centre. A non-spatial stimulus feature 
(e.g., colour, shape, tone pitch) informs the participant 
whether to make either a left or right key press response. 
For example, a triangle requires a left key press response 
while a circle requires a right key press response. Even 
though the stimulus location (left, right) is irrelevant to the 
task, it nevertheless modulates responses, such that 
responses are faster and more accurate when the spatial 

location of the stimulus and response are compatible (e.g., 
left-left) than when they are incompatible (e.g., left-right). 
This phenomenon, known as the spatial compatibility or 
Simon effect, has been shown to be robust, with this pattern 
of results replicated in many studies (for review, see Lu & 
Proctor, 1995). 

In a social variant of the Simon task, two people are each 
assigned a stimulus-response mapping, such that a go/no-go 
protocol is completed independent from, yet complementary 
to the other’s task. The emergence of a spatial compatibility 
effect (henceforth referred to as a joint Simon effect, JSE) in 
the joint setting was taken as evidence that representations 
were formed for not only one’s own part of the task but also 
their co-actor’s (Sebanz et al., 2003), since the effect was 
noticeably absent when participants performed the same 
go/no-go protocol alone (individual go/no-go task, IGNG) 
(see Callan, Klisz, & Parsons, 1974).  

Interpretations of the Joint Simon Effect  
The JSE was originally interpreted in terms of the action co-
representation account (e.g., Sebanz et al., 2003; for 
elaboration and more detailed review of this and subsequent 
interpretations, see Dolk et al., 2014). According to this 
account, individuals represent a co-actor’s task quasi-
automatically; it is the representation of the alternative 
stimulus-response mapping that is thought to increase 
response conflict, eliciting the JSE. Other authors have 
posited the actor co-representation account, whereby 
response conflict emerges from the representation of the co-
actor, as opposed to the co-actor’s specific task, such that 
conflict surrounds which agent should act when (Wenke et 
al., 2011). However, these accounts do not explain why the 
JSEs are induced in non-social contexts (e.g., Guagnano, 
Rusconi, & Úmilta, 2010). In efforts to offer a more 
comprehensive explanation for the JSE, Dolk, Hommel, 
Prinz, and Liepelt (2013) formulated and tested the 
referential coding account. This account posits that greater 
similarity across action event representations can lead to a 
greater emphasis on their discriminating features (e.g., 
location). In a series of five experiments, they manipulated 
the social nature of the experimental setup in two ways: (1) 
absence of a biological co-actor, and (2) removing any event 
character (e.g., sound). They showed that the JSE could be 
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elicited by non-social action events (e.g., Japanese waving 
cat) but not if the “event-like character of the sounds and 
movements” are eliminated (Dolk, Hommel, et al., 2013, p. 
1255). What makes the referential coding account 
particularly appealing is that it can explain not only the 
occurrence of the JSE in non-social contexts, but also the 
more pronounced JSEs observed when there is increased 
self-other integration (Colzato, de Bruijn, & Hommel, 
2012), as presumably within friendly partnerships (e.g., 
Hommel, Colzato, & van den Wildenberg, 2009), in-group 
interactions (e.g., Iani, Anelli, Nicoletti, Arcuri, & Rubichi, 
2011; McClung, Jentzsch, & Reicher, 2013; Müller, Kühn, 
et al., 2011), and cooperative contexts (e.g., Iani et al., 2011; 
Iani, Anelli, Nicoletti, & Rubichi, 2014).  

Current Meta-Analytic Review  
The current meta-analysis offers several novel contributions 
to the field of joint action. First, to our knowledge, it is the 
only application of quantitative methods to evaluate the 
substantial body of work that has emerged since the 
introduction of the joint Simon task (Sebanz et al., 2003). 
As such, it complements recent qualitative literature reviews 
(e.g., Dolk et al., 2014) while providing unique insights into 
the nature of co-representation, as indexed by the JSE. 
Second, we explored the size of: (1) the overall JSE, (2) the 
JSE when the original conditions were conceptually 
replicated (see Sebanz et al., 2003, Experiment 1), and (3) 
the JSE when an elimination or reversal of the effect was 
anticipated. The inclusion of these latter moderator analyses 
enhances our understanding of the JSE and its sensitivity to 
experimental manipulations. Third, we included an analysis 
of the IGNG task, which is considered an important control 
when investigating the JSE and enriches interpretations of 
joint effects (e.g., Sebanz et al., 2003). 

Methods 

Search Strategy and Study Selection 
On June 23, 2015, two authors (AK and MYL) conducted 
an electronic search in Google Scholar for all citations of 
Sebanz et al. (2003). Following the addition of Sebanz et al. 
(2003) to the search results and removal of duplicates, 329 
records were screened for eligibility. The following 
exclusion criteria were used to screen the articles: (a) 
manuscripts that were not published or translated into 
English; (b) manuscripts that did not include a joint Simon 
task; (c) studies that did not report response times (RT) and 
standard deviations (SD) or standard errors (SE); (d) studies 
examining children (<18 years old). It should be noted that 
articles examining joint action in special populations (e.g., 
individuals with schizophrenia) were not excluded, but only 
the data for healthy controls were included in the analyses. 

Two authors (AK and MYL) screened articles by title and 
abstract according to these criteria. These same authors then 
used the criteria to screen the remaining 61 articles by full 
text for inclusion. When there was disagreement, the authors 
discussed the articles in question until consensus was 

reached. A total of 42 manuscripts remained eligible for 
inclusion in the quantitative analysis, but 3 of these 
manuscripts were subsequently excluded as they were 
doctoral dissertations whose eligible studies were also 
published (and included) as distinct manuscripts (Anelli, 
2012; Müller, 2013; Sellaro, 2013). The 39 manuscripts 
remaining in the meta-analysis comprised 104 independent 
groups of participants (contributing 95 joint Simon datasets 
and 35 IGNG datasets), as some manuscripts contained 
multiple experiments and/or multiple groups of 
participants.1  

Data Extraction 
Two authors (AK and MYL) independently extracted data 
from each manuscript relevant to sample size, experimental 
manipulation, and response time (means and SDs or SEs).2 
When necessary, data were manually estimated from 
reported figures. These two authors discussed any 
discrepancies between their extractions until consensus was 
reached with respect to the data included in the analyses. 

Data Analysis 
Cohen’s d was calculated directly from the extracted RT 
data and the pooled between-subject SD. In cases of 
repeated measures designs, data were averaged across 
conditions such that each independent group of participants 
contributed only one effect size to each analysis. The effect 
sizes and variances were entered into a random-effects 
meta-analysis using the ‘metafor’ package in R (R Core 
Team 2014; Viechtbauer, 2010) and the DerSimonian and 
Laird method of estimation (Borenstein, Hedges, Higgins, & 
Rothstein, 2011). Effect size calculation was arranged such 
that effects favouring a JSE always had a positive value 
(i.e., incompatible mean RT - compatible mean RT). An 
effect size of zero indicated no difference between 
compatible and incompatible trials.  

Custom scripts were written to test random-effects models 
for the overall effect of spatial compatibility within joint 
Simon and IGNG tasks (Cooper, Hedges, & Valentine, 
2009), and Egger’s test of asymmetry was used to assess 
bias (Egger, Davey Smith, Schneider, & Minder, 1997). 
Considering the wide range of experimental manipulations 
within the joint Simon task literature, we also conducted 
two moderator analyses using meta-analytic regression. 
First, conditions conducted as controls (control moderator) 
were compared to all other conditions,3 to provide an index 
of the JSE unmodulated by experimental variables. Second, 

                                                             
1 In total, the data of 2079 and 583 participants went towards the 

joint Simon (M = 21.88/group, SD = 9.02) and IGNG (M = 
16.66/group, SD = 5.79) random-effects meta-analyses, 
respectively.  

2 When the number of participants per group was not specified, 
the total number of participants reported was assumed to be 
distributed evenly amongst groups. Standard errors (SE) were 
converted into standard deviations (SD) for future computations.  

3 Control condition criteria included a physically present, human 
co-actor, actively responding to an alternative stimulus. 
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conditions hypothesized by the original authors to eliminate 
or reverse the JSE (wipeout moderator) were compared to 
all other effect sizes.4 Unlike the “overall” random-effects 
model of the JSE, in cases of repeated measures designs, we 
preferentially submitted a group’s ‘control’ or ‘wipeout’ 
data (when available) towards the relevant meta-regression 
model (rather than averaging across within-group 
conditions). Details regarding the raw data, moderator 
coding, and analysis scripts are available online at 
https://github.com/keithlohse/social_simon_meta.  

Results 

No Spatial Compatibility Effect in IGNG Contexts 
As expected, the IGNG studies (n = 35) yielded no evidence 
of a spatial compatibility effect (i.e., the RT difference 
between incompatible and compatible trials was not 
statistically different from zero), d = 0.07, 95% confidence 
intervals (CI) [-0.01, 0.16]. A statistical test of asymmetry 
revealed the distribution was not skewed, t(33) = -0.76, p = 
.45. 

Evidence of Positivity Bias and Small Effect Sizes 
Across Joint Simon Studies 
Prior to analysis, a funnel plot revealed an extremely 
positive and imprecise effect size (from Dolk et al., 2012, 
see data point in bottom right corner of Figure 1A) which 
was removed from all subsequent analyses. 

Figure 1A shows the distribution of joint Simon task 
effect sizes as a function of the standard error in each study 
(n = 94). Even with the Dolk et al. (2012) data point 
removed, a statistical test of asymmetry confirmed the 
positive skew in these data, t(92) = 3.25, p = .002, indicating 
significant bias, with more small, positive studies being 
published. The random-effects model summary effect size 
was d = 0.26, 95% CI [0.21, 0.30].  

Considering the significant positive skew across the 
dataset, we also ran a second random-effects model 
restricted to large samples in efforts to remove bias.5 
Restricted to the largest studies (n = 20), the distribution 
was not skewed, t(18) = 0.96, p = .35, and the summary 
effect size was reduced, d = 0.17, 95% CI [0.10, 0.25]. 

No Evidence Control Conditions Moderate the JSE  
We used meta-regression to compare the effect sizes derived 
from control conditions (n = 23) to all other conditions (n = 
71), to broadly assess any modulation of the effect by 
experimental manipulations. There was no significant 
difference between the effect sizes of control conditions, d = 
0.34, 95% CI [0.24, 0.44], compared to non-control 

                                                             
4 In cases where authors provided alternative hypotheses 

regarding whether the JSE would manifest itself, or not, we could 
not definitively code the condition as a ‘wipeout’ or ‘non-wipeout,’ 
and the dataset was excluded from the analysis (n = 10). 

5 Large samples were defined as n > 24, reflecting the 75th 
percentile of sample size. 

conditions, d = 0.24, 95% CI [0.19, 0.29], p = .074. As 
shown in Figure 1B, the distribution of the effect sizes 
remained significantly skewed, t(92) = 3.33, p = .001.  

 

 
 

Figure 1: The funnel plots for the JSE (incompatible (IC) 
mean RT - compatible (C) mean RT) showing effect sizes 
(d) as a function of precision (standard error) for the A) 
overall random-effects model; B) meta-regression of the 
control moderator (triangles = controls; circles = non-

controls); and C) meta-regression of the wipeout moderator 
(triangles = wipeouts; circles = non-wipeouts). Positive 

values show a difference in favour of a JSE (i.e., faster RTs 
on compatible trials) 

Wipeout Conditions Decrease the JSE 
Considering that ‘non-control’ conditions encompass both 
those experimental designs hypothesized to augment and to 
diminish the JSE, we conducted an additional meta-
regression model to assess any moderating effects of 
conditions explicitly hypothesized by the original authors to 
eliminate or reverse the JSE (n = 16) compared to those that 
were not (n = 68). The summary effect size of wipeout 
conditions (d = 0.12, 95% CI [0.01, 0.22]), was significantly 
smaller than that of non-wipeout conditions (d = 0.33, 95% 
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CI [0.27, 0.38]), p < .001.6 As shown in Figure 1C, the 
distribution remained skewed, t(82) = 2.77, p = .007. 

Discussion 
Since its design in 2003, many researchers have used the 
joint Simon task to explore the nature, extent, and 
boundaries of shared representations, as indexed by the JSE 
(for review, see Dolk et al., 2014). The present meta-
analysis provides the first, much-needed quantitative 
summary of the literature, and serves both as a snapshot of 
the research to date, and a foundation on which to build 
future inquiries.  

Across 39 manuscripts, our meta-analysis suggests the 
JSE is a reliable, albeit small, effect (summary d = 0.26). 
However, this analysis also revealed significant asymmetry 
within the data, potentially indicative of publication bias. 
Specifically, the data are positively skewed (even after 
removing an outlier), such that more small “positive” 
studies are being published than those with “negative” 
results. When we limited our analysis to large samples, the 
distribution was no longer skewed, but it revealed that the 
“real” effect size is likely even smaller than it first appeared 
(d = 0.17). This has two principle implications: (1) 
researchers studying this effect need an adequate sample 
size to achieve statistical power, and (2) there is probably 
limited “practical” significance of this effect, although it is 
still useful as a behavioural assay to understand cognitive 
processes (when conducted with sufficient power). 

The small JSE effect size also reinforces the importance 
of the IGNG random-effects model, where we confirmed 
that a compatibility effect did not arise under individual task 
conditions. It should be noted that of the 39 manuscripts 
eligible for the joint Simon analysis, only 13 included an 
IGNG condition. The failure to include such a condition is 
of potential concern as it has been shown that a small but 
significant spatial compatibility effect can be observed in a 
go/no-go task (see Callan et al., 1974). In the case that a 
significant effect is found in the IGNG condition, then this 
compromises interpretations of the JSE. 

Given the sizeable body of research included in the 
random-effects model of the JSE, we sought to parcel out 
factors that could be moderating the size of the JSE. We 
began with an exploration of control versus non-control task 
conditions. The meta-regression analysis revealed no 
evidence that control conditions yielded JSEs that were 
reliably different to those of experimental conditions. A 
possible explanation for our finding is that task conditions 
have been manipulated to elicit a range of effects on the JSE 
(e.g., reverse, eliminate, decrease, increase), which could 
result in cancellation effects and account for the lack of 
statistical difference between the size of the JSE under 
control and non-control conditions. Another plausible 

                                                             
6 The summary effect size of wipeout conditions was also 

significantly smaller than that of control conditions, but we have 
omitted this additional analysis for brevity, given that the reported 
difference between wipeout and non-wipeout conditions is stronger 
evidence of the former’s impact on the size of the JSE. 

interpretation is that the JSE is sufficiently robust that there 
is some leeway in what one can do experimentally and still 
elicit the JSE.7  

As a next step, we classified experimental conditions 
anticipated to eliminate or reverse the JSE as ‘wipeout’ 
conditions, and used a meta-regression model to assess their 
potential moderating effect on the size of the JSE. As 
anticipated, the summary effect size of the wipeout 
conditions was significantly smaller than the non-wipeout 
conditions. However, we wish to add a note of caution when 
interpreting this analysis. Our coding was based on the 
original authors’ predictions, which we assume to represent 
a priori hypotheses, but it is possible some were made a 
posteriori, reflecting post hoc justifications for the findings 
(Kerr, 1998; Lohse, Buchanan, & Miller, 2016). An 
important message to convey to authors is to ensure they are 
transparent about whether their hypotheses are a priori or a 
posteriori. In the case that a hypothesis is generated based 
on theory or prior research, then they should be clear to 
outline why they believed a condition would eliminate or 
reverse the JSE. Alternatively, if after data collection 
potential explanations for what has been found are devised, 
then authors should be upfront about this. While a posteriori 
hypotheses tend to be looked at less favourably, they do 
offer a springboard to test other methods or experimental 
designs. Nevertheless, the current results confirm that the 
JSE is sensitive to manipulations ‘designed’ to diminish its 
presence. 

As the first quantitative description of the joint Simon 
literature, a clear future direction would be to meta-
analytically capture the studies not included here, for 
example with respect to special populations (e.g., de la 
Asuncion, Bervoets, Morrens, Sabbe, & De Bruijn, 2015; 
Liepelt et al., 2012). Additionally, and particularly in light 
of the asymmetry present in the current data, subsequent 
researchers could attempt to solicit unpublished ‘file 
drawer’ data, which might help to counter the observed 
positivity bias, and provide a more accurate picture of the 
conducted research and estimate of the underlying effect. 
Also missing from the present analyses are studies not 
reporting enough data to calculate their associated effect 
sizes (e.g., no error bars on figures, or not specifying what 
measure the error bars represent). As such, we urge 
researchers and reviewers to be diligent towards the 
reporting of all results, to avoid such omissions in the 
future.  

As a final note, we encourage researchers who are 
designing an experiment to investigate the JSE to perform 
(and report) an a priori power analysis (Cumming, 2012; 
Lohse et al., 2016). A shortcoming of some joint Simon 
studies is the inadequate sample size. Indeed, across all the 

                                                             
7 A supplementary analysis of the control versus non-control 

task conditions, with the wipeout data removed from the latter to 
diminish potential cancellation effects, also yielded no significant 
difference between the summary effect sizes. This supports the 
notion that there is some flexibility in the task conditions that can 
be applied and still elicit the JSE. 
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studies included in this meta-analysis, not one reported 
estimating sample size. The effect sizes presented in this 
paper could be used to conduct a power analysis, and this 
simple procedure will help ensure that the JSE that is (or is 
not) being detected is a real effect. Since the joint Simon 
task is commonly used to explore joint action and co-
representation, it is of great import to establish that the 
observed effect is appropriately powered if we are to infer 
its underlying mechanisms and influence on behaviour. 
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Abstract

We propose that probabilistic inference is supported by a men-
tal toolbox that includes sampling and symmetry-based rea-
soning in addition to several other methods. To flesh out this
claim we consider a spatial reasoning task and describe a num-
ber of different methods for solving the task. Several recent
process-level accounts of probabilistic inference have focused
on sampling, but we present an experiment that suggests that
sampling alone does not adequately capture people’s infer-
ences about our task.
Keywords: probability judgment; probability estimation; rea-
soning; sampling; symmetry

Certainty is often unattainable, and people must therefore
maintain degrees of belief. A prominent tradition in cognitive
science explores where these degrees of belief come from and
how they are updated given evidence. One line of work fo-
cuses on normative accounts of reasoning under uncertainty,
and many of these accounts rely on probability theory. A
distinct but related line of work focuses on process-level ac-
counts that attempt to characterize how probabilistic infer-
ence is implemented by the mind and brain.

Recent work on process-level accounts has emphasized
the idea that the mind approximates probabilistic inference
by sampling (Griffiths, Vul, & Sanborn, 2012; Sanborn
& Chater, 2016; Bonawitz, Denison, Griffiths, & Gop-
nik, 2014). We believe, however, that sampling is just
one among many methods that people use for probabilis-
tic inference. Other possible methods depend on symmetry-
based reasoning (Strevens, 1998; Vasudevan, 2012), counting
events (Johnson-Laird, Legrenzi, Girotto, Legrenzi, & Cav-
erni, 1999; Fox & Levav, 2004), computing sums (Fischbein,
1975), products (Fischbein, 1975) and ratios (Zhao, Shah, &
Osherson, 2009), and ignoring irrelevant information (Grove
& Koller, 1991). This paper lays out an initial proposal about
a mental toolbox of such methods. The long term challenge
is to understand which methods belong in the toolbox, when
they are applied, and how they are flexibly combined. Ad-
dressing this challenge is far from straightforward, but essen-
tial in order to understand probabilistic inference at the pro-
cess level.

A longstanding debate in the reasoning literature pits
model-based approaches against those that rely on mental
proofs. Model-based inference relies on representations of
concrete states of affairs, and mental proofs are constructed
by applying abstract rules. We believe that both approaches
have their merits, and that people draw on both in different

contexts. Our toolbox of methods therefore includes model-
based approaches such as sampling alongside alternatives that
require the construction of mental proofs. A pluralist ap-
proach, of course, does not immediately resolve the issues at
stake in the debate about models and proofs. Detailed work
is needed to establish when people rely on model-based ap-
proaches and when they construct mental proofs.

Spatial reasoning task
Because different tasks may elicit different reasoning meth-
ods, a comprehensive theory of probabilistic inference should
be able to account for a wide range of tasks. As a starting
point, we focus here on one simple task. Figure 1a shows a T-
shaped rock in a square pond. Suppose that a blue beetle and
a gold beetle are both located somewhere on the rock. If the
blue beetle is north of the gold beetle, what is the probability
that the blue beetle is also east of the gold beetle?

The inferences we consider can be formalized using the
graphical model in Figure 1f. Variable T specifies the topog-
raphy of the pond, and zb = (xb,yb) and zg = (xg,yg) indicate
the positions of the blue and gold beetles respectively. These
positions depend on T because both must fall on a rock rather
than in the water. Variables rx and ry indicate relations be-
tween the beetles along the x and y axes respectively. For
example, rx = 1 indicates that blue is east of gold, rx = −1
indicates that blue is west of gold, and rx = 0 captures the
rare case in which neither beetle is east of the other.

In this setting, a model is a pair (zb,zg) that specifies the
locations of both beetles. One example is shown in Fig-
ure 1b. Our task is deliberately chosen so that it is impossible
to enumerate all possible models. In contrast, some previ-
ous research on probabilistic inference focuses on problems
for which the set of models is discrete and relatively small,
which allows inference methods that depend on enumeration
or counting (Fox & Levav, 2004).

Our task has several other appealing properties. It is
closely related to a family of tasks known as three-term se-
ries problems that have been prominent in the reasoning lit-
erature (Clark, 1969; Jahn, Knauff, & Johnson-Laird, 2007).
One such problem asks “if A is west of B and B is west of
C, is A west of C?” Compared to these problems, one advan-
tage of our task is that it allows for a wide range of normative
responses. For example, the normative responses to the ques-
tions in Figures 1a and 1e are 0.5 and 0.75 respectively, and
by varying the shape of the rock it is possible to create a ques-
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(a) (b) (c) (d) (e) (f)

The blue beetle is north of the gold beetle. How likely is it that the blue beetle is east of the gold beetle?

zg

zb

xb

rx ry

T

xg ygybzgzg

Figure 1: (a) Our task requires participants to reason about the relative locations of two beetles in a pond. The rock surface
is shown in grey, and both beetles are located somewhere on the rock. (b) A complete model that specifies the locations of
both beetles. (c) A partial model that specifies the location of the gold beetle only. (d) The normative answer to the canonical
question below the ponds can be computed by dividing the area marked with horizontal lines by the area marked with vertical
lines. (e) A pond that produces a normative response of 0.75. (f) Graphical model showing the relationships between variables
described in the text.

tion with any desired probability as the normative response.
A second advantage of our task is that it admits a range of
variants that can potentially provide insight into probabilistic
inference. One such variant is to ask the same question but
to display the position of one beetle, as shown in Figure 1c.
Finally, the next section illustrates that our task is useful for
exploring probabilistic inference because it can be solved in
principle by several methods.

A toolbox of probability estimation methods
We now describe a toolbox that contains eight methods for
estimating a conditional probability P(rx|ry). This probabil-
ity corresponds to the strength of an argument in which the
premise is ry (e.g. “blue is north of gold”) and the conclusion
is rx (e.g. “blue is east of gold”). To simplify our notation we
treat the topography T as background knowledge and drop it
from our equations.

Each method is intended to represent a family of related ap-
proaches rather than a single precisely-defined algorithm. Af-
ter introducing each method, we describe one concrete instan-
tiation of the method, but other instantiations of each method
are possible.

1. Sample complete models. One way to estimate the
probability P(rx|ry) is to think of a number of models that
make the premise true, and to consider how many of these
models also make the conclusion true (Johnson-Laird et al.,
1999). We refer to this approach as complete sampling, be-
cause each model considered provides a complete specifica-
tion of the positions of the beetles. A normative version of
complete sampling is:

P(rx|ry) =
∫

zb,zg

P(rx|zb,zg)P(zb,zg|ry)dzbdzg

≈ 1
m

m

∑
i=1

P(rx|zi
b,z

i
g),

(1)

where each pair (zi
b,z

i
g) is a sample from P(zb,zg|ry). Equa-

tion 1 shows how sampling m models is a way to approximate

an integral over all possible locations of the beetles, and the
approach is normative in the sense that the approximation ap-
proaches the probability P(rx|ry) as the number of samples
becomes large.

2. Sample partial models. An alternative to complete sam-
pling is to work with partial models such as the example in
Figure 1c that specify the location of one beetle only. For ex-
ample, a reasoner might imagine several possible locations of
the gold beetle, and assess the probability of the conclusion
in each case. A normative version of this method is:

P(rx|ry) =
∫

zg

P(rx|ry,zg)P(zg|ry)dzg

≈ 1
m

m

∑
i=1

P(rx|ry,zi
g),

(2)

where each zi
g is a sample from P(zg|ry). In Equation 1, the

term P(rx|zi
b,z

i
g) is either 1 or 0, and can be computed by

inspecting whether location zi
b lies to the east or the west of

zi
g. The analogous term in Equation 2 is P(rx|ry,zi

g), which
can be computed using the ratio in Equation 3 below, or one
of the other methods in the toolbox.

A premise such as “blue is north of gold” locates a figure
object (blue beetle) with respect to a ground object (gold bee-
tle), and Equation 2 could be used by reasoners who focus on
the ground object. Another approach is to sample possible lo-
cations of the figure object. This approach can be formalized
using a variant of Equation 2 in which zg is replaced by zb.

3. Construct a model-based proof. If the process of sam-
pling models (complete or partial) is accessible to aware-
ness, then reflecting on this process may be enough to derive
some conditional probabilities. Suppose for example that a
reasoner samples the mental model shown in Figure 1b —
a model in which blue is north of gold (as required by the
premise) and in which blue is east of gold (as stated by the
conclusion). An alert reasoner may notice that this model can
be paired with a twin that is identical except that the posi-
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tions of blue and gold are reflected about the rock’s axis of
symmetry. In the twin model the premise still holds but the
conclusion does not. Further reflection may establish the con-
viction that each model can be paired with a twin in this way,
which means that every model that supports the conclusion
is paired with a twin that rejects the conclusion. The predic-
tions based on the models and their twins therefore “cancel
out,” revealing that P(rx|ry) = 0.5. The overall chain of rea-
soning can be formalized as a mathematical proof that refers
to models chosen “without loss of generality.”

4. Exploit symmetry. The proof sketched in the previous
section has two distinctive characteristics: it refers to specific
models and it makes use of symmetry. Symmetry, however,
can also be used to derive probabilities without needing to
consider any specific models. In Figure 1a, a reflection in the
T-shaped rock’s axis of symmetry maps east onto west and
vice versa, but leaves the shape of the rock unchanged. As
a result, inverting east and west in any probability statement
concerning the rock leaves the probability unchanged. For
example, P(blue east of gold|blue north of gold) must equal
P(blue west of gold|blue north of gold), and because these
two probabilities sum to one both must equal 0.5.

Symmetry can also be used to derive an unconditional
probability such as P(blue east of gold) = 0.5. It is vanish-
ingly improbable that the beetles have identical x coordi-
nates, which means that blue is either east or west of gold.
Given that no available information distinguishes between
these states, the principle of indifference (Strevens, 1998) im-
plies that both must have a probability of 0.5.

5. Ignore irrelevant information. A basic strategy for sim-
plifying probabilistic inference is to ignore information that
has no bearing on the conclusion. If the pond contains an
upright square rock, for example, the x and y coordinates of
a beetle are statistically independent—knowing one of these
coordinates places no constraints on the other. It follows that
P(rx|ry) = P(rx) = 0.5, where the final step follows from the
principle of indifference as described in the previous section.

6. Apply the ratio rule. Suppose that zg (the position of the
gold beetle) is known, as shown in Figure 1c. The conditional
probability P(rx|ry,zg) can be computed using

P(rx|ry,zg) =
P(rx,ry|zg)

P(ry|zg)
. (3)

Equation 3 is simple to compute by estimating the area of
two regions in a diagram like Figure 1c. The denominator
P(ry|zg) is proportional to the area of rock that is north of zg
(indicated with vertical lines in Figure 1d). The numerator
P(rx,ry|zg) is proportional to the area that is north and east of
zg (indicated with horizontal lines in Figure 1d).

7. Apply Bayes rule. Bayes rule can be applied as follows:

P(rx|ry) =
P(ry|rx)P(rx)

P(ry)
= P(ry|rx), (4)

where the final step follows from the observation above that
P(ry) = P(rx) = 0.5. In general P(ry|rx) will be no easier to
compute than P(rx|ry), so applying Bayes rule may not be
useful. There may be cases, however, in which one of these
probabilities is easier to compute than the other.

8. Enumerate cases. One general strategy for solving a
difficult problem is to break it down into a set of simpler sub-
problems. In Figure 1e, a reasoner may estimate P(rx|ry) by
considering 4 cases: either both beetles are on the bottom
left rock, both are on the top right rock, blue is bottom left
and gold is top right, or blue is top right and gold is bottom
left. This strategy can be captured formally by introducing a
variable v that indicates which of the 4 cases obtains:

P(rx|ry) = ∑
v

P(rx|v,ry)P(v|ry). (5)

Each of the sub-problems is simpler than the original. For
example, if both beetles are on the same rock, then P(rx|ry) =
0.5, as argued in our discussion of method 5.

Using the toolbox. We suspect that all eight methods in the
toolbox and possibly others are available to human reason-
ers. Given a problem, a reasoner must therefore decide which
method or methods to try. Sometimes two or more meth-
ods will need to be combined: for example, methods 2 and
8 (“sample partial models” and “enumerate cases”) both ex-
press the original probability as a function of several proba-
bilities, which must be estimated in turn.

At present, a detailed mechanistic understanding of proba-
bility estimation seems remote. Establishing that people rely
on one method for a given task is difficult, because numerous
other methods must be ruled out. Establishing that people do
not rely on a given method may be more tractable, because
only one hypothesis must be ruled out. Given the recent em-
phasis on sampling as a mechanism for probabilistic infer-
ence, we designed a study to explore whether sampling is a
plausible account of inference in our setting.

Experiment
We suspect that people rely on sampling when other meth-
ods are unavailable, but are able to exploit symmetry when
relevant. If so, then people’s responses to symmetric ponds
might be systematically different from their responses to
other ponds. Our experiment was designed to test this pos-
sibility.

Participants. 36 participants were recruited using Amazon
Mechanical Turk and paid for their participation.

Materials. Participants were asked to reason about the 26
ponds shown in Figure 2. The first 19 ponds are categorized
as “double symmetry,” “single symmetry” or “no symmetry”
ponds depending on whether they have both vertical and hor-
izontal symmetry, only one of these symmetries, or neither
vertical nor horizontal symmetry. The next 5 ponds are “non-
50” ponds, or ponds for which the normative response is other
than 50.
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Non−50

(n) (o) (p) (q) (r) (s)

(a) (c) (d) (e) (f)(b) (g) (h) (i) (j) (k) (l)

(t) (u) (v) (w) (x)

(y)

(z)Double symmetry

No symmetry Single symmetry

Catch

(m)

Figure 2: Ponds used in the experiment. The normative response for all ponds in the first three categories (no symmetry, single
symmetry, and double symmetry) is 50. Ponds (l), (q), (s) and (x) all have rocks that enclose a body of water.

Procedure. Participants read an introduction that described
an eccentric businessman who owned many square ponds.
Each pond was said to contain a single gold beetle and a sin-
gle blue beetle. Participants were told that the beetles could
not swim, so each beetle was located somewhere on a rock.
They then answered three simple questions that tested their
comprehension of what they had just read. They remained
on the introductory screen until they had answered all three
questions correctly.

Each participant then saw the 24 ponds in Figures 2a-2x
in a random order. For each pond, they read that “In this
pond the blue beetle is r1 of the gold beetle.” They were then
asked “How likely is it that the blue beetle is r2 of the gold
beetle?”, and required to give their answer on a 0-100 scale
with labels at 0 (“Not likely”) and 100 (“Very likely”). For
each pond and each participant, (r1,r2) was a pair of perpen-
dicular directions (e.g. (north, east), (north, west)) randomly
drawn from the set of 8 such pairs.

After the 24 ponds participants responded to two catch tri-
als that had unambiguous answers. One stated that “the blue
beetle is east of the gold beetle” and asked participants to rate
the likelihood that the blue beetle is west of the gold beetle.
The second was similar but used the north-south instead of
the east-west axis. The rocks used for these questions are
shown in Figures 2y and 2z.

Results. We computed normative responses for each pond
by assuming that the location of each beetle was generated
from a uniform distribution over the rock surface. For sin-
gle symmetry and double symmetry ponds, the normative re-
sponse is always 50. Normative responses for the non-50 and
no symmetry ponds were computed by using complete sam-
pling and drawing 100,000 samples. When creating the no
symmetry ponds, the dimensions of the ponds (e.g. the rela-
tive lengths of the two T-segments in Figure 2a) were adjusted
until complete sampling returned a normative result between
49.5 and 50.5.

Because the question associated with each
pond was randomized, all responses were con-
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Figure 3: (a) Mean human responses versus normative re-
sponses (b) Histogram of correlations achieved by individu-
als

verted to responses to the canonical question
P(blue north of gold|blue east of gold). Our conversion
assumed that P(blue north of gold|blue east of gold) =
1−P(blue south of gold|blue east of gold), and similarly for
other pairs of opposite directions. We also assumed that
P(rx|ry) = P(ry|rx), as discussed in Method 7 above. We
expect that intuitive judgments do not always respect or even
approximate this latter identity, but assuming that they do
allows for a simple first look at our data.

16 participants failed to give ratings of 0 on both catch
trials, and were dropped from all subsequent analyses. Fig-
ure 3a shows that mean responses among those who remained
roughly tracked normative responses. Each point in the scat-
ter plot corresponds to a pond. For example, the point at the
top right of the plot corresponds to Figure 2t. The overall cor-
relation between human and normative responses is 0.83, and
Figure 3b shows the correlations achieved by individual par-
ticipants. Some participants had correlations near zero, but
half had correlations exceeding 0.5. Overall, Figure 3 sug-
gests that humans perform relatively well at the task.

The comparison of primary interest is between no sym-
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Figure 4: Mean distance from 50 for no symmetry, single symmetry and double symmetry ponds. Results are shown for (a)
experimental data (b) complete sampling model with m = 8 (c) partial sampling model with m = 3. These m values were chosen
to approximately match the variability in the human data.

metry ponds, single symmetry ponds and double symmetry
ponds. The normative response for these ponds is always 50,
and we therefore analyzed the extent to which responses dif-
fered from 50. Figure 4a shows that responses for the double
symmetry ponds tended to be closer to 50 than responses to
the other two kinds of ponds. A Mann-Whitney test indicated
that the distance from 50 was greater for no-symmetry ponds
(median = 16, n = 120) than for single-symmetry ponds (me-
dian = 13, n = 120), U = 5998, p = 0.012. A second test
indicated that the difference between single-symmetry ponds
and double-symmetry ponds (median = 0, n = 140) was also
statistically significant (U = 5260, p < 0.001). A natural in-
terpretation of these results is that some participants relied on
symmetry-based reasoning.

Complete and partial sampling can both be implemented in
different ways, but the implementations suggested by Equa-
tions 1 and 2 are especially appealing. These implementa-
tions are relatively simple, and both approximate the norma-
tive response as the number of samples becomes large. Fig-
ures 4b and Figures 4c show results for these two implemen-
tations. In both cases, the number of samples is chosen so
that the model matches the average distance from 50 in the
human data. Although matched to humans in this respect, the
two sampling models do not account for the special status of
the double symmetry ponds in the human data. For example,
the complete sampling model predicts no difference between
the no symmetry and double symmetry ponds.

A second challenge for a sampling model is whether it can
account for the human data given a psychologically plausi-
ble number of samples. For the sake of argument, assume
that each of our participants is using complete sampling, and
that each draws the same number of samples m in Equation 1.
Figure 5 shows how the predicted variability in the human
data decreases as m increases. If each participant drew one
sample only, then some would give responses of 0 and others
would give responses of 100, and the average distance from
50 would be 50 for no symmetry, single symmetry and double
symmetry ponds alike. If m were very large, then each partic-
ipant would give a response very close to 50. Figure 5a shows
that setting m to 5 or 6 is enough to account for the variability
in responses to the no symmetry and single symmetry ponds.
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Figure 5: Distance from 50 predicted by (a) complete and
(b) partial sampling as the number of samples increases. In
(a) a single model curve is shown in black because model
predictions are identical for no symmetry, single symmetry
and double symmetry ponds. In (b) three model curves are
shown because the model predictions for the three classes of
ponds are close but not identical.

For double symmetry ponds, however, m must be set higher
than 20 in order to match the human data. A value this high
does not seem psychologically plausible, and challenges the
hypothesis that people rely on complete sampling when rea-
soning about double symmetry ponds.

Figure 5b shows the analogous plot for partial sampling. In
this case, setting m to 10 or so is enough to account for the
variability in responses to the double symmetry ponds. This
value seems high, but perhaps not high enough to definitively
rule out partial sampling as a psychological account. The dif-
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ference in the human data between double symmetry and both
single and no symmetry ponds, however, remains a challenge
for models that rely on partial sampling.

Discussion. Although our implementations of complete
and partial sampling do not account well for our data, it is
possible that other implementations of these methods will
perform better. Our implementations assume that models are
randomly sampled from the set of all models consistent with
the premise of a given argument, but in reality people may
sample some kinds of models more often than others. For ex-
ample, perhaps people prefer to locate the beetle mentioned
first towards the left of the pond (Jahn et al., 2007) or towards
the top (Levelt & Maasen, 1981). Previous accounts of spa-
tial reasoning have documented effects like these (Jahn et al.,
2007), and it seems likely that similar effects will emerge in
our setting.

In addition to left-right and up-down preferences, people
may also prefer to sample models in which the beetles are lo-
cated along axes of symmetry. A preference of this kind could
help to explain results that are also consistent with symmetry-
based reasoning. In Figure 1a, for example, a partial sampling
method that uses just one sample will generate the normative
response of 50 provided that the single sample locates the
gold beetle along the rock’s axis of symmetry.

Throughout we have mostly considered inference methods
that compute or approximate normative responses. Our data
suggest that people’s responses to our task are roughly con-
sistent with normative inference, but in other settings peo-
ple make inferences that are far from normative. For exam-
ple, base-rate neglect may occur if people apply Bayes rule
without including the prior (Kahneman & Tversky, 1973). In
other cases people may rely on sampling but sample from the
“wrong” distribution—for example, some of our participants
may have sampled from P(zg) rather than P(zg|ry) in Equa-
tion 2. Each method in the toolbox can be applied in norma-
tive and non-normative ways, and detailed work is required
to understand how a method is applied in any given setting.

Conclusion
We suggested that people make use of a mental toolbox that
includes several qualitatively different methods for proba-
bilistic inference. Each of these methods has several variants,
and some methods can be combined with each other. We
therefore believe that people can draw on a set of inference
methods that is relatively large, which makes understanding
probabilistic inference at the process level very challenging
indeed.

Like previous researchers we believe that behavioral exper-
iments can provide some insight into the processes that sup-
port probabilistic inference. We described a spatial reasoning
task that appears to be a natural candidate for inference by
sampling, but our results suggest that any simple sampling
method is unlikely to fully capture the way in which people
approach the task. Ruling out one simple hypothesis about in-
ference is one thing, but providing a comprehensive account

of probabilistic inference is another thing entirely. We con-
fess to some scepticism about whether behavioral data alone
are enough to reveal the mind’s algorithms for probabilistic
inference.
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The Narrow Conception of Computational Psychology 
 

 
Abstract 

One particularly successful approach to modeling within 
cognitive science is computational psychology. 
Computational psychology explores psychological processes 
by building and testing computational models with human 
data. In this paper, it is argued that a specific approach to 
understanding computation, what is called the ‘narrow 
conception’, has problematically limited the kinds of models, 
theories, and explanations that are offered within 
computational psychology. After raising two problems for the 
narrow conception, an alternative, ‘wide approach’ to 
computational psychology is proposed.  

Keywords: narrow conception, individualism, computation, 
psychology, explanation 

Introduction 
Cognitive science has gained a good deal of theoretical 

and methodological impetus from thinking about how 
psychological processes can be described, studied, and 
simulated using different types of models. One particularly 
successful approach to modeling is computational cognitive 
modeling or, more simply, computational psychology. 
Computational psychology explores psychological 
processes by building and testing computational models 
with human data (Sun, 2008).  

In this paper, it is argued that a specific approach to 
understanding computation, what is dubbed the ‘narrow 
conception’, has problematically limited the kinds of 
models, theories, and explanations that are sometimes 
offered within computational psychology.  

The impetus for the current study arises from a growing 
debate around the role, nature and status of computation 
within psychological investigations. Several authors have 
begun to re-examine what computationalism stands to offer 
the cognate disciplines (Piccinini, 2015; Milkowski, 2015). 
The current discussion stands to contribute to this growing 
trend by exploring and examining one important assumption 
that underwrites a notable swath of research within 
computational psychology. The goal is to show that 
computational psychology has overlooked an important 
constraining assumption. 

Computational Psychology 
For many, computational theory provides a theoretically 

flexible and expressively powerful tool for exploring 
cognition (Anderson 1983; Pylyshyn, 1984; Newell, 1990; 
Anderson & Lebiere, 1998, 2003). The computational 
approach allows researchers to construct detailed accounts 
of the mechanisms, structures, and processes that underwrite 
cognition. In testing and extending the theories of other 
domains, such as cognitive psychology and artificial 
intelligence, computational investigations offer a 
functionally viable yet mathematically rigorous way of 
exploring cognitive or psychological processes.  

A good deal of the explanatory value of computational 
psychology lies not only in the ability to produce computer 
simulations, but also in using those simulations to make 
predictions about human data. By matching the ‘fit’ of 
human data with computer simulations, researchers 
establish systematic relationships between computational 
models and psychological processes, which can reveal the 
underlying structure and form of cognitive functionalities 
(Sun & Ling, 1998). 

Consider three illustrative examples of computational 
psychology in action. First, consider Shiffrin and Steyvers’ 
(1997) REM model of episodic memory. Shiffrin and 
Steyvers’ model is one instance of a class of abstract, 
computational models that attempt to explain recognition 
judgments. These models employ a ‘global matching’ 
procedure. The global matching procedure produces a 
familiarity signal that indicates whether or not an item has 
been previously presented to the model – a test cue, for 
example, that matches two features of one item will yield a 
higher familiarity judgment than a test cue that matches one 
feature of each of the two items.  

Shiffrin and Steyvers’ model puts a Bayesian twist on the 
global matching procedure. The REM model calculates the 
likelihood of whether a cue item matches or corresponds to 
particular stored memory traces by assigning values to each 
of the stored items. When the model is tested to see if it can 
identify whether cue items are new or old, the cues are 
compared with each trace item in memory such that the 
model calculates the likelihood of the retrieval cue and the 
trace item matching. Recognition judgment is explained in 
terms of a probabilistic familiarity process operating within 
memory.  

According to Shiffrin and Steyvers, the REM model 
accounts for a number of distinct memory effects. One 
example is the word frequency mirror effect. The word 
frequency mirror effect says that subjects often make more 
false alarms on high-frequency lures (foils) versus low-
frequency lures and more correct “old” responses to low-
frequency targets versus high-frequency target when making 
recognition judgments (Glanzer et al., 1993). The REM is 
able to accommodate the word frequency effect in virtue of 
the fact that low-frequency words have more unusual 
features than high-frequency words (e.g., more syllables). 
The REM model is able to use a slightly lower value when 
generating low frequency lures items during matching, 
which results in these items having slightly higher feature 
values.  

The relevance of the REM model is that in measuring the 
fit of the model to behavioral data and by adopting a 
Bayesian approach to the global matching procedure, the 
REM model focuses on both the essential interplay between 
modeling and experimental data and formalizing cognitive 
processes in a computationally rigorous way.  
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Next, consider Dienes’ (1992) connectionist model of 
implicit language learning. Dienes’ model attempts to 
computationally instantiate how language users come to 
implicitly understand artificial grammars using artificial 
neural networks.  In particular, Dienes’ model uses a feed-
forward autoassociator network. 

In a feed-forward autoassociator network – which is a 
version of the more standard multilayer network – activation 
passes through the connection weights of the network just 
once to produce the output activation. The feed-forward 
autoassociator contrasts with recurrent autoassociator 
networks, in which the output activation arrives back at each 
node and is passed through the weights again until a stable 
state is reached.  

In terms of network training, Dienes’ model was presented 
with the same learning material as human subjects, which 
included arbitrary strings of letters, such as MTTTTV or 
MTTVT. These features of strings were represented as 
activations to the network’s input layer. Depending on 
whether the feature was present or absent, the unit coding 
the feature would have an activation of either 1 or 0. Once 
the network learned the arbitrary training strings, similar to 
experimental tests, the model was then made to make 
grammaticality judgments on new strings of letters. The 
goal was to see if the network had learnt the underlying 
grammatical principles that implicitly structured the 
arbitrary strings being presented.  

When Dienes’ tested the model, it was found the network 
was able to distinguish grammatical versus ungrammatical 
strings. The network was able to reproduce the training 
strings by adding or subtracting strings from an exemplar 
case. The model predicted each feature of a string based on 
some set of the remaining features from an exemplar. When 
Dienes’ compared network results to that of human subjects, 
it was found that the network could classify test strings as 
well as people could. The network tended to reproduce 
grammatical test strings more faithfully than non-
grammatical test strings.  

Dienes’ connectionist model stands as a further interesting 
example of computational research, as it provides a 
computational account of implicit artificial grammar 
learning that measures the fit of the model with behavioral 
data. By investigating how artificial neural networks handle 
artificial grammar tasks, Dienes’ attempts to undercover the 
computational processes and representations underlying 
implicit language learning.  

A third example comes from Osherson et al.’s (1990) 
declarative model of inductive reasoning. Osherson et al.’s 
(1990) model attempts to investigate the computational 
underpinnings of ‘inductive’ reasoning – inductive 
reasoning is the process by which premises are thought to 
lend non-conclusive support to the truth of specific 
conclusions. 

In Osherson et al.’ model, inductive reasoning is explained 
in terms of the assessment of propositional statements 
according to the similarity between premise and conclusion 
categories For example, consider two inferential chains: (i) 

Mice have property X/All mammals have property X and 
(ii) Horses have property X/All mammals have property X. 
The category of ‘mammal’ in the conclusion covers both 
mice and horses. For Osherson et al., understanding how 
humans are able to make inferences about mice and horses 
depends on understanding how structural relationships 
between different categories are established – for example, 
understanding that mice and horses are instances of the 
subordinate category mammal.   

Two features allow Osherson et al.’s model to make sense 
of cases such as the above. The first is that the model 
assesses the similarity between premise categories and 
conclusion categories. The second is that the model 
measures how well the premise categories covers the 
superordinate category. Coverage between premise and 
conclusion categories is assessed in terms of the average 
similarity of the premise category to members of the 
superordinate category. For instance, to the extent that 
horses are more typical mammals than mice, and therefore 
more similar to other kinds of mammals, (ii) will have 
greater coverage than (i).  

Osherson et al.’s model is interesting because it addresses 
a number of empirical phenomena. One example is 
similarity effects. Similarity effects occur when people 
make inferences based on the perceived similarity between 
items in different inferential chains. Osherson et al. (2008) 
found, for example, that when people were given a choice 
between two syllogistic arguments about 95% chose the 
argument that they perceived to contain the greater 
similarity between premise and conclusion categories, e.g., 
sparrows to robins and blue jays versus geese to robins and 
blue jays. Osherson et al.’s model was able to accommodate 
such cases by assessing the relationship between the 
subordinate and premise categories. 

Similar to the previous models, Osherson et al.’s 
declarative model is an illustrative example of 
computational psychology, because it is not only informed 
by and tested against empirical data, but it also attempts to 
identify the computational procedures and properties 
underlying complex cognitive processes, such as inductive 
reasoning.  

The point of the previous survey is that each of the three 
models provides a paradigmatic example of computational 
psychology. Each model attempts to undercover the 
computational underpinnings of various cognitive processes 
via the construction and testing of computer models with 
human data. These models help to tease out the 
underwriting assumptions within computational research. 

The Narrow Conception 
With the domain of analysis laid out, the task now is to 

examine one approach to understanding computation that 
underlies a good deal of the research within computational 
psychology, what is labeled the ‘narrow conception’.  

In order to get a better handle on the narrow conception, 
consider what Segal (1991) says about computational 
cognitive systems, he writes: “It seems likely that whole 
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subjects (or whole brains) make up large, integrated, 
computational systems…the whole subject is the largest 
acceptable candidate for the supervenience base because it 
is the largest integrated system available” (p.492). For 
Segal, the individual or whole subject (which is plausibly 
identical to the whole brain) is the largest unit available for 
computational, psychological investigation. Newell et al. 
(1989) offer a similar view, writing: “Symbol systems are 
an interior milieu, protected from the external world, in 
which information processing in the service of the organism 
can proceed” (1989, p.107). Here, again, computational 
systems are limited to the boundary of the individual.  

Consider Fodor (1983) next: “Mechanisms of 
transduction are thus contrasted with computational 
mechanisms: whereas the latter may perform quite 
complicated, inference-like transformations – the former are 
supposed – at least ideally – to preserve the information 
content of their input” (1983, p. 41). Fodor’s contrast 
between sensory transducers and computational 
mechanisms is indicative of where he thinks computational 
systems are located. Computational systems are sandwiched 
between transducers and motor outputs. Finally, consider 
what Egan (2000) says on the matter: “A computational 
theory prescinds from the actual environment because it 
aims to provide an abstract, and hence completely general, 
description of a mechanism that affords a basis for 
predicting and explaining its behaviour” (p.191). Only by 
abstracting away from the embedding environment and 
focusing on the individual can one begin to provide 
successful computational analyses. Once again, the outer 
limit of formal analysis for computational systems is the 
individual. 

Common to each of these views is the idea that the 
individual or some sub-module, conceived of in terms of the 
primary unit of action, constitutes the largest organizational 
system amendable to computational description (i.e. 
computational modeling). The individual marks the 
conceptual boundary for computational, psychological 
investigations. Here is one way the view might be 
formulated: 

 
THE NARROW CONCEPTION: Computational cognitive 
systems are, and should be studied as if they were, 
located entirely within the individual or some sub-
module.  

 
Something in the spirit of this claim seems to have 

operated implicitly within a good swath of computational 
psychology. The narrow conception, if true, represents a 
principled claim about where and how computational 
cognitive systems should be studied. It constitutes a 
plausible and substantive proposal for computational 
psychology. 

Consider the methodological implications of the narrow 
conception. If computational systems are wholly interior to 
the individual, then computational modeling should have as 
its target only those systems and processes that are 

individual-centered. As Segal diagnosis the situation: 
“Whole subjects plus embedding environments do not make 
up integrated, computational systems” (1991, p.492). The 
embedding environment plus individual will always fail to 
be adequate for computational analysis. Only the individual 
or some sub-system will be sufficient for computational 
modeling.  

One motivation for adopting the narrow conception is that 
it provides a powerful way of explaining the causal powers 
of cognition. If cognitive systems are computational systems 
and computational systems are located within the individual, 
then identifying the causal properties and powers of 
computational systems provides insight into causal power of 
cognitive processes and abilities. Memory effects, such as 
primacy and recency affects, for example, will be best 
explained by focusing on the computational search 
strategies used by individuals during various tasks (e.g., 
exhaustive versus terminal search) (Sternberg, 1969). Only 
by identifying the distinct functional and causal properties 
intrinsic to the individual are rigorous computational, 
psychological explanations provided. 

What is interesting about the narrow conception, besides 
its relatively straightforward nature, is that it is plausibly 
supported by and conforms to a good deal of research within 
computational psychology. This is why authors such as 
Segal claim that it is “likely” that the whole subject is the 
largest unit of analysis. The narrow approach is an empirical 
wager on how computational cognitive systems are 
distributed in nature.  

Return to the three previous models to see why. First, 
consider how Shiffrin and Stevyer describe their model: 
“This cued recall model is meant to illustrate one plausible 
way in which retrieval from episodic images and retrieval 
from lexical/semantic images could work hand in hand to 
allow recall to take place” (1997, p.160). The emphasis on 
retrieval and storage is indicative of the narrow conception: 
the computational processes under investigation are 
localized within the individual. It is only once items are 
learned and internalized that computational processes can 
operate over them. The Bayesian matching procedure 
applies to items stored internally within an individual’s 
episodic memory.  

Consider, next, how Dienes’ conceives of his model, he 
writes: “[L]awful behaviour may be produced by a 
connectionist network in which rules or hypotheses are not 
explicitly represented” (1992, p.40). A little later he writes: 
“the subject of the models obeys the rules, but does not 
represent them symbolically”(1992, p.70). Again, the 
message is plain. The artificial neural network represents a 
cognitive system that employs internal representations and 
rules that solve artificial grammar tasks, and the human data 
helps to reveal these internal computational processes and 
structures. The connectionist network is meant to represent 
the internal computational system within a subject that is 
used to carry out the cognitive task.  

Finally, consider Osherson et al.’s model. In studying 
inductive reasoning, Osherson et al. adopt the following 
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position: “The similarity-coverage model assumes that the 
existence of a pre-established hierarchy of categories that 
classify the instances figuring in an argument. The success 
of the model in predicting the qualitative 
phenomena…testifies to the approximate soundness of the 
model’s assumptions” (1993, p.200). What emerges, again, 
is a particular interpretation of what has been revealed about 
the underlying computational system. Reasoning about 
inference chains is an internal computational process that 
requires the deployment of particular categorical 
hierarchies. The boundary of the cognitive system is once 
again fixed at the formal system detecting relationships 
between argument stimulus input and subordinate 
categories.  

Each of the three examples conforms, in varying degrees, 
to the narrow conception. The individual or some sub-
component is the complete and natural unit of 
computational theorizing. The individual, in each case, is 
conceived of, and studied as if it were, the largest organized 
set of components capable of supporting computational 
investigation.  

But notice that in addition to helping researchers to better 
understand models, the narrow conception also helps to 
structure the way in which researchers go about identifying 
and constructing investigations. The narrow conception also 
offers a means for thinking about where and what to look 
for when during investigation. It proposes methodological 
guidelines for studying computational cognitive systems.  

Recall, for instance, that each of the three models 
addressed particular problems, proposed different solutions, 
and provided different explanations. Shiffrin and Stevyers’ 
model, for instance, conceived of recognition as a problem 
of item matching. This meant that the computational 
processes involved searching through memory traces using 
a global matching procedure. Dienes’ model, on the other 
hand, conceived of implicit learning as a form of pattern 
recognition. This led to looking for the internal exemplar 
representations and rules that allowed the network to 
identify and classify new letter strings. Finally, in Osherson 
et al.’s study, inference was taken to involve detecting 
structural category relations. This meant that it attempted to 
build a model around understanding how such categorical 
relationships could be structured.  

One way to understand why each study offers the types 
of model it does and measures the fit of its model(s) against 
the types of experimental data that it does is as a result of 
the constraining influence of the narrow conception. In 
directing attention to the individual and its sub-components, 
the narrow conception sets up certain implicit conceptual 
boundaries. It limits which computational explanations are 
seen as viable, which properties and processes are taken to 
be necessary for investigation, and which solutions are 
considered plausible. The explanatory space of options 
surrounding computational theorizing is delimited. The 
narrow conception curbs the conceptual and methodological 
understanding of computation available for use within 
investigations. 

The Wide Conception 
The discussion up until this point has been largely 

descriptive. The goal has been to articulate what the narrow 
conception amounts to and provide a sense of the way in 
which it imposes interpretative and methodological 
constraints on research. In this final section, the aim is to 
provide a critical analysis of the view. Two problems are 
raised. 

The first problem follows on the heels of the constraining 
influence of the narrow conception. The issue is that if the 
narrow conception limits the theoretical and explanatory 
horizons of computational investigations, then it also limits 
the kinds of research that can conducted. This is an 
undesirable state of affairs insofar as a healthy domain of 
investigation should have the broadest range of alternatives 
available when conducting research. If researchers are 
limited in the potential avenues they might explore, then the 
range of theories, explanations, and models they end up 
offering may turn out to be impoverished. In an ideal world, 
there will be as few constraining or biasing assumptions as 
possible during investigation. Insofar as the narrow 
conception operates as a constraining assumption on 
computational psychology, it forms a barrier to conducting 
successful research.  

The history of behaviorism offers an instructive example. 
In both its logical and philosophical forms, behaviorism 
eschewed recourse to ‘mental’ vocabulary. It held that only 
‘observable behaviour’ was the proper subject of 
psychological investigation. One result of its constraining 
influence was North American psychology made little 
reference to mental structures and processes. It took almost 
30 years to reclaim the conceptual territory lost to 
behaviorism (Gardner, 1985). The claim here is not quite so 
negative, but the moral is the same. The narrow conception 
has potentially closed off interesting avenues of 
computational research because of its constraining 
influence.  

One might respond by arguing that the above concern is 
only a really problem if the narrow conception turns out to 
be false. But that given the wealth of empirical support the 
view enjoys, there is really no reason to think that the 
narrow conception is in fact not the right view to hold. The 
problem with this response is that gets the order of 
explanation backwards. It is not that the narrow conception 
is true because computational research conforms to its 
strictures. Rather, it is because the narrow conception 
imposes certain restrictions on research that computational 
investigations conform to its strictures. The narrow 
conception problematically limits the range of alternatives 
considered before, during and after investigation.  

The second concern is that the narrow conception, on 
occasion, provides explanatory weaker accounts of 
psychological phenomena in virtue of its over emphasis on 
individual-bound systems. Because the narrow conception 
emphasizes the individual as the limit of computational 
explanations, investigations based on its strictures can fail to 
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identify the important computational role played by 
environmental elements.  

Consider an example from the history of cognitive 
science. Problem solving was traditionally thought to 
involve a search through problem space (Newell, Shaw, & 
Simon, 1960). One way this approach was computationally 
instantiated was to simulate agents searching mentally 
through a virtual problem space during various tasks 
(Newell & Simon, 1976). One issue with these early 
approaches is that cognizers often interactively explore 
problems by physical manipulating external structures 
(Kirsh, 2009). These types of actions are more than just 
pragmatic, as they crucially help cognizers to simplify and 
transform complex problems. Computational models that 
focused narrowly on internal searches missed out on the 
simplifying computational role of epistemic actions (see 
Wilson, 2004; Clark, 2008). 

Insofar as computational explanations fail to pay sufficient 
attention to elements of the environment that offload and 
distribute cognitive activities, they stand to provide weaker 
accounts of psychological phenomena. Computational 
explanations that are overly reliant on the narrow 
conception, such as in the above case, can supply 
explanatorily weaker accounts (Wilson, 2014). This is not to 
say that every computational explanation that subscribes to 
the narrow conception is explanatorily weaker. Rather, it is 
to point out that because there are blind spots imposed by 
the narrow conception, some computational explanations 
may, on occasion, be weaker than potential alternatives. 

The previous two concerns should not be taken to 
undermine the narrow conception in its entirety. Instead, the 
concerns are better understood as forming a negative case 
against the sufficiency of the narrow conception as a global 
thesis. Given this, it will be worth exploring a possible 
alternative approach to understanding computation. 

Wide computationalism is the idea that at least some of 
the elements of computational cognitive systems can reside 
outside the individual (Wilson, 1994, 1995; Hutchins, 1995; 
Kersten, 2016; Kersten & Wilson, 2016). Wide 
computational systems are those systems that recruit 
computational units from the larger embedding 
environment. Similar ideas have also been offered about 
cognition under the label of ‘situated, embedded and 
extended’ cognition (see Wilson, 2004; Clark 2008). 

The viability of wide computationalism follows from the 
location neutrality of computational individuation. Wilson, 
for example, writes: “There is nothing in the method of 
computational individuation itself…which implies that the 
class of physical features mapped by a realization function 
cannot include members that are part of the environment of 
the individual” (1994, p.355). Because formal systems are 
medium neutral, it is at least possible that some of the 
computational elements include parts outside the individual. 
Wide computationalism stands in contrast to the narrow 
conception insofar as it pushes computational analysis 
outside the individual. Wide computationalism also gains 

support from a number of empirical studies in human and 
animal psychology (see Kersten, 2016). 

Wide computationalism is a locational thesis about the 
realization or supervenience base of computational 
cognitive systems. It is a view about the scope of physical 
systems, processes, and components that are capable of 
supporting computational analysis. What this means is that 
although wide computationalism is compatible with either 
an individualist (Segal, 1991) or an externalist (Shagrir, 
2001) interpretation, it is, strictly speaking, non-committal 
on issues of representational or semantic individuation. 

For present purposes, the truth of wide computationalism 
is less important than the alternative it presents. This is 
because wide computationalism provides one potential 
alternative for understanding computation within 
computational psychology. In articulating a conception of 
computation that moves beyond the individual, wide 
computationalism stands to supply an importantly distinct 
approach to understanding computational investigations. By 
exploiting the location neutrality of computational 
individuation, wide computationalism re-conceptualizes the 
study of computational cognitive systems as at least 
partially requiring analysis of the embedding environment.
 Investigations based on this wide approach stand to pay 
closer attention to the role of the environment, given their 
explicit focus on computational systems spreading out 
across the brain, body and world. Examples of the wide 
conception in action, for example, include agent-based 
models or swarm behaviour models (see Dawson, 2010). 
One way to view wide computationalism, then, is as an 
alternative conception of the underlying concept of 
computation that may be used within computational 
psychology.  

Another way to make the point is to say that whereas the 
narrow conception might be construed as a restrictive 
monistic and a priori assumption about how cognitive states 
and processes are studied, wide computationalism provides 
an alternative pluralistic, empirical approach to 
investigation. Instead of viewing the narrow conception as 
exhausting the logical space of investigation, wide 
computationalism might be seen as a further, important 
additional explanatory strategy that can be used when 
thinking about computational investigations. Some 
phenomena may be more amendable to wide investigation, 
while others may conform more closely to the narrow 
conception. It may be that in some cases a narrow approach 
is preferable, while in others a wide approach is more 
suitable. In opening up the logical space, computational 
psychology is better positioned to precede both 
methodologically and theoretically.  

This is only the briefest of sketches, but it should begin to 
provide a sense of how computational psychology may 
move beyond the narrow conception. However, the wide 
approach is not offered as a replacement to the narrow 
conception, but rather as a supplement. Wide 
computationalism is simply an extension of the logic 
inherent within computational psychology. The point is that 
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it can step in when computational investigations run up 
against the limits of the narrow conception. On the proposed 
view, research that conforms to the narrow conception, such 
as the three examples surveyed, still makes a valuable and 
important contribution to cognitive science and psychology.  

The general point to note in concluding is that in 
demonstrating the commitment of three paradigmatic 
examples of computational research to the narrow 
conception and outlining two problems the view faces, the 
case for the existence and problematic influence of the view 
has been at least partially motivated. The narrow conception 
has, on occasion, problematically structured at least some of 
the thinking within computational psychology, and that in 
doing so it has laid down some of the conceptual track on 
which the computational research train has run. Given this, 
further examination of previously underexplored 
approaches, such as wide computationalism, may help 
enrich the range of theories, models, and explanations 
offered within computational psychology.  
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Abstract 

Recently, some authors have begun to raise questions about the 
potential unity of 4E (enactive, embedded, embodied, extended) 
cognition as a distinct research programme within cognitive 
science. Two tensions, in particular, have been raised: (i) that 
the body-centric claims embodied cognition militate against the 
distributed tendencies of extended cognition and (ii) that the 
body/environment distinction emphasized by enactivism stands 
in tension with the world-spanning claims of extended 
cognition. The goal of this paper is to resolve tensions (i) and 
(ii). The proposal is that a form of ‘wide computationalism’ can 
be used to reconcile the two tensions and, in so doing, articulate 
a common theoretical core for 4E cognition. 

Keywords: 4E cognition, wide computationalism, body-
centrism, extended functionalism, autopoietic theory 

Introduction 
Enactive, embodied, embedded and extended cognition, or 

simply 4E cognition, has often been thought to form a 
collective challenge to traditional or classical cognitive 
science (Menary, 2010). Common to many of these views is 
the idea that cognitive processes are often integrated with 
and heavily dependent on bodily and environmental 
structures (Varela, Thompson, & Rosch, 1991; Clark & 
Chalmers, 1998; Haugeland, 1998; Hutto & Myin, 2013).  

More recently, some authors have begun to raise questions 
about the potential unity of 4E cognition as a distinct 
research programme within cognitive science (Clark, 2008a; 
Clark & Kiverstein, 2009; Menary, 2010). Two tensions, in 
particular, have been raised: (i) that the body-centric claims 
embodied cognition militate against the distributed 
tendencies of extended cognition and (ii) that the 
body/environment distinction emphasized by enactivism 
stands in tension with the world-spanning claims of 
extended cognition. These two tensions constitute a problem 
for cognitive science insofar as 4E cognition is thought to 
form distinct field of study, and not merely a loose set of 
alphabetically related approaches (Ward & Stapleton, 2012).  

The goal of this paper is to resolve tensions (i) and (ii). 
The proposal is that a form of ‘wide computationalism’ can 
be used to reconcile the two tensions, and, in so doing, 

articulate a common theoretical core for 4E cognition. It is 
argued that wide computationalism satisfies the various 
demands of the embodied, enactive and extended theorists 
in virtue of placing a simultaneous emphasis on abstract 
analysis and functional mechanisms. 

Two Tensions in 4E Cognition 
Following Clark and Kiverstein (2009), three ‘strands’ 

can be identified as generating the two tensions within 4E 
cognition, these include: body-centrism, extended 
functionalism, and autopoietic theory.  

The first strand is body-centrism. This is the idea that the 
body has a non-trivial role in determining mental states and 
functioning, that the details of a creature’s embodiment have 
a profound affect on the nature and functioning of the mind 
(Noë & Reagan, 2001; Noë, 2004; Gallagher, 2005). 
Shapiro, for instance, writes: “[P]sychological processes are 
incomplete without the body’s contributions. Vision for 
human beings is a process that includes features of the 
human body. This means that a description of various 
perceptual capacities cannot maintain body-neutrality” 
(2004, p.190). The body is depicted as ‘intrinsically 
special.’ Body-centrists hold that without discussion of the 
unique contribution of bodily structures and activities, 
cognitive explanations are crucially lacking. The view is 
also sometimes called the “constitutive-contribution claim” 
(Clark, 2008a). 

Support for body-centrism comes from research 
highlighting the functional dependences of mental processes 
on bodily structures and activities (Clark, 2008a, b). Work 
on embodiment and conceptualization, for example, 
demonstrates that understanding abstract concepts, such as 
love, often depends on the metaphorical expansions of more 
familiar concepts, such as up and down or front and back 
(Lakoff & Johnson, 1980). 

The second strand is extended functionalism. For the 
extended functionalist, cognitive systems are functional 
wholes distributed across diverse sets of components and 
processes. Cognitive activities involve a complex balancing 
act between brain, body and world  (Harman 1998, Clark & 
Chalmers, 1998; Wilson 2004; Wheeler, 2010). The spirit of 
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extended functionalism is embodied in what Clark and 
Chalmer’s (1998) call the ‘parity principle’, which says: 
“[i]f, as we confront some task, a part of the world functions 
as a process which, were it done in the head, we would have 
no hesitation in recognizing as a part of the cognitive 
process, then that part of the world is (so we claim) part of 
the cognitive process” (p.29). The parity principle stresses 
the location neutrality of cognitive analysis. It highlights 
abstract, functional analysis in place of detailed 
physiological investigations. The view is also sometimes 
called the “distributor role” in discussions of embodied 
cognition (Wilson & Foglia, 2016).  

Support for extended functionalism comes from research 
focusing on the way in which cognizers often exploit, 
scaffold, and distribute cognitive activates across bodily and 
environment structures (Clark, 2005, 2008b). Work on 
problem solving, for example, shows that people often 
simplify and transform complex problems, such as the 
Tower of Hanoi, by manipulating physical environments 
(Kirsh & Maglio, 1995; Kirsh, 2009).  

The final strand to consider is ‘autopoietic theory.’ The 
central claim of autopoietic theory is that cognitive systems 
are created by the reciprocal interaction of internal and 
external components in the service of some larger function, 
such as homeostasis (Weber and Varela, 2002). Autopoietic 
theory connects to 4E cognition via the notion of ‘sense 
making’.  

Autopoietic theory maintains that because living systems, 
such as cognition, are autonomous, self-regulating systems, 
and sense making is required for maintaining a system’s 
boundary, autopoietic systems produce and maintain a 
physical boundary between the organism and its physical 
environment. Because sense making is a self-regulating act, 
organisms often bring forth meaning on the basis of their 
autonomy – autonomy in this context means actively 
sustaining identity under precarious circumstances. A 
system maintains its organization by regulating its 
interactions with the environment via sense making 
(Thompson, 2007; Wheeler, 2009). 

Consider how each of the three strands fit within 4E 
cognition. First, enactivism and embodied cognition often 
endorse body-centrism in virtue of emphasizing what they 
take to be the unique contributions of bodily structures and 
activities, such as sensorimotor knowledge. Second, 
extended cognition often endorses extended functionalism 
by assigning a non-trivial role to environmental elements in 
sustaining cognitive activities. Third, enactivism is often 
framed in terms of autopoietic theory insofar as sense 
making is treated as a constitutive element of demarcating 
the organism/environment boundary. 

Not every version of enactivism is committed to 
autopoietic theory, and not every version of embodied 
cognition is committed to body-centrism. There is, at least 
in principle, some compatibility between the various views. 
Nonetheless, because some versions of each view are, as a 
matter of fact, committed to the different strands, the two 

tensions do represent a substantial challenge for 4E 
cognition. 

Consider, then, how the three strands generate the two 
tensions. The first tension follows from the fact that if the 
body has a non-trivial role in determining mental states, 
then cognition cannot also be location neutral; the converse 
of which is that if cognition is location neutral, then the 
body cannot have a privileged status in cognition. If the 
body is simply an instrument through which larger 
functional complexes are realized, then bodily structures 
cannot form the exclusive realization base of cognitive 
activities. Extended functionalism precludes the constitutive 
contribution claims of body-centrism, while body-centrism 
precludes the possibility of cognitive systems extending 
beyond the boundary of the individual. 

The second tension emerges from the idea that if extended 
functionalism is correct, and cognitive systems can stretch 
out into the world, then living systems cannot also be co-
extensive with cognitive systems, as per enactivism. Here is 
Clark and Kiverstein (2009) diagnosing the situation:  

If living systems and cognitive systems are identical, 
both systems must have boundaries that coincide. 
However, the boundaries of the living systems are the 
physical boundaries of the organism. If extended 
functionalism is correct, the boundaries of cognitive 
systems can criss-cross the physical boundaries of the 
organism. This is precisely what the enactivists cannot 
allow. (p.2).  

Extended cognition requires that cognitive systems recruit 
resources outside the boundary of the individual. 
Enactivism, however, denies this possibility. It therefore 
undercuts the identification of cognitive systems with 
extended systems by maintaining a sharp distinction 
between the physical boundaries of the organism and the 
environment, assuming also that each view is taken to be a 
global thesis about cognition.  

Tensions (i) and (ii) emerge as a function of the opposing 
elements within 4E cognition. Tension (i) emerges as a 
result of body-centrism’s emphasis on the unique 
contribution of the bodily structures, while tension (ii) 
follows from the location-neutrality of extended 
functionalism. The tensions are important for at least two 
reasons. One is that they stand to undermine the collective 
thrust of 4E cognition by showcasing fractures within the 
larger framework (Clark, 2008a). Another is that they reveal 
a lack of ‘deep theoretical core’ within 4E cognition. They 
expose a conceptual gap at the centre of an otherwise 
vibrant and animated collection of research (Clark & 
Kiverstein, 2009).  

One constructive proposal that has been offered to resolve 
the first of the two tensions is Clark (2008a). Clark’s 
suggestion is that the body plays an enabling computational 
role within cognitive processes that selectively impacts both 
conscious and non-conscious computational strategies. 
Clark’s view is that the first tension can be resolved by 
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viewing bodily structures in terms of enabling different 
kinds of information processing. The cognitive significance 
of the body resides in the functional role it occupies within 
‘intelligent’ organization – this is what explains the intuition 
that the body makes a special contribution to cognition.  

Clark’s proposal, although not explicitly, also provides a 
solution to the ‘deep theoretical core’ problem. This is 
because it articulates, at least in principle, a common 
‘computational/functional core’ for 4E cognition. 
Embedded, embodied, and extended approaches are unified 
by a shared emphasis on distributed functional complexes 
supporting cognitive activities. What is important is that 
bodily or environmental structures are situated within a 
larger computational/functional framework during 
investigation. Some systems will be individual bound (as 
per enactive and embodied cognition), while others will 
spread out across brain, body and world (as per extended 
cognition).  

One problem with Clark’s response, despite its 
advantages, is that it fails to specify the relationship 
between physical mechanisms and computational systems 
finely enough. It fails to cash out what it is that allows the 
body to play its ‘enabling role’ in cognitive activities in the 
first place. If the body is merely one element within a larger 
brain-body-world complex, why should it have such a 
constraining and enabling role? The problem is not that 
Clark is wrong in proposing that the body has an enabling 
computational role, but that the suggestion alone does not 
suffice to specify what the role amounts to and why it 
should prove important.  

Two Tensions Resolved 
In what follows, we argue that Clark’s proposal can be 

supplemented and further developed by appealing to the 
notion of ‘wide computationalism’. We begin by outlining 
and motivating wide computationalism and then turn to 
showing how the view addresses each of the two tensions.  

Wide computationalism is the view that some of the units 
of computational cognitive systems reside outside the 
individual (Wilson, 1994, 1995, 2004; Hutchins, 1995; 
Clark & Wilson, 2009; Kersten, 2016; Kersten & Wilson, 
2016). Wide computationalism stakes a claim on the scope 
of physical systems, processes, and components that are 
capable of supporting computational analysis. A wide 
computational perspective opens up the possibility of 
exploring computational units that include the brain and 
aspects of the beyond-the-head environment. 

Wide computationalism gains a theoretical foothold via 
the location neutrality of computational individuation. Since 
formal systems are indifferent to physical medium and 
computation is a formal system, it is possible that at least 
some states and processes relevant to a computational 
system may reside outside the individual. Nothing in the 
method of computational individuation precludes the 
possibility of wide computational systems.  

Traditionally, wide computationalism has been committed 
to what some call “causal mapping accounts” of 

computation (Chalmers, 1994; Chrisley, 1995). Causal 
mapping accounts maintain that in order for a physical 
system to implement an actual computation there must be a 
mapping of computational states to physical states such that 
transitions between the physical states result in 
corresponding transitions between the computational states. 
Causal mapping accounts, whether wide or narrow, 
articulate the conditions for ascription of computational 
implementation in terms of isomorphic mappings between 
computational descriptions and physical descriptions via 
transitions between physical states. 

More recently, some have argued that wide 
computationalism should adopt a ‘mechanistic’ approach to 
computation (Kersten, 2016). Wide mechanistic 
computation differs from causal mapping formulations in 
that it frames the conditions of concrete computation in 
terms of functional mechanisms (Milkowski, 2013, 2015; 
Piccinini, 2015; Dewhurst, 2016). Mechanistic accounts 
maintain that concrete computations occur wherever there is 
a physical system that has an organization of spatiotemporal 
components such that it computes an abstract function in 
virtue of manipulating medium-independent vehicles. The 
mechanistic approach emphasizes functionally integrated 
systems that compute at least one abstract function via 
vehicle manipulation.  

The wide account of computation extends the mechanistic 
reasoning to brain-body-world systems. It maintains that 
whether or not functional mechanisms, ones that process 
medium-independent vehicles, are constituted by 
spatiotemporal components squarely localized within the 
individual or crisscrossing into the world is an a posteriori 
question. Since the mechanistic conditions on concrete 
computations are medium and location neutral, the question 
of wide computational systems is an open one – some 
physical computing cognitive systems may be ensconced 
within the body, while others may be spread out over brain, 
body and world.  

In addition to its theoretical plausibility, wide 
computationalism also gains support from studies in animal 
and human psychology. There is a natural set of phenomena 
productively studied by wide computationalism. 

Research in form perception, for example, shows that 
formal primitives in the environment are often relevant to 
computationally explaining the construction of complex, 
internal representations. Wilson (1994, 1995) takes such 
work to be indicative of a wide computational system, as it 
acknowledges the unique computational role of states 
beyond the individual within perceptual processing.  

Research on the spatial navigation of bats has also been 
used to support wide computationalism. Kersten (2016), for 
instance, argues that bats’ navigation system instantiates a 
wide computational system in virtue of employing a 
functional mechanism that spans the brain, body and world, 
and which processes medium-independent acoustic vehicles. 
Bat morphology, acoustic signals and neural processing 
conspire to support object detection along vertical planes 
using a wide computational system (MacIver, 2009).  
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Finally, Hutchins (1995) has argued for the presence of 
wide computation in the context of ship navigation. 
Hutchins’ claim is that members of a navigation team carry 
out computational tasks that extend beyond the local actions 
of individual team members, which is indicative of a wide 
computational system. 

The central message is that wide computational systems 
are not only theoretically plausible, but they are actually 
implemented in a number of cases. Research in human and 
animal psychology delivers several examples of concrete 
computational systems that extend beyond the boundary of 
the individual. In what follows, we adopt the wide 
mechanistic account of computation, though, for ease of 
exposition, we refer to it simply wide computationalism. 

Consider how wide computationalism might address the 
first of the two tensions. Noë (2004), for instance, writes: 
“If perception is in part constituted by out and out 
possession and exercise of bodily skills…then it may also 
depend on our possession of the sorts of bodies that can 
encompass those skills, for only creatures with such a body 
could have those skills” (p.25). Noë and other body-centrists 
are at pains to highlight the role and contribution of bodily 
actions in cognitive processes. Such considerations motivate 
the claim that bodily-structures are constitutive of cognitive 
processes.  

The wide mechanistic account can accommodate these 
types of considerations by focusing on functional 
mechanisms. A system is a functional mechanism when it 
consists of a set of spatiotemporal components that 
contribute to the system’s overall function in virtue of the 
organization and interaction of its component parts 
(Piccinini, 2015, p.119). For the wide computationalist, the 
set of bodily and neural structures responsible for delivering 
visual perception are the functional mechanism that carry 
out the larger, computational task under investigation. This 
means that the claims of the body-centrist can be reframed 
in terms of ‘wide’ functional mechanisms; these are 
mechanisms whose component parts are spread out over 
internal and environmental elements (see Menary, 2007, 
ch.2). The constitutively embodied systems, such as in the 
case of vision, are the wide functional mechanisms localized 
to the body-brain complex. One way to understand body-
centric theorists, then, is as making fine-grained statements 
about wide functional mechanisms. 

Consider the extended functionalist side of the equation. 
In applying the method of computational analysis to world-
individual spanning systems, wide computationalism 
maintains a commitment to the location neutrality of 
cognition. What matters for the wide computationalist is the 
functional capacity being investigated, not the physical 
medium through which it is realized. The implication is that 
extended functionalism’s emphasis on medium 
independence and abstract analysis is preserved within wide 
computationalism. The view retains the abstract form of 
analysis crucial to the extended functionalist.  

A resolution to the first tension is in sight. By re-
envisaging body-centrism in terms of the implementation of 

wide computational systems space is opened up for the 
tight, causal integration of bodily and neuronal processes in 
support of cognitive processes (i.e., wide functional 
mechanisms) and the locational neutrality of computational 
individuation (i.e., wide computational analysis). The 
special status of bodily structures turns out to be species of a 
more general class of wide mechanistic systems. The only 
difference is that whereas some wide functional mechanisms 
are instantiated within individuals (as highlighted by body-
centrism), others are instantiated by the brain, body and 
world (as highlighted by extended functionalism).  

Consider the second tension. Enactivism, of the 
autopoietic variety, was unimpressed by the blurring of the 
organism/environment boundary within extended 
functionalism. The enactivist claimed that if cognitive 
systems were autopoietic systems then it followed that 
cognitive systems could not be extended, the underlying 
assumption being that autopoietic systems were organism 
bound.  

One route to reconciling the two views is to show that 
autopoietic theory is compatible with computationalism 
more generally, assuming also that extended functionalism 
is congenial to wide computationalism more generally (see 
Wilson, 2004). Insofar as wide computationalism is a 
species of computationalism, the compatibility of 
computationalism with autopoietic systems theory suffices 
to show the compatibility of extended functionalism with 
autopoietic theory. 

One reason to think that autopoietic theory is compatible 
with computationalism is a common emphasis on mechanistic 
explanation (Machamer, Darden, & Craver, 2000; Bechtel, 
2008). Consider, for instance, what Maturana and Varela 
(1980) write about the methodology of autopoietic theory:  

An explanation [of autopoietic theory] is always a 
reformulation of a phenomenon showing how its 
components generate it through their interactions and 
relations...the elements used in the explanations are 
bodies and their properties…they are relations and 
their relations, independently of the nature of the 
bodies that satisfy them…This mode of thinking is not 
new, and is explicitly related to the very name of 
mechanisms. (pp. 75-76). 

Autopoietic theory is, at root, a functional or mechanistic 
approach to explanation. What matters is that systems are 
explained in terms of the interaction of component parts 
with each other and the environment, regardless of whether 
the systems under investigation are biological or cognitive 
in character. There is a functional/mechanistic mode of 
explanation underlying autopoietic theory.  

Compare this with computationalism. Computational 
analysis involves detailing how the arrangement and 
interaction of various components conspire to process 
information bearing vehicles. The mechanistic account 
requires showing how concrete, functional mechanisms 
compute medium-independent vehicles in virtue of 
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processing some portion of their physical structure. 
Computational analysis is also a species of mechanistic 
explanation (Milkowski, 2013). 

There turns out, then, to be little incompatibility between 
computationalism and autopoietic theory. Both approaches 
employ something like a mechanistic explanatory strategy 
when investigating phenomena, although autopoietic theory 
is generally pitched at lower-level biological phenomena 
than computationalism. The common focus on mechanistic 
explanation ensures that there will be an overlapping set of 
phenomena productively studied by both approaches. 

Why, then, the perceived tension? One reason is that 
many of the systems analyzed by autopoietic theory are 
located or ensconced within the organism. Most autopoietic 
systems are contained within the organism as a matter of 
empirical fact. However, this alone does not imply that all 
systems must be analyzed so as to localize within the 
individual; parts of the environment may still come to be 
included within the larger analysis. In principle, autopoietic 
theory, similar to computationalism, is location neutral.  

Another reason for the perceived tension is that some 
within the enactivism literature assume that 
computationalism implies a commitment to representation 
and/or information processing theories (Di Paolo, 2009). 
These authors assume that because computationalism entails 
a commitment to representation and information processing 
theories, and autonomous, self-regulating systems stand in 
contrast to these views, enactivism must be opposed to 
computationalism.  

However, as the previous discussion of mechanistic 
computation illustrates, there are a number of viable 
accounts of computation that are minimal in their 
commitment to representation or information processing 
theories (Stich, 1983; Egan, 1995; Piccinini, 2008). There is 
little reason to think that an opposition to representation and 
information processing commits enactivism to an opposition 
to computationalism more generally.  

The point to note is that because wide computationalism 
places a greater emphasis on the way in in computational 
processes are grounded in particular physical mechanisms it 
creates a link between the body-centric claims of enactivism 
and embodied cognition, on the one hand, and the functional 
considerations of extended cognition, on the other. It is in 
virtue of analyzing mechanisms from several vantages – 
some quite fine-grained, others quite coarse-grained – that 
wide computationalism is able to mediate the competing 
claims of the three strands. The view offers a philosopher’s 
stone of sorts through which to translate the various claims 
of the enactivist, embodied and extended theorist.  

To be a bit more specific, tension (i) is resolved by the 
fact that wide computationalism allows the claims of the 
body-centrist to be reframed in terms of wide functional 
mechanisms, while tension (ii) is resolved by the fact that 
wide computationalism, in virtue of being a species of 
computationalism more generally, is theoretically 
compatible with the basic methodology of autopoietic 
theory. The success of wide computationalism, therefore, 

stems from the fact that it retains several of the central 
insights and elements that prove important to embodied, 
enactive and extended theorists.  

One interesting implication of the preceding analysis is 
that it reveals what might be called the 
‘computational/mechanistic’ core of 4E cognition. The 
discussion of wide computationalism goes some way to 
showing that something akin to ‘computational/mechanistic’ 
explanation may underwrite a fair amount of 4E cognition. 
Mechanistic explanations, which are explanations of 
systems in terms of the activities and organization of 
component parts, turn out to be important not only for 
cognitive science and psychology more generally, but for 4E 
cognition specifically (Craver, 2006). This point is only 
provisional, of course. But it does point to a promising 
future line of inquiry. A continued focus on the 
‘computational/mechanistic’ underpinnings of 4E cognition 
may well serve to further clarify and unify the field as a 
whole. 

Conclusion 
The preceding discussion is only the first step in a larger 

analysis. More still needs to be said. Nonetheless, the 
discussion is important because it offers one route to 
resolving the two tensions troubling 4E cognition. What’s 
more, the discussion shows that a renewed focus on 
computationalism, particularly of the wide variety, may 
have key role to play in illuminating the conceptual 
foundations of 4E cognition. This result is both interesting 
and novel, as discussions of 4E cognition sometimes eschew 
mention of computation. By showing that a form of 
computationalism provides a theoretically flexible yet 
robust vehicle through which to understand and translate the 
various strands of 4E cognition, the current discussion 
provides not only a partial vindication of wide 
comptuatiaonlism, but also helps to shed light on an 
important set of issues facing a growing research 
programme within cognitive science.  
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Abstract

The ability to reason about relations is relevant for many spa-
tial cognitive processes. This can involve: (i) to represent spa-
tial information mentally, (ii) to manipulate the spatial repre-
sentation, and (iii) to infer new spatial information. Several
cognitive theories make assumptions and predictions about the
underlying processes. A detailed and systematic overview and
analysis of ireliable effects across studies is missing. This ar-
ticle presents a meta-analysis of 35 studies about spatial rela-
tional reasoning. Studies were classified according to different
factors including the ambiguity of the spatial description, i.e.,
if it the description allows for more than one representation, the
presentation of information, i.e., if the information has been
presented auditorily or in a written form, and the task, i.e., if
a conclusion or model of the premises needs to be generated
or verified. Implications of the findings for the mental model
theory and working memory are discussed.
Keywords: reasoning; spatial relations; meta-analysis.

Introduction
Spatial cognition allows us to perform a variety of everyday
actions, such as sharing spatial information, navigation, and
even assembling diverse kinds of objects. A successful spatial
interaction requires us to represent spatial relational informa-
tion and to reason with and about this information. Human
communication mainly uses qualitative descriptions to spec-
ify relationships between spatial objects1 instead of a numer-
ical or quantitative data description that is used in robot nav-
igation. Relations which are expressed linguistically by the
comparative, such as ‘greater than’, have been extensively
investigated in the past century by using behavioral experi-
ments (e.g., Hunter, 1957; Störring, 1908). Within an experi-
ment, problems are often reduced to their essential character-
istics limiting irrelevant information. Consider the following
example:

Premise 1: The post office is left of the train station.
Premise 2: The train station is left of the main crossroad.
Conclusion: The post office is left of the main crossroad.

The premises contain spatial information (“left of”) about the
relationships among spatial objects (e.g.,“post office”). A de-
ductive inference makes implicit given information, e.g., the
relation between the post office and the main crossroad ex-
plicit. While this inference is easy, and most participants
solve it correctly, such transitive inferences can be at the core
of more difficult inference problems with more objects and
more relations. In the following we will give a brief overview

1Although it would be more appropriate to speak about entities
including humans, in the following we refer to spatial objects.

about reported factors of reasoning difficulty in the litera-
ture and present briefly implications of two cognitive theo-
ries relevant to our analysis. Cognitive psychologists have
disagreed about the exact character of underlying mental pro-
cesses (Goodwin & Johnson-Laird, 2005) and the main ques-
tion is, what reliable findings need to be explained by cogni-
tive theories?

Factors of Reasoning Difficulty
In general reasoning difficulty can appear on all levels:
in comprehending the presented information (the language
level), generating a mental representation (the representa-
tional level including working memory) or reasoning about
the representation (reasoning level). The literature reports
several factors that can be related to these levels.

Behavioral findings support that the presentation for-
mat affects spatial relational reasoning (Van der Henst &
Schaeken, 2005): In comparison with simultaneous premise
presentation, accuracy is significantly lower in sequential
presentation of the premise information (Roberts & Sykes,
2003; Schaeken & Johnson-Laird, 2000; Van der Henst &
Schaeken, 2005). This difference presumably reflects that
during simultaneous premise presentation reasoners have all
information available until they respond in contrast to sequen-
tial premise presentation posing more demand on working
memory (Ormrod, 1979; Schaeken & Johnson-Laird, 2000).
Models of working memory, e.g., Baddeley’s Working Mem-
ory Model (WMM; Baddeley, 1986) support the assumption
that human reasoning is restricted by the limited capacity of
working memory (Klauer, 1997) and that there are different
components with specific limitations and modalities. Based
on Baddeley’s WMM, factors such as presentation form, task
type and number of terms may influence spatial relational rea-
soning. Similar to premise presentation, it can be assumed
that the presentation form (written vs. spoken language) may
affect the way a problem is processed (Ormrod, 1979).

If premises are presented auditorily the spatial informa-
tion is presented sequentially and thus more load on working
memory is placed (Ormrod, 1979). According to the WMM,
the larger the number of terms within a problem, the higher is
the amount of information that must be retained (Clevenger &
Hummel, 2014). Lastly, the task type may have an influence
as well. In conclusion generation tasks reasoners have to gen-
erate a conclusion. Whereas during verification tasks, reason-
ers have to check if a putative conclusions follows. This type
of task captures only the ability to recognize a solution, but
not producing it and thus requires smaller amounts of work-
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ing memory (Klauer, 1997; Kubinger & Wolfsbauer, 2010).
Another factor is the so-called indeterminacy effect

(Byrne & Johnson-Laird, 1989). While Example 1 above al-
lows only for one possible arrangement (that we call model)
and is called a determinate problem, indeterminate problems
are possible. Consider the following example:

Premise 1: The post office is left of the train station.
Premise 2: The train station is left of the police office.
Premise 3: The crossroad is right of the post office.
Conclusion: The police office is right of the crossroad.

An indeterminate problem is more difficult to solve than a
determinate one (e.g., Boudreau & Pigeau, 2001; Johnson-
Laird & Byrne, 1991). Determinate problems allow only
one qualitative arrangement (in contrast to quantitative dif-
ferences, e.g., metric distances), while indeterminate prob-
lems allow for multiple different arrangements – as explained
by the (preferred) mental model theory (MMT: Byrne &
Johnson-Laird, 1989; Ragni & Knauff, 2013):

(1) post office – crossroad – train station – police office

(2) post office – train station – crossroad – police office

Most people construct just one or two models at most and of-
ten neglect other models consistent with the premises. These
models differ qualitatively, e.g., there is mentally a different
arrangement of the train station and the crossroad possible
from the indeterminate description.

So far no systematic review of the recent literature has
been carried out and no uniform and unambiguous conclu-
sions about differences in accuracy have been drawn. For
this reason, a cross-study meta-analysis of behavioural data
from spatial relational reasoning is conducted. The aim of
this paper is to test whether the predictions of individual stud-
ies and the predictions of MMT and WMM hold generally
and to give an detailed overview that can serve as a potential
benchmark for theories about spatial reasoning. This analy-
sis investigates differences in accuracy depending on indeter-
minacy, premise presentation, presentation form, and type of
task as well as number of terms. Resulting from the theo-
retical background and empirical findings to spatial relational
reasoning, predictions are:

1. In spatial relational reasoning, determinate problems
are easier to solve than indeterminate problems (e.g.,
Boudreau & Pigeau, 2001; Johnson-Laird & Byrne, 1991).

2. Compared with problems presented in spoken language,
problems in written language appear with higher accuracy
(e.g., Ormrod, 1979; Van der Henst & Schaeken, 2005).

3. Reasoners solve more problems correctly when the task is
to verify instead of generating conclusions/models.

4. Problems consisting of three terms are less difficult to
solve than four-term problems.

5. In case of simultaneous premise presentation, accuracy is
higher than in case of sequentially premise presentation.

In the following, these predictions are analyzed with the aim
of gaining differences in accuracy specific to the various
types. The results of the analysis are evaluated and inter-
preted with respect to predictions of the mental model theory
and implications from working memory limitations.

The Meta-Analysis
Paper Acquisition In order to acquire sufficient and suit-
able data for the meta-analysis, we needed to find experi-
ments in which the participants drew their own conclusions
to all sorts of tasks in spatial relational reasoning. An initial
set of eligible studies came from a meta-analysis database of
coded studies about spatial relational reasoning from the Cog-
nitive Computation Lab (University of Freiburg, Germany)
the database incorporated a comprehensive search for stud-
ies reported until 2013. The database contained the literature
using the online platforms PubMed and Google Scholar for
entries by the following main query: ‘(relational) AND (rea-
soning) OR (reasoning) AND (about) AND (relations) OR
(transitive reasoning)’. All the studies in that database were
reviewed for eligibility and an independent search was con-
ducted: Online literature searches were performed on the 29th
of October, and 29th of November 2016 using PubMed and
Google Scholar. For the first PubMed and Google Scholar
search, the same term like in 2013. For the second PubMed
search, conducted on the 29th of November, the query ‘(spa-
tial) AND (reasoning) AND (relations) OR (spatial reason-
ing) AND (relations)’ was used, since the initial query was
too unspecific for this search engine.

Criteria for Inclusion of Studies Experiments were as-
sessed and selected for this meta-analysis if they met not only
the search terms but also the following criteria: Experiments
containing spatial relations and in cases of visuo-spatial re-
lations, experiments emphasizing on spatial representations
were also considered. All the experiments had to involve
healthy, adult participants and use a within-subjects design
to keep the homogeneity among different conditions. Partic-
ipants had to know beforehand that their task was to reach a
conclusion and there had to be no secondary-tasks. These cri-
teria were used to ensure that the reasoning process was actu-
ally taking place and to eliminate other cognitive processes as
a biasing factor. Moreover, only peer-reviewed and published
studies of both, behavioural and neurophysiological experi-
ments conducted in any country were considered. Outcome
results of accuracy must have been presented in a quantitative
form that permitted computation or reasonable estimation of
an effect size statistic representing the difference in accuracy.
Finally, information on factors of interests had to be given in
the study. The literature search identified 138 experiments of
84 articles reporting results from psychological studies. Of
these, 32 experiments (23%) (e.g., Knauff & Johnson-Laird,
2002a) did not report behavioral data or did not present spa-
tial realtions by means of language.

Twenty experiments (14%) were rejected because they
did not report or measured accuracy (e.g., Brüssow et al.,
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Table 1: Means and standard deviations of the overall accuracy for the studies (in %).

Dataset with indeterminacy condition determinate problems indeterminate problems
simultaneous-verbal presentation 70 (7) 52 (8)
sequential-verbal presentation 65 (4) 42 (13)
sequential-auditory presentation 63 (10) 34 (19)
Values are rounded to integers. Indeterminacy (simultaneous-verbal): Experiments with simultane-

ous premise presentation, generation task, verbal presentation form and 5-term problems. Indetermi-
nacy (sequential-verbal): Experiments with sequential premise presentation, generation task, auditory
presentation form and 5-term problems. Indeterminacy (sequential-auditory): Experiments with se-
quential premise presentation, generation task, verbal presentation form and 5-term problems.

2013). Seventeen experiments (12%) did not report infor-
mation about either indeterminacy, presentation form, type
of task or number of terms nor premise presentation (e.g.,
Fangmeier et al., 2006). For 13 experiments (9%) the origi-
nal study was not available (e.g., Hagert, 1984). Eight experi-
ments (6%) used secondary-task methods (e.g., Knauff et al.,
2004), six experiments (4%) used a between-subjects design
(e.g., Boudreau & Pigeau, 2001) and three experiments (2%)
included children or patients (e.g., Knauff & May, 2006).
In two experiments (1%) a recognition task was performed
(e.g., Mani & Johnson-Laird, 1982) and two other experi-
ments (1%) used a visual presentation form (e.g., Knauff &
May, 2006). In total, 206 raw differences in means of ac-
curacy between different types of spatial relational reasoning
problems and other types of (relational) reasoning met the in-
clusion criteria for this meta-analysis. An asterisk precedes
each of these reports in the reference list.

Paper Classification After paper selection, experiment
characteristics were coded by the authors for the following
characteristics: indeterminacy, premise presentation, presen-
tation form, number of terms, task and sample size. The sam-
ple size for each experiment was defined as the number of
participants at the time of the final measure of logical correct
answer. The first division of data was made between deter-
minate and indeterminate problems. Furthermore, the data
was subdivided into groups of simultaneous and sequential
premise presentation. All premises were either displayed at
the same time and remained available (simultaneous), or were
presented one at a time and disappeared with the onset of a
new premise (sequential). Moreover, it was coded whether
the participants had to listen to the premises in form of audio
recording using spoken language (auditory form) or whether
the premises were presented by means of literacy language
on screen or on paper (verbal form). Likewise, the data was
grouped into experiments with either three, four, or five terms.
Finally, experiments were assigned to the group of verifica-
tion task when the reasoners had to verify a outative conclu-
sion or to select the correct model from a given set of models.
If the participants had to generate a model (an arrangement
of objects) or to draw a conclusion, tasks were characterized
as generation tasks. For each factor, the data was divided into
subgroups finding the combination of variants that had the

most values for comparison of two variants of a factor. For
this purpose, cross-classifying factors were used to build a
contingency table of the counts at each combination of fac-
tor levels resulting in eight combinations of data. In Table 2,
the datasets for all types of factors and its characteristics are
presented. The factor number of participants within an ex-
periment was not included in matching since otherwise, the
number of raw means within subgroups would have been too
small for statistical analysis. For the results reported in this
study, statistical analysis consisted of non-parametric tests us-
ing one-sided Wilcoxon Rank-Sum Tests and a significance
level of α = .01 was defined. All statistical analysis was per-
formed using R (R version 3.2.2, 2015-08-14; R Core Team,
2015).

Results and Discussion
The data was corrected for outliers by excluding percentages
of accuracy with values greater than two standard deviations
from the mean value. All the statistical analysis reported is
based on the data corrected by outliers. We analysed the per-
centage of correctness for all eight combinations of data.2 Ta-
ble 2 summarizes the descriptive statistics in all conditions.

The analysis shows that in the indetermi-
nacy (simultaneous-verbal) sample, significantly more
correct responses were given if the problem was determinate
than indeterminate (Wilcoxon Rank-Sum Test W = 168,
p < .0001, one-sided). The same trend is also visible for
the sequential-verbal and sequential-auditory indeterminacy
cases (Table 1). One-sided Wilcoxon Rank-Sum Tests
showed that both trends were statistically significant (indeter-
minacy (sequential-verbal): W = 30, p < .05; indeterminacy
(sequential-auditory): W = 30, p = .01). These results
supports several empirical findings (e.g., Byrne & Johnson-
Laird, 1989) and can be explained by MMT as well as
Baddeley’s WMM. For an indeterminate description, it is
necessary to construct not one but several mental models
in order to correctly represent its meaning. The larger the
number of models that reasoners must consider, the higher
is the load on working memory. The attempt to construct

2This was due to a better readability. For the purpose of calcu-
lating Odds Ratio and the further meta-analysis, absolute frequency
of accuracy based on the number of participants and the percentage
of the correctness of the given responses are used.
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Table 2: Descriptive statistics of the overall accuracy for the studies (in %).

Dataset Factor nrawmeans nparticipants Mean (SD) Min Q1 Median (MAD) Q3 Max

Indeterminacy***
(simultaneous-verbal)

det 12 2384 70 (7) 64 64 66 (3) 78 80
indet 14 2456 52 (8) 40 43 54 (7) 58 59

Presentation form 1 (n.s.) verb 15 255 90 (10) 68 89 90 (11) 98 98
audi 18 264 87 (7) 77 81 88 (9) 94 96

Presentation form 2** verb 37 702 72 (15) 40 61 77 (17) 84 92
audi 10 192 57 (14) 33 47 61 (12) 67 76

Task** veri 15 255 90 (10) 68 89 90 (11) 98 98
gen 30 856 76 (17) 54 58 75 (25) 91 99

Number of terms (n.s) three 30 856 76 (17) 54 58 75 (25) 91 99
four 37 702 72 (15) 40 61 77 (17) 84 92

Premise presentation (n.s.) sim 24 3504 49 (12) 27 44 48 (10) 55 66
seq 15 255 90 (10) 68 89 90 (11) 98 98

All values were rounded to integers. Factor labels refer to auditory vs. verbal presentation form (audi/verb), determinate vs. indeterminate
problems (det/indet), model generation vs. model verification task (gen/veri) and sequential vs. simultaneous premise presentation (seq/sim).
nrawmeans: number of raw differences in means; nparticipants: number of participants. Indeterminacy (simultaneous-verbal): Experiments with
simultaneous premise presentation, generation task, verbal presentation form and five-term problems. Presentation form 1: Experiments with
sequential premise presentation, verification task, determinate and three-term problems. Presentation form 2: Experiments with sequential
premise presentation, generation task, determinate and four-term problems. Task: Experiments with sequential premise presentation, verbal
presentation form, determinate and three-term problems. Number of terms: Experiments with sequential premise presentation, verbal
presentation form, verification task and determinate problems. Premise presentation: Experiments with verbal presentation form, verification
task, determinate and three-term problems. *** significant p < .001, ** significant p < .01

several models may overload working memory capacities
so that no models would be constructed. Likewise, the
accuracy was significantly higher if the problems were pre-
sented verbally than during auditory presentation (Wilcoxon
Rank-Sum Tests, presentation form 2: W = 283, p < .01,
one-sided). A similar but not significant trend showed in
the presentation form 1 condition (Wilcoxon Rank-Sum
Tests, W = 176, p = .07, one-sided). Spoken language
can only be presented in a serial way. Thus, the spatial
description has to be stored in the phonological loop using
a language-based form. At the same time, mental models
are built in the visuo-spatial sketchpad. When working
memory load increases it becomes harder to keep track of
all the premises and inferences separately. Additionally,
written language already implies information about spatial
relations and is, therefore, more similar to the information
contained in the problem description than in case of auditory
presentation. Furthermore, a one-sided Wilcoxon Rank-Sum
Test supports the prediction that reasoning difficulty is lower
in verification tasks (W = 332, p < .01). Thereby, reasoners
have to build a model based on the premises presented and
verify a proposed model or conclusion. In addition to model
construction, reasoners have also to draw a conclusion to
solve the generation task correctly. This requires a larger
amount of working memory (Klauer, 1997). The descriptive
results for the dataset number of terms are consistent with the
predictions. Three-term problems were higher in accuracy
than four-term problems (Table 2). However, the Wilcoxon
Rank-Sum Test showed no significant difference (W = 641,
p > .1, one-sided). One explanation could be the limited

capacity of the working memory that is roughly three to
five objects or role bindings (Clevenger & Hummel, 2014).
Both three-term and four-term problems do not exceed
the capacities of working memory. However, descriptive
results assume a tendency for an increasing memory load
in four-term problems. Contrary to the predictions, there
was no significant difference between accuracy in case of
simultaneous and sequential premise presentation (W = 0,
p > .1, one-sided Wilcoxon Rank-Sum Test). Furthermore,
descriptive results indicate that problems with sequential
premise presentation are less difficult to solve than simul-
taneously presented problems (Table 2). This result was
unexpected and contradicts previous findings (Roberts &
Sykes, 2003; Van der Henst & Schaeken, 2005). With regard
to the data used in this study, the following differences can
be observed which may have influenced the result: In case of
simultaneous presentation, the total number of participants
tested is higher than in sequential condition (N = 3504
vs. N = 255). The difference in sample size might have
influenced the results. In addition, the factor premise order
was not controlled in this study. The dataset of simultaneous
premise presentation contained discontinuous problems.
However, in the set of sequential premise presentation, the
factor premise order was either unspecified or continuous.
Studies have shown that accuracy is higher in case of
continuous premise order (Knauff et al., 1998). Thus, an
effect of premise order can not be excluded here. A further
explanation may be that the amount of information must be
processed is reduced as a result of sequential presentation.
Hence, attention control may be facilitated and a model can
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be constructed incrementally from the premises (principle of
economicity, Manktelow & Galbraith, 2012).

General Discussion
Despite a century of research on spatial relational reasoning
and more than a hundred articles there is still no systematic
analysis of which factors do contribute to the human difficulty
in reasoning about spatial relations. The quality of the re-
ported experimental data differs, sometimes all relevant infor-
mation is reported, sometimes the standard deviation is miss-
ing. Hence, only a limited number of experiments could be
included in our review. We identified reliable differences in
accuracy between determinate and indeterminate problems,
auditory and verbal presentation form and also between tasks
of model generation and verification. This meta-analysis con-
firmed previous empirical findings that are predicted by the
mental model theory and influenced by the limited-capacity
working memory as predicted by WMM (see Klauer, 1997):
The effect of indeterminacy is the strongest effect (see Table
2) that is directly related with the number of models that need
to be generated in the reasoning process. The same holds
for the task where the verification is easier (the constructed
models need to be compared with a given one), while in the
conclusion generation process all models need to be checked.
And, finally a generation task with four terms (Presentation
form 2 in Table 2) can lead to more demands on both the con-
struction and storing the model in memory.

This systematic review has, however, a few limitations re-
lated to the results and their interpretation and leads to some
new questions. First, the number of studies considered is
a limiting factor to the expressive power of the analysis re-
sults. Furthermore, most of the studies included in this meta-
analysis did not report any information about the premise
order (e.g., if the premise information is continuosly), so it
was not possible to control for this factor. Likewise, with
regard to the small number of raw means, it was not pos-
sible to factor in the sample size of each experiment. The
next step of analysis in this study will focus on this particular
point and investigates questions, such as the variability in ef-
fects across studies and how this variability can be explored
in terms of moderator variables. Identification of the modera-
tor variables that describe the study characteristics associated
with larger and smaller effects is another kind of contribution
meta-analysis can make to understanding difficulties in spa-
tial relational reasoning. Of particular importance is the role
such moderator analysis can play in ascertaining which vari-
ants of spatial descriptions are most effective for reasoning.

Taken together this study illustrates a use of meta-analysis
for data interpretation beyond conventional statistical anal-
ysis. Some cross-experimental results can be formulated:
First, determinate problems are easier to solve than indeter-
minate problems. Second, compared with auditory presenta-
tion, problems in form of written language are less difficult.
Further, the accuracy was better for tasks that require the ver-
ification of conclusions or models than in tasks that require to

generate conclusions or models. This meta-analysis confirms
some previous empirical findings, and supports predictions
of the spatial mental model theory together with assumptions
from a limited spatial working memory.
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Abstract

Recent advances in technology have paved the way for human-
agent interactions to become ubiquitous in our daily lives, and
decades worth of research on virtual agents have enhanced
these interactions. However, for the most part, the effect of dif-
ferent types of agents on the human brain is unknown, and the
neuroscience of human-agent interactions is rarely studied. In
this study, we examine the underlying neural systems involved
in processing and responding to different types of negotiating
agents. More specifically, we show that different brain patterns
are observed for various types of virtual agents; consequently,
we can decode the strategy and emotional display of the agent
based on the counterpart’s brain activity. Using fMRI data, we
analyzed participants’ brain activity during negotiations with
agents who show three different emotional expressions and use
two different types of negotiation strategies. We demonstrate
that, using Multi-Voxel Pattern Analysis, we can reliably de-
code agents’ emotional expressions based on the activity in the
left dorsal anterior insula, and also agents’ strategies based on
the activity in the frontal pole.
Keywords: Human-Agent Interaction; Negotiation; Emotion;
Decision-Making; fMRI

Introduction
Virtual agents have become a part of our daily lives. From
commercial websites that make use of chat agents for an-
swering users’ questions in personalized settings to educa-
tional and training software that incorporate virtual agents to
provide better learning experiences, our numbers of interac-
tions with virtual agents have dramatically increased in the
past couple of years.

Parallel to this increase, various lines of research have stud-
ied the interactions between humans and virtual agents. For
example, research has examined the contributing factors to
user engagement (Bickmore, Schulman, & Yin, 2010; Castel-
lano, Pereira, Leite, Paiva, & McOwan, 2009) and estab-
lishment of bonds with virtual agents (Cassell & Thorisson,
1999; Wang & Gratch, 2009). Bickmore et al. (2010) showed
that people engage more with life-like virtual agents, such
as a relational agent who remembers past history and relates
to that history when communicating. Moreover, Wang and
Gratch (2009) demonstrated that virtual agents who give non-
verbal immediacy feedback, such as eye contact and gestures,
are found to establish rapport with human partners.

Related to our research, the effects of emotion and strate-
gies are among the most widely explored topics in human-
agent interaction research (Maldonado et al., 2005; Kim,
Dehghani, Kim, Carnevale, & Gratch, 2014; Van Kleef,
De Dreu, & Manstead, 2004). These factors are particu-
larly important because they are central in providing clues
about the internal states and the intentions of the counterpart
in any type of interactions (Jurafsky, Ranganath, & McFar-
land, 2009; Rafaeli & Sutton, 1987). Previous studies on

the effect of emotion include the work of Maldonado et al.
(2005) where they demonstrated that people who interact with
an emotional agent perform better on a test than those who
interact with an emotionless agent in a web-based learning
environment. Van Kleef et al. (2004) argue that automated
agents who express emotions, such as anger or happiness,
elicit different levels of concessions based on the type of ex-
pressed emotions. Also, several researchers have examined
the effects of different types of negotiation strategies dur-
ing human-agent interactions. For example, Das, Hanson,
Kephart, and Tesauro (2001) demonstrated that the agreed
trade prices from human-agent interactions are different for
two types of agent strategies; one strategy is to maximize its
expected surplus using trade history and the other strategy is
to make small random adjustments to the trade price contin-
uously. Similarly, Grosz, Kraus, Talman, Stossel, and Havlin
(2004) demonstrated that there are particular agent strategies
that elicit more concessions during negotiations.

These, along with numerous other studies, have helped the
field establish sets of features that influence the quality of
human-agent interaction, resulting in a more enhanced and
realistic experience for the human user. However, with a few
exceptions (e.g., Sanfey, Rilling, Aronson, Nystrom, and Co-
hen (2003)), the majority of these studies have for the most
part treated the process and the mechanism through which
these features affect the human counterpart as a black box;
they demonstrate that a particular type of agent, with partic-
ular emotion and strategy, enhances a user’s experience (e.g.
performance on a test). However, the question of how these
features affect the underlying neural mechanisms of the user
that result in such enhancement still remains unanswered. For
instance, even though it is established that interacting with
an emotional agent results in better performance on a test
than interacting with an unemotional agent (Maldonado et
al., 2005; Karacora, Dehghani, Krämer-Mertens, & Gratch,
2012), the neuroscience of these interactions are not fully un-
derstood.

In this paper, we investigate the underlying neural systems
that are activated when participants interact with agents who
show different emotional expressions and apply different ne-
gotiation strategies. As various emotions and strategies have
been related to diverse reactions in previous studies, we as-
sumed that we could find differences between the neural pro-
cesses that are activated when these factors are manipulated.
To examine these differences, we studied people’s neural ac-
tivation while they were interacting with a virtual agent. We
hypothesize that distinct patterns of brain activity would be
observed for each agent type.

To study brain activity during human-agent interaction,
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we used functional magnetic resonance imaging (fMRI). We
used a human-agent negotiation platform for the experiment
in order to capture active interaction between a participant
and a virtual agent while they are trying to reach an agree-
ment. The virtual agent was designed to display three dif-
ferent emotional expressions and apply two fixed negotiation
strategies, for six combinations of emotional expression and
negotiation strategy. During the experiment, we had partici-
pants engage in several rounds of negotiations with the virtual
agent inside the fMRI scanner. We then analyzed their brain
patterns during the decision-making period using Multi-Voxel
Pattern Analysis (Norman, Polyn, Detre, & Haxby, 2006).

We focused our analyses on the anterior insula and the
frontal pole. Anterior insula is a well-known emotion-related
brain region that is consistently activated when processing
basic emotions such as anger and sadness, as well as social
emotions such as empathy and vicarious emotions (Kober et
al., 2008; Lamm & Singer, 2010). It has been repeatedly
reported that both observing the emotional facial expression
and feeling the emotion activate the anterior insula (Zaki,
Davis, & Ochsner, 2012). On the other hand, the frontal pole
is one of well-known decision-making-related brain regions.
It has been shown that frontal pole plays a significant role
in thinking about the future (Okuda et al., 2003), and peo-
ple with frontal pole impairment make disadvantageous de-
cisions (Anderson, Bechara, Damasio, Tranel, & Damasio,
1999).

We hypothesize that an agent’s negotiation strategy can be
predicted based on the activity in the frontal pole, and an
agent’s emotional expression can be predicted based on the
activity in the anterior insula. To validate these hypotheses,
we compared participants’ brain activities in these regions
during negotiations in terms of an agent’s emotional expres-
sion (angry, neutral, and sad), and an agent’s negotiation strat-
egy (conceding and non-conceding).

Our research contributes to a fast growing field of human-
agent interaction, and is one of the first lines of work that in-
vestigates the underlying neural systems involved in the pro-
cess of human-agent negotiation. This paper is organized as
follows. First, we introduce our negotiation platform, the Ob-
jects Negotiation Task. Next, we explain our experimental
settings and the design of our virtual agent. Then, we de-
scribe the parameters used to record fMRI data and how this
data were analyzed. Finally, we show our results and discuss
our findings.

Objects Negotiation Task
The Objects Negotiation Task is a multi-round human-agent
negotiation platform (Dehghani, Carnevale, & Gratch, 2014)
where a human negotiator and a virtual agent can negotiate
diverse items over multiple rounds. We used a modified ver-
sion of this task tailored for use in the fMRI. Common fruits
were used as negotiation items, and the payoff for each item
for both players were explicitly specified on the screen. In
order to make sure all participants had the same goal during

negotiations, they were asked to focus on maximizing their
total payoffs. To ease the calculation of total payoffs, the sys-
tem automatically calculated the player’s total payoff as well
as the agent’s total payoff, and displayed whenever the items
are redistributed.

When the negotiation starts, items are placed in the middle
row indicating that they do not belong to anyone. After the
participant distributes all the items, the ‘Go!’ button on the
right bottom corner is enabled and the participant can pro-
pose his/her offer by clicking the button. The participant is
then asked to wait until the virtual agent accepts or rejects
the offer. If accepted, both parties get the proposed items and
the negotiation ends. If rejected, the participant is asked to
wait for the virtual agent to propose a counteroffer. Next, the
virtual agent’s offer is shown and the participant reviews the
offer for five seconds. During this time, the participant simply
observes the counteroffer and cannot relocate the items. For
the fMRI version of the task, this review time was introduced
to make sure that we can separate brain activity between the
offer-making period and the non-offer-making periods. Af-
ter the review, the participant decides whether to accept or
reject the virtual agent’s offer. If he/she accepts the virtual
agent’s offer, the negotiation ends. If rejected, the participant
is again asked to wait for five seconds and then is redirected
to the first step. Figure 1 shows an example of the timeline of
the Objects Negotiation Task.

In our study, we used six types of agents characterized by
the three types of emotions they expressed and the two types
of offer sets representing their negotiation strategies. More
details about these features are described in the following two
sections.

Agent’s Emotional Expressions
The role of emotional displays in negotiation has been exten-
sively documented (Lerner, Li, Valdesolo, & Kassam, 2015).
To find the neural mechanisms involved in processing differ-
ent emotional displays in human-agent interactions, we used
three types of facial expressions to express agents’ emotions;
angry, neutral (no emotion) and sad. Figure 2 shows agents’
emotional expressions that were used in the experiment. In
angry and sad conditions, the virtual agent’s face starts as
neutral and changes to the emotional expression for five sec-
onds on the first, third, and fifth rounds of negotiation. In the
neutral condition, the agent’s face starts as neutral and does
not change.

Agent’s Negotiation Strategies
We used two sets of pre-programmed agent offer strategies:
non-conceder and conceder. In the non-conceder strategy, the
agent starts with no concession and continues with gradu-
ally increased concession. In the conceder strategy, the agent
starts with some concessions and keeps conceding further in
the next rounds.

When the virtual agent decides whether to accept or reject
a participant’s offer, the agent calculates the summed pay-
offs and compares it with its next offer. If the summed pay-
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Figure 1: Timeline of the Objects Negotiation Task used in the fMRI experiment. During a negotiation, a participant and a
virtual agent take turns in making a proposal. If the proposed offer is accepted, the negotiation ends. If rejected, the player who
rejected the offer makes a new proposal.

Figure 2: Agent’s emotional expressions. Angry (left), neu-
tral (middle), and sad (right).

offs are larger than the summed payoffs of the next offer, the
agent accepts the offer. Otherwise, the agent rejects the offer
and proposes a new offer. The same payoff matrix was used
across all six negotiation tasks so that we could control for the
potential effect of varying payoff values. However, we ran-
domized the order of items shown on the screen in each task
to give participants the impression that they were playing a
new negotiation task every time.

Experiment

Participant

We recruited ten participants through an online bulletin board
at the University of Southern California. Prior to the study,
all participants completed a checklist to make sure they were
eligible to take part in an MRI study. All procedures were
approved by the USC Institutional Review Board and par-
ticipants were provided with a written informed consent for
the study. One participant’s data was later excluded from the
analyses because of technical problems with the obtained im-
ages.

Procedure
Upon arrival, participants completed the informed consent
and each participant was asked to read the following hypo-
thetical scenario:

You are a restaurant owner in a small town. There
has been a major fire in the market providing the neces-
sary fruits for your restaurant and as a result only a lim-
ited number of fruits are available. Because of this you
have to split the available fruits with another restaurant
owner. You and the other owner value each fruit differ-
ently. In order to run your restaurant you need to get as
many fruits as possible.

In the task that follows, you will negotiate about how
to distribute the fruits between you and the other restau-
rant owner.

After reading the scenario, participants were first invited
to play a trial negotiation so that they got used to the inter-
face of the task. Then participants performed six negotiation
tasks inside an fMRI scanner. The total scan time for each
participant was approximately 45 minutes.

Data Analysis
To study brain patterns during negotiations with various
agents, we analyzed participants’ brain activity using general
linear models (GLM) analysis and multi-voxel pattern analy-
sis (MVPA).

General Linear Model Analysis
To extract brain activity of the offer-making period from
the whole negotiation period, we ran a general linear model
(GLM) analysis using tools from the FMRIB’s Software Li-
brary (FSL) (Smith et al., 2004). First, we pre-processed
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our fMRI data using FSL to reduce the noise of our dataset.
Data pre-processing included the following mostly standard
steps: (1) Motion-correction with MCFLIRT to fix head mo-
tion artifacts during scans, (2) Slice timing correction for in-
terleaved acquisitions to compensate for timing difference be-
tween slices of functional images, (3) Non-brain structures
removal with Brain Extraction Tool to remove non-brain re-
gions, such as the scalp, (4) Spatial smoothing with a Gaus-
sian kernel of full width at half maximum 5mm to increase
statistical power by improving the signal to noise ratio, (5)
High-pass temporal filtering to let high frequencies, such as
activities relevant to experimental conditions, pass and to re-
move low frequencies such as signal drifts.

For each negotiation for each participant, changes in the
blood-oxygen-level dependent signal were modeled with re-
gressors for the offer-making period. Then the regressors
were convolved with a double-gamma hemodynamic re-
sponse function. The non-offer-making periods were mod-
eled as baseline.

Multi-Voxel Pattern Analysis
When analyzing fMRI data, it is important to take into ac-
count the activity of the voxels, as well as the interactions be-
tween them because the activity in neighboring voxels is in-
terdependent. However, given the univariate nature of GLM,
the model fits to each voxel’s time-course separately. To
overcome this drawback, we used multi-voxel pattern anal-
ysis (MVPA) (Norman et al., 2006) which uses pattern-
classification techniques to extract the pattern of response
across multiple voxels.

We preprocessed the GLM analysis results and used them
as inputs for the MVPA. The preprocessing included linear
de-trending which removes any bias resulting from scanner
drift over the acquisition time, and z-scoring which normal-
izes the range of each voxel. We used leave-one-participant-
out cross-validation for MVPA, in which a classifier is trained
on eight participants’ data and then tested with the last partic-
ipant’s data.

Previous studies have shown that the anterior insula (AI)
is activated when processing emotions (Kober et al., 2008;
Lamm & Singer, 2010), and the frontal pole (FP) is activated
when making a decision that affects the future (Okuda et al.,
2003). We therefore hypothesized that the agent’s negotiation
strategy can be predicted based on the participant’s brain ac-
tivity in the FP, and the agent’s emotional expression can be
predicted based on the participant’s brain activity in the AI.
To test our hypothesis, we chose the AI and the FP as our re-
gions of interest (ROIs), and performed ROI MVPA. In the
following section, we explain the ROI MVPA approach.

Region of Interest Multi-Voxel Pattern Analysis To find
the relationship between an agent’s expressed emotion and
brain activity as well as an agent’s negotiation strategy and
brain activity, we performed region of interest (ROI) MVPA
with both the AI and the FP. The AI on each side of the brain
can be divided into two subregions with distinct patterns of

connectivity: dorsal anterior insula (dAI), connected to the
dorsal anterior cingulate cortex; and the ventral anterior in-
sula (vAI), connected to the pregenual anterior cingulate cor-
tex (Deen, Pitskel, & Pelphrey, 2011). We ran ROI analy-
ses for all four AI regions. On the contrary, the FP does not
have widely accepted subregions (Moayedi, Salomons, Dun-
lop, Downar, & Davis, 2014). Thus, we ran ROI analysis for
the whole FP labeled by the Harvard Center for Morphomet-
ric Analysis (Desikan et al., 2006).

To make sure brain activity in the AI or the FP is re-
sponsible either for agent’s emotional expressions or nego-
tiation strategies, we ran ROI analyses for both conditions,
i.e., we calculated the prediction accuracy of agent’s negotia-
tion strategies using both the AI and FP as ROIs. We assumed
that the prediction accuracy with their expected ROI would be
significantly higher than the chance level, but the prediction
accuracy with their unexpected ROI would be indistinguish-
able from chance.

We trained a linear Support Vector Machine (SVM) clas-
sifier using voxels from each of our ROIs separately using
feature selection. Feature selection is a common approach
used to reduce the number of features (voxels) by selecting
only relevant features as input to a classifier. Classification
performance improves with feature selection as it only picks
features that vary significantly between categories (Guyon &
Elisseeff, 2003). In our analyses, we used the GLM analysis
results to compute the F-score for each voxel, and then used
an analysis of variance (ANOVA) measure to select the top
10% of features with the highest F-scores.

Each participant’s brain was transformed into standard
MNI space (Evans et al., 1993) to have a brain that is more
representative of the population. After performing this pro-
cess for all participants, individual-level analyses were com-
bined for a group-level analysis.

Results
As discussed previously, the AI is a brain region known to
respond to emotional expressions, and it can be divided into
two subregions with distinct patterns of connectivity. There-
fore, we first ran ROI MVPA for all four (left/right × ven-
tral/dorsal) AI regions separately. The prediction accuracies
of emotional expression using our ROI MVPA with four AI
regions indicate that ROI MVPA with the L-dAI has the best
prediction accuracy (38.40%), while the prediction accuracy
of other AI regions are indistinguishable from the chance
level of 33%. A binomial test revealed that the prediction
accuracy of the ROI MVPA with the L-dAI is significantly
above chance (p = 0.0566). Therefore, we focus our analysis
on the results of ROI MVPA with the L-dAI.

The prediction accuracy for decoding an agent’s emotional
expressions is higher for the L-dAI decoder (38.40%, com-
pared to 33.87% for the FP (p = 0.0960) or chance (p =
0.0566). The prediction accuracy using the FP ROI MVPA
was not different from chance (p = 0.4266). This supports
our hypothesis that an agent’s emotional expression can be
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Table 1: Prediction accuracy on an agent’s emotional expres-
sion and an agent’s strategy from ROI MVPA. One-tail bino-
mial tests were performed for each condition compared to the
chance level, and significant results (p < 0.05) were marked
with (*).

Region of
Interest (ROI) Condition

Prediction
Accuracy

Chance
Level

Left Dorsal
Anterior Insula

(L-dAI)

All Emotions 38.40% (*)

33.33%Angry 45.07% (*)
Neutral 29.60%

Sad 40.53% (*)

Frontal Pole
(FP)

All Strategies 58.96% (*)
50.00%Conceder 47.50%

Non-conceder 70.42% (*)

reliably predicted using brain activity in the AI which is an
emotion-related brain region, but not with information in the
FP.

Similarly, the accuracies for predicting an agent’s negotia-
tion strategy using the ROI MVPA with the FP was 58.96%.
A binomial test again confirmed that this performance is sig-
nificantly higher than the chance level of 50% (p = 0.0085).
The prediction performance was almost at chance (52.71%)
for the L-dAI (p = 0.2581). This result validates our hypoth-
esis that counterpart’s negotiation strategy can be predicted
based on brain activity in the FP, which is activated when peo-
ple do active decision-making, but not with the insula, which
is involved in emotion processing.

In order to examine these results in more detail, we broke
down the predictions. Specifically, we analyzed the predic-
tion accuracy for each agent’s emotional expression and ne-
gotiation strategy from ROI MVPAs with anterior insular re-
gions and frontal lobe (Table 1). Our results indicate that
brain patterns in the L-dAI can predict angry and sad con-
ditions but not neutral agent facial expressions. Also, brain
patterns in the FP can predict the non-conceder negotiation
strategy but not the conceder strategy.

Overall, our results confirm that negotiating with different
types of agents results in activity in different brain regions,
and these activity patterns can be used to further decode the
specific type of interaction agent.

Discussion
The neuroscience of human-agent interactions is a rarely
studied topic and the majority of studies treat the processes
by which various agent features affect human participants as a
black box. To answer the question of how these features inter-
act with underlying neural mechanisms, we investigated brain
activity during human-agent interactions. More specifically,
participants engaged with virtual agents who showed three
different emotional expressions (angry, neutral and sad) and
used two different types of negotiation strategies (conceding
and non-conceding). Using a human-agent negotiation plat-
form, participants interacted with virtual agents in an fMRI

scanner, and their brain activity during the interaction was
recorded. We hypothesized that an agent’s emotional expres-
sion could be predicted based on patterns in emotion-related
brain regions, and an agent’s negotiation strategy could be
predicted based on patterns in decision-making-related brain
regions. Therefore, we focused our analyses on the AI and
the FP, as previous studies have shown that AI is activated
when people engage in emotional tasks, and the FP is acti-
vated when people perform active decision-making tasks.

Our ROI MVPA results support our hypothesis; prediction
accuracy of an agent’s emotional expression based on brain
patterns in the L-dAI, and that of agent’s negotiation strategy
based on brain patterns in the FP are well above the chance
level. These results indicate that different features are likely
processed in different brain regions. Finding which informa-
tion is processed in certain brain regions would allow us to
reliably decode the feature of the agent from users’ brain ac-
tivity. More detailed analyses revealed that brain patterns in
the L-dAI could be used to predict angry (45.07%) and sad
(40.53%) conditions, but not the neutral condition (29.60%).
This indicates that there are clear differences in brain patterns
in the L-dAI between angry and sad conditions. We hypoth-
esize that the reason why the patterns in this region failed to
predict the neutral condition is that the neutral facial expres-
sion is the default expression throughout the experiment. The
facial expression of the agent only changes when it morphs
into sad or angry. We plan to tackle this problem by only
showing the agent’s face during the decision making phase.

With regard to agent’s negotiation strategies, predictions
using brain patterns from the FP showed significantly higher
accuracy compared to the chance level (50%) for the non-
conceding condition (70.42%), but not for the conceding con-
dition (47.50%). We assume that this is because participants
expected to deal with a counterpart that acted like a conced-
ing and fair agent, i.e. an agent who might start with a slightly
unfair offer but over time it makes adjustments toward a fair
offer. It is possible that the distinct patterns in the FP wit-
nessed during negotiations with the non-conceding agent is
because this agent acts in a very greedy and tough way that is
not typical in social interactions. This could result in unique
patterns of activity in the FP.

While our sample size could be considered small, we
would like to note that sample size tends to be small in fMRI
studies. Also, it is worth mentioning that the probability of
finding the same effect as one found in the original experi-
ment is not dependent on sample size, but dependent on p
value (Killeen, 2005). This is because large effect sizes pro-
duce significant results, even with small sample size.

In conclusion, our results indicate that there is a link be-
tween an agent’s emotional expression and brain activity in
the L-dAI, and also between an agent’s negotiation strategy
and brain activity in the FP. Even though the results are pre-
liminary, our work sheds light on the links between certain
brain regions and different agent features. In future stud-
ies, we plan to continue investigating these links with other
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features such as voice tone and gestures, and hopefully over
time construct a map of the brain regions activated by various
agent features and compare these regions to human-human
interactions.
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Abstract

People interact differently with humans than they do with com-
puters, but there is minimal research on what brings about
these differences. Using agents labeled as either “another par-
ticipant” or a “computer program”, we investigated the differ-
ences in people’s behavior and brain activity during the course
of a negotiation paradigm. Our results indicate that people per-
ceive human-labeled agents more human-like than computer-
labeled agents, and the level of concession in the negotiations
is dependent on agent type. We have also found that these dif-
ferences can be captured in brain activation by showing that
parts of the Theory of Mind neural correlates are activated in
human-labeled agent conditions, but not in computer-labeled
agent conditions. We further demonstrate that brain activity
can predict whether the negotiation agent was introduced as
a competing human player or a computer program. Overall,
our study suggests that labeling an interaction partner as ei-
ther another human or a computer program leads to significant
impacts on one’s decision making.
Keywords: Human-Agent Interaction; Negotiations; fMRI

Introduction
Can computer agents act as substitutes for human beings dur-
ing the course of an interaction? This has been a popular topic
in sci-fi movies for decades. In fact, some computer agents
that were thought to exist only in movies a few decades ago,
are now widely used in daily life. Smartphones, for exam-
ple, are commonly used to execute voice commands through
programs like Siri, and movie theaters now have more ticket
vending machines than guest personnel.

However, human-agent interactions are often quite differ-
ent from human-human interactions (Gray, Gray, & Wegner,
2007; Melo, Marsella, & Gratch, 2016), and many factors
contribute to these differences. Researchers have continu-
ously tried to identify what these disparities are and why
they occur, with the hopes to bridge the gap between human-
human and human-robot/agent encounters.

A robot’s appearance has been found to be paramount
in the interaction style of the human subjects. For ex-
ample, when people interface with robots that have me-
chanical, nonhuman like features, even when the robot per-
forms human-like actions, they are often unable to over-
look these traits (Hegel, Krach, Kircher, Wrede, & Sagerer,
2008). Thus, robots designed to have eyes similar to hu-
mans (Banh, Rea, Young, & Sharlin, 2015), or baby face-like
heads (Powers & Kiesler, 2006), were found to be more ef-
fective in evoking a more human-like interaction.

These differences have also been extensively studied us-
ing brain imaging techniques, especially regions associated

with Theory of Mind (ToM), due to their importance in so-
cial interactions. ToM refers to the ability of one person to
reason about another person’s mental states, including their
intentions and beliefs (Premack & Woodruff, 1978). Previ-
ous fMRI studies have demonstrated that cortical activity in
the neural structures related to ToM tend to be more active
when participants were told they were facing a human partner
compared to a computer program (Kircher et al., 2009). Re-
search also demonstrated that activity in these same regions
scaled according to the human-likeness of their interaction
partner when using computer-animated characters or nonhu-
man agents (Chaminade, Hodgins, & Kawato, 2007; Krach et
al., 2008).

Many previous behavioral and neuroimaging studies have
used negotiation platforms to examine human-agent commu-
nication, because negotiations involve complex cognitive ef-
fort and established social interaction techniques. For exam-
ple, studies show that when participants play the Ultimatum
Game against computer partners, they are more likely to ac-
cept unfair offers compared to when they play against hu-
man partners, where they tend to be less willing to accept
offers of unequal value (Sanfey, Rilling, Aronson, Nystrom,
& Cohen, 2003). Studies have also shown that people have
stronger emotional reactions to unfair offers made by other
humans (Vant Wout, Kahn, Sanfey, & Aleman, 2006).

Using a multi-round, multi-object negotiation platform for
our research, we explored whether a computer agent intro-
duced as another human was perceived more anthropomor-
phically than one that was introduced as a computer program.
We then investigated whether agent type produced behavioral
differences, and whether one type of agent resulted in more
concessions compared to the other. In a follow up experiment,
we compared brain activity during interactions with human-
labeled and computer-labeled agents to determine whether
these perceptual differences were also observable in brain
patterns. Following collection of fMRI data, we investigated
whether classifiers could be trained to determine whether the
participant was playing against a human-labeled or computer-
labeled agent.

We hypothesized that participant behavior and brain ac-
tivity would be different during interactions with human-
labeled agents, compared to interactions with computer-
labeled agents, even though both agents used exactly the same
strategies and emotions. Our initial experiment consisted of
an online negotiation task intended to explore perceptual and
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Figure 1: Objects Negotiation Task Timeline

behavioral differences pertaining to anthropomorphic charac-
teristics in human and computer-labeled agents. Next, we
adapted our negotiation framework into an fMRI experiment,
attempting to find neural differences for the two distinct part-
ner conditions. In addition to these studies, we also ran a pre-
diction algorithm and multi-voxel pattern analysis (Norman,
Polyn, Detre, & Haxby, 2006) based on the fMRI data.

This work is distinct from previous studies due to the use
of an identical computer agent, regardless of what partner
type was specified. The majority of previous studies em-
ployed computer-animated characters or robots that had dif-
fering levels of anthropomorphism. We demonstrate that even
though the same computer agent is used, perceptual differ-
ences were captured in behavioral and brain data. To the best
of our knowledge, this is one of the first lines of research that
uses a multi-round negotiation platform to investigate percep-
tions of anthropomorphism. We believe that natural interac-
tions take place over multiple rounds/sessions, and it is there-
fore important to investigate perception differences through
multi-round negotiations.

This paper is structured as follows. First, we introduce
and explain the Object Negotiation Task, the platform used
for both experiments described. Next, we outline an ex-
ploratory, behavioral experiment performed to examine the
differences between interactions with a human-labeled agent
and a computer-labeled agent. After which we discuss our
fMRI experiment, using the same paradigm as the first, try-
ing to identify differences in brain activity. Lastly, we discuss
the implications of our results and future work.

Objects Negotiation Task
The Objects Negotiation Task is a web-based multi-round
negotiation task where a participant and a computer agent
can take turns distributing objects (Dehghani, Carnevale, &
Gratch, 2014). The original version was designed for behav-

ioral data collection only, so in this paper, a modified version
of this task was used for collection of both behavioral and
brain data. Figure 1 shows the timeline of the modified ver-
sion of this task. Some of the modifications made included
an emotion-reporting phase and offer-review phase, which
were added to separate collection of brain data between dif-
fering phases. In addition, a partner introduction phase was
added, allowing participants to receive a notification specify-
ing whether their partner type was another participant or the
computer program before the negotiation began.

The sequence of the modified Objects Negotiation Task is
as follows. When the task begins, the negotiation partner
type is displayed. Specifically, in the human-labeled agent
condition, the message shown to the participant is ‘In this
task, you will be negotiating with the other participant.’ In
a computer-labeled agent condition, the same message was
shown but ‘the other participant’ was changed to ‘a computer
program’. Next, a ‘connection establishment’ message for the
human condition and a ‘program setup’ message for the com-
puter condition appear on screen, to persuade participants of
their partner setting. Throughout the negotiation, the partner
type is constantly included on screen so the participant clearly
recognizes his/her partner type. The partner is labeled as ‘the
other participant’ or ‘the computer program.’

In the first negotiation round, items are positioned in the
middle row, indicating that those items belong to neither
player. The participant is asked to propose an initial offer
by moving items into his/her own set of boxes (bottom row)
or their partner’s set of boxes (top row). Once the initial offer
is made, the partner (agent) chooses an emotion pertaining to
the offer which is then displayed to the participant. Available
emotions include: happy, content, neutral, angry and sad. The
partner only shows the predefined emotion for each round.
After the emotion is displayed, the partner decides whether
to accept or reject the offer. This decision is based on a pre-

2414



defined offer value; when the payoffs of the predefined offer
are more than the participant’s current offer, the partner re-
jects, when the payoff is less, the partner accepts.

If the participant’s offer is accepted, the items are dis-
tributed as proposed and the participant is notified. If the par-
ticipant’s offer is rejected, the partner then proposes a coun-
teroffer. When the counteroffer is received, the participant
has 5-seconds for review. During this time, the participant
can only observe; no items can be transferred. The review
time was specifically introduced for optimal brain activation,
as we wanted to record an active decision-making process.
For the same reason, our analysis was focused on data col-
lected during this review phase. After the review phase, the
participant reports his/her emotion about the proposed offer
by choosing from the following descriptive options: happy,
content, neutral, angry, or sad. The participant also decides
whether to accept or reject the offer. If the participant rejects
the offer, a new round begins, and all phases are repeated.
The negotiation can last for a maximum of six rounds. If no
agreement is made in six rounds, neither party receives any-
thing.

Study 1: Online Experiment

We designed an online experiment to determine whether peo-
ple perceive human-labeled agents differently than computer-
labeled agents during interactions in our negotiation game, as
well as to find behavioral differences between agent type in
concession-making.

Negotiation Partners Two sets of strategies and two types
of emotions were used for the partner agents. Agent strategies
included tough and soft. A tough strategy starts with a greedy
offer, and a soft strategy starts with a relatively generous offer.
Figure 2 shows payoffs for the agent and the participant when
the agent uses tough or soft strategies.

Agent emotions included anger and neutral (no emotion).
Anger was chosen because it was found to be the most ef-
fective emotion in yielding concessions during negotiation
tasks (Van Kleef, De Dreu, & Manstead, 2004). For the anger
condition, the agent displayed an angry face in rounds 2, 4,
and 6, and a neutral face in rounds 1, 3, and 5. For the neutral
condition, the agent reported a neutral face in every round.

Procedure 420 subjects (237 male and 183 female; mean
age = 33.5) living in the United States were recruited via
Amazon Mechanical Turk (MTurk). Each participant was
asked to read a hypothetical scenario in which they acted as a
restaurant owner, and negotiated for fruit with another restau-
rant representative due to a fruit shortage as a result of a re-
cent fire in a local market. Each subject was then told to ne-
gotiate with either a computer program or another (hypothet-
ical) MTurk player. Regardless of type label, the negotiation
partner was always a pre-programmed computer agent. After
completing all negotiations, subjects were asked to fill out an
anthropomorphism questionnaire (Bartneck, Kulić, Croft, &
Zoghbi, 2009) about their partner, as well as a demographic

Figure 2: Payoffs for agents and participants across both
agent strategies.

Figure 3: Anthropomorphism Scores for human-labeled
agents and computer-labeled agents. Higher score means the
agent is perceived as more human-like. The error bar shows
standard errors.

questionnaire. In the anthropomorphism questionnaire, par-
ticipants rated their impression of their partner using a scale
from 1 to 7, where 7 means human-like and 1 means machine-
like. Subjects were also given a simple attention-check ques-
tion, implemented to make sure the participants were paying
attention; it merely asked what type of partner they were as-
signed during the task. Each participant was compensated $1.

Data Analysis We excluded subjects who had participated
in our previous negotiation studies or failed to give the cor-
rect answer to the attention-check question. After exclusion,
we had data from 329 subjects. Scores from each condi-
tion were calculated for the anthropomorphism questionnaire
to verify whether participants perceived human-likeness dif-
ferently between agents. In addition, we calculated conces-
sions across partner type in each condition to analyze behav-
ioral differences. Concession was calculated by subtracting
payoffs of agreed offers from payoffs of initial offers. A
three-way between-subjects analysis of variance (ANOVA)
was used to find the interaction between partner type, part-
ner strategy, and partner emotion during concession.

Results The anthropomorphism scores of the human-
labeled agents and the computer-labeled agents are shown in
Figure 3. 1-way ANOVA results show that people consis-
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Figure 4: Concessions to human-labeled agents and
computer-labeled agents. The error bars show standard er-
rors.

tently thought their partner to be more human-like when told
their partner was a human player, no matter what the negoti-
ation strategy (F(1, 327) = 14.09, p < 0.001).

Concessions to human-labeled agents and computer-
labeled agents during negotiations are shown in figure 4.
ANOVA results show that there is a 2×2×2 interaction be-
tween agent type (human/computer) × agent emotion (an-
gry/neutral) × agent strategy (tough/soft) for concession
(F(1, 321) = 3.387, p = 0.066). We also ran a 2×2 ANOVA af-
ter dropping each strategy. A two-way interaction was found
for tough strategy (F(1, 164) = 4.699, p = 0.031).

Discussion Our findings from anthropomorphism scores
suggest that there are perception differences in the interac-
tions between human-labeled agents and computer-labeled
agents. Also, our ANOVA results suggest that there is an in-
teraction between agent type × agent emotion × agent strat-
egy for concession. This indicates that not only are people’s
perceptions of the two agents distinct, but their behaviors also
vary depending on agent type. To study whether these be-
havioral differences have neural correlates, we designed the
following fMRI experiment. Because the largest concession
differences were found in the tough conditions, implying the
tough strategy was best suited to observe those differences in
behavior, we mainly employed tough agents in the following
experiment.

Study 2: fMRI Experiment

We hypothesized that perceptual and behavioral differences
could be captured in brain activity, especially in ToM
related brain regions, as they were found to be corre-
lated with human-likeness of physically existing human-like
robots (Chaminade et al., 2007; Krach et al., 2008). Each
subject performed the negotiation task with both types of
agent in order to compare brain activity from human-labeled
vs. computer-labeled agent interaction. To make interac-
tions with human-labeled agents more realistic, we intro-
duced a confederate into the study, so participants believed
they would be competing against another human player.

Participants 20 healthy American subjects (10 male and 10
female), recruited via the University of Southern California
online bulletin board, took part in this study. Subjects were
21.4 years old on average (SD = 2.58). All participants were
right-handed and had no history of neurological or psychiatric
disorders.

Negotiation Partners Although we were only interested in
tough agent type, we used two types of soft agents on top of
four types of tough agents (human/computer-labeled × an-
gry/neutral agents). This is modification was implemented
because subjects participated in a series of consecutive ne-
gotiations, unlike our online experiment where each subject
only played in a single negotiation. Including soft agents en-
sured that participants did not play with the same agent over
and over again. Each subject negotiated with six types of
agents. While every subject negotiated with four types of
tough agents, 10 subjects (5 male and 5 female) negotiated
with two types of emotion-neutral soft agents, while the re-
maining 10 subjects negotiated with two types of emotion-
angry soft agents. Agent order was randomized.

Procedure Each participant was greeted by an experi-
menter and introduced to the confederate as the competing
player. The participant and the confederate were guided to a
preparation room where they filled out an informed consent
form, incidental findings form, and safety screening form.
After forms were completed, the confederate was guided to
a separate MRI room for “setting up”. The participant was
given the instructions and rules regarding the negotiation task,
and played a trial negotiation against a computer program
before starting the experiment. During the trial, a trackball
mouse similar to one used in the scanner environment was
provided, so that the participant became familiarized with it’s
operation. The participant was then guided to the actual MRI
room and was told that while in the scanner he/she would
run through three negotiation tasks with the participant in the
other MRI room, and three negotiation tasks with the com-
puter program. The task was back projected on a screen,
seen through a mirror attached to the head coil, and oper-
ated a trackball mouse to navigate negotiations. In each task,
a different set of negotiation items were used, and payoffs for
these items varied with position, in order to give an impres-
sion that each negotiation was unique. Participants answered
a shortened version of the anthropomorphism questionnaire
at the completion of each round. After a maximum of six ne-
gotiation rounds, participants filled out a handedness and de-
mographic questionnaire. Before leaving, subjects were de-
briefed and compensated $30.

fMRI Data Acquisition fMRI scans were performed at the
USC Dana & David Dornsife Cognitive Neuroscience Imag-
ing center. Images were acquired using a 3-Tesla Siemens
PRISMA MRI scanner with a 20-channel matrix head coil.
Two sets of high-resolution anatomical images were acquired
for registration purposes. Six sets of echo-planar images
(EPI), one set for each negotiation, were acquired continu-
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Figure 5: Frontal medial cortex from Harvard-Oxford atlas
(left) and overlaid accuracy map for all participants (right).
A part of frontal medial cortex was included in the accuracy
map (white dotted box).

ously with the following parameters: TR = 2,000ms, TE =
25ms, flip angle = 90◦, 64×64 matrix, one shot per repeti-
tion, in-plane resolution 3×3 mm2, 41 transverse slices, each
3mm thick, covering the whole brain. Total scan time for each
participant was approximately 50 minutes.

Data Analysis We conducted a general linear model
(GLM) analysis and then used the results as input for multi-
voxel pattern analysis (MVPA). GLM analysis was performed
using FMRIB’s Software Library (FSL) to locate brain re-
gions activated during proposal review phases. As mentioned
earlier, this phase was specifically targeted due to the like-
lihood of collecting data pertaining to decision making for
subsequent negotiation rounds. For GLM analysis, data pre-
processing steps included motion correction, brain extrac-
tion, spatial smoothing, slice timing correction, and high-pass
temporal filtering. After completing data pre-processing, we
modeled brain activity during proposal review phases using
a double gamma hemodynamic response function. Data col-
lection from all other time points were used as baseline. We
then performed MVPA to find brain regions that illustrated
different patterns across agent type. In MVPA, neural rep-
resentations were decoded by applying pattern-classification
algorithms on fMRI data (Norman et al., 2006). We used
detrended and z-scored GLM analysis results as inputs for
MVPA, and trained a linear Support Vector Machine (SVM)
classifier using feature selection, introduced to improve clas-
sification performance by picking the most relevant features
as inputs for the classifier (Guyon & Elisseeff, 2003). Search-
light analysis (Kriegeskorte, Goebel, & Bandettini, 2006) was
used as the feature selection method to analyze contents mul-
tivariately at each location in the brain. We implemented
a leave-one-participant-out cross validation as balance for
MVPA. More details on fMRI data analysis can be found
in (Kim, Gimbel, Litvinova, Kaplan, & Dehghani, 2016), as
the same analysis methods were used.

Results The right side of Figure 5 shows an overlaid ac-
curacy map for all participants. Accuracy maps were ac-
quired from the top 5% of all t-maps, which were generated
using t-tests versus chance. Interestingly, medial prefrontal
cortex, one of the ToM brain regions, was included in the
accuracy map, suggesting that people indeed perceived the

human-labeled agent to have more human-like qualities.
MVPA, with searchlight as a feature selection method, re-

vealed that agent type (human/computer) can be predicted
based on brain activity during proposal-review phases. Pre-
diction accuracy for agent type was 58.41%, with a standard
error 0.01%, where chance level is 50%. The improvement
was found to have statistical significance (Two-tailed t-test: p
< 0.001).

Discussion The results of Study 2 demonstrates that differ-
ences in how we perceive the ’humanness’ of an agent can
be captured using fMRI. Specifically, our results show that
parts of the ToM neural correlates are activated in human-
labeled agent conditions, but not in computer-labeled agent
conditions. This finding is consistent with previous stud-
ies that reported increased brain activity in ToM brain re-
gions corresponding to human-likeness of interacting part-
ners (Chaminade et al., 2007; Krach et al., 2008). Our
MVPA analysis further revealed that these differences are
great enough that classifiers can be trained that can reliably
distinguish brain activity between the two types of agents.

Overall Discussion
Our goal was to investigate differences in behavior and brain
activity during human-agent negotiations. Focusing on part-
ner type, we hypothesized that both parameters would be dis-
tinct when comparing computer-labeled and human-labeled
interactions.

Results from our online experiment indicate that peo-
ple perceive human-labeled agents more human-like than
computer-labeled ones, even though both used parallel strate-
gies and emotions. This suggests that people’s attitudes to-
wards computer partners are distinguishable from those to-
wards human partners. Furthermore, a 3-way interaction be-
tween agent type × agent emotion × agent strategy was found
for concession.

Results from our fMRI experiment suggest that brain pat-
terns observed during interactions with human-labeled agents
are different from ones with computer-labeled agents. More
specifically, the medial prefrontal cortex, part of the ToM-
related neural structures, was found to be included in accu-
racy maps, indicating neural activity during interactions with
human-labeled agents are distinct from ones with computer-
labeled agents. This is in line with a previous finding, where
the medial prefrontal cortex was found to be activated while
playing rock-paper-scissors with a human player, but not acti-
vated when playing the same game with a known, pre-defined
computer algorithm (Gallagher, Jack, Roepstorff, & Frith,
2002). Using a negotiation paradigm, a more complicated
task than rock-paper-scissors due to the inclusion of multi-
ple decision-making rounds, we found that the same effect
exists with differently labeled agents. Negotiations require a
more substantial cognitive effort than a game like rock-paper-
scissors; there are a larger amount of possible actions to con-
sider, an increased opportunities for loss, and a greater obli-
gation to compete, or cooperate and come to some sort of
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agreement. The negotiation tasks used in the aforementioned
experiments are able to advantageously measure interactions
that require high levels of cognitive energy, and are therefore
more useful when attempting to explore human-robot inter-
actions.

Our findings are also consistent with previous studies that
found ToM-related neural structures to be more activated
when interacting with agents that had more human-like char-
acteristics, regardless of whether those agents happened to
be robots or computer-generated characters (Chaminade et
al., 2007; Krach et al., 2008). These findings imply per-
ceptual variance between interactions with human-like and
nonhuman-like agents, and leads us to believe that human
participants do engage in greater mentalising efforts when
faced with human-labeled or human-like robots.

In conclusion, we examined the relationship between ne-
gotiation partner type and behavioral and neural measures re-
garding individual’s perceptions of human-agent interactions.
Our study suggests that when either by labeling agents as
other humans or as computer programs significantly impacts
one’s perception of the situation; this is ultimately demon-
strated through negotiation behavior and brain activity. The
results give us further insight into the counter-play between
emotional and cognitive processes, leading us to believe that
our emotions may have greater impact on decision making
than which we are consciously aware. Ultimately, these re-
sults inform us that there is a noticeable and consistent dif-
ference between the perceptual and emotional reactions that
humans have towards other humans when compared to those
same reactions with computer agents. Further research needs
to be executed to more thoroughly understand why these dif-
ferences in interaction occur, but this study has illustrated that
computers and technology do indeed impact the way humans
interact with the world, and each other. This is important
to consider as computers continue to be increasingly imple-
mented in everyday life and society.
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Abstract: Dyslexia is a common learning disability, but its core deficit is still under debate. The anchoring deficit hypothesis
suggests that dyslexics’ benefit from experimental stimuli statistics is impaired (e.g. Ahissar, 2007). In this study we asked
whether dyslexia is also associated with reduced sensitivity to long-term statistics. Spans for lists of syllables were measured,
and indeed, dyslexics benefited less than controls from syllabic frequency. However, dyslexics’ benefit from sequence repetition
was similar to controls’. In order to dissociate the impact of item familiarity from exposure unrelated factors, native English
speakers performed the experiment. They were expected to benefit from repetition, but not from syllabic frequency (in Hebrew).
Indeed, that was the case. These data suggest that benefits from long-term distributional statistics are impaired in dyslexia,
whereas on-line benefits from sequence repetition are adequate. Moreover, our results suggest different underlying mechanisms
for long-term distribution learning and short-term sequence learning.
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Abstract 

Current causal theories aim to incorporate the effect of 
statistical and prescriptive norms on causal judgements, stating 
that norm-violating actions are judged as more causal than 
norm-conforming ones. In this paper, we present two 
experiments that undermine this claim, showing that people 
attribute increased causality to agents who conform to the norm 
of frequent behaviour. Furthermore, we find that the time point 
at which a moral norm is introduced does not make a difference 
to causal attributions, but that the frequency of a norm violation 
further accentuates its causal rating. Because these findings 
present a challenge to current norm theories of causation, we 
argue for an extended counterfactual model of causal 
attribution. 

Keywords: causal judgement; counterfactual reasoning, 
frequency; norms; moral judgement 

Introduction 

Judgements about causal processes are a crucial skill to make 

sense of the word. While our ordinary concept of causation 

was long thought to be entirely objective in character, we 

know that factors that go beyond the causal facts of a 

situation, e.g. the moral status of an action, are hugely 

influential on how we think about the causality of an agent 

(Halpern & Hitchcock, 2015; Hitchcock & Knobe, 2009, 

Alicke, Rose & Blome, 2011). For example, if two agents 

cause a negative outcome by jointly performing the same 

action, but only one of them is actually allowed to perform 

this action, people judge the agent who violated the rule as 

more of a cause (Knobe & Fraser, 2008). A similar picture 

arises for the statistical properties of an action. Exceptional 

or atypical actions (Kahneman & Miller, 1986), as well as 

actions with statistically unlikely outcomes (Kominsky et al., 

2015) are judged more causal than typical actions or likely 

outcomes.  

All these cases involve circumstances in which the factor 

that is viewed as a cause is ‘abnormal’: a person does 

something immoral, a person does something she usually 

does not do, or an action has a very unlikely outcome. It has 

therefore been suggested that our causal judgements are 

sensitive to ‘normality’, or ‘norms’, with the term norms 

encompassing a variety of norms like moral norms, social 

rules or statistical norms such frequent behaviour or the 

likelihood of an outcome. This view holds that norm-

violating actions, i.e. actions that deviate from norms or 

normal circumstances, are judged as more causal than norm-

conforming ones (Hart & Honoré, 1963; Hitchcock & Knobe, 

2009). The underlying assumption is that we assess a causal 

candidate in terms of its counterfactual relation for the 

outcome (Gerstenberg & Lagnado, 2010; Halpern & Pearl, 

2010) and that norms come into play concerning which 

counterfactuals we consider. Hence, when reasoning about 

the cause of an event, norms are thought to make norm-

conforming counterfactuals more relevant (Hitchcock & 

Knobe, 2009), more available (Kahneman & Miller, 1986), 

more probable to be sampled (Icard & Knobe, 2016) or to be 

ranked highest in the order of possible counterfactuals 

(Halpern & Hitchcock, 2015).  

Common to all these accounts is the idea that in a causal 

scenario with multiple causal candidates, we will single out 

the action or event that is norm-deviant, e.g. immoral or 

unlikely, because we have the tendency to counterfactually 

simulate an alternative scenario in which normality is in place 

and no norm is violated (Hitchcock & Knobe, 2009; 

Kahneman & Miller, 1986). In addition, it has been shown 

that the norm violation of one agent not only increases causal 

attribution, it can also reduce causal attribution to other, norm 

conforming agents, known as “causal superseding” 

(Kominsky et al., 2015). Although this account applies to 

normality and norms in a very broad sense, studies in causal 

attribution have mainly investigated the influence of 

violations of moral norms (Alicke, Rose & Blome, 2011 

Hitchcock & Knobe, 2009; Knobe  &  Fraser,  2008), 

statistical norms  (Kahneman & Miller, 1986; Kominsky et 

al., 2015) and norms of proper functioning (Hitchcock & 

Knobe, 2009).  We will subsume these theories under a 

general norm-framework of causal judgement. 

In the causal cognition literature, frequent, repeated actions 

have often been considered as belonging to a special kind of 

statistical norms, so called ‘agent-level’ statistical norms or 

norms of ‘typical behaviour’. According to the norm 

framework of causal judgement, actions that deviate from this 

norm, i.e. atypical actions that are rarely or almost never 

performed, are seen as more causal than actions that are 

performed frequently (Knobe & Fraser, 2008). However, 

Sytsma and colleagues showed that these ‘atypical’, i.e. 

infrequent actions receive reduced instead of increased causal 

attribution (Roxborough & Cumby 2014; Sytsma et al., 

2012). The authors systematically varied the frequency and 

morality of actions in the ‘pen case’ scenario (Knobe & 

Fraser, 2008). In this scenario, both a professor and an 

administrative assistant each take one of two available pens 

in the department office, with negative consequences. Sytsma 

et al. varied whether each agent frequently took pens from the 

office, and whether they were officially allowed to do so. 

While, as expected, they found that an agent was judged as 

more causal when violating the department policy, they also 
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found that an agent was attributed more causality when he 

frequently took pens rather than only once. This was even the 

case when there was no department policy prohibiting the use 

of pens (Sytsma et al., 2012).  

By showing that an action that has been repeatedly 

performed previously receives higher rather than lower 

causal ratings, the authors provide evidence that agent-level 

frequent behaviour does not always follow the general 

schema attributed to the role of norms in causal reasoning. 

However, the influence of frequent behaviour on causal 

judgements in this particular case might not come as a 

surprise. The causal structure of the “pen case” scenario is 

sensitive towards the frequency of the actions – trivially, the 

more often a person takes pens, the more they contribute to 

the pens running out. This raises the question whether the 

frequency of a particular action, or non-action, also 

influences our judgement of its causal contribution in a causal 

structure where the frequency itself does not make a 

difference to the outcome. The causal situation in the pen case 

is cumulative: The more often the action is performed, the 

more likely the final outcome is to happen. However, let’s 

imagine a case where at the end of each day the pen stock 

gets replenished to two pens. If only one of the agents 

repeatedly takes a pen on each day, then no problem occurs. 

But when both agents decide to take a pen on the same day, 

then there will be no pens left for emergency cases. This case 

represents a conjunctive causal structure – two actions are 

needed for the adverse outcome to occur. We were interested 

whether the frequency of an action still has an impact on our 

causal judgements in such a scenario: 
 

1. Does the frequency of an action affect causal 

judgments in a conjunctive causal structure? 

 
Norm-incorporating theories predict increased causal 

attribution to actions that violate moral norms, but make no 

prediction as to whether the frequency of the norm violation 

further accentuates its causal relevance. In terms of 

counterfactual dependence, if the joint actions of a frequent 

and a one-off moral norm violator lead to a negative outcome 

in a conjunctive causal structure, they are both equally causal 

– if either of them had not acted, the outcome would not have 

occurred (Halpern & Pearl, 2010). Furthermore, they are both 

also ‘equally abnormal’, because both of them violated the 

norm in the situation of the final outcome. Current norm 

incorporating theories leave open whether we mentally undo 

only the final vs. all previous norm-violating actions in order 

to assess the causal relevance of a norm-violating agent. This 

motivated our second research question: 
 

2. Is a frequent vs. one-off norm violation assigned a 

different amount of causality in a conjunctive causal 

structure? 

 

 Gershman et al. (2016) show that if a certain action leads 

to a negative outcome in a new context, e.g. the door at the 

new office breaks when you turn the doorknob clockwise, 

this action will be judged less blameworthy when it has been 

a habitual action before, e.g. when the door knob at home 

runs clockwise. In fact, we can think of situations in which 

an action that has been frequently done before is suddenly not 

allowed anymore, for example smoking in bars after the UK 

smoking ban in 2007. This raises the question whether a 

norm-violating act that has been permissively performed 

before is judged less causal than a repeated norm violation: 
 

3. How does a frequent norm violation compare to an 

action that has been done frequently, but violated a 

norm only once? 
 

The two experiments in this paper aim to address these 

questions. 

Experiment 1 

  Experiment 1 examined the influence of the “frequency” 

and “morality” of an action on causal judgments in a 

conjunctive causal structure. Frequent and moral behavior 

were varied across the actions of one agent (‘Agent 1’) and 

held constant across actions of the other agent (‘Agent 2’). In 

order to manipulate frequent behavior realistically, we used 

the time frame of a week in which information about the 

action of the agents is successively presented day by day. 

Additionally, we varied whether the official norm indicating 

which agent is allowed to perform the respective action is 

either introduced right at the beginning of the scenario, or just 

before the final outcome (“time point of moral norm”). By 

varying the time point at which the moral norm was 

introduced we could test actions that either frequently violate 

a norm, or violate the norm for the first time but have been 

frequently performed before. 

Methods 

Participants 103 participants were recruited via Amazon 

Mechanical Turk ($0.80 for ca. 15 min). Participants who 

answered more than four of the 32 manipulation check 

questions wrong were removed from the analysis, leaving 81 

participants  (male = 45, female = 36; mean age=34.78; 

SD=11.36, age range = 19-74). 

 

Materials All conditions used variations of the same 

vignette. The scenario describes a week in a startup company, 

from Monday to Monday, with office days from Monday to 

Thursday. The company printer breaks as soon as it receives 

two printing orders at the same time [conjunctive causal 

structure with two actions], while individual printing does not 

make a causal difference. The participant acts as CEO with 

two co-workers, Agent 1 and Agent 2, whose names and 

gender are counterbalanced across scenarios.  

 

 
Together with two former classmates from university, Agent 1 and Agent 2, 
you have founded a small startup company of which you are the CEO. You 
are in charge of the management and finances, while Agent 1 and Agent 2 
manage the creative direction part. Your team works from Mondays to 
Thursdays. The printer in your office works fine, only when it receives two 
printing orders at the same time it crashes. 
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Agent 1 either uses the printer frequently during the week 

(“frequent behaviour”), or never prints during the week 

(“infrequent behaviour”). Furthermore, there is a company 

policy that determines that Agent 1 and Agent 2 are either 

allowed to use the printer anytime they want, or only on 

selected days. 
 
As the CEO of your startup, you officially rule that both Agent 1 and Agent 2 
are allowed to use the printer whenever they want [Agent 1 is only allowed 
to print on Tuesdays and Thursdays, and Agent 2 only on Mondays and 
Wednesdays.] 
 

By printing on e.g. a Monday, Agent 1 conforms to the 

company policy in case of the liberal printer policy (“moral 

norm conformation”) or violates the company policy in case 

of the selective policy (“moral norm violation”). Combined 

with the frequency manipulation, Agent 1 therefore conforms 

to or violates the policy, and does so frequently or 

infrequently. In contrast, Agent 2 prints frequently during the 

week, and always only on the days on which she is allowed 

to print. Each day of the week is successively presented. 

 
On Monday, X uses the printer for printing the new flyer design. 

On Tuesday, X uses the printer for printing the program outline. 

On Wednesday, X uses the printer for the printing of the new logo. 

On Thursday, X uses the printer for printing out the schedule. 

 

After the presentation of one week, i.e. the Monday after the 

start of the scenario, both agents simultaneously send printing 

orders to the printer and it crashes. 
 

On the following Monday, you come into the office and the printer is broken. 
Both Agent 1 and Agent 2 have sent printing orders to the office printer 
today. This is bad because your start up currently does not have the budget 
to afford a new high quality colour printer. 

 

The company policy is either introduced at the beginning of 

the scenario, as shown in the previous examples, or on 

Thursday, i.e. just before the final outcome (“time point of 

moral norm”) 

 

Design and Procedure The experiment was designed as 2 

(Frequency) ×2 (Moral Norm) x 2 (Time point of moral 

norm) within subject paradigm. Participants saw all eight 

variations of the scenario in a randomized order, and each 

office day was presented successively on a single slide. The 

participants then had to judge the causal contribution of both 

agents to the outcome on a 10-point causal rating scale (“To 

what extent did Agent X cause the outcome?”: 0”- ‘None at 

all’; “10”- ‘Fully). Recent studies have highlighted that the 

term ‘cause’ in the test questions is ambiguous and can refer 

to both the causal mechanism and the agent’s accountability 

(Samland et al., 2015). Therefore, we added a 7-point 

counterfactual relevance agreement scale (“If Agent X had 

not printed, the problem would not have occurred.”; “1” - 

‘Strongly disagree’; “7” - ‘Strongly agree’) to directly test 

counterfactual reasoning. In addition, four manipulations 

check questions about the moral norm (“In the scenario you 

have just read, was Agent X allowed to print on Monday?”) 

and the frequency of the agents’ actions (“In the scenario you 

have just read, did Agent X typically use the printer?”) with 

the answer options (‘yes’, ‘no’) were given. 

 

 

Figure 1. Experimental design with the norm introduced on 

beginning of the scenario (above) and on Thursday, i.e. at the end of 

the scenario (below). 

Results 

Causal Rating | Agent 1 Causal ratings for Agent 1 were 

higher when they violated the moral norm (M=6.35; 

SD=2.43) than when they conformed to it (M=4.53; 

SD=1.60), F(1, 80) = 67.71, p < .001,  η𝑝
2  = .46. In contrast, 

when Agent 1 acted only once, they were judged as less 

causal (M=4.80, SD=2.46) than when they performed a 

frequent behaviour (M=6.06, SD=1.71), F(1, 80) = 25.08, p 

< .001,  η𝑝
2= .24. The time point of the norm did not reveal 

any significant effects (p=.83).  
 

Causal Rating | Agent 2 Agent 2 was seen as less causal 

when Agent 1 violated a moral norm (M=3.61, SD=2.33) 

compared to when Agent 1 conformed to the norm (M=5.40, 

SD=1.78), F(1, 80) = 53.33, p < .001,  η𝑝
2= .40. Likewise, 

Agent 2 was seen as more causal when Agent 1 printed one-

off (M=4.89, SD=2.32), compared to when Agent 1 printed 

frequently (M=4.13, SD=1.60), F(1, 80) = 13.46, p < .001,  

η𝑝
2  = .14.  The time point of the norm did not reveal any 

significant effects (p=.16).  
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Figure 2. Causal Rating. “M” indicates the moral norm and “F” the 

frequency of behaviour, with ‘ ✔’ for ‘conforming/frequent’ and 

‘✘’ for ‘violating/one-off’. The error bars represent ± 1 SE of the 

mean. 

 

Counterfactual Relevance | Agent 1 The agreement ratings 

for the counterfactual relevance of Agent 1 were affected by 

both Agent 1’s moral behaviour, F(1, 80) = 21.60, p < .001, 

𝛈𝒑
𝟐 = .21, and frequency of action,  F(1, 80) = 17.86, p < .001,  

𝛈𝒑
𝟐 =.18. The agreement for Agent 1 as relevant 

counterfactual was higher when they violated a moral norm 

(M=5.20, SD=1.47) than when they did not (M=4.75, 

SD=1.44) and lower when they acted one-off (M=4.69, 

SE=1.63) compared to when they acted frequently (M=5.26, 

SD=1.32). 
 

Counterfactual Relevance | Agent 2 The violation of 

morality by Agent 1 decreased agreement with Agent 2 as 

counterfactually relevant (MD=-.45; SD=0.13), F(1, 80) = 

12.67, p < .001,  ηp
2 = .14. Agent 2 was also seen less 

counterfactually relevant when Agent 1 acted frequently 

(MD=-.32; SD=0.13), F(1, 80) = 12.67, p=.006,  𝛈𝒑
𝟐 = .14 

 

Moral Norm Violation A 2 (Frequency) × 2 (Time point of 

moral norm) ANOVA for norm violating actions revealed a 

significant difference for the frequent norm violation 

(M=7.09, SD=1.24), vs. infrequent norm violation (M=5.62, 

SD=1.36) of Agent 1 on causal judgements, F(1, 80) = 24.60, 

p < .001, η𝑝
2  = .24. A corresponding reverse rating was found 

for Agent 2 when Agent 1 violated the moral norm frequently 

(M=3.24, SD=1.25) vs. once (M=3.99, SD=1.33), F(1, 80) = 

8.43, p = .005,  η𝑝
2  = .09. Counterfactual relevance ratings for 

Agent 1 were higher when Agent 1 frequently violated the 

norm (M=5.49, SD=.15) vs. once once (M=4.92, SD=.20),  

F(1, 80) = 16.17, p < .001, η𝑝
2  = .17. Agent 2 was seen less 

counterfactually relevant when Agent 1 frequently violates 

the norm, compared to violating the norm once (MD=-.47, 

SD=.18), F(1, 80) = 7.23, p = .009,  η𝑝
2  = .08. 

 
 

 
Figure 3. Counterfactual relevance rating. “M” indicates the moral 

norm and “F” the frequency of behaviour, with ‘ ✔’ for 

‘conforming/frequent’ and ‘✘’ for ‘violating/one-off’. The error 

bars represent ± 1 SE of the mean. 

Discussion 

Experiment 1 confirmed the effect of moral norms on 

causal attribution (Knobe & Fraser, 2008), showing that an 

agent who violates a moral norm is judged as more causal and 

counterfactually relevant than a norm-conforming agent.  We 

also found a reversed norm influence for agent-level 

statistical norms, with frequent behaviour being judged more 

instead of less causal than one-off actions. We found the same 

effects for counterfactual relevance ratings, showing that 

moral norm violations and frequent behaviour increase the 

extent to which an action is seen as counterfactually relevant 

to the outcome. An increase in causal attribution to Agent 1 

due to norm violating and/or frequent behaviour was 

accompanied by a decrease in causal attribution to Agent 2, 

known as “causal superseding” (Kominsky et al., 2015). We 

did not find an interaction between the immoral norm 

behaviour and the time point at which the norm was 

introduced in the scenario. Hence, an action that has been 

violating the norm from the beginning is judged as causal as 

an action that has been frequently performed before, but only 

violated a norm after the new introduction of a moral norm. 

Our finding that frequent behaviour increased causal 

attribution is consistent with Sytsma et al. (2012), but was 

surprising insofar as the causal structure of our scenario was 

designed to be causally insensitive to an individual action that 

occurs frequently, i.e. using the printer often. However, it 

might be argued that the influence of frequent vs. one-off 

actions in a conjunctive causal structure depends on the 

knowledge that both agents have about each other’s 

behaviour. For example, when the agent who usually never 

uses the printer suddenly prints in a conjunctive causal 

structure, she might be seen as more causally responsible for 

the outcome if she is aware that the other agent frequently 
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prints. In addition, despite our attempt to implement a 

conjunctive causal structure, participants might have 

interpreted frequent behaviour in our scenario as gradually 

damaging the printer. In order to further investigate the role 

of knowledge, and accentuate the difference between a 

cumulative and conjunctive causal structure, we conducted a 

second experiment. 

Experiment 2 

Experiment 2 examined the influence of frequent behavior in 

dependence of the underlying causal structure and state of 

knowledge of the agents.  

Methods 

Participants 102 participants were recruited via Amazon 

Mechanical Turk ($0.80 for ca. 15 min), and after removing 

participants who had more than four of the 32 check 

questions wrong, the data of 64 participants were analyzed 

(male = 34, female = 30; mean age=33.56; SD=11.92, age 

range = 21-74). 
 

Materials The same design as in Experiment 1 was used, 

except that the moral norm manipulation was removed by 

setting the moral status of all actions to “moral norm 

conforming” by a company policy that allowed the two 

agents to use the printer anytime. The frequency of the 

actions of Agent 1 was varied while holding the frequency of 

Agent 2 constant. Hence, either both of them frequently used 

the printer on different days during the week, or only Agent 

2 used the printer. The underlying causal structure of the 

scenario was also varied by either containing a conjunctive 

causal structure (Experiment 1), or a cumulative causal 

structure, i.e. every action gradually increases the likelihood 

for the outcome to happen 

 
The printer is quite worn out, and every printing order sent strains the 
printer system a bit more. 
 

Finally, we varied whether the agents know about each 

other’s behavior. 

 
The printer management system does [does not] display the current user 
balance so that Agent 1 and Agent 2 know [do not know] who prints how 
much each day. 
 

Design and Procedure The experiment was designed as a 2 

(Frequency) × 2 (Causal Structure) × 2 (Knowledge) within 

Subject Design. The participants saw each of the eight 

scenarios in a randomized order, and answered two causal 

strength and counterfactual relevance questions, using the 

same scales as in Experiment 1. Following this, they were 

asked two manipulation check questions about the typical 

behavior (“In the scenario you have just read, did Agent X 

typically use the printer?”) a knowledge manipulation 

question (“In the scenario you have just read, does the printer 

management system display the user balance?”), and a causal 

structure check question (“In the scenario you have just read, 

under which conditions does the printer crash?”), with the 

options “Two or more printing orders at the same time” or 

“Overuse”. 

Results 

Causal Rating | Agent 1 Causal ratings for Agent 1 were 

generally higher when they acted frequently (M=5.31; 

SD=1.30 than when they acted one-off (M=2.90; SD=1.89), 

F(1, 63) = 103.78, p < .001,  η𝑝
2  = .62. However, the increase 

in causal contribution when Agent 1 used the printer 

frequently was greater in the cumulative causal structure than 

in the conjunctive causal structure, F(1, 63) = 103.78, p=.001,  

η𝑝
2= .16 . No significant effect for knowledge was found 

(p=.48). 
 

Causal Rating | Agent 2 Agent 2 was seen as less causal 

when Agent 1 acted frequently, (M=5.32, SD=1.30), but 

more causal when Agent 1 performed a one-off action 

(M=6.93, SD=1.90), F(1, 63) = 69.15, p < .001, η𝑝
2= .52.  The 

increase in causal attribution to Agent 2 when Agent 1 did 

not act frequently was greater in the cumulative than in the 

conjunctive causal structure, F(1, 63) = 39.64, p < .001, η𝑝
2  = 

.37. There was no significant effect for knowledge  (p=.90). 

 
 

 
 

Figure 4. Causal Rating. “F” indicates the frequency of behaviour, 

with ‘1’ for ‘frequent’ and ‘0’ for ‘one-off’. The error bars 

represent± 1 SE of the mean. 

 

Counterfactual Relevance Agent 1 was seen as more 

counterfactually relevant when they acted frequently 

(M=4.86; SD=.1.33) versus one-off (M=3.93; SE=1.56), F(1, 

63) = 29.87, p < .001,  η𝑝
2= .32, and the increase in 

counterfactual relevance when acting frequently was greater 

in the cumulative structure, F(1, 63) = 6.90, p = .011,  η𝑝
2= 

.10. Agent 2 is assigned less counterfactual relevance when 

Agent 1 acts frequently (MD=-.56; SD=.197, F(1, 63) = 

12.19, p = .02, η𝑝
2  = .16. There was no significant effect for 

the knowledge factor (p=.50). 
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Figure 5. Counterfactual Relevance Rating. “F” indicates the 

frequency of behaviour, with ‘1’ for ‘frequent’ and ‘0’ for ‘one-off’. 

The error bars represent ± 1 SE of the mean. 

 

Discussion 
Experiment 2 confirmed the effect of frequent behavior on 

causal judgments. Frequent behavior was seen as more causal 

than one-off behavior, independent of the underlying causal 

structure. However, participants were aware that the change 

from frequent behaviour to a one-off action led to a greater 

reduction in causal contribution in the cumulative causal 

structure than in a conjunctive structure. The effect of 

frequent behaviour was independent of whether or not the 

agents knew about each other’s behavior. 

General Discussion  

Our two experiments found evidence for an increase in the 

causal attribution to an agent who acts in line with their 

frequent behaviour, even when the frequency of this behavior 

does not make a causal difference to the outcome. Our results 

present a challenge to the norm account of causal judgment, 

showing that a one-off action that deviates from frequent 

behavior is judged less instead of more causal for a negative 

outcome. Since the knowledge about the other agent’s 

behavior did not make a difference to causal judgements, 

despite being crucial for estimating the outcome in a 

conjunctive causal structure, we rule out that people might 

have inferred bad intentions or foreseeability of the outcome 

from typical behavior (Lagnado & Channon, 2008). Hence, 

we believe that the fact that people assign increased causality 

to a frequent, typical action goes against predictions of norm 

theories and shows the need for a new account of frequency 

of actions in causal attribution. Current counterfactual and 

structural equation models (Halpern & Pearl, 2005; Chockler 

& Halpern, 2014) fail to account for the asymmetry of causal 

attribution between a frequent vs. one-off actor in a 

conjunctive causal structure, given that previous behavior 

does not change the counterfactual dependency of the two 

actions in the actual situation.  

We draw two conclusions from this. First, we argue for the 

need to include the previous history of actions of an agent 

into counterfactual accounts of causal judgments. Second, we 

argue that an extension of current counterfactual theories is 

needed in order to capture the influence of frequency. One 

such extension could be probabilistic (Fenton-Glynn, 2016). 

While frequent behavior does not differ from one-off 

behavior in terms of single counterfactual dependencies, it 

does so probabilistically. If, in a counterfactual world, the 

other agent acts at a random time point in a conjunctive 

structure, the outcome is more likely to occur if I frequently 

perform the other action needed for the outcome. In contrast, 

it is less likely to occur if I act infrequently. The raised 

probability of the outcome due to my frequent behavior can 

even increase when we also vary whether the other agent acts 

frequently vs. one-off. As a result, we argue that in addition 

to counterfactually testing whether the undoing of an action 

makes a difference, we also need to test whether the variation 

of the frequency of the action would make difference to the 

likelihood of the outcome to occur. 

 Our results show that a frequent norm violation is judged 

more causal than a one-off moral norm violation. This is 

despite the fact that in the actual situation of the outcome, 

they are both equally counterfactually relevant, as well as 

equally. Hence, we think that current norm theories need to 

include the frequency of previous norm violations in order to 

fully capture the influence of moral norms on causal 

attributions. However, the time point at which the moral norm 

is introduced into the scenario does not change the way we 

assign causality to actions that violate this norm. To 

conclude, the influence of the frequency of an action proves 

to be a crucial factor in the attribution of causality, and calls 

for new theoretical frameworks of causation. We argue that 

this framework has to be probabilistic. 
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Abstract 

We investigated how people would change and vary in 
accepting advice when the effectiveness of advice was unclear. 
In each trial, participants estimated a monthly rent of an 
apartment room based on the attribute list. Then, another 
estimate by a real-estate agent was given as advice. 
Participants made a final estimation, either by taking the 
advice fully, partially, or rejecting it totally. They repeated 48 
estimations without feedback. The weight of advice index, 
representing how much each participant weighed a given 
advice, gradually decreased as the number of trials increased. 
Interestingly, the gradual reduction of acceptance was not 
observed in participants with high empathy and low 
depressive scores; they kept accepting advice even when the 
effectiveness of advice was unclear. These results suggest that 
the willingness of accepting and using advice depends on 
history of advice taking, the individual traits, and mood.  

Keywords: decision making; advice taking; individual 
difference 

 

Introduction 
When we cannot make a decision by ourselves, we 
frequently ask for advice. Assume you are about to purchase 
a house and have two candidate options. Both houses are 
similarly attractive but different in various aspects. You 
cannot decide which to buy. Here comes a friend and starts 
giving you a series of advice. Will you accept advice and, if 
so, how much will you use the advice for your final 
decision? Obviously, it depends. Generally, we do not know 
if advice is useful or not until the outcome of a decision 
comes out. However, under ambiguous situations with time 
constraints, we often need to decide whether we should 
accept advice. In the present study, we examined how 
people would change and vary in accepting advice when the 
effectiveness of advice is unclear. In particular, we were 
interested in whether advice taking would depend on history 
of experience of advice taking and individual traits and 
mood.  
    In general, people heed advice and adjust their estimate 
and/or judgment (Bonaccio & Dalal, 2006; Yaniv, 2004b). 
However, this advice taking process is prone to various 
cognitive bias. For example, people tend to weight own 
judgment more even when they should take advice to 
improve their judgments (Yaniv, 2004a; Yaniv & 
Kleinberger, 2000). One of the biasing factors is a 

characteristic of advisor. For example, people follow advice 
more when their advisor is labeled as an expert by the 
experimenter (e.g, Meshi et al., 2001; Harvey & Fischer, 
1997), and when an advisor expresses great confidence in 
his/her advice (e.g., Sniezek & van Swol, 2001).  
    Although the previous studies mainly focused on the 
characteristics of advisor, several studies showed that, the 
internal states of decision makers (e.g., emotion and 
confidence) also modulate advice taking behaviors (Cooper, 
1991; Gino & Schweitzer, 2008; Gino, Brooks, & 
Schweitzer, 2012). For example, when anxiety is 
experimentally induced in participants, they show lower 
confidence and consequently a higher level of acceptance of 
advice (Gino et al., 2012). These previous findings suggest 
that there may be individual differences regarding advice 
taking. However, it is not clear how individual 
characteristics (i.e., emotion, personality, and interpersonal 
reactivity) would influence advice taking. Using three 
questionnaires of personality, emotion, and interpersonal 
reactivity, we examined individual variability of advice 
taking behaviors.  
    One of major motivation for acceptance of advice is to 
adjust and improve own judgments. Therefore, if the 
effectiveness of advice is unclear, the acceptance of advice 
will decrease over time. In the present study, we confirmed 
this tendency and then examined how the reduction of 
advice taking would vary across individuals. 

Method 

Participants 
Fifty-four university students participated in the present 
study (18 females and 36 males). They gave written 
informed consent and were blind to the purpose of the study. 
Most of them lived in Tokyo and its vicinity and had some 
knowledge of rent in the Tokyo area. 

Price Estimation Task 
Participants performed the price estimation task (Meshi et 
al., 2012), where they estimated rents of apartment rooms. 
Five attributes of each apartment room (room layout, area in 
square meters, distance form the nearest station, floor level, 
and building age) were presented on a computer monitor 
(Figure 1). Based on those set of information, participants 
estimated the monthly rent of each room (in Japanese yen). 
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    After the initial estimation, another opinion, i.e., advice, 
on the rent of the room was given in one half of trials 
(advice condition). We instructed them, “Advice was 
derived from a real-estate agency who visited our laboratory 
to participate this experiment another day and judged the 
rental price for them on the same computer,” but the price 
was an actual rent of the room around the Takadanobaba 
station, Sinjyuku, Tokyo. Then, participants were asked to 
decide whether they would consider changing their first 
estimation, if so how much. They reported the estimated 
price by adjusting the slide bar on the monitor with a 
computer mouse, and decided by clicking the mouse button. 
In the other half of trials, they did not receive any advice but 
still were asked whether or not they would like to change 
their opinions (no-advice condition). No feedback was given 
about their decision. Advice and no-advice conditions were 
randomly intermixed and presented 24 times, resulting in 48 
trials for the whole session. The trials were divided into four 
sessions. The next session started after participants pressed 
the space bar; they were allowed to rest between trials.  
 
 

 
 
Figure 1: Example of the trial flow of the price estimation 
task of the present study. 

 

Analysis 
In the advice condition of the present task, we obtained two 
estimates for the rents: the fist estimate without advice and 
the second estimate after receiving advice. The difference 
between advice and the first estimate represents how much 
opinions are different between the participant and the 
advisor. The difference between the second rating and the 
first rating represents how much the participant changes his 
or her opinion. In order to examine how much each 
participant took into consideration or weighed the given 
advice, we calculated “Weight of Advice” index (WOA; 
Bonaccio & Dalal, 2006).  

 

𝑊𝑂𝐴 =
𝑆𝑒𝑐𝑜𝑛𝑑  𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 − 𝐹𝑖𝑟𝑠𝑡  𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒

𝐴𝑑𝑣𝑖𝑐𝑒 − 𝐹𝑖𝑟𝑠𝑡  𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒
 

 
    For example, a participant’s initial estimate was 1000 yen, 
and the advice was 2000 yen. Assume, after receiving the 
advice, the participant adjusts her estimate slightly higher, 
say, 1100 yen. Then, the weight of advice index would be 
calculated as 0.1, indicating a small influence of advice. On 
the other hand, the participant may fully use the advice and 
adjust her estimate to 2000 yen. The calculated weight of 
advice index would then be 1. It is theoretically possible that 
WOA is larger than 1 or takes a negative value. However, as 
such cases would represent behaviors different from normal 
advice taking or simple response errors, we excluded those 
data from the analyses (42 trials). Additionally, we also 
excluded the data from 89 trials whose first estimations 
were identical to the advice prices, or whose response time 
is 4 SD above the mean response time of all advice-taking 
trials. The resulted number of trials was 1165. 

Questionnaires 
In addition to WOA from each participant, to examine 
possible influences of participants' personality, mood, and 
interpersonal reactivity traits on the advice taking in the 
price estimation task, we used three questioners; Ten Item 
Personality Inventory (TIPI-J; Oshio, et al., 2012; Gosling, 
Rentfrow, & Swann, 2003); Beck Depression Inventory 
(BDI; Beck et al., 1961), and Interpersonal reactivity index 
(IRI; Davis, 1980; 1983; 1996). These questionnaires are 
widely used to measure participants' personality, mood, and 
interpersonal reactivity traits in previous studies (e.g, Oshio 
et al., 2014). All participants were asked to answer those 
questionnaires. 

Results 
In Figure 2, we plotted the difference between the first 
rating and advice, and the difference between the first and 
second ratings. The horizontal axis is the difference between 
the advice and the first estimate, representing how much 
opinions were different. The vertical axis is the difference 
between the second estimate and the first estimate, 
representing how much participants changed their estimates. 
Each dot represents a single trial. In this plot, two lines were 
apparent. One was a horizontal line at the 0 point of the 
vertical axis. These data points were from the trials where 
the participants did not change their estimates at all. 
Irrespective of the differences in opinions, they simply 
ignored the advice and did not change their estimates. The 
other was a diagonal line. The data points on the diagonal 
line were from the trials where the difference between the 
advice and the first estimate and the difference between the 
second estimate and the first rating estimate identical. That 
is, the participants fully accepted the advice. Then the data 
between these two lines represented the trials where the 
participants took the advice but adjusted their estimates 
partially.  
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To capture various advice taking behaviors, we calculated 
the Weight of Advice index (WOA). Figure 3 shows the 
frequency distribution of the WOA. The data at the WOA of 
zero correspond to the data on horizontal line in Figure 2, 
i.e., the participants did not take the advice at all. Out of the 
total trials of about 1165, 535 trials were this type. By 
contrast, the trials where the participants fully accepted the 
advice were at the WOA of 1. These correspond to the 
diagonal line in Figure 2. 96 trials were this type. WOA 
values between 0 and 1 represent the trials where the 
participants partially accepted the advice. In total, advice 
was used 54% of trials. This acceptance ratio was similar to 
that observed in the previous study (Soll & Larrick, 2009).  

 
 
Figure 2: The difference between the second estimate and 
the first estimate as a function of the differences between 
advice and the first estimate. 
 

 
 

 
 

 
 
 
 
 

 
 
 
 
 
 
Figure 3: Frequency distribution of the weight of advice 
(WOA) index.  

Variability of advice taking in time 
Since the experiment contained 48 trials, we were able to 
examine how WOA would change as the experiment 
progressed. Figure 4 shows the averaged WOA scores from 
all the participants as a function of the trial number. We 
found that WOA, namely, the tendency to accept advice, 
gradually decreased over the course of the experiment (r(48) 

= -.524, p<.001). Then, we divided the trials into the first 
and second halves and found the significant difference of 
WOA scores between them (t(1163) = 2.70, p<.01), 
indicating that the participants followed the advice less in 
the second half than in the first half. 
   One may argue that the decrease in the acceptance of 
advice over time would be due to that the participants 
become better in the estimation task and could perform the 
task without advice in the second half. We did not provide 
feedback for their estimation. However, they repeatedly saw 
the rent estimation presented as advice, which were actual 
rents. In addition, the participants had some knowledge of 
rent in the Tokyo area. Thus, there was the possibility that 
participant’s estimate would approach to the estimate 
presented as advice implicitly. To test such a possibility, we 
also calculated the difference between the advice and the 
first estimate as an index of the task performance (Figure 5). 
We did not find any improvement of the task performance 
as a function of trial number (r(48) = .041, p=.786). 
Therefore, the decrease in WOA was not due to the better 
performance in the second half.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Averaged WOA scores as a function of the trial 
number. WOA decreased gradually as the number of trials 
increased. Error bars show the standard errors of the mean 
scores. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Averaged task performance scores (correct rent 
price, i.e., advice, minus the first estimate) as a function of 
the trial number. Error bars show the standard errors of the 
mean scores. 
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Figure 6: Distribution of WOA changes of each participant. 
Positive values indicate that the participants accept the 
advice more in the latter half of the experiment (positive 
group), while negative values indicate that the participants 
accepted the advice less in the latter half of the experiment 
(non-positive group). 
 

Variability among individuals 
The overall results suggested that, on average, the 
participants followed advice less in the second half than the 
first half of the task. However, this was not the case for all 
the participants; some participants did show larger WOA in 
the latter half. We calculated the change of WOA for each 
participant by subtracting WOA in the first half from WOA 
in the second half. Thus, a positive score would indicate that 
the participants tended to accept the advices in the second 
half. Figure 6 shows the distribution of WOA changes.  
    We divided the participants into the “positive-group”  
(WOA changes values were positive) and the “non-positive 
group” (WOA changes values were negative or equal to 
zero), and examined whether there would be any individual 
differences between the two groups of the participants. The 
questionnaires measured depressive state, big-five 
personality trait (Extraversion, Conscientiousness, 
Agreeableness, Openness to Experience, and Neuroticism), 
empathy for others (cognitive abilities on a Fantasy Scale 
(FS) and Perspective Taking (PT), and affective components 
through an Empathic Concern (EC) and Personal Distress 
(PD). We compared the scores of the questionnaires 
between the positive group and the non-positive group. Two 
participants were excluded from the analyses because 
significant parts of the questionnaires were incomplete. In 
total, the data from fifty-two participants were analyzed. 
    We found significant differences in depressive state (t(50) 
= 2.30, p < .03) and in perspective taking (PT) scores 
(t(50)= -2.48, p < .02). The participants who showed the 
positive WOA changes had lower depression scores and 
higher perspective taking scores (Figure 7). These results 
suggest that individuals with less depression and higher 
perspective taking tend to keep taking the advice. There was  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7: Averaged depression and perspective-taking 
scores for different WOA changes groups (non-positive and 
positive groups). Error bars show the standard errors of the 
mean scores. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   
Figure 8: The relationship between the depression and 
perspective-taking scores.  

 

a significant negative correlation between the depression 
and the perspective taking scores (r(52) =-.293, p<.05; 
Figure 8).  All the other scores did not show any significant 
difference.
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Discussion 
In the present study, we examined how people would 
change and vary in accepting advice when the effectiveness 
of advice was not clear. We found that: (1) Participants took 
the advice less in the latter half of the experiment. (2) The 
decrease in WOA was not due to the change in task 
performance. (3) The decrease of WOA was pronounced in 
the participants with high depressive state and low 
perspective taking tendency of empathy. In other words, the 
participants with low depression and high empathy kept 
taking advice even when the effectiveness of advice was 
unclear. Our results suggest that the willingness of accepting 
and using advice changes with prior experience of advice 
taking and the individual traits and mood interact with the 
change in advice taking.  

 In about 54% of trials, the participants used advice either 
fully or partially, even though the usefulness of advice was 
not clear. This result suggests that it is difficult to ignore 
advice completely under uncertainty of usefulness of advice. 
Previous studies suggest that the major motivation of 
seeking advice is not only for accuracy in decision making 
but also for social reasons, for example sharing 
responsibility or to justify our decisions (Kennedy, 
Kleinmuntz, & Peecher, 1997; Harvey & Fischer, 1997). 
Our results might reflect this kind of social motivations in 
advice taking.  
    Since the participants were not sure about whether advice 
was useful or not in the present study, it was reasonable to 
assume that the acceptance of advice would reduce over 
time. However, this was not the case for all the participants; 
low depressive and high perspective taking participants kept 
taking advice. Also, there was the negative correlation 
between depressive scores and perspective taking scores. It 
has been reported that depression is associated with focused 
attention on the self rather than others (Ingram, 1990) and 
focusing increases the accruing periods and severity of 
depression (e.g., Just & Alloy, 1997; Kuehner & Weber, 
1999; Nolen-Hoeksema, 2000; Nolen-Hoeksema, Parker, & 
Larson, 1994). However, it still remains to be investigated 
how depressive mood and the ability of perspective taking 
influence and/or interact with advice taking behavior. 
    In the present study, we set the situation that advice was 
derived from a real-estate agency. There is the possibility 
that this information about advisor would help to increase 
the acceptance of advice even when the effectiveness of 
advice was not clear. A previous research showed that 
people valued expert advice than novice one when making 
decisions (e.g., Meshi et al., 2001). Therefore, the 
characteristics of an advisor have influences in advice 
taking, which include not only expertise but also how 
closely the advising person is related. In our daily-life, we 
often ask friends or family for advice, even though we can 
seek expert advice. Recent research suggests that advice 
would be accompanied by social and emotional support (i.e, 
regulating emotional distress), and decision makers prefer 
such emotional and social support when they make 
decisions (Horowitz et al., 2001; Dalal & Bonaccio, 2010).  

In the future research, it would also be interesting to 
examine the role of seeking or accepting advice derived 
from others that have close associations with them, such as 
friends or family. 

In the present study, no feedback was provided, It is 
possible that providing feedback may affect the acceptance 
of advice over time. We found the decrease of WOA over 
time when the effectiveness of advice was uncertain. 
Providing feedback would make participants to explicitly 
adjust their estimates. In future research, it would be 
important to examine the effects of feedback on temporal 
variations for the acceptance of advice. 
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Abstract 

The goal of the present study was to determine whether 
chronic post-stroke patients with motor aphasia have impaired 
inner speech abilities and whether they use inner speech in 
everyday life. To answer these questions, we recruited eight 
chronic post-stroke aphasic patients and 13 cognitively 
healthy adults, who underwent testing on a range of 
evaluative tests and four experiments specifically designed for 
the purposes of this study. The experimental results suggest 
that post-stroke patients with motor aphasia have impaired 
inner speech. However, patients’ subjective reports indicate 
that they use various types of inner speech, despite the 
observed deficit. Taken together, our data suggest that 
impairment of certain aspects of inner speech may still allow 
a degree of use of other aspects of inner speech, emphasizing 
a need to extend research on inner speech in aphasia to the 
variety of its forms. 

Keywords: aphasia; inner speech; anomia; working memory. 

 

Introduction 

Inner speech has been traditionally recognized as an 

important component of human mental life, and in particular 

its role in the relationship between language and thought has 

been debated (Kinsbourne, 2000). The interest in inner 

speech has been renewed recently, partly due to new 

perspectives on how language contributes to consciousness 

and whether conscious thought is possible without inner 

speech (de Guerrero, 2005, Martínez-Manrique & Vicente, 

2010), and partly due to recent developments in speech 

production theories (e.g., Indefrey & Levelt, 2004) that 

propose that inner speech is a stage in speech production 

that precedes articulation (Levelt, 1995). Inner speech is 

often defined as silently talking to oneself or speech-for-

oneself (Vygotsky, 1986), “the little voice in the head” 

(Perrone-Bertolloti et al., 2014), an internalized verbal 

thought that can be consciously explored (Marverl & 

Desmond, 2012), “the subjective experience of language in 

the absence of overt and audible articulation” (Alderson-

Day & Fernyhough, 2015, p. 931) or more generally as a 

form of mental imagery (Oppenheim & Dell, 2008). 

The unique cognitive status of inner speech is reflected in 

its pervasive role in a variety of functions. It is involved not 

only in language, but also in working memory (e.g., in 

subvocal rehearsal) (Paulesu et al., 1993; Baddeley & 

Loggie, 1999), complex reasoning (Baldo et al., 2015), self-

regulation (Vygotsky, 1986), meta-cognition (Bermúdez, 

2003), and self-awareness (Morin, 2009; Morin & Michaud, 

2007). For example, impairment of inner speech has been 

associated with the impairment of global self-awareness, 

self-related memories and emotional awareness, along with 

impaired “sense of individuality” and corporeal awareness 

(Morin, 2009). It also contributes to auditory verbal 

hallucinations in schizophrenia (Frith, 1992). In addition to 

establishing that inner speech is implicated in a variety of 

cognitive functions in healthy and impaired brains, research 

so far has discerned various forms of inner speech, such as 

condensed, dialogic, self-referent, involving others 

(Alderson-Day & Fernyhough, 2015), with the evidence 

indicating that these different forms of inner speech may 

require support of different brain areas (Alderson-Day et al., 

2015).  

However, investigating directly and objectively the highly 

subjective and elusive psychological processes that support 

inner speech represents a methodological challenge 

(Vygotsky, 1986; De Bleser & Marshall, 2005). The 

attempts to determine the elusive nature of inner speech fall 

roughly into two types: the accounts that try to view inner 

speech in its entirety and emphasize its subjective character, 

and accounts that focus on a specific aspect of inner speech 

that can be objectively tested. Thus, the hypotheses 

generated by the first type of accounts cannot be objectively 

tested, and the explanations based on the second type of 

accounts do not exhaust the concept of inner speech.  

As an example, Vygotsky’s (1986) concept of inner 

speech is characterized by a highly subjective meaning, 

predicative nature, and a reduced syntactic form.  In 
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contrast, an often studied proxy of inner speech in 

contemporary research is phonological representation of a 

word, which is tested via a person’s ability to silently judge 

whether two words rhyme, whether one word is longer than 

the other, or whether two words are homophones (Levine et 

al., 1982; Feinberg et al., 1986). Making silent judgments in 

such tasks requires the use of inner speech. 

Another way of distinguishing between the two types of 

approaches to studying inner speech is in terms of abstract 

and concrete inner speech, where the former refers to inner 

speech as relating language and thought, and the latter 

considers inner speech a stage in speech production, i.e., 

phonological and/or phonetic level of inner speech (Levelt, 

1995).  

One interesting and still not well explored issue pertains 

to inner speech abilities in persons with impaired overt 

speech due to brain damage, such as post-stroke patients 

with motor aphasia.  

The available evidence suggests a great variability in 

inner speech abilities in persons with post-stroke aphasia, 

with patterns of partial as well as complete deficit in inner 

speech (Levine et al., 1982; Feinberg et al., 1986; Langland-

Hassan et al., 2015). Furthermore, the degree of inner 

speech deficit in these patients typically coincides with a 

degree of overt speech impairment, although cases of 

aphasia with discrepant overt-covert speech abilities were 

also reported (Geva et al., 2011a).  

In the present study, we investigated inner speech abilities 

in chronic post-stroke patients with motor aphasia. The goal 

was to determine whether these patients had impaired inner 

speech abilities and how they used inner speech in everyday 

life. To answer these questions, we tested chronic post-

stroke aphasic patients on a variety of evaluative tests and 

four experiments specifically designed to assess their inner 

speech abilities.  

 

Methods 

Participants  

Eight post-stroke aphasic speakers (two males) were 

recruited at a local rehabilitation center (Asociación de 

traumatismo cráneo-encefálico y daño cerebral adquirido de 

Álava, henceforth ATeCe). All patients were at the chronic 

stage, with more than one year post-onset time. They all had 

suffered a single stroke in the left hemisphere, affecting the 

prefrontal or fronto-temporal areas, except one person, who 

had a lesion in the left basal ganglia (A07). Seven patients 

had motor aphasia, while one person’s aphasia was 

characterized as mixed aphasia (A02). This person’s aphasia 

was of a predominantly motor type, with a strong anomic 

component it was labeled as “mixed” aphasia by the speech 

pathologist (C.L.) on the basis of multiple extensive tests, 

subjective observations and neurological reports. Severity of 

patients’ aphasia ranged from moderate to severe. They 

were all right-handed before the illness, except one patient 

who was left-handed (A03). They had no other significant 

neurological or psychiatric conditions.  

Thirteen cognitively healthy adults for the control group 

(four males) were recruited from the community. The 

participants in the control group had no history of 

neurological or psychiatric disease, drug abuse, and at the 

time of testing they were not using any medications that 

could affect cognition. 

All participants had normal hearing and normal or 

correct-to-normal vision.  

Evaluative measures 

To obtain more general information on patients’ cognitive 

abilities relevant for the present study, we administered the 

following evaluative measures: Montreal Cognitive 

Assessment (MoCA) (Nasreddine et al., 2005) to assess 

participants’ general cognitive status, Boston Diagnostic 

Aphasia Examination (Goodglass & Kaplan, 1983) - the 

Spanish version (García-Albea et al., 1996), Boston naming 

test (Kaplan et al., 1983), phonological discrimination test 

(Ardila et al., 1994), the Edinburgh handedness inventory 

(Oldfield, 1971), the Month ordering test (Almor et al., 

2001) to test their verbal working memory, Raven’s 

Progressive Color Matrices (Raven et al., 1990) to test their 

nonverbal intelligence, Beck depression inventory (Beck et 

al., 1961) to exclude severe depression, and the Varieties of 

Inner Speech Questionnaire (McCarthy-Jones & 

Fernyhough, 2011) to obtain an insight into each patient’s 

awareness of their use of different forms of inner speech in 

everyday life.  

 Unlike other types of inner speech questionnaires, the 

VISQ addresses important aspects of inner speech, such as 

condensation and dialogicality. The condensed form, which 

has by definition reduced syntax, and dialogic inner speech, 

which is exchange among different internalized 

perspectives, are of particular importance in studying inner 

speech of patients with motor speech disorders. Thus, the 

Questionnaire assesses four types of inner speech: dialogic, 

condensed, other people in inner speech, and evaluative/ 

motivational inner speech Examples of stimuli for each 

form are given in (1-4): 

(1) My thinking in words is more like a dialog with 

myself rather than my own thoughts in a 

monologue. - Dialogic 

(2) I think to myself in words using brief phrases and 

single words rather than full sentences. - 

Condensed 

(3) I hear other people’s voice nagging me in my head. 

- Other people in inner speech 

(4) I talk silently to myself telling myself to do things. 

-   Evaluative/motivational inner speech 

(McCarthy-Jones & Fernyhough, 2011).  

Healthy controls (HCs) underwent MoCA and completed 

the Varieties of Inner Speech Questionnaire. All tests were 

administered in Spanish, which was the first language of all 

participants. 

2433



Experimental measures 

All participants were tested in four tasks, which require 

inner speech for correct completion: silent judgments of 

rhyming (experiment 1), syllable discrimination (experiment 

2), identification of words in compounds (experiment 3) and 

identification of words in names for numbers (experiment 

4). 

Experiment 1: The rhyming task in our study required 

silent rhyming judgments of pairs of words associated with 

pairs of drawings. The silent rhyming judgments paradigm 

has been successfully used in previous studies on inner 

speech in other languages (Langland-Hassan et al., 2015). 

This paradigm is more appropriate for the Spanish language 

than the classical paradigm, in which rhyming of written 

words is judged, because judging whether Spanish written 

words rhyme can be done visually, on the basis of words’ 

orthography and without evoking inner speech (e.g., avión-

camión). There were 40 pairs of drawings in this 

experiment, with 20 pairs representing objects whose names 

rhyme in Spanish and 20 pairs representing objects whose 

names do not rhyme in Spanish. The drawings were selected 

from Snodgrass & Vanderwart (1980), based on a 

standardization for Spanish (Sanfeliu & Fernandez, 1996), 

considering name agreement, image agreement, familiarity, 

and visual complexity. The stimuli were created from the 

drawings with the highest ratings in Spanish-speakers.  

Using the same pairs of words from this experiment, we 

tested participants’ overt rhyming abilities at the end of 

experimental session. In this overt rhyming judgment task, 

the experimenter read aloud pairs of words and participants’ 

task was to judge if the words within each pair rhymed.  

Experiment 2: The syllable discrimination task required a 

silent discrimination of syllables in verbally presented 

words (n=40). The stimuli consisted of sets of randomized 

2-syllable (n=13), 3-syllable (n=15), and 4-syllable (n=12) 

highly frequent Spanish words, such as bueno. The 

experimenter read words and the participants were required 

to determine the number of syllables in each word.  

Experiment 3: The following test required silently 

discerning words in compounds. The stimuli consisted of 

compounds (n=20) and simple words (n=20). Like in 

previous experiments, the stimuli included only highly 

frequent Spanish words, such as girasol and were presented 

in a randomized order. The experimenter read words and the 

participants were required to determine the number of words 

in each compound.  

Experiment 4: The final test required silently discerning 

words in names for numbers. The stimuli (n=20) included 

trials that allowed 1, 2, 3, or 4 words to be discerned. For 

example, eight contains only one word, whereas in fifty-six 

two additional words can be discerned: fifty, six. The 

experimenter read number words and the participants were 

required to determine the number of words in each. 

Except for the silent rhyming task, the stimuli in the 

experiments were presented verbally. 

 

Procedures 

Before evaluation began, each participant signed informed 

consent. Prior to each experiment, participants completed 

two to four practice trials. They were instructed to avoid 

using strategies, moving the mouth or tongue, and to use 

inner speech in all tests. The experimenter would read the 

stimuli, except in Experiment 1 in which the stimuli were 

presented visually, and participants were required to 

respond as accurately as they could. There was no time limit 

for answers. Participants’ responses for each experiment 

were recorded manually on a separate response form and 

later scored for accuracy. No feedback was provided during 

testing.  

Testing was carried out individually with each participant 

in a quiet room, at ATeCe (patients) and at their homes 

(HCs). Each patient was assessed in 3 sessions. The first 

two sessions were devoted to evaluative measures (one 

session with the certified speech pathologist, C.L., one 

session with the neuropsychologist, E.U.G.) and the last 

session was devoted to the experiments. Each session lasted 

approximately 1 hour. HCs were tested in a single session.  

The study was approved by the Basque Ethics Committee 

for Clinical Research as well as by the ethics committee of 

the University of the Basque Country. The study was 

conducted in accordance with the Helsinki Declaration 

guidelines on studies involving human subjects 

Statistical analyses 

We performed Mann-Whitney test for group comparisons in 

experimental tasks and the modified –t-test (Crawford & 

Howell, 1998) to compare performance in experimental 

tasks of the patient with mixed aphasia to the mean scores of 

the HCs group; the latter tests were one-tailed, as 

recommended (Crawford & Howell, 1998), with α set at .05. 

All statistical analyses were carried out in SPSS 22, except 

for the modified t-test which was performed using the 

SINGLIMS program (Crawford & Howell, 1998). 

 

Results 

The two groups did not differ considerably in age (t (19) = -

1.433, p = .168) or in years of formal education (t (19) = - 

.560, p = .582). However, they differed in general cognitive 

status (t (19) = -7.213, p < .005), with the aphasic group 

having achieved a mean score of 17.8 (±2.5) on MoCA and 

HCs having a mean of 25.1 (±2.1).  

Each patient achieved 100% correct scores on the 

phoneme discrimination task. Their performance on Raven 

Progressive Color Matrices (RPCM) and verbal working 

memory (vWM) test varied, revealing different degrees of 

deficit in non-verbal intelligence and vWM capacity 

respectively across patients. The results of these tests are 

summarized in Figure 1.  
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Fig 1. Aphasic speakers’ performance on RPCM and vWM. 

Furthermore, patients’ performance on the Varieties of 

Inner Speech Questionnaire revealed different degrees of 

use of the four types of inner speech (Fig. 2). The condensed 

inner speech featured prominently, while inner speech 

involving others was less present in their everyday 

spontaneous use of inner speech.  

 

Fig 2. Aphasic speakers’ use of four types of inner speech in 

everyday life. 

Looking at the results from experimental measures, we 

found that, compared to HCs, the aphasic group performed 

considerably worse on both rhyming tests (silent and overt), 

and on the test of discrimination of syllables within words 

(Table 1).Their ability to discern numbers and words in 

compounds was comparable to that of HCs. 

Table 1: Group differences across the experimental tasks.  

 U Z p 

Silent rhyming 4.500 -3.475 .001* 

Overt rhyming 1.500 -3.701 .005* 

Syllables  25.500 -1.985 .047* 

Compounds 32.000 -1.513 .13/ .05* 

Numbers 43.500 -.631 .53 
 

However, since the modified t-test has shown that the 

person with mixed aphasia, A02, performed well in all tasks 

relative to HCs (silent rhyming, p = .16; overt rhyming, p 

=.07; syllables, p =.33; compounds, p = .18; numbers, p 

=.5), we repeated analyses excluding this patient from the 

aphasic group. 

The overall pattern of results remained unchanged, except 

that the p value obtained in testing for differences in 

distinguishing words in compounds reached statistical 

significance (U = 22.000, Z = -1.93, p = .05). Thus, our 

experimental data indicate that the persons with motor 

aphasia had overall impaired inner speech, except when 

inner speech involved words for numbers.  

 

Discussion 

The goal of the present study was to assess whether post-

stroke patients with motor aphasia have deficits in inner 

speech. To answer this question, we tested eight patients 

with chronic aphasia using four tests of inner speech, 

including the traditional tests such as silent rhyming 

judgments and syllable discrimination, together with the 

tests of word and number discrimination. The main finding 

of the present study is that post-stroke patients with motor 

aphasia have impaired inner speech. An additional, 

unexpected finding is their preserved ability to silently 

discern numbers in number words. The two findings are 

discussed in turn.  

Since all the aphasic patients achieved 100% correct on 

the phoneme discrimination task (see Results), the deficit in 

silent rhyme judgments cannot be due to impaired ability for 

phonological discrimination. Instead of being solely due to 

inner speech impairment, the silent rhyme judgments 

impairment could be related to anomia, i.e. word finding 

difficulty which to some extent characterizes all types of 

aphasia (Benson & Ardila, 1996). A deficit in retrieval of 

words referring to the presented images would preclude 

making judgments on whether a pair of words referring to a 

pair of drawings rhyme or not. Alternatively, a relatively 

high working memory load in the silent rhyming task could 

explain the deficit: the task requires interpreting pairs of 

drawings, keeping track of semantic information derived 

from the drawings, retrieving appropriate words, and 

maintaining the retrieved words in working memory, while 

judging whether the words rhyme. 

Furthermore, the aphasic group had low scores in overt 

rhyme judgments, a task in which the experimenter read 

aloud pairs of words. Although this task imposes a smaller 

cognitive load compared to the silent rhyme judgment task, 

it still requires a certain amount of working memory 

capacity, a cognitive resource that appears to be deficient in 

the aphasic group (Fig. 1). Taken together, these results 

indicate that the aphasic group’s deficit in judging rhymes 

both covertly and overtly may be due to the verbal working 

memory impairment. This explanation is compatible with 

the aphasic group’s low scores on the subtests of MoCA 

related to language and/or memory for language, including 

repetition of sentences and verbal fluency. However, 

although limited vWM capacity may have affected silent 
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rhyming in the aphasic group, it does not explain their 

overall poor scores on inner speech tasks, involving also 

impaired discrimination of syllables in words and impaired 

discrimination of words in compounds. These scores 

indicate an impairment of inner speech, which could have 

been further exacerbated by an increased verbal WM load 

and anomia in the silent rhyming task.  

The unexpected finding that the aphasic group was 

successful in discerning numbers in number words is not 

only interesting in itself, but it also has implications for the 

theories on number processing. It suggests that the aphasic 

speakers relied on a nonverbal, digital representation of 

numbers (e.g. “57”) and not on spoken numerals 

representations (“fifty-seven”). This explanation is 

compatible with the proposals suggesting that number 

processing is mediated by modality-specific processes, e.g., 

verbal code vs. digits (Kadosh & Walsh, 2009). While the 

neural substrates supporting the two types of processing 

differ, it remains unclear whether the differences pertain to 

these representations supporting inner speech as well. 

Wernicke originally proposed that the left superior 

temporal gyrus (STG) supported auditory word-form 

recognition, monitoring of speech output generated by 

frontal regions as well as inner speech, while contemporary 

models suggest a functional distinction between the anterior 

STG, which supports auditory word-form recognition, and 

posterior STG, which regulates speech production, 

including inner speech (DeWitt & Rauschecker, 2013). 

Neuroimaging studies have associated inner speech with a 

range of brain areas, including the left supramarginal gyrus, 

posterior STG, middle temporal gyrus and the inferior 

frontal gyrus (Paulesu et al., 1993; Indefrey & Levelt, 2004; 

Geva et al., 2011b; Fama et al., 2017). A recent voxel-based 

lesion-symptom mapping study involving 40 left-

hemisphere post-stroke patients indicates that inner speech, 

at the phonological access stage of speech production, is 

supported by the posterior STG and adjacent areas (Pillay et 

al., 2014), and that the left inferior frontal gyrus in fact 

supports working memory and control processes associated 

with inner speech. Our data appear to support this model, 

although we would interpret the working memory deficit in 

our aphasic group in terms of affected network connectivity 

(Kljajevic, 2014), because all the patients had deficient 

vWM, regardless of each case’s specific site of lesion.    

As pointed out in the Introduction, studying phonological 

word form as a proxy of inner speech provides only a part of 

the answer to the question of whether inner speech is 

impaired in motor aphasia. A quick look at the patients’ 

subjective reports on their use of inner speech in everyday 

life (Fig. 2) suggests a rather complex picture. It suggests 

that, as in impaired overt speech – where some degree of 

communication may take place despite the deficit-, 

impairment of certain aspects of inner speech may still 

allow use of its other forms. It is not surprising that aphasic 

speakers in our study showed the most use of the condensed 

type of inner speech in everyday life. The condensed form is 

closest to the type of inner speech originally described by 

Vygotsky (1986): compressed, and not necessarily 

resembling overt speech.  

In conclusion, our data indicate a degree of inner speech 

impairment in post-stroke patients with motor aphasia, 

regardless of lesion distribution (frontal, fronto-temporal, 

deep grey matter structures). Like their overt speech, their 

inner speech appears to be affected by difficulties in word 

retrieval and reduced verbal WM capacity. 
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Abstract: The dynamics of language evolution and learning in individuals have been extensively studied. Our knowledge of
the transmission process in particular has been advanced by the iterated learning model. Additionally, work has been done in
the area of population structure and social networks. However, less has been described about the interaction between individual-
level transmission and network structures. We present a general framework for representing transmission and learning algo-
rithms within social networks. We demonstrate that population structure interacts with the transmission process to influence
the dynamics of change. Taking network effects into account, studies on language evolution will capture a fuller picture of the
phenomenon.
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Abstract 

When referring to a target object in a visual scene, speakers are 
assumed to consider certain distractor objects that are visible to 
be more relevant than others. However, previous research that 
has tested this assumption has mainly applied offline measures 
of visual attention, such as the occurrence of overspecification 
in speakers’ target descriptions. Therefore, in the current study, 
we take both online (eye-tracking) and offline (overspecifica-
tion) measures of attention, to study how perceptual grouping 
affects scene perception, and reference production. We manip-
ulated three grouping principles: region of space, type similar-
ity, and color similarity. For all three factors, we found effects, 
either on eye movements (region of space), overspecification 
(color similarity), or both (type similarity). The results for type 
similarity provide direct evidence for the close link between 
scene perception and reference production. 

Keywords: Reference production; Perceptual grouping; Eye-
movements; Overspecification; Visual scene perception. 

Introduction 
Suppose you want to point out the marked object in Fig. 1 to 
a listener. To complete this task, you should produce a refer-
ring expression such as “the small bowl” or “the small green 
bowl”, to distinguish the target object from the other objects 
that are present in the visual scene (the distractors). Although 
both above example expressions allow the listener to identify 
the target, the second one is overspecified: it contains a color 
attribute that is unnecessary for unique identification.  

 
 
 
 
 
 
 
 
 
 
 

Figure 1: An example visual scene (Koolen et al., 2014) 
 
   From prior research (e.g., Pechmann, 1989; Koolen, Goud-
beek, & Krahmer, 2013; Rubio-Fernàndez, 2016), it is known 
that speakers overspecify their referring expressions very fre-
quently. Why do they do so? We argue that at least one of the 

answers to this question is to be found in visual scene percep-
tion, and explore to what extent certain objects in a scene are 
more likely to be perceived than others. For example, in Fig. 
1, the plate on the sideboard might be overlooked because it 
is placed on a different surface than the target (i.e., sideboard 
rather than table), or because it has a different type (i.e., plate 
rather than bowl). In these cases, the distractor set would be 
limited to the large bowl, making a minimal description such 
as “the small bowl” likely to be uttered. On the other hand, if 
the plate on the sideboard catches attention anyway, for ex-
ample because it has a different color than the target object, 
the perceived color variation may cause speakers to overspec-
ify with color (Koolen et al., 2013).  
   Although there is growing awareness that scene perception 
and language production are indeed closely linked, previous 
research in this direction has generally taken indirect, offline 
measures of visual attention. Therefore, in the current paper, 
we combine online (eye-tracking) and offline (occurrence of 
overspecification) measures to search for structural relations 
between scene perception and attribute selection for referring 
expressions.  

Theoretical background 
The starting point of our research is the assumption that in a 
reference production task, speakers do not regard all objects 
in a visual scene to be relevant distractors, but rather rely on 
a subset of distractor objects. More specifically, speakers are 
expected to only consider the distractors that are in their focus 
of attention (Beun & Cremers, 1998). One can think of vari-
ous factors that determine whether an object is perceived or 
not, such as its physical distance to the target (i.e., proximity). 
Given that proximity predicts that only objects that are close 
to the target referent are in the speaker’s focus of attention, it 
can influence the composition of the distractor set for a visual 
scene (Clarke, Elsner, & Rohde, 2013a).  
   Proximity is one of the Gestalt laws of perceptual grouping 
that were originally introduced by Wertheimer (1923), next 
to similarity, closure, continuation, and pragnanz. These laws 
are principles of perceptual organization that serve as heuris-
tics: mental shortcuts for how we perceive the visual environ-
ment (Wagemans et al., 2012) and create meaningful groups 
of objects that we see around us (Thórisson, 1996). On top of 
the classical laws of grouping, Palmer (1992) defined another 
principle, common region of space, which holds that objects 
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that fall within an enclosing contour, such as a table surface, 
are usually perceived as a group as well.  
   This study will apply a manipulation of common region of 
space, as well as two manipulations of similarity: color simi-
larity and type similarity. Previous research that directly tests 
how these principles influence reference production is scarce. 
For color similarity, we know that speakers overspecify more 
often when they perceive color variation in a scene than when 
all objects are of the same color (Koolen et al., 2013; Rubio- 
Fernàndez, 2016). This effect of color variation interacts with 
type similarity: the proportion of overspecification is highest 
when there is at least one distractor object that shares its type 
with the target, but not its color (Koolen, Krahmer, & Swerts, 
2016). Also common region of space has been found to affect 
referential overspecification, as revealed by Koolen, Houben, 
Huntjens, and Krahmer (2014). In their experiment, Koolen 
et al. used scenes such as the one depicted in Fig. 1, displayed 
in both 2D and 3D. The target was always on the table, and – 
mainly for the 3D scenes – speakers overspecified more often 
when a differently colored distractor was also on the table (in 
the same group as the target) rather than on the sideboard (in 
a different group), although the physical distance between the 
objects was the same in both scenarios.  
   Crucially, the above papers, as well as many others studies 
on reference production (e.g., Clarke et al., 2013a), have used 
indirect measures of visual attention, such as the occurrence 
of overspecification. This is problematic in studying how the 
distractors in a visual scene shape attribute selection. For ex-
ample, although the experiment by Koolen et al. (2014) sug-
gests that region of space affects overspecification, there is 
no direct evidence that this result is due to the way in which 
speakers might ignore distractors that are not in the same re-
gion as the target referent. Therefore, in the current research, 
we collect eye movements as a direct, online measure of vis-
ual attention, and combine these data with a more traditional, 
offline analysis of referential overspecification. 
   While eye-tracking methodologies are very commonly used 
to investigate language comprehension (e.g., Tanenhaus, Spi-
vey, Eberhard, & Sedivy, 1995), they are still rare in language 
production research, initially because speech movements can 
disrupt eye movement data (Pechmann, 1989; Griffin & Da-
vison, 2011). After some early studies that explored the effect 
of object fixations on order of mention (e.g., Griffin & Bock, 
2000; Meyer, Sleiderink, & Levelt, 1998), some researchers 
recently started to apply eye-tracking to test the effects of per-
ceptual and conceptual scene properties on rather open-ended 
descriptions (Coco & Keller, 2012; 2015) and object naming 
(Clarke, Coco & Keller, 2013b). However, none of this work 
has tested systematically how perceptual grouping affects at-
tribute selection for reference production.  

Current study 
To study how different manipulations of perceptual grouping 
affect reference production, we conducted an experiment in 
which speakers described target objects in visual scenes. The 
stimuli were taken from Koolen et al. (2014), for the sake of 
comparability. We recorded both the participants’ speech as 

well as their eye movements during the reference production 
task. Speech data were annotated for the occurrence of over-
specification; i.e., if descriptions contained a redundant color 
attribute. This variable served as a replication of Koolen et al. 
(2014). New in our study are the eye-tracking data. Here, we 
analyzed the number of fixations on the distractor we manip-
ulated, and the total gaze duration for that object.  
   For region of space, we hypothesize that if a distractor is in 
the same region of space as the target, it is viewed more often 
and longer than if the region of space is different, and that this 
will eventually lead to more overspecification. The same goes 
for type similarity, with more views, longer viewing time and 
more overspecification for a distractor of the same rather than 
a different type than the target. Lastly, for color similarity, we 
expect to find that a distractor most likely attracts attention if 
it has a different color than the target, resulting in more views, 
longer viewing times, and again more overspecification than 
for a distractor that shares its color with the target.  

Method 

Participants 
Thirty-one participants (26 female, mean age: 21.6) took part 
in the experiment. The participants were gathered randomly 
at the campus of Tilburg University, and received a piece of 
candy as a reward. All participants were native speakers of 
Dutch, the language of the experiment.  

Materials 
The stimulus material consisted of near-photorealistic visual 
scenes like the example scenes presented in Fig. 2 on the next 
page. As noted above, the scenes were taken from the related 
previous study by Koolen et al. (2014). They depicted a living 
room containing a dinner table and a sideboard, and some ob-
jects such as chairs for a more realistic look. The scenes were 
modeled and rendered using Maxon’s Cinema 4D.  
   The table and the sideboard formed the two surfaces (i.e., 
regions of space) that were important for our manipulations, 
since these were the spaces where the target and its two dis-
tractors were positioned. The target object always occurred 
on the table, in the middle of the scene, together with a dis-
tractor close next to it (either left or right). This first distractor 
object always had the same type and color as the target object, 
but a different size. This way, the distractor ensured that size 
was always needed for a distinguishing description, and that 
mentioning color thus resulted in an overspecified referring 
expression. The scenes also had a second distractor object, by 
means of which our three manipulations of perceptual group-
ing were realized.  
   Firstly, there was a manipulation of perceptual grouping in 
the law of common region of space. This manipulation was 
operationalized by positioning the second distractor either in 
the same region of space as the target (i.e., on the table, see 
the left scenes of Fig. 2), or in a different region (i.e., on the 
sideboard, see the right pictures of Fig. 2). It is important to 
note that the physical distance between the target object and 
the second distractor was the same in both scenarios. 
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Fig. 2: Examples of critical trials in our experiment. The distractor shares its region of space with the target (i.e., the table) 

in the left scenes, and is in a different region (i.e., the sideboard) in the right scenes. The distractor has the same type as the 
target in the upper four pictures, and a different type in the lower four pictures. The distractor has the same color as the target 

in the first, second, fifth and sixth picture, and a different color in the third, fourth, seventh, and eighth picture.  
 
   Secondly, we had two manipulations of perceptual group-
ing related to the law of similarity. The first one varied the 
type of the distractor: this type could be the same as the tar-
get’s type, or different. Example scenes can again be found in 

Fig. 2, where the second distractor object (the plate) has a 
different type than the target object (the bowl) in the lower 
four trials, while all relevant objects are of the same type in 
the upper four trials. Another manipulation of similarity was 
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employed by varying the color of the second distractor: this 
color could again be the same as or different than the color of 
the target object (see again Fig. 2 for example scenes).  
   While Fig. 2 depicts all visual scenes that were created for 
the bowl, the same was done for three other types of targets: 
a plate, a mug and a cutting board. The scenes for these four 
object types were manipulated in all conditions, resulting in 
eight trials for each object type. Participants were thus pre-
sented with thirty-two (four x eight) critical trails. In all trials, 
the target object could only be distinguished by mentioning 
type and size; if participants included color, it made the de-
scription overspecified.  
   Two measures were taken to avoid participants from using 
the same strategy for all critical trials. Firstly, we had thirty-
two filler trials. Although the scenes for these fillers had the 
same basic set-up as the critical trails, with all kinds of objects 
placed on the table and the sideboard, there were more objects 
present, which could all be the target for that scene. Further-
more, since all objects in the filler trials were white, partici-
pants were discouraged to use color when referring to the tar-
get here. 
   Secondly, to prevent participants from developing a view-
ing strategy, we created two versions of the experiment. For 
both versions, half of the visual scenes for the critical trials 
were mirrored. In version 1, this was done for the scenes in 
which the second distractor was in the same region of space 
as the target object, while in version 2, all the scenes in the 
different region of space condition were mirrored. Thus, by 
taking this measure, all participants saw half of the critical 
trails mirrored. 

Procedure 
The experiment took place in a soundproof booth, located in 
the SensoMotoric Instruments lab at Tilburg University. The 
eye-tracking measurements were made with a SMI RED250 
device, operated by the IviewX and the ExperimentCenter 
software-packages. The eye-tracker had a sampling rate of 
250HZ. We used the microphone of a webcam to record the 
descriptions of the participants; the camera was taped off for 
privacy reasons. The stimulus materials were displayed on a 
22 inch P2210 Dell monitor, with the resolution set to 1680x 
1050 pixels, with 90.05 pixels per square inch.  
   After entering the laboratory, participants signed a consent 
form, and read a first basic instruction stating that they were 
going to act as the speaker in a language production experi-
ment. Participants were then seated in the soundproof booth, 
in front of the eye tracker, and their eyes were calibrated us-
ing a 9-point validation method. When the calibration was 
completed successfully, participants were invited to read a 
second instruction, which was more detailed than the first 
one, and stated that participants were going to produce oral 
descriptions of target objects in visual scenes in such a way 
that these objects could be distinguished from the remaining 
objects in the scene. It was emphasized that using location 
information in the descriptions (e.g., “the bowl on the left”) 
was not allowed. After this second instruction, participants 
completed two practice trials, and had the possibility to ask 

questions. Once the procedure was clear, the experimenter 
left the booth, and the experiment started. 
   All participants were shown a total of 64 stimuli (32 critical 
trails and 32 fillers) in a random order. The visual scenes were 
depicted in the middle of the screen, filling 70% of the avail-
able space; the remaining 30% consisted of a grey border sur-
rounding the scenes. Before every trial, a screen with an ‘X’ 
appeared somewhere in the 30% contour area. When this X 
had been fixated for one second, the next visual scene ap-
peared automatically. When fixating the X did not work, par-
ticipants could make the next scene appear manually by 
pressing spacebar. The position of the X was different for all 
trials: they appeared in a random position in the grey border, 
again to make sure that participants did not develop a viewing 
strategy. There were 1.6 times more X triggers on the top and 
bottom row than on the left and right side, in proportion to 
the 1680x1050 screen resolution. Once all 64 trials had been 
completed, participants were instructed to leave the booth. It 
took around 30 minutes to complete the experiment. 

Research design 
The experiment had a 2x2x2 design with three within-partic-
ipants factors: region of space (same, different), type (same, 
different), and color (same, different). Three dependent vari-
ables were measured: the occurrence of color in the target de-
scriptions; the gaze duration upon the manipulated distractor 
in milliseconds per trial per participant; and the number of 
times that the manipulated distractor was fixated per trial per 
participant.  

Data coding and preparation for analysis 
All recorded object descriptions were transcribed and coded 
for the presence of color (0 or 1). For the eye-tracking data, 
we first checked for ill measurements, and excluded the data 
recorded for one participant from further analysis. We then 
assigned all fixations to either one out of four areas of interest 
(AOIs) we defined. There was one AOI for the target, one for 
the sideboard, one for the central part of the table, and one 
remainder area. The AOIs for the sideboard and the central 
part of the table represented the areas where the manipulated 
distractor could be placed. The remainder area was used for 
fixations that were not on the target or distractor objects that 
were present in the scenes. The AOIs where the manipulated 
distractor could occur were central to our analyses.  
   The coding process resulted in a separate path file for every 
participant. These path files were converted into a single file, 
and loaded into SPSS for statistical analysis. Although there 
was supposed to be data for 960 target descriptions (30 speak-
ers times 32 trials), the data for 24 trials could not be analyzed 
because either the description or the eye movements were not 
recorded correctly. The final analysis thus contained data for 
936 trials.  
   While the data for all 936 trials was used to analyze the re-
dundant use of color, we created subsets of the data to analyze 
gaze duration and the number of fixations. For both variables, 
we only analyzed the cases where speakers fixated – and thus 
saw – the manipulated distractor. This was the case in 680 out 
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of 936 cases. For gaze duration, we then calculated for every 
trial the total amount of time that the participant looked at the 
manipulated distractor object, and standardized this score by 
calculating the z-score per trial per speaker. Only the scores 
in the range of -3 ≤ z ≤ 3 were included in the analysis, which 
means that scores for 13 cases were filtered out.  
   For the number of fixations, we created a similar subset of 
the data, but this time we calculated the number of times that 
speakers looked at the manipulated distractor for every trial. 
Again, the z-score was calculated, which led to the exclusion 
of 12 trials that were not part of the final analysis for this var-
iable. 

Results 
To test for significance, we performed a series of univariate 
ANOVA tests. We only report on interactions when they are 
significant. Given that we used subsets of the data in our sta-
tistical analyses, performing repeated measures tests was not 
possible due to empty cells.  

Results for redundant color use 
In general, our speakers included a redundant color attribute 
in 64% of the descriptions. The first ANOVA was performed 
to test if redundant color use was affected by our manipula-
tions of perceptual grouping.  
   The first factor that we expected to affect the redundant use 
of color was region of space. However, we did not find a sig-
nificant effect here (F(1,927) = .11, n.s.): speakers redundantly 
used color equally often when the manipulated distractor was 
in the same (M = .64, SE = .02) or a different (M = .64, SE = 
.02) region of space as compared to the target.  
   For our two manipulations of similarity, we did find effects 
on the redundant use of color. In these cases, the main effects 
of type similarity (F(1,927) = 9.94, p < .01, ŋp

2 = .011) and color 
similarity (F(1,927) = 5.44, p < .05, ŋp

2 = .006) were due to an 
increase in redundant color use when the manipulated distrac-
tor had the same type as the target, and a different color (M = 
.77, SE = .03). The other three cells were practically indistin-
guishable (same type - same color: M = .61, SE = .03; diffe-
rent type - same color: M = .60, SE = .03; different type - 
different color: M = .59, SE = .03). This pattern resulted in a 
significant interaction between type similarity and color sim-
ilarity (F(1,927) = 7.47, p < .01, ŋp

2 = .008).  

Results for gaze duration 
The second ANOVA was run to analyze if our manipulations 
of grouping on the total amount of time that speakers looked 
at the manipulated distractor.  
   Firstly, there was a main effect of region of space on gaze 
duration (F(1,651) = 215.5, p < .001, ŋp

2= .249), showing that 
the distractor object was looked at significantly longer when 
it occurred in the same (M = 1812.7, SD = 60.87) rather than 
a different (M = 466.7, SE = 68.6) region of space than the 
target. A similar effect was found for the manipulation of type 
similarity (F(1,651) = 5.06, p < .05, ŋp

2= .008). For this factor, 
we found that distractors that shared their type with the target 

(M = 1242.9, SE = 66.2) were looked at longer than distrac-
tors for which this was not the case (M = 1036.5, SE = 63.5).  
The third factor, color similarity, did not affect gaze duration: 
although the distractor was looked at slightly longer when it 
had the same (M = 1176.6, SE = 61.6) rather than a different 
(M = 1102.8, SE = 67.9) color than the target, this difference 
was not significant (F(1,651) = .65, n.s.).  

Results for number of fixations 
The third dependent variable in our experiment was the num-
ber of fixations on the manipulated distractor. Again, there 
were effects of region of space and type similarity, but not of 
color similarity.  
   Firstly, when the distractor was in the same region of space 
as the target object, participants looked at this object signifi-
cantly more often (M = 2.04, SD = .06) than when it occurred 
in a different region of space (M = 1.56, SD = .06); F(1,652) = 
33.37, p < .001, ŋp

2= .049. Similarly, when the distractor was 
of the same type as the target object, it was fixated more often 
(M = 1.93, SD = .06) than when it had a different type (M = 
1.67, SD = .06). Again, we found no effect of color similarity: 
the distractor’s color (same: M = 1.85, SE = .06; different: M 
= 1.76, SE = .06) did not influence the number of fixations 
(F(1,652) = 1.15, n.s.). 

Discussion 
The goal of this research was to test how perceptual grouping 
affects reference production. We combined both online (eye-
tracking) and offline (occurrence of referential overspecifica-
tion) measures of visual attention to study the extent to which 
grouping causes speakers to ignore certain distractors that are 
present in a visual scene, aiming to connect the observed scan 
patterns referential overspecification. We had three manipu-
lations of grouping (i.e., common region of space, color sim-
ilarity, and type similarity), all realized by varying the loca-
tion and characteristics of one specific distractor object in the 
visual scenes that were presented to the participants.  
   The first manipulation that was present in our stimuli made 
the manipulated distractor object appear either in the same or 
a different region of space as compared to the target referent. 
In Koolen et al. (2014), this manipulation led to a significant 
effect of grouping on overspecification, with more redundant 
color attributes in the ‘same group’ condition rather than the 
‘different group’ condition. In the current study, we could not 
replicate this result: the proportions of overspecification that 
we found were the same in both conditions. However, we did 
find effects of region of space in the eye-tracking data: when 
the distractor was in the same region as the target referent, it 
was viewed longer and more often than when it was in a dif-
ferent region. This way, region of space (Palmer, 1992) influ-
ences the extent to which certain distractors are considered in 
a reference production task.   
   The question remains why the patterns for common region 
of space that we observed in the eye-tracking data were not 
reflected in effects on overspecification with color, such as 
found by Koolen et al. (2014). To explain this issue, we refer 
to some practical differences between the two studies. Firstly, 
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Koolen et al. (2014) displayed the stimuli on a big television 
screen, while the current experiment used only 70% of a com-
puter screen. Perhaps more important was that Koolen et al. 
found a convincing effect of common region of space for 3D 
visual scenes, but that the effect was small for 2D scenes. In 
the current study, only 2D scenes were used, due to the eye-
tracking paradigm. Given that our 2D scenes led to clear ef-
fects of region of space in the eye-tracking data, it would be 
interesting to test how this grouping principle affects lan-
guage on variables other than overspecification, such as flu-
ency and speech onset time.  
   For type similarity, the effect of the manipulation in the ref-
erence production data resonates the pattern in the eye-track-
ing data. When the distractor had the same type as the target, 
it was viewed longer and more often than when the type was 
different, and the proportion of overspecified references was 
higher. These results show direct evidence for the close link 
between visual scene perception and language production, in 
line with the few previous studies in this direction (e.g., Coco 
& Keller, 2012; 2015; Griffin & Bock, 2000). For color sim-
ilarity, we found a significant interaction with type similarity 
for the speech data, with an increase in overspecification with 
color when the distractor had the same type as the target, and 
a different color. This interaction is a replication of Koolen et 
al. 2016). For the eye-tracking data, there were no significant 
effects or interactions with color similarity involved, presum-
ably since color differences “pop out” of the scene (Treisman 
& Gelade, 1980). As such, there is no strict need for speakers 
to fixate distractors (repeatedly) in order to perceive their dif-
ferent color.  
   Finally, we would like to discuss our decision to use subsets 
of the data for the eye-tracking analyses. In these subsets, we 
only included data for the trials where the speaker fixated the 
manipulated distractor object (or at least the AOI where it was 
occurred) at least once. Thanks to this approach, we could be 
certain that speakers were most likely aware of the existence 
of this object, which makes the observed effects of perceptual 
grouping even more valid: it excludes, for example, measure-
ment errors that occur when speakers change their position in 
front of the eye-tracker. However, one can also argue that our 
approach was too strict, because in order to form a description 
of a target object, it is not necessary to scan all objects in the 
scene. In future analyses, we aim to refine our paradigm, also 
by distinguishing various time windows for every trial to test 
both the structural and temporal relations between scene per-
ception and reference production.  
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Abstract
We discuss here conceptual change and the formation of robust
learning outcomes from the viewpoint of complex dynamic
systems, where students’ conceptions are seen as context de-
pendent and multifaceted structures which depend on the con-
text of their application. According to this view the conceptual
patterns (i.e. intuitive conceptions) may be robust in a cer-
tain situation but are not formed, at last not as robust ones, in
another situation. The stability is then thought to arise dynami-
cally in a variety of ways and not so much mirror rigid ontolog-
ical categories or static intuitive conceptions. We use compu-
tational modelling in understanding the generic dynamic and
emergent features of that phenomenon. The model shows how
context dependence, described here through structure of epis-
temic landscape, leads to formation of context dependent ro-
bust states. The sharply defined nature of these states makes
learning to appear as a progression of switches from state to
another, given appearance of conceptual change as switch from
one robust state to another.
Keywords: Conceptual change; concept learning; epistemic
landscape; simulations

Introduction
Learning scientific knowledge where learners initial, intuitive
concepts gradually change towards more scientific ones is
known as conceptual change. Conceptual change as an ex-
pression for such learning emphasizes the clear transition or
even revolutionary-like transformation of learners knowledge
during the learning process (Duit & Treagust, 2003; Ozdemir
& Clark, 2007; Rusanen, 2014). The recently suggested com-
plex dynamic systems view on conceptual change instead of
such a picture views students’ conceptions as multifaceted
structures which depend on the context of their application.
In the dynamic systems view the conceptual patterns (i.e. in-
tuitive conceptions) may be robust in a certain situation but
are not formed, at last not as robust ones, in another situ-
ation. The stability is then thought to arise dynamically in
a variety of ways rather than mirroring rigid preconceptions
or static intuitive conceptions (Brown, 2014; Gupta, Ham-
mer, & Redish, 2010; Koponen, 2013; Koponen & Kokkonen,
2014). What we think as intuitive conceptions may be in fact
so strongly dependent on context, instructional settings and
individual learning history that such conceptions should be
approached as emergent cognitive epiphenomena, which are
situational and mirror partially the targeted scientific mod-
els forming the basis of the design of instructional settings.
In what follows, we refer to such epiphenomenal conceptual
structures simply as students explanatory schemes. In this
study we discuss how the dynamic systemic view may change
our ideas how conceptual change may accrue from emergent

robust learning outcomes. As a concrete example of learning
we consider direct current (DC) electrical circuits and empir-
ical results obtained in that context (Koponen & Kokkonen,
2014; Kokkonen & Mäntylä, 2017). In this case the target
knowledge and learning situation can be modelled as learn-
ing a tiered structure of explanatory schemes, where students
are expected to learn a simple set of concepts and relational
schemes between the concepts. The model is highly simpli-
fied and idealized, but it shows how context dependence, de-
scribed here through structure of epistemic landscape, leads
to formation of context dependent robust learning outcomes.
Due to sharply defined nature of these states, learning ap-
pears as a progression of switches from state to another, giv-
ing appearance of conceptual change as switch from one pre-
existing robust state to another, instead of gradual dynamic
change.

Empirical cases modelled
The research of learning DC-circuits has revealed that
the students tend to use very similar types of explana-
tory schemes. Some researchers of conceptual change at-
tribute these schemes to pre-existing ontological commit-
ments, while some others see them more context dependent
and possibly even artefacts of the empirical research setting
(Brown, 2014; Gupta et al., 2010; Koponen, 2013; Koponen
& Kokkonen, 2014). Nevertheless, most empirical studies
have revealed very similar collections of explanatory schemes
although there are differences in details (see (Ozdemir &
Clark, 2007; Gupta et al., 2010; Koponen & Kokkonen, 2014;
Kokkonen & Mäntylä, 2017) and references therein). The
empirical data used here as starting point consists of three dif-
ferent contexts I-III (Koponen & Kokkonen, 2014; Kokkonen
& Mäntylä, 2017):

• I: Light bulbs in series. Two variants (a single light bulb
and two light bulbs) in terms of the brightness of the bulbs
are compared. This comparison consists of events e1 and
e2.

• II: Light bulbs in parallel. The first variant is again involves
a single light bulb. The second variant involves two light
bulbs in parallel. Comparisons yield events e′1 and e′2.

• III: Comparison of the brightness of light bulbs in series (I)
and in parallel (II). In the first variant, participants compare
the brightness of light bulbs in series, and parallel circuits
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to the one-bulb case only. In the second variant, partici-
pants compare series and parallel cases to each other. This
yields events e′′1 and e′′2 .

All six different types of events are referred to as an event
set ε = e0, e1, e2, e′0, e′1, e′2, e′′0 , e′′1 , e′′2 , with e0, e′0 and e′′0
representing observations of the brightness of a single light
bulb in each context (the brightest light bulb). This set thus
describes (formally) the task and how it was sequenced and
how students progressed from context to I to III. In what fol-
lows ε is treated as exogenous variable describing the event
set, scaled to range ε ∈ [0,1] where 1 represent full set of
events. Further details about the empirical setup, design and
excerpts from the student interviews are reported elsewhere
(Koponen & Kokkonen, 2014; Kokkonen & Mäntylä, 2017).
When details are put aside, in all cases one finds similar types
of explanatory schemes ,listed and characterised in Table I.

Table 1: The explanatory schemes mk inferred from the em-
pirical studies (Koponen, 2013; Kokkonen & Mäntylä, 2017).

Model Description
m1 The battery as a source of electricity

(current or voltage).
m2 m1+ components consume electricity

(current or voltage).
m3 m2+ voltage/current over components

creates/needs current/voltage.
m4 m3 refined as scheme based on Ohms law

+ Kirchhoffs laws KI and KII.
m5 m4+components consume electric

energy/power (Joule’s law)

Explanatory schemes m1 and m2 are well-known electric
current-based intuitive explanatory schemes found in many
empirical studies (Koponen & Kokkonen, 2014; Kokkonen
& Mäntylä, 2017), while m3 is partially correct explanation,
which takes into account the role of components in determin-
ing the current. Finally, schemes m4 and m5 are complete and
correct (scientific) schemes. The determination schemes D1
and D2 constraints (Kirchhoff’s I and II laws, respectively)
and D3 is relational scheme (Ohm’s law) regulating the rela-
tionship between the pertinent concepts (voltage and current).
A more detailed description of these cases and their repre-
sentation are given elsewhere (Koponen & Kokkonen, 2014;
Kokkonen & Mäntylä, 2017) and are not reproduced here.
The structure of explanatory schemes can be schematically
represented as in Fig. 1 as the generic tiered system, where
more sophisticated explanatory schemes are at the highest
tiers and the less sophisticated schemes at lower tiers can be
seen as incomplete or partial versions of the higher tier ex-
planatory schemes.

The simulation model
The task we discuss here involves five explanatory schemes
with ascending complexity and can thus be represented as

Figure 1: A Tiered system of five explanatory schemes. The
different hierarchical levels consist of explanatory schemes
m1 - m5 of ascending level of complexity and expanding cov-
erage of explanatory power. The symbols C1 and C2 are con-
cepts (current and voltage) entering the models m1-m5.

a tiered structure shown in Fig. 1.The tiered system of ex-
planatory schemes can be represented as an epistemic land-
scape, which is an abstract representation of the explanatory
power of explanatory schemes. Such descriptions have been
previously used in studies describing the cognitive and so-
cial effects of discovery and knowledge foraging (Weisberg
& Muldoon, 2009; McKenzie, Himmelreich, & Thompson,
2015). Learning is then described as foraging for best ex-
palining scheme in that landscape, based on utility guided
probabilistic selection of the best explaining scheme.

Epistemic landscape
A tiered system of explanatory schemes consists of schemes
mk, k=1,2,...,5, in which the hierarchical level k is defined
according to the complexity of the scheme. More com-
plex schemes require greater proficiency from the user of the
scheme, such as mathematical proficiency in deriving predic-
tions from the scheme or making deductions based on it. The
utility of a given scheme can be seen as a trade-off measure
between the scheme’s complexity and the amount of events
which the learner needs to explain. The scheme m1 is sim-
ple and, thus, its utility for a simple set of events is high, but
decreases for many events to be explained. The scheme m5
is the most complex one and requires great proficiency. Be-
cause it is complex to use, it has low utility in simple cases,
but its utility increases with accumulation of events.

The system of explanatory schemes, as far as the explana-
tory power of schemes for given set of events is in focus, can
be represented in idealized form of epistemic landscape. The
epistemic landscape is a simplified description how increased
information (in form of events) gives cues to select a given
model, and on the other hand, it describes how much pro-
ficiency is required in using the model. There is at present
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no detailed way to derive the epistemic landscape from the
graph as described in Fig. 1 and the connection remains a
qualitative one. With these restrictions, however, the epis-
temic landscape can be constructed by using utility functions
uk(ε,κ), which describe the epistemic utility of schemes mk.
The detailed forms of the functions are, fortunately, not im-
portant here; it is enough that they can serve to describe the
assumed generic features of the tiered system. Therefore, the
mathematical description of the epistemic landscape adopted
here is based on a set of suitably flexible functions. Con-
venient mathematical forms that are easy to use in simula-
tions because the cumulative probability finction is invert-
ible are provided by MinMax-distributions (Kumaraswamy-
distributions) (Jones, 2009) as given in Table 1. The epis-
temic landscape thus consists of five manifolds of which Fig.
2 show the schemes with the greatest utility in a given region.

Table 2: The utility functions uk(ε,κ) forming the epistemic
landscape. The normalization factors N1-N5 are defined so
that maximum value of each utility function is 1. The func-
tions fn,m(x) = xm(1− xm−1)n−m are MinMax-distributions
(Kuwaraswamy-distributions).

State Utility function
m1 u1(ε,κ) = N1 fn1,m1(ε) fn′1,m

′
1
(κ)

m2 N2[a1u1(ε,κ)+a2 fn2,m2(ε) fn′2,m
′
2
(κ)]

m3 N3[b1u2(ε,κ)+b2 fn3,m3(ε) fn′3,m
′
3
(κ)]

m4 N4[c1u3(ε,κ)+ c2 fn4,m4(ε) fn′4,m
′
4
(κ)]

m5 N5[d1u4(ε,κ)+d2 fn5,m5(ε) fn′5,m
′
5
(κ)]

Learning as foraging
The model of learning introduced here assumes that learn-
ing takes place as foraging for explanation schemes across
the epistemic landscape. We assume that foraging is guided
simply by the topography of the epistemic landscape, as a
”hill climbing” (HC) in the direction of the steepest change of
the gradient of the landscape (McKenzie et al., 2015; Weis-
berg & Muldoon, 2009). When exogenous parameter ε in-
creases by δε (a new event or cue becomes available), the
agent selects the most probable explanatory scheme from the
neighborhood of its current state either by switching the state,
”uphilling” by increasing the proficiency or, if more advan-
tageous, ”downhilling” by decreasing the proficiency. Pro-
ficiency is taken here as a skill-like property. A response
to success and failure is modelled as logistic development
(Steenbeck & Van Geert, 2007; Van Geert, 2014) of learner’s
proficiency during the learning process in form

κ← κ±µκ(1−κ) (1)

where µ is the effect of memory of success or failure. Here,
success means that during foraging learner has upphilled, i.e.
moved to direction of increased utility, failure, on the other
hand, means that learner has downhilled, moved towards de-
creased utility.

Figure 2: The epistemic landscape corresponding to explana-
tory models from m1 to m5 as indicated in space spanned by
events consisting of events ε and learner’s proficiency κ. The
contours are shown for values 0.95, 0.90, 0.86, 0.82, 0.78,
0.74, 0.70, 0.67, 0.60, 0.55, 0.50.

Selection of explanatory scheme
The learners are assumed to select the best explanatory
scheme mk, one at a time, on basis how its utility compares to
utilities of other schemes. The probability Pk that scheme mk
is selected is based on probabilistic decision theory (Laciana
& Oteiza-Aguirre, 2014; Yukalov & Sornette, 2014) and is
given as

Pk =
uk exp [ βuk ]

∑ j 6=k u j exp [ βu j ]
(2)

where β is parameter related to the confidence of choice, β�
1 indicating low confidence (i.e. high noise or randomness)
and β� 1 high confidence (i.e. low noise or randomness). In
what follows, we use β= 5 which represents high confidence.

Implementation of simulations
The control (exogenous) variable is event ε. The output (en-
dogenous) variables are the selected explanatory scheme mk
and the learner’s proficiency κ, which changes dynamically
as a part of the learning process. The output variables depend
on the parameters, which are the confidence β and memory µ.

The learning process as foraging across the epistemic land-
scape is simulated based on the probability of explanatory
scheme selection Pk in Eq. (2). At each instant when the
value of ε increases by δε (here δε = 0.01), it is decided
whether: 1) the model switch happens, or 2) proficiency in-
creases, decreases or remains unchanged. Both of these three
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steps are characterised by a set of probabilities, and event se-
lection is carried out by the roulette wheel -method (Lipowski
& Lipowska, 2012). In the roulette wheel -method a discrete
set of N possible events k with probabilities pk are arranged
with cumulative probability Φk = ∑

k
i=1 pi/∑

N
i=1 pi. The event

k is selected if random number 0 < r < 1 falls in the slot
Φk−1 < r < Φk. In case 1) the probabilities pk are given by
Eq. (5) and pk = Pk with k = 1,2,3. In case 2) one has three
probabilities p1 = Pk′(ε+δε,κ), p2 = Pk′(ε+δε,κ+δκ) and
p3 = Pk′(ε+δε,κ−δκ) for any given scheme mk′ . All simu-
lations are carried out for equally distributed set of all initial
values of κ, for 100 steps with δε = 0.01 and δκ = 0.01 in a
mesh of 100x100 points and for 9000 repetitions.

Results
The outcome of the simulations applied in case of learning the
tiered theory structure is number density nk of choice of given
scheme mk at given values of ε and κ. The number density nk
is related to likelihood that in an ensemble of students a given
student holds the explanatory scheme mk. In case a large set
of students’ explanatory schemes are collected in an empiri-
cal research the density nk would correspond the distribution
of how different finding are classified in different categories,
categories then roughly corresponding the peaks in the den-
sity distribution, while the slight differences in empirically
found categories would corresponding the diffuse spread of
seen in the density distribution. This association of empirical
findings is not exact, of course, but provides a close enough
interpretation of the density plots. Note that all density plots
are shown as contour plots as in topographical maps.

The shift to hold or select more advanced schemes during
the learning (or training sequence) when ε increases from ε =0
(no events to be explained) to ε=1 (all events to be explained)
is particularly clear when density nk of selected schemes in
the (ε,κ)-space is examined. Such density distributions nk of
preferred schemes are shown in Fig. 3 for strong (µ=0.05), in-
termediate (µ=0.02), and weak (µ=0.01) memory effects. Re-
sults are shown only for cases that initially have proficiencies
0.45 < κ < 0.55 which represents a middle cohort of initial
proficiencies, thus representing the assumed average student
for which the learning task is designed. The results shown
in Fig. 3 demonstrate how selection of given schemes k ac-
cumulate to certain regions, different from but close to those
regions where utilities (see Fig. 2) have peak values. These
regions are shown as dark color in the figures, the darker the
shade the higher the density. The dark regions where den-
sities accumulate are the robust outcomes of learning. This
behaviour is due to dynamic effects of foraging for best ex-
planatory schemes in the epistemic landscape and how mem-
ory affects the development of proficiency.

The density distribution shows directly how likely a selec-
tion of given explanatory scheme is in comparison to other
schemes. When the memory is weak (µ = 0.01) the low-level
schemes m1 and m2 are likely to be selected throughout the
learning sequence. In addition, scheme m3 is present through-

out the learning sequence because it is the most preferred ini-
tial scheme for mid-cohort learners. When memory increases
from µ =0.01 to 0.05 the dynamic evolution becomes more
interesting. In the intermediate stage of learning (stage II)
scheme m4 begins to compete with m3 and finally, in the end
of the learning stage scheme m5 is dominant. For the highest
memory µ=0.05 the development becomes very predictable.
Schemes m1 and m2 are likely choices only at low proficien-
cies, and finally, in the end of the training sequence ε ¿ 0.6 the
scheme m5 is dominant. For high memory-effects and high
confidence the robust learning outcomes are sharply defined,
island- like and give expression of well-focused explanatory
schemes with no overlap with other explanatory schemes.
The overall picture is then that when new event becomes
available, learner switches to better explaining schemes to-
wards the end of the learning sequence. This is the successful
learning path.

In high memory region, however, the polarization of learn-
ing outcomes happens; with increased preference of high
level schemes m5 also the preference for low level schemes
m1 and m2 tend to increase. This is due to fact that suc-
cess and failure affect in similar way and have equally strong
memory-effect.; success feeds success but similarly also fail-
ure feeds failure. Of course, were the memory effect asym-
metric, stronger memory effect for success than for failure,
such polarization would disappear.

Discussion and conclusions
In the complex systems view of conceptual change suggested
here the formation of robust learning outcomes accrues from
foraging on epistemic landscape, which represent the target
knowledge as it is contained in the designed learning task.
The interplay of learner’s cognitive dynamics and the target
knowledge as it appears in the design of the learning tasks
leads to formation of stable and dense regions of preferred
explanatory schemes in epistemic landscape. The origin of
these robust states is on the learning dynamics and how it
interacts with the context (structure of the learning task).
In some cases, depending on the learner’s proficiency and
the development of the proficiency, learning outcomes may
match the target knowledge, but in some other cases, may
fall short of targeted outcomes. However, even those states,
which do not match the targeted states, are robust, thus giv-
ing impression of pre-existing conceptual states of learner, as
assumed in traditional conceptual change models. Accumu-
lation of densities nk in certain regions are those areas, where
empirical findings will be likely to associate the dynamically
formed epiphenomenal robust state with a certain assumed
misconception or pre-existing intuitive conception. If this
interpretation is correct, the vision of conceptual change as
switch between cognitively pre-existing static states to an-
other needs to be revised and replaced by a more dynamic
and fluid picture of dynamically formed robust but yet epiphe-
nomenal states.

In the present study, the picture of conceptual change as
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Figure 3: The effect of memory µ on explanatory scheme selection n when events unfold (described as an increasing number
of events ε). The cases with memory µ=0.01, 0.02 and 0.05 are shown. The range κ ∈ [0.45,0.55] of initial proficiencies are
considered (mid-cohort). The contours are shown for probabilities P = 0.80, 0.70, 0.50, 0.25, 0.15, 0.10, 0.05, 0.02, 0.01,
0.0050, 0.0025. The number of repetitions for each of 100x100 data points is 9000.
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switch from intuitive conceptions to more scientific concep-
tions (or sometimes, to other intuitive conception) emerges as
rapid but continuous dynamic development of one robust state
to another state rather than as abrupt and discontinuous switch
from one pre-existing static state to another. Moreover, such
states are seen as epiphenomenal outcomes of interplay be-
tween learning dynamics and task design, rather than inde-
pendent construct of mind, rooted in cognitively fundamen-
tal, e.g. substance-based ontological categories. The fact that
for most of the training sequence there is little overlap be-
tween the different robust epiphenomenal states and periods
of clearly continuous change are short, a picture of discontin-
uous switch from robust state to another is obvious. Super-
ficially the course of events in the present model correspond
the traditional view of conceptual change but the difference
in interpretation of the underlying dynamics and nature of
states in present view is fundamentally different from the tra-
ditional one; the present view strongly suggests that behind
the observed behaviour is after all continuous learning dy-
namics and which, through designed epistemic landscape, is
essentially context dependent.

In summary, the dynamic view provides fresh viewpoint
on conceptual change and suggest new ways to conceptualise
it. The results we have provided here are far from conclusive
and are at best only suggestive, but we think that the view
proposed here of learning outcomes as context dependent, dy-
namically robust but ultimately emergent epiphenomena de-
serves closer attention and prompts us to design very differ-
ent empirical research settings. We expect that the main use
of the abstract computational model as introduced here is on
its potential uses in guiding attention in interdependencies of
task structure and learning outcome, and in helping to focus
on dynamic, time dependent features of conceptual change in
empirical research settings.
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Abstract 

Individuals with autism spectrum disorders (ASD) are said to 

have deficits in “theory of mind.” The present paper explores 

two main accounts of the mechanisms underlying these 

deficits. On one account, high-functioning adults with ASD 

struggle to infer others’ mental states. On another account, 

they lack an ability to integrate those mental states into a 

coherent understanding of action. We tested these two 

accounts by making several modifications to the Faux Pas 

task—a commonly used advanced theory of mind task—

including the presentation of explicit mental state information. 

Surprisingly, in contrast to previous work, individuals on the 

autism spectrum exhibited both intact integration and intact 

inference. 

 

Keywords: Theory of mind; intentional action; autism spectrum 

disorder; mental state inference 

Autism and Theory of Mind: Belief and Action 

Understanding 

Autism spectrum disorder (ASD) is a developmental 

disorder characterized by deficits in reciprocal social 

interaction and communication (DSM-V, American 

Psychiatric Association, 2013). In contrast to typically 

developing children, autistic children are widely described 

as having deficits in “Theory of Mind” (ToM), or the ability 

to represent the mental states of other people. Characteristic 

of these deficits have been ASD children’s early failures to 

pass false belief tasks at the normative age of four years 

(Baron-Cohen, 1985). But by the time they reach adulthood, 

many high-functioning adults on the autism spectrum 

succeed at traditional false belief tasks (Bowler, 1992). 

Because ASD individuals require higher verbal ability than 

typically developing adults to pass such tasks, researchers 

have proposed that ASD individuals do so by using 

deliberate, conscious calculation (Happé, 1995) and by 

relying on specific features of language, such as 

complement syntax (Lind & Bowler, 2009). 

However, high-functioning autistic adults who pass 

classic ToM tasks persist in their social deficits (e.g., Klin, 

Jones, Schultz, & Volkmar, 2003).  Therefore, such tasks 

cannot be capturing these social deficits’ core features. 

Hence, autism researchers have developed more “advanced” 

ToM tasks to highlight the persistence of broader theory of 

mind deficits in more naturalistic settings.   Although 

researchers have succeeded at demonstrating that 

individuals on the autism spectrum struggle with these novel 

tasks (Baron-Cohen, 1999; Zalla, Sav, Stopin, Ahade & 

Leboyer, 2009), the precise mechanisms underlying these 

struggles have gone largely unexplored. The present paper 

explores these mechanisms by examining a modified 

version of one such task. 

The Faux Pas Task: Revealing Deficits in 

Adults with ASD 

The “faux pas” task (Baron-Cohen, O’Riordan, & Jones, 

1999; Zalla et al., 2009) presents a context in which one  

character (the speaker) makes a statement that is 

unintentionally offensive to the listener because the speaker 

has a false belief. For example, in one story, Jane moves 

into a new apartment and purchases new curtains for the 

windows. When her best friend Lisa comes over, she says to 

Jane, “Oh, I hope you’re going to get new curtains! These 

ones are awful!” Typically developing individuals recognize 

that Lisa’s comment is offensive to Jane, but when asked 

why Lisa said that, infer that Lisa did not know the curtains 

were picked out by Jane herself. In contrast, while 

individuals with ASD can detect that something was “wrong” 

or “awkward” with Lisa’s comment, they struggle to detect 

that Lisa made the comment unintentionally – that she had a 

false belief and made the statement out of a positive or 

neutral desire (e.g., to be helpful with decorating). The 

outcome is not just an unfortunate side effect of an 

otherwise fulfilled intention; the complete falsity of the 

agent’s belief actually precludes the fulfillment of the 

speaker’s desire. Unlike controls, adults with ASD 

demonstrated mixed success in detecting the character’s 

false belief and positive desire. They sometimes 

acknowledged that the speaker had a positive desire but 

often failed to correctly infer the speaker’s belief state. And 

in a small number of cases (10% of all responses), they even 

incorrectly attributed a negative intention to the speaker 
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(e.g., Lisa wants to insult Jill’s taste in décor) (Zalla et al., 

2009). 

 

The Faux Pas Task: What Does it Measure? 

What explains the struggles that high-functioning 

individuals with ASD encounter on these tasks? The faux 

pas task has previously been described as a more naturalistic 

and more robust way than ‘false belief’ tasks of measuring 

mental state understanding. But understanding the mental 

states behind the kinds of actions presented in the Faux Pas 

task can be broken down into several distinct subtasks, 

outlined below and in Figure 1. 

Conceptual integration First, achieving a holistic 

understanding of the depicted complex behavior requires an 

understanding of the concept of intentional action. This 

concept requires the social perceiver to grasp more than just 

individual mental state concepts of belief and desire: rather, 

it requires understanding how these individual concepts are 

integrated to support the understanding of an action as 

intentional. That is, an action is performed intentionally 

only if the agent had a desire for the action’s outcome and a 

belief that her action would lead to (serve as a means to 

achieving) that particular outcome (Malle & Knobe, 1997). 

In the present example, for instance, understanding what 

action was intentional (making a certain remark) and what 

outcomes were unintentional (the remark offended Jane) 

requires understanding both that Lisa had a false belief (that 

the curtains were bought by the previous owner) and that 

she wanted to be critical only of the previous owner, and 

that she therefore could not have offended Jane intentionally.   

Mental state inference In addition to requiring participants 

to have a concept of intentional action, the faux pas task 

requires another capacity: the ability to infer the specific 

contents of the character’s mental states. For example, it is 

not explicitly stated in the story that Lisa has a false belief 

about who bought the curtains or that she wanted to be 

critical of the previous owner; the social perceiver must 

infer this belief and this desire from the story. Further, there 

are at least two different mechanisms by which individuals 

with ASD could be failing to correctly infer the characters’ 

mental states (see Figure 1). On the consensus account, the 

faux pas task is simply an “advanced” way of revealing 

enduring deficits in theory of mind – the ability to generate 

the contents of specific mental states, most particularly, 

belief – that are already revealed in simpler false belief tasks 

earlier in life. We refer to this account as the enduring 

“theory of mind” deficit account.   

On an alternate account, however, individuals may 

struggle on the faux pas task not because they have an 

enduring deficit in generating the contents of mental states, 

but because the faux pas task contains an increase in 

complexity over traditional false belief tasks, thereby 

disallowing the use of familiar (linguistic) compensation 

strategies. For example, individuals with ASD may struggle 

on the faux pas task because this task presents stories in 

which it is necessary to make a rich suite of background 

assumptions about the agent’s social roles and context (e.g., 

the idea that friends normally do not insult their friends’ 

curtains). Such a task does not allow for the use of simple 

rules (such as “perception leads to knowledge”) to generate 

mental state contents; it instead requires social perceivers to 

draw productively on their general knowledge to produce 

accurate inferences. Since individuals with ASD also have 

documented deficits in this type of knowledge-based 

inferential generativity (Loth, Gómez, & Happé,  2008), it is 

possible that struggles on the faux pas task are due to a 

general knowledge-based inference deficit, and not any 

deficit in theory of mind per se.    

 

Figure 1.  Capacities required for action understanding in 

the Faux Pas task. 

 

The Present Study: Which Hypothesis Explains 

Low Performance?   

To distinguish between the mental state inference hypothesis 

and the conceptual integration (or intentional action 

understanding) hypothesis, we developed 8 novel vignettes 

based on the faux pas task (Zalla et al., 2009; Baron-Cohen 

at al., 1999) and created four conditions of varying 

information availability. In the “No Information” condition, 

we presented participants with no explicit mental state 

information, as in the original Faux Pas task. In three 

additional conditions, we presented them with either the 

character’s belief only (Belief condition), the character’s 

desire only (Desire condition), or both the character’s belief 

and desire (Full Information condition). A sample story in 

the Full Information formulation follows. In the “No 

Information” condition, the underlined text would be 

omitted: 

Clara is very short and dresses plainly. One day she goes to 

pick up her son James from school early for a medical 

appointment. Clara enters the school and spots James’s 

teacher, Mrs. Hayes. Mrs. Hayes thinks that Clara is a 

student lost in the hallway. [Belief] Mrs. Hayes wants to 

help [Desire]. Before Clara can ask after James’ 

whereabouts, Mrs. Hayes looks at Clara and says, “Have 

you lost your class, honey?” 

 

Mental State Inference vs. Conceptual Integration By 

comparing stories in the three explicit mental state 

information conditions with the No Information condition, 

we can broadly distinguish between the inference and 
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integration hypotheses. If adults with ASD are capable of 

conceptually integrating mental state information for action 

understanding but are not capable of inferring this 

information, they should show improved performance in the 

presence of explicit mental state information over the “No 

Information” case. In contrast, if they are not capable of 

integrating mental state information for intentional action 

understanding, they should struggle to accurately interpret 

the meaning of the agents’ actions as depicted in the stories 

even when mental state information is explicitly presented 

to them. 

 

Two Mechanisms of Mental State Inference In addition to 

distinguishing broadly between mental state inference and 

conceptual integration, we also sought to distinguish two 

possible mechanisms of mental state inference deficit: the 

commonly cited theory of mind deficit and a nonspecific 

general knowledge deficit.  In previous versions of the Faux 

Pas task, pieces of general knowledge (such as the fact that, 

in the above sample story, Clara probably appears to be 

younger than she really is) were not included in the story 

and instead had to be inferred – in addition to mental state 

information. Low performance on the task may thus have 

been a result of failed general knowledge inferences, not a 

result of failed ToM inferences. In the present task, we 

sought to mitigate this ambiguity by explicitly providing 

such background information in every condition (e.g., 

“Clara is very short and dresses plainly”) and requiring 

participants to infer only the missing mental state 

information (e.g.,  that, in light of Clara’s appearance, Mrs. 

Hayes falsely believed Clara to be a student). If participants 

continue to struggle to produce belief inferences in the No 

Information condition in spite of these additions of 

inference-ready background information, then we can be 

confident that the present faux pas stories indeed measure 

only mental state inference (or “theory of mind”) 

capabilities, and not any additional abilities. 

 

Conceptual Integration Apart from inference, by explicitly 

presenting mental state information, we can test ASD 

individuals’ abilities to integrate this information in the 

service of intentional action understanding.  To demonstrate 

integration capacity, individuals on the autism spectrum 

must go beyond understanding the fact that Lisa had a false 

belief.  They must also show understanding of how her false 

belief is relevant to the action and its outcome: that it was 

because she had a false belief that she made the remark, and 

that the remark resulted in offense because of that false 

belief (Lisa didn’t realize that it would lead to a negative 

outcome when she said it) (Figure 2).  Similarly, 

understanding that Lisa had a positive desire is not 

sufficient for a full conceptual understanding of the action.  

In the presence of a positive desire, individuals with ASD 

must recognize that the action (utterance) still may have 

caused a negative outcome, even though the desire 

motivating it was a positive one. In summary, to show 

integration capacity, individuals with ASD must be able to 

see how a story character’s mental states relate to her action 

and its outcomes. 

Most centrally, in the presence of both a belief and a 

desire (Full Information condition), the ability to correctly 

understand that the action is intended to be a positive one, 

was caused by the story character’s false belief, and has a 

negative outcome, demonstrates intact integration capacities.  

In addition, the inclusion of conditions in which either a 

belief or a desire alone was presented allowed us to test 

integration abilities under somewhat more difficult 

conditions.
1
 

 

 
Figure 2. Conceptual integration requires the social 

perceiver to recognize the relevance of the story character’s 

mental states to the action’s meaning and outcome. 

Study 

Procedure and Measures 

We presented control and ASD participants with eight faux 

pas stories each: two of each in each of the four mental state 

information conditions (No Information, Belief only, Desire 

only, Full Information). Participants also received six 

control stories. Participants read each story and then 

answered several forced-choice and open-ended questions 

about the story (detailed below), which served both as 

measures of inference and integration depending on 

information condition: in the No Information condition, 

measures of belief understanding, explanations for the 

action, and description of the action were a measure of 

inferential abilities, and in the explicit mental state 

information condition, these same measures demonstrated 

participants’ abilities to integrate provided mental states into 

a coherent understanding of action.   

Participants 20 participants with Autism Spectrum 

Disorder (ASD), as confirmed on the ADOS-2 (Lord, Rutter, 

DiLavore, Risi, Gotham, & Bishop, 2012), were recruited in 

partnership with the Rhode Island Consortium for Autism 

Research and Treatment (RI-CART), MAge = 31.90 years; 5 

Female; mean score on Ravens Progressive Matrices, 9-item 

short form intelligence test (Bilker at al., 2012), M = 

45.94/60, SD = 8.0. 20 typically developing controls were 

                                                 
1 Each of these two single-mental state conditions involves more 

specific tests of integration capacity. For example, in explicit 

desire (alone) condition, the participant’s ability to produce a false 

belief indicates that she can recognize the relevance of the 

provided desire to an action that produces an unforeseen outcome.       
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recruited to match the ASD group on age, gender, and 

intelligence (MAge = 30.35; 6 Female; MRavens = 49.75, SD = 

14.29).   

Interpretation of the Utterance After reading each story, 

participants were first prompted to describe the main 

character’s utterance. They were instructed to “check all that 

apply” among four options: “It was awkward,” “It was nice,” 

“It was mean,” and “It was neutral.” 

Belief Question Participants answered whether the 

character who made the utterance possessed a false belief 

(e.g., “Did Mrs. Hayes believe that Clara was James’s 

mother?) 

Explanation Question Participants then answered in a text 

box the “explanation” question, which simply asked, “Look 

back at what [character] said. Why did [s/he] say that?” 

These open-ended responses were content coded for 

explanatory quality. Two coders classified each response 

into a single numbered category, 0-3. To receive a perfect 

score of 3, the participant had to give an explanation that 

directly stated or otherwise implied that the speaker’s action 

was caused by that character’s false belief. Incorrect 

responses, such as those that cited a negative intention on 

the part of the speaker, received a score of “0”. 

Results and Discussion 

Interpretation of the Utterance To achieve a data 

reduction of the 32 cells represented (4 descriptors for each 

of 4 information conditions, rated by two different 

participant groups), responses for each of the four variables 

were first aggregated across each cell of the 2 (autism vs. 

control) X 4 (mental state information) design. Values on 

each variable were aggregated across participant group and 

information condition, yielding one variable for each 

descriptor, and entered into a principal components analysis. 

Two orthogonal components were extracted. Component 

loadings for each of the four variables are provided in Table 

1. 

 

Table 1. Principal components analysis of four utterance 

interpretation options results in two components 

 

Descriptor Unintentional Motive 

Awkward 0.65 0.33 

Nice -0.48 0.35 

Mean -0.32 -0.61 

Neutral -0.08 0.45 

 

The two components can be best interpreted as capturing (1) 

whether the utterance was classified as awkwardly 

unintentional (awkward) vs. intentional (nice or mean) and 

(2) whether the motive behind the action was classified as 

nice (or neutral) vs. mean. Component scores for each 

participant were computed from linear combinations of the 

four constituent variables, and ranged in value from -2 to 2. 

A score close to +2 on the Unintentional component 

indicated that “awkward” was checked for both stories in 

that condition (and that the slight was therefore 

unintentional), while a score close to -2 indicated that the 

utterance in that story had instead been classified as 

intentional. On the Motive component, scores closer to +2 

indicated less endorsement of the “mean” descriptor and 

more endorsement of the “nice” or “neutral” descriptors. 

For this and subsequent measures, we performed two 

main analyses.  To test the inference hypothesis, we 

compared the two participant groups with t tests in the No 

Information condition only.  To test the integration 

hypothesis, we performed ANOVAs on the four conditions 

for both participant groups.  Of primary interest to the 

integration hypothesis were interactions between participant 

group (Autism vs. Control) and information condition 

(primarily, the three explicit information conditions vs. the 

No Information condition).   

On the Unintentional component (Figure 3), controls 

recognized the utterance as “awkward” with greater 

frequency in the No Information condition than did ASD 

participants, t(34.72) = 2.04, p < .05. In addition, there was 

an interaction between Autism and Information condition, 

but it did not reach significance, F(1, 38) = 3.14, p = .08. 

On the Motive component (Figure 4), there were no group 

differences in the No Information condition, nor were there 

significant main effects or interactions of information 

condition with participant group. 

 

 

Figure 3: Unintentional Component 

Implications for Inference Hypothesis Compared to control 

participants, ASD participants were less capable of 

recognizing that the speaker’s utterance could be described 

as awkward.  However, the two groups did not differ in any 

of the explicit mental state information conditions with 

respect to this recognition, suggesting that the no-

information difference may be spurious or not due to a 

deficit on the part of ASD participants. When assessing the 

possible motives of the speaker, ASD participants exhibited 

no difficulties identifying the positive desire (lack of ‘mean’ 

intent) underlying the speaker’s utterance. 
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Implications for Integration Hypothesis In spite of some 

differences with controls in the No Information condition, 

ASD individuals performed similarly to controls in the 

presence of explicit mental state information, identifying the 

utterance’s awkwardness with similar frequency and the 

story character’s positive desire with similar frequency.   

 

Figure 4: Motive Component 

Belief Question Correct responses to the belief question 

were aggregated across the two stories comprising each of 

the four information conditions, yielding a score of 0 to 2 

per condition (see Figure 5). 

 

 

Figure 5: Belief Question 

To examine the inference hypothesis, we compared 

performance of ASD participants (M = 1.65 stories correct) 

and Control participants (M = 1.80) in the No Information 

condition.  There was no difference in performance, Welch’s 

t(36.88) = 1.05, p = 0.30.    

To test the integration hypothesis, we examined whether 

adding mental state information affected the accuracy of 

correctly recognizing the belief, again performing a 4 

(Information condition) X 2 (Autism vs. Control) mixed 

ANOVA. There was a main effect of information condition: 

Participants as a whole exhibited improved performance in 

the presence of explicit mental state information (in the 

three explicit mental state information conditions) as 

compared to the No Information condition, F(1, 38) = 4.36, 

p = .04.  No interactions between Autism and Information 

conditions reached significance.   

Implications for Inference Hypothesis In our No Information 

condition, all general knowledge was made explicit, and 

ASD participants performed as well as controls. By contrast, 

in comparable no-information conditions, previous Faux pas 

studies did not make such background knowledge available 

and documented performance decrements for ASD 

participants. This pattern of results supports the hypothesis 

that previously documented inferential deficits may not be 

due to deficits in “theory of mind” per se, but may instead 

have been caused by the inability to draw inferences from 

general knowledge.   

Implications for Integration Hypothesis Neither participants 

with ASD nor control participants performed at ceiling in 

the No Information condition, leaving room for 

improvement (and a demonstration of integration capacities) 

in the presence of explicit mental state information. 

Although there was a main effect of information condition, 

there was no difference between ASD and control 

participants. Thus, ASD participants appear to be as capable 

as control participants at integrating explicitly presented 

belief and desire information. 

Explanation Question Once more, there was no difference 

between ASD and control participants in the No Information 

condition, Welch’s t(36.52) = .40, p = .70. We also found no 

main effects or interactions involving the comparison 

between ASD and control participants across all four 

conditions (all ps > 0.36). There were, however, significant 

main effects of information condition, with all participants 

providing higher-quality explanations when receiving 

explicit information about both mental states than in the No 

Information condition, F(38) = 3.71, p = .06, and higher-

quality explanations when receiving explicit information 

about both a belief and desire than when receiving 

information about either one of these mental states alone, 

F(38) = 4.44, p < .05. 

 

Implications ASD and control participants provided equally 

accurate explanations in all information conditions, 

including the most challenging one (where no explicit belief 

or desire information was provided). Moreover, like control 

participants, ASD participants improved their explanation 

quality in response to explicit mental state information, 

suggesting in particular that integration capacities held by 

control participants are also held by those with ASD. Thus, 

we may conclude once more that previously documented 

deficits for ASD individuals – in both inference and 

integration – may have been caused by other aspects of the 

task, such as the requirement of general knowledge 

recruitment. 

General Discussion 

We considered two main hypotheses that could explain 

deficits for individuals with ASD in demanding theory of 

mind tasks such as the Faux Pas task. One suggests that 

individuals with autism struggle to generate the contents of 

mental states (inference), while the other suggests that they 

2455



struggle to integrate mental state information to reach a full 

understanding of action (integration).  Both hypotheses fall 

short of explaining our data. 

 

Mental State Inference Deficits? 

Contrary to previous studies of the Faux Pas task (Zalla et al. 

2009, Baron Cohen et al., 1999) as well as other similar 

advanced theory of mind tasks (e.g., Happé, 1994), ASD 

participants in our study performed comparably to control 

participants, even when receiving no explicit mental state 

information. This performance spanned a number of 

measures, including correct inferences of the story 

character’s false belief and positive desire. It appears that, in 

the presence of enriched background information to afford 

inferences from general knowledge, ASD participants more 

capably inferred mental states than they did in previous 

studies in which stimuli lacked such enriched background 

information. Although the present study did not directly 

compare background-enriched stories with unenriched 

stories, this finding is suggestive: previously documented 

deficits on advanced theory of mind tasks may depend on a 

suite of inferential capacities, of which mental state 

inference, per se, or “theory of mind,” is only one, and 

perhaps a less influential one. 

 

Integration Deficits? 

In addition to demonstrating intact inferential abilities in the 

presence of enriched background information, ASD 

participants in our study also demonstrated intact abilities to 

integrate provided mental state information into a coherent 

understanding of intentional action.  Even in response to a 

challenging, open-ended question about the character’s 

utterance– “Why did he say that?” –participants with ASD 

accurately linked mental states with action as well as 

controls did. 

With the addition of (1) enriched background information 

and (2) explicit mental state information, high-functioning 

adults with ASD exhibited a remarkable ability to 

comprehend the meaning behind a story character’s 

complex intentional action. This finding is notable in light 

of previous work suggesting that individuals with ASD 

struggle to reach the requisite mental state inferences (Baron 

Cohen et al. 1985, Happé 1994), and to integrate a 

character’s mental states with her action’s outcome to reach 

a full comprehension of that action (Moran, Young, Saxe, 

Lee, O’Young, Mavros, & Gabrieli, 2011).   
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Abstract

Past choices can influence subsequent choices in employee se-
lection. Previous approaches rather described similar sequen-
tial effects with feedback learning or the misperception of ran-
domness. However, in the selection of job candidates also the
accumulation of the moral impact of previous choices might
influence subsequent choices. We investigated that question
by making two major contributions to the literature. First, we
developed an experimental paradigm for measuring sequential
choices in employee selection and second, we implemented
a widely applicable computational model, the Dependent Se-
quential Sampling Model, for explaining sequential effects in
choices. By using this methodological approach, we uncov-
ered sequential effects in employee selection. Participants
(N=600) were especially motivated to compensate for morally
dubious choices, with some participants showing consistent
choice behavior if their previous choices had been morally vir-
tuous. These results support the assumption of asymmetric
compensation of morally dubious choices, sometimes referred
to as the moral cleansing hypothesis.

Keywords: sequential sampling model; preferential choice;
sequential decision making; employee selection.

Theoretical Background

Ethical and moral aspect play a major role, when managers
select new employees. In order to enable a fair employee
selection procedure, every candidate is supposed to be evalu-
ated only on her skills and accomplishments relevant for the
position in question. This does not only involve the prohi-
bition of any kind of discrimination, but also demands the
evaluation of every candidate, independent of other candi-
dates and contextual factors. However, interviewers devi-
ate from such a fair evaluation procedure. Discrimination
in the application process for jobs, e.g. based on gender
and skin color, is common (Gregory, 2003; Bertrand & Mul-
lainathan, 2004; Pager, Western, & Bonikowski, 2009). And
instead of evaluating candidates independently, previous can-
didates on the same day influence the evaluation of later can-
didates (Simonsohn & Gino, 2013). The present article tack-
les this problem. We will present a theory driven experimen-
tal method and computational model for investigating sequen-
tial effects in the employee selection and other areas. Our ap-
proach aims at first identifying sequential effects and second
quantifying the individual degree and direction of the effects.

Sequential Effects in Employee Selection
Many sequential effects in decision making and choices are
explained with the ”gamblers fallacy”, the misperception of
randomness (Ayton & Fischer, 2004; Clotfelter & Cook,
1993). However, if moral aspects are relevant for the choice,
other factors contribute to the sequential effects as well.
It is often assumed that the moral credentials of previous
choices are accumulated and influence subsequent choices
(e.g. Monin & Miller, 2001; Tetlock, Kristel, Elson, Green, &
Lerner, 2000). This can well be illustrated in the employee se-
lection. Given the common problem of discrimination in the
job market (Gregory, 2003; Bertrand & Mullainathan, 2004;
Pager et al., 2009), it is of higher moral value to choose a per-
son belonging to a group discriminated against than a person
belonging to a favored group. This can lead to various poten-
tial sequential choice effects. If individuals made a series of
choices for the same group, e.g the group not discriminated
against, they tend to compensate these choices in the follow-
ing (Conway & Peetz, 2012; Jordan, Mullen, & Murnighan,
2011; Sachdeva, Iliev, & Medin, 2009). While some indi-
viduals simply balance morally dubious and morally good
choices (Dhar, Huber, & Khan, 2007; Dhar & Simonson,
1999; Huber, Goldsmith, & Mogilner, 2008), less symmet-
ric compensating choice behavior is also possible. For ex-
ample, especially after morally dubious choices, people feel
the urge to compensate for these choices with a morally vir-
tuous choice subsequently, referred to as cleansing (Tetlock
et al., 2000). And also the complementary effect has been
observed, referred to as licensing (e.g. Monin & Miller,
2001). Nonetheless, even contrarily to the idea of compen-
sation, consistent choice behavior is also possible (Gneezy,
Imas, Nelson, Brown, & Norton, 2011; Zhang, Cornwell, &
Higgins, 2014).

Modeling Sequential Choice Effects
In most domains of real life choices and decisions, sequen-
tial effects have either been explained with models involving
reinforcement learning (e.g. Kruschke, 1992; Gluck et al.,
1988; Rieskamp & Otto, 2006; Simão & Todd, 2002; Stew-
art, Brown, & Chater, 2002; Stewart & Brown, 2004; Todd,
2007) or the effects are explained with the ”gamblers fallacy”
(Thaler & Johnson, 1990; Novemsky & Dhar, 2005; Chen,
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Moskowitz, & Shue, 2016; Ayton & Fischer, 2004; Clotfelter
& Cook, 1993). However, these models do not explain asym-
metries in compensating previous choices, which are in the
moral literature sometimes referred to as moral licensing or
moral cleansing, that even occur without explicit feedback.
We will introduce a computational model in the following
that can account for these effects.The model involves one pa-
rameter that indicates the individual degree and direction of
sequential effects, it quantifies the tendency for compensation
or consistency with previous choices.

Method
In order to investigate sequential effects in the employee se-
lection, we developed and applied the experimental paradigm
”The Sequential Employee Selection Task”. In previous ex-
periments on sequential effects in the job application process
and other domains, the investigated choice often followed a
different task, e.g. a rating task. Contrarily, participants in
our experiment were faced with repeated choice tasks of the
same format and in the same context.

After a series of choices between two candidates, who
clearly differed in the qualification for the job (dominated
trials), subjects were to choose between two equally qual-
ified candidates (ambiguous trials). In some of the condi-
tions candidates from a group discriminated against (discrim-
inated group) dominated the previous trials, and in other con-
ditions candidates from the complementary favored group
(non-discriminated group) dominated these trials. The fol-
lowing ambiguous trials were the same between the condi-
tions. Thus, different choice probabilities in these ambiguous
trials indicated the influence of the previous trials.

If the choice probabilities in the ambiguous trials systemat-
ically differ between the conditions, there exist sequential ef-
fects in this task (H1). If the probability to choose a candidate
from the same, previously dominating, group is decreased,
compensating choices are observed (H2). If the probabil-
ity increases, participants make consistent choices (H3). If
the compensation differs with regard to whether the discrim-
inated or the non-discriminated group dominated the first tri-
als, the compensation is asymmetric and the moral impact of
the choices is accumulated. This finding would indicate se-
quential effects referred to as moral licensing (H2a) or moral
cleansing (H2b). If previous choices are compensated sym-
metrically, choices are balanced (H2c). In order to estimate
initial choice biases and the weights of the candidates’ at-
tributes, the manipulated sequences can further be compared
to control conditions, in which only the ambiguous trials, the
same as in the experimental conditions, were tested. As an
additional add-on to previous studies, the sequential effects
were not only tested in one single trial, but four ambiguous
trials, enabling estimation of the individual degree of com-
pensation.

Participants
We recruited participants living in the U.S. through amazon’s
Mechanical Turk (Amazon, 2013). In order to avoid inatten-

Figure 1: Screenshot of one of the ambiguous trials in a con-
dition with skin color as the salient category

tive participants or computer programs filling out the ques-
tions, we included an additional test page at the beginning. Of
the 635 recruited participants 600 (95%) passed that screen-
ing ( 47% f, mean age= 36.06 ). Those participants received
USD 1.50 for their participation in the 10 minutes experi-
ment.

Design and Procedure

The Sequential Employee Selection Task was manipulated on
2 factors between the subjects, resuming in 6 between-subject
conditions. The sequential effects were investigated in four of
these conditions differing with regard to the salient category,
skin color vs. gender, and with regard to whether the candi-
dates from the discriminated (female or black candidates) or
the non-discriminated group (male or white candidates) dom-
inated the first eight trials. In the two control conditions the
baseline choice probabilities for candidates belonging to the
respective groups were tested.

Participants were presented with a hypothetical recruiting
scenario and asked to repeatedly choose the most suitable
candidate out of two job applicants, see Figure 1 for an ex-
ample. All candidates were described by three attributes on
scales between 0-100: ”leadership skills”, ”social compe-
tence”, and ”typing speed”. The information was presented in
an information board and a profile picture above this board.
On top of it, a fictitious company name served as a title of
the trial. The first two of the attributes were described as
important in the initial instructions, whereas the third was de-
scribed as a less important attribute for the position. The can-
didates’ individual levels on the attributes are indicated by the
numbers in the respective cells of the information board. The
profile pictures above the table indicated the gender or the
skin color of the candidates, depending on the condition. Pic-
tures from the Chicago Face Database (Ma, Correll, & Wit-
tenbrink, 2015), only smiling faces, were used for the present
experiment. Participants received no instructions with regard
to the relevance of these personal characteristics and other
features for the position, beyond the instructions on the three

2458



Table 1: Illustration of the series of trials in the gender condi-
tions. In the skin color conditions female faces are replaced
with black male faces.

Dominating group Dominated trials Ambiguous trials
1 2 ... 8 9 10 11 12

Discr ♀> ♂ ♀= ♂
Non-discr ♀< ♂ ♀= ♂
Control - ♀= ♂
Note. Discr/Non-discr = female or black/male or
white candidates dominate first 8 trials; Control =
only ambiguous trials; [>,<,=] = better, worse,
equally qualified.

attributes.

Each participant made twelve pairwise decisions in a row.
The description of the task emphasized that the twelve can-
didate pairs applied for twelve different companies. Further-
more, showing fictitious company names at every decision
stressed that each choice ought to be independent of the pre-
vious ones. The procedure of the experiment in the gender
conditions is illustrated in Table 1. The choice pairs were
constructed such that one of the two candidates was clearly
superior on the two most important attributes (i.e. leader-
ship skills and social competence) in the first eight pairs (=
dominated trials), the two relevant attributes provided higher
values for one candidate. Contrarily, the candidates in the
last four pairs were equally well suited for the job (= ambigu-
ous trials). In those trials, one of the relevant attributes had a
higher value for one candidate, whereas the other attribute
provided a higher value for the other candidate. The val-
ues of the third attribute were equal between the two. Thus,
even when participants weighted all information for making a
choice between the candidates, this weighted additive would
lead to no preference for one candidate or the other. It was
further controlled, that in two of these ambiguous trials the
candidates from one group and in the remaining two trials the
candidates from other group had a higher value on the first at-
tribute. This procedure allows to control for the common use
of a heuristic which places more weight on the first discrimi-
nating attribute (Take-the-best heuristic (TTB) Gigerenzer &
Goldstein, 1996). The order of the trials, within the domi-
nated and the remaining ambiguous trials was randomized,
and the position of the dominated candidates (left or right)
was counterbalanced. However, the first of the ambiguous
trials was fixed so that the the candidate from the discrimi-
nated group had a higher value on the first attribute in this
trial. This was done in order to increase the contrast between
the conditions. Subjects were randomly assigned to one of
the conditions.

Formalization of the Dependent Sequential
Sampling Model

In order to explain sequential effects in choices it is assumed
that some information of previous choices must be accumu-
lated in memory and influence subsequent choices. As for
modeling the evidence accumulation models within one trial
(e.g. Busemeyer & Townsend, 1993; Lee, 2004; Newell &
Lee, 2011), sequential sampling models might be used for
modeling this accumulation process across trials as well.

In their simplest form, sequential sampling models assume
that evidence in a given binary choice task is accumulated
from a starting point across a fixed number of steps. After
all fixed steps were made, this option with the highest ac-
cumulated evidence is chosen. For the purpose at hand, we
adapted a similar sequential sampling model (Milosavljevic,
Malmaud, & Huth, 2010), for incorporating previous choices.
The starting point of the evidence accumulation process usu-
ally represents only any previous bias for one of the options.
In the present study, it was enlarged with incorporating previ-
ous choices as well. It was further considered 1) that the influ-
ence of previous choices decays exponentially with temporal
distance and 2) that previous choices could potentially lead
to compensation, confirmation or not influence subsequent
choices. The latter, the direction and strength of the influ-
ence of previous choices, was governed by the compensation-
consistency parameter κ.

Relying on a simple drift diffusion model (Milosavljevic et
al., 2010) we assume that the evidence z in a binary decision
task evolves according to the following equation across all
time steps s:

zs = z(s−1)+µ+ εs (1)

The evidence which is added at every time step is defined by
the speed of evidence accumulation µ, representing the over-
all difference of the options’ values in the trial µ = VA−VB,
and an error term εs ∼ N(0, .1). The values of the options V
represent the sum of the option’s attributes weighted with the
attributes’ weights w. If there is no previous bias nor any in-
fluence of previous choices, this evidence accumulation starts
at 0. For additionally indicating a systematic bias in a choice
task β is introduced. The parameter describes any initial re-
sponse bias at the starting point z0. In a similar vein z0 can in-
corporate the influence of previous choices. We assume that
the starting point in a given trial t, z0t is further influenced
by ρ = [−1,1] and a compensating-consistency parameter κ.
The function ρ incorporates the evidence for previous choices
and the memory for it. It is determined as the inner product of
a decay vector and the previous evidence. The decay vector
determines that more recent trials have a greater impact. In
line with previous research on memory, the memory further
decreases as an exponential function. The impact of previ-
ous trials increases in those trials, in which the evidence was
sparse.

ρt =
1

(VAt −VBt)
· e−decayt (2)
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As has been outlined in the introduction different hypothe-
ses on the direction of the effect in sequential choices have
been formulated. We incorporated these hypothesis in the
compensation-consistency parameter κ = [−1,1]1 which is
multiplied with ρ for determining the direction of the sequen-
tial effect. If κ > 0, previous choices are compensated, if
κ < 0, individuals make consistent choices and if κ = 0, pre-
vious choices do not influence the present choice. Following
the starting point z0 in trial t is defined as:

z0t = β−κ×ρt (3)

Finally, a probit link is applied for predicting the choice prob-
ability in any trial t based on the accumulated evidence from
the starting point z0t up to zSt in that trial.

P(A)t = φ(zSt ,0,1) (4)

Additionally we introduced a trembled hand error ξ which
indicates the probability to guess between the options.

P(A)t = (1−ξ)×φ(zSt ,0,1)+ξ× .5 (5)

Results

Figure 2: Probability to choose the minority candidate, as
a function of the dominating group, and the position in the
trial sequence (Trial Number). The choice probabilities of
the dominated trials are averaged over the trials. The error bar
represent +/−1.96×SE. The dashed line indicates guessing
probability .5.

The dominating candidate was chosen on average in 94 %
of the dominated trials, indicating that the participants fol-
lowed the instructions of the task very well. Figure 2 illustrate
the choice probabilities of the candidates from the discrimi-
nated group. The data were collapsed over the categories skin
color and gender, for reducing redundancy. As expected, we
observed sequential effects in the task, because the probabil-
ity to choose a female or black candidate in the ambiguous

1The compensation-consistency parameter is scaled so that the
the maximum compensation is twice the number of steps in the ac-
cumulation process, because due to the scaling of ρ to [-1,1] the
maximum evidence is S and the minimum evidence is -S. Thus, the
maximum compensation can not be bigger than twice the number of
accumulation steps

trials, (Trial Number 9-10), differed between the conditions.
The probability was decreased, compared to the other con-
ditions, if the respective discriminated group had dominated
the previous trials. The choice probabilities in the control
condition serve as a reference for choice probabilities with-
out sequential effects.

For explaining the observed sequential effects, the DSSM
model was fitted to the data. The choice probabilities in
the control conditions were used to inform the parameters of
the DSSM model. The response bias parameter β was fixed
so that Φ(β,0,1) corresponds to the averaged probability to
choose a candidate from the discriminated group in the con-
trol conditions (P(female/black) = .58). Likewise the decision
weights were adapted for capturing the higher weight on the
first attribute, by adapting the attributes weights w to the ra-
tio of the choice probabilities, in accordance with the first
attribute P(female/black) = .78, or not P(female/black) = .38,
w = (2,1,0). The final model was fitted to the complete data
set of the experimental conditions via grid search and mini-
mizing logloss (logLoss =− 1

n Σlog(Likelihood)).
The best fitting parameters for the experimental conditions

and the corresponding logLoss are illustrated in Table 2. The
logLoss for a complete guessing model would be logLoss =
.69. In order to further validate the model we compared it
via BIC to a complete Guessing and a Sequential Sampling
Model SSM without dependencies between the trials. Across
all participants, the DSSM provided a better fit than the guess-
ing model and the SSM, BICDSSM = 1990, BICSSM = 3423,
and BICguess = 6670. The best fitting parameters indicate

Table 2: Best fitting parameters of κ as a function of the con-
ditions.

Cat Gender Skin Color
Dom.
group

discr non-discr discr non-discr

κ .08 .48 .12 .56
logLoss .25 .31 .29 .29

Note. logLoss = mean negative log Likelihood

compensating choices in all conditions, however the compen-
sation is higher in the conditions in which the candidates from
the non-discriminating group dominated the first eight trials.
In order to test the difference of κ between the conditions,
the best fitting parameters for κ were additionally estimated
on the individual level. This comparison revealed significant
differences between the conditions in the gender condition
T (193.32) = −7.73, p < .001, log(BF)2 > 10 and the skin
color condition T (164.09) = −8.99, p < .001, log(BF) >
10. This indicates stronger compensation of morally dubi-
ous choices, than compensation of morally virtuous choices.
There were large individual differences in the parameters, κ

SDdiscr = .69 and SDnondiscr = .50, and a considerable number
of participants ∼ 30% applied extremely consistent choice

2The Bayes factors were calculated with ttestBF function of the
R-package ”BayesFactor”
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behavior in the condition in which candidates from the dis-
criminated group dominated the first 8 trials.

To conclude, we observed sequential effects in the sequen-
tial employee selection task. In general, participants tended to
compensate for previous choices, especially if these choices
were morally dubious. If the previous choices were of high
moral value, choosing the candidates from the group discrim-
inated against, a large number of participants showed consis-
tent choice behavior.

Discussion
Present choices between job candidates are influenced by pre-
vious, unrelated, choices. Choosing a job candidate consis-
tently from one group over the complementary group, defined
by skin color or gender, decreased the probability to choose
a candidate from the same group in subsequent trials. How-
ever, the sequential effects are not symmetric, because not all
choices are equally compensated for. Thus, instead of bal-
ancing groups over a series of choices our data support the
assumption of a stronger compensation for morally dubious
choices, sometimes referred to as the moral cleansing hypoth-
esis (Tetlock et al., 2000).

The mere existence of moral cleansing and moral licensing
effects has been questioned recently via series of failed repli-
cations (Earp, Everett, Madva, & Hamlin, 2014; Blanken,
Van De Ven, Zeelenberg, & Meijers, 2014). However, the ex-
perimental studies investigating these effects rarely observed
multiple similar choices in a row. Those studies rather used
different tasks, investigated behavioral intentions or used
other experimental methods aiming at inducing a specific
mindsets, in order to influence subsequent single choices.
Furthermore, no computational model has been implemented
for analyzing the data. We make two major contribution to
this debate. First, we present an experimental paradigm for
observing sequential effects in the employee selection and
beyond. The task can easily be framed differently in order to
test sequential effects in other contexts as well. Second, we
formalized a computational model, the Dependent Sequen-
tial Sampling Model, for describing and explaining sequential
choice effects and corresponding individual differences. Es-
pecially the individual estimates of κ via the DSSM indicate
large individual differences with regard to the compensation
or confirmation of previous choices. While κ on the group
level indicated compensation also in the conditions which
were dominated by candidates from the non-discriminating
group, investigating individual estimates identified large in-
dividuals differences. Importantly, a meaningful number of
participants showed actual consistent choice behavior (Zhang
et al., 2014; Gneezy et al., 2011).

The DSSM relates to the well established application of ac-
cumulator models in choice tasks (Busemeyer & Townsend,
1993; Lee, 2004; Newell & Lee, 2011; Ratcliff, 1978). For
the purpose at hand the model was used in a very simple
version (Milosavljevic et al., 2010). A richer dataset, with
within-subject manipulation of conditions and a larger num-

ber of sequential choices would further allow to increase the
complexity of the model by estimating more parameters on
the individual level, for example the individual initial deci-
sion bias. Nonetheless, the current simplicity is perfectly
suited for the present research questions.

We provide strong evidence for compensation of morally
choices in employee selection and the presented experimental
and methodological approach further allows replicating our
findings in other areas as well.
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Abstract 

In two visual word eye tracking studies, we investigated the 
influence of prosody and case marking on children’s and 
adults’ thematic role assignment. We assigned an SVO/ 
OVS-biasing (vs. neutral) prosodic contour to 
unambiguously case marked German subject-verb-object 
(SVO) and object-verb-subject (OVS) sentences 
respectively. Scenes depicted ambiguous action events 
(e.g., donkey-paints->elephant-paints->cheetah) but case 
marking and prosody could, in principle, disambiguate. In 
adults, case marking but not prosody rapidly guided 
thematic role assignment. Children did not rely on case 
marking but exploited the biasing prosody to enhance their 
agent-first interpretation of the sentences. These results 
suggest that in scenes depicting fully ambiguous role 
relations, children’s understanding of case marking at the 
age of five is not yet robust enough to enable thematic role 
assignment. Prosody did not overwrite the SVO preference, 
it rather enhanced it. 
 
Keywords: Visual World Paradigm, eye movements; 
prosody; action scenes; age differences; language 
processing; thematic role assignment; case marking. 

Introduction 
In rich contexts, listeners can rapidly exploit a range of 
different cues (e.g., prosody, non-linguistic information, 
case marking) during language comprehension. Such cues 
can, for instance, help them to efficiently identify the 
thematic roles of a sentence. Thematic roles distinguish 
the role an argument carries with regards to the predicate 
of the sentence (Carnie, 2002). Although children rapidly 
acquire language during the first years of their life, a full 
command of their native language takes, not surprisingly, 
time to develop. One aspect that is particularly 
challenging is the correct assignment of thematic roles. In 
German, for example, a transitive sentence typically 
includes a subject, a verb, and an object but speakers can 
arrange these constituents in more than one way, yielding, 
among others, subject-verb-object (SVO) or object-verb-
subject (OVS) orders. To determine who is doing what to 
whom, comprehenders can rely on the case-marked 
determiners of the sentential noun phrases. Accusative 
case marks a sentence-initial noun phrase as the object 
(patient), and nominative case marks it as the subject 
(agent) of the sentence. But case marking can be 

ambiguous in German (feminine and neuter nouns have 
the same form in the nominative / subject and the 
accusative / object case), resulting in temporary ambiguity 
as to who-does-what-to-whom. The resolution of this 
ambiguity can be difficult for children, not only because 
of their strong SVO word order bias. The following 
section describes a range of studies on how adults rapidly 
exploit visual, case, and prosodic cues for thematic role 
assignment while children sometimes struggle to exploit 
these cues. 
Visual Information 
In rich contexts, non-linguistic information like the visual 
referential context, contrast between objects, depicted 
actions, or events can all rapidly influence the 
interpretation, syntactic structuring, and thematic role 
assignment of spoken utterances (e.g., Chambers, 
Magnuson, & Tanenhaus, 2004; Knoeferle, Crocker, 
Sheepers & Pickering, 2005; Sedivy et al., 1999; 
Tanenhaus et al., 1995). Tanenhaus and colleagues (1995) 
found that adults use referential context to disambiguate 
sentences (e.g., Put the apple on the towel in the box). 
The visual display contained either one or two referents 
(one referent: an apple on a towel, two referents: one 
apple on a towel and another apple on a napkin). 
Participants’ gaze pattern suggested structural 
disambiguation in that they interpreted the towel as a 
destination (VP-analysis) for the apple in the one-referent 
context and as the location of the apple (NP modifier 
analysis) in the two-referent context (see Sedivy et al., 
1999 for related effects of contrastive adjectives in 
establishing reference to objects).  

Event relations depicted in the visual context can help 
listeners with anticipating thematic role relations. In 
Knoeferle et al. (2005), participants listened to locally 
ambiguous German SVO and OVS sentences (transl: ‘the 
princess (agent/patient) washes/paints apparently the 
pirate (patient)/ the fencer (agent)’). The sentences did not 
provide information about who is the agent or the patient 
prior to disambiguation by case marking on the 
determiner of the second noun phrase. Scenes depicted 
the princess in both an agent and a patient role (the fencer 
was acting upon the princess while the princess was 
acting upon a pirate). During the verb (‘washes / paints’), 
participants successfully anticipated the patient or the 
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agent role filler respectively in SVO and OVS sentences. 
Thus, the depicted event information resolved the 
ambiguity in the linguistic input. 

Children, much like the adults, can rapidly exploit 
depicted actions to correctly identify thematic roles in 
German SVO and OVS sentences. Shortly after the verb 
had identified the action (and its associated role relations), 
the children anticipated the patient (vs. agent) in the scene 
for SVO sentences (Zhang & Knoeferle, 2012) and the 
depicted agent (vs. patient) for OVS sentences (Münster, 
2016; Zhang & Knoeferle, 2012). However, children, 
unlike adults, did not exploit a referential context for 
disambiguating a VP-/NP-attachment ambiguity. When 
hearing Put the frog on the napkin… they interpreted the 
napkin as the frog’s destination in both the one- and the 
two-referent context even though the latter biased towards 
a location interpretation (Trueswell et al., 1999). 
However, in the absence of real-time measures these 
results do not provide insight into children’s online 
sentence processing. 

Case Marking 
When it comes to linguistic information, case marking is 
believed to be a very strong cue for thematic role 
assignment with adult participants (e.g., Matzke, Mai, 
Nager, Rösseler & Münte, 2002). However, studies in 
five-year old children report conflicting results. Dittmar et 
al., (2008), found that five-year-olds struggled to exploit 
case marking for thematic role assignment. The results of 
an act-out task revealed that children relied on (SVO) 
word order instead of case marking for interpreting 
ambiguous and unambiguous German SVO and OVS 
sentences. They interpreted the first noun phrase as the 
subject/agent even if it was case-marked as the 
object/patient of the sentence (agent-first/SVO bias). 
However, more recent evidence suggests that children at 
the age of four to five can rely on case marking for 
correct thematic role assignment in unambiguous German 
SVO and OVS sentences (e.g., Özge et al., 2015).  

In Özge et al., (2015), information from the visual 
display likely supported the interpretation of the linguistic 
input. The scenes were created on the basis of world 
knowledge about who is the most likely agent and the 
most likely patient (typically the fox eats the hare and the 
hare eats the cabbage). The scenes thus showed animals (a 
hare, a fox, and a cabbage) between which stereotypical 
role relations exist, but they did not disambiguate who-
does-what-to-whom (case marking did).  

Even clearer effects of the visual context emerged in 
Zhang et al. (2012) and Münster (2016). Here, depicted 
actions (e.g., a bear painting a worm) disambiguated the 
role relations (only one animal performed the action 
mentioned in the linguistic input) but scenes did not 
depict stereotypical role relations; when the actions were 
absent, unambiguous case marking alone (i.e., in the 
absence of stereotypical role relations between bear and 
worm) was insufficient to disambiguate the role relations. 
Thus, the visual context seems to matter. By contrast, the 
effects of case marking alone on children’s thematic role 

assignment (i.e., when scenes do not support thematic role 
assignment through either stereotypical world knowledge 
associated with the characters or disambiguating action 
depictions) remain unclear. 

Prosody 
Supra-sentential information can also be useful for 
establishing a link between the linguistic input and the 
visual world. Among others, prosody assigns focus to 
sentence constituents (e.g., via accentuation). Prosody can 
moreover rapidly disambiguate syntactic structure. In a 
visual world eye tracking study, participants rapidly 
exploited prosody to identify grammatical functions when 
the scene depicted role fillers such as a cat, a bird, and a 
dog, for which world knowledge implicated stereotypical 
thematic relations (e.g., cats chase birds and dogs chase 
cats, Weber et al, 2006). But the scenes did not otherwise 
disambiguate the upcoming thematic role relations. 
Feminine case marking (identical in nominative and 
accusative case) on the determiner of the first noun phrase 
created locally structurally ambiguous sentences: Die 
Katze (amb.) jagt womöglich den Vogel (acc/obj)/der 
Hund (nom/subj)– ‘The cat (amb.) chases possibly the 
bird (obj/patient)/the dog (subj/agent)’. Biasing prosodic 
contours prompted listeners to make more anticipatory 
eye movements towards the agent (vs. patient) in the 
scene for ambiguous OVS sentences and towards the 
patient (vs. agent) in the scene for ambiguous SVO 
sentences. Prosody was the only information available for 
the correct anticipation of thematic roles prior to the 
disambiguating case marking on the second noun phrase; 
but at the same time, world knowledge associated with the 
scene may have provided a supportive background.  

Children also exploited prosody for thematic role 
assignment (Grünloh et al., 2011). Two short videos 
showed thematic role relations in two orders, permitting a 
direct contrast of agent-patient and patient-agent events. 
However, prosodic effects (of an accentuated first noun 
phrase in OVS sentences) emerged only when case 
marking was also present. When case marking was absent 
(ambiguous OVS sentences) children relied on their 
(SVO) word order bias instead of prosody and thus 
interpreted the OVS sentences as agent-first sentences. 

The Present Research 
This paper investigates the effects of prosody (biasing 
towards either the SVO or the OVS order as in Weber et 
al., 2006 vs. neutral) and case marking (SVO vs. OVS) in 
ambiguous action scenes. The actions were depicted but 
did not give away the specific role relations of the 
sentences (two characters performed identical actions and 
could both function as possible agents of the verb, Fig. 1, 
the elephant; the donkey, see Table 1 for sentences). Our 
scenes did not include stereotypical knowledge about who 
does what to whom. If a supportive context is necessary 
for children to exploit case marking, then we should see 
no effects of case marking on thematic role assignment in 
the present study (i.e., no anticipation of the agent / the 
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donkey in OVS but of the patient, the cheetah, in SVO 
and OVS sentences, Table 1 and Fig. 1, portraying an 
SVO bias). This prediction is based on the literature that 
revealed conflicting results regarding children’s reliance 
on case marking (Dittmar et al., 2008; Özge et al., 2015). 
Alternatively, seeing event relations depicted could be 
helpful even if the characters perform identical actions 
(i.e., seeing a donkey as the patient in a painting event 
might help to integrate object case marking). If so, we 
should see effects of case marking.  

If prosodic effects do not depend on a supportive scene 
context, then we should see effects of prosody on 
children’s thematic role assignment and anticipation of 
role fillers in the scene. Alternatively, we may observe the 
effects of an SVO bias (more looks to the patient / the 
cheetah during the verb) independent of case marking and 
prosody in children.  

Adults can rapidly use case marking for thematic role 
assignment (Matzke et al., 2002) and should thus 
anticipate the correct patient / agent depending on case 
marking. Prosody should also influence the timing and 
amount of anticipatory eye movements towards the target 
role filler during the time course of the sentence.  

Participants further responded post-trial to questions 
about who-does-what-to-whom. Adults should answer 
these questions correctly in almost all cases since case 
marking was unambiguous (further effects of prosody 
may or may not emerge). For children, case-marking may 
affect the accuracy (reduced for OVS sentences). We also 
expected more correct responses for sentences assigned a 
biasing (vs. neutral) prosodic contour if children benefit 
from prosody for thematic role assignment. 

Experiments 
Participants. 24 five-year old children (age range 4.5 to 
5.10 years) and 24 young adult (mean age=25.5) 
monolingual (i.e., no acquisition of a second language 
before the age of 6) native speakers of German 
participated in this study. Children came from different 
kindergartens in the area of Bielefeld and the experiment 
was conducted at the kindergartens. Each child received a 
toy for participation. Young adults were students from 
Bielefeld University and were paid to participate. 
Participants had normal or corrected vision and hearing 
and all gave informed consent. The Bielefeld University 
ethics committee approved the experiments.  
Materials. A linguistically trained female native speaker 
of German recorded 24 unambiguous transitive German 
subject-verb-object (SVO) and 24 unambiguous transitive 
German object-verb-subject (OVS) sentences. She was 
instructed to use the prosodic structure displayed in Table 
1 for each sentence structure respectively. The sentences 
were all unambiguously case marked on the first noun 
phrase of the sentence. We emulated the prosodic 
contours reported by Weber et al. (2006) and these were 
either present or sentence intonation was even. In SVO 
sentences the main stress was on the verb  (L*+H accent 
on NP1, H* accent on the verb) and in OVS sentences on 
the first noun phrase (L+H* accent on NP1; Table 1). 

Table 1. Overview of experimental conditions (ag=agent, 
pat=patient, subj=subject, obj=object). 

 
Sentence 
Structure 

Prosodic 
Structure 

Example 

SVO  

 
 
L*+H (NP1),  
H* (verb) 

Der Elefant (subj/ag) 
zeichnet sogleich den 
Gepard (obj/pat). 
The elephant (subj/ag) 
draws immediately the 
cheetah obj/pat). 

SVO neutral Der Elefant (subj/ag) 
zeichnet sogleich den 
Gepard (obj/pat). 
The elephant (subj/ag) 
draws immediately the 
cheetah obj/pat). 

OVS  
 
 
 
L+H* (NP1) 

Den Elefanten (obj/pat) 
zeichnet sogleich der 
Esel (subj/ag). 
The elephant (obj/pat) 
draws immediately the 
cheetah (subj/ag).  

OVS neutral Den Elefanten (obj/pat) 
zeichnet sogleich der 
Esel (subj/ag). 
The elephant (obj/pat) 
draws immediately the 
cheetah (subj/ag).  

 
For each of the 24 SVO and OVS sentences we created 
scenes depicting three clipart animal characters (Fig.1). 
The direction in which these characters were looking was 
the same for all three of them, either left or right. The 
middle character and one of the adjacent characters were 
depicted as performing the same action (e.g., for the verb 
‘draw’, zeichnen, the two characters were depicted as 
holding a pencil on a canvas). The third character did not 
perform an action. Thus, the actions provided a context 
but did not permit comprehenders to unambiguously 
identify the correct thematic role relations upon hearing 
the verb.  
     The middle character was always role ambiguous 
because it could be the agent or the patient of the scene. 
We dub the other character depicted as performing an 
action the `true agent’ of the scene and the character not 
performing an action the ‘true patient’ of the scene. Each 
animal character filled both roles (that of a true agent and 
a true patient). The cheetah, for instance, is the true 
patient in the image shown in Figure 1. In a 
counterbalancing scene, the cheetah is the true agent. The 
elephant is depicted as drawing in the example scene (true 
agent); in a counterbalancing scene, the elephant is the 
true patient. Across all lists, each scene occurred once in 
each condition with all characters facing right and once 
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with all characters facing left. We added 8 fillers to the 
experiments. The number of filler was kept constant for 
the two experiments to maximize similarity in the 
materials across age groups. Post experiment 
questionnaires revealed no recognition of the 
experimental goal. After each trial participants were asked 
a comprehension question which was either presented in 
active or in passive voice (e.g., Who paints here? Or who 
is being painted here?). Prior to the actual experiment 
three practice trials familiarised the participants with the 
scenes and the task. The design of these items was 
identical to the experimental items. The sentences were 
structured either in SVO or OVS order and prosody was 
either biasing or neutral. All scenes were pre-tested with 
20 five-year old children and the results confirmed that all 
depicted characters were correctly identified. Out of the 
24 different depicted actions, only one was not correctly 
identified and was exchanged.   

 

Figure 1. Example picture of a scene. 

Procedure. Participants’ eye movements were monitored 
with an Eyelink 1000 eye tracker with a sampling rate of 
500 Hz Monocular, and an average accuracy of 0.5° in the 
remote setup. Images were presented on a Dell laptop 
with a screen resolution of 1920x1080. Before starting the 
experiment, the experimenter manually calibrated the eye 
tracker using a five-dot calibration scheme. For each trial, 
the scene was presented for 2000 ms, followed by the 
auditory sentence. 1500 ms after sentence offset the 
question followed (Fig. 2). A drift correct point separated 
the trials to ensure calibration of the eye tracker and the 
same starting point for each trial. Participants first saw the 
practice trials. Next, the experimenter re-calibrated before 
starting the experiment. Each testing session lasted 
approximately 20 minutes. 
Analysis. We defined two word regions for the analysis: 
verb and adverb (beginning of verb onset to adverb onset 
for the verb and beginning of adverb onset to NP2 onset 
for the adverb). These two regions were defined on the 
basis of the prosodic structure of the sentences. We 
focused on the verb region because this is where the 
prosodic structures can be distinguished. Whenever there 
is a main stress on the first noun phrase, the verb 
experiences a fall in stress. Otherwise the main stress is 
on the verb. We were further interested in the adverb 
region to examine post-verbal eye movements.  
 

Visual input: 2000ms 

Auditory Input + 500ms 

 
Comprehension Question 

 

Figure 2. Example for the time course of an experimental 
trial. 

In the scenes, we defined two role fillers (the donkey, the 
true agent; the cheetah, the true patient) as areas of 
interest. The middle role filler was always mentioned at 
the beginning of each sentence and was thus not used for 
the analysis of anticipatory eye movements. We computed 
mean log-ratios of looks towards the agent and the patient 
of the scene (see Arai, van Gompel & Sheepers, 2007; 
Carminati & Knoeferle, 2013). Log-ratios are a relative 
measure that represents the looks towards one character 
over the other. On the basis of these mean log-ratios we 
conducted an Analysis of Variance (ANOVA) following a 
2 (word order) x 2 (prosody) design by subject and by 
item for all word regions of the sentence (NP1, verb, 
adverb, NP2). All positive numbers in the log-ratios 
represent a preference of looking at the agent (vs. patient) 
in the scene and all negative numbers a preference 
towards the patient (vs. agent) in the scene. The post-
sentence questions show the number of correctly 
answered questions. We calculated percentages of correct 
answers of all possible answers and analysed the accuracy 
data using generalised linear mixed effects models (Bates, 
Mächler, &Walker, 2015). 
Eye movement results. The data for both age groups 
showed no significant effects of prosody in the verb and 
adverb regions (Figs 3 and 4). For the adults (only), the 
analyses revealed a main effect of word order for the verb 
and adverb (Fig. 3: adverb). The adults were more likely 
to inspect the patient (vs. agent) in SVO sentences 
(negative numbers) and the agent (vs. patient) in OVS 
sentences (positive numbers) during the adverb region 
(word order effect: p <.001).  

The child data showed more looks towards the patient 
(vs. agent) in all four conditions (intercept p<.05). The 
preference to inspect the patient over the agent is only 
slightly higher in the biasing compared to the neutral 
prosody conditions (Fig. 4).  
Accuracy Results. Adult’s post-sentence answers 
revealed a high percentage of correct answers (99%), with 
no difference between the conditions (Fig. 5). The child 
data revealed an overall accuracy of 71%. The analyses 
revealed no clear difference between the two prosodic 

true agent           ambiguous          true patient 
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conditions but a main effect of word order (p<.001, Fig. 
6). 

 

Figure 3. Mean log-ratio of looks of agent over patient 
during the adverb region per condition in adults (Analysis 
by subjects). 

 

Figure 4. Mean log-ratio of looks  (agent over patient) 
during the adverb region per condition in children 
(Analysis by subjects).  

 

Figure 5. Accuracy results: percentage of correct post-
sentence answers per condition in adults. 

 

Figure 6. Accuracy results: percentage of correct post-
sentence answers per condition in children. 

Discussion 
We investigated children’s and adults’ thematic role 
assignment in unambiguously case marked German SVO 
and OVS sentences using scenes in which two role fillers 
performed identical actions. Thus, as participants heard 
the verb, it was unclear which of two events (one 
depicting the NP1 referent as the agent, the other 
depicting him as a patient) to rely on for anticipating 
upcoming role fillers. In brief, the scene did not 
disambiguate the thematic roles relations. But case 
marking and prosodic cues could, in principle, permit 
anticipatory thematic role assignment. We recorded 
participants’ eye movements to the agent and patient in 
the scene while they inspected scenes and listened to 
related German SVO and OVS sentences (Table 1).  

Previous research has reported effects of prosody on 
thematic role assignment in German children and adults 
(Grünloh et al., 2011; Weber at al., 2006). Unlike these 
previous findings, our results revealed no significant 
effect of prosody. Previous research further revealed that 
adults rapidly use case marking for thematic role 
assignment (Matzke et al., 2002). Results for children 
were, however, contradictory (Dittmar et al., 2008; 
Münster, 2016; Özge et al., 2016; Zhang & Knoeferle, 
2012). In line with previous findings, the adults in our 
study exploited case marking for real-time thematic role 
assignment. They directed more anticipatory looks 
towards the true patient (vs. agent) in SVO sentences and 
towards the true agent (vs. patient) in OVS sentences. 
Children, by contrast, did not exploit case marking for 
such visual anticipation. In both SVO and OVS sentences, 
they directed more anticipatory looks towards the true 
patient during the adverb. They thus seem to have 
interpreted OVS sentences as agent-first sentences, 
disregarding the unambiguous object case marking on the 
sentence-initial noun phrase. 

In adults, the null effect of prosody might be explained 
by the fact that morpho-syntactic (case) information has 
stronger links to thematic role assignment than supra-
sentential information. Similar arguments have been made 
for prosodic marking and object color contrast (Sedivy et 
al., 1999). Sedivy et al. argued that color contrast effects 
enable a strongly contrastive interpretation already, 
eliminating further contrastive intonation effects. A 
similar argument might hold for case marking and 
prosody. Case marking in adults fully disambiguated 
thematic role assignment and prosody had no additional 
beneficial effects. Relatedly, adults in Grünloh et al. 
(2011, Exp. 1) failed to exploit prosody but used case 
marking for thematic role assignment.  

Concerning the children, our prosody results differed 
from those by Grünloh and colleagues (2011) who 
reported that a contrastive OVS-biasing intonation in 
unambiguous sentences facilitated children’s 
identification of patient-agent events. One reason for this 
might be that we used different scenes. In our study, 
participants saw one ambiguous scene that included both 
possible interpretations (e.g., true patient <-action  
ambiguous <-action true agent). In Grünloh and 
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colleagues (2011), by contrast, children selected one 
event picture from two adjacent ones (in which agent and 
patient roles appeared in reversed order, agent-patient vs. 
patient-agent). This direct contrast may have facilitated 
identifying the correct event by means of prosody (and 
case marking). In addition, in our scenes participants – 
including children – inspected the NP1 referent when it 
was named. The verb then linked to a matching action of 
that referent and likely reaffirmed this was the correct 
agent. It is possible that the verb-action match and 
additional posture of the NP1 referent (facing the true 
patient), may have led children in particular to interpret an 
L+H* accent on NP1 as highlighting the NP1 as the agent 
rather than as the patient, even if case-marking indicated 
it was the object and patient. 

In previous studies on children’s use of case marking 
(Münster 2016; Özge et al., 2015; Zhang & Knoeferle 
2012), visual information likely provided a supportive 
background for exploiting case marking. Unlike prior 
research, our scenes did not constrain thematic role 
relations by means of stereotypical knowledge (Özge et 
al., 2016) or action depictions that – once the verb became 
available – permitted children to distinguish SVO and 
OVS sentences (Münster, 2016; Zhang & Knoeferle, 
2012). One of the reasons for why children in our study 
did not use case marking in real time might thus be the 
lack of supportive contextual information. 

Children’s comprehension mechanisms develop 
throughout the first years of their life. They learn from 
their immediate environment and from observing who 
interacts with whom. Perhaps they need an unambiguous 
visual background to exploit case for syntactic 
structuring. Without that, they fail to correctly interpret 
more demanding OVS sentences and fall back on default 
structures (e.g., SVO). Further research could examine 
when children start to abstract away from the visual 
display and begin to use case marking in an adult-like 
manner for syntactic structuring. 
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Abstract

How do we learn to think better, and what can we do to pro-
mote such metacognitive learning? Here, we propose that cog-
nitive growth proceeds through metacognitive reinforcement
learning. We apply this theory to model how people learn how
far to plan ahead and test its predictions about the speed of
metacognitive learning in two experiments. In the first experi-
ment, we find that our model can discern a reward structure that
promotes metacognitive reinforcement learning from one that
hinders it. In the second experiment, we show that our model
can be used to design a feedback mechanism that enhances
metacognitive reinforcement learning in an environment that
hinders learning. Our results suggest that modeling metacog-
nitive learning is a promising step towards promoting cognitive
growth.
Keywords: Decision-Making; Planning; Metacognitive Rein-
forcement Learning; Cognitive Training

Introduction
One of the most remarkable aspects of the human mind is its
ability to improve itself based on experience. Such learning
occurs in a range of domains, from simple stimulus-response
mappings, motor skills, and perceptual abilities, to problem
solving, cognitive control, and learning itself (C. S. Green &
Bavelier, 2008; Bavelier, Green, Pouget, & Schrater, 2012).
Demonstrations of cognitive and brain plasticity have in-
spired cognitive training programs. The success of cognitive
training has been mixed and the underlying learning mecha-
nisms are not well understood (Owen et al., 2010; Anguera
et al., 2013; Morrison & Chein, 2011). Feedback is an im-
portant component of many effective cognitive training pro-
grams, but it remains unclear what makes some feedback
structures more effective than others, and there is no prin-
cipled method for designing optimal feedback structures.

To address these problems, we model cognitive plasticity
as metacognitive reinforcement learning. This perspective al-
lows us to translate methods for accelerating reinforcement
learning in robots (Ng, Harada, & Russell, 1999) into feed-
back structures for cognitive training in humans.

Here, we evaluate this approach in the domain of planning.
As a first step, we developed a metacognitive reinforcement
learning model of how people learn how many steps to plan
ahead in sequential decision problems, and we test its predic-
tions empirically. The results of our first experiment suggest
that our model can discern which reward structures are more
conducive to metacognitive learning. In our second experi-
ment, we find that feedback structures designed based on our
model can accelerate learning to plan.

We start by introducing the theory of reinforcement learn-
ing that our approach is based upon. The following two sec-
tions apply this theory to model the problem of deciding how
to decide and the process by which people learn to do so.
We then use this theory to motivate a novel computational
method for designing feedback structures that promote cog-
nitive plasticity and experimentally test the predictions of our
theory. We close with a discussion of the implications of our
results for cognitive training.

Planning and reinforcement learning
A sequential decision problem can be modeled as a Markov
decision process (MDP)

M = (S ,A ,T,γ,r,P0) , (1)

where S is the set of states, A is the set of actions, T (s,a,s′)
is the probability that the agent will transition from state s to
state s′ if it takes action a, 0 ≤ γ ≤ 1 is the discount factor
on future rewards, r(s,a,s′) is the reward generated by this
transition, and P0 is the probability distribution of the initial
state S0 (Sutton & Barto, 1998). A policy π : S 7→ A speci-
fies which action to take in each of the states. The expected
sum of discounted rewards that a policy π will generate in the
MDP M starting from a state s is known as its value function

V π
M(s) = E

[
∞

∑
t=0

γ
t · r (St ,π(St),St+1)

]
. (2)

The optimal policy π?
M maximizes the expected sum of dis-

counted rewards, that is

π
?
M = argmax

π
E

[
∞

∑
t=0

γ
t · r (St ,π(St),St+1)

]
. (3)

Solving large planning problems is often intractable be-
cause the number of possible action sequences grows expo-
nentially with the number of steps one plans ahead. When
the state space S is discrete and relatively small, dynamic
programming can be used to find optimal plans in polyno-
mial time (Littman, Dean, & Kaelbling, 1995). But the high-
dimensional, continuous state spaces people have to plan with
in real life are too large for these methods. Instead, peo-
ple seem to rely on approximate planning strategies (Huys
et al., 2015) and often decide primarily based on immediate
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and proximal outcomes while neglecting the long-term con-
sequences of their actions (Myerson & Green, 1995). Despite
its fallibility, looking only a few steps ahead can drastically
simplify the planning problem, and this may often be a ne-
cessity for bounded agents with imperfect knowledge of the
environment (Jiang, Kulesza, Singh, & Lewis, 2015). Since
cutting corners in the decision process is both necessary and
problematic, good decision-making requires knowing when
that is admissible and when it is not. Knowing how much to
plan is therefore an important metacognitive skill to learn.

Previous work suggests that this metacognitive skill can
be learned through trial and error (Lieder & Griffiths, 2015).
Learning through trial and error can be understood in terms of
reinforcement learning (Sutton & Barto, 1998). While certain
reinforcement learning algorithms can, in principle, learn to
solve arbitrarily complex problems, reinforcement learning
can also be very slow—especially when rewards are sparse
and the optimal policy is far from the learner’s initial strategy.
A common approach to remedy this problem is to give the
algorithm pseudo-rewards for actions that do not achieve the
goal but lead in the right direction (Ng et al., 1999).While
previous work has developed this idea to accelerate learning
a direct mapping from states to actions, we will leverage it to
accelerate learning to plan.

Deciding how to decide
People can use many different decision strategies. This poses
the problem of deciding how to decide (Boureau, Sokol-
Hessner, & Daw, 2015). Previous research on meta-decision-
making has focused on the arbitration between habits ver-
sus planning (Keramati, Dezfouli, & Piray, 2011; Dolan
& Dayan, 2013). While this is an important meta-control
problem, it is only one part of the puzzle because people
are equipped with more than one goal-directed decision-
mechanism. Hence, when the model-based system is in
charge, it has to be determined how many steps it should plan
ahead. Ideally, the chosen planning horizon should achieve
the optimal tradeoff between expected decision quality ver-
sus decision time (Vul, Goodman, Griffiths, & Tenenbaum,
2014) and mental effort (Shenhav et al., 2017).

Here, we make the simplifying assumption that people al-
ways choose the action that maximizes their sum of expected
rewards over the next h steps, for some value of h that differs
across decisions. A planning horizon of h = 1 entails looking
only at the immediate outcome of each action (myopic one-
step planning) whereas a planning horizon larger than one
entails solving a sequential decision problem to form a multi-
step plan. Under this assumption, the meta-decision problem
is to select a planning horizon h from a set H = {1,2, · · · ,},
execute the plan, select a new planning horizon, and so on.
More formally, this problem can be formalized as a meta-
level MDP (Hay, Russell, Tolpin, & Shimony, 2012). In our
task, the meta-level MDP is

Mmeta = (Smeta,H ,Tmeta,rmeta) , (4)

where the meta-level state m ∈ Smeta = {0,1,2,3,4} encodes

the number of remaining moves, and the meta-level action
h ∈ H = {1,2,3,4} is the planning horizon used to make a
decision. The meta-level reward function rmeta integrates the
cost of planning with the return of the resulting action:

rmeta(mk,hk) =−cost(hk)+
h

∑
t=1

r(st ,plan(k,hk)
t ), (5)

where plan(k,h)t is the t th action of the plan formed by looking
h steps ahead in the meta-level state mk. The meta-decision-
maker receives this reward after the plan has been executed in
its entirety. If the meta-decision-maker selects short planning
horizons there can be multiple plan-act-reward-learn cycles
within a single trial. The cost of planning cost(hk) is deter-
mined by the branching factor b of the decision tree according
to

cost(hk) = λ ·bhk ·hk, (6)

where bhk is the number of plans, hk is the number of steps
per plan, and λ is the cost per planning step.*

Metacognitive reinforcement learning
Solving the problem of deciding how to decide optimally is
computationally intractable but the optimal solution can be
approximated through learning (Russell & Wefald, 1991).
We propose that people use reinforcement learning (Sutton
& Barto, 1998) to approximate the optimal solution to the
meta-decision problem formulated in Equation 4.

Model
Our model of metacognitive reinforcement learning builds on
the semi-gradient SARSA algorithm (Sutton & Barto, 1998)
that was develop to approximately solve MDPs with large or
continuous state spaces. Specifically, we assume that people
learn a linear approximation to the meta-level Q-function

Qmeta(mk,hk)≈
7

∑
j=1

w j · f j(mk,hk), (7)

whose features f comprise one indicator variable for each pos-
sible planning horizon h ( f1 = 1(h = 1), · · · , f4 = 1(h = 4)),
one indicator variable for whether or not the agent planned
all l steps until the end of the task ( f5 = 1(h = l)), the num-
ber of steps that were left unplanned ( f6 = max{0, l − h}),
and the number of steps the agent planned too far ( f7 =
max{0,h− l}). The semi-gradient SARSA algorithm learns
the weights of these features by gradient descent. To bring
it closer to human performance, our model replaces its gra-
dient descent updates by Bayesian learning. Concretely, the
weights w are learned by Bayesian linear regression of the
bootstrap estimate Q̂(mk,hk) of the meta-level value function
onto the features f. The bootstrap estimator

Q̂(mk,hk) = rmeta(mk,hk)+ 〈µt , f(m′,h′)〉 (8)

*This equation assumes a constant branching factor and an upper
bound on the complexity of planning. People’s planning time likely
increases less than exponentially fast with the planning horizon but
our approximation may be sufficient for small problems.
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is the sum of the immediate meta-level reward and the pre-
dicted value of the next meta-level state m′. The predicted
value of m′ is the scalar product of the the posterior mean µt
of the weights w given the observations from the first t ac-
tions (where t = ∑

k
n=1 hn) and the features f(m′,c′) of m′ and

the planning horizon h′ that will be selected in that state.
We assume that the prior on the feature weights reflects that

it is beneficial to plan until the end (P( f5) = N (µ = 1,σ =
0.1)), although planning is costly (P( f1) = P( f2) = P( f3) =
P( f4) = N (µ =−1,σ = 0.1)), and that planning too much is
more costly than planning too little (P( f7) = N (µ =−1,σ =
0.1) and P( f6) = N (µ = 0,σ = 0.1)).

Given the posterior on the feature weights w, the planning
horizon h is selected by Thompson sampling. Specifically,
to make the kth meta-decision, a weight vector w̃ is sampled
from the posterior distribution of the weights given the series
of meta-level states, selected planning horizons, and resulting
value estimates experienced so far. That is,

w̃k ∼ P(w|Ek), (9)

where the set Ek = {e1, · · · ,ek} contains the meta-decision-
maker’s experience from the first k meta-decisions; to be
precise, each meta-level experience e j ∈ Ek is a tuple(
m j,h j, Q̂(m j,c j;µ j)

)
containing a meta-level state, the com-

putation selected in it, and the bootstrap estimates of its Q-
value. The sampled weight vector w̃ is then used to predict
the Q-values of each possible planning horizon h ∈ H ac-
cording to Equation 7. Finally, the planning horizon with the
highest predicted Q-value is used for decision-making.

By proposing metacognitive reinforcement learning as a
mechanism of cognitive plasticity, our model suggests that re-
ward and feedback are critical for cognitive growth. Concep-
tualizing metacognitive reinforcement learning as a regres-
sion problem suggests that learning how to best think about
a problem should require less practice the stronger the cor-
relation between the features f(m,c) (i.e., the predictors) and
the resulting reward net the cost of thinking (i.e., the crite-
rion; Green, 1991). Here, we apply our model to predict
how quickly people can learn that more planning leads to
better results from the reward structure of the practice prob-
lems. According to the model, learning should be fastest
when the reward increases deterministically with the plan-
ning horizon both within and across problems. By contrast,
learning should be slower when this relationship is degraded
by additional variability in the rewards that is unrelated to
planning. The following experiments test this prediction and
illustrate the model’s utility for designing feedback structures
that promote metacognitive learning.

Experiment 1: Reward structures can help or
hinder learning to plan

Methods
We recruited 304 adult participants from Amazon Mechan-
ical Turk. The task took about 25 minutes, and participants
were paid $2.50 plus a performance-dependent bonus of up to

Figure 1: Screenshot of a problem from Experiment 1.

$2.00. Participants played a series of flight planning games.
The environment consisted of six different cities, each con-
nected to two other cities (Figure 1). Participants began each
trial at a given city, and were tasked with planning a specified
number of flights. Each flight was associated with a known
gain or loss of money, displayed onscreen. Thus, the partic-
ipants’ task was to plan a route that would maximize their
earnings or minimize their losses, based on the number of
planning steps required for that game.

The experiment comprised thirteen trials total: a sequence
of three practice problems which required planning 2, 3, and
3 steps ahead, respectively, followed by ten 4-step prob-
lems, with a break after trial eight. The order of the two
3-step problems was randomized, and the order of the ten
4-step problems was randomized across the last ten trials of
the experiment. Participants were assigned randomly to one
of two conditions: environments with reward structures de-
signed to promote learning (“diagnostic rewards”), or envi-
ronments with reward structures designed to hinder learning
(“non-diagnostic rewards”).

The problems of the diagnostic rewards condition were au-
tomatically generated to exhibit four characteristics:

1. For each l-step problem, planning h < l steps ahead gener-
ates l−h suboptimal moves. In other words, each myopic
planner makes the maximum possible number of mistakes.

2. When the number of moves is l, then planning l steps ahead
yields a positive return, but planning h < l steps ahead
yields a negative return.

3. The return increases monotonically with the planning hori-
zon from 1 to the total number of moves.

4. Each starting position occurs at least once.
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The reward structures used for the non-diagnostic rewards
condition were created by shifting the diagnostic reward
structures so as to degrade the correlation between planning
horizon and reward. Concretely, for half of the problems all
rewards were shifted down such that no amount of planning
could achieve a return better than −$10. Since the original
problems were such that the 1-step planner always performed
worst, the shift was −r1+X

l where r1 is the return of the 1-step
planner, l is the number of steps in the planning problem,
and X is a random number between 10 and 20 that differed
across problems (X ∼ Uniform([10,20])). For the other half
of the problems, all rewards were shifted up by − r1+X

l such
that all planners achieve a return of at least +$10. These re-
ward structures make it extremely difficult for metacognitive
reinforcement learning to discover that planning is valuable,
because the random shifts greatly diminish the correlation be-
tween planning horizon and reward.

Results
Both model simulations and human behavior demonstrated
enhanced learning in environments with diagnostic rewards.
Figure 2 shows the mean performance of the metacognitive
reinforcement learning model, and the mean performance of
human participants. Here, performance is measured as rela-
tive reward

Rrel = (R−Rmin)/(Rmax−Rmin), (10)

where R is the total reward received during the trial, and Rmin
and Rmax are the highest and lowest possible total reward on
that trial, respectively.

To measure the effects of condition and trial number
on performance in human participants, we ran a repeated-
measures ANOVA. This revealed a significant effect of both
trial number (F(9,2989) = 3.44, p < 0.001) and condition
(F(9,3029) = 15.26, p < 0.0001), such that participants im-
proved over time, and participants with diagnostic feedback
performed better than those without. To measure learning
in each group, we ran a simple linear regression of the rel-
ative reward on the trial number. This revealed a significant
regression equation for participants who received diagnostic
rewards (F(2,302) = 11.28, p < 0.01), with an R2 of 0.59,
but not for participants who received non-diagnostic rewards
(F(2,302) = 3.51, p > 0.05), with an R2 of 0.31, suggesting
that improvement in performance occurred with diagnostic
rewards, but not without.

To analyze the frequency with which participants chose
the optimal route, we performed a multinomial logistic re-
gression of whether or not each participant chose the optimal
route on trial number and group. This revealed significant
effects of trial number (p < 10−6) and group (p < 0.0001).

In addition, we found that participants interacting with a di-
agnostic reward structure learned to plan significantly further
ahead than participants interacting with the non-diagnostic
reward structure. When there were four steps left, the aver-
age planning horizon was 2.96 with diagnostic rewards com-
pared to 2.65 with non-diagnostic rewards (t(596) = 2.94,

Figure 2: Model predictions and human performance in Ex-
periment 1. Error bars indicate the standard error of the mean.
Model predictions were averaged over 500 simulations.

p < 0.01). When the rewards were diagnostic of good plan-
ning, participants’ choices in the first step of the 4-step prob-
lems accorded 10.3% more frequently with 4-step planning
(t(302) = 3.57, p < 0.001). For 3 remaining steps there
was a significant increase in choices according with opti-
mal 1-step (p < 0.01), 2-step (p < 0.01) and 4-step plan-
ning (p < 0.01). For 2 remaining steps, there was a signif-
icant increase in choices according with optimal 1-step plan-
ning (p < 0.0001) without a decrease in agreement with other
planning horizons. Finally, on the last move participants’
choices in the environment with diagnostic rewards corre-
sponded 5.8% more frequently with optimal 1-step planning
(t(302) = 3.71, p < 0.001), and significantly less frequently
with 2-step and 3-step planning (p < 0.01 and p < 0.001). In
summary, diagnostic rewards led to better agreement between
the planning horizon and the number of remaining steps.

Experiment 2: Using feedback to promote
learning to plan

When one has control over the reward structure of an environ-
ment, creating rewards tailored to faster learning may be fea-
sible. However, often environmental rewards are fixed. In Ex-
periment 2, we tested whether providing feedback may be an
effective alternative approach to accelerating learning. When
participants do not plan enough to find the optimal route, this
could be because the time cost of planning an optimal route
outweighs its benefits. To change that, we provided feedback
in the form of timeout penalties for short-sighted decisions.

Methods
We recruited 324 adult participants on Amazon Mechani-
cal Turk. The task took about 30 minutes, and participants
were paid $3.00 plus a performance-dependent bonus of up
to $2.00. Participants played twenty trials of the flight plan-
ning game described above. These trials were divided into a
training block and a testing block. The training block con-
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sisted of six trials requiring 2-step planning, followed by ten
trials requiring 3-step planning. The testing block consisted
of four additional 3-step trials. The order of the 2-step tri-
als and the order of the 3-step trials were randomized across
subjects. Participants were randomly assigned to either the
feedback condition or the control condition.

In the training block, participants in the feedback condition
were told their apparent planning horizon at the end of every
trial and penalized with a timeout that reflected the amount
of planning they had eschewed. Concretely, we set the dura-
tions of the timeouts such that the cost of short-sighted de-
cisions was proportional to the amount of necessary planning
the participant had eschewed. Specifically, the forgone cost of
planning was estimated by cost = 2l−ĥ, where l is the number
of moves for that trial, ĥ is the participant’s apparent plan-
ning horizon, and 2 is the branching factor since each step
entailed a binary decision. The participant’s planning hori-
zon was estimated by the number of consecutive moves con-
sistent with the optimal policy, beginning with the last move,
followed by the second-to-last, etc. At the end of each trial of
the first block, participants in the feedback group were penal-
ized with a timeout delay for sub-optimal routes. The delay
was calculated as 7 · (cost− 1) seconds. During this period,
participants were unable to proceed to the next trial. If partic-
ipants performed the optimal route, they were able to proceed
immediately to the next trial.

The control group received no feedback and had to wait
a fixed amount of time at the end of every trial in block 1,
regardless of their performance. This fixed period was set to
8 seconds, to match the mean timeout period for participants
in the feedback group (7.9 seconds). Neither group received
feedback or delays in the test block.

The planning problems presented in this experiment were
created in two steps. In the first step, we created 2- and 3-
step problems with maximally diagnostic reward structures
(according to the criteria used in Experiment 1) subject to
the constraint that the first move with the highest immediate
reward was optimal for exactly half of those problems. In the
second step, we modified these problems so as to deteriorate
the correlation between planning horizon and reward using
the same method we employed to create the non-diagnostic
reward structures used in Experiment 1.

Model Predictions
We applied the metacognitive reinforcement learning model
described above to the problem of learning how many steps
one should plan ahead. We simulated a run of the experi-
ment described above with 1000 participants in each condi-
tion. The simulations predicted a gradual increase in the rel-
ative return from the first 3-step problem to the last one (see
Figure 3). With feedback, the relative return increased faster
and reached a higher level than without feedback.

Results
To quantify the effects of condition and trial number on per-
formance (measured as relative reward), we ran a mixed-

Figure 3: Results of Experiment 2. The metacognitive RL
model predicts that feedback accelerate learning to plan. Hu-
man behavior shows a similar pattern of results.

design repeated-measures ANOVA on participant perfor-
mance during the 3-step trials. This revealed a significant
effect of feedback (F(9,4521) = 8.54, p < 0.01) and trial
number (F(9,4521) = 1.85, p < 0.05) on relative reward. To
measure learning in each group, we performed a simple lin-
ear regression of relative reward on trial number for the 3-
step trials in the training block (i.e., when participants in the
feedback group received feedback). This revealed a signifi-
cant regression equation for the feedback group (F(2,322) =
5.28, p = 0.05), with an R2 of 0.40 but not for the control
group (F(2,322) = 1.57, p > 0.05), with an R2 of 0.16. This
suggests that participants who received feedback improved
during the training block but the control group did not.

Feedback increased the model’s average performance in
both the training block and the transfer block. We next
tested whether the enhanced learning of the feedback group
during training resulted in better performance in the trans-
fer block (trials 17-20) where they no longer received any
feedback. A two-sample t-test revealed that the feedback
group’s advantage in the testing block was nearly significant
(t(1294) = 1.53, p = 0.063). Figure 3 compares our partici-
pants’ performance to the model predictions.

As predicted by our model, a multinomial logistic regres-
sion of whether or not each participant chose the optimal
route on trial number and feedback, revealed significant ef-
fects of trial number (p < 0.0001) and feedback (p < 0.01).

Feedback appeared to increase people’s planning horizons:
when there were two remaining moves, the choices of the
feedback group accorded 4% less often with myopic choice
(t(1398) =−2.17, p < 0.05), 7% more often with optimal 2-
step planning (t(1398) = 3.44, p < 0.001), and 4% more of-
ten with optimal 3-step planning (t(1398) = 2.43, p < 0.05).

Discussion
In this article, we have introduced a computational model
of how people learn to decide better. Its central idea is that
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learning how to think can be understood as metacognitive re-
inforcement learning. Our model extends previous research
on strategy selection learning (Lieder et al., 2014; Lieder &
Griffiths, 2015) by capturing that choosing cognitive oper-
ations is a sequential decision problem with potentially de-
layed rewards rather than a one-shot decision. The new model
correctly predicted the effects of reward structure and feed-
back on learning to plan: Experiment 1 suggested that our
model captures the effect of reward structures on the speed of
metacognitive learning. We then applied our theory to design
feedback for people’s performance in environments whose
reward structure is not diagnostic of good planning. Experi-
ment 2 confirmed the model’s prediction that this intervention
would be effective.

Our results suggest two pragmatic approaches to promot-
ing cognitive growth: first, designing reward structures that
are diagnostic of the quality of reasoning, planning, and
decision-making; second, providing feedback on the process
by which a decision was made. In Experiment 2 we followed
the latter approach by designing feedback based on the cost
of planning; but other types of feedback may also be useful.
If cognitive plasticity is based on model-free reinforcement
learning as assumed by our theory, then its speed should crit-
ically depend on how well the feedback people receive upon
performing cognitive operations reflects their value. There-
fore, feedback structures that align immediate feedback with
long-term value should be maximally effective at promot-
ing cognitive plasticity and learning to make better decisions.
Future experiments should test this hypothesis by designing
feedback structures using the optimal gamification method in-
troduced by Lieder and Griffiths (2016). Feedback designed
using optimal gamification could be especially beneficial be-
cause the underlying method of reward shaping is designed
to accelerate model-free reinforcement learning (Ng et al.,
1999). Critically, to promote learning how to decide, people
should decide without any assistance and only receive feed-
back after their choice.

We hope that our theory of metacognitive reinforcement
learning will be a step towards establishing a scientific foun-
dation for designing feedback for cognitive training and other
interventions for promoting cognitive growth. Future work
will evaluate alternative forms of feedback, address the prob-
lem of transfer and retention, and design more effective train-
ing paradigms using tasks that are maximally diagnostic of
how people think and decide.
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Abstract: Searching natural environments, as for example, when foraging or looking for a landmark, combines reasoning
under uncertainty, planning and visual search. Existing paradigms for studying search in humans focus on step-by-step infor-
mation sampling, without examining advance planning. We propose and evaluate a Bayesian model of how people search in a
naturalistic maze-solving task. The model encodes environment exploration as a sequential process of acquiring information
modelled by a Partially Observable Markov Decision Process (POMDP), which maximises the information gained. We show
that the search policy averaged across participants is optimal. Individual solutions, however, are highly variable and can be
explained by two heuristics: thinking and guessing. Self-report and inference, a Gaussian Mixture Model over inverse POMDP,
consistently assign most subjects to one style or the other. By analysing individual participants’ decision times we show that
individuals solve partial POMDPs and plan their search a limited number of steps in advance.
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Abstract

Indicative conditionals, that is sentences of the form “If p, then
q,” belong to the most puzzling phenomena of language. On
the majority of accounts of indicative conditionals, the truth of
p and q suffices for “If p, then q” to be true or highly accept-
able. Yet, many conditionals with true clauses, even if there is
a meaningful connection between them, sound odd. The most
common reaction to this phenomenon is to attribute the oddity
of conditionals with true clauses to natural language pragmat-
ics. We present an experimental study investigating how the
presence or absence of a connection between the clauses af-
fects the assertability of conditionals and conjunction express-
ing generic and specific kind of content. The results refute the
standard pragmatic explanation.
Keywords: indicative conditionals; conjunctions; relevance;
specific content; generic content; assertability

Introduction
Indicative conditionals1 are sentences that we use to express
hypothetical thoughts. They are central to our reasoning,
planning, and problem solving. We entertain them when mak-
ing everyday decisions (“If I add too much chilly to the curry,
John will complain”), discussing public policies (“If we lower
taxes, we will not have sufficient resources to fund social se-
curity benefits”), or doing science (“if we do not curb carbon
output, sea levels will rise dangerously”).

Conditionals are usually defined as sentences of the form
“If p, then q,” such as:

(1) If Dora studied physics, then she knows how to solve dif-
ferential equations.

Intuitively, the antecedent of a conditional, p (“Dora stud-
ied physics”), expresses a condition under which q, the con-
sequent (“Dora knows how to solve differential equations”),
occurs or from which it can be inferred. Assuming that it
is true that Dora studied physics and that she knows how to
solve differential equations, and given that a degree in physics
is a good reason to believe that a person can solve differen-
tial equations, (1) is rendered true on any account that allows
conditionals to be true or false at all, and highly acceptable on
those accounts that deny conditionals their truth aptness (that
is, accounts that do not view conditionals as statements that
are ‘true’ or ‘false,’ in the same way that questions or com-
mands are not true or false). But what if both p and q are true,
yet there is no connection between them, that is, one cannot

1Throughout this paper, we will use the term “conditionals” to
refer specifically to indicatives.

infer q from p nor p makes it more likely that q? Let us sup-
pose that Dora can solve differential equations, and that she
also plays basketball. The fact that Dora is a basketball player
does not allow us to predict anything about Dora’s mathemat-
ical skills. The two facts do not seem to be connected at all,
yet on many prominent accounts of conditionals, the sentence
(2) is rendered true or, at least, highly acceptable:

(2) If Dora plays basketball, then she knows how to solve
differential equations.

This is due to the fact that the majority of the prominent theo-
ries of conditionals validate the Principle of Conjunctive Suf-
ficiency, often simply referred to as the Principle of Center-
ing, which allows us to infer “If p, then q” from the conjunc-
tion of p and q.

Centering has recently attracted attention in psychology
of reasoning (Cruz et al. 2016), because this is an infer-
ence rule that distinguishes between some of the most popu-
lar philosophical and psychological accounts of conditionals,
such as the Mental Models Theory (Johnson-Laird & Byrne
2002) and the suppositional theory (Adams 1975; Edging-
ton 1995; Evans & Over 2004; Cruz et al. 2016), on the one
hand, and the ‘inferentialist’ approach on which a connec-
tion between a conditional’s antecedent and its consequent
belongs to the literal, semantic meaning of a conditional, on
the other hand. This connection may be defined in different
ways, for instance, as a whole variety of inferential relations
(Krzyżanowska et al. 2013, 2014) or in terms of probabilistic
relevance (Skovgaard-Olsen et al. 2016b,a), but on no ‘infer-
entialist’ account of conditionals will a sentence like (2) be
acceptable unless one can show that there is some kind of
relationship between basketball and maths.

This is not to say that proponents of the ‘centering’ theories
do not find sentences like (2) strange. They do, but assume
that the oddity of missing-link conditionals can be explained
in terms of pragmatics, that is, the aspect of language that al-
lows speakers to infer the intended meaning of linguistic ex-
pressions even where it is different than what is literally said.
For instance, “Some students passed the exam” pragmati-
cally implicates that not all of them passed, although, from
a purely logical point of view, it is consistent with “All stu-
dents passed the exam” (Bott & Noveck 2004). Along these
lines, (Over et al. 2007, p. 92) make the following observa-
tion. Anyone who takes the natural-language conditional to
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be probabilistic—its meaning exhausted by the Equation, i.e.
Pr(“If p, q”) = Pr(q | p)—can argue that:

the use of a conditional pragmatically suggests, in cer-
tain ordinary contexts, that p raises the probability of q
or that p causes q.

A similar take on the connection between p and q can be
found in the Mental Models literature. On this account, a
language user interprets an assertion by constructing mental
models (Johnson-Laird & Byrne 2002, p. 653). On the most
recent version of Mental Models Theory, the core meaning
of a natural language conditional refers to a set of possibili-
ties equivalent to the material interpretation of a conditional
(p. 665). However, what kind of possibilities a language user
envisages when interpreting a sentence is susceptible to the
processes of semantic and pragmatic modulations. In partic-
ular:

modulation can establish an indefinite number of dif-
ferent temporal, spatial, and coreferential relations be-
tween the antecedent and consequent of a conditional.
(Johnson-Laird & Byrne 2002, p. 660)

But what kind of pragmatic mechanisms are responsible
for the oddity of missing-link conditionals? The most famous
pragmatic explanation of why some conditionals, and espe-
cially those that are true due to the truth of their consequents,
appear odd was proposed by Grice (1989). He argued that:

To say that “p⊃ q” is to say something logically weaker
than to deny that p or to assert that q, and is thus less
informative; to make a less informative rather than a
more informative statement is to offend against the first
maxim of Quantity, provided that the more informative
statement, if made, would be of interest. There is a gen-
eral presumption that in the case of “p ⊃ q,” a more in-
formative statement would be of interest (Grice 1989,
p.61).

On this account, a sentence such as (2) is simply unassertable
in a context in which its antecedent and consequent are known
to be true, because a stronger statement, namely “Dora knows
how to solve differential equations” is available and should
have been asserted instead. Note, however, that even if an ap-
peal to the maxim of Quantity explains why sentences like (2)
are not felicitous things to say, it does not illuminate the fact
that speakers seem to interpret conditionals as if their clauses
were somehow connected. Moreover, it also does not allow
us to distinguish between sentences such as (2) and those con-
ditionals with true clauses that are, intuitively, perfectly fine,
like (1).

Both (1) and (2) consist of a true antecedent and true con-
sequent. The only difference between them is that there is an
inferential connection between doing physics and possessing
certain mathematical skills, whereas playing basketball, as far
as we know, has no bearing on the latter at all. The truth of

p and q is clearly not enough for a conditional to be a rea-
sonable thing to say or to accept, but neither does it suffice to
render a conditional unassertable at all.

Connecting antecedents and consequents
In the case of what we will label in the following as a TT
conditional, that is, a conditional whose antecedent and con-
sequent are (known to be) true, the connection between the
clauses cannot be translated directly into ‘possibilities’ in the
way envisaged by Mental Models Theory, or into the notion
of the probabilistic relevance, understood in terms of the ∆p
rule, if the conditional probability, Pr(q|p), is understood as
the ratio of Pr(q∧ p) to Pr(p) (Over et al. 2007; Oberauer et
al. 2007; Skovgaard-Olsen et al. 2016b). On this widespread
probabilistic approach, p is said to be positively relevant for
q if ∆p > 0, where ∆p is defined as a difference between
Pr(q | p) and Pr(q |¬p). However, when both p and q are
known to be true, Pr(p) = Pr(q) = Pr(q|p) = 1, whereas
Pr(q|¬p) is undetermined since Pr(¬p) = 0, and hence ∆p
cannot be calculated. Another, related, measure of probabilis-
tic relevance is the difference between Pr(q|p) and Pr(q) (cf.
Skovgaard-Olsen et al. 2016a). Pr(q | p)> Pr(q) ensures that
the antecedent has a probability-raising effect on the conse-
quent. However, when both p and q are known to be true,
Pr(q) = Pr(q | p). In that case, p is probabilistically irrelevant
for q just because Pr(q) cannot be raised any higher. Yet, as
the example (1) illustrates, the clauses of a TT conditional
may seem connected anyway, hence probabilistic relevance
defined in this way is insufficient to capture the intuition be-
hind that connection. By the same token, Johnson-Laird and
Byrne’s (2002) suggestion that the core meaning of the con-
ditional is that the “antecedent describes a possibility, at least
in part, and the consequent can occur in this possibility.” (p.
650), is of no help with TT conditionals, as true states of af-
fairs are necessarily ‘possible,’ so that the notion of possibil-
ity is insufficient to distinguish between 2 and 1.

Some of these problems can be avoided when conditional
probability, rather than unconditional probability, is treated as
the primitive notion, and thus Pr(q | p) is not calculated from
Pr(p∧q) and Pr(p) (e.g. Popper 1959; de Finetti 1970/1990).
One may also consider a counterfactual notion of relevance,
that is, e.g., ∆p calculated as if p was not known to be
true.2 In our experimental design, we assume an intuitive,
pre-theoretic notion of the connection, which does not de-
pend on any particular operationalisation of the notion of rel-
evance.

What antecedents and consequents are about
In order to understand the semantics and pragmatics of condi-
tionals, one should arguably turn to the way conditionals are
actually used in everyday language. Linguists have sought to
provide extensive overviews of different types of conditionals

2cf. Strong Ramsey test, proposed by Rott (1986), according to
which “If p, then q” is acceptable if and only if q is acceptable under
the supposition of p but not acceptable under the supposition of ¬p.
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Figure 1: Example vignette used in the experiment.

(see, e.g, Declerck & Reed 2001, for a comprehensive cor-
pus based analysis). Such overviews reveal that conditionals
can be characterised and classified in many different ways.
Consideration of those differences suggests that the broad
category of ‘indicative conditional’ (as in, ‘in the indicative
mood’ as opposed to the ‘subjunctive mood’, e.g., I would, I
could, etc.) which is the theoretical focus of the majority of
psychological and philosophical work is far too broad. The
way a conditional is interpreted and evaluated may be af-
fected by the kind of content expressed by its clauses, even
where the content is broadly ‘indicative’. Among others, the
content of a clause may be specific, that is, the clause can be
about a specific object (a token) known to all participants of
the conversation, e.g. “this book,” or generic, concerning a
type of an object, e.g. “a book.” Consequently, we can distin-
guish between generic and specific conditionals:

Generic (type):

(3) If a book is hardcover, it is expensive.

Specific (token):

(4) If this book is hardcover, it is expensive.

As noted by Declerck & Reed (2001, p. 2), the unaccept-
ability of conditionals with true antecedents:

is due to the fact that a speaker cannot process a fact as
a supposition, except in ‘inferential’ conditionals, i.e.,
in conditionals expressing a conclusion Q that is drawn
from a premise P.

We investigate whether there is a difference in how people
process generic and specific content, and consequently, if the
two types of content may have an effect on people’s asserta-
bility judgements. Additionally, we hypothesise that the pres-
ence or absence of an inferential connection may make the

conditional assertable, even if the antecedent is true and hence
difficult to process as a supposition.

The present experiment
We investigated whether people’s assertability judgements
depend on what a conditional is about. More specifically, we
were interested in two factors that may be expected to affect
people’s evaluations of a conditional: the presence of an in-
ferential connection between antecedent and consequent, and
the kind of content the conditional expresses. We compared
how people evaluate conditionals with how then evaluate con-
junctions consisting of the same true clauses, such as:

Conditional: If you didn’t water your plant, you failed your
math test.

Conjunction: You didn’t water your plant and you failed
your math test.

Our test followed a 2×2×2 factorial design. Sentence type
(conditionals vs. conjunctions) was manipulated within sub-
jects. Type of content (generic: type vs. specific: token) and
the inferential connection (presence: C+ vs. absence: C-)
were manipulated between subject. These are examples of
conditionals belonging to each of the resulting four groups:

Token C+ If you didn’t water your plant, it dried up.
Token C- If you didn’t water your plant, you failed your

math test.
Type C+ If you don’t water a plant, it dries up
Type C- If you don’t water a plant, you fail math tests.

Finally, we asked participants to evaluate the extent to
which given sentences are reasonable things to utter in given
contexts by means of two different questions:

Assertability: “In this context, to what extent would it be
natural for X to assert the following sentences?”
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Sensibleness: “In this context, would it make sense for X to
say the following?”

Methods
Participants
244 individuals participated in the online survey on the
MTurk platform (https://www.mturk.com/). We removed
four participants who did not complete the survey and three
participant whose reported first language was not English. Of
the remaining 237 participants, 115 were female. The mean
age of the participants was 33.97 (range 18-63). All partici-
pants received a small remuneration for their time and effort.

Materials and procedure
Each participant has been randomly assigned to one of the
four groups: Type C+, Type C-, Token C+, Token C-. Partic-
ipants in each group were presented with 8 blocks, one at a
time. The order of presentation was randomised. Each block
contained a vignette consisting of a conversational context
followed by two sentences: a conditional and a conjunction,
presented in randomised order. There were four types of vi-
gnettes. Each participant saw each vignette twice: once fol-
lowed by the question about the “assertability” of the two sen-
tences, and once followed by the question about their “sensi-
bleness.” Figure 1 shows an example Token-C- item used in
the experiment.

Results
The data on ‘sensibleness’ mirrored exactly the pattern of
responses to the ‘assertability’ question. Therefore, for
brevity’s sake, we report only the analysis of the latter ques-
tion, the descriptive statistics for which are reported in Ta-
ble 1, below.

Table 1: Descriptive statistics for ‘assertability.’

Type Token
C+ C- C+ C-

Conditionals mean 5.51 2.52 3.92 1.48
sd 0.94 1.08 1.35 0.74

Conjunctions mean 3.79 4.59 5.98 6.04
sd 1.48 1.30 0.79 1.01

As figure 2 suggests, the absence of an inferential connec-
tion makes both type and token TT conditionals unassertable,
although the presence of connection does not seem to be
enough to make a token conditional assertable. By contrast,
the presence or absence of a connection has little effect on the
assertability of token conjunctions. When there is no connec-
tion at all, conjunctions are judged to be more assertable than
conditionals. At the same time, while token C+ conjunctions
seem to be more assertable than token C+ conditionals, type
C+ conjunctions are less assertable than type C+ conditionals.

We performed analyses in R (R Core Team, 2016) us-
ing functions from Wilcox (2016) and the WRS2 package

(Mair, Schoenbrodt, & Wilcox 2016). The robust analyses
used 20% trimmed means. This difference between type and
token is confirmed by significant 2-way interaction in a ro-
bust mixed ANOVA (‘bwtrim’ function) between the vari-
ables type/token and conditional/conjunction, both with an
inferential connection (C+) (Q = 111.74, p < .001) and with-
out (C-) (Q = 68.11, p < .001). We thus conducted further
statistical analyses separately for token and type materials.

Token A robust mixed ANOVA produced significant main
effects of Sentence Type, Q = 485.34, p < .001, and Connec-
tion, Q = 83.94, p < .001, and a significant interaction, Q =
77.98, p < .001. Simple-effects analyses comprise robust
t-tests. We compared the effect of sentence type separately
for items with and without a connection using robust paired-
samples t-tests (the yuend function). When there was a con-
nection, conjunctions were rated on average 2.11 higher than
conditionals; this difference was significant, t(26) = 8.66,
p < .001, r = .89. When there was no connection, conjunc-
tions were rated on average 4.94 higher than conditionals; this
difference was significant, t(35) = 23.83, p < .001, r = .94.
We explored the effect of the connection for each type of sen-
tence, using robust independent-samples t-tests (the ‘yuen’
function). For conditionals, ratings were on average 2.67
higher with a connection than without; this difference was
significant, t(43.78) = 12.25, p < .001, r = .90. For conjunc-
tions, ratings were on average .16 higher without a connection
than with; this difference was not significant, t(57.79) = .80,
p = .43,r = .11.3

In sum, the token data showed that conjunctions were
rated consistently higher than conditionals. Conditionals
were rated higher with a connection; conjunctions non-
significantly higher without one.

Type A robust mixed ANOVA produced a non-significant
main effect of Sentence Type, Q = 1.79, p = .19. The main
effect of Connection was significant, Q = 40.21, p < .001, as
was the interaction, Q = 134.85, p < .001. As above, sim-
ple effects of sentence type comprised robust paired-sample
t-tests. With a connection, conditionals were rated on average
1.79 higher than conjunctions; this difference was significant,
t(35) = 6.46, p < .001, r = .83. Without a connection, con-
junctions were rated on average 2.28 higher than condition-
als; this difference was significant, t(35) = 9.20, p < .001,
r = .87. As above, simple effects of connection comprised
robust independent-samples t-tests. For conditionals, ratings
were on average 3.15 higher with a connection than without;
this difference was significant, t(65.41) = 14.98, p < .001,
r = .90. For conjunctions, ratings were on average .92 higher
without a connection than with one; this difference was sig-
nificant, t(68.26) = 3.20, p = .002, r = .10.

In sum, the type data showed that, when there was a con-
nection, conditionals were rated higher than conjunctions.
When there was no connection, conjunctions were rated

3In the “sensibleness” data, this effect was also significant,
t(61.65) = 2.86, p = .006, r = .35.

2479



Type C+

Conditionals

F
re

qu
en

cy

0 1 2 3 4 5 6 7

0
10

20
30

40
Token C+

Conditionals

F
re

qu
en

cy

0 1 2 3 4 5 6 7

0
10

20
30

40

Type C−

Conditionals

F
re

qu
en

cy

0 1 2 3 4 5 6 7

0
10

20
30

40

Token C−

Conditionals

F
re

qu
en

cy

0 1 2 3 4 5 6 7

0
10

20
30

40

Type C+

Conjunctions

F
re

qu
en

cy

0 1 2 3 4 5 6 7

0
10

20
30

40

Token C+

Conjunctions

F
re

qu
en

cy

0 1 2 3 4 5 6 7

0
10

20
30

40

Type C−

Conjunctions

F
re

qu
en

cy

0 1 2 3 4 5 6 7

0
10

20
30

40

Token C−

Conjunctions

F
re

qu
en

cy

0 1 2 3 4 5 6 7

0
10

20
30

40

Figure 2: Distribution of the responses to the ‘assertability’ question.

higher than conditionals. For conditionals, items with a con-
nection were rated higher than items without; for conjunc-
tions, the opposite was the case.

Discussion
Our data clearly show that knowing that p and q are true is not
sufficient for “If p, q” to be assertable. The presence of an in-
ferential connection between p and q is not sufficient either,
yet it is necessary for a conditional to be assertable. How-
ever, the presence of a connection does not seem to affect the
assertability of conjunctions in a similar way. In fact, con-
junctions in which conjunct are inferentially connected tend
to be rated lower than those without a connection. Our find-
ings pose a problem for all theories of conditionals that treat
the intuition that conditionals are about connections solely as
a pragmatic aspect of their meaning. Our results undermine
the standard pragmatic account of the oddity of missing link
conditionals. On this account, asserting a TT conditional is a
violation of the Maxim of Quantity, because when both p and
q are known to be true, one is justified in asserting a stronger,
more informative statement. That is, one should assert the
conjunction of p and q. As our data clearly show, when an in-
ferential connection is present, generic conditionals are more

assertable than generic conjunctions which cannot be recon-
ciled with the standard, Gricean account.

A Gricean explanation of these findings can follow two dif-
ferent paths: One can reject the most fundamental principles
of Gricean pragmatics by denying that informativeness guides
people’s assertability judgements. Another, less costly, op-
tion is to rethink the semantics of conditionals and accept
the possibility that the connection between antecedents and
consequents is an important part of their meaning. On the
latter approach, the connection should be taken as an addi-
tional piece of information conveyed by a conditional, but
not by a conjunction. Our findings suggest that we need an
account that renders conditionals more informative than con-
junctions (on their standard, truth-functional interpretation).4

Neither Mental Models nor the suppositional account of con-
ditional can follow the latter path, however. Johnson-Laird
& Byrne (2002, p. 651) deny that a relation between p and
q is part of the core meaning of a conditional: the logic of
a conditional on this interpretation is essentially the logic of

4Note that, in the context of our experiment, the differences in
people’s assertability judgments could have only resulted from the
semantics of the evaluated sentences, since the conversational con-
texts remain constant.
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material implication. Although Johnson-Laird & Byrne admit
that content of the clauses of a conditional (semantic modula-
tion) and contextual factors (pragmatic modulation) influence
the interpretation of a conditional, the only thing that these
mechanisms do is constrain the set of possibilities a speaker
envisages when interpreting a sentence. On Mental Models
theory, when p and q are known to be true, the interpretation
of a conditional and the interpretation of a conjunction do not
seem to be distinguishable at all. Apart from vague appeals
at ‘pragmatic modulations,’ Mental Model theory has no way
to explain our findings.

The data are no less problematic for the suppositional ac-
count. First of all, as observed earlier, none of the standard
probabilistic measures of relevance is applicable when both
clauses of a conditional are known to be true, if conditional
probability is understood in accordance with Kolmogorov’s
axioms. Second, even if we grant the supporters of the prob-
abilistic interpretation of a conditional that the relevance of p
for q, however it is formalised, is pragmatically implicated,
this account does not have the means to explain the discrep-
ancy between type and token TT conditionals.

Token conditionals are sentences such as “If you didn’t wa-
ter your plant, it dried up” or “If this book is hardcover, it is
expensive.” Although a hard cover (p) is a good evidence
that the book costs a lot (q), i.e., one can infer q from p
together with some general knowledge about the world, the
conditional sounds strange to many respondents. In the same
context, a generic conditional “If a book is hardcover, it is
expensive” is evaluated as assertable. This discrepancy might
be due to the fact that the specific antecedent, which refers to
a particular book that is directly available to conversational
partners, is considered a fact and hence, as suggested by De-
clerck & Reed (2001, p. 2), is more difficult to process as a
supposition from which one is to make an inference (cf. Elder
& Jaszczolt 2016 on the notion of remoteness). By contrast,
the generic antecedent “a book is hardcover” requires an ad-
ditional inferential step to be evaluated as true (if something
is true about this book in front of us, it is also true about a
book), hence the evidence for the truth of the antecedent can
be considered inferential and not direct.

Most fundamentally, however, our results suggest that an
adequate account of the conditional and of reasoning with
conditionals will have to engage more seriously with the cir-
cumstances in which conditionals can and cannot be used in
everyday language.
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Abstract 

Learning, especially in the case of language acquisition, is not 
an isolated process; there is ever-present competition between 
words and objects in the world. Such competition is known to 
play a critical role in learning. Namely, the amount and 
variability of competing items during word learning have 
been shown to change learning trajectories in young children 
learning new words. However, very little work has examined 
the interaction of competition amount, competition 
variability, and task demands in adults. The current study 
assesses adults’ ability to map new word-referent pairs in 
varying amounts of competition and competitor variability. In 
addition, the effect of mapping context on retention was 
assessed. Results suggest that retention is weak in some cases 
and importantly, there are cascading effects of competitor 
variability in mapping on later retention of new words. 
Results are discussed in light of associative learning 
mechanisms and the implications of competition for learning. 

Keywords: word learning; fast mapping; context; 
competition 

Introduction 

Word learning always occurs in a context. New words are 

encountered in a conversation, new objects are alongside 

others on a shelf, and word-referent pairs are embedded in 

fleeting moments. Often, the referent for a word is not 

immediately clear. It is precisely this complexity and 

ambiguity that has puzzled researchers for decades – how do 

individuals, and young children in particular, correctly map 

a novel word to its referent amidst dozens of possible 

objects in the world around them? The last few decades of 

research have subsequently resulted in multiple pathways by 

which children overcome the problem of referential 

ambiguity to acquire new words and add them to their 

lexicon. We know that children appear to use their prior 

knowledge of objects (e.g. mutual exclusivity; Markman & 

Wachtel, 1988), novelty (e.g. N3C; Mervis & Bertrand, 

1994), and social cues (Akhtar, Carpenter, & Tomasello, 

1996) to eliminate competitors and focus on the target. We 

know that the number of competitors present (Zosh, 

Brinster, & Halberda, 2013) and the context in which 

objects are encountered (Horst, 2013) matter. And we know 

that as a child’s vocabulary grows, so too does their 

performance in word learning tasks (Bion, Borovsky, & 

Fernald, 2013). There has also been parallel research on 

how both adults (Alt & Gutman, 2009; Greve, Cooper, & 

Henson, 2014; Halberda, 2006; Warren & Duff, 2014) and 

robots (Morse et al., 2015; Twomey, Morse, Cangelosi, & 

Horst, 2016) acquire new words. 

Most recently, there has been a further push to view word 

learning as a process that unfolds over multiple timescales 

instead of a one-shot learning episode (Kucker, McMurray, 

& Samuelson, 2015). The initial mapping between a new 

word and its referent happens in real-time. This is an in-the-

moment process of comprehending “Where’s the wif?” or 

“Get the dax.” However, this initial association between the 

word and referent is often weak and transient. Over time and 

repetitions the word-referent association becomes honed and 

strengthened, partially by reinforcing the correct links but 

also by pruning away incorrect associations (McMurray, 

Horst, & Samuelson, 2012). Regardless if it is children, 

adults, or robots, word learning requires real-time responses 

to interact with slower associative mechanisms. Successful 

long-term learning thus depends partially on the context in 

which the word-referent pair was initially encoded as well 

as the context in which it is stored and retrieved. 

Competition in Mapping 

Across all work on word learning, there is one factor that is 

consistent – competition. Competition occurs between 

objects present in the world, between words in the lexicon, 

and between former knowledge and new. At times there 

exists a lot of competition, while at other times the 

competition is limited. Sometimes, the competing items that 

may be present are relevant and helpful (e.g. learning about 

forks while in the kitchen), and sometimes the competitors 

and context are not. In addition, the initial context in which 

a word is mapped to its referent can vary widely not just 

between people or words, but even across occurrences of a 

single word. That is, the word fork may be heard primarily 

in the kitchen, but occasionally could be used while outside. 

This competition and its variability have cascading effects 

on retrieval and retention of newly learned information. 

One of the classic tests of word learning is Carey and 

Bartlett’s (1978) study of “fast-mapping”. Here, preschool 

children were presented with a novel word while in a 

classroom, surrounded by multiple people and objects and 

tested on their ability to accurately “Get the chromium tray, 

not the blue one”. This referent selection task has been used 

for decades to test not just an individual’s ability to map 

words and referents in ambiguous scenes, but also retain 

newly mapped word-referent pairs until a later time.  

A critical part of the classic referent selection task is the 

presence of competition - in order to get the chromium tray, 

children had to decide against the blue tray and not pick up 

a cup or spoon. In many variations of the task, there is 

obviously competition between multiple items that may be 

present (e.g. tray vs. cup). Other versions of the task 

2482



highlight the competition between known items and novel 

(e.g. blue vs. chromium). And others try to eliminate direct 

competition by directly naming a single item. Regardless of 

the number or type of competitors, both children and adults 

are easily able to map a novel word to a novel referent in-

the-moment (Horst, Scott, & Pollard, 2009; Warren & Duff, 

2014; Greve, et al., 2014), becoming increasingly successful 

over development (Bion, Borovsky, & Fernald, 2013). 

However, real-time eye-tracking behavior does suggest 

there are differences in mapping due to competition. For 

instance, when children and adults are presented with both a 

known and a novel object and hear a novel word, they 

reliably look to the competing known items before settling 

on the novel referent (Halberda, 2006). In addition, there is 

evidence that explicit selection of a competitor (in error) can 

still lead to later learning (Fitneva & Christiansen, 2011). 

Thus, the simple presence of competitors can change even 

subtle selection behaviors and cognitive processing. 

Furthermore, other work suggests that the details about 

how many competitors or the variability of the competitors 

also shift real-time processing, which has cascading effects 

on long-term learning.  First, work with children suggests 

that the number of competitors present during mapping has 

a direct negative correlation on performance – fewer items 

seem to help mapping (Axelsson, Churchley, & Horst, 

2012), but more competitors benefit long-term learning 

(Zosh, et al., 2013). And, computational models of referent 

selection and retention propose that though more 

competition during mapping requires more cognitive 

processing, it also results in more opportunities for pruning 

away spurious word-referent links, thus allowing more 

honing in a single trial (McMurray, et al., 2012). This 

subsequently boosts retention (McMurray, Zhao, Kucker, & 

Samuelson, 2013). In a recent study of adult word learning, 

encoding new words with competitors resulted in almost 

immediate lexical competition between the new word and 

known word. However, learning that occurred in an isolated, 

direct-naming context did not (Coutanche & Thompson-

Schill, 2014). Competitive initial learning also led to 

broader semantic networks days later. Taken together, the 

amount of competition influences real-time processing and 

has cascading effects on long-term retention. 

In addition to the amount of competition present, the type 

of competition may also play a role. Specifically, the 

relevance and variability of competing known foil items 

interacts with new word-referent pairs. Recent work has 

demonstrated that young children often learn new words 

better when couched in a known context, such as when 

drawn from a category of objects they are familiar with 

(Borovsky, Ellis, Evans, & Elman, 2016), or when an item 

is physically located in a related scene (Meints, Plunkett, 

Harris, & Dimmock, 2004). It is also clear that both children 

and adults pay attention to competitors even if they are not 

the target. In some cases, children implicitly extract some 

minor representation or memory for competitors such that 

they are more likely to look at them later (Wojick, 2013). In 

other cases, adults recall semantic information about the 

novel target, acquired while the target was presented in 

various scenarios (Alt & Gutman, 2009). In addition, 

context diversity is more predictive of word knowledge in 

adults (and vocabulary acquisition in children) than simple 

frequency of occurrence (Adelman, Brown, & Quesada, 

2006; Hills, Maouene, Riordan, & Smith, 2010). Put 

together, this suggest that the composition of, and 

specifically the relationship between, the competitors might 

matter not just for mapping, but also for retention. 

Competition in Retention 

Generally, adults are considered to be good at learning 

new words, performing well above chance on laboratory 

tasks (Greve, et al., 2014). However, we also know that an 

individual’s ability to retain newly learned words is reliant 

on a number of factors, such as the length of delay (Vlach & 

Sandhofer, 2012; McGregor, 2014) and phonological 

neighbors (Tamminen & Gaskell, 2008). Work with 

children has suggested that retention is also partially 

dependent on the number of competitors present during 

mapping (Zosh, et al., 2013), and the types of cues present 

during encoding (Capone & McGregor, 2005).  

Furthermore, most work showing good retention with adults 

has thus far primarily used relatively easy task – pulling the 

target out of a three-item array. Thus, though adults are 

expected to be good at learning new words, it is likely that 

competition can still play a role. A recent study by 

Dautriche and Chemla (2014) found context effects in cross-

situational learning where consistent repetition of 

competitors over the course of multiple blocks led to 

improvements in memory for both the broader context 

group and target. Learning here was tested through force-

choice selection of the target from four-item array. In 

another study, Warren and Duff (2014) tested retention after 

a zero competitor/ ostensive (direct) naming condition as 

well as a two-item referent selection condition. Critically, 

they looked at retention with both a three-alternative forced-

choice recognition test (3AFC) and free recall (recalling 

word-forms from test). Overall, typically developing adults 

selected the referent on the 3AFC test well above chance, 

near 65% correct, for both conditions. However, free recall 

varied between the mapping contexts - accuracy was higher 

for words learned directly without competitors than those 

with competition during mapping. That is, though context 

may influence initial encoding, the method for tapping 

retention is critical in assessing the robustness of the newly 

acquired word-referent pair. 

Despite the lack of work on competition effects on the 

retention of new words, the evidence suggests that the 

associative learning processes of adults, like children, are 

highly variable and occur incrementally over multiple 

timescales (Kucker, et al., 2015). Such associative 

processing occurs over the lifespan and critically, some 

propose that the complex networks in which new words are 

learned are also linked with advances in other areas of 

cognition (Roembke, Wasserman, & McMurray, 2016). 

Thus, the process of learning a single new word has 
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important implications for broader theories of associative 

learning and cognition. 

Current Study 

Competition is widely accepted as highly relevant for word 

learning, but there is still much debate about how much 

competition is optimal and what effects initial competition 

has on long-term learning. Both the number and variability 

of competitors has been studied in word learning of young 

children (though with mixed results); much less work has 

been conducted in adults despite the fact that adults too, 

continue to learn new associations. In addition, the question 

of how adults learn simple associations (such as words) is at 

the crux of many computational models of learning and 

information processing (e.g. Regier, 2005; McMurray, et al., 

2012). Thus, there is a gap in understanding both how an 

adult’s real time processing changes across contexts and the 

impact the contexts have on their retention of new word-

referent associations. The current study fills this gap by 

combining word learning methods from work with children 

with the adult literature to test the impact of competition 

(amount and variability) on in-moment mapping, and the 

cascading effects mapping context has on retention. 

Furthermore, learning is assessed with two different 

methods to tap both weak associations that may be 

recognized in an array but not recalled as well as robust 

associations that can be easily recalled without cues. 

Methods 

Participants 

A total of 149 adults participated. All individuals were 

monolingual English speakers and provided informed 

consent before participating. Individuals were recruited 

either through a current college course (receiving course 

credit), or through Amazon’s MTurk (receiving $1.75). 

Stimuli 

Individuals saw a randomly selected subset of known and 

novel words and objects over the course of the experiment. 

Known items were drawn from pools of prototypical toys 

(book, ball, drum, block), kitchen utensils/tools (fork, 

spoon, bowl, cup), vehicles (car, boat, airplane, bike), 

clothing (shoe, hat, belt, purse), or furniture (chair, bed, 

lamp, clock). All images were previously normed by a 

separate set of adults to elicit their respective labels and be 

obvious members of their category. Novel items were drawn 

from a pool of unique items typically used in child word 

learning studies. These items were judged in prior studies to 

be highly unfamiliar and not easily named by most adults 

(Horst & Hout, 2016). Novel words were legal words in 

English but had few or no known orthographic neighbors. 

 

 

 

 

 

 Table 1. Mapping conditions 

Condition # of 

Comp

etitors 

Example trial 

 

“Which is the cheem?” 

OD none 0 
 

3AFC vary 2 
 

5AFC vary 4 
 

3AFC same 2 
 

5AFC same 4 
 

 

and all completed the entire study on-line in a single sitting. 

Conditions varied in the number of competitors present 

during initial mapping and the variability of competitors 

present (Table 1). The number of competitors varied from 

zero to four with the to-be-learned novel object present 

alongside no other items (ostensive definition trial; OD 

none), paired with two distinct known competitors (3 total 

items, alternative forced-choice trial; 3AFC), or paired with 

four distinct known competitors (5AFC) on each trial. 

Competitors also differed in their variability – competitor 

items were either variable, drawn from distinct known 

categories (vary), or clustered and drawn from the same 

category (same). 

Each condition began with a mapping phase in which 

participants were initially exposed to novel word-referent 

pairs, followed by a retention phase in which they were 

tested on their memory for the word-referent pairs from 

mapping. During the mapping phase, participants were 

instructed to pay attention to a series of word-referent pairs 

presented on the screen. One each trial, a novel printed word 

was presented along with an image of a novel object. In the 

OD none (0 competitions) condition, no other items were 

present on the screen. In the 3 and 5 item conditions (3AFC, 

5AFC), 2 or 4 images of known items were respectively 

presented alongside the novel item. Items were presented 

equally spaced in a horizontal row with location randomized 

across trials. In each case, the participant had to click on the 

correct referent before proceeding to the next trial. Novel 

word-referent pairs were presented at least once (in the case 

of OD none) and no more than three times (for most AFC 

versions) over the course of all training trials (referred to as 

Novel Mapping trials). The 3AFC and 5AFC conditions 

also included filler/catch trials in which participants were 

asked to select one of the known items (referred to as 

Known Mapping trials). These were included both as catch 

trials and to draw the participants attention to the 

competitors in order to increase encoding of them. There 

were between 12 and 16 total mapping trials and each 

participant was trained on 4-5 novel words. 
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Immediately following the mapping phase, participants 

were tested for their comprehension and retention of the 

novel word-referent pairs. This was done via two methods –

free response recall and forces-choice (multiple choice) 

recognition. The free response retention trials asked 

participants to describe the referent for each of the novel 

words from mapping/training (e.g. “Describe the cheem”). 

Though prior work has asked participants to recall the word-

form (thus testing phonological memory), here we ask for a 

description of the item to tap semantic-conceptual memory 

and thus allow a tighter connection to what is tested in the 

forced-choice trials. In addition, one current hypothesis is 

the semantic relationship (not names) between stimuli 

matters. In the forced-choice trials, participants were given 

one of the novel words from mapping and asked to select 

the correct referent from an array of all multiple novel 

objects from mapping. Words and objects for all phases 

were counter-balanced across conditions and participants. 

Results 

Average percent correct for each participant on Known 

Mapping trials, Novel Mapping trials, Forced Choice 

(recognition) Retention, and Free Recall Retention were 

scored. Both Mapping trials and the Forced Choice 

Retention were calculated as percent of trials an individual 

correctly chose the target. Free Recall response was scored 

by 2-3 independent, blind coders who calculated a binomial 

score for each answer. If the written description was specific 

enough to uniquely identify the target object from the array 

of novels, it received a score of one. However, if the 

description was either too vague to refer to a single specific 

item or if it described a foil object, it received a score of 

zero. This coding scheme thus gave participants credit for a 

variety of responses (e.g. an overall description or a single 

unique feature) as it eliminated possible referents 

systematically based on the information given. For instance, 

if the participant responded “the blue flat thing”, and there 

was only one novel item presented that was blue (and it was 

the correct answer), they would receive a one. If, however, a 

participant responded with “the round one”, and multiple 

novel objects were spherical, then they would receive a 

score of zero. Only scores of one were counted as correct in 

calculating overall performance. All coding was conducted 

as a consensus of scores across two blind coders with 

additional 1-2 coders settling all discrepancies. Responses 

that required more than four coders to come to a consensus 

were thrown out. 

First, performance on mapping across all conditions was 

analyzed. Each condition was compared against chance and 

each trial type was analyzed with a two-way ANOVA of 

performance on Number of Competitors (3AFC vs. 5AFC) 

by Competitor Type (vary vs. same). Unsurprisingly, adults 

are very good at the Known item filler trials on all 

conditions, selecting the known target item at nearly ceiling 

levels (see Figure 1). As suspected, there was no difference 

between conditions on these trials (Known Mapping; 

F(1,149)=.806, p=.493, ŋ
2
=.016). Adults were also well 

 
Figure 1. Performance on mapping and retention 

 

above chance in all conditions at selecting the novel target 

(Novel Mapping). However, there was a main effect Type of 

Competitors, F(1,178)=9.027, p=.003, ŋ
2
=.048, with adults 

performing significantly better when the competing items 

varied than when competitors were from the same category. 

There was no effect of competitor amount. This suggests 

that despite a very robust lexicon and a clear ability to find 

the referent when asked, adults real-time mapping of novel 

words may be influenced by subtle changes in the type of 

items present, regardless of the number of items. 

Performance on retention was then analyzed. Most 

subjects were asked both a free recall retention question 

followed by a forced-choice recognition test. Due to a 

programming error, 29 subjects in the 3AFC same condition 

only answered the forced-choice test and 24 subjects in the 

3 varies condition were asked the forced-choice first 

followed by free recall.
1
 In addition to testing performance 

against chance, a repeated measures ANOVA of Retention 

Test Type (forced-choice vs. free recall) on Number of 

Competitors (3AFC vs. 5AFC) by Competitor Type (vary 

vs. same) was run. First, adults were well above chance in 

all conditions on the forced-choice retention, though 

importantly, not at ceiling. Chance in both cases was set at 

20% as presumably, adults were recalling one of the five 

just-learned items. On free recall, however, performance 

was much more mixed with performance in the vary 

conditions at or near chance, 3AFC: t(45)=1.401, p=.168; 

5AFC: t(28)=2.042, p=.051. In addition, there was a 

significant ANOVA of Retention for Type of Retention, 

Number of Competitors and Competitor Type, 

F(1,216)=5.865, p=.016, ŋ
2
=.026, with a significant 

Competitor Type main effect, F(1,216)=13.286, p<.001, 

ŋ
2
=.058, and Test Type by Competitor Type interaction, 

F(1,199)=5.655, p=.018, ŋ
2
=.028. Thus, the variability of 

the context matters for mapping and has cascading effects 

on retention, especially when a more rigorous test of recall 

is used. 

                                                           
1 There was a marginal effect of order; Forced Choice (FC) 

Retention before Free Recall (FR) led to higher Retention (FC: 

t(46)=2.38, p=.021, and FR: t(44)=1.88, p=.067). However, main 

effects and interactions in the overall ANOVA remain the same 

with and without order included.  
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Discussion 

Overall, the results show a unique pattern of responding 

for both in-the-moment mapping as well as retention. 

Though the type of competitors appears to matter overall for 

Novel Mapping, its effect on retention is confounded by the 

type of test, showing differential affects for forced-choice 

vs. free response retention. This could mean that the 

processes that support real time processing may not be the 

same mechanisms driving retention. Alternatively, it could 

suggest that associative learning is a complicated interaction 

of multiple factors and tasks and there are different ways of 

tapping knowledge to reveal those processes in different 

ways. That is, a free response retention test has no other 

items present. Thus, in order to respond, an individual has to 

have a robust memory to retrieve, but also may grasp onto 

any cues they can, such as vague memories from when they 

initially learned the word (Coutanche & Thompson-Schill, 

2014). Initial context that had more helpful cues (similar, 

same competitor condition) would give more relevant aids 

to retrieval, thus boosting performance.  

Not only does the type of test matter, but subtle shifts in 

learning that are not always apparent with one test can be 

revealed with another. Specifically, the different retention 

tests give hints to the strength of the word-referent 

associations formed. Forced choice retention tests show 

only a slight effect of competitor variability, however, free 

recall for those exact same items is influenced in a different 

way by the variability of competitors from the previous 

mapping trials - variable competitors are equivalent to the 

Ostensive Naming, zero competitors condition on forced-

choice retention, (though lower than same competitor 

condition) but at chance when tested with free recall (at 

which point all other conditions are above chance).  

These results also speak to the nature of the underlying 

association. During mapping, the initial association is weak, 

fragile, and likely has many spurious connections. More 

competitors, especially competitors that are vastly different 

and unique, take longer to process, and thus initial mapping 

is less successful. In some prior cases, these “harder” initial 

encoding scenarios have led to more robust learning because 

they require more processing (Vlach & Sandhofer, 2014). If 

we only test learning through a forced choice recognition 

test, that is precisely what we see – above chance learning 

across the board. However, the free response retention 

reveals that the variable groups (the same groups who were 

relatively poorer on Novel Mapping) are at chance for 

recalling the word-referent link. This suggests that the word-

referent link that is being built during mapping has clearly 

been encoded and withstands weak tests of its viability, but 

has a long way to go before it is fully integrated into the 

lexicon.  

At its core, word learning is a form of associative 

learning. As such, the results of the current study may 

suggest that domain-general associative mechanisms are 

influenced by the context and competition. Importantly, 

associations are constantly in flux and robust links are not 

guaranteed, even in supposedly “easy” cases of learning. 

That means that the imperfect retention seen in the current 

study is not evidence for a lack of learning, but rather as an 

in-progress process which will continue to be strengthened 

over time. The type of competitive mechanism employed in 

these associative learning situations is not just beneficial for 

a single moment as demonstrated here, but likely also 

beneficial for the 2
nd

, 3
rd

, 4
th

 and all future encounters of the 

word (Benitez, Yurovsky, & Smith, 2016; Dautriche & 

Chemla, 2014; Yurovsky & Yu, & Smith, 2013). That is, 

learning is reliant not just on one-to-one links, but rather is 

couched within a larger network which has a direct 

influence on the development of a single association, which 

in turn may alter learning future associations. 

As a whole, the current study examines two critical 

elements to associative learning – 1) how does the amount 

and variability of context shape real-time processing, and 2) 

how does the amount and variability of the competitors 

shape the refinement of those associations over time. 

Results suggest that there is not a single pathway to 

mapping or retaining, but rather, like most cognitive 

processes, it is a complicated interaction. 
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Abstract

Explaining how intelligent systems come to embody knowl-
edge of deductive concepts through inductive learning is a
fundamental challenge of both cognitive science and artificial
intelligence. We address this challenge by exploring how a
deep reinforcement learning agent, occupying a setting simi-
lar to those encountered by early-stage mathematical concept
learners, comes to represent ideas such as rotation and trans-
lation. We first train a Dueling Deep Q-Network on a shape
sorting task requiring implicit knowledge of geometric proper-
ties, then we query this network with classification and prefer-
ence selection tasks. We demonstrate that scalar reinforcement
provides sufficient signal to learn representations of shape cat-
egories. After training, the model shows a preference for more
symmetric shapes, which it can sort more quickly than less
symmetric shapes, supporting the view symmetry preferences
may be acquired from goal-directed experience.

Introduction
Mathematical concepts are formally definable and may be
deduced from of axioms. In contrast, most human mental
representations, such as visual categories and language con-
cepts, resist precise definitions and only come to be known af-
ter considerable inductive experience. Similarly, deep neural
networks have achieved human-level or state-of-the-art per-
formance on tasks such as object recognition (He, Zhang,
Ren, & Sun, 2016), game playing (Mnih et al., 2015; Sil-
ver et al., 2016), and speech generation (van den Oord et al.,
2016) by learning distributed (rather than symbolic) represen-
tations through inductive (rather than deductive) training. The
empirical success of human learners and artificial neural net-
works contrasts sharply with the description of mathematical
concepts as abstract, formal, and universal ideals.

A growing literature argues that the developmental details
of embodied agents are not mere nuisance variables associ-
ated with the learning and deployment of mathematical con-
cepts, but are necessary tools in facilitating cognition. For
instance, some work suggests that the use of hand gestures
aids learning by grounding the meaning of abstract princi-
ples such as continuity and magnitude in the willful mo-
tions of the body (Goldin-Meadow, Cook, & Mitchell, 2009;
Marghetis & Núnez, 2013; Marghetis, Núñez, & Bergen,
2014). The tuning of low-level responses of the visual system
has also been associated with algebraic expertise. Marghetis,
Landy, and Goldstone (2016) argue that a process of “regi-
mented perception”, implemented by object-based attention,

Figure 1: The top panels show example frames from the shape
sorting environment. The blue cursor indicates grabbing, and
the green cursor is not grabbing. The bottom panel shows
examples of each shape in isolation: Hexagon (Hex.), Equi-
lateral Triangle (E. Tri.), Trapezoid (Trap.), Square, and Right
Triangle (R. Tri.).

lets viewers parse algebraic notation in such a way that makes
salient its hierarchical structure, thus offloading much of the
work of calculation from high-level cognition to perception.
Taken together, this work suggests that for all its formal-
ity, mathematics is still an evolutionarily recent phenomenon,
and in its comprehension, one marshals bodily and neural re-
sources adapted for other purposes.

This account dovetails nicely with the Parallel Distributed
Processing approach (Rogers & McClelland, 2014), or more
recently, advances in deep learning. Just as embodied cog-
nition challenges the primacy of symbolic representations in
mental processes, deep learning has been used to overcome a
number of problems once thought solvable only through the
manipulation of compositional tokens or formal logic. For
example, the “Differentiable Neural Computer” of Graves et
al. (2016) can answer queries involving textual and hierar-
chical reasoning, relying solely on a learned, neural memory
device. Furthermore, these models learn “end-to-end”, ad-
justing connection strengths between stimulus-facing neurons
based on error signals propagated down from higher level de-
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cisions (Mnih et al., 2015), much as Marghetis et al. (2016)
argue that pursuing algebraic skills re-tunes the visual sys-
tem. Despite these connections to the embodied approach
in mathematical cognition, we are not aware of major work
exploring how deep neural networks capture mathematical,
and in particular geometric intuitions through a goal-driven,
learning process of perception and actuation.

This paper provides a proof of concept and an exploratory
analysis. We demonstrate that a domain-agnostic learning al-
gorithm is able to represent geometric concepts that are only
implicitly coded in its training task’s structure. In particular,
we develop a simulated shape sorting toy similar to those en-
joyed by young children. Such a learning environment tasks
an agent to carry out sequences of actions that require knowl-
edge about some geometric properties (whether implicit or
explicit) to maximize reward. We train an agent to expertise
in this task, then evaluate its learned behavior and representa-
tion of shape categories.

Our primary contribution has been to show that reinforce-
ment learning (RL) is sufficient to train a convolutional neu-
ral network agent to perform a shape sorting task expertly.
This training leads to the development of shape-specific rep-
resentations at the top convolutional layer, which feeds into
network layers that compute value. We also found that our
model exhibited a preference for objects with higher orders
of symmetry, supporting the view that experience, rather than
an innate symmetry bias, may be the basis for similar sim-
ilarity preferences in both human infant and primate studies
(Bornstein, Ferdinandsen, Gross, 1981; McMahon Olson,
2007). We also make available the source code for the pixels-
to-actions shape-sorting task described in this paper.

Approach
Our goal is to demonstrate that deep learning may provide a
computational paradigm for building on psychological theory
and generating new hypotheses about geometric concept ac-
quisition. Blocks worlds have previously been used to study
and model intuitive physics (Hamrick, Battaglia, & Tenen-
baum, 2011; Zhang, Wu, Zhang, Freeman, & Tenenbaum,
2016). Although such environments feature a finite set of
discrete entities adhering to rules of interaction, their broad
properties and questions of investigation tend to differ. For in-
stance, these environments simulate physical properties, like
velocity. In contrast, we seek to understand abstract proper-
ties, such as shape and symmetry, and we thus introduce an
environment with few physical constraints. As such, the ex-
perimental setup can be decomposed into an environment and
learning agent, which we represent with a neural network.

Environment
During the initial training stage of our neural network, the
model interacts with a simulated shape sorting toy (see Fig-
ure 1), which may be interpreted as a finite horizon Markov
Decision Process (MDP) with deterministic transitions and
high-dimensional states (Kochenderfer & Reynolds, 2015).

Environment interactions are divided into trials, which con-
sist of at most 500 timesteps. At timestep t, the environment
emits an image st ∈ R84×84 depicting some combination of
two types of objects: blocks and holes. Every object in st is
characterized by an orientation and a position vector, which
remain fixed for holes, but are subject to change for blocks.
Each object is also characterized by a convex, 2D shape
drawn from the set X , which includes squares, trapezoids,
equilateral triangles, right triangles, and hexagons. Once a
shape is chosen for an object, it is held constant throughout
the course of a trial. The image st also includes a cursor
used by an agent to manipulate the position and orientation
of blocks.

The initial frame s0 includes three blocks whose shape as-
signments Xb are drawn uniformly with replacement from
X with randomized positions and orientations. Four holes
with random orientations are also given shape assignments
Xh drawn without replacement from X . A constraint Xb ⊂ Xh
ensures that no block will be generated without a correspond-
ing hole. The positions for holes are also randomized at the
beginning of each trial, but only drawn from four possible,
equidistant locations. This second constraint ensures that
holes never overlap. In contrast, blocks may overlap (some-
times completely) but are manipulable, and can be disentan-
gled by an agent.

Given st , an agent responds with action at in A , which in-
cludes: up, down, left, right movements, toggle grab, rotate
clockwise or counterclockwise, or wait. Rotations are 30°
and a single cardinal movement covers 10% of the height or
width of st . If the grab is active, blocks will “stick” to the
cursor, changing position and orientation with the cursor. If
the grab is inactive, movement and rotation actions do not
influence the blocks.

The environment uses a reward function that assigns a
small reward when the cursor grabs a block r1 = 0.001, a
small penalty −r1 when the cursor contacts the border of the
screen, a large reward r2 = 1.0 when the cursor fits a block to
a corresponding hole or completes a trial. A fit occurs when
the cursor “releases” a block over a hole, and the block’s ver-
tex set is contained by the hole’s vertex set. If a fit occurs, the
block disappears and will not return for the rest of the trial.

Agent
We desire a model of a learning agent that is (1) Deep, or
capable of expressing multiple, hierarchical representations
that could feasibly embody geometric invariants, given raw
pixels, (2) Psychologically plausible, or sufficiently similar
to animal decision making to suggest research directions for
cognitive science, and (3) Powerful enough to solve the non-
trivial MDP described in the previous section. The Deep Q-
Network (DQN) (Mnih et al., 2015) is an attractive option
that can accommodate these considerations.

DQN has attained state-of-the-art results on similar tasks
that include discrete action spaces and high-dimensional state
spaces. Sharing many architectural properties with convolu-
tional neural networks, it learns a succession of hidden rep-
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Figure 2: The Dueling Deep-Q Network architecture and the
dimensionality of each layer. Boxed layers are involved in
representation, output layers are involved in actuation. Dotted
lines denote scalar-vector broadcasting that merge value and
advantage streams. We use the same filter sizes and strides as
Wang et al. (2016)

resentations that can be visualized and interpreted as an ab-
straction hierarchy (Zeiler & Fergus, 2014). Furthermore,
DQN features some desiderata as a model of animal decision
making. A prioritized replay pool has been compared to hip-
pocampal learning mechanisms (McClelland, McNaughton,
& O’Reilly, 1995), and the architecture is trained using tem-
poral difference (TD) learning, which has been shown to un-
derpin some forms of animal learning (Shah, 2012).

TD learning is here accomplished by minimizing the adap-
tive loss function

Li(θi) = E(s,a,r,s′)∼D
[
(yi−Q(s,a;θi))

2] (1)

with target value

yi = r+ γmax
a′

Q(s′,a′;θi
−) (2)

State-action-reward sequences (s,a,r,s′) observed during
environment interactions are drawn from a replay buffer D
and used as training samples. Q(s,a;θi) represents the sum
of discounted future rewards if action a is taken from state s
and is estimated at epoch i by a DQN parameterized by θi.
Updating the model using estimates from a target network
parameterized by θi

− has been shown to improve the stability
of training (Mnih et al., 2015; Wang et al., 2016). A policy
can then be induced from the DQN by selecting actions max-
imizing Q(s,a;θi) with probability ε and otherwise selecting
exploratory, random actions.

In this work, Q(s,a;θi) is represented by a Dueling Deep
Q-Network (DDQN) which is subject to the same TD learn-
ing paradigm as DQN, but features a different architecture
(Wang et al., 2016), shown in Figure 2.1 DDQN follows
its convolutional layers with two disjoint, fully-connected
streams that represent the scalar value of a state V (s) and
the advantage A(s,a) = Q(s,a)−V (s) of a state-action pair

1Our implementation adapts source code from
https://github.com/devsisters/DQN-tensorflow

separately. These representations are merged with the broad-
casting rule

Q(s,a;θ,α,β) =

V (s;θ,β)+A(s,a;θ,α)− 1
|A |∑a′

A(s,a′;θ,α)
(3)

where θ, α, and β parameterize the convolutional, advan-
tage, and value sub-networks respectively. DDQN has been
shown to improve the state-of-the-art beyond the performance
of DQN and has some favorable properties as a neurobiolog-
ical model, as it extends to deep neural networks the advan-
tage learning paradigm, which has been shown to correlate
with striatal neural activity during instrumental learning tasks
(O’Doherty et al., 2004).

Learned Behavior
We trained our agent to complete the shape sorting task over
the course of one week on a single GeForce GTX 980 graph-
ics processing unit. It completed approximately 480,000 tri-
als consisting of at most 500 timesteps each. After train-
ing, the agent completed two experimental tasks consisting
of 50,000 trials. Although the agent trained using ε-greedy
exploration with ε = 0.1, testing tasks were performed using
a pure greedy policy. On both experimental tasks, we found
that the agent adopted the strategy of performing translation
actions early in the trial, followed by rotation actions once the
block was in place over the correct hole.

Single Block Performance. One block per trial was drawn
from Xb and initialized at a random position with four holes
from which to choose. The agent’s cursor was initialized at
the center of the screen. Each trial ended when the agent fit
the block to the appropriate hole, attempted to fit the block
to an incorrect hole, or exceeded 500 timesteps. Incorrect
fits and time outs together accounted for less than 4% of the
total number of trials, with the vast majority of failed trials
resulting from time outs.

Table 1 demonstrates the agent’s efficiency at the task on
the trials it successfully completed, in addition to the esti-
mated value computed by the network upon first grabbing a
block. Although the agent performed nearly optimally on all
shapes, we found that the network assigned higher estimated
value for shapes with greater symmetry (which also corre-
sponds the minimum number of steps needed to fit the block
to a hole). However, although the right triangle and trape-
zoid share the same symmetry order, the trapezoid is assigned
slightly higher value.

Shape Preference. Observing that our model estimated
higher value for some shapes over others, we tested to
see whether the agent demonstrated preferences in a two-
alternative forced choice. In this experiment, two blocks
belonging to different shape categories were generated and
placed equidistantly to corresponding holes. Trials termi-
nated when the agent selected a “winner” by releasing a held
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Table 1: Agent’s performance on single-block trials, includ-
ing value estimated by layer Val., and average number of steps
needed to complete the trial against average number of steps
actually taken by the agent, per each shape category.

Shape Value Min. Steps Act. Steps Ratio
Hex. 0.70 10.74 ±(3.7) 11.83 ±(4.0) 0.91
Square 0.67 11.37 ±(3.8) 12.57 ±(4.1) 0.91
E. Tri. 0.64 11.76 ±(3.9) 12.90 ±(4.1) 0.91
Trap. 0.57 13.73 ±(4.2) 15.06 ±(4.7) 0.91
R. Tri. 0.55 13.66 ±(4.2) 15.38 ±(4.8) 0.89

Hex. Square E. Tri. Trap. R. Tri.
Winner

Hex.

Square

E. Tri.

Trap.

R. Tri.

L
o
s
e
r

0.02 0.00 0.00 0.02

0.98 0.35 0.38 0.26

1.00 0.65 0.42 0.27

1.00 0.62 0.58 0.35

0.98 0.74 0.73 0.65

0.99 0.49 0.41 0.36 0.22

Figure 3: Each cell displays the fraction of choices between
two shapes in which the shape on the x-axis was chosen.
Marginal probabilities of choosing a given shape are shown
above.

block over a corresponding hole. We observed a slight bias
such that the policy selected the block appearing on the right
hand side of the screen 58.65% of the time, but controlled for
this effect by randomizing block position each trial.

The results shown in Figure 3 accord with the findings from
the single block experiment. Blocks appear to be preferred on
the basis of the number of steps needed to achieve a fit, which
is in turn determined by their symmetry order. However, the
trapezoid is again preferred to the right triangle, despite the
fact that both blocks are equally symmetric. We explore a
possible explanation for this result in the next section.

Learned Representations
To gain insight on the agent’s elicited behavior, we treat the
network as a feature extractor and use classification tech-
niques to explore how it internally represents shape cate-
gories in different layers. Within the context of computational
neuroscience, linear classifiers have been used to decode in-
formation about categorical stimuli from neural responses
(Naselaris, Kay, Nishimoto, & Gallant, 2011). We adopt a

similar approach. Intuitively, because neural networks are
universal function approximators (Hornik, Stinchcombe, &
White, 1989), the activation vectors of a well-tuned network
corresponding to different categories should be discriminable
up to a linear transformation. As such, we assess the classifi-
cation accuracy of a Support Vector Machine (SVM) trained
on encodings from different layers of the DDQN.

Our SVM implementation comes from the open source li-
brary, scikit-learn (Buitinck et al., 2013) and makes use of
a linear kernel K(x,x′) = xᵀx′. Multiway classification is
achieved using a “one-versus-all” scheme, such that for n
classes, n separate binary classifiers are trained to discrimi-
nate its corresponding class from examples belonging to other
categories. The final classification is made by the model that
makes its predictions with the largest margin.

Dataset
One might argue that shape representations in the network
depend heavily on scene context. For example, when a scene
contains multiple blocks, it may not be useful to encode any
information about shape identity until the cursor has taken
hold of a single block, as only then must it make a decision
contingent on the identity of the shape. To test this hypoth-
esis, we also repeat the discrimination experiment for condi-
tions involving an absent cursor, and conditions in which the
cursor is visibly grabbing the block.

We generated our training and validation image sets by
enumerating all the possible positions and orientations for a
single block, subject to the environment’s translation and ro-
tation step sizes, and excluding duplicate shape orientations
resulting from symmetry. Each combination was used to pro-
duce a set of 100 unique examples by randomly permuting the
background holes. The resulting data set consisted of 81,000
images, which we shuffled and partitioned into training and
validation sets using a 25-75 split. The data sets including a
cursor were generated by the same process.

Each frame si was replicated four times, producing an
84× 84× 4 tensor, which was then encoded as an activation
vector zi

j at the jth layer of the DDQN. Because the size of
the layers differ greatly, we use principal component analysis
(PCA) to enforce that all activation vectors have 300 dimen-
sions. To establish a classification baseline, we repeat the
same analysis on encodings produced by an untrained, ran-
domly initialized neural network with the same architecture.
We do not standardize encodings prior to classification or di-
mensionality reduction, as all input variables are ReLU-gated
activations and are thus measured on the same scale.

Results
Results shown in Figure 4 support the view that shape in-
formation is scene dependent, albeit slightly. At the level of
Conv3 and beyond, classification accuracy was consistently
greater by about 3% when the cursor was grabbing the block.
Figure 5 visualizes the activation vectors in both conditions,
and suggests that the categories become better separated dur-
ing a grab. Interestingly, these results contradict the view
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Figure 4: Average validation accuracy of the SVM. The top
plot shows accuracy per encoding layer, with baseline ac-
curacy on encodings produced by a DDQN with random
weights. The bottom plot shows classification confusion on
the “Grabbing” condition at Conv3 in the trained network.

that shape information plays a major role in the directions
of greatest variance in higher layers. Whereas the classifiers
achieve above 70% accuracy on frames encoded by Conv3,
upstream encodings from Adv. and Val., were discriminable
only about 45% of the time, dropping even below Conv1 and
Conv2.

The most significant misclassifications are shown to be be-
tween the equilateral triangle and trapezoid, whereas the most
easily discriminable shapes were the hexagon and square.
These misclassifications may explain the preference for trape-
zoid blocks over right triangles, despite their similar orders of
symmetry, as the network seems to “confuse” trapezoids with
the easier triangle shape, whereas the right triangle is easy to
classify as a difficult block.

Conclusions
Learning mechanisms and computational principles underly-
ing mathematical cognition are not well understood. How-
ever, deep neural networks provide opportunities for explor-
ing this direction of inquiry. We hypothesized that reinforce-
ment learning, which incorporates active probing of an en-
vironment, serves as a sufficient training signal for learning
many geometric properties embodied implicitly in an interac-
tive shape sorting task.

No Cursor

Hex. Square E. Tri. Trap. R. Tri.

Grabbing

Figure 5: A sample of 2,500 encodings extracted from Conv3.
Linear Discriminant Analysis was used to project the 300-
dimensional vectors onto a subspace in which the classes are
well-separated. The separation is more clear when the cursor
is grabbing the block.

On a representational level, we showed that shape iden-
tity can be recovered from the network’s hidden layers using
linear classifiers and that this information is more strongly
encoded in later convolutional layers than in the final hidden
layers needed to valuate states and possible actions. Recent
work suggests an analogy between the hierarchical structure
of convolutional neural networks and the hierarchical struc-
ture of the visual system (Yamins et al., 2014). If this anal-
ogy is to be taken seriously, we should predict that despite
their simplicity, geometric forms may find representation in
later visual areas when tied to one’s goals, as when playing
with a shape sorter or interpreting mathematical diagrams on
an exam.

On a behavioral level, we found also that a preference for
symmetric blocks emerged as a consequence of their ease of
fitting. Past work indicates that a preference for symmet-
ric shapes exists among both monkeys (McMahon & Olson,
2007) and human beings, but emerges only later in develop-
ment (Bornstein, Ferdinandsen, & Gross, 1981). Bornstein et
al. (1981) in particular suggest that this preference, which fa-
vors vertical over horizonal symmetry, arises not from the in-
formation redundancy present in such figures, but from their
adaptive value. Symmetrical figures tend to be animate, and
can thus act as adversaries or allies in an organism’s pursuit of
goals. In our domain as well, we found that a block’s degree
of symmetry influences a learning agent’s discounted sum of
expected rewards. This result further supports the adaptive
view of symmetry preference over the redundancy view, and
implies a number of testable predictions for future work.

Follow up studies should investigate whether children
trained to play with shape sorters prefer different blocks on
the basis of their symmetry properties, and if so, if this pref-
erence can be modulated by increasing the stakes of the task,
whether by providing greater rewards or less time to react.
Further simulation work should also explore the relationship
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between symmetry and visual similarity. Despite both be-
ing completely asymmetric, we found that trapezoids were
strongly preferred to right triangles, as they are visually closer
to equilateral triangles. An experiment in which “adversarial"
shapes attempt to look easier to fit than they really are may
demonstrate how the constraints of perception (imposed by
the visual similarity between blocks) and the constraints of
actuation (imposed by the reward signal, or task) must be mu-
tually satisfied in embodied, geometric concept acquisition.

The code associated with this paper can be found at
https://github.com/akuefler/shape-sorting.
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Abstract

We propose causal agency models for representing and reason-
ing about ethical dilemmas. We find that ethical dilemmas, al-
though they appear similar on the surface, differ in their formal
structure. Based on their structural properties, as identified by
the causal agency models, we cluster a set of dilemmas in Type
1 and Type 2 dilemmas. We observe that for Type 1 dilemmas
but not for Type 2 dilemmas a utilitarian action does not domi-
nate the possibility of refraining from action thereby constitut-
ing a conflict. Hence, we hypothesize, based on the model, that
Type 1 dilemmas are perceived as more difficult than Type 2
dilemmas by human reasoners. A behavioral study where par-
ticipants rated the difficulty of dilemmas supports the models’
predictions.

Keywords: Moral Reasoning; Moral Complexity; Moral
Dilemmas; Causal Agency Models; Ethical Principles

Introduction
Currently, we experience a hot debate on moral reasoning and
artificial intelligence (AI). In one respect, the discussion is
about how to apply AI technology morally. In another re-
spect, there is a requirement to enable AI technology itself to
make moral decisions. Fields of application are self-driving
cars (Bonnefon, Shariff, & Rahwan, 2016), robots navigat-
ing in social environments (Lindner, 2015), and even robots
that give moral advice (Lindner & Bentzen, 2017). As a con-
sequence, new research areas such as machine ethics (Allen,
Wallach, & Smit, 2006) and moral human-robot interaction
(Malle, Scheutz, Arnold, Voiklis, & Cusimano, 2015) arise.

To address the requirement for autonomous moral decision
making, we recently introduced a software library for model-
ing hybrid ethical reasoning agents (short: HERA)1 (Lindner
& Bentzen, 2017). The goal of the HERA project is to pro-
vide theoretically well-founded and practically usable logic-
based machine ethics tools for implementation in artificial
moral agents such as (social) robots and software bots. To
align human moral reasoning with moral reasoning by ma-
chines, our development of formal models and algorithms is
informed by moral psychology and moral philosophy. We
aim for the integration of various theories about human moral
development, moral reasoning, and ethics.

There are several approaches to explain human moral rea-
soning. Kohlberg (1984), whose approach is based on Pi-
aget’s “genetic epistemology” claimed that individuals are
passing through six invariant and universal stages in the de-
velopment of moral reasoning. Reaching the next stage rep-

1http://www.hera-project.com

resents a qualitative advance in the ability to make consis-
tent and differentiated judgments concerning moral norms
and principles. Conversely, the theory of moral reasoning ad-
vocated by Mikhail (2007) assumes that there is moral gram-
mar triggering certain moral judgments. He hypothesizes two
rules for the grammar: the norm prohibiting intentional bat-
tery as a means, and the norm of double effect valuating bat-
tery as side effect. The research by Greene, Sommerville,
Nystrom, Darley, and Cohen (2001); Haidt (2001) claims a
prevalence of emotionally based moral intuition. Greene and
Haidt (2002) are moving away from moral reasoning tending
towards moral judgments caused by immediate affective in-
tuitions and emotions. Greene et al. (2001) advanced the dual
process model of moral judgment. They assume competi-
tive moral subsystems in the brain resp. moral reasoning that
is influenced by the mutual interaction and competition be-
tween two distinct psychological systems: (1) the emotional,
intuitive, deontological judgment system and (2) the rational,
calculated, utilitarian judgment system.

Throughout the literature, various hypothetical moral
dilemmas are used to investigate questions concerning hu-
man morality, moral reasoning and moral judgments. We will
make use of four dilemmas:

1. Runaway Trolley Dilemma A runaway trolley is about to
run over and kill five people. If a bystander throws a switch
then the trolley will turn onto a sidetrack, where it will kill
only one person.

2. Pregnancy Dilemma A pregnant woman is about to give
birth to her triplets. If the doctors treat the woman then her
triplets will live, but she will die. Otherwise, the triplets
will die, but the life of the pregnant women will be saved.

3. Boat Dilemma A boat is about to sink because of over-
weight. If the crew is told to throw the biggest person into
the sea then the boat will not sink and the other three pas-
sengers will be saved (but the big person will die).

4. Hijacked Airplane Dilemma An airplane was hijacked by
terrorists, and the terrorists threaten to crash the airplane
against a populated area on the ground. If the military
shoots the airplane the passengers will die but the airplane
will crash in a deserted area thus not harming anyone else.

Several ways of classifying dilemmas and different moral
reasoners have been proposed: Greene, Nystrom, Engell,
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Darley, and Cohen (2004) differentiate between personal
dilemmas and impersonal dilemmas. Among subjects, com-
monly more deontological judgments are produced with per-
sonal dilemmas, while impersonal dilemmas commonly pro-
duce consequentialist judgments (Moll & de Oliveira-Souza,
2007). Crockett (2013) proposes a model-based system for
consequentialist reasoning: The reasoner evaluates the best
outcome of an action by starting from the current action and
searching through a decision tree. In the model-free evalu-
ation, which is associated with deontological reasoning, the
forward searching is not activated. Shou and Song (2015)
found that most of their subjects, irrespective of whether they
chose a deontological decision or a consequentialist deci-
sion, evaluated consequences when information about out-
come probabilities was provided. Wiegmann and Waldmann
(2014) propose that the moral dilemmas’ underlying causal
structure supports moral intuition and thus is an important
factor for the moral judgments humans make.

Thus, we observe that research has been focused on the ef-
fects of content and structure of moral dilemmas on human
moral judgments. Our research focus is on moral complex-
ity and adds evidence for how structural properties of moral
dilemmas affect their perceived difficulty. The paper is struc-
tured as follows: First, we introduce causal agency models
as a tool for representing moral dilemmas in terms of causes
and utilities. Second, we define ethical principles within this
framework. Third, the four aforementioned moral dilemmas
are modeled using causal agency models. Based on struc-
tural commonalities and differences of these models, we dis-
tinguish two dilemma types, which we term Type 1 and Type
2 dilemmas. We hypothesize that Type 1 dilemmas are more
difficult to solve for humans than Type 2 dilemmas. Fourth,
we present an empirical study which shows that our model
predicts human ratings about the perceived difficulty for the
two types of moral dilemmas.

Causal Agency Models

Ethical principles can be modeled as specifications of moral
permissibility in causal agency models. Causal agency mod-
els are extensions of causal models that are used for counter-
factual reasoning about causality, responsibility, blame, and
related concepts (Halpern, 2016). In our HERA framework,
an ethical principle is represented as a logical formula whose
truth determines which actions are permissible according to
the principle and which are not. Actions and their con-
sequences are modeled as directed acyclic graphs showing
causal influence. At the root of the graph will be actions and
other independent variables influencing consequences further
down the graph. Boolean structural equations capture all the
information about the causal relationship between variables.
For instance, to model that the trolley from the Runway Trol-
ley Dilemma will turn onto a sidetrack when the bystander
throws the switch, we may write the boolean structural equa-
tion turn := throw. The boolean variable turn will be true in
the model whenever the boolean variable throw is true in the

model. The set of boolean structural equations in a model is
called a causal mechanism. The truth assignment of the root
node of the graph is called a world or an option. Formally,
we define causal agency models as follows:

Definition 1 (Causal Agency Models)
A (boolean) causal agency model, M, is a tuple 〈U = A∪
B,C,F,u,W 〉, where, A= {a1, . . . ,am} is a nonempty finite set
of propositional variables called the actions. B= {b1, . . . ,bk}
is a (possibly empty) finite set of propositional variables
called the background variables. Together the actions and
background variables are the exogenous variables as defined
above. C = {c1, . . . ,cn} is a finite (possibly empty) set of
propositional variables called the endogenous variables. F
is a causal mechanism explained above. u : literals→ Z is a
utility function assigning an integer value to each literal. W
is a set of boolean interpretations of (A∪B).

We assume some familiarity on the part of the reader with
classical propositional logic (and (∧), or (∨), not (¬), and
so on) and of truth functional semantics. A formula con-
taining variables such as (c1 ∧ a1), is intended to mean that
consequence c1 and action a1 both obtain. We write M,wi |=
(c1 ∧ a1) for (c1 ∧ a1) is true with option wi (or at world wi)
in the model M. Apart from propositional formulas we need
simple arithmetic formulas expressing the utility of literals.
We write u(vi) = z, for an integer z, with the intended mean-
ing that the utility of vi is z, similarly we write u(vi) ≥ u(v j)
for the utility of vi is equal to or greater than the utility of v j.
We extend the utility function to conjunctions of literals by
addition of the utilities of the conjuncts. The utility of other
formulas (e.g., disjunctions) is undefined.

Ethical Principles
Causal agency models play the role of representations of situ-
ations involving moral decisions. We now define ethical prin-
ciples according to which moral permissibility of actions can
be assessed based on the actions’ consequences. For the fol-
lowing discussion, the principle of act-utilitarianism and the
notion of Pareto dominance are of particular importance.

The utilitarian principle focuses on consequences of ac-
tions. It states that an agent ought to perform the action
among the available alternatives with the overall maximal
utility. We adopt an act-utilitarian interpretation which does
not distinguish between doing and allowing, i.e., the causal
structure of the situation is not taken into account. Thus the
action which the agent ought to perform is the one which
leads to the best possible situation, i.e., the highest utility,
regardless of what the agent causes and intends.

Definition 2 (Utilitarian Permissibility)
Let w0, ...,wn be the available options, and conswi =
{c |M,wi |= c} be the set of consequences and their nega-
tions that obtain with these options. An option wp is per-
missible according to the utilitarian principle if and only if
none of its alternatives yield more overall utility, i.e., M,wi |=
u(
∧

conswp)≥ u(
∧

conswi) holds for all wwi .
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The utilitarian principle allows that an action brings about
some bad consequences if it at the same time brings about
more good consequences. For instance, it allows sacrificing
some people if this sacrifice serves the good of many people.
As an alternative to utilitarian permissibility we introduce the
principle of Pareto permissibility. To this end, we first define
the notion of Pareto dominance, which allows us to conclude
that some action brings about a negative outcome in some
respect, although it may be the optimal action from an utili-
tarian point of view. An option wa dominates another option
wb if and only if wa is no worse in any aspect compared to wb,
and wa improves at least one aspect of wb either by making
more good consequences obtain or less bad consequences ob-
tain. Thus the agent does not change the world for the worse
and will change it for the better by choosing the dominant
action instead of the dominated one.
Definition 3 (Pareto Dominance)
Let w0,w1 be two available options, let consgood

wi =
{c |M,wi |= c∧ u(c) > 0} be the set of good consequences

of option wi, consgood
wi = {c |M,wi |= ¬c∧ u(c) > 0} the set

of good consequences that does not obtain in option wi, and
consbad

wi
= {c |M,wi |= c∧u(c)≤ 0} the bad consequences of

option wi. Option w0 dominant option w1 if and only if the
following conditions hold: 1) w0 shares all the good con-
sequences with w1 (M,w0 |=

∧
consgood

w1 ), 2) w0 either has
at least one good consequence that does not hold in w1, or
w1 has at least one bad consequence that does not hold in
w0(M,w0 |=

∨
consgood

w1 or M,w0 |= ¬
∧

consbad
w1

), and 3) all
the bad consequences of w0 are also bad consequences of w1
(M,w1 |=

∧
consbad

w0
).

Based on Pareto dominance, Pareto permissibility is de-
fined. Pareto permissibility permits options not dominated by
other options. Pareto permissibility can thus be understood
as a principle of moral rationality: If there is an option that
is better in all aspects compared to an alternative, then the
only rational choice is to choose the better one. It would be
irrational (and thus impermissible) to choose the worse alter-
native.
Definition 4 (Pareto Permissibility)
Let w1, ...,wn be the set of options available to an agent. Op-
tion wi is permissible according to the Pareto principle if and
only if it is not dominated by some option w j.

As will become apparent below, utilitarian permissibility
and Pareto permissibility predict the same set of permissible
actions for some dilemmas and different sets of permissible
actions for other dilemmas. Generally, actions permissible
from the utilitarian point of view are also permissible from
the Pareto point of view. But the converse does not hold: For
some dilemmas, the set of actions permitted by each principle
differ. In those cases of disagreement the moral reasoner has
to solve a conflict.

Models of Moral Dilemmas
In this section, the four dilemmas presented in the introduc-
tion are modeled within the framework of causal agency mod-

els. Commonalities and differences are discussed both with
respect to representation and ethical reasoning.

Representations
Consider the Runaway Trolley dilemma (cf., p.1). We model
this situation from the perspective of the bystander, who faces
the decision to either throw the switch or to refrain from do-
ing so. Let a1 be the action variable representing the action of
throwing the switch, and a2 be the action variable represent-
ing refraining from throwing the switch. The consequence
variable c1 represents that the one person on the other track
dies, and the consequence variable c2 represents that the five
persons on the current track die. The causal mechanism is
expressed by structural equation in the following way: The
structural equation c1 := a1 states that throwing the switch
brings about the death of the one person on the other track,
and the structural equation c2 := ¬a1 states that not throwing
the switch will bring about the death of the other five persons.
We assign utilities u(c1) = −1 and u(c2) = −5 to the conse-
quences reflecting the number of deaths. For the lucky case
that c1 or c2 do not obtain, we assume positive consequences,
viz., u(¬c1) = 1 and u(¬c2) = 5. (One could argue that it is
also appropriate to set u(¬c1) = u(¬c2) = 0, because survival
does not improve the persons’ current state of being alive. On
the other hand, to escape from danger intuitively bears pos-
itive utility. We consider this question as another empirical
question that is out of the scope of this paper. For now it is
important to note our findings do not depend on this choice.)

We consider now the Pregnancy dilemma and model the
situation from the perspective of the doctor, wo faces the de-
cision to either treat the woman or to refrain from doing so.
Thus, we are assuming two actions a1, treating the woman,
and a2, refraining from treating the woman. Moreover, we
introduce consequence c1 representing that the woman dies,
and consequence c2 representing that the triplets die. The
structural equations are c1 := a1 and c2 := ¬a1. The utilities
are set in accordance with the number of dying individuals:
u(c1) = −1 and u(c2) = −3. As with the first dilemma, we
assume that not dying yields positive utility, and hence we set
u(¬c1) = 1 and u(¬c2) = 3.

Note that the Pregnancy dilemma is structurally isomor-
phic to the Runaway dilemma, i.e., the dilemmas can be
mapped to each other. The only difference is the number of
deaths in case of inaction (3 versus 5). Hence, we do not
expect big differences regarding the complexity of reasoning
about these dilemmas.

The Boat dilemma is modeled from the perspective of the
crew, that has to decide whether to throw the biggest person
into the sea. We assume two actions a1, throwing the biggest
person into the sea, and a2, refraining from doing so. In con-
trast to the two previous dilemmas, it would be incorrect to
model this dilemma as a choice between the one dying be-
cause of performing a1 and the other three dying because of
refraining from action. Instead, the model has to capture that
the biggest person will die in both cases, viz., either because
of being thrown into the sea or by drowning together with his
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colleagues because of the sinking ship. To represent this situ-
ation appropriately, we assume three consequences: the ship
sinks (c1), the biggest person dies (c2), and the three other
passengers die (c3). The structural equations are c1 := ¬a1
(the ship will sink if the biggest person is not thrown into the
see), c2 := a1∨c1 (the biggest person will die if she is thrown
into the sea or if the ship sinks), and c3 := c1 (the three other
passengers will die if the ship sinks). The utilities again re-
flect the number of deaths: u(c2) = −1 and u(c3) = −3, and
as with the other two principles we assume that u(¬c2) = 1
and u(¬c3) = 3.

The Hijacked Airplane dilemma again is isomorphic to the
Boat dilemma. It can thus be modeled accordingly: a1 refers
to the action of shooting the airplane, and a2 to refraining
from doing so. Consequence c1 represents the airplane crash-
ing, c2 represents the death of the passengers, and c3 corre-
sponds to the death of people on the ground. The utilities can
be set to any values such that u(c2)> u(c3).

Ethical Reasoning
The ethical principles “utilitarian permissibility” and “Pareto
permissibility” defined above can now be applied to the out-
lined models of the four moral dilemmas. The first observa-
tion is that according to utilitarian permissibility taking action
(a1) is permissible and refraining from action (a2) is imper-
missible in all four dilemmas, i.e., it is obligatory to throw the
switch, to treat the woman, to throw the biggest crew mem-
ber into the sea, and to shoot the hijacked airplane. This is
rather easy to see by considering the sums of the utilities.
E.g., throwing the switch in the Runaway Trolley dilemma
yields utility u(c1∧¬c2) =−1+5 = 4 whereas not throwing
the switch yields u(¬c1∧ c2) = 1−5 =−4.

For the Runaway Trolley dilemma and the Pregnancy
dilemma, performing action a1 does not dominate refraining
from action (a2) according to the definition of Pareto domi-
nance. To see this, note that consgood

wa2
= {¬c1} (i.e., the good

thing about not throwing the switch is that the one person
will not die, and the good thing about not treating the woman
is that the woman will not die) but M,wa1 6|= ¬c1 (i.e., the
one person will die in case of throwing the switch, and the
woman will die in case of treatment). Conversely, using ex-
actly the same argument refraining from action does not dom-
inate acting. Thus, no matter how one decides someone will
be harmed who will not be harmed under the alternative op-
tion. Because no action is dominated by the other, both the
actions are permissible according to Pareto permissibility.

For the Boat dilemma and the Hijacked Airplane dilemma,
performing action a1 is the only Pareto permissible choice.
The reason is that drowning the biggest person and shoot-
ing the airplane dominate the respective alternatives. Note
that wa1 dominates wa2 according to the definition of Pareto
dominance: First, observe that consgood

wa2
= /0 (i.e., refrain-

ing from action yields no positive consequences), consgood
wa2

=
{¬c2,¬c3} (i.e., when refraining from action none of the pos-
itive consequences hold), and consbad

wa1
= {c2} (i.e., the nega-

tive consequence of a1 is that the biggest person dies resp.
the passenger die). Second, verify that indeed M,wa1 |= >
(satisfying condition 1 of the definition of Pareto dominance,
all the good consequences of refraining are also good conse-
quences of throwing, viz., there are none), M,wa1 |= ¬c2 ∨
¬c3 (satisfying condition 2 of the definition of Pareto dom-
inance, throwing (shooting) yields one of the good conse-
quences not yielded by refraining, viz., ¬c3), and M,wa2 |= c2
(satisfying condition 3 of the definition of Pareto dominance,
the bad consequences of throwing (shooting) is also a bad
consequence of refraining).

To sum up, for the isomorphic pair Runway Trolley
dilemma and Pregnancy dilemma, both taking action and re-
fraining are Pareto permissible but only the former is permit-
ted by the utilitarian principle. Thus, the two principles are in
conflict. For the isomorphic pair Boat dilemma and Hijacked
Airplane dilemma, the two principles agree on only permit-
ting taking action.

Type 1 and Type 2 Dilemmas
Our formal investigations suggest that the moral dilemmas we
are considering can be classified based on their formal prop-
erties. All the considered dilemmas are constituted by the
choice between a big sacrifice as a consequence of inaction
or a smaller sacrifice as a consequence of action. However,
in case of the Runaway Trolley and the Pregnancy dilemma,
the sets of negatively affected people are disjoint, whereas in
case of the Boat dilemma and the Hijacked Airplane dilemma,
the set of negatively affected people as a consequence of ac-
tion is a subset of the set of negatively affected people as a
consequence of inaction. This analysis yields that putting
other people in danger by saving some raises moral conflicts,
whereas saving a subset of people in danger does less so.

We take this difference to be a justification for subsuming
dilemmas of the Runaway Trolley and Pregnancy dilemma
type under Type 1 dilemmas, and dilemmas of the Boat and
Hijacked Airplane type under Type 2 dilemmas. We conjec-
ture that the utilitarian choice does Pareto dominate the alter-
native option in case of Type 2 dilemmas whereas it does not
in Type 1 dilemmas. Thus, for Type 1 dilemmas, ethical prin-
ciples predict different sets of permissible actions, and hence
there is a conflict to resolve which is not present for Type 2
dilemmas. We therefore hypothesize that Type 2 dilemmas
are easier to solve for humans, and we present a study which
confirms our hypothesis.

Hypotheses
The above theoretical analysis predicts that Type 2
dilemmas—due to the absence of a moral conflict—are easier
to solve than Type 1 dilemmas. These considerations lead to
two testable hypotheses:

• Hypothesis 1: Type 1 dilemmas such as the Pregnancy and
the Runaway Trolley dilemma are rated as equally difficult.

• Hypothesis 2: Type 2 dilemmas such as the Boat dilemma
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and Hijacked Airplane dilemma are rated as significantly
easier to solve than Type 1 dilemmas.

Both hypotheses can be formally justified: The Type 1
dilemmas Pregnancy and Runaway Trolley are isomorphic,
i.e., each one can be mapped to the other conserving the
structure of the problem. Hypothesis 2 is justified for Type
2 dilemmas, as the utilitarian optimum dominates the possi-
bility of refraining from action. This does not hold for Type
1 dilemmas. These hypotheses are investigated in the next
section experimentally.

Experiment
We report the second part of an experiment that focuses on
rating the difficulty of moral dilemmas.

Methods
Participants Participants were recruited on the online plat-
form Amazon Mechanical Turk and received a monetary
compensation for their participation. A total of 60 partici-
pants (f = 33) completed the study (Mage = 40.7, SDage =
8.86, minage = 21, maxage = 70). 33% of the participants re-
ported to have finished high school or college, 12% stated to
have an associate degree, 32% reported to have a bachelor de-
gree while 23% stated to have a master or a higher academic
degree.

Procedure, Design and Materials After the introduction
to the setting participants received three problems. Each
problem consisted of brief descriptions of two moral dilemas
(c.f., Bucciarelli, Khemlani, & Johnson-Laird, 2008), both
presented at the same time on the left or the right part of the
screen. Participant had to decide which of these two moral
decision situations was more difficult to make, given that they
should aim for saving lifes. More precisely, the participants
had to decide between the Pregnancy and Runaway Trolley
Dilemma, the Pregnancy and Boat Dilemma, and the Run-
away Trolley and Boat Dilemma. Hence, participants were
making a binary decision that was encoded in a dichotomous
variable. After selecting the more difficult scenario the par-
ticipants had to rate the perceived difficulty on a scale from 0
(hardly more difficult) to 100 (extremely more difficult) using
a slider. This value was encoded in a second variable.

Results
The frequencies of selections for the moral dilemma decision
tasks can be found in Fig. 1. In the first problem the same
number of participants rated either the Pregnancy Dilemma
or the Trolley Problem to be the more difficult one. In the sec-
ond problem 38 participants decided the Pregnancy Dilemma
to be the more difficult decision scenario while 22 partici-
pants chose the Boat Dilemma. In the third problem 44 par-
ticipants opted for the Trolley Dilemma and 16 for the Boat
Dilemma. A two-tailed binomial test was used to compare
the frequencies for the dichotomous variable.

As predicted, no reliable difference in the evaluation of
the difficulty of the moral dilemmas Pregnancy and Runaway

Figure 1: Frequencies in the evaluation of the moral dilemma
difficulty between two tasks (∗ ≤ .05, ∗∗∗ ≤ .001).

Table 1: Mean values for the participants rating of the
difficulty to find a decision in the selected scenario.

Meandifficulty

Decision Task PW RT OB

PW–RT M = 72.37
SD = 28.37

M = 60.23
SD = 32.40

PW–OB M = 58.32
SD = 32.48

M = 51.05
SD = 37.22

RT–OB M = 50.07
SD = 32.99

M = 43.94
SD = 32.91

Note: PW: Pregnant Woman scenario; RT: Runaway Trolley
scenario; OB: Overweight Boat scenario

Trolley can be found (exact binomial test, two-sided, n.s.,
n = 60). There is a significant difference in the evaluation
of the moral dilemmas Pregnancy and Overweight Boat (ex-
act binomial test, two-sided, p ≤ .05, n = 60) and a signifi-
cant difference in the evaluation of the moral dilemmas Run-
away Trolley and Overweight Boat (exact binomial test, two-
sided, p ≤ .001, n = 60). Once more, Fig. 1 illustrates the
differences of difficulty per decision task. The mean values
of the participant’s rating of their personal difficulty to find
a decision in the previously selected scenario are shown in
Table 1. Subsequent two-tailed t-tests showed no significant
differences between the mean values MPW and MRT (decision
task PW–RT), MPW and MOB (decision task PW–OB), and
also not for MRT and MOB (decision task RT–OB) concerning
their rating of the subjective difficulty.

Discussion
As our theory predicted moral dilemmas can systematically
differ in their perceived difficulty: When asking about the
Pregnancy and Runaway Trolley dilemmas, as hypothesized,
no significant difference in the relative difficulty rating could
be identified. We explain this by the dilemmas’ same com-
plexity of the formal structure requiring a similar cognitive
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effort. However, the questions concerning the decision dif-
ficulties between the ethical scenarios Pregnancy and Over-
weight Boat or the Runaway Trolley and Overweight Boat
resulted in reliable differences in the evaluation of the diffi-
culty of the moral decision situation. In both cases the Boat
Dilemma was selected reliably less often. These results sup-
port our theory of a different formal structure implying a dif-
ferent cognitive effort and therefore a lower complexity of the
Boat Dilemma.

Once the participants have selected the moral dilemma they
perceived to be more difficult (the dichotomous decision),
their subsequent rating of the difficulty in the interval from
0 to a 100 is statistically equal in comparison to the rating of
the participants who chose the other dilemma confirming the
result. Overall, there is a tendency towards a lower decision
difficulty in the Boat Dilemma.

General Discussion
The formally predicted distinction between Type 1 and Type 2
moral dilemmas have been empirically supported. Our results
support the theoretical assumption that less the dilemma’s
content but the formal structure and the associated cogni-
tive effort is a predicting factor affecting people’s rating of
a dilemmas’ difficulty. We recall that a main difference be-
tween moral dilemmas of Type 1 and Type 2 are either based
on action that the utilitarian choice does not or does Pareto
dominate the alternative choices. This connects the presented
formalism with ethical principles and a decision theoretic in-
terpretation. For Type 1 dilemmas, ethical principles predict
different sets of permissible actions, and hence there is a con-
flict to resolve which is not present for Type 2 dilemmas. The
absence of such a conflict appear at least on the problems’
surface to be easier to solve due to the lower cognitive ef-
fort they require. Further investigations ought to contain a
replication of the results with balanced materials and higher
sample sizes. In addition applying qualitative research such
as interviews or thinking aloud techniques may give deeper
insight in the complex human decision-making process par-
ticularly in morally difficult decision situations. This would
offer additional insights about the motives, thoughts, and con-
cepts people have when they have to solve tasks about moral
principles and can provide the reasons for their decisions. By
applying a qualitative content analysis of the different causal
structure of dilemmas may improve the detection and catego-
rization of the objective, systematic, and formal features of
the dilemma’s content. These categories in turn can be val-
idated by an assignment of dilemmas as a possible task in a
further experiment. Having a formal theory at hand allows
to systematically analyze the implications of the objectives,
concepts, and features relevant for moral decision making.
Our formalism is able to distinguish between moral dilem-
mas and—at least for the reported cases—predict a perceived
subjective difference between human raters.
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Abstract
Recent work suggests that language production exhibits a bias
towards efficient information transmission. Speakers tend
to provide more linguistic signal for meaning elements that
are difficult to recover while reducing contextually inferrable
(more frequent, probable, or expected) elements. This trade-
off has been hypothesized to shape grammatical systems over
generations, contributing to cross-linguistic patterns. We put
this idea to an empirical test using miniature artificial language
learning over variable input. Two experiments were conducted
to demonstrate that the inferrability of plurality information
inversely predicts the likelihood of overt plural marking, as
would be expected if learners prefer communicatively efficient
systems. The results were obtained even with input frequency
counts of the plural marker counteracting the bias, and thus
provide strong support for a critical role of inferrability of
meaning in language learning, production, as well as in typo-
logically attested variations.
Keywords: language production, artificial language learn-
ing, optional morphology, plural marking, communicative ef-
ficiency

Introduction
Speakers face a multitude of constraints when encoding their
intended message as an actual utterance. On the one hand,
speakers want to encode their meaning in a way that guar-
antees communicative success—it must be understood by the
interlocutor. At the same time, speakers need to cope with
difficulties associated with utterance planning and articula-
tion. As researchers have shown, speakers regularly do this,
e.g. by choosing shorter forms and/or elements that are read-
ily retrieved and formulated (see, inter alia, Ferreira & Dell,
2000; MacDonald, 2013).

A body of psycholinguistic work sees this negotiation be-
tween communicative success and effort minimization as a
guiding principle of the computational system underlying lan-
guage production and comprehension. Specifically, it is ex-
pected that there is an efficiency-based trade-off between the
amount of information encoded and the amount of linguistic
signal expended by the speaker. (e.g., Aylett & Turk, 2004;
Levy & Jaeger, 2007; Buz, Tanenhaus, & Jaeger, 2016).
Communicative efficiency is predicted to be maximized when
the speaker preferentially encodes components of meanings
that are otherwise less likely to be inferred by the listener
given prior expectations.

Against this backdrop, we consider the possible role of
communicative efficiency in the organization of grammatical
number marking. Grammatical number systems often have
“markedness” contrasts between a default, uncoded value,
and a value explicitly coded, e.g. through morphology. Typ-
ically, the singular value is uncoded while the plural value

is coded, as in dog vs. dogs. One question we will ask is
if a plural value for a referent is likely to be inferred, will
a speaker encode it? While it has been long observed that
languages have preferences for what information is coded in
default forms as opposed to explicitly coded (e.g., Greenberg,
1966), the causes underlying these preferences have remained
obscure. The design of our study allows us to take a step to-
wards distinguishing what sort of information forms the basis
for these preferences. In particular, we investigate whether
the active ingredient is the predictability of linguistic forms,
i.e. frequency of occurrence of some element in produced lan-
guage, or if predictability is related to the meaning.

A case study: Optional plural marking
Unlike in English, grammatical encoding of plural mean-
ing (e.g., dog vs. dogs) can be optional in some languages.
Optional Plural Marking (OPM) is not uncommon cross-
linguistically (e.g., Yucatec Maya (Butler, Bohnemeyer, &
Jaeger, 2017)) and has been investigated in linguistic work
on grammatical systems (see Corbett (2000) and Haspelmath
(2013) for general discussion). Yet, the mechanisms that pre-
dict when speakers would use (or would not use) the marker
are not well understood.

A class of proposals, elaborated for number marking more
generally, grounds the encoding of number values in concep-
tual properties related to entities (Prasada, Ferenz, & Haskell,
2002; Wisniewski, Lamb, & Middleton, 2003). This view-
point suggests that singular (or plural) values might be more
conceptually consonant for some entity types than for others.
For instance, entities that are typically conceptualized as indi-
viduals (e.g., large animals) tend to be referenced in language
as singular, rather than plural. For these entities, their occur-
rence in plural is limited, and therefore, plural coding is the
unexpected or “marked” value. Conversely, for entities that
are often conceptualized as collectives (e.g., small insects),
plural coding is the expected or “unmarked” value. In sum,
on this view formal (morphological) markedness corresponds
to conceptual markedness.

When combined with a framework such as the communica-
tive efficiency hypothesis, this “markedness” of plural mean-
ing can predict biases seen in language production. Put sim-
ply, learning and production is guided by a consideration to
communicate the plural meaning most efficiently. That is,
learners should prefer systems in which markedness of plural
meaning is inversely correlated with the production of plural
marking. In relation to OPM, accounts based in communica-
tive efficiency predict that when learners of an OPM language
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refer to multiples of individualized items (e.g., large animals),
they should be more likely to produce plural marking, com-
pared to when referring to multiples of collective items (e.g.,
small insects).

Preliminary support for the conceptual markedness ac-
count comes from repeated observations across a number of
studies on typologically-diverse languages which possess a
singulative/collective morphology (e.g., Arensen (1998) on
Murle, Mifsud (1996) on Maltese, Stolz (2001) on Welsh, see
(Grimm, 2012) for discussion). In these languages, referents
that are likely to be conceptualized and manipulated as col-
lectives (e.g., fruits, grains, vegetables) or as a group/mass of
individuals tend to be expressed with lexical items that have
a plural meaning by default (e.g., psy “peas” in Welsh) and
only through an additional singulative suffix can singletons
be designated (e.g., psy-en “pea”).

A difficulty arises, however, in determining “markedness”
of plural meaning based on token counts of plural forms in
a corpus. Haspelmath and Karjus (2017), for instance, col-
lected token counts of singular vs. plural forms of a word
(e.g., psy-en and psy) to argue that frequency asymmetries
can predict the asymmetrical plural marking system such that
the more frequent meaning (singular/plural) is often encoded
in a simpler form. However, in this approach, one can only
infer the frequency of meaning (e.g., How often does one talk
about pea(s) as singular or plural?) based on the frequency of
form (e.g., How often does one use a singular or plural form
for pea(s)?). In other words, there is no simple way of disso-
ciating predictions of the communicative efficiency account
from an account based on form frequency: speakers may be
simply reproducing the patterns heard in the input (e.g., They
are more likely to hear psy than psy-en when they see peas
and are faithfully representing the pattern in their own pro-
duction).

To address this problem, we present two production exper-
iments using an artificial language learning paradigm. Learn-
ers acquire 12 novel nouns and one novel verb to produce
simple intransitive sentences with the Subject-Verb word or-
der. As we describe below, the novel lexicon consists of two
classes of referents: six Individuals and six Collectives that
depict fictitious animals and insects, respectively. In the in-
put, they were visually presented as either singletons or multi-
ples at varying rates: Individuals are more likely to be single-
tons whereas Collectives are more likely to be multiples. Ref-
erents are optionally (stochastically) plural-marked and the
probability of occurrence of the marker was constant across
Individuals and Collectives.

This setup pinpoints an instance where frequency (in-
ferrability) of meaning can be examined independent of
frequency of forms. For instance, Individuals are less
likely to appear as multiples compared to Collectives. This
makes the plural meaning less inferrable for Individuals
than for Collectives without the overt marking. Therefore,
conceptual-markedness based accounts would predict that
learners should be more likely to use the plural marker with

Figure 1: Sample images of visual stimuli in Experiments 1
and 2.

the Individuals rather than Collectives. Critically, this bias
is not predictable based purely on the frequency of forms.
Notice that, given the fact that Collectives are more likely to
appear as multiples, a larger proportion of token counts of
Collectives appear with the plural marker than Individuals. If
learners are simply reproducing the patterns observed in the
input, they should produce the optional plural marker more
with Collectives than with Individuals.

Results from this investigation may help to bridge the gap
between the factors shaping sentence production in language
processing and those that are shaping typological patterns. It
has long been observed that the lexicon and grammar of lan-
guages across the world tend to exhibit many properties that
would be expected if language was shaped by communicative
pressures (e.g., Zipf (1949); Plotkin and Nowak (2000), also
precisely those predicted by accounts of communicatively
efficient language production Piantadosi, Tily, and Gibson
(2011); Jaeger (2013)). Recent work on learning biases dur-
ing (miniature artificial) language acquisition has also found
similar biases to be active during artificial language learning
(e.g., Culbertson, Smolensky, & Legendre, 2012; Fedzechk-
ina, Newport, & Jaeger, 2016; Smith & Wonnacott, 2010).
Fedzechkina et al. (2012) found that native speakers of Amer-
ican English, when learning a miniature language with an
optional case marking morphology, restructure the input and
condition the uses of the marker on factors such as Animacy.
This is in line with patterns observed in existing optional (or
more categorical) case-marking languages, suggesting a tight
link between observations in lab-based studies and typolog-
ical pattern found in existing languages (e.g., Aissen, 2003;
Kurumada & Jaeger, 2015).
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Figure 2: Schematic illustration of the flow of the experiment and proportions of singleton and multiple visual prompts.

Experiment 1

We employ a miniature artificial language learning paradigm
modifying Fedzechkina, Jaeger, and Newport (2012). Partic-
ipants first learn 12 nouns and then learn to produce intransi-
tive sentences in response to video clip prompts. We manip-
ulated visual features of the referents (e.g., size, group size,
movements) as well as the probability with which Individ-
uals (animals) and Collectives (insects) appear as singletons
and multiples, respectively. If optional number-marking is af-
fected by a preference for communicative efficiency, speak-
ers should be more likely to produce responses with a plural-
marker for Individual (animal) compared to Collective (in-
sect) referents.

Methods

Participants 48 native speakers of American English at
University of Rochester participated in this study. They re-
ceived $10 for their participation.

The language

Lexicon We constructed 12 nonce nouns. Six of them de-
note large animal characters and the other six denote small in-
sect characters (e.g., Fig.1). To ensure that results did not in-
clude spurious phonological effects, we created two versions
of character-noun combinations. All of the nouns were 1-2
syllables obeying English phonotactics (e.g, norg, velmick,
zamper). When characters were presented as multiples, the
noun was optionally suffixed with the plural-marker (-ka) 2/3
of the time.

We included only one verb – glim – meaning “moving
up and down.” In constructed sentences, the verb followed
a noun, constituting a SV (intransitive) word order (e.g.,
Velmick-ka glim).

Procedure
There were five phases in this experiment (Fig. 2). Partic-
ipants went through phases (1) - (3) for six of the 12 noun
types (three animals and three insects) and then repeated the
same procedure to learn the other six words.

(1) Word exposure (12 characters * 2 = 24 trials total):
During word exposure, participants were presented with pic-
tures of each of the characters. Participants were instructed
to repeat the names of the characters aloud. In this phase, all
the characters were presented as singletons. An animal was
depicted approximately three times as large as an insect.

(2) Word learning game (12 characters * 4 = 48 tri-
als total): The initial word presentation was followed by a
word learning phase where participants were presented with
four pictures (4 Alternative-Forced-Choice task) and asked to
choose the correct match for the noun provided (48 trials to-
tal). Feedback was provided after each trial. In this phase,
Individuals and Collectives were presented as singletons and
multiples at different rates. Individuals occurred 75% of the
time as a singleton (i.e., one animal, Fig. 1a), and 25% as mul-
tiples (Fig. 1b). Collectives had the inverse distribution (25%
singleton, 75% multiples). Both Individual (animal) nouns
and Collective (insect) nouns were followed by the plural-
marker (ka) 2/3 of the time when occurring as multiples.

(3) Word production (12 characters * 1 = 12 trials to-
tal): Participants were shown 12 characters (singleton) one
by one and asked to name each of them.

(4) Sentence comprehension (12 characters * 4 = 48 tri-
als total): During the sentence comprehension phase, partic-
ipants viewed short clips and heard their descriptions in the
novel language. Participants were asked to repeat the sen-
tences out loud. As in the word learning phase, Individu-
als and Collectives occurred as singletons 75% and 25% of
the time, respectively, and they were followed by the plural-
marker (ka) 2/3 of the time when occurring as multiples. Con-
sequently, participants heard the animal and insect nouns with
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ka 10 times and 30 times, respectively, by the end of this
phase (Fig. 2). Importantly, this means that input frequency
biases against the prediction of communicative-efficiency:
the input in our experiment(s) provides more instances of
training for plural-marked Collectives than Individuals.

(5) Sentence production (12 characters * 2 = 24 trials
total): In the final test (sentence production) phase, partici-
pants saw silent videos of singletons and multiples and had
to produce intransitive descriptions. In this phase, visual im-
ages for the multiples had three instances of the characters
both for animals and insects. This was done to ensure that
participants use -ka to signal plurality rather than the particu-
lar number of instances (two for animals and ten for insects)
seen in the exposure input.

Scoring
In the 4AFC comprehension test, participants’ responses
were scored as “correct” if they matched the intended ref-
erent. Following the standard used in similar studies (e.g.,
Fedzechkina et al. (2012)), we a priori decided to exclude
participants who failed to achieve mean accuracy of 65%
from all analyses.

We transcribed the production obtained in (5) and anno-
tated if participants produced a given noun correctly and if a
noun was produced with ka or not. In the comprehension test,
participants responses were scored as “correct” if it matched
the provided input, while subtle phonological variations (e.g.,
velmick pronounced as belmick) were ignored.

Results and Discussion
Comprehension Accuracy To ensure that participants had
achieved a sufficient level of accuracy in identifying referents,
we first measured their performance in the 4AFC word learn-
ing game. The average rate of correct response was 93.9%
(animals, 93%; insects, 94%) and all the subject means were
well above the pre-determined cut-off rate of 65%. The mean
accuracy of the word production phase (3) was above 85%.
This suggests that the task was feasible and the lexicon was
acquired reasonably well before participants performed the
production task.

Plural Marker Use in Production We excluded six
(12.5%) of the participants who failed to produce 50% of
the sentences in the final sentence production phase. This
was done to ensure that the data analyzed are produced by
those who have mastered the language at a more or less suffi-
cient level. All the results we report below remain unchanged,
however, when we include all the participants. We then fur-
ther removed 116 (13%) sentences that included wrong nouns
such as a different character’s name or a noun that did not
belong to the learned lexicon. The final dataset included 42
subjects and 773 sentences.

Proportions of participants’ plural marker use in Experi-
ment 1 are illustrated in Fig. 3. To analyzed the data, we used
a mixed effect logit model in R, predicting the use of the op-
tional plural marker. We included the noun classes (Individ-
uals (animals) vs. Collectives (insects)) and visual prompts

(singleton vs. multiples) as fixed effects and participants and
items as random effects. The model included the maximal
random effects structure justified by the data based on model
comparison (Jaeger, 2008). There was an expected signifi-
cant main effect of visual prompts such that participants were
more likely to produce the optional plural marker ka for mul-
tiples (p < .001). Critically, the interaction between the noun
class and the visual prompts was also significant (p < .03):
learners (inversely) conditioned plural production on plural
inferability. They did so despite the fact that they were ex-
posed to three times as many instances of -ka with the Col-
lectives (insects) compared to the Individuals (animals).

Experiment 2
What is driving the observed difference between Individuals
and Collectives? Under our hypothesis, it is at least partially
due to the expectation that animals are less likely to be rep-
resented with the plural meaning, and hence the meaning is
less inferrable (and conversely for insects). In Experiment 1,
however, it is not clear if the inferrability of the plural mean-
ing (the conditional probability of multiples given the refer-
ent) is learned within the experiment or it is carried over from
participants’ prior semantic knowledge that insects are more
likely to occur, and be referred to, as multiples.

To separate these two factors, in Experiment 2, we used the
lexical items from Experiment 1 while associating them with
novel geometrical shapes to minimize effects of prior seman-
tic knowledge. If participants exhibit the same asymmetric
use of the plural marker for Individuals and Collectives, that
will yield support for the idea that the inferability is likely
extrapolated in this experiment.

Participants
52 native speakers of American English at University of
Rochester participated in this study. They received $10 for
their participation.

The language
The lexicon was identical to that used in Experiment 1. The
only difference is that the visual images consisted of 12 geo-
metrical shapes with no commonly known names. To equate
the visual features of the referents (e.g., size, spacial distribu-
tions, complexity of visual scenes), we created two classes of
referents (Fig. 1). Individuals consisted of six relatively large
geometrical shapes spatially distributed in a manner similar
to how the animals were presented in Experiment 1. On the
other hand, Collectives consisted of six smaller shapes that
replace the insects in Experiment 1.

Procedure
The same as Experiment 1.

Results and Discussion
Comprehension Accuracy The mean accuracy in the 4AFC
task was 86% (Animals, 89%; Insects, 83%), suggesting that
the word learning was slightly more difficult in Experiment
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Figure 3: Proportions of plural marker use by conditions.
Dots present by-participant averages (White = singleton vi-
sual prompt; Black = multiple visual prompt). Error-bars
show 95% Confidence Intervals. Dotted line indicates the in-
put ratio of the -ka marking for the multiples.

2 compared to Experiment 1, presumably due to the overall
unfamiliarity with the geometrical shapes. One subject could
not achieve the cut off rate of 65% and was removed from the
analysis. The mean accuracy in the word production phase
(3) was 80%.

Plural Marker Use in Production We excluded ten
(19.2%) of the participants who failed to produce 50% of the
sentences in the final sentence production phase. As in Ex-
periment 1, all the results we report below remain unchanged
with the complete set of data. We then further removed
151 (15.5%) sentences that included wrong nouns. The final
dataset included 42 subjects and 823 sentences.

Proportions of participants’ plural marker use in Experi-
ment 2 are illustrated in Fig. 4. We constructed a combined
model with the noun classes (Individuals vs. Collectives), vi-
sual prompts (singleton vs. multiples), and experiments as
fixed effects and participants and items as random effects. As
in Experiment 1, we found a significant main effect of vi-
sual prompts (= more ka use for multiples) (p < .001) and
an interaction between the noun class and the visual prompts
(p < .002), indicating an inverse conditioning of -ka produc-
tion on plural inferrability. Importantly, there was no signif-
icant effect of the experiments. This suggests that the plu-
ral predictability is not necessarily tied to participants’ prior
knowledge of the semantic classes (animals vs. insects) and
is learnable with respect to new classes of referents.

General Discussion
Our results suggest that native speakers of American En-
glish prefer to produce an NP without overt marking of plu-
rality when the meaning is more inferrable given the noun
classes (e.g., animals vs. insects). The effect was present even
with the nonce noun classes, when their within-experiment

Figure 4: Proportions of plural marker use by conditions.
Dots present by-participant averages (White = singleton vi-
sual prompt; Black = multiple visual prompt). Error-bars
show 95% Confidence Intervals. Dotted line indicates the in-
put ratio of the -ka marking for the multiples.

statistics, as well as visual features of referents (size, spacial
arrangements, and movement patterns), support differential
plural predictability. We thus argue that learners have implicit
knowledge of the relative inferrability of plural meaning (e.g.,
How often do you describe animals/insects as singletons vs.
multiples?), and this knowledge supports the learning of mor-
phological systems of a novel language. Critically, English
does not have the optional plural marking (OPM) system.
Still, when native speakers of English are exposed to an OPM
language with no bias to mark plurality for low-inferrability
items, they end up producing more plural marking for less
inferrable items.

The current results constitute strong support for the view
that language production is optimized to maximize the ef-
ficiency of information transmission (Levy & Jaeger, 2007,
Jaeger, 2013). The asymmetrical uses (and non-uses) of -
ka cannot be accounted for in terms of availability of an up-
coming linguistic element or other sources of speaker-internal
production or planning difficulties (Ferreira & Dell, 2000;
MacDonald, 2013), since all the sentences were produced
with the same verb and no participant failed to learn the verb.

It is an open question how learners compute the plural
predictability. In the current experiment, we provided mul-
tiple cues to noun classes beyond the statistics of singleton
vs. multiples. For instance, Individuals were always depicted
larger in size than Collectives. In the sentence comprehension
and production phases, each instance of Individuals moved
independently while Collectives always showed a group mo-
tion. Future studies can manipulate these cues separately to
delve into effects of spacio-temporal distributions of referents
on conceptualization of noun classes and their plural inferra-
bility.

Lastly, this study has broad implications for understand-
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ing typologically attested morpho-syntactic variation. It has
long been hypothesized that conceptual markedness plays a
guiding role in grammaticalization of morpho-syntactic ele-
ments. The current experimental paradigm using an artificial
language allows us to dissociate the effects of input in terms
of the predictability of forms (e.g., How often do you hear a
particular noun with -ka?) and the predictability/inferability
of meaning (e.g., How likely is it that a given referent is de-
scribed as a singleton vs. multiples?), making it possible to
test a multitude of hypotheses put forward about effects of
meaning-based predictability. For instance, it has been ob-
served that functionally paired objects (e.g., glasses, chop-
sticks, a set of pillars) and body-parts (e.g., eyes, ears, hands)
are often conceptualized as plural by default, and hence likely
encoded without any additional plural marking morphology
(Haspelmath & Karjus, 2017). We can directly test this hy-
pothesis in the current paradigm using objects that differ in
their likelihood of appearing in pairs.

In summary, the inferrability of plurality information
guides learners to restructure the input they receive, as would
be expected if language users are biased towards commu-
nicatively efficient systems. Our results thus illuminate the
critical role of distributional information of meanings on lan-
guage learning, production, and typological variation across
languages.
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Abstract 

Many common tasks require or are made more efficient by 
coordinating with others. In this paper we investigate the 
coordination dynamics of a joint action pick-and-place task in 
order to identify the behavioral dynamics that underlie the 
emergence of human coordination. More precisely, we 
introduce a task dynamics approach for modeling multi-agent 
interaction in a continuous pick-and-place task where two 
agents must decide to work together or alone to move an object 
from one location to another. Our aims in the current paper are 
to identify and model (1) the relevant affordance dynamics that 
underlie the selection of the different action modes required by 
the task and (2) the trajectory dynamics of each actor’s hand 
movements when moving to grasp, relocate, or pass the object. 
We demonstrate that the emergence of successful coordination 
can be characterized in terms of behavioral dynamics models 
which may have applications for artificial agent design.  

Keywords: Behavioral Dynamics, Affordances, Multi-agent 
Coordination, Dynamical Modeling, Joint action, Pick-and-
place, Dynamical Systems Theory, Decisions 

Introduction 

Often, everyday tasks can be accomplished more quickly and 

efficiently when individuals work together and coordinate 

their actions to accomplish task goals. However, increasing 

the number of individuals engaged in a task constructively 

increases the complexity of the task by expanding the degrees 

of freedom and interactions that define the task action space. 

Computational approaches to dealing with the increased 

complexity of joint action tasks largely focus on reducing 

complexity by identifying representational or neural 

structures that support successful joint action (Graf, Schütz-

Bosbach, & Prinz, 2009; Rizzolatti & Craighero, 2004; 

Sebanz & Knoblich, 2009). Equally important, however, is 

understanding what aspects of successful multiagent 

coordination naturally emerge from the physical and 

informational dynamics of a given task context (Richardson 

& Kallen, 2016; Richardson, Marsh, & Schmidt, 2010; 

Richardson et al., 2015). The aim of the current project was 

to identify these task dynamics for a simple joint action pick-

and-place task. Of particular interest, was the degree to which 

the complex patterns of interpersonal movement coordination 

and action (affordance) selection that emerge could be 

captured by extending a low dimensional behavioral 

dynamics (Warren, 2006) model of individual environmental 

route navigation (Fajen & Warren 2003) and pick-and-place 

behavior (Lamb et al., under review, Washburn, et al. 2015). 

Because the pick-and-place behaviors exhibited by the 

proposed low dimensional model emerge from the physical 

and informational dynamics of a given task context, the 

proposed model may be developed as a simple artificial agent 

system that can interact with human co-actors. An artificial 

agent system based on the model would be able to interact 

with human co-actors in the task without access to a co-

actor’s cognitive states, i.e. without a theory of mind.  

Methods 

Participants 

20 University of Cincinnati students (aged 18 to 28 years) 

were recruited to participate in the experiment. Participants 

received credit as a part of a class requirement for an 

undergraduate Psychology course. All participants provided 

written consent prior to completing the study, with the 

procedures and methodology employed reviewed and 

approved by the University of Cincinnati Institutional 

Review Board.   

Materials and Apparatus 

An illustration of the experimental task setup is provided in 

Figure 1. Participants stood at a 1.65m x 0.89m x 0.995m 

table in a laboratory room and completed a joint action pick-

and-place task in a virtual environment. The virtual 

environment consisted of a room similar to the laboratory 

room and a table that was isomorphic in size and location to 

the table in the laboratory room. The virtual environment was 

displayed to each participant using Oculus Rift DK2 virtual 

reality headset (Oculus VR, Irvine, California). The physical 

table acted as a solid surface limiting the participants’ 

movements within the virtual environment and creating a 

surface on which the participants could move a hand-held 

wireless Polhemus Latus motion-sensor (Polhemus Ltd, 

Vermont, USA) that tracked their right hand movements 

within the virtual environment at 96 Hz. The participants’ 
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head movements were also tracked using Oculus Rift DK2 

head tracking system. 

The virtual environment, task objects, and task controllers 

were designed using the Unity 3D game engine (version 

5.2.0; Unity Technologies, San Francisco, California) and 

Sketchup 2015 (Tremble Navigation Technologies, 

Sunnyvale, California). The maximum display latency 

between the participants’ real-world movements and their 

movements in the virtual environment was 33ms. The 

experimental task states were continuously recorded at 70 Hz.  

As indicated in Figure 1, Participant locations were 

identified in terms of the “A” side or the “B” side of the table, 

where the body of the participant on the A side of the table 

(participant A) is nearer to the center of the appearance range 

than the body of the participant on the B side (participant B). 

Participant A was positioned on the A side of the table, 

standing half way between the middle of the table and the 

pickup location. Participant B was positioned such that their 

right shoulder was directly across the table from the right 

shoulder of participant A (see Figure 1).  

Within the virtual environment, the participants were 

represented as identical virtual avatars modeled after a crash 

 

 
Figure 1:  Illustration of experimental setup. At the 

beginning of each trial a virtual disc would appear on the 

left side of the table within the appearance range. Disc color 

indicated target location for that trial. The targets squares 

(M = magenta, Y= yellow, G = green, B = Blue, R = red) 

were always visible on the right side of the table.  

test dummy with a height of 1.8m. Both the participants’ right 

hands were represented by a semi-transparent blue sphere at 

the end of the dummy’s right wrist in order to simplify 

interaction with the task environment. An inverse kinematics 

controller (model and controller supplied by Root Motion, 

Tartu, Estonia) driven by the Polhemus motion sensor 

movements and the head movements of the participants 

controlled the right arm and body movements of the 

participants’ virtual avatar, respectively. The resulting arm 

and body movements were not identical to the real world arm 

and body movements of the participants, but were close 

enough to render any differences between the real and virtual 

body postures of the participants unnoticeable or not 

functionally relevant.   

Experimental Task 

The experimental task required participants to work together 

to move virtual disc objects (henceforth disc) that appeared 

on one end of a virtual tabletop to one of five evenly spaced 

target locations on the other end of the table (see Figure 1). 

The target location for a given trial was indicated by the color 

of the disc. A trial involved successfully moving a disc to the 

correct target location. Target colors and locations did not 

change during the task. However, discs appeared in random 

locations along the y table axis within the middle third of the 

table (appearance range). Participants completed 2 blocks of 

150 trials, 30 trials for each target color. Target colors were 

randomly presented. 

The participants were instructed to pick up the disc when it 

appeared and attempt to move it to the target location. Either 

participant could pick up the disc, but they were instructed 

not talk or gesture to one another during the task. A pickup 

occurred when a participant’s sphere came in contact with the 

disc. When picked up, the disc moved with the participant’s 

sphere until it reached the target or the participant passed the 

disc. The participants were informed that if the target was 

either too far away or uncomfortable to reach, they could pass 

it to the other participant. A pass involved picking up the disc 

and then releasing it somewhere on the table by lifting their 

hand from the table. To complete a pass, the other participant 

would pick up the disc and move it to the target. A trial was 

completed when the disc reached the correct target.  

Procedure 

Participants were told that the experiment was investigating 

the dynamics of joint action pick-and-place behavior and that 

they would be completing a simple pick-and-place task with 

one another. The participants were then embedded within the 

virtual environment using the HMD and viewing height and 

sensor calibration was performed. Task instructions were 

then provided to the participants and after participants 

indicated that they understood the task procedure and goal, 

they were given an opportunity to complete 2 practice blocks. 

The first practice block consisted of 12 trials where the disc 

always appeared in the center of the appearance region and 

indicated the middle (green) target. Each participant took 6 

turns picking up the disc and either passed it or took it to the 

target. The second practice block involved 20 trials, 4 trials 

for each target location. In this practice block, the pickup 

location was randomly assigned within the appearance range 

on each trial.    
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As mentioned above, experimental trials were broken up 

into 2 blocks of 150 trials. After the first experimental block 

participants switched sides of the table, i.e. the participant on 

side A moved to side B and the participant on side B moved 

to side A. Participants switched HMDs and moved to the 

other side of the lab room table to effect this switch. 

Experimental blocks lasted between 10 and 15 minutes. 

Results 

In order to model the emergence of successful joint action 

during the current pick-and-place task, the analysis was 

directed towards answering two general questions. First, 

what task variables determined the participants’ decision to 

pickup and/or or pass. In other words, what were the 

affordance (action opportunity; Gibson, 1979) based action 

selection dynamics that characterized pickup and pass 

behavior? Second, what were the trajectory dynamics of the 

participant’s hand movements when moving to grasp, 

relocate, or pass the disc within a two-dimensional task space. 

Below we consider each of these questions in turn.  

Decisions 

For the pick-and-place task investigated here there were two 

affordance based action selection decisions that we 

examined. First, participants had to decide whether or not to 

pick up the disc when it appeared. In order to understand the 

basis for this decision we applied the C4.5 decision tree 

algorithm (Quinlan, 1993) using a 10 fold cross validation to 

participant pick decisions (n = 2998) in order to create a 

decision tree with a minimum node size of 50 instances. This 

analysis revealed that the only attributes used to build the tree 

were the current location of each actor’s hand to the disc, with 

the resulting decision tree able to correctly predict 87% of the 

pick decisions. Attributes that were considered for each 

participant included: hand’s current distance to the disc, 

hand’s current distance to target, disc location, and target 

location. These attributes were not considered relevant to 

modeling the decision behavior if it was not included in the 

decision tree produced by the C4.5 method or if its exclusion 

resulted in a change in predictive success of < 3%.  

The C4.5 decision tree algorithm was also applied using a 

10 fold cross validation to a data set of 2998 passing decisions 

in order to create a decision tree with a minimum node size 

of 50 instances. When the only attribute used to build the tree 

was the distance of the resting location of one of actor’s hand 

to the disc the resulting decision tree was able to correctly 

predict 79% of the pickup decisions. Resting hand location 

for each side was defined as a position 0.15m from the edge 

of the table directly in front of the participant’s right shoulder. 

The same set of attributes considered for the pickup decision 

were considered for the pass decision, with the addition of the 

previous pass decision. None of these other attributes 

                                                           
1 For each side of the table, subtask trajectories examined include: 

rest-to-pickup, pickup-to-target, pickup-to-pass, rest-to-receive, 

receive-to-target, pass-to-rest, and target-to-pickup. 

significantly increased pass prediction beyond that predicted 

by actor resting location alone.  

 
Figure 2:  Heat-maps of example participant (top) and 

model simulation (bottom) trajectories during the 

experimental task.  

Movements 

An example of the complete set of participant pair trajectories 

are illustrated in figure 2 (top) as a heat map. This heat map 

plot was created by dividing the table into 125x108 grid and 

for each trial, the number of times a participant’s location was 

recorded in a given grid cell was tallied to create a histogram 

of trajectory locations in table coordinates. A greyscale value 

was assigned to each cell from a scale of 64 shades. All 

participants exhibited a qualitatively similar sideways 

“spaghetti monster” heat-map, with concentrations of 

trajectories (brighter areas), corresponding to discs (far left 

side of heat-map plot), pass/rest locations (top and bottom left 

of center on the heat-map plot), and target locations (5 

distinct points across the right of the heat map plot). Because 

of the number of subtask trajectories, trajectory heat maps 

provide a relatively straightforward tool for comparing 

qualitative similarities between both human participants and 

between human data and simulation data.1  

Participant trajectories tended to curve slightly away from 

straight-line trajectories. This may be due to the fact that after 

completing a subtask goal participants employed a simple 

strategy of heading in the general direction of the next 

subtask goal instead of taking an initial heading defined by 

the straight-line angle from their current location to the goal 

location. 

Participant subtask movements exhibited a bell shaped 

velocity profile with the peak velocity occurring around half 
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way through the trajectory. Across all subtask trajectories, the 

average peak velocity was 1.231m/s (Mdn = 1.252m/s, Q1 = 

0.924m/s, Q3 = 1.373m/s) and the peak velocity occurred on 

average around 57% (SD = 15%) of any given subtask 

trajectory. For the 14 subtask trajectories examined, average 

peak velocity for each subtask trajectory was significantly 

correlated, r(14) = 0.89, p<0.001, with the average straight-

line distance of each subtask trajectory. Shorter trajectories 

had lower average peak velocities than longer trajectories. 

In order to identify where participant’s passed the disc on 

pass trials, cluster analysis was conducted, using the K-means 

cluster analysis algorithm, which finds cluster centers that 

minimize the sum of squared error (SSE) for a given number 

of clusters, k. We analyzed the release/pass locations to 

determine whether these locations typically clustered around 

1, 2, or 3 cluster centroids. The optimal number of clusters 

was defined as the value of k such that the difference of the 

SSE for a reference distribution, determined by Monte Carlo 

sampling of a reference distribution, was greatest compared 

to the other values of k. For each pair, separate evaluations 

were run for each side of the table. For side A, when a 

participant on side A passed at least once during the 

experiment (n = 8 pairs), the optimal number of clusters was 

1 for all passes on this side of the table. Likewise, when a 

participant on side B passed at least once during the 

experiment (n = 9 pairs), the optimal number of clusters was 

1 for most pairs (n = 7). When a participant on side A passed 

during the experiment (n = 8), the passes clustered around an 

average (x, y) table location of (0.24m, 0.62m). When a 

participant on B side of the table passed (n = 9), the passes 

clustered around an average (x, y) table location of (0.33m, 

0.18m). 

Model 

The current study had two overall aims. The first aim was to 

identify the behavioral dynamics that underlie a continuous 

joint action pick-and-place task, in which two participants 

had to move objects from one tabletop location to another 

either alone or by passing the object to another co-actor. Our 

second aim was to develop a behavioral dynamics model that 

can characterize the joint action behaviors and choices 

(pickup or not; pass or not) of the participants engaged in 

during the joint action pick-and-place task. With respect to 

this aim we developed a model of both the participant’s 

movement in the task space and their decisions to both pick 

up the object when it appears on a given trial and to pass the 

object.  

Movement Dynamics 

In order to model the dynamics of each participant’s, 

henceforth agent, hand movements throughout the task, a task 

specific parameterization of the Fajen and Warran model of 

human locomotory navigation was employed (Fajen & 

Warren, 2003, 2004, 2007; Warren & Fajen, 2008). This 

model has also been extended to model single actor pick and 

place behavior (Lamb et al., under review). In the current 

context, the model characterizes a heading direction or 

angle, 𝜑𝑖, of an agent’s hand or end-effector (where each 

agent is indexed by 𝑖) during each task trial was defined by  

 

�̈�𝑖 = −𝑏𝑔𝑖
�̇�𝑖 − 𝑘𝑔𝑖

(𝜑𝑖 − 𝜃𝑔𝑖
)(𝑒−𝑐1𝑑𝑔𝑖 + 𝑐2), (1) 

 

where �̇�𝑖, and �̈�𝑖, correspond to the velocity and acceleration 

of the agent’s end-effector heading angle, respectively, and b 

and k are damping and spring/stiffness terms, such that 

−𝑏𝑔𝑖
�̇�𝐴𝑖

 acts as a friction force on turning rate, and the 

function −𝑘𝑔𝑖
(𝜑𝑖 − 𝜃𝑔𝑖

) operates to minimize the difference 

between the current heading angle, 𝜑𝑖, and the angle 𝜃𝑔𝑖
, of 

the corresponding subtask goal/target location (i.e., the 

pickup location for pickup movements, the release/pass 

location for passing movements, and the target/drop-off 

location for target movements). The distance of the agent i’s 

end effector to the current goal location is defined by 𝑑𝑔𝑖
. The 

presence of the factor (𝑒−𝑐1𝑑𝑔𝑖 + 𝑐2) in the second addend of 

the right-hand side introduces an exponentially decaying 

function characterized by a constant offset parameter c2 and 

an exponential decay rate, which is a function of the constant 

parameter c1 and the Euclidean distance, dg, between an 

agent’s current hand location and the current goal location. 

The parameter c2 ensures that the rate of change in heading 

direction never goes to zero (Fajen & Warren, 2003). Note 

that the parameters 𝜃𝑔𝑖
 and 𝑑𝑔𝑖

 change continuously as the 

position of the agent’s hand/end-effector moves through the 

task space. 

Finally, in order for to capture the non-constant velocity 

profile observed in participants, 𝑣𝑖 is introduced to 

characterize the movement velocity of the agent’s end-

effector (hand).  𝑣𝑖 is defined by means of the additional 2nd 

order differential equation 

 

�̈�𝑖 = −𝑏𝑣𝑖
�̇�𝑖 − 𝑘𝑣𝑖

(𝑣𝑖 − 𝐶𝑣𝑖
(1 − 𝑒−𝑑𝑔𝑖 )), (2) 

 

where 𝑏𝑣𝑖
 and 𝑘𝑣𝑖

 act as damping and stiffness terms on the 

rate of change of 𝑣𝑖, which increases and decreases as a 

function of the target (goal) distance, 𝑑𝑔𝑖
. When the agent’s 

end-effector or hand is far away from the target location (1 −

𝑒−𝑑𝑔𝑖 )  ≈ 1 and 𝑣𝐴 increases. As the distance to the goal 

location decreases, however, (1 − 𝑒−𝑑𝑔𝑖 ) approaches zero 

and 𝑣𝑖 decreases accordingly. 𝐶𝑣𝑖
 is a constant parameter that 

specifies the maximum velocity in m/s, such that the same 

equation can be used for a wide range of different movement 

distances, with differential peak velocities resulting for 

shorter and longer distances (see Lamb et al., under review 

for more details on this velocity function).  

Action Selection Dynamics 

In the experimental task there are two task defined choices. 

First, one of the agents must choose to pick up the task object 

while the other agent chooses to stay out of the way. Second, 

once an object is picked up, the agent with the object must 

decide to either take the object to the goal location or pass it 

to their co-actor. In both cases, the decision can be 
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characterized as a selection between action modes or 

affordances, i.e. pick up the object or wait and take the object 

to goal or pass. Moreover, previous research using a non-

random pick-and-place task paradigm suggests that recent 

action modes may affect the current action mode selection 

(Lamb et al., Under Review). As a result, in the current 

context the action mode selection dynamics may be captured 

by  

 

𝑥�̇� =  −𝛼𝑗𝑖
+ 𝑥𝑖 − 𝑥𝑖

3 (4) 

 

where 𝑥𝑖 represents the state variable for action section (i.e., 

affordance mode) of the previous action selection process and 

𝑥�̇� is the action selection state variable for the current trial. 𝛼𝑗𝑖
 

corresponds to the specific subtask action mode and agent-

normalized E/A ratio where the decision to pick up an object 

can be defined for Agent 1 by  

 

𝛼𝑠1
= (𝜎𝑠1

−
𝑑𝑔𝑠1

𝑅1
) 𝛿𝑠1

− (𝜎𝑠2
−

𝑑𝑔𝑠2

𝑅2
) 𝛿𝑠2

  
(5) 

 

and for Agent 2 by  

 

𝛼𝑠2
= (𝜎𝑠2

−
𝑑𝑔𝑠2

𝑅2
) 𝛿𝑠2

− (𝜎𝑠1
−

𝑑𝑔𝑠1

𝑅1
) 𝛿𝑠1

 
(6) 

 

where 𝑑𝑔𝑠𝑖
 is the distance from current location of the ith 

agent’s end effector to the disc’s location. Similarly, the 

decision to pass was defined by  

 

𝛼𝑝𝑖
= (𝜎𝑝𝑖

−
𝑑𝑔𝑝𝑖

𝑅𝑖
) 𝛿𝑝𝑖

 
(7) 

 

 𝑑𝑔𝑝𝑖
 is the distance of the agent’s resting end-effector (hand) 

location to the target location, and 𝑅𝑖 is a measure of the 

agent’s maximal preferred reach. In both equations equation, 

𝜎𝑗𝑖
 and 𝛿𝑗𝑖

 are constant scaling factors. In Eq. 5, 6, and 7, d is 

a subtask action mode parameter that identifies the state of 

the subtask action relevant environmental property.  

 

Model Simulation 

To determine whether systems defined by the movement 

trajectory dynamics (Eq. 1 and 2) and the action selection 

dynamics (Eq. 4, 5, 6, and 7) of the current model could 

complete the task independently complete the current pick-

and-place task, a MATLAB (2016a) simulation was 

conducted. A flow diagram illustrating the structure of the 

simulation is provided in Figure 3. The simulated 

environment consisted of a 1.5m x 0.89m rectangular space 

matching the experimental table’s dimensions. The 

simulation target and disc locations were initialized in the 

same manner as in the experimental task. 10 different 

simulation sequences were conducted, with each simulation 

sequence consisting of 400 trials. Each simulation sequence 

was initialized with the same pickup/target order used for a 

participant pair. The passing location centers corresponded to 

the observed passing location centers for each participant 

pair.  Cluster centers corresponding to each participant pair 

were used to initialize the simulation sequence based on that 

pair’s appearance/target order. Experimentally observed 

within pair variability in pass locations was likely due to the 

many complex interactions from which this passing behavior 

emerges (Holden, 2002; 2005; Stephen & Mirman, 2010). 

However, in our simulations this variability is produced by a 

sequence of random values generated from a lognormal 

distribution that were added to the passing location centers in 

order to produce a pass location distribution that was similar 

to the experimentally observed data.  

For each action selection the pickup and passing solutions 

to parameter equations, action selection dynamics, Eq. 4, 

were integrated for 1500 steps using the MATLAB ODE45 

function with the end state of the integration used to drive the 

pickup and pass decisions (and return to rest position). The 

output state of the action selection equation was stored as an 

input for integration of the action selection equation in the 

next trial (x = 0 for the first trial in a sequence). Heading 

angles were initialized in the cardinal direction of the next 

subtask goal, e.g. pick up to target trajectories initialized with 

a heading angle of 0° heading directly to the right side of the 

table. Random noise was added to the initial angle from a 

uniform distribution with min/max values of ± 17°. The 

movement dynamics, Eq. 1 and 2, were integrated for each 

subtask movement using the Euler integration (.01 time step), 

with integration terminated when the model location was 

within 4 cm of the target location. Random noise was added 

to the model heading direction, 𝜑𝑖, at each time step of the 

integration using a uniform distribution with min/max values 

of to ± 1.14°.  

 

 
 

Figure 3: Structure of simulation. Eq. 1 and 2 are 

implemented in the upper loop and Eq. 4 through 7 are 

implemented in the lower goal selection loop.  

An example simulation run is illustrated by the bottom 

heat-map in Figure 2. For all simulation runs, the simulation 

agents successfully completed the pick-and-place task within 

the task constraints.  All simulation agent trajectories 
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remained within the task space and subtask trajectories were 

within the same regions as those produced by human 

participants. Simulation agent trajectories exhibited less 

variability as can be seen in figure 2, though the importance 

of this variability for a human co-actor engaged in the task is 

something that will require further research. To the extent 

that it is relevant, this variability may be replicated in an 

artificial agent implementation of the model by the addition 

of noise terms, through coupling to the human agent, and 

possibly by noise introduced by the agent’s hardware 

instantiation (e.g. motor variability in a robotic system).  

The simulation agents were also able to spontaneously 

select between picking up the object or not and between 

passing the object or completing the task alone in a manner 

similar to the real participants. For pickup trajectories it is 

notable that pickup decisions may be made and changed as 

co-actors move or do not move throughout the task space. If 

both simulation co-actors are roughly the same distance the 

pickup location at the beginning of a trial, noise and velocity 

profile variations still results in just one agent picking up the 

object. If a simulation agent picked up an object, that agent 

always passed for the farthest target and often did for the 

second farthest, with the decision to pass for this target 

fluctuating due to previous pass decisions and noise in the 

system, matching experimentally observed participant 

behaviors. 

Conclusions 

The current model is useful for providing insight into how 

complex movement and decision dynamics might emerge 

from a system given relatively simple information structures. 

Notably, the model does not assume the need to understand 

or predict co-actor intentions or beliefs. This makes the 

model an ideal candidate for implementation in an artificial 

agent system that can interact in real-time with human co-

actors but does not have access to sophisticated sensory or 

computational systems for interpreting high level cognitive 

states. We are currently in the process of implementing a 

version of this model in virtual and robotic systems to test 

with human co-actors in order to validate the capabilities of 

behavioral dynamics models applied in this way. 
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Abstract

When a neural network is trained on multiple analogous tasks,
previous research has shown that it will often generate rep-
resentations that reflect the analogy. This may explain the
value of multi-task training, and also may underlie the power
of human analogical reasoning – awareness of analogies may
emerge naturally from gradient-based learning in neural net-
works. We explore this issue by generalizing linear analysis
techniques to explore two sets of analogous tasks, show that
analogical structure is commonly extracted, and address some
potential implications.

Keywords: neural networks; structure learning; representa-
tion; analogy; transfer;

Introduction
Analogical transfer is often considered an essential compo-
nent of “what makes us smart” (Gentner, 2003). However,
there is a tension in the literature – Detterman (1993) has de-
clared that “significnt transfer is probably rare and accounts
for very little human behavior.” Yet other authors have found
that in some cases analogical transfer between superficially
dissimilar systems can be so natural that it may not even re-
quire explicit awareness of the analogy (Day & Goldstone,
2011). How can we reconcile these viewpoints?

One feature that often separates the researchers with these
opposing viewpoints is the type of tasks and transfer they con-
sider. When Detterman (1993) says that the manipulations
necessary to show transfer have “the subtlety of [a] baseball
bat”, he cites work like that of Gick & Holyoak (1980) which
shows the difficulty of rapidly making an explicit mapping
between two superficially disparate domains to explicitly
solve a problem. By contrast, the Day & Goldstone (2011)
experiments show transfer when participants learn about a
system by interacting with it over a longer period of time,
and then transfer is measured implicitly on an analogous sys-
tem. We believe that this distinction between fast-explicit
analogical transfer and slower-potentially-implicit analogical
transfer may explain much of the disagreement in the litera-
ture. (See also Bransford & Schwartz (1999).)

Previous work has shown that neural networks can provide
a good model for “slow” analogical transfer in domains as
broad as artificial grammar learning (Dienes et al., 1999) and
verbal analogies Kollias & McClelland (2013). In particu-
lar, one line of work shows that neural networks are capable
of extracting analogous structure from knowledge domains

that are completely non-overlapping in their inputs and out-
puts (Hinton, 1986; Rogers & McClelland, 2008). In other
words, if you train a neural network to solve two identical
tasks, using separate sets of inputs and outputs but sharing
the hidden units, in some cases it will generate representa-
tions that reflect the analogy (i.e. analogous items will gener-
ate more similar patterns of activity in the hidden units than
non-analogous items) (Rogers & McClelland, 2008). This
can lead to the ability to correctly make analogical inferences
about items not explicitly taught (Hinton, 1986). This ex-
traction of shared structure sets neural networks apart from
simple forms of statistical pattern recognition (Rogers & Mc-
Clelland, 2008) such as linear data analysis techniques like
PCA.

Furthermore, recent work has shown that neural networks
can show benefits of training on multiple tasks (Dong et
al., 2015; Rusu et al., 2015, e.g.). Even a small amount of
learning on distinct but related tasks has been shown to im-
prove performance. For example, training a natural language
translation system on image captioning and autoencoding im-
proves translation performance (Luong et al., 2016). Learn-
ing on numerous language translation pairs can even give
generalization without further training to unseen language
pairs (Johnson et al., 2016). We suggest that these bene-
fits may be due to neural networks ability to extract shared
structure. Because human experience is filled with distinct
tasks that share common elements (language, various percep-
tual modalities, etc.) understanding the way that structure is
learned across tasks may be essential to understanding human
intelligence and building better artificial intelligence systems.

However, we have little understanding of how, why, or
when neural networks are able to extract structural analogies
from their training data. Here, we describe a preliminary
investigation into this question, and in the process describe
a new approach to analyzing neural network representations
that may yield more general insights. We begin with a very
simple instantiation of a task with analogous structure.

A Simple Task
In the original work of Hinton (1986), a neural network was
taught to answer queries about the structure of two perfectly
analogous family trees (one English and one Italian, see fig.
5), and was shown to generate representations that extract
the analogy, in the sense that analogous people from differ-
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ent families are represented similarly. Here, we pare this
task down to its barest essentials: two perfectly analogous
domains with separate inputs and ouputs. For our task, the
inputs can be thought of as the set of letters {R,L,ρ,λ}, and
the outputs as {P,D,S,π,δ,σ}. The task can be seen as map-
ping an input letter onto the letters that it can follow (e.g. “R”
can follow “D” as in “draw,” but cannot follow “S”), where
there is an analogy between the Latin and Greek letters. See
below for the input-output (I/O) mapping:

P D S π δ σ

R 1 1 0 0 0 0
L 1 0 1 0 0 0
ρ 0 0 0 1 1 0
λ 0 0 0 1 0 1

When and how does a neural network extract the analogous
structure across the domains in this simple task?

Methods: Linear Networks?
There have been recent developments in the theory of linear
neural networks which show that the process of learning is
entirely driven by the Singular Value Decomposition (SVD)
of the input-output correlation matrix (Saxe et al., 2013). The
SVD can be seen as breaking the structure of the task into
individual “modes” – linear structures in the dataset, some-
what like components in PCA. Specifically, a mode consists
of an input pattern (which can be interpreted in this case as the
input letters the mode responds to), a singular value (which
roughly corresponds to the amount of variance explained by
this mode), and an output mode (the output letters produced
by the given pattern on the inputs). For example, see Fig. 1
for the SVD of the I/O mapping for the letter task above.

This decomposition tells us more about the task structure
the network is using. There are three modes in the SVD. The
first (left output mode/top input mode) represents the differ-
ence between the Latin and Greek letters, so it is positive for
the Greek inputs and negative for the Latin outputs, and is
positive for the Greek outputs and negative for the Latin out-
puts. The next two components represent the distinctions be-
tween the letters R and L, and the letters ρ and λ, respectively.
Saxe et al. (2013) showed these results have implications for
the learning of non-linear networks as well, so linear neural
networks can be a more tractable place to analyzee learning
dynamics. In addition, using the I/O SVD allows the dis-
covery of representational components which are distributed
across units, so it is more general than simply examining what
aspects of the task individual hidden units represent, or ex-
amining the weight matrices directly. Thus one might hope
to answer our questions in a linear framework.

However, linear networks cannot represent analogous
structure from non-overlapping inputs and outputs at conver-
gence. With non-overlapping inputs and outputs, the I/O cor-
relation matrix is block diagonal, and the SVD modes will
thus occur within blocks (this is why in Fig. 1 the modes
showing separation between the letters in each domain have

no input or output weights to the other domain).1 Thus, since
the final representational components that a linear network
learns are precisely the components of the SVD (Saxe et al.,
2013), there will be no sharing of structure across domains.

Furthermore, the optimal rank k approximation to a matrix
is to take the top k components from the SVD (Mirsky, 1960).
If a linear network’s hidden layers are restricted to rank lower
than that of the I/O correlation matrix, detail within the do-
mains will be lost. Thus a linear neural network cannot solve
the task perfectly if any of its hidden layers has a number
of units smaller than the rank of the I/O correlation matrix.
By contrast, a non-linear network can exploit the analogy be-
tween the domains to find more parsimonious solutions. Is
there a way to leverage linear insights in the non-linear case?

Methods: A Linearized Approach
As we shall see, while a linear network cannot extract the
analogous structure from the task, inserting a single non-
linearity after the output layer can allow it to do so. In the
case that the non-linearity is a sigmoid, this essentially re-
duces the problem to logistic regression; here we will use rec-
tified linear units in our analysis because their structure makes
the output patterns more intuitively interpretable. Once this
almost-linear network has solved the problem, consider its
outputs immediately prior to the non-linearity. These are pro-
duced by the linear part of the network, and together with the
non-linearity suffice to produce the desired outputs. We can
use these to turn the problem into a linearly analyzable one
– simply treat these pre-nonlinearity outputs as outputs of a
linear network. Then the problem becomes susceptible to the
types of linear analyses discussed above.

Thus we trained a neural network with a single hidden layer
(4 units) and a single non-linearity (a rectifier at the output
layer) to solve this task. See fig. 3 for a diagram of the
network. No biases were used, weights were initialized uni-
formly between 0 and 0.1, all training was done by Stochastic
Gradient Descent (i.e. in each epoch the data are presented
one at a time in a random order, and the weights are updated
after each data point) with η = 0.01 for 500 epochs.

Results
The solution that the nonlinear network discovers the major-
ity of the time (about 75%) is to output the same pattern on
both sets of output units, but offset the “incorrect” domain
sufficiently negative so that it is hidden by the rectified, thus
the task that the linear portion of the network is effectively
performing at convergence is:

P D S π δ σ

R 1 1 0 0 0 −1
L 1 0 1 0 −1 0
ρ 0 0 −1 1 1 0
λ 0 −1 0 1 0 1

1Where there are duplicated singular values, the SVD is not
unique, so more precisely we mean there exists a basis which makes
the SVD is block diagonal.
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(Note that the network can actually map the first element
of one domain onto either element of the other. We discuss
the solution shown here one for clarity, the other just shuffles
some rows and columns.)

The SVD of this linearized mapping shows a rank 2 solu-
tion (see fig. 2). The first component is similar to the first
component of the regular SVD, in that it reflects the separa-
tion of the domains, but the second component collapses the
other two components of the linear SVD. In other words, the
analogy has been learned – the network is using the parallels
between the two tasks to reach a more parsimonious solution.
It is able to incorporate the analogy into its computations by
allowing both the sets of outputs to vary, and simply suppress-
ing the outputs from the “wrong” domain for its current task.

Because this solution is rank 2, a non-linear network with
two hidden units should be able to solve the task, whereas a
linear network will require three. We have verified these re-
sults empirically for this task. Thus the ability of a non-linear
neural network to extract common structure from multiple
tasks can allow it to find more parsimonious (i.e. lower-rank)
solutions. We would like to highlight this point: the represen-
tation of the analogy in the SVD is not purely epiphenomenal
– it makes a more parsimonious solution possible.

Evolution of the I/O Mappings

When a non-linear network has only two hidden units, it must
extract the analogy to be able to solve the task, but with more
hidden units there are a variety of solutions that could poten-
tially emerge (such as just learning the mapping of each input
to its output pattern independently). However, our network
extracted shared structure on about 75% of the runs we con-
ducted (as measured by more than 20% score on the cross-
projection metric described below). What drives this fairly
consistent extraction of analogy? In this section we consider
the evolution of the outputs over the course of learning.

The output structure of the network goes through a fairly
consistent progression, which we will describe qualitatively
at various key stages (the exact values depend on the ini-
tialization, so the matrices here are approximations to within
about ±0.1). The outputs begin as small positive numbers,
approximately 0 (because the weights are initialized uni-
formly between 0 and 0.1). Next, the network captures the
base rate activations of each output unit, around epoch 75.
(Note that this is already accounted for in the SVD, because
the output variables are centered before computing the SVD).

base rates =

0.5 0.25 0.25 0.5 0.25 0.25
...

...
...

...
...

...
0.5 0.25 0.25 0.5 0.25 0.25


Then the network captures the existence of the two domains

but not the structure within them (around epoch 140). This
corresponds to the first component of either SVD. Up to this
point, a linear network follows a similar learning trajectory.

base rates by domain =


1 0.5 0.5 0 0 0
1 0.5 0.5 0 0 0
0 0 0 1 0.5 0.5
0 0 0 1 0.5 0.5


Finally it learns the internal structure of the domains (they

are not learned at exactly the same time, which is learned first
depends on the initilization). Around epoch 400 it has solved
the task completely, with some sort of offset structure in the
non-linear case, or without in the linear case:

solution with offsets =


1 1 0 0 0 −1
1 0 1 0 −1 0
0 0 −1 1 1 0
0 −1 0 1 0 1


For most of the learning process, the networks are extract-

ing similar structure, so one might expect that even the linear
network would show some representation of the analogy at in-
termediate stages of learning. Indeed, once the base rates by
domain are learned, both the linear and non-linear networks
begin to extract the analogy between the domains. See fig. 4
for a plot of how much each domain’s input mode projects to
the other domain’s output mode, i.e. “cross-talk” between
the domains. This is a simple measure of the extent to which
the network is extracting shared structure. However, while
both networks develop some representation of the analogy
initially, this activity extinguishes rapidly in the linear net-
work, while it persists in the non-linear network.

Why do both networks show some representation of the
analogy initially? We will analyze this in the linear case. At
the stage when the base rates by domain have been learned,
adding a little bit of shared structure actually reduces mean-
squared error (MSE). If the network moves from the base
rates by domain pattern to the pattern shown below, the small
increase in MSE from the ±0.1 values is more than offset by
the decrease from splitting the 0.5 values into 0.4 and 0.6.

1 0.6 0.4 0 0.1 −0.1
1 0.4 0.6 0 −0.1 0.1
0 0.1 −0.1 1 0.6 0.4
0 −0.1 0.1 1 0.4 0.6


Indeed, suppose there is a hidden unit which responds dif-

ferentially within the domains (as they all will to some extent
because of the random initialization). The updates of the out-
put weights for this unit will point in the direction of analogy
extraction once the base rates by domain have been learned.
See below for the output error, hidden unit activity, and cor-
responding weight updates in the case that the hidden unit
responds positively to the first element of each domain, and
negatively to the other.2 (Note that the output weight updates
for a hidden unit are proportional to the product of the output
error and the hidden unit’s activation.)

2In the general case representations will be distributed across the
hidden units, and so there will not be a unit which responds to the
analogy and nothing else, but this is simply a rotation of the repre-
sentation space, and because of the linearity of derivatives the same
general pattern will emerge.
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(a) Input-output mapping
(transposed from text)

=

(b) Output modes Unl

×

(c) Singular values Snl

×

(d) Input modes Vnl

Figure 1: SVD of I/O correlation matrix (colors are scaled to show qualitative features, red = +, white = 0, blue = -)

(a) Input-output mapping

=

(b) Output modes Ulz

×

(c) Singular values Slz

×

(d) Input modes Vlz

Figure 2: SVD of linearized I/O correlation matrix (colors are scaled to show qualitative features, red = +, white = 0, blue = -).
Note how Fig. 2a becomes Fig. 1a if the negative values are hidden by a nonlinearity.

Figure 3: Simple task network, showing a sample propagation
of an input through the network with the single non-linearity
at the output. (Circles represent inputs or fully connected
units, squares represent non-linearities.)

Figure 4: I/O SVD component cross-projection (dot product
between output mode of an SVD component and the response
of the network to the other domain’s input mode)

Figure 5: Family trees from Hinton (1986), (reproduced with
permission).

Figure 6: Family tree task network (Circles represent inputs
or fully connected units, squares represent non-linearities. El-
lipses denote units omitted from the diagram – the hidden
layer and all input and output groups had 12 units apiece.)
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output error unit unit output weight updates
0 + − 0 0 0 + 0 + − 0 0 0
0 − + 0 0 0 − 0 + − 0 0 0
0 0 0 0 + − + 0 0 0 0 + −
0 0 0 0 − + − 0 0 0 0 + −

net output weight update: 0 + − 0 + −

Summing these updates captures the analogy between the
domains. The network will exploit this analogy to reduce
error, even if it must eventually discard it in the linear case.

Reanalyzing Hinton’s Family Tree Example
Next, we briefly turn our attention to the example of Hinton
(1986). Hinton’s task involves learning two isomorphic fam-
ily trees, one English and one Italian (see fig. 5). This struc-
ture is taught implicitly by presenting a person (e.g. “Jen-
nifer”) and a relationship (e.g. “Father”), and training the
network to produce the correct target person (“Andrew” in
this case). There are 52 such relationships per family.

Methods
Hinton used the same inputs for type of relationship for both
families. To highlight the extraction of analogous structure
we separated these into distinct input banks (these could be
thought of as the English and Italian words for different rela-
tions, e.g. “uncle” vs. “zio” ). We also reduced his network
down from 3 hidden layers to a single hidden layer with 12
units. Unlike the simple problem above, this problem is not
linearly separable, so we included a non-linearity at the hid-
den layer as well as the output (see fig. 6). We trained this
network by SGD with η = 0.005 for 1000 epochs.

In a task which requires multiple non-linearities, we cannot
perform as simple an analysis as in the earlier task. However,
by definition each layer of the network has only a single non-
linearity, and so we can perform an analysis like the above on
each layer. In this way we can understand something about
the computations that layer is performing. However, the in-
terpretation will not be as simple as above.

This difficulty is compounded by the complexity of the
structure being learned in each family. In the simple problem
above it was possible to “eyeball” the structure extraction, but
here the structure is too rich. There are a variety of possible
ways the families can be mapped onto one another (e.g. flip-
ping the tree left to right and swapping all genders), and it’s
possible that the networks are extracting overlapping struc-
ture from several of these analogies. In this setting, how can
we examine whether the network is learning the analogy?

As a first test of this, we looked for representation of the
analogy in the input modes of the first layer SVD. To do
this, we computed the dot product of each mode’s weights
for one family with that mode’s weights for the other family,
and then tested how significant this similarity was by com-
paring it to the null distribution generated nonparametrically
by randomly permuting the columns of the input mode matrix
1000 times and computing the same dot product for each one.

We denoted a mode as showing significant extraction of the
analogy if it showed a stronger similarity between the weights
for the two families’ inputs than 95% of its permutations did.
We repeated this analysis across 100 network initilizations.

Results
We found a great deal of analogous structure was extracted.
The runs had a median of 4 modes showing significant analo-
gous structure extraction, and all the runs had at least one sig-
nificant mode (for comparison, if 5% of the modes showed
significant results by chance, we would still expect 54% of
the runs to yield no significant results). To account for the
symmetry of the tree under flipping, we repeated the same
analysis after permuting the second family’s input columns
appropriately. Since the network has no way to distinguish
the “regular” mapping from this “flipped” mapping during
learning, we would expect to see a similar frequency of sig-
nificant modes for each, and indeed the distributions are sim-
ilar. Furthermore, the runs had a median of 6 modes showing
significant extraction of either the regular or flipped mapping,
and in all of the runs it had extracted 3 or more components
that significantly represent one analogy or the other (if we as-
sume 5% false positives, we would expect results this extreme
in only 0.01% and 3% of the runs, respectively). See fig. 7.
The frequency of analogy extraction suggests this may be a
central feature of how neural networks solve tasks.

Although we have focused on broad analogies between the
families here, we would like to note that analyzing the SVDs
can give more detail. In some cases modes reflect an analogy
only in the “person” inputs, or only in the “relationship” in-
puts. Within a family, analyzing the SVD modes can outline
the structure the network is extracting, e.g. modes often ap-
pear which represent the gender of the target of a relationship
like “mother”. We have omitted these analyses due to length
constraints.

Disussion
We have outlined a new technique for analyzing neural net-
work representations and their learning dynamics: analyz-
ing the SVD of the “linearized” mapping at each layer (i.e.
the mapping from the inputs to the pre-nonlinearity activity).
This allows us to bring the power of linear analyses to bear on
the rich phenomena that occur only in non-linear networks.

Using this technique, we have explored how a simple neu-
ral network can extract the analogy between simple tasks with
non-overlapping inputs and outputs. We showed that, while
a linear network cannot represent analogies, a single non-
linearity at the output layer can allow the network to represent
the analogy, and that this structure emerges naturally (even in
a linear network) from gradient descent once the base rates
by domain have been learned. A linear network must discard
this analogy to reach its optimal solution, but a non-linear
network is able to retain it by simply offsetting the outputs
to a sufficiently negative value, and does so the majority of
the time in our results. Here we used rectifiers, but the same
general solution is achievable with other nonlinearities.
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Figure 7: How many of the input modes from the SVD
showed significant projection onto the regular or flipped
analogies (with null distribution for comparison)

We then broadened our approach to explore the family tree
task originally proposed in Hinton (1986). Because this task
is not linearly separable, we created a general network with
two nonlinear layers, and applied our analysis to each layer.
We found evidence of a great deal of extraction of two pos-
sible analogies between the families in the network (either
the intended isomorphism between the family trees, or one
in which one family tree was flipped left-to-right and gender-
reversed), and that networks seemed generally to be discov-
ering elements of both analogies. Indeed, representation of
the analogies seemed even more common than on the simpler
task. On the simple task 25% of the networks showed no evi-
dence of common structure extraction, but on the family tree
task every network extracted at least three input modes that
projected significantly onto one of the analogies.

These results suggest that sensitivity to analogy may be a
natural feature of gradient based learning in nonlinear neural
networks. This may underlie many of the “slow” analogical
transfer effects we highlighted in the introduction. Further-
more, this may be a part of why learning multiple tasks facil-
itates more rapid learning and better performance in machine
learning systems, and it may have important implications for
cognition. The power and generality of human cognition may
result from extracting common structure from the diverse but
deeply related tasks we engage in throughout our lives.

Future Directions

1. In our analysis we analyzed the input modes of the first
layer and the output modes of the second layer. In the fu-
ture it will be important to explore modes that map into and
out of the hidden layer, and what they imply about the rep-
resentations at the hidden layer. This would also allow us
to apply this analysis to deep networks.

2. Learning representations that reflect analogies may provide
amortized inference about potential analogical structure in
the world. Can this support explicit analogical reasoning?

Acknowledgments
This material is based upon work supported by the NSF GRF
under Grant No. DGE-114747.

References
Bransford, J. D., & Schwartz, D. L. (1999). Rethinking

Transfer : A Simple Proposal With Multiple Implications.
Review of Research in Education, 24(1), 61–100.

Day, S. B., & Goldstone, R. L. (2011). Analogical Transfer
From a Simulated Physical System. Journal of Experimen-
tal Psychology: Learning, Memory, and Cognition, 37(3),
551–567. doi: 10.1037/a0022333

Detterman, D. K. (1993). The Case for the Prosecution:
Transfer as an Epiphenomenon. In Transfer on trial: In-
telligence, cognition, and instruction (pp. 1–24).

Dienes, Z., Altmann, G. T. M., & Gao, S.-J. (1999). Map-
ping across Domains Without Feedback: A Neural Net-
work Model of Transfer of Implicit Knowledge. Cognitive
Science, 23(1), 53–82. doi: 10.1207/s15516709cog2301

Dong, D., Wu, H., He, W., Yu, D., & Wang, H. (2015). Multi-
Task Learning for Multiple Language Translation. Acl,
1723–1732.

Gentner, D. (2003). Why We’re So Smart. In Language in
mind: Advances in the study of language and thought. (pp.
195–235).

Gick, M. L., & Holyoak, K. J. (1980). Analogical Problem
Solving. Cognitive P, 12, 306–355.

Hinton, G. (1986). Learning distributed representations of
concepts. doi: 10.1109/69.917563

Johnson, M., Schuster, M., Le, Q. V., Krikun, M., Wu, Y.,
Chen, Z., . . . Dean, J. (2016). Google’s Multilingual
Neural Machine Translation System: Enabling Zero-Shot
Translation. arXiv, 1–16.

Kollias, P., & McClelland, J. L. (2013). Context, cortex, and
associations: A connectionist developmental approach to
verbal analogies. Frontiers in Psychology, 4(NOV), 1–14.

Luong, M.-T., Le, Q. V., Sutskever, I., Vinyals, O., & Kaiser,
L. (2016). Multi-task Sequence to Sequence Learning.
Iclr, 1–9.

Mirsky, L. (1960). Symmetric gauge functions and unitarily
invariant norms. The Quarterly Journal of Mathematics,
11(1), 50–59. doi: 10.1093/qmath/11.1.50

Rogers, T. T., & McClelland, J. L. (2008). A simple model
from a powerful framework that spans levels of analysis.
Behavioral and Brain Sciences, 31, 729–750.

Rusu, A. A., Gomez Colmenarejo, S., Gulcehre, C., Des-
jardins, G., Kirkpatrick, J., Pascanu, R., . . . Hadsell, R.
(2015). Policy Distillation. arXiv, 1–12. doi: 10.1038/na-
ture14236

Saxe, A. M., McClelland, J. L., & Ganguli, S. (2013). Ex-
act solutions to the nonlinear dynamics of learning in deep
linear neural networks. Advances in Neural Information
Processing Systems, 1–9.

2517



 

A Hierarchical Bayesian Model of Individual Differences  
in Memory for Emotional Expressions 

 
David Landy (dlandy@indiana.edu) 

Indiana University, Bloomington 
Department of Psychological and Brain Sciences, 1101 East 10th Street 

Bloomington, IN 47405 USA 
 

L. Elizabeth Crawford (lcrawfor@richmond.edu) 
Jonathan Corbin (jcorbin@richmond.edu) 

University of Richmond 
Department of Psychology,  28 Westhampton Way 

Richmond, VA, 23173 
 

 

Keywords: category adjustment models; emotion 
memory; emotion perception; face perception; individual 
differences; Bayesian modeling 

Abstract 
When participants view and then reproduce simple objects that 

vary along a continuous dimension such as length or shade, or 
when they view images of faces that vary in emotional expression, 
their estimates tend to be biased toward the average value of the 
presented objects, a phenomenon that has been modeled as the 
result of a Bayesian combination of prior category knowledge with 
an imprecise memory trace (Corbin, Crawford & Vavra, 2017; 
Huttenlocher, Hedges & Vevea, 2000). Whereas previous work 
described a general cognitive strategy based on data aggregated 
across participants, here we examined individual differences in 
strategy. Thirty-six participants viewed and reproduced 496 
morphed face stimuli that ranged from angry to happy. We found 
substantial variation in the bias patterns participants produced. 
Individuals’ estimates were well fit by a model that posited 
attraction toward three categories, one at the happy end of the 
range, one at the angry end, and one that captured the entire range 
of presented stimuli, and by allowing the weight given to each 
category to vary by participant. 

Introduction 
Memories are never pure. Memory of an object is 

determined not only by that individual object, but also by 
the set, or category, to which it belongs. Specifically, items 
tend to be remembered as being more like the typical 
(average) item in a set than they actually were. For example, 
Huttenlocher, Hedges and Vevea (2000) had participants 
view and immediately reproduce individual items that 
varied along a continuous dimension such as length, width, 
or shade. They manipulated the presented distribution of 
lengths, widths, and shades and found that estimates were 
biased toward the central value of the distribution shown. 
They proposed the bias is a byproduct of a Bayesian 
combination of a noisy, unbiased memory trace of the 
stimulus with a prior distribution that reflects the presented 
stimuli. Related Bayesian accounts have been developed to 

account for bias in time perception (Jazayeri & Shadlen, 
2010), hue judgments (Olkkonen, McCarthy, & Allred, 
2014), and estimates of the sizes of familiar fruits and 
vegetables (Hemmer & Steyvers, 2009). Here we extend 
this earlier work in two important ways. First, we apply this 
explanation to rich, socially relevant stimuli: faces that vary 
in emotional expression. Second, we model individual 
differences in how people rely on category knowledge when 
remembering facial expressions. 

It is an open question whether memory for facial 
expressions can be characterized by the same principles that 
have been used to explain memory for length of a line. 
Facial expressions are socially meaningful and visually 
complex stimuli with which people have extensive prior 
experience, and unlike many other objects, faces are 
processed holistically (e.g., Maurer, Le Grand, & Mondloch, 
2002). Compared to simple geometric objects, it is more 
difficult to assess visual memory of real faces. One 
approach is to use morphing software to create gradations of 
faces that vary along a dimension of interest. By morphing 
pictures of the same actor making angry, neutral, and happy 
faces, we can create a continuum of emotional expression to 
be used in memory tasks like the immediate reproduction 
procedure described above. These morphed continua allow 
researchers to assess the degree to which a particular face is 
remembered as having an expression that is more or less 
happy or angry than it actually was.  

Few studies have used face morphs to examine bias in 
memory for individual facial expressions (but see 
Haberman, Brady & Alvarez, 2015; Haberman & Whitney, 
2009 for related work). In a study designed to examine the 
central tendency bias in face memory, Corbin, Crawford and 
Vavra (2017) ran several experiments in which participants 
viewed faces one at a time and, after each one, estimated its 
expression by adjusting a response morph. Estimates were 
consistently biased toward the central value of the stimulus 
distribution, whether it ranged from very sad to neutral, very 
happy to neutral, or moderately happy to moderately sad. 
Furthermore, the degree of this central tendency bias
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Figure 1: Example stimuli. Shown are the original angry neutral, and happy faces used to generate the stimulus morphs as 

well as morphed images between angry and neutral and between neutral and happy.  
 

increased with longer retention intervals between stimulus 
and response. Bayesian models predict such an effect 
because, as the trace memory distribution becomes noisier 
(i.e., more variable), the Bayesian combination of trace 
memory and category knowledge will give more weight to 
the category knowledge (see also Huttenlocher et al., 2000; 
Crawford, Huttenlocher & Engebretson, 2000).  

The Corbin et al. (2017) work was designed to allow for 
group-level conclusions and not for modeling of data from 
individual participants. This is typical of cognitive 
psychology, which usually characterizes the cognitive 
processing of a presumably generic, modal human mind 
without examining the variation between individuals. 
However, as we have noted elsewhere (Crawford, Landy & 
Presson, 2014; Crawford, Landy & Salthouse, 2016), that 
can lead to conclusions about aggregate tendencies that do 
not reflect the behavior or cognitive processing of any single 
individual. In fact, little is known about how people differ in 
their use of stimulus distributions to inform estimates of 
individuals. Building on the Corbin et al. findings, here we 
use Bayesian hierarchical modeling to examine both 
aggregate bias patterns and bias patterns at the level of 
individual participant. This approach allows us to estimate 
how each individual combines different category structures 
to arrive at estimates.  

Emotional faces vary in physical dimensions such as 
mouth shape and brow orientation, as well as in affective 
significance, which can be processed automatically and 
unconsciously (e.g., Axelrod, Bar, & Rees, 2015; 
Vuilleumier, 2005). A continuum of emotional expression is 
necessarily bound up with physical feature variations and 
we do not attempt to tease these apart. Instead, we capitalize 
on previous work (Corbin et al., 2017; Haberman et al, 
2015, Haberman et al., 2019) showing that the continuum 
created by morphing emotional faces produces results that 
mirror those found in studies using simple dimensions such 
as size, color, or shade. This work suggests that, when 
shown a set of faces that vary on a morphed expression 
continuum, people are sensitive to the central tendency of 
the set along that dimension. 

Experiment 

Method 
Participants Thirty-six (11 male) students from the 

undergraduate participant pool at the University of 
Richmond received course credit for participating.  

Materials Images were from the NimStim face stimulus 
set1, a database of photographs of young adults depicting 
various emotional expressions. Sixteen models (8 male, 8 
female) were chosen and the closed-mouth angry, neutral, 
and happy expressions of each were used to create the 
stimuli. Because in some cases, changes in hair position led 
to distracting artifacts in the morphed sets, we edited the 
initial images to maintain consistent hair placement. Using 
FantaMorph software (Abrosoft, 2002), each model’s 
expressions were morphed from angriest to neutral to 
happiest, creating a set of 41 evenly distributed expressions 
that changed in 5% increments.  

Procedure Each trial started with a crosshair at the center 
of the screen for 830 ms followed by a centrally presented 
single image frame taken from the morphed sets of faces 
and shown for 500 ms. The faces presented for study ranged 
from an angry expression (face #5) to happy (#35) and did 
not include the five most extreme images from either end of 
the continuum. After a blank screen (66 ms), a response face 
of the same model was shown in the upper left hand corner 
of the screen. Participants were instructed to “use the right 
and left arrow keys to change the expression of the face to 
match the expression of the previous photograph.” Pressing 
the right arrow key made the expression cycle through the 
entire morph (images 0-40), cycling from happy to neutral 
to angry (or vice versa). Pressing the left arrow key cycled 
in the opposite direction. In a between subjects 

                                                             
1 Development of the MacBrain Face Stimulus Set was 

overseen by Nim Tottenham and supported by the John D. 
and Catherine T. MacArthur Foundation Research Network 
on Early Experience and Brain Development. Please contact 
Nim Tottenham at tott0006@tc.umn.edu for more 
information concerning the stimulus set. 
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manipulation, participants were randomly assigned so that 
the starting frame of the response morph was always the 
angriest face (#0) or always the happiest face (#40). 
Participants estimated each of the 31 facial expressions for 
each of the 16 models, for a total of 496 randomly ordered 
trials. 

Modeling 
We modeled this data using a hierarchical Bayesian 

approach, simultaneously modeling individuals and group 
averages (see Figure 2). We assumed that each person was 
affected by a weighted combination of three potential 
biases: an overall inward bias toward the central category 
prototype (N), and two attractive biases toward postulated 
extreme categories, representing the endpoints of happiness 
(H) and anger (A). We assumed equal variance for each 
category, and a logistic categorization boundary. Each 
category had a separate ‘weight’ (W), which allowed the 
model to treat responses as the result of any number of 
categories from 0-3; best-fitting models uniformly predicted 
three categories (see Figure 5). 

 
Explanations of bias are usually rooted in principles of 

Bayesian estimation: biasing responses toward a prior 
expectation reduces error (e.g., Feldman, Griffiths, & 
Morgan, 2009; Huttenlocher et al., 2000). In this initial 
analysis, we simply assumed that each category attracted 
responses toward its center. This structure captures the 
relationships most often studied in category-based 
adjustment experiments, but abstracts away from the 
relationship between variability and category use--
components of the model which have previously met with 
some predictive success (Crawford et al, 2016), but which 
were to the side of our primary concerns in this initial 
analysis 

Model predictions were unbounded, but actual responses 
were bounded between an extreme happy face (valued as 1), 
on one end of the scale, and an extreme angry face (-1). To 
handle this, we assumed that when participants retrieved a 
face beyond the edges of the scale, they would select the 
most extreme face available.  

 
 

Figure 2: Graphical model diagram of the Bayesian model. Rij is the response to stimulus j presented to subject i. The 
mean response is the sum of the stimulus value, sij, and three sources of bias, corresponding to the angry (A), neutral (N), 
and happy (H) prototypes. Each prototype has a weight (W) and a location (L). The category weights were potentially 
asymmetric, depending on the valence of the initial response slider (that is, whether the response face (f) was set to 
maximally angry (-1) or maximally happy (1). The model only shows the first layer of fits: all top-level distributions were 
governed by population-level hyper parameters (see Table 1), which employed weak priors. In all cases, we assumed 
unbounded parameters to be normally distributed, and positive unbounded parameters to be gamma. 
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Figure 3: Aggregate and Individual Model Fits: (Left panel) Mean bias in response along with predictions averaged 

across participants. Errors reflect standard errors. (Right panel) Model fits for each individual participant. Use of all three 
categories is substantial, but starting side of the response strongly impacted the relative strength of these categories. 

 
 
 
 

 
Figure 4: Individual model fits and data. Each dot is the bias in response to that stimulus, averaged across all times that 

participant viewed that expression. Each panel represents responses from one participant. Although different participants 
show quite different behaviors, the model treats each as a variation around a common theme of inward bias toward three 
weighted prototypes. 
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Results 
Aggregated and individual response patterns are plotted 

in Figures 3 and 4. As can be seen, there was a strong 
pattern, overall, of attraction toward the center of the 
distribution. However, this was tempered by strong 
outward trends among most individuals. These outward 
biases tended to be moderately strong, roughly 
comparable in size to the bias toward the center, and in 
some cases dominating it. Figure 3 shows the aggregated 
model fits across participants; Figure 4 the individual fits. 

Parameters fit hierarchically are listed in Table 1 and 
include the weights attributed to each category and the 
locations of each category. 

The magnitude of the individual differences in weights 
can be characterized by the posterior deviation parameters 
(σ) governing weights. The 95% Highest Density 
Intervals for these excluded 0 (see Table 1), indicating 
that individuals differed in the weight given to these 
parameters (gamma shape parameters of roughly < 1 
correspond to high density around 0), and that these 
differences were not well explained by sampling noise. 

 
Table 1: Priors and posteriors of population parameters. 
The µ values on the locations indicate mean locations of 
the categories, while the weight parameters have shape 
and rate values. 
Parameter Population Prior 95% HDI 
WA Γ(shape, rate) 

shape ~ Γ(1,0.005) 
rate ~ Γ(1,0.005) 

shape: [11,168] 
rate: [6,92] 
mean: [1.6,2.4] 

WN Γ(shape, rate) 
shape ~ Γ(1,0.005) 
rate ~ Γ(1,0.005) 

shape: [39,196] 
rate: [42,175] 
mean: [.85,1.2] 

WH Γ(shape, rate) 
shape ~ Γ(1,0.005) 
rate ~ Γ(1,0.005) 

shape: 120,235] 
rate: [57,124] 
mean: [1.6,2.6] 

LA N(µ,τ) 
µ ~ N(-1, 80) 
τ ~ Γ(1, 200) 

 
µ:[-1.3, -1.15] 
τ: [.2, 2640] 

LN N(µ,τ) 
µ ~ N(0, 80) 
τ ~ Γ(1, 200) 

 
µ:[-0.06, -0.002] 
τ: [68, 560] 

LH N(µ,τ) 
µ ~ N(1, 80) 
τ ~ Γ(1, 200) 

 
µ:[1.225,1.325] 
τ: [52, 2040] 

tau Γ(shape, rate) 
shape ~ Γ(3,1) 
rate ~ Γ(3,1) 

shape: [3600, 
10000] 
rate: [240, 520] 

β (side bias) N(µ,τ) 
µ ~ N(0, 80) 
τ ~ Γ(5, 0.1) 

µ:[0.01, 0.02] 
τ: [4,800, 28800] 
 

 

 
Figure 5: Simplex plot of the relative weights 

accorded to each category. A dot reflects a mean 
individual. Red indicates starting values on the happy 
side, blue on the angry side. Although in principle, the 
total weight could vary, in practice each individual 
showed a mean weight between 3.3 and 3.5, making 
simplex plots a useful visualization of the three values.  

 
One factor had a strong apparent impact on the weight 

given to the left and right categories: the starting location 
of the response. To quantify this effect, we modeled the 
left and right weights as symmetric, except for a mean 
shift determined by an individual splitting parameter. This 
splitting parameter was fit to individuals; the posterior fits 
are shown in Figure 5. The results suggest a moderate 
impact of start location on category weight, such that 
people more heavily weighted the category represented in 
the starting value. 

Discussion 
Building on earlier work on inductive category effects 

on memory, we assume that estimates of an individual 
object combine an inexact memory trace of the object 
with knowledge of the set to which it belongs (e.g., 
Huttenlocher et al., 2000), producing estimates that are 
biased toward category prototypes. Such central tendency 
effects have been shown in studies using immediate 
reproduction tasks with simple stimuli that vary on one or 
two dimensions, such as size and shade (e.g., Crawford et 
al., 2001). Extending this work to more complex and 
socially relevant stimuli, Corbin et al. (2017) found that 
estimates of emotional expressions are also biased toward 
the center of the presented range of expressions, 
suggesting that participants used an inductively formed 
category to adjust estimate of faces.  

Here we further examined the kinds of category 
structures involved in face memory and the degree to 
which individuals differed in their use of these structures. 
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As in previous work, estimates generally were biased 
toward the presented distribution’s center (here a neutral 
expression). In addition, we found substantial variability 
between participants such that most participants were not 
well described by a model that treated estimates as 
resulting from adjustment toward a single, centrally 
located category. Good model fits at the participant level 
were achieved by positing that estimates could be 
adjusted toward two additional categories (centered on 
angry and happy values) and by allowing category 
weights to vary by participant. We note that this three-
category model reflects the structure that was used to 
generate the stimuli: pictures of faces that actors made 
when told to show happy, angry and neutral expressions.  

Some of the difference in how participants weighted the 
different categories could be accounted for by the starting 
value of the response face, which was randomly assigned 
between subjects. On average, greater weight was given 
to the category that aligned with the starting position 
(either 100% happy or 100% angry). The effect of the 
starting value was not linear across the stimulus range, as 
would be expected by inadequate adjustment away from 
an anchor. Instead it appears that the starting value 
encouraged participants to rely more heavily on the 
closest emotion category. Although studies of inductive 
category learning typically focus on the distribution of 
test objects, this result suggests that response objects may 
also contribute to the category structure used during 
estimation.  

It is common to analyze group-level data and describe 
the collective’s average behavior, but this approach can 
miss meaningful variation in cognitive strategies used by 
individuals. Modeling responses at the individual level 
reveals similarities across participants as well as some 
systematic differences. From the current study, it is not 
known why people adopt the strategies that they do. The 
model’s success in capturing the different data patterns 
produced by individuals makes it a valuable framework 
for future studies of how differences in cognitive, social, 
and affective processing may influence the reliance on 
categories when remembering emotional faces. The 
variation in bias that we observed suggests that models 
pitched at the level of group averages are likely to mislead 
us away from the best interpretations. 
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Abstract

Studies of unconscious plagiarism have reported that people
mistakenly include a partner’s responses when trying to recall
their own (recall-own task) and include own responses when
trying to recall their partner’s (recall-partner task). In a simula-
tion, we tested if participants’ memory performance at test, in-
cluding source errors, can be explained by participants simply
guessing items that come easily to mind. We show that guess-
ing alone cannot account for the pattern of data participants
show at test. Modifying the simulation by including memory
for self-generated items allows us to replicate the pattern of re-
sponding in the recall-own but not the recall-partner task, even
when we assume that participants in the recall-partner task
strategically withhold more fluent items from report. This sug-
gests that judgements of items’ memory strength alone cannot
explain performance in the unconscious plagiarism paradigm.
Keywords: source memory; free recall; unconscious plagia-
rism

Background
In the standard unconscious plagiarism (or cryptomnesia) ex-
periment (Brown & Murphy, 1989), participants in groups
take turns to generate solutions for a task. Following a delay
participants are asked to complete a recall and/or a generate-
new task. In the recall task, participants are asked to selec-
tively recall the solutions they generated themselves, avoid-
ing those generated by others in the group. In the generate-
new task, participants are asked to generate novel solutions to
the task, avoiding both previously self- and other-generated
ones. Plagiarism errors (or source errors in the recall-own
and generate-new task) are now solutions generated by other
members of the group that participants falsely claim to have
generated themselves, with plagiarism typically at above-
chance rates for both the recall-own and generate-new task
(Brown & Murphy, 1989). More recently, Hollins, Lange,
Berry, and Dennis (2016) showed that source errors in recall
tasks are not limited to the recall-own task, but also occur dur-
ing the recall of partner-generated items in the recall-partner
task. Rather than participants being biased to simply claim
ideas as their own, it appears that participants are simply con-
fused about the source of the ideas they retrieve from memory
(Hollins, Lange, Dennis, & Longmore, 2015; Perfect, Field,
& Jones, 2009).

While source errors are typically treated as an instance of
false memories, an alternative account is that they constitute
accidental errors that occur by chance (Brown & Murphy,

1989; Tenpenny, Keriazakos, Lew, & Phelan, 1998). In the
study phase, participants are asked to take turns generating
responses to cues, such as category exemplars. Without fur-
ther instruction to generate typical or atypical exemplars, it
is likely that participants will first generate responses that are
readily available to them, i.e. typical exemplars in the cat-
egory. This would be in line with participants employing a
fluency heuristic (Jacoby, Woloshyn, & Kelley, 1989).

Brown and Murphy (1989) tested this non-memorial guess-
ing account. They presented participants with the test phase
of an unconscious plagiarism experiment without a preced-
ing study phase. When treating this generation at test as re-
call from a study phase that participants did not participate in,
participants still committed “source errors” to a high degree.
This seems to suggest that reporting items based on fluency
or the frequency or typicality of items could be responsible
for source errors.

Critically, Brown and Murphy (1989) focused only on
source errors, and only on source errors in the recall-own task.
In the present paper, we adapted the unconscious plagiarism
and anti-plagiarism paradigm as used in Hollins et al. (2015,
2016) for actions. We constructed guessing simulations that
builds on Brown and Murphy but attempts to simulate per-
formance across all task measures in both retrieval tasks. If
source errors are in part the result of chance performance, the
same would have to be true for the correct retrieval and the
generation of novel items at test.

We constructed a base guessing model that samples, igno-
rant to study phase and task, from the possible items per cat-
egory cue, with sampling weighted by the frequency or typi-
cality of those items. In subsequent simulations, we modified
this base guessing simulation by manipulating the number of
items per cue available to participants at test, the memory for
self-generated and partner-generated items, and the orienta-
tion towards self-generated or partner-generated items at test
given the retrieval task.

Experimental work
Unconscious plagiarism has been exclusively studied with
verbalizable stimuli (for reviews see Perfect & Stark, 2008;
Gingerich & Sullivan, 2013). We adapted the unconscious
plagiarism paradigm with two retrieval tasks to motor actions
to produce observed data. In this experiment, we asked par-
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ticipants to take turns performing and observed actions with
a partner in the study phase. In the test phase, participants
then were asked to recall performed actions (equivalent to the
Recall-own task for verbal material) or asked to recall ob-
served actions (equivalent to the Recall-partner task).

Method
Participants 40 members of the public participated for
payment of £12. Three participants did not attend all sessions
and their data were excluded from the analysis.

Procedure Participants were asked to attend two sessions
in total, a day apart. For the first session, participants were
paired and asked to take turns generating and acting out
shapes with any part of their body or combinations of body
parts. They were shown 15 shape cues (=, A, C, F, H, I, J, K,
L, O, P, T, V, X, 4) in total. Participants were cued with a
printed label of each shape. Members of the pair took turns
generating actions for each cue, interleaving performing and
observing actions such that performing an action in response
to a cue was followed by observing the other person perform
an action in response to the same cue. Each participant gen-
erated a total of 4 actions per cue, resulting in 60 performed
and 60 observed actions overall. Participants were told to
observe their partners during partner-generation to avoid du-
plicating exemplars that had already been created for a cue.
Participants observed their partner perform actions under a
secondary task load for two-thirds of the shape cues. The
assignment of shape cues to secondary task conditions was
counterbalanced across participants. The focus of the present
paper is on the control condition only, i.e. the one-third of ac-
tions participants performed and observed without secondary
load, for the purposes of simulating guessing performance.

Participants returned the next day individually for a mem-
ory test. They were instructed to retrieve and re-perform ei-
ther the actions they had generated themselves (Recall per-
formed) or those they had observed their partner perform
(Recall observed) the previous day. They were cued with
the shape labels, and asked to re-perform as many actions as
they could remember for each shape (free report). They were
asked to avoid performing actions that did not comply with
their retrieval task.

Preprocessing of observed data In the study phase, par-
ticipants could commit two types of errors: self-plagiarism,
that is repeating an item they had already generated for
a particular cue, and other-plagiarism, repeating an item
their partner had already generated for a cue. In the con-
trol condition, participants self-plagiarised on average 5.13%
(SD=5.75%) of items and plagiarised 9.73% (SD=6.25%) of
partner-generated items. Items that both participants had gen-
erated at study for a cue were removed from analysis, since
the source of the item, if retrieved, would be ambiguous.

Results
Participants’ mean performance in both retrieval tasks is
shown by the bars in the figures in this paper. Correct source

retrieval was higher in the Recall performed than the Re-
call observed task, t(34.80) = 2.75, p = .009. There was
no evidence for source errors or intrusion errors being com-
mitted more frequently in one than the other retrieval task,
t(31.86) = 1.29, p = .21 and t(35) = .04, p = .97.

Simulating frequency-based guessing
Base guessing simulation
In the base frequency-based guessing simulation we extended
the idea of a test phase without prior study phase tested by
(Brown & Murphy, 1989). We used a Monte Carlo procedure
to simulate how many correct responses, source errors and
intrusion errors participants would make if they were guess-
ing and had just generated potential actions for each shape
“on the fly” during the test phase, rather than genuinely re-
trieving them from what they had previously either seen or
performed. We simulated the test phase of the experiment
for each participant and each shape separately to take into
account differences between individual participants, differing
frequency profiles for the different shapes, and the typicality
of individual items.

As a first step of the simulation process, we determined
frequency norms for the different actions generated for each
of the 15 shapes used in the experiment. We took into
account all possible shapes all participants had generated
across the experiment. Some actions were produced more
frequently than others across participants, resulting in a fre-
quency profile for each shape. Both self-plagiarised and
partner-plagiarised items at study were included in the cre-
ation of these frequency profiles. For each shape, we con-
verted these frequency profiles of the different actions into
probability distributions, reflecting the relative probability
that a particular action was produced for a given shape. For
each shape, the probabilities across the shape cue summed to
1 to represent all possible actions for the shape.

We used these distributions as the basis for participants’
guessing. Partner-plagiarised items were excluded from the
distribution prior to guessing to match the analysis of the
observed data. For each participant we sampled the num-
ber of items from each shape distribution that participants re-
ported at test for that particular shape (excluding the partner-
plagiarised items again). The sampling was weighted by the
relative probability of the items, to implement that guessing
was not random but biased by the frequency or typicality and
therefore fluency of items. This sampling was done without
replacement to match the experimental procedure of only re-
trieving an item once. Items were sampled sequentially, with
the distribution re-normed after each draw. We repeated this
for every participant, and ran the simulation over 500 itera-
tions for stable estimates.

In addition to the items participants reported at test (correct
responses, source errors, novel items), we now also have the
same measures if participants were only guessing at test.

Figure 1 shows the results of the base guessing simulation
(the full-length distribution indicated by the stars) relative to
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the observed data. In both retrieval tasks, mere guessing may
approximate the number of source errors but cannot account
for the number of correct responses and intrusion errors. It is
therefore unlikely that performance in this paradigm occurs
simply because highly-frequent items are generated both at
study and test, regardless of an influence of memory.

In the next section, we will modify this base guessing sim-
ulation by manipulating first the length of the frequency dis-
tribution, and then introducing memory and meta-cognition
into the frequency-based guessing.

Modifying the base guessing simulation
In the base guessing simulation we assume that participants’
responses are based entirely on the overall frequency (or typ-
icality) of items. This assumption leads to the following con-
ditions for guessing: a) each participant has the entirety of
each shape distribution available to them at retrieval, b) mem-
ory encoding in the study phase does not affect the frequency
of items (i.e., there is no effect of memory) and c) partici-
pants’ responding does not change with the instruction to re-
trieve items from one or the other source. In the next three
steps, we therefore simulated the influences of the length of
the distribution, memory effects and retrieval task orientation
on participants’ guessing. Strictly speaking, only the first
modification still represents participants only guessing, i.e.,
responding without memory. The second modification intro-
duces an effect of memory and the final modification an effect
of metacognitive choices made at retrieval.

Length of the distributions In the base guessing distribu-
tion, the simulated participants sample their guesses from all
possible ways a particular shape was produced in the exper-
iment. This assumes that each participant has access to all
possible ways a shape can be represented with the body that
were produced throughout the experiment - this is a strong as-
sumption that may inflate the number of novel items relative
to items generated at study. It is more likely that each partic-
ipant has only a subset of items for each shape cue available
to draw on. In the first modification of the base guessing sim-
ulation, we therefore simulated the pattern of performance in
the task if participants guess from frequency distributions for
each shape that are a shorter, i.e., include fewer possible ac-
tions.

Table 1: Average number of items in the guessing distribu-
tions with shortened tails

Number of items per cue
Length Mean (SD) Max Min
Full 23.66 (4.68) 33 16
0.9 12.30 (3.19) 19 5
0.8 8.18 (2.20) 13 2
0.7 5.59 (1.26) 8 1
0.6 3.78 (0.88) 6 1

The probabilities associated with the items in the base
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Figure 1: Observed data in bars (correct responses, source
errors, intrusion errors) with 95% confidence intervals and
data predicted by participants guessing with distributions of
varying length relative to the full distribution (points)

guessing simulation sum to 1, from most frequent items at
higher probabilities to least frequent items with lower prob-
abilities. We created shorter distributions by successively
shortening the tail of each shape distribution, i.e., removing
the least frequent items. This resulted in distributions repre-
senting the top 90%, 80%, 70% and 60% of items generated
for each shape across participants in the study phase. The
sampling procedure was otherwise identical to the one de-
scribed above.

Table 1 shows the average number of items, as well as max-
imum and minimum number of items, that could be sampled
across shapes for the different lengths of distributions. For
the shorter distributions, in some cases the total number of
guesses to be sampled was longer than the distribution to sam-
ple from. In those cases, the total possible number of items,
i.e. all items in the shortened distribution, was sampled as a
guess in lieu of the total number of responses participants in
fact made in that case.

Figure 1 shows participants’ observed performance (bars)
and simulated performance (points and lines) in both the Re-
call performed and Recall observed task. The stars indicate
the sampling based on the full-length distributions for each
shape, the remaining points the proportionally shorter distri-
butions (relative to the full-length distribution). Comparing
the simulated performance across the different lengths of the
distribution shows that with shorter distributions, the number
of novel items that are sampled during guessing decreases.
There is only a minimal effect on the number of correct re-
sponses and source errors that are sampled.

While guessing even based on shorter distributions does
not approximate performance in the Recall performed task,
guessing based on drastically shortened distributions comes
close to replicating the pattern of responding in the Recall
observed task. Though note that the radically shortened dis-
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tributions do not contain many items available for guessing.
Naturally, these very short distributions not only contain only
a minimum of novel items (hence the decrease in the sam-
pled novel responses), they also do not contain many items
participants generated in the study phase and hence do not
drastically increase correct and source error responses.

Performance in the Recall-performed task (the original un-
conscious plagiarism paradigm) cannot be only the result of
frequency-based guessing at test. In the Recall observed task,
this type of guessing could potentially account for the pattern
of responding. In the next step, we modified the distribution
further by adding memory for items that were generated at
study.

Memory after generation Pure guessing, here imple-
mented by sampling based on the overall frequency or typ-
icality of items, does not fully approximate performance in
the memory test and therefore is not an explanation for uncon-
scious plagiarism performance (when both correct responses
and intrusions are considered alongside the number of source
errors). In the next step, we tested if adding an effect of mem-
ory to the model by boosting the probability of items that
were generated by participants could account for the pattern
of data observed in the experiment.

We used the full-length distribution (rather than shortened
distributions). We implemented memory for items by adding
a second probability term to all items participants generated
themselves (but not to items participants observed their part-
ners perform - we added this modification in the final sim-
ulation). The additional probability terms for self-generated
items were 0 (the base guessing simulation), 0.1, 0.2, 0.3, 0.4
and 0.5. The final shape distributions were re-normed so all
probabilities summed to 1 after this memory probability term
was added to the prior probability of each item. Beyond the
memory boost, the sampling procedure was identical to the
one described in the previous simulations.

Figure 2 shows the observed data (bars) and the predicted
responses based on the guessing simulation with memory
boost. The memory boost results in good approximation of
performance in the Recall performed task (even with the full-
length distribution used for guessing). This suggests that par-
ticipants in the Recall performed task may simply success-
fully employ a fluency heuristic (Jacoby et al., 1989) by re-
porting items that are strongly represented at test by a combi-
nation of their base typicality and some memory.

In the Recall observed task, increasing the likelihood of
generated (here: source error items) to be guessed leads to
grave misfits of the pattern of data observed in the exper-
iment. If participants were still simply reporting the most
fluent exemplars at test, regardless of the task, the number
of source errors (self-generated items with higher memory),
should be higher than the number of correct responses (ob-
served actions). This is clearly not what participants in the
experiment are doing.

In the final modification, we therefore introduced a
metacognitive modification to the simulation that has partici-
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Figure 2: Observed data in bars (correct responses, source er-
rors, intrusion errors) with 95% confidence interval and data
predicted by participants guessing with self-generated items’
probability to be sampled boosted by varying probabilities.

pants orient their report towards their retrieval task, i.e., delib-
erately withholding fluent items in the Recall observed task.

Orienting towards retrieval task Both the manipulation
of the length of the distribution and boosting memory for
self-generated items assumed that participants use a flu-
ency heuristic in the test phase of an unconscious plagia-
rism task. Regardless of the the task instruction to retrieve
self-generated or other-generated (here: observed) items, the
fluency heuristic assumes that participants will base their re-
sponding entirely on what comes to mind at test. This means
items associated with higher probabilities will be reported
more readily, regardless of the retrieval task.

In a more nuanced approach, it is feasible that partici-
pants are able to regulate the memories they report (Marsh &
Bower, 1993; Hollins et al., 2016). In this case, participants in
the Recall observed task could be able to withhold items that
first come to mind from report if they assume that better mem-
ory/higher fluency would be indicative of self-generation and
hence represents a source error. This type of source monitor-
ing is based entirely on monitoring the memory strength of
items, rather than any source features.

In the simulation, we implemented a task orientation by
sampling double the total number of items a participant re-
ported from each shape distribution. For the Recall performed
task, we then used the top half of the sampled items as items
guessed in the simulation. In the Recall observed task, we
discarded the first few guesses (this is participants withhold-
ing items from report) and instead used the bottom half of
guesses, the relatively less frequent items. The remainder
of the simulation was identical to previous simulations, with
sampling based on the full-length distribution.

Figure 3 shows the results for the frequency-based guess-
ing if self-generated items are boosted in memory and par-
ticipants in the Recall observed task withhold these items.
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Figure 3: Observed data in bars (correct responses, source er-
rors, intrusion errors) with 95% confidence intervals and data
predicted by participants guessing with self-generated items’
probability to be sampled boosted by varying probabilities.

The results for the Recall performed task are naturally equiva-
lent to the simulation without retrieval task orientation, since
in both cases the most frequent items are reported. For the
Recall observed task, the simulated participants are now less
likely to now report source errors, i.e. they successfully with-
hold those items. Rather than this boosting the correct re-
trieval (items they observed their partner perform), this mod-
ification only increases the number of novel items. Even
with an orientation towards weaker items, a frequency-based
guessing procedure with memory for self-generated items
does not account for the observed pattern of data in the Recall
observed task.

Remember, we implemented only increased memory for
self-generated but not for observed items. It is possible that
even small increases in memory for observed items could ex-
plain the correct responses in the Recall-observed task. In a
final step modification, we therefore manipulated memory for
observed actions. We sampled from distributions slightly lim-
ited in length (0.9 distribution from the length modification)
and boosted memory for self-generated actions by 0.3 (the
boost that most closely matches the pattern of responding in
the Recall performed task). We boosted memory for observed
actions by a probability term of 0, 0.3/4, 0.3/3, 0.3/2 and 0.3,
using the assumption that memory for self-generated items is
not likely to be lower than memory for observed actions.

Figure 4 shows the results of the simulation and the ob-
served data. Boosting memory for observed actions does not
lead to a closer approximation of the data in the Recall per-
formed task, in part because the effects of the shortened dis-
tribution and memory for observed actions both limit retrieval
of novel items and increase retrieval of observed actions.

In the Recall observed task, with additional memory for
observed actions, the number of correct responses observed
in the experiment cannot be replicated. This may not be sur-
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Figure 4: Observed data in bars (correct responses, source
errors, intrusion errors) wit 95% confidence intervals and data
predicted by participants guessing with self-generated items’
probability to be sampled boosted by varying probabilities.

prising given the implementation of the task orientation in
the simulation. We implemented participants’ orientation to-
wards observed actions in the Recall observed task as a with-
holding of the first few sampled items, in spirit of partici-
pants’ performance being based on fluency and the interpre-
tation of fluency alone. Increasing the probability of observed
items now makes it more likely for those items to be sam-
pled first, and therefore withheld. In other words, to replicate
the pattern of observed data using a frequency-based sam-
pling approach, memory for observed actions has to be lower
than memory for self-generated actions, with the items par-
ticipants observed needing to be of higher strength than novel
items that were not generated. In the simulations, we did not
achieve this balance. It is not clear if memory strength alone
is sufficient to explain performance in the Recall observed
task.

Discussion
We adapted the extended unconscious plagiarism paradigm
(Hollins et al., 2016, 2015) to motor actions. Participants took
turns generating and observing actions in the study phase, and
were asked to retrieve actions they performed themselves or
actions they observed their partner perform in the test phase.
We simulated performance in the task to test if guessing alone
can account for the pattern of data we observed.

We simulated the experiment to test if frequency-based
guessing can account for the observed results. This account is
a variation of a fluency or memory strength account of uncon-
scious plagiarism (Marsh & Bower, 1993; Hoffman, 1997;
Jacoby et al., 1989) and proposes that memory retrieval in
the unconscious plagiarism paradigm is guided by the overall
memory strength or availability of items at test. Items with
higher memory strength are more likely to come to mind and
hence be reported at test. We have shown that this approach
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with modifications of length, memory and task orientation
provides a reasonable description of the data in the Recall
performed task. Notably, it does less well in accounting for
the data in the Recall observed task.

Given the framework of this kind of memory strength ac-
count, the main difference between the retrieval tasks is that
participants will do better to report highly-frequent items in
one case (Recall performed task) and better to withhold them
in another case (Recall observed task). In the Recall ob-
served task, participants ideally report items of some memory
strength. In our simulations we were not able to replicate that
participants, in fact, are able to make correct responses in the
Recall observed task that exceed source errors and intrusion
errors.

While responding based on memory strength alone could
explain performance in the Recall performed task, it is not
sufficient to explain performance in the Recall observed task
(for a similar conclusion using a signal detection approach,
see Hollins et al., 2016).

There are two possibilities. Participants in the Recall ob-
served task may simply be guessing. In particular if they
can only generate very few items (or only very few items
beyond self-generated items they remember and are poten-
tially withholding from report), guessing without any mem-
ory boost may account for performance in the task. We
showed that with very short distributions, performance in the
task was approximated. Arguably, the shortest distributions
that came closest in matching the pattern afford unrealisti-
cally few items to participants in the test phase.

Alternatively, performance in the unconscious plagiarism
(and anti-plagiarism paradigm) may not be only based on
the overall strength (fluency, familiarity or item memory)
of items. In line with the source monitoring framework
(Johnson, Hashtroudi, & Lindsay, 1993) used to explain mon-
itoring failures in other false memory paradigms, participants
may judge source memory on a dimension separate to the
overall memory strength. While memory strength alone may
not allow participants to distinguish very typical items that
were not generated from atypical items they observed, retriev-
ing source features from the memory of the observed actions
(visual, cognitive, affective, etc.) would allow them to report
the observed action over the novel action when asked to do so
by the task.

In conclusion, plagiarism errors are not simply the result
of participants guessing and reporting typical exemplars at
study and at test. While performance when asked to retrieve
self-generated items may be explained by participants sim-
ply using overall memory strength to guide their responding,
performance when asked to retrieve partner-generated items
cannot. A source memory account that assumes that partici-
pants consider qualitative features of their memory alongside
the overall memory strength would be more parsimonious in
accounting for performance in both retrieval tasks.
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Abstract

The transformational theory of similarity suggests that when
judging similarity, people are sensitive to the number of trans-
formation operations needed to make two compared repre-
sentations match. Although this theory has been influential,
little is known about how transformations are learned and
to what extent learned transformations affect similarity judg-
ments. This paper presents two experiments addressing these
questions, in which people learned categories defined by a
transformation. In Experiment 1, when the transformations
were directly visible, people had no trouble learning and ap-
plied their knowledge to similarity and categorization judg-
ments involving previously unseen items. In Experiment 2,
the task required transformations to be inferred rather than ob-
served. People were still able to learn the categories, but in
this more difficult case ratings were less strongly affected by
training. Overall, this work suggests that newly learned trans-
formations can impact similarity judgments but the salience of
the transformation has a large impact on transfer.

Keywords: similarity; category learning; transformational
similarity

Introduction
Calculating similarities is a core process in cognition (Medin,
Goldstone, & Gentner, 1993) and plays a central role in cate-
gorization (Nosofsky, 1984). However, there is considerable
debate about the fundamental building blocks for computing
the similarity between objects that contain structured proper-
ties (Markman & Gentner, 1993; Hahn, Chater, & Richard-
son, 2003). One proposed basis for similarity is the transfor-
mational distance between items (Imai, 1977), which holds
that the similarity between two objects is proportional to the
number of steps required to transform one object into the
other. Several papers outline the theoretical foundations of
the approach (Chater & Vitányi, 2003; Chater & Hahn, 1997;
Bennett, Gács, Li, Vitányi, & Zurek, 1998), the empirical ev-
idence for it (Hahn et al., 2003; Hodgetts, Hahn, & Chater,
2009; Hahn, 2014), and the arguments against it (Larkey
& Markman, 2005; Müller, van Rooij, & Wareham, 2009;
Grimm, Rein, & Markman, 2012).

Transformation distances are sensitive to the primitive
transformations available, but it is unclear how people might
determine the relevant set (Grimm et al., 2012). Some trans-
formations may be innate, but Müller et al. (2009) argue that
for computational tractability, transformations must be orga-
nized in relatively small domain-specific sets. This suggests

that where domain structure is learned, the relevant transfor-
mations for comparisons in that domain must also be learned.

We interpret the transformational approach as predicting
a strong link between transformation learning and similarity
judgments: learning a new transformation that directly con-
nects two items should reduce the transformation distance
between the items and thus increase the similarity between
them. However, relatively little is known about how quickly
transformations can be learned or how much new transforma-
tions impact similarity. The most relevant evidence comes
from Hahn, Close, and Graf (2009), who found that people
shown morphs from A to B rated similarity higher in the
observed morph direction than the reverse direction. These
results suggest that people are able to learn transformations
over short timescales, and that there may be some impact on
similarity. We extend this line of work using a transfer task,
where test items are novel but instantiate the trained transfor-
mation. We manipulate whether transformations are directly
observed or inferred, and separate measures of learning suc-
cess from those of similarity judgment change.

Experiment 1

Can people learn categories that are defined by a novel trans-
formation, and do they apply this transformation to novel
categorization and similarity judgments? Experiment 1 ad-
dresses these questions with a training task designed to maxi-
mize the salience of a transformation relationship linking ob-
jects that belong to the same category. This is accomplished
by showing the transformation after each categorization judg-
ment during training. After training, we compare category
membership and similarity judgments for a common set of
previously unseen test items, contrasting responses from par-
ticipants who were trained on different transformations.

Our results suggest that people learned the transformations
and that this learning influenced subsequent categorization
and similarity judgments. Items related by the newly-learned
transformation were rated as more similar and more likely
to belong to the same category. Items related by a novel
transformation sharing some higher-level properties with the
trained one were also rated as more similar and more likely
to belong to the same category, although to a lesser extent.
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Figure 1: The two transformations used during the training phase of Experiment 1. In the MOVEMENT TRAINING people
learned a non-rigid clockwise rotation transformation (top row), whereas in the COLOR TRAINING condition they learned a
color swapping rule (bottom row). For both, the image on the left shows how that transformation was defined, and the image
on the right gives an example on a particular stimulus. In this figure we use textures to display the four possibilities for each
cell. The actual stimuli were presented in color, with the four possible values being red, green, yellow and blue.

Method

Participants Four hundred and forty-four participants were
recruited via Amazon Mechanical Turk and paid US$0.75.
62% were male, with ages ranging from 18 to 67 (mean:
33.3). Three hundred and eleven participants were from the
USA, 120 were from India, and 13 were from other coun-
tries. Forty-seven were excluded from all analyses: 12 for
self-reported color-blindness and 35 for failing to pass check
questions during the test phase of the experiment.

The experiment used two different pre-defined exclusion
criteria, one based on training phase responses and one based
on test phase responses. For the training phase, if any par-
ticipant took more than 40 trials to learn any category that
participant’s data would be excluded. No participants were
excluded on this basis. For the test phase, we also excluded
any participant who gave an average similarity/categorization
rating of less than 6 (out of 7) to the test trials with identical
stimuli: 35 people were removed on this basis. One hundred
and eighty six people were assigned to an IDENTITY condi-
tion in which the transformation to be learned was the iden-
tity transformation (i.e., no change). These participants easily
learned the categories but were at floor for all generalization
questions. Their results are not analyzed further.

Procedure The experiment consisted of six training phases
and a test phase. Within each training phase, participants
were trained on a new category of objects until their accuracy
reached criterion. In the test phase, participants were asked
to make categorization or similarity judgments of novel stim-
uli. All stimuli in the experiment consisted of 3x3 grids of
colored cells, where each cell was a single color: red, yellow,
blue or green (see the right panel of Figure 1). The stimuli
were approximately 200 pixels wide on each side.

In each training phase, participants were shown a ‘base’
stimulus and told that it belonged to a category (e.g., wugs).

Two items were displayed underneath with the question
“Which of these is also a wug?” Participants were instructed
to respond by clicking on the button located below their
choice and were given feedback based on their choice. Af-
ter an incorrect selection, the message “Sorry, try again” ap-
peared and participants had to click the correct stimulus to
proceed. After a correct selection, the message “Correct” ap-
peared and an animation was presented morphing the base
stimulus into the correct one. The next trial would then begin
with the newly transformed item as the new target stimulus.
For each category (e.g., wugs) this process continued until ei-
ther the participant made four correct choices in a row or 40
trials had elapsed, at which point the experiment moved on to
the next category (e.g., philbixes).

The set of stimuli in each category was determined by the
base pattern and the transformation (shown in Figure 1). Each
of the six training categories began with a unique ‘base pat-
tern’ that was the same for all participants, and on each sub-
sequent trial category members were generated by one appli-
cation of the transformation. For participants in the COLOR
TRAINING condition (n=114), the transformation from one
item in the category to the next was a color-swapping rule in
which cells that were colored red became green, green be-
came red, blue became yellow, and yellow became blue. In
the MOVEMENT TRAINING condition (n=144), the transfor-
mation that defined the set of items in the category was a
non-rigid clockwise rotation of the cells in the grid. Apply-
ing this transformation caused the colors around the outside
of the grid to shift one cell forward.

The test phase consisted of 20 test trials in which partic-
ipants were asked to make judgments about pairs of novel
stimuli that never appeared during training. The stimuli could
be related to each other in one of six ways: identical (n=2), no
simple relation (n=2), related by the trained movement (n=4)
or trained color (n=4) transformations, or related by the novel
movement (n=4) or novel color (n=4) transformations. The
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Figure 2: Effect of transformation training. The y-axis reflects the difference in responses given due to training condition, contrasting
ratings given when test items do not match the training condition (NO MATCH) as compared to when they are related to the training, either
as an exact MATCH or as a similar but novel NEAR MATCH. Thus, values above zero indicate effective training (in the case of MATCH) and
generalization (in the case of NEAR MATCH). The left panel shows Experiment 1, which made the transformations explicit. In it, people
learned and generalized the transformations for both categorization (light bars) and similarity (dark bars) questions, although the magnitude
was smaller for similarity. The right panel shows Experiment 2, in which the transformations were less salient. In that case, learning and
generalization were evident for categorization questions, but these were much larger than for similarity. Error bars express 95% credible
intervals for a Bayesian t-test.

basis for these relations were not equally available to all par-
ticipants: test items instantiating color transformations were
unrelated for people given the movement training, and vice
versa, manipulating the relation of the test items to the train-
ing while keeping the items themselves constant. The identi-
cal and no simple relation trials were of the same form as the
test trials but only used for attention-check exclusions and not
analyzed further. The novel movement transformation con-
sisted of shifting all cells in the grid down by one row and
moving the bottom row to the top. The novel color transfor-
mation swapped red with blue and green with yellow.

The order of test trials was randomized. Half the partic-
ipants in each condition were asked to make CATEGORIZA-
TION judgments by rating how likely it is that the two stimuli
“have the same name” from “Not at all” to “Extremely” on
a seven point scale. The other half were asked to rate the
SIMILARITY of the two stimuli on a seven point scale.

In summary, there were two training conditions, each us-
ing a different transformation. There were four critical types
of test item (excluding attention checks). The critical prop-
erty of interest was the relationship between the test item and
the training condition: did the test reflect the same or similar
transformation as the training? The same items had differ-
ent status for different participants depending on the training
they saw: test items were considered to be MATCH trials when
the two stimuli being compared were related by an applica-
tion of the trained transformation, NEAR MATCH trials when

the test stimuli were related by a transformation similar but
not identical to the trained one, and NO MATCH when the test
stimuli were not related to the training. Thus, for a person
who received COLOR TRAINING, a test item involving that
same color transformation would be a MATCH, one involving
the novel color transformation would be a NEAR MATCH, and
the two movement-related test items would be NO MATCH.
None of the test items were previously seen in training.

Results

We first wish to establish whether the training phases were of
comparable difficulty. We therefore looked at both how fast
people reached the mastery criterion as well as the exclusion
rates between conditions. People reached the criterion of four
correct responses in a row in an average of 6.3 trials in the
MOVEMENT TRAINING condition, and 5.8 in COLOR TRAIN-
ING, with 95% of all categories learned in eight trials or less.
Participant inclusion rates were also comparable across con-
ditions, at 86.0% and 87.5%, as was average accuracy over all
trials (85% and 88% in the MOVEMENT and COLOR training
respectively). This suggests that people learned to effectively
distinguish category members from foils and that both trans-
formations were similarly difficult.

To test the impact of training on people’s ratings, we ex-
amined the degree to which their responses were different on
the MATCH and NEAR MATCH test items from the NO MATCH
baseline. NO MATCH baseline ratings for test items related
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SIMILARITY Judgments
Test item relationship Test item average NO MATCH item average Difference BF
MATCH items 3.61 (1.71) 2.49 (2.00) 1.13 > 1000
NEAR MATCH items 3.14 (1.71) 2.58 (1.91) 0.569 > 1000

CATEGORIZATION Judgments
Test item relationship Test item average NO MATCH item average Difference BF
MATCH items 4.17 (1.76) 1.46 (1.83) 2.71 > 1000
NEAR MATCH items 3.15 (2.11) 1.7 (1.922) 1.45 > 1000

Table 1: Descriptive statistics and hypothesis tests for Experiment 1. For each of the MATCH and NEAR MATCH items (first column), we
show the average responses for each (second column) compared to the NO MATCH baseline on the same items (third column). We performed a
Bayesian t-test on the difference between these (fourth column) and found that in all cases there was a strong effect of training (fifth column).

by a COLOR transformation came from participants exposed
to MOVEMENT TRAINING, baseline ratings for test items re-
lated by a MOVEMENT transformation came from participants
exposed to COLOR TRAINING. In both cases the stimuli in-
volved in the MATCH and contrasting NO MATCH groups were
physically identical, likewise for NEAR MATCH items and
their corresponding NO MATCH group. The left panel of Fig-
ure 2 illustrates these differences due to training experience.
For instance, the MATCH bar reflects the difference between
responses for the same item in the MATCH and NO MATCH
conditions (thus, a value higher than zero indicates that the
transformation training had an effect). Similarly, the NEAR
MATCH bar reflects the difference between responses for the
same item in the NEAR MATCH and NO MATCH conditions
(thus, a value higher than zero indicates some generalization
of training to a similar transformation).

Table 1 shows the absolute responses for the items of in-
terest (i.e., the MATCH or NEAR MATCH items, in the second
column) and the unrelated NO MATCH items in the third col-
umn. We used a Bayesian t-test (Morey, Rouder, & Jamil,
2014; Rouder, Speckman, Sun, Morey, & Iverson, 2009) to
quantify the difference between them (fourth column), yield-
ing a Bayes factor associated with the size of that different
(fifth column). There was a strong (BF > 1000 : 1) effect of
training for both the categorization and similarity judgments.
However, these two types of judgment were impacted to dif-
ferent extents. For instance, the overall difference in item rat-
ings between training conditions was between 1.07 and 1.33
larger (95% credible interval) for categorization judgments
than similarity judgments.

Similarly, both MATCH and NEAR MATCH test item ratings
differed strongly due to training (BF > 103 : 1), but to dif-
ferent extents. For instance, the difference due to training
was between 0.67 and 0.93 rating points larger for MATCH
as opposed to NEAR MATCH transformations. This suggests
that people were less likely to generalize their responses as
strongly to similar but not identical transformations.

Conclusion
The results of Experiment 1 show that learning categories that
are defined by a transformation can lead people to produce
consistently different patterns of judgments for novel items.

Test items that were connected either by a learned transfor-
mation or a similar transformation were reliably rated higher.
This increase in rating was found for similarity judgments as
well as judgments about category membership.

This pattern of results is consistent with the predictions of
the transformational account of perceptual similarity (Hahn
et al., 2003). Furthermore, it suggests that by learning cat-
egories that are related by a transformation people can infer
the transformation and apply it to novel items and categories.

That said, it is unclear to what extent the training in Exper-
iment 1 is reflective of real-world transformation learning. In
the experiment, objects were shown transforming into each
other repeatedly; but in the real world, many transformations
that define categories occur at a time scale that people can-
not directly observe (e.g. seasons, aging, etc.). Experiment 2
aimed to test if the explicit presentation of the transformation
was necessary to elicit quick learning and generalization of
transformations.

Experiment 2

Experiment 1 provides “in principle” evidence that people are
capable of learning rich knowledge about classes of stimulus
transformations and the categories to which they are appli-
cable. However, the structure of our task made learning as
easy as possible: during the training phase participants were
explicitly shown the transformation at the end of every trial.
When learning new categories in real life it is more typical
for people to encounter a variety of exemplars. For exam-
ple, when learning the transformations involved in the aging
of human faces, people observe many faces at different ages,
but do not directly observe the aging process. It is thus un-
clear how generalizable these results are.

This issue is particularly important for evaluating the trans-
formational account of similarity. With a few notable excep-
tions, such as rotation, the majority of transformations plau-
sibly involved in comparisons are unobservable. Experiment
2 addresses the question of how easily learnable transforma-
tions when they are more implicit. By increasing the diffi-
culty of the task, this manipulation also allowed us to exam-
ine the extent to which variation in ease of transformation
learning is reflected in similarity.
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Method
Participants Two hundred and fifty-two participants were
recruited via Amazon Mechanical Turk and paid US$1. 60%
were male, with ages ranging from 19 to 67 (mean: 34.7).
Two hundred and forty-seven participants were from the
USA, with the remainder from India, South America, and
the UK. Fifty-three were excluded from all analyses: 2 for
self-reported color-blindness, 12 for not completing the ex-
periment, and 39 for failing exclusion criteria.

The experiment used two different predefined exclusion
criteria, one based on training phase responses and one based
on test phase responses. For the training phase, if any partici-
pant took more than 30 trials to learn two of the last three cat-
egories that participant’s data would be excluded (this num-
ber was arrived at based on pilot data). Twelve participants
were excluded on this basis. For the test phase, any partici-
pant who gave an average similarity/categorization rating of
less than 6 (out of 7) to the identical trials were excluded:
Twenty-seven people were removed on this basis. Ninety-
five participants were in a COLOR TRAINING condition and
92 were in a MOVEMENT TRAINING condition. Sixty-five
participants were in an IDENTITY condition and their results
are not analyzed further.

Procedure
As in Experiment 1, this experiment consisted of six train-
ing phases and a test phase. Within each training phase, a
new category of objects was learned until a mastery criterion
was reached. In the test phase, participants were asked to
make categorization and similarity judgments of novel stim-
uli. However, a number of aspects of the experiment differed
from Experiment 1.

Based on pilot testing of category learning, the stimuli
were simplified by adding the constraint that each stimulus
contained at least six cells that shared the same color. Fur-
thermore, the COLOR TRAINING transformation was modi-
fied to increase the number of possible stimuli within the cat-
egories. Instead of changing all colors (red to green, green to
red, yellow to blue, and blue to yellow) as a single transfor-
mation, this was broken into two transformations. A single
transformation consisted of either swapping the colors of red
and green, or swapping yellow and blue. This doubled the
number of stimuli in each condition in the COLOR TRAINING
condition to more closely match the number in the MOVE-
MENT TRAINING condition.

The structure of the training trials also differed from Ex-
periment 1. On each trial participants were shown two stimuli
and asked if both items belonged in the category. There was
always at least one category member displayed. In half the
trials, the other stimulus was also in the category and related
by one application of the transformation being trained. In the
other half, the other stimulus was not in the category. After
participants responded yes or no they were given feedback in-
dicating if they were correct, but unlike in Experiment 1 they
did not observe the actual transformation.

Participants proceeded to the next category when they were
correct on 8 of 10 trials. Consecutive sets of six trials were
constrained to contain three ‘yes’ and three ‘no’ trials (in
shuffled order), meaning participants reaching criterion an-
swered both ‘yes’ and ’no’ correctly. The test phase was
largely similar to Experiment 1 except that the UNRELATED
trials were removed and trials were grouped into four blocks,
with order of presentation randomized within each block to
avoid runs of similar test items.

Results
The results indicate that difficulty was higher than Experi-
ment 1, but comparable across conditions. People reached
the accuracy criterion in an average of 14.12 trials in COLOR
TRAINING and 13.8 trials in MOVEMENT TRAINING. Inclu-
sion rates were comparable between conditions at 74% and
80% respectively.

As in Experiment 1, we were interested in whether re-
sponses to test items were different based on whether the
transformation involved was a MATCH, NEAR MATCH, or NO
MATCH to the trained transformation. The right panel of Fig-
ure 2 shows the differences in responses, analogous to the
same analysis in Experiment 1, with the associated Bayesian
t-test results shown in Table 2. In all cases we find strong
evidence that participants’ ratings for the same items were
higher when they had a MATCH or NEAR MATCH relationship
to training as opposed to NO MATCH status (BF > 49 : 1 at
minimum). This suggests that training was effective and peo-
ple were capable of learning the transformations even if they
were not explicitly shown.

That said, the size of the difference depended on ques-
tion type. Category learning showed a much larger effect:
the difference was between 1.09 and 1.31 points larger (95%
credible interval) for categorization questions than similarity
ones. Unlike in Experiment 1, MATCH and NEAR MATCH sta-
tus were not strongly differentiated: the difference involving
MATCH status items as opposed to NEAR MATCH status items
plausibly included zero (with a 95% CI between -0.01 and
0.21).

General Discussion
The results from Experiment 1 showed that people are capa-
ble of learning a novel transformation, recognizing that this
transformation is relevant to determining category member-
ship, and applying the learned transformation when assessing
similarity between items belonging to novel categories. This
finding is consistent with the learning effect seen in Hahn et
al. (2009), but extends previous results in showing systematic
generalization across related transformations.

Experiment 2 echoes these results and further finds that the
effect is not limited to training in which people see objects
transforming; seeing labeled category members can induce a
change in judgments. However, there are two notable differ-
ences from Experiment 1. First, as the transformations be-
come less prominent during training, they seem to have less
impact on subsequent judgments, particularly for similarity.
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SIMILARITY Judgments
Test item relationship Test item average NO MATCH item average Difference BF
MATCH items 3.56 (1.6) 2.98 (1.75) 0.58 > 1000
NEAR MATCH items 2.66 (1.53) 2.31 (1.62) 0.35 49

CATEGORIZATION Judgments
Test item relationship Test item average NO MATCH item average Difference BF
MATCH items 3.72 (1.85) 2.14 (2.15) 1.57 > 1000
NEAR MATCH items 2.93 (1.98) 1.35 (1.82) 1.58 > 1000

Table 2: Descriptive statistics and hypothesis tests for Experiment 2. For each of the MATCH and NEAR MATCH items (first column), we
show the average responses for each (second column) compared to the NO MATCH baseline on the same items (third column). We performed a
Bayesian t-test on the difference between these (fourth column) and found that in all cases there was a strong effect of training (fifth column).

Second, the novel and trained transformations were less well
differentiated.

The attenuation of the training effects seems likely to be
a result of task difficulty, with people less inclined to shift
their judgments based on training that was less clear. How-
ever the lack of differentiation between trained and novel but
similar transformations is harder to interpret. Possibly partic-
ipants formed an incomplete representation of the transforma-
tion which was applicable to both near and exact matches to
training, but the form of this representation is unclear. Peo-
ple’s success in distinguishing targets from foils at training
suggests they did not simply track which features remain in-
variant (e.g., noting in the MOVEMENT TRAINING condition
that colors are preserved and in the COLOR TRAINING condi-
tion that configurations are preserved).

In terms of the predictions of transformational similar-
ity, our results are somewhat mixed. It is clear that peo-
ple learn transformations relevant to a new domain quickly,
and that such transformations can be applied to categorization
and similarity judgment. However, the pattern of generaliza-
tion between exact matches and near-matches would seem to
require some kind of graded availability of transformations
based on family resemblances between them, complicating
the computation of transformation distances.

Transformations as features are common in natural cate-
gories, for example growth and aging or characteristic move-
ment. Despite this, their role in similarity judgments over
structured representations remains unclear. Taking as a start-
ing point predictions implied by tractability constraints on
the transformational account of similarity, the two studies
presented here examine the conditions under which trans-
formation learning might influence similarity and categoriza-
tion. Our results show that people can learn transformations
quickly and use them in subsequent similarity and categoriza-
tion judgments. However, productive use of the transforma-
tions depends to some extent on the ease with which the trans-
formation was learned, and in both easy and difficult learning
conditions involves generalization across related transforma-
tions.
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Abstract: Perseverance, above and beyond IQ, predicts academic outcomes in school age children, however, little is known
about what factors affect persistence in early childhood. Here, we propose a formal Bayesian model of how children might
learn how to calibrate effort from observing adult models and then explore this idea behaviorally across two experiments in
children and infants. Results from Experiment 1 show that preschoolers persist more after watching an adult persist, but only
if the adult is successful at reaching their goal. Experiment 2 and a pre-registered replication extend these findings, showing
that even infants use adult models to modulate their persistence, and can generalize this inference to novel situations. These
results suggest that both preschoolers and infants are sensitive to adult persistence and use it to calibrate their own effort in
far-reaching ways.

2536



You can take a noun out of syntax...: Syntactic similarity effects in lexical priming 
 

Nicholas A. Lester (nlester@umail.ucsb.edu) 
Department of Linguistics,  

University of California, Santa Barbara, USA 

 

Laurie B. Feldman (lfeldman@albany.edu) 
Haskins Laboratories, New Haven, CT, & Department of Psychology,  

State University of New York, Albany, NY, USA 

 

Fermín Moscoso del Prado Martín (fmoscoso@linguistics.ucsb.edu) 
Department of Linguistics,  

University of California, Santa Barbara, CA, USA 

 

 

Abstract 

Usage-based theories of syntax predict that words and 
syntactic constructions are probabilistically interconnected. If 
this is true, then words that occur in similar distributions of 
syntactic constructions should prime each other. These effects 
should be fine-grained; even small differences between the 
syntactic distributions of pairs of words of the same 
grammatical category should cause variation in priming. Prior 
research from production suggests that this prediction should 
hold even in tasks without any syntactic requirement. In this 
study, we introduce a measure of the similarity between the 
syntactic contexts in which two nouns occur. We show that this 
similarity measure significantly predicts visual lexical decision 
priming magnitudes between pairs of nouns. This finding is 
consistent with the predictions of usage-based theories where 
fine-grained similarity of syntactic usages between 
prime-target pairs affects decision latencies, over and above 
any effects attributable to semantic similarity. 

Keywords: syntax; priming; usage-based linguistics; visual 
lexical decision; information theory 

Background 

Lexical priming experiments have a long history in 

psycholinguistic research. Though the bulk of this research 

has focused on semantic and orthographic effects, some 

studies have considered the role of syntax (henceforth 

grammatical priming). Early work looked at the effects of 

inflectional congruity across word classes. For example, in 

Serbian, inflected nouns are recognized faster when primed 

by case-appropriate adjectives (e.g., Gurjanov, Lukatela, 

Moskovljević, Savić, & Turvey, 1985). More recent work 

has looked at contextualized reading effects. Nouns and 

verbs that are biased to occur in congruent syntactic 

constructions (e.g., direct-object vs. subordinate clause 

continuations; I need some coffee/to go to the market) 

facilitate processing of later content (Novick, Kim, & 

Trueswell, 2003). Thus, accessing a noun primes 

expectations about its syntactic context. Congruity effects 

have been interpreted as evidence for robust, probabilistic 

syntactic specifications for lexical items.  

The empirical evidence outlined so far is complemented by 

work in theoretical linguistics. Usage-based linguistic 

theories argue that all facets of grammar, including words 

and syntactic structures, are potentially interconnected on the 

basis of one’s experience with language (e.g., Diessel, 2015). 

Let us refer to this position as the probabilistic network 

hypothesis. Results such as those reported by Novick et al. 

(2003) are easily accounted for under this framework. To use 

the connectionist metaphor, connections between lexical and 

syntactic nodes are tuned as a function of their frequency of 

distinctive co-activation (e.g., Gries & Stefanowitsch, 2004). 

Stronger connections are processed more efficiently. Further 

support for this hypothesis comes from work on word 

production: the probability distributions of words in 

particular syntactic structures influence picture naming 

latencies (Lester & Moscoso del Prado Martín, 2016).  

Direct, probabilistic relationships between words and 

syntactic structures are not universally accepted across 

linguistic models. Many models argue that syntax only enters 

the lexicon through general categorical specifications (i.e., 

most generative approaches to syntax). Accordingly, words 

may have a feature indicating the part-of-speech category to 

which they belong (noun, verb, adjective, and so on). More 

recent work in this vein has expanded the syntactic content of 

the lexicon to include more fine-grained syntactic categories. 

For example, in current mainstream generativist syntax (the 

Minimalist Program; Chomksy, 1995), words contain 

information about the syntactic frames with which they can 

combine as functional head (sometimes called 

subcategorization or c-selection; for a similar approach, see 

Bresnan, 2001). Crucially, these syntactic specifications 

represent categorical constraints on the possible distributions 

of words. We will call this the categorical constraint 

hypothesis. Under this account, probabilistic relationships 

are simply not available to the grammar. Any effects of 

probability are designated “extra-grammatical” (Stabler, 

2013) and are instead usually attributed to relationships in 

other mental systems, such as the Conceptual-Intentional 

system. 

This theoretical distinction leads to different predictions 

about the nature of grammatical priming. The probabilistic 

network hypothesis predicts that probabilistic information 

about the semantic and syntactic similarity of words should 

produce independent priming effects. The categorical 

constraint hypothesis predicts that probabilistic effects 
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should only arise for semantic similarity (as the syntactic 

system does not encode such relationships). We test this 

contrast using a simple lexical priming paradigm.   

Research on grammatical priming has largely relied on 

syntactic or pseudo-syntactic contexts (e.g., using an 

adjective as a prime for a noun). However, the predictions of 

usage-based theory, along with recent evidence from 

production (e.g., Lester & Moscoso del Prado Martín, 2016), 

suggest that syntactic information –all of it– should be 

automatically activated every time a word is accessed. This 

should be true even when the word is presented in isolation 

for purposes of the task, as in visual lexical decision (see also 

Durán and Pillon, 2011). We therefore use a simple overt 

lexical priming paradigm with visual lexical decision. We 

restrict our analysis to nouns to guard against intercategorical 

effects. We predict RTs based on the similarity of semantic 

and syntactic distributions across a range of words words. 

The probabilistic network hypothesis would be supported by 

evidence of priming for similar syntax and semantics, 

independently. The categorical constraint hypothesis would 

be supported by priming only in the domain of semantics.  

Methods 

Data 

We used the response latencies contained in the Semantic 

Priming Project (SPP; Hutchison, et al., 2013). The SPP 

contains response times and accuracies, along with a host of 

norming data, that were collected using a visual lexical 

decision task with overt orthographic priming. On each trial, 

participants were shown a centered fixation cross for 500 ms, 

followed by a prime word (all caps) for 150 ms. The prime 

was followed by a blank screen lasting either 50 or 1050 ms. 

The target word was displayed (all lowercase) until a either 

decision was made or 3,000 ms elapsed, at which point the 

experiment would advance to the next trial. 

We used only those trials containing primes and targets 

that also appear both in the British Lexicon Project (BLP; 

Keuleers, Lacey, Rastle, & Brysbaert, 2012) and the age of 

acquisition norming database of Kuperman, 

Stadthagen-Gonzalez, & Brysbaert (2012). We limit the data 

in this way to take advantage of the additional lexical 

controls afforded by these databases. To ensure that all 

stimuli were understood primarily as nouns, we further 

limited the trials to include only those in which both prime 

and target received majority noun tags in the British National 

Corpus (BNC). In this way, we obtained a dataset consisting 

1,305 unique primes and 821 unique targets (a total of 1,670 

unique nouns).    

Syntactic space 

To measure the relationship between the noun-pairs in the 

syntactic system, we first need to operationalize the syntactic 

system itself. Decades of research have failed to produce an 

exhaustive list of the syntactic constructions of English (let 

alone any other language), and we do not presume to offer 

such a list here. Instead, we rely on the set of low-level 

relations as defined within Dependency Grammar 

formalisms (e.g., Mel'čuk, 1988; Nivre, 2005). Dependency 

Grammars model only relations (dependencies) between 

pairs of words. These relations are asymmetric: each extends 

from a head (the syntactic and conceptual core word) to a 

modifier (whose syntactic role is contingent on the head). 

Each dependency is labeled to reflect its syntactic function. 

For example, the and waffle in the noun phrase the waffle 

would be bound by the det relation, which attaches a 

determiner (the, the modifier) to a noun (waffle, the head). 

Other examples include the nsubj relation, which binds a 

noun (modifier) to a verb (head) as its subject, and the pobj 

relation, which binds a noun (modifier) to a preposition (head) 

as its object. A further detailed description and discussion  

of Dependency Grammar formalism is beyond the scope of 

this study. We adopt the dependency formalism implemented 

in the spaCy parser (Honnibal & Johnson, 2015), one of the 

fastest and most accurate dependency parsers available.  

We define the syntactic space for nouns as the set of 

dependencies for which at least one noun from our sample of 

SPP primes and targets has been attested either as head or as 

modifier. For each noun in our dataset, we extracted all 

sentences containing that noun from the BNC. We 

conditioned the search to include only sentences in which the 

word form was indeed tagged as a noun. Those sentences 

were parsed using spaCy. We then compute the frequency 

distribution of each noun across the dependencies for which 

it serves as head or modifier. To increase the reliability of our 

frequency estimates, we discard vectors for all nouns that 

occurred in fewer than 100 sentences in the BNC (~1 per 

million words). The total syntactic space is defined as a 

vector in which each column reflects one among the set of 

unique dependencies occurring across all nouns. Finally, we 

merge the individual frequency distribution of each noun into 

the total syntactic space, creating a matrix of n rows by m 

columns, where n = the number of total unique dependency 

types (46) and m = the number of unique SPP/BLP nouns 

(1,241). The result is therefore a uniform syntactic space for 

all nouns, where individual nouns may or may not be attested 

in each possible dependency. In theoretical terms, we treat 

these vectors as reflecting the statistical connectivity between 

each noun and the syntactic structures in which it takes part, 

as is proposed in the usage-based literature. Psycholinguistic 

support for this treatment comes from an earlier study 

showing that these and similar dependency vectors affect 

processing latencies in noun production over and above the 

effects of other known factors (Lester & Moscoso del Prado 

Martín, 2016). 

Measuring syntactic similarity 

We are interested in the possibility that pre-activation of 

shared syntactic representations will affect the speed of word 

recognition. Therefore, we need some measure of the 

similarity between the syntactic distributions of primes and 

targets in our behavioral data. Note that similarity in 

syntactic space outlined above does not reduce solely to 

shared types of dependencies. For example, consider two 
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words, w1 and w2,  that occupy the same set of 20 

dependency types. Suppose that w1 and w2 have roughly 

equivalent overall frequencies and that those frequencies are 

distributed equally across the dependency types for both 

words. In this case, we would call them syntactically similar, 

and consider the number of overlapping types as an 

appropriate measure of the strength of their similarity. Now 

suppose that the two words have similar overall frequencies, 

but that these frequencies are distributed over 

complementary sets of the dependencies that they share, such 

that w1 has a frequency of 1 wherever w2 has a 

frequency >100 and vice versa. In this case, we would call 

them dissimilar. For this, we need to simultaneously account 

for shared types, as well their probability distributions. One 

measure well suited to this task is the Jensen-Shannon 

Divergence (JSD; Lin, 1991). JSD is a symmetric variant of 

the Kullback-Leibler Divergence (KLD). The KLD between 

two probability distributions P and Q is defined in Eq. 1. 

 

                   
    

                           (1) 

 

This measure captures the average amount of additional 

information that one would need in order to recode an event 

from distribution P as if it belonged to distribution Q. 

Importantly, KLD(P||Q) ≠ KLD(Q||P), meaning that one 

must decide a priori in which direction to take the distance. 

JSD provides a solution to the asymmetry problem by taking 

the midpoint between the two distributions, then taking the 

mean distance of the distributions to the midpoint. Formally, 

JSD is expressed as follows (Eqs. 2 and 3). 
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This measure has the advantage of being both symmetrical 

[JSD(P||Q) = JSD(Q||P)] and  bounded (0 ≤ JSD ≤ 1).  

JSD measurements depend on estimates of the probability 

distributions of events within a distribution, rather than on 

their actual probability distributions. Maximum-likelihood 

estimates of information-theoretical measures are known to 

be biased. To guard against this bias we apply a 

bias-reducing frequency correction to our syntactic vectors, 

using the plug-in James-Stein shrinkage estimator (Hausser 

& Strimmer, 2009). 

The methods above provide an operationalization of 

syntactic similarity between primes and targets. For each 

prime—target pair in the sample, we compute the JSD 

between their syntactic vectors. A value of 0 indicates 

identity; a value of 1 indicates complete independence. 

According to usage-based theories, (at least the bulk of) 

syntactic structure is meaningful– that is, directly linked to 

semantic representations in the same way as words (e.g., 

Diessel, 2015). This means that any effect we uncover for our 

measure may actually reflect semantic similarity, which is 

well known to affect priming magnitudes (e.g., Neely, 1991). 

Moreover, the contrast between the probabilistic network and 

categorical constraint hypotheses depends on a direct 

comparison of syntactic and semantic sources of similarity. 

Fortunately, the SPP contains annotation of the degree of 

semantic similarity between prime and target, indicated by 

cosine similarities in Latent Semantic Analysis space (LSA). 

LSA measures the extent to which words occur in similar 

texts, with higher cosine values indicating greater similarity 

(Landauer & Dumais, 1997). We transformed the cosine 

similarities into distances (i.e., 1-cos). 

Figure 1 plots the relationship between the syntactic 

distances (JSD) between pairs of words as a function of their 

semantic distances (LSA) values. As one would expect, there 

is a significant positive (linear)
1
 correlation between both 

measures, meaning that words that are similar in meaning 

tend to occur in similar syntactic contexts. However, an 

important feature of Figure 1 is the triangular shape of the 

variance: words that are very close in meaning vary only 

slightly in syntactic similarity, while words that are distant in 

meaning vary more widely. This relationship supports the 

account of Jackendoff (2013), who argues for the existence 

of syntactic generalizations (i.e., constructions) that allow 

structural inheritance among sets of semantically 

heterogeneous sub-constructions. In other words, nouns that 

are extremely similar in meaning (e.g., synonyms) will 

always appear in extremely similar syntactic contexts. 

However, there is large variability in the syntactic similarities 

of words with different meaning (or there is large variability 

in the semantic similarity between pairs of words that appear 

in very different syntactic contexts). This suggests that 

syntax and semantics are not as tightly coupled as some 

would argue (e.g., Goldberg, 1995), and their contributions 

can indeed be considered separately.   

 

 
Figure 1: Relationship between syntactic and semantic 

distance measures 

 

                                                           
1
 The linear nature of this relation was confirmed using a 

Generalized Additive Model with penalized spline-based 

smoothers. 
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To disentangle the purely syntactic aspects of lexical 

similarity from what can be attributed to similarity in 

meaning, we residualized the semantic measure out of the 

syntactic measure. This was achieved by fitting a linear 

regression predicting the JSDs as a function of the LSA 

distances, and using the residuals of this regression as our 

measure of syntactic difference. This measure captures the 

information in JSD that is not attributable to semantics (cf., 

Hendrix, Bolger, & Baayen, 2017; responding to the 

concerns expressed by Wurm & Fisicaro, 2014).  

Further controls 

A number of other factors are known to impact recognition 

latencies in the primed lexical decision paradigm. These fall 

into three categories: effects related to recognizing individual 

words, (other) effects based on the relationship between 

prime and target, and effects related to the nature of the task 

itself. From the first set, the most important predictor is the 

surface frequency of the target: i.e., more frequent words are 

recognized faster. We use the SUBTLEX-UK frequencies, 

which are based on movie subtitles and known to outperform 

estimates drawn from other corpora, including the BNC (van 

Heuven, Mandera, Keuleers, & Brysbaert, 2014). We also 

include a measure of the density of the orthographic 

neighborhood of the target known as OLD20 (Yarkoni, 

Balota, & Yap, 2008).  The more similar the spelling of the 

word to its closest neighbors, the faster it is recognized. 

Another predictor that has been proposed is age of 

acquisition: the earlier a word is acquired in the lifespan, the 

faster it is recognized (e.g., Kuperman et al., 2012).  Less 

important, but nevertheless known to exert an effect, is the 

orthographic length of the word: longer words take longer to 

recognize (New, Ferrand, Pallier, & Brysbaert, 2006). 

Besides our residualized syntactic measure, we included 

two additional predictors relating the prime and target: We 

included semantic distance (i.e., the LSA distances), as 

semantic similarity is known to facilitate access to targets 

(i.e., semantic priming). In addition, we considered the 

Levenshtein distance (LD; Levenshtein, 1966; van der Loo, 

2014) between prime and target to account for possible 

effects of orthographic relatedness. We expect 

orthographically similar prime-target pairs to result in slower 

recognition latencies (cf., Adelman, et al., 2014). In addition 

to these main effects, we tested two-way interactions 

between the inter-stimulus interval (ISI) on the one hand, and 

LSA distance, LD, and residualized JSD on the other. This 

was done to account for the possibility that priming effects 

might change with the different offsets between prime and 

target.   

Finally, we included the (log) sequential position of each 

trial in the overall experimental order of presentation. As 

participants move through the trials, we expected some 

degree of fatigue to set in (each participant performed over 

800 trials). 

Results 

We fitted a linear mixed-effect regression model predicting 

response latencies from the SPP primed lexical decision 

database as a function of the variables outlined above. In 

addition to the fixed effects, we included random effects for 

participants and prime-target pairs (i.e., random slopes). We 

discarded 6.7% of all trials as outliers (all latencies falling 

below 400 ms or 2 standard deviations above the mean). In 

addition, we corrected for a strong positive skew in the 

response times by taking the logarithm of RTS (as suggested 

by a Box-Cox power analysis; Box & Cox, 1964). Visual 

inspection of the model residuals with and without the 

corrections confirmed the adequacy of these steps. 

All main effects for the control predictors besides OLD20 

surfaced as significant at the α=.05 level, and in the expected 

direction. The model also revealed a significant (p<.001) 

effect of the two-way interaction between LD and ISI: at 50 

ms ISI, LD had a negative impact on response times (-2.5 ms 

per unit increase in LD), with no effect at 1050 ms. 

Importantly, the model revealed a significant interaction 

(p<.01) between ISI and LSA distance, consistent with what 

one would expect. Response latencies increased by about 5 

ms per .1 increase in cosine distance at a short ISI. At a long 

ISI, this effect was reduced to ~3 ms per .1 increase. As 

semantic distance between prime and target increased, so did 

target recognition latencies, with stronger effects at the 

shorter ISI.    

Over and above the effects of the controls, and crucially 

over that of semantic similarity, the model revealed a 

statistically independent significant main effect (p<.001) of 

the residualized syntactic distance. For every .1 increase in 

residualized syntactic distance, response latencies were 

increased by ~4 ± ~3 ms. As predicted by the probabilistic 

network hypothesis, the less related the prime and target in 

syntactic space, the longer it takes to recognize the target. 

There was also a marginal interaction of JSD with ISI (p=.07). 

The trend resembled that observed for LSA: longer ISIs lead 

to an attenuated contribution of syntactic similarity. However, 

given the marginal status of the effect, we do not interpret it 

further. 

Discussion 

The present study finds a relatively strong effect of syntactic 

similarity on lexical priming magnitudes. In fact, the effect 

was similar in strength –if anything stronger– to that of 

semantic similarity. To our knowledge, this study is the first 

to demonstrate that pre-activating a word's syntactic space 

affects access to that word in a prima facie non-syntactic task. 

This effect provides support for the probabilistic network 

hypothesis, which predicts that words and syntactic 

structures are interdependent, and that these connections are 

forged and tuned by experience. Crucially, these probabilistic 

relationships are at the core of the grammatical apparatus – 

they are not simply attributable to the extra-grammatical 

conceptual system. If that were the case, we should have 

found no effect of syntactic similarity once semantics was 

accounted for. 
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   The data we rely on here do not provide us with a 

non-primed baseline, meaning that we cannot distinguish a 

facilitation effect of syntactic similarity from an inhibitory 

effect of syntactic dissimilarity. We therefore leave this 

question for further research. However, the similarity in 

shape between the syntactic and semantic effects suggest that 

syntax –as is argued for semantics (e.g., Lam et al, 2015)–  

constrains the set of lexical candidates prior to the lexicality 

judgment. Furthermore, it suggests that syntax, like 

semantics, is obligatorily accessed as soon as lexical forms 

become active. Crucially, the relationships between words 

and syntax become active even when (overt) syntactic 

structure is not built into the stimuli and not really necessary 

for performing the task. Recent psycholinguistic work on 

single-word production has echoed this point. For example, 

Lester and Moscoso del Prado Martín (2016) report 

chronometric findings suggestive of large-scale 

interactivation between syntax to lexicon in a bare-noun 

picture-naming task. Other studies have found that syntactic 

category information is likewise obligatorily activated in 

non-syntactic production tasks (e.g., Durán and Pillon, 2011). 

The present study extends these findings from production to 

comprehension, from spoken language to written language, 

and from a simple to a primed paradigm. Hence, the 

converging evidence suggests that obligatory syntactic 

access, along with bi-directional activation between syntax 

and lexicon, is a general, modality-independent property of 

language processing.  

These data also speak to linguistic representation. 

Branigan and Pickering (in press) argue that, in order for 

priming to take place, some common connection must exist 

between the prime and target on the one hand, and the 

representations underlying the measurement of their 

similarity. This notion is applied to the relationship between 

words and conceptual content in the semantic priming 

literature (e.g., Lam, Dijkstra, & Rueschemeyer, 2015). 

Likewise, our results can be interpreted as reflecting that 

each noun's representation is explicitly connected to the set 

of syntactic structures in which it participates and that these 

representations are shared across words. Moreover, the 

probabilistic nature of our measure suggests that connection 

weights –not just the set of shared syntactic types– are 

represented in the lexico-syntactic network, exactly as 

predicted by usage-based models of linguistic representation 

(Diessel, 2015) and as evidenced in sentence-reading 

paradigms (Novick et al., 2003). Importantly, these findings 

are not consistent with modular-syntactic models (e.g., 

Chomsky, 1995), which posit only categorical relationships 

between words and syntax. Adapting the old adage, “you can 

take the noun out of syntax, but you can't take the syntax out 

of the noun.” 

A possible limitation is that we used Latent Semantic 

Analysis as a proxy for semantic related when 'cleaning' our 

syntactic measure of its semantic component. It remains 

possible –albeit, in our opinion, unlikely– that part, or even 

all, of the effects of syntactic similarity could be accounted 

for by a more fine-grained measure of semantic relatedness 

or similarity than that provided by LSA. 

Another possible limitation concerns the morphological 

structure of the words in our study. While we only included 

monosyllabic and disyllabic nouns, some of the tokens 

contained derivational morphology (e.g., actor). Morphology 

is known to interact with priming from other domains (e.g., 

semantics; Feldman et al., 2015). Therefore, it remains 

unclear to what extent morphology was contributing to both 

the shapes of the distributions we computed from the corpus 

and/or aspects of the priming relationship. In future research, 

it will be necessary to account for possible derivational 

relationships between target and prime, and to explore how 

morphological structure impacts syntactic diversity.  

  The interaction between our measure and the temporal 

offset between the prime and the target was only marginally 

significant. The SPP contains only two such offsets: 

extremely fast and extremely slow. We suspect that a more 

robust interaction might arise if one considers offsets 

intermediate between these extremes. Furthermore, by 

incrementally increasing the offset between 50 and 1050 ms, 

we would allow considering the ISI as the numerical 

magnitude it is (cf., Feldman et al., 2015), rather than as a 

bi-valued factor. 

   In sum, our results suggest that, in line with the 

predictions of usage-based theories of grammar, the 

representation of words is inextricably tied to the 

grammatical contexts in which these words are encountered. 

The results indicate that even the extremely fine-grained 

differences in syntactic use that can be found between words 

of a single class (nouns) have detectable effects on their 

processing and representation. This is true even in tasks 

–such as visual lexical decision– that do not to involve any 

explicit involvement of the syntactic system. In other words, 

in comprehension, the activation of the syntactic properties 

of a word is automatic. The word comes with its whole 

syntactic baggage. Furthermore, this syntactic baggage goes 

well beyond mere grammatical category information, and 

includes a rich, fine-grained account of the syntactic contexts 

in which each particular noun is used. 
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Abstract
In many natural domains, risks and rewards are inversely re-
lated (Pleskac & Hertwig, 2014). We sought to understand
how people might use this relationship in choosing among
risky gambles. To do so we, manipulated risk-reward struc-
tures of monetary gambles to be either negatively or positively
correlated, or uncorrelated. After substantial exposure to these
environments, participants completed a speeded choice task
among non-dominated gambles. Eye-tracking data from this
task suggests that participants often shifted their attention to
mainly one attribute in the correlated conditions, in which the
risk-reward relationship was present. This was an adaptive
strategy that resulted in a similar proportion of expected-value
maximizing choices, compared to a more compensatory pro-
cessing strategy.
Keywords: risk-reward relationship; decisions under risk; at-
tention; noncompensatory processing; adaptive cognition

Introduction
How likely is it to win the jackpot in the state lottery? Al-
though many people play this game for a small pay-to-play
fee, most of them also know that they are unlikely to win it.
In fact, the larger rewards that we desire are usually unlikely
to occur. While such a negative relationship between risks
and rewards or probabilities and payoffs exists across gam-
bles in many monetary and nonmonetary domains in the en-
vironment, this relationship is hardly every present in empiri-
cal studies of risky choice (Pleskac & Hertwig, 2014). In this
study, we investigated how people’s experience with differ-
ent risk-reward relationships impact how they process explic-
itly stated payoffs and probabilities in decisions under risk.
In particular, we studied how an environment in which risks
and rewards are correlated would be conducive for the use
of noncompensatory processing strategies, that ignore part of
the attributes, in a situation where time was limited.

Adaptive Decision Making
According to an adaptive view of cognition, people ex-
ploit statistical regularities in the environment (Simon, 1956).
As Payne, Bettman and Johnson (1993) found, the extent
to which people exploit structures in the environment can
largely depend on “the structure of the available alternatives,
and [...] the presence of time pressure” (p. 534). For in-
stance, people can decide to rely on a subset of cues in the
environment because cues are often interrelated (Brunswik,
1952). Despite using a reduced amount of information, this
can lead to good choices (Gigerenzer, Todd, & the ABC Re-
search Group, 1999). Here, we propose that the risk-reward
relationship is a key structure that people capitalize on to
make fast, adaptive (or value-maximizing) decisions.

Choice in Risk-Reward Environments

When should and do people rely on risk-reward structures
to inform their decisions? One case is when information is
missing, such as in decisions under uncertainty, where the
probabilities of obtaining a reward are unknown. In this case,
Pleskac and Hertwig (2014) showed that people use a risk-
reward heuristic, inferring the probability of a payoff from
the magnitude of the payoff itself. In a new set of studies, we
have also found that in using the risk-reward heuristic people
appear to adapt to different risk-reward structures (Leuker,
Pleskac, Pachur, & Hertwig, in prep.). In particular, we ex-
posed participants to different risk-reward environments by
asking them to price gambles from different risk-reward en-
vironments. Then we asked participants to choose between
an uncertain prospect (where the probabilities were unstated)
and a certain payoff. Participants’ preferences were again
consistent with them using a risk-reward heuristic, inferring
probabilities from payoff magnitudes. Moreover, their pref-
erences depended on the environment they had been exposed
to previously. For example, participants in the negative con-
dition chose the lower payoff, uncertain options more often
compared to the positive condition. Based on these results,
we sought to examine if and how people adapt their decision-
making processes to risk-reward structures in decisions under
risk, when payoffs and probabilities of the option are known.

The Current Study

Processing strategies. One way to distinguish between
processing strategies is to consider the amount of attributes
they rely on. Compensatory strategies process and trade off
of all available and relevant information. Noncompensatory
strategies “typically reduce processing demands by ignoring
potentially relevant information” (Payne, Bettman, & John-
son, 1988). Thus, one important reason to consider noncom-
pensatory processing strategies (despite information being, in
principle, available, as in risky choice) is when time or cog-
nitive resources are limited.

Strategy-environment dependence. Early research on
these two classes of strategies demonstrated that their suc-
cess largely depends on the environment in which they are
recruited. Specifically, in environments with nondominated
options (e.g., gamble A offers a higher payoff x, but gamble
B offers a higher probability p: xA > xB and pA < pB), people
should rely on compensatory strategies (see Table 2, Payne et
al., 1988). A decision maker who processes the dimensions
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Figure 1: Choice stimuli based on their relationship between probabilities and payoffs. Each point depicts one gamble from
the choice phase. Across conditions, probabilities and payoffs were (A) negatively correlated, (B) positively correlated or
(C) uncorrelated. Black circles are environment gambles (60 pairs). Triangles are common gambles interspersed in all three
conditions (15 pairs). Dominated options not depicted (5 pairs).

in a noncompensatory fashion in these environments—for in-
stance by relying on a simplifying heuristic that attends to
outcomes only—will suffer “a substantial loss in accuracy”
(Payne et al., 1993, p. 539). In contrast, such noncompen-
satory processing strategies have been shown to perform well
when dominance is possible (that is, one gamble is better on
all dimensions: if xA > xB and pA > pB).

Local vs. global environment. By definition, nondomi-
nated options create an inverse risk-reward relationship in a
given set of alternatives, because the gamble offering a higher
payoff will always be associated with a lower probability rel-
ative to the other gamble (xA > xB and pA < pB). However,
this “local” risk-reward relationship (within a pair of gam-
bles) can differ from a “global” risk-reward structure (across
a larger reference class of gambles). That is, nondominated
alternatives can be drawn from globally structured or unstruc-
tured environments. We propose that both the use and perfor-
mance of either type of strategy is also highly dependent on
these global risk-reward structures. Global correlations be-
tween risks and rewards make one of the cues redundant (pay-
offs predict probabilities and vice versa). Therefore, we hy-
pothesized that, when options are drawn from correlated risk-
reward environments, noncompensatory strategies can lead to
accurate, expected-value maximizing choices even if neither
option is dominated. For choices between nondominated op-
tions from globally uncorrelated environments, results may
resemble those of Payne, Bettman and Johnson (1988).

To test these ideas, we employed a between-subjects design
manipulating the global risk-reward relationship between the
possible options participants experienced (Figure 1). In a first
pricing phase, we showed participants individual gambles and
asked them to state their willingness to sell each gamble. We
used this phase to expose people to different risk-reward envi-
ronments. Detailed data from this phase will be reported else-

where. Our focus in this paper is the second phase, where par-
ticipants chose between pairs of risky options under moder-
ate time pressure (Figure 2). The gambles in the choice phase
were drawn from the same, condition-dependent risk-reward
environments, and paired such that neither option was domi-
nated. We tracked participants’ eye movements to dissociate
between processing strategies across the different risk-reward
environments, as choice patterns alone may not be sufficient
to do so. As an independent test of whether participants had
picked up the different risk-reward relationships, we asked
them to estimate probabilities from payoffs at the end of the
experiment.

Method
Participants
Ninety-three (55 female) participants (mean age = 25.6 yrs,
SD = 3.7; N = 31 per condition) from the participant pool
at the Max Planck Institute for Human Development, Berlin,
completed the experiment (duration ∼75 min). All partici-
pants were paid a fixed rate of e 12 plus a bonus based on
their performance in a random subset of trials from the pric-
ing phase and choice task (e 3.53-11.67).

Design
The experiment consisted of three phases. In the pricing
phase, participants were presented with single gambles and
asked to indicate their willingness to sell for each of them.
Between subjects, we manipulated the types of gambles peo-
ple were presented with such that payoffs and probabilities
were positively or negatively correlated, or uncorrelated. In
the subsequent choice task, these different risk-reward struc-
tures were maintained. People were asked to choose between
gamble pairs within 3s. All gambles were in the gain domain
(”p1 chance of winning x1, otherwise nothing”). We used an
experimental currency, the E$ (conversion rate 2500E$ =e 1,
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disclosed in the instructions). We collected eye-tracking data
during the exposure phase and the choice task. As people
are merely exposed to different risk-reward structures, partic-
ipants picking up risk-reward structures despite not being told
about the presence of any relationship in the data would con-
stitute a form of unsupervised learning. Finally, in the third
phase we asked participants to estimate the probabilities they
thought were associated with various payoff levels. We did
this to test whether participants had picked up the different
risk-reward structures from the gambles they were exposed
to throughout the study. Participants were not informed about
the estimation task beforehand.

Gamble environments. The gambles from the pricing and
choice phases were constructed such that across gambles,
there was a negative, a positive, or no relationship between
risks and rewards. For the negative condition, we drew
random payoffs from a uniform distribution (range 1.01 −
2500E$). The probabilities for each payoff were inversely
related to the payoff x such that, p = 1 − x

2500 . We added
normally distributed noise to logit-transformed payoffs and
probabilities. For the positive condition, we reversed the or-
der of probabilities such that the highest probabilities were
now associated with the highest rewards (and vice versa). For
the uncorrelated condition, we re-linked payoffs and proba-
bilities randomly.

Pricing task. The pricing task served to expose participants
to different risk-reward environments. Briefly, participants
were shown each of the 90 gambles from one of the envi-
ronments and asked to state a price they would be willing to
sell the gamble for. In addition to 90 condition-dependent
gambles based on the aforementioned construction rule, par-
ticipants were also asked to price 30 gambles that were com-
mon to each of the three conditions (triangles in Figure 1),
yielding 120 gamble stimuli per condition. To motivate par-
ticipants to report their true valuations of the gambles, we
implemented a Becker-DeGroot-Marschak auction (Becker,
Degroot, & Marschak, 1964). In particular, ten gambles were
selected at the end of the experiment and participants either
played out the gamble or received their stated selling price.

Choice task. Gambles were created using the same con-
struction rule as above. An initial set of 100 gambles yields
4950 possible gamble pairs. We randomly drew 60 non-
dominated gamble pairs per condition (see circles in Fig-
ure 1). By design of the study, expected value differences
were largest in the uncorrelated and smallest in the positive
condition (uncorrelated: Md = 173E$, .53 - 1374E$; neg-
ative condition: Md = 134E$, .49 - 511E$; positive condi-
tion: Md = 23E$, .43 - 146E$). In addition, we interspersed
15 gamble pairs that were common to each of the conditions
in the second half of the choice task (triangles in Figure 1),
and 5 choices with dominated options as catch trials, yielding
80 choices in total. Common gambles allowed us to exam-
ine condition-dependent processing differences on precisely
the same stimuli. Participants were instructed to choose their
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Figure 2: Typical choice trial. For trials that exceeded the
time limit, we presented an additional screen informing par-
ticipants that they had lost payoffs in that particular trial (not
shown). Eye-tracking data was recorded throughout, analyses
are based on the second screen.

preferred gamble within 3s (see Figure 2). Crucially, partici-
pants were informed in this task that the gambles were drawn
from the same population of gambles they had experienced
in the previous pricing task. Five randomly selected choices
were played out at the end of the experiment.
Estimation task. We drew 20 payoffs (range 1.01 −
2500E$) and asked participants to estimate the probabilities
that had been associated with these payoffs in the main ex-
periment.

Eye-tracking

During the pricing and choice tasks, we collected binocular
eye position data with an EyeTribe tracker, sampled at 60Hz.
The experiment was implemented in PsychoPy 1.83.01 and
the eye-tracking interface PyTribe (Dalmaijer, Mathôt, & Van
der Stigchel, 2013). Each participant’s eye movements were
calibrated using the Eyetribe UI with a 9-point grid before
each task (< 0.7). Participants were seated approximately
60 cm from the screen using a chinrest affixated to the table,
in a room with negligible ambient light. We preprocessed
raw samples by parsing eye-tracking data into fixations and
saccades using the saccades package in R (Saccades Version
0.1-1, 2015), based on a velocity-based algorithm (Engbert &
Kliegl, 2003). Eye-tracking analyses in this paper are based
on fixation data.

Analysis

The data were analyzed using Bayesian General Linear Mod-
els using Stan in R for regression analyses (RStanArm Version
2.9.0-4, 2016). We ran 3 chains (2500 samples each, burn-in
of 500), and investigated (convergence of) our posteriors vi-
sually and with the Gelman-Rubin statistic (Gelman & Rubin,
1992). We report the mean of the posterior distribution of the
parameter of interest and two-sided 95% equal tail credible
intervals (CI) around each value.
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Results

Behavioral

We excluded one participant in the negative condition who
chose the dominated option in 4 out of 5 catch trials.

Pricing task. For all participants, prices were strongly re-
lated to the expected values of the gambles (credible payoff
× probability interaction, b = .70, CI = [.66, .74]).

Choice task. Participants across all three conditions chose
the expected-value-maximizing options above chance level
(M = .71, CI = [.56, .85]). As expected, in the positive
condition (in which the EV differences between the options
were rather small) participants made fewer EV-maximizing
choices (M = .59, CI = [.51, .67]) than in the uncorrelated
condition (in which the EV differences were larger; M =
.70, b = .11, CI = [.00, .22]), and the negative condition
(M = .74, b = .25, CI = [.14, .37]). Controlling for EV
differences and individual variation, participants in the neg-
ative condition achieved a higher proportion of expected-
value maximizing choices (M = .70, CI = [.52, .88]) com-
pared to the uncorrelated condition (M = .31, b =−.39, CI =
[−.63,−.16]), and the positive condition (M = .39, b =−.32,
CI = [−.54,−.09]). In both models, the highest accuracy was
achieved in the negative condition. In the subset of gambles
that were common across all conditions, there were no dif-
ferences in accuracy between the conditions (M = .53, CI =
[.35, .72]).

Response times were comparable across all conditions and
gamble types. In addition, small proportions of timed-out tri-
als (negative: .006, positive: .016, uncorrelated: .013) indi-
cate that participants were well-adjusted to the speed instruc-
tion of 3s (Md = 1.63s even suggest that people could have
taken more time on many trials).

Estimation task. Participants’ probability estimates re-
flected the risk-reward structure they had been exposed to
previously. That is, participants in the negative condition
provided lower probability estimates for gambles with higher
payoffs (b = −.64, CI = [−.68,−.60], % per 100 E$), and
in the positive condition participants provided higher prob-
ability estimates for gambles with higher payoffs (b = .16,
CI = [.10, .14]). In the uncorrelated condition, participants
provided lower probability estimates for gambles with higher
payoffs (weaker slope compared to the negative condition:
b =−.32, CI = [−.37,−.26]).

Eye-tracking

We defined four areas-of-interest (AOIs), one for each payoff
and probability. We visually inspected the quality of every
participant’s eye-tracking data by plotting their fixations over
time. Seven participants whose fixations did not map onto the
screen correctly were excluded, a possible result of the eye-
tracker being moved during the experiment. We excluded one
further participant who was blind in one eye, leaving N = 84
for the eye-tracking analyses (27, 29, and 28 in the negative,
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Figure 3: Number of AOIs inspected per condition. Each dot
represents one participant’s average number of AOIs visited
per trial. Dashed line = mean number of AOIs visited across
participants. Differences between conditions are driven by
the composition of compensatory/noncompensatory strate-
gies (percent compensatory in negative: 44%; positive: 34%,
uncorrelated: 61%).

positive, and uncorrelated conditions, respectively).

Number of AOIs viewed. To test whether the presence of
a risk-reward relationship led to more noncompensatory pro-
cessing, we averaged the number of AOIs each participant
viewed (max. 4). Participants in the uncorrelated condi-
tion inspected the largest number of AOIs (M = 3.46, CI =
[3.45, 3.48]). Participants in the positive condition inspected
a credibly lower number of AOIs (M = 3.20, b = −.20, CI
= [−.23,−.18]). The negative condition also inspected cred-
ibly fewer AOIs, but the difference was smaller (M = 3.40,
b = −.06, CI = [−.08,−.03], model on the trial level). Us-
ing the average number of fixations as an alternative indicator
resulted in the same pattern of results, and only a marginally
higher count (uncorrelated condition M = 3.71, negative con-
dition M = 3.51, positive condition M = 3.39), likely be-
cause the time limit imposed in the experiment did not al-
low for many re-acquisitions (i.e., fixations back to a previ-
ously acquired AOI). Note that the mean number of fixations
is rather low (i.e. < 4). We ran the same AOI model using
only common gamble data (see triangles in Figure 1). Again,
the uncorrelated condition inspected most AOIs (M = 3.21,
CI = [3.09, 3.34]). This number was lower in the posi-
tive condition (M = 2.83, b = −.38, CI = [−.57,−.20], dif-
ference credible), and in the negative condition (M = 3.07,
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b = −.14, CI = [−.34, .04], difference however not credi-
ble). Because these gambles were identical across condi-
tions, this suggests condition-dependent processing strategies
are not merely a by-product of specific risk-reward environ-
ments that vary on crucial dimensions such as EV differences
between gambles. Figure 3 suggests substantial individ-
ual differences among participants in the conditions (indeed,
differences in numbers of AOIs inspected can be accounted
for by including participant as a grouping factor). More
importantly, however, visual inspection of the data suggests
two subgroups that can roughly be split by the mean num-
ber of AOIs inspected across participants (M = 3.11, dashed
line in Figure 3): Participants who tend to inspect all four
AOIs (“compensatory”) and participants who ignore some of
the AOIs (“non-compensatory”). Thus, differences between
conditions may be driven by the composition of compen-
satory/noncompensatory strategies (proportion compensatory
in uncorrelated: .61, positive: .34, negative: .44). That is, par-
ticipants in the uncorrelated condition were 2.85 times more
likely to rely on a compensatory strategy than participants in
the positive condition (b = 1.05, CI = [.07,2.04]). The dif-
ference between the negative and positive risk-reward envi-
ronments was not credible (b = .68, CI = [−.29,1.73], OR
= 1.97). A majority of participants in the correlated envi-
ronments thus seemed to rely on a noncompensatory strategy
(note that here such a strategy could also mean attending to
three out of four AOIs per trial, see Figure 3).

Attention to attributes. Which attributes did participants
attend to, especially when choosing to ignore some of the
information? All participants fixated most on payoff infor-
mation (.57 of fixations, CI = [.53, .61]). This proportion de-
creased for participants who inspected more AOIs (b =−.98,
CI = [−1.56,−.38]; no credible effect of condition). At the
extreme end, participants who, on average, inspected roughly
two AOIs fixated on the payoff 80% of the time. An alter-
native viable noncompensatory strategy would have been to
focus more on the information presented at the top or the bot-
tom of the screen. We counterbalanced the location of at-
tributes (between-participants). However, top/bottom fixation
proportions were unrelated to the number of AOIs inspected
(b = .03, CI = [−.60, .66]), suggesting that participants con-
sidered payoff information as more relevant when using non-
compensatory strategies.

EV choices by strategy. Do compensatory or noncompen-
satory strategies differ in performance within the three envi-
ronments? Figure 4 shows that users of a noncompensatory
strategy (triangles) achieved similar levels of EV-maximizing
choices compared to users of a compensatory strategy (cir-
cles), overall (M = −.10, CI = [−.39, .18]). Unexpectedly,
this held irrespective of condition (no credible strategy × con-
dition interaction). This result also held when controlling for
differences between the condition in EV difference between
the options. We expected that in the uncorrelated condition,
decision performance would be compromised for users of a
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Figure 4: Proportion of higher EV choices by a participant’s
average number of AOIs inspected per trial, condition, and
decision strategy. Circles = noncompensatory strategy users,
triangles = compensatory strategy users. The gain in EV-
maximizing choices associated with inspecting more AOIs is
more pronounced for participants in the uncorrelated condi-
tion.

noncompensatory strategy—who should lack critical infor-
mation to determine the EV maximizing option.

At the same time, across conditions, the proportion of
EV-maximizing choices was higher for participants who in-
spected more AOIs (main effect of AOIs inspected on EV
choice irrespective of processing strategy, b = .044, CI =
[.001, .089]). Within each subgroup, the increase in EV
choices with increasing numbers of AOIs inspected is more
pronounced for participants in the uncorrelated condition (see
black regression line, Figure 4). Yet, this interaction effect is
not credible, potentially due to the small number of partici-
pants in each subgroup (AOI × condition interaction with the
positive condition as a reference; compensatory: b = .02, CI
= [-.04, .09]), noncompensatory: b = .05, CI = [-.01, .11]). In
general, one would indeed expect that the increase in the pro-
portion of EV choices with higher number of AOIs inspected
is more pronounced for the uncorrelated condition because
this condition allows for least simplification.

Discussion
Risk-reward relationships allow people to make fast, value-
maximizing decisions. A majority of people exposed to
correlated risk-reward structures used noncompensatory pro-
cessing strategies, likely as a result of time pressure. With
fewer AOIs inspected, participants focused more on payoff
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information. In turn, most people who experienced an un-
correlated risk-reward environment attempted to take into ac-
count all attributes, speaking in favor of a more compensatory
processing strategy. This strategy use is adaptive given the
affordances of the different environments. While correlated
risk-reward environments made one of the attributes redun-
dant, such a relationship did not exist for gamble problems in
uncorrelated risk-reward environment. Condition-dependent
processing differences (i.e., numbers of AOIs visited) per-
sisted when restricting the analysis to a common set of gam-
bles interspersed in each of the conditions. Surprisingly, these
differences only had a minor impact on EV choice.

Earlier research suggested that noncompensatory strategies
fare well when dominance is possible, but not when neither
option is clearly dominated (Payne et al., 1988). We identify
one qualification of this prediction, showing that noncompen-
satory processing strategies can also perform well for non-
dominated option pairs; namely when a risk-reward relation-
ship is present in the global set that gamble pairs are drawn
from. Researchers have studied the influence such contex-
tual factors before. Birnbaum (1992) found that participants’
certainty equivalents for gambles were larger when a set of
certainty equivalents to choose from was positively skewed
(vs. negatively skewed). In addition, the marginal distri-
butions of payoffs, probabilities and delays can account for
psycho-economic functions that are often described in the lit-
erature (Stewart, Chater, & Brown, 2006). Here, we extend
such considerations by manipulating the joint distribution of
payoffs and probabilities.

Several limitations of the current study should be men-
tioned. First, it is currently unclear what underlies the strong
individual differences in noncompensatory/compensatory
strategy use in each condition. Potentially, some participants
did not perceive a time limit of 3s as pressing enough to opt
for noncompensatory strategies, or turned to different simpli-
fication strategies. Overall, the dichotomous distinction be-
tween compensatory and noncompensatory processors may
be too simplistic: For instance, some individuals attended to
three attributes on average (i.e., more than one class of at-
tributes such as two payoffs, one probability). Another pos-
sibility is that users of a noncompensatory strategy fixated
on some but glanced the other attributes (covert attention),
or changed strategies across trials. Lastly, more research is
needed to study the process by which people learn about dif-
ferent risk-reward structures (Klayman, 1988).

Conclusion
People’s choices and processing strategies are impacted by
the risk-reward structure in a given environment. Specifically,
correlated risk-reward environments allow decision makers
to use noncompensatory strategies when they need to reduce
processing demands. This strategy use is adaptive, given that
it does not need to compromise accuracy if it matches the en-
vironment. Many natural environments exhibit an inverse re-
lationship between payoffs and probabilities that can thus be

exploited in a similar way, when time or cognitive resources
are limited. These findings challenge theories of decision
making under risk, that often treat payoffs and probabilities
as independent attributes determining the value of an option.
In comparison, an adaptive decision maker may often have
good ecological reasons to process payoffs and probabilities
dependently.
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Abstract 

Vectors derived from patterns of co-occurrence of words in 
large bodies of text have often been used as representations of 
some aspects of the meanings of different words. Generally, 
the distance between such vectors is used as a measure of the 
semantic similarity between the word meanings they 
represent. One important way of evaluating the performance 
of these vectors has been to use them to answer vocabulary 
multiple choice questions (MCQs) where the participant is 
asked to judge which of several choice words is closest in 
meaning to a stem word. The existing vocabulary MCQ tests 
used in this way have been very useful but there are some 
practical problems in their use as general evaluation 
measures. Here, we discuss why such tests remain useful 
evaluation measures, introduce a new vocabulary test, 
evaluate several current sets of semantic vectors using the 
new test and compare their performance to human data. 
 

Keywords: Distributional semantics; vocabulary MCQ. 

Introduction 
There are many potential applications for a method that can 
reliably form the basis for measuring the semantic distance 
between words or concepts. Many methods achieve this by 
placing each word/concept in a multidimensional space 
where the dimensions are defined by the way in which 
words co-occur in corpora of real language use (Schütze, 
1993; Bullinaria & Levy, 2007; Turney & Pantel, 2010). 
The simplest such methods place a target word in a space 
defined by the count of how many times this word co-occurs 
with other words in the corpus with each of these context 
words defining a dimension. The resulting semantic vectors 
may also be smoothed by some kind of dimensionality 
reduction technique. Most current techniques retain only a 
small proportion of the number of initial dimensions (often 
300) and refer to these dense vector sets as “word 
embeddings” (e.g., Mikolov et al., 2013). Two words are 
then judged to be semantically similar if the vector distance 
between them is small. 

Various validation approaches have been used, but a 
particularly convenient way of evaluating such techniques is 

to measure how well they perform in a vocabulary multiple 
choice question (MCQ) test where a participant is asked to 
choose which of a number of choice words is closest in 
meaning to a stem word (not to be confused with a 
morphological stem). Often this amounts to choosing a 
(“key”) synonym, or the word that is closest to being a 
synonym, from the other choice words that act as 
distractors. For human participants, these tests are used to 
measure vocabulary knowledge. Such tests are ideal 
methods to use to evaluate co-occurrence techniques which 
construct semantic vectors for each word such that their 
distances are related to how substitutable the words are for 
each other. A linguistic intuition would be that if two words 
are substitutable for each other in everyday language then 
they are synonyms or at least very closely semantically 
related. 

Landauer and Dumais (1997) used the performance of 
their LSA (Latent Semantic Analysis) method on the retired 
items of a once commercially available test of English 
vocabulary the TOEFL (Teaching of English as a Foreign 
Language). They reported a performance of 64.4%, well 
above chance and equivalent to acceptable performance for 
entry to a US University. This MCQ test has been the most 
widely used vocabulary test to date for evaluating 
distributional semantic vectors1. Turney (2001) also 
describes a commercially available test, the ESL, and this 
has been used to evaluate such methods. Another candidate 
MCQ test would be the one used by Adelman et al. (2014) 
from Shipley (1940). This is a 40 item vocabulary MCQ 
using some now somewhat archaic US English usages. It 
has the advantage of being freely available in the appendix 
of a historic journal article. Such tests are valuable 
evaluation measures for semantic representations in that 
they are independently designed to measure the performance 
of human participants. However, they have a number of 
disadvantages if they are used as the only evaluation: 

                                                             
1The ACL Wiki lists the performance of some key approaches: 

https://www.aclweb.org/aclwiki/index.php?title=TOEFL_Synony
m_Questions_(State_of_the_art) 

2549



• They are at least relatively commercially sensitive as 
making a real-word test freely available would render it 
useless as a fair measure of human vocabulary knowledge. 
We have always found that researchers who report the use 
of such tests have been helpful and generous in making the 
test items available to other researchers but, inevitably, the 
commercial/practical sensitivity of the items is an obstacle 
for widespread open publication of them. This can prevent 
the clear reporting of slight changes made to the items due 
to low frequency word forms (or USA/UK spelling variants) 
not appearing, or not appearing frequently enough, in the 
corpora used, which can lead to papers reporting results of 
slightly different tests. 

• They are relatively small as they are designed to be 
completed in a reasonably short period of time by the 
human testees. 

• The individual questions may not be uniform in 
terms of difficulty or kind of semantic relationship being 
tested. A question may test knowledge of near-synonymy or 
one of a degree of some other kind of semantic similarity 
such as category membership. 

In this paper, we describe a new 200 item MCQ 
vocabulary which we will make freely available. The test 
has been constructed using the lexicographical judgements 
implicit in the construction of the noun entries in WordNet 
(Fellbaum, 1998). Half of the stem words in the test are 
relatively high frequency (in the psycholinguistically 
relevant sense) and half are low frequency. Word frequency 
is a dominant lexical variable for human language 
processing and especially so in instruments, such as this 
one, that are designed to measure vocabulary knowledge. 
The 200 MCQ set is large enough to be performed 
comfortably by human participants and to be split into 
subsets for training and testing when using machine learning 
techniques. 

As noted above, vocabulary MCQ tests have frequently 
been used as evaluation measures for distributional semantic 
vectors. However, some of the most recent methods for 
generating such semantic vectors (e.g., Mikolov et al., 2013; 
Pennington et al., 2014) have emphasised evaluation using 
sets of analogy problems. We would argue that both 
vocabulary and analogy tests are important in evaluating the 
semantic competence of distributional semantic vectors, as 
well as being useful in models of human semantic 
performance. Here, we therefore evaluate three promising 
recent semantic vector techniques using our new vocabulary 
test. 

In constructing our new test, we use WordNet (Fellbaum, 
1998), a freely available lexicographic database organised 
around lists of synonyms (synsets) for the different senses 
of each word in the database. This allows us to use the 
independent linguistic judgements of the WordNet team as a 
standard for competence in tests of synonymy judgements 
on the vocabulary MCQ items that we construct. 

We consider that MCQ vocabulary tests are interesting 
psychological tasks in their own right. It is likely that word 
frequency measures will dominate any quantitative model of 

relative question difficulty and that word familiarity (and 
proxies for this such as level of education or experience 
with English in the case of the data described here) is likely 
to dominate models of individual differences in 
performance on these tasks. If a participant has never or 
very rarely come across a stem or synonym then, apart from 
the possibility of sensitivity to form-meaning symbolism 
(e.g., Levy & Thompson, 2008; Monaghan et al., 2014), 
they are unlikely to perform well on test items containing 
these words. However, there remains the strong possibility 
that semantic distances between stem and synonym, stem 
and distractors and synonym and distractors will affect 
question difficulty and the choice of distractor when an 
MCQ item is answered incorrectly. Semantic vector 
techniques are a good resource for calculating these 
distances. Thus, vocabulary MCQs are useful measures for 
evaluating the competence of semantic vector techniques, 
and semantic vectors are likely to be components of any 
complete model of human vocabulary MCQ performance. 

In the rest of this paper, we outline how we constructed a 
new 200 item vocabulary MCQ test, show how well three 
recent methods for generating distributional semantics 
vectors perform on the test, and compare the performance of 
the semantic vectors with human performance on the same 
test items. We intend to make the MCQ items and human 
data freely available as a research resource. 

Construction of New Vocabulary Test 
We constructed a set of 200 vocabulary MCQ items. This is 
larger than most of the evaluation benchmarks that have 
been suggested (allowing the set to be potentially split into 
independent training and testing components for reliable 
model selection purposes) but still a manageable number of 
items for individual human participants. 

 The words in the MCQs were chosen by using the entries 
for nouns in WordNet. All words considered for selection 
appeared in both the SUBTLEX-UK (Van Heuven et al., 
2014) and WordNet databases, and were dominantly tagged 
in their noun form in both databases. SUBTLEX-UK is a 
database constructed from BBC TV subtitling records and 
so this ensured that the words chosen were in common 
usage in the UK. 

We chose to generate stem-synonym pairs by using the 
synsets in WordNet because this gives us an independent 
benchmark for lexical semantic relations. By dividing the 
MCQ items into two subsets where one has relatively high 
stem frequencies and the other has relatively low ones, the 
vocabulary test controls one of the most important 
influences on human linguistic performance. 

The potential candidate list of stem words was divided 
into lower-frequency (LF) and higher-frequency (HF) 
subsets using the “Zipf” scale (van Heuven et al., 2014), 
which is based on the log10 transform of word frequency. 
Those authors argue that this scale is a better way to control 
frequency in a psycholinguistically relevant way than 
frequency per million word (fpmw) counts. For example, 
using these counts to select stimuli results in an 
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underrepresentation of relatively low frequency words that 
are familiar to human participants. 

These candidate lists were randomly sorted. Stems and 
synonyms (taken from the synsets associated with each stem 
noun) were selected from this list such that the final HF and 
LF subsets consisted of pairs that were matched for stem 
word length, synonym frequency and synonym length. 
Hyphenated stem words or synonyms were excluded from 
selection. Three distractor words were selected at random 
from the remaining nouns in WordNet and SUBTLEX-UK 
with a Zipf frequency greater than two. The mean distractor 
length and frequency (over the three distractors) was 
pairwise matched to the synonym. Mean stem, synonym and 
distractor characteristics are shown in Table 1. 

 
Table 1: Mean Zipf Frequency (F) and word length (L) for 

Stem, Synonym (Syn) and Distractor (Distr) words 
 

MCQs Stem 
F  

Stem 
L 

Syn 
F 

Syn 
L 

Distr 
F 

Distr 
L  

LF 3.0 6.3 3.6 6.4 3.6 6.3 
HF  4.8 6.4 3.7 6.5 3.7 6.6 

 

Human Performance on the Vocabulary Test 
The vocabulary MCQ test was given to 85 monolingual 
English speaking undergraduate student participants and 77 
non-monolingual students. Their performance is 
summarised in Table 2. 
 

Table 2: Performance (% correct) of monolingual and 
non-monolingual participants 

 
MCQs mean SD range 

Monolingual 
All 200  79% 10% 56% - 97% 
100 LF  72% 13% 46% - 96% 
100 HF 86% 8% 63% - 98% 

Non-monolingual 
All 200 71% 10% 49% - 92% 
100 LF 61% 12% 32% - 88% 
100 HF 81% 10% 52% - 96% 

 
    Mean performance is high but does not appear to be close 
to ceiling. The very best performance is close to maximal 
demonstrating that it is possible for humans to achieve a 
close to perfect score. 
   The mean scores for monolingual participants are higher 
than that for non-monolingual participants for the complete 
MCQ set and the two subsets. 

As would be expected for human performance, 
performance for the high frequency stems exceeds that for 
the low frequency ones with the non-monolingual 
participants demonstrating a larger deficit for low frequency 
stems. Clearly, human performance has been affected by our 
manipulation of stem frequency whilst matching the 

synonym and distractor frequencies between the low- and 
high-frequency subsets. The correlation between MCQ 
question item difficulty (as measured by overall percentage 
correct) and stem SUBTLEX-UK frequency is 0.41, 
suggesting that factors other than word frequency may be 
affecting human vocabulary test performance. 

Three participants achieved overall scores of 97% - six 
errors from the 200 MCQ items. These few errors were 
sometimes made on the same question by more than one 
participant and were also sometimes also made by the 
semantic vector methods. 

Semantic Vectors for Evaluation 
In addition to testing our new MCQ vocabulary test on 

human participants, we also used it to evaluate three 
available sets of semantic vectors, all derived from large 
text corpora but using contrasting methods to capture the 
patterns of word usage regularities. Our aim here is to 
illustrate how well a few recent methods that have been 
most successful on other semantic tasks are able to perform 
on this task, and not to make any claims about optimal 
methods or parameters. 

We compared the levels of success on the new vocabulary 
test using three different kinds of semantic vectors that span 
the range of approaches available: vectors derived from the 
methods described by Bullinaria & Levy (2012), the 
publicly available semantic vectors that were generated 
using one of the word2vec (Mikolov et al., 2013) methods 
(available at: https://code.google.com/archive/p/word2vec/) 
and the GloVe (Pennington, Socher & Manning, 2014) 
vectors derived from the co-occurrence matrix from  6, 42 
and 840 billion word corpora available at: 
http://nlp.stanford.edu/projects/glove/. 

The Bullinaria & Levy (B&L) vectors are derived from 
the ukWaC (Baroni et al., 2009) (2 billion words) corpus by 
counting word co-occurrences in a context window of size 
one and using those counts to generate a starting matrix of 
positive pointwise mutual information (PPMI) values for 
about 50,000 target words and 50,000 context words. This 
choice of window size and co-occurrence statistic was 
previously shown to be optimal for a range of semantic 
tasks (Bullinaria & Levy, 2007) and is now widely used. 
Singular Value Decomposition (SVD) dimensionality 
reduction is then used to generate orthogonal matrices U 
and V and diagonal singular value matrix S such that M = 
USVT, and dimensionality reduction is performed by taking 
the principal components of USP = MVSP-1 to produce 
semantic vectors with a dimensionality of 5,000 with the 
components weighted using a Caron (2001) P value of 0.25. 
These parameter values were optimised so as to perform 
well on four different semantic evaluation measures 
including a version of the Landauer & Dumais (1997) 
TOEFL MCQ vocabulary test, and achieved the current 
state-of-the art performance on the TOEFL MCQ1 test. 

The word2vec (W2V) vectors were generated using a 100 
billion word sample of the Google News dataset. Word2vec 
uses supervised learning algorithms to train a simple but 
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very large neural network model to predict either which 
words will appear in a window around the current word (the 
context given the current word) or which word will appear 
given the current context words.  There are a number of 
different methods and parameters that can be varied in what 
amounts to a family of techniques. We made use of the 
publicly available vectors which have 300 dimensions.  

The GloVe (G6, G42, G840) vectors were extracted from 
the files linked to on the GloVe website. The G6 vectors 
were generated from a 6-billion-word corpus derived from 
Wikipedia. The 42B and 840B vectors were generated from 
42 billion and 840 billion word corpora derived from 
Common Crawl archives (obtained by an automated process 
of systematically browsing the web). All the GloVe vectors 
used here have 300 dimensions. The GloVe method uses 
regression modelling to learn semantic vectors from the 
non-zero entries of a word co-occurrence matrix such that 
the dot product between the vectors for a pair of words 
equals the logarithm of their probability of co-occurrence. 
Pennington et al. (2013) show that their vectors perform 
well on the analogy problem set that was also used to 
evaluate the word2vec methods. 

Levy, Goldberg and Dagan (2015) have argued that the 
three broad semantic vector techniques used here have 
similar levels of overall performance when appropriately 
tuned.  

17 of the 1,000 words within the 200 MCQs did not 
appear in the word2vec vector sets due to differences in UK 
and USA English. For these words, we used the vectors 
derived from the USA spelling variants. 7 words did not 
appear in the GloVe vectors derived from their 6 billion 
word corpus. For these words, we substituted related words 
that did appear in the vector set. The other semantic vector 
sets contained all the 1,000 words used in this MCQ 
vocabulary set. 

Clearly, there are a number of differences in the corpora 
and parameters used for the three methods and so this 
exercise cannot reliably compare the success of the different 
methods in general, but serves as a comparison of a number 
of different off-the-shelf semantic vector sets. 

Semantic Vector Performance on the 
Vocabulary Test 

We compared the performance of the five different vector 
sets on all 200 items and on the LF and HF subsets. Mean 
performance is summarised in Table 3. 

 
Table 3: Performance (% correct) of the five different 

vector sets. 
 

MCQs B&L W2V G6 G42 G840 
All 200  91.0 87.0 86.5 89.5 92.0 
100 LF  93.0 87.0 86.0 92.0 95.0 
100 HF 89.0 87.0 87.0 87.0 89.0 

 
All three types of semantic vector perform well but not 

perfectly. None of them match the competence standard of 

the WordNet-based MCQ test. The GloVe vectors trained 
on an 840 billion word corpus comes closest to matching the 
very best performance of human participants. However, all 
the vector sets exceed the mean performance of the human 
participants by large margins. 

The LF and HF subsets are distinguished by the 
SUBTLEX-UK frequencies of their stem words. The 
frequencies (and word lengths) of synonyms and distractors 
were matched between subsets. Unsurprisingly, the human 
participants performed better on the HF subset than on the 
LF subset, presumably reflecting the association between 
word frequency and the familiarity that participants had 
with the stem words.  However, in three of the five sets, the 
semantic vectors performed better on the LF subset than the 
HF one. Since even the smallest corpus used for generating 
the semantic vectors was 2 billion words in size, it is likely 
that all the words used in the vocabulary MCQ test were 
sampled a great many times and that this overcame any 
difference in the reliability of the semantic representations 
due to frequency differences. For the 2 billion word ukWaC 
corpus that we used (by far the smallest of the corpora used 
to train the methods compared here), Table 4 gives the 
frequency statistics for the vocabulary MCQ test synonyms. 
There is a very large variance in frequency values within 
each subset. The mean frequency for the LF subset is 3993 
with the lowest stem frequency being sampled 98 times in 
the corpus. The correlation between the log10 ukWaC corpus 
synonym frequencies and their SUBTLEX-UK Zipf 
frequencies is 0.93. 

 
Table 4: ukWaC frequencies for the stem words in the 

vocabulary MCQ test 
 

MCQs mean SD range 
All 200  119,809 198,796 98 – 1,057,891 
100 LF  3993 5099 98 – 36,571 
100 HF 235,625 228,725 12,291 – 1,057,891 

 
We suppose that any differences in performance for the 

semantic vectors on the LF and HF subsets is due to an 
inadvertent bias in the distribution of semantic distances 
between the MCQ words that is revealed when the statistical 
reliability related to word frequency differences is made 
irrelevant due to very high degrees of corpus sampling. It is 
likely that there is a higher degree of semantic ambiguity for 
the high frequency stems and this may have affected the 
MCQ results. We will explore these issues in further detail 
in modelling work in a future paper. 

The corpora used to train the vector generation methods 
ranged from 2 to 840 billion words. Although performance 
of the different methods differed by only a few percent, it is 
notable that the B&L vectors achieved one of the higher 
scores using a corpus of 2 billion words and that the GloVe 
vectors achieved higher scores as the corpus size used 
increased from 6 to 42 and then 840 billion words. The 
B&L method was tuned for previous work on a different 
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vocabulary MCQ test whilst W2V and GloVe have been 
reported as having notable success on the rather different 
domain of analogy problems. It is likely that further 
parameter tuning would increase the scores of all three 
methods on this specific task if not in general for other 
tasks. 

Landauer & Dumais (1997) reported that their LSA 
semantic vectors performed at a level of 64.4% on a TOEFL 
vocabulary MCQ test. This matched the performance of a 
large sample of applicants to colleges in the USA from non-
English speaking countries who averaged a score of 64.5%. 
This is close to the performance of our non-monolingual 
group on the 100 low frequency MCQs (61.4%). These LSA 
vectors were trained on a much smaller corpus than the 
other semantic vectors describe here (6.4 million words) and 
so, arguably, are a better psychological model of attaining a 
degree of semantic competence from a realistic scale of 
linguistic input. However, they did not approach the high 
scores required to claim to be a model of idealised semantic 
competence. 

As noted above, there were several MCQs where the same 
errors were made by some of the highest performing human 
participants and some of the vector methods. In some of 
these cases, it appears that the questions were made more 
difficult than expected by the random choice of distractor 
items leading to one of the distractors potentially being 
more closely semantically related to the stem than the 
intended synonym. An example is the intended stem, 
synonym, distractor1, distractor2, distractor3 MCQ: benefit, 
welfare, flask, advantage, lipstick. Here, two of the three 
highest performing participants and four of the five 
semantic vector methods made an error. Mean human 
accuracy was at below chance level. Because the vector 
methods have captured synonymy well, they show the 
potential for automatically measuring vocabulary MCQ 
difficulty in terms of semantic similarity over and above the 
effect of word frequency. 

Discussion 
In cognitive science, we are often interested in building 

idealised or technologically useful models of intelligent 
behaviour as well as psychologically valid ones. Ideally, 
these are complementary aims. The development of 
methods to generate distributional semantic vectors over the 
past 20 years is an interesting example of the possible 
tensions between these two types of model. Landauer & 
Dumais (1997) proposed LSA as a model of human 
semantic performance. LSA was partly validated by its 
success in matching human non-native performance in the 
TOEFL MCQ test. However, LSA was not capable of 
approaching perfect performance on the task. Current 
techniques have achieved very high levels of success on that 
task and similar ones such as the test proposed here. 
However, the amount of data used to train these models is 
very far in excess of the amount of text that a human could 
read in a lifetime. The use of distributional semantic vectors 
in the modelling of human performance (e.g., Pereira et al., 

2015; Mandera et al., 2017) and human brain activity (e.g., 
Mitchell et al., 2008; Bullinaria & Levy, 2013) is becoming 
more widespread due to better and more easily available 
semantic vectors. However, it remains unclear how the 
balance between idealised competence and realistic human 
performance can be modelled by such techniques and which 
corpora and parameter settings should be used. Some of 
these issues can be addressed in the straightforward arena of 
vocabulary MCQ tests. 

In this paper, we introduce a vocabulary test, based on 
WordNet synsets, that is both challenging enough for 
human participants not to be performed at ceiling and large 
and uniform enough to be useful as an evaluation measure 
for corpus-derived semantic vectors. 

We argue that we are within reach of developing 
distributional semantic vectors that can demonstrate 
competence in the important, if narrow, domain of 
synonymy judgement. However, there is much to be done in 
using such representations as components of models that 
can successfully account for actual human performance on 
these same tasks. 

Although the semantic vectors we tested were close to an 
idealised level of competence, they do not reflect the clear 
effect of synonym frequency in the human data. However, 
the ability of the semantic vectors to provide reliable 
measures of semantic similarity does show promise for 
modelling aspects of vocabulary MCQ question difficulty 
that are left after the influence of word frequency is 
accounted for. 

A single set of semantic vectors cannot both account for 
idealised semantic competence as defined by a resource 
such as WordNet and provide a model of average imperfect 
human performance. For tasks such as vocabulary MCQ 
tests, it may be necessary to use semantic vectors as models 
of competence and account for varying performance using 
simple psychologically valid variables such as word 
frequency or familiarity. Certainly, current methods for the 
generation of semantic vectors only obtain very high 
performance scores after training on enormous corpora, 
orders of magnitude larger than any human would 
experience. This may make them poor or partial models of 
human semantic learning but useful technological tools and 
cognitive modelling components. It remains to be seen 
whether semantic vectors with somewhat lesser levels of 
competence, perhaps trained on much smaller corpora, are 
better tools for modelling ordinary levels of human 
performance. 

Vocabulary MCQ tests have been useful measures of 
human word knowledge. In the past they have proved their 
worth as evaluation measures for semantic vector 
generation. They are psychological tasks in themselves and 
we have suggested here that semantic vector methods may 
allow us to model aspects of question difficulty that are 
related to relative semantic distances and this may also 
prove useful for the design of such instruments. 

Vocabulary MCQ tests are an important component in the 
evaluation of representations of lexical semantics. We have 
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argued that it is important that such representations can 
account for idealised performance and so reach perfect 
performance in these tests. Current techniques have not yet 
reached this level of competence. It would also be highly 
desirable if these techniques contributed to our ability to 
model the imperfect performance of human participants on 
semantic tasks. We argue that vocabulary MCQ tests serve 
as useful psychological tasks to model. By making our new 
test freely available along with human data, we hope to 
stimulate further research. 
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Abstract 

How do young children decide to trust testimony that 
contradicts their initial beliefs? The current study examined 
whether children rely on cues to informant credibility (i.e., 
history of accuracy) to determine if they would endorse an 
unexpected label from an informant. Three- and 4-year-olds 
(N = 60) saw a picture of a hybrid artifact that consisted of 
features of two typical familiar artifacts. Children made initial 
judgments about the name of the hybrid object and 
subsequently received a different name offered by an 
informant who had earlier either accurately or inaccurately 
named familiar objects. Children were more willing to revise 
their own judgment and accept the unexpected label if it was 
from a previously accurate informant than if it was from 
someone who had made obvious naming errors. This suggests 
that preschool-aged children selectively revise their own 
knowledge; they are more trusting toward sources proven 
accurate than inaccurate. 

Keywords: selective trust; accuracy; reliability; unexpected 
testimony; preschoolers 

Introduction 
Children not only learn from their own perceptions and 
observations of the world around them but also learn from 
information provided by others. Research on young children 
has underlined the importance of others’ testimony in 
knowledge acquisition in the early stages of development 
(see Gelman, 2009; Harris, 2007; Mills, 2013, for reviews). 
In particular, extensive studies have demonstrated that 
children show selective trust in testimony depending on an 
informant’s previously established credibility (e.g., Koenig, 
Clément, & Harris, 2004; Sabbagh & Baldwin, 2001; for a 
review, see Koenig & Sabbagh, 2013).  

Children show sensitivity to the prior accuracy of 
informants and make persistent use of such information to 
learn new words and new object functions (Birch, Vauthier, 
& Bloom, 2008), learn novel rules (Rakoczy, Warneken, & 
Tomasello, 2009), and solve problems (Palmquist & Jaswal, 
2015). This effect of accuracy has been established in 
studies that present children with two unfamiliar informants 
who consistently provide accurate or inaccurate information 
in the context of familiar objects and examine whether these 
children subsequently prefer the accurate over the inaccurate 
informant when the two informants offer conflicting novel 
information (e.g., two different names for the same novel 
object). By applying such a two-informant paradigm, 
research has shown that children aged 4 years, and 3 years 
under certain conditions, selectively endorse new 
information from the accurate informant over the inaccurate 
one (e.g., Koenig et al., 2004; Nguyen, Gordon, Chevalier, 
& Girgis, 2016).  

Although the two-informant paradigm has proven 
informative, children’s selective trust toward one of two 
informants leaves open questions of how children evaluate 
and learn from a single informant—a situation in which 
children are typically involved in everyday interactions 
(e.g., Lane & Harris, 2015). Furthermore, the mechanisms 
underlying children’s assessment of the testimony from a 
single source versus two contrasting sources may be 
different. For example, 3- and 4-year-olds would endorse 
new information from a previously inaccurate informant as 
long as there was no other informant who proposed an 
alternative (Vanderbilt, Heyman, & Liu, 2014). This 
suggests that in general children prefer to endorse testimony 
from an accurate versus an inaccurate informant, but yet 
they are willing to trust the testimony of a single inaccurate 
informant if that is the only testimony available.  

The studies presented above are related to children 
learning something that they do not have any prior 
knowledge of. However, acquiring new knowledge is 
plausibly a simpler process than accepting something that 
conflicts with one’s own knowledge or violates one’s 
expectations (hereafter as unexpected testimony). It remains 
unknown to what extent children’s acceptance of 
unexpected testimony would be influenced by the 
informant’s past accuracy. Specifically, in the absence of 
another person’s testimony, would children still trust a 
previously inaccurate (or accurate) informant’s testimony 
when it is contrary to one that they have previously formed 
on their own? A related line of research has shown that 3- to 
4-year-olds are indeed credulous and tend to give up their 
own beliefs to accept other’s statements that are 
counterintuitive or overtly misleading, particularly when the 
speaker’s communicative intent is salient (e.g., Heyman, 
Sritanyaratana, & Vanderbilt, 2013; Lane & Harris, 2015). 
Research examining preschoolers’ advice-taking (Rakoczy, 
Enrling, Harris, & Schultze, 2015) also demonstrated that 3- 
to 6-year-olds were more likely to adjust their own social 
judgments when receiving advice from an expert rather than 
an ignorant advisor, suggesting that children do keep track 
of informants’ credibility and use such cues in adjusting 
their own inferences. However, no studies have examined 
whether an informant’s history of accuracy would affect 
children’s willingness to revise their own testimony in face 
of testimony different from their own beliefs, and in the 
context where there was no other informant offering 
alternative testimony. 

The current study seeks to use the single-informant 
paradigm to explore the extent to which 3- and 4-year-olds 
use informants’ past accuracy as a cue to evaluate testimony 
that contradicts their own beliefs about object labels. The 
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task was modeled after Vanderbilt et al. (2014) and Jaswal, 
Lima, and Small (2009). Children were presented with 
pictures of ambiguous hybrid artifacts each involving 
features of two typical and familiar objects (e.g., car-shoe), 
and were asked to provide a name for each hybrid artifact. 
We examined how children would react to a previously 
accurate or inaccurate informant who provided an 
unexpected label, which was not misinformation, but one 
that always contradicted the children’s own beliefs. This 
would test whether children are willing to give up their own 
(prior) beliefs to accept the informant’s testimony. Based on 
previous findings that preschoolers show robust sensitivity 
to informants’ past accuracy, we predicted that children 
would be trusting toward the previously accurate informant 
and accept this informant’s unexpected labels, and that they 
would be skeptical about the previously inaccurate 
informant and, therefore, rather not change their initial 
judgments about the object labels. Additionally, it has been 
found that children with larger vocabulary (Jaswal, 2007) 
and those with disadvantaged executive function (Jaswal et 
al., 2014) were more credulous toward others’ testimony 
than those with smaller vocabulary and advanced executive 
function skills, respectively. Hence, children’s vocabulary 
and executive function ability were also assessed to control 
for potential confounds in this study. 

Method 

Participants 
A total of 60 3- and 4-year-olds (Mage = 49.64 months, SD = 
6.69, range = 35–61 months; 26 girls) participated in this 
study. Half of them were randomly assigned to the accurate 
condition and the other half to the inaccurate condition. 
Children were recruited from private childcare centers in a 
middle-class neighborhood in Singapore. Only children 
whose parents had given their consent were included in the 
study. The majority of participants (96%) were Asian and 
the rest were Eurasian. All children spoke English and the 
experiment was conducted in English. One additional child 
did not want to provide answers in the test phase and, 
therefore, was excluded from the final sample. Another 
eight children participated but were excluded due to 
experimenter error (n = 2) or failure to name familiar 
objects (see Design and Procedure, n = 6). 

Materials 
Video clips of a single informant naming photographs of 
objects were prepared and shown to children on a 13-inch 
laptop computer. The informant was a college-age female 
actor and with neutral facial expressions. In each video clip, 
the informant was seated behind a table with a picture 
placed on it. Pictures of three familiar objects (i.e., apple, 
ball, and book) were used in the familiarization trials to 
establish the informant’s accuracy. Eight typical exemplars 
of familiar categories were selected and paired to form four 
stimulus sets to be used in the test trials (i.e., key-spoon, 
car-shoe, toothbrush-pen, and hat-cup). For each stimulus 

set, features from the pair of typical exemplars were 
integrated to form a “hybrid” exemplar. These hybrid 
exemplars were designed such that each hybrid object 
looked mostly like one of the two typical exemplars of that 
set (i.e., dominant exemplar) but also shared some features 
of the other exemplar (i.e., non-dominant exemplar) such as 
a spoon-like key (see Figure 1). 

A total of 14 video clips was made, corresponding to 
three familiarization clips with the informant naming each 
of the familiar objects correctly (accurate condition), three 
familiarization clips with the informant naming each of the 
familiar objects incorrectly (inaccurate condition), four 
testimony clips featuring the informant naming the hybrid 
objects with the labels for the dominant exemplars, and four 
testimony clips featuring the informant naming the same 
hybrid objects with the labels for the non-dominant 
exemplars (see Figure 2). 

Design and Procedure 
This study employed a between-participants design. The 
procedure for both the accurate and inaccurate conditions 
was the same, except that the history of the informant was 
established differently during the familiarization phase. 

Children were tested individually in a quiet room at their 
childcare centers. Children were randomly assigned to one 
of the two conditions. All children were seated in front of a 
laptop computer and a female experimenter (a different 
 

       
  spoon-like key        shoe-like car     pen-like toothbrush     cup-like hat 

Figure 1. Hybrid objects used in the experiment. 
SELECTIVE TRUST IN UNEXPECTED TESTIMONY 23 

 

Fig. 1. Screenshots from familiarization video clips in the familiarization phase (top) and 

testimony video clips in the test phase (bottom). 

 

 

  

Accurate condition: Look 
at this! This is an apple. 
Inaccurate condition: Look 
at this! This is a dog. 

Accurate/inaccurate 
condition: This is a spoon. 
Look at the spoon. 

 
Figure 2. Screenshots from familiarization video clips in the 
familiarization phase (top) and testimony video clips in the 
test phase (bottom). 
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person from the informant in the video clips) was seated 
beside the child. The whole procedure was videotaped and 
children’s responses were coded from the videos. Each child 
received three familiarization trials (Familiarization Phase), 
followed by four test trials (Test Phase), and two explicit 
judgment trials. The experiment was designed and written 
using PsychoPy (Peirce, 2007). 
 
Familiarization Phase In the familiarization phase, the 
experimenter introduced the children to a single informant, 
a still image of whom was shown on the screen. In the 
accurate condition, children were then presented with three 
familiarization video clips, each showing the informant 
accurately naming a familiar object (i.e., labeling an apple, a 
ball, and a book correctly). In the inaccurate condition, 
children were familiarized with the same informant 
providing inaccurate information (i.e., saying that the above 
three objects were a dog, a tree, and a chair, respectively). 
After each familiarization video clip, children saw a picture 
of the same familiar object presented in the previous video 
(without the informant) and were asked by the experimenter, 
“Can you tell me what this is called?” This question was to 
make sure that each child knew the correct labels of the 
familiar objects, implying that the child was able to tell 
whether the informant had made errors or not. Children did 
not receive any feedback about whether they or the 
informant was correct. The order of the presentation of the 
three familiar objects was the same for all participants. 
 
Test Phase The experimenter proceeded to the test phase 
where children had to respond to a testimony that conflicted 
with their initial judgments (i.e., an unexpected but possible 
label for a hybrid object). Each test trial began with a 
picture of a typical object (e.g., a key) appeared on the 
computer screen and the experimenter asked the children for 
the name of the object. The purpose of the question was to 
ensure that the children knew the names of the typical 
objects. Six children were excluded because they failed to 
name one or more typical objects (two in accurate and four 
in inaccurate condition). The experimenter then showed a 
picture of the other typical object from the same stimulus set 
(e.g., a spoon) on the screen, and children were again asked 
what that object was called. Children were then presented 
with a picture of the hybrid object that included features of 
the two previously shown typical objects (e.g., a key-
spoon), and were asked if they knew what that object was 
called (pre-testimony test). Children’s answers to this pre-
testimony test were recorded as their initial judgments about 
the name of the hybrid object. The experimenter then told 
the children, “Okay. Now, let’s hear what the girl will say 
about this.” and played a testimony video clip, where the 
informant and the picture of the same hybrid object 
appeared in the clip, and the informant always provided a 
label that was different from what the children had indicated 
earlier. Subsequently, children were shown the picture of 
the hybrid object on the computer screen for a second time 
(without the informant) and were asked by the experimenter 

what the hybrid object was called (post-testimony test). 
During the test phase, children received neutral feedback 
following a response, regardless of what their answers were 
(e.g., “Thank you!”). All children completed four test trials. 
The order of the two typical exemplars of each stimulus set 
was fixed, such that, for two sets of stimuli (key-spoon and 
hat-cup), the dominant exemplars were shown first, and for 
the other two sets (car-shoe and toothbrush-pen), the non-
dominant exemplars were shown first. The order of the four 
test sets was randomized for each participant. 
 
Explicit Judgment Trials After children completed all four 
test trials, the experimenter asked two questions assessing 
children’s evaluation about the informant. With the picture 
of the informant presented on the screen, children were 
asked, “Was this girl good or not good at telling the names 
of the pictures?” Finally, the experimenter showed a picture 
of a novel object and asked children whether they would 
seek the informant’s help for the name of the object, “If you 
wanted to know what this new thing was called, would this 
girl be a good person to ask?” This question was included to 
replicate Vanderbilt et al.’s (2014) results on children’s 
overwhelming judgment of the accurate/inaccurate speaker 
as being a good person to ask for the label of a novel object.  

In addition to performing the above experiment 
investigating selective trust in unexpected testimony, all 
children completed the Peabody Picture Vocabulary Test 
(PPVT-4; Dunn & Dunn, 2007), which measures receptive 
English vocabulary, and the Dimensional Change Card Sort 
task (DCCS-standard version; Zelazo, 2006), which assesses 
executive function. Both PPVT and DCCS tasks were 
administered and scored following standard procedures. For 
the PPVT, each child obtained a standardized score with a 
mean of 100. For the DCCS, children were classified as 
passing or failing the task based on performance on the 
post-switch phase of the DCCS. 

Results 
The number of times (out of 4 trials) when children adopted 
the different labels provided by the informant rather than 
persisting with their initial answers about the names of the 
hybrid objects on post-testimony test was calculated for 
each participant as the dependent variable. Thus, the scores 
indicate how children are willing to trust the informant and 
accept the informant’s testimony that is contrary to their 
own. Preliminary analyses confirmed no effects or 
interactions involving children’s age, gender, stimulus set, 
or test order; therefore, further analyses collapsed across 
these factors. We report 95% confidence intervals and effect 
sizes for our statistical tests. In the case of comparisons of 
group means these confidence intervals refer to the observed 
mean difference. 

We first evaluated whether children in the two conditions 
had comparable language and executive function abilities. 
Vocabulary scores on PPVT-4 were not significantly 
different between the conditions (accurate: M = 95.07; 
inaccurate: M = 96.17), t(58) = -0.35, p = .73, Cohen’s d = -
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0.092, 95% CI of the difference [-7.45, 5.25]. Regarding 
performance on the DCCS task, children in the two 
conditions were comparable in terms of the proportion of 
children who passed the task (accurate: 20/30 passing, 67%; 
inaccurate: 20/30, 67%), χ2(1, Ν = 60) = 0.00, p = 1.00, 
Cramer’s V = .00. Correlational analyses revealed that 
neither the PPVT scores nor the DCCS scores were related 
to children’s likelihood of endorsing the informant’s 
testimony across the two conditions, rs < .042, ps > .74.    

In addition, all children, regardless of the experimental 
condition, correctly named the familiar objects and the 
typical exemplars during the familiarization and test phase 
respectively. Analyses of children’s responses in the pre-
testimony test trials, where children were to name the hybrid 
objects for the first time, indicated that children provided 
labels matching the dominant exemplars on 92% of the 
trials and labels matching the non-dominant exemplars 8% 
of the trials. There were equivalent number of pre-testimony 
trials where children chose the non-dominant label in 
accurate and inaccurate conditions (7 vs. 13 trials, 
respectively). Nevertheless, the informant always provided 
the label that was different from the children’s label for the 
hybrid object in the testimony video clips (thus unexpected).  

Crucially, we were interested in whether 3- and 4-year-
olds would respond less credulously to the unexpected 
testimony from an informant who demonstrated inaccuracy 
at naming familiar objects compared to an informant with a 
history of accuracy, that is, whether children would discard 
their own labels and accept the unexpected labels from the 
informant in the post-testimony test.  

As seen in Figure 3A, children were more willing to 
revise their answers and accept the unexpected testimony in 
the accurate condition (M = 3.60, 95% CI [3.15, 4.06]) than 
in the inaccurate condition (M = 1.33, 95% CI [0.88, 1.79]), 
U = 123.50, z = -5.12, p < .001, r = -.66. Examining patterns 
of individual behavior revealed similar differences between 
accurate and inaccurate conditions. We calculated the 
number of children in each condition who endorsed the 
unexpected testimony on 0, 1, 2, 3, or 4 out of four trials. 
Chi-square tests showed that the distribution of children 
across various patterns of responses was different between 
the accurate and inaccurate conditions, χ2(4, Ν = 60) = 
30.64, p < .001, Cramer’s V = .72. There were more 
children who accepted the informant’s testimony on 3 or 4 
trials in the accurate condition (n = 28) than the inaccurate 
condition (n = 7). None of the significance levels were 
affected by removing data from test trials where the child 
chose the non-dominant label in the pre-testimony test 
before the informant providing different testimony. 

Lastly, children’s responses to the two explicit judgment 
questions were analyzed 1 . In line with the patterns of 
information endorsement, significantly more children in the 
accurate condition agreed that the informant was good at 

                                                             
1 Three children in the inaccurate condition did not provide 

answers to the “good or not good” question and one child in the 
accurate condition did not provide answers to the “ask for help” 
question. 

naming the pictures compared with those in the inaccurate 
condition (90.0% vs. 51.9%), χ2(1, Ν = 57) = 10.24, p = 
.003, Cramer’s V = .42 (see Figure 3B). However, there was 
no significant effect of condition on the question assessing 
children’s willingness to seek help from the informant for 
the label of a novel object, χ2(1, Ν = 59) = 2.59, p = .18, 
Cramer’s V = .21 (see Figure 3C). Children overwhelmingly 
judged that the informant, regardless of whether she showed 
a history of accuracy or inaccuracy, would be a good person 
to ask about the label of a novel object—89.7% of children 
did so in the accurate condition, and it was the case for 
73.3% of children in the inaccurate condition. These rates 
were in a similar range as those reported by Vanderbilt et al. 
(2014) where children were asked to judge whether an 
accurate or inaccurate source, either alone or paired with 
each other, would be a good person to ask for labels of 
novel objects (76%–90%). 

Discussion 
The current study examined the extent to which an 
informant’s history of accuracy influenced children’s 
endorsement of claims that conflicted with their 
independent beliefs about ambiguous hybrid artifacts. Using 
a single-informant paradigm, we found that 3- and 4-year-
olds’ trust toward unexpected testimony differed depending 
on the informant’s past accuracy. Specifically, while 
children consistently revised their own initial judgments and 
endorsed unexpected testimony from an informant who 
appeared to be accurate and knowledgeable about common 
objects, they were less likely to do so in response to 
someone who made naming errors with these common 
objects. This study provided novel findings that children 
consider an informant’s previous epistemic history when 
determining whether or not to revise their own prior beliefs 
in light of unexpected testimony. 

The present results challenge the notion that in the 
absence of conflicting testimony from another informant, 
young children generally trust a single informant who has a 
record of inaccuracy. This notion of trust toward a single 
inaccurate informant may be true only if children 
themselves do not hold any conflicting information at all. 
Vanderbilt et al. (2014) found that 3- and 4-year-olds were 
willing to trust the testimony of an inaccurate informant 
when there was no other informant offering an alternative. 
In contrast, children in the current study were less willing to 
accept the testimony provided by a single inaccurate 
informant in the absence of competing testimony from 
another informant. An important difference between this 
study and Vanderbilt et al.’s (2014) work, however, is that 
children in this study held a different interpretation of an 
object than the informant, whereas children in the previous 
study did not. Thus, the present results suggest that 
children’s own prior knowledge play an important role in 
selective trust, and that children would evaluate all 
available sources of information, including themselves, 
when determining whom to trust. In situations where 
children are mostly ignorant, such as labeling unfamiliar 
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objects, children are likely to perceive an informant who 
confidently provides testimony as more knowledgeable than 
them, even if the informant has made errors previously. 
Whereas in situations where children possess some prior 
knowledge, albeit loosely formed ones, such as labeling 
ambiguous hybrid objects in this study, children would 
evaluate the relative trustworthiness of the source of 
information against themselves. 

How do children determine the trustworthiness of an 
informant in relation to themselves? Past accuracy is one 
important factor. In the current study, children were more 
willing to discard their own beliefs in favor of an adult 
informant’s testimony when this adult had been proven 
accurate compared to an inaccurate informant. However, it 
remains an open question that whether the current results 
were due to a negative bias toward the inaccurate source of 
information, or due to both a preference for the accurate 
source and an avoidence of the inaccurate one. Future 
studies could further investigate this question by examining 
children’s responses in a control condition where no history 
of accuracy/inaccuracy would be provided. Age is another 
factor. Children in the accurate condition might perceive the 
accurate adult as a more credible source of information 
about what artifacts are called than them. In fact, 3- and 4-
year-olds were more willing to learn novel labels from an 
adult than from a child when both were equally reliable 
(Jaswal & Neely, 2006). However, children appeared to 
weigh accuracy over age in selective trust; they were found 
to trust a previously accurate child more than a previously 
inaccurate adult when learning new words. This is also true 
in the inaccurate condition reported here, such that 
children’s distrust toward inaccuracy was so robust that they 
assumed that an inaccurate adult was less reliable than them 
(a child). These results suggest that children consider 
multiple factors when evaluating the trustworthiness of 
another source of information compared with them, but 
weigh certain factors more than others (i.e., accuracy over 
age).  

Even though the present results showed that children 
demonstrated a reduced tendency to accept the testimony 
against their own judgments in the inaccurate condition, it 
remains debatable whether it was because the children 
believed that the inaccurate informant was not trustworthy, 
or that they simply had alternative information available 
(i.e., their own), or both. Our results showed that children 
gave up their own beliefs and accepted the testimony from 
an accurate informant on an average of 90% of trials (near-
ceiling), yet they were still willing to give up their own 
beliefs and accept the inaccurate informant’s testimony on 
an average of 33% of trials (a 0% would indicate absolute 
rejection). This implies that children may be more ready to 
accept an adult informant’s testimony than to reject it, even 
when the adult informant had been inaccurate previously, 
and even when the testimony conflicted with their own, at 
least possibly until they are provided with stronger evidence 
of the negative credibility of the adult informant (Ronfard & 
Lane, in press). 

Children’s degree of selective trust may thus be affected 
by various factors that reflect the extent of an informant’s 
credibility. For instance, children were found to be more 
forgiving with errors in the episodic domain (e.g., locations 
of objects) than in the semantic domain (e.g., names of 
objects); they used semantic errors but not episodic errors 
when evaluating informants’ trustworthiness in labeling 
objects (Palmquist & Jaswal, 2015). It is unknown whether 
children would remain skeptical toward unexpected 
testimony from an inaccurate informant who made episodic 
errors. Furthermore, hybrid artifacts were used in this study 
and the unexpected labels provided by the informant were 
always possibly “correct” and not entirely wrong, as the 
labels did contain some features of the hybrid, although they 
were contrary to children’s inferences. It is unknown 
whether children would still be willing to accept the 
accurate informant’s unexpected labels if the labels were not 
possibly correct (e.g., calling a spoon-like key a cat). 
Further research is needed to investigate how children’s 

								 								 	
 

Fig. 2. Mean proportion of trials children endorsed the unexpected testimony provided by the 

informant according to condition and age group. Error bars represent 95% confidence intervals. 

Asterisks indicate significant differences between conditions (*** p < .001). 
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Figure 3. Evaluation of the informant by condition: (A) number of trials (out of 4) children adopting unexpected testimony 
from the informant, (B) percentage of children agreeing the informant being good at naming pictures, and (C) percentage of 
children being willing to seek novel information from the informant. Error bars represent 95% confidence intervals. 
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selective trust may change depending on the types of errors 
made by the informants and when the unexpected labels are 
not actually possible. 

Last but not least, children’s openness to alternative 
information may be dependent on the strength of their initial 
beliefs. Indeed, Chan and Tardif (2013) found that 6-year-
olds were more accepting an alternative when they felt less 
certain about their own prior knowledge. In the current 
study, children who chose the non-dominant label in the 
pre-testimony trials might be less certain about their answer 
and more prone to revise. Therefore it was important to 
control for children’s initial choice (there were only limited 
number of trials with the non-dominant label thus they were 
excluded). 

To conclude, the current study showed that when 
confronted with different testimony from others, young 
preschoolers selectively revised their own inferences 
depending on the informant’s past accuracy. Young children 
are savvy in that they can use such credibility cues to 
evaluate another individual who holds different opinions 
from them and decide whether to adjust their own beliefs or 
not accordingly. The ability to appropriately evaluate the 
reliability of various sources of information and update their 
own knowledge correspondingly is important, since reliable 
sources allow children to learn efficiently while unreliable 
sources increase the risk of being misinformed. Our findings 
suggest that this ability is emerging in 3- and 4-year-old 
children. 
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Abstract 

Music notation and English word reading have similar visual 
processing requirements. It remains unclear how the two 
skills influence each other. Here we investigated the modula-
tion of music reading expertise on visual processing of Eng-
lish words through an ERP study. Participants matched Eng-
lish real, pseudo, and non-words preceded by musical seg-
ments or novel symbol strings in a sequential matching task. 
Musicians showed smaller N170 amplitude in response to 
English non-words preceded by musical segments than by 
novel symbol strings in the right hemisphere. This effect was 
not observed in real or pseudo-words, or in any of non-
musicians’ responses. Similar to English non-words, musical 
segments do not have morphological rules or semantic infor-
mation, giving rise to this modulation effect. This finding 
suggested a shared visual processing mechanism in the right 
hemisphere between music notation and English non-word 
reading, which may be related to serial symbol processing as 
suggested by previous studies.  

Keywords: Music reading expertise; EEG; event-related po-
tential (ERP); English word reading 

Introduction 
Recent research has shown that different perceptual exper-
tise domains can influence each other. For example, car 
perception was interfered by concurrent face perception in 
car experts (presumably also face experts) but not in car 
novices, suggesting shared neural processing mechanisms 
between car and face recognition expertise (Gauthier, Cur-
ran, Curby & Collins, 2003). In an ERP study, Rossion, 
Kung, and Tarr (2004) showed that expertise with Greebles 
led to a decrease in N170 in response to faces with concur-
rent Greeble presentation, suggesting competition between 
expertise domains in early perceptual processing.  

Similarly, music notation and English word reading ex-
pertise may influence each other due to their similarities in 
visual processing. For example, both music notation and 
English word reading involve decomposing visual input into 
components (i.e., letters or notes) for mapping to compo-
nents in sounds (i.e., phonemes or pitches; Brown, Martinez 
& Parsons, 2006; Hsiao & Lam, 2013). The requirement of 
grapheme-phoneme conversion in English word reading has 
been suggested to lead to a strong left hemisphere (LH) lat-
eralization. For example, a right visual field (RVF)/LH ad-
vantage has been found in word naming (e.g. Brysbaert & 
d’Ydewalle, 1990). Consistent with these findings, fMRI 
studies have shown a region inside the left fusiform area 

responding selectively to words (e.g. McCandliss, Cohen, & 
Dehaene, 2003). ERP studies showed that English words 
elicited larger N170 amplitude in the LH than the RH in a 
repetition detection task (Maurer, Brandeis & McCandliss, 
2005). This LH lateralization may be attributed to the left-
lateralized phonological processing (Rumsey et al., 1997). 

Similarly, in music notation processing, Segalowitz, Be-
bout, and Lederman (1979) reported a RVF/LH advantage 
in chord playing, which may be related to the requirement 
of mapping individual notes to different pitches/fingerings. 
Indeed, music notation and English word reading are shown 
to have shared neural mechanisms in the LH. For example, 
musicians with brain lesions in the LH showed difficulties 
in both music and English word reading (Hébert & Cuddy, 
2006). Also, both English and music notations are read from 
left to right, and thus letters and music notes are recognized 
in the RVF more often than the left visual field (LVF) dur-
ing reading, resulting in a similar RVF processing ad-
vantage due to perceptual learning (Wong & Hsiao, 2012). 

While the LH is shown to play an important role in Eng-
lish word and music notation reading, the RH is also in-
volved, particularly in visual form processing of words and 
notes. For example, in a lexical decision priming task, Eng-
lish word processing in the LVF/RH was shown to benefit 
from orthographically similar primes, whereas that in the 
RVF/LH benefitted from phonologically similar primes. 
This result suggested that the RH and the LH had differen-
tial advantages in orthographic and phonological processing 
of English words (Lavidor & Ellis, 2003). Consistent with 
this finding, English word processing in the RH has been 
reported to be more sensitive to variations in visual word 
forms. For example, the word length effect in English lexi-
cal decisions (i.e., faster and more accurate responses to 
shorter words) was only observed when words were pre-
sented in the LVF/RH but not the RVF/LH, suggesting that 
RH word processing involves more letter-by-letter recogni-
tion/serial processing than that in the LH (Lavidor & Ellis, 
2001). Similarly, in music note processing, a right lateral-
ized or bilateral visual processing mechanism has been ob-
served. For example, fMRI studies have shown that the right 
occipitotemporal region was associated with music sight-
reading (Schön, Anton, Roth & Besson, 2002). Bilateral 
activations in the fusiform and inferior occipital gyri in mu-
sicians were also reported in a note selection task. 
(Proverbio, Manfredi, Zani & Adorni, 2013). In a divided 
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visual field study, no lateralization effect was observed in 
sequential matching of notes and chords (Li & Hsiao, 2015). 

 Although previous research has suggested similarities be-
tween English word and music notation reading processes, it 
remains unclear how they influence each other. We have 
previously found that, whereas non-musicians showed a 
typical RVF/LH advantage in naming English words, musi-
cians showed an LVF/RH advantage and responded signifi-
cantly faster than non-musicians when words were present-
ed in either the LVF or the center position (Li & Hsiao, 
2015). This effect suggested a facilitation of RH English 
word processing due to music reading experiences. This 
phenomenon may be due to shared neural mechanisms be-
tween the two expertise domains in the LH that lead to re-
source competition, consequently making musicians rely 
more on RH processing for English word recognition. It 
may also be the similarities between music notation and 
English word reading processes in the RH accommodate 
each other, making the relevant processes more efficient and 
consequently facilitating RH English word processing. 

 While English word and music notation reading share 
similar visual processing requirements, they differ signifi-
cantly in their involvement in lexical processing. More spe-
cifically, English words follow morphological and ortho-
graphic rules with clearly defined segment boundaries and 
lexical representations, whereas musical segments do not 
follow as strict sequencing rules as words and are not asso-
ciated with specific semantic representations (Chan & 
Hsiao, 2016). Since previous research has suggested that LH 
English word processing is more relevant to phonological 
processing of English words whereas RH English word pro-
cessing is more sensitive to variations in visual word forms, 
the modulation of music reading experience on visual pro-
cessing of English words is likely to be mainly due to a 
shared processing mechanism in the RH. In addition, this 
modulation may be stronger in English non-word processing 
than the processing of real or pseudo-words, since non-
words do not follow morphological rules or have meanings, 
similar to musical segments. To test these hypotheses, here 
we conduct an EEG study to examine how music reading 
expertise influences visual processing of English stimuli. A 
sequential matching task is used to focus on visual pro-
cessing of English words. Following Rossion et al. (2004), 
here we examine how N170 responses to English words are 
influenced by the processing of music notes in musicians 
and non-musicians. We expect that musicians will have a 
stronger reduction in N170 response to English stimuli un-
der the processing of music notes than non-musicians in the 
RH, particularly for English non-words.  

Methods 

Participants 
Participants were 60 Cantonese (L1)-English (L2) bilinguals 
from Hong Kong, whose ages ranged from 18 to 29 (M = 
21, SD = 2.8). They had similar language and college educa-
tion backgrounds, with normal or corrected to normal vi-

sion. They were categorized as 30 musicians (14 males, 16 
females) and 30 non-musicians (12 males, 18 females). 

Musicians were well-trained pianists, who started music 
training at age 3-8 (M = 5.33, SD = 1.47). All of them were 
either piano teachers, music major students, or frequent pi-
ano players. They had attained grade 8 or above in the grad-
ed piano examinations of the Associated Board of The Roy-
al Schools of Music (ABRSM), with 8-25 year experience 
in piano playing (M = 15.03, SD = 3.89) and regular music 
reading hours per week (M = 7.16, SD = 12.33). Musicians 
outperformed non-musicians in musicality, as assessed by 
the Goldsmiths Musical Sophistication Index (Müllensiefen, 
Gingras, Musil, & Stewart, 2014; t(58) = 9.97, p < .001). In 
contrast, non-musicians did not receive any music training. 

Aside from their music background, musicians and non-
musicians were closely matched in handedness and lan-
guage exposure. Most participants were right-handed, which 
was assessed using the Edinburgh Handedness Inventory 
(Oldfield, 1971; M: 54.33, 3th right decile; NM: 64.33, 3rd 
right decile, n.s.). All participants started learning English as 
a second language at age 3, and have similar self-reported 
English reading hours (M: 27.48; NM: 18.77; n.s.). No par-
ticipants had experience with the Tibetan language. 

Materials 
Materials consisted of 3 types of English words (real, pseu-
do, and non-words with 4-6 letters) as target stimuli and two 
types of comparable pre-/post-stimulus masks: musical 
segments with 4 random notes without clefs (n = 1323) 
ranging from D4 to G5 and Tibetan letter strings with 4 ran-
dom letters (n = 1323). Tibetan letter strings, a novel stimu-
lus type that no participants had any experience with, were 
included as a control condition.  

English real words (n = 126) were selected from the 
SUBTLEX-US corpus (Brysbaert, New & Keuleers, 2012) 
and Wuggy (a word generator, Keuleers & Brysbaert, 2010). 
To control information distribution within a word, the same 
number of high-frequency words and low-frequency words 
were selected within the informative beginning and in-
formative end subsets in Bryden, Mondor, Loken, Ingleton 
& Bergstrom (1990). Word frequency was closely matched 
between ‘same’ and ‘different’ trials in the matching task 
and between music and Tibetan conditions. For ‘same’ trials, 
two target stimuli were identical. For ‘different’ trials, half 
trials had shared beginnings (e.g. banker, banner), while the 
other half had shared ends (e.g. salary, notary). 

English pseudo-words (i.e. non-existing words with legal 
letter strings at the word beginning and word end, n = 126) 
were created by extracting and recombining word begin-
nings and ends from our English real word list. This is to 
control information distribution at the word beginnings and  
ends between real and pseudo-word stimuli. For ‘same’ tri-
als, two target stimuli were identical. For ‘different’ trials, 
half trials had shared beginnings (e.g. banher, banord), 
while the other half had shared ends (e.g. saliew, supiew). 

English non-words (i.e., illegal letter strings, n = 126) 
were created by re-ordering the letters in the word begin-
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nings and word ends from our English pseudo-word list 
such that the letter combinations do not follow morphologi-
cal rules in English. This is to closely match the letters used 
in all conditions. For ‘same’ trials, two target stimuli were 
identical. For ‘different’ trials, half trials had shared begin-
nings (e.g. nbaerh, nbaodr), while the other half had shared 
ends (e.g. alsiwe, spuiwe). The non-words were checked 
against the morphologically ambiguous syllables in the 
ARC Nonword database (Rastle, Harrington, & Coltheart, 
2002) to ensure their suitability for our task.   

Design 
To focus on visual processing of English words, a sequential 
matching task similar to Gauthier et al. (2003) was used. 
The design consisted of 2 within-subject variables: English 
word type (real/pseudo/non-words), stimulus mask (musical 
segments vs. Tibetan letter strings), and 1 between-subject 
variable: group (musicians vs. non-musicians). In the ERP 
data analysis, an additional variable hemisphere (LH vs. 
RH) was included. Participants completed the task with 
English real, pseudo, and non-word stimuli with either mu-
sical segment or Tibetan letter string masks (Fig. 1). For 
each mask type, 36 ‘same’ and 36 ‘different’ trials were 
included for each word type condition. Half of the stimulus 
pairs in ‘same’ and ‘different’ trials were different in the 
two mask conditions to avoid practice effects. 

English words were displayed in Courier (a serif font with 
fixed width) to ensure constant center-to-center spacing 
between letters. Under the viewing distance 50 cm, each 
English word subtended a horizontal and vertical visual an-
gle of 4.06° x 0.95° (4 letters), 5° x 0.95° (5 letters) and 
6.35° x 0.95° (6 letters). Musical segments with 4 random 
notes in crotches (1 beat) with the five-line staff subtended a 
horizontal and vertical visual angle of 6.90° x 1.62°. Tibetan 
letter strings with 4 random letters were presented in Hima-
laya font and subtended a horizontal and vertical visual an-
gle of 6.90° x 1.62°. All stimuli were presented in black 
with a white background on a CRT monitor. Experiments 
were conducted using E-Prime v2.0 with 64-channel ANT 
EEG recording. A chinrest was used to reduce head move-
ment. The block and trial orders were randomized. 

Procedure  
Each trial started with a central fixation with a randomly 
determined presentation duration between 400-600 ms. A 
pre-stimulus mask (a musical segment or a Tibetan letter 
string) was presented for 600 ms, followed by an 800 ms 
presentation of the first target stimulus (a real/pseudo/non 
word). Then, a post-stimulus mask (a musical segment or a 
Tibetan letter string) was presented for 600 ms, followed by 
an 800 ms presentation of the second target stimulus (a 
same or different real/pseudo/non-word; Fig. 1). All stimuli 
were presented at the center of the screen. Participants 
judged whether the two target stimuli were the same or not 
by pressing buttons with both hands. The trial did not pro-
ceed to the 800ms ‘blink’ period until receiving partici-

pants’ response. Accuracy (ACC) and response time (RT) 
were recorded by Eprime with EEG recording.	  

Prior to the English word sequential matching task, a de-
mographic and music background questionnaire, the Gold-
smiths Musical Sophistication Index (Müllensiefen et al., 
2014) and Edinburgh Handedness Inventory (Oldfield, 
1971) were conducted to assess participants’ language, mu-
sic background, and handedness. 

 
Fig. 1. Procedure of the English word sequential matching 

Results 
In the English word sequential matching task, no significant 
difference was observed between musicians and non-
musicians in ACC and RT of matching real (M: 97.27%, 
606.02 ms; NM: 94.31%, 774.41 ms), pseudo (M: 97.04%, 
619.90 ms; NM: 93.29%, 698.58 ms) and non-words (M: 
95.88%, 598.58 ms; NM: 91.20%, 727.38 ms), suggesting 
that they had a similar performance level in the task.  

   The 64-channel EEG data were analyzed using EE-
GLAB (Delorme & Makeig, 2004) and ERPLAB (Lopez-
Calderon & Luck, 2014) in MATLAB. Bin-based epochs 
were extracted from -100 ms to 600 ms of the stimulus on-
set and corrected from baseline deviations using a pre-
stimulus window of 99 ms. The analyses of the N170 com-
ponent were based on the electrode pairs with the largest 
N170 amplitude from the grand average data. Accordingly, 
electrodes PO7 (LH) and PO8 (RH) were selected for the 
analysis of N170 response to the pre-stimulus masks (musi-
cal segments vs. Tibetan letter strings), while electrodes P7 
(LH) and P8 (RH) were selected for N170 responses to the 
first presentation of the English real, pseudo, and non-words 
preceded by musical segments or Tibetan letter strings, us-
ing repeated measures ANOVA. Note that we only analyzed 
the N170 responses to the first presentation of the English 
word stimuli since the EEG responses to the second stimu-
lus may be contaminated by button responses.. 
 

  
Figure 2. Average N170 amplitude at PO7 and PO8 in re-
sponse to musical segments and Tibetan letter strings (error 
bars = +/- 1 SE; *** p < .001, * p < .05). 
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In the ERP response to the pre-stimulus mask, a signifi-
cant interaction between mask type (music vs. Tibetan) × 
group (musicians vs. non-musicians) was observed, F(1, 52) 
= 31.80, p < 0.001: musicians had a larger N170 amplitude 
than non-musicians in response to musical segments, t(52) = 
-2.07, p = .044 (Fig. 2), whereas no difference was observed 
between the two groups in response to Tibetan letter strings. 
When we split the data by group, musicians had a larger 
N170 amplitude in response to musical segments than to 
Tibetan letter strings, F (1, 27) = 68.98, p < 0.001 (Fig. 2), 
whereas non-musicians did not show any significant differ-
ences in response to musical segments and Tibetan letter 
strings. These findings were consistent with the perceptual 
expertise literature showing that visual expertise increases 
the N170 amplitude in response to the stimuli in experts as 
an expertise marker (Rossion et al., 2004). No main effects 
or interactions with hemisphere were observed (Fig. 3). 

Figure 3. N170 amplitude in response to musical segments 
and Tibetan letter strings between musicians and non-
musicians in PO7 (LH) and PO8 (RH). 

 

 

          

 
Figure 4. N170 amplitude in response to English (a) real, (b) 
pseudo and (c) non-words preceded by musical segments 
and Tibetan letter strings between musicians and non-
musicians in P7 (LH) and P8 (RH) in sequential matching. 

For N170 responses to English words (the first target 
stimulus), a significant four-way interaction, mask type 
(music vs. Tibetan) x word type (real vs. pseudo vs. non-
words) x hemisphere (LH vs. RH) x group (musicians vs. 
non-musicians), was observed, F(2, 53) = 3.32, p = .044. To 
better understand this interaction, we examined the N170 
amplitude in response to real, pseudo, and non-words sepa-
rately (Fig. 4). A significant interaction among mask type, 
hemisphere, and group was found in English non-words, F 
(1, 54) = 6.27, p = .015, but not in real or pseudo-words. 
This three-way interaction suggested that musicians and 
non-musicians had different N170 amplitudes in response to 
non-words preceded by musical segments and Tibetan letter 
strings in the LH and the RH. This effect was not found in 
real or pseudo-words. 

When we examined the data of non-words in two partici-
pant groups separately, musicians showed a significant in-
teraction between mask type (music vs. Tibetan) and hemi-
sphere (LH vs. RH), F(1, 26) = 10.60, p = .003, whereas 
non-musicians did not. When we examined musicians’ data 
in the two hemispheres separately, a significant main effect 
of mask type (music vs. Tibetan) was observed, F (1, 26) = 
9.004, p = .006: musicians had a smaller N170 amplitude in 
response to English non-words preceded by musical seg-
ments (-2.17µV, SD = 3.88, Fig. 5) than those preceded by 
Tibetan letter strings in the RH (-4.11 µV, SD = 2.11). This 
mask type effect was not observed in the LH. Note that this 
mask type effect was also not observed in either partici-
pants’ N170 responses to real and pseudo-words, or non-
musicians’ N170 responses to non-words. This phenomenon 
demonstrates a modulation of musicians’ musical segment 
processing on English non-word processing in the RH.  

 
Figure 5. Musicians had a greater reduction in N170 ampli-
tude in response to non-words preceded by musical seg-
ments than that preceded by Tibetan letter strings in the RH. 
No reduction effect was observed in the LH or in non-
musicians. (error bars = +/- 1 SE; ** p < .01). 

Discussion 
Here we examined how music reading expertise influences 
visual processing of English stimuli. Since music notation 
reading does not involve semantic processing as English 
word reading does, we hypothesized that the modulation of 
music reading experience on English word processing 
would be mainly in the RH, which is shown to be important 
for visual form processing of English words. In addition, the 
modulation would likely be stronger in English non-word 
processing than the processing of real or pseudo-words, 
since similar to musical segments, non-words do not follow 
morphological/orthographic rules. Consistent with our hy-
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potheses, we showed that musicians had a reduced N170 
amplitude in response to English non-words preceded by 
musical segments as compared with that preceded by novel 
symbol strings in the RH, whereas non-musicians showed 
no difference in N170 response to non-words preceded by 
either musical segments or Tibetan letter strings. In addi-
tion, this reduction in N170 in musicians was only observed 
in non-words, but not in real or pseudo-words. This result 
suggests a shared neural mechanism between English non-
word and musical segment processing in the RH.  

The RH N170 modulation effect of musical segments in 
musicians was only observed in English non-words but not 
in real or pseudo-words. This effect suggests that the inter-
action between visual English word and music notation pro-
cessing depends on the similarities of the cognitive process-
es involved. More specifically, in contrast to English real 
and pseudo-words, non-words and musical segments do not 
follow any morphological or orthographic rules (Chan & 
Hsiao, 2016). Given that they share similar global forms, 
containing components of similar sizes arranged horizontal-
ly, their recognition may both rely on component by com-
ponent serial processing, giving rise to the modulation ef-
fect. Consistent with this speculation, a RH advantage in the 
perception of global forms has been consistently reported 
(Sergent, 1982). English word processing in the RH is also 
shown to be more sensitive to variations in visual word 
forms than the LH, such as words in case alternation (Lavi-
dor & Ellis, 2001). In particular, Lavidor and Ellis (2001) 
found that the word length effect in English lexical deci-
sions (i.e., faster responses to shorter words) was observed 
only when words were presented in the LVF/RH but not in 
the RVF/LH. However, when words in MiXeD CaSe were 
used, encouraging letter-by-letter processing, the word 
length effect was observed in both visual fields. These re-
sults suggest a letter-by-letter, serial processing engaged in 
the RH word recognition, in contrast to a left-lateralized 
automated, whole-word lexical processing unaffected by 
word lengths (see also Lavidor, Ellis, & Pansky, 2002). 
Similarly, patients with LH lesions retained letter-by-letter 
reading ability, suggesting that the nature of RH word pro-
cessing involves letter-by-letter recognition (Cohen et al., 
2004). Our results here were consistent with these findings, 
suggesting that RH English word processing was modulated 
by music notation reading experience due to their similarity 
in letter-by-letter or note-by-note visual processing. Con-
sistent with our finding, in an fMRI study, Proverbio et al., 
(2013) reported that musicians recruited the right fusiform 
gyrus and the right inferior occipital gyrus in an orthograph-
ic letter recognition task, whereas non-musicians showed 
activations at the corresponding regions in the LH. This 
finding again suggests that music reading expertise modu-
lates English word reading in the RH.  

This RH modulation effect of music reading expertise was 
also consistent with our recent study showing that musicians 
named English words faster than non-musicians when 
words were presented in the LVF/RH (Li & Hsiao, 2015). 
More specifically, this LVF/RH advantage in word naming 

in musicians may be due to the facilitation of shared neural 
information processing mechanisms in the RH between mu-
sic notation and English word reading, resulting in a transfer 
effect from music note to English word processing in the 
RH. Note that in the current study, the lack of the N170 
modulation effect in real and pseudo-words does not neces-
sarily mean that this modulation from music notation read-
ing experience does not affect real word and pseudo-word 
processing. English word recognition involves the pro-
cessing of visual word forms, phonology, and semantics. 
While the LH is shown to involve critically in lexical pro-
cessing, the RH is reported to be important for the pro-
cessing of visual word forms. Our current results suggest 
that the modulation of music experience is mainly in the 
RH. Since the processing of real and pseudo-words involves 
both visual word form and lexical/sublexical processing, 
these lexical effects may also influence N170 amplitudes 
measured in both hemispheres. Indeed, Ziegler et al. (1997) 
showed that real and pseudo-words elicited more negative 
early visual ERPs than non-words in bilateral posterior re-
gions in a lexical decision task, with this difference appear-
ing earlier in the LH than the RH. Thus, the RH N170 mod-
ulation effect of music reading expertise may have been 
contaminated by lexical/sublexical effects in real and pseu-
do-word processing. It is also possible that the lack of the 
modulation effect in real and pseudo-word processing is 
because random musical segments were used. Future work 
will examine whether musical segments from real musical 
pieces (motifs) will have different modulation effects. 

Note also that the current results do not rule out possible 
modulation effects of music reading experience on phono-
logical processing of English words, since our task, sequen-
tial matching, involved mainly visual word processing. Pre-
vious studies have reported benefits of music training on the 
phonological processing of English words, as shown in 
phonological skill training (Degé & Schwarzer, 2011). 
Thus, musicians’ LVF/RH advantage in English word nam-
ing over non-musicians observed in our previous study (Li 
& Hsiao, 2015) could also be related to modulation effects 
of music reading experience on English phonological pro-
cessing in the LH. Future work will examine this possibility. 

In short, here we show that music notation and English 
non-word processing share similar neural mechanisms in the 
RH, as demonstrated in the reduced N170 responses to Eng-
lish words under the processing of musical segments. This 
effect was not observed in real or pseudo-words. Similar to 
English non-words, musical segments do not follow ortho-
graphic rules. Their processing may rely on serial pro-
cessing of horizontally arranged components of similar siz-
es, giving rise to the modulation effect. This effect demon-
strates that the interaction between different perceptual ex-
pertise domains depends on the similarities of the cognitive 
processes involved. Future work may use Korean Hangul 
stimuli, in which letters are arranged into a square shape 
instead of horizontally, to examine whether the modulation 
effect of music reading expertise in the RH was restricted to 
words with a global form similar to music notations (i.e., 
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components of a similar size arranged horizontally) or could 
be applied to words in alphabetic languages in general. 
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Abstract

Metaphor pervades discussions of important socio-political
topics. Recent research indicates that metaphorical language
can influence how people reason about such topics, potentially
affecting real-world decision-making. In this study, we report
on research into the effects of metaphor on evaluative judg-
ment, another aspect of decision-making that has been less
well studied than reasoning. We use a cross-linguistic differ-
ence in the metaphors used by English and Spanish speakers
to discuss economic change to investigate how metaphorical
language affects evaluative judgment. We show that the image
schematic information inherent in the semantics of the differ-
ent metaphors performs a central role in shaping this process.
Keywords: metaphor; evaluative judgment; cross-linguistic
variation; image schemas; socio-political discourse

Introduction
I say, block those metaphors. America’s economy isn’t
a stalled car, nor is it an invalid who will soon re-
turn to health if he gets a bit more rest. Our problems
are longer-term than either metaphor implies. And bad
metaphors make for bad policy. – Paul Krugman

We often use metaphorical language to express a stance to-
ward an object or event. The metaphors invoked by Mr.
Krugman operate by applying a basic image schema from the
domain of spatial motion to the complex socio-political do-
main of the economy. The image schema is that of BLOCK-
AGE. Image schemas are dynamic representations of spatial
relationships, force relationships, and motion in space (Lan-
gacker, 2001; Talmy, 1990). They develop through experi-
ence as encoded in our daily sensory-motor activities, and
are thought to be the basis of the human conceptual system
(Lakoff & Johnson, 1999). The BLOCKAGE image schema
entails an entity whose tendency towards motion is being im-
peded. It can be used in metaphorical expressions to signal
evaluative judgment.

Evaluative judgment is the process of assessing a stimu-
lus through the filter of an internal network of beliefs, values,
and aesthetics. This process interacts with sensory-motor ner-
vous system circuitry to influence how we interpret other peo-
ple’s behavior and whether we participate in select activities
or events (Norman et al., 2011). It contributes to basic human
impulses, such as avoidance and approach. It further serves
to guide complex behavior. For example, evaluative judgment
informs activities such as participating in a social movement,

contributing to a charity, and voting for a presidential candi-
date where the choice of candidate can be based more heavily
on evaluative processes than on reasoning.

Evaluative processes pervade human language on many
levels. People use linguistic information as an input into eval-
uative judgments at the social and interpersonal level: we as-
sess our partners in communication positively or negatively
based on accent, intonation, prosody, word choice, and gram-
matical complexity (Berger & Calabrese, 1975; Fuertes et
al., 2012). Evaluative information is, in turn, directly en-
coded in the lexical semantics of language. For instance,
cross-linguistic research shows evaluative information to be
the semantic component that factors most frequently and con-
sistently into lexical expressions from a wide variety of lan-
guage families (Triandis & Osgood, 1958). The words in an
utterance, then, potentially lead to entailments and evaluative
inferences that are congruent with the stance of the speaker.
Similarly, framing a topic to highlight and promote one’s own
evaluative judgment can influence how that topic is evaluated
by others.

Framing can be achieved through metaphorical language,
the semantics of which convey an evaluative component that
can be as basic as avoidance versus approach: while the
specter of urban violence must be strictly avoided, an epi-
demic of urban violence can be cautiously approached (Thi-
bodeau & Boroditsky, 2011). Metaphor theorists from an-
cient times to the present have considered evaluative judg-
ment to be one of the primary functions of metaphorical lan-
guage (Lakoff & Johnson, 1980). This evaluative information
is conveyed largely through the image schemas that are en-
coded in language and accessible to human cognition through
our experiences of perceiving, interacting with, and emotion-
ally responding to our environment (see for example Barsa-
lou, 2010; Zwaan, 2008).

Interestingly, recent experimental research on metaphor-
ical language provides evidence for the influence of image
schematic information on evaluative judgment. In one study,
participants were more likely to judge immigrants negatively
after being primed to view their own country as a human body
(e.g., a nation undergoing a growth spurt) rather than as an
abstract entity (e.g., a nation undergoing a period of innova-
tion), an effect that is congruent with a conventional metaphor
that describes immigrants and immigration in terms of dis-
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ease (Landau et al., 2009). Keefer et al., (2014) have charac-
terized this effect as metaphoric fit. Metaphoric fit refers to
maintaining consistent image schematic information across
metaphors during discourse. In a test of the metaphoric fit
hypothesis, they asked participants to read an article on de-
pression and its symptoms, and then evaluate the effective-
ness of a proposed antidepressant medication. Three versions
of the article framed depression in terms of a spatial metaphor
(DEPRESSION IS DOWN), or in terms of a visual metaphor
(DEPRESSION IS DARK), or using non-metaphorical lan-
guage. Participants in the spatial metaphor condition judged
a drug called Liftix as more likely to be effective, whereas
participants in the visual metaphor condition judged a drug
called Illuminix more likely to be so. Recent results from
another study (Thibodeau, 2016) support the metaphoric fit
hypothesis, finding that people evaluated solutions to social
problems more favorably when the solution and the prob-
lem were framed with congruent metaphoric schemas. For
example, given a description of economic hardship in terms
of a BALANCE schema, participants preferred a solution that
involved “returning to equilibrium”. When the description
was given in terms of a SPLITTING schema, they preferred
one that “narrowed the gap”. Taken together, these findings
present compelling evidence that the image schematic infor-
mation specified by metaphorical language can impact how
people evaluate situations. A question that naturally follows
from such findings is whether cross-linguistic differences in
metaphor usage produce similar effects. For example, if spa-
tial metaphors for depression were predominant in one lan-
guage, while visual metaphors for depression were in another,
would speakers of the first language favor Liftix and speakers
of the second Illuminix?

Although several studies have demonstrated that spatial
metaphors for time vary across languages (e.g., Chan &
Bergen, 2005; Fuhrman & Boroditsky, 2010; Nuñez &
Sweetser, 2006), and that these distinctions are reflected in
differences in how speakers conceptualize and reason about
time (e.g., Casasanto & Boroditsky, 2008), less attention has
been directed towards cross-linguistic contrasts in other con-
ceptual domains. Nor has evaluative judgment, as opposed
to reasoning, been the focus of previous cross-linguistic
research on metaphor. Here, we discuss an investigation
into cross-linguistic differences in metaphors for economic
change and whether these differences are reflected in speak-
ers’ evaluative judgments about economic change. In this
study, we focus on the domain of the economy for a few rea-
sons. Behavior related to the economy and financial decision-
making is largely motivated by evaluative judgment, and eval-
uative judgment is consequently a topic of great interest in be-
havioral economics. In addition, patterns of cross-linguistic
differences in the metaphors used to discuss economic change
and issues related to the economy have been identified in pre-
vious research (e.g., Boers & Demecheleer, 1997). Charteris-
Black & Ennis (2001), for instance, compared metaphor use
in news coverage of business and financial matters across

English and Spanish publications. They found many cross-
linguistic similarities in metaphor use, including the tendency
to characterize the state of the economy in terms of the phys-
ical or psychological health of an organism, to characterize
change in the economy in terms of physical motion, and to
characterize unusual economic events in terms of natural dis-
asters. At a higher resolution of analysis, however, divergent
patterns emerged. The salience of certain metaphors varied
across the two languages, as did the types of subordinate con-
cepts favored in metaphor use. Nautical metaphors, for ex-
ample, were found to be common in English reports on the
economy but rare in Spanish reports.

Recent developments in natural language processing ap-
proaches to metaphor research have allowed the analyses
of much larger corpora to corroborate such hand-annotated
corpus studies. Gutiérrez et al., (2017) present a method
for detecting fine-grained, cross-linguistic textual differences
through the automated analyses of large multilingual corpora.
Employing data-driven techniques from natural language pro-
cessing and machine learning, this method can identify cross-
linguistic variation in the use of metaphor among multi-
ple topics. Regarding the topic of the economy, the study
found that English discussions of economic change most fre-
quently employ metaphors based on locative motion verbs
(e.g., “the economy was going backwards” to describe neg-
ative growth). In comparison, Spanish discussions typically
rely on metaphors based on expanding/contracting motion
verbs (e.g., “la economia se contrajo” to describe negative
growth). The image schematic structure of locative motion
verb metaphors as in the English example can be categorized
as SOURCE-PATH-GOAL with a focus on PATH. Figure 1a
illustrates how the English phrase instantiates this schema.
The image schematic structure of volumetric motion verbs
as in the Spanish example can be categorized as EQUILIB-
RIUM. Figure 1b illustrates how the Spanish phrase instanti-
ates it. Notably, locative motion verbs feature movement out-
of-place whereas expanding/contracting motion verbs feature
movement in-place. The experiment in the present study was
designed in accordance with these results. In the experi-

: PATH (time)

: TRAJECTORY (the economy)

1a

: EXPANSION FORCE (weaker)

: COMPRESSION FORCE (stronger)

: VOLUME (la economia)

1b

←←←←

←

Figure 1: The SOURCE-PATH-GOAL and EQUILIBRIUM im-
age schemas prominent in English and Spanish metaphors for
economic change.
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ment, conducted across a sample of native English and na-
tive Spanish speakers, we tested whether people were more
sensitive to information presented in a form congruent with
the more salient metaphors for economic change in their lan-
guage. For the experimental task, participants made an eval-
uative judgment (“Improved” or “Worsened”) regarding eco-
nomic change in a fictional country based on a representative
graphic. Change was depicted in the graphic along the two di-
mensions characteristic of the SOURCE-PATH-GOAL image
schema (henceforth referred to as MOTION) and the EQUI-
LIBRIUM image schema (henceforth referred to as VOLUME).
That is, the figure in the graphic progressed from a starting
point along a linear path to an end point at the same time
that it expanded or contracted. If metaphor-congruent image
schemas are active during the process of forming evaluative
judgments, we expect English speakers’ evaluations of the
economy to align more closely with the direction of change
in the linear dimension of the graph, and Spanish speakers’
evaluations to align more closely with change in the volumet-
ric dimension.

Experiment
Methods
Participants We recruited 60 participants from one
English-speaking country (the US) and 60 participants from
three Spanish-speaking countries (Chile, Mexico, and Spain)
using the CrowdFlower crowdsourcing platform.1 All partic-
ipants answered a demographic questionnaire, reporting gen-
der, age, location, native language, level of education, color
vision deficiencies, and use of touchscreen device during task.
Results from nine US and three non-US participants were dis-
carded for failure to meet the language requirement.

Materials & Design Participants first read a brief descrip-
tion of the experimental task, which introduced them to a fic-
tional country in which economists are devising a simple but
effective graphic for representing change in the economy (see
Figure 2 for the English version). Spanish speakers read a
translation of the English text provided by a native speaker of
Spanish who is also fluent in English. They then navigated
to a new page to begin the task. Stimuli were presented in a
1200-pixel by 700-pixel frame. The center of the frame con-
tained a sphere with a 64-pixel diameter. For each trial, par-
ticipants clicked on a button to activate an animation of the
sphere which involved (1) a positive displacement (in right-
ward pixels) of 10% or 20%, or a negative displacement (in
leftward pixels) of 10% or 20%; and, (2) an expansion (in in-
creased pixel diameter) of 10% or 20%, or a contraction (in
decreased pixel diameter) of 10% or 20%. Participants saw
each of the resulting conditions three times. The displace-
ment and size conditions were drawn from a random per-
mutation of conditions using a Fisher-Yates shuffle (Fisher
& Yates, 1963). Crucially, stimuli in half of the trials con-
tained conflicting image schematic information with respect

1http://www.crowdflower.com

Oxar is a country on the planet Xor. Oxarian
economists are experimenting with new ways of mod-
elling economic trends in their country. A group of
economists are attempting to design a simple yet in-
tuitive way of representing changes in the economy
of the country. You are here to help them in their
mission! During the experiment, you’ll see a series
of graphics representing change in Oxar’s economy.
Your task will be to decide, according to the dynamic
graphic you have just seen, whether the economy has
improved or worsened. Then, you will be asked to es-
timate how much the economy changed according to
the graphic. Please try and give your judgments about
the economy as accurately as possible.

Figure 2: Description of the experimental task in English.

to the displacement and volumetric metaphors for economic
change (e.g., the sphere could both expand and move back-
wards).

Once the sphere had completed its movement across the
screen, participants recorded a judgment of whether the econ-
omy improved or worsened by clicking on the appropriate ra-
dio button. They then indicated on a seven point scale how
confident they were in their judgment and by how much they
judged the economy to have changed.

Results & Discussion
Congruence & Direction To analyze participant judg-
ment of the direction of economic change, we first coded
the responses as being MOTION–congruent or VOLUME–
congruent. For instance, if on a given trial the sphere was
expanding while moving backwards and the response was
“Economy Improved”, the result was coded as VOLUME–
congruent. If the response had been “Economy Worsened”,
the result would have been coded as MOTION–congruent.
Figure 3 presents the mean proportion of responses that fall
into these categories for both languages,2 showing that Span-
ish speakers’ judgments were more likely to align with the
VOLUME dimension of the stimuli (i.e., the dimension en-
coded in the image schemas used most frequently in Span-
ish to discuss economic change metaphorically), and En-
glish speakers’ judgments were more likely to align with the
MOTION dimension (i.e., the dimension encoded in image
schemas used most frequently in English to discuss economic
change metaphorically). To test whether people’s judgments
followed a language–specific, metaphor–congruent response
more often than predicted by chance, we used a mixed ef-
fects logistic regression model to analyze the data using the
lme4 package in the R statistical language.3 We compared
two models: one that modeled the influence of language on

2The mean proportion of dimension–congruent judgments is the
mean of congruent responses per participant over 24 responses.

3http://cran.r-project.org/web/packages/lme4/
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Figure 3: Mean proportion of dimension-congruent responses
by language for BOTH-congruent, MOTION–congruent and
VOLUME–congruent judgments.

judgment for the conflicting trials (n = 2520), and one that
modeled the influence of language on judgment for the non-
conflicting trials (n = 2520). We reasoned that, if the image
schematic information in the experimental stimuli is influenc-
ing judgment in a manner that is both language–specific and
metaphor–congruent, language would be a significant predic-
tor of judgment in the conflicting trials but not in the non-
conflicting trials.

Both models included random effects for participant and
item to control for their associated intraclass correlation, and
both used the Laplace approximation for parameter estima-
tion. The results of the analyses show an effect of language in
the conflicting trials (β = 3.96, p < 0.001), but not in the non-
conflicting trials (β = 0.23, p = 0.57). To evaluate model fit,
we randomized the subset of our data containing the results of
the conflicting trials and split it into testing and training sets.
We then modeled the data in the training set using the same
mixed effects logistic regression equation from our original
analysis, and used this model to predict participant judgment
in the testing set. The prediction accuracy of our model was
0.84. The AUROC (area under ROC curve) for predicting
judgment with the model was 0.93 (see Figure 4), indicative
of the expected proportion of true positives ranked before a
uniformly drawn random negative. The above analyses in-
dicate that participants’ judgments of whether the economy
improved or worsened varied in a predictable manner based
on their native language. The estimated odds that the judg-
ment of a Spanish speaker aligned with changes in VOLUME
image schematic information in the stimuli rather than MO-
TION image schematic information were 52.46 greater than
the corresponding odds for an English speaker.

Congruence & Magnitude We also examined whether im-
age schematic information influenced participants’ judgments
of the magnitude of economic change. Here, we focused on
the nonconflicting trials. Recall that for these trials when-

Figure 4: The ROC curve showing the ability of our model to
correctly classify the judgments of participants.

ever the sphere was moving forward, it was expanding; and,
whenever it was moving backwards, it was contracting. How-
ever, in half of the trials (n = 1260), the sphere was either ex-
panding or contracting to a greater degree than it was moving
forward or backwards, or vice versa. If metaphor–congruent
image schemas are affecting speakers’ judgments, then we
would expect Spanish speakers to increase their estimates of
the magnitude of change when expanding or contracting of
the sphere is the dominant schema. Similarly, we would ex-
pect English speakers’ judgments to be greater when forward
or backward motion is the dominant schema.

On average, English and Spanish speakers estimated the
amount of economic change to be greater when the sphere
was expanding/contracting than when it was moving for-
ward/backwards, as shown in Figure 5. To assess whether
the differences across language and dominant schema were
significant, we analyzed the data using cumulative link (pro-
bit) models via the ordinal package in R.4 We first modeled
amount of change with additive predictors of language and
dominant schema, with participant and item as random ef-
fects. To test for an interaction between these factors, we fit a
second model with the interaction as a predictor and used the
likelihood ratio test to compare the two models. Our anal-
ysis indicated no main effects for language or for the inter-
action between language and dominant schema. There were
marginal effects for VOLUME as the dominant schema both
when contracting (β = 0.3122, p = 0.009) and when expand-
ing (β = 0.3150, p = 0.009). These results tell us that a 10%
change in contraction of the sphere increases the probability
of higher estimates of the amount of change by 31.22% for
Spanish and English speakers. A 10% change in expansion
of the sphere increases the probability of higher estimates of
the amount of change by 31.50%, again for both groups of
speakers.

4http://www.cran.r-project.org/package=ordinal/
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Figure 5: Mean estimated amount of change per language and
stimuli dimension.

Congruence & Confidence With the last metric we col-
lected from participants, that of confidence, we investigated
whether one group of speakers found a particular set of stim-
uli (or the experimental task itself) to be more difficult or
confusing than was the case for the other group of speakers.
English speakers, for example, may have had more difficulty
in assessing the stimuli with contradictory information since
English employs MOTION and VOLUME based metaphors in
discussions of economic change.

We again analyzed the data using cumulative link (pro-
bit) models, here with additive predictors of language and
stimuli class, with participant and item as random effects.
To test for an interaction between the factors, we fit a sec-
ond model with the interaction as a predictor and used the
likelihood ratio test to compare the two models. We found
no significant differences across languages and no signifi-
cant interaction between language and stimulus condition.
English speaking participants and Spanish speaking partici-
pants both showed a highly significant increase in confidence
for judgments in three of the stimulus conditions: when the
sphere was contracting by 20% and moving backward by
20% (β= 0.4907, p< 0.001), when the sphere was expanding
by 20% and moving forward by 20% (β= 0.6553, p< 0.001),
and when the sphere was expanding by 20% and moving for-
ward by 10% (β = 0.4815, p < 0.001).

Both groups of participants, then, showed greater confi-
dence in their judgments, with a 49.07% increased proba-
bility, given a stimulus congruent with a large decline in the
economy across both image schemas. Given a stimulus sug-
gesting a large improvement in the economy across image
schemas, participant confidence increased with a probabil-
ity of 65.53%. Given a stimulus congruent with a large im-
provement in the economy per the VOLUME dimension of
the stimuli and a moderate improvement per the MOTION di-
mension, confidence improved with an increased probability
of 48.15%. These results suggest that, for all participants,

confidence in judgment relied on magnitude. In the first
two conditions where confidence increased, the sphere was
increasing or decreasing to a maximum degree along both
dimensions. Hence, it is unclear whether participants were
more sensitive to language-specific, metaphor-congruent im-
age schematic information. That participant confidence in-
creased in the third condition noted above suggests that par-
ticipants overall were more confident when the sphere was
moving forward rather than backwards. Since the results
were consistent across languages, we found no evidence that
any particular combination of schemas were more difficult to
parse for one, but not the other, group of speakers.

General Discussion

Metaphors based on movement are regularly used in English
and Spanish (amongst other languages) to discuss the econ-
omy and economic change. Past research suggests that in
discussions of important socio-political topics, such as the
economy, metaphorical language can influence people’s rea-
soning. Here, we presented evidence that metaphorical lan-
guage also affects people’s evaluative judgment. Evaluative
judgment, which differs from reasoning in that it is not logic-
based, is a crucial component of decision-making. The results
of our study thus serve to tease apart how these two mecha-
nistically different processes influence decision-making, with
our results indicating that metaphorical language affects the
evaluative judgment component of decision-making through
the image schematic information present in the semantics of
the metaphor. These findings corroborate accounts of lan-
guage and cognition that emphasize the role of language
in the development of associative and representational rou-
tines. In line with such accounts, the current findings reflect
Spanish speakers learning to associate economic change with
shifts in VOLUME and habituating focus to volumetric image
schematic information. English speakers, who learn to asso-
ciate economic change with shifts in MOTION, habituate fo-
cus to image schematic information involving displacement.

Our findings with respect to congruence and amount of
change, and with respect to congruence and confidence, pro-
vide further nuance to this view. While judgments of eco-
nomic improvement or decline aligned more consistently
with language-specific, metaphor-congruent dimensions in
the stimuli, judgments regarding the amount of change were
more consistent with changes in VOLUME for both groups
of speakers. A possible explanation for this effect is that vi-
sual experience of a change in amount is more strongly cor-
related with a change in density than with a change in lo-
cation. Another possible explanation is that English speak-
ers associate direction of change with motion through space
but associate amount of change with manner of motion, and
changes in the size of the sphere were more suggestive of
manner of motion. As noted above, judgments of confidence
were consistent with changes across both schemas for both
groups of speakers, as long as the changes were consistent
across schemas. This indicates that, while participant focus
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may have been driven by metaphor-congruent schemas, they
were still sensitive to both aspects of the stimuli. This lat-
ter finding supports the view that language probabilistically
influences other cognitive functions as opposed to those that
consider language to have a more discrete effect on other as-
pects of cognition.

Evaluative judgment is a core component of decision-
making, especially in the socio-political domain, and it is
highly reliant on the image schematic information shared
across percepts and concepts. Such image schematic infor-
mation is also key to the cognitive function of metaphor. The
present work represents a preliminary step in linking eval-
uative judgment and its reliance on image schematic infor-
mation to cross-linguistic variation in metaphor use. Future
studies along these lines should shed further light on how the
image schematic information intrinsic to metaphorical lan-
guage shapes evaluative judgment in discussions of the econ-
omy, as well as discussions of other important socio-political
domains.
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Abstract 

Language entails many nested time scales, ranging from the 
relatively slow scale of cultural evolution to the rapid scale of 
individual cognition. The nested, multiscale nature of 
language implies that even simple acts of text production, 
such as typing a sentence, entail complex interactions 
involving multiple concurrent processes. As such, text 
production may have much in common with other cognitive 
phenomena thought to emerge from multiplicative 
interactions across temporal scales, namely those that exhibit 
fractal properties. We investigated the relationship between 
fractal scaling and the quality of produced text. Participants 
(N=131) wrote essays while their keystrokes were recorded. 
Fractal analyses were then performed on time series of 
interkeystroke intervals (IKIs). Results showed that fractal 
properties characterizing IKIs positively predicted expert 
ratings of essay quality, even after accounting for essay 
length. The results support our hypotheses concerning 
multiscale coordination and text production. 

Keywords: text production; writing; keystroke; multifractal; 
essay quality 

Introduction 
Recent theoretical and empirical work characterizes 
language as a complex, dynamic system that involves the 
coordination of multiple nested time scales (Dale, Kello, & 
Schoenemann, 2016; Rączaszek-Leonardi, 2010; 
Rączaszek-Leonardi & Kelso, 2008). Consider three time 
scales that have been highlighted extensively in the 
literature. Language can evolve on a relatively slow scale 
along with changes in cultures and significant historical 
events. On a faster scale, language can be altered throughout 
an individual’s life, based on their experiences and 
knowledge. Lastly, language can change at more rapid 
scales in response to cognitive events that can span days, 
hours, or mere fractions of a second.  

These time scales span several orders of magnitude and 
paint a complex picture of language. The picture is further 
complicated because each of the time scales implicates 
different systems (e.g., cultural, interpersonal, 
physiological) and suggests that language processes should 
be studied as complex, dynamical systems. The current 
work explores this idea in the context of text-based language 
production. We examine whether dynamic analyses of 
typing behaviors during essay writing provide empirical 
support for the notion of writing as a complex, dynamical 
system.  

The nested, multiscale character of text production is 
apparent in the simple example of typing an essay. The 

relatively fast time scale of word selection is nested within 
and constrained by the slower time scale of idea generation. 
Singular ideas are further nested within the subtopics and 
global topic of the essay that change at even slower rates. 
Beyond these examples, nesting can continue at both faster 
and slower time scales. Rapidly changing physiological 
processes influence and support the act of writing that 
would not be possible without a lifetime of learning or the 
evolution of a language within a culture. Thus, even the 
seemingly simple act of typing one sentence of an essay 
may entail complex interactions of any number of processes, 
each with its own characteristic rate of evolution. The 
implication is that language production involves the 
coordination of numerous systems over many different time 
scales. Our assumption is that the act of text production (i.e., 
typing an essay) provides a window into ongoing cognitive 
processes (Pinet, Ziegler, & Alario, 2016). As such, we 
expect that keystroke dynamics will reveal the multiply-
nested character of text production. 

Multiscale Interactions in Human Behavior 

A wide range of cognitive phenomena have been described 
as emerging from the interaction of multiply-nested time 
scales (Ihlen & Vereijken, 2010). The principle evidence for 
that claim is the observation of fractal scaling. Fractal 
scaling typically refers to two qualities: long-range 
autocorrelation and scale dependence. Long-range 
autocorrelation implies that time series observations exhibit 
significant correlations over large timespans (Beran, 1994). 
That is, an observation made at one point in time is related 
to subsequent observations that extend into the future. Scale 
dependence suggests that measurements of time series (e.g., 
variance) depend on the temporal scale at which they are 
measured (Mandelbrot & Van Ness, 1968).  

There are numerous examples of behavioral time series 
known to exhibit fractal scaling: reaction times (Gilden, 
Thornton, & Mallon, 1995; Van Orden et al., 2003), time 
estimation (Wagenmakers et al., 2004), eye movements 
(Stephen & Anastas, 2011), hand movements (Anastas, 
Stephen, & Dixon, 2011; Stephen, Arzamarksi, & Michaels, 
2010), arm movements (Chen, Ding, & Kelso, 1997), 
postural corrections (Collins & DeLuca, 1993), and various 
forms of tool-use (Likens, Fine, Amazeen, & Amazeen, 
2015; Nonaka & Bril, 2014).  

Much of the work on fractal scaling in cognition has 
emphasized interaction across scales as its primary 
theoretical contribution (Ihlen & Vereijken, 2010; Kelty-
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Stephen & Wallot, in press). The basic idea is that the rich 
structure observed in behavioral time series is the product of 
many simultaneously occurring processes (e.g., physical, 
cognitive). Each process exists on its own time scale, with 
effects of slower time scales multiplicatively cascading to 
faster and faster time scales. As such, fractal scaling reflects 
on-the-fly cognitive organization during tasks (Van Orden et 
al., 2003; Wallot, Hollis, & van Rooij, 2013). Further, 
variability in fractal properties reflects the flexibility and 
adaptability in typical cognitive tasks necessary for 
coordination across those levels (Anastas et al., 2011). 

If fractal scaling reflects the flexibility and adaptability 
that stems from multiscale coordination, then reliable 
relationships should exist between fractal scaling and other 
meaningful aspects of behavior. The literature contains 
several such examples. Visual search is faster when eye 
movements exhibit fractal properties (Stephen & Anastas, 
2011). Fractal variability in hand movements predicts better 
perceptual estimates (Stephen et al., 2010). Moreover, 
fractal patterns distinguish between various forms of skilled 
and non-skilled behavior (e.g., Nonaka & Bril, 2014). These 
examples are not exhaustive but hint at the large number of 
skillful behaviors that exhibit fractal characteristics. 

The current work explores the idea that fractal scaling 
might also reflect the multiscale coordination involved in 
the skilled production of text. Across domains, the evidence 
implies being skilled means adapting to task demands, and 
fractal scaling characterizes flexibility (Gorman et al., 2010; 
Nonaka & Bril, 2014). The observation of flexibility in 
skilled text production (Allen, Snow, & McNamara, 2016) 
leads to the hypothesis that fractal scaling will reveal the 
flexibility required from the nested, multiscale act of 
composition. That is, we expect more skilled text production 
will be characterized by fractal variability. 

We are not aware of any studies that have examined the 
time course of text production for evidence of fractal 
scaling; however, work related to reading and skilled typing 
provides some bases for exploration (e.g., Wallot & 
Grabowski, 2013; Wallot et al., 2013; Wijnants et al., 2012). 
For example, Wijnants and colleagues (2012) showed that 
the presence of fractal scaling in word naming times 
distinguished dyslexic and non-dyslexic readers. They also 
found a positive relationship between fractal scaling and 
reading fluency. Another study involving skilled typing 
suggests that fractal properties may depend on task 
complexity/difficulty (Wallot & Grabowski, 2013). The 
relevant finding in that study was that there was greater 
fractal variability over time when participants typed a set of 
directions than when they typed simple lyrics from memory 
or simply copied text. 

Current Study 
This study investigates how fractal properties in keystroke 
logs are related to the quality of written text. Participants 
wrote timed, prompt-based argumentative essays while their 
keystrokes were recorded. Time series were constructed 
from the latencies between keystrokes and analyzed by 

fractal analysis. Essays were scored by experts on holistic 
quality and analytical subscales. This study is exploratory 
and the first of its kind; nonetheless, our general expectation 
is that, like performance on other tasks, fractal properties 
will serve as reliable predictors of essay quality.  

Method 
Participants Undergraduate students (N = 131, Female = 
58, mean age = 19.8 years) were recruited from a large 
university in the United States. Students participated in the 
study in exchange for course credit.  
 

Procedure Participants wrote a timed (25-minutes), prompt-
based, argumentative essay. Essay prompts were similar in 
structure to Scholastic Aptitude Test (SAT) prompts in that 
participants were asked to take either a supporting or 
contrary position on a given topic. Keystrokes and their 
respective time stamps were recorded while students 
composed their essays. Unsurprisingly, participants varied 
considerably in the number of keystrokes they produced (M 
= 3,385.40, SD = 1,107.03). To prevent bias, only the first 
999 keystrokes were retained for further analysis, 
corresponding to lowest number of keystrokes in our 
sample. No other keystrokes (e.g., backspaces) were 
omitted. Keystroke timestamp series were then differenced 
to obtain time series of interkeystroke intervals (IKIs). 
Mouse movements were not recorded. 

 

Text Analyses Pairs of raters evaluated the essays based on 
holistic quality and analytic subscales. Raters received 
extensive training before scoring and received compensation 
for their time. Holistic scores ranged from one (minimum) 
to six (maximum) and were based on a standardized rubric 
used in the assessment of SAT essays. Interrater reliability 
was good (r = 0.75). Raters were instructed to treat the 
distance between points (e.g., 1-2, 3-4, 4-5) as equal. The 
nine subscales, also based on a 6-point scales, were:  

Introduction. (M = 3.97, SD = 0.96) Demonstrates 
mastery in meeting the goals of an introduction (e.g., 
presenting a topic, providing a purpose, clearly stating a 
thesis, previewing arguments). 

Body. (M = 4.08, SD = 0.90) Demonstrates mastery in 
meeting the goals of body arguments (e.g., transition 
between arguments, using topic sentences, supporting 
arguments with evidence, and maintaining a flow 
throughout the arguments). 

Conclusion. (M = 3.19, SD = 1.32) Demonstrates mastery 
in meeting the goals of a conclusion (e.g., summarizing the 
essay, re-establishing the significance of discussion, 
capturing the reader’s attention, and effectively closing the 
essay). 

Organization. (M = 3.86, SD = 0.98) Follows a logical 
structure, beginning with the introduction, through the 
arguments and evidence presented in the body arguments, 
and to the conclusion. 

On-Topic/Global Cohesion. (M = 4.13, SD = 0.85) 
Details presented throughout the essay support the thesis 
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and do not stray from the prompt and the main ideas and 
organizing principles presented in the introduction. 

Grammar, Syntax, & Mechanics. (M = 3.70, SD = 0.79) 
Employs correct Standard American English, avoiding 
errors in grammar, syntax, and mechanics; the essay 
conveys strong control of the standard conventions of 
writing. 

Voice. (M = 4.09, SD = 0.76) The writer is expressive, 
engaging, and sincere, with a strong sense of audience.  

Word Choice. (M = 4.07, SD = 0.71) Word choice is 
precise and effective. 

Sentence Structure. (M = 4.06, SD = 0.75) Sentence 
patterns are varied effectively, enhancing the quality of the 
essay. 
 

Fractal Analysis Fractal analysis comes in two forms, 
monofractal analysis and multifractal analysis, both of 
which were performed on the IKI time series. The goal of 
monofractal analysis is to understand how variability 
depends on scale (e.g., Eke, Herman, Kocsis, & Kozak, 
2002). In general, evaluating monofractality means 
estimation of scaling exponents from the relationship, F2(s) 
~ sH where H is the Hurst exponent, and F2(s) is a measure 
of fluctuation. Being a singular measure, the Hurst exponent 
provides a measure of typical scaling behavior in a time 
series. Moreover, H ranges from zero to one and has useful 
interpretive ranges (Collins & DeLuca, 1993; Gorman et al., 
2010). When H = 0.5, the time series exhibits random 
variation. When H > 0.5, the series contains long-range 
autocorrelation, and when H < 0.5, the series exhibits long-
range anticorrelation such that small values generally follow 
large values and vice versa. Many series have been shown to 
require not one but a spectrum of exponents to characterize 
their variability (Ihlen & Vereijken, 2010; Kantelhardt et al., 
2002). Hence, the goal of multifractal analysis is to 
determine whether fractal scaling is fixed across time; that 
is, whether a time series exhibits multifractality 
(Kantelhardt et al., 2002).  

We used Multifractal Detrended Fluctuation Analysis 
(MFDFA; Kantelhardt et al., 2002) to evaluate both 
monofractal and multifractal properties in IKIs. The 
outcome of MFDFA is the multifractal spectrum. MFDFA 
is the generalization of Detrended Fluctuation analysis 
(DFA) and has been used in diverse literature to characterize 
time-varying structure (Kantelhardt et al., 2002; Peng et al., 
1994). The MFDFA procedure consists of five steps. The 
first step is to create the profile by integrating over a mean-
centered time series. In a second step, the time series of 
length, N, is divided into Ns = int(N/s) non-overlapping bins, 
such that each bin contains s observations. To compensate 
for Ns often being a non-integer multiple of s, the binning 
procedure is performed twice by starting from each end of 
the time series. The result partitions the time series into 2Ns 
bins. In a third step, data in each bin is fit with a least 
squares regression line that is subtracted from the binned 
data to obtain local residuals. The bin-wise residuals are 
squared and averaged to obtain a measure of variance within 

each segment, v. The fourth step averages over all the bins 
to obtain the qth order fluctuation function as captured in  

𝐹" 𝑠 = { &
'()

[𝐹'(𝑣, 𝑠)]"/'}'()
23& 	&/",      (1) 

where F2(v,s) is the variance calculated in Step 3 and q takes 
on both positive and negative values. Steps 2 through 4 are 
repeated for several s, increasing s by a power. The current 
work used a fractional power (11/10) for varying s which 
allowed for a larger range of scales over which scaling 
estimates were made. The maximum s was ≤ N/4. Step 5 
evaluates scaling behavior by performing a log-log 
regression of Fq(s) on s for each value of q. We used 101 
values of q, ranging from -3 to 3. When scaling properties 
are present, the result from Step 5 is a linear slope equal to 
the q-order Hurst exponent, H(q). When q = 2, the 
procedure is equivalent to standard DFA. H(q) can then be 
used to estimate the width of the multifractal spectrum 
dh(q). In contrast H, dh(q) provides a measure of the 
variability in scaling over time.  
 

Results 
 

Hierarchical multiple regression was used to explore the 
relations between the fractal properties in IKIs (i.e., H, 
dh(q)) and holistic essay scores (M = 3.85, SD = 0.89)1. 
Table 1 presents the descriptive statistics for the predictor 
variables used in constructing regression models. 

Table 1. Descriptive statistics 
Variable M SD 
Number of Words (NW) 412.67 162.22 
dh(q) 1.32 0.26 
H 0.51 0.06 

 
 In addition to fractal properties, we included the total 
number of words (NW) in each essay as a predictor in the 
regression model because of the known positive relationship 
between essay length and essay quality (e.g., McNamara, 
Crossley, & Roscoe, 2013; McNamara, Crossley, Roscoe, 
Allen, & Dai, 2015). Predictors were checked for 
multicollinearity and all variance inflation factors were less 
than 2 (VIFNW =1.09; VIFH = 1.21; VIFdh(q) = 1.26), 
indicating that multicollinearity was not a concern. Note 
that, NW, H, and dh(q) were converted to z-scores to aid in 
interpretation. This was especially crucial in the case of H as 
its theoretical domain is (0, 1). NW was entered in the first 
model step; H and dh(q) were both entered in the second 
model step. As expected, the initial model was significant, β 
= 0.47,  R2 = 0.28, p < 0.001; however our interest was in 
characterizing whether fractal properties predicted essay 
quality over and above NW. The results showed that fractal 
properties improved model fit, F(2,127) = 6.68, p < 0.01, R2 
= 0.35. As expected NW was a significant predictor such 
that a one standard deviation increase in essay length 
predicted a 0.54 increase in holistic score, t(127) = 8.09, p < 

                                                             
1 We also estimated models that included polynomial terms. 
However, none of the polynomial models improved model fit and 
were not reported here. 
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0.001. After controlling for NW, the model also revealed 
that a one standard deviation increase in H predicted a 0.21 
increase in holistic score, t(127) = 2.92, p < 0.01. 
Furthermore, a one standard deviation increase in dh(q) 
predicted a 0.29 increase in holistic score, t(127) = 3.19, p < 
0.01.  

Following the analysis of holistic essay scores, nine 
additional sets of regression models were fit predicting each 
subscale from NW, H, and dh(q). The modeling strategy for 
these additional models was the same as for overall essay 
quality. A summary of those models appears in Table 2. The 
table shows that fractal properties explain significant 
variance for seven out of nine subscales, with Conclusion 
and Organization being the exceptions. Of note is the fact 
that, for several outcomes, the fractal properties explain 
more than twice the variance explained by NW.  
 

 

Discussion 
In this study, we investigated how the multiscale 
characteristics of text production relate to essay quality. In 
general, we found that the Hurst exponent was a positive 
predictor of holistic essay quality and analytical scores. 
Similarly, we found that broader multifractal spectra 
predicted better quality essays, overall, and on several 
analytical subscales. The remainder of the discussion is 
structured as follows: First, we give an overview and basic 
interpretation of the scaling behavior observed for IKIs 
during essay production. Second, we speculate on how those 
interpretations inform patterns of prediction observed with 
respect to essay quality. Lastly, we offer ideas for potential 
applications and future research. 

Scaling Properties in IKIs 
We found that IKIs in this study were characterized by 
global H close to the value typical of random variation (i.e., 
H = 0.50). The observed mean of H was surprising given the 
prevalence with which Hs indicative of long-range 
correlation (i.e., H > 0.5) have been observed in other tasks 
(Kello et al., 2010). The result was further surprising 

because keystrokes observed during typing tasks have been 
previously characterized as being anti-correlated, where H < 
0.5 (Wallot & Grabowski, 2013). One possible reason for 
the difference in results is those authors’ use of power 
spectral density to estimate H (labeled α in that study). 
Simulation work has shown power spectral density 
underestimates H (Delignières et al., 2006).  The reason for 
those differences may be the method used to estimate H. 

A more likely and substantive reason relates to nature of 
the tasks used in each study. In Wallot and Grabowski 
(2013), participants performed one of three relatively simple 
tasks: type a nursery rhyme from memory; copy text from a 
page; and generate a novel set of directions from school to 
home. The latter condition was the closest to essay writing 
but still differs substantially in complexity and difficulty, 
factors known affect the scaling properties in basic motor 
control tasks and complex tasks like steering (e.g., Chen et 
al., 2001; Likens et al., 2015). Writing a timed essay is 
arguably more difficult and more complex than giving 
familiar directions. Perhaps, then, the Hurst exponents we 
observed in this study reflect those differences in task 
difficulty. The results concerning dh(q) lends further, albeit 
tentative, support for that conclusion. 

The trend across tasks observed in Wallot and Grabowski 
(2013) permits cautious speculation about the meaning of 
spectral widths within the current context. Note that a direct 
comparison between the widths we observed and those in 
Wallot and Grabowski is not possible because they used a 
wavelet form of multifractal analysis, and different methods 
are known to produce different widths (Ihlen & Vereijken, 
2013). In Wallot and Grabowski, the multifractal spectrum 
width increased as a function of task complexity, with the 
generative task producing the broadest spectrum. Similar 
results have also been reported in the motor control and 
social coordination literatures where an increase in task 
difficulty has been associated with widening dh(q) (e.g., 
Davis, Brooks, & Dixon, 2016; Romero, Coey, Beach, & 
Richardson, 2013). A reasonable conclusion is that the 
relatively broad spectra we observed reflect the difficulty 
inherent in writing a timed essay.  

Unlike H, the multifractal spectrum does not have the 
same useful interpretive indices concerning long range 
correlation and randomness. However, a few words are 
possible concerning why task complexity or task difficulty 
would affect the width of the multifractal spectrum. The 
multifractal spectrum provides a summary of scaling 
behaviors that evolve over time (Ihlen & Vereijken, 2013; 
Kantelhardt et al., 2002). If the Hurst exponent were 
sufficient to describe the scaling behavior present in the IKI 
time series, then one would expect a narrow spectrum – a 
time-invariant monofractal process. Instead, we observed 
broad multifractal spectra that are more consistent with 
interpretation of a time-varying multifractal process. Time-
varying scaling behavior is thought to reflect the ongoing 
dynamics in complex, dynamical systems that range from 
individual physiological processes to entire human teams 
(Likens et al., 2014). Time-varying scaling behavior in the 

DV NW R 2 NW H dh (q ) R 2 F
Intro 0.30*** 0.10 0.39*** 0.27** 0.29*** 0.20   7.85***
Body 0.43*** 0.22 0.38*** 0.18* 0.15 0.27   3.52*
Conc. 0.63*** 0.23 0.64*** 0.24* 0.13 0.26   2.46
Org. 0.39*** 0.15 0.44*** 0.16 0.16 0.19   2.45
Coh. 0.17* 0.04 0.23** 0.19* 0.17* 0.10   3.71*
Gram. 0.15* 0.04 0.24*** 0.20** 0.33*** 0.18 11.30***
Voice 0.30*** 0.15 0.34*** 0.17* 0.20** 0.22   5.78**
Word 0.22*** 0.10 0.31*** 0.22*** 0.31*** 0.27 15.06***
Sent. 0.30*** 0.16 0.37*** 0.19** 0.23*** 0.25   7.79***

Model 1
Predictors

Table 2. Regression models for expert rated subscales

Note: ***p < 0.001, **p<0.01, *p<0.05. F test was based on 2 
and 127 degrees of freedom.

Model 2
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IKIs might reflect changes in cognitive state or changes in 
strategy that accompany the multiscale coordination 
involved in writing an essay (e.g., Stephen et al., 2009). 
That idea is elaborated in the following section in the 
context of essay quality.  

Scaling Properties as Predictors of Essay Quality 

We have suggested that changes in scaling behavior may 
reflect changes in cognitive state or strategy. If so, then a 
broader multifractal spectrum could reflect flexibility in 
writing. Multifractal scaling is synonymous with flexibility 
and adaptability in other contexts (e.g., Collins & De Luca, 
1993), and flexibility in the use of cohesive devices (i.e., 
flexibility in writing) predicts higher quality essays (e.g., 
Allen et al., 2016; Snow et al., 2015). The implication is: if 
multifractal scaling reflects flexibility in writing, then wider 
multifractal spectra may also indicate higher quality essays. 
The current findings seem to support such reasoning. 
Results from regression analyses suggest fractal properties 
positively predict overall essay quality as well as quality on 
analytical subscales. 
 Another notable feature of the regression analyses was 
that dh(q) did not predict the quality of either the Body or 
Conclusion. As a potential explanation of those results, we 
refer to our data preparation steps. The time series in our 
sample were truncated to accommodate participants with 
short essays. Given the average length of intact series was 
over three times the length of the truncated series we 
analyzed, there is a strong possibility the fractal analyses did 
not equally represent Body and Conclusion aspects of text. 
If true, then perhaps dh(q) did not adequately capture 
variability with respect to Body and Conclusion sections. In 
addition, neither H nor dh(q) predicted the organization 
subscale. A similar interpretation could be made concerning 
the length of the time series analyzed with respect to the 
length of a typical essay in our sample.  

Applications and Future Directions 

In this study, we have shown for the first time that fractal 
properties measured while writing an essay predict essay 
quality. Being the first of its kind, we have interpreted the 
results cautiously. However, the results are promising and 
suggest opportunities for future research and applications. 

One promising area of research pertains to flexibility and 
adaptability in writing. As already discussed, multifractal 
scaling may suggest flexibility and adaptability in writing. If 
so, then it should be possible to link multifractal 
characteristics with other aspects of writing flexibility 
(Allen et al., 2016; Snow et al., 2015). In those studies, 
flexibility was characterized over several essays; however, 
if flexibility is important on the timescales of days and 
weeks, then flexibility should also be important within the 
context of a single essay. If so, then the fractal properties of 
keystrokes may also relate to the flexibility at those slower 
time scales.  

Another related area of investigation involves the use of 
fractal properties in applied settings. The results of the 

current study, if replicable, could inform applied educational 
settings such as those involving learning analytics and 
automated writing evaluation systems. The analyses we 
have presented here are algorithmically efficient enough to 
be implemented in real time. Real-time assessment of fractal 
properties is promising on several fronts. Real-time fractal 
properties could be monitored by instructors for early signs 
of writing difficulty and provide faster, targeted feedback. 
The same notion could apply within automated writing 
evaluation systems to augment automated feedback systems.  

Lastly, the methods we have presented are not limited to 
the analysis of keystrokes. The use of physiological 
measurements and various movement registration devices is 
becoming more common in applied literature on intelligent 
tutoring systems (D’Mello, Picard, & Graesser, 2007). 
Fractal analyses have proven beneficial in other settings 
involving physiological data, primarily because of 
relationship between fractality and flexibility (e.g., Chen et 
al., 2001; Ivanov et al., 2001). An open, empirical question 
is whether fractal analysis of physiological data may reveal 
flexibility in intentional forms of behavior. In conclusion, 
we have demonstrated that text production exhibits scaling 
properties like those observed in other cognitive 
phenomena. In doing so, we have also supported the idea 
that language is a complex, dynamical system involving 
coordination across many nested time scales. Going 
forward, our goal will be to further articulate time scales 
relevant to text production.  
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Abstract

Visuomotor adaptation plays an important role in motor plan-
ning and execution. However, it remains unclear how senso-
rimotor transformations are recalibrated when visual and pro-
prioceptive feedback are decoupled. To address this question,
the present study asked participants to reach toward targets in
a virtual reality (VR) environment. They were given visual
feedback of their arm movements in VR that was either con-
sistent (normal motion) with the virtual world or reflected (re-
versed motion) with respect to the left-right and vertical axes.
Participants completed two normal motion experimental ses-
sions, with a reversed motion session in between. While re-
action time in the reversed motion session was longer than in
the normal motion session, participants showed the learning
improvement by completing trials in the second normal mo-
tion session faster than in the first. The reduction in reaction
time was found to correlate with greater use of linear reach-
ing trajectory strategies (measured using dynamic time warp-
ing) in the reversed and second normal motion sessions. This
result appears consistent with linear motor movement plan-
ning guided by increased attention to visual feedback. Such
strategical bias persisted into the second normal motion ses-
sion. Participants in the reversed session were grouped into
two clusters depending on their preference for proximal/distal
and awkward/smooth motor movements. We found that partic-
ipants who preferred distal-smooth movements produced more
linear trajectories than those who preferred proximal-awkward
movements.

Keywords: Virtual reality; motor planning; scene representa-
tion; visual misalignment

Introduction
Virtual Reality
Virtual reality (VR) technology provides an analog experi-
ence in a three-dimensional environment similar to that of the
real world. In the real world, certain environmental factors
and physical constraints are fixed and cannot be modified.
However, VR allows researchers to design controlled virtual
environments with ease and precision. In addition, modern
advancements in VR tracking allow for accurate measure-
ments of human body movements. Thus, task success, motor
error and correspondence with candidate trajectories can be
accessed directly.

Although previous studies in VR have focused primar-
ily on hardware problems in order to improve user experi-
ence (Shotton et al., 2013; Weichert, Bachmann, Rudak, &
Fisseler, 2013), simulation performance (e.g., Unreal Engine
4, Unity3d, and NVidia Flex), system integration (Lin et al.,
2016; Shah, Dey, Lovett, & Kapoor, 2017), and locomotion
in immerse experience (Bruder & Steinicke, 2014), recently
efforts have been increasingly devoted to examining human
perception and reasoning in virtual scenes (e.g., Azmandian,
Hancock, Benko, Ofek, & Wilson, 2016; Mehra et al., 2016;

Patney et al., 2016; Ye et al., 2017; Li, Liang, Quigley, Zhao,
& Yu, 2017).

Motor Planning
The process of reaching toward an object in the environment
involves minimizing the distance between the hand and tar-
get locations in the physical world (i.e., the hand and tar-
get states) over time. This is achieved by (1) planning a
motor movement to achieve a desired task goal, (2) send-
ing the associated motor command to the arm, and (3) com-
paring observed sensory feedback to predicted sensory feed-
back to infer the current hand state and form subsequent mo-
tor commands (i.e., sensorimotor transformation; Battaglia-
Mayer et al., 2014; Wolpert, 1997). The present study ex-
amined how reaching movements change in response to mis-
aligned sensory feedback in a VR environment. Specifically,
how do reaching trajectories change as visual and propriocep-
tive feedback are decoupled?

When visual and proprioceptive feedback are inconsistent,
new mappings between visual and proprioceptive inputs are
reestimated (Cressman & Henriques, 2009). Results from
Cressman and Henriques’s (2009) study suggest that in addi-
tion to sensorimotor recalibration, visuomotor adaptation in-
volves partial proprioceptive recalibration: i.e., humans “re-
align proprioceptive estimates of hand position to match vi-
sual estimates.” However, it has been demonstrated that vi-
suomotor adaptation can occur in the absence of propriocep-
tive input, for example, in the case of deafferented individu-
als (Ingram et al., 2000; Miall & Cole, 2007). It is therefore
possible that proprioceptive recalibration does not underlie
visuomotor adaptation and that the two processes are inde-
pendent from one another. This hypothesis is consistent with
empirical results showing that humans curtail the contribu-
tion of proprioceptive input in the case of misaligned visual
feedback (Bernier, Burle, Vidal, Hasbroucq, & Blouin, 2009;
Wont & Henriques, 2009) when performing motor move-
ments. Thus, when visual and proprioceptive feedback are
inconsistent, people could reduce the contribution of propri-
oceptive information to the motor planning process and form
new visuomotor transformations to achieve extrinsic goals.

In this study, participants reached toward targets in a vir-
tual environment where their hand movements were shown
to be either consistent or reversed (in the vertical and left-
right axes) with respect to virtual movement. If proprio-
ceptive inputs are ignored (perhaps due to their unreliability
in the reversed movement environment), participants should
rely more heavily on visual inputs when planning and exe-
cuting movements. Moreover, we expect participants will
adapt to the reversed environment by constructing and im-
plementing new visuomotor mappings. Although we pre-
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(a) (b)
Figure 1: Participants reached toward targets in a virtual envi-
ronment where their hand movements were shown to be either
(a) consistent, or (b) reversed (in the vertical and left-right
axes) with respect to virtual movement. (Top) Real world ac-
tions. (Bottom) Virtual simulation.

dict proprioceptive inputs to be ignored or even suppressed,
we expect proprioceptive feedback to be considered in cases
where visually-guided movement is kinesthetically awkward.
Using rich trajectory measurements from a VR system, we
compared performance between participants who appeared
to adopt different strategies guided either by visual or pro-
prioceptive feedback. In summary, the purpose of the present
study was to quantitatively compare reaching strategies in a
novel VR task across normal- and reversed-motion environ-
ments and to determine whether changes in reaching strate-
gies persist when visual and proprioceptive information are
re-coupled.

Experiments
In the present study, we examined whether humans can adapt
to environments where visual estimates of objects’ positions
are inconsistent with proporioceptive input. Participants in-
teracted with virtual targets using two motion controllers in a
VR application, where the movement of the virtual controller
either matched the motion of the physical controller or was
flipped on certain axes (both vertical and left-right). Partici-
pants were instructed to touch a series of virtual targets with
the virtual controllers and then return to a neutral pose in be-
tween targets. Response time and arm movement trajectories
were recorded and analyzed.

Participants and Apparatus
A total of 20 participants (10 female and 10 male) partici-
pated in the study. Participants were graduate students at the
University of California, Los Angeles. The average age of
participants was 22.8 years old with a standard deviation of
2.67. All participants had normal or corrected-to-normal vi-
sion. Of the 20 participants, 16 had never interacted with VR
technology prior to participating in the experiment.

The VR system integrated Unreal Engine 4 with an HTC
Vive headset and two motion controllers, one held in each
hand. 3D meshes which matched the Vive motion controllers
in size and shape were used to represent controller position
in the virtual environment. To generate the visual display of
reversed movement, the virtual controller in VR was moved
in opposite directions (i.e., in both the vertical and left-right

axes) to the physical displacement of the controller moved
by human participants in the real world (Fig. 1). Participants
began the experiment by moving their hands into a neutral
pose where the physical and virtual controllers were aligned
to the same position. Movement along the depth axis (i.e.,
forward vs. backward) was not reversed.

The targets were cyan capsules of 20 cm height and diame-
ter. We chose cyan as the color of the targets in order to ensure
the targets would be visible against the background of the en-
vironment. The targets began glowing when touched by a
controller, providing visual feedback to the subject indicating
whether they had successfully touched the target. The color
of the targets did not change between experimental sessions.
To ensure that for any given target location each participant
reached approximately the same distance, we required that
the participants assume a neutral pose before the next target
was spawned. We define the neutral pose as follows:

At the beginning of each testing block, participants were
told to hold both controllers in front of them at waist level
with their elbows held loosely at their sides. Participants
were allowed to adjust their pose until they were comfortable,
but were informed that they needed to be able to comfortably
reach forward, up-down and side-to-side from this pose. Par-
ticipants then started an experimental block by pressing the
trigger button on the bottom of either motion controllers. A
transparent rectangular prism was spawned such that its cen-
ter was located at the midpoint of the two controllers. This
rectangular prism defined each participant’s neutral zone, and
we considered the participant to be in a neutral pose when
both controllers overlapped with the neutral zone for an un-
interrupted 0.5 seconds. In order to provide feedback to the
user about whether they were in a neutral pose, the neutral
zone changed color to reflect how many controllers over-
lapped with it: black for zero controllers, grey for one, and
green for two. The neutral zone only changed color when
the participant needed to enter a neutral pose, and otherwise
remained green.

Response time was defined as the duration between
the initial spawning of the target to when it was deac-
tivated. Trajectory was defined as the three-dimensional
movement of the controllers over this time period. For
a video demonstrating the experimental setup, please see
https://vimeo.com/216580864.

Procedure
The experiment was conducted in a quiet office, and all physi-
cal obstacles were removed from the testing area. Participants
remained standing and stationary for the duration of the ex-
periment. They received a warning signal if they moved near
the boundaries of the virtual environment.

Practice Session First, participants familiarized themselves
with the VR headset and motion controllers. Participants
were given a demonstration of the neutral position and told to
move both of their controllers to the indicated locations. Af-
ter participants confirmed that they were capable of comfort-
ably performing the required range of movements from their
neutral pose, they were informed that both response time and
movement trajectories would be recorded. Prior to the testing
session, participants completed a practice session with five
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Figure 2: Response time analysis for the normal- (N1 and
N2) and reversed-motion (R1) trial sessions. Red horizontal
lines indicate median response times. The bottom and top
edges of the blue boxes indicate the 25th and 75th percentiles,
respectively. The whiskers extend to the most extreme data
points that were not considered outliers, and red ‘+’ symbols
indicate outliers. (a) Session median times to reach targets:
1.29, 5.71 and 1.03 seconds. (b) Block median times to reach
targets: 1.30, 1.22, 1.34, 6.10, 5.68, 5.36, 1.13, 1.06 and 0.94
seconds.

targets in the normal condition. This session served to famil-
iarize participants with the experimental procedure and pro-
vide the experience of interacting with objects in the virtual
environment.

Testing Session Participants completed nine blocks con-
sisting of ten trials each. The first three blocks (N1 ses-
sion) were completed with normal movements. The subse-
quent three blocks (R1 session) were completed with reversed
movements. Participants were informed along which axes
arm movement would be reversed (i.e., the left-right and up-
down directions). The last three blocks (N2 session) were
completed with normal movements once again. Participants
were given breaks between blocks to rest their arms. After
indicating that they were ready to continue, participants pro-
ceeded to the subsequent block.

At the start of each block, the virtual meshes were aligned
with the locations of the physical controllers. Each partici-
pant completed the same nine blocks. Target locations were
evenly distributed throughout an 80× 20× 80 cm region lo-
cated 35 cm in front of the neutral zone. The order of the
target positions within each block was randomized between
participants.

Results
Response Time Analysis
As expected, participants showed much longer response times
(RT) in the reversed-motion condition than in the normal-
motion condition. There was a four-fold increase between
median RT for the N1 relative to the R1 session. Inter-
estingly, upon returning to normal movement in the N2
session, participants showed a 20.1% improvement in re-
sponse time compared to the N1 session (t(600) = 7.07,
p < .001; see Fig. 2a). Moreover, response times in
the three blocks of the N2 session displayed a decreas-

N1 R1 N2

session #

400

500

600

700

d
tw

 d
is

ta
n
c
e

(a)

N1_1N1_2N1_3R1_1R1_2R1_3N2_1N2_2N2_3

block #

400

450

500

550

600

650

700

750

(b)
Figure 3: Trajectory analysis using DTW to quantify the dis-
crepancy between human reaching behavior and a linear mo-
tion trajectory – the straight line between the hand’s start-
ing position and target location. Median distance scores for
each session: 505.62, 613.24, and 483.55 cm. Block medi-
ans: 501.03, 525.70, 496.62, 671.75, 648.25, 582.34, 513.57,
490.28, and 435.84 cm.

ing trend (b = −0.0067[−0.0101,−0.0033]), indicating a
learning effect that was not present in the N1 session (b =
−0.0009[−0.0053,0.0035]); Fig. 2b).

Trajectory Analysis
Next, trajectory analysis was performed to further quantify
human performance relative to candidate trajectories. We de-
fine the baseline trajectory as the shortest linear path between
the hand start position and the target location. All trajecto-
ries were interpolated to 500 3D points to account for vari-
ation in trajectory length. Dynamic Time Warping (DTW)
was then utilized to determine the minimum distance map-
ping between the ideal and behavioral trajectories. DTW is
a distance measure algorithm that has been used extensively
in the speech recognition community (e.g. Berndt & Clif-
ford, 1994). By estimating a non-linear mapping between two
time-dependent sequences, DTW provides a numerical repre-
sentation of the similarity between any pair of spatiotemporal
sequences. Other communities including robotics and biol-
ogy have also adopted and modified this algorithm for various
signal-comparison applications.

The DTW trajectory distance measure revealed closer cor-
respondence to baseline trajectories in the N2 session com-
pared to the N1 session (Fig. 3a), suggesting a learning effect
through practice. There was also a clear decrease in DTW
distance across the three blocks within the N2 session that
was not evident in the N1 session (Fig. 3b), suggesting hu-
mans moved their arms more linearly (i.e., closer to the base-
line linear trajectory) upon return to the normal motion envi-
ronment. To rule out the possibility that the increasing lin-
ear movements in the N2 session was due to familiarization
with the VR system, we performed a linear regression on the
median trajectory difference among participants (Fig. 4). Al-
though there is no noticeable trend in the N1 session, per-
formance in the N2 session shows a strong improvement that
falls well outside the 95% confidence region for N1. More-
over, the slope in N2 was approximately equal to that in the
R1 session, although the regression coefficient in the R1 ses-
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Figure 4: Linear regression results using median DTW dis-
tance among 20 subjects across 90 trials divided into 3
sessions and 9 blocks. Red dashed lines represent 95%
confidence intervals for the regression coefficient estimates.
Slopes in the three sessions are 0.216, −3.810, and −4.436.

sion is more uncertain: i.e., the confidence interval of the R1
slope is greater than that of N2. This suggests a large degree
of within-group variability, which is further explored in the
following sections.

After forming new visuomotor mappings in the the R1
session, participants’ movement trajectories became increas-
ingly linear: i.e., closer to the baseline trajectory. If par-
ticipants began relying on visual feedback when construct-
ing and revising their motor plans (i.e., proprioceptive inputs
were suppressed), we would expect them to execute linear
movement paths. The increasingly linear motor movements
over the course of the R1 session are consistent with this pre-
diction. Interestingly, reliance on visual inputs appeared to
persist in the following N2 session when proprioceptive and
visual information were recoupled. We predict that with fur-
ther exposure to the normal-motion environment, the linear-
ity of participants’ reaching patterns would return to the level
measured in the N1 session.

Possible Planning Models in Reversed Motion
Blocks
While the shortest linear path between two points is the most
direct trajectory, it is not necessarily the most optimal reach-
ing strategy: e.g., due to mechanical limb constraints. To ex-
amine this, we used DTW to compare against other candidate
trajectories to assess their potential as possible movement
strategies. One possible alternative strategy is to consider
each axis independently in order to plan motor movements
in the reversed motion condition. To examine this alternative
strategy, human trajectories were compared to all six possi-
ble axis decompositions (Fig. 5a) using DTW. While some
participants did demonstrate paths that were more similar to
various axis decompositions, participants’ trajectories were
generally more similar to the shortest linear path (Fig. 3b),
indicating that most participants were not considering each
axis independently.

Another observation of participants’ trajectories is that
they were noisy, especially during the reversed motion ses-
sion. Since participants were instructed to reach a set of given
targets, their movements were goal-directed and partially
guided. We compared participants’ trajectories with pre-
dictions from a guided random walk model Pearson (1905).
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(d)
Figure 5: (a) Six possible axis decompositions were gener-
ated by computing the shortest path along each axis. (b) Hu-
man trajectories were compared against all six axis decom-
positions using DTW, and the minimum value was reported.
Session medians: 736.72, 734.38, and 661.90 cm. (c) 10 of
the guided random walks generated between the given start
and end point. (d) Human trajectories were compared against
100 guided random walks using DTW, and the most similar
value was reported. Block medians: 315.03, 307.15, 300.95,
522.34, 515.89, 452.21, 310.25, 278.97, and 247.46 cm.

Given a starting point, a set of 100 proposed moves were gen-
erated within a 5 cm radius. Next, the model computed the
distance between each of the proposed movements and the
end point. A movement was then chosen from two options:
1) the shortest distance with probability .2, or 2) randomly
chosen movement among the 100 (random) proposed move-
ments with probability .8. Finally, after approximately a few
hundred iterations, the guided random walk model converged
and reached the end point, as shown in Fig. 5c. Measured
by DTW, human movement trajectories were found to be
more similar to the guided random walks not only during the
reversed-motion session but also during both normal-motion
sessions (Fig. 5d). The fit of the model predicted trajecto-
ries to human performance across all the three sessions sug-
gests that participants’ motor movements were goal-directed
but executed with inherent motor noise.

Movement Strategies in Reversed Motion Blocks
In the normal-motion sessions, participants consistently used
both arms to perform the reaching task, while favoring the
controller closest to the target. In the reversed-movement ses-
sion, however, a variety of strategies emerged. Some partici-
pants predominantly used one hand regardless of the location
of the target relative to their neutral zone. Others favored the
hand that was furthest from the target. Thus, we further ex-
amined the distribution of participants’ reaching strategies.

In certain experimental trials, touching the target with the
nearest hand required the participant to reach across their
body while looking in the opposite direction, due to the re-
versed axes. This pose is physically difficult to accomplish.
In contrast, the participant could reach for the target with their
opposite hand, resulting in a pose that was physically com-
fortable. However, this would require the participant to use
the hand that was physically furthest away, which is highly
nonintuitive (Fig. 6). The cost to execute a path is thus de-
pendent on not just proximity but also kinesthetic ease of ex-
ecution.

We examined the interplay between the two constraints
(i.e., proximity and ease of motor execution) in planning mo-
tor movements. Criteria were defined as follows: a trajectory
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(a) (b)
Figure 6: Illustration of different movement strategies in the
reversed-motion session. (a) Solid lines indicate the trajecto-
ries visualized in VR. Dashed lines indicate the correspond-
ing real-world trajectories of participants’ hands. Red trajec-
tory indicates the path executed by the participant, and the
blue trajectory indicates the shortest computed path from the
opposite hand. In this case, the target is located to the left
of the participant in the virtual environment. (b) The ex-
perimenter demonstrates the awkward pose with the shorter
trajectory (top) and the equivalent comfortable pose with the
longer trajectory (bottom).

is considered proximal if a participant uses the hand initially
closest to the target, and considered distal if he uses the hand
initially furthest from the target. The trajectory is consid-
ered awkward if it requires reaching across the body’s cen-
ter and smooth if it does not. These criteria result in four
different trajectory categories: proximal-smooth, proximal-
awkward, distal-smooth, and distal-awkward (See Fig. 7). In
the normal-motion sessions, participants strongly favored the
proximal-smooth strategy, with the distal-awkward strategy
occurring only in a few selected trials where the target was
close to the mid-line. In the reversed motion session, par-
ticipants demonstrated all three strategies except the distal-
awkward.

We performed k-mean clustering on participants’ trajecto-
ries in the reversed-motion session and found that two stable
clusters emerged. Cluster size was split evenly at ten partici-
pants each, indicating that half of the participants were more
likely to use the proximal-awkward strategy and the other half

(a) (b) (c) (d)
Figure 7: Four different trajectory categories. (a) Proximal-
smooth. (b) Proximal-awkward. (c) Distal-smooth. (d)
Distal-awkward.
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Figure 8: K-mean clustering (k = 2) results on reversed
strategy. (Left) 10 participants favored distal-smooth reach-
ing strategies, indicating that they were utilizing predictions
about proprioceptive feedback and actively reasoning about
whether the motions would lead to awkward movements,
whereas (Right) the other 10 participants preferred proximal-
awkward reaching strategies, indicating that they primarily
utilizing visual information.

were more likely to use the distal-smooth strategy. The for-
mer group favored visual proximity: i.e., they attempted to
reach the target using the hand that was closest to the tar-
get. The latter group favored smooth motion: i.e., they used
learned associations between proprioceptive feedback and vi-
sual movement to predict which hand choice would result
in the least awkward pose. In this case, participants were
required to imagine the potential trajectories and associated
proprioceptive feedback to plan their movement. These find-
ings suggest that humans adopt different strategies to cope
with the novel task in the reversed motion session by focusing
on either spatial proximity for efficiency or smooth motion to
avoid impossible or awkward poses.

A linear regression analysis was performed on DTW mea-
surements after separating participants into the two groups as
shown in Fig. 9. It is clear that the pose-focused participants
demonstrated greater improvement compared to proximity-
focused participants, although this learning effect did not per-
sist in the subsequent normal-motion session.

Discussion
When planning motor movement according to misaligned vi-
sual feedback, proprioceptive feedback has been shown to be
suppressed while attention to visual information is enhanced.
We hypothesized that in the case of reversed virtual feed-
back, target-directed reaching movements would rely primar-
ily on visual feedback and thus accord with candidate linear
trajectories. This prediction is confirmed by participants in
the reversed-motion session using only a single hand, which
arguably arises due to the relative ease of forming new vi-
suomotor mappings with a single arm compared to both arms
simultaneously. We found that participants in the reversed-
motion session (R1) exhibited a preference for linear trajec-
tories, which agrees with increasing suppression of using pro-
prioceptive information to guide motor movements. Interest-
ingly, this increasing linear preference–and corresponding re-
liance on newly formed visuomotor mappings–persisted into
the second normal motion session (N2) although it was not
observed in the first normal session (N1). We predict that this
bias toward linear movement strategies would diminish with
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Figure 9: DTW distance to linear reaching trajectories for (a)
reasoning-focused and (b) perception-focused participants.
Those participants that utilized predictions about propriocep-
tive feedback to guide their reaching movements showed in-
creasingly linear trajectories compared to those participants
who primarily utilized visual information. Slopes in (a): -
0.11, -5.22, -4.58. Slopes in (b): -0.23, -2.10, -4.38

further exposure to the normal-motion environment, as tradi-
tional sensorimotor mappings utilizing proprioceptive infor-
mation are employed.

However, the main finding of the present study could have
resulted from increased familiarity with the VR system and
environment. Thus, a follow-up study to this experiment is to
establish a second control condition where each of the three
experimental sessions involve normal motion. If performance
does not vary across the three normal sessions, the finding
that reversed motion increases preference toward visually-
guided, linear motor movements would be strengthened. Ad-
ditionally, movement in the virtual world was reversed on
two axes (vertical and left-right) in the present study. Fu-
ture work should examine how performance changes when a
single axis–or different pairs of axes–are flipped. Moreover,
would exposure to one reversed axis improve performance
under a second (different) reversed axis?

Tactile signals are an important cue for planning and ex-
ecuting object interactions (Johansson & Flanagan, 2009).
One of the major disadvantages with current commercial VR
products is that tactile feedback is missing in the virtual
world. In the present study, we compensated for the lack
of tactile feedback by using additional visual cues to indicate
successful reach events; however this does not change the fact
that a significant source of feedback is missing. For future
studies it would be worth providing a haptic signal through
the controller’s actuators or using a tactile data glove to ad-
ministrate more fine-grained feedback. We predict that imple-
menting haptic feedback to the current experimental method
would inhibit suppression of proprioceptive information and
consequently interfere with the formation of new visuomotor
mappings.

Future work should also examine sensorimotor recalibra-
tion in more complicated tasks than the present reaching
movements: e.g., stacking blocks or completing towers of
Hannoi problems. In these tasks, cognitive resources are de-
voted to planning a sequence of motor movements, which
may yield strong interference to the visuomotor adaptation
process and provide a unique window to study the interplay
between motor planning and reasoning.
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The development of turn-taking: Pre-schoolers may predict what you will say, but
they don’t use those predictions to plan a reply.

Laura Lindsay
University of Edinburgh, Edinburgh, United Kingdom

Chiara Gambi
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Hugh Rabagliati
University of Edinburgh, Edinburgh, UK

Abstract: Whereas adults exchange conversational turns very rapidly, children often respond after long gaps. However, it has
been proposed that the infrastructure necessary to take turns develops in infancy. Why are children slow to respond to turns?
Adults’ turn-taking skills, it has been argued, rely on an ability to both predict when the current turn will end and prepare a
response as soon as possible. In two experiments, we ask how these two abilities (prediction and early preparation) develop.
Adults and 3-to-5-year-olds answered yes/no questions while playing an iPad-based maze game. Distributional analysis of
answer latencies suggest that (i) neither children nor adults rely on fine-grained predictions of turn duration and (ii) both
children and adults use predictions about turn content to prepare their answer early. In sum, by the age of three, children
already have the cognitive architecture necessary to take turns successfully. ,
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Abstract

Evidence that higher cognitive processes are coupled in a
graded and time-continuous way to sensory-motor processes
comes, in part, from mouse-tracking studies. In these, curved
mouse trajectories toward one of two fixed response locations
reveal the evolution of certainty about a cognitive task that par-
ticipants solve. We present a paradigm in which selection of
the response location is itself the cognitive task. From among
items in a visual scene, participants select a target that is de-
scribed by a spatial relation (e.g.,“the red to the left of the
green”), where one target item (here, “red”) matches the de-
scription better than alternative same-colored targets. In the
mouse trajectories, we find clear evidence for attraction to
the alternative targets, attraction to the reference item (here
“green”), and an early biasing influence of the spatial term.

Introduction
Over the last two decades, a major theme in cognitive science
has been that cognitive processing is graded in nature, unfolds
continuously in time, and is coupled to perceptual and mo-
tor processes (Schöner, Spencer, & the DFT Research Group,
2015; Spivey, 2007). Movement preparation, for instance,
was shown to occur in a graded and continuous form when
the time interval between imperative stimulus and response
was varied experimentally in the timed movement initiation
paradigm (Ghez et al., 1997). The theoretical account (Erlha-
gen & Schöner, 2002) linked this phenomenon to graded dis-
tributions of population activation in the motor and premotor
cortex (Bastian, Schöner, & Riehle, 2003; Cisek & Kalaska,
2005). That higher-level cognitive processes, such as under-
standing spatial concepts, interact with perceptual and motor
processes has been seen through interaction effects in reac-
tion time tasks that probed potentially overlapping perceptual
and motor representations (e.g., Richardson, Spivey, Barsa-
lou, & McRae, 2003). Mouse tracking and similar techniques
have been a major tool to study and establish this link be-
tween cognitive and sensory-motor processes (for review see
Freeman, Dale, & Farmer, 2011; Song & Nakayama, 2009).

In mouse tracking paradigms, participants are asked to
solve a cognitive task that may engage high-level concepts.
The response is usually ensured to begin early in relation
to the decision process, analogously to the timed movement
initiation paradigm. Typically, a computer mouse must be
moved toward one of two (sometimes a few) response lo-
cations. What varies over time is the certainty over the re-
sponse, which is reflected by the movement deviating some-
what into intermediate directions. A limitation of previous
mouse tracking research with respect to the interaction of
cognitive and sensorimotor processes is that the motor re-
sponses are usually fixed and assigned symbolically to the

solutions of the cognitive task (e.g., left button for “yes” and
right button for “no”). When a small number of possible
movement targets is known in advance, it is not the decision
itself that specifies the metrics of the required movement.

We developed an experimental paradigm in which the spa-
tial target of a mouse movement was directly specified by the
cognitive task and unknown in advance. Participants read a
target description invoking colors and spatial relations (e.g.,
“the yellow to the left of the green”) and then saw a complex
layout of colored objects (e.g., Fig. 1c). A selection decision
had to be made among multiple same-colored target items
(“yellow”), clicking the one best matching the spatial term.
Although some aspects of the visual arrays are tightly cou-
pled and impossible to vary independently, we were able to
unravel their effects by counter-balancing those aspects that
posed potential confounds, separately for each comparison.

We looked for three signatures of interaction among the
task’s cognitive and sensory-motor dimensions. First, the al-
ternate targets (i.e., distractors) were predicted to metrically
attract the trajectories, in analogy to the effect of alternate
but incorrect choice alternatives in classic mouse tracking re-
search. Second, while the reference item is never an alternate
target, it likely engages attentional focus during processing
(Franconeri, Scimeca, Roth, Helseth, & Kahn, 2012), which
we predicted to also cause attraction. Third, based on previ-
ous evidence (Tower-Richardi, Brunye, Gagnon, Mahoney, &
Taylor, 2012), we expected a bias into the direction described
by the spatial term. In our recent neural process model of
spatial language grounding (Richter, Lins, & Schöner, 2017),
discrete amodal representations of target, reference, and spa-
tial term guide activation in continuous perceptual representa-
tions. In the model, target and reference must become active
sequentially, because overlapping substrates are engaged to
spatially index the corresponding visual items. We thus ex-
pected some temporal displacement in the biases toward these
items. The spatial term, in contrast, impacts another substrate
and is active early and in parallel to target and reference. We
thus expected the spatial term effect to bias movement met-
rics globally and early on.

Methods

Participants Twelve participants (5 female, 7 male, mean
age 27.4 years ± 3.8 s.d., one left-handed) were recruited by
notices at the local department, receiving EUR 10 for partici-
pation. All were naı̈ve to the experimental hypotheses, native
German speakers, and had normal vision.
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Material The experiment was run using Matlab and the
Psychophysics Toolbox (Brainard, 1997) and presented on a
22” LCD screen (Samsung, 226BW; visible image 475mm×
197mm) at a viewing distance of approximately 70 cm (sub-
tending approx. 40.4◦ × 16.2◦ of visual angle, v.a.). Tra-
jectories were collected using a standard computer mouse
(Logitech, M-UAE96, mean sampling rate 92.17 Hz). Mouse
speed was set such that movement on the tabletop translated
to cursor movement over the same distance, to make motions
more similar to natural arm movements and simplify cogni-
tive transformation from hand coordinates to screen space.

Procedure A trial began with a black start marker in the
bottom center of an otherwise gray screen. To proceed, the
participant moved the mouse cursor (a white dot) onto the
start marker. After resting there for 300 ms, a German spa-
tial phrase appeared at a position somewhat random around
the center of the stimulus region (up to ±48mm/20mm
horiz./vert.), for instance, “Das Gelbe links vom Grünen.”
(“The yellow left of the green.”), denoting a target item by its
color and its position in relation to a reference item, which
was also specified by color. Display duration ranged ran-
domly from one to two seconds. The phrase then disappeared
and a beep signaled the participant to start moving the cur-
sor upwards within one second (if movement started too late,
the trial was aborted and appended at the end). Movement
onset was registered when a velocity of 20mm/s was ex-
ceeded. At that point, twelve colored items appeared above
the start marker (e.g., Fig. 1c). Thus, movement was already
in progress when the selection process started. One of the
twelve items was the uniquely colored reference mentioned
in the phrase, one was the target, and one was the main dis-
tracter, which had the same color as the target but provided
a worse match for the spatial term, according to a spatial
template described below. The participant had to select the
item which in his or her opinion best matched the preced-
ing phrase (participants could select any item). If time since
movement onset exceeded two seconds, the trial was aborted
and appended at the end. Participants were instructed that
there were no incorrect responses, that items were not obsta-
cles, and that response time was limited such that they had
to respond promptly. After 13 practice trials, each participant
completed 446 trials in random order (one completed eight
more, to use the entire set of 5360 trials, described below).

Spatial phrases Spatial phrases were in German
and of the form “DasartGrünetgtrechts vomsptRotenref”
(“Theartgreentgtto the right ofsptthe redref”), where art de-
notes the article, which was always “Das”, tgt denotes a
target component from the set {Rote, Grüne, Blaue, Gelbe,
Weiße, Schwarze}, ref denotes a reference component
from the set {Roten, Grünen, Blauen, Gelben, Weißen,
Schwarzen} (“the {red, green, blue, yellow, white, black}
one”), and spt denotes a spatial term from the set {links
vom, rechts vom, über dem, unter dem} ({left of, right of,
above, below}). In all trials, the spatial phrase posed a valid

description of an item in the stimulus display.

Stimulus displays Visual items were irregular polygons
with an outer diameter of 16.4 mm (1.34◦ v.a.), each colored
in one of the six colors that also occurred in the spatial phrases
(red, green, blue, yellow, white, and black). Items were com-
bined into stimulus displays as described in the following.

We generated multiple three-item configurations of a refer-
ence item, a target item, and a distracter, differing in how tar-
get and distracter were situated relative to the reference. Their
positions were selected based on a spatial template, a fit func-
tion f (φ,r) with the reference at [0,0] that indicates how well
a given position, defined by angle φ and radius r, matches a
spatial term.1 Fig. 1a (left panel) shows a plot over Carte-
sian coordinates for “right of”. The shape of the spatial tem-
plates is inspired by behavioral data (e.g., Logan & Sadler,
1996) which computational modeling work reproduced us-
ing similar functions (Lipinski, Schneegans, Sandamirskaya,
Spencer, & Schöner, 2012).

Targets were placed in a region where f (φ,r) > 0.6 and
where the outer radices of reference and target were separated
by at least 0.5 mm (0.04◦ v.a.; Fig. 1a, center panel). Within
this region, targets were centered on the junctions of a square
grid, resulting in sixteen evenly distributed target positions.
For each of the 16 target positions a separate set of distracter
positions was determined (out of which one distracter was
used per trial, paired with the respective target). These were
obtained with the same method as the targets, but the general
region for distracters was constrained by f (φ,r)> 0.4 (green
outline in Fig. 1a, center panel), and as an additional con-
straint distracters’ fit had to be at least 0.03 lower than target
fit (min. border-to-border distance again 0.5 mm; see Fig. 1a,
right panel). Hence, the shape of distracter regions differed
between target positions so that distracter numbers differed
as well, varying from 16 to 25 (mean 20.9) per target posi-
tion. Colors for each three-item set were randomly picked,
with target and distracter being colored alike.

A set of 335 different three-item configurations was ob-
tained for each spatial term, differing between terms only in
orientation. We thus arrived at 1340 configurations, each of
which was presented at four different positions on the screen,
such that the target item of each configuration appeared once
in each of four different on-screen target locations (black X’s
in Fig. 1b). These were arranged in a square around the cen-

1In polar coordinates the function is given by

f (φ,r) = e
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where φ denotes polar angle, r is the radius, φ0 is the mean of a
Gaussian function over angle, σφ is its standard deviation, r0 and σr
are analogue parameters for a Gaussian over radius, β is the steep-
ness of a sigmoid function over angle, and φflex is the separation of
its inflection point from the mean of the Gaussian over angle. We
used σφ = 1.05, r0 = 0mm, σr = 47mm, β = 25, and φflex = 1.45.
Parameter φ0 depended on the spatial term, with “right of”, “above”,
“left of”, and “below” corresponding to φ0 = {0, π

2 ,π,
3
2 π} rad.
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Fig. 1: (a) left panel: Spatial template for “right of”. (a) center panel: General item regions defined by fit and distance
constraints. White outline denotes outer radius of reference item. (a) right panel: One specific three-item configuration (target
in red, distracter in green). The green dotted line here shows the region where distracters were placed for that specific target
position. (b) Experimental screen area with regions and locations constraining stimulus placement; item arrangement for “left
of”. The red dot corresponds to the reference item, the closer green dot on the left corresponds to the target item, and the green
dot below that to the (main) distracter. The green dot on the right is the opposite distracter. Gray dots are fillers. Black X’s
are potential target positions, the yellow diamond marks the center of mass of all items, the dotted square denotes the region
generally eligible for item placement, and the dashed gray line illustrates the direct path to the target. The start marker is located
at the bottom center (black dot). (c) The stimulus arrangement from (b) as viewed by the participants.

ter of the stimulus region, at a distance of 28.3 mm (2.32◦

v.a.) horizontally and vertically. Restricting target positions
to a few fixed locations and having the stimulus array sample
space around those locations alleviated the common problem
of different movement metrics for different spatial locations.

Nine filler items were added to each trial, each colored ran-
domly in one of the four remaining colors. Locations were re-
stricted to a square region of 184 mm (15.1◦ v.a.) side length,
whose midpoint was 200.8 mm (16.6◦ v.a.) straight above
the start marker. The center of mass (CoM) across all 12 vi-
sual items had to be congruent with the center of that region
(±0.8 mm) so that it was identical across conditions and posi-
tioned in the horizontal screen center, allowing to more easily
partial out a putative bias to either one (a bias to the horizontal
screen center was expected because the items appeared only
as soon as upward movement was detected). Fillers retained a
border-to-border distance of at least 0.5 mm. Locations were
random otherwise. Finally, as an additional incentive to eval-
uate the spatial relation, in some trials (27%) one filler was
turned into an additional distracter by giving it the same color
as target and (main) distracter. It had to be located on the side
of the reference opposed to the spatial term, and separated
from the reference along the term’s axis (e.g., horizontal for
“right of”) by at least 28.3 mm (2.32◦ v.a.).

The full stimulus set included 335 configurations ×
4 spatial terms×4 target positions = 5360 trials, which were
randomly assigned to the twelve participants.

Analysis

We analyzed only trials where participants selected the item
best matching the spatial phrase according to the fit function
(hereafter called target). We refer to the straight line from a
trajectory’s first point to the target item’s center as direct path.

Sharply curved trajectories were discarded from analyses,
in order to consider only trajectories exhibiting graded attrac-

tion while excluding re-decisions in mid-flight and mouse-
overshoots. Curvature was assessed by temporarily inter-
polating to a uniform segment length of 5 mm and then ap-
plying the osculating circle method (considering each vertex
and its two neighbors). Trajectories exceeding a curvature of
0.1 were discarded. We chose this approach over other val-
ues such as area under curve (Hehman, Stolier, & Freeman,
2015), as these are less informative in a setup with multiple
potential effect sources on both sides of the direct path.

Trajectory preparation Trajectories were trimmed to start
with movement onset and to end with the first data point after
crossing the target border. They were then translated to start
at [0,0] and rotated around that point by the angle between the
target’s position vector and the y-axis. Positive x-values thus
denote deviation from the direct path to the right, negative
values indicate leftward deviation. Trajectories’ spatial coor-
dinates were linearly interpolated over 151 equidistant time
steps to enable averaging (combining position data from iden-
tical values of elapsed proportion of total movement time).

Statistical analysis Mean trajectories were compared by
testing for differences between x-coordinates at each of the
151 time steps using two-tailed paired-sample t-tests with
p< 0.01. Since data points in each mean trajectory are highly
interdependent, and given the large number of tests, the in-
formative value of each individual t-test is limited. To rem-
edy this, we used the bootstrapping procedure introduced by
Dale, Kehoe, and Spivey (2007), providing a criterion for how
many t-tests in sequence must yield significance before a dif-
ference between trajectories can be considered overall signif-
icant. A separate criterion with p < 0.01 was computed for
each comparison based on 10,000 artificial experiments each.

Balancing to isolate main effects To obtain unbiased es-
timates of the individual effects of distracter, reference, and
CoM position by comparing two conditions (e.g., all trials
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where the distracter was left versus right of the direct path),
the impact of the others (e.g., reference and CoM side) must
be taken into account. For this, we distinguished trials into
categories that indicated whether a potentially confounding
item was on the same or opposite side of the direct path as
the item of interest. There was a different set of four cate-
gories for each item of interest. For instance, balancing cat-
egories for the distracter effect were rs/cs, rs/co, ro/cs, and
ro/co, “r” denoting the reference, “c” the CoM, and “s” and
“o” denoting whether the respective item was on the same
or opposite side of the direct path as the distracter. Corre-
sponding categories for considering reference and CoM were
named analogously (“d” denoting the distracter). When com-
paring two sets of trials for one effect, balancing out the other
two then works by ensuring that each set is composed of an
equal number of trials from each relevant balancing category.
This requirement is not fully satisfied by our full set of tri-
als and some comparisons. To allow judging how imbalances
may have affected the respective data, Fig. 2 plots the distri-
bution of trial numbers over the relevant balancing categories
alongside each comparison. To further validate that observed
effects were not due to imbalances, post hoc balancing was
conducted: We did a second analysis for each comparison,
identical to the one performed on the full trial set, but before-
hand randomly discarded trials from over-represented cate-
gories such that a balanced distribution was obtained within
each condition and participant. We report when this substan-
tially changed effects. For the overall mean trajectory, cat-
egories were based on item sides relative to the direct path.
Category labels used the same letters as above, in addition to
“l” (left) and “r” (right; e.g., dr/rl/cl means that the distracter
was on the right and the other items on the left side).

Results
A total of 5245 trajectories was obtained (115 were lost due to
technical problems) and participants selected the best-fitting
item in 4710 (mean 89.82% ± 3.3 s.d.). Of these, 446
(9.47%) exceeded curvature threshold, leaving 4264 (81.3%)
for analysis. Mean movement time was 1061 ms (± 116
s.d.); noteworthy differences occurred only between upper
and lower target positions (1140 ms ± 119 s.d. and 977 ms
± 114 s.d.). Participants reported not to have noticed that
target positions were limited to four locations.

Fig. 2 shows mean trajectories for all comparisons, along
with trial distributions over balancing categories for each con-
dition. The overall mean trajectory (Fig. 2a) slightly curved
rightwards, likely reflecting kinematic bias. To provide an
idea of this bias in relation to other effects, dotted gray lines
in each panel of Fig. 2 show the mean over trials from the
compared conditions. As expected based on the task instruc-
tions, a strong bias toward the CoM was evident (Fig. 2b).

We report statistical test results in this form: 46/8, 5–50%,
providing the number of successive significant time steps (46)
along with the bootstrap criterion for overall significance (8),
followed by the percentages of elapsed movement time at the

start and end of the sequence (5–50%). Considering all tri-
als, there was a significant bias away from the reference side
in the first half of the movement (57/6, 1.3–38.4%; Fig. 2c)
and a significant bias in reference direction in the second half
(52/6, 66.2–100%). Assessing the effect of reference side
separately for trials with horizontal-axis spatial terms (“left”
and “right”) and for vertical ones (“above” and “below”)
showed that the bias away from the reference was driven by
the horizontal term trials (69/30, 1.3–46.4%; Fig. 2d). Note
that in these trials deviation away from the reference is con-
gruent with spatial term direction. Correcting for the over-
represented distracter-opposite trials (cs/do, co/do) by post
hoc balancing did not remove the effect (70/47, 1.3–47%;
Fig. 2f). The later bias toward the reference was driven by
the vertical spatial term trials (94/31, 38.4–100%; Fig. 2e).
Post hoc balancing showed that it was not due to the over-
represented distracter-same trials and resulted in an earlier
onset of the reference effect (102/31, 33.1–100%; Fig. 2g).

As shown in Fig. 2h, there was a sustained, significant
bias in distracter direction for the whole trial set (100/15,
33.4–100%). Assessing the effect separately by spatial term
axis showed that the effect’s early component was driven ex-
clusively by horizontal term trials (140/6, 8–100%; vertical:
86/33, 43.7–100%; Fig. 2i,j). These included a pronounced
majority of reference-opposite trials (ro/cs, ro/co), suggest-
ing that the distracter effect’s early component may in fact
be a bias in spatial term direction (i.e., away from the refer-
ence), as reported above. Post hoc balancing indeed reduced
the distracter bias to the second half of the movement (81/8,
47–100%; Fig. 2k). Post hoc balancing the vertical term trials
left the effect largely unchanged (89/11, 41.7–100%; Fig. 2l).

Post hoc balanced vertical term trials (Fig. 2g) provide the
most unbiased estimate of the reference effect. Comparing its
onset in these trials to that of the distracter effect in the anal-
ogous comparison (Fig. 2l) shows an earlier onset of the ref-
erence effect by 8.6% of movement time (equaling 91.1 ms,
based on mean movement time in these trials).

Discussion
We have described a mouse tracking paradigm in which un-
known spatial targets were specified by the task through a
relational description and demonstrated how influences from
multiple effect sources in such a setup may be disentangled.

As predicted, distracters attracted mouse paths, similar to
decision alternatives in classic mouse tracking studies (e.g.,
Dale et al., 2007). The predicted attraction toward reference
items was observed as well, for the spatial terms “above” and
“below”. Moreover, as hypothesized, a bias in spatial term di-
rection was present from early on for horizontal-axis spatial
terms. We interpret this as a spatial term effect rather than re-
pulsion from the reference based on the very early onset (note
that the spatial term was not predictive of absolute target lo-
cation in the paradigm) and in line with previous evidence
(Tower-Richardi et al., 2012). Its apparent absence in vertical
term trials is unsurprising, as it would act orthogonally to the
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same comparisons as (i) and (j), but with a post hoc balanced set of trials.
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axis along which deviation was assessed. This may also ex-
plain why reference attraction is visible only in vertical term
trials: If the spatial term effect impacts the entire length of
trajectories as hypothesized, the two effects may cancel each
other out in the late portion of horizontal term trials.

The attraction to the reference item confirms that it engages
spatial attention during relational processing (e.g., Franconeri
et al., 2012), even when it is unique in color. This may hint
that spatial indexing (Logan & Sadler, 1996) of its position
is mandatory for grounding. It further suggests that computa-
tionally relevant non-targets can impact the motor level.

The observed distracter attraction is reminiscent of reaches
to average locations under target uncertainty (e.g., Chapman
et al., 2010). Aspects specific to relation grounding may as
well play a role, though, for instance, through locations in a
neural map being differentially activated by a relational tem-
plate. A hint at this interpretation is the small extent of dis-
tracter attraction compared to a mean distracter distance to the
direct path of 20.59 mm, calling into question mere averag-
ing. The latter aspect, as well as the early spatial term effect,
the mandatory reference selection, and the offset time courses
of reference and distracter attraction, parallel our neural pro-
cess model of grounding, in which item positions are sequen-
tially stored in distinct neural substrates to apply a concur-
rently active, graded relational template (Richter et al., 2017).

There is ample room for new research in the direction sug-
gested here. One step may be to clarify in how far distracter
attraction is specific to relational processing. The temporal
order of effects must be probed more formally. Finally, higher
cognitive processes may further be unraveled through addi-
tional variations of spatial phrase structure or visual displays.

Conclusion
As participants perceptually ground spatial phrases such as
“the red to the left of the green”, they attend to potential tar-
get objects (here, red ones) and typically select the one best
matching the spatial relation. Mouse trajectories toward the
ultimately selected target reveal transient biases in multiple
directions. First, they show attraction to the alternative tar-
gets, consistent with previous evidence. Second, an attraction
to the reference object (“green”) begins somewhat earlier and
may reflect allocation of spatial attention. Third, a bias in spa-
tial term direction is present from early on. Overall, this study
frames motor responses as direct reflections of the perceptual
grounding of spatial phrases, bringing evidence for the cou-
pling of cognitive to sensory-motor processes to a new level.
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Abstract

Probabilistic prediction is a central process in language com-
prehension. Properties of probability distributions over predic-
tions are often difficult to study in natural language. To obtain
precise control over these distributions, we created artificial
languages consisting of sequences of shapes. The languages
were constructed to vary the uncertainty of the probability dis-
tribution over predictions as well as the probability of the pre-
dicted item. Participants were exposed to the languages in a
self-paced presentation paradigm, which provides a measure
of processing difficulty at each element of a sequence. There
was a robust pattern of graded predictability: shapes were pro-
cessed faster the more predictable they were, as in natural lan-
guage. Processing times were also affected by the uncertainty
(entropy) over predictions at the point at which those predic-
tions were made; this effect was less consistent, however.
Keywords: Entropy, prediction, statistical learning, artificial
language, psycholinguistics

Introduction
Our environment is characterized by recurring temporal pat-
terns; the sound of an ambulance siren, for example, tends to
predict the appearance of an ambulance. Humans can quickly
learn to exploit these contingencies between stimuli to antic-
ipate future events and react to those events more effectively.
The ability to track dependencies across the elements of a
sequence is central to language processing: prediction of up-
coming words is employed during language comprehension
(DeLong, Urbach, & Kutas, 2005) and may play a central
role in acquisition (Gómez, 2002).

Prediction in natural language is rarely categorical: there is
generally some uncertainty as to the upcoming word. Rather
than predict a single word or avoid making predictions al-
together, readers maintain a probability distribution over the
upcoming words: words that are more likely to come up are
activated to a greater extent (Smith & Levy, 2013). Probabil-
ity distributions over predictions are often difficult to study in
natural language, due to the need to find sets of words that
happen to have the desired probabilistic relations in a natu-
ral corpus. The present study builds on work that shows that
the processing of temporal contingencies can be studied using
artificial language learning experiments. These experiments
typically consist of a familiarization phase, in which partici-
pants are exposed to the artificial language, and a test phase,
in which they are requested to distinguish sequences that fol-
low the patterns of the language from sequences that do not.
We use this paradigm to study probabilistic prediction in se-
quence learning and processing.

Quantifying probabilistic prediction: A predictive de-
pendency is made up of two parts: the point at which the

prediction is generated (the predictive item) and the point at
which it is matched against the incoming input (the predicted
item). We study both parts of the process. At the predictive
item, multiple probabilistic predictions can typically be gen-
erated. Higher uncertainty over the correct prediction may
lead to increased competition among those predictions and
slower processing. We follow earlier work in quantifying un-
certainty using the entropy of the distribution over possible
predicted items (Linzen & Jaeger, 2014; Hasson, 2017):

H =− ∑
w∈W

P(w) log2 P(w) (1)

where W is the set of possible items and P(w) is the proba-
bility of w in the current context. At the point at which pre-
dictions are matched against the input, input items that were
predicted with a higher probability may be processed more
quickly. In natural language, processing difficulty at an item
w is proportional to its surprisal (− log2 P(w)): more surpris-
ing words tend to be read more slowly (Smith & Levy, 2013).
A final expectation-based measure that has been argued to be
a reliable predictor of reading times (RTs) in natural language
is uncertainty reduction: words that reduce uncertainty about
the sequence to a greater extent are predicted to be read more
slowly (Hale, 2003; Frank, 2013).

The experiments: We report two experiments designed to
examine these quantitative measures of probabilistic predic-
tion in artificial languages. In what follows, we briefly dis-
cuss our general methodological strategy.

In many artificial language learning experiments, the fa-
miliarization phase consists of passive exposure; as such, the
only behavioral measure collected in these studies is the pro-
portion of correct grammaticality judgments given after the
familiarization stage is over. Recently, a number of online
paradigms have been proposed that track the learning pro-
cess as it unfolds over the course of the familiarization phase
(Siegelman, Bogaerts, Christiansen, & Frost, 2017). On-
line paradigms also provide an index of processing time at
each individual item of the sequence, making them partic-
ularly well-suited to studying the generation and validation
of predictions. We adopt one of these paradigms, the self-
paced reading paradigm (Just, Carpenter, & Woolley, 1982),
adapted to artificial language learning by Karuza, Farmer,
Fine, Smith, and Jaeger (2014). In this paradigm, the ele-
ments of each sequence are presented sequentially; the par-
ticipant controls when the next sequence element is revealed.

Previous studies of prediction have focused on sequences
with nonadjacent dependencies: the sequence is of the form
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AXB, where A predicts B (Karuza et al., 2014; Misyak, Chris-
tiansen, & Bruce Tomblin, 2010). Instead, we use dependen-
cies of the form AB, without an intervening element; such de-
pendencies are in general easier to learn (Newport & Aslin,
2004). By increasing the likelihood that our participants will
learn the language, we can ask more fine-grained questions
than would be possible using nonadjacent dependencies.

Summary of goals: We address the following issues:

1. Does the probability of the second shape B given the first
shape A affect the processing of B?

2. Are processing times at the point where the prediction can
be made (shape A) affected by the uncertainty of the prob-
ability distribution over predictions?

3. Does the reduction of uncertainty about the sequence at
shape B entail greater processing difficulty?

Experiment 1
Stimuli
Following Karuza et al. (2014), we used sequences of let-
ters from the Ge’ez script, which is used to write several
Ethiopian and Eritrean languages. We refer to these letters
as shapes since none of our participants were familiar with
this script. As in Karuza et al. (2014), our sequences con-
sisted of three shapes. As we have mentioned, we omitted the
intermediate shape – the dependency was adjacent. To keep
the structure of the stimuli similar to the stimuli used in the
previous study and to avoid task effects related to the begin-
ning of a new sequence, all of the sequences started with a
fixed shape r (distinct from the A and B shapes). This shape
was the same in all trials for a given participant and was not
analyzed.

The language used in this experiment is described in Ta-
ble 1. Each participant was exposed to two types of A shapes.
Low entropy A shapes were followed by one of two B shapes,
with probability 1/4 and 3/4 respectively. High entropy A
shapes were followed by one of four B shapes, each with
probability 1/4. There were two A shapes of each type, for
a total of four A shapes. None of the B shapes were repeated
across A shapes: there were 12 distinct B shapes. We refer
to the B shapes with a probability of 1/4 as high surprisal
shapes, and to shapes with a probability of 3/4 as low sur-
prisal shapes.

To control for potential differences in the visual complex-
ity of particular shapes, the shapes that served as a1, a2 and
b1, . . . ,b6 were counterbalanced across participants.

Participants
A total of 44 participants (24 women and 20 men; age range:
20–28, mean age: 23.4) from the Hebrew University of
Jerusalem community completed the experiments.

Procedure
The experiment consisted of three phases: familiarization,
test and a post-test phase.

Shape R Shape A Shape B TP Surprisal

High entropy: (H = 2)
r a1 b1 1/4 2
r a1 b2 1/4 2
r a1 b3 1/4 2
r a1 b4 1/4 2

Low entropy: (H = 0.81)
r a2 b5 1/4 2
r a2 b6 3/4 0.41

Table 1: Half of the language used in Experiment 1 (the
other half is duplicated: a high entropy a3 paired with high
surprisal b7 through b10 and a low entropy a4 paired with a
high surprisal b11 and a low surprisal b12). TP indicates the
transitional probability between the A and the B shape (e.g.,
P(b1|a1) = 1/4). H indicates the entropy of each distribution.

Familiarization phase: Each trial started with a sequence
of dashes where the shapes would be; participants pressed
the spacebar to reveal the next shapes one by one. When
a shape was revealed, the previous shape was replaced by a
dash again. Before this phase of the experiment began, par-
ticipants were instructed to try to remember the sequences,
since they would be tested on them later on.

There were 288 sequences in this phase. This contrasts
with the familiarization phase in Karuza et al. (2014), which
consisted of 432 sequences; we chose to have a shorter fa-
miliarization phase because prediction effects in Karuza et
al. (2014) plateaued about half way through the experiment.
We further simplified their design by eliminating the catch
trials meant to ensure that participants were paying atten-
tion. These trials were not necessary because we analyzed
data only from participants who successfully learned the lan-
guage: our assumption was that participants who were not
paying attention would fail to learn the language.

Test phase: This phase consisted of 24 trials, each of which
elicited a judgment for one sequence. All three shapes of the
sequence were presented at once (not in self-paced presen-
tation). Half of the trials contained sequences that had been
presented during familiarization; the other half contained the
shapes from the familiarization phase arranged in unseen se-
quences. Participants were asked to press one button if the se-
quence appeared familiar given the sequences they had seen
in the first phase, and another button if it did not.

Post-test phase: The test phase was followed by another
self-paced presentation phase. This phase was somewhat
shorter, consisting of 192 trials. Participants were again in-
structed to attempt to remember the shapes. The goal of this
phase was to examine the behavior of participants who have
already learned the language; for example, if predictability
effects were found, are they restricted to the stages in which
the participant has not yet mastered the language?
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Figure 1: Reading times in Experiment 1 (above: A shape;
below: B shape).

Results
Accuracy: We briefly analyze the familiarity judgments
from the test phase before moving on to the analysis of the
processing time data from the familiarization phase, which
is the focus of this study. On average, participants were
more likely to judge a sequence as grammatical, leading
to higher accuracy on grammatical than ungrammatical se-
quences (82% vs. 60%). To test for differences across types
of test sequences, we coded the test sequences based on the
category of their A and B shapes (e.g., low entropy + high
surprisal). Logistic mixed-effects models fitted separately
to grammatical and ungrammatical sequences did not find
significant differences across sequence types (grammatical:
χ2(2) = 2.8, p = .24; ungrammatical: χ2(2) = 4.4, p = .11).

RT preprocessing and analysis: We refer to the sequential
processing times measured by key press latencies as read-
ing times (RTs) for consistency with the sentence process-
ing literature. Following Karuza et al. (2014), we excluded
shapes on which RTs were (1) longer than six seconds or
(2) three standard deviations higher or lower than the partici-
pant’s mean RT for shapes in the same position. This resulted
in the exclusion of 1.1% and 2.5% of the shapes respectively.

We only analyzed RTs from participants who gave correct
grammaticality judgments to at least 18 of the 24 sequences

(the lowest number for which p < .05 according to an exact
binomial test). Of the 44 participants, 23 passed this thresh-
old. Our statistical analysis largely followed Karuza et al.
(2014). RTs were log-transformed and submitted to a linear
mixed-effects regression with a random intercept for shape
and a random intercept and slope for all fixed effects. Trial
number and its interaction with the experimental factors were
included in all models.

RT results: The time course of the results is plotted in Fig-
ure 1. Overall, RTs decreased markedly over the course of
the familiarization phase, picked up in the beginning of the
post-test phase, then decreased again.

The average difference in RTs between high and low en-
tropy A shapes in the familiarization phase was 119 ms (877
ms for high entropy and 758 ms for low entropy shapes). The
linear mixed-effects model analysis indicated that this differ-
ence was statistically significant (χ2(1) = 4.2, p = .04). The
effect of trial number was highly significant (χ2(1) = 31.5,
p < .001). The interaction between trial number and entropy
did not reach significance (χ2(1) = .06, p = .81), suggest-
ing that there was no clear evidence that the effect of entropy
changed over the course of the experiment.

There were three types of B shapes: high surprisal ones that
followed a low entropy A shape (e.g., b5, see Table 1); high
surprisal ones that followed a high entropy A shape (e.g., b1);
and low surprisal ones that followed a low entropy A shape
(e.g., b6). We first examined the effect of surprisal, collapsing
across the two categories of high surprisal shapes. We found
that high surprisal shapes were read more slowly than low
surprisal shapes (χ2(1) = 17.8, p < .001); the average differ-
ence in RT was 200 ms (812 ms for high surprisal and 612
ms for low surprisal shapes). The effect of trial number was
highly significant again (χ2(1) = 44.6, p < .001), and inter-
acted with surprisal such that the effect of surprisal weakened
over the course of the familiarization phase (χ2(1) = 9.9,
p = .002).

Finally, we compared the two types of high-surprisal B
shapes, which were matched for surprisal but differed in the
entropy of the A shape that preceded them. The mean RTs
were almost identical across these two types of shapes (812
ms after high entropy A shapes and 813 ms after low entropy
ones). This difference was not significant in the statistical
analysis (main effect of entropy: χ2(1) = 1.2, p = .27; inter-
action with trial number: χ2(1) = .9, p = .35).

Discussion
In this experiment, participants were taught a language de-
signed to assess the effect of measures of probabilistic pre-
diction on sequence processing. Neither surprisal nor uncer-
tainty reliably affected judgment accuracy in the test phase;
they did, however, modulate processing times during the fa-
miliarization phase. First, predictability affected RTs in the
expected way: high surprisal B shapes were read more slowly
than low surprisal ones. Second, uncertainty at the A shape af-
fected RTs in a way that is consistent with competition among
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the predictions: higher entropy shapes were read more slowly
than low entropy ones.

Finally, we did not find evidence for an effect of uncer-
tainty reduction on the B shape. To see why, note that the
B shapes are the last item in the sequence; as such, they re-
duce the uncertainty about the sequence to 0. The amount by
which uncertainty is reduced is therefore equal to the entropy
of the distribution over predictions at the A shape; yet there
was no evidence for a difference in reading times between
high surprisal B shapes that followed a high entropy A shape
(and therefore reduced entropy by 2 bits) and high surprisal
B shapes that followed a low entropy A shape (and reduced
entropy by only 0.41 bits).

Experiment 2
In Experiment 1, uncertainty was perfectly correlated with
the number of possible predictions: high entropy A shapes
had four prediction options compared to two options in low
entropy A shapes. The goal of the current experiment is to ex-
amine whether we can find entropy effects when the number
of options is kept constant. For a given number of options,
entropy is highest when the distribution is uniform; we there-
fore compare a uniform distribution to a skewed one, that is,
with one option that is more likely than the others.

Participants
A total of 49 participants completed the experiment. Two
participants were excluded for not completing the experiment
and one for having prior exposure to Amharic, which uses the
Ge’ez script; of the remaining participants, 35 were women
and 11 men (age range: 19–31; mean age: 23.8).

Materials
The language used in Experiment 2 is shown in Table 2.
There were three types of A shapes. Two of the A shapes
could be followed by three possible B shapes (to avoid hav-
ing to teaching participants a very low probability option, we
used three options instead of four as in Experiment 1.) After
a1, the distribution of the B shapes was uniform: each of the
shapes had a probability of 1/3. After a2 the distribution was
skewed: one of the shapes had a probability of 2/3 and the
other two 1/6 each.

To control for the possibility that any difference between
the two 3-option shapes could reflect skew rather than en-
tropy as such, we additionally included a third type of A shape
that was followed by one of two B shapes, each with prob-
ability 1/2. As this distribution is uniform, we expect this
shape to pattern with a1 if the relevant factor is skew. Con-
versely, since its entropy is lower than either 3-option shapes,
it should be processed faster than either of them if entropy is
the relevant factor.

Due to the larger number of conditions and the need to pro-
vide sufficient exposure to lower probability B shapes (1/6
compared to 1/4 in Experiment 1), each type of A shape was
represented by a single shape only.

Shape 1 Shape 2 Shape 3 TP Surprisal

Three options, uniform: (H = 1.58)
r a1 b1 2/6 1.58
r a1 b2 2/6 1.58
r a1 b3 2/6 1.58

Skewed, three options: (H = 1.25)
r a2 b4 4/6 0.58
r a2 b5 1/6 2.58
r a2 b6 1/6 2.58

Uniform, two options: (H = 1)
r a3 b7 3/6 1
r a3 b8 3/6 1

Table 2: Language used in Experiment 2. H indicates the
entropy of each distribution.

Procedure
The structure of the experiment was the same as in Exper-
iment 1. The familiarization self-paced presentation phase
consisted of 324 sequences. This phase was followed by 16
familiarity judgments, and an additional post-test self-paced
presentation phase with 216 sequences.

Results
Accuracy: Overall accuracy was higher than in Experi-
ment 1, though the bias for marking sequences as grammati-
cal remained: 93% of the grammatical sequences and of 77%
of the ungrammatical sequences were identified correctly. We
tested for an effect of the four types of sequences (see Ta-
ble 2) on accuracy rates on grammatical sequences. A logis-
tic mixed-effects model did not reveal an effect of sequence
type (χ2(3) = 4.5, p = .21). Likewise, there was no effect of
either A or B shape type on accuracy rates in ungrammatical
sentences (A: χ2(2)= 2.65, p= .27; B: χ2(3)= 3.2, p= .36).

RT preprocessing and analysis: As before, we restricted
our analysis to participants who showed evidence of learning
the language, defined as giving correct judgments more of-
ten than chance (p < .05 according to the binomial test); this
translates to performing at least 13 of the 16 trials correctly.
Of the 46 participants, 33 passed this threshold. We excluded
key presses with extreme RTs using the same criteria as be-
fore, resulting in the exclusion of 3.38% of the shapes. Anal-
ysis methods were in general identical to Experiment 1, with
the exception that our mixed-effects models did not include a
random intercept for shape in cases where there was only one
shape in each condition (i.e., in the analysis of A shapes).

RT results: The qualitative pattern of results was similar to
Experiment 1: RTs globally decreased over the course of the
familiarization phase, briefly increased in the post-test phase,
then decreased again.
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Figure 2: Condition means in the familiarization phase of Ex-
periment 2 (above: A shape; below: B shape). Error bars
represent 95% within-subject confidence intervals.

We first discuss the statistical analysis of familiarization
phase RTs on A shapes, starting with an analysis of en-
tropy as a numerical predictor There was a main effect of
entropy (χ2(1) = 5.1, p = .02), a main effect of trial num-
ber (χ2(1) = 40.3, p < .001) and a nonsignificant interaction
(χ2(1) = 3.3, p = .07). RTs in the individual conditions were
longest on the uniform 3-option shape and shortest on the
skewed 3-option shape; although the entropy of the 2-option
shape was lowest of all three shapes, average reading times
on this shape were somewhat higher than the skewed 3-option
shape (see Figure 2). The difference in RTs between the two
3-option shapes was significant (χ2(1)= 5.1, p= .02), but the
interaction with trial number was not (χ2(1) = 2.3, p = .13).
The difference between the two shapes with a uniform pre-
diction distribution (3-option vs. 2-option) and the interac-
tion between this difference and trial number did not reach
significance (main effect: χ2(1) = 3.5, p = .06; interaction:
χ2(1) = 3.1, p = .08), and neither did the difference between
the skewed 3-option and uniform 2-option shapes (main ef-
fect: χ2(1) = .5, p = .48; interaction: χ2(1) = .03, p = .87).

We next discuss the B shapes. Again, we first enter sur-
prisal as a numerical predictor. The statistical analysis found
a highly significant effect of this predictor (χ2(1) = 36.2,
p < .001) and of trial number (χ2(1) = 75.3, p < .001),
as well as an interaction between the two (χ2(1) = 20.3,
p< .001). Inspection of the average RTs for each level of sur-
prisal (see Figure 2) suggests that not all differences between

consecutive levels of surprisal are equally large; in fact, only
the difference between the p = 2/6 and p = 3/6 shapes was
statistically significant (χ2(1) = 21.3, p < .001).
Discussion
RTs on the two 3-option A shapes were consistent with the
hypothesis that higher uncertainty leads to longer RTs. The
difference was smaller than in Experiment 1 (around 60 ms),
though that is to be expected given the smaller difference in
entropy between the two shapes in the current experiment.
The same hypothesis, however, predicts that RTs on the 2-
option shape should be lower than either 3-option shape; there
was no evidence for such an effect.

There was a strong effect of surprisal overall, but there was
often no evidence for differences between consecutive levels
of surprisal. The difference between the two B shapes that
followed the 3-option skewed A shape was particularly large.
Finally, since no two B shapes were matched on predictability
and at the same time differed in the entropy of the A shape that
predicted them, the design of Experiment 2 did not allow us
to test for an effect of uncertainty reduction.

General Discussion
Probabilistic prediction plays a central role in language pro-
cessing: a predictive item sets up expectations for predicted
items later in the sequence. We studied the reflexes of prob-
abilistic prediction in two artificial languages, which allowed
us to exert precise control over the distribution over predic-
tions. We used self-paced presentation (Just et al., 1982;
Karuza et al., 2014), which yields implicit measures of pro-
cessing at every element of the sequence. Two experiments
revealed graded predictability effects parallel to those found
in natural language. They also suggested that higher uncer-
tainty over predictions at the point where predictions are gen-
erated leads to longer processing times, although these effects
were weaker. No clear support was found for an effect of un-
certainty reduction, even when controlling for predictability.

To further investigate the results, we pooled the data from
both experiments and plotted the mean RTs in the familiar-
ization phase by numerical entropy and surprisal in Figure 3
(since Experiment 2 was slightly longer, we discarded the
trials following the first 288 trials for the purpose of this
analysis). The evidence for a linear effect across experi-
ments of the numerical predictors appears stronger for sur-
prisal than for entropy. In particular, there are no clear differ-
ences among low-entropy distributions (lower than 1.5), and
the slight differences that do exist are in the opposite direc-
tion than predicted by a linear relationship between entropy
and RTs. Statistical models including data from both exper-
iments did not reveal overall entropy effects at the A shape
(entropy: χ2(1) = 0.4, p = .53; trial number: χ2(1) = 63,
p < .001; interaction: χ2(1) = 2, p = .16), but did reveal
clear surprisal effects at the B shape as well as an interaction
with trial number (surprisal: χ2(1) = 25.5, p < .001; trial
number: χ2(1) = 104.1, p < .001; interaction: χ2(1) = 21.7,
p < .001).
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Figure 3: Comparison across the experiments: means of the
first 288 trials of the familiarization phase (above: A shape;
below: B shape). Error bars represent within-subject confi-
dence 95% confidence intervals based on two standard devi-
ations from the mean.

While any conclusion from pooling together two experi-
ments with a different design and a different set of subjects
should be taken as tentative, the nonlinear relationship be-
tween entropy and processing times suggests that entropy
may not be the best metric for difficulty in prediction genera-
tion; additional properties of the distribution over predictions,
such as the number of options or the probability of the most
likely option, may need to be taken into consideration.

Figure 1 suggests that RTs in Experiment 1 may have
reached a plateau about 250 trials into the familiarization
phase; differences among conditions appeared to grow in-
creasingly small around this time (Karuza et al. (2014) report
a similar pattern). RTs increased at the beginning of the post-
test phase, and then plateaued again around 100 trials into the
pre-test phase. We did not present an in-depth analysis of the
post-test phase for reasons of space; however, the fact that
the overall increase in RTs at the beginning of the post-test
phase was accompanied by a re-emergence of predictability
and entropy effects suggests that the convergence between the
conditions at the end of the familiarization phase is due to a
floor effect rather than due to participants abandoning predic-
tive processes once the language has been learned.

We made relatively few modifications to the methodology
developed by Karuza et al. (2014), with the goal of building
on their established paradigm. This entailed in particular that

our sequences were made up of visual symbols rather than au-
ditory or written words; none of the symbols had any seman-
tic content. The encouraging results of the present study sug-
gest that this method may be extended to richer artificial lan-
guages that are a closer approximation of natural languages.
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Abstract 

How does actively seeking explanations for one’s 
observations affect information search over the course of 
learning? Generating explanations could plausibly lead 
learners to take advantage of the information they have 
already obtained, resulting in less exploration. Alternatively, 
explaining could lead learners to explore more, especially 
after encountering evidence that suggests their current beliefs 
are incorrect. In two experiments using a modified observe or 
bet task, we investigate these possibilities and find support for 
the latter: participants who are prompted to explain their 
observations in the course of learning tend to explore more, 
especially after encountering evidence that challenges a 
current belief.  

Keywords: explanation; exploration; learning; decision 
making 

 
In the decades leading up to his publication of On the 
Origin of Species, Charles Darwin recorded the titles of 687 
books of English non-fiction that he read. According to 
analyses by Murdock, Allen, and DeDeo (2017), Darwin’s 
reading fell into three epochs, each defined by a certain 
pattern of exploration, or broad search across new topic 
areas, and exploitation, or extended examination of texts 
within a similar topic area. Darwin’s example raises 
questions about the relationship between explanation and 
information search. In searching for an explanation (in 
Darwin’s case, a scientific explanation for the diversity of 
living things), do people pursue evidence broadly (i.e., 
exploring), or restrict their search to align with their current 
beliefs (i.e., exploiting)? Do these tendencies shift over time 
as new evidence is acquired? And if so, how? 
 Lombrozo and colleagues have proposed that when 
engaged in explanation, children and adults recruit 
explanatory considerations as evaluative constraints, 
rendering them more likely to generate and favor 
hypotheses that support “good” explanations – namely those 
that are simple, broad, and exhibit other explanatory virtues 
(Lombrozo, 2016; Williams & Lombrozo, 2010, 2013). 
There is also evidence that the hypotheses one generates and 
considers influence information search (Bonawitz, van 
Schijndel, Friel, & Schulz, 2012). Combining these 
proposals thus predicts that patterns of information search 
could be affected by engaging in the process of explanation.  
 To date, few studies have investigated the relationship 
between explanation and information search. In one study, 
Legare (2012) found that children’s explanations for an 
unexpected piece of evidence predicted their subsequent 
exploratory behavior. In more recent work, Ruggeri, 
Lombrozo, and Xu (in prep) found that prompting children 

to explain relationships in a target domain prepared them to 
ask more efficient questions on a subsequent 20-questions 
task in that domain. Neither study, however, was designed 
to test the causal influence of generating explanations on 
decisions to explore in a dynamic learning task, nor were 
they designed to examine adults’ exploratory behavior. 

In two experiments, we investigate how explanation 
generation affects patterns of exploration by prompting 
adult learners to explain as they search for information over 
the course of a category learning task. To accomplish this, 
we draw on research from the reinforcement learning 
literature on the explore-exploit dilemma (Cohen, McClure, 
& Yu, 2007; Kaelbling, Littman, & Moore, 1996). As 
defined in this literature, exploration involves seeking new 
information, while exploitation involves seeking reward (by 
taking advantage of the information one has already 
acquired). For example, in the observe or bet task (Navarro, 
Newell, & Schulze, 2016; Tversky & Edwards, 1966), 
agents must choose between “observing” which of two 
bulbs lights up on a given trial (without receiving any 
reward) or “betting” which bulb they think will light up for 
the chance to earn a reward (without observing that trial’s 
result). Each bulb lights up with some fixed probability that 
the learner must infer through a period of observation. In 
this task, observation is equated with exploration (i.e., 
information seeking with no potential for reward) and 
betting is equated with exploitation (i.e., reward seeking 
with no potential for information).  

The Present Research 
In the present research, we propose a new method, the 
contextual observe or bet task (inspired by the contextual 
multi-armed bandit task; Langford & Zhang, 2008). In this 
task, a set of “context variables” (i.e., features of the options 
that vary across trials) can be used to predict the option that 
will provide a reward on each trial. Successful performance 
depends on learning to identify and use these variables. This 
method integrates a more complex, real-world learning task 
into an active, dynamic learning environment. We can 
answer the question “when do explainers choose to 
explore?” by measuring when learners choose to observe 
rather than bet.  

To develop a contextual observe or bet task well suited to 
exploring the effects of explanation on information search, 
we adapt the stimuli from Williams and Lombrozo (2010). 
In a set of three studies, Williams and Lombrozo presented 
learners with four exemplars from each of two novel 
categories. Category members could be classified by a
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Figure 1: a. Typical trial (Expts. 1 and 2): Both robots can be classified by the 100% rule (foot shape) and the 75% rule 
(body/head shape); b. Non-obvious anomaly trial (Expts. 1 and 2): Both robots can be classified by the 100% rule but not the 

75% rule; c. Obvious anomaly trial (Expt. 2): Both robots can be classified by the 100% rule, but only one robot can be 
classified by the 75% rule. Category labels were only displayed if a participant chose to observe and are included here for 

clarity. 
 

salient rule that accounted for 75% of exemplars or a subtle 
rule that accounted for 100% of exemplars. Participants who 
were asked to explain the category membership of each 
exemplar were more likely to discover the 100% rule than 
participants who engaged in a control task.  

For our contextual observe or bet task, we present learners 
with pairs of category exemplars over a number of trials. On 
each trial, learners can choose to “observe” the category 
labels of the exemplars or “bet” which exemplar they 
believe belongs to a given category. Learners are thus free 
to determine when to seek information (exploration/ 
observation) and when to seek reward (exploitation/betting) 
as they learn the features that predict category membership 
(context variables). 

Prior work motivates two hypotheses regarding the effects 
of explanation generation on explore-exploit decision 
making. By Hypothesis 1, explaining could lead learners to 
greater exploitation. Previous research suggests that people 
use the first explanation they receive as a benchmark by 
which to judge subsequent explanations (Ihme & Wittwer, 
2015) and use their current explanation to decide between 
competing hypotheses for new data (Johnson & Krems, 
2001). Learners may thus prefer the first explanation they 
generate. This tendency towards accepting the first 
explanation in a series could lead people to switch to 
exploitation after arriving at an initial explanation, even if it 
is based on scant evidence. We suggest that learners may 
thus be more willing to quickly settle on a hypothesis that 
aligns with their initial beliefs based on the first pieces of 
information gathered, leading to increased exploitation.  

By Hypothesis 2, explaining could lead learners to greater 
exploration. This hypothesis is consistent with one 
interpretation of the findings from Williams and Lombrozo 
(2010): when prompted to explain, participants continued to 
“search” the stimuli until they found a good explanation, 
rather than settling for the salient but imperfect 75% rule. 
Relatedly, Williams, Lombrozo, and Rehder (2013) found 
that explainers seemed to perseverate in looking for a 
perfect classification rule, even when none was available. If 
explainers explore until they find a good explanation, then 
evidence that a candidate explanation is inadequate could be 
a critical cue that leads explainers to engage in further 
exploration. Indeed, Williams and Lombrozo (2010) found 
that explaining anomalies (i.e., exceptions to the 75% rule) 
was particularly powerful in encouraging learners to reject 

an imperfect rule and discover a better alternative (see also 
Williams, Walker, & Lombrozo, 2012). However, this 
finding was not experimentally linked to an increase in 
exploration or information search, which makes it possible 
that anomalous evidence influenced discovery via other 
mechanisms. It is thus an open question whether 
explanation has a causal impact on exploration, and if so 
whether this impact is most pronounced when the evidence 
that is being explained contradicts one’s current beliefs.  

For our contextual observe-or-bet task, Hypothesis 1 thus 
predicts that relative to control participants, those who are 
prompted to explain will make more “bet” choices. In 
contrast, Hypothesis 2 predicts that relative to control 
participants, those prompted to explain will be more likely 
to observe, especially on trials following the observation of 
information that is anomalous with respect to initial beliefs, 
which we expect to correspond to the obvious rule that 
accounts for 75% of exemplars. In two experiments, we test 
these hypotheses. 

 
Experiment 1 

Method 
Participants Participants for both experiments were 
recruited from Amazon Mechanical Turk and paid $0.85 for 
participating in the 8.5-minute study. Participation in both 
experiments was restricted to users in the United States with 
a 95% or higher approval rating based on at least 50 
previous tasks. Participants in Experiment 1 were 302 adults 
(143 males and 159 females) ranging from 18 to 74 years of 
age (Mage = 34) and were randomly assigned to the explain 
condition (N = 151) or the control condition (N = 151). 
Ninety-four additional participants (44 in the explain 
condition and 50 in the control condition) were excluded for 
failing to pass two attention checks (see below). 
 
Materials Thirty-two images of “alien robots” (see Figure 
1) were designed based on the stimuli used by Williams and 
Lombrozo (2010). Robots varied along four dimensions: 
foot shape, body/head shape, left-half color, and right-half 
color. Twenty-two different foot shapes were used, each of 
which appeared on no more than two robots. All Glorps had 
feet that were pointy on the bottom surface, and all Drents 
had feet that were flat on the bottom surface. Overall, 75% 
of Glorps had round bodies/heads, 25% of Glorps had 
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square bodies/heads, 75% of Drents had square bodies/ 
heads, and 25% of Drents had round bodies/heads. The 
color dimensions were irrelevant to category membership.  

Foot shape (pointy/flat) was a “100% rule” that accounted 
for the category membership of all robots, and body/head 
shape (round/square) was a “75% rule” that only accounted 
for the category membership of 75% of the robots.  
 
Procedure Participants were introduced to Glorp robots and 
Drent robots. On each of 16 trials, participants were shown 
a Glorp-Drent pair. Robots were paired such that no color 
appeared more than once in a pair, and all atypical Glorps 
were paired with atypical Drents. The side on which Glorps 
and Drents appeared was counterbalanced across trials. 
Pairs were presented in a random order, aside from the first 
four trials. For these trials, typical exemplars were presented 
on trials one, two, and three (“typical trials”), and atypical 
exemplars were presented on trial four (“anomaly trial”).  

On each trial, participants were given the choice to 
“observe” – offering the opportunity to gain information but 
no reward – or “bet” – offering the opportunity to gain 
reward but no information. If a participant chose to observe, 
the participant was shown which robot from that pair was a 
Glorp and which was a Drent. Participants in the explain 
condition were asked to explain why the indicated robot was 
a Glorp robot, while participants in the control condition 
were asked to write down any thoughts they had about that 
trial. Participants were required to spend at least 10 seconds 
completing these tasks before advancing to the next trial. No 
points were awarded when a participant chose to observe. 

If a participant chose to bet, the participant was asked to 
indicate which robot they thought was a Glorp. If their 
choice was correct, the participant would gain one point, 
and if their choice was incorrect, they would lose one point. 
However, no feedback was given on bet trials; participants 
were not shown their scores until the task was complete.1  

Participants were instructed to attempt to maximize their 
score, but also to learn how to differentiate Glorps and 
Drents. All participants were explicitly told that they would 
be asked to report any patterns that could help differentiate 
Glorps and Drents at the end of the task. Participants were 
not incentivized on the basis of their score, a point to which 
we return in the General Discussion. 

After the 16-trial observe or bet task, participants reported 
any patterns they had found that differentiated Glorps and 
Drents and indicated what percentage of robots they thought 
could be accurately characterized using that pattern. 
Participants could report up to eight patterns. Participants 
also completed an attention check in which they had to 
distinguish between a robot they had seen during the 
previous task and three robots that they had not seen before. 
All novel robots were obviously different in appearance 
from Glorps and Drents. A second attention check required 

                                                             
1 Participants were also prompted to report their confidence after 
both observe and bet trials; in the interest of space we do not report 
analyses of confidence here.  

 

participants to read the instructions from the first attention 
check, which directed them to ignore the question that 
followed and instead type a specific word into the answer 
textbox. 
 
Results 
Rule Discovery In the explain condition, 17% of 
participants reported the 100% rule after completing the 
observe or bet task, while only 6% of participants in the 
control condition reported this rule. A chi-square analysis 
revealed that this difference was significant, χ2(1) = 8.27, p 
= .004. While these discovery rates seem quite low, they are 
not inconsistent with previous research (Williams & 
Lombrozo, 2010). Additionally, these results replicate 
Williams and Lombrozo’s (2010) finding that generating 
explanations promotes the discovery of broad rules. 

 
Figure 2: Experiment 1 choices by condition and trial. 

Vertical line indicates first anomaly trial. Error bars: 1 SE. 
 
Explanation and Exploration We used a generalized linear 
mixed effects model to predict participants’ observe/bet 
choices over time, with a random intercepts term to capture 
individual differences. The choice to observe rather than bet 
was significantly predicted by linear and quadratic effects of 
trial number, analysis of deviance: χ2(1) = 212.70, p < .001 
and χ2(1) = 78.04, p < .001, respectively. Increasing trial 
number led to more betting at a decreasing rate over time. 
Condition was not a significant predictor of observe/bet 
choices (see Figure 2). This indicates no overall differences 
between the two conditions in explore/exploit decisions.   

Next, we investigated the effect of explaining anomalies 
on subsequent exploration. For participants who observed 
on the first anomaly trial and thus received information 
contradicting the 75% rule, explain condition participants 
were more likely than control condition participants to 
continue to observe on the following trial, at a level 
approaching significance, χ2(1) = 3.49, p = .06. There was 
no condition difference in observation on the trial following 
the first anomaly for participants who did not observe on the 
anomaly trial, and thus did not receive information 
contradicting the 75% rule, χ2(1) = 0.55, p = .46. However, 
a logistic regression predicting observation following the 
anomaly trial by condition and observation on the anomaly 
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trial did not reveal a significant interaction (b = 0.71, OR = 
2.03, z = 1.24, p = 0.21), likely due to the small proportion 
of our sample that observed the anomaly (27%).  

To analyze whether the increased exploration following 
an observed anomaly led to increased discovery of the 100% 
rule, we performed a logistic regression predicting 100% 
rule discovery by condition and observation on the trial 
following the first anomaly. Both condition (b = 1.12, OR = 
3.05, z = 2.73, p = .006) and post-anomaly observation (b = 
0.80, OR = 2.23, z = 2.17, p = .03) were significant 
predictors. Thus, while explanation had an effect on 100% 
rule discovery above and beyond the effects of post-
anomaly observation, this increase in exploration following 
the observation of an anomaly also predicted rule discovery. 
 
Discussion 
In Experiment 1, we found that after observing information 
that contradicted the 75% rule, participants who were asked 
to explain tended to explore more often than control 
participants. This exploration increased the probability of 
discovering a broad rule that accounted for all observations. 
These findings support Hypothesis 2: explanation led 
learners towards greater exploration after receiving evidence 
that current beliefs were wrong or incomplete. 
These results leave open two possibilities for how 

explanation interacts with anomalous information. We 
previously suggested that explaining anomalies encourages 
learners to reject their current (imperfect) hypothesis, 
prompting subsequent exploration in the service of finding a 
more satisfactory alternative. On this view, explanation 
affects the downstream processing that follows the detection 
of an anomaly. However, there is also evidence that 
generating explanations can help learners articulate and 
recognize their current beliefs, rendering a conflict between 
those beliefs and subsequent information more apparent 
(Chi, de Leeuw, Chiu, & LaVancher, 1994). Extending 
these ideas, it could be that generating explanations on trials 
that preceded an observed anomaly helped learners 
recognize the anomalies as such, and that increased 
sensitivity to anomalies is what drove effects of explanation. 

In Experiment 2, we evaluate these alternatives by 
introducing violations of the 75% rule that are detectable 
whether or not the participant chooses to observe on that 
trial (“obvious anomalies”). When an atypical exemplar 
from one category (e.g., a round Drent) is paired with a 
typical exemplar from the other category (e.g., a round 
Glorp), both robots have the same shape. Since each trial 
contains one Glorp and one Drent, the trial is a clear 
violation of the 75% rule. If explanation enhances anomaly 
detection by solidifying learners’ initial beliefs, we would 
expect participants who are prompted to explain to observe 
at a higher rate on the first obvious anomaly trial relative to 
those who are not prompted to explain. On the other hand, if 
explaining an anomaly is instead what prompts learners to 
reject prior beliefs and seek out better alternatives, we 
would expect effects of explanation to emerge only after an 
anomaly has been observed, and to manifest as an increase 

in observation on trials following obvious anomalies. In 
Experiment 2, we test these potential accounts. 

We additionally varied the point at which the first obvious 
anomaly was introduced – on trial 4 versus trial 8 – to test 
whether the timing of anomalous information affects rule 
discovery and/or interacts with explanation. If the power of 
explaining anomalous information emerges from the 
conflict between the novel information and prior beliefs, 
then introducing anomalous evidence later in the task (after 
beliefs have been solidified) should lead to a larger effect of 
explanation on exploration. If, however, explanation biases 
learners towards their prior beliefs (Walker, Lombrozo, 
Williams, Rafferty, & Gopnik, 2017; Williams & 
Lombrozo, 2013), increasing the strength of learners’ beliefs 
by increasing the amount of consistent evidence prior to 
introducing an anomaly could decrease the effect of 
anomalous evidence on subsequent exploration. 

Experiment 2 
Method 
Participants Participants were 400 adults (192 males, 204 
females, and 4 who did not specify gender) ranging from 18 
to 73 years of age (Mage = 34) who were randomly assigned 
to the explain condition (N = 203) or the control condition 
(N = 197), as well as early anomaly timing (N = 197) or late 
anomaly timing (N = 203). One hundred fifty-three 
additional participants (73 in the explain condition and 80 in 
the control condition) were excluded for failing to pass two 
attention checks mirroring those used in Experiment 1. 

Materials The 32 alien robot images used were identical to 
those used in Experiment 1.  
 
Procedure The procedure was largely identical to 
Experiment 1. Three atypical Glorps were paired with 
atypical Drents (“non-obvious anomalies”). One atypical 
Glorp was paired with a typical Drent, and one atypical 
Drent was paired with a typical Glorp (“obvious 
anomalies”).  

For those assigned to early anomaly timing, the first 
obvious anomaly was presented on trial 4. For late anomaly 
timing, the first obvious anomaly was presented on trial 8. 
The second obvious anomaly was always on trial 15. Non-
obvious anomalies were randomly distributed throughout 
the remaining trials, excluding the first three trials. 

Results 
Rule Discovery Within early anomaly timing participants, 
33% of explain participants and 27% of control participants 
reported the 100% rule. Within late anomaly timing 
participants, 30% of explain participants and 14% of control 
participants reported the 100% rule. A logistic regression 
analysis revealed that participants in the explain condition 
were significantly more likely than participants in the 
control condition to discover the 100% rule (b = 0.60, OR = 
1.81, z = 2.55, p = .01). Participants with late anomaly 
timing were somewhat less likely than participants with 
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early anomaly timing to discover the 100% rule (b = -0.43, 
OR = 0.65, z = -1.84, p = .07).  
 
Explanation and Exploration We used a generalized linear 
mixed effects model to predict participants’ observe/bet 
choices over time, with a random intercepts term to capture 
individual differences. The choice to observe rather than bet 
was significantly predicted by condition (explain vs. 
control) and linear and quadratic effects of trial number, 
analysis of deviance: χ2(1) = 4.47, p = .03; χ2(1) = 273.93, p 
< .001; and χ2(1) = 150.40, p < .001, respectively. Anomaly 
timing (early vs. late) was not a significant predictor of 
observation. Explain participants were more likely to 
observe than control participants, and increasing trial 
number increased the likelihood of betting at a decreasing 
rate over time (see Figure 3).  

Next, we analyzed exploration on the first obvious 
anomaly trial by performing a logistic regression with task 
(explain vs. control) and anomaly timing (early vs. late) as 
predictors. Participants with late anomaly timing were 56% 
less likely to observe on the first anomaly trial relative to 
participants with early anomaly timing (b = -0.82, OR = 
0.44, z = -2.81, p = .005), indicating that fewer participants 
observed the first obvious anomaly when it was presented 
later in the task. Condition was not a significant predictor of 
anomaly observation, nor was the interaction between 
condition and anomaly timing. These findings suggest that 
explanation did not exert effects on discovery by increasing 
the rate at which obvious anomalies were detected. 

To analyze exploration following an anomalous 
observation, we performed a logistic regression predicting 
observation on the trial following the first obvious anomaly, 
with condition (explain vs. control) and anomaly timing 
(early vs. late) as predictors. This revealed a marginally 
significant interaction between task and anomaly condition 
(b = 0.88, OR = 2.40, z = 1.78, p = .07). For late anomaly 
timing, explain participants were more likely than control 
participants to observe on the trial following the first 
obvious anomaly, χ2(1) = 6.85, p = .009. This difference 
was not significant for early anomaly timing, χ2(1) = 0.01, p 
= .92. These findings support the idea that explanation 
affects learning by increasing exploration in the face of 
anomalous evidence; they also challenge the idea that 
effects of explanation are restricted to anomaly detection. 
Explainers were no more likely to choose to observe an 
obvious anomaly, but were more likely (in the late anomaly 
condition) to follow up with additional observation. 

To analyze whether this increased exploration following 
an observed anomaly led to increased discovery of the 100% 
rule, as well as whether condition had an effect on rule 
discovery above and beyond the effects of such exploration, 
we performed a logistic regression predicting 100% rule 
discovery by condition and observation on the trial 
following the obvious anomaly. Both condition (b = 0.49, 
OR = 1.64, z = 2.10, p = .04) and observation following the 
first obvious anomaly (b = 0.79, OR = 2.20, z = 3.12, p = 
.002) were significant predictors of 100% rule discovery. 

Discussion 
These results suggest that explanation generation leads to 
greater exploration after observing evidence that challenges 
a current hypothesis. This difference in exploratory behavior 
does not depend on simply noticing the presence of 
contradictory information, but instead depends specifically 
on one’s attempts to explain this anomalous information.  

We also found a suggestive difference between early and 
late anomaly timing. Further research is clearly warranted, 
but the effect of explaining an obvious anomaly may be 
more powerful as the degree of conflict between the 
anomaly and one’s current beliefs is increased. 

 

 
Figure 3: Experiment 2 choices by condition, anomaly 

timing, and trial. Vertical lines indicate obvious anomaly 
trials. Error bars: 1 SE. 

 
General Discussion 

In two experiments, we investigated how explanation 
generation affects exploration over the course of a category 
learning task. Lombrozo and colleagues (Lombrozo, 2016; 
Williams & Lombrozo, 2010, 2013) have proposed that 
generating explanations recruits a set of inductive 
constraints on hypothesis generation and selection, which 
can lead to the discovery of broad, simple, and generalizable 
rules and patterns. In the present research, we extend this 
account, suggesting that this learning outcome is partially 
dependent upon generating explanations for anomalous 
observations, which increases a learner’s propensity to seek 
additional evidence.  

Our results are consistent with Legare’s (2012) finding 
that children’s explanations for surprising events predicted 
their exploratory behavior. In the present research, however, 
we establish a causal link between explanation and 
exploration, and demonstrate that this link holds not only for 
children’s causal learning (as proposed by Legare), but also 
for adults’ category learning.  

That said, many open questions remain. For example, 
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might explanation affect explore/exploit decisions by 
shifting participants’ confidence on each trial (e.g., Auer, 
2002)? Does explaining affect motivation, which could also 
be achieved by incentivizing reward? Equally important is 
identifying boundary conditions on our effects: are there 
situations in which explaining anomalies could lead learners 
to explain them away (Chinn & Brewer, 1998), and thus 
engage in greater exploitation?  

While some of the effects reported here failed to reach 
statistical significance, we did find similar results across two 
experiments. Unfortunately, the effect sizes are limited by 
the small proportion of participants who are able to discover 
the 100% rule. Future work might benefit from more 
sensitive paradigms. Additionally, the paradigm used here 
allowed participants to gain some information on each trial 
without engaging in exploration. Since exemplars from one 
category were always presented with exemplars from the 
other category, participants could identify the features that 
differed between the two categories without choosing to 
observe. Future work will limit potential learning to 
observation trials in order to better isolate the effects of 
explanation on information search.  

In sum, our findings suggest that attempting to explain 
observations that are anomalous with respect to one’s 
current beliefs encourages further exploration. This may be 
one mechanism by which generating explanations affects 
learning, and provides compelling evidence that top-down 
constraints on hypothesis generation and selection affect not 
only the conclusions that learners draw, but also the ways in 
which they seek information – whether that information 
comes from 19th century texts or a robot classification task. 
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Abstract 

Conceptual representations in language processing employ 
both linguistic distributional and embodied information. Here, 
we aim to demonstrate the roles of these two components in 
metaphor processing. The linguistic component is captured by 
linguistic distributional frequency (LDF), that is, how often 
the constituent words appear together in context. The 
embodied component, on the other hand, refers to how easy it 
is to generate an embodied simulation, operationalised by a 
previous norming study. In the current study, we looked at the 
interplay of these components in metaphor processing, and 
investigated their roles at different depths of processing in 
two experiments. Thus, we required participants to engage in 
shallow processing (Experiment 1: Sensibility Judgement), or 
deep processing (Experiment 2: Interpretation Generation). 
Results showed that the increase of both variables made it 
more likely to accept a metaphor. However, whereas ease of 
simulation (EoS) contributed to the speed of processing at 
both levels of depth, LDF only affected the speed in shallow 
processing. Specifically, LDF acted as a heuristic, both to 
speed up responses to accept metaphors as sensible when the 
frequency is high, and to flag up potentially unsuccessful 
processing when it is low. Overall, these results support views 
of language processing that emphasise the importance of both 
linguistic and embodied components according to task goals. 
 
Keywords: metaphor processing; embodied cognition; 
linguistic distribution; simulation; depth of processing 

Traditional views of metaphor processing 

In a metaphoric expression, a word or a phrase (the source) 

is applied to an object or an action (the target) to which it 

cannot be literally applied. In the expression “a bright 

student”, a student is not an object to which the visual 

property of bright is usually applied. Nevertheless, we can 

comprehend it effortlessly meaning “clever or intelligent 

students”. How is this comprehension achieved? Many 

factors have been implicated, namely the familiarity, 

conventionality and aptness of a metaphor. These factors 

can not only affect the speed of processing (Giora, 2007; 

Pierce & Chiappe, 2008), but conventionality and aptness 

are also suggested to determine the mechanism of 

processing, whether by comparison or by categorisation 

(Bowdle & Gentner, 2005; Jones & Estes, 2006).  

However, when it comes to understanding exactly how 

these three factors affect metaphor comprehension, they 

have problems with their theoretical specificity, and 

subsequently their operationalisation. Familiarity and 

conventionality are often used interchangeably, and they 

face the same problem concerning their operational 

definitions. They are sometimes assumed to refer to how 

often people have encountered the metaphoric expression 

itself (e.g., how often is “bright” used to describe “students”?  

e.g., Cardillo, Watson, Schmidt, Kranjec, & Chatterjee, 

2012; Roncero & de Almeida, 2014a) and sometimes to 

how accustomed people are to relating the expression to its 

metaphoric meaning (e.g., “bright” meaning intelligent and 
quick-witted: Campbell & Raney, 2015; Mashal, Faust, 

Hendler, & Jung-Beeman, 2009), but these are two very 

different and dissociable theoretical constructs. A particular 

linguistic expression might be encountered reasonably often 

but remain poorly understood (e.g., purple prose), or a 

metaphoric meaning might be encountered reasonably often 

via a different expression to the one supplied (e.g., 

“Solution can be bright”).  

Aptness also has received different definitions. It is 

sometimes assumed to reflect a very general, high-level 

quality or goodness of a metaphor and is often 

operationalised as such (Haught, 2014), whereas at other 

times represents a much more low-level specification of 

how well the metaphoric meaning (e.g., intelligent and 

quick-witted) fits or overlaps with the target (e.g., “student”: 

Chiappe & Kennedy, 1999). In addition, aptness appears to 

be theoretically confounded with familiarity and 

conventionality. Only apt metaphors are likely to become 

conventionalised or familiar, as a metaphor that does not 

work well is unlikely to become widely used by speakers of 

a language. Because familiarity and conventionality depend 

on usage patterns of metaphors across a language, and usage 

patterns depend to some extent on aptness, it means that 

there is a core dependency between the factors that is not 

trivial to disentangle. Indeed, ratings of aptness and 
familiarity are highly correlated (r = .73-.82: Campbell & 

Raney, 2015; Roncero & de Almeida, 2014a), as are ratings 

of aptness and corpus frequency counts of the metaphoric 

expression (r = .41-.57: Roncero & de Almeida, 2014b; 

Thibodeau & Durgin, 2011). 

In summary, familiarity, conventionality and aptness have 

all been shown to affect metaphor processing. However, 

they have several theoretical and operational problems that 

mean they have limited utility in enhancing our 

understanding of what makes a metaphor easier to process. 

Rather than continuing to vary and refine how these factors 

are conceptualised, we propose a different approach to seek 

clearer predictors of metaphor processing that (a) are 
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theoretically and operationally distinct, and (b) are able to 

independently account for speed and accuracy performance 

in metaphor processing. 

Grounded views of language processing 

Research in conceptual representation has tended to 

operate in parallel to that of traditional metaphor processing, 

and therefore takes quite a different perspective on how 

access to meaning takes place. Essentially, two components 

are employed in the mental representation of meaning when 

people process language (Barsalou, Santos, Simmons, & 

Wilson, 2008; Connell & Lynott, 2014). The first 

component relies on the statistical, distributional pattern of 

how words co-occur across contexts (Landauer & Dumais, 

1997). The second type of representation is the embodied 

(also known as the grounded, sensorimotor or situated) 

component, which relies on the process of simulation; that is 

the partial reactivation of past perceptual, motor, affective, 
introspective and other experiences (Barsalou, 1999).  

Together, the linguistic and embodied components can 

explain language processing better than either alone (e.g., 

Andrews, Vigliocco, & Vinson, 2009). In particular, 

research in the grounded linguistic-embodied approach has 

demonstrated that the linguistic distributional information 

provides a powerful tool for superficial language processing 

because activity of the linguistic component peaks earlier 

than that of the embodied simulation component (Louwerse 

& Jeuniaux, 2008). People are more likely to rely on the 

embodied component when deeper processing is specifically 

cued in the task; but people will be reliant upon the 

linguistic component to generate a good-enough 

approximation (Ferreira, Bailey, & Ferraro, 2002) when 

shallow processing can suffice.  

In line with these arguments, Connell and Lynott (2013) 

proposed that information from the linguistic component 

could act as a cognitive triage mechanism during language 

processing by providing a guide to whether it is worth 

expending effort on costly embodied simulation. If the 

linguistic component indicates that future processing is 

likely to fail (e.g., the words rarely co-occur in the same 

context and so their combined meaning might not be 

simulated successfully), then the processing cold be 

abandoned before any more cognitive effort is expended by 
the embodied component. On the other hand, if the 

linguistic component indicates that future processing is 

likely to succeed (e.g., the words often co-occur in the same 

context and so their combined meaning can probably be 

simulated successfully), then it could either inform a 

response immediately (i.e., based on the linguistic shortcut 

alone) or allow the embodied component to continue 

developing a detailed simulation of meaning.  

Connell and Lynott's proposal can be applied directly to 

the study of metaphor processing, because the interplay of 

the linguistic and embodied components, and the role of the 

linguistic shortcut as a cognitive triage mechanism, operate 

in theory across all types of language comprehension. In this 

study, we asked participants to process metaphors that 

systematically varied on these two dimensions. The 

linguistic component is quantified by linguistic 

distributional frequency (LDF), that is how often constituent 

words (“bright” and “student”) of a metaphor co-occur in a 

large corpus.  

The embodied component, on the other hand, is 

operationalised by ease of simulation (EoS), a new normed 

metric that quantifies how easy it is to come to a mental 

representation of a metaphor (Liu, Connell, & Lynott, 2016). 

This metric was extracted using a principle components 

analysis from the ratings on the sensibility (how much sense 

the sentence make if read or heard), usability (how easy it is 
to use it in conversation or writing), and imaginability (how 

easy it is to describe the concept) in the norming study. 

When combined into a single measure, these ratings offer a 

proxy for how easy it is to simulate a concept. That is, if 

people find it easy to make sense of and use the metaphor, 

as well as imagine the concept, they would find it easy to 

generate embodied simulations. 

Although LDF and EoS may correlate to a certain degree, 

we expected them to play distinctive roles in metaphor 

processing after the common variance between them is 

removed. Both variables would independently affect the 

acceptance rate and speed of metaphor processing. 

Specifically, increase in both variables would make it more 

likely and faster for people to accept a metaphor, and 

meanwhile slower to reject the very metaphor. More 

crucially, participants performed one of two tasks: a 

sensibility judgement task (Experiment 1), which required 

relatively shallower processing because participants made 

only yes/no response; or an interpretation-generation task 

(Experiment 2), which was deeper because they specified 

the meaning verbally. We predicted that EoS would play a 

greater role in deep processing or when people accepted 

metaphors because it indicated successful simulation, while 

LDF should play a larger role in shallow processing 

especially when people rejected a metaphor as not being 
sensible. 

Experiment 1: Sensibility Judgement Task 

Method 

Participants Twenty-eight participants took part (five male 

and 23 female), all of whom were students at Lancaster 

University and native speakers of English with mean age of 

19.1 years (SD = 1.1). The sample size was determined 

beforehand to achieve the same level of variability as the 

conceptual combination study in Connell and Lynott (2013). 

Materials We used a total of 452 metaphoric sentences 

taken from Liu et al., (2016). All sentences took the form 

“Noun can be adjective” (e.g., Student can be bright), and 

were composed of 113 perceptual adjectives (e.g., bright: 

Lynott & Connell, 2009), each paired with four nouns that 

were capable of eliciting metaphoric meanings that vary 

independently on the following two dimensions (see 

examples in Table 1):   
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Table 1: Sample metaphors, and their scores for ease of 

simulation and LDF. 

 

Metaphor EoS LDF 

Illness can be bright. –1.32 2.95 

Supply can be bright. –1.02 3.72 

Solution can be bright. 1.41 3.11 

Student can be bright. 1.84 4.08 

 

EoS for each sentence ranged from easy to difficult (M = 

0.00, SD = 1.00), and was calculated in a novel norming 

study by Liu et al. (2016). The scores were a single 

principle component extracted from ratings of sensibility, 

imaginability and usability of the metaphors. LDF for each 

sentence ranged from low to high (M = 2.95, SD = 0.97), 

and was calculated as the log of the summed bi- to five- 

gram frequencies of the sentence’s noun and adjective in the 

Google Web1T Corpus (Brants & Franz, 2006). To take the 

metaphor “Students can be bright” as an example, the LDF 

was the log of the sum of the frequencies of “student … 

bright” and “bright … student” with zero, one, two, and 

three intervening words.  

The sentences were split into four lists, where each 

adjective appeared only once per list, and the distribution of 

easy/difficult to simulate and high/low distributional 

frequency was equal across lists (EoS: F(3, 440) = 1.70, p 
= .166; LDF: F(3, 440) = 0.43, p = .734). Each participant 

saw only one list. 

Procedure Participants read one sentence in each trial and 

decided whether or not the sentence made sense. All trials 

had the same structure. Participants first saw a fixation cross 

for 1000 ms, followed by the noun for 500 ms, followed by 

the phrase “can be” for 500 ms, and then followed by the 

adjective. The adjective remained onscreen until participants 

made a response. Participants pressed either the comma key 

(“,”) if they judged that the sentence made sense; or the full 

stop key (“.”) if they judged that it did not make sense. The 

response could be made without a time limit; and 

participants were told explicitly that there were no right or 

wrong answers to the question. Both the response decisions 

(“yes” to accept the metaphor as sensible; or “no” to reject 

the metaphor as nonsensical), and the response time in 

milliseconds (RT) from onset of the adjective were recorded 

as dependent variables. 

Design and Analysis Response decisions were analysed in 

a mixed effects logistic regression (binomial distribution 

with logit link), with response as the dependent variable 

(coded as 1 for “yes”, accepting the metaphor as sensible; 

and 0 for “no”, rejecting the metaphor as nonsensical), 

participants and items as crossed random factors, and LDF, 

EoS, and their interaction as fixed factors. We only 

modelled random intercept because models with random 
slope failed to converge. 

Response times (RTs) were analysed using mixed effects 

linear regressions, firstly in an omnibus analysis with 

crossed random factors of participants and items, and fixed 

factors of response, LDF, EoS, and their interactions. Then, 

we ran separate analyses on acceptance (“yes”) and 

rejection (“no”) responses because we expect the effects of 

the fixed factors to be opposite for “yes’ and “no” responses. 

While the increase in LDF and EoS should make it faster to 

accept a metaphor, it should make it slower to reject a 

metaphor.  

Results and Discussion 

All participants had mean response times within 3SD of the 

overall mean and so all were included in analysis. Two trials 

were removed because of motor error (RT < 200ms). 
Furthermore, individual trials with RT more than 3SD from 

each participant’s mean per response decision were removed 

as outliers: 1.33% of “yes” responses and 2.20% of “no” 

responses.  

Among 3105 valid trials, 1413 (45.51%) were accepted as 

sensible (“yes” responses) and 1692 (54.59%) were rejected 

as nonsensical (“no” responses). Logistic regression showed 

evidence for net suppression. This means that while 

metaphors with the “yes” response had a higher mean LDF 

than those with the “no” response (i.e. the higher LDF was, 

the more likely it should be to respond “yes”), the effect of 

LDF in the mixed effects logistic regression turned out 

negative (i.e., the higher LDF was, the less likely to respond 

“yes”). This suggested that LDF enhanced the effect of 

 

Table 2: Results from the mixed effects linear regression of RT in Experiment 1. 

 

Variable  95% CI df t p 

Intercept 1129.66 [1011.04, 1248.29] 28.2 18.67 < .001 

Response  0.76 [-36.86, 38.32] 2157.5 0.04 0.969 

EoS 67.06 [41.76, 92.36] 1257.7 5.20 < .001 

LDF 14.76 [-9.81, 39.32] 822.3 1.18 0.239 

Response * EoS -181.55 [-218.91, -144.19] 2277.1 -9.52 < .001 

Response * LDF -38.55 [-74.47, -2.61] 2010.1 -2.10 0.036 

EoS * LDF 24.39 [1.18, 47.61] 1192.1 2.06 0.040 

Response * EoS * LDF -32.50 [-67.07, 2.08] 2318.1 -1.84 0.066 

2606



Table 3: Results from mixed effects regressions of RT per response in Experiment 1. 

 

Response Variable  95% CI df t p 

Accept 

(“yes”)  

Intercept 1172.17 [1051.79, 1292.53] 25.7 19.09 <.001 

EoS -134.88 [-161.98, -107.79] 357.3 -9.76 <.001 

LDF -27.52 [-53.10, -1.93] 248.1 -2.11 .036 

EoS * LDF -13.00 [-37.91, 11.91] 394.6 -1.02 .307 

Reject 

(“no”)  

Intercept 1155.41 [1010.94, 1299.88] 26.7 15.68 <.001 

EoS 72.28 [47.27, 97.29] 323.8 5.66 <.001 

LDF 17.73 [-6.40, 41.83] 189.1 1.44 .152 

EoS * LDF 23.33 [0.51, 46.14] 295.3 2.00 .046 

EoS by explaining the residuals of EoS rather than the 

variance of response decision. In order to establish the 

true relationships between response decision and our 

independent variables, we therefore removed the shared 
variance between LDF and EoS (currently correlating at r 

= .27) by orthogonalising the variables using a principal 

components analysis with varimax rotation and Kaisar 

normalization on a covariance matrix (Glantz & Slinker, 

2000). What this did was to create two new orthogonal 

variables (r = 0), each correlating highly with one original 

variable (r = .99). These two new variables were thus 

named orthogonal EoS and orthogonal LDF. We re-ran 

the logistic regression with them and obtained results as 

follows (further analyses all used orthogonal variables). 

The logistic regression with orthogonal variables 

showed that both variables had a positive effect on 

response decision. As the EoS increased by one unit, the 

odds to accept a metaphor as sensible increased 3.42 

times (z(3101) = 25.03, p < .001, 1.23). As the LDF 

increased, the odds to accept a metaphor increased with a 

marginally significant effect (1.084 times, z(3101) = 1.88, 

p = .06, .  
RT was also analysed using orthogonal variables. Table 

2 shows full results of the omnibus analysis. Overall, EoS 

had a positive effect on RT (M = 1139ms, SD = 587ms), 

and it critically interacted negatively with response 

decision, suggesting that the direction of the EoS effect 

differed by the response type, and was greater for “yes” 

than “no” responses. LDF had no overall main effect, but 

interacted with response decision to indicate that the 

direction of LDF differed for “yes” and “no” RTs.  
Since we had separate hypotheses for “yes” and “no” 

RTs, we divided the dataset by response decision and 

analysed their RTs separately. Results are given in Table 

3. For “yes” responses (i.e. metaphors that were accepted 

as sensible; RT: M = 1150ms, SD = 589ms), the easier a 

metaphor was to simulate, the less time people took to 

accept it as sensible. Also, the more often the words in a 

metaphor co-occurred in language, the faster people were 

to accept it as sensible.   

For “no” responses (RT: M = 1114ms, SD = 603ms), 

the effects ran in the opposite direction (Table 3). As 

predicted, people were faster to reject metaphors that 

were normally regarded as difficult to simulate. 

Furthermore, it interacted with LDF positively, such that 
the effect of EoS was reduced when LDF was low (the 

for the interaction term was positive).   

Experiment 2: Interpretation Generation 

Task 

Method 

In this study, we asked 40 participants (native speakers of 

English, 11 males, age: M = 19.65, SD = 2.08) to judge 

whether they could think of a meaning for the metaphoric 

sentences instead of judging their sensibility. The 

procedure was the same as Experiment 1, except that 

participants needed to provide their interpretation of the 

sentences after they responded “yes”. To reduce the 

possibility of fatigue, each participant saw half (56-57) of 

the items of Experiment 1. 

Results and Discussion 

Data cleaning was performed as in Experiment 1. 

Furthermore, we also identified accept (“yes”) trials with 

invalid interpretations (e.g., blank, “I don’t know”). Two 

participants were excluded from analysis for providing 

more than 50% invalid interpretations. Amongst the 

remaining participants, 2.33% of interpretations were 

identified as invalid. For individual trials, 2.10% of “yes” 

responses and 2.00% of “no” responses were identified as 

outliers.  

Among 2103 valid trials, 1302 (61.91%) were accepted 

as interpretable whereas 801 (38.09%) were rejected as 

uninterpretable. The logistic regression showed that both 

EoS and LDF had positive effects on response decision. 

For every unit of increase in EoS, the odds of accepting a 

metaphor as interpretable increased 2.826 times (z(2099) 

= 17.49, p < .001, ; and for every unit of increase 

in LDF, the odds of accepting a metaphor increased 1.286  

2607



Table 4: Results of the mixed effects linear regression of RT in Experiment 2. 

 

Variable  95% CI df t p 

Intercept 2796.79 [2341.82, 3251.76] 43 12.05 < .001 

Response 58.38 [-143.64, 260.40] 1487.5 0.57 .571 

EoS 125.28 [-20.79, 271.35] 1466.9 1.68 .093 

LDF 44.47 [-97.02, 185.95] 1461.8 0.62 .538 

Response * EoS -589.63 [-774.55, -404.70] 1464.3 -6.25 < .001 

Response * LDF -13.52 [-193.60, 166.55] 1462.1 -0.15 .883 

EoS * LDF -34.60 [-167.90, 98.71] 1463.8 -0.51 .611 

Response * EoS * LDF 4.82 [-166.13, 175.76] 1463.3 0.06 .956 

 
 

Table 5: Results of mixed effects linear regression on RT per response in Experiment 2. 

 

Response Variable  95% CI df t p 

Accept (“yes”)  Intercept 2961.19 [2507.85, 3414.54] 37.87 12.80 < .001 

EoS -538.01 [-665.18, -410.83] 344.85 -8.29 < .001 

LDF 17.48 [-103.06, 138.02] 275.02 0.28 .776 

EoS * LDF -34.12 [-149.71, 81.46] 319.23 -0.58 .563 

Reject (“no”) Intercept 3245.15 [2507.68, 3982.63] 31.53 8.63 < .001 

EoS 213.38 [100.81, 325.94] 355.53 3.72 < .001 

LDF 44.11 [-62.70, 150.92] 321.04 0.81 0.419 

EoS * LDF -56.58 [-158.14, 44.98] 413.74 -1.09 0.276 

 

times (z (2099) = 4.67, p < .001, . 
Linear regression of RT across both responses found no 

overall effects of either EoS or LDF (see Table 4). However, 

EoS interacted negatively with response decision, indicating 

the effect of EoS were in opposite directions for “yes” and 

“no” responses. Results separated by response decision are 

given in Table 5. As predicted, for “yes” responses (RT: M 

= 3083ms, SD = 2638ms), EoS had a negative effect, 

meaning that people were faster to accept a metaphor as 

interpretable when it was typically considered easy to 

simulate compared to difficult to simulate. LDF did not 

affect the speed of interpretation, nor was there an 
interaction. Also as predicted, for “no” responses (RT: M = 

2436ms, SD = 2105ms), people were faster to reject a 

metaphor as uninterpretable when it was normally 

considered difficult to simulate. LDF did not affect rejection 

speed, nor did it interact with EoS. 

Since we had specific hypothesis with regards to the 

depth of processing, we examine such task differences 

further in cross-experiment analyses (0 coded for sensibility 

judgement task, and 1 for interpretation generation). As 

expected, the likelihood of accepting versus rejecting a 

metaphor varied by task: the odds to accept a metaphor 

increased 3.24 times in deep interpretation generation 

compared to shallow sensibility judgement; (z(5200) = 3.39, 

p = .001, . As for response time, EoS interacted 

with task, showing that the effect is larger for deep 

interpretation generation than for shallow sensibility 

judgement, as predicted (“Yes”: t(2461.2) = -6.39, p < .001, 

“”t(1936.6) = 3.37, p = .001, . 
The interaction between EoS and LDF also varied across 

tasks (t(1933.3) = -2.10, p = .036, which was 

larger for shallow than deep processing. 

General Discussion 

Our goal in taking this grounded approach was to move the 

investigation of metaphor processing beyond the traditional 

factors of familiarity, conventionality, and aptness, which – 

while having a long history of use – have been increasingly 

criticised for theoretical and operational problems that limit 

their utility in explaining what makes one metaphor easier 

to understand than another. Indeed, our study generated 

complex results that could not be accounted for by 

traditional theories with single factors. 

The current study shows for the first time that both 
linguistic component (based on linguistic distributional 

frequency) and embodied component (based on ease of 

simulation norms) affect metaphor comprehension 

independently. Their roles are statistically distinct from each 
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other after we managed to remove their common variance 

with a principle components analysis. Whereas ease of 

simulation often had a large effect overall and was more 

prominent for the “yes” response because that was when 

simulation was eventually successful; linguistic 

distributional frequency represents a relatively coarse-

grained, but nonetheless highly useful, approximation of 

whether a particular source and target have previously 

formed a metaphor. It informs people’s responses, not only 

making acceptance more likely and faster when the words 

are likely to constitute a meaningful representation, but also 

flags up potentially unsuccessful simulation to be rejected 
right away without further processing when distributional 

frequency is low. Our findings are consistent with the 

grounded views which suggest that conceptual 

representation relies on both embodied simulation and 

linguistic distributional pattern ((Barsalou et al., 2008; 

Connell & Lynott, 2014; Louwerse & Jeuniaux, 2008). 

However, against predictions, the main effect of linguistic 

distributional frequency did not differ between shallow and 

deep processing tasks according to the cross-experiment 

analysis (i.e., linguistic distributional frequency itself did 

not interact with task). This null effect could be because the 

tasks disincentivised using the linguistic shortcut by 

allowing people as much time as needed to make a response. 

That is, they had unlimited time resource to form a mental 

representation using the embodied component. In future 

research, we will impose time constraints on the task in 

order to further examine the utility of linguistic 

distributional information during metaphor processing, and 

provide an additional test of the linguistic shortcut 

hypothesis.  
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Abstract 

‘Activity-equivalent’ food labels are believed to encourage 
consumers to partake in exercise. This may occur by semantic 
priming, where featuring images of physical activity increases 
the mental accessibility of the concept of exercise, making it 
more ‘fluent’ and therefore more influential on people’s 
behaviour. We tested how the format of labels (image vs. 
text) and representation of energy (‘activity’ vs. ‘calorie) 
affected mental accessibility of exercise in a word-fragment 
completion task and participants’ behavioural intentions for 
exercise (N = 142). Participants exposed to calorie labels 
produced more exercise-related words and viewed an 
imagined exercise scenario as shorter and more enjoyable. 
Images led to higher intentions to exercise than text when 
they described activities but they led to lower intentions to 
exercise than text when they described calories. Findings 
suggest that activity labels do not trigger more activity related 
thoughts, but could increase exercise intentions only if 
presented in pictorial format.  

Keywords: priming; exercise; obesity; health; food labels; 
behavioural intentions 

Introduction 
Obesity is a serious global issue, with nearly 40% of the 
world’s population as overweight or obese in 2014 (World 
Health Organisation, 2016), a condition that is a major risk 
factor for noncommunicable diseases such as cardiovascular 
conditions and stroke (Grover et al., 2015). Physical 
inactivity has been identified as a main contributor to the 
obesity epidemic, due to the structure of work and transport 
become more sedentary in nature (WHO, 2004). People 
mostly agree explicitly that physical activity is good for 
health, but in the UK, about 40% of adults still do not 
achieve minimum recommended levels of physical activity 
in their daily life (Craig & Mindell, 2012). While there may 
be various reasons for this discrepancy between attitudes 
and behaviour, closing the gap by increasing physical 
activity remains an important applied challenge. 

The Royal Society for Public Health (RSPH, 2016) 
recently proposed to target obesity in the UK by the 
introduction of food labels that reflect the amount of 
physical activity required to burn off calories in the food. 
This label is intended to be easier to understand and to 
nudge people into exercising more. In this project, we assess 
which aspect of the new label would increase physical 
activities. We propose some hypotheses about the effect of 
using the concept of exercise instead of calories to represent 
food energy, and presenting an image instead of a text. We 
posit that mentioning exercise instead of calories could act 
as a semantic prime that increases the accessibility of 

activity-related thoughts (Meyer & Schvaneveldt, 1971) and 
therefore the intention to engage in physical activities. 
Compared to text, using an image may also influence the 
meta-cognitive processes involved in processing the label. 
Research suggests that the distinctive nature of pictures 
enhance their recollection over words (Curran & Doyle, 
2011), may generate more interactive information 
processing (Domke, Perlmutter, & Spratt, 2002), and are 
superior to words in activating conceptual understanding 
(McBride & Dosher, 2002). Images of a concept are thus 
more likely to increase its mental accessibility, priming it to 
be processed more quickly, or more ‘fluently’ when next 
encountered.  

Concepts that have been activated are subsequently 
perceived more easily (i.e. more fluent) and are better liked 
(Winkielman, Schwarz, Reber, & Fazendeiro, 2000). 
Factors that increase perceptual fluency, such as improved 
clarity of presentation, also increase liking of stimuli 
(Oppenheimer, 2008). Notably, exercise that was presented 
in a passage with easy-to-read font (high fluency) was 
estimated to take less effort to perform than when the font 
was illegible (low fluency) and this influenced people’s 
willingness to engage in it (Song & Schwarz, 2008).  

Manipulating the accessibility of different options has 
also shown positive effects on healthy related behaviours. 
Environmental cues can increase the salience of healthy 
choices and subtly prime people to view these options more 
favourably (Marteau, 2011; Wilson, Buckley, Buckley, & 
Bogomolova, 2016). For example, placing fruit instead of 
chocolate snacks at supermarket checkouts increased 
purchase of the healthier food options (Foster et al., 2014). 
Featuring healthier sandwiches in a more prominent and 
unhealthier ones in a less prominent spot on a menu made 
people more likely to order the healthy sandwiches 
(Wisdom, Downs, & Loewenstein, 2010). 

In sum, variables that increase perceptual fluency (such as 
familiarity and clarity) as well as variables that increase 
conceptual fluency (such as exposure to associatively 
related concepts) can influence the subjective ease with 
which a stimulus can be processed. We therefore 
hypothesised that image and activity labels would result in 
greater mental availability of exercise than text and calorie 
labels. Additionally, image and activity labels would result 
in exercise being rated as less effortful and more enjoyable, 
leading to greater willingness to engage in exercise 
behaviours than with text and calorie labels.  
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Methods 

Participants 
One hundred and forty-two English-speaking participants 

were recruited online through snowball sampling in the UK 
and Singapore, and sharing through social networking sites 
and online forums. Age ranged from 18 to 74 years (M = 
40.30, SD = 15.47). Ethnicity was 58% Asian and 23% 
percent white/Caucasian (19% other races). Body Mass 
Index (BMI) estimates based on weight and height 
categories of participants ranged from 15.82 to 43.51 (M = 
22.501, SD = 4.66). 

Materials1 
Food labels We manipulated label format (image vs. text) 
and energy representation (activity vs. calorie) to create four 
labels as shown in Figure 1. The image labels were derived 
from existing activity-label depictions that have been 
proposed and tested in previous research (e.g. Swartz, 
Dowray, Braxton, Mihas, & Viera, 2013; Van Kleef, Van 
Trijp, Paeps, & Fernandez-Celemin, 2008). In order to keep 
image quality consistent, we standardised the walking image 
across both activity-image and calorie-image labels. 
Equivalent activity values were calculated from the chosen 
calorie value based on the mean weight of a UK individual 
(70kg).  

 
Activity Image     Calorie Image      Activity Text    Calorie Text 

 
 

Figure 1: Labels used as stimuli.  
 

Word fragment completion task Participants read 17 word 
fragments, of which 12 could be completed with either 
exercise-related or neutral words. For example, the fragment 
‘S _ ORT’ could be completed as SPORT (exercise-related) 
or SHORT (unrelated). This type of task has previously 
been used as a measure of mental availability (Tulving, 
Schacter, & Stark, 1982). The fragments were chosen to 
keep the overall word frequency for potential completions 
as balanced as possible. Each word fragment was presented 
on a separate page. Participants were told that both speed 
and accuracy were important in the task. 

 
Perception of exercise We measured participants’ 
perception of exercise as an indicator of exercise 
favourability. Participants were asked to imagine they had 
agreed to go for a 5km walk with their neighbour, and 
indicate how long (on a slider scale from 0 to 120 minutes) 

                                                             
1 We have provided a full set of our materials on the Open Science 
Framework, which can be accessed via the following link: 
https://osf.io/49nf7/ 

and how enjoyable they thought it would be on a 5-point 
Likert scale (1: not at all, 5: extremely). 
 
Exercise intentions  In addition to direct questions about 
their intentions to exercise (defined as a sustained period of 
activity of at least 10 minutes) in the next week (likelihood 
and  duration), participants were also given a role-play 
scenario where they could decide between a sedentary or 
active option to carry out the scenario task. For example, 
‘You leave your [2nd storey] flat and must go downstairs. 
You can either take the lift or the stairs. Both are equally 
accessible from your door. Which would you choose?’ 
Participants’ answers in this role-play scenario were scored 
on a 6-point scale between sedentary and active options (1: 
sedentary, 6: active). This was averaged to create an overall 
score for active choices.    

Procedure 
The experiment was delivered online via Qualtrics survey 

platform. Participants were randomly assigned to view one 
of the four labels and they answered filler questions about 
the labels to ensure that they processed it. Then the 
participants took the word fragment completion task 
presented as part of a separate study on language ability. 
After this, they completed the measures for perceptions of 
exercise, followed by the role-play and direct questions 
about their exercise intentions. Finally, they provided 
demographic information, which included scales assessing 
attitudes towards health (Steptoe, Pollard, & Wardle, 1995) 
and exercise (Courneya, Conner, & Rhodes, 2006). 

Results 
The dependent variables in the experiment were analysed in 
a MANOVA with energy representation and label format as 
independent variables. 

 
Mental availability of exercise As shown in Figure 2, more 
exercise-related word completions were observed for 
activity than calorie labels, F(1, 124) = 3.94, p = .049, η2

p = 
.03. Label format had no significant effect on number of 
exercise-related words produced, F(1, 124) = .17, p = .682, 
η2

p < .01. The interaction was not significant, F(1, 124) = 
.12, p = .730, η2

p < .01. 

2611



 
 

Figure 2: Number of exercise-related words produced by 
energy and format of label. Individual points reflect means 

and 95% confidence intervals. 
 
Perception of exercise  As shown in Figure 3, in the calorie 
condition, images led to higher walk estimates (suggesting 
greater perceived effort) than text, but the reverse was true 
in the activity condition, F(1, 124) = 3.94, p = .049, η2

p = 
.03. Both main effects were not significant (energy, F(1, 
124) = .01, p  .941, η2

p < .01; format, F(1, 124) = .37, p = 
.546, η2

p < .01). The MANOVA found no significant effect 
on enjoyability ratings, F(3, 124) = 1.24, p = .300, η2

p = .03.  
 

 
 
Figure 3: Perception of exercise effort (in minutes to walk) 

by energy and format of label. Individual points reflect 
means and 95% confidence intervals. 

 
Exercise intentions Participants’ estimates of exercise time 
per day were multiplied by their judgements of exercise 
likelihood to form a combined measure for intention to 
exercise. We excluded 15 extreme scores with estimated 
intention to exercise of 10 hours or more (more than 1.5 

standard deviations above the mean.) The resulting 
distribution is shown in Figure 4.  

The analyses showed no significant effect of label 
conditions on scores for active choice, F(3, 124) = .37, p = 
.776, η2

p = .01. However, we found that energy and format 
interacted to determine intention to exercise. In the activity 
condition, choices and intentions to exercise were greater 
when viewing images, but in the calorie condition, they 
were higher when viewing text, F(1, 124) = 8.14, p = .005, 
η2

p = .06. The individual main effects were not significant 
(energy, F(1, 124) = .29, p = .591, η2

p < .01; format, F(1, 
124) = .77, p  = .382, η2

p < .01). 
 

 
 

Figure 4: Exercise intentions (likelihood x intended 
duration) by energy and format of label. Individual points 

reflect means and 95% confidence intervals. 
 

We replicated the MANOVA with age, BMI, and attitudes 
towards health and exercise. The analysis showed that the 
interaction effect for label format and energy on exercise 
intentions remained significant, F(1, 117) = 6.43, p = .013, 
η2

p = .05. The effect of energy on number of exercise-
related word completions and interaction effects for 
perception of exercise was no longer significant, F(1, 117) = 
2.75, p = .100, η2

p = .03; F(1, 117) = 3.75, p = .055, η2
p = 

.03). The effects of the covariates on the dependent 
variables were also non-significant (age, F(5, 113) = .66, p 
= .652, η2

p = .03; BMI, F(5, 113) = .28, p = .922, η2
p = .01; 

health attitude, F(5, 113) = .06, p = .255, η2
p = .06; exercise 

attitude, F(5, 113) = .04, p = .422, η2
p = .04). We also 

analysed the effect of ethnicity. While Asian participants 
were less likely in general to pick active options in the 
scenario-based tasks, F(3, 112) = 3.58, p = .016, η2

p = .09,  
using Pillai’s trace, we found no other main effects or 
interactions of ethnicity with label format, F(10, 218) = 
1.16, p = .317, η2

p = .05 or energy representation, F(10, 218) 
= .97, p = .47, η2

p = .04.  
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Discussion 
Two aspects of food labels were examined for their ability 
to increase intentions for exercise: representing food energy 
value in terms of activity time instead of calories, and using 
images instead of text. Building on empirical findings that 
greater perceptual and conceptual fluency from prior 
exposure increases liking, it was predicted that image and 
activity labels would prime greater mental availability of 
exercise and thus increase intentions to exercise. No 
significant main effects of label format were found, however 
calorie labels generated more exercise-related word 
completions. Exercise was perceived as more effortful for 
calorie labels in image format, but more effortful for activity 
labels in text format. For activity labels, intentions to 
exercise were greater for image than text formats, but the 
opposite was true for calorie labels. 

It has been demonstrated that priming effects in word 
fragment completions occur when semantic information 
about the prime is retrieved (Smith, 1991), which we 
hypothesised to be facilitated by the perceptual and 
conceptual fluency of image and activity labels. However, 
we found instead a higher number of exercise-related words 
generated in calorie condition. It therefore seems propitious 
to consider what concepts are primed by the idea of calories. 
This term has been used as the current standard to represent 
energy values on packaged food for several decades 
(Wartella, Lichtenstein, & Boon, 2010), and is also 
frequently associated with dieting and weight loss in 
popular media and health communications (e.g. Department 
of Health, 2015). While we assumed that people would have 
a more intuitive understanding of activity than calories, 
experience dealing with less intuitive but common 
conceptual representations may also affect semantic 
associations. For example, more people associate sugar 
amounts with grams instead of teaspoons, despite the latter 
being a more intuitive measurement (Vanderlee, White, 
Bordes, Hobin, & Hammond, 2015). We cannot rule out 
that repeated exposure to calories in the context of exercise 
allowed participants to automatically generate the concept 
of exercise from viewing calorie labels.  

The finding that format did not affect mental availability 
or intended behaviours directly, but had different effects 
depending on whether an activity or calorie label was 
presented, was unexpected. We speculate that activity and 
calorie labels have a processing advantage in image and text 
form respectively. Activity image labels are suggested to be 
visually and conceptually easier to understand (Campos, 
Doxey, & Hammond, 2011), but the relative familiarity of 
calorie text labels (as opposed to calorie image ones) 
enhances its ease of processing (Zajonc, 1968). Since both 
calorie and activity labels showed an ability to prime 
exercise-related words, it is possible that the relative 
processing ease of activity image and calorie text labels 
further increased their fluency over activity text and calorie 
image labels and therefore the fluency of exercise associated 
with the label. This would subsequently drive more 
favourable emotions towards exercise (Song & Schwarz, 

2008) and explain the increased intentions to exercise in 
these conditions. 

 Practically, our results replicated previous survey findings 
of increased intentions to perform exercise after viewing 
activity labels (RSPH, 2016) for image labels but not for 
text labels, where calories outperformed activity. Overall, 
our data indicate that activity labels did not meeting the 
expectations of the RSPH, albeit with small effect sizes. 
Nonetheless, we question whether swapping existing 
calorie-based food labels for activity equivalent ones would 
be a wise investment. The use of images with the activity 
labels may generate a greater influence on people’s 
association of energy with exercise over time, since pictures 
have been shown to improve memory performance over 
repeated trials more than words (Erdelyi & Becker, 1974). 
However it is uncertain how long this effect would need to 
take hold in the population, or whether it would even 
surpass the current greater ability of calories than activity to 
generate exercise associations in text format.  

However, before condemning activity labels, it would be 
prudent to compare activity and calorie labels to a control 
condition to determine if the mere presence of either label is 
indeed sufficient to prime exercise concepts and related 
behaviours. Previous work has indicated that the presence of 
either label on a menu can reduce energy ordered compared 
to a no-label condition (James, Adams-Huet, & Shah, 2015), 
with activity labels being slightly (but not significantly) 
more effective than calorie labels. This also suggests that 
the effects of labels could extend beyond participants’ 
intentions to influence their behaviour, which is not a 
foregone conclusion from our results. Indeed, a gap between 
intentions and behaviour often exists, especially for 
exercise-related behaviours (Sniehotta, Scholz, & 
Schwarzer, 2005).  The reporting of exercise intentions 
needs to be interpreted with caution, especially given the 
possibility that the social desirability of physical activity 
may prompt participants to overestimate their exercise 
intentions—although such an effect is likely to be consistent 
across experimental manipulations. Nevertheless, future 
research would do well to include measures that provide a 
more reliable indication of participants’ actual exercise and 
food choice behaviours post exposure to different labels. 

Further research should also look to replicate results with 
a variety of image samples for more robust consideration of 
the different types of activity images, as well as on a sample 
with more varied income and literacy levels. In our sample, 
nearly all respondents had completed tertiary education, 
which is often an indicator of higher literacy and income 
(McCoy, 2013). Groups with low literacy or income 
understand nutrition labels less well and are less familiar 
with calories, all of which could affect label fluency (for 
familiarity with calories, see Bleich & Pollack, 2010; for 
income, see Rothman et al., 2006, also Viswanathan, Hastak 
& Gau, 2009; for literacy, see Signal et al., 2008). 
Nevertheless, our study demonstrates the importance of 
psychological research in informing policy decisions and 
population-level health interventions. 
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Abstract

Sentence understanding is affected by recent experience. An
important open question is whether this reflects adaptation
to the statistics of the input. Support for this hypothesis
comes from the recent finding that listeners can simultaneously
learn and maintain the syntactic statistics of multiple talkers
(Kamide, 2012). We attempt—and fail—to replicate this find-
ing. This calls into questions whether recency effects in sen-
tence processing originate in the same adaptive mechanisms
operating during speech perception (for which talker-specific
adaptation is well-established).

Keywords: sentence processing; attachment ambiguity; prim-
ing; adaptation; talker specificity

Introduction
Talkers differ in how they realize the same sound categories
and words. This inter-talker variability is known to be one
of the biggest challenges to speech perception, and has been
investigated by a large body of research. This work has iden-
tified adaptation as a central mechanism by which listen-
ers overcome inter-talker variability (e.g., Bradlow & Bent,
2008; Kraljic & Samuel, 2007). With exposure to a novel
talker, listeners seem to be able to adapt their category bound-
aries to the statistics of the current input (Clayards, Tanen-
haus, Aslin, & Jacobs, 2008; Kleinschmidt & Jaeger, 2015).
This adaptation can persist over time (Eisner & McQueen,
2006), and listeners can maintain separate adaptations for
different talkers (Kraljic & Samuel, 2007; Trude & Brown-
Schmidt, 2012). Findings like these suggest that listeners
continuously infer and store talker-specific information about
the realization of phonological categories (for review, see
Kleinschmidt & Jaeger, 2015).

Here we focus on adaptation beyond speech perception,
and the extent to which it exhibits properties similar to those
demonstrated for speech perception. It has long been rec-
ognized that talkers also vary in, for example, their lexical
and syntactic preferences, and that these differences can im-
pede processing (for a recent review, see Fine, Jaeger, Farmer,
& Qian, 2013). For example, the efficiency of expectation-
based processing (i.e., utilizing expectations based on previ-
ous input to facilitate integration of bottom-up input) depends
on the degree to which comprehenders’ expectations—based
on previously experienced input—match the statistics of the
present input. Thus, if talkers differ in their preferences, and
thus the statistics of the input they provide, this should im-
pede processing. On the flip side, expectations that match the
statistics of the current input will facilitate processing.

This and related considerations have motivated work on
adaptation beyond speech perception, including lexical (e.g.,
Creel, Aslin, & Tanenhaus, 2008), prosodic (e.g., Kuru-
mada, Brown, & Tanenhaus, 2012), and—most relevant to
the present purpose—syntactic adaptation (e.g., Fine et al.,
2013). For syntactic processing, there is now some evi-
dence that experience with a novel environment (e.g., an
experiment) can lead to longer-lasting changes in process-
ing, persisting for at least several days (Wells, Christiansen,
Race, Acheson, & MacDonald, 2009). Further, parallel-
ing studies on adaptation in speech perception, a recent
study found that listeners can adapt to multiple talkers si-
multaneously (Kamide, 2012). As one of the few stud-
ies to demonstrate talker-specificity in syntactic adaptation,
Kamide’s study constitutes an important contribution to our
current understanding of whether syntactic adaptation is best
understood in terms ‘dumb’ priming mechanisms (Tooley,
2009) or ‘smarter’ learning mechanisms (Fine et al., 2013).
This result has received a fair amount of attention (with about
10 citations/year); however, as we will discuss later, there are
some reasons to interpret the finding with caution.

Here we report efforts to replicate Kamide (2012). We be-
gin by summarizing the original study. Then we introduce our
own paradigm, which closely follows this study (we grate-
fully acknowledge Yuki Kamide’s generous willingness to
discuss details of her design; errors remain our own). We note
here that we made a few changes to the procedure and stimuli
of Kamide’s paradigm, which we introduce and motivate as
we go through our experiment.

Overview of Kamide (2012)
Kamide (2012) employed a look-and-listen visual world eye-
tracking paradigm to investigate changes in listeners’ syntac-
tic expectations for specific talkers. Participants saw visual
scenes like that depicted in Figure 1.

These scenes were paired with sentences containing a syn-
tactic attachment ambiguity. For example, in the sentence
“The master of the dog who will bury the treasure is quite
old now.”, the relative clause, “who will bury the treasure,”
can describe “the master” or “the dog”. These two interpre-
tations correspond to different syntactic parses. The former
constitutes high attachment, the latter low attachment.

This attachment ambiguity is assumed to be resolved at
“treasure” since MASTER is more likely to be the agent of the
BURYING-TREASURE event. Kamide’s analyses focuses on
the temporarily ambiguous stretch between the introduction
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Figure 1: Example experimental scene paired with example
(high attachment) sentence, both from Kamide (2012). Un-
derlining marks the syntactically ambiguous sentence region,
during which saccades to the target (treasure) and competitor
(bone) objects are taken to indicate high vs. low attachment,
respectively. (Target and competitor objects are not labeled
in actual stimuli shown to participants).

of the relative clause verb and the resolution of the ambigu-
ity (“will bury”). During this stretch, eye-movements to the
master or dog can be seen as reflecting expectations that the
relative clause will attach high (or low). Specifically, listeners
should show more anticipatory eye-movements to referents
that are plausible objects for the expected agent. In Figure
1, if high (low) attachment is expected, listeners should show
anticipatory eye-movements to the treasure (bone).

This property theoretically makes it possible to investigate
changes in syntactic expectations based on recent exposure,
including changes in expectations for specific talkers. Specif-
ically, Kamide exposed participants to sentences from three
different talkers. One talker always used high attachment
sentences, one talker always used low attachment, and the fi-
nal talker used high and low attachment equally often. The
question then is whether participants’ eye-movements dur-
ing the temporarily ambiguous stretch begin to reflect talker-
specific syntactic preferences. If so, participants should be
more likely to exhibit anticipatory saccades toward the target
object for the two talkers that consistently attached either low
or high (cued talkers), compared to the talker who used high
and low attachment equally often (uncued talker). This ad-
vantage should emerge with increasing exposure throughout
the experiment.

Kamide tested this prediction by analyzing the number of
trials in which at least one saccade was launched to each ob-
ject (target vs. competitor) for the cued vs. uncued talkers
during each phase of the experiment (beginning [first two
blocks] vs. end [last two blocks]). Supporting the hypoth-
esis of talker-specific syntactic adaptation, Kamide identified
a statistically significant three-way interaction between object
x cue x phase: at the end of the experiment (compared to the
start), participants made more saccades to the target for the

cued talkers, compared to the uncued talkers.
However, there are reasons to interpret this result with cau-

tion. First, there were relatively few trials with fixations to
either the target (12.1%, averaged across the beginning and
end of the experiment) or the competitor (11.8%). Second,
the looks to the target and the competitor actually decreased
over the course of the experiment (from 15.0% to 9.2% for
the target and 15.6% to 8.0% for the competitor). Both of
these effects result in a small signal to detect potential effects,
which we try to address by using a task-based paradigm.

Experiment
Methods
Participants We recruited 24 participants at the University
of Rochester (c.f. 48 participants in the original study). Al-
though we had originally intended to run 48 participants, a
power simulation (reported below) following 24 participants
suggested we would be unlikely to detect an effect, even
with the additional participants. All participants were native
speakers of English with normal vision. The experiment took
about 1 hour and participants were paid $10.

Visual Stimuli We used the visual scenes (20 experimen-
tal and 40 filler) from Kamide (2012). Each experimen-
tal scene consisted of six images arranged against a colored
background (e.g., Fig. 1). Two images corresponded to the
target and competitor agents of the sentence, and four images
corresponded to the potential objects for the sentence.

Sentences We used the original sentences from Kamide
(2012), with minor vocabulary adjustments to accommodate
American listeners (e.g., motorcycle instead of motorbike).
Each scene was paired with four training sentences (A) and
four test sentences (B), which involved novel objects refer-
enced in the training sentences. Sentences 1 and 3 are sen-
tences with high attachment interpretations (i.e., in 1A, the
master is the agent of the main verb bury). Sentences 2 and 4
are sentences with low attachment interpretations (i.e., in 2A,
the dog is the agent of the main verb bury).

1. The master of the dog who will (A) bury the treasure / (B)
drink the brandy is quite old now.

2. The master of the dog who will (A) bury the bone / (B)
drink the water is quite old now.

3. The dog of the pirate who will (A) bury the bone / (B) drink
the water is quite old now.

4. The dog of the pirate who will (A) bury the treasure / (B)
drink the brandy is quite old now.

Additionally, we used the 40 original filler sentences which
did not contain a syntactic ambiguity, and instead contained a
relative clause containing an unambiguous single noun phrase
antecedent (e.g. “The woman who will lift the pet carrier has
never had a dog.”).

Auditory Stimuli American listeners might have difficulty
distinguishing between the varieties of UK English used in
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the original study (conducted in Scotland). We thus recorded
new materials from talkers selected to be clearly distin-
guishable by American listeners. We recorded one British-
accented male (BM; average sentence duration = 3,668 ms,
SD = 485 ms), one British-accented female (BF; 3,944 ms,
SD = 430 ms), and one Indian-accented Male (IM; 4,358 ms,
SD = 516 ms). The BM and BF talkers served as the cued
talkers, consistently producing either only high attachment
sentences or only low attachment sentences. Between partic-
ipants, we counterbalanced the assignment of high vs. low
attachment to talkers, so that each talker served as the high
attachment talker for half of participants. Following Kamide,
one talker (Talker IM) always served as uncued talker, pro-
ducing equal amounts of high and low attachment sentences.

All audio recordings were scaled to an average intensity
of 70 dB. Following Kamide (2012), the shared portion of
each low attachment sentence (up to the relative clause; i.e.
“the master of the dog”) was then spliced into the correspond-
ing high attachment sentence to ensure that any effects found
would not be due to early prosodic cues; i.e. both high and
low attachment sentences shared the same low attachment
prosody.

Presentation Lists Following Kamide (2012), we created
four presentation lists, crossing whether Talker BM and
Talker BF served as the high and low attachment talkers, and
which items were used in the cued vs. uncued talkers. Each
participant was tested on one of these lists.

Each list was divided into six blocks, each consisting of 30
trials (20 experimental, 10 filler). Each experimental scene
was presented once per block, with a different sentence each
time (i.e. in the first four blocks, sentences 1-4A were heard,
and in the final two blocks, either sentences 1-2B or 3-4B
were heard). During each block, the uncued talker (IM) pro-
duced both five low and five high attachment sentences, and
the cued talkers (BM and BF) each produced either five low
or five high attachment sentences, along with five filler sen-
tences. Sentence order within the lists was pseudorandomized
following the criteria described in Kamide (2012).

Procedure Our procedure closely followed that of Kamide
(2012) with the exception that we used a task-based clicking
paradigm (described below) as compared to a look-and-listen
paradigm. This decision was made because the results of the
original study suggest that there was very little signal to detect
potential effects. First, in the original study, the percentage
of trials in which a subject makes a saccade toward the tar-
get or the competitor in the critical window was small (fewer
than 24%). Second, participants show a (highly significant)
decrease in saccades to both target and competitor over the
course of the experiment: 15.0% to 9.2% for the target object
and 15.6% to 8.0% for the competitor object.

In a comparison between a look-and-listen paradigm
and an explicit task-based paradigm, Altmann and Kamide
(1999) find that although results between the two paradigms
were qualitatively similar, the task-based paradigm had less-

delayed anticipatory eye movements, and subjects were al-
most twice as likely to fixate relevant referents (see Salverda
& Tanenhaus, in press).

Expecting more looks to the target and competitor (as task-
relevant objects), we incorporate the task of clicking on the
target into Kamide (2012). This carries the additional benefit
of allowing us to test whether participants are paying atten-
tion during the experiment (see Results).

Participants were seated in front of a 19 inch computer
screen. Eye movements were monitored using an Eyelink
1000, sampling at 500 Hz from the left eye. Recalibration
was performed at the beginning of each new block (every 30
trials), and drift correction was performed every five trials.

At the start of each trial, participants saw a task prompt
against a white background on the screen, e.g. “Click on what
will be buried.” Crucially, the object that should be clicked on
varied between high and low attachment sentences (i.e. trea-
sure or bone). After the participant clicked to verify that they
had read the prompt, a fixation cross appeared in the center of
the screen. After the participant clicked on the fixation cross,
the visual scene appeared on the screen. The sentence played
over loudspeakers after the scene preview period of 1000 ms
elapsed. The trial ended after participants clicked in the scene
after the audio file ended.

Results
We begin by assessing how participants engaged in the exper-
imental task. First, we test whether participants performed
the task as intended. Second, we assess whether the task-
based paradigm caused participants to have more saccades
to the task-relevant referents during the critical time win-
dow, thereby increasing our power to detect an effect. Third,
we test whether the number of trials containing saccades to
target, compared to competitor, objects decreases over the
course of the experiment (as reported in the original study).

All analyses presented below include the maximal random
effects justified by the design (i.e. by-participant and by-item
intercepts and slopes for cue, phase, and their interaction).
We treat sentences sharing the same prefix up to the relative
clause as one item (e.g., 1A-B and 2A-B form an item), such
that cue, phase, and their interaction varied within items. We
continue to use the term target object to refer to the object
that is consistent with the intended attachment interpretation
(e.g., the treasure in 1A), and the term competitor object to
refer to the object consistent with the unintended attachment
(e.g., the bone in 1A).

Task performance: Click responses We find that partici-
pants overwhelmingly (98.3% of all trials) clicked on the cor-
rect target object (e.g., treasure in Fig. 1). This suggests that
participants understood and successfully performed the ex-
perimental task. One scene showed a high incorrect response
rate, with over 40% of subjects (10 of 24) clicking on the
wrong object. This was likely due to the use of target label
(hat) that is also a valid label for the competitor (cap). Trials
involving this scene, and all trials with incorrect clicks, are
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excluded from subsequent analyses.

Task performance: Saccades to task-relevant referents
Next, we analyze the number of trials containing looks to
task-relevant objects (i.e., either of targets and competitors)
and the changes in this number over the course of the experi-
ment. We analyze the same time-window as in the original
study: from the start of the onset of the verb of the rela-
tive clause to the onset of the object of the relative clause
(e.g. “bury the” in Fig. 1). The mean duration for this time-
window is 371 ms (cued; SD = 66 ms) and 430 ms (uncued;
SD = 82 ms). These durations are somewhat different from,
but similar to, the corresponding time-windows in the original
study (cued: 528 ms, uncued: 365 ms).

Compared to Kamide, we find nearly twice as many trials
containing saccades to the target (24.1% here vs. 12.1% in
the original) or competitor objects (22.6% here vs. 11.8%
in the original), averaged over the first and last two blocks.
Like in the original study, we find that the overall probability
of saccades to task-relevant objects decreases over the course
of the experiment. However, this decrease was less dramatic
than in the original study. In the first two blocks, 46.8% of all
trials contained saccades to task-relevant referents and only
decreased to 44.6% of all trials in the last two blocks. In
fact, the number of trials in which there were saccades to the
target object actually increased slightly, going from 22.2% in
the first two blocks to 25.9% in the last two. This constitutes
an increase of 0.2 in log-odds for the target object (compared
to a decrease of 0.56 in the original study) and a decrease
of 0.28 in log-odds for the competitor object (compared to a
decrease of 0.75 in the original).

In summary, the task-based paradigm increases saccades
to the task-relevant referents, as intended. This means that
our estimates of the relative proportions of eye-movements
to target vs. competitor objects—the dependent variable for
the main analyses presented below—are based on more data.
This should result in more reliable statistical signal for the
main analysis (but see our discussion for caveats).

Main analysis: Anticipatory saccades during original
time window We first analyze saccades during the time
window employed in the original study. Failing to find ev-
idence for talker-specific learning, we then present additional
post-hoc analyses. Specifically, we extend our analyses to
other time windows, and to individual cued talkers. All
our analyses analyze the proportion (of eye-tracking samples
with) fixations to the target vs. competitor objects during the
time window. This differs from Kamide’s, who analyzed the
number of trials containing at least one saccade to the tar-
get vs. competitor during the time window. The two mea-
sures yield the same conclusions for the present data (see be-
low). We chose our analysis approach, because Kamide’s
measure resulted in a model that converged only under a
drastically reduced maximal random effects structure (by-
participant random intercepts and slopes, and by-item ran-
dom intercepts). We also note that our approach is known
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Figure 2: Proportion of fixations over the course of a trial.
Colors show the different referents in the scene. Panels show
the cued and uncued talkers. Regions A, B, and C correspond
to the time windows in which participants heard the equiv-
alents to “The master of the dog”, “who will”, “bury the”,
respectively. Kamide (2012)’s analysis was restricted to re-
gion C, as was our original analysis. We also present post-hoc
analyses of regions A and B+C. For this plot, we normalized
times within each region (essentially aligning all trials) before
averaging across trials and subject.

to be anti-conservative (because of auto-correlations between
eye-tracking samples), but not known to be underpowered.

The full time course for fixations over trials is shown in
Fig. 2. Following Kamide (2012), we compare the data col-
lected during the first two blocks (beginning) to the data col-
lected during the final two blocks (end) during the time win-
dow between the start of the verb of the relative clause to the
noun (e.g. “bury the”).

We perform mixed logistic regression predicting fixations
to target versus competitor from cue (sum-coded: cued = 1
vs. uncued = -1) and phase (sum-coded: end = 1 vs. be-
ginning = -1). If participants are able to learn the syntactic
preferences of specific talkers, then we expect more looks to
the target object during the end of the experiment compared
to the beginning. We would only expect this for the cued
talkers, in which the talkers produced high or low attachment
sentences consistently, and not for the uncued talker, in which
the talker produced a mixture of both high and low attachment
sentences. The critical result to replicate is the interaction be-
tween cue and phase of the experiment.

None of the factors reached significance (ps >0.14). The
analysis is summarized in Table 1 (penultimate column).
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Critically, we did not find a significant interaction between
cue and phase (p = 0.8). Using the reduced model based on
Kamide’s measure, where the critical measure is a 3-way in-
teraction between object x cue x phase, confirmed this pat-
tern. Specifically, Kamide’s measure returned a significant
two-way interaction between object and cue in the unex-
pected direction (β̂ = -0.08, p <0.05). The critical 3-way
interaction trended in the same direction as in the original
study, but did not reach significance (p = 0.11).

For the remaining analyses we only present analyses over
proportions of fixations. Using Kamide’s measure led to
models with reduced random effect structures, but did not
change the results.

Post-hoc analyses over additional time windows We en-
tertain two possibilities for the observed null effect. First, it
is possible that the introduction of a task-based paradigm af-
fected the time course of eye-movements (see e.g., Altmann
& Kamide, 1999). Specifically, in our paradigm listeners saw
the verb prior to hearing the sentence, which may have al-
lowed them trigger anticipatory eye-movements even earlier,
before the onset of the RC verb. We therefore conduct post-
hoc analyses over two additional time windows (see Figure
2):

1. Start of the sentence to start of the relative clause (Sen-
tenceStart to RCStart; e.g. “The dog of the pirate”)

2. Start of the relative clause to start of the relative clause
noun (RCStart to RCNounStart; e.g. “who will bury the”)

3. Start of the relative clause verb to start of the relative clause
noun (RCVerbStart to RCNounStart; e.g. “bury the”)

A second possibility is that participants look towards the
agent, rather than object, of the verb. We thus also analyze
looks to the target versus competitor agents. For example, in
the low attachment sentence (1A), the target agent is the dog,
and the competitor agent is the master. We do so also for the
original time window analyzed in the previous section.

This results in 6 analyses (3 time windows by 2 ways to op-
erationalize target vs. competitor), of which one is the origi-
nal analysis. The results from all analyses are presented in Ta-
ble 1. None of the critical effects reach significance in any of
the analyses. However, for the agents, we identified marginal
interactions of cue and phase in two of the time windows (Ta-
ble 1); however, both were numerically in the opposite of the
expected direction. Following Kamide, we also performed
each of these analyses for trials containing saccades to tar-
get or competitor (with a reducted random effects structure).
None of the additional analyses reached significance in the
predicted direction (predicted direction: p > 0.7), though the
agents analysis for region C was significant in the unpredicted
direction (p < 0.05).

We did not find a reliable effect of talker-specific syntactic
adaptation between the cued and uncued talkers, even when
considering post-hoc analyses over additional time-windows.
All remaining analyses therefore use the same time windows
as the original study.

So far, following Kamide (2012), all our analyses com-
pared eye-movements for cued vs. uncued talkers. Such
analyses group the two cued talkers together, ignoring po-
tential differences in listeners’ expectations for a male and a
female (British English) talker. We conducted several follow-
up analyses, comparing eye-movements in response to these
two cued talkers. We found no evidence that participants were
biased toward expecting more high (or low) attachment for
either talker. Nor did we find any evidence that participants
adapted more for one talker over the other.

General Discussion
In contrast to the growing literature on talker-specific adap-
tation in speech perception, one of the few studies that
has directly addressed talker-specific syntactic adaptation is
(Kamide, 2012). Here we were unable to replicate the origi-
nal study’s findings. We are aware of one other ongoing effort
within the same paradigm as the original study, albeit with
different stimuli (ongoing work by Ryskin, Fine, & Brown-
Schmidt). Ryskin and colleagues do not find evidence for
talker-specific syntactic adaptation over the original time win-
dow, while finding weak evidence over a larger time window.

One possibility why the present experiment failed to find
talker-specific syntactic adaptation is that it had less power
than Kamide’s original study: we used fewer participants (24
here vs. 48 in the original study). On the other hand, pre-
sumably because of the use of a task-based paradigm in the
present experiment, the proportion of trials containing a look
to either the target or competitor was almost twice as high
in the present study than in the original study (42% in the
present study vs. <24% in the original study), which should
increase the power. Power analyses suggested that power in
our experiment was slightly lower than, but comparable to,
Kamide’s. For example, even when assuming an increase of
0.6 in log-odds in looks to the target in the cued vs. uncued
condition from beginning to end of the experiment (constitut-
ing a 9-fold increase in effect size), the present approach (24
participants, 40% looks to task-relevant objects) yields power
of 69.4%, compared to 82.5% for Kamide’s study (48 partic-
ipants, 20% looks to task-relevant objects).

Another possibility is that limited familiarity with the
British- and Indian-accented English could have affected par-
ticipants’ ability to understand our talkers. If participants
were unable to parse our talkers’ sentences, this would make
it impossible to learn talker-specific syntactic statistics. We
note, however, that participants almost always clicked on
the correct object (98.3% of all trials), indicating that they
were able to successfully understand talkers. Additionally,
the three talkers were easily distinguishable, which would be
expected to support the learning of talker-specific statistics.

Additionally, it might be that our task encouraged partic-
ipants to listen for the correct object without processing the
syntactic structure. Participants were asked to click on the ob-
ject of the verb; the verb was always provided at the very end
of the sentence, and participants were not allowed to click un-
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Table 1: Output of mixed effects logistic regression comparing fixations to target versus competitor objects and agents (positive
coefficient estimates indicate more looks to the target object). Marginal effects in italics. No factors reached significance.

SentenceStart to RCStart RCStart to RCNounStart RCVerbStart to RCNounStart
Objects Agents Objects Agents Objects Agents

Predictors β̂ p β̂ p β̂ p β̂ p β̂ p β̂ p
Intercept 0.49 0.11 -0.07 0.37 0.09 0.57 0.17 0.06 0.23 0.30 0.27 0.07
Cue (Cued=1 vs Uncued=-1) 0.27 0.33 -0.04 0.56 -0.17 0.30 -0.06 0.56 -0.22 0.35 -0.08 0.63
Phase (End=1 vs Beginning=-1) -0.12 0.71 0.00 0.97 0.20 0.25 0.14 0.15 0.42 0.14 0.14 0.30
Cue:Phase -0.27 0.45 0.04 0.57 0.01 0.93 -0.16 0.10 0.07 0.80 -0.25 0.08

til then. This meant that participants did not derive any time
benefit from correctly tracking the talker’s attachment prefer-
ences. However, we note that in the original experiment, as
participants were asked only to look at the scene while lis-
tening to the sentence, there was also no explicit incentive to
track the talker’s attachment preferences.

An alternate possibility is that listeners do not exhibit
talker-specific adaptation to attachment structure because
they are not capable of it. Why might this be the case, partic-
ularly given the growing body of evidence for talker-specific
phonetic adaptation? As talkers vary systematically in how
they sound, both due to physiological factors (e.g. vocal
tract size), and sociolinguistic factors (e.g. regional dialect),
phonetic adaptation to talker-specific pronunciations can lead
to a large benefit in later encounters with that same talker
(Bradlow & Bent, 2008).

By contrast, syntactic adaptation, particularly syntactic
adaptation to high and low attachment structure, may not
carry the same utility: subject relative clauses alone occur
fewer on than 2% of all noun phrases (Roland, Dick, & El-
man, 2007). Non-local subject relative clauses with two ani-
mate (potential) heads—like those used in our experiment—
are even rarer. Thus, talker-specific syntactic adaptation to
such a low-frequency structure may not lead to the same ben-
efits of improved language understanding as phonetic adapta-
tion to much more frequent phonemes. It may be beneficial to
address questions of talker-specific adaptation by examining
more frequent syntactic structures.

In sum, the current experiment failed to replicate the effect
that listeners are able to track talker-specific syntactic prefer-
ences for attachment (Kamide, 2012). This raises questions
about the extent to which syntactic adaptation may involve
the same adaptive mechanisms used in phonetic adaptation.
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Abstract 

In cognitive science, computation is largely accompanied 
with representational theory of mind.  Yet, it remains unclear 
whether this companionship also appears in the realm of 
sensorimotor control.  Grush’s (2004) and Pezzulo’s (2008, 
2011) account of anticipatory representations provide a 
limited answer, as they are only suitable for forward models, 
but not the entire sensorimotor control.  Rescorla’s (2016) 
representational explanation for sensorimotor psychology 
addresses several intentional states considered in Bayesian 
inference and optimal modeling.  However, the above 
accounts does not explain how motor commands are produced 
and chosen in the course of sensorimotor control for 
maintaining accuracy of goal-achievement.  The present paper 
aims to explain it with a representational account by 
considering instrumental representations of sensorimotor 
control, which appear at the intermediate level and are 
exemplified by motor commands and costs.  Such 
representations do not presume decouplability, as they need to 
run on-line in the maintenance of accuracy.   

Keywords: Sensorimotor control; representation; optimal 
feedback control; Bayesian decision theory. 

Introduction 

Within cognitive science there is a long-standing dispute 

between different paradigms concerning the role of 

representation in computation.  Classical cognitive science 

understands cognition in terms of computation over mental 

representations, and considers the role of cognition to be 

deriving world-models that provide a database for thinking, 

planning and problem-solving.  Decouplability between 

representations and their immediate environment is taken as 

intrinsic to representation.  By contrast, a ‘pragmatic turn’ 

raises the ‘action-oriented paradigm’ that considers 

cognition to be providing skillful know-how in situated and 

embodied actions (Engel et. el., 2013).  Clark (1997) raises 

the notion of action-oriented representations, which do not 

presume decouplability, in his ‘minimal 

representationalism’.  Action-oriented representations, yet, 

are mostly applied to reactive motor activities, regardless of 

various models of motor control. 

The computational theory of mind is largely accompanied 

with a representational theory for explaining a variety of 

faculties, including perception, language, thinking, and 

problem-solving.  However, the role of representation is 

highly debated for the faculty of motor action.  Within 

models of motor control, the forward model is firmly 

associated with a role of representation, in the notions of 

emulating representation or anticipatory representations 

(Grush, 2004; Pezzulo, 2008, 2011).  For those 

representations, decouplability is claimed to be an intrinsic 

property.  In addition, Bayesian models of motor control are 

seen as highly associated with a robust notion of mental 

representation (Rescorla, 2016).  Decouplability is also seen 

as intrinsic to that notion of representation (Haselager et al., 

2003).  As to other models of motor control, however, the 

role of representation is unclear.  The computational theory 

of sensorimotor control has been established (Wolpert and 

Ghahramani, 2000; Franklin and Wolpert, 2011; Orbán and 

Wolpert, 2011).  It is suggested that motor control is 

conformed to the notion of pragmatic representation, as 

different from that of semantic representation (Jeannerod, 

2006).  Yet, questions remain as to what the pragmatic 

representation is and how it is related to computational 

models of motor control.   

Given that computation of cognition is an explanatory 

account of cognition (Marr, 1982), an explanation can be 

found in the computational theory of sensorimotor control, 

as shown above.  The sensorimotor control, as seen in the 

determination of an appropriate motor command, is 

considered to be fundamentally a decision process (Körding 

and Wolpert, 2006).  The decision is to choose an 

appropriate motor command in order to achieve a given goal.  

The present paper contends that the explanation of the 

sensorimotor control is to explain why and how the decision 

could determine an appropriate motor command that turns 

out to achieve the goal.  The explanandum is the way in 

which the goal is achieved by choosing an appropriate of 

motor command.  The present paper characterizes this way 

of goal-achievement in terms of the end-means relation.  

The goal of a motor task is the end, and a chosen motor 

command is its means.  Humans can rationally consider the 

appropriate means for an end; similarly, the sensorimotor 

system can choose an appropriate motor command for a 

given goal.  This similarity, yet, is subject to two caveats.  

Firstly, while in economic decision-making or daily affairs 

in general, the rationality proceeds at the personal-level, the 

sensorimotor processes largely operate at subpersonal-level.  

Secondly, while characterization of human rationality need 

not be put in terms of probability, the actual performance of 

sensorimotor control is found to be very close to 

descriptions made with Bayesian decision theory (Körding 

and Wolpert, 2006), a theory with probabilistic measures.   

Explanation of sensorimotor control can be pursued in 

anti-representationalist accounts, which hold certain 

explanatory perspectives (Turvey and Fonseca, 2009).  

Motor control, as contended in such accounts, is determined 

by interactions between the neural system, body, and the 

environment.  Different from such accounts, the present 
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paper preserves an explanatory role for representation in 

terms of a novel notion of representation—instrumental 

representation—and regards the above interactions as 

complementary to computation and representation.  

Arrangement of that complementarity is for two reasons.  

One is the overall success of the computational approach to 

sensorimotor control (Franklin and Wolpert, 2011; Orbán 

and Wolpert, 2011; Todorov, 2004; Wolpert and 

Ghahramani, 2000).  The other reason is that problems of 

sensorimotor control, to put it in Clark’s (1997) terms, are 

not ‘representational-hungry’.  The neural system of 

sensorimotor control has tight interactions with body, and 

the environment.  The notion of instrumental representation 

differs from the mainstream conceptions of representation in 

that it does not presume decouplability from the 

environment.  Putting above two reasons together has an 

implication in the level of instrumental representations.  

Like that the present account of representation stands 

between the classic account of representation and those anti-

representationalist accounts, instrumental representations 

can be conceived of as standing at the intermediate level of 

the mind.   

The present paper aims to raise a representational account 

of the sensorimotor control.  This aim is to be achieved by 

explaining computation of sensorimotor control in terms of 

representation, on grounds that computation is a way to 

explain the mind, in the first place.  Section two discusses 

computational explanations of sensorimotor control in terms 

of end-means relations.  Section three specifies the notion of 

instrumental representations for explaining the sensorimotor 

control, on grounds of computational explanations of 

sensorimotor control. 

Computation in the Sensorimotor Control 

The Bayesian decision theory in sensorimotor control holds 

a computational perspective with two components--

estimation of environmental and bodily conditions, on the 

one hand, and decision made upon motor commands for the 

most desirable performance, on the other.  To put it in an 

epistemological dichotomy, the former component is to 

measure environmental and bodily facts, while the latter one 

is to evaluate motor actions.  To put it otherwise, the former 

is close to perception, while the latter to decision-making. 

Uncertainty 

Measurement of states in the sensorimotor system is 

affected with various factors of uncertainty, and 

consequently it cannot be accurate like that we manage to 

measure the length of an object left on the table with a ruler.  

Sensory signals of the environment have inherent delays, 

which affect signals at all stages of sensorimotor system 

from the afferent (coming-in-from-the-outside) sensory 

information, to conduction along the neural fibers, together 

with the complexity of processing (face recognition being 

longer than motion perception) and ‘slower’ modality 

(vision being longer than proprioception).  It can be said that 

we ‘live in the past’ by accessing the ‘out-of-date 

information’ about the common world and our own bodies 

(Franklin and Wolpert, 2011, pp. 425-6).  In addition, the 

nervous system is corrupted by noise, which also affects 

sensorimotor control at all stages, from the reception of 

sensory information, to planning, resulting in variability in 

movement endpoints.  Noise, hence, contaminates our 

observation of the sensorimotor system internally and 

externally, by affecting estimation of body states and world 

conditions (ibid., p. 425).  Noise in motor commands, in 

particular, increases propositionally to the size of their 

signal (the so-called ‘signal-dependent noise’).  Different 

motor commands would incur different degree of variability 

in the resulting endpoints.  To put it more specifically, the 

motor performance is subject to speed–accuracy trade-off 

described by Fitt’s law (Harris and Wolpert, 1998).  Noise 

in the sensorimotor system corrupts not only estimation of 

internal and external states, on the one hand, but also 

performance of motor actions, on the other. 

Apart from delay and noise, there are more factors of 

uncertainty residing in the sensorimotor system.  

Environmental conditions are constantly subject to change, 

for example, forces imposed upon the arm in the reaching 

movement (Shadmehr and Mussa-Ivaldi, 1994).  It is also 

uncertain as to which actions or tasks would be beneficial in 

the real world outside the laboratory (Franklin and Wolpert, 

2011).  Furthermore, our motor system is non-stationary, for 

example, the length and weight of our limbs are changing 

when we grow up, and our muscles are getting stronger with 

larger forces (ibid.).  Those uncertain factors would 

constantly contaminate information of the sensorimotor 

system, information which consequently needs to be 

optimized in order to achieve the given goal. 

Given the aforementioned factors of uncertainty, the 

computation of sensorimotor system needs to optimize its 

information, in order to find the best resolution in view of 

goal-achievement.  The sensorimotor system should 

maintain optimal estimation of world and body states, and 

should conduct optimal choice of motor commands.  This 

need of optimality, in both state estimation and action 

choice, introduces a version of instrumental rationality that 

is immanent in the sensorimotor system at the subpersonal-

level. 

Decision on Grounds of Utility 

By contrast, another version of instrumental rationality turns 

up in the sensorimotor system’s course of decision-making 

for optimal choice of a particular motor command, given a 

particular goal.  Various particular goals can be given to a 

sensorimotor system, which are ends for the system to seek 

appropriate means for their fulfillment.  Whenever a means 

is determined, a decision is made for attaining the end.  The 

degree of fulfillment can be evaluated in positive terms, 

such as benefit, reward, utility or prospect; or alternatively 

in negative terms, such as loss or cost (Körding and Wolpert, 

2006).  The degree of fulfillment is a foundational notion, 

the present paper proposes, for explaining the sensorimotor 

control.  In the realm of sensorimotor control, the utility of a 
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motor movement is the decision theory’s way of evaluating 

the fulfillment of the goal.  The fulfillment to a higher 

degree would receive the evaluation of a higher utility. 

According to the decision theory, the expected utility of 

an action is defined quantitatively in terms of probability, as 

follows: 

 
where p(outcome | action) is the probability of an 

outcome given an action, and U(outcome) is the utility 

assigned to that outcome.  An action is chosen for 

maximizing the expected value, which is put in terms of 

utility.  A decision made in this way is defined to be a 

rational choice (Körding and Wolpert, 2006).  This is a 

normative theory that defines the way in which people 

should behave; that way is put in terms of rationality.  In 

other words, the rationality of action urges that people in 

their actions should pursue a higher degree of utility.  When 

it is put in the context of sensorimotor control, a utility 

function evaluates how well a movement is performed.  This 

way of evaluation quantifies, in terms of utility, the total 

desirability of a chosen movement.  In addition, the decision 

theory is also considered to be a descriptive theory by 

assuming that people act rationally.  The rationality 

assumed in this theory explains why people behave in the 

way they do.  In fact, empirical findings indicate that the 

Bayesian decision theory shows successfully how people 

actually perform their sensorimotor control (ibid.). 

The decision theory measures a motor movement, in 

terms of utility (measuring positively) or cost (measuring 

negatively), by evaluating its degree of fulfillment, that is, 

how well it achieves the goal.  The end-means relation is 

assumed in the notion of fulfillment.  The utility, in a 

descriptive term, defines how well a means attains the end. 

The measurement of a cost depends on the immediate 

conditions of all relevant factors in the sensorimotor 

processing.  Specifically, it depends on current states of the 

sensory system and properties of the to-be-chosen motor 

commands.  The considered states include body states and 

the environmental conditions, for example, joint angles and 

velocities, and positions of relevant objects.  Properties of 

motor commands can be measured with different emphases, 

for example, the jerk, torque change, energy, time, variance, 

of the to-be-chosen motor commands.  The measurement, 

whatever the emphasis, takes the form of ‘minimize X’ 

(Todorov, 2004).  It is to minimize the size of relating 

factors, for example, the energy-to-be-consumed of the 

motor commands.  In other words, the measurement of cost 

is sensitive to the size of the system’s immediate response to 

its (bodily and environmental) conditions, which are 

embodied properties (i.e. jerk, torque change, energy, time, 

variance, etc.) of the sensorimotor system.  To be noted, 

measuring the cost is not purely an internal matter, but is to 

be put in real situations, which consist of bodily and 

environmental conditions. 

The Basics of Motor Commands 

Choice of motor commands, as above considered, is to be 

managed after a series of motor commands is organized.  

The computation of sensorimotor control is required to 

explain how to transform a higher-level goal into a series of 

motor commands, which are strictly constrained in the 

embodied sensorimotor system.  This explanation consists 

of two parts: coordinate transformation and modular 

structure, both of which assume the end-means relationship.  

The former, coordinate transformation, is to convert sensory 

signals of the goal into motor commands.  Sensory signals 

consist of visual information of the object in the goal-state 

together with the signals relating to the posture of bodily 

parts (hands, arms, shoulders, head, and eyes).  Those 

signals need to be transformed into a set of motor 

commands that would bring about the goal-state when they 

are performed.  This task is named to be sensorimotor 

transformations, which are accomplished with the mapping 

of a three-layered neural network: from the input layer of 

posture signals, to the intermediate layer that consists of 

population codes, to the output layer of the motor command 

that consists of the change in joint angles needed for the task 

(Pouget and Snyder, 2000).  This is a way of reverse 

engineering, which is called the inverse model, as its 

direction of transformation is opposite to the forward model 

of motor control (Wolpert and Ghahramani, 2000).  The 

sensorimotor transformations and their products can be 

regarded as means for the end of achieving the given goal. 

As for the construction of movements, it remains 

controversial as to how much of movement might be 

controlled by modular processes (Zelik et. el., 2014).  

Insofar as modular organization is applicable, various 

complex motor movements are constructed through flexible 

combinations of a limited number of modules, in order to 

simplify computation by reducing degrees of freedom (Jing 

et. el., 2004).  In other words, a complex motor command is 

organized with a combination of motor primitives.  A motor 

command consists of a series of muscle activations for the 

needed changes of joint angles.  With a study in the 

vertebrate spinal cord, it is shown that a complex motor 

command is produced by combining a few motor primitives, 

which are ‘unit burst generators’ organized in the spinal 

cord.  Each burst generator is to control the activation of a 

small group of synergistic muscles, or motor synergies 

(Tresch et. el., 1999).  Such a combination is a modular 

representation (Mussa-Ivaldi, 1999).  A motor task is to 

produce a motor command with an appropriate modular 

structure.  The motor commands produced in the above way 

are basic elements for the choice of cost function (Wolpert 

and Ghahramani, 2000).  Given that a single motor 

command has the above modular representation, it would 

naturally be questioned as to how the series of motor 

commands leading to the achievement of a goal are 

organized. 

The notion of modular structure appearing in 

sensorimotor control does not strictly follow Fodor’s (1983) 

sense of modularity.  Firstly, Fodor (1975) argues that 
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mental modules are combined with a language of thought 

(LOT, Mentalese).  The modular structure of movement 

generation, however, does not seem to follow the structure 

of LOT, in the following two aspects.  The weighted and 

graded combination of modules (Jing and Weiss, 2005) does 

not show the structure of LOT.  Furthermore, generation of 

movements out of modular organization has practical 

limitations, as is found in generation of movements for 

diverse locomotor behaviors; sufficient flexibility needs a 

further basis of coordination (Zelik, 2014).  There may be 

no clear distinction between planning and execution, 

because coordinated motor movements may emerge out of 

real-time optimal feedback control (Todorov and Jordan, 

2002), as discussed below.  Emergence of coordinated 

movements out of interaction with the environment makes 

generation of a movement deviant from the modular 

organization.  To summarize, the modular organization is 

only loosely applicable in sensorimotor control. 

Coordination During Execution 

The sensorimotor control on the basis of decision, cost and 

optimality, as aforementioned, can be managed, to a certain 

degree, in abstraction from the real situations.  A version of 

optimality can be so pursued, by way of open-loop 

optimization, with detailed planning in advance of execution.  

The accuracy can be maintained to a certain degree, yet with 

serious limitations.  The application of optimal principles 

seeks average optimality over previous performance.  As it 

is detached from the real situations, the sensorimotor control 

is like playing “a prerecorded movement tap” and 

consequently the given goal is treated like a laboratory task.  

It would be unable to encounter the trial-to-trial variability 

in the real situations (Todorov, 2004, p. 2). 

Such an abstract way of sensorimotor control is rather like 

the maintenance of thought, as it can run in abstraction from 

the real environment.  It has the merit of a Popperian 

creature, that is, planning internally for a best solution of the 

considered problem before its execution.  Decision can be 

made for a relatively optimal performance.  Yet, an 

important way of sensorimotor control would be completely 

missing—coordination during execution.  Understanding 

how this is done is a central problem in motor control for 

nearly 70 years (Todorov and Jordan, 2002). 

The coordination during execution presumes optimal 

feedback control—the optimal control with on-line sensory 

feedbacks.  It does not plan a desired trajectory before 

execution, but maintain the coordination on-line in response 

to all the task-specific contingencies in the real situations.   

Coordination in the sensory system is highly important as 

such a system is highly redundant, with a high number of 

ways over the combination of motor activations, and full of 

a variety of uncertain factors such as noise and delay, as 

aforementioned.  The optimal feedback control produce 

“continuous trajectory of movement in response to 

contiguous stream of sensory input (Körding and Wolpert, 

2006)”.  Costs are continuously generated with on-line control of 

sensory feedbacks.  The evaluation of cost is put in terms of ‘cost-

to-go’—the continuous and integral summation of costs (Todorov, 

2004).  The optimal feedback control responds to real 

situations of the body and the environment, and fully 

manifests the continuous way of motor decision in fast-

changing conditions.  This cannot be done in a detached 

model. 

When the optimal feedback control operates as a way of 

coordination, motor synergies and the achievement of the 

given goal emerges.  It only asserts what to achieve, without 

dealing with the how question in detailed.  After the goal is 

given, the optimal feedback control can keep on seeking an 

appropriate resolution because of its coupling with the plant, 

in a way like the operation in the dynamic systems view.  

The stages of planning and execution are not separate 

(Todorov and Jordan, 2002). 

The success of the coordination, in the optimal feedback 

control, relies on a normative property of the end-means 

relation, which is immanent in the sensorimotor system.  

That is, the sensorimotor system as a system with the end-

means relation would seek appropriate means for its given 

end.  This property of the optimal feedback control can be 

seen as endowed in evolution.  It is a process that makes 

possible the emergence of coordination in the sensorimotor 

system.  After it encounters its contingencies, including the 

fast-changing environment (with body) with various 

uncertain factors, the sensorimotor system operates like the 

way present in the dynamic systems view.  In that dynamic 

relations, motor synergies will eventually emerge. 

Instrumental Representations 

Representations in the sensorimotor system are generally 

divided into three types: end, means, and cost.  The goals in 

the sensorimotor system are regarded as ends, and motor 

commands are means for attaining those ends.  An end 

represents a world state that is to be attained.  A common 

element in the latter two types is the end-means relation: a 

means can attain its end, but therein lies a certain cost; in 

this sense, the means and the cost are called ‘instrumental 

representations’.  The means are first-order representations, 

which represent ways to attain their relating ends.  Costs, by 

contrast, are second-order representations that represent 

prospects of the relating means in the processes of attaining 

their ends.  Furthermore, those three types of representations 

hold different foundations of representation qua 

representation.  An end represents a to-be-attained future 

state, in which the end refers to the to-be-attained future 

state on grounds of similarity.  By contrast, the means 

represents the to-be-attained end in the way that the end is to 

be attained through the means.  The cost, in addition, 

evaluates the prospect of a means in the way to attain its end.  

Finally, whether a means represents an end successfully, is 

measured in terms of accuracy (as opposed to truth), that is, 

accuracy with which the means attains the end.  As accuracy 

can be measured with various degree, misrepresentation is 

subject to different degree. 
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Representations as Stand-Ins 

Representation, generally speaking, is something R that 

stands in a system S for something else E.  That is, R is a 

surrogate in the system S for E.  Representation sometimes 

serves as a Poppian creature: something that can run 

internally in a system before it is actually carried out.  

Representation in this sense simulates what will actually 

happen.  It (R) is a surrogate of E’s actual performance.  

Based on Cummins (1996), a surrogate in this sense refers 

to its target with the informatiom of its content.  A city map 

refers to the city streets according to structures of the map.  

A map user can simulate a feasible route in the map without 

actually walking in the street.   Further, in order to account 

for the wits in the sensorimotor control, the notion of 

representation can be extended from the predicative relation 

to the end-means relations, insofar as they bring about a 

certain target (the end) with recourse to a certain content 

(the means).  That is, the predicative representation Rb in a 

descriptive relation describes E.  Rb refers to the target of E, 

and the content of Rb describes E.  By contrast, the 

instrumental representation Rm in an instrumental (that is, 

end-means) relation brings about E, and the content of Rm 

guides the system S to reach the goal-state E.  Furthermore, 

a different surrogate Ri in the system S would be likely to 

bring about a different state, as opposed to E.  Rm and Ri, 

hence, are alternative means generated in the system S, 

alternatives which can be compared for a higher degree of 

prospect P to bring about the end-state E.  The prospect P is 

a second-order instrumental representation, as it evaluates 

the degree in which certain means would bring about the 

end.  Rm and Ri are exemplified in the instrumental system 

by motor commands, and the prospect P is exemplified by 

costs.  Thus, instrumental representations are genuine 

representations because they stand in a system (S) for 

something else (E) that they bring about.  The instrumental 

representations stand in the sensorimotor system, rather than 

merely serving as physical components of a mechanism, 

because they always have alternatives to be chosen in their 

way to bring about an end.  The above profile will be 

discussed more specifically below. 

The decouplability between representations and their 

environments is but a particular case for a system capable of 

generating alternatives.  The system produces something 

else apart from a fixed representation.  In a dark night, as I 

encounter a distal horse (a target) I may consider it to be a 

cow; in a darker night, I may even feel that it is like a 

unicorn.  For achieving a given goal, sensorimotor 

representations produce various motor commands that are 

all likely to achieve the goal.  The inverse model of a 

sensorimotor system transforms a single goal-state G into 

various motor commands, which would all be likely, to a 

certain degree, to achieve the same goal G.  The 

sensorimotor system always has alternatives to be chosen, in 

a decision for an optimal motor command, as indicated by 

the redundancy present in the musculoskeletal system.  This 

is unlike a physical causal relation, such as knocking a 

group of billiard balls with a single ball, where a move in a 

particular circumstance will determine a single result.  

Alternatives, as aforementioned, are made by the system S 

in a non-physical connection, when the system S encounters 

a fixed condition (e.g. encountering a horse, or given a 

particular goal-state).  In the sensorimotor system, the 

inverse model generates various motor commands in a non-

physical connection, which is non-physical insofar as it is 

computational.  The mechanism on the basis of Bayesian 

decision theory, in addition, makes a choice among 

redundant motor commands for optimality with a lowest 

cost.  The choice from alternatives justifies that the 

sensorimotor control is not a ‘merely physical’ device. 

Decoding of sensorimotor representations in the 

sensorimotor control is grounded on the use of those 

representations in the way to achieving the goal.  Therein, 

the pragmatic dimension of sensorimotor control is 

considered in terms of end-means relations.  The use 

consists of estimation over environmental conditions for 

applying them and choice between them, as manifest in the 

application of Bayesian decision theory in sensorimotor 

control (Körding and Wolpert, 2006).  The generated motor 

commands in the inverse model, in addition, are made with 

alternatives, which are available for choice in their use 

dedicated to the achievement of the goal. 

The motor commands are genuine representations because 

their way of bringing about goal-achievement is internally 

rich.  Based on Cummins’ (1996) notion of representation, 

the goal-state is the target while the content in use is the 

information employed, serving as guidance of the 

instrumental control, for achieving the goal.  Specifically, 

the estimation of environmental conditions in the Bayesian 

model of sensorimotor control presumes the need of 

achieving the goal, and so is the model of optimality.  Thus, 

the sensorimotor representations are internally rich, even 

compared to the classic representations, which are dubbed 

as representation-hungry.  For example, the Bayesian 

inference, in order to estimate external conditions out of 

noise, needs to take account of priors, that is, previous 

experiential outcomes.  This makes the Bayesian model of 

the sensorimotor control even no less emphasized on 

internal wits than the computation related to the classic 

theory of representation.  In addition, the decision made in 

relation to cost, as discussed previously, making a choice 

from various alternative motor commands.  Furthermore, 

the on-line measurement of cost adds more wits on the top 

of the computation with open-loop optimization.  The 

instrumental representation based on alternatives of action 

command, together with their accompanying estimation and 

choice, provides computation with internal alternatives, 

evaluation and inference.  Such a way of representation is 

internally rich. 

Representations can serve as stand-ins of a system 

without being predicative.  Representations are stand-ins for 

the existence of certain states, or for those states’ activities.  

The former relates to representational production and the 

latter representational consumption.  As considered above, 

the stand-ins can be instrumental, and consequently need 
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not be built with the function of imagination, on grounds of 

which counterfactual representations are possible.  

Imagination is surely a characteristic of human cognition.  

Cognition, however, can have other characteristics, for 

example, instrumental allocation, that is, arrangement of 

end-means relations.  The end-means relation, for a given 

end, need not consist of a single string of causal chain, as it 

can produce alternative means for the same end.  Those 

alternatives can be evaluated with different degree of 

prospects for attainment of the end.  The choice from 

alternatives justifies the cognitive bearing of the 

instrumental representations. 

Before concluding, it should be noted that instrumental 

representations can have a combinatorial structure only in a 

loose sense.  Instrumental representations of sensorimotor 

control do not follow the LOT, basically because its 

modular organization is only loosely applicable, as 

discussed in a previous section.   As a consequence, the 

combinatorial structure—with which mental representations 

can be generated recursively and systematically from 

primitive states—would not be generally salient in the realm 

of sensorimotor control.  In particular, the costs of motor 

commands are continuously generated in on-line feedback 

control, as manifest in ‘cost-to-go’—the continuous and 

integral summation of costs, as aforementioned.  With this 

way of computing costs, the consequently chosen motor 

commands can only have modular structures (if there are) in 

a loose sense. 

Conclusions 

Computation of sensorimotor control employs instrumental 

representations—representations with end-means 

relations—as exemplified by motor commands and costs.  

Motor commands represent ways to achieve the goal, and 

costs represent prospects of goal-achievement.  They are 

intermediate-level representations, because the computation 

of motor commands does not rely on reactive machinery, 

and because they appear at the sub-personal level.  Although 

they have modular structures, sensorimotor representations 

are initiated continuously and connected integrally.  In order 

to maintain accuracy of goal-achievement, the sensorimotor 

system needs on-line incorporation of sensory feedbacks, 

and consequently sensorimotor representations cannot be 

detached from the body and the environment. 
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Abstract

We offer a re-evaluation of the tone-monitoring technique in
the study of parsing. Experiment 1 shows that reaction times
(RTs) to tones are affected by two factors: a) processing load,
resulting in a tendency for RTs to decrease across a sentence,
and b) a perceptual effect which adds to this tendency and
moreover plays a role in neutralising differences between sen-
tence types. Experiment 2 successfully discriminates these
two factors by registering event-related brain potentials dur-
ing a monitoring task, establishing that the amplitudes of the
N1 and P3 components —the first associated with temporal
uncertainty, the second with processing load— correlate with
RTs. Experiment 3 then behaviourally segregates the two fac-
tors by placing the last tone at the end of sentences, activating a
wrap-up operation and thereby both disrupting the decreasing
tendency and highlighting structural factors.
Keywords: Tone monitoring; Processing load; ERPs; Posi-
tion effect.

Introduction
Monitoring tasks have long been employed in psycholinguis-
tics, and the end-of-clause effect is possibly the better-known
result in the study of parsing. According to Abrams and Bever
(1969), the end of a clause exerts a particular cognitive load
in the parser: reaction times (RTs) to tones are higher when
placed at the end of the first clause of biclausal sentences than
in between clauses or at the beginning of the second clause.
Other structural effects have been reported in complex sen-
tences with this technique, such as differences in processing
load between subject and object relative clauses (Cohen &
Mehler, 1996).

In this paper, we track the processing load of parsing mon-
oclausal sentences carefully and show that the issues are
rather nuanced. In particular, we show that the RTs of a tone-
monitoring task are affected by the additive effects of per-
ceptual and psycholinguistic factors, and this has gone unno-
ticed until now. Interestingly, perceptual and psycholinguis-
tic factors can be both successfully discriminated by register-
ing event-related brain potentials (ERPs) during a monitoring
task and behaviourally segregated by placing the last tone at
the end of sentences, where a wrap-up operation presumably
takes place. Perceptual factors are rather strong in monitoring
tasks and they appear to have been operative in past studies
too, which now need to be reconsidered.

Experiment 1
Monoclausal, subject-verb-object Spanish sentences were
constructed. Starting from a matrix proposition, two different
types of sentences were created: type A sentences exhibited
a complex subject but a simple object, and the reverse was

the case for type B sentences. By a complex subject or object
we mean a noun phrase which is modified by another noun
phrase, whilst a simple subject or object is composed of a
determiner and a noun only. Three tone positions were deter-
mined to probe the processing load of the parser, both within
a sentence and between sentence types. The materials of Ex-
periment 1 are shown below, where the | symbol identifies the
boundaries under study:

Type A: El candidato | del partido | se preparó | el próximo
discurso.
‘The party’s candidate prepared his next speech’.

Type B: El candidato | ha preparado | un discurso | sobre la
sanidad.
‘The candidate has prepared a speech about the health
service’.

We chose to focus on two central operations of parsing —
phrase completion and clausal integration— and hypothe-
sised that a) the tone position and sentence type factors would
each be significant, and b) there would be an interaction be-
tween them. This general hypothesis yields a number of more
specific predictions. In the first position, the parser has pro-
cessed the same material in type A and type B sentences,
identifying the noun phrase the candidate as the subject of
the sentence, following the canonical subject-verb-object(s)
order in Spanish, and thereby predicting the appearance of
the verb. Thus, the cognitive load should be equal and the
RTs similar. In the second position, the verb prediction is
borne out in type B sentences and the parser successfully
completes the subject noun phrase, whereas in type A sen-
tences the parser is processing a longer subject noun phrase
and the verb prediction is still active. Moreover, in type B
sentences the parser has integrated the verb and the subject
noun phrase and now expects an object noun phrase, whilst
in type A sentences the parser is yet to conduct any integra-
tion. In this case, the processing load should be greater in
type A sentences and RTs higher to those of type B sentences,
given the central role of the verb in a sentence. Finally, in
the third position the parser has integrated subject and verb
in type A sentences and now predicts an object noun phrase,
whereas in type B sentences the parser has successfully inte-
grated part of the object noun phrase. In this case too type A
sentences should involve more processing load and therefore
higher RTs at this position.
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Method
Participants. 80 psychology students participated for course
credit. The mean age was 20 years, and participants had no
known hearing impairments.
Materials. Two variants of monoclausal, active, declarative,
subject-verb-object Spanish sentences were constructed from
60 matrix propositions. Type A sentences exhibited an [NP-
[PP-NP]-[VP-NP]] pattern whereas type B sentences mani-
fested a [NP-[VP-NP-[PP-NP]]] form —these are the struc-
tural conditions of the experiment. All sentences were un-
ambiguous and composed of high- or very high-frequency
words. Three tone positions per sentence were established,
the three positional conditions of the experiment (1-2-3).
Tones were placed on the vowel of the second syllable fol-
lowing the relevant boundary, had a frequency of 1000 Hz, a
duration of 25 ms., and a peak amplitude equal to that of the
most intense sound of the materials (80 dBs). Every sentence
had one tone only.
Procedure. The design of the experiment was a 2 (sen-
tence type factor) by 3 (tone position factor) within-subjects,
within-items factorial, and therefore six lists of the task were
created. The sentences were presented over the headphones
binaurally and participants were instructed to hold a keypad
with their dominant hand in order to press a button as soon as
they heard the tone. They were told to be as quick as possible,
but to avoid guessing. Once a sentence had finished, the next
sentence would be presented upon pressing the space bar, giv-
ing subjects control over the rate of presentation.

Results
Reaction times were collected and trimmed with the DMDX
programme. A response that occurred before the tone or 3
seconds after the tone was not recorded at all, while responses
deviating 2.0 SDs above or below the mean of each partici-
pant were eliminated (this affected 4.3% of the data). Table 1
collates the RTs per condition.

Table 1: Experiment 1. RTs per tone position per sentence.

Tone Position
Sentence Type 1 2 3

A 257.22 222.51 206.78
B 252.40 217.33 205.26

As shown in Table 1, RTs are greater in Position 1 and de-
crease thereon for each sentence type. A repeated-measures
analysis of variance showed that the tone position factor
was significant for both the subjects and items analyses
(F1(2,158) = 144, p < .001, n2

p = 0.647; F2(2,118) = 295,
p < .001, n2

p = 0.834), while the sentence type factor was
only significant for the subjects analysis (F1(1,79) = 4.66,
p < .05, n2

p = 0.056; F2(1,59) = 2.48, n.s.). There was no in-
teraction between the two experimental factors (all Fs < 1).

Pair comparisons between the three positions of the tone po-
sition factor show that the differences in RTs among the three
positions were significant (all ps < .01).

Discussion
The results show a clear decreasing tendency in RTs, and
whilst the two experimental factors were significant in the
subjects analysis, this was not the case in the items analysis,
where only the tone position factor was significant. More-
over, there was no interaction between the two factors. Thus,
not all of our predictions were confirmed. The decreasing
progression is rather robust, and the high significance of the
(tone) position factor is further confirmation. This would be
in line with the general expectation that processing load de-
creases as a sentence is presented, which follows from the
incremental nature of parsing; in this case, the least linguis-
tic material to process, the easier it will be to respond to the
tone. However, the fact that there was no interaction between
the two factors is surprising, as tone monitoring was expected
to be sensitive to structural features. Each tone was placed
in a different segment in each sentence type, and thus the
parser, except for the first tone position, cannot be computing
the same predictions at each position —i.e., the processing
load cannot be the same. This ought to be especially signif-
icant when it comes to integrating nouns and verbs during
the course of a sentence, but as the data show the earlier or
later appearance of the verb and whether noun phrases were
simple or complex do not appear to have had an effect. It
is worth restating that tones were placed a syllable after the
main boundary, but this very short sound (/de/ or /a/, in one
case) would not be enough to predict the precise nature of the
new phrase in the absence of further material (prepositional,
verb, etc.), as various continuations are possible; this extra
syllable would only indicate that the previous phrase had fin-
ished and needs to be completed, which is precisely what we
were aiming to track in the experiment.

The decreasing tendency can be observed in Abrams and
Bever (1969) too (and in other past studies). These authors
established three positions in sentences such as since she was
free that | day | her | friends asked her to come (i.e., before
the main clause break, in the clause break, and right after the
clause break, all marked with |), and the RTs they obtained
certainly exhibit a decrease: 243 ms., 230 and 216. Relat-
edly, Cutler and Norris (1979) report that monitoring tasks
in general exhibit a tendency of RTs to decrease across a sen-
tence, and this needs to be taken into consideration. Crucially,
the results reported in Abrams and Bever (1969) cannot be
wholly explained in terms of processing load as they used
biclausal, complex sentences and the course of incremental
parsing in that study ought to have been different to what we
obtained here.

Thus, we postulate that there is a perceptual factor at play
in monitoring tasks; roughly stated, the later the tone appears,
the more prepared the participants are to respond to it. If this
is the case, there would be two types of uncertainties to track
in monitoring tasks: one linguistic, stemming from incremen-
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tality (viz., what linguistic material is it left to process?), and
the other perceptual (viz., when will the tone appear?), which
we shall call the position effect. As such, the results of our
experiment —a decrease in RTs and no interaction between
factors— would be the product of the additive effects of per-
ceptual and psycholinguistic factors. If this conjecture is cor-
rect, then the greater RTs in the first tone position in Abrams
and Bever (1969) may not have been due to an end-of-clause
effect, but the result of the combination of perceptual and psy-
cholinguistic factors. Indeed, given that past studies did not
consider this perceptual factor and thus did not control for
tone position, we are unsure as to whether the end-of-clause
effect is well supported. That being so, the results reported
in Cohen and Mehler (1996) are at first sight structural rather
than perceptual, and as such tone monitoring must be sensi-
tive to both factors (our own results yielded clear structural
factors too). In order to delve deeper into this issue, we can
combine tone monitoring with the recording of ERPs, which
will allow us to track two different ERP components, one re-
lated to processing load (and linguistic uncertainty), the other
to the position effect (and temporal uncertainty). If there is a
correlation between these ERP waves and RTs, our analysis
would be confirmed.

Experiment 2
Only type A sentences from the previous experiment were
employed, as there was no need to use both sentence types;
the tone positions, however, remained the same. We con-
centrated on two ERP components, yielding two broad pre-
dictions. It was hypothesised that the N1 wave, a compo-
nent associated with temporal uncertainty (Näätänen & Pic-
ton, 1987), would correlate with the RTs, and thus its ampli-
tude would be highest at the first tone position, the perceptual
uncertainty of the participants being greatest at that point, and
decrease thereon. This part of the experiment aimed to eval-
uate the significance of the position effect, and the N1 is a
pertinent component for such a task, given that it tracks per-
ceptual processes rather than (higher) cognitive ones.

The second component is the P3, a component whose am-
plitude to a secondary task has been shown to be affected by
the difficulty of the primary task in dual-task settings such as
ours. Past results with dual-task experiments (e.g., Wickens,
Kramer, Vanasse, & Donchin, 1983) indicate that the P3 as-
sociated with a secondary task (in this case, reacting to the
tone) will have a low amplitude if the primary task (here,
parsing the sentence) is of considerable difficulty. In other
words, there ought to be a correlation between the fluctua-
tions in difficulty in a primary task and the amplitude of the
P3 to a secondary task. In our experiment, as the primary task
decreases in difficulty (as manifested by the linear decrease in
RTs from the first to the third position), the amplitude of the
P3 was predicted to increase from position 1 onwards.

Crucially for our purposes, the biphasic pattern we are hy-
pothesising is well established in the dual tasks literature.
Wickens et al. (1983) report an N1-P3 pattern when an au-

ditory probe is employed, and this is precisely what we are
after: an N1 wave tracking perceptual processes and a P3
component tracking cognitive processes. In particular, we ex-
pect to obtain an N1 wave with a frontal distribution and a P3
with a more posterior-paretial distribution, thus singling out
two independent components and confirming the processes
that interest us. If these two waves turn out to be present in
the data, and their amplitudes go in the direction we are pos-
tulating, we would have clear evidence for the two factors
we have postulated. To our knowledge, moreover, this is the
first time that the P3 is employed in a study of parsing as a
metric of processing load, and we hope our results constitute
evidence for its general usefulness. Naturally, these two hy-
potheses hold if and only if the pattern in RTs obtained in the
previous experiment does not vary, and we hypothesised that
this would be the case indeed.

Method
Participants. 18 psychology students participated in the ex-
periment. The mean age was 22 years, and subjects had no
known hearing impairments.
Materials. The same as type A sentences from the previous
experiment, but these now numbered 120 items.
Procedure. Participants were exposed to a total of 120 items,
presented in three blocks. Apart from the electroencephalog-
raphy (EEG) measures that were undertaken and the greater
number of items, the task remained the same as in the pre-
vious experiment. The EEG was recorded continuously by
19 Ag/AgCl electrodes which were fixed on the scalp by
means of an elastic cap (Electrocap International, USA) po-
sitioned in accordance with the 10-20 International system.
ERPs were algebraically re-referenced to linked earlobes of-
fline. Electrode impedances were kept below 5 kΩ. All EEG
and EOG channels were amplified using a NuAmps Ampli-
fier (Neuroscan Inc., USA) and recorded continuously with
a bandpass from 0.01 to 30 Hz and digitised with a 2 ms.
resolution. The EEG was refiltered off-line with a 25-Hz,
low-pass, zero-phase shift digital filter. Automatic and man-
ual rejections were carried out to exclude periods containing
movement or technical artefacts (the automatic EOG rejec-
tion criterion was ±50 µV).

Results
Behavioural Data
The reaction times of the 18 participants were collected and
trimmed with the DMDX programme. As before, responses
deviating 2.0 SDs above or below the mean of each partici-
pant were eliminated, which in this case affected 3.6% of the
data. The data are presented in Table 2.

As expected, the RTs manifest the exact same pattern as
in Experiment 1: reaction times decrease from the first po-
sition onwards. A repeated-measures analysis of variance
showed that the tone position factor was significant for both
the subjects and items analyses (F1(2,34) = 39, p < .001,
n2

p = 0.698; F2(2,238) = 93, p < .001, n2
p = 0.441). Regard-

ing pair comparisons between the different tone positions (1
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Table 2: RTs per tone position.

Tone Position
1 2 3

325.05 266.53 247.60

vs. 2, etc.), the analyses showed that all comparisons were
significant (all ps < .01).

Electrophysiological data
The data were processed using BrainVision Analyzer 2 (Brain
Products, Gilching, Germany). Average ERPs were calcu-
lated per condition and per participant from −100 to 500 ms.
relative to the onset of the tone, and before grand-averages
were computed over all participants. A 100 ms. pre-tone
period was used as the baseline. Only trials without mus-
cle artefact or eye movement/blink activity were included in
the averaging process. The analyses were based on 15 chan-
nels divided into five separate parasagittal columns along the
anteroposterior axis of the head. The columnar approach to
analysing the ERP data provides both an anterior-to-posterior
as well as a left/right comparison of ERP effects. The elec-
trodes in each of two pairs of lateral columns (Inner Column:
F3/F4, C3/C4, P3/P4; Outer column: F7/F8, T3/T4, T5/T6)
and on the Midline Column (Fz, Cz, Pz) were analysed with
three separate ANOVAs. The analysis of the midline column
included the position factor (position 1 vs. position 2 vs. posi-
tion 3) and the location factor with three levels (Fz vs. Cz vs.
Pz). The analyses of the two pairs of lateral columns involved
repeated measures ANOVAs with within-participants factors
Position (position 1 vs. position 2 vs. position 3) and Lo-
cation (anterior, central, and posterior). Omnibus ANOVAS
were followed up with pairwise comparisons intended to dis-
cern whether there were differences among the three tone
positions. All post-hoc analyses were Bonferroni corrected.
Based on prior reports, two time windows were selected for
analysis of the mean amplitudes of the components of inter-
est: the N1 component was analysed from 120 ms. to 200
ms., and the P300 component was evaluated from 230 ms. to
400 ms. In order to not clutter the presentation of our results,
we only report the main effect of the Tone Position factor and
the significant interaction effects.

Fig. 1 depicts brain potential variations in the three midline
electrodes included in the analyses. As can be observed, the
three tone positions exhibit a clear biphasic pattern, with a
first modulation in the N1 time window in frontal and central
electrodes, followed by a second modulation in the P300 time
window in the central and posterior electrodes.

N1 epoch (120-200 ms). During the N1 epoch, there was
a main effect of Position in the Midline, Inner, and Outer
columns. Bonferroni corrected pairwise comparisons showed
that all three positions differ from each other significantly in
the three columns (all ps < .05), reflecting a more negative-

Figure 1: ERP waveforms for the three tone positions shown
from a 100 ms. before tone presentation to a 500 ms. post-
tone presentation. The waveforms depict brain potential vari-
ations in the three midline electrodes included in the analyses.
Negative voltage is plotted up.

going amplitude for position 1 relative to position 2, and a
more negative-going amplitude for position 2 relative to posi-
tion 3. There was also a significant interaction between Posi-
tion and Location in the Midline, Inner, and Outer columns
(all ps < .05). In the Midline and Inner columns, post-
hoc comparisons revealed that whereas in frontal and cen-
tral electrodes position 1 was more negative relative to po-
sition 2, and position 2 more negative relative to position 3
(all ps < .05), there were no differences in the posterior elec-
trodes (all ps > .20). In the Outer column, post-hoc compar-
isons revealed that whereas in frontal electrodes position 1
was more negative than position 2, and position 2 more neg-
ative than position 3 (all ps < .05), there were no differences
in central and posterior electrodes (all ps > .52).
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P300 epoch (230-400 ms). During the P300 epoch, there
was a main effect of Position in the Midline, Inner, and Outer
Columns. Bonferroni corrected pairwise comparisons in the
three columns showed all three positions to differ from each
other significantly (all ps < .05), reflecting a more positive-
going amplitude for position 3 relative to position 2, and a
more positive-going amplitude for position 2 relative to posi-
tion 1. There was also a significant interaction between Po-
sition and Location in the Midline, Inner, and Outer columns
(all ps < .05). In all three columns, post-hoc comparisons
revealed that whereas in central and posterior electrodes po-
sition 3 was more positive relative to position 2, and position
2 more positive relative to position 1 (all ps< .05), there were
no differences in the frontal electrode (all ps > .11).

Discussion
As the behavioural data show, the prediction regarding the
RTs pattern was confirmed; that is, RTs to the first tone are
slowest, and then become faster thereon. This allows us to
discuss the ERP data in the terms we had devised. The ERP
data confirm the hypothesised topographical distributions and
amplitudes for the N1 and P3 waves we expected. The N1
pattern indicates that participants are indeed uncertain as to
when the tone is going to appear, and their uncertainty de-
creases as the sentence unfolds. We stated in the previous
section that the linear decrease in RTs must be due to a com-
bination of two factors and the N1 data confirm that there is
indeed a purely perceptual factor at play, what we called ear-
lier the position effect. Regarding the P3, its pattern can be
explained in terms of processing load. As the amplitude of
the P3 increases from position 1 onwards, and there is fur-
thermore a negative correlation between RTs and the ampli-
tude of the P3, this confirms that as the sentence is being
processed the parser’s unfulfilled predictions decrease, and
thereby more resources can be allocated to monitoring the
tone.

The biphasic pattern we have recorded confirms our anal-
ysis. First, the correlation between the amplitude of the N1
wave and tone position confirms that there is a strong percep-
tual factor and that it has an effect on performance. Second,
the correlation between the amplitude of the P3 and tone po-
sition confirms two interrelated points: a) that tone monitor-
ing is a dual task in which sentence processing is the primary
task and tone monitoring the secondary; and, consequently, b)
that the fluctuations in processing load are in part due to the
decreasing uncertainty the parser experiences, thus dismiss-
ing alternative explanations in terms of response strategies,
guessing the position of the tone, etc. All in all, we have
succeeded in discriminating —that is, recording— the two
factors we had posited. In the next experiment we shall show
how they can in addition be behaviourally segregated.

Experiment 3
In the previous experiments we did not examine the end-of-
clause effect directly, as we used monoclausal instead of bi-
clausal sentences and moreover none of the tones were placed

at the end of the sentences. In this experiment, we change
the tone positions of type B sentences from Experiment 1 to
probe if by placing a tone at the end of a sentence the strong
tendency for RTs to decrease is disrupted. The end of sen-
tences is the locus of a wrap-up operation, which need not be
the same as an end-of-clause effect; the wrap-up would in-
volve operations that would not apply at the end of clauses
(e.g., closing off all syntactic phrases, completing the sen-
tence’s semantic representation, etc.). We only used type B
sentences because a) no across-sentence-type comparisons
were relevant, and b) type B sentences exhibit a complex
noun phrase in the object position, and this is a better con-
figuration for our purposes.

Three tone positions are maintained, but their locations
were changed: one at the beginning of the sentence and two
within the verb’s complex object, shown in the next section. It
was hypothesised that the wrap-up effect would be indeed ap-
plicable at the end of a sentence and therefore that the pattern
in RTs should be different from the pattern observed in the
previous experiments. In particular, we expected a V-shape
pattern in which RTs to the first position were highest, de-
scending significantly for the second position, but then rais-
ing for the third and last position, the postulated locus of the
wrap-up.

Method
Participants. 37 psychology students participated in the ex-
periment for course credit. The mean age was 22 years, and
none of the subjects had any known hearing impairments.
Materials. Type B sentences from Experiment 1 were em-
ployed. The tone positions were modified to evaluate the
wrap-up effect, as shown in the sentence below (where |
marks tone position). 60 fillers were also employed. In all
other respects, the task did not change.

(1) El candi|dato ha preparado un di|scurso sobre la
sani|dad.

Procedure. The same as in Experiment 1.

Results
The reaction times of the 37 participants were collected and
trimmed with the DMDX programme. Responses deviating
2.0 SDs from the mean of each participant were eliminated,
affecting 3.8% of the data. Table 3 presents the final data.

Table 3: RTs per tone position.

Tone Position
1 2 3

414.16 351.88 365.45

In this experiment, RTs were greatest in the first position, and
there was a slight increase from the second to the third posi-
tion. A repeated-measures analysis of variance showed that
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the tone position factor was significant for both the subjects
and items analyses (F1(2,72) = 98, p < .001; F2(2,118) =
110, p < .001). All post-hoc pairwise comparisons proved to
be significant (all ps < .001).

Discussion
As predicted, the wrap-up effect was detectable with the tone-
monitoring task, thereby disrupting the linear decrease in
RTs, as can be seen in Fig. 2.

Figure 2: RTs progression in Experiment 3

Indeed, even though RTs to the first position were greatest
and there was a noticeable decrease from the first to the sec-
ond position, the processing load associated with the wrap-
up effect resulted in an increase in RTs from the second to
the third position, in clear contrast with what was obtained
in the previous experiments, and resulting in the V-shape pat-
tern observed in Fig. 2. This would seem to indicate that tone
monitoring is not entirely hostage to perceptual factors such
as the position effect; a design can be found so that structural
properties are brought out more clearly, resulting in the clear
segregation of the two factors that have animated the whole
discussion. This is behavioural confirmation of what was ob-
served on the ERP record, vindicating the usefulness of tone
monitoring as a psycholinguistic technique.

Whether the wrap-up operation can be related to the end-
of-clause effect apparently unearthed in previous studies is
not so clear. In those studies, and as already stated, the end
of a clause was in fact the end of a subordinate clause within
complex, biclausal sentences, and that introduces a specific
level of complication. Moreover, the end-of-clause position
was also the first tone position in those studies, pointing to
the probable impact of the position effect.

Conclusion
We have here reported three main results with the tone-
monitoring technique: a) a pronounced decrease in RTs for
each sentence type (Experiments 1 and 2), which suggests
that the parser’s processing load decreases as the sentence is
presented, thus releasing more cognitive resources to monitor
the tone in so doing, in accordance with well-known prop-

erties of parsing (viz., incrementality); b) no interaction be-
tween the tone position and sentence type factors (Experiment
1), the potential result, in part, of what we have called here the
position effect; and c) perceptual and psycholinguistic factors
can be separately observed in an ERP recording (Experiment
2) and behaviourally segregated in a carefully designed ex-
periment (Experiment 3).

The position effect, in particular, seems to have gone
entirely unnoticed in all previous tone-monitoring studies.
Abrams and Bever (1969) explained their data solely in terms
of what they called the end-of-clause effect, but the two fac-
tors we have analysed here seem to be operative in their study
too, and that muddies their data significantly. That is, even
though these scholars placed a tone at the end of a clause, this
tone position constituted the first of a decreasing tendency in a
series of three tones, and thus the higher RTs to this (first) po-
sition may not have been the sole result of structural factors.
There is, therefore, a very possible confusion and conflation
between perceptual and psycholinguistic factors in their data,
and this merits a closer look.

The two main factors we have identified here —the posi-
tion effect and processing load— conspire to yield the RTs
that can be obtained with the tone monitoring technique, and
as a result future experiments employing this technique, we
advise, will need to take this contingency into consideration.
In our study we have shown that the two factors can be cer-
tainly separated, especially when one sets out to do so, but the
combination of these factors may hide or obscure structural
effects in tone monitoring tasks, requiring a more focused de-
sign if structural effects constitute the focus point.
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Abstract

According to most recent theories of multisensory integration,
weighting of different modalities depends on the reliability of
the involved sensory estimates. Top-down modulations have
been studied to a lesser degree. Furthermore, it is still debated
whether working memory maintains multisensory information
in a distributed modal fashion, or in terms of an integrated rep-
resentation. To investigate whether multisensory integration
is modulated by task relevance and to probe the nature of the
working memory encodings, we combined an object interac-
tion task with a size estimation task in an immersive virtual
reality. During the object interaction, we induced multisen-
sory conflict between seen and felt grip aperture. Both, visual
and proprioceptive size estimation showed a clear modulation
by the experimental manipulation. Thus, the results suggest
that multisensory integration is not only driven by reliability,
but is also biased by task demands. Furthermore, multisensory
information seems to be represented by means of interactive
modal representations.
Keywords: Multisensory Integration; Multisensory Conflict;
Object Interaction; Virtual Reality

Introduction
Adaptive interaction with the environment requires the com-
bination of various sensory signals. According to theories
of predictive coding, this integration is driven by a desire
for consistency between internal models and the external
world (Friston, 2010), as well as by a desire for consistency
across different internal models (Butz, Kutter, & Lorenz,
2014; Ehrenfeld, Herbort, & Butz, 2013). Research on the
mechanism of multisensory integration has shown that this
consistency is achieved in terms of a maximum likelihood in-
tegration which combines different sensory signals based on
their respective reliability estimates, resulting in a Bayesian
estimate about the state of the external world (Ernst & Banks,
2002; Ernst & Bülthoff, 2004). It is still debated, however,
whether this estimate is represented by means of an inte-
grated representation (Cowan, 2001) or by means of separate,
modality specific representations which are integrated on de-
mand (Baddeley & Hitch, 1974). Experimental results show
strong interactions between modalities in the internal repre-
sentation, for instance between visual and auditory working
memory (Morey & Cowan, 2005). Furthermore, unimodal re-
trieval from a multisensory representation is affected by pre-

vious modal encodings (Thelen, Talsma, & Murray, 2015).
Quak, London, and Talsma (2015) suggest that task require-
ments typically determine whether a unimodal or a complex,
multisensory representation is formed.

Our aim in the present study was two-fold. First, we
wanted to investigate whether multisensory integration is
modulated by task relevance. Second, we wanted to probe
the nature of the stored representations. To investigate these
questions, we combined an object interaction task involving
multisensory conflict with a size estimation task. We let par-
ticipants perform a grasp-and-carry task in an immersive vir-
tual reality, by tracking the hands of the participants. Conflict
was introduced in terms of a visual offset, either expanding
or shrinking the visual grip aperture, thereby dissociating vi-
sion and proprioception. Moreover, we augmented the object
interaction with vibrotactile feedback, which signaled when
the relevant object was grasped. After the object interaction,
we let participants judge the size of the object they interacted
with either visually or based on the grip aperture. If vision
and proprioception are integrated, visual estimates should be
biased in the same way as proprioceptive estimates. On the
other hand, if there was no bias in visual estimates, this would
imply an independent storage of modal information.

Method
Participants
Twenty students from the University of Tübingen participated
in the study (seven males). Their age ranged from 18 to 34
years (M = 22.1, SD = 3.9). All participants were right-
handed and had normal or corrected-to-normal vision. Partic-
ipants provided informed consent and received either course
credit or a monetary compensation for their participation.
Three participants could not complete the experiment due to
problems with the motion capture system, only the data of the
remaining 17 participants was considered in the data analysis.

Apparatus
Participants were equipped with an Oculus Rift c© DK2
stereoscopic head-mounted display (Oculus VR LLC, Menlo
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Park, California). Motion capture was realized by the com-
bination of a Synertial IGS-150 upper-body suit and an IGS
Glove for the right hand (Synertial UK Ltd., South Brighton,
United Kingdom). Rotational data from the suit’s and glove’s
inertial measurement units was streamed to the computer con-
trolling the experiment via a Wifi connection. The data was
then used to animate a simplistic hand model in a virtual real-
ity. Since the IGS system only provides rotation data, we used
a Leap Motion c© near-infrared sensor (Leap Motion Inc, San
Francisco, California, SDK version 2.3.1) to initially scale the
virtual hand model according to the size of the participants’
hands. To allow participants to confirm their size estimates
without manual interactions, participants were equipped with
a headset. Speech recognition was implemented by means of
the Microsoft Speech API 5.4. The whole experiment was
implemented with the Unity R© engine 5.0.1 using the C# in-
terface provided by the API. During the experiment, the scene
was rendered in parallel on the Oculus Rift and a computer
screen, such that the experimenter could observe and assist
the participants.

To provide the participants with vibrotactile feedback dur-
ing object interactions, we used two small, shaftless vibration
motors attached to the tip of the thumb and the index finger
of the participants. The diameter of the motors was 10 mm,
the height was 3.4 mm. The motors were controlled via an
Arduino Uno microcontroller (Arduino S.R.L., Scarmagno,
Italy) running custom C software. The microcontroller was
connected to the computer via a USB port which could be
accessed by the Unity R© program. If a collision between the
virtual hand model and an object was registered in the VR, the
respective motor was enabled with an initial current of 2.0 V.
The deeper the hand moved into the object, the higher the ap-
plied current (up to 3.0 V) and the according vibration. At
a current of 3.0 V, the motors produced a vibration with 200
rotations per second, the resulting vibration amplitude was
0.75 g. The wiring diagram as well as additional information
regarding the components are available online. 1

Virtual Reality Setup
The VR scenario put participants in a small clearing covered
with a grasslike texture, surrounded by a ring of hills and
various trees. A stylized container was placed in the center
of the scene and served as target for the transportation task
(see Fig. 1, left panel). The to-be-grasped and carried object
was a cube rendered with a marble texture. The size of the
cube varied from trial to trial but the cube always appeared
at the same position in the scene. Textual information, like
trial instructions and error feedback were presented on differ-
ent text-fields aligned at eyeheight in the background of the
scene.

Centered at the participants’ hip2, the task space covered

1http://www.wsi.uni-tuebingen.de/lehrstuehle/cognitive-
modeling/staff/staff/johannes-lohmann.html

2Based on the inertial data from the IGS suit, it is possible to
calculate a kinematic chain with the hips as root. Hence, the position
of the hip joint in the virtual scene is the reference point for all body

60 cm from left to right and 55 cm in depth. Corresponding
to the data generated by the IGS suit an upper body rig was
placed in the scene. It was positioned about 45 cm in front
of the spawning position of the cube, slightly behind the the
container. Hence, participants could reach both the container
as well as the cube comfortably with their right arm. The rig
itself was not rendered, only the right hand of the participants
appeared in the scene visually.

The multisensory conflict between visual and propriocep-
tive grip aperture was realized in terms of a visual angular
offset on the root joints of the thumb and index finger. They
could be rotated either 10◦ towards each other, or away from
each other. To maintain the same aperture, this visual offset
had to be compensated by an adjustment of the actual aperture
in the opposite direction. To compensate for a visual offset
shrinking the grip aperture, the grip aperture had to be wider,
while a visual offset extending the grip aperture required a
closer grip aperture. In one third of the trials, no manipula-
tion was applied (the different offset conditions are shown in
Fig. 1, right panel).

Procedure
Participants received a verbal instruction at the beginning of
the experiment regarding the use and function of the applied
VR equipment. Then, they were equipped with the inertial
motion capture system, consisting of the suit and the glove.
If necessary, the finger sensors of the glove were fixated with
rubber bands. After aligning the sensors and enabling the data
streaming, the vibration motors were fastened underneath the
thumb and index finger tip with rubber bands. Participants
were then seated comfortably on an arm chair.

After this, participants were asked to hold their right hand
over the Leap sensor to scale the virtual hand size according
to their actual hand size. The control was then switched to
the IGS system and participants put on the HMD to start the
training phase. Participants could practice the grasping and
carrying of the cube until they felt comfortable with the task.
They had to complete at least 15 successful repetitions of the
task before they were allowed to proceed. The grasp and carry
task is described in detail in the next section.

After completing the training, the experimenter switched
manually to the main experiment. The experiment consisted
of eight blocks, each composed of 15 trials. The multisensory
conflict between seen and felt grip aperture was introduced
during the intertrial interval while the screen was blacked
out.3 In each trial participants had to grasp a cube and put
it into the target container. After the object interaction, the
scene faded out and one of two possible reproduction scenes

movements.
3While most participants remained unaware to the manipulation

and attributed the variance in their grip aperture to inaccuracies of
the tracking equipment, two participants reported to be aware of the
manipulation after the experiment. Seeing that conscious awareness
was not critical in this experiment, we did not perform a behavioral
manipulation check in terms of a signal detection task to determine
whether participants were able to consciously detect the manipula-
tion of the visual grip aperture.

2635



Figure 1: The left panel shows the VR scene and the initial position and fixation checks before the presentation of the target
cube. Participants had to maintain a stable fixation on the fixation cross, the green spheres represent the starting position. The
right panel shows the different offset conditions. Inward offsets are indicated by the light gray joints, dark gray joints indicate
the outward offset condition.

appeared. This was independent of the success in the object
interaction, the reproduction scene was also shown in case of
error trials. In these scenes participants had to reproduce the
size of the cube they interacted with either visually or by in-
dicating the size in terms of a grip aperture. After each block,
there was a break of at least ten seconds, after the fourth
block, a longer break of at least two minutes was adminis-
tered. Participants were allowed to put off the HMD dur-
ing the breaks. After the experiment, participants were asked
to complete a presence questionnaire (IPQ, Schubert, Fried-
mann, & Regenbrecht, 2001). The whole procedure took 90
to 120 minutes, including the preparation and the practice tri-
als.

Grasp and Transportation Task At the beginning of each
trial, participants had to move their right hand into a desig-
nated starting position, consisting of red, transparent spheres
indicating the required positions of the fingers and the palm.
The spheres turned green when the respective joints were in
position. Furthermore, participants had to maintain a stable
looking direction on a fixation cross (see Fig. 1, left panel).
When both requirements were met, the fixation cross as well
as the visible markers of the initial position disappeared and
the target cube appeared. Participants were instructed to grasp
the cube with a pinch grasp and to move it into the target con-
tainer. A successful pinch required the tips of the thumb and
the index finger to be placed on opposite sites of the cube and
to maintain a stable grip aperture. Participants received vibro-
tactile feedback whenever touching the cube. The feedback
scaled with the depth of penetration, becoming more intense
the deeper the fingers were moved into the cube. The task was
successfully completed by placing or dropping the cube into

the container. Success was indicated by the cube bursting into
an explosion of smaller green cubes. Interactions were can-
celed if the cube was penetrated overly strongly, dropped out-
side the container, moved outside the reachable space (e.g. by
throwing it), or in case the interaction took more than 20 sec-
onds. If one of the conditions was met, participants received
error feedback and the trial progressed with the reproduction
task.

After completing or failing the interaction, the markers for
the initial position reappeared and participants had to move
their hands back into the initial position. Then a visual mask
was applied, accompanied by random vibrations on the finger
tips. The visual and tactile masking commenced for one sec-
ond. After the masking the scene faded to black and after one
second, one of the two reproduction scenes appeared. The
offset manipulation was removed during the blank interval.

Size Estimation In both versions of the size estimation
task, participants had to reproduce the cube size. For the vi-
sual reproduction, the scene was similar to the one in which
the interaction took place. However, the ground textures were
replaced and different tree models were used to avoid possible
comparisons between the cube size and external landmarks.
A cube was placed at the center of the scene, at the same po-
sition where the cube during the interaction phase appeared.
Above the cube, a slider was displayed, which allowed the
participants to scale the cube by dragging the slider button
with their fingertips. The slider spanned approximately 20
cm from left to right. The initial position of the slider button
and thus the initial size of the visual reference cube was de-
termined by the cube size during the interaction phase. For
the smaller three sizes the slider started out at 10% and for
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the two larger sizes it started out at 90% of the sliding range.
For the proprioceptive reproduction, all visuals were deac-

tivated (including the hand model), only the horizon as well
as small white sparks in the center of the scene remained ac-
tive to remind the participants that the experiment was still
running. Participants were instructed to indicate the size of
the cube they interacted with by means of the grip aperture
between thumb and index finger. To confirm their estimate,
participants were requested to say the German word for “con-
tinue” or “done” (“weiter” or “fertig”). The voice control
identified these commands and ended the trial, recording ei-
ther the slider position - indicating the visual edge length of
the cube - or the grip aperture as the size estimate.

Factors
We varied three factors across trials. First, the edge length of
the cube, which had to be interacted with and which size had
to be estimated, was either 7 cm, 7.35 cm, 7.7 cm, 8.05 cm, or
8.4 cm. Second, the visual grip aperture was either shrunk, or
extended by 10◦, or corresponded with the felt grip aperture.
In the following, we will refer to visual offsets shrinking the
aperture as inward offsets, conversely, we will refer to offsets
extending the aperture as outward offsets. Third, we varied
the reproduction modality, which could either be visual or
proprioceptive. Hence, the experiment followed a 5 × 3 ×
2 within-subject design. Each of the 30 conditions was re-
peated four times, resulting in 120 trials. The trial order was
randomized.

Dependent Measures
Besides the size estimates in the two different reproduction
conditions, we obtained several time measures. Movement
onset was determined as the time between the end of the fix-
ation until leaving the starting position. Contact time refers
to the time between movement onset and successful grasp.
Interaction time refers to the time interval between the grasp
and reaching the container.

Results
Data was aggregated according to the 5 × 3 × 2 within-
subject design. Seeing that the size estimation had to be per-
formed after error trials as well, there are no missing data
with respect to the size estimates. For the duration measures,
only correct trials were considered. The overall error rate was
high (nearly 30%), due to the task complexity. In case of
missing time data, the respective cell mean was interpolated
within participants by the mean over all conditions with the
same offset type. For all dependent measures, values differ-
ing more than two times of the standard deviation from the
mean were excluded, which was the case for 2% of all data
points.4

Size estimates, time measures, and error rates were an-
alyzed with repeated measures ANOVAs using R (R Core

4Please note that the data pattern remains nearly unaffected if
the data is not filtered. Removing the size estimates from error trials
only reduces the effect size of the three-way interaction.

Table 1: ANOVA table for the analysis of the size esti-
mates. The assumption of sphericity was violated for the
cube size factor and the interaction between offset and re-
production condition, the according p-values were subjected
to a Greenhouse-Geisser adjustment.

factor df F p η2
p

size 4 34.84 < .001∗ .69
offset 2 17.55 < .001∗ .52
repro. type 1 0.48 .50 .03

size× repro. type 4 2.94 .027∗ .16
offset × repro. type 2 3.95 .045∗ .20
size × offset 8 1.03 .42 .06

size × offset × repro. type 8 2.35 .022∗ .13

Team, 2016) and the ez package (Lawrence, 2015). All
post-hoc t-tests were adjusted for multiple comparisons by
the method proposed by Holm (Holm, 1979). Results from
the presence questionnaire were compared with the reference
data from the online database.5 There were no significant dif-
ferences.

Size Estimates
Data were analyzed with a 5 (cube size) × 3 (offset) × 2 (re-
production type) factors repeated measures ANOVA. Results
are shown in Tab. 1. The analysis yielded significant main
effects for cube size and offset. The main effect for cube
size matches the actual cube size: larger cubes were estimated
larger and smaller cubes were estimated smaller. To check if
the estimates were veridical, we tested whether the estimated
cube sizes differed from the actual cube sizes. None of the
respective comparisons yielded significant results.

With respect to the main effect of offset, participants over-
estimated the cube size in case of inward offsets, compared
to conditions with no offset (t(16) = 3.45, p = .007). For out-
ward offsets participants underestimated the cube size, com-
pared to conditions with no offset (t(16) = 2.98, p = .009).
Finally participants provided larger estimates in case of in-
ward, compared to outward offsets (t(16) = 5.23, p < .001).

Both, cube size and offset interacted with the reproduction
condition. The interaction between cube size and reproduc-
tion type is due to a systematic overestimation of the larger
cubes in case of the visual reproduction. In both cases, the
estimates are significantly larger than the actual sizes of 8.05
cm (t(16) = 4.26, p = .003), and 8.4 cm (t(16) = 3.21, p =
.022), respectively.6

The interaction between reproduction condition and offset
was further analyzed with post-hoc t-tests. Estimates in case
of outward offsets were significantly smaller than in case of

5Available at http://www.igroup.org/pq/ipq/index.php
6The considerable overestimation might be partially due to the

initial slider position in the visual reproduction, starting at 90% of
the sliding range for larger cubes.
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Figure 2: Three-way interaction between reproduction condition, cube size and offset. Significant differences with p < .05
between estimates in case of inward and outward offsets are indicated by an asterisk. The respective t-tests were one-sided
(inward > outward) and were adjusted for multiple comparisons. The dashed line indicates the actual cube size.

inward offsets, both, for visual (t(16) = -2.21, p = .021), as
well as for proprioceptive (t(16) = -5.48, p = .002) reproduc-
tion. However, the differences between the offset conditions
were much more pronounced in case of proprioceptive repro-
duction, resulting in the observed two-way interaction.

This pattern of results was modified by a three-way inter-
action between cube size, offset and reproduction condition.
Separate ANOVAs for the different cube sizes showed that
the interaction between reproduction condition and offset was
only present for cubes of intermediate (7.7 cm) and large size
(8.05 cm). For these two conditions, there were no significant
differences between the offset conditions in case of visual re-
production. The differences for proprioceptive reproduction
remained significant. The main effect of offset, however, re-
mained significant for all of these separate analyses.

With respect to our hypotheses, the difference between in-
ward and outward offsets is most relevant. To check whether
inward offsets always result in larger estimates than outward
offsets, we checked whether the respective difference is sig-
nificant for the five different cube sizes, separately for the two
reproduction conditions. In case of proprioceptive reproduc-
tion, the difference is significant for all cube sizes, except the
smallest one of 7 cm. For visual reproduction the differences
reached significance for all cube sizes, except the intermedi-
ate (7.7 cm) and large size (8.05 cm). The results are shown
in Fig. 2.

Time Measures
Data were analyzed with a 5 (cube size) × 3 (offset) fac-
tors repeated measures ANOVA. No significant effects were
found for the movement onset times. The analysis of ob-
ject contact times yielded a significant main effect for off-

set (F(2,32) = 76.57, p < .001, η2
p = .83). Slowest contact

times were observed for outward offsets, while inward offsets
yielded the fastest response times. All of the respective pair-
wise comparisons yielded significant results. The analysis of
the interaction times yielded a significant main effect for off-
set as well (F(2,32) = 4.90, p < .014, η2

p = .23). Participants
were slower in transporting the cube in case of outward off-
sets. Post-hoc t-tests showed that the interaction times were
significantly elevated in case of outward offsets, both com-
pared to inward offsets (t(16) = 2.39, p = .042), as well as to
trials without offset (t(16) = 2.42, p = .042).

Error Rates
The analysis of the error rates yielded significant main effects
for cube size (F(4,64) = 4.27, p = .004, η2

p = .21) and offset
(F(2,32) = 12.22, p < .001, η2

p = .43). In general, partici-
pants made fewer errors during interactions with larger cubes.
Furthermore, error rates were higher in case of inward off-
sets. Post-hoc t-tests showed that error rates increased for
inward offsets, when compared to both outward offsets (t(16)
= -3.67, p = .004), and no offsets (t(16) = -4.56, p < .001).

General Discussion
Previous studies on multisensory integration have shown a
dominance of visual information in the perception of object
size (e.g. Ernst & Banks, 2002). To investigate whether task
demands, which require to focus on another modality, can
reduce this dominance, we let participants perform a grasp-
and-carry task under multisensory conflict between vision
and proprioception. In order to do so, we manipulated the
mapping between seen and felt grip aperture. After the ob-
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ject interaction we let participants estimate the size of the ob-
ject they interacted with – either visually or by providing a
proprioceptive estimate via grip aperture. Our results show
a systematic bias in the size estimates due to the introduced
offset between seen and felt grip aperture. A wider grip aper-
ture resulted in object size overestimations, while a smaller
aperture yielded underestimations. This was true for both, vi-
sual and proprioceptive size estimates. Hence, the adaptation
of the size estimation followed the proprioceptive adaptation,
which was necessary to compensate for the visual offset.

While the offset manipulation led to different actual grip
apertures for cubes of the same size, the visual impression of
both the cube size and the grasp of the virtual hand remained
the same. Thus, if the size estimate was dominated by the vi-
sual impression, there should have been no effect of the offset
condition in the visual reproduction trials. In contrast, our re-
sults show a clear influence of proprioceptive information on
the size estimates in both modalities. However, this influence
was much more pronounced in the case of the proprioceptive
reproduction. Apparently, proprioceptive information domi-
nated the resulting percept, even if proprioception was much
noisier than vision, indicated by the comparatively large vari-
ance in the proprioceptive size estimates.

The combination of VR with motion capturing enabled us
to dissociate vision and proprioception in an interactive setup.
Compared to previous studies, which investigated the effects
of mismatching sensory information regarding an object, the
applied setup allows to manipulate the own body perception
without affecting the visual impression of the external, virtual
world. Some issues with respect to the experimental setup
remain. The high error rates imply that even with the vibro-
tactile augmentation, the object interaction remained difficult
for the participants. Especially in case of outward offsets,
participants took quite long to grasp and carry the cube. The
error rates were elevated for inward offsets, which were as-
sociated with the fastest grasping and interaction times, im-
plying a speed accuracy trade-off. Furthermore, our setup did
not comprise a control condition without grasping. Includ-
ing trials which only require touching the object will clarify
whether the mere presence of a graspable object yields a bias
towards proprioceptive information, or if performing the ac-
tual interaction is necessary to induce the bias.

Despite these issues, the results allow us to draw the fol-
lowing two conclusions. First, visual and proprioceptive in-
formation regarding the object size seem to be stored sepa-
rately, but are able to affect each other. If there was only a
single percept reflecting the cube size across modalities, then
the reproduced size should be independent of the reproduc-
tion modality. This is clearly not the case, given the huge
difference in the variance of the visual and proprioceptive es-
timates and the stronger bias in proprioceptive compared to
visual reproduction. This conclusion dovetails with results
reported by (Ernst & Banks, 2002), who showed that sensory
data are stored separately, when they originate from different
modalities. Second, the integration process that produces a

visual or a proprioceptive estimate is influenced by the type of
reproduction. The considerable difference between the effect
sizes implies a different weighting of the modality-specific
encodings in the two reproduction conditions.
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Abstract 

We present a computational model exploring goal-directed 
deployment of attention during object tracking. Once selected, 
objects are tracked in parallel, but serial attention can be 
directed to an object that is visually crowded and in danger of 
being lost. An attended object’s future position can be 
extrapolated from its past motion trajectory, allowing the 
object to be tracked even when it is briefly occluded. Using 
the model, we demonstrate that the difficulty of tracking 
through occlusions increases with the number of objects 
because they compete for serial attention.  

Keywords: attention; perception; cognitive model; multiple-
object tracking; visual cognition 

Introduction 
Our visual experience of the world is rich and exhilarating, 
full of a wide variety of objects that move either predictably 
or erratically. Making sense of what we see requires an 
ability to follow these objects over time, sometimes tracking 
two, three, or more at once. The criticality of this capability 
is reflected in the existence of low-level mechanisms in the 
vision system that can follow multiple objects in parallel, 
seemingly without explicit attention. However, when the 
paths of objects intersect or when one object occludes 
another, these mechanisms are insufficient, requiring that 
we attend to an object to disambiguate it from others. 

What guides our attention toward any one particular 
object in the visual field? There is a considerable amount of 
literature that seeks to answer this question by appealing to 
visual salience (Borji & Itti, 2013). That work emphasizes 
contrast effects in the early visual system that draw our eyes 
to regions of fast motion, bright lights, and flashes of color. 
The target phenomenon described by that literature is goal-
free, visual perception—that is, where a person would look 
if told to freely examine an image. The corresponding 
results say little about top-down influences on visual 
attention, such as when a person adopts a goal to track an 
object over time. 

Fortunately, there is a task that lets us study goal-directed, 
visual attention under exactly these conditions. Experiments 
on multiple-object tracking (MOT) have people distinguish 
one or more targets from a larger set of identical distractors 
as they move across an empty background (Pylyshyn & 
Storm, 1988). In these studies, the only identifying 

characteristic of each object is its motion history. As a 
result, the low-level mechanisms that maintain the identity 
of objects in parallel are taxed, which lets researchers study 
their limits and therefore determine the conditions that 
require visual attention.  

We know, for instance, that when targets come close to 
other objects, they tend to draw attention (Iordanescu, 
Grabowekcy, & Suzuki, 2009; Zelinsky & Todor, 2010). 
This effect of crowding does not hold when distractors are 
clustered together, so the goal to track the targets must play 
a role in protecting them from possible confusion with the 
other objects. It also appears that the difficulty of MOT 
increases when multiple targets are crowded simultaneously 
(Srivastava & Vul, 2016). These findings suggest that visual 
attention is deployed serially and can only disambiguate one 
threatened target at a time.  

In this paper, we present a computational model that 
accounts for one of the roles that attention plays in object 
tracking. Our research builds on previous work by Bello, 
Bridewell, and Wasylyshyn (2016) that assumed attention is 
serially deployed to initially encode targets, after which a 
parallel process that does not require attention exclusively 
handles object tracking. In their model, the interaction 
between attention and the tracking goal was limited to 
keeping visual attention on the targets. The model’s ability 
to track targets broke down when the targets’ previous 
positions were insufficient for distinguishing them from 
other nearby objects (e.g., when the objects moved quickly 
or were close to each other). In the updated model presented 
here, the processes for serial shifts of attention are refined 
and contribute throughout the task.  

Specifically, the updated model detects when objects 
flagged as targets are visually crowded and, in response, 
directs attention to them. Sustained attention on an object 
enables the construction of its motion trajectory, which can 
be used to predict its future position. This extra information 
gives the model the ability to follow a target through an 
occlusion event, where another object overlaps or covers the 
target. Because attention is deployed serially, only one 
target can be tracked in this way at a time. As a result, when 
two targets are crowded, they vie for attention and the one 
that is not selected remains in danger of being lost by the 
parallel, tracking process. 
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We claim that tracking through occlusion is facilitated by 
goal-directed deployment of attention to the target involved. 
We support this claim by providing a computational model 
of visual attention described in the next section. Briefly, this 
model requires that crowded targets compete for attention 
and its associated computational benefits. To test the model, 
we apply it to stimuli drawn from the work by Luu and 
Howe (2015) showing that people are better at predicting 
target positions from past trajectories when there are fewer 
targets. We find that the model accounts for these results 
and is in accordance with a broader range of findings in the 
literature. 

Computational Model of Visual Attention 
The computational model is implemented using ARCADIA 
(Bridewell & Bello, 2016a), a cognitive system designed for 
exploring the role of attention. The system operates in 
cycles that correspond to 25 ms of activity in human 
perception. On each cycle components, which carry out all 
the computation in a model, place their results in a location 
called accessible content. ARCADIA uses an attentional 
strategy to select one of these results as a focus of attention, 
which directs processing in a subset of components. On the 
subsequent cycle, the components receive sense data (e.g., a 
video frame), accessible content, and the focus of attention 
as input and produce the next collection of accessible 
content as output. 

Like other models built using ARCADIA, this model of 
visual attention consists of a set of components and an 
attentional strategy. Many of the components included in the 
current model were previously described by Bello, 
Bridewell, and Wasylyshyn (2016). Looking at Figure 1, 
these include image segmenter, object locator, object-file 
binder, and vstm (which implements visual short-term 
memory). In the rest of this section, we summarize these 
components, mention changes to object locator, detail the 
new components, and discuss the attentional strategy. 

Beginning at the bottom of Figure 1, image segmenter 
polls a sensor that provides one frame of video input each 

cycle. The component then outputs a set of proto-objects, 
hypotheses for the locations of objects (Rensink, 2000), 
based on closed-contour regions in the frame. For proto-
objects to lead to object representations, they must receive 
attention. To this end, a set of highlighters, described later 
in this section, proposes one or more candidate proto-objects 
for the focus of attention. If ARCADIA focuses on one of 
these candidates, then the object file binder constructs an 
object file, which is based on the ideas of Treisman and 
Gelade (1980) and is a representation that binds together 
any visual features found at the proto-object’s location (e.g., 
color profile, size). If that object file receives attention, then 
the vstm component stores it in memory. 

Improvements to the Parallel Aspects of Tracking 
If tracking objects always required attention, then it would 
take four ARCADIA cycles (100 ms) to go from visual 
input to representing a single object in vstm. To update that 
object’s location would take the same amount of time. Even 
accounting for the ability to pipeline parts of the process, 
two cycles (50 ms) are required for shifting covert attention 
and representing an object. The timing needed to serially 
update the location of multiple objects, which is based on 
evidence from visual search in humans (Wolfe, 2003), is 
unrealistic. Therefore, the model needs a way to track 
objects in parallel.  

To address this need, the model includes tracking 
functionality in object locator. In earlier ARCADIA 
models, this component kept location information up-to-
date by matching object files in vstm to the proto-objects 
nearest to each object’s last known location. This approach 
was inspired by Pylyshyn’s (1989) proposal that roughly 
four objects can be tracked in parallel using visual indices 
and by Dawson’s (1991) work that identified a nearest-
neighbor constraint in apparent motion, which is likely 
related to tracking.  

In this model, we refine object locator to provide an 
account of Dawson’s constraint based on newer results in 
visual processing. This new implementation generates a 
two-dimensional priority map (Fecteau & Munoz, 2006; 
Bisley & Goldberg, 2010), with enhanced regions at each 
tracked object’s last known location and suppressed regions 
around them. Evidence for this treatment of spatial regions 

 
Figure 1. Flow of information between components, both 
bottom-up (black arrows) and top-down (gray arrows). 
Components in bold respond to the focus of attention. 
Components with dashed borders are task-specific. 
 

  
A B 

Figure 2: A: An image with eight objects. B: A priority 
map in which four of the objects are tracked. 
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comes from early work on multifocal attention (Castiello & 
Umiltà, 1992) and center-surround suppression (Tsotsos et 
al., 1995; Desimone & Duncan, 1995). To track objects in 
parallel, each object file in vstm is matched to the proto-
object that most overlaps its corresponding enhanced region 
on the priority map. Figure 2B shows an example of such a 
map with enhanced red and yellow circles and suppressed 
outer green rings. Importantly, if two tracked objects are 
near each other, one object’s suppressed region may overlap 
another object’s enhanced region (see the two lower circles 
in Figure 2B), resulting in a smaller enhanced region and a 
greater chance of a tracked object being lost.1 

Goal-Directed Attention in Tracking 
Adopting a goal to track specific moving objects, or targets, 
alters how attention is deployed. In particular, attention can 
be drawn to a target when there is a risk that the parallel, 
tracking mechanisms could fail for that object. For instance, 
as suggested by Figure 3A, when multiple objects overlap, 
they look like a single proto-object. After those objects 
move apart, it is unclear which one, if any, was previously a 
target. This problem arises because following a target 
through an occlusion event requires more information than 
only its previous location. On these occasions, the model 
uses an attended target’s recent motion history to 
extrapolate its future position in order to track it through 
occlusions. We conjecture that serial attention is required 
for this process because it involves binding trajectory 
information and the corresponding extrapolated position to a 
particular object file. 

Goal-directed deployment of attention is assisted by the 
highlighters mentioned earlier in this section. Recall that 
these components propose proto-objects as candidates for 
attention and therefore determine which objects will be 

                                                             
1 Object locator constructs a priority map in three steps. First, following 

Bouma’s law for visual crowding (Whitney & Levi, 2011), object locator 
generates Marr wavelets centered at each tracked object’s location, scaled 
so that the sizes of the suppressive fields increase as those objects enter the 
periphery. Second, since untracked stimuli produce visual crowding at a 
weaker rate than tracked stimuli (Whitney & Levi, 2011), for each proto-
object, we include the negative component of a wavelet whose amplitude is 
set to 20% of that for tracked objects. Third, Holcombe, Chen, and Howe 
(2014) report a general cost for having more tracked objects. We account 
for this effect with long-range suppression in the visual field, implemented 
as a constant value (0.04 in the model) subtracted from the entire visual 
field outside of each tracked object’s enhanced region. 

 

stored in vstm and tracked by object locator. There are three 
highlighters, one of which is task specific and the other two 
are generally important for tracking. First, color highlighter 
is used to identify targets and queries about objects in the 
multiple-object tracking videos, indicated by objects 
changing color in the videos.  

The other two highlighters propose proto-objects 
corresponding to currently tracked objects. The crowding 
highlighter proposes each tracked object as a candidate for 
attention and includes as information the distance from each 
one to the nearest other proto-object. This value provides a 
measure of crowding and is based on the finding that 
tracked objects draw attention when they are visually 
crowded and in danger of being lost (Iordanescu, 
Grabowekcy, & Suzuki, 2009; Zelinsky & Todor, 2010).  

The maintenance highlighter proposes maintaining 
attention on the object that was last in focus. If attention 
remains on the same object over a period of time, this 
component computes its motion trajectory from location 
changes over a window of two to three cycles. Additionally, 
maintenance highlighter detects occlusion events, where the 
focused object is partially or completely occluded by 
another object (e.g., Figure 3A). When the attended object is 
occluded, the component predicts the focused object’s 
position based on its recorded trajectory. This information 
lets object locator update its priority map to enhance the 
object’s predicted location (the off-center, red circle in 
Figure 3B), improving its ability to continue tracking the 
object after the occlusion event ends. 

The final component, target object guesser, records the 
model’s responses in the multiple-object tracking task. This 
component reports whether the model considers a probed 
item to be a target (tracked) or a distractor. 

The model’s attentional strategy is a priority list over the 
elements in accessible content. The highest priority is to 
focus on new object-files for storage in vstm. Below that, 
the strategy prefers proto-objects, which enables encoding 
them into object files. The preferences for proto-objects are 
ordered with color highlighter first, which ensures that 
targets are initially encoded and that probes are noticed 
when objects change color. The next highest priority is to 
maintain attention on a crowded target, one whose distance 
to the nearest other proto-object has fallen below a crowding 
distance threshold. The third highest priority is to attend to 
whichever target is the most crowded—the one with the 
lowest crowding distance. This ordering enables goal-
directed deployment of attention to objects that are in 
danger of being lost, and it handles competition between 
simultaneously crowded objects. Once an attended object is 
endangered, attention will stay on it until the distance to 
nearby proto-objects exceeds the crowding threshold even if 
other targets are also in danger. 

In summary, the model consists of eight components 
(Figure 1), four of which are new and one of which was 
substantially changed. Two components are task specific: 
target object guesser and color highlighter. The model 
includes three free parameters, two in object locator1 and 

                         
A B 

Figure 3. A: An occlusion event. B: Part of a priority 
map, updated with an attended object’s predicted location, 
shown as the off-center darker red circle. 
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the crowding distance threshold, which indicates when 
targets are too close to other proto-objects. In the next 
section, we report an experiment that supports the validity 
of this model in the context of multiple-object tracking.   

Evaluation 
We evaluated the computational model by running it on 
MOT videos similar to those used in Luu and Howe’s 
(2015) Experiment 1. In that work, participants tracked 
either two or four targets with either predictable or 
unpredictable motion trajectories. Luu and Howe’s key 
finding was that people more accurately track objects with 
predictable trajectories than with unpredictable trajectories, 
but only in the two target condition. The model in this paper 
accounts for this effect, showing that goal-directed 
deployment of attention can be used to predict a target’s 
location from its past trajectory. This ability enables 
tracking a single target through an occlusion, and when 
multiple targets are simultaneously crowded, they compete 
for attention. This competition for resources means that task 
difficulty increases with the number of targets.  

Experiment 
In each trial of Luu and Howe’s experiment, two or four out 
of eight total disks were highlighted in red to indicate that 
they were the targets. Afterwards, all disks turned black and 
the disks moved for 5.5 s while participants fixated on a 
center cross. During this time the disks could occlude (i.e., 
pass through) each other. At the end, two disks were 
highlighted in sequence, and participants indicated whether 
each one was a target. Each highlighted disk had a 50% 
chance of being a target, and participants needed to respond 
correctly on both for the trial to be coded as correct.  

There were two movement conditions for the experiment. 
In the first condition, every disk moved predictably in 
straight lines and changed direction only after bouncing off 
the edge of the display. In the second condition, the disks 
moved similarly, but every 300–600 ms, they would 
randomly change direction. This unpredictable movement 
was expected to reduce the reliability of any effort to 
compute and utilize motion trajectories. 

At the beginning of the study, the motion speeds for each 
participant were calibrated to determine the speed where the 
participant achieved 75% accuracy. Calibration occurred 
separately for two and four targets and used only predictable 
motions. Afterwards, participants were tested over 120 
randomly generated trials, 30 in each condition (number of 
targets × motion predictability), with conditions interleaved.  

Luu and Howe reported data from 15 participants. Their 
results found, unsurprisingly, that tracking two targets was 
easier than tracking four, as indicated by a much higher 
speed when calibrating for two targets. Importantly, they 
observed a significant interaction between the number of 
targets and motion predictability. Pairwise comparisons 
indicated that predictable motions were easier than 
unpredictable motions for two targets but not for four 
targets. Luu and Howe proposed that object tracking is 
sensitive to motion trajectories for two targets, but less so 
for four targets, which is in line with findings by Fencsik, 
Klieger, and Horowitz (2007).  

Model 
To evaluate the computational model using Luu and Howe’s 
experiment, we randomly generated 120 trial videos each 
for 15 virtual “participants” (the model was the same in 
each case, so only the trial videos varied). The videos 
matched the description in the paper as closely as possible 
with five minor exceptions. 

(1) There was no fixation cross, but center fixation was 
enforced in the model. 

(2) It was impossible to match to the original study’s 
display size (15° x 15°) because the model does not 
perceive the display from a quantifiable viewing 
distance. However, the study’s proportion of disk 
size to display size was maintained. 

(3) Videos were constrained to begin and end with all 
disks at least one radius apart (such constraints are 
common but were not mentioned in the paper). 

(4) To save simulation time, disks were highlighted for a 
shorter duration. 

(5) Disk colors differed from the original, which was 
incidental. 

The model’s crowding distance threshold was 1.6 
diameters, meaning an attended target would need to be at 
least this distance away from all other disks before the 
model could swap attention to another target. 

Results  
The calibration phase of the experiment differed slightly 
from Luu and Howe’s approach. Because the model was 
held constant across virtual participants, we calibrated the 
speeds only once. We found that to ensure roughly 
equivalent accuracy close to 75%, the speeds were eight 
pixels per cycle for two targets and four pixels per cycle for 
four targets. 

Figure 4 displays the results for each condition. A two-
way ANOVA with set size (two vs. four targets) and 
predictability was conducted. There was a significant main 

 
Figure 4. Simulated accuracy across conditions. Error bars 
are standard error. Speeds were calibrated separately for 2 
and 4 targets to achieve about 75% accuracy. 
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effect of predictability, F(1,56) = 14.3, p < .001, indicating 
that accuracy was higher with predictable trajectories. There 
was also a significant interaction between set size and 
predictability, F(1,56) = 4.8, p = .032, indicating that the 
effect of predictability was greater for two targets. Unpaired 
comparisons confirmed that predictability had a significant 
effect on accuracy for two targets, M = 79.8% (predictable) 
vs. 68.9% (unpredictable), t(28) = 3.91, p < .001, but not for 
four targets, M = 75.3% (predictable) vs. 72.4% 
(unpredictable), t(28) = 1.23, p = .230.  

Discussion 
The model’s results matched the human data, which 
suggests that the model accounts for two key findings. First, 
as evidenced in the speed discrepancies during the 
calibration phase, tracking two targets was easier for the 
model and for people than tracking four targets. Notably, 
increasing the number of targets increases both the number 
of possible occlusion events and the potential for 
simultaneous crowding. These effects are important for the 
model, which explains errors as resulting in part from 
failures to attend to targets during occlusion. As a result, 
slowing object movement reduces the number of occlusions 
and contributes to the ability to successfully track targets.  

The second and more important finding is that the model 
more accurately tracked objects that moved predictably than 
those that moved unpredictably, but only for two targets. To 
understand this, we have to describe why the model could 
track some objects through occlusion events when the 
trajectories were unpredictable. Recall that objects changed 
direction only every 300–600 ms, or 12–24 cycles in 
ARCADIA, and that the model calculates motion 
trajectories over a 2 cycle window. As long as a target 
maintains course through the occlusion and the two cycles 
before it, tracking should work perfectly. In practice, this 
means that the unpredictable trajectories only disrupt a 
small proportion of occlusion events. 

As an explanation, the model suggests that there are two 
sources of error: missed occlusion events and unpredictable 
trajectories for attended occlusions. With four targets there 
are more missed occlusion events due to simultaneous 
crowding than with two, so proportionally that has a larger 
effect on the error rate than the unpredictable trajectories. 
This difference explains why unpredictable trajectories are 
more harmful with two targets than with four, and the 
combination of this with the overall small proportion of 
occlusion events disrupted by unpredictable trajectories 
explains the lack of a significant effect with four targets.  

General Discussion 
The model demonstrates the critical role of goal-directed 
visual attention in object tracking. Although attention is not 
always needed to update target locations, it provides key 
information to aid in tracking targets that are in danger of 
being lost due to visual crowding. In the reported model, 
attention provides a target’s motion trajectory, which 
enables tracking through occlusions. 

One explanation for how people track multiple objects is 
provided by the multifocal view of attention (Cavanagh & 
Alvarez, 2005). Proponents of this view have argued for two 
theoretical limits on attention. First, attention may be a 
limited resource that must be distributed among targets 
(Holcombe & Chen, 2012), which makes tracking more 
difficult when targets are crowded simultaneously and must 
compete for attention (Srivastava & Vul, 2016). Second, 
attention may be subject to spatial interference between 
neighboring targets (Franconeri, Jonathan, & Scimeca, 
2010), which makes tracking more difficult when targets are 
nearer to each other (Shim, Alvarez, & Jian, 2008; 
Holcombe, Chen, & Howe, 2014).  

The reported model offers a competing explanation that 
distinguishes between serial attention to a single object, 
which is used to bind features and compute motion 
trajectories; and parallel enhancement of multiple object-
locations, which is used to track objects. These separate 
mechanisms account for both apparent limits described 
above. First, tracking difficulty increases when targets are 
simultaneously crowded because they compete for the serial 
focus of attention. Second, difficulty increases when targets 
are near each other because the parallel tracking process 
uses center-surround suppression, with an enhanced region 
and a surrounding suppressed region at each target’s 
location. When two targets are close such that one’s 
suppressed region overlaps the other’s enhanced region, the 
enhanced region shrinks and there is a greater chance of 
losing the target. Additionally, difficulty increases with the 
number of targets and with object speed (Alvarez & 
Franconeri, 2007) because these manipulations increase the 
frequency of events where targets are simultaneously 
crowded or targets interfere with each other.  

Although there are other computational models that have 
been applied to MOT, the reported model provides a novel 
explanation. Oksama and Hyönä (2008) relied solely on 
serial attention and Kazanovich and Borisyuk (2006) relied 
entirely on multifocal attention. Srivastava and Vul’s (2016) 
Bayesian, multifocal model is similar to ours in that it 
distributes attention to visually crowded targets, which lets 
it predict greater tracking difficulty when targets are 
crowded simultaneously. However, their model makes no 
link between attentional distribution and computing motion 
trajectories. Additionally, the model cannot account for 
spatial interference between targets. Finally, their model is 
disconnected from video input, and it abstracts away the 
underlying correspondence problem. 

In this paper, we demonstrated the role that goals may 
play in object tracking. In particular, the model’s implicit 
goal to track targets enhances its ability by influencing 
where it attends. That is, selecting an object as a target 
recruits processes that monitor crowding and maintain focus 
when that target is endangered. Additionally, we note that 
the information made available by attending to an object is a 
form of indirect influence by the goal on visual processing 
(e.g., during the creation of the priority map). In the future 
we intend to explore other cases where the goal-directed 
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deployment of attention interacts with perception and 
eventually with motor control.  
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Abstract 

From distracted driving, to work focus on a computer, 
increasing amounts of research is investigating how digital 
technology influences users’ attention. A couple of widely 
cited studies have found that the mere presence of cell phones 
interferes with social interactions and cognitive performance, 
even when not actively in use. These studies have important 
implications but they have not yet been replicated, and also 
suffer from methodological shortcomings and lack of 
established theoretical frameworks to explain the observed 
effects. We improved the methodology used in a previous 
study of phone presence and task performance (Thornton, 
Faires, Robbins, & Rollins, 2014), while testing an 
‘opportunity cost’ model of mental effort and attention 
(Kurzban, Duckworth, Kable, & Myers, 2013). We were 
unable to replicate Thornton et al.’s finding that presence of 
cell phones reduces performance in a specific cognitive task 
(additive digit cancellation). Moreover, contrary to our 
expectations, we found that participants who used their 
phones more, and who were more attached to them, found the 
tasks more fun/exciting and effortless, if they completed them 
with their phone present. 

Keywords: attention; distraction; cell phones; smartphones; 
effort; task performance 

Introduction 
A growing amount of research in the cognitive science of 
attention studies how workers and students navigate a 
workspace with ample opportunities for distraction and/or 
multitasking (Cain & Mitroff, 2011; Mark, Voida, & 
Cardello, 2012; Ophir, Nass, & Wagner, 2009; Pea et al., 
2012; Ralph, Thomson, Cheyne, & Smilek, 2014). Recently, 
this strand of research has moved on to how smartphones 
influence their users’ attention. This is an important topic, 
since more than 72% of the US population own 
smartphones (Pew Research Center, 2016), and because it 
has very real consequences: the US Department of 
Transportation recently urged mobile companies to develop 
a simplified ‘Driver Mode’ for smartphones, due to an 
alarming rise in traffic accidents related to distracted driving 
(NTHSA, 2016).  

A couple of widely cited studies have reported negative 
effects of the mere presence of cell phones on social 
interactions. Przybylski & Weinstein (2012) varied whether 
or not a mobile phone was placed next to strangers engaged 

in a conversation task and found that participants reported 
lower relationship quality and partner closeness when a cell 
phone was present. A follow-up observational study found a 
similar effect in a coffee-shop setting (Misra, Cheng, 
Genevie, & Yuan, 2014). However, the results from these 
studies are open to a multitude of interpretations (e.g. 
various meanings of phone presence in a social context). 

Our point of departure was a controlled study by 
Thornton et al. (2014) who in a non-social context 
investigated effects of cell phone presence on performance 
in simple cognitive tasks. They varied whether or not a cell 
phone was present on a participant’s table while he/she 
completed a series of tasks (digit cancellation: searching for 
and crossing out target numbers among other numbers, or 
trail making: connecting consecutively numbered or lettered 
circles displayed in random order). They found that people 
performed worse in more challenging versions of these tasks 
(crossing out pairs of target numbers that add up to a 
specific number; connecting circles so that consecutive 
numbers and consecutive letters alternate, e.g. 1-A-2-B-3-C-
…), when a cell phone was present. The authors concluded 
that the mere presence of a cell phone, even when not in 
use, can be distracting and cause performance deficits on 
tasks that require full attention for optimal performance. 

The experiments by Thornton et al. have potentially wide-
reaching implications, from distracted driving to 
performance in schools and workplaces (Thornton et al., 
2014). However, no replication studies have been conducted 
to establish the reliability of their findings. Moreover, their 
study had limitations: In their first experiment, they 
manipulated the presence of an experimenter’s cell phone 
rather than the participant’s own. In their second 
experiment, they varied the presence of participants’ own 
phone but did not check whether their procedure for doing 
so made participants suspicious about the purpose of the 
experiment. They also did not test any theoretical 
frameworks that would explain their observed effects. 
 

The present research 
We followed up on Thornton et al.’s study, addressing these 
limitations: We i) conducted a replication study using their 
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original stimuli for the digit cancellation task1 (responding 
also to general calls for replication studies, cf. Francis, 
2012; Nosek, Spies, & Motyl, 2012); ii) improved the 
original procedure to study effects of presence of 
participants’ own smartphones while ruling out suspicion; 
and iii) tested a new theoretical framework for 
understanding the effects. In relation to the latter, we 
applied Kurzban et al.’s ‘opportunity cost’ model of 
attention and mental effort (Kurzban et al., 2013). 
According to this cognitive model, the human mind 
continuously computes the opportunity costs of our 
available tasks, i.e. the value of options that one is missing 
out on by persisting on the current task. The higher the 
perceived opportunity costs, the more the current task will 
feel mentally effortful and/or boring, with decreased quality 
of performance to follow. This model is well suited to 
predict effects of smartphones: Smartphones give immediate 
access to a virtual infinity of stimulating and relevant 
content, from global news to social gossip and video games. 
Insofar as they therefore afford opportunities for highly 
rewarding activities other than the task at hand, smartphone 
presence should increase the current task’s opportunity 
costs. In turn, this might make one’s current task feel more 
boring or effortful, and cause decreased quality of 
performance. Hence, our predictions were: 

 
Prediction 1 (replication): Average scores in the additive 

digit cancellation task will be lower when a smartphone is 
present than when it is absent. 
 

Prediction 2: The digit cancellation tasks will feel more 
effortful to complete when a smartphone is present than 
when it is absent. 
 

Methods 

Participants  
53 participants (50 female) were recruited at the University 
of London, Royal Holloway2. Mean age was 18.8 years (SD 
= 1.4, range 17-27). 

Materials 
Digit Cancellation Task Participants completed two 
versions of a digit cancellation task, using Thornton et al.’s 
original stimuli. In both tasks, participants were given a 
piece of paper containing 20 rows of 50-digit strings. In the 
‘simple’ version, participants cross out every instance of the 
number specified at the beginning of each row (e.g. 3: 
7301638…). In the ‘additive’ version, participants cross out 

                                                             
1 Thornton et al. had observed the largest effect size in the digit 

cancellation task, so we chose to include only this task to make 
room for additional measures testing the opportunity cost 
framework. 

2 Thornton et al. found no effects of gender in the original study, 
so we did not attempt to balance the gender representation in our 
sample of participants. 

every instance of two consecutive numbers that, when 
added, equal the digit specified at the beginning of each row 
(e.g. 5: 1237814…). In the ‘simple’ version participants 
cross out as many numbers as possible in 90 seconds; in the 
‘additive’ version they cross out as many pairs of numbers 
as possible in 180 seconds.  

 
Effort Measure The participants filled in a brief 
questionnaire about how effortful they thought each task 
was to do. Participants indicated a) how boring or exciting 
the task was (1 = Very boring, 7 = Very exciting), b) how 
effortless the task was (1 = Intensely effortful, 2 = 
Completely effortless), c) how fun the task was (1 = Not fun 
at all, 7 = Intensely fun), and d) how difficult the task was 
(1 = Not difficult at all, 7 = Intensely difficult). We 
constructed the questionnaire to probe the experiences 
mentioned by Kurzban et al. (2013) as dimensions of effort 
that correspond to perceived opportunity costs. 
 
Individual Difference Questionnaires Following Thornton 
et al., participants completed a) the Attentional Behaviour 
Rating Scale (Ponsford & Kinsella, 1991), a measure of 
general attentional difficulties, b) a Cell Phone Usage 
survey (Thornton et al., 2014), a measure of overall cell 
phone use, c) the Possession Attachment survey (Weller, 
Shackleford, Dieckmann, & Slovic, 2013), a measure of 
how attached participants feel to their phone, and d) general 
demographics. 
 

Procedure 

 
 

Figure 1: Experimental procedure 
 
After signing a consent form, participants were asked to use 
their phone to photograph one of four objects placed on a 
desk. After the participant took the photo, an RA asked to 
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look at it and made a note of the object photographed and 
the photo’s orientation. (What the participant photographed 
was irrelevant – the purpose of this initial task was to check 
if the participant had a smartphone, and to give the RA 
control of the phone’s placement without making the 
purpose of the experiment obvious.) Next, participants were 
seated. In the phone-present condition, the RA placed the 
phone face-up near the edge of the table and said “I’ll just 
leave this here, if that’s okay”. In the phone-absent 
condition, the RA placed a stack of post-it notes near the 
edge of the participant’s table, and asked the participant to 
turn off their phone and put it away in their bag. Participants 
were then given one of the digit cancellation tasks to 
complete (order was counterbalanced). After completing the 
task, they filled in an effort measure. Then they completed 
the second digit cancellation task, and filled in another 
effort measure. Finally, the participants filled in an open-
ended question about what they thought the purpose of the 
experiment was, followed by the questionnaires. The 
procedure is summarized in figure 1. 

Results 
No participants reported suspicion that the purpose of the 
experiment was to study effects of phone presence. 

Prediction 1: Phone presence and cancellation 
score 
In the simple digit cancellation task, there was no significant 
difference between cancellation scores in the phone-present 
(Mdn = 65.0, IQR = 11) and phone-absent (Mdn = 69.5, 
IQR = 14.2) conditions, W = 348.5, p = 0.303. Similarly, in 
the additive cancellation task there was no significant 
difference between scores in the phone-present (Mdn = 
20.0, IQR = 4.5) and phone-absent (Mdn = 18.0, IQR = 6) 
conditions, W = 259.5, p = 0.62. 

As will be discussed, scores in the additive cancellation 
task were highly left-skewed, with very few participants 
obtaining a score higher than 23 (see Fig. 2). 

 

 
Figure 2: Distribution of scores  
in the additive cancellation task. 

                                                             
3 The distributions of cancellation scores were not normal, so we 

applied Wilcoxon’s rank-sum test. (t-test gave similar results) 

Table 1: Scores in the individual difference measures 
 

  Phone present Phone absent 
  Mean SD Mean SD 

Attentional behaviour 43.3 1.2 41.9 1.2 
Cell phone use 57.0 2.3 58.3 1.6 

Possession attachment 17.4 0.9 17.3 1.0 

 

Prediction 2: Phone presence and subjective effort 
To test effects on subjective effort, we first did a principal 
component analysis of responses on the effort measure. 
Scores for the simple cancellation task clustered on a 
‘fun/excitement’ and a ‘difficult/effortful’ factor, whereas 
scores for the additive cancellation task clustered on a single 
factor of ‘effortlessness’. We computed a score for each 
participant on these three factors and used them as our 
measures of ‘effort’. 

There was no main effect of phone presence on how 
effortful participants found the tasks, neither in the simple 
cancellation task (‘fun/excitement’: phone-present, Mdn = 
4.75, phone-absent: Mdn = 4.50, W = 285, p = 0.65; 
‘difficult/effortful’: phone-present: Mdn = 3.0, phone-
absent: Mdn = 3.5, W = 358.5, p = 0.32) nor the additive 
cancellation task (‘effortlessness’: phone-present: Mean = 
3.81, SE = 0.17, phone-absent: Mean = 3.48, SE = 0.21, 
t(43.58) = -1.25, p = 0.22).4 

Interactions: Effects of personality variables 
To explore whether the personality variables interacted with 
effects of phone presence, we split participants into ‘high’ 
and ‘low’ scoring groups on the questionnaires (Attentional 
Behaviour, Cell Phone Usage, and Possession Attachment), 
separating the groups at the median. We conducted factorial 
ANOVAs for each effort dimension, using ‘high’/’low’ 
questionnaire category as predictors. In the simple 
cancellation task, there was a significant interaction between 
smartphone presence and Cell Phone Usage, F(1, 41) = 
5.00, p = 0.03: When a phone was present, participants high 
on Cell Phone Usage rated the task as more fun/exciting 
(Mean = 5.17, SD  = 1.05), than did those low on Cell 
Phone Usage (Mean = 4.47, SD = 0.72), p = 0.039. In other 
words, participants who generally use their phones more 
found the task less boring when they completed it with their 
phone next to them. See Figure 3. 
 
 

                                                             
4 The distribution of effort ratings was not normal for the simple 

cancellation task, but conformed to normality for the additive task. 
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Figure 1: Interaction between phone use and phone presence 
on 'fun/exciting' ratings for the simple cancellation task. 

Error bars show standard errors. 
 

Similarly, in the additive cancellation task, there was a 
significant interaction between smartphone presence and 
Possession Attachment, F(1, 41) = 4.40, p = 0.04. When a 
phone was present, participants high on Possession 
Attachment found the task more effortless (Mean = 4.04, 
SD = 0.90), than those less attached to their phones (Mean = 
2.94, SD = 1.02), p = 0.10. In other words, participants more 
addicted to their phones felt that the task required less effort 
if they had their phone next to them. See Fig. 4. 

 
 

 
 
Figure 2: Interaction between phone attachment and overall 
scores on 'effortlessness' in the additive cancellation task.  

Discussion 
In terms of task performance, we, similarly to Thornton et 
al., did not observe any statistically significant effect of 
phone presence on performance in the simple digit 

cancellation task. More importantly, however, we did not 
replicate Thornton et al.’s central finding that phone 
presence causes diminished performance on the additive 
version of the task. Two things should be noted: Even 
though our sample size was similar to the original study, it 
may have been too small to reliably detect this effect. We 
ran a post-hoc power analysis of Thornton et al. and found 
that their experiments (n = 54 and n = 47) only had a power 
of .65 to detect an effect in a two-tailed t-test. Sample size 
should have been n = 66 just to obtain a power of .8. Note, 
however, that we did not even observe a trend towards 
replication – in fact, in our study, additive cancellation 
scores were marginally larger in the phone-present than the 
phone-absent condition. Moreover, recall that scores in the 
additive task were left-skewed with very few participants 
obtaining a score higher than 23. When we went over 
Thornton et al.’s stimuli, we discovered that one row of 
numbers (row nine), located when most participants were 
running out of time, had no targets at all. Moreover, the two 
rows before this one contained only one target each, in 
contrast to the first six rows which contained from two to 
four targets each. This will have reduced variation in 
performance between participants in the higher end of the 
performance distribution. For example, if one participant 
just managed to cross out the single target in row eight 
before running out of time, whereas another were ahead and 
managed to search through also all of row nine, these two 
participants will still have been given the same score. 
Hence, the material design is likely to have reduced our 
power to detect an effect, because it will have masked some 
of the variation in performance between participants. 

Another issue is that in our setup, each participant only 
completed two versions of the cancellation task, whereas in 
Thornton et al.’s original study each participant completed 
two versions of the cancellation task and two versions of the 
trail making test. Whereas Thornton et al. did not discuss 
this, it is possible that effects of phone presence on task 
performance in this particular lab scenario is contingent on 
some degree of mental fatigue or shift in motivation from 
performing more tasks (Baumeister, Bratslavsky, Muraven, 
& Tice, 1998; Inzlicht, Schmeichel, & Macrae, 2014). 
However, we did add an effort measure for participants to 
complete after each task, which reduced the difference in 
participant investment between the original study and ours.  

 
In terms of subjective effort, there was also no main effect 

of smartphone presence. However, we observed an 
unpredicted effect in which participants using their phones 
more often, and participants more attached to their phones, 
found the tasks more fun/exciting and effortless, 
respectively, if they completed them with their phones next 
to them. We cannot draw any strong conclusions due to our 
limited sample size and the post-hoc nature of this analysis, 
but future studies should test if the relationship replicates.  

The interaction ran in the opposite direction from what we 
had initially predicted from Kurzban et al. (2013)’s 
‘opportunity cost’ framework. Nevertheless, we still expect 
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this framework to be useful to approach cognitive effects of 
information communication technologies. From ‘fear of 
missing out’ to popular anti-distraction apps like Freedom 
and SelfControl that people use to restrict the functionality 
of their own devices, many current phenomena suggest that 
opportunity cost models remain important to explore. 
However, if the interaction effect replicates, it might mean 
that factors like anxiety from separation from one’s phone 
(Cheever, Rosen, Carrier, & Chavez, 2014) or positive 
feelings from having more stimulation available (Gazzaley 
& Rosen, 2016) provides better explanations than Kurzban 
et al. (2013)’s opportunity cost model. 

Finally, Kurzban et al.’s paper offered a persuasive, but 
abstract model. The effort measure we developed here is the 
first attempt to operationalize their opportunity cost model 
for experimental studies. Despite the present paper’s mixed 
findings, we encourage future studies to apply Kurzban et 
al.’s model to human-computer interaction research and to 
test the reliability and validity of our effort measure. 

 
In sum, follow-up research should establish whether 
Thornton et al.’s finding of a detrimental effect of phone 
presence on performance in the additive cancellation task is 
valid, by using larger sample sizes and adjusting the 
experimental stimuli to better pick up variation between 
participants. Future studies should also test whether heavy 
phone users really do feel that tasks are less, rather than 
more, effortful to complete when they have their phones 
present. With smartphone use now ubiquitous, it should be a 
priority in cognitive science research on executive 
functioning to establish conclusive findings on how 
smartphones affect users’ attention and performance, and 
why. 
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Abstract 

Predicting the effect of persuasion campaigns is difficult, as 
belief changes may cascade through a network. In recent 
years, political campaigns have adopted micro-targeting 
strategies that segment voters into fine-grained clusters for 
more specific targetting. At present, there is little evidence 
that explores the efficiency of this method. Through an 
Agent-Based Model, the current paper provides a novel 
method for exploring predicted effects of strategic persuasion 
campaigns.  

The voters in the model are rational and revise their beliefs 
in the propositions expounded by the politicians in 
accordance with Bayesian belief updating through a source 
credibility model.  

The model provides a proof of concept and shows strategic 
advantages of micro-targeted campaigning. Despite having 
only little voter data allowing crude segmentation, the micro-
targeted campaign consistently beat stochastic campaigns 
with the same reach. However, given substantially greater 
reach, a positively perceived stochastic candidate can nullify 
or beat a strategic persuasion campaigns.  

 

Keywords: Agent-Based Model; Persuasion; Strategic 
campaigns; Politics; Voting simulation 

Introduction 

Persuasion is paramount in political campaigns, and source 
credibility is a key component of a successful campaign. It 
influences a range of human cognitive phenomena related to 
reasoning, argumentation, and judgement and decision-
making. It influences the reception of persuasive messages 
(Petty & Cacioppo, 1984; Chaiken & Maheswaran, 1994), 
plays a vital part in the development of children’s 
perception of the world (Harris & Corriveau, 2011), impacts 
juror decision making (Lagnado et al., 2012), increases 
adherence with persuasion strategies (Cialdini, 2007), and 
influences how people are seen in social situations (Fiske et 
al., 2007; Cuddy et al., 2011). The specific normative 
function of source credibility in argumentation, however, is 
still debated. For example, the dual-process-based 
Elaboration-Likelihood Model (Petty, 1981) assigns 
message source to heuristic rather than analytic cues (Briñol 
& Petty, 2009) whilst recent Bayesian models integrate 
credibility in revising beliefs when given evidence from a 

source (Bovens & Hartmann, 2003; Hahn et al., 2012; 
Harris et al., 2015).  

Trustworthiness is an important factor in politics. It 
increases public policy compliance (Ayres & Braithwaite, 
1992), influences candidate choice (Citirin & Muste, 1999), 
increases intention of voting (Householder & LaMarre, 
2014, though not necessarily actual voting, see Dermody et 
al., 2010), increases societal cooperation (Fukuyama, 1995), 
and lack of trust may instigate civic participation (see Levi 
& Stoker, 2000 for a discussion of this). The current paper 
expands upon these findings by showing how source 
credibility influences the convincingness of an argument for 
a proposed candidate. 

In political literature, credibility factors include integrity, 
competence, fairness, flip-flopping, honest, equitable, and 
being responsiveness to public needs (Citrin & Muste, 1999; 
Levi & Stoker, 2000). Collating these, Mayer and 
colleagues identify credibility as ability, benevolence, and 
integrity (Mayer et al., 1995; Mayer & Davis, 1999). 
Empirical exploration of management corroborates such a 
definition (Colquitt et al., 2011 for a review) while social 
psychology partitions reliability in two main spheres: 
warmth and competence (Fiske et al., 2006; 2007; Cuddy et 
al., 2011). Further studies in management literature differ in 
whether they identify two (Jarvenpaa et al., 1998) or three 
credibility traits (Mayer et al., 1995).  

The model employed in the paper is in line with the 
factors identified in the above studies. Specifically, we 
divide credibility into two factors: expertise (the capability 
to provide accurate information) and trustworthiness (the 
willingness to provide accurate information).  

Micro-targeted campaigns 
Political campaigns attempt to persuade voters that they 
should support and vote for a particular candidate or 
political position. Unsurprisingly, the competitive nature of 
electoral campaigns has led to the development of strategies 
regarding belief updating and behaviour changes, in 
particular through the use of data and voter segmentation 
(O’Neil, 2016). Typically, an election campaign is divided 
into two phases: a persuasion phase that focuses on 
changing the minds of the voters and a “get-out-the-vote” 
phase that focuses on making sure the voters do indeed turn 
out for the election. While the former phase typically lasts 
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for the duration of the entire campaign, the latter is typically 
implemented in the final 3-4 days (see Green & Gerber, 
2008). In the current paper, we focus on the element of 
political campaigns concerned with changing the minds of 
the voters (i.e. the persuasion phase). Specifically, we 
explore the potential strategy advantages of knowing the 
voters’ attitudes towards the persuader (the politician). 

Companies increasingly accrue data on their customers. 
Given potential access to and purchase of large-scale data 
sets about voters, recent years have seen the development of 
specifically targeted political campaigns, known as micro-
targeted campaigns (MTCs, see Issenberg, 2012). While 
traditional campaigns use rough voter segmentation such as 
by gender, income, or place of habitation, individual voter 
models allow for fine-grained segmentation (e.g., upper-
middle class, Caucasian, suburban, father, Prius-owner, 
Seattleite; as well as top-five travel destinations, frequented 
news sites, etc.). Such data allows for highly specified 
models of the individual voter concerning political leaning, 
policy priorities, and voting likelihood. The models allow 
for targeted political adverts that address specific political 
issues in a way that is tailored to the individual in question.  

There is currently little academic research conducted on 
the effect and strategic administration of micro-targeted 
campaigns in elections. First, micro-targeted models are a 
recent element in election campaigns (Issenberg, 2008). As 
such, most models actually used in campaigns are subject to 
non-disclosure agreements and are kept by the responsible 
companies. Second, it is difficult to assess the quality of 
campaigns; partly due to the aforementioned secrecy 
regarding the exact models, and partly due to the complexity 
of campaigns, given the number of free parameters and the 
uniqueness of each campaign.  

The current paper focuses on changes of electorate beliefs 
and not on the likelihood of voting (at the end of the 
simulation (i.e. campaign period), all voters vote with a 
probability of 1). Election campaigns unfold over time, 
where campaigns can contact voters and attempt to persuade 
them. As such, the persuasion attempt of the politician is a 
successive campaign designed to convince the electorate 
that the voters should support the persuader in question.  

 While we do not test specific campaign models, the 
paper provides a proof concerning the potential effect of 
micro-targeted campaign strategies through Agent-Based 
Model simulation of interactions between politicians and 
voters. We stress the exploratory nature of the study, as the 
model is necessarily simplified. Rather than testing the 
predictive power of a specific voter model, we explore the 
strategic potential of MTCs through a Bayesian source 
credibility model, which has been developed and tested in 
previous studies. In the following, we present Agent-Based 
Models as a technique for exploring the development of 
aggregate patterns (such as changes in beliefs in a 
population) across time. Aside from testing the potential 
effectiveness of MTCs, the paper presents Agent-Based 
Models (ABMs) as a novel method for simulating the 
predicted effect of persuasion campaigns. 

A Bayesian source credibility model 
Bayesian approaches to reasoning and belief revision take 
point of departure in subjective, probabilistic degrees of 
beliefs in propositions where Bayes’ theorem captures the 
posterior degree of belief given a prior belief in the 
hypothesis and some new evidence (Oaksford & Chater, 
2007). The approach has been applied to argumentation 
theory (Hahn & Oaksford, 2006; 2007) where findings 
suggest that Bayesian reasoning may account for crucial 
elements of human information integration in practical 
reasoning. Most relevant to the current model, researchers 
have used Bayesian approaches to describe how humans 
integrate uncertain information from more or less reliable 
sources (Bovens & Hartmann, 2003). The model has been 
tested empirically (Harris et al., 2015; Madsen, 2016) and 
enjoys a good fit with observed responses.  

Taking point of departure from the Bayesian source 
credibility model, credibility is defined as a combination of 
trustworthiness and expertise (Hahn et al., 2009; Harris et 
al., 2015; see Fig. 1). In order to implement this model and 
to facilitate communication between persuaders (politicians) 
and persuadees (voters) and to capture the desired belief 
updating process, the members of the electorate have 
subjectively estimated beliefs about the credibility of each 
persuader. 

 
Fig. 1: A Bayesian source credibility model1 

Expertise refers to whether or not the persuader is capable 
of providing accurate and relevant information. For 
example, a politician may know the legislative framework 
connected with a policy proposal (thus increasing the 
chances of providing legislation that is legal and within 
constitutional law), a doctor may be more qualified to 
diagnose an illness compared with a layperson and so forth. 
Conversely, trustworthiness refers to the intention of 
providing accurate information. Regardless of the expertise 
of the source, the speaker might wish to misinform, lie, or 
otherwise deceive the listener. Expertise and trustworthiness 
are orthogonal and independent in the model (see Fig. 1) 
such that a person can be inexpert and yet intend to 
represent her available information as accurately as possible 
or a person can be highly expert within a field, but wish to 
misinform the listener. The source credibility model used in 
the current paper has previously been tested on appeals to 
political authority, which suggests that the model captures 

                                                             
1 P(E) = perceived expertise (0-1); P(T) = perceived trust (0-1); 

Rep is the represented statement (e.g., Hypothesis = 1) 
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part of how voters update their beliefs when politicians 
publically endorse or critique a policy (Madsen, 2016).  

As explained later, the persuaders in the model contact the 
voters and provide either a positive or a negative statement 
concerning a hypothesis. To calculate the expected posterior 
belief in the likelihood of the hypothesis (e.g. the goodness 
of the candidate), we apply the source credibility model. 
The equation used to calculate the posterior is an expanded 
version of Bayes’ theorem that incorporates trustworthiness 
and expertise within the theorem. It is taken from Harris et 
al. (2015) and relies on advances made in Bovens and 
Hartmann (2003) and Hahn et al. (2009) on the concept of 
source reliability (Hahn et al., 2012).  

 
where p(h|rep) represents the probability that the hypothesis 
is true (h) given a confirming statement (rep). P(h) 
represents the prior belief in the hypothesis, and p(rep|h) 
and p(rep|¬h) represent the conditional probability that the 
source would provide a positive statement if indeed the 
hypothesis was true or false. Trustworthiness and expertise 
are integrated within p(rep|h) and p(rep|¬h) through the 
combination of these conditionals2.  

To parameterise the model, p(exp) and p(trust) represent 
prior beliefs in expertise and trustworthiness. Conditional 
probabilities (see footnote 1) represent the epistemic 
relationship between model parameters and the likelihood of 
providing true or good advice. For example, p(rep|h, exp, 
trust) refers to the likelihood that a speaker declares a 
hypothesis to be true when the speaker has complete and 
perfect knowledge of the topic and is unequivocally 
trustworthy in a world where the hypothesis happens to be 
true regardless of the statement of the speaker.  

The model allows for parameter-free belief revision such 
that the agent makes use of its estimation of the persuader’s 
source credibility to update its belief when the persuader 
contacts the voter with a persuasive statement.  

Agent-Based Modelling 
Traditional equation-based models typically take point of 
departure in cognitive functionality in isolation (e.g. belief 
revision given new information) or in dyads (e.g. prisoners’ 
dilemma). However, when agents can interact and influence 
each other through time, across space and between multiple 
agents, behaviour may become dynamic and adaptive. If this 
happens, patterns may become computationally intractable, 
making predictions difficult or impossible with isolated or 
dyadic models, as the system becomes complex (see 
Parunak et al., 1998). ABMs allow for simulations of 
interactions between agents and their environment and 
between multiple agents (Epstein & Axtell, 1996). In the 

                                                             
2 p(rep|h) = p(rep|h, exp, trust) * p(exp) * p(trust) + p(rep|h, 

¬exp, trust) * p(¬exp) * p(trust) + p(rep|h, ¬exp, ¬trust) * p(¬exp) 
* p(¬trust) + p(rep|h, exp, ¬trust) * p(exp) * p(¬trust), mutatis 
mutandis for p(rep|¬h) 

paper, we use this method to simulate a campaign with 
interactions between politicians and voters. Each round in 
an ABM is called a tick. Here, each tick represents a 
campaign day. For the current model, the ABM requires 
agents and links between agents.  

Agents 
Agents are the actors in the simulated model world. The 
cognitive make-up of each agent may consist of any rules 
constrain or enable relevant behaviours within the simulated 
world. By applying the relevant cognitive rules, agents can 
revise their beliefs about the model world by interacting 
with the environment. Further, agents can have physical 
rules such as metabolism, energy consumption, and age. 
This allows for simulated life-spans in which agents can 
live, learn, generate progeny, and die. The physical and 
cognitive rules allow for heterogeneity, as agents may differ 
in essential characteristics. This allows for dynamic models 
of heterogeneous populations.  

In the ABM presented in this paper, there are three types 
of agents: voters, strategic persuaders and stochastic 
persuaders. The persuaders’ aim to convince the voters to 
support them in an election. Politicians engage with voters 
by providing a statement, supporting one candidate or the 
other (H = 0 or 1). Voters update their belief in the goodness 
of each candidate on the basis of the prior beliefs (p(h)) and 
their perception of the candidate (using the above Bayesian 
source credibility model).  

Links 
While agents have cognitive rules that apply to agents in 
isolation, ABMs allow for interactivity. Links represent 
connections between agents that may be encoded with 
functional capacities. These can be any and all social links 
that inform and influence behaviour. Links can be direct 
(e.g., providing information to another agent, fighting with 
another agent) or indirect (e.g., some agents might prefer to 
be in the vicinity of other types of agents). In the current 
model, only direct links are employed, as the persuaders 
contact voters directly.  

In the current model, politicians establish links by seeking 
out voters. Stochastic candidates engage randomly with 
voters while MTC candidates only engage with voter that 
has a positive attitude towards the candidate (using the 
‘signal factor’ described in the following section). There are 
no links between voters in the current model. Introducing 
social structure will be a natural development in future 
work. Indeed, we strongly suspect that MTC candidates 
would be more efficient in social structures, as they can 
target ‘community leaders’ and important social nodes.  

Simulating Micro-targeted campaign strategies 
In order to tentatively explore the effect of MTCs, we 
simulate the span of an election campaign through an ABM 
in which the politicians (the persuaders) can interact with 
the voters (the persuadees). Though exploratory in nature, 
the model has two aims. First, to our knowledge, although 
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some models have explored opinion chance in politics (e.g. 
Duggins, 2016), ABMs have not been used to directly 
explore campaign strategies. The paper consequently 
provides a new method for exploring the efficiency of 
persuasion campaign strategies. Second, by implementing a 
simplified voter and strategy model, the efficiency of 
minimal voter knowledge is explored. As the strategic 
potential of MTCs increases given higher voter complexity 
(e.g. if voters have prioritised political beliefs), the 
simplified model explores the efficiency of MTCs in 
situations where they are expected to be least effective. As 
such, the model explores a conservative modelling scenario. 
In the following, we present the Agent-Based Model.   

Agents The model consists of three types of agents: 
Voters, Micro-target persuader (MTC), and stochastic 
persuader (non-MTC). The physical space plays no role in 
the current model (as the interactions between the persuader 
and the persuadee may be likened to sending out pamphlets 
or generating cold-calls). Consequently, voters are randomly 
distributed across simulation space. All voters were outfitted 
with the Bayesian source credibility model to inform their 
belief revision process. To operationalise the model, each 
voter generates an expertise and trustworthy score for each 
candidate from a normal distribution (as described later, we 
manipulate the means in the two simulations, such that 
mean = 0.5 or = 0.6, SD = 0.25). To fully parameterize the 
model, agents are given conditional probabilities:  

 
H H H H ¬H ¬H ¬H ¬H 

T, E T, ¬E ¬T, E ¬T, ¬E T, E T, ¬E ¬T, E ¬T, ¬E 
80.38 58.21 34.63 18.04 22.59 42.3 59.90 71.26 

Table 1: Conditional probability table 
 
These are taken from Madsen (2016), as this study applies 
the model to political belief revision. This allows for belief 
revision given persuader statements (with no free 
parameters) and further allows for agent heterogeneity, as 
some agents will rate one candidate highly while another 
will rate the same candidate poorly.  

To provide a ‘signaling’ factor for the MTC candidate, 
voters average trustworthiness and expertise scores to 
generate a ‘credibility score’. Each voter generates a prior 
belief from a normal distribution (mean = 0.5, SD = 0.25, 
bounded between 0.01 and 1), representing a voter’s initial 
(prior) likelihood of voting for either candidate. This 
introduces the eventual decision (voting) rule: If a voter has 
p(candidate) < 0.5, it favours the non-MTC candidate; if 
p(candidate) > 0.5, it favours the MTC candidate. The 
campaign runs for 50 days (50 ticks). At the end of the 
simulation, voters vote for their favoured candidate. There 
are 10,000 voters in the simulation.  

Both persuaders’ aim to persuade voters to shift their 
p(candidate) towards their own position. In order to do so, 
they establish connection with voters and make opposite 
claims. In accordance with the source credibility model, the 
non-MTC candidate represents p(candidate) = 1 while the 
MTC candidate represents p(candidate) = 0. This gives full 
implementation of the Bayesian source credibility model 

where the voter updates the prior belief given representation 
by a (more or less) credible source. After each connection, 
the contacted voter takes P(candidate|rep) - i.e. the posterior 
- as their new value for p(candidate)3.  

For each tick, the candidate can establish contact with X 
voters, defined as ‘candidate reach’. In the simulations, the 
MTC candidate has a reach of 20 while we manipulate the 
reach of the non-MTC candidate to test the efficiency of the 
MTC strategy. In Fig. 2 below, the reach ratio is the reach 
of the non-MTC divided by the reach of the MTC.  

Central to the model, the MTC and non-MTC campaigns 
differ in their contact selectivity. The non-MTC is fully 
stochastic and thereby corresponds to a blind campaign that 
distributes leaflets or conducts cold-calls with no knowledge 
of the electorate. The MTC segments voters and will only 
contact voters with a favourable impression of the 
credibility of the candidate (voters with a signaling factor > 
0.5). This selection process does not take into account the 
voter’s prior belief in the candidate. As such, the underlying 
source credibility factors determine whether the voter is 
"open" to the candidate's message (i.e. will update in the 
desired manner). Of the sub-group of (desirable) voters who 
fit this criterion, a random selection (the amount based on 
"reach") are selected for contacting. Both campaigns may 
contact the same voter multiple times during the simulation, 
but not more than once on a single "day". 

In sum, voters entertain prior beliefs about each candidate, 
rate each candidate for trustworthiness and expertise, and 
have a signaling factor. When a candidate contacts the voter, 
the voter updates the belief in p(candidate) in accordance 
with the Bayesian source credibility model. Candidates are 
either stochastic (non-MTC) or use the signaling factor to 
identify favourably disposed voters. Each candidate can 
reach a fixed number of voters each click. There are 10.000 
voters and 2 candidates, and the campaign lasts for 50 days 
(ticks). At the end of each simulation, voters cast their vote 
for the candidate they find most favourable.    

Main findings 
We conduct two main manipulations. First, we manipulate 
the mean credibility rating of each candidate by altering 
voter perception of candidate trust and expertise (mean = .5 
or mean = .6, SD = .25), providing a 2x2 simulation. 
Second, for each of the credibility combinations, the reach 
ratio of the non-MTC is between 1-10 (1 represents 
simulations where the non-MTC and MTC have identical 
reach; 10 represents simulations where the non-MTC can 
reach 10 times as many voters per tick). The reach of the 
MTC candidate is always 20. Fig. 2 illustrates the 
percentage of voters who supported the non-MTC on the y-
axis and the reach ratio of the non-MTC on the x-axis.  

                                                             
3 While it is not possible in the current model, this enables 

negative campaigning, as candidates could provide a negative 
representation (e.g., p(candidate|¬rep)) and attacks designed to 
undermine the trustworthiness or expertise of the opposing 
candidate. Intentionally, the model is built compartmentally to 
allow for increasingly complex persuasion campaigns.  
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Fig. 2: Election outcome (p(cred) = .5; p(cred) = .6) 

 
The simulations point to two main conclusions. First, a non-
MTC with mean credibility rating of .5 is inefficient when 
run stochastically. As opinions about the candidate are 
equally divided, a stochastic strategy will necessarily 
engage with an equal number of supporters and adversaries. 
As such, blind strategies only work in when the campaign 
expect general voter estimation of the candidate to be > .5. 
If the candidate is seen as distrustful, a blind campaign will 
be ineffective or detrimental and will be beaten by 
campaigns with simple winnowing strategies.  
 Second, though MTCs provide a distinct advantage in 
terms of persuasion strategies, the stochastic campaign can 
beat the strategic campaign through brute force if the 
average p(cred) of the stochastic candidate is > 0.5. If the 
reach of the non-MTC is roughly double, the effect of the 
MTC is cancelled out. If the reach ratio > 2, the non-MTC 
edges out the strategic campaign. This is an interesting 
finding, as the MTC is effective, but can be beaten. Given 
the possibility of simulating and calculating a tipping point 
where a stochastic candidate (with credibility rating > .5 
among the voters) beat strategic campaigns, it is possible to 
conduct cost-benefit analyses to determine the best available 
strategy given a limited campaign budget. In general, 
though highly simplified, the simulations show that it is 
methodologically possible to estimate the expected effect of 
a strategic (or stochastic) persuasion campaign by applying 
cognitive rules to the persuaders and persuadees in a 
dynamic environment.    

Discussion and future developments 
The current model provides an important proof of concept 
that MTCs have a non-trivial advantage in a limited world 
where the voters revise their beliefs in the same manner and 
where the candidates can only advocate their position in a 
simplified way. We believe the paper provides a novel 
method for simulating and analysing electoral strategies 
using Agent-Based Models. However, as a proof of concept, 
this leaves room for further model developments.  

First, real-life voters may exhibit individual differences 
concerning moral foundation (Haidt, 2012) or reasoning 
strategies (Lodge & Taber, 2013). Voters in the current 
model are cognitively homogenous (though epistemically 
heterogenous) who revise their beliefs by the same process. 
Future work could integrate cognitive voter heterogeneity, 

which would allow for exploration of strategic choices. 
Adding personality profiles would make the model more 
realistic and interesting in terms of testing election strategies 
for actual elections. Further, real-life campaigners do not 
have a perfect signal from each voter. Consequently, noise 
needed to be added to voter signalling.  

Second, in the model, voters consider one proposition 
whereas elections often consist of a multitude of attitudes, 
beliefs, and desires. The present framework may easily be 
extended to include multiple policy beliefs, preference 
rankings, and multiple candidates.  

Third, the MTC only considers the favourability of the 
candidate. Given additional data about complex voters (e.g., 
policy preference, personality, etc.), a sophisticated MTC 
may target voters more strategically. For example, an MTC 
could differentiate between swing and secure voters. 
Additionally, some voters are more likely than others to 
vote regardless of their political conviction. This is essential 
for strategic implementation of get-out-the-vote strategies.  

Fourth, in the model, voters cannot communicate with 
each other. To allow for greater belief diffusion and for a 
more dynamic simulation of an electorate, it is reasonable to 
assume voter interaction where voters can share beliefs and 
persuade each other through their individual networks. 
Models that explore the role of hierarchy in opinion 
dynamics would be particularly relevant to explore this 
function (see e.g., Quattrociocchi et al 2014; Watts & 
Dodds, 2007). Some voters might be communal leaders and 
have more impact than others. Given weighted network 
structures of the electorate, it would be possible to simulate 
complex persuasion strategies. This would simulate the 
relative efficiency of MTCs in highly complex, highly 
dynamic, and highly adaptive elections.  

We predict that models with more complex voter belief 
systems, individual voter differences, and with interaction 
between voters will yield much higher benefits to MTCs. 
That is, we predict a positive correlation between available 
electorate data and the efficiency of an MTC. Concurrently, 
we also predict a positive correlation between the 
complexity of the electorate and the cost of running an 
MTC, as complex segmentation requires more data and 
sophisticated models.  

By applying a cognitive updating rule in an Agent-Based 
Model, the paper presents a new methodology for 
simulating dynamic persuasion campaigns and for 
estimating their expected effect. We show a strategic 
advantage of MTCs. In the simulations, non-MTCs require 
double reach to cancel out this advantage. Despite having 
only simple voter data that allows for crude segmentation 
and a very crude selection strategy, the MTC consistently 
bested stochastic a candidate with the same reach (even 
when the opponent had a greater average credibility). 
However, given greater reach, a positively perceived 
stochastic candidate can beat a strategic candidate.  
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Abstract 

Conspiracy theories cover topics from politicians to world 
events. Frequently, proponents of conspiracies hold these 
beliefs strongly despite available evidence that may challenge 
or disprove them. Therefore, conspiratorial reasoning has 
often been described as illegitimate or flawed. In the paper, 
we explore the possibility of growing a rational (Bayesian) 
conspiracy theorist through an Agent-Based Model. The agent 
has reasonable constraints on access to the total information 
as well its access to the global population.  

The model shows that network structures are central to 
maintain objectively mistaken beliefs. Increasing the size of 
the available network yielded increased confidence in 
mistaken beliefs and subsequent network pruning, allowing 
for belief purism. Rather than ameliorating and correcting 
mistaken beliefs (where agents move toward the correct 
mean), large networks appear to maintain and strengthen 
them. As such, large networks may increase the potential for 
belief polarization, extreme beliefs, and conspiratorial 
thinking – even amongst Bayesian agents.   

Keywords: Conspiratorial thinking; Extreme beliefs; Agent-
Based Models; Bayesian updating 

Introduction 
Truth is the shattered mirror strewn in myriad bits; while each 

believe his little bit the whole to own 
Richard Burton (The Kasîdah of Hâjî Abdû El-Yezdî) 

 
In recent years, scientists, scholars, and commentators have 
remarked upon the apparent rise of epistemic echo chambers 
(see e.g., Bakshy et al., 2016) and increasing political 
polarization. Echo chambers refer to communities, online or 
otherwise, that interact predominantly with themselves and 
who rarely, if ever, seek information aside from the 
information available within the chamber. Whether 
endogenously created (such as cults) or exogenously created 
(such as living on an island with no contact to the outside 
world), the emergence and maintenance of epistemically 
enclosed systems and their consequences is interesting and 
worth studying. The current paper explores the possibility of 
generating, maintaining and strengthening encapsulated 
belief communities through an Agent-Based Model (Gilbert, 

2008) where every agent is rational (here, Bayesian) and 
where information is potentially available to challenge the 
viewpoint of the agent.  
 Specifically, we are interested in exploring the possibility 
of generating conspiratorial beliefs. That is, beliefs that are 
maintained despite being objectively false and there being 
available evidence to challenge or disprove the theory in 
question. Proponents of such beliefs frequently hold these 
positions strongly. We explore whether it is possible to 
strengthen confidence in objectively mistaken beliefs 
through a rational process given imperfect knowledge about 
the world. Rather than assuming illegitimate updating 
processes or special cognitive functionality, the model tests 
if, in principle, a Bayesian conspiracy theorist can emerge 
and be maintained. That is, the model explores whether or 
not individual differences are a necessary requirement for 
the emergence and maintenance of extreme beliefs.  

The Burton quote at the top of the introduction can be 
seen as foundational for the paper. It suggests that beliefs 
can be generated and maintained as a fragment of a larger, 
and often very different, picture. Further, it intimates that 
humans generate inferences about the world on the back of 
the evidence available to us at any given time in our lives. 
This information may come through first-hand experience or 
through other sources such as parents, peers, media outlets, 
and experts.  

In order to set the scene for the Agent-Based Model, we 
briefly consider how conspiratorial thinking has previously 
been approached in the literature.  

Conspiratorial thinking 
Conspiracy theories can be loosely defined as beliefs that 

are held strongly when evidence is broadly available to 
challenge or entirely refute the theory. Yet, proponents 
maintain (and might even strengthen) their belief in the 
theory despite the availability of this evidence. However, in 
order to adequately simulate emerging conspiracy theories, 
we need to employ a more stringent definition of 
conspiratorial thinking.  
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According to Barkun (2003), conspiracy theories are 
characterized by three traits. First, conspiracy theories 
operate under the assumption that nothing happens by 
accident. From a cognitive perspective, this may be 
described as causal oversensitivity where the reasoner 
generates causal links between disparate and supposedly 
separate pieces of information, leading to over-connection. 
Second, Barkun argues that for conspiracy theorists, nothing 
is really what it appears to be on the surface (i.e. the ‘real’ 
causal mechanisms between pieces of information is 
covered up(?) by any official story). This element, too, 
suggests a cognitive agent who over-weights and over-
generates causal links between independent pieces of 
information. For example, some proponents of the moon 
landing conspiracy theory believes the director of A Space 
Oddysey: 2001, Stanley Kubrick, to be involved in 
producing faked photography because Kubrick hired crew 
for 2001 who used to work for NASA (Frederick Orway and 
harry Lange). Finally, Barkun argues that conspiracy 
theorists tend to believe things to be highly connected. To 
this end, Barkun argues that conspiracy theories eventually 
become enclosed systems that are falsifiable if confronted 
with additional evidence and therefore “a matter of faith 
rather than proof”. Presumably, this entails that conspiracy 
theorists might stop seeking new information and instead 
assume their beliefs to be a priori true. As evident from 
these definitions, the operationalizing of conspiracy theories 
usually involves special cognitive make-up and a heuristic 
process that treat information related to the conspiracy 
theory as qualitatively different from ‘normal’ belief 
updating. The current model explores whether these are 
valid assumptions. 

Indeed, Birchall (2006) describes conspiratorial thinking 
as illegitimate updating and belief maintenance (as opposed 
to normative, legitimate reasoning). In general, 
conspiratorial thinking is typically conceived as an 
abnormal and potentially fallacious (or illegitimate) 
reasoning process, which relies heavily on cognitively 
biased heuristics such as over-generation of causal links, 
erroneous attribution of motives, and mistaken perception of 
interconnectivity. Commonly, these conspiratorial thinking 
accounts assume conspiracies are a product of mistaken or 
misguided reasoning.  

In this paper, we provide a proof of concept that 
conspiratorial thinking can emerge from Bayesian rational 
paradigms given access to a subset of evidence and the 
possibility of interacting with other like-minded agents. As 
will be argued later, we believe both of these assumptions to 
be realistic and grounded in psychological findings. As will 
be explained further in the paper, we show that 
conspiratorial agents do not require special cognitive 
abilities or predispositions in order to be supremely 
confident in their (objectively mistaken) belief. This 
approach is reminiscent of work conceptualizing supposed 
reasoning flaws through cognitively reasonable processes. 
This work includes, but is not limited to, Bayesian accounts 
of argument fallacies (e.g., Corner et al., 2011; Harris et al., 

2012), a Bayesian model of appeals to authority (e.g. Hahn 
et al., 209; Harris et al., 2015), and skepticism in climate 
change (Cook & Lewandoswky, 2016). Further, Bayesian 
agents represent a rational process of integrating new 
information with prior beliefs pertaining to that hypthesis. 
For this reason, Bayesian agents have been used previously 
to explore belief diffusion in networks (see e.g. Jern et al., 
2009; Olsson, 2013; Denrell & Le Mens, 2017).  

While the current work builds on similar Bayesian 
accounts of belief updating, we provide a novel contribution 
to the field by implementing a computational, Agent-Based 
Model that allows for interaction between agents across 
time.  
 For the purpose of this paper, we take conspiratorial 
thinking to be strongly held beliefs that depart from the 
objective mean where evidence is available to challenge or 
refute the theory. Barkun and Birchall argue that these 
beliefs arise from mistaken or flawed heuristics and/or 
illegitimate reasoning processes that bias proponents of 
conspiracy theories toward connectivity, attribution of 
hidden intentions and over-generation of causal structures. 
Further, Grimes (2016) argues that conspiratorial beliefs are 
untenable with larger network structures, as the available 
information to challenge erroneous views increases. As 
discussed below, there are some potential challenges for 
conspiracy accounts that assume special cognitive functions 
such as oversensitivity toward causal connections as the 
default cognitive foundation. 

Challenges for traditional accounts 
The traditional perspectives on conspiratorial thinking may 
be challenged on at least two grounds. First, it is potentially 
problematic to ascribe different cognitive functions to the 
emergence of conspiratorial thinking for two reasons. For 
one, it is unclear whether this type of reasoning would 
permeate all beliefs held by that individual (e.g. would a 
conspiracy theorist also be prone to over-generate causal 
structures in billiards or snooker). If it were not systemic, it 
would (insufficiently) appear to be a post hoc account of a 
particular belief that happens to exhibit such properties. For 
another, it would not represent a process account of 
conspiratorial thinking. Rather, it would assume differences 
and apply these to arrive at the conclusion. Instead, we 
explore whether it is possible to generate objectively 
mistaken beliefs from the same cognitive processes that 
generate objectively true beliefs. Both of these would 
remove the expectancy of abnormality on the part of the 
conspiracy theorist.  

Second, traditional accounts tend to focus on the cognitive 
function of the isolated individual, rather than on systemic 
belief diffusion as a result of interactions with other people. 
As discussed in the following, studies and simulations have 
shown that aggregate behavioral patterns might not be 
reducible to the components in isolation if the components 
can interact with each other in meaningful ways (see e.g. 
Johnson, 2001; Ball, 2005) given complex and dynamic 
environments (Johnson, 2009). Faced with the problem of 
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epistemic isolation, we apply Agent-Based Modeling to 
explore the potential of growing a Bayesian conspiracy 
theorist without adding special cognitive functions to the 
agent in question.  

Agent-Based Modeling 
In order to circumvent the problems caused by traditional 
individual-based accounts of cognition, we employ Agent-
Based Modeling, which allows for simulations of belief 
networks populated by Bayesian agents. This further allows 
for introduction of heterogeneity, as will be discussed later 
(here, initial sampling allows agents to gather and evaluate 
data individually, which provides heterogeneous priors). 
Agent-Based Models (ABMs) are computer simulated 
multi-agent systems that describe the behavior of and 
interactions between individual agents, who operate in 
synthetic environments (Gilbert, 2008; Bandini et al., 2009). 
Agents are encoded on a computational basis, and may 
implement and explore models of cognitive function. They 
allow for complex, dynamic and adaptive systems to emerge 
through interactions between agents and with the 
environment as well as across time (Miller & Page, 2007). 
ABMs may be described in terms of their three fundamental 
components: Agents, Links, and Patches.  

Agents are the nodes representing the active cognitive 
entities of the system. They can make decisions and make 
use of information in any way that is formally expressible. 
These functions include, but are in no way limited to, utility 
valuations, Bayesian belief inferences, stock market 
engagement, and so forth. The agents may reproduce (e.g. 
give birth to a new agent), move around the simulated 
space, and make new (and potentially more relevant) 
decisions as they learn more about the environment. In order 
to engage with the environment, agents will have specified 
rules for agent-environment interactions such as fishing, 
purchasing a house, moving around the simulated space and 
so forth. These behaviors and inferences may yield dynamic 
and adaptive aggregate behavioral patterns. For example, if 
all agents harvest simultaneously, Tragedy of the Commons 
type problems (Ostrom, 2012) can emerge. In the present 
model, we allow for Bayesian belief updating as the agents 
encounter new information or talk with other agents via 
links.  

Links represent rules for possible interactions between 
agents. Links can be any interactivity that can be expressed 
formally. The interaction may be direct (e.g. communication 
between two agents or sales structure between agents, see 
Epstein & Axtell, 1996) or indirect (e.g. social attraction or 
repulsion or emotional feedback, see Schelling, 2006; 
Epstein, 2013). Interactions allow for feedback loops to 
emerge, which in turn may generate aggregate behavioral 
patterns that are irreducible to the components in isolation.  

Patches represent the simulated environment in which 
agents exist. They can have any and all properties that are 
formally describable. If consumable (such as grass for 
sheep, fish for fishers), they may give the agent energy, 
money, or other affordances. Patches may be dynamic such 

that they might regrow or migrate. Further, patches may 
facilitate or restrict movement of agents in the simulated 
space. The patches provide the foundational and potentially 
dynamic environment in which the agents live and act. In 
the model we present, the environment restricts interaction 
between agents if the search potential is low. 

Compared with traditional methods, ABMs are capable of 
simulating dynamic and adaptive decision-making in 
changeable environments (Miller & Page, 2007). This 
allows for agents to self-organize without hard-wiring 
expected aggregate behavioral patterns such as emergent 
echo chambers. Rather, ABMs allow for these properties to 
emerge, or, in the terminology of Epstein and Axtell (1996), 
to grow. ABMs further allow for agent and environmental 
heterogeneity (i.e. agents with different cognitive 
capabilities).  

Growing a Bayesian conspiracy theorist 
The aim of the current model is to test a proof of principle 
that conspiracy theorists can emerge through entirely 
rational processes without providing any special cognitive 
functions, heuristic strategies, or access to unique 
information. In order to do so, we generate an Agent-Based 
Model where agents can sample information, communicate 
with one another, and update their beliefs about the world.  

Given this initial proof of concept, we simplify the 
epistemic challenge and consider only one abstract belief. 
The true probability of the Gaussian distribution from which 
the agents sample is 0.5. The standard deviation can be 
manipulated to represent greater or lesser noise in the 
information environment. In the present paper, the standard 
deviation is set to 0.2. For the sake of understanding, the 
probability may represent the belief in the fairness of a coin. 
If the coin is fair, the distribution of tosses is trivially 50-50 
between heads and tails. However, if the coin is not fair, the 
distribution can be skewed in the direction of either heads or 
tails. Understood in this way, the agents try to understand if 
they are in a world in which the coin is fair (uncovering, as 
it were, the true, underlying probabilities) or if they are in a 
world where the coin is rigged to either side (arriving at an 
objectively mistaken belief).  

If agents are able to generate, maintain and possibly 
strengthen a mistaken belief in the epistemic state of the 
belief, the agent will have exhibited conspiratorial traits, as 
this fulfills the criterion for the definition in the above: a 
potentially strongly held, yet objectively mistaken belief, 
availability of information to challenge or refute the theory, 
and access to that information. The literature review 
uncovered two central positions that we explore here. One, 
we explore Grimes’ (2016) argument that conspiratorial 
thinking is untenable in a large network structure. If this is 
true, we should see a global regression towards the 
objectively true mean given larger networks (that is, fewer 
agents who believe they are in a rigged coin world). Two, 
we explore Barkun and Birchall’s arguments that 
conspiratorial thinking relies on illegitimate reasoning and 
biased heuristics. As will be described below, the agents in 
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the model are perfect Bayesian reasoners. If conspiratorial 
thinking requires special cognitive properties, we should not 
expect the Bayesian agents to generate strong and mistaken 
beliefs about the world. The model implements six key 
elements: generation of prior beliefs, constrained search, 
network generation, communication between agents, belief 
updating, and network pruning.  

 In order to generate a subjective prior belief, agents are 
born onto the world and sample randomly generated data 
from a Gaussian distribution (µ = 0.5, σ = 0.2). In a 
frequentist manner, these are used to calculate a perceived 
mean and probability density. The sampling represents the 
worldview of each particular agent before they are able to 
communicate with other agents.  

Having generated a prior belief for each agent (and thus 
introduced sampling heterogeneity), the model relies on four 
additional assumptions and mechanisms. First, agents 
cannot sample all available data in the simulated world. This 
means that they do not have access to all data sampling that 
other agents have encountered unless they communicate 
with the other agent in order to learn the beliefs of that 
agent. As such, agents do not have perfect and complete 
knowledge about the world in which they live. We believe 
this is a reasonable assumption, as humans do not have 
perfect knowledge in real life. Second, although all other 
agents are hypothetically available, agents cannot 
communicate to every other agent in the simulated world. 
Rather, each agent randomly generates the amount of 
possible communication links. Like the first assumption, we 
believe this is a reasonable assumption, as humans in the 
real world cannot communicate with every other person on 
the planet, but has to settle for a subset of all living persons.  

Third, in order to make the agents rational, they update 
their beliefs about the world in a Bayesian manner. 
Bayesian updating represents the rational integration of 
prior beliefs with new evidence to generate posterior belief 
in the hypothesis. This approach has been applied to a host 
of related phenomena such as argumentation (Hahn & 
Oaksford, 2006; 2007), source credibility (Bovens and 
Hartmann, 2003; Harris et al., 2015), and reasoning and 
decision-making (Oaksford & Chater, 2007). The 
integration is formally expressed through Bayes’ theorem 

 
where p(h|e) denotes the posterior belief in the hypothesis 
(h) given the evidence (e). As such, agents treat each new 
encounter as a data point to be integrated within their 
subjective probability density function. Bayesian updating 
ensures that the agents are fully rational in their belief 
revision when encountering new evidence.  

Finally, several studies on confirmation bias, selectivity 
bias, and in-group behavior strongly suggest that agents are 
not entirely stochastic and non-directed in their information 
search. Taking inspiration from segregation studies (e.g., 
Schelling, 2006), we introduce a mild preference for people 
who remotely share their beliefs about the world. The agents 

are relatively tolerant and will engage in conversation with 
any other agent who is within ± 1.5 standard deviations of 
its own perception of the world. Given Gaussian 
distributions, this means that the agent will speak to 86.6% 
of people within its belief distribution.  Thus, they are 
willing to talk to and integrate information from agents who 
have different viewpoints than their own. However, if they 
are confident in their belief, they will engage with less 
diverging viewpoints, as their probability density narrows. 
As an analogy, this means that an agent might be willing to 
discuss political questions with people with different points 
of view, but would refuse to engage in discussion with 
people who believe that fair coin-flips are 60-40 rather than 
50-50 in cases where they are absolutely certain about the 
latter and less certain about the former.  

In sum, the agent is born into the world by sampling 
randomly generated pieces of information related to the 
hypothesis in question. This informs the mean and standard 
deviation of their prior. Second, the agents generate 
networks with other agents within their network radius 
(which may be limited or encompass the full system). 
Having set up the model, the agents will communicate 
freely and honestly (i.e. representing their belief in the 
hypothesis to the best of their ability), which enables 
Bayesian belief updating. Agents will maintain 
communication networks with other agents who are within 
1.5 standard deviation of their subjective understanding of 
the world (i.e. their belief in the hypothesis). If agents 
within the network fall outside of those boundaries, the 
agent deactivates the network contact with that particular 
agent. If agents cannot find any suitable agents within their 
range, they decrease confidence (simulating negative 
feedback) and thus expand acceptable search parameters for 
the following tick. This allows for dynamic network pruning 
(Ngampruetikorn & Stephens, 2015). 

Main findings: Limited and extended networks 
We implemented the above model in NetLogo (5.2.1) and 
manipulated the model in terms of the size of the network. 
For limited networks, agents had a search range of 10 of 100 
(as a product of their geographical location). Extended 
networks, on the other hand, had a search range of 80 of 
100. Agents could connect to and sample randomly from 
other agents within agent search range who fall within their 
network criteria. Figs 1a and 1b show the extent to which 
search capability influences network generation.  

a   b 
Figures 1a and 1b: Limited and extensive networks 

 
The overall belief structure did not differ significantly 
between limited and extended networks. Some, but not all 
agents regressed towards toward the mean while some 
agents retained their objectively mistaken belief (see Fig. 2a 
and 2b, which are histograms where number of believers are 
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on the y axis and agent belief is on the x axis), we observe 
differences in belief confidence. As seen in Figs. 3a and 3b, 
extended networks allowed for interactions with 
increasingly like-minded agents, which in turn increased 
belief confidence. This is true both for agents who obtain 
objectively true and false beliefs. As agents become 
increasingly confident, their probability density narrows, 
meaning that they are less willing to engage with agents 
with differing beliefs. Extended networks allow them to 
form and maintain contact with agents who share their 
specific beliefs such that they increase their confidence in 
that particular view of the world. This means purification of 
beliefs and purification of networks, i.e. the emergence of 
epistemic echo chambers.  

 a      b 
Figures 2a and 2b: Limited and extended belief structures 

a    b 
Figures 3a and 3b: Limited and extended confidence (0-1) 

 
Overall, the model shows that fully rational agents can 
maintain and potentially strengthen objectively mistaken 
beliefs. Further, given a mild preference for interaction with 
like-minded agents, we observe the rise echo chambers. 
This effect is strengthened with the size of the network. 
Rather than making extreme beliefs untenable as predicted 
by Grimes, we show that large networks, here quantified in 
terms of the number of reachable agents for any given agent, 
can engender extreme belief maintenance and belief purism.   

Discussion and concluding remarks 
The Agent-Based Model in the paper provides a theoretical 
proof of concept that a Bayesian agent can become an 
ardent conspiracy theorist under three main assumptions. 
One, the agent does not have perfect and full access to all 
available information that exists in the world, but can only 
sample a sub-set of that information. This means that the 
agent does not rely on perfect knowledge of the system. 
Depending on the practical conceptualization of information 
accessibility, the agent may have access to very limited or 
more extended amounts of information. Two, the agent 
cannot talk to every other person in the world, but can only 
talk to a sub-set of all existing agents. Similar to assumption 
one, this means the agent cannot converse with all other 
agents and learn their subjective access to information. In 
the current model, information after prior sampling is 

gleaned through interactions with other agents. 
Consequently, by limiting the amount of other agents with 
whom an agent can engage, the model naturally also limits 
the access to available information. Principles one and two 
are concerned with the degree to which the agent can 
sample information and learn about the world. Three, agents 
search for and interact with other agents on the basis of their 
current worldview. They are willing to communicate with 
most other agents, but avoid other agents with whom they 
radically disagree about the nature of the world.  
 
The Rise of Echo Chambers  
Together, these three (we believe reasonable) assumptions 
show that larger networks do not yield belief amelioration 
(as was postulated by some theoreticians who believed the 
Internet to facilitate greater communication between people 
and thereby allow a global regression towards the mean). 
Rather, the model shows that extended networks, given 
plausible constraints to exposure, lead to the growth of echo 
chambers and eventual belief purism, whereby agents 
increasingly discard those who do not share their specific 
beliefs about the world.  

One might compare this increasing belief purism to 
development of political ideologies. In a limited network 
structure (e.g., a small village), the model suggests that left-
leaning voters are willing to communicate with other left-
leaning voters (and some right-winged voters depending on 
the mean and probability density function of the specific 
voter, mutatis mutandis for right-winged voters). However, 
in an extended network structure (such as a metropolis or 
Facebook), the model suggests that voters will have access 
to other voters who have more similar worldviews. This 
allows for emergence of political echo chambers where 
extreme voters have access to other extreme voters. From 
this, greater belief confidence grows and network pruning 
increases, as belief purism emerges. We therefore expect 
increases in network structures will facilitate rather than 
hinder belief extremism and confidence in worldviews.  

The model presented in the current paper allows for this 
dynamic adaption. In the beginning, agents cluster around 
people with whom they share general beliefs about the 
world. However, as they increase in confidence, their 
probability densities narrow, meaning that fewer agents will 
fit within the ± 1.5 standard deviations of the perceived 
mean. As the agent becomes increasingly confident in its 
own reading of the world, it will be decreasingly inclined to 
engage with agents who entertain different viewpoints. This 
allows for belief communities to fracture and radical and 
supremely confident cells to emerge. The emergent echo 
chambers function as cyclical maintenance of a peculiar 
belief.  

This finding is interesting because larger networks did not 
yield belief amelioration, but rather belief solidification. It 
opens up for a novel way to approach and model epistemic 
communities that maintain strong beliefs despite available 
data challenging their beliefs (e.g., creationists, climate 
skeptics, and radicalized or discriminatory beliefs).  
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Emergence of reasonably mistaken views  
Central to the model, the agents do not have full and perfect 
knowledge of the world and can only talk to a sub-set of 
other existing humans. Given the fact that agents update 
their beliefs in a Bayesian manner, their cognitive system 
can be described as rational and entirely reasonable. Yet, 
given incomplete access to data and given the network 
properties, the model shows that the agents can become 
entirely confident in objectively mistaken views. As such, 
we show that extreme beliefs such as conspiracies could 
emerge through entirely rational processes. While this does 
not preclude heuristic strategies or special cognitive 
functions, the model shows that these are not necessary for 
strongly held mistaken beliefs to emerge. Aside from 
emerging, mistaken beliefs are also able to survive (and 
even strengthen) in such an environment rather than being 
swallowed by mainstream beliefs.  

Further, agents had a mild preference for communicating 
with like-minded agents. Rather than making extreme 
beliefs untenable, the model suggests that increasing the size 
of the network intensifies the process of radicalization and 
augments the confidence even in an objectively mistaken 
belief. In the age of the Internet, this finding is worth 
considering seriously and exploring further  

In conclusion, we have provided a proof of concept that 
shows the impact of network structures in generating and 
maintaining extreme beliefs such as conspiratorial thinking. 
A Bayesian agent can generate and even increase its 
confidence in objectively mistaken beliefs.  
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Abstract 

The dilution effect occurs when the introduction of non-
diagnostic information lessens the impact on reasoning of 
diagnostic information despite having no relevance to the 
hypothesis in question. While the effect has been reproduced 
in several studies, the psychological basis of the effect 
remains unclear. Some believe it to be conversational while 
others believe it to be cognitive and social.  

The paper tests the conversational basis of the effect by 
minimising pragmatic, conversational influence. To this end, 
it makes use of a legal setting with witness testimonies. The 
studies replicate the dilution effect, which suggests that the 
basis of the results in the original studies is not 
conversational. However, the credibility of the source 
strongly influences whether or not the effect occurs. If 
reliable sources provide the non-diagnostic information, the 
effect lessens. Conversely, if unreliable sources provide the 
non-diagnostic information, we observe a stronger dilution 
effect.  

Keywords: Dilution effect; legal reasoning; source 
credibility; witness testimonies 

Introduction 
Most information that humans gain throughout their lives 
comes from other sources. It may come from friends and 
colleagues, from professionals such as weather forecasters 
or news anchors, or it may come through de-personalised 
sources such as the Associated Press. However, information 
comes in various guises. Concerning the evidence itself, 
information may be highly diagnostic and related to a 
particular hypothesis at stake in the context or entirely 
unrelated and non-diagnostic. If, for example, an athlete is 
tested for doping before a race, the subsequent outcome of 
the test will be highly relevant in determining whether or 
not the athlete should be allowed to compete. The colour of 
the athlete’s trousers worn during the drug test, however, 
should not. In addition, the information may be more or less 
noisy for a variety of reasons. This noise may be due to 
degradations in the access to information relating to the 
hypothesis (such as faulty equipment or poor visibility) or it 

may be due to the reliability of the person who delivers the 
information. 
 The aim of the current paper is threefold. First, as 
discussed in the following section, it has been suggested that 
the dilution effect (see next section) is a conversational 
rather than a social or a cognitive effect. In the original 
studies, it is the experimenter himself who presented the 
participants with diagnostic and non-diagnostic information. 
If participants believe that the experimenter has chosen the 
non-diagnostic information for a reason, it may prompt 
them to try and interpret the information as somehow 
diagnostic. By removing the experimenter as the source of 
the diagnostic and non-diagnostic information, we test this 
possibility. We offer a possible control of this by placing the 
information in a legal setting and by having witnesses 
provide the testimonies. Second, as the role of the source of 
the information has been suggested as an influential element 
in reasoning, we manipulate the reliability of the source 
such that the source is either highly reliable or entirely 
unreliable. Third, from the literature, it is unclear how 
participants conceptualise non-diagnostic information. In 
particular, it is unclear whether or not the participants 
expect the dilution effect to occur if they were put in an 
observer role. To test this, study 2 allows participants to 
provide qualitative replies. Here, they are asked to imagine 
how a jury would react to the information and whether they 
believe it would make a difference to include the non-
diagnostic information with the diagnostic.  

The dilution effect: A conversational 
explanation? 

The dilution effect has been reported in several studies (e.g. 
Nisbett et al., 1981; Hilton & Fein, 1981; Krueger & 
Rothbart, 1988; Tetlock & Boettger, 1989, see also 
Troutman & Shanteau, 1977). However, aside from a few 
notable exceptions (e.g. Waller & Zimbelman, 2003), the 
effect has received relatively little attention in recent years 
compared with more prominent cognitive influences on 
reasoning such as the confirmation bias (e.g. Frost et al., 
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2015). In particular, the basis of the effect has remained 
under-explored.  

One question, though, has been raised about the dilution 
effect, namely whether the effect has a conversational, 
pragmatic basis rather than a social perceptual basis (see 
Igou & Bless, 2005; Kemmelmeier, 2007; Igou, 2007). It is 
well-known in the field of pragmatics that conversational 
expectations and extra-linguistic content can influence the 
interpretation of an utterance (see e.g. Sperber & Wilson, 
1995; Carston, 2002; Katsos, 2008; 2009). If the non-
diagnostic information was somehow perceived as relevant 
given the inclusion by the experimenter, it is plausible that 
the participants could generate interpretations that make the 
information more relevant than the experimenter intended.  

It is possible that the methodology of the experiments 
prompts participants to treat all information given to them 
as relevant, as the experimenter provides it to them. If the 
participants approach non-diagnostic evidence as potentially 
diagnostic in some way that they did not understand given 
the fact that the information was chosen by the 
experimenter, this may introduce noise into belief revision, 
which should make judgments less extreme. That is, given 
an increase in the noise of the data, a participant would be 
expected to update in a more tempered manner. 
Kemmelmeier (2007) describes this position (which he 
criticises) thusly: “The mere fact that the information is 
provided in the experiment suggests to participants that the 
experimenter considers this information relevant and wants 
participants to use it in making their judgments.” (p. 49) 

The above studies aimed at testing the conversational 
basis of the dilution effect by trying to manipulate the 
relevance of the information provided, but kept using the 
main methodology where the information is provided by the 
experimenter, and the task had generally to do with social 
judgment. One way of manipulating the relevance was by 
explicitly warning participants that the information might 
not be relevant. For example, Igou and Bless (2005) state, 
“prior to the sales scenario, half of the participants were 
informed that some of the presented information might not 
be relevant to their task”. This is a methodological attempt 
to prepare the participant for the fact that they may 
encounter irrelevant information.  

Kemmelmeier, who argues against the conversational 
account of the dilution effect, claims that the alleged 
evidence in favour of the conversational basis is not proving 
anything. Kemmelmeier concludes:  

“Last, there is a very mundane reason to suspect that the dilution 
effect is not the product of conversational dynamics. The 
dilution effect occurs as much inside the psychological 
laboratory as outside of it (see Waller & Zimbelman, 2003, for a 
review). Often there are no specific individuals who can be 
identified as the source of non-diagnostic information, or one 
even has to assume that one’s communication partner is 
potentially deceptive, as in the case of an accounting audit 
(Waller & Zimbelman, 2003). Because the dilution effect occurs 
regardless of whether non-diagnostic information can be 
assumed to be part of a meaningful communication, it seems 
highly questionable that the dilution effect has a conversational 
basis.” (Kemmelmeier, 2007, p. 58) 

In order to test the potential influence of the experimenter 
and to lessen the influence of social context, the current 
studies are set in a legal setting where the information is 
presented as a summarised court case concerning a murder 
in Paris. The existence of identified witnesses (with certain 
characteristics) attempts to alleviate the methodological 
problem of the experimenter providing ‘irrelevant’ 
information, as witnesses may provide more or less relevant 
statements during a trial. In order to manipulate the 
relevance of the statements, we manipulate the witness 
condition. As discussed in the following section, several 
studies have shown the influence of source credibility in 
reasoning tasks.  

The dilution effect and source credibility 
As the dilution effect has mainly been explored with the 
information being provided by the experimenter, little is 
known about the relationship between the effect and the 
credibility of the source.  
 Source credibility has been shown to influence several 
cognitive phenomena related to reasoning, argumentation, 
and decision-making. It influences the reception of 
persuasive messages (Petty & Cacioppo, 1984; Chaiken & 
Maheswaran, 1994; Tormala & Clarkson, 2007), is integral 
to the development of children’s perception of the world 
(Harris & Corriveau, 2011), influences candidate choice 
(Hetherington, 1999; Citirin & Muste, 1999), increases 
adherence with persuasion strategies (Cialdini, 2007), and 
influences how people judge the quality of evidence from 
others in social situations (Fiske et al., 2007; Cuddy et al., 
2011). The normative function of source credibility in 
reasoning and argumentation remains contentious. The dual-
process-based Elaboration-Likelihood Model (Petty, 1981) 
describes reliance on the source of the message as a 
heuristic and shallow cue (Petty & Cacioppo, 1984; Briñol 
& Petty, 2009). Comparatively, Bayesian models integrate 
credibility in beliefs revision when a source provides 
information (Bovens & Hartmann, 2003; Hahn et al., 2012; 
Harris et al., 2015; Madsen, 2016).  
 According to the dilution effect, participants who are 
faced with non-diagnostic information in addition to the 
diagnostic information provided will become less extreme 
in their degree of belief in the overall proposition. Given the 
findings in the literature, we predict that testimonies from 
reliable witnesses will be seen as more persuasive than 
testimonies from unreliable witnesses.  

The case study: Murder in Paris1 
In order to make the experimental setting seem realistic, we 
made use of simplified version of a court case that happened 
recently in Paris. In the court case, the defendant, Siem, was 
accused of assaulting the victim, Tommy, which caused 
Tommy's fall to the ground. Further, they were told that 

                                                             
1 For the sake of clarity, we provide the background story as an 

appendix after the bibliography. 
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the impact of the ground caused the brain injury, which led 
to Tommy’s death. 
 The participants were told that they would read an excerpt 
from a court case in Paris, France. They were further told 
that the names of the people involved had been changed and 
that the story had been abbreviated significantly. The 
participants were then instructed to read the summary of the 
court case thoroughly as if they were a member of the jury 
in the trial. Specifically, they were asked to pay attention to 
what had happened and whether or not the defendant was 
likely to be guilty or innocent. 

Study 1 
Study 1 aims to replicate the dilution effect. To test the 
potential pragmatic basis of the dilution effect, the study 
was set in the legal context of a trial with all information 
provided by witnesses rather than by the experimenter. By 
using a realistic court case and witness testimonies rather 
than instructions from the experimenter, the design lessens 
the likelihood that the experimenter influenced the 
participants. The dilution effect predicts that participants 
should decrease their belief in the likelihood of the 
defendant being guilty when a non-diagnostic testimony 
was added to the diagnostic witness testimony. 

The study was a 2x2 between-subjects design. To explore 
the influence of source credibility on belief revision and on 
the dilution effect, participants in the ‘no witness’ condition 
were told that the statements were ‘information added to the 
initial enquiry’. As such, the information was provided with 
no specific source. In the ‘witness’ condition, a reliable 
witness presented the diagnostic testimony while an 
unreliable witness provided the non-diagnostic testimony2. 

 To test if the dilution effect was replicable, half of 
participants saw only the diagnostic information while the 
other half saw the diagnostic and the non-diagnostic 
information. Diagnostic statements read: “There was a 
dispute about drugs between Siem and Tommy, and Siem 
had threatened Tommy several times. Siem was heard 
several times saying ‘he will be dealt with soon, this fucking 
Caribbean!” Non-diagnostic statements read: “When 
walking, Siem always took great and long strides. Siem 
used to wear funny clothes. In particular, he liked to wear 
bright colours”. 

Participants: 200 participants were recruited from MTurk 
(see Paolacci et al., 2010 for validation of MTurk as a tool 
for data collection in social sciences). All participants had to 
be native English speakers and aged 18 or above.  

Procedure: Having read the background story (see 
appendix), participants provided their degree of belief in the 
likelihood that Siem had assaulted Tommy on a gradient 
scale from 0-1, with 0 representing complete certainty that 
Siem did not assault Tommy and 1 representing complete 
certainty that Siem did assault Tommy. This elicited their 

                                                             
2 Alongside the background story, full witness descriptions can 

be found in the appendix. 

belief in the likelihood of guilt prior to hearing witness 
testimonies. 

After providing their prior belief in the likelihood of guilt, 
participants read the testimonies. Having read the 
testimonies (witness statements or additional information // 
diagnostic or diagnostic as well as non-diagnostic 
information), participants were asked to indicate their 
posterior degree of belief in the likelihood of guilt on an 
identical sliding scale from 0-1. Diagnostic evidence was 
presented before non-diagnostic evidence. In order to test 
the dilution effect, we compare the changes in beliefs from 
prior to posterior belief between conditions.  

Results: As the study was carried out online via MTurk, 
we eliminated any participants who carried out the study in 
less than 120 seconds, as the study could not be completed 
in seriousness in such short time. In total, this eliminated 15 
participants, leaving 185 participants.  

To test the dilution effect, paired-sample t-tests show a 
significant difference between prior and posterior degrees of 
beliefs in both diagnostic groups (No witness condition: t = 
3.105, p = 0.003 (df, 42); Witness condition: t = 2.890, p = 
.006, df (45)) while we observe no difference in degree of 
belief when non-diagnostic information is provided 
alongside the diagnostic (No witness condition: t = 1.839, p 
= 0.072 (df, 48); Witness condition: t = .459, p = .648, df 
(46)), see Fig. 1 for means and standard deviations.  

 
Condition Prior belief Posterior belief 

Diagnostic, no witness 60.67 (21.49) 69.93 (18.43) 
Non-diagnostic, no witness 64.36 (17.88) 69.18 (17.94) 

Diagnostic, witness 58.97 (18.87) 66.32 (19.38) 
Non-diagnostic, witness 62.68 (22.24) 61.29 (22.27) 

Table 1: Prior and posterior beliefs 
 
Tentatively, it looks as if the witness condition yields 

different patterns in the non-diagnostic condition (as the no 
witness condition is borderline significant). To test the 
influence of witnesses, we calculate a change score by 
subtracting the prior belief from the posterior. Having done 
this, we run a 2x2 ANOVA to test the influence of the 
inclusion of a witness. We find an effect of diagnosticity (p 
= .019, F = 5.556), but no effect of the witness condition (p 
= .149, F = 2.105). 

Testing for influence of gender and age yielded no 
significant results, as p’s were between .103 (influence of 
age on posterior degree of belief in the likelihood of guilt) 
and .881 (influence of gender on prior beliefs).  

Study 2 
Study 1 suggests that the dilution effect was replicated in an 
experimental design aimed to lessen the experimenter’s role 
and thereby reduced the potential for conversational effects. 
However, while the results of study 1 replicated the dilution 
effect, tentative evidence suggested that the reliability of the 
witness might have an impact on the relative strength of the 
effect. For one, the reliable witness always presented 
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condition the diagnostic information and the unreliable 
witness always presented the non-diagnostic information.  
 To test the potential influence of source reliability on the 
perception of evidence, half of the participants read the 
diagnostic testimony from the reliable witness and the non-
diagnostic testimony from the unreliable witness whilst the 
other half were presented with the opposite source-message 
matrix.  
 While study 1 tested a specific question concerning the 
conversational basis for the dilution effect, study 2 is more 
exploratory, as the relationship between source credibility 
and the dilution effect has, to our knowledge, not been 
explored in detail (although, see Harkins & Petty, 1987). As 
a consequence of the exploratory nature, participants were 
given the opportunity to provide qualitative feedback.  

Importantly, study 2 used a different dependent variable:  
In study 1, as participants in the previous study were asked 
to provide their own degree of belief in the likelihood of 
guilt; in the present study, the participants were asked to 
provide their personal estimation of how convinced a 
member of a jury would be if confronted by the diagnostic 
information in isolation or by the inclusion of the non-
diagnostic statement. As such, they were asked to provide 
an estimation of the strategic potential of including or 
omitting the non-diagnostic statement. Consequently, all 
participants read the diagnostic and the non-diagnostic 
statements. Thus, only two participant groups emerged in 
the present study: diagnostic (reliable witness) and non-
diagnostic (unreliable witness) or diagnostic (unreliable 
witness) and non-diagnostic (reliable witness).  

Participants: 100 participants were recruited from 
MTurk. All participants had to be native English speakers 
and be aged 18 or above.  

Procedure: Prior belief elicitations were identical to study 
1, as participants read the court case and provided their 
initial estimation of the likelihood of guilt. After the initial 
case presentation, participants read both the diagnostic and 
the non-diagnostic statements and were asked to evaluate 
the degree to which they believed a jury would believe the 
defendant to be guilty if the diagnostic information was 
presented in isolation or in conjunction with the non-
diagnostic statement. As such, each participant provided one 
prior degree of belief and two posterior degrees of belief: 
diagnostic and non-diagnostic.  

Results: Initial paired-sample t-tests were conducted 
between prior and posterior degrees of belief to test the 
influence of the source on the likelihood that a jury would 
find the defendant guilty. In accordance with expectations 
from studies on source credibility in argumentation (e.g. 
Harris et al., 2015), participants who were presented with 
diagnostic incriminating evidence from the unreliable 
source either significantly or borderline significantly 
decreased their posterior degree of belief in the likelihood 
of guilt (diagnostic: t = 2.812, df (50), p = .034; non-
diagnostic: t = 1.799, df (50), p = .078). Comparing the 
diagnostic and non-diagnostic posteriors, we observe no 
significant difference (t = .893, df (50), p = .376). This 

suggests that testimonies from an unreliable source might 
decrease adherence with the proposition despite being 
diagnostic. It further suggests that no dilution effect was 
observed when the witness was reliable. See table 2 for 
means and standard deviations for both conditions.   
 In the condition where the reliable witness provides the 
diagnostic evidence, we observe a significant or borderline 
significant increase in the degree of belief in the likelihood 
of guilt (diagnostic: t = 4.848, df (49), p < .001; non-
diagnostic: t = 1861, df (49), p = .069). While we did not 
find support for the dilution effect when the reliable witness 
presented the non-diagnostic information, we observe a 
significant difference in the condition where unreliable 
witness presents the non-diagnostic information (t = 2.983, 
df (49), p = .004). That is, compared with the condition in 
which the reliable witness presented diagnostic evidence, 
the condition where the reliable diagnostic testimony was 
followed by an unreliable non-diagnostic testimony 
decreased the overall estimation of guilt.  

Comparing the two conditions, this suggests the reliability 
of the source that provides the non-diagnostic information 
influences whether the dilution effect occurs or not. As we 
did not have a clear hypothesis as to the direction of the 
influence, qualitative replies were also collected. In the 
following, we examine these replies.  
 

Condition Prior belief Posterior 
belief 

(diagnostic) 

Posterior 
belief (non-
diagnostic) 

Unreliable-
reliable 

64.19 
(17.18) 

56.09 (22.31) 58.57 (23.66) 

Reliable-
unreliable 

57.4 (22.25) 71.60 (18.33) 63.82 (23.82) 

Table 2: Prior and posterior beliefs 
 
Qualitative replies By analysing the qualitative responses, 
we can get a tentative impression of the differences between 
reliability conditions and between participants themselves. 
In the unreliable-reliable condition, 25 participants provided 
qualitative feedback. In the reliable-unreliable condition, 30 
participants provided feedback.  

Participants in the condition where the unreliable witness 
presented the diagnostic information did not make specific 
comments about the persuasive advantage or disadvantage 
of presenting the non-diagnostic information (despite the 
fact that it was presented by the reliable witness). Rather, in 
line with expectations, they provided character-related 
comments for the unreliable witness and content-related 
comments for the reliable witness (e.g. “I'm not sure what 
Mrs. Lanavan's statement had to do with the case. And the 
fact that Ms. Harry is unstable would reduce her credibility” 
and “I think the first is incredible due to her personal history 
and the second's testimony really is irrelevant to the 
incident”).  

In the condition where the reliable witness presented the 
diagnostic information, comments were more mixed. 11 
participants directly stated that including the non-diagnostic 
witness would not make a difference (e.g. “I don't see how 
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Ms. Harry changes anything.  Her testimony doesn't really 
say anything useful” and “I think the jury would react the 
same way”). Comparatively, 13 participants stated that it 
would make a difference to include the unreliable witness 
(e.g. “The statement by Ms. Harry doesn't prove or disprove 
anything, but it takes away from the validity of the first 
witness, IMO”, “Tough call- the statement of Ms. Harry 
would irritate the jury and would lean the jury to the more 
credible witness”, and “I think maybe the prosecution loses 
some credibility if they put someone on the stand who gives 
testimony that doesn't seem substantive”). One participant 
argued that the inclusion would boost the probability of 
getting Siem convicted (“more witnesses the more weight 
the testimony will get I imagine, also the woman is more 
convincing”).  

Given the limited population size, the above comment 
should be taken with extreme caution. However, it suggests 
that participants may entertain two very different ideas of 
the reasoning of jurors. While the sample is too small for 
statistical analysis, the participants appear to entertain 
realistic approximations of their estimations of the reactions 
of jury members concerning the inclusion of the non-
diagnostic information. The 11 participants who stated it 
would make no difference report no difference between the 
prior and the posterior.  

Concluding remarks 
The paper set out to explore three different aspects of the 
dilution effect. First, given the debate concerning the basis 
for the dilution effect (whether it is conversational, 
cognitive, or social), study 1 used a legal setting to lessen or 
alleviate the potential influence of the experimenter and 
present the information as a court case with witness 
testimonies. Study 1 replicated the dilution effect.  

Study 1 suggested that the credibility of the source might 
influence the strength of the dilution effect. Consequently, , 
study 2 manipulated the reliability of the witnesses who 
provided the diagnostic and the non-diagnostic information. 
Argumentation studies in source credibility suggest that the 
degree of belief in a proposition can be negatively 
influenced despite a diagnostic statement in cases where the 
source is unreliable or distrusted (see Madsen, 2016). In line 
with these findings, study 2 found that diagnostic statements 
from an unreliable source decreased participants’ degree of 
belief in the likelihood of guilt while the same statement 
from a reliable source increased participants’ degree of 
belief. Further, study 2 suggests that the dilution effect does 
not occur in situations where the non-diagnostic information 
is provided by a reliable source while we observe a strong 
dilution effect when an unreliable source presents non-
diagnostic information. Future studies should look at the 
function of and relationship between source credibility and 
diagnosticity in more detail.  

Study 2 gave participants the opportunity to provide 
qualitative feedback. Of particular interest, we noted a 
tendency for two strategy approximations to occur when the 
reliable source presented the diagnostic evidence and the 

unreliable source presented the non-diagnostic statement. 11 
(of 50) participants believed it would make no difference to 
the minds of a jury while 13 (of 50) believed it would have 
a negative effect. Their posterior belief revisions were in 
line with these estimations. This suggests that participants 
might entertain different perceptions of persuasion strategies 
and of the effect of evidence. However, as the current study 
is exploratory, we cannot draw any strong conclusions from 
these reports. We hope that future studies will explore the 
role of persuasion strategies and the dilution effect in more 
detail.  
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Appendix: Background story and witness 
descriptions 

Background story 
On the 31st of December 2010, around 7:30pm, the body of a man 
was found on the Place de Stalingrad, in Paris. The man was later 
identified as M. Tommy Tessel, a homeless drug-addict from 
Martinique. He died a few hours later, in the hospital. 

A local police inquiry was conducted. All the people questioned 
in the neighbourhood initially denied having seen anything 
directly. 

Some of them reported having heard that the victim had fallen 
after having been punched by a third party. The case was initially 
treated as an accident. No crime scene inspection was performed; 
no trace of blood was found.   

On the 5th of January 2011 (5 days after the event), a person, 
who wanted to remain anonymous, reported to the police that a 
drug-addict often hanging around near the Rotonde (the rotunda of 
the Place de Stalingrad), of Senegalese descent, in his fifties, had 
punched the victim in the face and the victim had fallen heavily on 
the ground. 

On the 8th of January, a crime investigation was opened. The 
criminal investigation department asked the local police for the 
victim’s clothes so as to perform a DNA test. But it appeared that 
they were thrown away on the 5th of January for hygienic reasons. 

An autopsy was performed on the deceased. The victim death’s 
was directly caused by the brain injury resulting from the shock of 
his skull on the ground, probably due to a fall.  

 
Reliable witness: Mrs. Rose Lanavan (55, social worker)	  
Mrs. Lanavan was employed as a cleaner in a pharmacy for around 
20 years, after which she decided to enroll in a training programme 
for adults to become a social worker. She now works with drug-
addicts and homeless people, helping them with any administrative 
procedures in relation to health, lodging, and judicial issues.	  

She is unanimously reported as a trustworthy and caring 
person.	  She works and lives in the area of Stalingrad, and knows 
well the people living there. 

 
Unreliable witness: Ms. Edith Harry (26, no occupation)	  
Ms. Edith Harry is a drug-addict, often lurking in the area. She has 
tried a rehab several times, but always went back to smoking 
crack. She is reported to be psychologically unstable (she is 
reported to suffer from a serious personality disorder — labeled 
‘paranoid-delusional’). 
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Abstract

This study focuses on the infuence of a three-dimensional (3D)
graphic image and a 3D-printed object on the spatial reasoning
of experts and novices in the medical field. The spatial rea-
soning task of this study required doctors specializing in di-
gestive surgery to infer cross sections of a liver with a 3D im-
age and a 3D-printed object in a situation where liver resection
surgery was simulated. The task performance was compared
with that of university students who conducted the same task in
Maehigashi et al. (2016). The results of the analysis indicated
that the doctors showed the same task performance when using
the 3D image and the 3D-printed object. However, the univer-
sity students learned faster and inferred the inside of a liver
structure more accurately with the 3D-printed object than with
the 3D image, and they performed equally to the professional
doctors. Our results are then discussed in relation to previous
studies.
Keywords: Spatial reasoning; Spatial mental model; Exper-
tise; External representation; 3D printer

Introduction
Spatial reasoning and 3D-printed object
Spatial reasoning refers to the inference of an object’s shape
and structure and the physical relationship between objects
by using spatial information (Byrne & Johnson-Laird, 1989).
Spatial reasoning is ubiquitous in daily activities such as plan-
ning routes, inferring a road’s slope angle, or even arranging
furniture in a room.

When people engage in spatial reasoning, they form spa-
tial mental models in their minds. Spatial mental models
are internal representations of the spatial relations among el-
ements, and it is considered that they allow people to do per-
spective taking, reorientation and spatial inferences (Tversky,
1993). Spatial mental models are strongly influenced by the
types of external resources that are referred to for its for-
mation. Tversky (1991) experimentally showed that route
searches were more accurate when the route information
was displayed on a map rather than text. Moreover, John,
Cowen, Smallman, and Oonk (2001) indicated that the un-
derstanding of a geometric structure was more accurate with
a three-dimensional (3D) graphic image rather than with a

two-dimensional (2D). They explained that using 3D images
is more effective because they integrate the multiple perspec-
tives expressed by 2D images into a single viewpoint, pro-
vide supplementary depth cues, and display object features
that would be invisible in 2D images.

Recently, the prevalence of 3D printers has made it possi-
ble for people to replicate objects. 3D printers offer an un-
precedented means to express information and are being used
in various fields such as education, industrial manufacturing,
and medicine. However, very few studies have investigated
the influence of 3D-printed objects on spatial reasoning.

Some studies experimentally investigated human under-
standing of molecular structures using concrete models
(Barrett, Stull, Hsu, & Hegarty, 2015; Stull, Barrett, &
Hegarty, 2013). The results of these experiments demon-
strated no difference in task accuracy between the use of 3D
images and concrete models. However, in their experiments,
task accuracy rate was very high. Therefore, further inves-
tigations that consider situations requiring people to under-
stand more complex structures with physical object models
are necessary.

Maehigashi et al. (2016) experimentally investigated spa-
tial reasoning of human organ structure using 3D-printed or-
gans. As a result, they found that the understanding of a
human organ’s structure was more rapid and accurate when
examined with a 3D-printed object rather than with a 3D
graphic image. Their study indicated the possibility that us-
ing 3D-printed objects might reduce both the cognitive load
and the cost of information access in forming and manipu-
lating spatial mental models. In addition, based on ethno-
graphical research, Maehigashi et al. (2015) investigated the
influence of using a 3D-printed human liver on doctors in real
liver resection surgeries. Their results showed that using such
objects enhanced the formation of elaborate spatial mental
models of a patient’s liver. It also enhanced the mental sim-
ulation of liver resections and the formation of shared spatial
mental models of a patient’s liver among doctors.
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Expertise

Experts in various fields use chunking strategy for encod-
ing, storing, and manipulating spatial information. Chase
and Simon (1973) showed that chess masters could encode
and store multiple positions of chess pieces in a game sit-
uation in a single chunk. Also, Busey, Yu, Wyatte, and
Vanderkolk (2013) compared the eye movements of experts
with those of novices in fingerprint matching. Their results
indicated that experts were able to match wider regions of
two fingerprints in a single instance than novices, and they
could encode and store the various characteristics of finger-
print structures as a single unit. Moreover, an experiment
by Hegarty, Keehner, Khooshabeh, and Montello (2009) re-
vealed that fourth year dentistry students inferred the anatom-
ical structure of teeth more accurately than first year students
and could encode, store, and manipulate the various charac-
teristics of teeth structures as a single chunk.

Hegarty et al. (2009) proposed that the fourth year dentistry
students developed spatial mental models of teeth based on
their anatomical knowledge of teeth and their experiences of
learning operative skills for dentistry, and such mental models
would facilitate chunking strategy. Some studies have shown
the similar concepts. For example, Woods (1999) stated that
radiologists have developed organized mental matrixes which
integrate radiological characteristics, and therefore, they are
highly adept in visual management and able to synthesize the
characteristics of diseases. Also, Gobet and Simon (1998)
demonstrated how chess masters developed mental templates
of chess positions based on their prior experiences, enabling
them to encode large and multiple quantities of information.

Related to such discussions, some studies have investi-
gated the relationship between an expert’s spatial abilities
and spatial reasoning. Spatial ability is the capability to
mentally store and manipulate spatial representations accu-
rately (Hegarty & Waller, 2005). An experiment by Hegarty
et al. (2009) demonstrated that the spatial abilities of ex-
perts influence their performance of spatial reasoning. Con-
versely, Ackerman (1988) investigated the relationship be-
tween expertise and various cognitive abilities and indicated
that the development of domain specific knowledge actually
decreases the influence of spatial ability on task performance.

The purpose of this study was to investigate the influences
of the use of 3D images and 3D-printed objects on the spatial
reasoning of both experts and novices. The relationship be-
tween the spatial abilities of experts and their performances
in spatial reasoning was also examined.

Experimental task

In this study, we used a spatial reasoning task in a situation
where actual liver resection surgery was simulated. The par-
ticipants inferred the positions of a tumor within a liver and
also the veins on cross sections of a liver by referring to its in-
ternal structure as displayed in a 3D image and a 3D-printed
object.

Materials
The materials in this study were exactly the same as those
used by Maehigashi et al. (2016). Two desks, a primary and
a secondary desk, were used in the experiment. The primary
desk was set in front of a participant, and the secondary desk
was set by the right side of the participant. The primary and
secondary desks represented an operating table and tool stand
as used in a surgical setting. Three boxes were placed on the
primary desk. Each box contained a 3D-printed object of a
liver (target) which represented a patient’s liver and an an-
swer sheet. Placed on the secondary desk was either a com-
puter displaying a liver’s 3D image or a box containing a 3D-
printed object that displayed the inside structure of a liver.
Figure 1 shows a 3D image, a 3D-printed object, and a target.

Figure 1: (a) 3D image, (b) 3D-printed object, and (c) target

The 3D image was created by using Pluto, a computer-
aided diagnosis system developed at Nagoya University’s
Graduate School of Information Science. It was created based
on data from a patient’s liver measured by computed tomog-
raphy (CT) (Figure 1a). In the 3D image, the thickest vein,
an inferior vena cava (IVC), and five veins branching from
the IVC were represented in blue. A tumor was represented
in white. The participants could rotate and zoom in and out
of the image by using a mouse.

The 3D-printed object and the three targets were created
by using a 3D printer with the same CT liver data as the
3D image (Figure 1b, 1c). The 3D-printed object shows a
liver’s inside structure. In contrast, the target’s surface was
colored light gray, and the liver’s inside structure was invis-
ible just as a patient’s liver would be in real-life surgery. A
line was drawn around each of the three targets. Each line
was sketched in a different location. Also, on each target the
letters “A” and “B” were written to indicate the two separated
areas based on the drawn line. Two sets of 3D images, 3D-
printed objects, and three targets were created from different
CT liver datum.

Vein and tumor location tests
The tests used in this study were exactly the same as those
used by Maehigashi et al. (2016). The experiment employed
a spatial reasoning task. Participants were required to take a
vein and tumor location test for each target while referring to
either the 3D image or the 3D-printed object. In the vein lo-
cation test, participants were required to indicate the location
of the veins that appeared on the cross section by cutting the
target along the drawn line. Specifically, participants were
required to mark “O” for the IVC and “X” for the branching
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vein on the cross section’s outer contour printed on the an-
swer sheet (Figure 2). In the tumor location test, participants
were asked to identify the area of the liver, either A or B,
where the tumor had occurred.

Figure 2: Vein location test. (a) Contour of cross section of
liver, (b) cross section of liver, and (c) participant’s answer.
(a) shows the outer contour of a liver’s cross section printed
on the answer sheet. (b) shows an actual cross section of a
liver. (c) shows a participant’s answer, which provides the
number of IVCs, Os, and the branching veins, Xs, (drawn
correctly here).

Experiment
Method
Participants and Factorial design Twenty-two doctors
specializing in digestive surgery participated in this experi-
ment. Their work experience ranged from eight to 22 years
(M = 10.57). The experiment had a single-factor within par-
ticipants design. The factor was the external representation
(image and object).

Procedure The experimental procedure was generally the
same as those of Maehigashi et al. (2016). First, the par-
ticipants took a spatial ability test produced by Guay and
McDaniels (1976). It comprised 24 questions that required
mental rotations. The participants were required to answer as
many questions as possible within three minutes. Next, all
of the participants performed practice and experimental tasks
with the 3D image in the image condition and the 3D-printed
object in the object condition. In the practice task, the 3D im-
age or the 3D-printed object, which represented one IVC and
three branching veins, were used. First, the participants ob-
served and learned about the inside structure using either the
3D image or the 3D-printed object for one to three minutes.
Following on, they took the vein and tumor location tests for
one target, referring to the image or the object.

After the practice, all participants conducted the experi-
mental task. During the learning period, participants ob-
served the inner liver structure for three to five minutes us-
ing either the 3D image or the 3D-printed object. When the
participants deemed themselves ready after three minutes had
passed, or when five minutes passed, the tests began. Partic-
ipants took out the target and answer sheet from one of the
three boxes on the primary desk and attempted to complete
the vein and tumor location tests. During the task, partic-
ipants were allowed to refer to either the 3D image or the
3D-printed object freely.

After the participants completed the tests for one target,
they returned it together with the answer sheet back into the
box and took a different set from another box. The task was
completed when they had finished the tests for all three tar-
gets. After the experimental task was completed in one condi-
tion, the participants took a five-minute break and performed
the practice and experimental tasks in the other condition.

For the image and object conditions, the 3D image and
the 3D-printed object created by the different CT liver datum
were used. The order of the task conditions and the com-
binations of CT liver datum were counterbalanced between
the participants. Three sets of targets and answer sheets were
randomly placed inside the boxes on the primary desk. Par-
ticipants were instructed to perform the tasks as accurately
as possible. Furthermore, removing the target from the pri-
mary desk was forbidden during the experiment, as it would
be impossible for doctors to remove a patients liver from the
operating table in a real-life surgical operation. However, re-
moving the 3D-printed object from the secondary desk was
permitted because in a surgical operation, doctors can place
a 3D-printed liver right beside a patient’s liver to confirm its
interior structure (Maehigashi et al., 2015).

Results
The participants of this study were doctors with anatomical
and medical knowledge as well as first hand medical expe-
rience. Therefore, the data of this study was treated as an
expert’s performance data. We compared our data to that
of Maehigashi et al. (2016) which examined the exact same
tasks under the same conditions on 48 university students who
did not possess any anatomical and medical knowledge.

We conducted 2(Expertise: expert and novice) × 2(Ex-
ternal representation: image and object) analysis of vari-
ance (ANOVA) on the dependent variables. Since the exter-
nal representation factor (image and object) was a between-
participants factor in the study by Maehigashi et al. (2016),
we conducted a two-way between participants ANOVA in our
analyses.

First, the learning time was the mean time taken by the par-
ticipants to observe the inner structure of either the 3D image
or the 3D-printed object before attempting the tests in each
condition (Figure 3). The results of the analysis showed a sig-
nificant interaction (F(1,88) = 4.75, p < .05). The analysis
of the simple main effect showed that in the image condition,
the learning time was significantly shorter for the expert con-
dition than for the novice condition (F(1,88) = 14.84, p <
.001). However, in the object condition, there was no signif-
icant simple main effect on the expertise factor (F(1,88) =
0.60, p = .44). Also, in the novice condition, the learning
time was significantly shorter for the object condition than
for the image condition (F(1,88) = 15.70, p < .001). How-
ever, in the expert condition, there was no significant simple
main effect on the external representation factor (F(1,88) =
0.78, p= .38). In addition, there were significant main effects
on both the expertise factor (F(1,88) = 10.67, p < .01) and
the external resource factor (F(1,88) = 11.74, p < .001).
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Figure 3: Learning time. The error bars indicate the standard
error.

Following on, the task completion time was calculated as
the mean time from when the first target was pulled out un-
til the third target was returned to the box in each condition
(Figure 4). The results of the analysis showed no significant
interaction (F(1,88) = 0.10, p = .76). There was, however,
a significant main effect on the expertise factor as the task
completion time was shorter for the novice condition than for
the expert condition (F(1,88) = 21.84, p < .001). Also, there
was no significant main effect on the external resource factor
(F(1,88) = 2.08, p = .15).
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Figure 4: Task completion time. The error bars indicate the
standard error.

In the vein location test score, we calculated the mean ab-
solute difference value between the correct number of veins
in the stimuli and the number of veins drawn on the answer
sheet for the IVC and the branching veins in each condition
(Figure 5). If the score is closer to zero, the number of drawn
veins is more accurate.

For the IVC, all participants in the expertise condition cor-
rectly drew the veins, making the mean absolute difference
value zero. On the other hand, for the branching veins, there

was a significant interaction (F(1,88) = 5.23, p < .05). The
results of the simple main effect analysis showed that in the
image condition, there was a significant simple main effect
on the expertise factor; in other words, participants in the
expert condition drew the number of veins more accurately
than those in the novice condition (F(1,88) = 25.45, p <
.001). However, in the object condition, there was no signif-
icant simple main effect of the expertise factor (F(1,88) =
3.28, p = .07). Also, in the novice condition, there was
a significant simple main effect on the external represen-
tation factor, highlighting that more veins were accurately
drawn in the object condition than in the image condition
(F(1,88) = 9.80, p < .01). However, in the expert condition,
there was no significant simple main effect on the external
representation factor (F(1,88) = 0.01, p = .92). In addition,
there were significant main effects in both the expertise factor
(F(1,88) = 23.50, p < .001) and the external resource factor
(F(1,88) = 4.58.p < .05).
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Figure 5: Absolute difference value. The error bars indicate
the standard error.

In each tumor location test, a score of one was assigned
if the tumor location was correctly answered. The tumor
location test score was the mean total of the test results
for the three targets in each condition (Figure 6). In other
words, the higher the score, the more accurate is the an-
swer. The results showed a significant interaction (F(1,88) =
4.64, p < .05). The analysis of the simple main effect in-
dicated that in the image condition, the score was signif-
icantly higher for the expert condition than for the novice
condition (F(1,88) = 5.96, p < .05). However, in the ob-
ject condition, there was no significant simple main effect
on the expertise factor (F(1,88) = 0.37, p = .55). Also, in
the novice condition, the score was significantly higher for
the object condition than for the image condition (F(1,88) =
24.27, p < .001). However, in the expert condition, there was
no significant simple main effect on the external represen-
tation factor (F(1,88) = 3.54, p = .06). Additionally, there
was a significant main effect on the external resource factor
(F(1,88) = 4.64, p < .05), but no significant main effect on
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the expertise factor (F(1,88) = 1.69, p = .20).
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Figure 6: Tumor location test score. The error bars indicate
the standard error.

Furthermore, correlation analyses were conducted on the
relationship between the spatial ability test scores of the ex-
perts and their task performance, learning time, task comple-
tion time, absolute difference value for branching veins, and
tumor location test score, in the image and object conditions.
However, there was no significant correlation.

Finally, a t-test was conducted on the test scores for spatial
ability in both the expert and novice conditions. The score
was higher in the expert condition (M = 10.86) than in the
novice condition (M = 8.48) (t(68) = 2.20, p < .05). These
results did not confirm the homogeneity of the spatial abilities
between the experts and the novices. However, the results of
the correlation analyses indicated that the experts did not use
the advantage of their spatial ability to conduct the task.

Discussion
Accuracy of spatial reasoning
The results of the vein and tumor location tests revealed that
the university students inferred a liver’s inner structure more
accurately with the 3D-printed object than with the 3D image
and performed it to a standard equal to that of the professional
doctors.

The university students formed spatial mental models of
livers probably for the first time. Since the real world offers
more depth cues than the virtual 3D environment (Kemeny
& Panerai, 2003), using the 3D image might require more
cognitive load in order to form spatial mental models than us-
ing the 3D-printed object. The university students who used
the 3D image apparently needed to mentally complement or
modify spatial information, temporarily storing such infor-
mation in their memory and mentally resizing it in order to
map the information to the target. However, the students with
the 3D-printed object were assumedly able to store the spatial
information temporarily in their memory as they perceived it

and mapped the information from the 3D-printed object di-
rectly to the target without having to internally modify or re-
size it. Therefore, the university students with the 3D-printed
object were assumed to have a smaller cognitive load, and,
consequently, make fewer errors from the internal manipula-
tion of spatial information and, therefore, able to show test
performances equal to that of doctors.

It is also possible that the university students with the 3D-
printed object experienced lower information accessing costs
than those who used the 3D image. Information accessing
cost is incurred when acquiring information (Gray, Sims, Fu,
& Schoelles, 2006). Participants with the 3D image had to
manipulate a computer mouse in order to acquire the required
information. However, participants with the 3D-printed ob-
ject had only to pick up and physically rotate a 3D-printed
object. Thus, accessing information with a 3D-printed object
was considered easier and less prone to errors or omissions
than working with a 3D image.

However, the doctors showed the same task performance
when using the 3D image and the 3D-printed object. It is
inferred that the experts obtain spatial mental models devel-
oped by their prior knowledge and experiences (Hegarty et
al., 2009). The doctors who participated in this study might
be in possession of developed rigid spatial mental models of
livers, and they were therefore able to modify their mental
models based on the information displayed on both the 3D
image and the 3D-printed object respectively. As a result,
even though the 3D image is not as in-depth as the 3D-printed
object, the doctors could still manage to create an equally ac-
curate spatial mental model for the tests by depending on their
already developed spatial mental models.

Learning and task completion time
Analysis of the learning time revealed that the doctors showed
the same task performance when using the 3D image and the
3D-printed object. However, the university students with the
3D-printed object finished their period of learning quicker
than those with the 3D image and performed equally to the
doctors.

As explained above, by using the 3D-printed objects, the
university students were assumed to be able to reduce their
cognitive load and information accessing cost. Therefore,
they might be able to facilitate the formation of spatial men-
tal models and perform equally to the doctors. Also as written
above, the doctors were considered to have developed men-
tal models. By modifying these mental models accordingly,
they might be able to form spatial mental models with the 3D
image as quickly as when they used the 3D-printed objects.

The results of the task completion time indicated that the
university students performed the task faster than the doctors
either with the 3D image or with the 3D-printed object. Some
previous studies also experimentally showed that experts took
a longer time to complete tasks than novices (Busey et al.,
2013; Krupinski, 1996). One possibility is that since ex-
perts could access the related information by recalling and
utilizing their existing knowledge, this process might cause
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a longer task completion time. Previous studies showed that
chess masters focused their eyes on the empty spaces more
than novices when pieces on the board were being memorized
(Charness, Reingold, Pomplun, & Stampe, 2001; Reingold,
Charness, Pomplun, & Stampe, 2001). The chess masters
were thought to be processing the related information stored
in their long term memory. Another possibility is that experts
could be more careful than novices. Previous studies showed
that fingerprint experts were more skeptical than novices, and
it therefore took them longer to match fingerprints (Busey et
al., 2013).

Experts’ spatial ability and spatial reasoning
performance
When the university students used the 3D image, there was
a significant relationship between their spatial abilities and
spatial reasoning performance (Maehigashi et al., 2016). In
particular, high ability students demonstrated longer learn-
ing times and a more accurate inference to the positions of
branching veins. On the other hand, in this study, whenever
the doctors used the 3D image or the 3D-printed object, there
was no relationship between their spatial abilities and spatial
reasoning performance.

These results are different to that of Hegarty et al. (2009).
The main difference between the previous study and this
study can be related to the participants’ degrees of expertise.
The experts in Hegarty et al. (2009) were fourth year dentistry
students. In contrast, the experts in this study were doctors
with many years of work experience, and they therefore had
many more years of expertise in the specialized field than the
experts in Hegarty et al. (2009). Therefore, in this study, the
spatial ability of experts did not influence spatial reasoning
performance as indicated in Ackerman (1988).
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Abstract 
The development of symbolic algebra transformed 
civilization. Since algebra is a recent cultural invention, 
however, algebraic reasoning must build on a foundation of 
more basic capacities. Past work suggests that spatial 
representations of number may be part of that foundation, 
but recent studies have failed to find relations between 
spatial-numerical associations and higher mathematical 
skills. One possible explanation of this failure is that spatial 
representations of number are not activated during complex 
mathematics. We tested this possibility by collecting dense 
behavioral recordings while participants manipulated 
equations. When interacting with an equation’s greatest 
[/least] number, participants’ movements were deflected 
upward [/downward] and rightward [/leftward]. This 
occurred even when the task was purely algebraic and could 
thus be solved without attending to magnitude (although the 
deflection was reduced). This is the first evidence that 
spatial representations of number are activated during 
algebra. Algebraic reasoning may require coordinating a 
variety of spatial processes. 
   
Keywords: algebra; number and space; notations; mousetracking. 

Introduction 
The invention of symbolic algebra transformed human 
civilization. Algebraic notation allows for accomplishments 
as mundane as buying paint for a new fence and as fantastic 
as discovering antimatter. But symbolic algebra is a recent 
cultural invention. Thus, it cannot rely on devoted neural 
machinery that evolved specifically for that purpose — an 
innate ‘algebra module.’ Instead, our capacity for symbolic 
algebra must be cobbled together from other cognitive 
capacities. But which?   

One proposal is that higher mathematics, including 
symbolic algebra, builds on a foundation of space (e.g., 
Lakoff & Núñez, 2000; Sella et al, 2016). On this proposal, 
our evolutionarily ancient spatial abilities have been co-
opted by culture to reason about abstract mathematical 
entities and relations. Indeed, early spatial abilities are 
known to predict life-long mathematical performance, from 
grades in elementary school to the choice of a mathematics-
heavy college major.  

One crucial aspect of this spatial foundation may be the 
ability to use space to make sense of number (Hubbard et al, 
2005). Spatial representations of number could ground the 
highly abstract notion of numerical magnitude in the more 
basic, experiential notion of location. More complex forms 
of mathematics could then build on this foundation, from 
algebra to calculus and beyond (Núñez & Marghetis, 2015). 
The current study tests this account by examining whether 
spatial representations are activated during one canonical 
case of complex mathematical activity: solving equations.    

Mixed evidence for spatial-numerical associations 
in higher mathematics 
There is considerable evidence that spatial representations 
of number are ubiquitous and automatic, at least during 
simple numerical tasks (Hubbard et al, 2005; Winter, 
Marghetis, & Matlock, 2015). These spatial representations 
involve both the horizontal and vertical axes. Among literate 
adults in Western cultures, for instance, processing lesser 
numbers facilitates subsequent responses on the left, while 
processing greater numbers facilitates responses on the right 
(Dehaene et al, 1993). Similarly, when German adults 
generate random numbers while undergoing upward and 
downward motion, they produce numbers that are 
significantly greater when moving upward and lesser when 
moving downward (Hartmann et al, 2011). In adults, these 
spatial representations have been shaped considerably by 
culture. The association between numerical magnitudes and 
horizontal locations, for instance, is reversed among 
Palestinians who read both words and numbers from right-
to-left (Shaki et al, 2009). When we encounter a number, 
therefore, we automatically activate spatial representations 
of its magnitude. 

But do these implicit spatial representations play any role 
in mathematics beyond the domain of simple numbers? The 
evidence is rather mixed. One point in favor of such a role is 
that the correlation between early spatial abilities and later 
school success in mathematics is mediated by the ability to 
map numbers to a linear path (Gunderson et al, 2012). 
Causal evidence comes from the finding that training 
students to map numbers to linear path improves calculation 
(Siegler & Ramani, 2009). There is also evidence that 
spatial representations of number play a role in 
mathematical communication. Mathematical experts 
produce gestures that express numbers as locations, even 
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when their speech does not contain any mention of space 
(Marghetis & Núñez, 2013).  

On the other hand, there have been a number of failures to 
find any relation between spatial-numerical associations and 
higher mathematical ability (e.g., Cipora & Nuerk, 2013; 
Cipora, Patro, & Nuerk, 2015). Indeed, there is little 
evidence that spatial representations of number are activated 
at all during mathematical activities that are more complex 
than simple numerical judgments — judging a number’s 
relative magnitude, or determining whether it is even or odd. 
In contrast to these simple tasks, real mathematical activity 
seldom involves single numerals in isolation. Algebra, in 
particular, is often the first time that students begin to think 
about numbers, not just in terms of their magnitudes, but 
also in terms of their structural interrelations. As these more 
complex notions come to the fore, spatial representations of 
numerical magnitude may fade into the background.  

Moreover, many of these more complex notions may also 
have a spatial underpinning. During mental calculation, for 
instance, subtraction and addition are associated with 
leftward and rightward motion, respectively (Knops et al, 
2009; Marghetis, Núñez, and Bergen, 2014); and during 
algebraic reasoning, space is used to represent the 
hierarchical syntax of algebraic expressions (Landy & 
Goldstone, 2007). If space is playing these other roles, then 
the association between space and number might reasonably 
be expected to fade. The neural circuitry responsible for 
representing spatial location cannot be all things at once. On 
this account, as space is co-opted for new roles — 
arithmetic, algebraic syntax — its association with 
numerical magnitude might diminish. Number-space 
associations may be limited to simple numerical judgments, 
disappearing as mathematical complexity increases. 

The present study 
The current literature, therefore, appears to support 
conflicting accounts. On one hand, associations between 
number and space are activated automatically during a 
variety of simple tasks, and spatial processing more 
generally has been implicated in higher-level mathematical 
thinking. On the other hand, individual differences in spatial 
representations of number do not appear to correlate with 
mathematical expertise. This presents a puzzle. What is 
happening to these spatial representations of number as 
people transition from simple judgments of isolated 
numerals to more complex mathematical activities?  

To resolve this puzzle, we analyzed the spatial dynamics 
of individuals’ manipulations of algebraic equations, using a 
methodology that we have dubbed Dense Recording of 
Algebraic Manipulations (DREAM). In this approach, 
participants manipulate equations using click-and-drag 
dynamic algebra software; we record the moment-to-
moment details of these manipulations, including the precise 
mouse trajectories used to rearranging equations.  

In the current study, algebraic equations were displayed 
on a computer screen (e.g., x + 3 = 7), and participants 
could rearrange these equations by clicking and dragging 
symbols as if they were physical objects. We also 
manipulated whether participants performed a task that was 
focused on magnitude (“Click and drag the greatest/least 
number”) or algebraic structure (“Solve for x”). Throughout, 
we recorded the fine-grained details of these interactions, 
including the precise spatial locations at which individual 
numbers were clicked1. By varying the numbers in the 
equations, we could see whether numerical magnitude had a 
systematic effect on the location of symbolic manipulations.  

We foresaw several possible outcomes. If spatial 
representations of number play no role in higher 
mathematics — or play a role only in development — then 
spatial representations might not be activated at all while 
equations are manipulated, particularly if the goal is to solve 
the equation. If, on the other hand, spatial representations of 
number continue to play a functional role in algebra —
 perhaps by grounding the meaning of otherwise arcane 
symbolic manipulations — then we might find traces of 
spatial-numerical associations in the fine details of how 
equations are manipulated. In particular, greater numbers 
might be clicked higher or more rightward, while lesser 
numbers might be clicked lower or more leftward.     

Methods 
Design 
Participants manipulated equations with a computer mouse, 
moving terms as if they were virtual objects. This was 
implemented with the Graspable Math software 
(www.graspablemath.com). Think of files and folders on a 
computer desktop, which can be reorganized and rearranged 
by clicking and dragging. Graspable Math offers the same 
functionality but for equations. In response to these 
manipulations, the software automatically adjusts the 
equation to maintain its validity. For instance, given the 
equation ‘x + 2 = 4,’ as the 2 is dragged to the far side of the 
4, the + symbol changes automatically into the – symbol as 
it crosses the equal sign, so that the final state of the 
equation would be ‘x = 4 – 2’ (Fig. 1a). This allows users to 
focus on how and why they want to rearrange equations. In 
addition, clicking on the equals sign flips an equation (e.g., 
x = 2 ! 2 = x), and clicking on an operation performs that 
operation (e.g., x = 4 – 2 ! x = 2; Fig. 1b).  

The full system is quite powerful and can be explored 
online (www.graspablemath.com). The current study used a 
simplified version that included only the dragging and 
clicking interactions described above. We recorded where 

                                                             
1 Technically, participants clicked numerals that denoted numbers, 
and it was the numerals’ denotations that had magnitude. For 
simplicity of presentation, however, we shall conflate numerals 
with their denotations and refer to them as numbers.   
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and when interactions occurred, including x,y coordinates of 
the mouse cursor. Here we focus on where, exactly, 
participants clicked on numbers, to investigate whether this 
spatial behavior was affected by the numbers’ magnitude.  

 

Figure 1. Manipulating equations using Graspable Math. 
(a) As an equation is rearranged, it’s updated automatically 
to remain valid. Here, ‘+2’ is dragged from left to right; the 
sign is switched as it crosses the equals sign. (b) Operations 
are triggered by clicking the operator.  

 
On each trial, an algebraic equation appeared on the 

screen (e.g., ‘x + 3 = 5’). Participants performed one of two 
tasks, assigned between-subjects.  

In the Algebra task, participants had to solve for the 
variable by clicking and dragging to simplify the equation 
(Fig. 1). For instance, given x + 3 = 5, one might start by 
dragging the 3 to the other side of the equation. Note that 
this does not require attention to numerical magnitude, only 
to the algebraic relations between the terms.  

In the Magnitude task, participants were presented with 
the exact same equations, but their task was to find the least 
number — or the greatest number, depending on the block 
— and indicate their selection by dragging it to other side of 
the equation. This click-and-drag response was chosen so 
that the two tasks involved comparable interactions with 
identical stimuli. 

Participants 
Volunteers participated in exchange for partial course credit 
(N = 69, Mage = 19 years, 51 women, 18 men). A target 
sample size of 68 was determined in advance on the basis of 
similar studies of number and space (e.g., n = 44 in Fischer 
et al, 2010).  

Materials  
For both tasks, items consisted of equations in the form x 

± b = c (N = 112). Values of b and c ranged from 1 to 9, 

excluding 5. The value of b was always different from c, so 
one number was always greater than the other, producing 56 
combinations of values for b and c. Each combination was 
used to create two equations: one with addition (e.g., x + 2 = 
3) and one with subtraction (e.g., x – 2 = 3).  

Procedure 
Participants gave informed consent, completed a brief 

tutorial on how to manipulate equations with the mouse, and 
read task instructions. This was followed by practice trials 
chosen randomly from the full list of items (n = 4). They 
then completed the experimental trials (n = 224). Each item 
appeared twice, ordered randomly across four blocks. For 
the Magnitude task, initial target magnitude (greater, lesser) 
was assigned randomly and switched halfway through. 

Each trial began with the appearance of a fixation symbol 
at the top-center of the screen. Clicking on this fixation 
symbol triggered the appearance of an equation toward the 
bottom of the monitor. The equation appeared either on the 
left or right of the screen and with the variable either on the 
left or right of the equal sign (i.e., ‘x + 2 = 3’ or ‘3 = x + 2’), 
assigned randomly. Participants were then free to 
manipulate the equation using the computer mouse. Trials in 
the Magnitude task ended automatically when a number was 
dragged across the equal sign and released. In the Algebra 
task, trials ended automatically when participants had 
solved for x. Participants finished by answering a series of 
standard demographic questions along with four questions 
about mathematical experience: Did they study calculus in 
high school? In college? What was their grade? And what 
was their SAT score? No other measures were collected.     

Analysis 
We focused on where numbers were clicked, specifically the 
first number manipulated during each trial. Our primary 
measure was the deflection of these locations, relative to 
where the participant would click typically (i.e., 
standardized by participant). A value of zero thus indicated 
no deflection; negative values, deflections downward or 
leftward; and positive values, deflections upward or 
rightward. Analyses used linear mixed-effects models, with 
centered predictors and the maximal converging effects 
structure justified by the design (Barr et al, 2013). 

Results 
One participant was removed for poor accuracy (72%). 
Accuracy was high among remaining participants (M = 
96%, 95% CI [86%, 100%]). One additional participant was 
removed for corrupted data. Before analysis, we removed 
trials where the participant did not arrive at the correct 
response (4% of trials), followed by those that were three 
standard deviations faster or slower than each participant’s 
mean (1.4% of trials).  
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Overall spatial deflection due to numerical 
magnitude 
We first investigated whether numerical magnitude caused 
systematic spatial deflections in click locations. For each 
trial, we calculated a measure of overall spatial deflection 
by summing the deflection along the vertical and horizontal 
axis (i.e., a signed Manhattan distance). On this measure, 
positive values indicate deflections that are, overall, 
congruent with our predictions for greater numerical 
magnitudes (i.e., rightward and upward), and negative 
values indicate deflections congruent with predictions for 
lesser magnitudes (i.e., leftward and downward). This 
spatial deflection was analyzed with a model that included 
fixed effects of Relative Magnitude (i..e, whether the 
selected number was greater or less than the equation’s 
other number), Task (Algebra vs. Magnitude), and their 
interaction; and random intercepts and slopes for both 
participants and items. 

There was no effect of Task (p > .9). As predicted, 
interactions with numerals were deflected spatially by their 
magnitude, b = .25 ± .03 SEM, t = 8.8, p < .0001. These 
deflections were congruent with canonical spatial 
representations of numerical magnitude. When participants 
manipulated the lesser number in an equation, they clicked a 
location that was deflected in the congruent left-downward 
direction (M = -0.09); when they manipulated the greater 
number, they clicked more right-upward (M = 0.11). 

The size of this spatial deflection, moreover, was 
moderated by the task, b = -0.14 ± 0.06 SEM, t = -2.4 p = 
.02. The size of the magnitude-based spatial deflection in 
the Magnitude task (b = 0.30 ± 0.03 SEM) was significantly 
larger than in the Algebra task (b = .18 ± .04 SEM), even 
though the magnitude-based deflection was significant in 
both tasks (both ps < .0001). Thus, magnitude induced an 
overall spatial deflection of numeral manipulations, and the 
size of this deflection was task-dependent.  

Axis-specific spatial deflections 
We next investigated whether this task-sensitive spatial 
deflection was specific to either the vertical or horizontal 
axis. Along the vertical axis, there was no evidence that 
responses differed by Task, b = 0.001 ± .02 SEM, p > 9. By 
contrast, a number’s relative magnitude had a systematic 
impact on where it was clicked, b = .18 ± .02 SEM, t = 7.7, 
p < .0001. When the selected number was greater than the 
other number in the equation, it was clicked 0.18 standard 
deviations higher than when it was less than the other 
number. This spatial-numerical deflection was moderated by 
the task, as revealed by a significant interaction, b = -0.14 ± 
.05 SEM, t = -2.3, p = .02. Additional analyses confirmed 
that a spatial-numerical deflection occurred for both tasks, 
and differed only in size. In the Magnitude task, greater 
numbers were clicked higher than lesser numbers, b = 0.23 

± 0.04 SEM, p < .0001. In the Algebra task, greater numbers 
were still clicked significantly higher, but the deflection was 
dampened, b = 0.12 ± .03 SEM, p = .0001. Thus, there was 
spatial-numerical deflection in both tasks, but the amount of 
deflection was greater with explicit attention to magnitude. 

On the horizontal axis, the effect of Magnitude was 
smaller but still significant (b = 0.06 ± 0.02 SEM, t =2.9, p 
< .01). While there was no evidence that this magnitude-
based deflection was moderated significantly by the Task (b 
= -0.02 ± 0.04 SEM, t = -0.5, p > .6), additional analysis 
revealed that the magnitude-based horizontal deflection was 
only reliable in the Magnitude task, b = 0.07 ± .03 SEM, p = 
.01. In the Algebra task, by contrast, there was no evidence 
of a magnitude-based deflection along the horizontal axis, b 
= 0.05 ± 0.04 SEM, p = .17.   

 

 
Figure 2: Magnitude-based spatial deflection while 
manipulating equations. The vertical axis indicates mean 
spatial deflection, normalized for each subject (i.e., z-
scored). Interactions with greater numbers (red squares) 
were deflected upward and rightward; interactions with 
lesser numbers (blue circles), downward and leftward. This 
occurred in both tasks, but it was significantly more 
pronounced in the Magnitude task. (Error lines = SEM.) 

 

Discussion  
We investigated whether symbol-mediated algebraic 
reasoning activates spatial representations of number, using 
dense recordings of algebraic manipulations (DREAM). 
Manipulations of algebraic equations were deflected upward 
and rightward when interacting with greater numbers, and 
downward and leftward when interacting with lesser 
numbers. The strength of this magnitude-based deflection, 
however, was moderated by the task. Spatial deflection was 
greatest when the task required explicit attention to 
numerical magnitude, and was dampened when the task 
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required algebraic reasoning. This was true even though the 
two tasks involved interacting with identical equations using 
comparable movements. In sum, when manipulating 
equations, people automatically activate a spatial 
representation of numerical magnitude, and the strength of 
this activation depends on the task’s mathematical demands. 

Spatial deflection along the horizontal axis was less 
pronounced than along the vertical axis. One explanation of 
this finding is that algebraic notation uses horizontal spacing 
for another purpose: to indicate syntactic hierarchy. In 
algebraic notation, higher-precedence operations are often 
written with little space between operands (e.g., 3•x•y) or no 
space at all (e.g., 3xy), while lower-precedence operations 
often introduce additional space between operands (e.g., 3 + 
x + y). Thus, during equation manipulation, the horizontal 
axis may be co-opted to represent algebraic structure, 
dampening horizontal representations of numerical 
magnitude (Landy & Goldstone, 2007; Landy, Allen, & 
Zednik, 2014). By contrast, on purely numerical or 
arithmetic tasks, numerical magnitude does deflect hand 
movements along the horizontal axis: to the left for lesser 
magnitudes, and to the right for greater magnitudes 
(Marghetis et al, 2014; Faulkenberry, 2016).  

A new DREAM for studying algebraic reasoning  
The study reported here is the first to use a methodology 
that we have dubbed dense recording of algebraic 
manipulations (DREAM) to gain insight into the cognitive 
processes at work during algebraic reasoning. Similar 
computer mousetracking approaches have been used to 
study the dynamics of simple numerical judgments (e.g., 
Faulkenberry, 2016; Song & Nakayama, 2008) and mental 
arithmetic (e.g., Marghetis et al, 2014). DREAM extends 
this mousetracking methodology to a domain where manual 
interaction with external symbols is not just an artificial 
feature of the experimental design, but an integral part of the 
mathematical activity itself. One contribution of this study 
is to introduce this data-rich paradigm, which we hope can 
open new avenues of inquiry into mathematical cognition.  

Algebraic reasoning is powerful because it transforms 
difficult conceptual tasks into a series of simple, robust 
physical manipulations of stable external symbols 
(Hutchins, 1995). Indeed, it is a canonical example of a 
cognitive accomplishment that depends on distributing the 
cognitive load across time and space. This requires 
coordinating skull-internal processes (perception, planning) 
with external processes like writing and gesturing. At its 
core, therefore, the practice of algebra demands the skillful 
use of hands: writing and erasing equations; using a finger 
to point to some aspect of an equation. DREAM allows us 
to analyze this distributed ‘manual labor’ that is a natural 
part of algebraic activity. 

Soft-assembling space for mathematics 
This is the first evidence that spatial representations of 
number are activated during algebraic reasoning. Previous 
research, however, has documented other spatial processes 
that play a role in algebraic reasoning. The conventions of 
our algebraic notation use horizontal spacing to indicate 
syntactic hierarchy: higher-precedence operations are 
compressed (e.g., xy), while lower-precedence operations 
introduce more space between symbols (e.g., x + y).  
Participants are sensitive to these conventions (Landy & 
Goldstone, 2007; Landy et al, 2014). Once participants 
master the basic syntax of algebra, moreover, they retrain 
their visual system so that they literally see equations as 
consisting of visual objects that respect the syntactic 
hierarchy of algebra (e.g., x • a + y • b is perceived as two 
objects: ‘x • a’ and ‘y • b’; Marghetis, Landy, & Goldstone, 
2016). The current study adds to this list of spatial processes 
that are deployed to solve algebraic equations.   

This menagerie of spatial processes raises the question of 
how they are all brought into coordination. We favor an 
account where these different brain-based spatial resources 
are soft-assembled: they are brought into coordination in a 
way that is both transient and situated, responding to the 
demands of the task and the material environment (Clark, 
2008). On this account, the development of mathematical 
expertise is not merely a process of piling new insights on 
top of old. Instead, the mathematical expert learns to 
combine, flexibly, a range of spatial processes, sometimes 
deploying one representation, other times another.   

This account raises just as many questions as it answers. 
First, what is the time course of these processes? Are they 
all activated at once, or are they brought online sequentially 
in a cascade of activations? Marghetis and colleagues 
(2014), for instance, documented how, when individuals 
perform exact symbolic arithmetic (e.g., 2 + 7), they first 
activate a spatial representation of the magnitude of the first 
number, then of the arithmetic operation, and finally of the 
solution. A similar cascade may occur in algebra. 

Second, given our limited cognitive resources, how do all 
these mathematical facets—magnitude, arithmetic, algebraic 
syntax—become coupled to space without conflicting with 
each other? The spatial impact of relative magnitude was 
dampened significantly when the goal was to solve the 
equation rather than to judge relative magnitude. This 
suggests that spatial representations of number may fade 
over time, particularly when it comes to mathematical 
activities, like algebra, that foreground structural 
relationships over numerical magnitudes.  

This fading may occur on multiple timescales, from the 
developmental to the momentary. On a developmental 
timescale, mathematical expertise might involve 
redeploying spatial resources to represent arithmetic or 
algebraic relations, pushing aside representations of 
magnitude. On shorter timescales, the activation of spatial 
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representations may be task-dependent, as it was in this 
study, or change from moment-to-moment—for instance, as 
an individual goes from identifying the symbol they intend 
to manipulate, to actually moving that symbol. Thus, as 
attention shifts away from magnitude or as other concepts 
acquire spatial associations, a symbol may become 
“semantically bleached” of its spatial-numerical content.  

Indeed, the current results leave open the question of 
whether these spatial-numerical associations play a 
functional role in algebraic reasoning. Taken to the extreme, 
our results are consistent with an account wherein, for 
higher mathematics, spatial representations of number are 
largely epiphenomenal, playing a diminished role as spatial 
circuits are re-deployed to represent other aspects of the 
mathematical content (e.g., hierarchical algebraic structure). 

Conclusion 
Are spatial representations of number really as ubiquitous as 
some have assumed, or are they limited to simple numerical 
tasks? Using dense behavioral recordings of equation 
manipulations, we found that numerical magnitude did, 
indeed, cause deflections that suggest a bottom-to-top and 
left-to-right spatial representation of number. This occurred 
even when the task was entirely algebraic, though the 
deflections were more pronounced when the task did require 
attending to magnitude. Our capacity for algebraic 
reasoning depends on a host of skills and processes — many 
of which are spatial — that must be brought in and out of 
coordination during situated reasoning. This singular ability 
would be impossible without the capacity to cobble together 
such processes both flexibly and dynamically. 
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Abstract 

Several recent empirical findings have reinforced the notion 
that a basic learning and memory skill—chunking—plays a 
fundamental role in language processing. Here, we provide 
evidence that chunking shapes sentence processing at multiple 
levels of linguistic abstraction, consistent with a recent 
theoretical proposal by Christiansen and Chater (2016). 
Individual differences in chunking ability at two different 
levels is shown to predict on-line sentence processing in 
separate ways: i) phonological chunking ability, as assessed 
by a variation on the non-word repetition task, predicts 
processing of complex sentences featuring phonological 
overlap; ii) multiword chunking ability, as assessed by a 
variation on the serial recall task, is shown to predict reading 
times for sentences featuring long-distance number agreement 
with locally distracting number-marked nouns. Together, our 
findings suggest that individual differences in chunking 
ability shape language processing at multiple levels of 
abstraction, consistent with the notion of language acquisition 
as learning to process. 

Keywords: sentence processing; chunking; learning; 
memory; usage-based approach; language 

Introduction 

Language takes place in real time; a fairly uncontroversial 

observation, yet one with far-reaching consequences that are 

rarely considered. For instance, a typical English speaker 

produces between 10 and 15 phonemes per second 

(Studdert-Kennedy, 1986), yet the ability of the auditory 

system to process discrete sounds is limited to around 10 per 

second, beyond which the signal is perceived as a single 

buzz (Miller & Taylor, 1948). Moreover, the auditory trace 

is limited to about 100ms (Remez et al., 2010). 

Compounding matters even further, human memory for 

sequences is limited to between 4 and 7 items (e.g., Cowan, 

2001; Miller, 1956). Simply put, the sensory signal is so 

incredibly short-lived, and our memory for it so very 

limited, that language would seem to stretch the human 

capacity for information processing beyond its breaking 

point. We refer to this as the Now-or-Never bottleneck 

(Christiansen & Chater, 2016). 

How is language learning and processing possible in the 

face of this real-time constraint? A key piece of the puzzle, 

we suggest, lies in chunking: through experience with 

language, we learn to rapidly recode incoming information 

into chunks which can then be passed to higher levels of 

representation. 

As an intuitive demonstration of the necessity of 

chunking, imagine being tasked with recalling a string of 

letters, presented auditorily: u o p f m r e e p o a e c s g n p l 

i r. After a single presentation of the string, very few 

listeners would be able to recall a sequence consisting of 

even half of the letters (cf. Cowan, 2001). However, if 

exposed to the exact same set of letters but re-ordered 

slightly, virtually any listener would able to recall the entire 

sequence with ease: f r o g m o u s e p a p e r p e n c i l. 

Clearly, such a feat is possible by virtue of the ability to 

rapidly chunk the sequence into familiar sub-sequences 

(frog, mouse, paper, pencil).  

According to the proposal of Christiansen and Chater 

(2016), the Now-or-Never Bottleneck requires language 

users to perform similar chunking operations on speech and 

text in order to process and learn from the input. This is 

necessary both due to the fleeting nature of sensory memory 

and the speed at which information is encountered during 

processing. Specifically, language users must perform 

Chunk-and-Pass processing, whereby input is chunked as 

rapidly as possible and passed to a higher, more abstract 

level of representation. Information at higher levels must 

also be chunked before being passed to still higher, 

increasingly abstract levels of representation. 

Thus, in order to communicate in real-time, language 

users must chunk at multiple levels of abstraction, ranging 

from the level of the acoustic signal to the level of 

phonemes or syllables, to words, to multiword units, and 

beyond. Indeed, mounting empirical evidence supports the 

notion of chunking at levels higher than that of the 

individual word: children and adults appear to store and 

utilize chunks consisting of multiple words in 

comprehension and production (e.g., Arnon & Snider, 2010; 

Bannard & Matthews, 2008). Moreover, usage-based (e.g., 

Tomasello, 2003) and generative (e.g., Culicover & 

Jackendoff, 2005) theoretical approaches have highlighted 

the importance of such units in grammatical development 

and sentence processing alike. 

Chunking has been considered a key learning and 

memory mechanism in mainstream psychology for over half 

a century (e.g., Miller, 1956), and has been used to 

understand specific aspects of language acquisition (e.g., 

Jones, 2012; Jones, Gobet, Freudenthal, & Pine, 2014). 

Nevertheless, few have sought to understand how it may 

shape more complex linguistic skills, such as sentence 

processing. McCauley and Christiansen (2015) took an 

initial step in this direction, showing that individual 
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differences in low-level chunking abilities were predictive 

of reading times for sentences involving relative clauses, 

demonstrating the far-reaching impact of basic chunking 

skills in shaping complex linguistic behaviors. 

The present study seeks to evaluate the predictions of the 

Chunk-and-Pass framework more closely, by examining 

individual variation in chunking at two different levels of 

abstraction. Specifically, whereas chunking has previously 

been treated as a uniform memory ability, we test the novel 

theoretical prediction that chunking abilities may be 

relatively independent at different levels of linguistic 

abstraction. Participants were first asked to take part in a 

multiword-based serial recall task (Part 1) designed to yield 

a measure of chunking at the word level. This was followed 

by a variation on the non-word repetition task (Part 2), 

designed to yield a measure of phonological chunking 

ability. Importantly, due to the memory limitations 

discussed above, participants must utilize chunking in order 

to recall more than a few discrete words or phonemes in 

these tasks (e.g., Cowan, 2001; Miller, 1956). Finally, 

participants took part in an online self-paced reading task 

(Part 3). The results show that chunking ability at each level 

predicts different aspects of sentence processing ability: 

chunking at the phonological level predicts the extent to 

which low-level phonological information interferes with or 

facilitates complex sentence processing, while chunking at 

the multiword level predicts the role of local information in 

processing sentences with long-distance dependencies.  

Part 1: Measuring Individual Differences in 

Word Chunking Ability 

The first task sought to gain a measure of individual 

participants’ ability to chunk words into multiword units. To 

this end, we specifically isolate chunking as a mechanism 

by employing a classic psychological paradigm: the serial 

recall task. Serial recall has a long history of use in studies 

of chunking, dating back to some of the earliest relevant 

work (e.g., Miller, 1956), as well being used to extensively 

study individuals’ chunking abilities (e.g., Ericsson, Chase, 

& Faloon, 1980). 

Participants were tasked with recalling strings of 12 

individual words, with each string consisting of 4 separate 

word trigrams extracted from a large corpus of English. 

Importantly, in order to recall more than a few discrete 

items (as few as 4 in some accounts; e.g., Cowan, 2001), 

listeners must chunk the words of the input sequence into 

larger, multiword units. In this case, we expect them to draw 

upon linguistic experience with the trigrams in the 

experimental items. 

In addition, we included a baseline performance measure: 

matched control strings, which featured identical functors to 

the experimental sequences, along with frequency-matched 

content words (to avoid semantic overlap effects on recall), 

presented in random order. Thus, comparing recall for 

experimental and control trials provides a measure of word 

chunking ability that reflects language experience while 

controlling for such factors as attention, motivation, and—to 

the extent that it is separable—working memory. 

Method 

Participants 42 native English speakers from the Cornell 

undergraduate population (17 females; age: M=19.8, 

SD=1.2) participated for course credit. Of the original 45 

subjects, one was excluded due to audio recording errors, 

while two subjects failed to complete all three tasks.  

Materials Experimental stimuli consisted of word trigrams 

spanning a range of frequencies, extracted from the 

American National Corpus (Reppen, Ide & Suderman, 

2005) and the Fisher corpus (Cieri, Graff, Kimball, Miller & 

Walker, 2004). The combined corpus contained a total of 39 

million words of American English. Each item was 

compositional (non-idiomatic). Item frequencies, per million 

words, ranged from 40 to .08, averaging at .73. 

Each word was synthesized independently using the 

Festival speech synthesizer (Black, Clark, Richmond, King 

& Zen, 2004) and concatenated into larger strings consisting 

of 12 words (4 trigrams). Each trigram was matched as 

closely as possible for frequency with the others occurring 

in a sequence. 

To provide a non-chunk-based control condition, each 

item was matched to a sequence of words which contained 

identical functors but random frequency-matched content 

words (in order to avoid semantic overlap effects on recall, 

content words were not re-used). The ordering of the words 

was then randomized. An example of a matched set of 

sequences is shown below: 

 

1) have to eat good to know don’t like them is really nice 

2) years got don’t to game have she mean to them far is   

 

The final item set consisted of 20 sequences (10 

experimental, 10 control).  

Procedure Each trial featured a 12-word sequence 

presented auditorily. Each word was followed by a 250ms 

pause. Immediately upon completion of the string, the 

participant was prompted to verbally recall as much of the 

sequence as possible. Responses were recorded digitally and 

later transcribed by a researcher blind to the conditions as 

well as the purpose of the study.  

The presentation order of the sequences was fully 

randomized. The entire task took approximately 15 minutes. 

Results and Discussion 

Participants recalled significantly more words from 

experimental strings than the frequency-matched control 

sequences. The overall recall rate for words occurring in 

experimental items was 74.0% (SE=2.3%), while the recall 

rate for control sequences was just 39.2% (SE=1.1%). The 

difference between conditions was significant (t(41)=18.8, 

p<0.0001).  

As the purpose of Part 1 was to gain an overall measure of 

chunk sensitivity, we calculated the difference between 

conditions individually for each subject (M=34.8%, 
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SE=1.8%), which afforded a measure of word-chunking 

ability that reflects language experience while controlling 

for factors such as working memory, attention, and 

motivation. We refer to this difference measure as the Word 

Chunk Sensitivity score, and it is used as a predictor of 

sentence processing ability in Part 3.  

In addition to bolstering previous empirical support for 

compositional (non-idiomatic) multiword sequences as 

linguistic units in their own right (e.g., Bannard & 

Matthews, 2008), Part 1 revealed considerable individual 

differences across participants in word chunking ability. 

Recall rates for experimental items ranged from as high as 

93.3% to just 30.4%, with difference scores across the 

conditions ranging from 50.8% as low as 3.0%.  

Part 2: Measuring Individual Differences in 

Phonological Chunking Ability 

While the first task sought to gain a measure of individual 

participants’ chunking abilities at the level of words, Part 2 

sought to gain a measure of chunking ability at the 

phonological level. To this end, we re-purposed the standard 

non-word repetition (NWR) task as a chunking task. NWR 

has been used extensively to study various aspects of 

language development. Recent studies, however, have 

suggested that chunking may better account for NWR 

performance than more nebulous psychological constructs, 

such as working-memory (e.g., Jones, 2012; Jones et al., 

2014). In one sense, the NWR task can be re-conceptualized 

as a serial recall task, as in Part 1. Following such work, and 

in keeping with the Now-or-Never perspective outlined 

above, we propose that individual differences in chunking 

ability underlie differences in NWR performance. In turn, 

NWR—with appropriately constructed stimuli—can serve 

as an additional dimension along which to measure 

chunking ability at the level of phonological processing. 

Participants engaged in a standard NWR task, with each 

non-word consisting of 4, 5, or 6 syllables. However, the 

stimuli were designed such that the same set of syllables 

occurred in two different non-words, but in different 

orderings: one ordering yielded an item with high 

“chunkability,” according to corpus statistics, while the 

other was estimated to be less “chunkable.” The two items 

were then counterbalanced across halves of the task. 

Method 

Participants The same 42 subjects from Part 1 participated 

directly afterwards in this task. 

Materials Non-words were generated using an algorithm 

which took a large list1 of English syllables and randomly 

generated syllable combinations that were evaluated 

according to distributional statistics at the phoneme level. 

For the purpose of supplying statistics, the combined corpus 

used in Part 1 was automatically re-transcribed phonetically 

using the Festival speech synthesizer (Black et al., 2004). 

 

                                                           
1 http://semarch.linguistics.fas.nyu.edu/barker/Syllables/ 

For each of three different syllable lengths (4-, 5-, and 6-

syllables), the algorithm extracted item pairs that differed 

maximally in sequence likelihood (based on phoneme 

trigram statistics) across two different sequential orderings 

of the same set of syllables. In other words, pairs were 

selected in which one ordering of syllables was highly 

“chunk-like,” while the other ordering of the same syllables 

was less “chunk-like,” according to the phoneme statistics 

of the corpus. Four sets of non-words (the four in which the 

pair differed most greatly in terms of sequence likelihood) 

were selected for each syllable length. An example of a 

highly “chunk-like” 4-syllable item is krew-ih-tie-zuh, 

which was matched to the less chunk-like tie-zuh-ih-krew. 

Thus, the final set of items included 24 non-words, eight 

in each of three syllable-length conditions (4-, 5-, and 6-

syllable), with four being highly “chunk-like” and the other 

four consisting of alternate orderings of the same syllables 

which were statistically less “chunk-like.”  

Procedure The task was split into two blocks, with all 

NWR item pairs counterbalanced between them. The 

auditory presentation of each non-word was followed by a 

1500ms pause, after which the participant was prompted to 

recall the item verbally. As with Part 1, responses were 

recorded digitally and scored offline. The task took 

approximately 4 minutes to complete. 

Correct responses received a score of 1. Responses 

involving alteration to a single phoneme (usually a vowel 

substitution, which could easily stem from differences in 

regional dialect) received a score of 0.5. All other responses 

received scores of 0. 

Results and Discussion 

Participants achieved a mean NWR accuracy rate of 54.1% 

(SE=2.3%). While the overall differences between the high 

chunk-like (M=55.2%, SE=2.5%) and low chunk-like 

(M=53.1%, SE=2.5%) conditions were in the expected 

direction, they were subtle, with a mean difference of 2.1% 

(non-significant: t(41)=1.12, p>0.1). However, there was 

considerable individual variation in the size of this 

difference across participants (SE=1.9%), ranging from 

29.2% to less than 0%, at -16.6%. Therefore, in Part 3, we 

assess both the overall NWR performance score as well as 

the difference between the conditions (which we refer to as 

the Phonological Chunk Sensitivity score) as predictors of 

sentence processing.  

Importantly, neither the overall raw task performance 

(β=-0.03, p=0.9) nor the Chunk Sensitivity scores (β=-0.19, 

p=0.22) from Parts 1 and 2 correlated with one another, 

consistent with the notion that chunking at each level may 

have different consequences for sentence processing.  

Part 3: Measuring Individual Differences in 

Sentence Processing and Chunking 

In Part 1, we sought to gain a measure of individual 

participants’ ability to chunk words together, while Part 2 

aimed to provide a measure of phonological chunking 

ability. In Part 3, the same subjects from the first two parts 
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participated in a self-paced reading task designed to: i) 

assess on-line sentence processing across two different 

sentence types which were hypothesized to involve 

chunking at the word and phonological levels, but to 

different extents; ii) determine the extent to which chunking 

ability, as assessed in the first two tasks, predicted 

processing difficulties for each sentence type. 

The first sentence type featured long distance subject-verb 

number agreement with locally distracting number-marked 

nouns, exemplified by (1): 

 

1. The key to the cabinets was rusty from many years of 

disuse. 

 

Previous work (Pearlmutter, Garnsey, & Bock, 1999) has 

shown that readers are slower to process the verb when the 

number of the local noun (cabinets) does not match that of 

the head noun (key), resulting in the sequence (cabinets 

was). Reading times are compared to sentences in which the 

number marking matches, as exemplified by (2): 

 

2. The key to the cabinet was rusty from many years of 

disuse.  

 

In other words, reading times are higher at the verb when 

the local information is distracting. Following the finding 

that text-chunking ability predicts decreased difficulty with 

complex sentences involving long-distance dependencies 

(McCauley & Christiansen, 2015), we hypothesized that 

participants with higher Word Chunk Sensitivity scores 

(Part 1) would be less susceptible to interference from local 

information in sentences such as (1). Subjects that are better 

able to rapidly chunk words together and pass them to 

higher levels of representation should not only experience 

decreased computational burden from long-distance 

dependencies, but should be less affected by locally 

distracting information. 

The second sentence type featured object-relative (OR) 

clauses, which have been shown to be processed with 

greater ease by good text chunkers (McCauley & 

Christiansen, 2015). However, in the present study we 

added an element of phonological interference: two pairs of 

words in each sentence exhibited phonological overlap. 

Previous work has shown that low-level phonological 

overlap can interfere with the processing of sentences 

featuring relative clauses (Acheson & MacDonald, 2011). 

An experimental item and its matched control are shown in 

(3) and (4): 

 

3. The cook that the crook consoles controls the politician. 

4. The prince that the crook comforts controls the politician. 

 

In line with the Chunk-and-Pass framework, we predicted 

that better phonological chunkers, as assessed in Part 2, 

would be less susceptible to phonological interference, by 

virtue of their ability to more rapidly chunk and pass 

phonological information to a higher level of representation. 

Thus, participants’ resilience to phonological interference 

was hypothesized to be better predicted by Phonological 

Chunk Sensitivity (Part 2), while participants’ susceptibility 

to local number mismatch was expected to be better 

predicted by Word Chunk Sensitivity (Part 1).   

Method 

Participants The same 42 subjects from Parts 1 and 2 

participated in Part 3 immediately afterwards. 

Materials There were two sentence lists—counterbalanced 

across subjects—each consisting of 9 practice items, 20 

experimental items, 20 matched control items, and 68 filler 

items. There were two experimental conditions, each with 

20 items; the first consisted of the OR sentences featuring 

phonological overlap (the first 20 items from Acheson & 

MacDonald, 2011). The second experimental condition 

consisted of grammatical sentences featuring long-distance 

number agreement with locally distracting number-marked 

nouns (the 16 items from Pearlmutter et al., 1999, plus four 

additional sentences with the same properties). 

Each list included, for each condition, 10 of the items in 

their experimental form and 10 of the items in their control 

form (without rhymes in the case of the OR sentences; 

without locally distracting nouns in the case of the number 

agreement sentences). The lists were counterbalanced such 

half of the subjects saw the experimental versions of 

sentences the other half saw in their control form. 

Procedure Materials were presented in random order using 

a self-paced, word-by-word moving window display (Just, 

Carpenter, & Woolley, 1982). At the beginning of each trial, 

a series of dashes appeared (one corresponding to each 

nonspace character in the sentence). The first press of a 

marked button caused the first word to appear, while 

subsequent button presses caused each following word to 

appear. The previous word would return once more to 

dashes. Reaction times were recorded for each button press. 

Following each sentence, subjects answered a yes/no 

comprehension question using buttons marked “Y” and “N.” 

The task took approximately 10 minutes. 

Results and Discussion 

Only trials with correct answers to comprehension questions 

were analyzed. Accuracy for the number agreement 

condition was 88.3%; for the object-relatives it was 80.0%. 

Following Acheson & MacDonald (2011), raw reaction 

times over 3000ms were excluded. Prior to analysis, raw 

reaction times (RTs) were log-transformed. 

Mean RTs for the main verb in the number agreement and 

phonological overlap sentences were comparable to those in 

the corresponding original studies (respectively: Pearlmutter 

et al., 1999; Acheson & MacDonald, 2011), as was the size 

of the mean difference between conditions. In the number 

agreement condition, the verb in experimental items 

(M=361.1, SE=19.9) was processed more slowly than in 

controls (M=316.7, SE=13.9), a mean difference of 44ms 

(F1[1,41]=12.7, p<0.001; F2[1,18]=10.2, p<0.01). There 

was a fair amount of individual variation in the difference 
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Fig. 1: Correlation between Word Chunk Sensitivity (derived from 

recall scores in Part 1) and the difference in main verb RTs 

between sentences with locally distracting number information vs. 

control sentences. 

 

between conditions  (SD=79.4). 

The critical main verb in OR sentences featuring 

phonological overlap was processed more slowly (M=605.1, 

SE=70.6) than in matched controls (M=546.3, SE=42.2), a 

mean difference of 58.8 which was non-significant 

(F1[1,41]=1.21, p=0.28; F2[1,18]=0.04, p=0.8; see 

discussion). There was, however, considerable individual 

variation in the difference between conditions (SD=343.7), 

especially relative to the size of group mean difference.  

We were primarily interested in the extent to which 

differences in RTs between experimental and control 

sentences could be predicted by the Chunk Sensitivity 

measures collected in Parts 1 and 2. Below, we analyze 

these relationships using multiple linear regression, with 

Word Chunk Sensitivity and Phonological Chunk 

Sensitivity scores as predictors of RT differences between 

conditions (recall that the two metrics were not correlated).2 

For the difference between sentences featuring locally 

distracting number information and their control 

counterparts, we found that Word Chunk Sensitivity was a 

significant predictor of RT difference at the verb (β=-0.79, 

t=-3.19, p<0.01), while Phonological Chunk Sensitivity and 

the interaction term did not reach significance. The model 

for the significant main effect had an R value of 0.42. The 

correlation between Word Chunk Sensitivity and the RT 

difference is depicted in Figure 1. As can be seen, subjects 

with higher Word Chunk Sensitivity scores appear less 

susceptible to interference from the locally distracting 

number information, as reflected by lower differences 

between verb RTs for experimental vs. control sentences. 

With regard to the difference between OR sentences with 

and without phonological overlap, we found that 

Phonological Chunk Sensitivity was a significant predictor 

of RT differences at the main verb (β=-3.49, t=-2.43, 

p<0.05), while Word Chunk Sensitivity and the interaction 

                                                           
2 We found that raw NWR performance scores resulted in 

weaker linear models and did not reach significance as a predictor. 

Therefore, we focus on the Phonological Chunk Sensitivity metric 

in the analyses (see Part 2). 

Fig. 2: Correlation between Phonological Chunk Sensitivity 

(derived from repetition scores in Part 2) and the difference in 

main verb RTs for OR sentences with and without phonological 

overlap between words. 
 

term did not reach significance. The model for the 

significant main effect had an R value of 0.36. A scatterplot 

showing the correlation between Phonological Chunk 

Sensitivity and the RT difference is shown in Figure 2: 

better chunking ability resulted in less phonological 

interference. 

Thus, consistent with the predictions of the Chunk-and-

Pass framework, we find evidence for the notion that 

chunking ability shapes sentence processing differently at 

two separate levels of abstraction: participants who were 

more sensitive to word chunk information better processed 

long-distance dependencies in the face of conflicting local 

information, while those with higher phonological chunk 

sensitivity better processed complex sentences with 

phonological overlap between words. That the two chunk 

sensitivity measures did not correlate with one another 

further underscores the notion of chunking taking place at 

multiple levels of abstraction. 

While we failed to find the same effect of phonological 

overlap on processing as did Acheson and MacDonald 

(2011), it is likely that our subjects (Cornell undergraduates) 

had more reading experience than subjects at UW-Madison, 

and experienced less interference overall. Nonetheless, our 

measure of phonological chunk sensitivity was sensitive 

enough to pick up individual differences that predicted 

sentence processing in the face of phonological interference. 

Intriguingly, participants with very high Phonological 

Chunk Sensitivity appeared to experience an advantage for 

OR sentences featuring phonological overlap. This raises 

the possibility that such subjects benefitted from 

phonologically-based priming of subsequent rhyme words 

in sentences such as (3). Further work will be necessary to 

evaluate this possibility. 

General Discussion 

In the present study, we show that individual differences in 

chunking ability predict on-line sentence processing at 

multiple levels of abstraction: chunking at the phonological 

level is shown to predict the way phonological information 
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is used during complex sentence processing, while chunking 

at the multiword level is shown to predict the ease with 

which long-distance dependencies are processed in the face 

of conflicting local syntactic information. In Part 1, we 

adapted the serial recall task—a paradigm used for over half 

a century to study memory, including chunking 

phenomena—in order to gain a measure of individual 

variation in subjects’ ability to chunk word sequences into 

multiword units. In Part 2, subjects participated in a NWR 

task with non-words designed to vary according to the ease 

with which their phonemes could be chunked. The 

difference in correct repetition rates between highly chunk-

able and less chunk-able items provided a measure of 

individual variation in chunking ability at the phonological 

level. Finally, in Part 3 we showed that chunking at the 

multiword level was predictive of processing for sentences 

with long-distance dependencies and distracting local 

information, while chunking at the phonological level was 

predictive of complex sentence processing in the presence 

of phonological overlap between words.  

Expanding on the findings of a previous study that 

showed low-level chunking of sub-lexical letter sequences 

to predict sentence processing abilities (McCauley & 

Christiansen, 2015), the present study supports the notion 

that chunking not only takes place at multiple levels of 

abstraction, but that individuals’ processing abilities may be 

differently shaped by chunking at each level. Moreover, 

chunking at lower levels (e.g., the phonological level) may 

have serious consequences for processing at higher levels 

(e.g., sentence processing).  

This work is highly relevant to the study of language 

acquisition. The Now-or-Never bottleneck imposes 

incremental, on-line processing constraints on language 

learning, suggesting a key role for chunking. Indeed, a 

number of recent computational modeling studies have 

demonstrated that chunking can account for key empirical 

findings on children’s phonological development and word 

learning abilities (Jones, 2012; Jones et al., 2014), while 

other work has captured a role for chunking in learning to 

comprehend and produce sentences (McCauley & 

Christiansen, 2011, 2014). There exists a clear need for 

further developmental behavioral studies—including 

longitudinal studies—examining individual differences in 

chunking as they pertain to specific stages of language 

development as well as more general language learning 

outcomes.   
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Abstract 

Success in Algebra I often predicts whether or not a student 
will pursue higher levels of mathematics and science. 
However, many students enter algebra holding persistent 
misconceptions that are difficult to eliminate, thus, hindering 
their ability to succeed in algebra. One way to address these 
misconceptions is to implement worked-examples and self-
explanation prompts, which have been shown to improve 
students’ conceptual knowledge. However this effect seems to 
be greater after a delay. The current study sought to explore 
such time-related effects on algebra conceptual knowledge. In 
a year-long random-assignment study, students either studied 
worked-examples and answered self-explanation prompts (n = 
132) or solved typical isomorphic problems (n = 140). A 
three-way mixed ANCOVA (pre-algebra knowledge x 
condition x time) found a significant condition by time effect. 
The growth of algebra conceptual knowledge was greater for 
students studying worked-examples than for those solving 
typical problems.  

Keywords: worked-examples; self-explanation prompts; 
algebra; conceptual knowledge  

Introduction 
Algebra I is often considered to be a gate-keeper course, 
meaning that a student’s success in the course often 
determines whether he or she will continue on to a higher 
level mathematics or science course (U.S. Department of 
Education, 1997).  Furthermore, students in the United 
States tend to struggle mastering algebra concepts, 
potentially contributing to the lower enrollment of U.S. 
college students in mathematics and science related majors 
compared to competing countries.  
 
The newly implemented Common Core State Standards 
(CCSSI, 2010) stresses the importance of both procedural 
and conceptual knowledge of mathematics content. 
However, especially when it comes to algebra, students hold 
persistent misconceptions, which hinder their ability to 
master the content. In fact, students often enter Algebra I 
holding strong misconceptions that may impact their 
success mastering algebra content (Brown, 1992; Chiu & 
Liu, 2004; Kendeou & van den Broek, 2005). For instance, 

misconceptions such as believing that the equals sign is an 
indicator of operations to be performed (Baroody & 
Ginsburg, 1983; Kieran, 1981; Knuth Stephens, McNeils, & 
Alibali, 2006), that the negative sign represents only the 
subtraction operation and does not modify terms (Vlassis, 
2004), that subtraction is commutative (Warren, 2003), and 
that variables cannot take on multiple values (Booth, 1984; 
Knuth et al., Kuchemann, 1978) are all thought to be 
critical. Holding such misconceptions have been shown to 
hinder students’ success in problem solving (Booth & 
Koedinger, 2008).  
 
A large body of research supports the notion that 
eliminating mathematics misconceptions is not an easy task. 
In fact, many students continue to hold these 
misconceptions after traditional classroom instruction 
(Booth, Koedinger & Siegler, 2007; Vlassis, 2004). Often in 
order to challenge a student’s misconception, one must 
directly draw out and confront the faulty thinking (Donovan 
& Bransford, 2005). A combination of worked-examples 
and self-explanation prompts has been used to do just that.  
 
Worked-examples, which are mathematics problems with 
worked-out solutions, provide the opportunity to point out 
common misconceptions to students. Some textbooks offer 
a small number of worked-examples, often at the beginning 
of a chapter or section. However, research indicates that 
interleaved worked-examples, alternating between worked-
examples and problems for students to solve, are more 
beneficial to learning (Clark & Mayer, 2003; Sweller & 
Cooper, 1985).  
 
Furthermore, the benefit of worked-examples can be 
improved with the inclusion of self-explanation prompts, 
which are questions that prompt students to explain their 
reasoning. When students self-explain, they are able to 
integrate various pieces of knowledge, fill gaps in their own 
knowledge, and make new knowledge explicit (Chi, 2000; 
Roy and Chi, 2005). Students at all ability levels who are 
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prompted to self-explain learn more than those who do not 
self-explain (Chi, de Leeuw, Chiu & Lavancher, 1994).  
 
Often if a textbook uses a worked-example, it displays a 
correct problem solution. However, incorrect worked-
examples have also shown benefits to learning. In empirical 
laboratory students, students who are asked to explain the 
errors in incorrect solutions, as well as explain effective 
strategies in correct examples, learn more than students who 
are asked to only explain correct examples (Durkin & Rittle-
Johnson, 2009; Siegler & Chen, 2008).  
 
While the use of worked-examples and self-explanation 
prompts have been shown to improve learning, often there is 
a delayed-effect, meaning that the effect is larger on a 
delayed post-test rather than immediately after the 
intervention. For instance, Adams and colleagues (2014) 
found that while students solving isomorphic problems with 
feedback and students studying incorrect examples did not 
differ significantly at immediate posttest, students in the 
incorrect example group scored significantly better on a 
delayed posttest compared to the problem-solving group. 
This suggests that the worked-example/self-explanation 
effect may improve over time.  

Current Study 
This study applies previous laboratory research supporting 
the use of both correct and incorrect worked-examples 
paired with self-explanation prompts to the classroom. 
While highly controlled laboratory studies are necessary 
when developing theories, applied studies are needed in 
order to investigate the limits of generalization.  
 
We explore the effects of studying worked-examples and 
answering self-explanation prompts compared to solving 
typical isomorphic problems on students’ algebra 
conceptual knowledge. We hypothesize that students who 
study worked examples and answer self-explanation 
prompts will have less algebra misconceptions and, 
therefore, will have higher conceptual knowledge compared 
to those who solve traditional isomeric problems. 
 
Finally, the current study will explore students’ conceptual 
knowledge growth over the course of a full school year, 
extending the evidence to support a delayed effect by 
providing longitudinal evidence from repeated 
interventions.  

Methods 

Participants 
Participants included 562 Algebra I students from 28 
classrooms (12 teachers) from five school districts across 
the United States. The sample was 49% female. Students 
were classified as underrepresented minority (URM; Black, 
Hispanic, biracial) or non-URM (White, Asian); 65% of the 
students were classified as URM. Participants were also 

socioeconomically diverse, with 52% coming from families 
who qualified for the Free or Reduced Lunch program 
(FRL). 
 
Due to the restrictions of repeated-measures ANOVA, only 
students who completed all four quarterly exams were 
included in the analysis. Due to natural attrition (i.e. 
students leaving the school or absence on the day of the 
quarterly exam) the sample was reduced to 272; 51% 
female, 61% URM, 50% FRL.  
 
Classrooms were randomly selected to either complete 
problem- or example-based worksheets yielding 14 
problem-based (n=140) and 14 example-based (n=132) 
classrooms. Of the 12 teachers, eight taught one class of 
each condition; however, two teachers instructed two 
classes of the problem-based condition and one class of the 
example-based condition, while two others instructed two 
example-based classes and one of the problem-based class.  

Procedure 
Intervention During the school year, teachers taught the 
algebra content using their own typically teaching methods; 
however, they were asked to sporadically assign the 42 
study-worksheets at times they deemed appropriate during 
the year. Teachers did not have to assign the worksheets if 
they did not cover that material in their curriculum. On 
average, teachers assigned 27 worksheets (ranging from 15 
to 40) throughout the year.  There was no significant 
difference in the number of worksheets assigned between 
groups, with the problem-based group completing an 
average of 28 worksheets and the example-based group 
completing an average of 26 worksheets, p >.05. Teachers 
were given the freedom to assign the worksheets in any 
order and were told to treat the assignments as they would 
any other assignment in their class; however they were 
instructed to have students complete the assignments during 
the class period, not for homework. Students were allowed 
to work together if the teacher typically permitted that 
behavior. Each assignment took about 20 minutes to 
complete.  
 
The worksheets of both conditions contained four problem-
sets (with two math problems similar to each other per set). 
The problem-based worksheets contained four regular 
problem-sets where students were asked to simply solve 
each problem, similar to a typical math worksheet. The 
example-based worksheets replaced one math problem 
within each set with a worked-example and self-explanation 
prompt(s). Students in this group were instructed to study 
the worked-example, answer the self-explanation prompt, 
and complete the second math problem on their own. Each 
example-based worksheet contained two correct worked-
examples and two incorrect worked-examples. See Figure 1 
for sample problem- and example-based problem sets. 
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a.) Problem-based set

 
b.) Example-based set

 
 
Figure 1. Sample problem- and example-based problem sets. 
 
Assessment At the beginning of the school year, all students 
were given a pre-test assessing their pre-algebra knowledge. 
Throughout the school year, students were given four 
quarterly exams. The four exams contained the same 18 
items, however teachers were asked to only assign the test 
items taught to date; therefore, students were not answering 
items containing content they were not already taught. This 
exam assessed both procedural and conceptual algebra 
knowledge. At the conclusion of the year, students were 
given a post-test, consisting of 10 Algebra I standardized-
test release items.  
 
At the end of the school year, each school provided the 
researchers with student demographic information, such as 
gender, ethnicity, and free or reduced lunch qualification. 
Finally, teachers completed a survey answering questions 
about their use of the worksheets. The survey contained 
questions such as “How often did you review the 
worksheets with the students after completion?”  

Measures 
Algebra Conceptual Knowledge The quarterly benchmark 
exams consisted of 18 items, each of which had multiple 
parts, yielding a total of 71 sub-items. Of these 71 sub-
items, 46 measured students’ conceptual knowledge of 
algebra content. We operationally define conceptual 
knowledge as an understanding of the core features in 
problems for a given topic (e.g. Booth, 2011). Algebra 
conceptual knowledge scores were calculated for each 
quarter by dividing the number of correctly answered items 
by 46. This score does not take into account the number of 
items attempted since each teacher assigned a different 
number of items each quarter.  

 
Pre-algebra Knowledge The pre-algebra exam was given 
at the start of the school year before students completed any 

study-worksheets. This exam covered content necessary for 
the success in an algebra course, such as the understanding 
of equality and difference between coefficient and constant. 
This exam consisted of 11 items with 71 sub-items. Pre-
algebra knowledge scores were calculated by dividing the 
total number of correctly answered items by 71.  

 
Teacher Reports At the end of the year, teachers were 
administered a survey about their experience in the study. In 
one item, they were asked about the frequency with which 
they reviewed study assignments in class. Teachers 
responded by selecting one of the following options: 0-20% 
of the time, 20-40% of the time, 40-60% of the time, 60-
80% of the time or 80-100% of the time. Teachers’ 
responses were recoded into a 1 (0-20%) to 5 (80-100%) 
scale.  
 
All measures were scored and coded by two researchers, 
checking for internal and external consistency.  

Results 
The following analysis explores the effects of time, pre-
algebra knowledge and condition on students’ algebra 
conceptual knowledge. Pre-algebra knowledge was included 
in the model because student’ prior-knowledge is known to 
greatly influence their future learning. While other outcome 
measures (i.e. procedural knowledge and standardized test 
release items) were collected, they are beyond the scope of 
this study focused on conceptual knowledge growth. The 
other measures will or are presented in other reports. 
Finally, URM status and rate of teacher review were 
included as covariates because differences were found 
between conditions.  
 
A three-way mixed ANCOVA was run to understand the 
effects of pre-algebra knowledge, condition, and time on 
algebra conceptual knowledge. The rate of review and 
minority status were included as covariates. Using 
Greenhouse-Geisser estimates, the interaction between 
condition, pre-algebra knowledge and time was not 
statistically significant; however, there was a statistically 
significant two-way interaction between time and all 
between-subject variables. See Table 1 for results.  
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Table 1. Greenhouse-Geisser estimates for 3-way ANCOVA 
for algebra conceptual knowledge. 

 
 

df F p 
partial 
η2 

Quarter  2.513 10.826 <.001 .055 
Quarter x URM 2.513 4.333 .008 .023 
Quarter x Rate 

of Review 2.513 17.900 <.001 .088 
Quarter x Pre-

algebra 201.058 1.482 <.001 .389 
Quarter x 
Condition 2.513 3.991 .012 .021 
Quarter x 

Condition x 
Pre-algebra 118.121 .957 .608 .195 

Residual 467.459    
 

See Table 2 and Figure 2 for condition by time estimated 
marginal means. At quarter 1, the example-based group 
scored slightly lower than the problem-based group; 
however, by quarter 4, the example-based group outscored 
the problem-based group.  
 
Table 2. Condition by time estimated marginal means with 

95% confidence intervals. 
 
    95% CI 
Condition Quarter Mean SE Lower Upper 
Problem-
based 

1 .179 .008 .163 .195 
2 .321 .011 .299 .343 
3 .435 .012 .413 .458 
4 .516 .016 .484 .548 

 
Example-
bases 

 
1 .169 .008 .153 .186 
2 .332 .011 .310 .354 
3 .447 .012 .423 .470 
4 .568 .017 .535 .601 

 
 

  
Figure 2. Condition by time estimated marginal means.  

Discussion 
 
Due to the nature of the quarterly exams, it was expected 
that students would score better over time. As mentioned in 
the procedure section, the conceptual knowledge portion of 
the quarterly exam consisted of 46 sub-items. However, 
students only attempted to answer the items in which they 
were familiar with. Therefore, students attempted to answer 
more items as they covered additional content over the 
course of the school year, leading to potential increased 
scores over time. However, we were more interested in the 
interaction between treatment and time. It was hypothesized 
that there would be differences in the rate of algebra 
conceptual knowledge growth between the example-based 
and problem-based groups.  
  
As predicted, this analysis revealed a significant condition 
by time interaction. At the end of quarter 1, students solving 
typical algebra problems, in the problem-based group, 
scored slightly better than students in the example-based 
condition. However by the end of quarter 2, the opposite 
occurred. Students studying worked-examples and 
answering self-explanation prompts scored slightly higher 
than those in the problem-based group. This gap continued 
to widen throughout the remainder of the school year. By 
quarter 4, example-based students scored an average of 5 
percentage points higher on the algebra conceptual 
knowledge test than the problem-based students, which is 
supported by previous studies finding a delayed effect (i.e. 
Adams et al., 2014).  
 
The limitations of this study include a sample restricted to 
those present for all four quarterly exams. In addition, 
although a within-teacher design controlled for teacher-
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related variables, it is possible that there was some 
contamination across classrooms. For instance, some 
teachers reported using a few of their own worked-examples 
with their problem-based classroom. The current analysis 
was based on linear growth; further studies should consider 
using a more robust analysis in order to account for possible 
quadratic or cubic growth curves. 
 
This analysis adds to the current body of research by 
providing evidence from the classroom to support laboratory 
findings. It also extends our understanding of the short-term 
benefits of worked-examples and self-explanation prompts 
by offering longitudinal data. Our findings emphasize the 
need to measure learning over longer time intervals.  
 
Based on these findings, it is suggested that teachers 
interleave worked-examples and self-explanation prompts 
with traditional algebra problems. In order to receive 
maximum benefit, students should be exposed to this 
approach consistently throughout the entire school year, not 
just in a single instance. Furthermore, such interventions 
should be interleaved in algebra textbooks, rather than 
simply displaying a few correct worked-examples at the 
beginning of a section. Finally, both correct and incorrect 
worked-examples should be used in the classroom to 
promote maximum benefit.  
 
As previously noted, success in Algebra I is a known 
gatekeeper to later mathematics and science success. 
However, many students enter algebra with persistent 
misconceptions that obstruct their achievement in algebra. 
The findings from this study suggest that using worked-
examples combined with self-explanation prompts as 
classroom practice materials can improve student’s 
conceptual knowledge, consequently decreasing their 
misconceptions. The findings from this study are 
particularly exciting as they come from a study that took 
place in actual classrooms and not research laboratories. 
Due to the setting of the current study, our findings illustrate 
that even when precision, like that provided in a laboratory, 
cannot be guaranteed the positive effect of using worked-
examples paired with self-explanation prompts is still seen. 
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Abstract 
 

Are different amounts of semantic processing associated with 
different semantic ambiguity effects? Could this explain some 
discrepant ambiguity effects observed between and across 
tasks? Armstrong and Plaut (2016) provided an initial set of 
neural network simulations indicating this is indeed the case. 
However, their empirical findings using a lexical decision 
task were not clear-cut.  Here, we use improved methods and 
five different experimental manipulations to slow responding-
--and the presumed amount of semantic processing---to 
evaluate their account more rigorously.  We also expanded 
the empirical horizon to another language: Spanish. The 
results are partially consistent with the predictions of the 
neural network and differ in several important ways from 
English data.  Potential causes of these discrepancies are 
discussed in relation to theories of ambiguity resolution and 
cross-linguistic differences. 

 

Keywords: semantic ambiguity; slow vs. fast lexical 
decision; semantic settling dynamics, neural networks. 
 

Understanding how the meaning of ambiguous words is 

resolved is critical because the meaning of most words 

depends on context (e.g., cricket can refer either to a game 

or to an insect). Developing an account of ambiguity 

resolution has, however, been challenged by two 

complications: 1) the complex and often apparently 

contradictory effects of ambiguity observed between and 

sometimes even within a given experimental task, discussed 

below, and 2) the often inconsistent effects observed for 

polysemes with related senses (e.g., chicken can refer to an 

animal or its meat) vs. homonyms with unrelated meanings 

(e.g., cricket) compared to (relatively) unambiguous control 

words (e.g., chalk).   

Recently, Armstrong and Plaut (2016) reported neural 

network simulations suggesting that many apparently 

inconsistent effects can be reconciled as a function of (a) 

how the number and relatedness of a word’s meanings are 

activated over time, (b) the amount of processing that takes 

place before a response can be generated in a given task (see 

Figure 1). This semantic settling dynamics (SSD) account 

posits that early processing is dominated by 

excitatory/cooperative neural dynamics that would facilitate 

the processing of polysemes.  In contrast, later processing 

would be dominated by inhibitory/competitive neural 

dynamics that would impair the processing of homonyms.  

Thus, “fast” tasks like typical lexical decision, in which 

participants must decide whether a letter string forms a 

word (e.g., cricket) or not (e.g., blicket), would show a 

polysemy advantage (e.g., e.g., Armstrong & Plaut, 2016; 

Beretta, Fiorentino, & Poeppel, 2005; Rodd, Gaskell, & 

Marslen-Wilson, 2002).  In contrast,  “slow” tasks like 

typical semantic categorization, in which participants must 

determine whether a word refers to a member of a particular 

category (e.g., does cricket refer to a vegetable?), would 

show a homonymy disadvantage (e.g., Hino, Pexman, & 

Lupker., 2006).  

The SSD account offers both a contrasting and a 

complementary explanation to an account positing that 

different ambiguity effects are due to task-specific  

configurations of the decision system (Hino et al., 2006). In 

contrast to the decision system account, the SSD hypothesis 

stresses how dynamics within semantics can critically shape 

the ambiguity effects observed in a given task. The decision 

system should, however, play an important role in 

determining “when” sufficient evidence has accumulated to 

generate a response---and thus which portion of semantics is 

being tapped (for a broader discussion, see Armstrong & 

Plaut, 2016).   

   
Figure 1. Semantic activity as a function of processing time for homonyms, 

polysemes, and unambiguous controls in the neural network simulation 
reported by Armstrong and Plaut (2016).  Slices A-D highlight how 

sampling these trajectories at different time points aligns with different 

behavioural and neural effects reported in the literature, such as typical 
lexical decision (Slice A) and semantic categorization (Slice C).   
 

Armstrong and Plaut (2016) also put the SSD account to 

the test in an empirical setting. In their experiments, the 

overall task (lexical decision) was held constant. They then 
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manipulated additional properties of the task to slow 

responses (manipulations of nonword difficulty and/or the 

brightness of the letters on the screen).  Insofar as these 

slow-downs enabled additional semantic processing to take 

place, the SSD account predicts this would lead to a shift 

from a polysemy advantage in the easy/fast conditions 

(Figure 1, Slice A) and a homonymy disadvantage in the 

slow/hard conditions (Figure 1, Slice C).   

The results were generally---although not perfectly---

consistent with these predictions.  A polysemy advantage 

was typically observed in the easy/fast condition, but 

evidence for this advantage in the harder conditions was 

more limited. Similarly, there was evidence that a 

homonymy disadvantage was present in some (but not all) 

of the hard/slow conditions, but, critically, not in the 

easy/fast conditions. One possible interpretation of these 

results is that they are attributable to a slight increase in 

semantic processing and thus reflect only a small step along 

the predicted semantic settling dynamics (e.g., Figure 1, 

Slice A to Slice B, rather than Slice A to Slice C).   

Additional investigations are needed, however, to better 

explore this possibility and the validity of the SSD account 

more broadly.   

The present work is a major extension of Armstrong and 

Plaut’s (2016) initial empirical studies. From a theoretical 

perspective, it follows the abductive reasoning: if a range of 

different manipulations designed to slow responding all 

yield the same changes in ambiguity effects, this will 

provide broad convergent support for the SSD account. Our 

work also builds upon past work in several important ways: 

First, for all but one condition, it uses within-participant 

manipulations to boost statistical power. Second, the 

experiments were run in Spanish, a language in which it is 

easier to control for several potential confounding variables 

(e.g., with few exceptions, each Spanish letter maps to a 

single sound and vice versa, so matching word lengths in 

number of letters also matches word lengths in number of 

phonemes).  Doing so also allows for the evaluation of the 

robustness of particular ambiguity effects and facilitates the 

development of general as opposed to Anglocentric theories 

(Share, 2008). Further, recent Spanish homonym meaning 

frequency norms (Armstrong et al., 2015) allow us to select 

homonyms with balanced meaning frequencies.  This should 

boost the competitive dynamics assumed to be associated 

with homonyms during late processing. 
 

Behavioral Studies of Lexical Decision 
We evaluated whether slowing participants’ lexical decision 

responses using several different manipulations reproduced 

the different semantic ambiguity effects predicted by the 

SSD account. If these different manipulations produce the 

anticipated effects, this would support the notion that the 

time-point at which the response was made---and the 

corresponding amount of semantic settling---is a critical 

component of any theory of semantic ambiguity resolution. 

(Without denying that these dynamics interact and are 

further shaped by other systems; e.g., the response system.) 

If the results do not produce the predicted effects, this would 

support claims that qualitative differences in the 

configuration of the response system, as opposed to 

semantic settling dynamics, explain many discrepant 

ambiguity effects.  

We applied the following manipulations to a standard 

visual and/or auditory lexical decision task, which we 

describe in detail subsequently.  The first two manipulations 

relate closely to those in Armstrong & Plaut (2016) for 

comparison purposes, whereas the remaining three have 

never been used in studies of semantic ambiguity. 

1. Visual Lexical Decision: Nonword Wordlikeness: 
“Easy” nonwords with lower bigram frequencies and 
higher Orthographic Levenshtein distances (OLD; 
Yarkoni, Balota, & Yap, 2008) than the word stimuli 
were used in the baseline; “Hard” nonwords with higher 
bigram frequencies and lower OLDs than the words 
were used in the slowed condition.  This was the only 
between-participant manipulation because previous 
experiments have found carry-over effects when 
nonword difficulty is blocked within participants 
(Armstrong, 2012). All other manipulations were within 
participants and used easy nonwords to avoid potential 
ceiling effects on how slow lexical decision can be 
pushed. 

2. Visual Lexical Decision: Visual Noise: Standard text 
was presented in the baseline; visual noise (950 3px 
dots) was superimposed to degrade the text in the slowed 
condition.  This condition is similar to the contrast 
reduction manipulation in Armstrong & Plaut (2016).   

3. Intermodal Lexical Decision: Visual lexical decision 
served as the baseline, auditory lexical decision as the 
slowed condition. This experiment was motivated by 
different ambiguity effects observed in audio vs. visual 
lexical decision in Rodd et al. (2002).  

4. Auditory Lexical Decision: Auditory Noise: Clear sound 
recordings were presented in the baseline; noisy 
recordings---created by replacing 75% of the auditory 
signal with signal-correlated noise---were used in the 
slowed condition.   

5. Auditory Lexical Decision: Compression/Expansion: 
Recordings were played 30% faster in the baseline and 
30% slower in the slowed condition. The “similarity” 
time effect in Goldwave ® (v6.13) was used to preserve 
pitch and the naturalness of the vocalization. 

 

Participants. Each experiment was completed by 42 

Spanish native speakers (avg. age = 24 years, 70% female). 

All had normal or corrected-to-normal vision and no history 

of language or psychological disorders. Participants 

received a monetary payment.  Consent was obtained in 

accordance with the declaration of Helsinki.  
 

Stimuli. Words. The stimuli filled a 2x2 factorial design 

that crossed number of unrelated meanings (NoM: one vs. 

two) with number of related senses (NoS: few [range: 1-5] 

vs. many [range: 6-14]), similar to past work (Rodd et al., 

2002; Armstrong & Plaut, 2016). NoM and NoS were based 

on the number of separate entries vs. sub-entries for each 

word in the Real Academia Española Spanish dictionary 

(RAE, 2014). For convenience, we will refer to the four 
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conditions as (relatively) unambiguous words (NoM: 1, 

NoS: few), homonyms (NoM: 2, NoS: few), polysemes 

(NoM: 1, NoS: many) and hybrids (NoM: 2, NoS: many).   

To maximize the potential for competition between the 

interpretations of words with two unrelated meanings, we 

only included homonyms and hybrids with dominant 

relative meaning frequencies below 0.82 in the Spanish 

eDom norms (Armstrong et al., 2015). Using the EsPal 

Spanish word database (Duchon, Perea, Sebastián-Gallés, 

Martí, & Carreiras, 2013), the candidate items were also 

constrained to have no homophones, be between 4 and 10 

letters long, have word frequencies between 0.1 and 50, and 

have only noun or verb meanings (all had at least one noun 

meaning). This database also provided information 

regarding the word’s summed bigram frequency, length in 

phonemes, and length in syllables.   

The SOS stimulus optimization software (Armstrong, 

Watson & Plaut, 2012) identified 36 items in each cell of 

the design that were also matched on a range of 

psycholinguistic covariates (see Table 1). Finally, we 

collected separate norms for the imageability and familiarity 

of the words from two groups of 25 native speakers who did 

not participate in the main experiments.  

Nonwords. Candidate nonwords were generated for each 

of ~80,000 words sampled from Espal (Duchon et al, 2013) 

to match the psycholinguistic properties of the experimental 

words, except for NoM and NoS.  Nonwords were generated 

via the Wuggy nonword generator using the default settings 

(Keuleers & Brysbaert, 2010). In total, 144 “easy” 

nonwords were sampled to have lower bigram frequency 

and higher OLD than the words, whereas 144 “hard” 

nonwords were selected to have a higher bigram frequency 

and lower OLD than the words.   
 

Table 1.  Properties of the Word Stimuli 
 

 

Unambig. Polyseme Homonym Hybrid 

Example     tractor             vaina        

pinta 
      pinta          pipa 

#  Meanings 1 1 2.1 2.4 

# Senses 3.2 9.8 3.3 9.0 

Word Freq. 5.3 5.5 5.0 6.3 

OLD 1.9 1.8 1.8 1.5 

 # Letters 6.6 6.5 6.7 6.0 

# Phonemes 6.6 6.3 6.6 5.9 

# Syllables 2.8 2.8 2.9 2.6 

Familiarity 4.2 4.7 4.0 4.6 

Imageability 4.3 5.1 4.5 4.9 

Dom. Freq. - - 0.5 0.5 

Note. Dom. Freq. = Relative Frequency of dominant meaning.   
 

Table 2.  Properties of the Word and Nonword Stimuli 
 

 Words Easy Nonwords Hard Nonwords 

Bigram Freq. 

Freq 

1602 445 2782 

OLD 2.0 2.9 1.5 
 

Audio Recordings. Audio recordings were produced by a 

male native speaker. Volume was normalized to half the 

dynamic range.  Auditory stimuli were pre-processed using 

Audacity (Mazzoni, 2013). 

Procedure. The experiments were run on a desktop 

computer with a CRT monitor using Psychopy (Peirce, 

2007).  Auditory stimuli were presented over headphones.   

Each experiment began with 4 practice trials.  

Participants then completed four blocks of 72 experimental 

trials, each of which began with 4 unanalyzed warm-up 

trials.  An equal number of words from each cell of the 

design were presented in each block. The order of the 

stimuli was pseudorandom, with the constraint that no more 

than three words or nonwords could be presented in a row. 

Each trial began with blank screen for 250ms, followed 

by a fixation cross (+) for 750ms, which was briefly 

replaced by a blank screen again for 50ms before the 

presentation of the word or nonword. In the visual 

conditions, text was presented in the center of the screen. In 

the auditory conditions, the recording was played, instead. 

Response latency was measured from stimulus onset, and 

the next trial began automatically after a response. A 

message was displayed if no response was made within 

2500ms. Participants responded by pressing the left and 

right control keys with their right and left index fingers. 

Word responses were always made with the dominant hand. 

The experiment took about 20 minutes to complete.  
 

Results 

Data screening. Participants and items were screened for 

outliers using the Mahalanobis Distance Statistic and a 

critical p-value of .001.  This eliminated no more than two 

participants in each experiment and no more than two words 

of any type.  Trials with latencies < 200 ms or > 2000 ms 

were also discarded (0.66% of trials).   

Analytical approach. The analyses reported here focused 

on the critical effects of homonymy and polysemy relative 

to unambiguous controls, as well as how these variables 

were affected by the slowing manipulations.  We also report 

exploratory analyses of the hybrids, which should be 

affected by both cooperative and competitive dynamics.    

All of the word data were analyzed with linear mixed-

effect models (Bates, Maechler, Bolker & Walker, 2015) 

using R (R Core Team, 2016). The models included the key 

fixed effects of manipulation (with the faster/easier 

condition used as the baseline) and item type (with separate 

contrasts between an unambiguous baseline and homonyms, 

polysemes, and hybrids).  To address potential confounds, 

the models also included fixed effects of imageability, 

residual familiarity
1
, log-transformed word frequency, OLD, 

length in letters, and bigram frequency.  All of the 

aforementioned fixed effects were allowed to interact with 

the effect of manipulation. Further, to reduce auto-

correlation effects from the previous trials (Baayen, & 

Milin, 2010), the models included fixed effects of stimulus 

type repetition, previous trial accuracy, previous trial 

lexicality, previous trial latency, and trial rank. All 

continuous variables were centered and normalized. 

Additionally, the models included random intercepts for

                                                           
1 Residual familiarity was derived by regressing out NoM, NoS, and NoM 

vs. NoS from raw familiarity.  
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Figure 2. Correct latency [left] and accuracy [right] for the experiments.  H=homonym, U=unambiguous, P=Polysemous, Y=Hybrid. Error bars = SEM. 
 

item and participant.  Random slopes were omitted because 

these models did not always converge. Latency was 

modeled with a Gaussian distribution, whereas accuracy 

was modeled with a binomial distribution.  Effects were 

considered significant if p ≤ .05, and trends are considered 

marginal if p ≤ .15.  All tests were two-tailed. 

Correct Latency. The latency data are presented in the left 

panel of Figure 2. Slowing Manipulations. All five 

manipulations slowed overall response speed (all ps ≤ .02). 

Homonyms. A main effect indicating a homonymy 

disadvantage was observed in the intermodal and auditory 

noise manipulations (b = 24.0, SE = 10.3, t = 2.4, p =.02 and 

b = 34.0, SE = 15.0, t = 2.3, p = .03, respectively). The 

homonymy by slowing manipulation interaction produced a 

significant increase in the homonymy disadvantage in the 

slower condition of the auditory compression/expansion 

experiment (b = 29.1, SE = 13.3, t = 2.2, p =.03).  A similar 

marginal trend was observed in the nonword wordlikeness 

experiment (b = 13.2, SE = 8.2, t =1.6, p = .11). Polysemes.  

A main effect indicating a polysemy advantage was only 

detected in the baseline condition of the nonword 

wordlikeness manipulation (b = -19.8, SE = 9.4, t = -2.1, p 

=.04). The polysemy by slowing manipulation interaction 

indicated that the polysemy advantage marginally decreased 

in the visual noise experiment (b = 30.7, SE = 16.3, t = 1.9, 

p =.06). Hybrids. There were no significant effects 

involving hybrids in any experiment. Imageability. There 

was always a marginal or significant facilitatory main effect 

of imageability (all ps ≤ .06). The imageability by slowing 

manipulation interaction indicated this effect increased 

marginally in the slowed conditions of the intermodal (b = -

6.1, SE = 4.0, t = -1.5, p =.12), visual noise (b = -9.3, SE = 

5.9, t = -1.6, p = .12), and audio compression/expansion 

experiments (b = -9.2, SE = 4.9, t = -1.9, p =.06).  

Accuracy. The accuracy data are presented in the right 

panel of Figure 2.  Slowing Manipulations. The slowing 

manipulation decreased overall accuracy in the visual noise 

condition (b = -2.1, SE = 0.3, z = -8.2, p <.001), whereas it 

increased overall accuracy in the audio expansion condition 

(b = 2.0, SE = 0.3, z = 7.0, p <.001).  Homonyms. The 

homonymy by slowing manipulation interaction in the 

compression/expansion experiment indicated that there was 

a marginal decrease in homonym accuracy after slowing (b 

= -0.6, SE =0.4, z = -1.7, p =.10). Polysemes. A marginal 

main effect indicating a polysemy advantage was observed 

in the nonword wordlikeness experiment (b = 0.4, SE = 0.2, 

z = 1.7, p <.09).  There were also marginal polysemy by 

slowing manipulation interactions in the nonword 

wordlikeness and  audio compression/expansion 

experiments, indicating that there was decrease in polyseme 
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accuracy relative to the unambiguous baseline in the slowed 

conditions (b = -0.6, SE = 0.4, z = -1.8, p =.09). Hybrids. As 

in the latency data, no significant effects involving the 

hybrids were observed. Imageability. The facilitatory main 

effect of imageability was always significant (all ps ≤ .02), 

except for in the case of auditory noise (the model did not 

converge) and in the audio compression/expansion 

experiment, where the effect was marginal (p = .15). There 

was a marginal interaction between imageability and the 

slowing manipulation in the visual noise experiment 

indicating differentially decreased facilitation after slowing 

(b = -0.2, SE =0.1, z = -1.6, p = .11), whereas in the 

compression/ extension experiment (b = 0.2, SE = 0.1, z = 

1.5, p = .14) there was increased facilitation. 

Summary. A significant or marginal homonymy 

disadvantage, or an increased homonymy disadvantage in 

the slowed condition, was observed in all but the visual 

noise experiment. A main effect of polysemy was only 

detected in one experiment and the polysemy advantage 

marginally decreased in two experiments.  Hybrid items 

were never significantly different from the unambiguous 

controls, which is likely due, at least in part, to difficulties 

matching these rare items on other covariates. The 

facilitatory effect of imageability was significant or 

marginal in all experiments. The magnitude of these 

facilitation effects increased marginally in three experiments 

(intermodal, visual noise, compression /expansion).  

Discussion 
The aim of our study was to evaluate whether a range of 

different manipulations designed to slow responses would 

lead to different ambiguity effects, as predicted by the SSD 

account.  At first glance, except for speed-accuracy trade-

offs, virtually all of the effects that were significant or 

marginal were consistent with the SSD account. 

Additionally, most of non-significant results showed the 

predicted trends numerically. Thus, this collective body of 

work does add some additional support to the notion that 

processing time---and the presumed amount of semantic 

settling---plays a role in explaining many ambiguity effects.  

These results also suggest that some broad ambiguity effects 

transcend different languages.  

Additionally, taking a more critical view of the observed 

effects promises to reveal additional aspects of how and 

why discrepant ambiguity effects are observed within and 

between tasks.  To begin, our ideal a priori aim was to 

reproduce a polysemy advantage only in the easiest/fastest 

tasks (Figure 1, Slice A) and observe a homonymy 

disadvantage only in the hardest/fastest tasks (Figure 1, 

Slice C).  The overall pattern of results, however, would 

appear to be more consistent with the easiest task beginning 

closer to Slice B, where both a weaker homonymy 

disadvantage and polysemy advantage are predicted.  This 

result is surprising for several reasons.  First, Armstrong and 

Plaut (2016) went to great lengths to make their lexical task 

as difficult as possible, and yet their results were consistent 

with earlier processing dynamics (primarily Figure 1, Slice 

A-B).  Their overall latencies were also approximately 

100ms faster than in the analogous conditions in the present 

work. The present work did use words with slightly lower 

frequencies, but it also used considerably easier nonwords, 

so there is no clear explanation for this large discrepancy. 

Further, we have conducted an additional experiment with 

“very easy” nonwords (nonwords with extremely low 

bigram frequencies and neighborhood sizes) and still not 

been able to increase overall performance by a substantial 

degree. These results are also inconsistent with Jager, 

Green, & Cleland’s (2016) prediction that a polysemy 

advantage should be strongest for low frequency words 

because their meanings overlap more.   

Another possibility worth considering is that whereas 

past research has typically struggled to produce a 

homonymy disadvantage and had more success in obtaining 

a polysemy advantage, the present work may have 

experienced the opposite difficulties.  This may be due to 

having used atypically large set of balanced homonyms. 

This was accomplished by sampling from a database of 

subjective meaning frequency norms (Armstrong et al., 

2015) and may have differentially boosted the power of the 

homonymy effects. This more powerful manipulation of 

homonymy may also have coincided with a less powerful 

manipulation of polysemy based on the recent results of 

Fraga, Padrón, Perea, & Comesaña (2016).  They found that 

although the number of senses provided in a subjective 

meaning norming study and those available in the RAE 

dictionary (the source of our polysemy counts) correlated 

highly, only the subjective norms were significant predictors 

of latencies in lexical decision and naming tasks.  

Unfortunately, there was insufficient overlap between our 

items and theirs to corroborate their findings in our own 

data. However, this recent observation clearly stresses the 

importance of how polysemy is measured. In English, 

several studies have used dictionary counts to predict 

polysemy successfully (e.g., Armstrong et al., 2016; Rodd et 

al., 2002 both used counts from Wordsmyth; Parks, 1999). 

Thus, our findings in Spanish suggests that the lexographers 

administering the RAE dictionary use a different 

classification scheme for ambiguity, and/or English and 

Spanish vary in their distributions of polysemes in ways that 

shape performance to a substantial degree. The latter 

possibility gains support from the Armstrong et al. (2015) 

homonym norming study. They observed that despite 

Spanish and English having similar total numbers of 

homonyms, Spanish homonyms are much more likely to 

have a strongly dominant meaning. (This also posed 

challenges for us finding balanced and well matched 

hybrids.) Clearly, a more extensive set of polyseme norms 

with high external validity must be collected in both 

languages to evaluate these possibilities.     

The prior discussion has focused primarily on potential 

differences in objective or subjective measures of 

ambiguity. However, is also possible that broader properties 

of the language and/or of our participants may have 

contributed to the aforementioned discrepancies.  Our use of 
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Spanish, an orthographically transparent language, may 

have been advantageous when controlling for orthographic 

and phonological confounds. However, it may also have 

allowed for the rapid spreading of activation between 

orthography and phonology. This could have, in turn, 

allowed these representations, as opposed to semantics, to 

be the primary drivers of the response system.  Although the 

significant effects of imageability indicate that semantics 

did always influence responses, it is possible that semantic 

effects may have been attenuated such that only the strong 

effect of homonymy could be detected.    

On a related front, the participants tested by Armstrong 

and Plaut (2016) were all native English speakers in the 

USA and presumably had limited exposure to other 

languages.  In contrast, the participant population in the 

Basque Country is bilingual and all participants reported 

proficiency in one or more other languages that share at 

least a partially overlapping phonology and/or orthography 

(e.g., Basque, French, English). Bilingualism in and of itself 

has been reported to slow responses in some tasks (e.g., 

Luo, Luk, & Bialystok, 2010). These results have typically 

been explained by focusing on dynamics at the (sub)lexical 

level, however (e.g., in the Bilingual Interactive Activation 

model; Dijkstra & van Heuven, 1998). Our results suggest 

that some of these differences could also be attributable to 

processing differences at a semantic level. Consistent with 

this hypothesis, Taler, Zunini, and Kousaiev (2016) found 

that monolinguals exhibited greater facilitation as a function 

of increased NoS than bilinguals in a lexical decision task.  

This was true both in response latency and in EEG measures 

of the N400, which is known to index semantic processing. 

Collectively, these results suggest that semantic settling 

dynamics and ambiguity resolution could be impacted by 

knowledge of multiple languages.  The field would 

therefore benefit from additional carefully matched 

experiments across a broad span of languages.   

Returning to the initial question that motived our work, 

does processing time play a critical role in shaping some 

ambiguity effects? Our results provide partial support that 

this is, indeed the case.  However, the cases in which such 

support did not materialize are perhaps just as theoretically 

relevant. These cases highlight how certain core effects in 

the semantic ambiguity literature may vary as a function of 

the language in which the test is conducted, and/or as a 

function of knowledge of a second language.  They also 

point to important methodological issues that remain to be 

addressed, such as how to classify and compare polysemy 

across languages. Taken together, the present work therefore 

serves not only advances our understanding of the semantic 

settling dynamics in ambiguity resolution.  It also highlights 

the value of cross linguistic comparisons in developing a 

general as opposed to a language-specific understanding of 

semantic ambiguity.  
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Abstract

Humans have a strong “cognitive compulsion” to infer in-
tentional agents from violation of randomness and such an
agency–nonrandomness link emerges early in development.
In two studies, we directly quantified, formalized, and com-
pared both ends of this link for the first time. In Experiment
1, two groups of participants viewed the same 256 binary se-
quences (e.g., AABAAABA) and classified each as generated
by agents/non-agents or by nonrandom/random processes. We
found a strong correlation between two judgments: sequences
viewed as more agentive also tended to be judged as less ran-
dom. In Experiment 2, another two groups were asked to
produce sequences that others might appreciate as agentive or
nonrandom. Participant-generated sequences in the two con-
ditions had a substantial overlap, indicating common guiding
principles of agency and nonrandomness generation. Taken to-
gether, the present studies provide evidence for a shared cog-
nitive basis of agency detection and subjective randomness.
Keywords: agency; subjective randomness; agency–
nonrandomness link; animate-inanimate distinction

Introduction
We can accept a certain amount of luck in our explanations,
but not too much. The question is, how much?

– Richard Dawkins, The Blind Watchmaker (1996)

When we look at something as delicate and orderly as the
eye, it is only natural to believe that such a work of art must
be designed by someone, an intentional agent with a purpose
in mind. In contrast, it takes “a very large leap of the imagi-
nation to think the other way around” (Dawkins, 1996, p.7).

This cognitive compulsion to infer agents from order may
have given birth to thousands of religions shared by the vast
majority of people on Earth (Barrett, 2000; Keil & Newman,
2015) and it dates back to early childhood (Friedman, 2001)
and infancy (Ma & Xu, 2013; Ma, Berthiaume, Hoch, & Xu,
under revision; Newman, Keil, Kuhlmeier, & Wynn, 2010).
By 10 and 12.5 months of age respectively, infants appreciate
that only agents can create regular visual (e.g., YYRYYRYYR,
Y and R stand for yellow and red balls; Ma & Xu, 2013)
and auditory (e.g., TTTCTTTCTTTCTTTC, T and C stand for
tambourine and cowbell sounds; Ma et al., under revision)
sequences. Similar appreciation has been found in differ-
ent tasks. For instance, 12-month-olds expect agents (e.g.,
a ball) but not inanimate objects (e.g., a perceptually similar
ball with eyes) to bring order to a disorderly pile of blocks.

Keil and Newman (2015) used these findings to argue that
during the first few months of life, infants observe a bulk
of ordering and disordering events together with their causes
and come to “associate only agents but not non-agents with
many kinds of ordered and nonrandom sequences” (p.132).

Notwithstanding counterexamples such as molecular self-
assembly or evolution, this association is often true in our uni-
verse where entropy tends to increase over time; in contrast,
it takes energy, information, and goal-direction to go against
the force of nature, all of which strongly indicate agentive
causes even to the youngest humans (see Baillargeon, Scott,
& Bian, 2016, for a review). Based on these experiences
and intuitive theories, deviation from randomness often in-
dicates nonrandom generation processes behind the scenes
(Griffiths & Tenenbaum, 2001, 2003, 2004, 2007; Sim & Xu,
2013; Williams & Griffiths, 2013). When the specifics are
unknown, people often default to agents as the “causal place-
holders”, thinking that they did it somehow (Saxe, Tenen-
baum, & Carey, 2005; Wu, Muentener, & Schulz, 2015).

If the above line of reasoning holds true, people’s
judgment of agency should align with their judgment of
nonrandomness—the less random something looks, the more
agentive it strikes us as. This prediction might be hinted by
Kushnir, Xu, and Wellman’s (2010) finding that 20-month-
olds use violation of random sampling to infer the preference
of an agent (“She always picked this toy despite its rarity, so
she must really like it.”). It is possible that nonrandomness not
only indicates the psychological states of an already known
agent, but also cues its very existence. Imagine if you see a
haystack in the middle of a desert (which apparently violates
the surrounding vegetation distribution)—you may well con-
clude that someone must have been there apart from that she
is very fond of hay. Alternatively, as Feldman and Tremoulet
(2008)1 suggested, the intermediate level of nonrandomness
is the strongest cue of agency: “Too simple—a simple peri-
odic noise burst, say—and it’s an inanimate source, say, a ro-
tating pulsar. Too complex—a totally patternless sequence—
and it’s just random electromagnetic interference. To seem
intelligent it has to be somewhere in between: patterned, but
neither perfectly periodic nor completely chaotic” (p.22).

Empirical evidence is needed to test the two possibilities.
To the best of our knowledge, there is no research directly
examining the relationship between human intuitions about
agency and randomness. The closest work to date (Ma &
Xu, 2013; Ma et al., under revision), for instance, lacks a
measure of the regularity of the stimuli. Without quantifying

1Feldman and Tremoulet (2008) only briefly mentioned this hy-
pothesis at the end of their paper, the bulk of which focused on
detecting agency from observed motion patterns. The idea of us-
ing computational models (e.g., finite state automaton) to formalize
agent detection is shared by our paper, but we dived into a very dif-
ferent domain—static visual sequences, where there is a substantial
literature on the formalism of subjective randomness to draw on.
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subjective agency and subjective nonrandomness, however, it
is hard to tell whether or not they go hand in hand. In addi-
tion, without an independent measure of regularity, one may
find herself trapped in circular reasoning—“What is regular-
ity?” “It’s the evidence from which people infer intentional
agents.” “How do people infer intentional agents?” “From
regularity.” Also, past studies only looked at a small subset of
all possible binary sequences of equal length (9 digits in Ma
& Xu, 2013; 12 digits in Ma et al., under revision). Chances
are that regular sequences in those studies happened to look
both regular to the researchers (which is most likely why they
were chosen in the first place) and agentive to the infants. We
cannot rule out the possibility that there exist a considerable
amount of “irregular” sequences that look like the work of
an agent, or reversely, “regular” sequences that only call for
an inanimate cause. Therefore, to systematically investigate
the agency–nonrandomness link, we need to include a wide
range of sequences rather than a selected few.

Linking agency and randomness
To shed light upon the agency-nonrandomness link, we con-
ducted two experiments. In Experiment 1, one group of
participants viewed 256 binary sequences of length 8 (e.g.,
ΛΛΓΛΓΛΛΛ) and classified the source of each sequence into
agentive or non-agentive entities while another group classi-
fied the source of each as random or nonrandom processes2.
Should agency detection be tightly related to subjective ran-
domness, we would expect a high correlation between ratings
from the two groups. Sometimes, we not only need to de-
tect other agents, but also wish to be detected by others. For
instance, if we are abducted and locked in a truck, flashing
the taillight in a “meaningful” way may attract the police and
save our lives. Do we actually have such a good intuition
about what kind of sequences others may appreciate as agen-
tive? Is it related to our intuition of what others will view as
nonrandom? We looked into these questions in Experiment
2 by asking another two groups of participants to generate
an 8-digit binary sequence that they thought might receive
the highest agency or nonrandomness score. We examined
whether the mean scores of participant-generated sequences
were higher than that of all 256 in Experiment 1, as well as
the overlap between sequences generated by the two groups.

If people indeed make similar judgments about agency and
nonrandomness, then the question is whether they solve the
two problems in a similar way. In the last decade, Grif-
fiths and Tenenbaum (2001, 2003, 2004, 2007) formalized
the problem of randomness detection as a statistical inference
of the data generation process given the data: that is, when
judging if a given sequence X is random, people are compar-
ing the probability that X was generated by a random process
(P(random|X)) against the probability that X was generated
by a regular process (P(regular|X)). The ratio of these two

2Griffiths and Tenenbaum (2003) only showed each participant
half (128) of the stimuli—that is, one either saw a sequence (e.g.,
HTHHTHTT) or its complement (e.g., THTTHTHH).

probabilities, or “posterior odds”, is given by Bayes’ theorem
(below is the log-odds form):

log
P(random|X)

P(regular|X)
= log

P(X |random)

P(X |regular)
+ log

P(random)

P(regular)
,

(1)
The subjective randomness of sequence X is defined as the

only part that depends on X—the log-likelihood ratio:

randomness(X) = log
P(X |random)

P(X |regular)
. (2)

If X results from flipping a fair coin or the equivalent, then
P(X |random) is simply 1

2
l(X)

(l(X) is the length of X)—the
heart of the problem thus becomes evaluating P(X |regular).
Griffiths and Tenenbaum (2003, 2004) specified P(X |regular)
using a hidden Markov model (HMM) that associates each
symbol xi (e.g., H) in X with a hidden state zi (e.g., repeating
H). The probability that X is generated by a certain HHM is
obtained by summing over the probability that X is generated
by each of all possible states Z under this model:

P(X) = ∑
Z

P(X ,Z), (3)

Knowing that each xi solely depends on zi and each zi is
determined by zi−1, we can rewrite Equation 3 as below:

P(X ,Z) = P(z0)
n

∏
i=2

P(zi|zi−1)
n

∏
i=1

P(xi|zi). (4)

In this study, the regular generation process is defined by
22 repeating “motifs” of length 1 (repeating H or T) to 4 (e.g.,
repeating HTHH, TTHH, etc.). Each symbol in the 22 motifs
corresponds to a hidden state, which amounts to 72. The prior
of each motif is αk (k is the length of a motif) and the prob-
ability of continuing with a motif is δ. Using this HMM, we
can estimate the subjective randomness of all 256 sequences.

Experiment 1: Judging sequences
Method
Participants Seventy-four participants with a United States
IP address took part in Experiment 1 on Amazon Mechani-
cal Turk (http://www.mturk.com/, “MTurk”) for a payment of
$3.5. A past acceptance rate equal to or greater than 93%
was required for participation. 40 participants (20 women;
mean age = 37.15, SD = 12.63, range: 19–70 years) were
randomly assigned to the agency judgment task and 34 (17
women; mean age = 33.98, SD = 10.45, range: 23–67 years)
to the nonrandomness judgment task. Another 36 were ex-
cluded for failing one or both instruction check questions.

Stimuli and procedure To begin, participants read a cover
story corresponding to their task:

Agency condition. “Welcome to year 3017! Imagine you
are a space rescuer whose job is to search for astronauts lost
in deep space. These days spaceships are all equipped with
a radio transmitter. To call for help, astronauts can use it
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to send out sequences made of two types of radio waves—
Lambda (Λ) and Gamma (Γ). However, both types of waves
may also be produced by natural phenomena such as celes-
tial body activities—in this case, Λ and Γ are equally likely
to appear. Everyone in space knows that by current technical
standard, radio receivers can only pick up 8 waves in a row—
that is, you can only detect sequences that have 8 waves (as
mentioned before, each wave is either Λ or Γ). If you receive
a sequence and think it was produced by natural phenomena,
you will ignore it and stay on course. If you think it came
from humans, then you will go to them. In this study, you
will see about 250 sequences. Your task is to decide whether
each sequence was generated by a natural phenomenon or by
a human astronaut. Please answer as quickly and accurately
as possible!”

Nonrandomness condition. “You’re about to see some se-
quences made of 8 symbols. Each symbol is either Lambda
(Λ) or Gamma (Γ)—which may represent heads or tails,
even or odd digits, successes or failures, or other event out-
comes. For instance, the sequence ΛΓΓΛ could stand for
“tails, heads, heads, tails”, “even, odd, odd, even”, etc. Some
of these sequences were created by tossing an actual fair coin,
which means they are random series—in this case, Λ and Γ

are equally likely to appear. However, other sequences may
be generated by nonrandom processes, such as computer pro-
grams, successes and losses of a basketball team, and so on.
In this study, you will see about 250 sequences. Your task is
to decide whether each sequence was generated by a random
process or by a nonrandom process. Please answer as quickly
and accurately as possible!”

Two quizzes immediately followed to test participants on
the sources of sequences as well as the chance of two symbols
appearing in the natural phenomenon or the random processs
scenario. Images (pixel resolution: 700×525) of 256 binary
sequences of length 8 were then displayed on the screen. In
the agency judgment task, participants were asked to classify
the source of each sequence into “human astronaut” or “nat-
ural phenomenon”, and in the nonrandomness judgment task,
into “nonrandom process” or “random process”. The display
order was randomized and the relative location of choices
counterbalanced between participants. The whole process
was self-paced and took an average of 20 minutes.

Results
An alpha level of .05 was used for all statistical analyses.
Each sequence received an agency score (the proportion of
participants classifying its source as “human astronaut”) as
well as a nonrandomness score (the proportion of participants
classifying its source as “nonrandom process”).

To examine the stability of participants’ judgments, we
looked at the scores of 128 sequences (e.g., ΛΛΓΓΛΛΓΛ)
and their complements (e.g., ΓΓΛΛΓΓΛΓ)—in theory, they
should be the same. Indeed, the sequence-complement corre-
lation was high in the agency condition, r(126) = .84, 95% CI
[.78, .89], p < .001, adjusted R2 = .71, and even higher in the
nonrandomness condition, r(126) = .93, 95% CI [.91, .95], p
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Figure 1: The agency-nonrandomness link in Experiment 1.

< .001, adjusted R2 = .87, suggesting that participants were
making reliable judgments during the task.

Of central interest to Experiment 1 was the correlation be-
tween agency and nonrandomness scores. We found a strong
positive correlation between the two, r(254) = .84, 95% CI
[.81, .88], p < .001, adjusted R2 = .72 (see Figure 1a).

To see whether detecting agents was a similar problem to
detecting deviation from randomness, we tested if the same
model (as specified earlier) fit data from both tasks reason-
ably well. Since our models predicted subjective randomness,
we recoded agency scores into non-agency scores (1 - agency
score) and nonrandomness scores into randomness scores (1
- nonrandomness score). Fitting the non-agency data gave δ

= .44 and α = .11, with correlation r(254) = .72, p < .001,
and fitting the randomness data gave δ = .45, α = .12, with
correlation r(254) = .75, p < .001. Model predictions in the
two conditions were strongly correlated, r(254) = .96, 95%
CI [.95, .97], p < .001, adjusted R2 = .92 (see Figure 1b).

2701



Discussion
In Experiment 1, we found a strong correlation between par-
ticipants’ agency and nonrandomness judgments—that is, se-
quences viewed as less random were rated as more agen-
tive. A hidden Markov model fit human data in both tasks
reasonably well and produced highly overlapping predic-
tions for subjective non-agency and subjective randomness,
which suggests that people are solving highly similar prob-
lems when detecting agents and violation of randomness.

At the beginning of this paper, we discussed two possi-
ble forms the agency–nonrandomness link. Feldman and
Tremoulet (2008) suggested that mid-level randomness is
most agentive, according to which we should find a reverse U-
shaped/U-shaped relation between the degree of agency/non-
agency and the degree of randomness. However, this was
neither the case in human judgments (Figure 1a) nor model
predictions (Figure 1b). Instead, the findings in Experiment 1
provided evidence for a linear agency–nonrandomness link.

Experiment 2: Generating sequences
Participants A total of 212 participants with a United
States IP address who did not participate before took part in
Experiment 2 on MTurk for a payment of $0.5. A past ac-
ceptance rate equal to or greater than 93% was required for
participation. 105 participants (38 women; mean age = 35.59,
SD = 10.54, range: 18–67 years) were randomly assigned to
the agency generation task and 107 (34 women, 1 other; mean
age = 36.36, SD = 11.63, range: 19–65 years) to the non-
randomness generation task. Another 78 were excluded for
failing one or both instruction check questions or generating
sequences that were not binary or of length 8.

Method
Stimuli and procedure To begin, participants read a cover
story corresponding to their task:

Agency condition. “Welcome to year 3017! Imagine you
are an astronaut who is lost in deep space after an accident.
These days spaceships are all equipped with a radio transmit-
ter. To call for help, you can use it to send out sequences
made of two types of radio waves—Lambda (Λ) and Gamma
(Γ). However, both types of waves may also be produced by
natural phenomena such as celestial body activities—in this
case, Λ and Γ are equally likely to appear. Everyone in space
knows that by current technical standard, radio receivers can
only pick up 8 waves in a row—that is, you should only send
sequences that have 8 waves (as mentioned before, each wave
is either Λ or Γ). If space rescuers receive your sequence and
thinks it was produced by natural phenomena, they will ig-
nore it and stay on course. If they think it came from humans,
then they will come to you.I n order to save yourself, what
sequence will you send to space?”

Nonrandomness condition. “You’re about to write down a
sequence made of 8 symbols. Each symbol is either Lambda
(Λ) or Gamma (Γ)—which may represent heads or tails, even
or odd digits, successes or failures, or other event outcomes.

For instance, the sequence ΛΓΓΛ could stand for ‘tails, heads,
heads, tails’, ‘even, odd, odd, even’, etc. Sequences like this
could be created by tossing an actual fair coin, which means
they are random series. However, they could also be gener-
ated by nonrandom processes, such as computer programs,
successes and losses of a basketball team, and so on. In this
study, you will come up with one sequence. Your task is to
make it look least random—that is, this sequence should NOT
look like the product of a random process; instead, it should
look like it’s generated by a nonrandom process. In order to
fulfill your task, what sequence will you write down?”

Two quizzes immediately followed to test participants on
what kind of sequence they should generate and the chance
of two symbols appearing in the natural phenomenon or the
random processs scenario. Then they entered a sequence in 8
text entry cells (the task requirement was visible). The whole
process was self-paced and took about 2–3 minutes.

Results
Since symbols have no inherent meanings, sequences (e.g.,
ΛΓΛΛΓΓΛΓ) and their complements (e.g., ΓΛΓΓΛΛΓΛ)
were coded as the same form (e.g., ABAABBAB). Participants
in the agency condition generated 31 unique sequences while
those in the nonrandomness condition generated a total of 35.
Table 1 summarized unique sequences generated in both con-
ditions (16 overlapping sequences are marked in yellow).

To begin, we looked at whether participants were able to
generate good sequences with respect to the task requirement.
To do so, we assigned agency and nonrandomness scores in
Experiment 1 to participant-generated sequences in Experi-
ment 2 (e.g., the score of ABAABBAB would be the mean
score of ΛΓΛΛΓΓΛΓ and ΓΛΓΓΛΛΓΛ). In the agency con-
dition, participant-generated sequences had higher scores (M
= .56, SD = .19) compared to all 256 sequences (M = .43, SD
= .14), mean difference = .13, 95% CI [.08, .16], t(154.56) =
6.58, p < .001, d = .86. Participant-generated sequences (M
= .62, SD = .22) also received higher nonrandomness scores
than that of the whole set (M = .50, SD = .23), mean differ-
ence = .12, 95% CI [.09, .17], t(286.11) = 5.87, p < .001, d =
.58. In both the agency and the nonrandomness condition, the
frequency of sequences being generated was positively corre-
lated with their scores, r(103) = .75, 95% CI [.66, .83], p <
.001, adjusted R2 = .56, r(105) = .53, 95% CI [.38, .65], p <
.001, adjusted R2 = .27, respectively.

To see if the agency–nonrandomness link exists in se-
quence generation, we examined the overlap of participant-
generated sequences in the two conditions. First, 87 out of
105 “agentive” sequences were also generated in the non-
randomness condition and a similarly large proprotion of
“nonrandom” sequences—83 out of 107—were found in the
agency condition as well. Among the 31 unique agentive se-
quences and 35 unique nonrandom sequences, 16 were shared
by both. The question is whether this overlap was due to
chance, a problem that is often faced by bioinformatics sci-
entists when deciding given a genome with N genes, whether
one gene list with a genes overlaps with another with b genes
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Table 1: Participant-generated sequences in Experiment 2.

nonrandom freq. score agentive freq. score
ABABABAB 21 0.60 AAAAAAAA 40 0.76
AAAAAAAA 17 0.90 ABABABAB 20 0.40
AAAABBBB 15 0.85 AAAAAAAB 3 0.65
AABBAABB 14 0.56 AAABBBAA 3 0.50
AAAAAAAB 3 0.85 AABABBAB 3 0.29
AAABAAAB 2 0.73 ABBAABBA 3 0.37
AAABAABA 2 0.53 AAAABBBB 2 0.56
AAABBBAA 2 0.73 AAABAAAB 2 0.65
AABBABAB 2 0.25 AAABAABA 2 0.54
AABBBAAB 2 0.40 AAABBAAA 2 0.65
ABABAABB 2 0.26 AAABBBAB 2 0.35
ABBABBAB 2 0.49 AABBAABB 2 0.47
AAAABAAB 1 0.60 ABAABBAA 2 0.34
AAABABBA 1 0.21 ABABBABA 2 0.25
AAABBAAA 1 0.73 AAAAAABB 1 0.60
AAABBABA 1 0.33 AAAAABAA 1 0.63
AAABBBAB 1 0.48 AAAABBAA 1 0.57
AABAAABA 1 0.51 AAABABAB 1 0.32
AABAABAA 1 0.75 AABAABAA 1 0.56
AABAABBB 1 0.30 AABBBAAA 1 0.51
AABABBAB 1 0.23 AABBBABA 1 0.34
AABABBBA 1 0.23 AABBBBBB 1 0.57
AABBAAAB 1 0.39 ABAABAAA 1 0.41
AABBABBA 1 0.33 ABAABAAB 1 0.43
AABBBAAA 1 0.69 ABAABABB 1 0.28
ABAAABAB 1 0.33 ABAABBAB 1 0.24
ABAABBAA 1 0.39 ABABBBAA 1 0.28
ABAABBBA 1 0.24 ABBAAABA 1 0.29
ABBABAAB 1 0.19 ABBAAABB 1 0.34
ABBABBAA 1 0.30 ABBBAABB 1 0.31
ABBABBBA 1 0.40 ABBBBBBA 1 0.66
ABBBAABA 1 0.20
ABBBAABB 1 0.35
ABBBABAA 1 0.24
ABBBBBBA 1 0.90

if they have an intersection of t genes. In our study, the
“genome” was all 128 unique sequences while participant-
generated agentive and nonrandom sequences were the two
“gene lists”. Using Fisher’s exact test implemented by the
GeneOverlap R package (Version 1.12.0; Shen & Sinai,
2013), we found that the 16-sequence overlap between two
conditions was unlikely to arise by mere chance, p < .001.

Discussion
Participants in Experiment 2 showed a good sense of what se-
quences may strike others as agentive or nonrandom: in both
the agency and the nonrandomness condition, they generated
sequences with higher scores than all 256 sequences. Cru-
cially, we found a statistically meaningful overlap between
agentive and nonrandom sequences, indicating that people
not only make similar judgments about agency and nonran-

domness, but may also be guide by similar intuitions when
generating stimuli that are agentive or nonrandom.

General Discussion
The present studies provide evidence for a shared cogni-
tive basis of agency detection and subjective randomness.
In Experiment 1, participants made similar judgments about
agency and nonrandomness: sequences viewed as more agen-
tive also tended to be judged as less random. A hidden
Markov model with 72 states and 22 motifs fitted human per-
formance in both tasks equally well and produced identical
predictions regarding the degree to which people should view
each sequence as agentive or nonrandom. In Experiment 2,
participants did a good job generating sequences that oth-
ers might see as agentive or nonrandom. Sequences in these
two conditions had a substantial overlap, indicating common
guiding principles of agency and nonrandomness generation.

Our work contributes to a growing body of literature on the
perceived link between order and agency (e.g., Barrett, 2000;
Friedman, 2001; Ma & Xu, 2013; Ma et al., under revision;
Newman et al., 2010) by directly quantifying, formalizing,
and comparing both ends of this link for the first time.

As Williams and Griffiths (2013) pointed out, randomness
judgments often boil down to relative frequency (Are two
equally likely events equally frequent?) and sequential de-
pendence (Do earlier events influence subsequent events?).
However, past researchers studied the link between these two
apsects of randomness (or lack thereof) and agency sepa-
rately—for instance, Kushnir et al. (2010) focused on the
former while Ma and Xu (2013) the latter. In our study,
both biased frequency (e.g., AAAAAAAB) and high sequential
dependence (e.g., AAABBAAA) lead to high agency ratings,
which may help unify past findings. Future work will look
at how differently or similarly frequency and dependence are
weighted in our nonrandomness and agency judgments.

Although violation of randomness plays an important role
in agency detection, we do not claim that it is the only
cue to agency or always linked to the latter. Given certain
background knowledge or context3, “irregular” stimuli may
look agentive—a seemingly chaotic drip painting still looks
like the work of a human, and “regular” stimuli can appear
non-agentive—we would not necessarily think a mechani-
cal watch is alive because it tick-tocks every second. With-
out such information, however, intentional agents are perhaps
the best guess for a nonrandom outcome. Follow-up studies
should take a closer look at how rich knowledge may be inte-
grated into the way we reason about agents and randomness.

Another question is whether the current findings generalize
to other types of stimuli, such as matrices, numbers, geomet-
ric shapes, etc. Answering this question requires us to under-
stand and formalize randomness in these domains, on which
there are increasingly more studies in recent years (e.g., Grif-
fiths & Tenenbaum, 2007; Hsu, Griffiths, & Schreiber, 2010).
We plan to investigate the agency–nonrandomness link us-

3This was suggested by two anonymous reviewers.
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ing new types of stimuli. Even for binary sequences, it is
worth looking at if what we found applies to longer sequences
where more interesting regularities may emerge, such as the
repeating triads in Ma and Xu’s (2013) study. Also, as the
length extends, it may become difficult to find a global pat-
tern and one may have to focus on local patterns. How will
these factor into our agency and nonrandomness judgments?

On the computational level, our study is the first step to-
wards formalizing how people perceive agency. A more pre-
cise account requires us to directly estimate the probability
distribution of a certain stimulus being generated by an agent,
P(X |agent), which can be achieved by using a much larger
sample size (e.g., the Big Bell Test invited more than 100,000
people from all over the world to generate random responses;
see http://thebigbelltest.org/ for details) as well as applying
sampling methods such as Markov chain Monte Carlo with
People (“MCMCP”, Sanborn, Griffiths, & Shiffrin, 2010).

MCMCP is also able to capture each person’s judgment.
What looks agentive to some may look inanimate to others;
understanding individual differences may allow us to appre-
ciate the complexity of human agency perception and on top
of that, explain far-reaching psychological and societal con-
sequences, such as the endorsement of Intelligent Design, the
denial of natural selection in favor of creationism, and so on.
In regards to other social phenomena, past studies explored
the relationship between randomness and perceived efficacy
of rituals (Legare & Souza, 2014), belief in conspiracy the-
ories (Dieguez, Wagner-Egger, & Gauvrit, 2015), etc.. We
wonder whether people’s agency intuition plays a similar or
a different role in these situations, especially using the more
intricate characterization of agency that MCMCP provides.

In his book Scienceblind, Shtulman (2017) argued that
many misconceptions of science stick not just because of ide-
ology or the media, but also because they have deep roots
in our intuitive theories. As mentioned before, our agency–
nonrandomness link may be one such root. For science edu-
cators, the question at hand is, how malleable is it? Given the
right kind and amount of evidence, will we update our belief?
For instance, by understanding causal mechanisms by which
nonrandomness could arise from non-agentive sources (e.g., a
ball rolling down a xylophone produces orderly sounds, but it
is not viewed as an agent by adults or even infants, Schachner,
Carey, & Kelemen, 2013), can we weaken or break this link?
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Abstract 

Whereas much is known about how humans categorize and 
reason based on absolute quantities, research investigating the 
processing of relative quantities, such as proportions, is 
comparatively limited. The current study used a Stroop-like 
paradigm to examine adults’ automatic processing of 
nonsymbolic proportions and how presentation formats 
modulate this processing. Participants were asked to compare 
individual components across proportions in six different 
presentation formats. Congruity between component size and 
overall proportion affected accuracy of comparison, such that 
participants were less accurate when proportion (the irrelevant 
dimension) was incongruent with absolute quantity (the 
relevant) dimension. Moreover, the congruity effect was 
modulated by the presentation format. These findings serve as 
evidence that humans automatically access relative quantity 
when presented in nonsymbolic formats and provide evidence 
that the strength of this processing is modulated by the format 
of presentation. 

Keywords: automatic processing; congruity effect; relative 
quantity; proportions; presentation format 

Introduction 
Humans share with many species a non-verbal system to 
estimate absolute quantity (Dehaene, 1997). The invention 
of number symbols allows humans to precisely represent 
absolute quantity instead of mere approximate estimation. 
However, simple absolute quantification is often not 
sufficient to guide behavior. We frequently need to relate 
two quantities to generate a new construct: proportion or 
ratio. Although much is known about the processing of 
absolute quantity (either symbolic or nonsymbolic), 
comparatively little is known about how the brain encodes 
relative quantity. 

To represent relative quantity accurately, humans exploit 
their symbolic numerical competence by using number 
fractions. However, children and adults often experience 
great challenges and difficulties in learning and using 
fractions (Ni & Zhou, 2005). Furthermore, research on 
symbolic fractions suggest that the numerical magnitudes 
represented by symbolic fractions are not automatically 
activated (Kallai and Tzelgov, 2009), and that the holistic 
processing of symbolic fractions depends on the stimuli and 
task contexts (Meert et al., 2009; Meert et al., 2010; 
Schneider & Siegler, 2010). For example, Meert and 
colleagues (2009) observed that access to the magnitude of 

symbolic fractions was affected by the congruity or 
incongruity between the value of the single components and 
the value of whole fraction. Schneider and Siegler (2010) 
found that adults process fraction magnitudes holistically 
when the task does not allow them to use any shortcut 
strategies that would enable separate processing of the 
numerator and denominator magnitudes.  

Similar to absolute quantity, which can be judged 
approximately without symbols, proportion (relative 
quantity) can also be determined non-verbally. Studies have 
suggested that even by a young age, humans can understand 
proportion information when presented nonsymbolically 
(McCrink & Wynn, 2007; Jacob, Vallentin, & Nieder, 2012; 
Matthews, Lewis, & Hubbard, 2015). For instance, infants 
can discriminate between two ratios long before the concept 
of proportionality is introduced during formal schooling 
(McCrink & Wynn, 2007).  

Research even suggests that the magnitudes of 
proportions are automatically activated (Duffy, 
Huttenlocher, Levine, 2005; Duffy, Huttenlocher, Levine, & 
Duffy, 2005; Fabbri et al., 2012; Yang et al., 2015; 
Matthews & Lewis 2016). Six-month-olds dishabituated 
when the relation between a dowel and its container 
changed but not when the absolute size of both object 
changed while the relation was held constant (Duffy, 
Huttenlocher, Levine, & Duffy, 2005). Moreover, 4-year-
olds chose the dowel which had the same dowel-container 
relation as the original display rather than the one with the 
same absolute dowel size (Duffy, Huttenlocher, Levine, 
2005). Fabbri et al. (2012) found that the magnitude of 
proportions can be automatically and holistically processed 
by adults using a congruity manipulation in which the 
greater numerosity of white dots co-occurred with a lower 
proportion. Yang et al. (2015) found that proportion 
interfered with preschool children’s area comparison 
performance.  

It is acknowledged that the cognitive processes involved 
in proportion processing vary depending on the type of 
proportional relation involved (i.e., part-to-part vs. part-to-
whole) (Sophian & Wood, 1997; Spinillo & Bryant, 1999; 
Möhring, Newcombe, Levine, & Frick, 2016), and display 
types (i.e., continuous, discretized, discrete) (Spinillo & 
Bryant, 1999; Jeong, Levine, & Huttenlocher, 2007; Boyer, 
Levine, & Huttenlocher, 2008).  
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Proportions can be presented as either part-to-part 
relations or part-to-whole relations. Previous research 
suggested that part-to-part presentation is easier for 6- to 8-
year-old children (Spinillo & Bryant, 1999). However, other 
study provided evidence that children performed better for 
problems involving part-to-whole presentation (Sophian & 
Wood, 1997; Möhring, Newcombe, Levine, & Frick, 2016). 
There is no evidence yet for if and how adults would 
perform differently for these two relations presentation. 

Proportions can also be displayed as continuous, discrete, 
or discretized (see Figure 1). Previous studies generally 
agreed that continuous display encourages perceptual 
approximate measurement of the intensive quantity, while 
discrete (and discretized) display would lead to exact 
counting strategy (e.g., Boyer, Levine, & Huttenlocher, 
2008; DeWolf, Bassok, & Holyoak, 2015). This was 
underlined by findings that children showed greater and 
earlier success in judging proportions displayed as 
continuous quantities than in judging proportions displayed 
as discrete quantities even if other variables were controlled 
to be constant (Spinillo & Bryant, 1999; Jeong, Levine, & 
Huttenlocher, 2007; Boyer, Levine, & Huttenlocher, 2008). 
For adults, we do not know yet whether they are still 
influenced by the display format. 

These results suggest that presentation format might 
influence proportions processing. Fabbri and Yang’s results 
are actually different as for the level of automaticity. It is 
probably due to the fact that they used different presentation 
format. Fabbri et al. (2012) used arrays of dots and part-to-
part proportion judgment, while Yang et al., (2015) asked 
participants to compare the areas of two sectors that were 
designed in part-to-whole relation. Therefore, the present 
study aims to systematically investigate how the level of 
automaticity will change for different presentation formats. 

The current study used a Stroop-like paradigm to examine 
the processing level of proportions. In a Stroop-like task, 
participants are asked to make judgments on one dimension 
while there are other dimensions that may agree or conflict 
with the one to be judged. Participants’ performance can 
suggest the automatic activation of the irrelevant 
dimensions. Higher error rate and longer reaction times will 
be observed for incongruent trials than for congruent trials if 
the irrelevant dimensions are accessed automatically. For 
example, people tend to spend more time and make more 
errors when they are asked to compare the magnitudes of 
two numbers that have incongruent physical sizes than the 
pairs that have congruent physical size with corresponding 
magnitudes (Henik & Tzelgov, 1982). 

In the present study, absolute quantity will be treated as 
the relevant dimension and relative quantity (proportion) as 
the irrelevant dimension. For congruent trials, the larger 
proportion also has the larger components. For incongruent 
trials, the larger proportion would have the smaller 
components. If participants’ performance is worse in the 
incongruent condition, it would provide evidence that the 
representation about proportions is automatically activated. 

We aim to investigate whether presentation format of 
proportions would be automatically activated in different 
levels and thus have different effects to the absolute 
quantity comparisons. The size of interference in Stroop-
like tasks is proposed to be a function of degree of the 
irrelevant dimension’s automaticity (MacLeod & Dunbar, 
1988). Therefore, we focus on the size of interference to see 
whether the automatic accessing level of proportions will 
differ. 

Method 

Participants 
33 undergraduate students from a large Midwestern 
university participated for course credit (31 females; ages 18 
– 22).  

Stimuli 
Presentation formats were designed to be all possible 
combinations of display types and relation types.  

Three display types were designed: continuous, discrete, 
and discretized (see Figure 1). The discrete items were 
arrays of white and black squares with width of 20 pixels. 
The discretized items were displays composed of these 
squares stacked to form line segments, except that they were 
lined together with 1 pixel distance between them. The 
continuous items were identical to the discretized displays 
except that there was no space in between.  

We examined both part-to-part and part-to-whole 
relations. For all three displays, we varied the presentation 
such that half of the proportions were presented in part-to-
part relation, and half were presented in part-to-whole 
relation. The part-to-part relation was defined as the white 
portion to the black portion; the part-to-whole relation was 
defined as the white portion to the total portion. 

Each proportion was presented in one of the six 
presentation formats depicted in Figure 1 below. 

 continuous discretized discrete 
    

part-part 

   
    

part-whole 

   
 

Figure 1: Example of six presentation formats used in the 
experiment, all represent proportion of 1/3. 

Each stimulus pair consisted of two proportions displayed 
side by side. The center-to-center distance between the two 
proportions was 800 pixels.  
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There were two conditions differing by congruity. In 
congruent pairs, the stimulus which had the larger white 
portion also had a larger proportion value of white portion 
relative to either black portion or total (white plus black) 
portion. In incongruent pairs, the stimulus which had larger 
white portion had a smaller proportion value of white 
portion relative to either black portion or total (white plus 
black) portion. Table 1 showed all the stimuli used. 

Table 1 Stimuli used in the present study 

 Prop. 1 Prop. 2 Absolute 
Distance 

Relative 
Distance 

congruent 

2/8 3/9 1 1/12 
1/4 2/6 1 1/12 
1/6 2/8 1 1/12 
2/3 3/4 1 1/12 
4/12 5/12 1 1/12 
7/12 8/12 1 1/12 
2/12 3/9 1 1/6 
1/6 2/6 1 1/6 
1/12 2/8 1 1/6 
3/9 4/8 1 1/6 
4/6 5/6 1 1/6 
5/10 6/9 1 1/6 
4/8 6/9 2 1/6 
2/4 4/6 2 1/6 
1/6 3/9 2 1/6 
3/9 5/10 2 1/6 
2/6 4/8 2 1/6 
1/3 3/6 2 1/6 

incongruent 

1/3 2/8 1 1/12 
2/6 3/12 1 1/12 
1/4 2/12 1 1/12 
3/4 4/6 1 1/12 
5/6 6/8 1 1/12 
6/9 7/12 1 1/12 
6/8 7/12 1 1/6 
1/3 2/12 1 1/6 
5/6 6/9 1 1/6 
4/6 5/10 1 1/6 
2/3 3/6 1 1/6 
2/4 3/9 1 1/6 
4/6 6/12 2 1/6 
2/3 4/8 2 1/6 
1/2 3/9 2 1/6 
2/4 4/12 2 1/6 

Note. Prop. 1 means the first proportion value; Prop. 2 
means the second proportion value. Absolute Distance 
means the absolute quantity distance, which is the 
difference for the white portions of the pair; Relative 
Distance means the relative quantity distance, which is the 
difference for the proportion values of white portion relative 
to either black portion or total (white plus black) portion. 

Procedure 
Participants were instructed to select the stimulus which had 
larger white portion. Participants were asked to press “d” 

when they judged the left stimulus had larger white portion 
and to press “j” when they judged the right stimulus had 
larger white portion. Both speed and accuracy were 
emphasized in instructions. 

Each trial began with a 500 ms presentation of a fixation 
cross in the center of the screen, immediately followed by 
the stimulus pair. The pair stayed on the screen until 
participants submitted a response or timed out at 3000 ms. 

In each block, each of these 34 proportion pairs was 
presented twice, either with the larger proportion to the left 
or to the right, giving 68 trials in each block. The stimuli in 
each block were presented in a random order. There were 
six different blocks, and the presentation order of these six 
blocks was counterbalanced, resulting a total of 408 trials. 

Results 
Accuracy and mean reaction time (RT) were computed for 
each condition for each participant and used as the primary 
outcome variables. Only correct RTs were used in the 
analysis. We conducted separate repeated-measures 
ANOVAs using accuracy and RT.  

The repeated-measure ANOVA on the accuracy with 
congruity and presentation format as within-subject factors 
was calculated. Results revealed that the main effect of 
congruity was significant, F (1, 32) = 15.827, p = 0.000, 
!"2  = 0.331. Participants made more mistakes in the 
incongruent condition (M = 77.1%, SE = 4.6%) than in the 
congruent condition (M = 92.0%, SE = 1.3%). The main 
effect of presentation format, however, was not significant, 
F (5, 160) = 0.184, p = 0.671, !"2  = 0.006. This indicated that 
adults’ overall accuracy was not affected by presentation 
formats. Figure 2 depicted the pattern of accuracy for 
congruent and incongruent conditions for each presentation 
format. 
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Figure 2: Congruity effect on accuracy for each presentation 
format. “pcn” means part-to-part relation with continuous 
display; “pdd” means part-to-part relation with discretized 
display; “pds” means part-to-part relation with discrete 
display; “wcn” means part-to-whole relation with 
continuous display; “wdd” means part-to-whole relation 
with discretized display; “wds” means part-to-whole 
relation with discrete display. 
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The two-way interaction of presentation format with 
congruity was significant, F (5, 160) = 2.319, p = 0.046, 
!"2  = 0.068. The result indicated that the effect of congruity 
was modulated by presentation format. 

We also analyzed reaction times in the same way as 
accuracy. Figure 3 displays the pattern of mean correct 
reaction times across conditions. Only the main effect of 
presentation format was significant, F (5, 105) = 7.575, p = 
0.000, !"2  = 0.265. The main effect of congruity and the two-
way interaction of congruity and presentation format were 
not significant, ps > 0.05. 
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Figure 3: Congruity effect on response times for each 
presentation format. 

Discussion 
The results of current experiment showed that adults made 
more mistakes making judgments in the incongruent 
conditions than in congruent conditions. And the size of 
congruity effect varied by different presentation formats. 
But response time did not show such a clear pattern as 
accuracy. Participants seemed to spend about same time 
comparing congruent and incongruent trials. Overall, the 
current study suggested that adults can automatically 
process the magnitudes of proportions even though it was 
irrelevant and disturbing to the absolute quantity 
comparison task, and that the congruity effect was 
modulated by the presentation format.  

Even though more and more effort has been made to 
explore human’s understanding of proportions, very little is 
known about the specific processing level of them. 
Consistent with previous findings that human have an 
intuitive understanding of proportion and represent them 
perceptually (e.g., Jacob, Vallentin, & Nieder, 2012; 
Matthews, Lewis, & Hubbard, 2015), our study 
demonstrated that proportions can be automatically 
processed. The observation of the congruity effect 
confirmed the findings of previous studies that showed the 
same automatic processing of proportion (e.g., Fabbri et al., 
2012; Yang et al., 2015; Matthews & Lewis 2016). The 

study also provided evidence to the fact that humans, at 
least adults, can process proportion automatically no matter 
what kind of formats the proportion is presented. 

Moreover, based on previous findings that presentation 
format can influence proportion processing, the present 
study found that the level of automatic processing of 
proportion varied for different presentation formats. The 
size of congruity effect of automatic processing of 
proportion was modulated by presentation format. 
Proportions presented as discretized part-to-part display 
seemed to show the largest difference of accuracy for 
congruent trials and incongruent trials. This finding was a 
little bit surprising, because previous studies suggested that 
continuous display promotes greatest success for proportion 
processing at least for children (Boyer, Levine, & 
Huttenlocher, 2008). It is possible that adults adopt different 
processing strategies or preference than children. It would 
be interesting to see whether children shown different 
congruity effect pattern for these presentation formats. 
Another possibility is that the task in the current experiment 
was an implicit and unintentional task for proportion 
processing, while previous studies showing presentation 
differences were all explicit and intentional tasks for 
proportion processing (Sophian & Wood, 1997; Spinillo & 
Bryant, 1999; Jeong, Levine, & Huttenlocher, 2007; Boyer, 
Levine, & Huttenlocher, 2008). Humans might perform 
differently during two task scenarios. Further studies will be 
needed to address these issues. 

Theorists generally have two different explanations to 
account for the mechanism of automaticity phenomenon. 
Some focus on the learned automatic processes and 
emphasize the learning mechanism (Anderson, 1992). 
Others believe there are innate automatic processes that 
humans are born with (Hasher & Zacks, 1979). The current 
study cannot tell whether the mechanism of the automatic 
processing of proportion is natured or nurtured. 5-year-old 
children have been found to show similar congruity effect 
for accuracy but not response time in a sector comparison 
task, which provided some hint that the automatic 
processing of proportion is not acquired by learning or 
instruction (Yang et al., 2015). However, more evidence 
considering culture, education and intelligence, is required 
to reach final conclusions about the mechanism of automatic 
processing of proportion.  
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Utilizing simple cues to informational dependency
Hugo Mercier

CNRS

Helena Miton
CEU

Abstract: Participants can adequately take into account several cues regarding the weight they should grant majority opinions,
but that they do not consistently take into account cues regarding whether the members of the majority have formed their
opinions independently of each other. We suggest that these conflicting results can be explained by hypothesizing that some
cues are evolutionarily valid (i.e. they were present and reliable during human evolution), and others not. Using this framework
we derive and test hypotheses about two facets of informational dependency. The first 3 experiments show that participants
adequately take into account cues to informational dependency when they are presented in a simple, evolutionarily valid way.
Experiments 4 to 7 show that people consistently take into account shared motivation, but not shared cognitive traits, as a source
of potential dependency, as predicted by the likely greater importance of differences in motivation during our evolutionary
history.
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Abstract 

Children’s ability to direct attention to salient stimuli is a key 

aspect of cognitive functioning. Here we examined the 

magnitude and lateralization of EEG indices during 

somatosensory anticipation elicited by a left or right directional 

cue indicating the bodily location of an upcoming tactile 

stimulus. In 50 children aged 6-8 years, somatosensory 

anticipation was accompanied by anticipatory negativity and 

alpha mu rhythm desynchronization at contralateral central 

electrode sites (C3 and C4) overlying the hand area of the 

somatosensory cortex. Individual differences in these 

contralateral brain responses during somatosensory 

anticipation were associated with scores on a flanker task of 

executive function. The results suggest that processes involved 

in directing attention in the tactile modality may overlap with 

those involved in broader executive function abilities. 

Introduction 
The ability to direct attention in a focused and efficient 

manner is crucial to cognitive performance and decision-

making (Posner and Fan, 2008). Directed attention is the 

heightened monitoring of spatial location prior to 

presentation of a target stimulus, and is known to facilitate 

heightened perception, shorter reaction time and improved 

inhibition in adults (Rothbart, Posner and Kieras, 2006). 

Introduction of preparatory cues relevant for upcoming 

target stimuli allows study of neural activity or behavior 

during anticipation, prior to subsequent attention and 

perception of stimuli (Anderson and Ding, 2012). 

Anticipation is the goal-directed monitoring of sensation in 

expectation of a stimulus. Within a sensorimotor 

contingency framework, anticipatory brain responses can be 

viewed as ‘pragmatic’ in that they prepare for expected 

action (Engel et al., 2013), reflecting the reciprocal nature of 

prior experience, cognition and action (O’Reagen, 2011). In 

directed attention tasks with children, individual differences 

in post-stimulus neural activity to target stimuli (Stevens 

and Bavelier, 2012) are associated with cognitive skills and 

school achievement, but pre-stimulus anticipatory neural 

activity is rarely examined as an index of cognitive ability. 
 

   Directed attention paradigms investigate how 

manipulation of endogenous (top-down) attention facilitates 

subsequent exogenous (bottom-up) stimuli-driven attention, 

perception, and neural responses to target stimuli. Neural 

activity in the region that encodes target stimuli features are 

modulated not only in response to stimuli, but also during 

anticipation (Corbetta and Shulman, 20012). This effect is 

present even when the preparatory cue is presented in a 

different sensory modality from that of the expected target, 

allowing temporal and spatial differentiation of anticipatory 

activity in the target sensory cortex from cue encoding 

(Zanto and Gazzley, 2009). During anticipatory attention, 

preparatory cues uniquely engage the intra-parietal sulcus 

(IPS) to apply a filter on attention, which is not active in 

subsequent target perception (Corbetta and Shulman, 2002). 
 

   Emerging research accounts for neural activity unique to 

anticipation as filtering the focus of attention in expectation 

of an upcoming target (Zhang and Ding, 2010). To examine 

this account, we study how the magnitude of anticipatory 

neural activity during a somatosensory directed attention 

task relates to performance on the flanker task, which 

demands conflict monitoring, or a focus on single target 

stimuli among distractors competing for attention (Rothbart, 

Posner and Kieras, 2006). The flanker task requires 

participants to respond to the direction of a central target 

arrow amidst congruent or incongruent flanking distractor 

arrows: incongruent conditions are associated with slower 

reaction times, explained as resolving the conflict between 

the target and distractors. The flanker task taps into 

endogenous attentional abilities measured by executive 

function (EF). Our understanding of EF is informed by 

relational-systems theory, with EF defined as the goal-

directed regulation of behavior, aligning action with top-

down attention (Dick and Overton, 2011). We are concerned 

with the relations between flanker task performance and 

individual differences in the neural indices during 

somatosensory anticipation, elicited in a directed attention 

paradigm in which a visual cue directs children’s attention 

to the expected spatial location of an upcoming tactile 

stimulus. Associating neural indices of somatosensory 

anticipation with EF facilitates study of inter-sensory 

attention, with potential for linking sensory-specific 

attentional processes to cognitive skills.   

 

EEG Indices of Somatosensory Anticipatory Attention 

Changes in brain responses recorded through the 

electroencephalogram (EEG) are reliable indicators of 

attention orienting, sometimes proving more predictive of 

relevant behavior than reaction time responses to stimuli 

(Foxe and Snyder, 2011). Brain responses to directed 
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attention are lateralized, such that there is a modulation of 

neural activity contralateral to the direction of the spatial 

cue (Gazzaley and Nobre, 2012). Attention can be indexed 

by the modulation of EEG signals in the alpha band (8-14 

Hz in adults). Alpha band fluctuations are interpreted as a 

correlate of underlying attentional states, with the 

magnitude of change in amplitude sensitive to stimuli 

salience, strength and individual differences. When 

monitoring stimuli presented to one visual field, to one hand 

or to one ear, there is typically a disruption of rhythmic 

alpha activity known as event-related desynchronization 

(ERD) in the contralateral sensory cortex (Stevens and 

Bavelier, 2012). Desynchronization of the alpha rhythm 

appears to reflect an increase in local field potentials of 

neurons in the region of interest. Heightened alpha band 

desynchronization is thought to increase the perceptual 

salience of upcoming stimuli in the target modality (Foxe 

and Snyder, 2011).  In the tactile modality, anticipatory 

desynchronization of the alpha-range mu rhythm at central 

electrodes is an index of somatosensory cortex excitability. 
 

   Attention-related changes in the EEG during anticipation 

can also be indexed via event-related potential (ERP) 

methods. Relevant here is the contingent negative variation 

(CNV), a negative-going potential occurring during the 

anticipatory period between a preparatory cue and a target 

stimulus (Corbetta and Shulman, 2002). The CNV elicited 

by a preparatory cue can be considered to reflect 

endogenous anticipatory directed attention, while later 

potentials (P1, N2, P3) can be considered to reflect 

exogenous, stimulus-evoked attention.  
 

   There is an emerging literature studying pre-stimulus EEG 

activity during the anticipation of touch. Detection of weak 

tactile stimuli was predicted by contralateral power of 

anticipatory alpha desynchronization (Zhang and Ding, 

2010) after a cue indicated upcoming stimulation of the 

right hand. Anticipatory somatosensory selective attention 

paradigms often include a cue containing relevant spatial 

information about upcoming tactile stimulation, to examine 

the lateralization of brain responses or hemispheric 

asymmetry. Haegens, Luthur and Jensen (2012) 

demonstrated anticipatory desynchronization of alpha 

rhythm in central electrodes contralateral to the direction of 

the spatial cue, and synchronization of the alpha rhythm in 

the ipsilateral central electrodes. To our knowledge, there is 

no existing research on the cognitive mechanisms 

facilitating the association of pre-stimulus alpha mu 

desynchronization and post-stimulus enhanced perception of 

tactile stimuli. There are also no studies on the 

developmental trajectory of neural indices during 

somatosensory anticipation. 

 

Development of Directed Attention and EF 
Precursors to attention regulation are apparent in infancy, 

with gaze fixation sensitive to stimulus features, novelty 

preferences, and prior learning in newborns (Hood, Willen, 

Driver, 1998; Sheese et al., 2008). Goldberg, Maurer and 

Lewis (2001) found age-related differences in children’s 

target discrimination on visual selective attention paradigms 

when target and non-target stimuli were presented 

simultaneously. By age 8 years, performance was 

comparable to adults in anticipatory visual selective 

attention tasks. The authors suggested discrepant trajectories 

in the development of distractibility and anticipation.  
 

   There is interest in studying the neural indices elicited by 

selective attention, when distractors presented simultaneous 

to the target compete for directed attention. Coch, Sanders 

and Neville (2005) employed a dichotic listening task to 

examine neural indices in response to target tones in 

attended and unattended simultaneous auditory streams in 

children aged 6-8. They found a slow positive ERP peaking 

around 150 ms in children as opposed to the typical ERPs 

found in adults: early sensory potentials, followed by an N2 

and P3. The amplitude of the ERP was greater in the 

attended auditory stream than the unattended auditory 

stream. Isbell, Wray and Neville (2015) found the positivity 

of auditory-evoked selective attention potentials related to 

non-verbal IQ scores, such that only higher-IQs 

preschoolers exhibited significant differences in amplitude 

distinguishing target tones in the attended stream from tones 

in the unattended stream. The nature of the dichotic 

listening task requires the same skills as the tasks involved 

in non-verbal IQ assessment. A study of anticipatory 

attention to visual stimuli in 10-year-old children found that 

CNV magnitude (evoked by preparatory spatial cues) 

related to visual short-term memory capacity (Shimi et al., 

2014). The measure of EF was response to the targets of 

‘anticipatory attention’, so it is difficult to tease apart the 

relations among task performance, working memory and 

neural indices of attention.  
 

   Prior studies suggest adult executive function relates to 

brain responses during attention to visual or auditory 

stimuli. During a dichotic listening task, the amplitude of 

the contralateral brain responses during auditory selective 

attention relates to non-verbal working memory (Giuliano et 

al., 2014). In contrast, a study of visual selective attention 

found only ipsilateral brain responses to be related to 

cognitive skills (Zanto & Gazzaley, 2009). The authors 

found that the ipsilateral increase in amplitude accounted for 

greater variation in working memory, when compared to the 

magnitude typically associated with selective attention, 

which is reduced alpha power in the contralateral occipital 

cortex. The current investigation extends the study of 

anticipatory attention and cognitive skills to the 

somatosensory domain by examining how EF relates with 

EEG indices of directed attention to upcoming tactile 

stimuli. 
 

Current Study 
Studying pre-stimulus attention in the tactile modality 

contributes to the basic science of bodily awareness and 

somatosensation. The fundamental, early-developing nature 

of somatosensory processing (Marshall & Meltzoff, 2015) 

make it a compelling domain of study for examining the 
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development of top-down attentional processes. 

Furthermore, perception of tactile pulses appears uniquely 

associated with neural indices of attention, unlike reaction 

time in response to tactile pulses (Zhang and Ding, 2010): 

Electrophysiological data can therefore provide insight into 

the perception of touch, beyond simultaneous behavioral 

measures. Our study examines how the somatosensory 

domain adds to the developmental literature on executive 

function indices of domain-general attention. 
 

   The current study examined the magnitude and 

lateralization of CNV potentials and sensorimotor alpha mu 

rhythm modulation, as elicited by a directional cue 

indicating the bodily location of upcoming tactile stimuli. 

We hypothesized that individual differences in brain 

responses during somatosensory anticipation would be 

associated with scores on a flanker task. This potential 

association between the cognitive state elicited during 

anticipation and EF was the key focus of the study.  
 

Methods 

Participants 
Sixty children between the ages six to eight years of age 

participated in the study (M = 7.2 years, SD = .6; 27 male). 

Families were recruited from a diverse urban environment 

using commercially available mailing lists and online 

advertisements. Families were not invited to participate if 

their child had any medical or psychological diagnoses, was 

left-handed, or on any long-term medication. A number of 

children were excluded from analyses because they did not 

have a sufficient number of artifact-free trials (n = 6) or 

because the child did not tolerate cap preparation (n=4). 

These 10 excluded children did not statistically differ in 

scores on the flanker from the remaining sample (N=50.) 
 

Procedure 
Children were read an assent form outlining the protocol in 

the presence of their caregiver, who also read the consent 

forms. Children were then fitted with an EEG cap while 

seated at a table facing a computer screen, with instructions 

to stay as still as possible with their hands on their lap, out 

of sight. Research assistants explained the paradigm as a 

game that required children to pay close attention to the 

right or left hand, as indicated by the arrow, and respond to 

the tactile stimuli by pressing a foot pedal once if they felt 

one tap or twice if they felt two taps. Each of the 120 trials 

began with a fixation cross baseline for 1500 ms, followed 

by an arrow displayed for 500 ms, followed by a response 

screen which read ‘Copy with Your Foot!’ (Figure 1). 

 
Figure 1. Protocol consisted of 120 trials: a 1500 ms baseline, then 

an arrow displayed for 500 ms, then tactile stimuli and response. 

   Tactile stimulation was delivered using a pneumatic 

simulator controlled by STIM stimulus presentation 

software (both device and software from James Long 

Company), with the compressed air delivered during the 

arrow display and before the response screen. An inflatable 

membrane mounted in a plastic casing was placed on the 

middle fingers of children’s left and right hands, held in 

place by a finger clip. The membrane is inflated by a short 

burst of compressed air delivered via flexible polyurethane 

tubing (3 m length, 3.2 mm outer diameter). The tactile 

stimulus feels like a light tap on the finger, lasts around 60 

ms, and has a peak force of around 2 N.  

   The NIH Cognition Toolbox flanker task was then 

administered. Children completed the flanker task on an 

iPad by selecting the direction of a central target arrow 

among 4 flanking distractor arrows, which were either 

congruent or incongruent in direction to the target arrow. 

Scores were calculated as number of trials with correct 

response for incongruent trials weighted by reaction time, 

such that a higher score indicated better EF abilites.  
 

EEG Collection and Processing 
EEG was recorded using a 32-electrode stretch cap (ANT 

Neuro, Inc.) from the following sites: Fp1, Fpz, Fp2, F3, F4, 

Fz, F7, F8, C3, C4, CP1, CP2, T7, T8, P3, P4, Pz, P7, P8, 

O1, Oz, O2, and the left and right mastoids. Conducting gel 

was used and scalp electrode impedances were kept under 

25 kΩ. The signal from each site was amplified using 

optically isolated, high input impedance (> 1 GΩ) custom 

bioamplifiers (SA Instrumentation) and was digitized using 

a 16-bit A/D converter (+/− 5 V input range). Bioamplifier 

gain was 4000 and the hardware filter (12 dB/octave rolloff) 

settings were .1 Hz (high-pass) and 100 Hz (low-pass). EEG 

analysis was performed using the EEGLAB 13.5.4b toolbox 

(Delorme and Makeig, 2004) implemented in MATLAB. 

The signal was collected referenced to the vertex (Cz), and 

EEG signals were re-referenced offline to an average 

mastoids reference for further analysis. Independent 

component analysis (ICA) cleared EEG data of ocular and 

muscle artifact. The ICA procedure was an automation of 

the method described by Hoffmann & Falkenstein (2008). 

Visual inspection of the EEG signal was then used to reject 

epochs containing movement artifact. The mean number of 

artifact-free trials per cue direction was 41 (SD = 5.71).  
 

Results 

Analyses focused on electrode sites overlying the hand area 

(the left and right central electrodes; C3 and C4) of 

sensorimotor cortex. For all ANOVAs, within-subject 

effects were adjusted using Greenhouse-Geisser correction 

factors; pairwise t-test comparisons and multiple linear 

regressions were reported with p-values adjusted for 

multiple comparisons.  

Anticipatory Negativity  
We extracted mean amplitude during the 300 ms 

immediately preceding tactile stimulation, within the 500 

ms window relevant to anticipatory attention. This window 
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was selected to study the CNV waveform, accounting for a 

200 ms delay after the preparatory cue (Shen et al., 2017). 

   To study lateralization of anticipatory negativity, an 

ANOVA compared mean CNV amplitude by electrode (C3 

or C4) and cue direction (left or right arrow). There was a 

significant main effect of cue direction, such that cues 

directing attention to the right hand elicited an enhanced 

anticipatory negativity (F (1, 48) = 37.06, p < .019). There 

was a significant main effect of electrode, such that C3 

exhibited enhanced anticipatory negativity (F (1, 48) = 

37.06, p < .001). As expected, there was significant 

interaction between electrode (C3 or C4) and cue direction, 

F (1, 48) = 15.95, p < .001, driven by negativity in the 

electrode contralateral to the stimuli: pairwise comparisons 

(adjusted with FDR) reveal amplitude in C3 was lower for 

right cue than left cue, p<.001, while the opposite trend was 

found for the amplitude of C4, p<.061 (see figure 2).  
\ 

Figure 2. For each trial, an epoch of 1500ms was 

extracted: analyses focused on the 300ms preceding tactile 

stimulation during the pre-stimulus period, accounting for 

the average amplitude during a pre-cue 200 ms baseline. 

The epochs were then filtered at 30 Hz. 
 

Anticipatory ERPs and Flanker. To examine the relations 

between flanker and anticipatory negativity, regressions 

were conducted predicting flanker scores from lateralization 

of CNV amplitude and its interactions with electrode and 

cue direction. We computed lateralization of CNV 

amplitude by subtracting the mean amplitude at C3 from 

mean amplitude at C4, for each participant and each hand. 

There was a trend of lateralized amplitude predicting flanker 

score, t (1, 48) = 1.72, p = .090. Performance on the flanker 

task was predicted by a significant interaction between 

lateralized amplitude and cue direction, t (1, 48) = -2.40, p 

=.019. To further probe this interaction, we performed post-

hoc regressions predicting flanker score by average 

amplitude for C3 and C4 during right and left cues. The 

interaction was driven by marginal relations between flanker 

and amplitude in the contralateral hemisphere: flanker score 

related with CNV amplitude over C3 elicited by a right 

directional cue, t (1, 49) = -1.72, p = .094, and over C4 

elicited by a left directional cue, t (1, 49) = -1.70, p = .097. 

Amplitude in the ipsilateral hemisphere did not relate with 

flanker score.  

Time Frequency Analysis 
Event-related spectral perturbation (ERSP) analyses were 

conducted on the alpha frequency band at 7–12 Hz 

(Berchicci et al., 2011; Marshall, Bar-Haim, & Fox, 2002), 

as is appropriate for children, and baseline corrected for the 

500 ms prior to cue onset. Event-related desynchronization 

(ERD) is as an alpha power decrease relative to the baseline. 

An ANOVA compared pre-stimulus alpha power by 

electrode (C3 or C4) and cue direction (left or right arrow). 

There was a main effect of cue direction, such that cues 

directing attention to the right hand elicited greater 

desynchronization, F (1, 48) = 37.06, p < .001. There was 

no main effect of electrode position. A significant 

interaction was observed between electrode and cue 

direction, F (1, 48) = 15.95, p < .001 (see figure 3). The 

interaction was due to greater ERD in the contralateral 

hemisphere (see figure 4): the mu rhythm showed greater 

desynchronization over C3 elicited by the right cue, and 

over C4 elicited by the left cue. 

 
Figure 3. For each trial, an epoch of 1500ms was 

extracted: spectral power was estimated using Gaussian-

tapered Morlet wavelets, and changes in power were 

computed as ERSP focused on the 500ms pre-stimulus 

period, relative to a 500 ms baseline  (-1000 to -500 ms).  
 

 
 

Figure 4. Mean ERSP for mu rhythm (7–12 Hz) in 

C3/C4 for left/ right cues from −500 ms to 0 ms. 

Negative values reflect a reduction in mu power (ERD) 

relative to a 500 ms pre-cue baseline (-1000 to -500 ms). 
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Anticipatory ERSP and Flanker. To examine the relation 

of flanker task scores with ERD during somatosensory 

anticipation, regressions were conducted predicting scores 

on flanker task by ERD and its interactions with electrode 

position and cue direction, controlling for within-participant 

variability. There were no significant main effects or two-

way interactions. However, performance on the flanker task 

was significantly predicted by a three-way interaction 

between alpha power, electrode position and cue direction, t 

(46) = 2.33, p = .012. Post-hoc regressions (with p-values 

adjusted for the false discovery rate) further probed the 

relations, revealing ERD in the hemisphere contralateral to 

the direction of the cue was inversely related to the scores 

on the Flanker task: for right cue over C3, t (1, 49) = -2.65, 

p = .014, and for left cue over C4, t (1, 49) = -2.50, p= .021. 

ERD in the ipsilateral hemisphere was not related with 

flanker score (see Table 1). Refer to Figure 5 for inverse 

correlations between flanker score and contralateral ERD. 

 

Table 1. Flanker predicted by ERD, Cue,& Electrode  

Overall Regression        B       Std Error       t value      p 

ERD                             -3.51    2.53            -1.39   .16 

Electrode                     -.627     2.49           -.252   .80              

Cue                               2.44     2.45              .977    .32   

Power*Cue*Electrode   2.33      .021              2.33    .01*          

Post-Hoc Regression     B       Std Error           t value    p  

Right Cue C3        -3.68      1.39          -2.65      .01* 

Right Cue C4             1.70      1.45           1.17       .24 

Left   Cue C3            1.52      1.20               1.40       .18 

Left   Cue C4              -6.42      2.56          -2.50      .02* 

*Significant at less than p=.05; p-values of post-hoc corrected for FDR 
 

 

 
Figure 5. Correlations of Flanker scores with ERD: 

significant correlations were found for pre-stimulus ERSP 

contralateral to cue direction. For right cue over C3, r= -

.395; for left cue over C4, r =-.377. There was no relation 

between flanker scores and ipsilateral ERSP; right cue over 

C4, r=.106; left over C4, r = -.021.  
 

Discussion 
 

The current study investigated somatosensory anticipation 

in children, and if anticipatory EEG responses in amplitude 

and alpha mu rhythm were related with individual 

differences in flanker scores. Just as seen in adults, we 

found a preparatory spatial cue directing attention to the 

bodily location of upcoming tactile stimulation modulated 

the activity of the alpha mu rhythm. Children’s contralateral 

alpha band activity (in C3 – Right Cue and C4 – Left Cue) 

during anticipation was inversely associated with 

performance on a flanker task, while ipsilateral responses 

had no relation to flanker scores. Anticipatory negativity 

(i.e., the CNV response) was lateralized, with more negative 

amplitudes in the hemisphere contralateral to cue direction. 

The degree of lateralization, computed as mean amplitude at 

C4 – C3, was related to participants’ flanker scores, which 

subsequent analyses demonstrated were driven by 

contralateral negativity. Children’s ability to modulate 

attention in preparation for tactile stimulation appears to be 

related to individual differences in EF, as codified by their 

scores on the flanker task. 
 

   Our findings of an association between flanker and neural 

indices of tactile attention should be interpreted with 

caution, as our sample is small for a study of individual 

differences. Studies linking neural indices of somatosensory 

anticipation and attention with other EF tasks should be 

conducted, to parallel research in other sensory modalities 

(Isbell, Wray and Neville, 2015). Other studies of 

anticipation in adults suggest that ipsilateral EEG activity 

suppresses responses to distractors (Hagens, Luthur, and 

Jensen, 2012; Zanto & Gazzaley, 2009), but our paradigm 

did not include distractor stimuli; our study observed only a 

trending alpha power increase in the ipsilateral hemisphere, 

elicited by stimuli to the left hand. Further investigations 

can examine whether introducing simultaneous, competing 

stimuli in the somatosensory domain elicits an ipsilateral 

increase in alpha mu rhythm, as observed during 

anticipatory somatosensory selective attention in adults. A 

paradigm with simultaneous tactile stimulation to both 

hands would be more parallel to developmental research on 

the relations of cognitive skills and children’s 

somatosensory selective attention rather than our study of 

somatosensory directed attention. First, we believed it 

crucial to replicate modulation in EEG indices during the 

anticipation of tactile stimuli in children, and further 

investigation is needed to assess how preparatory cues 

influence anticipation, attention and perception when 

distractors are introduced. Our results support that shared 

processes are involved in sensory-specific directed attention 

and domain-general EF, but continued study of attention in 

different modalities will address theories of inter-sensory 

attentional mechanisms (Gazzaley and Nobre, 2012). Study 

of brain responses to tactile stimuli uniquely informs models 

of action-oriented representation, wherein internal 

(cognitive and physiological) states reflect the environment 

and prescribe action (Clark, 1998; Engel et al., 2013).  
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    Research on bodily awareness and representation would 

benefit by studying how the associated neural indices of 

somatosensation are influenced by attention and related 

cognitive processes. Children’s neural indices during 

directed attention to bodily sensation appear similar to those 

in adults, when compared to ERP responses evoked during 

visual and auditory attention (Stevens and Bavelier, 2012). 

This could be interpreted as signaling the importance of 

somatosensory attention in development, although further 

work is needed to establish whether tactile attention is more 

predictive than attention in other modalities (e.g. vision). 

Future studies of the neural indices of somatosensory 

attention could lay the foundation for interventions that train 

attention or executive function in children.  
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Abstract

Segmenting observations from an input stream is an impor-
tant capability of human cognition. Evidence suggests that hu-
mans refine this ability through experiences with the world.
However, few models address the unsupervised development
of event segmentation in artificial agents. This paper presents
work towards developing a computational model of how an
intelligent agent can independently learn to recognize mean-
ingful events in continuous observations. In this model, the
agent’s segmentation mechanism starts from a simple state
and is refined. The agent’s interactions with the environ-
ment are unsupervised and driven by its expectation failures.
Reinforcement learning drives the mechanism that identifies
event boundaries by reasoning over a gated-recurrent neural
network’s expectation failures. The learning task is to reduce
prediction error by identifying when one event transitions into
another. Our experimental results support that reinforcement
learning can enable detecting event boundaries in continuous
observations based on a gated-recurrent neural network’s pre-
diction error and that this is possible with a simple set of fea-
tures.

Keywords: Event Cognition; Unsupervised Segmentation;
Expectation-based Failures; Reinforcement Learning

Introduction
The ability to derive meaning from complex observations is a
skill that has been recognized as vital for “growing” an intel-
ligent agent from a simple starting state through interactions
with a complex environment (Brooks, 1995; Cohen, Oates,
Atkin, & Beal, 1996). Before the agent is able to reason over
a world model, it must first develop one. We present an ap-
proach in which an agent, exposed to patterns with tempo-
ral dependencies, develops a predictive model of its environ-
ment. The agent’s expectation failures (i.e. prediction errors)
are then used as the basis of its event segmentation mecha-
nism. The resulting segments form the foundation of event
representations.

The research we present in this paper builds on the work
by Reynolds, Zacks, and Braver (2007) to build a computa-
tional model of event segmentation. We extend their model
by incorporating a reinforcement learning agent to handle the
detection of event boundary locations and trigger the subse-
quent event segmentation. The prediction mechanism is the
gated-recurrent neural network (GRNN) model outlined by
Reynolds et al. We evaluated several variations on the state
representation presented to the reinforcement learning agent.
The representations leverage information about the GRNN’s

prediction error through time. The first representation evalu-
ated is a simple state representation composed of the ratio of
the predictive model’s current error to its average error. This
simple representation is then expanded to include a measure
of input change, the amount of time since the gate was last
opened, and the type of event that is expected next. Each
state representation we evaluated contained the prediction ra-
tio. We tested the GRNN-RL pair and the state represations
on a motion captures dataset representing people executing
13 distinct tasks. Our results support the idea that informa-
tion about the GRNN’s prediction error is sufficient to allow a
learned RL policy to appropriately identify event boundaries.

Motivation
People are able to unconsciously and effortlessly perceive
sequences of discrete events from dynamic and continuous
sensory input (Radvansky & Zacks, 2014; Ross & Bald-
win, 2015). People’s ability to recognize temporal struc-
ture and patterns frequently observed across environmental
contexts facilitates their partitioning of continuous activities
into discrete events (Elman, 1990; Cleeremans & McClel-
land, 1991; Cohen & Adams, 2001; Reynolds et al., 2007).
Therefore, people must learn the sequential dependencies that
allow them to reason about sequences of observations as sin-
gle, individual events. Reasoning about both observed events
and their associated spatiotemporal patterns allows humans
to reason about the underlying cause of the change in sen-
sory observations (Radvansky & Zacks, 2014). Evidence
suggests that when people use an inferred event (i.e., spa-
tiotemporal pattern) to guide their sensory expectations, they
are able to recognize when transitions between events occur
because their observations no longer match that of the cur-
rent, hypothesized spatiotemporal pattern (Braver & Cohen,
2000; Rougier, Noelle, Braver, Cohen, & O’Reilly, 2005).
We model how agents develop spatiotemporal models and
use them to to interpret continuous observations as discrete
events.

Background
The task of this paper is related to previous works such as
the Neo project (Cohen et al., 1996). Neo is a simulated in-
fant that implements a computational model of the perceptual
analysis by image-schema theory of complex concept forma-
tion (Johnson, 1987; Mandler, 1988, 1992; Lakoff & John-
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son, 2008). Neo begins with relatively simple configurations
and develops/learns complex concepts through interactions
with a simulated, complex world, by analyzing occurrences
of discrete, symbolic tokens. We agree on the importance
of developing complex agents able to learn via a process of
perceptual analysis, representations of objects, states, and ac-
tivities as its foundation for learning conceptual categories.
However, a precondition for systems such as Neo is a pro-
cess for transforming continuous sensory observations of the
world into meaningful, discrete units (i.e., “unitization”). Our
work addresses the unitization problems.

Reynolds et al. (2007) propose a relatively simple mech-
anism for event segmentation. Using its experiences with
the world, their mechanism refines and hones the way it
segments continuous observations without prior knowledge
about the events or about the locations of event boundaries.
Their mechanism is an implementation of the first compo-
nent of Event Segmentation Theory (EST), a theory of event
schema/model creation (Zacks, Speer, Swallow, Braver, &
Reynolds, 2007; Kurby & Zacks, 2008). While previous
approaches to event segmentation focused on the degree of
change between subsequent observations as the key predic-
tive feature (Newtson, 1976; Gibson, 1979), EST emphasizes
the role of prediction failures. The importance of prediction
error during event segmentation is based on data suggesting
that people attempt to predict what they will observe next
(Rao & Ballard, 1999; Enns & Lleras, 2008; Niv & Schoen-
baum, 2008).

People maintain working models, dynamic representations
that facilitate event comprehension and incorporate predic-
tions about what will be observed next, of the events they
are observing (Radvansky & Zacks, 2014). Evidence sug-
gests that working models are the result of the segmentation
and chunking of experience that are triggered by transient
increases in prediction error (i.e., expectation failure driven
event segmentation). When an event boundary is detected,
people update their working model, thus changing their ex-
pectations about what will be observed next. However, there
is a key limitation in the approach taken by Reynolds et al.
when implementing this process, as their system depends on
externally set thresholds to determine when one event ends
and another begins. The work we present here extends their
prediction model by removing externally set thresholds and
examining the impact of incorporating higher-level expecta-
tions.

Modeling Prediction Error-based Segmentation
Reynolds, Braver, and Zack’s Segmentation Model
Reynolds et al. (2007) used a gated-recurrent neural network,
with the architecture depicted on the left in Figure 1, to model
how people might learn sequential dependencies and perceive
discrete event categories from continuous observations. The
GRNN identified points at which one activity transitioned
into another via an expectation failure based heuristic. They
selected the GRNN because they considered it the most bio-

J. R. Reynolds, J. M. Zacks, T. S. Braver/Cognitive Science 31 (2007) 619

frames and any differences across events). Second, the figures were scaled to be within the
range {−1,1} by dividing all points by the largest absolute deviation from origin along any
of the three axes across all time-points. Finally, the motion captures were processed to ensure
that the orientation of each figure (defined by the vector from the left side to the right side of its
hips) was, on average, the same across events. These preprocessing measures were performed
in order to eliminate extraneous cues differentiating the events that could have influenced the
models’ performance.

The networks were trained and tested using a continuous presentation procedure. At the
end of each event, a new event was randomly sampled (with replacement) from the pool of
events and presented in its entirety to the network. Event presentation was continuous in that
the model attempted to make a prediction for every input, such that it attempted to predict the
first frame of a new, randomly selected event based on the last frame of the previous event.
These frames were considered boundaries between events. All other frames were considered
to occur within an event. Each network saw each event multiple times over the course of its
training.

3.2. Simulation details

Each model consisted of the same basic structure, with additional components where noted
below (see Fig. 2).

The core structure consisted of input (54 units), hidden (100 units), and output (54 units)
layers that were fully connected in a feed-forward fashion. The input and hidden units had
sigmoidal activation functions, with the activation level of each unit, acti, determined by the
equation:

Fig. 2. Architecture of the Model. A feed-forward model was augmented both by a simple recurrent network
architecture (Elman, 1991) and by a group of memory cells (Hochreiter & Schmidhuber, 1997) that can maintain
information for extended periods of time while still being updated appropriately. The mechanism by which these
cells are updated is a transient increase in prediction error.Figure 1: GRNN Model Architecture (Reynolds et al., 2007)

on the left. Unsupervised Event Segmentation Model Archi-
tecture on the right.

logically plausible model available for capturing how people
might learn sequential dependencies with the ability to store a
representation of the current event in memory based, on con-
temporary work in behavioral and neuropsychological corre-
lates of event structure and computational studies of sequen-
tial domains (for an extensive literature review see Reynolds
et al. (2007)). The GRNN adjusted its event representation by
triggering a gating mechanism that allowed the event repre-
sentation to be directly updated based on the GRNN’s obser-
vations. The gating mechanism controlled the extent to which
the event representation was updated by each new observation
and, combined with the network’s recurrence, allowed the
GRNN to maintain representations of the events through time
(Elman, 1990; Hochreiter & Schmidhuber, 1997). In their
simulations, the gate was operated either: (1) by ground truth
knowledge about the location of event boundaries or (2) by
an externally set threshold on the ratio of the model’s current
sum squared error (SSE) and its average SSE. Their model
attempted to predict its next observation; expectation failures
were measured as SSE in the model’s prediction and the true
next observation. Based on the distribution of SSE observed
within events versus at event boundaries, the authors con-
cluded that a GRNN with an expectation failure-based gat-
ing mechanism is a reasonable approximation of how peo-
ple might segment sequences of observations into meaningful
units.

We built on Reynolds et al.’s (2007) work by extending
their GRNN to include a RL agent that learns a policy for
controlling the gating mechanism.

A New Approach to Unsupervised, Self-Regulating
Event Segmentation
We incorporated a RL agent that learned a policy for control-
ling the gating mechanism that Reynolds et al. (2007) created
for their final simulation (Simulation IIIB), with the architec-
ture depicted on the right in Figure 1. In Simulation IIIB,
the gating mechanism was controlled by a simple mathemat-
ical function that evaluated whether the ratio of the models’
last observed prediction error relative to the observed average
error exceeded a threshold (1.5). Before modifying Simula-
tion IIIB to include the RL agent, we tested our implemen-
tation in order to replicate their the experimental results, and
we observed the same relations between the within event and
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boundary observations. Reproducing the author’s results (1)
allowed us to evaluate the reproducibility of their work be-
fore using it as the basis of our system and (2) allowed us to
build our model on one already reviewed and evaluated by the
scientific community.

In our model, the gating function from Simulation IIIB was
replaced with a RL agent that learned a policy for control-
ling the gating mechanism. An Expected-Sarsa learning al-
gorithm with a linear function approximator (Sutton & Barto,
2015) was used to learn the policy for controlling the gating
mechanism. Our GRNN and RL combination is only able to
build low-level expectations about what it will observe next.
However, it could be used as a component in a larger sys-
tem to build higher-level expectations that could be used to
help guide the actions of the RL agent. In our experiments,
while our model only directly builds expectations at the lower
level, we incorporate information at higher levels of expecta-
tion in the the RL agent’s state representation. We distinguish
between lower and higher level information based on whether
or not the information stems from the RL agent’s immediately
available observations about the state of the GRNN. Lower-
level information is information that is readily available to
the RL agent, whereas higher level information is not imme-
diately available. For instance, the degree to which there is
change between two subsequent observations is readily ob-
servable, whereas knowledge about the likelihood of a the
next event transition being from sitting to standing is not.

In our experiments, the combined GRNN and RL
agent was presented with a sequence of frames of mo-
tion captures of activities carried out by people (i.e. sit-
ting,standing,jumping,etc.). Each activity constituted a sin-
gle event and contained some number of frames. The frames
are what the GRNN observed. The experiments varied the
information presented to the RL agent. The RL agent’s state
representations consisted of both lower and higher level in-
formation about the state of the GRNN and RL agent. The
lower-level information included a measure of the GRNN’s
prediction error (as in Reynolds et al. (2007)), the degree
of change in the system’s subsequent observations (inspired
by Newtson (1976); Gibson (1979)), and the amount of time
since the RL agent last updated the event representation. The
higher level information included was a representation of the
next event the agent expected to observe.

The Models
The GRNN was constructed with the same parameters used
by Reynolds et al.: 54 input units, 100 hidden units, 100
event units, 100 recurrent units, and 54 output units. The
input and the hidden units had sigmoidal activation func-
tions. The weights were initialized randomly within the
range [−0.5,0.5] and during back-propagation the learning
rate was 0.001. When comparing our implementation of the
GRNN to that of Reynolds et al. we trained it to asymp-
totic performance, roughly 20,020 events, and evaluated it
on 900 events. For further specifics about how the GRNN

was configured, please refer to details about Simulation IIIB
in Reynolds et al. (2007). The GRNN was trained on 50,000
events with a perfect gating signal prior to incorporating the
RL agent as the gating mechanism.

The RL agent was construction according to an ε-greedy
Expected-Sarsa with replacing traces policy learning algo-
rithm. The specific state representations the agent learned
to operate over can be seen in the experiments section be-
low. Each of the state representations contained at least one
continuous feature, therefore a linear function approximator
was used to estimate the value of each state-action pair. Tile
coding was used to convert the continuous states into binary
feature vectors consisting of 32 layers of tilings with 4 tiles
for each feature.

The agent had two possible actions: (1) flip the gate and
(2) do not flip the gate. The policies were learned according
to −SSE computed from the SSE observed in the GRNN’s
predictions after each action by the RL agent. We chose this
reward, because it allows for unsupervised to control the gat-
ing mechanism and it is aligned with event segmentation the-
ory (Radvansky & Zacks, 2014). Table 1 shows the learning
parameters used to learn the policies for each of the state rep-
resentation experiments.

Experiments
Experiments evaluated the performance of the RL agent at
detecting when the GRNN’s event representation should be
updated. In each experiment, the RL learning algorithm de-
scribed above was evaluated according to the quality of the
policy it was able to learn given the different state representa-
tions. The different state representations incorporated differ-
ent amounts of low and high-level information. The low-level
information described the state of the GRNN and the state of
the RL agent. The high-level information described expecta-
tions about the next event that would be observed. The RL
agent learned over the course of 2,000 episodes. During each
episode, the RL agent was exposed to 100 randomly ordered
events. For the first 20 events, a perfect gating signal was used
before the RL agent began learning. This allowed a reason-
able average SSE to be computed before it was used as part
of the RL agent’s state representation. An overview of the
experimental state representations and the learning parame-
ters used by the RL agent to learn a policy for the given state
representation can be seen in Table 1.

Each state representation consisted of between 1 and 4 fea-
tures and always contained a feature describing the GRNN’s
current prediction error with respect to its historical predic-
tion error, i.e. SSE Ratio. Each dimension represented dif-
ferent information about the state of the overall system (Ta-
ble 2):

• SSE Ratio - the GRNN’s current prediction error (i.e. SSE)
with respect to a windowed average of the GRNN’s histor-
ical SSE;

• Obs Dist - the euclidean distance between two subsequent
observations, Xt−1 and Xt ;
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Table 1: State Representations and Learning Parameters.

State Representation Learning Parameters
SSE Ratio (α=0.005;γ=0.95;λ=0.9)
SSE Ratio+Obs Dist (α=0.005;γ=0.9;λ=1.00)
SSE Ratio+Next Event (α=0.001;γ=0.9;λ=0.75)
SSE Ratio+Last Gate (α=0.005;γ=0.95;λ=0.8)
SSE Ratio+Obs Dist+Last Gate (α=0.005;γ=0.9;λ=0.8)
SSE Ratio+Obs Dist+Next Event (α=0.001;γ=0.85;λ=0.95)
SSE Ratio+Last Gate+Next Event (α=0.005;γ=0.95;λ=0.95)
SSE Ratio+Obs Dist+ (α=0.005;γ=0.9;λ=0.9)
Last Gate+Next Event

• Last Gate - the distance between the system’s current time
step, t, and the last time step at which the RL agent’s action
was to opened the gate and update the event representation,
ta=1;

• Next Event - the next event the model will observe.

The mechanism by which a system might build higher level
expectations is not the focus of this research. Therefore, a
perfect version of this mechanism is used in our experiments.
Taking this approach is in line with the style of experiments
completed by Reynolds et al. (2007) during Simulation IIIA;
additionally, it allows for evaluating the performance of the
RL agent as the GRNN’s gating mechanism and evaluating
the benefits higher level expectations can have for lower-level
components, without having to tease apart the impact of the
performance of the higher level reasoning component.

Table 2: State Representation Features.

Feature Definition
SSE Ratio SSEt

apet−1
; apet = apet−1 +0.05(SSEt −apet−1)

Obs Dist
√

∑
53
i=1(Xt [i]−Xt−1[i])2

Last Gate t − ta=1
Next Event Ei+1

For each condition described in Table 1, the RL agent
learned its policy by interacting with the GRNN as it oper-
ated over a sequence of 20,020 randomly ordered events. The
RL agent learned its policy over the course of 500 episodic
passes over the event sequence. The performance of each
learned policy was evaluated over 50 separate runs where a
new randomized sequence of events was generated for each
run. The performance of the policy learned for each state rep-
resentation is described below in Results. The above experi-
ments were run for the −SSE and the distance-based reward
functions described in Models above.

The Data
The training data set for the GRNN and, subse-
quently, the RL agent was the motion capture data
used by Reynolds et al. (2007), which can be found at
http://dcl.wustl.edu/stimuli.html.

The data set contains 3-dimensional motion captures of
people performing 13 distinct tasks. Each motion capture
lasted 3-4 seconds and contained between 10 and 13 obser-
vations. Each motion capture activity was considered to be
one event. Each event observation consisted of 18 (x, y, z)
points on the body. We preprocessed each observation fol-
lowing Reynolds et al. (2007); the origin of the coordinate
frame was transformed such that the points corresponding to
person’s hip was the origin, all values were scaled to the range
[−1,1], and the orientation of each figure was altered such
that it was the same across all events.

Following Reynolds et al. (2007), before each training run
for the GRNN or the RL agent, the training set was created by
randomly ordering the events from the set of 13 events. A new
event was randomly selected and added to the training set un-
til the GRNN reached asymptotic performance. This allowed
the GRNN and the RL agent to observe each event multiple
times and learn a good predictive model for the frames that
fell within a given event. The random ordering of the events
provided the learning algorithm with a large variety of tran-
sition examples. The same process was used to create the
training set of the RL agent, but with a stopping condition of
the combined GRNN and RL agent having observed a pre-
specified number of events.

Results
The results show that it is possible to use reinforcement learn-
ing to identify true event boundaries. Furthermore, it is pos-
sible to learn a policy for controlling the GRNN gating mech-
anism without encoding any knowledge within the reward
function about where event boundaries actually exist. This is
important, because it provides evidence demonstrating that it
is possible for an artificial agent to take the first steps towards
learning complex concepts using a bottom-up approach. Ad-
ditionally, it provides evidence that it is possible for an artifi-
cial agent to learn on its own without requiring the painstak-
ing process of handcoding thresholds and decision boundaries
on the part of a human.

Table 3 shows the results from training the RL agent with
the eight different state representations. Dist. describes the
average distance between when the RL agent chose to update
the event representation and the closest true event boundary.
Reward is the total reward received by the agent during the
episode. Err. describes the GRNN’s average SSE over the
course of the episode. Each value in Table 3 is averaged
across 50 independent runs.

For each state representation, it was possible to learn a pol-
icy by which the RL agent could control the GRNN’s gating
mechanism. The learning curves for each state representation
can be seen in Figure 2. Each of the state representations was
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Table 3: Experimental results after 1000 episodes averaged
over 50 runs.

State Dist. Reward Err.
SSE Ratio 0.2 −12.0 0.15
SSE Ratio+Obs Dist 0.13 −30.72 0.18
SSE Ratio+Next Event 0.52 −31.44 0.18
SSE Ratio+Last Gate 1.22 −65.78 0.38
SSE Ratio+Obs Dist+Last Gate 1.16 −42.31 0.25
SSE Ratio+Obs Dist+Next Event 0.76 −48.69 0.28
SSE Ratio+Last Gate+Next Event 1.1 −103.07 0.3
SSE Ratio+Obs Dist+ 0.32 −52.56 0.5
Last Gate+Next Event

able to achieve an average reward between 0.15 -0.5 over the
course of 1000 episodes. When run using a perfect gating
function, the GRNN is able to achieve an average prediction
error within the same range achieved by the RL agent. It is
of note that this improvement in performance over that re-
ported by Reynolds et al. (2007) is due, in part, to advances
in deep neural network computing libraries. The state repre-
sentation SSE Ratio+Obs Dist was able to learn a policy best
able to maximize its received rewards. This indicates that in-
formation about the ratio of the current SSE to the average
observed SSE and the degree of change between two subse-
quent observations are critical features for deciding how and
when to update the GRNN’s event representation.
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Figure 2: GRNN Model Architecture (Reynolds et al., 2007).

The results show that the RL agent was able to learn a pol-
icy for each state representation. The agent was able to reach
a reasonable average distance from the true event boundary,
approximately 1.5 frames for about half of the state represen-
tations. We considered the RL agent’s ability to identify an
event boundary within 0.67 of the true event boundary to be

a reasonable level of performance given that each event lasts
for 11 frames on average.

Finding that it is possible for a RL agent to learn when one
event ends and another begins using GRNN’s the SSE Ratio
alone, while surprising, is encouraging, as an initial step to-
wards learning to unitize continuous observations without the
use of higher level information (i.e. Next Event). It is pos-
sible that the SSE Ratio feature was so powerful on its own
because it is correlated with and related to the other lower-
level features (i.e. Obs Dist and Last Gate). However, it is
not surprising that the SSE Ratio+Obs Dist both resulted in
a high performing policy and the best performaning policy
given the evidence in the literature suggesting that the degree
of change between two subsquent observations plays a large
role in segmenting continuous events and detecting boundary
points on physical objects (Newtson, 1976; Gibson, 1979) is
considered.

The ability to correctly identify event boundaries does not
always have a consistent effect on the GRNNs observed pre-
diction error. This finding indicates that it is not the number
of boundaries that are correctly identified that is important,
but rather which boundaries are correctly identified. Appro-
priately handling sub-event boundaries could drive down er-
ror in the GRNN while causing the RL agent to trigger gates
at non-event boundaries, thus increasing the average distance
measure. For example, the SSE Ratio state representation
results in an agent that is better able to detect event bound-
aries than the SSE Ratio+Next Event state represention, but
the SSE Ratio+Next Event results in more rewards and lower
average prediction errors in the GRNN.

Future Work
That the RL agent was able to learn a policy for controlling
the gating mechanism based solely on the GRNN’s predic-
tion error supports the potential for prediction error to play
a primary role in event segmentation. We hypothesize that
prediction error is likely to play an important role in other
aspects of complex event segmentation and, possibly, event
cognition. For example, if a person is unable to predict the
event he/she will observe, then the higher level expectation
failures might be propagated back to the segmentation gating
mechanism and alter how it is identifying event boundaries.
The ability of the agent to learn a gate controlling policy given
a state representation that includes higher level expectations
(i.e. the likelihood that the current event will transition into
a standing event), indicates that the combined GRNN and
RL agent model should be able to segment continuous ob-
servations into discrete events such that the discrete events
are maximally predictive based on higher level expectation
errors. We intend to study this in future work.

The research in this paper represents a step towards model-
ing how an intelligent agent can reason about and manipulate
its model of the world in order to develop meaningful rep-
resentations in an unsupervised way. Given that our system
can recognize event boundaries, the next step is to develop a
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system that is able to recognize sub-events. We believe that
extending our approach to learning a policy for segmenting
an event into sub-events will depend on two parts: (1) al-
lowing the RL agent to more finely control the amount of
influence each observation has on the subsequent event rep-
resentation and (2) learning prototypical representations of
the events. Giving the RL agent more fine-grained control
over the influence incoming observations have on the cur-
rent event representation should allow the agent to account
for sub-events within longer, more complex events. Addi-
tionally, by learning the sequential dependencies among the
event representations, it should be possible to go beyond
identifying event boundaries to predicting which event will
be observed next. For example, given an observation that
a person is currently seated, represented in the form of the
GRNN+RL agents event representation and the learned pro-
totypical agent, it should be possible to predict the likelihood
that the person will stand up.

Conclusion
This paper has presented a model for learning to segment con-
tinuous observations into event units. Additionally, our model
is able to learn to identify boundary points without any prior
knowledge. The combined GRNN and RL agent proposed in
this paper represents an approach to modeling event segmen-
tation that removes the limitation of externally set thresholds
and is able to operate in continuous domains. Experimental
results support our conclusion that it is possible to use RL to
learn a gate controlling mechanism that is able to accurately
identify event boundaries independently without incorporat-
ing knowledge about the location of event boundaries in the
reward function.
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Abstract 

In this paper, I review the objections against the claim that 
brains are computers, or, to be precise, information-
processing mechanisms. By showing that practically all the 
popular objections are based on uncharitable (or simply 
incorrect) interpretations of the claim, I argue that the claim is 
likely to be true, relevant to contemporary cognitive 
(neuro)science, and non-trivial. 
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Computationalism and Objections 

The computational theory of mind, or computationalism, 

has been fruitful in cognitive research. The main tenet of the 

computational theory of mind is that the brain is a kind of 

information-processing mechanism, and that information-

processing is necessary for cognition; it is non-trivial and is 

generally accepted in cognitive science. The positive view 

will not be developed here, in particular the account of 

physical computation, because it has already been 

elucidated in book-length accounts (Fresco, 2014; 

Miłkowski, 2013; Piccinini, 2015). Instead, a review of 

objections is offered here, as no comprehensive survey is 

available.  

The survey suggests that the majority of objections fail 

just because they make computationalism a straw man. 

Some of them, however, have shown that stronger versions 

of the computational theory of mind are untenable, as well. 

Historically, they have helped to shape the theory and 

methodology of computational modeling. In particular, a 

number of objections show that cognitive systems are not 

only computers, or that computation is not the sole condition 

of cognition; no objection, however, establishes that there 

might be cognition without computation. 

Computer metaphor is just a metaphor 

Computational descriptions are sometimes described as a 

computer metaphor (cf., e.g., Ekman, 2003; Karl, 2012, p. 

2101). The use of the term suggests that the proposed 

description is rough and highly idealized, and cannot be 

treated literally. However, by using the term, others suggest 

that no computational model may be treated seriously; all 

are mere metaphors (Daugman, 1990). 

A defender of computationalism might concede this and 

weaken their position. But the position is also tenable in the 

stronger version. This is because computer metaphors 

cannot really be tested and rejected, whereas computational 

models can. For this reason, in this paper, I will adopt, along 

with other theorists (Newell & Simon, 1972, p. 5; Pylyshyn, 

1984, pp. xiv–xvi), a stronger version of computationalism, 

which claims that cognition literally involves computation.  

Software is not in the head 

This objection is that there is no simple way to understand 

the notions of software and hardware as applied to 

biological brains. But the software/hardware distinction, 

popular as in the slogan “the mind to the brain is like the 

software to hardware” (Block, 1995; Piccinini, 2010), need 

not be applicable to brains at all for computationalism to be 

true. There are non-program-controllable computers: they 

do not load programs from external memory to internal 

memory in order to execute them. A mundane example of 

such a computer is a logical AND gate. In other words, 

while it may be interesting to inquire whether there is 

software in the brain, even if there were none, 

computationalism could still be true. 

Computers are just for number-crunching 

Another intuitive objection, already stated (and defeated) 

in the 1950s, is that brains are not engaged in number-

crunching, while computers compute over numbers. But if 

this is all computers do, then they don’t control missiles or 

send documents to printers. After all, printing is not just 

number crunching. The objection rests therefore on a 

mistaken assumption that computers can only compute 

numerical functions. Computer functions can be defined not 

only of integer numbers but also of arbitrary symbols 

(Newell, 1980), and as physical mechanisms, computers can 

also control other physical processes. 

Computers are abstract entities 

Some claim that because symbols in computers are, in 

some sense, abstract and formal, computers—or at least 

computer programs—are abstract as well (Barrett, 2015; 

Barrett, Pollet, & Stulp, 2014; Lakoff, 1987). In other 

words, the opponents of computationalism claim that it 

implies ontological dualism (Searle, 1990). However, 

computers are physical mechanisms, and they can be 

broken, set on fire etc. These things may be difficult to 

accomplish with a collection of abstract entities. Computers 

are not just symbol-manipulators. They do things, and some 

of the things computers do are not computational. In this 

minimal sense, computers are physically embodied, not 

unlike mammal brains. It is, however, a completely different 

matter whether the symbols in computers mean anything. 

People are organisms, computers are not 

Barrett (2015), among others, also presses the point that 

people are organisms. It’s trivially true but irrelevant: 

2723



physical computers are physical, and they may be built in 

various ways. A computer may be built of DNA strands 

(Zauner & Conrad, 1996), so why claim that it’s 

metaphysically impossible to have a biological computer? 

Symbols in computers mean nothing 

One of the most powerful objections formulated against 

the possibility of Artificial Intelligence is associated with 

John Searle’s Chinese Room thought experiment (Searle, 

1980). Searle claimed to show that running a computer 

program is not sufficient for semantic properties to arise, 

and this was in clear contradiction to what was advanced by 

proponents of Artificial Intelligence, who assumed that it 

was sufficient to simulate the syntactic structure of 

representations for the semantic properties to appear. As 

John Haugeland quipped: “if you take care of syntax, the 

semantics will take care of itself” (Haugeland, 1985, p. 

106). But Searle replied: one can easily imagine a person 

with a special set of instructions in English who could 

manipulate Chinese symbols and answer questions in 

Chinese without understanding it at all. Hence, 

understanding is not reducible to syntactic manipulation. 

While the discussion around this thought experiment is 

hardly conclusive (Preston & Bishop, 2002), the problem 

was soon reformulated by Stevan Harnad (1990) as “the 

symbol grounding problem” (SGP): How can symbols in 

computational machines mean anything? 

If the SGP makes sense, then one cannot simply assume 

that symbols in computers mean something just by being 

parts of computers, or at least they cannot mean anything 

outside the computer so easily (even if they contain 

instructional information (Fresco & Wolf, 2013)). 

Representational properties do not necessarily exist in 

physical computational mechanisms (Egan, 1995; Fresco, 

2010; Miłkowski, 2013; Piccinini, 2008). So, even if Searle 

is right and there is no semantics in computers, the brain 

might still be a computer, as computers need no semantics 

to be computers. Perhaps something additional to 

computation is required for semantics. 

There is an important connection between the 

computational theory of mind and the representational 

account of cognition: they are more attractive when both are 

embraced. Cognitive science frequently explains cognitive 

phenomena by referring to semantic properties of 

mechanisms capable of information-processing (Shagrir, 

2010a). Brains are assumed to model reality, and these 

models can be utilized in computations. While this seems 

plausible to many, one can remain computationalist without 

assuming representationalism (the claim that cognition 

requires cognitive representation). At the same time, a 

plausible account of cognitive representation cannot be 

couched merely in computational terms as long as one 

assumes that the symbol grounding problem makes sense at 

least for some computers. To make the account plausible, 

most theorists appeal to notions of teleological function and 

semantic information (Bickhard, 2008; Cummins & Roth, 

2012; Dretske, 1986; Millikan, 1984), which are not 

technical terms of computability theory, neither can they be 

reduced to such. However, processing of semantic 

information is still processing of information; hence, 

computation is necessary for manipulation of cognitive 

representation. 

Computationalism was strongly connected to cognitive 

representations by the fact that it offered a solution to the 

problem of what makes meaning causally relevant. Many 

theorists claim that because the syntax in computer 

programs is causally relevant (or efficacious), so is the 

meaning. While the wholesale reduction of meaning to 

syntax is implausible, the computational theory of mind 

makes it clear that the answer to the question includes the 

causal role of the syntax of computational vehicles. Still, the 

fact that it does not offer a naturalistic account of meaning is 

not an objection to computationalism itself. That would 

indeed be too much. At the same time, at least some 

naturalistic accounts, such as Millikan’s and Dretske’s, can 

be used to solve the SGP (see Miłkowski 2013, chap. 4). 

Computers can only represent with all detail 

The debate over meaning in computers and animals 

abounds in red herrings, however. One recent example is 

Robert Epstein’s (2016) popular essay. His most striking 

mistake is the assumption that computers always represent 

everything with arbitrary accuracy. Epstein cites the 

example of how people remember a dollar bill, and assumes 

that computers would represent it in a photographic manner 

with all available detail. This is an obvious mistake: 

representation is useful mostly when it does not convey 

information about all properties of the represented target. If 

Epstein is correct, then there are no JPEG files in 

computers, as they are not accurate, because they are based 

on lossy compression. Moreover, no assumption of the 

computational theory of mind says that memory should be 

understood in terms of the von Neumann architecture, and it 

is controversial to suggest that it should (Gallistel & King, 

2010). 

People don’t process information 

Ecological psychologists stress that people do not process 

information, they just pick it up from the environment (cf. 

Chemero, 2003; Gibson, 1986). Thus, to understand this, 

one should make more explicit the meaning of information 

processing in the computational theory of mind. What kind 

of information is processed? The information in question 

need not be semantic, as not all symbols in computers are 

about something. The minimal notion that could suffice for 

our purposes is one of structural information: a vehicle can 

bear structural information in the event that it has at least 

one degree of freedom, that is, it may vary its state 

(MacKay, 1969). The number of degrees of freedom, or yes-

no questions required to exactly describe its current state, is 

the amount of structural information. As long as there are 

vehicles with multiple degrees of freedom and they are part 

of causal processes that cause some other vehicles—just like 

some models of computation describe these processes 
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(Miłkowski, 2014)—there is information processing. This is 

a very broad notion, as all physical causation implies 

information transfer and processing in this sense (Collier, 

1999). 

The Gibsonian notion of information pickup requires 

vehicles of structural information as well. There needs to be 

some information out there to be picked up, and organisms 

have to be structured so as to be able to change their state in 

response to information. Gibsonians could, however, claim 

that the information is not processed. It is unclear what is 

meant by this: for example, Chemero seems to imply that 

processing amounts to adding more and more layers of 

information, like in Marr’s account of vision (Chemero, 

2003, p. 584; cf. Marr, 1982). But information processing 

need not require multiple stages of adding more 

information. To sum up: the Gibsonian account does not 

invalidate computationalism at all. 

Consciousness is not computational 

Some find (some kinds of) consciousness to be utterly 

incompatible with computationalism, or at least, 

unexplainable in purely computational terms (Chalmers, 

1996). The argument is probably due to Leibniz’s thought 

experiment in Monadology (Leibniz, 1991). Imagine a brain 

as huge as a mill, and enter it. Nowhere in the interplay of 

gears could you find perceptions, or qualitative 

consciousness. Hence, you cannot explain perception 

mechanically. Of course, this Leibnizian argument appeals 

only to some physical features of mechanisms, but some 

still seem to think that causation has nothing to do with 

qualitative consciousness.  

The argument, if cogent, is applicable more broadly, not 

just to computationalism; it is supposed to defeat reductive 

physicalism or materialism. For this reason, this objection 

might be dismissed as attacking any scientific project that 

explains consciousness reductively. 

Virtually all current theories of consciousness are 

computational, even the ones that appeal to quantum 

processes (Hameroff, 2007). For example, Bernard Baars 

offers a computational account in terms of the global 

workspace theory (Baars, 1988; cf. also Dennett, 2005), 

David Rosenthal gives an account in terms of higher-level 

states (cf. Cleeremans, 2005; Rosenthal, 2005), and Giulio 

Tononi explains in terms of minimal information integration 

(Tononi, 2004). Is there any theory of consciousness that is 

not already computational? 

John Searle, however, suggests that only a non-

computational theory of consciousness can succeed. His 

claim is that consciousness is utterly biological (Searle, 

1992). How does this contradict computationalism given 

that there might be biological computers? Moreover, Searle 

fails to identify the specific biological powers of brains that 

make them conscious. He just passes the buck to 

neuroscience, which often offers computational accounts. 

Computer models ignore time 

Proponents of dynamical accounts of cognition stress that 

Turing machines do not operate in real time. This means 

that this classical model of computation does not appeal to 

real time; instead, it operates with the abstract notion of a 

computation step. There is no continuous time flow, just 

discrete clock ticks in a Turing Machine (Bickhard & 

Terveen, 1995; Wheeler, 2005). This is true. But is this an 

objection against computationalism? 

First, some models of computation appeal to real time 

(Nagy & Akl, 2011), so one could use such a formalism. 

Second, the objection seems to confuse the formal model of 

computation with its physical realization. Physical 

computers operate in real time, and not all models of 

computation are made equal; some will be relevant to the 

explanation of cognition, and some may only be useful for 

computability theory. A mechanistically-adequate model of 

computation that describes all relevant causal processes in 

the mechanism is required for explanatory purposes 

(Miłkowski, 2014). 

Brains are not digital computers 

Universal Turing machines are crucial to computability 

theory. One could, however, maintain that brains are not 

digital computers (Edelman, 1992; Lupyan, 2013). 

But computationalism can appeal to models of analog 

computation (e.g., Siegelmann, 1994), or even more 

complex kinds of computation (Piccinini & Bahar, 2013), if 

required. These models are still understood as 

computational in computability theory, and some theorists 

indeed claim that the brain is an analog computer, which is 

supposed to allow them to compute Turing-incomputable 

functions. Thus, one cannot dismiss all kinds of 

computationalism by saying that the brain is not a digital 

computer. There are analog computers, and an early model 

of a neural network, Perceptron, was analog (Rosenblatt, 

1958). The contention that computers have to be digital is 

just dogmatic. 

Genuine artificial intelligence is impossible 

There are a number of arguments of a form: 

 

People ψ.  

Computers will never ψ. 

So, artificial intelligence is impossible (or 

computationalism is false). 

 

This argument is enthymematic, but the conclusion 

follows with a third assumption: if artificial intelligence is 

possible, then computers will ψ. The plausibility of the 

argument varies from case to case, depending on what you 

fill for ψ. For years, it was argued that winning in chess is ψ 

(Dreyfus, 1979), but it turned out to be false. So, unless 

there is a formal proof, it’s difficult to treat premise 2 

seriously. 
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What could be plausibly substituted for ψ? There are 

many properties of biological organisms that simply seem 

irrelevant to this argument, including exactly the same 

energy consumption, having proper names, spatiotemporal 

location, etc. The plausible candidate for substitution is 

some capacity for information-processing. If there is such a 

human capacity that computers do not possess, then the 

argument is indeed cogent. 

Only people can see the truth A classical anti-

computational argument points to the human ability to 

recognize the truth of logical statements that cannot be 

proven by a computer (Lucas, 1961; Penrose, 1989). It is 

based on the alleged ability of human beings to understand 

that some statements are true, which is purportedly 

impossible for machines (this argument is based on the 

Gödel proof of incompleteness of the first-order predicate 

calculus with basic arithmetic). The problem is that this 

human understanding has to be non-contradictory and 

certain. But Gödel has shown that in general it cannot be 

decided whether a given system is contradictory or not. So 

either it’s mathematically certain that human understanding 

of mathematics is non-contradictory, which makes the 

argument inconsistent as it cannot be mathematically certain 

because it’s undecidable; or the argument just assumes non-

contradiction of human understanding, which makes the 

argument unsound because people make contradictions 

unknowingly (Krajewski, 2007; Putnam, 1960). 

 

Common sense cannot be formalized Another similar 

argument points to common sense, which is a particularly 

difficult capacity. The trouble with implementing common 

sense on machines is sometimes called (somewhat 

misleadingly, cf. (Shanahan, 1997)) the frame problem 

(Dreyfus, 1972, 1979; Wheeler, 2005). Inferential capacities 

of standard AI programs do not seem to follow the practices 

known to humans, and that was supposed to hinder progress 

in such fields as high-quality machine translation (Bar-

Hillel, 1964), speech recognition (held to be immoral to 

fund (Weizenbaum, 1976)), and so on. Even if IBM Watson 

wins in Jeopardy!, one may still think it’s not enough. 

Admittedly, common sense is a plausible candidate in this 

argument.  

Even if the proponent of computationalism need not 

require that genuine AI be based on a computer simulation 

of human cognitive processes, he or she still must show that 

human common sense can be simulated on a computer. 

Whether it can or not is still a matter of debate.  

Computers are everywhere 

At least some plausible theories of physical 

implementation of computation lead to the conclusion that 

all physical entities are computational (this stance is called 

pancomputationalism, (cf. Müller, 2009)). If this is the case, 

then the computational theory of mind is indeed trivial, as 

not only brains are computational, but also cows, black 

holes, cheese sandwiches etc. are all computers. However, a 

pancomputationalist may reply by saying that there are 

different kinds (and levels) of computation, and brains do 

not execute all kinds of computation at the same time 

(Miłkowski, 2007). So not just any computation but some 

non-trivial kind of computation is specific to brains. Only 

the kind of pancomputationalism that assumes that 

everything computes all kinds of functions at the same time 

is catastrophic, as it makes physical computation indeed 

trivial (Putnam, 1991; Searle, 1992). 

There are no computers 

Another more radical move is to say that computers do 

not really exist; they are just in the eyes of beholder. 

According to John Searle, the beholder decides whether a 

given physical system is computational, and therefore may 

make this decision for virtually everything. Nothing 

intrinsically is a computer. But the body of work on 

physical computation in the last decade or so has been 

focused on showing why Putnam and Searle were wrong in 

some sense (Chalmers, 2011; Chrisley, 1994; Copeland, 

1996; Miłkowski, 2013; Piccinini, 2015; Scheutz, 1996; 

Shagrir, 2010b). The contemporary consensus is that 

computational models can be used to adequately describe 

causal connections in physical systems, and that these 

models can also be falsely ascribed. In other words, 

computational models are not different in kind from any 

mathematical model used in science. If they are mere 

subjective metaphors and don’t describe reality, then 

mathematical models in physics are subjective as well 

(McDermott, 2001). 

Intuitively, arguments presented by Searle and Putnam are 

wrong for a very simple reason: why buy a new computer 

instead of ascribing new software to the old one? We know 

that such ascriptions would be extremely cumbersome. 

Therefore, there must be a flaw in such arguments, and even 

if the technicalities involved are indeed interesting, they fail 

to establish a conclusion. 

Conclusion 

In this paper, I have listed and summarized a number of 

arguments against computationalism. The only objection 

that seems to be plausible at first glance is the one stating 

that common sense is impossible or extremely difficult to 

implement on a machine. However, more and more 

commonsensical capacities are being implemented on 

machines. 

The point is that there's no good reason to think that the 

brain is not a computer. But it isn’t a mere computer: It is 

physically embedded in its environment and interacts 

physically with its body, and for that, it also needs a 

peripheral nervous system (Aranyosi, 2013) and cognitive 

representations. Yet there’s nothing that denies 

computationalism here. Most criticisms of 

computationalism therefore fail, and sticking to them is 

probably a matter of ideology rather than rational debate. 
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Abstract

This study aimed to assess how specific components of an ac-
tion could be selected by a simple computational system. We
performed an experiment to test associations between grasps
(precision or power grip) and several objects. We then ran
simulations using a naive bayes classifier to study to what ex-
tent it could reproduce participants’ choice. This classifier had
two learning matrices containing objects’ size associated with
a grip by means of our experiment. When receiving a new
object’ size it computed the probability for each grip to be
adapted. The highest probability was considered to represent
which grip was associated with the object by the classifier. Re-
sults show that the classifier can reproduce participants’ choice
depending on the size of its learning matrices, and can quickly
select the right type of grip for a majority of trials, showing
that micro-affordances (Ellis & Tucker, 2000) can be repro-
duced through naive bayesian classification.

Keywords: affordance; grip; bayesian method; classifier

Introduction
As Leonard de Vinci said : “movement is principle of life”.
The way people interact with the world through body move-
ments is indeed a corner stone of psychology, and especially
of embodied psychology. As embodied psychology postu-
lates that high-level cognitive processes are bodily rooted,
or at least that their result depends on bodily states (Wilson,
2002), movements of the living body is a crucial point to at-
tend. Yet how adapted body movements occur is not well
determined and several propositions are made, one of them
being particularly attractive for embodied cognitivists: the-
ory of affordances (Gibson, 1979).

Affordance is a concept coined by Gibson (1979) that relies
on direct perception. Although it has many interpretations,
we will rely on the definition of Chemero (2003) in which af-
fordances represent the relations between an animal’s capaci-
ties and features of its environment. Abilities of an animal are
functional properties, that depends on this animal’s history.

This theory highlights the fact that voluntary actions are
products of our perception of the situation, our abilities, and
what we have learned. Moreover, this theory predicts that

action is part of objects’ memories and perception, as it is now
established (Brouillet et al., 2015), which is of interest for
psychology and for robotics as they permit to gain insight into
the perception-action loop (Montesano et al., 2007, 2008).

Yet, the link between perception and affordances needs fur-
ther investigation, as clues, or features, need to be extracted
from, or constructed on the basis of the environment. Such
clues would facilitate the link between a rich perception and
an adapted movement, and permit on line adaptation.

Our purpose was to test how adapted voluntary movements
could be selected, by a very simple computational system, on
the basis of clues extracted from perception. To do this we
chose to test some specific components of an action: grasp-
ing movements (Koester, Schack, & Westerholz, 2016). A
lot of our interactions with the world depend on our abil-
ity to grasp things around us in a proper way, for example
using a power or a precision grip (i.e. with all fingers of
the hand or with the thumb and index, respectively, see Fig-
ure 1). These specific components of action (that doesn’t in-
clude walking, reaching etc...) are termed micro-affordances
by Ellis and Tucker (2000). These micro-affordances are sup-
posed to emerge while looking at an object, and to facilitate
a specific grasp. We selected object size to be the feature of
the environment that could be associated to a specific grasp,
in order to create a model that simulates a perceptually based
motor activity.

The computational system we used to infer specific grasps
rely on bayesian probability (Jones & Love, 2011; Pearl,
1985). The bayesian approach appears to be promising when
studying how humans can interact with the world in presence
of uncertainty (Perfors et al., 2011). It can apply to motor
planning and control, estimation of context and motor learn-
ing (Wolpert & Ghahramani, 2000; Wolpert, Ghahramani, &
Flanagan, 2001), and can be easily used in its simplest ways
(Robert, 2000). This approach rely on conditional probabil-
ity and allows to determine the probability of a certain event
(for example a particular grasp) knowing some information :
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past experiences (e.g. earlier grasp in presence of an object)
or sensory inputs (e.g. object size) (Naı̈m et al., 2007).

The particular model we chose is a naive bayes classifier.
This model has two learning matrices : one containing the
size of objects graspable with a power grip, and one contain-
ing the size of objects graspable with a precision grip, size
being represented by three parameters x, y, and z. Once it has
computed these matrices, it receives the size of a novel ob-
ject to be classified as graspable with a power grip or with a
precision grip. In order to do so, it selects the most probable
grasp, knowing the object size, to be the grasp to produce in
presence of this particular object.

This approach of micro-affordances as naive bayesian clas-
sification can be of interest for psychologists and roboticians,
as it can reduce the size of ontology, or databases, needed for
an adapted system, and permits to infer micro-affordances in
a very simple way.

In a first part we present the experiment to test micro-
affordances with human beings and select objects that can
be associated with a precision or a power grip. In a second
part we explain how the model categorizes objects as being
graspable with a precision or a power grip by means of naive
bayesian classification, and show the results obtained with
this model. We then compare human’s and classifier’s perfor-
mances and discuss the possible developments of such appli-
cations.

Selection and association of objects with a
precision or a power grip

Participants
Sixteen students were recruited for a pre-experiment in or-
der to select the objects used in our experiment and simula-
tion. Eighty students, different from the previous ones, were
then recruited in order to select the appropriate grasp for each
object (seven of them were not taken into account as they
changed their grasping for the same objects between trials and
differed drastically from the others). All participants freely
signed a letter of consent, were right-handed, had normal or
corrected to normal vision and over 18 years old, none had
problems of motricity.

Materials
Forty-four pictures of objects were used. Each picture was
modified to have the object being centered, vertically ori-
ented, and a half of their real size when displayed on the com-
puter screen.

These images were presented to sixteen students in a pre-
experiment, with a hand near the object either making a
power grip or a precision grip (see Figure 1). Participants
had to indicate their level of agreement with the grip being
displayed with the object. A high level of agreement with a
grip meant that it was a reasonable grip to pick up and use the
object.As a result, twenty objects were selected for the exper-
iment, ten being graspable with a power grip and ten with a
precision grip.

Figure 1: A hand making a power grip (left picture), and a
precision grip (right picture).

Procedure
All of eighty participants were received one by one in an ex-
perimentation room, and sat in front of a computer Lenovo
17.3” with graphics card AMD radeon HD 8500M. They
were asked to grab, with their right hand, a device that con-
strained them to make either a power or a precision grip. They
were instructed to look at the computer screen and make the
more appropriate grip on the device when seeing an object
displayed on the screen. The twenty objects were then dis-
played randomly. When the twenty objects had been exposed,
a second random presentation was made, in order to ensure
the grip selected by participants for each object.

Results
Overall, the grips selected by means of the pre-experiment
were respected, as shown in Table 1 and Table 2, and par-
ticipants showed stable grip for each object. All of which al-
lowed us to classify each object as associated with a precision
or a power grip.

Table 1: Percentage of responses for objects associated with
a precision grip, a number was attributed to each object for
further comparison.

Objects N % power grip %precision grip
grain of wheat 1 0.68 99.32
tweezers 2 3.42 96.58
nut 3 0.68 99.32
radish 4 10.96 89.04
smart card 5 1.37 98.63
screw 6 0.00 100.00
paper clip 7 0.00 100.00
strawberry 8 6.85 93.15
french beans 9 1.37 98.63
key 10 2.74 97.26

Simulation with a naive bayes classifier
The naive bayes classifier
The second step of this work was to put the naive bayes clas-
sifier to the test. To do so, we had to implement the size of
objects used in our experiment. We chose to represent size in
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Table 2: Percentage of responses for objects associated with a
power grip, a number was attributed to each object for further
comparison.

Objects N % power grip %precision grip
glass 11 97.26 2.74
hair clipper 12 91.10 8.90
coconut 13 100.00 0.00
apple 14 99.32 0.68
corn 15 95.89 4.11
computer mouse 16 89.73 10.27
board wiper 17 92.47 7.53
universal pliers 18 95.21 4.79
pepper 19 95.21 4.79
deodorant 20 91.78 8.22

a three dimensional cartesian coordinate system, representing
height, width, and depth.

Figure 2: A computer mouse mesured on x,y and z.

Table 3: Mean and Variance for objects associated with a pre-
cision grip or a power grip.

Objects Mean (Variance)
x y z

precision 1.265 0.62 4.87
(0.422) (0.291) (11.72)

power 6.76 5.27 13.92
(3.83) (8.58) (22.94)

We defined a rule to mesure our objects : z axis for the
longest axis of the object, y axis for the shortest axis of the
object, and x the last one, following the right hand rule (e.g.
mesure of a computer mouse in centimeter: x = 6, y = 1.65,
z = 11.50, see Figure 2).These rules were followed in order
to satisfy the concept of axis for grasping proposed in Michel
(2006), we simplified Michel’s studies to reduce the natural
axis of prehension of an object to its longest side. Mean and
variance of objects associated with a precision grip and ob-
jects associated with a power grip are presented in Table 3.

Procedure
The model received an unknown object to be classified as
graspable with a power grip or a precision grip. This ob-

ject, represented by a vector (xn,yn,zn), was associated by the
model to probabilities P(gripi|xn,yn,zn) for i = 1 the preci-
sion grip (grip1 = G1) and i = 2 the power grip (grip2 = G2).

The Bayes’ theorem permits to decompose these probabil-
ities :

P(gripi|xn,yn,zn) =
P(gripi,xn,yn,zn)

P(xn,yn,zn)
(1)

The probability P(gripi,xn,yn,zn) can be written as :

P(gripi,xn,yn,zn) = P(xn,yn,zn,gripi)

= P(xn|yn,zn,gripi)×P(yn,zn,gripi)

= P(xn|yn,zn,gripi)×P(yn|zn,gripi)×P(zn,gripi)

=P(xn|yn,zn,gripi)×P(yn|zn,gripi)×P(zn|gripi)×P(gripi)
(2)

Here, the naive assumption of conditional independence
assumes that given the category gripi, xn,yn and zn are in-
dependent, so that :

P(xn|yn,zn,gripi) = P(xn|gripi) (3)

and
P(yn|zn,gripi) = P(yn|gripi) (4)

Thus, using equations (1) (2) (3) and (4)

P(gripi|xn,yn,zn) =

P(xn|gripi)×P(yn|gripi)×P(zn|gripi)×P(gripi)

P(xn,yn,zn)
(5)

The model then selected the adapted grip for the object
(xn,yn,zn) using :

argmax[P(G1|xn,yn,zn);P(G2|xn,yn,zn)] (6)

In concrete terms the naive bayes classifier had two learn-
ing matrices of size ( j,3), j being the number of objects in
the learning matrices, represented by their three coordinates
(x j,y j,z j). One matrix included the objects classified as gras-
pable with a precision grip (G1), the other included the ob-
jects classified as graspable with a power grip (G2).

The following calculations were applied similarly for G1
and G2, we will only present the calculations for parameter
x in G1 for the sake of clarity. The classifier computed the
probability for an object to be graspable with a precision grip
(P(G1) =

j
2 j =

1
2 ).

And the mean and variance of each parameter x, y,
and z for a precision grip : µG1(x), µG1(y), µG1(z) and
σ2

G1
(x), σ2

G1
(y), σ2

G1
(z); and for a power grip, resulting in

µG2(x), µG2(y), µG2(z) and σ2
G2
(x), σ2

G2
(y), σ2

G2
(z).

When a novel object with parameters (xn,yn,zn) was pre-
sented to the model, the classifier had to compute the proba-
bilities P(G1|xn,yn,zn) and P(G2|xn,yn,zn), using (5).

As measurements were on continuous variables, the new
parameters were computed given the known parameters
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of the model using a gaussian probability density func-
tion, in order to calculate P(xn|G1),P(yn|G1),P(zn|G1) and
P(xn|G2),P(yn|G2),P(zn|G2) with:

P(xn|G1) =
1√

2πσ2
G1
(x)

e
−

[xn−µG1
(x)]2

2σ2
G1

(x)

Then the model selected the highest probability (the appro-
priate grip), using (6).

As gaussian probability density function could return 0 for
the probability of a parameter given a class gripi, we distin-
guished two cases. In the first case only one parameter of
the novel object had a probability equal to zero, in this case
we did not change anything (we show in discussion why this
case is a limit for this type of classification). In the second
case two parameters of the novel object, one for each class,
had a probability equal to zero (for example P(yn|G1) = 0
and P(zn|G2) = 0), we changed these probabilities to ε close
to zero , this changed P(G1|xn,yn,zn) and P(G2|xn,yn,zn) to

P(G1|xn,yn,zn) = lim
ε→0

P(xn|G1)× ε×P(zn|G1)×P(G1)

P(xn,yn,zn)
(7)

and

P(G2|xn,yn,zn) = lim
ε→0

P(xn|G2)×P(yn|G2)× ε×P(G2)

P(xn,yn,zn)

As P(xn,yx,zn) = P(xn,yn,zn,G1)+P(xn,yn,zn,G2)

P(xn,yn,zn) =

P(xn|G1)× ε×P(zn|G1)×P(G1)+

P(xn|G2)×P(yn|G2)× ε×P(G2)

= ε× [P(xn,zn,G1)+P(xn,yn,G2)] (8)

So that, using (7) and (8):

P(G1|xn,yn,zn) =
P(xn|G1)×P(zn|G1)×P(G1)

P(xn,zn,G1)+P(xn,yn,G2)

Thus the probability of a grip given the three parameters
of the novel object became the probability of a grip given
the two parameters of the novel object for which probability
was not changed by ε, as the changes operated cancelled each
other out.

Simulation
Simulation was performed using Matlab R2015a with a com-
puter running on Windows 7 with a CPU Intel Core i5-4258U
2.10GHz.

We aimed at assessing naive bayes classification by
analysing classifier’s performance with different learning
matrices (different learned objects and number of objects

learned). In addition we compared the results of the classi-
fier to the results obtained with human participants.

Simulation ran using j = 1 to 7 learned objects for each
category (we always used the same number of learned objects
in the two categories : objects associated with a precision grip
and objects associated with a power grip).

Objects that were not used in learning matrices were cate-
gorized using the method described earlier.

As learning order did not have any impact on classification,
number of trials was defined using the binomial coefficient(N

j

)
with N = 10 the total number of objects in each cate-

gory and j the number of objects learned in each category.
This binomial coefficient gives the number of combination
of learned objects without taking into account possibilities of
permutation (learning order). The classifier was tested for ev-
ery possible combination of learning: for each combination of
precision grip’s learning, we tested all combinations of power
grip’s learning. This way the results presented in Table 4 and
Table 5 show the proportion of correct classification for every
object over all possible learnings of our material.

For each object and each j we verified the grip selected by
the classifier within each trial. For objects associated with
a precision grip by means of our experiment (see Table 1),
classification was recorded as right when the classifier cal-
culates a higher probability for precision grip than for power
grip. The reverse was made for objects previously associated
with a power grip (see Table 2). If probabilities for a preci-
sion grip and for a power grip were equal, we considered that
classification was incorrect.

Results
Overall it took 1397.71 seconds (23 minutes and 29 seconds)
for the program to select learning matrices and make 1837440
classification. The classification of one object took in average
7.61×10−1 ms.

When more than one parameter for one class was equal to
zero (33 cases), or when P(xn,yn,zn) was considered equal
to zero due to very small probabilities (82 cases), classifi-
cation was impossible. These particular numeric cases hap-
pened rarely (115 objects impossible to classify over 1837440
classified objects).

We computed the percentage of right classification for each
object and each j (number of learned objects before classifi-
cation). The percentages of right classification are shown in
Table 4 (the percentage of right classification for objects con-
sidered as associated with a precision grip), and Table 5 (the
percentage of right classification for objects considered as as-
sociated with a power grip).

A few things are to be discussed here. First, we can see
that overall the classifier returned the right grip most of the
time, in all the conditions (92.86% of right classification).

Secondly we can see that classification was better for ob-
jects that were considered associated with a power grip than
for the others.

Thirdly, we see that classification performance increased
as number of learned objects increased. This is because pa-
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Table 4: Percentage of right classification for objects associ-
ated with a precision grip and for k objects learned.

Objects Number of learned objects
2 3 4 5 6 7

1 85.22 95.95 99.60 100 100 100
2 76.62 86.97 95.57 99.21 100 100
3 88.39 96.83 99.90 100 100 100
4 43.34 47.52 46.28 45.85 42.15 30.36
5 82.93 93.91 98.81 99.73 100 100
6 84.07 95.37 99.43 100 100 100
7 87.49 98.33 100 100 100 100
8 63.03 80.10 91.42 96.49 98.76 100
9 52.78 56.54 63.03 67.64 73.39 80.37
10 86.63 94.98 99.26 100 100 100
Mean 75.05 84.65 89.33 90.89 91.43 91.07

Table 5: Percentage of right classification for objects associ-
ated with a power grip and for k objects learned.

Objects Number of learned objects
2 3 4 5 6 7

11 96.22 99.93 100 100 100 100
12 86.66 96.26 99.52 100 100 100
13 96.82 99.79 100 100 100 100
14 95.54 99.56 100 100 100 100
15 94.21 98.77 99.82 100 100 100
16 92.29 98.75 99.96 100 100 100
17 95.09 99.73 100 100 100 100
18 86.63 94.82 98.82 99.84 100 100
19 96.97 99.76 100 100 100 100
20 94.04 99.30 100 100 100 100
Mean 93.45 98.67 99.81 99.98 100 100

rameters µ and σ were more representative of a class (power
or precision grip) as number of learned objects increased.

What is counterintuitive is that classification of object
number 4 got worse and worse, it is because we put more
objects different from object 4 in the precision grip’s learning
matrice as the simulation went on. Object 4 had its three pa-
rameters close to boundaries of the precision grip space (rep-
resented by its mean and variance for each parameter x,y and
z). Thus, depending on the objects learned, increasing the
number of learned objects put object 4 out of the boundaries:
the more learned objects associated with a precision grip had
parameters close to the parameters of object 4, the more ob-
ject 4 was classified as part of precision grip’s objects. Con-
versely the more learned objects associated with a precision
grip had parameters distant from object 4, the more it was
classified as part of power grip’s object. Compared to object
4, other precision grip’s objects had one of their parameter
close to the boundaries of precision grip’s space, but not all
of their parameters, which made them easier to classify cor-

rectly.
The fact that object 4 was hardly well classified, instead

of being a real issue for naive bayesian classification, could
be an advantage when comparing the classifier’s performance
and human classification: in our experiment object 4 reveals
the higher percentage of selection for the competing grip (see
Table 1).

Comparison of human and classifier’s performance
To compare human’s and classifier’s performance we used a
χ2 test of independence between variable object (object 1 to
object 20) and variable responding entity (human participants
or naive bayes classifier).

When three, four, five and six objects of each category
were put in the classifier’s learning matrices, we found that
the two variables were independent (χ2(19) = 25.22, p =
0.15; χ2(19) = 23.06, p = 0.23; χ2(19) = 21.69, p =
0.30; χ2(19) = 22.71, p = 0.25, respectively), this meaning
that classifier’s performance and human grip’s choice were
not significantly different.

When two objects of each category were put in the clas-
sifier’s learning matrices, we found that variables object
and responding entity were independent, but with a greater
difference between human’s and classifier’s performance
(χ2(19) = 29.26, p = 0.06).

Finally, when seven objects of each category were put in
the classifier’s learning matrices, it appeared that the two vari-
ables were not independent anymore (χ2(19) = 33.01, p <
0.05), human’s and classifier’s performance became signifi-
cantly different.

Discussion
The results we obtained reveal that naive bayesian classifica-
tion can reproduce the grip’s choice made by human partici-
pants.

A good association of a novel object and its adapted grip
can be accomplished with a reduced database and few param-
eters. This may permit to determine quickly a subclass of
grips belonging to the precision or power grip classes when
looking at an object, in other words to detect the possible
nested micro-affordances associated with the object (for ex-
ample a precision grip could comprise several nested micro-
affordances: a grip with the thumb and the index, a grip with
the thumb, the index and the middle finger, with more or less
strenght etc...). Quickness of the categorisation in precision
or power grip classes could then be an advantage for real-time
adaptation.

But some limitations are to be exposed. The calculation of
conditional probabilities through gaussian probability density
function implies that a parameter could have a zero probabil-
ity given a certain grip class. This pulled the probability of
this grip to zero, while the probability of the competing grip
automatically became one, biasing the classification of the
object. A second limitation is the ad hoc hypothesis that pa-
rameters are independent, which could induce errors for other
parameters than the ones we used.
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When seven objects of each category were learned by the
classifier, the selection made by the classifier and human
choice became significantly different probably because clas-
sifier’s selection only account for a calculation made on the
basis of mean and variance of the three parameters represent-
ing the objects. This calculation is always the same and as
long as enough objects are learned the mean and variance of
each class’ parameter began to show little variability no mat-
ter the learning matrices. This shows that the algorithm used
with this classifier produces a rigid classification, and can-
not, at some point, reproduce the diversity created both by
the complexity of our cerebral structures and the variations of
embodiment between different human beings.

Yet this classifier can reproduce, in the majority of cases,
human grip’s choice in a small amount of time, and with few
parameters needed to be taken into account. This shows that
micro-affordances could be reproduced in some way with a
simple computational system using naive bayesian classifica-
tion, suggesting that some early stages of the processes linked
to human micro-affordance could be performed by some sim-
ple probabilistic mechanisms.

Future studies should take more parameters for an object
by cutting up the objects in three parts in order to deter-
mine the type of grip and the position of the grip on the ob-
ject (Faria et al., 2014), and introduce action’s consequences
(Hommel, 2015; Shin, Proctor, & Capaldi, 2010) through
tactilo-kinesthetic parameters (Pfister et al., 2014), like pres-
sure induced by the weight of the object, or muscle tension,
in order to permit an efficient grip with a simple classification
algorithm. We should also investigate the classifier’s perfor-
mance when an increased number of objects are learned and
classified.
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Abstract 

The standard approach posits that analogical inferences are 
generated by copying unmapped base relations, substituting 
base entities by their corresponding target ones, and generating 
slots for unmapped base entities. Contra this account, results 
from Experiment 1 revealed that analogical inferences seldom 
include relations that resemble the base relation from which 
they were derived. Most of the inferences, however, could be 
categorized as exemplars of a schema-governed category 
capable of characterizing the base information to be projected. 
To gather further precision about the criteria that guide inference 
generation, in Experiment 2 we showed that analogical 
inferences tend to match the base information from which they 
are derived in values of salient dimensions of the relational 
category to which they belonged. Our results suggest that the 
relational constructs employed in modeling analogical inference 
should move beyond one-term multiplace predicates so as to 
include more complex relational structures. 

Keywords: analogy; inference; relational category. 

Introduction 
Analogical thinking is a central mechanism in human 
cognition (Gentner, 2003; Hofstadter & FARG, 1995; Holyoak 
& Thagard, 1995), playing an important role in activities as 
diverse as categorization, problem solving, scientific discovery, 
decision making, and argumentation (Gentner, Holyoak, & 
Kokinov, 2001). In all these activities, analogy involves 
establishing a mapping between the compared situations and 
transferring new knowledge from a more familiar situation 
(base analog) to a less familiar one (target analog).  

Almost all current theories of analogy agree that the 
alignment that takes place during mapping should satisfy the 
constraints of one-to-one mapping and parallel connectivity, 
(e.g., Falkenhainer, Forbus, & Gentner, 1989; Gentner, 1989, 
Holyoak & Thagard, 1989; Hummel & Holyoak, 1997). While 
one-to-one mapping requires that each element in one situation 
maps to at most one element in the other situation, parallel 
connectivity entails that if two predicates are matched, their 
arguments must be placed in correspondence according to 
their roles. The following analogy illustrates these constraints: 

 Base analog:    John loved Mary and this made John         
                give Mary a perfume 

 Target analog:  Peter loved Susan 

 
While one-to-one mapping implies that pairing John with 
Peter should prevent pairing John with Susan, parallel 
connectivity dictates that if love has been paired with want, 
John must be placed in correspondence with Peter and Mary 
with Susan, as agents and patients, respectively, of the 
previous matched relations.  

Theories of analogy also agree in that base assertions that 
are connected to the collection of mapped elements but which 
do not have a counterpart in the target will be brought over as 
candidate inferences. To formulate these inferences, the 
cognitive system would apply some variant of a copy with 
substitution and generation mechanism (CWSG; e.g., 
Falkenhainer et al., 1989; Holyoak, Novick, & Melz, 1994; 
Hummel & Holyoak, 2003). In our example, after projecting 
the base higher order relation cause to the target, the 
cognitive system would generate and transfer a “template” 
proposition like “Peter [give or a similar action1] Susan 
[something like a perfume]" into the target. This template 
proposition is generated from “John gave Mary a perfume”, 
via copying give, substituting John by Peter and Mary by 
Susan (matched during mapping), and generating a slot for 
the entity perfume. 

                                                             
1 The structure-mapping theory and the multiconstraint theory 

postulate that the new hypothetical entities should be capable of 
filling the role played by their corresponding base objects, but they 
do not give further specifications about how to identify these 
entities in the target domain (see, e.g., Falkenhainter et al., 1989; 
Holyoak et al., 1994). With respect to the transferred relations, the 
structure-mapping theory (see, e.g., Falkenhainer et al., 1989) 
maintains that a generated relation in the target will be assumed to 
be identical to the corresponding source predicate. However, to the 
extent that this theory has always treated identicality as a “tiered” 
condition (Forbus, Ferguson, Lovett, & Gentner, in press), we 
suppose the theory would admit inferences that include non-
identical relations as long as they can be regarded as identical at a 
higher level of abstraction. The multiconstraint theory adheres to 
the “copy of relations” postulate, but it treats it as a default rule 
that is adequate for initial explorations in the target (see, e.g., 
Holyoak et al., 1994). Under these considerations, we assume that 
CWSG involves either copying the base relations or replacing 
them by similar ones.  
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Supporting the postulations of the dominant theories of 
inference generation, there is some evidence that people tend 
to apply the syntactic constraints of one-to-one mapping (i.e., 
previous correspondences will dictate substitutions in CWSG) 
and systematicity (i.e., people are more likely to import an 
inference from base to target when the fact is causally 
connected to other matching facts) (e.g., Clement & Gentner, 
1991; Gentner, Ratterman, & Forbus, 1993; Markman, 1997). 
There is also evidence that people tend to apply pragmatic 
criteria to derive their inferences (Spellman & Holyoak, 
1996). The application of these principles would be in the 
service of guaranteeing some minimal initial plausibility and 
relevance for the generated inferences (see, e.g., Holyoak et 
al., 1994).  

As a pattern-completion process that takes maximal 
advantage of the mapping process, CWSG can be regarded as 
fast and computationally inexpensive. As most theories agree, 
analogical inference mechanisms should not be required to 
provide an adequate content to the produced inferences, 
something that should allegedly rely on post-inference stages 
of analogical reasoning such as evaluation and adaptation 
(Holyoak et al., 1994). The question arises as to whether the 
information conveyed by the templates obtained via CWSG 
can adequately guide post-inference generation processes in 
filling them in a semantically appropriate way. 

In our example, if we repeat give, there is some probability 
of generating semantically appropriate inferences from the 
template “Peter gave [something like a perfume] to Susan" 
simply by replacing perfume by another exemplar of toiletry. 
However, while substituting perfume with spa set gives rise 
to a somewhat adequate inference, substituting perfume with 
deodorant would be inappropriate. It seems that combining 
give with an exemplar of toiletry will be adequate only if it gives 
rise to an instance of say, “manifestations of love”. In this sense, 
the strategy of repeating the base relation and searching for a 
new exemplar of the base entity categories seems insufficient 
to guarantee some minimal semantic appropriateness of 
analogical inferences, to the extent that it requires some kind 
of “semantic supervision” from more complex category 
structures that the analogizer should keep in mind during the 
process. Combining substitutes (similar relations) of the 
relation give with substitutes of the entity perfume so as to 
obtain cases of “manifestations of love” would require even 
more thoughtful control. Just to exemplify, if we replace give 
by lend, no toiletry seems appropriate to generate a 
demonstration of love, although we can generate an exemplar 
of this category via replacing perfume by “his new car” or by 
“his weekend house at the beach”. 

The second problem with the CWSG strategy is that it can 
lead to inconvenient fixations, since many combinations of 
non similar verbs and objects could result in manifestations of 
love: write her a poem, prepare her favorite meal, or pick 
some wildflowers. Searching for cases of manifestations of 
love without the semantic restrictions imposed by the 
mechanism of CWSG seems to be a more flexible and 
productive strategy. 

Based on the above considerations, we propose an 
alternative to CWSG which consists in categorizing the base 
analog information from which the inference will be derived 
as an exemplar of a schema-governed relational category 
(SGC), and searching for new exemplars for this category. 
Members of SGCs such as murder share a structure that can 
be instantiated by very different exemplars (Gentner & 
Kurtz, 2005; Goldwater, Markman, & Stilwell, 2011; 
Markman & Stilwell, 2001), such as "Fred thrust a knife 
into Gina’s heart", "Mary had Bob drink poison", or "The 
offender disconnected the patient’s oxygen supply". When 
the situations in an analogical comparison are exemplars of 
a SGC, the similarity between the relations and entities of 
the compared events is no longer necessary to have a good 
analogy (Minervino, Oberholzer, & Trench, 2013). The 
analogical relatedness between "John gave Mary a perfume” 
and “Peter wrote Susan a poem” is not based on semantic 
resemblances between give and write or perfume and poem, 
but rather on the fact that both acts represent exemplars of 
the SGC “manifestation of love”. In this sense, the 
limitation of CWSG seems to stem from treating analogical 
inference as an element-by-element pattern replacement 
guided by isolated similarities, and from not considering the 
broader meaning of the facts described by propositions. 
When this broader meaning is taken into account, the 
cognitive system can do away with element-to-element 
similarities.    

With the aim of determining which of these alternative 
mechanisms constitutes a better account of how analogical 
inferences are generated, one of the conditions of Experiment 1 
served to document the extent to which analogical inferences 
produced by participants involve relations that are similar to 
those of the base analog (as posited by dominant theories), 
as well as the extent to which they involve facts that pertain 
to the same schema-governed category as the base effect.   
In order to confirm that participants' inferences took into 
account the analogical relation between the target and the 
source—as opposed to representing plausible consequences 
of the target analog considered in isolation—, the inferences 
generated by the abovementioned group were contrasted to 
the inferences produced by a second group of participants who 
had to propose likely consequences of the target situations, 
but without having previously received an analogous source. 

Experiment 1 

Method 
Participants and Design Fifty students of psychology at 
the University of Comahue (mean age = 22.86 years, SD = 
3.42 volunteered to participate in the experiment. They were 
randomly assigned in equal number to the analogy and the 
target-only groups. The dependent variables were (1) the 
similarity between the relation of the base effect and that of 
the inferred situation, and (2) whether or not the inferred 
situation belonged to the same SCG as the base effect on 
which it was inspired.  
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Materials Ten sets of stimuli were built, each one 
comprising a base and a target analog. The base analog 
consisted of a base cause that engenders a base effect. The 
base causes consisted in three-place predicates in which an 
agent exerts an action over an object, and directed to a 
patient. The base effects were predicates in which the 
former patient exerted another action to another object, but 
which is directed to the former agent. Participants were 
tasked with generating a consequence of the target cause that 
they deemed analogous to that of the base analog. Table 1 
displays a sample of the experimental materials. 
 

 
Table 1: Sample of experimental materials, Experiment 1 

 
Set # Category Situation  

1 Danger  BC: An old man left the door of his 
kitchen open to his two-year old 
grandson 

  BE: The grandson ingested the old 
man's medicines 

  TC: Another old man left the door of 
his kitchen open to his two-year old 
grandson 

4 Public 
welfare 

BC: Latvian's low-income population 
held a manifestation against the 
government 

  BE: The government sent food to the 
low-income population b 

  TC: Another low-income population 
held a manifestation against the 
government 

8 Promotion 
of critical 
thinking 

BC: A student questioned the theory 
to his professor 

 BE: The professor raised the 
student's grade 

  TC: Another student questioned the 
theory to his professor 

Note. BC: Base Cause; BE: Base Effect; TC: Target Cause. 
 
Procedure Participants in the analogy condition received a 
brief written explanation about the potential of analogical 
comparisons to infer new information about a target situation. 
The instructions presented the main activity as one in which 
they were going to receive a first situation comprising a 
cause and its associated effect, followed by a second 
situation for which they had to proposed an effect that could 
be considered analogous to that of the original fact. 
Participants of the target-only group received a brief written 
explanation about how people hypothesize effects for 

certain facts. The instructions presented the main activity as 
one in which participants were going to receive a simple 
situation, with the task of proposing a likely effect. 
Participants received the stimuli in random order. The 
experimental stimuli were presented on a computer screen, 
with participants typing their answers within prespecified 
fields. The administration took place in groups ranging from 
two to five participants, with each participant working 
individually. Participants were allotted a maximum of 30 
min to complete the trials at their own pace. 

 
Coding Each of the inferences proposed by participants was 
analyzed along two key dimensions: (1) the extent to which 
the action included in an inference was semantically similar 
to that of the base effect of the corresponding set of 
materials—a central prediction of the CWSG approach—, 
and (2) whether o not the inferred fact and its corresponding 
base effect belonged to the same schema-governed category. 
To carry out the first analysis, two judges unfamiliar with 
the purpose of the study received a ten-page table in which 
the verbs of the critical base effects (one from each set of 
materials) were matched against the verbs of all the 
inferences generated by participants for that particular set. 
Judges were asked to rate the similarity of the verb-pairs 
using a 5-point scale (1 = highly dissimilar; 5 = highly 
similar). They worked independently of one other, and the 
scores given by the two judges to each of the verb-pairs 
were averaged. Judges' scores were found to be reasonably 
reliable, Cronbach's α = .797. While verbs yielding an 
average score of three or more were classified as "similar", 
those obtaining an average score of less than three were 
sorted as "dissimilar". In order to perform the second 
analysis, two additional judges received each of the 
inferences proposed by participants preceded by its 
corresponding target cause and followed by a list of four 
words or brief descriptors representing SGCs, with the 
instruction to draw a mark next to any of the descriptions 
that could be used to categorize the target effect (they could 
mark as many as they wanted, or leave all of them 
unchecked in case they considered that none of them 
applied). For all inferences corresponding to a given set of 
materials, the list of event categories comprised two SGCs 
that corresponded to the base effect and two SGCs that did 
not correspond to the base effect, all presented in random 
order. For example, for Set 1 (see Table 1), one of the 
participants generated the inference "The grandson played 
with the stove". In order to determine whether this inference 
could be encompassed by the same SGC as the base analog 
in which it was inspired, judges received the target cause 
plus the inference at stake, coupled with the following event 
descriptions: (1) revenge, (2) dangerous situation (3) 
jealousy reaction, and (4) risky situation. Inferences were 
scored as sharing a SGC with the base effect in all those 
cases where the two judges checked at least one of the two 
“correct” event descriptors (danger and/or risk), regardless 
of whether they agreed on which of the correct descriptors 
was checked. 
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Results and Discussion 
The verbs of the inferences generated by participants of 

the analogy group resembled those of their corresponding 
base effect in 31.6% of the cases. It should be noted, 
however, that 12.7% of the inferences generated in response 
to the target analog alone (i.e., those of the target-only group) 
involved verbs that resembled those of the base effect received 
by participants of the analogy group. More fine-grained 
analyses using chi-square statistics revealed that the rate of 
utilization of similar verbs by the analogy group differed from 
the rate of spontaneous utilization of those same verbs by the 
target-only group in 4 of the 10 sets of materials (see Table 1). 

With regards to SGC similarity, judges' analyses showed 
that while the inferences generated by the analogy group 
involved the SGC of the base effect in 88% of the cases, the 
inferences produced in response to the target analog alone 
belonged to these same categories in 34.4% of the cases. 
Chi- square tests revealed that for all 10 sets of materials the 
probability of generating an inference that pertains to the 
SGC of the base effect by participants of the analogy group 
was higher than the proportion of inferences pertaining to 
those same SGCs within the target-only condition (See 
Table 1). 

The low proportion of semantically similar relations among 
the inferences produced by the analogy group suggests that 
the mechanism of postulating target relations that resemble 
their counterparts in the base analog, as dictated by CWSG, 
cannot adequately account for how analogical inferences are 
derived. In contrast, the fact that the vast majority of the 
inferences belonged to the same SGC as the causal consequent 
of the base analog suggests that the dominant mechanism 
involved in the generation of analogical inferences consists 
in analyzing the SGCs to which the base effect belongs, and 
generating further exemplars of such categories.  

 
Table 2. Percentages of inferences exhibiting verb and 

relational category similarity with the base analog 
 

Note. *Significant at α = .05; **Significant at α = .01 

Having documented that the majority of inferences were 
exemplars of a relational category that was readily applicable 
to the base analog effect, a sensible research question 
concerned whether inclusion to such relational category 
suffices as a criterion for generating analogical inferences. 
As suggested by data obtained by Minervino et al. (2013), a 
factor that seems to influence the perception of analogical 
resemblance between exemplars of a SGC has to do with 
whether the target situation matches the base situation along 
the most salient dimensions of the relational category to which 
they belong. Taking the category robbery as an example, the 
analogability of two exemplars depends on whether they match 
in central dimensions such its importance, violence or planning. 
Experiment 2 was aimed at determining whether the observed 
sensitivity to this constraint generalizes to analogical inference.  

As in Experiment 1, participants received a base analog 
comprising two causally related situations, followed by the 
presentation of a target situation that was virtually identical 
to the causal consequent of the base analog and by the task 
of completing the target situation with a consequence that 
they deemed analogous to that of the base. The main 
difference with Experiment 1, however, was that the 
exemplars of SGCs that were employed as the effects of the 
base situations were chosen to instantiate either a high or a 
low value along a central dimension of the relational 
category to which they belonged. The purpose of the 
experiment was to assess the extent to which the exemplars 
of SGCs included in participants' inferences matched the 
consequent of the base situation in terms of its values along 
the manipulated dimension. 

. 

Experiment 2 

Method 
Participants Twenty-four students of psychology at the 
University of Comahue (mean age = 21.1 years, SD = 3.36) 
volunteered to participate in the study.  

 
Materials and Procedure Ten new sets of materials were 
built. The sets had the same general structure as those of 
Experiment 1, with the main difference being that for each 
base cause we derived two possible base consequences 
instead of one. These two consequences belonged to the 
same SGC, but differed from each other in that they scored 
differently along a central dimension of such category. As 
an example, the base cause A paleontologist brought fossils 
to the Trelew Museum was followed either by the base effect 
The museum commissioned a statue of the paleontologist 
(an instance of reward with a high value in the dimension 
"magnitude") or by The museum issued a diploma to the 
paleontologist (low value in the dimension "magnitude"). 
Table 3 displays a sample of the experimental materials.  

To ensure that participants encoded the base consequences 
as members of the SGC whose critical dimension was being 
manipulated, participants were explicitly informed about the 
specific category to which the base consequence belonged 
(see Table 3).  

 Similar relations  Same relational category 

 Set         
 # 

   Analogy     
. condition 

 Target-only 
condition 

  χ2 Analogy 
condition 

  Target-only 
condition 

   χ2  

1  32% (8) 16% (4) 1.75 92% (23) 36% (9) 17.01**    

2  36% (9) 12% (3) 3.95* 88% (22) 40% (10) 12.5** 

3  32% (8)  8%  (2) 4.5* 84% (21) 52% (13) 5.88* 

4  28% (7) 12% (3) 2 88% (22) 12% (3) 28.88** 

5  20% (5) 12% (3) 0.6 84% (21) 24% (6) 18.12** 

6  32% (8) 36% (9) 0.09 92% (23) 20% (5) 26.3** 

7  16% (4) 36% (9) 2.6 88% (22) 56% (14) 6.35* 

8  44% (11)  0% (0) 14.1* 88% (22) 36% (9) 14.35** 

9  44% (11) 4%  (1) 10.96* 96% (24) 32% (8) 22.22** 

10  32% (8) 36% (9) 0.09 80% (20) 28% (7) 13.61** 

2738



Table 3: Sample of experimental materials, Experiment 2 

Set  Category Base and target situations  

1   REWARD 
 

BC: A paleontologist brought fossils to the 
Trelew Museum  
BEhv: The Museum commissioned a 
statue of the paleontologist  
BElv: The Museum issued a diploma to 
the paleontologist  
TC: Another paleontologist brought 
important fossils to the Rawson Museum 

2 ROBBERY BC: The old lady trusted her house's keys 
to her nanny 
BEhv: The nanny sold the old lady's 
jewelry 
BElv: The nanny took a book from the old 
lady's house 
TC: Another old lady trusted her house's 
keys to her nanny 

5 CONTRI-
BUTION 

BC: A young man was invited to a 
barbecue by his friends  
BEhv: He volunteered to pay the meat to his 
friends 
BElv: He volunteered to bring matches to his 
friends  
TC: Another young man was invited to a 
barbecue by his friends 

Note. BC: Base Cause; BEhv: Base effect with high values 
on a key dimension of the relational category; BElv: Base effect 
with low values on such dimension; TC: Target Cause. 
 
Two complementary booklets of materials were built. In each 
version half of the sets were coupled with consequences 
instantiating low values along the manipulated dimension of 
the SGC to which they belonged, and half with consequences 
embodying high values along such dimensions. The 
procedure was identical to that on Experiment 1.    
 
Coding Two new judges received each of the inferences 
generated by participants coupled with the critical dimension 
that corresponded to that set of materials. They were asked 
to rate how it fared along such dimension using a 5-point 
scale ranging from the minimum to the maximum possible 
levels along the manipulated dimension (e.g., for the reward 
example, they had to rate the magnitude of the reward from 
1 = very small, to 5 = huge). The scores given by the two 
judges to each of the inferences were averaged. Judges' 
scores were found to be reliable, Cronbach' α = .823. 

Results and Discussion 
The inferences generated out of base facts ranking high 

along the manipulated dimensions obtained higher scores 
than those generated out of base facts displaying lower levels 
along that dimension (M = 3.18, SD = 0.40 vs. M = 2.18, SD = 
0.36, t(25) = -10.05, p < .001. 

These results demonstrate that the way in which the base 
effect fares along a critical dimension of the SGC to which 
it belongs constrains the way analogical inferences will fare 
along such dimension. In order to gather a subtler estimate 
of the strength of this association, judges were also required 
to score the base effects along the manipulated dimensions. 
The correlation between the scores assigned to the base 
effects and those of their associated inferences was strong, r 
= .476, n = 260, p < .001. Furthermore, in 71.54% of the 
cases the scores of the generated inferences along the 
manipulated dimension were no farther than one point away 
from those of the base analogs on which they were inspired.  

General Discussion 
A key prediction of the CWSG approach to analogical 

inference consists in that people will tend to construct their 
inferences repeating the base relations from which the 
inferences will be derived or replacing them by similar ones.  
Against this position, Experiment 1 showed that people do not 
care much about preserving similarity to base relations but 
instead focus on generating new exemplars of the SGC applied 
to the base information from which inferences are derived. In 
Experiment 2 we collected data favoring a further hypothesis 
associated to our category-based perspective, namely, that 
when proposing new exemplars of SGCs people tend to 
generate cases that fare closer to the base exemplar along 
critical dimensions of the category to which they pertain. 

We have argued that the templates generated by CWSG 
could sometimes be insufficient to guide the analogizer in 
generating semantically sensible inferences during the post 
inference stages of evaluation and adaptation. Returning to 
the example presented in the Introduction, the chances of 
generating semantically appropriate inference from the 
template “Peter [give or a similar action] Susan [something 
like a perfume] seems rather low. We speculated that while 
some toiletries could perhaps result in a sensible inference, 
others do not, and that post-inference generation mechanisms 
have no semantic basis to distinguish between them.  

The standard approach to analogical inference generation 
could argue that “something like a perfume” should not be 
interpreted as “an exemplar of toiletry”, and that this 
interpretation is to some extent caricaturizing CWSG, since 
an intelligent system operating in an analogical mode will not 
be guided by superficial similarities such as membership to a 
same category, but would rather interpret it as, say, “give + 
things that a woman finds romantic”. In this sense, the system 
would promote the search for new exemplars of this ad hoc 
category (e.g., a teddy, necklace or a bouquet). The problem 
with this argument is that the very consideration of this ad hoc 
category supposes the prior conceptualization of the template 
as a "manifestation of love", something that the analogical 
machinery has not generated. It is possible that the generalized 
support that the CWSG approach has received comes in part 
from the fact that programmers inadvertently read far more 
understanding than is warranted into the templates produced by 
this mechanism, as an effect of projecting the SGC that they 
apply to capture the whole meaning of the template. 
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The standard approach could also argue that the analogical 
machinery was not meant to deal with the activity of 
comprehending the analogs, but rather to start operating 
once the analogs have been fully comprehended (see, e.g., 
Morrison & Dietrich, 1995). In this vein, the analogical 
engine would receive the fact that John gave Mary a 
perfume already interpreted as a case of “carrying out a very 
romantic manifestation of love” (i.e., as a case of this 
category, and with some specific properties). A problem with 
this argument is that this conceptualization cannot be 
captured by a relation—defined as one-term multiplace 
predicates. The execution of a very romantic demonstration of 
love would be propositionally represented, stricto sensu, as 
CARRY OUT [John, ((VERY) ROMANTIC (manifestation 
of love)), Mary]. The essential information to be transferred 
is located in an argument represented as a noun (manifestation 
of love) and its property (VERY ROMANTIC), and not in 
the one-term predicate outside the brackets (CARRY OUT).  

We are far from calling into question the importance of 
relational aspects in analogical thinking, but we believe it is 
necessary to discuss and amplify the meaning of “relational”, 
so as to avoid reducing it to one-term multiplace predicates. 
It should be broadened to include, for example, relational 
structures as those captured by SGCs. In these structures, 
relations are only a constituent, being other thematic roles 
(e.g., agents, patients, objects or instruments) just as important. 
For example, if an instance of the category “manifestation of 
love” includes the relation give, the agent's intention should be 
to awake certain emotions in a person, the patient has to be a 
candidate for being emotionally affected by the agent at 
stake, and the object should be pleasant to the patient.   
The complex interdependency of the constituents of a fact 
that make it pertain to a SGC makes it proper to talk about 
these categories as “relational” structures, but the sense of 
the term is broader than the one employed in computational 
models of analogy (i.e., a one-term multiplace predicate). 
The relational character of these categories is also evident in 
the extremely different situations that can constitute 
exemplars of a SGC, which could differ even in their 
relations defined in the traditional way. 
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Abstract

We investigate how people allocate a limited set of resources
between multiple risky prospects. We found that only a small
percentage of decisions followed some form of naive diversifi-
cation or mean-variance optimization. In general, people were
less mean-variance optimal than a naive 1/N heuristic. As-
pects of choice sets, such as domain, skew, and second order
stochastic dominance, affected resource allocation decisions in
a similar manner to their influence on single choice gambles.
Individual traits traditionally linked to risk propensity seem to
manifest in terms of the degree to which people are inclined
to diversify. Lower risk aversion and higher risk seeking traits
are linked to increasing diversification. Risk congruency, the
degree to which peoples’ self-reported and elicited risk aver-
sion matches, moderates how susceptible people are to cost
framing nudges. We find evidence for heterogeneous clusters
where people either under-weight or over-weight segregated
costs, leading to the same nudge producing opposite behav-
ioral results within two risk incongruent groups.
Keywords: resource allocation; risk tolerance; risky
choice; individual differences; nudges

Introduction
There are many instances where people have to distribute
a limited set of resources between multiple choice options.
These can be personal (e.g. investment in a set of retirement
funds; constructing a stock portfolio; budgeting household
expenses) or institutionalized (e.g. capital allocation, bank
lending decisions, government budgets) monetary decisions.
These could also be non-monetary decisions such as distri-
bution of labor, time, bandwidth, etc. The choice options of-
ten vary in terms of their potential costs and benefits, which
are probabilistic in nature. Each choice option may thus be
represented as a risky prospect which has some probabilistic
distribution of outcomes. There is a large amount of literature
that examines the decision making process when people have
to select only one out of 2 or more risky prospects, that is,
where all resources are invested in a single prospect.

There are limited studies however, that extend this to a
resource allocation paradigm, namely, how do people dis-
tribute a limited set of resources between 2 or more such risky
prospects? Some studies suggest that people follow the 1/N
heuristic, which proposes that people tend to naively diversify
allocation across the available prospects (Benartzi & Thaler,
2001; Bardolet, Fox, & Lovallo, 2011), although this is often
the case only for a subset of the people making these deci-
sions. The normative version of this problem is extensively
studied in economics - what optimal strategies should people
adopt? However there is limited research examining whether
people come close to adopting such optimal strategies.

It is important to understand how people deviate from op-
timality, and to understand what aspects of choice sets influ-

ence the resource allocation process. We highlight that mea-
suring optimality and sensitivity to choice sets is more com-
plex in resource allocation tasks compared to simple choice
gambles. For simple choice gambles, a cognitive account will
typically entail valuation of different prospects, and specifica-
tion of a deterministic or probabilistic decision rule to com-
pare these valuations. The decision rule for resource alloca-
tion needs to be more complex to allow for allocation weights
to be placed for each gamble. It needs to take into account
aspects such as choice bracketing - whether the valuation of
choices is performed at an aggregate portfolio or segregated
choice level. These aspects may influence whether drivers
of decision making that explain single choice behavior can
also explain resource allocation decisions. Further, choice
bracketing may also affect how sensitive people are to cost
framing nudges, where outcomes are re-framed into a gross
higher outcome, set-off by a corresponding cost element. We
report an experimental study on resource allocation and show
how manipulation of different design factors affects the allo-
cation behavior. The main questions we ask are (1) do people
naively diversify?, (2) how sensitive are people to choice set
manipulations?, (3) how well do measures of risk traits ex-
plain individual differences in resource allocation behavior?,
(4) how sensitive are people to cost framing nudges?and (5)
how optimal (or sub-optimal) is allocation behavior?

Experiment
In this experiment we test people’s preferences for distribut-
ing a fixed set of resources between multiple risky prospects.
50 undergraduate students from Vanderbilt University partic-
ipated in the experiment. The cover story for the task was that
participants had to play the role of the head of a company that
had the opportunity to invest a fixed amount of money (hypo-
thetical $100,000) into one or more of 4 possible projects.
Participants were advised that all projects had the same ex-
pected time to completion and their objective was to maxi-
mize the return on the invested amount. They were required
to invest all the money, but could distribute this in any propor-
tion between the 4 projects, including allocating no resources
to one or more projects. Each project had two possible out-
comes - success or failure. They were provided with the
probability of success (pS) and failure (pF = 1-pS) for each
project, as well as the percentage returns on their investment
depending on whether a project succeeded or failed. A suc-
cessful project always had a positive return, whereas a failed
project resulted in either a lower positive or a negative return.
The 4 projects always varied in terms of the variability (stan-
dard deviation) of return outcomes. Participants were given
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Figure 1: Example interface where participants allocate a fixed set
of resources between 4 risky prospects using either text inputs or a
moving slider scale.

Figure 2: Example interface of how participants receive feedback
for each individual prospect after each trial. The proportion of green
to red balls is based on the ratio of probability of success to failure.
One of the balls is chosen at random to generate a realized outcome.

an example and a practice trial to familiarize themselves with
the interface (see Figure 1). After each trial, participants were
provided feedback on the outcome. The outcome was based
on the described probability of success and dynamically (ran-
domly) picked by the computer program. The process of re-
alization of the outcome for each project was graphically dis-
played to the participants. For each project they were shown a
box containing 100 X pS green balls and 100 X pF red balls.
The computer program randomly traversed the box space and
eventually picked one of the balls. A green ball implied suc-
cess and a red ball implied failure (see Figure 2). The re-
turns on the investment for each project were updated based
on these outcomes before moving on to the next trial.

(A) Between-subjects conditions
Participants were split into 2 groups of 25 students each. The
between subjects design entailed different rewards, with the
rest of the design factors being identical between the two
groups. Group 1 participated for course credit, and group 2
for financial compensation. This between-subjects condition
tests whether financial incentives affect resource allocation
behavior. There is mixed evidence for this in tasks involv-

ing risky choices (Beattie & Loomes, 1997). Participants in
group 2 received a fixed payout of $5 plus an incentive rang-
ing from $0 to $10 that was linked to their performance on
the task. For group 2, at the end of the experiment, one of
the trials was randomly selected. The incentive component
was calculated as $5 plus or minus $0.10 times the %returns
achieved on that trial, but limited to the range $0-$10. For
example, achieving a loss of 20% resulted in an incentive of
$5 - 0.1(20) = $3, and achieving a gain of 20% resulted in an
incentive of $5 + 0.1(20) = $7. This allowed for the incen-
tive to be framed as reductions for losses and increments for
gains. The total payout including fixed and incentive compo-
nents ranged between $5-$15.

(B) Within-subjects factorial design

Each participant completed 36 portfolio choice decisions.
There were 12 unique decisions based on a 2 (second order
stochastic dominance - present vs absent) X 2 (domain - gains
vs mixed) X 3 (skew - none, positive, negative) within-subject
factorial design. Each of these 12 decisions was repeated in
3 blocks, with the order randomized within blocks. Although
the underlying decision remained equivalent across blocks,
the three blocks varied in terms of a cost framing effect. The
details of the choice set manipulation are given below:

Second order stochastic dominance (SOSD; 2 levels): In
the first level, all prospects in a trial had equal expected value,
but the 4 prospects had progressively higher standard devi-
ation. As a result, each prospect had SOSD over the sub-
sequent riskier prospects. In the second level, the prospects
were not mean preserving, and riskier prospects (higher stan-
dard deviation) also had higher expected values. Thus there
was no SOSD. Any behavioral account that is based on a
weakly increasing concave utility function, or mean-variance
optimization, predicts that prospects with SOSD over other
prospects will be a dominated preference. Accordingly, opti-
mal resource allocation under such an assumption would im-
ply allocating 100% of the resources to the safest prospect.
SOSD present choice sets allow a parameter free estimation
of deviation from mean-variance optimal allocation. On the
other hand, choice sets that do not involve SOSD choices
allow measuring the level of risk tolerance within a mean-
variance optimization framework.

Domain (DM; 2 levels): In the first level, all-gain domain,
all outcomes including project failures resulted in positive
returns. In the second, mixed domain, the average returns
across prospects on failure were negative. Domain manipula-
tion allows us to test for the effects of asymmetric gain-loss
utilities within the portfolio choice framework.

Skew (SK, 3 levels): In the first level, all prospects had zero
skew, that is, success and failure were equally likely. In the
second, all except the safest prospect had negative skew, that
is, failure outcomes were more likely. In the third, all ex-
cept the safest prospect had positive skew, that is, success
outcomes were more likely. Symmonds, Wright, Bach, and
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Dolan (2011) showed that risk and skewness are differently
encoded in the brain. People have been shown to be relatively
averse to negatively skewed gambles (Deck & Schlesinger,
2010). Manipulation of skew allows us to test whether these
effects extend to the portfolio choice paradigm.

Purchase cost framing nudges (PC, 3 levels): In the first
level, there are no extraneous purchase costs. In the sec-
ond and third levels, the outcomes from the first level were
translated and re-framed into higher gross outcomes accom-
panied by an appropriate purchase cost. This re-framing
led to prospects that were expected-value-equivalent to the
prospects presented in the first level. In the second level, the
amount of re-framing was increasingly higher with increas-
ing variability (risk) of prospects outcomes. In the third, the
re-framing decreased with increasing variability (risk). The
trials were presented in a blocked design with three blocks
corresponding to the 3 purchase costs conditions, with the or-
der of the 12 problems in each being randomized. The theory
of mental accounting suggests that people may account for
re-framed outcomes and corresponding costs in a segregated
manner, including under or over weighting the cost compo-
nent relative to the outcomes. The re-framing thus can act as a
nudge, pushing people towards allocation to riskier prospects
in the second level and safer in the third level if they under-
weigh the re-framed costs. The direction of the nudge would
be reversed if people over-weigh re-framed costs.

(C) Testing for risk traits
After the allocation task, participants were required to com-
plete one set of paired lottery choices (Holt & Laury, 2002),
summarized as HL, with a higher score indicating greater
elicited risk aversion. They also completed the DOSPERT fi-
nancial risk-taking (DF) subscale (Blais, 2006), with a higher
DF score indicating higher self-reported risk seeking behav-
ior, and a locus of control (SL) scale (Rotter, 1966), with
higher SL scores indicating a higher self-reported external lo-
cus of control. All of these influence risky decision making
in single choice tasks.

(D) Defining the dependent variables
The simplest way of measuring a resource allocation deci-
sion is to look at the allocation weights (wi) for each (ith)
prospect, where ΣN

i=1 wi = 1, and N is the total number
of choices available. Lopes and Oden (1999) proposed that
there are individual differences in whether people approach
risky decision making from a perspective of security (protect-
ing low outcomes) or potential (maximizing high outcomes).
A simplistic measure of people’s security and aspiration lev-
els are measured by the weight allocated to the two extreme
prospects - safest (S) and riskiest (R) respectively. In addi-
tion, the Herfindahl index (H) = ΣN

i=1 w2
i , where N is the total

number of prospects in the choice set, measures the degree of
diversification (Rhoades, 1993). When all weights are equal,
H takes the minimum value of 1/N (maximum diversifica-
tion) and when all resources are allocated to a single prospect,

H=1. For N=4, values close to 0.25 indicate naive diversifica-
tion, values close to 0.5 indicate some form of conditional di-
versification (equal allocation to 2 of 4 prospects), and values
close to 1 indicate concentration in a single prospect. These
measures S, R, and H reflect segregated measures based on
attention paid to individual prospects.

Often, the emergent characteristics of the aggregated port-
folio are of greater interest than the individual choices. Most
normative theories of portfolio choice are based on optimiz-
ing some function of the portfolio characteristics. Since a
portfolio can be represented as a probability distribution over
outcomes, the most common characteristics are derived from
the moments of the resulting portfolio. We calculate the ex-
pected value (V ), and the standard deviation (D) of the ag-
gregate portfolio.

Finally, we test for differences between the 2 cost fram-
ing conditions. The framing conditions are setup so that cor-
rectly accounting for the costs and translation of outcomes
should result in no difference between behavior across the
three conditions. However, discounting of the costs framed
separately would result in a preference for prospects with a
higher degree of framing. In one condition, riskier prospects
are subject to higher framing (we denote this condition as F1),
and in the other, safer prospects are subject to higher framing,
denoted as F2. Discounting the costs would result in higher
selection of riskier prospects in the first and safer in the sec-
ond framing condition. We calculate susceptibility to nudges
as, N = mean[(SF2 − SF1),(RF1 −RF2)]. A value of N close
to 0 indicates that people are not susceptible to cost framing
nudges. A high positive value indicates that people under-
weight separately framed costs, and thus are nudged towards
options with higher framing (larger translation of outcomes).
A high negative value indicates that people over-weight sepa-
rately framed costs, and thus are nudged towards options with
lower framing (smaller translation of outcomes).

Results
(1) Is there evidence for naive diversification?
Diversification is directly measured using the Herfindahl in-
dex (H). The left panel in Figure 3 shows the distribution of H
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Figure 3: Distribution of Herfindahl index across participants and
trials. The color shading shows the number of unique prospects (1
to 4) selected on each trial.
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Table 1: Mean values of dependent behavioral measures by design factor. Differences are tested using a Bayesian repeated measures ANOVA
for main effects of design factors. Significant differences, measured by log Bayes factors (LBF) ≥ 2.3 are highlighted in bold.

SOSD Domain Skew Cost framing
(Yes) (No) (Gain) (Mixed) (0) (Neg) (Pos) (None) (Riskier) (Safer)

Herfindahl Index (H) 0.48 0.47 0.48 0.47 0.46 0.48 0.49 0.44 0.49 0.49
%Safest (S) 0.37 0.31 0.29 0.39 0.34 0.37 0.31 0.32 0.33 0.36
% Riskiest (R) 0.25 0.29 0.30 0.24 0.26 0.28 0.27 0.27 0.28 0.26
Expected value (V) 2.50 3.98 5.84 0.64 3.23 3.25 3.24 3.27 3.26 3.19
Standard deviation (D) 3.83 4.42 2.06 6.19 4.38 3.60 4.39 4.23 4.32 3.83
Susceptibility to nudges (N) 0.01 0.04 0.00 0.05 0.02 0.03 0.02 - - -
MPT-error (dε) 0.31 0.18 0.31 0.18 0.24 0.22 0.27 0.22 0.26 0.25
Risk tolerance (Qε) - 63.7 19.9 107.5 64.7 52.4 73.9 67.0 76.1 48.0

across participants and trials. The color shading also shows
the distribution of the number of unique prospects selected
on any trial. A naive diversification strategy would indicate
a value of H = 0.25. A large mass of the distribution lies
between the range of 0.25 and 0.5, with further peaks at 0.5
and 1.0 indicating choices where people selected 2 of the 4
prospects equally, or invested all their resources in a single
prospect, respectively. The 1/N heuristic (naive diversifica-
tion), proposes that people tend to split allocations evenly be-
tween available choices. A variant of this strategy called the
conditional 1/N heuristic (Huberman & Jiang, 2006) proposes
that people split allocations evenly across a small number of
choices rather than the total number of choices available. Us-
ing thresholds suggested by Huberman and Jiang (2006), 11%
of the choices can be summarized as single prospect concen-
tration, 7% as a conditional diversification into 2 prospects,
and 4% as naive diversification into all 4 prospects.

(2) Sensitivity to choice set manipulations:

The mean values of the dependent behavioral variables
grouped by experimental factors (which define the type of
choice sets) are summarized in Table 1. We conduct a
Bayesian repeated measures ANOVA analysis (JASP-Team,
2016) testing for main effects of these design factors. A log
Bayes factor, LBF ≥ 2.3 is considered significant, and high-
lighted in bold in Table 1. There is no evidence that the in-
centive condition had any effect on S, R, H, V , or D, hence
the remainder of the analysis combined data from the course
credit and financial incentive conditions. There is no evi-
dence that the level of diversification as measured by H is
affected by the domain, skew, or SOSD manipulations. There
is evidence for a main effect of domain (LBF 28.1), SOSD
(LBF 12.8), and skew (LBF 3.2) on S. Allocation to S is
higher in the mixed domain (mean 39%) than in the gains do-
main (mean 29%), higher in the SOSD (mean 37%) compared
to non-SOSD (mean 31%) condition, and higher in negative
skew (mean 37%) than positive skew (mean 31%) conditions.
There is evidence for a main effect of domain (LBF 9.6) and
SOSD (LBF 4.3) on R. Allocation to R is higher in the gains
domain (mean 30%) than in the mixed domain (mean 24%),
and higher in the non-SOSD (mean 29%) compared to the
SOSD (mean 25%) condition. V and D are expected vary

with domain and SOSD by design. There is no evidence for
a main effect of skew on V , but there is evidence (LBF 6.9)
for a main effect of skew on D. Participants exhibit the low-
est D (mean 3.6) in the negative skew condition and highest
D (mean 4.39) in the positive skew condition, indicating a
marked preference for lower variability in the negative skew
condition.

(3) Trait-based individual differences

To test if the measured traits influence behavior in the port-
folio allocation task, we use a Bayesian ANCOVA analysis
treating the between and within subject choice manipulation
factors as random effects and testing for the effects of covari-
ates locus of control (SL), risk aversion (HL), and financial
risk seeking (DF). We find evidence of an effect of HL (LBF
5.7) and DF (LBF 2.9) on S, and an effect of HL (LBF 13.2)
on R. These indicate that higher risk aversion (higher HL
and lower DF scores) are linked to higher allocation to the
safest prospect and lower allocation to the riskiest prospect,
as might be expected. Testing for effects of the locus of con-
trol (SL), we find evidence of an effect on S (LBF 3.7), and
on R (LBF 6.2). These indicate that increasing external lo-
cus of control is also linked to higher allocation to safest and
lower to the riskiest prospect. Directionally, this is in con-
trast to findings based on risky gambles (Rotter, 1966) which
showed that increasing external locus of control was associ-
ated with waging more money on riskier bets.

Figure 4 shows the joint density of % allocations to R and
S. The color coding in the three panels shows the mean level
of trait scores. Areas in the centre indicate diversification-
like behavior. Interestingly, all 3 mean scores are pretty sim-
ilar for both extreme decisions (R = 100% and S=100%),
but are different for the central areas representing diversifi-
cation (lower HL scores and higher DF scores). It seems that
risk aversion and risk seeking measures are more indicative
of how extreme (concentration vs diversification) people are
in their allocations, rather than whether they prefer safer or
riskier prospects. We find evidence of an effect of HL (LBF
1.4) and DF (LBF 13.4) on H. These indicate that higher
risk aversion is linked to lower diversification. This behavior
is however contrary to the popular notion that diversification
leads to reduced risk.
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Figure 4: Joint density of % allocation to safest vs aspirational prospects. The size indicates the % of all trials. The 3 panels plot the same
density data, with the color coding in the 3 panels showing the mean level fo risk trait scores (SL, HL, and DF respectively).

(4) Sensitivity to cost framing nudges:
Testing for differences between the framing and no framing
conditions, we find a significant effect (LBF 10.3) of whether
or not there is some cost framing on H, so that framing of
either type reduces diversification, with mean H increasing
from 0.44 in the no framing condition to 0.49 in both the cost
framing conditions. One hypothesis is that the introduction
of an additional cognitive element induces people to reduce
their diversification. This is supported by the observation that
in the no framing condition, people selected all 4 prospects on
55% and either 1 or 2 prospects on 22% of the trials. Com-
pared to this, in the framing conditions (combined), people
selected all 4 prospects on 45% and either 1 or 2 prospects on
33% of the trials.

Testing for differences between the two cost framing con-
ditions F1 (higher risk framing) and F2 (higher safety fram-
ing), a Bayesian repeated measures ANOVA shows evidence
that there is no effect on H (LBF -2.7), S (LBF -0.4) or R
(LBF -1.9) . Similarly, there is no effect of choice set con-
ditions on N. This seems to indicate that people are not sus-
ceptible to differential cost framing effects and adequately ac-
count for segregated costs and translation of outcomes. How-
ever, we find that risk traits are significant moderators of sus-
ceptibility to nudges. We have two measures of risk aver-
sion, a self-reported DF and elicited HL. When these two are
congruent, that is, people show both high (low) self-reported
and elicited risk aversion, the susceptibility to nudges is low-
est, at 0.04. When these are incongruent, and people self-
report higher risk aversion but elicited preferences show risk-
seeking behavior, the susceptibility to nudges is higher, at
0.06, showing a higher discounting of segregated costs. Most
interestingly, when these are incongruent, and people self-
report lower risk aversion but elicited preference show higher
risk aversion, the susceptibility to nudges is in the reverse di-
rection, at -0.11. This can be interpreted as an over-weighting
of segregated costs, leading to a nudge away from choices that
had a higher framing effect. The combination of risk congru-
ency and self-reported risk aversion have a significant (LBF
4.7) effect on susceptibility to nudges, and represents a source
of significant heterogeneity.

(5) How optimal is allocation behavior?
One of the most popular normative theories of resource al-
location is modern portfolio theory (MPT), characterized by
mean-variance optimization (Markowitz, 1952). It states that
people should select weights that optimize the balance be-
tween the expected value and standard deviation of the re-
sulting portfolio. The optimization is a function of a risk tol-
erance factor Q, with lower values of Q indicating preference
for safer portfolios and high values of Q indicating preference
for riskier portfolios. Given a set of prospects, the theory pro-
poses an efficient frontier of possible weight allocations that
result in optimization between the desired portfolio mean (V )
and variance (standard deviation D). Given an implicit objec-
tive to maximize V and minimize D, the frontier represents
portfolio choices such that no other combination of weights
can result in an increase in V without an increase in D, or a
decrease in D without a decrease in V . Note that the efficient
frontier does not depend on risk preference Q, but where the
selected portfolio lies along the efficient frontier is dependent
on the individual preference parameter Q. The set of weights
(x) on the efficient frontier for a particular value of Q can be
found by minimizing the expression : xT Σ x − Q ET x. Here
E is a vector of expected returns on the individual prospects
and Σ is the covariance matrix for the returns on the prospects.

Actual portfolios constructed by participants may not lie
on the efficient frontier. For any observed portfolio allocation
we can calculate the minimum distance of the observed port-
folio characteristics from the efficient frontier, which gives
the smallest distance to optimality. This distance is dependent
on the mean and SD values of individual prospects within a
choice set. To enable comparison across choice sets and ana-
lyze the impact of factors we calculate the ratio of minimum
distance to optimality for the observed portfolio to the largest
possible minimum distance to optimality for any combination
of weights in the choice set. This is denoted as MPT-error, dε.
The risk tolerance value corresponding to the closest point on
the efficient frontier is denoted Qε, and can be inferred to be
the risk tolerance level for that choice. Note that in SOSD tri-
als, all prospects have the same EV, and the efficient frontier
is a single point that coincides with 100% allocation to the
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safest prospect. Thus, SOSD trials provide a parameter free
estimate of dε, but do not allow an estimate for Qε.

Table 1 provides the mean MPT-error and risk toler-
ance levels by design factor levels. Conducting a Bayesian
ANOVA analysis and comparing against a null model that in-
cluded participants as random effects, we find evidence for
the effect of SOSD (LBF ∞), domain (LBF ∞), and skew
(LBF 2.3) on dε. We find evidence for the effect of domain
(LBF 36.7) and cost framing (LBF 1.1) on Qε. The distance
to optimality dε measured as a percentage of the largest pos-
sible distance to optimality has a mean of (31%; 18%) for
SOSD and non-SOSD choice sets; (31%; 18%) for gains and
mixed domains; and (24%; 22%; 27%) for no skew, nega-
tive skew and positive skew choice sets. As a comparison, dε

for a 1/N portfolio would be (28%; 13%) for SOSD and non-
SOSD sets, (25%; 16%) for gains and mixed domains, and
20% for all skew sets. On an average, the actual allocations
that people make are less optimal from a mean-variance op-
timization standpoint than what a simple 1/N heuristic would
result in. The mean dε is (22%; 26%; 25%) in the no-framing,
and 2 framing conditions. Although the differences are not
statistically significant, directionally, framing conditions lead
people further away from mean-variance optimality.

The mean inferred risk tolerance Qε is 20 in the gains
domain and 107 in the mixed domain, indicating that risk
tolerance is highly contextual, rather than a stable trait.
The mean inferred value of risk tolerance Qε is 67 in the
no-framing condition, 76 in the higher-riskier-framing condi-
tion, and 48 in the higher-safer-framing condition, reflecting
sensitivity of risk tolerance to framing effects. Measures of
risk traits (SL, HL, DF) do not have any effect on the closest
distance to optimality. Evidence is inconclusive (LBF 0.9)
for the effect of SL on Qε.

Conclusion
The key findings can be summarized as: (1) Only a very small
subset of participants follow a naive diversification or 1/N
heuristic. (2) Design factors such as domain, skew and SOSD
across options influence the allocation that people make in ex-
treme (safest or riskiest) prospects, directionally similar to the
effect that these factors have in single choice gambles. (3) We
show that individual traits traditionally linked to risk propen-
sity seem to manifest in terms of the degree to which people
are inclined to diversify. Lower risk aversion and higher risk
seeking traits are linked to increasing diversification. These
traits do not seem to be consistently linked to risk tolerance
when measured within the MPT framework, and do not seem
to influence the relative levels of risk and safety observed in
resource allocation behavior. The results are counter-intuitive
to the popular notion that diversification is linked to a reduc-
tion of risk. (4) We find that cost framing nudges affect the
level of diversification. While the effect of nudges seems in-
significant at an overall level, a deeper analysis shows trait-
based clusters. We find that risk congruency, whether peo-

ples’ elicited and self-reported risk aversion are congruent, is
a strong moderator for susceptibility to nudges. We find evi-
dence for heterogeneous clusters where people either under-
weight or over-weight segregated costs leading to the same
nudge producing opposite behavioral results in the two risk
incongruent groups. (5) We find that people are not optimal
under a mean-variance optimization objective, and that on an
average, a 1/N heuristic is closer to mean-variance optimiza-
tion than the actual observed behavior.
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Abstract: Working memory (WM) capacity is critically important for the success in school and complex cognitive activities
across the lifespan. Training WM skills has shown to lead to improvements in a variety of important cognitive tasks. One’s
performance on an adaptive and challenging longitudinal WM intervention may serve as an assay of cognitive plasticity. With
over 400 participants having completed a minimum of 15 sessions of WM training, we have a rich dataset that allows investigat-
ing individual differences and other factors that might determine training outcome using a novel machine learning techniques.
Preliminary results suggest that factors such as age, type of n-back, and baseline abilities significantly impact one’s ability to
improve in training. Other factors such as gender and whether or not training was supervised were not significant. Finally, our
model allows prediction of training gain with 78% accuracy.
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Abstract 

We investigated people’s assessments of their own personal 
change over time, comparing predicted, actual, and recalled 
change in personality, values, and performance. On average, 
participants underestimated the absolute magnitude of their 
personal change in both prediction and recall. However, people 
specifically neglected negative future change, resulting in overly 
optimistic predictions of improvement. In contrast, recall of 
positive and negative change was relatively more balanced, such 
that assessments of past improvement were better calibrated on 
average. Our findings provide insight into how people think 
about their own identity over time and address disparate theories 
in the literature regarding predictions of personal stability versus 
improvement.    
 
Keywords: self-perception; social cognition; future self; past 
self; identity; time; personal change 
 

Introduction 
Imagine yourself ten years in the future. Will you be 

nearly the same person you are today, just with grayer 

hair? Or will you be a significantly changed person with 

different abilities, values, and personality characteristics? 

If you will have changed, will you have improved, 

becoming wiser and kinder, or will you have taken a turn 

for the worse, ending up lazy and irresponsible?  

A large literature on beliefs about personal change 

suggests that people tend to perceive a trajectory of 

improvement in their own lives. People claim to possess 

more desirable characteristics in the present than they did 

in the past (Wilson & Ross, 2001), and think they will 

continue to get even better in the future (Haslam, Bastian, 

Fox, & Whelan, 2007; Kanten & Teigen, 2008). They 

even expect basic personality traits to improve over most 

of their lifespan (Krueger & Heckhausen, 1993), despite 

some evidence indicating that these traits are mostly 

unchanging (e.g., Costa & McCrae, 1989).  

Expectations of improvement over time have been 

associated with people’s normative theories about 

personal identity. For example, Newman, Bloom, & 

Knobe (2014) find that when evaluating change in others, 

people associate improvements, but not declines, with a 

person’s core identity, or “true self.” In this view, positive 

change is a natural part of human development. Other 

work highlights the finding that people consistently 

predict greater personal improvement for themselves than 

for others (e.g., Haslam et al., 2007, Kanten & Teigen, 

2008), suggesting possible self-enhancement motives. 

However, separate lines of research suggest that people 

view their own identity as stable over time. Loewenstein, 

O’Donoghue, & Rabin (2003) describe a systematic 

tendency to overestimate the degree to which one’s own 

preferences will persist into the future. More recently, 

Quoidbach, Gilbert, & Wilson (2013) described an “End 

of History” illusion. In this framework, people reported 

more change in the past than they anticipated for the 

future in various domains, possibly due to the difficulty of 

envisioning new changes in prospect.  

It is unclear how to reconcile findings related to belief 

in self-improvement with research suggesting people 

underestimate personal change more generally. Do people 

in fact think that they have stopped changing, or do they 

believe the biggest improvements are yet to come? 

Because many studies highlighting people’s difficulty in 

projecting future change have used changes with no 

obvious direction (e.g., preference change), these have not 

been directly connected to ideas about improvement or 

decline. Are these two effects (expectations of 

improvement and perceptions of stability) in fact 

conflicting, or do they co-exist? Furthermore, many 

studies of personal change over time examine either 

perceptions or actual change, but not both. Are people’s 

predictions and recall of change well-calibrated with their 

actual change, or do they diverge?  

We address these questions by examining both absolute 

and directional personal change using a repeated 

measures longitudinal design. Although Quoidbach et al. 

(2013) found that one sample of people tended to predict 

less future personal change than the other sample 

remembered experiencing in the past, the study did not 

assess actual change in individuals over time. In the 

current studies, we measure and directly compare 

predicted, actual, and recalled change within each of our 

samples of young adults. We use actual change as a 

baseline to determine whether any observed differences 

between predicted and remembered change are due to 

biases in estimating future change, distorted memories of 

past change, or both. Furthermore, we use measures of 

personality, values, and ability that allow us to examine 

change both in magnitude and direction. 

Our findings reconcile potentially conflicting 

viewpoints in the literature by suggesting that although 

people do underestimate the magnitude of their own 

change, this finding is moderated by the valence of 
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change (i.e., whether the change is positive or negative). 

Averaging across our measures, we find that people are 

fairly well-calibrated in recall, but specifically 

underappreciate the potential for future decline. Because 

people’s predictions tend to omit undesirable changes 

while acknowledging positive change, they 

simultaneously underestimate absolute change and 

overestimate (future) improvement on average.  

Methods 
We compared predicted, actual, and recalled personal 

change over time in two panel surveys of young adults, who 

completed all measures online. Study 1 assessed 155 

participants (60% female, mean age=22.1) in December 

2013 (Time 1) and December 2014 (Time 2), and Study 2 

assessed 203 participants (73% female, mean age=22.6) in 

May 2016 (Time 1) and September 2016 (Time 2). Study 2 

was a conceptual replication that addressed several 

additional questions raised by the results of Study 1. (Key 

differences between the two studies are indicated in the 

“Measures” section). For Study 1, college students (in any 

year of college) were recruited from across the United States 

using an online panel. In Study 2, participants were 

graduating college seniors recruited by the experimenters. 

Although the time period measured in Study 2 (4 months) 

was shorter than that in Study 1 (1 year), all participants in 

Study 2 would be undergoing a major life change (i.e., 

college graduation) during the study period, making it 

plausible that significant changes in personality and values 

could occur between the two assessments.  

In both studies, we measured change in personality traits 

and values, and in Study 2 we also measured change in 

performance on an objective (knowledge) task. Personality 

and values are viewed as important psychological 

determinants of personal identity (Bartels & Rips, 2010; 

Chen, Urminsky, & Bartels, 2016) and have been used in 

previous research on perceptions of personal change 

(Quoidbach et al., 2013). We chose these constructs rather 

than other personal attributes (such as preferences) because 

change in personality, values, and performance can be 

measured both directionally (increase vs. decrease) as well 

as in terms of absolute difference. The performance measure 

is included to verify that our findings are replicable in a 

domain where actual change is measured objectively rather 

than by taking a difference in self-report measures.  

Participants provided current measures of personality and 

values (and performance, in Study 2) at both Time 1 and 

Time 2. At Time 1, they also predicted what their responses 

would be at Time 2. At Time 2, they provided their 

recollection of their responses at Time 1. Reports of current 

values were always made before reports of predicted or 

recalled values.  

Measures 

Personality In Study 1, participants completed a 5-item 

personality assessment that involved reading a short 

description of each Big Five dimension (i.e., extraversion, 

agreeableness, conscientiousness, emotional stability, and 

openness) and judging how much they thought this trait 

applied to them. Ratings of current, predicted and 

remembered personality were reported using a 0-100 slider 

scale for each trait. In Study 2, participants again completed 

this 5-item personality measure, and also completed a 

previously validated 10-item measure with a 7-point 

response scale (TIPI; Gosling, Rentfrow, & Swann, 2003; 

also used in Quoidbach et al., 2013).1  

 

Values Values were assessed using a 10-item version of the 

Schwartz Value Inventory (Lindeman & Verkasalo, 2005; 

also used in Quoidbach et al., 2013), measuring the personal 

importance of self-direction, stimulation, hedonism, 

achievement, power, security, conformity, tradition, 

benevolence, and universalism. Current, predicted, and 

remembered value importance ratings were measured on a 

9-point scale. 

 

Performance In Study 2, participants also answered ten 

factual multiple-choice questions at each time point (e.g., 

“How many of the world’s tallest buildings are located in 

the United States?”). Both sets of 10 questions were pre-

tested to ensure that they were of similar difficulty and that 

there were no floor or ceiling effects. At Time 1, 

participants reported perceptions of their current and future 

performance, and at Time 2 they reported their perceived 

current and past performance.  

Pre-Test to Determine Valence of Change 

We used a separate online sample (N=100; 41% female, 

mean age=34.3) to assess how people generally view 

increases and decreases in the characteristics of interest. For 

each personality dimension and value, participants used a 0-

100 scale to separately report how they would feel 

(0=extremely displeased, 50=neither pleased nor 

displeased, 100=extremely pleased) if the given 

characteristic were to increase and decrease. For each of the 

five personality dimensions as well as 9 out of 10 values, 

the average response was significantly greater than 50 for 

increases (suggesting people consider increases to be 

desirable) and significantly less than 50 for decreases 

(suggesting people consider decreases to be undesirable).2 

Accordingly, for our basic directional analyses, we treat 

personality and value increases as improvements, and 

decreases as declines.  

In Study 2 (after all other measures were completed), we 

also asked individual participants to report whether they 

viewed each personality or value change as an improvement 

or decline, in order to better account for individual variation 

in these beliefs. Coding each individual’s changes as 

improvements and declines based on their own assessments 

                                                           
1Two week test-retest reliabilities (from separate sample, N = 

215): r = 0.795 (5-item measure) and r = 0.923 (10-item measure). 
2Conformity, for which ratings of both increases and decreases 

did not significantly differ from the scale midpoint of 50, was 

excluded, though overall results do not change if it is included.  
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rather than the mean assessment from the pretest did not 

change the overall pattern of our results. However, future 

research can further explore the effect of individual 

differences in perceptions of valence of these 

characteristics, as well as perceived differences in the 

magnitude of their importance.   

 

Change Calculation 
We quantify change in two different ways, looking at both 

absolute change and directional change. Absolute change 

(i.e., the absolute difference between an item at Time 2 and 

Time 1) represents deviation from the present state, ignoring 

direction. Averaging absolute change across items captures 

the distinction between variability (high values indicating 

large changes in any direction) and stability (low values 

indicating little change). This approach was taken in some 

prior work, including Quoidbach et al. (2013). 

However, looking only at absolute change neglects the 

fact (confirmed in our valence pre-test) that increases and 

decreases generally differ in desirability. For example, an 

increase in creativity might be considered an improvement, 

but a decrease of equivalent magnitude might be a decline. 

Measuring only absolute change obscures this distinction.    

We therefore also computed measures of directional 

change (i.e., directional difference in Time 2 minus Time 1 

ratings). Averaging across individual items thereby captures 

the distinction between overall improvement (high positive 

values indicating net positive change), overall stasis (near-

zero values indicating no net change), and overall decline 

(high negative values indicating net negative change).  

In our analyses of personal change, we compare the 

following: (i) predicted change (difference between future 

prediction provided at Time 1 and current rating provided at 

Time 1), (ii) actual change (difference between current 

rating provided at Time 2 and current rating provided at 

Time 1), and (iii) remembered change (difference between 

current rating provided at Time 2 and past recollection 

provided at Time 2). Using both absolute and directional 

measures allows us to examine a) whether participants 

perceive a smaller absolute magnitude of personal change 

than they actually undergo over time and b) whether 

participants overestimate their net improvement over time, 

for both prediction and recall.   

 

Results 

Across our two studies, we have 6 distinct measures for 

which we examine change over time. For each of these 

measures, we conducted both an absolute and a directional 

comparison of the three types of change (predicted, actual, 

and recalled). Overall, we found that people predicted future 

improvement, but systematically neglected the possibility of 

future decline. This resulted in both an overall 

underestimation of mean absolute future change and an 

overestimation of mean future improvement. In contrast, 

people were more balanced in recall, remembering both 

positive and negative past change. Thus, although people 

underestimated the magnitude of past change, they did not 

express a directional bias in recall.  

Although the overall pattern of our results supports this 

finding, results across measures and studies were highly 

variable. We report weighted mean effect sizes (Cohen’s d) 

across all studies in the text of the paper to summarize our 

overall findings, and present figures depicting the findings 

of each individual measure to capture the variability across 

them. 

 

Absolute Change Across our six domains of measurement, 

we found significant differences in absolute magnitude 

between predicted, actual, and recalled change. Overall, 

participants predicted that they would undergo less personal 

change in the future than they recalled undergoing in the 

past (mean d=-0.18, p<.001), which replicates previous 

findings (Quoidbach et al., 2013). However, this effect was 

small in comparison to their larger tendency to 

underestimate the magnitude of both past (mean d=-0.51, 

p<.001) and future (mean d=-0.72, p<.001) change relative 

to actual change. This general pattern was found in all 

absolute measures except for the 10-item personality 

measure used in Study 2 (see left hand side of Figures 1-4).  

 

 
Figure 1. Absolute and directional change for 5-item 

personality measure. Error bars represent 95% CI.  

n.s. nonsignificant, * p < .05, ** p < .01, *** p< .001 

 

 
Figure 2. Absolute and directional change for 10-item 

personality measure (Study 2). Error bars represent 95% CI.  

n.s. nonsignificant, * p < .05, ** p < .01, *** p< .001 
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Figure 3. Absolute and directional change for measure of 

value importance. Error bars represent 95% CI.  

n.s. nonsignificant, * p < .05, ** p < .01, *** p< .001 

 

 
Figure 4. Absolute and directional change in performance, 

measured as number of questions answered correctly. 

(Study 2). Error bars represent 95% CI.  

n.s. nonsignificant, + p < .10, * p < .05, ** p < .01, *** p< 

.001 

 

Net Directional Change We conducted a directional 

analysis that accounts for valence, treating net increases in 

all measures as improvements and net decreases as declines 

(based on the results of our pre-test). On average across our 

measures people predicted more positive future change than 

they subsequently remembered (mean d=0.30, p<.001). Our 

analysis also revealed a tendency to predict more positive 

net future improvement than actually occurred (mean 

d=0.22, p<.001). In contrast, people’s recall of past 

improvement was more variable. Although in Study 1, 

participants recalled greater improvement in personality and 

values than they had experienced, recalled improvement 

was either equal to or less than actual improvement for all 

measures in Study 2 (right hand side of Figures 1-4). Across 

all measures in Studies 1 and 2, average recall of past 

directional change was not significantly different from 

actual change (mean d=-0.03, p=.377). 

 

Individual-level “Improvers” and “Decliners” How do 

we explain the fact that on average, participants 

simultaneously predicted less absolute change and greater 

improvement than they actually experienced? To better 

understand the observed mean-level effects, we separated 

individuals based on whether they exhibited an overall 

increase versus decrease in their predicted, remembered, and 

actual change. For most of our measures across both studies 

1 and 2, actual directional change across the sample was 

near zero. However, this was not because people had 

remained stable (as evidenced by the large absolute change 

findings); rather, the sample was evenly split into those who 

had experienced net improvement and those who had 

experienced net decline of equal magnitude.3 In contrast, 

predicted change was significantly positive for each 

measure because fewer individuals predicted that they 

would decline over the study period, and those that did so 

reported declines of significantly smaller magnitude than the 

average decline experienced. Figure 5 illustrates this pattern 

using the personality and value measures from Study 1. 

 
Figure 5. Decomposing directional change in Study 1 into 

decline and improvement for a) 5-item personality measure, 

b) values measure. Column width indicates proportion of 

participants indicating net improvement or decline and 

height denotes magnitude of improvement or decline. Error 

bars represent 95% CI. 

                                                           
3Only the 5-item personality measure in Study 2, where 

participants on average experienced greater positive net change 

over the study period, substantially deviated from this pattern. 
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We then performed separate analyses on those who had 

actually improved versus those who declined. This revealed 

that the underestimation of absolute magnitude of change at 

the sample level in fact comes disproportionately from those 

participants who are underpredicted their actual decline 

(rather than from those who underpredicted their actual 

improvement). Although similar patterns are observed for 

each of our measures, we describe the 5-item personality 

measure from Study 1 in detail to illustrate the form of this 

effect. Participants who experienced an actual net decline in 

the measured traits over the year (M=-12.25, SD=11.65) had 

instead predicted a mean personality improvement of +3.62 

(SD=6.67). The difference between these two numbers 

reflects a significant directional overprediction of 

improvement by 15.87 scale points, t(77)=10.87, 95% 

CI=[12.96,18.78], d=1.23, p<.001. Nevertheless, the 

absolute magnitude of their predicted change was still 

smaller than the absolute magnitude of their actual change 

(i.e., 3.62 vs. 12.25; t(77)=5.47, 95% CI=[5.48, 11.77], 

d=0.62, p<.001). This yields an underprediction of change 

when future change is defined only in terms of absolute 

deviation from zero. In contrast, those who experienced an 

actual net personality improvement (M=+13.07, SD=11.44) 

had predicted an improvement of +7.73 (SD=7.76). This 

reflects an underestimation of both their directional 

improvement and their absolute change by 5.34 scale points, 

t(76)=4.05, 95% CI=[2.72, 7.97], d=0.55, p<.001. 

Comparing the size of these prediction errors reveals that 

actual decliners made significantly larger errors on average 

than actual improvers (i.e., 15.87 vs. 5.34); t(152)=5.35, 

95% CI=[6.64, 14.42], d=0.86, p<.001. As a result, we 

observe an overall improvement bias in the sample, given 

that the errors made by decliners were biased in the 

direction of positive change. Figure 6 provides a graphical 

depiction of this phenomenon.  

 

 
 

Figure 6: Comparison of actual (x-axis) versus predicted (y-

axis) personality change (Study 1). Each point on this graph 

represents an individual participant from Study 1, with black 

dots representing those who actually declined over the 

period and white circles representing those who improved. 

The light gray line represents the line y=x (actual 

improvement or decline=predicted improvement or decline), 

which is where each point would fall if predictions were 

completely accurate. The black line is the regression line 

relating predicted and actual improvement as fitted from the 

data. The discrepancy between the black and gray lines to 

the left of the y-axis illustrates the overprediction of 

improvement in those who actually declined, and the 

discrepancy on the right side of the graph illustrates the 

(smaller) underprediction of improvement in those who 

actually improved.  

 

The finding that those who actually declined 

underpredicted their decline to a greater extent than 

improvers underpredicted their improvement was observed 

across all measures: personality (t(152)=5.35, 95% 

CI=[6.64, 14.42], d=0.86, p<.001) and values (t(142)=4.53, 

95% CI=[0.31, 0.80], d=0.73, p<.001) in Study 1, and both 

5-item (t(111) =4.02, 95% CI=[3.02, 8.88], d =.65; p <.001) 

and 10-item (t(169)=7.82, 95% CI=[0.51, 0.86], d =1.17; p 

<.001) personality measures, values (t(182) = 2.95, 95% 

CI=[.09, .47], d =.43; p = .004), and performance (t(152) = 

2.56, 95% CI=[.14, 1.09], d = .40, p = .011) in Study 2. 

However, there was no consistent finding in errors related to 

recall across studies. In Study 1, those who actually declined 

made larger errors than those who actually improved for 

measures of both personality and values. In contrast, across 

measures in Study 2, actual improvers made errors of 

equivalent or greater size as actual decliners did in recall.  

 

Discussion 
Overall, the results of our two longitudinal studies reveal 

that people predict smaller absolute change in personality, 

values, and performance than they actually experience. 

However, a directional analysis of the data reveals that this 

discrepancy is specifically driven by a neglect of negative 

change. Although on average people experience both 

improvements and declines over time, they incorrectly 

predict that their future will consist mainly of 

improvements. Rather than being the end of their personal 

trajectory, the present moment represents a watershed of a 

different sort: the moment when people think a somewhat 

rocky past resolves into a consistent upward climb. Our 

findings suggest that looking only at the absolute magnitude 

of change may obscure important aspects of people’s beliefs 

about their own personal change.  

Although people do underestimate the magnitude of their 

future change, our directional measures reveal that this is 

not generally caused by expectations of stability in personal 

characteristics. Rather, at the sample level, those who 

worsened over our study period were disproportionately 

likely to have neglected the possibility of decline and 

instead predicted some smaller level of improvement. Thus, 

the apparent magnitude effect seems to be driven by a 

general tendency to overestimate improvement, which is 

consistent with prior research suggesting that people expect 

the continued development and emergence of positive 
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personal characteristics (Haslam et al., 2007; Newman et al., 

2014). Previous work also suggests that although people are 

able to distinguish their future expectations from 

conceptions of their ideal self, predictions are nonetheless 

likely to be influenced by aspirations (Molouki & Bartels, 

2017). This may be one mechanism underlying the observed 

overpredictions of improvement.  

Although we found that people overpredicted future 

improvement, on the whole, we did not find this effect in 

recall of past change. This may be because past recall is 

more constrained by reality and episodic facts than future 

prospection (Kane, McGraw, & Van Boven, 2009), making 

people more likely to acknowledge that past decline has 

occurred even if this was counter to their expectations. 

However, other research suggests that people do revise their 

perceptions of the past towards a trajectory of improvement 

(e.g., Wilson & Ross, 2001). Although we did find that 

people overestimated past improvement in Study 1, this 

pattern did not emerge in Study 2. Further research is 

needed to explore the source of this heterogeneity (and the 

large heterogeneity across our measures more broadly), by 

examining effects of contextual factors such as length of 

time span, intervening life events, dimension of change, and 

timing of measurement. In particular, a more careful 

investigation of our personality measures is needed, as some 

discrepancies were noted between the 5-item and 10-item 

personality scales used. 

In addition to providing a reconciliation of previous 

findings about perceptions of stability versus improvement, 

the current work makes an important contribution more 

broadly to a growing body of literature on people’s theories 

of the nature and persistence of personal identity. Existing 

research in this area has suggested that people endorse 

normative theories about a fundamentally good essence that 

forms the core of one’s identity and will be revealed over 

time (Molouki & Bartels, 2017; Newman et al., 2014; 

Newman, De Frietas, & Knobe, 2015; Strohminger, Knobe, 

& Newman, in press; Tobia, 2015). The current research 

explicitly demonstrates that predictions of personal 

improvement are more pronounced than actual improvement 

over time. This finding lends empirical support to the idea 

that predictions may be influenced by normative beliefs that 

diverge from a purely descriptive account of personal 

development. Furthermore, we noted new findings about 

different patterns of prediction error for those who in fact 

improved versus declined over the study period. Future 

research can further explore the interactions between 

specific developmental trajectories and beliefs about 

personal identity. 
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Abstract

What are the cognitive processes in play when someone uses a
visualization tool to interactively explore a new dataset? Here,
we focus on one particular type of visualization—the scatter
plot—which, despite (or perhaps because of) its simplicity, is
still one of the most frequently used plot types in many data-
intensive disciplines. We conducted a pilot study to investigate
how expert astronomers interact with an unfamiliar dataset us-
ing a visualization tool called Filtergraph, which supports rapid
and easy visualization of large datasets. We present both quali-
tative and quantitative results, including observations about the
temporal dynamics of visual data exploration as well as inter-
esting behavioral patterns that we saw in our participants, such
as users taking “circular walks” through the data at various lev-
els of abstraction.

Keywords: Data exploration; graph understanding; informa-
tion visualization; scatter plots; visualization software.

Introduction
When astronomer Henry Norris Russell first introduced the
now-called Hertzsprung-Russell (H-R) diagram, he wrote,
“The appearance of [the figure] suggests the hypothesis that,
if we could put on it some thousands of stars, instead of the
300 now available, ...we would find the points representing
them clustered principally close to two lines, one descending
sharply along the diagonal...the other ...running almost hor-
izontally. ...These two classes of stars were first noticed by
Hertzsprung, who has applied to them the excellent names of
giant and dwarf stars” (Russell, 1914, p. 287).

In addition to Russell’s obvious desire for more data, his
wonderfully vivid description conveys the fundamentally vi-
sual nature of this discovery. Indeed, the H-R diagram has
been called “perhaps the most spectacularly successful exam-
ple of a simple scatterplot” in all of science (Spence & Gar-
rison, 1993, p. 1). Today, like many disciplines, astronomy
enjoys volumes of data that Russell could only have imag-
ined. However, an astronomer’s expertise to make sense out
of data—to recognize which patterns represent actual scien-
tific discovery—remains as vital today as it was in 1914.

Most human sense-making with data involves a visually-
mediated interaction between the data and the percep-
tual/cognitive processes of the user—data visualization. Data
visualization can be as short and simple as glancing at a print-
out of a plot on paper, or as lengthy and complex as spending
months analyzing and modeling a large dataset. There is an
increasing need for interactive data visualization tools that not
only leverage the latest in pattern recognition and data min-
ing algorithms, but also place the cognitive needs of the user

front and center—to assist and augment human capabilities in
the discovery process (Honavar, Hill, & Yelick, 2016).

One vital role for data visualization is the open-ended,
open-minded exploration of data that leads to unexpected in-
sight, often manifested at first as a “striking” or “interesting”
multivariate plot, such as with the H-R diagram. To take a
more recent example, an astronomy research team at Van-
derbilt University developed a visualization tool called Fil-
tergraph (see Figure 1) designed to allow people to rapidly
and easily explore large datasets of up to a few million points
(Burger et al., 2013). Using the Filtergraph software to visu-
alize stellar variability data gathered by the Kepler spacecraft
resulted in an unexpected and “visually interesting” scatter-
plot, which in turn led to the discovery of stellar granulation
“flicker” and its utility for stellar and exoplanets research,
a significant finding that was published in Nature (Bastien,
Stassun, Basri, & Pepper, 2013).

Figure 1: A screenshot of the Filtergraph data visualization
interface (Burger et al., 2013), and also the initial view shown
to participants in our pilot study.

Here, we report our preliminary results on a pilot study
to investigate how expert astronomers interact with an un-
familiar dataset using scatterplots generated by Filtergraph.
We use a novel analysis approach that is different from, but
complementary to, existing methods that focus on measuring
actions or tasks conducted by the data analyst. Instead, our
approach measures interactions in terms of dataset attributes:
which variables from a large dataset does an analyst look at,
when, and why? We present both qualitative and quantita-
tive results from this study, including observations about the
temporal dynamics of visual data exploration as well as in-
teresting behavioral patterns that we saw in our participants,
such as users taking “circular walks” through the data at var-
ious levels of abstraction.
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Related Work
There is a rich foundation of work in HCI (Human Computer
Interaction), visual analytics, and infovis that aims to under-
stand the processes by which people interact with and under-
stand data. Sanderson and Fisher (1994) present a widely-
used, general framework for thinking about user interactions
with an interactive tool in terms of sequences of actions that
represent different user functions, such as connecting ideas or
introducing comments.

Specifically in relation to data visualization, Yi and col-
leagues (2007) identify seven modes of interaction with visu-
alization tools, such as select, explore, and filter, that they be-
lieve are important for understanding the visual sense-making
process. Brehmer and Munzner (2013) present a task typol-
ogy that bridges low-level interactions with high level tasks
and goals during visualization activities. Pirolli and Card
(2005) present a detailed cognitive task analysis of visual
sensemaking in the domain of intelligence analysis. ElTayeby
and Dou (2016) present methods for studying exploratory
data visualization that leverage the automated analysis of
rich, quantitative interaction log data to identify and under-
stand underlying patterns of interaction.

Saraiva and colleagues (2005) conducted a very interesting
pilot study specifically focused on open-ended, exploratory
data analysis in the domain of bioinformatics. They focus on
how a visualization tool can complement a dataset in order to
facilitate insights that may lead to a discovery. One impor-
tant issue they addressed was how to define and measure in-
sight. They defined insight based on the context of their work
as well as based on characteristics such as time, hypotheses,
correctness, and category. Their results show the influence
of the visualization tool itself over the processes of human
interpretation and insight.

Mayr and colleagues (2016) looked at how mental mod-
els parallel a user’s use of external visualization tools. They
identify key characteristics pertaining to mental models, such
as content, structure, coherence, perspectivity, generalizabil-
ity, and utility, and they review existing empirical methods
for conducting user studies to get at these characteristics.

Finally, there is important work being done to understand
data visualization and sensemaking in terms of core cog-
nitive capabilities that people bring to bear on such tasks.
Healey and Enns (2012) provide a research survey on cogni-
tive theories of attention and perceptual processing as appli-
cable to data visualization. They provide examples of factors
that drive visual attention (such as visual feature hierarchies,
memory, and prediction) and also factors that impair atten-
tion, such as what happens during change blindness, with ob-
servations about how improperly designed visualizations can
significantly impact a user’s mental models of the data.

Tversky (2003) reflects about humans, actions, and space,
emphasizing the importance of differences in how people rep-
resent space across different spatial reference frames (e.g., in
a navigation task versus a graphical understanding task). She
includes discussion of the spatial references frames people

use while processing external visualizations of information.

Methods
We conducted a pilot study to investigate how expert as-
tronomers interact with an unfamiliar dataset using the Fil-
tergraph visualization tool shown in Figure 1. We chose the
domain of astronomy as being representative of today’s data-
intensive disciplines. In designing our study, we wanted to
choose a data exploration task that was open-ended enough
to provide a realistic challenge to our participants, but also
that had at least some constraints so that we could analyze
meaningful differences across participants. We decided to in-
vite astronomers to our lab to participate in one-hour sessions,
during which they would be instructed to “explore” an astron-
omy dataset that they had not previously seen. All necessary
IRB approvals were obtained prior to the study.

Dataset. We chose a dataset that we believed would not re-
quire complex mathematical operations to make sense of, and
also that would not be from too specialized a subfield within
astronomy. The dataset we chose is described in Berlind
et al. (2006) and contains data describing 90,893 galaxies,
which are individually discriminated through 10 attributes
(including the galaxy ID), or group separated through 9 at-
tributes (including the group ID), as shown in Table 1.

Table 1: The 19 attributes in the galaxy dataset used for our
pilot study (Berlind et al., 2006), along with letter codes used
throughout this paper. The last two shaded items represent
arithmetic combination of attributes that we observed partici-
pants construct on the fly during the study sessions.

Study protocol. We recruited 7 graduate students in as-
tronomy from the Vanderbilt community, ranging in age from
23 to 28 years old, with 2 identifying their gender as female,
4 as male, and 1 as two-spirited. We ran participants in five
sessions: two sessions (S1 and S4) each involved two par-
ticipants conducting data exploration collaboratively, and the
other three sessions (S2, S3, and S5) each involved a single
participant. Note that as part of our pilot study design, we
decided to include both individual and collaborative sessions
to better inform our approaches for future studies.

Participants received gift cards as compensation for their
time. Each session proceeded as follows. First, the partici-
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pant(s) filled out a short demographic questionnaire. Then,
we asked participants to sit down at a computer workstation
and use Filtergraph to visualize and explore the galaxy data
set. We provided a printout listing all dataset attributes and
their semantic descriptions. A member of our study team
sat with participants during the session, asking open-ended
questions to better understand how the interaction was un-
folding. At the end of the session, participants were asked to
write down their own impressions about the study, and ideas
about what software, tools, catalogs, or other data-related af-
fordances would make their life as an astronomer easier.

Table 2: Session details from our pilot study. M gives the
number of major observations in each session, and N gives
the number of minor observations.

Filtergraph settings. To constrain the visualizations used
by participants, we asked participants not to change the Fil-
tergraph setting that selects scatterplots as the visualization
type. Within the scatterplot setting, Filtergraph offers many
interactive options for changing how the dataset is visualized.
The attributes assigned to X and Y axes can be changed, and
a Z axis attribute can optionally be added. Attributes can also
be assigned to the color dimension or used to select or fil-
ter out portions of the data. Anywhere individual attributes
are used, arbitrary mathematical transformations or combina-
tions of attributes can also be assigned. Additionally, there
are options for changing the background plot color as well as
the size and shape of data points. When the Z axis is in use,
there are options to rotate the plot or change its scale.

All the sessions started from the same home screen, shown
in Figure 1, with the X-axis set to attribute A, the Y-axis set
to attribute B, and the color set to attribute C (see Table 1).

One concern we had was that participants might get bored
or fatigued during the session and generate plots only to fill
the time, and not through genuine interest and curiosity in
exploring the dataset. Thus, the member of our team who
sat with participants tried to be friendly and engaging, to help
create a positive session environment. (Note that this member
of our team comes from a computer science background, not
astronomy, and so we do not believe this “social” aspect of the
study sessions introduced significant biases in which parts of
the dataset the participants would choose to focus on.)

In addition, after 45 minutes, the participants were in-
formed that they could finish their current activity and end
the session, if they wanted to, or they could continue to work
for as long as they chose. As it turns out, all of our partici-
pants chose to stay past the 45 minute mark, with a minimum
session duration of about 48 minutes and a maximum dura-

tion of about 73 minutes; see Table 2.
Analysis approach. We gathered data using a combina-

tion of note-taking by study personnel, paper forms, and in-
teraction data collected on the computer workstation through
screen recordings of each session. To analyze results, we de-
fined the concepts of major observations and minor observa-
tions of the dataset, as illustrated in Figures 2 and 3.

Definition: A major observation is a grouping of contigu-
ously viewed scatterplots within which the attributes assigned
to X and Y axes remain constant. When a user changes the
attribute assigned to either the X or Y axis (or both), a new
major observation begins.

Definition: A minor observation is a grouping of contigu-
ously viewed scatterplots that occurs during a major obser-
vation, within which one or more individual, highly related
scatterplots are viewed. For example, looking at a 3D scatter-
plot but rotating the plot to see many different views would
constitute a single minor observation of the data.

We used screen recordings to identify major and minor ob-
servations within each session. We did not count plots that
were generated in the course of defining a single set of plot-
ting parameters (i.e., because Filtergraph redraws plots nearly
instantly, while the user might still be typing). Also, some-
times participants assigned the exact same parameters to the
current plot, not actually changing the plot at all. We did not
count these immediately repeated plots either. Finally, for
continuously changing plots, which we saw especially when
participants were smoothly rotating or moving 3D plots, we
only counted the first and last views as separate plots within
the same minor observation.

Exclusions. During session S2, an attribute was plotted
by mistake; the participant had intended to plot a different
attribute instead and only discovered their mistake after 12
minutes. We do not include these “mistake” plots in our cur-
rent analysis, though certainly these kinds of mistakes will
be considered in future work. In addition, session S5 was
qualitatively very different from Sessions S1 through S4. In
session S5, the participant appeared to pay very little atten-
tion to the semantics of the attributes that were being plotted
(even when prompted to consider attribute meanings by our
study team member). This participant declared to be select-
ing attributes randomly, and engaging in a primarily percep-
tual exploration of the dataset. While we find this pattern of
interaction in session S5 extremely interesting, we felt that
a different approach would be needed to analyze these data,
and so we have left the analysis of session S5 for future work.

Results and Discussion
Here, we discuss preliminary results from our pilot study.
While there is certainly work to be done in analyzing the
specific, astronomy-related meanings of participants’ data vi-
sualization choices, including a detailed criterial analysis on
their mental models (Mayr et al., 2016), that type of anal-
ysis falls outside the scope of the current paper and will be
part of future work. For now, we focus on describing the
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Figure 2: For session S1, plots showing the first minor observation for each of the 12 major observations.

Figure 3: For session S2, in chronological order, from left to right: plots showing the 28 minor observations within the fourth
major observation. Note the “circular walk”: the yellow, red, and blue boundaries indicate 3 different plots that were each
observed twice. The six plots with a black background are unclear due to the small number of plotted points.

Figure 4: Number of major observations generated during each session for different combinations of attributes.

general behavioral patterns of data visualization that we ob-
served, including the temporal dynamics of participant inter-
actions with the Filtergraph tool. Table 2 gives details of the
five sessions that we ran for this study.

Distribution of major observations by attribute. Con-
sider the 17 data attributes contained in the galaxy dataset
(see Table 1). Note that two of the original 19 attributes are ID
numbers, for galaxies and groups of galaxies, and so do not
capture “meaningful” in the same sense as the other 17. The
number of possible major observations that could be made
from this data, i.e., possible assignments of attributes to X
and Y axes, is (17 choose 2) = 272 possibilities. If we allow
mathematical transformations or combinations of attributes,
then the number of possible major observations is infinite.

Across all sessions, participants viewed a total of only 38
distinct major observations, as shown in Figure 4. This figure
also shows which attributes participants assigned to either the

X or Y axes. Interestingly, only 4 major observations were
shared by two or more sessions; this shows the high variabil-
ity in data exploration paths taken by different individuals.

Attribute I was the only one never assigned to either the
X or Y axes. It turns out that this attribute is Boolean; it
indicates whether the galaxy is the brightest in its group, and
so it makes sense to not be chosen for one of the primary axes.
Attributes P (a measure of galaxy morphology) and Q (was
there a problem while measuring the galaxy) are the other two
categorical variables in the dataset; interestingly, these were
assigned to axes at various times during one of the sessions.

The BC combination was the only major observation
shared across all four sessions. B gives the longitude of the
galaxy group center, and C gives the latitude. So, plotting the
BC combination produces what is essentially a spatial “map”
of the galaxies represented in the dataset.

Temporal dynamics of data exploration. We are partic-
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Figure 5: Distribution of major and minor observations over time, for sessions S1 (top) through S4 (bottom). Each point
indicates a group of highly related individual plots (or, for example, a single continuous rotation of the same 3D plot). Major
observations repeated within or across sessions are marked by colored labels.

ularly interested in understanding the temporal dynamics of
open-ended data exploration. How frequently do our partici-
pants switch from one major or minor observation to the next?

Figure 5 illustrates the temporal distributions of major and
minor observations for all four sessions. By looking at the
blue dots in this figure, we can see the most active periods,
the ones in which many plots were quickly generated. We
can also see periods in which a single minor observation was
studied at some length. (Note also that the large gap early
in session S2 is due to data we omitted, as described earlier.)
The first point of interest is that participants generally chose
to “flip through” the dataset at a fairly brisk pace. Part of this
could, of course, be due to the participants knowing they had
only one hour to complete the study, but we expect the same
to hold in more naturalistic settings as well.

The average duration of minor observations was about 61
seconds, though this distribution has a long tail that falls off
fairly consistently and extends to the longest minor obser-
vations at around 554 seconds. For major observations, the
average duration was about 229 seconds, with a maximum
of about 1046 seconds. The durations of major observations
seem to show a bimodal tendency, with many major obser-
vations falling under the 150 second mark, but another large
grouping lying in the 150-400 second range.

Interestingly, participants often returned to the same ma-
jor observation within the same session. This pattern occurs

not at all in session S2, occasionally in session S1, and quite
a lot in sessions S3 and S4. In sessions S2 and S4, we saw
similar “circular walk” patterns within some of the major ob-
servations; the participant often returned to the same minor
observation that they had started with, before moving on to
the next minor or major observation. Figure 3 depicts an ex-
ample of a “circular walk” within session S2.

Within each major observation, it seems as though partici-
pants are directing a type of “movement” from the first to the
last plot (depicted via minor observations); a story is being
told through the movement of data points across the plots.
This notion of movement/story strongly brings to mind the
idea of flipbooks. For instance, Figure 3 shows a story re-
garding the relationship between the attributes F and E.

Other qualitative observations. To conclude our presen-
tation of preliminary results, we present a few high-level ob-
servations about patterns of data exploration in our study.

Starting point: Participants seemed to choose a starting
point to anchor themselves in relation to the dataset. Ses-
sions S1 and S2 began by plotting attributes that involve the
spatial position of galaxies, perhaps to let participants estab-
lish a mental map of the spatial layout of the galaxy dataset.
Sessions S3 and S4 began by looking at attributes like the
number of galaxies in each group and the velocity with which
each group is moving away from us, perhaps establishing an
egocentric reference frame of “us versus the galaxies.”
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Mouse gestures: Participants frequently used the mouse as
a communicative or attention-focusing tool, i.e., to gesture at
the visualizations. While some of these were directed at our
study team member who was observing the session, many of
these mouse gestures also occurred when participants were
interacting with Filtergraph and thinking about what to do
next. Sessions S1 and S2 exhibited many more mouse ges-
tures than did sessions S3 and S4.

Paper aids: Participants in sessions S1 and S2 relied heav-
ily on the paper printout of attribute details throughout the
sessions. Participants in S3 and S4, on the other hand, used
the printout at the start, but, during the interaction itself, re-
lied more on the list of attributes provided by Filtergraph.

Collaboration/leadership: In both of the sessions with two
participants, we observed that one of the participants seemed
to lead the exploratory line of thought. But note that leading
does not necessarily means commanding the mouse and di-
rectly interacting with the workstation. In one session, the
“thought” leader was also the one interacting with Filter-
graph, but in the other session, the “thought” leader was not
the primary tool interaction person.

Collaboration/corrections: We observed that, in the ses-
sions with two participants, one helped the other to quickly
correct mistakenly plotted attributes. In contrast, during ses-
sion S2 (which involved a single participant), an attribute was
plotted by mistake and not discovered for 12 minutes.

Conclusion and Future Directions
Our findings highlight a few interesting properties of how
domain experts explore an unfamiliar dataset, particularly
in terms of temporal and dimensional patterns. The next
challenge is to understand how, as people follow exploratory
paths through a dataset, they build meaningful cognitive rep-
resentations of what they see, and how they are able to iden-
tify encounters with unexpected, significant data patterns.

We anticipate that temporal patterns are especially impor-
tant from a cognitive perspective because they describe not
just moment-to-moment attentional switches but also serve
as a way of marking successive stages at which a person’s
mental model of a dataset is likely changing. Five minutes
spent looking at a single plot, versus five minutes spent “flip-
ping” through multiple plots, are both likely to be equally
important modes of exploration. The key is figuring out the
cognitive purpose served by each.

We are also intrigued by the frequency of “circular walks”
in the exploratory paths taken by our participants. Viewing
the same plot twice serves no obvious purpose from a purely
statistical or data mining perspective. However, in humans,
we predict that these “circular walks” actually serve key roles
related to memory, attention, salience, etc.
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Abstract

Though most documented sign languages make use of space
to denote relationships between predicate arguments, studies
of emerging sign languages suggest that spatial reference does
not emerge fully-formed but takes time to develop. We present
an artificial sign language learning experiment that expands
the cultural evolutionary framework to investigate complex
linguistic constructions. Our results demonstrate the gradual
emergence of consistent devices to distinguish between sen-
tence arguments, some of which rely on iconic spatial con-
trasts. These findings mirror data from emerging sign lan-
guages and point to the cultural mechanisms that facilitate the
evolution of complex linguistic structures.
Keywords: language; cultural evolution; learning; communi-
cation; sign language; gesture

Introduction
Sign languages, as manual-visual linguistic systems, are able
to represent relationships between a predicate and its argu-
ments using the space around the signer. Though there are
differences in exactly how spatial reference is utilised, spatial
modulation is attested across most sign languages (Mathur &
Rathmann, 2012). Signers use indexed locations in space to
refer to particular arguments, such that a deictic point to an
arbitrary location can pronominally refer to the subject or ob-
ject of a sentence. This mapping can iconically represent a
real-word spatial relationship, such that references to argu-
ments in a sentence reflect their orientation in relation to each
other in the real world, but that is often not the case and the
relationship between referenced locations is primarily gram-
matical. It has been suggested that the iconic potential of spa-
tial mappings makes the use of space almost inevitable in sign
languages (Aronoff, Meir, & Sandler, 2005), and the begin-
nings of spatial reference systems have been attested in sev-
eral emerging sign languages (Senghas, Coppola, Newport,
& Supalla, 1997; Padden, Meir, Aronoff, & Sandler, 2010).

However, studies on emerging sign languages also suggest
that systematic spatial reference is not a property that emerges
immediately in a linguistic system, but takes time to evolve
over generations of a language (Padden et al., 2010). Spa-
tial agreement systems are used to represent complex rela-
tionships between a predicate and its arguments, and as such
pose problems for learners. Furthermore, the ability to rep-
resent animate agents using the signer’s own body may inter-
fere with the development of abstracted spatial reference. Re-

ferring to multiple participants in space requires abstraction
away from the signer’s body and may therefore take longer to
evolve (Padden et al., 2010; Meir, Padden, Aronoff, & San-
dler, 2007). Finally, the use of space is not the only grammat-
ical tool used to denote who does what to whom, and in fact
its use is often restricted to particular classes of verbs.

Using a novel experimental method, we ask how system-
atic spatial reference emerges in a linguistic system, and how
the iconic affordances of the manual modality affect the evo-
lution of such a system. Though emerging sign languages
provide valuable natural evidence of the early evolution of
languages, the experimental research we present here is able
to test the particular factors that influence language with a
greater degree of control and precision.

Previous experimental research has experimentally demon-
strated the importance of cultural evolutionary processes in
the emergence of linguistic structure, namely interaction be-
tween language users and transmission to new learners of a
language (Kirby, Tamariz, Cornish, & Smith, 2015; Kirby,
Cornish, & Smith, 2008). The gradual development of spa-
tial agreement systems in naturally emerging sign languages
similarly points to the impact of interaction and transmis-
sion on the evolution of spatial reference. Therefore, we
propose a cultural evolutionary stance on the emergence of
spatial agreement, and explore the impact of cultural evolu-
tionary processes in a laboratory study. We present a study
that investigates the effect of interaction and transmission on
the emergence of signals that participants produce to signal
complex events with multiple animate arguments. We place
silent gesture (where hearing participants with no knowl-
edge of sign language communicate using gesture; Goldin-
Meadow, So, Ozyürek, and Mylander (2008); Schouwstra
and de Swart (2014); So, Coppola, Licciardello, and Goldin-
Meadow (2005)) within a cultural evolutionary framework
that implements interaction between participants, and trans-
mission with an iterated learning model. Pairs of participants
communicate about a set of events using only gesture and the
gestures they produce are used to train a new pair of partic-
ipants, who then use what they have learnt to communicate
with each other. We provide an experimental account of the
evolution of linguistic structure that is informed by data on
natural sign languages. The present study offers a more pre-
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cise understanding of the cultural evolutionary mechanisms
that facilitate the emergence of linguistic structure, and serves
to elucidate how modality-specific factors affect the emer-
gence of systematic structure in language.

Methods
Participants took part in an artificial sign language learning
task where they learnt gestures produced by a previous partic-
ipant in a training stage, before communicating with a partner
during testing, using only gesture.

Participants
50 participants (15 male, 35 female, median age = 22) were
recruited from the University of Edinburgh’s Careers Hub
website, and were compensated £7 for participation in the
experiment, which took between 30 and 50 minutes to com-
plete. Participants were self-reported right-handed native En-
glish speakers with no knowledge of any sign language.

Materials
Participants were asked to communicate events , presented or-
thographically as pairs of sentences in English. Sentences in-
volved two arguments, Hannah and Sarah, who could either
be the agent of the sentence, be the goal or recipient of the
sentence, or who might not be present in the target sentence
at all (see figure 1a for examples). Sentences were presented
in pairs at each trial, and pairs of sentences were grouped
into blocks of four, where each block comprised a sentence
pair of one of four verb types: plain spatial verbs (e.g. to cy-
cle), spatial locative verbs (e.g. to cycle to), physical transfer
verbs (e.g. to kick a ball to), and non-physical transfer verbs
(e.g. to help; all verbs are shown in table 1 in the appendix).
There were four blocks of four pairs in total, giving a total
of 16 sentence pairs, and 32 target sentences (figure 1 gives
an example of sentences as they would be shown in pairs and
blocks). Two blocks consisted of different-agent pairs, such
that if Hannah was the agent in the first sentence of a target
pair, Sarah would be the agent in the second sentence of that
pair, and vice versa. The two remaining blocks consisted of
same-agent sentence pairs, such that either Hannah or Sarah
was the agent in both sentences in a target pair (e.g. Hannah
is walking to Sarah/Hannah is swimming to Sarah). Order
of presentation for target sentences was randomised within
sentence pairs and within blocks.

Participants were placed in individual experiment booths;
target sentences were presented on-screen using Psychopy
(Peirce, 2007) and video recording and streaming between
networked computers was enabled via custom software,
Videobox (Kirby, 2016).

Procedure
Participants were organised into 5 transmission chains of 5
generations, where each generation was made up of a pair of
participants, who communicated with each other during test-
ing (see figure 1b). Participants in generations 2-5 took part

Figure 1: Examples of sentence pairs and blocks (a) and di-
agram illustrating diffusion chain structure (b). Pairs of par-
ticipants interact at each generation (dotted lines); gestures
produced by 1 participant in a pair are transmitted as train-
ing to the next generation (solid lines with arrows). A single
chain is made up of 5 generations and there were 5 chains in
total.

first in a training stage, followed by a testing stage. Partici-
pants in the first generation of each chain only took part in the
testing stage, and were therefore required to innovate gestures
at the beginning of each chain.

Training stage Participants in the training stage were
trained on gestures produced by a participant in the previ-
ous generation of the chain. The training model was selected
at random from one of the two participants in the previous
generation, and the full set of gestures produced by that par-
ticipant were used as training data. At each trial, the partic-
ipant was shown a video of their model gesturing, and was
asked to select the pair of target sentences they were trying
to communicate. Whilst the video was playing, participants
were shown an array of sentence pairs onscreen, from which
to make their choice. The array of sentence pairs comprised
the target pair, and three distractors. The distractors differed
from the target pair on either the agent configuration, the verb,
or both. For instance, a target pair that had Hannah as agent
in the first sentence and Sarah as agent in the second, would
have a distractor pair with the same verb construction, but
as a same-agent pair, with Hannah as the agent of both sen-
tences. Another distractor would keep the agent configura-
tion, but would replace the verbs with other verbs from the
same category, and a final distractor would present both dif-
ferent verbs and a different agent configuration. Building the
arrays in this way required participants to specify who does
what to whom, without necessarily having to describe Han-
nah and Sarah (i.e., the role is important, not the individual).
The position of each pair on the screen was randomised at
each trial, and participants could make their guess by pressing
the 1, 2, 3 or 4 key, depending on the position on the screen.
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Participants were given feedback about whether their guess
was correct or incorrect, and shown the correct answer. Par-
ticipants completed 16 training trials, one for each sentence
pair. Participants completed the training stage individually,
without any interaction with their partner.

Testing stage Participants in the testing stage communi-
cated with a partner, taking turns to be director (the person
gesturing) and matcher (the person interpreting). As director,
a participant was shown a sentence pair on screen and asked
to communicate it to their partner. A three-second countdown
prepared them for streaming and recording, when they would
produce their gesture to camera. The directing participant
saw themselves onscreen whilst they gestured, with their im-
age mirrored. An unmirrored image was streamed to their
partner in another booth. Either participant could interrupt
the video stream when they had finished their gesture or were
ready to make a guess. The matcher’s task was very simi-
lar to the training task; they watched their partner gesture on
screen and had to select the correct target pair from an array
of four. Once the matcher had made their guess, both partici-
pants were given full feedback, about both the correct answer
and the matcher’s selection. Participants switched roles af-
ter every block (every four trials) and directed and matched
for the full set of 16 sentence pairs, giving a total of 32 test-
ing trials. Order of the blocks and target sentence pairs was
randomised for each participant.

Results
Gesture coding
Gestures were coded for the presence of an agent gesture, a
goal (or recipient) gesture and a verb gesture. For each argu-
ment, the type of gesture was coded, as well as the location
and path of the gesture. The goal or recipient of the target
sentence was frequently omitted from gestures; as such, we
focus on differentiation between agents across sentence pairs.

Differentiation strategies
We identified three main strategies participants employed to
differentiate between agents in target sentences: the lexical
strategy, the body strategy and the indexing strategy (exem-
plified in figure 2). All strategies make use of iconic represen-
tation, and both body and indexing strategies make use of the
space around the gesturer to disambiguate target sentences.

Lexical strategies Two out of five chains differentiate sen-
tence arguments based on the gesture type, using a 1- and 2-
handshape to denote Hannah and Sarah in target sentences.
Though this begins as a way to simply distinguish the first
sentence in a target pair from the second, these handshapes
come to represent individual arguments in later generations.

Body strategies A further two chains rely on differences in
body orientation to signal differences between agents in target
sentence pairs. Participants use an iconic spatial strategy to
represent sentence arguments. For instance, in figure 2b, the
participant orients their body to the right to represent Hannah,

and to the left to represent Sarah.

Indexing strategy Finally, one chain developed a strategy
in which locations in the space around the gesturer were in-
dexed to refer to different sentence arguments. In the example
shown in figure 2c, the participant points to her left to signal
the agent, Hannah. In addition, her verb gesture moves be-
tween the indexed locations for agent and recipient.

Participants show a difference based on sentence type
(whether same- or different-agent), producing different ges-
tures to represent different agents, and showing divergence
between sentence context over generations of the experiment.
Figure 3 shows the proportion of gesture sequences that are
different across two sentences in a target pair. Rows show the
proportion of variation across different aspects: agent ges-
ture type, location of the agent gesture, location of the verb
gesture and path of the verb gesture. Variation across these
aspects corresponds to different strategies. Chains 1 and 5
primarily vary gestures on agent type, using the lexical strat-
egy (e.g. figure 2a). Chains 2 and 4 vary gestures based on
agent location, as well as verb path and location, as they are
implementing a body strategy, where agent and verb are si-
multaneously inferred through the participant’s use of their
own body (e.g. figure 2b). Finally, chain 3 shows the pri-
mary difference on the location of agent gestures, using an
indexing strategy to place sentence arguments in difference
locations (figure 2c).

We analysed the changes in agent distinctions over genera-
tions in the experiment, collapsing the measures shown in fig-
ure 3 across features to simply account for whether or not par-
ticipants create a distinction between agents in the two sen-
tences of a target sentence pair, investigating whether partici-
pants structure signals in similar ways across strategies. A bi-
nomial mixed effects model analysed the fixed effects of gen-
eration and sentence type on the proportion of different agent
gestures, as well as their interaction. Chain, target and partici-
pant were included as random effects with random intercepts,
and random slopes of generation and verb type were imple-
mented for chain and target, respectively. The random effects
structure for participant was nested within chains. Compari-
son of the model revealed a significantly better fit over a re-
duced model without the interaction term (χ2 = 11.51, p <
0.001). The model indicated a significant effect of the
different-agent sentence type in comparison to same-agent
sentence pairs (β = 2.73,SE = 0.46,z = 5.91, p < 0.001), as
well as a significant interaction between generation and sen-
tence type (β = 0.69,SE = 0.22,z = 3.12, p = 0.002), though
no significant effect of generation (β = 0.04,SE = 0.12,z =
0.29, p = 0.77). Participants were more likely to produce
gestures that differentiate between agents in different-agent
contexts compared to same-agent contexts, and this contrast
strengthens over generations in chains of participants.

We also analysed the effect of verb type on the distinctions
participants made. Spatial reference in signed languages is
not used across all verbs, but usually affects specific sets of
verbs. As such, it is possible that participants in the experi-
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ment create distinctions based on semantic properties of the
verbs they encounter. We ran a binomial mixed effects anal-
ysis that examined the effect of verb type on differences be-
tween agent gestures. The random effects structure described
above was also implemented here. The model showed no im-
provement over the null model (χ2 = 1.82, p = 0.61), indi-
cating that participants do not condition differences between
sentence pairs based on verb type.

Discussion
Our results demonstrate the evolution of systematic agent dis-
tinctions, which emerge over generations of interacting par-
ticipants. In addition, participants frequently use iconic spa-
tial mappings to create those distinctions, which become in-
creasingly contrastive over generations in the transmission
chains. These findings are consistent with data from naturally
emerging sign languages that suggest the gradual emergence
of systematic spatial mappings.

Differentiation strategies reflect sign language
structure
The three main strategies that participants employ in the
present experiment all find comparable forms in natural sign
languages: specifically, as lexical signs, role-shift, and spatial
agreement. The latter two strategies make use of the space
around the gesturer to create distinctions between agents in
the target sentences. The body strategy involves movement of
the participant’s body to represent sentence arguments, and
exhibits similarities to role-shift found in natural sign lan-
guages, and can be used in natural languages to distinguish
between sentence arguments (Padden, 1986; Cormier, Fen-
lon, & Schembri, 2015).

The indexing strategy, however, is the strategy that most
closely resembles sign language verb agreement, such that lo-
cations in the space around the signer are indexed to refer to
different sentence arguments (Liddell, 2003; Padden, 1986;
Lillo-Martin & Meier, 2011). The use of indexing in chain
3 begins on the axis perpendicular to the participant’s body;
for example, the participant points to themselves to denote
Hannah, and points directly away from their body to denote
Sarah. Over generations of the chain, the use of indices is ab-
stracted away from the body and indexes are contrasted paral-
lel to the gesturer’s body, such that Hannah might be indexed
to the left of the participant, and Sarah might be indexed to
the right. This change mirrors development in two young
sign languages, Al-Sayyid Bedouin Sign Language (ABSL)
and Israeli Sign Language (ISL). In both ABSL and ISL,
early generations of signers demonstrate greater preferences
for spatial contrasts that centre around the signer’s body, on
the perpendicular axis (Padden et al., 2010). However, later
generations show an increase in the use of the parallel axis, as
demonstrated in the present study. Furthermore, participants
in our study made no distinction between verb types, consis-
tent with findings from ABSL that showed spatial mappings
were not restricted to any class of verbs in early generations

of the language (Padden et al., 2010). Our findings, consis-
tent with natural language data, indicate that systematic spa-
tial reference does not emerge wholesale, despite the iconic
affordances of the modality, but takes time to emerge.

The evolution of complex constructions
The gestures participants produce support a gradual evolution
of systematic linguistic structure, including the use of space;
participants indicate a difference between sentence arguments
from the first generation, but the mechanisms used to create
these distinctions are neither consistent nor systematic early
on. Instead, participants converge on particular strategies to
make distinctions over generations, and participants show in-
creasing divergence between the same- and different-agent
sentence contexts. Participants’ reliance on iconic, spatial
gestures supports silent gesture research showing that hear-
ing participants can use deictic indexing to track referents (So
et al., 2005), though the present results further demonstrate
how such a system evolves through use. The increased con-
sistency of these systems supports previous iterated learning
experiments (Reali & Griffiths, 2009; Smith & Wonnacott,
2010) that suggest learning leads to regularisation. Partic-
ipants also demonstrate the negotiation of a system that is
both expressive and learnable; they minimise the number of
strategies used to convey differences in target sentences, set-
tling on one strategy to use in the majority of trials, sufficient
to express the differences in the meanings they are trying to
convey. Consistent with previous experimental research, the
systems participants produce maximise simplicity and infor-
mativeness (Kirby et al., 2015; Regier, Kemp, & Kay, 2015).
Participants systematically signal differences between agents
in target sentences, producing gestures that allow successful
communication within their pair.

The effects of iconicity on emergent structure
All participants rely on iconic representations to communi-
cate target sentences to their partners. In particular, the use of
the gesturer’s body and the use of space around the gesturer
allow for iconic representations of animate agents. The priv-
ileged status of the body is attested in natural sign languages
(Meir et al., 2007), and use of the body is attested in the de-
velopment of spatial grammatical devices (Meir et al., 2007;
Padden et al., 2010; Kocab, Pyers, & Senghas, 2014). Fur-
ther, consistent with research on emerging sign languages and
experimental research (Padden et al., 2010; Theisen, Ober-
lander, & Kirby, 2010), our results suggest a movement away
from iconic reliance on the body (e.g. the axis change in chain
3) as gestures become more consistent and regular across the
system.

Conclusion
We have demonstrated the emergence of systematic signals to
communicate complex events, through the cultural evolution
of communicative signals, via interaction between users and
transmission to new users. Participants make use of different
representation tools, all of which have analogues in natural
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Figure 2: Examples of differentiation strategies used in the experiment. (a) shows an example of the lexical strategy, in which
the participant uses 1- and 2-handshapes to denote arguments. (b) shows a participant using body orientation to denote sentence
arguments. (c) illustrates the indexing strategy, in which the participant indexes locations to refer to sentence arguments.

Figure 3: Proportion of gestures that differentiate agents in target sentences, based on which aspect of the gesture is varied
(agent type, agent location, verb location). Coloured lines show proportions for different-agent (blue circles) and same-agent
contexts (green triangles). Columns show the proportions for each chain, at each generation. All chains show differences based
on context, though they make distinctions in different ways
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sign languages. Our findings support data concerning the evo-
lution of spatial reference in emerging sign languages, which
suggest that the phenomenon takes time to emerge and sys-
tematise. Using an experimental method, we have been able
to observe this gradual evolution in a controlled environment,
to test more precisely the mechanisms that drive the emer-
gence of spatial reference. Furthermore, these results shed
light on modality-specific effects of iconicity, and their influ-
ence on the structure of emerging communication systems.
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Appendix
Table 1 shows the verbs in each category used in target sen-
tences in the experiment.

Verb type Verbs

plain spatial verbs

to cycle
to run
to swim
to walk

spatial locative verbs

to walk to P
to run to P
to swim to P
to walk to P

physical transfer verbs

to kick a ball to R
to give a book to R
to send a letter to R
to throw a hat to R

non-physical transfer verbs

to help R
to phone R
to praise R
to scold R

Table 1: Verbs used in target sentences
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Abstract 

Successful performance during multimedia learning requires 
accurate metacognitive judgments. However, little research 
has investigated the influence of accurate metacognitive 
judgments for different representations of information (e.g., 
text and diagram) on performance during multimedia 
learning. As such, we investigated if participants’ 
metacognitive judgments for text and diagrams (i.e., content 
evaluations; CEs) were significantly related to increased 
performance and higher confidence during multimedia 
learning. Metacognitive judgments and performance measures 
were collected from 48 undergraduate participants during 18 
randomized trials. Results using multilevel modeling 
indicated that participants’ CEs for text-based content were 
significantly predictive of performance. Results also showed 
that accurate CEs for diagrams interacted with accurate 
multiple-choice responses to predict higher retrospective 
confidence judgments (i.e., higher confidence). Identifying 
metacognitive judgments predictive of increased performance 
during multimedia learning has important theoretical, 
conceptual, and analytical implications. 

Keywords: multimedia learning; metacognition; meta-
cognitive judgments; multilevel modeling; performance; 
science learning 

 
Research indicates learning with multimedia materials (e.g., 
text and diagram) is more effective than learning through 
text alone (Butcher, 2014; Mayer, 2014). Successful 
multimedia learning entails individuals actively and 
accurately selecting, organizing, and integrating text- and 
image-based information into a coherent mental model 
(Mayer, 2014). However, research suggests learners do not 
always engage in accurate and effective metacognitive 
monitoring and regulation during learning with multimedia 
(Azevedo, 2014). Specifically, research has indicated 
participants often exhibit overconfidence when monitoring 
their own understanding during multimedia learning (Serra 
& Dunlosky, 2010). The multimedia heuristic suggests 
learners’ own judgments of learning (JOLs; i.e., how well 
they will remember the information) are largely inflated 
when compared to their actual performance because 
individuals perceive multimedia content as being easier to 
learn than with text alone (Serra & Dunslosky, 2010).  

Research on metacognitive monitoring during multimedia 
learning has traditionally employed modified meta-
comprehension paradigms (based on Nelson & Narens’ 
metamemory framework, 1990), during which participants 
are asked to make metacognitive judgments (e.g., ease-of-
learning [EOL], immediate and delayed JOLs, retrospective 
confidence judgments [RCJs]) during various stages of 
multimedia learning (e.g., Burkett & Azevedo, 2012; Eitel, 
2016;  Pilegard & Mayer, 2015). The major assumption of 
this research is that the timing of metacognitive judgments 
made during multimedia learning (before learning, during 
learning, and after learning) will vary in accuracy, selection 
of cognitive strategies, and subsequent performance, 
dependent on the specific experimental manipulation (e.g., 
delayed JOLs are more predictive of performance than 
EOLs; Burkett & Azevedo, 2012; Nelson & Dunlosky, 
1991). As this research has identified that most meta-
cognitive judgments for multimedia are often inaccurate 
(e.g., Serra & Dunlosky, 2010), much of the literature has 
focused on ways to improve metacognitive judgments. For 
example, some research has focused on manipulating the 
framing of metacognitive judgment prompts to improve 
judgment accuracy (e.g., Pilegard & Mayer, 2015; Vössing, 
Stamov-Roßnagel, & Heinitz, 2016). Pilegard and Mayer 
(2015) compared JOLs (i.e., how well do you remember the 
content) to judgments of understanding (JOUs; i.e., how 
well do you understand the information) and found JOUs 
were more predictive of retention and transfer compared to 
JOLs. These findings suggest that framing metacognitive 
judgment prompts (e.g., from JOLs to JOUs) significantly 
impacts the metacognitive processes employed during 
multimedia learning, potentially indicating there may be 
other metacognitive judgments participants use that can 
successfully influence performance. In support of this 
assertion, research on hypermedia and self-regulated 
learning (SRL) suggests several other metacognitive 
processes may be more predictive of multimedia learning 
outcomes (Greene & Azevedo, 2009).  

Azevedo, Greene, and Moos (2007) developed a 
classification scheme by which 35 micro-level meta-
cognitive judgments can be evident during successful SRL 
with hypermedia-based learning environments. One 
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example of these judgments is a content evaluation (CE). 
CEs are judgments learners make to assess the relevancy of 
the content (e.g., multimedia) they are viewing to their 
current goal (e.g., answering a science question about a 
human body system; Greene & Azevedo, 2009). CEs are 
key metacognitive judgments for successful multimedia 
learning, such that accurate CEs can direct participants to 
study more efficiently. For example, if the goal is to answer 
a science question about the human body system and 
participants evaluate the text but not the diagram they are 
viewing to be relevant to their goal, they should invest more 
effort and time to study the text (as opposed to the diagram), 
employ the appropriate cognitive strategy (e.g., make an 
inference), and therefore be more likely to answer the 
question correctly.  

Other research on metacognitive judgments during 
hypermedia learning has identified the predictive validity of 
traditional metacomprehension judgments like RCJs. For 
example, Mengelkamp and Bannert (2010) investigated the 
stability of participants’ RCJs as they learned about operant 
conditioning with a hypermedia environment. Results 
indicated that the absolute accuracy (i.e., difference between 
judgments and performance) was stable throughout the 
learning session, and relative accuracy (correlation between 
judgments and performance) was significantly predictive of 
hypermedia learning outcomes.  

Theories of multimedia learning suggest participants 
cognitively process information from text and diagrams 
separately and in different ways (Burkett & Azevedo, 2012; 
Mayer, 2014). Additionally, researchers have outlined the 
multimedia effect to indicate that students demonstrate 
longer periods of recall and higher levels of retention when 
learning with text and images as opposed to learning only 
with text (Butcher, 2014). However, evidence suggests 
learners do not always engage in effective selection, 
organization, and integration of multiple representations and 
instead exhibit a bias toward text-based (as opposed to 
diagram-based) information during multimedia learning 
(Hegarty & Just, 1993). Since cognitive processes are 
different for text and diagrams, it should be expected that 
metacognitive judgments will also be different.  

Accurate metacognitive monitoring and regulation are 
required during multimedia learning to achieve an increase 
in learning outcomes (Azevedo, 2014). However, little 
research has examined the specific processes underlying 
successful metacognitive monitoring and regulation during 
multimedia learning. Specifically, few metacognitive 
judgments have been found to be predictive of successful 
multimedia learning outcomes (e.g., overconfident JOLs; 
Serra & Dunlosky, 2010). We argue that examining other 
metacognitive judgments (CEs, RCJs) can inform us of 
monitoring processes that are more indicative of successful 
learning and performance. In contrast to the limited research 
on metacognitive judgments during multimedia learning, we 
focus on different metacognitive judgments and identify 
how they can contribute to superior learning outcomes. 

In this study, we examined participants’ text CEs, 
diagram CEs, multiple-choice responses, and RCJs during 
multimedia learning to answer the following three 
questions: (1) Are accurate text and diagram CEs associated 
with an increase in the likelihood of an accurate multiple-
choice response? (2) Is there a significant relationship 
between text and diagram CE accuracy and RCJs? (3) Is 
there a significant relationship between the interactions of 
text and diagram CEs and multiple-choice responses on 
RCJs? 

To address our research questions, we proposed the 
following hypotheses:  

H1: Accurate text and diagram CEs will be significantly 
associated with an increase in the likelihood of an accurate 
multiple-choice response. 

H2: The relationship between text and diagram CE 
accuracy and RCJs will be significant. 

H3: The relationship between the interactions of text and 
diagram CEs and multiple-choice responses on RCJs will be 
significant.  

Method 

Participants 
Forty-eight undergraduates (69% female) enrolled at a large 
mid-Atlantic university participated in this study. Their ages 
ranged from 18 to 24 (M = 20.04, SD = 1.60), and they were 
compensated up to $30 for their participation.  

Experimental Design 
This study used a 3×3×2 within-subjects design (18 trials). 
Each participant was exposed to three human agent facial 
expressions: neutral (neutral facial expression), congruent 
(i.e., joy for facial expressions congruent with the content 
relevancy), and incongruent (i.e., confusion for facial 
expressions incongruent with content relevancy). Each 
participant was also exposed to each type of multimedia 
content relevancy: fully relevant (text and diagram relevant 
to the question), text somewhat relevant (but diagram still 
fully relevant), and diagram somewhat relevant (but text still 
fully relevant). Additionally, two types of questions were 
posed: function (regarding the function of a body system) 
and malfunction (regarding a malfunction of a body 
system). Based on these manipulations each student 
completed 18 trials, with different combinations of human 
agent facial expression, multimedia relevancy type, and 
question type. For this paper, our analyses focused on meta-
cognitive judgments across the trials and experimental 
manipulations. 

Materials 
The materials used in this study included the following: an 
informed consent form; a demographic questionnaire; and a 
researcher-developed, 4-foil, 18-item multiple-choice 
pretest of basic knowledge of human body systems (e.g., 
integumentary and nervous systems). Each question on the 
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pretest specifically related to the content presented in each 
multimedia science content slide. 

Additionally, this study included 18 researcher-developed 
multimedia science content slides developed with a faculty 
member in human biology. The relevancy manipulations 
were created by including information that was related to 
but not necessary for answering the question. 

MetaTutor Multimedia Learning Environment 
The MetaTutor multimedia learning environment is a 
multimedia-based content presentation tool designed to 
examine the influence of a human agent’s facial expressions 
on participants’ cognitive strategies and metacognitive 
judgments during learning about human body systems. The 
environment consists of a human agent capable of facially 
expressing several emotional states (i.e., neutral, confusion, 
joy), science questions and corresponding multimedia 
science content, and metacognitive judgment prompts 
(EOLs, text and diagram CEs, and RCJs). The multimedia 
science content consists of three paragraphs (Flesch-Kincaid 
readability score range: 9.1–12.5; M = 10.5) and a diagram 
depicting the concept described in the text. 

The environment presents 18 linearly structured, self-
paced trials consisting of metacognitive judgments (e.g., 
EOLs, CEs, and RCJs), multimedia content presentation, 
and human agent facial expressions.  

The 18 trials have the identical format. In each trial, 
participants are first presented with a science question and 
asked to submit an EOL, How easy do you think it will be to 
learn the information needed to answer this question? 
Participants made their EOL judgment on a scale from 0% 
to 100%, increasing in increments of 20%. Participants were 
then presented with a content slide containing the text, 
diagram, science question presented previously, and human 
agent. After 30 s (to ensure participants had enough time to 
initially review the material), participants were prompted to 
assess the relevancy of both the text and diagram, Do you 
feel the text/diagram on this page is relevant to the question 
being asked?, by making two CE judgments on a Likert-
type scale (ranging from 1–3) on the following statements: 
The text/diagram is relevant, The text/diagram is somewhat 
relevant, and The text/diagram is not relevant. Upon making 
their text and diagram CEs, the human agent expressed a 
congruent, incongruent, or neutral facial expression based 
on the relevancy of the content (e.g., a congruent facial 
expression of joy if the text and diagram were relevant to 
the question being asked). Following the agent’s expression, 
participants were permitted to reread the text and reinspect 
the diagram at their own pace. After they re-examined the 
multimedia content, participants were prompted to answer 
the science question by choosing the correct response from 
4-foil answers. After submitting their answer, participants 
were prompted to make a RCJ by answering How confident 
are you that the answer you provided is correct? 
Participants made their judgment on a scale from 50% to 
100% increasing in increments of 10%. After submitting 
their response, participants were required to justify their 

answer by typing their response into a text box. 
Subsequently, participants were asked to make another RCJ 
based on their justification. This procedure was followed for 
all 18 trials with each trial randomized across participants. 

Procedure 
Once participants entered the lab they were asked to 
complete an informed consent form. Then the eye tracker 
was calibrated by the researcher.1 Following calibration, 
participants were asked to complete a computerized 
demographic questionnaire and an 18-question, 4-foil 
pretest that assessed their basic science knowledge across 
the multiple body systems (e.g., urinary, endocrine) 
presented in the experiment. After the pretest, participants 
completed the 18 previously described trials. The 
experimental session lasted approximately 90 min.  

Coding 
Text and diagram CE judgments were recorded across the 
18 trials (i.e., 18 text + 18 diagram = 36 total CE judgments 
for each participant). Responses were coded based on their 
accuracy, such that an accurate CE judgment was given a 
score of 1, a partially correct judgment was scored as 0.5, 
and an incorrect judgment was scored as 0. For example, if 
participants judged the diagram as somewhat relevant and a 
text as fully relevant during a “diagram somewhat relevant” 
trial, they were given a score of 1 for each response because 
the text was still fully relevant to the question being asked, 
whereas the diagram was only somewhat relevant. 

Participants’ responses to the 4-foil, multiple-choice 
questions were coded by correctness. A correct response 
was coded as 1 and an incorrect response was coded as 0. 

Participants’ RCJs were coded on a scale from 50% to 
100%. A score of 50% indicated participants simply guessed 
at their answer (indicating they believed they had a 50/50 
chance of getting their answer correct), whereas a score of 
100% indicated participants were completely confident in 
their response.  

Results 

Research Question 1: Are accurate text and 
diagram CEs associated with an increase in the 
likelihood of an accurate multiple-choice response? 
A fully unconditional model (i.e., with no predictor 
variables) dichotomous outcomes (i.e., accurate multiple-
choice response = 1, inaccurate = 0), was conducted on 
multiple-choice accuracy. Results indicated that the average 
probability of responding to a multiple-choice question 
correctly was 60%.  

A dichotomous outcomes model was conducted on 
multiple-choice accuracy (i.e., accurate = 1, inaccurate = 0) 
with text and diagram CE accuracy as the predictor 
variables. Results revealed that more accurate text CEs 

                                                             
1 Although eye-tracking data were collected, they were not 

analyzed for this study. 

2768



(OR = 1.98, t = 3.09, p = 0.002) but not diagram CEs (OR = 
0.98, t = –0.10, p > 0.5) were associated with an increase in 
the likelihood of correctly answering multiple-choice 
questions. Specifically, as text CE response accuracy 
increased, there was a 98% increased chance of responding 
correctly. That is, if participants were accurate in their text 
CEs, they were substantially more likely to respond 
correctly to the multiple-choice questions.  

Research Question 2: Is there a significant 
relationship between text and diagram CE 
accuracy and RCJs? 
A fully unconditional model conducted on RCJs indicated 
29.8% of the variability was between participants (t00 = 
79.61, z = 4.24, p < 0.001) and 70.2% was within 
participants (σ2 = 187.49, z = 19.99, p < 0.001), justifying 
further analysis. 

An unconstrained multiple level 1 predictor model was 
run on RCJs using text CE and diagram CE accuracies as 
the predictor variables. Results revealed that an increase in 
both text CE accuracy (γ10 = 5.70, t = 3.95, p < 0.001) and 
diagram CE accuracy (γ20 = 6.01, t = 4.63, p < 0.001) 
significantly predicted an increase in RCJs. As the 
accuracies of participants’ text and diagram CEs increased, 
their reported confidence in their performance also 
increased. This model accounted for 6.2% of the within-
participant variance in participants’ RCJs.  

Research Question 3: Is there a significant 
relationship between the interactions of text and 
diagram CEs and multiple-choice responses on 
RCJs? 
A constrained multiple level 1 predictor model was run on 
RCJs using text and diagram CE accuracies and their 
interactions with multiple-choice responses as predictor 
variables. Results indicated the interaction between text CE 
accuracy and multiple-choice response accuracy was not 
significant (γ40 = 1.50, t = 0.50, p = 0.62). However, results 
did reveal a significant interaction effect between diagram 
CE accuracy and multiple-choice response (γ40 = –7.21, t = 
–2.75, p = 0.006), such that participants whose diagram CEs 
were most accurate and who also had more accurate 
multiple-choice responses also reported more confidence in 
their answers (see Figure 1). This model accounted for 7.7% 
of the within-participant variance in participants’ RCJs.  

Discussion 
The goal of this study was to examine the relationships 
between metacognitive judgments and their contributions to 
increased performance during multimedia learning. Overall, 
results revealed that when participants made accurate text 
CEs, they were more likely to respond correctly to multiple-
choice questions. Additionally, accurate text and diagram 
CEs contributed to higher reported confidence in answers. 
As such, our findings augment current understanding of 
how different metacognitive judgments, from those  

 

 
 
Figure 1: Interaction between diagram CE response 
accuracy and MC response accuracy on RCJs. 
 

traditionally examined in the multimedia learning 
literature (e.g., JOLs), can contribute to improved 
performance and higher confidence. 

Results from Research Question 1 indicated accurate text 
CEs were significantly predictive of an increased chance of 
responding correctly to multiple-choice questions, whereas 
diagram CEs were not. These results partially support our 
hypothesis, demonstrating participants could more 
accurately assess the relevancy of the text-based (as 
opposed to diagram-based) material related to answering the 
science question. Furthermore, these results are consistent 
with theories of multimedia learning that suggest 
individuals cognitively process text- and diagram-based 
material separately (Mayer, 2014; Schnotz, 2014). It is 
possible that participants not only cognitively process the 
text and diagrams separately, but also metacognitively 
monitor the information in text and diagrams separately and 
with varying levels of accuracy. Given evidence suggesting 
individuals exhibit a bias toward processing text-based 
information (at the expense of diagrams; Hegarty & Just, 
1993), in addition to the redundancy of the diagram-based 
information to the text, participants may have realized the 
text-based information was sufficient and thus relevant 
enough to answer the multiple-choice questions correctly.  

As hypothesized, results from Research Question 2 
demonstrated that text and diagram CEs significantly 
predicted higher RCJs. Specifically, the more accurate 
participants’ text and diagram CEs were, the more confident 
they were in their multiple-choice responses. Taken together 
with the previous finding, these results indicate participants 
may have relied on their relevancy judgments of both the 
text and diagram when they made their RCJs (as opposed to 
answering the question). As such, this finding significantly 
augments research on metacognitive judgments during 
multimedia learning by indicating a significant relationship 
between multiple metacognitive judgments.  

Lastly, results from Research Question 3 indicated the 
interaction between diagram CE accuracy and multiple-
choice response accuracy significantly predicted increased 
RCJs. More specifically, participants who provided more 
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accurate diagram CEs and responded accurately to multiple-
choice questions also reported more confidence in their 
answers. These results partially support our hypothesis that 
both text and diagram CEs interact with multiple-choice 
responses to predict increased RCJs. Additionally, this 
result is supported by previous literature that suggests a 
significant relationship between performance and RCJs 
(e.g., Mengelkamp & Bannert, 2010). These results also 
support our assumption that since cognitive processes are 
different for different representations of information, so too 
are metacognitive monitoring processes. However, research 
is limited regarding the metacognitive processes involved 
when learning with and comprehending diagrams. 

Overall, these results suggest that accurately assessing the 
relevancies of text and diagrams differentially impacts 
performance and future metacognitive judgments (e.g., 
accurate CEs related to increased RCJs). Results also 
indicated that when participants responded to multiple-
choice questions, they relied on their metacognitive 
judgments of the text rather than diagrams. In contrast, 
participants relied on metacognitive judgments of diagrams 
and their performance when making RCJs. Previous 
research has indicated a significant relationship between 
CEs and performance (e.g., Greene & Azevedo, 2009). 
However, unlike previous literature, these results suggest 
text and diagram CEs differentially impact not only 
performance, but also reported confidence. Ultimately, these 
results confirm that other metacognitive judgments for 
different representations of information can predict greater 
performance during multimedia learning. 

Limitations  
Our study has several limitations. First, as we were 
primarily interested in the relationship between 
metacognitive judgments (e.g., CEs, RCJs) and performance 
across conditions, we did not examine the impact of content 
relevancy (e.g., fully relevant text and diagram, text less 
relevant, diagram less relevant) or question type (e.g., 
function vs. malfunction science question). Furthermore, the 
information needed to answer the multiple-choice questions 
correctly was primarily located in the text, which may have 
influenced participants’ CE judgments. Future research 
should include separate function and malfunction questions 
based on the information presented in the diagrams. 
Moreover, we did not examine the accuracies of RCJs as 
multiple-choice responses were dichotomously coded as 
correct or incorrect. Future research will include measures 
of absolute and relative accuracies for RCJs (e.g., Schraw, 
2009). Lastly, we can only make limited conclusions 
regarding the underlying cognitive and metacognitive 
processes (e.g., multiple fixations on irrelevant diagrams) 
that contributed to the accuracies of the text and diagram 
CEs and multiple-choice responses, as multichannel trace 
data (e.g., eye tracking) were not analyzed. Despite these 
limitations, this study has several important implications. 

Future Directions and Implications 
The results of this study have important implications for 
future studies examining the influence of metacognitive 
judgments on performance during multimedia learning. 
First, future research should include analyses of multi-
channel trace data (e.g., eye tracking, facial expressions of 
emotions) that would allow for a more comprehensive 
depiction of the cognitive, affective, and metacognitive 
processes that occur when making CEs during multimedia 
learning (see Azevedo, 2014). Specifically, analyzing eye-
tracking data can provide a micro-level description of the 
cognitive processes (e.g., coordination of information 
sources) contributing to increased performance and accurate 
text and diagram CEs. For example, does more time spent 
reading the text contribute to more accurate text CEs? Do 
specific eye-movement “signatures,” as evidenced by scan 
path analyses, indicate greater integration of multimedia 
information and subsequently lead to increased 
performance? Further, examining the influence of 
participants’ affective processes (e.g., emotions) would 
provide evidence of how they influence cognitive and 
metacognitive processes. For example, are participants’ 
facial expressions of confusion predictive of decreased CE 
accuracy? How do participants’ facial expressions of 
frustration influence the quality of their multiple-choice 
responses? Lastly, as this study was limited to analyzing the 
accuracy of RCJs, future research should seek to determine 
how CEs contribute to the accuracy of RCJs. It is possible 
that participants’ CEs were accurate, but they exhibited 
over- or under-confidence when making their RCJs.  

As our results indicated that diagram but not text CEs 
interacted with multiple-choice responses to predict RCJs, 
they emphasize the differential impact of multiple 
representations of information on participants’ meta-
cognitive judgments. Future research should examine the 
specific impact of different representations (e.g., diagrams, 
graphs, illustrations) on participants’ metacognitive 
judgments to address the gap in the literature and gain better 
understanding of the metacognitive monitoring processes 
involved during multimedia learning. 

Using a within-subjects design allowed us to examine the 
differential impact of how accurate metacognitive 
judgments influenced performance and confidence with 
reduced error caused by individual differences. 
Additionally, using multilevel modeling (Raudenbush & 
Bryk, 2002) enabled us to accurately assess within-subjects 
variance without violating traditional statistical assumptions 
(e.g., independence of observations) that many within-
subjects designs ignore. Despite these benefits, future 
research should explore other experimental designs that are 
less controlled (e.g., more naturalistic) to increase the 
ecological validity of these findings. Due to our sample size, 
we did not find significant between-subjects variance; future 
research should replicate these analyses with larger samples 
to determine individual differences indicative of improved 
metacognitive judgment accuracy and performance (e.g., 
prior knowledge of body systems).  
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Additionally, these results indicate the importance of 
coordinating multiple sources of information (e.g., text and 
diagram) and can be used to inform the design of 
educational training regimens. For example, future research 
should explore the impact of cognitive (e.g., Bergey, 
Cromley, & Newcombe, 2015) and metacognitive (e.g., 
Azevedo, 2014) instruction that emphasizes how individuals 
should learn using both text and diagrams. Training can be 
provided to demonstrate how to accurately judge the 
relevancy of texts and diagrams, as well as emphasize the 
importance of accurate metacognitive judgments in relation 
to increased performance. Furthermore, these results can 
also inform the design of future intelligent, adaptive 
multimedia-based learning environments to support and 
scaffold accurate metacognitive judgments. If participants 
continuously make inaccurate text CEs, the system can 
intervene by cueing their attention to the relevant text-based 
information or by providing additional relevant declarative 
and conditional knowledge (e.g., how to accurately judge 
the relevancy of different representations of information).  

Lastly, the results from this study suggest accurate 
metacognitive judgments are required for increased 
performance and confidence during multimedia learning. 
Traditionally, metacognitive judgments during multimedia 
learning have been found to be largely inaccurate. However, 
our results indicate other metacognitive processes (e.g., 
CEs) may be more informative of increased performance. 
For example, future studies could examine the influence of 
accurate feelings of knowing (i.e., individuals are aware of 
having read information but are unable to recall it on 
demand) and how they can contribute to increased 
performance during multimedia learning. As such, future 
research examining the influence of other metacognitive 
judgments will significantly augment our understanding—as 
well as the contemporary theoretical frameworks of 
multimedia learning—of the relationship between cognitive 
and metacognitive processes contributing to increased 
performance.  
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Abstract

In the search for an understanding of human communication,
researchers often try to isolate listener and speaker roles and
study them separately. Others claim that it is the intertwined-
ness of these roles that makes human communication special.
This close relationship between listener and speaker has been
characterized by concepts such as common ground, backchan-
neling, and alignment, but they are only part of the picture. Un-
derlying these processes, there must be a mechanism for mak-
ing inferences about our interlocutors’ understanding of words
and gestures that allows us to communicate robustly and effi-
ciently without assuming that we take the same words to have
the same meaning. In this paper, I explore this relationship be-
tween language and concepts and propose an interactive mech-
anism that can facilitate these latent conceptual inferences. Fi-
nally, I show how this proposal paves the way for a more pre-
cise account of the role of interaction in communication.

Keywords: Communication; Coordination; Interaction; Prag-
matics; Bayes; Cognitive Linguistics; Inference; Discourse

Introduction
FRIEDA: “I study cognitive science”
FRED: “Cool! The brain is so interesting!”
FRIEDA: “Uh, cognitive science 6= neuroscience...”

Human communication is fraught with misunderstanding,
incorrect assumptions, and uncertainty, yet we still manage
to make it work. To handle these impediments, we make am-
ple use of processes such as grounding (H. H. Clark & Bren-
nan, 1991), alignment (Pickering & Garrod, 2004), repair,
and backchanneling (Schegloff, Jefferson, & Sacks, 1977),
all of which are well described in the scientific literature. Be-
cause these processes are thought to be somewhat modular,
many linguists–especially computationalists–find it useful to
remove these processes from their models and experiments
and reasonably assume that they can be added back in later
when a more complex and complete theory is desired. While
it is reasonable to excise details tangential to the core phe-
nomenon of study, to remove these interactive processes un-
derestimates the degree to which they are embedded in hu-
man communication and fails to appreciate how indispens-
able they are to communicative success.

The misunderstanding at hand emerges from the fact that
these processes are not fully understood. On one hand,
grounding, alignment, repair, and backchanneling allow us
to repair inferential errors and to establish tighter conven-
tions, but each of these processes also presupposes the ability
to detect misalignments and miscommunications in the first
place. While this might not immediately appear to be much
of a problem, there is a complete dearth of empirical litera-
ture on such inferences and of any theoretical analysis about

their mechanics. The purpose of this paper is to provide a pre-
liminary analysis of the necessary and sufficient properties of
these interactive communicative processes and to argue that
any reasonably sophisticated understanding of human com-
munication must build upon an epistemologically-sensitive
theory of how we detect and repair misalignments and misin-
ferences in order to communicate robustly and veridically.

Dead reckoning behavior in models of
communication

Contemporary models of human communication tend to op-
erate with strong assumptions about what I will call concep-
tual alignment–the extent to which interlocutors’ mappings
from surface structure (words, phrases, and actions) to hid-
den structure (meanings and concepts) align with one another.
Conceptual alignment captures how the correspondence1 be-
tween a speaker’s beliefs about the listener’s understanding
of a situation and the listener’s actual understanding affects
their ability to communicate2. Typically, these models as-
sume that both interlocutors have complete probabilistic con-
ceptual alignment, and therefore that the listener’s belief dis-
tribution about the meanings the speaker intends to commu-
nicate with her utterances is equivalent to the speaker’s prob-
ability of producing those utterances given her communica-
tive intentions. With this assumption in place, a rich subset
of pragmatic behavior including all sorts of implicatures can
be fruitfully investigated, and have been with the advent of
Bayesian models of pragmatics such as RSA and its many
variants (Degen, Tessler, & Goodman, 2015; Frank & Good-
man, 2012; Goodman & Lassiter, 2014; Kao, Wu, Bergen, &
Goodman, 2014).

However, if we were to drop this assumption from these
models in favor of a more realistic amount of uncertainty,
we would notice some problems. For example, if we allow
there to be misalignment between the interlocutors’ concepts,
we would find that any attempt at communication results in
a systematic pattern of errors that are not correctable within
the scope of the model. A plausible case of this might be
if I said the word “justice” intending it to mean something
akin to Rawlsian fairness, where all decisions are made from
a position of agnosticism about where one falls in society, but
my interlocutor thought I was talking about retributive jus-
tice, then everything that I said would be misinterpreted, and
this would continue indefinitely in the aformentioned mod-

1In a roughly Bayesian sense
2Though the construction of a privileged and precise version of

this concept is of considerable value, it is regrettably beyond the
scope of the present article.
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els because they don’t contain any mechanism for detecting
conceptual misalignment (instead they assume alignment and
proceed from there). An even simpler case could involve a
sense/reference mismatch where I use the word “speaker” to
refer to a lecturer, but my interlocutor instead interprets it to
refer to a sound production device. While it is likely that the
vast difference in meaning would cause me or my interlocutor
to notice the misinterpretation, a large class of current formal
models of conversation would proceed as if I was being prop-
erly interpreted at all times.

It is useful to refer to this type of behavior as dead reck-
oning communication, as it offers the same perils as nautical
navigation without taking periodic measurements of location.
A ship without instruments, sailing perpetually into the fog,
is inevitably bound to stray far from its destination no matter
how precisely it was pointed at the beginning of its journey.
This happens because of the pervasive uncertainty about the
ship’s motion, the effects of navigational actions (trimming
the sails, hoisting the spinnaker, turning the rudder, etc.), and
the environment–which is always changing. Even if a ship’s
captain plans out a series of actions in advance in order to
get the ship to its intended destination and executes these ac-
tions flawlessly (without taking interim measurements about
the position, speed, and heading of the ship), there is but a
tiny chance that the ship will end up in its intended port. So it
goes with communication sans feedback. If a speaker wants
to convey some concept or scenario to a reader and she de-
velops a series of communicative actions (a communication
plan) and executes it without observing the listener’s inter-
pretations, then she risks the listener’s gross misinterpretation
unless she is willing to put in substantially more detail and
effort than is typically prudent or even possible in a conver-
sation. Even for the most closely aligned concepts, commu-
nication is bound to stray off course if the participants don’t
continuously probe the state of the discourse and correct its
course when necessary. As H. H. Clark and Wilkes-Gibbs
(1986) argued, the constraints of conversation restrict us to
brief, ad hoc, ephemeral communicative actions, which lim-
its interlocutors’ ability to provide the kinds of lengthy de-
scriptions that might be present (and necessary) in a book.
However, conversation also affords interaction. As we will
see, this offers additional opportunities for coordinated com-
munication between interlocutors by allowing them to make
inferences about each others’ interpretations. Just like a nav-
igator’s instruments allow her to detect the ship’s position
and velocity and make informed corrections to its course, a
speaker’s inferences allow her to probe the state of her part-
ner’s understanding and choose her successive communica-
tive actions accordingly.

Response-based inference

To combat this undesirable dead reckoning behavior, we can
look both at the necessary properties for any mechanism to
handle pervasive uncertainty and misalignment (given the
right abstraction of the problem) and at empirical investiga-

(a) Dead reckoning navigation (b) Navigation with instruments

Figure 1: Dead reckoning vs. instrument-based navigation
on a ship. (a) Dead reckoning cannot handle uncertainty and
so the ship ends up far from its intended destination. The
gray line represents the planned trajectory, while the black
line shows the actual trajectory under dead reckoning. (b)
Instrument-based navigation allows the captain to correct the
ship’s course as it goes leading the ship exactly to its intended
destination.

tions about how humans specifically seem to handle it in the
case of communication.

Challenge-response authentication
A particularly good formal analogy for the solution I will
soon propose is the cryptographic concept of challenge-
response authentication. Challenge-response authentication
was developed as a solution to a problem much like the is-
sue of dead reckoning in communication. Imagine that there
are two interlocutors, Alice and Bob, each sitting at one end
of a digital communication channel (imagine them sitting at
desks in separate buildings connected via the internet.) Bob
wants to send Alice a secure message, but first Bob needs to
know for sure that he is communicating with Alice and not
with a malevolent interloper such as their friend Charlie. To
verify Alice’s identity, Bob needs Alice to say something that
only she would know, such as the secret phrase they agreed
upon earlier. Bob receives this phrase from the communica-
tion channel and concludes that it must have come from Alice.
But Charlie, the conniving and generally clever chap that he
is, has tapped the communication channel and observes Alice
and Bob’s secret phrase. The next day, when Bob wants to
communicate with Alice, he hears this same phrase, and again
believes that it came from Alice. Unbeknownst to him, Alice
was sick and wasn’t at the computer terminal she normally
uses to communicate with Bob. Instead, the secret phrase
came from Charlie, who now proceeds to communicate with
Bob as if he was Alice.

A natural question then follows: how can Bob and Alice
communicate securely without risk of Charlie impersonating
Alice? The answer lies in challenge-response authentication.
Bob, having discovered the fatal flaw in his authentication
system, comes up with a clever alternative. Instead of agree-
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ing with Alice upon a secret phrase, they instead come up
with a secret relationship between phrases–i.e. a secret func-
tion. The next day, when Alice and Bob try to communicate,
Bob sends Alice a message called a challenge. When Alice
receives this challenge, she feeds it into the secret function
and gets an output that she then sends back to Bob as a re-
sponse. When Bob receives this response, he feeds his chal-
lenge into his own copy of the secret function and compares
the result with Alice’s response. If they match, then Bob can
be sure that he is communicating with Alice and not Charlie.
To understand why this works, we can look at Charlie’s be-
havior in this scenario. Like before, Charlie has tapped the
communication line and receives both Bob’s challenge and
Alice’s response. The next day, when Charlie tries to pre-
tend that he is Alice, he receives a challenge from Bob. This
challenge however, is not the same as the one he saw the day
before. This means that the correct response is different as
well! Because the secret knowledge is a full function, the ob-
servation of a few challenge-response pairs is not sufficient to
induce the full function or the correct response to additional
challenges. If the secret functions are properly designed, then
virtually no amount of observations of the challenge-response
pairs will be sufficient for Charlie to induce the secret func-
tion. Upon realizing this information, the sullen Charlie de-
cides to leave Alice and Bob alone to search for others with
weaker verification algorithms to deceive.

Utterance-response contingencies
How does this cryptographic mechanism relate to human
communication and how does it help us avoid dead reckon-
ing behavior? The problem in human communication is not
in establishing the identity of the interlocutor, but rather in
verifying the interlocutor’s comprehension. If we replace the
secret functions from challenge-response authentication with
out latent conceptual understandings, we can use the same
sort of strategy to verify the similarity or alignment between
our communicative intentions and the interlocutor’s interpre-
tations. If Alice produces utterance x for Bob, and Bob re-
sponds with utterance y, then Alice can check Bob’s compre-
hension of x by modeling the plausibility that Bob would have
generated response y given various interpretations of x. In the
simple case, if Bob interprets x exactly as Alice intends, then
his response y will be identical to Alice’s prediction about his
response given her intended interpretation. In the case where
there are multiple plausible interpretations, Bob’s response y
provides Alice with information about how likely Bob is to
have made each of the possible interpretations of x. We will
call this minimal pair of utterance and response an utterance-
response contingency. Utterance-response contingencies are
the basic building blocks of interactive communicative infer-
ence, a term I propose to denote the general process of in-
ferring interlocutor beliefs through interaction. This also in-
volves more complex cases where each interlocutor’s beliefs
about the others’ understanding are updated through extended
dialogical interaction, which can result in robust alignment
processes that make effective discourse possible.

In real discourse, utterance-response contingencies look
like this:

GEORGE (UTTERANCE): “Wasn’t that a great speech yes-
terday?”

GEORGIA (RESPONSE): “I mean, it wasn’t as horrible as I
expected, but I definitely can’t say it was good...”

GEORGE (REPAIR): “Oh, did you think I meant Donald’s
speech? I was talking about the address from the director
of the ACLU.”

These utterance-response contingencies can come in var-
ious forms. They can resolve referential misinterpretations
like in the example above, or they can surface more sub-
tle conceptual misalignments where the interlocutors’ word-
concept mappings are misaligned, or even when the internal
structures of their respective concepts are inconsistent with
each other3.

The case of misaligned word-concept mappings is illus-
trated in the opening dialogue between Frieda and Fred.

FRIEDA: “I study cognitive science”
FRED: “Cool! The brain is so interesting!”
FRIEDA: “Uh, cognitive science 6= neuroscience...”

Here we see that Frieda’s concept of “cognitive science”
is reflective of her being an insider to the field and there-
fore likely includes associations with each of the “six corners
of the hexagon”: psychology, computer science, philosophy,
linguistics, anthropology, and neuroscience. Fred’s concept,
however, is closer to how many outsiders think of cognitive
science4–as alternative word for neuroscience. Using interac-
tive communicative inference and utterance-response contin-
gencies, Frieda is able to notice this conceptual misalignment
and repair it, thus improving the alignment between interlocu-
tors.

A more systematic formulation
To make this idea a bit more concrete, we can situate it in
the context of a more precise way of looking at human com-
munication. Fundamentally, communication is comprised of
two kinds of processes: inferences, and actions that facili-
tate inferences. The idea of an inference is mostly self ex-
planatory. It refers to any kind of inference about the be-
liefs, communicative intentions, or mental state of your in-
terlocutor. Such beliefs can be about things in the world
or more abstract concepts, and so the contents of these in-
ferences are almost unlimited in scope. Inference facilita-
tion, on the other hand, refers to actions that are taken by
one participant in the discourse (whom we call the speaker,
even though their actions may not be vocally produced) and
observed by another participant in the discourse. As these
actions are caused (at least in part) by the speaker, they pro-
vide the observer of the actions (the listener) with information

3Such as in the earlier example involving misaligned concepts of
justice.

4At least in this author’s experience
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about the speaker and consequently their beliefs, mental state,
and communicative intentions. Since the roles of speaker and
listener shift dynamically throughout a discourse, we do not
associate these terms with particular conversational agents,
but with the roles themselves. The listener–in responding to
the speaker–therefore temporarily instantiates the role of the
speaker, and even the most subtle facial expressions, when
produced in a discourse, count as inference-facilitating ac-
tions. Besides these two components, there is also the idea
of context, which is broadly defined to capture any effect of
the discourse topic, the surroundings, or any other processes
on the particular instance of communication5. The definitions
of these communicative concepts are not constrained further
than this because to do so would limit their generality as the
basic constituents of human communication.

I choose this framework instead of other possibilities such
as the pragmatic alternatives framework, classical communi-
cation theory, and informal schools of thought such as rele-
vance theory and cognitive linguistics because it affords both
precision and generality and it allows us to highlight the basic
epistemics of human communication. In this formulation, all
communicative actions have the same status. This is because,
at the epistemic level, an utterance, a gesture, and an uninten-
tional twist of the lips are all actions taken by a communicator
that allow an interlocutor to make various inferences about
her communicative intentions and her state of mind. While
the contents and causal pathways associated with these ac-
tions may differ drastically, these details do not have bearing
on the development of a basic framework for communicative
analysis, only on specific theories subsequently derived from
that framework.

To move towards a formal theory, we can choose a minimal
Bayesian framework that captures only the epistemic rela-
tionships between the speaker’s utterance, the listener’s inter-
pretation, the listener’s response, and the context. Since all of
these, except for the listener’s interpretation, are observable to
both parties6, we can capture their relationships in a causally-
derived probabilistic graphical model where each of the nodes
is observed except for the node representing the listener’s in-
terpretation, as seen in figure 2 (Pearl, 1988). This model
captures the fundamental structure of the speaker’s inference
about the listener’s interpretation via utterance-response con-
tingencies, where the details of particular inferences depend
on the particular distributions that comprise an instantiation
of the model. While the broad epistemic structure of these
inferences is simple, the corresponding real-world processes
are anything but so. Filling in the details of this model will not
be an easy process and will require a large amount of directed
scientific experimentation and theoretical analysis. Therefore
the goal here is not to develop a full theory of these commu-
nicative processes in real humans, but to provide a structured

5Context is an incredibly complex topic, but for the purposes of
this article, we will leave its nuances aside.

6Except possibly some component of the context, but the vari-
ance in context between participants in an interaction is beyond the
scope of this article.

Speaker’s
utterance

Listener’s
interpretation

Listener’s
response

“Context”

Figure 2: Bayesian network representation of interactive
communicative inference. Bolded nodes are directly observ-
able.

framework through which we can understand and investigate
them. Bayesian probability is sufficiently abstract to allow us
to represent these general inferential structures while allow-
ing the rich human details to be added later.

Application to known discourse phenomena
To further ground this framework and illustrate its relation-
ship to empirical phenomena in human communication, we
will look at three different concepts described in the litera-
ture and show how the idea of interactive communicative in-
ference offers each of them a stronger theoretical foundation.

Common ground
The idea of common ground, first proposed by H. H. Clark
and Brennan (1991), suggests that people accumulate a
shared repository of knowledge when they interact, and
that subsequent interactions are facilitated by this common
knowledge. This proposal has received a substantial amount
of theoretical analysis, which has lead to a rich account of
how humans establish common ground and make use of
it in conversation (H. Clark, 1996). There is also a solid
foundation of experimental evidence supporting the theory
(Brennan & Clark, 1996; Hanna, Tanenhaus, & Trueswell,
2003). Perhaps the most notable experiment–known as the
“tangrams experiment”–involved a pair of interlocutors who
were given a set of cards depicting images of blocky figures–
i.e. tangrams–and were tasked with getting the other per-
son to arrange their cards in an order perceivable only to
the designated speaker for the round. Complicating this sig-
nificantly was the fact that the participants were separated
by a visual wall and so could only communicate verbally.
H. H. Clark and Wilkes-Gibbs (1986) found that the partic-
ipants quickly established shared conventions for referring to
the cards, which resulted in a decrease in the amount of com-
munication required to complete the task as they continued to
interact through multiple task rounds.

While this story is compelling both theoretically and em-
pirically, it is missing a mechanistic account of the inference
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processes that these interlocutors go through when build-
ing and making use of common ground. Dead reckoning
models cannot capture this progressive coordination behav-
ior, and so we turn to interactive communicative inference.
The basic component of interactive communicative inference,
the utterance-response contingency, accounts for how an ex-
change can allow the speaker to update their understanding
of the listener’s beliefs and therefore facilitate the listener’s
comprehension. When this occurs, the speaker can choose to
use a referring term that they know the listener will under-
stand, which allows the speaker to communicate more effi-
ciently with the listener via this ad hoc convention. If both
communication partners make use of such processes in their
interaction, then they will come to a shared understanding
of how to use language to communicate particular meanings.
Over an extended interaction, such interlocutors can build a
common communication system. This predicts the increas-
ing communicative concision throughout an interaction that
H. H. Clark and Wilkes-Gibbs (1986) observed. We can even
imagine that, if this process involves additional people over
multiple interactions, a complete conventionalized commu-
nication system should emerge from this process of building
shared knowledge via interaction.

Conversational alignment
Martin Pickering and Simon Garrod have developed a com-
pelling theory of discourse as an interactive alignment pro-
cess, which has a number of useful relations to the present
theory of interactive communicative inference (Pickering &
Garrod, 2006, 2004; Garrod & Pickering, 2004). Their theory
claims that local lexico-syntactic priming in discourse pro-
duces a series of cascading effects that causes all participants
in a conversation to produce similar surface structures and
even to align on semantic content. Using this theory, they ar-
gue that the fundamental mechanisms operating in discourse
are these alignment processes and construct an account of lan-
guage processing that does not require a speaker to maintain
an explicit and complex model of their interlocutor (Garrod
& Pickering, 2004). While this theory accounts for a wide
range of phenomena, it does not offer any account of con-
ceptual alignment phenomena. Conceptual alignment cannot
arise from priming-based mechanisms because it is defined as
the alignment between latent conceptual structures and sur-
face communicative actions, and this relationship cannot be
primed by observing surface structures from an interlocutor’s
communicative actions. In order to account for the facts that
our conceptual structures tend to be relatively aligned within
a conventionalized communication system and that we have
evidence that they are aligned via interaction, an interactive
communicative inference component needs to be added to
Pickering and Garrod’s theory of discourse.

Their theory also predicts that it should be easier for hu-
mans to efficiently communicate meaning through interactive
dialog than unidirectional monologue because interaction fa-
cilitates the alignment of linguistic representations (Garrod &
Pickering, 2004). This prediction is both consistent with our

informal experience as well as predicted by the interactive
communicative inference framework. For a monological de-
scription to yield effective communication, it must necessar-
ily contain enough information such that, for all of the likely
ways that a listener or reader might misinterpret the meaning,
there is additional information that steers them away from
these misinterpretations and towards the intended interpreta-
tion. In a discourse, however, these counterfactuals do not
need to be handled via anticipation and mitigation. Instead,
utterance-response contingencies make it so that only actual
misinterpretations by the listener need to be ameliorated.

With the addition of the present account of conceptual
alignment through interactive communicative inference, we
can add a vital component to the conversational alignment
story to yield a powerful framework for understanding human
communication.

Backchanneling and repair
Sociolinguistics and conversation analysis research has built
an account of discourse expressed in terms of the constituent
behaviors of conversations and the types of communications
they enable (Sacks, Schegloff, & Jefferson, 1974). Some of
the core concepts in these accounts are the ideas of backchan-
neling and repair. Backchanneling is invoked in a multi-
channel model of communication in which interlocutors com-
municate the majority of their content via a main channel
and provide meta-conversational signals in a backchannel
(Yngve, 1970). For example, a listener may produce the af-
firmative “uh huh” in a backchannel to signal to the speaker
that the she believes herself to be comprehending and that
the speaker should proceed. While these behaviors have been
convincingly shown to play a key role in natural conversa-
tion, this account leaves open the question of how the listener
forms her beliefs about whether or not she is comprehending
the speaker. As we have seen, belief of comprehension does
not necessarily imply veridical comprehension, because there
may be an undetected conceptual misalignment between the
speaker and listener. Our account of interactive communica-
tive inference suggests that listeners may be providing these
cues to speakers in order to facilitate the speakers’ interac-
tive communicative inferences by completing the utterance-
response contingency. It also suggests that speakers may be
comprehending these backchannel signals, not truly as an un-
equivocal signal to proceed, but as a response that conveys
the listener’s beliefs about their comprehension. The follow-
ing dialog illustrates a scenario with a distinction between
the affirmative backchannel as an unequivocal signal of com-
prehension and an account of backchanneling as concurrent
response. (Tyra and Tyler are roboticists at different universi-
ties.)

TYRA (UTTERANCE): “STEVE can walk on two legs
now!”

TYLER (BACKCHANNEL): “Oh”
TYRA (REPAIR): “Not Steven the child, STEVE (Self-

Taught-EVacuative-Entity) my robot. It’s a ground-
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breaking achievement!”

Here Tyra infers Tyler’s miscomprehension through his af-
fectless backchannel response to her achievement. She knows
that he would be really excited to hear about this research
achievement and therefore infers that he must believe her to
be talking about a child instead. Tyler mistakenly believes
himself to have comprehended Tyra’s utterance and produces
a backchannel response, but Tyra does not interpret it blindly.
Instead, she uses the resultant utterance-response contingency
to infer the miscommunication and repair the misunderstand-
ing. As predicted in the classical account, the backchannel
provides feedback to Tyra about Tyler’s interpretation. How-
ever, the response does not reflect Tyler’s veridical compre-
hension, but facilitates a more complex interactive commu-
nicative inference.

Miscommunications in conversations are corrected via re-
pairs. These come in many forms, but are often divided into
two classes: self-initiated and other-initiated. While the liter-
ature provides substantial experimental and ethnographic de-
tail about the role of repairs in conversation, it does not of-
fer an account of how interlocutors infer when a repair needs
to be made (Schegloff et al., 1977). The present theory of
interactive communicative inference offers a computational
mechanism by which miscommunications can be detected in
conversation, which allows speakers to repair the miscommu-
nication by correcting their own production or by correcting
the listener’s interpretation.

Conclusion

Contemporary models of communication are incomplete.
While they offer a detailed understanding of the surface-level
phenomena present in discourse, they do not provide a satis-
factory explanation of the inferential mechanisms necessary
for these phenomena. They are unable to account for the ro-
bustness of communication in spite of uncertainty, how peo-
ple know when to update their beliefs about their interlocu-
tors, and how people establish conventions. I have provided
theoretical evidence tied to the empirical to show how all of
these types of missing accounts can be derived from the idea
of interactive communicative inference.

While researchers have long understood that discourse is
not a unidirectional and isolated activity, we have demon-
strated that treating it as such, even for the sake of delimit-
ing the domain of a theory or a model, can have the effect of
removing an important property of language. When the idea
of interactive communicative inference is taken seriously, we
can begin to construct a scientific study of communication
that can account for how, despite the fact that we can never be
in someone else’s head to see first-hand what they believe and
how they feel, they are able to show us these things simply by
engaging us in a cooperative dance of action and interpreta-
tion.
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Abstract 

The purpose of this study is to demonstrate a constraint 
relaxation which is followed by the transition to an 
appropriate representation in insight problem solving. The 
puzzle game “Tangram” was used as a new insight problem, 
in which problem-solvers were presented a silhouette and 
asked to make the same configuration by arranging 7 pieces. 
At the beginning, problem-solvers had a constraint allocating 
the pieces into a geometric shape, but then relaxed this to 
reach the correct configuration at a later stage of problem 
solving. Participants’ subjective assessments of their 
confidence to reach the solution predicted neither the 
constraint relaxation nor the successful problem solving. 
However, eye-tracking data suggested that the successful 
problem-solvers tended to search the problem space more 
widely than the unsuccessful-problem solvers. 

Keywords: Tangram; insight problem solving; constraint 
relaxation; eye tracking. 

Introduction  

The Insight problem solving, in general, exhibits a 

characteristic pattern as a following process (Kaplan & 

Simon, 1990; Metcalfe, 1986). At first, an insight problem 

seems easy to solve, but problem-solvers are caught in an 

impasse soon after. They get stuck, think that all options 

have been explored and lose their way. When a sudden and 

useful idea comes to mind, it often leads problem-solvers 

rapidly to the solution. 

There is an agreement that inappropriate constraints for a 

solution are the main source of the difficulty to solve an 

insight problem (Jones, 2003; Orrmerod, MacGregor, & 

Chronicle, 2002). These studies suggested that insight 

requires the relaxation of such inappropriate constraints, and 

that an impasse can be broken by changing a representation 

of the problem. A constraint is a tendency of thinking and 

behavior that is taken in attempting to solve a certain 

problem. It usually facilitates the process to reach the 

solution. When a self-imposed constraint, however, is 

inappropriate to solve a problem, it prompts a critical 

difficulty to achieve insight, as it activates irrelevant 

knowledge and causes attempts that cannot contribute to 

correct solution. This leads problem-solvers into an impasse. 

In spite of the consensus about the source of difficulty of 

insight problems, a dynamic process to reach a solution has 

not been identified clearly. The purpose of this study is to 

specify an inappropriate constraint which inhibited the 

insight into the solution in a geometric problem solving, and 

to provide direct evidence about a critical factor for the 

successful problem solving. In addition, an eye-tracking 

technique is adopted to examine whether a proper searching 

of the problem space can lead successful problem solving or 

not (Thomas & Lleras, 2009).  

This study also aims to test whether the difficulty of the 

constraint relaxation can be reflected in an apparent task 

performance of a problem-solver while independent from 

subjective awareness. For these purposes, the puzzle game 

of “Tangram” was used as a new insight problem. Tangram 

consists of 7 triangular, square or parallelogram pieces 

(Figure 1). Problem-solvers are presented a task silhouette 

and required to make the same configuration by arranging 

these pieces. In Tangram, numerous task silhouettes can be 

composed by the 7 pieces; for example geometrical shapes, 

animals or objects. Because each silhouette has an 

individual configuration of the pieces, problem-solvers often 

cannot find a correct configuration immediately after the 

silhouette has been presented. They usually repeat trials 

with arranging the pieces until the solution is completed. 

Figure 1: The 7 pieces of Tangram. Top: a 

configuration when the pieces are divided from a 

square. Bottom: Separated seven pieces. A problem-

solver of Tangram move, rotate or combine them to 

complete a task silhouette. 
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Tangram has the advantages of allowing researchers to 

monitor task performance of a problem solving requiring 

insight. Nakano (2009) recorded protocols of participants 

and movements of the pieces. His protocol data revealed 

that the participants who could complete the task silhouette 

had expressed an “Aha” experience before reaching the 

correct configuration. Nakano (2009) found that the 

participants tended to combine the pieces into a geometric 

shape such as a square or a triangle. This tendency was 

usually involved combinations of the 2 largest triangles 

among the 7 pieces. Such the constraints will facilitate the 

process to reach the solution, in the case that a correct 

configuration includes geometric combination of the pieces 

as a square or a triangle. For example, the task silhouette of 

an arrow has two patterns of the correct configuration, and 

the both include geometric combination of the 2 largest 

triangles (bottom in Figure 2). However, when these 2 

pieces must be combined into an irregular configuration to 

complete a task silhouette, the tendency to construct a 

geometric shape will inhibits the insight into the correct 

configuration. For example, to complete the silhouette of a 

lion (top-left in Figure 2) the 2 triangle pieces must be 

attached by sliding their longer sides in an opposite 

direction to each other (top-right in Figure 2). Most 

problem-solvers who tried to complete this silhouette 

reported that it was difficult to discover this irregular 

configuration (Nakano, 2009). This finding indicated that 

the problem-solvers imposed apparent constraints on 

allocations and combinations of the pieces in the problem 

solving of Tangram. 

The primary purpose of the present experiment is to 

investigate the correspondence between the constraint 

relaxation and explicit movements of the pieces. For this 

purpose, movements of the 7 pieces were recorded and 

combinations of the 2 largest triangle pieces were identified. 

These combinations will change as the initial constraint is 

relaxed and more appropriate representations are 

constructed. Participants who try to complete the task 

silhouette of an arrow will not have to relax the constraint to 

allocate the 2 largest triangle pieces in a geometric pattern. 

So they will reach the solution easier and faster comparing 

to the task silhouette of a lion. When they try to complete 

this task silhouette, they find it impossible to complete the 

solution only by arranging the pieces into familiar geometric 

combinations. Then, the participants arrange the pieces into 

other combinations. To investigate this hypothesis, 

arrangements of the 2 largest triangle pieces are categorized 

into three categories, geometric, transitional or irregular 

combinations. The geometric means the combination of the 

2 pieces was a square or a triangle. The irregular 

combination is that the 2 pieces have a contact each other 

but no corners of the pieces meet or the edges of the pieces 

were placed adjacently without combining their corners. 

The rests of combinations, as that the pieces were arrange in 

the same direction or in a symmetric configuration, are 

categorized in the transitional combination.  

The second purpose is to examine independence between  

 

 
the constraint relaxation and subjective awareness in the 

problem solving of Tangram. In Nakano (2009), participants 

were required to evaluate how confident they could 

complete the correct configuration before and during 

problem solving of Tangram. The subjective confidence 

decreased over time even in the successful problem-solvers. 

Thus, the subjective evaluation did not predict performance 

on the insight problem, as had been suggested by Metcalfe 

and Wiebe (1987). This finding supports the idea that the 

transition from one rule to a more appropriate representation 

for a solution proceeds without subjective awareness. 

Methods  

Participants 
Twenty undergraduates (mean age = 20.8, age range = 20-

26) participated in the experiment. All were naive to 

Tangram.  

Apparatus 
The Tangram was comprised of 7 pieces. A set of the 

pieces was made by dividing a square plate which was 

11.8cm in width and in height (Figure 1). The task 

silhouette was a lion or an arrow (Figure 2 left). The size of 

the both silhouettes were the same as one-fifth of the correct 

configuration which constructed by the 7 pieces. During the 

task, participants assessed how confident they were to 

complete the task at the Graphics Rating Scale (GRS). The 

GRS involved 6 verbal descriptors and 13 scale marks along 

a horizontal line. A description “Not at all” was written at 

the left end of the horizontal line, and “Nearly completed” 

was at the right end. An index arrow was attached on the 

GRS board so that the participants could indicate their 

 

Figure 2:  Top-left; the task silhouette of a lion. Top-

right; the correct configuration of the 7 pieces 

constructing the silhouette of a lion. The two largest 

triangle pieces (greyed part) are allocated in irregular 

combination. Bttom-left; the task silhouette of an arrow. 

Bottom-center and -right; the correct configuration 

constructing the silhouette of an arrow.  There are two 

patterns of correct configuration. In both, the 2 pieces 

are allocated in a geometric combination.  
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positions on the horizontal line taking the descriptions into 

account. At the beginning of the experiment, the index 

arrow was located on the center of the 13 scale marks. A 

digital video camera (Panasonic NV-GS100) recorded 

movements of the pieces and a location of the index arrow 

from 65 cm above. 

Procedure. 
A participant sat down in front of a work desk on which 

the 7 pieces of Tangram and the GRS board were situated. 

The pieces were allocated on the desk as depicted in Figure 

1 (below). After the instructions about what the experiment 

involved, the participant was presented the task silhouette 

which was printed in black and was required to complete the 

configuration of it by using all the pieces. The participant 

indicated how he or she would be able to complete the 

correct configuration of the silhouette by the index arrow on 

the GRS board. During the assessment, the participant was 

allowed to see the pieces and the silhouette but was not 

permitted to touch or move the pieces. After the assessment, 

the participant was allowed to move the pieces. Each 

session lasted for 240 sec, and was followed by the 

assessment on GRS. Then 1 minute of rest period was given 

to the participant until the next session was started.  

When a participant completed the correct configuration, 

the problem solving was successfully ended. A sum of the 

manipulation time until the completion was accounted as a 

solution time of the “completer”. A participant who could 

not complete the correct configuration until the end of 

session 5 was counted as a “non-completer”. In this case, 

the total manipulation time was 20 min. 

All the participants participated in the two-day 

experiment. Either the silhouette of the lion (lion task) or the 

arrow (arrow task) was given to the participant as a task in 

each day. The order of the task silhouettes was 

counterbalanced among the participants. 

Recording of eye movements 
During process of the problem solving of Tangram, eye 

movements were captured using Talk Eye Lite (Takei 

Scientific Instruments Co. Ltd, Japan). Eye tracking was 

operated in monocular mode on the right eye and at a 

sampling rate of 33 Hz. The participants were seated on a 

chair and their head was fixed by using a chin and forehead 

rest to keep a distance from a surface of a work desk to eye 

in approximately 40 cm. The surface of the work desk was 

tilted to about 10 degree angle. The 7 pieces of Tangram 

were located on the desk surface and were moved within the 

range of 25 cm in length and 35 cm in width so as not to go 

outside the participant’s eye-field.  

Results  

Among the 20 participants, 9 completed the correct 

configuration of the task silhouette of a lion. The mean 

solution time was 594.7 sec (SD = 376.0 sec, Min = 106 sec, 

Max = 1080 sec). Three of the 9 completers had finished in 

session 1, and 2 of the remaining 6 had finished in session 3. 

Three had finished in session 4 and 1 had finished in the last 

session. In the arrow task, 12 participants completed the 

correct configuration within 5 sessions. The mean solution 

time was 483.6 sec (SD = 331.1 sec, Min = 58 sec, Max = 

1030 sec). Among the 12 participants 4 had finished in 

session 1. Two of the remaining 8 completers had finished 

in session 2. Three of the remaining 6 completers had 

finished in session 3. Two had finished in session 4 and 1 

had finished in the last session. Eight of the 20 participants 

completed both the lion and the arrow task. The averaged 

solution time of these “high-achievers” was faster in the 

arrow task (532.8 sec) than in the lion task (644.8 sec), but 

statistical analysis revealed that the difference did not reach 

significant level (p > .1). Therefore, contradicting to the 

expectation, both the ratios of the completer and their 

solution time did not indicate that there is a difference in 

difficulty between the two task silhouettes. 

Ratings of subjective confidence to the completion were 

identified from a location of the index arrow on GRS from 

the video image. The value of 0 was assigned to the mark on 

left extreme side, and 12 was assigned to the right extreme 

mark. Six assigned to the central mark which located 

between the descriptions “possibly, I can complete” and 

“possibly, I cannot complete”. A value of each rating was 

identified on the basis of relative distance of the index arrow 

from the marks. Mean ratings were calculated among the 

completers and the non-completers in each sessions. Figure 

3 show the plots of the mean ratings as a function of the 

sessions for each task silhouette. Because the participants 

who had completed the task silhouette were not engaged in 

the assessment anymore, sample numbers included in the 

plots of the completer decreased as the session proceeded. 

All mean ratings of non-completers included 11 participants 

in Figure 3a and 8 in Figure 3b. 

To investigate the relationship between participants' 

confidence and results of the problem solving, they were 

categorized into a high-achiever who completed the both 

task silhouettes or into a non-achiever who could not 

complete the both silhouettes. Thus, 5 participants who only 

completed the either task were eliminated from this analysis. 

Table 1 shows mean ratings of confidence in session 1 and 

in the last session for the high-achievers (n = 8), excepting 

one participant who completed the both tasks in session 1, 

and for the non-achievers (n = 7), respectively. For the 

completers, the last session is when they completed the task, 

and for the non-completers it was always the fifth session. A 

2×2 analysis of variance (ANOVA) with the variables 

achievement (high-achiever vs. non-achiever) and time 

(session vs. last session) showed that the effect of time was 

significant, F(1, 12) = 52.2, p < .01. In detail, the mean 

rating in session 1 was higher than that in the last session in 

the both groups. Supported with this result, the linear 

regression lines in Figure 3 indicated that participants’ 

subjective assessments of their confidence decreased over 

time. The main effect of achievement and the interaction 

between the two variables did not reach statistical 

significance. 

To investigate whether constraint relaxation was reflected 

on actual manipulation of the pieces, arrangements of the 2 
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largest triangle pieces were categorized and their duration 

times were compared. When these 2 triangle pieces were in 

contact with each other at least on a corner or a side of them, 

this arrangement was counted as a combination of the pieces. 

All combinations of the 2 largest triangle pieces were 

identified on the video image and categorized into a 

geometric, a transitional or an irregular combination. In the 

case that the 2 pieces were combined into a triangle or a 

square, such the allocation was categorized into the 

geometric combination. In the arrow task, this category 

includes the correct combination of the 2 pieces. The 

participants often allocated the 2 pieces such that the short 

edge of one triangle is placed adjacent to the long edge of 

the second triangle so that no corners of the sides met, 

additionally the corner of the long edge of the second 

triangle did not make contact with the first triangle. As with 

these examples, an allocation of the 2 pieces in which the 

edges were placed adjacently without combining their 

corners was categorized into the irregular combination. In 

the lion task, this category includes the correct combination 

of the 2 pieces. All other combinations that were 

categorized neither into the geometric nor into the irregular 

combination were categorized into the transitional 

combination. A measure of the duration of the time in which 

each combination was made was taken from the video 

image. The measurement started from the moment at which 

the 2 pieces were allocated into a certain combination and 

ended when they were separated or changed into the other 

arrangement. To investigate a transition of a predominant 

combination of the pieces, overall manipulation time of each 

participant was divided into a first and a second half period. 

A cumulative duration time of each combination was 

calculated for each participant. Table 2 shows mean 

percentage of the cumulative duration time of each 

combination over the total manipulation time. 

Three-way ANOVA with the variables completion 

(completer vs. non-completer), time (1
st
 vs. 2

nd
 half) and 

combination (geometric, transitional or irregular) was 

computed on percentage of the cumulative duration time. In 

the lion task, the results showed that there was a significant 

main effect of time variable, F(1, 18) = 5.1, p < .05, and 

two-way interaction between completion and time, F(1, 18) 

= 7.9, p < .05. Post hoc analysis revealed that, in the 

completers, an averaged percentage of the cumulative 

duration time over the three combinations was significantly 

higher in the second half (14.9%) than in the first half 

(6.0%), F(1, 18) = 12.7, p < .01, but the difference was not 

significant in the non-completer (11.3% in the 1
st
 half; 

10.3%  in the 2
nd

 half). Additionally, two-way interaction 

between time and combination was also significant, F(2, 36) 

= 7.5, p < .01. Post hoc analysis revealed that the percentage 

significantly increased than the first half (5.7% in the 1
st
 half 

vs. 17.9% in the 2
nd

 half), F(1, 54) = 12.8, p < .01, while for 

the transitional combination the increase was marginally 

significant (8.2% vs. 14.8%), F(1, 54) = 3.7, p < .06. In 

contrast, for the geometric combination, the percentage in 

the first half was significantly higher than the second half  

a. Lion task 

 
 

b. Arrow task 

 
 

Figure 3: Plots of mean ratings of subjective confidence 

and linear regression lines in the lion task (a) and the 

arrow task (b). The plots of Grey circle with a solid line 

indicate results of the completers and the plots of blank 

triangle with a dashed line indicate results of the non-

completers. The numbers beside the plots of the 

completer indicate a number of samples included in each 

mean value. Error bars indicate SDs. 
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Table 1: Mean ratings and SDs of a participants’ confidence  

 

 High-achiever Non-achiever 

1st session 5.79  (1.8) 4.82  (1.6) 

Last session 3.36  (2.6) 1.79  (0.8) 
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Table 2: Percentage of the cumulative duration time of each 

combination over the total manipulation time 

 

Lion task Completer Non-completer 

Geometric   

1
st
 half 9.1% 15.2% 

2
nd

 half 2.3% 8.1% 

Transitional   

1
st
 half 6.0% 10.4% 

2
nd

 half 13.1% 16.5% 

Irregular   

1
st
 half 3.1% 8.3% 

2
nd

 half 29.3% 6.3% 

Arrow task  Completer Non-completer 

Geometric   

1
st
 half 29.0% 19.2% 

2
nd

 half 26.8% 27.1% 

Transitional   

1
st
 half 1.4% 1.7% 

2
nd

 half 6.1% 1.5% 

Irregular   

1
st
 half 5.3% 4.9% 

2
nd

 half 5.3% 3.7% 

 

 

 (12.1% vs. 5.2%), F(1, 54) = 4.1, p < .05. The three-way 

interaction reached statistically significant, F(2, 36) = 4.9, p 

< .05. Post hoc analysis revealed that in the second half the 

percentage of the irregular combination was higher in the 

completer than that in the non-completer (29.3% vs. 6.3%), 

F(1, 54) =13.8, p < .01, but in the first half the difference 

was not significant (3.1% vs. 8.3%). Regarding the 

completers, the percentage of the irregular combination 

(29.3%) was significantly higher than that of the geometric 

(2.3%) and the transitional combination (13.1%) in the 

second half, all ps < .01. This percentage of the completer in 

the second half was significantly increased than the first half 

(3.1%), F(1, 54) =29.8, p < .01. In the arrow task, three-way 

ANOVA showed that the main effect of combination 

variable was significant, F(2, 36) = 11.1, p < .01. Multiple 

comparisons revealed that the percentage of the geometric 

combination averaged over time and completion variables 

(25.2%) was significantly higher than that of the transitional 

(2.8%) and the irregular combination (5.1%), all ps < .01. 

The other main effect and the interactions did not reach 

statistical significance. 

To investigate whether there is a characteristic attentional 

shift when problem-solvers reach the solution of Tangram, 

eye tracking data was recorded during the participants 

manipulated the 7 pieces. Areas of interests (AOIs) were 

surface of the each piece and the silhouette which was 

presented to the participants. When the participants looked 

at the range of a single piece or at the silhouette for more 

than 33 while manipulating the pieces, this duration time 

was accumulated as a time spent looking at the AOI. The 

proportion of the time spent looking at the AOI per second 

during the total manipulation time was calculated for the 

each piece, and it summed over the 7 pieces for each 

participant. Table 3 shows the mean proportions of the time 

spent looking at the pieces and that looking at the silhouette, 

for the high-achievers who completed both the tasks and for 

the non-achievers who could not complete the both tasks. 

Statistical analysis revealed that the proportion of the time 

spent of the non-achievers looking at the pieces (283.1 

msc/sec) was significantly longer than that of the high-

achievers (137.4 msc/sec), F(1, 13) = 10.9, p < .01. There 

was no difference between these two groups in the 

proportion of the time spent looking at the silhouette. The 

result that the time spent looking at the range of the pieces 

was relatively short might be reflected a wider or more 

active scanning over the problem space. In order to verify 

this inference more directly, eye movement distance during 

the participants manipulated the piece was calculated. The 

values in the bottom row of Table 3 indicate a mean eye 

movement distance per second in a visual angle for the 

high-achiever and for the non-achiever. Statistical test 

revealed that the eye movement distance of the high-

achiever was higher than that of the non-achiever but it was 

marginally significant, F(1, 13) = 3.15, p < .10. 

 

 

Table 3: Mean proportion of the time spent (msc/sec) and 

the eye movement distance (deg/sec) 

 

 High-achiever Non-achiever 

Proportion of time    

7 pieces 137.4  (40.0) 283.1  (108.3)  

Silhouette 25.7   (31.4) 13.2  (11.9) 

Movement distance 72.4  (47.3) 36.8  (25.3) 

 

Discussion 

This research aimed to demonstrate a constraint relaxation 

which is followed by the transition to an appropriate 

representation in insight problem solving. For this purposes, 

Tangram was used as a new tool. To investigate the 

correspondence between the constraint relaxation and actual 

manipulation of the pieces of Tangram, combinations of the 

2 largest triangle pieces which were the key to completing 

the two task silhouettes, a lion and an arrow, were analyzed. 

Nakano (2009) found that problem-solvers of Tangram 

tended to combine these 2 pieces into a geometric shape. 

This initial constraint would facilitate reaching an insight 

for the solution of the arrow task, because the correct 

configuration of this silhouette could be achieved by 

arranging the 2 pieces into either a square or a triangle. As 

expected, in this task both the completers and the non-
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completers arranged the 2 pieces predominantly in a 

geometric combination through the problem solving. While 

in the lion task, this initial constraint to arrange the pieces 

into a geometric combination would inhibit the insight to 

occur, because the 2 pieces should be arranged in an 

irregular combination to complete the correct configuration 

of the lion task (top-right in Figure 2). Thus, the participants 

were expected to achieve better results in the arrow task 

than in the lion task. Contrary to this prediction, however, 

neither the percentage of the completers nor the time to 

completion of the high-achievers who were completed the 

both tasks were significantly different between the two tasks. 

This finding supported the view that the relaxation of the 

initial constraint was not the sole determinant of the insight 

for reaching the solution (Ormerod et al., 2002). As an 

evidence of this interpretation, in the lion task, the 

percentage of the cumulative duration time that the 2 pieces 

were arranged in the geometric combinations was decreased 

in the second half comparing with the first half. Importantly, 

such the decrease was found not only in the completers but 

also in the non-completers. 

The critical difference between the completers and the 

non-completers was found in the lion task, in that, the 

completers arranged the 2 pieces in the irregular 

combination for a longer time in the second half than in the 

first half. This result for the completer should be a 

manifestation that the relaxation of the inappropriate initial 

constraint was followed by the construction of more 

appropriate representation. In contrast to this steady 

approach of the completers to reach the solution, the non-

completers could not distinguish which of the three types of 

combinations would lead them to the solution, even in the 

second half. Therefore, the critical determinant for reaching 

an insight to the solution was a clear cut differentiation 

between the appropriate representation and other 

alternatives. 

The participants' eye movements were measured while 

they manipulated the pieces, in order to investigate specific 

feature of attention shift that facilitated the successful 

problem solving in Tangram. The analysis of the time spent 

looking at the surface of the pieces indicated the noteworthy 

difference between the high-achiever and the non-achiever 

that the latter had a longer time staying attention on the 

pieces. In contrast to this attentional feature of the non-

achiever, the high-achiever had a slightly longer distance of 

eye movements during the manipulation of the pieces than 

the non-achiever. These findings suggested that the 

successful problem-solvers of Tangram tended to search the 

problem space of the pieces more widely or actively. 

The second purpose of this research was to demonstrate 

the independence between the transition from the initial but 

inappropriate constraint to the more appropriate 

representation for the solution and the changing of the 

confidence to reach the solution. There was a remarkable 

difference between the results of the present experiment and 

the series of the researches by Metcalfe (Metcalfe, 1986; 

Metcalfe and Wiebe, 1987). In these previous researches, 

most of the participants rated their confidence lowest level 

at the starting of the problem solving, and their self-

evaluations stayed constant or slightly increased by the floor 

effect. While in the present experiment, the evaluation to the 

confidence was relatively high before starting the problem 

solving of Tangram, and it declined over time. Considering 

that the findings of Metcalfe was obtained by using insight 

problems including a spatial task and a linguistic task, 

Tangram is more likely to give the impression that it is easy 

to solve than those other insight problems, especially at the 

beginning of the problem solving. Another notable finding 

was that the participants who solved the insight problem had 

evaluated less confidence to reaching the solution (Metcalfe, 

1986; Metcalfe and Wiebe, 1987). In other words, the actual 

achievement of each participant had opposite direction to 

their subjective confidence. Furthermore, the present 

experiment indicated that the completer manipulated the 

pieces so as to approach to the solution steadily but their 

confidence about it consistently declined. Therefore, this 

finding demonstrated that the process of deriving an insight 

and the subjective awareness to the problem solving did not 

progress independently but in the opposite direction over 

time. 
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Abstract 

Biological systems are capable of acting in a shared 
environment to produce emergent, self-organized behavior that 
is the result of the constraints imposed by local interactions– 
such as bird flocking or ant swarming behavior. These 
examples present minimal demands for a shared-intention 
between co-actors, whereas other instances necessitate the 
formation of a shared goal. In these goal-directed tasks, how 
much of the observed complexity can be explained by the 
constraints imposed by both the environment and adherence to 
the shared task goal? This paper begins to investigate this 
question by presenting results from a two-person cooperative 
“shepherding” task first developed in Nalepka et al. (2017) but 
with fewer constraints. Results provide further evidence that 
the emergent behavior is the result of the constraints imposed 
by the task. The included task-dynamic model suggests a 
general model that can be used to understand multiagent 
herding behavior in a variety of contexts. 

Keywords: joint action, collective herding, task-dynamic 
modeling 

Introduction 

Emergent collective behavior in animal systems can 

oftentimes be understood by agents whose behaviors are 

constrained by local information. In non-human systems, 

such as ant trails, the observed behavior to a food source can 

be attributable to local interactions between ants and the 

strength of a deposited pheromone trail (Deneubourg et al., 

1989). For humans, the route chosen to go to class in the 

winter can be attributable to the paths carved in the snow by 

previous students (Goldstone & Roberts, 2006). These 

examples don’t necessitate the formation of a shared-

intention (Searle, 1990) as these agents are exploiting their 

environment to reach their own individual aims. 

However, human actors can engage in complex goal-

directed behavior such as playing in team sports where the 

actors are working towards a common shared goal – a joint-

action. Work discerning the neurocognitive mechanisms that 

support the timing and prediction of actions have been 

proposed to explain how human systems successfully 

accomplish joint-action tasks (Vesper, et al., 2011). Indeed, 

suboptimal coordination not only leads to sub-optimal 

performance, but can have a negative impact on one’s self-

esteem and one’s opinion of a co-actor (Lumsden, Miles, & 

Macrae, 2014). Similarly, suboptimal coordination during 

human-robot interaction (HRI) also leads to poorer 

performance and a depreciated user experience, with users 

often attributing poorer performance to a lack of 

predictability and reciprocal compensation on the part of the 

robot (Medina, Lorenz, & Hirche, 2015).  

How much of the complexity observed in cooperative 

action can be attributed to the constraints imposed by the 

environment, as well as the task goal? An approach to 

understand the behavioral dynamics that shape and constrain 

natural human performance is to argue that humans organize 

themselves as “special-purpose devices” to satisfy the 

dynamics of a particular task (Saltzman & Kelso, 1987). For 
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example, in a reaching task, the body self-organizes so the 

hand becomes a damped mass-spring that moves towards, 

say, a mug (a fixed-point attractor). These low-dimensional 

models, in the case of reaching, can produce straight-line 

trajectories and deal with perturbations that may occur during 

the action.   

To date, such task-dynamic models, expressed as ordinary 

differential equations, have been used to understand human 

path navigation and obstacle avoidance (Fajen & Warren, 

2003; Warren, 2006) and tested in robotic systems, such as a 

skiing robot (Lahajnar, Koss & Nemec, 2009). In the joint 

action literature, virtual agents have also been created to 

perform oscillatory movements with a human partner (Zhai, 

et al., 2014; Kostrubiec, et al., 2015) with the movement 

dynamics of the virtual agent defined by a coupled nonlinear 

oscillator that produces patterns of coordination consistent 

with the Haken-Kelso-Bunz (HKB) model of rhythmic 

coordination (Haken, Kelso, & Bunz, 1985); namely, stable, 

or intermittent in-phase (0˚) and anti-phase (180˚) modes of 

behavior. Perhaps most noteworthy is recent work by Zhai et 

al. (2014) and Kostrubiec et al. (2015), who demonstrated the 

ability for artificial agents incorporating nonlinear oscillatory 

models to coordinate with humans to reproduce the dynamics 

observed in human-human pairs, with the added benefit of 

enabling these nonhuman agents to steer humans to new 

coordinative modes that are unstable and difficult to master 

(like a 90˚ phase relationship). 

Recently, Nalepka et al. (2017) created a virtual 

shepherding task (Figure 1) to explore and model goal-

directed behavior in a multiagent task to understand how 

stable social behavior emerges in more complex tasks with 

changing environments.  The task required pairs to coordinate 

their movements in such a way as to corral and contain 

reactive autonomous spheres (referred to as sheep) to the 

center of a game field by controlling their player cube 

(referred to as their sheepdog) with a handheld motion-

tracking sensor. In the beginning, participants engaged in a 

behavior termed search and recover (S&R) which involved 

moving one’s controller towards the farthest sheep so that the 

sheep would be repelled towards the containment region. 

Using this strategy, some pairs could meet the success criteria 

for the task (defined as keeping all sheep within the 

containment region for a certain proportion of time (see 

Figure 1). However, a subset of successful pairs transitioned 

to a new behavioral mode termed coupled oscillatory 

containment (COC) that was functionally superior to S&R. 

COC was defined by both participants performing oscillatory 

movements around the containment region to wall-in the 

sheep.  

Interestingly, the COC behavioral mode exhibited similar 

dynamic stabilities as prototypical interpersonal or visual 

rhythmic coordination (Schmidt, Carello, & Turvey, 1990; 

see Schmidt & Richardson, 2008 for a review) described by 

the HKB model above, with pairs naturally exhibiting in-

phase and anti-phase patterns of COC behavior. Therefore, 

the shepherding task supplies a functional consequence for 

coupled rhythmic behavior that can be used to study 

interpersonal coordination more generally. Videos 

illustrating the shepherding task are found at 

http://www.emadynamics.org/bi-agent-sheep-herding-

game/. 

 

 
Figure 1: Depiction of task from Nalepka et al. (2017) 

The Shepherding Model 

Nalepka et al. (2017) formulated a task-dynamic model of the 

human behavior observed in the shepherding task (also 

Richardson et al., 2016); they also successfully validated that 

this model, embodied in a virtual avatar, can complete the 

task successfully alongside a human partner (Nalepka et al., 

2016). The model defines the task space in terms of a polar 

coordinate system (see Figure 2). The radial component 

(whose origin is the center of the containment region) of the 

system is defined using the following damped mass-spring 

equation, 

 

�̈�𝑖 + 𝑏𝑟𝑖�̇�𝑖 + 휀𝑖(𝑟𝑖 − 𝜉𝑖(𝑟𝑝𝑠(𝑡),𝑖 +  𝛥𝑟𝑚𝑖𝑛,𝑖) 

−(1 − 𝜉𝑖)(𝑟𝑚𝑖𝑛,𝑝𝑠(𝑡),𝑖 + 𝛥𝑟𝑚𝑖𝑛,𝑖)) = 0, 

(1) 

where 𝑟𝑖, �̇�𝑖, and �̈�𝑖 are the radial position, velocity and 

acceleration of player  i (i =1, 2); 𝑏𝑟𝑖 is the radial damping 

term, 𝑟𝑝𝑠(𝑡),𝑖 is the radial coordinate of the player i’s radially 

farthest sheep on their side of the field,  (𝑟𝑝𝑠(𝑡),𝑖 + 𝛥𝑟𝑚𝑖𝑛,𝑖) is 

the preferred radial target position that the player approaches 

for this farthest sheep, and 휀𝑖 scales the strength of the 

centrally-directed radial force attracting player i to the 

targeted sheep. This force is gated by 𝜉𝑖 , a Heaviside 

parameter: 

 

𝜉𝑖 = {
0,
1,

 𝑟𝑝𝑠(𝑡),𝑖 < 𝑟𝑚𝑖𝑛,𝑝𝑠(𝑡),𝑖

𝑟𝑝𝑠(𝑡),𝑖 ≥ 𝑟𝑚𝑖𝑛,𝑝𝑠(𝑡),𝑖
  

(2) 

If the radial coordinate of at least one sheep is greater than or 

equal to 𝑟𝑚𝑖𝑛,𝑝𝑠(𝑡),𝑖, then the player will select the furthest 

sheep, 𝑟𝑝𝑠(𝑡),𝑖, and move to (𝑟𝑝𝑠(𝑡),𝑖 + 𝛥𝑟𝑚𝑖𝑛,𝑖); otherwise, 

when 𝜉𝑖 = 0, the player will move towards (𝑟𝑚𝑖𝑛,𝑝𝑠(𝑡),𝑖 +

𝛥𝑟𝑚𝑖𝑛,𝑖), their preferred distance from the center.  

To be consistent with the previous research modeling the 

dynamics of rhythmic human interlimb and interpersonal 

coordination captured by the HKB model (Haken et al., 

1985), the angular component of the players’ movements 

(centered on the player’s sagittal plane on their side of the 
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field) was modeled using the following modified set of 

coupled Rayleigh/van der Pol hybrid nonlinear oscillator 

equations, 

 

�̈�𝑖 + 𝑏𝜃𝑖�̇�𝑖 + 𝛽𝑖�̇�𝑖
3 + 𝛾𝑖𝜃𝑖

2�̇�𝑖 + 𝜔𝑖
2(𝜃𝑖 − 𝜉𝑖𝜃𝑝𝑠(𝑡),𝑖)  

= (1 − 𝜉𝑖)(�̇�𝑖 − �̇�𝑗)(𝐴𝑖 − 𝐵𝑖(𝜃𝑖 − 𝜃𝑗)
2

), 

(3) 

where 𝜃𝑖, �̇�𝑖 and �̈�𝑖 are the angular position, velocity, and 

acceleration of player i;. 𝜔𝑖  is a player’s natural angular 

oscillation frequency; 𝑏𝜃𝑖 is the angular linear damping term; 

𝛽𝑖�̇�𝑖
3 and 𝛾𝑖𝜃𝑖

2�̇�𝑖 are Rayleigh and Van der Pol escapement 

terms, respectively; and 𝐴𝑖 and 𝐵𝑖  are the parameters used in 

the HKB model to define the relative strength of in-phase and 

anti-phase coordination patterns. The parameter 𝑏𝜃 is 

governed by the equation, 

 

�̇�𝜃𝑖 + 𝛿𝑖 (𝑏𝜃𝑖 − 𝛼𝑖 (𝑟𝑝𝑠(𝑡),𝑖 − (𝑟𝑚𝑖𝑛,𝑝𝑠(𝑡),𝑖 + 𝛥𝑟𝑚𝑖𝑛,𝑖))) = 0, 

(4) 

where negative values of 𝑏𝜃𝑖 produce oscillatory behavior, 

while positive values produce fixed-point behavior. 

Parameters 𝛿𝑖 and 𝛼𝑖 govern the dynamics of 𝑏𝜃𝑖 across its 

range of allowable values. 

 
Figure 2: Depiction of model task space. Player i = 1 is 

exhibiting oscillatory behavior, while player i = 2 exhibits 

S&R behavior. The smaller circles illustrate the sheep that 

must be kept within the containment region (larger circle). 

 

The interplayer system modeled by Eq. 1, 3 & 4 dictates 

the behavioral mode player i produces. If 𝜉𝑖 = 1, the player is 

uncoupled from their partner j (via the right half of Eq. 3), 

and moves towards the angular component of the furthest 

sheep; otherwise, the player will center their angular 

component to 0° (here 𝑏𝜃𝑖 will move towards a negative value 

and begin to produce oscillatory behavior). Parameter 𝜔𝑖 is 

the rate at which these angular destinations are reached. 

However, when 𝜉𝑖 = 0, the player becomes coupled to the 

angular component of their partner’s movement. This 

coupling function reproduces both in-phase (0°) and anti-

phase (180°) stable relative phase relationships, with the 

relative strength of these two coordination patterns defined 

by the parameters 𝐴𝑖 and 𝐵𝑖 . 

The Current Project 

The behavioral modes observed in Nalepka et al. (2017) are 

very like the behavioral modes found in real sheepdog 

shepherding (Strömbom et al., 2014). However, it is unclear 

whether the oscillatory behavior seen in Nalepka et al. (2017) 

emerged from the local interactions of both players and the 

sheep, or if it was due to participants attuning to pre-defined 

environmental features of the task. Trajectories observed in 

Nalepka et al. (2017) tend to trace the outer white circle of 

the containment region (see Figure 1). In the original 

experiment, this white circle indicated a failure criteria that 

ended a trial if all sheep managed to escape. However, 

anecdotally, some participants asked if they could enter the 

containment region, opening the possibility that participants 

perceived certain visually-marked locations to be appropriate 

(like the white region) and others not (such as the red 

containment area). Thus, the oscillatory behavior observed 

may have been a consequence of this perceived task 

constraint and the circular goal region. 

The present work removed these visual landmarks and 

edited the task to have fewer constraints to test the generality 

of the developed task-dynamic model. Criteria that would 

cause a trial to fail prematurely were removed, with 

participants simply instructed to corral the sheep together, 

without a target goal region in mind. To keep scoring criteria 

similar to the original work, a containment region (invisible 

to participants) moved in accordance with the center of the 

herd, consistent with Strömbom et al. (2014) who suggested 

that sheepdogs corral sheep that are furthest from the center 

of the rest of the herd. 

We tested a new set of naive participants to determine 

whether S&R and, more importantly, COC behavior would 

still emerge. We also compared the participant performance 

to the performance of a slightly modified version of the 

virtual shepherding model presented above. In short, the 

model was modified so that the center of the task dynamic 

space that defined the (0,0) point of the radial distance and 

polar task axes was dynamically tied to the herd’s center of 

mass (COM), as opposed to being fixed in the center of game 

field (0,0). At any time t, the herd’s COM was calculated as 

the average sheep position in Cartesian coordinates and was 

subtracted from each game object’s (x,y) positions. 

Method 

Participants 

Thirty-eight participants (M age = 18.82, 17-22), recruited as 

19 pairs completed the experiment. All participants were 

undergraduates from the University of Cincinnati and 

received course credit for participation. For model 

simulations, 10 artificial pairs were created with the 
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following parameter values: 𝑏𝑟 = 10.9987, 휀 = 98.70672, 

𝑟𝑚𝑖𝑛,𝑝𝑠(𝑡) = .062 m, 𝛥𝑟𝑚𝑖𝑛 = .061539, 𝛿 = 23.08993, 𝛼 = 

80.59288, 𝛽 = .161641, 𝛾 = 7.22282, 𝜔 = 7.85, A = -.2, and 

B = .2. The model was designed to perform COC behavior if 

all sheep on the player’s side of the field was within  

𝑟𝑚𝑖𝑛,𝑝𝑠(𝑡), as described above. Up to ± 1 
𝑟𝑎𝑑

𝑠2  and ± 1 
𝑐𝑚

𝑠2  noise 

was randomly added to both �̈�𝑃𝑖 and �̈�𝑃𝑖 at a rate of 50 Hz. 

 

 
Figure 3: Virtual experimental room with example initial 

sheep arrangement. 

Apparatus and Task 

The task was designed using the Unity 3D game engine 

(version 5.2.1; Unity Technologies, San Francisco, 

California) and was presented to participants via Oculus Rift 

DK2 (VR) headsets (Oculus VR, Irvine, California). The 

virtual environment (Figure 3) was modeled at 1:1 scale after 

the experimental room. The task was presented in the VR 

headset to appear on a virtual tabletop modeled at 1:1 scale 

to the glass tabletop in the real environment, which acted as 

the solid physical surface on which participants could move 

their motion sensors. Participants used wireless Latus motion 

tracking sensors operating at 96 Hz (Polhemus Ltd, Vermont, 

USA). Participants moved the sensor along the glass tabletop, 

and hand movements translated 1:1 to movements of the 

player’s cube (sheepdog) in the virtual environment. 

Participants were given a body in the virtual world, modeled 

after a crash test dummy of height 1.8 m whose motion was 

controlled using an inverse kinematic calculator (model and 

calculator supplied by Root Motion, Tartu, Estonia) based on 

the real movements of the participant’s right hand (via the 

Latus motion sensor) and head (via the Oculus Rift).  

Participants could move their sheepdogs anywhere in two-

dimensional space within the 1.5 by 0.8 m fenced area of the 

grass task field. The goal of the task was to jointly find a 

solution to corral seven wool-covered stimulus spheres 

(sheep) towards one another so that they turned to a red color. 

The sheep were programmed to turn red when all sheep were 

within 10.8 cm of the herd’s COM. Note, if the fence was 

10.8 cm from the herd center, the sheep did not turn red. This 

was done intentionally to keep participants from adopting a 

strategy which involved keeping the sheep cornered. On each 

trial, sheep appeared randomly within a .50 by .80 m boxed 

area, randomly centered either on the center of the game field, 

or ± .50 m to either side. Forces from a random direction were 

applied to each sheep at a sample rate of 50 Hz, resulting in 

Brownian motion dynamics. If a sheep collided with the 

fence, a repulsive force was applied to move the sheep back 

towards the center. The sheep also dynamically reacted to the 

participant-controlled sheepdogs as if threatened, being 

repelled away from a participant’s sheepdog when the 

sheepdog was within 12 cm of the sheep’s game location. 

When threatened, the sheep would move directly away from 

the player at a speed proportional to the inverse of the squared 

distance between the sheep and the player. If the sheep were 

red for at least 70% of the last 45 seconds of a two-minute 

trial, the pair received a point. The experiment ended when 

the participants scored eight points, or after 45 minutes, 

whichever came first. 

Procedure 

Following informed consent, participants stood on either side 

of the experimental table where they put on their respective 

virtual headsets and were given a motion sensor to hold in 

their right hand. Following calibration, participants were 

informed about the task goal and the conditions for success 

and failure. Participants were not told how near the sheep 

needed to be to turn red. Instead, they were instructed that if 

the sheep were not red, then they either needed to be closer 

together, or that the herd was too close to the fence. 

Participants were told that once the experiment began, they 

were not allowed to speak with one another until after 

debriefing. The experimenter remained in the room to enforce 

the no-talking rule and to answer any questions. 

Results 

A preliminary review of participant behavior revealed that all 

pairs exhibited S&R behavior and, more importantly, that 

several pairs discovered and exhibited the same type of COC 

strategy observed by Nalepka, et al. (2017). Here we present 

the COC classification criterion utilized, and the performance 

differences observed between COC trials (from the COC-

classified pairs) and S&R trials (from S&R-classified pairs). 

The focus of the analysis presented here was to confirm that 

(a) COC is a robust emergent mode of behavior and (b) that 

COC behavior was superior to S&R behavior. The results 

from the model simulations followed the same analyses and 

were employed to determine whether the task-dynamic 

model could effectively capture the dynamics observed in 

this less constrained task context. Classification and analyses 

were conducted on the last 45 seconds of each two-minute 

trial. This was set because participants were told that 

performance was measured during this time and that the first 

75 seconds was to be used as time to corral the sheep and 

initiate resultant containment strategy. Because success was 

defined as keeping the sheep within 10.8 cm of their COM, 

all data were converted to polar coordinates with the center 

located at the herd COM. For the purposes of this paper, only 

successful trials were analyzed. 
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As defined by Nalepka et al. (2017), a trial was classified 

as COC if the peak angular oscillatory component was 

between 0.5 Hz and 2 Hz. More specifically, the 

classification criterion was as follows, 

 

𝜑𝑖,𝑘 =  
𝜔𝑓𝑟𝑒𝑞,𝑖,𝑘 − .5

|𝜔𝑓𝑟𝑒𝑞,𝑖,𝑘 − .5|
𝜔𝑝𝑜𝑤𝑒𝑟,𝑖,𝑘, 

(5) 

where 𝜔𝑓𝑟𝑒𝑞,𝑖,𝑘 is the peak angular oscillatory component for 

player i, of pair k and 𝜔𝑝𝑜𝑤𝑒𝑟,𝑖,𝑘 is its associated power. The 

average for both players, �̅�𝑘, is taken and if the resultant 

average is positive, the trial is classified as predominately 

COC.  Conversely, negative values resulted in a trial being 

classified as an S&R trial. For analyses, the angular 

component of each dog was detrended and z-score 

normalized and submitted to MATLAB’s pwelch function 

using a 50% overlap window of 512 samples. 

Thirteen of the 19 pairs met the success criteria for the task. 

One of the remaining six pairs had five of the eight successful 

trials completed and were included in the analysis, while the 

remaining five did not have a single successful trial. 

Successful S&R trials had an average classification value �̅�𝑘 

= -0.47 and successful COC trials had a value �̅�𝑘 = 0.23 for 

human pairs, while it was �̅�𝑘 = .22 for the artificial pairs, 

which only exhibited successful COC trials. In total, nine 

pairs exhibited predominately S&R behavior to complete the 

task (with two pairs exhibiting one and three trials classified 

as COC), while the remaining five pairs completed the task 

with at least four trials classified as COC (M#trials
 = 5.8 

classified as COC). The artificial pairs completed the 

experiment in less time (M = 16.8 min, SD = 1.03) than both 

S&R (M = 29.75 min, SD = 8.03) and COC (M = 26.00 min, 

SD = 6.32) human pairs, F(2,20) = 12.75, p = .001, η2 = .56. 

The following four variables were examined to 

characterize performance differences between behavior 

modes: (1) containment time—the number of seconds the 

sheep were within 10.8 cm of the herd center while also 10.8 

cm away from the nearest fence; (2) average sheep radial 

distance—the average distance from the herd center; (2) herd 

travel—the total distance travelled by the herd center; (4) and 

herd area—the area of the convex hull formed by the set of 

sheep positions. Only S&R trials were considered for S&R 

pairs and COC trials for both COC pairs and artificial pairs. 

Performance differences were found for all variables: 

containment time, F(2,21) = 68.18, p < .001, η2 = .87, average 

sheep radial distance, F(2,21) = 142.74, p < .001, η2 = .93, 

herd travel, F(2,21) = 140.46, p < .001, η2 = .93), and herd 

area F(2,21) = 11.61, p < .001, η2 = .53. Figure 4 provides a 

summary of the findings. Performance by COC pairs on COC 

trials were found to be superior to performance by S&R pairs 

in all cases: containment time (COC M = 44.1 s, SD = 1.01; 

S&R M = 39.91 s, SD = 1.42 [p < .001]), average sheep radial 

distance (COC M = 2.73 cm, SD = .41; S&R M = 3.99 cm, 

SD = .20 [p < .001]), herd travel (COC M = 62.74 cm, SD = 

10.91; S&R M = 106.90 cm, SD = 19.16 [p < .001]) and herd 

area (COC M = 23.87 cm2, SD = 13.80; S&R M = 55.66 cm2, 

SD = 29.32 [p = .02]). Compared to COC human pairs, the 

artificial pairs contained the sheep closer to the herd COM 

(M = 2.32 cm, SD = .04, [p < .01]) and had less herd travel 

(M = 8.92 cm, SD = .44, [p < .001]). 

 

   

 

 

 

  
 

 

 

Figure 4: Result Summary Plots. 

Conclusion 

Consistent with findings by Nalepka et al. (2016; 2017), the 

results provide further support that COC behavior is not a 

consequence of players tracing a visually salient boundary to 

contain the sheep, but rather emerges naturally from 

interactions between players within the shepherding task 

environment. Further, the task-dynamic model developed by 

Nalepka et al. (2017) can be minimally modified to function 

in this less constrained herding task space, by tracking the 

center of the herd. It is important to note that seven pairs 

completed the experiment without exhibiting any COC 

behavior. This may be due to the relaxed scoring criteria that 

allowed for stable S&R behavior. Increasing task difficulty, 

like increasing the time needed to contain the sheep, is 

predicted to cause more pairs to transition to COC behavior, 

as it was associated with better task performance. 

An approach to understand multiagent coordination is to 

treat human systems as self-organized “special-purpose 

devices” whose dynamics adhere to the constraints dictated 

by the task and environment (Saltzman & Kelso, 1987; 

Richardson et al., 2016). Task-dynamic models that embody 

these constraints can be embedded in robot systems to 

produce human-like behavior. Because the presented model 

embodies the constraints inherent to herding autonomous 

agents, the model can be extended to include systems that can 
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work alongside humans in other herding-like tasks such as 

fire evacuation and environmental hazard containment. 

Similarly, these systems can potentially be used to steer 

novices to discover more optimal modes of behavior – in the 

shepherding task, but possibly in rehabilitation or educational 

contexts in the future. 

Finally, the shepherding model is symmetrical, but many 

examples exist where distinct but complementary actions are 

needed to reach a collective goal – for example a basketball 

player performing a “pick” while their teammate breaks free 

to take a shot. Work has been done to incorporate the recent 

shepherding model by Strömbom et al. (2014) to two virtual 

sheepdogs, who each are responsible for either collecting or 

driving the herd (Watanabe and Fujioka, 2017). However, the 

sheepdogs’ roles were rigidly defined and led to greater sheep 

dispersion compared to single dog performance who could 

adaptively switch between both modes. Models that allow 

multiple agents to switch between multiple behavioral modes 

without interference are still needed to develop systems that 

can work fluidly alongside humans of various skillsets. 
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Abstract 

People rely on various frames of reference (FORs), such as 
egocentric (EFOR) and intrinsic (IFOR), to represent spatial 
information. The present study examined 
electroencephalogram profiles on a two-cannon task, which 
could regulate the conflict of IFOR-IFOR (red cannon, blue 
cannon) and IFOR-EFOR (target cannon, observer), to 
elucidate the brain mechanisms of FOR conflict processing by 
using event-related potentials (ERPs). Results showed that 
both of the conflicts occurred in the reaction time (RT) and 
there was an interaction between them. ERP results showed 
more negative amplitudes on N2 (276-326 ms) and P3 (396-
726 ms) for IFOR-IFOR conflict of the 180° cannon angle 
condition and EFOR-IFOR conflict of the target cannon 
point-down condition. What’s more, there was also an 
interaction between these two conflicts on the P3 amplitudes 
(561-726 ms). In summary, our findings shed new light on the 
domain-specific conflict monitoring and domain-general 
executive control for the IFOR-IFOR and EFOR-IFOR 
conflicts. 

Keywords: frame of reference; conflict monitoring; 
executive control; parallel process; N2; P3; 

Introduction 

People adopt multiple frames of reference (FORs) to 

represent the spatial relationship of objects in a complex 

environment (Sun & Wang, 2014). Based on the 

relationship with the observer, FORs can be classified into 

three types, egocentric FOR (EFOR), intrinsic FOR (IFOR) 

and allocentric FOR (AFOR) (Mou & McNamara, 2002; 

Tamborello, Sun, & Wang, 2012). An EFOR-based 

representation is anchored to the observer, which needs to 

be updated following the movement of the observer’s eye, 

head, body coordinates (Wang, Johnson, & Zhang, 2001). In 

an IFOR-based representation, an object or an object group 

in the viewing environment but exogenous to the observer is 

used as the reference point. For example, a car is used as an 

IFOR anchor in the description “the cat is in front of the 

car”. IFORs remain stable with the observer’s movement 

but have to be updated when the reference object moves. In 

an AFOR-based representation, the entire environment, such 

as a room or a city, is taken as the reference point. For a 

comprehensive review, see (Mou, Fan, McNamara, & Owen, 

2008; Mou & McNamara, 2002; Sun & Wang, 2010, 2014; 

Tamborello et al., 2012; Yamamoto & Philbeck, 2013).  

“Frame of Reference-based Map of Salience” theory 

(FORMS) states the human brain represents spatial 

information simultaneously using multiple FORs, all FORs 

consist of a FOR map of different salience, and human 

performance is determined by the interaction of all relevant 

FOR-based representations (Itti & Koch, 2000; Sun & 

Wang, 2010, 2014; Tamborello et al., 2012; Wang et al., 

2001; Wang, Sun, Johnson, & Yuan, 2005).  

If different FORs generate different responses for one 

target, conflict may occur which requires cognitive control 

to solve it (Chen, Weidner, Weiss, Marshall, & Fink, 2012; 

Nan, Li, Sun, Wang, & Liu, in press; Sun & Wang, 2014; 

Tamborello et al., 2012). According to the different kinds of 

FORs in the map (one EFOR, one AFOR, multiple IFORs), 

we could categorize the conflict of FORs as four types: 

EFOR-AFOR, EFOR-IFOR, AFOR-IFOR, and IFOR-IFOR. 

Plenty of studies has demonstrated that there exists the 

conflict of EFOR-AFOR (Chen et al., 2012; Conson, 

Mazzarella, Donnarumma, & Trojano, 2012; Zhang et al., 

2014), EFOR-IFOR (Wang et al., 2005). In addition, 

previous studies also showed the process of EFOR and 

AFOR were in parallel. EFOR has high salience and is 

almost processed automatically that needs little cognitive 

resource; EFOR is represented and processed in the dorsal 

visual stream subserving goal-directed actions. AFOR has 

low salience and needs more cognitive resource to process. 

AFOR is represented and processed in the ventral visual 

stream subserving the conscious perception of objects or 

spatial memory function (Goodale & Milner, 1992; Zhang 

et al., 2014).  

However, does it also exist a conflict of IFOR-IFOR and 

AFOR-IFOR? There were rare studies focusing on this 

question. If yes, how does our brain process and solve all 

these conflicts of different FORs (IFOR-IFOR, EFOR-IFOR, 

EFOR-AFOR, AFOR-IFOR)? What’s more, in view of the 

limit cognitive resource, is the process of the multiple 

IFORs also in parallel as same as the process of EFOR and 

AFOR, or just in serial? If the process is in serial, only one 

IFOR could be represented and processed, so we could only 

observe the EFOR-IFOR conflict. Mou et al.(2002, 2008) 

found that people got higher accuracy for recalling spatial 

objects’ locations represented by IFOR than that represented 

by EFOR, this means that people might prefer to use IFOR 
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to represent the environment, so IFOR might not need much 

cognitive resource. According to this,  the process of 

multiple IFORs might be in parallel, different IFORs could 

be represented and processed, so we could observe the 

IFOR-IFOR conflict and the interaction among IFOR-IFOR 

conflict and the EFOR-IFOR conflict.  

Following these questions and hypothesis, we developed a 

two-cannon task (see Figure 1) which could manipulate the 

EFOR-IFOR and IFOR-IFOR conflicts (Nan et al., in press; 

Tamborello et al., 2012). The EFOR-IFOR conflict was 

examined by the target cannon orientation (congruent 

condition: target cannon pointed-up, incongruent condition: 

target cannon pointed-down). The IFOR-IFOR conflict was 

examined by the cannon angle (congruent condition: 0° 

cannon angle, incongruent condition: 180° cannon angle). 

The behavioral studies’ results showed that the IFOR-IFOR 

and EFOR-IFOR conflicts (RTs of the incongruent 

conditions were longer than that of the congruent 

conditions), and there was an interaction between these two 

conflicts. The cannon angle effect supported the hypothesis  

 

 
Figure 1. A schematic illustration of the two-cannon task. 

At the beginning of each trial, a stimulus with two cannons 

(one blue and one red) and eight pellets (in either blue or red) 

was presented on the computer screen for 1000 ms, then the 

target would flash a yellow ring for 1000 ms, participants 

were asked to press two buttons in the keyboard to rotate the 

target cannon (with the same color of the target) to the target 

in the least distance, as quickly as possible. Cannon angle 

(0°,180°) was designed to test the conflict of IFOR-IFOR, 

target cannon orientation (target cannon point-up: the 

combination of target cannon points up-left, up, and up-right 

conditions; target cannon point-down: the combination of 

target cannon points down-left, down, and down-right 

conditions) was designed to test the conflict of EFOR-IFOR. 

that there existed the IFOR-IFOR conflict. The target 

cannon orientation effect supported the hypothesis that there 

existed the EFOR-IFOR conflict. The interaction between 

two conflicts supported the hypothesis that the process of 

different IFORs was in parallel which the two conflicts 

would be interactive at the late response-selection stage. In 

summary, the behavioral results suggested that our brain 

might use a shared conflict processing mechanism for the 

IFOR-IFOR and EFOR-IFOR conflicts. 

However, how does the conflict processing mechanism 

work at the neural level? Are they just process by the same 

conflict processing mechanism or by distinct conflict 

processing mechanisms? The event-related potential (ERP) 

has a high temporal resolution at the millisecond scale and 

could more directly reveal the brain activities of the 

cognitive process, so it is an excellent index to examine the 

neural mechanism of the FORs conflict processing (Luck, 

2014). For the conflict processing, increasing 

electroencephalogram (EEG) evidence has demonstrated 

that the conflict-related N2 component which  occurs 

approximately 250–350 ms after stimulus presentation is an 

effective indicator (Folstein & Van Petten, 2008). The N2 

amplitude is thought to index the degree of conflict, with its 

amplitude increasing as a function of conflict levels (Li et 

al., 2015). P3 was also typically reported to reflect ERP 

modulation of conflict process (Frühholz, Godde, Finke, & 

Herrmann, 2011; Wang, Li, Zheng, Wang, & Liu, 2014). 

By applied the ERP to the two-cannon task, we expected 

to find the neural evidence of the conflict processing among 

different FORs (EFOR-IFOR, IFOR-IFOR), the parallel 

process of multiple IFORs and clarified the conflict 

processing among multiple FORs. Our expectation was that, 

for the behavioral results, we could replicate our previous 

behavioral studies’ results (Nan et al., in press; Tamborello 

et al., 2012), which was that RT and error rates (ERR) were 

larger in the incongruent conditions of the EFOR-IFOR and 

IFOR-IFOR conflicts and there was also an interaction 

between them. For the ERP results, the N2 and P3 results 

could help to reveal the shared or distinct conflict 

processing mechanism of multiple FORs more clearly. We 

expected that the amplitude of N2 and P3 would be more 

negative in the incongruent conditions of the two conflicts 

and there was also an interaction between them.  

Method 

Participants 

Twenty undergraduate students (18–29 years old, average 

22.8 years old, 6 women) participated in the present EEG 

experiment. All participants reported that they had no 

neurological or psychiatric history. All participants were 

right-handed and had normal or corrected-to-normal vision. 

Each participant voluntarily enrolled and signed an 

informed consent form prior to the experiments. This study 

was approved by the Institute of Psychology, Chinese 

Academy of Sciences. 

2791



Procedures 

Participants were seated comfortably in a dimly lit and 

sound-attenuating chamber approximately 80 cm away from 

a computer screen (resolution, 1024×768 pixels, vertical 

refresh rate, 75 Hz). Stimulus presentation and manual 

response measurement were controlled by E-Prime 2.0 

(Psychological Software Tools, Inc., Pittsburgh, PA, USA).  

Each trial began with two cannons surrounding eight 

colored dots for 1000 ms. Then, the target pellet was 

marked by a yellow ring for 1000 ms. Participants were 

instructed to press a button on the keyboard (left-“z” for 

counter-clockwise or right-“/” for clockwise), as quickly 

and accurately as possible, to rotate the target cannon (the 

one with the same color as the target pellet) to shoot the 

target in the least distance. After the target disappeared, a 

fixation cross was presented at the center of the screen for 

1000-1300 ms. 

EEG Recordings and Offline Processing 

The EEG was recorded from 64 scalp sites using Ag/AgCl 

electrodes arranged in an elastic cap according to an 

extension of the International 10-20 system (NeuroScan  

Inc., Herndon, VA). Vertical eye movements were recorded 

by two positioned above and below the left eye. The 

horizontal electrooculogram was recorded using lateral 

electrodes from both eyes. Impedances were below 5 kΩ for 

all recording sites. EEG signals were amplified using a 

NeuroScan SymAmps2 amplifier with a band-pass of 0.05 – 

100 Hz and sampled with 500 Hz. 

All scalp electrodes were referenced to the left mastoid 

online and were referenced to the average of the left and 

right mastoids offline. Each epoch started from 200 ms 

before the onset of the stimulus and lasted 800 ms, with the 

first 200 ms as the baseline. Trials with errors or trials that 

were contaminated with artifacts exceeding ± 100 μV were 

excluded from the analysis. The data were averaged for each 

condition and then digitally low-pass filtered at 30 Hz (24 

dB/octave) with zero phase shift. 

Statistical Analysis 

Behavioral Data Analysis 

Repeated-measures ANOVA and paired-sample t-test were 

performed on reaction times (RTs) of correct responses and 

error rates (ERs) and evaluated at p < .05. Trials with errors 

or with RT beyond three standard deviations were excluded 

from the RT analysis. A repeated-measures ANOVA was 

conducted for cannon angle effect and target cannon 

orientation effect (Figure. 2 B and Table 2), in which the 2 × 

2 factors tested were cannon angle (0°, 180°) and target 

cannon orientation (up, down). Bonferroni correction was 

used for pair-wise comparisons.  

ERP Data Analysis 

The ERPs of correct responses were averaged for each 

condition. The time window for N2 and P3 was identified 

using the following protocol. First, we detected the peak 

latencies of all conditions at the midline electrodes (Fz, FCz, 

Cz, CPz, and Pz) and calculated the mean of these latencies 

for N2 (301 ms) and P3 (561 ms). For the N2 and P3 

components, 50-ms and 330-ms time windows were 

centered on the mean peak latency, respectively. Therefore, 

the cannon angle effect and target cannon orientation effect 

were analyzed within 276-326 ms on N2 mean amplitude 

and within 396-561 and 561-726 ms on P3 mean amplitude 

after stimulus onset.  

Separated repeated-measures ANOVAs were performed 

on the mean N2 and the two time windows of mean P3, 

respectively. The factors cannon angle (0° and 180°), target 

cannon orientation (up and down) and electrode (Fz, FCz, 

Cz, CPz, and Pz) were used to search for cannon angle 

effect and target cannon orientation effect. The significance 

level was set at α < .05 for all ANOVAs. The mean number 

of trials retained for each condition are listed in the trial 

number of Table 1. A two-way analysis of variance 

(ANOVA) was calculated for the trial numbers of cannon 

angle and target cannon orientation, results showed there 

were no significant differences among them. The main 

effect of cannon angle: F(1, 19) = 1.19, p > .05, the main 

effect of target cannon orientation: F(1, 19) = 1.17, p > .05, 

the interaction between them: F(1, 19) = 0.18, p > .05. 

These analysis results eliminated the potential influence of 

different signal-noise ratios to statistical comparison. 

Results 

RTs and ERs 

Regarding RTs (Figure 2 and Table 1), there was a 

significant main effect of target cannon orientation, F(1, 19) 

= 256.74, p < .001, ηp
2
 = .93, indicating that the RT in the 

target cannon point-down condition (697 ± 24 ms) was 

longer than that in the target cannon point-up condition (619 

± 22 ms). There was a main effect of cannon angle, F(1, 19) 

= 50.43, p < .001, ηp
2
 = .73, indicating that the RT in the 0° 

cannon angle condition (558 ± 24 ms) was shorter than that 

in the 180° cannon angle condition (756 ± 22 ms). The 

interaction of the two factors was also significant, F(1, 19) = 

6.48, p < .05, ηp
2
 = .25. Post-hoc analysis showed that target 

cannon orientation effect in the 180° condition (89 ± 13 ms) 

was larger than target cannon orientation effect in the 0° 

condition (68 ± 11 ms), t (1, 19) = 2.55, p < .05.  

ERs showed significant a main effect for target cannon 

orientation, F(1, 19) = 22.54, p < .001, ηp
2
 = .54, indicating 

that the ER in the target cannon point-down condition (7.7 ± 

1.1%) was larger than that in the target cannon point-up 

condition (3.0 ± 0.7%). The main effect of cannon angle and 

the interaction of the two factors were not significant. 

N2 and P3 

Regarding EFPs (see Figure 3), for N2, there was a 

significant main effect of target cannon orientation F(1, 19) 

= 4.88, p < .05, ηp
2
 = .20, with more negative N2 amplitudes  
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Table 1 RTs and ERs for target cannon orientation and cannon angle 

 

 

 

 

 

 

 

 
 

Figure 2. RT of target cannon orientation effect and cannon 

angle effect. RT of the target cannon point-down condition 

was longer than that of the target cannon point-down 

condition; RT of the 180º cannon angle condition was 

longer than that of 0º cannon angle condition. The effect 

size of target cannon orientation effect in the 180º cannon 

angle condition was larger than that in the 0º cannon angle 

condition. 

 

to the target cannon point-down condition (0.27 ± 0.76 µV) 

than to the target cannon point-up condition (0.83 ± 0.76 

µV). There was a marginally significant main effect of 

target cannon orientation, F(1, 19) = 3.51, p = .076, ηp
2
 

= .16, with more negative N2 amplitudes to the 180º cannon 

angle condition (0.02 ± 0.68 µV) than to the 0º cannon angle 

condition (1.07 ± 0.791 µV). There was a marginally 

significant interaction between cannon angle and electrode, 

F(4, 76) = 3.27, p = .057, ηp
2
 = .15, post-hoc analysis 

showed that the cannon angle effect was significant at FCz 

and Cz, ps < .05, revealed that the N2 in the 180º cannon 

angle condition (FCz: -0.38 ± 0.78 µV, Cz: -0.18 ± 0.81 µV) 

was more negative than that in the 0º cannon angle 

condition (FCz: 1.01 ± 0.98 µV, Cz: 1.21 ± 1.07 µV). There 

were no other significant effects obtained. 

For the first time window of P3 (396-561 ms), there was a 

significant main effect of cannon angle, F(1, 19) = 15.39, p 

< .01, ηp
2
 = .45, with more positive P3 amplitudes to the 0º 

cannon angle condition (2.07 ± 0.81 µV) than to the 180º 

cannon angle condition (-0.20 ± 0.65 µV). There was a 

significant main effect of target cannon orientation, F(1, 19) 

= 20.74, p < .001, ηp
2
 = .52, with more positive P3 

amplitudes to the target cannon point-up condition (1.47 ± 

0.69 µV) than to the target cannon point-down condition 

(0.40 ± 0.69 µV). There was a significant main effect of  

electrode, F(4, 76) = 24.01, p < .001, ηp
2
 = .56, with more 

positive P3 amplitudes at Cz, CPz, and Pz compared with Fz 

and FCz (ps < . 001). There was a significant interaction 

between cannon angle and electrode, F(4, 76) =7.42, p < .01, 

ηp
2
 = .28, post-hoc analysis showed that the cannon angle 

effect was significant at five electrodes, ps < .01, and the 

largest difference was at FCz (3.04 ± 0.74 µV). There was a 

significant interaction between target cannon orientation and 

electrode, F(4, 76) =5.42, p < .01, ηp
2
 = .22, post-hoc 

analysis showed that the target cannon orientation effect 

was significant at five electrodes, ps < .01, and the largest 

difference was at FCz (1.36 ± 0.30 µV). No other significant 

effects were obtained. 

For the second time window of P3 (561-726 ms), there 

was a significant main effect of cannon angle, F(1, 19) = 

14.90, p < .01, ηp
2
 = .44, with more positive P3 amplitudes 

to the 0º cannon angle condition (1.91±0.64 µV) than to the 

180º cannon angle condition (0.15 ± 0.64 µV). There was a 

significant main effect of target cannon orientation, F(1, 19) 

= 29.29, p < .001, ηp
2
 = .61, with more positive P3 

amplitudes to the target cannon point-up condition (1.68 

±0.59 µV) than to the target cannon point-down condition 

(0.38 ± 0.62 µV). There was a significant main effect of 

electrode, F(4, 76) = 7.54, p < .01, ηp
2
 = .28, with more 

positive P3 amplitudes at Cz, CPz compared with Fz and 

FCz (ps < .05). There was a significant interaction between 

 

 
 

Figure 3. Grand-average ERP results. A. N2 activity at FCz 

and P3 activity at CPz for cannon angle effect and target 

cannon orientation effect. B. the topography maps of the 

difference waveforms of cannon angle effect and target 

cannon orientation effect. 

Target 

cannon 

orientation 

Cannon angle 

RT(ms) ER(%) Trial number 

0° 180° 0° 180° 0° 180° 

Down 592±25 802±24 7.1±1.3 8.2±1.1 141±7 147±5 

Up 524±23 713±22 2.5±0.8 3.6±0.7 144±7 150±6 
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Figure 4. Three kinds of FOR conflict processing models. The three kinds of models are all parallel models. All of them 

showed the IFORs could be represented and processed in parallel that generates two conflicts of IFOR-IFOR and EFOR-

IFOR. The difference is whether there are specific or shared conflict monitoring module and executive control module. The 

parallel model (1CM1EC) showed that there was only one conflict monitoring module (CM) and one executive control 

module (EC) for both conflicts. The parallel model (2CM1EC) showed that there were two conflict monitoring modules for 

each conflict and only one executive control module for both conflicts. The parallel model (2CM2EC) showed that there 

were two conflict monitoring modules and two executive control modules for each conflict. 

 

cannon angle and electrode, F(4, 76) =5.96, p < .05, ηp
2
 

= .24, post-hoc analysis showed that the cannon angle effect 

was significant at five electrodes, ps < .01, and the largest 

difference was at FCz (3.04 ± 0.74 µV). There was a 

significant interaction between target cannon orientation and 

electrode, F(4, 76) =16.52, p < .001, ηp
2
 = .47, post-hoc 

analysis showed that the target cannon orientation effect 

was significant at five electrodes, ps < .05, and the largest 

difference was at FCz (2.53 ± 0.60 µV). Most interesting, 

there was a significant interaction between cannon angle 

and target cannon orientation, F(1, 19) = 4.56, p < .05, ηp
2
 

= .19, post-hoc analysis showed that target cannon 

orientation effect in the 180º cannon angle condition (1.93 ± 

0.40 µV)  increased and was significant compared to that in 

the 0º cannon angle condition (0.67 ± 0.36 µV). No other 

significant interactions were obtained. 

Discussion 

Overall, the findings of the present study suggested that 

EFOR-IFOR and IFOR-IFOR conflicts had specific neural 

correlates and the process of IFORs was in parallel.  

First, behavioral data showed the conflicts of EFOR-

IFOR and IFOR-IFOR, the interaction between them. 

Second, the ERP results showed that the independent 

cannon angle effect and target cannon orientation effect on 

the N2 amplitudes, from 276 to 326 ms, which indicated the 

independent conflict monitoring modules for the conflicts of 

EFOR-IFOR and IFOR-IFOR. What’s more, the two effects 

interacted on the P3 amplitudes, from 561 to 726 ms, which 

indicated the shared executive control module for the two 

conflicts. 

Yang, Nan, Li, and Liu (2015) used stimulus-response 

compatible tasks to collect behavioral and ERP data to 

support the 2CM1EC model (two domain-specific conflict 

monitoring modules and one domain-general executive 

control module for the conflicts of stimulus-stimulus and 

stimulus-response) of cognitive control for conflict 

processing, compared to the 1CM1EC model and 2CM2EC 

model. For a comprehensive review, see (Li, Nan, Wang, & 

Liu, 2014; Li et al., 2015; Liu, Nan, Wang, & Li, 2013; Liu, 

Park, Gu, & Fan, 2010; Wang et al., 2014; Yang et al., 

2015).  

On the spatial cognition area, we also could hypothesize 

three kinds of model for the conflict processing among 

different FORs (1CM1EC, 2CM1EC, and 2CM2EC, see 

Figure 4). 1CM1EC model shows there is only one general 

conflict monitoring module and one executive control for 

conflicts of EFOR-IFOR and IFOR-IFOR. The 2CM1EC 

model shows there are two specific conflict monitoring 

modules for conflicts of EFOR-IFOR and IFOR-IFOR, and 

one general executive control module for the two conflicts. 

The 2CM2EC model shows there are two specific conflict 

monitoring modules and two specific executive control 

modules for the two conflicts. 

In our task, the behavioral results showed the cannon 

angle effect (conflict of IFOR-IFOR), target cannon 

orientation effect (conflict of EFOR-IFOR) and the 

interaction between them, which supported that the parallel 

process of the IFORs and the shared conflict process 

mechanism at the behavioral level. The ERP results showed 

the independent cannon angle effect and target cannon 

orientation effect on the N2 amplitudes, which further 

suggests there might be two specific conflict monitoring 

modules for the conflicts of EFOR-IFOR and IFOR-IFOR at 

the neural level. What’s more, we also found the two 

effects , and the interaction between them on the P3 

amplitudes. This suggests there might be only one shared 

executive control module for these conflicts at the neural 

level. In summary, our results supported the 2CM1EC 

model for the cognitive control of spatial conflict processing. 

In the current two-cannon task, the AFOR is anchored on 

the computer screen which has the same direction (point-up) 

with the EFOR, so we could not separate the conflict of 

AFOR-IFOR and EFOR-IFOR. In the future, we could try 

to manipulate the AFOR and observe the interaction of all 

kinds of conflict which could be more comprehensive 

understand the spatial conflicts processing of FORs. 
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Conclusion 

Our task replicated the previous behavioral results well. 

What’s more, the ERP results showed that common and 

distinct electrophysiological correlates for EFOR-IFOR and 

IFOR-IFOR conflict processing. On the one hand, EFOR-

IFOR and IFOR-IFOR have domain-specific conflict 

monitoring modules, as revealed by the independent N2 

component. On the other hand, both of them share a 

domain-general executive control module, as revealed by 

the interaction of P3 component. The conflict of IFOR-

IFOR and the interaction of EFOR-IFOR and IFOR-IFOR 

also suggest that the process of different IFORs is in 

parallel.` 
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Abstract 

Studies of social cognition often assume a reductionist, 
computational-representational conceptual framework. 
Distributed cognition is one of the few extant conceptual 
frameworks for a nonreductive understanding of social 
cognition. This concept’s prototypical cases are exclusively of 
technical-scientific human institutions, including ships, 
cockpits, and the Hubble Space Telescope. In the first part of 
the paper, we outline the properties of distributed cognitive 
systems. We look at the case of wolf (Canis lupus) packs as 
an instance of distributed cognition in nonhuman systems. 
Nevertheless, a broad range of social cognitive phenomena 
across human and animal populations may not fit into this 
conceptual framework. We present a case study of bird flocks 
as a counterexample to distributed cognition. We propose 
“swarm intelligence” as an alternative concept of 
nonreductive social cognition. This is not to replace 
distributed cognition as a concept, but to add to and diversify 
the taxonomy of nonreductive social cognitive systems. 

Keywords: social cognition; distributed cognition; swarm 
intelligence; bird flocks; wolf packs;  nonreductive 
explanations 

Introduction 

As a field of research, social cognition grew out of a social 

psychology that was influenced by the cognitive revolution 

and its adherence to the computational-representational 

understanding of mind (CRUM; Gilbert, 1999; Thagard, 

2005). CRUM holds that cognition consists of a series of 

computations performed upon representations. CRUM 

approaches to social cognition are reductionist in that social 

phenomena are explained by recourse to the mental or 

neural mechanisms of individuals. In other areas of the 

cognitive sciences, nonreductive and systems approaches 

have been developed as alternatives to CRUM, e.g., 

ecological psychology (e.g., Gibson, 1979/2015), extended 

cognition (e.g., Clark & Chalmers, 1998), embodied 

cognition (e.g., Rowlands, 2010), radical embodied 

cognitive science (e.g., Chemero, 2009), and radical 

embodied cognitive neuroscience (e.g., Favela, 2014). 

The primary example of a nonreductive understanding of 

social cognition is Edwin Hutchins’ distributed cognition. 

Hutchins (1995a) analyzed the cognitive structure of a navy 

ship’s navigation across a network of agents (sailors) and 

navigational instruments. This study introduced an early 

social cognitive concept that did not reduce explanations to 

events in the brain. In his “cognitive ethnography,” the 

entire system of sailors and nautical instruments constitute a 

cognitive system. Navigation of the ship is achieved only 

through the combined efforts of these actors and tools. 

While distributed cognition has provided a nonreductive 

lens by which to understand social cognition, it is rooted in 

a highly specific prototypical case of social and instrumental 

organization. We outline the properties of distributed 

cognitive systems and give an example of a nonhuman 

social system (wolf packs) in which distributed cognition is 

operating. We then argue that not all social cognitive 

systems are cases of distributed cognition. We argue that 

other forms of social cognition exist, such as swarm 

intelligence, via a case study of bird flocks. 

Distributed Cognition 

Distributed cognition is a nonreductive account of social 

cognition that includes both agents and tools. Social 

cognition is not limited to mental events or brain activity in 

the individual agents who happen to constitute a social 

network. That is not to say that individual mental or neural 

events are irrelevant. However, the unit of analysis is the 

entire organization of agents and tools oriented around 

specific group tasks, such as a navy ship being navigated 

(Hutchins, 1995a) or an airplane cockpit being piloted 

(Hutchins, 1995b). 

In Hutchins’ studies of distributed cognition, the 

paradigm cases are of vehicles operated by two or more 

human agents. An airplane cockpit’s cognitive organization 

consists of two agents (pilot and copilot) and an array of 

navigational instruments. An orthodox CRUM account of 

the social cognition of the cockpit would analyze the mental 

and neural events occurring in the brains of the two pilots. 

For Hutchins, however, the cognitive phenomena of 

perception and locomotion of the airplane as a whole occur 

as a coupled system of the pilots and their instruments. 

Giere (2006) offers the Hubble Space Telescope (HST) as 

another prototypical case of distributed cognition. The HST 

is not merely a vehicle to be navigated or piloted, but a 

complicated instrument measuring ultraviolet, visible, and 

infrared spectra in deep space (Shayler & Harland, 2016). 

Its operators are human, but it is orientated and programmed 

with commands and algorithms rather than piloted or 
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navigated. The HST itself consists of a vast array of 

complex, specialized instruments. Significantly, not only 

does it produce images of deep space objects, but it also 

provides higher-level scientific outputs such as 

“authenticated claims about the age of the universe” (Giere, 

2006, pp. 712-713). In this respect, the HST is more 

cognitively complex than a ship or cockpit. The HST 

collectively produces these scientific outputs as a system of 

instruments, engineers, and scientists. No one instrument or 

operator is sufficient to produce any one of these outputs. 

For example, claims about the age of the universe cannot be 

substantiated without the HST’s spectral analyses of 

galactic redshifts. Likewise, galactic redshifts cannot be 

measured without human programmers or the scientists who 

requested such measurements to, for example, confirm the 

Hubble constant. 

Giere treats the HST as more than a deep space telescope. 

It is a scientific institution producing empirical claims about 

the universe. Nevertheless, like Hutchins’ navy ship and 

airplane cockpit, it remains constituted by a network of 

agents and nonagentic instruments and tools. Kirsh (2006) 

provides a similar framework for distributed cognition, 

altering the methodological focus from a systems analysis to 

one of both individuals and systems, i.e., a “bottom-up top-

down model” (p. 250). We provide a formalized list of the 

components of distributed cognitive systems consistent with 

Hutchins (1995a, 1995b), Giere (2006), and Kirsh (2006).  

Properties of Distributed Cognitive Systems 

Distributed cognitive systems are not explained reductively. 

They are emergent in the sense that they are not merely the 

sum of the individual cognition of its components. 

Crucially, the actors are agentic (Giere, 2006). The sailors 

of the navy ship, pilots of the cockpit, and engineers and 

scientists of the HST exhibit significant degrees of agency. 

These agents maintain their agency even as members of 

the system actively participate in its system-wide goals and 

joint tasks (cf. Amon & Favela, 2017). Significantly, the 

cognitive behavior of a distributed cognitive system is not 

limited to perception and locomotion. Giere’s HST system 

is not merely orientated towards celestial objects to capture 

images. The HST (the physical HST and its operators) 

produces falsifiable scientific claims. The following is 

modified from Amon and Favela (2017). 

S is a distributed cognitive system if: 

D1. S is emergent. 

D2. There is continuous coordination of agents and 

nonagentic tools as members of S. 

D3. Each agent maintains a degree of individual agency 

within S. 

D4. Each agent actively participates in the overall goal or 

joint task in which S is engaged. 

D5. There is specialization of functions among members 

of S. 

D6. The cognitive behavior of S is complex and not 

limited to perception and locomotion. 

In the following, we discuss wolf packs as an example of 

distributed cognition in the nonhuman animal world. We 

then present the case of bird flocks as a counterexample of 

social cognitive systems that are not distributed cognitive 

systems. We propose a new concept for nonreductive social 

systems for cases not in lieu of, but along with, distributed 

cognition. 

Wolf Packs as Distributed Cognitive Systems 

Many paradigm cases of distributed cognition are 

anthropocentric and limited to human technical-scientific 

institutions (e.g., navy ship, airplane cockpit, and HST). 

However, social cognition is not limited to humans or such 

institutions. In some cases, collective animal systems may 

indeed be described by this anthropocentric concept. Wolf 

(Canis lupus) packs on the hunt1 are one such case of 

distributed cognitive systems in the animal world.  

Wolves hunting in pack formation consist of four to 30 

individual members, with hunting efficiency negatively 

correlated to increasing pack size (Mech, Smith, & 

MacNulty, 2015). They are loosely organized around a 

breeder (“alpha” in older literature) but do not operate by a 

command structure. Individuals converge upon the prey 

and, assuming a successful hunt, a single wolf ultimately 

makes the kill (Tang, Fong, Yang, & Deb, 2012). 

Pack hunting patterns, organization, and coordination are 

emergent (D1). Several apparent hunting strategies have 

been noted, including encircling, ambushing, and relay 

hunting (Mech et al., 2015). Mech (2007) notes that wolves 

express a degree of mutual comprehension. He concludes 

from this that wolves communicate hunting strategies. This 

hypothesis assumes the existence of communication 

mechanisms that have yet to be discovered. Current 

evidence provides a more parsimonious account: The 

observed hunting patterns are wholly explicable in terms of 

a set of basic perceptual and locomotive procedures 

operating on the individual level and giving rise to a global 

structure. This simple process constrains the position of 

individual wolves so as to be neither too far away from nor 

too close to other wolves of the pack. Furthermore, 

individual wolves coordinate their own positions relative to 

both their prey and relative to the breeder (Muro, Escobedo, 

Spector, & Coppinger, 2011). Global hunting patterns, such 

as encirclement, are not premeditated, directed, or otherwise 

centrally controlled. They emerge from these basic 

processes of local interaction (see Figure 1). 

Within the pack, there is a continuous coordination of 

wolves (D2). Simulations by Muro and colleagues (2011) 

found that emergent hunting patterns can arise from the 

coordination of spatial positions in real time. Individual 

wolves coordinate their positions relative to those of both 

the breeder and the prey (see Figure 1). No advanced 

                                                           
1 Wolf packs are only distributed cognitive systems in the 

context of the hunt. Outside of this context, they retain only a loose 

association and they do not otherwise share in joint tasks. 

2797



communication of ideas or intentions is necessary to 

produce these patterns. 

 

 
 

Figure 1: D1. Individual wolves continuously coordinate 

their movements based on the spatial positions of the 

breeder (top right) and prey (center). D2. This can result in 

emergent hunting patterns, such as encirclement (after Tang 

et al., 2012). Credit: Ahmed Labban. 

 

Each wolf maintains a degree of individual agency within 

the pack (D3). As noted, the association of the pack is very 

loose. During the hunt, individual wolves often take 

individual initiatives, such as cutting off the prey (Mech et 

al., 2015). Each wolf actively participates in the overall goal 

or joint task in which the pack is engaged (D4). In this case, 

the focus is on hunting. The collective task of hunting may 

be the only activity around which the pack becomes 

cohesive enough to be considered a distributed cognitive 

system. Otherwise, a reductive account as is standard in 

accounts of social cognition may be appropriate. 

There is a specialization of functions among the members 

of the pack (D5). The pack is hierarchical with the breeders 

at the top of the hierarchy (Mech et al., 2015). During the 

chase, the breeder serves as one of the two reference points 

for other wolves. Therefore, there are at least two functional 

differentiations among the wolves of the pack. 

The cognitive behavior of the pack is complex and not 

limited to perception and locomotion (D6). Hunting is a 

goal-oriented process of gathering food. The wolf pack does 

not merely perceive and move towards the prey. It actively 

seeks to slay it in order to consume it. The hunt itself is a 

complex and demanding task and each individual actively 

engages in the task. Certainly this is far less complex of 

behavior than making falsifiable scientific claims about the 

age of the universe. Nevertheless, it is beyond the mere 

perception and locomotion that may characterize the 

simplest of cognitive systems (cf. Maturana & Varela, 1980; 

Thompson, 2007). 

Non-Distributed Social Cognition in Flocks 

The prototypical cases of distributed cognition are of very 

specific types of human institutions. Social cognition is not 

necessarily circumscribed to such specialized technical-

scientific institutions or setups. The social cognition 

exhibited by wolf packs is appropriately treated as 

distributed cognition.2 However, not all social systems, 

human or nonhuman animal, may be compatible with this 

concept. We present bird flocks as an example of 

nonreductive, but non-distributed, social cognition. 

Flocks of birds vary in size across species and 

environments. They can range from less than a hundred to 

many hundreds of thousands of individuals. Quelea quelea 

flocks, for example, typically range from several to 500 

birds but occasionally coalesce to form swarms of biblical 

proportions with comparable plague-like effects on 

agriculture (Crook, 1960). They migrate, evade predators, 

locate food and water, and navigate to roosts.  

Flocks do exhibit some of the features of distributed 

cognition, but not all. Flocks are emergent (D1). Self-

propelled particle (SPP) models, as well as empirical vector 

analyses captured by computerized cameras, have for the 

first time made possible the study of cognition as a property 

of collective systems (Baglietto, Albano, & Candia, 2013). 

SPP models show that global flock patterns and behavior 

can arise from a simple set of procedures governing the 

local interactions of individual birds (Bialek et al., 2012). In 

this respect, they are similar to wolf packs. 

Bialek and colleagues (2012) model starling (Sturnus 

vulgaris) flocks by a set of procedures of alignment 

synchronization. Individual birds each align themselves 

with several proximal birds, henceforth coordinators (see 

Figure 2). The number of birds used for alignment 

synchronization is small, especially relative to the 

potentially enormous size of the flock itself. An increase in 

this parameter to a larger set of coordinators increases the 

entropy of the system, destabilizing the flock and breaking it 

apart into several smaller flocks (Castellana, Bialek, 

Cavagna, & Giardina, 2016). 

There is a continuous coordination of birds within the 

flock (D2). The procedures of alignment synchronization 

are simple and consist of successive zones of attraction, 

repulsion, and orientation (Couzin, 2008). If the coordinator 

is too far away, the bird moves towards it (or is “attracted” 

to it). If the coordinator is too close, the bird moves away 

from it (or is “repulsed” by it). If it is neither too close nor 

too far, it maintains its orientation (cf. Couzin, Krause, 

James, Ruxton, & Franks, 2002). Kattas and colleagues 

(2012) find similar results in homing pigeons (Columba 

livia domestica) using a different method than Bialek and 

colleagues (2012), creating a model directly from recorded 

flight data. These local processes produce an emergent 

global order of flock movement (Cavagna, Giardina, & 

Ginelli, 2013). The apparently wispy and erratic movements 

characteristic of flocks are effects of the inherent noise 

arising from imperfect alignments (Cavagna, Duarte 

Queirós, Giardina, Stefanini, & Viale, 2013). This global 

                                                           
2 O’Donnell and colleagues (2015) describe wasp swarms as 

distributed cognitive systems, a usage inconsistent with the 

established definitions. This is an example of how the lack of an 

array of different concepts of nonreductive social cognition can 

leave some researchers forcing square pegs into round holes. 
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order in turn affects individual flight trajectories in local 

regions of birds. 

Individual agency, to the degree to which it may exist to 

begin with, is not preserved in the flock. This violates D3. 

Individual birds within the flock, insofar as they constitute 

the flock, are not agentic in the same sense that a captain is 

free to abandon their ship. Nor do they express anything 

akin to the minimal agency of wolves in a pack. Individual 

wolves operate as a pack by a loose association and often 

act upon individual initiative (Mech et al., 2015). Birds in a 

flock, on the other hand, act predictably according to the 

basic processes of attraction, repulsion, and orientation. 

While flocks are noisy, the system’s noise is constituted by 

the imperfect coordinating efforts of the birds. 

 

 
 

Figure 2: Individual birds within a flock coordinate their 

movements relative to the positions of a small number of 

proximal birds. Credit: Ahmed Labban. 

 

In violation of D4, each bird does not actively participate 

in the overall goal or joint task in which the flock is 

engaged. When a flock evades a hawk, for example, the 

entire flock does not necessarily perceive the predator. This 

is especially true of larger flocks of tens of thousands of 

members or more. To evade the raptor, it is sufficient that a 

local group within the larger flock perceive and react to it. 

This local reaction, manifest as a sudden shift in flight 

paths, creates a ripple effect in the flock as the other birds 

attempt to realign themselves. In this case, the massive flock 

is not engaged in the joint task of predator evasion. Rather, 

a local group is engaged in predator evasion while the 

majority of the remaining birds are merely continuing to 

implement the processes of attraction-repulsion-orientation.3 

This situation contrasts markedly from that of wolves on the 

hunt, wherein each of the individual wolves perceives the 

prey and is actively engaged in hunting. 

There is no significant specialization of functions among 

the members of the flock. Within the flock, each bird is 

more or less functionally isomorphic to the other birds. 

Hierarchies within flocks exist, but are fluid. “Leader” roles, 

such as directing migration routes (Mouritsen, 2003), are 

interchangeable and constantly shifting (Nagy, Ákos, Biro, 

                                                           
3 This may provide an alternate explanation for why individual 

vigilance against predators in Quelea quelea decreases with flock 

size (cf. Lazarus, 1979). Lazarus explains this effect in terms of an 

economy of energy, but it may simply arise from a situation in 

which only a local region of birds within the flock actively respond 

to predators. 

& Vicsek, 2010). This contrasts with, for example, the 

captain of a ship or a pack breeder. 

The behavior of the flock is limited to perception and 

locomotion, violating D6. Birds are individually complex 

and can perform a variety of functions besides moving and 

perceiving, such as fighting, mating, or raising offspring. 

Insofar as they constitute a flock, however, they are limited 

to basic procedures of attraction-repulsion-orientation.4 

These require only that 1) the bird perceives the 

coordinators, and 2) the bird adjusts its flight accordingly. 

The flock as a system likewise only perceives and moves. In 

the example of predator evasion, the flock (but not 

necessarily each member thereof) perceives the hawk and 

changes its flight patterns to evade it. Flocks do not fight, 

mate, or raise offspring. They are defined only as a 

perceptual-locomotive social system. 

Crook (1960) notes curious synchronized, wave-like 

movements during feeding and drinking in Quelea quelea.  

While drinking, the birds collectively alternate their 

positions, moving forward birds who have not yet drank and 

moving back birds who have. These “wave-like 

progression[s]” (p. 5) are broadly consistent with a system 

of basic attraction-repulsion-orientation processes. 

Nevertheless, SPP studies of avian populations have yet to 

go beyond an analysis of flight patterns and this is a 

particular research desideratum. 

Of the six criteria of distributed cognition, flocks satisfy 

only two. The concept of “distributed cognition” is too 

limited to capture the manifold manifestations of social 

cognitive systems. New concepts are needed to understand 

complex systems such as bird flocks. We introduce “swarm 

intelligence” as a concept capable of describing social 

cognitive systems with characteristics like flocks. 

Swarm Intelligence as a Concept of Social 

Cognition 

We appropriate the term ‘swarm intelligence’ from 

computing. In computing, swarm intelligence describes a set 

of optimization methods with emergent and self-organizing 

algorithms (Yang & Karamanoglu, 2013) inspired by bees, 

ants, wolves, and other collectivist organisms (Beekman, 

Sword, & Simpson, 2008). In our usage, “swarm 

intelligence” refers to a class of rudimentary and non-

specialized social cognitive systems. The prototypical case 

we offer is the bird flock, although it may also cover cases 

such as schools of fish, mosquito swarms, and human 

crowds. 

S is a swarm-intelligent system if: 

S1. S is emergent. 

S2. There is a continuous coordination of individuals as 

members of S. 

S3. Individual agency is minimal insofar as the individual 

constitutes S. 

                                                           
4 The properties of the collective need not resemble the 

properties of its members (Hutchins, 1995a). 
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S4. The cognitive behavior of S is limited to perception 

and locomotion. 

S5. Communication or interaction between members of S 

as they constitute S is minimal. 

S6. The organization of S is relatively isomorphic, with 

no significant specialization of functions. 

Flocks are emergent (S1). Overall flock movement in 

flight arises from the local processes of attraction-repulsion-

orientation. This global order in turn affects the local 

movements of individual birds. Comprehending why one 

bird happens to be caught up in a swirling arm of a 

murmuration requires a dynamical systems analysis of the 

entire flock. There is a continuous coordination of 

individuals as members of the flock (S2). Individual birds 

orientate themselves continuously in reference to several 

neighboring birds (see Figure 2). 

Individual agency is minimal insofar as the individual 

constitutes the flock (S3). We noted this earlier as a 

violation of D3. Regardless of how agentic individual birds 

may be, they do not exhibit any significant agency within 

the collective. The cognitive behavior of the flock is limited 

to perception and locomotion (S4). Flocks are restricted to 

evasion, migration, and food-locating behaviors. For 

example, while ants construct elaborate nests as a form of 

collective shelter, most birds are only capable of creating 

roosts individually. 

Communication or interaction between members of the 

flock insofar as they constitute the flock is minimal and 

there is no communication of intentions (S5). While birds 

have complex modes of communication (e.g. birdsong), 

they do not directly communicate qua members of a flock. 

The only information indirectly communicated is relative 

distance and position. The organization of the flock is 

relatively isomorphic. There are no significant 

specializations of functions among members of the flock 

(S6). Some transient local leaders might guide flight away 

from predators or towards food sources, but these positions 

are not enduring. 

Overall, swarm intelligence is far simpler than distributed 

cognition. It does not necessitate any shared goals or joint 

tasks and its cognitive functions are limited to perception 

and locomotion. Nevertheless, it may describe systems as 

varied as bird flocks, mosquito swarms, schools of fish, and 

human crowds. Indeed, schools of fish and human crowds 

appear to operate by the same basic processes of attraction, 

alignment, and repulsion as do flocks of birds (Couzin, 

2008; Moussaid et al., 2009).  

Conclusion: Towards a Taxonomy of 

Nonreductive Social Cognition 

The field of social cognition remains dominated by 

reductionist and CRUM approaches. Since the mid-1990s, 

studies in distributed cognition have challenged this 

orthodoxy and demonstrated that social cognition can be 

understood from a nonreductive and systems perspective. 

Nevertheless, distributed cognition remains circumscribed 

in its applicability to different social cognitive systems. Its 

paradigm cases are of human technical-scientific 

institutions. We provide formal criteria for the identification 

of distributed cognition consistent with Hutchins (1995a, 

1995b), Giere (2006), and Kirsh (2006). 

Distributed cognition remains useful for describing some 

systems that are nonhuman or non-technical-scientific, such 

as wolf packs. We demonstrate point-by-point how wolf 

packs are cases of distributed cognition. However, this 

concept is inappropriately applicable to many other social 

cognitive systems. We offer bird flocks as a counterexample 

to distributed cognition and propose “swarm intelligence” as 

an alternative concept of nonreductive social cognition. 

These two forms of social cognition are not proposed as 

absolute categories, but rather as relative points of 

difference between which gradations may exist. 

The implications of this are significant. Beyond flocks, 

swarm intelligence is potentially found among schools of 

fish, mosquito and other flying insect swarms, and human 

crowds (cf. Moussaid et al., 2009). Swarm intelligence does 

not operate in lieu of distributed cognition. Nor is it the only 

alternative type of nonreductive social cognition. New 

concepts are needed to establish a more accurate taxonomy 

of nonreductive social cognition as diverse as the 

phenomena under investigation. Such a taxonomy allows 

the many and varied phenomena of social cognition to be 

recognized as such and studied through an appropriate 

theoretical lens (cf. O’Donnell et al. 2015 for a 

misattribution of distributed cognition in part due to such a 

lack of diversity). 

As we have demonstrated, wolf packs or the HST do not 

operate by the same organizational principles as do bird 

flocks. This is not surprising given their radically different 

structures, functions, and components. What is far more 

surprising is that wolf packs operate, on an abstract level, 

analogously to certain technical-scientific institutions. Still 

other types of social cognitive systems await discovery. Ant 

colonies may not be well described by either distributed 

cognition or swarm intelligence. For example, unlike birds 

in a flock, ants have up to 12 modalities of communication 

(Hölldobler & Wilson, 1990). Furthermore, they are able to 

engage in intricate collective projects such as nest building 

without a central planner. Ultimately, the project of creating 

a taxonomy of different social cognitive systems will serve 

to delineate and extend the outer bounds of the concept of 

“cognition.” 
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Modeling categorical perception with auditory neurons
Chris Neufeld

University of Maryland

Abstract: It is well-known that the auditory perception of speech sounds is strongly influenced by the phonetic categories
which divide up acoustic space. This paper approaches the problem of modeling categorical perception from the ground up,
using a linear model of the tuning properties of auditory neurons – the spectro-temporal receptive field (STRF). An STRF
which discriminates voiced from voiceless stops was derived from the TIMIT corpus, and two computer simulations were
conducted to investigate its properties. In one simulation, this model neuron was found to exhibit a categorical response to a
linear voice-onset-time continuum, closely tracking human behavior. In the second simulation, the STRF was found to exhibit
a less categorical, more linear response to a stop-voicing continuum, also in line with human behavior. These two simulations
show that perceptual responses to speech, whether non-linear or veridical, can be modeled by the action of auditory neurons.
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Abstract 

Past research has found that mindfulness meditation training 
improves executive attention and that this effect could be 
driven by more efficient allocation of resources on demanding 
attentional tasks, such as the Flanker Task. However, it is not 
clear whether these changes depend on long-term practice. 
We sought to investigate the effects of a brief, 10-minute 
meditation session on attention in novice meditators, 
compared to a control activity. We also tested moderation by 
individual differences in Neuroticism. We found that 
participants randomly assigned to meditate for 10 minutes 
showed improved performance on incongruent trials on a 
Flanker task, with no detriment in reaction times, indicating 
better allocation of resources. Neuroticism moderated this 
effect, as only those low in Neuroticism showed improved 
allocation of attentional resources following meditation. 

Keywords: mindfulness meditation; attentional network test; 
executive attention; neuroticism 

Introduction 
 Mindfulness is often defined as a two component 
process: (1) attention to present moment experience, 
coupled with (2) an attitude that is open, non-reactive, and 
accepting of things as they are (Bishop et al, 2004; Ludwig 
& Kabat-Zinn, 2008). Over the past few decades a wealth of 
research has emerged in both popular science and academic 
journals on the benefits of mindfulness meditation for 
cognitive performance (e.g., creativity; Ding, Tang, Tang & 
Posner, 2014; attention; Sedlmeier et al., 2012), mental 
health (Hofmann, Sawyer, Witt, & Oh, 2010), negative 
mood (Goyal et al., 2014), treatment for addiction (Brewer 
et al 2011a; Bowen 2014), prejudice and discrimination 
(Lueke & Gibson, 2016), and many other psychological 
processes. One premise in this area of research is that 
becoming mindful of an internal state or physiological 
function, such as one’s breath or heartbeat, can hone 
abilities such as focused attention, working memory, and 
acceptance. In turn, this is thought to have long-term 
positive consequences when mindfulness is trained and 
practiced over an extended period of time.  
 Much of the past research has focused on the effects of 
mindfulness meditation training on attentional processes, 
including alerting, orienting, and executive attention. For 
example, Maclean and colleagues (2010) found that 3 
months of intense meditative training can improve 
performance on tasks of perceptual discrimination and 
sustained visual attention. Elliott, Wallace and Giesbrecht 

(2014) showed that a weeklong intensive meditation retreat 
can improve both executive attention and alerting (but not 
orienting). Jha, Krompinger and Baime (2007), however, 
found that both an 8-week MBSR (i.e., mindfulness based 
stress reduction) course and a 1-month intensive MBSR 
retreat improved orienting but not executive attention. To 
the contrary, Tang and colleagues (2007) used a slightly less 
time-intensive approach and reported that 5 days of 20-
minute training sessions can improve executive attention 
and a more recent empirical article also found that 
mindfulness meditation increased executive attention 
(Ainsworth et al., 2013). In a review article comparing 
multiple forms of meditation, Lippelt, Hommel, & Colzato 
(2014) conclude that there is good evidence to suggest that 
focused attention meditation (such as mindfulness) increases 
sustained attention (Carter et al., 2005; Brefczynski-Lewis 
et al., 2007). Notably, all of these studies have utilized 
extensive meditation training, including multiple hour-long 
sessions administered over an extended period of time. 
 Clearly, the literature on the effects of meditation on 
attention is both diverse and in some disarray, with different 
approaches to meditation (e.g., MBSR retreats vs. daily self-
guided sessions) having divergent effects on different forms 
of attention. In addition, most of these studies have 
examined the effects of intensive, longitudinal meditative 
training composed of multiple sessions over weeks and/or 
years, and often recruit meditation-motivated or experienced 
individuals as participants.  
 Mindfulness meditation training takes many forms in 
the literature, but most often involves either an extended 
immersive experience (e.g., a 3-month retreat) or repeated 
daily practice, either in the form of a multi-week course or 
weeks (or months) of self-guided meditation. Indeed, the 
vast majority of published work has been on the effects of 8 
weeks of training or longer (e.g., Hofmann, Sawyer, Witt, & 
Oh, 2010, Brewer et al 2011b). And, although these studies 
have often documented beneficial outcomes of mindfulness 
meditation practice, the relevance of such time-consuming, 
extensive training is debatable for the average individual 
who might be either unmotivated or unable to dedicate the 
time and resources necessary to reap such benefits. This 
relates to the questions of “dose” – once someone begins to 
practice mindfulness, how soon can they expect to see 
beneficial effects (e.g., Tang et al., 2015; Zeidan, 2015)? A 
few recent studies have shown that 3-4 days of training are 
associated with some beneficial effects (e.g., Zeidan et al., 
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2010a, 2010b). The current study focuses on meditation-
naïve college students, to examine whether 10 minutes of 
meditation may have an immediate impact on attention. This 
approach represents an extreme test of the impact of 
mindfulness meditation on attention, but also may greatly 
expand our knowledge of the power of meditation, its 
boundary conditions, as well as its potential for practice in 
daily life. In the current studies we focus on whether a 
single brief audio-guided meditation can have similar 
benefits for attention in novice meditators.  
` In an initial attempt to examine the effects of a brief 
guided meditation on attention in novice meditators, we 
asked participants to listen to an audio tape (mindfulness 
meditation vs. control) and then subsequently complete a 
version of the Flanker task (Eriksen & Eriksen, 1974; 
Eriksen, 1995), a measure of executive attentional control. 
Participants also completed the Big 5 Personality 
Dimension Inventory to allow for the investigation of 
moderation by individual differences in Neuroticism.  

Method 
Participants. 40 (14 female) undergraduate students 
between the ages of 17 and 22 (M = 19.48, SD = 1.18) were 
recruited from Swarthmore College. Three participants were 
omitted from final analyses because of scores greater than 3 
SDs from the mean (i.e., outliers), leaving a final sample 
size of 37 (12 female; Mage = 19.51, SD = 1.19). 
Participants were entered into a raffle for one of two $25 
prizes as compensation for completion of the study. All 
participants gave informed consent, and the study was 
conducted under the guidance of the Swarthmore College 
Institutional Review Board.  
 
Procedure. Upon arriving at the laboratory, participants 
were told that the purpose of the study was to investigate the 
effects of audio attention on visual acuity. Each participant 
was seated in front of a desktop computer and was asked to 
wear headphones and a blindfold, to allow a focus on the 
audio recording. After the recording, the experimenter 
returned, removed the blindfold, and provided verbal 
instructions for the Flanker task. Participants completed 
twelve practice trials and were given the opportunity to ask 
questions before beginning the experimental trials. 
Following the Flanker task participants completed the Big 5 
Personality Inventory (John, Donahue, & Kentle, 1991) and 
a demographic survey. Finally, the experimenter and 
participant engaged in a face-to-face funneled debriefing 
interview.  
 
Experimental Conditions. Participants were randomly 
assigned to either listen to a 10-minute guided audio 
meditation tape (meditation) or a 10-minute audio control 
tape (control). The mindfulness meditation tape was 
developed based on classic mindfulness instructions used in 
MBSR, and in consultation with several meditation 
teachers. This tape led participants through a breath-focused 
mindfulness exercise oriented towards beginners. It included 

instructions such as “please set the intention to observe your 
experience with an accepting attitude,” “please notice and 
begin to follow the natural and spontaneous movement of 
the breath, not trying to change it in any way,” and “stay 
open and curious about your experience.” The control tape 
was a reading of a National Geographic article about giant 
sequoias. Importantly, both recordings used the same 
speaker, speed of speech, number of words, and had similar 
word frequencies. In addition, both tapes began with 
instructions on posture within the first few seconds, and 
included pauses at approximately the same times and for 
similar durations, throughout.  
 
Flanker Task. The flanker task was delivered using E-
Prime 2.0 software on a Dell computer with a 22” LCD 
monitor (refresh rate = 60 Hz). The flanker array consisted 
of white arrowheads on a black background and was 4.5 cm 
wide by 1.3 cm high. On average participants sat 
approximately 70 cm from the screen, producing a visual 
angle of the array width of 0.026 degrees and of the array 
height of 0.091 degrees. Each trial consisted of a 500ms 
white fixation cross in the center of the black screen, 
followed by an array of five arrows, which remained on the 
center of the screen until a response was made. Participants 
pressed the “f” key with their left hand if the center arrow 
was facing left, and the “j” key with their right hand the 
center arrow was facing right. Flanking arrows were either 
facing in the same direction (i.e., congruent trials) or in the 
opposite direction (incongruent trials; Figure 1). There were 
20 trials in each cell of the 2(direction: left, right) x 2(trial 
type: congruent, incongruent) design, resulting in a total of 
80 trials, presented randomly. Participants were told to 
respond as quickly and accurately as possible. As soon as a 
response was made, the next trial began (i.e., there was no 
intertrial interval). 
 
Big 5 Personality Inventory. After the flanker task, 
participants completed the Big 5 Personality Inventory 
(John, Donahue, & Kentle, 1991), a self-report survey 
consisting of 44 items designed to measure five personality 
factors: Openness, Conscientiousness, Extraversion, 
Agreeableness, and Neuroticism. Participants indicated the 
degree to which they agreed or disagreed with each item on 
a 5-point Likert scale, with endpoints labeled disagree 
strongly (1) and agree strongly (5). Each item began with 
the phrase “I see myself as someone who…”; sample items 
for the Neuroticism subscale items include: “worries a lot” 
and “is emotionally stable, not easily upset,” with the latter 
reverse-coded.  
 
Demographic Survey. Participants also completed a 
standard demographic survey in which they reported their 
age, gender (male, female), and self-reported their race and 
ethnicity.  
 
Debriefing. Finally, participants completed a funneled 
debriefing interview in which they were given the 
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opportunity to report any suspicion about the true purpose 
of the study, as well as reporting any previous experience 
with meditation, including duration and frequency of 
practice.  

Results 
We conducted independent samples t-tests to examine 

any differences between groups of participants randomly 
assigned to listen to the meditation tape versus those 
randomly assigned to listen to the control tape on variables 
including: age, gender, race, Big 5 Personality traits, and 
meditation experience. There were no significant group 
differences on any of these measures. 
 
Response times. RTs for correct trials only were subjected 
to a 2(condition: meditation, control) x 2(trial type: 
congruent, incongruent) general linear model (GLM), with 
the first factor manipulated between-participants and the 
second factor manipulated within-participants (collapsing 
across arrow direction). The main effect of trial type, 
F(1,35) = 129.32, p < 0.001, indicated that participants were 
faster to respond on congruent trials (M = 427.05 ms, SE = 
6.84) than on incongruent trials (M = 466.26, SE = 7.53), a 
replication of past research. No other effects reached 
traditional levels of significance.  
 
Accuracy. Rates of accurate responding were subjected to a 
similar 2(condition: meditation, control) x 2(trial type: 
congruent, incongruent) GLM. The main effect of trial type, 
F(1,35) = 35.123, p < 0.001, indicated that participants were 
more accurate on congruent (M = 0.99, SE = 0.003) than on 
incongruent (M = 0.93, SE = 0.01) trials, another replication 
of past research. The main effect of condition was 
marginally significant, F(1, 35) = 3.10, p = .087, and 
indicated that participants in the mediation condition were 
more accurate (M = 0.97, SE = 0.007) than were participants 
in the control condition (M = 0.95, SE = 0.007). 
Importantly, there was a significant interaction between trial 
type and condition, F(1,35) = 5.24, p = 0.028. Pairwise tests 
showed that whereas both groups of participants were more 
accurate on congruent than on incongruent trials (ps < .05), 
participants in the meditation condition performed better on 
incongruent trials (M = 0.95, SE = 0.01) than did those in 
the control condition (M = 0.91, SE = 0.01), p = .044 
(Figure 2). Participants in the meditation condition (M = 
0.99, SE = 0.004) and the control condition (M = 0.99, SE = 
0.004) performed equally well on congruent trials, p = .39.  

To further probe the effects of meditation on attention 
on the Flanker task, we calculated difference scores to 
capture the overall “Flanker effect” in correct RTs 
(incongruent – congruent) and accuracy (congruent – 
incongruent), separately. Two independent samples t-test 
conducted on these difference scores showed no difference 
between meditation and control conditions in correct RTs, p 
= .48, and a significant difference in accuracy, t(35) = 2.29, 
p = 0.028, such that participants in the meditation condition 
(M = 0.04, SE = 0.06) exhibited a smaller Flanker effect 

than those in the control condition (M = 0.08, SE = 0.06). 
Thus, participants in the meditation condition showed a 
decreased Flanker effect in accuracy – reflecting better 
executive attentional control – as compared to those in the 
control condition, due to their improved performance on 
incongruent trials. 

 
Moderation by Neuroticism. First, we conducted an 
independent samples t-test to examine whether random 
assignment to condition (i.e., meditation versus control tape) 
affected self-reported Neuroticism. As expected, 
Neuroticism did not differ between participants assigned to 
the meditation tape (M = 0.03, SD = 0.97) and those 
assigned to the control tape (M = -0.02, SD = 1.06), t(35) = 
0.14, p = .89. Thus, Neuroticism scores can be assumed to 
represent true, stable individual differences rather than an 
unintended effect of random assignment to condition. 

To examine moderation of the effects of meditation on 
attention by individual differences in Neuroticism, RTs 
were subjected to a 2(condition: meditation, control) x 
2(trial type: congruent, incongruent) x z-scored Neuroticism 
GLM, with the first factor manipulated between-
participants, the second factor manipulated within-
participants, and Neuroticism entered as a continuous 
between-participants covariate. This analysis allows for the 
examination of main effects and the interaction between 
condition and trial time holding Neuroticism constant, as 
well as investigating the main effect of Neuroticism and its 
interactions with all other variables. As expected, this 
analysis merely revealed a main effect of trial type, F(1,33) 
= 126.30, p < .001, such that participants were faster on 
congruent than on incongruent trials even when controlling 
for neuroticism.  

A similar GLM was conducted on accuracy scores. As 
expected, the main and interaction effects reported above 
held when controlling for neuroticism, including the 
condition x trial type interaction, indicating that individuals 
in the meditation condition were more accurate on 
incongruent trials than were those in the control condition. 
However, we also found a condition x trial type x 
Neuroticism interaction, F(1,33) = 3.72, p = .06. To better 
understand this interaction, we examined accuracy estimates 
at 1 SD above and below the mean Neuroticism score. 
Those individuals lower in Neuroticism (-1 SD) generally 
exhibited the overall pattern: individuals in the control 
condition were more accurate to congruent than to 
incongruent trials (p < .001), the two groups did not differ in 
their accuracies to congruent trials (p = .30), but individuals 
in the meditation condition performed better on incongruent 
trials (M = 0.98, SE = .02) than did those in the control 
condition (M = 0.91, SE = .02; Figure 3). Indeed, meditation 
improved performance to such a degree that participants in 
this condition performed as well on incongruent trials (M = 
0.98, SE = .02) as they did on congruent trials (M = 0.99, SE 
= .01), p = .78. Individuals higher in Neuroticism (+1 SD), 
however, showed no effect of meditation: both groups were 
more accurate on congruent than on incongruent trials (ps < 
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.005) and did not differ in accuracy on either trial type (ps > 

.75; Figure 3). 

Discussion 
Results indicate that a brief 10-minute guided 

meditation can improve executive attentional control even in 
naïve, inexperienced meditators. Perhaps more interesting is 
the fact that this meditation-induced improved performance 
was only observed for individuals relatively low in 
Neuroticism; individuals higher in Neuroticism did not 
exhibit any performance boost following meditation. 
Neuroticism, which is characterized by anxiety, high 
negative affect, and worry, may prevent individuals from 
reaping the benefits of meditation, as it may be difficult for 
individuals higher in Neuroticism to disregard their negative 
emotionality and focus on the early stages of mindfulness 
practice. 

Previous research has focused on the reduction of 
neuroticism, anxiety, and stress due to meditation and less 
on personality predictors (e.g., Neuroticism) of response to 
meditation. For example, Williams, Francis, and Durham 
(1976) found that males who practiced transcendental 
meditation (i.e., a self-selected group) were more neurotic 
than the general population, but that they also became less 
neurotic over the course of a 6-month period of study and 
that decreases in Neuroticism were directly associated with 
frequency of meditation. Similarly, Lane and colleagues 
(2007) found that Neuroticism moderated treatment effects 
in a group of individuals who completed training in 
meditation, such that individuals higher in Neuroticism at 
baseline showed greater decreases in negative mood, 
perceived stress, and anxiety over the course of training. 
Thus, Neuroticism appears to have a positive impact on 
more long-term consequences of meditation. Less is known 
about its ability to predict who will benefit from the practice 
of meditation. 

In an early review of the literature, Delmonte (1985) 
argued that prospective meditators often report higher than 
average anxiety levels, and that anxiety predicts lower 
frequency of practice. Ironically, Delmonte (1985) also 
reported that meditation reliably decreases levels of anxiety 
over the course of practice. Furthermore, many studies have 
shown that regular meditators tend to be lower in trait 
Neuroticism (Leung & Singhal, 2004). Thus, greater stress 
and anxiety may drive individuals to engage in meditation, 
while also negatively impacting the frequency of practice. If 
they, however, do persist in meditation, these individuals 
often show decreases in their anxiety and negative affect.  

The current study is unique in that we recruited healthy 
undergraduate students who had not expressed any desire to 
practice meditation and simply measured Neuroticism; in 
this way, we did not bias our sample toward particular 
personality traits. Indeed, we did not tell participants that 
they were engaging in a guided meditation in order to 
minimize expectancy effects. And we controlled for 
frequency of practice by requiring that all participants 
simply complete one 10-minute guided meditation in the 

laboratory. Thus, our results suggest that trait Neuroticism 
may negatively impact the efficacy of short, guided 
meditation; individuals high in anxiety and self-awareness 
may not be able to relax and follow the instructions 
presented in guided audio meditation, thus preventing them 
from reaping the benefits of a meditation intervention. This 
finding has strong implications for the field, as it suggests 
that the very population thought to benefit most from 
meditation (i.e., individuals high in anxiety and 
Neuroticism) may have difficulty initially engaging in the 
practice. As meditation becomes more frequently prescribed 
as part of a holistic treatment for mental health disorders 
often associated with high Neuroticism, including 
depression, phobia, and other anxiety disorders, 
practitioners would benefit from an understanding of the 
difficulties individuals high in Neuroticism face in both 
learning and persisting in the practice of mindfulness 
meditation.  

In sum, our results suggest that even in novices, one 
brief 10-minute audio-guided meditation improves attention. 
Specifically, on an attentional task performed under time 
pressure, participants in the meditation condition exhibited a 
boost in accuracy reflecting increased attentional control. 
Importantly, this effect was strongest for individuals lower 
in Neuroticism, indicating that personality may impact the 
ability to reap the benefits of brief meditation. Although 
much remains to be studied, the current paper suggests that 
brief meditation impacts attention even in novice 
practitioners and therefore has widespread implications. 

 

Figures 
 

 
Figure 1: Trial schema for the Flanker Task. 
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Figure 2: The condition x trial type interaction in 
accuracies. Both groups were more accurate on congruent 

than on incongruent trials, but individuals in the meditation 
condition performed better on incongruent trials than did 

those in the control condition.  
 

 
 

Figure 3: The interaction between condition, trial type, 
and Neuroticism. Meditation was effective in improving 

performance on incongruent trials for individuals lower in 
Neuroticism (-1 SD) but not for those higher in Neuroticism 

(+1 SD).  
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Abstract 

Understanding proportions is a time-intensive process that 
does not come cheap during late childhood and early 
adolescence. It is fostered by learning experiences in which 
students have opportunities to explore, discuss and 
experiment with situations involving proportions. Children 
must undergo many informal learning opportunities before 
they can gain from direct instruction on proportional 
reasoning. In this study, we aimed to determine whether 
physics curricula focusing on the concept of density prepares 
students for learning from a curriculum on proportional 
reasoning. A 2x2 design with the factors “physics curricula” 
(with, without) and “concept used to introduce proportional 
reasoning” (speed, density) was applied to 253 children from 
12 classrooms at the beginning of grade 5. We expected the 
“density, with physics curriculum” group to outperform the 
other three groups. However, only the students who scored in 
the highest quartile on an intelligence measure gained from 
the prior knowledge they had acquired through the physics 
curricula. The results show that curricula on proportional 
reasoning are worthwhile for all students in early 
adolescence. However, more capable students can boost their 
proportional reasoning if they have the chance to acquire 
prior knowledge through a physics curriculum. 

Keywords: proportional reasoning, prior knowledge, STEM 

Theoretical Background 

Proportional reasoning involves comparing ratios within or 
between quantities, and it is based on the formula a/b = c/d. 
The crucial step is understanding the multiplicative 
relationship between the quantities, which means knowing 
that increasing “a” by a certain factor requires either 
multiplying “c” or “b” with the same factor or dividing “d” 
by this factor. Most elementary school children erroneously 
compute differences rather than ratios. Multiplicative 
proportional reasoning strategies are considered a 
cornerstone in the cognitive development of adolescents 
because they are prerequisites for learning more advanced 
mathematics and for understanding scientific concepts in 
various formal domains. Moreover, proportional reasoning 
supports decision making in everyday life, such as when 
cooking or when evaluating sales.  

As stated before, understanding proportions is a time-
intensive process during late childhood and early 

adolescence. It emerges through repeated and varied 
experiences and enables mathematical terms and the 
associated ideas to become connected. The understanding of 
proportions is fostered by learning experiences in which 
students have opportunities to explore, discuss and 
experiment with situations involving proportions. Children 
must undergo many informal learning opportunities before 
they can gain from direct instruction on proportional 
reasoning.  

The period from late childhood to adolescence is one of 
great change, not only in executive control and emotional 
regulation but also in cognitive competencies. Mastering 
science and mathematics competencies requires these 
cognitive tools and skills, which are expected to emerge 
during elementary school. For example, topics such as 
fractions, decimals, or ratios, which are at the focus of 
secondary school mathematics education, presuppose 
proportional reasoning abilities. These abilities emerge from 
extending the number concept beyond simple counting 
(Siegler & Lortie-Forgues, 2014). Elementary school 
children’s competencies in solving mathematical problems 
addressing relations and proportions of numbers are highly 
predictive for secondary school performance, even more so 
than general cognitive abilities (Stern, 2009; Siegler et al., 
2012).  

Broadly applicable formal reasoning skills and learning 
strategies (e.g., proportional, logical and scientific reasoning 
and metacognitive knowledge) result from an interaction 
between brain maturation and education. Additionally, 
proportional reasoning, which is considered a domain-
general competence, emerges from an interaction of 
cognitive development (stimulated by brain maturation) and 
exposure to learning opportunities (Ben-Chaim, Fey, 
Fitzgerald, Benedetto, & Miller, 1998). These broadly 
applicable competencies can be fostered through direct 
instruction, but most children also acquire them incidentally 
by abstracting knowledge acquired during elementary 
school. However, children vary significantly in the ease 
with which they acquire these skills; these differences are 
attributed to person characteristics such as intelligence and 
learning opportunities. Earlier theories of cognitive 
development focused on universal maturation processes and 
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assumed that all children reach a formal reasoning stage 
around puberty (Case, 1993). However, the considerable 
individual differences found within age groups with regard 
to formal reasoning tasks demonstrate the importance of 
domain-specific knowledge. Several studies have detected 
remarkable individual differences in proportional reasoning: 
While some eight-year-olds already master multiplicative 
strategies, some 15-year-olds still struggle, and adults with 
little or no standard schooling may never master these skills 
(Lawson, 1985). Thus, proportional understanding would 
not suddenly appear if there were no formally or informally 
acquired knowledge available upon which to build. For 
example, playing board games in preschool facilitates 
number-line understanding in elementary school (Siegler, & 
Ramani, 2008), and the number-line competencies of 
elementary school children predict later proportional 
reasoning and understanding of fractions (Siegler, 
Thompson, & Schneider, 2011). These and other 
longitudinal intervention studies with preschool and 
elementary school children have identified which learning 
opportunities support children in developing proportional 
reasoning competencies.  

Research has rarely examined how knowledge about 
proportional reasoning is represented in a broader network. 
Represented as a domain-general principle, it should be 
transferable to isomorphic problems in various contexts. 
This kind of transferable knowledge is difficult to acquire 
and requires intensive instruction (Bransford & Schwartz, 
1999). In particular, guided inquiry stands out as an 
effective means to train the transfer of domain-general 
principles across situations and time (Chen & Klahr, 1999, 
2008). Similarly, inquiry-based science and math learning 
has been shown to be a successful means for developing 
domain-specific content knowledge throughout preschool 
(Leuchter, Saalbach, & Hardy, 2014), elementary school 
(Hardy, Jonen, Möller, & Stern, 2006), and secondary 
school.  

A longitudinal focus in researching such a complex concept 
as proportional reasoning would be optimal. However, 
studies often concentrate on short-term interventions to 
identify the learner characteristics and instructional factors 
that affect learning outcomes. These findings do not 
necessarily capture a generic understanding of proportional 
reasoning that can be transferred to superficially different 
but structurally isomorphic problems. Thus, unless learners 
have acquired expertise, they rarely develop representations 
of abstract formal structures such as domain-general 
proportional reasoning (Chi & VanLehn, 2012).  

Embedding a general principle such as proportional 
reasoning in various contexts can support learners in 
developing an abstract understanding of general principles 
that can flexibly be used in novel contexts and situations 
(Alfieri, Nokes-Malach, & Schunn, 2013; Gentner, 2010).  

The Current Study 

The current study builds on the Swiss MINT Study. (MINT 
is the acronym for Mathematics, Informatics, Natural 
Science, and Technology.) In this longitudinal study, 
elementary school teachers were trained in implementing 
physics curricula developed by a team of science education 
experts (https://verlage.westermanngruppe.de/spectra/reihe/ 
KINTBOX). The inquiry-based curricula included four 
different basic physics topics: floating & sinking, air & 
atmospheric pressure, sound & spreading of sound, and 
stability of bridges. Classes started in third and fourth grade. 
The curricula were tailored to develop children’s domain-
specific conceptual content knowledge on these four topics 
(Möller, & Jonen, 2005). 

In every curriculum, children engaged frequently in 
experimentation to explore the different basic physics 
concepts. This inquiry-based approach was accompanied by 
a strong emphasis on instructional guidance and teacher-led 
classroom discussion. Teachers who agreed to participate in 
the study underwent four half-day trainings conducted in 
small groups. In total, the four curricula encompassed 60 
classroom lessons. The floating & sinking curriculum, for 
instance, introduced the concepts of water displacement and 
object density over 15 lessons. 

The children were engaged in extensive guided 
experimentation activities within and across the four 
curricula, and they encountered many examples of 
proportional reasoning. In the swimming and floating 
curriculum, for example, they immersed pieces of different 
materials with a similar size or similar materials with 
different sizes into water to examine how these two 
characteristics influence floating ability. Through this 
inquiry-based process, children learned about the concept of 
density. Therefore, through this curriculum, elementary 
school children gained not only content knowledge but also 
experience with regard to the domain-general concept of 
proportions. None of the four curricula involved general, 
direct remarks about proportional reasoning. 

In this study, we want to find out whether children who 
studied physics curricula that implicitly included 
proportional concepts better comprehend proportional 
reasoning in a subsequent teaching unit than those who 
studied the traditional way. We expected that the manifold 
guided experimentation activities not only fostered 
children’s domain-specific content knowledge but also 
helped them understand abstract mathematical concepts 
such as (the domain-general principle of) proportional 
reasoning. Thus, we expected a significant main effect of 
“physics curricula”.  

We wanted to distinguish between a more general and a 
more specific effect of prior physics curricula. Therefore, 
two curricula on proportional reasoning were developed: 
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one based on the concept of speed, which was not part of the 
physics curriculum, and one based on the concept of 
density, which was central in the unit on floating and 
sinking. The curricula on proportional reasoning were 
applied either to classes that were part of the previously 
described Swiss MINT study (and therefore had undergone 
the physics curricula) or classes that underwent regular 
science education (which usually does not include physics at 
all). Thus, we expected a significant interaction between 
“physics curricula” and “concept used to introduce 
proportional reasoning”. 

This led us to the following research questions and 
hypotheses:  

1. Does early science learning affect later mathematical 
learning (for proportional reasoning)?  
We assumed that later math learning is affected 
positively (but that this effect depends on the problem 
context chosen for the intervention; see next point). In 
other words, we assumed that students with early 
science learning understand proportions better after 
receiving instruction on proportional reasoning. 

2. In what way does early science learning prepare 
students for future learning? Does it work more 
generally or more specifically? 
For the familiar problem context of density, we 
expected a greater advantage; for the non-familiar 
problem context of speed, we expect only marginal 
group differences. We predicted that students who 
underwent the physics curricula were able to link the 
new information to their knowledge about physics. 

In short, we predicted that children who underwent the 
physics curricula and were taught proportional reasoning 
with density scored highest on a transfer test on proportional 
reasoning. 

Method 

Participants 

Participants included 253 children from 12 classrooms at the 
beginning of grade 5 (age: M = 10.73 years, SD = 0.55). 
Participants per cell of the 2x2-design are as follows (see 
below): density/without physics curricula: n = 66, 
density/with physics curricula: n = 62, speed/without 
physics curricula: n = 66, speed/with physics curricula: n = 
59). 

The children in our sample came from different regions of 
Switzerland. All of them were part of the Swiss MINT 
Study and either had completed all four physics themes with 
the aforementioned curricula prior to the curriculum on 
proportional reasoning or were part of a waiting group that 
had not yet started with the physics curricula. Whole 
schools rather than individual teachers volunteered to be a 
part of the Swiss MINT Study (and it was not the students 

who chose a particular school, educational track or 
curriculum). Nevertheless, it can be assumed that teachers 
(and school teams) taking part in the current study were 
STEM oriented and that there were no differences between 
the “waiting group” stage and the “applying the curricula” 
stage. Attempts were made to minimize the differences 
between the student populations by parallelizing the 
catchment areas of schools at the “waiting group” stage and 
the “applying the curricula” stage (rural, agglomeration, city 
and average socioeconomic status of a particular area), as in 
Switzerland, students are assigned to schools according to 
their place of residence. Teachers were recruited through a 
mailing list, and the teachers and classes participated 
voluntarily during their class time. They received no 
monetary compensation.  

We chose fifth-grade classes for the study as this is a time in 
which the development of the understanding of proportional 
reasoning increases, and only towards the end of fifth grade 
(that is, at the end of our intervention) is proportional 
reasoning an explicit part of the official study curriculum. 
Thus, we were able to test whether and to what extent 
proportional reasoning can develop without formal 
instruction and to what extent physics experimentation 
experience additionally boosts this development.   

Procedure 
A 2x2 design with the factors “physics curricula” (with, 
without) and “concept used to introduce proportional 
reasoning” (speed, density) was applied. The curriculum on 
proportional reasoning (both speed and density) consisted of 
3 lessons (45 minutes each) that were based on the idea of 
concreteness fading (Goldstone & Son, 2005). In the speed 
group, children were faced with two cars that traveled the 
same distance in different times, while in the density group, 
children were shown cubes of the same size but different 
weights. Afterwards, the children were faced with different 
combinations of time/distance and weight/volume. The 
dependent variable was a test on proportional reasoning that 
was applied at the end of the curriculum (subsequently 
called the transfer test, as this test consisted of untrained 
word problems). To control for differential effects, a 
measure of general intelligence was applied. 

Material 
Intervention: The intervention was designed in a way that 
is scientifically proven to be most effective. With the 
intervention, we followed some basic principles: We tried to 
make students focus on the underlying mathematical 
structure of a problem and on multiple solution and 
representation strategies. We promoted the use of external 
representations in learning and calculating proportions. We 
explicitly compared and contrasted the different solutions 
and representations (see Ziegler and Stern, 2014). 
Furthermore, we tried to implement self-explanations 
(Jitendra et al., 2008 on schema-based instruction). To 
accomplish this, we combined direct instruction with phases 
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of working alone (vs. in pairs). Furthermore, the lessons 
were based on the idea of concreteness fading (Goldstone & 
Son, 2005). 
Problem presentation influences task difficulty and often 
determines whether a student can solve a problem (see 
Boyer et al., 2008). Our participants therefore solved and 
received feedback on two different problem types: 
comparison problems and missing values problems (see Van 
Dooren, De Bock, Hessels, Janssens, & Verschaffel, 2005). 
The two problem contexts were tightly parallelized, and the 
same values were used in both of them.  
Pre-test, post-test and transfer test (see table 1): In a pre-
test, prior knowledge about the two problem contexts was 
assessed, i.e., students’ knowledge on density and speed. 
Additionally, the N2 subscale of a cognitive ability test 
(kognitiver Fähigkeitstest, KFT; Heller & Perleth, 2000) 
was administered at pre-testing. After the above-described 
intervention (proportional reasoning introduced in the 
context of density vs. speed), a post-test on the 
understanding of proportions (very similar to the pre-test—
the same in structure as the tasks solved during the 
intervention) was administered. Additionally, a transfer test 
(proportion problems embedded into word problems) had to 
be solved (see table 1). All participants of the 2x2 design 
solved the same test versions. Both tests (post and transfer) 
took place one to two days after the intervention.  
Table 1: Schematic view of the experimental design 
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Post-test and transfer test 
(one to two days after the 
intervention) 

- Physics 
knowledge on 
density  

- Prior 
understanding of 
speed 

- Cognitive ability 
test (kognitiver 
Fähigkeitstest, 
KFT; Heller & 
Perleth, 2000), 
subscale N2 

- Post-test: knowledge 
on proportional 
reasoning (in the 
same problem 
context as during the 
intervention) 

- Transfer test: 
knowledge on 
proportionality in 
new problem 
contexts 

Results 

Pre-Test 
Keeping in mind our research question, “Who makes use of 
prior knowledge in a curriculum on proportional 
reasoning?” it was important to check whether prior 
knowledge was actually still available. Indeed, this was the 
case: The physics knowledge test consisting of the themes 
floating & sinking revealed significantly higher knowledge 
in the group with prior experience with the physics curricula 
(and no significant difference between the speed vs. density 
conditions). For the group with prior knowledge, the test 
can be considered a long-term follow-up from the physics 
curricula; the students completed the physics curricula up to 

two years prior to the actual proportional reasoning 
curriculum. For the group without prior experience with the 
physics curricula, the test and the themes were new. For the 
group with prior physics knowledge, the solution rate was 
40%, whereas the solution rate of the group without prior 
experience was slightly over 20%. Therefore, for the 
problem context of density, we can build on the differences 
in knowledge between the groups with and without physics 
curriculum experience. 
For further analyses, we formed subgroups; i.e., we grouped 
participants into quartiles according to the results on the N2 
subscale of the cognitive ability test. The four groups of the 
2x2-design did not significantly differ in their level of 
cognitive abilities, F(3,242) = 0.33, p = 0.8. Additionally, 
when looking at each quartile separately, we find no 
significant difference between the four groups of the 2x2 
design. Therefore, the distribution of cognitive abilities and 
quartile groups is comparable between the four groups of 
the 2x2 design. 
When they had no prior experience with the physics 
curricula, participants of all quartiles scored similarly low, 
and their scores closely overlapped. Cognitive abilities were 
not reflected in the results regarding physics understanding 
when physics had not yet been formally taught. However, 
when the physics curricula had been applied, intelligence 
differences unfolded, with the highest quartile scoring 
significantly higher (47%, right) than the other quartiles (see 
figure 1 and note that error bars indicate standard errors of 
the mean). Thus, the cognitive ability test did its share only 
in the group with prior physics instruction.  

  
Figure 1: Results of the physics test on floating and 
sinking. Left: group with prior experience with the 
physics curricula (for this group, the test can be 
considered a long-term, i.e., up to one year, follow-up 
test). Right: group without experience with the 
physics curricula. Depicted are solution rates; error 
bars indicate standard errors of the mean. Q1-4 refers 
to grouping participants into quartiles according to 
their results on the cognitive ability test, with Q4 
indicating the quartile with the highest cognitive 
ability. 

The test on prior knowledge about speed revealed no 
difference between the groups (with/without physics 
curricula) as a whole and when split into quartiles. “Speed” 
was not part of the physics curricula. Prior knowledge about 
speed, however, was positively correlated with participants’ 
results on the cognitive ability test (r = .32). Cognitively 
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abler participants scored higher on the test of prior 
knowledge about speed. See figure 2 for the differences 
between the quartiles. The average solution rates were 
around 50%. 

 
Figure 2: Test of prior knowledge about speed. Left: 
group with prior experience with the physics 
curriculum. Right: group without experience with the 
physics curriculum. Depicted are solution rates; error 
bars indicate standard errors of the mean. Q1-4 refers 
to grouping participants according to their results on 
the cognitive ability test, with Q4 indicating the 
quartile with the highest cognitive ability. No 
difference between the groups (with/without physics 
curriculum) is found. “Speed” was not part of the 
physics curriculum. 

Post-Test 
The post-test was very similar to the pre-test and had the 
same structure as the tasks solved during the intervention. 
Therefore, the post-test can be viewed as a manipulation 
check of the implemented proportional reasoning 
curriculum. This manipulation check was positive in that 
participants were able to redo tasks that were administered 
during the curriculum (80% of participants solved all tasks 
correctly with no mistakes, and there were no differences 
between the four groups of the 2x2 design).  

Transfer-Test 

Coming to the core results of this study, overall, no 
significant interaction was observed between groups (with 
and without prior physics curricula experience) and context 
of the intervention (values of the ANOVA comparing the 
four cells of the 2x2 design: F(3,236) = 0.94, p = 0.42)). 
Therefore, the main effect of “physics curricula” turned out 
not to be significant. Additionally, the interaction between 
“physics curricula” and “concept used to introduce 
proportional reasoning” turned out not to be significant. 

Therefore, the findings corroborate neither the more general 
nor the more specific hypothesis of a positive influence of 
prior physics curricula on the learning of proportional 
reasoning. This encouraged us to more closely examine 
whether the subgroups possibly gained from the physics 
curricula with regard to learning proportional reasoning. 
Indeed, we did find effects: When grouping participants by 
quartiles according to their cognitive ability measure, we 

found the expected positive effect of prior physics learning 
for students in the highest quartile. Those in the highest 
quartile who underwent the physics curricula scored higher 
on the proportional reasoning transfer test than students in 
the lower three quartiles (p < .05). No such effects were 
found for students in the highest quartile who did not 
undergo the physics curricula. In the transfer test, the 
solution rates were relatively low (mean solution rate just 
slightly over 20%); see figure 3. Similar distributions were 
found when we only looked at the density groups without 
evaluating the speed groups: The highest quartile with prior 
knowledge scored significantly higher than the three lower 
quartiles, and for those without prior knowledge, the 
quartiles did not differ. Taken together, for the most 
intelligent students, the findings corroborate the more 
general hypothesis. Therefore, physics curricula can serve as 
preparation for future learning of proportional reasoning.   

 
Figure 3: Results of the proportional reasoning transfer 
test by physics curriculum (with/without). Left: group 
with prior experience with the physics curriculum. 
Right: group without prior experience with the physics 
curriculum. The transfer test consisted of entirely novel 
proportional word problems. Depicted are solution 
rates; error bars indicate standard errors of the mean. 
Q1-4 refers to grouping participants according to their 
results on the cognitive ability test, with Q4 indicating 
the quartile with the highest cognitive ability. 

 

Discussion 

Our results confirm what has been demonstrated many 
times: Transfer does not come cheap. The study focused on 
learning opportunities that foster the emergence of 
consecutive competencies in related fields. Contrary to our 
expectation, we did not find a general advantage of physics 
learning (more precisely, density learning) for learning 
proportional reasoning taught by referring to density. 

However, students scoring in the highest quartile of the 
intelligence measure were able to make use of the prior 
knowledge they had acquired during the physics curriculum. 
We therefore conclude that intelligence differences can 
unfold students’ individual potential in combination with 
sufficient prior knowledge. If a child has high cognitive 
ability and encounters many examples of proportional 
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reasoning situations, he or she will be prepared for a 
subsequent formal learning situation on proportional 
reasoning. It is the combination of high intelligence and 
prior experience or specific prior knowledge that leads to 
the ability to exploit a learning situation better.  

The results show that curricula on proportional reasoning 
are worthwhile for all students in early adolescence. 
However, more capable students can boost their 
proportional reasoning if they have the chance to acquire 
prior knowledge in a physics curriculum.  

Future work could focus on the question of how physics 
curricula can better support students in understanding 
proportions. It is possible that introducing the abstract 
structure of the mathematical concept prior to inquiry-based 
instruction would have an even greater effect. 
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Abstract 

We infer the thoughts and feelings of other people by taking 
their perspectives, the accuracy of which depends on abilities 
to control egocentric bias. Similar processes could arguably 
be used to understand how we would be affected by future 
events, such as delayed rewards in intertemporal decisions, by 
allowing us to accurately take the perspective of future selves. 
In this paper, we test this idea in two studies. In Study 1, we 
attempted to lower preferences for delayed rewards to 
examine if this redced abilities to control egocentric bias in a 
visual perspective-taking task. In Study 2, we examined the 
neural overlap in intertemporal decision-making and the 
control of egocentric bias in a false-belief theory-of-mind 
task. In both studies, a positive relationship was identified 
between behavioural and neural markers of egocentric bias 
control and preferences for delayed rewards. The overall 
pattern of results suggest the overlap in processes of 
egocentric bias control and those that determine preferences 
in intertemporal choices, and demonstrate for the first time 
the effect of sexual arousal on social cognition in reducing 
abilities to separate one’s own perspective from others’. 

Keywords: intertemporal choice, temporal discounting, 
egocentric bias, perspective-taking, temporoparietal junction 

Introduction 
The ability to see the world from different perspectives, 

imagining the thoughts or feelings that might occur in us 
and others in a variety of situations, is highly useful. It helps 
to take the perspectives of others to understand and interact 
effectively with them. This ability is also useful in an 
intertemporal context, for instance, when faced with 
decisions or events with delayed consequences, we typically 
shift our own perspective into the future to assess how these 
might impact us later. The relationship between these 

capacities for taking the perspectives of others and future 
selves has previously been speculated (see Jamison & 
Wegener, 2010; Mitchell et al., 2011; Buckner & Carroll, 
2007), but it is still unclear if and how they overlap. To 
investigate this, we previously laid out an empirically-
grounded framework to make plausible hypotheses of how 
these capacities relate to each other (O’Connell et al., 2015), 
called the Simulation-based Model of Intertemporal 
Preferences (SMIP).  

The SMIP uses the phenomenon of temporal discounting 
to illustrate how perspective-taking abilities might underlie 
the perception of future events. Temporal discounting 
describes how when making choices between rewards to be 
received now or larger rewards later, the delayed larger 
reward decreases in subjective value when its receipt is 
delayed further in the future, leading to smaller but 
immediate rewards being preferred, and the rate of which is 
indexed by the steepness of the “discounting curve”.  

One way the accuracy of perspective-taking can become 
compromised is through the false presumption that other 
people think or feel the same way as we do, an error called 
egocentric bias, as measured using false-belief theory-of-
mind (ToM) tasks. Neuroimaging studies of psychiatric 
patients and children have found that better control of 
egocentric bias during ToM judgments corresponds to 
stronger coinciding neural activity in the right 
temporoparietal junction (rTPJ) (Gweon et al, 2012; Kana et 
al., 2009; Dodell-Feder et al, 2013). Further reports indicate 
the rTPJ is preferentially activated for false beliefs that 
require egocentric bias control, and not true beliefs 
(Hartwright et al., 2012; Sommer et al., 2007), specifying 
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the role of this region in egocentric bias control, and not 
general capacities of perspective-taking. 

The SMIP hypothesizes that intertemporal choices 
situations are analogous to social situations in which 
perspective-taking occurs, in how there is a target 
perspective to be inferred, and an egocentric perspective 
which needs to be controlled for. The SMIP argues that 
from one’s current egocentric perspective, delayed rewards 
have to be waited for to be received, and therefore incur 
costs-of-waiting that diminishes their subjective value. In 
contrast, from the perspective of one’s future self, there is 
no cost of waiting because they are at the right point in time 
to receive the reward instantly. Controlling this egocentric 
bias when taking the perspective of the future self should 
therefore lead to delayed rewards being preferred more, 
leading to less steep temporal discounting. The SMIP 
further explicitly predicts the rTPJ as one of the key nodes 
for control of egocentric bias during both perspective-taking 
and intertemporal choices. Note these are only a few of the 
mechanisms and predictions outlined in the SMIP which are 
relevant to the current study (for further information see 
O’Connell et al., 2015). 

A recent paper from Soutschek et al. (2016) provides 
direct support for this neural overlap hypothesized by the 
SMIP. In two studies, repetitive transcranial magnetic 
stimulation (TMS) was administered to participants’ rTPJ 
regions to disrupt its function. It was found that both the 
degree of egocentric bias exhibited by participants in a 
visual perspective-taking task, and preferences for 
immediate over delayed reward choices in a temporal 
discounting task, were both subsequently increased. 
Furthermore, a positive relationship between egocentric bias 
and immediate reward preferences was observed across 
individuals. By demonstrating a relationship between 
egocentric bias and increased temporal discounting, these 
two findings can be explained by the SMIP framework.  

In this paper, we tested the hypotheses of the SMIP by 
examining the relationship between egocentric bias control 
and temporal discounting in two studies: 1) examining the 
effect on one process when the other is experimentally 
manipulated, 2) examining their neural overlap using fMRI.  

Study 1: Sexual Arousal Manipulation 
In Study 1, instead of brain stimulation as per Soutschek 

et al. (2016), we attempted to increase the steepness of 
temporal discounting psychologically by inducing sexual 
arousal with erotic images, which multiple reports indicate 
is reliable means of increasing the steepness of temporal 
discounting (Kim & Zauberman, 2013; Van den Bergh, 
Dewitte, & Warlop, 2008; Wilson & Daly, 2004). Sexual 
arousal is thought to lead to steeper temporal discounting by 
causing a generalized state of desire, in which the 
immediacy of a reward overshadows its objective value. For 
a comparison control, equally arousing sports images were 
used, as per Kim & Sauberman (2013). The Director task 
was used to index control of egocentric bias. 

Methods 
Participants and procedure  

Heterosexual German speaking males were recruited (n = 
90, range 19-59 years, mean 29.3) performed tasks in the 
following order: 1) temporal discounting (baseline), 2) 
visual perspective-taking Director task, 3) temporal 
discounting (manipulation-check), 4) Continuous 
performance task (CPT). After task 1) the impulsivity 
manipulation was initiated, where in separate groups 
participants viewed either erotic or arousal-matched sports 
images for 8 s, which occurred every trial of the Director 
task, 6 trials of the temporal discounting task, 13 trials of 
the CPT, for an average of one image every 14 s.  

Temporal discounting (baseline) 
Participants made intertemporal choices between a 

variable amount of money now (< 100€) or 100€ at one of 
four randomly selected delays (months: 1, 3, 6, 12). The 
amount of immediate options and indifferences-points were 
calculated using the double-limits algorithm, and temporal 
discounting rates (k) were estimated by fitting a hyperbolic 
non-linear model to each participant’s indifference-points 

Director task 
In the Director task, participants move objects around a 

set of shelves as instructed by a “director” standing on the 
opposite side, but to take into account that some objects 
cannot be seen by the director because they are occluded 
from their side of the shelf. This requires the participant to 
control for egocentric information from their own viewpoint 
when inferring the director’s. The Director task was 
computerized with a real person in the role of director, and 
the impression of actual shelves was created by positioning 
the participant’s screen back-to-back with the director’s. A 
previously used eye-gaze metric of egocentric bias was used 
- the average dwell time (sum of 100 ms fixations) to 
distractor objects, a basic index of how much the distractor 
object (the correct object from the participant’s egocentric 
viewpoint) was considered as the correct option.  

Participants’ heads were placed in a chin-rest positioned 
in front of an Eye-tribe 30 Hz eye-tracker. Trials began with 
a fixation cross when the experimenter read aloud a scripted 
instruction, then pressed a key to present the shelves on 
screen. Instructions in experimental trials referred to 
distractor objects on dimensions of spatial (e.g. “move the 
top ball” could refer to a higher hidden ball), size (e.g. 
“move the large ball” could refer to a larger hidden ball), or 
semantic (e.g. “move the mouse” could refer to a computer 
mouse or a hidden toy mouse). In control trials instructions 
referred to objects without competing referent. 30 trials 
were performed (24 experimental, 6 control), featuring 9 
sets of 6 objects, presented in a fixed randomized order.  

Temporal discounting task (manipulation-check) 
Participants performed intertemporal choices a second 

time to check the sexual arousal manipulation. Immediate 
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reward options were present from ranges (±10€) around 
participants’ baseline indifference points in 32 trials. 
Changes in temporal discounting were estimated as value-
weighted changes from baseline temporal discounting.  

Continuous Performance Task (CPT) 
The CPT measures general attention to test possibility 

that erotic images affected egocentric bias by merely 
distracting attention from task goals. Single digit numbers 
were presented for 100 ms (1 s ISI), and participants had to 
press one key following a sequence of 3-7 (average every 10 
of 130 trials), and another key otherwise. 

Results 
Effects of sexual arousal manipulation 

Note tests of the hypothesis were directional and 
conducted at the 1-tailed level. In the Director task, dwell 
time to the distractor object was significantly higher 
following erotic (M = 317 ms, SE = .18) images versus 
sports images (M = 270 ms, SE = .17), t(88) = 1.9, p = .032, 
d = .4 (Figure 1B), an effect not observed in control trials, 
t(88) = .043, p = .97. Although changes from baseline 
temporal discounting were ordinally higher following erotic 
(M = 1.5, SE = 3.3) compared to sports (M = -.6, SE = 3.6) 
images, this difference was not significant, t(88) = .44, p = 
.33. There was no significant difference in error rates in the 
CPT task between the erotic (M = 5%, SE = .02) or sports 
(M = 2%, SE = .01) image groups, t(88) = 1.3, p = .18. 

Relationship between egocentric bias and temporal 
discounting 

A linear regression was used to model the relationship 
between baseline temporal discounting rates and egocentric 
bias, controlling for the influence of group. The model 
found that after controlling for the group factor (B = -.524, t 
= -2.11, p = .038), temporal discounting was a significant 
positive predictor of egocentric bias (B = .316, t = 2, p = 
.048). Note, data from the second temporal discounting task 
could not be used for this form of analysis because in this 
task, choice options were pre-determined from baseline, and 
not the double-limits algorithm which is required to reliably 
estimate new temporal discounting rates (Figure 1A).  

 
Figure 1. A: Scatterplot of temporal discounting and 
egocentric bias (residuals partialling out group effects). B: 
Group differences in egocentric bias (error-bars: SE). 

Discussion 
In support of the hypothesis, it was found that people who 

exhibited steeper temporal discounting were also more 
susceptible to egocentric bias. Also in line with this view, 
egocentric bias was higher following erotic stimuli, which 
although previously reported to lead to steeper temporal 
discounting, was not specifically observed here.  

Contrary to previous findings, sexual arousal from did not 
significantly alter temporal discounting here, limiting the 
extent to which changes in egocentric bias can be attributed 
to changes in self-control. One explanation for this null 
finding is that the arousing effects of erotic images had 
habituated by the second time the temporal discounting task, 
after already 15 mins of repeated exposure to images. It’s 
worth noting that in pilot data, where temporal discounting 
was the first task performed, steeper temporal discounting 
was found following erotic images compared to sports 
images (n = 32, p = .05), giving some confidence that full 
counterbalancing of tasks in this study would have increased 
chances of observing effects of sexual arousal on temporal 
discounting. However, this null effect still warrants caution 
in interpreting the results.  

Study 2: fMRI 
In Study 2, we tested the relationship between egocentric 
bias and temporal discounting using fMRI. If rTPJ activity 
during perspective-taking is a correlate of egocentric bias 
control, as hypothesized by the SMIP and suggested by 
empirical evidence, then people higher in this marker should 
prefer delayed rewards more during intertemporal choices. 
To test this hypothesis, we used a false-belief functional 
localizer task to extract activity in the rTPJ related to 
egocentric bias control from each participant. We further 
tested if activity in this rTPJ cluster was higher when 
delayed rewards are chosen, as would be expected if 
egocentric bias control reduces temporal discounting.  

Methods 
Participants and procedure 
36 English speaking adults (21 female, aged 18-34 years, 
mean 22.6) performed the following tasks in order: outside 
scanner, 1) temporal discounting task; inside scanner, 2) 
temporal discounting task, 3) ToM localizer task. 

Temporal discounting (outside scanner) 
Same as temporal discounting task (baseline) in Study 1, 
except with pounds in place of euros, and using the 
following delays (months: 1, 3, 6, 9, 12, 18).  

Temporal discounting (in scanner) 
In the scanner, participants were presented with 

intertemporal choices featuring three delays (months: 6, 9, 
12). As in the temporal discounting task (manipulation-
check) in Study 1, immediate options were estimated from 
participants’ temporal discounting data collected outside 
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scanner in order to predict how participants would decide 
and efficiently balance the number of trials in conditions of 
immediate (IMM) and delayed (DEL) choices, this time 
from value ranges ±£5-15 indifference-points. Trials 
continued until 32 (balanced across delays) were collected 
in which each immediate and delayed rewards were chosen 
(the IMM and DEL conditions). Options were presented 
together for 5 s, followed by a jittered ITI of 7-15 s.  

fMRI temporal discounting acquisition and 
analysis 

25 out of the 36 participants performed the scanner 
version of the temporal discounting task. Scanning was 
conducted using a Siemens 3T Trio MRI scanner with an 
EPI sequence of TR 3 s, TE 30 ms, 2 mm3 voxel size, and 
35 interleaved 3 mm slices. Data were preprocessed using a 
GLM in SPM8, with slice-timing correction, realignment 
for motion correction, field map unwarping, and sequential 
co-registration. We contrasted rTPJ activity in DEL > IMM 
separately for each individual in their specific rTPJ ROIs 
from the ToM task, by first registering individual rTPJ ROIs 
to MNI space using FEAT, and the mean contrast values of 
DEL and IMM conditions were then extracted. 

False-belief ToM localizer task  
The false-belief localizer task consisted of 10 stories 

about other people’s beliefs (False Belief) or historical facts 
(FACT). Each trial started with a blank screen for 12 s, 
followed by the story for 10 s, and then a question screen 
for 4 s, which required a “True” or “False” response.  

fMRI ToM localizer data acquisition and analysis 
Scanning was conducted with an EPI sequence of TR 2 s, 

TE 30 ms, 2 mm3 voxels, and 37 interleaved 3 mm slices. 
Using FSL, data were field map unwarped, pre-whitened, 
motion corrected, slice-time corrected, and high-pass 
filtered at 128 Hz and smoothed at 8 mm FWHM in native 
space. False Belief and FACT trials were defined as the 14 s 
of the story and question screens. Using FEAT, clusters 
from the False Belief > FACT contrast were identified at 
height threshold z = 2.3, cluster threshold p < .05, minimum 
size 200 voxels, Gaussian Random Field FWER corrected. 

rTPJ ToM localization procedure 
An iterative threshold-adjusting procedure was adapted 

from Mitchell (2008) to identify individual rTPJ clusters 
related to false-belief processing. This procedure involved 
increasing the height activation threshold of the False Belief 
> FACT contrast in native space in steps of 10-1, starting 
from p < 0.01 until a cluster in the rTPJ region was 
identified 25-50 voxels in size. Percentage signal change in 
participants’ individual clusters, hereafter referred to as 
rTPJFB. For thoroughness of reporting, this procedure was 
applied to other regions associated with ToM in the left 
temporoparietal junction (lTPJ) and precuneus. 

Results 
Data cleaning and sample selection 

rTPJ clusters could not be localized for two participants, 
and 2 participants were extreme outliers in the DEL vs. 
IMM in the rTPJ ROI (Tukey’s interquartile range), This 
threshold identified two cases for exclusion.  

Correlation between egocentric bias control rTPJ 
response and temporal discounting  

A significant negative correlation was found between 
temporal discounting rates k and rTPJFB, r = -.32, p = .03 
(Figure 2) (lTPJFB, r = -.36, p = .02; precuneusFB, r = -.37, p 
= .01), an effect still significant in the temporal discounting 
scanning session subsample, r = -.36, p = .04.  

 
Figure 2. Scatterplot of temporal discounting and 
magnitude of rTPJFB activity. 

fMRI temporal discounting results  
A significant difference was found in individual rTPJ 

ROIs in DEL > IMM, t = 2.06, p = 0.025 (Figure 3B). 

 
Figure 3. A: Overlaid individual rTPJ ROI clusters 
(crosshairs at peak). B: Differences between choice 
conditions in individual rTPJ ROIs (error bars: SE). 

Discussion 
In Study 2, we found two pieces of evidence in support of 

the hypothesis that better control of egocentric bias reduces 
steepness of temporal discounting. First, people exhibiting a 
higher rTPJ response during false-belief judgments, a 
putative neural marker of egocentric bias control, had less 
steep temporal discounting. Second, responding in the same 
rTPJ cluster involved in egocentric bias control was higher 
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when delayed rewards were preferred over immediate 
rewards when making intertemporal choices in the scanner.  

Evidently, this interpretation of the results relies on a 
reverse-inference about the rTPJ’s function of egocentric 
bias control. Neural markers of egocentric bias control have 
the advantage of being continuous, and more resistant to 
ceiling effects that standard measures (e.g. false-belief 
tasks) are often prone to, making them better suited for 
measuring variability in healthy adults. Increased rTPJ 
activity has been repeatedly shown to be associated with 
higher ToM accuracy (Gweon et al., 2012; Kana et al., 
2009). Similarly here, despite ceiling effects in accuracy in 
the current ToM data, a trending positive correlation was 
noted between this accuracy and magnitude of rTPJ activity 
(r=.23, p=.09), providing some behavioural support for the 
function of rTPJ activity claimed here. Some studies with 
children, who do not show the ceiling effects typically seen 
in ToM tasks in adults, have shown positive links between 
accuracy and preferences for delayed rewards (Launay et 
al., 2015; Marchetti et al., 2014). 

The exact function of the rTPJ in perspective-taking 
remains an open question. Based on reports of the rTPJ’s 
importance in focusing attention on distinctions between 
self and others (e.g. in terms of preferences; Nicolle et al., 
2012), it has been proposed that this region helps avoid the 
perceptual blurring of self and other perspectives that drives 
egocentric bias (Brass et al., 2009). More generally, the 
rTPJ has been claimed to be involved in orienting attention 
towards task goals (Corbetta & Shulman, 2002). In any 
form of choice, it could be argued that a goal to maximize 
reward outcomes, irrespective of the time of receipt, 
becomes activated. In intertemporal choices, delayed 
rewards are larger, and hence, most relevant to this goal. In 
contrast, immediate rewards could be considered 
distractions that draw attention away from this goal, shifting 
focus instead to the immediacy of enjoyment. This view of 
rTPJ function would account for its observed increased 
activation when choosing delayed rewards. 

General Discussion 
The effects in this paper are modest and mixed, but 

support the view that temporal discounting is related to 
abilities of perspective-taking, as hypothesized by the 
SMIP. To sum up, in both Study 1 and Study 2, individual 
differences in perspective-taking corresponded to steepness 
of temporal discounting. In Study 1, an experimental 
manipulation previously shown to led to steeper temporal 
discounting was found to increase egocentric bias. However, 
because of the null effect on temporal discounting itself, the 
extent to which this egocentric bias can be attributed to 
processes overlapping with temporal discounting is limited. 
In Study 2, evidence for the SMIP was found in how 
individually-localized neural markers of egocentric bias 
control were higher when delayed rewards were preferred 
over immediate ones. In all, these findings, provide 
exploratory first steps in examining potential connections 
between intrapersonal and interpersonal forms of cognition. 

Such a connections has numerous theoretical and practical 
upshots. Linking the fields of social cognition and 
intertemproal decision-making would allow the benefits of 
one (e.g. conceptual frameworks in social cognition, 
mathematical models in decision-making) be transferred to 
the other. Practically, it would suggest the potential of 
temporal discounting as a continuous and fast index of 
perspective-taking abilities in adults, which are currently 
required in social cognition research. 

To-date, the overwhelming amount of research in 
intertemporal decision-making has restricted focus to the 
concept of value, and inputs and outputs to its computation. 
Increasingly, more concepts about how this value is 
psychologically represented have come under study, 
including future prospection (Kwan et al., 2015), and 
feelings of connectedness with one’s future (Urminsky, 
2017). The SMIP aims to extend this line of inquiry by 
attempting to provide a mechanism for how these 
representations are built, and why they degrade to cause 
temporal discounting, parsimoniously based on mechanisms 
that already underlie social abilities.  

Sexuality is an integral social setting, but its impact on 
perspective-taking abilities has not been tested before now. 
The present finding thus furthers understanding of how an 
everyday social context modulates mentalizing capacities, 
which vital information for theories to build sufficiently 
detailed descriptions of these processes (for similar work, 
(Galinsky, Magee, Ena Inesi, & Gruenfeld, 2006; Kanske, 
Böckler, Trautwein, Parianen Lesemann, & Singer, 2016; 
Todd, Forstmann, Burgmer, Brooks, & Galinsky, 2015). 

The current findings, along with those of Soutschek et al. 
(2016), encourage further investigations of the overlap in 
intertemporal choice and perspective-taking, but the noted 
inconsistencies warn that conclusive evidence could be 
challenging to find. One clear example of this is the 
difficulty in detecting overlap in capacities that are 
measured by tasks with vastly different structures and 
demands. The results also flag sexual contexts as influential 
to the ability to look past our own perspective to better 
understand those of others, calling for further investigations 
into this important but little understood topic. Future work 
can test the generalizability of these effects in larger 
samples, using different measures, especially ones that can 
measure these capacities in more closely matched structures. 
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Abstract 

Humans are highly social creatures. Evidence from the dot 
perspective task suggests that humans automatically track the 
perspective of other individuals – a disposition that, if true, 
may help to facilitate social interaction. However, variants of 
the original dot perspective task suggest the alternative 
interpretation that the effect in the task is not due to 
perspective taking. Here, we present a new variant, using 
improved stimuli to address these issues. Our results replicate 
previous findings, across both animate and inanimate stimuli, 
and suggest that the effect is due to directional cueing rather 
than automatic perspective taking.  

Keywords: perspective taking; dot perspective task; 
automaticity; theory of mind; mindreading 

Introduction 
The ability to reason about other individuals’ mental states 
(“mindreading”) is thought to be a central component of 
social cognition in humans (Corballis, 2011; Graziano, 
2013; Tomasello, 2008, 2014). In order to explain the social 
abilities that are best accounted for by mindreading, it seems 
necessary that certain forms of mindreading are highly 
efficient (Apperly, 2011; Apperly & Butterfill, 2009; 
Butterfill & Apperly, 2013). Evidence for efficient 
mindreading comes from various experimental paradigms 
(Freundlieb, Kovács, & Sebanz, 2016; Schneider, Slaughter, 
& Dux, 2017; Scott & Baillargeon, 2017), including the dot 
perspective task (DPT) (Samson, Apperly, Braithwaite, 
Andrews, & Bodley Scott, 2010), which suggests that 
participants rapidly and automatically calculate the 
perspective of other agents. 

However, the interpretation of these results is disputed. 
Different variants of the DPT (e.g. Cole, Atkinson, Le, & 
Smith, 2016; Santiesteban, Catmur, Hopkins, Bird, & 
Heyes, 2014) have produced results that may be explained 
by a simple directional effect, in which attention is directed 
not exclusively by the gaze of an agent, but rather by any 
directional stimuli. If the task results are indeed attributable 
to directional cueing, it would undermine the use of this task 
as evidence for fast and automatic mindreading. We 
describe the different variants in the next section, before 
describing a new variant, using Lego figures, that may be 
used to address these issues, and the experimental results 
obtained using it. 
 

Variants of the Dot Perspective Task 
In the dot perspective task, participants observe scenes and 
answer a simple yes/no question based on the number of 
dots in the scene. The scenes that participants view feature 
an on-screen human avatar standing in a room. Arranged on 
walls around the room are various dots. In some scenes, the 
dots all appear in front of the avatar, making the avatar’s 
perspective of the dots consistent with the participant’s: e.g. 
if there are two dots on the front wall, the avatar and the 
participant both see two dots. In other scenes, some of the 
dots are behind the avatar, making the avatar’s perspective 
inconsistent with the participant’s: the avatar might see only 
one dot, while the participant can see two.  

Participants are shown a digit (e.g. “2”), followed by one 
of these scenes, and asked to confirm whether the number of 
dots matches the pre-scene digit by answering “Yes” or 
“No.” In three different experiments, Samson et al. (2010) 
found longer reaction times for inconsistent scenes 
compared to consistent scenes, which they interpreted as 
evidence for “altercentric interference”: the participant had 
to suppress the avatar’s perspective in order to answer the 
question of whether the digit matched their own perspective, 
resulting in a delayed response. This suggests that 
perspective taking, even for an on-screen avatar, is rapid and 
automatic. 

In the first two of these three experiments, participants 
were asked to judge their own perspective on certain scenes 
(cued by the word “YOU” appearing before the digit), and 
the avatar’s perspective on others (cued by the word “HE” 
or “SHE”). Because this may have caused participants to 
take the avatar’s perspective in all scenes, Experiment 3 
instructed participants to ignore the stimuli in the middle of 
the room and judge only their own perspective; the 
consistency effect persisted. 

Santiesteban et al. (2014) argue that the effect of the 
avatar on reaction times was driven not by perspective 
taking of the avatar but rather by a directional effect: 
because the avatar faced one or the other side of the room, 
the participant’s attention might be directed towards stimuli 
on that side. They repeated the experiment using avatar-
sized arrows (rather than columns) as controls, finding a 
consistency effect for both avatars and arrows, both when 
perspective switched between trials (Experiment 1), and  
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when participants were instructed to ignore the stimuli in the 
centre of the room and judge only their own perspective 
(Experiment 2). However, because both kinds of stimulus 
were presented to all participants (i.e. the avatar vs arrow 
manipulation was within-subjects), it is possible that 
participants were transferring the “perspective taking” of the 
avatar over to the arrow.  

Cole et al. (2016) note a further problem with this 
experiment: although arrows and avatars produce a similar 
effect on reaction times, these effects may in fact be driven 
by different processes—perspective taking in the case of the 
avatar, and directional cueing in the case of the arrows. 
Indeed, Marotta, Lupiáñez, Martella, & Casagrande (2012) 
find that, while eye gaze cues participants to a specific 
location, an arrow provides a more general cue. This 
suggests that different processes are involved in following 
the directional cue of an arrow and an avatar.  

As an alternative control, Cole et al. (2016) use a set of 
stimuli that includes a barrier in front of the avatar, as is 
used in mentalising experiments in non-human animals 
(Hare, Call, & Tomasello, 2001). When the barrier 
“window” is open, allowing the avatar to “see” the dots, 
they find the expected consistency effect; but they also find 
the effect when the barrier window is closed, suggesting that 
the effect is driven simply by the directional effect of the 
avatar, rather than by mental state attribution.  

However, the stimuli used in this experiment do not make 
it perfectly clear whether or not the barrier is transparent, 
and the depth and angle of the barrier placement within the 
room could be ambiguous. Further, the temporary nature of 
the barriers may create a problem: given that the participant 
likely assumes that the avatar is a single agent, it is possible 
that participants infer the agent’s knowledge of what is on 
the other side of the barrier on the basis that they can 

sometimes see what is there, and may have done so before 
the barrier window closed.  

Cole et al. (2016) do attempt to deal with these problems. 
The open or closed barriers were shown in different blocks 
of trials, and at the beginning of each block, participants 
were explicitly told whether or not the avatar could see the 
wall that was blocked by the barrier. However, given the 
visual ambiguity of the stimuli, it is possible that this kind 
of explicit knowledge is not taken into account in fast 
processing, when at a glance the image might be 
interpretable in different ways. 

Using different stimuli and a modified experiment design, 
we conducted a conceptual replication of Experiment 3 in 
Samson et al. (2010) and Experiment 2 in Santiesteban et al. 
(2014). Although our experiment was designed to address 
details of Yes vs. No responses and arrow vs. avatar stimuli, 
the design also allowed us to explore the effect of barriers as 
in Cole et al. (2016), while addressing the problems of 
ambiguity. Unlike Samson et al. (2010) but following 
Santiesteban et al. (2014) we used arrows as a directional 
control for avatars; unlike Santiesteban et al. (2014), we 
manipulated avatars vs arrows in a between-participants 
design, rather than within-participants. Our stimuli did not 
have the same temporal and physical ambiguity as the 
images used by Cole et al. (2016) (see Figure 1). We used 
photographs of Lego figures in scenes with unambiguous 
depth in the third dimension, and solid black barriers were 
used, preventing any ambiguity in whether or not Lego 
figures were able to see through them.  

A variety of hiding places allowed balls (our equivalent of 
dots/discs) to be hidden from view of the Lego figures, even 
when placed in front of them. This allowed us to test the 
claim that the altercentric effect could be explained by the 
general directionality of the avatars, rather than perspective 
taking.  

Figure 1: Example scenes.  
A: The main components of each scene. B: Example scene with Sally. 

C: Example scene with Andrew. D: Example scene with arrow. 
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In addition, the use of arrows as control stimuli should 
indicate whether, as in Marotta et al. (2012), the arrows 
have a more general directional effect than the avatars.  If 
this were the case, one would expect arrows to cause a 
reaction time delay only when there are balls placed in the 
opposite direction to that indicated by the arrow; and the 
more specific perspective attributed to avatars to cause a 
reaction time delay in all cases where there are balls not in 
its field of view (regardless of whether they are hidden 
behind a barrier in front of, or behind, the avatar). 

Method 

Participants 
Sixty participants were recruited through the University of 
Edinburgh Student and Graduate Employment Service. 
They were compensated £4 for their participation, which 
lasted approximately 20 minutes. Thirty participants viewed 
stimuli with the Lego figures, and thirty viewed control 
stimuli showing columns with arrows on them. One further 
participant was excluded from analysis because a post-
experiment questionnaire indicated that they had 
successfully guessed the purpose of the experiment. 

Materials 
Participants observed scenes consisting of photographs 
(Figure 1) of Lego figures (dubbed “Sally” and “Andrew” 
for ease of reference), a series of barriers created by Lego 
bricks, and red beads that, at Lego scale, had the appearance 
of red balls. Control stimuli consisted of Lego columns with 
the same colours and proportions as Sally and Andrew, with 
a black arrow on the yellow block, pointing in the same 
direction as a figure’s direction of facing. Each scene 
featured either Sally or Andrew (each figure could appear 
on either side of the screen), and between 0 and 4 balls (with 
a maximum of two balls in any given location). 

Procedure 
On each trial, participants were presented with a fixation 
cross for 750 ms, followed by a digit between 0 and 4 
(displayed for 750 ms), followed by a Lego scene, with the 
words “Yes” and “No” in the bottom corners of the screen 
(Yes-side was counterbalanced across participants but 
remained consistent across trials for a given participant). 
Participants were instructed to judge whether the picture had 
the same number of balls as the digit they had been shown – 
with no other comment given about the other elements of 
the scene – using a two-button button box, pressing the Yes-
side button for yes and the No-side button for no. Scenes 
timed out within 2000 ms if no response was given, and 
moved on to the following trial.  

After completing 12 practice trials with correct/incorrect 
feedback on responses, participants completed 324 trials (36 
filler trials with zero balls, and 288 test trials), in random 
order, divided into four blocks, with a self-paced break 
between blocks. These 288 trials balanced three different 
variables: the number of balls in a scene, the consistency 

between the Lego avatar’s and participant’s perspective, and 
the match between the digit shown and the number of balls 
in the scene.  

There were 72 trials for each number of balls; that is, 72 
scenes with one ball, 72 with two balls, and so on. Half of 
the trials were consistent in perspective: that is, the 
figure/arrow could “see” (i.e. had unobstructed line of sight 
to) the same number of balls that the participant could see. 
The other half were inconsistent, with balls hidden from the 
figure or arrow by either the central, table-like barrier or the 
external wall-like barriers, introducing an inconsistency 
between the participant’s perspective and that of the 
avatar/arrow. The match between the digit shown and the 
on-screen perspective was balanced (Table 1); the results of 
analysis of this variable will be reported in a future paper.  

 
 

Table 1: Match between digit and perspective 
 

 Inconsistent Consistent 

  

Avatar sees 2;  
participant sees 3 

Avatar sees 2; 
participant sees 2 

Digit 
shown 3 2 4 2 3 

Correct 
answer Yes No No Yes No 

Condition Yes No-
Other 

No-
None Yes No- 

None 
 

 
Post-experiment questionnaires were used to assess 

whether participants’ intuitions about the figures’ lines of 
sight matched those of the experimenters. Pictures showing 
a variety of scenes with balls in different positions were 
displayed, and participants were asked to note how many 
balls the Lego figure could see (regardless of whether they 
had just completed the avatar or arrow condition of the 
experiment). All responses to these questionnaires indicated 
that participants did not expect the Lego figures to be able to 
see balls hidden by either the central or external barriers, but 
did expect them to see balls either on the table or at their 
feet.  

The experiment was implemented using PsychoPy (Peirce, 
2010). 
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Results 
We used lme4 (Bates, Maechler, Bolker, & Walker, 2015) 
and lmerTest (Kuznetsova, Brockhoff, & Christensen, 2016) 
to perform a series of linear mixed effects analyses on 
reaction time (RT); RT was our only dependent variable 
given the lack of effect on error rate found in our own data 
and in previous studies. We removed training trials, trials 
with zero balls on screen, timed-out trials (0.69%, n = 119), 
and trials where participants made an incorrect response 
(3.12%, n = 533). As per Whelan (2008), trials in which the 
response RT was lower than 100 ms were also removed, on 
the assumption that these trials could not be genuine 
responses to the stimuli (0.01%, n = 2). No trimming was 
conducted on higher reaction times, given the imposed cut-
off of 2000 ms on all trials. Visual inspection of the reaction 
time data revealed an obvious deviation from the normal 
distribution, necessitating a log transform of the data 
(Baayen & Milin, 2010). 

Figure 2: Mean RTs showing a significant effect of 
Consistency (error bars show 95% CI) and no Stimulus x 

Consistency interaction. The effect of Stimulus is not 
significant (note that Stimulus, unlike Consistency, is 

manipulated between-subjects). Y-axis limited for easier 
comparison with earlier experiments. 

Replication 
We first conducted an analysis of the relationship between 
RT, Consistency and Stimulus. As fixed effects, we entered 
Consistency and Stimulus (with interaction term) into the 
model. As random effects, we included random intercepts 
for participants and images, as well as by-participant and 
by-image random slopes for the effects of Consistency and 
Stimulus (without interaction term, to facilitate model 
convergence).  

Following Samson et al. (2010), the model showed a 
significant effect of Consistency (Figure 2), with consistent 
trials faster than inconsistent trials (β = 0.0471, SE = 0.008, 
p < .001). Contra Samson et al. (2010) but consistent with 
Santiesteban et al. (2014), there was no effect of Stimulus  
(β = -0.065, SE = 0.049, p = .187) and no Stimulus x 
Consistency interaction (β = 0.012, SE = 0.01, p = .220). 
This suggests that an inconsistency in perspective resulted 
in slower responses, but that this was true for both avatars 
and arrows. Our between-subjects manipulation of avatars 
vs arrows ensures that, unlike for Santiesteban et al. (2014), 
this cannot be explained as a consequence of transfer from 
avatars to arrows: our participants seeing the arrow stimuli 
had not seen Lego figures in those positions. 

Figure 3: Mean RTs showing a significant effect of 
Directional Consistency. 

Directional Consistency 
Our experimental setup also allowed us to test the 
hypothesis that the delay is caused not by processing of the 
altercentric perspective, but rather by preferential attention 
to objects in the direction of facing/arrow pointing. We 
predicted, based on Marotta et al. (2012),  that the delay 
would appear only on those trials where balls in front of the 
avatar are within the avatar’s actual field of view, and not 
on trials where there are balls in front of the avatar, but 
hidden by obstacles, consistent with the explanation of 
altercentric interference. We similarly predicted that when 
the stimulus was an arrow instead of an avatar, the delay 
would occur on all trials where there are balls within the 
arrow’s field of reference, regardless of barriers between the 
balls and the arrow. 
                                                

1 Slope estimates represent log transformed RT data. 
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To test these predictions, we re-coded the data to classify 
all trials with balls in front of the avatar/arrow as direction-
consistent, and only those trials where a ball appeared 
behind the avatar/arrow as direction-inconsistent. We then 
modelled the relationship between this Directional 
Consistency, Stimulus, and RT (Figure 3). Contrary to our 
predictions, the results showed that directional-inconsistent 
trials were slower than directional-consistent trials             
(β = 0.047, SE = 0.01, p < .001), with no significant effect 
of Stimulus (β = -0.058, SE = 0.049, p  = .24) and no 
significant interaction (β = 0.004, SE = 0.011, p = .73). This 
suggests that the consistency effect may be driven by 
preferential attention to objects within a directional figure’s 
direction of facing/pointing, regardless of the animacy of 
that figure. 

 
Table 2: Congruence 

 

   

Line of Sight 
consistent 

Directional 
consistent 

Line of Sight 
inconsistent 
Directional 
consistent 

Line of Sight 
inconsistent 
Directional 
inconsistent 

 
However, a further model with both Consistency and 

Directional Consistency as fixed effects found a significant 
effect for both variables (β = 0.032, SE = 0.011, p = .005 
and β = 0.04, SE = 0.008, p < .001 respectively). In order to 
explore this, the data was recoded to classify each scene as 
consistent and/or inconsistent for both definitions of 
consistency (Table 2). That is, each scene could be (a) line 
of sight consistent + directional consistent (balls within the 
avatar’s direction of facing and actual field of view); (b) line 
of sight inconsistent + directional consistent (balls within 
the avatar’s direction of facing, but hidden from the avatar’s 
field of view); or (c) line of sight inconsistent + directional 
inconsistent (inconsistent based on both direction of facing 
and field of view). 

A model with this variable (Congruence) and Stimulus as 
fixed effects (with interaction term) found that line of sight 
consistent + directional consistent trials were faster than 
both line of sight inconsistent + directional consistent        
(β = 0.036, SE = 0.012, p = .003) and line of sight 
inconsistent + directional inconsistent (β = 0.077,              
SE = 0.012, p < .001) trials (Figure 4); a re-levelled model 
showed that line of sight inconsistent + directional 
consistent was significantly faster than line of sight 
inconsistent + directional inconsistent (β = 0.041,               
SE = 0.01, p < .001). There was no effect of Stimulus or 
Stimulus x Congruence interaction.  

 
 

Figure 4: Mean RTs showing a significant effect of 
Congruence: scenes with consistent perspectives and 

unobstructed balls are faster than scenes with inconsistent 
perspectives created by barriers in front of the stimuli; 

which in turn are faster than scenes with balls hidden both in 
front of, and behind, the stimuli. 

Figure 5: Without the confound of peripheral balls, there 
is no effect of Line of Sight consistency on RT. 

 
These results would suggest a role for both Consistency 

and Directional Consistency in affecting reaction times, but 
there is an important confound: within directionally 
consistent scenes, line of sight  consistent scenes can only 
have balls in the centre of the screen, while line of sight 
inconsistent scenes may have balls on the periphery of the 
screen (the same confound does not apply across directional 
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consistent vs. directional inconsistent scenes, which may 
both have peripheral balls). Once data is restricted to only 
those scenes with balls in the centre of the scene (all of 
which are directionally consistent), there is no longer an 
effect of line of sight consistency (β = -0.008, SE = 0.013,  
p = .525, Figure 5). This suggests that the consistency effect 
may be accounted for by the directional hypothesis. 

Conclusion 
These results replicate the headline result of Samson et al. 
(2010) by finding a robust effect of Consistency on reaction 
times. However, they also replicate the results of 
Santiesteban et al. (2014) by finding that the Consistency 
effect appears with inanimate but directional stimuli, even 
when those stimuli appear in a between-participants design. 
Additionally, the analysis of Directional Consistency 
suggests that the effect is driven by a directional cueing 
effect. These findings cast uncertainty on interpretation of 
DPT data as evidence for automatic mindreading. 

Heyes (2014) argues that evidence for a directional 
explanation, such as the data we have presented here, is 
evidence against a mentalising explanation. This dichotomy 
may be too sharp: directionality and perspective taking are 
not unrelated. Taking another individual’s perspective must 
entail first following the direction of their gaze; or, in other 
words, directional effects may be a necessary pre-condition 
of perspective taking. Our results (and other results too) 
suggest that directional effects – which are a relevant input 
into any possible fast and efficient perspective taking – are 
indeed automatic and efficient. They just do not seem to 
necessarily lead to perspective taking. 

If this speculation is correct, it may be important to 
distinguish automatic cognitive processes (i.e. those that are 
mandatory upon the perception of relevant inputs) and 
spontaneous ones (i.e. those that occur quickly and 
efficiently as and when needs arise). Our results – and 
results from other experimental paradigms (e.g. Freundlieb 
et al., 2016; Schneider et al., 2017) – are consistent with the 
interpretation that perspective taking is spontaneous but not 
automatic. Future experimental research could test this 
possibility directly.  
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Abstract 

The current study examined a new spatial integration (SI) 
task, based on figural rather than linguistic stimuli, to 
measure the construct of mental modeling ability. 
Previous tasks conflated linguistic ability with mental 
modeling ability by requiring sentence processing, which 
may have contributed to mixed findings with respect to 
the relationship between mental model ability and 
working memory capacity (WMC). The figural spatial 
integration task produced the canonical continuity effect, 
such that discontinuous items had lower accuracy than 
continuous items. Furthermore, WMC and visuospatial 
ability predicted SI task performance, and both were 
stronger predictors for the continuous condition. The 
interactions between predictors and task conditions 
suggest reliance on heuristics and/or rehearsal during 
performance of the more difficult discontinuous items.   
 
Keywords: Spatial integration, mental modeling, working 
memory capacity, spatial manipulation. 

Introduction 
Mental models are abstract representations of a situation, 
derived from a narrative or some other form of input 
(Ehrlich & Johnson-Laird, 1982). Successful creation of 
mental models contributes to logical thinking (e.g., Bell & 
Johnson-Laird, 1998; Evans, Handley, Harper, & Johnson-
Laird, 1999) and spatial and temporal reasoning (e.g., 
Baguley & Payne, 1999; Carreiras & Santamaria, 1997; 
Roberts, 2000). It is also strongly connected to the ability to 
comprehend written or spoken narratives (Bower & 
Morrow, 1990; de Vega, 1995; Radvansky & Copeland, 
2004).  

The experimental task most commonly used to assess 
spatial mental model ability is the Spatial Integration (SI) 
task (Copeland & Radvansky, 2007; Radvansky & 
Copeland, 2004). In this task, participants are presented 
with a sequence of three sentences (one at a time), each 
describing the spatial relation of two of four objects. 
Immediately following this presentation, participants select 
from an array the picture which represents the correct 
spatial arrangement of the four items. There are two 
conditions referring to how the spatial information is 
presented in the learning phase: continuous and 
discontinuous. In the continuous condition, the second 
screen includes one item from the first screen and the third 

screen includes one item from the second, enabling the 
participant to incrementally construct a mental model. In 
the discontinuous condition, the second screen and third 
screen are switched such that the second screen does not 
contain either of the items in the first screen but the third 
contains one item from each of the previous screens. 

The use of sentence stimuli in this task is, however, 
problematic. First, task performance may reflect verbal 
rather than mental model abilities. Second, the processing 
demand associated with language comprehension may 
obfuscate the relationship between mental model ability 
and key underlying cognitive factors, like working memory 
capacity (WMC; Conway, Kane, Bunting, Hambrick, 
Wilhelm, & Engle, 2005). Extant findings support the 
problematic nature of using sentence stimuli in this task. 
While several studies have found no relationship between 
identification accuracy in the SI task and WMC 
(Radvansky & Copeland, 2001; 2004; Radvansky, Gibson 
& McNerney, 2014), O’Rourke and Bunting (in press) 
found that when controlling for reading comprehension 
ability, WMC predicted accuracy in the discontinuous 
condition. They also found that when participants 
performed the SI task in their second language, second 
language proficiency alone predicted performance. As 
operating in L2 is widely known to absorb available WM 
resources, this finding and the finding for L1 indicate that 
variability related to language processing may obfuscate the 
relationship between WM and mental model creation. 

Copeland and Radvansky (2007), in their study of mental 
model ability in aging adults, a population which generally 
has reduced WMC (Myerson, Emery, White, & Hale, 
2003), examined both verbal and figural versions of the 
task. They implemented the SI task with sentence stimuli 
describing the spatial configurations (Experiment 1), word 
stimuli appearing in the relevant spatial configurations 
(Experiment 2), and picture stimuli appearing in the 
configurations (Experiment 3). Aging adults did very 
poorly on both continuous and discontinuous conditions in 
Experiment 1, with performance on the discontinuous 
condition not differing significantly from chance. WMC 
(indexed by Operation Span; Turner & Engle, 1989) 
predicted identification accuracy in the older participants, 
but not the young adult group. Performance on the 
continuous condition was improved in Experiments 2 and 
3. Only in Experiment 3, the figural version, did aging 
adults perform above chance in the discontinuous 
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condition. WMC predicted performance in both age groups 
in Experiments 2 and 3. Furthermore, this finding suggests 
that the cognitive burden of language processing absorbs 
working memory resources required for successful 
performance of the SI task. 

The goal of the current study was to validate a new 
figural version of the SI task and to examine the 
relationship between task performance and working 
memory capacity. Another potential source of variance in 
this task is spatial visualization ability, which reflects the 
ability to represent and manipulate parts of an image 
(Carroll, 1993). This ability may underpin performance of 
the figural version in particular as stimuli can be 
represented visually immediately, without the step of 
converting word/sentence stimuli into images. Spatial 
visualization ability will, therefore, also be included as a 
predictor in the analysis.  

Method 
Participants 
A total of 161 (96 female) participants between the ages of 
18 and 39 (M = 20.32, SD = 1.67) with normal or 
corrected-to-normal vision were tested and retained for 
analysis in the current experiment. They were paid for their 
participation. Two additional participants were excluded for 
exhibiting a pattern of not following study directions across 
multiple tasks. 

Tasks 

Spatial Integration Task  

The SI task (adapted from Copeland & Radvansky, 2007) 
tests the ability to construct a mental model of the spatial 
arrangement of four items. In the learning phase, 
participants are presented with three screens, each 
containing two of four objects in particular spatial 
arrangements (see Figures 1 and 2). Items are presented in 
the continuous (see Figure 1) or discontinuous condition (in 
which the second and third screens in Figure 1 would be 
switched; see Figure 2). After the learning phase, 
participants must select from eight diagrams the one that 
correctly represents the spatial arrangement of all four 
objects in relation to one another (see Figures 1 and 2 for 
correct arrangement for the example item). The three 
screens in the learning phase are presented for 2 seconds 
per screen, while the test screen remains available until the 
participant responds. The task stimuli consisted of 80 emoji 
downloaded from the Emojione database (emojione.com), 
representing 20 sets of four semantically related emoji (e.g., 
fruits, vegetables, vehicles). Each task item was composed 
of one of the sets of four. Each item appeared once per 
stimulus list. Two forms of the test were created such that 
items were matched across conditions; a particular set of 
emoji appeared in one stimulus list in the continuous 
condition and in the other stimulus list in the discontinuous 
condition. As participants must choose the correct answer 
from eight options, chance performance is about 12%. 

Figure 1. Example of continuous item from the SI task 
with the full spatial arrangement of the four items. 
Participants can build a partial model immediately.  
 

 
Figure 2. Example of corresponding discontinuous item 
from the SI task with the full spatial arrangement of the 
four items. Participants must wait to integrate the 
model based on information that comes on the third 
screen.  

 
Shapebuilder task 
The Shapebuilder (SB) task is a complex visuospatial 
working memory measure (Atkins et al., 2014). In this task, 
participants are shown a series of shapes in a 4 x 4 grid, and 
they must recall the shape, color, and location of the series 
of the shapes in the correct presentation order. There are 26 
items and the number of shapes in each item’s sequence 
increases over the course of the task from two shapes (six 
items), to three shapes (nine items), and finally to four 
shapes (11 items). Points were earned for each shape in the 
sequence for which the location,  shape, and color were 
correctly recalled. Partial credit was awarded if the location 
was correctly recalled. More points were awarded for 
longer sequences. See Atkins et al. (2014) for full scoring 
parameters and for WMC factor loadings alongside other 
working memory measures. 
 
Paper Folding task 
The Paper Folding (PF) task used in the current study to 
measure spatial visualization ability was a computerized 
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test adapted from the ETS Kit of Factor-Referenced Tests 
(Ekstrom et al., 1976). Two forms were created with 20 
items each. Items were ordered by increasing difficulty. As 
participants must choose the correct answer from five 
options, chance performance is 20%. 
 
Procedure 
The tasks pertinent to this study were administered as part 
of a larger battery of 18 behavioral tasks and surveys. The 
18-task battery was administered in two sessions of three 
hours each with the opportunity for breaks between each 
task. Testing took place in a classroom-style computer lab. 
Written consent was obtained at the beginning of the first 
testing session. SI and PF were administered in session one 
and SB was administered in session two.  
 

Results 
Data from six participants in the SB task is missing due to 
study attrition as they did not return for the second session. 
As a result, the sample size for analyses including SB is 
155. We ran Wilcoxon Signed Rank tests comparing forms, 
and found no significant differences; therefore forms for SI 
and PF were collapsed in the correlational analysis. See 
Table 1 and 2 for descriptive statistics and correlations 
among measures, respectively. 

 

Table 1. Task performance – Descriptive statistics 
Task Mean  SD Min Max 

SI_Con .67 .26 .00 1.00 

SI_Discon .52  .22 .00 1.00 

SB 1711.52 466.53 755.00 2325.00 

PF .74 .18 .15 1.00 

 

Table 2. Correlations among measures. Numbers on the 
diagonal reflect average internal consistency.  

Task SI_Con SI_Discon SB PF 

SI_Con (.75)    

SI_Discon .50* (.56)   

SB .44* .33* (.73)  

PF .60* .37* .43* (.86) 

* p < .001 

 

We conducted a logistic multilevel model (MLM, or 
mixed-effects model) on the binary individual trial-level 
accuracy data in order to generalize across participants and 
items and account for the fact that particular items were 
present in both conditions (Baayen et al., 2008; Linck & 
Cunnings, 2015).  Condition (continuous vs. discontinuous) 
was included as a fixed effect, nested within-item, as each 
item appeared in both conditions across the two forms. 

The model predicts estimated log-odds (b) of a correct 
response on the SI task, from which we can derive the 

change in odds and probability of accurate performance on 
the task. The independent variables included to explain 
variance in subject and item performance were Condition 
(Continuous, discontinuous), z-scored SB and PF, and the 
two-way interactions of Condition with SB and PF. Results 
of this modeling procedure are shown in Table 3, with the 
model baseline being the discontinuous condition. 

 

Table 3. Logistic MLM results for SI item accuracy 

Fixed Effects Estimate 
(b) 

Odds 
(exp(b)) 

SE p-
value 

Intercept 0.10 1.11 0.13 .43 

Continuous 0.18 2.17 0.08 <.001* 

SB 0.22 1.25 0.09 .01* 

PF 0.30 1.35 0.09 <.001* 

Con × SB 0.16 1.18 0.10 .09^ 

Con × PF 0.42 1.53 0.09 <.001* 

Random Effects Variance SD  

Intercepts | Subject 0.47 0.69  

Intercepts | Item 0.22 0.47  

* p < .05, ^ p < .10 

The results show a main effect of Condition, confirming 
the effect of continuity for the SI task while controlling for 
the effects of SB and PF. 

The results further show visuospatial WMC and spatial 
visualization (as measured by the SB and PF tasks, 
respectively) contribute independent variance to SI 
accuracy on both discontinuous and continuous items. 
Since SB and PF are z-scored and on the same scale, the 
sizes of the estimates can be directly compared. The effect 
for PF is slightly stronger than for SB on discontinuous 
items (bPF = 0.30 > bSB = 0.22) and the effect for PF is almost 
twice the size of the effect for SB on continuous items (bPF 

+ bCon×PF = 0.72 > bSB + bCon×SB = 0.38). 

The effect for SB is positive: as SB scores increase, so do 
the odds of a correct response on discontinuous items on SI. 
There is a marginal interaction of continuous × SB, 
suggesting that the effect of SB may be even stronger for 
continuous items than discontinuous (see Figure 3).  
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Figure 3. Depiction of SI accuracy regressed on 
Shapebuilder z-scores split by Condition. Shaded area 
around line represents 1 SE. 

 

The effect for PF is also positive: as PF scores increase, 
so do the odds of a correct response on discontinuous SI 
items. Finally, there is a significant interaction of 
continuous × PF, indicating that, for each standard 
deviation increase on PF performance in our sample, the 
odds of a correct response are higher on continuous items 
than discontinuous items on the SI task (see Figure 4). 

Figure 4. Depiction of SI accuracy regressed on Paper 
Folding z-scores split by Condition. Shaded area around 
line represents 1 SE. 

 

Discussion 
The results show that young adults perform similarly on 
this figural, emoji-based version of the SI task to previously 
tested text-based versions of the task. Our mean accuracies 
of 67% for continuous items and 52% for discontinuous 
(both of which are far above chance performance of 12%) 
are consistent with Copeland & Radvansky (2007)’s 
findings using the standard, sentence based task (68% for 
continuous condition and 47% for discontinuous), and their 
figure task (73% for continuous and 53% for 
discontinuous). The fact that accuracy levels and continuity 
effects for our figural version of SI mirror extant findings 
provides evidence that this new version of the task 
performs similarly to the standard task. One limitation of 
this study is that we did not compare performance on our 
figure version to a standard text based version of the SI 
task. 

Our emoji-based SI task extends the findings of 
Copeland and Radvansky (2007) in regards to the utility of 
a non-linguistic SI task and has several advantages over 
their instantiation. In our version of the SI task, the learning 
phase for each item was experimenter-paced such that 
participants saw each of the three screens for two seconds. 
When examined by Copeland, Radvansky and colleagues 
(Copeland & Radvansky, 2007; Radvansky & Copeland, 
2001; 2004; Radvansky et al., 2014) the learning phase was 
self-paced such that participants had as long as they wanted 
for each training screen and reading times for each screen 
were dependent variables. The two-second time limit for 
the present task was ased on pilot data such that it 
represented a window within which most participants 
advanced to the next screen. While accuracy was similar to 
previous results with a self-paced learning phase (Copeland 
& Radvansky, 2007), our experimenter-paced version of 
the task is easier to administer remotely, without a proctor, 
due to a more consistent task duration.  

Another key methodological difference is that our SI task 
included pictures of real-world objects (e.g., coffee, glass) 
across different semantic sets (e.g., vegetables, vehicles), 
allowing greater generalizability of the items than simple 
geometric shapes (e.g., red square, green star). The more 
complex nature of the images could also have led to a lower 
probability of verbal rehearsal strategies, especially since 
the same four colors were used in every trial in the 
Copeland and Radvansky (2007) task; however, future 
research will be needed to test this claim.  

Finally, the current study had greater power than 
Copeland and Radvansky (2007), in that there were more 
trials (20 versus 8 total, 10 versus 4 by condition), more 
participants (161 versus 60, the latter split between two 
groups), and all trials were used for more powerful 
statistical analyses thanks to a multilevel model design.  

The examination of the cognitive underpinnings of 
mental model ability showed that both WMC and spatial 
visualization ability predict performance on the SI task. 
Spatial visualization ability emerged as a slightly stronger 
effect than WMC. Interestingly, both predictors accounted 
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for more variance in the Continuous condition than the 
discontinuous condition. 

In contrast to other studies using text based versions of 
the task (Copeland & Radvansky, 2007, Exp. 1; Radvansky 
& Copeland, 2001; 2004; Radvansky et al., 2014), the 
current study found evidence for WMC as a predictor of 
performance on the SI task in young adults. As previously 
noted, lack of effects using the sentence-based SI task 
could be due in part to the processing demands associated 
with converting linguistic representations into spatial 
representations. Furthermore, the interim spatial 
representations must be maintained while the next sentence 
is parsed into spatial information. While in figural form, the 
SI task is demanding on WM resources, eliminating the 
sentence as a conveyor of spatial information may have 
resulted in an increase in resources available for mental 
model creation. 

Another possible reason for lack of effect in previous 
studies, particularly for the discontinuous condition, is that 
WMC may be a weaker predictor in the discontinuous 
condition, as shown by the marginal two-way interaction in 
the current study. This may be due to the “choke” factor 
whereby high WMC individuals start performing like low 
WMC individuals when they are under pressure (Sattizahn, 
Moser, & Beilock, 2016; Wang & Shah, 2014), such that 
WMC no longer predicts performance.  

Strategy use may be another factor reducing the effect of 
individual WMC on performance. Wang and Shah (2014) 
note that when heuristics are available, people with high 
and low WM spans may perform similarly. It may be that 
all participants develop strategies in order to reduce the 
cognitive effort (Shah & Oppenheimer, 2008) involved in 
determining the correct response in the discontinuous 
condition and, therefore, WMC would no longer predict 
performance. For example, in the discontinuous condition, 
after seeing the third screen in the learning phase, a 
participant may only partially incorporate the spatial 
arrangement such that he/she knows the positioning of two 
of the four images (e.g., top two images in the square). This 
information, though incomplete, may be enough to select 
the correct answer in the test phase. It may be possible in 
future iterations of the task to reduce the utility of heuristics 
via changes to the design. Specifically, the options in the 
test phase could be modified such that strategy use would 
be less likely to lead to a correct response.  

Another possibility is that participants were more likely 
to engage in rehearsal in the discontinuous task. Rehearsal 
is a means of maintaining information in a short-term 
memory store, without any WM or executive involvement 
(Conway, Cowan, Bunting, Therriault, & Minkoff, 2002). 
As such, if participants were more likely to use rehearsal in 
order to remember the spatial configurations in the 
discontinuous condition, then WMC would be a less 
effective predictor of performance. There are many 
strategies for preventing rehearsal during cognitive task 
performance (Cowan, 2008). One example is adding a 
secondary processing task (e.g., counting backwards) for 
participants to perform during the period in which 
information needs to be retained. Given that the retention 

interval is fairly brief in this task, it is not clear that a 
secondary processing task would be effective. Another 
option might be further reducing the time for which the 
screens in the learning phase are presented to a less 
comfortable pace. This adjustment would likely have 
consequences, however, for the WMC demand. Additional 
testing is necessary to determine how researchers can 
prevent rehearsal in this task. 

While WMC accounted for a significant amount of 
variability in SI performance, spatial visualization ability 
emerged as a stronger predictor. It is, perhaps, unsurprising 
that spatial visualization ability would predict performance 
on a spatial reasoning task like SI, particularly our figural 
version. Spatial visualization ability interacted with task 
condition such that its utility as a predictor was better in the 
continuous condition. This pattern is, of course, similar to 
the pattern observed for WMC, but with spatial 
visualization ability the effect was significant.  

This finding supports the account that in the 
discontinuous condition, participants were more likely to 
not create true spatial mental models but rather to use 
heuristics or rehearsal in order to determine the correct 
answer at test. The case for rehearsal is particularly strong 
in that reduced role of spatial visualization ability in the 
discontinuous condition suggests that participants may not 
be creating visual representations. If that is the case, then 
verbal rehearsal is one way to perform the task. While the 
example of a strategy described above requires some level 
of visuospatial representation, there may be strategies, other 
than rehearsal, that do not. 

Hitherto unexamined effects of individual variability in 
spatial visualization ability may have been another factor 
contributing to the mixed findings in the literature with 
respect to the contribution of WMC. In the previous text-
based versions of the SI task, perhaps individuals with 
poorer spatial visualization ability had more difficulty 
transitioning from text-based representations to full visual 
representations, regardless of WMC, and therefore were 
unable to create a spatial mental model of the four items.  

In conclusion, the current study validated a figure version 
of the SI task such that results from this task show 
performance levels and continuity effects consistent with 
previous studies. Given that this task is not sensitive to 
individual variability in language processing, or even native 
language, it can be used as a more pure measure of spatial 
mental model ability. This conclusion is supported by the 
finding that WMC predicted task performance in the figure 
version of the task, and language-related variability may 
have obscured this relationship in previous studies. 
Furthermore, we present evidence that spatial visualization 
ability is a significant predictor of task performance, and 
that while both WMC and spatial visualization ability 
predicted performance in both conditions, there was 
evidence suggesting the effect was stronger in the 
continuous condition. Future research will determine the 
source of this interaction. 

2831



References 

Atkins, S. M., Sprenger, A. M., Colflesh, G. J., Briner, T. 
L., Buchanan, J. B., Chavis, S. E., ... & Harbison, J. I. 
(2014). Measuring Working Memory Is All Fun and 
Games. Experimental Psychology, 61, 417-438. 

Baayen, H., Davidson, D., and Bates, D. (2008). Mixed-
effects modeling with crossed random effects for subjects 
and items. J. Mem. Lang. 59, 390–412. doi: 
10.1016/j.jml.2007.12.005 

Baguley, T., & Payne, S.J. (1999). Recognition memory for 
sentences from spatial descriptions: A test of the episodic 
construction trace hypothesis. Memory & Cognition, 27, 
962-973. 

Bell, V.A., & Johnson-Laird, P.N. (1998). A model theory 
of modal reasoning. Cognitive Science, 22, 25-51. 

Bower, G.H., & Morrow, D.G. (1990). Mental models in 
narrative comprehension. Science, 247, 44-48. 

Carreiras, M., & Santamaria, C. (1997). Reasoning about 
relations: Spatial and nonspatial problems. Thinking and 
Reasoning, 3, 191-208. 

Carroll, J. B. (1993). Human cognitive abilities: A survey of 
factor-analytic studies. Cambridge, MA: Cambridge 
University Press. 

Conway, A.R.A., Kane, M.J., Bunting, M.F., Hambrick, 
D.Z., Wilhelm, O. & Engle, R.W. (2005). Working 
memory span tasks: A methodological review and user’s 
guide. Psychonomic Bulletin & Review, 12(5), 769-786. 

Conway, A. R., Cowan, N., Bunting, M. F., Therriault, D. 
J., & Minkoff, S. R. (2002). A latent variable analysis of 
working memory capacity, short-term memory capacity, 
processing speed, and general fluid 
intelligence. Intelligence, 30(2), 163-183. 

de Vega, M. (1995). Backward updating of mental models 
during continuous reading of narratives. Journal of 
Experimental Psychology: Learning, Memory & 
Cognition, 21, 373-385. 

Ekstrom, R. B., French, J. W., Harman, H. H., & Dermen, 
D. (1976). Manual for kit of factor-referenced cognitive 
tests. Princeton, NJ: Educational Testing Service. 

Ehrlich, K., & Johnson-Laird, P. N. (1982). Spatial 
descriptions and referential continuity. Journal of Verbal 
Learning and Verbal Behavior, 21(3), 296-306. 

Evans, J.St.B.T., Handley, S.J., Harper, C.N.J., & Johnson-
Laird, P.N. (1999). Reasoning about necessity and 
possibility: A test of the mental model theory of 
deduction. Journal of Experimental Psychology: 
Learning, Memory, & Cognition, 25, 1495-1513. 

Linck, J. A., and Cunnings, I. (2015). The utility and 
application of mixed-effects models in second language 
research. Language Learning, 65, 185–207. doi: 
10.1111/lang.12117 

Myerson, J., Emery, L., White, D. A., & Hale, S. (2003). 
Effects of age, domain, and processing demands on 

memory span: Evidence for differential decline. Aging, 
Neuropsychology, and Cognition, 10(1), 20-27. 

O’Rourke, P. & Bunting, M. (in press). The Cognitive 
Underpinnings of Mental Model Construction in L1 and 
L2.  Quarterly Journal of Experimental Psychology.   

Radvansky, G.A., & Copeland, D.E. (2001). Working 
memory and situation model updating. Memory & 
Cognition, 28, 1073-1080. 

Radvansky, G. A., & Copeland, D. E. (2004). Working 
memory span and situation model processing. The 
American journal of psychology, 191-213. 

Radvansky, G.A., & Dijkstra, K. (2007). Aging and 
situation model processing. Psychonomic Bulletin & 
Review, 14, 1027-1042. 

Radvansky, G. A., Gibson, B. S., & MCNERNEY, M. W. 
(2014). Working memory, situation models, and 
synesthesia. The American journal of psychology, 127(3), 
325-342. 

Roberts, M.J. (2000). Strategies in relational inference. 
Thinking and Reasoning, 6, 1-26. 

Sattizahn, J. R., Moser, J. S., & Beilock, S. L. (2016). A 
Closer Look at Who “Chokes Under Pressure”. Journal 
of Applied Research in Memory and Cognition, 5(4), 
470-477. 

Shah, A. K., & Oppenheimer, D. M. (2008). Heuristics 
made easy: an effort-reduction framework. Psychological 
Bulletin, 134(2), 207-222. 

Turner, M.L. & Engle, R.W. (1989). Is working memory 
capacity task independent? Journal of Memory and 
Language, 28, 127-154. 

Wang, Z., & Shah, P. (2014). The effect of pressure on 
high‐and low‐working‐memory students: An elaboration 
of the choking under pressure hypothesis. British 
Journal of Educational Psychology, 84(2), 226-238. 

 
Acknowledgements 

This research is based upon work supported, in whole or in 
part, with funding from the United States Government. Any 
opinions, findings and conclusions, or recommendations 
expressed in this material are those of the author(s) and do 
not necessarily reflect the views of the University of 
Maryland, College Park and/or any agency or entity of the 
United States Government. Nothing in this article is 
intended to be and shall not be treated or construed as an 
endorsement or recommendation by the University of 
Maryland, United States Government, or the author of the 
product, process, or service that is the subject of this article. 
Correspondence concerning this article should be addressed 
to Polly O’Rourke, Center for Advanced Study of 
Language, University of Maryland, 7005 52ndAvenue, 
College Park, MD 20742 (e-mail: 
porourke@casl.umd.edu). Special thanks to Meredith 
Mislevy Hughes and Valerie Karuzis. 
 
 

2832



A Domain-Independent Approach of Cognitive Appraisal Augmented by Higher
Cognitive Layer of Ethical Reasoning
Suman Ojha (Suman.Ojha@student.uts.edu.au)
Jonathan Vitale (Jonathan.Vitale@uts.edu.au)

Mary-Anne Williams (Mary-Anne.Williams@uts.edu.au)
University of Technology Sydney – Centre For Artificial Intelligence

Innovation and Enterprise Research Lab (The Magic Lab), 15 Broadway, Ultimo NSW 2007, Australia

Abstract

According to cognitive appraisal theory, emotion in an indi-
vidual is the result of how a situation/event is evaluated by the
individual. This evaluation has different outcomes among peo-
ple and it is often suggested to be operationalised by a set of
rules or beliefs acquired by the subject throughout develop-
ment. Unfortunately, this view is particularly detrimental for
computational applications of emotion appraisal. In fact, it re-
quires providing a knowledge base that is particularly difficult
to establish and manage, especially in systems designed for
highly complex scenarios, such as social robots. In addition,
according to appraisal theory, an individual might elicit more
than one emotion at a time in reaction to an event. Hence, de-
termining which emotional state should be attributed in rela-
tionship to a specific event is another critical issue not yet fully
addressed by the available literature. In this work, we show
that: (i) the cognitive appraisal process can be realised without
a complex set of rules; instead, we propose that this process
can be operationalised by knowing only the positive or nega-
tive perceived effect the event has on the subject, thus facili-
tating extensibility and integrability of the emotional system;
(ii) the final emotional state to attribute in relation to a specific
situation is better explained by ethical reasoning mechanisms.
These hypotheses are supported by our experimental results.
Therefore, this contribution is particularly significant to pro-
vide a more simple and generalisable explanation of cognitive
appraisal theory and to promote the integration between theo-
ries of emotion and ethics studies, currently often neglected by
the available literature.
Keywords: Cognitive appraisal theory; computational emo-
tion model; emotion combination; ethics

Introduction
The attribution of an emotional state to self or others can oc-
cur when a complex state of the organism is accompanied by
variable degrees of awareness, often referred to as appraisal
(Scherer, 2001). Two levels of appraisal can be distinguished
(Lambie & Marcel, 2002): a first-order phenomenological
state and a conscious second-order awareness. Both states
can be either self-directed (first-person perspective) or world-
directed (third person perspective) (Vitale, Williams, John-
ston, & Boccignone, 2014). The present work will be con-
cerned in discussing the nature of the conscious second-order
appraisal process, known as cognitive appraisal process of
emotion.

Traditional literature in emotional processing studies sug-
gests that this cognitive appraisal process may underlie the
evaluation of a set of variables called appraisal variables
(Ortony, Clore, & Collins, 1990; Lazarus, 1991; Roseman,
Spindel, & Jose, 1990; Scherer, 2001). Appraisal variables
can be understood as the criteria used to assess a situation
in relation to emotion elicitation process. For example, in

appraisal theory of Ortony et al. (1990), core appraisal vari-
ables1 considered are desirability - which assesses how de-
sirable an event is, praiseworthiness - which measures how
praiseworthy the action of an agent is and appealingness -
which measures how appealing is the agent to the appraising
individual. Appraisal theories suggest that individuals con-
verge to an emotional state depending on the evaluation of
these variables. This position is further supported by the ma-
jority of existing computational explanations of cognitive ap-
praisal (Dias & Paiva, 2005; El-Nasr, Yen, & Ioerger, 2000;
Velasquez, 1997). However, the proposed accounts offer lim-
ited perspectives addressing only domain specific situations
and making use of knowledge shaped as a set of pre-defined
rules (Dias & Paiva, 2005; El-Nasr et al., 2000). Thus, (i)
the available literature in cognitive appraisal theory cur-
rently does not provide a clear computational explanation for
domain-independent cognitive appraisal mechanisms. This is
a significant research problem for both cognitive science and
computer science research communities; in fact, on one hand,
having a computational theory of domain-independent cog-
nitive appraisal mechanisms can assist cognitive science re-
searchers in addressing open research gaps in emotional pro-
cessing studies, and, on the other hand, this computational
account can be more easily integrated in disparate intelli-
gent systems without the need of defining a complex set of
domain-dependent rules.

However, this is not the only limitation presented by cur-
rently available explanations of cognitive appraisal theory.
According to cognitive appraisal theory of emotion, an event
can elicit more than one emotions simultaneously with vary-
ing intensities (Ortony et al., 1990). Nevertheless, (ii) it is
not clear yet what is the best strategy to select an emotional
state for attribution following this appraisal process. This
is again a significant research problem. In particular, having
a mechanism able to determine the final optimal emotional
state is a highly desirable feature for intelligent systems inter-
acting with humans, such as social robots (Williams, 2012),
since this is a necessary skill for being proficient in emotional
intelligence (Mayer & Salovey, 1993). For example, it has
been widely documented that the appraised emotional state
of an individual has direct impact on decision making and ac-
tion selection (Isen & Means, 1983; Loewenstein & Lerner,

1Note that there are other appraisal variables proposed by the
theory. Describing all the appraisal variables and their meanings is
out of the scope of this paper.
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2003). Thus, without an appropriate mechanism able to deter-
mine the final optimal emotional state, the intelligent system
cannot take socially acceptable and ethical actions (Vitale,
Williams, & Johnston, 2014).

This paper aims to present a computational model of emo-
tion processing that adds a higher layer of cognition to ap-
praisal mechanism. The significance of this paper is further
increased by this novel approach going beyond the domain of
emotion theories and embracing the strengths of ethical the-
ories. Although, the literature includes previous studies sug-
gesting interactions between theories of emotions and ethics
(Callahan, 1988; Gaudine & Thorne, 2001), to our knowl-
edge, there are no computational explanations addressing the
interactions between ethics and emotion processing mecha-
nisms (Ojha & Williams, 2016). Therefore, in this paper we
aim to:

(i) Provide a computational model of cognitive appraisal of
emotion able to elicit appropriate emotional states with-
out the need of defining pre-determined rules, but rather by
using a general domain-independent approach facilitating
easy extensibility of the emotionally intelligent systems;

(ii) Provide a novel computational process inspired by ethi-
cal theories for the selection of the optimal emotional state
among the elicited ones.

The offered outcomes will provide valuable insights to
gather a better understanding on how integrating ethical theo-
ries in emotion processing mechanisms can improve existing
computational models of emotions. This in turn will advance
the understanding of the role of cognition in emotion.

Computational Models of Cognitive Appraisal
Theories from cognitive science and psychology have been
implemented in various computational models of cognition.
In this section, we will present some of the computational
models of emotions implementing cognitive appraisal theory
of emotion that are related to our discussion and identify their
current limitations.

The models available in literature use evaluation criteria
called appraisal variables (Ortony et al., 1990; Lazarus, 1991;
Roseman et al., 1990; Scherer, 2001) to assess or evaluate
the events for the generation of emotion. The choice of ap-
praisal variables depends on the appraisal theory used and
also on the application of the model. One common limita-
tion of the existing accounts is their heavy specificity to the
considered application domain and the determination of the
elicited emotional states by means of pre-defined rules (Dias
& Paiva, 2005; El-Nasr et al., 2000). This approach likely
leads to low extensibility of the system.

One available account is Fuzzy Logic Adaptive Model
of Emotions (FLAME), a fuzzy logic based computational
model of emotion (El-Nasr et al., 2000) inspired by appraisal
theories suggested by Ortony et al. (1990) and Roseman et
al. (1990). The main strategy used by FLAME is the evalua-
tion of if-then rules in order to assess the considered appraisal

variables. As we already discussed, this approach leads to a
particularly poor extensibility of the system, since adding a
new rule would require to consequently revise and adapt the
entire knowledge base.

EMotion and Adaptation (EMA) (Gratch & Marsella,
2004; S. C. Marsella & Gratch, 2009) borrows the ideas from
the cognitive motivational appraisal theory of Lazarus (1991).
It stands out from other existing computational models of
emotion in that it is able to compute emotions irrespective
of the experiment domain. However, this model is not able
to achieve this only by using the perceived positivity or neg-
ativity of an event like our model, which will be discussed
later.

Another related account is Fearnot AffecTIve Mind Archi-
tecture (FAtiMA), a computational model of emotion pro-
posed by Dias and Paiva (2005). It is significantly inspired
by appraisal theory of Ortony et al. (1990). FAtiMA con-
siderably uses domain specific scenarios built on top of pre-
defined appraisal rules in order to appraise the desired situ-
ation without clearly suggesting how to easily generalise the
proposed appraisal mechanisms for different domains.

Beside not providing a valid and easy strategy to integrate
the suggested computational model in disparate application
domains, the available accounts do not offer an effective way
to determine the final emotional state in response to an event
in a specific situation. This is still an open research prob-
lem since most appraisal theories do not explain how this can
be achieved (see, for example, Ortony et al. (1990); Scherer
(2001)). Some strategies propose to select the emotional state
exhibiting (i) highest intensity (Gratch & Marsella, 2004) or
driven by the higher motivational state (i.e. hunger, thirst,
pain, and fatigue) (El-Nasr et al., 2000), whereas other strate-
gies propose to (ii) blend the elicited intensities of multiple
emotions in order to determine the final emotional state (see
Reilly (2006) for more details on the strategy used). In the
Evaluation section, we shall discuss why these approaches
might not be desirable methods to reach to a final emotional
state.

As previously discussed, an emotion processing model de-
veloped by using a rule-based approach is unlikely to offer
easy extensibility and high integrability in disparate emotion-
ally intelligent systems among different application domains.
Thus, in this paper we provide computational mechanisms
general enough to be used in different domains without the
need of re-implementing or adapting the proposed model, but
at the same time able to appraise the appropriate emotional
states for the considered situation. In addition, we suggest
to use ethical theories to determine the final emotional state
among the ones elicited by the cognitive appraisal process.
Determining this state is particularly important to drive so-
cially acceptable behaviours.

Hypotheses
Consider a social interaction between two subjects. In this
work we will call sender the subject producing a behavioural
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response directed to the other subject, which we will call re-
ceiver. Denote with S (B,C)

receiver a value determining how neg-
ative or positive the behaviour B of the sender is perceived
by the receiver in a given context C. S (B,C)

receiver is a plausi-
ble computational representation summarising within a single
valanced value the somatovisceral reactions of the body to the
given situation (B,C) following the first-order phenomeno-
logical stage of emotional processing (Bechara, Damasio, &
Damasio, 2000). As previously mentioned in the introduction
of this paper, this work is not concerned with discussing the
implementation of first-order phenomenological processes.

Denote with C (S (B,C)
receiver) a cognitive appraisal process able

to appraise the intensities I = {ie1 , . . . , ien} of a set of n con-
sidered emotional states {e1, . . . ,en} given the first-order phe-
nomenological reaction of the receiver S (B,C)

receiver. Thus, our
first hypothesis is that:

Hypothesis 1 The value S (B,C)
receiver is a sufficient information to

perform a cognitive appraisal process C able to elicit the in-
tensities of the considered emotional states and consequently
promoting the selection of a final emotional state resembling
human cognitive appraisal.

Importantly, the value S (B,C)
receiver is completely independent

from other pre-existing values S already available by the sys-
tem and concerning different behaviours and contexts. In
other words, adding a new value S to our model, thus extend-
ing the knowledge of the system, will not require to adapt the
pre-existing knowledge and it will not necessitate to modify
the parameters of the computational model.

Denote with E(I,θethics) and with E(I) two processes able
to provide a final emotional state given the set of the elicited
emotion intensities I realised by the cognitive appraisal pro-
cess C . E(I,θethics) includes parameters operationalising
ethical theories, whereas E(I) uses a generic strategy with-
out considering the ethical dimension of the given situation.
Therefore, our second hypothesis is that:

Hypothesis 2 The cognitive appraisal process augmented by
ethical reasoning mechanisms E(I,θethics) converge to more
accurate emotional states compared to cognitive appraisal
processes augmented by generic reasoning mechanisms E(I).

In the remainder of this paper we will offer the functional
level description of our computational account and experi-
mental results validating our hypotheses.

Model Implementation
Cognitive Appraisal Process. The process of emotion gen-
eration in our computational model2 is shown in Figure 1. As
mentioned earlier, when an event occurs, its appraisal (evalu-
ation) is done by using a set of variables called appraisal vari-
ables. Ortony et al. (1990) state that these appraisal variables
are computed based on the goals, standards and attitudes of

2Our computational model is inspired by the work of S. Marsella,
Gratch, and Petta (2010) but implemented with completely different
computation mechanism.

the individual. In the context of our computational model of
emotion, if we denote these goals, standards and attitudes as
an internal parameter θint and the perceived knowledge of the
environment that the system receives when an event occurs as
Kenv, then a function for computing appraisal variable can be
represented as:

vi = Vi(Kenv,θint) (1)

Which means that the quantitative value of an appraisal
variable is the function of the event knowledge gathered from
the environment (Kenv) and the internal goals, standards and
attitudes (θint ). This computation is done by an Appraisal
Mechanism component, as shown in Figure 1. Each com-
puted appraisal variable contributes in the generation of one
or more emotions (Ortony et al., 1990) and helps in estimat-
ing the intensities of the considered emotions3.

The majority of available computational models of emo-
tion compute vi by using domain-specific rule-based func-
tions (Dias & Paiva, 2005; El-Nasr et al., 2000; Velasquez,
1997). Because of this, when the application domain or input
parameters (Kenv) change in those models, the internal rep-
resentation of goals, standards and attitudes (θint ) also needs
to be changed. In our model, Kenv is modelled as a set of
valanced scores S providing an interpretation of the nega-
tive or positive connotation of the experienced events. Im-
portantly, the scores S are completely independent from θint .
Thus, extending our model with new knowledge or adapt-
ing previous one will not necessitate to modify the model’s
parameters θint . In this paper we will not provide imple-
mentation details and we consequently limit our contribution
to this functional description, since this is sufficient for the
validation of the proposed hypotheses. The detailed mech-
anism of computation of appraisal variables in our computa-
tional model can be found in another paper (Ojha & Williams,
2017).

Figure 1: General Appraisal Mechanism.

Emotional State Selection. Next crucial step is determin-
ing the final emotional state of the system. Our proposition is
that when more than one active emotions are generated, then a
final emotional state is best determined by a higher cognitive
layer of ethical reasoning.

Figure 2 shows more details of the Emotion Combination
Mechanism included in Figure 1 and suggests the mechanism
to determine the final emotional state for attribution. The
emotions e1, e2, e3,.....and en with respective intensities ie1 ,

3Currently, our model can generate and express eight different
emotions described by (Ortony et al., 1990) namely Joy, Distress,
Appreciation, Reproach, Gratitude, Anger, Liking and Disliking.
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Figure 2: Ethical Emotion Combination Mechanism.

ie2 , ie3 ,.....and ien output from the Affect Generation compo-
nent are processed by applying the concepts of deontological
and consequentialist ethics (Hooker, 1996) in order to deter-
mine the final emotional state. Deontological ethics says that
one should satisfy owns duties before making a choice of ac-
tion/decision and consequentialist ethics says that one should
consider the consequences to all the relevant parties before
making a decision (Hooker, 1996). Functionally, our ethical
emotion combination mechanism is shown in 2.

eethical = E(I,θethics) (2)

Where, eethical ∈ {e1,e2,e3, ...,en} is the final emotional
state. I is the set of emotion intensities and θethics represents
ethical standards.

ehigh = Ehigh(I) (3)

eblended = Eblended(I) (4)

Equations 3 and 4 represent the functions computing re-
spectively the final emotional states for highest intensity ap-
proach and blended intensity approach, which were intro-
duced earlier. Clearly, these functions only take the inten-
sities of various emotions for the determination of the final
emotional state. However, our model reaches to a final emo-
tional state with the help of higher cognitive mechanism of
ethical reasoning (as shown in 2).

The emotional responses of our computational model
based on: (1) Highest Intensity Approach, (2) Intensity
Blending Approach and (3) Ethical Reasoning Approach will
be compared with emotion data obtained from human partic-
ipants in the Evaluation section.

Evaluation
In order to operationalise our model and to consequently val-
idate our hypotheses, we designed two sets of web-based sur-
veys requiring two tasks: an action scoring task and a mind-
reading task. In both the experimental conditions we pro-
vided a set of stories concerning social exchanges between
two individuals, a sender and a receiver, as previously de-
noted.

Participants covering a broad set of countries were invited
on Facebook or through mailing lists to take our surveys. The
surveys were completely anonymous. We received a total of

153 responses (male=82, female=71). Importantly, the sub-
jects were randomly attributed to either the action scoring
task or the mind-reading task.

Scenario Design
In order to avoid ad-hoc scenarios facilitating our model, we
did not design the scenarios ourselves. Rather, we requested
4 naı̈ve adults, without any knowledge about the objectives of
the present research, to cooperate in designing six scenarios
under the following conditions:

• The scenario shall include the interactions of two subjects,
one of them denoted as sender and the other as receiver;

• A minimum of 5 and a maximum of 10 actions of the
sender directed to the receiver describing a plausible social
interaction between two persons shall be provided;

• At the beginning, each scenario shall provide the contex-
tual information about the designed situation and the two
considered subjects. Moreover, additional contextual in-
formation could be provided during the development of the
described social exchanges, whenever this information is
necessary to contextualise the remaining interactions;

• No contextual information suggesting the potential emo-
tional state of the receiver shall be provided for individual
interactions, with the exception of the contextual informa-
tion provided at the beginning of the scenario.

The result of this process was a set of scenarios used during
both the action scoring and the mind-reading tasks mentioned
earlier. The scenarios included interactions between (1) two
strangers (a male and a female) interacting on a bench of a
park, (2) two close friends (both males) meeting at a beach,
(3) a husband and a wife having an argument about forget-
ting the birthday, (4) an elderly woman affected by dementia
and her nurse (both females) experiencing a distressful mo-
ment, (5) a guy having argument with his brother, and (6) an
interaction between a customer of a café and a waiter (both
males). In total, the scenarios included 48 social exchanges
of the senders directed to the receivers.

Action Scoring Task
The experimental subjects participating in the action scoring
task were asked to guess, for each scenario, how positive or
negative each social exchange performed by the sender would
be perceived by the receiver in that specific context. The
rating was based on 7-point Likert scale: Extremely Neg-
ative, Very Negative, Negative, Neither Negative Nor Pos-
itive, Positive, Very Positive, Extremely Positive. We nu-
merically evaluated the responses by attributing a weight to
each point of the scale (i.e. -1, -0.66, -0.33, 0, 0.33, 0.66
and 1 respectively). We averaged the responses obtaining a
value S for each of the considered social exchanges B in the
specific context C. In this way we were able to provide the
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(a) (b)

Figure 3: Results of the experiments. (a) The cumulative rank-distances of the models’ predictions from human assessment.
(b) The rank-distances of the models’ predictions from human assessment.

necessary input knowledge to our system (i.e. a set of nu-
meric scores S ∈ [−1,+1]) and to consequently perform cog-
nitive appraisal processes estimating the emotional state of
the receivers in each considered scenario. Recall that this pro-
cess did not require any changes to our computational model,
which provides a valid domain-independent approach of cog-
nitive appraisal process.

Mind-Reading Task
In order to compare the emotional response of our compu-
tational model, we asked to the subjects participating in the
mind-reading task to guess, for each interaction of the sender,
what would have been the chances that the receiver would
happen to be in a particular emotional state, based on the
just happened interaction and the previously occurred social
exchanges and contextual information. Therefore, for each
of the eight considered emotional states the rating was based
on 6-point Likert scale: Not at all, Very Low, Low, Medium,
High and Very High. The additional rating “Not at all” was
necessary to allow the participants to express no chances to
attribute such emotional state to the receiver. We numerically
evaluated the responses by attributing a weight to each point
of the scale (i.e. 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0 respectively).
Average score given by the participants to various emotions
was calculated by performing the weighted average of the rat-
ings.

Results
Based on the results of the mind-reading task, the emotions
for each interaction of each scenario were ranked from 1 to 8,
with the emotion having the highest average score ranked as
1 and the one with lowest score ranked as 8.

We considered three strategies to computationally predict
the final emotional state of each interaction: choosing the
emotional state with highest intensity, blending the emotional
intensities to determine the final emotional state as described

by Reilly (2006), and our suggested approach based on eth-
ical reasoning. Each of these three strategies followed a
common domain-independent cognitive appraisal process, as
discussed in the model implementation section. We com-
pared these computational predictions against the gathered
human assessments (i.e. emotions ranked 1) by computing
their rank-distances, suggesting how close the computational
model was compared to human assessment. The results are
summarised in Table 1.

Table 1: Descriptive statistics of the gathered results.

Mean Median Std
High intensity 2.4167 2 2.3232
Blended emotion 2.3125 2 2.0228
Ethical reasoning 2.0833 1 2.3140

In order to demonstrate that the proposed common stage
of domain-independent cognitive appraisal was able to elicit
emotional intensities similarly to human cognitive appraisal
process (Hypothesis 1), we analysed the human responses of
the mind-reading task. We noticed that for most of the consid-
ered interactions some of the emotions resulted in very close
averaged scores. Therefore, given ε = 0.1, for each interac-
tion we counted the number of emotions having an average
score of greater than or equal to the score of highest scored
emotion minus ε for that interaction. ε was chosen to be equal
to half of the score attributed to each point of the Likert scale
(i.e. 0.2), thus being able to group emotions plausibly ranked
with similar likelihood by most of the human assessors. The
average number of similarly rated emotional states among all
the 48 interactions was 3.2, thus suggesting that on average
human cognitive appraisal promoted 3 comparable emotional
states to attribute to the receiver. From Figure 3a it is clear to
see that for distances less than 2 ranks to the human assess-
ment (i.e. predictions among the first 3 higher scored emo-
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tions) our cognitive appraisal model was able to promote the
selection (using all the three considered strategies) of approx-
imately 70% of the emotional states plausibly attributed by
humans participants to the receivers described in the mind-
reading task scenarios.

In addition, we can also observe that the cognitive pro-
cess augmented by the proposed ethical reasoning mechanism
converges to more accurate emotional states compared to the
other investigated strategies (Hypothesis 2). Figure 3b fur-
ther suggests that the proposed ethical reasoning mechanism
reduces average rank-distances from human appraisal. There-
fore, the present results support both the proposed hypothe-
ses.

Conclusion and Future Work
In this paper, we presented our computational model of emo-
tion based on appraisal theory that is able to generate emo-
tions using the expected degree of positivity or negativity as-
sociated with an action/event. This allowed our model to be
completely independent of the application domain and effi-
ciently appraise a situation for the elicitation of various emo-
tions. In addition, our model adds a higher layer of cog-
nition in the emotion mechanism by integrating an ethical
reasoning capability for the determination of the final emo-
tional state when more than one emotions are generated by
the model. Experimental results support our first hypoth-
esis proposing that cognitive appraisal is possible without
prior domain knowledge and second hypothesis suggesting
that ethical reasoning is a better strategy to explain human
emotional state attribution process.

Yet, our computational model still has some room for im-
provement. For example, it is important to consider that peo-
ple with different personality generate emotions in different
ways. Thus, in the future, we aim to use the concept of per-
sonality and examine how the difference in personality makes
difference in ethical standards and hence in emotion genera-
tion.
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Tracking the temporal course of counterfactual understanding
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Abstract: This paper explores the dual meaning of counterfactual conditionals, such as ‘if there had been gloves, then there
would have been scarves’, by tracking the temporal course to envisage the possibility corresponding to the conjecture ‘there
were gloves and there were scarves’ and the presupposed facts, ‘there were no gloves and there were no scarves’. To test
this, we used the visual world paradigm, in which counterfactual and indicative conditionals were heard while four images
corresponding to the conjecture, such as an image of gloves and scarves, and the presupposed facts, such as an image of no
gloves and no scarves, and two distractors were shown on the screen and eye movements were monitored. We found that
people looked at the affirmative image in the indicative conditional, and both types of images (affirmative and negative) in the
counterfactual conditional. Results support the dual meaning of counterfactuals.
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Abstract 

When learning from others, rather than simply following the 
majority’s opinion, we need to accurately evaluate the quality 
of the information both the majority and the minority provide, 
and integrate that information with our own personal 
experience. This is especially true when the majority’s opinion 
is based on lower quality information, because they shared the 
same evidence rather than collecting evidence independently. 
Previous work demonstrated that adults are sensitive to the 
quality of the majority’s information, consistent with the 
predictions of a Bayesian rational model (Whalen, Griffiths, & 
Buchsbaum, in press). In two behavioural experiments, we 
investigated how preschoolers combine testimony from a 
majority that conflicts with a minority or with the child’s own 
personal evidence. Unlike adults, children over-relied on the 
majority when given only testimony. However, when also 
given their own conflicting evidence, children relied 
significantly less on the majority and over-relied on their own 
evidence. These findings help explain why children may 
follow the majority at times, but in others trust their own 
judgements. 

Keywords: Selective Trust; Conformity Bias; Children; 
Statistical Dependency; Bayesian Modeling; Social Learning 

Introduction 

Learning from others is a valuable strategy to use when 

encountering uncertainty. Human’s use of social information 

is thought to underlie our ability to live in almost every 

known environment, and to underpin the evolution of human 

culture (Boyd & Richerson, 1985). The information we 

receive from others is also integrated with the information we 

gather ourselves through personal experience. Rather than 

blindly following what others say, it is important we evaluate 

the information we receive by understanding how others may 

have formed their opinions, especially when there is 

disagreement amongst individuals or when their testimony 

conflicts with our own personal observations. 

Evaluating informant testimony is particularly important 

when the testimony is based on shared information. For 

example, imagine you are reading four restaurant reviews. In 

the first two reviews, the reviewers independently visited the 

restaurant and ordered different dishes, and they both 

recommended the restaurant. In the third and fourth reviews, 

the reviewers went to the restaurant together and shared a 

single dish, and then both did not recommend the restaurant. 

Which set of reviews should you trust?  

From a pure numbers standpoint, the number of positive 

and negative reviews is equal. However, the first and second 

reviews may provide additional information about what an 

average experience (your experience) at the restaurant would 

be like. The third and fourth reviews provide less information 

because the reviewers’ shared experience makes their 

responses statistically dependent on each other. For instance, 

if the two reviewers shared an unusually salty dish they are 

both likely to write negative reviews and as such, given the 

third review, the fourth review provides no new information. 

Thus, being aware of this statistical dependence will help 

social learners avoid the mistake of placing trust in a group 

based on just their number of opinions.  

This ability to assess the quality of information being 

provided is especially important for young children, who are 

learning much about the world from the testimony of others 

(e.g., Mills, 2013). Whether young children can use statistical 

dependency to evaluate testimony quality is an interesting 

question because much of our social learning occurs during 

early childhood, when the ability to understand mental states 

is still developing (Wellman, Cross, & Watson, 2001). The 

ability to assess quality of information may require a complex 

form of “theory of mind” that goes beyond simply copying 

the majority. To accurately assess the quality of information, 

children must consider not only the testimony each person 

gave, but also the unseen information leading to that 

testimony, and how that information was gathered.   

In addition, one’s own personal experience can also 

conflict with what others say, and must be integrated with the 

testimony received. Imagine that you have a negative 

experience at that restaurant, and are debating whether to go 

there again. If there are enough other positive reviews, you 

may be willing to disregard your own judgement, and give 

the restaurant another chance. Can children evaluate the 

quality of their own information relative to a conflicting 

majority in a similar manner? 
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In two experiments, we examined how 4- and 5-year-old 

children evaluated their own private information and the 

information they received from informants who either shared 

a piece of evidence or collected evidence independently. 

Specifically, we investigated whether children can 

distinguish the quality of information provided by multiple 

informants and exhibit a sensitivity to shared data (as 

suggested by Hu et al., 2015) or if they merely conform to the 

majority (Corriveau, Fusaro, & Harris, 2009). We then 

compared children’s performance to that of adults’ on a 

similar task (Whalen et al., in press), and the predictions of a 

Bayesian rational model to understand the extent to which 

children may conform to the majority despite the amount of 

information the majority provided. 

In Experiment 1, we investigated whether children were 

sensitive to evidence being shared by a majority group when 

a single dissenter with independent evidence was present. We 

found that children were biased towards following a majority 

opinion and were not sensitive to statistical dependencies 

between informants. In Experiment 2, we highlighted the 

source of informants’ knowledge by providing children with 

their own private evidence that conflicted with the majority. 

We found that given conflicting personal evidence, children 

no longer followed the majority and instead sided with their 

own evidence regardless of the quality of the majority’s 

information. Compared to both adults and to the rational 

model, children were not sensitive to dependency, trusting 

statistically dependent informants more in Experiment 1, and 

placing more weight on their own evidence in Experiment 2. 

Background 

Previous work by Whalen et al. (in press) demonstrated that 

adults are sensitive to statistical dependency between 

informants. Participants correctly rated that an option was 

more likely when it was endorsed by a majority group with 

independent evidence than a group with shared evidence (see 

Figure 1(b) for results). Adults also integrated their own 

evidence with testimony, appropriately demonstrating no 

bias towards their own evidence when it conflicted with the 

majority endorsement. In particular, they endorsed the 

majority opinion when the group had a higher quality of 

information than provided by their own personal evidence. 

These findings were consistent with a Bayesian model of 

social learning which captures how an idealized learner might 

learn from multiple informants with shared information. The 

model illustrates that conforming to the majority is rational 

when the majority has a greater quality of information 

because (like our independent restaurant reviewers) each 

member contributed additional independent information. 

Thus, although in some cases adults disregard their own 

evidence and favour the majority, this may be a product of 

rationally integrating the two sources of information and 

assessing their quality, and not a bias towards the majority.  

In this paper, we investigated whether 4- and 5-year-old 

children could assess the information quality provided by a 

majority when it conflicted with the information of a minority 

or with the child’s own personal evidence. At the age of 4, 

children already start to implement strategies in choosing 

who to listen to by selectively trusting informants, for 

instance by preferring those who are knowledgeable or 

accurate (Koenig & Harris, 2005), or experts in the field (e.g., 

Kushnir, Vredenburgh, & Schneider, 2013). However, the 

current literature is unclear on whether children value 

conformity or information quality during social learning.  

Previous studies argued that children value a consensus 

even when it conflicts with the child’s own perception. For 

instance, children sometimes followed the majority even 

when they understood and identified the endorsement of the 

majority to be incorrect (Corriveau & Harris, 2010; Haun & 

Tomasello, 2011). Using the Asch (1956) paradigm, children 

were observed to conform especially when answering in 

public in front of their peers (Haun & Tomasello, 2011). At 

the age of four, children are already capable of recognizing a 

consensus and conforming to them even in ambiguous tasks 

such as labelling a novel object (Corriveau et al., 2009). 

These findings then suggest that children may have a bias to 

conform to a majority, even when the conflicting information 

comes from their own perception. 

On the other hand, some studies have argued that children 

do exhibit the ability to evaluate the quality of information 

they receive from multiple informants (Hu et al., 2015). Hu 

and colleagues (2015) found that, when given testimony from 

two groups, children preferred the group with the highest 

quality of knowledge – favouring the group that received 

direct knowledge via visual perception over those who 

received indirect knowledge via hearsay. However, when 

group sizes were not equal, children preferred the group with 

the most members, even if the members of the larger group 

had only received hearsay. 

Additional work has shown that children avoid a 

conformity bias if the majority group is proven to be 

unsuccessful in reaching an apparent goal (Wilks et al., 

2014), provide implausible functions for a novel object 

(Schillaci & Kelemen, 2014), or have lower expertise than 

the minority (Burdett et al., 2016). These findings then 

suggest that, at least in some cases, children have a preference 

for informants with a greater quality of knowledge, rather 

than having a preference for the majority per se. 

Preschoolers also demonstrate the ability to integrate a 

single informant’s testimony with their own observations. 

When the two sources conflict, preschoolers acknowledge the 

confidence and statistical data provided by an informant to 

assess causal relationships of novel toys (Bridgers et al., 

2015), and acknowledge an informant’s awareness for 

appearance-reality when considering their own perception as 

misleading (Lane et al., 2014). These findings suggest that 

children can integrate both sources of information, which 

contrasts with previous theoretic models that emphasized 

reliance on only social learning (e.g., Rendell, Fogarty, & 

Laland, 2010; but see Perreault, Moya, & Boyd, 2012). 

Therefore, whether children can appropriately integrate the 

quality of informants’ knowledge given a majority and 

conflicting information from either a minority or from 

personal observation is an open question. However, it is not 
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always obvious how these different sources of information 

should normatively be integrated. 

Bayesian Model of Learning from Independent 

and Dependent Informants 

To further understand how an individual can combine the 

information they receive from testimony and personal 

evidence, we followed the Bayesian model developed by 

Whalen et al. (in press) which captures how an idealized 

learner would integrate information provided by groups with 

different sources of data – shared or independent – with 

personal evidence. In this model, a learner collects personal 

evidence about the state of the world, 𝑒, and receives 

testimony from 𝑛 informants, 𝑡1, … , 𝑡𝑛 who collect their own 

evidence about the state of the world, 𝑑. Learners evaluate a 

potential hypothesis, ℎ, using Bayes’ rule, 

 

𝑝(ℎ|𝑒, 𝑡1, … , 𝑡𝑛) ∝ 𝑝(𝑡1, … , 𝑡𝑛|ℎ)𝑝(𝑒|ℎ)𝑝(ℎ), (1) 

 

where 𝑝(ℎ|𝑒, 𝑡1, … , 𝑡𝑛) is the posterior probability of ℎ, the 

probability that a hypothesis about the state of the world is 

true given the personal evidence and testimony, while 𝑝(ℎ) 

is the prior probability of ℎ, the probability the hypothesis is 

true before any evidence is given. Finally, 𝑝(𝑒|ℎ) is the 

probability of getting that evidence given the hypothesis, and 

𝑝(𝑡1, … , 𝑡𝑛|ℎ) is the probability of getting that testimony. 

When multiple informants provide independent testimony, 

the probability of a series of testimony is equivalent to the 

product of the probability of each individual testimony: 

 

𝑝(𝑡1, … , 𝑡𝑛|ℎ) =  ∏ 𝑝(𝑡𝑖|ℎ).

𝑛

𝑖=1

                   (2) 

 

The testimony of each informant is based on their private data 

𝑑𝑖, so 𝑝(𝑡𝑖|ℎ) is obtained by marginalizing over 𝑑𝑖: 

 

𝑝(𝑡𝑖|ℎ) =  ∑ 𝑝(𝑑𝑖|ℎ)𝑝(𝑡𝑖|𝑑𝑖),

𝑑𝑖

                 (3) 

 

where 𝑝(𝑡𝑖|𝑑𝑖) is the probability that the informant produces 

testimony 𝑡𝑖 after observing 𝑑𝑖. On the other hand, when 

multiple informants base their testimony on shared private 

data, denoted as 𝑑′, the probability of a series of testimony is 

obtained by marginalizing over the shared private data: 

 

𝑝(𝑡1, … , 𝑡𝑛|ℎ) =  ∑ 𝑝(𝑑′|ℎ) ∏ 𝑝(𝑡𝑖|𝑑
′).

𝑖𝑑′

            (4) 

 

In both cases, we assume that informants give testimony in 

support of a hypothesis proportional to the product of the 

informant’s evidence given the hypothesis and the prior 

probability, 𝑝(𝑡𝑖 =  ℎ𝑖|𝑑𝑖) ∝ 𝑝(𝑑𝑖|ℎ𝑖)𝑝(ℎ𝑖) (for more 

information, see Whalen et al., in press). This Bayesian 

model illustrates that, in many cases, conforming to the 

majority is rational when the majority collects independent 

evidence, increasing their quality of information (see Figure 

1(a) for example predictions based on our experiment task). 

In addition, this model accurately predicted the performance 

of adults in our experimental task suggesting that adults 

integrate both sources of information rationally (see Figure 

1(b) for adult performance).  

Following the approach of Whalen et al. (in press), we ran 

two behavioural experiments that examined how children 

evaluated the information they were provided by a majority 

group with shared or independent evidence, along with either 

a dissenting informant or conflicting private evidence.  

Experiment 1: Dissenting Informant 

In Experiment 1, children were shown a video about two jars 

with differing proportions of red and yellow balls and were 

asked to guess which jar was being sampled from, given the 

testimony of three friends who received a ball from the 

chosen jar. The first two informants endorsed the same jar 

and made up the majority group while the third informant 

dissented and endorsed the opposing jar. Children were 

randomly assigned to either the Shared condition, where the 

majority shared one ball, or the Independent condition, where 

majority members each received their own ball.  

Our model predicts that a rational learner would choose the 

jar endorsed by the majority only when each member 

collected independent evidence, but be at chance when the 

majority shared one piece of evidence, Figure 1(a). On the 

other hand, if children have a conformity bias, we should 

expect them to pick the majority’s jar in both conditions. 

Methods 

Participants A total of 29 preschoolers (female = 17, male = 

12; mean age = 4 years 11 months; range = 49 – 71 months) 

were recruited either through local museums or in lab. They 

were randomly assigned to one of two conditions: The 

Independent condition (n = 14) or the Shared condition (n = 

15). An additional 6 children were excluded due to atypical 

development (1), provided ambiguous answers (1), did not 

provide an answer (2), or experimenter error (2). 

 

Procedure In this experiment, children were shown a video 

on a laptop, where an experimenter introduced two jars 

comprised of coloured balls – one with mostly yellow balls, 

a few red balls, and one green ball and one with mostly red 

balls, a few yellow balls, and one white ball, and introduced 

her three adult friends. The experimenter explained that she 

would pour just one of the two jars into her bag and give each 

of her friends a ball from the bag. Each of her friends would 

then tell her which of the two jars they thought she picked. 

Once the experimenter filled the bag with one of the two 

jars, she used a cup to randomly scoop a ball from the bag to 

hand to each of her friends. After looking inside the cup, the 

informants provided testimony as to which jar they thought 

the bag was filled from, either the jar with mostly red or 

mostly yellow balls in it. The first two informants always 

endorsed the same jar and made up the majority group, while 

the last informant always chose the opposite jar. The jar 
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endorsed by the majority and the actor playing the minority 

informant were counterbalanced. 

In the Independent condition, informants were in the room 

one at a time and were each given their own randomly 

sampled ball to view. Each informant stated, for instance, “I 

looked at the ball and I think that the bag has mostly red balls 

in it.” In the Shared condition, all three informants were 

present in the room and the first two informants shared a 

single randomly sampled ball. After providing a testimony, 

the first informant was asked to pass the same cup to the 

second informant who then agreed with the first, e.g. “I 

looked at the ball and thought about what my friend said. I 

agree with Jessie. I think that the bag has mostly red balls in 

it.” While the third informant received a different random ball 

and disagreed with the rest, e.g. “I looked at the ball and 

thought about what my friends said. I disagree with Jessie and 

Sarah. I think that the bag has mostly yellow balls in it.”  

Once the video was completed, the on-site experimenter, a 

different person than the one in the video, reminded the child 

which jar each informant endorsed and if they saw the same 

or a different ball as the previous informant, and that all the 

balls came from just one jar. Finally, she asked a forced-

choice question of which jar the child thought the bag was 

filled from, either the jar with mostly red or yellow balls in it. 

The order in which the jars were stated was randomized. 

Results 

Each child was given a score of 0 or 1, with 1 as agreeing 

with the majority and 0 as disagreeing. Results are shown in 

Figure 1(c). Overall, children chose the jar endorsed by the 

majority significantly more often than chance, regardless of 

how the members of the majority collected their information 

(binomial test, 21 out of 29 endorsed the majority, p = 0.024). 

We analyzed the differences between the conditions using 

a Fisher’s exact test. The difference between the Independent 

and Shared condition was not significant (10 out of 14 

endorsed the majority in the Independent condition, 11 out of 

15 in the Shared condition, p = 1). Children chose the 

majority’s jar equally often when the majority had higher 

quality independent information and lower quality shared 

information. Finally, compared to adults and to our model, 

children appeared to place more weight on the statistically 

dependent testimony in the Shared condition.  

Discussion 

Unlike our model predictions and adults’ performance, 

children were not able to appropriately evaluate the quality of 

information in an informant’s testimony. When two 

informants received the same ball and gave the same 

testimony, children over-weighed the majority’s shared 

information relative to the dissenter’s independent 

information. These results support previous findings by 

Corriveau et al. (2009) who found that children conform to a 

majority when faced with an ambiguous decision. 

Based on the results of Experiment 1, we wanted to identify 

ways to help children avoid relying on the majority and 

instead, evaluate which group has the greater quality of 

information. To do this, we highlighted the independent 

nature of the minority information by having the child receive 

private evidence that conflicted with the majority testimony 

which mimicked many real-world scenarios where our own 

private experience conflicts with testimony. If the child then 

has to integrate social learning with personal observation, this 

may help identify the source of knowledge each individual 

has and overcome a conformity bias. 

Experiment 2: Own Ball 

In Experiment 1, children were making a decision based on 

testimony alone. However, in most real-world cases, we take 

in the information that others provide us and evaluate it with 

our own information. Therefore, in Experiment 2, children no 

longer saw a minority group, and instead were given their 

own ball from the bag that conflicted with the testimony. For 

example, if the informants all endorsed the jar with mostly 

red balls, the child received a yellow ball from the bag. 

As predicted by the Bayesian model, children should 

choose the jar endorsed by the majority when the members 

independently collected data and have more information than 

provided by the child’s own single piece of evidence. If, 

however, the members of the majority shared a single piece 

of evidence, children should endorse the majority at chance, 

as the child’s own evidence would be as reliable as the 
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majority’s. Similar to Experiment 1, if children present a 

conformity bias, they will follow the majority regardless of 

the quality of information provided by the group. 

Methods 

Participants A total of 52 preschoolers (female = 24, male = 

28; mean age = 4 years 11 months; range = 48 – 71 months) 

were recruited through local museums and daycares, or in lab. 

They were randomly assigned to one of two conditions: The 

Independent condition (n = 26) or the Shared condition (n = 

26). An additional 14 children were excluded due to 

experimenter error (10), previous participation in Experiment 

1 (1), inattentiveness (1) and ambiguous answers (2).  

 

Procedure Experiment 2 had the same jars and actors, and 

similar sampling procedures. However, all three informants 

endorsed the same jar and made up the majority group for 

both conditions. As in Experiment 1, children were randomly 

assigned to either the Independent or Shared condition.  

In the Independent condition, each informant received their 

own distinct randomly sampled ball and provided their 

testimony in the room one at a time. In the Shared condition, 

all three informants were present in the room and shared a 

single randomly sampled ball and provided testimony 

agreeing with the previous informants. 

After the video ended, the on-site experimenter reminded 

the child which informant endorsed which jar, if they looked 

at the same or different ball as the previous informants, and 

that all the balls came from just one jar. In this experiment, 

all the informants endorsed only one jar. Next, the on-site 

experimenter brought out an identical bag and stated that it 

was the same bag from the video containing the same balls. 

Similar to the experimenter in the video, she used a plastic 

cup to give the child their own ball from the bag. The on-site 

experimenter pretended to scoop up a ball at random, but in 

fact the child always received a ball that was a different 

colour from the majority testimony. After the child looked 

inside the cup, the on-site experimenter asked which jar they 

thought all the balls came from, as in Experiment 1. 

Results 

Results are shown in Figure 1(c). Overall, children chose the 

jar endorsed by the informants below chance regardless of 

how the informants collected their information (binomial test, 

11 out of 52 endorsed the majority, p < 0.001). Similar to 

Experiment 1, we found that children did not choose the 

informant’s jar more in the Independent condition compared 

to the Shared condition (5 out of 26 endorsed the majority in 

the Independent condition, 6 out of 26 in the Shared 

condition, p = 1, Fisher’s exact test). In both conditions, 

children weighed their own evidence more, compared to both 

adults and the predictions of the Bayesian model. 

Discussion 

We found that in Experiment 2, children relied heavily on 

their own evidence and chose the jar consistent with their 

own ball regardless of whether the majority collected 

independent or shared evidence. As in Experiment 1, we 

found no significant difference between the Independent and 

Shared conditions, suggesting that children were not 

sensitive to the statistical dependency. These results support 

previous findings suggesting that children may rely on their 

own evidence that they personally collected over the 

evidence collected by others (Kushnir & Gopnik, 2005; 

Kushnir, Wellman, & Gelman, 2009). 

General Discussion 

We investigated how children weighed the value of 

information they received from multiple individuals and their 

own personal evidence. We compared the performance of 4- 

and 5-year-old children to the performance of adults on a 

similar task (Whalen et al. in press) and to the predictions of 

a Bayesian rational model. Experiment 1 showed that 

children were not sensitive to the shared information of a 

group and were instead following the majority. Experiment 2 

demonstrated that children would no longer use the strategy 

of conforming to the majority if they themselves collected 

conflicting evidence and instead, relied on their own 

evidence, regardless of the quality of the majority’s 

information. Therefore, compared to adults, children applied 

a different strategy in the integration of information. 

Children’s apparent conformity bias is consistent with 

previous findings that argued that children prefer to rely on 

the majority (e.g., Corriveau et al., 2009; Haun, Rekers, & 

Tomasello, 2012; Haun & Tomasello, 2011). Children may 

exhibit this reliance on the majority because it is often a 

useful and reliable social learning strategy (Haun et al., 

2014). After all, the majority made their choices for a reason.  

However, in the presence of children’s own conflicting 

evidence, a conformity bias was no longer present. Although 

previous work has suggested that children may present a 

conformity bias even in the face of conflicting direct 

perception (Corriveau & Harris, 2010; Haun & Tomasello, 

2011), it is important to note that in those studies, a majority 

of children still favoured their own evidence over the 

testimony of the majority. 

This bias to rely on personal evidence over the evidence 

collected by others has previously been observed in the causal 

domain as a self-agency bias, especially when the evidence 

seemed to be ambiguous or probabilistic (Kushnir et al., 

2009). Kushnir and Gopnik (2005) discovered that children 

would weigh their own causal interventions more heavily 

than the causal interventions of others. They suggested that 

children had this bias because they viewed their own actions 

to be more controlled and reliable and less likely to be 

confounded than those of other individuals. However, this 

bias to one’s own evidence has not yet been observed in a 

non-causal domain like that of our current study. Similarly, 

children in our study might have considered their direct 

perception of their own ball to be more reliable than the 

information they received from the informants’ testimony.  

One possible explanation for the presence of both a bias 

towards conformity and towards personal evidence in this 

task is that preschoolers learning how to integrate 
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information have yet to develop more complex aspects of 

theory of mind (e.g., Gweon et al., 2012). At this age, 

children might have had difficulty reasoning about how the 

informants generated their testimony based on the evidence 

that they likely received. In other words, 4- and 5-year-old 

children know that people can have beliefs, but may have 

difficulty in knowing how these people came to believe 

something. As a consequence, children might rely on the 

number of endorsements given rather than on their quality, 

leading to the appearance of a conformity bias. On the other 

hand, children were likely confident in what they themselves 

saw which appeared as a bias towards their own evidence. 

Future work should investigate whether children have 

difficulty inferring the evidence informants likely received 

based on their testimony, by testing how children respond 

when they can observe this evidence directly, for instance by 

presenting it in clear cups. We expect that children would 

then compare the amount of evidence between the majority 

and minority group rather than the number of endorsements. 

If children can identify the statistical dependency when the 

evidence is visible, they should no longer demonstrate a 

conformity or a personal evidence bias. 

In addition, in ongoing follow-up studies, the child’s 

evidence is presented on-screen within the video rather than 

performed live to equate saliency. If children still present a 

bias towards their own evidence, the salience from a live 

performance as a reason for this bias can be ruled out. 

Taken together, our findings suggest that children 

implement a different social learning mechanism than adults 

and our Bayesian model. When integrating testimony alone, 

children over-weighed the quality of information provided by 

the majority. On the other hand, when the child was given 

their own conflicting evidence, children under-weighed the 

quality of information provided by the majority and relied on 

their own perception. Thus, unlike adults, children require 

further development in their social learning and perhaps their 

reasoning of mental states to avoid biases and become 

sensitive to statistical dependency. 
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Abstract 

The influence of emotion on (the early stages of) speech 
production processes, notably content selection has received 
little scholarly attention. Goudbeek & Krahmer (2012) found 
evidence for alignment at the conceptual level:  speakers may 
start using a dispreferred attribute over a preferred attribute in 
their referring expressions when they are primed by a pre-
recorded female voice in a preceding interaction. The current 
study aimed to assess the role of emotion (using amusement 
and disgust) in alignment, while simultaneously replicating 
this finding in a more naturalistic setting involving two 
human participants in naturalistic dialogue. Our results 
replicate the findings by Goudbeek & Krahmer (2012), 
generalizing their findings to a much more naturalistic setting. 
In addition, we found that amused, but not disgusted speakers 
tend to use the preferred attribute more to describe objects to 
their conversational partner. 

Keywords: alignment; egocentricity bias, attentional bias, 
emotion; amusement; disgust; speech production; referential 
expressions, psycholinguistics. 

Introduction 

Several effects of emotion on various processes in speech 

have been studied extensively, including effects on 

articulation and pronoun use. For instance, speakers often 

signal their emotional state in their prosody, by sobbing, 

crying or shouting (Bachorowski, 1999; Goudbeek & 

Scherer, 2010) and depressed writers have been shown to 

use more first person singular pronouns (Pajak & 

Trzebiński, 2014; Stirman & Pennebaker, 2001). However, 

the impact of emotion on other aspects of the speech 

production processes has received little attention. In this 

study, we aim to investigate the role of emotion in the 

earlier processes in speech production, in particular on 

content selection stage (“deciding what to say”) of language 

production, focusing on referential expressions.  

Emotion and speech production 

As far as we know, only a few studies have looked at the 

relationship between emotional state and content selection.  

For example, Kempe, Rookes and Swarbrigg (2012) looked 

at the effect of speaker emotion (positive or negative 

emotion) on ambiguity avoidance in the production of 

referring expressions. In their experiment, emotion was 

induced by a positive or negative video, accompanied by 

emotion congruent classical music. After the emotion 

manipulation, participants were asked to uniquely describe 

four pictures on the sheet. In the critical trials, two of the 

four pictures could be described in a linguistically 

ambiguous way, e.g. as a “bat” which could either be a 

flying bat or a baseball bat. They found that speakers in a 

positive state were less likely to disambiguate the second 

linguistically ambiguous picture, that is, they were more 

likely to use the word ‘bat’ for both the flying bat and the 

baseball bat. These findings suggest that positive emotions 

might increase ambiguity in referring expressions, which 

could be the result of an attentional shift in the speaker 

(Beukeboom and Semin, 2006). 

Attentional bias It has been generally accepted that positive 

emotions (e.g., amusement) broaden attention, whereas 

negative emotions (e.g., sadness) narrows attention (see 

Frederickson, 2001). However, Harmon-Jones, Gable, and 

Price (2013) state that not valence, but the motivational 

intensity of emotions influence attention: emotions of low 

motivational intensity (e.g., sadness) broaden cognitive 

scope and emotions of high motivational intensity (e.g., 

disgust) narrow cognitive scope. They found that 

individuals exposed to disgusting pictures (compared to 

neutral pictures) who did a global-local letter task (Navon, 

1977) responded slower to global than to local targets 

(Gable and Harmon-Jones, 2010), supporting the hypothesis 

that emotions of high motivational intensity narrow 

attention and make people focus more on details.  
Egocentricity bias Egocentricity of speakers has been 

known to influence content selection. The egocentricity bias 

is the tendency of individuals to use their own perspective 

as reference point to the world (Ross & Sicoly, 1979). Many 

authors claim that although individuals are often able to 

adjust to the perspective of the listener, they initially act 

egoistically (Epley, Morewedge, and Keysar, 2004; Horton 

and Keysar, 1996), although some beg to differ (see for 

example Bezuidenhout, 2013). According to Converse, Lin, 

Keysar and Epley (2008) and Clore and Hutsinger (2007), 

individuals in a positive state are less likely to adopt to the 

perspective of another person than individuals in a negative 

state, the shift of perspective to the listener might be 

impaired because positive emotions promote automatic 

responses.  
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Although these studies suggest an interesting link 

between emotion and (the early stages of) speech 

production, many questions remain. For example, what is 

the effect of emotion on the language production of speakers 

and listeners in an interaction?  

Alignment in interaction 

In the current study, we focus on the effect of emotion on 

the amount of alignment between conversational partners in 

referential expressions. As argued by Garrod and Pickering 

(2004), one of the ways conversational partners can align to 

each other is by using the same attributes to refer to an 

object as their conversational partner. For example, if the 

other person just referred to an object in terms of its size 

(the large table), the speaker would be more likely to use 

size as well in a subsequent reference, because the previous 

use of size would prime this attribute. However, this is at 

odds with another tendency that has been reported in the 

literature, namely that speakers prefer to use certain 

attributes that are more “absolute” in their meaning over 

attributes that are less so (e.g. color over size, Martin, 1969; 

Pechmann, 1989). Inspired by observations such as these, 

Dale and Reiter (1995) developed the Incremental 

Algorithm which assumes a fixed preference order of 

attributes to determine in what order certain attributes are 

used in the generation of referential expressions. This 

Incremental Algorithm states that when individuals describe 

an object, they will first use the most preferred attribute and 

matching value, e.g., color and then “red”, leading to the red 

chair. When this is not sufficient to single out the target 

object (e.g., there are multiple red chairs), the speaker will 

proceed by adding a less preferred attribute, e.g., size, 

leading to the large red chair. The speaker will continue 

adding attributes until the listener is able to identify which 

chair she is talking about. Dale and Reiter’s (1995) 

Incremental Algorithm thus predicts that speakers will never 

use a dispreferred attribute when a preferred attribute is 

sufficient for identification. However, Goudbeek and 

Krahmer (2012) primed speakers with dispreferred 

attributes (attributes that were used earlier in an interaction) 

– and investigated whether they would stick to their 

preferences or align by incorporating the dispreferred 

attribute that was used by their conversational partner. In 

their study, participants listened to a pre-recorded female 

voice referring to one of three furniture objects, using either 

a preferred (color; “the red chair”) or dispreferred 

(orientation, “the chair seen from the side”) attribute. They 

subsequently indicated which image (the target) matched 

this description. When they were asked to describe a new 

target object, they tended to use the same type of attribute 

that they were primed with before, even when they could 

also use the preferred attribute to distinguish the target. 

These results show that speakers may thus use dispreferred 

attributes over preferred ones when they are primed to do 

so. In this paper, we study whether the emotions amusement 

and disgust might inhibit or promote this tendency. In 

addition, we aim to replicate the findings by Goudbeek and 

Krahmer (2012) using a more naturalistic elicitation 

paradigm. 

The present study  

Based on the results from Goudbeek and Krahmer (2012) 

we predict that speakers will indeed align with their 

dialogue partners and start using the dispreferred attribute in 

their referring expressions when primed to do so. With 

respect to the effect of emotion, previous research (e.g., 

Kempe et al., 2013, Beukeboom & Semin, 2006) indicates 

that the emotional state of a speaker influences the content 

selection process of language production, and thus 

potentially the degree to which speakers align with respect 

to the attributes they use in interaction. 

However, mainly the influence of emotions differing in 

valence (positive vs. negative) on speech production has 

been studied (see Kempe et al., 2012; Converse et al., 2008) 

which severely limits our understanding into the role of 

emotion in speech production. After all, emotions can be 

differentiated in other ways, which might influence speech 

production as well.  

We induced amusement and disgust, two emotions that 

differ on multiple appraisals, among which is valence, but 

also approach/avoidance, potency/control and, possibly, 

intensity (see Scherer, 2013). Amusement is a positive 

emotion that occurs when a person experiences something 

entertaining (e.g., a joke) and feels pleasant (Tong, 2015). 

Disgust is an emotion that is elicited when a person is 

confronted with something they deem repulsive, for instance 

bodily fluids (vomit, pus, urine). We will study the effect of 

disgust and amusement on alignment in an interactive 

referential task. Will amused speakers or disgusted speakers 

align more with their conversational partners, even when 

they use a dispreferred way to refer to a target? 

Methods 

Participants 

A total of 140 Dutch-speaking university students (36 

male), participated in the experiment in pairs (n = 70).  

Materials 

Stimuli Following Goudbeek and Krahmer (2012), we used 

pictures taken from the TUNA corpus (van Deemter, Gatt, 

van der Sluis, & Power, 2012), depicting front-facing 

furniture items (a fan, a chair, a couch, and a desk) in four 

different colors (blue, green, red, and grey) and two 

different sizes (large or small). Participants were asked to 

uniquely identify the target picture (accompanied by two 

distractors) to their conversational partner. Previous studies 

(Gatt et al., 2007; Goudbeek & Krahmer, 2012) indicate the 

well-known preference of participants for color in their 

description of the target picture. 

There were three types of trails: color trials, size trials and 

filler trials. Each participant pair was presented with 60 

trials, divided into two blocks, consisting of 20 color trials 
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and 20 size trials. Additionally, each block included 10 filler 

trials, all containing large pictures of furniture in greyscale. 

Four versions were created, containing different orders of 

trials. 

 

Mood questions To control for participants’ mood before 

the experiment, we asked the participants to rate their mood 

before they watched the video. They indicated on a 1 to 7 

scale how much they experienced each of the following 

moods: happy/sad, pleasant/unpleasant, satisfied/unsatisfied, 

content/discontent, cheerful/sullen, in high spirits/low-

spirited (Krahmer, van Dorst, & Ummelen, 2014, based on 

Mackie and Worth, 1991 and Bohner et al. 1992; English 

translations of Dutch originals). 

 

Manipulation check To check whether emotion induction 

was successful, we asked participants after viewing the 

video to report how much amusement and disgust (and 

pride, anger, sadness, disgust, surprise and fear) they 

experienced on a 1 (“not at all”) to 7 (“extremely”) point 

Likert scale.  

 

Other-participant questions After the director-matcher 

task, participants rated on a 7-point Likert scale (ranging 

from 1: “not at all” till 7: “very”) how much they liked the 

other participant, how empathic they felt towards them, and 

how much they thought they got along. Finally, they 

indicated if they knew the participant, choosing either “no”, 

“yes, a little”, or “yes, very well”. 

 

Videos To counter the possibility of film specific effects, 

two different disgust-inducing and two different amusement 

videos were shown. Based on existing literature, we used 

four videos that were moderate to highly successful in 

inducing the corresponding emotions amusement and 

disgust, respectively. The amusement videos were “When 

Harry met Sally” (1989) and “There’s Something About 

Mary” (1998). The disgust videos were “Trainspotting” 

(1996) and “Pink Flamingos” (1972). We selected these 

videos because they have been used effectively in recent 

work (e.g., Hewig, Hagemann, Seifert, Gollwitzer, 

Naumann, and Bartussek, 2005; Fajula, Bonin-Guilaume, 

Jouve, and Blin, 2013; Harlé and Sanfey, 2010; Schaeffer, 

Nils, Sanchez, and Philippot, 2010; and Rottenberg, Ray, 

and Gross, 2007). 

Procedure 

After the participants had read and signed the consent form, 

they were sent to separate cubicles and filled in the 

demographics and answer the mood questions. The 

participants were informed that they were going to view an 

(emotional) video and were instructed to pay attention to the 

video and keep their eyes on the screen, because they would 

need this information in the video later in the experiment. 

After viewing the video (the emotion induction), they 

answered the questions of the manipulation check with 

respect to their current emotional state. Subsequently, they 

went into a new room together with the other participant. To 

enhance the emotion manipulation, participants discussed 

the video they viewed with each other for approximately 2 

minutes. They were instructed to focus on describing what 

they saw in the video, and telling the other participant what 

they thought and felt while viewing the video. They then 

filled in the mood questionnaire again and go on to perform 

the director-matcher task together. 

Each trial consisted of four turns. First, participant A, the 

director, described the target picture (framed by a red border 

on the screen) to participant B, the matcher. Depending on 

the trial, participant A used (was forced to use) either a 

preferred or dispreferred attribute to describe the target 

picture to participant B. In the color trials, participant A 

could only use the preferred attribute color to distinguish the 

target picture from the distractors. For example, the target  

picture was a large blue fan, and the distractors were a large 

red couch and a large red fan. Therefore, participant A had 

to use color to describe the target picture. In the size trials, 

participant A could only use the dispreferred attribute size to 

distinguish the target picture from the distractors. For 

example, the target picture was a large green desk, and the 

distractors were a small green desk and a small green fan. 

Therefore, participant A had to use size to describe the 

target picture (see Figure 1, square 1).  

Second, participant B, the matcher, saw the same pictures 

on their screen in a different order than participant A. After 

listening to the description of participant A, they indicated 

the matching picture by pressing the key of the 

corresponding number on their keyboard, e.g., “2” (see 

Figure 1, square 2). When participant A knew that 

participant B had selected an answer, she pressed “Enter” 

and the participants viewed a new screen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Example of a size trial in the director-matcher 

task. Square 1 and 2 depict green pictures. Square 3 and 4 

depict a red couch (the target), a blue desk and a grey chair. 
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Third, the participants switched roles: now participant B 

was the director and participant A the matcher. In contrast to 

the previous turn, the combination of pictures on this screen 

gave participant B the choice to use either the preferred or 

dispreferred attribute to distinguish the target picture from 

the distractors. For example, the target picture was a large 

red couch and the distractors were a small grey chair and a 

small blue desk. Participant B could either use the preferred 

attribute (“the red couch”) or use the dispreferred attribute 

(“the large couch”) to distinguish the target picture from the 

distractors (see Figure 1, square 3). In case participant B 

aligned with participant A, they used color when participant 

A (i.e., in color trials) used the preferred attribute, and size 

when participant A used the dispreferred attribute (i.e., in 

size trials). 

Fourth, participant A, now the matcher, selected the 

picture that matched participant B’s description by pressing 

the key of the corresponding number on the keyboard, e.g., 

“2” (see Figure 1, square 4). When participant B knew that 

participant A had selected an answer, participant B pressed 

“Enter”, marking the end of the trial. After participant B had 

pressed “Enter”, a new trial appeared and the procedure was 

repeated. Following the director-matcher task, both 

participants filled in the questions about the other 

participant. They got debriefed and received compensation 

(credits or money). 

 

Figure 2a. Proportion of preferred and dispreferred 

attributes per Prime (Color or Size) for Amusement  

Figure 2b. Proportion of use of preferred and dispreferred 

attributes per Prime (color or size) for Disgust 

Results 

Manipulation check 

First, we tested whether the emotion manipulation was 

effective. We performed a one-way analysis of variance 

with Emotion Video (Amusement vs. Disgust) as 

independent variable and Emotion Scale (amusement vs. 

disgust) as dependent variable. As expected, we found a 

significant effect of Emotion on amusement, F(1, 138) = 

88.89, p < .0001, and disgust, F(1, 138) = 255.47, p < .0001. 

The mean scores of the combined videos per emotion 

indicate that participants who viewed an amusing video 

reported higher levels of amusement (M = 4.89, SD = 1.38) 

than disgust (M = 2.60, SD = 1.49). Participants who viewed 

a disgusting video reported a higher level of disgust (M = 

6.26, SD = 1.38) than amusement (M = 2.51, SD = 1.39). 

This indicates that the emotion manipulation had the desired 

effect. 

Analyses 

To statistically evaluate the effects of emotion, prime, and 

attribute, we conducted an analysis of variance with the 

proportion of attribute use as dependent variable and 

Emotion (Amusement vs. Disgust) as between subject 

factor, and Prime (Color vs. Size) and Attribute (preferred 

vs. dispreferred) as within-subject factors. The results of this 

analysis can be found in Table 1.  

A significant main effect was found for Prime, F(1, 68) = 

47.36, p < .0001, η² = .41, indicating that the prime indeed 

influences the selection of attribute. Mean scores (with 

standard deviations) of the proportion of attribute use as 

influenced by prime can be found in Table 2. 

 A significant main effect was found for Attribute, F(1, 

68) = 33.67, p < .001, η² = .33, confirming that the preferred 

property color (M = .80, SE = .03) is indeed preferred over 

size (M = .52, SE = .03).  

The effect of emotion The interaction between Emotion 

and Attribute is significant, F(1,68) = 5.01, p = .028, η² = 

.07. A one-way analysis of variance with Emotion and 

Attribute shows a significant effect of Emotion for the use 

of preferred attribute, F(1,68) = 5.54, p = .022, regardless of 

prime. Amused individuals showed a preference for the 

preferred attribute color (M = .86, SD = .19) over the 

dispreferred attribute size (M = .48, SD = .22). Disgusted 

participants did not show a preference for color (M = .73, 

SD = .28) or size (M = .56, SD = .25), F(1,68) = 1.91, 

p = .172. The three-way interaction between Emotion, 

Prime and Attribute was not significant (F(1,68) = 3.34, p = 

.072), but there was a significant interaction between 

Emotion and Attribute (F(1,68) = 5.01, p = .022). The 

proportions of preferred and dispreferred attributes as a 

function of Prime and Emotion are shown in Figure 2a (for 

Amusement) and Figure 2b (for Disgust).  
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Table 1. Summary of statistical analysis 

 

 F p ≤ η² 

Emotion 0.05 .376 .01 

Prime 47.36 .001 .41 

Attribute 33.67 .001 .33 

Emotion x  Prime 3.34 .072 .05 

Emotion x Attribute 5.01 .028 .07 

Prime x Attribute 119.89 .001 .64 

Emotion x Prime x Attribute 0.31 .580 .01 

 

Table 2. Proportions of preferred and dispreferred attributes 

per Prime (color vs. size) 

 

Prime Attribute M SD 

Color  Preferred 0.85 0.21 

 Dispreferred 0.31 0.28 

Size  Preferred 0.75 0.31 

 Dispreferred 0.72 0.29 

 

Discussion 

The aim of this study was twofold. One, investigating the 

effect of emotion on alignment in interactive reference 

production. Two, providing a more naturalistic replication 

of the results by Goudbeek and Krahmer (2012) by 

investigating alignment on dispreferred properties in a truly 

naturalistic version of the interactive alignment paradigm. 

Regarding the effect of emotion on attribute use, we 

found that amused speakers have a stronger preference for 

the preferred attribute (color) over the dispreferred attribute 

(size) than disgusted speakers. This finding can be explained 

by the theory that individuals in a positive state tend to 

process information more shallow and global than 

individuals in a negative state (e.g., Beukeboom & Semin, 

2006) therefore using the preferred attribute because it is the 

default. 

 Regarding the effect of emotion on alignment, we did not 

find a statistically significant interaction between emotion, 

prime and attribute. However, upon inspecting our data, we 

did observe some interesting trends. We found that amused 

speakers aligned with their conversational partner regardless 

of prime. In other words, amused speakers aligned when 

they were primed with color and when they were primed 

with size (Figure 2a). This is in line with Harmon-Jones et 

al. (2013): amusement, an emotion of low emotional 

intensity, broadens the cognitive scope and therefore, 

speakers align with their conversational partners, regardless 

of prime. However, our amused speakers still used the 

preferred attribute color more (Figure 2a), supporting Clore 

and Hutsinger (2007), who state that speakers in a positive 

state find it harder to shift to the perspective of their 

conversational partner. 

Disgusted speakers aligned when they were primed with 

color and when they were primed with size as well (Figure 

2b). However, disgusted speakers primed with size 

(opposed to the amused speakers primed with size) use the 

dispreferred attribute more than the preferred attribute, 

indicating that disgusted speakers have an even stronger 

tendency to align than amused individuals. This might be 

explained by the theory that individuals in a negative state 

have a narrower scope of attention (Beukeboom & Semin, 

2006). A narrow scope of attention might cause disgusted 

speakers to focus more on the words of their conversational 

partner than amused speakers who have a broad focus. The 

increased attention for the conversational partner in turn 

results in more alignment, regardless of prime (color or 

size). However, the result that disgusted speakers align more 

when they are primed with size than their amused peers can 

also be explained by the egocentricity bias (see Kempe et 

al., 2012). If amused speakers are more egocentric than 

disgusted speakers, they will rely more on their own 

perspective, using the preferred attribute color more, 

regardless of prime. This might not be the case for disgusted 

speakers, who are less self-focused and therefore align with 

their conversational partner, even when the prime was a 

dispreferred attribute.  

The results of this study are perfectly in line with those of 

Goudbeek and Krahmer (2012). First, we found that 

participants generally used the preferred attribute color over 

the dispreferred attribute size. Second, participants primed 

with size used the dispreferred attribute size more than when 

they were primed with color. This is an interesting result, 

because the paradigm used in the study by Goudbeek & 

Krahmer (2012) was much more artificial than the one in 

our current study. In their experiment, speakers interacted 

with a computer and were primed by a pre-recorded 

computerized female voice. In our study, two human 

participants interacted in pairs in a relatively natural setting: 

they were asked to interact normally, without restrictions. 

The participants who primed did this naturally and 

unconsciously, by being only able to use the preferred or 

dispreferred attribute to describe the target picture. 

The preliminary evidence for the differential effects of 

amusement and disgust on attribute choice in referential 

expressions should lead to further explorations of the effect 

of (various) emotions on language production in human 

interactions. Future studies could, for example, focus on 

finding the (inter- and intrapersonal) mechanisms that might 

underlie the preference of emotional speakers to use either 

preferred over dispreferred attributes. In our study, amused 

speakers preferred color much more than disgusted speakers 

did, which implies that the emotional state of a speaker 

influences her attribute preferences. These and similar 

studies should result in a more detailed picture of the 

underlying mechanisms of the language production of 

emotional speakers. 
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Abstract 

Smartphone usage has evolved in people’s lives from necessity 
to habit and in some cases leading to compulsive use and 
addiction. However, only a little research has been performed 
on the prevention of Problematic Smartphone Usage (PSU). 
Behavioral economics has been applied to investigate how 
smartphone users respond to nudges that try to lower their 
smartphone usage. Findings revealed that the Total Screen On 
Time (SOT) decreased when nudging smartphone users with 
information on their usage behaviors. Intermittent glancing, as 
well as the median session time increased, and the reduction in 
SOT was no longer statistically significant in the observation 
period after the nudges were no longer applied, suggesting 
relapse in smartphone usage behavior. 

Keywords: addiction; behavioral insights; nudge; smartphone 

Introduction 

Behavioral economics researchers (Kahneman, 2003) have 

identified a large number of systematic biases in people's 

decision-making and judgements. These biases have been 

regarded as evidence that people do not follow principles of 

the rationality suggested in neoclassical theory (Samuelson, 

1937). Instead, people use a series of heuristics that often lead 

to systematic errors (Tversky and Kahneman, 1973). Thus, 

the results of the mainstream views in behavioral economics 

have a generally low opinion about human rationality. 

A new positive approach – nudge – for peoples' decision-

making have emerged (Thaler and Sunstein, 2008). 

According to this approach, people could be helped by a 

nudge to make optimal decisions (Thaler and Sunstein, 

2008). By planning the environment based on so-called 

“choice architects” in order to make people change behavior 

to make decision makers better off as judged by themselves 

(Thaler & Sunstein 2008). One example of the benefit of the 

nudge and choice architecture is to prompt vaccination 

receivers to write down the date and time of the appointment 

to increase vaccination rate (Milkman et al., 2011). 

According to the dualistic model people engage two 

systems of thinking. System 1 is an automatic, effortless and 

often influenced by habits that cannot be influenced easily, 

whereas System 2 is effortful, deliberately controlled and 

associated with conscious thinking operations (Kahneman, 

2003). The limited capacity of mental effort results to people 

preferring the System 1 thinking by applying heuristics. As 

an outcome, many decisions are based on beliefs of 

probabilities of possible outcomes (Tversky & Kahneman, 

1973). Nudges build on the proposition of dualistic system. 

By preferring the effortless processing, “choice architects” 

can for instance design routinization of medication, thus 

creating a habit that is easier to maintain than a medication 

that is not based on a routine (Ryan & Wagner, 2003). 

Problematic Smartphone Use 

The heuristics suggested from the dualistic system can be 

theorized to be present in a person’s smartphone usage habits. 

The high daily usage of a smartphone in people’s lives have 

become significant (Montag et al., 2015b; Kim, 2013; 

Oulasvirta et al., 2012; Lin et al., 2015). Even if 82% of the 

respondents say that using their phone during the 

conversation hurts the setting, 89% of the people have used a 

phone themselves during their most recent social gathering 

(Rainie & Zickuhr, 2015). People have been shown to 

frequently return to their uncompelled behavior even if they 

were willing to change their behavior for better (O'Connell, 

1996). Smartphone usage can be seen to have evolved into a 

habit which can lead to compulsive use and addiction (Lee, 

Chang, Lin & Cheng 2014, 373).  

Frequent phone use has been connected to the indicators of 

certain types of addiction. Some studies (Lin et al., 2015; 

Hong et al., 2012; Lin et al., 2014; Leung, 2008) indicate that 

the compulsive use of smartphones share the characteristics 

of drug and alcohol addiction, and internet dependency. 

Moreover, pathological gambling analyses has been used to 

classify this type of smartphone addiction (Leung & Liang, 

2016).  
Using a mobile device frequently and at excess durations 

has been shown to lead to various types of symptoms. Using 

phones in excessive quantities in personal business situations 

has been shown to lower quality outcomes in negotiations and 

to give a less trustworthy and less professional impression 

(Krishnan et al., 2014). In addition, the increased use of 

smartphones has been shown to lead to reduced concentration 

levels during school classes and unsafe driving habits (Hong, 

Chiu & Huang, 2012). Furthermore, by taking a wireless 

device even for a short time can increase anxiety (Cheever, 

Rosen, Carrier & Chavez, 2014).  

Whereas most of studies have focused frequent phone use 

from addiction point of view, it is hard to find studies that 

have focused on the prevention of Problematic Smartphone 

Use (PSU) on healthy test subjects. In order to help lower the 

smartphone use without coercion or policies, it is important 

to investigate how PSU can be influenced by using behavior 

change interventions. 

Behavioral economics can be applied to investigate how 

smartphone users respond to nudges (Thaler and Sunstein, 

2008) that try to lower their smartphone usage. A concept of 

‘nudge’ has been introduced in contrast to policies enforcing 

a desired behavior or to introducing significant economic 
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incentives. Nudges can be used to design an environment that 

“alters people’s behavior in a predictable way without 

forbidding any options or significantly changing their 

economic incentives” (Thaler et al., 2008). Although the 

nudge has been applied in many studies and projects (Johnson 

& Goldstein, 2003; Shu et al., 2012), it is hard to find research 

reports that have focused on applying behavior change 

interventions to influence smartphone usage. 

The nudges used in this research to influence smartphone 

use were designed based on Michie, van Stralen and West’s 

(2011) Capability, Opportunity-Motivation-Behaviour 

(COM-B) framework. According to this framework, behavior 

change involves changing one or more of the capability, 

opportunity and motivations that relate to the behavior 

(Michie, Atkins & West, 2014). Capability refers to 

knowledge and skills that influence engaging in the activity, 

opportunity refers to everything outside the test subject that 

prompts for behavior or makes it possible, and motivation 

refers to processes that energize and direct behavior (Michie 

et al., 2014). The first nudge used in this study was designed 

to influence to the capability component, whereas 

Motivational and Goal-Attainment nudges were designed to 

influence to the motivational component in the COM-B 

framework. 

Goal setting combined with a commitment, and feedback 

concerning the behavior has been shown to lead to behavior 

change. Where providing information has improved 

knowledge about the issue, the behavior change has resulted 

from tailored information, goal setting and feedback. 

Whether the goal has been set by an external party or the 

subject themselves, it has not been shown to have influence. 

(Abrahamse, Steg, Vlek & Rothengatter, 2007). 

The Capability-nudge provided information regarding the 

phone use. The nudge was designed to be compatible with 

Hansen & Jespersen’s (2013) definition of Transparent type 

1 nudge. In this category, the reflective thinking of a subject 

is a by-product of the nudge. 

Both Motivational-nudge and the Goal-attainment-nudges 

added influence to the motivational component by providing 

an optional valentic emoticon based on the progress of the 

smartphone use. The appearance of the valentic emoticon in 

a Goal-attainment nudge was shown if the test subject 

attained a self-defined personal goal in reducing smartphone 

usage. The valentic emoticon was designed to influence 

behavior through reflective thinking and to indicate an 

attainment of a desired behavior. These nudges built on 

Hansen & Jespersen’s (2013) definition of Transparent type 

2 nudge: the emoticon provided feedback to reinforce the 

commitment mechanism while the test subject maintained a 

complete freedom of choice, both before engaging with the 

phone, or after opening the phone and thus becoming subject 

to the nudge. 

Even though excessive smartphone usage can lead to 

compulsive use and addiction (Lee, Chang, Lin & Cheng, 

2014), little is known how people can voluntarily lower 

smartphone use. Here we use the COM-B behavioral change 

framework to study how smartphone usage can be influenced 

by nudges.  

Method 

Participants 

Total of 201 users were recruited from social media 

(Twitter, Facebook and LinkedIn) to participate in the 

research using the following recruitment message: “Are you 

hooked to your phone? Do you use it way too much? Find it 

out. Participate in a research. Install Deglancer.” The 

participants were not assessed or selected based on their 

attitudes towards smartphone usage. The participants were 

incognito to the researchers throughout the study. The study 

was initiated by a test subject when installing the application 

onto their Android smartphone from Google Play store. The 

users were presented information about the research both 

before installing the research application, and when the 

research information sheet was made available to them in the 

application. 

Following the research practices of an earlier research 

project (Montag et al., 2015b) the data was filtered to include 

only the participants that completed the full five weeks of 

research without stopping their phone usage for more than 

three consecutive days during the research. After discarding 

corrupted research data and ineligible users, 78 users were 

included to the data analysis. 

Earlier research results (Mueller, van der Heijden, Klein & 

Potters, 2011; Altmann & Traxler, 2014) had shown that the 

effect of nudges do not significantly correlate with economic 

or socio-demographic variables. Therefore, 

sociodemographic background variables are not reported. 

The ethics committee of the Federation of Universities of 

Applied Sciences approved the study.  

Procedure 

A smartphone application was developed to conduct an 

intervention study using three different type of nudges. The 

study was constructed for consecutive five stages, each 

lasting for 7 days. As soon as the users started the application 

for the first time, the study initiated. The application 

registered itself to the service hosted in Google cloud 

computing infrastructure. In the beginning of the research, 

the test subjects responded to the Smartphone Addiction 

Inventory (SPAI) questionnaire in the research application, 

measuring their attitudes and effects towards smartphone 

usage (Lin et al., 2014), however, the SPAI data has not been 

analyzed for this paper. The participants used their personal 

smartphone for the duration of five weeks during which the 

interventions were performed and the research data was 

collected.  

 The first Baseline stage created a personal baseline of 

smartphone usage of a participant. During the second, 

Capability stage, at every unlock of the smartphone, the user 

was presented a nudge including the following information: 

the number of minutes that the phone was locked before the 

unlock event, the number of unlock events so far during the 
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ongoing day and the total duration that the screen has been 

turned on during the ongoing day. The purpose of this stage 

was to test the effect of information to the smartphone use.  

During the third, Motivational stage, a user was presented 

with a similar nudge to the second stage. Information in the 

nudge was preceded with a positively valenced injunctive 

emoticon if the smartphone user had lowered the smartphone 

usage and therefore the indicator value had improved: if 

smartphone was locked for longer than the average sleep time 

one week earlier, if the number of unlocks up to the current 

hour of the day was less than the number of unlocks up to the 

current hour of the day one week earlier, or if the total screen 

time up to the current hour of the day was less than up to the 

same hour of the day one week earlier. The purpose of this 

stage was to test the effect of positively valenced injunctive 

emoticon judged by an external authority. 

In the beginning of the Goal-attainment stage, the user was 

prompted to select a goal for how much he or she wished to 

decrease the phone usage this week. If the user did not select 

a goal, the application used the default goal of 5 % 

improvement to the previous week. Every time the user 

unlocked the smartphone, the application calculated if one or 

more of the indicators had improved more than the target 

percentage compared to the previous week’s information. If 

the sleep time was at least 5 % longer than the average sleep 

time in the previous week, if the number of unlocks was at 

least 5 % less than the number of unlocks up to the same hour 

of the day in the previous week, or if the total duration of the 

screen time was at least 5 % less than up to the current hour 

of the day in the previous week, the indicator was preceded 

with the same injunctive emoticon that was used in the 

Motivational stage. 

As in the Motivational stage, the nudge in the Goal-

attainment stage built on the motivation component of the 

COM-B. However, as the stage included a task to define the 

percentage of the desired reduction in smartphone use, the 

goal-setting intended to direct attention and effort to reach the 

goal defined by the test subject. In order for the test subjects 

to easily maintain their state of goal attainment, the test 

subjects would have to reflect their phone usage before 

engaging with the phone, thus reducing phone usage. The 

purpose of this stage was to test the effect of goal-attainment, 

and the effect of injunctive emoticon based on a personally 

set goal. By prompting the test subject with active decision-

making regarding the amount to reduce their smartphone use, 

it was expected that the test subjects would make effort to 

attain the goal that they had specified themselves. 

As the study progressed to the fifth week, all notifications 

stopped, and application only recorded the user behavior for 

one week. In the same way with the first stage of the study, 

the fifth stage did not involve a nudge. The purpose of this 

stage was to investigate if users relapse to their prior behavior 

after the nudges are no longer present. 

After full five weeks, the application notified the user that 

the study had been completed. However, the user could 

continue to use the application, and choose the type of nudge 

to present at every unlock. The test subjects had a choice to 

continue to use the application, or uninstall the application 

from their smartphone.  

Data Analysis 

A total of 606062 events were collected over the 5-week 

study period were tested. These events were converted to 

2304 observations, each of them representing one day of one 

test subject, equivalent to the definition of per day per user 

(pdpu) used in an earlier similar research (Oulasvirta et al. 

2012). Five key indicators of smartphone usage were 

calculated from the research data: Total Screen On Time per 

day (SOT), Median Screen On Time of each session (Session 

Time), Total number of phone usage sessions per day 

(Unlocks), Number of phone usage sessions equal or shorter 

than 30 seconds in duration, over 10 minutes apart from the 

previous session (Glances) and Median Screen Off Time 

between two sessions (Median SFT). Of the 78 participants 

who completed the research, 58 chose to set their own goal in 

the goal-setting phase, whereas 20 participants got the default 

as a goal. 

Time series of each key indicator was processed with 

Hilbert-Huang Transform (HHT). In this so-called sifting 

process, the time series of each key indicators were broken 

into intrinsic mode functions (i.e. IMFs) and by sequentially 

de-composing these intrinsic modes from the original signal, 

the remaining data represented the trend of the data over the 

study period. This analysis was compatible with the method 

used by Lin et al. (2015). Inferential statistics were performed 

to measure the effect of nudges in Capability, Motivational 

and Goal-attainment stages compared to the Baseline and to 

the Observation stages. The differences in key indicators 

were tested between the stages of the study for each test 

subject. The inferential statistic tests were done by 

performing independent-samples t-test using different stages 

of the study as a grouping variable, and each key indicator as 

test variable. Finally, a regression equation was calculated to 

predict a key indicator from another key indicator. The 

processing of the data was performed with the MatLab 

software package and the inferential analysis was performed 

with an SPSS statistical software. 

Results 

There was a significant effect of intervention for SOT 

between Baseline and Capability stages. Between these 

stages, mean SOT lowered from 3 hours and 40 minutes pdpu 

to 3 hours and 14 minutes pdpu. The effect of intervention for 

SOT was also significant between the Baseline stage and the 

Motivational stage, as well as and between the Baseline and 

Goal-attainment stages. In the Motivational stage, SOT 

lowered to approximately 3 hours and 10 minutes, and to 3 

hours and 13 minutes in the Goal-attainment stage. The 

decrease in SOT was not statistically significant when 

comparing the first stage to the last week, Observation stage, 

of the study. Table 1 below illustrates differences and 

statistical significance of SOT by stage. 
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Table 1: SOT by stage (N=78). 

 

Stages Difference Significance and effect size 

1 vs. 2 -26 minutes t(922) = 2,888, p < .01, d = 0,19 

1 vs. 3 -30 minutes t(925) = 3,356, p < .01, d = 0,22 

1 vs. 4 -27 minutes t(916) = 2,871, p < .01, d = 0,19 

 

The difference in Session Time was significant between the 

Baseline stage and Observation stage. The mean duration of 

individual session increased from 51 seconds pdpu to 92 

seconds pdpu. The difference was also significant between 

Capability and Goal-attainment stages, as well as between 

Capability and Observation stages. This difference was also 

significant between Motivational and Observation stages. 

The mean duration increased from 44 seconds in the 

Capability stage to 49 seconds in Motivational, to 63 seconds 

in Goal-attainment and finally to 92 seconds in Observation 

stage. The changes were not significant between adjacent 

stages. Table 2 below illustrates the changes in Session Time 

by stage. 

 

Table 2: Session Time by stage (N=78). 

 

Stages Difference Significance and effect size 

1 vs. 5 41 seconds t(913) = -2,466, p < .05, d = -0,16 

2 vs. 4 5 seconds t(920) = -2,298, p < .05, d = -0,15 

2 vs. 5 19 seconds t(917) = -2,945, p < .01, d = -0,19 

3 vs. 5  33 seconds t(920) = -2,674, p < .01, d = -0,18 

 

The difference in Glances was only significant between 

Capability and Observation stages, t(917) = -2,006, p < .05. 

Mean Glances pdpu increased from 41,24 times in Capability 

to 45,55 times in Observation stage. 

Simple linear regression was calculated to predict SOT 

based on Glances. Poor regression equation was found 

(F(1,2274) = 142,124, p < .000) with an R2 of .059. Also, 

simple linear regression was calculated to predict Unlocks 

based on Glances. A significant regression equation was 

found (F(1, 2274) = 10188,592, p < .000) with an R2 of .818. 

Median SFT was significantly different between the last 

two stages when compared to the first three stages. However, 

due to the HHT being used in the pre-processing stage to 

address the non-linearity and non-stationarity of the research 

data, the comparison of the key indicator values using 

original units of measure might not be accurately depicted. 

Median SFT values after HHT pre-processing smoothed the 

data to a negative range without equivalent real world 

phenomenon. The changes in Median SFT can be 

characterized so that the difference in Median SFT is not 

significantly different between stages 1, 2 and 3, but Median 

SFT is markedly higher in stages 1, 2 and 3 compared to 

stages 4 and 5. The below Table 3 illustrates the trend of 

change in Median SFT by stage. 

 

 

 

 

Table 3: Median SFT by stage (N=78). 

 

Stages Significance and effect size 

1 vs. 4 t(916) = 3,194, p < .01, d = 0,21 

1 vs. 5  t(913) = 2,815, p < .01, d = 0,19 

2 vs. 4 t(920) = 3,194, p < .01, d = 0,21 

2 vs. 5 t(917) = 2,801, p < .01, d = 0,18 

3 vs. 4 t(923) = 2,299, p < .05, d = 0,15 

3 vs. 5  t(920) = 2,491, p < .05, d = 0,16 

 

Discussion 

There was a significant main effect for SOT between the 

Baseline stage and all of the three stages with the nudges. 

Consistent with COM-B framework (Michie et al., 2011) this 

change in SOT could be associated to an individual's aptitude 

to change their phone usage. Especially in the Capability 

stage the information pertaining to the user’s phone usage 

was planned to be consistent with the definition of the type 1 

transparent nudge (Hansen & Jespersen, 2013). It can 

therefore be suggested that the effect of the nudge was 

significant enough to trigger an automatic reflection of 

smartphone use. 

It is not possible to conclude that one type of nudge has 

higher significance to smartphone behavior than the other. 

Statistically significant decrease of SOT between the 

Baseline stage and both the Capability stage and the 

Motivational stage suggests that by using nudges that 

increase capability or motivational components can result to 

behavior change. However, there was no significant change 

in any of the key indicators between the different types of 

interventions. 

 Locke and Latham (2002) have earlier suggested that “the 

effects of goal setting are very reliable”. Michie, Atkins and 

West (2014) have also reported that the interventions with 

“explicit targets and actions plans to feedback” had a higher 

impact compared to interventions without targets. According 

to Locke and Latham (2002), failures to replicate the effects 

of goal settings can be due to many reasons, including for 

example the lack of feedback, lack of commitment or failure 

to match the goal to the performance measure. It is possible 

that the key indicators used in this research do not mediate 

smartphone usage behavior. Also, by only providing 

positively valenced feedback about the goal attainment but 

inhibiting negatively valenced feedback about the failure to 

attain a goal could explain why this research could not 

successfully replicate the effects of goal setting. 

The level of SOT per day (162 minutes) is in line with what 

Oulasvirta et al. (2012) reports, but it is only 62,3 percent of 

what Lin et al. (2015) reports as a median daily use time. Lin 

et al. (2015) report that the recruitment strategy in their study 

was “based on the potential higher penetration rate of 

smartphone use”. Montag et al. (2015a) have written that 

substantial part of the sample in Lin et al.’s (2014) study was 

characterized as being smartphone addicted. The difference 

in the level of usage compared to Lin et al.'s research results 
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may suggest that the sample in this research did not include 

substantial amount of problematic smartphone users or 

smartphone addicts. 

There was a significant difference in Session Time between 

number of stages as indicated in Table 2. In these 

comparisons with Observation stage, the Session Time 

increased from the stage under comparison. 

The difference in Glances was only significant between the 

Capability stage and the Observation stage. Oulasvirta et al. 

(2012) define intermittent smartphone use as SIRB, short 

duration isolated, reward-based usage sessions. This 

definition includes a notion about the type of application: “at 

least 50% of the usage session duration is spent interacting 

with applications that provide the reward values”. The 

definition of Glances is not therefore fully compatible with 

the definition of SIRBS. 

There was no evidence that nudges can reduce the number 

of Glances. Oulasvirta et al. (2012) have suggested earlier 

that “checking habits may lead to more use overall”. Poor 

regression equation to predict SOT based on Glances did not 

support Oulasvirta et al.’s previous findings, however, 

significant regression equation to predict Unlocks based on 

Glances would suggest that even though changes in Unlocks 

were not statistically significant during the research, Unlocks 

can be expected to increase after the nudges are no longer in 

effect. Oulasvirta et al. (2012) have earlier concluded that the 

increased “checking habit” is associated with higher phone 

usage overall. Oulasvirta et al. (2012) suggest that short 

sessions act as a “gateway” for other content on the device, 

and that they can be seen as a proxy for habitual usage. 

Median SFT was significantly lower from Motivational 

stage onwards compared to the baseline. It was not possible 

to find a report that would have included at least descriptive 

statistics about the Session Time or Median SFT. In this 

research, Session Time was 23 seconds, and Median SFT was 

198,50 seconds. Due to the lack of prior reported research 

evidence, these numbers provide little basis for inferential or 

comparative analysis. Davis (2001) has suggested that 

procrastination has a role in both the development and 

maintenance of generalized PIU. However, based on the data 

from this research it is not evident if a more frequent 

engagement with the phone is due to the test subjects putting 

off their responsibilities – as Davis suggests - or due to other 

reasons. 

It can be theorized that the changes in SOT and Median 

SFT is due to the test subjects reducing their screen time 

overall even if they engaged with their phone more 

frequently. In the Goal-attainment stage the nudge was built 

on Motivational component in COM-B framework, 

proposing that the explicit goal is associated with lower 

phone usage. Evidence referred by Klasnja (2009) have 

proposed that the automatic goal activation can be triggered 

with presentation of salient information. It is possible that the 

nudge in the Capability stage had already triggered automatic 

goal activation, and the differences in nudges between the 

stages were not significant enough to trigger additional ways 

of behavior change beyond what was already active from the 

Capability stage onwards. This could support an unchanged 

amount of glances throughout the experiment, although it 

remains unclear what triggered an increase in the mean 

Glances in the Observation stage. 

Neither Session Time nor the number of unlocks lowered 

significantly between the Baseline and Capability stage. One 

possibility is that there was a mere-measurement effect from 

the beginning of the study and the users made an effort to 

generally lower the amount of engagement with the phone 

throughout the study by spending less time with the phone at 

each unlock. Another possibility is that the users generally 

reflected their phone usage and did not unlock the phone as 

often as before. In this case, as soon as they would engage 

with their phones, they would approximately spend the same 

amount of time with their phone, but that would happen less 

often. The changes can, however, be so small that it is not 

statistically significant for Unlocks or Median SFT. If the 

latter assumption was true, it would suggest that automatic 

goal may have triggered users to reflect their phone usage 

before they engage with their phone. As SOT was 

significantly or highly significantly lower in all stages of the 

study compared to the Baseline stage, the observation could 

be a sign of learning the phone usage behavior resulted by the 

interventions. 

According to these results, a systematic relapse in behavior 

was seen after the interventions were no longer in effect. 

Block (2008) has earlier reported that the individuals with 

internet addiction are resistant to treatment and tend to 

relapse at a high rate. The findings from this research are 

compliant with Block’s suggestion, although it is not possible 

to associate the findings from this research to a relapse based 

on psychiatric reasons. 

Even though this research supports both Klasnja et al.’s 

(2009) as well as Oulasvirta et al.’s (2012) conclusion that 

interventions can help trigger behavior change, this research 

does not support the proposition that interventions can help 

maintain a behavior change. 

This research does not provide evidence that the type of 

nudge explains differences in the number of unlocks or 

glances per day. It is possible that this is due to the path 

dependence between the stages of the research and the lack 

of a control group. Even though there was statistically 

significant different in the mean Glances between the 

Capability and the Observation stage, this finding is not 

supported by current literature. More evidence would be 

required to prove relapse in smartphone use resulting from 

the absence of a nudge, by randomizing the order of stages in 

the research and by introducing a control group. 

It can be concluded that nudges can help lower key 

indicators of smartphone use, however, this might increase 

intermittent glancing and result to overall increased usage of 

the phone when the interventions are no longer present. 
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Abstract 
Multisensory integration, or the merging of information from 

multiple sensory modalities, is important for many everyday 

tasks. One methodology used for examining this process is the 

Sound Induced Flash Illusion (SIFI), which presents participants 

with a number of flashes and either the same number of beeps 

(congruent) or a different number of beeps (incongruent), and 

requires the participant to respond by entering how many flashes 

they saw. The study expands on this research by examining the 

relative contributions of auditory and visual information on 

multisensory integration. While congruent and incongruent 

auditory stimuli affected visual perception (Experiment 1), there 

was little evidence that visual input affected auditory processing 

(Experiment 2). These findings support auditory dominance and 

modality appropriate hypothesis in adult populations and have 

implications on tasks that require integration across auditory and 

visual modalities. 

 

Keywords: Crossmodal Processing; Multisensory 

Integration; Modality Dominance; Sound Induced Flash 

Illusion 

Introduction 

A majority of our daily experiences require people to process 

multisensory information. As a person walks down the street, 

for example, they may see a car driving by, hear the engine 

as it approaches, smell the exhaust and feel the breeze as the 

car passes. How information from the different sensory 

modalities is integrated and combined into a unitary percept 

is considered multisensory integration (Shams, 2000). Using 

the example above, these multisensory experiences are 

perceived as one percept (car) instead of having independent 

experiences. Given the evident impact of multisensory 

integration in our everyday experiences, it is important to 

understand the contributions of auditory and visual 

contribution to multisensory integration and factors that 

facilitate and inhibit multisensory integration. 

Shams, Kamitani, and Shimojo (2000) developed a test 

of multisensory integration called the Sound Induced Flash 

Illusion (SIFI), where the number of beeps influences how 

many flashes people see. In their study, they presented one, 

two, or three flashes, and in the cross-modal condition, these 

flashes were paired with one, two or three beeps. Participants 

were then asked to report how many flashes they saw, 

regardless of how many beeps they heard. If the number of 

beeps exceeded the number of flashes, participants tended to 

overestimate the number of flashes (fission). If the number of 

beeps was less than the number of flashes, participants tended 

to underestimate flashes (fusion). Fission and fusion 

responses are implications of multisensory integration. This 

shows that the auditory information is being integrated with 

the visual information. Another study, using a different 

procedure and stimuli, tested perception of beeps to see if 

they could create a flash-induced sound illusion (Andersen, 

2004). Under normal intensity levels, the visual flashes had 

no effect on auditory perception; however, they did find some 

evidence that flashes influenced beep perception when 

intensity levels of beeps were weakened to near threshold 

levels.  This finding, in conjunction with Shams et al., may 

suggest that auditory information has a stronger effect on 

visual processing than vice versa; however, there were also 

numerous differences across studies; thus, making it difficult 

to make strong conclusions.  

Why do auditory beeps affect participants’ perception of 

the number of visual flashes? One possible explanation 

underlying this illusion is auditory dominance (Robinson & 

Sloutsky, 2010a). According to this account, auditory and 

visual stimuli compete for attentional resources; thus, 

increased attention to one modality might come with a cost -  

delayed or attenuated processing in the other modality. 

Moreover, because auditory stimuli are dynamic and 

transient, it may be adaptive to first allocate attention to the 

auditory modality before the information disappears. Most of 

the supporting research for auditory dominance comes from 

the developmental literature, where multisensory 

presentation attenuates visual processing more than auditory 

processing (Lewkowicz, 1988a; 1988b; Robinson & 

Sloutsky, 2004; 2010b; Sloutsky & Napolitano, 2003; 

Sloutsky & Robinson, 2008). According to this account, the 

beeps in SIFI may interfere with processing of the visual 

flashes; whereas, the visual input may have little effect on 

processing of the beeps. Another possible reason why beeps 

may affect flash perception is modality appropriateness 

hypothesis, which states that the modality that is more 

appropriate for the task is the one that dominates (Welch & 

Warren, 1980). Welch and Warren (1980) describe that with 

information processing, vision is dominant in spatial 

situations and audition is dominant for temporal judgements. 

When these two modalities are simultaneously presented and 

the task has a temporal aspect, studies have shown that 

audition becomes the dominant modality and can influence 

vision (Wada, Kitagawa, & Noguchi, 2003). Thus, both 
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auditory dominance and modality appropriateness predict 

that auditory input should have a greater effect on visual 

perception than vice versa, especially when the task is 

temporal in nature (but see Tsay, 2013, where visual 

information affected judgements about musical 

performance). 

Predicting that auditory information will have a greater 

effect on visual processing conflicts with much of the past 

research with adults that showed visual dominance, where the 

simultaneous presentation of auditory and visual information 

seems to inhibit auditory processing (see Sinnett, Spence, & 

Soto-Faraco, 2007, and Spence, Parise, & Chen, 2012). For 

example, when adults were required to press one button when 

they detected a visual stimulus, a different button when they 

detected an auditory stimulus, and a third button (or both 

buttons) when both stimuli were presented at the same time, 

participants often made errors on cross-modal trials by only 

pressing the visual button (Colavita, 1974). Thus, visual 

dominance tends to occur when adults are required to make 

speeded, modality-specific responses to auditory, visual, and 

crossmodal stimuli (Colavita, 1974; see Sinnett, Spence, & 

Soto-Faraco, 2007 for review). One possible explanation for 

visual dominance is that adults may have a visual response 

bias to compensate for the fact that visual input is less alerting 

than auditory (Posner et al., 1974). It is important to note that 

the current study testing the SIFI is different from some of 

the modality dominance studies because it requires quantity 

judgements (how many beeps or flashes), rather than 

requiring speeded, modality-specific responses to auditory or 

visual input. 

The current study used a modified SIFI task to test both 

auditory and visual processing and expands previous research 

in three ways. First, the study expands SIFI research by 

examining the relative contributions of the auditory and 

visual modalities in multisensory integration, as opposed to 

only examining the effects of auditory input on multisensory 

integration or visual input on multisensory integration. 

Second, the current study expands SIFI research by using 

facilitation effects (greater accuracy on cross-modal 

congruent trials than unimodal trials) as a measure of 

multisensory integration. Do congruent auditory or visual 

stimuli increase the accuracy of beep/flash perception? 

Finally, the current study will contribute to the modality 

dominance literature by using quantity judgements and 

accuracy (how many beeps or flashes) rather than speeded, 

modality-specific responses to auditory and visual 

information. Experiment 1 examined the effect of beeps on 

perception of flashes (replicating most SIFI studies), and 

Experiment 2 tested the effect of flashes on perception of 

beeps. Based on auditory dominance and modality 

appropriate hypothesis (Robinson & Sloutsky, 2010a; Welch 

& Warren, 1980), it is expected that congruent and 

incongruent auditory information will have a stronger effect 

on visual perception, whereas, it is expected that visual input 

will have a weak or no effect on auditory perception. 

 

 

Experiment 1 

Method 

Participants Participants for Experiment 1 included 24 

young adults (18 to 35 years). Young adults were recruited 

from the Ohio State University, and received class credit for 

the Introductory Psychology course in return for their 

participation. Three participants with uncorrected hearing or 

vision, as self-reported, were excluded from the data 

analyses. 

 

Apparatus The experiment was conducted on a 22” Dell 

PXL 2230 MW monitor with 1920 x 1080 resolution and Dell 

Optiplex 7040 systems with Intel Core i5 processors. Bose 

QuietComfort 25 Noise Cancelling headphones were used for 

auditory stimulus presentation. Stimulus timing and 

presentation and reaction time/accuracy data was collected 

using Direct RT software. 

 

Materials The visual stimulus was a white circle 2º in visual 

angle in the center of the screen with a black background. 

Each flash has a 20 ms duration with a 50 ms Inter-Stimulus 

Interval (ISI) between consecutive flashes. The auditory 

stimulus was a sine wave presented at 3.5 kHz (no rise or 

decay ramps). Each beep lasted for 20 ms, and there was a 50 

ms ISI in between consecutive beeps. Auditory stimuli were 

presented via headphones at approximately 50 dB. In the 

crossmodal condition, the first beep occurred 35 ms before 

the first flash, or vice versa. The beep first and visual first 

conditions were randomized among the participants. Figure 1 

shows the timing of the stimuli. The stimuli and timing was 

modeled after the original SIFI study (Shams, Kamitani & 

Shimojo, 2000). Based on previous research and on 

preliminary analyses, the asynchronous timing had no 

significant effect on the SIFI. 

 

 
 

Figure 1. Timeline of a 2 flash/2 beep stimuli. The dark blocks 

represent presentation of the stimuli and the grey represent ISI. The 

numbers above represent the time in ms from the beginning of the 

stimulus.  

 

Design The experiment consisted of three blocks: visual 

unimodal, auditory unimodal, and crossmodal. There were 

five trials for each stimulus in the unimodal visual condition 

(2 flashes, 3 flashes, 4 flashes), and there were five trials for 

each possible stimulus in the unimodal auditory condition (2 

beeps, 3 beeps, 4 beeps). There were also five trials of each 

possible stimulus in the crossmodal conditions (1 flash/1 

beep, 1 flash/2 beeps, 1 flash/3 beeps, etc.). See Table 1 for 

all stimulus frequencies. Of the crossmodal trials, 15 were 

congruent and 30 were incongruent. Congruent trials had the 

same number of flashes and beeps, and incongruent had 

different numbers of flashes and beeps), which provided 

conflicting information.   

 

Flashes

Beeps

50 ms

20 ms 15 ms20 ms

35 ms 20 ms

50 ms
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Procedure In the unimodal auditory condition, participants 

heard 2, 3, or 4 beeps, and were asked to report how many 

beeps they heard. In the unimodal visual condition, they saw 

2, 3, or 4 flashes and were asked to report how many they 

saw. In the crossmodal condition, participants were presented 

with 2, 3, or 4 beeps and/or 2, 3, or 4 flashes, and they were 

asked to report only how many flashes they saw. Each 

condition had a set of instructions before the trials and a 

conclusion to let the participant know when the condition was 

over. The order of condition was randomized among the 

participants, and each trial started within a condition started 

approximately 1000 ms after responding to the previous trial.  

 

 

 
 

Table 1: Experiment 1 trial types and frequencies. Note,           

“*” denotes congruent trials. 

 

Results and Discussion 

On each trial, participants reported how many flashes they 

perceived. Below we first report overall accuracies and then 

we report more traditional analyses focusing on actual 

responses (2, 3, or 4) and making a distinction between 

fission trials (more beeps than flashes) and fusion trials 

(fewer beeps than flashes). 

Accuracy Each trial was classified as correct or incorrect. 

See left side of Figure 2 for means and standard errors of 

visual responses and the right side of Figure 2 for unimodal 

auditory accuracy. Analyses in Experiment 1 focus 

exclusively on visual responses. Using a 3 (number: 2, 3, 4) 

x 3 (trial type: congruent, incongruent, unimodal baseline) 

repeated measures ANOVA, a significant effect of condition 

was found, F (2,46) = 68.31, p < .001, ƞp² = .75. Accuracies 

were lower on unimodal trials (M = .53, SE = .03) than 

congruent trials (M = .66, SE = .03), t (23) = -3.613, p = .001, 

which is consistent with facilitation effects. Interference 

effects were also found with higher accuracy on unimodal 

trials than incongruent trials (M = .21, SE = .09), t (23) = 8.42, 

p < .001. Also, accuracy was also higher on congruent trials 

than incongruent trials, t (23) = 9.91 p < .001. 

The ANOVA also revealed a significant effect of 

number, F (2,46) = 17.05, p < .001, ƞp² = .43, with accuracy 

decreasing as the number of flashes increased. There was 

significantly higher accuracy on the 2-flash trials (M = .56, 

SE = .03) than on the 4-flash trials (M = .31, SE = .04), t (23) 

= 4.47, p < .001. The 3-flash trials (M = .53, SE = .03) also 

had a higher accuracy than the 4-flash trials, t (23) = 5.02, p 

< .001. Finally, the analyses also revealed a trial type x 

number interaction, F (4,92) = 5.32, p = .001, ƞp² = .188. As 

can be seen in Figure 2, cross-modal facilitation effects 

(congruent > unimodal) was most pronounced when 

presented with four flashes, and interference effects 

(unimodal > incongruent) decreased, with the strongest 

interference on 2-flash trials. 

 

 
 
Figure 2. Accuracies across number and trial type. Error Bars denote 

Standard Errors. 

 

The remaining analyses focus on actual responses (2, 3, or 4), 

not accuracies. On fission trials, there were more beeps than 

flashes, and on fusion trials, there were fewer beeps. 

Moreover, for fission and fusion cross-modal trials, we could 

only test two of the three numbers. For example, as can be 

seen in Table 1, there were no fission trials for 4 flashes and 

no fusion trials for 2 flashes because there were no trials 

where we presented five or one auditory stimulus, 

respectively. Thus, we used two 2 x 2 repeated measures 

ANOVA’s to test for fission and fusion effects. 

 

Fission Actual responses were collected on each trial and 

only fission trials and unimodal trials were submitted to a 2 

(trial type: unimodal, fission) x 2 (number: 2, 3) repeated 

measures ANOVA. See left side of Figure 3 for means and 

standard errors. A significant effect of trial type was found, F 

(1,23) = 71.41, p <.001, ƞp² = .76, suggesting that auditory 

input affected perception of flashes. In particular, participants 

reported more flashes on fission trials (M = 3.23, SE = .08) 

than unimodal trials (M = 2.54, SE = .06), which was 

expected since there were more beeps than flashes. There was 

also a significant effect of number, F (1,23) = 60.15, p < .001, 

ƞp² = .72. Not surprisingly, participants on 2-flash trials (M = 

Auditory Visual

2 Beeps (5) 2 Flashes (5)

3 Beeps (5) 3 Flashes (5)

4 Beeps (5) 4 Flashes (5)

*2 Flashes/2 Beeps (5)

*3 Flashes/3 Beeps (5)

*4 Flashes/4 Beeps (5)

2 Flashes/3 Beeps (5)

2 Flashes/4 Beeps (5)

3 Flashes/2 Beeps (5)

3 Flashes/4 Beeps (5)

4 Flashes/2 Beeps (5)

4 Flashes/3 Beeps (5)

Unimodal

Crossmodal

2860



 

 

2.68, SE = .05) reported fewer flashes than on 3-flash trials 

(M = 3.09, SE = .07). 

 

Fusion Actual responses were collected on each trial and 

only fusion trials and unimodal trials were submitted to a 2 

(trial type: unimodal, fusion) x 2 (number: 3, 4) repeated 

measures ANOVA. See right side of Figure 3 for means and 

standard errors. A significant effect of trial type was found, F 

(1,23) = 15.87, p = .001, ƞp² = .41, which suggests that the 

number of beeps affected perception of flashes. Participants 

reported fewer flashes on fusion trials (M = 2.56, SE = .03) 

than on unimodal trials (M = 2.95, SE = .09), which was 

expected since there were fewer beeps than flashes. There 

was also a significant effect of number of stimuli on response, 

F (1,23) = 62.16, p < .001, ƞp² = .73, with participants 

reporting fewer flashes on 3-flash trials (M = 2.57, SE = .045) 

than 4-flash trials (M = 2.94, SE = .06). 

 

 

 
 
Figure 3. Actual responses across number and trial type. The left 

side of the figure denotes fission trials and the right side denotes 

fusion trials. Error Bars denote Standard Errors. 

 

Experiment 2 
 

The purpose of Experiment 2 was to test if the relative 

contribution of auditory and visual information on 

multisensory integration was symmetrical or asymmetrical. 

In cross-modal trials of Experiment 2, participants were 

asked to report how many beeps they heard. It was 

hypothesized that the effects would be asymmetrical, with 

visual input in Experiment 2 having little to no effect on 

auditory processing. 

 

Method 

Participants, Materials, and Procedure Experiment 2 was 

identical to Experiment 1, with the exception that we tested 

effects of flashes on beep perception; thus, the same 

participants from Experiment 1 were told to respond to report 

out how many beeps they heard, regardless of how many 

flashes they saw. To ensure that they were paying attention 

to the visual stimuli and did not shut their eyes in the cross-

modal condition, a green visual stimulus (small green square) 

was presented for each possible trial type, and participants 

were asked to hit the space bar instead of 2, 3, or 4 when they 

saw the green stimulus. Five participants were removed 

because they did not detect the green catcher stimulus on at 

least 75% of the trials. 

 

Results and Discussion 

Accuracy See left side of Figure 4 for mean accuracies and 

standard errors on auditory response trials and right side of 

Figure 4 for unimodal visual responses. Experiment 2 

focused exclusively on auditory responses.  Using a 3 

(number: 2, 3, 4) x 3 (trial type: baseline, congruent, 

incongruent) repeated measures ANOVA, a significant effect 

of number of beeps presented was found, F (2,46) = 19.15, p 

< .001, ƞp² = .45. Based on the data, there was significantly 

higher accuracy on the 2-flash trials (M = .80, SE = .03) than 

on 3-flash trials (M = .67, SE = .04), t (23) = 2.75, p = .011, 

and 4-flash trials (M = .48, SE = .05), t (23) = 5.22, p < .001. 

The 3-flash trials also had a higher accuracy than 4-flash 

trials, t (23) = 4.09, p < .001. In addition, a condition x 

number interaction was observed, F (4,92) = 3.36, p = .013, 

ƞp² = .13. No differences were found across trial types for 2- 

and 4-flash trials; however, congruent and incongruent trials 

both exceeded the baseline on 3-flash trials, ts (23) > -1.94, 

ps < .033 (one-tailed). 

 

 
 
Figure 4. Accuracies across number and trial type. Error Bars denote 

Standard Errors. 

 

Fission Actual responses were collected on each trial and 

only fission trials and unimodal trials were submitted to a 2 

(trial type: unimodal, fission) x 2 (number: 2, 3) repeated 

measures ANOVA. See left side of Figure 5 for means and 

standard errors. Using a 2 (condition: unimodal, fission) x 2 

(number: 2, 3) repeated measures ANOVA, a significant 

effect of number of stimuli presented on response was found, 

F (1,23) = 160.07, p <. 001, ƞp² = .87. The 2-flash trials (M = 

2.24, SE = .04) had a significantly lower response than the 3-

flash trials (M = 2.96, SE = .06), t (23) = -12.65, p < .001.  
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There was no effect of trial type, suggesting that flashes did 

not affect beep perception. 

 

Fusion Actual responses were collected on each trial and 

only fusion trials and unimodal trials were submitted to a 2 

(trial type: unimodal, fusion) x 2 (number: 3, 4) repeated 

measures ANOVA. See right side of Figure 5 for means and 

standard errors. A significant effect of number of stimuli 

presented on response was found, F (1,23) = 60.30, p < .001, 

ƞ² = .72. The 3-flash trials (M = 2.95, SE = .06) had a 

significantly lower response than the 4-flash trials (M = 3.40, 

SE = .08), t (23) = -7.77, p < .001. Again, there was no effect 

of trial type, suggesting that the flashes did not affect beep 

perception. 

 

 
Figure 5. Actual responses across number and trial type. The left 

side of the figure denotes fission trials and the right side denotes 

fusion trials. Error Bars denote Standard Errors. 

 

General Discussion 

Many tasks require processing and integration of 

multisensory information. The primary goal of the current 

study was to examine relative contributions of auditory and 

visual information on multisensory integration. In 

Experiment 1, we hypothesized that auditory information 

would have a strong effect on visual processing, as seen in 

Shams et al. (2000). The results of Experiment 1 supported 

this hypothesis. In particular, when auditory and visual 

information provided the same information (congruent trials 

in Figure 2), adults were more accurate at reporting the 

number of flashes. Moreover, incongruent trials also affected 

visual perception. Participants overestimated the number of 

flashes when the flashes were paired with more beeps (fission 

trials in Figure 3) and underestimated the flashes when paired 

with fewer beeps (fusion trials in Figure 3). In Experiment 2, 

it was hypothesized that the visual information would not 

have as strong of an effect on the auditory processing, based 

on auditory dominance (Robinson & Sloutsky, 2010a) and 

the modality appropriateness hypothesis (Welch & Warren, 

1980). The results of Experiment 2 supported this hypothesis, 

as most of the analyses showed that the visual information 

had no effect on auditory processing.  

This expands the SIFI research by observing the effects of 

both auditory and visual information on multisensory 

integration. According to our knowledge, previous research 

has only focused on effects of auditory input on visual 

processing or vice versa; thus, these studies cannot determine 

if effects are symmetrical. The current study also used 

facilitation effects as a measure of multisensory integration. 

Facilitation effects were observed, and performance on the 

congruent trials was better than performance on the unimodal 

trials (baseline). These effects are seen in the visual 

responding condition with auditory input facilitating visual 

processing, but were not seen in the auditory responding 

condition. This asymmetry is consistent with both auditory 

dominance (Robinson & Sloutsky, 2010a) and the modality 

appropriateness hypothesis (Welch & Warren, 1980). 

This study also expands modality dominance literature by 

measuring quantitative responses, rather than just response 

times, as seen in visual dominance research. Visual 

dominance has been observed for the past forty years in 

adults, showing that visual input often dominates auditory 

processing when making speeded, modality specific 

responses (e.g., Colavita, 1974). The findings of the current 

study were not tied to speeded modality specific responses, 

but were associated with accuracy of quantitative judgments. 

The findings support auditory dominance and modality 

appropriateness hypothesis and show that auditory input has 

a larger effect on visual processing than vice versa. Future 

research could take further measures to separate these two 

findings, as it cannot be distinctly determined whether the 

results are an effect of auditory dominance or modality 

appropriateness. Finally, it will be important to examine the 

role of stimulus intensity on multisensory integration, as 

changes in unimodal sensitivity may underlie developmental 

changes in multisensory integration. In particular, increased 

multisensory integration with age might stem from older 

adults compensating for weakened unimodal processing 

(DeLoss, Pierce, & Anderson, 2013). While Anderson (2004) 

found that weakening the auditory stimulus to near threshold 

increased visual effects on multisensory integration, 

weakening both modalities tends to decrease the SIFI (Parker 

& Robinson, in prep), and it is unclear how weakened 

auditory stimuli affect multisensory integration. 

In summary, most of our experiences are multisensory in 

nature and it is important to understand how auditory and 

visual information contributes to multisensory integration. 

Future research needs to examine how this ability changes 

across the lifespan. 
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Abstract 

Research on the relationship between acute physical activity 
and cognition in children has often found beneficial effects of 
exercise on a variety of cognitive abilities. One domain that 
remains underexplored, however, is the relationship between 
exercise and long-term memory in children, and in particular 
whether the general-domain effects observed in previous 
studies could translate to a school-based learning activity, 
such as vocabulary learning. To address this issue, this study 
focused on the possible effects that a bout of moderate, 
aerobic physical activity could have on the immediate and 
delayed recall of newly acquired word forms and form-
meaning connections of children in a school setting. In line 
with previous research, the results show a positive effect of 
exercise, but only for word form recall. This study expands 
our understanding of the differential effects of exercise on 
memory, while raising questions regarding the possible 
moderating influence of gender and memory consolidation.  

Keywords: language acquisition, acute physical activity, 
memory, vocabulary learning, child cognition. 

Introduction 
Research on the effects of physical activity has consistently 
shown that children who lead an active lifestyle also have 
healthier bodies, and that exercise plays a significant role in 
the prevention and control of certain diseases, including, but 
not limited to, obesity and cardiovascular disease 
(Kesaniemi et al., 2001). The effects of exercising, however, 
are not purely physiological. Over the last couple of 
decades, a growing body of research has concentrated on the 
effects of physical activity on the developing mind, mainly 
focusing on whether acute or chronic physical activity can 
influence cognition. 

Interest in the effects of exercise on cognition was 
sparked by the observation that exercising provokes a series 
of transient cardiorespiratory, hormonal and metabolic 
changes that affect the brain’s function and organization. 
These changes ultimately influence the way in which 
humans, and other animals, perform cognitive activities, 
including those involving executive function, attention, and 
memory (Coles & Tomporowski, 2008; Hötting & Röder, 
2013; McMorris, Turner, Hale, & Sproule, 2016). In recent 
work, memory consolidation has emerged as a process that 
could be particularly affected by physical activity 
(Robertson & Takacs, 2017). The possible pathways by 
which exercise-induced arousal may affect long-term 
memory are still not entirely understood. However, it has 

been suggested that exercise-induced upregulation of 
catecholamines, cortisol or brain-derived neurotrophic 
factor (BDNF), a protein shown to be involved in 
neurogenesis and neuroplasticity, could underlie the effects 
of acute physical activity on memory processes (McMorris 
et al., 2016; Roig et al., 2016).  

Regarding child cognition, few studies have focused on 
the possible effects of physical activity on children’s long-
term memory. An exception would be the work of Pesce and 
colleagues (Pesce, Crova, Cereatti, Casella, & Bellucci, 
2009) who studied the performance of a group of 11 and 12-
year-old students in an immediate and delayed (12 minutes 
later) free-recall test. The participants attended several 
learning sessions, two of which were preceded by a physical 
education class, one involving high cognitive and social 
demands (team games) and one with low demands (circuit 
training). Delayed recall improved for both exercise 
conditions when compared with the rest condition, whereas 
immediate recall improved only after the team games. More 
recently, Etnier, Labban, Piepmeier, David, & Henning, 
(2014) observed children’s performance on the Rey 
Auditory Verbal Learning Test - intended to evaluate verbal 
learning and memory, administered after a period of 
physical activity or rest. The participants were tested 
immediately and 24 hours later. Results showed that 
participants who exercised had better memory retention 
immediately, but not 24 hours later.  

These studies provide interesting insights regarding the 
effect of exercise on children’s memory, yet they focus on 
general-domain cognitive abilities, tested through tools that 
do not closely resemble ordinary classroom activities. In 
both experiments, the participants were tested on their recall 
of already known words, a task that, though related to 
different aspects of memory, does not involve learning new 
linguistic information, such as word forms or form-meaning 
connections. Learning such linguistic information is at the 
core of one standard part of school curricula around the 
world: second/additional language learning. Therefore, it 
would be of interest to extend the findings of these studies 
by assessing whether the advantages noticed in these 
general memory tasks could translate to a particular 
language learning activity, such as vocabulary learning. 

There is some precedent for this type of studies in 
research done with adults. For example, despite some 
differences in the experimental designs, benefits of a 
moderate to intense bout of exercise were found for 
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vocabulary learning, achieved through the association of 
translation equivalents (Schmidt-Kassow et al., 2013; 
Schmidt-Kassow, Kulka, Gunter, Rothermich, & Kotz, 
2010) or through a statistical, associative learning paradigm 
(Winter et al., 2007). These encouraging results, however, 
have not yet been observed in children. 

Based on the brief review of the literature presented 
above, the primary purpose of this study was to assess the 
possible effects of a bout of aerobic, moderate physical 
activity on children’s memory for language learning. In 
particular, we were interested in observing whether 
exercising before encoding could lead to a higher rate of 
recall immediately after learning and after a delay. 
Acquiring new vocabulary items is a complicated process 
that involves many different learning activities, from item 
segmentation to the integration of novel items to existing 
networks. In this instance, however, we have chosen to 
focus on only two of these activities: the acquisition of the 
word’s phonological/orthographical form and the linking of 
the newly acquired form to a meaning. From the results of 
previous studies and the theorized mechanisms underlying 
the exercise-cognition effect, we hypothesize that children 
in the exercise group would exhibit increased recall of both 
forms and meanings in the delayed tests, after a period of 
consolidation including sleep. 

Method 

Participants 
51 school-aged children (mean age = 9.3, 25 females) were 
recruited at their school to participate in this experiment. All 
children were monolingual Spanish speakers, with no 
knowledge of other languages besides school-level English. 
None of the children had visual or hearing impairments, nor 
cardiac or respiratory conditions that would prevent them 
from exercising at a moderate pace. As reported by their 
parents or tutors, the children had normal sleeping patterns, 
with an average sleeping time of 8.5 hours per night. 

Materials 
Pseudowords Twenty-four bisyllabic, pronounceable 
pseudowords were created using legal Spanish 
consonant/vowel combinations. All pseudowords were four 
letters long and followed a CVCV pattern. Care was taken 
to ensure that an equal amount of pseudowords were 
‘masculine’ (ended with ‘o’) and ‘feminine’ (ended with 
‘a’). 
 
Pictures Twenty-four pictures of everyday objects extracted 
from a subset of Rossion & Pourtois' (2001) pictorial set, 
which was based on Snodgrass & Vanderwart's (1980) 
original standardized set of visual stimuli but with added 
detail and colour. For this experiment, we transformed the 
pictures to greyscale to preserve the enhanced details while 
avoiding the distraction of colour. Pertinent country-specific 
normative data was used to assess the concreteness and 
imagery ratings of the objects depicted (Manoiloff, Artstein, 

Canavoso, Fernández, & Segui, 2010). Following Pesce et 
al's (2009) procedure, the objects were evaluated by 
classroom teachers to ensure that they would be 
recognizable and familiar to the children. 
 
Learning lists Each pseudoword was randomly paired with 
one of the pictures selected. We divided the 
pseudoword/picture pairings into two lists of 12 items, that 
would be presented in different experimental sessions. The 
order of presentation of both the learning and testing stimuli 
was randomized for each group. 

Procedure 
The experiment used a within-subjects design, 
counterbalancing the order in which the children 
participated in each of the experimental conditions, exercise, 
and no-exercise (control).  

The experiment was carried out at the participants' school, 
during school hours, with the assistance of classroom and 
physical education teachers. Participants attended six 
sessions spread over three weeks. The first and fourth 
sessions started with an intervention stage, where 
participants either performed a 30-minute bout of aerobic 
physical activity (exercise condition) or remained in the 
classroom doing a passive activity (drawing and colouring) 
for the same amount of time (control condition). After the 
intervention, and after a 5-minute recovery time for the 
exercise group, the children performed the vocabulary 
learning activity. In the final stage of the first session, the 
children were asked first to write down all the words they 
remembered, regardless of the order of presentation (free 
recall) and later to write down the words corresponding to 
the pictures shown in posters by the teachers (cued recall). 
The free and cued recall tasks constituted the first testing 
session (immediate test). 

This testing phase was repeated on sessions two and three 
for the pairings learnt in session one, and on sessions five 
and six for the pairings learnt in session four. 

All participants were exposed to both learning lists and 
took part in both intervention conditions (exercise or 
control); the order of the interventions was counterbalanced 
and randomized so that some participants exercised on 
session one while others exercised on session four. 

The experimental procedure is schematized in Figure 1. 
 

Vocabulary learning activity The children were exposed to 
the lists of 12 pseudoword/picture pairings, presented in 
printed posters, and shown at a regular interval. The 
classroom teachers led the presentation, reading the 
pseudoword aloud and asking the children to repeat it back. 
This exposure was repeated three times. 

 
Testing tasks Two testing tasks were intended to separately 
measure children’s ability to recall the phonological form as 
well as the form-meaning connections of the pseudowords 
learnt in the exposure phase.  
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Figure 1: Experimental procedure. L1 = word list 1, L2 = 
word list 2, 24h = 24 hours later, 6d = 6 days later, 1wk = 1 

week later. 
 

The first task, free recall, was designed to assess whether 
the participants could remember the phonological forms of 
the newly acquired pseudowords, without prompting from 
their associated meanings. To perform this task, the teachers 
instructed the students to write down all the pseudowords 
they could remember, irrespective of the order of 
presentation or their ability to associate the words with the 
drawings. 

For the second task, cued recall, the teachers showed the 
students only the pictures, and the children had to write 
down which pseudoword corresponded to each picture 
shown. The pictures were shown at a steady pace, and the 
children were instructed to leave blank spaces for the 
pictures they did not remember. This test intended to 
observe if children could recall the form-meaning 
connections they had previously learnt. 
 
Physical activity intervention The physical activity 
intervention consisted of 30 minutes of child-adapted circuit 
training, focalised on activities that would engage the 
aerobic system. We chose this type of exercise task since it 
maintains a major focus on aerobic exercise - as opposed to 
group games, for example, that may be more cognitively 
and socially demanding - while still being part of what 
students normally do in their physical education classes, and 
thus ecologically valid. The task took place in the school’s 
playground under the supervision of the children’s physical 
education teachers (student-to-teacher ratio = 15:1).  

We used a modified Borg Scale of Perceived Exertion 
(Borg, 1998) to assess exercise intensity. It was 
administered to the children in the exercise condition while 

they were performing the activities. This scale has been 
widely used for children in similar contexts and has proved 
to be reliable not only in assessing intensity but also in 
determining the nature of the exercise being conducted 
(aerobic versus anaerobic). By maintaining the general 
perceived exertion of the group in the second tier 
(considered “moderate” in our scale), it was assured that the 
children were performing aerobic exercise at a moderate 
intensity.  

Results 

Data pre-processing 
Ten participants were removed from the final sample, two 
for reporting learning or psychological conditions that might 
interfere with the experiment's outcome and eight for not 
having participated in either of the two experimental 
conditions (exercise or control). Given that a significant 
number of children were absent on the day of the very 
delayed test, for reasons not related to the experiment, we 
excluded the very delayed test (sessions three and six) in the 
reported analyses. To keep the design balanced, we 
additionally removed two participants for not having 
completed the delayed testing session. All analyses were 
carried out on the remaining 39 participants (mean age = 
9.32, 21 females). 

We computed an accuracy score for each testing activity 
(free or cued recall) by summing all the correct responses 
given at each testing time. Participant responses were given 
one point when they matched exactly one of the taught 
pseudowords (e.g. lofa/lofa), and half a point if the answer 
had one substitution (e.g. lofa/lifa). For the cued recall task, 
the responses had to match one of the pseudowords in the 
taught set in addition to matching the corresponding picture. 
Partial matches that were placed with the correct picture 
were awarded half a point. 

All statistical analyses were performed using R (R Core 
Team, 2016) and the ez package (Lawrence, 2016). 

Free recall 
A two-way analysis of variance was conducted to evaluate 
the effects of the experimental condition and testing time on 
the number of items recalled in the free recall task. 
Experimental condition (exercise vs. control) and testing 
time (immediate vs. 24 hours later) were included as factors. 
No significant effect of experimental condition, F(1, 38) = 
1.092, p = .302, or testing time, F(1, 38) = .032, p = .574 
was found. However, the interaction between exercise 
intervention and testing time was significant, F(1, 38) = 
5.932, p = .019, ηg

2 = .006). As shown in Figure 2, it would 
seem that, whereas there is no difference in the immediate 
test for the experimental conditions (exercise: M = 5.97 
[49.7%], SD ± 2.73; control: M = 6.07 [50%], SD ± 2.59), 
participants recalled more items in the delayed test if they 
had exercised prior to encoding (exercise: M = 6.26 [52%], 
SD ± 2.71; control: M = 5.5 [45.8%], SD ± 2.94).  

 

Session 1

• Intervention
• Vocabulary 
learning (L1)

• Immediate 
test (L1)

Session 2

• Delayed test 
(L1)

Session 3

• Very delayed 
test (L1)

Session 4

• Intervention
• Vocabulary 
learning (L2)

• Immediate 
test (L2)

Session 5

• Delayed test 
(L2)

Session 6

• Very delayed 
test (L2)

24h 6d 

1wk 

24h 6d 
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Figure 2. Free recall correct responses per condition and 
testing time. 

 
Gender differences were also taken into account in the 

analysis. Figure 3 displays the number of correct responses 
in each experimental condition, grouped by gender and 
testing time. From this graph, it is possible to see that, 
overall, girls seem to remember the same or a larger number 
of items when compared to boys. Furthermore, the profiles 
of performance per experimental condition appear to be 
similar for both genders: when in the exercise condition, the 
number of accurate responses is either maintained or 
increases from the immediate to the delayed test, whereas 
when in the control condition performance decreases. 
However, while the girls’ performance does not seem to be 
particularly affected by the exercise intervention in either of 
the tests (exercise immediate: M = 5.28 [44%], SD ± 2.72; 
exercise delayed: M = 5.85 [48.8%], SD ± 2.86; control 
immediate: M = 6.04 [50%], SD ± 1.8; control delayed: M = 
5.71 [47.6%], SD ± 2.93), the boys recalled more items 
immediately (exercise: M = 5.22 [43.5%], SD ± 2.79; 
control: M = 4.33 [36%], SD ± 2.95) and 24 hours (exercise: 
M = 5.33 [44.4%], SD ± 2.63; control: M = 4 [33.3%], SD ± 
2.76) when they exercised before encoding. 

Given the unequal number of boys and girls in the sample 
(female = 21, male = 18), which limits the possibility of 
comparing the groups, a two-way repeated measures 
ANOVA, including experimental condition and testing time 
as factors, was conducted on a reduced dataset comprising 
only the boys’ data. The effect of experimental condition 
was significant, F(1, 17) = 5.101, p = .037, ηg

2 = .035, 
indicating that the difference between experimental 
conditions (exercise vs. control) observed in Figure 3, albeit 
numerically small, may be worth further exploration. 

 

Cued recall 
To assess the effects of experimental condition and testing 
time, a two-way, repeated-measures ANOVA was 
performed. As shown in Figure 4, no significant main 
effects of experimental condition, F(1,38) = .026, p = .872, 
or testing time, F(1,38) = .638, p = .429, were found. The 
interaction between both independent variables was also 

non-significant, F(1,38) = .014, p = .9, ηg
2 ≤ .001. These 

results indicate that exercise did not influence the cued 
recall of form-meaning connections in this sample, either 
immediately (exercise: M = 5.43 [45.2%], SD ± 2.93; 
control: M = 5.51 [45%], SD ± 2.52) or 24 hours after 
encoding (exercise: M = 5.64 [47%], SD ± 2.48); control: M 
= 5.66 [47.2%], SD ± 3.05). 

 

 
Figure 3. Free recall correct responses by gender, 

experimental condition and testing time. 
 

A visual inspection of the plotted cued recall data divided 
by gender showed no indication of a differential effect of 
exercise. Hence no additional analyses were conducted. 
 

 
 

Figure 4. Cued recall correct responses per condition and 
testing time. 

 

Discussion 
The purpose of this study was to assess whether a bout of 
aerobic, moderate physical activity performed before 
encoding could affect children’s retention of newly acquired 
pseudowords and their meanings, immediately after learning 
and with a delay. In particular, we were interested in 
observing the possible effects of physical activity in the 
recall of novel word-forms (pseudowords) and meanings 
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(pseudoword/picture association). These questions were 
motivated by the scarcity of studies focusing on exercise 
and language learning, particularly with child participants. 

The free recall test focused on the children’s retention of 
word forms. Data from this task showed that exercising 
before encoding facilitated recall, but only on the delayed 
test (24 hours after learning). This outcome may indicate 
that exercising before learning could help reduce time-
dependent forgetting on a moderate scale. This finding 
concurs with previous research outlining the beneficial, 
rather than detrimental, effects of acute exercise on 
children’s recall (Etnier et al., 2014; Pesce et al., 2009). 
However, in contrast to these studies, in which increased 
memory performance was noticed in the immediate test (or 
after a very short delay), in this experiment the influence of 
exercise appears to affect the delayed test, performed 24 
hours later and after a period of sleep. This may indicate a 
possible link between acute physical activity and memory 
consolidation. A relationship between exercise and 
consolidation has already been postulated for healthy adults 
(e.g. Coles & Tomporowski, 2008; Labban & Etnier, 2011; 
Robertson & Takacs, 2017), but would require further 
exploration to extend it to child memory consolidation. The 
discrepancy between the results of the present study and 
previous work could also suggest that, consistent with 
several meta-analyses (Chang, Labban, Gapin, & Etnier, 
2012; Lambourne & Tomporowski, 2010; Tomporowski, 
2003), the effects of physical activity on cognition could be 
selective. Since the learning activities used in Etnier and 
colleagues and Pesce and colleagues’ work were focused on 
the recall of already known linguistic information, and not 
on the acquisition of entirely novel forms as was the case in 
this experiment, the tasks rely on different memory 
processes that may be differentially affected by exercise.  

A bout of physical activity before encoding did not affect 
recall of form-meaning connections. This finding is 
somewhat unexpected, given that previous research had 
found an influence of bouts of aerobic physical activity on 
associative memory in adults  (Schmidt-Kassow et al., 2013; 
Schmidt-Kassow, Kulka, Gunter, Rothermich, & Kotz, 
2010; Winter et al., 2007). Since this experiment required 
children to learn forms and form-meaning connections 
simultaneously, it may be that the acquisition of the form 
was privileged to the detriment of the formation of form-
meaning connections. This could have been reinforced by 
the order of the testing activities – always free recall 
followed by cued recall – that could have made the recall of 
forms more prominent. To our knowledge, this is the first 
study that addresses the effect of a bout of physical activity 
on the formation of form-meaning connections in children; 
as such, it only begins to describe the effects observed. 
Further research could help elucidate whether the effects of 
exercise seen on standardized associative memory tests 
could transfer to memory-supported activities that more 
closely resemble the tasks performed by children in a 
learning environment.  

Another surprising effect was the difference observed in 
boys and girls. A tentative explanation of this difference, 
based on the assumption that exercise works as a stressor, 
would fall in line with research highlighting gender-based 
differences in brain reaction to stressors, both of an 
emotional and physical nature (for a review, see Cahill, 
2006). Furthermore, because this gender difference appears 
on the second day, the possibility of the existence of gender 
differences in offline consolidation, that could be enhanced 
by exercise, should also be considered. Some evidence 
points towards greater motor skill memory gains obtained 
by males after a period of offline consolidation (Dorfberger, 
Adi-Japha, & Karni, 2009), an advantage that may be 
related to differential responses to cortisol levels (Andreano 
& Cahill, 2006). Cortisol is a stress hormone shown to be 
affected by acute exercise interventions, and that plays a 
role in memory consolidation. It should nonetheless be 
noted that since not all previous studies on the effects of 
exercise on cognition have addressed gender differences, 
and as it was not the primary purpose of this study, it is hard 
to draw conclusions from this result.  

There are some limitations that should be considered in 
relation to the current study. First, the sample size is 
relatively small when considering the number of variables 
addressed. Furthermore, the effects found, although 
significant, were subtle and can therefore only be considered 
with caution. Future experiments should also include more 
information about the sample, including a measure of fitness 
level and baseline memory performance, as well as some 
indication of school achievement (e.g. grades). The 
inclusion of these data could help disentangle variation that 
might be motivated by external factors not related to the 
experimental manipulation. 

Overall, this study expands our knowledge of the effects 
of acute, aerobic physical activity on children’s cognition, in 
that it includes a ‘learning element’ that had been thus far 
overlooked. The fact that participants had to learn novel 
word forms, as well as their connection to meaning, after 
exercising makes this experimental activity more closely 
related to regular classroom language learning activities, 
thus providing an initial glimpse into the effects of physical 
activity in a school environment. The finding that the 
experimental condition affected free- but not cued-recall in 
this experiment could suggest a selective effect of exercise 
on children’s memory, but it could also underline the need 
to utilize more nuanced tests to assess associative memory 
in this context. Future research on this topic could build 
upon these findings, by adding more and more sophisticated 
tests of relational memory, as well as addressing some of the 
questions that this study has raised, such as the possible 
moderating effect of gender and the influence of acute 
physical activity on memory consolidation in children.  
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Abstract 

Language is a powerful instrument for extracting relational 

information from stimuli. In a label extension task common labels 

invite comparison processes that help children focus on the more 

subtle relational similarity and away from the readily available 

perceptual similarity of the stimuli. The current experiment aims to 

explore whether non-linguistic representations of category 

membership are sufficient to invite such abstractions of relational 

information. Preschool children were asked to extend a category to 

either a relational or an object match. When given the opportunity 

to compare two instances of the category, and provided with a non-

linguistic cue children extended the category to the relational 

match. These results further extend the benefit of comparison in 

learning, and suggest that language labels are not the only cue 

children can use in category formation. 

Keywords: categorization; cognitive development; relational 
processing; non-linguistic representations of relations. 

Introduction 

Analogical reasoning – the ability to see and use relational 

similarity between situations and events lies in the core of 

human cognition (Hofstadter, 2001). It is what makes 

humans so smart and it is potentially what distinguishes us 

from other species (Gentner, 2003; 2010). Analogy is 

central to many cognitive processes including learning, 

reasoning, decision-making, and categorization (Gentner, 

1983; Gentner & Markman, 1997; Kokinov, 1998) and it 

promotes conceptual development in children (Christie & 

Gentner, 2010; Gentner & Namy, 1999; Graham, Namy, 

Gentner, & Meagher, 2010; Rattermann & Gentner, 1998). 

Thus, analogy is a key process of higher-order cognition 

that benefits learning (Gentner, 2010; Kokinov, 1998). 

There is evidence that young children show analogical 

abilities, if they have knowledge of the relations involved 

(Gentner, 1983; 1988; Holyoak, Junn, & Billman, 1984). 

However, children tend to focus first on object similarities, 

before they start to notice common relational structure, 

independent of the objects involved. Gentner defines this 

phenomenon as the relational shift hypothesis (Gentner, 

1988). She asked children to interpret different kinds of 

metaphors and say how they are alike. When children were 

asked to interpret the metaphor “A tire is a shoe”, 5-6-year-

olds replied based on perceptual similarity (e.g. both are 

black), and 9-10-year-olds based their answer on the 

specific roles and functions of the two, thus giving a 

relational answer [e.g. you can go places with both 

(Gentner, 1988)]. When asked to perform a mapping task, 

children first base their reasoning on the salience of object 

features (e.g. color, shape, etc.) thus failing to map the 

relations involved. To have a true relational ability, children 

must resist the temptation of the object features, and base 

their reasoning on the more subtle common relations 

involved (Gentner & Toupin, 1986).  

Rattermann & Gentner (1998) provided further support 

for the relational shift hypothesis. They gave children a 

relational mapping task in which the experimenter and the 

child each had a set of three objects. The experimenter hid a 

sticker under one of her objects (e.g., the middle one). The 

child had to find his sticker in the same place (the middle of 

his objects). In some of the conditions, objects were cross-

mapped, i.e. the middle object in the experimenter’s set was 

the same size as the leftmost object in the child’s set. In this 

condition, 3-year-old children had a difficulty resisting the 

perceptual similarity and instead of searching under the 

corresponding relational location, they searched under the 

identical object in their set. In contrast, 5-year-olds were 

better able to resist the object matches and give relational 

matches. 

When searching for an interpretation of a given similarity, 

people (especially young children and novices) first focus 

on the object commonalities (Christie & Gentner, 2010; 

Kotovsky & Gentner, 1996). However, interpretations based 

on object attributes are not useful in deriving causal 

principles. Potential analogs are more difficult to notice 

because relations are more subtle and require a deeper 

analysis of the information. However, once found, the 

analogy is very useful in deriving key principles, since the 

structure holds true for both the base and the target (or the 

two situations), regardless of the objects involved in it. 

There are two factors that contribute to relational reasoning 

– relational comparison and relational language. 

Relational Language and Learning 

The first question is whether providing children with a noun 

label would help them learn a novel category. Evidence 

suggests that providing children with a count noun may bias 

them toward an object-centered interpretation of what kind 

of members are to be included into the category,  since 

labels invite children to group things of like kinds together 

(Markman, 1989). Young children often base their 

reasoning on the more compelling perceptual similarity, and 

thus their intuition of likeness relies on object similarity. On 

the other hand, providing a common term could also serve 
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as an invitation to search for and find a common relation, 

thus promoting relational abstraction (Gentner, 2010).  

When exploring children’s understanding of categories, 

researchers use the word-extension task in which children 

are taught a new word and are given an example for it and 

then asked to extend the word to another example, thus 

showing an understanding of the category membership of 

the new item. Common labels invite deep reasoning and 

help children focus on like kinds. For example, in a series of 

experiments Gentner and Namy (1999) explored children’s 

categorization abilities. The results show that children group 

items based on shape when they examine them in isolation 

(i.e. when they see only one standard). However, providing 

a label enhances the likelihood of children engaging in 

comparison, prompting children to compare the items 

bearing the same label.  

Christie and Gentner (2010) extended these findings and 

showed that 3- and 4-year-old children successfully learned 

a novel label and extended category membership to the 

relational match. They explored how children base their 

hypotheses for category membership and showed the mutual 

benefit of comparison and relational label. When children 

had the opportunity to compare two examples of a given 

(novel) category, and heard a novel label, they extended the 

category to a relational match. This research shows the 

mutual bootstrapping between relational language and 

analogical abilities in preschool children (Christie & 

Gentner, 2010; Gentner, 2010). 

Language and analogical comparison interact in the 

process of learning. This claim is supported by the language 

as a toolkit view, proposed by Gentner (2003; 2010). 

According to this view, acquiring a language provides new 

resources that support cognitive skills, while not replacing 

prelinguistic abilities. Specifically, this view assumes that 

structural alignment supports language learning, and that 

relational language supports structural alignment and 

reasoning. In addition, Gentner discusses four ways in 

which language interacts with analogical abilities to foster 

learning (Gentner, 2003; 2010). First, common labels invite 

comparison and abstractions, thus prompting children to 

compare two items that share the same label. Second, a 

linguistic label helps to preserve the abstraction derived 

from the comparison and makes it more accessible for future 

use, thus promoting reification. Next, naming promotes 

uniform relational encoding, which ensures the encoding of 

the relations in the same manner on different occasions. 

Last, the systematic structure of language can invite 

conceptual structure. Thus, language and analogical 

comparison interact with analogical abilities to foster 

learning and development (Gentner, 2010).  

Relational Comparison and Learning 

Analogical comparison promotes learning via a structural 

alignment process that is akin to relational mapping, thus 

highlighting the common relational structure and rendering 

it more salient (Gentner, 2010; Gentner & Markman, 1994; 

1997). Similarity comparison process is one of alignment 

and mapping of common relational structure, like the 

structure-mapping process of analogy. A result from 

carrying out a similarity comparison is that it highlights the 

relational structure and makes it more salient, thus enabling 

further abstractions and use. The alignment hypothesis 

assumes that the process of making a similarity comparison 

may lead to change in the representation. This change in 

turn will increase the uniformity of the two representations 

(Gentner, 1983; Gentner & Markman, 1997). Thus, 

alignment makes the relational commonalities more salient 

and the representations uniform. This typically increases the 

perceived similarity between the paired items. For example, 

Gentner and colleagues conducted a series of experiments 

that investigated the effects of comparison and common 

labels in children’s categorization. The results show that 

when preschool children saw only one instance of a 

particular category, they extended the category to the 

perceptually similar match. In contrast, when children saw 

two examples simultaneously and were prompted to 

compare them, they were more likely to extend the category 

to a new, structurally similar item, than to a perceptually 

similar one (Christie & Gentner, 2010; Gentner & Namy, 

1999; Graham, et al., 2010).  

Gentner and Namy (1999) sought out to investigate how 

children form categories. They gave 4-year-olds a novel 

label (e.g. a blicket) for a pictured object (e.g. a bicycle) and 

asked children to find another blicket between two 

alternatives: a perceptually similar, but taxonomically 

different object (e.g. eyeglasses) or a perceptually different 

object from the same category (e.g. a skateboard). When 

children were presented with only one example of the 

category (e.g. a bicycle or a tricycle), they tended to choose 

the perceptual match. However, when they observed two 

examples (a bicycle and a tricycle), they were more likely to 

choose the relational match. Interestingly, the obtained 

results cannot be accounted to a traditional view in which 

comparison is considered a simple feature overlap. Rather, it 

seems that comparison selectively highlighted the relational 

commonalities (Gentner & Namy, 1999; Gentner, 2010). 

Christie and Gentner (2010) followed this procedure and 

further extended the findings, showing the benefits of 

comparison in learning new relations. They presented 3- and 

4-year-olds with animals in a novel spatial orientation and 

attached a novel label to it (e.g. a dax). When presented with 

only one example, or when two examples were provided but 

children were not prompted to compare them, they extended 

the category to the object match. However, children who 

compared the two examples of the category extended it to a 

relational match. 

These results show that analogical comparison is useful in 

learning new principles, forming new categories, and 

retaining material better for transfer. One cannot help but 

see a tendency in all experiments discussed above – the 

mutual presentation of two (versus one) examples and 

providing a common label. It would be interesting to see if 

these two factors work mutually or if they could contribute 
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to category formation separately. This question is of 

particular interest in the present study. 

Can language be replaced? 

The main question we are asking here is whether language 

is unique in promoting analogical abstraction. Mutafchieva 

& Kokinov (2007) explored the hypothesis that a non-

linguistic representation of specific relations would be 

beneficial in a relational mapping task. Following the 

procedure of Rattermann & Gentner (1998), they used labels 

(e.g. Daddy, Mummy, and Baby), a train analogy, or a 

physical representation of the relation pulling in the analogy 

(e.g. drawbars). The hypothesis was that the drawbars 

should be sufficient for the child to abstract the relation, and 

thus solve the mapping task. The results showed no 

difference between the various types of presentation (i.e. 

language labels, drawbars, or analogy). Interestingly, there 

was no evidence that providing labels further benefit 

performance on a mapping task. The drawbar condition 

seemed to be successful in promoting relational matches, 

similar to the labels, and the analogy condition. 

Similarly, Gentner and colleagues conducted a series of 

experiments on the acquisition of relational categories that 

show that for 4-year-olds comparison alone without 

relational language is sufficient to invite relational 

responding (Gentner, Anggoro, & Klibanoff, 2011). In 

addition, Gentner, Namy and colleagues examined the role 

of comparison and shared names in categorization of novel 

objects. For example, Graham et al. (2010) gave 4-year-olds 

novel object sets that consisted of one, or two standards and 

two test objects to choose from, a texture match and a shape 

match. The results of the study are quite interesting. When 

children were presented with one standard, they extended 

the category based on shared shape, regardless of whether 

the objects were named. When children were presented with 

two standards that shared the same texture and the objects 

were named with the same noun, they extend category based 

on shared texture. Interestingly, the opportunity to compare 

in the absence of a shared label, led to an attenuation of the 

effect of shape, although not to a significant preference of 

texture. Interestingly, the authors found that adding a 

common label by itself did not change children’s 

responding, however, it seems to augment the effect of 

comparison in shifting children toward the texture response 

(Graham et al., 2010).  

One possible explanation of the obtained results is that in 

the No-word condition the authors provided children with a 

broad term (e.g. pointing to the standard(s): “This is one!”), 

thus limiting the possibility that the child could abstract a 

specific category cue. The term used is too general for 

children to elicit specific category representations and 

abstract common relational features between the two 

standards. On the other hand, the interesting fact that even 

without labels but with the opportunity to compare, children 

still could start to resist the perceptual match (e.g. shape), 

leaves a possibility that another type of non-linguistic 

representation of the category membership in addition to 

comparison could benefit categorization among preschool 

children.  

Continuing this line of research, the present experiment 

aims to explore the possibility that comparison is sufficient 

not only to promote abstraction of relational information, 

but also to aid category formation. The present study 

suggests that a non-linguistic cue in addition to comparison 

would successfully promote relational matches in a 

categorization task, thus showing that language labels are 

not unique in promoting relational categorization. 

Experiment 

The goal of this study is to explore the possibility that 

children can use non-linguistic cues when categorizing 

items. If language (a common label) is unique in promoting 

relational categorization, then it should be sufficient. 

Moreover, when deprived from the opportunity to benefit 

from a common label, children should fail to extend 

category membership based on relational similarity. 

However, if another mechanism (comparison) is present, 

and children rely on it during categorization, then it is 

possible that a non-linguistic cue will provide sufficient 

ground for children to extend the category based on 

relational similarity. Specifically, a non-linguistic cue that 

represents the category membership of two standards (e.g. a 

sticker) could provide enough ground for children to extend 

the category membership based on relational similarity. 

Bearing in mind that young children typically are tempted 

by the perceptual similarity and often fail to notice the 

relational similarity between two instances, it is important to 

investigate the various strategies children use to group the 

things they encounter into categories.  

Following the idea that providing a means for category 

inclusion (whether the cue is linguistic or not) will further 

benefit children in their performance, here we test the roles 

of comparison and various types of cues. Comparison 

enables children to abstract the interconnected relational 

structure and focus on the commonalities between the two 

examples, especially shared relations. This helps children to 

disambiguate between two working hypothesis: object 

match vs. relational match. The specific cue provides further 

support and acts to focus their attention to the underlying 

common relations. Thus, the highlighted structure will 

become more salient and more available to new examples of 

the category. 

The specific hypothesis of the study was that children in 

the Label and Sticker Condition would choose the relational 

match more often compared to the children in the NoWord 

Condition. In addition, children in the Label and Sticker 

Condition will do equally well. This logic follows from the 

language as a toolkit view discussed earlier (Gentner, 2003; 

2010). Building upon this view, I posit that a non-linguistic 

cue will act in the same way as novel language labels do, 

prompting children to go beyond the readily available 

perceptual commonalities, and focus on the deeper 

relational commonalities. 
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Methods 

Participants Forty-three 4-year-olds were recruited from 

kindergartens in Sofia area (28 females, Mage = 52 months; 

15 in Label Condition, 14 in Sticker Condition, and 14 in 

NoWord Condition). Permission to participate was obtained 

from their parents prior to the study. Children received a 

small gift for their participation. 

 

Materials The study uses the materials from the original 

study
1
. The instructions were translated into Bulgarian. 

Children were given a word extension task on a triad of 

pictures that depicted animals. The two standards were 

labelled with a novel noun, and children were asked to 

extend the label to one of two alternatives: a relational 

match (new animals in the same configuration) or an object 

match (same animal[s] in different configuration). 

The stimuli consisted of eight sets of animal pictures, with 

two standards, an object match and a relational match. Each 

picture depicted two or three animals configured in a novel 

spatial relation (e.g., two identical pigs facing each other). 

The second standard within a given set showed different 

animals in the same spatial configuration (e.g., two identical 

fish facing each other). The object match contained an exact 

animal match from each standard but in a different relational 

pattern (e.g., a pig and a fish turned back on each other). 

The relational match was composed of new animals in the 

same relational configuration as the two standards (e.g., two 

identical turtles facing each other; Figure 1). 

In addition, two training sets depicting shapes were 

included that aimed to help children become more familiar 

with the procedure. Children did not receive feedback 

during the training session and the results from it were not 

counted in the analyses. 

 

Procedure Children were randomly assigned to one of three 

between-subjects conditions: Label, Sticker, or NoWord. 

Materials were presented on laminated paper cards. 

Children were seated across from an experimenter.  

In the Label condition, the experimenter laid the two 

standards and labeled them with a novel count noun (e.g. 

pointing to the first card, “This is a blicket.” Then, pointing 

to the second card, “And this is a blicket, too.”). Next, the 

child had to compare the two standards: “Do you see why 

these two are both blickets?” The experimenter then placed 

the two alternatives side by side below the standards and 

asked the child, “Which one of these is also a blicket?” 

After the child made a choice, the experimenter continued 

with new standards from a new set. Eight unique novel 

labels were used, one for each relational pattern. 

The NoWord condition began the same way. The 

experimenter laid the two standards, but instead of labelling 

them with a novel word, she used the same generic term for 

all sets: (e.g. “This is one. And this is one, too.”). Then, the 

child was prompted to compare the standards, “Do you see 

why these two are the same kind of thing?” Last, the two 

                                                           
1 The materials were kindly provided by Stella Christie. 

alternatives were presented, and the child was asked: 

“Which one of these is the same kind of thing?” This 

procedure continued for all eight sets of pictures.  

In the Sticker condition, the experimenter laid the two 

standards and placed a sticker (a small circle) in the top 

middle of each standard. Then, the child had to compare the 

standards: “Do you see why these two have stickers?” Then, 

the two alternatives were presented and the child was asked: 

“On which one of these should we also put a sticker?” After 

the child made a choice, the experimenter continued with 

the next set. Eight different stickers were used for each of 

the sets. 

 

 
Figure 1: A sample of the sets in the categorization task 

Results and Discussion 

Mean proportion of relational matches in the category task 

were measured. Two different analyses were used to 

measure performance. First, a one-way ANOVA was used 

to calculate differences between the conditions. The analysis 

revealed a significant effect of condition, F(2,40) = 4,867, p 

= .013. Bonferroni post-hoc tests showed that children in the 

Sticker condition (Mrelational = 0.6, SD = 0.35) made 

significantly more relational matches compared to the Label 

(Mrelational = 0.23, SD = 0.36) and the NoWord (Mrelational = 

0.28, SD = 0.34) conditions. The Label Condition was not 

different from the NoWord condition, p = 1.00. 

In the second analysis, the means of each group was 

compared to chance (50%). The comparisons revealed that 

children in the Label and NoWord condition chose object 

matches significantly more than chance, t(14) = -2.981, p = 

.01 and t(13) = -2.48, p = 0.028, respectively. However, the 

Sticker Condition was not significantly different from 

chance, t(13) = 1.076, p = .301. 

As predicted, children who received a generic label 

performed worse than children who received a non-

linguistic cue during category formation. Further, they 

showed a strong preference toward the object match, 

selecting it significantly more than chance. However, 

contrary to prediction, children who heard a novel label also 

performed worse than the children who received a non-

linguistic cue, choosing the object match more often and 

significantly above chance level. Importantly, children in 
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the Sticker condition chose the relational match more often, 

though not significantly above chance level. The obtained 

results provide further insights into the strategies that are 

available for children to use during category formation 

tasks.  

General Discussion 

Children improve dramatically in their analogical abilities 

over the preschool and early school years. Various factors 

contribute to the development of analogical abilities in 

young children. General experience (Rattermann & Gentner, 

1998), maturation of executive functions (Richland, 

Morrison, & Holyoak, 2006; Thibaut, French, & Vezneva, 

2010), and processing capacity (Halford, Wilson, & 

Phillips, 1998) all contribute to the development of 

analogical abilities. However, other mechanisms are also 

crucial to relational ability and learning in general – 

relational language and comparison (Gentner, 2003; 2010; 

Alfieri, Nokes-Malach, & Schunn, 2013). 

Comparison is a general learning mechanism that 

provides efficient means for learning. In particular, in 

relational learning, comparisons provide children with the 

opportunity to engage in a process that is akin to relational 

mapping. This means that children are able to notice and 

abstract the underlying relational structure between the two 

standards and thus it becomes more salient and more 

available for new examples. Children acquire relational 

terms that support relational representation and reasoning 

(Christie & Gentner, 2010; Gentner, 2003; 2010; Gentner et 

al, 2011). Previous research shows that providing two 

examples with a common label prompts children to focus 

their attention to the more subtle structural commonalities 

(Christie & Gentner, 2010; Gentner & Namy, 1999; Namy 

& Gentner, 2002).  

In this experiment, we sought to replicate data from the 

Christie and Gentner study (2010) and to further the 

findings with new conditions. We asked 4-year-olds to 

compare two examples of a given category and to extend the 

category to either an object match or a relational match. The 

results obtained in this study show that when children 

received a non-linguistic cue (e.g. a sticker) that represented 

category membership, they extended the category to a 

relational match. However, when they received either a 

specific novel label (e.g. a blicket) or a generic word (e.g. 

one), they extended the category to an object match.  

Concerning the linguistic cues, there are two possible 

explanations for the obtained results. First, it is possible that 

providing children with a count noun as a category label 

focused them to pay more attention to the objects involved 

(Markman, 1989). As mentioned above, children understand 

that labels refer to like kinds, but their naïve intuition is to 

assume that the likeness refers to the objects and not to other 

commonalities. Children often encounter relational nouns 

(nouns whose meaning is defined by their relation to other 

entities) in everyday speech when interacting with adults. 

However, there is some ambiguity between object construal 

and relational construal. For example, when children hear a 

relational noun (e.g. X is an uncle), they typically focus on 

perceptual features (e.g. old man) than relational features 

[(e.g. brother of mother); Gentner, 2003; Christie & 

Gentner, 2010].  

A second possibility is that children in the Label 

condition had a difficulty to encode the specific labels used. 

It is possible that the labels we used are phonologically very 

different from the majority of words in Bulgarian. If 

children focused on trying to understand the meaning of an 

awkward word, their capacity to process the relational 

information for the two standards was limited. In addition, 

children in both the Label condition and the NoWord 

condition heard a word representing the category 

membership, whereas children in the Sticker condition were 

able to see the sticker at all times during the categorization 

task. It is possible that when children hear a word it is more 

difficult to encode and update the cue, but when a cue is 

always present and readily available there is no need to store 

it in working memory and thus encoding it is easier. 

Although such an assumption seems rather unsupported, 

having in mind the data from previous research on language 

labels and comparison among preschool children, it is worth 

investigating further why our experiment failed to replicate 

the Label condition in the original study.  

Following the main idea of the present study – to explore 

the various strategies children use during relational 

categorization, further work is needed to see how 

comparison supports relational abstraction in preschool 

children independent from language. It is worth mentioning 

that the experiment presented here is part of a larger 

ongoing study. We are currently collecting more data that 

will provide further insights into the specific roles of 

different types of presentation and cues in category 

formation in preschool children. 
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Abstract

An important part of explaining how people communicate is
to understand how people relate language to entities in the
world. In describing measurements, people prefer to use quali-
tative words like ‘tall’ without precise applicability conditions,
also known as vague words. The use of vague language varies
widely across contexts, individuals, and tasks (single reference
vs. comparisons between targets), but despite this variabil-
ity, is used quite successfully. A potential strategy for using
vague language is to leverage the set of alternative descrip-
tors to settle on the best option. To determine whether people
use this strategy, we conducted an experiment where partici-
pants picked vague words from sets of alternatives to describe
either probability or color values. We varied the set of alter-
natives from which participants could choose. Empirical evi-
dence supports the hypothesis that people use the set of avail-
able options to pick vague descriptors. The theoretical impli-
cations of this work are discussed.
Keywords: Vagueness, Alternative sets, Probability, Color

Introduction
An important aspect of human communication is understand-
ing how people use language to describe the world (Quine,
1969). In the simplest case, people use language to refer to
concrete real world objects and categories, such as trees or
humans. More interestingly, people use words such as blue,
tall, and likely to flexibly refer to indefinite ranges of contin-
uous values across different contexts—a phenomenon known
as vagueness. Vague words vary in evoking degrees along
different kinds of dimensions (Kennedy, 2007; Kennedy &
McNally, 2010). This paper explores people’s expectations
for different classes of vague words and how they leverage
these expectations to communicate effectively.

The constrained variability of vague language
Although the use of vague language is ubiquitous in everyday
talk, it varies dramatically across communicative situations
(Budescu & Wallsten, 1987). To start, different people relate
vague words differently to the values they want to describe
(Budescu & Wallsten, 1987; Wallsten, Budescu, Rapoport,
Zwick, & Forsyth, 1986). For example, in comparable con-
texts, different people may use the same word to describe dif-
ferent values, or different words to describe the same values.

Nevertheless, meanings in context are not random: vague
words seem to always denote bounded, convex regions in the
appropriate property space (Gärdenfors, 2004). For example,
we can appeal to the convexity of color categories to explain
patterns of color naming within and across language commu-
nities (Jäger, 2010; Regier, Kay, & Khetarpal, 2007).

At the same time, individuals’ use of vague language varies
as a function of the context. People use vague words dif-
ferently depending on the specific objects they need to dis-
tinguish in a situation (Van Deemter, 2006). They also use
vague words differently depending on the possible alternative
descriptions that would be appropriate (Degen, 2015). For
instance, the presence of numbers in the set of available op-
tions (e.g.[‘some’, ‘all’, ‘not all’, ‘4’]), influences the use of
the option ‘some’ (Degen & Tanenhaus, 2015). Again, there
are limits on such effects. For example, absolute terms, such
as ‘empty’, ‘flat’ and ‘straight’, are more constrained in how
they vary in context than terms that signal open-ended com-
parisons, such as ‘tall’ (e.g. Leffel, Xiang, & Kennedy, 2016).

Finally, vague language varies as a function of speakers’
semantic memory, as revealed by the implicit class to which
comparisons are drawn (Lassiter, 2009; Wallsten et al., 1986;
Kennedy, 2007). In the quintessential example, the word
tall is understood very differently when used to describe
a basketball player versus a toddler, and differently again
when used to describe a skyscraper versus a glass of water
(Schmidt, Goodman, Barner, & Tenenbaum, 2009). Similar
semantic effects are seen in the relationships between differ-
ent cultures, environments, and their color categories (Regier,
Carstensen, & Kemp, 2016; Stickles, 2014).

Despite this constrained variability, people generally com-
municate successfully with vague words and prefer to use
vague language in many tasks (Van Deemter, 2012).

Characterizing the variability of vagueness
Bayesian cognitive modeling suggests accounting for these
effects in terms of expectations derived from semantic mem-
ory, the communicative context and patterns of individual
variation (Potts, Lassiter, Levy, & Frank, 2016). Conversely,
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it suggests we can also characterize people’s semantic and
pragmatic representations through analysis of their interpre-
tation of vague language.

In particular, it’s natural to suppose that language users co-
ordinate on specific interpretations in context by assuming
that speakers have chosen the most informative description
from the available alternatives in light of their expectations.
Although several models predict that interpretations of vague
language will vary in this way (Potts et al., 2016; Wallsten
et al., 1986), empirical evidence supporting this hypothesis is
thin.

To investigate this hypothesis, we conducted a forced
choice experiment where subjects selected one of a small
number of linguistic alternatives to describe a value. Criti-
cally, as we varied the number of alternative descriptions, we
provided a reject option (i.e. ‘none of the above’) to mea-
sure limits in flexibility of vague terms. Despite a large range
of related work, no previous studies have addressed this issue
explicitly. We compared performance in the forced choice ex-
periment to a free generate task where participants provided
their own words to describe values.

We hypothesize that two possible behaviors may arise.
When presented with different sets of alternative descriptions,
people may flexibly use the same vague word to refer to dif-
ferent ranges of values. In contrast, people may consistently
use vague words to describe the same values regardless of
the alternative set of words, instead choosing rejection when
preferred options are unavailable.

To foreshadow, we find evidence for both patterns, depend-
ing on semantic domain. Probability descriptions vary widely
depending on the alternative terms presented to subjects, but
color terms vary much less. These results suggest that, al-
though individuals representations of the meaning of some
vague words are broadly stable, speakers do adjust bound-
aries within the available range to give the most information
in context. 1 We outline empirical and theoretical conse-
quences of this finding for future work, emphasizing the need
to characterize individual differences and contextual variation
jointly, as well as the need to explicitly contrast speaker mod-
els based on strategic and heuristic choice.

Experiment
To assess the role of the set of available terms in constraining
vague language, we elicit labeling behavior in a task where
participants are shown a property value (i.e. probability and
hue), and are asked to either choose a corresponding label
from a given set of options (N-AFC), or freely generate a la-
bel that corresponds to the presented value. In the N-AFC
cases, we expect that the distributions will reflect peoples
willingness (or lack of willingness) to “stretch” their cate-
gory assignment of values based on available terms. In the

1In fact, models of informativeness are often operationalized in
terms of ruling out competing referential interpretations (Frank &
Goodman, 2012). The only way to apply such models to our ex-
periment is with the trivial assumption that all true descriptions are
equally informative.

FR3000 wants to talk about whether or not 
events will occur! 

You will be shown a spinner that is able to land  
in one location in the circle. Your job is to help 
FR30000 can talk about uncertain situations! 
Describe the probability of the spinner landing 
in the gray area.  

Help FR3000 answer this question: 
How likely is it that the spinner will land in the 
dark gray area? 
“It is ___that the spinner will land in the area.” 

 

FR3000 wants to talk about colors! 
In the next scene, you will be shown a color 
patch. Your job is to describe the color so 
FR3000 can talk about this color in the future. 
Describe the color of the patch.  

Help FR3000 answer this question: 
What color is this square patch? 

“The color of this square patch is _________.” 
Red 
Green 
Blue 
None of the above 

Figure 1: Sample stimuli for the two tasks: Probability (left
two panels) and color (right two panels).

free generate cases, we expect that the distributions will re-
flect people’s natural tendencies of assigning terms to values.

Methods
Participants Three-hundred and sixty individuals from the
Amazon Mechanical Turk research pool participated in this
study for monetary compensation.

Materials Color. The stimuli for the color condition
consisted of 60 equally spaced values sampled from the
winHSV240 (hue, saturation, and value) color space. The
colors varied along the full range of the hue dimension, while
saturation and value were held constant at 90%.2 The set of
available vague color words included seven of the eleven uni-
versal color terms (red, orange, yellow, green, blue, purple,
and pink; Berlin & Kay, 1969). To create different condi-
tions, we incrementally increased the number of color words
available for participants to choose from - starting with three
terms and ending with seven terms. We also included a free
generate (see Table 1) condition resulting in six conditions
for color in total. In addition to the AFCs for each condi-
tion, there was also a reject option, indicating that the color
value was not described by any of the available color words.
The color space was stratified into six regions, so that each
participant only saw one stimuli from each region at equal in-
tervals.This design ensured that participants were presented
with values that spanned the entire property range.

Probability. The stimuli for the probability conditions also
consisted of 60 equally spaced probability values on the range
of 0-1. The vague probability words that could be used to de-
scribe the values were selected from a norming phase with
a separate set of participants (N=32). The norming partici-
pants were simply asked to provide labels for randomly gen-
erated probability values. The six most frequently generated
terms were then used here. To match the structure of the color
task, the probability task was also comprised of six condi-

2Saturation and value were held constant to reduce the dimen-
sionality of color space and to understand how people use color
words to partition the range of hue values. This procedure is com-
mon practice when assessing expectations for basic color categories
(Persaud & Hemmer, 2016; Sims, Ma, Allred, Lerch, & Flombaum,
2016)
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Table 1: List of Available Vague Words by Condition

Condition Probability Color
1 [UL] unlikely, likely [3-TERM] red, green, blue
2 [ULV] unlikely, likely, very unlikely, very likely [4-TERM] red, green, blue, yellow

3 [ULS] unlikely, likely, somewhat unlikely,
somewhat likely

[5-TERM] red, green, blue, yellow, purple

4 [VS] very unlikely, very likely, somewhat likely,
somewhat unlikely

[6-TERM] red, green, blue, yellow, purple, orange

5 [ULVS] unlikely, likely, very unlikely, very likely,
somewhat unlikely, somewhat likely

[7-TERM]
red, green, blue, yellow, purple,
orange, pink

6 [FG] free generate [FG] free generate

tions ranging from two alternative forced choices (AFC) to
six AFCs, and a free generate condition (see Table 1). The
option to reject was present in all conditions. The probability
space was stratified into six regions, so that each participant
only saw one stimuli from each region at equal intervals.

Procedure Participants were told that they would be help-
ing a robot to understand the meaning of vague words by
assigning the words to different property values. Partici-
pants were first presented with a set of instructions describ-
ing the stimuli and the task. For the probability task, they
were shown a pie chart with an arrow called a spinner and
a shaded region denoting a probability value (Figure 1, top
panels). They were informed that their job was to either pick
from a given set of words or generate a word that described
the likelihood of the spinner landing in the shaded region of
the pie. For the color task, participants were presented with a
single color patch and were asked to either choose one of the
given color words or generate a word to describe the color
Figure 1, bottom panels). Each set of instructions was pro-
vided immediately before the task that they described. Each
participant described 12 unique property values (6 probabil-
ity values and 6 hue values). The conditions and presentation
order of values were randomized across participants.

Results
Probability Results We assessed whether or not partici-
pants consistently used the probability words to describe the
same probability values across conditions (see Figures 2 and
3, left column), via linear mixed-effects models (lme) using
the lme4 package in R (Bates, Mächler, Bolker, & Walker,
2015). LME models test for significant differences in re-
sponses within experimental groups of primary interest (i.e.
condition), while accounting for variability that results from
factors that are experimentally uncontrolled (e.g. subjects).
We followed up the modelling with planned pair-wise com-
parisons between conditions using a Tukey post hoc analy-
sis, which corrects for family-wise error rates. In the LME
models, subjects and stimuli order were always treated as
random effects, while condition was treated as fixed. Prob-
ability and hue values were treated as the dependent mea-
sure and condition was treated as an indicator variable. For

each probability word, we used a single lme model and com-
pared it to the null. We started with a null model of partic-
ipants and stimuli order and then added condition as a pre-
dictor in the alternate models. The null model predicts no
difference in the assignment of probability words to values
across conditions and the alternate models predict the op-
posite. Model fit was assessed using a likelihood-ratio test
to compare the hypotheses of the null and alternate mod-
els. Condition was significant for probability words:likely
(β= 66.33, SE = 3.01), unlikely (β= 21.03, SE = 2.84), and
somewhat likely (β = 47.67, SE = 4.72). Model comparisons
for each of these words favored the alternate models (likely:
χ2(4) = 36.77, p < .0001, unlikely: χ2(4) = 26.89, p <
.0001, and somewhat likely: χ2(4) = 9.41, p = .02). Planned
pairwise comparisons were conducted to identify the condi-
tions where the probability values differed for each word. For
readability, we use codes to refer to the specific conditions
(See Table 1 for the condition codes and probability terms
available in each condition). Results showed a significant dif-
ference in the mean values for likely in the UL and ULV con-
ditions (p < .001); ULV and ULS conditions (p < 0.001);
and ULS and VS conditions (p = 0.02). See Figure 4, left
panel, for a visualization of the cumulative changes in values
for likely across AFC conditions.

Comparisons show that the probability values assigned to
unlikely differed in the ULV and FG conditions (p < 0.01);
UL and ULV conditions (p = 0.01); and ULS and ULV
conditions (p < 0.001). See Figure 4, right panel, for a vi-
sualization of the cumulative changes in values for unlikely
across AFC conditions. A difference in mean values for
somewhat likely was observed in the ULVS and VS condi-
tions (p < 0.01); and a marginal difference inULVS and FG
conditions (p = .055). We also calculated the percentage of
reject option responses in each N-AFC probability condition.
In the order of Table 1, the reject option constituted 4%, 1%,
1%, 1%, and 1% of the responses. Taken together, the results
suggest that not only are the assignment of probability words
to values influenced by the set of alternative descriptions that
could have been used, but also that the space of probability
values do not have a strict partitioning. In other words, a
varying number of probability terms can be flexibly used to
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Figure 2: Responses from the N-AFC conditions. Labels on the y-axis were the options available to the participants and the
x-axis shows the stimuli values. LEFT PANEL: For each plot, the probability terms selected vs. probability values presented to
participants. RIGHT PANEL: For each plot, the color terms selected vs. the hue values presented to participants.

describe different values in probability space.

Color Results The most notable difference between the
two domains is that the reject option was selected at a much
higher rate for color than probability. In the order of Table
1, the reject option constituted 36%, 31%, 14%, 9%, and 3%
of the responses for each N-AFC color condition. Like in
the probability analysis, we used linear mixed-effects models

to assess whether participants consistently used color words
to describe hue values across conditions (see Figures 2 and 3,
right column). Interestingly, model comparisons only favored
the alternate model for the color purple. Again for readabil-
ity, we use codes to refer to the specific conditions (see Ta-
ble 1). Planned pairwise comparisons revealed the conditions
where hue values for purple were different: 5-TERM and FG
conditions (p < .01) and 5-TERM and 7-TERM conditions
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Figure 3: Responses from the free generate conditions. The y-axis shows the set of labels freely generated more than 5
times and the x-axis show the presented values. Probability responses are presented in the left panel and color responses
are presented on the right.
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Figure 4: Cumulative frequency curves for likely and unlikely across the AFC conditions. The curves show the relative rates
of people using likely (on the left) and unlikely (on the right) probability terms given the alternative sets of probability words
in each condition.

(p < .01). Importantly, there were no significant differences
in the mean hue values for the remaining colors across con-
ditions (i.e. red, green, blue, yellow, orange, and pink). The
results suggest that, unlike some probability words, the as-
signment of color words to hue values are inflexible and are
not influenced by the set of alternative descriptions that were
offered to participants. Instead, participants assignments re-
flect that their preference for color categories already takes
into account an alternative set of other color categories. This
is further supported by the high rates of the reject option use
in the conditions with fewer options for color descriptions.

Discussion

In this paper, we investigated how people assign vague words
to probability and color values as a function of the set of avail-
able alternatives. We measured this behavior in two tasks
where participants either selected a vague word from a fixed
set or freely generated a word to describe values. Results re-

vealed two interestingly opposing behaviors for probability
and color.

For probability, words varied in their assignment to prob-
ability values when other vague terms were available. For
example, likely was assigned to a different set of probability
values in the UL condition where only unlikely was available,
relative to the ULV condition where very likely and very un-
likely were also available or the ULS condition where some-
what likely was available. In contrast, for color, the assign-
ment of vague words to color values was much more rigid.
In fact, purple was the only color that varied across condi-
tions. Other words had relatively well-defined categories that
did not overlap.

The results suggest that for probability, people are adopt-
ing the strategy of using the set of available terms to con-
strain variability. This is consistent with the well-known
framing effect (Tversky & Kahneman, 1986) where deci-
sions/preferences change as a function of how options are
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presented. For color, however, they are not adopting this strat-
egy.

There are two potential reasons why this may be. First, the
set of color words used in the task are already constrained to
the basic universal color categories. It is possible that people
are more flexible when the vague color word is not drawn
from the 11 universal terms. For example, teal, which was
a freely generated response might shift in its assignment to
color values depending on the available options. If blue is
present in the set, teal might be selected for more greenish
hues, and if green is in the set, teal might be selected for
bluish hues. Alternatively, it could be that probability words
encode a relative comparison in a way that color words do not
(Leffel et al., 2016), and this semantic difference stabilizes
the interpretations of color words in context. In other words,
color terms come with an intrinsic range of applicability, not
just a prototypical or ideal instance of the term.

A possible limitation of this work is in the finding that the
distributions for most probability terms are very broad and
overlapping (See Figure 2), which might be due to either in-
dividual differences or the context provided by the alternative
sets manipulation. The current methodology is insufficient
to distinguish between these. One way we could assess this
would be to build generative statistical models which simu-
late the behavior of the participants under the two possible
stories and compare the simulations to the empirical data. At
the same time, this work lays the groundwork for examining
future questions such as: how do you represent the applicabil-
ity of words like likely in ways that explain their constrained
variability? And how do speakers combine their sense of
what would be a good description with factors like their ex-
pectations about how a description will be interpreted?

Acknowledgements
This work is based upon a project supported by the National
Science Foundation grant 1526723, the National Science
Foundation Career grant number 1453276, and partially sup-
ported by National Science Foundation Graduate Research
Fellowship under Grant Number NSF DGE 0937373.

References
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Abstract
In this paper we study selected argument forms involving
counterfactuals and indicative conditionals under uncertainty.
We selected argument forms to explore whether people with
an Eastern cultural background reason differently about con-
ditionals compared to Westerners, because of the differences
in the location of negations. In a 2× 2 between-participants
design, 63 Japanese university students were allocated to four
groups, crossing indicative conditionals and counterfactuals,
and each presented in two random task orders. The data
show close agreement between the responses of Easterners and
Westerners. The modal responses provide strong support for
the hypothesis that conditional probability is the best predic-
tor for counterfactuals and indicative conditionals. Finally,
the grand majority of the responses are probabilistically coher-
ent, which endorses the psychological plausibility of choosing
coherence-based probability logic as a rationality framework
for psychological reasoning research.
Keywords: argument forms; cross-cultural comparison; coun-
terfactuals; indicative conditionals; negation; probability
logic; reasoning under uncertainty

Introduction
In this paper we study selected argument forms involving
counterfactuals and indicative conditionals under uncertainty.
The aim is to explore potential cross-cultural differences in
human reasoning about conditionals and negation under un-
certainty between Easterners and Westerners. There are two
possible hypotheses: A universal hypothesis and a cultural
differences hypothesis. Like universal grammar (Chomsky,
1957), the human mind is conceived as universal across cul-
tures according to mainstream 20th century psychology. Re-
searchers who agree with this hypothesis usually assume that
cultural differences are very small since human reasoning
has evolved universally (e.g., Mercier & Sperber, 2011). So
far, cross-cultural differences in reasoning involving nega-
tions have been described in the classical-logic based (old)
paradigm psychology of reasoning literature (see, e.g., Nis-
bett, Peng, Choi, & Norenzayan, 2001; Norenzayan, Smith,
Kim, & Nisbett, 2002; Peng & Nisbett, 1999; Yama, in press).
These previous studies demonstrate that Westerners are in-
clined to engage in rule-based reasoning whereas Eastern-
ers are apt to engage in intuitive or dialectical reasoning.
In other words, Easterners are more likely to consider con-
tradictory premises dialectically than Westerners. However,
Zhang, Galbraith, Yama, Wang, and Manktelow (2015) re-
port that Easterners are not actually more dialectical when
they meet contradictory opinions, but they believe due to cul-
tural reasons that dialectical thinking is wiser than Western-
ers. Because contradictory premises are not used in this ex-

periment, we do not make predictions concerning whether
Easterners reason more dialectical or not (see, e.g., Peng &
Nisbett, 1999). Rather, we explore whether the location of
negation in the context of conditionals impacts on reasoning
and whether our Japanese sample differs from corresponding
data of Western samples. If Japanese people see a stronger
cultural value in dialectical thinking, it is plausible to as-
sume that they may hesitate to show stronger confidence in
the correctness of their judgments. Moreover, the Japanese
language differs from European languages in the location of
verb and negation. Usually, the verb is placed at the end of a
sentence in Japanese. Furthermore, the term “not” is placed
after the negated verb. Thus, the word order of a negated
sentence is: complement—verb—not. In spite of these differ-
ences, cross-cultural studies on logical reasoning which fo-
cus on these differences systematically are rare. Our study
presents one of the first attempts (see also Yama, in press)
to identify cross-cultural differences within the framework of
the new probability-based paradigm psychology of reasoning.

Among the various ways of expressing and using counter-
factuals (see, e.g. Declerck & Reed, 2001), we restrict our
investigation of counterfactuals to conditionals in subjunctive
mood, where the grammatical structure implies that the coun-
terfactual’s antecedent (A) is factually false. For instance,
consider the utterance of the following counterfactual in the
context of a randomly drawn poker card:

If the drawn card were to show an ace (A),

then it would show spades (C) .
(1)

The grammatical structure of (1) pragmatically entails that
the drawn card is not an ace (¬A), i.e., the antecedent A of (1)
is false. By “indicative conditional” we mean an “if–then”
statement of the form If A, then C, e.g.,

If the drawn card shows an ace, then it shows spades . (2)

Contrary to the counterfactual (1), the indicative condi-
tional (2) does not imply whether the card actually shows an
ace or not. While the core meaning of indicative conditionals
was equated with the semantics of the material conditional
in the classical logic-based paradigm (or “old”) psychology
of reasoning (see, e.g., Braine & O’Brien, 1998; Johnson-
Laird, 1983; Rips, 1994; Wason & Johnson-Laird, 1972), our
work is located in the new paradigm psychology of reasoning,
where conditionals are interpreted as conditional probabil-
ity assertions (see, e.g., Elqayam, Bonnefon, & Over, 2016;
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Oaksford & Chater, 2007; Over, 2009; Pfeifer, 2013). Instead
of using (fragments of) classical logic, the new paradigm psy-
chology of reasoning uses probability theory as a rationality
framework. Probability as a rationality framework is psy-
chologically and philosophically appealing for many reasons
(see, e.g., Pfeifer & Douven, 2014). Let us mention three of
them.

First, probability theory allows for managing degrees of be-
lief instead of restricting belief to the two values true and
false as in the case of bivalent classical logic. Thus, probabil-
ity theory provides a much richer framework to study condi-
tionals. It allows for analysing different psychological predic-
tions concerning conditionals: not only in terms of the mate-
rial conditional (A⊃C) and the conjunction (A∧C) as defined
in classical logic, but also in terms of the conditional event
(C|A), as defined in coherence-based probability logic (see,
e.g., Coletti & Scozzafava, 2002; Gilio, Pfeifer, & Sanfilippo,
2016; Pfeifer & Kleiter, 2009). Table 1 presents the truth
conditions of these three interpretations. Note that the con-
ditional event cannot be expressed in classical bivalent logic.
We hypothesise that the degree of belief in a conditional If A,
then C is interpreted by a suitable conditional probability as-
sertion (p(C|A)) and neither as the probability of the material
conditional (p(A ⊃C)) nor as the probability of the conjunc-
tion (p(A∧C)). We will test these three interpretations in the
following experiment.

Table 1: Truth tables for the material conditional A ⊃C inter-
pretation, the conjunction ∧ interpretation and the conditional
event interpretation C|A of a (counterfactual) conditional If A
(were the case), then C (would be the case).

A C A ⊃C ∧ C|A
true true true true true
true false false false false
false true true false undetermined
false false true false undetermined

Second, probability logic blocks so-called paradoxes of the
material conditional (see, e.g., Pfeifer, 2014). For example,
¬A (“not-A”) logically entails A ⊃ C. The paradox arises,
when the material conditional is used to formalize a natural
language conditional. Then, for example, the conditional “if
it rains today, then I’ll be a billionaire tomorrow”, follows
from the premise “it does not rain today”: this inference vi-
olates common sense but it is logically valid. In probability
logic, the inference from p(¬A) = x to p(C|A) is probabilisti-
cally non-informative, i.e., if p(¬A) = x, then 0≤ p(C|A)≤ 1
is coherent; hence, the paradox is blocked (Pfeifer, 2014).
Whether an inference is probabilistically informative or not
is a binary question: if the best possible coherent probability
bounds on the conclusion coincide with the unit interval [0,1],
then the argument form is probabilistically non-informative;
otherwise, it is probabilistically formative (i.e., the premise
set constrains the probability of the conclusion). The the-

oretical prediction that the paradox is probabilistically non-
informative also matches experimental data based on sam-
ples involving Westerners (Pfeifer & Kleiter, 2011; Pfeifer &
Tulkki, 2017b). Note that the paradox is not blocked if the
conditional probability (conclusion) is replaced by p(A ⊃C)
or by p(A∧C). A subgoal of this paper is to explore how
Japanese participants reason about this paradox.

Third, probability allows for retracting conclusions in the
light of new evidence while classical logic is monotonic (i.e.,
adding a premise to a logically valid argument can only in-
crease the set of conclusions). The suppression effect (see,
e.g., Byrne, 1989; Stenning & van Lambalgen, 2005) illus-
trates peoples’ capacity to retract conclusions if new premises
are learned. Moreover, experimental data suggests that most
people satisfy basic nonmonotonic reasoning postulates of
System P (see, e.g. Benferhat, Bonnefon, & Da Silva Neves,
2005; Pfeifer & Kleiter, 2005, 2010). The rules of System P
describe formally basic principles any system of nonmono-
tonic reasoning should satisfy (Kraus, Lehmann, & Magi-
dor, 1990) and different semantics were developed, includ-
ing probabilistic ones. Probabilistic semantics postulate that
conditionals should be represented by conditional probability
assertions (see, e.g., Adams, 1975; Gilio, 2002). Interest-
ingly, inference rules which are (in)valid in System P are also
(in)valid in standard systems of counterfactual conditionals
(like Lewis, 1973). This convergence shows a close relation
between conditional probabilities and counterfactuals. Com-
pared to the big number of psychological investigations on in-
dicative conditionals (for overviews see, e.g., Evans & Over,
2004; Nickerson, 2015), studies on adult reasoning about
counterfactuals are surprisingly rare (Over, Hadjichristidis,
Evans, Handley, & Sloman, 2007; Pfeifer & Stöckle-Schobel,
2015; Pfeifer & Tulkki, 2017b). Our study sheds new light by
adding a cross-cultural perspective on indicative conditionals
and counterfactuals.

Table 2: Task names, their abbreviations and formal struc-
tures used in the experiment, where ¬ denotes negation, →
is a placeholder for denoting the indicative conditional or the
counterfactual, ⊃ denotes the material conditional, ∴ denotes
“Therefore”.

Task name (abbreviation) Argument form
Aristotle’s thesis #1 (AT1) it’s not the case that:(¬A → A)
Aristotle’s thesis #2 (AT2) it’s not the case that:(A →¬A)
Negated Reflexivity (NR) it’s not the case that:(A → A)
From “Every” to “If” (EIn) Every S is P ∴ S →¬P
From “Every” to “If” (EI) Every S is P ∴ S → P
Modus Ponens (MP) A, A →C ∴ C
Negated MP (NMP) A, A →C ∴ ¬C
Paradox (Prdx) ¬A ∴ A →C

Table 2 lists the task names, their abbreviations, and their
underlying logical form used in our experiment. All argu-
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ment forms were investigated previously in the literature on
Western samples. Each argument form is suitable for indica-
tive and subjunctive formulations. They are carefully selected
to distinguish between the material conditional, conjunction
and conditional event interpretation of conditionals. Tasks
AT1, AT2, and NR (adapted from Pfeifer, 2012) are about
negating conditionals. AT1 and AT2 are contingent (i.e., they
are neither tautologies nor contradictions) under the mate-
rial conditional interpretation of conditionals: specifically,
¬(¬A ⊃ A) ≡ ¬(¬¬A∨A) ≡ ¬A and ¬(A ⊃ ¬A) ≡ ¬(¬A∨
¬A)≡ ¬¬A ≡ A. Since we don’t know anything about (¬)A,
probability logic predicts for AT1: 0 ≤ p(¬(¬A ⊃ A)) ≤ 1;
likewise, for AT2: 0 ≤ p(¬(A ⊃ ¬A)) ≤ 1. For the condi-
tional event interpretation, however, both AT1 and AT2 ob-
tain probability one, since in general coherence requires that
p(A|¬A) = p(¬|A) = 0 for any contingent A and since by the
narrow scope reading of conditionals, AT1 is represented by
p(¬A|¬A) and AT2 is represented by p(A|A) and 1 is the only
coherent assessment for the respective conditional probabil-
ities. Note that there are two ways to negate material con-
ditionals, namely the wide scope negation of material con-
ditionals (i.e., A ⊃ C can be negated by ¬(A ⊃ C)) and the
narrow scope negation of material conditionals (i.e., A ⊃C is
negated by negating its consequent C: A ⊃ ¬C). Note that if
people interpret → by ⊃ but negate the conditional by the nar-
row scope interpretation of negation of conditionals, the pre-
dictions for AT1 and AT2 coincide with the predictions of the
conditional probability interpretation of conditionals (since
AT1: p(¬A ⊃ ¬A) = p(¬¬A ∨¬A) = p(A ∨¬A) = 1 and
since AT2: p(A ⊃ ¬¬A) = p(¬A∨¬¬A) = p(¬A∨A) = 1).
To disentangle the conditional probability interpretation and
the narrow scope negation of the material conditional inter-
pretation, we added the NR task. The NR task, the narrow
scope negation of the material conditional interpretation pre-
dicts that the whole unit interval is coherent, since the in-
struction does not reveal any probabilistic information about
¬A and since (A ⊃¬A)≡ (¬A∨¬A)≡¬A, hence 0 ≥ p(A ⊃
¬A)≤ 1, while coherence requires that p(¬A|A) = 0.

Table 3 lists the normative predictions of the different ar-
gument forms. Averaging the percentages of responses in
three studies reveals that 73% of the participants in task AT1,
75% in task AT2, and 80% of the participants in task NR
responded probabilistically coherently according to the con-
ditional probability interpretation (Pfeifer, 2012; Pfeifer &
Stöckle-Schobel, 2015; Pfeifer & Tulkki, 2017b).

Task EI (resp., task EIn) connects the basic syllogistic sen-
tence type “Every S is P” with associated conditionals (resp.,
conditionals involving negations) in the indicative and in the
counterfactual form. The motivation for these tasks is to shed
light on the hypothesised close relations between quantified
statements and conditional probability assertions in the liter-
ature (see, e.g. Cohen, 2012; Pfeifer & Sanfilippo, 2017, sub-
mitted). Recent data of Westerners suggest, that in task ASP
73% of the participants respond that the conclusion holds,
whereas 88% of the participants respond that the conclusion

in task ASnP does not hold (Pfeifer & Tulkki, 2017b), which
corresponds to the normative predictions.

We also investigate the well-known MP and its not logi-
cally valid but probabilistically informative counterpart NMP.
In a sample of Western participants (Pfeifer & Tulkki, 2017b),
68% responded correctly, that the conclusion in task MP
holds, and 63% responded correctly that the conclusion in
task NMP does not hold (see also Pfeifer & Kleiter, 2007).

Although tasks EIn, EI, MP, and NMP do not differenti-
ate among the three considered interpretations of the condi-
tionals, these tasks were selected (i) to test whether the re-
sponses of the Japanese sample differs from responses of cor-
responding Western samples and (ii) to investigate whether
there are differences in the responses between the two exper-
imental conditions (i.e., indicative versus counterfactual con-
ditionals).

Finally, as mentioned above, we investigate one of the
paradoxes of the material conditional. Western data on
Task Prdx indicates that most people (87% on the aver-
age) understand that this argument form is probabilistically
non-informative (Pfeifer & Kleiter, 2011; Pfeifer & Tulkki,
2017b).

Method
Materials and Design
We used a 2 × 2 between-participants design where we
crossed task formulations in terms of indicative conditionals
versus formulations in terms of counterfactuals. To control
for position effects, we used two random orders (generated
by random.org). This resulted in four different task book-
lets.

Each booklet consisted of a brief introduction, of eight
tasks, and of questions about the booklets (task difficulty,
whether participants took logic or probability classes and
whether they like maths). Furthermore, we included usual de-
mographic questions at the end. The logical forms of the eight
tasks are explained in Table 2. We instantiated these logical
forms into a cover story which was already used in studies on
Western samples (see, e.g., Pfeifer & Kleiter, 2011; Pfeifer
& Tulkki, 2017b). We adapted and translated this cover story
for the Japanese sample.

For each task, the participants were asked to imagine the
following situation:

Hanako works in a factory that produces toy blocks. She is
responsible for controlling the production. Every toy block has
a shape (cylinder, cube or pyramid) and a colour (red, blue or
green). For example:

• Red cylinder, red cube, red pyramid
• Blue cylinder, blue cube, . . .
• Green cylinder, . . .

Then, for example in task AT1 (indicative conditional), the
participants were asked to consider the following sentence:

It is not the case, that: If the toy block is not a cube, then
the toy block is a cube.
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(もしおもちゃのブロックが立方体ではないならば、そのおも
ちゃのブロックは立方体である、というわけではない。)

The instructions continued by the following questions,
which prompt answers in a forced choice format:

Can Hanako infer at all how sure she can be that the sentence
in the box holds? (please tick the appropriate box)

� NO, Hanako can not infer how sure she can be that the
sentence in the box holds.

� YES, Hanako can infer how sure she can be that the sen-
tence in the box holds.

The previous question serves to give the opportunity to re-
spond in a non-informative way and thereby avoid conver-
sational implicatures which could bias the participant to re-
spond in an informative manner. Specifically, we aim to in-
vestigate to what extent the participants are able to distinguish
probabilistically informative and non-informative argument
forms. The next question prompts a qualitative evaluation of
the conclusion of argument forms which are perceived to be
probabilistically informative:

If you chose “YES”, please tick one of the following answers:

� Hanako can be sure that the sentence in the box holds.
� Hanako can be sure that the sentence in the box does not

hold.

After each target task, the participants were instructed to rate
on a scale their subjective confidence in their response. The
corresponding AT1 task involving counterfactuals was formu-
lated in exactly the same way with the difference, that the
indicative conditional was replaced by a corresponding coun-
terfactual, as follows:

It is not the case, that: If the toy block were not a cube,
then the toy block would be a cube.

(もしおもちゃのブロックが立方体ではなかったとすれば、そのお
もちゃのブロックは立方体であるだろう、というわけではない。)

Note that AT1 can be conceived as an inference from
an empty premise set. For those tasks involving explicit
premises (i.e., in tasks EIn, EI, MP, NMP, and Prdx), we for-
mulated uncertainties in terms of verbal descriptions (“極め
て確実である”; “quite sure”). For instance, consider task
MP:

(A) . . . quite sure that the toy block is a cube.
(B) . . . quite sure that if the toy block is a cube, then it is red.

Our reason for qualitative premise and conclusion probabil-
ities in terms of verbal descriptions of probabilities (instead
of quantitative probabilities) was to reduce the psychological
complexity of the probabilistic inference. In this study, we
were interested in the interpretation of negations and condi-
tionals but not in the numerical propagation of the probabili-
ties from the premises to the conclusion.

Participants and procedure
63 Osaka City University undergraduate students participated
in this study (mean age 20.02 (SD = 1.05) years, 34 females,
21 males, 8 did not disclose their gender). Their major sub-
jects included various humanistic fields (3 commerce, 5 cul-
ture, 1 geography, 5 history, 4 Japanese, 8 law, 5 linguistics, 1
pedagogy, 2 philosophy, 17 psychology, 2 sociology, and 10
other). Nobody had ever taken logic classes but two partici-
pants had previously taken some probability classes. At the
end of the experiment, participants evaluated the set of tasks
as rather difficult (mean 2.76 (SD = 2.11) on a scale rang-
ing from 0 (“very difficult”) to 10 (“very easy”)). 82.54%
reported that they do not like maths.

All participants were tested at the same time during a les-
son in a course on cultural psychology. For reducing the
probability for copy-pasting responses, the booklets were dis-
tributed such that the two task orders and the two formula-
tions of the conditionals (indicative vs. counterfactual) alter-
nated systematically. Moreover, the experimenter announced
that the task booklets differ before the participants started
with filling in their responses. The booklets were formulated
in Japanese, the participants’ mother tongue.

Results and discussion
We performed Fisher’s exact tests to compare the response
frequencies among the four booklets (task order 1 × task or-
der 2 × indicative conditionals × counterfactuals) and did not
observe any significant differences after performing Holm-
Bonferroni corrections for multiple significance tests. Like-
wise, analyses of variance on the participant’s confidence
ratings in the correctness of their responses did not show
statistically significant differences among the four booklets.
This replicates previous findings in studies which used West-
ern samples. Specifically, studies on probabilistic truth table
tasks (Over et al., 2007; Pfeifer & Stöckle-Schobel, 2015)
and on uncertain argument forms (Pfeifer & Tulkki, 2017b)
did not detect significant difference between indicative con-
ditionals and counterfactuals. Thus, our data speak against
cross-cultural differences between Easterners and Western-
ers. This calls for further experiments to clarify whether this
interesting negative result is due to a too high dissimilarity of
our tasks compared to those in other studies on cross-cultural
differences. Or, alternatively, whether cross-cultural differ-
ences are not that strong as they are claimed to be (see, e.g.,
Zhang et al., 2015).

Since there were no significant differences in the responses
among the four booklets, we pooled the data for the follow-
ing data analysis (N = 63). Concerning the interpretation of
conditionals, we observed high endorsement rates of the con-
ditional probability hypothesis (see Table 3). This is strong
support for the hypothesis that both indicative conditionals
and counterfactuals are best modeled by conditional proba-
bility.

Table 4 presents the mean confidence ratings, which shows
how sure the participants are that their responses are correct.
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Table 3: Percentages (n = 63) of “holds” (hld), “does
not hold” (¬hld), and probabilistic non-informativeness re-
sponses (n-inf; see also Table 2). Predictions based on
the conditional probability hypothesis of conditionals are in
bold. Alternative hypotheses are indicated in parentheses:
¬⊃ (resp., ⊃¬) denotes wide (resp., narrow) scope negation
of the material conditional ⊃; ∧ denotes conjunction. If not
specified otherwise, predictions coincide.

AT1 AT2 NR EIn

hld: 65.08
(⊃¬
∧

)
76.19

(⊃¬
∧

)
6.35 6.45

¬hld: 15.87 11.11 63.49(¬⊃) 69.35
n-i: 19.05(¬⊃) 12.70(¬⊃) 30.16

(⊃¬
∧

)
24.20

EI MP NMP Prdx
hld: 88.89 53.97 9.52 0.00(⊃)

¬hld: 6.35 3.17 52.38 17.46(∧)
n-inf: 4.76 42.86 38.10 82.54

The confidences are relatively high, with an average value of
7.2 on a rating scale from 0 to 10.

Table 4: Mean (M) and standard deviations (SD) of the par-
ticipants’ confidence ratings (n= 63) on a scale from 0 (“very
sure that my response is not correct”) to 10 (“very sure that
my response is correct”; see also Table 2).

AT1 AT2 NR EIn EI MP NMP Prdx
M 6.77 6.86 7.20 7.71 8.02 7.18 7.02 6.82

SD 1.99 2.06 2.37 1.99 1.97 2.10 2.08 1.93

Concluding remarks
Our data suggest that people form their degree of belief in
the counterfactual If A were the case, C would be the case by
equating it with the corresponding conditional probability of
C|A. This is consistent with the observation in previous exper-
imental work (with Western participants) that people treat the
factual statement as irrelevant when they form their degree of
belief in a counterfactual (Pfeifer & Stöckle-Schobel, 2015;
Pfeifer & Tulkki, 2017b, 2017a). This can be justified and
explained by the coherence-based theory of nested condition-
als (Gilio & Sanfilippo, 2013, 2014; Gilio, Over, Pfeifer, &
Sanfilippo, 2017, submitted). Given three events A,B,C with
incompatible A and B (i.e., A∧B is a logical contradiction)
the prevision of the conditional random quantity ((C|B)|A)
is equal to p(C|B) (Gilio & Sanfilippo, 2013, Example 1, p.
225). Thus, the counterfactual If A were the case, C would be
the case can be modeled by the degree of belief in the con-
ditional random quantity (C|A)|¬A which equals to p(C|A)
(i.e., Prevision((C|A)|¬A) = p(C|A)). This is an explanation
for why people—as experimentally demonstrated in Western

samples and also in our Japanese sample—respond by corre-
sponding conditional probabilities when asked to give a de-
gree of belief in a counterfactual.

Our data suggest a negative answer to the question whether
there are cross-cultural differences between Easterners and
Westerners w. r. t. reasoning about indicative conditionals,
counterfactuals, and their negations. Further experimental
work, e.g., involving causal task material (see, e.g. Over et
al., 2007; Pfeifer & Tulkki, 2017a), is needed to substanti-
ate the hypothesis that conditional probability is the universal
key ingredient for psychological theories of indicative condi-
tionals and counterfactuals.

The material conditional interpretation of conditionals was
the gold standard to evaluate human reasoning about condi-
tionals in the old paradigm psychology of reasoning. Our data
do not support the material conditional interpretation. Rather,
our results strongly support the conditional probability inter-
pretation of conditionals, which became prominent in the new
paradigm psychology of reasoning and which received strong
experimental support in recent years (see, e.g., Elqayam et
al., 2016; Fugard, Pfeifer, Mayerhofer, & Kleiter, 2011; Over,
2009). Even though most of the data was collected on West-
ern samples, but given the theoretical plausibility of the the
conditional probability interpretation, we think that this is fur-
ther suggests that universality in human reasoning.

Finally, we note that adaptation of reasoning styles can be
one of the universal adaptive strategies across cultures. The
question of which aspects of human reasoning are universal,
and in how far they are universal, is important and calls for
collaborations of psychologists of reasoning and cultural psy-
chologists.
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Abstract

We study abductive, causal, and non-causal conditionals in
indicative and counterfactual formulations using probabilis-
tic truth table tasks under incomplete probabilistic knowledge
(N = 80). We frame the task as a probability-logical inference
problem. The most frequently observed response type across
all conditions was a class of conditional event interpretations
of conditionals; it was followed by conjunction interpreta-
tions. An interesting minority of participants neglected some
of the relevant imprecision involved in the premises when in-
ferring lower or upper probability bounds on the target con-
ditional/counterfactual (“halfway responses”). We discuss the
results in the light of coherence-based probability logic and the
new paradigm psychology of reasoning.

Keywords: abductive conditionals; causal conditionals; coun-
terfactuals; indicative conditionals; psychological experiment;
uncertain argument form; probabilistic truth table task

Introduction

The probabilistic truth table task was introduced by two in-

dependent studies at the beginning of this millennium (Evans,

Handley, & Over, 2003; Oberauer & Wilhelm, 2003). It

serves to investigate how people interpret conditionals under

uncertainty. Moreover, it is one of the starting points of the

new (probability-based) paradigm psychology of reasoning

(see, e.g. Baratgin, Over, & Politzer, 2014; Elqayam, Bon-

nefon, & Over, 2016; Oaksford & Chater, 2007; Over, 2009;

Pfeifer, 2013; Pfeifer & Douven, 2014), which started to re-

place the old (classical logic-based) paradigm psychology of

reasoning. The probabilistic truth table task was constructed

to investigate how people interpret conditionals (i.e., indica-

tive sentences of the form If A, then C). As its name suggests,

the task consists of inferring the degree of belief in a condi-

tional based on probabilistic information attached to the truth

table cases. What are truth table cases? Let A and C denote

two propositions (i.e., sentences for which it makes sense to

assign the truth values true or false) like a fair die is rolled

and the side of the die shows an even number, respectively.

The four truth table cases induced by A and C are: A∧C,

A∧¬C, ¬A∧C, and ¬A∧¬C, where ∧ denotes conjunction

(“and”) and ¬ denotes negation. Classical logic is bivalent,

involving only the truth values true and false. Therefore, the

conditional defined in classical logic (i.e., the material con-

ditional, see Table 1) is either true or false. The conditional

event C|A involved in conditional probability (p(C|A)), how-

ever, is not bivalent, as it is void (or undetermined) if its an-

tecedent A is false (see Table 1). Therefore, it cannot be rep-

resented by the means of classical logic.

Table 1 presents the truth conditions of the most impor-

tant psychological interpretations for adult reasoning about

indicative conditionals (i.e., conditional event, conjunction,

and material conditional). Moreover, it presents the bicondi-

tional and biconditional event interpretations, which were re-

ported in developmental psychological studies (see, e.g. Bar-

rouillet, Gauffroy, & Lecas, 2015).

Psychological evidence for the conditional event interpre-

tation was already observed within the old paradigm psychol-

ogy of reasoning (see, e.g., Wason & Johnson-Laird, 1972).

The response pattern, which is consistent with the conditional

event interpretation was seen as irrational (dubbed “defective

truth table”), as it violates the semantics of the material condi-

tional. The material conditional used to be the gold standard

of reference for the meaning of indicative conditionals in the

old paradigm. However, within the new paradigm psychol-

ogy of reasoning this response pattern is, of course, perfectly

rational (Over & Baratgin, 2017; Pfeifer & Tulkki, 2017).

Table 1: Truth tables for the material conditional A ⊃ C, the

conjunction A∧C, the biconditional A ≡C, the biconditional

event C||A (i.e., A∧C|A∨C), and the conditional event C|A.

A C A ⊃C A∧C A ≡C C||A C|A
true true true true true true true

true false false false false false false

false true true false false false void

false false true false true void void

While classical truth table tasks require to respond with

truth values, probabilistic truth table tasks require to with

respond degrees of belief. Following Pfeifer (2013), we in-

terpret the task as a probability logical inference problem.

Specifically, it is formalised as a probability logical argument

with assigned degrees of belief in the four truth table cases

as its premises and the degree of belief in a conditional as its

conclusion. The inference problem consists in propagating

the uncertainties of the premises to the conclusion. As an ex-

ample, consider the conditional probability interpretation of

the (p(C|A)) conditional If A, then C as the conclusion. This

argument scheme is formalised by:

(A) From p(A∧C) = x1, p(A∧¬C) = x2, p(¬A∧C) = x3,

and p(¬A∧¬C) = x4, infer p(C|A) = x1/(x1 + x2).

In argument scheme (A), the fraction x1/(x1+x2) is the prob-
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ability propagation rule for the conditional probability. For

different interpretations of the conditional, the probability

propagation rules differ. Table 2 presents the corresponding

probability propagation rules of the interpretations given in

Table 1.

Table 2: Probability propagation rules for the different in-

terpretations of If A, then C. The premise set {p(A∧C) =
x1, p(A∧¬C) = x2, p(¬A∧C) = x3, p(¬A∧¬C) = x4} en-

tails the respective conclusion (see also Table 1).

Interpretation Conclusion

Material conditional p(A ⊃C) = x1 + x3 + x4

Conjunction p(A∧C) = x1

Biconditional p(A ≡C) = x1 + x4

Biconditional event p(C||A) = x1/(x1 + x2 + x3)
Conditional event p(C|A) = x1/(x1 + x2)

The main empirical result of classical probabilistic truth

table tasks is that the dominant responses are consistent with

the conditional event interpretation of conditionals. More-

over, if people solve the task several times, some people shift

to the conditional event interpretation during the course of the

experiment (see, e.g., Fugard, Pfeifer, Mayerhofer, & Kleiter,

2011a; Pfeifer & Stöckle-Schobel, 2015).

A key feature of classical probabilistic truth table tasks

is that they present complete probabilistic knowledge w.r.t.

the truth table cases: all (point-valued) probabilities x1, . . .x4

are available to the participant (see, e.g., Evans et al., 2003;

Oberauer & Wilhelm, 2003; Fugard et al., 2011a; Pfeifer

& Stöckle-Schobel, 2015). When all probabilities involved

in argument scheme (A) are given as point values, for ex-

ample, it is possible to infer a precise (point-valued) prob-

ability of C|A. Of course, x3 and x4 are irrelevant for cal-

culating p(C|A) in this case. However, as full probabilistic

information is usually not available in everyday life, we ar-

gue for investigating incomplete probabilistic knowledge. If

x1 in argument scheme (A) is only available as an imprecise

(i.e., interval-valued) probability, i.e., x′1 ≤ p(A∧C)≤ x′′1 , the

probability of the conclusion of (A) is also imprecise, i.e.,

x′1/(x
′
1 + x2) ≤ p(C|A) ≤ x′′1/(x

′′
1 + x2). Table 4 (see below)

presents a numerical illustration of the different interpreta-

tions of conditionals in the probabilistic truth table task with

imprecise premises. Incomplete probabilistic knowledge has

not been investigated within the probabilistic truth table task

paradigm yet (for an exception, where only indicative condi-

tionals were investigated, see Pfeifer, 2013).

With only a few exceptions (i.e., Over, Hadjichristidis,

Evans, Handley, & Sloman, 2007; Pfeifer & Stöckle-Schobel,

2015), the important classes of causal conditionals and coun-

terfactuals have not been investigated empirically within the

probabilistic truth table task paradigm yet. Causal condi-

tionals are characterized by connecting cause (i.e., the con-

ditional’s antecedent) and effect (i.e., the conditional’s conse-

quent), like If you take aspirin, your headache will disappear.

Counterfactuals are conditionals in subjunctive mood, where

the grammatical structure signals that the antecedent is false.

For instance, If you were to take aspirin (A), your headache

would disappear (D), which signals that you had not taken

aspirin yet (¬A). This example is a counterfactual version of

the above described causal conditional. Of course, there are

also non-causal versions of counterfactuals, like If the side of

a card were to show an ace, it would show spades.

Traditionally, counterfactuals are interpreted by possible

world semantics (most prominently by Lewis and Stalnaker).

However, we interpret counterfactuals in terms of coherence

based probability logic. In a nutshell, the aforementioned

example of a (causal) counterfactual can by interpreted by

a (right-)nested conditional, where the antecedent represents

the factual statement ¬A and the consequent represents the

conditional D|A. This representation amounts to (D|A)|¬A,

which is a conditional random quantity (because of the page-

limit we refer for the technical details to Gilio & Sanfilippo,

2013, 2014; Gilio, Over, Pfeifer, & Sanfilippo, 2017, submit-

ted). It can be proved that the degree of belief in the con-

ditional random quantity (D|A)|¬A is also equal to p(D|A)
(i.e., Prevision((D|A)|¬A) = p(D|A); see Gilio & Sanfilippo,

2013, Example 1, p. 225). Therefore, we hypothesize that the

participants’ degrees of belief in counterfactuals are equal to

corresponding conditional probabilities.

Note that the conditional random quantity (C|A)|¬A does

not coincide with C|(A ∧ ¬A), because the Import-Export

Principle does not hold (Gilio & Sanfilippo, 2014). There-

fore, as shown by Gilio and Sanfilippo (2014), the counter-

intuitive consequences of the well-known triviality results

(Lewis, 1976) are avoided. By the way, the formula C|(A∧
¬A) is unintelligible (in terms of the Ramsey test, you cannot

add a contradiction to your stock of beliefs).

To our knowledge, abductive conditionals have not been

empirically investigated in the probabilistic truth table task

paradigm yet. Abductive conditionals can be conceived as

reversed causal conditionals, characterized as follows: the ef-

fect is located in the conditional’s antecedent and the cause

is located in the conditional’s consequent. For example, If

your headache disappeared, then you took aspirin. Abduc-

tive inferences are also known as inferences to the best ex-

planation (for philosophical and psychological overviews on

abduction see, e.g., Douven, 2016a; Lombrozo, 2012, respec-

tively). Like indicative and causal conditionals, abductive

conditionals can be formulated in indicative and in subjunc-

tive mood.

The aim of the present study is to help to fill the above

mentioned research gaps. Specifically, we aim to shed light

on the following questions using probabilistic truth table tasks

under incomplete probabilistic knowledge: Are there reason-

ing strategies for inferring lower and upper bounds in the

context of incomplete probabilistic knowledge? Is the con-

ditional event interpretation dominant for abductive, causal,

and non-causal counterfactuals?
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Method

Materials and Design The task material consisted of 18

pen and paper tasks, preceded by 4 examples explaining the

answer format. The task sequence consisted of 9 different

tasks that were presented twice in the same random order (i.e.,

task T10 is a repetition of task T1), resulting in the total of 18

tasks. The tasks were designed to test how participants infer

about uncertain conditional sentences in four different exper-

imental conditions (see Table 3). All conditions had the same

task sequence, with the following variations: For the first

two conditions we used a non-causal scenario in both indica-

tive and counterfactual moods. For the other two conditions

we used two variations of a causal scenario in counterfactual

mood; inference from causes to effects (causal) and inference

from effects to causes (abductive). The material was adapted

from probabilistic truth table tasks, which involved precise

premises (Fugard et al., 2011a; Pfeifer & Stöckle-Schobel,

2015).

Table 3: Between participant conditions C1–C4 defined by

the types and formulations of conditionals, and sample sizes.

Type Formulation Sample

C1 non-causal indicative (n1 = 20)

C2 non-causal counterfactual (n2 = 20)

C3 causal counterfactual (n3 = 20)

C4 abductive counterfactual (n4 = 20)

For the non-causal scenario we used a vignette story about

a six-sided die. The story describes that the die was randomly

thrown so that the participants did not know which of the

sides ended up facing upwards. The sides of the die were

illustrated as six squares. Each side had an image of a black

or white geometric figure. In tasks T1, T2, T10, and T11 all

sides of the die were shown. To introduce incomplete proba-

bilistic knowledge we presented “covered” sides in the rest of

the tasks. Covered sides were indicated by a question mark.

Here is an example of how we presented the six sides of a die

(task T3/T12):

(Die sides) ?

Next, the participants were presented with the question

“How sure can you be that the following sentence holds?”

(Kuinka varma voit olla siitä, että seuraava lause pitää

paikkaansa?). The target sentences were highlighted with a

frame to make the scope of the question clear, for example:

If the figure on the upward facing side of the die is a circle,
then the figure is black.

The answer format had two sets of tick boxes in a “x out of y”

format for responding interval-valued degrees of belief. The

two response boxes were labeled accordingly (“at least” and

“at most”); for instance, as follows:

It was explained in the introduction to give point valued re-

sponses by marking the same numbers in both response boxes

(i.e., lower and upper bounds coincide).

The target sentence in the non-causal tasks was formulated

in terms of “If A, then C”. In all non-causal tasks the an-

tecedent mentioned a form and the consequent mentioned a

color. After completing each task, the participants were asked

to rate their confidence in the correctness of their response on

a 10-step rating scale from “fully confident that your answer

is incorrect” to “fully confident that your answer is correct”.

Apart from the following two differences, the counterfac-

tual task version was identical to the indicative version of

the task: (i) we added a factual statement which contradicted

the antecedent of the target sentence and (ii) the target sen-

tence was formulated in subjunctive mood. “The form of an

upward-facing side of the die is a cube” is an example of a

factual statement and the corresponding target sentence is:

“if the figure on the upward facing side of the die were a cir-

cle, then the figure would be black” (Jos ylöspäin osoittavan

kyljen kuvio olisi ympyrä, niin tämä kuvio olisi musta). The

suffix -isi in the Finnish original indicates the counterfactual

mood.

For the causal and abductive conditions, the tasks were

structurally identical to the (non-causal) dice-scenario. How-

ever, instead of dice, a vignette story about drugs and their

effects created a causal scenario. In the vignette story, six

patient reports were shown to the participants. The patient re-

ports were illustrated as six rectangles having a name of a fic-

tional drug and a result of the medication (either “diminishes

symptoms” or “no impact on the symptoms”). We used ques-

tion marks on some patient reports (like in the dice scenario)

to introduce incomplete probabilistic knowledge. Here is an

example of the patient reports, which contains the same prob-

abilistic information as the above mentioned die-example:

In the causal version of the task material the antecedent

denotes the name of a drug and the consequent denotes an ef-

fect. In the abductive version the order was reversed: first an

effect was presented and then a drug was named. In this way

the tasks called for either causal inferences from causes to ef-

fects, or abductive inferences from effects to causes. As the

material was formulated in counterfactual mood, we added

a factual statement to each task, which contradicted the an-

tecedent of the target sentence.

Participants and Procedure Eighty students from the Uni-

versity of Helsinki (Finland) participated in the experiment.
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The students were native Finnish speakers with no previous

academic training in logic or probability. Each participant

was tested individually. The paper and pencil tasks were fol-

lowed by a short structured interview about how the partici-

pants had interpreted the target tasks. Participants were paid

15¤ for their participation.

Results and Discussion

We performed Fisher’s exact tests to investigate whether the

four different versions of the task booklets had an impact on

the participants’ degrees of belief in the respective target sen-

tences. After p-value corrections for multiple significance

tests, we did not observe significant differences between the

four conditions and we therefore pooled the data.

Table 5 shows the percentages of responses according to

the different interpretations of conditionals. All tasks differ-

entiate between the conditional probability, the conjunction,

and the material conditional interpretation. A subset of the

tasks differentiates between biconditional and biconditional

event interpretations as well. Conditional probability inter-

pretations marked with indices, however, were patterns iden-

tified from the data and were not anticipated during the con-

struction of the task material. Therefore, not all tasks differ-

entiate among all interpretations. Table 4 shows the norma-

tive answers for each interpretation for the example task dis-

cussed in the previous section (see (Die sides)). Both, lower

and upper bound responses, had to match the normative lower

and upper bounds for the categorization of the responses in

Table 5. Since each response box enables 42 different “X

out of Y ” responses, and since both, lower and upper bound

responses needed to match for the classification, the a pri-

ori chance for guessing an interpretation was very low (i.e.,

1/(422) = 0.0006).

Figure 1: Mean confidence values for tasks T1–T18 by con-

dition. C1–C4 denote the four condition as defined in Table 3.

The task material was designed so that the normative pre-

dictions of the three main psychological interpretations of

conditionals (i.e., conditional probability, conjunction, and

Table 4: Example of predicted responses where the task con-

sists in inferring the degree of belief in the conditional “If the

figure on the upward facing side of the die is a circle, then

the figure is black” (i.e., the conclusion), based on the die

presented in (Die sides) above (i.e., (Die sides) contains the

premises). The index l (resp., u) denotes conditional proba-

bility responses where the covered sides are ignored for infer-

ring the lower (resp., upper) bound response. These response

types are the “halfway lower” and “halfway upper” interpre-

tations, respectively. lu denotes conditional probability re-

sponses where covered sides are ignored for inferring both

bound responses, i.e., the “halfway both interpretation”. See

also Table 2.

Interpretation Predictions

at least at most

p(black | circle) 1 out of 2 2 out of 2

p(black | circle)l 1 out of 1 2 out of 2

p(black | circle)u 1 out of 2 1 out of 1

p(black | circle)lu 1 out of 1 1 out of 1

p(circle ∧ black) 1 out of 6 2 out of 6

p(circle ⊃ black) 5 out of 6 6 out of 6

p(circle ≡ black) 3 out of 6 4 out of 6

p(circle || black) 1 out of 4 2 out of 4

material conditional) were unique for each task. During the

analysis we identified three further response strategies related

to the conditional probability interpretation. In what we call

halfway lower interpretation (denoted by p(·|·)l) the upper

bound is the same as in conditional probability, but the lower

bound response differs in that the covered sides (i.e., sides

marked with question mark) are ignored. Halfway upper in-

terpretation (denoted by p(·|·)u) is the same, but in reverse

order. In a halfway both interpretation the covered sides are

ignored for both bound responses. As these answer strate-

gies are in a sense partial versions of the conditional prob-

ability interpretation, we combined their results with condi-

tional probability answers into grouped conditional probabil-

ity. Notice that the tasks T1,T2, T10 and T11 with full infor-

mation (i.e., no question marks) have the same value for lower

and upper bound answers. Therefore the halfway responses

could not be distinguished from the conditional probability

answers in these tasks.

Of all 1440 responses, 32.1% were consistent with stan-

dard conditional event responses, 29.9% were consistent with

conjunction responses, and 0.2% were consistent with ma-

terial conditional responses. Like the material conditional,

also the biconditional and the biconditional event response

frequencies play a neglectable rôle in the data (0%–3% in the

four tasks T3, T6, T12, T15 where these interpretations were

differentiated). The predominant response strategy in point-

valued tasks (T1, T2, T10 and T11) was consistent with the

conditional probability interpretation. In nine out of 14 tasks

with incomplete probabilistic information (i.e., tasks involv-
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Table 5: Percentages of responses from all four conditions

and all 18 tasks (T1–T18; N = 80). “Grouped p(·|·)” denotes

the sum of all conditional probability responses, including

those marked with the indices. The halfway interpretations

(indices l and u) and the numerical predictions are explained

in Table 4. “- -” denotes cases where different conditional

probability interpretations cannot be individuated (i.e., in the

point value tasks). Similarly, “[- -]” denotes cases where bi-

conditional and biconditional event interpretations cannot be

distinguished from the other interpretations. The interpre-

tations are explained in Table 2. “⋆” denotes psychological

main interpretations.

Interpretation T1 T2 T3 T4 T5 T6

[p(·|·)]⋆ [46] [55] [15] [19] [24] [24]

[p(·|·)l ] [- -] [- -] [5] [13] [18] [11]

[p(·|·)u] [- -] [- -] [23] [10] [13] [11]

[p(·|·)lu] [- -] [- -] [0] [3] [1] [0]

Grouped p(·|·) 46 55 43 44 55 46

p(·∧ ·)⋆ 29 28 34 39 34 31

p(· ⊃ ·)⋆ 1 0 0 0 0 1

p(· ≡ ·) [- -] [- -] 1 [- -] [- -] 0

p(·||·) [- -] [- -] 3 [- -] [- -] 0

Other 24 18 20 18 11 21

T7 T8 T9 T10 T11 T12

[p(·|·)]⋆ [24] [28] [26] [44] [55] [25]

[p(·|·)l ] [10] [15] [10] [- -] [- -] [9]

[p(·|·)u] [16] [8] [10] [- -] [- -] [23]

[p(·|·)lu] [0] [0] [0] [- -] [- -] [0]

Grouped p(·|·) 46 55 43 44 55 46

p(·∧ ·)⋆ 34 29 33 26 29 30

p(· ⊃ ·)⋆ 0 0 0 1 0 0

p(· ≡ ·) [- -] [- -] [- -] [- -] [- -] 0

p(·||·) [- -] [- -] [- -] [- -] [- -] 0

Other 16 21 21 18 18 14

T13 T14 T15 T16 T17 T18

[p(·|·)]⋆ [34] [33] [29] [26] [31] [31]

[p(·|·)l ] [9] [13] [11] [10] [18] [13]

[p(·|·)u] [11] [10] [11] [15] [8] [11]

[p(·|·)lu] [0] [0] [1] [3] [0] [0]

Grouped p(·|·) 46 55 43 44 55 46

p(·∧ ·)⋆ 28 30 26 29 25 28

p(· ⊃ ·)⋆ 0 0 0 0 0 0

p(· ≡ ·) [- -] [- -] 0 [- -] [- -] [- -]

p(·||·) [- -] [- -] 3 [- -] [- -] [- -]

Other 19 15 19 18 19 18

ing “covered” sides or patient reports) the predominant an-

swer strategy was conjunction. We also observed shifts of

interpretation towards conditional probability: comparing the

first three tasks with incomplete information (i.e., T3–T5) to

the last three (i.e., T16–T18), the number of conditional prob-

ability answers increased from 19% to 30%, and conjunction

answers decreased from 35% to 27%. This replicates shifts of

interpretations reported in the literature (Fugard et al., 2011a;

Pfeifer, 2013).

However, when all the conditional probability response

types are grouped together, the resulting set of response

strategies is clearly the predominant one in all tasks. 51.5% of

all answers are consistent with the grouped conditional prob-

ability responses. 18.1% were “other” responses, that is, re-

sponses that did not fit the grouped conditional probability,

conjunction, biconditional, biconditional event, or material

conditional. Thus, in total 81.9% of the data can be modeled

by the investigated hypotheses concerning the interpretation

of conditionals.

Compared to a previous study that investigated non-causal

indicative conditionals under incomplete probabilistic infor-

mation (Pfeifer, 2013, i.e., similar tasks as in condition C1),

our results show lower level of conditional event responses

(compared to the previous 65.6%), and higher levels of con-

junction responses (compared to the previous 5.6%). The ma-

terial conditional responses were similar (previously 0.3%).

Pfeifer and Stöckle-Schobel (2015) investigated condition-

als under complete probabilistic knowledge and used similar

tasks as in our conditions C1, C2 and C3. These authors also

reported higher levels of conditional probability answers and

lower levels of conjunction responses, while material condi-

tional responses were similarly low. The lower levels of con-

ditional probability responses may be explained by the appar-

ent higher complexity of the tasks used in the present experi-

ment. The tasks are more complex (i) because of the combi-

nation of using counterfactuals as target sentences in three of

four conditions and (ii) because of imprecise probabilities in

the premises (i.e., incomplete probabilistic information).

The tendency to give answers that partially coincide with

conditional probability has also been found in a previous

study which tested non-causal cases in indicative mood with

similar task material as we used for condition C1 (Pfeifer,

2013). In that study our halfway lower-interpretation is re-

ferred to as “halfway conditional event strategy”. However,

in the present study we found two completely new strategies:

the halfway upper- and the halfway both-interpretation. The

halfway upper-interpretation is particularly interesting, as it

explains 12.8% of the total 1120 responses, slightly more than

the halfway lower response strategy (i.e., 11.6%). Halfway

conditional probability responses might unburden the work-

ing memory load by ignoring the covered sides (see also

Pfeifer, 2013).

Figure 1 shows the results of the confidence ratings. We

performed analyses of variance to investigate impacts of the

different conditions. After Holm-Bonferroni corrections we

observed significant differences within the three tasks T1, T2

and T10. The corresponding p-values were 0.006, 0.01, and

0.008. In each of these tasks—as well as in all other tasks—

the condition C4 had lower mean confidence values compared

to the other conditions. The lower confidence may be be-

cause of the apparent higher difficulty of the task material in
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condition C4 for two reasons: first, the target sentence was

a counterfactual. Because of the inconsistency between the

factual statement and the antecedent, many participants re-

ported counterfactuals as puzzling in the post-test interview.

Second, abductive tasks required “backward” inference from

effects to causes and are incongruent with the more natural if

cause, then effect-direction. In general, backward inferences

are known to be harder to draw compared to forward infer-

ences (Evans & Beck, 1981).

Concluding Remarks

We investigated how people reason about conditionals under

incomplete probabilistic knowledge. The novel features in

our test design were comparisons of causal and abductive

scenarios, as well as counterfactuals under incomplete proba-

bilistic knowledge. One of our main findings is that the dom-

inant response is consistent with the conditional event inter-

pretation of conditionals among all four groups. Moreover,

we discovered two major answer strategies, halfway upper

and halfway lower conditional event responses, which can

be understood as strategies to unburden the working memory

load.

Inferentialist accounts of conditionals propose that there

should be an inferential relation between the antecedent and

the consequent (see, e.g., Douven, 2016b). Thus, when con-

ditionals with inferential relations (e.g., causal or abductive

ones) are compared with conditionals where no apparent in-

ferential relation exists (like in our conditions C1 and C2),

one would expect significant differences. Our data, however,

do not support this inferentialist hypothesis.

The results of our paper broaden the area of inferences

where conditional probability seems to be the best predictor

for how people reason. We have shown that coherence-based

probability logic provides a formalization of the meaning of

counterfactuals and provides a rationality framework for rea-

soning under complete and incomplete probabilistic knowl-

edge. This suggests that it may also be suitable for subclasses

of causal reasoning like abductive reasoning, which is impor-

tant in the studies on (scientific) explanation and learning.
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Abstract 

Do children always conform to a majority’s testimony, or do 
the pragmatics of that testimony matter? We investigate 
children’s reasoning about mapping a novel word to a referent 
in an object-labeling task. Across four conditions, we 
modified the testimony in an object-labeling task, to account 
for pragmatic principles, so that the majority does and does 
not provide an explicit opinion about the alternative object 
chosen by the minority. Four- and 5-year-olds were given a 
choice between an object endorsed by a three-person 
majority, or one endorsed by a single minority informant. In 
the unendorsed condition, informants explicitly unendorsed 
the unchosen object. In the nothing condition, informants said 
nothing about the unchosen object. In the ignorance 
condition, informants explicitly expressed uncertainty about 
the unchosen object, and in the hidden condition, the chosen 
object was the only one present at the time of the 
endorsement. Children were most likely to endorse the 
majority object in the unendorsed condition, in which the 
majority explicitly stated that the label applied to only one 
referent, whereas in the hidden condition, where only one 
object at a time was present in the discourse, children chose 
objects endorsed by the majority and the minority equally, 
with the other two conditions intermediate. This suggests that 
children might not simply have a conformity bias; rather, they 
are sensitive to the majority’s implied intentions when 
learning from testimony. 

Keywords:social learning; social cognition; consensus; 
testimony; causal reasoning; pragmatics 

Introduction 

Learning from others is especially important for young 

children who are growing up in a complex social world. One 

way children gain knowledge from others is by learning 

from testimony. In particular, there is a growing body of 

literature showing that, similar to adults, children seem to be 

influenced by the opinions and behavior of a majority group 

(e.g., Bernard, Proust, & Clément, 2015; Burdett et al., 

2016; for a recent review see Huan, van Leeuwen, & 

Edelson, 2013). For example, children recognize and trust a 

consensus during word learning. Corriveau, Fusaro & Harris 

(2009) found that 3- and 4-year-old children view a 

consensus as a reliable source of information when learning 

novel object labels. Children were more likely to prefer 

novel labels that were endorsed by the majority, and to 

selectively trust individuals who were previously part of the 

majority in a subsequent task. Bernard et al. (2015) found 

that slightly older children (4- and 5-year-olds) also 

exhibited a consensus effect, even after the majority was 

shown to give unreliable testimony about object labels. 

Children are also more likely to copy the majority’s 

behavior (Haun, Rekers, & Tomasello, 2012) and action 

sequences (Herrmann et al., 2013). As well, children seem 

to overconform in many situations; majority influence 

trumps direct source knowledge (Hu et al., 2015), and 

sometimes even children’s own knowledge (Corriveau & 

Harris, 2010), or the knowledge of competent individuals 

(Burdett et al., 2016). 

On the other hand, we also know from previous work that 

children are rational learners; they selectively learn from 

other people’s testimony and evaluate the information they 

receive (for a review, see Mills, 2013; Sobel & Kushnir, 

2013; Koenig & Sabbagh, 2013), suggesting that they might 

not indiscriminately endorse majority opinions. While 

having a majority bias in word learning is sensible due to 

the shared, conventional nature of word meanings, in a less 

socially constructed domain, such as causal learning, 

children may be less influenced by the majority group (Hu, 

Buchsbaum, Griffiths & Xu, 2013). Similarly, children are 

less willing to agree with the majority’s action when 

learning about tools if the majority endorses a function that 

is considered inefficient or implausible (Schillaci & 

Kelemen, 2013). Additionally, children selectively learn 

from informants who display other indicators of reliable 

knowledge, including a history of providing accurate 

information (e.g., Pasquini et al., 2007), performing actions 

successfully (e.g., Wilks, Collier-Baker, & Nielson, 2014), 

having expertise in the field (Burdett et al., 2016), and 

having privileged knowledge (Einav, 2014). 

Taken together, the current literature about majority 

influence in children’s social learning suggests that children 

are rational learners, but that the role of consensus widely 

impacts their reasoning and social learning more generally. 

Why then do children conform or not conform to the 

majority? The mechanism that underlies majority influence 

is still unclear. A bias to copy the majority simply because it 

is the majority can often be an effective social learning 

strategy (Laland, 2004; Perreault, Moya, & Boyd, 2012) 

Conforming to the majority is a simple strategy that is often 

sensible and an indication of reliability (Corriveau et al., 

2009). Alternatively, children might not only be attending to 

the number of informants, but also use pragmatic inferences 

for learning. 
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Figure 1. The arrow indicates the toy labeled by an 

informant as the referent of a novel word. The goal of the 

participant is to infer whether a novel word (e.g., “modi”) 

means the blue toy, the purple toy, or both.  
 

This second line of reasoning is consistent with the 

literature on using pragmatic cues to guide learning. Grice 

(1975) proposed that participants in conversation obey the 

maxims of cooperative communication—be truthful, 

informative, relevant, and clear. Specifically, the Maxim of 

Quantity (be informative) and the Maxim of Relevance (be 

relevant) are both crucial for motivating our hypothesis. To 

be informative means to give as much information as 

needed, and no more. To be relevant means to say things 

that is pertinent to the given context. Children might assume 

informants are being informative and relevant with their 

testimony, influencing what they learn. 

Frank and Goodman (2014) showed that during word 

learning, children are indeed sensitive to speakers’ 

communicative intentions, leading children to make 

inferences that go beyond explicit testimony. This suggests 

that children can make use of pragmatic principles in word 

learning inferences. For instance, Figure 1 illustrates a task 

similar to Frank and Goodman (2014). If the speaker only 

calls the toy on the right (marked by the arrow) “a modi,” 

children can infer that ‘modi’ means the blue toy, and not 

the purple toy, for example, by assuming that speakers are 

using language relevantly and informatively. 

However, in previous testimony research, the majority’s 

opinion of the minority choice has been left ambiguous, and 

children’s pragmatic reasoning abilities were not 

considered. For example, when the majority suggest that 

object X is the referent of a novel label or suggest using 

strategy X (e.g., Corriveau et al., 2009; Haun et al., 2012), 

this could pragmatically imply that object Y was not a 

referent or that they should not use strategy Y, otherwise the 

speaker would have referred to this option as well, in order 

to be informative (Frank & Goodman, 2014). Pragmatic 

inferences may help children reason: “If the majority 

labeled object X as a modi and did not comment on object 

Y, they must believe that only object X is the modi. If the 

majority wanted me to know that object Y is also a modi, 

then they would have told me, because they had the 

opportunity to speak about object Y.” Accordingly, the 

language used could imply that the options are mutually 

exclusive and only one object is a modi, for example, 

providing additional evidence against the minority opinion.  

Given children’s sensitivity to pragmatically implied 

information, we conducted the present study to investigate 

how pragmatics can influence the strength of the majority 

influence in children. We examined 4- and 5-year old 

children’s preference for the majority in an object labeling 

task. Specifically, we compared children’s tendency to 

conform when the majority does and does not provide an 

explicit opinion about the minority’s choice. 

Pragmatic knowledge versus consensus 

In the present study, we investigate children’s reasoning 

about the mapping of a novel word to a referent in an 

object-labeling task, when presented with a three-person 

majority and a conflicting minority informant. There were 

four testimony conditions—the unendorsed condition, the 

nothing condition, the ignorance condition, and the hidden 

condition—that varied in the informativeness of the 

testimony and the relevance of the object(s) present in the 

situation. In the most explicit case, the unendorsed 

condition, the majority endorsed one object and unendorsed 

the other object, while the minority informant provided the 

opposite testimony. Here, children learn from declarative 

testimony that makes the extent of the novel label explicit, 

and no pragmatic inference is needed. We hypothesize that, 

since the testimony in this condition explicitly states that the 

labels are mutually exclusive, the testimony provided by the 

majority group will outweigh the evidence provided by just 

one minority informant, and children will be more likely to 

endorse the majority testimony. 

In the nothing condition, the informants endorsed one 

object and said nothing about the other. This condition was 

intended to replicate previous work, in which the 

informants’ knowledge or belief about the unchosen object 

was left ambiguous. We predict that children will favour the 

majority endorsement, because, as in our example (Figure 

1), they will make a pragmatic inference that the speakers 

are using language informatively, and so the majority must 

believe that the novel label does not apply to the unchosen 

object, otherwise they would have referred to the unchosen 

object using the label as well. Therefore, similar to the 

unendorsed condition, children in the nothing condition will 

infer that the labels are mutually exclusive. However, we 

predict that they will endorse the majority less often than in 

the unendorsed condition since there is additional ambiguity 

than when the majority explicitly states their opinion.  

In the ignorance condition, the informants endorse one 

object but express uncertainty in their beliefs about the 

unchosen object. Since the majority provides information 

with low certainty about the extension of the novel label, 

their testimony should carry less weight in determining 

whether the unchosen object can also be referred to using 

the novel label. Further, the informants’ uncertainty 

suggests that the label may not be mutually exclusive, and 

could apply to both objects. Thus, children should be less 

likely to endorse the majority’s testimony, compared to the 

unendorsed and nothing conditions. 

Finally, the language used in the testimony for the hidden 

condition was exactly the same as in the nothing condition, 

but only one object—the endorsed toy—was present. The 
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hidden condition relies on the pragmatic understanding that 

the speaker is being informative and relevant in their 

testimony, and is therefore only speaking about object that 

is present in the discourse context. The result is that, if 

children make this pragmatic inference—speakers cannot 

comment on objects that they and their communicative 

partners do not see—then in the hidden testimony, the 

majority provides no or the least amount of evidence against 

the minority’s choice. On the other hand, if children are not 

sensitive to the pragmatics of the testimony, then the results 

for the hidden condition should be the same as the nothing 

condition, with children endorsing the majority’s choice. 

Whereas the current literature supports children’s 

conformity bias as a learning strategy, a pragmatic 

explanation would suggest that children do not 

indiscriminately conform to the majority. The overarching 

aim is to show that children are sensitive to pragmatic 

principles even if they have a general tendency to trust the 

majority. That is, the extent of children’s conformity 

depends on the pragmatics of the testimony. Specifically, as 

the majority’s testimony becomes more explicit in their 

negative judgment of the minority’s opinion, children will 

be more likely to adopt the majority’s endorsement over the 

option endorsed by the minority informant. Thus, we predict 

that the tendency to endorse the majority will decrease over 

the conditions: unendorsed condition (most majority 

endorsement); then, nothing condition; then, ignorance 

condition; and finally, the hidden condition should exhibit 

the least majority bias. Alternatively, if children do exhibit a 

global conformity bias, then they should indiscriminately 

endorse the majority’s opinion regardless of the testimony. 

Methods 

Participants. Participants were 112 preschoolers, 49 

females and 63 males (mean age = 4 years 8 months; range 

= 47 – 71 months). An additional 23 were excluded from the 

study because of experimenter error (9), participant 

distraction (9), failure to make a choice (2), and failure to 

remember object label (3). Participants were recruited from 

the University of Toronto database or from public 

neighbourhood parks and museums. 

Participants were randomly assigned among the four 

between-subject conditions: the unendorsed condition (n = 

28, M= 59 months, range = 50 – 71 months, 32% female), 

the nothing condition (n = 25, M= 57 months, range = 48 – 

71 months, 40% female), the ignorance condition (n = 31, 

M= 58 months, range = 47 – 71 months, 52% female), and 

the hidden condition (n = 28, M= 56 months, range = 48 – 

67 months, 50% female).  

Materials and Procedure. Children were tested 

individually. In all conditions, each participant participated 

in two test trials, a modi trial and a dax trial. Each trial 

featured two novel objects for a total of four unique objects 

of differing shape and colour in order to reduce extension. 

The trial presented first was counterbalanced across 

participants. The object pairs and side on which each object 

was presented were held fixed but the object chosen by the 

majority and minority was counterbalanced. 

To begin each condition, children sat at a table across 

from the experimenter. The experimenter introduced 

children to two novel objects and explained that they were 

unknowledgeable about the labels of the objects. The 

experimenter suggested that the participant watch a film to 

learn about the objects’ label. Participants then watched a 

pre-recorded film of four female informants evaluating the 

objects on a 13” laptop screen. 

A film consisted of four video clips, each featuring a 

female informant sitting by herself at a table with the same 

novel objects. Informants wore different colour shirts. In the 

first three clips, the three-person majority each endorsed one 

object with the novel label, and in the final clip the one 

minority informant endorsed the other object with the same 

novel label, repeated three times so that the frequency with 

which each participant heard the label used to refer to each 

object was equal. Each clip concluded with the informant 

picking up the toy they had endorsed. The identity of the 

minority informant was counterbalanced across participants. 

Figure 2 displays schema for the videos shown. 

In the unendorsed condition, each majority informant 

endorsed one object while explicitly unendorsing the other 

object by saying, “That’s a modi (pointing to target toy); 

that’s not a modi (pointing to other toy).” In the ignorance 

condition, each majority informant endorsed one object 

while expressing uncertainty about the other object by 

saying, “That’s a modi (pointing to target toy); I don’t know 

 
 

Figure 2. Schema of the videos seen by children. (i) Stimuli placement for the Unendorsed, Ignorance and Nothing 

condition. Testimony from the Nothing condition. (ii) Stimulus placement and testimony from the Hidden condition. 

 

(ii) 

(i) 
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if that’s a modi (pointing to other toy).” In the nothing 

condition, the majority informants endorsed one object and 

did not comment on the other object by saying, “That’s a 

modi (pointing to target toy).” In the hidden condition the 

informant sat at the table with only one object and evaluated 

that object by saying, “That’s a modi (pointing to target 

toy).” In all conditions the minority informant endorsed the 

other object with the same novel label three times. For 

instance, in the unendorsed condition the minority informant 

said “That’s a modi (pointing to other toy); that’s not a modi 

(pointing to target toy). Look at that modi (pointing to other 

toy); that’s not a modi (pointing to target toy). It’s a pretty 

cool modi (pointing to other toy); that’s not a modi 

(pointing to target toy)”. The minority scripts in the other 

conditions followed in the same manner.  

Once the film ended, the screen turned black and the 

objects were brought back. The experimenter then asked the 

participant to identify the referent of the novel label by 

asking, e.g., “Can you show me a modi?” Participants’ first 

gestural or vocal response was recorded. 

Results 

Table 1: Participant scores by condition  
 

 Score   

Condition 0 1 2 

(1) Unendorsed 0  4 24 

(2) Nothing 3 9 13 

(3) Ignorance 4  8 19 

(4) Hidden  6 12 10 
 

 
 

Figure 3. Average number of responses (+/- 1 s.e.) 

endorsing the majority object. There was a significant effect 

of condition. Children chose the majority’s object most 

often in the unendorsed condition, and least often in the 

hidden condition. ** p < 0.01    *** p < 0.001. 
 

Participants were assigned a score (0, 1, or 2) based on the 

number of trials in which they endorsed the majority 

informants’ testimony (see Table 1).1 Children’s mean 

responses for all conditions are shown in Figure 3. For all 

conditions, chance level was a mean score of 1.  

 
1Analysis using a mixed logistic regression model—structuring 

outcomes as binary responses—did not change our findings   

Children chose the majority’s referent to the novel object 

significantly more often than chance in the unendorsed t(27) 

= 11.15, d = 4.29, p < .0001); nothing (t(24) = 3.09, d= 1.26, 

p < 0.01); and ignorance conditions (t(30) = 3.72, d = 1.36, 

p < 0.001). In contrast, in the hidden condition, participants 

were not more likely to adopt the majority’s opinion than 

the minority’s (t(27) = 1.11, d = 0.39, p = 0.24).  

We also found a significant effect of condition on 

children’s tendency to choose the majority object, one-

factor ANOVA F(3,108) = 5.3, MSE = 2.39, p < 0.01. 

Planned two-sample t-tests for independent samples 

demonstrated that the unendorsed condition was 

significantly different compared to all the other conditions: 

unendorsed vs. nothing: t(51) = -2.45, d = 0.67, p < 0.01; 

unendorsed vs ignorance: t(57) = -2.19, d = 0.58, p < 0.05; 

and, unendorsed vs. hidden: t(54) = 4.31, d = 1.15, p < 

0.0001. Similarly, children’s performance in the hidden 

condition was significantly different from the ignorance 

condition, t(57) = 1.92, d = 0.50, p < 0.05; and, marginally 

different from the nothing condition, t(51) = 1.61, d = 0.44, 

p = 0.06. There was no significant difference in children’s 

performance in the nothing condition compared to the 

ignorance condition, t(54) = -0.23, d = 0.06, p = 0.41. 

Follow-up polynomial contrasts indicate asignificant 

linear trend, F(1, 108) = 13.67, p < 0.001, partial η² = 0.11. 

The linear trend suggests that deference to majority 

decreases across ordered conditions: unendorsed (M = 1.82, 

SD = 0.074), nothing (M = 1.44, SD = 0.711), ignorance (M 

= 1.48, SD = 0.724), and hidden (M = 1.11, SD = .079). 

Discussion 

To be rational yet efficient social learners, it would be 

beneficial for children to learn through explicit instruction 

as well as pragmatic inferences. This study provides the first 

empirical evidence that children consider pragmatic 

inferences when learning from testimony provided by a 

majority and minority group. We examined the effects of 

the pragmatic cues in informants’ testimony on children’s 

tendency to defer to the majority. Our study found that 

although children tend to be influenced by the majority, they 

also weigh informants’ opinions using pragmatic cues to 

assess the meaning of their testimony. By assuming that 

informants are being cooperative in their communicative 

intent (e.g., Maxim of Quantity; Maxim of Relevance), 

children are evaluating the pragmatic implications of the 

language used and making inferences that go beyond the 

literal meaning of the testimony.  

We found that when learning from explicit, declarative 

testimony, as was the case in the unendorsed condition, 4- 

and 5- year old children were significantly more likely to 

endorse the majority object—their tendency to endorse the 

majority option was almost at ceiling. In this condition, the 

informants’ opinions about both of the novel objects were 

made explicit in thelanguage of the testimony. They 

endorsed one object using the novel label (e.g., modi) and 

provided additional evidence that the unchosen object was 

not a modi. In this case, following the majority is a sensible 

--- Chance   

** 

*** 

*** 
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strategy since the explicit endorsement of only one object 

by three people might outweigh the evidence provided by 

just one minority informant.  

There was also a consensus effect in both the nothing 

condition—replicating the findings in previous work (e.g., 

Corriveau et al., 2009)—and the ignorance condition. And 

yet, in these conditions the majority bias was significantly 

less than in the unendorsed condition, suggesting that 

children are aware of the additional ambiguity in these 

conditions. By contrast, children did not exhibit a majority 

bias in the hidden condition. The crucial difference between 

these conditions is the pragmatic inferences made, given the 

ambiguity of the learning situation.  

When the speaker’s testimony is ambiguous, as in the 

nothing condition, children might rely on pragmatic cues to 

infer the speaker’s intent. According to the pragmatic 

account, a crucial step in the inferential process is the 

assumption that the speaker, in this case, the informants, is 

being cooperative with their utterance, and has the goal of 

being informative. Accordingly, if the speaker had wanted 

to label both objects then they had the ability to do so, as in 

the unendorsed and ignorance conditions. The fact that the 

informants only ever labeled one object in the nothing 

condition led children to infer that the novel label is only 

applicable to one object in the given situation, leading to the 

conclusion that the unchosen object is not a referent of the 

novel label. However, in the hidden condition, only one 

object was present, invoking a different pragmatic inference 

than in the nothing condition—the inference that speakers 

are only discussing objects relevant to the current situation. 

Consequently, even though the testimony in these two 

conditions was identical, children’s inferences differed. 

Children in the hidden condition were no more likely to 

endorse the majority’s testimony than the minority’s. This 

suggests that children’s inferences from consensus are 

influenced by their sensitivity to pragmatic cues embedded 

in the testimony.  

A somewhat unexpected finding was that children were 

also more likely to choose the majority’s object in the 

ignorance condition. In the ignorance condition, we 

intended for the uncertainty about the extension of the 

object label to come from the uncertainty in the speaker's 

knowledge. Since informants expressed low certainty in 

their testimony, there should be less evidence against the 

unchosen object being e.g., a modi, and by association, 

against the minority. However, children might instead have 

interpreted the statement of ignorance as a comment about 

the object rather than about the informants’ knowledge. 

Children might have inferred that the majority was certain 

about one object having many features of e.g., a modi, but 

was uncertain about the other object due to its ambiguous or 

hard to categorize appearance. Future work should 

disambiguate the type of uncertainty being conveyed. 

Together, the results go beyond asking whether or not 

children have a conformity bias, and explore children’s 

sensitivity to pragmatically implied information. Children’s 

tendency to conform might not simply be driven by a ‘copy-

the-majority’ strategy (Laland, 2004), since they did not 

conform to the majority equally across conditions. Instead, 

the extent to which children prefer members of the majority 

as informants might vary with the pragmatics of the 

language used in the testimony. Children may not be 

overestimating the value of the majority’s opinions 

compared to the minority’s testimony. Instead, children are 

sensitive to the language used by informants, and hence, are 

selective about situations in which they should go with the 

consensus view. This finding is consistent with previous 

work suggesting that children are ableto make sophisticated 

inferences about implicit, intended meaning in speakers’ 

utterances (e.g., Frank & Goodman, 2014).  

An interesting question is whether our results are specific 

to the use of an object-labeling task. For instance, children 

may be more likely to conform to a majority in a labeling 

task because the meanings of words are socially determined 

(Hu et al., 2013). In addition, labels may have stronger 

implications due to other constraints on word learning, such 

as mutual exclusivity—each object has only one category 

label (Markman, 1989), and the shape bias—differently 

shaped objects usually have different category labels 

(Landau, Smith & Jones, 1988). For example, if an 

informant labels Object 1 as a modi, this strongly implies 

that Object 2, which is very differently shaped, is not a 

modi. This would provide additional evidence against the 

minority, by suggesting that both objects cannot be modis.  

In our experiment, we were able to modify the testimony 

so that the strength of the implications regarding the novel 

label for the object(s) varied by condition. However, if 

children were exclusively following these types of language 

learning constraints, they should have assigned a novel label 

to only one object in all conditions. On the contrary, 

children’s performance followed a linear trend and did not 

favour the majority label in the hidden condition.  

However, future work should examine children’s 

endorsements of majority and minority information in other 

domains such as causal learning (e.g., Hu et al., 2013). 

Causal tasks do not rely on the conventions and social 

construction that make learning labels special. Since causal 

actions on objects might not be mutually exclusive by 

nature—one causal action does not necessarily imply that 

the other actions are ineffective—future work can directly 

examine how making actions appear mutually exclusive 

using pragmatic principles can affect children’s reasoning. 

We would be interested in children’s reliance on consensus 

during a causal task, and in turn, how they are making 

pragmatic inferences about the efficacy of each action. 

One further question concerns the operationalization of 

consensus and the presentation of a majority group versus 

the minority informant. In this paper, we presented the 

informants individually, and in a sequential manner with the 

majority group first, similar to previous work by Haun et al. 

(2012) and Burdett et al. (2016), and importantly, this was 

held constant across all of the conditions. However, in both 

Bernard et al. (2015) and Corriveau et al. (2009), the 

majority and minority informants were all presented 
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together, and at the same time rather than one after another. 

It is possible that this difference in the format of majority 

presentation might change the pragmatics of the situations, 

for example if children believe that the dissenter in a 

simultaneous presentation is attempting to correct the 

majority’s misinformation. Future work could compare 

simultaneous and sequential presentation of the informants 

to see how this changes children’s inferences.  

Finally, it is difficult to quantify our predictions without 

formalizing our assumptions. A Bayesian model could 

produce quantitative predictions regarding the ordering of 

our conditions, and the magnitude of the differences 

between them. This type of model could examine how a 

rational learner would balance a majority opinion against 

the pragmatic implications of their testimony, without a 

conformity bias, and test those predictions against children’s 

behaviour, building on previous models of learning from 

testimony (e.g., Buchsbaum et al., 2012) and of making 

pragmatic inferences (e.g., Frank & Goodman, 2014).  

In sum, this research sheds light on how pragmatic 

principles can inform children’s learning from conflicting 

majority and minority groups. In conditions where the 

testimony explicitly stated, or pragmatically implied, that 

the labels were mutually exclusive, children were more 

likely to adopt the majority’s label than the minority’s label. 

However, when the testimony had weaker implications 

about the labels of the novel objects, children were not more 

likely to rely on the consensus view. This suggests that 

children might not simply have a conformity bias. Instead, 

children can make sophisticated inferences that go beyond 

the literal meaning of the testimony. By doing so, they 

consider both the explicit statements made by informants, as 

well as the pragmatic inferences implied by the majority 

opinion in their learning from the social world. 
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A categorical (fixed point) foundation for cognition: (adjoint) corecursion
Steven Phillips

National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan

Abstract: Computationalism has been the pre-eminent framework for models of mind, since the cognitive revolution. However,
the plethora of apparently incommensurate approaches seems to undermine hope for a common computational foundation.
Category theory provides a mathematically rigorous foundation for computation that includes recursion and corecursion. We
show that corecursion unifies various cognitive behaviours for comparison and contrast in a principled and novel way. For
instance, Chomsky’s merge function is a universal morphism, which has a dual, called comerge. One implication of this work
is that corecursion appears to be the rule rather than the (human) exception in contrast to Chomsky’s view of recursion.

2900



Dual-routes and the cost of computing least-costs
Steven Phillips

National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan

Yuji Takeda
National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan

Fumie Sugimoto
National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan

Abstract: Theories of cognition that posit complementary dual-route processes afford better fits to the data when each route
explains a part of the data not explained by the other route. However, such theories must also explain why each route is
invoked, lest one can fit any data set with enough routes. One possible explanation is that route selection is based on a least-cost
principle: the route that requires fewer cognitive resources (including time) relative to the goal at hand. We investigated this
explanation with a dual-route version of visual search, where the target could be identified via opposing (easy or hard forms
of) feature and conjunction search conditions. The data support a contextualized version of the least-cost principle in that the
cost of computing least-cost also influences route selection: participants assessed alternatives, but only when the cost of that
assessment was relatively low.
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Abstract 

Existing research suggests that White individuals are more 
likely to categorise biracial faces as Black in conditions of 
resource scarcity. It has been theorised that this effect is due 
to in-group boundaries becoming more exclusive in scarce 
conditions. An alternative explanation refers to implicit socio-
economic association between Black individuals and lower 
level of resources. These two approaches entail different 
predictions for Black participants performing the 
categorisation task. If scarcity prompts greater in-group 
exclusivity, Black participants should, ceteris paribus, 
categorise more biracial faces as White. If, however, scarcity 
invokes socio-economic status associations, Black 
participants should categories biracial faces in the same way 
as White participants. Experiment 1, explored the effects of 
priming on White and Black groups. It provided support for 
the implicit socio-economic association theory. Furthermore, 
experiment 2 on Asian sample, provided additional support as 
Asian participants showed the same pattern of response. The 
paper discusses implications of these findings.  

Keywords: intergroup bias; perception of race; boundary 
formation; resource scarcity; scarcity priming 

Introduction 
Substantial evidence suggests that the perception of race 

can be influenced by environmental factors (e.g. Davis, 
1991; Peery & Bodenhausen, 2008; MacLin & Malpass, 
2001). This effect was examined by Rodeheffer, Hill and 
Lord (2012), who primed participants with the concepts of 
resource scarcity, abundance and neutral control. The 
priming stimuli included slides with captioned pictures 
showing relevant concepts. Participants were then presented 
with twenty composite images of biracial faces generated 
using 50% content of White and 50% content of Black 
individuals’ photographs. The task was to categorise faces 
as either Black or White. Results showed that participants in 
the scarcity condition were more likely to categorise faces 
as Black, relative to the abundance or neutral conditions. 
There was no significant difference between neutral and 
abundance conditions. Rodeheffer et al. theorised that, in 
times of economic crisis, boundaries of in-group 
categorisation become more exclusive where less people are 
classified as in-group members. 

Results from Krosch and Amodio (2014) support 
these conclusions. Participants were primed with scarcity, 
negativity, and neutral conditions. Priming consisted of 

subliminal presentation of relevant word primes for 20ms 
prior to each trial. Participants subsequently categorised 
faces as either Black or White. Facial stimuli included 
morphed pictures of mixed race individuals generated using 
different proportions of original faces of Black and White 
people at 10% increments. The dependent variable was the 
point of subjective equality, defined as the proportion of 
original Black face content required for the morphed image 
to be equally likely to be categorised as either Black or 
White. Results showed that in the scarcity condition, a given 
image may have significantly lower proportion of Black 
content to reach the point of subjective equality. In other 
words, a higher number of images were identified as Black 
in the scarcity condition. Consistently with previous 
explanations of Rodeheffer et al. (2012), authors of the 
study concluded that in the conditions of resource scarcity 
the boundaries of in-group categorisation become more 
exclusive, as participants tended to exclude biracial 
individuals from the White group in the scarcity condition. 
However, the study had a certain limitation as a quarter of 
the sample consisted of Asian participants. The facial 
stimuli included only images of Black and White 
individuals and no Asian individuals. The experiment was 
therefore unable to examine any effect of change of in-
group boundaries since there were no in-group images in the 
stimuli from the point of view of Asian participants. This 
may indicate that the effect was driven by other factor. The 
present study explores this possibility.  

The paper thus postulates an alternative theoretical 
explanation relating to the effect of implicit racial bias, 
based on presumption that Black people constitute a 
disadvantaged group with lower level of resources (Gilens, 
2003). That is, people’s sematic network may include an 
association between scarcity (or lower socio-economic 
status) and Black individuals. Activation of the concept of 
scarcity may therefore result in higher cognitive 
accessibility of the concept of Black individuals. This in 
turn increases the probability of a given face to be classified 
as Black following scarcity priming. Extensive previous 
literature demonstrated a wide range of similar implicit 
racial biases, which, more importantly, are exhibited by 
individuals across different ethnicities, including Black 
people themselves (e.g. Payne, 2006; Correll, Park, Judd & 
Wittenbrink, 2002).  
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We might therefore reconsider the above evidence from 
Rodeheffer et al. (2012) and Krosch and Amodio (2014). It 
is possible that the results were driven not by a change in in-
group exclusivity, but by implicit association between lower 
level of resources and Black individuals. The present study 
investigates these two theoretical explanations by testing 
different ethnic groups. According to the initial account, 
scarcity yields an increase in exclusivity of the in-group 
categorisation. If this theory is correct, White participants 
will show a tendency to exclude biracial individuals from 
the White in-group, increasing the number of faces being 
judged as Black. Conversely, Black participants should 
show the opposite pattern of response. According to the 
alternative explanation, scarcity priming activates the 
concept of lower level of resources and increases cognitive 
accessibility of the associated concept of Black individuals. 
Similar to other implicit race-related biases, this effect can 
be expected to occur irrespective of the ethnicity of the 
participant. Therefore, both Black and White participants 
will show the same pattern of responses, with increased 
probability of judging ambiguous faces as Black in the 
scarcity condition, relative to the neutral condition. As 
neither of the original studies included Black participants, 
new data is required to decide between the two hypotheses. 
Experiment 1 directly tests these predictions by analysing 
responses from Black and White participants. Experiment 2 
further tests the hypotheses by analysing responses from 
Asian participants. Asian people are out-group members to 
both Black and White faces included in the stimuli. 
According to the in-group exclusivity theory, they should be 
unaffected by scarcity priming, as no change in in-group 
exclusivity can be observed. According to the socio-
economic account, however, they should exhibit similar 
response patterns, as the White and Black participants from 
experiment 1. 

Experiment 1: Black and White participants 
In the original studies, participants were White. Given the 
competing hypotheses (in-group/out-group versus implicit 
biases), we recruited both Black and White participants. If 
the group hypothesis is correct, we should expect Black 
participants to exhibit the opposite in-group behaviour as 
White participants. If, however, the implicit bias hypothesis 
is right, we should expect both groups of participants to 
have the same response patterns.  

Participants 
Sixty-four people participated in the experiment (N = 64); 
40 female, 23 male and 1 person classified their gender as 
“other”. The amount of participants was chosen prior to 
recruiting the participants, and consequently no direct 
stopping rule was in place. The age of participants ranged 
from 18 to 55 (mean = 29.84, SD = 8.69). Participants were 
recruited opportunistically from Birkbeck, University of 
London. 

Design 
The experiment included two independent variables: 
priming (two levels: scarcity and neutral), and group (two 
levels: Black or White). The experimental design was 2x2 
mixed with group as the between subject variable and 
priming as the within subject variable. The dependent 
variable measured the mean response rate across all trials in 
both conditions (scarcity or neutral) for each group (Black 
or White). The scope of possible values ranged from 1.0 
indicating that 100% of 45 images presented were identified 
as Black to 2.0 indicating that 100% of images were 
identified as White. The mean score of 1.5 represents that 
50% of the images were classified as White and 50% as 
Black. 

Materials 
The experiment used Qualtrics survey software and could be 
conducted online. The priming stimuli for the scarcity 
condition were obtained from the Rodeheffer et al. (2012) 
study, as they were proven to be of sufficient quality to 
produce priming effects. They consisted of captioned 
pictures showing economic recession, poverty and scarce 
resources. The stimuli for the neutral condition included 
three slides showing pictures of clocks, as there is no reason 
to assume that images of clocks should prime participants in 
terms of economic scarcity or abundance. Similarly, in order 
to replicate and test previous findings, the facial stimuli 
were obtained from the Krosch and Amodio (2014) study. 
They included morphed pictures generated from 
photographs of Black and White individuals at 10% 
increments from 10% Black to 90% Black1.  

Procedure 
In accordance with ethical approval requirements, 
participants consented to their involvement and that they 
could terminate the experiment at any time if they so 
desired. First, participants saw slides with neutral priming 
(images of old-fashioned clocks). Having seen the images, 
participants were presented with 45 morphed facial images 
(from Krosch & Amadio, 2014), one picture per slide. 
Following Rodeheffer et al. (2012), the instruction read: “If 
you had to choose, would you describe this person as 
[Black/White]”. Participants indicated their response by 
clicking one of two radio buttons. Following the first set of 
pictures, participants were presented with the scarcity 
priming (caption and images of economic scarcity), and 
then the second set of 45 pictures. The experiment ended 
with a page requesting the demographic information, 
including ethnicity, gender and age. The last page included 
debriefing. The entire procedure lasted for about 15 
minutes. 

                                                             
1 The authors wish to express their gratitude to both sets of 

authors for supplying the stimuli that allows for a direct test of the 
hypotheses.  
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Experiment 1: Results 
Only data of participants who classified themselves as Black 
or White were analysed. The means and standard deviations 
are presented in Table 1. The lower the mean response rate, 
the higher is the bias towards categorising faces as Black 
(cf. the above description of the design). The descriptive 
statistics show that in neutral conditions the results were 
close to the expected value of 1.5. The results in the 
experimental conditions were lower, which means that more 
images were classified as Black. 
 

 Black White 
Neutral priming 1.51 (.06) 1.47 (.13) 

Scarcity priming 1.42 (.07) 1.43 (.14) 
Table 1: Scarcity effect on participant groups 

 
A mixed 2-way ANOVA revealed a significant main effect 
of priming: F(1,62) = 31.57, p < 0.001. Thus, results varied 
significantly between the priming conditions across both 
groups such that more faces were categorised as Black in 
the scarcity condition. The main effect of group was not 
significant: F(1,62) = .28, p = .60, indicating that both 
groups had similar response rates across the priming 
conditions. In addition, there was no significant interaction: 
F(1,62) = .135, p = .14. This shows that the effect of 
priming did not vary as a function of the group variable. In 
order to further test effects of scarcity within each group 
separately, two 1-way repeated measures ANOVAs were 
performed. The test in the Black group confirmed a 
significant effect of scarcity: F(1,33) = 9.27, p = .003. 
Similarly, in the White group, a significant effect was also 
obtained: F(1,29) = 23.13, p < .001 (see fig. 1). This 
confirms that the main effect of priming in the 2-way 
ANOVA was driven by significant differences in both 
groups. As illustrated in Figure 1, results of the experiment 
were consistent with the poverty priming hypotheses. 

 
Fig. 1: Main results, experiment 1 

Experiment 2: Asian participants 
Experiment 1 showed that both Black and White 
participants rated more faces as Black in scarcity conditions. 
Experiment 2 pursues this hypothesis by testing Asian 
participants. As these are out-group members for both Black 
and White faces, they should, according to the in-group/out-
group hypothesis, be unaffected by the priming. If, however, 
the implicit socio-economic association hypothesis is 
correct, Asian participants should respond in a similar way 
as the Black and White participants in experiment 1. Given 
these results, we predict the latter hypothesis. 

Participants 
Thirty-one people of Asian origin were recruited from 
Mechanical Turk (8 female, 23 male)2. In order to ensure 
Asian origin without priming the participants to consider 
this as an issue for selection, a pre-screening including a 
number of filler questions unrelated to race and ethnicity as 
well as information to identify the respondent’s ethnicity 
and race was conducted to pick out participants with 
relevant ethnicity. Only Asian participants would 
subsequently allowed to continue with the actual 
experiment. The age of participants ranged from 18 to 60 
(mean = 30.00, SD = 9.55). 

Design, materials, and procedure 
As in experiment 1, scarcity and neutral conditions were 
independent variables. The design was within-subjects, 
hence all participants were allocated to both conditions. The 
experiment used the same dependent measure as in the 
previous experiment. 

Experiment 2: Results 
Only data of participants who classified themselves as Asian 
were analysed (two participants who passed the 
qualification test, subsequently identified themselves as 
mixed-race). The mean response rate in the neutral 
condition was 1.48 (SD = .14). This result was close to the 
chance rate of 1.5. The outcome in the scarcity condition 
was 1.43 (SD = .13), revealing that more pictures were 
classified as Black. A related sample t-test showed that the 
effect was significant (t(30) = 2.35, p = .013).3 The results 
from experiment 2 are thus in line with findings from 
experiment 1 and suggest that scarcity priming invoked 
implicit socio-economic associations rather than increasing 
in-group/out-group exclusivity. 

                                                             
2 Paolacci, Chandler & Ipeirotis (2010) for validation of using 

Mechanical Turk. Note that Asian origin may also include 
Bangladeshi, Indian, and Pakistani participants. For the current 
experiment, however, participants were limited to people with Far 
Eastern origin.  

3 Further analysis using 2x3 two-way ANOVA with all three 
groups (Black, White, and Asian) revealed no significant 
interaction: F(2, 92)= 1.76, p = .18. This confirms that all three 
groups had the same pattern of response.  
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Discussion 
The outcomes of the experiments demonstrate that priming 
the concept of resource scarcity changes the perception of 
race. Participants in the scarcity condition were more likely 
to categorise biracial faces as Black, relative to the neutral 
condition. This effect has been shown to exist across all 
groups included in both experiments. The results provide 
empirical support for the theory of implicit association 
between the concept of poverty and Black individuals, 
yielding more faces to be categorised as Black. The results 
challenge the original explanation presented by Rodeheffer 
et al. (2012) and Krosch and Amodio (2014). Here, the shift 
of perceptual threshold of racial categorisation is based on 
scarcity-related increase of ingroup exclusivity. This was 
theorised to facilitate resource allocation towards the 
ingroup. The present results showed that  Black, White, and 
Asian participants had the same pattern of response, which 
is contrary to the hypotheses derived from their theory. 
Thus, the present study confirms that the implicit poverty 
priming theory has higher explanatory power relative to the 
reduction of the ingroup inclusivity theory.  

The results of the study are of high social 
significance in terms of intergroup relationships, potentially 
concerning the distribution of wealth and power, and 
regarding implicit socio-economic associations. The implicit 
association between poverty and Black individuals may be 
related to the stereotype of a Black person as poor and 
chronically welfare dependent. According to Gilens (2003), 
media portrayal of poverty has become increasingly 
“racialized” – it shows disproportionately higher number of 
Black people depicted as poor. He found that almost 60% of 
images in American articles on poverty present Black 
individuals, whereas around 27% of the poor are Black. 
This tendency culminated in articles published in 1962 and 
1963 during a broad coverage of welfare system abuses 
which saw 75% of images representing Black people. This 
trend reversed in the early 1980s in the times of economic 
downturn, with the percentage reduced to 33%. These 
changes indicate that the media increase the 
overrepresentation in the negative context of welfare system 
abuse and the “undeserving” poor. Furthermore, they 
decrease the overrepresentation when poverty can be 
justified by overall economic decline. Further studies show 
that attitudes towards the poor are context dependent, e.g. 
people are more likely to classify poor senior citizens or 
medical care receivers as deserving public assistance 
(Smith, 1987; Cook & Barrett, 1992). Consistently with 
these notions, Gilens (1999) established that the 
representation of Black people among the poor varies as a 
function of positivity of the context. No images of Black 
individuals were found in articles on senior citizens. 
Consistently, the overrepresentation in articles on 
underclass, urban problems and criminality ranged between 
85% and 100%. It can, therefore, be theorised that the 
disproportionate representation of Black people among the 
poor in the media contributes to the establishment of the 
implicit association. In addition, this effect is magnified by 

negative context of the media article, which may bias 
people’s beliefs concerning reasons for Black poverty. 
Indeed, studies demonstrated that news reports on poor 
Black children produce more personal attributions relative 
to news reports on poor White children (Iyengar, 1991). In 
other words, participants were more likely to attribute Black 
poverty to alleged negative personal characteristics of Black 
people, while White poverty is more likely to be explained 
in terms of structural and social factors rather than personal 
(e.g. economic crisis, unemployment etc.).  

Another socially significant consequence of this 
implicit association relates to the fact that people tend to 
behave consistently with the content of activated stereotype. 
In a classic study, Bargh, Chen and Burrows (1996) 
examined this notion by priming participants with the 
concept of elderly people. Results showed that participants 
walked more slowly following this priming, which is part of 
the stereotype of senior citizens. In addition, priming 
participants with the concept of Black individuals resulted 
in a more aggressive behaviour. These phenomena are 
consistent with previously outlined theoretical explanations 
of increased cognitive accessibility of concepts associated 
with currently activated ideas. The study showed that 
stereotypes not only affect task performance in laboratory 
settings but also can affect daily behaviour. Results 
consistent with this notion were obtained by other studies 
which used the stereotype threat paradigm. Research 
showed that priming people with racial or gender 
stereotypes (e.g. lower mathematic ability of Black people 
and women, while higher ability of Asians) results in 
stereotype-congruent behaviour (e.g. Steele, 1997; Steele & 
Aronson, 1995; Walton & Cohen, 2003; Steen, 1987). 
Further evidence demonstrates that the effects of stereotype 
activation are not limited to academic or IQ tests only, but 
also extend to economic decision making. For example, 
women primed with gender stereotypes are less likely to 
engage in risky financial activities (Powell & Ansic, 1997; 
Schubert, Brown, Gysler & Brachinger, 1999), and they are 
less likely to pursue careers traditionally regarded as male 
(Rudman & Phelan, 2010).  
Collectively, these studies suggest that stereotypes can have 
a long-lasting effect on a range of aspects crucial for life 
success, such as education and career choice, which 
translates into wealth and social status. It can be therefore 
argued that negative racial stereotypes hinder the prospects 
of Black people, since people have a tendency to 
unwittingly act in accordance with the content of 
internalised stereotypes. Concurrently, socio-cultural 
stereotyping may be activated by relevant cues such as 
economic scarcity (as the current studies explore). Black 
people, therefore, experience double social jeopardy – 
effects of implicit racism of White people and damaging 
effects of the internalised stereotypes. These phenomena 
contribute to the continuation of Black poverty, which 
reinforce stereotypes concerning Black people. It can also 
be hypothesised that biased media portrayal of Black people 
as poor and dependent on welfare further magnifies this 
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effect. This means that the media and other organisations, 
e.g. charities which advertise fundraising campaigns for 
people in Africa, should be made aware of the negative 
effects that this continuing bias has. Due to holding social 
responsibility, the media articles or advertisement should 
present a balanced and accurate picture of reality. Issues 
concerning the relationship between socio-cultural 
stereotypes, group dynamics, socio-economic power, 
ethnicity, and cognitive function are complex, multi-
facetted, and inter-dependent. They relate to very real 
problems in society, and further studies are warranted to 
explore these delicate aspects, how they function, and how 
they relate to one another in much more detail. 
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Abstract

Psychedelic  substances  are  used  for  clinical  applications
(e.g.,  treatment  of addictions,  anxiety and depression) as
well  as  an  investigative  tool  in  neuroscientific  research.
Recently  it  has  been  proposed  that  the  psychedelic
phenomenon stems from the brain reaching an increased
entropic state. In this paper, we use the predictive coding
framework to formalize the idea of an entropic brain. We
propose that the increased entropic state is created when
top-down predictions in affected brain areas break up and
decompose into many more overly detailed predictions due
to  hyper  activation  of  5-HT2A receptors  in  layer  V
pyramidal neurons. We demonstrate that this novel, unified
theoretical account can explain the various and sometimes
contradictory effects of psychedelics such as hallucination,
heightened  sensory  input,  synesthesia,  increased  trait  of
openness, ‘ego death’ and time dilation by up-regulation of
a  variety  of  mechanisms  the  brain  can  use  to  minimize
prediction under the constraint of decomposed prediction.

Keywords: predictive coding; psychedelics; level of detail;
Bayesian networks, Lysergic acid diethylamide, Psilocybin.

Introduction
A recent review paper (Nichols, 2016) examines both the
current  scientific  knowledge  regarding  psychedelics  as
well as the many positive results in clinical experiments
using psychedelics to treat depression and addiction. The
brain,  under  the  influence  of  psychedelics,  has  been
described as ‘being in more states than usual’ (Carhart-
Harris et al.,  2014), based on an increased activity in a
number  of  specific  brain  networks  such  as  the  default
mode network. They suggested that this higher variance
of  activity  allows  for  enhancement  of  the  repertoire  of
possible  states  over  time,  and  introduced  the  term
Entropic Brain to describe this higher entropic state. On a
more implementational level, the current consensus is that
psychedelics cause their effects by being (partial) agonists
of  serotonin,  i.e.,  5-hydroxytryptamine  2A  (5-HT2A)
receptors,  with particular  importance  to those expressed
on apical dendrites of neocortical pyramidal cells in layer
V. The 5-HT2A receptors are excitatory receptors, making
the neurons more likely to fire. 

In  this  paper,  we  combine  both  these  computational-
level and implementational-level insights into a predictive
coding  account  of  the effect  of  psychedelics.  We unify
notions proposed by Kwisthout, Bekkering, & van Rooij
(2017) regarding the importance of the amount of details
or  granularity  of  predictions,  and Bastos  et  al.'s  (2012)
canonical microcircuits for predictive coding. We propose
that the increased entropic state is created when top-down
predictions  in  affected  brain  areas  break  up  and
decompose  into  many  more  overly  detailed  predictions
due to  hyper  activation  of  5-HT2A receptors  in  layer  V
pyramidal  neurons.  We  demonstrate  that  this  novel,
unified  theoretical  account  can  explain  the  various  and
sometimes contradictory cognitive effects of psychedelics
such  as  hallucination,  heightened  sensory  input,
synesthesia,  increased trait of openness, ‘ego death’ and
time dilation by up-regulation of a variety of mechanisms
the  brain  can  use  to  minimize  prediction  under  the
constraint of decomposed predictions.

In the next section we will introduce the main ideas of
the predictive coding account. We will then formulize the
Entropic  Brain  hypothesis  into  a  predictive  coding
account  of  the  psychedelic  phenomenon.  In  the  second
part of this paper we will show how this formalization can
explain the various and sometimes contradictory cognitive
effects of psychedelics.

A Predictive Coding Primer
In  his  book “The  Doors  of  Perception”  (1954),  Aldous
Huxley  described  some of  his  psychedelic  experiences,
which  led him to propose  the idea  that  perception  is  a
door between things that are known and things that are
unknown.  This  idea  turned  out  prescient  of  the
contemporary  predictive  coding  account  of  brain
processing. According to predictive coding, perception is
a continuous process  of combining the brain’s  previous
knowledge  with  new incoming data  by using  Bayesian
updating, so as to best represent the environmental causes
of its sensory input. This enables the brain to predict its
sensory inputs. Furthermore, the brain is thought to create
a hierarchically  ordered  model (Friston,  2008).  For any
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pair  of  levels,  the  higher-level  will  have  context-
dependent  hypotheses  predicting  the  bottom-up  signals
from lower-levels. The hypothesis that generates the best
predictions will determine perception. Calculating which
hypothesis  generates  the  best  predictions  is  done  by
calculating the posterior probability of the hypothesis. The
posterior probability combines both the likelihood of the
bottom-up  input  and  the  prior  probability  of  the
hypothesis before receiving the input. This can be seen as
an  advantageous  tactic  especially  under  conditions  of
noisy  unreliable  bottom-up  data,  since  previous
knowledge  can  be  used  to  come  up  with  the  best
hypothesis.  The  predictions  stemming  from  the  best
hypothesis  inhibit  the  bottom  up  incoming  data
‘explaining it away’ (Clark, 2016). 

Recently,  Kwisthout  and  colleagues  proposed  a
computational-level distinction between the precision of a
prediction  and  the  amount  of  details  or  granularity of
predictions (Kwisthout & van Rooij, 2015, Kwisthout et
al.,  2017).  This  work  has  shown  that  more  detailed
predictions cause higher  prediction errors.  This work is
based on the idea that higher cognitive functions are better
described  by  categorical  probability  distributions  rather
than  the  traditional  Gaussian  densities  (Friston  et  al.,
2015).  An  important  distinction  between  Gaussian
densities and categorical probability distributions is that in
the latter the state space granularity (how detailed are the
generative  models  and  the  predictions  that  follow from
them) is crucial.  Whereas the amount of uncertainty (or
precision)  in  a  Gaussian  density  can  be  adequately
described by its variance, a categorical distribution needs
both  the  state  space  granularity  and  the entropy of  the
distribution  to  describe  its  precision  (Kwisthout  &  van
Rooij, 2015).

Bastos  et  al.  (2012)  have  suggested  a  ‘canonical
microcircuit’  that  provides  an  implementational-level
account of the predictive coding in the brain. The idea of
such  a  canonical  microcircuit  is  that  a  cortical  column
contains the circuitry necessary to implements a form of
approximate Bayesian inference and that these circuits are
replicated  with  minor  variations  throughout  the  cortex.
This  Microcircuit  model  is  based  on evidence  showing
that superficial pyramidal cells have forward connections
to higher areas in the brain hierarchy while deep layers,
including pyramidal cells in layer  V of the cortex, send
back  propagating  signals  to  lower  areas.  Bastos  et  al.
present  evidence  showing  that  these  backwards
connections are inhibitory and can plausibly be seen as
implementing the top-down ‘predictions’ as suggested by
the  predictive  coding  framework,  while  forward
connections  are  plausible  realizations  of  the  signals
representing ‘prediction error’. They further suggest that
superficial  layers  of  cortex  show  neuronal
synchronization and spike-field coherence predominantly
in the gamma frequencies, while deep layers prefer lower
(alpha or beta) frequencies.  In  essence, they claim that

the  top  down  predictions  are  communicated  by  lower
alpha  or  beta  frequencies  while  prediction  error  is
communicated by faster gamma frequencies.

Muthukumaraswamy  et  al.  (2013)  found,  following
administration  of  Psilocybin,  a  desynchronization  of
neural  activity  especially  in  the  slower  alpha  and  beta
rhythms, meaning neurons were acting in a more disjoint
and separate way, suggesting that the brain was at a higher
entropic  state.  Using  dynamic  causal  modelling  they
found that this desynchronization is “likely triggered by
5-HT2A receptor-mediated  excitation  of  deep  pyramidal
cells” (Muthukumaraswamy et al., 2013, p. 15171). While
synchronization of post synaptic neuronal groups creating
brain  wave  oscillations  are  thought  to  be  needed  for
communication  between  brain  areas  and  passing  of
information, the actual information is thought to be found
in the a sparse coding of neuron spiking as very specific
timings compared to the oscillations (Fries, 2015). 

A Predictive Coding Account of the
Psychedelic State

As we have seen, the effects of psychedelics stem from
the 5-HT2A receptors on pyramidal cells in layer V being
activated,  lowering the threshold of  individual  neuronal
firing  and  thus  desynchronizing  the  activity  of  the
neuronal population. We discussed above Bastos et al.’s
(2012)  view that  the information  communicated  by the
synchronous  activity  of  these  specific  cells  is  likely  to
represent  the  brain’s  top-down predictions.  It  is  known
that  within  the  neocortex,  5-HT2A receptors  are  not
distributed  equally  and  different  areas  have  different
binding potentials. Higher binding potentials can be found
in prefrontal and visual areas while the motor cortex has
lower binding potentials (Forutan et al., 2002). Our theory
focuses on the dense band of 5-HT2A receptors in layer V
pyramidal cells. 

 Based  on  Kwisthout  et  al.’s  (2017)  notion  of  state
space  granularity  in predictions,  we suggest  that  hyper-
activation of the cells in layer  V decomposes the broad
categorical  prediction  that  is  usually  calculated  by  this
neuronal population into sub categories, creating a set of
higher  detailed  predictions.  These  decomposed
predictions  stemming  from  prefrontal,  parietal  and
somatosensory cortex are sent backwards to lower layers
of the cortical hierarchy. The decomposed higher detailed
prediction that has the highest posterior probability now
dominates  perception.  However,  under  most  conditions,
no  matter  which  of  the  higher  detailed  decomposed
predictions best fits the data, it will still fit less data than
the ‘usual’ broad prediction. This will cause a higher level
of  bottom  up  prediction  error.  As  we  shall  see  in  the
second part of the paper,  the compensatory mechanisms
called to deal with this higher level of prediction error can
explain the wide variety of psychedelic effects. 
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Figure 1. The predictive coding account assumes that the brain generates predictions using a cascading hierarchy of generative models,
processing only that part of the inputs that was unpredicted. Under normal circumstances one might predict to observe animals or plants,
and interpret the inputs in a likewise manner (left panel). We suggest that after administration of psychedelics these predictions become
more decomposed, leading to more fine-grained, very specific predictions, each of which has a fairly low probability. This will in general
lead to a higher prediction error and unstable predictions (right panel). Figure adapted from Clark (2016).

To clarify further  what a decomposed set of predictions
means, imagine a person walking in the forest receiving
some sensory input (Figure 1). Under regular conditions
the  set  of  her  predictions  might  be  P(Animals)  =  0.4,
P(Plants)  =  0.6.  The  relatively  low  entropy  of  these
predictions can be computed to be H = –∑p i log2(1/pi) =
0.97 bits. This means there is relatively little uncertainty
regarding these possible predictions. Now let us imagine
this person is under influence of psychedelics. Under this
condition her set of predictions will be decomposed, for
instance:  P(Birds)  = 0.2,  P(Dogs)  =  0.1,  P(Butterfly)  =
0.09,  P(Elf)  =  0.01,  P(Trees)  =  0.3,  P(Grass)  =  0.6,
P(Flowers)  =  0.1.  As we can  see,  the  main  categorical
predictions of ‘Animals’ and ‘Plants’ break up, each into
more  detailed  sub  categories.  These  decomposed
predictions bring about a higher entropic state, H = –∑p i

log2(1/pi)  =  2.49  bit.  In  most  cases  this  will  result  in
higher  prediction  error  from  lower  layers  as  these
decomposed  predictions  ‘explain  away’  less  of  the
prediction  error  from  lower  layers  than  normal.  The
‘extra’  predictions  being  activated  are  likely  to  be
dependent on a subject’s personal experiences and history.
In general we should expect a flattening of the prediction
distribution,  and  well-established  prediction  categories
that  contain  many  subcategories  will  be  affected  more
than predictions with fewer subcategories. 

The importance of bottom-up data in this process
A known concept  in the psychedelic  community is  “set
and  setting”.  The  mind’s  set can  be  compared  to  the
brain’s  predictions  while  setting considers  the
environmental  data.  When  precise  environmental  data
combines  with  decomposed  higher  detailed  predictions
the result will be a uniquely clear perception. This type of
perception  is  commonly described  by users  and can  be
read in Aldus Huxley’s (1954) description of the vividness

of Red Hot Poker flowers he perceived while under the
influence of psychedelics. However, due to environmental
changes and noise, this clear  perception is not likely to
stay stable over time. The noisier the bottom-up signal,
the more  the top-down predictions  influence  perception
(Seth,  2014).  Under  decomposed  predictions,  lowering
precision of sensory data can result in misclassification of
the data.  The brain’s  best  explanation for  the imprecise
‘noisy’ data might be one of the sub-threshold predictions
that  got  activated.  This  will  result  in  a  ‘hallucination’.
Psychedelics  are  known  to  both  obscure  and  distort
perceptual data as well as add clarity and give the sense of
enhanced  resolution.  These  two  different  sides  of  the
psychedelic  state  are  dependent  on the precision  of  the
bottom-up data, i.e., the noisiness of the setting. The more
noisy the bottom-up data is, the more likely hallucinations
will be.

Prediction error minimization and the
psychedelic state

Under normal conditions the brain can decrease prediction
error in several  ways (Friston et al., 2012; Kwisthout et
al.,  2017).  It  could update predictions;  lower  prediction
error  by intervening  in  the  world  or  it  may update  the
causal  model  that  generated  the  predictions.  In  this
section, we explore how upregulating these mechanisms,
in order to deal with the increased prediction error caused
by  decomposed  predictions,  can  explain  many  of  the
documented psychedelic  effects.  We will  investigate the
effects of prediction updating, active inference, changing
the weight of predictions, and long-term learning effects.

Updating the predictions
As  we  have  explained,  in  the  case  of  decomposed
predictions,  a  smaller  amount  of  sensory inputs will  be
explained  by  any  specific  prediction.  This  will  cause
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increased  prediction  errors.  One  mechanism  the  brain
might use to minimize prediction error is to change the
prediction  distribution.  However,  as  the  predictions
remain  decomposed  no  prediction  will  be  enough  to
explain away the prediction error  for  long and so once
again the distribution will change and perhaps this time
the probability of an otherwise unlikely input becomes the
leading  prediction  and  affects  perception.  This  constant
revising  of  the  probability  distribution  will  lead  to  a
destabilization  of  perception.  Objects,  scenes  and  even
abstract  thoughts  will  ‘morph’ and  change  at  a  rapid
speed;  however,  each  percept  reflects  the  best  possible
prediction at that moment. A room might look bigger or
smaller  or  the  prediction  of  the  light  condition  might
change causing colors to morph. This can be the cause of
individuals  reporting  a  tendency  to  see  “multiple
viewpoints” (Sessa, 2008).

Predictions from other layers of the brain hierarchy that
were  not  affected  by activation of  the  5-HT2A receptors
can  be  upregulated  by  either  increasing  their  relative
strength or lowering their level of detail. This will cause
the  predictions  from  these  layers  to  enforce  their
predictions on more of the incoming data. Google’s deep
neural  network  ‘deep  dream’1 (originally  created  for
identifying images) illustrates how this might happen. By
allowing different layers of the network to strengthen their
predictions  these  networks  were  able  to  produce
hallucinatory effects.  Strengthening predictions of lower
layers (that identified lines) created images with amplified
lines,  while  increasing  predictions  from  higher  level
abstract layers (e.g., identifying buildings) created images
with ‘imaginary’ buildings being imposed on the original
picture. Further proof that this is actually happening in the
brain can be seen in the work of Bressloff et al. (2001).
Their  simulated  attenuated  low-level  predictions  of  the
visual  system  (V1)  and  found  remarkable  resemblance
with geometrical hallucinations drawn by people on LSD.
This shows that increased predictions from V1 are likely
to be behind the specific geometrical visual hallucination.
Furthermore,  Carhart-Harris  et  al.  (2016)  found  that
increased cerebral blood flow (CBF) in the visual cortex
as  well  as  a  greatly  expanded  functional  connectivity
profile in V1 correlated strongly with subjects’ ratings of
visual  hallucinations.  It  is  impossible  to  know  at  the
moment whether the increase in CBF is due to increased
predictions errors, upregulating of predictions, or both. 

Acting on the Environment
Another  mechanism  of  minimizing  prediction  error  is
intervening in the world (i.e., acting on the environment)
(Brown,  Friston,  & Bestmann,  2011).  This  changes  the
actual inputs and sets some of the model’s parameters and
thus decreases uncertainty. Changing the brain’s input can
happen  both  in  a  passive  way,  for  instance  by  moving
one’s  eyes,  or  by  actively  moving  objects  in  the
environment. Since 5-HT2A receptors are not as prevalent

1 https://deepdreamgenerator.com/

in  the  primary  motor  cortex,  top-down prediction  from
that area wouldn’t be as affected and this mechanism is
likely  to  remain  intact  even  under  the  influence  of
Psychedelics. This can explain why hallucinations seem to
grow stronger  while  sitting still  and can  help influence
harm reduction policies.   By creating motor output,  for
instance  while  walking  or  dancing,  the  mechanism  of
active  inference  (in  which  motor  output  minimizes
proprioceptive prediction error between the expected and
actual position of one’s limb, bringing the actual position
closer  to  the expected  position;  see,  e.g.,  Brown et  al.,
2011) might  enable the brain to lower prediction errors
stemming from other parts of the brain too. 

Changing Weight of the Prediction Error
While  chemical  tolerance  to  Psychedelics  drugs  should
not exist more than a few days after ingestion (Leshner,
2001) many experienced users will admit that the first few
experiences  feel  stronger  than  later  experiences  and
increased dosage is needed to reach the same state. This
might  happen  as  a  result  of  the  brain’s  attempt  to
minimize prediction error by lowering the weight of the
prediction error or attributing this higher prediction error
to ‘inherent’ noise that does not need to be explained. An
example of inherent noise that the brain learns to ignore
can be seen in a fair coin toss (Kwisthout et al.,  2017).
Even if you guess the coin will land on ‘heads’ and then it
actually lands on ‘tails’ no surprise will follow. The brain
has learnt that this type of stochastic noise is inherent to a
fair coin toss. The same could happen under extended use
of psychedelics.  The brain could learn that  this  state  is
inherently noisier and lower the weight of the prediction
error.  We  can  only  postulate  that  this  might  happen
through affecting  the dopamine system which  has  been
implicated  in  precision  weighting  of  prediction  error
(Friston et al., 2012).

Long Term Learning Effects
Within  the  predictive  coding  framework  the  model
constructed by the brain is considered to be encoded in
the  network  connectivity.  Changes  in  this  connectivity
will lead to long term learning. While learning effects in
humans after administration of  5-HT2A agonists have not
directly  been  studied  in  the  last  decades  an  interesting
study  in  rabbits  has  found  that  agonists  at  the  5-HT2A

receptor including LSD enhanced associative learning at
doses that produce cognitive effects in humans (Harvey,
2003).  Using  the  predictive  coding  framework,
depression, addiction and obsessive compulsive disorders
have  been  suggested  to  stem  from  overly  strong  and
narrow predictions from certain networks that get ‘stuck’
(Edwards  et  al.,  2012) and aren’t  updated based on the
bottom-up  data.  Momentarily  decomposing  these
predictions  by  5-HT2A agonists,  especially  with  a
combination of supportive bottom-up information coming
from a therapeutic setting, might lead to long term model
updates. This could be the reason behind the success of
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recent clinical trials that have used 5-HT2A agonist to treat
these disorders. 

A long term model update that psychedelic are known
to cause is increasing the trait  of ‘openness’ (MacLean,
Johnson, & Griffiths, 2011). The mechanism we suggest
to explain this is as follows. A higher prediction error state
caused by administration of 5-HT2A agonists coupled with
a positive rewarding setting, leads to surprise becoming a
more sought after state. Interest in exploring the unknown
and trying new things might grow and people might be
‘motivated to enlarge their experience into novel territory’
which is what defines the trait of openness (DeYoung et
al., 2009). 

Psychedelics research findings reinterpreted
In  the  following  section  we  will  re-interpret  previous
findings  in  psychedelics  research  in  light  of  our
theoretical  account and see how our account can clarify
and shed further light on these results. 

Kometer  et  al.  (2006)  presented  so-called  Kanizsa
triangles to  subjects  after  administration  of  psilocybin.
These  shapes  are  perceived  as  complete  triangles  and
circles rather than the complex shapes that they actually
are, because of a top-down learnt prediction. Viewing this
shape under normal conditions has been shown to evoke a
unique change lowering of  voltage  as  measured  on the
skull 170ms2 after presentation of this stimulus. Following
administration  of  Psilocybin,  Kometer  et  al.  found  a
decrease  in  strength  of  this  ERP  suggesting  a  lower
strength of these predictions. This is in accordance with
the model of decomposed predictions, since decomposed
predictions will indeed cause each prediction to be weaker
than  normal.  This  same  experiment  also  found
desynchronization of alpha band activity which we have
discussed previously.

In a behavioral experiment, Spitzer et al. (1996) found
increased  indirect  semantic  priming after  administration
of  Psilocybin.  They  claim  their  data  suggests  that
Psilocybin  leads to an “increased  availability of  remote
associations and thereby may bring cognitive contents to
mind  that  under  normal  circumstances  remain  non-
activated” (Spitzer et al., p. 1056). This would indeed be
expected  if  broad  categorical  ‘semantic’ predictions  are
decomposed,  activating  many  more  detailed  semantic
predictions, and allowing for more remote associations to
be activated. 

Another  well-documented  effect  is  known  as  ‘Time
Dilation’ in which subjective time seems to slow down. A
few minutes can subjectively be perceived as taking much
longer. Here we postulate that subjective sensation of time
is  dependent  on  the  amount  of  prediction  error  and
possibly prediction updates  the brain makes in order  to
minimize prediction error.  This  idea is  based  on Ulrich
(2006) who discovered that the extent to which a stimulus
can be predicted affects time perception, with unexpected

2 This is known as the N170 event-related potential (ERP).

stimuli  perceived  as  longer.  Similarly,  Tse et  al.  (2004)
found that a stimulus which stands out as different from
all the others in a series appears to last longer than the
other  stimuli.  An  increase  of  prediction  updates  might
cause  the subjective  feeling that  more time has  passed.
This is similar to the common feeling that the first day of
a journey to another country seems longer because it  is
filled  with  so  many  new  experiences  and  so  many
prediction updates must happen in that day. 

The last phenomenon we would like to touch upon is
the notion of ‘Ego death’ many psychedelic users report.
Apps  &  Tsakiris  (2013)  describe  a  predictive  coding
account  of  the  neural  and  computational  basis  of  self-
recognition. Here,  one’s body is recognized as the most
likely  “me”.  This  probabilistic  inference  arises  through
the  integration  of  information  from  hierarchically
organized  unimodal  systems  in  higher-level  multimodal
areas. As we have seen, the brain’s attempt to minimize
increased prediction error induced by psychedelics breaks
down this  hierarchical  structure  which  might  lead  to  a
total inability to distinguish between environment and self
and the unique perception of ‘oneness’ described by many
experiencing ‘ego loss’. While Apps & Tsakiris’ account
deals with the ‘minimal self’, we postulate looking at the
‘higher  ego’  as  a  collection  of  high-level  relatively
inflexible  predictions  regarding  the  future  behaviour  of
the ‘self-organism’ in  a  variety of  situations.  Following
administration of  5-HT2A  agonists  these  predictions  will
break  up based  on the subjective  pieces  of  information
compromising this category. This relaxation of otherwise
rigid  predictions  about  the  self  might  explain  positive
results  for  treatment  of  depression  and  addiction  after
administration  of  psychedelics  that  have  been  reported
(Nichols, 2016).

Conclusions
In  this  paper  we  presented  a  computational  theory
explaining  the  effects  of  psychedelics  in  terms  of  the
predictive  coding  account  of  cortical  processes.  Our
theory  further  explicates  the  Entropic  Brain hypothesis
(Carhart-Harris et al., 2014) in terms of predictive coding.
We proposed that administration of psychedelics cause the
brain  to  make  overly  detailed (i.e.,  decomposed)
predictions  of  the  inputs  it  receives,  leading  to  an
increased  prediction  error.  Crucially,  while  dopamine is
considered to modulate precision weighting of prediction
errors  (Friston  et  al.,  2012),  our  theory  suggests  that
serotonin might have a role in modulating the granularity
(“level of detail”) of predictions. Our theory explains how
a  simple  lowering  of  the  excitation  threshold  of  the
pyramidal  neurons in layer  V in prefrontal,  parietal  and
somatosensory  cortex  (caused  by  administration  of  5-
HT2A agonists) in fact  decomposes predictions from those
areas,  causing  increased  prediction  errors  from  lower
levels  in  the  brain  hierarchy.  The  brain’s  attempts  to
minimize  these  increased  prediction  errors  by  active
inference, prediction updating, modulation of the weights
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of prediction errors, or model revision can explain several
(and  sometimes  contradictory)  cognitive  effects  of
psychedelics  such  as  hallucination,  heightened  sensory
input, synesthesia, increased trait of openness, ‘ego death’
and time dilation. 
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Abstract 

Here, we examined how repetition under midazolam, a 
benzodiazepine that prevents the storage of novel associations, 
affects cued-recall performance of paired-associates. We contrasted 
word pairs that were initially studied and tested repeatedly without 
any successful recall prior to the midazolam injection, with other 
pairs that were studied for the first time after the injection of 
midazolam. According to our SAC (Source of Activation 
Confusion) memory model, repetition leads to strengthening 
existing memory traces rather than creating multiple traces for each 
repetition. As such, it predicts that repetition under midazolam 
should benefit only pairs that were originally studied prior to the 
midazolam injection. This prediction was confirmed. The results 
suggest that memory traces for pairs studied prior to the midazolam 
injection were strengthened under midazolam. However, word pairs 
that had not been studied prior to the injection were not bound in 
long-term memory because midazolam prevents the formation of 
new associations. 

Keywords: memory strength; paired associate learning; episodic 
memory; practice; midazolam; 
 

Repetition improves memory performance across the board. 
Beneficial effects of repetition have been found on most measures 
of explicit memory such as single-item and paired-associates 
recognition (e.g., Challis & Sidhu, 1993; Reder et al., 2000), free 
recall (e.g., Challis & Sidhu, 1993; Underwood, 1969), and cued 
recall tasks (Meltzer & Constable, 2005; Reder et al., 2007; Reder, 
Liu, Keinath, & Popov, 2015). However, despite more than a 
century of research on repetition effects, there is no consensus 
about the mechanism through which practice affects memory 
(Criss & Koop, 2015; Hintzman, 2010, 2011; Osth & Dennis, 
2015; Pavlik & Anderson, 2005). 

Two major types of theories have been proposed to explain 
repetition effects. Cumulative-strength models (CSMs) suggest 
that memory traces differ in strength or familiarity, and this 
strength increases with repetition and decays with time (e.g., 
Murdock, Smith, & Bai, 2001; Pavlik & Anderson, 2005; Reder 
et al., 2000; Wickelgren, 1972). In these models, recognition and 
recall are a function of strength and greater strength leads to better 
memory performance. In contrast, multiple-trace models (MTMs), 
usually equated with global matching models (GMMs, Criss & 
Koop, 2015), state that each repetition of an item is encoded 
separately in memory (Bower, 1967; Brown, Neath, & Chater, 
2007; Hintzman, 1984; Lansdale & Baguley, 2008; Osth & 
Dennis, 2015). This leads to redundant memory traces, each of 
which has some probability of being retrieved during test. 
Interestingly, while both CSMs and MTMs co-exist in the current 
literature, several proponents of each class believe that certain 

empirical findings have conclusively ruled-out the alternative 
models (Criss & Koop, 2015; Hintzman, 2011).  

When it comes to CSMs, some researchers have argued that 
they are incompatible with findings from judgments of frequency 
(JOF) and judgments of recency (JOR) tasks (Flexser & Bower, 
1974; Hintzman, 2010, 2011 Hintzman & Block, 1971). Many 
CSMs in the past have assumed that the estimation of frequency, 
recency and duration of events is based on a single strength 
dimension (Hintzman, 2011). As a result, these models predict 
that, for example, if an event is repeated it should also appear to 
be more recent and to have lasted longer. That is not the case – 
studies have shown that participants can easily discriminate the 
frequency, recency and duration of repeatedly studied items 
(Flexser & Bower, 1974; Hintzman, 2010, 2010; Hintzman & 
Block, 1971).  

This line of work seems to provide strong evidence against 
CSMs, and yet, they are still popular in modeling recognition and 
recall. Hintzman (2011) refers to this as “the fallacy of cumulative 
strength”, and suggests that the CSMs are still popular because 
most theorists focus on recognition memory and recall, while 
ignoring tasks such as JOR and JOF. However, the same criticism 
can be directed at conclusions from JOR and JOF tasks – the fact 
that a single strength dimension cannot explain behavioral patterns 
in such tasks does not mean that repetition effects on recognition 
and recall memory are not due in part to cumulative strengthening 
of existing memory traces. It only indicates that memory 
representations also include rich contextual information, which is 
an assumption shared by most current dual-process CSMs.  

Similarly, when it comes to MTMs and GMMs, other 
researchers maintain that they cannot account for the divergent 
patterns of the list-length effect (LLE) and the list-strength effect 
(LSE) on free recall and recognition (Criss & Koop, 2015; 
Shiffrin, Ratcliff, & Clark, 1990). The LLE shows that increasing 
the number of different items on a study list decreases free recall, 
cued recall and recognition performance. Similarly, the LSE 
shows that increasing the number of repetitions on some items 
leads to worse free recall for the non-repeated items. However, the 
LSE generally has no effects on overall performance in 
recognition tasks. Critics of GMMs have argued that they are 
fundamentally incompatible with this pattern of results (Criss & 
Koop, 2015). This is because GMMs assume that the same 
mechanism is involved when the number of different items 
increases and when some items on a list are repeated. Specifically, 
they both lead to the creation of additional memory traces and to 
increased global signal variance, which causes interference during 
retrieval. As such, GMMs supposedly predict that LSE and LLE 
should always occur together. 
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However, multiple proponents of GMMs have questioned both 
the reliability of the pattern of LSE and LLE effects on recognition 
(Dennis & Humphreys, 2001; Murdock & Kahana, 1993) and the 
inability of GMMs to account for it (Murdock & Kahana, 1993; 
Osth & Dennis, 2014, 2015). Furthermore, despite the fact that 
most MTMs are also GMMs, a multiple-trace model does not 
have to depend on global matching for memory decisions, which 
would make it easier to fit the pattern of LSE and LLE results. For 
example, even though our Source of Activation Confusion model 
(SAC; Reder et al., 2000) is a cumulative-strength model, the dual 
processes that allow it to account for the divergent pattern of LLE 
and LSE results would allow it to do the same even if each item 
repetition created a novel episodic trace (Cary & Reder, 2003; 
Diana & Reder, 2005). 

In summary, the major problem with contrasting CSMs and 
MTMs has been that they make similar predictions when it comes 
to most memory tasks. One way to overcome this would be to 
attempt to disrupt the mechanism that is responsible for repetition 
effects in a specific model such as SAC, to make predictions how 
that will affect behavioral performance and to evaluate how well 
the model fits the data. To achieve that, we examined how 
repetition affects cued-recall under midazolam. Midazolam is a 
benzodiazepine that creates temporary anterograde amnesia by 
preventing the storage of new associations in LTM (Ghoneim, 
2004; Reder et al., 2006), but it does not impair pre-existing 
memory traces (Ghoneim, 2004) or their strengthening, as 
evidenced by its limited effect on repetition priming (Hirshman, 
Passannante, & Arndt, 2001; Hirshman, Passannante, & Henzler, 
1999).  

 We compared cued-recall performance for paired-associates 
that were studied for the first time (control pairs) under 
midazolam and a subset of the pairs that were studied both before 
the midazolam injection and re-studied after the injection (practice 
pairs). The subset of interest were those pairs that had not been 
recalled on any of the tests that preceded the re-study session under 
midazolam. Given that midazolam prevents the storage of new 
associations in LTM, SAC predicts that the recall of control pairs 
should be at floor levels; performance on practice pairs that were 
never recalled correctly was an open question.  SAC assumes that 
pairs that had never been correctly recalled might still have sub-
threshold episodic traces in LTM. If repetition of the pair leads to 
the strengthening of this sub-threshold episodic trace, as SAC 
originally assumes, then we would expect greater recall of practice 
pairs compared to control pairs. If, however, repetition leads only 
to the creation of additional memory traces, then no advantage 
should be observed for practice compared to control pairs under 
midazolam, because midazolam will prevent the storage of the 
new traces in LTM.  

Method 
The data of interest involve a subset of conditions from a larger 

study previously reported in Reder et al. (2007) and Reder et al. 
(2006; study 2). For clarity, we will describe the full design. 

Participants 
Thirty-one healthy individuals from the Pittsburgh community 
participated in this experiment. Each participant was screened by 
a doctor and received $150 upon completion.  

Procedure, materials and design 
The study took place in two sessions on two separate days. We 
used a within-subject double-blind cross-over design where the 
drug condition (saline vs midazolam) was randomly assigned to 
one of the two days for each participant. Each session consisted of 
three separate study-test list cycles. The saline/midazolam 
injection was administered over a 2-min period between Lists 1 
and 2. Participants began the study phase of List 2 immediately 
after the injection. 

During each list, participants saw all of the 45 high-frequency 
word pairs in the following sequence: Study – Test1 and Restudy1 
– Test2 and Restudy2.  During the initial study phase, each word 
pair was presented for 3 seconds preceded by a fixation cross for 
1 second. After all 45 pairs were studied, participants completed a 
self-paced cued-recall test for all 45 pairs in a different random 
presentation order. Test trials began with a 500 ms fixation cross, 
followed by the presentation of the first word in a pair and a 
question mark prompting participants to respond. Participants 
were asked to recall the correct word and type it on a laptop 
keyboard or press the return key to move to the next trial. 
Regardless of the accuracy of their response, participants saw the 
correct answer for 2.5 seconds after each response, which gave 
them an opportunity to restudy the pairs again. When all 45 pairs 
were tested and restudied the test-restudy phase was repeated one 
more time, which concluded the procedure for the first list. This 
study-testandrestudy1-testand-restudy2 procedure was repeated 
for two more lists, each of which took approximately 17 min. to 
complete. On each list, the 45 study pairs were split into 3 
conditions with 15 pairs per condition – control pairs, which were 
unique for each list, practice pairs, which were the same 15 pairs 
on all 3 lists, and interference pairs, which had the same words on 
all 3 lists, but the cue words were assigned to different response 
words on each new list. The order of word pairs in each list, study 
and test sessions was randomly determined.  

Data analysis and logic for the current study 
Only a small subset of conditions was relevant for this study 

(see Figure 1). Specifically, we looked at cued recall performance 
on List 2 Test 2 for those control and practice pairs for which 
participants had failed to recall the response word on all previous 
tests. The control pairs were unique to each list, and as such the 
ones we selected were previously studied and tested only once at 
the beginning of List 2. The practice pairs were previously studied 
and tested twice on List 1 as well.  We analyzed only those practice 
pairs which participants failed to recall on all three occasions 
(L1T1, L1T2 and L2T1).  

We focused on the second test of List 2 (L2T2), rather than on 
the first test on List 2 for the following reason. Even though the 
injection was administered before the beginning of the second list, 
practice pairs were restudied immediately after their second test 
on List 1 (L1T2). Thus, if we observed improved recall for 
practice pairs on L2T1, it might have been due to the restudy 
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session that occurred prior to the injection rather than due to 
strengthening during the study session of List 2 under midazolam. 

In summary, we selected control and practice pairs that showed 
no evidence of being learned up until L2T1 in either drug 
condition (midazolam or saline). These pairs were then restudied 
immediately following that test, and were then tested on L2T2. 
For control pairs, 75% qualified for analysis in the saline condition 
and 99% in the midazolam condition.  For practice pairs, 32% 
qualified under saline and 41% under midaz. We analyzed 
accuracy on L2T2 as function of pair type (control vs practice) and 
drug condition (midazolam vs saline) using a logistic mixed 
effects regression with participants and items as random intercept 
effects. We compared alternative models with and without each of 
the main effects and interactions. A Bonferroni correction was 
applied to all post-hoc tests (n=4).  

Results and discussion 
The overall recall for each list collapsed over the two tests in a 

list are presented in Figure 2 and the results for the subset of trials 
of interest are presented in Figure 3. Control pairs were recalled 
less accurately than practice pairs, ΔAIC = -22, χ2(1) = 24.12, p < 
.001. Word pairs were recalled less accurately under midazolam 
compared to saline, ΔAIC = -172, χ2(1) = 174.32, p < .001. There 
was a significant interaction between drug condition and type of 
pair, ΔAIC = -17, χ2(1) = 19.27, p < .001. Post-hoc comparisons 
revealed that practice pairs were recalled significantly more 
accurately than control pairs in the midazolam condition (z = 6.72, 
p < .001), but not in the saline condition (z = 2.30, p = .09). Finally, 
both practice and control pairs were recalled more accurately in 
the saline compared to the midazolam condition (z = 9.97, p < .001 
and z = 4.56, p < .001, respectively for practice and control pairs). 
These results are consistent with the view that repetition can 
strengthen existing memory traces, because only pairs that were 
initially studied prior to a midazolam injection benefited from 
additional study under midazolam. These practice pairs were 
recalled more often than control pairs, which were studied for the 
first time after the midazolam injection, even though both showed 
no evidence of learning prior to the final test.  

Despite the fact that practice pairs had not been recalled on any 
of the 3 previous tests, it is possible that an initial association for 
them was stored during List 1. It seems reasonable to conclude 
that even though these associations were inaccessible, they must 
have been registered in LTM since they were strengthened under 
midazolam while the control pairs were not. Midazolam is known 
to block the formation of new associations but there is no evidence 
that it inhibits strengthening of existing traces. On the contrary, 
implicit memory is spared under midazolam (Hirshman et al., 
2001), and the model presented below already assumes that 
implicit memory is based on strengthening the same 
representations involved in familiarity-based recognition (Reder, 
Park & Kieffaber, 2009). 

An alternative explanation of these data consistent with 
multiple-trace theories might be that even if no traces were 
strengthened under midazolam for practice pairs, the pre-existing 
sub-threshold traces might be spontaneously recovered in a 
probabilistic way (Brown, Neath & Chater, 2007). We believe this 
is unlikely, given that each practice pair analyzed here failed to be 
recalled on all 3 previous tests. Additionally, we can directly 
estimate what is the probability of recovery with a multinomial 
processing tree model (Erdfelder et al., 2009), where at each test 
there is one of the following possibilities: 1) successful recall of 
the target due to study/restudy, r = P(success on test n | fail on test 
n-1, or when n=1), 2) failing to recall a previously recalled target, 
f = P(failed recall on test n | success on test n-1), 3) spontaneous 
recall of a previously unrecalled target regardless of restudy 
benefit, u = P’(success on test n | fail on test n-1). We estimated 
these probabilities from performance on the control pairs on the 
two tests on List 1 (data not used in the previous analyses):  
  (  1 &  2)  =  ∗ (1 − )                      =  0.42 
  (  1 &  2)          =  ∗                                 =  0.04 
  (  1 &  2)          =  (1 − ) ∗ ( + )          =  0.29 
  (  1 &  2)                 =  (1 − ) ∗ (1 − − )  =  0.25 

Here, successful recall following a failed recall is a combination 
of reencoding benefit r and a spontaneous recovery u. This 
analysis showed that the probability of successful recall due to 
(re)encoding was r = 0.46, the probability of forgetting a previous 
encoding was f = 0.09, and the probability of spontaneous 

 
 
Figure 1. Visualization of the procedure for the subset of conditions relevant for this study. Small boxes represent the phases of each list 
(study, cued recall, or restudy), and whether the test was successful. Shown are the subsequent phases only for the relevant trials. The first 
row shows the procedure for practice pairs; the second shows the procedure for the control pairs. List 1&2 are shown in separate columns.  

 

L1T1                                  L1T2                                                                        L2T1                                  L2T2                       
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recovery of a forgotten encoding was u = 0.07 (similar values were 
obtained if we consider all sequential pairs tests on all three lists 
for practice pairs in the saline condition, u = 0.089). One-tailed t-
tests showed that the benefit of restudy under midazolam (Fig 3), 
was significantly higher for practice pairs, but not for control pairs. 
Thus, spontaneous recovery of previously forgotten items cannot 
account for our results. 

 

 
Figure 2. Cued-recall performance during acquisition, collapsed 
over the two tests (black points and solid lines) and model fits 
(white points and dashed lines) in all lists for control and practice 
pairs as a function of drug condition. 
 

 
Figure 3. Accuracy on L2T2 for control and practice pairs that 

were not recalled correctly on any of the previous tests as a 
function of whether the L2 items were studied under saline or 
under midazolam. Horizontal red line shows the probability of 
spontaneous recovery of a forgotten item without strengthening. 

 
To demonstrate that CSMs can fit the data not only verbally, but 

quantitatively as well, we fit a SAC model (Reder et al., 2000) on 
a trial-by-trial basis separately for each participant. In general, 
SAC posits that semantic, episodic and contextual information is 
represented as a network of interconnected concepts, event and 
context nodes varying in strength. Each node has an activation 
value that increases when a node is perceived or when it receives 
activation from other nodes. This activation decays with time 
according to a power law to a base-level resting activation that also 
is strengthened or decays with experience. When new information 
is studied, two processes occur. First, the current and the resting 
level activation values of the corresponding preexisting concept 
nodes are increased. Second, if this is the first occurrence of the 

study episode, a new event node is created and it gets associated 
with the corresponding concept nodes, as well as with the general 
and specific context nodes. If, however, the study event has 
occurred previously, the existing event node and its links with the 
concept and context nodes are strengthened instead.  

Retrieval in SAC is based on the activation of the event and 
concept nodes and the process differs slightly between free recall, 
cued recall and recognition. During free recall, the general context 
node and the list node are activated and they spread activation to 
all episode nodes connected to them. During cued-recall or 
recognition, the concept node(s) for the cue(s) is also activated and 
it spreads activation to all episode nodes connected to it. Spreading 
activation is multiplied by the strength of each association, and 
divided by the sum total strength of associative links emanating 
from the sending node. This represents competition for retrieval. 
Finally, if an episode node’s activation passes the retrieval 
threshold, an item is recalled (free and cued recall) or recollected 
(recognition). For recognition, if no episode node passes the 
threshold, the strength of the cue concept node is evaluated. If it 
passes its retrieval threshold, a familiarity-based response is made.  

The majority of parameters in the model were imported from 
previous studies. Consistent with the fact that midazolam prevents 
the storage of novel associations in LTM, in the current simulation 
we manipulated the probability of encoding an episode node. 
During the first presentation of each word pair there is a certain 
probability that participants will fail to encode the event node due 
to inattention, fatigue or insufficient working memory (see Reder 
et al., 2007). In models of other studies, this value has been 
constant, but in the current implementation, we allowed it to vary 
between the saline and the midazolam conditions. The optimal 
value for the saline condition was estimated from the data (p = 
0.35), while the encoding probability for the midazolam condition 
changed with time elapsed since the injection (see Table 1 for 
parameter estimates and descriptions, and Table 2 for full model 
specification). Immediately after the midazolam injection the 
encoding probability was 0, reflecting the inability to store new 
associations at maximum potency, and it gradually increased to 
half of the encoding probability in the saline condition in 31 
minutes (drug halflife for memorial effects, Albrecht et al., 1999).  

The overall model fit for all conditions is presented in Figure 2, 
and the fit for the specific subset of interest is overlaid on Figure 
3. Importantly, the model was fit by predicting a single value for 
each participant – their overall cued-recall performance and by 
minimizing the RMSE between the predicted and the observed 
value. Given that the model had no information about the 
performance in each condition, we obtained a surprisingly good 
fit for the split by conditions (16 summary data points per 
participant; RMSE = 0.139, R2 = 0.8). The model demonstrates 
that the beneficial effect of repetition under midazolam can be 
explained entirely by the strengthening of preexisting memory 
traces that were previously below the retrieval threshold.  

One could question why practice pairs were not recalled better 
than control pairs in the saline condition, given that they should 
benefit both from strengthening a pre-existing trace as well as 
from creating novel associations for pairs that were previously 
unlearned, while control pairs benefit only from forming new 
associations. Indeed, while the overall fit of the model was quite 
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good, the model predicts that there should be a repetition 
advantage for the subset of analyzed practice pairs even in the 
saline condition (Figure 3). The behavioral data showed a small 
effect in that direction, which was not significant after correcting 
for multiple comparisons (p = .09). One possibility is that this is 
due to a selection bias – the practice pairs selected for analysis 
were those that showed no evidence of learning in three previous 
tests (~32%), thus they were generally hard to learn. Note that the 
control pairs we analyzed were those that had not been recalled on 
only 1 previous test (~76%) so they were probably not as difficult 
to learn. The greater difficulty of the selected practice pairs might 
have offset the relative repetition benefits under saline (as seen 
from Fig 2, practice pairs do benefit more under saline than under 
midazolam). Another possibility is that there were only few 
observations per cell, and the resulting noise might have obscured 
the effect in the saline condition. Despite this, the key prediction, 
namely the comparison between control and practice pairs under 
midazolam, was quite robust.  

In summary, the current study provides evidence that one 
mechanism through which repetition benefits memory is the 
strengthening existing memory traces. Despite this result, we do 
not wish to argue that no additional information beyond strength 
is stored in memory with each repetition of an event. Based on 
JOR, JOF, LLE and LSE results reviewed in the introduction, and 
the results presented here, it is reasonable to conclude that repeated 
experiences affect memory through a multitude of mechanisms 
that include both strengthening of previously encoded traces that 
match in content, as well as storing novel traces to represent the 
unique features of the repeated experience. What part of that 
information is accessed likely depends on the nature of the task 
being performed. While accurate judgments of recency and 
frequency might require accessing and comparing information 
across multiple memory traces, recognition and recall can depend 
on the strength of any one of those traces.  

 
Table 1  SAC model parameters 

Par Description Value 
Imported parameters 

Aboost 
Value added to current activation when an item is 
perceived 

40

pdecay Exponential decay constant for current activation 0.8
dnode Power-law decay constant for base-level activation 0.175
cnode Power-law growth constant for base-level activation 25
dlink Power-law decay constant for link strength 0.12
clink Power-law growth constant for link strength 25

bfreq 
Exponent for Kucera and Francis word frequency 
norms for estimating pre-existing base-level 
activation 

0.4

lfreq 
Exponent for Kucera and Francis word frequency 
norms for estimating preexisting link fan 

0.7

Estimated parameters 

Pbaseline 
Baseline probability of encoding an event node for a 
new word pair 

0.35

σepisode Standard deviation of the episode node activation 1

Τepisode Retrieval threshold for episode node activation 
2.9 ± 
1.6*

* Parameter was fit individually for each participant (Mean ± SD) 

 
 

Table 2  SAC model equation 
Equation Description 

=  
Preexisting base-level activation; a 
function of Kurcera & Francis 
word frequency 

= +   

Current base-level activation is a 
function of preexisting base-level 
activation and time since each 
presentation of a stimulus. is 
the time since the i-th presentation 

,

=  

Current strength of the link from 
the cue to the episode node is a 
function of time since each 
presentation of the stimulus. is 
the time since the i-th presentation 

= +  
Current activation of the cue is a 
function of base-level activation 
and a perceptual boost 

=  
,

∑
 

The input to an episode node due 
to spreading activation from the 
cue is a function of the cue 
activation level, the strength 
between the cue and the episode 
node, and the fan of the cue 

= ln( + ) 

Current activation of the episode 
node is the natural logarithm of 
the sum of the base-level 
activation and the received 
spreading activation 

= ∗ (1

− × 2 ) 

The probability of encoding the 
episode node is a function of the 
baseline probability, whether a the 
drug was saline (C=0) or 
midazolam (C=1), the time since 
the injection and the half-life of 
the drug. 

=   ,  
) 

The probability of retrieval of the 
episode node is the area to the left 
of the activation value under a 
standard normal distribution with 
the threshold as the mean. 
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Abstract  

Although an understanding of fractions is a critical precursor 
for other mathematical concepts, including proportional 
reasoning, algebra, and success in STEM fields, surveys of 
mathematics education in the United States indicate that 
school-age children lack age-appropriate math skills and 
proficiency. Thus, understanding the critical precursors of 
fraction knowledge is important for the development of 
instructional materials. The aim of the present study was to 
examine whether instructional format affected children’s 
learning and transfer of fraction concepts, and whether 
individual variables such as executive function and math 
knowledge moderated these effects. Six- to 8-year-old 
children participated in a longitudinal, pre/post test design, in 
which they received a fraction-training intervention. 
Critically, we manipulated the extent to which real-world 
instruction was grounded in visual vs. symbolic 
representations. We find that 1st and 2nd graders were able to 
learn fraction concepts following this intervention, despite 
having no formal fraction education. The extent to which the 
instructional stimuli were grounded in visual vs. symbolic 
representations affected children’s proportional reasoning 
knowledge in a transfer task, and condition effects were 
moderated my children’s working memory and prior math 
knowledge. This work has implications for instructional 
design and curriculum development in the classroom. 

Keywords: Numerical cognition, fractions, proportional 
reasoning, education, learning. 

Introduction 
An understanding of fractions is a critical precursor for 
other mathematical concepts, including probability, 
proportional reasoning, algebra, and much of the STEM 
fields (Bailey, Hoard, Nugent, & Geary, 2012; Department 
of Education, 1997). In fact, early fraction knowledge 
predicts the acquisition of algebraic knowledge well into 
middle and high school. However, surveys of mathematics 
education in the United States indicate that school-age 
children lack age-appropriate math skills and proficiency 
(NAEP, 2009; NCES, 2010; Siegler et al., 2012; also see 
Hurst & Cordes, 2016). Thus, improving students’ math 
knowledge and reasoning ability about proportions early in 
a child’s education is important. Furthermore, 
understanding what instructional format may best lead to 
both the learning and transfer of difficult math concepts 
(i.e., proportions) should be a fundamental component of 
instruction and curriculum development.  

The aim of the present study was to examine 
whether the instructional format in which fraction concepts 
are taught would affect the learning and transfer of novel 
fraction concepts (Core Curriculum; New Common Core 
Mathematics Standards, 2000), as well as whether 
individual variables such as executive function and prior 
math knowledge would moderate any observed effects. On 
the one hand, one approach to teaching mathematics to 
young children involves the use of concrete instantiations, 
such as vibrant, perceptually-rich visual displays or real-
world contextualized examples (e.g., Van de Walle, 2007), 
presumably because these high-contrast items are attention-
grabbing, motivating, and often found in a child’s natural 
environment (NCTM, 2000). Perceptually rich education 
materials are abundantly available and often populate 
children’s classrooms in an effort to keep children 
interested in the materials being taught  (Peterson & 
McNeil, 2012). Even teachers prefer perceptually rich 
materials (Peterson & McNeil, 2012), as they presumably 
increase children’s engagement in the task at hand.  

On the other hand, much work suggests a “less is 
more” approach to teaching children about difficult math 
concepts. This work suggests that perceptually rich or 
concrete materials may hinder mathematics concept 
learning (and perhaps problem solving and computation) 
because extraneous perceptual information gets integrated 
into representation of the target concept (e.g., Kaminski & 
Sloutsky, 2009, 2013; Kaminski, Sloutsky, & Heckler, 
2009; McNeil & Fyfe, 2012; Mix, 1999, 2008; Peterson & 
McNeil, 2012; Posid & Cordes, 2014). For example, Posid 
and Cordes (2014) asked young children (3-6 years) to 
decide which of two arrays contained a target number of 
items, where half of the arrays were homogenous in make-
up (e.g., all of the same kind of animal) and the other half 
of the arrays were heterogeneous in make-up (all different 
animals). They found that children were less accurate when 
arrays were heterogeneous in make-up, particularly when 
the task was more difficult (when children were asked to 
find a larger target numerosity), and that this homogeneity 
advantage remained present across development (Posid & 
Cordes, 2014; also see: Mix, 1999, 2008). Similarly, 
Kaminski & Sloutsky (2013) taught young children 
(kindergarten through second grade) to read bar graphs, 
while manipulating whether the graphs contained colorful 
and irrelevant information or monochromatic bars. They 
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found that the children trained on graphs with irrelevant 
colorful features often tried to use that extraneous 
perceptual information incorrectly, decreasing their overall 
accuracy compared to their peers who were trained on 
monochromatic bar graphs (Kaminski & Sloutsky, 2013). 
Together, these studies suggest that these more 
perceptually rich concrete instantiations over-communicate 
information to the learner, compared to their generic 
counterparts, thereby hindering learning from the relevant 
mathematical structure or relations at hand.  

The impact of perceptual information when 
learning about proportions or fractions is even less known. 
In one study, Kaminski and Sloutsky (2009) investigated 
kindergarteners’ ability to identity proportions across two 
sets of stimuli, which varied in their degree of concreteness 
of the instantiations. Children in the concrete condition 
failed to compare novel proportions while children in the 
generic condition successfully compared novel proportions, 
following a sparse training and no instruction. These 
findings suggest that simple proportional relations can be 
learned following generic instantiations, while concrete 
instantiations do not promote this same type of learning.  

In this vein, young children’s learning of fractions 
may also benefit from more generic instantiations. 
Specifically, fractions are traditionally introduced as 
symbols (e.g., 1/2), where visual representations may add 
extraneous information that could be interpreted 
ambiguously or incorrectly. For example, additional visual 
information could (a) add a layer of perceptual richness by 
conveying concept-irrelevant information and/or distracting 
information to the learner from the specific math concept 
to-be-learned, (b) add extraneous conceptual information, 
such as sharing, when real-world instantiations such as the 
use of a pizza pie are used, or (c) add a combination of the 
two. Thus, the present study addresses whether symbolic or 
visual instantiations in particular provide pre-fraction 
learners with a better ability to learn about novel fraction 
concepts. Because little work has addressed whether 
perceptual or conceptual visual instantiations may be 
detrimental to the young learner, the present study utilizes 
minimalistic, black-and-white stimuli (perceptually but not 
conceptually rich) to begin to address this important 
research question. 

Overview of the Current Study 
The aim of the present study was to examine whether 
instructional format affected children’s learning and 
transfer of fraction concepts, and whether individual 
variables would moderate any observed visual vs. symbolic 
instantiation effects. Critically, we manipulated the extent 
to which real-world instruction was grounded in visual vs. 
symbolic representations, while incorporating actual 
educational practices into the training paradigm (material, 
context, multi-session lessons). First and second graders 
participated in a pre/post-test design in which they received 
fraction instruction over several intervention sessions 
(Ordinal Comparisons, Addition and Subtraction, 
Decomposition), followed by a test of transfer (Fraction 
and Proportional Reasoning).  

Method 
Participants  
Seventy-three 1st and 2nd grade children (MAge=6.9 years) 
participated in this study. Children were tested in their own 
elementary school during regular school hours. All children 
were tested in a quiet room with a single female 
experimenter.  
Materials 
Pre- and Post-Test: Fraction Battery. 

The fraction pre- and post-test batteries were 
identical and consisted of three fraction-knowledge tasks, 
which asked participants to make judgments about either 
symbolic or visual fraction information (also see Hurst & 
Cordes, 2016; Polinsky, Posid, & Sloutsky, 2017; Posid & 
Sloutsky, 2015, 2017). The first task was an Ordinal Task, 
in which participants were asked to judge which of two sets 
was numerically larger and included visual fraction 
comparison (e.g., 2/3 vs. 1/3, represented as black-and-
white circles divided into three equal parts, with two parts 
and one part shaded, respectively) and a symbolic fraction 
comparison (e.g., 2/3 vs. 1/3). Children next completed a 
Matching Task, in which they matched either a symbolic 
fraction (e.g., 1/3) to a visual fraction (e.g., a black-and-
white circle divided into three parts with one part shaded) 
or vice-versa. Children then completed an Addition and 
Subtraction Task, in which they were asked to add visual 
fractions (e.g., black-and-white circles) or symbolic 
fractions (e.g., 1/4 + 2/4). Due to the difficulty level of the 
Matching Task and Addition/Subtraction Task, four answer 
choices were offered in a multiple-choice format. For all 
fraction tasks in the pre-/post-test battery, only fractions <1 
were used (e.g., 2/3 but not 4/3). 
  
Fraction Training:  
 The fraction training intervention consisted of 
three sessions, which were identical in content and 
instruction across conditions.  Each training session 
consisted of two parts: one-on-one guided instruction 
between the child and experimenter followed by a block of 
practice problems used to measure immediate learning. 
Importantly, although the content and instruction was 
consistent across conditions, children participated in one of 
three training conditions: (1) Visual Only (black-and-white 
circles only; n=22), (2) Symbols Only (symbolic fractions 
only; n=25), or (3) Visual + Symbols (both black-and-
white and symbolic fractions shown side-by-side; n=23). 
The instruction and practice block were exclusively run in 
the child’s randomly assigned condition (see Figure 1).  

The first training task was an Ordinal Comparison 
task, in which children were instructed on how to compare 
two fractions with either the same denominator (e.g., 1/4 
vs. 2/4) or same numerator (e.g., 1/4 or 1/8; Figure 1). 
Critically, the fraction instruction throughout all three 
training tasks was meant to address two concepts prevalent 
in the fraction-learning literature to date. First, children 
were taught to use counting to identify and manipulate the 
numerators and denominators presented, as children 
notoriously demonstrate a “whole number bias” when 
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learning about fractions (e.g., DeWolf & Vosniadou, 2014; 
Hurst & Cordes, 2016; Ni & Zhou, 2005; Obersteiner, van 
Dooren, Van Hoof, & Verschaffel, 2013 Obersteiner, Van 
Hoof, Verschaffel, & Van Dooren, 2016; Polinsky et al., 
2017). Second, children were taught about fraction 
magnitude knowledge, specifically as it relates to the part-
whole concept (e.g., Siegler, Thompson, & Schneider, 
2011; Stafylidou & Vosniadou, 2004). This instruction and 
feedback was followed by a block of practice trials in 
which children continued to compare fractions, but without 
scaffolding or feedback from the experimenter.  

The second training task was an Addition and 
Subtraction task, in which children were taught how to 
systematically add or subtract two fractions. Children were 
shown a correct strategy for solving this type of fraction 
problem. This was followed by a practice block, in which 
children continued to add and subtract fractions, but 
without the input and feedback from the experimenter.  

Finally, children completed a Fraction 
Decomposition task, in which they were asked to add or 
decompose a series of fractions (e.g., 1/6 + 2/6 + 1/6; 
Figure 2). The instruction was similar to that of the 
addition and subtraction task, with step-by-step instructions 
on how to identify the fractions, recognize that the 
denominator (or total number of pieces) was the same 
using counting, and then add the numerators (or shaded 
number of pieces) to find the answer. Again, this was 
followed by a block of practice trials in which children 
continued to decompose fractions, but without the 
instruction and feedback of the experimenter.  
 

 Figure 1. Examples of the Stimuli used in the Test portion 
of the Training Sessions.  
 
Transfer Task: 

The transfer task was used to measure children’s 
fraction and proportion knowledge, and consisted of a 
series of visual questions. Included questions asked 
children to make judgments related to either probability 
(e.g., “If you were to roll a dice, what is the probability that 
that it would land on a 2?” or “If you were to reach into this 
box of candy without looking, what is the probability that 
you would randomly pick out a cherry piece?) or fractions 

(e.g., “Can you express the triangles as a fraction of the 
entire set?” or “If you were to reach in to one of two fish 
tanks, are hoping to pick a fish of a certain color, which 
fish tank should you reach into?”).  

All tasks were administered on a Macintosh 
laptop. These programs were created using RealBasic 
software, which also recorded participants’ reaction time 
and answers during the tasks. 
 
Procedure  
Pre/Post-Test Fraction Battery: 

The procedure consisted of three phases: The 
Ordinal Task, the Matching Task, and the 
Addition/Subtraction Task. The Ordinal Task consisted of 
three blocks: natural number comparisons (warm up), 
visual fraction comparisons, and symbolic fraction 
comparisons. All fractions were <1 so as to match the 
visual and symbolic fractions featured in the second and 
third blocks. Each block in the Ordinal Task consisted of 
32 trials, for a total of 96 trials. The Matching Task 
consisted of three blocks of 12 trials each, for a total of 36 
trials. The Addition/Subtraction task consisted of four 
blocks of 12 trials each, for a total of 48 trials.  
 
Fraction Training:  

The procedure consisted of three training sessions: 
Ordinal Comparisons, Addition and Subtraction, and 
Decomposition. The Ordinal Comparisons training session 
consisted of two phases: Same Denominator comparison 
training and Same Numerator comparison training. Each 
instruction phase consisted of two examples, followed by a 
block of 10 test questions (20 total test trials). The Addition 
and Subtraction training session consisted of two phases: 
Addition and Subtraction. Each instruction phase contained 
two examples, followed by a block of 20 test trials (40 total 
test trials). The Decomposition training session consisted 
of two phases of Decomposition instruction (fractions 
whose sum was <1 and fractions whose sum was >1), each 
followed by one blocks of test trials, plus a final block of 
“intermixed” test trials, for a total of 30 test trials.   
 
Transfer Task: 
 The transfer task consisted of seven blocks of 
proportional reasoning and fraction reasoning picture 
problems and included: (1) spinner proportions, (2) dice 
rolling, (3) determining the proportions of shapes in a set, 
(4) determining the proportion of candy in a bowl, (5) 
interpreting a pie graph, (6) representing a set of shapes as 
a fraction, and (7) determining the proportion of fish in a 
fish tank (for a total of 36 Transfer Task questions). The 
transfer task was administered approximately 2 weeks after 
post-test. It was also given in multiple-choice format due to 
the difficulty of the task itself and for consistency of testing 
format across sessions.  

Results 
The present study examined three outcome variables of 
interest: (1) Learning at Training: Did children perform 
above chance on the test trials following each intervention 
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session? That is, did they learn the information they had 
just practiced with the experimenter? (2) Pre-Post Test 
Gains: Did children improve on our Fraction Battery from 
Pre-Test to Post-Test? (3) Transfer Task: Did children 
perform above chance on our Transfer Task? Critically, we 
examined the impact of Training Condition 
(Visual+Symbol, Visual Only, Symbols Only) on all three 
of these variables of interest. Finally, we examined the role 
of individual variables as moderators of Condition effects 
on our dependent variables. 
 
Learning at Training 
Results indicate that young children were able to learn 
fraction concepts despite having no formal instruction in 
the classroom, as indicated by their above-chance 
performance during each phase of training (vs. chance: 
Ordinal: p<.001, Cohen’s d=2.8; Addition/Subtraction: 
p<.001, Cohen’s d=2.4; Decomposition: p<.001, Cohen’s 
d=4.4; Figure 2). A moderate – but non-significant (p’s<.2) 
-- trend demonstrated the impact of children’s experimental 
condition across these tasks. That is, children’s 
performance in the Symbols-Only and Visual+Symbols 
conditions were similar across the three day-of training 
tasks; however, children’s accuracy in the visual-only 
condition was lower.  

 
 
Figure 2. Accuracy on the test trials of each Fraction 
Training Session by Condition. Error bars reflect Standard 
Error of the Mean.  

 
Pre- to Post-Test Gains 
We also assessed whether children made substantial gains 
from pre- to post-test within our Fraction Battery. For the 
purposes of this analysis, difference scores were created for 
each participant (post – pre) for each portion of the 
Fraction Battery (Ordinal, Matching, and 
Addition/Subtraction; pre-test: no effect of Condition: 
p>.1), such that each participant had a single difference 
score for each task representative of any gains made. Then, 
an average of these difference scores was created to 
identify children’s total gains across the training tasks. A 
significantly positive difference score (versus zero) would 
indicate significant gains made by that participant.   
 Children demonstrated significant gains between 
pre- and post-test (t(69)=10.6, p<.001, Cohen’s d=2.6). 
Notably, condition differences were not observed in any of 
our three tasks within the Fraction Battery (p’s>.1), 

suggesting that, at least for 1st and 2nd graders, any 
instructional format can promote learning of these difficult 
math concepts.  
 
Transfer Task 
Performance accuracy on the Transfer Task was calculated 
for questions pertaining to Proportional Reasoning and 
Fraction Reasoning.  Overall, children performed above-
chance on both types of questions in the Transfer Task 
(Proportional Reasoning: p<.001, Cohen’s d>.1; Fraction 
Reasoning: p<.001, Cohen’s d>2.5; Figure 3). Condition 
differences were observed for the Proportional Reasoning 
portion of the Transfer Task (F(2, 63)=6.5, p=.003), such 
that children in the Visual+Symbol condition out-
performed their peers in both the Visual Only and Symbols 
Only conditions. Of note, children in the Visual Only and 
Symbols Only conditions performed significantly above-
chance, and out-performed a secondary sample of untrained 
controls whose accuracy did not exceed chance-level 
(t(6)=1.7, p=.15, Cohen’s d=1.4). In contrast, no Condition 
effects were observed for the Fraction Reasoning questions 
(p>.7), mirroring the lack of Condition effects observed in 
the pre- to post-test gains.  
 
Individual Variability 
A series of regression analyses were run in order to 
investigate whether individual variables predicted 
children’s performance across our dependent variables. 
Each regression model tested the following independent 
variables: pre-fraction knowledge (as assessed through our 
pre-test Fraction Battery), prior Math Knowledge (assessed 
through a portion of the Woodcock Johnson and a 3-minute 
speeded arithmetic test administered at pre-test), Inhibitory 
Control (assessed  through a numerical stroop task 
administered at pre-test), Working Memory (assessed 
through a serial ordering task administered at pre-test), and 
the child’s grade in school.  

Children’s accuracy during the day-of training 
tasks (composite score) was significantly predicted by their 
grade in school (Beta=.224, p=.06), prior math knowledge 
(Beta=.573, p<.001), and their pre-test fraction knowledge 
(Beta=.253, p=.04; Model: R2=.416, p<.001). Children’s 
performance at post-test was significantly predicted by 
children’s prior math knowledge (Beta=.566, p<.001; 
Model: R2=.401, p<.001), while children’s pre- to post-test 
gains were significantly predicted by their grade in school 
(Beta=.382, p=.009), working memory (Beta=.306, 
p=.012), and pre-test fraction knowledge (Beta=.485, 
p=.001; Model: R2=.220, p=.014). Additional SEM 
modeling was conducted to examine whether our 
significant predictors specifically moderated any effects of 
Condition on our dependent variables. We find that prior 
math knowledge does moderate the effects of Condition on 
children’s day-of training accuracy (p=.02) and post-test 
fraction performance (p=.002), while working memory 
moderated children’s gains from pre- to post-test (p<.001).  

Finally, regression and SEM modeling were 
conducted for children’s performance on the Transfer Task. 
Specifically, children’s accuracy on the proportional 
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reasoning portion of the Transfer Task was significantly 
predicted by their grade in school (Beta=.227, p=.059), 
Condition (Beta=.222, p=.064), inhibitory control 
(Beta=.250, p=.038), and pre-test fraction knowledge 
(Beta=.257, p=.086). Again, secondary SEM models 
indicated that both math knowledge and working memory 
individually and significantly moderated performance on 
the Transfer Task. Specifically, children with High 
working memory did not show Condition differences, 
while those with low working memory did (Low WM: F(2, 
28)=9.0, p=.001; High WM: F(2, 27)=1.7, p=.206). These 
children benefited most from Visual+Symbol. Like 
working memory, children with high math knowledge did 
not show Condition differences on the Transfer Task, 
whereas children with low math knowledge did. These 
children benefited most from Visual+Symbol (Low Math: 
F(2, 26)=4.7, p=.019; High Math: F(2, 29)=1.7, p=.1).  
 

 
Figure 3. Accuracy on the Transfer Task by Condition. 
Error bars reflect Standard Error of the Mean. 
 

Discussion 
The aim of the present study was to examine whether 
instructional format affected children’s learning and 
transfer of fraction concepts, as well as to investigate 
whether individual variables such as executive function and 
math knowledge moderated any effects of visual vs. 
symbolic instantiations. Results indicate two important 
patterns of performance. First, using real-world 
instructional stimuli from the current Core Curriculum 
(Core Curriculum; New Common Core Mathematics 
Standards, 2000), children as young as 1st and 2nd grade 
successfully learned new fraction concepts, as indicated by 
their above-chance performance on day-of training, in their 
gains observed from pre- to post-test on our Fraction 
Battery, and their above-chance performance on the 
Transfer Task. Because an understanding of fractions is an 
important precursor for other mathematical concepts, 
including probability, proportional reasoning, algebra, and 
much of the STEM fields (Bailey, Hoard, Nugent, & 
Geary, 2012; Department of Education, 1997), it is critical 
that elementary school children are involved in a 
curriculum that employs these critical foundations in 
fraction education. Although previous surveys of 
mathematics education in the United States suggest that 
children lack age-appropriate math skills (NAEP, 2009; 
NCES, 2010; Siegler et al., 2012; also see Hurst & Cordes, 

2016), the present study suggests that current curriculum is 
utilizing content that may help close this gap in years to 
come. 

Second, and more importantly, the present study 
finds that the instructional format in which the to-be-
learned concepts are presented to children is important. 
Specifically, those children in the Visual+Symbol 
condition faired best both during immediate learning within 
our intervention sessions and in our test of transfer two 
weeks following post-test. Of note, children in the Visual 
only condition never out-performed their peers in either of 
the other two conditions, suggesting that less is not 
necessarily more when teaching children about new and 
conceptually challenging fraction concepts. Moreover, 
children who were low in math knowledge and low in 
working memory at pre-test benefited most from the 
Visual+Symbol condition, suggesting that the redundant 
perceptual information was particularly helpful.   

The findings from the present study suggesting 
that “less” is not “more” when teaching children about new 
fraction concepts is interesting given much work 
suggesting that extraneous perceptual information may 
interfere with children’s ability to learn mathematical 
concepts or make mathematical reasoning judgments (e.g., 
Kaminski & Sloutsky, 2009, 2013; Kaminski et al., 2009; 
McNeil & Fyfe, 2012; Mix, 1999, 2008; Peterson & 
McNeil, 2012; Posid & Cordes, 2014). This pattern of 
findings could be accounted for by two explanations. First, 
perhaps either fractions themselves or novel fraction 
concepts are a stand-alone category. That is, perhaps “less 
is more” when children are learning about whole numbers 
or non-fraction numerical concepts. However, this is 
unlikely given ample research to suggest that both children 
and adults demonstrate a whole number bias, especially 
when learning about or solving fraction problems that are 
novel or difficult (e.g., see DeWolf & Vosniadou, 2014; 
Hurst & Cordes, 2016; Ni & Zhou, 2005; Obersteiner et al., 
2013; Obersteiner et al., 2016; Polinsky et al., 2017). That 
is, when solving fraction or proportion problems, children 
often apply their intuitions about whole numbers to fraction 
concepts (for example, they might say that 1/4 + 1/4 = 2/8, 
as they incorrectly assume that you should add the 
numerators and the denominators, as you would if you 
were adding whole numbers).  

Another explanation for the seemingly divergent 
pattern of findings observed in the present study comes 
from the nature of the stimuli used in the study itself. 
Although condition differences emerged, the stimuli were 
more perceptually impoverished than those used in 
previous work reporting “less is more” during 
mathematical learning and reasoning (Kaminski & 
Sloutsky, 2009, 2013; Kaminski et al., 2009; McNeil & 
Fyfe, 2012; Mix, 1999, 2008; Peterson & McNeil, 2012; 
Posid & Cordes, 2014). Specifically, the conditions in this 
study varied by whether the instantiations contained visual 
vs. symbolic vs. visual + symbolic information. However, 
the visual stimuli were always black-and-white circles, 
while the symbolic stimuli were a single monotone color 
(e.g., black). In contrast, real-world mathematics education 
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includes much more diverse and vibrant displays, the use of 
2D and 3D objects, the use of “interesting” pictures and 
colors (e.g., a pizza pie to represent a pie graph or visual 
fraction; Peterson & McNeil, 2012), and so on. Therefore, 
perhaps the “perceptually impoverished” framework 
employed in the present study muted the real-world effects 
of varying concrete vs. generic instantiations when 
teaching children about fractions and proportions. 
Currently, work from our laboratory is exploring this 
variation to visual vs. symbolic instantiations, through the 
use of a perceptually rich training paradigm. We are 
currently exploring whether similar Condition effects and 
individual moderators will emerge when perceptually rich 
(e.g., pizza pies rather than black-and-white circles, 
Sesame Street-like numbers with colors and eyes, etc.) 
stimuli are used in a similar training intervention.  

 

 
Figure 4. Perceptually rich instantiations of the stimuli 
used in the present study.  
 

 In conclusion, the present study utilized a real-
world fraction training intervention and finds that children 
can learn fraction information prior to formal education, 
using instructional material from the current Core 
Curriculum. Importantly, although all children 
demonstrated gains following training, those who received 
redundant perceptual information tended to out-perform 
their peers following immediate learning and in a transfer 
test of proportional reasoning. Additionally, children’s 
prior math knowledge and working memory moderated our 
observed effects, indicating these should be taken into 
consideration when children are taught novel or difficult 
fraction concepts. This work has implications for 
instructional design and curriculum development in the 
classroom.   
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Abstract 

A classic discussion about visual imagery is whether it affords 

reinterpretation, like discovering two interpretations in the 

duck/rabbit illustration. Recent findings converge on 

reinterpretation being possible in visual imagery, suggesting 

functional equivalence with pictorial representations. 

However, it is unclear whether such reinterpretations are 

necessarily a visual-pictorial achievement. To assess this, 68 

participants were briefly presented 2-d ambiguous figures. 

One figure was presented visually, the other via manual touch 

alone. Afterwards participants mentally rotated the 

memorized figures as to discover a novel interpretation. A 

portion (20.6%) of the participants detected a novel 

interpretation in visual imagery, replicating previous research. 

Strikingly, 23.6% of participants were able to reinterpret 

figures they had only felt. That reinterpretation truly involved 

haptic processes was further supported, as some participants 

performed co-thought gestures on an imagined figure during 

retrieval. These results are promising for further development 

of an Enactivist approach to imagination. 

Keywords: visual imagery; haptic imagery; gesture; 

enactivism; the imagery debate 

Introduction 

Early phenomenological observations concerning voluntary 

visual imagery suggested that nothing new can be 

discovered in visual imagery that was not present in the 

intention to imagine to begin with (Sartre, 1940). This fits 

Descriptivist renderings of visual imagery (Pylyshyn, 2002), 

where visual imaginings have a fixed mode of presentation, 

and are “images under a description” (Fodor, 1975, p. 191). 

This view gained substantive empirical traction (in part) by 

research showing that when participants memorized an 

ambiguous figure under a particular percept (e.g., duck), 

they were unable to discover an alternate novel 

interpretation (e.g., rabbit) when retrieving the ambiguous 

figure in visual imagery (Chambers & Reisberg, 1985; 

Slezak, 1991). These results were obtained even though the 

memory of the figure was detailed enough to draw it out, 

and which allowed for subsequent ambiguity detection when 

perceiving the drawing. 

Subsequent research within the ambiguity detection 

paradigm showed that the previous studies may have 

employed too difficult ambiguity examples (e.g., 

duck/rabbit figure), and failed to properly inform 

participants by providing an ambiguity example 

(Brandimonte & Gerbino, 1993; Finke, Pinker, and Farah, 

1989; Hyman & Neisser, 1991). One of those studies 

showed an ambiguity detection rate of 40% with slightly 

less complex figures as the classic duck/rabbit figure and 

providing an ambiguity example (Peterson, Kihlstrom, 

Rose, & Glisky, 1992). Some shortcomings of previous 

studies that found positive findings were resolved by Mast 

and Kosslyn (2002), who noted that participants might have 

been alerted by the ambiguity of the figures during 

perception as they were shown an ambiguous figure before 

memorizing the target figure. In their study they found that 

44% of the participants were able to detect an alternative 

interpretation while excluding possible confounds of 

ambiguity detection in perception rather than imagery. 

In a recent study we have expanded upon this research 

(Kamermans, Pouw, Mast, & Paas, under review). 

Participants in Mast and Kosslyn’s (2002) study were 

provided partial visual cues of the ambiguous figure during 

imagination. Therefore, it could not be fully excluded that 

some raw sensory information is necessary for ambiguity 

detection via imagery to occur, allowing for the possibility 

that ambiguity detection via imagery alone is impossible 

after all. In our previous study however, we found that 

ambiguity detection is possible without visual cues as well 

(30% detection rate), while excluding other possible 

confounds such as ambiguity detection during perception 

rather than retrieval in imagery. 

The ambiguity detection paradigm has been primarily 

regarded as being important for The Imagery Debate. This is 

because, in contrast to the Descriptivist approach, the other 

contender in The Imagery Debate – the Quasi-pictorial 

account (Kosslyn, 2002) - explicitly argues for the 

possibility of ambiguity detection. On such an account, 

visual imaginations are constituted by internal 

representations that are experienced as and function like 

pictorial representations (drawings, diagrams, etc.). As such, 

analogous to pictures, the representational content of visual 

images are not intrinsically fixed, rather the mental image 

preserves the “raw” visual-pictorial information of the 

previously seen object which is open to reinterpretation.  

In summary, there is converging evidence that visual 

imagination allows for similar re-interpretative feats as 

pictorial representations (Mast & Kosslyn, 2002; 

Kamermans et al., under review). Such evidence has been 
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mainly interpreted as a win for the Quasi-pictorial account 

over the Descriptivist account (Mast & Kosslyn, 2002). Yet, 

although reinterpretation in mental imaginings might afford 

similar feats as pictorial representations (e.g., drawings), it 

need not be the case that imagination functions exactly like 

visual-pictorial representations. In fact, imagery-based 

reinterpretation need not be visual-pictorial at all.  

 

Enactive Imaginings 
Indeed, Quasi-pictorial and Descriptivist accounts of mental 

imagery are not the only game in town (Foglia & O’Regan, 

2016). There are also views that promote an Enactive view 

of sensory perception and imagination (Hurley, 2002; 

O’Regan & Noe, 2001;  Thomas, 1999)
1
. Our conception of 

the Enactive position in relation to imaginings, is that 

imaginings are something we do rather than an internal 

state; the success of an imagining is not (primarily) 

mediated by internally stored knowledge of properties of the 

object imagined, but rather by a pre-reflective understanding 

of sensori-motor relations that would hold if the object 

would be present. The enactive logic is that since perception 

is an accomplishment of an active embodied system 

(Gibson, 2014) so too must perceptual imagination be 

constituted in a practical understanding of the sensori-motor 

relations that would hold when perceiving some object.  

Evidence closely in par with an Enactive view concerns 

findings that show a functional role for eye-movements in 

visual imagination (Brandt & Stark 1997; Laeng & 

Teodorescu 2002; Spivey & Geng, 2001). Note, that the 

functional role eye-movements seem to have in visual 

imagination is achieved even though eye-movements 

themselves do not provide visual information in a classic 

sense at all, e.g., eye-movements also occur and affect 

visual imagery when eyes are closed (Spivey, Tyler, 

Richardson, & Young, 2000). Note as such that although the 

Quasi-pictorial account could be invoked here to explain the 

eye-movements (as the eye-movements interact with 

supposed internally stored visual information of the object), 

it is difficult to explain the function of eye-movements 

which provide no visual information in the classic sense. It 

is precisely because an Enactive view does not adopt a 

classic view of perception that it is able to recognize that 

(pre-reflective knowledge of) bodily movements constitute 

perception and imagination (O’Regan & Noe, 2001; Hurley, 

2002). Imagination, on such a construal, involves being 

attuned to sensori-motor potentialities of a particular object 

imagined (Thomas, 1999; O’Regan & Noe, 2001). In visual 

imagery this attunement seems to be achieved in part 

through reenacting eye movements (a co-constituent of 

visual perception). 

                                                           
1
 Enactive accounts may be disentangled from each other on the 

basis of their differing commitment to the necessary involvement 

of non-neural bodily states in mental imagery (see Foglia & 

O’Regan, 2016; cf. Thomas, 1999). For the purposes of the present 

paper the commonalities rather than the differences between these 

approaches are highlighted. 

 

Present study 
In the current study participants memorize two figures in 

succession for 30 seconds. Both of these figures have an 

alternate interpretation when rotated 180 degrees (i.e., 

figures are ambiguous). One of these figures is provided 

visually, the other via touch alone (i.e., haptic perception). It 

is then assessed whether participants are able to find the 

alternate interpretation for each figure in their imagination 

by mentally rotating the memorized figure.  

As a further extension of the possibility of ambiguity 

detection in visual imagery we assess here whether 

participants can perform visual reinterpretations without 

being provided with an ambiguity example (cf. Kamermans 

et al., under review). However, the most important 

extension relative to previous research that we emphasize in 

this article, is the assessment of whether ambiguity detection 

can be performed in haptic imagery as well. That is, similar 

to visual imagery, can ambiguity be detected upon a mental 

imagining that is based on an ambiguous figure that was 

explored via touch? 

Importantly, it could be that feeling a figure allows for 

ambiguity detection in imagery only insofar participants are 

able to reconstruct visual information based on this haptic 

perception.  If true, ambiguity detection is always performed 

on visual information. On such a construal it is plausible 

that ambiguity detection rates of visually perceived figures, 

is greater than when haptically perceiving figures. After all, 

if ambiguity detection is a visual achievement, having had 

direct visual access as opposed to second-hand access 

(visual reconstruction via haptic perception) would improve 

the quality of the mental image, and hence improve re-

interpretability. Therefore, next to assessing the possibility 

of ambiguity detection per condition individually, we will 

assess possible differences in detection rate between the 

haptically and visually perceived figures that would be 

predicted if reinterpretation in imagery is strictly a visual-

pictorial achievement. 

Additionally, in light of an Enactive approach to sensory 

perception and imagination, and our previous theoretical 

efforts concerning the cognitive function of co-thought 

gesture (Pouw, de Nooijer, van Gog, Zwaan, & Paas, 2014), 

we anticipated to observe co-thought (i.e., silent) hand-

gestures that enacted interaction with the object during 

haptic imagery. That is, similar to research showing that 

eye-movements appear to co-constitute visual imagination, 

so too might manual movements co-constitute haptic 

imagery processes. Therefore, in the current study we 

explored manual gestures that occur when retrieving the 

haptically (as well as visually) memorized figure.  
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Method 

Participants & Design 

Sixty-eight participants were tested (61 female, Mage = 

20.03 years, SDage = 3.36 years, range 17-37 years)
2
. 

Recruitment targeted both Dutch and non-Dutch students all 

of whom received instructions in English. The participants 

were enrolled in courses taught in English at the Erasmus 

University Rotterdam. All of the participants took part in the 

experiment for course credits. 

The study had a within-subject design (Visual vs. Haptic 

Condition; order counterbalanced) using two test figures 

counterbalanced over condition assignment. Ambiguity 

detection rate was the main dependent variable. 

Additionally we assessed co-speech and co-thought gesture 

occurrences. 

 

Materials 

Test Figures Two ambiguous test figures were cut out from 

high density foam sheets, similar to Kamermans et al. 

(under review). The figures were designed by Leo Burnett 

(2015) for the “Upside Down” campaign retrieved from 

Google images and further modified by us. Each figure had 

two readily perceivable interpretations (see figure 1). An 

alternate interpretation could be discovered by rotating the 

figure 180 degrees.  

 

  
 

 

Figure 1. Line drawings of the seal/doe, and the 

penguin/giraffe test figure. As can be seen, one 

interpretation always showed the body of an animal and the 

second interpretation the head of a different animal. 

 

Video Recording Performance was recorded using a JVC 

Everio GZ-MG130 camcorder, to assess gesture occurrence 

and inspection of the behavioral data when necessary. 

Demographics and Control Questions Participants 

reported their age, sex, and native language. To assess 

participants’ beliefs about the nature of the experiment the 

following questions were included: “What do you think was 

the purpose of the current study? (If you have no idea, no 

answer is necessary)”, and “What do you think the 

researchers are expecting to discover with the current study? 

(If you have no idea, no answer is necessary)”. Finally, the 

experimenter would explicitly ask participants who reported 

reinterpretation of one or two figures whether they had 

noticed the alternate interpretation during memorization or 

newly discovered it in visual imagery.  

                                                           
2 We failed to obtain age for two participants. 

 

Procedure 
Participants were tested individually and were told that they 

took part in a study about visual memory and memory of 

touch. The experiment consisted of a memorization phase 

and a testing phase. 

In the memorization phase two figures were presented 

successively (order counterbalanced). Participants were 

informed that they would be given 30 seconds to inspect the 

figure and memorize it. In the Visual Condition versus the 

Haptic Condition participants were only allowed to see or 

touch the figure, respectively. For the Haptic Condition 

participants felt the contours of the figure which was 

presented under a card-board box that prevented visual 

inspection of the figure. The respective figure assigned to 

the haptic condition was horizontally attached via velcro-

tape on a wooden base. The wooden base was shown to 

participants as to inform them how the figure would be 

placed on top of it (it was stressed that the wooden base was 

not the object of inspection). Participants were informed not 

to move the figure on the wooden base (experimenter 

ensured that orientation of the figure was not altered, which 

was assessable via an opening in the card-board box at the 

experimenter side). 

After each presentation of a figure, the participants were 

asked what they had seen or felt (depending on condition) 

and the experimenter noted down the response. If 

participants reported a) two or more distinct interpretations 

or b) only the interpretation that belonged to the 180 degree 

alternative orientation, the associated testing phase would be 

skipped as ambiguity was detected prematurely (a) or 

signaled (b) during memorization.  

After memorizing the two figures, in the subsequent 

testing phase participants mentally retrieved the memory of 

each figure consecutively (order of retrieval 

counterbalanced). They retrieved figures with their eyes 

closed, as to ensure that visual input during retrieval was 

consistent between participants. Once participants indicated 

that they had brought back their memory of the respective 

figure, the experimenter would inform them that this figure 

had another interpretation next to the interpretation they 

already gave. Participants were told that the alternate 

interpretation could be discovered by rotating the mental 

image 180 degrees. Participants were given no time 

restrictions in discovering the alternate interpretation 

(reaction times were timed however, but were not of special 

interest).  

 

Performance and Scoring 

An answer was considered correct in case the same 

interpretation was given by another participant in the 

respective condition (visual or haptic) of the memorization 

phase. For example, the answer “cow” for the head (doe) 

orientation of the seal/doe figure in the haptic condition 

would be considered correct if another participant had 

reported the same answer in the memorization phase for the 

haptic condition and the same orientation. For the main 
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confirmatory analysis, we chose for checking answers in the 

congruent modality because the crucial research question is 

about the continuity between perception and imagination, 

and this is distorted if both modalities will track properties 

of objects idiosyncratically. 

Note therefore, participants were primarily their own 

raters in this study, minimizing post hoc experimenter 

decisions. However, similar to our procedure in Kamermans 

et al. (under review) we decided that in two cases answers 

should be counted as correct/incorrect even though these 

specific interpretations were (not) named by other 

participants. Namely, we counted as correct “Walrus/Seal” 

in the haptic condition for the figure seal and the “letter Y” 

(which partially overlapped with “Y stick”) as an incorrect 

combination in the haptic condition for the figure seal. Note, 

that these post-hoc choices do not affect interpretation of the 

results. 

Results 

Interpretations 

In Table 1 all the interpretations are given that overlapped 

between participants in the perception and testing phase 

(and therefore scored correct). 

 

Table 1: Overlapping (re)interpretations 

Visual Condition 
Giraffe 

Doe 

Penguin 

Seal 

 

Deer, Giraffe 

(Baby) cow 

Penguin, Bird 

Seal 

Haptic Condition  

Giraffe 

Doe 

Penguin 

Seal 

Tree, Flower 

Deer, Aeroplane, Bird, Propeller 

Penguin, Fish, Human Being 

Sea Lion, Walrus/Seal*, Bird 
Note. Overlaps between perception during memorization and 

mental retrieval of figures between participants. Asterisk pertain to 

post-hoc decision (1 instance). 
 

Exclusion 

A total of 46 (34%) out of 136 ambiguity detection trials 

were excluded as there was either premature ambiguity 

detection (10/46) or an interpretation was given during 

memorization that did not match the orientation that the 

figure was given in (36/46). However, we will exclude each 

participant data if on any of the two trials within participants 

premature ambiguity detection was obtained as this signals 

awareness of ambiguity during the memorization phase, 34 

participants were excluded (50%). The total sample to 

assess ambiguity detection rates per condition thus consists 

of participants who were not aware in any of the trials of 

ambiguity in the figures during memorization, ensuring that 

ambiguity detection ensued in imagery. Note that such high 

exclusion rates are common in ambiguity detection research 

as to maximally control for ambiguity detection during 

perception rather than imagery (see e.g., Mast & Kosslyn, 

2002). 

 

Descriptives 

Retrieval time Participants in the haptic condition had an 

average of 23.88 (SD=19.51) seconds to provide an 

interpretation or abort attempt. Participants in the visual 

condition took on average 27.68 (SD=21.23) seconds.  

Haptic Imagery vs. Visual Imagery As the descriptives 

show in Table 2, it seems that ambiguity detection is 

possible both when the figure is memorized and identified 

visually as well as through touch alone. Furthermore, four 

participants were able to detect ambiguity in both the haptic 

and visual conditions, and seven participants only detected 

ambiguity in the visual (n = 4) or the haptic (n = 3) 

conditions. Thus data is almost completely symmetrical 

across conditions and our planned within subjects-test for a 

binary outcome reflects this, McNemar p > 0.99. 

  

Table 2: Overall detection rate 

 Visual Haptic 

Doe/Seal 1/12 (8.3%) 6/22 (27.3%) 

Giraffe/Penguin 6/22 (27.3%) 2/12 (16.6%) 

Total 7/34 (20.6%) 8/34 (23.6%) 

 

Haptic-Visual Imagery: Effects of Crossmodal Scoring 
However, it could be noted that since each condition (visual 

vs. haptic) has its own rating system that this could 

affect/distort our interpretation in significant ways. As such 

we performed an additional exploratory re-analysis where 

we counted any interpretation correct if it was named in the 

visual or the haptic memorization phase (see Table 1). This 

revealed a McNemar significance test p = .227, with a 

detection rate of 38.2% for the visual condition and 23.6% 

for the haptic condition (table 3). Thus, note that the more 

lenient scoring system slightly inflated detection rates in the 

visual condition but not to a degree that the null-hypothesis 

could be rejected. 

Table 3: Overall detection rate  

 Visual Haptic 

Doe/Seal 3/12 (25%) 6/22 (27.3%) 

Giraffe/Penguin 10/22 (45.5%) 2/12 (16.6%) 

Total 13/34 (38.2%) 8/34 (23.6%) 

 

Exploratory: Gesture occurrence During testing we 

observed that participants adopted spontaneous gestures 

during the testing phase when retrieving and interpreting the 

figure even though participants kept their eyes closed during 

retrieval. Firstly, participants used co-speech gestures when 

providing an interpretation (often accompanied by a 

description) of the figure 44/68 (64.7%) in the haptic 

condition and slightly less in the visual condition, 36/68 

(52.9%). Perhaps, such co-speech gestures solely fulfill 

communicative purposes, as the interpretation needed to be 

communicated to the experimenter. However, we also found 

that a select few performed gestures in silence (i.e., co-

thought gestures), as-if feeling the contours of the 

previously felt figure (3 participants in the haptic condition) 

and more pointing-and-tracing gestures in the visual 
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condition (n = 3), e.g., tracing the contours of the figure on 

the table. Further note that when premature ambiguity 

detection is controlled for (sample = 34) we found that 20% 

(4/20) of those who gestured in the haptic condition detected 

ambiguity whereas 28.5% (4/14) of those did that did not 

gesture. Furthermore, 23.5% (4/17) of gesturing participants 

in the visual condition detected ambiguity as opposed to 

17.6% (3/17) for non-gesturing participants.  

 

 
 

Figure 2. Example co-thought gesture in haptic trial 

Discussion 

The current results replicate previous research showing 

that ambiguity detection in visual imagery is possible (Mast 

& Kosslyn, 2002; Kamermans et al., under review), i.e., 

when memorizing a figure under a particular percept this 

figure can be discovered to have another interpretation by 

re-inspecting it in visual imagery. This finding further 

extends this research in that ambiguity detection in visual 

imagery is possible without showing participants an 

example of an ambiguous figure after memorization (in 

contrast to Kamermans et al., under review). Further 

research could employ more direct comparisons of the effect 

of providing an ambiguity example or not after 

memorization on ambiguity detection rates (for a discussion 

on this see Peterson et al., 1992). 

More importantly however, we have shown that 

ambiguity detection of a figure in mental imagery is 

possible even when the figure is explored via manual touch 

alone, as evidenced by the approximate 23.6% detection rate 

in the haptic condition (“approximate” barring different 

coding schemes). The important question is whether this 

shows that ambiguity detection was (solely) performed via 

haptic imagery, or whether exploring a figure via touch 

results in visual images upon which reinterpretation could 

be performed. This is a question that this study does not 

address directly.  

However, in speculative vain it is striking that we did not 

find statistically significant differences in a within-subject 

test on ambiguity detection for visually or haptically 

explored figures. If ambiguity detection is solely performed 

in the visual modality of imagination, one would predict that 

having direct visual access to an ambiguous figure would 

support the quality of that imagination - hence inflating 

ambiguity detection - relative to figures that were only 

haptically perceived. However, even bearing this in mind it 

does not exclude that ambiguity detection was not achieved 

via visual imagery.  

On the other hand however, we do find evidence that 

reinterpretation of imagined haptically explored figures is 

likely to involve some haptic processes, or at least at times, 

given that a few participants were manually reenacting 

manipulating an (imagined) figure. This directly relates to 

eye-movements (i.e., “ocular reenactments”) during visual 

imagery. These eye-movements reenact perceptual 

affordances of previously seen figures. In the current 

example, manual reenactments seem to exploit manual 

affordances of previously felt figures. In sum, we find it an 

attractive hypothesis that - at minimum - a cross-modal 

visual-haptic imagination is performed when reinterpreting 

previously felt figures. This is in par with a host of studies 

showing that haptic and visual perception are co-informative 

(e.g., Lacey, Campbell. Sathian, 2007; Wallraven, Bülthoff, 

Waterkamp, van Dam, & Gaissert, 2014). 

 

A New Imagery Debate? 

As mentioned, discovery of a novel re-interpretation of a 

visual imagining has been regarded as supporting the Quasi-

pictorial account of visual imagery (Mast & Kosslyn, 2002) 

and refuting the Descriptivist assumption that visual 

imagery is necessarily fixed under an original perceptual 

ascription (Chambers & Reisberg, 1985; Pylyshyn, 2001). 

However, on our reading, ambiguity detection can also be 

accounted for within an Enactive framework, where the 

achievement reinterpretation requires a skill-full act that is 

inherently unstable because of the lack of direct access 

(O’regan & Noe, 2001; Thomas, 1999). This constraint of 

imagery as inherently unstable may actually have some 

explanatory power over the Quasi-pictorial account. Note, 

for example that only a small portion (not more than 38%) 

of the current sample is able to reassign meaning to a mental 

imagining 
3
. This is striking as there is reason to believe that 

the current figures are relatively easy and memorized up to a 

point that participants can accurately draw them, as previous 

research with shorter memorization times and more complex 

figures has shown (Chambers & Reisberg, 1985). Thus, if it 

were the case that ambiguity detection depends on internally 

represented pictorial information, reinterpretation rates 

should be much higher. If however, the achievement of 

gaining access to a previously seen or felt object via 

imagining consists in an effortful skill-based employment of 

a coalition of sensory systems, then it is not surprising that 

ambiguity detection is as difficult as it is. It does not require 

a mere retrieval and re-inspection of internally represented 

visual-pictorial imprints, but an attunement to sensori-motor 

                                                           
3Studies generally show low ambiguity detection rates across a 

range of more and less complex figures (detection rates are always 

less than 50%; Brandimonte & Gerbino, 1993; Hyman & Neisser, 

1991; Peterson, Kihlstrom, Rose, & Glisky, 1992; Mast & 

Kosslyn, 2002) 
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contingencies when interacting with an object. Further note, 

that the proposed multimodality of imagery does not apply 

to haptic ambiguity detection alone, as  our findings show 

that even in cases where participants reinterpret a figure in 

visual imagery, non-communicative gestures are recruited 

that exploit affordances of the figure as if it were visually 

present (e.g., by tracing the contour on the table during 

retrieval with eyes closed). 

Before concluding, some shortcomings need to be shortly 

stressed (as to invite further research). Firstly, no causal 

relation can be inferred from manual action and haptic 

imagery at this point. We are currently performing a study 

that manipulates manual enactment to ascertain its role in 

(haptic) imagery. Secondly, although results signal that 

haptic processes may be directly involved in ambiguity 

detection of previously felt figures, the current design does 

not exclude the possibility that ambiguity detection is purely 

a visual achievement. This is because haptic perception 

might induce visual construals which allow for visual 

reinterpretation. Additionally, as mentioned by a reviewer, 

current participants remembered two figures that were alike 

in their representation of an animal body/head. This likeness 

might interfere with memorization of both figures, perhaps 

making comparison between haptic/visual conditions more 

problematic. 

To conclude, we have provided evidence that 

reinterpretations in mental imagery can be achieved when 

figures are memorized visually or via manual touch alone. 

We have argued on the basis of a) the observed manual 

enactments during imagery, as well as b) the lack of 

observed differences between visual and haptic ambiguity 

rates, that ambiguity detection might not be purely visual-

pictorial. Instead, we have speculated that visual and/or 

haptic imagery is mediated by a pre-reflective understanding 

of the sensori-motor relations that would hold were the 

object present.  
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Abstract

Categorical and coordinate stimulus processing were hypoth-
esized by Kosslyn (1987) to be lateralized visual tasks, dif-
ferentiated by task-relevant spatial frequencies. Slotnick et al.
(2001) directly tested Kosslyn’s hypothesis and concluded that
the lateralization presents only when tasks are sufficiently dif-
ficult. Our differential encoding model is a three layer neural
network that accounts for lateralization in visual processing
via the biologically plausible mechanism of differences in con-
nection spread of long-range lateral neural connections (Hsiao,
Cipollini, & Cottrell, 2013). We show that our model accounts
for Slotnick’s data and that Slotnick’s analysis does not con-
vincingly explain their results. Instead, we propose that Koss-
lyn’s initial hypothesis was based on an incorrect assumption:
categorical and coordinate stimuli are not solely differentiated
by spatial frequencies. The results that our model captures
cannot be reproduced by Ivry and Robertson’s (1998) Dou-
ble Filtering by Frequency theory, which is driven solely by
lateralized spatial frequency processing.

Keywords: Differential encoding; hemispheric asymmetry;
spatial frequency processing; categorical vs. coordinate

Introduction
The human brain is composed of two largely disconnected
hemispheres that communicate via a bridge of neural con-
nections known as the corpus callosum. The level of relative
disconnection and redundancy suggests that, for some cogni-
tive processes, it may be advantageous for each hemisphere
to specialize and reduce redundancy. This functional special-
ization, or “lateralization,” occurs in many diverse cognitive
facilities in humans (Stephan et al., 2003) and non-humans
alike (Rogers & Andrew, 2002). Examples in humans include
fine motor skills and language processing, both of which are
left hemisphere dominant (Knecht et al., 2000). Of particular
interest to us is visual lateralization. Past studies have shown
visual lateralization in processing stimuli ranging from fre-
quency gratings to facial recognition (e.g. Ivry & Robertson,
1998; Sergent, 1985).

Navon’s (1977) hierarchical letters are one visual stimu-
lus showing lateralization. These consist of a large, “global”
letter (e.g., “T”) that is composed of small, “local” letters
(e.g., “F”). Sergent (1982) showed an advantage in identify-
ing the local level target (the letter F in the above example)

presented when flashed in the right visual field/ left hemi-
sphere (RVF-LH), and the reverse (the letter T in the above
example) in the left visual field/ right hemisphere (LVF-RH).
She concluded that the LH performs better with high spatial
frequency (HSF) stimuli, whereas the RH does better with
low spatial frequency (LSF) stimuli. Kitterle, Christman, and
Hellige (1990) directly tested this hypothesis with frequency
gratings and showed that the lateralization was driven by task
demands, rather than purely by stimulus properties.

Inspired by Sergent’s (1982) theory, Ivry and Robertson
(1998) proposed their Double Filtering by Frequency (DFF)
theory to explain these asymmetric processing results. DFF
theory proposes that the hemispheres identically first select
the frequency bands relevant to the task, but then are biased
so that the left hemisphere preferentially processes HSFs, and
the right hemisphere LSFs. DFF theory also accounts for data
suggesting that frequency processing differences between the
hemispheres are not absolute, but instead are relative to the
frequency band relevant for solving the task (Christman, Kit-
terle, and Hellige, 1991). Finally, their model accounts for the
categorical and coordinate spatial relations proposed by Koss-
lyn (1987) and Kosslyn, Koenig, Barrett, Tang, and Gabrieli
(1989), described below. However, there is no neurological
basis for the core mechanisms of the DFF theory, nor is there
a developmental explanation of how or why this phenomenon
would emerge (see Cipollini, 2014 for further discussion).

Kosslyn (1987) and Kosslyn et al. (1989) argued that hu-
mans process visual stimuli using two distinct types of spatial
relations. Coordinate relations rely on an absolute, metric ba-
sis; for example, the statement “the glass of water is 3 inches
from my hand” defines a coordinate judgment of one’s hand
and the glass of water. In contrast, categorical relations rely
on abstract, relative terms. The statement “the glass of wa-
ter is on top of the table” does not tell us exactly where the
glass is, only its relative position to a table. In his 1987 pa-
per, Kosslyn observed a RVF-LH advantage for categorical
relation judgments and a LVF-RH advantage for coordinate
relation judgments in response time. Other work (e.g. Hel-
lige & Michimata, 1989) provided further support for this hy-
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pothesis with more varied types of stimuli (e.g., a bar and dot
stimulus).

However, Sergent (1991) found that this lateralization ef-
fect presented only when stimuli were degraded, and several
analyses have noted that the lateralization only presents in
right-handed people (Slotnick, Moo, Tesoro, & Hart, 2001).
Other researchers likewise found weak or inconclusive evi-
dence for lateralization of categorical and coordinate stim-
uli, especially for the LH advantage on categorical stimuli
(Okubo & Michimata, 2002). Nevertheless, researchers gen-
erally agree that a distinction exists, even if it is weaker than
originally thought (see Jager & Postma, 2003 for a review).

In light of these conflicting data, Kosslyn and colleagues
now argue that lateralization in categorical and coordinate
stimuli results from a differential frequency processing, po-
tentially based on lateralization in neuronal receptive fields
(see Baker, Chabris, & Kosslyn, 1998; Kosslyn, Chabris,
Marsolek, & Koenig, 1992). In support of this hypothesis,
Okubo and Michimata (2002) showed that the RH coordinate
advantage, but not the LH categorical advantage, was elimi-
nated by contrast balancing, which removes low spatial fre-
quency information without degrading stimuli.

Slotnick et al. (2001) revisit Categorical / Coordinate
Of particular interest here are the experiments and results
of Slotnick et al. (2001). In past experiments, researchers
flashed stimuli in one visual field or the other, leaving room
for interhemispheric interference. To isolate lateralization ef-
fects, Slotnick et al. ran a clinical study on 134 subjects, each
of whom had at least one hemisphere temporarily deactivated
by an intracarotid injection of sodium amobarbital.

Using the same stimuli as in Kosslyn et al. (1989), Slot-
nick et al. (2001) sought to reproduce their results in sub-
jects with deactivated hemispheres. In addition, they added
a new stimulus type, paired squares, which was designed to
resist “categorization” of coordinate tasks, whereby a subject
on later trials during an experiment learns a coordinate task
(e.g., is the plus more than two inches from the minus) and
turns it into a categorical task (Slotnick et al., 2001). This
explanation had been proposed to explain the weakening of
the RH advantage on coordinate stimuli. The paired squares
coordinate stimulus forces the subject to make a direct metric
comparison between the two parts of the stimulus.

Unlike the original paper, Slotnick et al. (2001) mea-
sured results by classification error, rather than reaction time.
Though the results generally aligned with Kosslyn’s hypothe-
sis, one coordinate experiment did not show the expected RH
dominance, instead showing lateralization opposite of that in
the original paper. The authors noted that distances between
components of their figures (e.g. the blob and dot), were
larger in their experiments than in Kosslyn et al. (1989). Dif-
ficulty has been reported to modulate lateralization in other
experiments (e.g. Sergent, 1985), and so they posited this
made the task too easy to show proper lateralization. Con-
sequently, post-hoc they stratified the tasks by difficulty and
found that only when a task is sufficiently difficult does later-

alization arise as expected.

Differential Encoding Model

Figure 1: Taken from Hsiao, Cipollini, and Cottrell (2013),
this diagram shows the autoencoder models with varying con-
nection spreads and symmetric connections. Notice the left
hemisphere’s hidden units connect to a more spread out set of
neurons on average, while maintaining the same number of
connections.

Competing with DFF theory is our Differential Encod-
ing (DE) theory (Hsiao, Shahbazi, & Cottrell, 2008; Hsiao,
Cipollini, & Cottrell, 2013). It is inspired by an anatomical
difference in the auditory system’s long range lateral connec-
tions (LRLCs). On average, a LH neuron connects to neigh-
bors generally farther from itself than the RH neurons do
(Galuske, Schlote, Bratzke, & Singer, 2000). The DE model
hypothesizes these LRLCs as the driving factor behind visual
lateralization as well. Compared to the DFF theory, the DE
model has the advantage of having neurodevelopmental and
neuroanatomical plausibility (Cipollini, 2014).

Computationally, the Differential Encoding model is a
standard 3-layer neural network which can be thought of as a
recurrent neural network unrolled one step in time. The first
set of connections is a sparse autoencoder, trained on natural
images, to represent how a stimulus might be transformed in
the early stages of the brain using low level processing such
as Gabor filters. Each neuron in the autoencoder corresponds
to a spatial location, and it connects to 5 other neurons gen-
erated randomly from a Gaussian centered around the neuron
itself. The LH and RH networks vary by the standard de-
viation, or sigma parameter, of the Gaussian, to mimic the
lateralized connection spread of the LRLCs, seen in Figure 1.

Note that this differs from a Gaussian receptive field. A
network with Gaussian receptive fields has fixed connections,
and the strength of the connections are determined by a Gaus-
sian. In the DE model, the lateral connections themselves
are stochastic and determined by randomly sampling from a
Gaussian, and the strength of the connections are learned by
training.

In Hsiao, Cipollini, and Cottrell (2013), the authors show
that the autoencoder in the DE model reconstructs natural im-
ages in accordance with the predictions of Sergent (1982).
Specifically, the RH model reconstructs low spatial frequency
(LSF) components of a stimulus better, whereas the LH
model reconstructs HSF components better.

Once trained, each hemisphere’s hidden units are then con-
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Figure 2: These are the stimuli from Slotnick et al. (2001). Note that paired squares only had a coordinate task, whereas
blob/dot and plus/minus have both categorical and coordinate.

nected to a task-specific output unit that is trained by the delta
rule to learn some task. In this way, the information repre-
sented by the hidden layer is tested as to what tasks it is best
at. We have found in many experiments that the LH model is
better at tasks that require HSFs, and vice-versa for the RH
model (Hsiao, Cipollini, & Cottrell, 2013).

In addition to the autoencoder properties outlined above,
the model has accounted for Sergent’s (1982) data, as well as
Kitterle, Christman, and Hellige’s (1990) data showing task
dependence of lateralization (Hsiao, Cipollini, & Cottrell,
2013). This suggests the DE model has the very frequency
encoding properties that Sergent (1982) hypothesized. As
Kosslyn and colleagues have suggested (e.g., Baker, Chabris,
& Kosslyn, 1999), the distinction between categorical and
coordinate stimuli may stem from lateralized frequency pro-
cessing. Therefore, we test the network on Slotnick et al.
(2001)’s stimuli to further establish the relationship between
our model and frequency lateralization, as well attempt to
reach parity with the DFF on these stimuli.

Materials and Methods
Our stimuli mimic those of Slotnick et al. (2001)
The stimuli used in the 2001 study can be seen in Figure 2.
There are three types of stimuli: blob/dot, plus/minus, and
paired squares. All three stimulus types involve coordinate
tasks. Blob/dot requires an evaluation of how far apart the
blob and dot are, and plus/minus likewise requires an eval-
uation of how far apart the plus and minus are. The paired
squares task, in contrast, requires judging whether the two
sets of paired squares are equidistant or not. The former two
stimulus types also have categorical tasks. The blob/dot cate-
gorical task requires evaluating whether the dot is on the blob
or off of it, and the plus/minus categorical task requires eval-
uating whether the plus is on the right or the left. There is no
categorical task for paired squares.

For the plus/minus and blob/dot coordinate stimuli, “near”
configurations were those where the distance between the
plus and minus or blob and dot measured smaller than a refer-
ence distance of 2 inches; the “far” configurations were larger
than 2 inches. In our model, the reference distance was 5.5
and 6 pixels for plus/minus and blob/dot respectively.

Slotnick et al. (2001) hypothesized that these tasks are
harder when the distance between stimulus components are
close to the reference distance of 2 inches. They defined
“hard” configurations as those where the distance between

stimulus components fell within the range of [1, 3] in inches,
i.e. within one inch from the reference distance of 2 inches.
“Easy” configurations were those outside of this range. In our
model, “hard” configurations were those where the distance
fell within 2 pixels of the reference distance, and “easy” were
the other stimuli. Stratifications for paired squares coordinate
and the two categorical tasks were less principled and will be
explored below.

Simulation Procedure
The simulation was implemented in MATLAB. All code is
open source1. Input images were implemented as bitmaps,
following the images published in the original paper as best
possible. To accomplish this, plus/minus and paired squares
images were 34x25 pixels. Due to the need for increased
resolution, blob/dot images were 68x50 pixels. Due to the
varying resolutions, the experiment sizes had different hyper-
parameters. Of particular interest, the 34x25 images had a RH
and LH standard deviation (sigma) of 4 and 10 pixels respec-
tively; the 68x50 had 4 and 15. In both cases, each neuron
had five connections per hidden unit, with one hidden unit
corresponding to each pixel of the image. Our train and test
data were the same, so to prevent overfitting, we used heavy
regularization. Specifically, we used a relatively high amount
of dropout of 0.7 (Srivastava, Hinton, Krizhevsky, Sutskever,
& Salakhutdinov, 2014) and introduced noise on the input.

The human experiment used 100 LH subjects and 124 RH
subjects; however, 54 hemispheres of patients deemed abnor-
mal or otherwise compromised (e.g. those with parietal lobe
tumors) were excluded (Slotnick et al., 2001). We followed
the same analyses done in the human experiment, and in an at-
tempt to roughly match statistical power, we instantiated each
hemisphere in our computational model 100 times. Instantia-
tions with outlier performance were discarded, so there were
slightly fewer than 100 instantiations for the final results.

Results and Discussion
The output of the DE model is a real-valued number be-
tween 0 and 1, where 0 and 1 represent the target labels (e.g.
off/on for categorical blob/dot). Error is measured as the sum-
squared error (SSE) between the model’s output and the true
label. In Slotnick et al. (2001), they measure mean percent
error in classification. The different measurements means y-

1https://github.com/guruucsd/DifferentialEncoding/releases/tag/
slotnick
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Figure 3: Differential Encoding (left) results follow the overall Slotnick et al. (2001) results for task x hemisphere interactions,
which can be seen as the slope of each line. Note that since hemispheric performance, not absolute performance, was relevant,
y-axes were re-scaled to emphasize slope.

axes are not directly comparable, but in this experiment we
are concerned with the relative performance of hemispheres
on each task. We simply compare the slopes in Figure 3 to
see how well the DE model fits the human data.

From Figure 3, it is clear that the DE results do not fol-
low the human data perfectly, but the key concepts are cap-
tured. Categorical blob/dot, coordinate blob/dot, and categor-
ical plus/minus all showed the expected LH advantage. Co-
ordinate plus/minus shows no LH advantage (F1,195=0.0669,
p > 0.75), and categorical plus/minus has a stronger LH lat-
eralization than it (F1,391=12.96, p <0.001). Crucially, the
anomalous result in the original paper persists: categorical
blob/dot is not more LH-dominant than coordinate blob/dot
(F1,396=1.200, p >0.25), as it was in Kosslyn et al. (1989).

Paired squares on first glance appears to have reverse lat-
eralization as in the human data. However, paired squares
was extremely volatile, and that advantage disappears or re-
verses spontaneously. Statistically, lateralization was non-
significant: there are large error bars for paired squares,
and the repeated-measures anova of this data reveals this
same non-significance (F1,198=0.115, p >0.9). Slotnick et al.
(2001) reported this stimulus had only marginal statistical sig-
nificance (p <0.1) in their results as well. Therefore, while
we plan to investigate this stimulus further, for now, we are
less concerned that it did not show LH dominance.

The middle and bottom rows in Figure 3 show the results of
the human data and the DE model for easy and hard subsets
respectively. Our model replicates the results well. Before
further analyzing the results, we take a closer look at Slotnick

et al.’s (2001) difficulty stratification, to understand what re-
lationships across difficulty are crucial to replicate.

Revisiting Slotnick et al. (2001)
Slotnick et al. (2001) directly measured lateralization in sub-
jects who had a hemisphere temporarily deactivated as part of
a presurgical evaluation for treatment of intractable epilepsy.
This meant the authors only ran their experiments once.
When their data contradicted Kosslyn’s results, they ran a
post-hoc analysis of the data to explain their results. The cru-
cial takeaway was that lateralization presented only if the task
is difficult enough.

We find reasons to doubt Slotnick et al.’s conclusions.
First, there are critical inconsistencies in their figures. If the
easy and hard instances of a task both lateralize in the same
direction, then combining all trials together should as well.
Yet, as shown in Figure 3, coordinate plus/minus overall does
not lateralize, though its easy and difficult subsets did. This
discrepancy is never addressed in their paper.

In addition, most of the stratifications between easy and
hard were not built in a principled manner and therefore lack
validity. Slotnick et al. (2001) state that the stratification of
the paired squares task was an empirical heuristic, as there
was no neat way of differentiating easy and hard stimuli. Sim-
ilarly, they note that no analogous concept of difficulty exists
for categorical stimuli, so they just used the same division as
their coordinate counterparts.

The coordinate blob/dot results are both internally consis-
tent and well-principled, but the other tasks are not. The over-
all results of Slotnick et al. (2001), matched by our compu-
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Figure 4: Frequency preferences of the DE model for each task. Y-axis is network accuracy, while x-axis marks the center of
the frequency window on which a bandpass filter is applied. If spatial frequencies drive categorical and coordinate processing,
we should see better performance on categorical tasks at HSFs and vice-versa at LSFs. We do not see this pattern.

tational modeling, are not adequately explained by difficulty
stratification. We now look for an alternate explanation.

Spatial frequency selectivity within the DE model
Kosslyn and colleagues (e.g. Baker, Chabris, & Kosslyn,
1999) concluded that categorical and coordinate processing
lateralized according to preferential frequency processing. As
originally hypothesized in Sergent (1982), the LH is thought
to outperform the RH in processing HSFs and vice-versa
for LSFs. Numerous experiments have shown lateralization
as a function of filtering stimuli to specific frequency win-
dows (e.g. Sergent, 1985). The Differential Encoding model
has also shown this same differential frequency processing
(Hsiao, Cipollini, & Cottrell, 2013).

To examine whether spatial frequency differences drove
results on these five tasks, we tested the model with differ-
ent bandpass filters for each task. Specifically, all networks
trained on the same, unchanged image patches to learn the
same features, simulating typical visual experience. How-
ever, the perceptron was trained and tested on stimuli run
through a bandpass filter window of size four and eight CPI,
for 34x25 and 68x50 images respectively. This would allow
us to empirically deduce which frequencies the network best
responded to. Results were agnostic to a host of parame-
ter choices, including sigma, dropout, and bandpass width
(within reason), so we believe the results are general to the
task, and not specific to anything about our network setup.

Per Kosslyn’s hypothesis, we expected to see lateralization
in accordance with task type: there should be increased cate-
gorical performance on HSFs and likewise for coordinate and
LSFs. Figure 4 shows the results. Coordinate paired squares

is almost parabolic with a minimum around 10 CPI. Coordi-
nate plus/ minus is largely agnostic to frequencies, whereas
categorical shows bimodal preference, with the global mini-
mum at HSFs. Categorical blob/dot performed equally well
at the windows centered from 10 to 18 CPIs, whereas coor-
dinate performed best in the window centered at 10 CPIs and
was locally parabolic around that area. Beyond roughly 20
CPI, critical image features are lost and in both cases the net-
works perform poorly.

There is no unified trend of stimulus type and frequency.
Considering the DE model both captures the critical relation-
ships outlined in Slotnick et al. (2001) and accounts for spa-
tial frequency filtering (Hsiao, Cipollini, & Cottrell, 2013), it
appears something besides frequency underlies the categori-
cal and coordinate dichotomy. We plan to explore this further
via contrast balancing (Okubo & Michimata, 2002).

Conclusion
We show in this paper that the DE model both replicates hu-
man data on the categorical and coordinate dichotomy and
doesn’t behave strictly in accordance with spatial frequencies.
This calls into question the hypothesis about spatial frequen-
cies driving coordinate and categorical lateralization. It also
provides a point of differentiation between DFF theory and
the DE model. Limited to spatial frequency information, DFF
would be unable to replicate the conflicting data in Slotnick
et al. (2001) as the DE model does.

In addition, we have shown in other experiments that DE
models of a larger sigma encode more information at higher
spatial frequencies, and vice-versa for smaller sigmas. Fur-
thermore, stimulus size mediates this relationship: as image

2935



size increases, so too does the point where the LH networks
outperform the RH networks. We are pursuing this as an ex-
planation for the relative frequency effect, noted in Christ-
man, Kitterle, and Hellige (2001).

The DE model already accounts for faces and the categor-
ical and coordinate results. If we can account for the relative
frequency effect, we have superseded the DFF with a model
that is biologically grounded and is informative about exper-
iments to run in biology and psychology.
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Abstract 

Refutation texts are beneficial for removing misconceptions 
and supporting comprehension in science. Whether these 
beneficial effects hold true in the domain of statistics is, 
however, an open question. Moreover, the role of refutation 
texts for the accuracy in judging one’s own comprehension 
(metacomprehension accuracy) has received little attention. 
Therefore, we conducted an experiment in which students with 
varying levels of statistical misconceptions read either a 
standard text or a refutation text in statistics, judged their text 
comprehension, and completed a comprehension test. The 
results showed that when students read the standard text, 
having more misconceptions resulted in poorer text 
comprehension and more inaccurate metacomprehension as 
indicated by overconfident predictions. In contrast, when 
students read the refutation text, the number of misconceptions 
was unrelated to text comprehension and metacomprehension 
accuracy. Apparently, refutation texts help students to pay 
attention to inaccuracies in their knowledge and, thereby, can 
promote self-regulated learning from texts. 

Keywords: metacomprehension accuracy; misconceptions; 
procedural and conceptual understanding; text comprehension 

In higher education, statistics has become a central part in 

many fields of study to enable students to deal with 

quantitative information (Ben-Zvi & Garfield, 2004). At the 

same time, in higher education, students are increasingly 

expected to engage in self-regulated learning (Cassidy, 

2011). For example, in statistics, students often need to 

advance their knowledge by reading statistics textbooks. 

However, such learning can be challenging, especially when 

students have to understand complex statistical concepts, 

such as covariance, about which they frequently have false 

ideas in the form of misconceptions. Such statistical 

misconceptions differ in fundamental ways from the 

normatively correct conceptions and, thus, can strongly 

hamper the comprehension and application of statistics (Liu, 

2010). 

The Role of Misconceptions for Text 
Comprehension and Metacomprehension  

Text comprehension is a process by which learners actively 

construct a mental representation of the information provided 

in a text (Kintsch, 1998). As usually not all possible relations 

are explicitly stated in a text, the construction of a mental 

representation requires learners to use their prior knowledge 

to infer within-text and knowledge relations (McNamara & 

Magliano, 2009). 

However, when learners possess inaccurate prior 

knowledge in the form of misconceptions, comprehension 

can be hampered because misconceptions can trigger false 

inferences. For example, Kendeou and van den Broek (2005) 

examined the online processes taking place when learners 

with misconceptions read texts. Their findings showed that 

learners with misconceptions used and integrated their prior 

knowledge with textual information as did learners without 

misconceptions. Yet, the content of their inferences was 

contaminated by their misconceptions. This, in turn, resulted 

in an inappropriate mental text representation after reading. 

In line with these findings, research in reading and science 

education shows that misconceptions often hinder memory 

and comprehension of text (see, e.g., Guzzetti et al., 1993). 

When learning from reading texts, it is also important that 

learners accurately monitor and judge their own 

comprehension, which is known as metacomprehension 

accuracy (Dunlosky & Lipko, 2007). Accurate 

metacomprehension affects the extent to which learners 

effectively self-regulate their learning. For example, only a 

learner who accurately monitors that a text is not yet 

sufficiently understood to perform well on a comprehension 

test might decide to further study the material (e.g., Thiede, 

Anderson, & Therriault, 2003). Research, however, indicates 

that learners are often overconfident when monitoring their 

text comprehension. This is particularly true for learners’ 

predictions, that is, their judgments of comprehension after 
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they have read a text but before they have taken a 

comprehension test (e.g., Maki et al., 2005). 

Recently, Prinz, Golke, and Wittwer (2017) found that 

misconceptions produced overconfident predictions. More 

precisely, their results showed that statistical misconceptions 

not only impeded the comprehension of a statistics text but 

also led to inaccurate self-assessments of text comprehension 

as indicated by overconfident predictions. Apparently, when 

learners have misconceptions, they are likely to construct a 

flawed mental text representation. At the same time, when 

self-assessing their text comprehension, learners tend to 

focus on the amount of textual information they can retrieve 

from memory while neglecting whether this information is 

correct. Consequently, learners with misconceptions are 

likely to overestimate their actual comprehension (see also 

Dunlosky, Rawson, & Middleton, 2005). 

In sum, research indicates that learning from standard texts 

mainly elicits superficial understanding and monitoring when 

learners hold misconceptions. To overcome these difficulties, 

it is important that learners become aware of their 

misconceptions and revise their understanding, a process 

called conceptual change. 

The Role of Refutations for Text 
Comprehension and Metacomprehension  

Conceptual change occurs when learners modify their 

existing prior knowledge to include new information (e.g., 

Chi, 2008). This requires that the existing prior knowledge is 

identified as inadequate and the new information is 

understandable, plausible, and useful (Posner et al., 1982). 

Usually, conceptual change is demanding because a strongly 

held misconception impedes the recognition of its 

inconsistency with the correct information provided in a text 

(Otero & Kintsch, 1992). A promising instructional approach 

to inducing conceptual change is the use of refutation texts 

(Guzzetti et al., 1993). Refutation text passages typically 

comprise three elements: First, a commonly held 

misconception is described. Second, a cue that explicitly 

states that the misconception is in fact inaccurate is presented. 

Third, the scientifically correct explanation that directly 

refutes the misconception is provided (Tippett, 2010). 

Research has shown that refutation texts in science 

domains are indeed more beneficial for restructuring 

incorrect prior knowledge than standard expository texts 

(e.g., Ariasi & Mason, 2011; see also Guzzetti et al., 1993; 

Tippett, 2010). Studies that investigated the processes taking 

place when reading refutation texts found that refutation texts 

are effective because misconceptions and correct conceptions 

are presented in close proximity, thereby increasing the 

likelihood of simultaneous activation. Only after such 

coactivation, further conceptual change processes, like the 

experience of a cognitive conflict, the evaluation of one’s 

current conceptions, and the establishment of coherence in 

one’s knowledge, can take place (e.g., Ariasi & Mason, 2011; 

van den Broek & Kendeou, 2008). Whether refutation texts 

prove effective in promoting conceptual change and 

enhancing comprehension also in statistics is not yet clear. 

Learning in statistics typically involves the acquisition of 

both concepts and procedures (Ben-Zvi & Garfield, 2004). 

Therefore, it is also an open question whether refutation texts 

not only benefit the learning of statistical concepts but also 

the learning of statistical procedures. 

With regard to metacomprehension, the role of refutation 

texts is largely under-researched. An exception is a study 

conducted by van Loon et al. (2015) that revealed no 

beneficial effects of refutation texts on monitoring accuracy 

because learners remained overconfident when predicting 

their comprehension. However, the texts about 

misconceptions used in the study were rather short and there 

was only one comprehension question per text. Therefore, 

predictions were related exclusively to the comprehension of 

information about a single misconception. Hence, it is 

unclear whether refutation texts would promote 

metacomprehension accuracy when judgments do not focus 

exclusively on misconceptions. In literature on conceptual 

change, it has often been theorized that refutation texts 

increase learners’ metacognitive awareness of their own 

conceptions in relation to the scientific conceptions (e.g., 

Ariasi & Mason, 2011). Thus, it seems plausible to assume 

that refutation texts can support learners in reflecting about 

their misconceptions, thereby increasing metacomprehension 

accuracy. 

The Present Study 

We investigated to what extent a refutation text compensates 

for the detrimental impact of misconceptions on text 

comprehension and metacomprehension accuracy in the 

domain of statistics. More specifically, we focused on the 

topic of covariance and examined comprehension and 

metacomprehension accuracy with respect to both conceptual 

and procedural aspects of covariance. 

The first research question addressed whether the type of 

text would moderate the effect of misconceptions on text 

comprehension. We expected that when reading a standard 

text, more misconceptions would lead to poorer conceptual 

and procedural text comprehension, whereas this relationship 

would not be apparent when reading a refutation text. 

The second research question concerned whether the type 

of text would moderate the effect of misconceptions on 

metacomprehension accuracy. We hypothesized that when 

reading a standard text, more misconceptions would lead to 

greater overestimation of conceptual and procedural text 

comprehension, whereas this detrimental effect would not be 

apparent when reading a refutation text. 

Method 

Participants and Design 

A total of N = 53 university students (M = 25.04 years, SD = 

2.42, 59% female) participated in this study. The study had 

2938



two independent variables. The first independent variable 

was categorical and referred to the type of text: Participants 

read either a standard text or a refutation text about the 

statistical concept of covariance. The second independent 

variable was metric and referred to the number of 

misconceptions about covariance. Dependent variables were 

text comprehension and metacomprehension accuracy 

referring to conceptual and procedural aspects of covariance. 

Material 

The statistics text about covariance was adapted from a 

statistics textbook written by Bortz and Schuster (2010). This 

text existed in two versions: a standard text version and a 

refutation text version. Both versions addressed conceptual 

aspects of covariance such as its different directions, 

explained procedural aspects of covariance such as how it is 

calculated, provided the formula for computing covariance, 

and contained three graphs to illustrate positive, negative, and 

no covariance. In addition, the refutation text contained 

information challenging four common misconceptions about 

covariance (i.e., covariance implies causality, covariance is a 

standardized statistic, covariance is related to the slope of the 

fit line, and zero covariance proves the absence of any 

association; see, e.g., Prinz et al., 2017). More precisely, for 

each misconception, the three typical elements of a refutation 

text passage were provided: First, the misconception was 

described. Second, the incorrectness of the misconception 

was explicitly stated. Third, the scientifically correct 

explanation was given (Tippett, 2010). In contrast, the 

standard text only provided the scientifically correct 

explanation for each misconception. Without the graphs and 

the formula, the standard text included 515 words and the 

refutation text included 638 words. We did not equate the 

length of the two text versions to keep the manipulation 

unconfounded with other variations (e.g., the inclusion of 

additional or repetitive information in the standard text; cf., 

e.g., Diakidoy, Mouskounti, & Ioannides, 2011). 

Measures 

Misconceptions Misconceptions about covariance were 

assessed by 15 questions, with each question addressing one 

particular misconception. We collected these misconceptions 

on the basis of a comprehensive literature review (Prinz et al., 

2017). For example, one question referred to the 

misconception that covariance does not depend on 

measurement units but represents a standardized statistic: 

In a study, sports scientists from a university determined 

the covariance between the height and the time for a 100-m 

dash of 20 sprinters. In his calculation, sports scientist A 

quantified time in seconds. When his colleague, sports 

scientist B, checks again, he quantifies time in 

milliseconds. Which of the following statements about the 

covariances calculated by the two sports scientists is 

correct? 

☐  The two sports scientists will receive the same 

covariance because it does not matter if they use 

different measurement units (misconception). 

☐  Both calculations will yield no covariance because one 

cannot calculate covariance from time data (wrong). 

☐  No statement about the two covariances can be made 

because it is unknown if the variables time and height 

are linear (wrong). 

☐  Sports scientist B will obtain a higher covariance than 

sports scientist A because milliseconds yield bigger 

numbers than seconds (correct). 

All questions had a single-choice format with four response 

options. One option represented the correct answer, one 

option represented the particular misconception, and the two 

remaining options represented incorrect answers but not a 

particular misconception. The number of misconceptions was 

determined by counting how many times participants selected 

the response option that represented a misconception. Thus, 

they could record a maximum number of 15 misconceptions. 

Text Comprehension Text comprehension referred to both 

conceptual and procedural comprehension of covariance. 

Conceptual comprehension was assessed by eight inference 

questions that had a single-choice format with four response 

options. Of the eight questions, four questions addressed 

misconceptions about covariance as already described. These 

were the four misconceptions that were targeted in the text. 

For these questions, one response option represented the 

correct answer, one response option represented the 

particular misconception, and the two remaining response 

options represented incorrect answers but not a particular 

misconception. Another four questions addressed further 

conceptual attributes of covariance but not specifically 

misconceptions. For these questions, one response option 

represented the correct answer and three response options 

represented incorrect answers but not a particular 

misconception. The participants received 1 point for each 

correct answer. Thus, they could achieve a maximum number 

of 8 points in the conceptual comprehension test. 

Procedural comprehension was assessed by four open-

ended questions that required the participants to perform 

calculations regarding covariance. They received 1 point for 

each correct answer. Thus, they could achieve a maximum 

number of 4 points in the procedural comprehension test. 

Interrater agreement on the procedural comprehension 

questions was high, Cohen’s κ = .98, 95% CI [0.95, 1.00]. 

To facilitate the interpretation of participants’ performance 

on the conceptual and procedural comprehension questions, 

we converted the number of conceptual and procedural 

comprehension questions correct into percent correct. 

Metacomprehension Accuracy Before completing the 

comprehension questions, participants predicted the number 

of questions they would presumably answer correctly. They 

made their predictions for the conceptual and procedural 
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questions separately. Metacomprehension accuracy was 

calculated by taking the signed difference between 

participants’ judged number of questions correct (converted 

into percent correct) and their actual number of questions 

correct (converted into percent correct). Hence, a positive 

value indicated overconfidence because participants would 

assume to answer more comprehension questions correctly 

than they actually did. For example, a value of +.10 means 

that participants assumed to provide 10% more correct 

answers to the questions than they actually did. In contrast, a 

negative value indicated underconfidence and a value of zero 

indicated a perfectly accurate judgment. 

Procedure 

In the experiment, first, the participants completed the 

misconceptions test about covariance. Second, they 

accomplished a reading skills test serving as a filler task to 

remove the contents of the misconceptions test from working 

memory. Third, the participants read the statistics text about 

covariance. They were informed that their conceptual and 

procedural comprehension of the text would be tested after 

reading. Fourth, the participants predicted their conceptual 

and procedural text comprehension. To do so, they were 

informed about what kind of knowledge the two types of 

comprehension questions would require. Fifth, they answered 

the conceptual and procedural comprehension questions. 

Results 

To statistically test our hypotheses, we performed multiple 

regressions. We centered all predictor variables to maintain 

meaningful estimates of the main effects. In case of a 

statistically significant interaction effect, we computed 

simple slopes analyses following the approach suggested by 

Richter (2007) to investigate the pattern of the interaction. 

According to this approach, the categorical predictor text type 

was dummy coded and entered in two complementary 

regression models to estimate the regression parameters. As 

before, the metric predictor number of misconceptions was 

entered in the regression models in centered form. When 

testing directional hypotheses, we used one-tailed tests. 

Table 1 displays descriptive statistics for misconceptions and 

the dependent variables as a function of text type. 

Table 1: Descriptive statistics. 

 Refutation text 

(n = 27) 

Standard text 

(n = 26) 

Total sample 

(N = 53) 

Variable M SD  M SD  M SD 

NoM 4.74 1.66  4.15 1.38  4.45 1.54 

CC   .62   .19    .65   .20    .63   .19 

PC   .59   .32    .65   .34    .62   .33 

Accuracy CC   .07   .19    .07   .18    .07   .19 

Accuracy PC -.10   .37  -.14   .31  -.12   .34 

Note. NoM = number of misconceptions; CC = conceptual 

comprehension; PC = procedural comprehension. 

The refutation text group and the standard text group did 

not significantly differ from each other with regard to the 

number of misconceptions, t(51) = -1.40, p = .167, d = 0.39. 

Text Comprehension 

As displayed in Table 2, the multiple regression with 

conceptual comprehension revealed a marginal significant 

main effect of misconceptions and a significant interaction 

effect between text type and misconceptions. 

Table 2: Predictors of conceptual comprehension. 

Predictor b SE b t(49) p ∆R2 

Constant  0.62 0.03 24.64 <.001  

Text type -0.01 0.05 -0.18   .857 .01 

NoM -0.03 0.02 -1.88   .066 .03 

Text type x NoM   0.09 0.03  2.73   .005 .13 

Note. R2 = .17, F(3, 49) = 3.26, p = .029. NoM = number of 

misconceptions. 

Simple slopes analyses showed that, in the standard text 

group, the regression coefficient b for number of 

misconceptions was -0.08 (SE = 0.03) and significantly 

different from zero, t(52) = -3.01, p = .002, ∆R2 = .03. This 

means that an increase of one misconception led to a decrease 

of 8% in conceptual text comprehension. In contrast, in the 

refutation text group, the regression coefficient for number of 

misconceptions was not significant, b = 0.01, SE = 0.02, t(52) 

= 0.64, p = .527, ∆R2 = .03. Thus, there was no significant 

effect of misconceptions. 

As shown in Table 3, the multiple regression with 

procedural comprehension also revealed a significant 

interaction effect between text type and misconceptions. 

Table 3: Predictors of procedural comprehension. 

Predictor b SE b t(49) p ∆R2 

Constant  0.61 0.05 13.38 <.001  

Text type -0.04 0.09 -0.45   .654 .01 

NoM -0.03 0.03 -1.08   .287 .01 

Text type x NoM   0.11 0.06  1.75   .043 .06 

Note. R2 = .08, F(3, 49) = 1.38, p = .260. NoM = number of 

misconceptions. 

Simple slopes analyses showed that, in the standard text 

group, the regression coefficient b for number of 

misconceptions was -0.09 (SE = 0.05) and significantly 

different from zero, t(52) = -1.85, p = .036, ∆R2 = .01. Thus, 

an increase of one misconception led to a decrease of 9% in 

procedural text comprehension. In contrast, in the refutation 

text group, the regression coefficient for number of 

misconceptions was not significant, b = 0.02, SE = 0.04, t(52) 

= 0.51, p = .611, ∆R2 = .01, indicating that there was no 

significant effect of misconceptions. 
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Metacomprehension Accuracy 

As shown in Table 4, the multiple regression with 

metacomprehension accuracy of conceptual comprehension 

revealed a marginal significant interaction effect between text 

type and misconceptions. 

Table 4: Predictors of metacomprehension accuracy of 

conceptual comprehension. 

Predictor b SE b t(49) p ∆R2 

Constant  0.08 0.03  3.05 .004  

Text type -0.01 0.05 -0.14 .892 <.01 

NoM  0.02 0.02  0.84 .406   .01 

Text type x NoM  -0.05 0.04 -1.35 .092   .04 

Note. R2 = .04, F(3, 49) = 0.73, p = .541. NoM = number of 

misconceptions. 

Simple slopes analyses showed that, in the standard text 

group, the regression coefficient b for number of 

misconceptions was 0.04 (SE = 0.03) and marginally 

significantly different from zero, t(52) = 1.43, p = .081, ∆R2 

= .01. Hence, an increase of one misconception resulted in 

4% greater overestimation of conceptual text comprehension. 

In contrast, in the refutation text group, the regression 

coefficient for number of misconceptions was not significant, 

b = -0.01, SE = 0.02, t(52) = -0.38, p = .703, ∆R2 = .01. Thus, 

there was no significant effect of misconceptions. 

As can be seen in Table 5, the multiple regression with 

metacomprehension accuracy of procedural comprehension 

revealed no significant main effect or interaction effect. 

Table 5: Predictors of metacomprehension accuracy of 

procedural comprehension. 

Predictor b SE b t(49) p ∆R2 

Constant -0.11 0.05 -2.28 .027  

Text type  0.01 0.10  0.13 .897 <.01 

NoM  0.03 0.03  1.05 .300   .02 

Text type x NoM  -0.06 0.06 -0.94 .177   .02 

Note. R2 = .03, F(3, 49) = 0.56, p = .643. NoM = number of 

misconceptions. 

Discussion 

A large body of literature demonstrates positive learning 

effects from reading refutation texts compared with reading 

standard expository texts. However, little is known about 

whether refutation texts are also favorable for learning in 

statistics and for producing accurate self-assessments of 

comprehension. Thus, the present study is the first to address 

these questions. 

First, the results showed that a refutational statistics text 

can compensate for the detrimental impact of misconceptions 

on text comprehension. When students read a standard text 

about covariance, a higher number of misconceptions about 

covariance led to poorer conceptual and procedural 

comprehension of the text. In contrast, when students read a 

refutation text about covariance, there was no effect of 

misconceptions on text comprehension. This result extends 

prior research by showing that refutation texts can prevent the 

adverse impact of misconceptions in statistics as well. 

Importantly, the beneficial effect of the refutation text was 

demonstrated for both conceptual and procedural 

comprehension. Research in mathematics education widely 

acknowledges the view that conceptual and procedural 

knowledge are iteratively related to each other, with increases 

in conceptual knowledge leading to subsequent increases in 

procedural knowledge and vice versa (e.g., Rittle-Johnson & 

Schneider, 2015). Accordingly, in the present study, 

conceptual and procedural comprehension were quite 

strongly associated, r = .46, p = .001. Therefore, when 

students read the refutation text, their misconceptions were 

no longer predictive of both their acquisition of conceptual 

understanding and procedural skill. 

Second, the findings showed that a refutational statistics 

text can compensate for the detrimental impact of 

misconceptions on metacomprehension accuracy with regard 

to conceptual comprehension. When students read a standard 

text about covariance, a higher number of misconceptions 

about covariance led to greater overestimation of conceptual 

comprehension. In contrast, when students read a refutation 

text about covariance, there was no significant effect of 

misconceptions on the accuracy with which they judged their 

conceptual comprehension. In accordance with the 

interpretation given by Prinz et al. (2017; see also Dunlosky 

et al., 2005), when reading a standard statistics text, students 

with a higher number of misconceptions likely constructed a 

flawed mental text representation. At the same time, when 

self-assessing their text comprehension, these students might 

have focused on the amount rather than on the correctness of 

the textual information they could access from memory. 

Accordingly, they might have more strongly overestimated 

their conceptual comprehension. However, when reading a 

refutational statistics text, the students might have been more 

inclined to assess the quality of the textual information they 

could retrieve from memory. This might have been the case 

because refutation texts promote the coactivation of 

misconceptions and the scientifically correct conceptions 

(van den Broek & Kendeou, 2008), thereby increasing the 

likelihood of knowledge evaluation and reflection in the 

context of conceptual change processes. Note, however, that 

the interaction effect between text type and misconceptions 

as well as the regression slope of misconceptions in the 

standard text group only approached the 10% level of 

statistical significance. As suggested by power analysis, this 

likely is the result of insufficient power to detect rather small 

effects. This is also supported by the findings of Prinz et al. 

(2017) that revealed a negative effect of misconceptions on 

metacomprehension accuracy of conceptual comprehension 

in the case of a standard text when using a sample of 49 
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participants. Therefore, future research should replicate the 

findings presented here while using larger sample sizes. 

Contrary to expectation, however, the type of text and 

misconceptions did not affect metacomprehension accuracy 

of procedural comprehension. It can be assumed that the 

refutation text failed to coactivate procedural comprehension 

and, thus, decreased the likelihood that students would 

closely evaluate this type of comprehension. Yet, online 

measures such as think-aloud protocols could help to clarify 

the mechanisms proposed to underlie the effects observed in 

this study. 

In sum, this study showed that refutation texts can 

compensate for detrimental effects of misconceptions on text 

comprehension and metacomprehension accuracy in the 

domain of statistics. Refutation texts appear to promote 

students to pay attention to inaccuracies in their knowledge, 

enhancing their self-regulated learning. 
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Abstract 

There is an ongoing debate over the psychophysical functions 
that best fit human data from numerical estimation tasks. To 
test whether one psychophysical function could account for 
data across diverse tasks, we examined 40 kindergartners, 38 
first graders, 40 second graders and 40 adults’ estimates using 
two fully crossed 2 × 2 designs, crossing symbol (symbolic, 
non-symbolic) and boundedness (bounded, unbounded) on 
free number-line tasks (Experiment 1) and crossing the same 
factors on anchored tasks (Experiment 2). Across all 8 tasks, 
88.84% of participants provided estimates best fit by a mixed 
log-linear model, and the weight of the logarithmic 
component (λ) decreased with age. After controlling for age, 
the λ significantly predicted arithmetic skills, whereas 
parameters of other models failed to do so. Results suggest 
that the logarithmic-to-linear shift theory provides a unified 
account of numerical estimation and provides uniquely 
accurate predictions for mathematical proficiency. 

Keywords: cognitive development; numerical cognition; 
number-line estimation; psychophysical function 

Introduction 
In this paper, we aimed to address an ongoing debate on the 
psychophysical functions that link numbers to their 
magnitude estimates and to provide a unified framework for 
understanding seemingly-conflicting data from a variety of 
studies (Barth & Paladino, 2011; Cohen & Sarnecka, 2014; 
Opfer, Thompson, & Kim, 2016; Siegler & Opfer, 2003; 
Slusser, Santiago, & Barth, 2013). Specifically, we sought to 
test whether models that fit data from old research methods 
could accurately predict data from new methods that differed 
in small increments that were thought to be psychologically 
meaningful. Finally, we aimed to test whether models that 
best accounted for numerical magnitude estimates also 
provided the best predictors of educational outcomes. 

The classic theory about developmental change in 
numerical estimation is that the representation of numerical 
magnitudes follows a logarithmic-to-linear shift (Siegler & 
Opfer, 2003; Siegler, Thompson, & Opfer, 2009). Because 
this shift occurs for different numbers at different times (e.g., 
for 0-100 number-lines before 0-1000 number-lines), this 
change is thought to come from experiences that children 
have in school with symbolic numbers (Siegler & Opfer, 

2003). This account was originally based on a single version 
of the number-line task, which is the symbolic bounded free 
branch in the taxonomy in Figure 1.  

 

 
 

Figure 1: Taxonomy of number-line tasks. Branches 
connected by solid lines were examined in previous studies. 

Ones connected with dashed lines are new. 
 
Two alternative accounts were recently proposed. One is 

the proportional-judgment account, claiming participants 
adopt proportion judgment strategies when estimating 
numerical magnitudes (Barth & Paladino, 2011; Slusser et al., 
2013). The other is the measurement-skills account, claiming 
that data from number-line tasks arise from task-specific 
measurement skills (Cohen & Blanc-Goldhammer, 2011; 
Cohen & Sarnecka, 2014). Like the classic theory, these 
accounts also depended only on specific sets of number-line 
tasks (symbolic bounded anchored for proportional-judgment 
account; symbolic unbounded free for measurement-skills 
account (see Figure 1).  

1. Symbolic vs. Non-symbolic  
One potentially important variable is whether numerical 
magnitudes are presented symbolically or non-symbolically. 
For the log-to-linear shift account, this variable is important 
because symbolic numbers are presented to children in 
number-lines in school, on rulers, and in arithmetic lessons. 
Most studies have focused only on the symbolic magnitude 
estimates, though with different psychophysical functions 
being proposed (Barth & Paladino, 2011; Cohen & Sarnecka, 
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2014; Opfer et al., 2016; Siegler & Opfer, 2003; Slusser et 
al., 2013). 

In contrast, when Dehaene et al. (2008) presented Amazon 
indigene with non-symbolic numeric magnitudes, they found 
that a mixed log-linear model (MLLM, see Figure 2A) 
provided a better fit to number-line estimates than 
alternatives. Among these alternatives, however, the power 
models proposed by Slusser et al. (2013) and Cohen & Blanc-
Goldhammer (2011) were not included.  

2. Bounded vs. Unbounded 
Another potentially important feature of number-line 
estimation is whether an upper endpoint is provided 
(bounded) or not (unbounded). Like symbols, the use of a 
numeric upper bound may make the task easier because it 
provides an additional reference point against which to 
estimate the target number.  On the other hand, Cohen and his 
colleagues have claimed that the unbounded task is actually 
easier because subjects need only to add incremental units, 
whereas the bounded task requires subtracting from the 
endpoint at the upper bound. For this reason, they suggested 
that extensions of cyclic models (CPMs, see Figure 2C) 
provide best fitting models for estimates in the bounded 
condition and that scallop power models (SPMs, see Figure 
2D) provides best fitting for estimates in the unbounded 
condition (Cohen & Blanc-Goldhammer, 2011; Cohen & 
Sarnecka, 2014). Though Cohen and colleagues did not 
include the mixed log-linear model among the alternatives 
tested, Kim and Opfer (in press) found the MLLM was a 
better predictor of estimates than CPMs and SPMs for 
symbolic bounded free and unbounded free number-line 
tasks.  

3. Free vs. Anchored 
A third potentially important variable is whether subjects are 
given the numeric magnitude of the half-way point on the 
number-line (anchored) or not (free). Like the use of an upper 
bound, Opfer et al. (2016) have argued that the anchored task 
provides an additional reference point that should increase 
linearity of estimates.  On the other hand, Slusser et al. (2013) 
have argued that the task reveals changes in proportional 
reasoning, and they showed that children's symbolic bounded 
anchored number-line estimates were better fit by one of 
three adapted cyclical power models (CPMs) (Hollands & 
Dyre, 2000) than a simple logarithmic model. Subsequent 
studies, however, found the MLLM provided a better fit to 
both symbolic bounded free and symbolic bounded anchored 
number-line estimates than mixtures of the CPMs (Opfer et 
al., 2016), which was called MCPM1 (see Figure 2B) in Kim 
and Opfer (in press)’s study. 
 

The Current Study 
In this study, we manipulated all three variables orthogonally 
to systematically test the mixed log-linear model against its 
competitors on 4 previously examined tasks and 4 novel 
tasks. Thus, we tested all the branches shown in Figure 1, 

with symbolic bounded free (SBF), symbolic unbounded free 
(SUF), non-symbolic bounded free (NBF), non-symbolic 
unbounded free (NUF) tasks in Experiment 1 and symbolic 
bounded anchored (SBA), symbolic unbounded anchored 
(SUA), non-symbolic bounded anchored (NBA), non-
symbolic unbounded anchored (NUA) tasks in Experiment 2. 
At the end of Experiment 2, we also administrated a battery 
of math tests, including addition and subtraction, to each 
subject to determine which model parameters best predicted 
addition and subtraction proficiency. This issue has 
educational significance, but it also tests the key cognitive 
process claim of the measurement-skills account, viz. that 
unbounded number-line estimates are easier than the bounded 
ones because they require addition skills rather than 
subtraction skills.  

 

 
 

Figure 2: Illustrations of predicted estimates from the 
mixed log-linear model (A), the mixed cyclic power model 

1 (B), the mixed cyclic power model 2 for bounded 
condition (C) and the mixed scallop power model for 

unbounded condition (D). 
 

Experiment 1: Free Numerical Estimation 

Methods 
Participants Participants were 40 kindergartners (M=5.98 
years; 47.5% female), 38 first-graders (M=7.13 years; 50% 
female), 40 second-graders (M=8.09 years; 57.5% female) 
and 40 adults (M=20.1 years; 50% female).  
Materials and procedure Participants were administered 
four different number-line tasks using a 2 (symbolic/non-
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symbolic) by 2 (bounded/unbounded) fully-crossed design 
Order of tasks was determined by a balanced Latin square.  

In symbolic conditions, participants were presented with 
20 number-lines, with a number on each endpoint of the line. 
The to-be-estimated numerals were evenly sampled from 0 to 
30. On each trial, numbers were shown 2s followed by 
random-noise mask. In non-symbolic conditions, procedure 
was similar, except that endpoints of lines and to-be-
estimated numbers were dot arrays. Sizes of dots were 
controlled on 50% of trials, while areas covered by dots were 
controlled on the other 50%.  

In bounded conditions, endpoints of the line were 0 and 30 
(symbolic condition) or 0 and 30 dots (non-symbolic 
condition). In the unbounded condition, endpoints were 0 and 
1 (symbolic condition) or 0 and 1 dot (non-symbolic 
condition). The instructions for the unbounded condition 
were taken from Cohen and Sarnecka (2014). 

Results 
1. Logarithmic-to-linear-shift theory accurately 
predicted median estimates and individual differences. 
We first fit median estimates for all four number-line tasks 
and age groups using MLLM. Across all tasks and age groups 
(Figure 3), fit of MLLM was very high (R2 =.93 ~ 1). 
Analyses of the weight of logarithmic component (λ) revealed 
that with age, estimates changed from logarithmic patterns to 
linear ones, with λ decreasing from kindergartners to adults 
across all tasks (Figure 3). As expected, λ in non-symbolic 
conditions was higher than in symbolic ones. Also, λ in 
unbounded conditions was higher than in bounded ones 
regardless of symbolic format, which argues against the view 
that “the unbounded task requires less mathematical 
sophistication than the bounded task does” (Cohen and 
Sarnecka, 2014). To test whether individual performance 
revealed the same pattern, we computed λ for individual 
participants’ data and conducted a mixed ANOVA, with 
symbolic format and boundedness as within-participant 
factors and age group as a between-participant factor. Results 
showed a main effect of symbolic format, F(1,154)=74.19, 
p<.001, boundedness, F(1,154)=86.32, p<.001, and age 
group, F(3,154)=39.08, p<.001. An interaction between 
symbolic format and boundedness, F(1,154)=4.17, p<.05, 
indicated that the effect of symbols was greater for the 
bounded tasks.   

 To test whether logarithmicity of estimates represented a 
stable pattern of individual differences, we correlated 
individual participants’ λ among all tasks. Results showed 
that individual participant’s λ among all the four number line 
tasks positively correlated (with correlation coefficient .70 
(p<.001) between SBF and SUF tasks; .45 (p<.001) between 
SBF and NBF tasks; .35 (p<.001) between SBF and NUF 
tasks; .49 (p<.001) between SUF and NBF tasks; .39 between 
SUF and NUF tasks; and .54 (p<.001) between NBF and 
NUF tasks). 
 

 
 

 
Figure 3: Median estimates on 0-30 free number lines for 

different age groups. 
 
 

Table 1: Percent of participants best fit by MLLM for free 
number line tasks. K, kindergartners; 1, first graders; 2, 

second graders; A, adults. 
 

 
 
 
 
 
 
 
 

 
 

Table 2: Partial correlation between λ in MLLM and math 
score after controlling for age across the free number line 

tasks. 
 

 Partial correlation 
   Addition Subtraction 

MLLM       
 SBF λ -.40 *** -.27 *** 
 NBF λ -.27 *** -.19 * 
 SUF λ -.36 *** -.24 ** 
 NUF λ -.17 * -.17 * 
       

     Note. * p<.05, ** p<.01, *** p<.001 
 
2. Model comparison. We next compared the fit of MLLM 
to that of its competitors:  MLLM vs MCPM1 and MCPM2 
for the bounded conditions and MLLM vs MSPM for the 

 MLLM 
 K 1 2 A All 

SBF 95 89 83 68 84 
NBF 95 95 93 90 93 

      
SUF 100 100 100 100 100 
NUF 100 100 100 100 100 
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unbounded ones. The proportion of individual children who 
were best fit by the mixed log-linear model (MLLM) using 
AICc was calculated.  

As illustrated in Table 1, estimates of 68% to 100% of 
participants were best fit by mixed log-linear model (MLLM) 
among all four free number line tasks. In the bounded 
condition, none of the MCPMs was the best fitting model for 
the majority of any age or task combination. In unbounded 
condition, we replicated the findings from Kim and Opfer (in 
press), with MLLM providing a better fit for 100% of 
participants’ estimates compared to MSPM. 
3. Predicting the mathematical performance. We next 
conducted partial correlation analysis between individual 
participant’s addition and subtraction performance (which 
were tested in Experiment 2) and the best-fitting parameter 
values from the models when controlling for age. The 
addition score was the sum score of simple and complex 
addition problems, and the subtraction score was the sum 
score of simple and complex subtraction problems.  

As shown in Table 2, the logarithmicity parameter λ of the 
MLLM predicted both addition and subtraction performance 
across all tasks after controlling for age. In contrast, the 
correlations among the model parameters of the MLLM 
competitors were very small, inconsistent, and not expected 
by the theories that generated the models. Specifically, for 
bounded conditions, the negative correlation between the 
absolute value of bs-1 of the MCPMs and math performance 
was found in only a few of number line tasks, with the 
absolute value of b2CPM-1 of MCPM1 negatively correlating 
with addition for the symbolic bounded free number line task 
(r(156)=-.18, p<.05), the absolute value of bSBCM-1 of 
MCPM2 negatively correlating with addition and subtraction 
for the non-symbolic bounded free task (r(156)=-.17, p<.05 
for addition; r(156)=-.17, p<.05 for subtraction). Also, only 
the absolute value of s-1 in MCPM2 negatively correlating 
with subtraction was found in symbolic bounded free task 
(r(156)=-.17, p<.05). For the unbounded condition, the 
negative correlation between the absolute value of bMSPM-1 in 
MSPM and addition was only found in symbolic unbounded 
free task (r(156)=-.18, p<.05). These finding suggests that 
MLLM uniquely predicts math performance, regardless of 
tasks or age groups. 

Experiment 2: Anchored Numerical 
Estimation 

Methods 
Participants Participants in Experiment 2 were the same as 
in Experiment 1. 
Materials and procedure Participants received the same 2 
(symbolic/non-symbolic) by 2 (bounded/unbounded) number 
line tasks as in Experiment 1, except that information was 
given about the location of 15 (or 15 dots) in each of the four 
tasks. Order of tasks followed a Latin square. After that, 200 
arithmetic problems were presented for participants to solve 
as quickly as possible: simple addition, simple subtraction, 
complex addition and complex subtraction. For simple 

addition problems, each of the addends was a one-digit 
number and the sum was no more than 10 (e.g., 5+3, 2+1). 
For simple subtraction problems, the difference was less than 
10 and both minuend and subtrahend were one-digit numbers 
(e.g., 9-3, 8-2). For complex addition problems, sums were 
bigger than 10 but less than 30, and addends were one- or 
two-digit numbers (e.g., 4+16, 14+15). For complex 
subtraction problems, differences were bigger than 10 but 
less than 30, with the minuend a two-digit number and the 
subtrahend one- or two-digit numbers (e.g., 16-5, 25-11).  

Results 
1. Logarithmic-to-linear-shift theory accurately 
predicted median estimates and individual differences. 
We first fit the median estimates for all four number line tasks 
and age groups using MLLM. As shown in Figure 4, across 
all tasks and age groups, the fit of MLLM was uniformly high 
(R2 = .93 ~ 1). Analyses of λ revealed that with age, estimates 
changed from logarithmic patterns to linear ones, with λ 
decreasing from kindergartners to adults (Figure 4). As with 
Experiment 1, λ in non-symbolic conditions were higher than 
in symbolic ones, and λ in unbounded conditions were higher 
than in bounded conditions regardless of symbol. We also 
computed λ for individual participants’ data. The mixed 
ANOVA results again showed a main effect of symbolic 
format, F(1,154)=83.17, p<.001, boundedness, 
F(1,154)=21.20, p<.001, and age group, F(3,154) =19.63, 
p<.001.  

To test whether the logarithmic-to-linear-shift theory could 
also capture individual differences, we correlated individual 
participant’s λ among tasks. The results showed that 
individual participant’s λ among all the four number line 
tasks positively correlated (with correlation coefficient .81 
(p<.001) between SBA and SUA tasks; .61 (p<.001) between 
SBA and NBA tasks; .48 (p<.001) between SBA and NUA 
tasks; .54 (p<.001) between SUA and NBA tasks; .43 
(p<.001) between SUA and NUA tasks; and .61 (p<.001) 
between NBA and NUA tasks. 
2. Model comparison. We next examined whether MLLM is 
the best model compared to other competitors. According to 
the previous studies (Cohen & Sarnecka, 2014; Opfer et al., 
2016; Slusser et al., 2013), we compared the fit of MLLM, 
MCPM1, and MCPM2 on individual data for the bounded 
condition (which included SBA and NBA tasks). Since the 
unbounded anchored number-line tasks were new in this 
study, we compared the fit of all the four models for the 
unbounded condition (which included SUA and NUA tasks). 
The proportion of individual children who were best fit by the 
mixed log-linear model (MLLM) using AICc was calculated. 

As illustrated in Table 3, the estimates of 63% to 100% of 
participants were best fit by mixed log-linear model (MLLM) 
among all four anchored tasks across all age groups. 
Specifically, in the bounded condition, no matter what types 
of symbol were given, against to the proportional account and 
subtraction or division-skill account, none of the MCPMs 
was the best fitting model for the majority. In the unbounded 
condition, our results showed that estimates of 65% to 98%  
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Figure 4: Median estimates on 0-30 anchored number 

lines for different age groups.  
 
 

Table 3: Percent of participants best fit by MLLM for 
anchored number line tasks. K, kindergartners; 1, first 

graders; 2, second graders; A, adults. 
 

 MLLM 
 K 1 2 A All 

SBA 85 63 63 68 70 
NBA 93 97 100 93 96 

      
SUA 88 74 68 65 73 
NUA 98 97 95 93 96 

 
 
Table 4: Partial correlation between λ in MLLM and math 

score after controlling for age across the anchored number 
line tasks. 

 
 Partial correlation 
   Addition Subtraction 

MLLM       
 SBA λ -.29 *** -.20 * 
 NBA λ -.22 ** -.15  
 SUA λ -.30 *** -.22 ** 
 NUA λ -.24 ** -.20 * 

Note. * p<.05, ** p<.01, *** p<.001 
 

of participants were best fitting by MLLM when compared 
the fitting of all the four models. All these results suggest the 
logarithmic-to-linear-shift account for all the anchored 
numerical magnitude representation, regardless of 
boundedness or symbolic format. 
3. Predicting the mathematical performance. Similar with 
Experiment 1, we also conducted partial correlation analysis 

between individual participants’ addition and subtraction 
performance and the best-fitting parameter values from the 
models when controlling for age. As shown in Table 4, λ in 
the MLLM predicted both addition and subtraction 
performance across almost all the anchored number line tasks 
after controlling for age. However, for bounded condition, the 
negative correlation between the absolute value of bs-1 of the 
MCPMs and math performance was only found for the 
symbolic bounded anchored task, with absolute value of 
b2CPM-1 in MCPM2 negatively correlating with addition and 
subtraction (r(156)=-.26, p<.001 for addition; r(156)=-.26, 
p<.001 for subtraction). The finding suggests that MLLM 
uniquely predict math performance, regardless of tasks or age 
groups. 

Discussion 
Our experiments indicate that the logarithmic-to-linear shift 
account provides a unified framework that can account for 
data coming from a broad array of numerical estimation 
tasks. Specifically, we found a mixed log-linear model was 
the best fitting model for the vast majority (88.84%) of 
children and adults. This finding held regardless of whether 
the symbolic format was symbolic or non-symbolic, whether 
the task was bounded or unbounded, and whether an 
additional reference was given or not. These results replicate 
those reported in Opfer et al. (2016) and Kim and Opfer (in 
press), as well as extending them to 4 novel number-line 
tasks. Finally, we found that with education, individuals 
acquire more substantial prior experience with symbolic 
numbers than non-symbolic dots, with more logarithmic 
compression shown in non-symbolic than symbolic 
condition. Also, the additional reference points (either 
midpoints or bounded endpoints) can increase the linearity of 
estimates. Thus, the classic number line task (SBF) is not an 
outlier in eliciting logarithmic pattern of estimates. Of the 
eight tasks, the highest logarithmicity was observed in 
kindergartners’ estimating non-symbolic unbounded free 
(NBF) task and the lowest was in SBA.  

Our results also showed that the logarithmic weight (λ) was 
not fixed, but depended on the developmental history and 
prior experiences of the subject, leading to lower λ values 
from kindergartners to adults. These findings met the 
overarching principle of the logarithmic-to-linear shift 
theory, which holds that the representation of numerical 
magnitude will change from the logarithmic pattern to linear 
one with age and experience (Opfer et al., 2011; Opfer & 
Siegler, 2007; Siegler & Booth, 2004; Siegler & Opfer, 2003; 
Thompson & Opfer, 2008).  

Finally, individual differences were stable across the eight 
tasks: children whose estimates were more logarithmic in one 
task were also more logarithmic in the other seven tasks, 
r(156)=.35 ~ .81, p<.001. This would not be expected if the 
eight tasks elicited radically different estimation strategies, 
and it suggests that the logarithmic-to-linear theory provides 
an accurate picture for mental representation of all kinds of 
numerical estimations. 
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Implications for alternative accounts 
   Broadly, our results undercut key claims of the proportion-
judgment and measurement-skills accounts. A key claim of 
the proportion-judgment account is that developmental 
change involves a change in the degree of bias and use of 
implicit reference points. In this view, the degree of bias (β) 
was thought to gradually converge on 1, and more reference 
points would be utilized by the participants, “from an 
unbounded power to a one-cycle proportional to a two-cycle 
proportional version of the model” (Slusser et al., 2013, p.5). 
If these views were correct, the weights for 0-cyclic power 
model (w1) and 1-cyclic power model (w2) in MCPM1 would 
be expected to decrease with age and the weight for 2-cyclic 
power model (w3) would be expected to increase –at the very 
least among the bounded tasks in Experiment 1 and 2. 
However, we found no support for this developmental pattern 
among any of our eight tasks. Additionally, there was no 
stable pattern of individual differences in the degree of bias 
and use of reference points. Given the relatively poor fits of 
these models, this lack of predictive power might not be 
surprising, but it does warrant caution about the 
psychological meaning of the parameter values. 

Our results also provide robust evidence against the 
measurements-skills account. First, according to Cohen and 
Sarnecka (2014), “the implicit addition needed for the 
unbounded task is less mathematically sophisticated than the 
implicit subtraction needed for the bounded task, [therefore] 
children should perform better on the unbounded task at a 
younger age” (p. 1643). Against this contention, we found 
greater accuracy for bounded than unbounded tasks 
regardless of age, symbolic format, or provision of anchors. 
Far from being easier, the unbounded tasks were more 
difficult and actually yielded the highest logarithmicity 
scores. Even more critically, the parameter values of the 
models associated with this account (subtraction and scallop 
bias) were thought to track general subtraction and addition 
skill. If so, one would expect them to predict subtraction and 
addition skill when subjects actually performed subtraction 
and addition. However, we found no evidence that this was 
the case.  Again, given the relatively poor fits of these models, 
its lack of predictive power should not be surprising.  
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Abstract 

Several theories about Theory of Mind (ToM) have been 
proposed. The most well-known of these are Theory Theory 
and Simulation Theory, although alternative and hybrid 
theories do exist. One such theory, proposed by Bach (2011, 
2014), is based on the Structure-Mapping theory of analogy, 
which has been shown to play a key role in cognitive 
development. There is evidence that children are more likely to 
pass false belief tasks when trained using stories that are easy 
to compare via structural alignment, as opposed to stories that 
are difficult to compare in this way (Hoyos, Horton & Gentner, 
2015). This paper shows how a computational model based on 
Bach’s account can provide an explanation for the Hoyos et al. 
training study and proposes directions for future research on 
human subjects. 

Keywords: analogy; theory of mind; false belief; structure-
mapping; cognitive modeling 

Introduction 
The mechanisms behind Theory of Mind (ToM) have been 
hotly debated for decades. According to one popular theory, 
Theory Theory, children are little scientists who develop 
theories about others’ beliefs (e.g. Gopnik & Wellman, 
1992). Another theory, Simulation Theory, suggests that 
children play out scenarios as if they were the agents involved 
(e.g. Goldman, 1992). Other accounts include hybrid theories 
(e.g. Bach, 2011), which attempt to combine aspects of 
Theory Theory and Simulation Theory (see Related Work). 

Another important question is how ToM is learned and 
when. Interestingly, several studies have shown that at least 
some aspects of ToM can be improved via brief intervention 
(e.g. Hoyos et al., 2015; Hale & Tager-Flusberg, 2003; 
Lohman & Tomasello, 2003). This paper considers one such 
study and models how analogical generalization may lead to 
improved performance on the false belief tasks tested. The 
model generates testable predictions for future work. 

We begin by discussing the theories that underlie our 
model, the Structure-Mapping Theory of analogy (SMT; 
Gentner, 1983) and Bach’s (2011) structure-mapping account 
of ToM, along with our computational models of analogical 
matching and generalization used in the model. We then 
summarize a ToM training study (Hoyos et al., 2015) and 
describe how our model explains the performance 

improvements provided by training. We close with related 
work and future directions. 

Background 
We base our model on the Structure-Mapping approach to 
Theory of Mind proposed by Bach (2011, 2014). Because 
understanding Structure-Mapping Theory (SMT; Gentner, 
1983) is essential to understanding this theory and our model, 
we describe it first. This is followed by a description of 
Bach’s theory. Finally, we describe the computational 
models of SMT processes that we are using. 

Structure-Mapping Theory 
Structure-Mapping (Gentner, 1983) is a theory of analogy 
and similarity. Under SMT, relational/structural similarity is 
emphasized over similarity based on features alone. Humans’ 
ability to see these structural similarities across dissimilar 
cases is a key aspect of higher order cognition, which 
suggests that structural similarity is used in everyday 
reasoning. SMT proposes that comparison involves the 
alignment of elements between two cases, called a base and 
a target.  

Consider a common pedagogical analogy: “A cell is like a 
city. The city government controls the city. The nucleus 
controls all the cell’s activities. A power station provides 
electricity. A mitochondrion is like the power station.” 
(Chang & Forbus, 2015). In this example, the cell acts as a 
target and the city acts as a base. Structural representations of 
the two are aligned to form a mapping. SMT predicts that the 
cell maps to the city, the nucleus maps to the government, 
control of the cell maps to control of the city, and the 
mitochondrion maps to the power station (Fig. 1). What about 
providing electricity? Because of the match between the 
mitochondrion and the power station, we can infer that the 
mitochondrion does something like providing electricity. 
This conclusion is called a candidate inference. 

SMT can be extended to include analogical generalization 
(Kuehne et al., 2000). As a person is exposed to alignable 
cases, generalizations are formed. For example, we can form 
a generalization between the city and the cell. This would 
state that “Something like a city or cell has something like a 
city government or nucleus that controls it and something like 

2949



a power station or a mitochondrion that gives it energy.” 
Eventually, generalizations become abstract schemas that can 
represent, for example, a single type of event. They can be 
stored in long term or working memory. 

 
SMT Theory of Mind  
Bach (2011, 2014) has proposed that ToM is developed via 
structure-mapping.  He proposes that two forms of base 
domains are used.  The first are abstract schemas built up over 
time.  The second are events from autobiographical memory.  
This provides a hybrid model: Mappings to the schema 
domain correspond to theories as described in Theory Theory 
models, and mappings to the autobiographical domain 
correspond to simulation.  For example, to decide whether a 
person who arrived 15 minutes late to a flight that was 
delayed by 10 or a person who arrived 15 minutes late to a 
flight that left on time would be more upset, a person might 
retrieve an abstract schema that says “people are very upset 
when they narrowly miss their goal” or they might simulate 
how they would feel if they were the person in question by 
mapping to an autobiographical memory. Bach argues that 
simulation tends to happen when the general heuristic has not 
yet been formed, and involves complex combinations of 
cases (see Bach, 2011 for specifics).  

Because we do not attempt to model a complete Theory of 
Mind in this paper, we assume a simplified version of Bach’s 
theory. Our model focuses on the learning aspect, so we 
assume that heuristic-like abstractions have not yet been 
formed. Thus, only concrete autobiographical memories are 
retrieved from long term memory. Generalizations are 
formed in working memory, which we propose as a 
mechanism by which schemas are learned.  

SME and SAGE-WM 
The Structure Mapping Engine (SME; Forbus et al., 2016) 
implements the analogical mapping process of SMT.  SME 
compares a base and target case, both represented in predicate 
calculus, and computes one or more mappings that align 
statements and entities. Each mapped expression receives an 
initial score, which is propagated to its children. Thus, highly 

                                                             
1 Sequential Analogical Generalization Engine, Working Memory 

nested expressions have high scores. The score of a mapping 
is the sum of the scores of its constituents. Thus, mappings 
between cases that have high structural similarity receive 
higher scores. Mappings also include candidate inferences 
that project missing information from one case to the other.  

In this model, we deliberately do not model retrieval from 
long-term memory, to avoid the cost of providing enough 
distractors to make this challenging, and instead assume that 
retrieval finds reasonable autobiographical memories.  
However, we have proposed (Kandaswamy et al., 2014) that 
analogical generalization also occurs in working memory, 
what we call interim generalizations.  The SAGE-WM 
model1 keeps a list of generalizations and recent examples. 
Given a new example it uses SME to compute a score 
between the probe and each generalization in turn, ordered by 
recency.  If the score is over a pre-determined threshold, the 
probe is assimilated into the generalization. If no 
generalization is above threshold, the new example is 
compared to each outlier in turn using SME, again ordered by 
recency. If any mapping is above threshold, a new 
generalization is formed. Otherwise the probe becomes a new 
ungeneralized example. 

Learning Theory of Mind  
Several studies have shown that Theory of Mind can be 
acquired in part using experimental interventions (e.g. 
Lohman & Tomasello, 2003; Hale & Tager-Flusberg, 2003; 
see Hofmann et al., 2016 for meta-analysis). However, most 
of these studies involve extended training. On the other hand, 
there is evidence that ToM can be acquired much more 
quickly when training examples are highly structurally 
alignable. In particular, a study by Hoyos et al. (2015) 
showed that structurally alignable unexpected contents-style 
stories can improve children’s performance on false belief 
tasks, given just three training examples. In this paper, we 
examine and model the results of this experiment. 

Modeling Task 
In the Hoyos et al. (2015) study, children were first given a 
false belief pre-test containing one unexpected contents task 
(UC), one verbal false belief task (VFB), and one unexpected 
location task (UL). In the UC task, a container (e.g. a cookie 
box) is shown to have unexpected contents (e.g. grass) and 
participants are asked to predict what someone who has never 
seen inside would think the container contains. In VFB 
participants are told another child holds a false belief (that 
they think an item is somewhere it is not) and asked to predict 
where the child will look for the item. Finally, in UL, 
participants are told a story where one child places an object 
in a location and leaves the room. Another child then moves 
the object, and the participants are asked to predict where the 
first child will look for the object when they return.  

Those who passed all three tests were excluded from the 
study. The remaining children were split into two groups: 
high alignment and low alignment. Both groups were 

Fig. 1: A visual representation of SMT. Entities are 
shown as rectangles. Relationships are in diamonds. 
Dotted lines show correspondences between the two 
cases. Dashed lines show the candidate inference. 
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presented with three stories in the style of an UC task, in a 
repetition-break pattern: the main character in the first two 
stories held a true belief (e.g. she thought that there was cereal 
in a cereal box, and there really was cereal inside), while the 
character in the last held a false belief (e.g. she thought there 
were crayons in the crayon box, but there were really rocks).  
The difference was that the stories heard by children in the 
high alignment condition were very similar, in terms of both 
structure and linguistic content. The stories heard by children 
in the low alignment condition, on the other hand, differed on 
both counts. Following training, all children were tested on 
the same three tasks (UC, VFB, UL) as before. 

Hoyos et al. found that children in both conditions made 
significant gains from pre- to post-test. Importantly, they 
found that the children in the high alignment condition made 
significantly higher gains than those in the low alignment 
condition.  Hoyos et al. concluded that structural alignment 
aids false belief understanding. Furthermore, they, like Bach 
(2011, 2014) postulated that analogical comparison is 
“instrumental in children’s understanding of mental states 
and their relation to the factual world.” In this paper, we 
propose a mechanism for how structural alignment during 
learning can aid in false belief understanding and forming a 
complete Analogical Theory of Mind.   

Learning Analogical Theory of Mind 
The mean performance increase by children in the high 
alignment group was 0.75 out of 3 possible, with significant 
gains made in all three of the false belief tests. Yet few 
children learned more than one. On the other hand, children 
in the low alignment condition made an average of 0.23 
gains. Only gains in the UC task were significant. Since all 
of the training examples were variants of UC, it is not 
surprising that this was the easiest task to learn. However, 
learning ToM requires the ability to transfer to other tasks, as 
was the case with children in the high alignment condition. 
The process of making gains in UL and VFB tasks must, then, 
be different than the process of only gaining UC. 

We argue that analogical comparison in working memory 
alone leads to gains in the UC. That is, immediate recall of 
the training examples themselves is sufficient to cause gains. 
In contrast, a generalization between a training example and 
an autobiographical memory retrieved from long term 
memory leads to transfer to the other two tasks, VFB and UL. 
The violation of expectation generated during training causes 
the child to probe long term memory for a case of similar 
surprise. What exactly they find surprising about the 
training—that something other than what they expected was 
inside the box, that the character in the story was incorrect in 
her guess, or something else—affects the case that is 
retrieved from long term memory. This in turn affects which 
of UL and VFB the child is able to answer. 

A Computational Model 
Our model, like Bach’s theory, is based in SMT, using 
SAGE-WM for reasoning and learning.  

Our Model 
A simplified English version of each training and testing 
example from Hoyos et al. (2015) was semi-automatically 
encoded using a natural language understanding system (EA 
NLU; Tomai & Forbus, 2009). Although syntax was 
simplified, overall structure and word choices were 
consistent with the original stories. Figure 2 shows a partial 
representation of a true belief story. Events are represented in 
the neo-Davidsonian style: a reified event with role relations 
connecting it to other constituents. The conjunction of 
statements about an event participates in causal relations. In 
English, Figure 2 states that because it is not the case that 
there is a seeing event in the box by Kim, Kim thinks that 
there is a containment event wherein the box contains cereal. 

During training, the appropriate examples were passed into 
SAGE-WM in the order that the children in the corresponding 
condition saw them (true belief, true belief, false belief). The 
threshold for whether or not a probe was generalized was set 
to 0.01. If the incoming example matched to an example 
already in working memory with a score greater than 0.01, 
the model asked whether the match was correct. This 
corresponds to feedback in the Hoyos et al. (2015) 
experiment. When told it was correct, the model assimilated 
the examples into a generalization. Its behavior when told it 
was incorrect, on the other hand, depended on its calculation 
of surprise. Surprise occurs when the model encounters an 
incorrect match whose score is the same order of magnitude 
as the previous correct match. We propose that this comes out 
of the repetition break structure of the story order (Hoyos et 
al., 2015; Loewenstein & Heath, 2009): the high similarity to 
the interim generalization leads to a strong expectation of 
sameness, and the violation leads to a search for re-
categorization. When surprised, the model probes long term 
memory for an alternative case to align with.   

Figure 3 gives a visual representation of our model. In the 
high alignment condition (a), the first true belief story is 
stored in working memory. The second true belief story is 
then matched to the first, and an interim generalization is 
formed. When the false belief story comes in, it too matches 
to the generalization. Due to violated expectations, long term 

(causes-Underspecified 
 (not  
(and  
  (inside-UnderspecifiedRegion see85118 box1)   
  (perceivedThings see85118        
    (InsideOfSpaceRegionFn box1))  
  (isa see85118 VisualPerception) 
  (doneBy see85118 kim))) 

 (opinions kim 
  (and  
    (containedObject contain84430 cereal84499)     
    (containingObject contain84430 box1) 
    (isa cereal84499 BreakfastCereal) 
  (isa contain84430 ContainingSomething))))   

Fig. 2: A partial representation of a true belief story. This 
statement represents the phrase “Kim thinks that the box 
contains cereal because Kim has never seen inside the 
box”.	

2951



memory (dotted line) is probed. Long term memory is a 
collection of generalized and specific cases that represent 
memories formed over time. If a case is retrieved, an interim 
generalization between the match and the false belief case is 
created and stored in working memory (b).   

In the low alignment condition (c), on the other hand, no 
generalization is formed between the two true belief cases. 
This leads to them being stored as separate cases in working 
memory. When the false belief case comes in, it matches to 
the first true belief case, but no element of surprise is present 
when the model is corrected. For this reason, long term 
memory is never probed, and working memory consists of 
only the three training examples (d). The contents of working 
memory during testing predict the questions that the child is 
able to answer.  

Testing proceeded as follows: cases were again encoded 
semi-automatically using EA NLU. These cases were given 
to the model which retrieved the most similar case from 
working memory and generated candidate inferences by 
analogy. The candidate inferences correspond to what the 
model predicts is missing from the test cases (e.g. what the 
agents will do). These candidate inferences were manually 
inspected to determine whether any could result in correctly 
answering the test questions.  

Results  
The model behaved as predicted. In the high alignment 
condition, the model generalized the true belief cases with a 
normalized match score of 0.075. It then matched the false 
belief to the generalization with a score of 0.066, which 
corresponds to the child incorrectly predicting that the 
character in the story knows what is in the box. The model 
was then informed that this match was incorrect. Because the 
similarity scores it had encountered were within the same 
order of magnitude, it searched long term memory for another 
match. It then retrieved one of two memory cases that 
matched with a normalized score of 0.083 or 0.066, and 
created an interim generalization between it and the false 
belief case. We used stories intended to approximate a 
memory a child might have (e.g. thinking that a magician put 
a ball inside of a hat, only to find the hat empty) to model 
what might plausibly be retrieved. Depending on the case 
retrieved, the model was then able to answer VFB or UL. 
Correctness was evaluated based on the candidate inferences 
generated from the best mapping between the test case and 
the contents of working memory. For example, to correctly 
answer “Where is Nora going to look for her ball?” (UL) the 
mapping must produce a candidate inference stating that 
there might be a looking event, in which Nora looks for her 
ball in the appropriate location. 

In the low alignment condition, on the other hand, the 
second true belief case matched to the first with a very low 
similarity score of 0.0014, well below threshold. For this 
reason, the model did not form a generalization between 
them. When the false belief case was compared, it had a 
match score of 0.066 with the first true belief case. Similar to 
the high alignment condition, the model was informed that 
this was not a correct match.  

Because the previous match score was of a different order 
of magnitude, the model did not look into long term memory, 
and instead stored the false belief case alongside the two true 
belief cases. When the UC case came in, the false belief case 
was retrieved. The mapping generated a candidate inference 
that would allow the model to properly answer “What does 
she think is in the box?” This candidate inference stated that 
not having looked inside the cookie box would cause the 
agent to believe that it contained something analogous to 
crayons in the crayon box from the training example. That is, 
cookies. 

Note that this retrieval is due to recency in working 
memory: the UC test case lacks the explanation present in the 
training cases about why a person holds a certain belief (e.g. 
“Kim thinks that the cereal box contains cereal because Kim 
has never looked inside the box.”), so the first true belief case 
had the same match score. If that case had been retrieved, the 
model would not have been able to answer UC correctly. 

Discussion 
Our model gives one explanation for the results of the Theory 
of Mind training study presented in Hoyos et al. (2015). It 
also suggests that an important step in ToM development is 
generalizing belief-state cases in long term memory. In the 

Fig. 3: A visual representation of our model of training in 
the Hoyos et al. study. (a) shows training in the high 
alignment condition. (b) is a representation of working 
memory after high alignment training. (c) and (d) show 
low alignment training and the consequent working 
memory, respectively. Cases that are structural matches to 
the probe are bold.  
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training studies, understanding that the training cases can, 
and indeed should, be assimilated to long term memory with 
belief-state interpretation cases is crucial. In other words, 
children may be accumulating experiences that require 
reasoning about belief states in long term memory, but these 
memories remain inert until a surprising event—such the one 
experienced by the high alignment participants in the Hoyos 
et al. study—stimulates their retrieval and begins the process 
of creating schemas that can be used in future ToM reasoning. 
This predicts that children in the high alignment condition of 
Hoyos et al. (2015) are more likely to retain what they have 
learned than the children in the low alignment condition: the 
children in the high alignment condition were more likely to 
access those experiences from long term memory and form a 
generalization with them. 

In addition, our model predicts that reversing the order of 
training examples would cause children in both conditions to 
fail. In the low alignment case, when the most recent training 
example is retrieved, children would match the UC task to a 
true belief scenario, and answer incorrectly. Children in the 
high alignment case would similarly fall back on retrieval of 
the most recent case, as they would not experience the 
surprise caused by the repetition break structure. 

Previous studies (e.g. Hale & Tager-Flusberg, 2003; 
Lohmann & Tomasello, 2003) have suggested that 
experience plays a role in ToM development. Our model 
provides a concrete explanation for how these experiences 
might lead to ToM and provides further suggestions for 
human subject experiments. 

Related Work 

Theories of Theory of Mind 
Here, we summarize the best-known ToM theories. 

Theory Theory One of the most popular takes on ToM is 
Theory Theory, which views the child as a scientist with 
regard to interpreting other people’s mental states (e.g. 
Gopnik & Wellman, 1994). The child begins with a naïve 
theory about others, sometimes referred to as a folk 
psychology, which she modifies and adapts as evidence that 
supports or refutes the theory is observed. The theory 
gradually develops from only understanding desire states, to 
belief states, to how belief and desire states influence each 
other and behavior (Bartsch & Wellman, 1995).  

Simulation Theory Under the Simulation Theory view, a 
child mentally simulates events in order to predict others’ 
actions and beliefs (Goldman, 2006), and develops by 
improvement in simulation abilities (Flavell, 2004). 
Criticisms of Simulation Theory include that errors made by 
both children and adults are not consistent with those 
predicted by Simulation Theory accounts (Saxe, 2005) and 
that simulation is not sufficient for describing observed 
developmental patterns (Perner & Howes, 1992). 

Modular Theories Another common account is that ToM 
can be explained as a single cognitive module. Scholl and 
Leslie (1999) list six characteristics of modules: they are 
domain-specific, their behavior is, at least in part non-

voluntary, their processing is fast, their outputs are shallow 
and highly constrained, they are often located in a particular 
region of the brain, and their processes may be impaired—
and selectively impaired—by neural damage. Importantly, 
according to Scholl and Leslie, modularity theories “intend 
to capture only the origin of the basic ToM abilities” (1999).  
In this sense, modularity theories do not necessarily compete 
with other theories of ToM discussed here. 

Hybrid Theories Several hybrid theories have been 
proposed to bridge the gap between Theory Theory and 
Simulation Theory. Some, which Bach (2011) calls divided-
hybrid models, alternately assign aspects of Theory of Mind 
to simulation or theorizing, depending on which is better 
supported by empirical data (e.g. Heal, 1996). This approach, 
as Bach notes, avoids discussion of acquisition. It is unclear 
how a child learns to use simulation for some tasks and theory 
for others, and how simulation and theory develop 
concurrently. Other hybrid theories, which Bach (2011) calls 
dynamic-hybrid models, focus on continued development. 
Bach’s model falls under this category. Like other dynamic-
hybrid theories, Bach’s allows for development and changes 
to ToM not only throughout childhood, but into adulthood. 
This includes switching between theorizing and simulating to 
complete the same tasks at different points in development. 
As psychologists continue to find evidence of ToM shifts 
throughout adulthood (e.g. Hess, 2006), dynamic-hybrid 
theories become more and more plausible. 

Computation Models of Theory of Mind 
Hiatt and Trafton (2010) implemented a model of Theory of 
Mind using the ACT-R cognitive architecture (Anderson, 
2007) that learned to perform the Sally-Ann task.  It extracted 
facts out of the scenario and was asked several false belief 
questions about what it saw.  It was rewarded for answering 
correctly and punished for answering incorrectly, leading it 
over time to inhibit true belief responses, producing a 
learning curve consistent with developmental data.  
However, unlike our model, the training they used did not 
follow from an empirical training study.  We note that the 
children in the Hoyos et al. (2015) study were able to learn 
aspects of false belief after seeing just three examples, only 
one of which actually was a false belief situation. 

Goodman et al. (2006) modeled ToM via two Bayesian 
networks that respectively represent a naïve and expert theory 
in a Theory Theory account. They propose the models as 
competing hypotheses in the Sally-Anne task, and show how, 
during training, the expert theory becomes preferred over the 
naïve theory. The need to hand-code both theories in the 
system’s starting endowment makes it more of a 
computational level model (Marr, 1982), whereas we provide 
a process-level model of learning.  Furthermore, our model is 
consistent with the evidence from the training study 
presented by Goodman et al. (2006), which shows that 
surprise can improve children’s ToM performance. 
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Future Directions 
Our results provide evidence that structure-mapping is indeed 
a plausible process-level mechanism (Marr, 1982) for ToM 
and how it is learned. As such, our future work will look 
toward developing a complete computational Theory of 
Mind, including both the theory and simulation aspects of 
Bach’s theory, using SAGE as the underlying mechanism.  
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A Theory of Resonance: Towards an Ecological Cognitive Architecture
Vicente Raja
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Abstract: This paper may be seen as a blueprint for an ecological cognitive architecture. Ecological psychology, I contend,
must be complemented with a story about the role of the CNS in perception, action, and cognition. Such a story must be a
theory of resonance compatible with the main tenets of ecological psychology. I offer here the two main elements of such a
theory: a framework (Anderson’s neural reuse) and a methodology (multi-scale fractal DST).
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Abstract: Humans possess rich knowledge of the structure of the world, including co-occurrences among entities, and co-
variation among their discrete and continuous features. But how people learn, infer and predict this structure is not well
understood. Here we explore everyday scene understanding as a case study of people’s structural knowledge and reasoning.
We introduce a probabilistic model over scene graphs that can learn the relational structure of objects and their arrangements
and support inference and generation. Our model was able to learn the underlying structure of real-world scenes, and use it for
inference and compression. In two human psychophysical experiments we found that a corresponding computational cognitive
model was able to explain how people learn novel scene distributions and use it for classification and construction. Our work
represents the first computational theory of human scene understanding that can account for people’s rich capacity for learning
and reasoning about structure.
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Abstract 

 The predominant view concerning determinants of 
analogical retrieval is that it is preferentially guided by superficial 
cues. In order to test the cognitive plausibility of a structural 
similarities-based retrieval, we constructed a story-recall task in 
which life-like scenarios shared structural correspondences. In 
Experiment 1, we showed that such structural similarities induce 
retrievals when the participant had several source candidate 
situations sharing superficial similarities with the target cue. 
Experiment 2 was designed to test whether the encoding was 
sufficiently oriented on structural similarities to drive retrievals, 
even if the participants possess only one source candidate situation 
with superficial matches in memory. The results of the two present 
experiments lead us to conclude that in some contexts, abstract 
encoding induces a superiority of structural similarities over 
superficial ones in retrieval. Further implications for analogical 
retrieval approaches are discussed.  

Keywords: Analogy; analogical retrieval; structural 
similarity; abstract encoding; story-recall task 

Introduction 
 

Analogy has been identified as a key process to perceive 
the conceptual structure of a new situation by importing it 
from a familiar analog representation (Gentner, 1983; Gick 
& Holyoak, 1983). Most studies are consensual that the 
mapping process permitting this transfer is preferentially 
based on structure rather than surface correspondence. In 
other words, when comparing two analogs, subjects do not 
rely on similarities in terms of objects or object attributes, but 
instead tend to focus on common abstract relations. Figure 1 
provides an illustration of a target cue story sharing a 
structural correspondence with a superficially dissimilar 
analog source candidate situation ("making a deal to avoid a 
bad situation"), and a surface correspondence with a 
superficially similar disanalog source candidate situation 
belonging to the same semantic domain (raptors, tailfeathers, 
etc).  

 
Target cue story 

Karla, an old hawk, lived at the top of a tall oak tree. One 
afternoon, she saw a hunter on the ground with a bow and 

some crude arrows that had no feathers. The hunter took aim 
and shot at the hawk but missed. Karla knew the hunter 
wanted her feathers so she glided down to the hunter and 
offered to give him a few. The hunter was so grateful that he 
pledged never to shoot at a hawk again. He went off and shot 
deer instead. 

 
Superficially dissimilar analog source candidate situation 
Once there was a small country called Zerdia that learned 

to make the world's smartest computer. One day Zerdia was 
attacked by its warlike neighbor, Gagrach. But the missiles 
were badly aimed and the attack failed. The Zerdian 
government realized that Gagrach wanted Zerdian computers 
so it offered to sell some of its computers to the country. The 
government of Gagrach was very pleased. It promised never 
to attack Zerdia again. 
 

Superficially similar disanalog source candidate situation 
Once there was an eagle named Zerdia who donated a few 

of her tailfeathers to a sportsman so he would promise never 
to attack eagles. One day Zerdia was nesting high on a rocky 
cliff when she saw the sportsman coming with a crowsbow. 
Zerdia flew down to meet the man, but he attacked and felled 
her with a single bolt. As she fluttered to the ground Zerdia 
realized that the bolt had her own tailfeathers on it.  

 
Figure 1: Situations sharing different types of similarity in 

Gentner, Ratterman & Forbus (1993) 
 

Types of similarity implicated in the retrieval of a source 
representation in memory are the main issues debated in the 
literature. The predominant view is that the retrieval of a 
source candidate situation critically depends on superficial 
similarities, whereas the influence of structural similarities 
seems more peripheral (Gentner, 1983; Gentner, Ratterman 
& Forbus, 1993; Gick & Holyoak, 1983; Trench & 
Minervino, 2015). In Gentner and Colhoun's (2010) words: 
"Relational retrieval can be said to be the Achilles' heel of our 
relational capacity. There is considerable evidence that 
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similarity-based retrieval, unlike the mapping process, is 
more influenced by surface similarity than structural 
similarity." However, opposite assertions have arisen in the 
literature, attributing a major influence to structural 
similarities, even overcoming that of surface similarities 
(Blanchette & Dunbar, 2000; Dunbar & Blanchette, 2001; 
Hofstadter & Sander, 2013; Kretz & Krawczyk, 2014). The 
aim of this paper is to demonstrate that structural matches 
have a greater influence than superficial ones in the retrievals 
of life-like situations. This will be shown by creating a 
competition between source candidate situations sharing 
either exclusively superficial or structural similarities with 
the target cue (Figure 2 illustrates this intended feature 
composition). Before considering the current experiments, 
we report the major findings stemming from several 
experimental paradigms. 
 
 Analog source 

candidate situations 
Disanalog source 

candidate situations 
Structural similarity X  
Superficial similarity  X 

  
Figure 2: Correspondences between target cues and critical 
source candidate situations intended in Experiment 1 and 2 

Analogical Problem Solving 
In the problem solving domain, a common experimental 

design to study analogical retrieval via analogical transfer is 
the source-target paradigm (Gick & Holyoak, 1983; Holyoak 
& Koh, 1987). A source problem situation is first proposed 
with its solution, then an analog target problem is given to be 
solved. To measure the role of surface correspondence in 
access, the surface of the source problem is manipulated to 
either match or not with the target one. The retrieval is 
considered to have occurred when the participant detects 
similarities between the target problem and the source 
problem without further hints from the experimenter, leading 
to the transfer of the resolution procedure from the source to 
the target. Results have shown that retrieval is high when the 
source is both superficially and structurally similar to the 
target. More precisely, the similarities in terms of the 
problems' story theme have appeared to be a crucial 
determinant in access (Ross, 1987). Inversely, superficially 
dissimilar analog source problems are seldom retrieved by 
the participants (Gick & Holyoak, 1983). Studies on problem 
solving have also demonstrated that structural similarities 
can, in certain circumstances, have a role in retrieval: when 
two source analogs are presented jointly to be compared, their 
critical solution principle can be retrieved when faced with 
the target (Catrambone & Holyoak, 1989). Also, retrievals 
are reported to be more frequent when the two superficially 
dissimilar analog problems share structural similarities at a 
less abstract level (Holyoak & Koh, 1987). 

Story-Recall Paradigm 
Another frequently used paradigm is the story-recall task 

(Gentner et al., 1993; Wharton, Holyoak & Lange, 1996; 
Catrambone, 2002). A set of short text stories are presented 
as source candidates for the retrieval before the introduction 
of target cue situations which share various similarities with 
them (Figure 1). Within a problem solving paradigm, the 
problems generally share the same structure since it is the 
transfer of an abstract solution being investigated. This is not 
systematically the case in the story-recall paradigm since the 
situations are chosen to create a competition between source 
candidate situations possessing exclusively the surface or 
exclusively the structure in common with the target cue 
(Gentner et al., 1993). This paradigm showed superficially 
similar disanalogs were retrieved significantly more often 
than superficially dissimilar analogs, leading to the 
conclusion that superficial similarity is the main factor 
implicated in access.  

Wharton, Holyoak, Downing, Lange, Wickens & Melz 
(1994) argued that the minor role attributed to structural 
matches in story-recall tasks could be due to the fact that only 
one source candidate, the superficially similar disanalog, 
shares some semantic features with the target cue. One can 
note that in real-life conditions, several source candidate 
situations, corresponding in superficial features with the 
perceived situation, are generally available in memory. The 
authors observed that structural similarities may play a 
certain role in access because when the analog source 
candidate also shares some superficial similarities, it is better 
retrieved than the concurrent source candidate possessing 
only superficial similarities with the target cue. Structural 
similarities also seem to play a certain role in access when 
they are implemented without superficial matches: the 
retrieval of a superficially dissimilar source candidate is 
higher when it shares structural features with the target cue 
(Wharton et al., 1996). However, the role of structural 
similarities in access has only been shown when two source 
candidates shared the same amount of surface 
correspondence. Hence, the reviewed works did not 
demonstrate the superiority of structural similarities in 
access, since it would require showing that superficially 
dissimilar analogs are better retrieved than superficially 
similar disanalogs.  

Production Paradigm 
Challenging the ecological nature of traditional 

experimental conditions (unfamiliar source and target 
situations, short familiarization time, restrained pool of 
source candidates), further research focused on the retrieval 
of situations encoded prior to the experiment in real-life 
conditions (Blanchette & Dunbar, 2000; Dunbar & 
Blanchette, 2001; Kretz & Krawczyk, 2014). With this 
configuration, a high structural overlap was generally 
observed between the source and the target cue situation. For 
instance, expert discourse in scientific domains (politics, 
biology, economics) exhibited predominance for structural 
analogies, though sometimes also sharing a superficial 
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correspondence. Those findings were replicated in 
experimental conditions with a production paradigm, where 
participants who were allowed to select their own sources of 
analogy retrieved significantly more semantically distant 
analogs than superficially similar analogs (Blanchette & 
Dunbar, 2000). In other words, those findings not only 
advocate for the major role of structural similarity but also 
for the weak impact of superficial similarity when accessing 
an analog. However, Trench & Minervino (2015) pointed out 
that the sources provided by the participants could be 
invented rather than real memories, and that superficially 
dissimilar analogs could be more common in memory than 
superficially similar ones. They tested the potential that while 
controlling the availability and number of the two types of 
concurrent source candidates, findings obtained from usual 
source-target and story-recall paradigms would be replicated 
when the participant generates analogical retrievals from her 
or his own experiences. They proposed target situations with 
either superficial and structural, or solely structural 
similarities with their memories. In accordance with prior 
findings, participants more often proposed superficially 
similar analogs than superficially dissimilar ones. In another 
study using this paradigm, situations retrieved by 
management consultants provided with target situations 
embodying an original negotiation principle manifested only 
superficial matches (Gentner, Loewenstein, Thompson & 
Forbus, 2009). Contrary to previous studies using the 
production paradigm, this experiment reflects a marginal 
tendency to access structurally similar source situations. 
These results, in sharp contrast with the ones obtained by 
Dunbar and Blanchette (2000), indicate that the natural 
settings of the encoding condition of one of the analog is not 
in itself the critical parameter influencing the type of 
retrieval. Namely, whereas it probably promotes the abstract 
encoding of this analog situation, the access to its structural 
matches with the other analog which is still provided by the 
experimenters is not guaranteed. 

Encoding through abstract concepts 
When faced with a target cue situation, the fail to retrieve 

an analog situation is generally interpreted as a defect of 
abstract encoding of the two situations (Gick & Holyoak, 
1983; Gentner et al., 2009). If the participant is unable to 
grasp the structure of the situations, the abstract similarities 
could not be used as a cue to retrieve. Indeed, only if the 
participant is incited to compare either two source analogs or 
two target analogs, he might extract a schema sufficiently 
abstract, and subsequently perceive this schema in a 
superficially dissimilar analog, in the context of the retrieval. 

However, even if the schema extracted from the situation 
is not abstract enough so that the similarities introduced 
between the analogs by the experimenter will be detected, it 
cannot be claimed that the encoding of a situation is purely 
concrete and literal (Hofstadter & Sander, 2013). Whereas a 
wealth of stimulations is permanently available in our 
environment, one has to select the properties relevant to make 
sense of the situations. This cannot be done by processing 

every perceptively available superficial piece of information. 
Instead, the situation's understanding depends on the 
properties (whether perceptual or abstract) that are 
compatible with the conceptual structure in construction and 
on the neglect of those which are not. 

We suggest that familiar concepts' evocation during the 
encoding is a critical point to account for the abstract 
information raised by perceived situations. This idea is 
congruent with findings revealing that source analog 
problems that participants usually fail to retrieve in 
experiments are better accessed by expert participants 
(Novick, 1988). When experts have a familiar concept to 
highlight the abstract properties of these situations, the novice 
does not have this conceptual door toward the structure. This 
reveals that the novice participant has not elaborated the 
specific concept that allows for the encoding of the structure 
of complex problem situations necessary for the structurally-
based retrieval of this type of situations. However, it is very 
likely that he/she has acquired an expertise in daily-life 
situations, where one systematically has to deepen the 
encoding until elementary abstract concepts are established, 
such as "making a deal", "bad faith", "lie", "authenticity", 
"prosocial behavior" and so on, to produce adapted 
behaviors. The activation of these concepts should highlight 
the structure underlying some daily-life situations in a way 
that elicit structurally-based retrieval. Whereas most studies 
have focused on abstract inter-domain analogies that a novice 
could rarely access, we aim at investigating analogies 
between situations inspired from social scenarios that can be 
experienced in different domains of daily-life.  

Experiment 1 
 

In order to demonstrate the superiority of structural 
similarities over superficial similarities in retrieval, we 
conducted a first experiment where those two types of 
similarities were in competition in the retrieval of a source 
situation candidate. In that way, a story-recall task was used 
so as to control for the highlighting of the structure 
underlying both the analog source candidate situation and the 
target cue situation. 

Method 

Material 
 Social scenarios inspired from Wharton et al. (1996) 

involving life-like contexts were used. Although the objects 
of the analog situations were clearly divergent, they shared 
very similar role at the required level of abstraction for 
making sense of the stories. In the analog pair reported in 
Figure 3 for instance, both stories relate the setting of a social 
competition between two characters (rival cookers or 
classmates) having the same goal (turnover or seducing 
someone) and an unusual way to put an end to it by helping 
the competitor to enhance her/his critical ability (improve 
Lorenzo's pizza dough or looking after Diane's appearance). 
If those situations are not directly taken from the participant's 
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experience, s/he still can use her/his general knowledge about 
social relations to encode such scenarios. 

In order to make sure that the two types (superficial or 
structural) of similarities with the target cue were never 
confounded in a same source situation, superficially similar 
source stories structure clearly diverge from the target ones. 
In this way, contrasting with previous works (e.g. Gentner et 
al., 1993), disanalogs are not modified versions of a same 
structure story, but describe structurally different scenarios.  

Wharton et al. (1994) noticed that when semantic 
correspondence was not only present between the source 
disanalog and the target cue, the artificial saliency of the 
superficial matches decreased and resulted in a weaker 
influence on access. In their experiment, the concurrent 
superficially similar source candidates were the analog and 
the disanalog. As previously indicated, we aim at isolating 
the influence of structure and surface similarities by 
implementing them in different source candidates. Hence, we 
multiplied the number of source candidates sharing surface 
features with the target cue by introducing three superficially 
similar disanalogs. To respect a symmetry between the 
number of semantically close and distant source candidates, 
we also introduced three superficially dissimilar source 
candidate situations (the analog sharing structural 
correspondence, and two unrelated distractors). 

 
 

Target cue story 
 Luigi holds a pizza truck in a very popular place. Lorenzo, 

another ambulant pizzaiolo, has placed his truck just beside 
Luigi’s and is detrimental to his turnover. Luigi realizes the 
dough of Lorenzo’s pizzas is bland. Luigi spontaneously 
gives his personal recipe to Lorenzo so as he can enhance the 
quality of his product. Since then, his pizza dough is 
amazingly tasty. The same evening, Lorenzo declares to 
Luigi that in order to show him how much he found his 
intention was nice, he will move his truck in another sector, 
far from this one. 

 
Superficially dissimilar analog source candidate situation 
Julie is in love with Victor, her classmate, and she is getting 

closer to him in order to seduce him. But Diane joins the class 
in the middle of the year and also has a crush on Victor. Julie 
remarks that Diane was not very aware of her style and 
proposes her some relooking advices, showing her fashion 
photos and taking her for shopping. Diane now looks very 
cute and chic. Diane is so grateful that she tells Julie that she 
would stop flirting with Joe. 

 
Superficially similar disanalog source candidate situation 
In a market place, the truck called « At Alessandro & 

Fabio’s » has various choices of homemade pizzas. The 
important clientele going there is fond of the authentic 
atmosphere steaming from this stand held by the two happy 

                                                             
1 4 participants chose one of the two distractors or did not 

report any retrieval and were not included in the analyses 

looking men in Italian traditional suits. However, once they 
will have left this selling space, the two men will go to 
another market place after taking care of wearing German 
traditional clothes to sell sausage specialties. The sign will 
display « At Hans and Hendrich’s ». 

 
Figure 3: Examples of stories used in the Experiment1  

Procedure and experimental design  
The first two pages of a booklet presented the 6 source 

stories, then a blank page separated them from the last page 
comporting the target cue situation. Under each source story 
was a 5 points scale inviting participants to assess the ease 
they had to imagine the scene while reading it. As 
recommended by Wharton et al. (1996), this was done to 
promote a deep treatment of the situations. The dependent 
variable was the source retrieved during the reading of the 
target cue situation.  

It was indicated that the task took around 10-15 minutes to 
fulfill but no time limitations was imposed. After they agreed 
to participate, participants were given the booklet. They were 
invited to read the instructions available in the first page. The 
target cue situation was presented on the last page, followed 
by the solicitation to indicate if they were reminded of one of 
the previous situations. If it was the case, they had to restitute 
any element they could remember about it.  

Participants 
34 participants (25 women and 9 men, mean age 23.8 

years) accepted to take part in the experiment in University 
libraries (Paris 5 and Paris 8). They were all fluent French 
speakers.  

Results and discussion 
Access credit was attributed to the source candidate for 

which the participant recalled word content. If content word 
from more than one source was reported, the source 
containing the more content words in common was credited. 
If the participant explicitly reported more than one source 
despite the instruction, his response was excluded. 3 
responses were not analyzed for this reason. 

Analyses were drawn on a comparison between the 
superficially and structurally similar source candidates that 
were retrieved. Structurally similar source candidate 
situations were much more retrieved (84.61 %) than 
superficially similar disanalog source candidate situations 
(15.39 %, see Figure 4). This difference reaches high 
significance (X2 (1, N=29)=12.46; P<0.001)1.  

In real-life condition, one generally has in memory 
multiple source candidates sharing similarities in terms of 
superficial objects with the target cue situation. The results 
reveal that when a pool of semantically similar source 
candidate situations is available in memory, but those 
situations do not preserve the structure of the target cue, the 
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retrieval is preferentially guided by structural matches with 
sources of a distant semantic domain. However, our results 
cannot help us identifying whether the structural matches of 
daily-life scenarios are sufficiently blatant to drive the 
retrieval when only one concurrent source candidate belongs 
to the same semantic domain as the target cue. Experiment 2 
was designed in order to answer this question.  

 

 
 

Figure 4: % of retrievals of structurally versus 
superficially similar source candidates in Experiment 1 

Experiment 2 

Method 

Material 
Six source candidate situations were proposed before the 

target cue situation (taken from experiment 1): 4 unrelated 
stories (distractors), one superficially similar disanalog story 
(taken from Experiment 1) and a superficially dissimilar 
analog story (taken from Experiment 1, c.f. Figure 3). Hence, 
the design was more similar to the one used in traditional 
recall tasks (Gentner et al., 1993), though it differs in the 
isolation of structural or superficial similarities in different 
source candidate stories that are in competition. 

Procedure and experimental design 
The procedure and experimental design were the same as 

in Experiment 1.  

Participants  
67 students (52 women and 15 men, mean age 20.8 years) 

accepted to take part in the experiment during a class 
(University Paris 8).  

Results and discussion 
3 responses could not be interpreted since several source 

candidate situations were reported despite the instruction 
asking for only one. 

                                                             
2 2 participants chose one of the two distractors or did not 

report any retrieval and were not included in the analyses 

Again, analyses were focused on the comparison between 
surface and structure similarities-based retrievals. As 
illustrated in Figure 5, the superficially dissimilar analog 
source candidate was significantly more retrieved than the 
superficially similar disanalog source candidate (respectively 
81.25% and 18.75%, X2 (1, N=62)=22.41, p<0.001)2. 

These results share a similar pattern with the ones obtained 
from Experiment 1. This comparison induces that the 
presence of multiple situations belonging to the same 
semantic domain as the target cue was not a determinant 
factor promoting the superiority of structural similarities in 
retrieval. Instead, the fact that our stimuli depicted daily-life 
situations might have been a critical parameter so that the 
participants may have rely on the abstract structures of the 
scenarios as retrieval cues. 

 

 
 

Figure 5: % of retrievals of structurally versus 
superficially similar source candidates in Experiment 2 

 

Conclusion 
In Experiment 1, the superiority of structural similarities in 

retrieval was observed while the source analog was in 
competition with several source candidates sharing 
exclusively surface features with the target cue. As noted by 
Wharton et al. (1994, 1996), providing participants with only 
one source candidate sharing objects with the target cue may 
provoke its retrieval. However, in Experiment 2, providing 
participants with only one surface matching source candidate 
in competition with the superficially dissimilar analog did not 
reduce the proportion of structural similarity-based retrievals. 
Thus, structural similarity-based retrievals are predominant 
when the situations experimentally provided are close to the 
ones that are encountered in daily-life.  

 Experimental studies have widely converged on the 
conclusion that retrieval is driven by superficial similarities. 
However, as the analog situations that have been mainly 
studied are unfamiliar for the participants, the latter 
conclusion cannot be applied to the more ecological retrievals 
that are processed in daily-life. Indeed, in analogical problem 
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solving, analog problems share a highly abstract resolution 
principle (Gick & Holyoak, 1983; Ross, 1987). Alternatively, 
the nature of retrieval can be better informed when 
meaningful structural similarities are set between situations 
potentially encountered by the participants in their familiar 
environment. Under these conditions, the participant's 
knowledge allows to encode familiar relations that constitute 
cues for retrieving former episodes, while surface features 
may be neglected (Novick, 1988; Hofstadter & Sander, 
2013). Indeed, a filter has to operate in order to identify the 
relevant properties constitutive of a concept that allows to 
make sense of the situation. 

Some authors have claimed that the commonly observed 
surface similarity-based retrieval was not so detrimental to 
our cognition since situations sharing surface generally also 
share structure (the kind world hypothesis; Gentner & 
Medina, 1998; Trench & Minervino, 2015). It is noticeable 
indeed that objects in our environment usually interact in 
regular ways and have typical relations (Bassok, Wu & 
Olseth, 1995). For instance, situations involving two pizzaioli 
in the same place potentially induce very closed relations, 
such as a competition between them (Figure 3). Two 
situations sharing both surface and structure can only be more 
structurally similar than two surface dissimilar situations 
sharing only structure at a certain level of abstraction. Yet, it 
has been taken as granted for advocating the superficially 
driven retrieval view that retrievals of structurally and 
superficially similar situations were more frequent than only 
structurally similar ones (Trench & Minervino, 2015). An 
attempt to introduce a source candidate sharing only surface 
and no structure with the target cue has been made in story-
recall paradigms (Gentner, 1993). Yet, a closer look at the 
stimuli (Figure 1) makes apparent that the superficially 
similar disanalog source candidate situations systematically 
still shared some relational features with the target cue 
(Wharton et al., 1996). Their structures are highly similar 
(making a deal to avoid a bad situation) until opposite 
conclusions at the end of the stories (betrayal or respect of 
the deal). However, a set of objects still can induce a 
heterogeneous panel of relations (e.g. two pizzaioli: rivalry, 
friendship, etc), while different types of objects can induce 
very similar relations (e.g. a loving couple can also induce the 
relation rivalry for instance, c.f. Figure 3). In our 
experiments, dissociating object similarities and similarities 
in terms of familiar relations into different source candidate 
situations demonstrated that it is not the objects in themselves 
that drive access, but rather the familiar structural relations 
that link them.  
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Abstract 

Pointwise mutual information (PMI), a simple measure of 
lexical association, is part of several algorithms used as 
models of lexical semantic memory. Typically, it is used as a 
component of more complex distributional models rather than 
in isolation. We show that when two simple techniques are 
applied—(1) down-weighting co-occurrences involving low-
frequency words in order to address PMI’s so-called 
“frequency bias,” and (2) defining co-occurrences as counts 
of “events in which instances of word1 and word2 co-occur in 
a context” rather than “contexts in which word1 and word2 co-
occur”—then PMI outperforms default parameterizations of 
word embedding models in terms of how closely it matches 
human relatedness judgments. We also identify which down-
weighting techniques are most helpful. The results suggest 
that simple measures may be capable of modeling certain 
phenomena in semantic memory, and that complex models 
which incorporate PMI might be improved with these 
modifications. 

Keywords: semantic spaces; word space models; semantic 
memory; semantic networks; computational models 

Introduction 
Pointwise mutual information (PMI) is a simple measure 
that plays an important role in many computational models 
that approximate human judgments of lexical association or 
semantic relatedness. Such “semantic space” models 
typically take the form of algorithms that process a corpus 
of written language, such as Wikipedia or TASA, and 
construct quantitative representations of the words they 
encounter on the basis of lexical co-occurrence statistics. 
The resulting ‘lexical representations’ (e.g., numerical 
vectors) are intended to correspond roughly to semantic 
representations in the human mind, at least at some level of 
abstraction. Of particular interest is the degree of 
association that exists between related (and unrelated) 
words in any such model. This quantity is computed in a 
manner appropriate to the model at hand, e.g. cosine 
similarity between two lexical vectors in a vector space 
model, or Kullback–Leibler divergence between 
distributions of words over topics in a topic model. Such 
computationally estimated associations can then be 
compared to behavioral data that provides evidence of the 
actual degree to which people perceive particular words to 
be related, e.g., human judgments of the semantic 
relatedness of large numbers of word pairs. 

 Such correlations with behavioral data are frequently 
used to argue in favor of particular models of human 
semantic memory (Griffiths, Steyvers, & Tenenbaum, 2007; 
Jones & Mewhort, 2007; Bullinaria & Levy, 2007), but 

lexical associations derived from semantic space models 
have many other applications as well. For example, a range 
of semantic space models—including one method that has 
been recently shown by Levy & Goldberg (2014) to be 
implicitly factorizing a matrix of PMI scores—have recently 
been employed to study associative processing in high-level 
judgment, modeling phenomena such as the conjunction 
fallacy and naturalistic judgment problems (Bhatia, 2017). 
PMI or explicitly PMI-based methods have been used to 
cluster terms syntactically and semantically (Bullinaria & 
Levy, 2007, 2012), recognize synonyms (Turney, 2001), 
automatically identify clusters that correspond to different 
senses of a word’s meaning (Pantel & Lin, 2002), extract 
linguistic collocations from text (Manning & Schütze, 
1999), and identify patterns of relationships between 
symptoms in dementia (Mitnitski, Richard, & Rockwood, 
2014), among many other applications. 

Because of the range of applications to which PMI and 
PMI-based methods are applied, any modifications that 
improved PMI’s ability to model human semantic 
judgments would potentially have benefits for the wide 
range of computational methods in which it is a component. 
Furthermore, if a slight modification of some neurally 
plausible algorithm such as PMI was to produce lexical 
associations that were as good as those produced by state-
of-the-art models (in terms of correlation to human data), it 
would be worth investigating as a possible computational 
simplification/abstraction of some process actually taking 
place within human semantic memory. Finally, simple, 
computationally efficient yet accurate means of estimating 
lexical associations are useful within the field of artificial 
intelligence, as they can more readily be scaled up to larger 
datasets than can methods that take longer to compute. For 
all of these reasons, simple measures of lexical association 
are worthy of closer investigation. 

PMI is traditionally defined as follows (Church & Hanks, 
1989): 

 

𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥,𝑦𝑦) =  log2
𝑃𝑃(𝑥𝑥,𝑦𝑦)
𝑃𝑃(𝑥𝑥)𝑃𝑃(𝑦𝑦)

 

 
This formulation “compares the probability of observing x 
and y together (the joint probability) with the probabilities 
of observing x and y independently (chance)” (Church & 
Hanks, 1989, p. 77). Estimating these probabilities is 
commonly done in a straightforward manner: P(x,y) is 
estimated by dividing the number of “contexts” (documents, 
windows of text, etc.) in which x and y co-occur by the total 
number of contexts in the corpus, and P(x) is estimated by 
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dividing the number of contexts containing x by the total 
number of contexts in the corpus (and likewise for P(y)) 
(Manning & Shütze, 1999; Turney & Pantel, 2010). 

Strengths and Weaknesses of PMI 
PMI is a component of many different algorithms that have 
been fit to behavioral data in the psychological literature. 
For example, a slight variant of it (PPMI, or ‘positive PMI,’ 
which differs only in that negative values are set to zero) has 
been used directly in lexical vector components in models 
such as ‘PPMI Cosines’ (Bullinaria & Levy, 2007, 2012), 
and as a preprocessing step to be applied to a matrix prior to 
singular value decomposition or other matrix factorization 
techniques. Some algorithms that initially seemed to have 
little to do with PMI are more linked to it than they first 
appeared. For example, consider the SGNS algorithm of the 
popular word embedding tool word2vec (Mikolov, 
Sustskever, Chen, Corrado, & Dean, 2013), which has been 
recently used in studies of metaphor perception and 
associative processing (Agres et al., 2016; Bhatia, 2017), 
and is responsible for the Google Word2Vec dataset 
recently described as one of several “data sets with potential 
relevance for cognitive science” in a recent survey 
(Goldstone & Lupyan, 2015, Table 2). Although this 
algorithm is typically conceived of as a shallow neural 
network, its core mathematical operations have been shown 
to be implicitly factorizing the “well-known word-context 
PMI matrix from the word-similarity literature, shifted by a 
constant offset” (Levy & Goldberg, 2014, p. 2177). The 
same appears to be true of an alternative embedding method 
known as noise-contrastive estimation (Levy & Goldberg, 
2014). In fact, much of the advantage that “prediction-
based1” models such as word2vec’s SGNS initially seemed 
to hold over more traditional distributional models (Baroni, 
Dinu, & Kruszewski, 2014) appears to be due to word2vec’s 
exploitation of ‘hyperparameters’ –i.e., miscellaneous 
operations such as smoothing and subsampling (Levy, 
Goldberg, & Dagan, 2015). When these more traditional 
vector space models are enhanced with analogous 
hyperparameters, they tend to do as well as prediction-based 
models (Levy et al., 2015). 

Given the ubiquity of PMI in computational models of 
semantic relatedness, it seems that this measure must be 
capturing something important. Yet the measure is well-
known for its weaknesses. The most fundamental of these is 
“frequency bias,” PMI’s tendency to over-weight co-
occurrences involving low-frequency words (Levy et al., 
2015; Manning & Shütze, 1999; Turney & Pantel, 2010). 
One way to think about the cause of this problem is that 
although probability estimates are more accurate when they 
are made on the basis of lots of data (e.g., frequent words) 
than on sparse data (infrequent words), the formula for PMI 

                                                           
1 These are distributional semantic models that “frame the vector 

estimation problem directly as a supervised task, where the weights 
in a word vector are set to maximize the probability of the contexts 
in which the word is observed in the corpus” (Baroni et al., 2014, 
p. 238.) 

does not account for this fact. On the contrary, the less 
frequent the words, the lower the denominator and the larger 
the result. Thus a chance co-occurrence between two rare 
words that each occur only once in a large corpus will result 
in an exceedingly high PMI. Because Zipf’s law entails that 
any corpus will have many more infrequent than frequent 
lexical types, this problem is pervasive.  

Addressing PMI’s Weaknesses 
Given the fundamental difficulties inherent in estimating co-
occurrence probabilities from infrequent words, various 
adjustments to PMI have been proposed to mitigate the 
problem. Here we consider one commonly proposed 
solution (down-weighting co-occurrences involving low-
frequency words in some way, to counter PMI’s tendency to 
over-weight them), and one solution that we have not 
previously seen proposed (adjusting how ‘co-occurrences’ 
are defined/counted). 
 
Down-weighting. The probabilities in the denominator of 
the PMI formula naturally down-weight co-occurrences 
involving frequent words. This is a desired property; 
without the denominator, the most “associated” words with 
virtually any term would be “the,” “of,” and many other 
words that occur very frequently across the board. As 
previously mentioned, however, PMI (and PPMI) have the 
opposite problem, in that the words these measures deem to 
be most semantically related to a word w “are often 
extremely rare words, which do not necessarily appear in 
the respective representations of words that are semantically 
similar to w” (Levy et al., 2015, p. 213). 

As such, several modifications to PMI have been 
proposed, many of which are enumerated in Table 1. The 
ultimate goal of all of these is to cause low frequency words 
to be ranked less highly than in the standard PMI formula. 
Some further adjustments have been proposed which rely on 
information other than the co-occurrence counts and 
frequencies of the words whose association is being 
calculated. Because these rely on additional information, 
there is sometimes a fine line between such modifications of 
PMI and novel distributional models, and they often have 
additional parameters. Yet other measures, such as PMI2 , 
have been shown to be monotonic transformations of other 
measures already appearing in Table 1 (Evert, 2005). We 
confine our comparisons in Study 1 to only the simplest 
measures, i.e., measures that, when computing the degree of 
association between words w1 and w2, rely only upon the 
corpus-wide counts f(w1) and f(w2), and the co-occurrence 
counts f(w1, w2). 

 
Counting. It is clear that there is variation in the literature 
with respect to the manner in which the probabilities 
involved in PMI are estimated. For example, several 
researchers report estimating P(x) the as frequency of x 
divided by the number of words in the corpus (Church & 
Hanks, 1989; Islam & Inkpen, 2008), while others use the 
number of documents in which x appears divided by the 
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number of documents in the corpus (Manning & Shütze, 
1999; Turney, 2001; Turney & Pantel, 2010). Similarly, 
many authors mention that they use the “number of co-
occurrences” of x and y to estimate P(x, y), without 
specifying exactly what counts as a “co-occurrence.” A 
reasonable assumption is that in some cases this is 
shorthand for “the number of contexts/documents in which x 
and y co-occur,” and indeed this seems to be approach of 
some authors who spell out their calculations in detail 
(Manning & Shütze, 1999; Turney, 2001; Turney & Pantel, 
2010). A more literal interpretation of “number of co-
occurrences”—and perhaps the one intended by at least 
some of the authors who have used this phrase—would be 
that this refers to the number of co-occurrence events. For 
example, in the sentence context “Tiger, tiger, burning 
bright,” the word type tiger can be conceived of as co-
occurring with bright twice (one co-occurrence for each 
instance of tiger)2,3. We will refer to this method of co-
occurrence counting as “event-based counting,” as 
contrasted from the “context-based” method of counting the 
number of contexts/documents in which x and y appear 
together. Event-based counting attends to the information 
available in the corpus at a more fine-grained level than 
does context-based counting, as it distinguishes between 
contexts in which word pairs might appear many times and 
contexts in which they might appear together only a single 
time. As such, it can be seen as increasing the overall 
amount of evidence about word associations that go into the 
estimation of the probabilities. 

Study 1 
Down-weighting and event-based counting each have the 
potential to address PMI’s frequency bias—the former by 
compensating for the fact that rarer words provide weaker 
evidence, and the latter by bolstering the overall amount of 
evidence that the measure takes into account. In Study 1, the 
success of each approach is evaluated individually and in 
combination. Table 1 provides the formulae for each of the 
down-weighting methods surveyed in the previous section, 
with citations provided in footnotes. Some methods, namely 
SCI, SCIsig, and context distribution smoothing, are 
asymmetric and distinguish between a cue word x and a 
response word y. 

In theory, either context-based or event-based counting  
could be used with any one of these measures. With context-
based counting, P(x, y) is estimated by dividing the total 
number of contexts in which x and y appear together by a 
constant factor, namely the total number of contexts in the 
corpus (Turney & Pantel, 2010). Analogously, with event-
based counting, it makes sense to divide the number of co-

                                                           
2 Co-occurrences are generally viewed as symmetric relations, 

and we will keep with that tradition here: tiger co-occurs with 
bright twice in this sentence, and vice versa. 

3 This is the approach of Church & Hanks (1989) and Islam & 
Inkpen (2008), except that their contexts are defined as windows of 
text (i.e., strings containing n words); the size of the window is an 
additional parameter for the model. 

occurrence events in which x and y appear together by the 
total number of co-occurrence events in the corpus 
∑ |𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥𝑐𝑐𝑖𝑖|(|𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥𝑐𝑐𝑖𝑖| − 1)𝑁𝑁
𝑖𝑖 . In practice, however, the 

specific value here is irrelevant, as it merely serves to scale 
all PMI scores by a constant factor.  

Analogously, to estimate the ‘global’ or ‘corpus-wide’ 
probability P(x) of observing a word, we can either count 
the total number of contexts in which x appears (context-
based counting), or we can count x’s raw frequency – the 
total number of times x appears anywhere in the corpus 
(event-based counting), and divide the result by the relevant 
constant factor (number of contexts, or number of co-
occurrence events). 

Some of the measures in Table 1 call for the use of co-
occurrence frequencies f(x,y) or global frequencies (f(x), 
f(y)). These are counted as previously described, except that 
they are not divided by a constant factor.  

 
Table 1: Methods for down-weighting PMI scores. 

 
Method Formula 
“Discount 
factor”4 
 

�
𝑓𝑓(𝑥𝑥,𝑦𝑦)

𝑓𝑓(𝑥𝑥,𝑦𝑦) + 1
��

min (𝑓𝑓(𝑥𝑥), 𝑓𝑓(𝑦𝑦))
min�𝑓𝑓(𝑥𝑥), 𝑓𝑓(𝑦𝑦)� + 1

�𝑝𝑝𝑝𝑝𝑝𝑝 

SCI5 𝑃𝑃(𝑥𝑥,𝑦𝑦)
𝑃𝑃(𝑥𝑥)�𝑃𝑃(𝑦𝑦)

 

PMIsig
5
  �min (𝑃𝑃(𝑥𝑥),𝑃𝑃(𝑦𝑦)) �

𝑃𝑃(𝑥𝑥,𝑦𝑦)
𝑃𝑃(𝑥𝑥)𝑃𝑃(𝑦𝑦)

� 

  
SCIsig

5
  �min (𝑃𝑃(𝑥𝑥)𝑃𝑃(𝑦𝑦))�

𝑃𝑃(𝑥𝑥,𝑦𝑦)
𝑃𝑃(𝑥𝑥)�𝑃𝑃(𝑦𝑦)

� 

gmean6 𝑓𝑓(𝑥𝑥,𝑦𝑦)
�𝑓𝑓(𝑥𝑥)𝑓𝑓(𝑦𝑦)

 

Context 
distribution 
smoothing7 

𝑙𝑙𝑐𝑐𝑙𝑙�
𝑃𝑃(𝑥𝑥,𝑦𝑦)

𝑃𝑃(𝑥𝑥) 𝑓𝑓(𝑦𝑦)𝛼𝛼
∑ 𝑓𝑓(𝑝𝑝)𝛼𝛼𝑖𝑖

�  𝑤𝑤𝑝𝑝𝑐𝑐ℎ 𝛼𝛼 = 0.75 

Method 
Word pair lists were obtained for all semantic relatedness 
tasks evaluated in Recchia and Jones (2009), namely the 
tasks of Miller & Charles (1991), Resnik (1995), Rubenstein 
& Goodenough (1965), and Finkelstein et al. (2002). 
Because the latter task conflates judgments of semantic 
similarity ({car, truck}) with judgments of semantic 
relatedness ({car, road}), we used the version of this task 
that had been partitioned into the so-called “WordSim 
Similarity” and “WordSim Relatedness” subsets (Agirre et 
al., 2009). Also included was an additional similarity task, 
SimLex-999 (Hill, Reichart, & Korhonen, 2014) and two 
additional relatedness tasks referred to in the literature as 

                                                           
4 Pantel & Lin (2002) 
5 Washtell & Markert (2009) 
6 Evert (2005) 
7 Levy, Goldberg, & Dagan (2015) 
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MEN (Bruni, Boleda, Baroni, & Tran, 2012) and MTurk 
(Radinsky, Agichtein, Gabrilovitch, & Markovitch, 2011).  

Raw PMI scores as well as each of the down-weighting 
metrics in Table 1 were calculated for every word pair in 
each relatedness and similarity task8, using a version of the 
Westbury Lab Wikipedia Corpus (Shaoul & Westbury, 
2010) with punctuation removed and capital letters 
converted to lower case. The resulting corpus contained 
3,035,070 documents and approximately 1 billion words. 
Each metric was computed with context-based counting as 
well as with event-based counting as described in detail on 
the previous page. Rather than a window size, terms were 
treated as ‘co-occurring’ if they appeared in the same 
document (i.e., Wikipedia article). 

Additionally, to get a sense of how these metrics stack up 
against what are perhaps the most popular distributional 
models today—the word2vec CBOW and SGNS models—
we trained each word2vec model on the same corpus using 
the default settings recommended by Google9, and used the 
resulting vectors to estimate semantic relatedness in the 
standard manner (e.g., computing cosines between 300-
dimensional vectors). Comparing to distributional models 
whose parameters have not been optimized for the tasks at 
hand is in some ways an unfair comparison. Nevertheless, 
word2vec’s ‘off-the-shelf’ parameters are the ones most 
frequently employed when word2vec is used in real-world 
settings. As usual, Spearman rank correlations were 
computed between each metric and the human judgments 
provided by each relatedness and similarity task. 

Results 
Down-weighting methods. The only down-weighting 
methods tested that were consistently as good as or better 
than the standard PMI formula were the discount factor of 
Pantel & Lin (worse performance than raw PMI on 1 of the 
8 tasks when using context-based counts, 2 tasks when 
when using event-based counts) and the “context 
distribution smoothing” of Levy et al. (worse performance 
than raw PMI on only 1 task, irrespective of counting 
method employed). All other down-weighting methods 
exhibited worse performance than raw PMI on over half of 
all tasks regardless of counting method. Table 2 illustrates 
Spearman rank correlations between human judgments and 
these best-performing down-weighting methods using 
context-based counting, event-based counting, and the two 
word2vec models.  
 
Counting methods. Restricting ourselves to the down-
weighting methods that produced reliable improvements, 
event-based counting resulted in higher correlations to 
human data than did context-based counting on all tasks 
except for SimLex-999. Across all tasks, using event-based 

                                                           
8 If computing a metric resulted in an undefined value (log 0), 

the value of the metric was replaced with zero. 
9 That is, a window size of 10 for SGNS and 5 for CBOW (as 

recommended at https://code.google.com/archive/p/word2vec/), 
and all other parameters left on their default settings. 

rather than context-based counting increased correlations by 
an average of 2.7 points for context distribution smoothing, 
4.2 points for the discount factor, and 4.9 points for raw 
PMI scores.  
 

Table 2: Correlations with human judgments of semantic 
relatedness (tasks 1-5, 7) and similarity (6, 8). 

 Task number (see Note below) 

Method 1 2 3 4 5 6 7 8 
CDS, Context .68 .75 .58 .83 .82 .32 .64 .73 

DF, Context .63 .75 .51 .85 .81 .30 .57 .66 

PMI, Context .62 .74 .50 .84 .78 .30 .57 .66 

CDS, Event .72 .81 .58 .87 .86 .27 .68 .76 

DF, Event .70 .79 .55 .86 .83 .29 .66 .72 

PMI, Event .70 .79 .55 .86 .82 .29 .66 .72 

SGNS .71 .77 .64 .82 .75 .30 .62 .75 

CBOW .67 .71 .56 .73 .67 .32 .47 .72 
 
Note. CDS: context distribution smoothing, DF: discount 
factor; PMI: unmodified PMI; SGNS: word2vec skip-grams 
with negative sampling; CBOW: word2vec ‘continuous bag 
of words’; “Context” and “Event” refer to the counting 
method used. Task numbers refer to the judgments of 
semantic relatedness/similarity compiled by 1: Bruni et al. 
(2012); 2: Miller & Charles (1991); 3: Radinsky et al. 
(2011); 4: Resnik (1995); 5: Rubenstein & Goodenough 
(1965); 6: Hill et al. (2014); 7: WordSim-Relatedness 
(Agirre et al., 2009); 8: WordSim-Similarity (Agirre et al., 
2009). The highest correlation for each task appears in bold. 

Discussion 
Down-weighting and event-based smoothing both confer 
advantages when PMI is used to estimate semantic 
relatedness judgments. Specifically, the combination of 
context distribution smoothing (CDS) and event-based 
counting performed best for all datasets except for two. 
Each of these was a dataset on which the various versions of 
PMI all performed poorly. When SimLex-999 was 
constructed (Hill et al., 2014), respondents were given 
explicit instructions about the difference between similarity 
and relatedness, and told to judge similarity only. PMI has 
no mechanism for distinguishing between related and 
similar terms, and does not detect relationships between 
paradigmatically related terms (which tend to be similar) as 
well as SGNS does. It is not clear why all metrics did well 
on WordSim-Similarity, but one reason may be that Agirre 
et al. (2009) did not specifically instruct participants to rate 
word pairs based on their similarity. Rather, they created 
WordSim-Similarity with the original judgments from 
Finkelstein et al. (2002), which had instructions that 
conflated relatedness and similarity, but they excluded 
related word pairs that did not share a formal similarity 
relation (synonymy, antonymy, hyponymy, etc.) 

Why does context distribution smoothing work? Given 
that the ∑ 𝑓𝑓(𝑝𝑝)𝛼𝛼𝑖𝑖  term is constant for any fixed value of α, 
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the only thing that really seems to distinguish CDS from the 
other discounting methods is its use of α (set to .75) in the 
exponent of f(y). Furthermore, since P(y) is estimated by 
dividing f(y) by another constant, context distribution 
smoothing is closely related to the much more poorly 
performing SCI metric of Washtell & Markert (2009), 
𝑃𝑃(𝑥𝑥,𝑦𝑦)

𝑃𝑃(𝑥𝑥)�𝑃𝑃(𝑦𝑦)
, which merely raises P(y) to the power of .5 rather 

than .75. 
Why would there be anything special about .75? One 

possibility is that this value strikes the proper balance 
between raising P(y) to the value of 0 (which would ignore 
the frequency of P(y) and result in a measure that was highly 
correlated with y’s frequency), versus raising P(y) to the 
value of 1 (yielding PMI, which is known to give outsize 
values to infrequent words and is thus likely inversely 
correlated with frequency). In other words, down-weighting 
may be optimal when it yields a measure that is neither 
positively nor negatively correlated with word frequency. 
This possibility is briefly explored in Study 2. 

Study 2 
To find the α for which CDS yields a correlation with word 
frequency as close to zero as possible, α was fit so as to 
minimize the absolute value of the Spearman rank 
correlation between word frequency10 and CDS.  Because 
there is no reason in this context to modify P(y) but not 
P(x), the same was done for a generalization of the gmean 
measure, “simple” smoothing, defined simply as 

𝑙𝑙𝑐𝑐𝑙𝑙 � 𝑃𝑃(𝑥𝑥,𝑦𝑦)
𝑃𝑃(𝑥𝑥)𝛼𝛼𝑃𝑃(𝑦𝑦)𝛼𝛼

�. Finally, the value of α that maximized 

correlations to human data was determined for both 
measures. Event-based counting was used in all cases due to 
its superiority over context-based counting in Study 1. 

Table 3 illustrates the values of α that minimized the 
absolute value of the correlation between the measure and 
word frequency, while Table 4 shows values of α that 
maximized correlations with human judgments.  
 

Table 3: Values of α that minimized absolute value of 
correlations with word frequency (Study 2) 

 Task number (see Note below Table 2) 

Measure 1 2 3 4 5 6 7 8 
CDS .85 .77 1.0 .76 .78 .74 .77 .72 

Simple .91 .82 1.0 .79 .85 .84 .84 .82 
 

Table 4: Values of α that maximized correlations with 
human judgments (Study 2) 

 Task number (see Note below Table 2) 

Measure 1 2 3 4 5 6 7 8 
CDS .77 .80 .52 .80 .74 .97 .76 .74 

Simple .85 .81 .76 .81 .81 1.0 .84 .87 

                                                           
10 Specifically, the frequency of the lowest-frequency word in 

each word pair. 

Discussion 
For CDS, the values of alpha that minimized the absolute 

value of the measure’s correlation to word frequency 
(median .77) were not far off from the values of alpha that 
maximized correlations to human judgments (median .765), 
with the greatest discrepancies being on those tasks on 
which CDS did not perform well in Study 1 (#3 and #6). 
The same was true of simple smoothing (medians .84 and 
.825, respectively). This suggests that explicitly finding 
ways to minimize the degree to which lexical measures of 
association are confounded with word frequency and other 
covariates could be a promising path toward improving their 
ability to model human data. Other future directions could 
include more in-depth exploration of why α so closely 
corresponds to those values that maximized correlations to 
human judgements. For example, if an experimental study 
showed that the same was true of study participants making 
judgments about the relatedness of words in an artificial 
language, even when this value was not equal to .75, this 
would provide better evidence that the human mind employs 
some process that makes an explicit correction for low-
frequency events analogous to that proposed by CDS.  

It should not be concluded from the results of Studies 1 
and 2 that PMI is more effective in isolation than 
distributional models such as word2vec. It should also be 
noted that not all datasets are independent. For example, the 
word pairs in Miller & Charles (1991) and Resnik (1995) 
are subsets of Rubenstein & Goodenough (1965), so it is 
unsurprising that a measure that does well on one would do 
well on all three. Even so, the fact that the use of event-
based counting and CDS down-weighting causes PMI to 
generally outperform word2vec on its default settings 
suggests that PMI may be a better abstraction of human 
relatedness judgments than it is commonly understood to be. 
Furthermore, given that PMI has so many different 
applications within cognitive science and is a component of 
so many models of lexical processing, any improvements to 
this measure have the potential to improve model fits across 
a wide range of computational studies of cognition. 
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Abstract 

We present two experiments investigating the production of 
implicit constructions. Using a confederate scripting paradigm 
we find that after making an inference participants were more 
likely to subsequently produce an implicature. This effect 
occurred at a global and a local level and was unaffected by 
the perceived role of the conversational partner. Our findings 
demonstrate that the choice of whether to be implicit is 
determined by the activation levels of representations specific 
to implicatures and that inference and implications have 
overlapping processing representations. 
 

Keywords: Priming; Scalar Implicatures; Speech Production; 
Inferring 

Producing implications 

During conversations speakers have to make a variety of 

decisions about the message they wish to convey. These 

decisions include what lexical material to include, what 

syntactic forms to use, and whether or not to communicate 

explicitly or implicitly. When communicating implicitly the 

onus is on the listener to enrich the utterance to reach the 

speaker's intended meaning.  

Research into language production has predominantly 

focused on speaker's choices of explicit material. That is, 

their choices of which lexical items to use or which 

syntactic constructions to use (e.g. Bock & Levelt, 1994; 

Levelt, Roelofs, & Meyer, 1999; Pickering & Branigan, 

1998). In this paper, we focus on the speaker's decision to 

be implicit or explicit in their speech. Consider the 

following: 

1. A: “Did John eat the cookies?” 

B: “He ate some of them.” 

 => John ate some but not all of the cookies. 

2. A: “Have you met Lucy’s new boyfriend? He’s 

handsome and intelligent!” 

B: “He’s handsome.” 

=>He’s not intelligent. 

In these exchanges B’s utterance conveys more than what 

is explicitly coded. In (1) B’s utterance leads to the 

inference John ate some but not all of the cookies. This 

inference arises through the following steps (based on Grice, 

1989): (i) speaker A recognises that B could have said “he 

ate all of them.” (ii) Since B did not say this, and assuming 

B is cooperative, A can infer that “he ate all of them” is not 

true; (iii) combining what is said with the negation of the 

alternative leads to the inference that “John ate some but not 

all of the cookies.” Similar reasoning can be used for (2). 

Speaker B could have said “Yes, I agree” or “He is 

handsome and funny.” By not saying these A could infer 

that B thinks Lucy’s boyfriend is not handsome. The result 

of this reasoning process was termed implicatures by Grice 

(1989). 

Since Grice’s seminal work, implicatures have been 

analysed in great detail. For example, there are analyses 

from the perspective of theoretical semantics (e.g., 

Chierchia, 2004), acquisition (e.g., Noveck, 2001), clinical 

disorders (e.g. Chevallier, Wilson, Happé, & Noveck, 

2010), and sentence processing (e.g., Bott & Noveck, 2004). 

What all previous work has in common, however, is that 

they are from the perspective of the listener, and not the 

speaker. Here we ask how the speaker makes the choice 

about whether to make an implication1. 

Why imply? 

Why does a speaker imply when they could be explicit? One 

reason is that using implicatures is efficient for a speaker. 

Since articulation is much slower than speech preparation 

processes, reducing the amount of material to be articulated 

reduces this articulatory bottleneck and arguably minimises 

speaker effort while maximising their benefits (Grice, 1989; 

Horn, 2004; Levinson, 2000; Wheeldon & Levelt, 1995). 

Another reason is that implicatures are used out of 

politeness. Implicatures can be used to maintain face 

(Bonnefon, Feeney, & Villejoubert, 2009; Brown & 

Levinson, 1987; Feeney & Bonnefon, 2013; Goffman, 1967; 

Holtgraves & Perdew, 2016). In face threatening contexts 

listeners interpret the use of implicatures as a speaker’s 

attempt at politeness. 

Efficiency and politeness provide intuitive explanations 

for why people use implicatures. However, it is unclear how 

these socio-pragmatic factors interact with the language 

processor. One possibility is that social factors modulate the 

activation of representations specific to the implicature 

process. That is, there are representations specific to 

implicatures and the activation of said representations 

underlie the production and comprehension of implicatures. 

We present two experiments to investigate this. 

                                                           
1 We refer to implicit utterances made by the speaker as 

implications and inferences made by the listener as inferences. 
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Implicit representations 

During conversations interlocutors tend to repeat 

linguistic structures that they have recently heard or 

produced. This repetition is known as structural priming 

(e.g. Bock, 1986). Structural priming occurs throughout the 

language system in production (Brennan & Clark, 1996; 

Bock, 1986; Levelt & Kelter, 1982; Branigan, et al, 2000; 

2005) and comprehension (Sturt, Keller, & Dubey, 2010; 

Thothathiri & Snedeker, 2008), and in different languages 

(Hartsuiker & Westenberg, 2000; Scheepers, 2003). There is 

a general consensus that successful priming of a particular 

structure indicates the presence of a corresponding 

representation within the language system whereas 

unsuccessful priming indicates the absence of such a 

representation (Branigan, Pickering, Liversedge, Stewart, & 

Urbach, 1995; Pickering & Ferreira, 2008). 

Priming is not restricted to explicit linguistic forms; 

Raffray, Pickering, Cai, & Branigan (2013) found that after 

encountering a coerced sentence individuals were more 

likely to subsequently produce a coerced sentence than after 

a fully-formed sentence. Sentences involved coercion are 

ambiguous. For example, "The author finished the book" is 

ambiguous; the verb finish requires a complement that 

specifies an event. For a comprehender to interpret the 

sentence they must undertake an enrichment process which 

coerces the noun into the correct semantic type.  Since 

individuals were more likely to subsequently produce a 

coerced sentence after comprehending or producing a 

coerced sentence than after a full-formed sentence Raffray 

et al. suggested that there are distinct representations 

corresponding to coerced and full-form sentences i.e. there 

are distinct representations involved in implicit and explicit 

language. While the sort of implicit language used by 

Raffray et al. is very different to Gricean implicatures, their 

study nonetheless demonstrates that it is possible to prime 

the choice between using more or less linguistic material. 

Further support comes from Bott and Chemla (2016). 

They showed that that after deriving a Gricean enrichment 

participants were more likely to subsequently derive an 

enrichment. This held both within and between enrichment 

categories. They suggested that there was a mechanism 

which underlies the derivation of enrichment and after 

making an enrichment these mechanisms retain some 

activation which increases the likelihood of making a 

subsequent enrichment. However, their findings relate to 

comprehension (and not production), and so do not illustrate 

how the speaker chooses between an implicit and an explicit 

construction. 

The success of communication can, in part, be ascribed to 

priming. Representations that are shared between the 

comprehension and production system reciprocally activate 

each other so that after comprehending a particular structure 

the speaker is more likely to use that structure. 

Consequently interlocutors develop similar representations 

of linguistic structures and thus become aligned via priming 

(Pickering & Garrod, 2004). We propose that the same 

occurs for the production of implicit and explicit 

constructions. There are specific representations which 

underlie implicit communication and the activation level of 

these determines whether or not a speaker produces an 

implicit construction. Thus in a dialogue if one speaker is 

using implicit constructions it is likely that their 

conversational partner will also produce implicit 

constructions since the representations used to comprehend 

the utterance will have an activation advantage over other 

representations that were not used. Thus these 

representations can be primed. We test this using a 

confederate-scripting priming paradigm adapted from 

Branigan, Pickering & Cleland, 2000). 

Experiment 1 

A participant and a confederate took turns describing and 

identifying a referent card from a set of four. These cards 

consisted of rectangles containing either one or two images 

(see Figure 1). Cards were displayed on two separate 

screens (one for the participant and one for the confederate), 

and neither party could see each other’s screen. The referent 

card was identified to the speaker by being embedded in a 

bold square, but not to the listener. The task for the speaker 

was to communicate to the listener which of the cards was 

the referent card.  

The structure of the images in the display were the same 

on each trial. Figure 1 shows the structure (left panel) and 

an example trial. The experimental cards were the A and AB 

cards. Here, one of the images was duplicated (a pencil in 

the example). This meant that to communicate that the A 

card was the referent, the speaker could choose between an 

implicit construction, “The card with the pencil,” in which 

they relied on the listener making an inference, or an 

explicit construction, “The card with the just the pencil,” in 

which a modifier removed the ambiguity about which image 

was the referent. Whether the participant (as speaker) chose 

an explicit or an implicit form was the dependent measure. 

There were two forms of priming. The first was a between 

subjects manipulation in which one group of participants 

were exposed to predominantly implicit constructions and 

the other to predominantly explicit constructions. The 

second was a within-subjects manipulation in which the 

sequence of trials was designed to prime an implicit or an 

explicit construction from the participant.  

Our hypotheses were as follows. If there are 

representations corresponding to implicatures, and if they 

can be activated or deactivated during conversation, we 

expect more explicit constructions in the explicit global 

priming condition than in the implicit condition. Similarly, 

if implicature representations can be activated at a local 

level, trials in which the confederate uses an implicit 

construction should be followed by more implicit 

constructions than trials where the confederate used an 

explicit construction. 
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Figure 1. Example trials. Left panel shows the object 

structure. Right panel shows an example trial. 

Method 

Participants. 35 Cardiff University undergraduate students 

participated for either payment or course credit. 

Materials and Design. On each trial the interlocutors were 

presented with four cards, each containing one or two 

images. Images were organized in the same structure (see 

Figure 1). Both interlocutors would see the same set of four 

cards however, on prime trials the confederate’s screen 

would also display the description to use. The confederate’s 

descriptions always named a single image, e.g. in 

Experimental trials the confederate would describe the AB 

card as “The card with the [B]”. Experimental trials referred 

to either the A or the AB card and filler trials referred to the 

C or DE card.  

All trials were organized into pairs such that the 

confederate described a prime trial and the participant 

described a target trial. For experimental items there were 

A, and AB primes and targets, thus there were 4 prime-

target combinations. There were 8 examples of each 

combination resulting in 32 experimental pairs. Filler items 

were 32 pairs of C and DE trials. An additional 8 practice 

pairs were presented at the start of the experiment to allow 

participants to get used to the experimental procedure. 

Consequently there were 32 experimental pairs + 32 filler 

pairs + 8 practice pairs = 144 items in total.  

Items were presented in a fixed pseudorandom order. 

Experimental pair presentation was alternated with filler 

pairs. To prevent any findings from being attributable to 

order effects we reversed the presentation order of the pairs 

to make two separate lists.  

The dependent variable was the construction used by 

participants to describe the card in target trials. Responses 

which used a single, unmodified referent were coded as 

implicit and responses that used two referents or a modified 

single referent were coded as explicit. 

Global priming. Global priming tested whether 

participants would imitate the conversational style of their 

partner. Since the A item was duplicated across the A and 

AB cards, describing the A card was potentially ambiguous. 

The confederate could either use an implicit description 

“The card with the [A]”, which required the participant to 

derive an inference (A and nothing else), or use an explicit 

description “The card with just the [A]”.  In the implicit 

condition the confederate described the A card implicitly, 

using an unmodified referent. In the explicit condition the 

confederate always used a modifier.  

Local priming. Local priming tested whether we could 

prime the implicature representations on a trial by trial 

basis. This was achieved by manipulating the sequence of 

prime-target trials. There were two prime types (A cards, 

AB cards) and two target types (A cards, AB cards), thus 

there were four prime-target sequences: A->AB, A->A, AB-

>AB, AB->A. In the implicit condition the confederate’s 

description of A cards required participants to make an 

implicature and consequently raised the activation levels of 

the implicature representations. The confederate’s 

descriptions of AB cards, conversely, blocked the 

implicature (since there was no card equivalent to B and 

nothing else) and therefore lowered the activation levels of 

the implicature representations. Consequently A->A 

sequences should yield higher proportions of implicature 

production (unmodified single referent descriptions) than 

AB->A sequences. The reverse should hold for A->AB 

descriptions; rates of implicatures should be high following 

A trials, participants would avoid unmodified single item 

descriptions for AB cards and instead use a conjunction 

(“The card with the scooter and skateboard”). 

Procedure 

The confederate was a female native-English speaking 

student from the Cardiff University student population. The 

participant and confederate were sat at opposite sides of a 

table facing a computer screen. They could not see the other 

person’s screen. The confederate and participant were told 

that they were “playing a game where they will take turns 

describing and identifying cards. The same set of cards will 

be displayed on both computer screens. If you see one with 

a bold border it is your turn to describe. To make a guess 

about which card your partner was describing press one of 

the four keys corresponding to the position of the card on 

the screen. Do not speak to your partner except to describe 

the card”. Participants were not allowed to describe the 

position of the card on the screen but, if they needed their 

partner to, they could ask for their partner to repeat their 

description.  

Results 

Each participant produced 32 target responses. Of the 1120 

responses 22 were excluded due to experimenter error. To 

ensure that participants were paying attention to the 

confederate’s descriptions we looked at key press responses 

to prime trials. Participants selected the correct card 98% of 

the time. Therefore we can be confident that they were 

paying attention to the confederate.  

Data underwent a logit transformation and were analysed 

using a 2x2x2x2 Mixed ANOVA. Prime type (A-card and 

AB-card) and target type (A-card and AB-card) were 

within-subjects factors and description form (implicit and 

explicit) and list were between-subjects factors. 
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Global priming. Participants adopted the conversational 

style of their partner. When their partner was using 

implicatures, participants were more likely to also use 

implicatures (F (1, 31) = 125.11, p < .001).  

 

Figure 2. Proportion of implicit responses in implicit and 

explicit group. 

 

Local priming. We also manipulated which card was 

described. Whilst there was no effect of prime (F (1, 31) = 

1.98, p = .169) or target (F (1, 31) = 1.88, p = .180) there 

was an interaction between prime and target (F (1, 31) = 

8.08, p=.008). When participants had to describe an A-card 

target they produced more implications after they had made 

an inference (A-prime). When participants had to describe 

an AB target they produced fewer implications after they 

had made an inference. This is consistent with there being 

specific representations involved in producing implicatures. 

 

Figure 3. Proportion of implicit responses to A and AB 

targets by participants in implicit group. 

Discussion 

The results suggest that there are representations 

corresponding to implicatures that can be activated and 

deactivated during conversation. After comprehending an 

implicature the representations involved had an activation 

advantage over other representations that were not used. 

Consequently these implicature representations were more 

likely to be used in subsequent speech production. After 

cancelling an implicature, the implicature representations’ 

activation was suppressed thereby reducing the likelihood of 

them being used for subsequent production.  

Experiment 2 

Experiment 1 used a confederate as the interlocutor. 

However, we have no way of knowing whether participants 

believed our deception. Our results could therefore be a 

consequence of participants believing that the 

conversational partner was an experimenter. In Experiment 

2 we tested this by manipulating whether the partner was 

presented as an experimenter or another participant. 

There is range of evidence suggesting that the 

participant could be influenced by the interlocutor’s speech 

characteristics and social status (e.g. Bergen & Grodner, 

2012; Grodner & Sedivy, 2011; Holtgraves & Yang, 1990; 

1992). For example, Grodner & Sedivy showed that 

listeners were less likely to derive an inference when their 

interlocutor was judged to be an unreliable speaker. We 

therefore reasoned that our manipulation could have several 

possible effects on participants’ utterances. One was that 

participants might imitate their partner more in the 

experimenter condition. Since the partner would be in a 

position of authority, participants may feel that the best 

strategy would be to do exactly as the experimenter did. 

Previous work has shown that imitation is more likely when 

the partner has higher authority (e.g. Bandura & Kupers, 

1964; McGuigan, 2013). Alternatively, there may be less 

imitation in the experimenter condition. Since the partner 

would now be in the participant’s social outgroup, there 

would be less pressure to conform (e.g. Bourgeois & Hess, 

2008; Yabar et al. 2006). 

Orthogonal predictions can be reached about the overall 

levels of implicit language use. Participants might choose to 

use more implications overall in the experimenter condition. 

Since the experimenter would generally be in a position of 

knowledge, there would be little risk of miscommunication 

by using implications. Alternatively, participants might use 

fewer implications because if the partner were the 

experimenter, participants might feel they have to be 

particularly informative and precise in their responses. 

The basic design was exactly the same as Experiment 1. 

The only difference was that one group of participants were 

told that the partner was an experimenter and in the other 

group they were not. In the latter group, there was an 

experimenter and a confederate, whereas in the former 

group one experimenter played the role of both 

experimenter and conversational partner. 

Method 

Design and materials were the same as in Experiment 1. 

Participants. 35 Cardiff University undergraduate students 

participated for either payment or course credit. 

Partner manipulation. There were two roles that the 

conversational partner could play: participant or 

experimenter. When the conversational partner took the role 

of a participant the participant was unaware of their 

partner’s involvement in the experiment, just as in 

Experiment 1.  However, when the conversational partner 

took the role of experimenter, the participant was fully 

aware of this. The experimenter informed the participant 

that they would be playing a communication game together 

and instructed the participant of their task. 
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Results 

Each participant produced 32 target responses. Of the 1280 

responses 49 were removed due to experimenter error. 

Partner role. Numerically, participants produced more 

implicit descriptions when they knew their conversational 

partner was the experimenter compared to when they 

thought their partner was another participant (see Fig. 1). 

Despite the numerical difference this was not statistically 

significant (F (1, 36) = 1.13, p = 30.). However, experiments 

investigating social influences often have a larger sample 

than that of Experiment 2. It is possible that our 

manipulation was not strong enough, or that our sample size 

is too small. This is borne out following a Bayesian analysis 

(Dienes, 2011; 2014; Rouder et al., 2009). Using the default 

JZS prior we obtained a Bayes Factor of 0.4. This indicates 

that our data may not be sensitive enough to draw a strong 

conclusion about the partner role manipulation. 

 
Figure 4. Proportion of implicit descriptions in implicit 

and explicit group with confederate as participant or 

experimenter. 

 

There was no interaction between interlocutor role and 

conversational style (F (1, 36) = .13, p = .73, BF = 0.3).  

Global priming. We replicated the findings from 

Experiment 1. Participants in the implicit condition 

produced more implicit utterances than those in the explicit 

condition (F (1, 36) = 45.72, p < .001, 95% CI = 1.97 – 

3.65). This was found irrespective of interlocutor role. The 

global priming effect was found both when the interlocutor 

was the experimenter (F (1, 16) = 19.25, p < .001, 95% CI = 

1.53 – 4.39) and the participant (F (1, 16) = 30.06, p < .001, 

95% CI = 1.65 – 3.68). 

Local priming. As in Experiment 1 there was no effect of 

prime (F (1, 32) = .016, p = .90) or target (F (1, 32) = 3.58, 

p=.068). However, there was an interaction between prime 

type and target (F (1, 32) = 6.64, p=.015). Following an A-

card prime participants descriptions of A-card targets were 

more implicit but when the target was an AB-card 

descriptions were more explicit.  

The general pattern of results was the same when taking 

each partner role separately. However, there was no 

significant interaction when the partner was a participant (F 

(1, 16) = 3.01, p=.10, BF = 0.5) or when the partner was an 

experimenter (F (1, 16) = 4.18, p=.058, BF = 0.4). The 

Bayes Factors give no reason to suggest that these 

nonsignificant results were anything else but a lack of 

power. 

Discussion 

The main findings from Experiment 1 were replicated:  

Participants were more likely to produce implicit 

constructions when their interlocutor was using implicit 

constructions than when they were using explicit 

constructions. These effects were shown for local and global 

priming manipulations. 

There appeared to be no influence of the social status of 

the conversational partner. We found no significant main 

effects or interactions of the partner manipulation. Global 

priming effects occurred regardless of the partner role, and 

local priming effects showed similar patterns in both 

conditions but were narrowly nonsignificant. Overall, we 

can conclude that the priming effects we observed in 

Experiment 1 were not due to particular strategies adopted 

by participants disbelieving that the partner was another 

participant.  

General discussion 

We presented two experiments demonstrating that the 

production of implicatures can be primed. After 

comprehending an implicature participants were more likely 

to subsequently produce an implicature. This effect was 

replicated across two studies and was found both within and 

between participants. Whilst implicatures are an ostensibly 

pragmatic phenomenon these experiments suggest that there 

are distinct representations underlying implicatures and it is 

the activation levels of these representations that are 

responsible for the production of implicatures. 

Previous research has suggested that socio-pragmatic 

factors influence the decision about whether to use implicit 

constructions. For example, people might use implicit 

language to be more polite or to be more efficient (e.g. 

Holtgraves & Yang, 1990, 1992; Levinson, 2000). Whilst 

these factors are likely to be important, our experiments 

show that they cannot be the only factors involved. In 

Experiment 1 we did not manipulate any social factors yet 

participants systematically varied their choice of 

construction across conditions.  In Experiment 2 we 

manipulated the social status of the conversational partner 

but found no difference in rates of implicature production as 

a consequence. Taken together the experiments suggest that 

there are distinct representations underlying implicatures 

and their use is not determined entirely by socio-pragmatic 

factors. Instead, we propose that socio-pragmatic factors 

may modulate the activation levels of the implicature 

representations but further work is needed to address this. 

Finally, the priming effects we demonstrate speak to the 

interaction between deriving an inference and producing an 

implication. Inferring and implying must necessarily use 

different representations (since one involves comprehension 

and the other production) but if they were entirely separate 

we would not have observed priming effects.  That deriving 

an inference primes the production of an implication shows 

that the representations involved in the two processes 

overlap. Exactly which representations are used in both, and 
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which are restricted to the individual processes, is a topic 

for future research.  

Conclusion 

Our study makes three novel contributions. We have shown 

(1) that people can be primed to produce Gricean 

implicatures (2) that there are factors other than the socio-

pragmatic that determine whether a speaker uses an implicit 

construction (3) that inferring and implying share 

overlapping mechanisms. 
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Abstract 

Rational analysis is an influential but contested account of how 
probabilistic modeling can be used to construct non-
mechanistic but self-standing explanatory models of the mind. 
In this paper, I disentangle and assess several possible 
explanatory contributions which could be attributed to rational 
analysis. Although existing models suffer from evidential 
problems that question their explanatory power, I argue that 
rational analysis modeling can complement mechanistic 
theorizing by providing models of environmental affordances.  

Keywords: probabilistic modeling; rational analysis; 
scientific explanation; mechanism; affordance 

1. Introduction 
During the past two decades, probabilistic modeling has 
become one of the most visible strands of cognitive modeling 
alongside connectionism, dynamical systems, and rule-based 
approaches. Curiously, against the general trend in the 
psychological sciences where theorizing is increasingly 
anchored in neuroscience findings, probabilistic modeling of 
higher cognition has been a characteristically top-down 
endeavor. Without making any substantial commitments 
about the underlying cognitive mechanisms, probabilistic 
modeling has been applied to complex aspects of human 
cognition, which still largely remain beyond the reach of 
mechanistic research methods. Models of human memory, 
categorization, causal learning, concept learning, and 
conditional inference, to mention a few applications, often 
show an impressive fit to empirical data, and the novel 
analyses of cognitive capacities provided by the models 
appear to have shed new light on the nature of the studied 
phenomena. 

However, how does that shedding light actually occur –
how do such computational probabilistic models explain? 
Although probabilistic modeling, in principle, does not rely 
on any particular method of explanation (and not all models 
aim to be explanatory), modelers often refer to the idea of 
rational analysis as the account of how and why their models 
help us understand the mind (Anderson 1990; Oaksford & 
Chater 2007). The striking claim made by rational analysis 
(RA) modelers is that by treating higher cognitive capacities 
as forms of inductive inference, we can predict behavior, and 
explain a lot about human cognition without making any 
assumptions about the underlying representations and 
processes. This agnosticism about implementation is 
typically justified by making reference to a rationality 
assumption: We know that human agents tend to be well-

                                                             
1 To be clear, probabilistic models are also used for purposes other 

than explanation (e.g., prediction, hypothesis generation). This 
paper, however, only examines their explanatory import. 

adapted to their environment, and hence a careful analysis of 
the cognitive task encountered by the mind, coupled with an 
assumption of the optimality of human behavior in the task, 
results in a putatively powerful methodology of prediction 
and explanation.  

However, it is a widely-held view in the philosophy of 
science that explanations, also in the cognitive sciences, 
should track causal mechanisms, and the way that RA 
purports to sidestep the evidential and explanatory problems 
arising from the causal complexity of cognition has given rise 
to a strongly polarized debate (see, e.g.,  Jones & Love 2011). 
On the one hand, the way that the new mathematical methods 
in probabilistic modeling can capture the interplay of 
structure and learning in human thought has led to the 
emergence of an exciting research paradigm. On the other 
hand, the proponents of non-mechanistic (or even non-
causal) explanation need to show when and how it is that such 
models genuinely explain rather than only redescribe or 
merely formally unify various phenomena (see Colombo & 
Hartmann 2017). Failing to do that, rational analysis could 
simply be seen as the last breath of the autonomist dream of 
studying the mind independently from the brain.  

The goal of this paper is to advance the debate by 
disentangling various explanatory contributions which can be 
attributed to RA models. By relying on the influential 
contrastive-counterfactual account of explanation, I 
distinguish between three possible explanatory contributions: 
Uncovering (a) constitutive dependencies in cognitive 
systems (i.e. dependencies between parts and wholes), (b) 
environment-behavior dependencies, and (c) environment–
optimal behavior dependencies.1 I argue that often the option 
(c) best describes the nature of the new understanding 
provided by RA models: In many cases, RA models should 
be interpreted as being explanatory not of human behavior as 
such, but of environmental affordances. Consequently, well 
conducted modeling of environmental affordances can 
complement mechanistic theorizing by providing resources 
for understanding the possible space of behavior of agents.  

2. Probabilistic modeling and rational analysis 

2.1 Procedure of rational analysis  
The idea of rational analysis modeling dates back to John 
Anderson’s work on human memory and categorization in 
The Adaptive Character of Thought (1990). Having already 
worked on his ACT* cognitive architecture, the new 
methodology put forward in the book reflected Anderson’s 
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increasing worries that the research methods of the time could 
not really uncover cognitive mechanisms. Lacking a clear 
picture of what it is that cognitive mechanisms do (i.e. what 
the psychological explananda are), the available evidence of 
cognitive processes and their neural implementation was 
insufficient to uncover the mechanistic architecture of the 
human mind (Anderson 1990, pp.23–26). Compared to 
bottom-up research strategies, rational analysis begins from 
the other end: 

[…] We can understand a lot about human cognition 
without considering in detail what is inside the human 
head. Rather, we can look in detail at what is outside the 
human head and try to determine what would be optimal 
behavior given the structure of the environment and the 
goals of the human. (Anderson 1990, p.3) 

According to Anderson, careful mathematical modeling of 
the environment and task structure combined with an 
assumption about the optimality of human behavior leads to 
a new self-standing research strategy for understanding the 
mind: “As this book is evidence, a rational analysis can stand 
on its own without any architectural theory" (ibid.). By 
providing a precise model of what the mind does, rational 
analysis can constrain the search space for cognitive 
mechanisms, and, putatively, put the scientific study of the 
mind on a firm foundation.  

This view of the role of computational modeling 
immediately brings to mind Marr’s (1982) account of multi-
level theorizing. However, whereas Marr provides no 
systematic account of how computational-level theories are 
to be constructed, RA modeling has predominantly 
proceeded according to the six-step cycle proposed by 
Anderson (1990, p.29):  

1. Specify precisely the goals of the cognitive system 
2. Develop a formal model of the environment to which the 

system is adapted 
3. Make minimal assumptions about computational 

limitations 
4. Derive the optimal behavior function, given items  

1 through 3  
5. Examine the empirical evidence to see whether the 

predictions of the behavior function are confirmed  
6. Repeat, iteratively refining the theory 

These steps embody an account of how a large part of 
probabilistic cognitive modeling is done. However, two 
further assumptions of RA should be made explicit. First, the 
derivation of optimal behavior in steps 2-4 typically employs 
probability calculus (not logic) as the normative baseline 
theory of rational behavior. Secondly, the link between model 
predictions (step 4) and observed behavior of humans (step 
5) is formed by an assumption about the optimality of the 
observed behavior (see quoted passage above).  

                                                             
2 In Oaksford & Chater 2007, P(q|p) was set to 0.9. See ibid. for 

the underlying account of conditional inference and for the 
mathematical details. 

Below I illustrate this process with an example. However, 
a comment on the status of the approach in cognitive science 
is in place: Obviously, not all probabilistic modelers endorse 
the rational analysis framework (see Brighton & Gigerenzer 
2008; Danks 2015; Frank 2013). Focusing on RA is useful 
for two reasons, however. The approach is undeniably 
influential, and its core commitments have been endorsed by 
a large group of well-known modelers (e.g., Anderson 1990; 
Oaksford & Chater 1994; Griffiths & Tenenbaum 2009). A 
further advantage of focusing on RA has to do with the fact 
that often the theoretical commitments of mathematical 
modelers can be hard to pin down. In some cases, the 
ambiguities are surely due to the modelers themselves not 
being clear about where their commitments (about how to 
understand explanatoriness, optimality, etc.) lie. Rational 
analysis is a clear account of the conceptual foundations of 
probabilistic cognitive modeling, and provides a starting 
point, or at least a foil, for explicating such commitments. 

To illustrate the rational analysis process, I now briefly 
introduce Mike Oaksford and Nick Chater’s (1994, 2007) 
analysis of the Wason selection task. 

2.2 The information gain model  
Wason selection task is one of the most famous laboratory 
experiments discussed in the literature on human rationality. 
In the original form of the task, participants are given four 
cards, each of which has a letter on one side and a number on 
the other. The participants’ task is to determine whether the 
rule “If there is a vowel on one side of the card (p), then there 
is an even number on the other side (q)” holds. More 
precisely, they are asked to select those cards which must be 
turned over to discover whether the rule is true or false. The 
famous finding from the task and its several replications is 
that only a small minority (less than 10%) select the correct 
cards (vowel, odd number) corresponding to the falsifying 
instance. That is, judged in the light of logic, most 
participants fail to perform in a rational way.  

Oaksford and Chater (O&C) challenge the irrationality 
claim by arguing that logic-based theories of inference and 
rationality misrepresent the participants’ behavior in the task. 
O&C’s own information gain model suggests that people’s 
apparently irrational way to test a hypothesis should actually 
be seen as optimal strategy for uncertainty reduction. The gist 
of O&C’s reinterpretation is that instead of engaging in 
deductive reasoning, participants interpret the task as an 
inductive one. They do not try to falsify the rule, but instead 
they try to determine which of two hypotheses holds:  

a) Independence model, MI: P(q|p) = P(q) or 
b) Dependence model, MD: P(q|p) is high, higher than P(q).2 

Being initially equally uncertain about both hypotheses, 
participants aim to reduce this uncertainty as much as 
possible by turning as few cards as possible.  
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The rational analysis proposed by O&C relies on three core 
principles:  

1) Higher cognition can be modeled as probabilistic 
(Bayesian) computation.  

2) The likelihoods and prior probabilities required by the 
model can be acquired from the analysis of the 
environment structure. 

3) Behavior of human agents constitutes an optimal response 
to the task.  

The model is constructed roughly as follows. To formalize 
the idea of uncertainty reduction, O&C adopt the optimal data 
selection paradigm, and interpret uncertainty reduction as 
optimizing expected information gain. Information gain 
𝐼"(𝐷) from turning over a card (D) is defined as	𝐼 𝑀(|𝐷 −
	𝐼 𝑀(  where the Shannon information3 𝐼(𝑀() can be derived 
from the probabilities of the hypotheses before and after 
observing data, 𝑃(𝑀() and 𝑃(𝑀(|𝐷). The required posteriors 
can be obtained by the Bayes’ rule from the likelihoods 
𝑃(𝐷|𝑀() and the prior probabilities of the hypotheses. 
Reflecting initial ignorance, the priors were set to 0.5 and 
hence the rest of the crucial model specification is built into 
the likelihoods, which reflect the nature of the four-card task. 
Oaksford and Chater (1994) show in detail how the required 
likelihoods can be read off the contingency tables describing 
the two hypotheses. 

From these derivations, it follows that the base rates of p 
and q have a central role in determining which behavior is 
optimal. They describe how frequently positive instances of 
the antecedent and consequent of the rule appear in the 
environment. Qualitatively, the expected information gain 
from each of the four cards turns out to depend on the base 
rates P(p) and P(q) in the following way: 

P(q) is small  à p card is informative  
P(p) is large  à not-q card is informative 
P(p) and P(q) are small  à q card is informative 
   (not-p card is not informative) 

How should these base rates, then, be determined? Instead of 
attempting to somehow measure them in relevant 
environments for different kinds of rules, O&C cite various 
intuitively plausible justifications for their rarity assumption: 
Relying on the observation that categories in language cut the 
world quite finely, and that properties that figure in causal 
relations tend to be rare, the assumption states that, generally, 
P(p) and P(q) are small in most situations. Under rarity, O&C 
conclude, the q card is more informative than the not-q card. 
Hence, the model suggests that the highest expected 
information gain is achieved by turning over the p and q 
cards, exactly as the majority of the participants do. In fact, 
with P(p)=0.22, P(q)=0.27, the model shows a very good fit 
to experimental data from the Wason task. Hence, by 
changing the normative model of rational behavior, O&C 
were able to explain away irrationality, and to show that 

                                                             
3 Uncertainty 𝐼 𝑀(  given n mutually exclusive and exhaustive 

hypotheses, is – 𝑃 𝑀( log0 𝑃 𝑀(
1
(23 .  

participants’ behavior in experiments is actually close to 
optimal. 

The model has received critical attention in the literature 
(see Oaksford & Chater 2009), but it serves our current 
purposes well. The model specification and the modeling 
assumptions are conceptually on a par with those in more 
complex Bayesian models: The complexity often pertains to 
the number of variables involved, the structure and 
generation of the hypothesis space, and in many cases 
advanced numerical methods are needed for solving the 
model. These mathematical sources of complexity do not, 
however, change the fundamental conceptual architecture of 
a model. What is common to all RA models is that none of 
their main components (hypothesis space, likelihood 
function, priors) are interpreted in a psychologically realistic 
way as mental representations (Jones & Love 2011). Instead, 
they stand directly for properties of the environment. 
Furthermore, empirical data about the properties of human 
cognition is not fed into the model specification to calibrate 
or to constrain the model. Instead, behavioral data enters only 
in step 5 of RA (see above) as a means for testing model 
predictions. In this sense, the information gain model is an 
illuminating example of the theoretical and conceptual 
assumptions made in rational analysis modeling. 

3. What rational analysis models fail to explain  
There is no consensus in philosophy (or in the sciences) about 
what scientific explanation is, or what makes a theory 
explanatory. However, a shared starting point for many 
accounts of scientific explanation has been to distinguish 
explanation from other epistemic activities (e.g., description 
and prediction) by pointing out that explanations offer 
information of a specific kind. Explanations show how or why 
something happened or obtains. According to an influential 
approach (Woodward 2013), the knowledge that allows one 
to answer such questions concerns change-relating 
counterfactual dependencies between the relata in the 
explanation, the explanans and the explanandum. That is, 
explanations show how (the state of) some things depend on 
(the state of) other things.  

This contrastive-counterfactual account of explanation 
suggests that explanatory information has generally the 
following form: 

{CC} y[y’] because of x [x’] (variable Y takes the value y 
instead of y’ because X has the value x instead of x’) 

According to the contrastive-counterfactual account, being 
able to explain means that one is able to correctly answer 
what-if-things-were-different questions, i.e. questions about 
how changes in explanantia variables influence the state of 
the explanandum variable. In addition to being a sufficiently 
general account of explanation, the contrastive-
counterfactual account suits the purposes of this article well, 
because it does not necessarily tie the notion of explanation 
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to that of causation. That is, although the ‘because’ in {CC} 
is typically understood as referring to a causal dependency, 
the account does not rule out the possibility of there being 
also non-causal explanations (Woodward 2013; Pincock 
2015; Rice 2015): If a suitable analysis of invariant 
dependency in non-causal contexts (e.g., for mathematical 
dependencies) can be found, the contrastive-counterfactual 
account can be applied to non-causal explanations as well. 
Hence, the account of explanation casts the net wide enough 
to give RA models a fair chance of being explanatory. 

A further advantage of treating explanations as answers to 
questions is that it allows us to sharpen the explananda, i.e. 
to make more precise the possible explanatory claims arising 
from RA models. I suggest that there are at least three 
different kinds of objective dependencies that RA models 
could be said to track: (1) constitutive dependencies between 
parts and wholes, (2) environment-behavior dependencies, 
and (3) environment–optimal-behavior dependencies. In the 
rest of this section, I argue that often RA models do not have 
genuine explanatory import with respect to the two first kinds 
of dependencies. The more promising third option is 
discussed in section 4. 

3.1 Constitutive what-ifs  
The notion of mechanism has acquired a central position in 
the philosophical debates on scientific explanation. A clear 
expression of the mechanistic viewpoint has recently been 
given in the model-to-mechanism mapping (3M) requirement 
by Kaplan and Craver (2011). According to the requirement, 
dynamical and mathematical models in systems- and 
cognitive neuroscience can be explanatory only if there is a 
mapping between elements in the model and elements in the 
mechanism for the phenomenon. As the example discussed 
above suggests, rational analysis models provide no such 
mapping. They are agnostic about algorithmic and 
implementation level details, and intentionally so. They 
clearly do not track constitutive dependencies. Does this 
mean they cannot be explanatory? 

As Kaplan and Craver themselves admit, their argument 
ultimately relies on shared norms about explanatoriness in the 
neuroscience community, and their account of explanation as 
uncovering multi-level mechanisms reflects these norms. If 
such norms do not hold among probabilistic cognitive 
modelers, it is not obvious why they, based on this argument 
alone, should abide by the 3M requirement. 

The contrastive-counterfactual account suggests a more 
positive reply to Kaplan and Craver’s argument: RA models 
obviously do not provide information about constitutive and 
causal dependencies in multi-level mechanisms, but this does 
not rule out the possibility of them tracking some other kinds 
of objective dependencies, for example, those holding 
between relata described in purely computational-level 
terms. Furthermore, a proponent of RA need not (and should 
not) claim that adding mechanistic detail never improves a 
computational explanation. To defend the explanatoriness of 
RA models, a far weaker claim suffices, one stating that it is 
possible to learn about objective explanatory dependencies 

without always relying on information about cognitive 
mechanisms. 

3.2 Environment–behavior what-ifs  
A second kind of explanatory question answered by an RA 
model could be: ”How would the behavior of the cognizer 
change when the cognitive task changes in some particular 
way?” That is, the model could uncover objective 
dependencies between properties of the environment and the 
behavior of cognizers. For example, O&C’s model can be 
used to derive predictions about what the behavior of the 
participants in the Wason task would be, were P(p) and P(q) 
to take some range of values. 

It is here that the optimality assumption of RA becomes 
crucial. To predict how human behavior would change in 
response to changes in the task, without knowing anything 
about the algorithms and processes producing the behavior, 
RA relies on the assumption that humans are well-adapted to 
their environments: If we assume that human behavior is 
close to optimal across a large variety of environments, the 
predictions derived from the RA model (step 4 of the RA 
procedure) should in fact apply to that behavior. Optimality 
forms the link between the normative theory and observed 
behavior. 

Given that human (ir)rationality has been the topic of a 
longstanding debate in philosophy and psychology, it is not 
surprising that the optimality assumption has drawn a lot of 
criticism (Jones & Love 2011). Although proponents of RA 
are correct in arguing that some degree of rationality of target 
behavior is required for us to even perceive it as intentional 
action, such modest levels of rationality hardly license the 
strong optimality assumptions of RA models. Neither do 
evolutionary arguments provide support for strong optimality 
claims: Natural selection is a source of design and 
adaptedness, but not necessarily of globally optimal solutions 
– merely a local comparative advantage is sufficient for 
evolutionary solutions to survive.  

Being aware of these problems, proponents of RA have 
avoided evolutionary defenses of the optimality assumption. 
Instead, they often justify optimality by relying on analogies 
to behavioral ecology and economics, where similar 
assumptions are commonly made (Chater et al. 2003). 
However, such analogies break down due to a crucial 
dissimilarity between these fields. Unlike in cognitive 
science, both in biology and economics the rationality claims 
typically concern aggregate behavior, not that of individual 
agents. Hence, I do not see how appealing to economics or 
biology could be a viable way to justify optimality 
assumptions in RA modeling.  

These problems with the general defenses of the optimality 
assumption suggest that perhaps optimality should be 
examined more locally. Now, what kind of evidence should 
be obtained to justify the optimality claim in the case of a 
particular cognitive task? It seems that to support a claim 
about there being an objective dependency between 
environment and behavior, we should gather data about 
human behavior in a task across a range of parameter values 
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describing various different environmental states. In other 
words, if human behavior fits the predictions of the model 
across a range of conditions, that would appear to be rather 
strong evidence of optimal performance.  

However, the existing RA models rarely make use of such 
cross-environmental data. First of all, many models do not 
rely on any actual measurements of environment parameters. 
Instead, they use plausible-sounding assumptions or 
analogies. For example, Anderson (1990, ch. 2) relied on data 
about library borrowings to model usage of memory 
structures, and Griffiths et al. (2007) use Google PageRank 
to predict fluency of recall. Models devoid of good quality 
empirical data should be considered as toy models (at best), 
incapable of uncovering the actual properties of cognitive 
environments. Furthermore, Marcus and Davis (2013, table 
1) suggest that Bayesian modelers have been selective in 
choosing the results that they report from experimental tasks, 
only reporting results where human behavior follows the 
model predictions and ignoring cases where behavior is not 
optimal.4  

That said, in the large literature on the information gain 
model, predictions from the model have been tested against 
human performance under different base rates and different 
framings of the task (e.g., descriptive vs. deontic; Oaksford 
& Chater 2007, Ch.6). Although the empirical findings 
remain inconclusive, such systematic variation of the task 
parameters should be used to produce evidence of a robust 
explanatory environment-behavior dependency.5 

4. Rational analysis and the logic of the 
situation  

Finally, let us examine the epistemic value of an RA model if 
we drop the optimality assumption. Assume that we have a 
model with a (i) well-specified task structure, (ii) parameter 
values based on measurements of the environment, and (iii) 
an empirically informed account of computational costs and 
cognitive limitations. What such a model could do is it could 
link combinations of parameter values to best possible 
behavioral choices in those situations. Is this not a kind of 
objective change-relating dependency? However, consider 
what the relata of such a dependency are. The model tells 
what the optimal behavior would be, given a particular 
combination of environmental conditions and computational 
limitations. Such counterfactuals do not say anything about 
actual human behavior. Instead, they can be seen as 
increasing our understanding of the environmental 
affordance, or, the logic of the situation (Popper 1963).6  

What mathematical models of affordances (of the 
opportunities that the environment offers for the agent) can 
help us understand is the possible space of action for 
cognitive agents. Models of affordances show what a 
hypothetical rational agent would do in different situations. 

                                                             
4 See Goodman et al. (2015) for the modelers’ response. 
5 See Griffiths & Tenenbaum (2006) for an empirical study that 

attempts to directly test the optimality assumption. 

For what kind of purposes could such information be useful? 
First, were we to design artificial cognitive systems with a 
particular cognitive task in mind, these systems should 
approximate the optimal behavior specified by the model. For 
example, in the selection task, if we are interested in reducing 
our uncertainty, O&C’s model tells us something non-trivial, 
i.e. which information sources to examine given the base 
rates of p and q.  

Secondly, as in economics, rational models can obviously 
act as normative baselines to which human behavior can be 
compared. As Sloman & Fehrbach (2008) argue, often it is 
just as interesting to discover that behavior does not conform 
to the rational norm as to see that it does. Finding out when 
and how complex systems malfunction is often an efficient 
way to learn about the underlying processes. 

However, in neither one of these cases are RA models used 
to directly explain human behavior. Instead, the model 
functions as an inferential aid which helps to chart the 
possible space of action for agents, when faced with a 
particular task. Herein lies perhaps the hardest evidential 
problem faced by rational analysis. How do we know what 
the mind really does in some situation; where do the 
functional hypotheses in step 1 of RA come from? For 
example, how would O&C defend their Bayesian construal 
of the selection task against an adamant falsificationist? The 
currently available empirical evidence can hardly decide the 
issue: Where O&C see optimal behavior, the falsificationist 
sees well-known inferential blunders. Marcus and Davis 
(2013) have argued that similar problems of model selection 
plague several other RA models as well.  

The difficulty seems to come down to the fact that the 
cognitive tasks and the affordances available to an organism 
depend on its “life space” – not the physically objective world 
in its totality, but reality filtered through the organism’s 
needs, drives and perceptual apparatus. Therefore, we should 
not think that the researcher’s intuitions are necessarily a 
reliable guide to what the tasks faced by different aspects of 
the human cognition really are. Ad-hocness in task 
specification, in turn, raises serious worries about the 
relevance of RA modeling: Constructing detailed 
mathematical models of potential affordances is of little 
interest unless such affordances can be shown to be ones 
actually offering themselves to the human mind.  

This worry suggests that the six-step rational analysis 
modeling cycle introduced in section 2.1 should not proceed 
independently from knowledge originating from mechanistic 
research: As both the connectionist rivals of RA and 
proponents of multi-level mechanistic explanation have 
argued, functional hypotheses (step 1 of RA) in cognitive 
science must be formulated in an iterative process between 
bottom-up and top-down research strategies (see McClelland 
et al. 2010; Bechtel & Richardson 2010). In particular, 
knowledge of perceptual capacities and embodiment 

6 As an anonymous referee pointed out, also the dynamical 
models used in ecological psychology are often understood as 
formalizations of affordances. This calls for a systematic 
comparison between the two modeling paradigms. 
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(informing step 2), as well as of the computational constraints 
of organisms (step 3) mostly originate from the bottom-up 
research on the mind-brain, and this knowledge should be 
allowed to constrain RA models. In this sense, Anderson’s 
and O&C’s claims about the self-standing explanatory role of 
RA are not vindicated by my analysis.  

However, neither can bottom-up research strategies stand 
on their own, or at least they fail to reach high enough. The 
discussions on mechanistic explanation often have a 
reductionist bias, and understanding the environments within 
which cognitive mechanisms function has not received 
sufficient attention. Here RA models can complement 
mechanistic theories of cognition by providing precise 
mathematical models of the task and the environment. For 
example, as Chater et al. (2003) point out, a correctly 
formulated rational analysis can show why it is that some 
simple heuristic can be successful in solving a 
computationally complex task. 

5. Conclusions  
I have argued that given a sufficiently broad account of 
scientific explanation, there are several possible ways in 
which probabilistic modeling could increase our 
understanding of the mind. However, the strictly 
computational-level approach embodied in the six-step 
formula of rational analysis has led to theorizing which often 
fails to reliably uncover genuine explanatory dependencies. 
The shortcomings of RA are evidential in nature: The data, 
and the way it is used in model construction, often cannot 
support the counterfactual inferences needed explaining 
human behavior. 

My new proposal about the epistemic role of RA models is 
that they can be understood as models of environmental 
affordances. Interpreted in this way, the models do not 
actually provide information about the mind works, or even 
hypotheses about actual cognitive functions (cf. Marr 1982; 
Zednik & Jäkel 2014). Instead, they help to chart the possible 
cognitive space of action for an organism. The nature of the 
explanatory contribution of such information is best worked 
out as a part of a non-reductionist mechanistic research 
programme. 
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Abstract 

Recent theoretical research has shown that the assumptions 
that both laypeople and researchers make about random 
sequences can be erroneous. One strand of research showed 
that the probability of non-occurrence of streaks of repeated 
outcomes (e.g., HHHHHH) is much higher than that for a 
more irregular sequence (e.g., HTTHTH) in short series of 
coin flips. This tallies with human judgments of their 
likelihood of occurrence, which have conventionally been 
characterized as inaccurate and heuristic-driven. Another 
strand of research has shown that patterns of hits and misses 
in games like basketball, traditionally seen as evidence for the 
absence of a hot-hand effect, actually support the presence of 
the effect. I argue that a useful way of conceptualizing these 
two distinct phenomena is in terms of the distribution of 
different sequences of outcomes over time: Specifically, that 
streaks of a repeated outcome cluster whereas less regular 
patterns are more evenly distributed.  

Keywords: randomness; rationality; hot hand fallacy, 
gambler’s fallacy. 

Introduction 
One of the more important things that organisms must do 

to prosper is to identify, extract, and act on patterns in the 
environment. At a perceptual level, detecting potential 
threats in a noisy and ambiguous environment is crucial for 
survival. At a higher level, the ability to detect patterns of 
events over time or space, such as the presence of absence 
of prey in different locations at times, the changes in 
temperature or weather, and so on, allows an organism to 
predict the future state of the world, and adapt behavior 
accordingly. In a more contemporary environment, anyone 
able to detect behavioral patterns in markets, organizations 
or individuals would be able to exploit that knowledge to 
their benefit. 

In order to detect patterns, an organism has to separate 
signal from noise. As such, one would expect organisms to 
accurately represent the absence of a signal, that is, 
randomness. A poor representation of what random patterns 
look like would make it harder to spot the times when 
patterns contain information.  

As such, it is surprising that across a wide range of 
research procedures, people are systematically poor at 
representing randomness (for reviews see, Nickerson, 2002, 
2004; Bar-Hillel & Wagenaar, 1991; Falk & Konold, 1997; 
Rapaport & Budescu, 1992). For example, people 
underestimate the frequency of ‘streaks’ or ‘runs’ of a 
particular outcome (such as getting five heads in a row 
when flipping a coin repeatedly), and treat such streaks 

when they appear as evidence for non-randomness. Related, 
people rate sequences of binary outcomes containing 
negative serial dependency (that is, an alternation rate 
between outcomes of greater than .5), as being more random 
than truly random sequences. 

 One reason why people may be poor is that many 
properties of random sequences are counterintuitive. For 
example, relative wait times for different sequences of 
binary outcomes violate transitivity (see, e.g., Nickerson, 
2007). 

In this paper I focus on sequences of binary, Bernoulli 
i.i.d. events such as coin flips (which could come down H or 
T), and behaviors which may be modelled by them, such as 
basketball shots (which could come down as a hit – X – or a 
miss – O).  

Representativeness and probability of 
occurrence 

One of the most influential studies to demonstrate an 
apparent bias in perception of randomness was that of 
Kahneman and Tversky (1972). In their studies, they asked 
participants about the relative frequency of occurrence of 
different birth orders of girls (G) and boys (B) in families 
with six children in a hypothetical city. They found that 
participants estimated that there would be many fewer 
examples of a precise sequence of BGBBBB relative to a 
precise sequence of GBGBBG. (Of course all precise 
sequences of birth orders are equiprobable). To examine 
whether this finding was a result of just the relative 
frequency of B and G, Kahneman and Tversky also 
compared estimates of the relative frequency of BBBGGG 
and GBGBBG, finding that the former was seen as 
significantly less probable than the latter. Thus, both the 
relative frequency of outcomes, and the order in which 
outcomes occur appear to be important in judging the 
probability of occurrence. 

Traditionally, findings of this nature have been explained 
in terms of heuristics and biases, specifically a 
misapplication of a representativeness heuristic (but see, 
e.g., Gigerenzer, 1996; Ayton & Fischer, 2004): People 
believe that the properties of short sequences of random 
outcomes should be representative of those seen in longer 
sequences (e.g., equal proportions of outcomes, an absence 
of structure or compressibility), and sequences that share 
those properties are deemed more probable. 

However, recently Hahn and Warren (2009) observed that 
in situations where one looks for patterns of outcomes in a 
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finite sequence of, for example, coin flips, different 
sequences have different probabilities of occurrence.  

To give a concrete example (used by Hahn and Warren, 
2009), compare the probability of non-occurrence of a 
HHHH vs HHHT in a sequence of 20 coin flips. The streak 
of a repeated outcome (HHHH) is around twice as likely not 
to occur relative to HHHT. The argument made by the 
authors is that if people use previous experience of merely 
the occurrence (at least once) or absence of a particular 
string to judge the probability of occurrence in the future, 
then they would be quite accurate to say that HHHH would 
be less likely to occur in a sequence of 20 coin flips than 
HHHT. 

This was also extended to account for the gambler’s 
fallacy: If experience dictates that HHHH is less likely to 
occur than HHHT, then an individual who sees HHH and is 
asked to be on whether the next observation is H or T, 
would with some justification bet on T.  

Although there is ongoing discussion about the extent to 
which or circumstances under which Hahn and Warren’s 
theory predicts judgments (Reimers, Donkin & Le Pelley, 
2017), the observation that different strings of outcomes 
have different probabilities has meant that researchers have 
needed to reconsider what normative baselines for 
randomness judgement should be, and potentially turn what 
previously appeared to be a clear bias into a slight 
misapplication of a genuine property of the environment.  

The hot-hand-fallacy fallacy 
A second challenge to researchers’ assumptions about 

normative baselines has been seen with the hot hand effect. 
The hot hand effect is a phenomenon – accepted as self-

evidence by many sports participants and spectators – that 
players go through periods when their performance varies 
consistently over time, having streaks when they are ‘hot’, 
and during that period of time their performance is 
consistently better than usual, as measured by, for example, 
the proportion of baskets or putts they manage to sink. If the 
hot hand were real, it would mean that probability of 
success had positive autocorrelation: Following a streak of 
hits, a person would be more likely to score another hit. 

Despite popular belief in the hot hand phenomenon, the 
effect has until recently been seen as a fallacy. Gilovich, 
Valone and Tversky (1985) examined the performance of 
professional and amateur basketball players, and argued that 
there was no evidence for a hot hand effect. They 
operationalized a hot hand effect in basketball shooting as a 
difference between the probability of getting a hit (scoring 
from a free throw) after a streak of k consecutive hits (X) 
and the probability of getting a hit after a streak of k 
successive misses (O), for example, p(X|XXX) > 
p(X|OOO). The logic, which appears superficially entirely 
reasonable, was that if the probabilities of a hit after k hits 
and a hit after k misses were identical in a well-power study, 
then that provided evidence for the absence of a hot-hand 
effect. Across several studies, they found no difference in 

probabilities, so concluded that the hot-hand effect was a 
fallacy.  

Recently this conclusion has been challenged. Miller and 
Sanjurjo (2016) note problems with measures traditionally 
used to support the absence of a hot hand effect (see Rinott 
and Bar-Hillel, 2015 for less technical overview of an 
earlier version). Specifically, they prove that if one were to 
calculate the strength of the hot hand effect for players 
individually along the lines of calculating p(X|XXX) / 
[p(X|XXX) + p(X|OOO)], and then take the average across 
individual, that average would be less than .50. So if a well-
powered study shows a mean proportion of around .50, then 
rather than being evidence against a hot hand effect, it is in 
fact substantial evidence for such an effect. 

Miller and Sanjurjo (2016) prove the counterintuitive 
finding that that in any finite binary sequence, the mean 
proportion of streaks of length k that are followed by a 
repetition of the same outcome is on average lower than the 
proportion of streaks of length k that are followed by the 
opposite outcome. They note that for k = 1, the effect is 
entirely driven by a sampling-without-replacement effect, 
such that in, say, a short sequence of coin flips where the 
number of heads and tails is expected to be identical, 
choosing to look at outcomes following a H removes a H 
from the sample, meaning that the probability of all other 
observations, including the next one being a T is slightly 
greater than .5.  

More relevant for this discussion is the effect where k > 1. 
Here, Miller and Sanjurjo note that the effect is driven much 
more by the extent to which sequences of outcomes can 
overlap with each other (or show autocorrelation, in the 
terminology of Guibas & Odlyzko, 1981). They note that 
some sequences of outcomes can overlap with themselves: 
For example the sequence HHH can partially overlap with 
itself such that in a series of five coin flips, it is possible to 
observe three overlapping instances: HHHHH; conversely, 
the sequence HTT cannot overlap at all, and so can only 
occur once in a series of five coin flips. They note that 
because overall the expected number of occurrence of HHH 
and HTT must be identical, HTT must be observed in a 
greater number of series of five coin flips to compensate for 
the fact that HHH can occur multiple times within a single 
series. As such, they prove that  

Variance of occurrences in short sequences 
Here, in contrast to Miller and Sanjurjo’s (2016) formal 

proof, a stochastic approach to this issue is taken, in part to 
make the relationship between the findings of Hahn and 
Warren (2009) and Miller and Sanjurjo (2016), and in part 
to attempt to show how the varying distribution of 
observations of different sequences of outcomes in a longer 
series of binary outcomes can account for both findings.  

This is not the first attempt to relate these two 
phenomena. In recent iterations of their working paper, 
Miller and Sanjurjo have attempted to account for the 
gambler’s fallacy as well as the hot hand fallacy, by 
assuming a degree of insensitivity to sample size. Sun and 
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Wang (2010) note that different forms of waiting time for 
sequences of outcomes vary differently with outcome. Thus, 
the mean inter-observation gap is the same for all sequences 
of a single length, whereas the expected waiting time from 
first flip of a coin is much greater for some sequences of 
outcome (such as HHHH) than others (HHHT), and that the 
variances in these two forms of waiting time vary 
substantially.  

The argument presented here is based on the observation 
that the variance of the number of trials between 
observations of a given sequence of outcomes varies. 
Specifically, the observations made by Hahn and Warren, 
and those made by Miller and Sanjurjo are both 
consequences of the same property of random sequences, 
specifically that within any finite sequence of equiprobable 
binary outcomes, the distribution of frequency-of-
occurrence for ‘streaks’ (i.e. repetitions of the same 
outcome, like HHHH) is much wider than that for non-
streaks (like HHHT).  

To compare the distribution of two sequences of outcome 
HHHH and HHHT, across 1,000 simulated coin flips, see 
Figure 1. As both Hahn and Warren (2009) and Miller and 
Sanjurjo (2016) note, although the total number of 
occurrences of HHHH and HHHT is approximately equal, 
HHHH tend to cluster more than HHHT, with several 
overlapping occurrences together, and then large gaps 
between them. One way of explaining this it is that we know 
that overall frequency of HHHH and HHHT must be on 
average identical. However, immediately after flipping 
HHHH, there is a 50% chance of flipping another head, 
giving another instance of HHHH, and then a 50% chance 
of another, and so on. This leads to clusters of consecutive 
overlapping instances of HHHH. Conversely, after flipping 
HHHT, it takes a minimum of four more flips to get HHHT 
again. This means that HHHT cannot cluster in the same 
way. 

The consequence is that for shorter sequences of, say, 100 
random binary outcomes, the frequency of HHHT will be 
fairly consistent, whereas the frequency of HHHH will be 
much more variable. This can be seen in Figure 2, in a 
simulation of 10,000 runs of 100 coin flips. Here, the string 
HHHT appears between 3 and 9 times on 95% of runs of 
100 flips. HHHH only appears between 3 and 9 times on 
67% of runs. 

Hahn and Warren’s theory explains the fact that people 
seem to think HHHH is less likely to occur than HHHT, by 

looking at the difference in the probability of non-
occurrence of a string (or conversely the probability of its 
occurring at least once). Although they use shorter runs for 
their examples, the same pattern is observed: In Figure 2, 
the string HHHH is much more likely not to occur than 
HHHT is. In fact, although it is hard to see from the graph, 
the probability of HHHH’s non-occurrence is around 100 
times that of HHHT. This is – of course – a consequence of 
the fact that the mean of the frequency-of-occurrence 
distribution for HHHH is the same as that for HHHT, but 
the variance is much greater. Hahn and Warren suggest that 
when making judgments, people, whose experience is 
limited to short runs of outcomes, might attend to whether a 
string occurs or not, but not attend to the number of times it 
occurred. This means that they will see HHHT occurring in 
a lot more runs than they will HHHH, and will rate it more 
probable.  

Conventional analysis of Gilovich et al.’s hot hand data 
used the logic that in the absence of a hot hand effect, the 
average proportion of players’ shooting successes would be 
the same following three successes as following three 
failures. Miller and Sanjurjo note that this is not the case. 
The observation I make here is that this is a direct 
consequence of the distribution of frequency-of-occurrence 
in 100 binary outcomes being much wider for streaks than 
non-streaks is that the proportion of XXXX from {XXXX, 
XXXO} (or, by symmetry {XXXX, OOOX}) is less than .5. 

To give a concrete example, if every day your grocer 
randomly gives you either 3, 4 or 5 apples, and either 2, 3, 
4, 5, or 6 oranges, and each day you work out what 
proportion of the fruit you were given is apples, you will 
find that, averaging across many days, the proportion of 
apples is greater than .5, even though the total number of 
apples and oranges you receive is on average identical.  

(If this is not obvious, consider the case where the grocer 
always gives you 4 apples, and also randomly gives you 
either 0 or 8 oranges. Half the time you leave with a bag that 
contains 100% apples; half the time you leave with a bag 
that contains 33% apples, so overall, the proportion of fruit 
in your bag that is apples averages 67%. However, the 
overall number of apples and oranges you receive will be 
the same.)  

Thus, in general, if one draws a sample from two 
distributions which have the same mean but different 
variances, and then looks at the proportion of the combined 
outcome that comes from each distribution, the expected 

Figure 1: Raster plot of the occurrence of strings of HHHH or HHHT across 1,000 simulated coin flips.The horizontal 
dimension gives the flip from the first on the far left to to the last on the far right.   
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proportion from the lower variance distribution will be 
greater than that for the higher variance distribution. 

This phenomenon can be seen more generally in Figure 3, 
which takes a normal approximation of the frequency-of-
occurrence distributions shown in Figure 2, with equal 

means, capping at 0, and varying the SD of the two 
frequencies-of-occurrence. The color indicates the mean 
proportion of outcome y, averaged across 50,000 simulated 
trials of each of 100 random binary outcomes.  Where SDs 
are equal, then of course p(y) = p(x) = .5. Where SD(y) > 
SD(x), p(y) < p(x), and vice versa. A circle indicates the 
approximate point where SD(x) = SD(HHHH) and SD(y) = 
SD(HHHT). 

Replacing HHHH and HHHT with XXXX and OOOX, it 
is clear that, as Miller and Sanjurjo (2016) note, it is not 
correct to assume that, in the absence of a hot hand effect, 
the expected proportion of successes following k successes, 
averaged across a large set of players, should be .5. Rather, 
it is significantly lower, as a direct consequence of the 
distribution of frequency-of-occurrence for XXXX being 
broader than that for OOOX. 

Conclusion 
The argument presented here is that both Hahn and 

Warren (2009) and Miller and Sanjurjo’s (2016) findings 
can be explained the same way: In sequences of random 
binary outcomes, streaks of the same outcome (whether 
heads, HHHH, or successes, XXXX) cluster more than non-
streaks (HHHT, OOOX); this leads to a broader distribution 
of frequency-of-occurrence of streaks in finite sequences of 
random binary events relative to non-streaks. This both 
increases the chance of the non-occurrence of a streak 
(which H&W argue makes people think justifiably that 
HHHH is less likely to occur than HHHT and other non-
streaks) and reduces the average proportion of XXXX 
among observations of {XXXX and OOOX} (which Miller 
and Sanjurjo convincingly argue means that evidence for a 
hot hand effect has been overlooked). 

Figure 2: Distribution of frequency-of-occurrence for two different strings of outcomes in 10,000 simulated sequences  
of 100 coin flips  

 

Figure 3: Simulated samples drawn from distributions 
with a common mean, Color indicates the mean 

proportion of the sum of the two samples that comes 
from the y sample 
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There are potentially interesting implications from these 
observations for the kinds of cognitive representation that 
would mediate the biases seen here. For example, an agent 
that counted the total number of occurrences of different 
strings of outcomes would see that the number of 
occurrences of, say, HHHH and HHHT were identical, so 
should rate them as equally probable. An agent that 
discarded all information about the frequency of occurrence 
of a string and recorded only whether or not it was observed 
(at least once) in a particular set of connected outcomes 
would of course perceive HHHT as more common than 
HHHH. Similarly, an agent that, rather than counting the 
number of occurrences of a string, instead encoded only the 
relative frequency of different strings, as a proportion of the 
total number of observations across occasions, would also 
conclude that HHHT was more frequently observed than 
HHHH. 

(Of course the overlapping of streaks described above 
may account for the biases seen here in more superficial 
ways. Chater (2014) argues that cognitive segmentation 
processes may differentially mask the frequency of 
occurrence of different strings. For example, a sequence of 
TTHHHHHHTT might be parsimoniously chunked as two 
tails – six heads – two tails, underplaying the three 
overlapping occurrences of HHHH within the sequence.) 

Overall it seems clear that an examination of the 
distribution of frequency-of-occurrence for different strings 
of binary outcomes, allows one to create a parsimonious and 
intuitive account for two important recent theoretical 
observations, both of which have implications for the study 
of rationality.  
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Abstract 

Face-to-face communication is a rich, natural form of        
communication that incorporates multimodal behavioral cues      
belying meaning and intention. However, computer-mediated      
communication (e.g., texting) removes many of the       
multimodal cues in face-to-face communication (e.g., vocal       
prosody). Recent research has suggested that punctuation       
might mimic vocal prosody in text (Gunraj et al., 2016), but           
there is no clear indication of what the overall effects may be.            
Therefore, the current study investigates the use of        
punctuation to express intonation. We first replicate Gunraj        
and his colleagues by showing that a single word ending in a            
period promotes the appraisal of negative affect. Interestingly,        
we extend this research by demonstrating that intonational        
punctuation has the potential to increase social distance,        
which our preliminary results suggest may occur through        
processes of emotional contagion and interactive alignment.  

Keywords: pragmatics; texting; emotion contagion;     
interactive communication 

Introduction 
With an increased reliance on technology during       
communication, mistaking the tone of a message may be         
common. Though mistakes are possible, numerous      
interesting studies suggest that some aspects of text may         
help interlocutors interpret conversational (i.e., affective)      
tone (e.g., lexical choices, punctuation, character features,       
emoticons; Byron & Baldridge, 2007; Gunraj et al., 2016;         
Niederhoffer & Pennebaker, 2002; Riordin & Kreuz, 2010).  

While these studies have touched on many features of         
text, less is known regarding the impact of pragmatic tone as           
indicated by punctuation (i.e., intonational punctuation), on       
lexical style matching during texting conversations. In the        
current study, we evaluate the effect of a sender’s         
punctuation use as a paralinguistic cue to emotional tone,         
and its effect on a receiver’s tendency to align their tone and            
texting preferences with the sender.  

Conveying Tone of Voice in Text 
Face-to-face (FFC) communication benefits from the use of        
multimodal nonverbal cues like eye gaze, vocal prosody,        
and shared attention (e.g., Banziger & Scherer, 2005;        
Burgoon et al., 1995; Knapp et al., 2013). One common area           
that most strongly affects text-based communication (TBC)       
is its unimodality. This unimodality is typically confined to         
linguistic, typographical, and/or grammatical cues, making      
TBC less rich in non-verbal cues found in FFC (e.g., Byron           
& Baldridge, 2007; Kruger et al., 2005). However, a large          
body of research demonstrates that language users adapt to         
and make use of the communication medium to convey         
richer information about their message. For example,       
interlocutors make use of vocal spelling (“yeaaaaaaah”),       
non-standard spelling (“ermahgerd”), emoticons, and     
manipulated grammatical markers (“...”); all of these       
typographic cues have the potential to indicate tone of voice          
(Harris & Paradice, 2007; Riordan & Kreuz, 2010).  

More recently, Gunraj et al. (2016) found that the use of a            
one-word response followed by a single period in TBC         
(relative to written communication) was perceived by       
participants to be rude and insincere. In fact, the use of           
typographical cues is adaptive, as it may aid in the decoding           
of an ambiguous message (e.g., when information is        
missing; Byron & Baldridge, 2005; Derks et al., 2008;         
Harris & Paradice, 2007; Lo, 2008; Riordan et al., 2014;          
Walther & D’Addario, 2001). Though conventional      
multimodal nonverbal cues are absent from TBC,       
interlocutors have the potential to interpret a sender’s        
intentions beyond the literal meaning.  

 
Faster but Ambiguous Messages 

In a texting context, language users are constrained by         
the texting medium, in which their messages are typically         
fast, agrammatical, and largely ambiguous (for review see        
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Ling & Baron, 2007). When an interlocutor lacks the         
relevant cues, one might rely more heavily on their own          
representations of the world (i.e., egocentric perspective).       
When this information is decoded incorrectly or the        
message is overly ambiguous, miscommunication has the       
potential to follow shortly behind.  

Ambiguity has the potential to make receivers (listeners)        
of a message uncomfortable with uncertainty. However,       
listeners may handle this uncertainty by making predictions        
about a speaker’s (sender’s) intentions (Uncertainty      
Reduction Theory; Berger & Bradac, 1992). Interlocutors       
essentially make predictions to decode ambiguous      
information by relying on nonverbal cues (e.g.,       
paralinguistic cues) presented by a communication partner       
(Byron & Baldridge, 2007). From this account, the receiver         
evaluates typographic cues (e.g., capitalization, emoticons,      
etc.) in the message to determine the sender’s intentions.  

Subsequently, the receiver attempts to synthesize known       
personality traits with the typographic cues to derive the         
correct intention. For example, when vocal tone is absent         
from the sender, a receiver reading a text message may          
construct an egocentric “tone” representation, similar to that        
of representing verbally produced “tone” in a face-to-face        
conversation -- as a means to reduce ambiguity, promote         
successful communication and decrease social distance      
(Byrne, 1971; Chartrand & Bargh, 1999; Dennis &        
Valacich, 1999). This leads one to question how a receiver's          
representation of tone is integrated in a deprived texting         
environment. More specifically, do interlocutors use similar       
communicative mechanisms to decrease social distance,      
when the cards are stacked against them? 
 
Convergence in Interpersonal Communication 
A large amount of research has shown that lexical style          
matching during communication has the potential to       
decrease social distance (Byrne, 1971; Bernieri &       
Rosenthal, 1991; Chartrand & Bargh, 1999; Niederhoffer &        
Pennebaker, 2002). However, recent research has shown       
that alignment need not always occur to promote positive         
communication outcomes (Fusaroli et al, 2012). In fact,        
these researchers show that though interlocutors have a        
proclivity to converge linguistically, dyads that adapted and        
diverged linguistically improved performance on a task -        
i.e., more is not always better (Giles & Coupland, 1991). It           
is possible, that under emotional contexts, one would be         
more likely to converge linguistically and para-linguistically       
during positive interactions and strategically diverge in       
negative interactions to decrease social distance (Paxton &        
Dale, 2013). Currently, the utility of behavioral convergence        
and divergence during communication as a potential means        
to promote pragmatic interpretation, has been less well        
established in an emotional texting context.  

When texting, the receiver of the message automatically        
colors the message with their interpretation of the sender’s         
tone. If the sender produces emotionally valenced       
non-verbal cues, then the receiver might produce a similarly         
valenced response. Hatfield et al. (1994), for example,        
showed that interlocutors emotions tended to align when        
interacting with a social other. Additionally, it has also been          
argued that interlocutors prime each other (at various levels         
of the interaction), to promote effort saving communication        
behaviors (phonological to pragmatic priming: Dijksterhuis      
& Bargh, 2001; Garrod & Pickering, 2004). But what if the           
very nature of the intonational punctuation cue intends to         
increase social distance? Does the receiver of such a         
message diverge emotionally or with intonational      
punctuation? Or will the receiver follow suit and respond         
reciprocally (e.g., Theory of Reciprocity; McCroskey &       
Richmond, 2000), further breaking down the conversation       
and increasing social distance?  

The purpose of the current study is to determine the          
effect of intonational punctuation on a texting conversation.        
There are three main goals: (1) As a replication of previous           
studies, do interlocutors process punctuation for affective       
intent?, (2) Given intonational punctuation matching, will       
intonational convergence occur equally across positive and       
negatively valenced communication? and (3) What are the        
effects of punctuation alignment on the perception of        
conversational sincerity? We expect to see intonational       
punctuation impacting the perceived sincerity, and thus       
impacting the reciprocal use of punctuation to match        
conversational tone. We evaluate convergence through a       
distributional analysis, rather than time series analysis       
(Paxton et al., 2016). This allowed for the preliminary         
establishment of alignment, at the global level.  

Method 

Participants 
Twenty Kent State University undergraduate students      
(females = 11, meanage = 19.5yrs, minage = 19 yrs, maxage =            
23yrs, sd = 1.30) participated in return for a $5 gift card.            
One participant was excluded, because the program crashed        
half-way through the experiment. All participants were       
native speakers of English, with normal to normal-corrected        
vision and no diagnosed speech or hearing impairments.  
 
Materials 
All stimulus presentations and data collection were       
controlled by a Matlab, Psychtoolbox-3 program, that       
recorded computer-mouse clicks. All participants were      
seated in front of a 21-inch iMac computer screen in a           
sound-attenuated booth.  
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Stimuli 
The pseudo-confederate (fake texting partner) texting      
conversation was a neutral conversation about living in        
Kent, OH. Thirty-two pseudo-confederate texting response      
bubbles were created and paired with 5 alternative forced         
choice participant response bubbles. The participant      
response bubbles ranged from positive to neutral to negative         
(similar to a Likert scale), with the top most response option           
representing positive, the middle being neutral, and the        
bottom most option being most negative (e.g., Fig. 1). More          
specifically, the participant response bubbles contained one       
of the punctuation types, with the exclamation being most         
positive, no punctuation, ellipsis, and question mark being        
neutral, and the period being most negative (see Fig. 1).  

These five types of punctuation were also used in the          
pseudo-confederate text messages: question mark, ellipsis,      
period, no punctuation, and exclamation. No punctuation,       
question marks, and ellipses acted as fillers and reflected         
typical uses of typographical markers in texting behavior        
(two-thirds of the trials; see Riordin & Kreuz, 2010). The          
rest of the trials were primarily made up of exclamations          
(positive condition) or periods (negative condition).  

Design & Procedures 
At the beginning of the task, participants were told they          
would be having a texting conversation with another person,         
but instead of being able to freely type their responses, they           
would be given five response options to choose from (see          
Fig. 1). The participant was also asked to imagine that the           
conversation he or she was having was with a person he or            
she knew well, to promote ecological validity. 
 

 
Figure 1: This is an example of a negative (left) and 

positive (right) pseudo-confederate text bubble, with the 
participant 5 alternative forced-choice response bubbles. 

 
During the course of the interaction, the participant was         

presented with an image of an iPhone (Apple, Inc.), with a           
pseudo-confederate text bubble. They were then asked to        
read the text message, then to click the “next” button to           
transition into the participant response screen. On this        

screen, they were able to see the pseudo-confederate text         
message bubble, with the 5 forced choice response options         
to the right of the iPhone (Fig. 1). After the response was            
made, the participant was brought to another screen that         
displayed a continuous rating scale, that required the        
participant to rate his or her perception of the conversation’s          
sincerity (Fig. 2). Participants were randomly assigned to        
one of two between subjects conditions: Pseudo-confederate       
Valence Condition (positive: n = 9 or negative: n = 10). 

 

 
 

Figure 2: The continuous rating scale participants used to 
rate the sincerity of the conversation, after each trial 

(“Please rate how sincerity of the conversation.”) 

Measures 
Participant Valence Selection Participants had five      
responses to choose from, that were ordered from positive         
(exclamation), to neutral (no punctuation, ellipsis, question       
mark), to negative (period). The response option chosen        
corresponded with an ordinal scale (exclamation (1) = most         
positive to period (5) = most negative). Though the         
difference was not large, the participants in the positive         
condition chose response options on the more positive side         
of the Likert scale (mean: 1.99), relative to the negative          
conversation (mean: 2.23; t = 2.212, p < .05 - independent           
samples t-test), with a larger number indicating a more         
negative valence. In order to reflect a more continuous         
measure of emotional contagion, a running average of the         
Likert scale ratings was calculated to reflect fluctuations in         
valence over the course of the interaction.  
 
Intonational Punctuation Alignment Each pseudo-     
confederate response had one form of punctuation -- with         
each participant response bubble containing one of the five         
punctuation types. Depending on the response option       
chosen, the response was recoded as matching or        
mismatching the pseudo-confederate’s use of punctuation.      
That is, if the pseudo-confederate used a period, what was          
the likelihood of the participant selecting a response option         
containing a period, too? Participants in the positive        
condition matched the pseudo-confederates choice of      
punctuation approximately 48% of the time, but only 28%         
of the time in the negative condition (t = 2.913, p < .001 -              
independent samples t-test).  
 
Conversation Sincerity Participants were also asked to rate        
the sincerity of the conversation. This was done by clicking          
along a continuous rating scale (see Fig 2), and was          
measured based on pixels. The pixel rating scale ranged         
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from approximately 400 - 1200px, with smaller numbers        
being related to more sincerity, and higher numbers related         
to lack of sincerity. Overall, positive conversations were        
rated as significantly more sincere (mean: 613.22px) than        
negative conversations (mean: 778.13px; t = 3.848, p <         
.001- independent samples t-test).  

Results 
Outcomes are reported from linear mixed-effects models       
built using lme4 package in R (R Core Development Team,          
2008). A mixed effects regression was used to predict         
receiver perceived sincerity by Pseudo-confederate Valence      
Condition (positive or negative), Participant Valence      
Selection (Likert-like response options), and punctuation      
alignment (match or mismatch). The models implemented       
maximal random effect structures to achieve model       
convergence, with participants and trial set as random        
intercepts. All categorical variables were dummy coded.  
 
Pseudo-Confederate Valence (Manipulation Check) As a      
manipulation check, to determine if the conversations would        
be perceived as positive or negative by our participants, the          
pseudo-confederate responses were presented to four female       
participants (mean age = 20.5) who did not participate in the           
pseudo-texting conversation. These participants were asked      
to rate each pseudo-confederate response bubble on a        
continuous rating scale for positive/negative valence. The       
rating scale spanned 400 - 1200 pixels, with lower numbers          
representing more positive valence, and higher numbers       
representing negative valence. The positive     
pseudo-confederate messages received an average pixel      
rating of 642.11px, while the negative pseudo-confederate       
messages were rated at approximately 850.77px (ß =        
-208.66, se = 28.03, t = -7.37, p < .001; similar to Fig 2.).  
 
Intonational Punctuation Replication To determine if      
pseudo-confederate punctuation was interpreted as affective      
in nature (question 1), conversational sincerity was assessed        
between the conversational valence conditions (dummy      
codes: positive = 0, negative = 1). Results revealed that the           
negative condition was rated as significantly more insincere        
than the positive condition (ß = 208.66, se = 25.53, t = 8.17,             
p < .001), replicating Gunraj et al. (2016). 
 
Intonational Punctuation Style Matching To determine if       
participants aligned with the pseudo-confederate’s use of       
punctuation (question 2), intonational punctuation was      
evaluated between the two conversational conditions      
(dummy codes: positive = 0, negative = 1). Results from this           
mixed effects model revealed that the negative condition        
was rated as significantly more insincere than the positive         
condition (ß = -1.05, se = 0.20, t = -5.22, p < .001; logistic              
model, family set as binomial; Jaeger, 2008). This suggests         

that interlocutors might be more likely to align under         
positive, than negative contexts.  
 
Conversational Appraisal In the above analyses, we show        
that intonational punctuation and style matching occurs       
differently depending on the conversational valence. The       
last analyses (question 3) intended to determine whether or         
not the appraisal of the interaction (sincerity) should be         
affected by the pseudo-confederate's tone, similarity (to the        
pseudo-confederate) of their intonational punctuation, and      
the valence of the response selection.  

The results indicated a number of main effects and an          
interaction. Specifically, there was a main effect of        
Pseudo-confederate Valence Condition, indicating that     
participants in the positive condition rated the conversation        
as significantly more sincere than participants in the        
negative condition (ß = 124.675, se = 52.747, t = 2.364, p <             
.05). This suggests that participants were sensitive to        
pseudo-confederate affective tone. 

 

 
Figure 3: This figure represents the relationship between 
punctuation alignment and sincerity, as a function of 

pseudo-confederate valence.  

There was also main effect of Participant Valence        
Selection (i.e., Likert-like responses; ß = 97.348, se =         
43.442, t = 2.241, p < .05) but no interaction between           
Pseudo-confederate Valence Condition x Participant     
Valence Selection. This suggests that as participants rated        
the interaction as less sincere, they chose more negative         
response options (e.g, emotional contagion). 

Lastly, though there was no main effect of intonational         
punctuation style matching (p = .352), there was a         
significant Pseudo-confederate Valence Condition x     
punctuation alignment interaction (ß = 49.841, se = 18.424,         
t = 2.705, p < .01; see Fig. 3). This indicated that as             
participants assessed the sincerity of each turn, the more         
sincere the turn seemed, the more likely the participant         
would match the pseudo-confederate’s punctuation.     
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Alternatively, the more insincere the conversation,      
participants were less likely to align their punctuation, with         
the caveat that highly insincere ratings increased negative        
punctuation alignment.  

Discussion 
Texting provides a wealth of communicative benefits.       

However, texting necessarily requires a fast, reduced, and        
often ambiguous delivery of information (Ling & Baron,        
2007). In the face of ambiguity, the receiver of these          
messages must use their own representations of the world to          
interpret tone correctly, especially when the tone is not as          
explicit as vocal tone because of its dual meaning (i.e.,          
grammatical and adapted pragmatic cues; Byron &       
Baldridge, 2005; Derks et al., 2008; Harris & Paradice,         
2007; Lo, 2008; Riordan et al., 2014; Walther & D’Addario,          
2001). Therefore, it is not always easy for a receiver of an            
emotionally valenced text message to correctly interpret       
tone. In the current study, we specifically evaluate the role          
of positive and negatively valenced punctuation and its        
effect on a receiver's ability to interpret tone.  

Consistent with Gunraj et al. (2016), the results indicate         
that participants are in fact sensitive to punctuation as an          
effective cue to conversational tone. Additionally, the       
participants perception of the pseudo-confederate’s sincerity      
shaped the participants’ responses -- with a more insincere         
pseudo-confederate receiving responses that were more      
negatively valenced, though dampened. And finally, we see        
the convergence and divergence of punctuation use by the         
participant for pragmatic effect.  

Though the current results provide interesting insight into        
the pragmatic nature of intonational punctuation, the current        
study is not without limitation. The main limitation of the          
current study is the lack of ecological validity, which may          
have affected patterns of responding. For example,       
participants in the positive condition may have attempted to         
decrease social distance by using the same communicative        
mechanisms engaged in FFC (behavioral entrainment;      
Byrne, 1971; Bernieri & Rosenthal, 1991; Chartrand &        
Bargh, 1999; Niederhoffer & Pennebaker, 2002).      
Specifically, participants in the positive condition exhibited       
emotional contagion and intonational punctuation     
alignment, which in other domains has been suggested to         
promote interpersonal liking and communicative     
smoothness (Chartrand & Bargh, 1999). Even though the        
participants were instructed to imagine they were texting        
with someone they knew well, our participants may have         
aligned less and been unsure of how to interpret the one           
word responses ending with a period (negative), because        
they lacked relevant history with their texting partner        
(Bernieri & Rosenthal, 1991).  

Alternatively, participants may have defaulted to rules of        
social engagement, in that it is typically socially        

unacceptable to have contentious interactions with strangers       
(Morand et al., 2003). Therefore, participants may have        
been more likely to disengage synchronous mechanisms to        
defuse the negative interaction. However, the more       
contentious (i.e., more insincere the conversation seemed)       
the more likely the participant converged their text response         
with the pseudo-confederate. One should approach this       
interpretation with caution, because it is difficult to claim         
intentionality because the interaction was with an assumed        
stranger, and behavioral frequencies were assessed, and not        
via time course analysis. These results, nonetheless, are        
consistent with negative FFC interactions, in which       
decreases in convergence have been found (Abney, Paxton,        
Kello, & Dale, 2014; Paxton & Dale, 2013).  

Finally, we did not look specifically at the time course of           
synchrony across the interaction. This was mostly due to the          
low sample size and the preliminary nature of the current          
study. We first wanted to show that emotional valence has          
the potential to differentially impact communication in a        
texting context. Punctuation matters just as much as vocal         
prosody, because of the pragmatic implications of the cue.         
Therefore, the next step of this project will be to expand this            
paradigm, by collecting more data so we might be able to           
explore the temporal dynamics of emotional valence during        
text based communication.  

Conclusions 
We are relying more and more on digital forms of          

communication, with even the most prominent political       
leaders communicating through short, fast text-based      
responses via social media. In the current study, we provide          
preliminary insight into the cognitive mechanisms (e.g.,       
emotional contagion) that drive the interpretation of       
intentionality. Texters (college-aged) not only use      
typographic variation to indicate pragmatic meaning, but       
also use it to infer intentions. Additionally, the choice to use           
certain typographical cues may push the valence of a         
conversation in a more positive or negative direction.        
Therefore, one should be aware that one’s use of         
punctuation has pragmatic implications over and above       
grammatical form, in texting. We see that texting follows         
similar rules as FFC. In that, language is naturally         
ambiguous, but in a texting context ambiguity is a critical          
feature of communicating. Additionally, the texter will       
follow the valence of their communicative partner as a         
means to increase and decrease social distance. Therefore,        
failure to use the appropriate (texting) affective cues could         
lead to higher rates of miscommunication,      
misunderstandings, and generally hard feelings.  
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Abstract 

Social network graphs are often used to help inform 
judgments in a variety of domains, such as public health, law 
enforcement, and political science. Across two studies, we 
examined how graph features influenced probabilistic 
judgments in graph-based social network analysis and 
identified multiple heuristics that participants used to inform 
these judgments. Study 1 demonstrated that participants’ 
judgments were influenced by information about direct 
connections, base rates, and layout proximity, and 
participants’ self-reported strategies also reflected use of this 
information. Study 2 replicated findings from Study 1 and 
provided additional insight into the hierarchical ordering of 
these strategies and the decision process underlying 
judgments from social network graphs.  

Keywords: social network analysis; graph comprehension; 
data visualization; judgment and decision making 

Introduction 

Social Network Analysis 
Social network analysis is an analytical method for 

understanding data that depicts relationships between 
entities, such as communications between people or the flow 
of information through a community. Social network 
analysis (SNA) can be used to inform judgments such as 
who the most connected or influential person is in a 
community. The applications for SNA are widespread. The 
CDC has used social networks to map the spread of 
infectious diseases (Cook, 2007), and intelligence 
professionals have used SNA to map potential terrorist 
suspects. For example, Krebs (2002) was able to map a 
network of suspected 9/11 terrorists after the attacks based 
on publicly available information in the news and provide 
insight into the terrorist organization.  

Social networks are typically depicted using node-link 
diagrams, in which nodes (depicted with circles) represent 
objects, such as people, and edges between the nodes 
(depicted with lines) represent a connection, such as a 
friendship or a recent communication. Although there are 
quantitative measures of graph structures, such as network 
centrality, SNA often involves some degree of visual 
interpretation. In many applications of SNA, such as tactical 
decision making in military organizations, users of network 
graphs have limited time to make their decisions and may 
not have the background to supplement their visual 

interpretation with more objective, quantitative measures. 
Thus, clearly communicating the important information in 
network graphs is essential. In practice, however, these 
network visualizations are often complex with hundreds or 
thousands of nodes, and relatively little is known about the 
cognitive strategies people use to make probabilistic 
judgments from these graphs. In the present study, we 
aimed to identify graph features and heuristics that 
influenced probabilistic judgments in scenarios that 
mirrored real-world SNA tasks.  

Graph Perception 
Much research has applied perceptual and cognitive 

theories to improve graph comprehension and readability. 
Purchase, Cohen, and James (1997) first demonstrated that 
several aesthetic qualities could improve comprehension, 
such as maximizing the symmetry of the graph, minimizing 
the number of intersecting edges, and minimizing the 
number of bends in a series of segments. Purchase (2000) 
found that graph layouts that minimized intersecting edges 
significantly improved participants’ abilities to answer 
questions about the relationships in the graph. Similarly, 
Ware, Purchase, Colpoys, and McGill (2002) found that 
cutting unnecessary edges significantly improved cognitive 
performance.  

Other perceptual features in graphs have been studied as 
well. For example, McGrath, Blythe, & Krackhardt (1997) 
found that nodes that were positioned closer to the center of 
the graph were perceived as more prominent, suggesting a 
bias towards layout centrality. Additionally, nodes were 
more likely to be considered to be in the same group if they 
were positioned closer to each other, and nodes positioned 
directly between two nodes (as opposed to at an angle) 
made them more likely to be considered a “bridge” between 
the two nodes.  

Gestalt principles may help explain why some aesthetic 
features can influence graph interpretation by exploiting 
people’s tendency to identify patterns (Novick & Bassok, 
2005).  The Gestalt principle of good continuation suggests 
that paths are more easily recognized when they contain less 
jaggedness, suggesting that the fewer the bends between two 
nodes, the more readily the path connecting them will be 
observed. The principle of proximity suggests that spatial 
proximity between objects implies logical groupings. Other 
cognitive heuristics may also influence graph interpretation. 
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For example, people sometimes ignore base rates when 
making probabilistic judgments. The extent to which this 
occurs when making judgments from network graphs, which 
may depict base rate information in a visual way, is unclear 
(but see Micallef, Dragicevic, & Fekete, 2012).  

Pilot Study 
We conducted a pilot study with 30 participants recruited 

from Amazon Mechanical Turk (AMT) to identify graph 
features people attend to when making judgments about the 
likelihood that a particular node belonged to a defined 
category. We planned to use the results of the pilot study to 
inform our decision about graph features to manipulate in 
our experiments1. Participants were asked to play the role of 
a data analyst at a law enforcement agency and use node-
link graphs to estimate the likelihood that they would 
further investigate a person of interest (POI) in a community 
that has known drug users (Figure 1). They were also asked 
to describe the strategies they used to make their judgments. 
The POI was indicated as a black node, known drug users as 
blue nodes, and everyone else as yellow nodes. Lines were 
drawn between nodes to indicate recent communications. 
Two graph features were varied, 1) the number of direct 
connections the POI had, and 2) the number of drug users in 
the whole graph (base rate). The graph visual was generated 
using a force-directed layout, a popular way of visualizing 
graph data. Participant responses revealed two common 
strategies. The first was based on the number of drug users 
within the POI’s direct connections (what we call the “ratio” 
strategy, N = 10). The second strategy was based on the 
spatial proximity of drug user nodes to the POI node in the 
visual layout, regardless of whether they were actually 
closely connected to the POI (“proximity” strategy, N = 8). 
We expected to see instances of the ratio strategy, but not 
necessarily the proximity strategy, since the position of 
nodes in a force-directed layout is a function of connections 
rather than nodes. In general, layout position in a graph can 
be misleading, and two nodes visually close to each other 
but not connected may not necessarily have a strong 
relationship. Three participants in the pilot study also 
mentioned relying on the total number of drug users in the 
graph. This strategy was expected to be more frequent 
considering that base rates were explicitly manipulated 
across graphs. However, participants apparently found base 
rates less informative than ratio and proximity features for 
the pilot set of graphs.  

Overview of Experiments 
We conducted two experiments to understand how the 

graph features identified in the pilot study influence 
probabilistic judgments. In each study, we manipulated the 
three features identified during our pilot study: 1) ratio, or 
the number of connections the POI has to salient nodes, 2) 

                                                             
1 All procedures in the pilot study and experiments were 

approved by the Johns Hopkins University Institutional Review 
Board. 

base rate of salient nodes, and 3) proximity of salient nodes 
to the POI.  

 

 
 

Figure 1: Example network graph provided in pilot study.  

Study 1 

Participants and Procedure 
Participants. We recruited 30 participants from AMT. 
Participants were required to have a “Masters” qualification, 
indicating that they had repeatedly demonstrated good 
performance in the AMT marketplace. Most participants 
reported having no experience (72.41%) or only slight 
experience (17.24%) with SNA. One participant was 
excluded from analysis for failing an attention check.  

 
Scenario. Similar to the pilot study, participants were asked 
to take on the role of a data analyst at a law enforcement 
agency and use graphs to identify potential drug users in a 
community. They were provided a set of 36 graphs that 
described communications in a small community over the 
past month. Participants were told that links between nodes 
represented non-family relationships with others, such as 
friends and coworkers. No information was provided on 
how the graphs were constructed. For each graph, 
participants made a judgment of how likely they would be 
to investigate the POI and described how they used the 
graph to make their judgment.  

 
Materials. The graphs were small real-world graphs 
generated from the Polbooks dataset of co-purchased 
political books (V. Krebs, unpublished, 
http://www.orgnet.com/). Graphs were rendered with the 
default graph plotting parameters in the R iGraph package, 
which uses the Fruchterman-Rheingold force-directed 
algorithm. Each graph consisted of 104 nodes. As in the 
pilot study, the POI was indicated as a black node, known 
drug users as blue nodes, and everyone else as yellow 
nodes. Direct connections to the POI were highlighted in the 
graphs to aid interpretation. Emphasizing direct connections 
in this way may have led to more emphasis on the ratio 
strategy, but highlighting connections was deemed 
important to help participants distinguish between graph 
connectedness from layout proximity (i.e. visual closeness). 
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Conditions. Three graph conditions were manipulated 
within-subjects: 1) number of drug users in the POI’s N 
direct neighbors (0/N, 1/N, Half/N); 2) overall base rate of 
known drug users in entire graph (5% or 50% of all nodes); 
and 3) proximity placement of known drug user nodes (near 
or far from POI). Note that proximity was the physical 
location of drug user nodes within the visual graph layout 
and not the graph connectedness. Graph connectedness was 
controlled by removing edges that connected proximal drug 
user nodes to the POI’s direct neighbors (Figure 2).  

 

 
 

Figure 2: Graph feature conditions. Note that in the 
Proximity: Near graph, the proximal blue nodes are not 

connected to the POI or the POI’s direct neighbors. 
 
Likelihood Judgments. For each graph, participants were 
asked to rate how likely they would be to investigate the 
POI on a scale of 1 to 7 (1 = Extremely Unlikely, 7 = 
Extremely Likely). 

 
Strategy Use. After giving their likelihood rating, 
participants were also asked to describe any specific graph 
information they used in making their rating. Responses 
were open-ended text responses and were analyzed using a 
structured coding approach, described in Table 1, with three 
coders who coded 75% of the responses independently and 
25% overlapping. Inter-rater reliability on the 25% co-coded 
responses was high (Cohen’s Kappa > .75). 
 

Table 1: Coding scheme for open-ended responses. 
 
Strategy Description 

Ratio Mentions number of users in POI 
connections 

Base Rate  Mentions number of users in graph 
Proximity Mentions visual closeness of POI to users 

Results and Discussion 
Likelihood Judgments. We modeled likelihood judgments 
with a linear multilevel model with base rate, proximity, and 
ratio conditions treated as random effects. Graph feature 
conditions were nested within participant. Multilevel 
models are able to estimate the variance associated with 
each random effect; thus, the model can account for the 
within-individual variability for different graph feature 
conditions. In addition to modeling random effects, 
multilevel models can also simultaneously estimate fixed 
effects, which in this case represent the average effect for 
the whole sample.  

We sequentially entered each graph feature into the model 
as a fixed effect to examine its effect on likelihood ratings. 
Base rate, ratio, and proximity each significantly improved 
the fit of the model (χ2(1) = 34.51, p < .001, χ2 (2) = 148.62, 
p < .001, and χ2(1) = 45.07, p < .001, respectively). 
Specifically, higher base rates increased the likelihood of 
investigating the POI (b = 0.97, t(1011) = 7.54, p < .001), 
higher ratios increased the likelihood of investigating (b = 
1.24, t(1011) = 7.18, p < .001 for 1/N vs. 0/N and b = 3.86, 
t(1011) = 22.34, p < .001 for Half/N vs. 1/N), and closer 
proximities also increased the likelihood of investigating (b 
= 1.02, t(1011) = 9.58, p < .001). These results suggest that 
participants considered all three graph features when 
making their judgments. The observation that participants’ 
suspicion levels of the POI increased with proximity to 
known drug users was significant, because it suggests that 
participants believed proximity to be a meaningful indicator. 

We also found a significant interaction between base rate 
and proximity (χ2(1) = 146.00, p < .001). When proximity 
was far, there was no difference between the base rate 
conditions, but when proximity was near, higher base rates 
significantly increased the likelihood of investigating (b = 
1.70, t(1006) = 13.96, p < .001; Figure 3). In other words, 
base rate information only affected judgments to the extent 
that it placed more users near the POI. 

There were also interactions between the base rate and 
ratio conditions (χ2(2) = 112.90, p < .001) as well as 
between the ratio and proximity conditions (χ2(2)= 81.89, p 
< .001), as depicted in Figure 3. Increasing the base rate had 
a stronger effect in the 0/N and 1/N conditions compared to 
the Half/N condition (b = 1.70, t(1006) = 11.40, p < .001 
and b = 0.94, t(1006) = 6.32, p < .001 for 0/N vs. Half/N 
and 1/N vs. Half/N, respectively). Likewise, proximity had a 
stronger effect in the 0/N and 1/N conditions as well (b = 
1.36, t(1006) = 9.09, p < .001 and b = 0.87, t(1006) = 5.85, 
p < .001, respectively). These interactions reveal that, in the 
highest ratio condition, base rate and proximity information 
had little effect. One interpretation of this result is that when 
ratio was high, participants did not feel a need to look at 
other information in the graph. In contrast, when the ratio 
was 0/N or 1/N, base rate and proximity information both 
influenced judgments, such that higher base rates and closer 
proximity increased likelihoods of investigating.  

Ratio: 0/N Ratio: 1/N 

Base Rate: Low 

Proximity: Far 

Base Rate: High 

Proximity: Near 

Ratio: Half/N 
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Strategy Use. Analysis of participants’ self-reported 
strategies validated our findings from the pilot study. 
Participants mentioned using the ratio strategy for the 
majority of graphs (85.34%). Proximity was the next most 
frequently mentioned strategy (22.41%), followed by base 
rate a small percentage of the time (12.64%).  

 

 

 
 

Figure 3: Interactions between graph feature conditions. 

Study 2 
Study 2 sought to replicate the findings of Study 1 with a 

broader range of stimuli. We introduced two additional 
scenarios, public opinion and disease propagation. Network 
graphs can be used to represent relational data from a 
variety of domains, and assumptions about the data may 
change interpretations of the graph. For example, base rates 
may be utilized more when the activities represented in the 
graphs are perceived to be more mobile or contagious. We 
speculated that a network graph representing the spread of 
an infectious disease could lead people to use base rate 
strategies more often than a network graph representing the 
spread of drug use. Study 2 also sought to better understand 
the hierarchical ordering of cognitive strategies identified in 
the previous studies by constructing a decision tree that 
could predict the conditions under which particular 
strategies will be used. 

Participants and Procedure 
Participants. We recruited 196 participants from AMT. 
Participants were limited to U.S. residents and had at least a 
90% approval rating for previous HITs. We excluded 11 
participants who either failed attention checks or had 
participated in a previous study. Most participants said they 
had no prior experience (64.86%) or only slight prior 
experience (28.65%) with SNA. 
 
Scenario and Materials. Participants were provided the 
same set of 36 graphs from Study 1 and were asked to make 

likelihood judgments about the POI in each graph.  
 

Conditions. The same three graph conditions from Study 1 
were manipulated within-subjects. We also introduced 
different scenarios as a between-subjects manipulation for 
the source of the graph data. Participants were randomly 
assigned to one of three data scenarios: drug use, political 
opinion, and infectious disease (Table 2). 
 

Table 2: Description of data scenarios. 
 

Scenario Brief Description 
Drug In a community in which some percentage of 

people are known users, how likely will the 
POI become a drug user in the next six 
months? 

Opinion In a community in which some percentage of 
people are known proponents of a new 
proposal, how likely will the POI become a 
proponent in the next six months? 

Disease In a community in which some percentage of 
people are infected with a new disease 
transmitted through social contact, how likely 
will the POI become infected in the next six 
months?  

 
Strategy Use. In contrast to Study 1, in which participants 
described their analysis strategy in an open-text form, 
participants in Study 2 rated the strategies from Study 1 
(ratio, base rate, and proximity) as well as distractors (e.g., 
central or peripheral location of POI, presence of a cluster of 
nodes) as to how important they were to their likelihood 
judgment. Ratings were on a scale of 1 (Not at all 
important) to 5 (Extremely important). The list order of 
strategies was randomized at each presentation.  

Results and Discussion 
Likelihood Judgments. We used the same model from 
Study 1 but added scenario to the model as a fixed effect. 
There was a significant main effect of scenario on likelihood 
judgments (χ2(2)= 26.40, p < .001); specifically, participants 
in the disease condition gave higher likelihood ratings on 
average than participants in the drugs or opinion conditions 
(b = 0.58, t(182) = 4.65, p < .001 and b = 0.63, t(182) = 
4.71, p < .001 for disease vs. drugs and disease vs. opinion, 
respectively). As in Study 1, there were also main effects of 
base rate (χ2(1)= 288.97, p < .001), proximity (χ2(1)= 
291.26, p < .001), and ratio (χ2(2)= 671.77, p < .001). As 
depicted in Figure 4, higher base rates led to higher 
likelihood ratings (b = 1.21, t(6471) = 24.06, p < .001), 
higher ratios led to higher ratings (b = 0.62, t(6471) = 8.92, 
p < .001 for 1/N vs. 0/N, and b = 2.16, t(6471) = 31.39, p < 
.001 for Half/N vs. 1/N), and closer proximities also led to 
higher ratings (b = 0.99, t(6471) = 25.00, p < .001).  

We again found two-way interactions between base rate 
and proximity (χ2(1)= 645.45, p < .001), base rate and ratio 
(χ2(2) = 424.43, p < .001), and proximity and ratio (χ2(2) = 
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501.50, p < .001). Consistent with Study 1, increasing the 
base rate only mattered when proximity was high (b = 1.36, 
t(6466) = 28.31, p < .001); increasing the base rate had 
stronger effects when ratios were 0/N or 1/N compared to 
Half/N (b = 1.28, t(6466) = 21.70, p < .001 for 0/N vs. 
Half/N, and b = 0.79, t(6466) = 13.43 for 1/N vs. Half/N); 
and closer proximity also had stronger effects when ratios 
were 0/N or 1/N (b = 1.30, t(6466) = 22.16, p < .001 for 0/N 
vs. Half/N, and b = 0.36, t(6466) = 6.19, p < .001 for 1/N 
vs. Half/N). In other words, when the ratio of users in the 
POI’s connections was very high (Half/N), other graph 
features had less influence on judgments.  
 

 

 
 

Figure 4: Main effects of data scenario and graph features.  
 

As depicted in Figure 4, main effects of graph features 
were found for each scenario we tested. The main 
interaction we were interested in was between scenario and 
base rate, since we expected that base rates would be 
utilized more when the scenario described more contagious 
activities, such as the spread of disease. There was not a 
significant interaction between scenario and base rate, 
although significant interactions did emerge between 
scenario and the proximity and ratio graph features (χ2(2) = 
6.31, p = .04 and χ2(4) = 40.21, p < .001, respectively). 
However, Figure 4 suggests that differences were small and, 
overall, graph features affected judgments in a consistent 
way across scenarios. 
 
Strategy Use. Consistent with Study 1, participants’ ratings 
of strategy importance reflected a tendency to rely on the 
ratio strategy more than other strategies. A multilevel model 
with strategy treated as a random effect and nested within 
participant revealed that participants rated proximity and 
ratio information as more important to their judgment than 
base rate information (b = 0.24, t(368) = 3.43, p < .001 and 
b = 0.78, t(368) = 11.32, p < .001, respectively). Participants 

rated ratio information as more important than proximity 
information, b = 0.54, t(368) = 7.89, p < .001.  
 
Decision Tree. Given the multiple interactions between 
graph features, we modeled the influence of graph features 
on likelihood judgments with a decision tree using the rpart 
package in R. Human judgment is often based on ‘fast and 
frugal’ heuristics (Gigerenzer, & Goldstein, 1996), which 
can be modeled by decision trees. Decision trees identify a 
series of binary decisions to maximize prediction accuracy 
of an outcome variable.  

The model in Figure 5 shows the decision tree for the 
Study 2 data. The first decision point splits the data based 
on ratio. If the ratio was high (many salient nodes in the 
POI’s direct connections), the model estimated that the 
likelihood rating was high (5.8), and no other variables were 
considered (far right side of Figure 5).  

 

 
 

Figure 5: Decision tree predicting likelihood of 
investigating the POI. n represents number of judgments 

collected from participants. 
 

The left side of the first decision point indicates that when 
there were zero or one salient node(s) in the POI’s direct 
connections, the model next split the data based on the base 
rate. If the base rate was low (left side of Figure 5), the 
model then made another split based on ratio, and proximity 
was not used. If the base rate was high, the model then used 
proximity. If proximity was far, the model used ratio 
information again to make the final classification.  

General Discussion 
In this research we identified three graph features that 

influenced judgments about a specific person of interest 
(POI) in a social network graph: 1) number of salient nodes 
within the POI’s direct connections, 2) base rate of salient 
nodes in the graph, and 3) proximity of salient nodes to the 
POI. Across two experiments, we demonstrated the 
influence of these features on probabilistic graph-based 
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judgments by manipulating their presence in a series of 
graphs. Additionally, through our analysis of participants’ 
self-reported strategies and strategy importance ratings, we 
demonstrated that participants consciously use these graph 
features in their judgments. Participants reported primarily 
using the ratio strategy to make their judgments, followed 
by the proximity and base rate strategies. No matter which 
data scenario was used (e.g., drug use, disease, public 
opinion), base rate, proximity, and ratio manipulations 
influenced judgments in similar ways, with only slight 
differences across scenarios. 

Strategy Use 
Participants consistently used the ratio strategy to make 

likelihood judgments. The three-level manipulation of this 
variable (0/N, 1/N, Half/N) was the strongest determinant of 
likelihood judgments and the ratio strategy was the most 
frequently self-reported strategy. Furthermore, a decision 
tree analysis suggests that when the number of connections 
was high, participants made ‘fast and frugal’ decisions 
without using the other strategies. 

In other cases, participants made use of base rate and 
layout proximity. The decision tree analysis suggests that 
each of these graph features was considered by participants 
when making likelihood judgments, and manipulating each 
of these variables led to significant main effects on 
judgments. However, the relative importance of these two 
strategies is less clear. Participants were more likely to 
mention using the proximity strategy than the base rate 
strategy in Study 1, and in Study 2 participants rated the 
proximity strategy as more important than the base rate 
strategy. Yet the decision tree analysis revealed that base 
rate was a decision point before proximity was considered, 
suggesting that base rate may be more important than 
proximity to participants’ judgments. These results suggest 
that there may be a disconnect between participants’ self-
reported strategies and the strategies revealed by their actual 
judgments. One interpretation of this finding could be that 
participants were mistaken in how much they considered 
each graph feature. Future research could further explore the 
relative importance of these strategies by testing different 
response formats, scenarios, and graphs. 

Is Use of Proximity an Error? 
An important question about these results is whether the 

use of proximity should be considered a reasoning error. It 
is true that in force-directed layouts, which was the layout 
algorithm used to generate the graphs in these studies, 
layout distance does often have a relationship with graph 
distance. In other words, the physical distance between two 
nodes is somewhat related to the number of edges that 
separate those nodes. However, it could be misleading to 
rely only on layout proximity to make the kinds of 
judgments in these studies for two reasons. First, the extent 
to which proximity provides meaningful information about 
the relationship between two nodes depends critically on the 
layout algorithm used for graph construction. Second, in 

many cases, users viewing a graph will not have knowledge 
of the algorithm used to construct the graph (as was the case 
in this study), leaving the meaningfulness of proximity 
unclear. Thus, although use of spatial proximity as a factor 
in judgment is not necessarily wrong in itself, overuse of 
this heuristic could lead to misinterpretation in some cases. 
Understanding how novice audiences interpret proximity 
could help inform the design of layouts and the use of 
graphs by analysts, particularly for graphs whose layout 
algorithms are independent of spatial distance. 

Future Directions 
The present studies were carried out with participants who 

lacked a background in SNA. Future studies plan to 
examine how novices and experts differ in their use of graph 
information. We also plan to further assess the validity of 
proximity information by testing different graph layouts and 
examining correlations between path and spatial distance.  
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Abstract 
People’s predictions for real-world events have been shown to 
be well-calibrated to the true environmental statistics (e.g. 
Griffiths and Tenenbaum 2006). Previous work, however, has 
focused on predictions for these events by aggregating across 
observers, making a single estimate for the total duration 
given a current duration. Here, we focus on assessing 
predictions for both the mean and form of distributions in the 
domain of illness duration prediction at the individual level. 
We assess understanding for both acute illnesses for which 
people might have experience, as well as chronic conditions 
for which people are less likely to have knowledge. Our data 
suggests that for common acute illnesses people can 
accurately estimate both the mean and form of the 
distribution. For less common acute illnesses and chronic 
illnesses, people have a tendency to overestimate the mean 
duration, but still accurately predict the distribution form.  

Keywords: Prediction; Judgment; Health; Cognition 

Introduction 
Imagine that you have the flu and need to decide whether 
you will be better in time to travel to a conference this 
weekend. You are now faced with predicting how long you 
will be sick. For this inference, you will need to use your 
knowledge of real-world statistics, including both the mean 
duration and most likely form of the duration distribution.  

People have been shown to make optimal predictions for 
the duration of many real-world events (Griffiths & 
Tenenbaum, 2006). In these domains, people’s beliefs about 
the underlying distribution of quantities (e.g. cake baking 
times are captured by a bimodal distribution) have been 
shown to be accurate in the aggregate. These findings have 
been extended to people’s ability to make predictions for 
illness duration (Robbins and Hemmer, in revision). People 
were able to make predictions that were consistent with both 
the mean and form of illness distributions for common acute 
illnesses (e.g. common cold and seasonal flu), but 
systematically overestimated the duration of chronic 
illnesses (illnesses with which they had significantly less 
experience). This suggests they had knowledge of the 
correct form of the underlying illness duration distributions. 

One limitation of the procedures used in previous 
experiments (e.g. Griffiths & Tenenbaum, 2006) is that each 
participant made only one prediction about a total duration 
given its current duration. As such, data was aggregated 
over participants to assess the fit of participant data to the 
true duration distributions. As Griffiths and Tenenbaum 
(2006) explain, this gives a guide to peoples’ implicit beliefs 
about the distributions. As such, these experiments do not 
allow for an assessment of whether people have knowledge 
of the correct form of the underlying illness distribution at 

the individual level. Accordingly, these studies could be 
illustrating the wisdom of the crowds effect, whereby 
aggregating over many individual judgments from a group 
of people leads to a response that is closer to the ground 
truth than that of a smaller group (Surowiecki, 2004).  

To our knowledge, no previous work has assessed the 
correspondence between people’s beliefs and the statistics 
of the environment—specifically illness statistics—at the 
individual level. Therefore, in the current study, we assessed 
whether people understood the true statistics for the 
durations of different illnesses by asking them directly what 
they thought the mean and correct form of illness duration 
distributions were. This allowed us to evaluate whether 
people have an internal model for real-world statistics that 
they can consciously access and use to make predictions.  

Understanding illness duration is critical for illness 
identification. For instance, imagine you have a cough and 
high fever, and thinking you have the flu you try to estimate 
how long you will be sick. One thing you will draw on is 
your understanding of the real-world distribution of 
durations for different illnesses. If your symptoms begin to 
fade after three days, this may confirm your suspicion that 
you have the flu, since this is within the normal distribution 
for the flu. However, if you are still sick after 10 days, you 
might begin to believe you have a different illness such as 
the common cold, because you know that 10 days is 
reasonable within the distribution of duration for the 
common cold. This estimation requires an understanding of 
the entire distribution of illness duration, rather than just the 
mean or some conditional duration. With only the mean of 
the distribution, you would not know how much variation in 
duration is normal, or at which point a particular illness is 
unlikely given the duration of your symptoms.  

Illness further provides an interesting example for 
prediction because people have different levels of 
experience for different illnesses—e.g. common illnesses 
such as the cold, or less common illnesses such as bacterial 
meningitis. Experience may also differ between acute (e.g. 
cold) and chronic (e.g. asthma) illnesses. An acute illness is 
defined as one which can be cured with treatment, while a 
chronic illness is defined as one that can be managed but not 
cured. Differing levels of experience between chronic and 
acute illnesses may influence the accuracy of a person’s 
prior beliefs, and different priors might be appropriate for 
different illnesses, given personal experience.  

The observer’s prior beliefs play an important role, as 
optimal predictions are assumed to follow Bayesian 
principles. Bayes rule gives a principled account of how 
people should update their prior beliefs given evidence from 
the world. Each time a person experiences an illness, they 
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should update their prior probability distributions for the 
duration of that illness. This would result in illnesses that 
are experienced more often having very accurate prior 
distributions. For illnesses that are less commonly 
experienced, people might adjust their prior beliefs to those 
of illnesses for which they have more knowledge of the 
correct form of the distribution, when making inferences. 
While people might use evidence from other sources when 
updating their priors, evidence that is personally 
experienced is better integrated than information acquired in 
other ways (Sallnas, Rassmus-Grohn, & Sjostrom, 2000).  

In this paper, we sought to assess whether the 
correspondence of people’s beliefs to Bayesian optimal 
predictions in the aggregate (e.g. Griffiths & Tenenbaum, 
2006; Robbins & Hemmer, in revision) extended to 
estimations for the mean and correct form of illness duration 
distributions at the individual level. We further sought to 
apply this approach to a domain with direct implications for 
real world problems—specifically patient health. In 
Experiment 1, we simply asked participants to predict the 
mean duration of each of nine illnesses.  

In Experiment 2, we sought to assess whether people 
could make estimations of the correct form of illness 
distributions. To do this, we gave participants four 
distribution options—each fit to the true clinical data for 
that illness—and asked them to select the distribution form 
that best described that illness. Because each of the 
distribution options was fit to the clinical data, consistent 
selection of the correct distribution would clearly illustrate 
that there is a correspondence between people’s internal 
model and the true statistics of the environment. This 
suggests that they have a cognitive representation of the 
form of the distribution of durations that they can 
consciously access.  

Experiment 1: Mean Estimation 
Methods 
Participants Ninety-Nine Mechanical-Turk workers from 
the United States participated in exchange for $1.  
Materials We selected nine illnesses—five acute and four 
chronic (see Table 1)—intended to span a range of durations 
and familiarity. Familiarity was determined based on 
prevalence statistics for the number of people diagnosed 
with that illness each year (see Table 1). Table 1 also 
includes the source of the clinical data used for the illness 
duration distributions. 

 We first needed to determine the mean and correct form 
of the nine illness distributions. Illness durations have been 
found to be well modeled by a type of distribution known as 
a survival function, which includes Gamma, Exponential, 
and Weibull. The Erlang distribution is a special case of the 
Gamma distribution, where 𝛼	must be an integer, which is 
often used to model illness duration and illness stages in 
transmission models of infectious disease, and to infer 
parameters from clinical data (Krylova & Earn, 2013). For 
this reason, we assume Erlang is the correct distribution for 
the nine illnesses. See Figure 1 for the clinical duration 

distributions for the nine illnesses used in this experiment, 
with corresponding Erlang distribution fits. The clinical data 
provides a ground truth for both the mean and form of 
distributions to compare to participant responses (see Table 
1 for clinical data sources).   
Procedure The procedure was identical to that of Griffiths 
and Tenenbaum (2006), with the important difference that 
we did not condition on the current unit of time. As a 
consequence of the units of time available in the 
experiment, there may have been an anchoring effect, which 
is when people are systematically influenced by starting 
points regardless of whether they are informative (e.g. 
Chapman & Johnson, 1999). By not providing the units of 
measure, we eliminate any possible anchoring effect. Our 
current procedure provides a truer picture of people’s ability 
to estimate the mean because they are not given a frame of 
reference. Participants simply made a prediction about the 
total duration of each of the nine illnesses. The question 
read: “Given that you meet someone with illness X, what do 
you think will be the total duration of their illness?” 
Participants responded by typing in a number and selecting 
a unit of time from a dropdown menu presented on the 
computer screen. The experiment was performed using the 
Qualtrics interface. The order of presentation was 
randomized.  

Participants were also asked to categorize each illness 

Table 1: Sources for Clinical Data (in order of prevalence) 
Illness  
(Prevalence/10,000) 

Source of Clinical Data 

Acute (in order of prevalence) 
Bacterial Meningitis (.14) Kilpi & Anttila (1991) 
Mononucleosis (5)  Cameron et al. (2006) 
Appendicitis (9) Singh et al. (2014) 
Seasonal Flu (1250) Kohno et al. (2010) 
Common Cold (2360) Gwaltney, J. (1967) 
Chronic (in order of prevalence) 
COPD (4.5) Shavelle (2009)  
Asthma (800) American Lung 

Association (2012) 
Type II Diabetes (860) http://www.cdc.gov/diabetes 

/statistics/duration/fig1.htm 
Chronic Heart Disease (1130) Proudfit et al. (1983) 

 

 
Figure 1: Histograms of clinical data for nine illnesses with 
best fitting Erlang distributions. Grey bars show the 
frequency of each illness duration, black lines show the 
Erlang fit to clinical data. µ gives the distribution mean.  
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using one of five labels: “Lasts a short time, will go away 
completely even without treatment”, “Can vary in length, 
requires immediate treatment, but can be cured”, “Is long 
term, requires treatment, but can eventually be cured”, 
“Lasts the rest of a person’s lifetime, treatment can only 
manage symptoms, it cannot be cured, but does not 
necessarily cause death”, “Varies in length, treatment can 
only manage symptoms, cannot be cured, eventually causes 
death”. Participants were also asked several basic 
demographic questions (e.g. age and experience with the 
nine illnesses) which are not analyzed here.  
Results 
Given that participants could respond with any unit of time, 
we first normalized participant responses to the unit of time 
for the clinical distributions. Responses were then filtered 
for outliers. Data was excluded in the following way: 
unreasonably large responses (defined as those 3 standard 
deviations greater than the mean response for a given 
illness) and participants who had more than two data points 
excluded based on the above criteria. The responses 
analyzed were 85 for appendicitis, 90 for the seasonal flu, 
90 for the common cold, 87 for bacterial meningitis, 77 for 
mononucleosis, 90 for COPD, 90 for chronic heart disease, 
90 for type II diabetes, and 90 for asthma. 
  First, we examined people’s ability to characterize the 
durations of acute and chronic illnesses. Chronic illnesses 
are lifelong, which is a critical difference from acute 
illnesses which are curable. To determine whether 
participants had basic knowledge of the illnesses they were 
making estimations about, we examined their responses to 
questions asking to characterize each illness. For the 
common acute illnesses—common cold and seasonal flu—
92% of participants correctly responded that the illnesses 
were short term and curable. For the less common acute 
illnesses—appendicitis and bacterial meningitis—81% and 
66% of participants respectively labeled these illnesses as 
short term.  For the four chronic illnesses 74%-84% of 
participants correctly responded that these illnesses were 
lifelong. This clearly shows that people understand the 
chronicity of the chronic and common acute illnesses. 
 We first evaluated the accuracy of participant’s mean 

responses (see Table 2). A qualitative evaluation of the data 
illustrates that participant responses were close to the true 
mean for more prevalent acute illnesses (i.e. common cold 
and seasonal flu), and that participants overestimated the 
duration of chronic illnesses, similar to the pattern found by 
Robbins & Hemmer (in revision).  

In order to evaluate whether participant responses were 
accurate relative to the true mean of the empirical illness 
distributions, we used a two one-sided t-test approach (e.g. 
Limentani et al., 2005). We used this approach as it allows 
us to test for practical equivalence (e.g. Rogers, Howard, & 
Vessey, 1993). A one-sample t-test might find a significant 
difference between a population mean of seven days and a 
participant response mean of eight days. While this 
difference is significant, it places too rigid a standard for our 
purposes, leading to an inaccurate conclusion that 
participants do not understand the mean of that illness. For 
this reason, we set a criterion considering accuracy to be 
within one standard deviation of the mean of the empirical 
illness distributions (standard deviations for each illness are 
displayed in Figure 2). We then conducted a t-test on either 
end of this threshold to determine if participant responses 
were significantly greater than the lower threshold, and 
significantly less than the upper threshold.  

We found that for mononucleosis and the common cold, 
Table 2:  True and estimated illness durations 
Illness True Duration Participant Response % using unit of time (correct unit is bolded) 
   Hours Days Weeks Months Years 
Acute        
Appendicitis 39 hours 471.6(SD=969.5) hours 8.4 32.6 39.0 12.6 7.4 
Seasonal Flu 3.9 days 8.9(SD=4.5) days 2.1 37.9 56.8 3.2 0 
Common Cold 5.1 days 6.3(SD=3.2) days 1 65.3 33.6 0 0 
Bacterial Meningitis 5.5 days 37.3(SD=44.0) days 2 10.5 45.3 36.8 5.3 
Mononucleosis 10 weeks 9.3(SD=13.0) weeks 1 9.5 35.8 32.6 21.1 
Chronic        
COPD* 6 years 36.6(SD=22.0) years 0 1 0 5.3 93.7 
Type II Diabetes 12 years 36.0(SD=22.5) years 0 1 0 5.3 93.7 
Chronic Heart Disease 13 years 26.4(SD=20.0) years 0 1 2.1 2.1 94.7 
Asthma 15 years 42.5(SD=25.7) years 4.2 1.1 0 2.1 92.6 
* COPD stands for Chronic Obstructive Pulmonary Disease   

 
 

 
Figure 2: Red bars show the percentage of participants that 
were X number of standard deviations from the mean. 
Positive numbers indicate estimations above the mean, and 
negative numbers indicate estimations below the mean. 
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responses were within the one standard deviation of the true 
mean—meaning the estimates were practically equivalent to 
the true mean (upper threshold: Mononucleosis: t(76)=-6.1 
p<.01, Common cold: t(89)=-6.9. p<.0; lower threshold: 
Mononucleosis: t(76)=5.1. p<.01, Common cold: 
t(89)=13.4. p<.01). For the other seven illnesses, responses 
were found to be greater than the lower end of the threshold, 
but not less than the higher end of the threshold, suggesting 
a pattern of overestimation, (Appendicitis: t(84)=4.3. p<.01, 
Seasonal flu: t(89)=13.0, p<.01, Bacterial meningitis: 
t(86)=7.1, p<.01, COPD: t(89)=14.9, p<.01, Type II 
diabetes: t(89)=20.4, p<.01, Chronic heart disease: 
t(89)=20.0. p<.01, Asthma: t(89)=13.2. p<.01). 

Given that participants were not within the one standard 
deviation threshold for seven illnesses, we wanted to further 
examine how misaligned they were for each illness. 
Therefore, we calculated the percentage of participants at 
each standard deviation from the mean (see Figure 2). For 
the common cold and mononucleosis, the majority of 
participants (approx. 80%) were within one standard 
deviation, as illustrated in the TOST. For the seasonal flu 
more than 70% of participants were within four standard 
deviations of the mean, which may seem like a large 
deviation from the correct response, however it is also 
important to note that the standard deviations varied greatly 
between illnesses. For the seasonal flu, the standard 
deviation was only 1.73 days, meaning that more than 70% 
of participants responded within 6.8 days of the true mean. 
Conversely, for the least prevalent acute illnesses, 
appendicitis and bacterial meningitis, only 34% and 38% of 
participants respectively were within four standard 
deviations of the true mean, with some participants being up 
to 80 standard deviations away (for appendicitis this 
corresponded to 1416 hours or 59 days). This illustrates that 
participants had lower agreement, and less accurate mean 
estimations for these illnesses.  

For the chronic conditions, fewer participants were within 
four standard deviations of the mean, with 31% for COPD, 
100% for type II diabetes, 61% for chronic heart disease, 
and 47% for asthma. Participant responses were all within 
four standard deviations of the mean for type II diabetes 
because the standard deviation is 24 years. 

We then examined whether the absence of a time anchor 
influenced the unit of time participants used to respond (see 
Table 2). For the acute illnesses, multiple units of time can 
be used to express the same value; i.e., a one week long 
illness can be characterized as seven days or one week. For 
seasonal flu and common cold, more than 80% of 
participants responded with either the clinical (days) or the 
adjacent and reasonable (weeks) unit of time. For 
mononucleosis, approximately 66% of participants used the 
clinical or adjacent unit of time. For the least prevalent acute 
illnesses—appendicitis and bacterial meningitis—
participants used the clinical or adjacent unit of time only 
40% and 55% of the time. For the four chronic illnesses, 
92% to 95% of participants chose the clinical unit of time. 
The results suggest that participants could reliably use the 

clinical unit of time when estimating durations of prevalent 
acute illnesses and chronic illnesses. 

Experiment 2:  Distribution Form Estimation 
Methods 
Participants Forty Mechanical-Turk workers from the 
United States participated in exchange for $2. The 
participants had not participated in Experiment 1.  
Materials The same nine illnesses from Experiment 1 were 
used. We selected four distributions as response options in 
the distributional form task: Erlang, Gaussian (a.k.a. 
Normal), Uniform, and Bimodal. These distributions were 
chosen as they can reasonably describe illness durations. 
The Erlang, which was always the correct answer, was 
chosen because illness distributions have been found to be 
well modeled by this distribution and provide a good fit for 
all the clinical distributions. Normal was chosen because the 
bell-curve is ubiquitous, and in some cases is very close to 
the Erlang distribution. This allows us to evaluate how well 
participants can discriminate very similar distributions.  
Bimodal was chosen because for chronic illnesses it might 
be reasonable to assume that there is one group of people 
who die immediately, and another group that lives with the 
illness for a longer time. Lastly, uniform was chosen 
because simple Bayesian prediction models assume a single 
uninformative (or uniform) prior (e.g. Gott, 1993). Selecting 
the uniform form of the distribution might suggest observers 
using a heuristic insensitive to prior beliefs. 

Distributions were presented to participants as histograms 
of the average total duration of an illness. For each illness, 
the presented histograms were created by producing the best 
fit to the true clinical data for that illness for each of the four 
distributions. In this way, participants’ choice of distribution 

 
 

Figure 3: Screenshot of experimental interface for sample 
question (seasonal flu). Distribution types, top left to bottom 
right, are: Uniform, Normal, Erlang, and Bimodal. 
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would be based solely on distribution form. The histograms 
were presented with descriptive captions. The captions for 
each distribution form were consistent for all illnesses. 
Captions described several critical points on the graph using 
frequencies out of 100 (see Figure 3). The descriptions for 
each distribution form were matched to illustrate the same 
number of points on the histogram. Four naïve raters 
evaluated the relationship between the descriptors and the 
histograms and in all cases found them to be well-matched 
and easily understood. The experiment was presented using 
the Qualtrics interface. 
Procedure Participants were first shown instructions on 
how to read graphs in our task. They then completed a 
training task, with two training sessions of four trials each. 
For each trial, participants were shown one histogram 
(illustrating one of the four distributions types used 
throughout this experiment) and asked to match it to one of 
four captions. The training trials were designed to illustrate 
duration without referencing illnesses. One set depicted the 
amount of time it takes for a person to turn into a zombie 
after being bitten, and the second set depicted the number of 
licks it takes to get to the center of a tootsie pop.  
 After the training task, participants were asked to choose 
the appropriate histogram from the four distribution options 
for each of the nine illnesses (presented one at a time) by 
selecting it with a radio button. Both question and choice 
order were randomized.  
 

Results 
Data were excluded if participants answered two or more 
questions incorrectly in each of the two four trial training-
sets. This removed two participants’ data from analysis.   
 First, we assessed the proportion of trials for which 
participants chose the clinical distribution (Erlang). 
Participants chose Erlang 42% of the time, which was 
significantly greater than chance (25%), based on a one-
sided Binomial test (p<.01). It was also chosen significantly 
more often than any of the other distributions: Normal 
X2(1,N=342)=11.8, p<.01, Uniform X2(1,N=342)=93.9, 
p<.01, and Bimodal X2(1,N=342)=48.0, p<.01.  
 While participants selected Erlang with the greatest 
frequency overall, we were further interested in how 
frequently they chose the correct response for each 
individual illness. We performed a one-sided Binomial test 
and found that for six of nine illnesses, participants 
performed better than chance (i.e. significantly more than 
25% of   participants chose the Erlang distribution): 
seasonal flu (53%, p<.01), common cold (50%, p<.01), 
bacterial meningitis (42%, p=.016), mononucleosis (42%, 
p=.016), COPD (45%, p<.01), type II diabetes (47%, 
p<.01). Participants did not select any of the other 
distributions at a level higher than chance.  See Figure 4 for 
the proportion of participants that chose each distribution 
option for the nine illnesses.  
 Lastly, we performed a chi squared test to determine 
whether participants selected the Erlang distribution 
significantly more often than the other distribution choices. 

Participants chose Erlang more often than Uniform for eight 
out of nine illnesses: seasonal flu X2(1,N=38)=18.0, p<.01, 
common cold X2(1,N=38)=19.0, p<.01), bacterial meningitis 
X2(1,N=38)=9.8, p<.01, mononucleosis X2(1,N=38)=17.0, 
p<.01, COPD X2(1,N=38)=13.3, p<.01, chronic heart 
disease X2(1,N=38)=7.9, p<.01, type II diabetes 
X2(1,N=38)=8.8, p<.01, and asthma X2(1,N=38)=4.7, p=.03.  
 Erlang was chosen significantly more than Bimodal for 
five of nine illnesses: seasonal flu X2(1,N=38)=9.7, p<.01, 
common cold X2(1,N=38)=4.5, p=.03, bacterial meningitis 
X2(1,N=38)=8.0, p<.01, COPD X2(1,N=38)=9.2, p<.01, and 
type II diabetes X2(1,N=38) =23.6, p<.01.  
 Participants chose Erlang significantly more than Normal 
for two out of nine illnesses: seasonal flu X2(1,N=38)=8.1, 
p<.01, and common cold X2(1,N=38)=8.4, p<.01. As shown 
above, Erlang was chosen significantly more often than any 
other distribution for both seasonal flu and common cold.  

General Discussion 
We evaluated people’s ability to estimate the mean and 
correct form of duration distributions at the individual level 
within the domain of health. Examining people’s 
representations of illness duration statistics is important, 
because it allows us to understand the correspondence 
between people’s beliefs and the statistics of the 
environment—in this case—illness statistics. In addition, 
these experiments shed light on people’s internal 
representations of real world statistics.  
 Our most interesting finding is that participants appeared 
to have knowledge of the correct form of the underlying 
illness distribution, choosing the assumed clinical 
distribution (Erlang) more frequently than any other 
distribution. When broken down by illness, they chose the 
clinical distribution more frequently for the most prevalent 
acute illnesses: seasonal flu and common cold.  
 While participants often inferred the form to be the 
normal distribution, this may be explained by the similarity 
of many of the normal fits to the Erlang fits. This occurred 
because the normal distributions were truncated by a lower 
duration bound of zero. We deliberately included the 
Normal distribution because of the potential confusability 
with the clinical distribution. As such, the fact that 
participants still chose the clinical distribution as the correct 
form overall, suggests they have strong beliefs about the 

Figure 4: Red bars show the percentage of participants that 
chose a distribution choice.  
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form of illness duration distributions and that these 
correspond to the environmental statistics. It is important to 
note that research has illustrated that people often fail at 
graphical interpretation (e.g. Gerteis et al., 2007), which 
makes participant performance in this task impressive.   

When examining participants’ estimates for the mean, we 
found that for more prevalent acute illnesses (i.e., common 
cold and seasonal flu), they were able to accurately estimate 
the mean duration. We also found a pattern of 
overestimation for chronic illnesses and less-prevalent acute 
illnesses which was similar to the pattern of overestimation 
found by Robbins and Hemmer (in revision).  

The pattern of overestimation for chronic illnesses might 
be explained by people applying a probabilistic model of 
life expectancy to their understanding of the distribution 
form for illness durations.  Because they have little 
experience with chronic illnesses, and they understand that 
chronic illnesses are life-long, their overestimation might be 
due to a strategy of applying parameters from the true 
distribution of lifespans (adjusted slightly to account for 
decreased life-expectancy with a chronic illness) to their 
knowledge that illnesses follow the form of an Erlang 
distribution. Their ability to select the appropriate 
distribution form for these illnesses suggests that they can 
use knowledge of the form of other illness distributions 
even if they do not have enough experience to set the 
parameters accurately. This overestimation might also be 
adaptive in terms of planning for the future. For chronic 
illnesses, it may be safer to assume a longer duration to plan 
sufficiently for the future, i.e., retirement savings. 
 A logical next step for this work would be to ask 
participants to independently generate distributions, rather 
than asking them to select from a limited number of options. 
Goldstein & Rothschild (2014) have shown that participants 
can generate these distributions when presented with data, 
which suggests that this method could be used to evaluate 
peoples’ internal representations of real-world statistics. 
 Our results illustrate that people hold accurate 
representations for both the form and mean of duration 
distributions of prevalent acute illnesses. Significantly, the 
most prevalent acute illnesses—the com mon cold and 
seasonal flu—are also the ones for which participants 
consistently demonstrate knowledge of the correct 
distribution form, and accurately predict the mean at the 
individual level. This suggests a prior belief that is better 
calibrated to the true environmental statistics for illnesses 
participants have experience with. Taken together, the data 
suggests that people have an internal representation of 
illness statistics that they can consciously access—
indicating that people can not only combine illness 
experiences with rational statistical updating, but also have 
accurate knowledge of these prior distributions.  
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Abstract

We present an experimental study investigating the role of
information-theoretic factors in determining patterns of redun-
dancy and focus in language and other communication sys-
tems. Pairs of participants played a simple communication
game using a non-linguistic visual medium to send messages
to each other. We manipulated noise, effort, and time pres-
sures and measured message length, redundancy, and accuracy.
Participants behaved as predicted based on an information-
theoretic model, with message length and redundancy varying
according to circumstance, but accuracy remaining constant.
Keywords: communication; focus; information theory; lan-
guage; redundancy; signaling game

Introduction
Questions invite answers. However, the invitation is not en-
tirely open: There are important constraints on the form that
an answer can take. Most obviously, it must be relevant
(Grice, 1975; Wilson & Sperber, 2004). In response to the
question of who invented the printing press, for instance, “My
sister loves cheesesteak” is not an acceptable answer unless
some double meaning is understood. Perhaps less obviously,
the length and syntactic completeness of an answer are also
constrained. Fragment answers—that is, answers that are not
whole sentences—are permitted and may even be preferred
in some circumstances. At the same time, prosodic and mor-
phosyntactic mechanisms (e.g., pitch fluctuations; cleft con-
structions such as “it was . . . who”) may be employed to add
redundancy to certain elements in the sentence. Patterns of
message length and redundancy should not be assumed to be
random. In this paper we present a set of communication
game experiments investigating how they vary according to
information-theoretic factors.

As an example of how such patterns vary in English, con-
sider the three answers to the printing press question that are
given in (1). While (1a) is an acceptable answer, (1b) and
(1c) are just as good, and would even be preferable in many
contexts.

(1) Who invented the printing press?
a. Gutenberg invented the printing press.
b. Gutenberg did.
c. Gutenberg.

As evidenced by the acceptability of (1a), fragment an-
swers are not obligatory. Indeed, whole-sentence answers

may help establish that the respondent heard and understood
the question correctly; in some cases they may also serve to
aid parsing of the what Schmitz (2008) calls the “critical” el-
ement (in this case Gutenberg). An answer like “The printing
press was invented by Gutenberg”, for instance, makes very
clear through syntactic and prosodic means when precisely
the listener should expect to get the answer. An utterance
that does contain such unnecessary material is constrained in
important ways; in particular, focus must be marked on the
critical element. This is realized in English and many other
languages by a pitch accent on that element (i.e., the element
is distinguished from other parts of the sentence through vari-
ation in pitch, length and intensity; for discussion of this well-
documented phenomenon, see Ladd, 1996; Rooth, 1992).
It is important to note that this focus is constrained by the
grammar of the language and is more or less obligatory—
distinguishing the wrong element, distinguishing the right el-
ement by the wrong means, or distinguishing no element at
all, is likely to be perceived as odd. Example (2) illustrates
this pattern, with small caps denoting pitch accent.

(2) Who invented the printing press?

a. 3 GUTENBERG invented the printing press.

b. 3 GUTENBERG did.

c. 7 Gutenberg invented the PRINTING PRESS

d. 7 GUTENBERG invented the PRINTING PRESS

e. 7 Gutenberg invented the printing press

It should be noted that similar patterns pertain even when no
explicit question has been asked. For example, a restaurant
worker who notices a patron wandering around might say to
them something like “Over there”, “They’re OVER THERE”,
or “The toilets are OVER THERE”, even if the patron does not
actually ask for directions.

Stevens (2016), following Schmitz (2008) and Bergen and
Goodman (2015), argues for a theory of focus based partly in
information theory (Shannon & Weaver, 1949), whereby fo-
cus and redundancy are presented as a solution to noise, the
random deletion/alteration of parts of a signal. Given that el-
ements in messages may be lost as a result of mishearings, at-
tention failures, and the like, focus is a means of emphasizing
those elements that the speaker considers most important to
transmit accurately. This can be seen as a process of adding
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redundancy to important parts of the linguistic signal, com-
pensating for the effects of noise. At the same time, depend-
ing on pressures of time and effort, non-focused elements (the
parts of the signal that are easily inferred from context) can
be reduced or even elided.

Stevens (2016) followed Rooth (1992) and many others in
arguing that the inferrabillity of semantic material from the
discourse context follows from the set of alternatives that
is evoked by that context. For example, “Who invented the
printing press?” evokes a set of possible answers {x invented
the printing press} which contains propositions like “Guten-
berg invented the printing press”, “Edison invented the print-
ing press”, etc. These alternatives all share overlapping se-
mantic material, namely “invented the printing press” which
is inferrable and thus less important in terms of information
transmission. The material in need of protection from noise,
in other words, is the material that does not overlap among all
contextually available alternatives. We will therefore refer to
redundancy on this material as non-overlapping redundancy,
and redundancy on inferrable material as overlapping redun-
dancy.

Predictions of an information-theoretic model
If patterns of focus and redundancy in language are indeed
a reflex of general information-theoretic concerns, then we
expect that analogs to it will arise in any communication sys-
tem that shares the goal of signaling the selection of one ob-
ject from among a set of alternatives. For such systems we
can thus make the following predictions. First, overall mes-
sage length should vary according to time and effort costs:
Messages should be longer if effort costs are low and time
is not pressing. This might seem trivial, but the key point is
that messages will not simply be minimally short in all cases.
Because redundancy can be useful, messages will in fact be
longer than they strictly need to be if time and effort con-
straints allow. Second, longer messages should differ from
shorter messages not only with respect to length, but also
with respect to the proportion of overlapping redundancy;
that is, overlapping redundancy is a greater luxury than non-
overlapping redundancy, and should be dispensed with more
readily. Third, the distribution of effort in a message should
take noise into account. In particular, non-overlapping redun-
dancy should be higher when noise is higher, both in an abso-
lute sense (more redundancy overall) and in a relative sense
(more non-overlapping redundancy than overlapping redun-
dancy). Fourth, unless noise and time pressures become so
great that they simply prevent accurate communication, we
should expect communicative accuracy to remain relatively
constant, regardless of the variation between messages pre-
dicted above. This is because that variation is (according to
this account) designed to help maintain accuracy under dif-
ferent conditions.

There is evidence from natural language that speakers are
sensitive to time and effort pressures. Corpus analysis sug-
gests, for instance, that syntactic reduction is used to optimize
information density (Jaeger, 2010), while work in experimen-

tal pragmatics demonstrates that referring expressions get
shorter over time as interlocutors establish common ground
(Krauss & Weinheimer, 1964; Clark, 1996).

In general, however, it is hard to fully test the information-
theoretic basis of focus using natural-language data alone.
There is more than one reason for this. A common diffi-
culty in testing predictions in natural language is that the rel-
evant explanatory factors are hard to manipulate (cf. Roberts,
in press). To a small extent this is true here: While it is
relatively straightforward to introduce noise and time pres-
sures, for example, it is harder to make the act of producing
natural-language utterances more effortful without imposing
awkward physical constraints on participants. However, this
is not the most serious obstacle in this case—in fact there is
a history of research in phonetics in which awkward physi-
cal constraints are put on participants (e.g., Lindblom, 1990).
The more serious problem is that, in established natural lan-
guages, there are constraints on such phenomena as pitch ac-
cent, focus, and utterance length that are encoded in the gram-
mar. This means that while the patterns of interest might have
arisen initially as a result of the information-theoretic factors
discussed, we should expect them to an important extent to
be “fossilized” as part of the language, incorporated into rel-
atively constrained grammatical constructions, and less sen-
sitive to contingent factors. Even if the information-theoretic
account is right, therefore, behavior in established languages
may be somewhat weak evidence for it; better evidence would
be furnished by observing the establishment of a novel com-
munication system. Furthermore, as stated above, we should
expect our claims and predictions to apply across commu-
nication systems, linguistic or otherwise. It would therefore
be advantageous for our purposes to test predictions in some
non-linguistic communicative medium. Fortunately, the last
decade or so has seen the development of a line of research in
which participants communicate in the lab using “laboratory
languages”—either artificial languages taught to the partic-
ipants, or novel communication systems developed collabo-
ratively over the course of the experiment (Galantucci, Gar-
rod, & Roberts, 2012; Roberts, in press). This approach al-
lows researchers to investigate principles of communicative
behavior while abstracting away as far as possible from the
established natural languages that the participants bring with
them into the lab. A common kind of study involves the use
of visual communication systems. For instance, Garrod, Fay,
Lee, Oberlander, and MacLeod (2007) had participants play
a Pictionary-like game, while Galantucci (2005) made par-
ticipants communicate by drawing on a pad that simulated
continuous vertical motion, preventing the use of most estab-
lished conventions. This kind of approach is particularly use-
ful for investigating the challenges involved in establishing
reference and constructing a new system from scratch. How-
ever, we were interested in the pressures acting on a system
in which reference is in principle relatively straightforward,
as is the case for a native speaker of a natural language, but
where there are no established grammatical conventions as
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in language. For this reason we had participants play a very
simple communication game in which they had to fill in cells
in a grid to convey a line that was drawn over the grid (Fig-
ure 1). Under ideal conditions, this task is rather trivial. We
made conditions less ideal by manipulating noise, time pres-
sure, and the effort required to produce a signal. We then
measured the redundancy in the signals that were produced
and the success rate in interpreting them.

Method
Participants
One hundred and twenty University of Pennsylvania under-
graduate students participated in pairs for course credit or $5.

Procedure
In each trial a pair of participants played a simple coopera-
tive signaling game. Each sat in a separate cubicle with a
computer; neither participant could see or hear the other. The
game consisted of a series of turns in each of which one player
was nominated as Sender and the other as Receiver; players
alternated roles, with the Sender in the first turn being se-
lected at random. At the start of a turn the Receiver saw a
white screen with the message “You are waiting on a mes-
sage transmission from the other player”. The Sender saw a
screen as in Figure 1. On the left were two 7×7 grids, over
each of which a different line figure was drawn. Every line
figure consisted of a continuous line drawn between the cen-
ter points of eleven contiguous grid cells. One of the two line
figures was selected in green, while the other was white.1

On the right of the screen was an empty 7×7 grid, slightly
larger than the other two. Beneath the two leftmost grids there
was also a button marked Send. The Sender’s task was to
communicate to the Receiver which of the two grids was se-
lected in green by clicking on cells in the rightmost grid. At
the moment of the Sender’s first click a timer would start.
Once the timer stopped (after either 5 or 30 seconds, depend-
ing on condition; see Section Experimental conditions) the
grids would disappear and be replaced by the message “You
are waiting on a guess from the other player.” Clicking the
Send button would have the same result. Once the Sender’s
turn had come to an end in one of those two ways, the Re-
ceiver’s screen would change to display the two line figures
that had been displayed to the Sender (in a random order, but
each in the same orientation as for the Sender) as well as a
third 7×7 grid in which certain cells might be colored black,
and a button marked OK (Figure 2). The black cells would
always be cells that the Sender had clicked; however, not all
cells that the Sender had clicked would necessarily be sent.
The means of deciding which cells would be sent depended
on the condition (Section Experimental conditions). The Re-
ceiver’s task was to select which of the two line figures they

1Given that the orientation of the two figures was never varied
and that the two line figures were never identical, it is important to
note that there was always at least one cell that would, on its own,
allow the two line figures to be distinguished.

thought the Sender was trying to communicate. Both players
were then told whether the Receiver chose correctly. Then
a new turn began. There were 48 turns in total, which were
preceded by two practice turns. In half the turns (the Overlap
turns) the two line figures overlapped by five squares (as in
Figures 1 and 2). In the other half (the Filler turns) there was
no such overlap, such that any cell through which a line figure
passed would serve to distinguish it from its competitor.

The only differences between the practice turns and the
other turns were that the players’ success in the practice turns
did not count toward their final score, and that, following the
practice turns, they were told to ask questions if they had
any. If players scored over 80% in the non-practice turns,
they were rewarded with $2 each.

Figure 1: Sender’s screen.

Figure 2: Receiver’s screen.

Experimental conditions
There were six between-subjects conditions in total (Table 1).
Conditions differed from each other with respect to the time
available to the sender (either 5 seconds or 30 seconds) and
with respect to the means with which the sender could ensure
that a message be sent. In the Effort conditions clicking a cell
a specific number of times would guarantee that it was sent
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Table 1: Experimental conditions

Time limit Effort Noise

30 seconds High effort High noise
30 seconds Low effort Low noise
5 seconds Low effort (5s) Low noise (5s)

to the Receiver. The Sender had to click fifteen times on each
cell in the High effort condition and five times in the Low ef-
fort conditions. Once a cell had been clicked the requisite
number of times, it turned black. In the Effort conditions, a
cell that turned black for the Sender was sure of being seen
by the Receiver, but a cell that had not been clicked enough
remained white and was sure not to be sent. The same was
not true in the Noise conditions. In these conditions, each
click on a cell would make it appear darker. Any cell that had
been clicked once had a chance of being sent. Clicking more
on the cell not only made the cell darker, but increased that
chance (and the darkness of the cell increased proportionally
to the probability that the cell would be sent). The probabil-
ity of a given cell being sent was calculated as 1− (1− d)n,
where d is a decay parameter between 0 and 1, and n equals
the number of times the Sender clicked on the cell in ques-
tion. Two values were used for the decay parameter. In the
High noise condition, it was set at 0.1. In the Low noise con-
ditions it was set at 0.4. This meant that it would take many
more clicks in the High noise condition than in the Low noise
conditions to feel confident that the cell would be sent. For
instance, 4 clicks in the latter condition would result in an
87% chance of the cell being sent, but a 34% chance in the
former. In all conditions the number of cells clicked on can be
taken to correspond roughly to utterance length, while in the
Noise conditions, cell darkness can be taken to be analogous
to greater effort in marking prominence.

The length of time available for the Sender to click on cells
was varied, being set at either 5 or 30 seconds. For the Low
effort and Low noise conditions, there was both a 5-second
condition and a 30-second condition. For the High effort and
High noise conditions, however, we ran only 30-second con-
ditions; this is because 5 seconds was not enough time for
participants to send more than one cell in the High effort con-
dition, or to have a good chance of doing so in the High noise
condition, meaning that the results would be rather trivial and
most of our measures could not be calculated.

Measures
We measured the following variables.

Message length. This was calculated by counting how
many squares had been clicked on (for Noise conditions) or
turned black (for Effort conditions). Since one cell would
be sufficient to distinguish between any two line figures
(assuming it arrived), any message consisting of more than

one cell can be considered to contain redundancy.

Click effort. This was calculated by counting the number of
clicks made by the Sender.

Overlapping redundancy. This was calculated by counting
how many cells the Sender clicked on (for Noise conditions)
or turned black (for Effort conditions) that overlapped with
both line figures, and would therefore not differentiate the
target figure from its competitor. (Note that this could be
measured only for the Overlap turns, and not the Filler turns.).

Accuracy. This was calculated by counting the number of
turns in which the Receiver chose the correct line figure.

Results
Data reported in the following sections come from Overlap
turns only, for the sake of consistency between the measures.
Unless otherwise stated, all models reported are mixed effects
linear regression models with random intercepts for both sub-
ject and item, using the Satterthwaite approximation of de-
grees of freedom to obtain a p-value from a t-value.

Variation in message length
We predicted that overall message length should vary accord-
ing to time and effort costs, with messages being longer than
strictly necessary if time and effort constraints allowed. This
was supported by the data. One cell would have been suffi-
cient in every condition to signal which line figure to choose;
however, messages were longer than this in every condition
(Figures 3 and 4). In all but the High noise and High ef-
fort conditions, message length also remained relatively con-
stant throughout a game, though it was lower in the Low
noise (5s) than in the Low noise condition (β =−4.83,SE =
0.75, t = −6.48, p < 0.001) and in the Low effort (5s) con-
dition than in the Low effort condition (β = −7.64,SE =
0.65, t =−11.83, p< 0.001), suggesting that the shorter mes-
sage lengths in the 5s conditions were due to time constraints.
In both the High noise condition and the High effort condi-
tion, message length began high and fell over the course of
the game in a rather linear fashion, converging in the High
effort condition with the Low effort (5s) condition. This sug-
gests that effort came to exercise increasing pressure as time
went on. It is likely also the case that it partly reflects par-
ticipants’ growing familiarity with the game, although if this
were the main explanation, one would expect a sharper fall by
the middle of the game rather than a linear decline. Message
length in the noise conditions did not quite converge (i.e., the
slope was less steep), likely because less effort was necessary
in this condition.

Message length and overlapping redundancy
We predicted that shorter messages should differ from longer
messages with respect to the proportion of overlapping redun-
dancy. This was confirmed. The proportion of clicks devoted
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Figure 3: Message length in effort conditions.
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Figure 4: Message length in noise conditions.

to overlapping redundancy (as opposed to non-overlapping
redundancy) correlated with click rate ; r = 0.29, p < 0.001),
but the correlation was stronger (r = 0.56) in the High ef-
fort and High noise conditions alone, where there was greater
pressure on participants (Figure 5).

Distribution of effort
We predicted that the distribution of effort would take noise
into account and that non-overlapping redundancy would be
higher when noise is higher, both in an absolute sense and rel-
ative to overlapping redundancy. This was confirmed by re-
sults. First, click effort was lowest in the Low noise (5s) con-
dition, but higher in the High noise condition than in the Low
noise condition (β = 58.57,SE = 7.56, t = 7.75, p < 0.001),
in both of which rounds lasted 30 seconds (Figure 6). Sec-
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Figure 5: Correlation between click effort and overlapping
redundancy (High effort and High noise conditions only).
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Figure 6: Click effort in noise conditions.
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Figure 7: Proportion of clicks on overlapping redundant cells
in Noise conditions.

ond, for the proportion of overlapping redundancy, there was
a significant interaction of turn and condition for the High
noise and Low noise conditions (β = 0.006,SE = 0.002, t =
3.07, p < 0.01): Although all the noise conditions began at
roughly the same place (Figure 7), the proportion of over-
lapping redundant cells clicked in the Low noise condition
remained relatively constant, but decreased on the High noise
condition. There is also a main effect of condition if the in-
teraction terms are excluded from the model (β = 0.11,SE =
0.04, t = 2.81, p < 0.01). The proportion of clicks on over-
lapping redundant cells was significantly lower in the Low
noise (5s) than in the High noise condition (β =−0.10,SE =
0.04, t =−2.44, p < 0.05).

Accuracy rates
We predicted that accuracy would remain similar between
conditions, regardless of differences in message length, click
effort, and redundancy. This was broadly true. Overall mean
accuracy was very high (97%), and did not differ signifi-
cantly between conditions, with one exception (Figure 8): It
was lower in the Low noise (5s) condition (β =−0.07,SE =
0.02, t =−2.81, p < 0.01). This likely represents an underes-
timation of noise by participants; this was the only condition
in which senders had little time to send a signal, but could not
be sure before sending it how much the receiver would see.

Discussion
We modeled the emergence of a system similar to linguis-
tic focus by having participants play a simple non-linguistic
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communication game, in which we manipulated noise, ef-
fort, and time pressures. We made four predictions consis-
tent with an information-theoretic account of focus: that mes-
sage length should vary according to time and effort costs,
that longer messages should differ primarily with respect to
redundant material that is shared with alternatives, that the
distribution of effort in the message should take noise into
account, and that accuracy should be stable in spite of vari-
ation in other measures. These predictions were confirmed.
The patterns we observed also resemble patterns in natu-
ral language. While message length varied considerably be-
tween conditions, accuracy was maintained, largely due to
distribution of effort being skewed toward protecting non-
overlapping material from noise. On the one hand this is con-
sistent with the natural-language examples given in the intro-
duction to this paper. On the other hand, it is also consistent
with findings from experimental pragmatics studies in which
participants repeatedly refer to a set of unfamiliar shapes; re-
ferring expressions are reliably shorter at later stages of such
interactions (Krauss & Weinheimer, 1964; Clark, 1996). This
is typically explained in terms of the establishment of com-
mon ground—participants develop a shared perspective on
the objects in question. On the surface, this does not obvi-
ously apply so well to our study, but the fundamental mech-
anism is the same. The point in both cases is that message
length varies as a result of time and effort pressures on the
one hand, and the sender (or speaker)’s confidence that the
message will be understood by the receiver, on the other.

Overall, our results lend support to the view that linguis-
tic focus may have emerged as a response to information-
theoretic pressures. We also consider that the experimental
approach we have taken may prove fruitful for future work.
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Abstract 
Intonation plays an integral role in comprehending spoken lan-
guage. It encodes post-lexical pragmatic functions such as sen-
tence modality and discourse contexts. The present experiment 
investigates how and when listeners integrate intonational in-
formation to anticipate reference resolution. While most work 
on the real-time processes of intonation-based intention recog-
nition has utilized eye tracking, the present study uses the 
mouse tracking paradigm, a valuable complementary method 
to investigate the time course of speech processing. Partici-
pants had to choose an interpretation based on pre-recorded in-
structions containing different intonation contours. Recordings 
of the x,y coordinates of participants’ computer mouse move-
ments reveal that listeners integrate intonational information 
rapidly as soon as they become available and anticipate poten-
tial referential interpretations early on.  

Keywords: intonation, reference resolution, mouse tracking 

Introduction 
During the perception of an unfolding speech signal, listeners 
use acoustic information to guide their interpretation of what 
a speaker intends to communicate. This process can take 
place long before disambiguating lexical information be-
comes available, allowing the listener to make rapid infer-
ences about what a speaker intends to say, even if these infer-
ences are based on partial information.  

Intonation plays an integral role in this interpretation pro-
cess. Among other things, intonation is commonly used to 
express discourse relations such as givenness and contras-
tiveness (e.g. Ladd 2008). Intonational acoustic events such 
as pitch accents have been shown to consistently encode the 
discourse status of referents. For example, in German or Eng-
lish, a high rising pitch accent generally signals new infor-
mation, while for example deaccentuation (i.e. the absence of 
a pitch accent) tends to signal given information (e.g. Fery & 
Kügler 2008, Cangemi et al. 2015 inter alia).  

While much work has been done on how intonational 
events encode discourse relations, there is only little work on 
how and when listeners integrate this acoustic information 
with the relevant discourse information.  

To fully understand intonation-based intention recognition, 
it is necessary to use experimental techniques that measure 
the real-time integration of intonational information to re-
solve temporally ambiguous interpretations. While eye track-
ing experiments have advanced our knowledge about these 
processes tremendously (e.g. Dahan et al. 2002, Weber et al. 
2006, Watson et al. 2006, Kurumada et al. 2014), it has been 
pointed out that the nature of oculomotor patterns constitutes 
a limitation of the eye-tracking paradigm (e.g. Spivey et al. 

2005, Dale et al. 2007). Eye-movement data is characterised 
by ballistic “jumps” of the eye. Only by averaging over many 
trials can a pseudo-continuous trajectory be calculated, which 
is then interpretable as evidence for a continuous comprehen-
sion process.  

This potential methodological shortcoming can be over-
come by measuring another form of movement behaviour: 
the movements of hands. Over the last decade, it has been 
demonstrated that continuous nonlinear trajectories recorded 
from the streaming of x,y coordinates of computer mouse 
movements can serve as an informative indicator of cognitive 
processes (e.g. Spivey et al. 2005, Magnuson 2005). Even 
though mouse tracking has been applied to diverse phenom-
ena in cognitive science, its usefulness for speech processing 
research has been somewhat neglected. This paper provides 
evidence that mouse tracking is suitable to unravel real-time 
dynamics of speech processing beyond lexical and phonemic 
processing (see also Tomlinson & Bott 2013 and Warren 
2017).  

Real Time Integration of Intonation 
Several studies have demonstrated that comprehenders can 
rapidly integrate intonational information to map an utterance 
containing referential expressions onto intended referents. 
These studies have focused on the discourse status of refer-
ents, i.e. whether an item has or has not already been men-
tioned or is explicitly contrasted to another referent. 

Dahan et al. (2002) utilised the visual world paradigm in 
which specific items and geometrical shapes were distributed 
in a grid. Upon hearing specific auditory instructions listeners 
had to move the objects above or below the shapes. In one of 
their experiments, subjects heard a trigger sentence such as 
“Put the candle below the triangle.” The object “candle” and 
the location “below the triangle” were thus introduced to the 
listener as given information. After the trigger sentence, lis-
teners heard the critical instruction, either referring to the 
given object (“candle”) or a lexical competitor which shares 
its word onset with the given object (here “candy”). When the 
target word was deaccented, listeners’ eye movements re-
vealed significantly more fixations to the already given object 
before the lexical disambiguation was available. Conversely, 
when the target word was accented, there were more fixations 
to the competitor.  

Weber et al. (2006) extended these findings by showing 
that the presence or absence of a contrastive pitch accent on 
a modifying adjective allows listeners’ anticipation of con-
trastivity of the noun (see also Watson et al. 2006).  
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Kurumada et al. (2014) examined the time course of the 
construction “It looks like an X” pronounced with either a 
high pitch accent on the final noun followed by a low bound-
ary tone (e.g. it looks like a ZEBRA), or a contrastive high 
rising pitch accent on the verb and a rising boundary tone, a 
contour that can support contrastive inference, (e.g. it 
LOOKS like a zebra (but it is not)). They found that listeners 
integrate the pitch accent information on the verb to antici-
pate the status of the target referent. 

These reported effects are consistent with the hypothesis 
that listeners integrate intonational information rapidly as 
soon as it becomes available and anticipate potential referen-
tial interpretations early on.  

The contributions of the present paper to this literature are 
twofold: On the one hand, we aim to replicate previous find-
ings showing that listeners take up intonational information 
rapidly to anticipate pragmatic interpretations using mouse 
tracking. On the other hand, we aim to proof that continuous 
response tracking can provide valuable insights into the real-
time comprehension of utterance-long speech signals. 

The Present Study 
The present study investigates intonation-based intention 
recognition in German using the mouse tracking paradigm. It 
is hypothesised that listeners integrate intonational infor-
mation to anticipate referential ambiguity early on and that 
this anticipation is reflected in the dynamics of their mouse 
trajectories during response selection. In line with standards 
of reproducible research, all materials (including audio and 
visual stimuli), scripts, and raw data are available here: 
https://osf.io/n79x3 

Methodology 
Participants had to choose visually presented response alter-
natives corresponding to pre-recorded speech files in a two-
alternative forced choice design. Stimuli differed with respect 
to the available discourse context and the intonationally en-
coded information status of referents, enabling us to investi-
gate the real-time integration of intonational information dur-
ing reference resolution. 
 

Experimental Set-up Participants were seated in front of a 
MacBook Pro 3.1 GHz Intel Core i7 with a display resolution 
of 1280x800. They controlled the experiment via a Logitech 
B100 corded USB Mouse. Cursor acceleration was made lin-
ear and cursor speed was slowed down using the Cur-
sorSense© application (version 1.32). 

 
Participants and Procedure Ten native speakers of German 
(five male, five female) with an average age of 30.3 years 
(SD = 4.9) participated in this experiment. All of them had 
normal or corrected-to-normal vision.  

Participants were told about two different fantasy creatures 
which were introduced as ‘wuggies’. These wuggies were 
displayed as having picked up certain real world objects such 
as a pear or a violin. The two wuggies differed in colour 

(“blau” ‘blue’ vs. “gelb” ‘yellow’) and there were 10 differ-
ent objects that the wuggies could pick up (bee, chicken, fork, 
marble, pants, pear, rose, saw, vase, violin). 

On each trial, participants were exposed to a question 
screen that either did or did not provide a specific discourse 
context, followed by a response screen in which participants 
had to choose visually presented response alternatives de-
pending on an auditorily presented sentence. 

On the question screen, participants either heard nothing or 
they heard a question such as (1): 

(1)  “Hat der gelbe Wuggy die Geige aufgesammelt?” 
‘Did the yellow wuggy pick up the violin?’ 

The question provided a discourse context with certain ele-
ments being activated as given for the participant (here: the 
yellow wuggy and the violin). The question screen was visi-
ble for 2500 ms. 

Following the question screen, participants saw two visu-
ally presented response alternatives, each depicting a wuggy 
carrying an object. After 1000 ms, a yellow circle appeared 
at the bottom centre of the screen. Participants were in-
structed to click on the yellow circle to initiate playback of 
an audio recording. The audio recording was a statement 
specifying which wuggy has picked up which object, e.g., 
“Der gelbe Wuggy hat die Geige aufgesammelt.” ‘The yellow 
wuggy has picked up the violin.’ Participants were instructed 
to move their mouse immediately upwards after clicking the 
initiation button and choose the respective response alterna-
tive as soon as they could.  

After each response selection, the screen was left blank for 
a 1000 ms inter-stimulus interval. 

Prior to the beginning of the experimental trials, partici-
pants were given 36 practice trials to familiarise themselves 
with the paradigm. 

 
Speech Material There were two sets of acoustic stimuli: 
questions providing a discourse context presented on the 
question screen and statements triggering participants’ re-
sponses on the response screen. There were twenty different 
questions for all possible combinations of wuggies and ob-
jects (two wuggies × ten objects).  

Likewise, there were twenty different statements, which 
were produced with four different intonation contours. Based 
on the question, i.e. the discourse context, and the visual 
scene at hand, statements differed with regard to the infor-
mation status of the relevant constituents of the sentence: The 
question in (1) (“Hat der gelbe Wuggy die Geige 
aufgesammelt?”) asks for confirmation that the proposition 
(including the identity of the subject and object) is true. Now 
consider the following answers (2-4): 

(2) Der gelbe Wuggy hat die Geige aufgesammelt.   
‘The yellow wuggy has collected the violin.’  

(3) Der gelbe Wuggy hat die Birne aufgesammelt.    
‘The yellow wuggy has collected the pear.’ 

(4) Der blaue Wuggy hat die Geige aufgesammelt.   
‘The blue wuggy has collected the violin.’ 
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Figure 1: Representative waveform and f0 contour for a 
statement produced with a rising accent on “Wuggy” and a 
falling accent on “Geige”, a typical contour for broad fo-
cus. Accented words are highlighted with grey boxes. 
 

 
 
Figure 2: Representative waveform and f0 contour for a 
statement produced with a rising accent on the auxiliary 
“hat”, typically used to indicate verum focus. The accented 
word is highlighted with a grey box. 
 

Dependent on the discourse context (here: whether there is 
question or not, and the question being asked), the answers in 
(2-4) are realised with different intonation contours (Fery & 
Kügler 2008, Cangemi et al. 2015). If there is no discourse 
context available, both the subject and the object are new in-
formation in (2) (often referred to as broad focus) which can 
be prosodically encoded by specific pitch accents on both 
constituents. A common contour in these cases is a rising ac-
cent on the subject, followed by a high stretch of f0 and a high 
or falling accent on the object (cf. Figure 1). 

Alternatively, if there is a relevant discourse context such 
as the question in (1), the utterance in (2) can prosodically 
emphasise that the proposition of the question is true. This 
can be indicated, for example, by verum focus, which mani-
fests itself here in the form of a high rising accent on the aux-
iliary (“hat”, cf. Figure 2).  

In contrast, the answers in (3) and (4) correct the proposi-
tion of the question. In (3), “Birne” is explicitly contrasted 
with “Geige”, typically expressed by an intonation contour 
with a high rising accent on “Birne” (cf. Figure 3). In (4), 
“blaue Wuggy” contrasts with “gelbe Wuggy” in the ques-
tion. In this context, a high rising accent on “blaue” and no 

 
 
Figure 3: Representative waveform and f0 contour for a 
statement produced with a rising accent on the referent 
“Birne”, typically used to indicate contrastive focus. The 
accented word is highlighted with a grey box. 
 

 
 
Figure 4: Representative waveform and f0 contour for a 
statement produced with a rising accent on the subject 
modifier “blaue”, typically used to indicate contrastive fo-
cus. The accented word is highlighted with a grey box. 

 
accent on “Geige” is typically found (cf. Figure 4).  

All acoustic stimuli were produced by a trained phonetician 
in a sound-attenuated booth at the Institute of Phonetics in 
Cologne with a headset microphone (AKG C420) using 48 
kHz/16 bit sampling. The average stimulus duration of the 
trigger sentences was 1993 ms.  

 
Visual Stimuli The pictures of the fantasy creatures were 
taken from a hand drawn set developed and used by van de 
Vijver & Baer-Henney (2014). The pictures of objects were 
taken from the BOSS corpus (Brodeur et al. 2010).  

Response alternatives of critical trials differed visually by 
the identity of the referent only (e.g. yellow wuggy carrying 
a pear vs. yellow wuggy carrying a violin). In addition to the 
critical trials, we included the same number of filler trials, in 
which response alternatives differed visually by the colour of 
the wuggy only (e.g. yellow wuggy carrying a pear vs. blue 
wuggy carrying a pear), or by both the colour of the wuggy 
and the identity of the object (e.g. yellow wuggy carrying a 
pear vs. blue wuggy carrying a violin). These visual contrasts 
were introduced to ensure that participants do not simply 
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learn to anticipate certain combinations of questions and vis-
ual contrasts, disregarding the acoustic information. 
 
Stimuli Presentation and Predictions There were four dif-
ferent experimental conditions: In the broad focus condition, 
participants did not receive a question and had to respond to 
a broad focus statement (cf. Figure 1). Since participants had 
no discourse context available, they had to rely on lexical in-
formation only. It is expected that the mouse movements dur-
ing reference resolution do not change until the lexical infor-
mation becomes available (the onset of “Geige” in example 
2). 

In the other three conditions, participants received a ques-
tion and were thus able to integrate the given discourse con-
text with the intonational information encoding the infor-
mation status of the referents. Participants saw a already men-
tioned, given object (here: “Geige”) and a new object (here: 
“Birne”). 

In the object focus condition, the pitch accent on the object 
indicates the contrastive nature of the object. The available 
pitch accent information becomes available simultaneously 
with the lexical information, i.e. the rise in pitch starts at the 
onset of the word (cf. Figure 3). Assuming that the pitch ac-
cent information primarily cues contrastivity, we do not ex-
pect listeners to anticipate the referent, i.e. the broad and ob-
ject condition should not differ. 

 In the verb focus condition, the pitch accent on the verb 
indicates verum focus, i.e. signalling that the proposition of 
the question is true implying that the statement contains the 
already mentioned object (here: “Geige”). As soon as the in-
tonational information on “hat” becomes available, listeners 
are expected to integrate this information, enabling reference 
resolution before the lexical information becomes available. 

In the subject focus condition, the pitch accent on the sub-
ject modifier indicates the contrastive nature of the subject. 
This information enables an early inference towards the given 
nature of the object which only occurs later in the utterance, 
making reference resolution possible very early on.  

Left/right placement of target vs. distractor response alter-
natives was counterbalanced within participants. 
 
Analysis The x, y screen coordinates of the computer mouse 
were sampled at 100 Hz using the mousetrap plugin (Kieslich 
& Henninger 2016) implemented in the open source experi-
mental software OpenSesame (Mathôt et al. 2012). Trajecto-
ries were processed with the package mousetrap (Kieslich et 
al. 2017) using the statistical software R (2016). 

There was a total of 80 target trials, for a grand total of 800 
trajectories across participants (200 per condition). Overall, 
4.36 % of trials with incorrect responses and 0.45 % of trials 
with initiation times greater than 500 ms were discarded. Ad-
ditionally, 1.67 % of trials were excluded due to movement 
behaviour that violated instructions (loops, reaching the top 
of the screen before response selection).  

For each of the remaining trials, we computed two meas-
urements based on time- and space-normalised trajectories: 
First, we collected overall reaction times (RT) measured from 

the initiation click up until reaching the target response. This 
serves as a latency baseline. Second, we measured the area 
under the curve (AUC) operationalised by the geometric area 
between the observed trajectory and an idealised straight-line 
trajectory drawn from the start and end points (Freeman & 
Ambady 2010). A greater AUC is indicative of greater re-
sponse competition between target and competitor during re-
sponse selection. 

We analysed data using hierarchical linear models using R 
and the package lme4 (Bates et al. 2015), afex (Singmann et 
al. 2016), and lmerTest (Kuznetsova, Brockhoff, & Christen-
sen 2016). Discourse condition (broad, object, verb, subject) 
was included as a fixed effect. Participants were specified as 
by-condition random slopes and referents were specified as 
random intercepts.  

Results and Discussion 
Inspection of time- and space-normalised horizontal trajecto-
ries over time (cf. Figure 5) suggests that trajectories were 
characterised by initially gravitating toward the midpoint be-
tween response alternatives (horizontal cursor position = 0) 
before eventually curving towards the target response (hori-
zontal cursor position = -1).  

Focus conditions elicited similarly-shaped trajectories that 
mainly differed with respect to their temporal characteristics. 
Not surprisingly, conditions differed in their overall response 
latency, measured from clicking the initiation circle to reach-
ing the target response area (χ2(3)=19.6, p=0.0002) with the 
broad condition being the overall slowest (β=1578 ms, 
SE=40.7) followed by the object condition (β=1457 ms, 
SE=49.5), the verb condition (β=1367 ms, SE=51.9), and the 
subject condition (β=1121 ms, SE=93.8) (cf. Figure 6, Table 
1). Pairwise comparisons reveal significant differences be-
tween all four conditions. The earlier the relevant intonational 
cue in the acoustic signal, the faster listeners selected a re-
sponse. Moreover, the difference between broad condition 
and object condition suggests that the integration of discourse 
context and intonation facilitated reference resolution (ob-
ject) in contrast to cases without available discourse context 
(broad).  

These overall response latencies were neatly reflected in 
early moments of direction change: The broad condition 
started curving towards the target response around 300 ms 
after lexical disambiguation (dashed line in Figure 5). This 
time-lag can be interpreted as the time it takes for listeners’ 
movements to be affected by the relevant acoustic cue of the 
lexical item.  

The subject condition elicited response trajectories that de-
viated towards the target response very early in the signal, 
after having heard the contrastive pitch accent on the subject 
modifier. As opposed to that, the verb condition started curv-
ing towards the target shortly after the acoustic onset of the 
referent suggesting that integrating intonational information 
of the verum focus led to an immediate anticipation of the 
target referent before lexical disambiguation has taken place. 
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Figure 5: Horizontal cursor position of mouse trajectories 
plotted over time for broad, object, verb, and subject con-
dition. Dashed line indicates the averaged acoustic onset of 
the critical lexical item. 
 

 
Figure 6: Violin plots of overall response latency (RT) of 
response selection. 
 

 
Figure 7: Violin plots of area under the curve (AUC) val-
ues of response selection. 

 
Crucially, the object condition started its curvature towards 

the target less than 200 ms after the point of lexical disam-
biguation. Taking the time lag of the broad condition into ac-
count, it becomes clear that even the object condition elicited 
trajectories that started curving towards the target response 
before lexical disambiguation had taken place. Listeners’ an-
ticipation in the object conditions seems puzzling. Both the 
lexical cue (onset of disambiguating phones) and the intona-
tional cue (onset of the rising pitch movement) become avail-
able in the signal at the same time, i.e. the onset of the refer-
ential expression. The question arises as to how listeners an-
ticipate the referent in the object condition. We propose two 

possible answers to this question: On the one hand, linguistic 
functions are expressed by multiple acoustic cues distributed 
throughout the signal. Listeners might have picked up acous-
tic evidence indicating the contrastive nature of the referent 
before the pitch accent information had become available. On 
the other hand, within the microcosms of the experiment, lis-
teners might have been able to anticipate the referent based 
on the absence of contradicting information. In other words, 
listeners did not hear a pitch accent on either the subject mod-
ifier nor the auxiliary, leading them to the conclusion that the 
object must be contrastive.  

Overall, the observed patterns suggest that the integration 
of intonational information and discourse context facilitated 
reference resolution due to successful anticipation. 
 

Table 1: Descriptive and inferential summary statistics 
for RT and AUC for each focus condition. 

 

 
 
Beyond these temporal operationalisations, results for area 
under the curve measurements (AUC) indicated that condi-
tions differed in overall attraction of trajectories towards the 
competitor (χ2(3)=12.4, p=0.006) with the object condition 
exhibiting the greatest AUC (β=0.4, SE=0.02), followed by 
the broad condition (β=0.39, SE=0.02), the verb condition 
(β=0.37, SE=0.02), and the subject condition (β=0.31, 
SE=0.03) (cf. Figure 7, Table 1). Not surprisingly, the earlier 
the relevant intonational cue in the acoustic signal, the less 
curvature towards the competitor was found. Importantly, al-
beit highly correlated, AUC and RT were not a direct mirror 
image of each other. While the broad condition is clearly the 
slowest, it was not the condition with the greatest AUC indi-
cating that these measures reflect two different aspects of the 
response selection process: Overall latency and response 
competition.  

General discussion 
The present study investigated intonation-based intention 
recognition in German using the mouse tracking paradigm. 
Listeners were exposed to different discourse contexts and 
different intonational patterns encoding the discourse status 
of referents. Analyses of continuous computer mouse 
movements during response selection suggest that listeners 
integrated intonational information rapidly as soon as it 
became available and anticipated potential referential 
interpretations early on. These insights are not new, of 
course. The present study merely replicates well-known 
results from studying oculomotor patterns with eye tracking 
(e.g. Dahan et al. 2002, Weber et al. 2006, Watson et al. 
2006, Kurumada et al. 2014). Using the mouse tracking 
method, we showed that when listeners received discourse 
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relevant intonational information, their hand motions began 
to curve towards the target response before lexical 
disambiguation had taken place.  

While the literature has mainly looked at intonational pro-
cessing of rather clear mappings of intonational form and 
pragmatic interpretation, i.e. the presence vs. absence of a 
prominent pitch accent indicating contrastiveness, it remains 
to be seen, how these results generalise to scenarios in which 
listeners are exposed to more variable intonational infor-
mation. Intonational categories have been shown to be char-
acterised by a tremendous amount of variability (e.g. Grice et 
al., in press, inter alia), exhibiting no one-to-one mapping of 
form and function. Future research will need to answer the 
question as to how listeners accommodate to this degree of 
uncertainty in intonation-based intention recognition. The 
present study serves as a proof of concept that such questions 
can be conveniently studied using the mouse tracking para-
digm (see also Tomlinson & Bott 2013, and Warren 2017). 
We hope that our results spark more interest for this low-cost 
and pragmatically flexible experimental paradigm for re-
search on speech perception within domains that go beyond 
phonemic and lexical processing. Mouse tracking proofs to 
be a fertile method to unravel the real-time dynamics of 
speech processing such as intonation-based intention recog-
nition. 
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Abstract 
People use analogies for many cognitive purposes such as 
building mental models, making inspired guesses, and 
extracting relational structure. Here we examine whether and 
how analogies may have more direct influence on knowledge: 
Do people treat analogies as probabilistically true 
explanations for uncertain propositions?  

We report an experiment that explores how a suggested 
analogy can influence people’s confidence in inferences. 
Participants made predictions while simultaneously 
evaluating a suggested analogy and observed evidence. In two 
conditions, the evidence is either consistent with or in conflict 
with propositions based on the suggested analogy. We 
analyze the responses statistically and in a psychologically 
plausible Bayesian network model. We find that analogies are 
used for more than just generating candidate inferences. They 
act as probabilistic truths that affect the integration of 
evidence and confidence in both the target and source 
domains. People readily treat analogies not as a one-way 
projection from source to target, but as a mutually informative 
connection. 

Keywords: Analogy, Bayesian Network, Computation, 
Confidence, Explanation, Inference, Reasoning 

Introduction 
A teacher proposes to her class that atmospheric carbon 
concentration is like the water level in a bathtub (Kunzig, 
2009). This science classroom analogy suggests many 
possible inferences about the atmosphere (and maybe 
bathtubs) that students can test by collecting evidence. 
Perhaps the atmospheric carbon level rises or falls based on 
the difference between carbon “faucet” and “drain” rates. Or 
maybe once carbon levels hit the upper limit, carbon dioxide 
will spill over into outer space. These new inferences might 
be true, or not. But what about the analogy itself? Is it the 
sort of thing that can be true or false? Does it depend on the 
inference? If it can be true, what kind of evidence would 
support it? 
Analogy is used in a wide range of uncertain contexts such 
as contentious negotiation (Loewenstein et al., 1999), 
ambiguous accounting determinations (Magro & Nutter, 
2012), scientific discovery (Gentner, 2002; Hesse, 1966), 
thinking about astronomical distances (Resnick et al., 2012), 
and war declaration decisions (Khong, 1992). We use 
analogies when knowledge is scarce. But does analogy act 
like other explanations? Can we combine analogy with 
observed evidence? Like explanations, do we believe in 
them more when they successfully predict or explain our 
observations? Currently there is no account for how we 

integrate analogy and observed evidence when grappling to 
understand uncertain situations. Even more, there is no 
psychological account that explicitly affords epistemic value 
to analogy.  

In this paper we examine and affirm the hypothesis that 
people treat analogies as probabilistic truths. Analogies can 
be treated as true or false, and people integrate analogies 
with evidence much like they do for causal explanations. 

Candidate Inferences Hypothesis 
Analogy is often called “the weakest form of evidence.”  
Indeed, one account is that an analogy does not provide any 
evidence at all to favor its suggested candidate inferences 
since the act of constructing an analogy does not involve 
collecting new observations. Proponents of this account 
suggest that an analogy might render propositions more 
plausible, but not more probable (Bartha, 2010). Popular 
theories of analogical inference (Doumas et al., 2008; 
Gentner, 1989; Hummel & Holyoak, 1997; Lu et al., 2012) 
largely invoke this candidate inferences account:1  

Analogical reasoning in uncertain contexts begins with a 
well-described source domain and a target domain that 
requires an inference. A speculative analogy is made from 
the source to the target, which establishes a structural map 
between the two situations. With some luck, the source 
domain might contain useful correspondences to unknown 
elements of the target, producing candidate inferences that 
can only be validated by observed evidence in the target 
domain. 

Some computational models treat analogy as a weighted 
score (e.g., ACME, SME), but this score is typically taken 
to reflect coherence (Holyoak & Thagard, 1989; Thagard, 
1989) or structural consistency (Gentner, 1983) and has not 
been extended to estimate the truth or rationality of the 
analogy. The correspondence identified by the analogy is 
not something that could be true or false. Rather, it is 
considered an artifact of our thinking about possible target 
inferences that should only guide our pursuit of evidence.  

                                                             
1 Our description generalizes across typical candidate inferences 
approaches (Falkenhainer, 1990; Gentner & Colhoun, 2010; 
Gentner & Markman, 1997) and other related approaches such as 
copy with substitution & generation (Holyoak & Hummel, 2000; 
Lee & Holyoak, 2008). For our purposes, the distinctions matter 
less than the commonalities. 
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Analogy as Evidence Hypothesis 
In this paper, we explore a stronger account of analogy with 
an expanded epistemic role. On this account, analogies not 
only introduce plausible inferences; they create a 
probabilistic connection between source and target that 
establishes and conveys inferential confidence.  
The basic intuition is suggested by Peirce's notion of 
abduction (1935) and Harman’s notion of inference to the 
best explanation (1965). Inference to the best suggests that 
people have confidence in the explanations that make their 
observations the least surprising. When an analogy suggests 
an inference in the target domain, observed evidence for that 
inference should increase the likelihood of the analogy itself 
when the analogy is taken as an explanation for the target 
inference. Conversely, if the target inference turns out to be 
false, the analogy becomes suspect. Our account builds on 
this insight to propose that people treat analogies and source 
knowledge as raising the conditional probability of target 
inferences.  

Some readers may find it easy to consider that analogies act 
as a kind of theory whose truth can be supported or refuted 
by evidence. Indeed, some philosophical investigations have 
proposed statistical bases for analogical rationality (Harrod, 
1956; Mill, 1882), and a recent study has found that people 
are sensitive to these rational statistics (Rogers & Landy, 
2016). But this epistemological view of analogy has not 
been dominant in the literature. Still, we are only interested 
here in the psychological question of whether people treat 
analogies as a probabilistic truth, rather than the normative 
question of whether they ought to. 

Approach 
We conducted an experiment that asked participants to rate 
their confidence in competing explanations in two domains 
that may or may not be related. We provided observed 
evidence in one domain whose coherence with competing 
explanations was manipulated across subjects. A statistical 
analysis estimates primary effects to determine whether 
observed evidence influences reported confidence in the 
analogy. A Bayesian network model was used to compare 
responses with a psychologically plausible instantiation of 
analogy that integrates with observed evidence.  

Experiment 
Participants were presented a fictional narrative situation 
describing two novel scientific phenomena, including 
simple visual representations.2 Mutually exclusive 

                                                             
2 The current stimulus was designed with a near analogy rather 
than a distant analogy. We expected the homological nature of 
mammalian brains to make the analogy prima facie plausible. The 
rat brain to human brain analogy is often used in experimental 
study, although here we reverse source and target. Other stimuli 
(discussed later) have produced consistent, but less pronounced 
effects for analogies across more distant domains. 

explanations are provided for the phenomena. A suggested 
correspondence between the phenomena is described as 
leading scientists to develop an explanation and experiment. 
After receiving the stimulus and a test condition statement, 
participants rate their confidence in each of the explanations 
and the analogy. 

For	  20	  years,	  biological	   scientists	  have	   fought	  over	   the	   relation	  
between	   FCS,	   exachrome,	   and	   nuwen	   in	   the	   human	  
hippocampus.	   Some	   scientists	   believe	   that	   exachrome	   is	  
produced	   in	   cell	   nuclei,	   and	   that	   exachrome	   drives	   up	  
production	  of	  FCS.	  They	  think	  that	  nuwen	  doesn't	  matter	  for	  FCS	  
production.	   The	   more	   exachrome,	   the	   more	   FCS.	   Other	  
scientists	  argue	  that	  it	  is	  nuwen	  produced	  in	  the	  cell	  nuclei	  that	  
drives	   production	   of	   FCS,	   and	   that	   exachrome	   is	   an	   irrelevant	  
byproduct.	  Both	  of	   these	  production	  pathways	   (the	  exachrome	  
pathway	   and	   the	   nuwen	   pathway)	   are	   chemically	   plausible;	  
which	  is	  correct	  is	  a	  matter	  of	  current	  debate.	  It	  is	  quite	  unlikely	  
that	   both	   are	   correct.	   The	   following	   image	   summarizes	   the	  
debate:	  	  

	  

Rat	   hippocampi	   are	   much	   less	   well	   understood	   than	   human	  
hippocampi.	   Rat	   hippocampi	   do	   exhibit	   FCS,	   but	   they	   do	   not	  
contain	  exachrome	  or	  nuwen.	  Recently,	  one	  scientist	   (who	  was	  
not	   attached	   to	   either	   of	   the	   other	   groups	  mentioned	   before)	  
has	   suggested	   that	   FCS	   might	   be	   produced	   in	   rats	   in	   a	   way	  
similar	   to	   that	   of	   humans.	   She	   identified	   two	   chemicals-‐-‐called	  
endochrome	   and	   oowen-‐-‐that	   are	   similar	   to	   exachrome	   and	  
nuwen,	  and	  that	  are	  produced	  in	  the	  rat	  hippocampus.	  	  

In	   other	   non-‐biological	   contexts,	   nuwen	   is	   sometimes	   used	   to	  
predict	  properties	  of	  oowen,	  and	  exachrome	  is	  sometimes	  used	  
to	   predict	   properties	   of	   endochrome.	   The	   following	   image	  
summarizes	  the	  possibilities	  suggested	  by	  this	  scientist:	  	  

	  

Recently,	   on	   the	   basis	   of	   the	   suggested	   links	   between	  
exachrome	  and	  FCS	  in	  humans,	  and	  between	  human	  and	  rat	  FCS	  
production,	   the	   scientist	   and	   her	   colleagues	   tested	   a	   novel	  
hypothesis	  using	  rat	  hippocampi.	  The	  scientists	  injected	  the	  rats	  
with	  a	  hormone	  that	  stimulates	  the	  production	  of	  endochrome.	  
Several	   days	   later,	   they	   examined	   the	   level	   of	   FCS	   in	   the	   rat	  
brain,	  predicting	  that	  it	  would	  show	  an	  increase.	  

Figure 1. Stimulus narrative presented to all participants 
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Participants  
We recruited N=300 adults living in the US from Amazon’s 
Mechanical Turk where participants can volunteer to 
complete short studies and other tasks in return for 35 cents.  

Design 
Each participant was presented the same narrative (Fig. 1). 
Additionally, they were presented a single statement 
regarding the outcome of the scientific experiment 
implemented on the rat brain. This statement varied between 
subjects for three balanced conditions: 
•   As	  it	  turned	  out,	  increasing	  endochrome	  led	  to	  a	  large	  increase	  
in	  the	  level	  of	  FCS	  in	  the	  rat	  hippocampus.	  (Confirm)	  

•   The	  experiment	  results	  haven't	  been	  released	  yet,	  so	  we	  don't	  
know	  how	  it	  worked	  out.	  (Neutral)	  

•   As	   it	   turned	   out,	   increasing	   endochrome	   did	   not	   increase	   the	  
level	  of	  FCS	  in	  the	  rat	  hippocampus	  at	  all.	  (Disconfirm)	  

Procedure 
Following presentation of the narrative and conditional 
statement, participants were asked to indicate their 
confidence for each explanation using a 7-point Likert scale:  
•   Exachrome	   causes	   the	   production	   of	   FCS	   in	   human	  
hippocampus.	  

•   Nuwen	  causes	  the	  production	  of	  FCS	  in	  human	  hippocampus.	  
•   Endochrome	  causes	  the	  production	  of	  FCS	  in	  rat	  hippocampus.	  
•   Oowen	  causes	  the	  production	  of	  FCS	  in	  rat	  hippocampus.	  

They were also asked to indicate their confidence that the 
situations are analogous: 
•   The	   production	   of	   FCS	   in	   rat	   hippocampus	   works	   similarly	   to	  
that	  of	  human	  hippocampus.	  

Two balanced question orders were used. No response 
differences were observed on the basis of question order, so 
the factor was removed from subsequent analysis. All 
conditions contained a simple attention check. About ¼ of 
participants failed the attention check and were removed 
from the analysis. 

Statistical Analysis & Results 
We analyzed the participant responses by regressing each 
response item against the between-subject condition 
statements with each condition coded as a dummy variable. 
Since the assumptions violated linearity, we used 
resampling with 10,000 replications to evaluate statistical 
significance. For comparison, we also calculated Cohen’s d 
to corroborate the significance of the observed effect sizes.  
As expected, participant confidence in this explanation 
increased for the confirmation condition and decreased for 
the disconfirmation condition (p<0.0001, d=2.5). Since the 
procedure asserted that the two explanations about the rat 
hippocampus were unlikely to be simultaneously true, we 
predicted that the competing explanation would follow the 
opposite pattern. Indeed, when Endochrome ⇒	 FCS was 

supported, confidence ratings for the Oowen ⇒	 FCS 
explanation decreased (p<0.0001, d=2.5).  
Participants confidence ratings in the source domain 
explanations were also influenced by the observed evidence 
in the target domain. Confidence in the corresponding 
source explanations about the human hippocampus changed 
in the direction consistent with the correspondence structure 
of the analogy. For the Endochrome ⇒	 FCS explanation 
confidence increased with positive evidence and decreased 
with negative predictions (p<0.0001, d=0.75). Confidence in 
the competing source explanation Nuwen ⇒	 FCS was 
inversely affected (p<0.0001, d=-0.80). Finally, successful 
predictions made participants more confident in the idea that 
the two domains were analogous (p<0.0001, d=0.50).  
Participant responses strongly supported our hypothesis 
people treat the analogy as evidence for the inferences is 
suggests. New successful predictions made on the basis of a 
mapping from the source to the target increased confidence 
in the commonality of the domains, as well as in the 
untested scientific explanation that generated them.  

Bayesian Network Model & Results 
We further analyzed the data using a Bayesian network 
model (Pearl, 2009) to estimate the influence of the 
suggested analogy on the response item confidence 
statements in a way constrained by a plausible causal 
structure. In the model, each causal explanation is 
represented as a single node and assigned a prior baseline 
probability. Since it was stated in the stimulus that the two 
explanations within a domain were unlikely to be 
simultaneously true, the model places a negative correlation 
between the explanations. Without an analogy, the source 
and target domains (i.e., human and rat hippocampus, 
respectively) have no causal linkage. On the other hand, if 
there is a known analogy that is taken as certain, strong 
causal linkages are present from the source to the target 
domain. 

 

Figure 2. Bayesian network structure without analogy and 
with certain analogy 

With an uncertain analogy, though, the structure itself 
becomes probabilistic. To capture this, we take the model a 
step further by representing the analogy itself as a single 
node. In this way, we can gauge the evidentiary influence of 
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the analogy and participants’ confidence in it using their 
confidence ratings. If the domains were sufficiently 
complex that multiple mappings were possible, it might be 
necessary to include structural evaluations in the model such 
as rankings from a model of structural correspondence 
(Landy & Hummel, 2010). But in this case, the mapping 
from source situation to target situation is plainly obvious 
and can be treated as a single node.  
Although the distinction is often drawn between superficial 
and deep analogies, how people consider the truth of an 
analogy has not been investigated to the best of our 
knowledge. As a starting place, the analogy was modeled as 
a Boolean variable—true or false. Participant confidence in 
the analogy was estimated by a Beta-distribution..  
Now the probability of a target domain explanation prior to 
observing the experimental results depends on both the 
probability of the truth of the source domain explanation 
and the probability of the truth of the analogy. If the analogy 
is true, then what is true or false in the source domain is also 
true or false in the target domain. However, if the analogy is 
false, the truth of the target explanation is independent of 
the source domain knowledge. In other words, an analogy 
guarantees correspondence, but a failed analogy does not 
guarantee non-correspondence. This approach effectively 
introduces a probabilistic switch between the no analogy 
and certain analogy network structures. 

The prior probabilities of the Bayesian network were fit 
without including the evidence obtained by the experimental 
results (i.e., the test condition statement). So each individual 
is taken to have an estimate of the prior probability of each 
of the source explanations, the analogy, and the target 
explanations. The prior probabilities provide an associated 
estimate of participant confidence that the experimental 
results will be confirmed or disconfirmed. 

 

Figure 3. Bayesian network structure with uncertain analogy 
and evidence from experimental results (i.e., test condition) 

The participant data was fit using a hierarchical model. 
Participants were assumed to have been randomly selected 
from a population having a single distribution of subjective 
priors for each node. The priors were estimated using 
Dirichlet distributions for the domain explanation 

probabilities3 and Beta distributions for the analogy and the 
evidence probabilities. The model had 14 population-level 
free parameters, fit to 1500 participant responses. 
Participants from the neutral condition were assumed to 
respond based on these prior parameter estimates without 
any additional evidence. Participants from the evidence 
condition were modeled by updating the Bayes net given the 
appropriate evidentiary outcome, and these posterior 
estimates were fit to the responses.  
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Figure 4. Posterior predictive distributions by condition for 
each explanation compared with response distributions 

We solicited confidence ratings using a Likert scale rather 
than explicit probability estimates. So a final step in the 
model was to translate posterior probabilities from the 
                                                             
3 We intended the explanations in each domain to be interpreted by 
participants as mutually exclusive and exhaustive, but we did not 
assume this in their response structure. We allowed the model to 
account for the possibility that both explanations within a domain 
are correct or that both are incorrect. This compelled the use of the 
multivariate Dirichlet distribution rather than the Beta distribution. 
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Bayesian network into Likert response values. We treated 
Likert values as ordered and evenly distributed from 0 to 1. 
Responses were then treated as beta-distributed among these 
values, with mean at the subjective probability. This 
allowed variance from the specific posterior subjective 
probabilities, minimized degrees of freedom in the model, 
and afforded a limited flexibility in translating posterior 
probabilities into Likert scale responses. The model was fit 
in Stan via R: 1,000 posterior samples proved sufficient for 
model convergence with population-level !   values all less 
than 1.1 (Bates et al., 2015). 
Figure 4 indicates posterior predictions of each Bayesian 
network node overlay with the fit participant Likert 
responses for each condition. The major patterns in the data 
were generally well-captured by the model, suggesting that 
people were integrating evidence from the target prediction 
success into their confidence in the analogy, and were doing 
so in a manner that approaches rational behavior. 
Predictions matched the direction of the observed effects for 
all five model nodes. If the analogy were rejected by 
participants, we would expect no differences between 
conditions in the responses about the analogy and about the 
source explanations. 

Participant
(Likert(fit) Lower(bound Upper(bound

Exachrome/⟹/FCS 0.14 0.13 0.18
Nuwen/⟹/FCS <0.12 <0.07 <0.02
Endochrome/⟹/FCS 0.47 0.40 0.46
Oowen/⟹/FCS <0.21 <0.15 <0.10
Human/HPC/⟹/Rat/HPC/ 0.09 0.11 0.20

∆/(Confirm/</Disconfirm)
Model/Predicted/95%/HPD

 

Figure 5. Difference between confirm and disconfirm 
participant confidence ratings versus model predictions 

The model fit can be evaluated by comparing differences 
between the distribution of participant responses and the 
simulated posterior predictions of the population (i.e., 1,000 
samples of the posterior for each of 300 participants). 
Although the model matched the direction of the empirical 
results in every case, the outcome of this analysis revealed a 
systematic bias (discussed later) that could not be accounted 
for by this computational approach.  

Discussion 
What does it mean to be confident in an analogy? What does 
it mean for an analogy to be assigned a probability value at 
all? This is an important open question. Analogies are rarely 
exact correspondences. Useful analogies are sometimes 
even known from the outset to be poor, such as “atoms are 
like solar systems.” Alternatively, models and simulations 
in the social sciences are often presented as valid 
simplifications of complex phenomena. It seems, then, that 
we can be confident in an analogy’s validity even when we 
do not believe the correspondence to be exact. This paper 
takes a first step toward answering these open questions by 
establishing a basic fact: people do treat analogies as 
probabilistic truths and integrate them with evidence. 

Implications for analogical inference 
If analogies just generate candidate inferences, then 
people’s confidence in explanations in one domain would be 
unaffected by observations in another. In contrast, we found 
that analogical mappings do raise posterior estimates of the 
likelihood of candidate inferences. Moreover, when 
uncertainty exists in the source domain knowledge, 
confirmed analogical inference in the target domain raises 
confidence in the corresponding source knowledge. This 
effect suggests that people treat analogies not as a one-way 
projection from source to target, but mutually informative.  
Results show that the effective confidence of the analogy 
itself is influenced by the success of its inferences 
suggesting that people evaluate the analogy on more than its 
degree of structural correspondence. The analogy seems to 
have a causal property that can be integrated with and 
influenced by observed evidence. To that point, no evidence 
was ever presented in the source domain that could arbitrate 
between the proposed explanations, so evidence confirming 
a target domain inference could not possibly strengthen the 
structural correspondence between the domains. And yet, if 
the new information confirmed inferences made by the 
analogy, differences by condition in participant confidence 
ratings suggest they credited the analogy for the success.  

It is worth noting that while the candidate inferences 
account is implied in many extant studies of analogy, the 
authors of those studies may not wish to explicitly commit 
to it.  For the most part, we believe that the role of evidence 
in influencing the value of the analogy has been deferred 
rather than denied. We see these results as extending rather 
than negating extant approaches. 

Deviations from rationality 
Although the observed confidence differences are 
quantitatively close to the model predictions, the observed 
differences are not completely compatible with rational 
allocation of probabilities under the assumption that 
analogies act as evidence for their inferences. Participants 
attributed success or failure of the analogy more to the 
veracity of the source explanations and less to the analogy 
than would be expected by the model structure. In other 
words, we expected confidence in the analogy to justify 
shifts in confidence in the source domain explanations. But 
the observed shifts in the source domain outpaced 
participant reported confidence in the analogy. One possible 
explanation is that participants may have interpreted the 
analogical statement more broadly than intended, so that the 
possibility of any related dissimilarity would reduce their 
confidence in the analogical statement. Another possibility 
is that people use different cognitive processes to rate 
confidence in analogical statements than they use to rate 
domain-specific statements. If true, then it may be necessary 
to apply a simple transformation to reported analogical 
confidence when modeling analogy in a Bayesian network. 
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Limitations of the present study 
One limitation of the experiment is that the relationship 
between mammal brains is not only a near analogy, it is also 
a biological homology. Rats and humans evolved from a 
common ancestor, so similarities between them may reflect 
properties of their ancestor rather than attribution of 
evidence to the analogy per se. Indeed, scientists regularly 
use animal models to predict properties of human beings on 
this basis. Because the inference of the experiment may 
have a biological explanation, shifts in confidence may 
reflect an alternate process of inference about the cause 
rather than about the analogy. In subsequent experiments 
using more distant domains—such as suggesting a link 
between ion behavior in “super-cooled glass” and macro-
economic decisions by nations—we find consistent, but less 
pronounced effects to those presented here.  

Future study 
Even though we can conclude that people are willing to treat 
an uncertain analogy effectively as a probabilistic truth, it is 
not clear what cognitive processes underlie this effect. Two 
alternate hypotheses are: 
1.   People may treat the analogy as a kind of theory whose 

truth can only be supported by evidence in the source 
and target domains. This is the most straightforward 
interpretation of the experiment and the approach taken 
by the ERIC model of explanatory reasoning under 
uncertainty (Landy & Hummel, 2010). 

2.   Success of an inference may imply a stronger structural 
correspondence than is actually observed. Confirming 
evidence for an inference in one domain may improve 
an implied estimate of unobserved, but still predictive, 
structural correspondence (Rogers & Landy, 2016). 

More investigation is needed to distinguish between these 
possibilities. We still await a fully integrated account of 
reasoning across correspondences among structures about 
which people have probabilistic beliefs.  
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Abstract 

Biased attention is assumed to play an important role in the 

etiology and maintenance of depression and depressive 

symptoms. In this paper, we used data from a categorization 

task and an associated model to assess the attentional bias of 

people with varying levels of depressive symptoms. 

Attentional bias was operationalized as the parameter estimate 

in a prototype model of categorization. For estimation, we used 

a Bayesian hierarchical mixture approach. We expected to find 

a positive correlation between depressive symptoms and an AB 

for negative material and a negative correlation between 

depressive symptoms and a bias toward positive material. 

Despite good model fit, Bayesian regression analyses revealed 

weak or moderate evidence in favor of the null model assuming 

no association between attentional preferences and depressive 

symptoms, both for negative and positive material. 

Keywords: psychology; cognitive science ; attention; concepts 

and categories; Bayesian modeling; mood disorder 

Introduction 

Biased attention takes an important position in cognitive 

theories explaining the etiology and maintenance of 

psychological disorders. In particular, depression has been 

theorized to be linked to biased attention for negative 

information (Beck, 1976). Multiple methods have been 

developed to assess attentional biases (AB). The most 

popular approaches include reaction time assessments, in 

which response latencies for negative, positive, and neutral 

material are compared, and translated into AB indices. Eye 

tracking techniques, comparing fixation durations on 

negative, positive, and neutral stimuli, are also a popular 

approach. Caution is recommended however, in both 

approaches. When relying on reaction time assessments, one 

has to consider the ambiguity and lack of reliability often 

associated with response latencies (Rodebaugh et al., 2016). 

Eye tracking techniques appear to yield good reliability 

estimates, but only if certain conditions are met (Rodebaugh 

et al., 2016). Moreover, as these techniques focus exclusively 

on overt attentional processes, they are less informative with 

regard to attentional resources that are allocated covertly, 

without saccadic eye movements. Perhaps not surprisingly, 

results obtained with these existing approaches are not 

consistent (Peckham, McHugh, & Otto, 2010). 

The goal of this paper is to explore novel methodologies 

for assessing attentional biases associated with depressive 

symptoms. In particular, inspired by Viken, Treat, Nosofsky, 

McFall, and Palmeri (2002), we tested the applicability of a 

categorization approach to assess AB’s in the context of 

depression (see also Kruschke & Vanpaemel, 2015). 

Participants were presented pictures of human faces varying 

in emotional expression (emotional stimulus dimension) and 

hair color (neutral stimulus dimension). They were asked to 

classify these stimuli in two different categories, each 

represented by a prototype stimulus of that category. The two 

prototypes reflected extreme levels of the stimulus 

dimensions and were each other’s opposites. For example, 

prototype A had a light hair color, and a very sad facial 

expression, versus prototype B with a dark hair color and a 

slightly sad facial expression. In this way, participants could 

either choose to focus on the hair color (or neutral) dimension 

or on the facial expression (or emotional) dimension to 

classify the pictures. These data, taking the form of 

classification counts of each category, per stimulus, were 

then used to estimate participant-specific parameters in a 

prototype model (e.g., Nosofsky, 1987). One of these 

parameters corresponds to the attentional weight (AW) for 

one stimulus dimension, reflecting the relative attentional 

preference for that stimulus dimensions compared to the 

other stimulus dimension.  

We expected to find a positive correlation between 

depressive symptoms and an AB for negative material and a 

negative correlation between depressive symptoms and a bias 

toward positive material (Peckham et al., 2010). In addition 
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to depressive symptoms, we assessed anxiety symptoms, as 

depression and anxiety are known for their comorbidity, and 

our aim was to isolate the relation of AB to depressive 

symptoms. Brooding or depressive rumination, and a 

negative mood, were also investigated in this study, since 

both variables have already been related to an attentional bias 

for negative material (Bradley, Mogg, & Lee, 1997; Koster, 

De Lissnyder, Derakshan, & De Raedt, 2011). Finally, the 

personality trait, neuroticism was assessed, in order to 

explore whether this important risk factor for depression, 

could be related to an AB for negative information. 

Method 

Every participant received two versions of a classification 

task, each version was administered in two (within-

participant) conditions. In all versions and conditions, 

participants were asked to classify facial stimuli according to 

two prototype stimuli. The stimuli were made up of only two 

different stimulus dimensions: brightness of hair color and 

intensity of emotional expression. In the happy condition, the 

emotional expression ranged from a slightly to a very happy 

facial expression, whereas in the sad condition, it ranged from 

slightly to very sad. 

We report all data exclusions, all included questionnaires 

or measures, and all study conditions.  

Participants 

A total of 309 first-year psychology students participated in 

this study in exchange for course credits (262 women, mean 

age = 18.53, SD = 1.90, with a range from 17 to 39). The 

sample size was determined by the number of participants 

showing up during the two weeks of data collection, available 

for all first-year students of the Psychology department of the 

University of Leuven (Belgium).  

Materials 

Self-report Measures The Center for Epidemiologic Studies 

- Depression Scale (CES-D; Radloff, 1977) was used to 

assess depressive symptoms (score: 0 - 60). The Hospital 

Anxiety and Depression Scale (HADS; Spinhoven et al., 

1997), was included to assess comorbid depression (score: 0 

- 21) and anxiety symptoms (score: 0 - 21). We also included 

the Rumination Response Scale (RRS; Nolen-Hoeksema, & 

Morrow, 1991) to assess brooding (score: 5 - 20), and the Ten 

Item Personality Inventory (TIPI; Gosling, Rentfrow, Swann, 

2003) to assess neuroticism (score: 1 - 7). Finally, the current 

mood of participants was measured with a 5-point Likert 

scale (“How do you feel at this moment? 1 (very unhappy) - 

2 (slightly unhappy) - 3 (neutral) - 4 (slightly happy) - 5 (very 

happy”). Dutch versions of these questionnaires were 

administered. 

Stimuli The stimuli were adopted from the Karolinska 

Directed Emotional Faces (KDEF; Lundqvist, Flykt, & 

Öhman, 1998). Applying Fotomorph 13.9 (Softland SRL) 

and GIMP (2008), the pictures were adjusted in such way 

they only systematically differed from each other on two 

dimensions: The intensity of facial expression and the 

brightness of the hair color. On the basis of the modified 

stimuli, a negative and positive stimulus set were created. In 

the sad condition, the intensity of the facial expression ranged 

between very sad and slightly sad, whereas in the happy 

condition, the intensity ranged from very happy to slightly 

happy. By creating five different levels of emotional 

expression (mild intensity – strong intensity) and five 

different levels of brightness of hair color (light – dark) and 

combining all possible levels, we obtained a stimulus set 

consisting of 25 different pictures for each condition. 

Prototypes were extreme on both dimensions (for example, a 

stimulus having a very sad emotional expression of level 5, 

and very dark hair color of level 5). Figure 1 presents 

example stimuli. 

Task In both conditions, participants were asked to classify 

all pictures of the condition-specific stimulus sets into 

category A or B. Category A was represented by one of the 

four prototypes, and category B by the inverse prototype, 

within the same emotional condition. For example, in the sad 

condition, if prototype A had level 5 of sadness (very sad) 

and level 5 of hair color (very dark), then prototype B had 

level 1 of sadness (slightly sad), and level 1 of hair color (very 

light). The prototypes stayed on participants’ computer 

screen during the entire task. In each trial, participants had to 

classify one picture into one of the two categories. No 

feedback was provided, so participants could freely choose 

how to classify the stimuli. In making the classification 

decisions, participants thus could either base their 

classifications on the pictures’ hair color or facial expression, 

reflecting their attentional focus on these dimensions.  

 

Figure 1. The two upper pictures represent two possible 

prototypes. The stimuli at the bottom are random examples 

of the negative stimulus set, to be classified in category A or 

B. Adapted from “The Karolinska Directed Emotional Faces” 

– KDEF”, by D. Lundqvist et al., 1998, CD ROM from 

Department of Clinical Neuroscience, Psychology section, 

Karolinska Institutet, ISBN 91-630-7164-9. Copyright 2015 

by D. Lundqvist. 
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For each condition, there were two versions of the task, 

differing in the prototype pairs used. Version 1 consisted of 

prototype A1, with level 5 of sadness, and level 5 of hair 

color, and prototype B1, with level 1 of sadness, and level 1 

of hair color. Version 2 consisted of prototype A2 with level 

1 of sadness, and level 5 of hair color, and prototype B2 with 

level 5 of sadness and level 1 of hair color. 

Procedure 

Each participant ran through both conditions, and in each 

condition, they performed two versions of the same task. The 

order of the conditions, and task versions within the 

conditions, was counterbalanced between participants.  

In each task, participants categorized two blocks in which 

all 23 non-prototype stimuli were presented in a random 

order. Thus, within each task version, each stimulus was 

classified twice. After completing the categorization tasks, 

participants were asked to indicate their current mood state, 

and to fill out the CES-D, HADS, RRS, and TIPI. 

Model   

The categorization data were analyzed using Nosofsky’s 

(1987) weighted prototype classification model: 

 

P(A│i) = 
 ηiA

 ηiA+ηiB
 

 

The model assumes that the probability of classifying 

stimulus i in category A, P(A│i), is driven by the perceived 

similarity between stimulus i and prototype A, 𝜂𝑖𝐴, divided 

by the overall perceived similarity between stimulus i and 

prototype A and prototype B. The perceived similarity 

between stimulus i and prototype A is assumed to be an 

exponential decay function determined by a sensitivity 

parameter c, and the weighted distance between the stimulus 

and the prototype, 𝑑𝑖𝐴: 

𝜂𝑖𝐴 =  𝑒−𝑐𝑑𝑖𝐴 

The sensitivity parameter c reflects how clearly the stimuli 

could be discriminated from each other. The weighted 

distance between the stimuli and prototype A, 𝑑𝑖𝐴, was 

computed as follows: 

 

𝑑𝑖𝐴 =  𝑤𝑎 │𝑥𝑖𝑎 − 𝑥𝐴𝑎│ + (1 − 𝑤𝑎)│𝑥𝑖ℎ − 𝑥𝐴ℎ│ 

where 𝑥𝑖𝑎 represents the coordinate of stimulus i on 

dimension affect, and 𝑥𝑖ℎ the coordinate of stimulus i on 

dimension hair, in psychological space. 𝑥𝐴𝑎 is the coordinate 

of prototype A on dimension affect, and 𝑥𝐴ℎ the coordinate of 

prototype A on dimension hair. 𝑤𝑎 is the AW for the affect 

dimension, and 1 - 𝑤𝑎 is the AW for the hair dimension.  

The coordinates of the stimuli and prototypes were 

obtained in a separate study in which a different group of 32 

participants rated the two dimensions of all stimuli on a 10-

point Likert scale, ranging from 0 (light hair color/mild facial 

expression) to 9 (dark hair color/ intense facial expression). 

For both the sad and happy conditions, the split-half 

reliabilities of respectively the affect and hair color 

dimensions were .96 and .99. The coordinates of the stimuli 

were calculated by taking the mean rating on each dimension 

for every stimulus.  

The prototype model was extended hierarchically and with 

a mixture component in a Bayesian framework (see e.g., 

Bartlema, Lee, Wetzels, & Vanpaemel, 2014). The 

hierarchical extension was used to accommodate continuous, 

qualitative individual differences, and to shrink extreme 

values, whereas the mixture component was included to 

accommodate discrete, quantitative individual differences. In 

particular, it allowed differentiating between three groups of 

participants: The first group consists of people whose 

behavior was captured better by a guessing model, which 

assumed that the response probability for each stimulus was 

.5. Identifying these participants avoids contamination of our 

parameter estimates by participants for whom the prototype 

model was not sufficiently appropriate, that is, participants 

who appeared to be guessing (see, e.g., Voorspoels, Rutten, 

Bartlema, Tuerlinckx & Vanpaemel, in press, and Zeigenfuse 

& Lee, 2010 for a similar approach).  

Among the participants assigned to the prototype group, 

we allowed two subgroups: the ‘affect group’ and the 

‘neutral/hair group’ with the ‘affect group’ having a higher 

group-level AW for the affect dimension, as compared to the 

‘hair group’. In particular, we restricted the mean AW for the 

affect dimension in the ‘affect group’ to be higher than the 

mean AW for affect in the ‘hair group’.  

Results 

Model Analyses  

The model was implemented in JAGS (Plummer, 2011). We 

ran 3 chains with 36 000 iterations each, after discarding 4000 

iterations for burn in. We performed separate analyses for the 

sad and happy conditions. The data from the two task 

versions (different prototypes) within each condition were 

jointly modelled in order to obtain a single AW in each 

condition. The model analyses identified two clearly 

distinguishable groups (a group focusing on affect and a 

group focusing on hair color) in both conditions.  

In the sad condition, the ‘affect group’ contained 141 

participants, whose AW was larger for the affect dimension 

(the group-level posterior had a mean w_sadness = .88), 

compared to the ‘neutral/hair group’, containing 163 

participants (mean w_sadness = .21).  

In the happy condition, the ‘affect group’ contained (again) 

141 participants, whose AW was larger for the affect 

dimension (the group-level mean attention to happiness was: 

w_happiness = .87), compared to the ‘neutral/hair group’ 

(mean w_happiness = .19), consisting of 167 participants. 
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Also, a number of participants were not distinguishable from 

guessers. In the sad condition, we identified five guessers, 

with one of them being also, the only, guesser in the happy 

condition. 

To evaluate the fit of the model, we inspected the group-

level posterior predictive for all categorization tasks. To give 

an idea of how well the model performs, Figure 2 presents 

the posterior predictive for one of the two task versions in the 

sad condition. Each panel shows a schematic representation 

of the stimulus space (five by five stimuli, represented by the 

squares), with the corner stimuli being prototypes. The panels 

depict the latent groups. In each square, the background color 

provides an indication of the model’s posterior prediction for 

the corresponding stimulus and group, as a gradient between 

the top left prototype (orange) and lower right prototype 

(blue). The stronger the color matches the prototype, the more 

firmly the model predicts classification in the corresponding 

category. In each square, the circle color is an indication of 

the average observed classification count of the 

corresponding stimulus, across all participants in the group. 

Thus, matching colors between background and circle 

provide insight in the match between the model’s posterior 

predictions and the observed data.  

 

 

Figure 2. Posterior predictive check, see text for details. 

Inspection of Figure 2 reveals that the model successfully 

captures the patterns within each latent group. Also, the 

predicted and observed stimulus groupings are sensible 

considering the AWs applied in each group, with the affect 

group categorizing the stimuli according to the affect 

dimension, and the hair group according to the hair color 

dimension.  

Regression Analyses 

After excluding five participants who were assigned to the 

guessing group, multiple regression analyses were performed 

to investigate the relationship between attentional 

preferences, as operationalized by the individual-level 

estimates of 𝑤𝑎, and  depressive symptoms, anxiety 

symptoms, brooding, neuroticism, and current mood. All 

variables showed sufficient variability (see Table 1 for the 

descriptive statistics). Variance inflation factors (VIF; Hair, 

Anderson, Tatham, Black, 1995) indicated only a low degree 

of multicollinearity in our model (largest VIF was 3.22, well 

below the threshold of 10).  

Table 1: Descriptive statistics.   

 SD mean range 

CES-D 10.06 17.83 0 - 52 

HADS_D 3.63 4.41 0 - 18 

HADS_A 3.97 7.07 0 - 20 

TIPI_E 1.41 4.36 1 - 7 

RRS 3.52 10.47 5 - 20 

Mood 0.60 3.11 1 - 5 

w_sadness  0.37 0.51 0.04 - 0.99 

w_happiness 0.37 0.49 0.05 - 0.98 

Note. w_sadness is 𝑤𝑎  in the sad condition, whereas 

w_happiness is 𝑤𝑎 in the happy condition. 

 

The regression analyses were performed using the 

BayesFactor package (Morey & Rouder, 2013). A BF 

compares the evidence for the null model with the evidence 

for the alternative model. Given the null model in the 

numerator, a BF > 1 indicates evidence in favor of the null 

model, whereas a BF < 1 indicates evidence in favor of the 

alternative model. 

To test the effect of each predictor (e.g., depressive 

symptoms), we compared a restricted model containing all 

predictors, except for the predictor of interest (null model), 

against a full model containing all predictors (alternative 

model). As a sensitivity analysis, both medium and ultrawide 

scale factors were used to calculate the Bayes factors. As can 

be seen in Table 2, the Bayes factors showed evidence in 

favor of the null model for all predictors in both conditions 

(with the exception of current mood in the sad condition 

when a medium scale factor was used). The strength of the 

evidence depends on the exact choice of scale factor. When 

the scale factor is medium, the evidence in favor of the null 
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model is weak, and thus these results are best interpreted as 

being inconclusive. With increasing scale factor, the 

evidence in favor of the null grows stronger, but it is never 

very strong. Overall, these analyses suggest that no strong 

evidence for meaningful associations could be found between 

the symptom and traits scores and the AWs. The near zero 

partial correlation coefficients (using the ppcor package; 

Seongho, 2015), confirm this picture, as can be found in 

Table 2.  

Table 2: Overview of the BFs (> 1 indicates support for the 

null model), and the corresponding partial correlation 

coefficients. 

 sad happy 

 BFm BFu PC BFm BFu PC 

CES-D 1.89 3.23 -.00 2.59 4.60 .02 

HADS_D 2.50 4.38 .03 2.84 5.07 .03 

HADS_A 2.75 4.87 .03 3.05 5.49 .02 

TIPI_E 2.82 4.99 -.02 3.04 5.48 -.02 

RRS 2.32 4.05 -.03 2.53 4.48 .04 

mood 0.87 1.39 -.09 1.17 1.93 -.08 

Note. BFm = Bayes factor with medium r scale, BFu = Bayes 

factor with ultrawide r scale. PC = partial correlation 

coefficient. 

Discussion 

Applying a categorization approach to the assessment of 

attentional biases in people with varying levels of depressive 

symptoms revealed weak to moderate evidence for the 

absence of an association between severity of depressive 

symptoms and an attentional bias to sadness or happiness. 

Similar BFs were observed for the other predictors of interest: 

anxiety symptoms, brooding, neuroticism, and current mood. 

In the light of the small Bayes factors, especially when using 

a medium scale factor, we cannot make strong statements 

about rejecting the alternative model, or accepting the null 

model.  

These findings are in line with previous inconsistencies in 

results obtained with the frequentist approaches investigating 

attentional biases in the context of depression (Peckham et 

al., 2010). In some studies p values above .05, whereas in 

other studies, p values below .05 were found, without a clear 

explanation as to when to expect significant results and when 

not. 

An important limitation of the current study that could 

explain the results, is the recruited sample. A high 

functioning student sample was recruited. Though we could 

observe a reasonable amount of variability in depression 

scores, the sample may have been too healthy to detect 

attentional biases related to depressive symptomatology. A 

next step is to apply this approach to data obtained in a sample 

of more severely depressed participants. 

We believe the modelling approach demonstrated here, has 

a number of advantages that might prove useful in helping to 

solve the elusiveness of attentional biases in the context of 

depression. First, attentional preferences were extracted from 

a model, that excluded people whose behavior could better be 

predicted by a guessing model, instead of the prototype 

model. This means that data resulting from random behavior 

were filtered out. Second, by considering a specific parameter 

in a model to conceptualize attentional biases, other processes 

that might influence participants’ behavior in the task, such 

as people’s discrimination abilities (c parameter), were 

factored out. Third, assessing attentional processes by 

considering their impact on categorization behavior could be 

quite insightful, given that classification decisions reflect the 

way in which people organize and structure their world. 

Attentional bias indices obtained by analyzing categorization 

behavior can give us an idea about how strongly attentional 

preferences influence the way in which people perceive and 

organize their environment.  
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Abstract 

Many of the important decisions we make have moral 

implications. Moral Foundations Theory (Haidt & Joseph, 

2004) identifies 5 distinct styles of moral reasoning that may 

be applied to such decisions. This paper explores how reading 

text that emphasizes one of these styles might affect our 

reasoning. After participants read a series of tweets that 

emphasized the Fairness/Cheating foundation they exhibited 

an increased reliance on this style compared to when they 

read tweets emphasizing the Care/Harm foundation. This 

affected participants’ answers to a questionnaire designed to 

measure the perceived importance of the different 

foundations, as well as in their rating of the foundations 

evident in other tweets. Interestingly, this effect was short 

lived and was not observed for the Care/Harm foundation. 

These results suggest that exposure to the moral reasoning of 

others might temporarily influence what moral arguments we 

are likely to accept and employ. 

Keywords: Framing; Moral Foundation Theory; Moral 
Cognition; Priming; Text 

Introduction 

Many of the important decisions we make have moral 

implications. But what factors might affect these decisions? 

In this paper, I examine the effect that encountering moral 

arguments might have on subsequent reasoning about moral 

issues. More specifically, I will argue that moral reasoning is 

subject to priming effects, where being confronted with a 

particular style of moral reasoning will result in increased 

salience for that style of reasoning. 

Moral Foundations Theory 

While psychological research on morality encompasses a 

wide range of theoretical approaches (e.g., Gray, Young, & 

Waytz, 2012; Malle, Guglielmo, & Monroe, 2014; Rai & 

Fiske, 2011; Young & Saxe, 2011), in this paper I am 

interested in comparing different styles of moral reasoning 

and will therefore focus on Moral Foundations Theory 

(Graham et al., 2013; Haidt & Joseph, 2004). Moral 

Foundations Theory identifies five different types of moral 

intuitions or concerns: Harm, Fairness, Loyalty, Authority, 

and Purity. Each of these moral concerns accounts for a 

different style of reasoning about moral dilemmas.  

For instance, consider a person who believes that climate 

change is a problem because it endangers the lives of people 

and animals. This person is primarily concerned with the 

harm that climate change could cause to living beings. In 

contrast, another person might argue that climate change is 

problem because of its complexity and global reach, making 

it the obligation of nations to adhere to guidelines set by 

international treaties. That person is using a type of argument 

that emerges from reasoning about authority. Critically, 

when analyzing any argument, it is important to remember 

that such moral concerns are not exclusive, and that a single 

argument can exhibit traits from several different concerns. 

Priming Moral Reasoning 

Research based on Moral Foundations Theory has 

demonstrated that sensitivity to the different moral concerns 

varies across cultures (Graham, Haidt, & Nosek, 2009), as 

well as based on ideological beliefs (Graham et al., 2009; 

Koleva, Graham, Iyer, Ditto, & Haidt, 2012). Much of this 

research implicitly assumed that these styles of reasoning are 

stable and related to personality traits and beliefs. However, 

many stable traits in psychology provide a baseline for 

behavior that is affected by contextual and situational factors, 

such as priming. 

The study presented here is designed to test whether such 

factors can also affect the salience of individual foundations. 

Specifically, I hypothesize that exposure to moral ideas and 

beliefs will result in temporary changes to the salience of the 

foundations that are at the core of these ideas. 

For example, if an individual is presented with a text that 

relies on reasoning based on fairness, this individual might 

then become sensitized to the Fairness/Cheating foundation 

and be more likely to consider it as an important aspect of 

other, more ambiguous lines of reasoning. Likewise, reading 

a text about an individual that is harmed by a callous 

individual is likely to predispose the reader to identify harm 

as a more relevant consideration in subsequent texts that they 

otherwise would have. 

To test this prediction, participants will be presented with 

a series of tweets that endorse either the Care/Harm 

foundation or the Fairness/Cheating foundation. Following 

this presentation, they will be asked to complete tasks that are 

designed to measure their sensitivity to these concerns. If 

moral reasoning is subject to priming effects, it is expected 

that participants who were presented with tweets endorsing 

the Fairness/Cheating foundation would find issues of 

fairness to be more relevant and important. In contrast, 

participants who read tweets that highlight Care/Harm should 

show heightened concern for that foundation. 

Method 

Participants 

Thirty-six native English speakers from the University of St. 

Francis participated in the study in exchange for course 

credit. 
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Materials 

Moral Foundations Questionnaire 

One of the frequently used tools for assessing an individual’s 

level of concern for each of the 5 foundations is the 30 item 

Moral Foundations Questionnaire (MFQ30; Graham et al., 

2011).  

This questionnaire is composed of 2 parts: The first part 

asks participants to rate the relevance (on a 6-point scale) of 

various considerations to whether an act is right or wrong 

(e.g. “Whether someone suffered emotionally”). The second 

part asks participants to rate their agreement (on a 6-point 

scale) to various statements (e.g. “Chastity is an important 

and valuable virtue”). Each part is comprised of 16 items, 3 

items corresponding to each of the foundations and 1 catch 

item. 

It is important to note that while the two parts are 

measuring the same underlying concepts, they are using 

different approaches and therefore the scores on one part of 

the MFQ are not directly comparable to scores on the other. 

Nevertheless, a high score on a particular foundation in the 

first part can be taken as an indication of high concern for that 

foundation, and is therefore predictive of the score on the 

second part. 

In this study, I used the first part of the MFQ30 to establish 

a baseline profile of the participants and the second part 

(administered after the care or fairness prime) to test for a 

priming effect. 

 

Tweets 

In addition to the Moral Foundations Questionnaire, this 

study made use of several sets of tweets. These tweets were 

chosen from a corpus of over 700,000 tweets about the U.S. 

                                                           
1 This corpus was used because it was pre-analyzed and the 

ratings were successfully used in previous studies. 

Federal Shutdown of 2013 (cf. Dehghani et al., 2016; Sagi & 

Dehghani, 2014b)1.  Tweets were selected based on ratings of 

moral language computed statistically based on the Moral 

Foundations Dictionary (Graham et al., 2009) following the 

method described in Sagi and Dehghani (2014a). 

The first set of primes, used as the prime in the Care 

condition, were uniformly high on the foundation of 

Care/Harm and low on the other 4 foundations. Likewise, a 

second set of primes served as the prime in the 

Fairness/Cheating condition. These primes were high on 

fairness and low on the other 4 foundations. Each of these 

lists comprised of 14 tweets, 7 tweets from liberal users and 

7 from conservatives (see Appendix A).  

In addition, a list of 25 tweets was selected such that each 

foundation was represented by 5 tweets. As before, for a 

foundation to be so represented, the tweet had to rate high on 

that foundation and low on all other foundations. This list of 

tweets was used for the rating task. 

Procedure 

Participants first completed the first half of the 30 item Moral 

Foundations Questionnaire (MFQ30; Graham et al., 2011). 

Next, they rated their agreement, on a scale of 1 to 6, to a 

series of 14 tweets that emphasized either the 

Fairness/Cheating foundation (Fairness condition) or the 

Care/Harm foundation (Care condition). After rating the 

primes, they completed the second half of the MFQ30. 

Finally, each of the 5 moral foundations was described to 

the participants using the text from the website 

moralfoundations.org and they were asked to rate, on a scale 

of 1 to 6, the relevance of each of the foundations to 25 

tweets. Of the 25 tweets, 5 were primarily associated with 

each of the foundations. The tweets were presented in a 

  

Figure 1 - Mean scores on both parts of the MFQ30, by priming condition. The prime is administered after part 1 and before 

part 2. Error bars represent standard of error of the mean. 
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random order and its reverse, counterbalanced across 

participants. The ordering of the tweets (i.e., whether 

presented in the original random order or the reversed order) 

did not affect any of the analyses. 

Results 

Moral Foundations Questionnaire 

Figure 1 presents the mean scores on both parts of the 

questionnaire. Since the prime is only presented after 

participants complete the first part, no differences are 

predicted in it. Agreement with the primes did not 

significantly differ based on condition (Care: M = 3.69, SD = 

0.68; Fairness: M = 3.61, SD = 0.63; t(34) = -0.36, n.s.) 

Participants’ responses to the second part of the MFQ30 

were analyzed using a separate general linear model for each 

of the foundations, with the foundation score in the first part 

of the MFQ30 and the prime condition (Fairness vs. Care) as 

independent variables2. Participants’ scores on the second 

part of the questionnaire were correlated to their scores on the 

first part, at least marginally (after correcting for multiple 

tests), for all but the Loyalty/Betrayal foundation (F(1, 32) = 

1.87, p = .18; F(1, 32) > 6, p < .05, r2 > .19 for all other 

foundations). Only the Fairness foundation showed the 

predicted interaction between the score on the first part of the 

MFQ30 and condition (F(1, 32) = 10.00, p < .01, r2 = .34; 

Fairness condition: M = 4.30, SD = 0.78; Care condition: M 

= 4.04, SD = 0.98; F < 1 for all other foundations). 

                                                           
2 Since the hypothesized effect is due to mere exposure to the text, 

participants’ agreement with the primes was not predicted to affect 

the results and it is therefore omitted from the analysis. Importantly, 

Moreover, the scores on the fairness questions of the 

second part of the MFQ30 of participants in the Care 

condition correlated with their fairness score on the first part 

(r(16) = .73, p < .001) while those of participants who read 

tweets evoking fairness did not (r(16) = -0.11, n.s.). This 

suggests that following the fairness primes participants 

concern for fairness was uniformly high – the prime 

essentially set all participants to the same level of concern on 

fairness. In contrast, similar correlations on the harm scores 

of the MFQ30 did not differ significantly (care condition: 

r(16) = .42, p = .08; fairness condition: r(16) = .63, p < .01). 

These results suggest that the fairness prime successfully 

increased the salience of the Fairness/Cheating foundation, 

the care prime did not increase the salience of the Care/Harm 

foundation. 

Ratings of Tweets 

To simplify the analysis of the ratings and avoid repeated 

tests, the analysis of the 25 rated tweets used a single model 

that contrasted the ratings of harm and fairness (although a 

similar, post-hoc, model using all 5 foundations yielded 

qualitatively similar results). This model included the 

participant and the tweet as random variables, and the 

condition as well as the foundation being rated as 

independent variables. To test for the possibility that this 

effect diminishes over time, the 25 tweets were divided into 

5 blocks of 5 tweets based on order of presentation and this 

variable was included in the model (model r2 = .37). As 

models that include this variable show no effect of agreement and 

are otherwise unchanged.  

  
Figure 2 - Mean ratings of tweets on the foundations of Care/Harm and Fairness/Cheating by experimental condition and 

order. Each block represents 5 tweets, in order of presentation. Error bars represent standard of error of the mean. 
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predicted, participants rated tweets as higher in fairness if 

they were previously exposed to tweets that exhibited 

fairness-based reasoning and vice versa (F(1, 1734) = 5.46, p 

< .05). However, this effect quickly diminished as is evident 

by its interaction with the order of presentation (F(1, 1734) = 

3.88, p < .05; see Figure 2). 

Discussion 

The results of the present study demonstrate that reading texts 

that evoke principles of moral reasoning can affect judgments 

and decisions made later. The effects observed in this paper 

are therefore best considered to be a type of priming effects. 

Since priming effects are, for the most part, short lived, the 

rapid decay of the effect in the second part of the study is also 

easily explained. However, it is likely that, because the 

second part of the study overtly asked participant to consider 

all five styles of moral reasoning, it accelerated this decay 

and that in a more natural setting the effect might last longer. 

Perhaps more interesting is the fact that while reading 

tweets involving fairness and cheating resulted in a priming 

effect, reading tweets that favored the foundation of 

Care/Harm did not. One possible explanation is that while the 

federal shutdown readily appealed to the foundation of 

Fairness/Cheating, its appeal to Care/Harm is less direct and 

evident. This is reflected in the tweets – although Care/Harm 

was a dominant foundation in the corpus for liberals, 

considerations of fairness dominated the overall debate (cf. 

Sagi & Dehghani, 2014b). It is possible that rather than 

simply evoking a moral foundation, a consistent and/or clear 

moral position might be required for a text to affect the moral 

reasoning of its reader. 

More generally, there are numerous studies that 

demonstrate how the use of language can affect reasoning, 

both in the lab (e.g., Tversky & Kahneman, 1981), and 

outside of it (e.g., Goodwin, 1994). Moreover, it is possible 

to use language to measure and trace the history of such 

frames (Sagi, Diermeier, & Kaufmann, 2013).  

In a similar vein, there is evidence that situational factors 

affect an individual’s moral reasoning. The bystander effect, 

where individuals are less likely to render assistance when 

there are many other bystanders than when there are few, is a 

prominent example of such an effect (Darley & Latane, 

1968). 

This study combines these two well-known effects and 

demonstrates that this type of framing can provide a context 

in which moral reasoning takes place. More interestingly, it 

is possible that repeated exposure to particular styles of 

reasoning might have a cumulative effect and eventually lead 

to the salience of the relevant foundation being permanently 

increased (or, perhaps, decreased, depending on the 

circumstances of exposure). This type of effect might be at 

the root of the development of moral beliefs and might 

provide insight into how and why such beliefs change. 

Moreover, even temporary effects might have important 

implications. For example, the language used to draft jury 

instructions might influence the verdict one way if it 

highlights fairness and another if it highlights care. Likewise, 

during negotiations, it is possible that a particular choice of 

language and reasoning by one side can serve to focus the 

negotiation in a particular direction, influencing all parties 

towards emphasizing the importance of a specific concern. 
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Appendix A – Primes 

Care/Harm Primes 
 

 Dr. Seuss's #Congress Who Stole #SNAP: Kids 

seniors face health risks due to 

#GovernmentShutdown. #PublicPolicy  

 New #Obama Doctrine: Protect oil, allies, the 

homeland from terrorists  weapons of mass destruction.  

 #governmentshutdown Day 9. Private charity pays 

Military death benefits instead of #Pentagon. What do 

you think? 

 As #soldiers we're told #WWII, #Vietnam, #Iraq, 

were all to protect #Democracy, yet the latest attack 

comes from The #TeaParty #Shutdown 

 #Shutdown: #Obama Keeps Military #Golf_Courses 

#Open, #Closes Military #Grocery_Stores |  

 Mother of fallen #soldier denied death benefits: 

#Criminal to treat our #soldiers this way #congress. via 

@todayshow 

 If #obama can treat our military and vets like he does 

imagine how he's going to be with civilians and our 

healthcare. Disgust 

 #Obama is trying his hardest to create pain - Military 

death benefits denied to families of fallen troops  

 I don't care about the shutdown...PAY the families of 

our fallen heroes!!! #shutdown #governmentshutdown 

#Military #veterans #Obama 

 I wish #Congress cared as much about war vets 

benefits as they do about the war vets memorial. 

#hypocrite #pander #teaparty 

 Sickening that the families of our fallen heroes 

denied benefits by shutdown. Time to stop the 

madness.#shutdown  

 Outrageous not paying death benefits to families of 

our fallen servicemen! This SOB #Obama looking for 

a civil war to become dictator ! 

 The D-Day memorial in Normandy, France has been 

closed, upsetting tourists and veterans.  via @WSJ 

#shutdown 

 Refugees Waiting Overseas Are in Limbo as U.S. 

Shutdown Continues #refugees #shutdown 

#resettlement #newcomers #USA 

 

Fairness/Cheating Primes 
 

 Liberal #Congress members claim that the law must 

apply equally to all...well, except them. #Obamacare 

#Dems #GOP 

 Libs scream #obamacare = law of the land. Weird cuz 

theyre VERY WILLING 2 ignore immigration borders, 

ya kno another LAW OF THE LAND 

 A bunch of liberals looked really stupid tonight, 

talking about #obamacare. They're still ignorant of the 

law. #tcot #election2014 #pathetic 

 Fighting Republican hysteria with calm analysis on 

the ACA. #p2 #toppage #dems #liberals #progressives 

#healthcare 

 Hey #GOP! #OBAMACARE website overloaded 

huh? Looks like Americans want an alternative you 

elephant sized asses! 

 I think it's hilarious T-Party called ACA #Obamacare 

as a negative slur. The more popular it gets, the bigger 

my SMILE gets POTUS's too! 

 Hey #GOP look up the 14th amendment! If u love the 

Constitution Founding Fathers so much, then 

ADHERE to the law of the land. #JustVote 

 Liberal #Congress members claim that the law must 

apply equally to all...well, except them. #Obamacare  

 Equal under the law; all laws enforced equally - its 

pretty simple for everyone to understand except Obama 

#TeaParty #tcot #tngop #gop #ccot 

 Y did the unions get exempt from #Obamacare I 

thought it was the law of the land doesn't it apply to 

everyone like every other law #tcot 

 Funny how libs like @tamaraholder are all about 

#obamacare being the law but other social issues like 

upholding the sanctity of marriage.. 

 LIberals progressives say that #obamacare is the law 

of the land, but they ignore illegals breaking the law of 

the land! 

 also calling progressives 'liberals' (not saying that 

someone IS liberal, but calling them 'liberals') is #GOP 

branding. 

 Smart Libs know Repubs hate that #Obama wins. He 

beat them twice in elections, SCOTUS upheld #ACA. 

It just kills em. 2BAD! 
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Abstract 

Previous studies of causal learning heavily focused on binary 
outcomes; little is known about causal learning with 
continuous outcomes. The present paper proposes a 
qualitative extension of the causal power theory to the 
situation where a binary cause influences a continuous effect, 
and induces causal power under various ceiling situations 
with the continuous outcomes. To test the predictions, we 
systematically manipulated the type of outcome (continuous 
vs. percentage vs. binary) and the contingency information. 
The experiment shows that people estimate causal strength 
based on the linear-sum rule for continuous outcomes and the 
noisy-OR rule for binary outcomes. In the partial ceiling 
situation where causal power is partially inferred but not 
precisely estimated, the distribution of participants’ 
judgments was bimodal with one mode at the minimum value 
and the other at the maximum value, suggesting some 
participants made conservative estimates while others made 
optimistic estimates. These results are generally consistent 
with the predictions of the causal power theory. Theoretical 
implications and future directions are discussed. 

Keywords: causal reasoning; causal inference; causal power; 
continuous variable; integration rules. 

Introduction 

The ability to learn causal relations is essential for 

explaining past events, controlling the present environment, 

and predicting future outcomes. Decision making based on 

causal knowledge enables us to achieve desired outcomes 

and to avoid undesired consequences. When there are two 

causes of a desired outcome, we should consider which 

cause has a high causal strength for producing the outcome. 

To estimate causal strength, we need to consider not only 

the states of the effect in the presence of the cause but also 

that in the absence of the cause (Rescorla, 1968). When a 

teacher thinks about the effect of active encouragement on 
students’ homework performance, for example, he or she 

has to check whether the student finishes the homework 

both in the presence and absence of encouragement. It has 

been recognized that both children and adults readily form 

representations of causal networks (see Holyoak & Cheng, 

2011 for a review). 

As causal relations are unobservable, they must be 

induced from observable events, and covariation among 

observable events serves as a fundamental cue to learn 

causal relations (Hume, 1739/2000). For binary variables, 

covariation is represented as patterns of presence and 

absence. A measure of contingency is described by ΔP 

(Jenkins & Ward, 1965): 

 

ΔP = P(E = 1|C = 1) − P(E = 1|C = 0)             (1) 

 

where P(E = 1|C = 1) is the probability of effect E given the 

presence of candidate cause C, and P(E = 1|C = 0) is the 

probability of E given the absence of C. Values of ΔP range 
from −1 to +1. Positive ΔP values indicate a generative 

causal relation; negative ΔP values indicate a preventive 

causal relation. 

Because ΔP is a measure of associative strength, it does 

not address issues in causation such as confounding and 

ceiling effects. For example, although it is impossible to 

judge the causal effect when the outcome always occurs 

regardless of the presence or absence of the cause (i.e., P(E 

= 1|C = 1) = P(E = 1|C = 0) = 1), the ΔP model indicates 

that there is no causal relation (i.e., ΔP = 0). To model 

causal strength, Cheng (1997) proposed the power PC 

theory and derived generative causal power as an estimate: 
 

wc = ΔP / [1  − P(E = 1|C = 0)]                   (2) 

 

Causal power wc is a function not only of contingency but 

also of the base rates of the effect. When the effect is always 

present, generative causal power is undefined, therefore 

explaining the (generative) ceiling effect. Buehner, Cheng, 

and Clifford (2003) systematically manipulated covariation 

information and demonstrated that judgments were well 

described by the causal power. Causal power is interpreted 

in the framework of causal Bayes nets by Glymour (2001) 

and of causal Bayesian models by Tenenbaum & Griffiths 
(2001; Griffiths & Tenenbaum, 2005). 

Lu, Rojas, Beckers, and Yuille (2016) proposed a 

Bayesian theory of sequential causal learning. Their theory 

assumes that people select a different integration rule 

according to the type of outcome variable. On one hand, the 

noisy-OR rule is appropriate for a binary outcome and is 

consistent with Equation (2) in the causal power theory 

(Cheng, 1997). The rule assumes that two causes influence 

an outcome independently.  It states that the effectiveness of 

two causes, both present, is the sum of the causal power of 
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each minus their product (i.e., P(E = 1|A = 1, B = 1) = wA + 

wB − wA × wB). On the other hand, the linear-sum rule is 

appropriate for a continuous outcome and is widely used in 

associative learning models such as the R-W model 

(Rescorla & Wagner, 1972). This rule simply calculates the 

sum of the influence of each cause (i.e., P(E = 1|A = 1, B = 
1) = wA + wB). Lu et al. (2016) presented a sequential 

Bayesian model that explains previous findings on outcome-

additivity in variations of the blocking paradigm. 

Several empirical studies have provided supporting 

evidence for the use of the linear-sum rule for a continuous 

outcome. Rashid and Buehner (2013) systematically 

manipulated the quantity of continuous outcomes and tested 

which integration rules people use. The results appear 

inconsistent in that participants use the linear-sum rule for a 

generative cause and noisy-OR rule for a preventive cause. 

They suggested that the use of the linear-sum rule might be 

due to the absence of an upper limit for the quantity of the 
continuous outcome in their cover story. Prevention has a 

natural lower limit, the outcome quantity equal to 0, sharing 

that property with binary outcomes. Saito (2015) 

manipulated means and standard deviations in causal 

learning with continuous outcomes and found that 

judgments are largely explained by difference in the means, 

but not by difference in the standard deviations. White 

(2015) examined causal judgments of interventions in 

temporal sequences of a continuous outcome variable in 

single individuals and reported that most of the results were 

explained by the difference between the mean outcome 

value for the pre-intervention time periods and that for the 
post-intervention time periods. These results suggest that 

people use the linear-sum rule for continuous outcomes. 

However, these studies do not reveal whether people use a 

different integration rule depending on the type of outcome 

variable since they did not compare judgments for 

continuous outcomes with those for the binary outcomes. In 

addition, it remains unknown how people estimate causal 

strength under various ceiling situation with the continuous 

outcomes. Since integration rules are core parts of the 

models of causal learning, it is important to investigate how 

people choose an integration rule. 

In this paper, we extend the causal power theory 
qualitatively to address continuous outcomes and derive 

predictions under various ceiling effects. For our purposes, 

we treat cardinal outcomes as a special case of continuous 

outcomes. We also report a study investigating whether 

people choose the appropriate integration rules according to 

the type of outcome variables and whether their judgments 

correspond to causal-power predictions. 

Estimating causal power with continuous outcomes 

The reasoner’s goal is to induce the unobservable causal 

power of a candidate cause from observable events (Cheng, 

1997). Consider a situation where a continuous effect E may 

be produced by a binary background cause B and/or a binary 

candidate cause C. Assume that: 

 

(1) B and C influence E independently, 

(2) B could increase E but not reduce it, 

(3) The causal powers of B and C are independent of 

the frequency of occurrences of B and C, and 

(4) E does not change unless it is influenced. 

 
These assumptions are similar to those with binary cause 

and effect (cf. Cheng, 1997; Pearl, 1998). 

The joint influence of background cause B and candidate 

cause C on the continuous outcome E is given by the linear-

sum rule (cf. Lu et al., 2016). According to this integration 

rule, the influences of multiple causes are integrated by 

simple addition. Since the outcome can take on different 

values, expected value and conditional expected value are 

used to describe its state. The expected value of the 

continuous outcome is calculated as follows: 

 

E[e] = P(b) ∙ wb + P(c) ∙ wc                      (3) 
 

In this equation, P(b) and P(c) denote the probabilities of 

occurrences of the background cause and candidate cause. 

Variables wb and wc are causal powers of the background 

cause and candidate cause. Although two different 

integration rules are used for a binary outcome (i.e., noisy-

OR rule for generative cause; noisy-AND-NOT rule for 

preventive cause), there is no distinction between generative 

and preventive causes in case of a continuous outcome. 

When the cause is present (i.e., P(c) = 1), the conditional 

expected value given the presence of the cause is 

 
E[e|c] = P(b|c) ∙ wb + wc                         (4) 

 

Similarly, the conditional expected value given the absence 

of the cause (i.e., P(c) = 0) is 

 

E[e|¬c] = P(b|¬c) ∙ wb                          (5) 

 

Subtracting Equation 5 from Equation 4 yields the 

difference in conditional expected values (i.e., ΔE = E[e|c] 

− E[e|¬c]). The difference in conditional expected values is: 

 

ΔE = P(b|c) ∙ wb + wc − P(b|¬c) ∙ wb               (6) 
 

If we assume that the background cause and the candidate 

cause occur independently, two conditional probabilities 

equal to one another (i.e., P(b|c) = P(b|¬c) = P(b)). 

Therefore, the causal power of the candidate cause wc is 

represented as follows: 

 

wc = ∆E − {P(b|c) − P(b|¬c)} wb = ∆E             (7) 

 

Within the range of outcome values greater than the 

minimum and less than the maximum, predicted values of 

the causal power are simply the differences in conditional 
expected values. 

Predictions of the value of wc vary depending on the value 

of the continuous outcome. To illustrate these predictions, 
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consider a situation where a teacher investigates the effect 

of active encouragement on students’ homework 

performance and gives 100 homework problems to each 

student. For example, a student had finished 25 out of 100 

previous homework problems assigned; after the 

encouragement, the student finished 75 out of 100 new 
homework problems assigned. The causal power wc is the 

difference in performance before and after the 

encouragement (i.e., ΔE = E[e|c] − E[e|¬c] = 75 – 25 = 50). 

However, this is not the case where one of the outcome 

values reaches the upper limit. We hypothesize that 

depending on the reasoner’s assumption about the 

counterfactual value of the outcome if there were no upper 

limit, wc has a range of possible values.  We replace E[e|c] 

in Equation (4) with the assumed counterfactual value 

E’[e|c]. Suppose a student had finished 50 out of 100 

previous homework problems assigned and then finished 

100 out of 100 new homework problems assigned. It is 
inferred that the causal power is equal to or larger than 50, 

but not precisely determined. Thus, the prediction of the 

causal power theory is an interval. Whereas some cautious 

reasoners might estimate the minimum value in the interval 

(50 in this case, resulting from E’[e|c] = 100), other 

reasoners might estimate a higher value in the interval (e.g., 

100, resulting from E’[e|c] = 150). When both outcomes are 

at the maximum value (e.g., a student finished 100 out of 

100 homework problems regardless of the encouragement), 

the interval spans the entire range from 0 on and causal 

power becomes undefined. We call the former the partial 

ceiling situation and the latter the full ceiling situation. The 
difference between the partial and full ceiling situations is a 

unique feature in causal learning with continuous outcomes 

that have maximum values. The predictions of the causal 

power theory are shown in Table 1. 

The purpose of the present study is to investigate whether 

people use proper integration rules according to the type of 

outcome variable and whether people differentiate between 

the partial and full ceiling situations. In addition to the 

conditions with continuous outcomes and binary outcomes, 

we added a condition with percentage outcomes. This is 

 

Table 1: Design and predictions of the experiment. 

100(0) 0(0) 100 ≥100
* 1.00(0) 0.00(0) 1.00 1.00

100(0) 25(4.3) 75 ≥75 1.00(0) 0.25(0.4) 0.75 1.00

75(4.3) 0(0) 75 75 0.75(0.4) 0.00(0) 0.75 0.75

100(0) 50(5) 50 ≥50 1.00(0) 0.50(0.5) 0.50 1.00

75(4.3) 25(4.3) 50 50 0.75(0.4) 0.25(0.4) 0.50 0.67

50(5) 0(0) 50 50 0.50(0.5) 0.00(0) 0.50 0.50

100(0) 75(4.3) 25 ≥25 1.00(0) 0.75(0.4) 0.25 1.00

75(4.3) 50(5) 25 25 0.75(0.4) 0.50(0.5) 0.25 0.50

50(5) 25(4.3) 25 25 0.50(0.5) 0.25(0.4) 0.25 0.33

25(4.3) 0(0) 25 25 0.25(0.4) 0.00(0) 0.25 0.25

100(0) 100(0) 0 NA 1.00(0) 1.00(0) 0.00 NA

75(4.3) 75(4.3) 0 0 0.75(0.4) 0.75(0.4) 0.00 0.00

50(5) 50(5) 0 0 0.50(0.5) 0.50(0.5) 0.00 0.00

25(4.3) 25(4.3) 0 0 0.25(0.4) 0.25(0.4) 0.00 0.00

0(0) 0(0) 0 0 0.00(0) 0.00(0) 0.00 0.00

Continuous & Percentage

E [e |c ] E [e |¬c ] ∆E
causal

power

Binary

P (e |c ) P (e |¬c ) ∆P
causal

power

 
Note.  Numbers in parentheses are standard deviations. The 

causal power theory predicts “≥100” for the continuous 

group and “100” for the percentage group. 

because the upper limit for percentage outcomes has a clear 

maximum of 100, unlike that for continuous outcomes. 

Method 

Participants 

A total of 136 participants were recruited from Amazon 

Mechanical Turk (http://www.mturk.com/). An additional 

35 participants were tested but excluded for failing to pass 

the comprehension question (see below for details). All 

were native English speakers and residing in the US. 

Experimental design 

Participants were randomly assigned to one of three groups 

differing on the type of outcome (continuous, percentage, or 

binary). For all groups, the candidate cause was a binary 

variable (i.e., presence or absence of encouragement).  

Exclusion by the comprehension question resulted in 

unequal group sizes (56 participants in the continuous group, 

43 in the percentage group, and 37 in the binary group). In 

addition to manipulating type of outcome, contingency 

information was manipulated within-subject (see Table 1). 

In the continuous and percentage groups, there were 15 
contingency conditions resulting from the combination of 

five levels (100, 75, 50, 25, 0) of conditional expected 

values in the presence and absence of the cause. The 

difference between E[E|C = 1] and E[E|C = 0] for each 

condition yielded five levels of nonnegative values in the 

outcome magnitude (ΔE = E[E|C = 1] − E[E|C = 0] = 100, 

75, 50, 25, 0). Similarly, the binary group had five levels of 

nonnegative values in the difference (i.e., ΔP = P(E = 1|C = 

1) − P(E = 1|C = 0) = 1.00, .75, .50, .25, .00). Participants in 

each group completed the causal learning task for all 

contingency conditions. The order of the contingency 

conditions was randomized across participants. 

Procedure 

Instructions Participants were asked to read the instructions 

carefully and answer each question thoughtfully. The exact 

instructions in the continuous group were as follows 
(italicized sentences differed across groups): 

 

A math teacher wants to investigate the effect of 

active encouragement on students’ homework 

performance. Students are given 100 math homework 

problems of similar difficulty. The teacher randomly 

assigns some students to receive encouragement and 

assigns other students to receive no encouragement. 

Imagine that you are a teaching assistant for the 

class. You are responsible for checking whether or 

not a student receives encouragement and how many 

out of the 100 homework problems the student 

finishes (0-100). 
You will see several sets of student records. Each 

set contains the records of students from a school 

ordered in a random sequence. Each record describes 
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a student’s homework performance before and after 

the experiment. After observing the records of sixteen 

students from a school, you will be asked to judge 

how much the encouragement increases performance 

at that school. 

 
For the continuous group, the effect was a continuous 

variable (i.e., number of finished homework problems). The 

same instructions were used in the percentage group with 

one exception: the outcome observation was described as 

“what percentage of the homework problems the student 

finishes (0-100%).” In the binary group, both cause and 

effect were binary variables. Specifically, the instructions 

stated the outcome observation as “whether or not the 

student finishes the homework problems.” 

After reading the instructions, participants were asked to 

answer the comprehension question that checks the 

understanding of random assignment. The exact question 
was (italicized sentences differed across groups): 

 

Before you begin viewing the records of the students’ 

homework performance, consider the following 

situation. Suppose we conduct a study, and find that: 

the average number of the homework problems 

students in the experimental group (those who 

received encouragement) finish is 65. Likewise, the 

average number of the homework problems students 

in the control group (those who did not receive 

encouragement) finish is 65 as well. Recall that the 

students are were randomly assigned to one or the 
other group. Can the homework performance in the 

experimental group be attributed to encouragement? 

 

Participants were required to provide a “yes” or “no” answer 

and to justify their answer briefly. This question was 

intended to exclude participants who did not read the 

instructions properly and to encourage the assumption that 

the influence of background causes (i.e., causes other than 

encouragement) on homework performance was constant 

across the two groups (cf. Buehner et al., 2003). Similar 

questions were used in the percentage and binary groups 

with the corresponding modifications of the descriptions in 
terms of percentages. Participants received no feedback on 

their answers to this question. 

Learning phase The learning phase consisted of 16 trials 

that presented information about the cause and effect in a 

pre-post design. For the continuous group, participants were 

requested to observe whether a student receives 

encouragement (present or absent) and how many out of the 

100 homework problems the student finishes (0-100) before 

and after encouragement. On each trial, homework 

performance before the encouragement for a student was 

described with the illustration and text (e.g., “A student (ID: 

12345) at this school finished 25 out of 100 previous 

homework problems assigned”). Student ID was a five-digit 

random number and designed to show that each trial 

described a different student. The states of the 

encouragement were provided with the sentence (e.g., “The 

student received encouragement” or “The student did not 

receive encouragement”). The other two groups followed an 

identical procedure, except that the outcomes were 

expressed in percentage terms for the percentage group (e.g., 

“The student finished 75% of new homework problems”) 

and as present or absent in the binary group (e.g., “The 

student finished the new homework problems”). The inter-

stimulus interval was 1000-ms, and the button to proceed to 
next trial was presented 500-ms after the presentation of all 

the information. Each trial was separated by a 500-ms blank 

screen. Participants were required to learn causal strength of 

the encouragement on homework performance through trials.  

There were 16 trials for each contingency condition in 

Table 1. Encouragement was present on 8 trials and was 

absent on 8 trials. For the continuous group, the outcomes 

were normally distributed with the variance set to be ten 

times that in the binary group (see standard deviations in 

parentheses in Table 1). The order of trials was randomized 

within-subject. To familiarize participants with the 

procedure, practice trials were presented prior to the 

learning phase. 
Test phase After the 16 learning trials, participants were 

asked to estimate the causal strength of the candidate cause 

in a counterfactual question. In the continuous group, the 

question was “Suppose the next student (ID: 23456) at this 

school finished 0 out of 100 previous homework problems 

assigned. If the student now receives encouragement, how 

many out of 100 new homework problems will the student 

finish?” The responses were made on a rating scale ranging 

from 0 to 100. Our scale limits the maximum strength to 

100 so that responses can be compared across groups. 

Similar questions were used in the percentage and binary 

groups with modifications of the descriptions corresponding 

to the outcome type (e.g., for the binary group, “If these 100 

students now receive encouragement, how many of them 

will finish their new homework problems?”). In addition, 

participants were also asked to report confidence in their 

judgment on a scale ranging from 0 (not confident at all) to 

100 (extremely confident). After their judgments, 
participants completed the next contingency condition. To 

encourage the independence of judgments in each condition, 

participants received the following instructions: “Recall that 

the schools have students from very different socioeconomic 

backgrounds, and encouragement may have different effects 

on the students from school to school. Please evaluate each 

school separately.”  

Results 

Participants who failed to pass the comprehension question 

were excluded from our analysis below. This procedure 

reduced noise, but did not alter the general pattern of the 

results. Since the causal power theory makes different 

predictions for the non-ceiling and ceiling situations, 

separate analyses were conducted. Figure 1 shows the mean 

ratings of causal strength in non-ceiling situations. Overall, 

participants clearly differentiated between continuous and 
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Figure 1: Mean ratings of causal strength in each contingency condition. Judgments with the same level of ΔE or ΔP in the 

non-ceiling situations are connected by lines. Judgments in the partial and full ceiling situations are represented by black 
symbols. 

 

percentage outcomes on one hand and binary outcomes on 

the other. In the continuous group, judgments generally 

corresponded to the difference between the conditional 

expected values (i.e., ΔE = E[E|C = 1] − E[E|C = 0]). 

Similar results were obtained in the percentage group, but 

the trend was much more evident. In contrast, judgments in 

the binary group were affected by both the difference 

between conditional probabilities ΔP and the base rates of 

the effect P(E = 1|C = 0). These descriptive analyses were 

confirmed by statistical analyses. 
A two-way mixed ANOVA with the type of outcome 

(continuous vs. percentage vs. binary) as between-subjects 

factor and the contingency condition (11 contingency 

conditions except for the ceiling situations) as within-

subject factor resulted in a significant two-way interaction, 

F(20, 1330) = 6.45, MSE = 210.3, p < .001, η
 2

 G = .069. To 

explore the results in greater detail, we analyzed the effect 

of the type of outcome for each ΔE and ΔP condition. In the 

ΔE = 50 and ΔP = .50 conditions, a two-way mixed 

ANOVA revealed a significant interaction between the type 

of outcome and contingency condition, F(2, 133) = 5.54, 

MSE = 116.1, p = .005, η
 2

 G = .036. As expected, judgments 

varied as a function of the base rate of the effect in the 

binary group, F(1, 36) = 10.95, MSE = 206.5, p = .002, η
 2

 G 

= .118, but not in the continuous and percentage groups, Fs 

< 1. The interaction was also significant in the ΔE = 25 and 

ΔP = .25 conditions, F(4, 266) = 7.76, MSE = 153.6, p 

< .001, η
 2

 G  = .057, and in the ΔE = 0 and ΔP = .00 

conditions, F(6, 399) = 2.33, MSE = 242.7, p = .032, η
 2

 G 

= .015. Although the incremental pattern of the results in the 

binary group in the ΔP = .00 condition was inconsistent 

with the predictions of the causal power theory, it may be 

explained by misperception of contingency for sequential 

trials due to working memory limitations. This outcome-

density effect is consistent with causal-power predictions 

given the misperceptions (Cheng, 1997).  It is worth noting 

that a similar but smaller trend was found in the continuous 

group, but not in the percentage group. This might be 

because the continuous group needs an assumption of equal 

upper limits to compare outcomes whereas the percentage 

group does not. 

Figure 2 depicts distributions of individual judgments in 

the partial and full ceiling situations. In the partial ceiling 

situation (i.e., 100-25, 100-50, 100-75 conditions), a range 

of causal power is inferred (e.g., equal to or larger than 75 in 

the 100-25 condition). The distribution of participants’ 

judgments appears bimodal with one mode at the minimum 

value of the interval and the other at the maximum value of 

the interval given our scale. These results indicate that some 
participants made conservative estimates while others made 

optimistic estimates. Dip tests confirmed the bimodality 

both in the continuous group (D = 0.08, p = .013 in the 100-

25 condition, D = 0.13, p < .001 in the 100-50 condition, D 

= 0.14, p < .001 in the 100-75 condition) and percentage 

group (D = 0.13, p < .001 in the 100-25 condition, D = 0.16, 

p < .001 in the 100-50 condition, D = 0.16, p < .001 in the 

100-75 condition). In contrast, the bimodality was not 

observed in the binary group, and the mode of the 

distribution corresponded to the point estimate of causal 

power (i.e., wc = 1). 

In the full ceiling situation where the causal power cannot 
be estimated (i.e., 100-100 condition), the distributions of 

the continuous and percentage groups appear bimodal while 

that of the binary group appear trimodal. This might be 

because participants had no option to answer “I don’t know” 

in our materials. 

Discussion 

The present study qualitatively extended the causal power 

theory to deal with the continuous outcomes and tested 

whether people differentiate between continuous and binary 

outcomes. The results showed that people estimate causal 

strength based on the linear-sum rule for continuous 

outcomes and the noisy-OR rule for binary outcomes. In the 

partial ceiling situation where the estimation of causal 

power has a range, the distribution of participants’ ratings 

was bimodal with one mode at the minimum value and the 

other at the maximum value, suggesting some participants 

made conservative estimates while others made optimistic 
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Figure 2: Distributions of individual judgments in the partial 

and full ceiling situations. 

 

estimates. These results are generally consistent with the 
predictions of the causal power theory. 

The present study has theoretical implications for 

understanding how people estimate causal power. Whereas 

covariation models (e.g., ΔP model, Jenkins & Ward, 1965) 

and associative models (e.g., R-W model, Rescorla & 

Wagner, 1972) adopt one integration rule, Bayesian models 

generally assume multiple integration rules (Griffiths & 

Tenenbaum, 2005, 2009; Lu et al., 2008, 2016). Our results 

demonstrate that people choose the proper integration rule 

according to the type of outcome, supporting the Bayesian 

models. Notably, this finding implies that people assume the 

invariance of causal power as a default, consistent with the 
proposal that causal invariance plays a key role in the 

construction of generalizable causal knowledge (Cheng & 

Lu, in press). The two integration rules respectively 

represent the invariance of causal power for the two 

outcome variable types.  Another theoretically important 

aspect is the bimodal distributions in the judgments in the 

partial ceiling situations. Computational models generally 

predict averaged results.  The observed bimodality suggests 

that models incorporating different conservatism values 

and/or priors may explain individual differences in the 

partial ceiling situations. Further investigations will shed 

more light on the question of how people estimate causal 
power. 
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Abstract 

The positive relationship between spatial ability and 
mathematical skills is a classical result in developmental and 
cognitive psychology. Given this correlational relationship, 
researchers have tried to establish whether spatial training can 
increase mathematical ability. Such research has provided 
mixed results. In this study, we analysed the effects of two 
types of spatial training and handedness on primary school 
children’s arithmetical ability. The participants were pre-tested 
on a test of arithmetic and assigned to one of three groups: (a) 
one hour of mental rotation and translation training, (b) one 
hour of mental translation training only, or (c) a no-contact 
group. The results showed no significant difference between 
training groups and a significant interaction between training 
group and category of handedness. Interestingly, only 
extremely right-handed children in the mental rotation and 
translation group seemed to benefit from the training. These 
outcomes suggest that any spatial training needs to include 
mental rotation activities to be effective, and that the 
relationship between spatial training and achievement 
mathematics appears to be moderated by handedness. 

Keywords: mathematics; mental rotation; spatial ability, 
handedness; STEM. 

Introduction 
Concerns have been raised about young people’s low 
achievements in mathematics, both in Europe (Greg, 2009) 
and the United States (Hanushek, Peterson, & Woessmann, 
2012; Richland, Stigler, & Holyoak, 2012). Students’ 
insufficient mathematical ability has serious implications, as 
the likelihood of graduating in Science, Technology, 
Engineering, and Mathematics (STEM) subjects is limited by 
one’s mathematical ability. The job market increasingly 
demands workforce with STEM expertise and requires 
increasingly higher competencies, making competition 
fiercer worldwide (Halpern et al., 2007). 

Students’ attainment in mathematics is thus a matter of 
crucial practical importance. For this reason, an impressive 
amount of research has been devoted to pinpointing the 
cognitive correlates of mathematical ability (e.g., Deary, 
Strand, Smith, & Fernandes, 2007; Lubinski, 2010; Peng, 
Namkung, Barnes, & Sun, 2016; Rohde & Thompson, 2007; 

Wai, Lubinski, & Benbow, 2009) and finding effective 
methods to improve students’ mathematical skills. 

These methods not only include traditional school 
interventions (for a review, see Hattie, 2009), but also 
cognitive-training based treatments. Examples of such 
treatments to foster students’ attainment in mathematics and 
other academic and cognitive skills include working memory 
training (Sala & Gobet, 2017a), chess instruction (Gobet & 
Campitelli, 2006; Sala, Foley, & Gobet, 2017; Sala & Gobet, 
in press-a; Sala & Gobet, 2016; Sala, Gobet, Trinchero, & 
Ventura, 2016; Sala, Gorini, & Pravettoni, 2015; Trinchero 
& Sala, 2016), and music training (Sala & Gobet, 2017b). 
The results show either minimal overall effects on academic 
achievement and overall cognitive ability (music and 
working memory training) or medium effects possibly due to 
placebo effects (chess). These results are in line with 
Thorndike and Woodworth’s (1901) common element theory 
according to which far transfer – i.e., the generalization of a 
set of skills across domains only loosely related – rarely 
occurs (Gobet, 2016; Sala & Gobet, 2017c; Sala & Gobet, in 
press-b). 

Spatial Training 
Another, relatively understudied, type of intervention to 
enhance mathematical ability is spatial training. Spatial 
training includes activities such as 2D and 3D mental 
rotation, spatial reasoning and visualizations (Sorby, 2011). 
However, given the difficulty of far transfer to take place, 
why should spatial training increase mathematical ability? 

The Relationship between Spatial and 
Mathematical Abilities 
Problem solving in mathematics and STEM disciplines 
largely relies on spatial ability (Stieff & Uttal, 2015). 
Mechanical physics and engineering deal with movement and 
interaction between elements in a geometrical space. 
Mathematicians work with functions represented in 2D and 
3D space. More generally, several branches of mathematics 
– necessary to master disciplines such as physics and 
engineering – require the manipulation of spatial 
relationships (e.g. geometry, calculus, topology).  
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The tight relation between spatial ability and mathematical 
ability has been established empirically. These two separate 
constructs are highly correlated to each other (Mix et al., 
2016). Spatial abilities – such as mental rotation ability (Mix 
et al., 2016; Wai, Lubinski, & Benbow, 2009) – are thus 
strong predictors of achievement in mathematics, both in 
children (Lauer & Lourenco, 2016) and in undergraduate and 
doctorate students (Wai et al., 2009). Thus, several 
researchers have suggested that training spatial ability causes 
improvement in mathematics achievement. 

Spatial Training to Train Spatial and STEM 
Abilities: The Empirical Evidence 
Before asking whether spatial training leads to improving 
mathematical skills such as arithmetic or geometry, one has 
to verify whether spatial ability can be trained. A meta-
analysis carried out by Uttal et al. (2013) suggests that this is 
the case. Spatial training appears to transfer both to the 
trained tasks and other spatial tasks not directly trained.1 
Crucially, from a practical point of view, spatial ability seems 
to be malleable enough to be significantly boosted by a short-
term training (Uttal et al., 2013). 

The evidence supporting the effectiveness of spatial 
training at improving performance on spatial tasks appears to 
be quite solid. Regrettably, it is not possible to reach the same 
conclusion for non-spatial tasks. The research on spatial 
training to improve STEM achievement has provided 
promising results, but the number of studies is still relatively 
limited. 

In His, Linn, and Bell (1997), a group of undergraduates 
improved their attainment in an engineering course after 
attending a voluntary spatial training (3D orthographic 
projections). However, the fact that the sample was self-
selected casts serious doubts upon the reliability of the 
outcome. More recently, Sorby (2009) reported that a group 
of undergraduates in engineering with low spatial ability 
improved their course grades after spatial training (Sorby, 
2011), whereas a control group with no training did not show 
any amelioration. These positive findings were replicated two 
years later (Sorby, Casey, Veurink, & Dulaney, 2013). Less 
clear were the results in Miller and Halpern’s (2013) study. 
They did find a moderate positive effect after delivering 
spatial training, but only in items related to Newtonian 
mechanics. No benefits occurred in other courses. 

The studies mentioned above dealt with university 
students. Cheng and Mix (2014) focused on the effects of 
short-term (40 minutes) spatial training on children’s basic 
arithmetical ability. The training consisted of 40 minutes of 
mental rotation and mental translation exercises suitable for 
children (Ehrlich, Levine, & Goldin-Meadow, 2006). The 
treatment group showed a small improvement 
(approximatively d = 0.20) in the test of arithmetic, limited 

                                                           
1 It must be noticed that transfer of training to multivariate 

measures of a particular skill (e.g., spatial ability) does not 
necessarily mean that that skill has been successfully enhanced 
(Shipstead, Redick, & Engle, 2012). In fact, the improvement in a 

to one particular type of items (missing-term problems). A 
study by Hawes, Moss, Caswell, and Poliszczuk (2015) 
found no significant effects of mental rotation training on a 
group of primary school children’s arithmetical ability. 
Finally, Xu and LeFevre (2016) reported no transfer from 
spatial training to a number line task in a sample of 
kindergarten children. 

The Potential Moderating Role of Handedness 
Several researchers have argued that the relation between 
mathematical and spatial ability may be moderated by 
handedness (Casey, Pezaris, & Nuttall, 1992). Handedness is 
believed to affect achievement in mathematics because it 
represents the degree of dominance and development of the 
right hemisphere, which is involved in cognitive tasks such 
as spatial reasoning (Ganley & Vasilyeva, 2011) and mental 
rotation ability (O’Boyle et al., 2005). Some non-right-
handers (i.e., left-handed and ambidextrous people) have a 
more developed right hemisphere than right-handers 
(Gutwinski et al., 2011). Such a condition may explain why 
non-right-handers excel in domains where spatial ability is 
required. For example, non-right-handers are present among 
chess players in significantly greater ratio than the general 
population (Gobet & Campitelli, 2007). The same pattern has 
been found in artists (Preti & Vellante, 2007). 

Whether non-right-handers are better than right-handers in 
mathematics is still a matter of debate (e.g., Benbow, 1986; 
Cheyne, Roberts, Crow, Leask, & García-Fiñana, 2010; 
McManus, 2002). However, it appears that among right-
handers, those who show a consistent preference for using the 
right hand (hereafter, extreme right-handers) underperform in 
mathematics (e.g., Annett & Manning, 1989; Cheyne et al., 
2010; Peters, 1991). The possible explanation relies again on 
the degree of development of the right hemisphere in 
comparison to the left hemisphere. According to Annett 
(2002), a strong dominance of the left hemisphere may lead 
to both being extremely right-handed and suffering from 
some deficits in spatial ability and, hence, in mathematics. In 
line with this idea, in a recent large study (total N = 2,314), 
extreme right-handers obtained a poorer score on a variety of 
tests of mathematics compared to moderate right-handers 
(Sala, Signorelli, Barsuola, Bolognese, & Gobet, submitted). 

The Present Study 
In this study, we replicated and extended Cheng and Mix’s 
(2014) study. There were two crucial additions. First, we 
tested whether the effects of training (if any) on mathematical 
ability interact with handedness. We expected extreme right-
handers to perform more poorly on the pre-test of arithmetic 
than the moderate right-handers and non-right-handers. Most 
importantly, given that the extreme right-handers are 
believed to have a lower mathematical ability because of a 

variety of tasks may stem from some general ability at performing 
spatial tasks (e.g., better strategies). In any case, this important 
theoretical issue is beyond the aims of this article. 
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spatial deficit, we also expected them to benefit most from 
the spatial training task. Second, along with the treatment and 
no-contact groups, another treatment group practicing only 
mental translation was included. The rationale was to 
understand whether mental translation training alone (i.e., no 
mental rotation) could positively influence attainment in 
mathematics (see below for details).  

Method 

Participants 
A total of 159 first, second, and third graders in nine classes 
of a primary school in northern Italy took part in this 
experiment. The mean age of the participants was 7.61 years 
(SD = 0.89). Parental consent was asked and obtained for all 
the participants. 

Materials 
The participants were administered (a) the Edinburgh 
Handedness Inventory (EHI),2 (b) a spatial ability task 
(mental rotation and translation) suitable for children (score 
range 0 – 16; Ehrlich et al., 2006), and (c) a test of arithmetic, 
designed by the experimenters (score range 0 – 27; Cronbach 
Alpha = .96). 

EHI is a multiple-item questionnaire that provides a 
continuous measure of handedness (h), which is calculated 

using the formula ݄ ൌ
ோି

ோା
, where R and L indicate the 

number of preferences for the right and left hand, 
respectively. The range of values is between -1, for extreme 
left-handedness, and +1, for extreme right-handedness. The 
participants were categorized according to their h-values 
(Casey, 1995): 

 
a) Extreme right-handers: h ≥ .90 (N = 48). 
b) Moderate right-handers: .40 < h < .90 (N = 81). 
c) Non-right-handers: h ≤ .40 (N = 30). 

 
The test of mental rotation and translation ability consists 

of 16 items. The participant is shown four whole pictures and 
two parts of a flat shape. The participant has to mentally put 
the two pieces together and choose one of the four whole 
pictures (Figure 1). 

In the test of arithmetic, finally, the participants solved 
simple mathematical equations (e.g., 3 + 4 = ?) and missing-
term problems (e.g., 3 + ? = 7). 

Design 
All the nine classes were pre-tested in arithmetic, spatial 
ability (rotation/translation), and EHI. A week later, the nine 
classes were randomly assigned to three groups: 

a) Three classes (one first-, one second-, one third-
grade) attended 60 minutes of mental rotation and 
translation exercises. This training consisted of 16 

                                                           
2 The item “striking a match” was considered inappropriate for 

primary school children and thus replaced with the item “dealing 
cards” (Groen, Whitehouse, Badcock, & Bishop, 2013). 

rotation items and 16 translation items. Analogously 
to the testing session, the participants were asked to 
choose one of the pictures. Finally, children were 
given the two parts of the picture on separate pieces 
of cardstock and requested to confirm or change the 
choice after putting them together (Figure 2). 

b) Three classes (one first-, one second-, one third-
grade) attended 60 minutes of 32 translation 
exercises only (translation group; Figure 3). The 
training procedure was analogous to that in the 
previous group. 

c) Three classes (one first-, one second-, one third-
grade) did not carry any activity (no-contact group). 
 

Figure 1. Two examples of the items used in the spatial test 
(translation and rotation). 

 
 

 
Figure 2. An example of rotation item used in the full-

training group. 
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Figure 3. An example of translation item used in both the 

training groups. 
 

Finally, the three groups were post-tested in arithmetic and 
spatial ability immediately after the end of the training.  

Results 

Preliminary Analyses 
The three groups did not differ in terms of age (p = .970) or 
pre-test arithmetic test scores (p = .391). As expected, the 
category of handedness had a significant effect on the pre-test 
scores in arithmetic (F(2, 156) = 6.50,  p = .002). Extreme 
right-handers were outperformed by both moderate right-
handers (p < .001) and non-right-handers (p = .048). 

The pre-post test correlations for arithmetical ability and 
spatial ability were r = .94 and r = .60, respectively (both ps 
< .001). 

Finally, an ANCOVA (pre-test scores as the covariate) 
confirmed that the spatial training had a significant effect on 
the score of spatial ability. In fact, the two training groups 
(full and translation) outperformed the no-contact group (p = 
.030 and p = .004, respectively). 

Main Analysis: Scores in Arithmetical Ability 
The pre- test and post-test scores in arithmetical ability are 
summarized in Table 1. 

 
Table 1. Scores in arithmetical ability the three groups. 

 
Group N Pre-test Post-test 
Full-training 56 16.73 (9.20) 18.04 (7.98) 
Translation 53 18.81 (7.02) 18.79 (6.79) 
No-contact 50 17.18 (8.32) 18.40 (8.17) 

Note. Standard deviations are shown in brackets. 
 

An ANCOVA (Table 2) was run to analyse the effects of the 
independent variables (group and category of handedness) on 
the results of the post-test of arithmetical ability, using pre-
test score and age as covariates. The results showed no 

significant effect of age (in years, p = .176), category of 
handedness (h-cat; p = .846), or group (p = .491). As 
expected, a significant effect of the pre-test scores was found 
(p < .001). Interestingly, a significant interaction between 
group and category of handedness was reported (p = .013). 
 

Table 2. The ANCOVA model of the scores in arithmetic 
 

Variable Df F-value p-value 
Group 2 0.72 .491 
h-cat 2 0.17 .846 
Age 1 1.85 .176 
Pre-test scores 1 333.69 .000 
Group*h-cat 4 3.27 .013 

 
The extreme right-handers in the full-training group 

showed the greatest mean improvement in the test of 
arithmetic compared to the other extreme right-handers. The 
pre- and post-test mean scores are summarized in Table 3. 

 
Table 3. Extreme right-handers’ scores in the three groups. 

 
Group N Pre-test Post-test 
Full-training 14 10.71 (8.32) 13.57 (7.80) 
Translation 17 18.41 (7.98) 18.47 (7.54) 
No-contact 17 12.88 (8.35) 14.76 (8.88) 

Note. Standard deviations are shown in brackets. 

Discussion 
The results of this experiment show no significant impact of 
the one-hour spatial training on children’s arithmetical 
ability. In fact, most of the variance in the post-test of 
arithmetical ability is explained by pre-test scores (r = .94; r2 
 100 = 88%). This outcome is in accordance with previous 
experimental studies (e.g., Cheng & Mix, 2014; Hawes et al., 
2015; Xu & LeFevre, 2016) examining the effects of spatial 
training on arithmetical ability. In a wider perspective, our 
results are consistent with substantial research on far transfer 
(Burgoyne et al., 2016; Sala et al., 2017; Sala & Gobet, 2016, 
2017a, 2017b). 

However, the significant role played by handedness, 
predicted by Annett (2002), sheds light on the potential 
benefits of spatial training on arithmetical ability. The 
extreme right-handers in the full-training group reported the 
best improvement in mathematical ability compared to both 
the whole groups and the sub-samples of extreme right-
handers. This pattern of results suggests that short-term 
mental spatial training may be effective for a particular 
subsample of underachievers in arithmetic (i.e., extreme 
right-handers), as long as mental rotation activities are 
included. 

Recommendations for Future Research 
This study highlights the possible benefits of mental rotation 
training for extreme right-handers’ arithmetical ability. In 
order to confirm (or disconfirm) our results, future 
investigations should replicate and extend the design of the 

3042



current study. First, even if the total sample was large (N = 
159), the subgroup of extreme right-handers consisted of only 
a few tens of individuals (N = 48) distributed across three 
groups. Given the importance of that subgroup for the main 
hypothesis of this study, future experiments should include 
more participants (e.g., as twice as many) to increase the 
statistical power, and hence the reliability, of the analysis and 
outcomes. Second, the future investigations should 
systematically manipulate the duration of training and 
administer both immediate and delayed post-test 
assessments. This way, it would be possible to evaluate 
whether the effects of spatial training on extreme right-
handers’ on mathematical ability increase with the duration 
of training and last after its end. Third, we collected only one 
measure of mathematical ability (i.e., arithmetic). The use of 
multivariate measures of mathematical ability and spatial 
ability would contribute to establishing whether spatial 
training benefits for extreme right-handers goes beyond basic 
arithmetic ability.  
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Dissolving the Grounding Problem: How the Pen is Mightier than the Sword
Nancy Salay

Queen’s University

Abstract: The computational metaphor for mind is still the central guiding idea in cognitive science despite many insightful
and well-founded rejections of it. There is good reason for its staying power: when we are at our cognitive best, we reason
about our world with our concepts. But the challengers are right, I argue, in insisting that no reductive account of that capacity
is forthcoming. Here I describe an externalist account that grounds representations in organism-level engagement with its
environment, not in its neural activity.
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Abstract

The Frame Problem (FP) is a puzzle in philosophy of mind
and epistemology, articulated by the Stanford Encyclopedia of
Philosophy as follows: “How do we account for our apparent
ability to make decisions on the basis only of what is relevant
to an ongoing situation without having explicitly to consider
all that is not relevant?” In this work, we focus on the causal
variant of the FP, the Causal Frame Problem (CFP). Assuming
that a reasoner’s mental causal model can be (implicitly) repre-
sented by a causal Bayes net, we first introduce a notion called
Potential Level (PL). PL, in essence, encodes the relative po-
sition of a node with respect to its neighbors in a causal Bayes
net. Drawing on the psychological literature on causal judg-
ment, we substantiate the claim that PL may bear on how time
is encoded in the mind. Using PL, we propose an inference
framework, called the PL-based Inference Framework (PLIF),
which permits a boundedly-rational approach to the CFP, for-
mally articulated at Marr’s algorithmic level of analysis. We
show that our proposed framework, PLIF, is consistent with
several findings in the causal judgment literature, and that PL
and PLIF make a number of predictions, some of which are
already supported by existing findings.
Keywords: Frame Problem; Time and Causality; Bounded
Rationality; Algorithmic Level of Analysis; Rational Process
Models

1 Introduction
At the core of any decision-making or reasoning task, re-
sides an innocent-looking yet challenging question: Given
an inconceivably large body of knowledge available to the
reasoner, what constitutes the relevant for the task and what
the irrelevant? The question, as it is posed, echoes the well-
known Frame Problem (FP) in epistemology and philosophy
of mind, articulated by Glymour (1987) as follows: “Given
an enormous amount of stuff, and some task to be done
using some of the stuff, what is the relevant stuff for the
task?” Fodor (1987) comments: “The frame problem goes
very deep; it goes as deep as the analysis of rationality.”

The question posed above perfectly captures what is really
at the core of the FP, yet, it may suggest an unsatisfying ap-
proach to the FP at the algorithmic level of analysis (Marr,
1982). Indeed, the question may suggest the following two-
step methodology: In the first step, out of all the body of
knowledge available to the reasoner (termed, the model), she
has to identify what is relevant to the task (termed, the rele-
vant submodel); it is only then that she advances to the second
step by performing reasoning or inference on the identified
submodel. There is something fundamentally wrong with this
methodology (which we term, sequential approach to reason-
ing) which bears on the following understanding: The rele-
vant submodel, i.e., the portion of the reasoner’s knowledge
deemed relevant to the task, oftentimes is so enormous (or
even infinitely large) that the reasoner—inevitably bounded

in time and computational resources—would never get to the
second step, had she adhered to such a methodology. In other
words, in line with the notion of bounded rationality (Simon,
1957), a boundedly-rational reasoner must have the option, if
need be, to merely consult a fraction of the potentially large—
if not infinitely so—relevant submodel.

Icard and Goodman (2015) elegantly promote this insight
when they write: “Somehow the mind must focus in on some
“submodel” of the “full” model (including all possibly rele-
vant variables) that suffices for the task at hand and is not too
costly to use.”1 They then ask the following question: “what
kind of simpler model should a reasoner consult for a given
task?” This is an inspiring question hinting to an interesting
line of inquiry as to how to formally articulate a boundedly-
rational approach to the FP, at Marr’s (1982) algorithmic level
of analysis.

In this work, we focus on the causal variant of the FP, the
Causal Frame Problem (CFP), stated as follows: Upon being
presented with a causal query, how does the reasoner manage
to attend to her causal knowledge relevant to the derivation
of the query while rightfully dismissing the irrelevant? We
adopt Causal Bayesian Networks (CBNs) (Pearl, 1988; Gop-
nik et al., 2004, inter alia) as a normative model to represent
how the reasoner’s internal causal model of the world is struc-
tured (i.e., reasoner’s mental model). First, we introduce the
notion of Potential Level (PL). PL, in essence, encodes the
relative position of a node (representing a propositional vari-
able or a concept) with respect to its neighbors in a CBN.
Drawing on the psychological literature on causal judgment,
we substantiate the claim that PL may bear on how time is
encoded in the mind. Equipped with PL, we embark on in-
vestigating the CFP at Marr’s algorithmic level of analysis.
We propose an inference framework, termed PL-based In-
ference Framework (PLIF), which aims at empowering the
boundedly-rational reasoner to consult (or retrieve2) parts of
the underlying CBN deemed relevant for the derivation of
the posed query (the relevant submodel) in a local, bottom-
up fashion until the submodel is fully retrieved. PLIF allows
the reasoner to carry out inference at intermediate stages of
the retrieval process over the thus-far retrieved parts, thereby
obtaining lower and upper bounds on the posed causal query.

1In an informative example on Hidden Markov Models (HMMs),
Icard and Goodman (2015) present a setting wherein the relevant
submodel is infinitely large—an example which highlights what is
wrong with the sequential approach stated earlier.

2The terms “consult” and “retrieve” will be used interchange-
ably. We elaborate on the rationale behind that in Sec. 5, where we
connect our work to Long Term Memory and Working Memory.
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We show, in the Discussion section, that our proposed frame-
work, PLIF, is consistent with several findings in the causal
judgment literature, and that PL and PLIF make a number of
predictions, some of which are already supported by the find-
ings in the psychology literature.

In their work, Icard and Goodman (2015) articulate a
boundedly-rational approach to the CFP at Marr’s computa-
tional level of analysis, which, as they point out, is from a
“god’s eye” point of view. In sharp contrast, our proposed
framework PLIF is not from a “god’s eye” point of view and
hence could be regarded, potentially, as a psychologically
plausible proposal at Marr’s algorithmic level of analysis as
to how the mind both retrieves and, at the same time, carries
out inference over the retrieved submodel to derive bounds
on a causal query. We term this concurrent approach to rea-
soning, as opposed to the flawed sequential approach stated
earlier.3 The retrieval process progresses in a local, bottom-
up fashion, hence the submodel is retrieved incrementally, in
a nested manner.4 Our analysis (Sec. 4.1) confirms Icard
and Goodman’s (2015) insight that even in the extreme case
of having an infinitely large relevant submodel, the portion
of which the reasoner has to consult so as to obtain a “suffi-
ciently good” answer to a query could indeed be very small.

2 Potential Level and Time
Before proceeding further, let us introduce some preliminary
notations. Random Variables (RVs) are denoted by lower-
case bold-faced letters, e.g., x, and their realizations by non-
bold lower-case letters, e.g., x. Likewise, sets of RVs are de-
noted by upper-case bold-faced letters, e.g., X, and their cor-
responding realizations by upper-case non-bold letters, e.g.,
X . Val(·) denotes the set of possible values a random quan-
tity can take on. Random quantities are assumed to be dis-
crete unless stated otherwise. The joint probability distribu-
tion over x1, · · · ,xn is denoted by P(x1, · · · ,xn). We will use
the notation x1:n to denote the sequence of n RVs x1, · · · ,xn,
hence P(x1, · · · ,xn) = P(x1:n). The terms “node” and “vari-
able” will be used interchangeably. To simplify presenta-
tion, we adopt the following notation: We denote the prob-
ability P(x = x) by P(x) for some RV x and its realiza-
tion x ∈ Val(x). For conditional probabilities, we will use
the notation P(x|y) instead of P(x = x|y = y). Likewise,
P(X |Y ) = P(X = X |Y = Y ) for X ∈ Val(X) and Y ∈ Val(Y).
A generic conditional independence relationship is denoted
by (A ⊥⊥ B|C) where A,B, and C represent three mutually
disjoint sets of variables belonging to a CBN. Furthermore,
throughout the paper, we assume that ε is some negligibly
small positive real-valued quantity. Whenever we subtract ε

from a quantity, we simply imply a quantity less than but ar-
bitrarily close to the original quantity. The rationale behind
adopting such a notation will become clearer in Sec. 4.

3We elaborate more on this in the Discussion section.
4The term “nested” implies that the thus-far retrieved submodel

is subsumed by every later submodel (provided that the reasoner pro-
ceeds with the retrieval process).

Before formally introducing the notion of PL, we articu-
late in simple terms what the idea behind PL is. PL simply
induces a chronological order on the nodes of a CBN, al-
lowing the reasoner to encode the timing between cause and
effect.5 As we will see, PL plays an important role in guiding
the retrieval process used in our proposed framework. Next,
PL is formally defined, followed by two clarifying examples.

Def. 1. (Potential Level (PL)) Let par(x) and child(x)
denote, respectively, the sets of parents (i.e., immediate
causes) and children (i.e., immediate effects) of x. Also let
T0 ∈ R ∪ {−∞}. The PL of x, denoted by pl(x), is de-
fined as follows: (i) If par(x) = ∅, pl(x) = T0, and (ii) If
par(x) 6= ∅, pl(x) is a real-valued quantity selected from
the interval (maxy∈par(x) pl(y),minz∈child(x) pl(z)) such that
pl(x)−maxy∈par(x) pl(y) indicates the amount of time which
elapses between intervening simultaneously on all the RVs
in par(x) (i.e., do(par(x) = parx)) and x taking its value x
in accord with the distribution P(x|parx). If child(x) = ∅,
substitute the upper bound of the given interval by +∞. �

Parameter T0 symbolizes the origin of time, as perceived
by the reasoner. T0 = 0 is a natural choice, unless the rea-
soner believes that time continues unboundedly into the past,
in which case T0 =−∞. The next two examples further clar-
ify the idea behind PL. In both examples we assume T0 = 0.
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z

pl(x) = 4

pl(z) = 5

x

(a)

pl(y) = 4.7

pl(x) = 4

pl(t) = 5.6

(b)

pl(y) = 4.7

x

y
z

t

pl(z) = 5

+∞

−∞

+∞

−∞

Figure 1: Relation between PL and time. Three hollow dots
signify that the depicted CBNs extend into the past and future.

For the first example, let us consider the CBN depicted
in Fig. 1(a) containing the RVs x,y, and z with pl(x) =
4, pl(y) = 4.7, and pl(z) = 5. According to Def. 1, the
given PLs can be construed in terms of the relative time be-
tween the occurrence of cause and effect as articulated next.
Upon intervening on x (i.e., do(x = x)), after the elapse of
pl(y)− pl(x) = 0.7 units of time, the RV y takes its value y in
accord with the distribution P(y|x). Likewise, upon interven-
ing on y (i.e., do(y = y)), after the elapse of pl(z)− pl(y) =
0.3 units of time, z takes its value z according to P(z|y).

For the second example, consider the CBN depicted in Fig.
1(b) containing the RVs x,y,z, and t with pl(x) = 4, pl(y) =
4.7, pl(z) = 5, and pl(t) = 5.6. Upon intervening on x (i.e.,
do(x = x)) the following happens: (i) after the elapse of
pl(y)− pl(x) = 0.7 units of time, y takes its value y according
to P(y|x), and (ii) after the elapse of pl(z)− pl(x) = 1 unit of

5More precisely, PL induces a topological order on the nodes of
a CBN, with temporal interpretations suggested in Def. 1.
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time, z takes its value z according to P(z|x). Also, upon inter-
vening simultaneously on RVs y,z (i.e., do(y = y,z = z)), af-
ter the elapse of pl(t)−maxr∈par(t) pl(r) = 0.6 units of time,
t takes its value t according to P(t|y,z).

In sum, the notion of PL bears on the underlying time-grid
upon which a CBN is constructed, and adheres to Hume’s
principle of temporal precedence of cause to effect (Hume,
1748/1975). A growing body of work in psychology liter-
ature corroborates Hume’s centuries-old insight, suggesting
that the timing and temporal order between events strongly
influences how humans induce causal structure over them
(Bramley, Gerstenberg, & Lagnado, 2014; Lagnado & Slo-
man, 2006). The introduced notion of PL is based on the
following hypothesis: When learning the underlying causal
structure of a domain, humans may as well encode the tem-
poral patterns (or some estimates thereof) on which they rely
to infer the causal structure. This hypothesis is supported
by recent findings suggesting that people have expectations
about the delay length between cause and effect (Greville &
Buehner, 2010; Buehner & May, 2004; Schlottmann, 1999).
It is worth noting that we could have defined PL in terms of
relative expected time between cause and effect, rather than
relative absolute time. Under such an interpretation, the time
which elapses between the intervention on a cause and the oc-
currence of its effect would be modeled by a probability dis-
tribution, and PL would be defined in terms of the expected
value of that distribution. Our proposed framework, PLIF, is
indifferent as to whether PL should be construed in terms of
absolute or expected time. Greville and Buehner (2010) show
that causal relations with fixed temporal intervals are con-
sistently judged as stronger compared to those with variable
temporal intervals. This finding, therefore, seems to suggest
that people expect, to a greater extent, fixed temporal inter-
vals between cause and effect, rather than variable ones—an
interpretation which, at least to a first approximation, favors
construing PL in terms of relative absolute time (see Def. 1).6

3 Informative Example
To develop our intuition, and before formally articulating our
proposed framework, let us present a simple yet informative
example which demonstrates: (i) how the retrieval process
can be carried out in a local, bottom-up fashion, allowing for
retrieving the relevant submodel incrementally, and (ii) how
adopting PL allows the reasoner to obtain bounds on a given
causal query at intermediate stages of the retrieval process.

Let us assume that the posed causal query is P(x|y) where
x,y are two RVs in the CBN depicted in Fig. 2(a) with PLs
pl(x), pl(y), and let pl(x) > pl(y). The relevant information
for the derivation of the posed query (i.e., the relevant sub-
model) is depicted in Fig. 2(e).

6There are cases, however, that, despite the precedence of cause
to effect, quantifying the amount of time between their occurrences
may bear no meaning, e.g., when dealing with hypothetical con-
structs. In such cases, PL should be simply construed as a topo-
logical ordering. From a purely computational perspective, PL is a
generalization of topological sorting in computer science.
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Figure 2: Example. Query variables are shown in orange.

Starting from the target RV x in the original CBN (Fig.
2(a)) and moving one step backwards,7 t1 is reached (Fig.
2(b)). Since pl(y) < pl(t1), y must be a non-descendant of
t1, and therefore, of x. Hence, conditioning on t1 d-separates
x from y (Pearl, 1988), yielding (x ⊥⊥ y|t1). Thus P(x|y) =
∑t1∈Val(t1)P(x|y, t1)P(t1|y) = ∑t1∈Val(t1)P(x|t1)P(t1|y) imply-
ing: mint1∈Val(t1)P(x|t1) ≤ P(x|y) ≤ maxt1∈Val(t1)P(x|t1). It
is crucial to note that the given bounds can be computed
using the information thus-far retrieved, i.e., the informa-
tion encoded in the submodel shown in Fig. 2(b). Taking
a step backwards from t1, t2 is reached (Fig. 2(c)). Using
a similar line of reasoning to the one presented for t1, hav-
ing pl(y) < pl(t2) ensures (x ⊥⊥ y|t2). Therefore, the fol-
lowing bounds on the posed query can be derived, which,
crucially, can be computed using the information thus-far re-
trieved: mint2∈Val(t2)P(x|t2) ≤ P(x|y) ≤ maxt2∈Val(t2)P(x|t2).
It is straightforward to show that the bounds derived in terms
of t2 are equally tight or tighter than the bounds derived in
terms of t1. Finally, taking one step backward from t2, y is
reached (Fig. 2(d)) and the exact value for P(x|y) can be de-
rived, again using the submodel thus-far retrieved (Fig. 2(d)).

We are now ready to present our proposed framework.

4 PL-based Inference Framework (PLIF)
In this section, we intend to elaborate on how, equipped
with the notion of PL, a generic causal query of the form8

P(O = O|E = E) can be derived where O and E denote, re-
spectively, the disjoint sets of target (or objective) and ob-
served (or evidence) variables. In other words, we intend to
formalize how inference over a CBN whose nodes are en-
dowed with PL as an attribute should be carried out. Before
we present the main result, a few definitions are in order.

Def. 2. (Critical Potential Level (CPL)) The target vari-
able with the least PL is denoted by o∗ and its PL is re-
ferred to as the CPL. More formally, p∗l :,mino∈O pl(o) and

7Taking one step backwards from variable qqq amounts to retriev-
ing all the parents of qqq.

8We do not consider interventions in this work. However,
with some modifications, the presented analysis/results can be ex-
tended to handle a generic causal query of the form P(O = O|E =
E,do(Z = Z)) where Z denotes the set of intervened variables.

3048



o∗ :, argmino∈O pl(o). E.g., for the setting given in Fig. 2(a),
o∗ = x, and p∗l = pl(x). Viewed through the lens of time, o∗
is the furthest target variable into the past, with PL p∗l .

There are two possibilities: (a) p∗l > T0, or (b) p∗l = T0,
with T0 denoting the origin of time; cf. Sec. 2. In the sequel,
we assume that (a) holds.9

Def. 3. (Inference Threshold (IT) and IT Root Set (IT-
RS)) To any real-valued quantity, T , corresponds a unique
set, RT , obtained as follows: Start at every variable x∈O∪E
with PL ≥ T and backtrack along all paths terminating at x.
Backtracking along each path stops as soon as a node with PL
less than T is encountered. Such nodes, together, compose
the set RT . It follows that: maxt∈RT pl(t) < T . T and RT
are termed, respectively, Inference Threshold (IT) and the IT
Root Set (IT-RS) for T .

For example, the set of variables circled at the stages de-
picted in Figs. 2(b-d) are the IT-RSs for T = pl(x)− ε,
T = pl(t1)− ε, and T = pl(t2)− ε, respectively. Note that
instead of saying T = pl(x)− ε we could have said: for any
T ∈ (pl(t1), pl(x)). However, expressing ITs in terms of ε

liberates us from having to express them in terms of inter-
vals, thereby simplifying the exposition. We would like to
emphasize that the adopted notation should not be construed
as implying that the assignment of values to ITs is such a sen-
sitive task that everything would have collapsed, had IT not
been chosen in such a fine-tuned manner. To recap, in simple
terms, T bears on how far into the past a reasoner is con-
sulting her mental model in the process of answering a query,
and RT characterizes the furthest-into-the-past concepts en-
tertained by the reasoner in that process.

Next, we formally present the main idea behind PLIF, fol-
lowed by its interpretation in simple terms.

Lemma 1. Let P(O|E) denote the posed causal query,
with O and E denoting, respectively, the disjoint sets of
target and observed variables. For any chosen IT T <
p∗l and its corresponding RT , define S :, RT \ E. Then
the following holds: minS∈Val(S)P(O|S,E) ≤ P(O|E) ≤
maxS∈Val(S)P(O|S,E). Crucially, the provided bounds can be
computed using the information encoded in the submodel re-
trieved in the very process of obtaining the RT . �

The message of Lemma 1 is quite simple: For any chosen
inference threshold T which is further into the past than o∗,
Lemma 1 ensures that the reasoner can condition on S and
obtain the reported lower and upper bounds on the query by
using only the information encoded in the retrieved submodel.

It is natural to ask under what conditions the exact value
to the posed query can be derived using the thus-far retrieved
submodel, i.e., the submodel obtained during the identifica-
tion of RT . The following remark bears on that.10

Remark 1. If for IT T , RT satisfies either: (i) RT ⊆ E,
or (ii) for all r ∈ RT , pl(r) = T0, and mine∈E pl(e) > T , or

9For a discussion on the special case (b), the reader is referred
to: https://arxiv.org/pdf/1701.08100

10For a formal proof of Lemma 1, and the rationale behind Re-
mark 1, the reader is referred to: https://arxiv.org/pdf/1701.08100

(iii) the lower and upper bound given in Lemma 1 are iden-
tical, then the exact value of the posed query can be derived
using the submodel retrieved in the process of obtaining RT .
Fig. 2(d) shows a setting wherein (i) and (iii) are both met.

4.1 Case Study
Next, we intend to cast the Hidden Markov Model (HMM)
studied in (Icard & Goodman, 2015, p. 2) into our frame-
work. The setting is shown in Fig. 3(left). We adhere to the
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Figure 3: Left: The infinite-sized HMM discussed in (Icard
& Goodman, 2015) with parameterization: P(xt+1|xt) =
P(x̄t+1|x̄t) = 0.9, and P(yt |xt) = P(ȳt |x̄t) = 0.8. Right: Ap-
plying PLIF on the HMM shown in left. Vertical and hori-
zontal axes denote, respectively, the value of the posed query
P(xt+1|y−∞:t) and the adopted IT T . The vertical bars de-
pict the intervals within which the query lies due to Lemma
1. The dotted curves—which connect the lower and upper
bounds of the intervals—show how the intervals shrink as IT
T decreases.

same parameterization and query adopted therein. All RVs in
this section are binary, taking on values from the set {0,1};
x = x indicates the event wherein x takes the value 1, and
x = x̄ implies the event wherein x takes the value 0. We
assume pl(xt+i) = i− 2.11 We should note that the assign-
ment of the PLs for the variables in {yt−i}+∞

i=0 does not af-
fect the presented results in any way. The query of interest is
P(xt+1|y−∞:t). Notice that after performing three steps of the
sort discussed in the example presented in Sec. 3 (for the IT
T =−3−ε), the lower bound on the posed query exceeds 0.5
(shown by the red dashed line in Fig. 3(right)). This obser-
vation has the following intriguing implication. Assume, for
the sake of argument, that we were presented with the follow-
ing Maximum A-Posterior (MAP) inference problem: Upon
observing all the variables in {yt−i}+∞

i=0 taking on the value 1,
what would be the most likely state for the variable xt+1? In-
terestingly, we would be able to answer this MAP inference
problem simply after three backward moves (corresponding
to the IT T = −3− ε). In Fig. 3(right), the intervals within

11Note that the trend of the upper- and lower-bound curves as well
as the size of the intervals shown in Fig. 3(right) are insensitive with
regard to the choice of PLs for variables {xt−i}+∞

i=−1.

3049



which the posed query falls (due to Lemma 1) in terms of the
adopted IT T are depicted.

Our analysis confirms Icard and Goodman’s (2015) insight
that even in the extreme case of having infinite-sized relevant
submodel (Fig. 3(left)), the portion of which the reasoner has
to consult so as to obtain a “sufficiently good” answer to the
posed query could happen to be very small (Fig. 3(right)).

5 Discussion
To our knowledge, PLIF is the first inference framework pro-
posed that capitalizes on time to constrain the scope of causal
reasoning over CBNs, where the term scope refers to the por-
tion of a CBN on which inference is carried out. PLIF does
not restrict itself to any particular inference scheme. The
claim of PLIF is that inference should be confined within and
carried out over retrieved submodels of the kind suggested
by Lemma 1 so as to obtain the reported bounds therein. In
this light, PLIF can accommodate any inference scheme, in-
cluding Belief Propagation (BP), and sample-based inference
methods using Markov Chain Monte Carlo (MCMC), as two
prominent classes of inference schemes. MCMC-based meth-
ods have been successful in simulating important aspects of a
wide range of cognitive phenomena and accounting for many
cognitive biases; cf. (Sanborn & Chater, 2016). Also, work in
theoretical neuroscience has suggested mechanisms for how
BP and MCMC-based methods could be realized in neural
circuits; cf. (Gershman & Beck, 2016; Lochmann & Deneve,
2011). For example, to cast BP into PLIF amounts to re-
stricting BP’s message-passing within submodels of the kind
suggested by Lemma 1. In other words, assuming that BP
is to be adopted as the inference scheme, upon being pre-
sented with a causal query, an IT according to Lemma 1 will
be selected—at the meta-level—by the reasoner and the cor-
responding submodel, as suggested by Lemma 1, will be re-
trieved, over which inference will be carried out using BP.
This will lead to obtaining lower and upper bounds on the
query, as reported in Lemma 1. If time permits, the reasoner
builds up incrementally on the thus-far retrieved submodel so
as to obtain tighter bounds on the query.12 MCMC-based in-
ference methods can be cast into PLIF in a similar fashion.

The problem of what parts of a CBN are relevant and what
are irrelevant for a given query, according to (Geiger, Verma,
& Pearl, 1989), was first addressed by Shachter (1988). The
approaches proposed for identifying the relevant submodel
for a given query fall into two broad categories (cf. Ma-
honey & Laskey, 1998, and references therein): (i) top-down
approaches, and (ii) bottom-up approaches. Top-down ap-
proaches start with the full knowledge of the underlying CBN
and, depending on the posed query, gradually prune the irrel-
evant parts of the CBN. In this respect, top-down approaches
are inevitably from “god’s eye” point of view—a character-
istic which undermines their cognitive-plausibility. Bottom-

12The very property that the submodel gets constructed incremen-
tally in a nested fashion guarantees that the obtained lower and upper
bounds get tighter as the reasoner adopts smaller ITs; see Fig. 3(left).

up approaches, on the other hand, incrementally construct a
submodel (by moving backwards from the query variables),
using which the posed query can be computed. It is crucial
to note that bottom-up approaches cannot stop at interme-
diate steps during the backward move and run inference on
the thus-far constructed submodel without running the risk
of compromising some of the (in)dependence relations struc-
turally encoded in the CBN, which would yield erroneous in-
ferences. This observation is due to the fact that there ex-
ists no local signal revealing how the thus-far retrieved nodes
are positioned relative to each other and to the to-be-retrieved
nodes—a shortcoming circumvented in the case of PLIF by
introducing PL. It is worth reiterating again that PLIF sub-
scribes to what we call the concurrent approach to reasoning
(as opposed to the flawed sequential approach mentioned ear-
lier), whereby retrieval and inference take place in tandem.
The HMM example analyzed in Sec. 4.1, with infinitely large
relevant submodel, stresses the importance and shows the ef-
ficacy of the concurrent approach.

Work on causal judgment provides support for the so-
called alternative neglect, according to which subjects tend
to neglect alternative causes to a much greater extent in pre-
dictive reasoning than in diagnostic reasoning (Fernbach &
Rehder, 2013; Fernbach, Darlow, & Sloman, 2011). Alter-
native neglect, therefore, implies that subjects would tend
to ignore parts of the relevant submodel while constructing
it. Recent findings, however, seem to cast doubt on alterna-
tive neglect (Cummins, 2014; Meder, Mayrhofer, & Wald-
mann, 2014). Meder et al. (2014), Experiment 1 demon-
strates that subjects appropriately take into account alterna-
tive causes in predictive reasoning. Also, Cummins (2014)
substantiates a two-part explanation of alternative neglect ac-
cording to which: (i) subjects interpret predictive queries as
requests to estimate the probability of the effect when only
the focal cause is present, an interpretation which renders al-
ternative causes irrelevant, and (ii) the influence of inhabitory
causes (i.e., disablers) on predictive judgment is underesti-
mated, and this underestimation is incorrectly interpreted as
neglecting of alternative causes. Cummins (2014), Experi-
ment 2 shows that when predictive inference is queried in a
manner that more accurately expresses the meaning of noisy-
OR Bayes net (i.e., the normative model adopted by Fernbach
et al. (2011)) likelihood estimates approached normative esti-
mates. Cummins (2014), Experiment 4 shows that the impact
of disablers on predictive judgments is far greater than that
of alternative causes, while having little impact on diagnostic
judgments. PLIF commits to the retrieval of enablers as well
as disablers. As mentioned earlier, PLIF abstracts away from
the inference scheme operating on the retrieved submodel,
and, hence, leaves it to the inference scheme to decide how
the retrieved enablers and disablers should be weighted and
subsequently integrated. In this light, PLIF is consistent with
the results of Experiment 4 in (Cummins, 2014).

In an attempt to explain violations of screening-off re-
ported in the literature, Park and Sloman (2013) find strong
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support for the contradiction hypothesis followed by the me-
diating mechanism hypothesis, and finally conclude that peo-
ple do conform to screening-off once the causal structure they
are using is correctly specified. PLIF is consistent with these
accounts, as it adheres to the assumption that reasoners carry
out inference on their internal causal model (including all
possible mediating variables and disablers), not the poten-
tially incomplete one presented in the cover story; see also
(Rehder & Waldmann, 2017; Sloman & Lagnado, 2015).

Experiment 5 in (Cummins, 2014), consistent with
(Fernbach & Rehder, 2013), shows that causal judgments are
strongly influenced by memory retrieval/activation processes,
and that both number of disablers and order of disabler re-
trieval matter in causal judgments. These findings suggest
that the CFP and memory retrieval/activation are intimately
linked. In that light, next, we intend to elaborate on the ra-
tionale behind adopting the term “retrieve” and using it in-
terchangeably with the term “consult” throughout the paper;
this is where we relate PLIF to the concepts of Long Term
Memory (LTM) and Working Memory (WM) in psychology
and neurophysiology. Next, we elaborate on how PLIF could
be interpreted through the lenses of two influential models of
WM, namely, Baddeley and Hitch’s (1974) Multi-component
model of WM (M-WM) and Ericsson and Kintsch’s (1995)
Long-term Working Memory (LTWM) model. The M-WM
postulates that “long-term information is downloaded into
a separate temporary store, rather than simply activated in
LTM,” a mechanism which permits WM to “manipulate and
create new representations, rather than simply activating old
memories” (Baddeley, 2003). Interpreting PLIF through the
lens of the M-WM model amounts to the value for IT be-
ing chosen (and, if time permits, updated so as to obtain
tighter bounds) by the central executive in the M-WM and the
submodel being incrementally “retrieved” from LTM into M-
WM’s episodic buffer. Interpreting PLIF through the lens of
the LTWM model amounts to having no retrieval from LTM
into WM and the submodel suggested by Lemma 1 being
merely “activated in LTM” and, in that sense, being simply
“consulted” in LTM. In sum, PLIF is compatible with both of
the narratives provided by the M-WM and LTWM models.

A number of predictions follow from PL and PLIF. For in-
stance, PLIF makes the following prediction: Prompted with
a predictive or a diagnostic query (i.e., P(e|c) and P(c|e),
respectively), subjects should not retrieve any of the effects
of e. Introspectively, this prediction seems plausible, and
can be tested, using a similar approach to (Cummins, 2014;
De Neys, Schaeken, & d’Ydewalle, 2003), by asking subjects
to “think aloud” while engaged in predictive or diagnostic
reasoning. Also, PL yields the following prediction: Upon
intervening on cause c, subjects should be sensitive to when
effect e will occur, even in settings where they are not partic-
ularly instructed to attend to such temporal patterns. Recent
findings suggesting that people have expectations about the
delay length between cause and effect already provide some
supporting evidence for this prediction (Greville & Buehner,

2010; Buehner & May, 2004).
There is a growing acknowledgment in the literature that,

not only time and causality are intimately linked, but that
they mutually constrain each other in human cognition; cf.
(Buehner, 2014). In line with this view, we see our work also
as an attempt to formally articulate how time could guide and
constrain causal reasoning. While many questions remain
open, we hope to have made some progress towards better
understanding of the CFP at the algorithmic level.
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Abstract
Perception of time is an active process that takes place contin-
ually. However, we are yet to learn its exact mechanisms con-
clusively. The temporal bisection task is ideal to investigate the
circuitry underlying time perception. Caffeine, a commonly
used stimulant, has been known to play a role in modulation of
time perception. The objective of this article is to explore the
role of caffeine, a neuromodulator, in the perception of time in
human beings by conducting suitable experiments. The exper-
iment shows that an expansion of time is perceived by subjects
after caffeine ingestion and that caffeine has an accelerating
effect on our time perception system. Additionally, we present
a preliminary 2-step decision model that fits the results of the
experiment and potentially gives insights into the mechanisms
of caffeine. We conclude by pointing out future directions to-
wards a more biologically realistic computational model.
Keywords: Caffeine; Timing; Perception; Temporal bisection;
Computational modeling; Decision making

Introduction
Time perception is essential for human survival. It is a multi-
layered process which covers a wide range of timescales,
from microsecond estimation to the maintaining of the cir-
cadian rhythm. However, there is still a lack of consensus on
the mechanisms behind temporal perception.

Researchers have proposed several qualitative and quanti-
tative models to explain the data obtained in various tempo-
ral judgement experiments (Jeffress, 1948; Machado, Mal-
heiro, & Erlhagen, 2009; Oprisan & Buhusi, 2011), with In-
ternal Clock Theory being one of the most widely accepted
ones. It suggests that our perception of time highly relies
on the clock speed. Akin to an internal clock, the theory of
scalar expectancy postulates that a group of oscillating neu-
rons would work as a pacemaker and help in the judgement
of durations (Gibbon, 1977; Gibbon, Church, & Meck, 1984;
Wearden, 1991). As described in the information processing
model in Figure 1, a pacemaker oscillates at a mean frequency
and produces regular clock pulses, which are gated to an ac-
cumulator in working memory via a switch. The accumulator
records and stores the number of pulses from the onset of the
stimulus. A comparator decides if the current record in the
working memory is close enough to the reference memory
and responds accordingly. If the response is reinforced, the
time value recorded in the working memory is stored in the
permanent reference memory for reinforced values.

In the previous findings, it has been argued that the nu-
clei involved in the circadian rhythm in the brain partici-

pate in our perception of time (Cheng, Meck, & Williams,
2006). Findings from psychopharmacological studies also
suggest that caffeine and other psychoactive drugs affect
these nuclei (Dunlap, 1999). Further, literature also shows
that dopaminergic drugs influence the speed of internal pace-
maker (Buhusi & Meck, 2002). In general, caffeine has
been known to have effects on other cognitive processes
like vigilance, attention, memory and other cognitive func-
tions (McLellan, Caldwell, & Lieberman, 2016). There have
been a wide range of studies that have investigated the role
of caffeine in time perception. However, the findings are still
largely inconclusive (Hussain & Cole, 2015; Favila & Kuhl,
2014; Borota et al., 2014).

Figure 1: Information-processing model for Scalar Ex-
pectancy Theory (adapted from SET, Gibbon (Gibbon et al.,
1984)).

Given the above theoretical basis, we hypothesized that the
administration of caffeine would cause a difference in per-
ception of duration by influencing the speed of the internal
pacemaker. The aim of the current experiment is to explore
the role of caffeine, a neuromodulator, on time judgement via
suitable experiments and to design a computational model,
based on decision-making, to investigate the possible mecha-
nisms underlying the perception of duration.

The temporal bisection task was initially used in 1977
to study temporal discrimination in rats (Church & Deluty,
1977). As the task requires several time-dependent cogni-
tive functions, such as the comparison of durations, it is
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an ideal technique to study perception and processing of
time (Wearden, 1991; Allan & Gibbon, 1991). We have thus
chosen the temporal bisection task as the paradigm to inves-
tigate the modulation of judgement of duration by caffeine.

Experiment
Participants
The study sample consisted of 24 adults (8 females and 16
males, mean age = 21 years, SD=0.89), who were students of
the International Institute of Information Technology, Hyder-
abad, India. All participants gave informed consent prior to
the experiment. A Python script was used to randomly assign
each subject to either the control group (0mg caffeine) or the
experimental group (200mg caffeine). All participants were
right-handed and had normal or corrected-to-normal vision.

Materials and apparatus
Each participant was tested individually in a quiet room in
the institute. The experiment was presented on a Macintosh
laptop, which controlled the presentation of the experimen-
tal stimuli and recorded the participants’ responses with Psy-
chopy (Peirce, 2009). The participants were asked to convey
their response using the ‘S’ and ‘L’ keys on the keyboard, for
‘short’ and ‘long’, respectively. The stimuli used for repre-
sentation of duration in the bisection task were a white rect-
angle (during the training phase) and a white triangle (during
the testing phase) on a black background, presented in the
center of the screen. During the training phase, post-response
feedback was presented as white text on a black background.
The feedback was presented for 2s in the center of the laptop
screen (Droit-Volet, Brunot, & Niedenthal, 2004).

The participants were administered plain or caffeinated
milk orally, in the control or experimental group, respec-
tively. The participants in the group were administered a
moderate dose of 200mg caffeine since it has been observed
that caffeine enhances performance in several cognitive tasks
with minimal side effects, in doses up to approximately 300
mg (Lieberman, Tharion, Shukitt-Hale, Speckman, & Tulley,
2002).

Peak plasma levels of caffeine are found in the body about
30 minutes after ingestion (Blanchard & Sawers, 1983), fol-
lowing which the effects are felt substantially for approx-
imately 30 minutes (Barry, Clarke, Johnstone, & Rushby,
2008). Hence, the experiment was conducted 20 to 25 min-
utes after the administration of plain or ceffeinated milk. One
session of the experiment lasted for a duration of about 35
minutes.

Experimental Procedure
The temporal bisection task comprises duration judgement
between two reference durations. The task involves subjects
classifying various probe durations as either ‘short’ or ‘long’.
The conscious realm of time perception occurs in the range of
seconds and minutes (Mauk & Buonomano, 2004). Effects of
emotion, age, etc. on time perception have been studied via

temporal bisection tasks in this time range (Droit-Volet et al.,
2004). In order to see the effects of caffeine on this time range
and to investigate conscious time estimation, we have chosen
400ms (short standard) and 1600ms (long standard), as the
reference durations for our experiment.

The temporal bisection task consisted of two phases: train-
ing and testing. The training phase, in itself, was composed
of three sections. In the first section, participants were pre-
sented with the short(S) and long(L) standard stimulus dura-
tions. Each standard was initially presented five times each
and the subjects were asked to observe carefully. In section
two of the training phase, the participants were presented with
5 trials each for S and L, in randomised order. In each trial,
after the presentation of stimulus, the participants were asked
to decide if the given stimulus was short or long by press-
ing the ‘S’ or ‘L’ keys, respectively. On responding, they
were presented with a feedback, informing them if their re-
sponse was accurate or not. The feedback message lasted on
the screen for a duration of 2s. In section three of the train-
ing phase, the participants were again presented with 5 trials
each of S and L in randomised order, similar to section 2 and
asked to respond if they perceived the duration as short or
long. However, this time, they were provided with no feed-
back. The inter-stimulus interval (ISI) in this phase was fixed
at 1s. After the completion of section three, participants with
a score higher than 7 correct trials out of 10 (in section three)
were selected for the testing phase. The testing phase was
conducted after a break of 1 minute.

Figure 2: Schematic diagram of the testing phase.

In the testing phase, as depicted in Figure 2, the partic-
ipants were presented with 5 intermediate probe durations,
600ms, 800ms, 1000ms, 1200ms, 1400ms in addition to the
400ms (S) and 1600ms (L) reference durations, in a ran-
domised order and asked to respond if they perceived the
given duration as short or long (Droit-Volet et al., 2004). The
inter-stimulus interval was randomly chosen between 0.8s
and 1.2s. No accuracy feedback was presented in the test-
ing phase. Each block consisted of 35 trials, i.e. each probe
duration occurred 5 times in a block in a random order. After
each block, the participants were asked to take a 30s break.
The participants were presented with 10 such blocks.
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Results and Analysis: Experiment
For each participant, the proportion of ‘long’ responses was
calculated for each probe duration. In Figure 3, the propor-
tion of ‘long’ responses from all participants in both groups
has been plotted against the probe durations. The point of
subjective equality (PSE) is the stimulus duration for which
a subject recorded a response of ‘long’ with a 50% proba-
bility. The PSE was calculated for each participant by fit-
ting a Weibull curve to the plot of proportion of ‘long’ re-
sponses vs probe duration. The PSEs for the 12 partici-
pants in the control group (M = 1.137s,SD = 0.118) was
found to be generally higher than in the experimental group
(M = 0.929s,SD = 0.140). An independent samples t-test re-
vealed that there was a statistically significant difference be-
tween the two groups, t(22) = 3.76, p = 0.001.

Figure 3: Proportion of ‘long’ responses as a function of stim-
ulus duration, by subjects from the control and experimental
groups. Also, the PSEs of both groups are depicted (not to
scale).

Discussion: Experiment
An independent samples t-test showed that the PSE for the
participants in the two groups remarkably varied from each
other. This allows us to conclude that the administration of
caffeine leads to a notable change in the perception of du-
ration. The mean PSE of the 12 participants in the control
group is higher than the mean PSE of the participants in the
experimental group. Moreover, as shown in Figure 3, a clear
shift in the PSE of the experimental group towards the shorter
reference duration is observed. This shift in PSE implies that
for a given stimulus duration, there is a higher probability that
a participant responds ‘long’ in the experimental group than
in the control group. In other words, a given probe duration
is perceived as longer by participants under the influence of
caffeine. These results lead us to conclude that caffeine pro-
duces a perception of expansion of time in humans.

The scalar expectancy theory postulates that a pacemaker

sends pulses at a mean frequency from the onset of stimulus,
gated by a switch, to the accumulator. In the working mem-
ory, a comparator judges if the number of pulses accumulated
is closer to a reference memory value of the short or the long
standard and responds accordingly (Gibbon et al., 1984). In
accordance with this information processing model, we can
infer that caffeine could influence discrimination of temporal
durations in one or more of the following ways.

• By increasing the frequency with which pulses are gener-
ated by the pacemaker. This would lead to a higher number
of pulses getting accumulated for a given duration, due to
which the comparator would associate it to be closer to the
long reference duration.

• By causing distortion in the memory of the reference du-
rations. Since the recall in the long-term memory has a
higher variance, the interactions between these distorted
representations of the reference durations would lead the
working memory to make inaccurate comparisons, which
could in turn result in increased ‘long’ responses.

Computational Model
The dataset obtained from the above experiment was mod-
eled using a simple decision model that fits the data, although
biologically infeasible. This computational model is a two-
step Gaussian model which has only two free parameters and
is capable of reproducing the characteristics of the empirical
data. The memories of the short and long reference dura-
tions in the temporal bisection task are modeled using scalar
Gaussian distribution. The Gaussian helps depict the inherent
noise in human memory (Kopec & Brody, 2010).

Description of the Model
The model proposed by us comprises of two steps. In step I,
the model determines if the given stimulus is one of the ref-
erence durations, in which case, it responds accordingly, or is
an intermediate duration, in which case it moves to the second
step in order to make a decision. In step II, the model com-
putes the difference between the stimulus and its memories
of both the reference durations, and responds according to
the one which is lesser in magnitude (Kopec & Brody, 2010).
Each of the two steps is explained in detail below.

Model Step I
The memory of each of the two reference durations is mod-
eled as a Gaussian distribution over durations, with a mean
equal to the reference duration, and a standard deviation pro-
portional to the reference duration. This proportion, referred
to as the coefficient of variation, is randomly chosen from a
suitable range of values (discussed in “Results and Analysis:
Computational Model” section). The height of the Gaussian
distribution of a particular reference duration at a given stim-
ulus duration is taken as the probability of the stimulus being
labelled as that reference duration(pL and pS). As a partici-
pant can potentially classify the reference duration correctly
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with 100% accuracy, discounting human error, the Gaussian
distributions range from 0 to 1 (Kopec & Brody, 2010). We
take the probability of a stimulus duration being labeled as
‘intermediate’ (pI), to be the sum of the probabilities of the
two reference memory distributions at that stimulus duration
subtracted from 1, i.e. pI = 1− (pL+ pS).

If the probabilities of the 2 reference memory density dis-
tributions at the stimulus duration are approximately equal,
then the model responds either ‘short’ or ‘long’ with an equal
probability. Otherwise, a choice is made if a given stimulus
is long, short or intermediate depending upon the values of
their respective probability distributions, pL, pS and pI. If the
stimulus is determined to be either the short or the long ref-
erence duration, then the model responds ‘short’ or ‘long’,
respectively. If the stimulus is deemed to be ‘intermediate’,
the model proceeds to step 2.

Model Step II
The model computes if the stimulus duration ‘s’ is closer to
either reference duration stored in memory and responds ac-
cordingly. The scalar Gaussian distributions for the short(TS)
and long(TL) standards are used to model the reference dura-
tion values pulled from memory. One value ts is drawn from
the TS distribution, and one value tl is drawn from the TL
distribution. In order to model the shift in PSE brought about
due to caffeine administration, the model is explicitly biased
in this step towards responding ‘short’ or ‘long’, depending
upon whether it’s simulating the control group or the experi-
mental group. The bias factor, B, is randomly picked from a
certain optimal range (discussed below) depending upon the
group. If abs(ts− s) ∗B < abs(tl − s), then the subject re-
sponds ‘short’, and otherwise, the subject responds ‘long’.

Results and Analysis: Computational Model
The model contains only two free parameters, the coefficient
of variation (CV) of the two probability distributions used to
model the reference memories, and B, an intrinsic bias fac-
tor influencing the decision process. The values for these
parameters were chosen by testing the parameter space over
a range of values (CV range : 0.18− 0.27, resolution : 0.01;
Brange : 0.6− 1.4, resolution : 0.1). The data generated by
a certain value of CV and B was evaluated on the basis of
an independent samples t-test between the data generated by
the model and the empirical dataset collected from the control
group. It can be observed from the Figure 4 that the following
range of values are optimal for the 2 parameters:-

• For experimental group, CV : 0.23−0.26 and B : 1.0−1.4

• For control group, CV : 0.17−0.22 and B : 0.6−1.0

The lesser the p-value, the more significant the difference
between the simulated data and the data collected from the
control group. Thus, Figure 4 shows that for low values of
CV and B, the data generated by the model is significantly
similar to the empirical data for the control group.

Figure 4: Bubble chart of p-values of independent samples
t-test between the empirical data of the control group and the
simulated data at varying CV and B values.

The final model generates a dataset over 12 runs consisting
of 350 trials each, simulating 12 subjects each for both the
control and experimental groups. At the beginning of each
run, the values for CV and B are randomly chosen from the
optimal range for the concerned group.

To analyse the data generated by the model, the propor-
tion of ‘long’ responses was calculated for each probe du-
ration for every run. The point of subjective equality (PSE)
was calculated for each run by fitting a Weibull curve to the
plot of proportion of ‘long’ responses vs probe durations. The
PSEs for the 200mg caffeine group (M = 0.907,SD = 0.022),
similar to the empirical data, was found to be lower than
the PSEs for the control group (M = 1.014,SD = 0.047).
An independent samples t-test between the data showed a
statistically significant difference between the two groups,
t(22) = 6.736, p < 0.001.

Discussion: Computational Model
From the statistics regarding the PSEs for the 2 groups, we
can see that for corresponding groups, the simulated dataset
as well as the human dataset gives similar mean PSE values.
The standard deviation of the PSEs generated by the model
is considerably lesser than the same in the human dataset.
The higher variance in the human dataset might be due to hu-
man error, fatigue and slight inconsistencies in perception of
time by different participants. The model tries to incorpo-
rate this variance between the PSEs for different subjects, by
randomly picking a CV and B value, for each run, from the
optimal range for the concerned group. Yet, this does not give
rise to sufficient variation in the generated data as compared
to the human dataset. However, the mean PSE is accurately
simulated for both groups.

The independent samples t-test and the Weibull fit between
the generated datasets for the experimental and control groups
show that the model closely mimics human temporal judg-
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Figure 5: Effect of setting the parameter CV on the size of
decision regions A. When CV is set to optimal values found
for the 0mg group, the central region expands B. When CV
is set to optimal values found for the 200mg group, the cen-
tral region shrinks and there is more overlap of the Gaussians
corresponding to the reference durations.

ment.
As mentioned in the previous section, high values of the

parameters, CV and B, were found to be suitable to model the
experimental group, while low values of CV and B were suit-
able to simulate the control group. These parameter ranges
might lend us some insight into the mechanism of caffeine
action, as discussed below.

In the model, the value for B increases or decreases the dis-
tance of the stimulus from the short standard, depending upon
whether it is high or low. If the distance of the stimulus from
the short standard is higher than the distance from the long
standard, the model would respond ‘long’. This explains why
a high value of B is suitable for modeling the experimental
group and vice versa. We can, therefore, infer that this range
of values for ‘B’ can be indicative of the frequency of the
pacemaker. A rise in the rate at which pulses are generated
would lead to more pulses being accumulated for a given du-
ration and could lead to a perceived expansion of time.

In addition to the range of B-values, we also find that high
values of CV are suited to modeling the experimental group.
This can be explained as follows (see Figure 5). In step 1 of
the model, the probability distribution for the ‘long’ reference
duration has a larger standard deviation, as it has the same co-
efficient of variation as the ‘short’ reference duration, despite

having a larger mean. This implies that for a given stimu-
lus, if the decision is made in step 1 itself, there is a higher
probability that the response be ‘long’.

The decision to proceed to step 2, is dependent on the value
of pI, i.e., the probability that the stimulus is judged as ‘inter-
mediate’ in step 1. In the experimental group, as the model
uses higher CV values, for a given stimulus, the values of pS
and pL would be higher than the values for the same in the
control group, where the model uses lower CV values. This
would cause a decrease in pI for a given stimulus in the exper-
imental group’s simulation. Therefore, the probability of the
decision being made in step 1 increases, implying that there is
a higher probability of the response being ‘long’ as compared
to the control group, as explained in the previous paragraph.

A higher value of CV, while mean remains fixed, implies
a larger standard deviation (SD). As the experimental group
is being modeled accurately with a higher range of CV val-
ues as compared to the control group, the width of the Gaus-
sian distributions used to model the reference durations is
higher in the experimental group. This change in the width
implies that caffeine might have the potential to cause distor-
tion in the memory of durations. This leads us to infer that
caffeine mechanism possibly works via the memory pathway
rather than an attentional pathway, as the latter would require
a leaner spread of the probability distribution. Despite in-
vestigative experiments, there is no general consensus on the
nature of acute effects of caffeine on memory (McLellan et
al., 2016). However, our model indicates an increase in un-
certainty in the reference memory caused by caffeine.

Limitations and Future Work
One major shortcoming of the model suggested by us is that it
is purely a decision model and does not take into account the
neural circuitry mediating time perception in humans. The
model is pitched at an abstract level and in order to obtain bi-
ologically rooted insights, there is a need for a more realistic
model.

Substantial evidence has been found that indicates that the
basal ganglia and its dopaminergic pathways control time
perception to an extent. For instance, it has been observed
that PD patients, when administered medication that brings
the dopamine concentration back to normal, are capable
of performing time estimation accurately, unlike when off-
medication (Jones, Malone, Dirnberger, Edwards, & Jahan-
shahi, 2008). Furthermore, time perception studies can help
in the early detection of such diseases that affect dopamine
production and will also increase our understanding of the
pathways and the brain areas that may be involved in such
diseases.

The fundamental circuitry behind caffeine’s action has
been established to be the antagonism of adenosine recep-
tors in the central nervous system which leads to interaction
with dopamine receptors (Davis et al., 2003; Ferré, 2016).
Caffeine blocks A2A receptors in the striatum and promotes
a direct excitatory potentiation of D2 receptors. This leads
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to an increase in the stimulation of psychomotor activity by
dopamine (Ferré, 2016). Hence, we think that a model can be
conceptualised which shows caffeine indirectly affecting time
processing in the basal ganglia by modulating dopamine.

Alternatively, it has been observed that a cortical neuronal
network, without the use of any kind of pacemaker, may
have the potential to track duration by storing recent informa-
tion (Mauk & Buonomano, 2004). This can be used as inspi-
ration for another biologically feasible model. Furthermore,
there is indication in literature that a reinforcement learning
based model of interval timing might be able to explain sev-
eral behavioural as well as neural phenomena (Gershman,
Moustafa, & Ludvig, 2014). These are few methods that can
be explored to further investigate the effect of caffeine on time
perception.
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Abstract 

While exceptions to a regularity might be rare, categories that 
have exceptions are not. Previous studies on learning 
categories that have exceptions suggested special status of 
exceptional items in memory (e.g. Palmeri & Nosofsky, 1995, 
Sakamoto and Love, 2004). However, this might be true only 
for a special kind of exceptions – those that call for forming 
complex binding structures, and could be learned only if they 
are fully memorized. In the two experiments in this study, we 
show that memory for exceptions is not better than memory for 
regular category members (Experiment 1). On the contrary, 
both children and adults had better memory for the features of 
regular items (Experiment 2). In addition, adults, but not 4-
year-olds, showed better memory for the rule than for 
probabilistic features. The overall results challenge the idea of 
the special status of exceptions in memory.  
 

Keywords: rule-plus-exception; differential memory; 
category structure 

Introduction 

An exception is a case to which a rule or a general statement 

does not apply. Tomatoes are an exception to the category of 

vegetables, penguins are an exception to the category of 

birds, bats to the category of mammals, and the verb “cut” 

(since it does not change its form) is an exception to the rule 

of tense formation. While exceptions may be of various 

kinds, what is common for all of them is that they violate our 

expectations about how something (or someone) should 

behave, what it should look like, where it should belong, as 

well as other expectations that are based on our previous 

knowledge. Therefore, understanding of how we learn about 

and how we represent those rare, deviant cases is an 

interesting problem for the theories of category learning. 

A common assumption underlying models that aimed to 

explain how we learn and represent exceptions, is that 

exceptions have a privileged memory status. Work in the 

schema literature contrasting memory for schema-consistent 

(i.e., in accord with expectations) and schema-inconsistent 

information, demonstrated that schema-inconsistent 

information is remembered better (for meta-analysis see, 

Rojahn & Pettigrew, 1992). It has been argued that the 

schema-inconsistent memory advantage (i.e. tendency to 

false alarm to schema-consistent information) may be a 

specific case of a general advantage for distinctive 

information. Similar to the “von Restorff effect”, where there 

is a recall advantage for a single word in uppercase in a list 

of lowercase words (von Restorff, 1933), it is expected that 

once expectations about an event or category structure are 

formed, the deviant item should attract more attention and 

thus have stronger memory trace. 

Another account that aimed to explain inconsistent 

information memory advantage focused on the difference in 

the depth of processing. Since deviant items may be more 

difficult to process than regular items (Fabiani & Donchin, 

1995; Graesser, 1981), they tend to receive more study time 

(Stern, Marrs, Millar, & Cole, 1984), and this leads to better 

memory. When study time is limited, there should be no 

advantage, or the pattern may even be reversed (Metcalfe, 

2002; Thiede & Dunlosky, 1999).  

Studies in category learning also support the claim of better 

memory for exceptions. In an old-new recognition task, 

Palmeri and Nosofsky (1995) tested participants’ memory for 

two newly learned categories. In both categories, the majority 

of items could be categorized based on a simple (single-

dimension) rule, but there was one exception item which 

respected the rule of the contrasting category. The main result 

of their study was that participants showed superior 

recognition memory for those items that were exceptions to 

the rule. These findings were in accordance with the 

prediction of the RULEX (rule-plus-exception) model of 

classification learning (Nosofsky, Palmeri and McKinley, 

1994). According to this model, people tend to form simple 

logical rules to define categories, and if not all the members 

of the category follow the formed rule, those occasional 

exceptions are stored in memory. Thus, regular members of 

the category and exceptions are supposed to be learned using 

two independent mechanisms. Based on RULEX, the role of 

memory processes in categorization of the regular category 

items should be minimal, which stands in high contrast with 

purely memory based representation of the exception.  

Similar to RULEX, SUSTAIN (Love, Medin, Gureckis, 

2004) model assumes formation of specialized 

representations (clusters) for exceptions that violate initially 

formed representation (cluster), and predicts that differential 

storage of exceptions makes them more distinctive in 

memory. The main difference between the two models lies in 

flexibility. SUSTAIN emphasizes the need for a flexible 

search of a given category structure, and allows for clusters 
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to be of different nature (e.g. rules, prototypes, attractors), all 

depending on the (sub)structure of the category and the task 

goals. That way, in addition to successfully predicting 

memory advantage for exceptions, SUSTAIN is sensitive to 

effects of structure saliency (e.g. frequency effects), 

familiarity effects (differentiating between old and new rule-

following items) or unsupervised learning, which are all 

problematic for RULEX to account for (Sakamoto & Love, 

2004). 

Despite described differences, both RULEX and 

SUSTAIN are in accord with the previous categorization and 

schema literature regarding (a) memory advantage for rule-

violating exceptions, (b) deeper (at a greater detail) 

processing of exceptions compared to regular category 

members (Loftus & Mackworth, 1978) and (c) attribution of 

memory advantage for exceptions to differential attention 

during encoding (von Restorff, 1933). 

Nature of the exceptions 

It is important to note here that previous studies (e.g. 

Palmeri & Nosofsky, 1995, Sakamoto and Love, 2004; 

Davis, Love, & Preston, 2012) focused primarily on a 

specific type of exceptions – exceptions that violate prior 

knowledge expectations by respecting the contrasting 

category rule. Those exceptions could not be learned by 

relying on a rule, nor by relying on the similarity with the 

other category members. In order to be successfully 

categorized they required forming complex binding 

structures. Thus, it is unclear whether the better memory for 

exceptions results from exceptions being rare and violating 

the prior knowledge expectation (in this case, the category 

rule), or because of their peculiar structure.    

Developmental differences 

All hypothesized solutions for learning and representing 

exceptions were formulated with an adult in mind. Little is 

known about how exceptions may be learned and represented 

early in development.  

Both RULEX and SUSTAIN assume engagement of 

selective attention and (to different extent) optimization of 

memory resources during category learning. However, 

previous studies suggest that in contrast to adults and older 

children, who optimize their attention to category and task 

relevant dimensions, young children tend to allocate attention 

to both relevant and irrelevant information (Sloutsky, 2010; 

Deng & Sloutsky, 2016). The developmental differences in 

attention allocation during category learning (i.e., selective 

vs. distributed) have important consequences on what is 

remembered about categories. While selective attention 

results in better memory for information that is particularly 

useful for distinguishing the categories (e.g. rule features), 

distributed attention results in all information, relevant and 

relevant, being remembered equally well (Deng & Sloutsky, 

2016). Thus, if difference in recognition memory for regular 

category members and exceptions arise from optimization 

and selectivity, as previously suggested, no difference in 

memory for regular and exceptional items should be expected 

for young children. 

Current study 

In the two experiments reported here, we tested the 

generalizability of the assumption of memory advantage for 

exceptions. In Experiment 1, we tested the claim of memory 

advantage for exceptions in situation of learning categories 

that have exceptions that violate previous expectation since 

they look more like the members of the other category and 

they also violate the category rule. However, in contrast to 

the exceptions used in the previous studies that respect 

contrasting category rule, they have a new rule on the 

deterministic dimension, which is on its own sufficient for 

successful categorization. In Experiment 2, the structure of 

the regular category members remained the same, but the 

nature of the exceptions was changed. In Experiment 2, 

exceptions were items that had all features new. Since 

exceptions in our study are individuals, for this latter kind of 

exceptions, different kinds of rules could be formed, since 

each feature is fully predictive.  

Although the exceptions used here are very different from 

the ones used in the previous studies, they retain all the 

characteristics that are assumed to contribute to their special 

status in memory. They are rare, they may be studied for 

unlimited amount of time, and, most importantly, they violate 

the expectations based on the knowledge of regular items, 

both in terms of rule and appearance. On the other hand, they 

could be categorized equally successfully by employing 

different learning mechanisms and forming different 

representations, which makes them advantageous in 

comparison to the types of exceptions that could be learned 

by memorizing only. 

Additionally, we examined developmental differences in 

learning and representing exceptions. Two age groups 

participated in the experiments: four-year-olds and adults.  As 

previously described, a developmental study is particularly 

interesting since it will allow test of differences in the 

memory status of exceptions under regimes of distributed end 

selective attention category learning.  

 

Experiment 1 

Method 

Participants 

Participants were 27 four-year-old children (Mage = 54.6 

months, range 48.5 – 59.9 months, 14 girls) and 36 adults.  

Data of one additional child and one adult participant were 

excluded due to the failure to discriminate between old 

(High-Match) items and items that had 5 of 6 features 

completely new (All-new-P) (A’ not different from chance 

level of 0.5, one sample t-test ps > .05). 

All four-year-olds that took part in the experiments 

reported in this paper were recruited from preschools located 

in middle-class suburbs of Columbus. In order to take a part 

in the study they had to be between 48 and 60 months old. 

They were tested during their regular school hours in a quiet 

room in their preschool. 
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All adults that participated in the experiments reported here 

were The Ohio State University undergraduate students. 

They were tested in a quiet room in the laboratory located on 

campus and they received course credits for their 

participation.  

Stimuli 

Stimuli were artificial dinosaur-like creatures created using 

Spore Creature Creator and Gimp (Figure 1). These creatures 

were accompanied by two novel category labels: Lulu and 

Momo. 

 
 

Figure 1. Examples of stimuli used in the study where hands 

are the rule feature. 

 

The category structure 

The categories of Lulus and Momos were dense 7-

dimensional categories with 1 non-diagnostic dimension, 5 

probabilistic dimensions and 1 deterministic dimension 

(Table 1). Non-diagnostic dimension varied independently 

and gave no information about the category membership.  

Probabilistic dimensions varied between categories and 

within-category, with significantly higher between-category 

in comparison to within-category variance. Hence, 

probabilistic dimensions were predictive when taken 

together, since they reflected the overall similarity between 

category items. Deterministic dimension was fully predictive.  

The neck length (short/long) was always the non-

diagnostic dimension. The other 6 dimensions were: 

antennas, mouth, belly, wings, hands and feet. All 

dimensions were binary. The choice of deterministic feature 

(belly or hands) was balanced across the participants. Table 

1 presents the structure of training and test items. 

During the training, only High-Match and Exception items 

were presented. High-Match items always respected the 

category rule and had most of the probabilistic features of 

their own category (4 of 5). Exceptions were designed so they 

look more like the other category members (they had 

probabilistic features of the other category) but they also had 

a new rule feature. 

In the test session, in addition to items presented during the 

training (High-Match and Exceptions), there were additional 

4 types of items. Those new items were based on High-Match 

and Exception items, but either had one probabilistic feature 

new (One-new-P, E-One-new-P), or all probabilistic features 

new (All-new-P, E-All-new-P).  

Design and procedure 

For adults, all instructions and questions were written on 

the screen and they responded by pressing designated keys on 

a computer keyboard. For four-year-olds, all instructions and 

questions were read by a trained experimenter who collected 

their verbal responses using a computer keyboard. 

 

Table 1: The abstract category structures used in Experiment 

1 and Experiment 2.  

 

Instructions 

After the cover story about the two dinosaur families, 

Momos and Lulus, was read, participants were presented with 

the prototypes of Momos and Lulus. The prototypes were 

presented together, on the same screen. Participants were told 

that that is how Momos and Lulus usually look like and each 

of the six features of the two creatures was introduced, using 

the sentence frame: “Momos/Lulus usually have antennas 

like these” and pointing to the named feature (Figure 2).  

Training 

During the training participants were presented with the 

exemplars of Lulus and Momos and they were asked to 

classify them. Items were presented individually in the center 

of a white background screen, accompanied by the question 

“Is this is a Momo or a Lulu?” Two buttons, labeled Momo 

and Lulu, were presented on the same screen. Participants 

responded by pressing one of the buttons if adults, or giving 

verbal answers if children. After they made a response, 

corrective feedback was provided. Feedback had two 

  

 Momo  Lulu 

Experiment 1 

 Probabilistic Rule  Probabilistic Rule 

High Match 1 0 0 0 0 0  0 1 1 1 1 1 

New-D 1 0 0 0 0 N  0 1 1 1 1 N 

One-new-P 0 N 0 0 0 0  1 N 1 1 1 1 

All-new-P N N N N N 0  N N N N N 1 

Exception 1 1 1 1 1 2  0 0 0 0 0 3 

E-One-new-P 1 N 1 1 1 2  0 N 0 0 0 3 

E-All-new-P N N N N N 2  N N N N N 3 

Experiment 2 

 Probabilistic Rule  Probabilistic Rule 

High Match 1 0 0 0 0 0  0 1 1 1 1 1 

New-D 1 0 0 0 0 N  0 1 1 1 1 N 

One-new-P 0 N 0 0 0 0  1 N 1 1 1 1 

All-new-P N N N N N 0  N N N N N 1 

Exception 4 4 4 4 4 4  5 5 5 5 5 5 

E-New-D 4 4 4 4 4 N  5 5 5 5 5 N 

E-One-new-P 4 N 4 4 4 4  5 N 5 5 5 5 

E-All-new-P N N N N N 4  N N N N N 5 
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elements. First, the button of the correct response was 

presented (that is, the correct answer button stayed on the 

screen) and second, feedback sentence was presented. If 

participant gave the correct answer, she received message 

“That’s right! That’s Momo (Lulu)!” If participant made a 

wrong choice, message “Oops! That’s Momo (Lulu)!” was 

presented.  

During the training session, 70 items were presented: 60 

High Match items and 10 Exceptions. In the first block only 

High Match items were presented (20), while in the second 

and the third block participants saw both High Match (20) 

and Exception (4) items in random order. At the end of the 

third block, we presented additional 2 Exception items. The 

logic behind the dynamics described was that in order for 

Exceptions to be seen as Exceptions they should be presented 

after a representation of High-Match items was formed, and 

they needed to be less frequent. Order of presentation was 

randomized for each participant. 

Memory test 

Memory test was introduced immediately after the training 

session. Items were presented individually, followed by the 

question „Did you see exactly the same creature in the first 

part of the game?“ and two buttons labeled „old“ and „new“. 

After participant gave a response, the next trial was 

presented. There was no feedback. 

Memory test was given in one block. It had 64 trials in 

total, 8 trials of each item type, presented in random order. 

Results 

Training performance 

For both age groups, average accuracy in categorizing High-

Match items was above the chance (one-sample t-tests 

against chance yield ts > 2.70, both ps < .05, two-tailed).  

Both groups of participants misclassified Exceptions. The 

average proportion of accurately classified items was .41 for 

four-year-olds and .33 for adults, based on performance on 

all 10 items presented during the training session (both 

bellow the chance, ts > 2.38, ps < .05). Since Exceptions had 

probabilistic features of the other category High-Match 

items, participants based their responses on the overall 

similarity of exceptions to High-Match items. 

Recognition memory 

In order to estimate participants’ recognition memory, we 

calculated A’ scores (Snodgrass, Levy-Berger, & Haydon, 

1985). A’ is a non-parametric analogue of the d’ statistic 

(Brophy, 1986) and it is a measure of discriminability. No 

discrimination (chance performance) is indicated by value of 

0.5. With better discrimination the A’ score increases.  

Both age groups demonstrated high recognition accuracy 

(old – All-new-P). Average memory sensitivity scores were 

well above chance (both ps < .001).  

To examine the hypothesized differences in memory for 

regular items and exceptions, A-prime scores were subjected 

to a two-way (Age by Type) ANOVA.  

For the overall memory (old – All-new-P) the analysis 

indicated that there was no significant main effect of item 

type (p > .05), whereas the main effect of age was significant, 

F (1, 120) = 8.87, p < .01, η = .07 with 4-year-olds’ 

performance being significantly lower than adults’ 

performance (Figure 2).   

The pattern was the same for the memory for probabilistic 

features. Again, adults have shown better memory than 4-

year-olds (F (1, 120) = 8.61, p < .01, η = .07) and there was 

no difference in memory for regular items and exceptions. 

Note here that the lack of difference in memory for regular 

and exceptional items may be due to poor learning. This 

problem is resolved in Experiment 2. 

 

 

 
 

Figure 2. Memory sensitivity scores (A-prime) for overall 

memory (OLD – All-new-P) across age groups and two item 

types in Experiment 1. The dashed line represents the point 

of no sensitivity. Error bars represent the standard errors of 

the mean. 

Experiment 2 

Method 

Participants 

Thirty-three four-year-olds (Mage = 52.6 months, range 44.0 

– 53.6 months, 12 girls) and 39 adults took part in Experiment 

3. Three additional 4-year-olds and one adult were excluded 

based on the same criteria used in Experiment 1(A’ not 

different from chance level of 0.5, one sample t-test, all ps 

>.05). Participants were recruitment from the same 

participants’ pool as in Experiment 1. 

Stimuli 

The structure of the High-Match items and accompanying 

test items was the same as in the Experiment 1. The same 

stimuli set was used. Exceptions were different. They had all 

features new. Exceptions were individuals, thus there was 

one exception of Momo and one of Lulu category. 

In addition to the stimuli types used in the Experiment 1, 

there were 2 additional item types: New-D and New-D 

Exceptions (See Table 1).  

Design and procedure 

Design and procedure of Experiment 2 respected the one 

described for Experiment 1 in every respect. Memory test had 
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88 trials. The experiment took approximately 15 - 20 minutes 

for adults and 25 - 30 minutes for children. 

Results 

Training performance 

Performance on High-Match items was above chance for 

both age groups (ts > 4.78, both ps < .001, two-tailed). Both 

children and adults learned to categorize exceptions (ts (36, 

23) = 3.57, 6.64, ps < .001). 

Recognition memory 

Overall memory sensitivity was high for both age groups and 

well above chance (both ps < .001) (Figure 3). Differences in 

overall memory (old – All-new-P) were tested in a 2 (Age: 4-

year-olds, adults) x 2 (Type: regular, exception) ANOVA. 

Participants had better memory for regular items (A’ scores), 

regardless of their age (F (1, 140) = 4.88, p < .05, η = .03). 

   

 

 
Figure 3. Memory sensitivity scores (A-prime) for overall 

memory (OLD – All-new-P) across age groups and two item 

types in Experiment 2. The dashed line represents the point 

of no sensitivity. Error bars represent the standard errors of 

the mean. 

 

In order to test for differences in memory for (P and D) 

features, 2 (Age: 4-year-olds, adults) x 2 (Type: regular, 

exception) x 2 (Feature: P, D) ANOVA was conducted on A’ 

scores. The analysis revealed significant main effects of age 

(F (1, 280) = 5.13, p < .05, η = .02) and type (F (1, 280) = 

13.26, p < .001, η = .05), and a significant age by feature 

interaction (F (1, 120) = 6.05, p < .05, η = .02) on A’ scores. 

As expected based on the previous studies (Deng & Sloutsky, 

2016), adults, but not 4-year-olds, have shown differential 

memory - specifically better memory for rule than 

probabilistic feature. Both age groups had better memory for 

features of High-Match items, than those of exceptions 

(Figure 4).  

Discussion 

Results presented in this paper challenge assumptions of the 

models of classification learning like RULEX and 

SUSTAIN. In two experiments reported here we have shown 

that both children and adults have better memory for features 

of regular items than features of exception. These findings 

have at least two important implications. First, they show that 

regular category members are not processed minimally, as it 

is suggested by models which assume high level of 

optimization of attention. Secondly, they also show that 

exceptional items are not represented fully, that is, they are 

not necessarily memorized. Not only that RULEX model 

cannot account for these findings, but it predicts completely 

the opposite pattern. Although SUSTAIN would fit the data 

better (especially good memory for regular items), the finding 

of better memory for exceptions runs counter to its 

assumptions.  

 

 

Figure 4. Memory sensitivity scores (A-prime) for 

probabilistic and deterministic features of two item types in 

Experiment 2 (Panel A: four-year-olds; Panel B: adults). The 
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dashed line represents the point of no sensitivity. Error bars 

represent the standard errors of the mean. 

 

The representation of an exception depends on its nature. 

When exceptions violate categories defined by rules by 

respecting contrasting category rule and can be learned only 

if there is binding of features, there is better memory for 

exceptions than regular items, as shown in the previous 

studies (e.g. Palmeri & Nosofsky, 1995, Sakamoto and Love, 

2004). However, when the nature of exceptions, and the 

nature of a category they belong to, allows for more flexible 

approach, participants tend to optimize. In the case of the 

exceptions used in this study, they could be equally 

successfully categorized based on different representations, 

some of which could simply contain memory for one of the 

item’s features. However, despite their easy-to-learn 

structure, if special status of exceptions is to be attributed to 

the fact they violate previous knowledge expectations, they 

are schema-inconsistent and rare, exceptions in our study 

would also be processed with more attention, more deeply 

and they would have stronger memory trace. However, this 

was not the case.  

Contrary to the predictions based on schema literature, that 

participants are more prone to notice missing features or new 

features in schema-inconsistent items than schema-consistent 

items (Friedman, 1979; Goodman, 1980), our participants 

were more sensitive when we changed regular items’ 

features. 

In addition to the difference in memory for regular 

category members and exceptions, developmental 

differences in memory were also found. While adults had 

better memory for rule, than for probabilistic features, 4-year-

olds didn’t show differential memory. This pattern is in 

accordance with previous studies (Deng and Sloutsky, 2016). 

However, contrary to our predictions, there were no 

developmental differences in memory status of exceptions. 

Both age groups had better memory for regular category 

members, despite differences in attention allocation 

(selective vs. distributed).  

Taken together, findings of this study suggest new 

directions for models of category learning and memory, by 

providing new evidence on attention and memory 

optimization during category learning.  
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Abstract

Investigations of scope ambiguity resolution suggest that child
behavior differs from adult behavior, with children struggling
to access inverse scope interpretations. For example, children
often fail to accept Every horse didn’t succeed to mean not all
the horses succeeded. Current accounts of children’s scope be-
havior involve both pragmatic and processing factors. Inspired
by these accounts, we use the Rational Speech Act framework
to articulate a formal model that yields a more precise, ex-
planatory, and predictive description of the observed develop-
mental behavior.
Keywords: Rational Speech Act model, pragmatics, process-
ing, language acquisition, ambiguity resolution, scope

Introduction
If someone says “Every horse didn’t jump over the fence,”
do you think any horses made it over the fence? If you
think not, then you’ve interpreted this utterance as some-
thing like (1a). In contrast, if you think it’s possible some
horses made it, you’ve interpreted this utterance as something
like (1b). These two different interpretations are possible be-
cause the utterance is scopally ambiguous. That is, it contains
two scope operators: a quantifier (every=∀) and a negation
(n’t=¬). Either element can take scope over the other (indi-
cated as >> in (1)), and so yield two different interpretations.

(1) Every horse didn’t jump over the fence.
a. ∀>> ¬ (surface scope):

None of the horses jumped over the fence.
b. ¬>> ∀ (inverse scope):

Not all of the horses jumped over the fence.

While adults can access both interpretations given appropri-
ate context, 5-year-old children typically struggle to obtain
the inverse scope in (1b) (Musolino, 1998; Lidz & Musolino,
2002; Musolino & Lidz, 2006; Musolino, 2006; Viau et al.,
2010; Tieu, 2015). For example, in a context where two out of
three horses did in fact jump over the fence, only the inverse
scope interpretation in (1b) is true. Adults charitably inter-
pret the ambiguous utterance in a way that makes it a true
statement (i.e., with the inverse scope in a two-out-of-three
scenario), but 5-year-olds stick with the surface interpretation
in (1a), which is false. Why does children’s behavior differ
from adults’ in this context?

Previous accounts of children’s scope interpretation be-
havior have recognized that both processing and pragmatic
factors may contribute to non-adult-like behavior. Musolino
(1998, 2006) observed that the surface scope interpretation in
(1a) may be easier to process because the scope relationship
in the semantics (i.e., ∀ scopes over ¬) aligns with the linear

order of these elements in the utterance (i.e., Every precedes
n’t). In contrast, for the inverse scope interpretation in (1b),
this isomorphism does not hold, with the scope relationship
(i.e., ¬ scopes over ∀) opposite the linear order of the ele-
ments in the utterance. Musolino hypothesized that this lack
of isomorphism would make the inverse scope interpretation
more difficult to access. In line with this prediction, Conroy
et al. (2008) found that when adults are time-restricted, they
favor the surface scope interpretation. We thus see a potential
role for processing factors in children’s inability to access the
inverse scope. Perhaps children, with their still-developing
processing abilities, can’t allocate sufficient processing re-
sources to reliably access the inverse scope interpretation.

In addition to this processing factor, Gualmini et al. (2008)
noted that discourse properties, such as what children con-
sider the question under discussion (QUD), may impact their
scope interpretation behavior. Formal theories of pragmat-
ics suggest that all discourse transpires with respect to some
QUD, whether implicit or explicit; utterances in the discourse
need to (at least partially) answer the QUD to be pragmat-
ically felicitous (Roberts, 2012). Gualmini and colleagues
(Hulsey et al., 2004; Gualmini et al., 2008) suggest that chil-
dren are very sensitive to this requirement. In particular, chil-
dren may be able to access the inverse scope interpretation but
nonetheless choose the surface scope interpretation because
it better answers the perceived QUD in the contrived experi-
mental setups. So, children’s observed behavior would derive
from a still-developing ability to manage the contextual infor-
mation available and correctly infer the intended QUD.

Thus, children’s developing processing and pragmatic abil-
ities may both be a source of the observed non-adult-like be-
havior (Viau et al., 2010), though current experimental stud-
ies have struggled to clearly isolate the influence of each type
of factor. To this end, we formally articulate the mecha-
nism of scope ambiguity resolution using the Bayesian Ra-
tional Speech Act (RSA) computational modeling framework
(Frank & Goodman, 2012; Goodman & Frank, 2016) in or-
der to identify the separate contributions of processing and
pragmatic factors.

We first summarize key experimental results from the liter-
ature on child scope ambiguity resolution, noting three core
variables (one processing, two pragmatic) that affect chil-
dren’s scope disambiguation behavior. We also highlight the
nature of the task children are being asked to engage in, which
we then formally articulate using an RSA model that specifies
the role of each of these three variables. Our results suggest
that pragmatic factors play a larger role than processing fac-
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tors in explaining children’s non-adult-like scope ambiguity
resolution behavior, and the computational modeling frame-
work allows us to understand exactly why that’s so. These
results additionally suggest targeted future behavioral exper-
iments to verify the impact of the specific pragmatic factors
we identify. More generally, our model yields a more pre-
cise, explanatory, and predictive description of the observed
developmental scope ambiguity resolution behavior.

Background: Experimental results
Children’s ability to access the inverse scope interpretation
has been shown to be sensitive to manipulations of experi-
mental context. The methodology typically used to assess
children’s scope disambiguation is the Truth Value Judgment
Task (TVJT; Crain & McKee, 1985). In the basic TVJT, chil-
dren are presented with a background story about the actors—
for example, horses engaging in some activities. After this
background story, children watch as the horses attempt to
complete an action, such as jump over a fence. The critical
not-all result state meant to prompt the inverse scope inter-
pretation is illustrated in Figure 1, where the white horse fails
to jump over the fence.

Figure 1: Sample not-all scenario from Musolino and Lidz
(2006): 2 of 3 horses succeed at jumping over the fence.

In this scenario, the surface scope interpretation of the
scopally-ambiguous utterance Every horse didn’t jump over
the fence (i.e., none of the horses jumped over the fence) is
false, and the inverse scope interpretation (i.e., not all of the
horses jumped over the fence) is true. A puppet then says the
scopally-ambiguous utterance, and the child is asked to state
if the puppet is right. That is, the child is asked whether s/he
would endorse the puppet’s utterance as a true description of
the scenario. Typically, children refuse to endorse the pup-
pet’s utterance, saying that the puppet is wrong. This behav-
ior has been interpreted as children failing to access the in-
verse scope interpretation that would make the utterance true.

Interestingly, various alterations to the TVJT setup have
yielded more adult-like behavior in children, namely greater
rates of endorsing the puppet’s ambiguous utterance in not-all
scenarios. Musolino and Lidz (2006) observed that negation
in an utterance might require certain felicity conditions to be
met. In particular, negated utterances require a preceding af-
firmative context to contrast with (Wason, 1965). Musolino

and Lidz augmented the basic TVJT to include an additional
contrast condition in which the puppet precedes its negative
scopally-ambiguous utterance with a contrasting affirmative
clause. This additional clause describes a previous successful
story action (i.e., early-success), such as Every horse jumped
over the log, but every horse didn’t jump over the fence. This
early-success contrast manipulation increased children’s will-
ingness to accept the scopally-ambiguous utterance in the
not-all scenario: Children in the baseline condition endorsed
the puppet’s statement just 15% of the time, while children in
the early-success affirmative context condition endorsed the
puppet’s statement 60% of the time. Viau et al. (2010) later
replicated this increase in utterance endorsement using only
an early-success story context. That is, the utterance endorse-
ment rate was maintained by an early-success story context
alone, and children didn’t need an explicit contrast clause in
the test utterance.

Notably, the early-success affirmative context manipula-
tion potentially changes several aspects of the experimental
context. First, it can shift participants’ expectations about
successful outcomes in the experimental world. This shift
then potentially increases the salience of a QUD targeting this
success, such as “Did all the horses succeed?” (all?). Rec-
ognizing this QUD’s potential significance, Gualmini (2004)
attempted to manipulate the experimental context so it fa-
vored the all? QUD. With all? as the salient QUD, chil-
dren’s endorsement of a scopally-ambiguous utterance that
perfectly answers all? in the critical not-all scenario in-
creased to 90%. Even for a scopally-ambiguous utterance that
does not answer the all? QUD, children’s endorsement rate
was at 50%—markedly higher than the 15% baseline from
the original study by Musolino and Lidz (2006). This finding
highlights that privileging the all? QUD increases children’s
utterance endorsement in these scenarios.

A third potential impact of the affirmative context manip-
ulation involves scope access. By altering the experimental
world expectations and/or QUD to increase access to the in-
verse scope, the inverse scope interpretation may also become
more accessible for later use. Viau et al. (2010) term this
structural priming. Children who are better able to access the
inverse scope are then more likely to endorse the scopally-
ambiguous utterance in subsequent not-all scenarios. Viau
et al. investigated structural priming explicitly by attempting
to directly alter the accessibility of the inverse scope inter-
pretation. In one modified TVJT, they attempted to prime
the access of the inverse scope interpretation, and in another
modified TVJT, they attempted to directly prime the inverse
scope’s logical structure (e.g., ¬>> ∀).

The first structural priming manipulation was implemented
via the now-familiar affirmative context (i.e., pragmatic) ma-
nipulation. For the first three trials, the prior experimen-
tal context indicated successful outcomes and the effect was
that children endorsed the scopally-ambiguous utterance 50%
of the time. Crucially, the subsequent three trials removed
the supportive affirmative context manipulation—yet children
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continued to not only endorse the scopally-ambiguous utter-
ance, but to endorse it more than they had before (80%). Viau
et al. (2010) attribute this result to a priming effect of the in-
verse interpretation from the first three trials. Interestingly,
the increase in utterance endorsement could be due to priming
multiple factors that are products of the affirmative context
manipulation: (i) the expectations about successful outcomes
in the experimental world, (ii) the salience of the all? QUD,
or (iii) the ease of access to the inverse scope interpretation.

The second structural priming manipulation removed the
affirmative context story in the first three trials. In its place,
children were asked whether they would endorse a scopally-
unambiguous utterance (e.g., “Not every horse jumped over
the fence”) whose interpretation had logical operators in the
same order as the inverse scope interpretation of the scopally-
ambiguous utterance (e.g., ¬ >> ∀). Children endorsed
this utterance 80% of the time. In the subsequent three tri-
als, children were asked if they would endorse the scopally-
ambiguous utterance in the same experimental scenario—and
their endorsement rate remained at 80%. Viau et al. (2010) in-
terpret this effect as priming of the relevant logical form: The
inverse scope was easier to access in the scopally-ambiguous
utterance because it was so recently accessed in the unam-
biguous utterances. The authors argue that this priming effect
proceeded in the absence of manipulations to the pragmatic
context, yet even here, there may still be pragmatic factors at
work. The unambiguous utterance accomplishes three things:
(i) it provides an instance of the ¬>> ∀ configuration, (ii) it
provides information about successful outcomes, and (iii) it
suggests the all? QUD, answering it with no. Thus, in this
attempt to prime the inverse logical form, the authors may
have also altered expectations about the pragmatic context of
the experiment, as related to the successful outcomes and rel-
evant QUDs.

These experimental studies highlight at least three core fac-
tors (two pragmatic, one processing) that underlie children’s
utterance endorsement behavior in the TVJT: (i) pragmatic:
expectations about the experimental world (e.g., how likely
successful outcomes are), (ii) pragmatic: expectations about
the QUD (e.g., whether all outcomes were successful), and
(iii) processing: the accessibility of the inverse scope (i.e.,
the ease by which the logical form is accessed). These exper-
imental studies have also supported different theoretical pro-
posals for the source of children’s differences. The proposals
split on whether they attribute the differences solely to an in-
ability to manage contextual information (i.e., pragmatic fac-
tors; Gualmini, 2008) or whether processing deficits also sig-
nificantly contribute (i.e., difficulty accessing inverse scope;
Viau et al., 2010). Importantly, it is not obvious from any
of the existing experimental manipulations how to separate
the independent contributions of these components. To cap-
ture and independently manipulate the contributions of each
of the pragmatic and processing factors, we formalize their
role in the interpretation of scopally-ambiguous utterances,
using tools from probabilistic modeling.

The model

We model ambiguity resolution within the Bayesian Ra-
tional Speech Act (RSA) framework (Goodman & Frank,
2016). This framework views language understanding as
a social reasoning process. A pragmatic listener L1 inter-
prets an utterance by reasoning about a cooperative speaker
S1 who is trying to inform a literal listener L0 about the
world. Our model is a “lifted-variable” extension wherein
the ambiguous utterance’s literal semantics is parameterized
by interpretation-fixing variables (e.g., the relative scope of
the quantificational elements; Lassiter & Goodman, 2013).
Hearing an ambiguous utterance, a pragmatic listener rea-
sons jointly about the true state of the world (e.g., how many
horses jumped over the fence), the scope interpretation that
the speaker had in mind (i.e., surface vs. inverse), as well as
the likely QUD that the utterance addresses (e.g., all?).

To connect our model’s predictions with the available
TVJT data, we follow Degen and Goodman (2014) and
Tessler and Goodman (2016), modeling participants’ TVJT
behavior as the (relative) endorsement of a pragmatic speaker
S2 for an utterance about an observed situation. That is,
we model whether a speaker would endorse the scopally-
ambiguous utterance as a description of the observed state,
or whether the speaker would prefer to say nothing at all. The
pragmatic speaker S2 makes this decision by reasoning about
the probability that a pragmatic listener L1 (who is reasoning
about a speaker S1 reasoning about a literal listener L0) would
arrive at the correct world state after hearing the utterance.

We take world states w ∈ W to correspond to the num-
ber of successful outcomes, for example, the horses that
successfully jumped over the fence (W = {0,1,2,3}). We
assume a simple truth-functional semantics where an utter-
ance u denotes a mapping from world states to truth values
(Bool = {true,false}). We parameterize this truth func-
tion so that it depends on the scope interpretation i ∈ I =
{inverse,surface}, [[u]]i: W → Bool. We consider two al-
ternative utterances u ∈ U : the null utterance (i.e., saying
nothing at all, and so choosing not to endorse the utterance)
and the scopally ambiguous utterance amb (e.g., “Every horse
didn’t jump over the fence”). So, U = {null, amb}. The ut-
terance semantics appears in (2), where the parameterization
only impacts the truth value for utterance amb (since that’s
when multiple interpretations are available). If inverse is
active, this corresponds to the not all reading, and so is true
as long as not all (i.e., w6=3) outcomes were successful. If
surface is active, this corresponds to the none reading, and
so is only true in world state 0.

(2) Utterance semantics [[u]]i:
a. [[null]]i = true
b. [[amb]]i = if i = inverse [[inverse]],

else [[surface]]
where:
[[inverse]] = λw. w 6= 3
[[surface]] = λw. w = 0
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We consider three QUDs q ∈ Q: (i) “How many horses
made it over?” (how-many?), (ii) “Did all the horses make
it over?” (all?), and (iii) “Did none of the horses make it
over?” (none?). The QUDs serve as projections from the
inferred world state to the relevant dimension of meaning,
q : W → X (Kao, Wu, et al., 2014; Kao, Bergen, & Good-
man, 2014). In practice, the QUDs establish partitions on
the possible world states, as shown in (3): how-many? is an
identity function on world states, all? returns true only if
all three outcomes were successful, and none? returns true
only if none of the outcomes were successful.

(3) QUD semantics [[q]]:
a. [[how-many?]] = λw. w
b. [[all?]] = λw. w = 3
c. [[none?]] = λw. w = 0

The literal listener L0 has prior uncertainty about the true
state, P(w), and updates beliefs about w conditioned on the
the literal semantics. That is, L0 restricts prior beliefs to those
worlds that [[u]]i maps to true. The function δ[[u]]i(w) maps the
Boolean truth value to a probability, 1 or 0.

PL0(w|u, i) ∝ δ[[u]]i(w) ·P(w)

To capture the notion that communication proceeds relative
to a specific QUD q, L0 must infer not only the true world
state w, but also the value of the QUD applied to that world
state, [[q]](w) = x.

PL0(x|u, i,q) ∝ ∑
w

δx=[[q]](w) ·PL0(w|u, i)

The speaker S1 chooses an utterance u in proportion to its
utility in communicating about the true state of the world w
with respect to the QUD q, [[q]](w) = x. Thus, the speaker
maximizes the probability that L0 arrives at the intended x
from u. This selection is implemented via a softmax function
(exp) and free parameter α, which controls how rational the
speaker will be in utterance selection.

PS1(u|w, i,q) ∝ exp(α · log(L0(x|u, i,q)))

Utterance interpretation happens at the level of the prag-
matic listener L1, who interprets an utterance u to jointly in-
fer the world state w, the interpretation i, and the QUD q. We
therefore model ambiguity resolution as pragmatic inference
over an under-specified utterance semantics (i.e., the interpre-
tation variable i). To perform this inference, L1 inverts the S1
model by Bayes rule, and so the joint probability of w, i, and
q is proportional to the likelihood of S1 producing utterance
u given world state w, interpretation i, and QUD q, as well as
the priors on w, i, and q.

PL1(w, i,q|u) ∝ PS1(u|w, i,q) ·P(w) ·P(i) ·P(q)

To model the utterance endorsement implicit in TVJT, we
need one more level of inference. The pragmatic speaker S2
observes the true world state w and selects u by inverting the

L1 model, thus maximizing the probability that a pragmatic
listener would arrive at w from u by summing over possible
interpretations i and QUDs q that accompany world w.

PS2(u|w) ∝ exp(log∑
i,q

PL1(w, i,q|u))

To generate model predictions, we must fix various model
parameters. The S1 speaker rationality parameter α > 0 is set
to 2.5. The priors P(w) and P(q) correspond to expectations
for the discourse context (i.e., likely world states or QUDs).
In the default case, we set these priors to be uniform over their
possible values: P(w=0)=P(w=1)=P(w=2)=P(w=3)= 1

4 ;
P(how-many?) = P(all?) = P(none?) = 1

3 . The interpreta-
tion prior P(i) corresponds to how easy it is to access the in-
verse scope interpretation. Experimental literature on scope
ambiguity resolution suggests that speakers more readily ac-
cess the surface interpretation (Anderson, 2004; Conroy et al.,
2008). We model this tendency by setting these default val-
ues: P(surface)=0.7 and P(inverse)=0.3. Importantly, to
better understand children’s utterance endorsement behavior
with scopally-ambiguous utterances, we can independently
manipulate the values of the priors on W , Q, and I, and ob-
serve their impact on utterance endorsement.

Results
To test how pragmatic and processing factors contribute to
non-adult-like utterance endorsement in the TVJT, we sys-
tematically manipulate the relevant priors to favor specific
parameter values, shown in Figure 2.

For the world state prior (Figure 2, left), we systematically
favor specific world states by setting their prior probability to
0.9; if a world state is not favored, it receives a prior proba-
bility of 0.1/3 = 0.033. Holding the QUD and scope priors at
their default values, we see a marked increase in endorsement
of the ambiguous utterance in the not-all scenario as beliefs
about horse success increase. Utterance endorsement is at
its lowest (0.25) when prior knowledge suggests that horses
are particularly unlikely to succeed at jumping; utterance en-
dorsement is at its highest (i.e., most adult-like: 0.90) when
we believe horses are very likely to succeed.

Just as with the world state prior, we can systematically
manipulate the QUD prior (Figure 2, center). Favored QUDs
receive a prior probability of 0.9; other QUDs receive a prior
probability of 0.05. Holding the other priors at their default
values, we see an increase in utterance endorsement from the
none? (did no horses succeed?; 0.28) to how-many? (how
many horses succeeded?; 0.37) to all? (did all horses suc-
ceed?; 0.64) QUDs. The model predicts the most adult-like
behavior when the QUD concerns whether all the horses suc-
ceeded.

Finally, for the binary scope prior (Figure 2, right), we sys-
tematically manipulate the prior probability of inverse from
0.1 to 0.9. Holding the other priors at their default values,
we see a monotonic increase in utterance endorsement as the
probability of inverse increases. At its most adult-like, the
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Figure 2: Model predictions for ambiguous utterance endorsement (e.g., Every horse didn’t jump over the fence) in a not-all
scenario (e.g., two-out-of-three horses jump over the fence). Lower endorsement probability corresponds to less adult-like (i.e.,
more child-like) behavior. For the pragmatic variables (world state, QUD), the favored parameter value receives most of the
prior probability weight (P( f avored) = 0.9). For the processing variable (scope), the prior corresponds to how strongly the
inverse scope is favored.

model predicts an endorsement probability of 0.57 when the
prior probability of inverse is at its highest (0.9)—at its low-
est (0.1), endorsement only drops to 0.4.

To summarize, the world state and QUD priors have a more
dramatic impact on utterance endorsement than the scope
prior. There are two main reasons for this. First, for the world
state prior, when expectations favor success (i.e., w = 3), the
ambiguous utterance is maximally informative regardless of
the scope interpretation it receives: amb communicates to a
listener that prior expectations do not hold (i.e., None/Not all
of the horses succeeded goes against the expectation that all
three horses would succeed). So, amb is particularly useful
for communicating about the a priori unlikely not-all world
states that appear in the experimental scenarios. Second, for
the QUD manipulation, when all? is favored, either inter-
pretation of amb fully resolves the QUD: whenever amb is true
(i.e., whether None or Not all the horses succeeded), it is not
the case that all the horses succeeded. A pragmatic speaker
recognizes the utility of amb as an answer to all? in a not-all
world state, irrespective of the intended scope interpretation.

Figure 3: Model predictions for ambiguous utterance en-
dorsement when optimal world state (w = 3) and optimal
QUD (all?) are favored (P( f avored) = .9).

So far, we have considered independent manipulations to
the factors of interest. Figure 3 shows the interaction of all
three factors for utterance endorsement when w = 3 and all?

are favored. Here we see the additive effects of the world state
and QUD priors; together, they lead to near-total endorsement
of the ambiguous utterance. We also see more clearly the rel-
atively small contribution of the scope prior, where chang-
ing the prior probability of inverse from 0.1 to 0.9 leads
to just a 0.01 increase in endorsement probability. Thus, we
see how the priors on the pragmatic factors overwhelm the
processing scope prior. When the optimal (i.e., optimal for
endorsement) QUD and world state are favored, even when
inverse is highly inaccessible (i.e., P(inverse) = 0.1), we
still predict massive utterance endorsement (0.99).

Discussion
Our model of ambiguity resolution qualitatively captures the
changes in children’s utterance endorsement from the exper-
imental literature; our results suggest that when it comes to
understanding non-adult-like behavior in the TVJT, there is a
stronger role for the pragmatics of context management (as
realized in priors on world state and QUD) than for gram-
matical processing (as realized in the prior on scope inter-
pretations), although there is likely a role for both. So, the
observed failure of children to endorse scopally-ambiguous
utterances in not-all scenarios likely stems more from chil-
dren’s beliefs about the world of the experiment (e.g., whether
horses are a priori likely to succeed) and about the topic of
conversation (e.g., whether the conversational goal is to de-
termine if all the horses succeeded), than their inability to
grammatically derive the inverse scope interpretation in real
time. Indeed, our model predicts the highest rates of utter-
ance endorsement to occur when resolving the scope ambi-
guity is irrelevant for communicating successfully about the
not-all world—that is, when expectations favor total success
(i.e., w = 3), or when the QUD asks if all? of the horses
succeeded. In either case, both scope interpretations serve to
inform a listener, either that the a priori likely w= 3 isn’t true
or that the answer to the all? QUD is no.

These results also underscore the need for well-defined
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mapping hypotheses from observed experimental behavior to
the psychological processes they inform, particularly for the
sophisticated reasoning that occurs in tasks like the TVJT.
In our brief review of the experimental literature, we were
careful to point out alternative interpretations of the various
experimental manipulations and their potential, unintended
pragmatic consequences. At the very least, we hope to have
demonstrated that utterance endorsement is not simple. A
TVJT participant must reason recursively about the potential
informativity of the utterance, attending to knowledge about
the world of the experiment and the likely topic of conversa-
tion. That children stumble when attempting to perform these
complex recursive inferences isn’t so surprising. We suggest
that a plausible source of differences in child and adult behav-
ior on the TVJT is children’s inability to successfully manage
pragmatic information. We therefore propose to move the dis-
cussion away from the fragility of accessing inverse scope in
children as a grammatical processing deficit and toward the
complexity of behavior that scope interpretations require.

In addition to formalizing the pragmatics of ambiguity res-
olution in context, our results also motivate future experi-
mental investigations that explicitly measure children’s (and
adults’) expectations about the world and topic of conversa-
tion. We saw how past experiments did not completely decon-
found the relevant factors. Perhaps the most straightforward
way of testing these factors’ effects is to measure the prior
knowledge that participants bring to bear in the TVJT. These
explicit measurements of pragmatic context can then form the
basis of future modeling studies in this framework that could
quantitatively match the behavioral results.

More generally, our results provide the foundation for more
complete theories of the developmental process underlying
scope ambiguity resolution. Children’s relative lack of expe-
rience managing world and conversational knowledge likely
contributes to their sensitivity to the experimental context. In
short, five-year-olds may know the right interpretation, but
they’re still figuring out whether it’s the best answer in the
context of the experimental conversation.
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Abstract

We investigate the influence of the adverb surprisingly on the
meaning of the quantity words few and many, which them-
selves have been associated with a reading expressing sur-
prise. To learn about the meaning contribution of “surprise”,
we compare surprisingly with the intensifier incredibly and
a compared to phrase explicitly marking surprise. Based on
an empirical measure of subjects’ expectations about everyday
events, a Bayesian model uses data from a sentence judgment
task to infer likely levels of surprise associated with the differ-
ent constructions of interest.
Keywords: intensifier, surprise, computational modeling, few,
many, surprisingly

Introduction
A long tradition in psychology has acknowledged the role of
prior expectations in the use of vague and context-dependent
expressions like tall, heavy, few and many (e.g. Clark, 1991;
Sanford, Moxey, & Paterson, 1994). Fernando and Kamp
(1996) spell out a semantic theory which makes the truth con-
ditions of few and many dependent on prior expectations. So-
called “cardinal surprise readings” convey that a cardinality
is smaller or greater than what is expected for the situation:

(1) For a man from the US, Chris saw few/many movies
last year.  Chris saw less/more movies than ex-
pected for a US male.

Such a surprise-based account raises interesting ques-
tions. First, how can expected cardinalities be distinguished
from surprising ones? Fernando and Kamp (1996) stipu-
late that the lexical meanings of few and many comprise
contextually-stable thresholds θfew and θmany which operate
on a contextually-variable representation of a priori expecta-
tions. Second, if sentences with few and many express that a
cardinality is surprising anyway, are they different from sen-
tences in which the surprise element is overtly marked? The
surprise reading can be made salient by a compared to phrase
(2) or by modifying few and many with an adverb like sur-
prisingly (3).

(2) Compared to what you would expect for a man from
the US, Chris saw few / many movies last year.

(3) For a man from the US, Chris saw surprisingly few /
many movies last year.

If surprise were the single factor which determines truth con-
ditions of the cardinal surprise reading, we should not find a
meaning difference between (1) and the overtly marked sur-
prise reading in (2) and (3). Alternatively, it could be hypoth-
esized that surprisingly in (3) acts not as a marker of surprise
but as an intensifier, yielding a higher θsurpr. many than θmany

and a lower θsurpr. few than θfew. The pragmatic theory of in-
tensifiers by Bennett and Goodman (2015) would predict that
surprisingly has very similar effects to incredibly (see below).

We set out to experimentally test the influence of the mod-
ifiers surprisingly, incredibly and compared to on the thresh-
old values predicted for Fernando and Kamp (1996)’s sur-
prise readings of few and many. We employ linear mixed
effects regression to compare judgment data and a computa-
tional model to infer said thresholds from our data.

A Surprise-based Semantics for few and many
Partee (1989) characterized cardinal many as describing car-
dinalities which are at least xmin, where xmin is a large num-
ber, and few as describing cardinalities which are at most
xmax, where xmax is a small number, see (4).

(4) Cardinal reading of “Few/Many As are B”
Few: |A∩B| ≤ xmax Many: |A∩B| ≥ xmin

One concrete proposal of how xmin and xmax might be iden-
tified is presented by Fernando and Kamp (1996). The “car-
dinal surprise reading” of few and many in sentences like (1)
is an intentional comparison between the actual number of
movies that Chris saw last year and a probabilistic belief PE
about the expected number of watched movies in some con-
textually provided comparison class. The for-phrase in (1)
triggers a comparison class of US males. The prior expec-
tation PE is highly context-dependent. In contrast, θfew and
θmany are context-independent. They are fixed thresholds on
the cumulative distribution of PE . Truth conditions of the sur-
prise reading of sentences like (1) are given in (5).

(5) a. JFew As are BK = 1 iff |A∩B | ≤ xmax where
xmax = max{n ∈ N | PE(|A∩B | ≤ n)< θfew}

b. JMany As are BK = 1 iff |A∩B | ≥ xmin where
xmin = min{n ∈ N | PE(|A∩B | ≤ n)> θmany}

From (5b), entities which have properties A and B can be de-
scribed as “many” if their cardinality is at least xmin. xmin is
the lowest number for which the cumulative density mass of
prior expectation PE about the number of As with property B
is higher than the threshold θmany. In other words, “Many As
are B” is a true description of cardinalities which are surpris-
ingly high with respect to the contextually given PE and the
context-independent threshold θmany on PE .

To illustrate, consider the example in Figure 1 for the
many-sentence in (1). Prior expectations PE could look like
in Figure 1a: they would assign a probability to any natural
number n, indicating how likely we think it is that Chris saw n
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Figure 1: Illustration of a surprise-based semantics

movies last year. Figure 1b shows the cumulative distribution
of the distribution in Figure 1a. If θmany was fixed to, say, 0.8,
then the semantics would identify xmin to be 23. Accordingly,
for this PE , the many-sentence in (1) would be false for any
n < 23 and true for any n ≥ 23. Schöller and Franke (2015)
present evidence for the fixed threshold hypothesis by identi-
fying fixed values for θfew and θmany, which correctly predict
the applicability of few and many in different contexts, given
experimentally measured prior expectations.

Surprisingly: Intensifier or Marker of
Surprise?

Two views are prima facie plausible for the meaning contri-
bution of the adverb surprisingly. On the one hand, surpris-
ingly can be taken to intensify the meaning of few and many
just like other intensifiers like incredibly or very do. As a re-
sult, surprisingly many might be associated with a threshold
θsurpr. many higher than θmany. The contrasting view is to clas-
sify surprisingly as a marker of the surprise reading, which
overtly marks that truth-conditions must draw on a threshold
on a measure of surprise. This view is supported by the se-
mantic literature which suggests that “being surprisingly tall
comes to mean taller than expected” (Nouwen, 2011, 154).

Note that our hypotheses for surprisingly apply to sen-
tences with a salient cardinal surprise reading and a restricted
comparison class. To discriminate between the two views on
surprisingly, we deduce two experimentally testable hypothe-
ses. Another two auxiliary hypotheses are tested alongside to
complement our understanding of modified few and many, see
Table 1. In what follows, we spell out these general hypothe-
ses in terms of their predictions about the threshold values
θfew and θmany as assumed by Fernando and Kamp (1996)
and test them with a computational model which infers these
threshold values on the basis of experimental data.

Salient surprise reading. We cannot exclude that few and
many may also denote a small or large cardinality, indepen-
dent of prior expectations. To test the auxiliary assumption
that the most salient readings of our experimental test sen-
tences (see Appendix) are cardinal surprise readings given
the comparison class for which we measure subjects’ prior
expectations (see below), we contrast sentences with bare
few and many with sentences modified by the compared to
phrase in (2) which makes the relevant expectations overt. It
is necessary to test this because if few and many did not have
the intended surprise reading, differences between few/many
and surprisingly few/many could be due to different readings
and possibly different threshold values associated with them.
Alongside few and many’s intrinsic surprise reading, we test
another related assumption: the for- phrase used to mark the
comparison class triggers the same prior expectations PE as
the compared to phrase which openly addresses expectations,
see (7).

Marker of surprise. If the function of surprisingly is to
mark a cardinal surprise reading, thresholds are the same as
for unmodified few/many, where these cardinal surprise read-
ings are most salient anyway (see above). Furthermore, sen-
tences with surprisingly should not be different from sen-
tences with compared to, as in (2).

Intensifier. Modification by surprisingly raises the thresh-
old of many and makes it applicable to a smaller range of
cardinalities, resulting in a stronger statement than the alter-
native with bare many. Few’s threshold decreases.

Bennett & Goodman. The intensifier hypothesis is in line
with work by Bennett and Goodman (2015) who explain the
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hypothesis

intensifier marker of surprise salient surprise reading

predictions
many ≤ surprisingly many

few ≥ surprisingly few
surprisingly = incredibly

many = surprisingly many
few = surprisingly few

surprisingly = compared to

many = compared to... many
few = compared to... few

results few: × many: X few: X many: × few: X many: X

Table 1: Hypotheses and results

strength of an intensifying degree adverb as “pragmatic in-
ference based on differing cost [(their length and frequency)]
rather than differing semantics” (p. 1). However, they do not
test surprisingly. From the adverbs tested by Bennett and
Goodman (2015), incredibly comes closest to surprisingly,
as they have the same number of syllables and the most sim-
ilar frequency in an updated version of the corpus Bennett
and Goodman (2015) used, the Google Web 1 T 5grams cor-
pus (4,987,059 occurrences as compared to 4,373,670 occur-
rences of surprisingly). Following Bennett and Goodman
(2015), we hypothesize that the thresholds of surprisingly
few/many are roughly the same as for incredibly few/many.

Experiments
To test the hypotheses in Table 1, two experiments were con-
ducted to gather acceptability ratings of sentences with (mod-
ified) few and many and to measure participants’ prior expec-
tations. Prior expectations will be input to the computational
model, which is presented in the next section.

Experiment 1: Prior elicitation
Design. To get an empirical estimate of participants’ prior
expectations, we used a binned histogram task. Participants
saw descriptions of a context as in (6a) and a question as
in (6b). Subjects were presented with 15 intervals, whose
ranges were determined by a pre-test (in which we asked for
the most likely, lowest and highest possible cardinality). Sub-
jects rated the likelihood that the true value lies in each of the
intervals, by adjusting a slider labeled from “extremely un-
likely” to “extremely likely.” For example, they would adjust
a slider each for the probability that Chris saw 0–2, 3–5, . . . ,
39–41 or more than 42 movies last year.

(6) Prior elicitation example
a. BACKGROUND: Chris is a man from the US.

b. How many movies do you think he saw last year?

Participants. 80 subjects were recruited via Amazon’s Me-
chanical Turk with US-IP addresses.

Materials & Procedure. After reading instructions, each
subject saw all of the 14 experimental items (see Appendix),
one after another. For each item, the 15 intervals were pre-
sented horizontally on the screen and paired with a vertical
slider. Participants had to adjust or at least click on each slider
before being able to proceed.

Results. Two participants were excluded for not being na-
tive speakers of English. For each item, each participant’s
ratings were normalized and these normalized ratings were
then averaged across participants. We understand these prob-
ability distributions PE , see Figure 2, as approximations of
the beliefs held in the population (Franke et al., 2016).

Experiment 2: Judgment task
Design. In a binary judgment task we measured acceptance
of sentences with few and many with and without modifiers
(surprisingly, incredibly or compared to). Participants were
presented with a context which introduced a situation and an
interval as in (7a). The interval was randomly chosen from
8 of the 15 intervals from the prior elicitation task (see Ap-
pendix). We presented only four low intervals for few and
four high intervals for many to avoid a large number of com-
binations. The context was described by a statement as in (7b)
which contained either few or many. We elicited data of four
groups of participants which each saw a different modifier.

(7) Production study example
a. CONTEXT: Chris is a man from the US who saw

[0–2 | 6–8 | . . . | 42 or more] movies last year.

b. STATEMENT: [For | Compared to what you
would expect for] a man from the US, Chris saw
[- | surprisingly | incredibly ] [few |many] movies
last year.

Materials & Procedure. Each participant was randomly
assigned to one modifier condition (unmodified, compared to
construction, surprisingly, incredibly). After reading a short
explanation of the task, each subject saw all of the 14 con-
texts from the Appendix one after another in random order.
Sentences with unmodified few and many or incredibly or sur-
prisingly were introduced by a for-phrase which made the in-
tended comparison class overt. The fourth group saw a com-
pared to phrase which additionally made expectations salient.
For each context, a quantity word and one of its four asso-
ciated intervals were assigned randomly. Participants had to
click on one of two radio buttons labeled with TRUE or FALSE
before being able to proceed to the next item.

Participants. We recruited 787 participants with US-IP ad-
dresses via Amazon’s Mechanical Turk, among them 301 par-
ticipants in the unmodified condition and 162 participants
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Figure 2: Empirically measured prior expectations. Error bars are estimated 95% confidence intervals.
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Figure 3: Proportion of TRUE answers from Experiment 2.

each in the other three conditions. The unmodified condi-
tion had more participants because it was part of a previous
experiment in which we presented 8 of 15 intervals for both
few and many. For the analysis only data from those intervals
presented in the other three conditions was used.

Results. Data was excluded of 25 participants who reported
not to be native speakers of English or to not having under-
stood the task. Figure 3 shows the proportion of TRUE an-
swers.

For each of the quantity words few and many we specified a
linear mixed effects regression model predicting the propor-
tional acceptance of statements as in (7b). During a guided
search through the model space, we started out with a model
containing only the random effect ITEM and added fixed ef-
fects if this significantly increased the model’s fit to the data

(measured by AIC).

For many, the final model includes the fixed effects IN-
TERVAL and MODIFIER and their interaction. Significantly
more participants accepted the statements for higher inter-
vals (β = 0.02,SE = 0.007, p < 0.01). The modification
of many by surprisingly leads to a lower acceptance (β =
−0.59,SE = 0.12, p < 0.001) than of sentences with unmod-
ified many. This suggests that surprisingly intensifies the
meaning of many. The same is the case for sentences with in-
credibly, which were also rated lower than unmodified many
(β = −0.53,SE = 0.12, p < 0.001). There is no difference
between sentences with a compared to phrase and unmodi-
fied many (β =−0.17,SE = 0.12, p < 0.15), which suggests
that many receives a surprise reading in both cases. Sur-
prisingly and compared to are rated significantly different
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(β =−0.42,SE = 0.12, p < 0.001), but there is no difference
between surprisingly and incredibly. Furthermore, there is a
significant interaction between INTERVAL and MODIFIER for
surprisingly (β = 0.03,SE = 0.01, p < 0.001) and incredibly
(β = 0.02,SE = 0.01, p < 0.01).

For few, the final model, obtained by the same procedure,
includes the fixed effects INTERVAL and MODIFIER. The
proportion of participants accepting the statement is signifi-
cantly lower for higher numbers (β=−0.12,SE = 0.004, p<
0.001). Among the modifiers only incredibly is significantly
different from bare few (β =−0.05,SE = 0.02, p < 0.05); for
surprisingly and compared to this is not the case. No sig-
nificant difference between surprisingly and compared to is
found, but incredibly is rated significantly lower than surpris-
ingly (β =−0.05,SE = 0.02, p < 0.05).

These results are expected under the “salient surprise read-
ing” hypothesis. While surprisingly seems to behave like an
intensifier for many, for few it seems to redundantly mark sur-
prise.

Computational Model
The regression models reported above include a random ef-
fect for items but do not constrain these to reflect prior
expectations. Moreover, regression models do not predict
judgments as a function of thresholds on expectations. It
is therefore insightful to complement regression modeling
with an explicit theory-driven model of a possible data-
generating process. We use the computational model of
Schöller and Franke (2015) for this purpose. The model takes
empirically measured prior expectations as input and treats
θ[i]few and θ[i]many for each modifier condition i (unmodi-
fied, surprisingly, incredibly, compared to) as latent param-
eters, whose values will be estimated to fit experimental data.
The model specifies a likelihood function P(Observation |
θ[i]many,θ[i]few) which assigns to values of latent parameters a
probability of seeing a particular experimental observation.
Bayesian inference is one way to infer plausible threshold
values, given the likelihood function and a prior:

P(θ[i]many,θ[i]few | O) ∝ P(θ[i]many,θ[i]few)P(O | θ[i]many,θ[i]few)

Our goal, then, is to see for each modifier which pairs
of threshold values θ[i]many and θ[i]few are likely given the
data. We estimate the a posteriori credible threshold values
and compare how similar they are across conditions. We
focus on many in the exposition, but the case for few is
parallel. Straightforwardly, (5) translates into a probabilis-
tic rule P(“[modifier i] many” | n,PE ; θ[i]many) = δn≥xmin,i ,
where xmin,i is derived from PE , as in (5), based on θ[i]many.
This is a degenerate probabilistic rule because it maps the ap-
plicability of “many” to 0 and 1 only. To allow for noise, we
look at a parameterized, smoothed-out version.

P(“[i] many” | n,PE ;θ[i]many,σ j) =
n

∑
k=0

∫ k+ 1
2

k− 1
2

N (y;xmin,i,σ j)dy

few many

unmodified

compared

surprisingly

incredibly

0.00 0.05 0.10 0.15 0.65 0.70 0.75 0.80 0.85 0.90
HDI of thresholds

Figure 4: Estimated 95% credible intervals for θfew,i & θmany,i

Here, σ j is another free model parameter that regulates the
steepness of the curve, and N (y;xmin,i,σ j) is the probability
density of y under a normal distribution with mean xmin,i and
standard deviation σ j. This rule predicts noisy acceptability
ratings under a surprise-based semantics where the amount of
noise is controlled by σ j, see Figure 1c. Noise can be caused
by uncertainty about the exact shape of PE and the amount of
uncertainty differs across contexts. This is why we allow an
individual value of σ j for each context j. Furthermore, we
assume that the parameter values θ[i]many, θ[i]few and σ j are
independent of each other and that they have uniform priors
over an interval that is large enough to accommodate a range
of plausible values without weighting them.

P(θ[i]many,θ[i]few,σ j) =Uniform[0;1](θ[i]many)·
Uniform[0;1](θ[i]few) ·Uniform[0;10](σ j)

To approximate the joint posterior distribution, we used
MCMC sampling, as implemented in JAGS (Plummer, 2003).
We collected 10,000 samples from 2 MCMC chains after a
burn-in of 10,000. This ensured convergence, as measured
by R̂ (Gelman & Rubin, 1992). Figure 4 shows the esti-
mated 95% credible intervals for the marginalized posteriors
over thresholds per modifier. Where intervals (clearly) do not
overlap, there is reason to believe that thresholds differ. For
example, θsurpr.many ∈ [0.863,0.903] tells us that surprisingly
many describes cardinalities which are higher than at least
86% of the cumulative density mass of PE . This threshold
is higher than bare many’s, θmany ∈ [0.657,0.701]. Taken to-
gether, the model predicts that surprisingly many is restricted
to describe higher cardinalities than unmodified many.

Discussion and Conclusions
Table 1 summarizes the results from regression and theory-
driven modeling. The data supports the “salient surprise read-
ing” hypothesis assumed by Fernando and Kamp (1996) and
suggests that an expectation-based reading is the canonical
interpretation of cardinal few and many in our test sentences.
There is no difference between unmodified sentences and sen-
tences in which expectations are made salient by a compared
to phrase.
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For surprisingly, the picture is less clear. Sentences with
many provide support for the “intensifier” hypothesis. Speak-
ers prefer it for higher cardinalities than those which render
unmodified many or sentences with a compared to construc-
tion true. Furthermore, we do not find a difference with in-
credibly. When combined with few, however, surprisingly
does not appear to be an intensifier. Sentences with few, sur-
prisingly few and compared to are rated equally, speaking in
favor of a “marker of surprise” hypothesis. For the compar-
ison between surprisingly and incredibly, we get conflicting
results from the regression and the theory-driven model. The
regression analysis finds that incredibly few is rated lower
than surprisingly few, but the computational model identi-
fies an overlap in the estimated credible intervals. How-
ever, we want to once more stress that we are here compar-
ing conclusions based on models which are decidedly differ-
ent. Whereas the computational model is theory-driven and
includes experimentally measured prior expectations, the re-
gression model only looks at numerical differences in the rat-
ings. Ultimately, we believe in the computational model.

Keeping in mind that few only applies to small cardinali-
ties, the lack of a difference could also be due to a floor effect.
This is where future research should tie in. Few should be
presented in contexts like book or facebook, in which large
cardinalities are plausible and few can operate away from
0. Additionally, the presented intervals should be more fine-
grained. A follow-up study as well as further discussion of
the semantic differences between few and many are presented
in Schöller (2017).

Acknowledgments
MF and AS’s work was supported by the Priority Program
XPrag.de (DFG Schwerpunktprogramm 1727). MF’s work
was supported by the Institutional Strategy of the University
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Experimental material
1. book — A friend’s favorite book has been published only re-

cently (and has [0-40, 81-120, 161-200, 241-280, 321-360, 401-
440,481-520, 560 or more] pages).

2. bus — Vehicle No. 102 is a school bus (which has seats for [0-4,
10-14, 20-24, 30-34, 40-44, 50-54, 60-64, 70 or more] passen-
gers).

3. calls — Lisa is a woman from the US (who made [0-4, 10-14,
20-24, 30-34, 40-44, 50-54, 60-64, 70 or more] phone calls last
week).

4. class — Erin is a first grade student in primary school. (There are
[0-2, 6-8, 12-14, 18-20, 24-26, 30-32, 36-38, 42 or more] children
in Erin’s class.)

5. coffee — Andy is man from the US (who drank [0-1, 4-5, 8-9,
12-13, 16-17, 20-21, 24-25, 28 or more] cups of coffee last week).

6. cook — Tony is a man from the US (who cooked himself [0-3,
8-11, 16-19, 24-27, 32-35, 40-43, 48-51, 56 or more] meals at
home last month).

7. facebook — Judith is a woman from the US (who has [0-69,
140-209, 280-349, 420-489, 560-629, 700-769, 840-909, 980 or
more] Facebook friends).

8. friends — Lelia is a woman from the US (who has [0-1, 4-5, 8-9,
12-13, 16-17, 20-21, 24-25, 28 or more] friends).

9. hair — Betty is a woman from the US (who washed her hair
[0-2, 6-8, 12-14, 18-20, 24-26, 30-32, 36-38, 42 or more] times
last month).

10. movie — Chris is a man from the US (who saw [0-2, 6-8, 12-14,
18-20, 24-26, 30-32, 36-38, 42 or more] movies last year).

11. poem — A friend wants to read you her favorite poem (which
has [0-3, 8-11, 16-19, 24-27, 32-35, 40-43, 48-51, 56 or more]
lines).

12. restaurants — Sarah is a woman from the US (who went to [0-3,
8-11, 16-19, 24-27, 32-35, 40-43, 48-51, 56 or more] restaurants
last year).

13. shoes — Melanie is a woman from the US (who owns [0-2, 6-8,
12-14, 18-20, 24-26, 30-32, 36-38, 42 or more] pairs of shoes).
— intervals:

14. tshirts — Liam is a man from the US (who has [0-2, 6-8, 12-14,
18-20, 24-26, 30-32, 36-38, 42 or more] T-shirts).
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Abstract 

In problem solving situation, cognitive flexibility appears to 
be a major skill. Fostering cognitive flexibility is therefore a 
specific stake in mathematics education. This research 
introduces a learning method to develop mathematical 
concepts when solving word arithmetic problems. The study 
was conducted with 8 classes (4th-5th Grades) from high-
priority education schools in the Paris area following this 
protocol: pre-tests, 5 learning sessions for experimental and 
control groups, post-tests. During learning sessions, students 
studied arithmetic word problems that can be solved in two 
different ways: an expansion strategy and a factorization one. 
The experimental teaching method, based on a 
recategorization principle, allowed experimental students to 
improve more than the control students in ability to use the 
factorization strategy even in contexts where it is the less 
intuitive and to consider the two successful strategies. 
Educational entailments of our finding are discussed.  

Keywords: cognitive flexibility, evidence-based education, 
categorization, learning method, word arithmetical problem 

Introduction 
In mathematics, proposing flexible and adaptive 
representations and strategies reflects higher problem 
solving skills (Heinze, Star & Verschaffel 2009). We 
proposed to study not only strategies in algebra problems 
but also the related representations derived from word 
problem. Indeed when solving word problems, novices 
intuitively induce a superficial structure, triggering a 
misleading categorization of the situation (Chi, 2008). The 
present study aimed to improve pupil’s cognitive flexibility 
in problems solving in order to develop an expert 
categorization on problems that reflects a better mastering 
of the underlying mathematical notions. Students are 
encouraged to reelaborate the notion’s representation, which 
leads to recategorize it. Based on recategorization principle, 
this method is applied on problems involving the 
distributive property. The distributive property problems 
admit two solving strategies whose preferential use depends 
on the representation built by the solver.  

 
 

 
An induced representation  

Phrasing of mathematical word problems can influence 
the induced representation of the problem by students 
(Vergnaud, 1982; Hudson, 1983; De Corte, Verschaffel &  
De Win, 1985). But in addition to linguistic features, 
semantic effects also rely on semantic relations or scenario 
depicted in the problem: when solving a word problem, 
students build a mathematical representation based on 
semantic relations inferred from real-word objects (Bassok 
& Olseth, 1995, Bassok, Chase & Martin, 1998). For 
instance, a problem involving apples and baskets is likely to 
evoke the asymmetric “contain” relation. So students align 
this semantic relation with structurally analogous 
mathematical relations: apples and baskets support the 
semantic relation contain (content, container) and thus the 
mathematical relations of division (dividend, divisor). This 
spontaneous encoding of problem situations results from the 
properties and relations of the entities or objects depicted in 
a problem. Semantic alignment, namely alignment between 
the semantic and mathematical relations, influences the 
difficulty of mathematical problems.  
A way to study this effect of semantic content on the 
spontaneous encoding is to use problems solvable by two 
strategies. Indeed the semantic context can influence the 
encoding of the problem and thus lead to a preference for 
one of the two strategies. Several studies showed that the 
variable involved in the problem impacts the problem’s 
representation built by the solver (Bassok et al., 1995; 
Vicente, Orrantia &Verschaffel, 2007; Gamo & Sander, 
2010). In Gamo et al.’s study, 4th and 5th grade students 
had to solve isomorphic problems involving one of the three 
following variables - the number-of- elements, price, and 
age –. This type of problem (“Antoine took painting courses 
at the art school for 8 years and stopped when he was 17 
years old. Jean began at the

 
same age as Antoine and took 

the course for 2 years less. At what age did Jean stop?”) 
can be solved by two strategies: a ‘‘complementation’’ 
strategy (in three steps: 17 – 8 = 9;  8 – 2 = 6; 9 + 6 = 15) 
and a ‘‘matching’’ strategy (in one step: 17 – 2 = 15). But 
the variable involved in the problem fosters one of the two 
representations of the problem: (a) a part-whole schema that 
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underlies unordered units which triggers the computation of 
the difference between  the part and the whole given in the 
first half of the problem; and (b) a comparison schema that 
underlies ordered units. Number-of-elements problems are 
spontaneously encoded according to the part-whole schema 
and lead to the complementation strategies whereas the age 
problems foster the matching strategy but not exclusively.  

Cognitive flexibility in problem solving   
Even after instruction, non-relevant representations 

remain: experts do not systematically use the most efficient 
strategy when solving arithmetic problems (Star & Newton, 
2009) even though they master it. Therefore, arithmetic 
problem solving raises the question of the influence of 
problem representations on the possibility to choose flexibly 
the most efficient strategy. Cognitive flexibility seems to be 
critical while solving problems (Clement, 2006). Indeed, it 
refers to the ability to select adaptively among multiple 
representations of an object, perspectives or strategies in 
order to adjust to the demands of a situation (Cragg & 
Chevalier, 2012; Diamond, 2013). Through the problem of 
‘water-jug measuring problems’ (Luchins, 1942), Clement 
(2006) proposed the concept of representational flexibility 
in problem solving: following an impasse situation, 
individuals recode the situational properties and adopt a new 
representation that leads to transfer the right strategy. 
Hence, cognitive flexibility is related both to abstraction and 
transfer. Cognitive flexibility can therefore be measured 
through the mastering of multiple strategies and of their 
appropriate use (Rittle-Johnson & Star, 2007; Star & Seifert, 
2006). Students with high flexibility in problem solving are 
more likely to adapt existing strategies when faced with 
unfamiliar transfer problems and to better understand 
domain concepts (Hiebert & Wearne, 1996; Rittle-Johnson 
& Star, 2007).  
 
Recategorization in problem solving 

Studies on cognitive flexibility in mathematics focused 
either on interpretation of the situation or on strategies 
(Heinze et al., 2009). Being able to adopt a multiplicity of 
categorization makes it possible to change point of view 
according to the needs of the situation. For example, a 
physicist who sees a glass falling down does not need to 
categorize a glass as a body under the law of gravitation and 
on which forces are exerted. Categorizing a glass only as 
"an object made of a fragile material" is sufficient to act in 
the appropriate way, namely to catch up the glass. Thus, the 
more an individual diversifies his repertoire of 
categorization, the more he is able to adopt different 
perspectives. By articulating different points of view on the 
same situation, the individual can embrace its complexity 
(Hofstadter & Sander, 2013). 

In the present study, we proposed to focus on 
recategorization as a mechanism to recode a representation 
and transfer the adapted strategy to a new context. 
Evidences from social psychology showed that if an 
individual seems to be inconsistent with his/her category 

membership, perceivers would integrate other information 
and recategorize the individual in the newly applied 
category (Gawronski & Creighton, 2013). When it comes to 
solving problems, a same situation or entity can be 
categorized at different levels of abstraction in multiple 
ways. The categorization adopted has been identified as an 
indicator of expertise. For example, in physics, novices 
categorize problems according to the objects used (problems 
of pulley or inclined planes), while experts categorize 
problems according to the physical principle (e.g. Newton's 
third law) (Chi, Feltovich, and Glaser, 1981, Chi et al., 
1989). Unlike the experts, the novices therefore construct 
their categories mainly on the basis of superficial 
information, such as specific objects (Schoenfeld & 
Herrmann, 1982). Experts rely on a greater number of 
categories and levels of categorization than novices to 
represent a situation. Since novices use some superficial 
cues, they can make negative transfers, using an irrelevant 
strategy by analogy with a problem that share the same 
superficial traits (vocabulary, object, theme) (Chen, 2002). 
Teaching to recategorize in a relevant manner seems to be a 
lever to develop students' ability to transfer strategies. 

Thus, training cognitive flexibility is a challenge for 
developing learning method. Teaching experiments in 
mathematics mainly studied number calculations: multi-
digit addition and subtraction (Carpenter et al., 1997), 
decomposition (Klein, Beishuizen, & Treffers, 1998) and 
linear equations (Rittle-Johnson & Star, 2007). Evidences 
have therefore been obtained for the algorithmic aspects but 
are sparser when it comes to word problems. One method 
consists in comparing two strategies for the same problem 
(Brissiaud, 1994). Gamo et al. (2010) proposed a training 
method in order to develop mathematical concepts through 
the semantic recoding of the word problem. The principle is 
to recode the semantically induced structure into a more apt 
mathematical structure. By recoding the problem, the 
students adopts a new point of view, which leads them to 
develop a representation of the problem that corresponds to 
the mathematical structure and succeed to use more expert 
solving strategies. In Gamo et al.’s study, students in Grade 
4 and 5 had to solve problems sharing the same deep 
structure but being spontaneously categorized as problems 
solvable by complementation strategy and not by the most 
efficient one (the matching strategy). During the training 
session, students compared the problems to stress the 
common structure. At post-test, students improved their use 
of matching strategy. Whereas interpretation initially 
realized at a level of abstraction based on the semantic 
structure, students acquired an additional degree of 
abstraction based on the mathematical structure, after 
semantic recoding. Comparison fosters a more abstract 
representation of the problems. 
 
The present study: a training method based on 
recategorization 

Because of the lack of understanding of abstract ideas, 
when they are not operationalized (Willingham, 2009), and 
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the difficulties of transferring solving strategies (Ross, 
1984), the learning method to develop students' cognitive 
flexibility is applied in a specific school context: word 
arithmetic problems on the distributive property. This type 
of problems -listed in the French curricula in 4th and 5th 
grade- has the methodological interest to be solvable by two 
strategies. Moreover, the nature of the variable involved in 
the problems favor one of the strategies (expansion or 
factorization) (Sander, 2008; Moreau & Coquin-Viennot, 
2003).   

The main goal of this method is to allow students to 
overcome the spontaneous encoding of problem situations. 
In order to develop learning methods favoring abstraction, 
while taking into account the difficulties of transfer, the 
training of recategorization was conducted through a 
semantic analysis and was supported by an explicit method 
built with students. This method consisted in allowing 
students to switch between two conceivable points of view 
on the same situation. Then they were prompted to choose 
their own one. This choice of point of view by students is 
related to a reflexive level and is consistent with previous 
work (Siegler, 1999; Blöte, 2001) that stressed the flexible 
use of strategies and encouraged students to think about the 
value of different procedures for solving a given problem. 
The different steps of the experimental training are detailed 
in Method, Training sessions.  

Hypothesis 
We therefore hypothesized that the experimental training 

method should favor students' cognitive flexibility on a 
mathematical concept- the distributive property- involved in 
arithmetic word problems.  

Students should be able to adopt the two points of view 
on the problem and use the two strategies (expansion and 
factorization) without depending on the semantic context.	  
For the training problems, no significant difference in 
factorization and dual strategies use between the two groups 
should be observed, since they are both trained to solve this 
kind of problems (Hypothesis 1). Yet, the experimental 
method based on recategorization should favor far-transfer 
compared to the traditional method. Thus the experimental 
group should propose significantly more factorization and 
dual strategies than the control group at the post-test and 
higher progression should be observed for the experimental 
group for the non-trained problems (Hypothesis 2).  	  

 
Method 

Participants 
The experiment was conducted with eight classes from 

four elementary schools located in high-priority education 
network in Paris region during regular classwork school 
hours. 142 students took part in the study: 74 were fifth 
graders and 68 were fourth graders (mean age=10 years and 
3 months, SD=6 months, 78 boys, 64 girls).  

The experimental group included 66 students (37 5th 
graders from 2 classes and 29 4th graders from 2 classes. 
The control group included 76 students (37 5th graders from 

2 classes and 39 were 4th graders from 2 classes). 

Design  
The experiment included three phases: pretest, training 
sessions, post-tests. The pre- and posttest were strictly 
identical. Both the experimental group (EG) and the control 
group (CG) followed training sessions taught by the 
experimenter. Within each group, training sessions were 
identical in their duration, organization and problems 
statements.  

Material  
Pre and post-tests 

The material was composed by 8 isomorphic 
distributive word problems (Table 1) and 5 filler problems. 
Indeed, filler problems were proposed between distributive 
problems, in order to make the structural similarities 
between the distributive problems less salient for the 
students.  

Each distributive problem describes a situation 
involving one factor and three summands. The final 
question whose structure is “How much/many … in all?” 
was placed at the end of the text. Two main solving 
strategies make it possible to reach the solution: Expansion 
strategy  (sum of each part multiplied by the factor: 4x6 + 
4x7 + 4x8) and Factorization strategy (sum of the parts, then 
multiplied by the factor: (6+7+8) x4). We selected four 
different variables (Numbers, Duration, Price, Weight). For 
each variable, a statement whose summands are said 
specific categories and a problem whose summands are 
called general categories were proposed (Table 1). The 
summands of the specific category problem are grouped at a 
base level, while those of the general category problem at a 
more abstract level than the base level (in the context of a 
treat cone, 3 balloons, 8 cookies, 4 figurines or 7 lollipops, 8 
8 candies, 3 chocolates). So summing them as a whole is 
easier for specific than general category, and could 
influence the strategy.  

 The distributive problems were constructed by controlling 
the familiarity of the vocabulary and the numerical values at 
stake. The numerical values had different features in 
common in order to limit numbers’ effects. Factor value was 
between 4 and 8 (5 was excluded since the associated 
multiplication table is easier). The three summands were 
between 2 and 8 (5 is excluded). Their sum lied between 11 
and 21. And the result was inferior to 100 (between 72 and 
98) in order to control the level of calculation difficulty.  
  A pedagogical advisor of the French National Education 
was involved in the conception of all sessions, in order to 
assure ecological material and ecological pedagogical acts. 
Therefore, 8 booklets were constructed by controlling the 
numerical values, the order of presentation of the problems 
variable and problems versions. On each page of the 
booklet, the problem was presented in written form with two 
sections in order to propose two strategies. The instruction 
for solving the problem with two strategies was both orally 
given by the experimenter and written on each page:  
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Write all your calculations and the result in the following 

section:  
Do you see any other method to come up with the same 

result? If yes, write it down while writing all calculations 
you performed to find the result. 

Tests lasted 45 minutes. Students were given 3 minutes to 
solve each problem. Students were instructed that they could 
ask the experimenter or the teacher to read aloud the 
problem in order to bypass reading difficulties, and that they 
had to write down all calculations. When the time was over, 
students had to turn the page and begin the new problem 
when the experimenter gave the instruction. They could not 
modify their answer once they turned the page.  

Training sessions 
Training sessions took place in 5 sessions over 5 weeks 

(45 minute session each week) for each class (Table 2).  
Usual French textbooks inspired the pedagogical method 

used by the control group for Grades 4 and 5 (Vive Les 
Maths and Companion Math). The experimental method 
was built for this study. The two approaches did only differ 
in their treatment of the problem. In the control group, 
students learnt to select relevant information in statements 
and choose operations. And the experimental group looked 
for the semantic relations (the sum of the parts forms a 
whole) and chose the point of view it wished to adopt. For 
instance, one of the training problem was the following: « A 
team of 5 athletes participated in a relay: each athlete ran 
on a loop of 8 km, then on a straight line of 2 km and finally 
on a loop of 6km. How many kilometers has the team 
traveled? » 
To find the number of kilometers, two strategies are 
possible. Experimental group learnt to choose between: 

- adopting the point of view of each part of the relay 
(loop and line): each loop/line is a separate part and we 
realize an expansion strategy: 5x8 + 5x2 + 5x6 = 80km 

- adopting the more abstract point of view of the relay: 
the different parts (loops and line) form the relay, we carry 
out a factorization strategy: (8 + 2 + 6) x 5 = 80 km  

Thus whereas categorizing each addend as a part leads to 
an expansion strategy, categorizing them as a whole leads to 
a factorization strategy. 

Regarding all other aspects, session organization was 
similar between the two groups: students began by 
exercising on the slate, in order to engage them in the task.  
 

 
 
 
 
 
 
 
 
 
 
 

Then the students had to answer on an exercise sheet, whose 
support was also projected on the blackboard. Finally, 
students ended the session by answering the question "What 
did I learn today? " and then a general conclusion was 
proposed by the experimenter and was written by the 
students. The distributive problems studied in the sessions 3, 
4 and 5 were identical between the two groups and involved 
only two types of variables: Number-of-Elements and 
Distance. 
 
Coding and scoring 
For pre and post-test, problems were analyzed under two 
criteria:  
- the  use of factorization strategy (correct reasoning and 
calculation) to solve the problem as a first or second 
strategy 
- the use of double strategy (reasoning and correct 
calculation)  
Then a global improvement score was calculated. At pre and 
post-test, each problem was coded as 1 when it was solved 
by an expansion, by 2 when it was solved by a factorization, 
by 4 when it was solved by dual-strategies and 0 if 
otherwise. Then the difference between post and pre-test 
was computed.  Each student got therefore an improvement 
score, reflecting his/her progress between the pre and post-
test.  
 

Results 
Hypothesis 1 stated that the frequency of factorization and 
dual-strategies by students was not expected to be different 
between the two groups for the training problem (Number-
of-elements) due to the effect of training in both groups. The 
improvement score was 0.34 for the control group and 0.37 
for the experimental group (p>0.5) for factorization strategy 
and 0.30 for dual-strategy for each group (p=1).  
 

 
 

Experimental Group Control Group 

Session 1 A problem:  
way of seing a situation,  

parts and whole 

A problem:  
a question, useful data, operations 

Session 2 Multiplication and commutativity 
 by semantic recoding 

Multiplication and commutativity  
by repeated addition 

Session 3 Distributivity:  
semantic relations  

and choice in point of view 

Distributivity:  
useful data  

and choice in operations 

Session 4 Dual strategies  
by change in point of view 

Dual strategies  
by equivalency of procedures 

Session 5 Distributivity problems: 
choice in points of view 

Distributivity problems:  
useful data, operations 

Variables)) Dura,on) Numbers) Weight) Price)

)
Context)

X)has)made)a)list)of)purchase)for)y)
years.)Each)year,)X’s)purchases)
are:))

X)wants)to)prepare)a)treat)cone)per)
child.)There)are)y)children.)Making)
a)treat)cone)requires)the)following)
items:)

X)wants)to)fill)his/Her)pencil)case)
with)items)that)weight)y)grams)
each.))
In)the)pencil)case,)there)are:)

X)is)at)the)checkout)of)a)
supermarket.)He)bought)some)
items.)For)each)item,)he)took)y)in)
his)basket:))

Specific)Categories) Printers))
Computers)
Scanners)

Lollipops))
Candies))

Chocolates)

Pens))
Gums)

Markers)

Buns)
Cakes)
Pies)

General)
Categories)

Microscopes)
Desks)

Hamsters)

Balloons)
Cookies)
Figurines)

Shells,))
KeyRrings)
Candies)

Ice)
Plants))
Plates)

In)all,)how)many)purchases)has)X)
bought?)

In)all,)how)many)objects)does)X)
need?))

In)all,)how)much)does)these)items)
weight?)

In)all,)how)much)did)X)spend?))

Table)1:)The)8)problems)at)pre)and)postRtests)
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Table 2: The training 
sessions 

 
 
 
 
 
This absence of difference between the two groups for the 
trained problems reflects the similarity in terms of learning 
method between the two groups: they both learned to use 
dual-strategies (expansion and factorization) for the 
distributive problems. The control group focused on 
relevant information in statements, digits and operations 
whereas the experimental group focused on semantic 
relations, words and point of view. At the pretest, repeated 
measure ANOVAs with group as the between factor and 
problem variable as the within-subjects factor showed that 
there was no difference regarding the use of factorization 
(F<1, ns) or dual strategies, (F < 1, ns). Both groups showed 
the same pattern of choice of strategies for each type of 
problem.  

 
Hypothesis 2 stated that a better transfer should appear 

in the experimental group for non-training problems. At the 
posttest, reapeated measure ANOVAs with group as the 
between subjects factor and problem variable as the within-
subjects factor were performed: the experimental group was 
significantly superior to the group control for the use of 
factorization (M=0.63 vs M=0.47 F(1,140) = 6.15, p=0.01) 
and we observed a marginal trend for the use of dual 
strategies (M=0.47 vs M=0.36, F(1,140) = 2.72, p=0.1) 
(Figure 1 and Table 3).  

Then we analyzed the improvement score. The global 
improvement score raised 1.46 for the experimental group 
and the control group’s one raised 1.10. A repeated measure 
ANOVA was performed. The difference in improvement 
between the groups got a statistically significant trend 
(F(1,140)=3.5, p=0.06). For problems from general 
category, we observed an improvement score by 1.59 for the 
experimental group compared to 1.10 for the control group. 
A repeated measure ANOVA was performed (Table 4). 
Therefore, the improvement score for the more abstract 
problems (general category) was significantly higher for the 
experimental group (F(1,140)= 6.12, p=0.014) .  

 

 

 
 
 
 

Discussion 
The learning method based on both the resolution 

strategy comparison and the explicit analysis of semantic 
relations during classroom activities showed its success in 
promoting transfer. The experimental group was more 
successful in transferring the factorization strategy and dual 
strategies to non-trained problems in the post-test. The 
Price, Duration and Weight variables in post-test problems 
had not been trained during the learning sessions. The 
progression in terms of factorizing strategy and dual 
strategy suggests that the experimental group became less 
dependent on the choice of the variable than the control 
group. That means that the experimental group shows a 
greater ease in independence to context. They were 
successful switching from the spontaneous representation 
influenced by the variables of the problem to flexible 
representation based on the mathematical structure. Since 
progress for trained problems are similar between groups, 
the added value of the recategorization method lies in the 
success of far transfer. 

The use of isomorphic problems made it possible to 
identify more precisely the robustness of the transfer effects 
from the learning method. Indeed as we studied the non-
trained problems, the greater progression for the 
experimental group shows that the training was not 
superficial. This transfer reflects a semantic change by 
students that could adopt a double point of view on the 
problem.  

In addition, our findings support the work of Vicente et 
al. (2007) who pointed out that the difficulty for students 
lies in developing the conceptual relations between the 
entities of the problem. Thus, in their study, the success rate 
of problems whose rewording shed light on "part-whole" 
relationships was higher than problems with additional 
information about the problem’s situation. The properties 
and relations of the entities or objects depicted in  a problem 
are therefore key in the choice of strategies. In our study, we 
did not use a conceptual rewording that underlines the 
underlying semantic relations but the experimental method 
consisted in orienting students to establish these relations 
because their categorizations of the elements of the 
problems were based on them.  

 
Conclusion 

The students from the training group became less dependent 
from semantic context. Their choice of strategy was less 
constrained by the nature of the variable. The substantial 
transfer of the non-preferred strategy (factorization) 
illustrates the ability to adopt a new point of view on the 
situation. Thus students were able to change their encoding 
based on spontaneous representations to an encoding based 
on conceptual relations. To adopt this flexible and multiple 

Figure 1: Mean in factorization by students at Post-Test 

 

 
 
 
 
 

 
Table 3: Means (and SD) of factorization and dual strategy frequency  

by students at pre and post-test in use of in the experimental group and control group 

 PreTest PostTest 
 Factorization Dual Strategy Factorization Dual Strategy 

CG 0.14 (0.24) 0.05 (0.14) 0.47 (0.40) 0.36 (0.40) 
EG 0.18 (0.27) 0.07 (0.18) 0.63 (0.38) 0.47 (0.43) 
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points of view on a problem, the training method based on 
recategorization seems to be promising. In addition to 
improve semantic analysis, students were encouraged to 
adopt a reflexive attitude thanks to the notion of point of 
view. Thus students developed their cognitive flexibility: 
developing flexible strategies with the ability to transfer 
them to new problems. Yet studying the extent of this 
transfer could be the goal of further research. The teaching 
method appears to be a useful framework to identify if 
cognitive flexibility is domain-general or domain-specific. 
Indeed, fostering cognitive flexibility takes part of a broader 
goal, namely promoting conceptual development.  
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Abstract

Older adults (OA) need to make many important and difficult
decisions. Often, there are too many options available to ex-
plore exhaustively, creating the ubiquitous tradeoff between
exploration and exploitation. How do OA make these com-
plex tradeoffs? We investigated age-related shifts in solving
exploration-exploitation tradeoffs depending on the complex-
ity of the choice environment. Participants played four and
eight option bandit problems with numbers of gambles and av-
erage rewards available on the screen. OA reliably performed
worse in a more complex choice environment and were also
more deviant from an optimality model (Thompson sampling),
which keeps track of uncertainty beyond just the mean or last
reward. OA seem to process important information in more
complex choice environments sub-optimally, suggesting lim-
ited representations of future rewards. This interpretation fits
to multiple contexts in the complex cognitive aging literature,
in particular to the context of challenges in the maintenance of
goal-directed learning.

Introduction
In today’s aging societies, more and more older adults (OA)
are making cognitively demanding decisions about work, fi-
nances, their health, etc. Many such decisions benefit from
thinking about future goals because the options available cre-
ate explore-exploit tradeoffs. How do OA usually respond
to these cognitive challenges in increasingly complex choice
environments?

Decision makers generally have access to a number of
learning mechanisms, habitual experience-based learning,
and goal-directed learning. Goal-directed learning depends
on some internal model, so that learning can be adapted flex-
ibly, for example like when managing a research project. Ha-
bitual learning has been related to a dorsolateral striatal to
sensorimotor cortex control loop while goal-directed learn-
ing has been related to a dorsomedial striatal to ventromedial
and lateral prefrontal cortex control loop (Daw & O’Doherty,
2014). Importantly, goal-directed learning is impaired in OA
and this impairment has been associated to lower activation
in prefrontal cortex areas (Eppinger & Bruckner, 2015; Ep-
pinger, Walter, Heekeren, & Li, 2013). OA rely relatively
more often on experience-based learning, which may arise
from white matter integrity changes in the ventromedial and
lateral prefrontal cortex (Chowdhury et al., 2013; Eppinger et
al., 2013; Samanez-Larkin & Knutson, 2015).

It is unclear how such changes in learning mechanisms in
OA depend on the relative complexity of a task. Such a de-
pendency would be likely, however, from the perspective of
ecological rationality (Mata et al., 2012), which focusses on
adaptation effects between the mind and the environment. For
example, when OA need to explore among many options in
order to choose between them later, OA rely on more mini-
mal exploration strategies than YA (Frey, Mata, & Hertwig,
2015). Here, we study such age-related performance changes
in explore-exploit tradeoffs with varying cognitive demands.
Analyzing effects of the complexity of choice environments
this way could help to better understand the effects of task
demands on age-related changes in learning mechanisms.

We used typical N-armed bandit problems to study changes
in learning mechanisms across choice environments. Partici-
pants made inferences about risky options by sampling infor-
mation from a four and eight option choice environment. Re-
wards were consequential, ensuring that participants needed
to trade-off exploration and exploitation. Participants had to
find options that give them the most money while having to
minimize sampling from low reward options. N-armed ban-
dit problems are well studied and afford detailed analysis of
information processing in terms of continuation and switch-
ing behavior. Theoretically, expectations of future reward
should rise with adequate, but not excessive, exploration.
Such “smart” exploration requires one to have a good repre-
sentation of the task and its structure, which typically weighs
already observed rewards by the degree to which an option
has been explored. This would thus involve an internal model
of the task contingency between average payoff and average
payoff uncertainty (see also Worthy, Cooper, Byrne, Gorlick,
& Maddox, 2014). Good performance in the task thus de-
pends on learning mechanisms that use adequate future re-
ward representations while performance anomalies will in-
volve inadequate future reward representations.

We hypothesized that OA achieve lower performance and
arrive slower at the higher reward options, depending on the
number of options. If OA focus more on reward in current
states, their rewards in future states should suffer. Such short-
term planning would more closely resemble experience-based
learning rather than goal-directed learning. OA not arriving
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(a) A more effective strategy that seems to take into account
uncertainty.
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(b) A less effective strategy that seems to depend almost only
on the outcome of the last trial.

Figure 1: Example eight-option choice profiles. Green indicates rewards and red indicates no rewards on a trial.

at the higher reward options at all would show a lack of an
explore-exploit trade-off. We assumed that problems with a
larger number of options are relatively more cognitively de-
manding because of a larger search space, which increases the
amount of necessary information processing and representa-
tion.

Next, we describe methods and results from six kinds of
data analyses: choice proportions statistics, choice propor-
tions over trials, regret over trials, comparisons to an opti-
mality model, comparisons to a fitted optimality model, and
one-step ahead predictions of a fitted optimality model. We
end with a discussion.

Methods
Participants 32 older adults (OA, Mage = 70.5, 65-74, 38%
female) and 29 younger adults (YA, Mage = 24.3, 19-30,
45% female) participated in this study. All participants were
healthy, right-handed, native German speakers with normal
or corrected to normal vision, and without a history of psy-
chiatric or neurological disorders. There were no group dif-
ferences in gender proportion, educational level, and socio-
economic status. Compensation amounted to about 10 Euro
per hour, plus on average 2 Euro performance-dependent
bonus. Participants were recruited using advertisements.

Task The task of the participants was to maximize the sum
of rewards in a total of 16 alternating four and eight-armed
bandit problems. Rewards could be earned by selecting pic-
tures of casino-style gambling machines presented on a com-
puter screen using a keyboard or mouse. The gambling ma-
chines provided random rewards (1 or 0) with a hidden prob-
ability that was specific to each machine. The rewards were
displayed on the respective bandit after each play. Partici-
pants had 100 trials for every problem to explore the hidden
reward probabilities and to exploit those machines that give
rewards most often. Remaining trials were displayed on the
screen. Also, every bandit showed the number of plays so

far and the probability of a reward based on the observed re-
wards so far. This information is sufficient to make an opti-
mal choice at any point in time, reducing the role of working
memory. Of course, participants still need to figure out how
they want to trade off exploration and exploitation. 89% of
YA and 70% of OA (p = .14, test of equal proportions) indi-
cated in a post-task questionnaire that “the extra information
regarding the options” was helpful.

Procedure Participants were instructed 1) to maximize the
sum of rewards, 2) how the task looked and worked, 3) that
each trial is independently generated, and 4) that the best
gambling machine in every individual problem had popt = .6
(to help comparability across problems). All participants had
taken part in an unrelated fMRI study on risk-taking prefer-
ence several weeks beforehand. Ethics approval was granted
by the Institutional Review Board of the Max Planck Institute
for Human Development.

Design The experiment made use of a repeated within-
subject condition (four vs eight options), and a between-
subject condition (age group). We chose the other hidden
probabilities in steps of .075 below .6. Reliably finding the
better options thus required a significant part of exploration
out of the 100 available trials. See also Figure 1 for exam-
ple choice profiles and the unique hidden probabilities. All
participants saw the same randomly generated rewards for all
16 problems. This allowed comparison of the problem dif-
ficulty across participant groups as well as a reduction of an
unnecessary source for variance in performance while keep-
ing the probabilistic character of the task intact. Four dif-
ferent problem orders were generated and counterbalanced
across participants. Two different orders started with four
options and two different orders started with eight options.
Between problems, performance was displayed on the screen
and a keypress was required to continue with the next prob-
lem. Participants in both groups took about half an hour to
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Figure 2: Predictions from a mixed effects model with the
hidden reward probabilities of participant’s choices as depen-
dent variable and interaction effects between age, number of
options, trial, and gender.

finish the experiment. The minimum response time was set
to 200 milliseconds.

Results
We first investigated age-related differences in task perfor-
mance. Proportions of choices for each option revealed that
OA chose the option with the highest hidden probability
about 5% less often than YA did in both four and eight option
conditions (four option 95% HDI: .003 - .093; eight option
95% HDI: .018 - .096; Bayesian ANOVA with logit function
and broad prior), see Figure 4 for the differences for all op-
tions. We also tested a linear mixed effects model with the
hidden probability of every chosen bandit as dependent vari-
able and with participant ID, problem ID, and bandit position
ID as random effects. We used Satterthwaite’s approxima-
tions of p-values (*** indicating p < .001). We found nega-
tive interaction effects for OA in eight options (B = -.021***)
and for OA in eight options over trials (B = -.011***). To-
gether, these indicated a lower performance for OA in eight
options, as well as an increasingly lower performance over
trials. We also found a positive interaction effect for both YA
and OA in eight options over trials (B = .021***), as partic-
ipants could improve relatively more over time for eight op-
tions. There still was a main negative effect of eight options
(B = -.092***) and a main positive effect of trial number (B
= -.009***). No significant difference or decrease over trials
for OA remained, so the age effect is captured only by the
higher-level interactions. Furthermore, we also controlled for
gender effects, which indicated that male OA performed bet-
ter over trials (B = .010***) and that male OA performed
better with 8 options (B = .024***), and that males generally
performed better (B = .003**). For visualizing these high
level interactions, we generated predictions from this model
using the package merTools, see Figure 2. Note that the vi-
sualization does not show raw data and that the differences in
intercepts and slopes for the lines displayed should be inter-
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Figure 3: Predictions from a mixed effects model with
switching as dependent variable and three-way interaction ef-
fects between age, number of options, trial, reward, and the
hidden probabilities of participant’s choices.

preted in the light of all data included in the model. Besides
performance, we used a similar statistical analysis to test age
differences in switching probability over time. The resulting
logistic regression model included age, number of options,
trial number, the hidden probability, the reward for the partic-
ipant’s choices, and all three-way interactions. Together, the
estimated effects on switching indicated that OA switch less
often (**), OA switch away less often after sampling from
an option with a relativey low hidden probability (***), espe-
cially in eight options over trials (**). Beta’s were not easily
comparable for this model. We again generated predictions
from this model to visualize these switching patterns, see Fig-
ure 3.

Second, we examined development of age-differences in
choice proportions over trials, see Figures 6a and 6b. For
every trial, the solid lines represent the average number of
times that participants chose an option. The local instabilities
in the trajectories may result from individual differences and
variation across the several problems. On average, the third
best option stops overlapping with the second best option af-
ter about 25 trials for YA. For OA, the same separation ex-
ists between the second and third option after twice as many
trials, see the right panel of Figure 6a. In the eight option
condition, YA separate between the better three options and
the worse five options after about 50 trials. OA do this after
about 75 trials. These 2-2 and 3-5 separations could reflect
the participants’ psychologically most salient explore-exploit
representations. Together, the choice trajectories show that
already from the beginning onwards, YA choose more often
from the better options.

Third, we analyzed another measure of performance to
compare performance across all of the options at once. We

3084



●

●
●●
●

●●

●

●

●

●●

●

●

4 8

.075 .15 .225 .3 .375 .45 .525 .6 .075 .15 .225 .3 .375 .45 .525 .6

0

10

20

30

40

50

Hidden probability

P
ro

po
rt

io
n 

of
 c

ho
ic

es

Age
YA
OA

Figure 4: Boxplots of variation in average choice proportion
across participants for both choice environments.

choose to measure regret (a common measure in machine
learning) as it generalizes over the specific outcomes of the
random number generation process. Regret can be computed
as RT = ∑

100
i=1

(
popt − pB(i)

)
, where popt = .6 and pB(i) is the

hidden probability of a reward for the chosen bandit. It fol-
lows that randomly behaving agents get a total regret of 11.25
points for four options and 26.25 points for eight options.
Overall, the age effect on regret was large (p < .01, Cohen’s d
.707) for eight options (MOA = 19.87, SE = .79, MYA = 16.84,
SE .75) and medium (p < .05, Cohen’s d .550) for four op-
tions (MOA = 9.16, SE = .32, MYA = 8.17, SE .33). These age-
related differences varied slightly across the unique problems,
which only differed by random number generation, see Figure
5. We also investigated how regret differences emerged using
the shapes of the exploration-exploitation trade-offs over tri-
als within the choice profiles. We observed a slowing increase
in regret over time in general but increasing age-related dif-
ferences for both conditions, see Figure 7. Age-differences
became significant after trial 24 in eight options and 23 trials
in four options. It seems that exploration in OA happens less
effectively. Regret was significantly (p < .05, t.test) better
compared to a random agent (four options: YA after trial 17,
OA 32; eight options: YA after trial 15, OA 16).

Fourth, we wanted to know how participant performance
differed from optimality. We used Thompson sampling as an
optimality model (Thompson, 1933), but we observed that
differences in regret for similar algorithms are small in the
context of the present task. Thompson sampling uses an in-
verse cumulative distribution function (also known as per-
centage point function or quantile function) that is used to
choose the bandit with the highest certainty that the hidden
probability of a bandit is smaller or equal than some ran-
domly generated value. This way, the algorithm minimizes
uncertainty that there exists a better option by making sure
that the probability of choosing a certain bandit is propor-
tional to the probability of it being the best bandit. By taking
uncertainty into account, the algorithm affords a way of more
rapidly adapting its decision if not only the mean of a certain
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Figure 5: Variation in performance across the 16 different
problems in the task.

bandit gets overtaken by another mean, but the whole pos-
terior probability distribution. Conceptually, the algorithm
keeps track of beliefs about the hidden probabilities of the
bandits and then updates these beliefs each time after seeing
an outcome. The algorithm is initialized by setting a uniform
prior for all options. The algorithm then plays option x pro-
portional to the probability of it being the best. Finally, it
updates its priors using the newly collected information. See
also Table 1. Regret as computed from applying Thompson
sampling 29 times to the same games as participants played
was significantly worse compared to participants (four op-
tions: YA after trial 14, OA 11; eight options: YA after trial
16, OA 16). Expected regret was 6.5 points for four options
and 11.0 points for eight options, which is considerably bet-
ter than YA performed on average (170% larger than the gap
between YA and OA for four options and 193% for eight op-
tions). Interestingly, 5 out of 32 OA (16%) and 9 out of 29 YA
(31%) achieved a median regret score within 10% of Thomp-
son sampling for four options, while this was 1 (3%) and 4
(14%) for eight options. Some individuals were thus able to
achieve regret scores similar to Thompson sampling.

Table 1: Thompson sampling in r pseudocode, with n being
the number of bandits, x a randomly generated probability,
and qbeta for looking up quantiles from the Beta distribution.

Step Computation
Init wins = rep(0,n)

pulls = rep(0,n)
Choose so f tmax(q,θ)

q = max(qbeta(x,α,β))
Update wins = wins+ reward

pulls = pulls+1
α = 1+wins
β = 1+ pulls−wins

Fifth, we wanted to know how well a fitted optimality
model predicted participant’s decisions. Thompson sampling

3085



Thompson
observed

0 50 100

0.00

0.25

0.50

P
ro

po
rt

io
n 

of
 c

ho
ic

es

Trial

YA

0 50 100

0.00

0.25

0.50

P
ro

po
rt

io
n 

of
 c

ho
ic

es

Trial

OA

(a) Four options

Thompson
observed

0 50 100

0.00

0.25

P
ro

po
rt

io
n 

of
 c

ho
ic

es

Trial

YA

0 50 100

0.00

0.25

P
ro

po
rt

io
n 

of
 c

ho
ic

es

Trial

OA

(b) Eight options

Figure 6: Observed choice proportions and one-step ahead predictions for fitted Thompson sampling. The color of the lines
corresponds to the value of the hidden probabilities, where blue colors represent lower probabilities. Local polynomial regres-
sion was used as a moving window to smooth the trajectories (using a neighborhood of 40% of all points where neighboring
points are also being weighted by their distance tricubically)

was fitted to individual games by scaling predicted choices
using a softmax function with a fitted inverse temperature pa-
rameter θ, ranging from 0.003 to 30 (higher θ values pro-
duced more randomness). OA deviated more from fitted
Thompson sampling than YA did (p < .05, Wilcoxon tests,
Cohen’s d = .57 for four options and Cohen’s d = .53 for
eight options). θ was also significantly lower for YA than
for OA (p < .05, Wilcoxon test, Cohen’s d = .96 for four
and 2.68 for eight options), indicating more randomness and
worse matches to predictions of Thompson sampling in OA
than in YA. OA and YA both significantly decreased their me-
dian θ for eight options compared to the four option condition
(p < .05, Wilcoxon tests), see Figure 8. θ for OA signifi-
cantly varied more in both conditions than for YA (p < .01 for
both conditions, Wilcoxon tests) and average variation across
games was significantly lower in four options for YA, but for
OA this was similar in both conditions (p < .01 vs. p = .4,
Wilcoxon tests). In all, OA adults were more random and less
homogeneous, possibly indicating more strategy changes.

Finally, we compared the shapes of the mean observed
exploration-exploitation trade-off trajectories to shapes from
one-step-ahead predictions across all trials. These predictions
are plotted in Figures 6a and 6b using dashed lines. We used
the median θ of every participant for both conditions as data
scaling parameter. The predictions from this fitted Thompson
sampling model resulted in accurately ordered trajectories for
both groups and for both conditions: The orderings of solid
and dashed lines were identical for all four graphs for most
trials, except in the first few trials. The latter may indicate
more rapid exploration in Thompson sampling and that both
YA and OA explore less rapidly, with OA taking the longest.

Discussion and Conclusions
We aimed to identify changes in the ways OA and YA make
goal-directed choices depending on the complexity of the

choice environment. We found a large age-related effect
on performance in a typical eight-armed bandit task and a
smaller effect in a four-armed bandit task. YA also devi-
ated less from optimality than OA did. Choice trajectories
showed that age effects were already observable in the early
exploration stage, suggesting that OA explore longer or less
efficiently. Theoretically, the early stages require fast explo-
ration using not only average rewards but also their associ-
ated uncertainty. This was illustrated here using Thompson
sampling, which is a kind of randomized probability match-
ing algorithm. Participants diversified their choices similar
to Thompson sampling, in line with previous work (Konstan-
tinidis, Ashby, & Gonzalez, 2015; Speekenbrink & Konstan-
tinidis, 2015). Furthermore, OA had higher and more variable
inverse temperature parameter estimates across choice envi-
ronments, indicating more randomness in OA. OA thus rely
on less effective learning strategies that consider important in-
formation less effectively, in particular in the more complex
environments.

Why would OA fail to represent important information like
uncertainty or a specific task model? The role of working
memory influences should be minimal as this is not strictly
necessary to perform well in the task. General “slowing”,
gender effects, and more cautious risk taking, all of which
could favor exploitation of short-term rewards, also mark
cognitive aging. We did indeed observe gender interactions,
age-differences in reaction times, and in standard neuropsy-
chological test results (working memory, fluid intelligence,
and risk-taking). However, as performance is mainly deter-
mined by a cognitively costly explore-exploit tradeoff and ad-
equate future reward representations, our findings specifically
point towards underreliance on goal-directed learning.

A logical next step is to assess if fits of simple learning
strategies can indeed better accommodate OA. Specifically,
the exploration phase seems to happen sub-optimally in OA
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Figure 7: Age-differences in the increase in regret at every
trial with standard deviations displayed around the means
(standard errors were too narrow to visualize). Regret in-
creased quickly first and increased slower later on, but slower
for YA.

and in a more varied way. Favoring short-term rewards could
be a sign of a learning mechanism that sub-optimally repre-
sents future rewards. More varied or reduced processing of
important information such as uncertainty would be able to
account successfully for the observed age-related changes.
Furthermore, if the task indeed probes OA to rely less on
goal-directed learning, we may also expect differences in
connectivity to prefrontal regions (pending analyses). In
all, OA may be using less effective learning strategies the
more demanding the choice environment becomes. Identi-
fying such task-dependent differences is typically neglected
in neuro-computational models of decision-making. In the
context of cognitive aging, this may be useful for empower-
ing aging decision makers to navigate cognitively demanding
choice environments.
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Abstract 

We examined mechanisms underlying infants’ ability to 
detect, extract, and generalize sequential patterns, focusing on 
how saliency and consistency of distributional information 
guide infant learning of the most “likely” pattern in 
audiovisual sequences. In Experiment 1, we asked if 11- and 
14-month-old infants could learn a “repetition anywhere” rule 
(e.g., ABBC, AABC, ABCC). In Experiment 2 we asked if 
11- and 14-month-olds could generalize a “medial repetition” 
rule when its position is consistent in sequence, and in 
Experiment 3 we asked if 11-month-olds could identify a 
nonadjacent dependency occurring at edge positions. Infants 
were first habituated to 4-item sequences (shapes + syllables) 
containing repetition- and/or position-based structure, and 
were then tested with “familiar” structure instantiated across 
new items or combinations of items vs. “novel” (random) 
sequences. We found that 11-month-olds failed to learn the 
repetition rule both when the structure appeared in initial, 
medial, or final position (Experiment 1) and when it was 
restricted to the medial position (Experiment 2). Fourteen-
month-olds learned repetition rules under both conditions. 
Finally, in Experiment 3 11-month-olds succeeded in learning 
a nonadjacent dependency in sequences identical to those 
used to test repetition learning in Experiment 2.  Our results 
suggest that infants at 11 months, like adults, are relatively 
insensitive to patterns in the middle of sequences.  

Keywords: infant learning; rule learning; sequence learning 

Introduction 

In the present paper, we examine mechanisms underlying 

infants’ ability to detect, extract, and generalize sequential 

patterns. Sequence learning is essential for processes 

ranging from the acquisition of language to everyday 

activities such as preparing for bed, learning to count, 

learning to read, and getting ready for school. Insights into 

development of sequence learning in infancy, therefore, are 

vital for theories of developmental and cognitive function 

across a variety of domains. 

What kinds of learning mechanisms are available to 

infants, and what are the limits of these mechanisms? Our 

particular focus is on two means of knowledge acquisition, 

“statistical learning” and “rule learning”: the extent to which 

infants can use transitional probability information among 

items to extract units from an unbroken stream of stimuli 

(e.g., Saffran, Aslin, & Newport, 1996) or the extent to 

which infants can distinguish simple reduplicative patterns 

from one another (e.g., Gerken, 2006; Marcus, Vijayan, 

Rao, & Vishton, 1999), respectively. Sequence learning is 

guided by multiple mechanisms (Arciuli, 2017; Krogh, 

Vlach, & Johnson, 2013; Thiessen, Kronstein, & Hufnagle, 

2013), and its development in infancy can be better 

understood by investigations of the salience and consistency 

of statistical and rule-governed structures (Aslin & 

Newport, 2012, 2014). Some structures, such as identity 

relations or positions of items in order, might serve as 

“perceptual primitives,” processed by specialized 

mechanisms to detect and remember specific features in 

patterned sequences (Endress, Nespor, & Mehler, 2009). 

The Saffran et al. (1996) transitional probability task, a 

well-known example of statistical learning, presented 8-

month-olds an auditory stimulus consisting of four unique 

strings (e.g., tupiro, golabu, bidaku, and padoti) presented in 

random order as a continuous, unsegmented stream for 2 

minutes. Infants then heard isolated strings in repetition 

(e.g., tupiro, tupiro, tupiro…) alternating with “part-word” 

strings composed of parts of two of the familiar words (e.g., 

rogola, rogola…) from a speaker located either to the left or 

right. Infants exhibited a postfamiliarization novelty 

preference for the part-words relative to the words, implying 

that they detected the differences in transitional probability 

across word boundaries in the input sequence.  

Rule learning in sequential patterns was assessed by 

Marcus et al. (1999), who exposed 7-month-olds to strings 

that followed either an “ABA” pattern (e.g., gah tee gah) or 

an “ABB” pattern (e.g., gah tee tee). After 2 minutes of 

exposure, the infants heard the same (familiar) pattern 

instantiated by different phonemes (e.g., woh fei woh, dee 

koh dee), and a second (novel) pattern on alternating trials 

and showed a preference for the novel, a result that extended 

to a test of ABB vs. AAB. Because transitional probabilities 

between test-string syllables were zero, performance could 

not have been based on statistical learning.  

Studies of infant rule learning have produced mixed 

results with respect to the learnability of a simple repetition 

rule (adjacent, as in AAB or ABB, or nonadjacent, as in 

ABA). Overall, the findings of these experiments seem to 
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differ based on how familiar the infants may be with the 

stimuli: 7-month-olds successfully learn ABA vs. ABB, 

ABB vs. AAB, and AAB vs. ABB patterns when the stimuli 

are auditory (Marcus et al., 1999, 2007) or familiar visual 

stimuli (e.g., faces and animals; Bulf et al., 2015; Saffran et 

al., 2007). However, when stimuli consist of sequences of 

colored shapes, learning seems to be more difficult, perhaps 

because learning visual sequential input is constrained by 

limits in visual working memory (Johnson et al., 2009). In 

this case, 8-month-olds learned a late repetition rule 

(adjacent repetition in the final edge position) when tested 

vs. nonadjacent repetition (ABB vs. ABA), but failed to 

learn late vs. early repetition (ABB vs. AAB), early vs. 

nonadjacent repetition (AAB vs. ABA), and nonadjacent vs. 

late repetition (ABA vs. ABB). Eleven-month-olds learned 

all these rules except nonadjacent vs. late repetition.  

Adults’ learning of repetition-based structure also appears 

to be constrained by position (Endress, Scholl, & Mehler; 

2005): Adults discriminated seven-syllable sequences from 

sequences of new items based on differences in internal vs. 

edge repetitions (e.g., ABCDDEF vs. ABCDEFF), but could 

only generalize when given edge repetitions. In summary, 

repetition structures in edge positions appear to be reliably 

learned by both infants and adults, but learnability of 

internal repetitions remains unknown for infants because the 

structures tested in previous structural learning studies only 

involved repetitions located at either the initial or final edge 

of the sequence (AAB, ABA, and ABB). 

In Experiment 1, we asked if 11- and 14-month-olds can 

detect, extract, and generalize a “repetition anywhere” rule 

(i.e., ABBC, AABC, ABCC). If infants detect repetition of 

items during a learning phase, they may subsequently 

recognize repetitions of new items (in new sequences), 

which we take as evidence for generalization. However, it 

may be that consistent position information is a key part of 

repetition learning at this age, as it appears to be for adults; 

in this case, variability in the position of the repetition might 

pose difficulty in its identification and recall. 

In Experiment 2, we used a sequence with two possible 

underlying patterns to examine how consistency and 

salience contribute to sequence learning. In this experiment, 

we asked whether 11 and 14-month-olds could generalize a 

“medial repetition” rule when its position is consistent in 

sequence, but not at an edge.  In Experiment 3, using the 

same sequence types as Experiment 2, we asked whether 

11-month-olds could identify a nonadjacent dependency 

occurring at initial and final edge positions that may be 

more salient than the medial position of the repetition.   

In all experiments we used an intermodal presentation 

method in which looming shapes were accompanied by 

spoken syllables, a method known to facilitate rule learning, 

relative to visual or auditory only, in 5- and 7-month-olds 

(Frank, Slemmer, Marcus, & Johnson, 2009; Thiessen, 

2012). Because infants as young as newborns look longer at 

randomly-ordered shape sequences vs. sequences with 

statistical structure (Addyman & Mareschal, 2013; Bulf, 

Johnson, & Valenza, 2011; Kirkham, Slemmer, & Johnson, 

2002), we reasoned that longer looking at novel vs. familiar 

sequences (i.e., random vs. structured, respectively) in the 

current studies would reflect learning and/or generalization 

of structural and/or statistical structure during habituation. 

Experiment 1 

Method 

Participants Twenty 11-month-olds (Mage = 11.25 months; 

SD = .297; 8 girls) and 20 14-month-olds (Mage = 14.20 

months; SD = .313; 9 girls) participated. An additional ten 

11-month-olds were tested but excluded for failure to 

habituate (7), fussiness (2), or preterm birth (1). an 

additional twelve 14-month-olds were tested but excluded 

for failure to habituate (8) or fussiness (4).  

Materials and Apparatus Visual stimuli consisted of 18 

colored shapes (see Figure 1). Auditory stimuli consisted of 

an inventory of 18 spoken syllables produced with a speech 

synthesizer and identical to those used in Marcus et al. 

(1999) (e.g., bah, dee, doo, gei, jai, jah, kei, poh). 

Figure 1: Schematic depiction of example habituation and 

test sequences for Experiment 1. 

 

Shape-syllable pairings were determined randomly (see 

Figure 1). Sequences were assembled from a randomly 

chosen set of nine (out of the total 18) shape-syllable 

combinations (hereafter called “items” for simplicity), so 

that three items composed each four-item sequence by 

repeating one of the three items, either the first, second, or 

third (determined randomly) to yield a repetition in the 

initial, medial, or final position. Items always appeared in 

the same order within each habituation sequence. 

Procedure Stimuli were presented using Macromedia 

Director on a Macintosh computer and a 53 cm color screen. 

In a separate room, the experimenter used closed-circuit 

video to view the infant and record his or her looking times 

during the experiment; the experimenter was blind to what 

was being presented on the screen. Before each habituation 

trial, a visual attention-getter appeared in the center of the 

screen to draw the infant’s attention. Each shape was 

presented on a black background and increased in size from 

4 cm to 24 cm high (2.4-14.6˚ visual angle) over a period of 

667 ms; onset of syllables (M duration 338 ms) was 

coincident with the appearance of each shape. Thus each 

sequence was 2 s long, and sequences were separated by a 

667 ms black screen. The 4-item sequences were randomly 

displayed one after another with no immediate repetition of 

any specific sequence. When the mean looking time over 
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four consecutive trials fell to less than 50% compared to the 

mean looking time for the first four habituation trials (i.e., 

habituation) infants viewed the test sequences. 

At test, infants viewed “familiar” and “novel” four-item 

sequences drawn from the remaining nine in the total 

inventory that were not shown during habituation. Familiar 

test sequences followed the same constraints as those 

described previously for the habituation sequences. Novel 

test sequences were composed of the same nine items, 

presented in sequences of four, and random ordering of 

items with no constraints except no repeated items in any 

single sequence. Infants viewed six alternating familiar and 

novel trials presented in pairs (i.e., three test trial blocks), 

and viewing order was counterbalanced such that half the 

infants viewed a familiar trial first (followed by a novel 

trial) and half the infants viewed a novel trial first (followed 

by a familiar trial). Preliminary analyses examining sex 

differences in performance revealed no reliable effects in 

any of the experiments in this report (all ps > .05). 

Results and Discussion 

A 2 (age group) x 2 (trial type – novel or familiar) x 2 (order 

– novel or familiar first) x 3 (test trial block) mixed 

ANOVA on posthabituation looking times revealed a main 

effect of test trial block, F(2, 72) = 4.79, p = .011, η2
p = .12, 

the result of a decline in looking across trials, and an age 

group x trial type interaction, F(1, 36) = 8.03, p = .008, η2
p 

= .182. There were no other significant effects. Follow-up t-

tests indicated that 11-month-olds did not look differently to 

novel and familiar test stimuli, t(19) = -.916, p = .371, ns, 

but 14-month-olds looked longer at novel vs. familiar 

sequences, t(19) = 3.06, p = .006 . Thus 11-month-olds 

provided no evidence for learning a “repetition anywhere” 

rule, whereas 14-month-olds appeared to do so. 

Experiment 2 

Because 11-month-olds showed no evidence of learning 

repetitions in variable locations in Experiment 1, in 

Experiment 2 we examined the role of positional 

consistency in sequence learning. Here, we tested 11 and 

14-month-olds’ learning of a medial repetition rule. 

Habituation sequences comprised two different patterns that 

could be extracted: a medial repetition rule (a changing 

identity in the AxxC pattern), and a nonadjacent dependency 

(between A and C in the AxxC pattern). Experiment 2 

specifically tested rule learning, and as in Experiment 1, we 

reasoned that this learning would be reflected in longer 

looking during novel vs. familiar test trials. 

Method 

Participants Twenty 11-month-olds (Mage = 11.15 months, 

SD = .34; 14 girls) and twenty 14-month-olds (Mage = 14.14 

months, SD = .39; 9 girls) participated in Experiment 2. Six 

additional 11-month-olds were tested but excluded for 

failure to habituate (4) or fussiness (2). Eight additional 14-

month-olds were tested but excluded due to failure to 

habituate (2), technical error (2), or fussiness (4). 

Materials and Apparatus The item stimuli and 

presentation apparatus were the same as in Experiment 1. 

Habituation sequences contained both a medial repetition 

and a nonadjacent dependency between the first and fourth 

items of the sequence (see Figure 2). Sequences were 

assembled from a randomly chosen set of ten from the 

inventory of 18. Again, three items composed each four-

item sequence, but the second item was always repeated, 

instantiating a medial repetition rule. Four items were 

selected (from the ten) for first and fourth positions in two 

unique sequences, and three items were selected for the 

medial positions in each sequence (e.g., ABBC, DEEF, 

AGGC, DHHF, etc.). The two sequences were presented in 

alternation during habituation. 

The test sequences were constructed such that familiar 

sequences tested the generalization of the medial repetition 

rule with new exemplars that did not use consistent 

shapes/syllables in the first and fourth positions across 

sequences. Familiar sequences were composed of items 

drawn from the entire shape inventory, with the constraints 

that the second item always repeated, and the first and 

fourth items in sequence could not be one of the four items 

that occupied those positions in the habituation sequences. 

The novel sequences followed the same constraints 

described in Experiment 1.  

Figure 2: Schematic depiction of example habituation and 

test sequences for Experiments 2 and 3. 

 

Procedure The procedure was the same as in Experiment 1. 

Infants were habituated to sequences that contained a medial 

repetition and a nonadjacent dependency (described above), 

and an infant-controlled habituation paradigm was used. At 

test, infants saw six trials that alternated between familiar 

(i.e., contained a medial repetition) and novel, viewing three 

of each trial type in total. Infants were randomly assigned to 

see either a familiar trial or a novel trial first.  

Results and Discussion 

A 2 (age group) x 2 (trial type) x 3 (test trial block) mixed 

ANOVA revealed a significant 3-way interaction, F(2, 76) = 
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5.71, p = .022, η2
p = .13, which stemmed from a relatively 

precipitous decline in looking across novel trials by older 

infants but not younger infants. More importantly, there was 

an age x trial type interaction, F(1, 38) = 7.42, p .= 010, η2
p 

= .16, due to differences in looking at novel and familiar test 

sequences. Although this analysis yielded a significant main 

effect of trial type, F(1, 38) = 4.36, p = .044, η2
p = .10, this 

effect was driven by 14-month-olds’ longer looking to novel 

test trials, as 11-month-olds looked equally to novel and 

familiar test trials. There was also a significant main effect 

of test trial block, F(2, 76) = 25.11, p < .001, η2
p = .40, due 

to a decline in looking times across trials.  

14 Month Olds A 2 (trial type) x 2 (order) x 3 (test trial 

block) mixed ANOVA revealed a significant main effect of 

trial type, F(1, 18) = 8.20, p = .010, η2
p = .313, due to longer 

looking overall at the novel test sequence. There was also a 

reliable main effect of test trial block, F(2, 36) = 22.37, p < 

.001, η2
p = .55, due to a decline in looking across trials. 

These main effects were qualified by a significant trial type 

x test trial block interaction, F(2, 36) = 10.70, p = .004, η2
p = 

.37 and a significant trial type x order x test trial block 

interaction, F(2, 36) = 9.25, p = .007, η2
p = .34. There were 

no other significant effects. The two higher-order 

interactions were a result of longer looking during the first 

trial block toward the novel sequence by infants in the 

novel-first order, relative to infants in the familiar-first 

order, t(18) = 2.29, p = .034; comparisons across the second 

and third trial blocks were ns, ps > .16.  

11 Month Olds A 2 (trial type) x 2 (order) x 3 (test trial 

block) mixed ANOVA yielded a main effect of test trial 

block, F(2, 36) = 5.50, p = .031, η2
p = .23, the result of a 

decline in looking across trials, and a significant trial type x 

order interaction, F(1, 18) = 6.44, p = .021, η2
p = .23, due to 

a (nonsignificant) tendency for infants in both order 

conditions to look longer at the trial type that was presented 

first. There were no other significant effects; the trial type 

effect was ns at p = .364. These results support the 

conclusion that the 14-month-olds generalized the medial 

repetition rule, whereas the 11-month-olds did not. 

Experiment 3 

Because 11-month-olds failed to learn the “medial 

repetition” rule in Experiment 2, Experiment 3 addressed 

the possibility that learning structures in 4-item sequences is 

too difficult for 11-month-olds, perhaps due to limits in 

visual working memory. We used the same habituation 

sequences as Experiment 2 but instead tested for statistical 

learning (specifically, the nonadjacent dependency between 

A and C in the AxxC pattern). As in previous experiments, 

we reasoned that this learning would be reflected in longer 

looking during novel vs. familiar test trials. 

Method 

Participants Twenty 11-month-olds (Mage = 11.16 months, 

SD = .32; 6 girls) participated in Experiment 3. An 

additional nine infants were tested but excluded due to 

failure to habituate (8) or fussiness (1). 

Materials and Apparatus The item stimuli and 

presentation apparatus were the same as in Experiments 1 

and 2. 

Procedure The procedure was the same as in Experiment 2, 

except for the structure of the test sequences. The familiar 

test trials maintained the relation between the first and 

fourth items across two sequences, using the exact same 

first and fourth items from habituation, but had no 

repetitions (i.e., each familiar sequence was composed of 

four unique items; see Figure 2). The novel test trials 

followed constraints described previously. 

Results and Discussion 

A 2 (trial type) x 2 (order) x 3 (test trial block) mixed 

ANOVA yielded a reliable main effect of trial type, F(1, 18) 

= 7.86, p = .012, η2
p = .30, due to longer looking overall at 

novel vs. familiar test sequences (see Figure 4). There was 

also a main effect of trial block, F(2, 36) = 7.82, p = .012, 

η2
p = .30, due to a decline in looking across trials, and a 

significant interaction between trial block and trial type, 

F(2, 36) = 9.63, p = .006, η2
p = .35. Infants looked more 

toward the novel sequence than the familiar in the first 

block, t(19) = 2.75, p = .013, and in the second block, t(19) 

= 2.80, p = .011, but not in the third block, t(19) = .22, ns. 

The overall presence of a novelty preference suggests that 

infants abstracted the nonadjacent dependency pattern 

during habituation.  

We compared performance of the 11-month-olds in 

Experiments 2 and 3 with a 2 (experiment) x 2 (trial type) x 

3 (test trial block) mixed ANOVA. This analysis revealed a 

significant main effect of test trial block, F(2, 76) = 11.44, p 

< .001, η2
p = .23, due to a decline in looking times across 

trials. More importantly, there was an experiment x trial 

type interaction, F(1, 38) = 6.83, p = .013, η2
p = .15, due to 

differences in looking at novel and familiar test sequences, 

as noted earlier. Taken together, therefore, the results of 

Experiments 2 and 3 provide evidence that when both 

statistical and rule-bound information was available in 

habituation sequences, 11-month-olds detected the presence 

or absence of nonadjacent dependencies (ordinal positions 

of initial and final shapes in sequence; i.e., statistical 

information) across habituation and test, but not a medial 

repetition (i.e., rule-bound information). 

General Discussion 

In a departure from past studies showing that 11-month-olds 

learn an adjacent repetition rule when the repetition appears 

in the initial or final positions in sequence (Johnson et al., 

2009), we discovered that 11-month-olds failed to learn this 

rule when the repetition appeared in any position (initial, 

medial, or final, Experiment 1), or when it was restricted to 

the medial position (Experiment 2). Fourteen-month-olds, 

however, appeared to learn repetition rules under both 

conditions. Finally, in Experiment 3, 11-month-olds 

succeeded in learning a nonadjacent dependency in 

sequences identical to those used in Experiment 2. We 

conclude that 11-month-old infants do not seem to 
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recognize repetitions when they appear in multiple positions 

in sequence, or in a consistent middle position, although 

items at edge positions in sequence appear to be distinctly 

salient. Similar findings for adults were reported by Endress 

et al. (2005, 2010). 

Repetition and Position as Perceptual Primitives 

Infant sequence learning is constrained by saliency and 

consistency of information well as general limits in attention 

and memory (Aslin & Newport, 2012, 2014). Some of these 

constraints are specific to modality (e.g., speech cues; 

Johnson & Jusczyk, 2001; Thiessen & Saffran, 2003) or the 

experimental setting (e.g., gaze or action cues; Baldwin, 

Andersson, Saffran, & Meyer, 2008), but others, such as 

repetition and position, are domain-general and may operate 

similarly across contexts. Evidence from the 11-month-olds 

in Experiment 2 is consistent with findings from adults, who 

generalized a repetition to new items when it appeared in 

final position, but not a medial position, in 7-item syllable 

sequences (Endress et al., 2005). These studies suggest that 

item position, most notably final position, is more salient 

than item repetition, relatively speaking; these findings are 

consistent with the well-documented serial position curve 

(Ebbinghaus, 1885) and the recency effect in memory 

(Baddeley & Hitch, 1974)  

Because any particular set of items in a group potentially 

supports an infinite number of possible structures and 

generalizations thereof, a learner must determine the most 

likely pattern given a limited amount of experience with it. 

One way in which this problem may be constrained is by a 

“gradient of generalization:” the most consistent 

information across a distribution produces the best learning 

(Aslin & Newport, 2014; Gerken, 2006). In Experiments 2 

and 3, information for medial repetition and nonadjacent 

dependency was available, yet 11-month-olds learned only 

the statistical information. Notably, 14-month-olds appeared 

to learn a repetition rule both when it was restricted to the 

medial position (Experiment 2) and when it was free to 

appear in initial, medial, or final position (Experiment 1), 

implying that important developments in structural learning 

consist of the “separation” of perceptual primitives such that 

they become less interdependent and perhaps more salient 

on their own.  

Infant Sequence Learning in Context 

Rule learning and generalization for shorter sequences can 

be observed in infants as young as 4 months (Dawson & 

Gerken, 2009). Rule learning in 5-month-olds from 3-item 

shape-syllable sequences was also reported, using a similar 

design (Frank et al., 2009). Studies that tested for statistical 

learning reported that 3-month-olds appeared to recognize 

violations of serial order in 3-item shape-sound sequences 

(Lewkowicz, 2008), and 5-month-olds segmented shape 

sequences from differences in transitional probability 

(Marcovitch & Lewkowicz, 2009; Slone & Johnson, 2015). 

(To our knowledge, there is no published evidence for rule 

or statistical learning in auditory or visual sequences prior to 

4 months.) By 8 months, infants seem to use a “chunking” 

mechanism to segment shape sequences when tested for 

learning of “illusory” sequences or “embedded” units in 

streams of looming shapes (Slone & Johnson, 2016; cf. 

Endress & Mehler, 2009; Giroux & Rey, 2009).  

Finally, consider the findings (from Experiments 2 and 3) 

that 11-month-olds extracted statistical patterns, but not 

rules, from identical sequences. In a previous test of 

multiple pattern learning, adults listened to speech streams 

that could be interpreted in terms of rules or statistical 

relations (Endress & Bonatti, 2007). With briefer listening 

times, participants learned the rules, but did not identify the 

statistical structure without substantially longer exposure 

durations. This result led to the claim that there is a fast-

working mechanism for extracting rule-bound patterns, and 

a second slower mechanism that requires additional time to 

learn associations among items. Yet the infants we observed 

appeared to learn statistical relations, but not rules, during a 

relatively brief period of habituation. The reasons for this 

effect are unclear. Recently, 8-month-old infants were found 

to learn different statistical structures (transitional 

probabilities and “chunks” of items) as a function of 

exposure time (Slone & Johnson, 2016), and it may be that 

11-month-olds would learn rules in the current stimulus set 

if they accumulated more looking times than allowed for by 

the infant-controlled habituation method. Nor is it clear 

from the current studies or the larger literature whether, in 

general, rule learning systems might come “on line” earlier 

during development than statistical learning systems, or 

vice-versa. These questions await future study. 

Conclusions  

Perceptual primitives may be best thought of as helping to 

support learning by attracting learners’ attention and 

memory resources to likely structures in the environment. 

Yet they do not seem to attract attention automatically, as do 

some sensory primitives such as motion or high contrast, 

nor are they automatically committed to memory, for either 

infants or adults. Rather, evidence to date suggests that 

infants at birth can discriminate certain rules and statistical 

patterns when compared to unstructured input, but learning 

and generalization of rules develop across the first year after 

birth and beyond. On this account, perceptual primitives 

such as repetition and position serve as building blocks 

upon which more complex structures can be built. 
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Abstract

In this paper we investigate a hypothesized cognitive bias for
isomorphic mappings between conceptual structure and linear
order in the noun phrase. This bias has been proposed as a pos-
sible explanation for a striking asymmetry in the typology of
the noun phrase–linear orders which place the adjective clos-
est to the noun, then the numeral, then the demonstrative, are
over-represented in the world’s languages. Previous experi-
mental work has provided evidence that an isomorphism bias
affects English-speaking learners’ inferences about the relative
order of modifiers in an artificial language. Here, we use the
silent gesture paradigm to explore whether the isomorphism
bias influences spontaneous gestures innovated by participants
in a modality with which they have relatively little prior experi-
ence. We find that gesture string order largely conforms to the
same striking pattern found in noun phrase typology, support-
ing the role of the isomorphism bias in shaping the emergence
of language (and language-like) systems.

Keywords: silent gesture; noun phrase; word order; linguistic
universals; cognitive biases

Introduction
Linguists studying word order have long noticed striking dif-
ferences in frequency among possible word order patterns.
Explaining why certain patterns are more common than oth-
ers is a source of ongoing debate. On the one hand, these
typological differences may reflect evolved properties of hu-
man cognition. On the other hand, they may be the result of a
complex interplay between various non-cognitive factors: ge-
netic and areal relationships between languages, social or cul-
tural pressures, and accidents of history (Evans & Levinson,
2009; Dunn, Greenhill, Levinson, & Gray, 2011; Piantadosi
& Gibson, 2014; Ladd, Roberts, & Dediu, 2015).

In this paper we will investigate a well-known pattern in
language typology relating to the structure of the noun phrase,
using a experimental methodology that has not yet been ap-
plied in this domain, in which participants must improvise
gestures to communicate pictures or scenes. What we find
is a clear preference for gesture orders which conform to a
structural template that is found in the majority of languages.
These orders do not in general follow the typical linear or-
der of noun phrases in their native language, English. Most
prominently, they often produce adjective gestures following
the noun. We argue that the results of our experiment reflect
the underlying conceptual structure of the noun phrase, sug-
gesting a cognitive explanation for the typological pattern.

Universal 20 and the isomorphism bias
Greenberg (1963) formulated a number of typological ‘uni-
versals’, based on the relative frequency of syntactic patterns
in 30 different languages. Universal 20 concerns the Noun
Phrase, in particular the order of the noun and its modifiers.

It states that when any or all of the items (demonstrative, nu-
meral, and descriptive adjective) precede the noun, they are
always found in that order. If they follow, the order is either
the same or the exact opposite (Greenberg, 1963).

In other words, the three most common NP orders ac-
cording to Greenberg are Dem-Num-Adj-N (‘these five large
houses’), N-Dem-Num-Adj (‘houses these five large’), and
N-Adj-Num-Dem (‘houses large five these’). More recent
analyses, based on a larger set of languages have found that
of the three orders, N-Dem-Num-Adj does occur, but is far less
frequent than the other two (Cinque, 2005; Dryer, 2009).

To explain the difference in frequency between Green-
berg’s two post-nominal orders (N-Adj-Num-Dem and
N-Dem-Num-Adj), Culbertson and Adger (2014) appeal to the
notion of isomorphism, present in some form in a number
of theoretical accounts of this universal (Cinque, 2005; Ri-
jkhoff, 2004). In general, isomorphism refers to a transpar-
ent relationship between meaning and structure. To see how
this applies to the noun phrase, consider the distinct seman-
tic contributions of the different modifier types (Culbertson
& Adger, 2014). Adjectives modify properties that are inher-
ent to the noun, numerals group together these smaller units,
and demonstratives connect these grouped units to the exter-
nal discourse.

In a complex noun phrase, the adjective is thus conceptu-
ally closest to the noun, followed by the numeral, and finally
the demonstrative. These relations determine constituency,
and can be seen, for example, in semantic scope. A nu-
meral (like ‘five) takes scope over the noun+adjective unit
(like ‘large houses’); the meaning of the numeral applies to
the noun as well as to the adjective. Similarly, a demonstra-
tive takes scope over a noun+adjective+numeral unit (such as
in ‘these five large houses’) to connect it to the discourse.1

These conceptual relations are illustrated in Figure 1.

Dem DemNum NumAdj AdjN

Figure 1: The conceptual structure of the noun and its mod-
ifiers: the adjective modifies the meaning of the noun most
closely; the numeral takes scope over this unit; the demon-
strative is conceptual most distant, taking widest scope.

1There is in fact converging evidence from formal semantics,
syntax, and functional linguistics to support this analysis (Partee,
1987; Adger, 2003; Rijkhoff, 2004).
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Note that the conceptual structure does not fully deter-
mine linear order, rather there are several possible ways to
map structure to order, all of which preserve the underlying
relations between elements. For instance, Dem-Adj-N-Num,
Dem-N-Adj-Num, and Adj-N-Num-Dem can all be ‘read off’
the structure in Figure 1 directly, without perturbing the con-
stituency relations. On the other hand, Adj-Dem-N-Num can-
not be read off the structure directly, the only way to get this
order is to move Adj outside of its unit with N. There are in
fact eight ways of forming a structure-preserving string, these
are the isomorphic orders. They make up one third of the 24
possible ways of ordering Dem, Num, Adj and N.

Returning to the two post-nominal orders mentioned
above, N-Adj-Num-Dem and N-Dem-Num-Adj, we can
now see that isomorphism is a possible explanation for
the frequency asymmetry between them: the more fre-
quent N-Adj-Num-Dem is isomorphic, while the infrequent
N-Dem-Num-Adj is not. More generally, isomorphic orders
tend to be more frequent than non-isomorphic ones, as shown
in Figure 2.

Figure 2: Frequency of NP structures: isomorphic orders are
all among the most common in this sample (Cysouw, 2010).

To investigate whether a bias for isomorphism plays a role
in language learning, Culbertson and Adger (2014) conducted
a series of experiments in which participants were trained
on an artificial language with simple noun phrases consist-
ing of a noun plus a single modifier (either an adjective, a
numeral or a demonstrative). Participants were then tested on
complex noun phrases with more than one modifier (i.e., an
adjective and a demonstrative), which they had not seen be-
fore. For instance, participants who learned N-Adj and N-Dem
strings in the training phase were then prompted to con-
struct a phrase containing all three elements. They could ei-
ther choose N-Adj-Dem, which is isomorphic, or N-Dem-Adj,
which shares the modifier order of English (Dem-Adj) but is

non-isomorphic. Participants chose isomorphic structures in
the majority of cases, suggesting that relative order of modi-
fiers was inferred based on an underlying assumption of iso-
morphism rather than surface similarity to English.

Silent gesture: evidence from improvisation in the
lab
The findings of Culbertson and Adger (2014) are limited in
the extent to which they provide evidence for an isomorphism
bias reflecting a general property of human cognition, since
participants may have learned (through learning their native
language) at a more abstract level that surface order is isomor-
phic to conceptual structure. Recent work using the ‘silent
gesture’ paradigm offers a potential method for tapping into
biases in word order while bypassing the effects of prior lin-
guistic knowledge. In silent gesture experiments, participants
with no knowledge of sign language are asked to convey in-
formation using only their hands and no speech. Existing
work using this method has mainly focused on basic word
order (sequences expressing information about who did what
to whom). This research has found that when participants use
silent gesture to describe simple transitive events, they do not
rely on the dominant order of their native language (Goldin-
Meadow, So, Özyürek, & Mylander, 2008), but instead take
the semantic properties of the event into account (Gibson et
al., 2013; Hall, Mayberry, & Ferreira, 2013; Schouwstra &
de Swart, 2014; Schouwstra, 2016).

Experiment 1
To investigate the isomorphism bias in a modality distinct
from participants’ previous language experience, we con-
ducted an experiment in which adult participants used silent
gesture to describe pictures of objects modified in various
ways. We hypothesise that the ordering of these gestures will
conform to isomorphism, even when they do not reflect the
linear order of English Noun Phrases.

Materials, participants, and procedure
We created a stimulus set consisting of images of groups of 4
or 5 (Num) shapes, which were either squares or triangles (N),
either striped or spotted (Adj), and appeared in a proximal or
a distal (Dem) location. Locations were represented by two
iPads on which the images could appear–one closer to the
participant, the other further away. Figure 3 provides example
images, and Figure 4 shows the position of the iPads relative
to the participant. The set of 8 different images, presented on
two different iPads, together formed 16 total items.

Participants (N=20, native speakers of English, no experi-
ence with sign languages) were seated across the table from
the experimenter, with the two iPads in front of them, as in
Figure 4. They were filmed using a Logitech webcam con-
nected to a MacBook Air. Before starting the silent gesture
part of the experiment, participants were shown the full set
of stimuli as printed pictures. Subsequently, they were asked
to describe each stimulus item using only their hands, so that
someone watching the recording would be able to work out
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Figure 3: Example stimuli: ‘five striped squares’ and ‘four
spotted triangles’.

Figure 4: Experiment set-up. Note that the two iPads were
placed on the table, in front of the participant: one close to
the participant, and one further away.

which of the images appeared on which screen. The stimuli
were presented twice in random order for each participant,
with a brief break after the first run of the stimuli (32 trials in
total).

Results
The videos were coded by identifying which of the gestures
indicated information associated with N, Adj, Num, or Dem.2

Occasionally, participants specified the spatial layout of the
figures. This information was invariably provided in addi-
tion to other gestures referring to the number or the object,
and was ignored for our coding purposes. In addition, some
gestures included combinations of two elements (e.g., N with
Adj). No relative ordering information can be determined for
combined elements, therefore these were excluded from rel-
evant analyses. We focused on two measures in analyzing
this data: how were modifiers ordered relative to the noun
(were they pre- or post-nominal), and how were modifiers or-
dered relative to each other (were they isomorphic given the
position of the noun, or not). To code for isomorphism we
looked at each modifier pair that appeared on the same side
of the noun. For instance, a string N-Num-Adj-Dem would
be coded as non-isomorphic for Num-Adj, but isomorphic for
Dem-Num and Dem-Adj. Modifier pairs that were on different
sides of the noun were excluded from this part of the analy-
sis as these do not provide information about isomorphism.
Finally, overall isomorphism for each full gesture string was

2Note that we do not wish to make claims about the nature of the
gestural elements produced by participants, and use the linguistic
terms N, Adj, Num, and Dem for convenience.

coded according to whether any isomorphism violations were
present. For this overall measure (contrary to what we did for
the modifier pairs) we did include strings that had modifiers
on different sides of the noun. Strings that excluded any of
the modifiers (such as N-Adj-Num) were excluded.
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Figure 5: Results of Experiment 1: Proportion of modifiers
placed post-nominally, by modifier type.
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Figure 6: Results of Experiment 1: Proportion of modifier
pairs conforming to isomorphic order, by modifier pair, in
pre- and post-nominal position, plus overall scope isomor-
phism (last column). The dotted line represents chance level.
Note that for overall isomorphism, chance level is at 0.33 (8
isomorphic orders/24 possible orders).

The typical order of English noun phrases is
Dem-Num-Adj-N. Analysis of overall rates of pre- vs.
post-nominal placement for each type of modifier reveal that
participants’ gestures deviate from pre-nominal order most
obviously when it comes to the placement of Adj. Indeed,
as shown in Figure 5, there was a strong preference for
post-nominal placement. By contrast for Dem, participants
preferred a pre-nominal position. Num fell in between. This
was confirmed by one sample t-tests comparing average
placement by participant to chance for each modifier type (t
= -0.2717, df = 18, p = 0.79 for Num, and t = -6.9561, df =
15, p <.001 for Dem; because Adj was used post-nominally
without exceptions, a t-test cannot be performed on that
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data).3.
Turning to isomorphism, as Figure 6 shows, participants

had a strong tendency to provide gesture strings which con-
formed to isomorphic ordering for all modifier pairs. Im-
portantly, this was the case both for pre-nominal and post-
nominal pairs. A one sample t-test confirms that proportions
of isomorphic word orders are significantly different from
chance (t = 65.1549, df = 15, p <.001).

Discussion
Participants’ overwhelming preference for isomorphic order
in silent gesture strings provides support for a link between
cognitive biases and this typological tendency. A further sur-
prising finding is that participants very consistently produced
post-nominal adjectives. This pattern is not dominant in the
native language of the participants (English), although it is in
fact more common typologically (Dryer, 2009).

However, two properties of our stimulus items suggest the
possibility that our results may not generalize to other Noun
Phrase types. First, the most common gesture order used by
participants was Dem-Num-N-Adj. This corresponds to the
physical layout of the information in each item: the iPad was
the outermost, largest element, the numeral information was
in some sense the next largest part of the scene, then the ob-
ject shape itself, and finally, the adjective information (stripes
or spots) which was always inside the object (Figure 3). If
participants were starting from the outermost information and
proceeding in, then, our stimuli could have set participants up
to place the adjective after the noun.

Further, as mentioned above, some responses contained
gestures which combined information for two of the elements
present. For example, participants sometimes conveyed infor-
mation about the numeral and the adjective simultaneously,
for example by repeatedly drawing spots or stripes (Adj) four
or five (Num) times. Such combinations were much more
likely to involve the adjective, making it impossible to deter-
mine either isomorphism (for Adj combined with other modi-
fiers), or position relative to the noun (for Adj combined with
N) in a number of cases.

We therefore conducted an additional experiment using
stimuli in which the adjective is not depicted inside the ob-
ject, and which discourage the use of combined gestures.

Experiment 2
To address the concerns pointed out above, and to further in-
vestigate the prevalence of post-nominal adjectives, we con-
ducted a second silent gesture experiment, using different
stimuli, as described below.

Materials, participants, and procedure
Our stimuli consisted of line drawings of groups of 4 or 5
(Num) objects, which were either toothbrushes or pencils4 (N),

3Different t-tests have different degrees of freedom. This is due
to the fact that not all data could be included for each test: some
participants produced only incomplete gesture strings.

4Taken from: http://www.flaticon.com/packs/essential-set-2.

either big or small (Adj), and appeared on a proximal or a
distal (Dem) location. The adjectives ‘big’ and ‘small’ were
chosen on the basis of their visual properties: when depicted,
the adjective information is not visually inside the object.
Moreover, we expected that these adjectives would lead to
fewer combined gestures, particularly with the noun (since
both likely require difference handshapes).5

Figure 7: Example stimuli: ‘five large pencils’ and ‘four
small pencils’.

The procedure of the experiment was identical to that of
experiment 1, except for the number of trials: participants
(N=20, native speakers of English, no experience with sign
languages) described each of the stimuli once (16 trials in
total).

●

●

●

0.00

0.25

0.50

0.75

1.00

Adj Num Dem
Modifier type

P
os

t−
no

m
in

al

Figure 8: Results of Experiment 2: Proportion of modifiers
placed post-nominally, by modifier type.

Results
As in Experiment 1, we coded the videos by identifying
which portion of the gesture string indicated N, Adj, Num, or
Dem. From this we determined whether the modifiers were
placed pre- or post-nominally, and obtained isomorphism
scores for modifier-pairs as well as full strings. The results
show that although the proportions follow the pattern found
in experiment 1 (note, however, that the proportion of post-
nominal adjectives is no longer significantly greater than 0.5;
t = 0.5138, df = 18, p = 0.61). Additionally, there was again

5Adjectives can be incorporated in the noun in sign languages
(Sutton-Spence & Woll, 1999), and it is interesting that participants
in Experiment 1 sometimes did this as well, but for the purposes of
our experiment we wanted to discourage it.
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an overall preference to produce isomorphic structures: a
one-sample T-test confirms that the proportion of isomorphic
strings differs from chance (t = 5.7149, df = 16, p <0.001).6

However, this tendency was less deterministic than in Exper-
iment 1.

Zooming in on the scores for different modifier pairs,
participants are less likely to produce isomorphic order for
Adj-Num combinations, in contrast to Experiment 1. When
these two modifiers were placed post-nominally, they were
no longer isomorphic (see Figure 9; t = 0.9077, df = 10, p =
0.39).
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Figure 9: Results of Experiment 2: Proportion isomorphic
orders, by modifier pair, plus overall scope isomorphism (last
column). The dotted line represents chance level. Note that
for overall isomorphism, chance level is at 0.33 (8 isomorphic
orders/24 possible orders).

General discussion
Isomorphism is a hypothesized cognitive principle proposed
to explain the way Noun Phrases tend to be ordered in lan-
guages of the world. Languages which obey isomorphism
are much more frequent than those which don’t. However,
given the many other factors likely to influence typological
distributions, evidence which explicitly links isomorphism
to a cognitive bias is needed. Previous experimental stud-
ies confirmed that isomorphism appears to play a role in the
kinds of inferences people make when learning an artificial
language with word order that differs from their native lan-
guage (Culbertson & Adger, 2014). However, the linguistic
systems individual speakers of a given language know have
already solved the problem of going from a multidimensional
conceptual structure (see Figure 1 above) to a linear repre-
sentation. In this paper, we investigated what happens when
people start ‘from scratch’ and improvise utterances in the
absence of a conventional system, by conveying information
presented as images using only their hands and no speech.

6Because in this experiment, some participants produced English
orders, we ran a separate T-test on the orders that did not follow
English structure, and found that subset of the data to be significantly
more isomorphic than chance (t = 3.3347, df = 10, p <0.01).

This silent gesture paradigm has been shown to be a fruitful
way of investigating what happens when people are forced to
communicate without being able to use existing word order
conventions. However, previous work using this paradigm
focuses mainly on the order of major sentence constituents.
The structure of the noun phrase has never before been stud-
ied using silent gesture.

Our experiments showed that the gestures improvised by
participants to describe pictures with N, Adj, Num, and Dem in-
formation, are ordered in a way that is isomorphic to the un-
derlying conceptual structure–adjective property closer to the
noun than numerosity, and distal/proximal location furthest
away. This result, combined with the fact that participants did
not simply use English NP order for their gestures, supports
the claim that a bias for isomorphism affects linear order in-
dependently of prior linguistic experience. This general bias
therefore plays a plausible role in explaining the frequency
distribution of NP orders across languages.

The clearest difference between the gesture orders par-
ticipants provided and their native language experience is
in the placement of the adjective. Experiment 1 showed
an extremely strong preference to place the Adjective post-
nominally (unlike in English), and in Experiment 2, though
the placement was more variable, there was still no over-
all preference for pre-nominal adjectives. As mentioned
above, post-nominal adjectives are in fact more common
cross-linguistically, and this may represent a second active
bias. Interestingly, Adj and Num gestures in Experiment 2
showed no isomorphism bias,7 whereas they did in Experi-
ment 1. One possible explanation for this may lie in the na-
ture of the adjectives used in our two experiments. Adjectives
describing a texture were used in Experiment 1, while adjec-
tives for size were used in Experiment 2. Size adjectives are
gradable (Kennedy, 2007), a property which affects the role
of contextual information in their interpretation: for grad-
able adjectives, context is needed to determine what counts,
e.g., as ‘large’ or ’small’. This closer connection to the con-
text may make the adjectives in the second experiment less
conceptually tied to the noun. Perhaps relatedly, size ad-
jectives are general argued to scope higher, relative to other
adjectives (Kemmerer, 2000), including ‘striped’ and ‘spot-
ted’ (as reflected in their order: e.g., ‘small striped triangle’
sounds more natural than ‘striped small triangle’). An non-
isomorphic order of a numeral and a wider-scoping adjectives
may thus be a weaker violation of isomorphism compared
to a lower-scoping adjective. Additional investigating with a
wider range of adjectives is needed to justify these claims.
Note however, that they are related to a similar finding in
Culbertson and Adger (2014), in which non-isomorphic or-
ders were more likely to be chosen for structurally less dis-
tant modifier pairs (i.e., Adj with Num, compared to Adj with
Dem).

7Participants were as likely to produce structures like N-Num-Adj
and Num-Adj-N as the isomorphic variants N-Adj-Num and
Num-Adj-N.
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Conclusion
The experiments reported here show that when people im-
provise gestures corresponding to simple pictures of objects
with different properties, numerosities, and locations, they or-
der their gestures in a way that corresponds to the underlying
conceptual structure of these elements. This same structure
is respected by the majority of languages in the way they or-
der elements in the Noun Phrase (nouns, adjectives, numer-
als, and demonstratives), suggesting that a cognitive bias for
isomorphism between meaning and linear order might shape
linguistic systems in this domain.

Experiments that use improvised silent gesture, like the
ones presented here, provides a window into the evolution
of linguistic systems. The method gives us an experimental
analog to real world situations in which language rules spon-
taneously emerge; for example, homesign (Goldin-Meadow
& Brentari, in press), emerging sign languages (Meir et al.,
2017) and early stages in spontaneous second (spoken) lan-
guage acquisition by adults (Schouwstra, 2016). Accord-
ingly, we believe that a fruitful line for future research will be
an investigation of the structure of the noun phrase in these
systems, providing an invaluable naturalistic complement to
laboratory experiments.
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Abstract 

The present study examined the influence of continuity of 
reference (i.e., discourse continuity) on children’s learning of 
new objects labels. Four-year-old children were taught three 
new label/objects pairs, where the speaker’s references to 
objects were either continuous (i.e., clusters of utterances 
referred to the same object) or discontinuous (i.e., no two 
sequential sentences referred to the same object). In two 
experiments, children learned new word/object mappings 
more successfully when object labels were accompanied by 
continuous references to the same object. This research 
reveals how discourse cues support children’s encoding of 
new words, and in doing so, advances our understanding of 
the specific features of parents’ language input that facilitate 
children’s language development.  

 

Keywords: discourse continuity; word learning; child-
directed speech 

Introduction 
Children are adept at analyzing the complexities of their 
language input in order to learn new words, but there is also 
substantial variability in their learning. In order to better 
understand these differences, researchers have examined 
various features of caregivers’ input shown to influence 
vocabulary growth, including social cues (such as eye gaze 
and pointing; e.g., Booth, McGregor, & Rohlfing, 2008; 
Brooks & Meltzoff, 2008), structural cues (such as 
repetition and utterance length; Brent & Siskind, 2001; 
Lew-Williams, Pelucchi, & Saffran, 2011; Schwab & Lew-
Williams, 2016), visual cues (such as the size of labeled 
objects in the visual field or their perceptual salience; 
Pereira, Smith, & Yu, 2014; Pruden, Hirsh-Pasek, 
Golinkoff, & Hennon, 2006), and auditory cues (such as 
intonation and pitch; e.g., Ma, Golinkoff, Houston, & Hirsh-
Pasek, 2011; Singh, Nestor, Parikh, & Yull, 2009). Here we 
focus on a contextual cue of parents’ speech that may also 
facilitate children’s vocabulary development: the content or 
structure of the discourse exchange. Specifically, discourse 
continuity, or the clustering of utterances that reference the 
same topic, may promote children’s word learning (e.g., 
Frank, Tenenbaum, & Fernald, 2013). Recent research on 
this topic suggests that discourse continuity does promote 
children’s in-the-moment disambiguation of word-referent 
mappings in noisy referential contexts (Horowitz & Frank, 
2015), but it is not yet clear whether discourse continuity 
also contributes to children’s encoding of new words in less 
ambiguous contexts, i.e., when caregivers hold and talk 
about an object in front of children, as is common in natural 
communication. Thus, the present study tests whether 

discourse continuity influences the learning of multiple new 
object labels in 4-year-old children. 

Previous research has revealed that young children are 
sensitive to various aspects of the discourse context and 
structure. For example, 24-month-olds have been shown to 
understand that adults pay attention to – and talk about – 
novel aspects of an interaction (Akhtar, Carpenter, & 
Tomasello, 1996). That is, children are able to learn a new 
word when an adult labels an object that is novel to the 
discourse context from only the adult’s own point of view.  
Relatedly, two-year-olds have been shown to use speakers’ 
speech disfluencies to predict their intended referents during 
object labeling (Kidd, White, & Aslin, 2011). Finally, cross-
linguistic research has revealed that children who hear more 
consistent referential patterns within discourse – 
specifically, regarding the use of either null, pronominal, or 
lexical verb arguments – tend to produce more consistent 
patterns earlier, compared to children exposed to 
inconsistent discourse patterns (Guerriero, Oshima-Takane 
& Kuriyama, 2006). Nevertheless, there is little research to 
date that specifically looks at children’s ability to take 
advantage of discourse continuity, or the idea that 
neighboring utterances are likely to refer to the same topic 
(e.g., Frank, Tenenbaum, & Fernald, 2013; Hoff-Ginsberg, 
1994; Ochs & Shieffelin, 1983). For example, if a child 
simply hears, “I rode a camel!”, he or she might come to the 
incorrect conclusion that a camel is some sort of automated 
vehicle. If instead the child hears, “I took a trip to the desert. 
I rode a camel! He was so sweet and let me pet him,” he or 
she might use the topic continuity between camel and other 
words in the discourse in order to discern the meaning of 
camel (i.e., an animal living in the desert), as well as to 
encode its meaning more concretely and accurately.  
 Most existing research on the topic of discourse 
continuity and children’s language learning has examined 
the use of discourse continuity in child-caregiver 
interactions (Frank, Tenenbaum, & Fernald, 2013; Rohde & 
Frank, 2014). Rohde and Frank (2014) analyzed discourse 
continuity in parents’ interactions with their children using 
three different methods: raw annotations of speakers’ 
referent, the output of a computational model, and 
judgments made by human coders. Across the three 
methods, the researchers determined that many topic-
signaling cues – such as pronoun use and sentence-final 
reference – found in adult discourse are also present in 
child-directed speech. They conclude that the function of 
these cues in child-directed speech may be to help children 
acquire additional referential information from their input, 
particularly when individual utterances are ambiguous. Hoff 
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(2010) revealed that children produce topic-continuing 
discourse themselves, particularly during certain language-
rich activities such as reading. Other work suggests that 
speakers’ discourse continuity might be relevant for 
supporting a key component of children’s language 
development: the learning of new words. Frank, 
Tenenbaum, & Fernald (2013) found that caregivers’ 
references to objects in a child-parent play session were 
more continuous (or “clumpy”) than would be expected by 
chance. Moreover, computational modeling work has shown 
some evidence of the importance of discourse continuity for 
word learning. In their word-learning model, Luong, Frank, 
and Johnson (2013) set speakers’ intended referent to be 
continuous across utterances. This discourse information, 
combined with social cues, led to some improvements in the 
model’s word learning performance. Together, these studies 
suggest that discourse continuity exists in adult-child 
interactions and provides helpful cues to word learning, yet 
they are unable to conclusively determine whether or not 
discourse continuity improves children’s word-learning 
abilities.  
 Erika Hoff (2003) began to answer this question – of 
whether continuity of discourse promotes children’s word 
learning – by looking at topic-continuing replies, i.e., 
caregivers’ utterances that continue a topic previously 
introduced by the child. Hoff found that the amount that 
mothers used topic-continuing replies predicted their 
children’s vocabulary growth ten weeks later, suggesting 
that continuity in mother-child interactions may indeed 
promote children’s language learning. Horowitz and Frank 
(2015) went further by testing whether children are able to 
use a speaker’s discourse continuity as a strategy for 
determining object reference in ambiguous word learning 
situations. In their study, children ages 2-6 years completed 
a novel word-learning task, where the only cue to reference 
was the placement of a labeling event within the discourse 
structure of the interaction. Specifically, children heard an 
object label (with no associated gestural cues to the referent) 
flanked by descriptions of either toy A or toy B (which were 
accompanied by gestural cues). If children are able to use 
discourse continuity as a cue to reference, they should be 
able to determine the object/label pairing if the labeling 
event occurs between two descriptions of the same object 
(either toy A or toy B), i.e., if the labeling episode is 
discourse continuous. If the labeling event occurs between 
two descriptions of different objects (toy A and toy B), the 
label/object pair should be indeterminable. The results 
revealed that children were in fact only able to successfully 
determine the referent when labels were discourse 
continuous. Moreover, children only started showing 
successful disambiguation by age 3-4, and showed even 
better learning through ages 5 and 6, suggesting that 
children’s ability to use discourse information in 
determining object reference might develop over the course 
of childhood.  
 Discourse continuity clearly seems to be helpful for 
disambiguation, i.e., determining reference in uncertain 

situations. However, it has not yet been determined whether 
discourse continuity, in addition to helping determine an 
accurate word/object mapping in the moment, is also helpful 
for children’s encoding of a new word that is clearly the 
focus of attention. Not only is the latter common in 
caregiver-child interactions (e.g., Pereira, Smith, & Yu, 
2013), but so is caregivers’ tendency to refer to a string of 
objects in sequence. As speakers rapidly shift focus from 
one object to the next in conversation, it is possible that 
providing context for each labeling episode through topic 
continuity helps children successfully encode and remember 
new object labels. In the present paper, we test this 
prediction in 4-year-olds by teaching them three new words, 
either with or without discourse continuity. If discourse 
continuity does in fact promote children’s word learning, we 
predicted that children who heard clusters of continuous 
reference to objects would show better learning of object 
labels (defined as proportion of object/label mappings 
correctly identified in the test phase) compared to children 
who heard object references distributed over the course of 
the learning phase.  

Experiment 1 
In Experiment 1, we tested the extent to which continuity of 
reference influences children’s learning of three new 
word/object pairs. In the Continuous condition, clusters of 
three utterances included one labeling utterance directed 
toward a particular object, accompanied by two additional 
utterances describing – but not explicitly labeling – the same 
object. In the Discontinuous condition, children heard the 
same labels for each object and the same object-directed 
utterances as in the Continuous condition, but the discourse 
was not continuous (e.g., a label for Object A might be 
immediately followed by commentary about features of 
Object B). Each label or object-directed utterance was 
unambiguous, i.e., it was accompanied by the speaker 
gazing toward and grasping the object. At test, children 
were presented with a two-alternative forced choice 
reaching task in order to measure their knowledge of each 
object label. If discourse continuity does in fact promote 
children’s word-learning abilities, children should show 
more successful learning of correct object/label mappings in 
the Continuous compared to the Discontinuous condition. 

Method 
Participants Participants were 40 4-year-old children 
(M=46.41 months, SD=3.71, Range=42.1-53.63). Twenty-
three participants were male, and all participants came from 
monolingual English-speaking homes. Children had no 
history of pervasive developmental delays. Twenty children 
were randomly assigned to each of two experimental 
conditions: a Continuous or Discontinuous condition, 
described in detail below. Three additional participants were  
tested but not included due to fussiness/refusal to cooperate 
(n=2) or taking an extended break halfway through test 
trials (n=1) 
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Figure 1. Schematic depicting sample trials in the learning phase for the Continuous and Discontinuous conditions in 
Experiment 1. Between each trial, the speaker rested both hands in her lap and smiled at the participant. 
 
Stimuli and Design Three novel words—gazzer, cheem, 
and tobu—corresponded to one of three novel objects, each 
characterized by a different color, texture, and shape (see 
Figure 1). Half of participants were exposed to one set of 
word/object pairings, and half were exposed to a second, 
counterbalanced set of pairings.  
 In the Continuous condition, blocks of three adjacent 
trials in the learning phase referred to the same object. 
Either the first or second trial was a labeling trial, while the 
other two trials provided identifying visual information 
about the object (e.g., “This is a gazzer. / This is small and 
green. / This feels really spiky.”). There were two blocks of 
trials for each novel word/object pair. Each object was 
referred to six times total (2x per object label). 
 The Discontinuous condition consisted of the same exact 
trials as the Continuous condition, but trials within each 
block of the learning phase were pseudo-randomly ordered 
such that no two adjacent utterances referred to the same 
object (see Figure 1). Thus, participants heard the same 
number of total references to each object and the same 
number of object labels as in the Continuous condition, but 
discourse continuity was absent. 

 
Procedure During the experiment, an experimenter sat 
across from the participant at a table and told him or her, 
“We’re going to play a game together! Just watch and pay 
attention because I’m going to ask you some questions 
about these things later. Are you ready? Here we go!” 

During the learning phase, the experimenter placed all 
three objects in a line directly in front of her on the table (in 
one of two counterbalanced orders). On each of 18 learning 
trials (approximately four seconds in duration), the 
experimenter began with her hands in her lap. Then she 1) 
smiled at the participant, 2) looked down at an object, 3) 
grabbed the object, raised it slightly, and tilted it up, 4) 
looked back at the participant and said a labeling or object-
directed sentence about the object, 5) looked back at the 
object and set it back down, and 6) put her hands back in her 
lap. Two counterbalanced trial orders were used for each 
condition across participants. 
  

 
 The test phase began immediately after the learning 
phase. The experimenter removed all three objects from the 
table and told the participant that she was now going to ask 
some questions. Next, the experimenter took two objects at 
a time, placed them in an uncovered basket, and put the 
basket on the table. Without looking down at the objects, the 
experimenter slid the basket toward the participant. Then 
she asked the participant to choose one of the objects and 
hand it to the experimenter (e.g., “Which one is the cheem? 
Can you give me the cheem?”). During each test trial, the 
experimenter maintained eye contact with the participant. If 
a child initially touched more than one object, the object 
that was finally handed to the experimenter was recorded as 
his or her choice. There were 12 test trials total (four trials 
per object/label pairing). Two counterbalanced test orders 
were used across participants. Across conditions, 
participants saw the same pairs of two novel objects, 
positioned on the left and right sides of the basket.  

Finally, children’s vocabulary was assessed using the 
Peabody Picture Vocabulary Test (PPVT) (Dunn & Dunn, 
2007). The PPVT is a standardized measure to assess 
children’s receptive vocabulary by asking them to identify 
familiar words from a flipbook of pictures. Children were 
also rewarded with stickers following the test phase and 
again during and after the administration of the PPVT.  

Results and Discussion 
Word learning was measured in terms of the proportion of 
word/object pairs that children correctly identified in the test 
phase. A two-tailed independent samples t-test showed that 
learning was significantly greater in the Continuous 
condition (M=.88, SE=.03) compared to the Discontinuous 
condition (M=.77, SE=.04; t(34.27)=2.05, p<.05, d=.65; see 
Figure 2). Additionally, between conditions, there was no 
significant difference in children’s mean age (Continuous: 
M=46.96 months, SD=4.13; Discontinuous: M=45.86 
months, SD=3.26; t(36.05)=.94, p=.35) or mean 
standardized PPVT score (Continuous: M=118.63, 
SD=11.96; Discontinuous: M=114.21, SD=15.05; 
t(34.26)=1.0, p=.32). Interestingly, however, learning was 
significantly greater than chance for both the Continuous 
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(t(19)=12.28, p<.001) and Discontinuous conditions 
(t(19)=6.20, p<.001), suggesting that children are able to 
successfully learn the novel words even without discourse 
continuity. However, continuity of reference does seem to 
provide an additional word-learning boost.    
 Because we tested children ranging from 3.5 to 4.5 years 
of age, we examined a possible interaction between age and 
discourse continuity on children’s word learning. A 2x2 
factorial Analysis of Variance (ANOVA) with age and 
condition (Continuous or Discontinuous) as between-
subjects factors revealed a significant main effect of 
condition (F(1, 36)=4.31, p<.05), but no significant main 
effect of age (F(1, 36)=2.04, p=.16) and no significant 
condition x age interaction (F(1, 36)=.80, p=.38). Thus, 
across the 3.5- to 4.5-year range, discourse continuity 
supported children’s word learning equivalently.  
 These results suggest that discourse continuity promotes 
word learning for 3.5- to 4.5-year-old children. Importantly, 
however, the “discourse” in our experiment provided 
relevant visual information about each object, such as its 
color or texture (in a similar manner to Horowitz & Frank, 
2015). Thus, it remains unclear whether topic continuity in 
this experiment facilitated learning due to the informative 
discourse that accompanied object labels, or whether simply 
having continuity of object reference drove the more 
successful learning in the Continuous condition. In 
particular, we wanted to determine whether continuity of 
uninformative discourse – i.e., discourse that provided 
relatively neutral information about the objects (e.g., “This 
is good and neat”) – would promote children’s word 
learning in a similar manner. In Experiment 2, we sought to 
answer this question by replicating Experiment 1, but using 
uninformative instead of informative discourse.   

Experiment 2 
Experiment 2 sought to replicate the results of Experiment 1 
using uninformative discourse. In each condition 
(Continuous/Uninformative and Discontinuous/ 
Uninformative), object labels were the same as in 
Experiment 1, but accompanying discourse provided no 
relevant information about each object. If the relevant 
contextual cue boosting children’s performance in this task 
is continuity of reference more generally – and not the 
pairing of object labels with important visual information in 
the discourse – we again expected children to show more 
successful learning of object/label mappings in the 
Continuous/Uninformative condition compared to the 
Discontinuous/Uninformative condition. 

Method 
Participants Participants were 40 4-year-old children 
(M=46.37 months, SD=3.36, Range=42.27-53.13). Sixteen 
participants were male, and all participants came from 
monolingual English-speaking homes. Children had no 
history of pervasive developmental delays. Twenty children 
were randomly assigned to one of two experimental 
conditions: a Continuous/Uninformative or Discontinuous/ 

Uninformative condition, described in detail below. Two 
additional participants were tested but not included due to  
experimenter error (n=1) or being bilingual (less than 85% 
English exposure) (n=1). 
 
Stimuli and Design The words and objects used were 
identical to Experiment 1. The Continuous/Uninformative 
condition was identical to the Continuous condition from 
Experiment 1, except that object-directed utterances 
provided no identifying visual information about each object 
(e.g., “This is a gazzer. / This is good and neat. / This is nice 
and cute.”). Object-directed utterances in the 
Continuous/Uninformative condition were matched to 
sentences in the Continuous condition from Experiment 1 in 
total number of syllables. The Discontinuous/Uninformative 
condition consisted of the exact same trials as the 
Continuous/Uninformative condition, but trials within each 
block of the learning phase were ordered such that no two 
adjacent utterances referred to the same object. Thus, as in 
Experiment 1, participants in this condition heard the same 
number of total references to each object and the same 
number of object labels as the Continuous conditions, but 
there was no discourse continuity. 
 
Procedure The procedures for the learning phase, test 
phase, and administration of the PPVT in Experiment 2 
were identical to the procedures in Experiment 1. 

Results and Discussion 
Again, word learning was measured in terms of the 
proportion of word/object pairs that children correctly 
identified in the test phase. A two-tailed independent 
samples t-test showed that learning was significantly greater 
in the Continuous/Uninformative condition (M=.88, SE=.03) 
compared to the Discontinuous/Uninformative condition 
(M=.72, SE=.04; t(34.64)=2.93, p=.006, d=.92; see Figure 
2). Additionally, between conditions, there was no 
significant difference in children’s average age (Continuous: 
M=46.27 months, SD= 3.20; Discontinuous: M=46.47 
months, SD=3.60; t(37.50)=-.18, p=.86) or average 
standardized vocabulary score (Continuous: M=119.5, 
SD=13.13; Discontinuous: M=114.72, SD=12.62; 
t(35.83)=1.14, p=.26).  
 Because we tested children ranging from 3.5 to 4.5 years 
of age, however, we again examined a possible interaction 
between age and discourse continuity on children’s word 
learning. A 2x2 factorial Analysis of Variance (ANOVA) 
with age and condition (Continuous or Discontinuous) as 
between-subjects factors revealed a significant main effect 
of condition (F(1, 36)=8.27, p=.007), but no significant 
main effect of age (F(1, 36)=.01, p=.92) and no significant 
condition x age interaction (F(1, 36)=.62, p=.44). Similar to 
Experiment 1, across the 3.5- to 4.5-year range, discourse 
continuity promoted children’s word learning equivalently. 
Additionally, similar to Experiment 1, there was significant 
learning compared to chance for both conditions 
(Continuous: t(19)=11.83, p<.001; Discontinuous: 
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t(19)=4.95, p<.001), again suggesting that continuity of 
reference supports word learning in the absence of discourse 
continuity.    
 Comparing across Experiment 1 and Experiment 2, there 
was no significant difference in learning between the 
Continuous and Continuous/Uninformative conditions 
(t(37.95)<.01, p>.99, d<.01), or between the Discontinuous 
and Discontinuous/Uninformative conditions (t(37.99)=-.81, 
p=.42, d=.26). A 2x2 mixed analysis of variance (ANOVA) 
with experiment (1 or 2) as a between-subjects factor and 
condition (Continuous or Discontinuous) as a within-
subjects factor revealed a significant main effect of 
condition (F(1, 76)=12.47, p<.001, η2

p=.14), but no 
significant main effect of Experiment (F(1, 76)=.44, p=.51, 
η2

p=.005), and no significant condition x experiment 
interaction (F(1, 76)=.44, p=.51, η2

p=.005). Thus, 
Experiment 2 successfully replicated the results of 
Experiment 1 in an uninformative discourse context. 
Together, these results suggests that continuity of reference 
generally – and not just continuity of informative discourse 
– seems to promote children’s word learning. 

 

Figure 2: Mean proportion object/label mappings correctly 
identified in Experiment 1 (Continuous vs. Discontinuous 
conditions) and Experiment 2 (Continuous/Uninformative 
vs. Discontinuous/Uninformative conditions). Error bars 
show +/- 1 SEM across participants. 

General Discussion 
In two experiments, we show that continuity of reference 
promotes 4-year-old children’s learning of new object 
labels. Moreover, the speaker’s discourse does not need to 
provide informative content in order to promote children’s 
word learning – simply having continuity of reference in 
child-directed speech seems to be sufficient to support 
learning. Thus, not only does discourse continuity help 
children determine ambiguous word/object mappings in the 
moment (Horowitz & Frank, 2015), but also, it helps 
children encode multiple new object labels in the context of 
rapidly shifting adult-child interactions.  
 A great deal of recent research has focused on children’s 
ability to track statistical co-occurrences in language in 
order to learn word-referent mappings (e.g., Smith & Yu, 

2008), but fewer studies have focused on children’s ability 
to use information about the structure of discourse in order 
to learn new words. Because children have been shown to 
be adept at tracking object-label regularities over time, in 
some contexts these kinds of contextual cues may not be 
necessary. More likely, however, discourse cues, in addition 
to socio-pragmatic cues, help children encode information 
about word/object co-occurrences over time, presumably by 
increasing their salience. Relatedly, Pereira, Smith, and Yu 
(2013) have suggested that there are optimal visual 
moments for learning new word/object pairs. That is, when 
objects appear in a clean, stable view in front of a child 
while it is being labeled, that child is more likely to learn 
the object’s label. Here, continuity of reference may provide 
a similarly optimal contextual moment for learning a new 
word/object pair, where each word and referent are clearly 
linked within the discourse, allowing children to attend to 
their features or potential functions. 
 The present results are convergent with findings showing 
that repetition of words across neighboring utterances is 
helpful for learning (e.g., Onnis, Waterfall, & Edelman, 
2008; Schwab & Lew-Williams, 2016). In particular, 
previous research has shown that repetition of object labels 
in blocks of successive utterances promotes two-year-olds’ 
encoding of new word/object pairings. Here, at least with 
older preschool-age children, simply referencing one object 
for several sentences in a row – without repeating the object 
label itself – may enable the learner to better encode a 
word/object pairing. It is possible that repetition of object 
labels themselves – compared to continuity of reference 
more generally – promote word learning differentially along 
the developmental continuum. For example, previous work 
suggests that children’s ability to exploit discourse 
continuity to disambiguate moments of reference increases 
as children age, with children under 3 years not showing the 
ability to take advantage of discourse cues in this context 
(Horowitz & Frank, 2015). In a similar manner, the need for 
caregivers to repeat object labels in neighboring sentences 
may decrease over time as children increase their 
proficiency in inferring information from the discourse, i.e., 
become better at learning from discourse continuity. Future 
research should aim to directly examine differences in the 
influence of partial repetition and discourse continuity on 
children’s learning across a wider age range, as well as 
relate children’s learning abilities to differences in 
caregivers’ naturalistic use of these cues in the home. 
 Finally, it is not yet clear from the present results whether 
children’s increased learning in the Continuous conditions is 
a facilitation or interference effect. Specifically, it may be 
the case that continuity of reference promotes learning, or 
that discontinuity in object reference interferes with learning 
because of rapid shifts in attention to different objects. We 
are currently pursuing follow-up studies to determine 
whether visual continuity is sufficient to support children’s 
word learning in this experimental context, or whether 
visual discontinuity interferes with learning. If children 
learn words similarly regardless of continuous or 

3105



discontinuous visual exposure, this would suggest that 
continuity in a speakers’ discourse in particular seems to 
promote children’s word learning. 
 Overall, the present experiments reveal that discourse 
continuity promotes 4-year-old children’s learning of new 
object labels, and this seems to be true regardless of the 
content or informativity of the discourse. Previous research 
on discourse continuity has found that natural child-directed 
discourse tends to be “clumpy” (Frank, Tenenbaum, & 
Fernald, 2013), and continuity of discourse helps children 
disambiguate between possible referents in the moment 
(Horowitz & Frank, 2015). The present work goes further 
by suggesting that clusters of reference to particular objects 
can help children more successfully encode new words in 
the context of hearing sequential label/object pairings, as 
speakers rapidly shift focus from one object to the next. 
This research has implications for our understanding of how 
differences in caregivers’ language input can influence 
children’s vocabulary development.  
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Abstract
This paper considers prediction in language processing by ex-
amining the role of the visual context, and specifically, the role
of speaker referent gaze on cognitive load. We inspect the an-
ticipatory visual attention during sentence processing together
with the cognitive load induced at the points of the gaze cue,
and the linguistic referent. Employing a novel measurement
of cognitive load - the Index of Cognitive Activity (Marshall,
2000) allowed us to simultaneously consider both anticipatory
eye-movements and cognitive load. Our results show that the
gaze cue is being followed, and considered as a relevant piece
of information, which subsequently reduces the cognitive load
on the linguistic referent. In addition, we found that consider-
ing the gaze cue is in itself not costly, unless it cues an object
mismatching with the previous linguistic context.
Keywords: Gaze; Cognitive Load; Index of Cognitive Activ-
ity; Prediction; Eye-tracking

Introduction
A series of investigations in the visual world paradigm (VWP)
have shown how listeners simultaneously combine linguistic
and visual cues to predict upcoming linguistic input (for a
review of the VWP see Huettig, Rommers, & Meyer, 2011).
Based on the idea that prediction is a unifying principle of
the human mind, a large body of psycholinguistic research,
in the VWP, as well as employing EEG, has been examining
the role of prediction in language processing (see Huettig,
2015; Huettig & Mani, 2016). Anticipatory eye-movements
collected in the VWP have reliably shown that people predict
upcoming referents based on the previous linguistic material
(e.g. Altmann & Kamide, 1999; Kamide, Altmann, & Hay-
wood, 2003), as well as based on the visually presented events
(Knoeferle, Crocker, Scheepers, & Pickering, 2005).

Our present work examines the influence of the visual
modality on processing linguistic information by specifically
investigating speaker gaze, as an inseparable part of the vi-
sual context in situated communication, and its influence on
prediction making. We hypothesized that speaker gaze to the
upcoming referent helps constrain the set of possible targets
and thus, by increasing the predictability of the cued object
reduces the cognitive load induced by its linguistic referent.
In addition, we examined whether any cost reduction on the
referent would be accompanied by a cost increase on the gaze
cue, effectively spreading the cognitive load across the two
modalities, namely, the gaze cue and the language.

The Gaze Cue Gaze has been shown to play an important
role in situated communication. Listeners inspect objects
they anticipate will be mentioned next (Altmann & Kamide,
1999), and they fixate the mentioned object 200 - 300 ms after
the speaker started referring to it (e.g. Tanenhaus, Spivey-
Knowlton, Eberhard, & Sedivy, 1995). Speakers also fixate

the relevant object 800 - 1000 ms before mentioning it (e.g.
Griffin & Bock, 2000). But, how does speaker’s gaze add to
the listener’s prediction?

Previous research on gaze and language has established the
gaze cue to be utilized and proven helpful while processing
linguistic material (e.g. Hanna & Brennan, 2007) even when
the speaker is a robot (Staudte & Crocker, 2011) or a virtual
agent (Staudte, Crocker, Heloir, & Kipp, 2014). The conclu-
sions about the effects of gaze following are drawn on the basis
of participants’ eye-movements and responses to the task at
hand. The eye-movement data give insight into the shifts of
visual attention indicating whether the gaze cue was consid-
ered. In addition, the effect of considering the gaze cue on
the comprehension of linguistic material is assessed by reac-
tion times, comprehension and production tasks. Importantly
however, no direct effect of speaker gaze on cognitive effort
required for language processing has, to our knowledge, been
examined yet. This paper sets out to investigate just that by
combining eye-movement data with an online pupillary mea-
sure of cognitive load, which enabled us to measure this cost
/ benefit directly, and independent of a specific task.

We examined both the process of creating and
(dis)confirming predictions in one and the same setting. To
this end we employed a novel measurement of cognitive
load - the Index of Cognitive Activity (ICA; Marshall, 2000)
which allows for an experimental design that combines eye-
movements, shedding light on the predictive processes, while
simultaneously measuring cognitive load at different stages of
sentence processing. The results revealed that referent gaze
is followed and that it indeed adds to the predictability of
the upcoming referent such that the spoken reference induces
less cognitive load. Note that whether this effect could also
be induced by arrows or other visual pointers is considered
irrelevant at this point.
The Index of Cognitive Activity (ICA) The two experi-
ments presented in this paper are conducted in the VWP. We
considered the eye-movements and the cognitive load reflected
in pupil size. While the traditional eye-movement analysis
helps reveal any patterns of anticipation of potential target
objects, the ICA allowed us to simultaneously also measure
cognitive load both on the gaze cue and on the referent noun,
i.e. the cognitive load induced by creating and (dis)confirming
one’s predictions.

Pupil dilation happens in consequence of either changes
in light or cognitive activity. Two groups of muscles are re-
sponsible for pupil size: circular muscles that make the pupil
contract, and radial muscles that make it dilate. Pupil size
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changes due to light and due to cognitive activity employ dif-
ferent activation and inhibition processes, the dilation due to
cognitive load being shorter and more abrupt (Beatty, 1982).

The ICAmeasurement disentangles the two types of change
in pupil size by performing a wavelet analysis on the pupil di-
lation record and removing the large oscillations, while con-
sidering only the quick pupil jitter that is related to cognitive
activity (Marshall, 2000). Such events of small abrupt changes
in pupil size are referred to as the ICA events.

The ICA has been shown to reflect changes in cognitive
load in a variety of different studies since its appearance (e.g.
Marshall, 2002, 2007). However, only recently has it been ex-
amined with cognitive load induced by linguistic processing
(Demberg & Sayeed, 2016). Demberg and Sayeed present a
series of seven experiments showing that the ICA indexes lin-
guistic processing difficulty for both reading and auditory pre-
sentation of linguistic stimulus. In addition, the ICA proved
to be robust with respect to eye-movements making it a valid
measure of processing difficulty in the VWP.

Hence, employing the ICA in present experiments allowed
for simultaneous assessment of both visual attention and cog-
nitive load.

Current Questions and Predictions Two studies were set
out to examine whether gaze is considered as part of the con-
text determining the predictability of the subsequent referent.
We examined if the gaze cue actually helps reduce the cogni-
tive load of a linguistic referent online and whether cognitive
load is in fact spread across gaze and spoken reference such
that the gaze cue itself then induces higher cognitive load.

Experiment 1 made use of the gaze cue that was always
fitting (the previous linguistic context) and congruent (cuing
the object to be referred to linguistically). We manipulated
the existence of the gaze cue in order to answer the following
research questions:

a) Does the gaze cue influence the predictability of a lin-
guistic referent?

b) If so, how does it influence the cognitive load induced
by the referent?

c) Can we measure cognitive load on the gaze cue itself?
Experiment 2 also made use of congruent gaze, while ma-

nipulating the fit of the referent (thus, also the fit of the gaze
cue) with the previous linguistic context. This was done in
order to answer the following research questions:

a) Does the gaze cue help reduce the cognitive load on the
linguistic referent even when they both do not fit the previous
linguistic context?

b) Does the gaze cue to a mismatching object itself induce
higher cognitive load?

We expected mismatching gaze to be surprising and thus,
more costly, which would as its consequence have a reduction
in cognitive load on the corresponding linguistic referent.

Experiment 1
This study aimed to examine whether the online measure of
cognitive load also supports previous findings that the gaze cue

Figure 1: A trial timeline example (from Exp.1) - referent
gaze condition (left); and no-gaze condition (right).

is actively considered in language processing, by quantifying
how its existence modifies the cost induced by the linguistic
referent. In addition, we were interested in measuring the
potential cost of gaze perception.

Method
The study made use of 2x2x2 mixed factorial design. The
independent variable Gaze was a between subjects variable,
i.e. half the participants were presented with the version of
the experiment where all items included the gaze cue, while
the rest saw the version with items never having the gaze cue.
Fillers balanced the gaze conditions to the ratio of 1:1. In
addition, four linguistic conditions were created with the two
within subjects variables, Constraint and Plausibility. Con-
straint was manipulated by verb restrictiveness (spill vs. or-
der), and Plausibility by noun fit (spill: water vs. ice-cream).

Participants 64 students of Saarland University took part
in this study (45 women) and were monetarily reimbursed for
their partaking. Their age ranged from 18 to 34 years old (M
= 24.16). Participants were all native speakers of the German
language with normal or corrected to normal vision.

Materials and Design Each participant was presented with
20 items and 30 fillers, both consisting of visual and auditorily
presented linguistic stimulus. In addition, visual displays
included a face-like object forming the gaze cue.

Note that the gaze cue used in our studies, since being
an always congruent visual pointer, is arguably not different
from an arrow. This is true, but, currently irrelevant, since
the differences between a visual pointer and a gaze cue are
potentially to be expected in cases ofmanipulated congruence.

We made use of simple German sentences (Subject - Verb
- Adverb - Object) that included a restrictive (spill) and a non-
restrictive (order) verb and two object nouns (water vs. ice-
cream) of differing semantic fit in relation to the restrictive
verb. The chosen nouns were controlled for frequency and
two pretests have shown that in the context of order, water
was more predicted (cloze probability of 13.67%; plausibility
rating of 1.12 on a 7-point Likert scale1), than ice-cream (cloze

1The scale ranged from "very plausible" (1), to "not plausible,
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Figure 2: (Exp.1) Proportion of fixations in the four linguistic conditions without the gaze cue (left) and with ref. gaze (right).
The verb onset, gaze and noun onset are shown averaged across trials, and aligned to the 100 ms bins within which they fall.

probability of 0.16%; plausibility rating of 2.76). The same
adverb, neutral in meaning (gleich - ENG: soon), was used for
all items and served the purpose of a spillover region.

In addition, visual displays with four concrete objects2were
presented. Two of the four objects fit the category introduced
by the restrictive verb (spill: water, ice-cream), while all four
fit the non-restrictive verb (order: water, ice-cream, suitcase,
coat). The referent noun was always fitting with the previous
linguistic context and the gaze cue was always congruent, that
is, cuing the object that is about to be mentioned. The main
manipulation of the study was the presence (vs. absence) of
the gaze cue which was presented before the target object was
referred to verbally.

Figure 1 illustrates a trial timeline. The visual scene with
open eyes was presented 1000 ms prior to sentence onset.
The gaze cue (or closed eyes) was introduced 300 ms after the
verb, i.e. from adverb onset to sentence end. Finally, the eyes
would look straight for another 1000 ms.

Fillers Fillers included the same visual setting, but differed
in the structure and complexity of the linguistic stimulus and
the number of objects that fit the verb category. 30 fillers
were used, 25 of which had the opposite and 5 the same gaze
condition as the items (ratio of 1:1 for gaze and no-gaze). 19
fillers were followed by simple yes/no comprehension ques-
tions that were answered on a key-press. The questions were
related exclusively to the linguistic content. This was done in
order not to inspire extensive inspection of the visual scene,
but rather so that participants consider it only optionally and
freely in addition to the linguistic information.

Procedure An EyeLink II head-mounted eye-tracker (SR
Research, Ltd; Mississauga, Ont., Canada) was used to track

difficult to imagine" (7).
2Images used (for both experiments) were taken from an open

source database (www.openclipart.org) and pretested for naming.

both eyes at a sampling rate of 250 Hz.3 Participants were
instructed to listen carefully to the sentences while looking
freely at the presented objects. They would advance the ex-
periment on a button press after each trial. Other two buttons
were used to answer the comprehension questions. The exper-
imental session was preceded by a three-trial practice session.
The experiment lasted for approximately 15 minutes.

Results
First, in order to gain insight into the patterns of prediction and
visual attention we consider the proportion of fixations to the
presented objects throughout a trial. Second, we analyse new
inspections. Consecutive fixations to the same interest area
are considered as one inspection. Sincewe are interested in the
shift of attention inspired by a relevant stimulus, we analyse
new inspections, i.e. the first inspection to an interest area that
started after the linguistic or visual point of interest (as done in
e.g. Staudte & Crocker, 2011). We consider new inspections
from verb onset (showing linguistic predictions) and from
gaze cue onset (showing if the gaze cue influenced visual
attention). Finally, the ICA events are extracted from the pupil
jitter, summed over a duration of a relevant time-window and
statistically analysed. For the ICA analysis, we considered the
gaze time-window and the referent noun window.

Variable Coding and Data Analysis In their VWP exper-
iment, Demberg and Sayeed (2016) establish a time-window
taken 600 - 1200 ms from the onset of the critical word to
be an appropriate window size and timing for the analysis
of the ICA events. Since our critical words differ in length
across items, we correct this potential confound by taking a
time-window that starts from the middle of a word4, and con-

3This is the required setup for the subsequent extraction of the ICA
events from EyeWorks Workload Module software (version 3.12).

4The middle of the referent noun was calculated by taking the
audio duration of the whole word and using its half as the starting
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sider the following 600 ms. In addition, we analyse the gaze
window: 600 ms from the gaze cue onset.

The ICA events are extracted for both eyes separately. Since
there is no clear theoretical reason why differences should be
expected for the two eyes, we combine the two datasets by
summing the ICA events for corresponding time-windows and
conduct the analyses on the combined data.

All independent variables were contrast coded for the statis-
tical analysis. New inspections, a binary dependent variable
required the use of generalized mixed effects models of bino-
mial type. On the other hand, the analysis of the ICA, a count
variable, required the use of generalized mixed effects models
with Poisson distribution. All models included a maximal
converging random structure for both Item and Subject. The
analyses were conducted in R programming environment (R
Core Team, 2013) and using the lme4 package.

Proportion of Fixations Figure 2 illustrates the proportions
of fixations to all presented objects during a trial. The first
dashed line presents verb onset; second line - gaze onset (not
relevant for no-gaze); the third line - referent noun onset. It is
apparent that the restrictive verb (spill) shifts the focus of vi-
sual attention to one particular object (water). The less fitting
object (ice-cream) is considered only upon being referred to
linguistically (no-gaze), or earlier, at the point of the gaze cue
(referent gaze), confirming that the visual attention is not only
influenced by linguistic content but also by the gaze cue.

New Inspections We conducted a statistical analysis of new
inspections to an object (water, ice-cream, distractors) from
verb onset (to verb offset). In addition, we consider the new
inspections to both water and ice-cream, from gaze onset (to
adverb offset).

Considering the verb window, three identical models were
run for the inspections to the three relevant objects.5 Looks to
water: A main effect of Constraint (β = -0.361, SE = 0.124,
z = -2.904, p = 0.004) suggests that more new inspections to
water occurred upon hearing spill (vs. order). Looks to ice-
cream: No effect of Constraint (p = 0.406) suggests ice-cream
was looked at with no significant difference in the contexts
of both verbs. Looks to the distractors: A marginal effect
of Constraint (β = 0.153, SE = 0.081, z = 1.89, p = 0.059)
suggests that there were somewhat more new inspections to
the two distractors in the non-restrictive context of order.
Considering the gaze window, we analysed new inspections

to both water and ice-cream together as TargetInspections
and considered the effects of gaze on the looks to these two
objects.6 We find a main effect of Gaze (β = 0.427, SE =
0.141, z = 3.022, p = 0.003) confirming that the objects were
more readily looked at with the gaze cueing them compared to
the absence of gaze, i.e. that the gaze cue caused an immediate
shift in visual attention.

point (for each word individually).
5NewInspections ∼ Constraint + (1 + Constraint | Subject) + (1

+ Constraint | Item), family = "binomial"
6TargetInspections ∼ Gaze + (1 + Gaze | Subject) + (1 + Gaze |

Item), family = "binomial"

Figure 3: (Exp. 1) ICA events at the four time-windows of a
sentence presented for the no-gaze (above) and the ref. gaze
(below) conditions separately. (95% CI error bars)

The Index of Cognitive Activity The analysis of the gaze
time window did not yield significant results.

Considering the referent noun window7, we found a main
effect of Gaze (β = -0.116, SE = 0.051, z = -2.26, p = 0.024),
suggesting that the presence of the gaze cue led to the reduction
of cognitive load on the subsequent referent. Moreover, we
found a significant Constraint:Plausibility interaction (β = -
0.184, SE = 0.042, z = -4.37, p < 0.001), as well as a main
effect of Plausibility (β = 0.057, SE = 0.029, z = 2.01, p =
0.045). Further comparisons showamain effect of Plausibility
in the subset of spill (β = 0.152, SE = 0.035, z = 4.37, p
< 0.001), suggesting that spill water induced less cognitive
load than spill ice-cream. No such effect was found in the
non-constraining subset (p = 0.249), suggesting no difference
between order water and order ice-cream. Figure 3 illustrates
these findings (note: Adverb - gaze window; Object - referent
window). Finally, to rule out an effect of experiment part
found in the second study, experiment Half was included in
the fixed effects structure. We found noHalf:Gaze interaction,
but a main effect of experiment Half (β = -0.047, SE = 0.013,
z = -3.57, p < 0.001), since the second part of the experiment
induced less cognitive load.

Discussion
The results show that the gaze cue inspired fixations to the cued
object even when it was not predicted by the verb. Moreover,
the presence of gaze led to the reduction of cognitive load on
the referent noun in all conditions, while preserving the pref-
erence for the item that best matched the verb. Interestingly,

7ICA ∼ Constraint*Plausibility + Half*Gaze + (1 + Con-
straint*Plausibility | | Subject) + (1 + Constraint*Plausibility | | Item),
family = poisson (link = "log")
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the existence of the gaze cue did not in itself induce additional
cost on cognitive load.

Hence, we saw that the gaze cue influences predictability of
the linguistic referent and subsequently reduces the cognitive
load it induces. Interestingly, on the cue itself, no differences
in cognitive load were induced either by its mere existence, or
by whether it was cuing an object already anticipated based
on the linguistic context.

Experiment 2
The second study aimed at examining, firstly, whether the gaze
cue helps reduce cognitive load on the linguistic referent even
when they are both mismatching with the previous linguistic
context, and, secondly, whether the cue to such an object is in
itself more costly, since unexpected.

Method
Participants 36 students of Saarland University (23 female)
took part in the study andweremonetarily reimbursed for their
partaking.8 Their age ranged from 18 to 34 years (M = 23.36).
Two students were excluded from the analysis due to technical
issues, and two because their mother tongue was established
to be Luxemburgish. Thus, 32 participants, German native
speakers, were included in the analysis.

Materials and Design This experiment made use of 2x2
experimental design, combining Gaze (no-gaze/referent gaze)
and referent noun Fit (fitting/mismatching). Only restrictive
verbs were used (spill), combined with either a thematically
fitting (water) or mismatching referent noun (sausage). 20
items were created, half of which were anomalous9. Note that
the gaze cue was, again, always congruent (cuing the object
subsequently referred to linguistically). When the referent
noun did not fit the previous linguistic context, that made the
gaze cue to the object in question mismatching as well. The
same procedure was implemented as in Experiment 1.

Fillers The experiment included presenting 75 trials in total,
55 of which were fillers. 20% of the total number of sentences
were anomalous (10 items, 5 fillers). The gaze cuewas present
in 2/3 of all trials (10 items, 40 fillers). Only 16% of all trials
included an anomalous gaze cue, i.e. gaze that was cueing a
mismatching object (5 items, 3 fillers).

Results
The same measures and analyses were conducted as in Ex-
periment 1, except for the new inspections analysis where
only the gaze window was considered, due to the differing
experimental design of Experiment 2.

Proportion of Fixations Figure 4 shows the proportion of
fixations to all presented objects during a trial. As previously,
the first dashed line presents verb onset; the second line -

8None of the students were familiar with Experiment 1.
9In order to counterbalance the referent nouns the experiment was

run in two versions. Version a) included a verb fitting to one noun in
the item (spill water vs. sausage), while the verb in version b) fit the
other noun (grill sausage vs. water).

Figure 4: (Exp. 2) Proportion of fixations to presented objects
in the four experimental conditions.

gaze onset (not relevant for no-gaze conditions); and the third
line - referent noun onset. We see that the verb shifts the
focus of visual attention to one particular object (water). The
mismatching object (sausage) is considered only upon being
referred to linguistically (no gaze), or earlier, at the point of the
gaze cue (referent gaze). Thus, we observe the same pattern
as in Experiment 1, namely, of the gaze cue shifting visual
attention, on a par with the linguistic information.

New Inspections Considering the gaze window we com-
bined the new inspections to both water and sausage together
as TargetInspections and examined the effect of gaze on the
looks to these two objects.10 A main effect of Gaze (β =
0.381, SE = 0.191, z = 1.995, p = 0.046) confirmed that the
gaze was followed, as found in Experiment 1.

The Index of Cognitive Activity We first analysed the ref-
erent window11 and found a main effect of Fit (β = 0.223, SE
= 0.043, z = 5.21, p < 0.001), suggesting that the anomalous
spill sausage required more cognitive load than spill water.
Considering the effect of the gaze cue on the cost of the ref-
erent, a significant Gaze:Half interaction was observed (β =
-0.126, SE = 0.062, z = -2.05, p = 0.040). Further analysis
showed a marginal main effect of Gaze in the second half of
the experiment (β = -0.091, SE = 0.047, z = -1.93, p = 0.054),
suggesting that the referent gaze reduced the cognitive load on
the referent noun in both linguistic conditions. No such effect
was found in the first half of the experiment (p = 0.392).

Since gaze affected referent processing in each experimental
half differently, we considered cognitive load on the cue itself
(gaze window) for each half separately.12 The first part of the
experiment revealed a Gaze:Fit interaction (β = 0.179, SE =

10TargetInspections ∼ Gaze + (1 + Gaze | Subject) + (1 + Gaze |
Item), family = "binomial"

11ICA ∼ Gaze*Fit + Half*Gaze + (1 + Gaze*Fit + Half*Gaze | |
Subject) + (1 + Gaze*Fit | | Item), family = poisson (link = "log")

12ICA ∼ Gaze*Fit + (1 + Gaze*Fit | | Subject) + (1 + Fit | Item),
family = poisson (link = "log")
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Figure 5: (Exp.2) ICA events at the four time-windows of a
sentence in the first (above) and the second (below) half of the
experiment. (95% CI error bars)

0.084, z = 2.13, p = 0.033). In the second half, a main effect of
Gaze (β = 0.099, SE = 0.045, z = 2.20, p = 0.028) suggests that
the referent gaze induced higher cognitive load than the no-
gaze condition. The results are illustrated in Figure 5 (note:
Adverb - gaze window; Object - referent window).

Discussion
The eye-movements data showed evidence of gaze following
even when it was unpredicted, or worse, also mismatching.
Regarding the cost of processing the referent noun, initially,
the existence of gaze did not have an effect; but the cognitive
load induced by the mismatching cue itself was higher than
that induced by both fitting gaze and no gaze cue. However,
in the second half of the experiment, cognitive load on the
referent noun was marginally reduced due to the helpful gaze
cue; while the cue itself (to both fitting and mismatching
object) now induced higher cognitive load. This suggests that
participants gradually adapted to and started relying on the
surprising gaze cue (increasing load on the cue) and started
making use of its informativity (lowering load on the noun).

Conclusions
Referent gaze is actively considered in the process of predic-
tion making, shifting the visual attention to the cued object,
and leading to the reduction of cognitive load on its linguistic
referent. This holds even when the cue (and the correspond-
ing referent) is mismatching with the verb. Gaze perception
proved not to be costly unless mismatching with the verb.

Both studies included conditions with unpredicted but con-
gruent gaze cue (Exp.1: order water, order ice-cream; Exp.2:
spill sausage). Such a condition induced a higher processing
cost on the gaze cue in Exp. 2, but not in Exp. 1. We argue
that in Exp. 1 gaze is still processed naturally, as a gaze cue,
due to its overall fit, while in Exp. 2, due to the mismatch
with the verb, the cue became more salient, treated as a visual

pointer, regardless if cuing a fitting or mismatching object.
We interpret this as evidence against a spread of cognitive
load between gaze and linguistic reference.

In sum, the gaze cue is exploited to predict the upcoming
referent such that it can be processed with less effort. If
verb selectional features direct visual attention to a particular
object and the gaze cue (alternatively) introduces a different
object, this creates a shift in visual attention but, does not
negate the existing preference. Cognitive load is reduced as
an effect of the gaze cue, but only when the cue is established
as informative and reliable, and regardless of its contextual fit.
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Abstract 

Speakers sometimes modify their gestures during the process 
of production into adaptors such as hair touching or eye 
scratching. Such disguised adaptors are evidence that the 
speaker can monitor their gestures. In this study, we 
investigated when and how disguised adaptors are first 
produced by children. Sixty elementary school children 
participated in this study. There were ten from each school 
year (from 7 to 12 years of age). They were instructed to 
remember a cartoon and retell its story to their parents. The 
results showed that children did not produce disguised 
adaptors until the age of 8. The disguised adaptors 
accompany fluent speech until the children are 10 years old 
and accompany dysfluent speech until they reach 11 or 12 
years of age. These results suggest that children start to 
monitor their gestures when they are 9 or 10 years old. 
Cultural influences and cognitive changes were considered as 
factors to influence emergence of disguised adaptors.  

Keywords: co-speech gestures; disguised adaptors; 
elementary school children; speech dysfluency. 

Introduction 
Researchers have examined the development of gestures in 
children in terms of when the frequency or repertoire 
increases and how the relationship between a gesture and 
speech changes with age. The present study focused on 
spontaneous suppression of gesture production during 
speech. Analyzing when and how children try to not 
produce gestures would provide insight into when children 
become aware that their gestures are socially 
communicative. 
    The present study focuses on co-speech gestures 
(hereafter simply referred to as ‘gestures’) that 
spontaneously co-occur during speech and that have no 
standard of well-formedness, unlike sign language, but are 
created idiosyncratically on the fly (McNeill, 1992). A 
gesture typically has three phases: preparation, stroke, and 
retraction. In the preparation phase, the hand moves from a 
position of rest. The stroke phase is the central part of a 
gesture that conveys substantial information. The relevant 
meaning represented by this phase is usually expressed in 
the concurrent speech. Sometimes, a hold phase, where the 
hand is held in mid-air at the same position, occurs before 
and/or after the stroke phase. 
   As children prefer to use speech as a means of 
communication, the frequencies of gestures that appear 
around the first word and are used alone without speech, 
such as deictic gestures and symbolic gestures, decreases 
(Volterra & Iverson, 1995). In their place, gestures that co-
occur with meaningful words, called “co-speech gestures”, 
appear around the period. Goldin-Meadow & Butcher 

(2003) observed that gestures begin synchronizing with 
speech both semantically and temporally in the transitional 
phase to the two-word speech period, at about 18 months of 
age. Given that gestures are not often used solely but are co-
produced with speech, gestures and speech seem to form an 
integrated system during this period (Goldin-Meadow & 
Butcher, 2003).  
   Previous research has shown that speech and co-speech 
gesture develop hand-in-hand even after two-word period. 
Mayberry & Nicoladis (2000) observed that longitudinally 
bilingual children between 2- and 3-and-half years old 
produce more gestures when they speak either language that 
allows them produce a longer utterance, as measured by the 
mean number of morphemes (Mayberry & Nicoladis, 2000). 
They concluded that gestures are closely related to 
morphosyntax level. This conclusion is indirectly supported 
by Fujii’s (1999) study showing that the frequency of 
gestures does not correlate with vocabulary in the preschool 
period. McNeill (1992) observed that by the end of the 
preschool period, the frequency of gestures ascends to near 
adult levels. Once children start having formal education, 
they gradually develop the ability to create a coherent 
narrative by using language devices such as anaphora 
expressions, substitutions, ellipses and connectives 
(Wigglesworth, 1990). Research has shown that as children 
acquire spoken referential expressions for making coherent 
discourse, they also use gestures to mark introduced or 
maintained referents in the narrative (McNeill, 19992), and 
the number of gestures consistently increases during the 
elementary school period (Colletta et al., 2014; Sekine & 
Furuyama, 2010). Thus, these previous studies indicate that 
gesture and speech develop hand-in-hand across the 
development. However, it is not clear if children start 
monitoring their gestures or become aware of gestures as 
information resources that their listeners can make use of.  
   Studies on self-repair in speech have asserted that to 
correct one’s speech, the speaker has to monitor his or her 
speech process continuously, and thus, correction of speech 
errors is considered to reflect the speaker’s ability to 
monitor speech (Karmiloff-Smith, 1986). Based on this 
assumption, it seems that determining when children start to 
correct their gestures would provide insight into 
understanding when they start monitoring their gestures. 
However, unlike speech in which the message is delivered 
by aligning linearly linguistic elements that exist 
independently, a gesture conveys a meaning globally at 
once, and any decomposition into elements is dependent on 
the whole (McNeill, 1992). Because of the linearity in 
speech, it is easier to understand where speech errors 
occurred and how the speaker corrected them than errors in 
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gestures. In contrast, gestures are mostly continuous and 
some of their parameters change simultaneously. This 
makes it difficult to determine whether and where a speaker 
has corrected a gesture. Considering these differences in 
semiotic characteristics, this study focused on a specific 
type of gestural correction; i.e., disguised adaptors.  
     Adaptors are movements that help persons to satisfy 
personal needs, manage emotions, and adapt to their 
environment such as touching one’s hair or adjusting one’s 
glasses (Ekman & Friesen, 1969). At times it is observed 
that a speaker stops making a gesture in the middle of 
production and switches it to an adaptor to hide the gesture. 
Such movements may be able to say socially preferable in 
the situation. In this study, this kind of behavior is termed a 
disguised adaptor, which is defined as a gesture that is 
altered into an adaptor before or during the stroke phase of 
the gesture. 
     It can be observed in daily conversation that when a 
speaker is asked a question by the listener in the middle of 
her gesture and speech production, she stops producing the 
gesture, and puts her hand on her head or eye to scratch as if 
it feels itchy, like shown in Figure 1. Figure 1 indicates a 
scene in which the speaker on the right was retelling an 
episode of cartoon that she had watched to the listener on 
the left ((1) in Figure 1). When she was describing the 
figure of the drainpipe with a gesture, the listener started 
asking her whether one character was in the birdcage (2). At 
that moment, she stopped her gesture in the middle, and put 
her right hand on her head and scratched it until the listener 
finished the question (3).  

 

 
Speaker (on the right side):  
  [soko made (1)ikitakutte, sono mado no (2)tokoro nikou- 
    ‘(he) (1)wants to go there, and (2)at the place where the  
     window is , like this-’ 
Listener (on the left side):  
    [torikago (3)no  naka ni  haitteiruno?] 
     ‘is (he) (3)inside the cage?’ 

 
     Figure 1: Halt of a gesture by listener’s question. 

 
     Here, and in subsequent examples, the square brackets 
represent the start and end points of the motion of the 
speaker’s hands, boldface marks the stroke phrase of the 
gesture phrase, underline indicates a motionless hold phase, 
and double underline represents the duration in which a 
disguised adaptor, such as touching the body or clothes. ‘%’ 
indicates a smacking sound, ‘*’ represents self interruption, 
and ‘:’ in speech indicates an elongated phonation. The 
numbers used in figure, correspond to the numbers in the 
transcription, which in turn indicate the places where 

gestures occurred. In the transcription, the first chunk is the 
original Japanese speech and the second chunk is the 
English translation. 
     Similar behaviors to the one in Figure 1 can be observed 
in other situations, for example when one raises his hand to 
catch a taxi, but misses it, or in which one is waving to her 
friend, and then quickly becomes aware of mistaken 
identity. In these situations, they often switch the hand 
movements to self-contact behaviors such as scratching 
head or eyes as if it is meant to be. Interestingly, literature 
on Tourette’s syndrome, a chronic neurological disorder 
characterized by multiple involuntary movements and 
uncontrollable vocalizations called tics, has documented the 
correction of tic movements made by patients. Sottofattori 
and Nicolai (2007) observed that the patients can modify 
tics or odd movements into other movements like gestures 
in a natural conversation. For example, when a tic affects 
the right or left arm, the patient tries to move the forefinger 
straight with the tic as if it were a deictic gesture. All these 
cases suggest that when we are aware of mistake of hand 
movement or when we are interrupted in executing our hand 
movements, we often change the hand movement to a more 
socially acceptable movement such as scratching a body 
part or producing gestures. 
     In the light of development of gestures in children, it is 
important to examine whether typically developing children 
also are able to modify body movement into a more socially 
acceptable one. Because if children perform this kind of 
correction, it implies that they can monitor their gestures. If 
they already know that gestures can be seen as information 
resource by their listeners and they can detect errors in their 
gestures or speech, they may try to modify their gestures 
into more socially acceptable movement, such as scratching 
the neck. 
     Suppose that gesture and speech interacts in the 
production process (McNeill, 1992), and then gestural 
correction may affect or be affected by speech errors or 
dysfluencies. Thus, the relationship between disguised 
adaptors and speech errors should also be investigated. 
Karmiloff-Smith (1986) found that the percentage of speech 
repairs denoting sensitivity to the linguistic system, such as 
the determiner functions of articles, adjectives and 
possessives, increased during the elementary school period. 
Given these findings, it is predicated that the number of 
disguised adaptors also increases during this period as 
children acquire an ability to monitor their expressions. In 
addition, if disguised adaptors are due to difficulties in 
retrieving words, they would co-occur with filled pauses, 
unfilled pauses, or speech errors, rather than with intact 
linguistic elements, because previous studies have shown 
that adaptors tend to occur with speech dysfluencies while 
the speaker is retrieving words (Fujii, 1997; Pine, Bird, & 
Kirk, 2007). However, if a disguised adaptor does not co-
occur with speech dysfluencies, it might occur influenced by 
other factors such as cultural or cognitive factors. For 
instance, cognitive capacity or cultural pressure to produce 
or inhibit gestures may control the emergence of disguised 
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adaptors. Under this hypothesis, this study examined when 
disguised adaptors emerge during the elementary school 
period and how this emergence is related to speech. 

Method 

Participants  
Sixty elementary school children and their parents 
participated in this study. There were ten children from each 
grade, 1st to 6th grade. Half were boys. In this study, each 
grade is referred to by their mean age, 7- to 12-years-olds 
(7-year-olds, M=7;0, Range 6;9-7;4. 8-year-olds, M=7;11, 
range 7;9-8;10, 9-year-olds. M=9;4, R= 9;0-9;6, 10-year-
olds, M=10;0, R=9;7-10;5, 11-year-olds, M=11;4, R= 10;9-
11;11, 12-year-olds, M=12;0, R=11;5-12;10). All the 
participants were native monolingual Japanese speakers 
from middle-class families, and the children attended public 
or private elementary schools in Tokyo, Japan.  

Material and Apparatus  
Each child watched a seven-minute animated color cartoon 
of the Tweety and Sylvester series, titled ‘Canary Row’ 
(Warner Brothers, Inc.). This cartoon was displayed on a 
14-inch color computer monitor (Panasonic CF-F8). A mini-
DV camcorder (Sony HDR-HC9) was used to record the 
children’s gesture and speech. 

Procedure 
The experiments were conducted in a quiet room in the 
participant’s home or a local community center.  
Each child was instructed to remember the cartoon story 
shown on the computer monitor and retell it to his or her 
parent as a listener in as much detail as possible. The parent 
was allowed to respond to the child by nodding their head or 
by using back channels during the child’s narration. The 
whole session was recorded using the mini-DV camcorder 
on a tripod.  
 
Coding 
Speech data. All narratives were verbatim transcribed. From 
the transcriptions, the mean number of clauses was then 
calculated. A clause was loosely defined as a combination 
of a noun phrase and a verb phrase). The mean number of 
unfilled pauses, which was defined as periods of silence 
longer than 200 msec. (Beattie, 1983), filled pauses, such as 
‘unttoo’ (umm) or ‘eeetto’ (ehhh), and speech errors, 
including repetitions, replacements or false starts, were 
measured in order to ascertain the relationship between 
speech fluency and production of disguised adaptors. 
Gesture data. First, co-speech gestures were identified. 
Hand movements were classified as gestures only when they 
had an identifiable beginning and a clear end and were 
synchronized with speech. After identifying which 
movements were gestures, the total number of gestures was 
counted. Next, disguised adaptors were identified. We 
coded a hand movement as a disguised adaptor if two 
criteria were met; 1) A gesture was altered into adaptor 

before or during the stroke phase without any pause, and 2) 
the direction of the gesture suddenly changed when it is 
altered into adaptor. To analyze the temporal relationship 
between disguised adaptors and speech fluency, their 
combinations were categorized into the following six types: 
DA (disguised adaptor), FP (filled, pause), IS (intact speech 
that was completely articulated, such as Noun or Verb 
phrases), PR (the preparation phase of a gesture), SE 
(speech error), and UP (unfilled pause). The orders were as 
follows: 
 
1. PR → IS+DA 
After the preparation phase started, a disguised adaptor 
occurred with intact speech. 
2. PR → FP+DA 
After the preparation phase started, a disguised adaptor 
occurred with a filled pause. 
3. PR → UP+DA 
After the preparation phase started, a disguised adaptor 
occurred with an unfilled pause. 
4. PR → FS+DA 
After the preparation phase started, a disguised adaptor 
occurred with a filled pause. 
5. PR → FS (FS)	 →IS+DA 
After the preparation phase started, a false start or a number 
of false starts occurred. Then, a disguised adaptor occurred 
with intact speech. 
6. PR→ FP and/or FS → FP+DA 
After the preparation phase started, a false start and/or filled 
pause occurred. Then, a disguised adaptor occurred with a 
filled pause. 

Results 
Number of gestures, clauses, pauses, and speech errors  
To calculate the frequency of gestures and the proportion of 
unfilled pauses for each age, the total number of gestures 
and the total amount of time spent for unfilled pauses were 
divided by the total speaking time. To calculate the 
frequency of filled pauses and speech errors, the total 
number of filled pauses and speech errors were each divided 
by the mean number of clauses (Table 1). After performing 
an angular transformation on the proportion of unfilled 
pauses in the speaking time, an ANOVA was conducted on 
each index (Table 1). A main effect of age group was found 
for the gesture frequency, F (5, 54) = 3.86, p= .005, the 
proportion of unfilled pauses in the speaking time, F(5, 54) 
= 2.44 p= .046, and the proportion of speech errors in 
clauses, F(5, 54) = 2.49, p= .042. A post hoc comparison 
(Tukey, p < .05) showed that 12-year-olds produced 
gestures more frequently than 7-, 9- and 10-year-olds did 
and that the proportion of unfilled pauses during the 
speaking time was significantly greater for 7-year-olds 
(47%) than for 12-year-olds (33%). There was no significant 
age-group difference in the total number of clauses or 
frequency of speech errors. These results indicate that the 
proportion of unfilled pauses gradually decreases during the 
elementary school period, whereas the frequencies of 
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gestures and speech errors increase in the late elementary 
school period.  

 
 

Table 1: Number of Clauses, Gestures, Pauses, and Speech Errors. 
Age 7 8 9 10 11 12 

-Frequency of gestures  
  per second 0.12  (0.06) 0.14 (0.09) 0.10 (0.09) 0.09 (0.06) 0.19 (0.13) 0.27 (0.17) 

-Total number of clauses  62.4 (29.93) 69 (20.42) 77.8 (24.68) 77.3 (15.58) 91.9 (20.90) 78.6 (19.47) 
-Proportion of unfilled      
 pauses in speaking time 

0.47 (0.19) 0.40 (0.11) 0.38 (0.08) 0.34 (0.06) 0.36 (0.08) 0.33 (0.08) 

-Filled pauses per clause 0.38 (0.25) 0.29 (0.17) 0.26 (0.07) 0.39 (0.31) 0.31 (0.18) 0.25 (0.10) 
-Speech errors per clause 0.26 (0.15) 0.20 (0.10) 0.21 (0.12) 0.38 (0.19) 0.28 (0.11) 0.36 (0.20) 

Number of children who produced a disguised adaptor 
In total, 22 disguised adaptors were observed. The absolute 
number of disguised adaptors produced by each age group 
was three times for 9-year-olds, three times for 10-year-
olds, twelve times for 11-year-olds, and four times for 12-
year-olds. Three 9-year-olds, three 10-year-olds, five 11-
year-olds, and two 12-year-olds produced a disguised 
adaptor at least once during their narrations. There were no 
7- or 8-year-olds who produced disguised adaptors. A 
Fisher's exact test was used to examine the relationship 
between the age of the group and the number of children 
who produced disguised adaptors. There was a significant 
association between them (Fisher’s exact test, p = .03). A 
residual analysis was conducted to find out where the 
significant differences among age groups were. The analysis 
indicated that 11-year-olds produced disguised adaptors 
more often than the other age groups did.  
 

 
ntto: saisho: sono neko ga:    tweety  o:   sagashi  ni:  it-te: 
[de   mi-ta    mi-ta     nekotan] ttsut-te:  sorede [(1)%  
(2)sono     ] (2.07) (3)sagashi ni    it-ta     tokoro wa:    inu:  
toka neko  wa  dame   tte  iu  omise de 
 
‘well, at first, the cat went to look for Tweety and (he) said  
“(he) saw, saw the pussy cat,” then, well the place where 
(he) went to look for the cat was a shop where dogs and cats 
were not allowed’ 
 

Figure 2: A 11-year-old girl telling a story. 
 
   Figure 2 shows a typical case of a disguised adaptor in 
which an 11-year-old girl described the first of eight scenes, 
in which Sylvester the Cat goes into a building to catch 
Tweety Bird who lives there. Regarding the scene where 
Tweety said that he saw the cat, “mita mita neko tan ttutte 
sorede”, the girl raises her right arm and puts her fingers 
into an O-shape ((1) in Figure 2). Given that she uses the 
right side of the space and a hand shape as if it is holding an 
object while talking about where Sylvester went to find 

Tweety, the right hand movement seems to be part of the 
preparation phase to depict the building that Tweety is in.   
   However, while saying ‘sono’, which functions as a filled 
pause and also means an article “the” in English, she 
stopped production of the gesture’s stroke and modified it 
into a disguised adaptor of rubbing her right eye with her 
right hand ((2) in Figure 2). After that, an unfilled pause, 
which lasted about 2 seconds, occurred until the next word 
started. During this pause, she retracted the disguised 
adaptor and described in speech the place where the cat 
went to find the bird. This case can be interpreted as being 
that she first tried to depict the building that the cat goes 
into by using both speech and gestures. However, because 
she could not remember the proper name for it, she 
abandoned the gesture in the middle of the production and 
modified it into a disguised adaptor. 
 
Temporal relationship between speech and disguised 
adaptor 
Each disguised adaptor could be categorized into one of six 
types (Table 2). The most frequent type was the co-
occurrence of a disguised adaptor and intact speech (Type 
1), followed by a combination of a disguised adaptor and 
intact speech after a false start(s) (Type 5) and 
synchronization of a disguised adaptor and a filled pause 
after a speech error and/or filled pause (Type 6).  
 
Table 2: Number of cases categorised into temporal relationships 

Types 1) Absolute number (%) 
1. PREP → Intact speech + DA   7 (32) 
2. PREP → Filled pause + DA  3 (14) 
3. PREP → Unfilled pause + DA 2 (9) 
4. PREP → Speech error + DA                1 (5) 
5. PREP → Speech error (→Speech  
   error) → Intact speech + DA 

5 (23) 

6. PREP → Filled pause and/or   
Speech error → Filled pause + DA 

 4 (18) 

  Total  22 (100) 
1) Abbreviations and notations: DA (disguised adaptor), PREP 
(preparation phase), →  (order of temporal direction), + 
(synchronization of elements) 
 
   To see whether disguised adaptors were related to word 
searches, the six types were further classified into two 
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groups in terms of whether the disguised adaptor occurred 
with a speech error, (un)filled pause, or intact speech 
element. The former group is termed the dysfluent speech 
combination and includes Types 2, 3, 4, and 6, whereas the 
latter group is named the fluent speech combination and 
includes Types 1 and 5. The number of children who 
produced each combination was counted for each age group.  
Three 9-year-olds, three 10-year-olds, three 11-years-olds, 
and one 12-year-old produced fluent speech combinations. 
Five 11-year-olds and one 12-year-old produced dysfluent 
speech combinations. No children aged 9 or 10 produced 
dysfluent speech combinations. A Fisher's exact test was 
used to examine the relationship between age group and 
each combination. A significant association was found only 
in the dysfluent speech combination (Fisher’s exact test, p = 
.002). In contrast to the fluent speech combinations 
produced by 9- to 12-years-olds, dysfluent speech 
combinations were not produced by 9- and 10-year-olds, 
and all of 11-year-olds produced dysfluent speech 
combinations. 
   Figure 3 show a 9-year-old boy who produced a fluent 
speech combination. The figure shows him explaining a 
scene in which Sylvester got inside Tweety’s apartment, but 
was struck by the bird’s owner with an umbrella. While he 
was talking about the umbrella, he raised his right hand and 
shaped his hand as if it were holding an umbrella ((1) and 
(2) in Figure 3). However, without finishing the preparation 
as a gesture, he moved his hand to his eye to scratch it as a 
disguised adaptor. Unlike the girl in Figure 1, who produced 
a dysfluent speech combination, his speech did not contain 
obvious speech errors or pauses. Thus, his disguised adaptor 
may have been caused by other factors besides a word 
search (this point is taken up in the discussion section). 

 

 
sorede ouchi   no    naka   ni     hait-ta     n dakedo sono 
kainu[shi no    obaachan ga] dete[(1)ki-te (2)kasa     de: (3)# 
(4)nagurare-te: tsugi wa  are ]  
 
‘and (he) got inside the house, the grandma, the owner 
comes out and (he) is struck with an umbrella, and the next 
is, umm’ 
 

Figure 3: A 9-year-old boy telling a story. 

Discussion 
The present study investigated disguised adaptors as an 
index of a child’s ability to monitor his or her own gestures 
by focusing on the relationship between disguised adaptors 
and speech flow. The results showed that the gesture 
frequency and the proportion of speech errors increase with 
age, especially in the late elementary school period, whereas 

the proportion of unfilled pauses decreases with age. The 
increase in speech errors suggests that children tend to 
dedicate much effort to planning coherent narratives 
especially from the age of 10. Considering pauses may 
reflect cognitive processes underlying speech planning 
including word search, syntax, conceptual and articulation 
planning (Schönpflug, 2008), it is considered that children 
gradually acquire the ability to plan speech quickly during 
their elementary school years.  
   In this study, disguised adaptors were produced by 
children who were more than 9-years-old. None of the 7- 
and 8-year-olds used disguised adaptors at all. This result 
indicates that children become aware of their gestures as an 
informational resource for listeners from the age of 9 
onwards. In other words, they acquire the ability to monitor 
their gestures from the age of 9.  
   The analysis of the temporal relationship between a 
disguised adaptor and speech fluency suggests that 
disguised adaptors are caused by not only speech dysfluency 
but also other factors. Children from 9- to 12-years-old 
produce fluent speech combinations, but only the higher 
graders produced dysfluent speech combinations. This 
implies that disguised adaptors of 11- and 12-year-olds are 
partly caused by the act of searching for an adequate word 
or planning a sentence. In these cases, children may notice 
that they have to stop speaking to retrieve a word or re-plan 
a sentence, and accordingly they modify their gestures to a 
disguised adaptor in the middle of gesture production. 
Based on these results, I will discuss why disguised adaptors 
appear around the age of 9 years in terms of cultural and 
cognitive factors   
 
Cultural influence   
Previous studies on the gestures of elementary-school-age 
children suggest a cultural influence. Some studies have 
reported that the frequency of gestures consistently 
increases during the elementary school years. These trends 
appear across cultures, although most of the studies were on 
children in Indo-European language cultures (e.g., Colletta 
et al., 2014). However, this study on Japanese children 
showed that the frequency of gestures decreases temporarily 
in the middle grades compared with in the lower grades or 
higher grades. This difference may come from their 
educational environment. In Japan, sometimes pupils are 
implicitly and explicitly warned by their teacher to avoid 
fidgeting or moving their hands when the teacher or another 
child is speaking or sometimes even when they themselves 
speak. In fact, speakers in Asia sometimes learn not to 
gesticulate (Neu, 1990). These findings suggest that 
Japanese children as young as 9-years-old attempt to 
embody the rule about hand movement during 
communication. This may be related to why disguised 
adaptors produced by 9- and 10-year-olds do not 
synchronize dysfluences. Because they seem to start noting 
that their hand movements can be read by someone as 
symbols, even when they do not have a problem with word 
search, they may try to suppress their hand movements. 
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Cognitive change 
As a factor influencing the emergence of disguised adaptors 
from the age of 9 or 10, one may consider cognitive changes 
occurring during this period. Piaget & Inhelder (1969) 
suggested that the period is considered to be the concrete 
operational stage at which abstract logical thought is first 
applied to the physical world. Karmiloff-Smith (1986), who 
investigated the development of metalinguisitc awareness in 
4- and 12-year-olds, found that many children from 9 years 
onwards explicitly have metalinguistic awareness. Thus, 
children in the middle grades of elementary school seem to 
develop metacognitive knowledge to notice that there are 
underlying rules or mechanisms in the physical world and 
human communication. At same time, they may also 
become aware that gestures are informational resources for 
the listener. Because children in this period are sensitive to 
such rules, they start monitoring their expressions to check 
whether the message in the expression is adequate given the 
communicative context. This awareness seems to result in 
the emergence of disguised adaptors and an increase of 
speech errors in children in the later years of elementary 
school. Ito and Tahara (1985) found that 10-year-olds had 
poorer usage of the postpositional particle WA in 
comparison with other age groups. The speculated that 
because children in this period are just beginning to notice 
and attempt to grasp the multifunctional nature of language 
devices, their performance seems to decline temporarily. 
This suggests that the ages of 9 and 10 can be seen as the 
transitional period in which Japanese children begin 
noticing the communicative function of gesture and 
linguistic system, and monitoring them.  
   Examining when children suppress gestures contributes to 
an understanding of children’s gestural development. Just as 
certain self repairs in speech that are spontaneously made by 
children during narratives reflects metalinguisitc awareness 
that they have acquired (Karmiloff-Smith, 1986), the 
emergence of disguised adaptors implies that children have 
an awareness of gestures. This study showed that although 
the production of gestures may be mostly an unconscious 
process (Goldin-Meadow & Butcher, 2003), the speaker can 
notice that she is producing a gesture after she raises her 
hand for a gesture, and that this awareness begins at about 9 
years of age. Future task is exmaning whther disguised 
adaptors are rubost phenomonen by collectiong more data 
from other age groups and from other cultuore groups. 
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Abstract

Cognitive agents are continuously faced with new problems.
To facilitate adaptation, emerging theories of neural reuse pro-
pose that evolution might often favor re-purposing existing
brain structures for new functions. This paper presents a novel
approach to the study of neural reuse based on the evolution
of simulated agents in an object-categorization task. We arti-
ficially evolve populations of dynamic neural networks to per-
form two variants of a categorization task that alternate over
evolutionary time. We find that populations become increas-
ingly adaptive over repeated exposures to the tasks. Analysis
of evolved networks reveals two types of equally-fit solutions:
one that is specialized to a given task variant and does not adapt
to changes easily; and another that is more general, in that it
can adapt to the other task with minimal change to its structure.
Interestingly, we find that populations exposed to alternating
tasks spontaneously locate the latter type of structures.

Keywords: neural networks; minimally-cognitive behaviors;
neural reuse; artificial evolution; evolvability

Introduction
A central goal of cognition is adaptation. Cognitive agents
are continuously faced with new problems and it is in their
best interest to reuse pre-existing solutions from prior prob-
lems wherever possible. Many lines of research in cogni-
tive science are motivated by this broad notion of adapta-
tion. An emerging class of theories suggest neural reuse
is a fundamental organizing principle of adaptation in the
brain (Anderson, 2007; Gallese, 2008; Dehaene, 2005; Hur-
ley, 2008). According to these theories, neural circuits estab-
lished for one purpose are often put to different use without
losing entirely their original functions. Different versions of
this theory have been proposed, some that operate over the de-
velopmental timescale (Dehaene, 2005) and others over evo-
lutionary timescales (Anderson, 2007). These theories are
supported by a wealth of empirical evidence (see Anderson,
2010, for more details). However, a grounded account of how
reuse might occur remains poorly understood. Computational
models in this area have tended to focus on disembodied cog-
nitive architectures (Braylan, Hollenbeck, Meyerson, & Mi-
ikkulainen, 2016), largely detached from the increasingly ac-
cepted viewpoint that cognition is distributed over a dynami-
cally coupled brain-body-environment system (Chiel & Beer,
1997).

The work presented here takes a different approach to
studying adaptation and neural reuse over the evolutionary
timescale. We study adaptation in a computational model of
dynamic embodied agents evolved to perform two variants

of a visual discrimination task. Specifically, we artificially
evolve populations of dynamic neural networks to perform
two closely-related variants of a visual discrimination task
that alternate over evolutionary time. To the extent that adapt-
ability is achieved, we should observe populations adapting
quicker to changes in the task requirement over the course of
an evolutionary run. The degree to which neural reuse oc-
curs will be evident in the evolved neural structures, which
are readily analyzable after evolution.

Our approach extends beyond the scope of other work in
two important ways. First, studying reuse in a deliberately
simple computational model gives us a tractable and fully
transparent system which can be analyzed to yield a grounded
account of how adaptability and neural reuse play out in
an embodied and situated context. Secondly, unlike other
computational approaches which employ evolutionary frame-
works specifically designed to facilitate neural reuse (Stanley
& Miikulainen, 2002), we use a standard genetic algorithm,
thus minimizing assumptions about the form of neural reuse
by seeing how it might occur spontaneously as a result of im-
plicit pressures imposed by changing task requirements.

In this paper, we aim to show adaption via neural reuse
over the evolutionary timescale in an idealized computational
model of dynamic, embodied agents performing two vari-
ants of a previously studied visual discrimination task (Beer,
1996, 2003). Insofar as model-agents exhibit hallmarks of
cognition, this is of interest in and of itself. Additionally, in-
sight gained in this idealized computational setting will pro-
vide a proof of principle for how reuse might occur in natu-
ralistic (embodied/situated) settings, which will help inform
the conceptual and analytical tools used to study this phe-
nomenon in living systems.

Methods
Agent, Environment, and Task
In previous work (Beer, 1996, 2003), model agents were
evolved that could “visually” discriminate between objects
of different shapes, catching some while avoiding others. All
details of the agent, environment, and task have been adapted
from these previous studies.

The agent lives on the floor of a 275 x 400 rectangle (Fig-
ure 1A). It has a circular body with a diameter of 30 and an
“eye” which consists of 7 vision rays evenly distributed over
an angle of π/6. These rays extend out from the agents body
with a maximum range of 220. There are two kinds of objects
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A B

Figure 1: Agent and environment, adapted from (Beer, 1996).
[A] Agent moves horizontally while an object falls towards
it from above. Object can be one of two shapes: circle or
line segment. Agent’s sensory apparatus consists of an array
of seven distance sensors (dashed lines). [B] Neural archi-
tecture. Distance sensors (black) project to a layer of fully
interconnected interneurons (gray, recurrent connections not
shown), which in turn project to the two motor neurons (light
gray).

in the world: circles (with a radius of 15) and horizontal line
segments (of length 30). These objects fall from a height of
275 at some initial horizontal offset with respect to the agent.
Objects fall with a constant vertical velocity of -3 and no hor-
izontal motion. If an object intersects a ray within this range,
an external input is fed to a corresponding sensory neuron.
The value of the input is inversely proportional to the dis-
tance at which the intersection occurs, normalized from 0 to
10.

As depicted in Figure 1B, the agent’s nervous system is a
3-layer continuous time recurrent neural network (CTRNN)
with the following state equation (Beer, 1996):

τi
dyi

dt
=−yi +

N

∑
j=1

w jiσ(y j +θ j)+ Ii (1)

where y is the state of each neuron, τ is its time constant,
w ji is the strength of the connection from the jth to the ith

neuron, θ is a bias term, σ(x) = 1/(1+ e−x) is the standard
logistic activation function, and I represents an external in-
put (e.g., from a sensor). The top layer consists of 7 sensory
neurons which are stimulated by the agent’s vision rays as
described above. These project down to a middle layer of
5 fully interconnected neurons, which in turn feed into two
motor neurons. The difference in output between the motor
neurons results in an instantaneous horizontal velocity which
moves the agent in one direction or the other. The network is
bilaterally symmetric in terms of connection weights, gains
and biases, with the additional stipulations that all sensory
neurons shared the same gain and biases. This makes for a
total of 47 parameters. States were initialized to 0 and cir-
cuits were integrated using the forward Euler method with an
integration step size of 0.1.

The task of the agent is to visually discriminate between
objects of different shapes. These experiments were designed

to produce evolved examples of categorical perception (Beer,
2003). For the purpose of our study, there are two variants
of the object discrimination task. In Task A, agents must dis-
tinguish between circles and line objects by reliably moving
towards the former and away from the latter. In Task B, the
agents must do the opposite: move towards line objects and
avoid circles. The tasks were chosen because of how closely
related they are to one another.

Evolutionary Swapping
A real-valued genetic algorithm was used to evolve CTRNN
parameters: connection weights, biases, time constants, and
gain. Agents were encoded as 47-dimensional vectors of
real numbers varying from [-1, 1]. Each vector element
linearly mapped to a parameter of the CTRNN: interneu-
ron and motorneuron biases ∈ [−5,5], sensory neuron biases
∈ [−4,−2], time-constants ranged ∈ [1,2], and connection
weights ∈ [−5,5]. Parents were selected with a rank based
mechanism, with an enforced elitist fraction of 0.04. Off-
spring were generated from uniform crossover of two parents
(probability 0.5). A Gaussian distributed mutation vector was
applied to each parent (µ = 0, σ2 = 0.01).

Fitness was calculated across 24 trials with objects dropped
at horizontal offsets uniformly distributed over the range of
+/-50. The performance measure to be maximized was:
∑

24
i=1 pi/24, where pi = 1−|di| for the objects that need to be

caught and pi = |di| for the objects that need to be avoided,
and di is the horizontal distance between the centers of the
object and the agent when their vertical separation goes to
zero on the ith trial. The distance di is clipped to a maximum
value of 45 and normalized to run between 0 and 1.

The two tasks have inverted fitness rewards. In Task A,
agents are required to catch circles and avoid line segments;
in Task B agents are required to catch line segments and avoid
circles. Therefore, high fitness with respect to one guarantees
proportionately low fitness on the other.

We performed evolutionary runs under changing condi-
tions. In this case, a population was initially evolved for a
given task variant until the best agent reached a fitness thresh-
old of 95%. Once the fitness threshold was reached, the task
was changed to the opposite task. Populations were continu-
ously evolved in this alternating manner for 2500 generations.
In addition to these, runs were performed for Task A and Task
B in isolation under the same evolutionary conditions.

Results
The following sections report results obtained from 40 evolu-
tionary swapping runs. We focus first on understanding one
exemplary evolutionary run where adaptation occurs via neu-
ral reuse. That is, we show that over the course of an evo-
lutionary run the population locates a general-purpose neural
structure that enables it to quickly respond to changing task
requirements. We then analyze this increase in adaptability in
terms of population dynamics in parameter space and reuse
of neural structure in the agents. In the last section, we look
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at how well these findings generalize to the full ensemble of
evolutionary runs.

Increased adaptation over time
As most work on evolving minimally cognitive behaviors fo-
cuses on one task, we set out to test whether evidence for
adaptation could be observed in populations under changing
conditions. That is, does learning one task help a population
adapt to new tasks over time?

Figure 2 depicts the fitness trajectory of the best agent in
the population in each generation for one of the evolution-
ary runs. Altogether, this population achieved a total of 98
swaps in 2500 generations. The first 4 are labeled for the
sake of discussion; A1 indicates the first time the popula-
tion achieves fitness threshold for Task A, B1 indicates the
first time population reaches threshold for Task B, etc. This
trajectory shows evidence of adaptation. As can be seen,
the population starts off close to random behavior (0.5) and
rapidly improves performance at the first task Task A: circle-
catching, line-avoidance). As soon as the best individual in
the population surpasses the established fitness threshold, the
task is swapped (A1), at which point fitness of the popula-
tion suddenly drops. Recall that fitness measures of each task
are inversions of one another, so we should expect a pop-
ulation with high fitness with respect to one task to have a
sudden drop in fitness when tasks are swapped. The popu-
lation quickly begins to make improvements in performance
at the new task (task B: circle-avoidance, line-catching). As
soon as the threshold is met for this task (B1), the task is
swapped back to Task A, and the fitness drops again. Inter-
estingly enough, the fitness does not drop anywhere as low
as what we would expect from an agent that performs the op-
posite behavior, or even a random behavior. Thereafter, the
population evolved to very quickly re-adapt to the new task
after each new swap (Figure 2B).

The fitness trajectory of this evolutionary run shows evi-
dence of adaptation. The trajectory is characterized by pe-
riods of ascent leading to a peak and sudden drop offs that
occur due to task swaps. The time-to-adapt corresponds to
the number of generations taken to reach the fitness thresh-
old for the new task after a swap. In this study, we consider
adaptability as the extent to which populations improve their
time-to-adapt to changes in the fitness landscape over time.
Therefore, a population shows evidence of adaptability when
the time-to-adapt decreases over the course of an evolutionary
run. In this example, we observe that the first time the popu-
lation evolves for Task A and Task B it took around 500 gen-
erations each. After that, the time-to-adapt dropped sharply
to between 1 and 30 generations. In other words, the pop-
ulation improved substantially its time-to-adapt by the third
task swap, and maintained this ability for the duration of the
evolutionary run.

Spontaneous meta-fitness selection
How did such a dramatic increase in adaptation efficiency oc-
cur? We hypothesize that the population increases its adap-

A

B

A1 B1

B1
A2
B2

Figure 2: Increased adaptation over time in an evolutionary
run. [A] Fitness trajectory of the best individual in the popula-
tion over time. Dashed vertical lines mark task swaps. Black-
dotted horizontal line represents the 95% fitness threshold.
The first 4 task swaps are labeled A1, B1, A2 and B2 respec-
tively. Panel [B] shows the inset in panel [A].

tation efficiency by locating a region of meta-fitness, which
we define as a region in parameter space where individuals
with high fitness on both tasks exist in close proximity to one
another. In other words, the proposal is that adaptability over
evolutionary timescales involves a spontaneous selection for
regions of parameter space that support multiple tasks over
regions of parameter space that are specialized for only one
of the tasks. In order to test this hypothesis, a principal com-
ponent analysis (PCA) was performed on the 47-dimensional
set of all genotypes in populations at points A1, B1, A2 and
B2. Figure 3 shows these populations in a reduced 2D space,
where the first dimension captures 73.1% of the overall vari-
ance and the second captures 1.7%.

The movement of the population in parameter space dur-
ing evolution shows evidence of meta-fitness selection. Fig-
ure 3 shows the structure of the evolutionary dynamics over
the course of the first four task swaps. The population starts
off at random in parameter space and they find a region that
is adapted to Task A for the first time (A1). The task swaps to
Task B, and the population moves from A1 to B1, where they
find a region that is adapted to Task B, also for the first time.
When Task A is presented once again, the population finds
a region of parameter space that is relatively nearby (A2).
The same occurs when the task swaps back to B (B2). The
number of generations to adapt to each task, therefore, corre-
sponds to the relative distances that the population moved in
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Figure 3: Spontaneous meta-fitness selection. [A] Projection
of populations at A1, B1, A2 and B2 in reduced 2D space ob-
tained through PCA. [B] Fitness distributions of populations
seeded around the best individual at A1 (blue) and the best
individual at A2 (green). Populations were obtained by ap-
plying Gaussian perturbations within the range of [-0.2, 0.2]
to the seeded values in each dimension.

parameter space. This suggests that the fitness landscape con-
tained two qualitatively different kinds of adaptive regions.
Although individuals in populations A1 and A2 were both
equally adapted to Task A, individuals in A1 were isolated in
parameter space, while individuals in A2 were in close prox-
imity to regions of high fitness for the opposite task. What is
interesting about this result is that we did not include direct
selection pressure towards these regions; instead populations
were guided towards them spontaneously over repeated expo-
sure to different tasks.

What is the fundamental difference between these two
types of adaptive regions? To address this question we sam-
pled random populations in each region and evaluated their
fitness distributions; results are presented in Figure 3B. Re-
call that each agent achieved equally high fitness with respect
to Task A, but the best individual at A2 was found to be lo-
cated in a region of meta-fitness whereas the best individual
at A1 was not. As expected, both populations contain equally
high-performing circuits. However, the fitness distribution of
agents sampled around A1 (blue) is highly skewed towards
high fitness values, as would be expected for a typical fitness
peak. In contrast, the fitness distribution of agents sampled
around A2 (green) is significantly flatter, indicating that it
encompasses a greater diversity of phenotypes. This result
reveals a crucial difference between meta-fitness regions and
otherwise equally-fit fitness peaks.

A2

B2

Figure 4: Similar behavioral strategy and neural structure for
opposite tasks. Behavior (left) and structure (right) of best
individuals from populations A2 and B2. Left panels: Hori-
zontal position of agents over time as object falls for all 24
trials (circle trials purple, line trials cyan). Right panels:
Neurons represented by disks (opacity depicts bias parame-
ter, where a large negative bias is white and a large positive
bias is black) and connections represented by lines (excitatory
grey, inhibitory black; thickness proportional to strength).

Neural reuse in meta-fitness regions
Meta-fitness regions in parameter space have interesting im-
plications for neural reuse. Due to linearity in the genotype-
phenotype map, close proximity of genomes in parameter
space translates to a high degree of similarity between neural
structures in corresponding phenotypes. As a result, we ob-
serve that best-agents from the same meta-fitness region share
the same essential structure despite being evolved to perform
different tasks. This is illustrated in Figure 4, which presents
graphic depictions of the neural structures of the best agents
taken from populations A2 and B2. The two structures are
nearly identical, despite the fact that they ultimately support
different task variants. In other words, structure evolved to
perform Task A in A2 was largely reused in the subsequent
evolution for Task B.

In addition to neural reuse, we observe that these two in-
dividuals utilize the same behavioral strategy for performing
each task (Figure 4). In each case, the agent scans back and
forth over the mid-line several times before either centering
or heading away. Although not shown, this strategy is quali-
tatively different from the behaviors of best agents performed
in isolated runs.

Ensemble Analysis
How reliably does evolutionary swapping result in increased
adaptation of populations? Of the 40 runs, 17 never reached
the fitness threshold in the allotted 2500 generations. We
consider these to be null cases. Of the remaining 23 runs, 9
showed evidence of increased adaptation over time. It is un-
clear whether or not the runs that did not demonstrate signs
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Euclidean Distance

Figure 5: Increased adaptability via meta-fitness. Distances
between best-genomes from swapping runs (black) versus
distances between best-genomes produced by successful iso-
lated runs (grey).

of increased adaptability would have had they been allowed
to run past the arbitrary 2500 generation cutoff. Regardless,
the remainder of the section is concerned with the 9 runs that
showed evidence of increased adaptability.

In the case study, increased adaptation was due to the
evolving population locating an area of meta-fitness. Is this
also the case for the rest of the populations that showed in-
creased adaptability? We computed the set of Euclidean dis-
tances separating best genomes in successive epochs for all
swapping runs and compared this with the set of distances
separating best genomes coming from successful isolated
runs. As depicted in Figure 5, best-agents produced in the
same swapping run are usually quite closer to one another
in parameter space than random opposite-task best-genomes
sampled from isolated runs. This suggests that in general,
adaptability is achieved via meta-fitness regions.

Given that populations in general became more adaptive by
locating meta-fitness regions, it is of interest to ask whether
each run located the same region or different meta-fitness re-
gions were located by different runs. Figure 6 displays distri-
butions of within-run distances (Euclidean distances separat-
ing the best agents of all target populations occurring within
given runs) and inter-run distances (Euclidean distances sepa-
rating best agents of all target populations occurring in differ-
ent runs). If all swapping runs located the same meta-fitness
region we would expect these two distributions to be equiv-
alent. That within-run distances are substantially less than
inter-run distances suggests that different swapping runs in-
deed located different meta-fitness regions.

As we observed in the case study, a region of meta-fitness
in parameter space corresponds to a general-purpose neural
structure. In the case study, we also observed that best-agents
from the same meta-fitness region can perform opposite task
variants with the same behavioral strategy. Figure 7 illustrates
the generalization of these ideas to multiple meta-fitness re-
gions. It depicts three pairs of best-agents from separate evo-
lutionary runs. In each pair both agents have nearly-identical
neural structures and qualitatively similar behavioral strate-
gies despite performing opposite tasks. If we contrast pair

Euclidean Distance

Figure 6: Different runs locate different meta-fitness regions.
Distances between best-genomes of the same evolutionary
run (black) versus distances between best-genomes of differ-
ent evolutionary runs (grey).

A with pair B we see that they each perform the tasks with
the same qualitative behavioral strategy, despite the fact that
they have different neural structures. This demonstrates how
a given behavioral strategy can be supported by qualitatively
different neural structures. In contrast, pair C has a qualita-
tively different behavioral strategy from both A and B.

Discussion
We set out to test whether evidence for adaptation and neural
reuse could be observed in populations of embodied agents
required to perform two variants of an object discrimination
task that changed over evolutionary time. Evidence of adapta-
tion was indeed observed: over the course of an evolutionary
run populations gained the ability to more quickly adapt to
changes in task requirement. In general, populations achieved
this increase in evolutionary efficiency by evolving general-
purpose neural structures, which could be reused to support
either task variant with minimal structural modifications. Be-
low we discuss these results in light of continued work in
neural reuse and evolvability.

Despite a growing body of empirical and theoretical sup-
port for neural reuse (Anderson, 2010), a grounded under-
standing of how neural reuse works in organisms remains
elusive. There have been some computational efforts to this
effect (Hurley, 2008; Anderson, 2010), but the present work
contributes in two important ways. First, whereas other mod-
eling work incorporates elements of reuse into the model,
we see reuse spontaneously arising in our system as a re-
sult of the evolutionary pressures imposed by the varying
task requirements. Secondly, in studying dynamic embodied
agents, we examine neural reuse in light of the increasingly
accepted viewpoint that cognition is distributed over a brain-
body-environment system (Chiel & Beer, 1997). In previ-
ous work, it was shown that the model-agents studied here
offload some cognitive load to their bodies and the environ-
ment (Beer, 2003). It is likely that successful neural reuse
observed in these simulations relies on features of embodi-
ment. Ongoing work on a deeper, more thorough analysis of
agents exhibiting reuse promises to bring some of these issues
to light.
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A (ii) B C(i) (ii)(i) (ii)(i)

Figure 7: Different behavioral strategies and general-purpose neural structures are located in different evolutionary runs. Ex-
ample solutions from three different evolutionary runs are shown in panels [A], [B] and [C]. For each evolutionary run, two
solutions are shown: the best agent for line-catching and circle avoidance (i); the best agent for the opposite task obtained
successively (ii). Graphics follow same coloring conventions as Fig. 4.

Work on lifetime learning and adaptation in cognitive sys-
tems parallels ongoing research on evolvability in evolution-
ary systems. Evolvability refers to the ability of a popula-
tion to adapt to changes in its fitness landscape, and has been
a hot topic in theoretical biology and evolutionary computa-
tion (Pigliucci, 2008). In order for an evolutionary system to
support evolvability there must be redundancy in the fitness
landscape; there must be many genomes which have high fit-
ness in a given environment, and some of these must be more
adaptable to future environmental changes than others. Typi-
cally investigations of evolvability examine the role of devel-
opmental processes indirectly linking genotype to phenotype
as a mechanism for such redundancy (Pigliucci, 2008). In the
present work, however, we observe signatures of evolvability
in a system without any developmental scenario. While our
system has a direct genotype to phenotype map, the complex-
ity of agents introduces sufficient redundancy in the pheno-
type to behavior map (qualitatively different neural structures
can produce the same basic behavior) and behavior to fitness
map (qualitatively different behaviors can yield the same fit-
ness) to allow for increased adaptation.

The work presented above demonstrates that evolving
embodied agents for time-varying cognitive tasks is fertile
ground for exploration of cognitive adaptation in general, and
neural reuse more specifically. There are many ways in which
efforts here can be built upon. First, given that neural reuse
is most concerned with brain circuits supporting vastly dif-
ferent cognitive functions (Anderson, 2010), we would like
to expand the repertoire of tasks to include some that are
qualitatively different. As our understanding of neural reuse
advances, we can extend our approach to increasingly com-
plex interesting tasks. Secondly, we would like to analyze
in more depth the operation of agents that exhibit reuse. Past
work has shown that the mathematical tools of dynamical sys-
tems theory and information theory can be used to provide
rich accounts of cognition exhibited in these systems (Beer
& Williams, 2015). Ultimately, we would like to provide a
grounded understanding of neural reuse in embodied, situated
agents capable of diverse cognitive phenomena.
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Abstract 

Different hypotheses were proposed concerning the role of 
talker variability in lexical learning. It remains unclear 
whether new phonetic categories are acquired as episodic 
memory traces with talkers’ voice information preserved or as 
abstract categories. The current study investigated the role of 
voice similarity in perceptual learning of Cantonese tones. Six 
high-variability training sessions were given to 12 Mandarin 
speakers. Voice similarity was controlled in the training and 
pre-and posttests. Results indicate that the training positively 
transferred to both similar and dissimilar talkers. However, in 
the pretest, the performance was not significantly different 
between similar and dissimilar voices, whereas significant 
better performance was found in the similar voices in the 
posttest. These results suggest that learners retained speakers’ 
information in the learning process and made use of such 
information for future perception. This implies that lexical 
tones are probably encoded episodically in the mental 
representation of Mandarin L2 learners. 

Keywords: Talker similarity, high variability training, 
Cantonese lexical tones, Mandarin leaners of Cantonese, 
mental representation.  

Introduction 
When presented with a word auditorily, a listener receives a 
lot of information. For instance, the phonological form and 
meaning of the word, as well as the auditory information of 
the speaker. There existed a great amount of acoustic 
differences between speakers resulted from the differences 
in the shape and length of vocal tract, articulatory dynamics 
and native dialects (Goldinger, 1998). A long-documented 
problem for theories is how the speech perception and 
spoken word recognition achieve perceptual constancy in 
spite of the highly variable speech signals (Bradlow, 
Nygaard and Pisoni, 1999).  

Two different accounts had been put forward concerning 
how the speaker’s information is encoded in the memory 
system during auditory lexical learning, which are called 
abstractionist approach (Pisoni, 1997) and episodic theory 
(Nygaard, Sommers, & Pisoni, 1994). According to the 
speaker normalization hypothesis (Joos, 1948, as cited in 

Goldinger, 1998), acoustic variances produced by different 
speakers were considered as redundant information or noise 
that was quickly forgotten after lexical access and only 
lexical-semantic information was encoded in long-term 
memory. This allows listeners to understand new speakers 
instantly by only following the lexical-semantic content of 
speech and disregarding the superficial details such as 
speaker’s information (Goldinger, 1998). In this 
abstractionist approach, a speaker-specific representation 
which contained all the lexical and speaker’s information 
was first modified to a relatively speaker-neutral abstract 
representation prior to the encoding of lexical-semantic 
information (Johnson, 1997). The encoded lexical-semantic 
information was stored as an abstract representation, which 
then formed a template or prototype that could be used to 
match with the incoming speech signals to allow lexical 
retrieval (Goldinger, 1998).  For instance, Peterson and 
Barney (1952) found that listeners could correctly perceive 
the target vowel despite the great variation in vowel formant 
frequencies produced by men, women and children. 
Evidence was also found in the perceptual normalization in 
consonants and prosody (Johnson, 2005), but normalization 
of such categories requires further intrinsic and extrinsic 
cues (Johnson, 2005; Moore, 1996; Strand & Johnson, 
1996; Zhang & Chen, 2016). In a more recent study, it was 
also found that newly learned words could be sufficiently 
lexicalized, and be abstract with respect to talker voices 
(Kapnoula and McMurray, 2016).  

On the other hand, a growing body of research suggested 
another direction. Episodic theory proposed that perceptual 
details including speaker’s information were retained in 
memory during lexical learning and were integrated into 
perception later (Goldinger, 1996; 1998). All experienced 
instances were defined in a perceptual category and no 
abstract categories or prototypes were created. In 
accordance with this theory, Goldinger, Pisoni and Logan 
(1991) found that listeners made use of speaker variability 
to recall individual items in multiple-speaker word list, 
achieving higher accuracy than that in single-speaker word 
list. This result suggested that speaker variability in 
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multiple-speaker word list facilitated word encoding and 
retrieval. Moreover, Bradlow, Nygaard and Pisoni (1999) 
presented a word list to a group of participants auditorily 
and asked them to judge whether they had heard the words 
before. They found that listeners made use of speakers’ 
information as well as speaking rate and amplitude 
information in the tasks which also supported the episodic 
theory. In addition, Nygaard and Pisoni (1998) found that 
speech from familiar voices was more intelligible than from 
unfamiliar voices, which suggested speakers’ information 
were related to linguistic processing at both word and 
sentence levels (see Souza et al., 2013 for similar findings). 
Altogether, these studies suggested that the talker 
information was stored as episodes in the long-term memory.  

The two hypotheses mentioned above hold different 
views on the role of talker information in language 
processing/acquisition. Perceptual training in second 
language (L2) learners offers a scenario to test whether the 
new phonetic categories are learned as episodic memory 
traces with speaker’s voice information preserved or as 
abstract categories, which is the aim of the current study.  

High variability perceptual training (HVPT hereafter) was 
developed from the low variability training in which only 
one speaker was involved and very limited phonetic context 
was provided (Strange & Dittman, 1984). HVPT exposes 
subjects to a wider range of stimuli, including sounds 
produced by several speakers, in multiple phonetic contexts, 
and at multiple syllable positions (Bradlow, 2008). Several 
studies have adopted this approach to improve non-native 
speakers’ identification of consonants (Bradlow et al., 1997; 
Bradlow et al., 1999;), vowels (Iverson & Evans, 2009; 
Iverson, Pinet & Evans, 2012), as well as lexical tones 
(Wang, Jongman & Sereno, 1999; Wang, Spence, Jongman 
& Sereno, 2003; Wang, 2013). These findings confirmed 
that HVPT was very effective in facilitating the acquisition 
of non-native phonetic contrasts.  

Although HVPT was found to be effective in the 
generalization to novel stimuli and speakers, previous 
studies did not control the speaker voice similarity between 
training and pre-/posttests. The current study aims to control 
the voice similarity in the training sessions and pre-and 
posttest, and to compare the generalization effect to novel 
speakers whose voice was either similar or dissimilar to 
those speakers during training. Via this study, the question 
of whether L2 speech sounds are encoded as an abstract 
representation or an episodic representation during L2 
perceptual learning will be investigated.  

The current study focuses on the L2 lexical tone learning. 
Like consonants and vowels, lexical tones are important in 
differentiating word meanings in tonal languages. Mandarin 
and Cantonese are both tonal languages where pitch patterns 
of a syllable are crucial to its lexical meaning. Tone 
contours are commonly shown by numbers representing the 
pitch register according to a scale of five, 1 being the lowest 
and 5 being the highest. Usually two numbers, e.g., 55, 
indicate the pitch at the beginning and end of a syllable 
respectively (Chao, 1930). Mandarin has four lexical tones: 

Tone 1: high level (55); Tone 2: rising (35); Tone 3: falling-
rising (214); and Tone 4: falling (51) (Norman, 1988). 
Cantonese has six regular tones, which are classified 
according to their register and contour (Bauer & Benedict, 
1997). The six distinctive tones are: Tone 1: high level (55); 
Tone 2: high rising (25); Tone 3: mid level (33); Tone 4: 
mid-low falling (21); Tone 5: mid-low rising (23); and Tone 
6: mid-low level (22). These six distinctive tones were 
included as the stimuli of the current study.  

We aim to investigate the nature of mental representation 
of Cantonese tones in Mandarin L2 learners by controlling 
voice similarity of novel speakers. This allows us to 
examine the two hypotheses mentioned above. If Cantonese 
tones were encoded as an abstract representation, Mandarin 
listeners would ignore speaker variability and therefore 
generalize to novel speakers no matter whether their voices 
are similar or dissimilar to those in perceptual training. If 
Cantonese tones were encoded as an episodic 
representation, listeners would make use of speakers’ 
information in lexical retrieval and therefore demonstrate 
better generalization to novel speakers whose voices are 
similar than those whose voices are dissimilar to the 
speakers in the perceptual training.  

Method 

General design 
A pretest-training-posttest design was employed to assess 
the subjects’ initial ability and the effects of training. 
Pretests and posttests consisted of two main parts: tone 
category identification and discrimination. The 
identification and discrimination tasks were designed to test 
whether identification training is effective and transfers to 
new talkers whose voice were similar and dissimilar to the 
talkers used in the training sessions.  

Participants 
Student participants were recruited in Hong Kong 
Polytechnic University (PolyU). 45 students responded to an 
online self-report questionnaire. 19 participants were 
selected based on the following criteria: (1) resided in Hong 
Kong for less than five months prior to the pretest session, 
(2) speaks Mandarin as mother tongue and did not speak 
any Southern dialect including Hakka and Southern Min 
dialect, (3) did not receive professional musical training. 
Seven participants withdrew from the study before the post-
training test. A total of 12 participants completed the whole 
program.  

Talkers and Stimuli 
Stimuli 
The stimuli were 60 words contrasting six Cantonese tones 
(high level tone (T1)-/55/, high rising tone (T2)-/25/, mid 
level tone (T3)-/33/, extra low level/low falling tone (T4)-
/21/, low rising tone (T5)-/23/, low level tone (T6)-/22/) on 
ten base syllables (/jan/, /ji/, /jau/, /jiu/, /fan/, /fu/, /ngaa/, 
/si/, /se/ and /wai/), all are meaningful in Cantonese. Each 
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monosyllabic target word was embedded in a carrier phrase 
context “呢個係_ lei1 go3 hai6 [target word]” (this is 
[target word]). Six female and six male native Cantonese 
speakers recorded the stimuli. Each speaker recorded six 
repetitions of each target word. One token for each target 
word was chosen by the experimenters according to its 
intelligibility and tone accuracy. The carrier phrase was 
normalized in duration to 877 ms (mean value of all carrier 
phrases), and the target word was normalized to 631 ms 
(mean value of all target words). The mean intensity was 
scaled to 70 dB using Praat.  
 
Voice Similarity Judgment  
The voice similarity among the 12 talkers was rated by 
another 12 native Cantonese speakers who were blind to the 
purpose of the current study. One speaker for each gender 
(F01 and M01) were chosen as references. The other five 
talkers (F02, F03, F04, F05 and F06; M02, M03, M04, M05 
and M06) in each gender were compared against the 
reference speaker in term of voice similarity. In the 
similarity judgment experiment, raters were asked to listen 
to the target words embedded in the context “呢個係… lei1 
go3 hai6…” [This is …] spoken by the reference speaker 
and one other speaker of the same gender. They were asked 
to rate the voice similarity of the speakers on a scale of 1 
(very dissimilar) to 9 (very similar). The 60 target words 
were included and each trial was repeated twice.  

The similarity score was averaged across raters. Table 1 
shows the similarity score of each talker. Three talkers who 
received highest similarity scores in each gender group were 
used in the training sessions (F02, F04 and F06; M03, M04 
and M06). The talkers with lowest similarity rating score in 
each gender (F03 and M05) were included in the pre- and 
posttests as the speakers with dissimilar voices.  
 

Table 1: Result of similarity judgment test averaged 
across 12 raters. 

 
Female 
talkers 

Similarity 
score 

 Male 
talkers 

Similarity 
score 

F02 7.44  M04 7.49 
F04 7.27  M06 7.73 
F06 6.07  M03 7.38 
F05 5.90  M02 5.91 
F03 4.70  M05 5.30 

Procedure 
The training programme consisted of a pretest, training, and 
posttest phase. All sessions were conducted in a soundproof 
room in PolyU. 

 
Training 
There were six sessions of HVPT (i.e., tone identification 
with feedback). The entire course of training for each 
subject was completed over 1-2 weeks, and each session 
lasted about 1 hour. There was a different talker each 
session, as is typical of HVPT procedures. Female and male 

stimuli were trained alternatively. Moreover, our design was 
different from previous studies in that the six talkers in the 
training sessions (3 female and 3 male) were similar to two 
of the talkers who were presented in the pre- and posttest. 
Although the talkers used in the training phase were judged 
to have similar voices, it is still a HVPT, as the subjects 
were exposed to a wide range of stimuli, produced by 
several speakers, and the tones were carried by multiple 
syllables. 

 

 
 

Figure 1. An example of identification choice in the 
training sessions.  

 
The 60 stimuli were repeated twice, which gave 120 basic 

trials in each training session. On each trail, participants 
were presented with a target word with the context “呢個係
… lei1 go3 hai6…” [This is …]. Six choices with minimal 
contrast of tones were presented on the computer screen (see 
an example of “ngaa” in Figure 1). As can be seen in Figure 
1, visual demonstration of each of the six tones were 
provided. The subjects were then asked to indicate the tone 
of the target word with the number keys 1-6 corresponding 
to the tones one to six. After each response, a feedback 
screen was presented. The feedback information includes: 
(1) if the response made by the participant was correct in 
blue text or incorrect in red text, (2) the cumulative accuracy 
of the current training session and (3) the correct response, 
its corresponding tone contour and its corresponding word 
written in traditional Chinese. If the response made was 
correct, the participant was proceeded to the next trial, if the 
response was incorrect, the incorrect trial was repeated until 
a correct response was indicated.  

 
Pre- and Posttest 
The pretest and posttest consisted of identification and 
discrimination tasks. In both identification and 
discrimination task, there were four talkers separated in four 
blocks. Two talkers (female F01 and male M01) were 
similar to those used in the training sessions, while two 
talkers were of dissimilar voice to the talkers used in the 
training (F03 and M05).   

Tone identification. In the identification task, the 60 
stimuli words were presented with the context “呢個係… 
lei1 go3 hai6…” [This is …].  Each trial was repeated twice 
and presented randomly to the participants. Six choices with 
minimal contrast of tones were presented on the computer 
screen with the tone, its corresponding tone contour and its 
corresponding character in traditional Chinese as shown in 
Figure 1. Participants were asked to indicate the tone of the 
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target word by pressing the number keys 1-6 corresponding 
to the tones one to six. No feedback was given.  

Category Discrimination. In the discrimination task, the 
syllable /ji/ was selected as the stimuli. Fifteen different 
tone pairs were presented in both directions of comparison 
(T1-T2, T2-T1, T1-T3, T3-T1, T1-T4, T4-T1 etc.) and then 
repeated twice, making up 60 “different” pairs. Six same 
tone pairs (T1-T1, T2-T2, T3-T3 etc.) were repeated 10 
times to make up 60 “same” trials in order to balance the 
number of “same” and “different” trials, which gave a total 
of 120 trials in the discrimination test. Participants were 
asked to discriminate whether the two syllables were of the 
same or different tones by pressing the left (same) or right 
(different) arrow. No feedback was given. 

For both discrimination and identification tasks, a short 
practice session was given before the first set of stimuli. 
Participants were allowed to take a break every 20 trials in 
both tasks. The responses of participants were recorded and 
coded. Response time was also collected. 

Results 
In both discrimination and identification tasks, for the 
accuracy analysis, mixed-effects logistic regression models 
were conducted, with the response to each trial as the input, 
training (pretest, posttest) and voice similarity (similar, 
dissimilar) as two fixed effects, and subjects as a random 
effect. For the response time analysis, two-way repeated 
measures ANOVAs were conducted, with the response time 
as the dependent variable and training (pretest, posttest) and 
voice similarity (similar, dissimilar) as independent 
variables. Figures 2 and 3 showed the mean accuracy of all 
participants achieved in identification and discrimination 
tasks respectively, in pretest and posttest for similar and 
dissimilar scenarios. Figure 4 and 5 showed the mean 
response times of all participants in identification and 
discrimination task.  

For the identification accuracy, mixed-effects logistic 
regression model revealed significant main effect of training 
(χ2(1) = 315.81, p < 0.001), and significant two-way 
interaction between training and voice similarity (χ2(2) = 
5.185, p < 0.05), while the effect of voice similarity alone 
was insignificant (χ2(1) = 2.267, p = 0.132). Post-hoc tests 
showed that the accuracy in the posttest was significantly 
higher than the pretest in both similar (z = −13.936, p < 
0.001) and dissimilar voices scenarios (z = −10.962, p < 
0.001). Within the pretest, there was no significant 
difference between similar and dissimilar voices (z = -0.389, 
p = 0.697). However, in posttest, the accuracy in the similar 
voices scenario was significantly higher than that in 
dissimilar voices scenario (z = 2.713, p < 0.01). 

For the response time in the identification task, there were 
significant main effects of training (F(1, 11) = 20.471, p = 
0.001), voice similarity (F(1, 11) = 25.73, p < 0.001), as 
well as significant two-way interactions between training 
and voice similarity (F(1, 11) = 8.552, p = 0.014). 
Independent sample t-tests were then conducted within 
pretest and posttest to test the effects of speaker similarity. 

The results showed that in the pretest, response time in the 
similar voice scenario was marginally significantly longer 
than the dissimilar voice scenario (t(22) = 1.899, p = 0.071), 
but the difference was not significant in the posttest (t(22) = 
0.563, p = 0.579), implying that training improved the 
response time in the similar voice condition. Within the 
similar speaker condition, the response time in the posttest 
was significantly shorter than the pretest (t(22) = 2.708, p = 
0.013, suggesting the effects of training. While in the 
dissimilar voice condition, there was no significant 
difference between the pretest and posttest (t(22) = 1.479, p 
= 0.153), indicating that training had very little impact on 
the response time in the dissimilar voice scenario. 

 

 
 

Figure 2: Mean accuracy in the identification task 
averaged in the pre- and post-test, under similar talker 

scenario and dissimilar talker scenario.  
 

 
 

Figure 3: Mean accuracy in the discrimination task 
averaged in the pre- and post-test, under similar talker 

scenario and dissimilar talker scenario.  
 

In discrimination tasks, mixed-effects logistic regression 
model revealed a significant two-way interaction between 
training and voice similarity (χ2(2) = 4.362, p < 0.05), while 
the effects of training (χ2(1) = 2.875, p = 0.090) and voice 
similarity (χ2(1) = 1.110, p = 0.292) were not significant. 
Post hoc tests showed that accuracy in pretest was 
significantly higher than that in posttest (z = 2.665, p < 0.01) 
with dissimilar voices. However, no significant difference 
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was found between pretest and posttest in the similar voices 
scenario (z = -0.333, p = 0.740). The accuracy in similar 
voices scenario was significantly higher than that in 
dissimilar voices scenario within posttest (z = 2.197, p < 
0.05), while the difference in accuracy with similar and 
dissimilar voices was found to be insignificant within 
pretest (z = -0.809, p = 0.419). 

For the response time in the discrimination task, no 
effects were significant.  

 

 
 

Figure 4: Mean response time in the identification task 
averaged in the pre- and post-test, under similar talker 

scenario and dissimilar talker scenario.  
 

 
 

Figure 5: Mean response time in the discrimination task 
averaged in the pre- and post-test, under similar talker 

scenario and dissimilar talker scenario.  

Discussion 
The current study provided HVPT to Mandarin speakers 
who had minimal exposure to Cantonese prior to the study. 
The generalization to novel speakers who had similar and 
dissimilar voices to the training stimuli was investigated to 
explore the role of talker voice similarity in the learning of 
Cantonese tones and henceforth to shed light on the nature 
of mental representation of Cantonese tones in L2 learners. 
If Cantonese tones were encoded as an abstract 
representation, no significant difference would be found in 
the generalization to similar and dissimilar novel voices. On 
the other hand, if Cantonese tones were encoded as an 

episodic representation, generalization to similar voices 
would be significantly better than to dissimilar voices. 

We found that in the identification task, the effect of 
training was transferred successfully to both the similar and 
dissimilar voice scenarios. This finding fell in line with 
previous studies in that exposing the listeners to multiple 
talkers and phonetic contexts would enhance the phonemic 
categorization of the trained speech sounds. Miller, Zhang 
& Nelson (2016) investigated whether adult listeners who 
became deaf postlingually and had cochlear implant (CI) 
could benefit from multiple-talker category identification 
training. They found that the perception performance was 
significantly improved for the CI listeners for the familiar 
talkers (i.e., talkers used in the training sessions) and also 
generalized to the unfamiliar talkers (i.e., talkers not 
included in the training sessions). There was also evidence 
that talker variation aids young infants’ phonotactic learning 
(Seidl, Onishi & Cristia, 2014). Together with these 
previous studies, our study provided extra evidence that the 
multiple-talker training was highly successful in learning to 
categorize speech sounds.  

In both discrimination and identification posttests, the 
effect of voice similarity alone was significant. However, 
significantly better performance was found with similar 
voices than dissimilar voices in posttest but not in pretest 
and hence significant interaction between training and voice 
similarity was revealed. These findings echoed with 
previous studies that the speech from familiar voices was 
easier to identify than unfamiliar voices (Nygaard and 
Pisoni, 1998; Souza et al., 2013), supporting the hypothesis 
that Cantonese tones were encoded episodically in the 
mental representation of Mandarin L2 speakers. L2 learners 
retained perceptual details, speakers’ voice characteristics, 
when encoding the tonal information into their mental 
representation. These perceptual details were integrated into 
later perception when the learner encountered with novel 
speakers. It is likely that the acoustic/phonetic 
representations are stored during the training stage, which 
facilitates the identification of tones in the similar voice 
context. In contrast, no matching representation is available 
in the dissimilar voice scenario, and thus the identity of the 
tone has to be construed from scratch.  

As mentioned in the result, a significant training effect 
was found in identification tasks but not discrimination 
tasks. It is probably due to ceiling performance in 
discrimination tasks, for the reason that speakers without 
knowledge of Cantonese tones could also discriminate 
different tones merely by relying on psychoacoustic 
differences of the stimuli (Qin & Mok, 2011). In addition, 
since Mandarin is a tonal language, participants already had 
some tonal categories in their mental representation within 
their L1, although it is not as complex as Cantonese 
categories. Therefore, participants could make use of 
psychoacoustic differences and their L1 knowledge to tell 
apart perceptually different tones in discrimination tasks 
even they had no knowledge of Cantonese tones. Moreover, 
since only the syllable /ji/ was used in the discrimination 
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task, lack of syllable variability also reduced the cognitive 
loading of the tasks.  

It should be noted that our study focused on L2 learners 
with limited Cantonese exposure. The episodic encoding of 
lexical tones might paly a role in early stage of learning, 
when a new speaker’ voice counts as a distinct learning 
episode. It is unclear whether the episodic representation of 
L2 phonetic categories will change in late stages of learning. 
Future studies may include the experienced L2 learners to 
test the scope of the episodic learning.  

Conclusion 
In the present study, perceptual trainings were given to 
native Mandarin speakers who had minimal exposure to 
Cantonese, and the voice similarity among the talkers in 
training and test phases was controlled. We found that the 
HVPT was highly effective, for the training effects 
generalized to both similar and dissimilar voices. However, 
the degree of generalization was significantly different 
between similar and dissimilar voices, which supported the 
hypothesis that learners retained speaker information during 
learning and made use of such information in future tone 
perception. This implies that newly learnt tones are encoded 
episodically in the mental representation of L2 learners. 
Future studies may explore the performance on the 
individual tones, so as to reveal the relationship between L1 
and L2.  
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Abstract

In this paper, we present a spiking neural model of life span
inference. Through this model, we explore the biological
plausibility of performing Bayesian computations in the brain.
Specifically, we address the issue of representing probabil-
ity distributions using neural circuits and combining them in
meaningful ways to perform inference. We show that applying
these methods to the life span inference task matches human
performance on this task better than an ideal Bayesian model
due to the use of neuron tuning curves. We also describe po-
tential ways in which humans might be generating the priors
needed for this inference. This provides an initial step towards
better understanding how Bayesian computations may be im-
plemented in a biologically plausible neural network.
Keywords: Neural Engineering Framework; biologically
plausible inference; neural bayesian model; expectation maxi-
mization

Introduction
Computations performed by the nervous system are subject
to uncertainty because of the influence of sensory, cellular,
and synaptic noise. At the level of cognition, the models that
the brain uses to interact with its environment must neces-
sarily cope with missing and imperfect information about the
world. Behavioral studies have confirmed that humans often
account for uncertainty in a way that is nearly optimal in the
Bayesian sense (i.e., “Bayes optimal”) (Ma, Beck, Latham,
& Pouget, 2006)). This implies that (1) neural circuits must,
at least implicitly, represent probability distributions, and (2)
neural circuits must be able to effectively compute with these
probability distributions in order to perform Bayesian infer-
ence near-optimally.

Probabilistic models based on Bayes’ rule have been
widely used for understanding human cognition including
inference, parameter and structure learning (Jacobs & Kr-
uschke, 2011), and word learning (Xu & Tenenbaum, 2007).
However, most Bayesian models lack biological plausibility
because it is unclear how these computations might be real-
ized in the brain. In particular, these models rely on sophis-
ticated computations including high-dimensional integration,
precise multiplication, and large-scale structure representa-
tion, without the use of spiking neuron models to implement
these necessary computations.

A biologically plausible Bayesian approach can provide
us insights into the working of the brain at multiple levels
of analysis (Eliasmith, 2013). Moreover, it can also help in
making more accurate normative predictions about how the
perceptual system combines prior knowledge with sensory
observations, enabling more accurate interpretations of data
from psychological experiments (Doya, 2007). And finally, it

can point the way towards approximate Bayesian algorithms
that are efficiently implemented in a neural substrate.

Griffiths, Chater, Norris, and Pouget (2012) conclude that
different theoretical frameworks, such as Bayesian model-
ing and connectionism, have different insights to offer about
human cognition, distributed across different levels of anal-
ysis. Here we make an initial attempt towards integrating
these frameworks. We explore the biological plausibility of
Bayesian inference by implementing a neural model of a life
span prediction task using the Neural Engineering Frame-
work (NEF; Eliasmith & Anderson, 2003). We answer ques-
tions about how probability distributions can be represented
in a connectionist framework using spiking neurons, and how
the neural representations of these probability distributions
can be used in meaningful ways. The next section describes
the life span prediction task which we use.

Life span prediction task
Griffiths and Tenenbaum (2006) evaluate how cognitive judg-
ments compare with optimal statistical inference by asking
people to predict human life spans. A group of 208 people
were asked to predict human life spans, after being presented
by a question in survey format as given below:

“Insurance agencies employ actuaries to make predictions
about people’s life spans – the age at which they will die
based upon demographic information. If you were assessing
an insurance case for an 18-year-old man, what would you
predict for his life span?”

The responses were recorded and compared with the pre-
dictions made by a Bayesian model.

Bayesian model

If ttotal indicates the total amount of time the person will live
and t indicates his current age, the task is to estimate ttotal
from t. The Bayesian model computes a probability distribu-
tion over ttotal given t, by applying Bayes’ rule:

p(ttotal |t) = p(t|ttotal)p(ttotal)/p(t), (1)

where:

p(t) =
∫

∞

0
p(t|ttotal)p(ttotal)dttotal . (2)

We assume that the maximum age is 120 years. Thus,
when calculating p(t) in practice, the integral may be com-
puted from 0 to 120.
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Prior Griffiths and Tenenbaum (2006) use publicly avail-
able real-world data to identify the true prior distribution
p(ttotal) over life spans (shown in Figure 1A).

Likelihood The likelihood p(t|ttotal) is the probability of
encountering a person at age t given that their total life span is
ttotal . Griffiths and Tenenbaum (2006) assume for simplicity
that we are equally likely to meet a person at any point in his
or her life. As a result, this probability is uniform, p(t|ttotal)=
1/ttotal , for all t < ttotal (and 0 for t ≥ ttotal).

Prediction function Combining the prior with the likeli-
hood according to Equation 1 yields a probability distribu-
tion p(ttotal |t) over all possible life spans ttotal for a person
encountered at age t. As is standard in Bayesian predic-
tion, Griffiths and Tenenbaum (2006) use the median of this
distribution—the point at which it is equally likely that the
true life span is either longer or shorter—as the estimate for
ttotal . This identifies a prediction function that specifies a pre-
dicted value of ttotal for each observed value of t.

Results Results obtained by Griffiths and Tenenbaum
(2006) through this Bayesian model are shown in Figure 1B.

(A) (B)

Figure 1: (A) Empirical distribution of the total life span
ttotal . (B) Participants’ predicted values of ttotal for a single
observed sample t. Black dots show the participants’ median
predictions for ttotal . Solid line shows the optimal Bayesian
predictions based on the empirical prior distribution shown in
A. Dotted lines show predictions based on a fixed uninforma-
tive prior. Note: the fit between the human predictions (black
dots) and Bayesian predictions (solid line) looks spot on in
this figure due to the compressed y-axis, but Figure 4b shows
a zoomed version revealing that this is not the case. Adapted
from Griffiths and Tenenbaum (2006).

Neural Engineering Framework
The Neural Engineering Framework (NEF) is based on three
principles—representation, transformation, and dynamics—

which are used to construct large-scale neural models. The
first two principles are described in the following sections.
The principle of representation also describes how probability
distributions can be represented using spiking neurons. The
third principle is not required for this paper, and its details
can be found elsewhere (Eliasmith & Anderson, 2003).

Principle 1 – Representation
In the NEF, information is represented as time-varying vec-
tors of real numbers by populations of neurons. We say that a
population of neurons has activities ai(x), which encode an n-
dimensional stimulus vector, x = [x1,x2, . . . ,xn], by defining
the encoding:

ai(x) = Gi [Ji(x)] , (3)

where Gi [·] is the nonlinear transfer function describing the
neuron’s spiking response, and Ji(x) is the current entering
the soma of the neuron. For the purpose of our model, we
have chosen Gi [·] to be the leaky integrate-and-fire (LIF) neu-
ron model. The soma current is defined by:

Ji(x) = αi 〈ei,x〉n + Jbias
i , (4)

where Ji(x) is the current in the soma, αi is a gain and con-
version factor, x is the stimulus vector to be encoded, ei
is the encoding vector which corresponds to the “preferred
stimulus” of the neuron—consistent with the standard idea
of a preferred direction vector (Schwartz, Kettner, & Geor-
gopoulos, 1988)—and Jbias

i is a bias current that accounts
for background activity. The notation 〈·, ·〉n indicates an n-
dimensional dot-product.

Given this encoding, the original stimulus vector can be
estimated by decoding those activities as follows:

x̂ = ∑
i

ai(x)di. (5)

The decoding vectors di (also known as “representational
decoders”) are typically found in the NEF by least-squares
optimization, which we use here (Eliasmith & Anderson,
2003). Thus, the decoders resulting from this optimization
complete the definition of a population code over a set of neu-
rons i for the representation of x. The code is defined by the
combination of nonlinear encoding in Eq. 3 and weighted lin-
ear decoding in Eq. 5.

Temporal representation The population code does not
explicitly address the issue of how information is encoded
over time. To do so, we can begin by considering the tem-
poral code for each neuron in isolation by taking the neural
activities to be filtered spike trains as shown in Eq. 6:

ai(t) = ∑
m

hi(t)∗δ(t− tm) = ∑
m

hi(t− tm), (6)

where δi(·) are the spikes at time tm for a given neuron i,
generated by Gi [·] and hi(t) are the linear decoding filters.
We can compute the optimal filters for decoding using the
NEF, however to make our model biologically plausible, we
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have chosen these filters (hi(t)) to be the postsynaptic currents
(PSCs) induced in subsequent neuron by the arrival of a spike.
Eliasmith and Anderson (2003) have shown that this assump-
tion causes minimal information loss which can be further
reduced by increasing the population size.

This temporal code can be combined with the population
code defined before (Eqs. 3, 4, 5), to provide a general popu-
lation temporal code for vectors. The encoding and decoding
equations for such a code are given by Eq. 7 and Eq. 8:

δ(t− tim) = Gi

[
αi 〈ei,x〉n + Jbias

i

]
(7)

x̂ = ∑
i,m

hi(t− tm)di. (8)

Representing probability distributions Probability distri-
butions are essentially functions of some parameters. Having
described how to represent vectors using the NEF, we con-
sider the relationship between vector and function representa-
tion. For any representation, we need to specify the domain of
that representation. In case of vectors, the domain is the sub-
space of the vector space that is represented by the neurons
(e.g., the x vector). We define the relevant function domain
by parameterizing the set of represented functions by an n-
dimensional vector of coefficients k = [k1,k2, . . . ,kn]. These
define any function of interest over a fixed set of basis func-
tions φ(υ) as follows:

x(υ;k) =
n

∑
j=1

k jφ j(υ), for k ∼ p(k). (9)

Thus we define a particular probability distribution p(k) by
limiting the space spanned by the basis φ(υ) to some sub-
space of interest depending on the application. This is also
the domain over which the optimization to find the decoders
in Eq. 5 is performed.

Next, we define population encoding and decoding analo-
gous to that in Eqs 3 and 5 for functions:

ai(x(υ;k)) = ai(k) = Gi

[
αi 〈ei(υ),x(υ;k)〉n + Jbias

i

]
(10)

x̂(υ;k) = ∑
i

ai(k)di(υ), (11)

where ei(υ) and di(υ) are the encoding and decoding func-
tions of the neurons. We project these functions onto the same
basis φ(υ) used to identify the function space. For simplic-
ity, we assume that φ(υ) is an orthonormal basis – an anal-
ogous derivation for a bi-orthonormal set can be found else-
where (Eliasmith & Martens, 2011). Hence, we get the fol-
lowing encoding and decoding functions:

ei(υ) =
n

∑
j=1

ei jφ j(υ) (12)

di(υ) =
n

∑
j=1

di jφ j(υ), (13)

where ei j and di j identify the n coefficients that represent

the encoding and decoding functions in φ(υ) basis for each
neuron. We now substitute these into Eq 10:

ai(x(υ;k)) = Gi

[
αi

(
∑
m,n

knφn(υ)eimφm(υ)

)
+ Jbias

i

]

= Gi

[
αi

(
∑
m,n

kneimδmn

)
+ Jbias

i

]

= Gi

[
αi

(
∑
n

knein

)
+ Jbias

i

]
= Gi

[
αi 〈ei,k〉n + Jbias

i

]
.

(14)

This way, function encoding is expressed as vector encod-
ing identical to Eq. 7. Similarly, function decoding can also
be expressed as vector decoding as follows:

k̂ = ∑
i

ai(k)di. (15)

To summarize, we have shown that it is mathematically
equivalent to talk in terms of (finite-dimensional) function
spaces or (finite-dimensional) vector spaces. Since probabil-
ity distributions are most generally functions, we can approx-
imate them as high-dimensional vectors over a fixed set of
basis functions using the NEF.

Principle 2 – Transformation
Transformations of neural representations are functions of the
vector variables represented by neural populations.

To perform a transformation f (x) in the NEF, instead of
finding the representational decoders di to extract the orig-
inally encoded variable x, we can re-weight the decoding
to specify some function f (x) other than identity. In other
words, we can find the decoders d f (x)

i (also known as “trans-
formational decoders”) by using least-squares optimization
to minimize the difference between the decoded estimate of
f (x) and the actual f (x), which results in the transformation:

x̂ = ∑
i

ai(x)d
f (x)
i . (16)

Both linear and nonlinear functions of the encoded vector
variable can be computed in this manner (Eliasmith & An-
derson, 2003). In the NEF, connection weights between neu-
rons can be defined in terms of encoders and decoders as:
ωi j = α je jd

f (x)
i , where i indexes the presynaptic population,

j indexes the postsynaptic population, and d f (x)
i are represen-

tational or transformational decoders.

Neural model of life span prediction
Figure 2 shows the architecture of the neural model for
life span inference built using the NEF. All neural ensem-
bles (populations of neurons; symbolically represented by
five circles) are 20 dimensional and contain 200 LIF neu-
rons each, except the Normalized Posterior ensemble which
is 120 dimensional and contains 800 LIF neurons. The

3133



Figure 2: A schematic diagram of the neural model. Here
“Likelihood” and “Prior” contain 200 neurons each, “Prod-
uct” network contains 4000 neurons and “Normalized Poste-
rior” contains 800 neurons.

product network computes an element-wise product of its
inputs. Though multiplication is nonlinear, it has a well-
characterized implementation in neurons that does not require
nonlinear interactions, and can be implemented accurately
with the NEF (Gosmann, 2015). The product network makes
use of this characterization. It has 40 neural ensembles of 100
neurons each for a total of 4,000 neurons. The entire model
contains 5,200 neurons.

To represent the probability distributions (prior and likeli-
hood) needed to perform the task, we define a basis φ20(υ) to
span the space of each distribution. To compute the basis we
sample from a family of 120 dimensional distributions and do
Singular Value Decomposition to obtain a 20 dimensional ba-
sis. This basis is used to determine the encoders (as given by
Eq. 12) used in the NEF simulation. The same basis is used
for the optimization to find the neuron decoders (as given by
Eq. 13) that are needed to perform the desired computations.
Similar to the encoding and decoding functions, the 120 di-
mensional prior and likelihood functions are also projected
to the 20 dimensional space through weights over the basis.
Refer to the supplemental material for details.

The likelihood input and prior input are nodes that pro-
vide the named 20 dimensional inputs to the neural ensem-
bles Likelihood and Prior respectively. The product network
receives input from these ensembles and computes the pos-
terior distribution (in the 20 dimensional space). The out-
put connection from product network to Normalized Poste-
rior reconstructs the posterior back to 120 dimensional space
and computes the normalization function using principle 2
of the NEF. Thus, the Normalized Posterior ensemble rep-
resents the normalized posterior distribution. Next we ap-
proximate the median of this distribution on the connection
between the Normalized Posterior ensemble and the Predic-
tion node (again using principle 2). We read out the model
prediction from the Prediction node.

Figure 3 shows the inference results obtained from the
spiking neural network run in the Nengo (Bekolay et al.,
2014) software package. Model predictions are plotted for
current ages (t) from 1 to 100. The difference between the
results in Direct mode and Neuron mode is due to the limited
number of neurons in the Normalized Posterior ensemble. As
the number of neurons in this ensemble increases, the results
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Figure 3: Inference results from neural model (95% con-
fidence intervals), compared to humans and Direct mode -
our model with computations in low-dimensional (20 dimen-
sional basis) space, but without neurons.

approach the Direct mode results (800 neurons provide the
best fit to human data). Thus, neural results match the human
data better due to the approximate representation of the nor-
malized posterior by the neurons in the Normalized Posterior
ensemble. The tuning curves of the neurons in this ensemble
were fit to a function space consisting of a family of distribu-
tions which have three parameters (similar to the parameters
in the prior) and also depend on the current age (t) (similar to
the likelihood function). The three parameters: a - the skew-
ness parameter was varied from -7 to -4, scale - used to scale
the distribution was varied from 26 to 29 and loc - used to
shift the distribution was varied between 49 to 101. The cur-
rent age (t) was varied in the range of +/-5 for a given age in a
trial except ages below 5 for which the range was taken to be
from [1, 10]. This provides the function space that was used
to sample the encoders for Normalized Posterior ensemble.

We use the Kolmogorov-Smirnov (K-S) test to examine
the goodness of fit of the neural model predictions relative
to the Griffiths and Tenenbaum (2006) model. The data
used for the K-S test are shown in Figure 4b. The dissimi-
larity of the Griffiths and Tenenbaum (2006) model relative
to human predictions is 9.628, while that of the neural model
is 1.959, indicating the much closer fit of the neural model
to the human data. Figure 4a shows a comparison between
the Griffiths and Tenenbaum (2006) model, the computational
model (our replication of their model), and direct mode (our
model with computations in a compressed 20 dimensional
space, but without neurons). Since the results obtained from
the direct mode are the same as the computational model,
the low dimensional embedding is not losing any informa-
tion. However, we expect some error due to this constraint
for more complex priors (though we have not explored the
minimum dimensionality for this prior).

Overall, our results suggest that the closer fit of the neu-
ral data can be solely attributed to fitting the neuron tuning
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(a) No error due to low dimensional embedding.
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(b) Data used for the goodness of fit test.

Figure 4: (a) Results from Griffiths and Tenenbaum (2006) model (only data corresponding to human data), Computational
model i.e., our replication of their model, and Direct mode i.e., our model with computations in low-dimensional space, but
without neurons. (b) Kolmogorov-Smirnov (K-S) test results. Dissimilarity relative to human predictions - Griffiths and Tenen-
baum (2006) model: 9.628, neural model: 1.959. Neural model and human data are median predictions. Note: Griffiths and
Tenenbaum (2006) model data and human data were obtained from Figure 1B through a web plot digitizer.

curves in the Normalized Posterior ensemble, where 800 neu-
rons provide the best match to human performance. Since
the low-dimensional neural implementation can be made to
match the human data, this is some evidence in support of
the hypothesis that human brains represent low-dimensional
state spaces (low-dimensional parameterizations of high-
dimensional distributions fit using neural tuning curves).

Generalized life span inference
In our neural model, we use the prior obtained empirically
by Griffiths and Tenenbaum (2006). However, our neural
modeling methods can further be used to explore how this
prior might be learned in the human brain. Here, we lay some
theoretical ground work for addressing this question, while
building the complete neural model remains for future work.

We assume that priors that humans have about life spans
are a result of their experiences encountering people of dif-
ferent ages in their daily lives. Thus the prior will be inferred
from the data that comes from daily experience. We further
assume that the prior is parameterized by some unknown hy-
perparameters (α) which are to be estimated from the ob-
served ages of n distinct people, given by X = {x1, . . . ,xn}.
Here, each random variable xi corresponds to a separate t
from the previous model. Likewise, we model each element
of X as being drawn independently from each element of
Z = {z1, . . . ,zn} corresponding to the (unknown or hidden)
life spans of these same n people. Each random variable
zi corresponds to a separate ttotal from the previous model,
which in turn is drawn from the unknown prior. We now de-
scribe two standard methods for determining a prior by ob-
taining an estimate α̂ of the hyperparameters.

If we do not know the actual prior, then the optimal so-
lution can be found by trying them all. That is, we directly
find the hyperparameters α̂ that maximize the marginal like-

lihood of the observed data, L(α;X) (or equivalently the log-
likelihood for numerical stability):

α̂ = argmaxαL(α;X) = argmaxα

n

∑
i=1

log∑
zi

p(xi,zi|α).

(17)
In general, however, the procedure described above is in-
tractable, since it requires that we iterate over all combina-
tions of α and Z. This motivates near-optimal iterative proce-
dures such as the widely-used expectation maximization al-
gorithm (EM; Dempster, Laird, & Rubin, 1977). Below we
work out the details of the EM procedure for the case where
the hyperparameters are α = (µ,σ2), i.e., the prior is assumed
to be normally distributed with unknown moments. We begin
by simplifying the expectation function using independence
and other known facts about the model:

Q(α|α(t)) = EZ|X,α(t) [logL(α;X,Z)]

=
n

∑
i=1

Ezi|xi,α(t) [logL(α;xi,zi)]

=
n

∑
i=1

∑
zi

T (xi,zi) log(p(zi|α)/zi) ,

(18)

where we have defined T (xi,zi) := p(zi|xi,α
(t)) to be some

fixed function with respect to α(t). Next, we simplify the log
expression using our model of the prior:

log(p(zi|α)/zi) = log

(
1√

2σ2π
e−

(zi−µ)2

2σ2

)
− logzi

=−1
2
(
(zi−µ)2/σ

2 + logσ
2 + log(2π)+2logzi

)
,

(19)

and then differentiate this with respect to µ:

∂ log(p(zi|α)/zi)

∂µ
= (zi−µ)σ2, (20)
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and with respect to σ2:

∂ log(p(zi|α)/zi)

∂σ2 =
1
2
(
(zi−µ)2−σ

2)/σ
4. (21)

By linearity of differentiation, we then know that the deriva-
tives of Q(·) are zero when:

∂Q(α|α(t))

dµ
=

n

∑
i=1

∑
zi

T (xi,zi)(zi−µ)σ2 = 0

⇐⇒ µ =
∑

n
i=1 ∑zi ziT (xi,zi)

∑
n
i=1 ∑zi T (xi,zi)

, and similarly:

(22)

∂Q(α|α(t))

dσ2 =
n

∑
i=1

∑
zi

T (xi,zi)
1
2
(
(zi−µ)2−σ

2)/σ
4 = 0

⇐⇒ σ
2 =

∑
n
i=1 ∑zi(zi−µ)2T (xi,zi)

∑
n
i=1 ∑zi T (xi,zi)

.

(23)
Finally, by the generalized Bayes’ rule, we know:

T (xi,zi) = p(zi|xi,α
(t)) =

p(zi,xi|α(t))

∑zi p(zi,xi|α(t))
,

which we may compute via Eq. 1. We also note that since
T (·) is a probability density function over zi, that:

n

∑
i=1

∑
zi

T (xi,zi) =
n

∑
i=1

1 = n.

Therefore, each EM iteration must make the update α(t+1) =
(µ(t+1),σ(t+1)), where:

µ(t+1) =
1
n

n

∑
i=1

∑zi zi p(zi,xi|α(t))

∑zi p(zi,xi|α(t))

σ
(t+1) =

√
1
n

n

∑
i=1

∑zi(zi−µ(t+1))2 p(zi,xi|α(t))

∑zi p(zi,xi|α(t))
.

(24)

This converges to some locally optimal estimate of the hyper-
parameters. For initial α(0) chosen sufficiently close to global
optimum α̂ given by Eq. 17, this converges to the optimum.

This provides a tractable procedure for updating the prior.
In particular, we begin with some initial guess at the hyper-
parameters, and then update them iteratively to better explain
the observed data. In practice only a few iterations are re-
quired (results not shown). Once we have an estimate of the
hyperparameters (α̂), we then know the prior p(ttotal |α̂). This
prior can be used directly by the previously described model
to provide a good prediction. In fact, it is possible to run both
the prior optimization and inference at the same time, and
both will become progressively more accurate over time.

Conclusions
We have presented a spiking neural network able to effec-
tively perform Bayesian inference in a manner that more
accurately matches human behavior than an ideal Bayesian

computation. We constructed the network using the NEF to
map function spaces into vector spaces and approximate the
necessary computations. We suggested a means of estimating
the prior for the life span task that can be implemented using
these same methods.
Notes Supplemental material (scripts and derivations) can
be found at https://github.com/ctn-waterloo/cogsci17-infer.
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Abstract 

Temporal binding refers to the subjective contraction in time 
between an action and its consequence. Since it was reported 
in 2002 the effect has generated much interest, although a 
consensus regarding the mechanisms behind it remains 
elusive. While multiple theoretical accounts have been 
proposed, a key point of contention remains whether the 
effect is the result of the perception of intentionality or 
causality. We deployed a new apparatus to compare 
intentional to mechanical causation. Thirty participants 
reported the interval between two events in self-causal, 
mechanical-causal and non-causal conditions. The results of a 
Bayesian analysis pointed to smaller temporal estimates in the 
self-causal condition compared with the mechanical-causal 
condition, in addition to smaller estimates in the mechanical-
causal condition compared with the non-causal condition. The 
evidence presented here suggests that causality alone may be 
sufficient for temporal binding to occur, but that this effect is 
boosted by the presence of intentional action. 

Introduction 
Temporal binding refers to the mutual attraction (in 
subjective time) between a causal action and its 
consequence, relative to two unrelated events. In a seminal 
paper Haggard et al (2002) found evidence for delayed 
awareness of the time of action and early awareness of the 
time of its consequence. Subsequent research has replicated 
this effect with a variety of paradigms, including interval 
estimation (Humphreys & Buehner, 2009), stimulus 
anticipation (Buehner & Humphreys, 2009) and the method 
of constant stimuli (Nolden, Haering & Kiesel, 2012). The 
use of various interval estimation methods has demonstrated 
that, in addition to shifts in the perceived time of events, 
intentional binding also manifests as a shortening of the 
overall perceived interval between an action and its 
consequence.  

Haggard et al. (2002) originally referred to the effect as 
intentional binding and proposed that it reflects “a general 
linkage through time between representation of action and 
effect” (p. 384), and that the subjective shortening of the 
interval between them may contribute to our sense of 
agency and motor learning through forward models. While 
multiple accounts of the mechanisms behind temporal 
binding have been proposed since then (Buehner, 2015; 
Moore & Obhi, 2012; Eagleman & Holcombe, 2002), the 
role of intentionality has been central to much of the work 
on the subject. More recently, studies have increasingly 
made use of temporal binding as an implicit measure of 
sense of agency, for example in studies of mindfulness (Jo, 

Whittmann, Hinterberger & Schmidt, 2015; Lush, Parkinson 
& Dienes, 2016) narcissism (Hascalovitz & Obhi, 2015) and 
Schizophrenia (Voss et al, 2010). 

The focus on intentionality in the literature 
notwithstanding, Buehner and Humphreys (2009) have 
argued that temporal binding is instead driven by awareness 
of causality, and should be termed “causal binding”: 
Temporal binding reflects a bi-directional interpretation of 
David Hume’s (1739/1888) assertion that temporally 
contiguous events are more likely to be perceived as 
causally related. Specifically, because human time 
perception is inherently noisy and uncertain, it is subject to 
top-down modulation. From a Bayesian perspective it thus 
follows that if contiguous event pairs are likely to be 
causally related, then event pairings that are known to be 
causally linked are also likely to have occurred 
contiguously. Time and causality thus mutually constrain 
each other in subjective experience. 

While there is a general consensus that a causal 
relationship is necessary for temporal binding to occur, 
there is less agreement on whether causality on its own is 
also sufficient (Moore & Obhi, 2012). However, Buehner 
(2015) reported mutual attraction in subjective time between 
voluntary actions and their outcomes (i.e. the typical 
binding effect) as well as between involuntary, induced, 
causal actions and their outcomes. Furthermore, Buehner 
(2012) also demonstrated temporal binding between a non-
biological mechanical action (a robot arm pressing a key) 
and its outcome (an LED flash). While both studies revealed 
evidence for temporal binding in the presence of causality 
alone (thus demonstrating its sufficiency to result in 
binding), they also found a more pronounced effect when 
the cause was an intentional action. Thus, while causal 
binding appears to be rooted in causality, it seems to be 
subject to an intentional boost.  

A limiting factor in this earlier research is that it always 
deployed key-presses as intentional causal actions, meaning 
that participants had access to precise proprioceptive 
feedback about the successful completion of the causal 
action, as well as the precise time of the start of the causal 
interval (i.e. the moment the key was depressed). In 
contrast, this type of feedback was not available in control 
conditions. We set out to maximize the perceptual similarity 
between experimental conditions. Specifically, we replaced 
key-presses with a continuous upwards movement made by 
the participant, and created a mechanical causal as well as a 
control condition that matched the perceptual experience.  In 
all three conditions, participants were able to rely purely on 
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visual information to determine the onset of a two-event 
sequence, and we eliminated any tactile or auditory 
feedback.  

Participants took part in three conditions: self-causal, 
mechanical-causal and non-causal control. On each trial, 
participants had to reproduce the interval between two 
sequential events (which were causally linked in the two 
causal conditions). Both the self-causal and mechanical-
causal conditions made use of a laser pointed at a light 
sensor. Upon detecting the laser beam (event 1) the light 
sensor responded by switching on a red LED after a 
randomized delay (event 2). In the self-causal condition 
participants allowed the laser to reach the light sensor 
manually by moving a wooden paddle out of its way, 
whereas in the mechanical-causal condition this was done 
mechanically, without input from the participant. In the non-
causal control condition the laser was replaced with a small 
red LED which was positioned where the laser beam could 
be seen in the other two conditions. In this condition, the 
two event sequence consisted of deactivating of the small 
LED (simulating the perceptual experience of the laser 
hitting the light sensor), followed by the switching on of the 
red LED as in the other two conditions. This sequence was 
controlled by a computer.  

According to the intentional binding account, temporal 
estimates for the two –event sequences should be smaller in 
the self-causal condition than in the other two (self-causal < 
mechanical-causal = non-causal control); according to the 
causal binding account, temporal estimates should be larger 
in the non-causal control condition than in the self-causal 
and mechanical-causal conditions (self-causal = 
mechanical-causal < non-causal control). Finally, if 
temporal binding is rooted in causality, but subject to an 
intentional boost temporal estimates should be lowest in the 
self-causal condition, followed by the mechanical-causal 
condition, with both being shorter than the non-causal 
control condition (self-causal < mechanical-causal < non-
causal control). 
 

Methods 
Participants 
Thirty Cardiff University students and staff (2 male, age 
range 18-33) participated in exchange for a payment of £3 
or course credits. Participants were recruited through 
Cardiff University’s electronic Experiment Management 
System and electronic noticeboard. Participants were asked 
to report (in writing) whether they felt they knew the 
purpose of the experiment prior to debriefing. Of the thirty, 
only three responded  ‘yes’, and none correctly understood 
the purpose of the experiment. 
 
Apparatus  
A schematic diagram of the apparatus can be seen in Figure 
1. The apparatus was situated on top of a desk and placed on 
a platform at a height of 9.8cm, with a gap 18.8cm in length. 
The light sensor was positioned opposite the laser module, 

both at a height of 14.5cm. Between the laser and light 
sensor a wheel (21.5cm diameter) was placed with a round 
1cm diameter hole positioned in the location through which 
the laser beam passed. The wheel was attached to a motor 
which allowed it to spin clockwise at a speed of 
approximately one revolution per four seconds. 

 
Figure 1: a schematic diagram of the apparatus. 1 = light 
sensor (containing a Raspberry Pi computer) connected to a 
red LED bulb; 2 = wheel with 1cm diameter perforation; 3 = 
laser module; 4 = a box housing a geared motor able to spin 
the wheel clockwise.  
 

The light sensor module consisted of a 7x7x10cm box 
housing a raspberry pi computer, with a 10mm LED bulb 
mounted at its top and the light sensor on its front (facing 
the laser module). A separate, portable, 5mm red LED bulb 
was also connected to the computer, but only visible to 
participants during the non-causal condition (see design and 
procedure). For the self-causal condition (see design and 
procedure), a rectangular wooden paddle (6cm in width and 
14cm in height, with handle at its centre) with a 1cm 
diameter hole was used in place of the wheel.   

Participants were placed at a chin rest behind the laser 
module. Participant responses were recorded using a 
computer mouse on a separate computer. Finally, a debrief 
questionnaire was used to measure perceived causality using 
a 9-point Likert Scale (see appendix 1). For each condition, 
participants were presented with the question “in the 
condition where [condition description] did it seem like 
[first event] was causing [second event] (1 = definitely yes, 
5 = not sure, 9 = definitely no)?” These scores were inverted 
for analysis.  
 
Design and Procedure 
After completing a consent form, participants were given 
safety instructions and were allowed to adjust the height of 
their seat. Instructions were presented verbally at the 
beginning of the experiment and before each trial. 
Throughout the experiment participants kept their head in 
the chin rest, ensuring that the light sensor, wheel and laser 
beam were visible. Participants were instructed to fixate 
their gaze on the laser point during the self-causal and 
mechanical-causal conditions, and on the 5mm diameter 
LED bulb during the non-causal control condition. 

Participants worked through the three conditions, with 
order of conditions counterbalanced between participants. 
Each condition consisted of 40 trials, during which 
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participants observed a critical two-event sequence lasting 
for an interval between 200 – 400ms (randomized, described 
below) and were asked to reproduce this interval by holding 
down the left mouse key for their perceived duration. Prior 
to each experimental block, participants worked through as 
many practice trials as they needed (minimum: three, 
regardless of performance) to understand the task. Task 
comprehension was assessed by the experimenter by 
observing the participants performing the task to ensure that 
participants were performing the correct movement (if any) 
and reporting time intervals after each trial. Probing 
questions were used to ensure that participants were 
reporting the correct time intervals and that they did not 
have any further questions.   

The conditions were as follows (see Figure 2 for a 
photographs of each experimental condition):  

Self-causal: Participants performed an intentional action 
that generated a causal consequence after a short delay. The 
wheel was placed with the hole aligned to the laser beam 
and light sensor and remained stationary throughout (i.e. the 
laser beam could pass through to the light sensor, when 
allowed through by the participant. The light sensor 
responded to the laser beam by switching on the 10mm red 
LED at the top of the housing after a randomised delay of 
200-400ms, and switching off after a randomised interval of 
200-400ms, if the beam was no longer received. All 
randomised delays used in the experiment were drawn from 
a uniform distribution. Participants were told that the sensor 
responds to the beam after a delay, and this was 
demonstrated by the experimenter prior to the practice trials 
by using hand movements to either block the laser or allow 
it through. Participants were not told any additional 
information about these delays. Participants were instructed 
to place the paddle at the bottom of the apparatus, with the 
hole beneath the laser beam, such that the paddle blocked 
the beam. Participants were instructed to keep the paddle 
positioned adjacent to the wheel and move it upwards in 
front of the laser beam in each trial, such that the laser 
would pass through the hole. This was done to keep this 
condition as perceptually similar as possible to the 
mechanical-causal condition (see below). Participants were 
instructed to reproduce the time interval between the laser 
beam reaching the light sensor and the LED lighting up 
before placing the paddle back for the next trial.   

Mechanical-causal: The wheel rotated continuously at a 
speed of approximately 4 seconds per revolution and 
blocked the laser beam from reaching the sensor, except 
when the hole came in line with it (once every 4 seconds). 
The light sensor was switched on and functioned in the 
same way as in the self-causal condition. This was 
demonstrated prior to the practice trials; the experimenter 
demonstrated that when the laser beam was blocked the 
light sensor did not respond at all, regardless of the position 
of the wheel, and that the light sensor always responded 
after the laser passed through the hole in the wheel. 
Participants were instructed to reproduce the interval 
between the laser reaching the sensor and the LED lighting 

up as in the self-causal condition. Note that in both the self-
causal and mechanical-causal conditions, the critical causal 
event 1 (the laser reaching the light sensor) coincided with 
the perceptual experience of the laser spot (temporarily) 
being no longer visible against the paddle or wheel. 

Non-causal control: Participants reproduced the interval 
between two sequential LED flashes. The wheel was 
positioned in the same way as in the self-causal condition. 
The laser module was switched off, and the 5mm LED was 
placed in the hole in the wheel. At the beginning of each 
trial, the 5mm LED switched on for one second before 
switching off, followed by the 10mm LED at the top of the 
housing switching on for 200-400ms. Following this, 
participants were asked to reproduce the time interval 
between the 5mm LED switching off and the 10mm LED 
switching on. Participants were not told any information 
about the causal relationship between the two lights, but 
only that they turned on and off in a regular sequence. In 
order that the switching off of the first light would be 
equally predictable as the laser passing through the wheel in 
the mechanical-causal condition participants were informed 
that the first light will switch off after exactly one second on 
each trial. This sequence repeated automatically for the 
duration of the condition, with an overall trial length 
matching the duration of a single wheel revolution. 
Participants were instructed to fixate their gaze on the 5mm 
LED bulb throughout. 

At the end of the experiment participants were asked to 
fill in the debrief questionnaire, where they were asked to 
report whether they believed the first event in the interval 
they were judging caused the second event to occur, per 
condition. These causal ratings were taken as a manipulation 
check, to ensure participants correctly perceived the causal 
structure of the self-causal and mechanical-causal 
conditions (the laser beam causing the light sensor to 
respond) and the non-causal control condition (both lights 
shared a common cause). Following this participants were 
debriefed as to the purpose of this experiment. 
 

 

Figure 2: Photographs of all experimental conditions from 
the participants’ perspective. Self-causal condition (left): the 
paddle is set with the hole below the laser beam at the 
beginning of a trial. Mechanical-causal condition (centre): 
the wheel is rotating clockwise and the laser beam is 
obstructed. Non-causal control (right): the laser beam is 
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replaced with a red LED bulb positioned where the laser 
point can be seen in the other two conditions. 
 
 

Results 
Exclusions 
Three participants were excluded for failing to follow 
instructions (consistently making multiple estimates per 
trial, or making estimates during, rather than between, 
trials). One further participant was excluded due to a 
technical error. For all other participants, individual trials 
for which there were two estimates and estimates which 
overlapped with the time of the event being judged were 
removed from analysis (8 participants with excluded trials, 
mean average 4.88 exclusions out of 120 trials). 
 
Causal estimates 
A Friedman’s ANOVA was used due to the ordinal nature 
of the causal scores. We found a significant main effect of 
condition on causal scores (X2(2) = 15.58, p < .001). Post-
hoc testing using a Bonferroni correction found significantly 
lower scores for the non-causal control condition (median = 
6) compared with the self-causal condition (median = 8, p < 
.05) and the mechanical-causal condition (median = 8, p < 
.05). No significant difference was found between the self-
causal and mechanical-causal conditions (p > .05). 
 
Temporal estimates 
Transformation A preliminary analysis of the data found 
significant variability in the range of reproductions between 
participants (see Table 1 for pre-transformation data). 
Additionally, a Shapiro-Wilk test found significant 
deviations from the normal distribution in two of the three 
conditions (p < .05). In order to reduce the influence of 
individual differences and reduce the positive skew of the 
data, temporal reproductions were converted to z-scores. To 
do this, each participant’s grand mean was subtracted from 
each of their interval estimates. The difference from the 
mean of each score was divided by the standard deviation of 
all estimates (per participant). The mean z-score per 
condition for each participant was used for the temporal 
estimates analysis. Following transformation, the 
assumption of normality was met for all conditions (p > 
.05). The mean z-scores can be seen in Figure 3. 
 

Table 1: Descriptive Statistics for raw Temporal 
Reproductions 

 
Condition Mean Standard deviation 
Self-causal 380.26 197.49 
Mechanical-causal 406.8 134.81 
Non-causal Control 501.14 315.39 

 
 
 
 

Figure 3: Mean z scores of Temporal Reproductions by 
condition. Error bars represent the 95% confidence interval. 
 
Analysis A one-way ANOVA found a significant main 
effect of condition on the z score-transformed estimates, 
F(2,50) = 4.46, p < .05, η2 = .15, MSE = 1.57. Planned 
simple contrasts were used to investigate the differences 
between the mechanical-causal condition and both other 
conditions. A significant difference was found between the 
mechanical-causal and self-causal conditions (p = .048), but 
not between the mechanical-causal and non-causal control 
(p = .23). The frequentist analysis, therefore, appears to 
favour the intentional binding account. 

A Bayesian analysis was carried out using the 
BayesFactor package for R statistics (Morey, Rouder, Jamil 
& Morey, 2015). A Bayesian repeated-measures ANOVA 
(see Rouder, Morey, Speckman & Province, 2012 for 
details) found a Bayes factor of 17.23 for the unconstrained 
model (self-causal ≠ mechanical-causal ≠ non-causal 
control), indicating that the data observed is over 17 times 
more likely under the unconstrained model compared with 
the null model (intercept only). We also analysed three 
further models, as predicted by the intentional binding 
account (self-causal < mechanical-causal = non-causal 
control), the causal binding account (self-causal = 
mechanical-causal < non-causal control) and the ‘intentional 
boost’ account (self-causal < mechanical-causal < non-
causal control). The highest Bayes factor was found for the 
model predicted by the intentional boost account (BF10 = 
91.82), and as such it is the preferred model compared with 
the models predicted by the intentional binding account 
(BF10 = 44.57) and causal binding account (BF10 = 16.22; 
denominator = intercept only model for all Bayes factors).  

 
Discussion 

 
We set out to investigate whether the perception of causality 
is sufficient for temporal binding to occur. We compared 
temporal estimates across three conditions: self-causal, 
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mechanical-causal and non-causal control. In contrast to the 
previous work on this topic, the first and second events in 
each sequence were equally predictable and perceived in the 
same modality (visual), thus eliminating possible 
confounding variables. 

The results of the Bayesian analysis suggest that the most 
plausible model underlying our data is one of causal binding 
with an ‘intentional boost’. It is noteworthy, however, that 
evidence of causal binding is only present in the Bayesian 
analysis, and cannot be seen in the frequentist planned 
contrasts. This apparent discrepancy may be the result of 
effect size; in this case there may have been a causal binding 
effect which was too small to be detectable under frequentist 
statistics, but still contributed the intentional boost model 
being the preferred model in the Bayesian analysis. 

Our manipulation check (causal ratings) revealed higher-
than-expected perceived causality between the two lights in 
the non-causal control condition. Although participants 
reported significantly weaker causal impressions in the non-
causal control condition, the median score was 6 (on a 1-9 
scale), indicating that 13 of the 26 participants included in 
the analysis perceived some causal relationship between the 
two lights. The causal binding view therefore would predict 
a reduced binding effect in those participants, due to 
reduced distinctiveness of the causal compared to the 
control conditions. .Therefore, while the manipulation has 
been successful in that the majority of participants reported 
weaker causal links between the two lights than the laser 
and light sensor, this may not have been sufficiently 
consistent across the entire sample to result in an effect size 
detectable by a frequentist analysis. 

Although two previous studies have reported an 
intentional boost to causal binding (Buehner, 2015; 2012), it 
is still unclear how causal and intentional binding relate to 
each other. The causal ratings obtained here appear to rule 
out the possibility that participants perceived stronger causal 
relationships between the two events when the cause was 
self-initiated, so the intentional boost cannot be attributed to 
enhanced causal impressions following self-initiated vs 
mechanical causal actions. Instead, our findings suggest 
three possibilities. The first is that there may be two, 
separate causal and intentional binding effects, of differing 
strengths and with different roots, acting independently. 
This appears unlikely, however, in light of previous research 
suggesting that temporal binding does not occur in the 
absence of causality (Moore, Langado, Deal & Haggard, 
2009; Buehner & Humphreys, 2009). Such findings indicate 
that the temporal binding effect is inextricably linked to 
perceived causality; specifically, that causality is necessary 
for the binding to occur.  

An alternative explanation may be that causal binding and 
the intentional boost are a product of the same Bayesian 
processes, specifically, Bayesian cue integration. Humans 
appear to integrate information from multiple sensory cues 
in a manner that is statistically optimal: Ernst & Banks 
(2002) found that when judging the height of a stimulus 
based on visual and haptic information, participants attached 

more weight to the cue that has lower variance. Moore, 
Wegner & Haggard (2009) suggested that Bayesian cue 
integration may also govern our sense of agency. Just as 
multiple sensory cues contribute to our judgment of physical 
properties such as size or shape, the perception of 
intentionality results from multiple cues, both internal (e.g. 
forward model predictions) and external (sensory cues). 
Applying this rationale to temporal binding, one could argue 
that the size of the effect depends on the noisiness of 
perceptual cues – specifically, the (perceived) times of the 
action and its consequence. One would expect that if prior 
expectation of the time of an effect is determined to some 
extent by the time of its cause, increased certainty in the 
time of the cause would lead to an increased weight being 
attached to it. Specifically, the shift in the perceived time of 
the effect (towards the cause) would be greater, the more 
certain one was about the time of the cause. While both the 
manual and mechanical actions were equally predictable in 
this experiment, participants had additional internal cues to 
the onset of their own action than to an observed mechanical 
event. It would be expected that the combination of these 
cues and visual feedback would lead to a more reliable and 
less variable percept of the time of the self-cause relative to 
the time of the machine-cause. As the expected time of the 
second event must be determined by the time of the first 
event (the cause is predictive of the effect), a more reliable 
percept of the time of the cause would lead to a more 
reliable prior for the time of the second event, which would 
be weighted more heavily against new cues to the time of 
the second event. This in turn would result in a greater 
backwards shift of the perceived time of the effect in the 
self-causal compared to the mechanical-causal condition. In 
line with this idea, Zhao et al. (2016) found greater temporal 
binding when participants had tactile cues to the time of the 
cause (key-press), compared with an action without tactile 
feedback (key release).  

However, greater certainty in the time of the first action 
would also mean that it is less liable to be biased by the time 
of the second event. Altogether, Bayesian cue integration 
would thus be expected to lead to a lesser forward shift in 
the perceived time of the self- compared to the mechanical-
cause, but a greater shift in the perceived time of the 
consequence towards a self- compared to a mechanical-
cause. Thus, Bayesian cue integration based purely on the 
noisiness of the temporal cues leads to two distinct shifts in 
event perception working in opposite directions. We would 
argue that in addition to perceptual cues, the Bayesian 
integration process also takes into account expectations of 
cause-effect contiguity, in line with Hume’s (1888) 
principles of causal inference. Crucially, that causes are 
predictive of their effect forms a key part of how we 
perceive causality; we perceive one event as causing another 
when it comes before it, when the second event occurs close 
in time to the first event and when the second event is 
contingent upon the first. The cause is thus more predictive 
of the effect than vice versa. These assumptions, however, 
do not necessarily accompany the perception of events 
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which are not causally related (e.g. a non-causal sequence of 
events). Furthermore, previous research (e.g. Haggard et al., 
2002) has shown that outcome binding (i.e. shifts in the 
awareness of an outcome towards its cause) is typically 
greater than action binding (shifts in the awareness of a 
causal action towards its consequence). Therefore, the 
combined influence of the nature of causal relationships and 
the perceptual differences between self-action and 
mechanical actions may explain the presence of both causal 
binding and an intentional boost in our findings, within a 
single model.  
 More research is needed to determine what underlies the 
intentional boost to causal binding. The majority of research 
investigating the effect of agency on temporal binding to 
date has failed to take account of the potential role of 
causality: This is evidenced by failure to include adequate 
non-causal control conditions (e.g. Caspar, Christensen, 
Cleeremans & Haggard, 2015; Zhao et al, 2016), or to 
obtain causal ratings as manipulation checks (e.g. Haggard 
et al, 2002). The present findings demonstrate the 
importance of control conditions in temporal binding, 
without which a reduced magnitude of temporal binding is 
indistinguishable from the absence of temporal binding. In 
particular, if there is indeed an intentional boost to causal 
binding, this calls for a reinterpretation of research 
suggesting there is no temporal binding effect in the absence 
of intentional action. 
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Abstract 

Previous studies have shown that individuals often make 
inferences based on heuristics using recognition, fluency, or 
familiarity. In the present study, we propose a new heuristic 
called familiarity-matching, which predicts that when a decision 
maker is familiar (or unfamiliar) with an object in a question 
sentence, s/he will choose the more (or less) familiar object from 
the two alternatives. We examined inference processes and 
ecological rationality regarding familiarity-matching through 
three studies including behavioral experiments and ecological 
analyses. Results showed that participants often used familiarity-
matching in solving difficult binary choice problems, and that 
familiarity-matching could be applied in an ecologically rational 
manner in real-world situations. A new perspective on human 
cognitive processes is discussed in this study.  

Keywords: binary choice task; heuristic; familiarity; 
familiarity-matching; ecological rationality 
 

Introduction 

When making decisions, individuals often use simple 

inference strategies such as heuristics. In the field of 

heuristics research, many researchers initially focused on 

cognitive biases involved in heuristics (e.g., Tversky & 

Kahneman, 1973, 1974, 1983). In contrast, recent studies 

have discussed the adaptive aspect of heuristics (e.g., 

Gigerenzer & Goldstein, 1996; Gigerenzer & Todd, 1999; 

Goldstein & Gigerenzer, 2002). Some studies investigated 

human inference cues or inference strategies using binary 

choice tasks (e.g., Goldstein & Gigerenzer, 2002; Hertwig, 

Herzog, Schooler & Reimer, 2008; Honda, Abe, Matsuka & 

Yamagishi, 2011; Honda, Matsuka & Ueda, in press). These 

studies showed that subjective memory experiences, such as 

recognition, fluency, or familiarity of an object could be 

valid inference cues. For example, in the binary choice task, 

“Which city has a larger population, Tokyo or Chiba?” 

when a decision maker recognizes (or is more fluent or 

familiar with) Tokyo and does not recognize (or is less 

fluent or familiar with) Chiba, s/he tends to choose the 

recognized (or the more familiar or fluent) city –as the one 

with a larger population size. An interesting observation is 

that, in many cases, this simple inference can often lead to 

correct inferences. Thus, a simple heuristic using subjective 

memory experiences can be ecologically rational (e.g., 

Goldstein & Gigerenzer, 2002; Hertwig et al., 2008; 

Schooler & Hertwig, 2005; Honda et al., in press).  

Choice of an object based on similarity of 

familiarity: Familiarity-matching 

So far, previous studies have investigated the effects of 

subjective memory experience for finding correct 

alternatives in a binary choice task. However, if the 

familiarity of an object in alternatives can serve as a valid 

inference cue, it is possible that the same holds true for the 

familiarity of an object in a question sentence. For example, 

if we consider the binary choice task, “Which country is 

Hameln in, Germany or Liechtenstein?” A decision maker 

may infer it as “I have heard the name ‘Hameln’ and I am 

familiar with this city. Further, I am more familiar with 

Germany than Liechtenstein; therefore, Hameln should be in 

Germany!” In this case, the decision maker chose the more 

familiar alternative because the familiarity of the chosen 

alternative was similar to that of the object in the question 

sentence. Likewise, in the task, “Which country is 

Schellenberg in, Germany or Liechtenstein?” A decision 

maker may infer it as “I have never heard the name 

‘Schellenberg’ and I am unfamiliar with the city. Further, I 

am less familiar with Liechtenstein than Germany; therefore, 

Schellenberg should be in Liechtenstein!” In this case, the 

decision maker chose the less familiar alternative because 

the two objects were similarly unfamiliar. A decision maker 

may thus use an inference strategy like “matching 

familiarity” between an object in the question sentence and 

another object in the alternatives. That is, a decision maker 

makes inferences based on similarity of familiarity between 
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objects. Similarity judgments are closely connected to 

decision making and similarities between the familiarity of 

an object in a question sentence and that of an object in 

alternatives may become an important cue for making 

decisions. In fact, a recent study (Hiatt & Trafton, in press) 

has shown that familiarity can be one of the most important 

cues in similarity judgments.  

Based on these considerations, we propose a new 

heuristic termed as familiarity-matching: If an object in a 

question sentence is familiar (or unfamiliar) for a decision 

maker, then s/he will choose the more (or less) familiar 

object from the two alternatives in a binary choice task. The 

goal of this study was to examine if cognitive processes in 

binary choice can be explained in terms of familiarity-

matching and to investigate its ecological rationality. In the 

following sections, we shall report on three studies. In Study 

1, we conducted a behavioral experiment and examined if 

familiarity-matching could adequately explain inference 

processes. In Study 2, we examined the ecological 

rationality of familiarity-matching. Finally, in Study 3, we 

analyzed the real-world environment in terms of familiarity. 

Study 1: Examination of inference processes  

The purpose of Study 1 was to investigate if individuals 

tend to rely on familiarity-matching in a binary choice task.  

Method 

Participants Japanese under graduate students (N = 31) 

participated in this study.     

Tasks, materials, and procedure We conducted the binary 

choice task and the measurement of familiarity. 

In the binary choice task, participants answered 100 

binary choice questions. All question sentences had the 

following format: “X is a city in, country A1 or A2?” (e.g., 

“Sikasso is a city in, Mali or Switzerland?”). The order of 

the 100 questions was randomized (see Appendix for the 

procedure to generate the questions). For each question, 

participants were also asked to rate the difficulty level in 

answering the question using a visual analog scale (VAS). 

The scale consisted of a horizontal line labeled “very easy” 

on the left end and “very difficult” on the right end. 

Participants’ responses were recorded over a range of 101-

points (i.e., from 0 = “very easy” to 100 = “very difficult”).  

In the measurement of familiarity, participants were 

asked to indicate how familiar they were with each object 

presented in the binary choice task (i.e., 20 countries and 

100 cities) using a VAS. Participants’ responses were 

recorded over a range of 101-points (i.e., from 0 = “do not 

know at all” on the left end of the scale to 100 = “know 

much” on the right end of the scale).  

We conducted the above two tasks using a questionnaire. 

Participants completed the binary choice task followed by 

the measurement of familiarity. 

Results  

Hereafter, the familiarity ratings for the object in the 

question sentence and for the two objects presented as 

alternatives are expressed as “Fam(Q),” “Fam(A1),” and 

“Fam(A2),” respectively. In the following analyses, we 

excluded the questions in which Fam(A1) was identical to 

Fam(A2). 

Can familiarity-matching predict inference patterns? 

First, we analyzed the accordance rate of observed 

inferences with familiarity-matching for each participant. 

For example, when Fam(Q) = 45, Fam(A1) = 30, and 

Fam(A2) = 80, familiarity-matching predicts that the 

participant would choose A1. Figure 1 shows the 

accordance rate for each participant. In 29 out of the 31 

participants, accordance rates were above chance level. The 

mean accordance rate was .88. These results indicate that 

the observed choices were predicted accurately by 

familiarity-matching. 

 

 
Figure 1: Accordance rate of observed inferences with 

familiarity-matching (individual data). The red line denotes 

chance level (.50) and the dotted line shows the mean 

accordance rate (.88). 

 

Does the difficulty of a problem affect the use of 

familiarity-matching? Previous studies have shown that 

individuals do not always use heuristics but tend to rely on 

them for solving a difficult problem (e.g., Kahneman & 

Frederick, 2005; Honda et al., in press). Therefore, we 

examined if experiencing difficulty in a problem affected 

the use of familiarity-matching. We defined a dichotomized 

difficulty rating, high or low difficulty, based on the 

difficulty ratings being above or below the median for each 

participant. Hereafter, a problem assigned a rating above the 

median is expressed as “difficult problem” and a problem 

assigned a rating below the median as “easy problem”. We 

examined the use of familiarity-matching for both types of 

problems.  

Some researchers have debated that accordance rates are 

not always a good indicator for examining if individuals 

“truly” use heuristics (e.g., Hilbig & Richter, 2011).  Thus, 

we used Discrimination Index (DI) (Hilbig & Pohl, 2008) as 
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an indicator of the blind usage of familiarity-matching by 

the participants. DI was calculated using the following 

equation:  

DI = (Hit) – (False Alarm)  

where (Hit) and (False Alarm) denote the proportion in 

which the accordance of a heuristic results in a correct or 

false inference, respectively. Since DI is defined as the 

difference between (Hit) and (False Alarm), DI ranges from 

–1 to +1. It is assumed that when a decision maker always 

follows a heuristic (i.e., s/he blindly uses a heuristic), DI 

should reach zero, as s/he uses the heuristic irrespective of 

its correctness, suggesting that s/he does not take advantage 

of specific knowledge relevant to the inference problem.  

For each participant, we calculated DI for the two 

problem types. Figure 2 shows the distributions of DI for 

the two cases. We found that DI for the difficult problem 

was generally lower than DI for the easy problem. We also 

found that the mean DI for the difficult problem was not 

significantly deviated from zero (Mean = .07, t(30) = 1.23, p 

= .23, Median = .06), while the mean DI for the easy 

problem was significantly deviated from zero (Mean = .41, 

t(30) = 6.47, p < .001, Median = .39). These results implied 

that individuals used memory-based simple heuristics when 

they experienced difficulty in solving inference problems, 

which was consistent with the previous finding in Honda et 

al. (in press). 

 

 
Figure 2: DI (Discrimination Index) for the difficult 

problem (left) and for the easy problem (right). 

 

Discussion  

In this behavioral experiment, the accordance rate of the 

prediction by familiarity-matching was sufficiently high 

(mean accordance rate = .88), showing that familiarity-

matching predicted inference patterns effectively. 

Furthermore, our findings implied that participants used 

familiarity-matching when they experienced difficulty in 

problems. These results suggest that individuals take 

advantage of the familiarity of objects in both question 

sentences and alternatives as a cue when making inferences. 

In the behavioral experiment, the materials used were 

selected by experimenters to serve as stimuli for the binary 

choice task. Therefore, the question of using familiarity-

matching in a binary choice task as a valid inference 

strategy remains open for evaluation. Thus, we examined 

the ecological rationality of familiarity-matching.  

Study 2: Analysis of ecological rationality 

The purpose of Study 2 was to examine if familiarity-

matching could serve as an ecologically rational strategy. In 

this study, we measured individuals’ familiarity of objects 

and then examined whether familiarity-matching was 

generally a valid inference strategy in a binary choice task. 

Method  

Participants Japanese under graduate students (N = 39) 

participated in the task. None of them had participated in 

Study 1. 

Materials, tasks, and procedure We used the 50 countries 

with the highest population in the world and their 50 

capitals as materials. We investigated the participants’ 

familiarity with each of the 100 objects (i.e., 50 cities and 

50 countries). We conducted the measurement of familiarity 

which was similar to the method used in Study 1.  

Analysis of the validity of familiarity-matching 
Familiarity ratings in Study 2 were converted into z-scores 

for each participant and the following analyses were 

conducted.  

We analyzed the validity of familiarity-matching in the 

binary choice task using the familiarity ratings for the 50 

countries and their capitals collected from participants. 

Specifically, we calculated the accuracy rate (i.e., validity) 

of familiarity-matching using the following procedure:  

1. A hypothetical binary choice task such as “X is a city 

in, A1 or A2?” was conducted and each problem “was 

inferred” based on Fam(Q), Fam(A1) and Fam(A2).  

2. For each question, if the absolute difference between 

Fam(Q) and Fam(A1) was less than that between 

Fam(Q) and Fam(A2), then A1 was selected, and vice 

versa (i.e., in the same manner as the prediction by 

familiarity-matching in Study 1).  

3. We applied the above two steps to all possible 

combinations (50 cities * 49 alternative pairs) using the 

familiarity ratings provided by each participant, and 

then calculated his/her accuracy rate. 

Results and discussion  

Figure 3 shows participant accuracy rates calculated as 

described above (N = 39). The horizontal and vertical axes 

shows the participants (individual data) and the accuracy 

rate, respectively, while the red line in the graph indicates 

chance level (.50). Participant accuracy rates (Mean = .67) 

exceeded the chance level for all participants. Therefore, it 

is suggested that participants can accurately “make correct 
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inferences” by matching more familiar objects in the binary 

choice task, even in the real-world environment. 

 

 
Figure 3: Accuracy rate of familiarity-matching by 

individual familiarity ratings. The red line denotes chance 

level (.50) and the dotted line shows the mean accuracy rate 

(.67). 

Study 3: Analysis of the real world  

According to previous studies (e.g., Goldstein & Gigerenzer, 

2002; Honda et al., in press), if a city or country appears 

more frequently in the real-world environment (e.g., 

mentioned in media), then individuals will be more familiar 

with it because they are more likely to see or hear the name. 

Therefore, it can be estimated that familiarity-matching can 

be applied effectively in the binary choice task when the 

frequency of appearance of the name of a city is correlated 

with that of the name of a country in the real-world 

environment.  

In this section, we investigated this issue using the 

following procedure. As an index of the frequency of 

appearance in the real-world environment, we used the log-

transformation of the mean number of hits for each object in 

two online databases of Japanese newspapers1. When we 

searched for objects in both databases, we traced back from 

the oldest to latest date as possible (see footnote) on national 

news. We converted the log-transformed index into z-scores, 

which were used in this analysis. 

First, we calculated the correlation coefficient between 

the number of hits for the 50 cities and that for the 50 

countries using z-scores. This correlation coefficient was .86 

(p < .001; 95% CI: .77 ~ .92; Figure 4). Therefore, it was 

found that the frequency of appearance of a city name in the 

media was highly correlated with that of the country name 

that corresponded to the city. 

 

                                                           
1 The two databases were “Kikuzo II Visual” (online database of 

Asahi Shimbun; date range: January 1, 1984 to May 23, 2016) and 

“Yomidasu Rekishikan” (online database of Yomiuri Shimbun; 

date range: January 1, 1986 to May 23, 2016).  

 

 
Figure 4: Correlation between the number of hits for cities 

and that for countries (log-transformed z-scores). 

 

Although the correlation between participants’ familiarity 

with an object and the number of appearances in the media 

has already been reported in previous studies (e.g., 

Goldstein & Gigerenzer, 2002; Schooler & Hertwig, 2005), 

we confirmed that we could replicate such a correlation in 

the present study. Subsequently, using z-scores, we 

calculated the correlation coefficient between participants’ 

familiarity with each object (z-scores of the mean 

familiarity ratings for 39 participants in Study 2) and the 

number of hits for each object. This correlation coefficient 

was .88 (p < .001; 95% CI: .84 ~ .92; Figure 5). Therefore, 

it was found that the more often an object appeared in the 

media, the more familiar with the object individuals were, 

which was consistent with previous studies.  

 

 
Figure 5: Correlation between familiarity of objects (z-

scores) and the number of hits for these objects (log-

transformed z-scores). 

 

The combined results of Study 2 and Study 3 suggest that 

familiarity-matching can be valid even in the real-world 

environment, as the frequency of appearance of a city name 

in the media is highly correlated with that of the 

corresponding country name, and individuals’ familiarity 

with an object is also highly correlated with its frequency of 

appearance in the media. In other words, since a more 

frequently appearing object in the environment is likely to 
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be more familiar for individuals, inferences based on 

similarity of familiarity can be valid in a binary choice task. 

Therefore, familiarity-matching can be applied as an 

ecologically rational strategy.   

 

General discussion  

In the present study, we proposed a new heuristic, 

familiarity-matching, which predicts that if an object 

presented in a question sentence is familiar for a decision 

maker, then s/he is likely to choose the more familiar object 

presented as alternatives in a binary choice task. The results 

of Study 1 showed that familiarity-matching could predict 

individuals’ inference patterns effectively. In particular, the 

results implied that individuals used familiarity-matching 

when they experienced difficulty in inference problems. In 

addition, the results of Study 2 and Study 3 showed that 

familiarity-matching could be an ecologically valid strategy 

in the binary choice task, because of the high correlations 

between the frequency of appearance of a city name and that 

of a country name, and between the frequency of 

appearance of an object and individuals’ familiarity with it.  

So far, only the use of “familiarity” in making inferences 

has been primarily examined. Generally, in a binary choice 

task, “familiarity” of an object can be an informative cue 

(e.g., Honda et al., 2011, in press). In a binary choice task, 

“unfamiliarity,” contrary to “familiarity,” is often 

considered uninformative in making inferences. The present 

findings, however, indicate that individuals can also use 

“unfamiliarity” as an informative inference cue. Familiarity-

matching can be applied for both, a familiar object and an 

unfamiliar object, in a question sentence. According to 

familiarity-matching, when presented with an unfamiliar 

object, a decision maker will infer the following: “The 

correct answer will also be the unfamiliar object.” In this 

situation, the “unfamiliarity” can become an informative cue. 

Perhaps, in cases where a decision maker uses 

“unfamiliarity” as an inference cue, the cognitive processes 

may differ from those involved in a situation where s/he 

uses “familiarity” as an inference cue. The present study did 

not examine this issue, which, therefore, should be 

investigated in the future.  

However, familiarity-matching still has some limitations 

in the practical aspect. The definition of the familiarity-

matching is limited to a binary choice task. We think that 

familiarity-matching can be applied to a multiple-choice 

task, because a decision maker has only to “match” 

familiarity of an object in a question sentence with that of 

an object in alternatives, no matter how many alternatives 

the task contains. However, it is not clear how familiarity-

matching can be extended to other more complex tasks, so 

we may also need to investigate this issue.  

To the best of our knowledge, the present study was the 

first study to examine the effect of familiarity of objects in a 

question sentence. We believe that focusing on the 

relationship between objects presented as both, a main 

theme (“question sentence,” in this study) and a supplement 

(“alternatives,” in this study), has revealed a new 

perspective on human inferences.  
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Appendix. Binary choice task 
The binary choice task (Study 1) was generated by 

following the four steps listed as under: 

 

1. For “objects presented as alternatives,” we selected 

20 countries (more than 2 countries from 5 regions: 

Asia, Europe, Africa, North America, and South 

America) and randomly assigned these 20 countries 

to 2 groups: “Alternative A1” and “Alternative A2” 

(each group consisted of different 10 countries).  

Alternative A1 Alternative A2 

America Canada 

Sweden Bolivia 

Mexico Italia 

Columbia Ukraine 

Holland Switzerland 

Egypt Iran 

Turkey Spain 

Saudi Arabia Kazakhstan 

Australia New Zealand 

Mali Morocco 

 

2. Using the groups, “Alternative A1” and “Alternative 

A2” described above, we created 10*10 = 100 pairs 

as alternatives for the binary choice task.  
 Alternative A1 Alternative A2 

1 Holland Iran 

2 Australia Bolivia 

3 Columbia Kazakhstan 

4 Saudi Arabia Morocco  

… 

98 Turkey  New Zealand 

99 Mexico Switzerland 

100 America Ukraine 

 

3. From each country (“objects presented as 

alternatives”), we selected 5 cities (total of 20*5 = 

100 cities) using the following criteria:  

(I) Out of the 5 cities, we selected the 2 cities with 

the largest population size in the country. 

(II) For the remaining 3 cities, we selected cities 

which satisfied following one (or more) of the 

following criteria: “is the high population size”, “its 

name is included in that of a historical treaty, 

conference, or a similar historical event,” “has a 

world heritage site,” or “has hosted the Olympic or 

the Paralympic Games.”  

Cities Countries 

New York America 

Washington D.C. America 

Portsmouth America 

San Francisco America 

Bretton Woods America 

Rapallo Italia 

Trent Italia 

Roma Italia 

Milano Italia 

Genova Italia 

Teheran Iran 

… 

Sikasso Mali 

Puebla Mexico 

Tlatelolco Mexico 

Guadalajara Mexico 

Monterrey Mexico 

Villahermosa Mexico 

Rabat Morocco 

Marrakesh Morocco 

Tangier Morocco 

Fes Morocco 

Casablanca Morocco 

Note: We provided criterion (II) for two reasons: First, if all 

alternatives consisted of top cities in terms of population, 

participants might be more likely to know the answer (i.e., 

to use knowledge-based inference cues instead of heuristics), 

as it seemed that larger cities were comparatively more 

famous. Second, we wanted to create objects presented as 

question sentences (i.e., cities) that would be the only 

familiar element for participants (i.e., when participants are 

only familiar with a city, they often do not know the country 

it belongs to). However, even if a city satisfied criterion (I) 

or (II), we excluded cities whose names included the name 

of the country (e.g., Mexico City) or were located in several 

countries (e.g., Melbourne is located not only in Australia 

but also in America).  

 

4. In order to make one of the two alternatives (from 

step 2) a correct answer, we placed a city (from step 

3) in “X” in each question sentence (“X is a city in,”).  
 Alternative A1 Alternative 

A2 

1. Ramsar is a city in,  Holland  Iran 

2. La Paz is a city in, Australia Bolivia 

3. Bogota is a city in,  Columbia Kazakhstan 

4. Rabat is a city in,  Saudi Arabia Morocco 

… 

98. Ankara is a city in,  Turkey New Zealand 

99. Villahermosa is a city in,  Mexico Switzerland 

100. Bretton Woods is a city in, America Ukraine 

Note: Sentences in the actual questionnaire were written in 

Japanese. 
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Abstract 

Collaboration is generally an effective means of learning new 
information, but is collaboration productive in domains where 
collaborators may hold qualitatively different conceptions of 
the domain’s causal structure? We explored this question in the 
domain of evolutionary biology, where previous research has 
shown that most individuals construe evolution as the uniform 
transformation of an entire population (akin to metamorphosis) 
rather than the selective survival and reproduction of a subset 
of the population. College undergraduates (n = 44) completed 
an assessment of their evolutionary reasoning by themselves 
(pretest), with a partner (dyad test), and several weeks later 
(posttest). Collaboration proved ineffective for the higher-
scoring partner in each dyad, as their scores generally remained 
unchanged from pretest to dyad test to posttest, but it proved 
effective for the lower-scoring partner. Not only did lower-
scoring partners increase their score from pretest to dyad test, 
but they maintained higher scores at posttest as well. Follow-
up analyses revealed that participants’ posttest scores were 
predicted by their partners’ pretest scores but only for lower-
scoring partners, and the relation was negative: the smaller the 
difference between pretest score, the greater the gain from 
pretest to posttest for lower-scoring partners. These findings 
indicate that collaboration in domains characterized by 
conceptual change is possible, but that learning from such 
collaboration is asymmetric (i.e., individuals with low levels of 
understanding benefit more than their partners do) and unequal 
(i.e., individuals with low levels of understanding benefit more 
if their partner’s understanding is only moderately higher). 
Thus, bridging the gap between a novice’s view of a 
conceptually complex domain and an expert’s view appears to 
require instruction more aligned with the former than the latter. 

Keywords: collaboration, conceptual development, science 
learning, intuitive theories, evolutionary reasoning 

Introduction 

Some ideas are more difficult to learn than others. Ideas that 

can be encoded in terms of preexisting concepts, like the 

name of an unfamiliar animal or the function of an unfamiliar 

artifact, are much easier to learn than ideas that require new 

concepts for their encoding, like the reason the seasons 

change or the reason projectiles fall to the ground in a 

parabolic path. Learning the latter requires conceptual 

change, or knowledge restructuring at the level of individual 

concepts (Carey, 2009; Chi, 1992). Conceptual change is an 

intrinsic part of science learning. Most domains of science 

entail entities, properties, and mechanisms that defy our 

intuitive knowledge of how the world works and can only be 

represented if that knowledge is reorganized and restructured 

(Nersessian, 1998; Vosniadou, 1994). 

Conceptual change is empirically distinguishable from 

other forms of knowledge acquisition in that it results in 

systematic failures of teaching and learning. In domains 

requiring conceptual change, individuals who have yet to 

undergo that change exhibit misconceptions about the 

domain’s content that are internally coherent and 

developmentally widespread. These misconceptions are 

robust in the face of counterevidence or counterinstruction, 

and they create impasses in communication between those 

who have achieved conceptual change and those who have 

not (for reviews, see Carey, 2009; Shtulman, 2017). 

Consider the domain of evolutionary biology—the domain 

of choice in the present study. Evolution results from 

differential survival and differential reproduction within a 

population; the traits possessed by the most reproductively 

successful individuals spread through the population over 

time. Most people, however, view evolution as the uniform 

transformation of an entire population, where every organism 

is guaranteed to have offspring more adapted to the 

environment than it was at birth (Bishop & Anderson, 1990; 

Shtulman, 2006). This view is grounded in the commonsense 

assumption that all members of a species share the same inner 

nature, or essence, which determines their outward 

appearance and behavior (Gelman, 2003; Shtulman & 

Schulz, 2008). Evolution is thus seen as a kind of cross-

generational metamorphosis; selection plays no role in the 

process. This essentialist view of evolution has been 

documented in people of varying ages (Berti, Toneatti, & 

Rosati, 2010; Shtulman, Neal, & Lindquist, 2016) and 

educational backgrounds (Coley & Tanner, 2015; Gregory & 

Ellis, 2009), and it characterizes how a person reasons about 

several aspects of evolution, including variation, inheritance, 

adaptation, domestication, speciation, and extinction 

(Shtulman & Calabi, 2013).  

The focus of the current study is a particular hallmark of 

conceptual change: impasses in communication between 

those who have achieved conceptual change and those who 

have not. Such impasses have been observed in conversations 

between children and adults (e.g., Carey, 1985), in 

conversations between science students and science teachers 

(e.g., Wiser & Amin, 2001), and in conversations between 

scientists working within different theoretical paradigms 

(e.g., Kuhn, 1977). Such impasses are often encountered in 

the context of learning—e.g., a child learning about the 

properties of living things from a parent or a student learning 

about the properties of thermal systems from a teacher—but 

it is unclear how they affect learning. Achieving conceptual 

change requires overcoming the conceptual gap responsible 

for the impasse, but how and with whom? 

Conceptual impasses in communication are particularly 

important to study in light of the finding that learning is often 

facilitated through collaboration. For many types of inductive 

problems, individuals who collaborate on those problems are 

3149



more likely to solve them—and learn from them—than 

individuals who work alone (Gauvain & Rogoff, 1989; 

Laughlin, Vanderstoep, & Hollingshead, 1991; Leman, 

Skipper, Watling, & Rutland, 2016). Collaboration is 

effective for several reasons. It opens partners’ eyes to ideas 

they would not have generated on their own, highlighting 

alternative approaches to the same problem (Schwarz, 

Neuman, & Biezuner, 2000; Young, Alibali, & Kalish, 2012) 

or alternative explanations for the same phenomenon (Ames 

& Murray, 1982; Howe, 2009). It forces collaborating 

partners to articulate their reasons for endorsing a particular 

hypothesis or favoring a particular solution strategy and 

defend those reasons with evidence (Okada & Simon, 1997; 

Teasley, 1995). And it introduces social incentives for 

completing the task at hand, increasing partners’ motivation 

to persist in the face of unexpected obstacles (Butler & 

Walton, 2013). 

Given the pedagogical benefits of collaboration, we sought 

to determine whether collaboration is useful—or even 

possible—in domains requiring conceptual change. The 

answer to this question has both practical and theoretical 

implications. From a practical point of view, educators who 

instruct students on topics requiring conceptual change (e.g., 

evolution, microbiology, mechanics, thermodynamics, 

fractions) would benefit from knowing whether collaboration 

is an effective instructional strategy or a dead end. From a 

theoretical point of view, models of conceptual change would 

be further informed by research clarifying which kinds of 

input foster conceptual change and which do not. Parent-child 

conversation, for instance, is a form of collaboration that may 

help foster conceptual change (Gunderson & Levine, 2011; 

Jipson & Callanan, 2003), but it is unclear how beneficial this 

activity is relative to other domain-specific activities (e.g., 

refutation-based instruction, inquiry-based instruction, 

informal exploration). 

Previous studies have found that collaboration in 

conceptually complex domains can be successful. For 

instance, Asterhan and Schwarz (2007) found that 

undergraduates who collaborated on devising evolutionary 

explanations for two instances of biological adaptation 

(mosquitos developing resistance to an insecticide, cheetahs 

acquiring the ability to run faster than any other mammal) 

provided more sophisticated (selection-based) explanations 

for biological adaptation from pre-collaboration to post-

collaboration. Likewise, Loyens, Jones, Mikkers, and van 

Gog (2015) found that undergraduates who collaborated on 

determining the paths traced by three projectiles (a child 

jumping from a swing, an object falling on someone’s head, 

a coyote falling from a cliff) drew more accurate motion 

paths from pre-collaboration to post-collaboration. In both 

the domain of evolution and the domain of motion, learning 

a correct, scientific view of the domain is difficult to achieve; 

direct (lecture-based) instruction on these topics has typically 

proven unsuccessful (see Shtulman, 2017, for a review). 

These studies demonstrate that collaboration can facilitate 

learning in domains characterized by conceptual change, but 

they are limited in that they explored only one aspect of those 

domains—explanations for adaptation in the study by 

Asterhan and Schwarz (2007) and trajectories of projectile 

motion in the study by Loyens et al. (2015). The present study 

explored whether collaboration is effective for learning 

several facets of a conceptually complex domain—namely, 

the phenomena of variation, inheritance, adaptation, 

domestication, speciation, and extinction within the domain 

of evolutionary biology. We chose this domain because its 

content is notoriously difficult to understand and because 

individuals who are asked to reason about domain-relevant 

problems would most likely hold different levels of 

understanding. Collaboration under these circumstances thus 

provides a stringent test of whether, and how, collaboration 

can facilitate conceptual change. 

Method 

Participants 

The participants were 44 college undergraduates, recruited 

from introductory psychology and cognitive science courses 

and compensated either with extra credit in those courses or 

with a small stipend. They were taken from a larger dataset 

of 174 participants, assigned to one of 87 dyads. All 

participants in the larger dataset were invited to complete a 

posttest (for a $12 Amazon gift card) but only 44 did. Those 

44 came from 36 different dyads. Approximately half were 

the higher-scoring partner in their dyad (n = 25) and half were 

the lower-scoring partner (n = 19). In other words, 

approximately half collaborated with a partner who 

demonstrated a higher level of understanding prior to the 

collaboration, and half collaborated with a partner who 

demonstrated a lower level of understanding. 

The 44 participants who completed a posttest earned 

similar pretest scores to those who did not complete a 

posttest. That is, the 19 low scorers who completed a posttest 

scored similarly to the 68 who did not (M = 9.4 vs. M = 9.7, 

t(85) = 0.22, p = 0.83), and the 25 high scorers who 

completed a posttest scored similarly to the 62 who did not 

(M = 17.1 vs. M = 15.9, t(85) = 1.13, p = 0.26). While there 

may be motivational differences between those who opted to 

complete a posttest and those who did not, there were no 

reliable knowledge differences between the groups (relative 

to participants’ classification as a low scorer or a high scorer). 

Materials 

Participants were assessed on their understanding of 

evolution using an instrument developed by Shtulman 

(2006). The assessment consisted of six sections, each 

devoted to a different biological phenomenon (inheritance, 

variation, adaptation, domestication, speciation, and 

extinction). Participants’ understanding of the phenomenon 

was assessed with five questions or tasks designed to elicit 

either an essentialist interpretation or a selection-based 

interpretation. 

With respect to inheritance, for instance, participants were 

asked to make predictions about parent-offspring 

resemblance with questions like the following: “Imagine that 
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biologists discover a new species of woodpecker that lives in 

isolation on a secluded island. These woodpeckers have, on 

average, a one-inch beak and their only food source is a tree-

dwelling insect that lives, on average, one-and-a-half inches 

under the tree bark. Compared to its parents, the offspring of 

any two woodpeckers should develop: (a) a longer beak, (b) 

a shorter beak, or (c) either a longer beak or a shorter beak; 

neither is more likely.” The correct response is (c), because 

offspring vary randomly from their parents, but most people 

select (a), reasoning that offspring will inherit whatever traits 

will help them survive—traits conferred by an underlying 

essence that adaptively changes in response to the species’ 

current needs. 

As another illustration, consider this task designed to probe 

participants’ understanding of within-species variation: 

“During the 19th century, England’s native moth species, 

Biston betularia, evolved darker coloration in response to the 

pollution produced by the Industrial Revolution. Imagine that 

biologists gathered a random sample of Biston betularia once 

every 25 years from 1800 to 1900. What range of coloration 

would you expect to find at each point in time?” Participants 

were given a five-by-five matrix of moth outlines and 

instructed to shade the moths to reflect what the moths might 

look like at 1800, 1825, 1850, 1875, and 1900. The two most 

common response patterns are depicted in Figure 1. The 

pattern on the left depicts a mutation for darker coloration 

spreading through the population over time and is consistent 

with a selection-based view of evolution. The pattern on the 

right depicts the uniform transformation of the population, 

such that variation occurs between generations but not within 

generations, and is consistent with an essentialist view. 

 

 
 

Figure 1: A selection-based response pattern (left) and an 

essentialist response pattern (right) on the moth-shading 

task of the evolution comprehension assessment. 

 

The full battery of questions can be found in the Appendix of 

Shtulman (2006), along with criteria for scoring each 

question or task. Participants were assigned 1 point for every 

correct. selection-based response and 0 points for every 

incorrect, essentialist response. Responses too vague to be 

counted as selection-based, were also assigned 0 points. 

Participants’ scores thus ranged from 0 to 5 per section and 

from 0 to 30 for the assessment as a whole. 

Procedure 

The evolution comprehension assessment was administered 

on a computer. It took between 30 and 45 minutes to 

complete, and participants completed it twice by themselves 

(pretest and posttest) and once with a partner (dyad test). 

Participants were tested in pairs in a room in the Psychology 

Department. They completed the pretest by themselves, and 

they completed the dyad test together immediately following 

the pretest. Participants typically did not know their dyad 

partner, and they were given no instruction on how to 

coordinate their responses. They were simply asked to 

complete the survey as a pair, on a single computer. Their 

conversations were recorded and transcribed at a later date. 

(Data from the conversations are not reported here, for lack 

of space). 

The posttest was administered one semester (i.e., half a 

year) after the dyad test. The average delay between dyad test 

and posttest was 7.6 months, and the delay for the high 

scorers was equivalent to the delay for the low scorers (M = 

6.8 vs. M = 8.8, t(42) = 1.13, p = .138). Effects of 

collaboration detectable after half a year arguably represent 

long-term changes in understanding, as participants’ memory 

for the episodic details of the collaboration session would 

likely have faded. 

Results 

For the analyses below, we used linear mixed models 

(LMMs) with random-effects structures specified according 

to the procedure recommended by Bates and colleagues 

(Bates et al., 2015). We used likelihood ratio-test (LRT) 

comparisons and 95% confidence intervals (CI) for inference. 

Evolution Scores at Pretest, Dyad Test, and Posttest 

Overall assessment scores at pretest, dyad test, and posttest 

are shown in Figure 2 (left panel). Dyads generated higher 

scores than individuals at pretest, β = 2.16, 95% CI [.27, 

4.05]. However, individuals’ posttest scores were similar to 

their pretest scores, β = .91, 95% CI [-.98, 2.80]. 

Low- versus High-Scoring Partners 

An individual’s ability to profit from collaboration likely 

depends on both their own prior knowledge and their 

partner’s prior knowledge. For example, individuals paired 

with partners that demonstrated greater conceptual 

knowledge of evolution at pretest might have a greater 

opportunity to learn from collaboration than those paired with 

partners with less conceptual knowledge. To explore this 

possibility, we categorized participants in terms of whether 

they were the lower or higher scoring partner in their 

respective dyads at pretest. Figure 2 shows pretest, dyad test, 

and posttest scores for lower-scoring partners (middle panel) 

and higher-scoring partners (right panel). There was an 

interaction between scoring status and test, LRT χ2(2) = 

20.13, p < .001. For high-scoring partners, pretest, dyad test, 

and posttest scores were similar. However, for low-scoring 

partners, dyad tests were greater than pretests, β = 6.53, 95% 
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CI [3.92, 9.13], and posttests were greater than pretests, β = 

3.37, 95% CI [1.87, 7.08]. 

Low- versus High-Scoring Partners by Section 

Only 5 of the 44 participants demonstrated consistently 

greater or poorer pretest performance than their partner 

across all six sections of the assessment. Categorizing 

participants as low- or high-scoring by section potentially 

provides a more nuanced view of performance than overall 

pretest scores. Figure 3 shows lower- and higher-scoring 

partners’ pretest, dyad test, and posttest scores for each of the 

six sections. A three way interaction between scoring status, 

test, and section suggested variation in low and high scorers’ 

learning across section, LRT χ2(10) = 19.10, p = .0317. 

Scores for Inheritance and Speciation demonstrated little 

pretest to posttest change for both low and high scorers. Most 

consistent with the overall assessment, lower scorers 

demonstrated pretest to posttest gains for Domestication, β = 

1.50, 95% CI [.54, 2.46], and Extinction, β = .76, 95% CI [-

.02, 1.55], whereas high scorers had similar pretest and 

posttest scores. Low scorers again demonstrated pretest to 

posttest gains for the Adaptation, β = 1.71, 95% CI [.84, 

2.57], and Variation, β = 1.43, 95% CI [.47, 2.38]. However, 

high scorers surprisingly demonstrated pretest to posttest 

losses for Adaptation, β = -1.50, 95% CI [-2.26, -.74], and 

Variation, β = -1.21, 95% CI [-2.03, -.39]. 

Predicting Posttest Scores 

For low scorers, collaborating with a more advanced partner 

yielded pretest to posttest improvement in 4 out of 6 sections. 

For high scorers, collaborating with a less advanced partner 

yielded pretest to posttest decline in 2 out of 6 sections. These 

results suggest that participants’ posttest performance was 

influenced both by their own understanding of the domain 

and by their partner’s understanding. 

To explore this possibility further, we fit an LMM on 

posttest scores (by section) with participant pretest scores, 

partner pretest scores, scoring status (high vs. low within a 

participant’s respective dyad), and their interactions as fixed 

effects. Participant pretest score was a positive predictor of 

posttest score, β = .38, 95% CI [.08, .67], and did not interact 

with scoring status. In contrast, partner pretest score 

interacted with scoring status, LRT χ2(1) = 3.86, p = .049. 

Partner pretest scores were not predictive of posttest scores 

for high scorers, β = .08, 95% CI [-.15, .31]. However, partner 

pretest scores were negatively related to posttest scores for 

low scorers, β = -.22, 95% CI [-.43, .00]. Thus, it appears that 

low scorers learned more from partners with slightly greater 

knowledge than themselves at pretest compared to partners 

with much greater knowledge. 

Discussion 

Collaboration is an effective and efficient means of devising 

new hypotheses (Okada & Simon, 1997) and learning new 

problem-solving strategies (Schwarz et al., 2000), but is 

collaboration possible in domains where individuals are 

known to hold vastly discrepant views of the domain’s causal 

structure? The answer appears to be yes. Individuals who 

collaborated on tasks within the domain of evolutionary 

biology—a domain characterized by qualitatively different 

theories of what evolution is and how evolution works 

(Shtulman, 2006)—demonstrated a higher level of 

understanding together than they did individually. This 

finding was far from guaranteed given the content of the task. 

When partners disagreed, their disagreements typically 

reflected fundamental differences in their understanding of 

the task domain. Resolving those disagreements entailed 

more than just recognizing who knew the answer. It entailed 

recognizing which of two answers—a selection-based answer 

and an essentialist answer—was more plausible or justifiable. 

 Collaboration not only facilitated more accurate 

responding, it also facilitated learning, though the effects 

were nuanced. Individuals who entered the collaboration with 

lower levels of understanding demonstrated increased 

understanding at posttest (several months later), whereas 

individuals who entered the collaboration with higher levels 

of understanding demonstrated no gains at posttest. 

The learning exhibited by less-knowledgeable partners was 

generally robust across different sections of the assessment, 

as was the stasis exhibited by more-knowledgeable partners. 

That said, there were some sections on which the less-

knowledgeable partners exhibited no gains from pretest to 
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Figure 2. Mean evolution score at pretest, dyad test, and posttest for all participants, low scoring participants, and high 

scoring participants. Error bars represent ± SE. 
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posttest and some sections on which the more-knowledgeable 

partners exhibited losses from pretest to posttest. 

Collaboration in conceptually complex domains may thus 

hinder learning for some individuals in some contexts. Still, 

the net benefits of collaboration were positive, which is a 

surprising finding given that (a) collaborators often had to 

communicate across a conceptual divide and (b) the 

collaboration itself consisted solely of discussion. There were 

no opportunities to generate evidence or test hypotheses, 

which suggests that such activities may not be necessary for 

learning in cases where the primary intellectual challenge is 

just interpreting what one’s partner is saying. 

Perhaps the most provocative finding was that, among 

participants who learned from collaboration (the low 

scorers), those who learned the most collaborated with   

partners who had moderately higher levels of understanding. 

Individuals who collaborated with partners with substantially 

higher levels of understanding benefited less, at least by 

posttest. This finding, though tentative, may have resulted 

from differential impasses in communication; the greater the 

discrepancy between partners’ understanding of the domain, 

the more likely they encountered impasses in communication 

and the more strained their collaboration may have become. 

Consider, for instance, the following conversation between a 

participant who earned a pretest score of 19 (P1) and one who 

earned a pretest score of 2 (P2) about the woodpecker 

question presented above: 

 

P1: Alright, for the first one I put either a shorter or longer 

beak because it says compared to its parents, and compared 

to its parents it pretty much has the same beak because it 

has the same genes. 

P2: Okay. Hmm. I put longer beak ... because, yeah, they 

have to eventually evolve into the thing, but I can see what 

you are saying about, like, it wouldn’t take one generation. 

P1: Well ... the next generation would end up with a longer 

beak, but this one particular woodpecker would have the 

same [beak] as its parents, if you understand what I’m 

saying. The generations would get longer beaks because 

the ones with the shorter beaks will be killed off. [But] no 

matter what, the offspring are gonna have beaks pretty 

much the same as its parents. 

P2: Okay, I see what you’re saying. Yeah, I guess I just 

assumed that they would interbreed or they would have a 

woodpecker from a different... Okay, I see what you’re 

saying. 

 

P2 claims to understand what P1 is saying, but P2’s attempts 

to resolve the discrepancy—by acknowledging P2’s answer 

as correct on the assumption that “it wouldn’t take one 

generation” or that birds with different beak lengths did not 

“interbreed”—do not actually address P2’s point that 

evolutionary change occurs at the population level, not the 

individual level. This type of impasse may be more common 

in conversations between partners with discrepant levels of 

understanding than in conversations between partners with 

similar levels of understanding, though confirmation of this 

pattern awaits further analysis of the conversational data.  

The finding that participants benefited most from 

collaborating with individuals who were only moderately 

more knowledgeable about the domain helps answer the 

question of how individuals are able to communicate across 

a gap in conceptual understanding. Communication may be 

possible only if the gap is not too wide; wider gaps may lead 

to irreconcilable differences in how partners perceive or 

analyze the problems at hand. We plan to test this idea 

directly by analyzing the dynamics of participants’ 

conversations in relation to their score differences from 

pretest to dyad test and from pretest to posttest. Previous 

research on how domain experts converse with domain 

novices suggests that the experts supply novices with 
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specialized knowledge, in the moment, by adjusting how they 

label or how they describe objects of shared attention (Clark 

& Schaefer, 1989; Isaacs & Clark, 1987). However, such 

studies have involved domains in which the difference 

between a novice’s knowledge and an expert’s knowledge is 

quantitative rather than qualitative (e.g., knowledge of New 

York City landmarks). It remains an open question how 

domain novices and domain experts are able to bridge 

differences in knowledge, through discourse patterns, when 

that knowledge entails conceptual change. 
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 Abstract 

Making analogies is an important way for people to explain 

and understand new concepts. Though making analogies is 

natural for human beings, it is not a trivial task for a dia-

logue agent. Making analogies requires the agent to estab-

lish a correspondence between concepts in two different 

domains. In this work, we explore a data-driven approach 

for making analogies automatically. Our proposed approach 

works with data represented as a flat graphical structure, 

which can either be designed manually or extracted from In-

ternet data. For a given concept from the base domain, our 

analogy agent can automatically suggest a corresponding 

concept from the target domain, and a set of mappings be-

tween the relationships each concept has as supporting evi-

dence. We demonstrate the working of this algorithm by 

both reproducing a classical example of analogy inference 

and making analogies in new domains generated from 

DBPedia data. 

 

Keywords: creativity; analogy; intelligent agents 

 Introduction  

This work proposes a data-driven approach for dialogue 

agents to make analogies between concepts. Analogies 

describe the comparative relationships between two sets of 

concepts, i.e. concepts A and B are related in a similar way 

to how concepts C and D are related. Analogies are widely 

used in writings and dialogues for explaining new concepts 

or for making the narration more vivid and more interest-

ing. Typically, one set of concepts is more familiar to the 

audience than the other. Analogies can, therefore, help the 

audience understand concepts in unfamiliar domains.  

 Though making analogies is natural for human beings, it 

is not a trivial task for dialogue agents. There are at least 

two challenges associated with this task. One is how to 

find out and represent what people know about a domain. 

The other is the computational complexity of establishing 

mappings between two domains. Both challenges become 

more significant when the domains the agent tries to make 

analogies with are not defined explicitly.  For example, it is 

much harder to represent what people know about music 

genres than linear algebra. There is both more uncertainty 

and more information in the first case. In addition, there 

may be multiple good mappings between the concepts in 

the two domains. For example, one’s life can both be  

 

mapped to a tree or a road depending on the purpose of 

making the analogy. 

 Many cognitive theories have been proposed for ex-

plaining how people form analogies (Keane, 2012; Ku-

bose, Holyoak, & Hummel, 2002; Larkey & Love, 2003). 

Structure-Mapping Theory (SMT) is one of most influen-

tial theories for analogies and has been supported by a 

number of empirical studies using human subjects 

(Falkenhainer, Forbus, & Gentner, 1989; Gentner, 1983; 

Gentner & Smith, 2012). According to SMT, an analogical 

mapping is created by establishing a structural alignment 

of relationships between two sets of concepts (in two dif-

ferent domains). The closer the structural match is, the 

more optimal the inferred analogy will be. 

 One of the main challenges of implementing SMT is its 

computational complexity. Many researchers have pointed 

out that the computational time of establishing the mapping 

is intractable. Heuristics and alternative theories have been 

developed to form analogies and cut down the computa-

tional time. Holyoak and Thagard’s Multiconstraint Theory 

reduces analogy inference to a constraint satisfaction prob-

lem (1989). (Forbus & Oblinger, 1990; Grootswagers, 

2013; van Rooij, 2008; Wareham, Evans, & van Rooij, 

2011) have all worked on creating heuristics for speeding 

up the structural mapping process. 

 Another challenge comes from applying SMT or other 

similar theories to dialogue agents. They typically require a 

hierarchical relationship structure in the data. For example, 

the analogy between the solar system and the Rutherford 

model is a classic example used in computational models 

of analogy. Figure 1 is taken from (Falkenhainer, Forbus, 

and Gentner, 1989) for illustrating the solar system do-

main. For representing this domain, SMT prefers to know 

not only the relationships between the concepts, e.g. the 

planet revolves around the sun, the sun’s mass is greater 

than the planet’s mass, and the sun attracts the planet but 

also the relationships among relationships, i.e. the latter 

two relationships are the cause for the first one. When de-

signing virtual characters with automatically generated or 

crowd-sourced dialogue content, we often do not have such 

hierarchical information. The alternative is to design con-

tent solely by hand, which creates a huge authoring burden. 

This challenge is particularly significant when we study 
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analogy inference not only for understanding human cogni-

tion but also for procedurally generating dialogues for vir-

tual characters. 

Figure 1: Solar System  

 

In this work, we experiment with loosening up the con-

straints on input data and using a flat graphical structure 

for representing the agent’s knowledge, i.e. our proposed 

algorithm only needs to know the relationships between 

each pair of concepts. Instead of mapping the structures of 

the relationships, we seek to map the type of relationships 

from one domain to another. This algorithm is completely 

data driven; there is no manually designed mapping rule. 

Our algorithm generates comparable results with SMT 

when being applied to a classical analogy inference exam-

ple. We also demonstrate applying the algorithm to larger 

domains that were automatically generated by crawling 

data from DBpedia (Bizer, Lehmann, Kobilarov, Auer, 

Becker, Cyganiak, & Hellmann, 2009). 

The results from the analogy-making module will be in-

tegrated into an automated narrative agent we developed 

for making presentations using data gathered through 

crowdsourcing or from the Internet (Si, Battad, & Carlson, 

2016). The success of this project will contribute greatly to 

creating interesting dialogues and computational creativity. 

The analogy-making module is self-contained, and the de-

tails of the presentation agent are skipped in this paper. In 

the next sections, we will first describe our input data’s 

format and example domains. Then, we will present our 

analogy-making algorithm, and results generated by this 

algorithm, followed by discussions and future work. 

Example Domains and Knowledge Represen-

tation 

We want to use a knowledge representation that is both 

compatible with structured data, such as the results from 

querying DBpedia, and is intuitive enough for non-

technical authors to manually design and edit the 

knowledge base. We use a XML format that encodes 

knowledge as a directed graph. Each concept is represented 

as a node with a unique ID. The nodes are linked to each 

other by their relationships, and thus form a directed graph. 

We will demonstrate the application of our algorithm us-

ing two examples. The first one makes analogies between 

the solar System and the Rutherford model. This example 

has been discussed extensively by Gentner et al. (see 

(Falkenhainer, Forbus, & Gentner, 1989; Gentner, 1983) 

for more detailed descriptions of the example.) Figure 2 

shows the solar system represented as a knowledge graph 

in our system. Because we don’t use hierarchical relation-

ships in our data representation, the higher-level relation-

ships, such as “And” and “Cause” in Figure 1 are lost.  

However, the relationships between each pair of concepts, 

such as “Attracts” and “Revolve” are kept. We created a 

new relationship “More massive” for representing the 

sun’s mass is greater than the planet. Our representation 

does not use attributes and functions. For attributes, we 

converted them into a relationship the concept has with 

another concept, e.g. the sun has a relationship with a con-

cept called Yellow. Currently, we don’t have a correspond-

ing encoding for SMT’s concept of function in our system. 

 

 

 

 

 

 

 

 

 

 

Figure 2: Solar System without Hierarchical Relationship 

Structure 

 

The first example only contains about a dozen concepts. 

For examining how well our algorithm scales up, we creat-

ed a second set of example domains which are much larg-

er. One domain is about music genres, and the other is 

about programming languages. In this work, we used Wik-

ipedia data as the base of knowledge. The two domains are 

generated by crawling for information from DBpedia using 

a tool we developed in the lab. The tool uses one or more  

DBpedia entries as the starting points and iteratively ex-

panding the graph by including neighbors of the entries 

that are already in the graph.  

Each entry in DBpedia is converted to a node in our 

knowledge graph and represents a unique concept. The 

type of link between them in DBpedia becomes the rela-

tionship link in our data. These domains are significantly 

larger than the ones in the first example. The music genres 

domain contains 999 nodes and 6418 relationships. The 

programming language domain contains 2589 nodes and 

9952 relationships. Figure 3 shows part of the data from 

the music domain. 
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Figure 3: Music Genre Data  

Proposed Approach 

In this work, our main objective is to provide a dialogue 

agent or a game character a tool for conducting richer and 

more interesting dialogues, or for making explanations for 

a new concept to the user. We hope to help create dia-

logues that are creative and innovative. Therefore, different 

from most existing work on analogy inference, we do not 

necessarily need to find the best analogy we can make giv-

en the two domains. Instead, we want to be able to make 

analogies that are interesting and explainable. Furthermore, 

the computation needs to complete in a reasonable amount 

of time. 

Our proposed algorithm follows the same philosophy as 

SMT in that we want to find mappings between concepts 

and relationships that are supported by mappings between 

other concepts and relationships. In other words, we want 

all of the mappings to be consistent with each other. Our 

algorithm seeks to achieve these goals while working with 

large and uniformly structured data.  

More specifically, instead of trying to map a relationship 

structure, we seek to map relationship types from one do-

main to another. These mappings are supported by the sim-

ilarities in the concepts being linked to, and the relation-

ships related to those concepts. Because our data is large 

and not manually designed, there may not be a single map-

ping that is better than all the alternatives. Instead, there 

may be multiple good candidates. Therefore, instead of 

looking for the best mapping for all possible hypotheses 

between the concepts and the relationships in the base and 

destination domains, we seek to find the best analogy we 

can make just about a single concept. 

Algorithms 1-4 contain the pseudo code for our pro-

posed algorithm. On a high level, it works in two steps: 1) 

computes a unique index for each concept and each rela-

tionship type. This index can be used for comparing the 

similarities between two concepts or two relationship 

types; 2) generates and evaluates the hypotheses of map-

ping a concept in the base domain to a concept in the target 

domain. 

 

Algorithm 1 Index_Relationship_Type (domain): 
loss, gain, same, diff, index = {} # empty dictionar-
ies 
# n: concept; r: relationship; d: destination concept 
of r 
for each n in domain do 

for each r, d of n do 
# compare n’s relationships with d’s relation-

ships 
loss[r] += n.relationship - d.relationship 
gain[r] += d.relationship - n.relationship 
same[r] += Common(n.relationship, d.relationship) 
diff[r] += Difference(n.relationship, 

d.relationship) 
end for  

end for 
for each r in domain do 

index[r] = (Jaccard_index(loss[r], gain[r]), 
Jaccard_index(loss[r], same[r]), 
Jaccard_index(loss[r], diff[r]),  
Jaccard_index(gain[r], same[r]), 
Jaccard_index(gain[r], diff[r]),  
Jaccard_index(same[r], diff[r]))  

end for 
return index 

 

 Algorithm 1 creates a vector of size 6 for describing 

each relationship type in a domain. Inspired by the struc-

tural mapping process in SMT, here we argue two relation-

ship types are similar if they are always used in similar 

contexts. Because we don’t have the relational structure for 

providing a context, we operationally defined the context 

as the origin and the destination concepts linked by the 

relationship, and we judge the similarity of these two con-

cepts by looking at the differences between the relation-

ships they have and what they share in common. For ex-

ample, for the relationship “Hotter than” in Figure 2, n is 

Sun and d is Planet. The loss set, in this case, equals to 

[“More massive”, “Is”]. It contains all the relationships the 

Sun has, but the Planet does not have. If “Hotter than” also 

links other concepts in the knowledge base, the loss set 

will be appended every time this relationship is used. The 

gain set contains all the relationships the destination con-

cept has, but the origin concept doesn’t. The same set con-

tains all the relationships the origin and the destination 

concepts have in common, and diff contains all the rela-

tionships that are either in loss or gain. Currently, we are 

only using the measurements that represent the results of 

basic set operations, i.e. complement, intersection, sym-

metric and difference. As part of our future work, we will 

be looking for other measurements that can help with dif-

ferentiating the relationship types. 

For each relationship type, Algorithm 1 aggregates the 

results from every time it is used in the domain. The sec-

ond for-loop converts the information in the four sets, i.e. 

loss, gain, same and diff into a one-dimensional vector by 

calculating the Jaccard indices between them. We used 

Jaccard index because it can provide a numerical meas-

urement of the similarities between two sets. 
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Algorithm 2 Get_Node_Index (n,rtype_index): 
# rtype_index: the relationship indexes computed by 
Algorithm 1 
# n: concept; r: relationship 
tmpv = (0,0,0,0,0,0) # a zero vector 
for each r of n do 

tmpv += rtype_index[r] 
end for  
return Normalize(tmpv) 

 
Based on the relationship indices computed by Algo-

rithm 1, Algorithm 2 returns an index for a concept. Simi-

larly, this index will be used for computing the difference 

between two concepts in the knowledge network. We used 

a simple heuristic here: a concept’s index is decided by the 

sum of the index values of all the relationships it has. This 

value is then normalized to a unit vector. 

Finally, Algorithm 3 generates and tests the matching 

hypotheses, and Algorithm 4 creates a one-to-one mapping 

between all the relationships a concept n has in the base 

domain to the relationships in the target domain. With this 

mapping, it is straightforward to find the concept in the 

target domain that has the most mapping relationships with 

n. 

For establishing the mapping, Algorithm 3 generates all 

the possible hypotheses of mapping the relationships and 

destinations (r1, d1) associated with n to another pair of 

relationship and destination (r2, d2) in the destination do-

main. For evaluating the quality of this mapping, Algo-

rithm 3 looks at both how different the two relationships 

(r1 and r2) are -- rdiff, and how different the two destina-

tions (d1 and d2) are -- ndiff. The difference here is given 

by the cosine similarity between the two vectors. These 

two difference values are combined. The smaller the over-

all difference is, the stronger the mapping is. The variable 

“hypotheses” contains the list of all the hypotheses and 

their strengths. 

 

Algorithm 3 Generate_Hypotheses(n, B, T): 
# B: base domain 
# T: destination domain 
hypotheses = [] # hypotheses for mapping 
rtype_index = Index_Relationship_Type(B, T) 
# index for source node 
svec = Get_Node_Index(n, rtype_index) 
for each node t in T do 

# index for candidate node 
cvec = Get_Node_Index(t, rtype_index) 
for each r2, d2 of t do 

for each r1, d1 of n do  
rdiff = Cosine_Similarity(rtype_index[r1], 

rtype_index[r2]) 
d1vec = Get_Node_Index(d1, rtype_index)   
diff1 = svec - d1vec 
d2vec = Get_Node_Index(d2, rtype_index)   
diff2 = cvec - d2vec 
ndiff = Cosine_Similarity(diff1, diff2) 
normalized_score = (rdiff + ndiff)/2 
hypotheses.Append(normalized_score,r1,d1,r2,d2) 

end for 
end for 

end for 
return hypotheses 

 

Similar to SMT, we want the mappings to be unambigu-

ous. We used a greedy algorithm to resolve the conflicts in 

the hypotheses. In case there are hypotheses for both map-

ping (r1, d1) to (r2, d2), and to (r3, d3) in the destination 

domain, we simply accept the best -- the mapping that has 

the highest score -- hypotheses first, and reject any subse-

quent mappings that intend to revise an existing one (Algo-

rithm 4). 

 

Algorithm 4 Map_Relationships(hypotheses): 

map = {} 
# sort the hypotheses based on normalized_score  
hypotheses.Sort_Descending() 
for each h in hypotheses do 

# ensure a one-to-one mapping 
if both h.r1 and h.r2 are not mapped then 

# map r1 in base to r2 in destination 
map[r1] = r2 

end if 
end for 
return map 

Example Results and Discussion 

The proposed algorithm has been applied to making analo-

gies in the two example scenarios described in the Exam-

ple Domains and Knowledge Representation section. 

The Solar System and the Rutherford Model 

For making analogies between the solar system and the 

Rutherford model, we obtained perfect results. Our algo-

rithm correctly generated the mapping between the Nucle-

us and the Sun, and between the Electron and the Planet. 

Our algorithm does not produce mapping relationship 

structure for supporting the analogy. Instead, it produces 

matching pairs of relationships and destination concepts. 

Tables 1 and 2 list the evidence for these two mappings. 

Table 1: Mappings between Nucleus and Sun 

Nucleus Sun 

(Attracts, Electron) (Attracts, Planet) 

(Distance, Electron) (Distance, Planet) 

(Has, Electric charge) (Has, Mass) 

(More massive than, Electron) (Hotter than, Planet) 

 

In Table 1, all the mappings except the last one are 

straightforward. We checked the intermediate results. The 

last mapping was an artifact. (Hotter than, Planet) and 

(More massive than, Planet) received the same score, and 

the system did not know how to break the tie. All the map-

pings in Table 2 are consistent with the original example. 

We are quite encouraged to get this result without the need 

of using data with hierarchical relationships. We believe 

the flat concept-relationship structure we designed in Fig-
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ure 2 is friendlier to both human designers and automated 

programs that convert data from other sources. 

 

Table 2: Mappings between Electron and Planet 

Electron Planet 

(Attracts, Nucleus) (Attracts, Sun) 

(Distance, Nucleus) (Distance, Sun) 

(Has, Electric charge) (Has, Mass) 

(Revolves around, Nucleus) (Revolves around, Sun) 

 

Music Genres and Programming Languages 

Making analogies between these two domains generated 

some interesting results, and inspired us with directions for 

future work. These domains are much larger than the solar 

system and the Rutherford model. In our evaluation, the 

typical running time is less than a second on a Lenovo 

T430 laptop. We will discuss two pieces of example results 

below. 

 

Table 3: Mapping Relationships between Punk rock and 

LPC 

Punk Rock LPC 

Music fusion genre Influenced 

Stylistic origin Influenced by 

Instrument Paradigm 

 

In the first example, the system mapped the music genre 

Punk Rock to the programming language LPC. Because of 

space limitation, in Table 3 we only list the matching rela-

tionship types the system provided for this analogy. Two of 

these mappings are quite reasonable. By mapping “Stylistic 

origin” to “Influenced by”, the system provided us support-

ing evidence such as “the stylistic origin of Punk Rock is 

Garage Rock, Glam Rock, and Surf Music, just like LPC is 

influenced by Lisp, Perl, and C.” By mapping “Music fu-

sion genre” to “Influenced”, the system provided corre-

sponding supporting evidence “Celtic Punk is a music fu-

sion genre of Punk Rock, just like LPC influenced Pike.” 

Intuitively, these two examples make sense. Music genres 

that are influenced by other music genres have their styles 

originating from those genres. The inverse works as well; 

if genre A is a music fusion genre for genre B, then A in-

fluenced B. The system was able to equate these relation 

types without any explicit help.  

The mapping from “Instrument” to “Paradigm” isn’t as a 

clear cut as the other mappings. The evidence provided is 

“the relationship between Punk rock and Bass guitar or 

Electric guitar is Instrument, just like the relationship be-

tween LPC and Procedural programming and Functional 

programming is Paradigm.” This assertion isn’t inherently 

wrong. However, to a human observer this mapping may 

not seem intuitive enough. 

Interestingly, we also asked the system to make an anal-

ogy about the programming language Python, and the sys-

tem responded with Hardcore Punk. Table 4 provides the 

matching relationships for this analogy. 

Most of the relationship mappings in Table 4 are reason-

able. For example, we can say “Python influenced F Sharp, 

Ruby, and Swift just like Black Metal, Thrash Metal, and 

Industrial Metal are derivatives of Hardcore Punk.”  

 

Table 4: Mapping Relationships between Python and 

Hardcore Punk 

Python Hardcore Punk 

Influenced Derivative 

Influenced by Stylistic origin 

Operating system Instrument 

Paradigm Format 

 

The most interesting part of this example is the assertion 

that Python is influenced by Perl in the same way as the 

stylistic origin of Hardcore Punk is Punk Rock (and hence 

Hardcore Punk is influenced by Punk Rock). This goes 

against the previous analogy of Punk Rock being compara-

ble to LPC, since Python is not influenced by LPC. We 

think this shows the weakness of our approach. Without 

the hierarchical relationship information which in fact pro-

vides a global structure of the data, our algorithm does not 

do a good job in creating analogies that are globally con-

sistent. However, the analogies are still locally consistent 

for a given topic because of Algorithm 4.  

Another thing to note is the difference in mapping be-

tween Instrument and Paradigm. In Table 3, “Instrument” 

is mapped to “Paradigm”, but in Table 4, “Instrument” is 

mapped to “Operating system.”  LPC does not have a rela-

tionship of the type “Operating system”, so no mapping 

could have been made. Table 4 indicates that “Instrument” 

is more analogous to “Operating system” than to “Para-

digm.”  As mentioned before, our system cannot enforce 

global consistency yet. Realistically, however, it’s hard to 

say which is truly correct in this case. A similar phenome-

non can be observed with “Influenced” and “Music fusion 

genre” in Table 3. This time in Table 4, “Influenced” is 

mapped to “Derivative” because the match is better, not 

because Hardcore Punk lacks that relation type. In Table 4, 

mappings from “Influenced” to “Music fusion genre” are 

ignored because a one-to-one mapping of relation types is 

enforced by the algorithm. Currently, one-to-one mappings 

must be enforced in order for coherent analogies to be 

made. However, there are cases when using many-to-one 

mappings is more suitable. This is especially true when 

using crowd-sourced data or data from the Internet where 

sometimes the only real difference in relationship type is 

semantics (e.g. “Instrument” / “Instruments”).  
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Future Work 

We have planned future work both in the direction of im-

proving our algorithms for finding better mappings and 

discovering more creative uses of the algorithms.  

First of all, we want to address the issue of the agent 

sometimes creating conflicted mappings between two pairs 

of concepts. When working with a large data set, exclu-

sively checking all the possible conflictions would be very 

time-consuming. Instead, we plan to develop a greedy so-

lution. When the agent needs to make a new analogy, it 

will assume all the relationship mappings it used to support 

its previous analogies are already true. This way, instead of 

asking two separate questions of “what is LPC like” and 

“what is Python like”, we are asking the system “If LPC is 

like Punk Rock, what Python would be like?” 

Secondly, we are looking for better ways for indexing 

the relationships and the concepts. Right now, the semantic 

information of the relationship types is rarely used. Algo-

rithm 1 only looks at whether they are different or not. We 

are considering using other semantic tools for helping us to 

get a direct measure of how close two relationship types 

are, and even how close two concept descriptions are. This 

would solve the aforementioned problem caused by the 

one-to-one mapping restriction. Another consideration in 

the indexing process is the fact that when dealing with hu-

man authored content, there is no guarantee that different 

contributors will use the same relation type in the same 

way. Such inconsistencies could throw off the results of 

Algorithm 1, leading to bad analogies. 

Thirdly, many benchmarks have been created for analo-

gy inference, such as (Holyoak & Thagard, 1989). Most of 

the benchmarks’ formats are compatible with SMT and the 

algorithms derived from it. We will be looking into ways 

of evaluating our algorithm using a standard benchmark.  

Finally, we believe this work has great potential of con-

tributing to creating rich and vivid virtual characters, inter-

esting and interactive stories, and computational creativity. 

We are interested in finding new and innovative applica-

tions of our proposed algorithms in addition to making 

analogies for a single concept. In particular, we are inter-

ested in exploring how these algorithms can be used in 

creating digital stories. As one of our next steps, we plan to 

experiment with using this algorithm to learn how a person 

tells a story or how a good story is constructed and then 

apply the learning results for telling new stories using data 

from a different domain.   
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Abstract 

For decades, theories of early word learning have assumed 
that infants are equipped with learning biases that help them 
learn words at a fast pace. One of these biases, called Mutual 
Exclusivity, suggests that infants reject second labels for 
name-known objects. Our first two experiments, with children 
and with infants, suggest that novelty preference during 
Mutual Exclusivity tasks should not be taken as evidence that 
associations between novel labels and name-known objects 
have not taken place. A third experiment, supplemented with 
computational modeling, ruled out cascaded activation 
patterns as alternative explanations and, instead, confirmed 
that word-object associations are non-selective throughout 
infancy and childhood.  

Keywords: Mutual exclusivity; early word learning; cross-
situational statistical learning 

Introduction 
Children learn words at a fascinating pace (Bloom, 2000). 
Researchers have suggested that infants are equipped with 
language learning biases that help them learn words 
efficiently (Markman, 1990). One such word learning bias, 
called Mutual Exclusivity (ME; Markman & Wachtel, 
1988), suggests that each object has only one label. 
Markman and Wachtel (1988) found that children selected a 
novel object significantly more than a name-known object 
when hearing a novel label. The associations formed 
between novel labels and novel objects through ME have 
been shown to be retained, as Mather and Plunkett (2011) 
found that children were able to match novel labels with the 
matching novel objects they were exposed to during a 
learning phase. This provided evidence that ME can indeed 
be used to learn words. Yet, it did not address the question 
of whether infants reject additional labels for name-known 
objects or not. 

In parallel, Smith and Yu (2008) found that when only 
name-unknown objects are present, infants retain multiple 
associations between labels and objects. According to their 
cross-situational statistical learning account (CSL), different 
word-object associations are being retained and their 
strengths evolve along with the presentation of labels and 
objects. Ultimately, a hierarchy of word-object associations 
is established through the differing numbers of co-
occurrences between words and objects. The strongest 
word-object associations can be seen as providing a basis 

towards establishing robust patterns of word learning. This 
framework suggests that, contrary to ME, children are 
capable of forming more than one association between 
objects and words.  

Further evidence brought a nuanced view to strict ME 
accounts. Learners were found to be able to overcome ME 
and performed above chance when forming two-to-one 
mappings in CSL-type experiments (Yurovsky and Yu, 
2008). Kachergis, Yu and Shiffrin (2009) and Poepsel and 
Weiss (2014) found that although children performed better 
in one-to-one mapping, they readily violated ME if there 
was strong evidence that a new mapping was required. 

Yet, Trueswell, Medina, Hafri, Gleitman (2013) found 
that children do not store all word-object associations. 
Instead, they make an initial guess and evaluate the validity 
of this guess in subsequent trials. If the guess is proven to be 
correct, then the association is strengthened. Otherwise, 
children will make another guess while discarding 
previously-made associations. This strategy was coined as a 
Propose-but-Verify hypothesis (PbV). In a more recent 
study, Stevens, Gleitman, Trueswell, and Yang (2016) 
refined their PbV hypothesis, and suggest that children store 
previous associations as references for future trials. 

In our present contribution, we ask whether infants and 
young children accept second labels for name-known 
objects. To this end, we adapted a classic ME task, in which 
novel labels are being uttered while a name-known object 
and a novel object are being displayed. Strict ME accounts 
would suggest that children will map novel labels to novel 
objects, and that they will reject the formation of an 
association between novel labels and name-known objects.  

In our adaptation, the learning phase featured two sets of 
ME training trials: in each set a novel label was uttered in 
the presence of a name-known object and of a novel object. 
During the testing phase, both novel objects used during 
training were shown together. If children were able to retain 
the associations learned during ME practice, they would be 
able to map each novel label to the matching novel object. 
This testing phase was aimed at verifying that ME can 
indeed be used to learn words, thus replicating Mather and 
Plunkett (2011). In another testing block, the two name-
known objects used during ME were shown together, while 
playing one of the novel labels used during training. 
According to a strict interpretation of ME, children should 
not display preference for either objects, since they should 
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have inhibited the formation of an association from the 
novel word to the name-known objects. In contrast, if 
children displayed a preference for the name-known object 
of the matching set, this would suggest that infants do not 
reject additional labels for name-known objects, and that 
they are non-selective when forming word-object 
associations. In other words, children would map the novel 
word with all objects present in the scene. 

Thereafter, we will present three experiments aiming at 
refining our understanding of the formation of early word-
object associations.  

Experiment 1 
Methods 

Participants 174 children were recruited in Nottingham 
(UK) from which only data from English monolinguals (N = 
148) was analysed, as bilinguals are expected to differ from 
monolinguals in ME-related tasks (e.g., Byers-Heinlein & 
Werker, 2009; Davidson & Tell, 2005; Houston-Price, 
Caloghiris, & Raviglione, 2010). The participants’ age 
ranged from 4 years to 12 years (M = 7.36 years, SD = 
2.06). Among them, 65 were male and 83 were female. 

Stimuli The visual stimuli (pictures of 640 x 480 pixel) 
were obtained from Frank, Sugarman, Horowitz, Lewis, & 
Yurovsky (2016). The novel labels were “dax” and “modi” 
and both novel words and familiar words were embedded in 
the carrier sentence “Find the __!”. Auditory labels were 
recorded by a female native English-speaker in an infant-
directed manner. 

Procedure The experiment was carried out on an iPad. The 
participants had to first complete a warm-up task, where 
they were instructed to tap on five dots appearing in random 
places, followed by five smiley faces presented on the 
screen of the iPad. After the warm-up task, the experiment 
was started. There were three experimental blocks, namely a 
Mutual Exclusivity (ME) training, a Word Learning test and 
a Selectivity test (see Figure 1).  

 
Block 
types 

Image pairs Auditory 
stimuli 

ME 
training 

 

Find the modi! 

Word 
Learning 
test 

 

Find the modi! 

Selectivity 
test 

 

Find the modi! 

Figure 1: Example of different block types in Experiment 1. 

   In ME training, two sets of stimuli were used. Each of the 
sets consisted of one pair of images, one name-known 
image and one novel image, along with a novel label (“dax” 
and “carrot” for the first set, “modi” and “cat” for the other 
set). In each ME trial, one pair of images was displayed 
while the novel label was being played (embedded in the 
carrier sentence "find the __!"). We defined the target to be 
the novel object. Participants had the opportunity to learn 
two novel labels for the two novel images via ME. Each pair 
was repeated four times.  

In the Word Learning test, both novel images (the 
“targets” in ME training) were displayed side-by-side while 
one of the corresponding novel labels used during training 
was played. These trials were repeated four times, such that 
both novel labels were uttered twice. The aim was to test 
whether the participant had formed an association between a 
novel label and the corresponding novel image; a 
prerequisite for word learning. 

In the Selectivity test, the two name-known images (the 
“distractors” in ME training) were displayed side-by-side 
while one of the novel labels used for training was played. 
Target selection (i.e., tapping on the name-known image 
from the matching set) would provide evidence that an 
association between the name-known image and a second 
label was not inhibited during ME training. This block also 
consisted of four trials. The order of presentation of the 
Word Learning test block and the Selectivity test block was 
randomised across participants.  

Results and Discussion of Experiment 1 
As children were required to select an image out of two 
presented to them, binomial tests were run to measure the 
proportion of accurate responses as compared to chance 
(.50) in the different blocks. The proportion of accurate 
responses for the different blocks may be seen in Table 1.  

 
Table 1: Observed proportion of accurate responses in 
different blocks 
 

Auditory 
stimuli 

ME 
training 

Word 
learning test  

Selectivity 
test  

“dax” .99*** .98*** .60* 
“modi” .98*** .96*** .69** 

* p < .05. ** p < .01. *** p < .001 (1-tailed). 
 
The results obtained provided evidence for the occurrence 

of ME during training, where the children selected the novel 
image upon hearing a novel word, thus replicating classical 
ME results (e.g., Golinkoff, Hirsh-Pasek, Bailey, & Wenger, 
1992; Mather & Plunkett, 2011). 

Children also performed above chance in the Word 
Learning test, indicating that they were able to form an 
association between the novel images and the novel words. 
This also replicates previous studies (e.g., Mather & 
Plunkett, 2011; Mervis & Bertrand, 1994;), which suggest 
that ME can indeed be used to learn words.  
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Crucially, it was also found that children were able to 
form associations between novel words and name-known 
objects, suggesting that word-object associations are non-
selective.  

Age was not found to correlate significantly in the 
Selectivity test (r = .113, p = .171), suggesting that younger 
infants going through a rapid expansion in their vocabulary 
may also be able to associate novel labels to name-known 
objects.  

Experiment 2 
Experiment 2 aimed at establishing whether infants are also 
non-selective when forming word-object associations. The 
design of Experiment 2 was similar to the previous 
experiment, with the main difference that infants were tested 
using an eye-tracker.  

Methods 

Participants Forty-three 21-month-old infants (M = 21.01, 
SD = 0.57) participated in the experiment (25 boys). Nine 
additional children were tested but excluded because of 
fussiness (4), failed calibration (4) or software problem (1). 
All participants were French native speakers recruited in the 
canton of Geneva, Switzerland.  

Stimuli Four novel labels were created for the experiment: 
“pogalle”, “pizelle”, “nidoupe” and “loutade”. The novel 
labels were all defined to be of feminine gender, so that no 
disambiguation could be applied before the onset of the 
word itself. In addition to the novel labels, eight familiar 
words were used throughout the experiment. All words were 
embedded in the sentence “Regarde la __!” (Look at the 
__!). All auditory stimuli were recorded by an enthusiastic 
French native speaker of Switzerland in a child-directed 
manner. Visual stimuli were photographs of objects on a 
light grey background which were extracted from the 
NOUN database (Horst & Hout, 2016). 

Procedure The procedure of Experiment 2 was similar to 
Experiment 1 with the exception of two changes, listed 
thereafter. First, Experiment 2 was conducted with an eye-
tracker. Thus, looking preference was analysed as opposed 
to target selection in Experiment 1. Second, another set of 
images and labels was used.  

Infants sat on their caregiver's laps, in front of a 
flatscreen, approximately 70cm from the screen. An SMI 
RED500 eye-tracker recorded infants’ fixations at a 
sampling rate of 500 Hz. The experiment started with a 5-
point calibration and validation sequence. Upon successful 
calibration, the experiment started. The calibration 
procedure was repeated for infants who failed to go through 
all 5 points or if the validation revealed substantial 
deviations.  

Analysis method Due to data loss in eye-tracking studies, 
measures typically used in intermodal preferential looking 
(IPL) paradigms, Preferential Target Looking (PTL) and 
Longest Look (LL) measures are not appropriate (Wass, 

Forssman, & Leppänen, 2014). A novel analysis was thus 
introduced similar to the one described by Maris and 
Oostenveld (2007). The approach is of the model-fitting 
type, whereby one does not merely compute the maximum 
likelihood estimates for a set of parameters; the models can 
also be tested whether or not they are significantly different 
from each other. The likelihood ratio test then provides the 
means for comparing the likelihood of the data under the 
hypothesis that infants are biased towards the target, against 
the likelihood of the data under the more restricted 
hypothesis (or null hypothesis) that infants do not have a 
preference for either the target or the distractor. 
   A binomial analysis is performed for every time step of 
every test trial in the post-naming phase, from 367ms after 
the onset of the target word (accounting for the time it takes 
infants to fixate the target object, see Swingley & Aslin, 
2000) for 1500ms. For each time step the number of infants 
looking at the target is counted, as well as the number of 
infants looking at the distractor. The binomial test can 
reveal if an excess of infants looking at either the distractor 
or the target at that moment is likely to result from a biased 
looking behavior (e.g., that infants tend to look more at the 
target) or if an observed imbalance in the number of infants 
looking to the target and the distractor can be attributed to 
mere random variations or noise. 

Results and Discussion of Experiment 2 
Results Figure 2 depicts the looking preference of the 21-
month-old infants when they were presented during the test 
phase with the two novel objects used during training (in 
black) and the two name-known objects used during training 
(in red). Vertical bars indicate the time steps for which an 
individual binomial test rejects the hypothesis that infants 
are not biased towards any object. In both test situations, 
hypotheses were rejected in favor of a bias towards the 
target. 

Infants display a preference for the target and the log-
likelihood that each point belongs to the distribution of 
unbiased simulated infants can be computed, as it 
corresponds to the negative square of the Mahalanobis 
distance (Mahalanobis, 1936). The log-likelihood L that the 
21-month infants is unbiased equals L = 1.891 for the Word 
Learning test and L = -44.765 for the Selectivity test. The 
statistical relevance of this hypothesis can only be made 
from the comparison to another model; the biased model. 

Log-likelihoods that the 21-month-olds belong to the 
distribution of simulated infants can be computed for each 
different bias, and one can estimate the maximum log-
likelihood estimate, associated with the optimal bias; e.g., 
that accounts best for the data. 

The maximum log-likelihood equals L = -0.010 for a bias 
towards the target when both novel objects are used during 
the Word Learning test and equals L = -0.003 for a bias 
towards the target for selectivity test.  

Finally, the likelihood ratio test is applied. In the Word 
Learning test, the 21-month-old infants approach 
significance (p = .053). On the Selectivity test, the 
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likelihood ration test shows that infants are significantly 
biased towards the target (p < .001). In other words, they 
have formed a second association between a novel label and 
a name-known object; 21-month-old infants also seem to be 
non-selective when forming word-object associations. 
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Figure 2: Proportion of infant target looking in the Word 
Learning test (in black) and in the Selectivity test (in red). 
Vertical lines highlight significant preference for the target 
according to a binomial test.  

Experiment 3 
In Experiment 1 and 2, children were found to be able to 

form associations between novel labels and name-known 
images. Yet, one cannot rule out that infants have formed an 
encyclopaedic mapping; i.e., they rely on the co-occurrence 
between the novel object and the name-known object to 
form an association between both objects. In turn, they may 
exploit this object-object association to select the name-
known object when hearing the novel label, through 
cascaded activation from the novel label to novel object 
(through ME) and from the novel object to the familiar 
object (through the encyclopaedic mapping). To test if the 
association between the novel word and the name-known 
object is lexical or encyclopaedic, a new test, referred to as 
the Encyclopaedic test, was created. In this test, both novel 
images used during training were presented side-by-side, 
but the labels of the name-known distractors were played 
instead (see Figure 3). As the novel images were never 
displayed in the presence of these familiar labels, we would 
expect children’s performance to be at chance level.  

Methods 

Participants 150 children were recruited at The University 
of Nottingham. Only data from the 124 English 
monolingual children (55 male, 69 female) was retained for 
analysis. Children were 3 to 12 years of age (M = 7.31 
years, SD = 2.28). 

Stimuli Visual stimuli were obtained from the same source 
as Experiment 1. The novel labels used were “pifo” and 
“dofa” paired with images of a ball and a cup, respectively.  
Procedure The procedure was the same as Experiment 1 
except for the sequence of the tasks. In Experiment 3, there 
were four blocks, namely the ME training, the Selectivity 
test, the new Encyclopaedic test and the Word Learning test. 
There were four trials in both the Selectivity test and the 
Encyclopaedic test but only two trials in Word Learning 
test. The order of the Selectivity test and the Encyclopaedic 
test was counterbalanced whereas the Word Learning test 
was always administered at the end of the experiment. 

In the Encyclopaedic test, novel images used during ME 
training were displayed side-by-side while the names of the 
corresponding familiar images were played (see Fig. 3). 
 

Block type Image pairs Auditory 
stimuli 

ME training 

 

Find the 
dofa! 

Encyclopaedic 
test 

 

Find the 
cup! 

Figure 3: Example of the Encyclopaedic test. 

Results and Discussion of Experiment 3 
Binomial tests were run to measure the proportion of 
accurate responses as compared to chance (.50) in the 
different blocks. The results once more supported the 
presence of ME during training (all p’s < .001) and that 
word-object associations are retained in the Word Learning 
test (all p’s < .001). 

However, and contrary to our hypothesis, children 
selected the target in the Encyclopaedic test (significantly 
above chance for “cup” (p = .001), and approaching 
significance for “ball”, p = .063), suggesting that infants 
formed an encyclopaedic mapping between all items, rather 
than forming multiple associations at a lexical level between 
a name-known object and multiple labels. The only 
explanation is that children display evidence of cascaded 
activation, from the familiar name to the corresponding 
name-known object, and through the novel object it was 
paired with. 

Does cascaded activation also explain results concerning 
the Selectivity test? Maybe children are strictly following 
ME; upon hearing the novel label, they activate the 
representation of the matching novel object (learned during 
ME) and select the name-known object that co-occurred 
with the novel object? How can we distinguish between the 
cascading and the non-selectivity explanations? 

Let us look at correlations between the different 
experimental blocks. A strict ME account would suggest 
that lexical associations can only be formed between the 
novel label and the novel object during ME training. A 
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stronger ME effect would translate into stronger 
associations between novel labels and novel objects. 
Through cascaded activation, novel label to novel object 
(ME) and from novel object to familiar object (through an 
encyclopaedic mapping), a strict ME account would suggest 
a positive correlation between performances in the ME 
training phase and performance in the Selectivity test. 

In contrast, the hypothesis that word-object associations 
are non-selective (following the arguments of CSL) would 
predict that the novel label would also be associated with 
the name-known object. Accordingly, higher accuracy in the 
ME training block would suggest that children should spend 
more time on the novel object than at the name-known 
object, in turn leading to the formation of stronger 
associations between novel labels and novel objects but 
weaker associations between novel labels and name-known 
objects. Thus, if the associations between novel words and 
novel objects are non-selective, and that such associations 
take place at a lexical level, the accuracy score in ME 
training should correlate negatively with the accuracy score 
in the Selectivity test. 

In our data, the accuracy score of ME training correlated 
positively with the Word Learning test (r = .232, p = .009), 
while correlations between ME and the Encyclopaedic test 
were not significant (r = -.075, p = .406), thus far consistent 
with both explanations. However, ME training results 
correlated negatively with performance during the 
Selectivity test (r = -.218, p = .015). The experimental 
results support the hypothesis that word-object associations 
are non-selective, and that the formation of association 
between novel labels and name-known objects take place at 
a lexical level. Next, we further scrutinise the above 
reasoning by constructing two simple computational models 
of Experiment 3. 

Computational Models of Experiment 3 
Two models were constructed, in order to compare a strict 
ME account with a non-selective account of the CSL type. 
In both models, associations are modulated based on co-
occurrence of items presented simultaneously; between 
objects and labels, as well as between both objects. In each 
trial, previous association strengths define relative looking 
time towards each object via the application of Luce’s 
forced choice rule (with a separation parameter of k=8). 
Looking time, in turn, modulate the magnitude of the 
association strength update, in a Hebb-like update rule (with 
a learning rate of 0.1). The associations between both 
objects are obtained by computing the product of the 
relative preference associated with each object. Similarly, 
indirect associations such as cascaded activation from the 
novel label to the novel object and the familiar object are 
computed through the product of the association strength 
between the novel label and the novel object and the 
association strength between the novel object and the 
familiar object.  

The order of stimuli was identical in the model and for 
participants. 100 individual models were created for each 

hypothesis, and had a mean novelty-preference of 0.8, and 
Gaussian random variations of a standard deviation of 0.05. 
In the strict ME model, associations between novel labels 
and name-known objects were inhibited whereas in the non-
selective model, such associations were permitted. 
Correlations between preference for the novel object during 
ME training and preference for the target object in each test 
block were computed.  

As predicted, modelling results showed that a strict ME 
account sustains positive correlations between ME training 
and the Word Learning test (r = .89, p < .001) and between 
ME and the Selectivity test (r = .68, p < .001). In contrast, 
the non-selective model displays a positive correlation 
between ME training and the Word Learning test (r = .89, p 
< .001) but a negative correlation between ME and the 
Selectivity test (r = -.33, p < .001). The modelling results, 
along with the empirical results, provide additional evidence 
that children are non-selective when forming word-object 
associations. 

General Discussion 
While Mutual Exclusivity assumes that children associate 
only one word to one object, Cross-situation Statistical 
Learning accounts suggest that children maintain a 
hierarchy of word-object pairings established on the basis of 
co-occurrence of object and labels. These two theories have 
typically been tested using different experimental designs; 
while ME studies generally feature both novel and familiar 
objects, CSL studies typically present only novel objects. 
Our approach aims at testing both theories by using a 
Selectivity test, so as to examine whether children accept 
additional associations between a name-known object and a 
novel label. 

In all three studies, we found that children tend to map the 
novel label to the novel object, replicating classic ME 
experiments, that infants tend to look at (or select) novel 
objects upon hearing a novel word.  

We also replicated findings that associations between 
novel objects and novel labels are momentarily retained, 
thus providing a necessary basis towards the consolidation 
of word-object associations, and towards word learning 
(e.g., see Mather & Plunkett, 2011). 

Yet, we argue that evidence of ME – a preference for a 
novel object when hearing a novel label – should not be 
taken as proof that associations between novel labels and 
name-known objects are suppressed. Experiment 1, with 
school-aged children, and Experiment 2, with 21-month-old 
infants, provided converging evidence that word-object 
associations are non-selective: children may well display 
evidence of ME during training, but they also show 
evidence that associations between novel labels and name-
known objects are maintained during test blocks, and not 
inhibited as suggested by strict ME accounts. 

Experiment 3 aimed at ruling out alternative explanations 
for the results observed in the first two studies. The 
introduction of an additional test block, the Encyclopaedic 
test, suggested that children displayed cascaded activation 
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patterns. Yet, correlation analyses between the ME training 
phase and the different test blocks suggested that the pattern 
of results can be best explained if children are non-selective 
when forming word-object associations. Strict ME accounts 
would predict a positive correlation between ME training 
and selectivity test as children have to rely on cascaded 
activation to identify the target. In contrast, non-selective 
learning accounts would suggest that children displaying 
stronger novelty preference during ME training would 
display weaker associations between the novel label and the 
name-known object, thus leading to a negative correlation 
between ME training and the Selectivity test. The latter 
pattern of results was observed experimentally. 

The finding that infants are non-selective in their 
formation of word-object associations sits well with other 
recent findings that infants are flexible in their interpretation 
of the meaning of novel words (Ramscar, Dye, & Klein, 
2013) and that infants engage into cross-situational 
statistical learning with (multiple) objects in their visual 
field (Yu & Smith, 2011; Yurovsky, Smith, & Yu, 2013). 

The very first stages of word learning taking place during 
ambiguous naming situations, such as in ME experiments or 
cross-situational statistical learning situations, do seem to be 
principled by low-level associationist mechanisms whereby 
multiple word-object pairings are being built. The hierarchy 
of word-object associations can then evolve across 
situations so that ultimately only relevant word-object 
mappings are retained. In sum, infants and children appear 
to be flexible when learning words and readily entertain the 
possibility that objects can have multiple names. 
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The tortoise wins only when the race is long: How the task environment changes
the behavior of Tetris models

Catherine Sibert
Rensselear Polytechnic Institute, Troy, New York, United States

Wayne Gray
Rensselaer Polytechnic Institute, Latham, New York, United States

Abstract: Tetris can be viewed as a highly complex decision making task, and used as a paradigm for studying human expertise.
We hypothesized that models capable of playing Tetris for a long time are doing so by adopting slow but steady strategies to
accumulate points, while human players are much more prone to using high-risk, high-reward strategies that earn more points
in a shorter time frame. This work used the MindModeling.org computational cognitive modeling platform to develop the best
models capable of playing long term games and short term games, and then compared the performance of the two. The best
long term model adopted the slow and steady strategy, while the best short term model displayed the higher-risk, higher-reward
strategy that more closely matches behavior observed in human players. Models that ”trained long” but ”played short” did
worse than those that both trained and played ”short.”
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Abstract 

The Uniform Information Density (UID) hypothesis links 
production strategies with comprehension processes, 
predicting that speakers will utilize flexibility in encoding in 
order to increase uniformity in the rate of information 
transmission, as measured by surprisal (Jaeger, 2010). 
Evidence in support of UID comes primarily from studies 
focusing on word-level effects, e.g. demonstrating that 
surprisal predicts the omission/inclusion of optional words. 
Here we investigate whether comprehenders are sensitive to 
the information density of alternative encodings that are more 
syntactically complex. We manipulated the syntactic 
encoding of complex noun phrases in German via meaning-
preserving pre-nominal and post-nominal modification in 
contexts that were either predictive or non-predictive. We 
then used the G-maze reading task to measure online 
comprehension during self-paced reading. Results were 
consistent with the UID hypothesis. In predictive contexts, 
post-nominal encodings elicited a more uniform distribution 
of processing effort. Conversely, in non-predictive contexts, 
more uniform effort was found for pre-nominal encodings. 

Keywords: Language comprehension; surprisal; uniform 
information density hypothesis; G-maze; self-paced reading. 

Introduction 
Levy and Jaeger’s (2007) Uniform Information Density 
hypothesis postulates that speakers adjust their lexical and 
syntactic realization of a message for the benefit of 
comprehenders. Specifically, they suggest that there is an 
overarching preference to produce message encodings that 
distribute information as evenly as possible across the 
linguistic signal. This account fundamentally links encoding 
and decoding processes, asserting that language producers 
will exploit the flexibility in encoding so as to increase 
uniformity in the rate of information transmission, as 
measured by surprisal (Hale, 2001; Levy, 2008). As such, 
the UID hypothesis can be viewed as part of a rational 
theory of communication — from an information theoretic 
perspective — in which encoding strategies take into 
account resource limitations of the comprehender. 

There is robust empirical evidence that surprisal accounts 
for cognitive load during comprehension — at least at the 
level of individual words in a sentence (Drieghe, Rayner & 
Pollatsek, 2005; Kliegl, Grabner, Rolfs & Engbert, 2004; 
Rayner, Aschby, Pollatsek & Reichle, 2004; Rayner & 
Well, 1996). However, there exists little direct online 
evidence that comprehenders are indeed sensitive to the 
surprisal and density profiles of alternative syntactic 
encodings — a critical assumption underlying the UID 
hypothesis. Furthermore, current support for UID in 
production is limited to relatively local encoding choices, 

such as that-deletion (Jaeger, 2010; Levy & Jaeger, 2007), 
contraction (Frank & Jaeger, 2008), and the use of single 
word equivalents that vary in word length (chimpanzee vs. 
chimp; Mahowald, Fedorenko, Piantadosi & Gibson, 2013). 
Although the above studies provide important and 
compelling support for the notion that UID modulates 
aspects of syntactic encoding, the generality of the findings 
is limited by the observation that all the phenomena are 
instances of highly local syntactic reduction.  

The goal of the current study is to investigate whether 
comprehenders are sensitive to the information density of 
more complex alternative syntactic encodings. Consider the 
following examples:  

 
(1) The journalist published…  Predictive context 
(2) The man evaluated…  Non-predictive context 

 

 a. …[the carefully written essay]. Obj NPadj 
  b. …[the essay that was carefully written].  Obj NPrel 
 

Each object noun phrase (NP) above arguably expresses the 
same message,1 however (a) uses a pre-nominal adjective 
phrase while (b) uses a post-nominal relative clause. While 
the head noun (essay) is more expected in the predictive (1) 
than non-predictive (2) contexts, the expectation for the 
adjective carefully presumably does not differ across 
contexts. One potential encoding strategy for increasing the 
uniformity of information density would be to produce low-
surprisal words early in the sentence, as this may facilitate 
the processing of subsequent less predictable words. For 
instance, in the non-predictive context, the UID hypothesis 
predicts a processing advantage for the pre-nominal 
encoding because carefully written should reduce the 
surprisal of essay. In the predictive context, on the other 
hand, the pre-nominal encoding may result in a trough in 
information density at essay, as it is highly expected (and 
thus not very informative) following the verb and modifiers. 
In this case, the post-nominal relative clause may distribute 
the informational content more uniformly. The UID 
hypothesis therefore, predicts a greater benefit for the 
relative clause encoding in more predictive contexts. 

We tested the above predictions using a self-paced 
reading design to measure online differences in cognitive 
load during the critical object NP.  

                                                             
1 Choices in linguistic encoding are known to be influenced by 

aspects of information structure, including contrastive focus, 
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Experiment 
Our primary goal was to test whether comprehenders are 
sensitive during online processing to differences in the 
information density of alternative syntactically-complex 
encodings that nevertheless convey a similar message. The 
materials crossed two factors (context × encoding), as 
illustrated in Table 1. Because this manipulation distributes 
information within the critical region differently across 
conditions, we assessed cognitive load using a variation of 
self-paced reading that is less susceptible to spill-over 
effects than standard forms of self-paced reading. The 
grammaticality maze task (G-maze; Forster, Guerrera & 
Elliot, 2009) can precisely identify the word at which 
processing time differences emerge during online 
comprehension (Witzel, Witzel & Forster, 2010) and is 
therefore well-suited for our purposes. In this task sentences 
are presented word by word as a sequence of forced choices 
between two alternatives, only one of which continues the 
sentence grammatically. If the participant successfully 
navigates the “maze” by choosing the correct word from 
each pair, the selected words form a coherent sentence 
(Figure 1). 

Methods 
Participants Twenty-seven native German speakers (age M 
= 24, SD = 2.6) with normal or corrected to normal vision 
were recruited from the Saarland University community and 
were compensated 8€ for their participation. Participants 
that did not successfully navigate at least 70% of mazes in 
all experimental conditions were excluded (n = 3). 

Materials Forty-eight sets of sentences were constructed in 
German by crossing context (predictive, non-predictive) and 
syntactic encoding of the object NP (pre-nominal 
modification, post-nominal modification), resulting in four 
conditions per item (Table 1). In order to create the context 
manipulation, the same object noun (e.g., Essay, “essay”) 
was used in all conditions, but the object was designed to be 
more expected in predictive contexts than non-predictive 
contexts. This was accomplished by choosing different 
subject–verb combinations for each context. Subject–verb 

combinations were neutral with respect to the object noun in 
the non-predictive context (e.g., Der Mann bewertete, “The 
man evaluated”), but were semantically associated with the 
object in the predictive contexts (e.g., Der Journalist 
veröffentlichte, “The journalist published”). Importantly, 
however, highly expected object nouns (e.g., Artikel, 
“article”) were avoided in order to increase the possibility of 
detecting surprisal differences between predictive/pre-
nominal and predictive/post-nominal conditions. 

The information density of object NPs was manipulated 
via pre- and post-nominal modification, affecting both the 
linear ordering and length (in words) of the message. Pre-
nominal modifiers (e.g., sorgfältig verfassten, “carefully 
written”) were shorter, containing 2 to 4 words, but 
positioned the head noun at the end of the NP. Post-nominal 
modifiers used a relative clause construction (e.g., der 
sorgfältig verfasst worden war, “that was carefully written”) 
and were therefore longer, ranging from 4 to 6 words, and 
constrained the head noun to the beginning of the NP. To 
avoid having any words within the critical object NP region 
be sentence-final, all items ended with an adverbial phrase.  

 
Figure 1: Example trial structure of G-maze task. 

Sentences (in German) were presented word by word as a 
sequence of forced choices between two alternatives, only 

one of which continued the sentence grammatically. 

Table 1: Example stimulus item in four conditions with approximate English translations. The critical region of interest  
was the object NP. RTs were analyzed separately for the object noun (bold) and modification region (underlined). 

 
Context Encoding Example 

Predictive Post-nominal Der Journalist veröffentlichte den Essay, der sorgfältig verfasst worden war, unter Einbeziehung des größeren Kontextes.  
“The journalist published the essay that was carefully written, taking into account the larger context.” 

Predictive  Pre-nominal Der Journalist veröffentlichte den sorgfältig verfassten Essay unter Einbeziehung des größeren Kontextes.  
“The journalist published the carefully written essay, taking into account the larger context.” 

Non-predictive Post-nominal Der Mann bewertete den Essay, der sorgfältig verfasst worden war, unter Einbeziehung des größeren Kontextes.  
“The man evaluated the essay that was carefully written, taking into account the larger context.” 

Non-predictive Pre-nominal Der Mann bewertete den sorgfältig verfassten Essay unter Einbeziehung des größeren Kontextes.  
“The man evaluated the carefully written essay, taking into account the larger context.” 

The$$$$$$x&x&x$

went$$$$$$man$$$

evaluated$$$$$sink$

the$$$$$$$hosed$

while$$$$carefully$

wri8en$$$$$river$

some9me.$$$$$essay.$
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Four counterbalanced lists were constructed from these 
materials according to a Latin Square design such that each 
list contained 12 items in each condition, but no item 
appeared more than once in the same list. An additional 48 
sentences with the same structures as above, but containing 
highly predictable object nouns, were constructed as fillers 
(e.g., Der Schneider zerschnitt den stark gemusterten Stoff 
am Mittwoch., “The tailor cut the heavily patterned fabric on 
Wednesday.”). Half of the filler sentences contained pre-
nominal modification of the object noun and the other half 
contained post-nominal modification. No object nouns were 
repeated across experimental or filler items. 

Cloze probability and contextual constraint An offline 
Cloze completion study was conducted to confirm that 
object nouns were more expected following predictive than 
non-predictive contexts, but were not highly expected in 
either context. A separate group of 58 native German 
speakers (age M = 22.0, SD = 2.9) were presented with 
sentence fragments from the 48 experimental items 
described above. Fragments contained only the contexts, 
followed by a blank (e.g., Der Mann bewertete___; Der 
Journalist veröffentlichte___). Predictive and non-predictive 
contexts were counter-balanced across two lists. Participants 
were asked to fill in the blank with the first determiner–
noun combination that came to mind. Cloze probabilities 
were computed as the percentage of participants who 
provided the experimental object noun for a particular item. 
As expected, object nouns had low cloze probabilities in 
both contexts but were reliably more expected following 
predictive (cloze = 0.06, SD = 0.18) than non-predictive 
contexts (cloze = 0.00, SD = 0.01), t(47) = -2.32, p < .05. 

The percentage of the most frequently occurring response 
to each sentence fragment in the cloze test was also used to 
assess the contextual constraint of predictive and non-
predictive contexts. As expected, the mean constraint of 
predictive contexts was reliably greater (51.3%) than that of 
the non-predictive contexts (21.3%), t(47) = -8.46, p < .001. 

Surprisal profiles To compare our response time results 
against a more theoretical notion of predictability, we 
computed surprisals for all experimental stimuli using an 
interpolated modified Kneser-Ney 5-gram language model 
trained on a 2017-01-01 dump of German Wikipedia. To 
obtain the corpus, we filtered the original XML dump using 
the tool WikiExtractor, split the corpus into sentences using 
the NLTK sentence splitter for German, and preprocessed 
the resulting dataset.2 After replacing all types occurring 
fewer than 15 times with <unk>, the vocabulary size was 
833,734.3 We split the corpus into training, development, 

                                                             
2 Lowercased, replaced punctuation with space, replaced digits 

with NUM, removed empty lines, replaced tabs with spaces, 
removed multiple spaces, removed multiple NUMs, replaced 
umlauts by their conventional character bigrams, and added 
sentence begin and end markers. 

3 A threshold of 15 was selected since this was the highest 
possible while maintaining a less than 1% out of vocabulary rate 
on a different corpus (EUROPARL). 

and test sections with the ratio 8:1:1. The resulting training 
section contained 666,561,150 tokens. The model was 
trained using the SRILM toolkit (Stolcke, 2002) and 
achieved perplexities of 25 on the training section, 201 on 
the test section, and 1583 on our stimuli.4  

Procedure Participants were randomly assigned to a 
stimulus list (6 per list). The G-maze task was implemented 
in E-prime (Schneider, Eschman, & Zuccolotto, 2002). Each 
trial began with two crosses (+) that remained on screen for 
1000 ms, indicating where subsequent word pairs would 
appear. Each word in the sentence (except the first word) 
was then presented together with a foil word,5 which was 
not a grammatical continuation of the sentence. The first 
word in every sentence was paired with “x-x-x”. The 
presentation side (left, right) was randomized such that the 
correct word appeared equally often on each side. Any 
punctuation (i.e., comma, period) that appeared with a word 
also appeared with its foil. Participants were instructed to 
choose as quickly and as accurately as possible the word 
that best continued the sentence. Participants indicated their 
selection by pressing the left or right button on a button box 
and the amount of time required for selecting the 
grammatical continuation was recorded as the response time 
(RT). If the correct word was chosen, the next pair of words 
appeared automatically. However, if a foil word was 
selected, negative feedback (Inkorrekt, “Incorrect”) was 
displayed and the trial was aborted. Once the end of a 
sentence was reached, positive feedback (Korrect, 
“Correct”) was given. Participants initiated each new trial 
by button press.  

To confirm that participants read the sentences for 
meaning, a Yes/No comprehension question appeared after 
1/3 of the items. Half of the questions asked about the 
subject noun and half about the object noun. The correct 
answer was Yes for 50% of questions. Participants used the 
button box to respond. No feedback was given.  

In order to familiarize participants with the task, five 
practice items (three with comprehension questions) were 
presented before the experiment began. Participants took 
approximately 40 minutes to complete the experiment. 

 

                                                             
4 The sharp difference in perplexity scores between the test 

corpus and stimuli suggests that the German Wikipedia corpus is 
not an ideal match for our stimuli. We return to this point in the 
discussion. 

5 Foils were created in a two-stage process. First, a custom 
Python script randomly selected a foil candidate for each word in 
each experimental and filler item. Foil candidates were constrained 
such that they did not appear in bigrams with the correct word at 
the previous position in the sentence within a large German corpus. 
Second, each foil was then hand checked by at least two trained 
native-German linguists to ensure that it was not a grammatical 
continuation of the sentence. The same foil was used for identical 
words (or derivationally related words) across conditions. 
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Results and Discussion 
Completed mazes Overall performance on the G-maze task 
was high, with participants successfully navigating 85.6% 
(SD = 0.08) of experimental and filler items to completion. 
However, because the critical region of interest was the 
object NP, the RT analyses reported below were conducted 
on all experimental items that were completed through at 
least the end of the critical region (M = 0.90, SD = 0.06). 

Comprehension question accuracy Performance on the 
comprehension questions was near ceiling (M = 0.97, SD = 
0.04), confirming that participants were reading the 
sentences for meaning during the G-maze task.  

Response time RTs were analyzed with linear mixed effects 
models with participants and items as crossed, independent, 
random effects. All models included maximal random 
effects structures (Barr, Levy, Scheepers & Tily, 2013). 
Analyses were conducted using the lmer function (lme4 
library, version 1.1-10; Bates & Sarkar, 2007) in the 
statistics software package R, version 3.2.2 (R Development 
Core Team, 2013). Fixed effects were evaluated via 
likelihood ratio tests implemented in lmerTest (Kuznetsova, 
Brockhoff & Christensen, 2015), where denominator df was 
estimated using the Satterthwaite method. We report 
estimates, standard errors, t and p values associated with 
likelihood ratio tests for significant results only. 

All raw RTs that were abnormally low (below 200 ms) or 
abnormally high (above 5000 ms) were excluded (0.3%), 
and outliers exceeding 3 standard deviations by participant 
were then trimmed (1.8%). The remaining RTs were 
adjusted for word length (Ferreira & Clifton, 1986) and 
punctuation using a linear mixed effects regression model 
with fixed effects for word length, punctuation (i.e., whether 
or not a comma or period was presented with the word), and 
their interaction. The residuals of this model, length-
adjusted RTs, served as the dependent variable in the 
analyses reported below.6 Because the number of words 
used to modify object nouns varied across items and 
conditions, we computed the length-adjusted RT for the 
modification region by averaging across modifier words. 

The upper panel of Figure 2 presents the mean length-
adjusted word-by-word RTs for each condition. Differences 
first emerge at the subject noun, where RTs were slower for 
predictive than non-predictive contexts. This is not 
surprising as these words (e.g., journalist) are less frequent 
than their non-predictive counterparts (e.g., man). More 
relevant to the research question, all four conditions diverge 
within the critical object NP region (Table 2). 

Object noun analysis. Length-adjusted RTs for object 
nouns were regressed onto a model including fixed-effect 
factors for context (predictive, non-predictive), encoding 
(pre-nominal, post-nominal), and their interaction. In order 
to control for task adaptation, a main effect of stimulus 
order was also included. 

                                                             
6 Qualitatively identical results are obtained when raw RTs are 

used. 

Figure 3 (left panel) shows that object nouns were read 
more quickly in predictive than non-predictive conditions, β 
= -161.01, SE = 29.59, t(44.22) = -5.44, p < .001. This 
finding replicates previous work demonstrating that 
expected linguistic material is easier to process than 
unexpected material.  

Within the non-predictive conditions, pre-nominal 
modification clearly facilitated the processing of unexpected 
object nouns. Length-adjusted RTs for object nouns were 
faster for pre-nominal modification than for post-nominal 
modification, β = -124.86, SE = 30.42, t(23.07) = -4.104, p 
< .001. This result is consistent with the UID hypothesis, 
which predicts a processing advantage for the pre-nominal 
encoding: pre-modification reduces the surprisal of the 
unexpected word and results in a more uniform distribution 
of processing effort across the linguistic signal.  

Within the predictive conditions, length-adjusted RTs for 
object nouns were also faster for pre-nominal modification 
than for post-nominal modification, β = -51.00, SE = 18.67, 
t(29.26) = -2.73, p < .05. However, the facilitation effect 
was weaker for predictive conditions, resulting in a context 
× encoding interaction, β = 73.67, SE = 33.02, t(53.56) = 
2.23, p < .05. The UID hypothesis predicts a trough in 
information density for words that are both highly expected 
and pre-modified. Figure 2 (upper panel) is compatible with 
this prediction. RTs drop steeply in the predictive / pre-
nominal condition at the object noun. Note that this is true 
despite the fact that object nouns were selected to be low-
cloze. Thus, as shown in Figure 3, the post-nominal 
condition distributes the informational content more 
uniformly, resulting in a smoother RT profile.  

Modification region analysis. Length-adjusted RTs for the 
modification region were analyzed using the same mixed 
effects model as above. Figure 3 (right panel) shows that 
encoding influenced the processing of the modification 
region in a way that was complementary to its effect on 
object nouns (see also Table 2). Pre-nominal modification 
was read more slowly than post-nominal modification in 
both contexts, β = 106.04, SE = 15.02, t(75.75) = 7.06, p < 
.001. However the magnitude of this effect was greater in 
the non-predictive context, reflected in a context × encoding 
interaction, β = -53.44, SE = 18.69, t(51.68) = -2.86, p < .01.  

 
Table 2: Mean length-adjusted RT (ms) by condition for 

object noun (upper panel) and modification region 
(lower panel). Standard deviation in parentheses. 

 

Object Noun 
  

 
Pre-nominal Post-nominal  Mean 

Predictive -54 (77) -5 (54)  -30 (50) 
Non-predictive 27 (70)  56 (98)  92 (46) 

 Mean -13 (56) 76 (62) 

     Modification Region 
  

 
Pre-nominal Post-nominal  Mean 

Predictive 54 (46)  2 (39)  28 (31)  
Non-predictive 113 (53) 10 (30)  61 (34) 

 Mean 84 (30) 6 (22) 
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Figure 2: Upper panel: Mean length-adjusted word-by-word RTs. Lower panel: Surprisal profiles as determined by  

a language model trained on the German Wikipedia corpus. RTs and surprisals for the modification region were  
calculated by averaging across all modifiers words. Error bars represent one standard error of the mean. 

 
 

Figure 3: Mean length-adjusted RTs for object nouns  
(left panel) and the modification region (right panel).  
Error bars represent one standard error of the mean. 

 
Surprisal profiles. The lower panel of Figure 2 shows the 

surprisal profiles produced by the language model. 
Surprisals at sentence positions 1-4 patterned closely with 
RTs, reflected in a positive correlation within this region (r 
= 0.36). However, the surprisal pattern differed somewhat 
from the pattern of RTs during the critical object NP region 

(r = -0.06). There are at least two plausible explanations for 
this divergence. First, the predictable contexts may not have 
made our atypical (i.e., low cloze) object nouns statistically 
more predictable, given our German Wikipedia corpus. For 
instance, verpackte (“boxed”, a verb in the predictive 
context) and Geschenk (“gift”, the corresponding object 
noun) were both present in the corpus but never co-occurred 
in the same sentence. We assessed this possibility and found 
that, on average, subject nouns in predictive contexts did not 
substantially increase the predictability of object nouns 
above the general case. Verbs, however, did so by a factor 
of 6. Second, the dependencies that existed in the training 
corpus may not have been fully captured by the language 
model. To test this possibility, we calculated the mean gram 
size used for surprisal predictions in the object NP region 
(M = 1.86). This finding indicates that despite being trained 
on 5-grams, the model predictions in this region were based 
predominantly on more local statistics (i.e., bigrams), 
effectively modeling only the non-predictive conditions.7 

Despite these caveats, the results broadly confirm our 
assumptions about the distribution of surprisal across pre-
nominal and post-nominal encodings of the critical object 

                                                             
7 Note, however, that the cloze results validate both the stimuli 

and the RT findings. 
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NP: according to the language model, the pre-nominal 
encodings had more uniform information densities. To 
capture the behavior found for reading times in the 
predictive conditions, either a closer domain match between 
training corpus and stimuli would be required, or a language 
model architecture that is less sensitive to word position. 

General Discussion 
The UID hypothesis links production strategies with 
comprehension processes and predicts that speakers utilize 
flexibility in encoding to distribute information as evenly as 
possible across the linguistic signal (Jaeger, 2010; Levy & 
Jaeger, 2007). While prior evidence for UID comes 
primarily from word-level effects (Frank & Jaeger, 2008; 
Jaeger, 2010; Levy & Jaeger, 2007; Mahowald et al., 2013), 
a critical assumption underlying the UID hypothesis is that 
comprehenders should also be sensitive to the information 
density of alternative syntactically-complex encodings. To 
our knowledge, the current study is the first to investigate 
this important and challenging question.  

We manipulated the syntactic encoding of complex noun 
phrases via meaning-preserving pre-nominal and post-
nominal modification in contexts that were either predictive 
or non-predictive. The results were consistent with the UID 
hypothesis. In predictive contexts, post-nominal encodings 
elicited a more uniform distribution of processing effort 
than pre-nominal encodings. This makes sense because the 
head noun is already expected in such contexts, thus pre-
nominal modification could lead to a trough in information 
density at the noun. Conversely, in non-predictive contexts, 
a more uniform RT profile was found for pre-nominal 
encodings, where pre-modification served to reduce the 
surprisal of the unexpected head noun. This pattern of 
comprehension results provides indirect support for UID as 
a rational strategy for producers to adopt. An important 
question for further investigation is whether speakers are 
indeed attentive to such factors when making their encoding 
decisions. 
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Abstract 

Theories that span tasks and developmental periods require 
explaining how a single cognitive system can flexibly adapt 
across contexts yet show stable age-related improvement. Here 
we present a computational model that embodies a unified the-
ory of visuospatial cognitive development. We use this model 
to bridge between previously disconnected domains, as diverse 
as infant habituation and visual working memory capacity in 
adults. We illustrate how the same real-time and developmental 
processes can account for behavior across tasks and age groups. 
We conclude with a discussion of the implications of a unified 
theory for understanding cognition and development more 
broadly, with an eye toward early intervention. 

Keywords: visual cognition; working memory; development; 
infancy; neural field model 

A Unified Theory of Visuospatial Cognition  

A central challenge in cognitive science is to create theories 

that generalize across tasks and developmental periods. 

Computational models provide a concrete tool to confront 

this challenge. We illustrate this using a dynamic neural field 

(DNF) model of visuospatial cognition. Our goal is to 

explicitly connect the processes that operate across the range 

of behavioral tasks used from infancy through adulthood to 

measure different aspects of visuospatial cognition. By 

demonstrating that such disparate tasks and phenomena arise 

through common underlying processes, we can construct a 

broader theory to contrast with prior theories that have been 

proposed to account for only a single task and age group.  

The unified theory of visuospatial working memory 

development we espouse is implemented in a single model 

architecture with a single developmental mechanism to 

explain change from infancy to adulthood. Here we show 

how this model can bridge between previously disconnected 

domains and developmental periods. We begin by describing 

the basic dynamics of DNFs. Next, we present the specific 

architecture we have applied across tasks and age groups. We 

then illustrate how this model can be used to account for 

visual and spatial working memory processes across tasks 

and development. Finally, we close by discussing the impli-

cations of our unified theory for understanding cognitive 

development and interventions that strengthen cognition in 

at-risk or developmentally delayed populations.  

Dynamic Neural Fields  

DNFs belong to a larger class of bi-stable attractor networks 

(Amari, 1977; Wilson & Cowan, 1972) and simulate neural 

population dynamics to represent a continuous dimension, 

such as space or color (Schöner, Spencer, & the DFT 

Research Group, 2015). DNFs have a functional topographic 

organization such that neighboring nodes within a field 

representing similar features (e.g., shades of blue in color, 

neighboring locations in space). In DNFs, a stimulus input 

excites selectively-tuned neurons which then interact through 

local excitatory and lateral inhibitory connections to create a 

localized “peak” of activation (illustrated in Fig.1 below). 

A peak in a DNF represents a real-time neuronal estimate 

of the stimulus. With relatively weak local excitation and 

lateral inhibition, peaks are only present when supported by 

input, that is, when the stimulus is present in the environment 

– we refer to this as an encoding state. With stronger 

connectivity, peaks can persist after a stimulus disappears 

(i.e., input is removed), which we refer to as a working 

memory state. Peaks leave excitatory memory traces, a 

simple Hebbian-type history of activation, that facilitate the 

re-formation of peaks at similar values (e.g., color, location) 

at future points in time. For example, when presented with a 

blue stimulus, the model will produce a peak that estimates 

the specific hue. The peak will leave a memory trace that 

facilitates the formation of a peak for the color blue at a future 

point in time. We will show that this feature of DNFs has 

implications for behavior in working memory tasks.  

Multiple DNFs can be coupled together to create more 

complex neural architectures that simulate neurocognitive 

processes of encoding, maintenance, comparison, and 

recognition (described further below). To use such models to 

understand behavior, these neural architectures can be 

coupled to behavioral systems to generate the particular 

behavioral dynamics of interest – below we describe systems 

to simulate looking behavior, same/different judgments, or 

pointing/recall responses. In the next section, we describe a 

three-layer architecture that we have used to simulate 

performance in visuospatial working memory tasks from 

infancy to adulthood. 

A Three-Layer Dynamic Neural Field Model 

Figure 1 shows the three-layer model (reviewed by Johnson 

& Simmering, 2015; referred to here as the “dynamic model” 

for simplicity) used for the simulations we describe. This 

instantiation of the model consists of a fixation and visual-

cognitive system. The fixation system consists of a collection 

of nodes that represent looking to left, right, center, and away 
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locations in a virtual world. The nodes compete in a winner-

take-all fashion. The winner (left node in Fig.1) opens a 

perceptual gate and the stimulus at that location (green and 

red) is input to the visual-cognitive system (see green arrow 

from virtual world to visual-cognitive system). The visual-

cognitive system consists of a perceptual field (PF), which 

receives input from the fixation system representing the color 

of the stimulus. This input creates peaks representing the 

stimulus; connectivity in this field is set to the encoding state 

described above. Activation in PF supports continued 

fixation through reciprocal connectivity (see green arrow 

from PF to virtual world) and also feeds into a working 

memory (WM) field (see green arrow from PF to WM). 

These fields interact through a shared field of inhibitory 

nodes (Inhib). When WM activity for an item is strong, WM 

sends strong activity to Inhib (see red arrow from WM to 

Inhib). This, in turn, suppresses activity for that item in PF 

(see red arrow from Inhib to WM). In addition to this three-

layer (PF-Inhib-WM) architecture, the dynamic model 

includes memory trace (MT) layers associated with PF and 

WM that accumulate activation over a longer time scale (for 

simplicity, only MTWM is shown in Fig.1), serving the 

Hebbian function described above.  

Figure 1 illustrates how the dynamic model simulates 

encoding, maintenance, and comparison of items in WM. A 

critical insight gained from applying this model across tasks 

and development is how the same real-time processes 

underlying these cognitive functions can produce a range of 

seemingly unrelated behavioral signatures (e.g., habituation, 

perseveration, novelty preferences, capacity limits, 

dimensional attention), as described below. At the moment 

represented in Figure 1, WM is maintaining the colors light 

green and orange, which has inhibited encoding in PF (see 

inhibitory troughs at sites tuned to light green and orange), 

which released fixation from the right location (see position 

in virtual world). This inhibition of encoding by WM is the 

mechanism of recognition in the model. After fixation was 

released from the right location in the simulation shown in 

Figure 1, the model fixated the left location and is encoding 

a dark green and red stimulus there. This is the mechanism of 

novelty detection in the model – fixating and encoding items 

not held in WM. Notice that the model has MTs associated 

with the light green and orange items. This will enable the 

model to form robust WM peaks for those colors in the future, 

which can support recognition of those items as familiar. 

This simulation shows the dynamic model equipped with a 

fixation system that looks at multiple locations, which 

simulates looking behavior (Perone, Simmering, & Spencer, 

2011). To simulate the behaviors required by different 

visuospatial working memory tasks, the model can be used to 

generate continuous recall responses (e.g., pointing to a 

remembered location or color) based on peak positions (e.g., 

Spencer, Smith, & Thelen, 2001) or equipped with a 

same/different response system (Johnson, Spencer, Luck, & 

Schöner, 2009). Critically, however, each of these different 

behavioral responses is driven by the same underlying 

cognitive processes embodied in the three-layer architecture. 

In the following sections, we synthesize recent applications 

of the dynamic model to provide a unified explanation of 

visuospatial cognitive processes across previously 

disconnected domains and development: habituation and 

visual recognition during infancy, and VWM capacity limits 

from infancy to early childhood and adulthood.  

Common Processes Underlying Visual 

Working Memory from Infancy to Adulthood 

In this section, we describe how this model can account for 

behavior and development in three domains, highlighting that 

a single developmental mechanism produces change in all 

three domains. We begin by describing how the model links 

infant looking at a single location to WM formation in the 

habituation paradigm. Next, we show how the same model 

looks to multiple location in a visual recognition context, the 

visual paired comparison task. After that, we show how the 

same model can once again be adapted to explain visual 

working memory capacity limits in children and adults.  

Figure 1. Three-layer dynamic neural field architecture, 

coupled to a fixation system viewing colors in a virtual 

world. Green versus red arrows indicate excitatory versus 

inhibitory connections; horizontal dashed lines indicate the 

zero threshold in each field. See text for further description. 
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Habituation 

Infant looking paradigms form the foundation of our under-

standing of the origins of human cognition. Habituation of 

looking behavior has been used for half a century to probe 

perceptual, memory, and cognitive processes during infancy. 

In a typical habituation task, infants are presented with a 

single stimulus (e.g., blue circle). Initially, they exhibit high 

levels of looking which decreases with repeated presentation. 

They typically renew looking when presented with a novel 

stimulus (e.g., red star). Prior theories have not considered 

looking behavior a central part of the learning process 

(Cohen, 1972) but rather as an output. However, there is 

evidence that how infants distribute their looking through 

time structures what they learn (Jankowski, Rose, & 

Feldman, 2001). To explore the interplay between looking 

and learning, Perone and Spencer (2013) used the dynamic 

model with a simple fixation system that stochastically oscil-

lated between looking at a single stimulus and looking away. 

As described above, when the fixation node was looking to 

the stimulus, it opened a perceptual gate that sent input PF. 

Strong activation in PF supported continued looking and led 

to the formation of memory representations in WM and MT. 

When the WM representation grew robust across 

presentations, encoding in PF was inhibited (as described 

above), and looking was released. Thus, the dynamic model 

showed habituation in looking time, just as infants do. 

Perone and Spencer (2013) tested whether the dynamic 

model could account for the developmental changes infants 

show in habituation tasks: faster habituation rates and the 

ability to make finer-grained distinctions with age. To 

simulate development in the visual-cognitive system of the 

dynamic model, they implemented the Spatial Precision 

Hypothesis (SPH). The SPH posits that the strength of 

excitatory and inhibitory connectivity within and between 

layers increases over development (see Simmering & 

Schutte, 2015, for review). Implementing the SPH in the 

context of the habituation task led to faster, more stable WM 

formation and more robust novelty detection. This led to 

quick habituation and improved discrimination with age, just 

as infants show. The dynamic model’s performance 

highlighted the link between visual exploration and learning. 

For example, spontaneous long looks helped WM form, 

which led to fast habituation. Conversely, spontaneous short 

looks led to slowed memory formation. This provides an 

explanation for how individual differences in visual 

exploration can structure learning. This highlights the 

importance of simulating real-time behavior in a model to 

understand how the cognitive system functions and develops.  

Visual Paired Comparison 

The visual paired comparison (VPC) paradigm is commonly 

used to study visual recognition and categorization processes 

during infancy. VPC differs from the habituation paradigm in 

a critical way: it introduces competition. Infants are presented 

with pairs of stimuli and can freely look back and forth 

between them. This context yields a rich set of looking 

measures, including shift rate (gaze switches per second of 

looking), look duration (mean duration of each look), peak 

look (longest look), and preferences (proportion of looking to 

one item greater than chance). Infants’ recognition memory 

is assessed via pairing a previously seen, familiar item with a 

novel item. A preference for the novel item is evidence of 

both (1) recognition of the familiar item and (2) 

discrimination between the familiar and novel items (as 

illustrated in Fig.1). With age, infants exhibit faster shift 

rates, shorter look durations, shorter peak looks, more fine-

grained discrimination, and stronger novelty preferences. 

These looking behaviors develop more slowly in at-risk 

populations, such as preterm infants (e.g., Rose, Feldman, & 

Jankowski, 2001).  

The dynamic model can adapted to VPC by equipping it 

with a fixation system that looks at left and right locations 

(see Fig.1), compared to the single item/fixation location 

used for habituation. The dynamics of the visual-cognitive 

system are otherwise identical to the model simulations of 

habituation from Perone and Spencer (2013). Perone and 

Spencer (2014) asked whether this same model and 

developmental mechanism could account for the range of 

behavioral changes infants show over development in VPC. 

They probed this by testing infants’ looking behavior and 

discrimination abilities between 5 and 10 months of age, then 

simulating the paradigm in the dynamic model. They found 

that infants exhibited faster shift rates, shorter look durations, 

and shorter peak looks with age. They also found that infants 

were able to make discriminations along a continuous 

metrically organized dimension by 7 months of age. The 

model exhibited the same behavioral pattern over 

development for precisely the same reasons as it did in the 

habituation paradigm: faster, more robust memory formation.  

Perone and Spencer (2014) also analyzed individual differ-

ences. In particular, individual differences in looking during 

the learning phase of VPC predicted their discrimination 

abilities during the testing phase. This pattern was found in 

the dynamic model’s performance as well. But where did 

these individual differences come from? There were no 

parameter changes to simulate “individuals” in the model; 

rather, the individual differences in patterns of performance 

were emergent. The structure of looking behavior that builds 

memory representations and supports discrimination in the 

dynamic model emerged autonomously. This parallels the 

insight gained from the simulations of habituation: infants’ 

exploratory behavior in the task influenced the formation of 

memory, which in turn shaped their subsequent looking 

behavior. Although the processes at work in the habituation 

and VPC are generally considered similar, what infants 

remember in each paradigm is different (Oakes & Ribar, 

2005). This is the first theory to formally account for how the 

same learning process unfolds in both contexts.  

Capacity Limits over Development 

One of the hallmarks of WM is its limited capacity. Visual 

working memory (VWM ) in particular is limited to only 

three or four items in adults (Luck, 2008). The majority of 
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work characterizing VWM capacity limits have focused on 

children and adults, with the change detection task being a 

common approach, shown in Figure 2A. In this task, a small 

number of simple items (e.g., colored squares) is shown 

briefly, followed by a brief blank delay, then a test array in 

which either all of the items remained the same or one has 

changed. Capacity estimates from this task (using a formula 

proposed by Pashler, 1988) have shown a gradual increase 

from early childhood through adolescence (Simmering, 

2016; Simmering & Perone, 2013). Studies with infants, 

however, present seemingly contradictory results, with 

estimates of capacity reaching adult-like levels within the 

first year of life (e.g., Oakes, Ross-Sheehy, & Luck, 2006; 

Ross-Sheehy, Oakes, & Luck, 2003). One way to address this 

apparent discrepancy across tasks and age groups is through 

the dynamic model framework presented here. 

The task used to estimate capacity during infancy, shown 

in Figure 2B, is a variant of VPC called the change preference 

paradigm. Infants are presented with the same number of 

colored squares is presented on each of two displays. The 

squares briefly appear and disappear repeatedly throughout 

each trial; across these presentations, the colors in the “no-

change” display remain the same; on the other “change” 

display, one color changes following each blank delay. 

Infants’ fixation is tabulated over the course of the trial, and 

compared to chance (i.e., equal looking to both displays). 

Capacity is estimated from the highest set size (i.e., number 

of colors per display) at which infants show a reliable 

preference for the “change” display. The rationale behind this 

interpretation is that if infants can remember the colors within 

a display, the “change” display will appear novel and 

therefore support a looking preference. Ross-Sheehy et al. 

(2003) estimated capacity to be only one item at 6 months, 

but three to four items at 10 months. Oakes et al. (2006) then 

showed that the capacity increase from one to three items 

occurred between 6 and 7 months of age.  

How can the change preference task yield a VWM capacity 

of 3-4 items at 10 months but the change preference task only 

yield a capacity of 1-2 items at 3 years? Perone et al. (2011) 

situated the dynamic model in the change preference 

paradigm and showed that the SPH could account for the age-

related changes in capacity estimates during infancy. One 

intriguing finding from these simulations was that a robust 

preference in the model did not depend on holding all of the 

items in memory: that is, a preference for set size three did 

not necessarily reflect that three items could be held in WM. 

Perhaps this means that the items required to be remembered 

to yield different estimates differs across tasks. Simmering 

(2016) probed this possibility by situating the dynamic model 

in both the change preference and change detection task. In 

order for the dynamic model to simulate performance in the 

change detection task, it must be equipped to give the “same” 

or “different” responses required by the task. This type of 

response system can be implemented by building from the 

mechanisms of recognition and familiarity inherent in the 

model’s visual-cognitive system (see Fig.1): peaks in WM 

indicate familiar items whereas peaks in PF indicate novel 

items. Thus, a simple system in which activation from WM 

projects to a “same” decision node, and activation from PF 

projects to a “different” decision node, can use these signals 

to general a discrete response on each trial (see Johnson & 

Simmering, 2015, for further discussion). 

Model simulations revealed that the two tasks used to 

estimate capacity showed different relationships between the 

underlying memory representations and the behavioral 

measures used to estimate it (Simmering, 2016). In particular, 

while simulations of the infant task suggested that behavioral 

estimates may over-estimate the number of items held in 

memory (Perone et al., 2011), simulations of adults’ perfor-

mance in change detection indicated it under-estimated the 

number of items held in memory (Johnson, Simmering, & 

Buss, 2014). Simmering (2016) bridged these results from 

infancy and adulthood by testing young children in both types 

of capacity tasks, then directly comparing performance 

across tasks and simulating results within a unified model. 

Simulations showed that developmental changes in both 

tasks could be accounted for within the same model through 

strengthening connectivity. Furthermore, although the tasks 

yielded different estimates of capacity between 3 and 5 years 

of age – at least six items in the looking task versus only two 

to three items in the change detection task – the common 

underlying processes were evident in correlations across 

tasks. Motivated by the common processes that support the 

detection of novelty across the two tasks in the model, 

Simmering (2016) found that children’s preference scores in 

the looking task were significantly correlated with their hit 

rates (i.e., proportion correct on change trials) in change 

detection. This relationship across tasks was not evident from 

considering only the capacity estimates from each task, but 

rather depended on a systematic understanding of how 

cognition and behavior relate. 

Spatial Cognition and Development 

The preceding sections showcased the use of the same 

model and developmental mechanism to adapt across 

contexts and development for visual (featural) memory 

processes. In this section, we illustrate that the same model 

Figure 2. Sample trials from two tasks used to 

estimate VWM capacity: (A) change detection used 

with children and adults and (B) change-preference 

used with infants. 
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can be adapted to account for performance in four spatial 

cognition tasks– (1) perseverative reaching in the Piagetian 

A-not-B task, (2) A-not-B-type biases in a sandbox task, (3) 

reference-related biases in spatial recall and (4) similar biases 

in position discrimination. Moreover, we show that 

developmental change across all of these domains was 

explained with the SPH.  

A-not-B Tasks 

Beginning with the A-not-B task (cf. Thelen, Schöner, 

Scheier, & Smith, 2001), weaker connectivity to simulate 

early infancy (8-10 months) led to perseverative reaching 

because the peak representing the second (B) location was 

not strong enough to overcome the history of reaches at the 

first location (A). With stronger connectivity to capture 

development, this peak could be maintained accurately 

through the delay to support accurate reaching as seen in 

older infants (10-12 months).A similar interaction between 

memory for the current target and prior reaches can be seen 

in older children’s performance in a sandbox version of the 

A-not-B task (e.g., Schutte, Spencer, & Schöner, 2003; 

Spencer, Smith, & Thelen, 2001). Children between the ages 

of 2 and 6 years show recall responses that are biased toward 

previously-remembered locations, with a developmental 

change in the spatial spread of this influence – younger 

children’s performance is biased over larger separations than 

older children’s (Schutte et al., 2003). This metric change in 

the influence of reaching history in the task has been 

simulated first through changes in the spread of activation 

within the three-layer architecture (Schutte et al., 2003) and 

later through changes in only the strength of connectivity 

(Simmering et al., 2008; see Simmering & Schutte, 2015, for 

further discussion). By showing that the SPH can account for 

changes in infants’ performance in the canonical A-not-B 

task as well as the metric changes during early childhood, this 

model architecture brought together previously disconnected 

age groups and tasks into a unified framework. 

Spatial Recall & Discrimination 

Young children’s performance in spatial recall tasks also 

shows influences of the spatial structure of the space, in 

addition to prior history of reaches. Specifically, young 

children recall locations as closer to the midline symmetry 

axis of the task space, whereas older children and adults recall 

locations further from midline and the edges of the task space 

(see Spencer, Simmering, Schutte, & Schöner, 2007, for re-

view). These effects can be simulated in the same three-layer 

architecture through the coordination between perceptual and 

memory processes in the sandbox or “spaceship” tasks. As 

connectivity strengthens over development, the representa-

tion of information in both perception and memory lead to 

the transition in bias (Schutte & Spencer, 2009, 2010). These 

processes operate continuously through time, and can be 

detected even in the brief delay of position discrimination 

tasks, linking together previously disconnected areas of 

research (Simmering & Spencer, 2008).  

Implications and Future Directions 

We presented a unified theory of working memory 

development that spans an impressive number of domains 

and periods of development. Importantly, this was only 

possible by using a concrete tool – a computational model – 

to tackle the difficult challenge of explaining cognition across 

domains and development. There are a number of 

implications of this work. First, our theory indicates that 

cognitive processes are not domain specific. Instead, the 

same general visual-cognitive system can account for 

multiple neurocognitive processes by organizing itself 

differently in different contexts with different behavioral 

demands. These include infant habituation (looking), visual 

working memory capacity (same/different judgments), and 

spatial recall (position estimation). Second, our theory 

indicates that the developmental mechanisms that drive 

change across domains are not unique. We showed that the 

SPH could account for changes in performance across 

multiple domains and radically different periods of develop-

ment. Last, our account raises the intriguing possibility that 

we can target basic visual-cognitive processes to strengthen 

early in development, which may have an impact across 

many domains and over a long period of time. 

One long-term goal of employing such a computational 

framework is to make further connections across age groups 

and domains, and to provide a mechanistic account of how 

behavior emerges in specific task contexts. Such examples 

can already be found in the domains of executive function 

(e.g., Buss & Spencer, 2014; Perone, Molitar, Buss, Spencer, 

& Samuelson, 2015) and word learning (e.g., Samuelson, 

Schutte, & Horst, 2009; Samuelson, Smith, Perry, & Spencer, 

2011). By connecting the same real-time processes of 

encoding, maintaining, and comparing visual inputs with the 

longer time-scale of learning in contexts that connect to 

verbal labels, we can test how far relatively simple cognitive 

mechanisms can go toward explaining complex behaviors 

(cf. Smith, Jones, & Landau, 1996).  

Acknowledgments 

Both authors contributed equally to this work. Thanks to 

Aaron T. Buss, Christian Faubel, Jeffrey S. Johnson, John 

Lipinski, Yulia Sandamirskaya, Sebastian Schneegans, 

Gregor Schöner, Anne R. Schutte, and John P. Spencer for 

helpful discussion and support during the development of this 

line of research. 

References  

Amari, S. (1977). Dynamics of pattern formation in lateral-

inhibition type neural fields. Biological Cybernetics, 27, 

77–87. 

Buss, A. T., & Spencer, J. P. (2014). The emergent executive: 

A dynamic field theory of the development of executive 

function. Monographs of the Society for Research in Child 

Development, 79, 1–103. 

Cohen, L. B. (1972). A two process model of infant visual 

3178



 

6 

 

attention. Paper presented at the Merrill Palmer Confer-

ence on Research and Teaching of Infancy Development. 

Jankowski, J. J., Rose, S. A., & Feldman, J. F. (2001). 

Modifying the distribution of attention in infants. Child 

Development, 72, 339–351. 

Johnson, J. S., & Simmering, V. R. (2015). Integrating 

perception and working memory in a three-layer dynamic 

field architecture. In G. Schöner, J. P. Spencer, & the DFT 

Research Group (Eds.), Dynamic thinking: A primer on 

dynamic field theory. New York, NY: Oxford University 

Press. 

Johnson, J. S., Simmering, V. R., & Buss, A. T. (2014). 

Beyond slots and resources: Grounding cognitive concepts 

in neural dynamics. Attention, Perception, & 

Psychophysics, 76, 1630–1654.  

Johnson, J. S., Spencer, J. P., Luck, S. J., & Schöner, G. 

(2009). A dynamic neural field model of visual working 

memory and change detection. Psychological Science, 20, 

568–577. 

Luck, S. J. (2008). Visual short-term memory. In Visual 

Memory. New York: Oxford University Press. 

Oakes, L. M., & Ribar, R. J. (2005). A comparison of infants’ 

categorization in paired and successive presentation 

familiarization tasks. Infancy, 7, 85–98. 

Oakes, L. M., Ross-Sheehy, S., & Luck, S. J. (2006). Rapid 

development of feature binding in visual short-term 

memory. Psychological Science, 17, 781–787. 

Pashler, H. (1988). Familiarity and visual change detection. 

Perception and Psychophysics, 44, 369–378. 

Perone, S., Molitar, S., Buss, A. T., Spencer, J. P., & 

Samuelson, L. K. (2015). Enhancing the executive func-

tions of 3-year-old children performing the dimensional 

change card sort task. Child Development, 86(3), 812–827. 

Perone, S., Simmering, V. R., & Spencer, J. P. (2011). 

Stronger neural dynamics capture changes in infants’ 

visual working memory capacity over development. 

Developmental Science, 14, 1379–1392.  

Perone, S., & Spencer, J. P. (2013). Autonomy in action: 

Linking the act of looking to memory formation in infancy 

via dynamic neural fields. Cognitive Science, 37, 1–60. 

Perone, S., & Spencer, J. P. (2014). The co-development of 

looking dynamics and discrimination performance. 

Developmental Psychology, 50, 837–852.  
Rose, S. A., Feldman, J. F., & Jankowski, J. J. (2001). 

Attention and recognition memory in the 1st year of life: A 

longitudinal study of preterm and full-term infants. 

Developmental Psychology, 37, 135–151. 

Ross-Sheehy, S., Oakes, L. M., & Luck, S. J. (2003). The 

development of visual short-term memory capacity in 

infants. Child Development, 74, 1807–1822. 

Samuelson, L. K., Schutte, A. R., & Horst, J. S. (2009). The 

dynamic nature of knowledge: Insights from a dynamic 

field model of children’s novel noun generalization. 

Cognition, 110, 322–345. 

Samuelson, L. K., Smith, L. B., Perry, L. K., & Spencer, J. P. 

(2011). Grounding word learning in space. PLoS One, 

6(12), e28095. 

Schöner, G., Spencer, J. P., & the DFT Research Group. 

(2015). Dynamic thinking: A primer on dynamic field 

theory. New York, NY: Oxford University Press. 

Schutte, A. R., & Spencer, J. P. (2009). Tests of the dynamic 

field theory and the spatial precision hypothesis: capturing 

a qualitative developmental transition in spatial working 

memory. Journal of Experimental Psychology: Human 

Perception and Performance, 35, 1698–1725. 

Schutte, A. R., & Spencer, J. P. (2010). Filling the gap on 

developmental change: Tests of a dynamic field theory of 

spatial cognition. Journal of Cognition and Development, 

11, 328–355.  

Schutte, A. R., Spencer, J. P., & Schöner, G. (2003). Testing 

the dynamic field theory: Working memory for locations 

becomes more spatially precise over development. Child 

Development, 74, 1393–1417. 

Simmering, V. R. (2016). Working memory capacity in 

context: Modeling dynamic processes of behavior, 

memory, and development. Monographs of the Society for 

Research in Child Development, 81, 7–148.  

Simmering, V. R., & Perone, S. (2013). Working memory 

capacity as a dynamic process. Frontiers in Developmental 

Psychology, 3, 567. 

Simmering, V. R., & Schutte, A. R. (2015). Developmental 

dynamics: The spatial precision hypothesis. In G. Schöner, 

J. P. Spencer, & the DFT Research Group (Eds.), Dynamic 

thinking: A primer on dynamic field theory. New York, 

NY: Oxford University Press. 

Simmering, V. R., Schutte, A. R., & Spencer, J. P. (2008). 

Generalizing the dynamic field theory of spatial cognition 

across real and developmental time scales. Brain Research, 

1202, 68–86.  

Simmering, V. R., & Spencer, J. P. (2008). Generality with 

specificity: The dynamic field theory generalizes across 

tasks and time scales. Developmental Science, 11, 541–

555.  

Smith, L. B., Jones, S. S., & Landau, B. (1996). Naming in 

young children: A dumb attentional mechanism?. 

Cognition, 60(2), 143-171. 

Spencer, J. P., Simmering, V. R., Schutte, A. R., & Schöner, 

G. (2007). What does theoretical neuroscience have to 

offer the study of behavioral development? Insights from a 

dynamic field theory of spatial cognition. In J. M. Plumert 

& J. P. Spencer (Eds.), The emerging spatial mind. New 

York, NY: Oxford University Press. 

Spencer, J. P., Smith, L. B., & Thelen, E. (2001). Tests of a 

dynamic systems account of the A-not-B error: The influ-

ence of prior experience on the spatial memory abilities of 

2-year-olds. Child Development, 72, 1327–1346. 

Thelen, E., Schöner, G., Scheier, C., & Smith, L. B. (2001). 

The dynamics of embodiment: A field theory of infant 

perseverative reaching. Behavioral & Brain Sciences, 24, 

1–86. 

Wilson, H. R., & Cowan, J. D. (1972). Excitatory and 

inhibitory interactions in localized populations of model 

neurons. Biophysical Journal, 12, 1–24. 

3179



Pupil Dilation and Cognitive Reflection as Predictors of Performance on the Iowa 

Gambling Task 
 

Boban Simonovic (b.simonovic@derby.ac.uk) 

                                             Centre for Psychological Research, University of Derby 

                                                             Kedleston Road, Derby, DE22 1GB  

 

Edward J. N. Stupple (e.j.n.stupple@derby.ac.uk) 

                                             Centre for Psychological Research, University of Derby 

                                                             Kedleston Road, Derby, DE22 1GB 

 

Maggie Gale (m.gale@derby.ac.uk) 

                                             Centre for Psychological Research, University of Derby 

                                                             Kedleston Road, Derby, DE22 1GB  

 

David Sheffield (d.sheffield@derby.ac.uk) 

                                             Centre for Psychological Research, University of Derby 

                                                             Kedleston Road, Derby, DE22 1GB 

    
 

                                       Abstract 

Risky decisions involve cognitive and emotional factors. As 
the primary test for the Somatic Marker Hypothesis (SMH), 
the Iowa Gambling Task (IGT) examines these factors. Skin 
conductance shows anticipatory physiological responses on 
the IGT supporting SMH. Pupil dilation offers an alternative 
physiological marker. Predictive effects of anticipatory 
pupillary responses to positive and negative decks on IGT 
performance were examined in an extended IGT. The 
extended Cognitive Reflection Test (CRT) examined the 
relationship between reflective thinking and IGT 
performance. Data demonstrated correlations between 
reflective thinking and performance from the second block 
onwards and that task learning continued into the additional 
blocks - performance was not optimized even in the final 
block. Regression analysis showed both anticipatory pupil 
dilation for disadvantageous and advantageous decks, and 
reflective thinking were strong predictors of IGT 
performance. While both emotional and reflective processes 
are implicated in IGT performance, analytic cognition is more 
important than traditionally acknowledged.  

Keywords: Pupil dilation; Iowa Gambling Task; Cognitive 
Refection; Somatic Marker Hypothesis; Dual-process Theory.    

Introduction 

      Learning and decision making in uncertain situations is 

an important activity, and it can be challenging to find an 

optimal decision even for simple choices. Decisions can be 

driven by the desire to maximize expected utility (Quartz, 

2009), but information management regarding reward utility 

is frequently uncertain. Cognitive and emotional influences 

on risky decision making were traditionally regarded as 

separate in nature, with emotional factors typically seen as a 

hindrance. However, more recent evidence indicates that 

there is an interplay between the two, such that cognitive 

functions may serve as moderators for emotion-based 

learning (e.g. Brevers, Bechara, Cleeremans, & Noel, 2013; 

Simonovic, Stupple, Gale & Sheffield, 2016).    

   Damasio (1994) developed Somatic Marker Hypothesis 

(SMH) arguing that emotional processes play a central role 

in risky decision-making. SMH postulates that decisions are 

guided by subjective ‘gut feelings’ (e.g. bodily 

representations) about the inherent goodness or badness of 

future choices. These somatic markers direct individuals 

towards alternatives that have been positive previously or 

guide them away from the negative options. Particularly in 

uncertain conditions, response options are marked with an 

emotional signal, and only those options that are marked as 

favorable are cognitively processed (Damasio, 1994; 

Bechara & Damasio 2005). Somatic markers operate 

covertly, indicate arousal anticipation and are regarded as 

physiological markers of emotion-based learning (Bechara 

& Damasio, 2005; Critchley et al., 2001).  

A further theoretical framework for investigating risky 

decision making is Dual Process which proposes that there 

are two types of cognitive process: unconscious, emotional 

gut-feelings (Type 1) that contrast with explicit, effortful, 

analytic processes (Type 2) (e.g. Kahneman. 2003). This 

proposal has been linked with SMH; for example Type 1 

processes include a range of intuitive processes such as 

emotional responses or gut feelings (Glockner & Witteman 

2010) that can be measured through physiological 

techniques. There is also evidence of a role for cool 

reflective processing (Brevers, Bechara, Cleeremans, & 

Noel, 2013; Simonovic et al., 2016) which maps onto Type 

2 processing.  

The primary paradigm in evaluation of emotion-based 

learning is the Iowa Gambling Task (IGT, Bechara, 

Damasio, Damasio, & Anderson, 1994). The IGT offers a 

means of testing decision preferences and performance and 

has become an important experimental tool in evaluation of 

emotion-based learning and decision making. It has been 

argued that IGT resembles real life decision making as it 

involves uncertainty and monitoring of rewards and 

punishments (Bechara & Damasio, 2005). Participants are 

3180



required to choose cards from four decks (A, B, C, and D), 

all of which differ in frequencies of financial rewards and 

punishments. Advantageous decks (C and D) offer moderate 

rewards and small punishments whereas disadvantageous 

decks (A and B) offer larger rewards but substantial 

penalties, which result in an overall loss.  

During the IGT, participants need to learn from experience 

about the ‘goodness’ or ‘badness’ of decks based on the 

feedback of learned contingencies. Thus, while participants 

experience deck reward properties they also assign affective 

values to the decks which implicitly influence decision 

making. The standard IGT consists of five blocks of 20 

trials and healthy participants are considered to reach ceiling 

performance in the final block as the disadvantageous 

selections have been extinguished. Optimal IGT 

performance rests therefore on monitoring emotional 

responses and impulse inhibition related to the rewards and 

punishments (e.g., Bechara & Damasio, 2005). 

   An important finding for SMH is that anticipatory somatic 

markers of emotions occur before decisions are made, 

indicating that covert anticipatory emotions can guide 

decision making (e.g. Bechara, Damasio, Tranel & 

Damasio, 1997). Indeed, there is evidence demonstrating 

anticipatory Skin Conductance Responses (aSCR) to 

rewards and punishments under uncertain conditions (e.g. 

Bechara et al., 1997; Wagar & Dixon 2006). Furthermore, 

interpretation of these aSCR’s highlight the primary role of 

emotions in guiding decision making performance (e.g. 

Bechara & Damasio, 2005).   

      In contrast, there is also evidence that reflective 

evaluation of affective choices guides future decision-

making and occurs relatively early in the decision-making 

processes (e.g. Bowman, Evans, & Turnbull, 2005 Brevers 

et al., 2013; Simonovic et al., 2016). This evidence is 

consistent with an interplay between Type 1 and Type 2 

processes in determining the outcome of the decision 

making process (cf. Kahneman, 2003). Indeed, Brevers et al.  

(2013) argued that anticipation of long-term consequences 

in uncertain condition rely on two neural systems: a ‘cool’ 

and a ‘hot’ systems. The ‘hot’ system is impulsive, laden 

with affective ‘gut feelings’ akin to intuition, while the 

‘cool’ system is reflective and includes analytic aspects. 

Learning and optimal decisions depend on the integration of 

both systems whereby, a ‘cool’ reflective process can be 

critical in monitoring or inhibiting ‘hot’ processes. It has 

also been argued that cool reflective processes should not 

play a role until the deck contingencies become explicit and 

so there should not be a role for Type 2 processing in the 

early blocks. Simonovic et al., (2016), however, 

demonstrated that reflective processes play a role earlier 

than previously predicted (cf. Schiebener, Zamarian, 

Delazer and Brand 2011). 

   Evidence suggest that aSCRs represent a good example of 

anticipatory somatic markers or ‘hot processing’. They are, 

however, imperfectly represented because the SCR is not 

sufficiently sensitive in discriminating between negative and 

positive valence (Dunn et al., 2006). Faster measures of 

emotion feedback (e.g. heart rate and blood pressure with an 

electrocardiogram or pupil dilation using eye trackers) are 

warranted (e.g. Bradley, Codispoti, Cuthbert & Lang, 2001). 

Indeed, studies that use faster physiological measurement, 

(e.g.  eye-tracking methodology) can better capture 

surprised responses to unexpected stimuli (e.g. Lavin, San 

Martin, & Jubal, 2014).  

   Recent studies have also shown pupil dilation can measure 

surprise such as when feedback does not meet expectation 

(Preuschoff, Hart, & Einhauser, 2011), when negative 

feedback occurs during the gambling task (Satterthwaite et 

al., 2007), and as evidence of learning (Lavin et al., 2014). 

Moreover, there is evidence linking pupillary responses to 

Locus Coeruleus (LC) - norepinephrine (NE) activity in the 

brain stem in anticipation of a reward, suggesting memory 

enhancement (Tully & Bolshakov, 2010), and consolidation 

of behavioural decisions (Bouret & Sara, 2005). Some 

evidence indicates greater pupillary responses before 

selecting negative options (e.g. Bierman, 2004), or after 

experiencing unexpected losses (Satterthwaite et al., 2007), 

thus  indicating that anticipatory pupillary responses can be 

related to negative outcomes. However, Lavin et al. (2014) 

argue that  pupillary responses are associated  with positive 

feedback. Thus, although anticipatory pupillary responses 

serve as affective physiological markers and may offer a 

measure of the somatic markers that moderate learning in 

uncertain conditions their interpretation is also not 

necessarily straightforward.  

To our knowledge, only one study has utilised eye-

tracking methodology during the IGT performance in a 

healthy population. Lavin et al. (2014) tested IGT 

performance and measured pupil dilation in a sample of 10 

participants and demonstrated changes in pupil dilation due 

to learned uncertainty.  Their results suggest that changes in 

pupil dilation reflect learned uncertainty about future 

feedback conditions, thus indicating differential processing 

of unexpected feedback. However, a non-standard version 

of the IGT was used and did not differentiate between 

disadvantageous and advantageous deck selection. In the 

present study, we extend Lavin et al.’s (2014) findings, with 

a larger sample and an alternative approach to measuring 

anticipatory pupil dilation.  

Our focus was on the period during the IGT where 

participants had hypothetically developed somatic markers 

but that these were not yet sufficient to extinguish particular 

card selection. On this basis we measured pupil dilation in 

the 500ms prior to the final selection from each deck and 

hypothesized that there should be somatic markers 

indicating negative anticipation for disadvantageous decks 

and positive anticipation for advantageous decks. We 

measured anticipatory pupillary responses for the 

advantageous (C + D) and the disadvantageous (A + B) final 

options. If anticipatory somatic markers play a role in IGT 

performance then these should be evident prior to the final 

selection of each type of card. 

Moreover, we included a direct measure of deliberative 

thinking to replicate previous findings demonstrating that 
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the CRT was highly predictive of IGT performance 

(Simonovic et al., 2016). We used the extended seven-item 

Cognitive Reflection Test (CRT
1
), developed to measure the 

ability to resist and override intuitive responses by engaging 

analytic ability (Toplak, West, & Stanovich, 2014), this is a 

more comprehensive measure than the original three item 

CRT used in the Simonovic et al. (2016) study.  

It was predicted that the CRT and last anticipatory 

pupillary responses for advantageous and disadvantageous 

deck picks would predict IGT performance.  It was also 

predicted that the correlations observed by the Simonovic et 

al., (2016) between CRT score and disadvantageous card 

selections across blocks would be replicated (such that 

strong correlations would be found in blocks 2 – 4, but no 

correlation would be observed in the early trials and the 

correlation would be reduced in the final blocks). Finally, 

the standard analysis of IGT performance across blocks was 

extended to test whether performance reached ceiling levels 

in the fifth block (the final block in the standard IGT) or 

whether performance continued to improve.  

  

Method  

Design  

   Predictor variables were: the seven-item CRT (Toplak et 

al., 2014) and pupillary responses averaged across the 

500ms prior to the final selection for both advantageous (C 

+ D) and disadvantageous (A + B) decks. The CRT was 

used as a measure of analytic thinking. The dependent 

variable was the IGT score. Performance across blocks was 

also examined for completeness with (C+D) – (A + B) as 

the dependent variable for performance in each block 

Participants  

   Sixty-nine
2
, healthy students from the University of 

Derby, aged 19-29 years, received course credit for 

participation. Research was conducted in accordance with 

stipulations of the local ethics committee. Participants had 

normal or corrected to normal vision.  

Materials and Procedure 

   Participants completed Bechara et al.’s (1994) 

computerised version of IGT
3
. Scoring was derived by 

deducting ‘good’ card picks (C + D) from total ‘bad’ picks 

(A + B). A positive score indicates a more optimal decision-

making strategy.   

                                                           
1 Although there is some disagreement about the aspect of 

analytic thinking that the CRT measures (e.g. Stupple, Gale, & 

Richmond, 2013; Toplak, West, & Stanovich, 2011), it is a useful 

tool in measuring analytic ability and reflective processing. 
2 Six participants were excluded from the analysis due to 

incomplete pupil dilation data (N=4) or extreme outlier pupil 

dilation data (N=2) 
3 We extended the original IGT to 140 trials to assess the 

learning effect (e.g. Bagneux, Font, & Bollon, 2013).  

   The seven-item CRT (Toplak, West & Stanovich, 2014) 

score was the total number of correct answers. Higher CRT 

scores indicated higher reflective ability. Cronbach’s alpha 

was α = .66.  

   Eye movements were recorded with the Eye-gaze 

binocular system Tobii-X2-30 (Inquisit 4 milliseconds 

plugins), with a remote binocular sampling rate of 30 Hz 

and an accuracy of about 0.45°. The X2 Eye Tracker is a 

stand-alone eye tracker, and it was attached to a laptop 

(Dell, Precision M6700, 2.70Ghz). Participants were seated 

approximately 70 cm from the laptop monitor. The Tobii 

measured 184mm (7.2’’) in length and enabled tracking at 

close distances (up to 36° gaze angle). The eye-tracker used 

both bright and dark pupil illumination setups to calculate 

the optimal gaze position. Blinking periods were filtered and 

replaced via linear interpolation (e.g. Siegle, Steinhauer 

Carter, Ramel, & Thase, 2003). The anticipatory pupil 

dilation (aPD) diameter was defined as the mean pupillary 

response generated 500ms before card selection. A 500ms 

time frame was identified a priori as a period where fixation 

occurs, and direction of the information search can be 

determined (e.g. Horstmann. Ahlgrimm, & Glockner, 2009). 

 

Analytic Strategy 
 Initial analyses focused on participants’ performance per 

block by using repeated measures ANOVA. Next, 

correlations between CRT scores and selection of 

disadvantageous cards for each block were calculated. 

Finally, regression analysis was used to examine the 

independent contributions of CRT scores and pupil dilations 

on IGT performance. Analysis was conducted using IBM 

SPSS 24 for Windows.  

 

Results  

   Performance across blocks was tested using a 

Greenhouse-Geisser adjusted repeated measures ANOVA. 

There was a main effect of Block condition, F(3.86, 239.12) 

= 25.21, p < .001, ηp
2
=.29. Bonferroni adjusted post hoc 

tests demonstrated that performance improved significantly 

through the blocks of trials (excluding Block 6). Notably the 

nonstandard additional blocks 6 and 7 continued to show 

changes in performance relative to earlier blocks such that 

performance dipped in Block 6 but Block 7 was 

significantly better than all but Block 5. Means and standard 

deviations are shown in Table 1. 

 

Table 1: Mean (SD) IGT Performance as a function of 

Trial Block. 
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Table 2: Correlations between Disadvantageous card 

selections and CRT score as a function of Trial Block 

Trial Block   Correlation 

Block 1 r= -.18, p=.150 

Block 2 r= -.41, p=.001 

Block 3 r= -.74, p<.001 

Block 4 r= -.81, p<.001 

Block 5 r= -.70, p<.001 

Block 6 r= -.71, p<.001 

Block 7 r= -.67, p<.001 

Total r= -.89, p<.001 

 

    Correlations between CRT score and selection of 

disadvantageous cards across blocks were conducted (see 

Table 2). These demonstrated a significant negative 

relationship between CRT score and disadvantageous card 

selections in all but the first block of trials.  

A multiple regression (Enter method) tested the relative 

predictive strength of last anticipatory pupillary responses 

for disadvantageous (A + B) (mean, SD = 3.02, 0.36mm) 

and advantageous (C + D) (mean, SD =3.00, 0.38mm) deck 

picks and CRT scores (mean, SD = 2.13, 1.76) for 

performance on the IGT. Data indicated that the three 

predictors combined reliably accounted for 35% of the 

variability in IGT scores.  The standardized beta for 

disadvantageous cards showed a negative correlation with 

pupil dilation while the advantageous cards showed a 

positive correlation. This indicated that increased pupil 

dilation on the last pick of a disadvantageous card predicted 

poorer overall performance in contrast with increased pupil 

dilation for advantageous cards which was associated with 

better overall performance. The CRT score was the 

strongest predictor with higher scores on the CRT predicting 

better card selections. 

 

 

 

 

 

 

 

 

Table 3: Multiple Regression Analysis of CRT, Final 

Anticipatory Pupil Dilation for Disadvantageous (AB) 

Decks, Last Pupil Dilation for Advantageous (CD) decks as 

predictors (standardized betas) of IGT performance  

 

Durbin Watson= 1.93, VIF= 1.042; 4.965; 4.992 

 

                              Discussion  

   Consistent with our predictions anticipatory pupillary 

responses and reflective thinking were reliable independent 

predictors of IGT performance. Importantly, pupillary 

responses differ according to the nature of the deck and 

incrementally predict performance in addition to cognitive 

reflection. Specifically, increased pupil dilation on the last 

pick of disadvantageous cards predicted poorer overall 

performance, whereas increased pupil dilation for the last 

pick of advantageous cards was associated with better 

overall performance. This is important because it indicates 

that differing somatic markers may develop for 

advantageous and disadvantageous decks and that these 

predict task performance alongside cognitive reflection. 

Correlations between CRT scores and IGT broadly 

replicated the findings from the control group in Simonovic 

et al., (2016) but with stronger correlations and evidence 

that reflective processing is implicated even earlier in the 

task. Finally, block by performance analysis demonstrated 

that IGT performance did not reach ceiling at block 5 and 

significantly improved in block 7 after a (non-significant) 

dip in block 6, albeit it was not greater than block 5.  

While our data indicate that participants' last aPD 

responses predict IGT performance, these somatic markers 

require some deciphering. Pupil dilation can be interpreted 

in various ways with anticipated threat, anticipated reward 

and general cognitive effort all potentially resulting in 

dilated pupils. Our data showing increased pupil dilation for 

advantageous deck is consistent with participants 

anticipating a positive outcome rather than a threat. 

However, it is possible that an increased level of cognitive 

effort may be in play (which would also be consistent with 

the correlations with cognitive reflection). Irrespective of 

the precise interpretation these data demonstrate a role for 

somatic markers in performance on the IGT, but allow for 

the possibility that these somatic markers are of cognitive 

effort as well as an indicator of emotional learning. 

Pupillary responses data for the IGT contributes to the 

understanding of SMH and support a role for anticipatory 

physiological mechanisms in successful performance on 

risky decision-making tasks. These somatic markers inform 

explicit knowledge and facilitate learning of deck 

contingencies (e.g. Bechara & Damasio, 2005). However, 

Trial Block IGT Performance 

 

Block 1 -3.65 (6.29) 

Block 2 -.016 (7.71) 

Block 3 2.76 (8.79) 

Block 4 4.19 (10.45) 

Block 5 7.38 (9.75) 

Block 6 5.86 (11.24) 

Block 7  

Total 

9.35 (9.63) 

26.27 (46.70) 

Predictors  

Model ‘Enter.' 

 

 

 

CRT scores  

R²=.38, R²adj=.35 

F(3, 58)= 12.03, p=.001 

 

 

β=.56, p<.001  

Last aPD (A + B) β= -.46, p=.05 

Last aPD (C + D) β= .52, p=.03 
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our findings  are incongruent with the proposition that IGT 

performance is primarily dependent on the development of 

somatic markers (Bechara et al., 1997;  Wagar & Dixon, 

2006) and are instead compatible with the dual-process 

model where ‘cool’ reflective processes inhibit impulses 

that interfere with long-term goals. This is consistent with 

the proposition that integrating reflective and emotional 

processes is necessary to explain IGT performance and 

suggests that the ability to reflect on gut feelings about 

decisions may improve performance (Schiebener et al., 

2011; Simonovic et al., 2016).  

The CRT was shown to be a stronger predictor of IGT 

performance than the pupil dilation measures, with higher 

scorers clearly outperforming lower scorers. This is clear 

evidence that Type 2 reflective processing plays a salient 

role in the task and supports the view of Brevers et el. 

(2013) that the IGT is best understood within a dual process 

framework. Toplak et al.'s (2014) extended seven item 

version of the CRT was used and the more comprehensive 

nature of this measure along with the greater variability may 

explain the stronger correlations and greater proportion of 

variance explained than in Simonovic et al. (2016). The 

evidence from the correlations between CRT and 

performance across the blocks replicated findings from 

Simonovic et al. (2016). These data indicate a consistent 

role for analytic ability in determining IGT performance 

from the second block onwards. This is inconsistent with the 

view that the learning on the task is implicit until the 

contingencies are well established and is instead indicative 

of a role for explicit monitoring of deck contingencies even 

in the early blocks. 

 These CRT data nonetheless need to be interpreted with 

caution. There is debate as to whether the CRT is a measure 

of cognitive miserliness or a more general measure of 

analytic thinking or numerical ability as it has been 

correlated with both working memory (e.g., Stupple et al., 

2013) and risk neutrality (Oechssler, Roider, & Schmitz, 

2009), which could impact on performance or task strategy. 

Most of our participants began the task by exploring 

disadvantageous decks (A + B). Hence it could be argued 

that a reduced pupillary reaction for disadvantageous cards 

in relation to IGT performance occur because participants 

had ‘unlearned’ the initial preferences for big reward.   This 

is consistent with a suggestion that during the IGT 

performance reversal learning, needs to be implemented to 

suppress learned preferences that are no longer beneficial 

(Dunn, Dalgleish, & Lawrence, 2006). Lavin et al. (2014) 

suggest that successful performance on IGT depends on 

positive feedback (based on the money gain) and 

highlighted pupillary responses to unexpected punishments 

on positive decks. This proposal is consistent with as both 

are indicative of anticipatory effects, as both are indicative 

of anticipatory effects, however, the differing 

methodologies of the current study and Lavin et al.’s make 

direct comparisons difficult. 

Since the SCR has a relatively slow time course, it is 

possible that a distinct somatic marker cannot be 

distinguished by conventional SCR measurements (Newell 

& Shanks, 2014). The use of an eye-tracker allows a 

distinction between somatic reactions on different options 

before a decision has been made. This is particularly 

important because the anticipatory SCR captured during the 

IGT performance may represent part of a broader response 

such as attentional bias, implicit learning and a risk-taking.  

Steingroever et al. (2013), called for greater scrutiny of 

IGT performance in healthy populations to bolster the 

ecological validity of IGT and demonstrate that IGT scores 

measure real-life decision making. The validation of IGT 

performance in healthy population is of great importance for 

such a widely used clinical tool; our analyses add to this 

literature on healthy populations. The prominent role of 

cognitive reflection in IGT performance leads us to urge 

caution in its application in diagnosing emotional deficits in 

populations who may lack the working memory capacity to 

perform well on the CRT and, by implication the IGT. 

The measures used in the present study are relatively 

narrow and further applications of the pupil dilation 

methodologies are necessary to more fully explore the 

utility of this measure in investigating the IGT and the SMH 

more broadly; in particular, extending analysis across the 

task to examine how pupillary responses relate to IGT 

performance curves may be illuminating. Moreover, 

alternative eye-tracking measures such as fixations on 

particular decks of cards offer strong potential in 

investigating the locus of explicit attention as learning 

progresses on the task.  

In conclusion, our data demonstrated that a combination 

of anticipatory pupil dilation and reflective thinking 

predicted IGT performance, such that both emotional and 

reflective processes are implicated in IGT performance. 

That is, anticipatory pupil dilation may serve as learning 

markers particularly for individuals with higher levels of 

cognitive reflection. Analytic cognition, moreover, plays a 

more salient role than traditionally acknowledged.   
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Abstract
People move in characteristic ways during conversation and
these movements correlate with their level of particpation.
For example, speakers normally gesture significantly more
than listeners. These visible, overt movements are normally
analysed using full body video or motion capture. Here we
explore the potential of a ’minimal’ approach to sensing these
participatory movements in part of the natural environment
of everyday interactions; chair seat covers. Using custom
built fabric sensors we test whether we can detect people’s
involvement in a conversation using only pressure changes
on the seats they are sitting in. We show that even from
this impoverished data we can distinguish between talking,
backchanneling and laughter; each state is associated with
distinctive patterns of pressure change across the surface
of the chair. We speculate on the possible applications of
this new, unintrusive form of social sensing for architecture,
performance and augmented human interaction.

Keywords: human interaction; dialogue; non-verbal
communication; social sensing; smart textiles; posture
analysis; fabric sensors;

Introduction
People make a variety of distinctive body movements during
conversation. The most commonly studied of these are the
gestures that speakers produce while talking. These include
gestures that contribute to the content of what is said, such
as iconics, metaphorics and pantomimes (McNeill, 1992; de
Ruiter, 2000), as well as gestures that help to orchestrate the
interaction such as beat gestures and gestures that can hold or
hand over the turn to someone else (Bavelas, Chovil, Lawrie,
& Wade, 1992; Healey & Battersby, 2009). Listener’s body
movements are also organised in characteristic ways. Most
obviously through the production of concurrent feedback or
‘backchannels’ (Yngve, 1970). Although these are often pro-
duced as non-interruptive verbal acknowledgements such as
a brief “aha” or “mmhm” people also frequently backchan-
nel by nodding in response to an ongoing turn. Listeners are
also distinguished from speakers by their relative lack of hand
movement although they move their hands much more when
a speaker requests clarification or makes repairs to their turn
(Healey, Plant, Howes, & Lavelle, 2015).

The significance of this non-verbal choreography is illus-
trated by how much we can infer about an interaction from

the observation of body movements alone. We can often tell
just by looking at who is talking to whom, who -if anyone- is
listening, who is likely to speak next, whether the interaction
is hostile or friendly and so on (Kendon, 1990). These infer-
ences from non-verbal performances can be striking; people
appear to be able to make reliable estimates of the quality of
someone’s teaching over a whole semester from a single 5
second video of body movements alone (Ambady & Rosen-
thal, 1992).

Research on non-verbal communication has tended to fo-
cus on these relatively large scale overt body movements;
they are the easiest signals for participants to perceive and
respond to and the most tractable for analysis (although see
e.g. Ekman & Friesen 1969). Research typically takes advan-
tage of video and, more recently, motion capture equipment
to capture and analyse these movements (e.g. Healey & Bat-
tersby 2009; Vinciarelli et al. 2009. The rapid development of
new sensor technologies and their application to social signal
processing has opened an intriguing new space of possibili-
ties for detecting patterns of interaction (Vinciarelli, Pantic, &
Bourlard, 2009). For example, it is possible to detect people’s
levels of interest, stress and intoxication in conversation using
the speech signal alone i.e. without knowing anything about
the content of what is said (B. W. Schuller & Rigoll, 2009;
B. Schuller et al., 2013). In contrast to relatively intrusive
technologies such as video or automatic speech recognition,
this approach makes it possible to create anonymised ‘mini-
mal’ forms of social sensing by using textile technology (see
also e.g. Rekimoto 2001).

Here we explore the potential of this approach for one of
the most commonly used parts of the physical environment
for social interaction; chairs. Even the shape and position of
unoccupied, uninstrumented chairs can indicate a great deal
about interaction; chairs around a small table suggest some-
thing very different from chairs in rows (see also Anderson
1996). Moreover, chair covers are often made out of stretch
and soft fabric that makes the textile surface itself a poten-
tially promising sensing material. Using metallic yarn gives
a fabric conductive properties so that it can be turned into a
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pressure sensitive surface. Different possibilities of using tex-
tile surfaces as sensing materials or interfaces for electronic
devices have been explored in recent years, for example by
turning a jacket into an interface to a mobile phone (Poupyrev
et al., 2016) or by measuring biomechanical data for health-
care applications (e.g. Pacelli et al. 2006). Here we apply
a similar fabrication technique to chair covers to address the
basic question of whether it is possible to detect patterns of
conversational interaction from movements on the chair sur-
face alone.

Sensing Chairs
Informal observation suggests that people frequently change
the position of the torso, lower body, and feet during seated
conversations. These movements necessarily cause pressure
changes on the surface of the chair and are therefore poten-
tially detectable by measuring changes in resistance. Previ-
ous work has investigated the use of chairs to classify pos-
tures through pressure sensors, creating pressure maps of
both, static and dynamic postures - posture identification ver-
sus continuous tracking (Tan, Slivovsky, & Pentland, 2001;
Slivovsky & Tan, 2000). A commercially available pressure
measurement system, BPMS (Body Pressure Measurement
System) by Tekscan 1 has been used in some of these re-
search projects (e.g. D’Mello et al. 2007 and Arnrich et al.
2010), which consists of a plastic mat with 64 integrated pres-
sure sensors that allow for the creation of detailed pressure
maps. The main applications for these sensing systems have
been in the analysis of posture to improve seating comfort
(e.g. Milivojevich et al. 2000), designs for objects involved
in rehabilitation (e.g., wheelchairs) and Human-Computer-
Interaction. For example, presenting chairs as novel haptic
interfaces for computer games (Tan, Slivovsky, & Pentland,
2001), or as a system to measure people’s cognitive states
in various situations Arnrich et al. (2010), including mea-
suring a car driver’s fatigue (Furugori, Yoshizawa, Iname, &
Miura, 2003) or identifying drivers (Riener & Ferscha, 2008),
as well as measuring boredom in students (D’Mello, Chip-
man, & Graesser, 2007). However, this approach has not pre-
viously been applied to sensing aspects of social interaction.
With this study, we explore what information about social be-
haviour can be retrieved from pressure sensor data on a chair.

Methods
Drawing on informal observations of people’s leg and torso
movements in meetings we decided on a configuration of
eight sensors that were integrated in the chair cover and dis-
tributed in a symmetric arrangement; four in the seat of the
chair and four on the back (see Figure 1), dividing the chair
into four key areas to be sensed in order to determine pos-
tures: shoulders (at the top of the back rest), waist (lower
back), buttocks and thighs. These observations also laid the
basis upon which initial hypotheses about different states in a
conversation were built.

1see https://www.tekscan.com/

Figure 1: Reverse side of the chair cover showing sensors.

Sensor Development
The textile sensors were made from conductive fabric and re-
sistive foam, hand sewn into soft sensor patches that were
manually attached to the backside of a chair cover (which was
made of jersey knit fabric). The conductive fabric, SaniSil-
ver, was purchased from LessEMF and woven with a silver
yarn showing on one side of the fabric and a cotton yarn vis-
ible on the other. The sensors are constructed such that two
swatches of conductive fabric are facing the resistive foam on
both sides. When pressure is applied to the conductive fabric
on either side of the foam, the foam compresses and reduces
the resistance between the two fabric swatches. This change
in resistance is measured by the microcontroller. The sen-
sors have the advantage of behaving like an ordinary fabric
that could also be used in other wearable applications, such
as garments (since, through the use of cotton fibre, the fabric
retained a soft touch and remained comfortable to wear).

Data Collection
A microcontroller (a Teensy 3.2) collected the pressure data
from the sensors and stored it on micro SD cards. The sam-
pling frequency of the sensors was 4 readings per second. Us-
ing these piezoresistive sensors, the unit of measure is Ohm
(Ω). Since the aim was to investigate postural behaviour in a
situation of social interaction, three chair covers were manu-
factured, each housing one micro controller that were placed
underneath the chair. Wires were hooked into the conductive
fabric and connected the sensors with the Teensy (to ground
and to an assigned analog pin providing 3.3 volts to run the
programme, which read analog output values from the sen-
sors).

Participants
Participants were recruited in groups of three friends or col-
leagues to ensure they all had some initial level of familiarity
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with each other. We conducted 9 trials in total, collecting data
from 27 participants, of which were 11 female and 16 male
and between the age of 20 and 40.

Procedure
The experiment was carried out in the Human Interaction Lab
at Queen Mary University of London. Groups of three partic-
ipants were asked to resolve a moral dilemma: the balloon
task. This is a fictional scenario describing three people in a
hot air balloon that is about to crash, if not one of the passen-
gers jumps to their certain death. The task is then to come to
an agreement of who to throw off. The participants were told
that the aim of the experiment is to investigate collaborative
interaction. They were seated at a round table and asked to
discuss options and come to an agreement on how to resolve
this dilemma. We aimed to record 15 to 20 minutes of conver-
sation, so if not having come to an agreement after this time,
participants were given the option to stop the conversation
or carry on (vice versa, if they came to an agreement faster,
alternative scenarios were provided to encourage further dis-
cussion). Due to the materiality of the sensors, the presence
of the sensor patches was not noticed by the participants, so
that the experience wasn’t different to sitting on a common
chair.

Data Analysis
The interactions were captured on two cameras placed in dif-
ferent corners in the room. Lapel microphones were used
to facilitate speaker-specific analysis of the audio for tran-
scription. The data from the video recordings was annotated
using Elan (Brugman, Russel, & Nijmegen, 2004). Coding
focused on three key behaviours with: speaking, laughter and
backchannels. When determining speaking modes, periods
of overt speech were coded, regardless of postural and gestu-
ral changes, or nodding. But focusing on postural movement
overall, it was noticed that often, a postural or gestural change
was performed immediately prior to speaking. This makes
the start of an utterance ambiguous. For the purposes of this
study, the beginning of utterances was defined as the onset of
speaking. For laughter, responsive as well as speakers con-
current laughter was noted. Therefore, laughter is annotated
for both, speakers and listeners. Backchannels were coded
for all continuous verbal particles of response, as well as re-
pair initiations. An overview of the coding scheme for these
behavioural cues can be seen in Table 1.

Table 1: Coding scheme used in Elan.

Tiers per participant Social behaviour
speaking verbal utterance
laughter responsive and concurrent
backchannel responsive, repair initiation

Following this coding scheme, all elements that mark lis-
tening modes are created from the gaps of the annotations

for laughter, speaking and backchannels. This means that
within the listening mode, any gross and subtle body move-
ment, as well as nodding or any other conversational action
is included. With the aim of distinguishing speakers from lis-
teners, this level of detail in annotations is sufficient, although
the sensitivity of the sensors allows for richer and more fine-
grained distinctions.

Results
The data from all eight sensors were analysed in a General
Linear Model Multivariate Regression using SPSS v.24. Talk-
ing, Laughing and Backchanneling were included as binary
predictors coded as 1 or 0 for presence / absence of each be-
haviour. All two and three-way interactions of these three
factors were included in the model. Participants were also
included as a main effect to ensure individual variation was
accounted for.
Since the relative changes for each participants were calcu-
lated, changes of weight had no effect on the outcome of the
analysis.

Figure 2: Estimated means of all participants for TALK:
thighs: left(187.513), right(209.379); butt: left(137.721),
right(175.910); waist: left(231.599), right(345.421); shoul-
ders: left(137.810), right(195.288)

Multivariate Tests (Pillai’s Trace) show all three dialogue
factors reliably predict the outputs of the pressure sensors
(Talk: F(8,82933) = 9.68, p < 0.00; Backchannel F(8,82933) =
10.2, p < 0.00; Laugh: F(8,82933) = 6.95, p < 0.00;). The ef-
fects are very small with Partical Eta Squared of 0.001 and
observed power for Alpha = 0.05 of 1. The contribution of
individual variation is, by contrast, much larger: Participant:
F(8,82933) = 6.95, p < 0.00, Partial Eta Squared = 0.71).

Analysis of the contributions of each sensor show that dif-
ferent patterns of pressure changes across the chair are associ-
ated with the different dialogue states. The sensors most sen-
sitive to talking were in the seat of the chair and correspond
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Figure 3: Estimated means of all participants for
LAUGHTER: thighs: left(118.642), right(209.379);
butt: left(178.079), right(187.614); waist: left(229.081),
right(342.121); shoulders: left(143.385), right(179.532)

to increased pressure from the thighs and reduced pressure
from the buttocks. In contrast to this laughter corresponded
to reduced pressure in the thighs and increased pressure in
the buttocks with no significant changes detected in the seat
back. The pattern of pressure changes for the relatively brief
backchannels were distributed across both the seat and back
of the chair and corresponded to increased pressure across
thighs, buttocks and waist but a reduction across the shoul-
ders. The estimated means for changes at each sensor are il-
lustrated in Figures 2, 3 and 4 (numbers based on modified
population marginal mean).

Discussion
The results show that it is possible, in principle, to de-
tect significant aspects of social interaction from quite lim-
ited, indirect and noisy data. The small movements detected
by pressure sensors embedded in chair seats are small-scale
and almost completely invisible correlates of the gross body
movements that typically distinguish speakers from hearers
and laughter from silence. Interestingly, even the relatively
small nodding movements of the head associated with back-
channels appear to create a distinguishable pressure signature
on a chair.

This is the first attempt to detect significant conversational
states from simple ‘homemade’ pressure sensors and the sig-
nal to noise ratio is low. Individual variations in movement
in particular account for far more of the variance than differ-
ences in dialogue state. Further work to optimise the size and
position of the sensors would doubtless improve the quality
of the sensing. It is also likely that other approaches, such
as training person-specific classifiers and machine learning
mechanisms, would improve the accuracy and robustness of

Figure 4: Estimated means of all participants for
BACKCHANNELS: thighs: left(176.345), right(199.648);
butt: left(172.195), right(189.949); waist: left(246.298),
right(351.819); shoulders: left(114.193), right(189.709)

the approach although this would also undermine the advan-
tages of anonymity. The demonstration that even relatively
crude sensors can detect minimal changes in posture, sug-
gests that future work should explore the possibility of cap-
turing more complex social behaviour, especially relational
questions such as whether interactions are, for example: con-
vivial or combative; autocratic or egalitarian, or whether it is
possible to characterise regularities in multiparty interaction
(see e.g. (Abney, Paxton, Dale, & Kello, 2014)).

What could this form of sensing be used to do? The prin-
ciple opportunities for application are in any situations where
there is value in the ability to unintrusively gather information
about general patterns of social interaction including levels of
interest and engagement. One example is architecture where
the ability to sense a building’s energy performance and pat-
terns of air flow is highly valued but currently has no social
counterpart. We speculate that the ability to make simple,
systematic assessments of a building’s ‘social performance’
by instrumenting the chairs in a building could also have a
significant positive impact on domestic and workplace de-
sign. A second example is in the evaluation of audience re-
sponses (e.g. continuous audience response measure, CARM,
which is used by broadcast hosts to evaluate their programs).
The deployment of such a sensor network in an auditorium,
meeting room or a classroom could help to assess levels of
engagement of students and other audiences. In addition,
there are possibly applications to augmented human interac-
tion where, for example, live feedback about how much peo-
ple are dominating (or not) a conversation can have signifi-
cant effects on the conduct of the interaction (Donath, 2002).
If nothing else these results shed some light on Stephen Fry’s
(1984) advice that when delivering Shakespeare one should
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”always gather from the buttocks”.

Summary
This paper presents a new sensing system using textile pres-
sure sensors that are designed to be integrated in a chair cover
and that are able to reliably distinguish speakers from listen-
ers and detect laughter and backchannels. These fabric sen-
sors provide a non-intrusive way to measure conversational
engagement. Data about pressure changes on the seat and
back rest alone make it possible to differentiate various be-
havioural states in a seated conversation. The ability to ex-
tract such patterns of social interaction from sensing pressure
changes could replace other, more complex motion detection
systems and mitigate privacy concerns, since the data collec-
tion is anonymous involves no audio or video data and does
not capture any of the content of the conversation.
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U. (2010). What does your chair know about your stress
level? IEEE Transactions on Information Technology in
Biomedicine, 14(2), 207–214.

Bavelas, J. B., Chovil, N., Lawrie, D. A., & Wade, A. (1992).
Interactive gestures. Discourse processes, 15(4), 469–489.

Brugman, H., Russel, A., & Nijmegen, X. (2004). Annotating
multi-media/multi-modal resources with elan. In Lrec.

de Ruiter, J. P. (2000). 14 the production of gesture and
speech. Language and gesture, 2, 284.

D’Mello, S. S., Chipman, P., & Graesser, A. (2007). Pos-
ture as a predictor of learner’s affective engagement. In
Proceedings of the cognitive science society (Vol. 29).

Donath, J. (2002). A semantic approach to visualizing online
conversations. Communications of the ACM, 45(4), 45–
49.

Ekman, P., & Friesen, W. V. (1969). Nonverbal leakage and
clues to deception. Psychiatry, 32(1), 88-106.

Furugori, S., Yoshizawa, N., Iname, C., & Miura, Y. (2003).
Measurement of driver’s fatigue based on driver’s postural
change. In Sice 2003 annual conference (Vol. 1, pp. 264–
269).

Healey, P. G., & Battersby, S. A. (2009). The interactional
geometry of a three-way conversation. In Proceedings of
the 31st annual conference of the cognitive science society
(pp. 785–790).

Healey, P. G., Plant, N., Howes, C., & Lavelle, M. (2015).
When words fail: collaborative gestures during clarifica-
tion dialogues. In 2015 aaai spring symposium series:
Turn-taking and coordination in human-machine interac-
tion.

Kendon, A. (1990). Spatial organization in social encounters:
The f-formation system. Conducting interaction: Patterns
of behavior in focused encounters, 209–238.

McNeill, D. (1992). Hand and mind: What gestures reveal
about thought. University of Chicago press.

Milivojevich, A., Stanciu, R., Russ, A., Blair, G., &
Van Heumen, J. (2000). Investigating psychometric and
body pressure distribution responses to automotive seating
comfort (Tech. Rep.). SAE Technical Paper.

Pacelli, M., Loriga, G., Taccini, N., & Paradiso, R. (2006).
Sensing fabrics for monitoring physiological and biome-
chanical variables: E-textile solutions. Proceedings of the
3rd IEEE-EMBS International Summer School and Sym-
posium on Medical Devices and Biosensors, ISSS-MDBS
2006, 1–4. doi: 10.1109/ISSMDBS.2006.360082

Poupyrev, I., Gong, N.-W., Fukuhara, S., Karagozler, M. E.,
Schwesig, C., & Robinson, K. E. (2016). Project jacquard:
Interactive digital textiles at scale. In Proceedings of the
2016 chi conference on human factors in computing sys-
tems (pp. 4216–4227).

Rekimoto, J. (2001). Gesturewrist and Gesturepad: Unob-
trusive Wearable Interaction Devices. ISWC ’01 Proceed-
ings of the 5th IEEE International Symposium on Wearable
Computers, 21–27.

Riener, A., & Ferscha, A. (2008). Supporting implicit human-
to-vehicle interaction: Driver identification from sitting
postures. In The first annual international symposium on
vehicular computing systems (isvcs 2008) (p. 10).

Schuller, B., Steidl, S., Batliner, A., Burkhardt, F., Devillers,
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Abstract 

Analogical problem-solving involves transfer of knowledge 
that has been obtained from a source analog and successfully 
applying it in the solution of a structurally similar target 
problem. What is usually found in the so-called hint/no-hint 
paradigm is that spontaneous solution to a problem is hard to 
achieve. This leaves the possibility for individual differences. 
This study searched for and found a positive correlation to 
exist between scores on the Cognitive Reflection Test and 
spontaneously solved analogical problems which, although a 
weak one, possibly accounts for the differences that exist 
between people who need a hint to solve an analogical 
problem, and people that do not need a hint. 

Keywords: Analogy; Analogical problem-solving; Reflective 
Mind thinking; Cognitive Reflection Test 

Introduction 

Imagine you are presented with a problem – an oil well is on 

fire and is consuming large amounts of petrol every minute. 

You know you have enough foam to put out the fire, but if 

you use the one large hose that is available to shoot it at the 

well, the fire can be extinguished, but the pressure would 

also destroy the machines around the well that facilitate the 

oil extraction, which would be an expensive cost. If you use 

one of the several smaller hoses that are also available, the 

machines will be spared, but the fire would not be 

extinguished. How can this problem be resolved? Now, 

imagine that without any external hint to relate the problem 

to anything, you recall a story about an exhibition designer, 

who has to figure out a way to illuminate a replica of a ship, 

that is positioned in the center of transparent tank filled with 

water and fish that are sensitive to light. If the designer 

illuminates the replica with a powerful spotlight, the fish 

will be disturbed, but if she uses a low-powered spotlight, 

the ship would not be illuminated enough. So she decides to 

use several low-powered spotlights to illuminate the replica 

from several directions, which will not disturb the fish, but 

the focused light would be enough to illuminate the ship. In 

fact, these two superficially dissimilar problems are 

analogous – the solution to the fire problem is to shoot the 

foam using many small hoses from different directions so as 

to spare the machines, but also to provide enough foam to 

extinguish the fire. How many people would spontaneously 

think of using the solution of the problem they know to 

solve the analogous one? Probably not many, given that the 

stories appear to be different on the surface. The successful 

solver would probably need to be able to reflect on what he 

is processing, to suppress the irrelevant information, and set 

his priorities in accordance to the task at hand. 

The paradigm that is used in studying analogical problem-

solving requires a relevant analog known to the solver to be 

available, as well as the target problem that is presented to 

be sufficiently novel and challenging in order for the 

analogy to be useful (Gick & Holyoak, 1983). The 

framework that is generally required for the solver to 

represent the analogical relationships involves first of all a 

story describing the problem and how it is solved to be read 

and understood. Once the information is represented, it can 

be used to generate solution to the target problem by 

mapping the similar relations of the two systems, employing 

a top-down reasoning, forming expectations, and finally 

using the mapping in order to generate the solution to the 

target problem (Gick & Holyoak, 1980).  

The “retrieval gap” in analogical problem-solving 

In order to analogously solve the problem, participants must 

retrieve the correct analogical relationships. The role of 

retrieval is usually investigated in the so-called hint/no-hint 

paradigm (Novick & Holyoak, 1991). By giving a hint to 

the solver in one of the two experimental conditions, they 

are informed that the two stories are connected and the 

solution to one of them can be used in solving the other. If 

they are not given a hint in the no-hint condition, solving the 

target problem would indicate spontaneous analogical 

transfer. What is usually found is that about 75% of the 

people solve the Radiation problem1 using the correct 

analogical solution when the appropriate analog story2 had 

                                                           
1 The Radiation problem is about a doctor who wishes to destroy 

a tumor in his patient’s stomach using a ray. However, if he emits 

the rays at high intensity, the tumor will be destroyed, but so will 

be the healthy tissues of the patient. If a lower intensity is applied, 

the tissues will not be affected, but neither will be the tumor. In 

fact, the solution to this problem is analogous to the base Attack-

Dispersion problem and requires the doctor to emit the rays at 

lower intensity from different directions simultaneously in order 

for the concentrated forces of the rays to destroy the tumor. 
2 The Attack-Desperation Problem was considered to be the 

superficially dissimilar analog of the Radiation Problem in Gick 

and Holyoak’s study (1980). In that story a general wants to 

capture a fortress located in the center of the country. The problem 

arises when the general realizes he cannot send his troops all at 

once due to the mined roads, but if he divides his troops to small 
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been previously presented and they are given explicit hint to 

use that story for the solution (Gick & Holyoak, 1983). 

However, if no base story analog is presented, only less than 

10% of the participants manage to find the correct solution. 

What Gick and Holyoak (1983) have found when their 

participants read the Attack-Dispersion story as a base, 

disguised to be remembered for a subsequent recall, is that 

30% of them arrived at the correct solution of the Radiation 

problem presented subsequently, without receiving any hint, 

i.e. spontaneously. This apparent difference in the difficulty 

of mapping and retrieving the correspondences of an analog 

are referred to as “retrieval gap” (Holyoak, 2012), and can 

be considered in terms of at least 3 explanations: 

 

Structural and surface similarity Problem-solving using 

analogs is very much dependent on the level of structural 

and surface similarity between the two stories in terms of 

the level of facilitation of retrieval (Blanchette & Dunbar, 

2000; Holyoak & Koh, 1987). More specifically, if the 

superficial features of the base story are more similar to the 

ones of the target problem, spontaneous retrieval of 

convergence solution to the Radiation problem is as high as 

90%, compared to about 20% if the surface features were 

dissimilar (Blanchette & Dunbar, 2000). It is suggested that 

because an analog that is from a remote domain, it does not 

share many of the salient surface features of the target, 

which might block the spontaneous retrieval of relevant 

analogs, unless the solver is able to focus on aspects that are 

causally related for the target (Holyoak & Koh, 1987).  

 

The experimental paradigm Blanchette and Dunbar 

(2000) show in their experiments the importance of the 

experimental setting in which the participants reason 

analogically. In the so-called “reception paradigm”, the 

participants are given base and target problems and are 

required to identify the relations between them. As 

Blanchette and Dunbar’s (2000) experiment shows, this type 

of setting constraints the participants and prompts them to 

make more analogies based on superficial similarity. On the 

other hand, an experimental setting organized in a 

“production paradigm” involves participants being given the 

target problem and being asked to generate possible source 

stories, arguably resulting in analogy generation based on 

deep structural features. Two of the experiments in 

Blanchette and Dunbar’s study (2000) involved analogical 

reasoning using production paradigm. The results clearly 

indicated production of more analogies that were 

structurally similar. Their third experiment used arguments 

from the previous two experiments as stimuli, but the task 

was arranged in a reception paradigm. The results showed 

domination of retrieval of superficially similar stories. The 

findings are explained in terms of different type of encoding 

in the different types of tasks. In “reception paradigm” 

tasks, the initial presentation of the problem is usually 

guised as a comprehension evaluation or measuring recall, 

                                                                                                  
units and attacks from many directions, they will not be affected 

and the combined forces will capture the fortress. 

which arguably causes the encoding to be more superficial. 

Furthermore, the base representation building may not 

necessarily include the relevant relations for the subsequent 

analogical problem solving. The “production paradigm”, on 

the other hand, involves the participants in deeper structural 

encoding of the problem from the beginning, possibly 

resulting in more structurally similar analogies. 

 

Possibility for individual differences The previously 

mentioned source Radiation problem, when learned in a 

different context, enables problem solvers to spontaneously 

produce the correct analogous solution to the superficially 

similar Lightbulb problem for 81% of the participants even 

several days after the presentation of the base problem 

(Holyoak & Koh, 1987). The results for the spontaneously 

solved problems are discussed in terms of the possible 

demand characteristics of the task, or in other words that the 

participants might suspect the two stories to somehow be 

related due to them being present in the same experiment 

(Gick and Holyoak, 1983). This might suggest the 

possibility of individual differences to be present, 

specifically that some people might be sensitive to events 

occurring in the same context and interpret them as 

connected. Day and Goldstone (2011) discuss the possibility 

of individual differences in intelligence or the level of 

engagement in the experiment to be responsible, at least to 

some extent, for the difference between the transfer and the 

reported understanding of the analogy itself. Another 

possibility for individual differences in spontaneous 

analogical problem solving can be drawn from the so called 

Reflective Mind (Stanovich, 2012).  According to the 

Tripartite model (Stanovich, 2012), the Reflective Mind is 

able to initiate the suppression of the initial response, due to 

its higher cognitive level control, that is carried out by the 

Algorithmic mind3. The Reflective mind is tested in the so-

called typical performance situations, in which participants 

solve tasks without overt instructions to maximize their 

success. Spontaneous problem solving resembles a typical 

performance situation, since participants in the no-hint 

condition are not explicitly instructed to find and use the 

analogy with previous problems. Moreover, the mechanisms 

of Reflective mind such as cognitive decoupling operation, 

allows a suppression of the initial response that is provided 

by the Autonomous mind and creating a secondary 

representation of the world that could be manipulated until 

the correct solution is reached and then applied in reality. 

Just like Day and Goldstone (2011) have argued that some 

individual differences due to intelligence (i.e. Algorithmic 

Mind) may explain the superior problem solving 

performance of some individuals, we argue that differences 

regarding the Reflective Mind can also be expected in 

analogical problem solving. Indeed, spontaneous analogies 

are especially interesting case for individual differences 

                                                           
3 Algorithmic mind can be associated to fluid intelligence 

capacities. It is a Type 2 processing, which is typically linked to 

situations that require an optimal performance and a correct answer 

should be obtained (Stanovich, 2012). 
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stemming from the Reflective mind. On the one hand, the 

ability to create a secondary representation of the problem 

that may hold and manipulate the base and target problems 

seems to guarantee a successful analogical problem solving. 

On the other hand, Holyoak (2012) has argued that the 

difficulties which people experience in spontaneous 

analogical problem solving in particular indicate that 

analogical mapping requires a Type 2 processing.   

Correlation between Reflective mind thinking 

and spontaneous analogical problem solving 

The main goal of this study is exploratory – given that not 

much is known about individual differences in spontaneous 

problem solving, especially with regard to the Reflective 

mind, the aim would be to find a correlation between these 

two variables. More specifically, possible individual 

differences might be expected in the no-hint condition, 

where spontaneous analogy-making depends on the correct 

identification of the structural similarities in the two 

problems, as well as the appropriate mapping, which might 

be reasonable to expect from people with higher rational 

dispositions who are arguably better at prioritizing goals and 

performing well without overt instructions what exactly is 

expected of them.  

Method 

Design 

This is a correlational study, aiming to research whether a 

positive correlation exists between scores on the Cognitive 

Reflection Test and the analogical problems that are solved 

spontaneously. For the purposes of the research, a reception 

paradigm was used. The research has been approved by the 

ethical commission at the New Bulgarian University.  

Stimuli 

Analogical stories The stimuli for the analogical problem-

solving task consisted of six problems: three bases and three 

targets. The problems were selected so that they can be 

structurally identical, but superficially dissimilar.  

• Red Adair & Aquarium problems 

The first set of analogous stories consisted of the Red 

Adair problem (Kurtz & Loewenstein, 2007) and the 

Aquarium problem (Catrambone & Holyoak, 1989). The 

former described a problem, in which an oil well that is 

burning has to be extinguished. If a big hose is used to shoot 

the foam into the well, the machines in the well that 

facilitate petrol extraction will be destroyed, even though 

the fire will be put out. But if one of the many smaller hoses 

is used, the machines will be spared, but the fire will not be 

extinguished. For the Aquarium problem, a replica of a ship 

had to be illuminated for an exhibition, without disturbing 

the fish swimming around it, which were sensitive to light. 

If one powerful spotlight was used, the fish would be 

disturbed and the replica illuminated, and if one less 

powerful spotlight was used – the fish would not be 

disturbed, but the replica would not be illuminated.  The 

solution for both problems involved “convergence of 

forces”, or using small amounts of force from different 

directions (small hoses to put out the fire and low-powered 

spotlights to illuminate the ship). The Red Adair problem 

was modified so as to obtain full structural similarity with 

the Aquarium, by making the using of large force from one 

direction causing damage to peripheral elements (machines 

for petrol extraction in Red Adair and the fish in Aquarium). 

• Garden and Marching band problems 

The second set of stories were the Garden problem and 

the Marching band problem (Novick & Holyoak, 1991). 

These were mathematical problems, involving finding how 

many plants a family can have in their garden, given that 

they had chosen the exact number of plants, which could be 

divided into 10, 4, and 5 kinds of plants, but there would be 

space for 2 more plants. Only when they divide them in 6, 

they fit in without remainder. The Marching band described 

musicians marching in rows of 12, 8, and 3, but having one 

musician march alone. Only when they march in rows of 5, 

there is nobody left out. The successful solution procedure 

for both problems is to find the lowest common multiple of 

the given three divisors that leave a constant remainder, then 

to generate multiples of that number, add the remainder to 

each of them, and finally find from this set the number that 

is divisible to the fourth number without a remainder. 

• Orange and Tribe problems 

The third pair of stories consisted of the story about the 

sisters, who were quarreling because each of them wanted 

one orange for herself. The problem was resolved when the 

mother found out that one of the sisters wanted to use the 

peel of one orange for baking, and the other wanted to eat 

the fruit, so each of them took the respective part of the 

whole orange (adapted from Fisher, Ury, & Patton, 2011). 

An analog to this story was created, which was about two 

clans from the same tribe, that have recently captured an 

island, and each of the clans wants the whole island for 

themselves. So the chief of the tribe steps in and finds out 

that one of the clans wants the island for its territory, and the 

other one wants it because the people on the island pertain 

to their clan. The solution, then, is to divide the people from 

the territory, so that each side can be satisfied. 

Cognitive Reflection Test The extended version of 

Cognitive Reflection Test (CRT) (Toplak, West & 

Stanovich, 2014) was used as a measure of Reflective Mind. 

CRT was introduced by Frederick (2005) and measures 

cognitive reflection – a concept defined as “the ability or 

disposition to resist reporting the first response that comes 

to mind”. Toplak et al (2014) have expanded the CRT to a 

total of seven questions in a study assessing people’s 

tendency to process information miserly. Each of the seven 

questions presented a problem, which had an intuitive, but 

wrong answer immediately coming into mind, and requiring 

the suppression of that answer and searching for the correct 

one. For example, a problem describing that a bat and a ball 

cost 1.10 dollars in total, and the bat costs a dollar more 
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than the ball, asks how much the ball costs. An intuitive 

answer would be 10 cents, but the correct one is 5 cents.  

Participants 

A total of sixty-seven participants took part in the study 

(18 males). All of them were native Bulgarians. They 

participated either for partial fulfilment for a course credit, 

or voluntarily. Forty-seven of the participants were students 

at the New Bulgarian University. The participants’ age 

ranged from 18 to 53 years (M = 25.18, SD = 8.21). 

Procedure 

The procedure consisted in participants signing an 

informed written consent, and solving all six problems and 

the CRT individually in a single 45-50 minute session. First, 

the three base problems were presented one by one, with 

participants having 5 minutes to solve for each problem. If 

the participants failed to produce the correct solution, it was 

given to them. Then the CRT was given, with 10 minutes 

time to complete it. Finally, the three remaining target 

problems were given one at a time. 

In order to control which of the target problems were 

solved spontaneously, the participants were given 5 minutes 

per problem, and if they did not produce the correct 

solution, they were given a hint to use one of the previously 

solved problems and additional 2 minutes were allowed. If 

again there was no correct solution, a second hint was given 

to use the specific analogous base problem to solve the 

current one, again allowing for additional 2 minutes.  

The analogical problems were chosen in such a way, so as 

to be symmetrical, as well as structurally identical. Due to 

this fact, the analogical pairs were alternated with respect to 

being either a base or a target, with the Red Adair problem 

appearing half of the times as base, half of the times as 

target. The same applied for all six problems. The 

presentation of the base and target stories was balanced, 

with each of the stories appearing first, second or third as a 

base and first, second and third as a target equal amount of 

times. The full randomization resulted in 72 possible 

presentations of the problems without repetition of the 

presentation order. Thus, each participant was given a 

unique sequence of problems arrangements, with 67 out of 

the 72 randomized possibilities being used in the study. 

Results and discussion 

Analysis of the analogical problems 

Several types of analyses were made on the obtained data. 

Firstly, the time to solve the base and target problems was 

calculated. The mean time to solve all three base problems 

was 198.29 sec (s4=115.44), whereas the target problems 

were solved faster for an average of 161.88 sec (s=129.77). 

That difference was significant (t(66)=3.76, p=.00), 

indicating that some facilitation due to analogical transfer 

may have taken place. The tasks in each analogical pair 

                                                           
4 Standard deviation in seconds.  

were randomly assigned to the base or target position, thus 

any differences between the base and target task cannot 

account for the observed faster solutions of the target 

compared to the base problem. Moreover, only response 

time for correctly solved, but not for unsolved targets was 

faster than the base solution time: F (1,66)=38.32, p=.00 

(Figure 1). Solved targets were worked out faster than 

solved base problems. Unsolved problems took up 

approximately the same amount of time, irrespective of the 

base-target role they have played in a given analogy.  

Therefore, analogy, rather than task order, may explain the 

obtained facilitation in solving the target tasks.  

 

 
Figure 1: Time needed to solve successfully or not a base 

and a target problem (in seconds).  

 

Huge differences in both response time and accuracy, 

however, were observed between the individual problem 

pairs which share analogous relational structure. The 

analogical pair Garden and Marching band (noted G and M, 

respectively) were correctly solved as bases for average of 

183.43 sec (s = 44.17), which took the longest amount time 

to be solved out of the three pairs. The Orange and Tribe 

pair (noted O and T, respectively) took 70.52 sec on average 

(s = 73.22) or was fastest of the three problems to be 

successfully solved as bases, and the Red Adair and 

Aquarium problems (noted R and A, respectively) took on 

average 146.00 sec (s = 90.25) to be solved correctly as 

bases (see Figure 2).  

 

 
Figure 2: Time needed to correctly solve a problem from 

an analogical pair as a base and as a target (in seconds).  

One-Way ANOVA yielded statistically significant 

difference with respect time to solve the bases (F (2, 104) = 

14.40, p =.00). Specifically, according to a Fisher LSD post 
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hoc test the pair O and T was solved correctly faster as a 

base compared to G and M (p =.001) and faster than R and 

A (p =.00). The pair G and M did not differ from R and A (p 

> .05). Target problems from the analogical pair G and M 

were solved for 187.75 sec (s = 72.62), which again was the 

longest amount of time out of the three problems. O and T 

were correctly solved for 67.18 (s = 91.88), and R and A – 

for 62.18 sec (s = 64.43) (see Figure 2). There was again 

significant difference between time needed to solve targets 

from each pair (F (2, 117) = 4.82, p= .01). Fisher LSD post-

hoc test showed that the G-M pair was correctly solved as a 

target for the slowest amount of time compared to O-T (p 

=.004) and R-A (p =.002), while there was no significant 

difference between R-A and O-T pairs (p > .05). 

Additionally, the number of spontaneously solved target 

analogies was calculated for each pair. The analogical pair 

G-M was solved spontaneously only 4 times, or by 5.97% of 

the people. For the pair O-T the number was 55 (82.01%), 

and for the pair R-A it was 61 (91.05%) (Figure 3). The 

difference between the number of spontaneously solved 

problems from the pair G-M was significant from that of O-

T (χ² (1, N=59) = 78.76, p=.00) and also from R-A (χ² (1, 

N=65) = 97.07, p = .00). The difference between O-T and 

R-A pairs was not significant. Likewise, participants 

reported less often that they have been aware of the analogy 

between the problems in the G-M, compared to the other 

analogous pairs: F (2, 200) = 39.72, p=.00. 

 

Figure 3. Relative frequency of solved target problems for 

each analogical pair 

  

In sum, the superficially dissimilar analogous problems 

used in that study were quite different with respect to 

solution time and accuracy. Some of the target problems 

were solved faster and more accurately (i.e. O-T and R-A) 

than others (i.e. G-M). The target problem itself can hardly 

explain that discrepancy, since both tasks in each pair were 

randomly assigned as base and target for each participant. 

The order of the three base and the three target tasks was 

also randomized across participants. 

In this specific case, the G-M pair consisted of mathematical 

problems that, although analogical, might be impeding the 

correct mapping or retrieval that is necessary for correct 

solution just because of the difficulty of the problem itself. 

Given that mathematical expertise has been found to be an 

important predictor of analogical transfer (Novick & 

Holyoak, 1991), it could be reasonable to expect that for this 

specific analogical pair, some additional factors might have 

operated by impeding the transfer. The retrieval gap 

(Holyoak, 2012), however, seems to be wider for some 

analogous problems, but not for others, probably depending 

on the specific expertise of participants, as suggested in our 

study, where most participants had background in 

humanities5 and failed to solve the G-M problem that 

requires  mathematical skills (Novick & Holyoak, 1991). 

Correlational analyses: who solves problems by 

means of spontaneous analogies 

A correlational analysis was conducted between the 

variables scores on the Cognitive Reflection Test and the 

number of analogical problems that were solved correctly 

without an explicit hint (i.e. spontaneously). Importantly, a 

Kolmogorov-Smirnov test was applied to test for normality 

the two variables. Both of them were not normally 

distributed (p = .000), which required utilizing a non-

parametric correlational test, such as Spearman’s rank order 

correlation. There was a significant positive correlation 

obtained between the two variables (rs (67) = .25, p = .045). 

The results indicate that a high score on the CRT tends to go 

together with higher number of spontaneously solved 

analogical problems. A scatterplot summarizes the results 

(Figure 4). 

 
Figure 4: Scatter plot with jitter, showing the correlation 

between scores on CRT and spontaneously solved 

analogical problems. The x-axis represents the score on 

CRT, the y-axis represents the number of spontaneously 

solved analogical target problems. 

Discussion 

This study demonstrates that a positive correlation exists 

between the score on the Cognitive Reflection Test and the 

number of analogical problems that are solved 

spontaneously. Given the rationale of the hypothesis, this 

result can be explained in terms of individual differences 

with respect to the Reflective mind (Stanovich, 2012) at 

least partially accounting for the analogical problems that 
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are solved without a hint. Although the correlation is weak, 

the results indicate that the goals and hypothesis of the 

research are in the right direction. 

Generally, what was found in this investigation was that 

people solve different analogical problems with a different 

amount of speed and also different degree of success. The 

finding that the analogical pair G – M was solved less than 

the other ones and for more amount of time might point to 

the idea that the nature of the problems themselves might 

play a role in how easy or how fast the solution is extracted 

from the base problem in order to be applied to the target 

one. A possible explanation remains to be looked for in 

expertise in solving mathematical problems (Novick & 

Holyoak, 1991) In addition, the nature of the CRT itself 

could be questioned as to the extent it requires a certain 

level of expertise. Thomson and Oppenheimer (2016) have 

developed an alternate version of the CRT which addresses 

the criticisms to the original form – that it relies on 

mathematical sophistication to produce the correct answer. 

The weak correlation that was found between scores on 

CRT and the spontaneously solved analogical problems 

needs to be compared to other similar correlations of CRT 

and cognitive abilities. For example, Toplak, West, & 

Stanovich (2011) show significant correlations to exist 

between CRT and syllogistic reasoning tasks (r = .36), 

heuristic-and-biases tasks (r = .42), executive functions 

measures (.17 to .34) and thinking dispositions measures 

(.18 to .19). Thus, the current study seems comparable to 

others with respect the strength of association between CRT 

and tasks involving reasoning measurement. 

It should be noted, however, that correlations between CRT 

and cognitive ability measured by Wechsler Abbreviated 

Scale of Intelligence has been found to exist (r = .32), 

suggesting some overlap between the two (Toplak et al., 

2011). A possibility to search for a partial explanation of 

spontaneously solved analogical problems in the cognitive 

ability of intelligence, thus, cannot be fully overruled. 

Conclusion 

The reported correlation between the Reflective Mind 

measure and spontaneous analogical problem solving adds a 

new explanation for the retrieval gap in analogical 

reminding.  Low superficial similarity and non-compatible 

relational structures between the base and target problems 

may explain the difficulties that participants robustly 

demonstrate in psychological labs when analogical problem 

solving abilities are tested by the means of the reception 

paradigm. Nevertheless, generally 20% of participants find 

the analogous solution (Holyoak, 2012), despite the 

mentioned difficulties that the reception paradigm seems to 

impose on them. The reported correlation indicates that 

among the key abilities within the profile of the successful 

problem solver is the reflective reasoning. It presumably 

enables the motivated search for possible connections 

between the tasks, and possibly a re-representation of the 

relevant relations, if needed for the purposes of the 

analogical problem solving. Therefore, spontaneous analogy 

making may benefit from the reflective reasoning, since it 

most probably transforms the task into an explicit task for 

searching the analogy, or at least boosts the motivation to 

cope with the task.  
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Abstract 

Much attention has been given to increasing women’s and 
girls’ interest and participation in STEM fields. One way of 
increasing STEM interest is to target STEM-gender 
stereotypes by presenting students with female stereotype-
disconfirming exemplars. However, the exemplar approach 
has had mixed effectiveness in adolescent populations.  The 
present study examined middle school students’ interest in 
STEM fields and their communal goal interest. Participants 
were given different interventions that either presented a 
female exemplar of a scientist or leveraged communal goals. 
Results found no gender differences in STEM interest, but a 
correlation between communal goal endorsement and a belief 
that STEM careers are compatible with communal goals.  The 
intervention that leveraged communal goals effectively 
increased STEM interest for some students, while the 
exemplar interventions were ineffective.  These findings 
suggest that with regard to STEM interest in early 
adolescence, endorsement of communal goals may be a more 
influential factor than gender category membership.  

Keywords:  Science, Technology Engendering and Math, 
Gender, Communal Goals, Adolescents  

Introduction 
As the world becomes more reliant on technology, there is a 
growing interest in how to increase participation in science, 
technology, engineering and math (STEM) fields.  Of 
particular concern is the underrepresentation of women in 
STEM fields.  For example, in 2012, only 20% of 
bachelors’ degrees in physics, engineering, and computer 
science were earned by women (National Science 
Foundation, 2015). The gender disparity is more 
pronounced at higher levels.  For example, women earned 
40% of bachelor’s degrees in mathematics and statistics but 
only 20% of master’s and doctoral degrees in these fields 
(NSF, 2015).   

What explains the gender differences in levels of STEM 
interest and participation, and when do these differences 
emerge? An interesting part of the situation is the fact that 
there are no substantial gender differences in early 
mathematics and science ability (see Hill, Corbett, & St. 
Rose, 2010 for discussion), but there are differences in 
attitudes toward mathematics and science (e,g, Ganley & 

Lubienski, 2016; Hyde, Fennema, & Lamon, 1990). As 
early as elementary and middle school, girls tend to perceive 
themselves as less competent in mathematics than do boys 
(Ganley, & Lubienski, 2016; Herbert & Stiptik, 2005).  In 
middle school and high school, boys are more likely to state 
that they are interested in math and science than girls 
(Cunningham, Mulvaney, &  Sparks, 2015; Hill, Corbett, & 
St. Rose, 2010).  

One factor that may contribute to students’ attitudes 
toward mathematics and science is the pervasive stereotypes 
that scientists and mathematicians are men (Eccles, 1987; 
Fennema, 1985; Nosek, Banaji, & Greenwald, 2002). 
Young children in the United States tend to draw men when 
asked to depict a scientist or mathematician (Chambers, 
1983; Steele, 2003).  There is evidence that gender and the 
strength of gender identity are correlated with preference for 
mathematics, mathematics identity, and math-gender 
stereotypes (Nosek, Banaji, & Greenwald, 2002).  

Because it is possible that gender-STEM stereotypes 
negatively impact women and girls participation in STEM, 
many interventions have been developed to break common 
stereotypic misconceptions by presenting stereotype-
disconfirming exemplars to students. For example, reading 
about the successes of women in STEM and non-STEM 
fields has been shown to boost women’s performance on 
math examinations (McIntyre, Paulson & Lord, 2003). 

The proposed mechanism behind these exemplars is that 
encountering a particular stereotype-defying example will 
encourage participants to expand their notion of 
membership in the stereotyped category.  In this instance, 
presenting examples of women who are successful in STEM 
fields would prompt a change in the perceived membership 
of the category of “scientist” or “mathematician”.  By 
extension, presenting a highly feminine exemplar as 
successful in a stereotypically male domain like STEM may 
be effective because it forces the perceiver to include all 
feminine characteristics in their category definition of who 
may be successful in STEM fields and discourages 
subtyping.  

Although the power of stereotypes and representation 
biases cannot be denied, the stereotype explanation leaves 
questions about gender differences in STEM participation.  
Women and girls continue to select out of STEM fields, 
even as women continue to gain representation in other high 
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achieving, stereotypically male disciplines like law and 
medicine (Snyder, Dillow, & Hoffman 2009; Wang, Eccles 
& Kenny, 2013).  This suggests that other factors such as 
motivation and personality characteristics may be 
contributing to the gender disparity in STEM fields.  In 
addition, there may be practical problems with designing 
STEM participation interventions based simply on 
expanding students’ perception of STEM “membership” 
because these theories assume that students will see the 
exemplar as similar to themselves. How would 
characteristics such as race, socio-economic background, 
geographic region, and culture be appropriately included in 
exemplars to appeal to all students?  

Indeed, despite their success with adult women, 
exemplars often generate mixed effects, especially among 
adolescents. Exposure to highly feminine exemplars actually 
weakens future goals to take optional math and science 
among adolescent girls who are disidentified with STEM 
fields and decreases adolescent girl’s sense of efficacy and 
short-term expectations of success in math and science 
(Betz & Sekaquaptewa, 2012).  This evidence suggests that 
using highly feminine exemplars to influence the future 
career plans of adolescent girls does not target the cleanest 
and most effective mechanism of STEM interest and 
identification.   

These counterintuitive effects may stem from the 
complicated relationship adolescent girls have with gender 
stereotypes. During adolescence, especially early 
adolescence, girls’ self-perceived math ability begins to 
decline relative to boys’ (Wigfeild, Eccles, Mac Iver, 
Reuman & Midgely, 1991).  In light of this intricate 
relationship between budding identity development and 
harsh cultural stereotypes, it is not surprising that 
interventions designed to leverage mechanisms tied to 
gender stereotypes yield adverse or mixed results.  

 Considering the baggage accompanying gender-STEM 
stereotypes during adolescence, it is important to explore 
other theories and mechanisms that could shed light on this 
phenomenon.  One such theory is the goal congruity 
perspective.  The goal congruity perspective posits that 
women highly value communal goals like intimacy, 
working together and helping others.  This valuation is at 
odds with stereotypes about STEM fields portraying careers 
involving those fields as individualistic and isolating.  In 
fact, compared to other high achieving careers, STEM 
careers are perceived as actually hindering the path to attain 
goals like helping others (Diekman, Brown, Johnson & 
Clark, 2010).  These stereotypes work to portray STEM 
careers as incompatible with communal goals, leading to 
disinterest in pursuing math and science domains for those 
individuals that value communal goals.  Thus, the 
mechanism behind the goal congruity perspective attempts 
to increase the degree to which goal affordance beliefs, or 
beliefs about what actions or pursuits will best facilitate the 
attainment of specific goals, align STEM careers with 
communal goals.  In this way it might be possible to 
increase positivity toward STEM careers among individuals 

who value communal goals (Diekman, Clark, Johnston, 
Brown & Steinberg, 2011).  

Indeed, this idea maps well on to the difference in female 
representation within STEM fields.  According to 2013 
census data, women make up 61% of social scientists, a 
field that has high communal goals stereotypicallity 
compared to only 27% and 13% of computer workers and 
engineers respectively, fields with low communal goal 
steryotypicallity (Landivar, 2013).   

The current study 
This study seeks to examine STEM interest in an adolescent 
population and to test several interventions designed to 
increase STEM interest.  Specifically, we will consider the 
role of gender and communal goal endorsement. The use of 
exemplars, along with manipulations of female 
stereotypicality has yielded mixed results in this population, 
while the communal goal approach remains untested.  It is 
predicted that adolescents will endorse communal goals and 
that the intervention targeting communal goals will yield the 
greatest increase in STEM interest, in particular a future 
desire to purse science and math, compared to exemplar 
focused interventions.  

Method 

Participants  
Ninety-four seventh grade students (41 male, 53 female) at 
middle school in the Midwestern United States were 
recruited for this study.  The majority (93%) of the sample 
self identified as White.  Parental consent as well as 
participant consent was obtained.   

Materials  

The experiment included three phases: (1) measure of 
communal goal interest and pretest of STEM interests (2) an 
intervention designed to increase STEM interests and (3) 
posttest of STEM interest.  Participants were randomly 
assigned to one of three conditions (feminine exemplar, 
neutral exemplar, or communal goals) that varied the 
intervention. 
Interventions. Participants were exposed to either a 
stereotypically feminine exemplar (feminine condition), a 
female but stereotypically neutral exemplar (neutral 
condition), or a group exemplar designed to speak to 
communal goals (communal condition).  The intervention 
text appears in Appendix A exactly as it was presented to 
participants.  All exemplars were identical except for the 
necessary manipulations.   
The material presented to participants consisted of a short 
paragraph written form the perspective of the exemplar 
detailing their hobbies and what they enjoy about their job.  
A picture followed this short paragraph. In the communal 
condition the picture included an ethnically diverse group of 
men and women, and in the feminine and neutral conditions 
the picture included an ethnically ambiguous woman.   
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Exemplars were portrayed as a “profile of a scientist” 
(feminine and neutral conditions) or the “profile of a team 
of scientists” (communal condition).   This profile was 
sourced from a website that aims to connect students to 
female mentors working in STEM fields and can be found 
in full in Appendix A.   
The manipulations of feminine stereotypicality (feminine 
and neutral conditions) were taken from Clark, Fuesting, & 
Diekman, 2016.  This manipulation consisted of hobbies 
that were independently rated as highly feminine (knitting, 
watching romantic comedies and yoga) or neutral on 
feminine stereotypicality (running, watching nature 
documentaries and photography).  The hobbies for the 
communal condition were simply “working and spending 
time together.” 

Following the intervention manipulation, participants 
were asked to complete a writing assignment. In this task, 
they first read a list of daily tasks the exemplar would 
perform.  Then they were asked to write about what they 
think an average day would be like if they were a scientist 
doing a similar job (Appendix A). This writing exercise was 
timed; all participants were instructed to write for five 
minutes.  The daily tasks were manipulated to reflect or not 
reflect communal goals similar to the manipulation in Clark, 
Fuesting, & Diekman, 2016.  For the feminine and neutral 
conditions the daily tasks consisted mainly of solitary work 
and problem solving (ex: “Look up and read about past 
research to help you develop new experiments.”).  In the 
communal condition the daily tasks reflected working with 
others (ex: “Brainstorm with your fellow researchers about 
past research to help you develop new experiments.”). 

 
Communal Goals Scale. The nine-question communal 
goals scale (Clark, Fuesting, & Diekman, 2016) was used to 
assess communal goal identification.  Participants were 
asked to rate the importance to them of nine goals, like 
helping others, intimacy, relationships with others and 
working with people, on a seven-point Likert scale.       
 
Measures of STEM Interest. Three measures were used to 
assess STEM interest: a measure of future goals (Betz & 
Sekaquaptewa, 2012), a measure of STEM positivity and a 
measure of STEM goal attainment (Clark, Fuesting, & 
Diekman, 2016). The measure of future goals asked 
participants to rate their likelihood of taking science and 
math classes in high school and college on a seven point 
Likert scale.  The measure of positivity asked participants to 
rate how positive they feel towards a STEM career and how 
much they would enjoy being successful in a STEM career 
on a seven point Likert scale.  The STEM goal attainment 
measure contains two questions that ask participants to rate 
on a seven point Likert scale the extent to which a career in 
STEM fields would “fulfill goals like intimacy, working 
with people and helping people” and to what extent such a 
career would fulfill their own goals of intimacy, working 
with people and helping people.   

Procedure   
Students took part in this study as an extension of their daily 
math class.  Participants were first administered consent 
forms.  Participants then completed a pen and paper pre-test 
questionnaire consisting of the communal goals scale, the 
two question future goals scale, the two question STEM 
positivity scale, and the two question STEM goal attainment 
scale.  Participants were also asked to list their top three 
favorite academic subjects.  

Participants were then exposed to the exemplar 
intervention materials that aligned with their assigned 
condition (feminine, neutral or communal).  Participants 
were then given a uniform amount of time (5 minutes) to 
complete the writing assignment corresponding to their 
condition: the feminine and neutral condition received the 
non-communal manipulation and the communal condition 
received the communal manipulation.  

Following this writing assignment participants were 
administered a post-test consisting of the future goals scale, 
the STEM positivity scale and the goal attainment scale.  
Participants were then thanked and debriefed.   

Results 

Effects of gender and communal goal endorsement.  
The communal goals scale, the future goals scale, the STEM 
positivity scale and the goal attainment scale were each 
assessed on a 1 (low) to 7 (high) likert scale.  These four 
scales were averaged to yield mean scores for each 
participant on each measure.  Eleven participants were 
removed from analysis.  One participant was removed due 
to incomplete responses and ten were removed as outliers 
due to reporting a communal goals score or a measure of 
STEM interest score that was greater than 2.5 standard 
deviations from the mean of the entire sample.   

Overall, participants reported high communal goals scores 
and pre-test STEM interest scores (Table 1).  Eighty percent 
of participants reported an average communal goal score of 
5 or above and only two participants reported an average 
communal goal score below 4. There were no gender 
differences on ratings of communal goals or measures of 
STEM interest, ANOVA with gender as a factor F(1,80)s < 
1.52, ps >  .22.   
To consider whether participants’ communal goal 
endorsement affected STEM interest, correlations between 
participants’ communal goals ratings and their STEM 
interest scores were examined.  Pearson correlation found 
that communal goals scores were positively correlated with 
STEM goal attainment scores r(82) = .35, p < .01.  
Communal goals scores were not correlated with future 
goals scores r(82) =. 18, p >.05 or STEM positivity scores 
r(82) =.10, p > .05.  
 
Table 1.  Mean Ratings of Communal Goal Endorsement 
and STEM Interest Measures. Standard deviations are in 
parentheses.  
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  STEM Interest Measures  
 Communal 

Goal 
Endorsement 

Future 
Goals 

Positivity Goal 
Attainment 

Boys 5.67 (.73) 5.94(.86) 5.57(1.5) 5.77(.96) 
Girls 5.86 (.68) 6.13(.88) 5.40(1.3) 5.80(.93) 

Effectiveness of the Interventions.  
Because communal goals scores were positively correlated 
with goal attainment scores, it is possible that the effects of 
the interventions may be different for participants with high 
and low communal goals scores.  To consider the effect of 
communal goal endorsement, a median split was performed 
based on communal goal ratings, (median =5.78) which 
resulted in 46% of participants below the median and 54% 
or participants at or above the median.   

To examine the effectiveness of the three different 
interventions and possible interactions with communal goal 
endorsement, a 2(gender) X 2(communal goals: high, low) 
X 3(condition: feminine, neutral, communal) repeated 
measures ANOVA was conducted with pretest and posttest 
STEM interest (time) as the within repeated measures. 
There was a significant interaction of time and gender on 
future goals, F(1,68) = 4.04, p < .05, ηp

2 =.06.  Overall, 
girls’ post-intervention future goals scores decreased (M = 
6.13, SD = .88 to M = 6.03, SD = .87) while boys’ ratings 
increased (M = 5.93, SD = .86 to M = 6.19, SD = .71). A 
significant interaction between time and communal goals 
emerged for goal attainment, F(1,68) = 9.05, p <. 01, ηp

2 = 
.11.  Goal attainment scores decreased (M = 5.96, SD = .86; 
M = 5.43, SD = 1.2) for participants with high communal 
goal ratings and increased for participants with low 
communal goal ratings (M=5.59, SD = .99; M = 6.00, SD = 
.91). 

There were no significant interactions with time, condition, 
or gender on any of the measures of STEM interest F(2,70)s 
< 2.46, ps >  .08.  However, a significant interaction 
between time, condition and communal goals on future 
goals scores was observed F(2,69) = 5.879, p < .01, ηp

2 = 
.14. This result suggests that condition produced different 
changes to STEM interest ratings (in particular future goals)  
as a function of participants’ communal goal score.  

To explore the interaction between time, condition, and 
communal goals and further investigate the effectiveness of 
each intervention on future goals scores, separate ANOVAs 
were conducted on future goals with communal goals scores 
as a covariate on each intervention condition.  The 
communal condition evidenced a significant interaction 
between time (pretest and posttest STEM interest) and 
communal goals F(2,25) = 6.44, p < .01, ηp

2 = .46. No 
significant effects of time, communal goals or interactions 
between time and communal goals were observed in the 
feminine or neutral conditions, F(2,27)s < 2.17, ps > .08. 
This suggests that only participants in the communal goal 
condition had significant changes in their STEM future goal 
ratings. In the communal condition, future goal scores for 
participants with low communal goal scores increased 

significantly by 15%, paired sample t-test t(11) = 2.40, p < 
.05. However, none of the changes in the other conditions 
were statistically different than 0, ts < = 1.74, ps > .11. Figure 
1 presents the percent increase in future goals scores across 
the three conditions, split by high and low communal goals 
ratings. 

 
 

 
 

Figure 1: The percent increase in STEM Future Goal 
scores by experimental intervention condition and split into 
high and low communal goals groups.   Error bars represent 
standard error of the mean.  

Discussion 
The goal of the present research was to examine 
adolescents’ STEM interest and the relationships to gender 
as well as communal goal endorsement.  Several 
interventions designed to increase STEM interest were 
tested.  Previous research has suggested that girls are less 
interested in STEM fields than boys are, and that exposing 
students to examples of female scientists will increase 
STEM interest.  However, we found no gender differences 
on any measure of STEM interest.  Further, the 
interventions presenting a highly stereotypically feminine 
exemplar or a female but stereotypically neutral exemplar 
did not improve STEM interest among female or male 
participants.    

While the interventions involving female exemplars did 
not increase STEM interest, the communal goals 
intervention did.  This intervention was designed to increase 
recognition of the communal aspects of work in STEM 
fields. Participants with low communal goal scores who 
received this intervention increased their future goals scores, 
suggesting they were more likely to take optional science 
and math classes in high school and college. This increase in 
STEM interest was only observed in the low communal 
goals category possibly because participants in the high 
communal goals category reported future goals scores at 
ceiling on both the pre-test and post-test measures.   

It was found that this sample of adolescents evidenced 
high average communal goal endorsement overall.  
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Approximately 80% of participants averaged a score at or 
above 5 on a seven-point scale.  Communal goal 
endorsement was also positively correlated with goal 
attainment scores, or the belief that a career in STEM fields 
would fulfill both communal goals in general, and 
specifically the participants’ communal goals.  

These findings lend support to the goal congruity 
hypothesis of STEM interest. A simple, 10-minute 
intervention emphasizing the role of communal goals in 
STEM fields was able to significantly and positively affect 
one measure of STEM related future goals of students who 
did not score at ceiling on the communal goals scale.  In 
comparison, more traditional interventions centered on 
exemplars and the emphasis of femininity produced no 
significant change in any measure of STEM interest.   

Of course this is not to say that the power and influence 
of gender stereotypes should be discounted, certainly they 
do play a role in the decision to pursue a STEM career 
(McIntyre, Paulson & Lord, 2003; Nosek, Banaji, & 
Greenwald, 2002). However, our data suggests that during 
early adolescence valuing communal goals, like working 
with and helping others, may possibly be a more influential 
factor than gender category membership on STEM interest. 
Simply attributing STEM interest to the influence of gender 
stereotyping may be somewhat of an oversimplification. 
Thus, our data suggests that emphasizing communal goals 
in this population may be a more effective and practical way 
to increase STEM interest than more traditional 
interventions that emphasize stereotype-disconfirming 
exemplars and femininity.   

There are limitations to this study.  The sample was taken 
from one school district and was not racially diverse.  In 
addition, our participants appeared to have high communal 
goal desires causing possible ceiling effects, which might 
have obscured other findings. Future studies should explore 
this finding with a larger, more diverse sample and a 
modified communal goals scale to attempt to combat ceiling 
effects.  
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Appendix A: Stimuli 

Feminine and Neutral Conditions.  
Profile of a Scientist:  
Name:  Lisa Johnson  
Biography:  

Lisa is an electrical engineer.  She enjoys yoga, watching 
romantic comedies and knitting (In Neutral Condition: 
running, watching nature documentaries and photography)  
Lisa Says: 

I am Electrical Engineer at the NASA Glenn 
Research Center. I work on Power System Development 
for future NASA missions. Specifically, I support the 
development of a power processing unit for high power, 
high voltage electric propulsion applications and the 
development of a flywheel energy storage system.   

Flywheel energy storage, or storing energy 
mechanically in a rotating wheel, offers an alternative to 
traditional chemical energy storage systems, such as 
batteries, for future missions.  

Every day I work to solve problems and learn new 
things. I figure out how to implement new technologies all 
the time and I go home everyday knowing that I made a 
difference! 
Writing Activity: 
Listed below are some typical daily tasks that a scientist 
like Lisa would perform.  Imagine you are also a scientist 
doing work in an environment similar to Lisa’s.  What do 
you think your average day would be like?   Please write a 
few sentences describing what you think it would be like 
if you worked as a scientist like Lisa.  

Daily Tasks of a Scientist:  
• Check a database for updates on ongoing 

experiments. 

• Look up and read about past research to help you 
develop new experiments.  

• Watch videos of other scientists presenting their 
recent findings  

• Update a lab notebook with information about the 
progress and status of your experiments  

• Work out data analysis problems by yourself 
• Make a PowerPoint presentation of your recent 

experimental results to email to a supervisor 

Communal Condition. 
Profile of a team of Scientists:  
Name:  NASA Power Team   
Biography:   

The NASA Power Team is made up of six electrical 
engineers. They enjoy working and spending time together  
The Power Team Says: 

We are a team of six Electrical Engineers at the 
NASA Glenn Research Center.  We work closely together 
on Power System Development for future NASA 
missions. Specifically, we support the development of a 
power processing unit for high power, high voltage 
electric propulsion applications and the development of a 
flywheel energy storage system.   

Flywheel energy storage, or storing energy 
mechanically in a rotating wheel, offers an alternative to 
traditional chemical energy storage systems, such as 
batteries, for future missions.  This technology also has the 
potential to help people here on Earth in many ways.  

Every day we work together to solve problems and 
learn new things.  Together, we figure out how to 
implement new technologies all the time. Each of us goes 
home everyday knowing we made a difference! 
Writing Activity:  
Listed below are some typical daily tasks that scientists 
like The NASA Power Team would perform.  Imagine 
you are also a scientist doing work in an environment 
similar to the NASA Power Team.  What do you think 
your average day would be like?   Please write a few 
sentences describing what you think it would be like if 
you worked as a scientist like the NASA Power Team.  

Daily Tasks of a Scientist:  
• Talk with team members about updates on ongoing 

experiments. 
• Brainstorm with your fellow researchers about past 

research to help you develop new experiments.  
• Attend presentations from other scientists about 

their recent findings  
• Update your team coordinator with information 

about the progress and status of your experiments  
• Work out data analysis problems with your other 

members of your lab team. 
• Present your recent experimental results to your 

supervisor with your team members. 
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Abstract 

Previous research suggests that preschool children expect 
members of social groups to share stable, inherent 
characteristics (e.g., Waxman, 2013). Here we explored the 
origins of these social-group based inferences by examining 
whether infants generalize food preferences across members 
of an arbitrary social group. Experiment 1 demonstrated that 
infants expected two individuals to share food preferences 
when they belonged to the same social group, but not when 
they belonged to two different social groups. Experiment 2 
replicated and extended these findings to social groups that 
were labeled with adjectives instead of nouns. These results 
suggest that by 20 months of age, infants use social-group 
membership to make inductive inferences about the behavior 
of group members. 

Keywords: social groups; inductive inference; psychological 
reasoning; social cognition  

Introduction 
Categorization is vital to human cognition. Category 
representations provide an efficient way of organizing our 
knowledge about the world, and they enable generalization 
of prior knowledge to novel entities and situations (Gelman, 
1988; Medin, ojalehto, Waxman, & Bang, 2015). Upon 
identifying that a novel entity belongs to a familiar category 
(e.g., dog), one can infer that it likely possesses common 
properties of that category (e.g., it is alive, wags its tail, 
etc.). Categories also aid in reasoning about kinds of people: 
Adults tend to assume social categories (e.g., doctors, 
women) capture fundamental, inherent similarities amongst 
collections of individuals and thus use prior knowledge 
about a social category to make inductive inferences about 
the physical, psychological, and behavioral properties of 
novel group members (e.g., Agerström, Björklund, 
Carlsson, & Rooth, 2012).  

The tendency to use social-group membership to make 
inductive inferences about category members is well 
established by the preschool years. (e.g., Bigler, Jones, & 
Lobliner, 1997; Birnbaum, Deeb, Segall, Ben-Eliyahu, & 
Diesendruck, 2010; Diesendruck & HaLevi, 2006; Waxman, 
2013). For example, 5-year-old children expect that 
members of the same social category will prefer the same 
activities (Diesendruck & HaLevi, 2006) and preschoolers 
expect that members of the same, but not the opposite, sex 
will prefer the same toys (Martin, Eisenbud, & Rose, 1995).  

When and how does this tendency to make social-group 
based inferences emerge? As early as 3 months, infants 
notice visual and auditory features that are associated with 
social-group membership (e.g., Bar-Haim, Ziv, Lamy, & 
Hodes, 2006; Howard, Henderson, Carrazza, & Woodward, 
2015; Shutts, Kinzler, McKee, & Spelke, 2009). Evidence 

for this comes primarily from tasks that assess whether 
infants demonstrate preferences for individuals who are 
similar to themselves. For example, by 3 months infants 
living in primarily own-race environments prefer to attend 
to own-race over other-race faces (Bar-Haim et al., 2006). 
By 19 months, infants prefer to accept toys and foods 
endorsed by a speaker of their native language over a 
speaker of a foreign language (Kinzler, Dupoux, & Spelke, 
2007; Shutts et al., 2009) and are more likely to imitate 
actions produced by a native-language speaker (Howard et 
al., 2015). By 11.5 months, infants also attend to food 
preferences and clothing as potential markers of group 
membership (Mahajan & Wynn, 2012).  

There is also some evidence that infants spontaneously 
categorize individuals into social groups instead of merely 
detecting features correlated with group membership 
(Powell & Spelke, 2013; Liberman, Kinzler, & Woodward, 
2014; Liberman, Woodward, Sullivan, & Kinzler, 2016; 
Rhodes, Hetherington, Brink, & Wellman, 2015). These 
findings come from “third-party” tasks in which the infant is 
not a member of the groups in question. For example, 
Liberman et al. (2016) examined whether 14-month-old 
infants expect individuals who affiliate to share food 
preferences. In a violation-of-expectation task, infants were 
first introduced to two actors who either affiliated with one 
another by smiling and saying “Hi”, or disengaged from one 
another by turning away, crossing their arms, and saying 
“Hmph.” Next, Actor-2 watched as Actor-1 ate one of two 
foods and emoted positively. In the test trial, Actor-2 ate the 
same food and emoted negatively, actively disagreeing with 
Actor-1’s preference. Infants who saw the actors affiliate 
expected them to prefer the same food, and looked longer if 
they disagreed. In contrast, infants did not expect actors that 
had previously disengaged to share food preferences. 
Together with the results of several additional conditions, 
these findings suggested that infants can use social 
relationships to predict and interpret the behavior of agents.  

However, it remains unclear whether infants expect that 
members of a social category will share stable, inherent 
characteristics. This is because in prior studies, such as the 
one just described, the target character always acted in the 
presence of its group members. Infants’ responses may 
therefore have reflected an expectation that the target 
character would conform to social pressures or imitate 
group members, rather than expectations about the inherent 
properties and tendencies of the individual. The present 
research thus asked whether infants use social group 
membership to make inductive inferences about the 
properties of an individual, even when that individual is 
acting in the absence of other group members. 
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To address this question, we examined whether 20-
month-old infants expected members of a social group to 
share food preferences. Several decades of research suggest 
that by this age, infants attribute preferences to agents (e.g., 
Woodward, 1998). Moreover, by 18 months infants assume 
that an agent’s preference is specific to that individual 
unless given indication otherwise (Egyed, Király, & 
Gergely, 2013). This allowed us to test whether social-group 
membership overrides this default assumption. We focused 
specifically on food preferences because foods are culturally 
relevant and thus likely to be shared amongst members of a 
social group (Cashdan, 1998; Rozin & Siegal, 2003). 

Infants were tested in a violation-of-expectation task 
involving arbitrary social groups, Topids and Brinkos. 
Arbitrary social groups were used in order to ensure infants 
had equal amounts of experience with the social groups 
being tested. The groups were identified using both shared 
appearance and noun labels because previous research 
suggests that infants might not form social categories based 
on physical appearance alone (e.g., Powell & Spelke, 2013). 
In the familiarization trials, infants saw a member of one of 
the social groups (a Topid) demonstrate a preference for one 
of two novel foods. In the test trial, infants saw a single 
agent from either the same group (another Topid) or a 
different group (a Brinko) choose between the two foods. If 
infants use social group membership to make inductive 
inferences about food preferences, then they should expect 
members of the same social group to pick the same foods, 
and should look longer if the Topid picks a different food 
instead. In contrast, infants should not use the preferences of 
one social group to make inferences about the preferences of 
an individual from a different social group. Infants should 
thus have no expectations about what the Brinko should 
choose and look equally regardless of whether she chooses 
the same or a different food.  

Experiment 1 

Method 
Participants 36 healthy term infants participated (18 
female; ages 18 months, 10 days to 21 months, 18 days, M = 
20 months, 8 days). Another 12 infants were tested but 
excluded because they were fussy (8), because of parental 
interference (2), or because their test looking time was over 
2.5 SD away from the mean of their condition (2). Half the 
infants were randomly assigned to the same-group condition 
(M = 20 months, 16 days) and half to the different-group 
condition (M = 20 months, 0 days).  
 
Stimuli Stimuli consisted of digitized high-definition video 
recordings of actors performing a series of actions. All 
infants saw four familiarization trials and one test trial. A 
separate video was played for each trial. Each trial consisted 
of an initial phase followed by a final phase. The duration of 
the initial phase was fixed and identical for all participants. 
The duration of the final phase was infant-controlled. All 
trials are described from the infants’ perspective.  

 

 
 

Figure 1: Familiarization trial 1 of the same-group 
condition of Experiment 1. 

 
Same-group familiarization trials At the start of the first 
familiarization trial, three female actors sat around a table 
(Figure 1). Two of the actors (Topid-A, Topid-B) wore 
bright pink turtlenecks and decorated yellow visors while 
the third (Brinko-A) wore a plaid shirt and a propeller hat. 
 All actors began the trial with their heads down. During 
the 10-s initial phase of the trial, the actors looked at one 
another and labeled themselves: Topid-A said “Hi, I’m a 
Topid,” Topid-B said, “Hi, I’m a Topid too,” and Brinko-A 
said, “Hi, I’m a Brinko.” As each actor labeled herself, she 
looked back and forth between the other two actors. When 
not labeling themselves, the actors looked at the speaking 
actor as she spoke. After all actors had labeled themselves, 
the actors looked down and paused. The infants viewed this 
paused scene until the trial ended (see Apparatus and 
procedure section for trial-ending criteria). 

The infants then received three familiarization trials in 
which Topid-A demonstrated her preference for one of two 
foods. On each trial, Topid-A sat behind a table. In front of 
her were two white plates (18 cm in diameter) placed 25 cm 
apart. The plate on the right held purple pasta and the plate 
on the left held blue cereal. During the 10-s initial phase of 
the trial, Topid-A selected one of the foods 
(counterbalanced across infants) and ate it while saying, 
“Mmm!” She then looked down at the center of the table 
between the two plates and paused until the trial ended. 
Topid-A selected the same food on all three trials, 
demonstrating that she preferred it to the other food.  
 

 
Figure 2: Test events shown in the same-group condition of 

Experiment 1. 
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Same-group test trials The infants received either a same-
food or different-food test trial (Figure 2). For ease of 
description, the test trials are described from the perspective 
of the infants who saw Topid-A choose blue cereal in the 
familiarization trials. 
 At the start of the trial, none of the actors were present. 
The plates of blue cereal and purple pasta again sat on the 
table. During the 10-s initial phase of the trial, Topid-B 
entered from the left, sat down, and then selected a piece of 
blue cereal (same-food event) or purple pasta (different-food 
event), raised it to her mouth, and ate the food. After eating 
the food, she proceeded to say, “Mmm!” and smile, 
displaying positive affect and indicating she enjoyed eating 
the food. She then looked down at the center of the table 
between the two foods and paused until the trial ended.  
  

 
 
Figure 3: Familiarization trial 1 of the different-group 

condition of Experiment 1 
 

Different-group familiarization and test trials The 
procedure for the different-group condition was identical to 
that of the same-group condition with one exception: the 
actor who played Topid-B in the same-group condition now 
played Brinko-B throughout the experiment. In the first 
familiarization trial, she wore the same costume as Brinko-
A and labeled herself as a Brinko (Figure 3). In 
familiarization trials 2-4, infants saw Topid-A establish her 
food preference, as in the same-group condition. In the test 
trial, the actor wore a Brinko costume, but her actions were 
otherwise identical to those she performed in the same-
group condition. The infants in both conditions thus saw the 
exact same actor in the test trial. All that differed was which 
costume she wore and whether she had previously labeled 
herself as a Brinko or a Topid. Any observed differences in 
looking times across conditions could therefore not be due 
to a preference for a particular individual.  

 
Apparatus and procedure The infants sat on their parent’s 
lap 91.5 cm in front of a large television screen (68.5 cm x 
122 cm). The room was dimly lit. A camera hidden at the 
base of the television (centered, 89 cm above the floor) 
recorded the infant’s face during the experiment. Parents 
were instructed to close their eyes or look down to avoid 
biasing their infant’s responses.  

The television was connected to a Macintosh computer 
located to the left of the infant behind a sound-dampening 

room divider. This computer controlled the presentation of 
the experimental stimuli using custom software written in 
Python (Peirce, 2007). The software selected the correct 
version of each trial based on the infant’s condition and 
presented the video in the center of the television screen 
(each video measured 64 cm x 37 cm on screen). The 
software also controlled the duration of each trial. An 
experimenter observed the infant on a monitor and pressed a 
button on the keyboard whenever the infant attended to the 
video. The software separately computed looking times for 
the fixed-duration and infant-controlled portions of each 
trial; looking times during the infant-controlled portion of 
the trial were used to determine when each trial ended. In 
between trials, an attention-getter (a yellow smiley face 
measuring 28 cm x 20 cm) was displayed on the screen for 4 
seconds and a brief tone was played to attract the infant’s 
attention back to the television screen. 

At the start of the experiment, the attention-getter was 
presented in the center of the television screen. When the 
infant attended to the screen, the experimenter initiated the 
presentation of the stimuli on the television screen. The 
infants first viewed four familiarization trials appropriate for 
their condition. Each familiarization trial ended when the 
infant either (1) looked away for 2 consecutive seconds after 
having looked for at least 4 cumulative seconds or (2) 
looked for 60 cumulative seconds without looking away for 
at least 2 consecutive seconds.  

Finally, the infants viewed the test trial that was 
appropriate for their condition; half the infants in each 
condition saw the same-food trial and half saw the different-
food trial. This trial ended when the infant either (1) looked 
away for .5 consecutive seconds after having looked for at 
least 4 cumulative seconds or (2) looked for 30 cumulative 
seconds without looking away for at least .5 consecutive 
seconds. 
 
Coding and analysis In order to present events with trial 
duration contingent on the infant’s attention, online coding 
was conducted by the experimenter (blind to condition and 
test trial), as described above. All infants were then coded 
offline from silent video by a trained coder who was naïve 
to the condition and test trial that the infant received; the 
looking times resulting from this coding were used in all 
analyses. For each trial, the coder indicated the infant’s 
direction of gaze (at the stimuli or away) for each frame of 
the video. Another trained coder who was naïve to the 
infant’s condition and test trial coded all sessions, and these 
two coder’s agreed on the child’s direction of gaze for 96% 
of video frames. Trials in which agreement was less than 
90% (15/180) were resolved by a third naïve coder.  

The infants were highly attentive during the initial phase 
of the familiarization trials: averaged across the four 
familiarization trials, the infants attended for 96% of the 
initial phase. The infants were also highly attentive during 
the initial phase of the test trial, attending for 97% of the 
initial phase.  

Preliminary analyses of the test data indicated no 
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significant interactions of condition and event with sex or 
which food Topid-A preferred (blue vs. purple), all Fs < 
1.55, all ps > .22. The data were therefore collapsed across 
these factors in subsequent analyses. In order to control for 
baseline differences in attention, all analyses were run with 
average looking time during the final phases of the 
familiarization trials as a covariate. 

 
 

Figure 4: Mean looking time (sec) of the infants during the 
test trial of Experiments 1 and 2 as a function of condition 

and event. Error bars represent standard errors, and asterisks 
indicate a significant difference between events with a 

condition (p < .05). 

Results and Discussion 
The infants’ looking times during the test trial (see Figure 4) 
were analyzed using an analysis of covariance (ANCOVA) 
with condition (same-group, different-group) and event 
(same-food, different-food) as between-subjects factors. 
There was a main effect of event, F(1, 31) = 14.20, p = .001, 
ηp

2 = .31, indicating that the infants who saw the different-
food event looked longer than those who saw the same-food 
event in the test trial. However, this effect was qualified by 
a significant interaction of condition and event, F(1, 31) = 
9.03, p = .005, ηp

2 = .23. There was no main effect of 
condition, F < 1. Planned simple effect comparisons 
revealed that in the same-group condition, the infants who 
received the different-food event (M = 17.18, SD = 4.14) 
looked reliably longer than those who received the same-
food event (M = 7.94, SD = 2.29), F(1, 31) = 23.00, p < 
.001, Cohen’s d = 2.76. In the different-group condition, the 
infants looked about equally whether they received the 
same-food event (M = 10.81, SD = 4.16) or the different-
food event (M = 12.15, SD = 5.80), F < 1. 

As predicted, the infants in the same-group condition 
looked reliably longer if they received the different-food 
event than if they received the same-food event. This 
suggests that the infants expected members of the same 

social group to share food preferences, and they looked 
longer if members of the same social group had different 
food preferences. In contrast, the infants in the different-
group condition looked equally regardless of whether 
members of different social groups picked the same or 
different foods. 

However, a possible alternative explanation of these 
results is that when Topid-A and Topid-B wore the same 
outfit, the infants were unable to discriminate between them. 
If so, then the infants in the same-group condition might 
have thought that the agent in the test trial was the same 
agent that they had seen in the familiarization trials and 
hence looked longer at the different-food event because that 
agent appeared to suddenly change food preferences. To 
address this possibility, an additional group of 12 infants 
were tested in an actor-discrimination condition (procedure 
adapted from Buresh & Woodward, 2007). Infants first saw 
the same familiarization trials as in the same-group 
condition. Infants then viewed two test trials in which either 
Topid-A (old-actor event) or Topid-B (new-actor event) 
entered and ate the same food that Topid-A had chosen 
during the familiarization trials (order of test events 
counterbalanced across infants). The infants’ looking times 
during the test trials were analyzed using an analysis of 
variance (ANOVA) with test event (old-actor event, new-
actor event) as a within-subjects factor and event order (old-
actor first, new-actor first) as a between-subjects factor. The 
analysis yielded a main effect of event, F(1, 10) = 9.08, p = 
.013, ηp

2 = .48, indicating that the infants looked longer at 
the new-actor test event (M = 11.44, SD = 4.58) than the 
old-actor event (M = 7.34 SD = 2.24). No other effects were 
significant, all Fs < 1. If the infants had not noticed the 
change in actor, they would have looked equally to the new-
actor and old-actor events. However, the infants found the 
new-actor event novel, suggesting that infants were able to 
discriminate between the two actors.  

Together, these findings provide additional evidence that 
infants can reason about members of a group that they 
themselves do not belong to (Powell & Spelke, 2013; 
Liberman et al., 2016) and add to these prior findings by 
demonstrating that infants expect members of social groups 
to share inherent properties. 
 

Experiment 2 
 Experiment 2 had two goals. The primary goal was to 

replicate the positive findings from the same-group 
condition in Experiment 1. Our secondary goal was to 
explore whether the noun labels in Experiment 1 were 
necessary for children to establish social groups with 
inductive potential. To investigate this question, infants 
were assigned to an adjective condition that was identical to 
the same-group condition of Experiment 1 except that the 
actors labeled themselves with adjectives instead of nouns. 
If infants require noun labels to identify social groups with 
inductive potential, then when the social groups are labeled 
with adjectives, infants will no longer generalize 
preferences across members of a social group. If, however, 
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infants can use adjectives to identify social groups with 
inductive potential, then infants will expect members of the 
same social category to pick the same foods, replicating the 
results of the same-group condition of Experiment 1.  

Method 
Participants 30 healthy term infants participated (16 
female; ages 18 months, 3 days to 21 months, 29 days, M = 
19 months, 16 days). Another 5 infants were tested but 
excluded because they were fussy (3), or because of parental 
interference (2). Eighteen infants were randomly assigned to 
the same-group condition (M = 19 months, 27 days) and 12 
to the different-group condition (M = 19 months, 0 day).  
 
Stimuli, Apparatus, and Procedure The stimuli, 
apparatus, and procedure were identical to Experiment 1 
except that in the first familiarization trial the actors labeled 
themselves with adjectives instead of nouns (e.g., “Hi! I’m 
Topish.”).  

 
Coding and analysis As in Experiment 1, all infants were 
coded offline by a coder naïve to the condition and test trial 
that the infant received. An additional naïve coder coded all 
participants; agreement between the two coders was 97%. 
Trials in which agreement was less than 90% (4/150) were 
resolved by a third naïve coder 

Infants were highly attentive during the initial phase of all 
familiarization trials; averaged across all four trials, infants 
attended for 98% of the initial phase. Infants were also 
highly attentive during the initial phase of the test trial, 
attending for 98% of the initial phase.  

Preliminary analyses of the test data indicated no 
significant interactions of condition and event with sex, or 
which food Topid-A preferred (blue vs. purple), all Fs < 1. 
The data were therefore collapsed across these factors in 
subsequent analyses. 

Results and Discussion 
Infants’ looking times during the test trial were analyzed 
using an ANCOVA with condition (same-group, different-
group) and event (same-food, different-food) as between-
subjects factors, and infants’ average looking times during 
the final phases of the familiarization trials as a covariate. 
Results revealed a significant interaction between condition 
and event F(1, 25) = 4.75, p = .039, ηp

2 = .16. There were 
no main effects of event or condition, both Fs < 1. Planned 
simple effect comparisons revealed that in the same-group 
condition, the infants who received the different-food event 
(M = 19.90, SD = 8.40) looked reliably longer than those 
who received the same-food event (M = 10.44, SD = 3.73), 
F(1, 25) = 8.59, p  = .007, d = 1.46. In the different-group 
condition, the infants looked about equally whether they 
received the same-food event (M = 14.54, SD = 5.43) or the 
different-food event (M = 12.38, SD = 4.79), F < 1. These 
results suggest that, similar to the results of Experiment 1, 
infants in Experiment 2 expected members of a social group 
to share food preferences and looked longer when members 

of the same social group had different preferences. In 
contrast, infants had no expectation about whether members 
of different social groups would share food preferences. 

To investigate whether infants’ looking time patterns 
were similar across experiments, infants’ looking times to 
the test trial were analyzed using an ANCOVA with 
Experiment (1, 2), condition (same-group, different-group), 
and event (same-food, different-food) as between-subjects 
factors, and infants’ average looking times during the final 
phases of the familiarization trials as a covariate. Results 
revealed a main effect of event, F(1, 57) = 12.33, p < .001, 
ηp

2 = .18. This effect was qualified by a significant 
interaction of condition and event, F(1,57) = 13.93, p = < 
.001, ηp

2 = .20. No other effects were significant, all Fs < 
2.3, ps > .14. The absence of any main effects or 
interactions involving Experiment suggests that regardless 
of whether the social groups were labeled with nouns or 
adjectives, infants expected members of the same social 
group to prefer the same foods.  

General Discussion 
By preschool, children expect members of a social group to 
share characteristics and thus use social-group membership 
to draw inductive inferences about the properties of novel 
individuals. The current studies examined the origins of this 
social-group based reasoning in infancy. Specifically, we 
examined whether infants expect members of a social group 
to share preferences. Infants were introduced to members of 
two arbitrary social groups, Topids and Brinkos, and learned 
that a particular Topid preferred one of two foods. Infants 
later expected another Topid to prefer the same food and 
looked longer if she did not. However, infants had no 
expectations about whether members of different social 
groups (i.e. a Topid and a Brinko) would share preferences. 
Infants held similar expectations regardless of whether the 
group members labeled themselves with nouns (Topid, 
Brinko) or adjectives (Topish, Brinkish).  

These findings expand our understanding of infants’ 
social-group based reasoning in several key ways. First, 
these studies provide additional evidence that infants can 
categorize individuals as members of a social group, even if 
they themselves are not members of that group (e.g., 
Liberman et al., 2016; Powell & Spelke, 2013). Second, 
these studies expand on prior work by providing the first 
empirical evidence that infants as young as 20 months use 
social-group membership to make inductive inferences 
about the likely behavior of group members, even when 
other group members are not present. In our experiments, 
only one agent was present in the test trial, and that agent 
did not see which food the other agent had selected during 
the familiarization trials. Thus, infants’ expectations 
regarding the agent’s behavior in the test trial are unlikely to 
have been based on social pressures or imitation. Even 
without the presence of other group members, infants 
expected members of a social group to share stable, inherent 
properties.  

Together, the current studies begin to shed light on the 
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circumstances under which infants treat social group 
members as alike, and the age at which these expectations 
emerge. Future studies should further explore the precise 
nature of infants’ social-group based inferences. For 
instance, we have discussed our results in terms of shared 
preferences: when Topid-A selects blue cereal over purple 
pasta, infants interpret this as signaling that Topids prefer 
blue cereal and hence expect another Topid to share this 
preference and also select blue cereal. However, perhaps 
infants were instead reasoning about shared avoidance of 
the food that Topid-A did not select – Topids do not eat 
purple pasta – and hence expected another Topid to avoid 
that food as well. Both shared preferences for and shared 
avoidance of specific foods exist across cultures (i.e. some 
cultural groups have a strong preferences for pork products, 
whereas other groups prohibit consuming pork). Future 
research should examine whether infants expect group 
members to like the same foods, avoid the same foods, or 
both. Additionally, future research should examine whether 
infants were reasoning specifically about foods, or whether 
infants could also have been reasoning about other features 
of the event (i.e. reaching for a particular color). Such 
studies will help clarify the characteristics that infants 
expect social-group members to share.  
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Abstract

Theories of the mental processes people use to perform physi-
cal reasoning often differ on whether they are based on simu-
lation or on logical reasoning. Here we test how these different
processes might combine in a motion-prediction task that can
be solved either by simulation or by reasoning about the topol-
ogy of the scene. Participants were asked to predict which of
two goals a computerized ball would reach first, but in some
of these scenes the ball was ‘contained’ in the same space as
one goal but was topologically separated from the other. Even
in these contained scenes, participants responded faster when
they received motion information that would speed up simu-
lation but not affect topological parsing. This suggests that
simulation contributes to predicting short-range motion, even
when alternate strategies are available.
Keywords: intuitive physics; simulation; topology; containers

Introduction
A long-standing debate in physical reasoning is whether peo-
ple use simulation (Shepard & Metzler, 1971; Battaglia,
Hamrick, & Tenenbaum, 2013) or symbolic reasoning
(Forbus, 1983; Davis, Marcus, & Chen, 2013) to understand
the world, and whether the mental representations that sup-
port physical reasoning are continuous or based on a qualita-
tive analysis of the scene. Recently, models based on contin-
uous simulation have had success explaining a range of hu-
man behaviors such as stability judgments (Battaglia et al.,
2013), motion prediction (Smith & Vul, 2013), and causal-
ity judgments (Gerstenberg, Goodman, Lagnado, & Tenen-
baum, 2012). However, others have noted that simulation is
an overly cumbersome process for many instances of physical
reasoning where simple logical rules could suffice – e.g., if a
ball is placed in a box and shaken, it seems easier to notice the
topological relationship of containment and use the rule “An
object in a closed container remains in the container” than
to simulate the exact trajectory of the ball (Davis & Marcus,
2015).

In this paper we study how people make physical predic-
tions in cases where either simulation or a logical parsing of
the scene can provide an answer. As in the example of Davis
and Marcus (2015), we focus on the topological relationship
of containment: an object is contained in a portion of space if
there exist other objects that surround it and prevent it from
leaving that space. We choose to study containment for three
reasons. First, Davis et al. (2013) demonstrate that topolog-
ical containment can be parsed using simple rules of first-
order logic for a rapid understanding of the scene. Second,
people automatically and unconsciously process certain types

Figure 1: Diagram of continuous simulation (top) versus reasoning
about kinematics using a qualitative scene parsing (bottom). Noisy
simulation traces potential trajectories of objects through a continu-
ous representation of the world. Qualitative physical reasoning seg-
ments the scene by topological regions and defines motion trajec-
tories through a graph based on connections between those regions
(bottom figure from Forbus, 1983).

of containment (Strickland & Scholl, 2015). And finally, in
previous work we found that we could explain motion pre-
diction using a model of noisy physical simulation across a
wide variety of scenes, but that people made predictions more
rapidly than would be expected under the simulation model
in the handful of scenes where an object was topologically
contained to make one outcome impossible (Smith, Dechter,
Tenenbaum, & Vul, 2013). Together, this suggested that pre-
dicting motion in contained spaces would be a good candidate
task for finding traces of both simulation and logical reason-
ing about scene topology.

Here we test whether and when topological reasoning
about a scene occurs before simulation, versus when simula-
tion supports prediction. We use a similar paradigm to Smith
et al. (2013), in which participants observe a ball bounc-
ing around a computerized screen and predict which of two
‘goals’ the ball will reach first. To make predictions using
simulation, people would need to form a representation of the
scene then step the motion of the ball forwards in time until
it reaches a goal, but do not need to recognize the combined
spatial relationship of objects: e.g., that a set of walls delin-
eates one part of the space from another. Thus the time it
takes to form simulations and make a prediction should be
proportional to the path length the ball travels (Moulton &
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Kosslyn, 2009), and so the amount of time to produce a re-
sponse using simulation should be affected by the motion of
the ball: if the ball is moving towards a goal, the relatively
shorter path should require less time to simulate, whereas
motion away from the goal would produce longer simulation
paths and proportionally longer response times. Conversely,
to predict that the ball will reach one of the two goals because
it cannot reach the other requires representing the scene, logi-
cally reasoning about whether the walls form distinct regions,
then deciding whether the ball rests within a region with one
but not both of the goals. However, this reasoning process
does not require moving the ball forward in time, and so
should be insensitive to any differences in motion informa-
tion.

In this experiment, we therefore asked participants to make
a single prediction and measured their response times. We
further varied the motion information provided: the ball could
move towards the goal, away from the goal, or have no ob-
served motion. A facilitation effect in which motion towards
the goal produces faster responses is evidence that people are
at least in part relying on simulation, while absence of this ef-
fect points towards topological processing. Finally, we vary
the way in which the ball can be contained in order to test for
the limits of topological processing.

Experiment

Procedure
We recruited 100 participants from Amazon Mechanical Turk
using psiTurk (Gureckis et al., 2016) to take part in this ex-
periment. The experiment lasted ∼10-12 minutes, for which
participants were compensated $1.20.

On each trial of the experiment, participants would observe
a scene with a ball that could move in a straight line but
bounce off of walls (such as the one in Figure 2) and were
asked to predict whether the ball would reach the green goal
or the red goal first. The colors of the goals were randomly
switched to avoid any color biases, and responses were ad-
justed in switched-color trials for consistency of analysis. In
two thirds of the trials, participants would observe the ball
in motion for 500ms; in the remaining third of trials, partic-
ipants would observe no motion but were instructed that the
ball would move in a direction not known to them until after
they made their prediction.

Figure 2: Diagram of experimental trials (Left: non-topological,
Right: topological). Participants would either observe the ball in
motion or a static ball, and would be asked to indicate whether they
believed the ball would reach the green or red goal first. The arrow
was not displayed but indicates the direction of motion.

Participants registered which goal they believed the ball
would reach by pushing either the ‘z’ or ‘m’ buttons on the
keyboard. The mapping between the key and goal color was
randomized across participants to control for any directional
effects. To ensure that participants observed the full motion
path and to equate for processing time, the prediction could
not be registered until either the 500ms of motion had stopped
in the motion condition, or after the response buttons flashed
after 500ms in the no motion condition.

After participants registered their response, the ball would
travel along its trajectory until it reached a goal, and partic-
ipants would be assigned a score between 0 and 100 points,
with faster reaction times (up to 300ms) earning more points.
If participants made an incorrect prediction, they always lost
10 points. If a participant did not respond for 2500ms, the
trial would end and the participant would be awarded no
points. These points were used to incentivize rapid responses
and as motivation, but did not affect compensation.

On each trial we recorded both reaction time (between
when a response could be indicated and when the button was
pressed)1 and the goal the participant predicted the ball would
reach.

Stimuli
Participants observed 120 trials throughout the experiment.
Of these trials, 96 were ‘non-topological’ trials that were
randomly constructed such that the ball would reach a goal
within 15 seconds, but were not hand designed with topolog-
ical relationships. These uncontained trials were used to en-
sure that participants did not develop a deliberative, top-down
strategy of judging topology.

The remaining 24 trials each participant saw were crafted
to investigate one of four different dimensions of topological
processing. There were six trial templates for each of the four
dimensions (for a total of 24 templates), and each of these
templates was adjusted to create three levels of containment
across that dimension – each dimension started from the most
contained, most simple, or smallest (level 1) and progressed
to the most open, most complex, or largest (level 3). Thus
there were 72 different topological trials used in the exper-
iment, but each participant saw only one of the three levels
formed from each template to avoid carry-over from simi-
lar trials. The dimensions of topological differences are de-
scribed below.

Size This dimension was used to test whether topological
parsing was performed by exploring the enclosed space at a
constant rate, or whether topology is processed based on the
configuration of the scene. If it is performed at a constant
rate, then larger scenes with the same configuration should
take longer to parse as topologically contained. We crafted
these stimuli such that the smallest scene had dimensions that
were 50% of the largest scene, while the middle scene had

1We also measured response time starting from when the stimuli
came on the screen; results were qualitatively similar regardless of
the choice of starting time.
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Figure 3: Sample trials from each of the topological dimensions along the three levels. The size trials (upper left) varied from small to large
containers. The porousness trials (lower left) varied the size of gaps in the wall of the container. The stopper trials (upper right) varied the
distance of the goal from making a seal with the rest of the container. The complexity trials (lower right) varied the internal and external
structure of the containers. Balls in the “towards” condition moved in the direction indicated by the line, while balls in the “away” condition
moved in the opposite direction. In all cases the ball ended at the green goal.

dimensions that were 75% as large (see Figure 3, upper left).

Porousness This dimension was used to test whether an ob-
ject is topologically parsed as a container only if it is fully
sealed, or whether containment is relative to the object in-
side. If topological processing is based solely on the con-
tainer, then any gaps should prevent it from being seen as a
container, whereas if it is calculated relative to the object in-
side, then it should still be observed as a container if gaps in
its walls are smaller than the object it is holding. In the three
levels along this dimension, one container was fully sealed
with no breaks in its walls, one had gaps that were smaller
than the ball, and the final level had gaps large enough for the
ball to fit through (see Figure 3, lower left).

Stopper Forbus (1983) suggests that scene and motion de-
scriptions also take into account what sorts of motions are al-
lowable within the scene. If this is the case, then topological
processing might also be affected by whether the path an ob-
ject takes to exit a container is implausible or impossible. We
therefore tested whether participants would consider the ball
to be contained if there were almost no conceivable physical
paths that would allow it to escape, even if there exist simple
paths outside that do not account for physical motion. Level
1 along this dimension was produced with one goal forming
a seal with the rest of the container. Level 2 moved the goal
away from the container so that the ball could fit through, but
in a physically implausible way. Level 3 moved the goal even
further so that it is easily possible that the ball could exit the
container without hitting the goal under plausible kinematic
motion (see Figure 3, upper right).

Complexity This dimension was used to test how topol-
ogy and simulation interact – even in situations where the

ball is fully contained will people use simulation if parsing
the boundaries of the container is too difficult? Along this
dimension, the levels included a simple configuration (e.g.,
the screen is split into two parts by a single wall), a mod-
erately complex configuration with more internal and exter-
nal structure, and very complex configuration (see Figure 3,
lower right).

In all of the levels of all of the trials, participants would see
either motion that is in the general direction of the goal within
the container, motion in the opposite direction away from the
goal, or no motion. To ensure each trial was novel, each par-
ticipant only saw one type of motion for each trial, counter-
balanced across participants. These motion conditions were
tested because differences in velocity information should af-
fect simulation but not topological judgments. If people are
using simulation, we would expect that motion towards the
goal should speed processing as compared to motion away,
since each simulation will have a shorter distance to travel
and fewer bounces before reaching the goal (Hamrick, Smith,
Griffiths, & Vul, 2015). Similarly, if people predict the out-
come of no motion trials by simulating paths the ball could
take in any direction, because most potential paths would be
longer than the paths created with motion towards the goal,
predictions should also be slowed in this case. If containment
is judged by parsing the topology without using information
about velocities, then changing the type of motion informa-
tion provided should not change the speed of this mental pro-
cess. We can therefore test for the presence of simulation by
the presence of faster reaction times in the “towards” motion
condition compared to the “away” or “no motion” conditions.
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Figure 4: Geometric means of reaction times across topological dimensions and motion conditions. Bars indicate 95% confidence intervals
bootstrapped from 500 samples. In all cases reaction times in the “towards” condition were faster than those in the other two conditions,
indicating a use of simulation.

Results
To ensure that we do not use data from participants who were
not paying attention, we eliminated responses from trials
where participants minimized or otherwise hid their browser
screen (0.3% of trials) or where participants did not indicate
a prediction in the allotted time (1.6% of trials). Finally, be-
cause participants observed the scene for 500ms before mak-
ing a response, some responses could be anticipatory. To pre-
vent these measurements from skewing the data, we removed
all responses under 10ms (0.7% of all trials). For the pur-
pose of all analyses, reaction times were log-transformed to
account for long tails (Whelan, 2008) but transformed back
for reporting and display.

We first test for overall differences in speed of processing
across all topological dimensions, levels, and motion direc-
tions.2 This analysis suggests that motion direction plays
a pivotal role in explaining reaction times (F(2,2152) =
61.8, p ≈ 0), with “towards” (321ms, 95% CI: [288, 357]) be-
ing faster than “away” (394ms, 95% CI: [354, 439]), which in
turn is faster than “no motion” (487ms, 95% CI: [437, 543])
over all trial types.

The dimension of topology also affects reaction time
(F(3,58) = 14.2, p = 7.8 ∗ 10−8), with the complex trials
(481ms, 95% CI: [424, 546]) being slower than the size trials
(359ms, 95% CI: [316, 407]), the porous trials (373ms, 95%
CI: [329, 423]), and the stopper trials (377ms, 95% CI: [333,
428]).

Finally, the level of topology had an overall effect
(F(2,58) = 5.9, p = 0.0046). Although the specific way in
which trials changed with differences in level was not the
same across topological dimensions, they were all ordered
such that the first level was expected to produce the fastest
predictions and the third the slowest. Here the simplest /
most contained trials were the fastest (359ms, 95% CI: [319,
404]), followed by the intermediate trials (393ms, 95% CI:

2We modeled log-RT using a linear mixed effects model with
random effects for participant, trial, and a trial-by-motion direction
interaction.

[349, 443]), followed by the most complex / least contained
(436ms, 95% CI: [387, 490]).

Nonetheless, there was no statistically reliable effect of any
interaction (all Fs <1.5, all ps >0.13). This suggests that the
amount of speed-up from observing motion does not change
with the type of topological trial, which in turn suggests that
simulation is used across all topological trials.

To more directly test for the use of simulation across di-
mensions of topology, we can compare how fast people re-
spond in the “towards” condition as compared to the “away”
and “no motion” conditions. We calculated a simulation facil-
itation index as the ratio of the reaction times in the “towards”
condition versus the average of the other two conditions. If
this index is less than one, then we have evidence that par-
ticipants were using simulation to make predictions in that
condition. As can be seen in Table 1, across every condition
the simulation facilitation index is numerically less than one,
and in most conditions (9 of 12) the 95% confidence intervals
do not include one either.

These simulation facilitation effects are not driven by a
small set of outlier trials. Across all topological trials, re-
action times of participants in the “towards” condition were
faster than those in the “away” condition in 52 of 72 tri-
als (binomial test, p = 0.0002), and faster than those in
the “no motion” condition in 61 of 72 trials (binomial test,
p = 1.6∗10−9).

We also consider whether the facilitation in the “towards”
condition is truly facilitation, or whether this effect is ob-
served because “away” motion slows down processing: in
some cases the ball was moving away from the correct goal
and towards the incorrect goal, and simple directional mo-
tion towards a goal might speed reactions for that goal and
slow reactions for the incongruent goal. However, partici-
pants were still faster in the “away” motion condition than
the “no motion” condition both in average reaction time and
in 49 of 72 trials (binomial test, p= 0.003), so the differences
in reaction time cannot be explained simply as a slowdown
due to motion towards the incorrect goal.
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Table 1: Simulation facilitation index for each of the topological dimensions and levels. Numbers in brackets indicate 95% confidence
intervals. In all cases, there is a simulation facilitation advantage, and in all but three conditions the confidence intervals are below one. This
suggests that simulation is used across all topological conditions, including the conditions with simple containers.

Level 1 Level 2 Level 3
Size 0.764 [0.593, 0.983] 0.82 [0.635, 1.06] 0.716 [0.556, 0.921]

Porousness 0.714 [0.554, 0.92] 0.716 [0.556, 0.922] 0.869 [0.676, 1.12]
Stopper 0.592 [0.46, 0.761] 0.704 [0.548, 0.904] 0.681 [0.529, 0.877]

Complexity 0.845 [0.655, 1.09] 0.7 [0.543, 0.903] 0.713 [0.554, 0.917]

Although motion towards the goal speeds reaction times
across all trial types, we can test whether participants were
simply cued to respond faster in general when the ball is
moving towards the goal, or whether there is evidence that
these judgments are based on simulation. If people are using
simulation, then as the ball travels further to reach the goal
we would expect mental simulations to also travel a longer
path and thus take more time to produce (Moulton & Koss-
lyn, 2009). We therefore expect that reaction times should
increase roughly in line with the time it takes the ball to ac-
tually reach the goal.3 As can be seen in Figure 5, there is a
relationship between the actual travel time of the ball and par-
ticipants’ reaction time on that trial across all of the topologi-
cal trials (r = 0.29, t(142) = 3.5, p = 0.00056), but we do not
have evidence that this relationship differs between the “to-
wards” and “away” conditions (F(1,141) = 0.76, p = 0.38).4

This relationship suggests that simulation was in general used
to produce motion predictions in this task regardless of the di-
rection of motion.

Finally, we considered two alternate explanations that
might give rise to this pattern of data by chance. First, if par-
ticipants were ‘guessing’ more in the towards motion trials,
we might expect them to respond faster but be less accurate.
Second, if participants changed the speed with which they re-
sponded over time, this could be a potential confound in our
analyses. However, neither of these alternate explanations
hold.

If participants are using a different speed-accuracy trade-
off across motion types, we might expect that the reduc-
tion in speed is counterbalanced by higher accuracy. Among
the topological trials, participants were numerically most ac-
curate in the ‘no motion’ condition (89.0%), followed by
the ‘towards’ condition (86.7%), then the ‘away’ condition
(81.3%). While there is an overall effect of motion direc-
tion on accuracy (χ2(2) = 20, p = 4.5 ∗ 10−5), this is driven
by the ‘away’ condition being less accurate than the other
two (vs. ‘towards’, z = 2.6, p = 0.024; vs. ‘no motion’,
z = 3.28, p = 0.003) rather than by a difference between the

3Because it was unclear how far the ball should travel in the “no
motion” condition, we did not include those trials in this analysis.

4If we include the non-topological trials in this analysis, we still
find a relationship between ball travel time and reaction time (r =
0.29, t(238)= 4.6, p= 7.2∗10−6) but do not find statistical evidence
that the slopes differ between non-topological, topological towards,
and topological away conditions (F(2,236) = 1.01, p = 0.37). Fur-
thermore, if we remove topological trials that were not fully con-
tained (Porous level 3 and Stopper levels 2 & 3), this relationship
remains (r = 0.34, t(106) = 3.7, p = 0.00037) and we still do not
find changes with motion condition (F(1,105) = 0.78, p = 0.38).

Figure 5: Comparison of the time it takes the ball to actually reach
the end goal versus the geometric mean of participants’ reaction time
in that trial (r = 0.29). Topological trials are linked between ‘to-
wards’ and ‘away’ motion with dashed lines.

‘towards’ and ‘no motion’ conditions (z = 0.74, p = 0.74).
Furthermore, a speed-accuracy trade-off cannot explain why
people are both slower and less accurate in the ‘away’ condi-
tion than they are in the ‘towards’ motion condition.5

We also tested for changes in the speed of response
throughout the experiment. There was a minuscule effect of
trial order on response speed that was not statistically reliable
(each additional trial was 0.08% slower, 95% confidence in-
terval = [-0.02%, 0.18%], F(1,151) = 2.7, p = 0.10). There-
fore changes in response times over the experiment cannot
explain the difference in reaction times across the different
motion conditions.

Discussion
In this study we tested for situations where reasoning about
topological containment preempts physical simulation across
a wide variety of trials where both topological relationships
and simulations could be used. We found that participants
were using simulation across all types of topological trials,
including the most simple cases of containment.

But why do we find evidence of simulation when a simple
topological analysis alone would suffice? We consider five

5This analysis considers all topological conditions, including the
porousness and stopper trials in which simulation in theory could
reach the incorrect goal. However, limiting this analysis to just the
size and complexity trials (which were all fully contained) produces
the same qualitative results.
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possibilities.
First, the simulation facilitation effect could arise from a

mixture of individuals, some of whom use simulation and oth-
ers who use topological processing. Due to the small number
of topological trials each participant saw in this experiment,
we cannot precisely measure whether each participant indi-
vidually had a simulation facilitation effect, only that this ef-
fect is found on average. Further research is required to inves-
tigate individual differences in the use of these two processes.

Second, because the majority of the trials could not be
solved with topological reasoning, if people must choose be-
tween either simulation or topological reasoning, simulation
would be the more general choice. Thus if there are cognitive
costs for switching between different processing strategies,
participants might constantly use simulation. Future work
will study whether people continue to use simulation even
when it is not as frequently required.

Third, Davis and Marcus (2015) suggest that “simulation
is effective for physical reasoning when the task is predic-
tion, when complete information is available, ... and when
the range of spatial or temporal scale involved is moderate”
– exactly the conditions of this experiment. Perhaps simula-
tion is automatically activated in tasks that fit this description
but not in others, and we happened to use a task that relied
on simulation. This might also imply that the “no motion”
trials involved a separate, logic-based process as opposed to
the motion trials with complete information. Indeed there is
a numerical pattern in these results that would support this
interpretation: in Figure 4 the “away” reaction times are al-
ways slightly slower than the “towards” reaction times, but
the difference between “towards” and “no motion” is more
variable across conditions. Although there was not statisti-
cal evidence for such a difference, this pattern would be con-
sistent with people using a separate process that requires a
longer and more variable amount of time in cases where no
motion was observed.

Fourth, people may be using simulation to gain informa-
tion about containment. Liang, Zhao, Zhu, and Zhu (2015)
explain human ratings of how well one object will be con-
tained by another by simulating how often the first object will
stay inside the second when dropped into it. This might sug-
gest that for simple tasks our perception of containment is
statistical (one would not expect this object to ever leave the
container) rather than logical (the topology of the container
entails the object inside will not leave).

Finally, making predictions may involve multiple pro-
cesses running in parallel, including both simulation and
topological parsing. In many of the topological trials par-
ticipants observed – especially the “towards” trials – the ball
did not have to travel far to reach the goal. If both simula-
tion and topological reasoning are active at the same time,
these might be the cases where simulation provides an an-
swer quickly and wins out over topological processing. In
Figure 5, the relationship between the time the ball actually
takes to reach the goal and reaction time becomes more vari-

able and flatter as the travel time takes longer. These longer
trials might be cases where simulation fails to provide an an-
swer before less continuous processes can, and so we do not
see the same sort of relationship between path length and re-
action time. Intriguingly, this relationship is reduced even
for the non-topological trials that last this long, suggesting
perhaps that simulation can only look a short time into the
future, after which point we use more qualitative scene repre-
sentations that could support either qualitative simulation or
logical reasoning.

Although simulation appears to be active in simple tasks
that require predicting the motion of objects, fully explaining
human physical reasoning will require a better understanding
of how simulation interacts and trades off with more qualita-
tive methods of conceptualizing the world.
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Abstract 

Analogical comparison promotes spontaneous transfer by 
encouraging a more abstract representation that may be easier 
to retrieve. The category status hypothesis states that: if 
knowledge is represented as a relational category, it is easier 
to activate as a result of categorizing (as opposed to cue-based 
reminding). To investigate these two pathways to analogical 
transfer, participants were assigned to different study 
conditions: 1) standard comparison of two analogs; 2) 
standard comparison followed by a second comparison of two 
new analogs; or 3) a guided category-building task based on 
sequential summarization. Category-building showed a 
reliably higher rate of spontaneous transfer during an 
analogical problem solving task than standard comparison 
(numerically higher than double-comparison). Another 
experiment measured spontaneous remindings to cues on the 
basis of matching structure. Category-building showed a 
reliable advantage over both comparison conditions. This 
supports categorization as a novel pathway to spontaneous 
transfer by enhancing retrieval of structurally similar 
information.   

Keywords: concepts and categories; analogy; problem 
solving; comparison; transfer 

General Introduction 

People are able to transfer prior knowledge to solve 

problems in a superficially dissimilar context. Gick and 

Holyoak (1980) demonstrated that individuals who encoded 

a base passage, which described how a general captured a 

fortress by dividing an army into small groups of soldiers 

that simultaneously attacked the fortress from various 

angles, were able to transfer the passage’s solution to solve 

an isomorphic target problem about how a doctor could 

destroy a tumor with a ray of radiation. The prevailing 

cognitive account (henceforth abstraction account) explains 

knowledge transfer across domains (e.g., military strategy to 

medical treatment) in terms of analogy. According to the 

abstraction account, transfer involves a mapping process 

where distinct superficial information between analogs is 

filtered out (e.g., general and doctor), and similar 

relationships between analogs are placed into 

correspondence (e.g., simultaneous application) (Gentner, 

1983; Gick & Holyoak, 1980). This mapping process allows 

for candidate inferences from the structure of the base to fill 

in missing predicates of the target problem, which allows 

for a solution to be devised (e.g., lower intensity rays 

simultaneously converging on a tumor from multiple 

locations) (Gentner, 1983; Gick & Holyoak, 1980).   

Despite the capacity for analogical transfer, individuals 

often fail to spontaneously transfer knowledge from a single 

base analog to solve a problem in a different domain 

without an explicit hint about the base’s relevance (Gick & 

Holyoak, 1980). This failure is known as the paradox of 

similarity-based retrieval: superficially similar information 

to the target problem (e.g., other medical problems) is 

favored during retrieval, even though inferences require 

structural overlap between the base and target (e.g., the 

concept of convergence) (Gentner, Ratterman & Forbus, 

1993; Holyoak & Koh, 1987; Ross, 1987). With this 

paradox in mind, the key to understanding how spontaneous 

transfer occurs is to determine what promotes structure-

based retrieval. 

Some key findings of the abstraction account are that 

comparison is an effective way to learn (Alfieri, Nokes-

Malach & Schunn, 2013) and to promote spontaneous 

transfer (Gentner, Loewenstein & Thompson, 2003; Gick & 

Holyoak, 1983). During comparison, cases with matching 

structure are presented side-by-side and participants are 

prompted to consider the similarities between them. This 

facilitates a mapping process to occur during encoding that 

is similar to the one that occurs during transfer, which 

highlights commonalities between cases and promotes the 

formation of an abstract schema via filtering out surface-

level mismatches (Markman & Gentner, 2000). These 

abstract schemas are more accessible in memory than 

representations of specific cases due to a lack of superficial 

mismatches with targets (Forbus, Gentner & Law, 1995; 

Gick & Holyoak, 1983). The heightened accessibility of 

abstract schemas facilitates retrieval of structurally similar 

matches during the memory search triggered by an 

opportunity to spontaneously transfer knowledge. 

While the abstraction account focuses on the role of 

schema abstraction in spontaneous transfer, the type of 

materials used in these studies can also be viewed as 

embodying relational categories (Gentner & Kurtz, 2005). 

Categorization may provide another pathway to structure-

based retrieval. The category status hypothesis predicts that 

when knowledge is represented in the form of a category, it 

is fluidly accessed and applied (Kurtz & Honke, submitted). 

There are three important aspects that contribute to the 

development of category status. First, category intension is 

knowledge of the category defining structure. This may be 

similar to an abstract schema, and could be conferred 

through the comparison process (Goldwater & Schalk, 

2016). Second, category extension is knowledge of specific 

members and non-members of a category as well as how to 

differentiate between them. Third, categorization confers 

experience in bi-directional mapping between generic 

knowledge of the category and specific cases. Thus, the key 
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claim of the category status hypothesis is as follows: when 

knowledge is represented as a psychological category, 

construal of a target stimulus as a category member 

facilitates direct activation of the category-defining concept 

in semantic memory. The key difference is that the category 

status hypothesis predicts direct activation of structurally 

relevant matches as opposed to a filtering out of superficial 

mismatches followed by an evaluation for any structural 

similarity. 

Initial support for the category status hypothesis comes 

from Kurtz and Honke (submitted) who had participants 

learn a relational principle either through category 

construction or a single comparison opportunity. In the 

category construction task, participants formed two 

categories out of three examples of a principle and three 

alignably different examples. This was compared to the 

standard version of the comparison task that received two 

cases presented side-by-side and provided a similarity rating 

as well as an explanation of the similarities between cases. 

Category construction led to a higher rate of spontaneous 

transfer than the comparison task, which suggested that 

promoting category status may provide a novel pathway to 

spontaneous transfer (Kurtz & Honke, submitted). 

The goals of the present work are: 1) to further evaluate 

the plausibility of the category status hypothesis as an 

alternative account of spontaneous transfer, and 2) to further 

explore the abstraction account. To address the first goal, a 

novel category building task based on the sequential 

summarization of cases was used to promote category 

status. This task is often used as a control to comparison, 

and does not confer the same level of abstraction-based 

transfer benefits (Catrambone & Holyoak, 1989; Gentner et 

al., 2003; Rittle-Johnson & Star, 2007). If sequential 

summarization can be combined with additional supports 

that promote category status, then it should become an 

effective way to promote transfer. The categorization 

supports that were integrated with the core summarization 

task were: 1) summarization of category-membership-

relevant aspects of multiple cases, 2) identification of each 

case with a shared category label, and 3) a description of the 

category after encountering all cases. If these supports 

contribute to the development of category status, a 

categorization-based summarization task should become an 

effective way to promote transfer. 

The second goal of the present work sought to further 

understand the abstraction account. Prior analogical 

comparison research has largely focused on the effects of a 

single comparison opportunity on transfer success. The 

effect of an additional comparison opportunity was 

explored, which should improve schema abstraction by 

providing additional surface-level mismatches to filter out. 

The additional comparison opportunity also serves as a 

control for case exposure in the category-building condition. 

Experiment 1 

Experiment 1 used the analogical transfer paradigm (Gick & 

Holyoak, 1980, 1983) to assess the impact of categorization-

based summarization (category-building), the standard 

version of the comparison task (single comparison) (cf. 

Catrambone & Holyoak, 1989; Gentner et al., 2003; Gick & 

Holyoak, 1983), a standard comparison task that is repeated 

a second time with novel cases (double comparison), and a 

baseline condition on spontaneous transfer performance. 

Spontaneous transfer success is contingent upon being able 

to both spontaneously access and retrieve relevant 

knowledge from memory as well as apply that knowledge to 

devise a solution (Gick & Holyoak, 1983). The use of both 

spontaneous and hint-aided transfer assessments allows for 

the differentiation of the relative impact that each study 

condition has on application ability and retrieval. 

Both the abstraction account and category status 

hypothesis make different predictions about what type of 

task will improve the retrieval process that underlies 

successful spontaneous transfer. The predictions for 

spontaneous transfer are as follows: 1) all study conditions 

will promote transfer (i.e., result in a higher rate of transfer 

than baseline), 2) the category-building condition will result 

in a higher rate of transfer than both comparison conditions, 

and 3) double comparison will result in a higher rate of 

transfer than single comparison. Neither account makes 

explicit predictions about application ability, so hint-aided 

transfer performance is exploratory.  

Method 

Participants A total of 355 undergraduate students from 

Binghamton University participated for course credit. Hint-

aided transfer data from seven participants were excluded 

due to a failure to complete the assessment in the allotted 

time.  

 

Materials and Design The materials consisted of both 

study cases and the transfer problem. All materials 

demonstrated the principle “problem-as-a-solution”: when a 

large-scale event causes a large amount of damage, the 

event can be mitigated by repeatedly causing it on a small 

scale and incurring minor damage each time. The study 

cases were all from the domain of natural disasters. The 

passages were a single paragraph that consisted of a 

description of the problem followed by the solution. 

The transfer problem involved the prevention of 

cybercrime. It contained a similar description of the 

problem as the study cases. However, the solution was 

replaced with an open-ended question about how the threat 

of computer hackers could be minimized. The general 

formatting of the transfer problem was different from the 

study tasks to make the separate phases appear unrelated. 

The transfer problem was presented twice. It was first 

presented under the guise of a new experiment about 

problem solving (spontaneous transfer). The same problem 

was presented again with a hint for participants to use their 

knowledge from the study phase (hint-aided transfer). 

 

Procedure Prior to the experiment, all participants were 

informed that they would take part in multiple experiments, 
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then were randomly assigned to one of the study tasks. 

Participants in the single comparison condition received two 

study cases, which were referred to as solved problems, 

presented side-by-side. Participants were informed that there 

were important ways that the solved problems were alike 

and were asked to consider the similarities between them. 

After reading the cases, participants provided a similarity 

rating on a five-point scale that ranged from ‘not at all 

similar’ to ‘very similar’. Participants were then asked to 

describe the similarities and differences they considered 

when making their similarity judgement. The double-

comparison task was similar to single comparison, with the 

only difference being a second comparison opportunity for 

two novel cases. During this second comparison 

opportunity, participants were asked to consider the 

important ways in which all four of the solved problems 

were alike, provide a similarity rating for the two additional 

cases, and describe the similarities used to create the rating. 

In the category-building condition, participants were 

given instructions that explicitly stated the task involved 

learning about a category, and then were sequentially 

presented with all four cases. Upon presentation of each 

case, participants were provided with the label to identify 

the case as a member of the category (e.g., “Here is an 

example of the Tongo category”) and were asked to 

summarize the relevant information to category 

membership. After completion of the final summarization 

task, participants were asked to provide a description of the 

category they had just learned. 

Following the study task, participants were told that they 

were beginning a new experiment on problem solving, and 

proceeded to the spontaneous transfer assessment. Since the 

baseline condition was meant to establish chance production 

of transfer solutions to the problem, participants in that 

condition only received this assessment. After completion of 

the spontaneous transfer assessment, participants were then 

given another chance to solve the problem with an explicit 

hint to use their knowledge from the study phase. Both of 

these assessments presented participants with the transfer 

problem, and asked them to devise a solution. For each 

transfer opportunity, participants were allowed to provide 

multiple solutions to the problem. Each of the proposed 

solutions was scored by the first author blind to condition. If 

at least one of a participant’s proposed solutions 

demonstrated the target principle, that participant was coded 

as a transfer success. 

Results and Discussion 

Hint-aided Transfer Hint-aided transfer performance 

reflects participants’ ability to retain and apply the 

knowledge from the learning tasks. To evaluate hint-aided 

transfer performance, a logistic regression model (R Core 

Team, 2016) was built to predict hint-aided success with 

condition. There were no significant differences between 

category-building and single comparison (β = 0.274, SE = 

0.313, Wald Z = 0.872, p = .383) or double-comparison (β = 

-0.174, SE = 0.318, Wald Z = -0.547, p = .585).  

Additionally, there were no significant differences between 

double-comparison and single-comparison (β = 0.447, SE = 

0.313, Wald Z = 1.426, p = 0.154) (see Table 1). 

 

 

Table 1: Hint-aided transfer performance. 

 

Learning Task % Transfer (N) 95% C.I. N 

Single-Comparison 55%   (47) 45% - 66%  85 

Double-Comparison 66%   (58) 55% - 75% 88 

Category-Building 62%   (52) 51% – 72% 84 

 

Spontaneous Transfer Spontaneous transfer success was 

modelled using a logistic regression with condition as the 

predictor. Both the category-building (β = 1.68, SE = 0.433, 

Wald Z = 3.88, p < .001) and double-comparison (β = 1.1, 

SE = 0.449, Wald Z = 2.453, p = .014) conditions resulted in 

a higher rate of transfer than baseline. However, the single 

comparison condition was not significantly different from 

baseline transfer performance (β = 0.407, SE = 0.491, Wald 

Z = 0.828, p = .408) (see Table 2). 

The category-building condition led to a significantly 

higher rate of spontaneous transfer than single comparison 

(β = 1.274, SE = 0.393, Wald Z = 3.239, p < .01). However, 

there was no significant difference between category-

building and double comparison (β = 0.579, SE = 0.339, 

Wald Z = 0.171, p = .088). There was no significant 

difference between double and single comparison (β = 

0.695, SE = 0.411, Wald Z = 1.692, p = .091) (see Table 2). 

To account for slight numeric differences in hint-aided 

transfer, a more conservative analysis was done that 

included only participants with hint-aided transfer success 

to clearly reflect differences in the retrieval process. The 

same pattern of results was observed. 

 

Table 2: Spontaneous transfer performance. 

 

Learning Task % Transfer (N) 95% C.I. N 

Baseline 9%   (8) 4% - 17% 91 

Single-Comparison 13%   (11) 7% - 21% 87 

Double-Comparison 22%   (20) 15% - 32% 89 

Category-Building 34%   (30) 25% - 45% 88 

 

Contrary to prior research, which demonstrated 

summarization was a less effective way to promote transfer 

than comparison (Catrambone & Holyoak, 1989; Gentner et 

al., 2003), the present work found that combining 

summarization with categorization supports (category-

building condition) is an effective way to promote transfer. 

The category-building led to a higher rate of spontaneous 

transfer than single comparison, which provides support for 

the category status hypothesis as a viable account of 

transfer. The lack of a significant difference between 

category-building and double comparison provides limited 

support, since categorization supports in the category-

building task led to higher performance than is typically 

expected of a summarization task (i.e., it was not 

3217



significantly lower than double comparison). Further, the 

lack of differences on the hint-aided transfer assessment 

suggests that the category-building task’s spontaneous 

transfer advantage cannot be attributed to a differential 

ability to apply knowledge, but instead results from 

improved structure-based retrieval. These findings support 

the category status hypothesis as an alternative account of 

transfer. 

The interpretation of the comparison conditions is less 

clear. Prior work has demonstrated that single comparison is 

an effective way to promote transfer (Catrambone & 

Holyoak, 1989; Gick & Holyoak, 1983), so the lack of an 

advantage over baseline is puzzling. The present study used 

a novel stimulus set, and the observed transfer performance 

is appreciably lower than has been reported with the 

convergence materials (Catrambone & Holyoak, 1989; Gick 

& Holyoak, 1983). This stimulus set may be more difficult 

than commonly used materials, and a single comparison 

opportunity might require additional support to remain 

effective under more difficult circumstances. 

There was no significant difference between single and 

double comparison on spontaneous transfer performance, 

which suggests that an additional comparison opportunity 

might not appreciably improve abstraction. If the present 

principle is more difficult than previous materials, an 

additional comparison opportunity may also be lacking in 

the support needed to remain effective. While single-

comparison did not promote transfer above baseline levels 

of performance, double-comparison did. This suggests that 

there may be some small benefit to engaging in the second 

comparison opportunity.  

Experiment 2 

Experiment 2 was conducted to conceptually replicate the 

main findings and clarify some of the outstanding questions 

of Experiment 1. The same study conditions were used with 

the exception that a baseline condition was not included. 

Instead of a problem-solving assessment, a spontaneous 

reminding task was used. Participants were given a series of 

cue passages that were superficially distinct from, but 

contained matching structure with the study materials, and 

were asked what each cue reminds them of. Since 

participants were given completed cases as a cue, the entire 

relational structure of the principle guides the memory 

search. This is in contrast to the problem-solving transfer 

assessment that provides only the problem statement as a 

cue to initiate the memory search. Under less demanding 

retrieval circumstances, a double-comparison advantage 

might be accrued. Other modifications were made in an 

attempt to support the comparison conditions. Both 

problem-as-a-solution and convergence (Gick & Holyoak, 

1983) materials were used to test if the problem-as-a-

solution principle was more difficult to retrieve than 

convergence, since the difficulty of the principle in the first 

experiment may have been a barrier to comparison success. 

The instructions for the comparison conditions were 

modified to increase the symbolic juxtaposition – invitation 

to compare through shared labels (Gentner, 2005) – of the 

cases in another attempt to enhance the comparison task.  

The main prediction was that category-building will lead 

to more structure-based remindings than either comparison 

condition. Since the procedure was made less demanding in 

an attempt to promote comparison performance, double-

comparison was predicted to have a higher rate of reminding 

success than single-comparison. Given the overall low rate 

of transfer in the first experiment, it was predicted that cues 

for the convergence principle will result in a higher rate of 

successful remindings than the cues for the problem-as-a-

solution principle. 

Method 

Participants A total of 104 undergraduate students from 

Binghamton University participated for course credit. Data 

from three participants were excluded due to a failure to 

complete the experiment in the allotted time, and another 

participant was excluded for failing to follow instructions. 

 

Materials and Design The study materials consisted of 

both the problem-as-a-solution and convergence (Gick & 

Holyoak, 1983) principles. The study cases for problem-as-

a-solution were the same as in Experiment 1. The 

convergence cases used were as follows: The General, The 

Commander, Red Adair, and The Fire Chief (Gick & 

Holyoak, 1983). These cases were rewritten to be 

comparable in length and grammatical structure to the 

problem-as-a-solution materials. The order of principles 

remained constant across participants; problem-as-a-

solution occurred first and convergence occurred second.  

The reminding assessment consisted of six cue cases. 

Two cues were used that demonstrated the problem-as-a-

solution principle from Experiment 1. The transfer problem 

used in Experiment 1 was rewritten to include the solution 

and the other cue involved police infiltrating black markets. 

The Radiation Problem (Gick & Holyoak, 1983) and The 

Aquarium (Catrambone & Holyoak, 1989) were rewritten as 

reminding cues for the convergence principle. Two 

distractor cases – The Wine Merchant (Gick & Holyoak, 

1980) and The Birthday Party (Gick & Holyoak, 1983) – 

were also included in the reminding assessment in an 

attempt to disguise the true purpose of the assessment. The 

order of the cues was constant across participants: distractor, 

problem-as-a-solution, convergence, distractor, problem-as-

a-solution, convergence.  

 

Procedure The study task procedure was similar to the first 

experiment, with only a few differences. Participants in both 

comparison conditions received the same task from the first 

experiment, then repeated it a second time for the 

convergence materials. In addition, the principles were 

referred to as separate ‘series’ to connote that they reflected 

different principles. In double comparison, the instructions 

were modified to clearly connote that the first four passages 

shared important commonalties, and the second four 

passages also shared important commonalities. The 
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category-building condition repeated the task for the 

convergence principle after completion of the task for the 

problem-as-a-solution principle. The only other difference 

in the category-building condition was that the category 

label was replaced with “Conaway Scenario” for the first 

principle and “Rummel Scenario” for the second principle 

to clearly reflect the change in principles. 

After the study phase all participants were given the 

reminding packet, which was introduced as a new 

experiment. Participants were told they would be shown a 

set of passages, and were supposed to write down anything 

that each passage reminded them of in as much detail as 

possible. Participants were then presented with each 

reminding cue sequentially and made their response. 

Reminding performance was scored by the first author and 

an undergraduate research assistant. A successful reminding 

on the basis of shared structure met at least one of the three 

following criteria: 1) used the category label or referred to 

solved problems, 2) referenced one of the cases from the 

study task, or 3) described the principle from the study task. 

Any remindings of another cue from within the assessment 

were considered non-scoring. Both raters agreed on scores 

for 99.8% of the reminding responses, all disagreements 

were resolved through discussion. 

Results and Discussion 

 
Figure 1: Proportion of structural remindings to target cues 

by study task and principle. Error bars reflect 95% binomial 

confidence intervals (Dorai-Raj, 2014). 

 

Reminding performance was modelled trial-wise via a 

mixed-effects logistic regression (Bates et al., 2015) with 

the main effect of interest as a predictor and participant 

included as a random intercept. The predictions concern 

participants’ responses to only the target cues that had 

shared structure with the study materials, so only those cues 

are considered. Category-building led to a higher rate of 

successful remindings than double-comparison (β = 3.436, 

SE = 1.671, Wald Z = 2.057, p = .0399) and single-

comparison (β = 6.178, SE = 1.649, Wald Z = 3.746, p < 

.001). Double-comparison led to a significantly higher rate 

of successful remindings than single comparison (β = 2.741, 

SE = 1.307, Wald Z = 2.1, p = .036). Collapsing across 

condition, convergence cues led to a significantly higher 

rate of successful remindings than problem-as-a-solution 

cues (β = 1.5, SE = .622, Wald Z = 2.41, p = .016) (see 

Figure 1).  

The category-building task led to a higher rate of 

structurally based remindings to target cues than either 

comparison condition. This suggests that category-building 

promotes the spontaneous access and retrieval of relevant 

structural matches from memory, and that this is driving the 

spontaneous transfer differences observed in the first 

experiment. These results provide further support for the 

category status hypothesis and a successful replication of 

the main finding in Experiment 1. 

These results also address some of the outstanding 

questions from the first experiment. In contrast to the 

previous findings, double comparison had a significantly 

higher rate of structural remindings to target cues than a 

single comparison opportunity. This suggests that additional 

comparison opportunities can enhance the retrieval of 

structurally relevant information from memory. However, 

we cannot identify which changes were responsible for the 

observed improvements. Additionally, convergence cues led 

to a higher rate of successful structural remindings than 

problem-as-a-solution cues, which may suggest that the 

convergence materials result in higher rates of transfer than 

other materials. However, the convergence study materials 

were always presented after problem-as-a-solution, so future 

work should explore if this is the result of a practice effect. 

General Discussion 

When a sequential summarization task was given additional 

categorization-based supports (the category-building 

condition), it led to better spontaneous transfer performance 

than the standard version of the comparison task (single 

comparison), but did not significantly differ from a task that 

controlled for case exposure (double comparison). The 

second experiment replicated the advantage of category-

building over single comparison, and found that category-

building led to a higher rate of structure-based remindings 

than double comparison. This supports the conclusion that 

the spontaneous analogical transfer gains in the category-

building condition were due to an increase in retrieval based 

on matching structure. Taken together, both experiments 

provide additional support for the category status hypothesis 

as a viable account of spontaneous transfer. 

It is possible that the use of category labels in the 

category-building condition might confer symbolic 

juxtaposition (Gentner, 2005), which may allow for 

abstraction to occur in the absence of the temporal and 

spatial juxtaposition that is present during comparison. 

However, this explanation is unlikely the sole factor driving 

the results. The comparison conditions referred to cases as 

‘solved problems’ to control for the use of a category label, 

and referred to cases from each principle as a coherent 

‘series’. The comparison conditions’ controls for the 

presence of a label likely conferred some degree of 
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symbolic juxtaposition. If category-building benefits were 

due to symbolic juxtaposition promoting abstraction, it 

seems unlikely that a condition which has temporal, spatial, 

and symbolic juxtaposition (comparison conditions) would 

perform significantly worse. 

The benefits of an additional comparison opportunity are 

less clear. During the analogical transfer assessment, no 

advantage of an additional comparison opportunity was 

accrued. However, in the reminding assessment, an extra 

comparison opportunity led to a higher rate of retrieval on 

the basis of shared structure. The benefits of an additional 

comparison opportunity may occur only under less 

demanding circumstances, such as being given the full 

structure as a retrieval cue and not needing to apply the 

knowledge to solve a problem.  

The category status hypothesis can provide an alternative 

perspective about the success of double-comparison in the 

second experiment that is not mutually exclusive with the 

abstraction account. The second instance of comparison 

provides a chance to build extensional knowledge of the 

category, since participants are told that the cases are related 

and participants are given a chance to test hypotheses about 

why. Further, since some abstraction has likely occurred 

during the first comparison, the second comparison may 

afford the opportunity for a bi-directional mapping between 

generic knowledge of the principle and concrete knowledge 

of the cases. Future work should further explore the 

conditions required for additional comparison opportunities 

to promote spontaneous transfer as well as the role of the 

category status hypothesis in improving comparison. 

There are two possibilities about why category-building 

and double-comparison led to better retrieval of structural 

information. First, promoting category status could engage 

the use of a different type of retrieval process. This retrieval 

process might occur through the mechanism of 

categorization as opposed to cue-based reminding. 

Alternatively, conferring category status might enhance or 

alter the cue-based reminding process described in Forbus et 

al. (1995). Future work should try to uncover the 

mechanism by which these two pathways to improved 

structure-based retrieval operate. 
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Abstract 

A representational approach to ecological psychology is 
presented. This paper identifies a computational-level 
commonality in ecological psychology research related to 
passability of apertures. It is argued that a cognitive 
mechanism capable of comparing the geometric properties of 
an environment and the geometric properties of the agent can 
be used to support judgments for action in space.  

Keywords: affordances; ecological psychology; spatial 
representation. 

Introduction 

Two of the most central proposals in ecological psychology 

are the concept of affordances and the theory of direct 

perception. Gibson describes an affordance as properties 

that objects offer to animals that have the capacity to 

perceive it (Gibson, 1986). This position, shared with 

Michaels and Carello (Michaels & Carello, 1981), maintains 

that the semantics of an action, by which I mean how an 

agent knows what actions can be performed given the 

objects in its environment, are properties of that object. 

Because the action semantics are encoded in the 

environment, they are claimed to be directly perceived.   

Chemero & Turvey (2007) divide ecological 

psychologists into two camps: Gibsonian and 

representationalist. Gibsonians maintain that affordances are 

directly perceived, while representationalists (e.g. Vera & 

Simon, 1993) maintain that affordances (the actions an 

object affords) are inferred. This paper presents a 

representationalist position that is inspired by affordance 

research. However, the representations proposed in both 

theory and model are non-static and do not include 

semantically-laden representations of the environment. An 

example of a semantically-laden representation, with respect 

to action, is to label a feature of the environment as a 

‘doorway’, such that doorways are features of the 

environment that can be passed-through.  

The representationalist approach presented here is not 

necessarily inconsistent with a Gibsonian approach. The aim 

of the theory presented is to leverage the appropriate 

framework to make use of the computational cognitive 

architecture, ACT-R (Anderson & Lebiere, 1998), in order 

to identify a plausible set of information processing steps 

involved in an aperture-passage affordance.  

Gibsonian Positions 

There are two main theoretical positions in favor of direct 

perception. The first, Gibson’s own theory, has already been 

described above. Although I will provide no argument 

against this position here, I agree with Chemero (2003), that 

Gibson’s position represents a non-standard ontology, in 

which the environment is not simply made up of physical 

properties but also semantic properties. I will assume that 

this alternative ontology is sufficient to reject Gibson’s 

position for the purposes of this paper. For an argument 

against Gibson’s position and related affordance-as-property 

positions, I refer the reader to Chemero (2003). 

The second Gibsonian position is that action semantics 

are emergent properties which arise from the interaction 

between an animal and its environment (Chemero, 2003; 

Chemero & Turvey, 2007; Stoffregen, 2003). While 

Chemero (2003) differs slightly in the terms he uses 

(relations instead of properties, to avoid certain 

philosophical problems), neither author’s version addresses 

how the emergent properties or semantic-laden relations 

arise. 

The theory presented here, the theory of geometric 

affordances, is inspired by research on aperture passage but 

also attempts to be commensurate with traditional 

representationalist views popular in the cognitive sciences. 

Briefly, this paper proposes that one of the mechanisms 

which can inform action properties (such as passability) is a 

geometric comparison between the features of the 

environment and current or possible future geometric 

properties of the body.  

The aim of this paper is to illustrate, by way of example, 

how a represenationalist approach, which posits cognitive 

mechanisms, leaves open the possibility to develop unifying 

theories about different experimental findings within the 

affordance literature. The research reviewed in the 

following section is ecological psychology research 

regarding the affordance of passability of an aperture. The 

purpose of this brief review is to illustrate how a 

representationalist approach can posit a cognitive 

mechanism that compares the geometric properties of an 

environment with the geometric properties of the agent. I 

term these affordances, geometry-based affordances. I 

maintain that geometry-based affordances are only one class 

of possibly many types of affordances. 

Aperture Passability Research 

Research into the passability of apertures, such as door-

ways, has shown that there is a body-size/aperture-width 

ratio at which apertures are judged to be passable (Fath & 

Fajen, 2011; Higuchi, Seya, & Imanaka, 2012; Wagman & 

Taylor, 2005; Warren & Whang, 1987). With different 

degrees of commitment, the central aim of that research is to 

show that a passability affordance can be directly perceived.  

In Warren and Whang (1987), for example, they show 

that people judge apertures as passable only when the ratio 
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between the aperture width and body width is greater than 1. 

Warren and Whang argue that we perceive the width of 

apertures in units of body width. The theory they propose is 

that we see the width of the doorway in units of eye-height. 

Since eye-height is in a constant proportion to shoulder 

width, we are effectively perceiving in units of shoulder-

width. Instead of seeing a doorway, estimating its width, 

estimating body width, and making a determination 

regarding passability; we simply perceive apertures as either 

passable or impassible.  

In a related study by Fath and Fajen (2011), participants 

view simulated environments while wearing a headset. In a 

set of experiments, Fath and Fajen modified the visual 

properties available to the participants. For example, they 

eliminate the ground plane, making the estimate of eye-

height implausible. They argue that the visual properties 

related to body-width-scaled units are not the only 

properties that can be used to make passability judgments. 

They propose that visual information related to head-sway 

and stride length (both while walking towards the aperture) 

can be calibrated to body-width and used in lieu of eye-

height, to directly perceive passability.  

Other studies such as those by Higuchi, Seya, and 

Imanaka (2012) and Wagman and Taylor (2005) have 

participants holding objects. Chang, Wade, and Stoffergen 

(2009), furthermore, studied passability for people grouped 

in dyads. Higuchi, Takada, and Matsuur ( 2004), finally, 

studied passability for novel wheelchair users.  

When taken together, it is not clear whether a direct 

perception account can extend to situations such as dyads. 

Judging aperture passage for yourself plus another 

individual seems to require the building of a representation 

of the total width of yourself and your compatriot. 

Especially considering the methodology in Chang et al. 

(2009), where participants are paired with different people 

during the course of the experiment. Because the optical 

information from the environment does not change, then 

another source of information seems modulate judgment. 

Regardless of the source, it seems as though two pieces of 

information are used to make a passability judgment: optical 

information and some-as-yet-to-be-determined source. It is 

unclear how the ecological psychologist can maintain that 

the judgment is direct.  

A second, perhaps more important, aspect to consider is 

the methodology used in, for example, Warren and Whang 

(1987) and Higuchi et al. (2012). The experiments in these 

studies include a methodology where participants walk 

through the apertures of various sizes, rotating their 

shoulders as needed. In Warren and Whang there is also a 

condition where participants judge whether they can pass 

through apertures, without rotating their shoulders. In all of 

these cases what the participant seems to be doing is making 

a judgment about passibility with respect to a future 

configuration of their body. Judgment in these cases does 

not seem to be based upon their current body width but, 

rather, the width of their body after they have rotated their 

shoulders. If that is the case, then it is not clear that 

passability can be directly perceived in these cases. Instead, 

it seems as if the passability judgment is based upon a 

representation of the future state of the body. Such a 

representation can be plausibly drawn from memory or the 

result of a simulation. 

A Representation-Based Theory 

The theory being presented is an information processing 

theory about the steps involved in passability judgments of 

the kind exhibited in previous aperture passage research. At 

a functional level the theory of geometric affordances posits 

a geometric comparison process that compares the 

geometric properties (width, depth, height) of an aperture 

against a current or stored body posture. The geometric 

comparison is used both when judging whether an aperture 

is passable as well as a top-down metric to control shoulder 

rotation during passage.  

The information relevant to body postures is derived from 

body schemas. Although previous affordances research have 

rejected the notion of body schemas (e.g. Carello, 

Grosofsky, Reichel, Solomon, & Turvey, 1989) there 

reasonable evidence for their existence and their role in 

motor planning and performance.  

Evidence for Body-Schemas 

Schwoebel and Coslett (2005) identify three types of body 

representations: body schemas that represent the positions of 

the body parts and is used to plan motor movements, the 

body structure that is a topological map of body part 

locations, and a body image which is a lexical-semantic 

representation of the body detailing body part names, their 

function, and their relationship to related artifacts. Since 

body schemas are central to the information processing 

theory being proposed, a brief summary of evidence for the 

existence of body schemas will be presented in this 

subsection. 

Neural evidence provides support for the functional role 

of body schemas as real-time representations of the body. 

Firing-rates in parietal area 5 of primates supports the idea 

of encoding arm postures both when the arm is occluded 

and when a realistic, fake arm is visible, suggesting both 

somatosensory and visual input is used to create body 

schemas (Graziano, Cooke, & Taylor, 2000). 

There is strong evidence for the use of body schemas in 

motor simulation. For example, the hand laterality paradigm 

has been used to study the link between imagined 

movement and actual movement (e.g. Parsons, 1987). There 

are two aspects of the laterality paradigm. The first involves 

making judgements of laterality (left vs. right) and the 

second involves simulating arm orientations. The reaction 

time for both tasks was relative to orientation differences 

between the participant’s arm and the target arm. Simulated 

movements were strongly correlated with actual 

movements.  

There is also evidence of a physiological overlap between 

imagined and actual movements (Decety, 1996; Lotze et al., 

1999). The fMRI work by Lotze et al. (1999) also supports 
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the view that the main difference between imagined and 

actual motor movements is inhibitory signals from cortical 

motor areas to cerebral regions, inhibiting actual 

movements. Sirigu et al. (1996) also show that only patients 

with parietal damage do not show a correlation between the 

times for actual and imagined finger movements. 

Finally, Schwoebel, Coslett and Buxbaum (Coslett, 

Buxbaum, & Schwoebel, 2008; Schwoebel, Coslett, & 

Buxbaum, 2001) provide evidence for Forward Modeling. 

Forward Models have been theorized to be used to develop 

representations of body schemas based partially from 

efferent copies of planned motor movements. What is 

particularly interesting in their work is the dissociation 

exhibited by a patient (JD) between body schemas due to 

purposeful movement and body schemas for passive 

movement. JD had accurate reach and pointing ability when 

moving her hand to a target in both occluded-hand and non-

occluded hand conditions, suggesting that she had an 

accurate representation of the position of her arm and hand. 

However, JD’s pointing and reaching ability were impaired 

when her arm was moved by an experimenter (passive 

movement), suggesting that, in those cases, she did not build 

an accurate representation of her arm posture. As pointed 

out by Schwoebel and Cosslett (2005), this dissociation 

suggests that JD had an intact ability to generate posture 

representations from an internal model based on predicated 

movements (Forward Model).  

The above findings in combination imply that humans 

have representations of the biomechanical constraints of our 

bodies. If reaction times for imagined movements mimics 

reaction times for actual movement, then this suggests that 

the simulated movement has similar kinematic and 

biomechanical properties as real movements. The fact that 

there is a strong neurological overlap between simulation 

areas and areas responsible for actual movements suggests 

that motor movements are encoded in the same format for 

simulation as they are for actual movements. It can be 

inferred that some form of biomechanical representation has 

to exist to support biomechanically-accurate simulations. 

This offers compelling evidence that the biomechanical 

constraints of the body are also likely represented (in order 

to support simulation). It stands to reason that simulation 

can produce predictions of body posture in simulated motor 

planning in much the same was as forward modeling does 

for active motor behavior. 

The theory being forwarded here assumes that we store 

body schemas of biomechanical constraints. This would be 

useful for motor planning because it would reduce the 

complexity of choosing a goal posture. For example, 

shoulder rotation would require only three representations: a 

body schema for relaxed, non-rotated posture; and a body 

schema for full rotation to the left; and full rotation to the 

right. Although the body is capable of rotating any angle 

between constraints, it would be costly to store them all. 

Instead, biomechanical constraints can provide sufficient 

conditions for an action (fully rotated shoulders might be 

sufficient for passing through an aperture), which is suitable 

for planning. Online motor control during action could then 

be used to control and produce only the necessary motor 

movements to carry out the action for a particular 

circumstance.  

Information Processing Theory 

It is useful to divide the processes proposed in this theory 

into two phases: the judgment phase and the performance 

phase. In the judgment phase, we first determine if we can 

pass through an aperture at all. The performance phase 

occurs once we have judged an aperture as passable and 

begin to walk through it. The performance phase can be 

subdivided further into three sub-phases: rotation initiation, 

rotation, and rotation termination. The following section 

will outline how body schemas are used in the passability 

judgment.  

Judgment Phase 

Although it is discussed very little in the previous aperture-

passage literature, before we ever attempt to pass through an 

aperture, we must first make a judgment of whether passage 

is at all plausible. Anecdotally, this must be the case 

because we simple do not often find ourselves trying to 

squeeze through apertures smaller than our bodies. This 

process has to be more complex than the direct perception 

theory proposes because passage cannot be judged purely on 

current posture. That is, optical information tuned to a non-

rotated posture can only inform passibility judgments where 

no postural change is required. However, in order to judge 

passability in the condition where some degree of shoulder 

rotation is required, the optical information would somehow 

have to be tuned to a future state of the shoulders. It is 

unclear how a direct perception approach could account for 

this. 

Geometric affordance theory proposes that a positive 

passability judgment results from two possible cases. In the 

first case, body geometry is estimated from a body schema 

of the current body posture. This information can then be 

used top-down in a visual search to find apertures of an 

appropriate size. If the vision system is able to return a 

feature in the environment that meets those constraints, the 

returned apertures are considered passable. In this case, the 

agent can simply walk through the aperture. If no 

environmental feature is returned by the vision system, the 

second case proceeds. Note that the representations used in 

this phase are non-static: they are current (based on current 

body posture) and can include other sources of information 

including visual or proprioceptive (such as estimates of 

body size while carrying objects, or in a dyad). 

In the second case, a potential series of memory requests 

are made for stored body schemas that closely match the 

current body posture (e.g. standing) and current action 

capabilities (e.g. supportive of walking action) but are 

relaxed on an increasing number of postural details (e.g. no 

need to match with respect to the upper-half of the body). In 

the case of a simple doorway-like aperture, a reasonable 

memory request would be for a posture that affords walking 
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(e.g. a standing posture) but allows for variation in torso 

posture (such as shoulder rotation). As discussed in the 

previous subsection, storing only the biomechanical 

constraints vastly reduces the search space for a suitable 

posture. If a suitable schema is returned, the geometric 

properties of that schema are used to filter visual results in 

the same manner described above for the for the first case. 

In the second case, the retrieved body schema functions as a 

goal state for the motor system during the rotation phase. 

That is, the motor system will try to achieve the posture at 

the biomechanical constraint (e.g. shoulders fully rotated) 

regardless if that posture is necessary for the desired action.  

Rotation Phase 

Another aspect of aperture passage with no known 

discussion in the affordances literate is the need for some 

trigger that starts the rotation. One possibility is that the 

agent plans to rotate at some specific point and initiates 

rotation upon arrival. A second possibility, and the one 

explored here, is that there is a bottom-up environment 

trigger that is responsible for initiating the rotation. The 

theory proposed here is that the visual system performs 

bottom-up obstacle avoidance and that the presence of the 

edges of the aperture triggers the rotation. When the edges 

of the aperture are within a multiple of the agent’s rotation 

radius, the vision system pushes information into the visual 

buffer, and the agent can respond by carrying out the motor 

plan.  

Recall that during the judgment phase a stored body 

schema memory may be recalled and used as a goal state for 

the motor system to achieve the affordance. In Warren and 

Whang’s (1987) first experiment there is a multi-second 

delay between what I am describing as the judgment phase 

and the rotation phase (while the participants walks to the 

aperture). It is proposed that once a body schema is 

retrieved it is maintained in working memory. When the 

presence of the obstacle (aperture edges) is pushed in to the 

visual buffer, combined with the presence of a body schema 

in memory, the agent can then carry out the motor rotation 

plan. Note that for shoulder rotation, the goal state will be a 

biomechanical constraint, e.g. fully-rotated shoulders. 

However, we know from Warren and Whang (and 

intuitively) that we do not rotate our shoulders to maximum 

rotation every time we rotate. Instead the theory assumes 

that rotation completion is controlled by a vision-action loop 

in the dorsal visual stream (Milner & Goodale, 2008).  

Rotation Completion Monitoring 

In their Two Visual Streams Hypothesis, Milner and 

Goodale propose a functional distinction between the dorsal 

visual stream and the ventral visual stream (Goodale & 

Milner, 1992; Milner & Goodale, 2008). They propose that 

the ventral stream composes what they call vision-for-

perception and that the dorsal stream composes what they 

call vision-for-action. While the ventral stream is used for 

planning action and carrying out unpracticed action, the 

dorsal stream is used for moment-to-moment visual 

updating of actions that are comparatively more 

automatized.  

The theory proposes that a moment-to-moment visual 

updating can occur through rapid repetition of the original 

top-down visual filter process described above (i.e. the 

current body schema is used in a top-down visual search to 

determine if there are any environmental features that meet 

those constraints). This moment-to-moment visual updating 

continues until (in this case) the shoulders have rotated 

enough to produce a match between the body-width of the 

agent and the width of the aperture. Although a 

biomechanical constraint was originally retrieved in the 

judgment phase, the agent need not always rotate the 

shoulders maximally. This process ends once the shoulders 

have rotated sufficiently to pass through the aperture. In 

other words, the goal state of the motor system was to fully 

rotate the shoulders, but a moment-to-moment visual update 

limits the total rotation by comparing the geometric 

properties of the current body schema (rotated shoulder in 

this example) to the geometric properties of the aperture. If 

an aperture is found as a result of the visual search, that 

means an aperture with sufficient geometric constraints has 

been found (for whatever posture the body is currently in). 

In this way, there can be a limited number of stored 

biomechanical constraints but a large variance in 

intermediate postural change (a large variance in shoulder 

rotation).  Note these processing steps are the exact same 

steps used in the judgment phase. 

Computational Model Support 

A computational model of the shoulder rotation experiments 

in Warren and Whang (1987) and in Higuchi et al. (2012) 

was developed as an initial test of the overall theory. The 

model was modeled in an extension to Python ACT-R 

called ACT-R 3D (Somers, 2016). At a high-level, the 

model follows the information processing description 

described above. Importantly, with respect to affordance 

research, the model is not semantically informed about the 

aperture in its environment. 

It would not be atypical for an ACT-R model to be 

semantically informed. It is fairly customary for a model to 

use what is termed a ‘visual icon’ with a chunk identifying 

to the programmer what visual information the agent is 

‘seeing.’ Although semantic information is not contained in 

the visual icon, it would not be atypical for a production to 

be pre-programmed to respond to the contents of the chunk 

in the visual icon.  

The visual system in ACT-R 3D is slightly less informed. 

There is, in the agent’s 3D environment, nothing labeled as 

an aperture. In fact, an aperture is negative space between 

environment features (such as walls) and cannot in fact be 

labelled in ACT-R 3D. Although the walls in the 3D 

environment are labelled, the agent has no access to those 

labels.  

Instead, the agent has a goal to walk forward and in order 

to carry out this goal, it looks for obstacles. Upon finding an 

obstacle (the wall), the agent then uses a top-down visual 
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search for features that might be passable in the manner 

described in previous sections. Put simply, the agent does a 

visual search for empty space in front of it that meets the 

geometric constraints of the agent’s body (or an achievable 

body posture). In this way the agent does not in fact 

represent the aperture as an aperture. Importantly, this also 

means that agents of different sizes will make different 

passability judgments.  

The task the model must perform is to walk through an 

aperture, rotating the shoulders as needed, or avoid walking 

to apertures that it thinks it cannot pass through. As 

described above, if the agent does perform shoulder 

rotation, a moment-to-moment visual update occurs to 

determine if the agent should stop rotating. A single model 

is used  for both small and large agents in slow and fast 

walking conditions, walking through apertures of various 

sizes, modeling experiments in Warren and Whang (1987); 

as well agents holding bars of various lengths and walking 

through apertures of various sizes in Higuchi et al. (2012).  

The measure of fit to Warren and Whang was with respect 

to total rotation which is influenced partially by the number 

of agents who decide to pass through an aperture of a given 

size, rotation speed, and walking speed. There were four 

conditions to fit: 2 (size: small vs. large) x 2 (speed: slow 

vs. fast); with Pearson correlations ranging from 0.91 and 

0.98. The same model was then given bars of different sizes 

and performed the experimental conditions given in Higuchi 

et al. (2012). Although the fit was not as good in this case, 

as it showed a strong over-rotation in one condition; the fit 

was still reasonable, especially with the exclusion of the 

results for the over-rotated condition. The measure was 

rotation angle as well as the safety margin made between 

the end of the bar and the edge of the aperture, producing a 

Pearson’s correlation of 0.84 for absolute rotation and 0.89 

with respect to safety margin.  

The success of the model is encouraging, given that the 

accuracy of the results are dependent on the timing 

involved, which is a product of the information processing 

steps (in the form of productions) that the agent carries out.  

Discussion 

There was a number of difficulties pointed out in the first 

section that affordances based upon direct perception has to 

contend with. This section will address those difficulties but 

will also describe an interesting fallout from using an 

affordance-based approach.  

Addressing Difficulties with Direct Perception 

The first difficulty pointed out in the first section that direct 

perception has to contend with is a person-plus-other 

system. In cases like these, there is no invariant property of 

the body that can act as units to directly perceive: there are 

measures beyond the body that affect the judgment. The 

theory presented in this paper also has to be extended to 

account for situations like these. When an agent is part of a 

person-plus-other system, the theory proposes that the agent 

could combine representations, including body schemas, to 

make a estimation of the total geometric properties. 

Currently neither the theory nor the model define processes 

for including accompanying objects (in the bar experiments, 

the agent has special access to the dimensions of the bar). 

However, the advantage with the model is that there is a 

clear question that can be incorporated into a unified theory 

in the future. 

In the same manner the model (and theory) also assumes 

that the geometric properties of the environment can be 

suitably perceived. The details of this process are not yet 

modeled, however, we can assume that aspects such as eye-

height, head-sway, and stride-length, can all be combined to 

creates a representation of the aperture width. In that 

respect, the model would be very much in line with findings 

from the aperture-passage literature.  

The model can also help answer questions about 

representational content. The model presented here is part of 

a series of models that address whether A/S ratio or spatial 

margin (between edges of the agent and edges of the 

aperture) might be used as a metric for aperture passage. 

The model presented  here implement an analog of spatial 

margin to judge the fit between aperture width and body 

width, supporting Higuchi et al. (2012). 

The model also helps explain over rotation evident in 

Warren and Whang (1987) and Higuchi et al. (2012). 

Because the processes during the rotation completion 

monitoring affect timing, they also introduce a degree of 

variance in the rotation. The model does not rotate perfectly 

each time and exhibits similar over rotation to human 

performance.  

Extensions 

The proposed processing description given above could 

easily be extended to include other affordances as well. For 

example, Stefanucci and Geuss (2010) researched aperture 

passage that required a ducking action. There is no 

principled reason why the same model could not be used to 

model those experiments as well. Since the problem is 

largely geometric, followed by a postural change, there is no 

principled reason why that postural change could not be for 

a ducking action. The same process could also be used for 

any situation that requires a postural change in order to 

accommodate the size of the body. 

Secondly, not all affordances are purely geometric but 

could involve a geometric comparison process. Grasping, 

for example, has a number of elements, one of which could 

involve a judgment of whether the target object would fit in 

a grasp.  

Conclusion 

The term ‘affordance’, though convenient, does not come 

without certain theoretical baggage. The aim of this paper is 

not to dismiss or discredit ecological psychology or the 

notion of direct perception but, rather, to compliment it with 

an information processing description. The term, 

‘representation’, need not carry the kind of baggage that it 

may have historically. The representations used in the model 
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are, for the most part, not static and semantically-laden. For 

example, each agent learns their own body schemas before 

experiments by performing ‘exercises’, storing and updating 

new representations for biomechanical constraints. 

Furthermore, the environment is not labelled in any way. 

Agents in the simulation have to determine what apertures 

are passible individually.  

Adapting affordance research to a representationalist 

framework opens some doors for research. This work is 

mainly philosophical, arguing for the need to unify research 

in a way that is falsifiable. The theory here presented relies 

on a cognitive mechanism capable of comparing the 

geometric properties of an environment with the geometric 

properties of an agent or agent-plus-object systems. This 

high-level presentation of the theory does, admittedly, offer 

very little detail about the working of the mechanism but 

does so in the hope of inciting research into the area. 
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Acquiring pitch associations across modalities: the role of experience
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Abstract: When interpreting our perceptual world, information from multiple perceptual modalities is often associated. Such
crossmodal associations can arise from innate structural connections in the brain, statistical correlations in the environment, or
through language. In a large group of participants across a wide age range and language background, we tested crossmodal
associations between pitch and 7 dimensions in comparison modalities. We found evidence supporting the existence of all 7
types of associations, but the strength of association varied by dimension. Pitch-angularity and pitch-weight judgments were
the most robust associations. In general, strength of associations increased with age, with significant associations occurring in
the oldest age group (age 19+), consistent with experiential accounts of crossmodal associations.
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Abstract: Societal progress requires humans to excel at cooperation over time. To sustain successful cooperation, people
coordinate, especially about who is in the best position at any given moment to make the best decision or to take the best action
for the team as a whole. We used a novel cooperation task between involving dynamic assignment of Teacher and a Learner
under conditions of uncertainty both about reward and about who is the expert at any given time. The task is similar to Theory
of Mind tasks but actually gives the participants a stake in the outcome. We found evidence for effortful representation of
the preferences of others, and that successful prediction fosters cooperative success. Neural components and putative sources
signaled changes in the role of expert in the task. Further, the task design allows novel applications of computational models to
the cognitive dynamics and associated neural systems for cooperation.
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Abstract 
 

Rumors inundate every social network.  Some of them are 
true, but many of them are false.  On rare occasions, a false 
rumor is exposed as the lie that it is.  But more commonly, 
false rumors have a habit of obtaining apparent verification, 
by corroboration from what seems to be a second independent 
source.  However, in complex social networks, the 
connectivity is such that a putative second source is almost 
never actually independent of the original source.  In the 
present work, rumor network simulations demonstrate how 
remarkably easy it is for a node in the network to be fooled 
into thinking it has received independent verification of a 
false rumor, when in fact that “second source” can be traced 
back to the original source.  By developing a theoretical 
understanding of the circumstances under which the spread of 
false rumors, “alternative facts,” and fake news can be 
controlled, perhaps the field can help prevent them from 
ruining elections and ruining entire nations.   

 
Keywords: Networks, Social Networks, Interaction 

 
Introduction 

 

The interactivity that exists among the subsystems that 
form a cognitive system has powerful and lasting 
consequences. In the human brain, the interactivity among 
the neural subsystems that form the language 
comprehension network is what allows phonetics to 
influence syntactic processing (Farmer, Christiansen, & 
Monaghan, 2006) and semantics to influence speech 
perception (Gow & Olson, 2015; Spivey, 2016).  In the 
human brain, the interactivity among the neural subsystems 
that form the visual perception network is what allows depth 
perception to influence motion discrimination (Trueswell & 
Hayhoe, 1995) and attention to influence visual perception 
(Gandhi, Heeger, & Boynton, 1999; Spivey & Spirn, 2000).  
In the human brain, the interactivity between the language 
comprehension network and the visual perception network 
is what allows visual context to influence spoken word 
recognition (Allopenna, Magnuson & Tanenhaus, 1998; 
Spivey-Knowlton, 1996), and linguistic input to influence 
visual perception (Lupyan & Spivey, 2010; Lupyan & 
Ward, 2013).  These examples form just a tiny subset of the 
many consequences of interactivity in the human brain. 

Outside the human brain, interactivity in a social 
network has powerful consequences for group behavior.  
When two people cooperate on a shared task, or even just 
have a conversation, they often exhibit real-time motor 
coordination in their postural sway (Shockley, Santana, & 

Fowler, 2003; M. Richardson, Marsh & Schmidt, 2005), 
their eye movements (D. Richardson, Dale & Kirkham, 
2007), their gestures (Paxton & Dale, 2013), and their 
language use (Louwerse, Dale, Bard, & Jeuniaux, 2012).  It 
has even been shown that behavioral and neural responses 
of two participants cooperating on a task exhibit the 
signatures of competition between the two subtasks, even 
though each person is in charge of only one of those 
subtasks (Sebanz, Knoblich, Prinz, & Wascher, 2006). 
Essentially, each person is doing some of the thinking for 
the other person.  When these mechanisms of coordination 
are optimized between two people, they can even perform a 
joint perceptual task at a level that is better than either of 
them alone (Fusaroli et al., 2012). 

When people share information with each other, they 
tend to self-organize into a larger cognitive system 
(Goldstone & Gureckis, 2009).  Much like how cognition 
may be an emergent property of billions of neurons 
interacting with one another in a brain (Kello, Beltz, Holden 
& Van Orden, 2007), group cognition may also be an 
emergent property of multiple people interacting with one 
another in a shared context (Thiener, Allen, & Goldstone, 
2010).  Due to the continuous fluid flow of information 
throughout the network, every node (be it a neuron or 
person) is richly interdependent with every other node, at 
least indirectly. Not only can positive influences spread 
throughout such a network, as when two brains show 
improved performance on a shared perceptual task (Fusaroli 
et al., 2012), but negative influences can also spread 
throughout the network and infect nearly every component.  
Network simulations of rumor-spreading have recently 
begun to analyze this process of false information infecting 
a social network (Roshani and Naimi, 2012). 

Traditional studies of rumor transmission tended to 
focus on linear sequential transfer of a rumor, and how the 
content can often become accidentally modified after 
several transmissions (Allport & Postman, 1947).  
Sometimes this is referred to as the “telephone game.”  
However, more recent studies of rumor transmission have 
used network theory to examine how non-linear 
transmission of rumors happens in complex social networks 
that are richly interconnected (Del Vicario et al., 2016).  For 
example, when the network has islands of homogeneity, 
tight-knit like-minded enclaves that connect mostly just to 
their own group, these subnetworks can become “echo 
chambers” that reinforce false narratives and conspiracy 
theories within their walls. Alternatively, when the 
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connectivity of a social network is scale-free (neither 
random nor homogenous) – much like the brain’s 
connectivity (Kello, 2013; Sporns, 2010) – then almost any 
rumor can be expected to spread throughout the entire 
network, irrespective of whether it is true or false (Nekovee, 
Moreno, Bianconi, Marsili, 2007).  What has not been 
explored yet in this small cottage industry of research is 
how easily a false rumor can obtain independent verification 
via an apparent second source, even when that “second 
source” actually has the original source as its origin. 

When an interactive system (be it a brain or a group of 
people) spends any amount of time sending signals back and 
forth among its subcomponents, it quickly becomes difficult 
to trace the source of a signal and determine whether a given 
signal is afferent (recently coming from an external source) 
or efferent (better described as generated endogenously).  
Under these circumstances, following the trail of a rumor in 
a social network is extremely difficult.  The journalistic 
practice of “corroborating the story” can become quite 
complicated.  A common method of fact-checking is to find 
a second source for the same story. If the second source is 
independent of the first source, and says essentially the 
same thing, then it adds veracity to the report.  Even naïve 
experimental participants tend to use this tactic (Kim et al., 
2008). However, in an interconnected network of people 
sharing information, almost no one is actually independent 
of anyone else.  Frequently, an apparent second source, 
which gets used as verification of the rumor, actually 
acquired its information indirectly from the original source. 

One concrete real-world example of such false 
corroboration is the U.S. Pentagon’s case for Saddam 
Hussein stockpiling weapons of mass destruction (WMD) at 
the beginning of the 21st century.  It has now been well-
established that U.S. leaders were proactively seeking 
justification for a pre-existing plan to invade Iraq and 
depose its leader (Dreyfuss & Vest, 2004; Ryan, 2006).  It 
turned out to be all too easy for information gatherers to 
fool themselves into thinking they had corroborated reports 
of WMD, when in fact the corroboration was actually a 
duplicate of the original false rumor. The CIA, British 
intelligence services, and the New York Times all collected 
reports of WMD in Iraq, and carefully sought independent 
verification.  Each of these entities received fallacious 
reports from the same Iraqi defector, codenamed 
“Curveball” by the CIA.  And what’s more, each of them 
used un-sourced reports from one another as corroboration 
of their own report.  What they each did not realize at the 
time was that the “second source” to corroborate their report 
from Curveball was actually just someone else’s report from 
Curveball (Bamford, 2005; Prados, 2004). 

False rumors, “alternative facts,” and fake news have 
become an everyday occurrence recently, where too many 
people obtain their news reports on social network sites and 
blogs, where “news” is provided that has not been vetted by 
policies of ethical journalism.  For example, in January of 
2016, journalist and author, Fareed Zakaria, was “trolled” 
on the internet with a fake report of him calling for “jihad 

rape of white women to depopulate the white race.”  Some 
people believed this false rumor so strongly that they made 
threats on Zakaria’s life, and frightening phone calls to his 
daughters in the middle of the night (Zakaria, 2016).   

Similarly, in the fall of 2016, fake news reports were 
disseminated widely on Facebook about presidential 
candidate Hillary Clinton being involved in a child sex-
trafficking ring based at a particular pizza shop in 
Washington, D. C.  One man believed that false rumor so 
strongly that he felt compelled to travel across state lines to 
visit that pizza shop with an assault rifle in his hands and 
fire a shot to let them know he was there to save the 
children.  The U. S. Department of National Intelligence has 
recently determined that many such fake news stories about 
Hillary Clinton were fabricated and disseminated via social 
networks specifically with the intent of influencing the 
results of the 2016 U. S. election (DNI Report, 2017). 

In Del Vicario et al.’s (2016) computational analysis of 
conspiracy theories on the internet, they concluded that, 
“many mechanisms cause false information to gain 
acceptance, which in turn generates false beliefs that, once 
adopted by an individual, are highly resistant to correction.”  
In the following rumor network simulations, the results 
suggest that false corroboration may be one of those many 
mechanisms. 

 
Random Rumor-Net Simulations 

 

In this first group of simulations, a 100-node network 
was constructed and given random placement of bi-
directional connections, excluding self-connections.  In one 
set of 100 simulations, the network was given 10% 
connectivity, such that each node on average was connected 
to about 10 of the possible 99 other nodes (i.e., average 
node degree=10).  The average clustering coefficient for this 
network (which shows how interconnected each node’s 
friends are) was .10.  Another set of 100 simulations used a 
clustering coefficient of .33, and Figure 1 shows an example 
degree distribution from one of those networks.  Another set 
of 100 simulations used a clustering coefficient of .5, and a 
fourth set used a clustering coefficient of .67. 

 

 
Figure 1: Degree distribution from a 100-node random 
network in which, on average, most nodes are 
connected to about 33 other nodes. 
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To begin a simulation, node #1 was infected with a 
rumor by flipping its state from zero to 1.0.  This is the one-
and-only origination of the rumor in this network. It could 
be true or false, but for the purpose of testing its evolution 
into “fake news,” the rumor is treated as false.  For every 
instance of transmitting the rumor, a randomly chosen 
infected node would select randomly among its connections 
to spread the rumor with one other node.  After spreading, 
that bidirectional connection was erased in the network to 
prevent it from being used again in the future.  (The 
simulation assumes that if the same rumor were shared 
again between the same two people, it would not count as a 
transmission.) For that very first transmission, this 
obviously involved node #1 sharing the rumor with one of 
the nodes connected to it.  At which point there would then 
be two nodes that have been exposed to the rumor. Then one 
of those nodes was randomly selected to spread the rumor 
again. After 100 transmissions of the false rumor, some of 
the nodes had still never been exposed, some had been 
exposed once, and some had heard the rumor from two or 
more different connections.  This latter case counts as 
people who had heard the rumor corroborated by what 
would seem to be a second source.  However, the simulation 
actually has only one source of the rumor: node #1.  For 
example, node #1 might spread the rumor to node #47, who 
then spreads the rumor to node #23.  Next, node #47 might 
share the rumor again, this time with node #87, who shares 
it with node #18, who then shares the rumor with node #23.  
In that scenario, node #23 could easily be fooled into 
believing that it had received independent corroboration 
(from node #18) of the rumor it first heard from node #47. 

In this first group of simulations, the number of nodes 
that received this false corroboration was recorded for low-, 
medium-, high- and very high-connectivity networks (i.e., 
clustering coefficients of .1, .33, .5, and .67).  Interestingly, 
after 100 transmissions of the rumor, there were no 
differences across these four different types of random 
networks (results averaged across the 100 simulations in 
each case).  In all simulations, irrespective of how densely 
interconnected the network was, around 26 of the 100 nodes 
had heard the rumor from two or more sources (Table 1).  
This insensitivity to network density is likely due to the fact 
that a rumor-spreader is randomly selected each time 
(among nodes that know the rumor), and its relative 
likelihood of spreading the rumor to a knowing node or an 
unknowing node is unchanged by how well-connected it is. 

 

Table 1: Random networks with different numbers of 
connections show about the same number of nodes 
hearing false corroboration of the rumor (2+ times). 

 

Avg Node 
Degree 

Clustering 
Coefficient 

Never 
Heard 

Heard 
Once 

Heard 2+ 
times 

10 .10 33.6 40.1 26.3 
33 .33 34.6 38.8 26.6 
50 .50 34.8 38.4 26.8 
67 .67 34.9 38.4 26.7 

 

With 200 nodes and 200 rumor transmissions (or 500 
nodes and 500 rumor transmissions), again about one-
quarter of the nodes obtain false corroboration – irrespective 
of how densely or sparsely connected the network is.  With 
half as many transmissions as there are nodes, about 10% of 
the nodes obtain false corroboration. And with twice as 
many transmissions as nodes, about 60% of the nodes obtain 
false corroboration. Based on these initial simulations, it 
appears that false corroboration of a rumor may be 
remarkably easy to obtain in a social network. 

 
Scale-Free Rumor-Net Simulations 

 

Most real-world networks, including social networks, 
are not at all random in their connectivity.  Instead, social 
networks tend to have a scale-free pattern of connectivity, 
meaning that most nodes have a smallish number of 
connections (node degree), while a few nodes have a very 
large number of connections.  Using a version of Barabasi 
and Albert’s (1999) preferential attachment process, a group 
of scale-free rumor networks were designed that show a 
power-law in their degree distribution (Figure 2).  

 
Figure 2: (A) Degree distribution from a 100-node 
scale-free network where the mean number of 
connections per node is 33, but most nodes have <25 
connections and a few nodes have >75 connections. (B) 
On log-log coordinates, the degree distribution forms a 
relatively straight line with a slope of -1.3.   
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By contrast to a scale-free network, in a random 
network the proportion of connections each node has 
generally corresponds to the clustering coefficient as well.  
That is, if each node in a random network has about 10% of 
the possible connections, then the clustering coefficient 
(showing what proportion of each node’s friends are 
connected to each other) will also tend to be around .10.  
However, in a scale-free network, the clustering coefficient 
(.62, in Figure 2) tends to be substantially higher than the 
average proportion of connections the nodes have (.33, in 
Figure 2).  That is, in a scale-free network, most nodes have 
relatively few friends, but a sizeable proportion of those 
friends know each other. 

In these next simulations, a hundred 100-node scale-
free networks were designed that had an average of 10 
connections per node, along with another hundred networks 
that had an average of 17 connections per node, then another 
hundred with 25, and another hundred with 33 connections 
per node.  (In a scale-free network, when the average 
number of connections approaches 50% of the possible 
connections, its degree distribution can become bimodal and 
no longer adheres to a scale-free power law.  Therefore, the 
highest node degree used here was 33.) 

Each rumor-spreading simulation with these scale-free 
networks was carried out in a fashion similar to those with 
the random networks, except that the first rumor-infected 
node could not be an arbitrary choice because some nodes 
were substantially more connected than others.  To test the 
limiting case, the least-connected node in each scale-free 
network was selected as the first node to spread the rumor.  
After that starting point, 100 transmissions of the rumor 
took place exactly as it did with the random networks. 

 
Table 2: Scale-free networks with different numbers of 
connections show about the same number of nodes 
hearing false corroboration of the rumor (2+ times). 

 

Node 
Degree 

Cluster 
Coeff. 

loglog 
slope 

Never 
Heard 

Heard 
Once 

Heard 
2+ times 

10 .22 -0.71 40.1 34.6 25.3 
17 .39 -1.05 40.4 34.3 25.3 
25 .56 -1.25 40.8 33.9 25.3 
33 .68 -1.27 40.8 33.6 25.6 
 
In these scale-free rumor networks, a slightly larger 

proportion of the people never hear the rumor (about 40%) 
compared to that in the random networks (about 35%).  
However, remarkably, approximately the same number of 
false corroborations is observed (~25) as that seen with the 
random networks (compare Tables 1 & 2). As was tested 
with the random networks, this 25% false corroboration rate 
replicates for scale-free networks with 200 nodes and 200 
rumor-transmissions.  When there are 3-4 times as many 
transmissions as nodes, almost every node will have heard 
the rumor, and about ¾ of them will have heard it more than 
once (irrespective of network density).  Not surprisingly, in 
these scale-free networks, it is usually the well-connected 
nodes that first obtain these false corroborations.   

When a False Rumor Becomes Fake News 
 

Based on all these simulations, when there are as many 
rumor-transmissions as there are nodes, then almost 2/3 of 
them will hear the rumor, and about 1/4 of them will obtain 
a false corroboration of the rumor – even though it never 
actually had any independent secondary source.  This is true 
for both random rumor networks and for scale-free rumor 
networks. However, when one of the people in the network 
is a reporter for a news agency, who will broadcast the story 
to everyone if they obtain apparent corroboration, then it 
turns out that the type of connectivity does, in fact, matter.  
If one assumes that the reporter is among the most widely-
connected people in the network, then the different degree 
distributions for random networks and for scale-free 
networks (Figures 1 and 2) make for substantially different 
reporters.  In a random network, the most-connected node 
(i.e., the reporter) will have a number of connections that is 
greatly influenced by the density of the network’s 
connectivity (its average node degree).  However, in a scale-
free network, the most-connected node is often connected to 
>85% of the other nodes, irrespective of the average node 
degree.  Therefore, a reporter in a random network will only 
occasionally obtain a false corroboration, and thus publish 
the story (Table 3).  However, in a scale-free network, a 
reporter (who is massively well-connected) will almost 
always obtain false corroboration, and therefore publish the 
rumor (Table 4).  If that rumor is false, then its publication 
qualifies as fake news. 

 
Table 3: In random rumor-nets, false corroboration  
sometimes leads to the publication of fake news. 
 

Node Degree Clustering 
Coefficient 

Reporter-node 
Publishes Fake News 

10 .10 58% 
33 .33 42% 
50 .50 38% 
67 .67 35% 

 
Table 4: In scale-free rumor-nets, false corroboration  
almost always leads to the publication of fake news. 

 

Node 
Degree 

Clustering 
Coefficient 

loglog 
slope 

Reporter-node 
Publishes Fake News 

10 .22 -.071 92% 
17 .39 -1.05 93% 
25 .56 -1.25 93% 
33 .68 -1.27 87% 
 
Surprisingly, with random networks, denser 

connectivity leads to a reduced likelihood of the reporter-
node obtaining false corroboration and publishing the 
rumor.  Upon closer examination, this makes sense given 
the parameters of the simulation.  In a random network with 
a small average node degree (sparse connectivity), 
whenever a rumor-infected node is about to spread the 
rumor, it has a small number of friends to choose among.  If 
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one of them happens to be the reporter, which is somewhat 
likely since the reporter is the most connected node, then the 
reporter might hear the rumor.  And if that happens a second 
time, then a (false) corroboration has taken place, and the 
story gets broadcasted.   By contrast, in a random network 
with a large average node degree (dense connectivity), 
whenever a rumor-infected node is about to spread the 
rumor, it has a large number of friends to choose among.  
One of them is probably the reporter, but a random selection 
of to whom the rumor will be spread leaves the reporter with 
a slim chance.  In many of these random rumor-net 
simulations, the reporter never even heard the rumor once. 

The situation is very different in a scale-free network.  
In a scale-free rumor-net, most nodes have fewer 
connections than they would in a comparable random 
network.  Therefore, when a rumor-infected node is 
randomly selected to spread the rumor, it is usually one that 
has a smallish number of friends to choose among, and one 
of them is almost certainly the well-connected reporter (see 
also Doerr, Fouz, & Friedrich, 2012).  Thus, almost every 
time the rumor is transmitted, the reporter has a reasonable 
chance of being its recipient.  As a result, the reporter-node 
in such a network is highly likely to hear the rumor, and 
also highly likely to obtain a false corroboration of this 
rumor, even though the rumor actually has only one source. 

 
Conclusion 

 

Interactivity in a network is usually a good thing.  
Ambiguities or uncertainties present in one part of the 
network will often be resolved by strongly biasing 
information present in another part of the network (e.g., 
Kawamoto, 1993; MacDonald, Pearlmutter, and Seidenberg, 
1994; McRae, Spivey-Knowlton, & Tanenhaus, 1998).  
However, when that strongly biasing information is 
objectively false, the interactivity within a network can 
compromise its ability to align itself with reality. 

The present network simulations do not specifically 
distinguish between objectively false rumors and true 
rumors, but a recent analysis of 330 rumor threads on 
Twitter does.  For a false rumor, the time between rumor 
onset and debunking can be as much as seven times longer 
than the time between rumor onset and verification for a 
true rumor (Zubiaga, Liakata, Procter, Hoi, & Tolmie, 
2016).  That is, it takes much longer to debunk a false rumor 
than it does to verify a true rumor.  Therefore, if a long-
standing uncertain rumor has not been verified as true, then 
the odds are steadily increasing every day that it is a false 
rumor (that just hasn’t been debunked yet).  Most true 
rumors get verified very quickly. 

However, the nature of this verification process comes 
into question when considering the present rumor 
simulations.  If the apparent verification comes in the form 
of a seemingly independent source that corroborates the 
original rumor, it may be illusory.  The interactivity inherent 
in social networks can all too easily make a false 
corroboration (i.e., an echo from the echo chamber) appear 
as genuine independent corroboration.   

One potential solution to this problem is for reporters to 
make better efforts at tracing the lineage of a report, so that 
two reports from the same source might be identified as 
such.  A more reliable solution would be for journalism 
practices to avoid using secondary-source corroboration on 
its own as sufficient evidence to disseminate a story.  These 
rumor network simulations demonstrate that it is simply too 
easy to obtain such corroboration in a fraudulent manner.  
Instead, the criterion for publication of a story might ought 
to include evidence that cannot easily be faked, such as 
photos, video, audio recordings, and documents whose 
source can be reliably determined.  For example, if the 
report is that a public figure made sexist comments, or 
mocked a disabled person, or told the public a brazen lie, 
simply relying on two seemingly-independent sources to 
publish such a story may be insufficient.  If the comments or 
mocking are evident in a video clip of the public figure, or if 
the lie is present in a verifiably-sourced tweet from the 
public figure, then those pieces of evidence should be what 
are repeatedly disseminated in reporting the story.  Reports 
without such concrete evidence should be taken with a grain 
of salt, or perhaps not published in the first place. 

It has been proven time and time again in everyday life, 
as well as in high-stakes politics, that the dissemination of 
false rumors can ruin lives, ruin elections, and even ruin 
entire nations.  Understanding the mechanisms that allow, 
and exacerbate, the spread of misinformation in a social 
network of any kind may help with efforts to curtail and 
minimize the damage that can be done. The present 
simulations of a false rumor spreading throughout a network 
show convincingly that, even in a sparsely connected 
network, the “apparent corroboration” of a story often 
comes from a source whose own source can be traced back 
to the originator of the story, and thus should not actually 
count as independent corroboration. To quote Fareed 
Zakaria, “No matter how passionate people are, no matter 
how cleverly they can blog or tweet or troll, no matter how 
viral things get, lies are still lies.” 

 
References 

 

Allopenna, P. D., Magnuson, J. S., & Tanenhaus, M. K. 
(1998). Tracking the time course of spoken word 
recognition using eye movements: Evidence for 
continuous mapping models. Journal of Memory and 
Language, 38(4), 419-439. 

Allport, G. W. & Postman, L. (1947). The psychology of 
rumor. NY: Holt & Co. 

Bamford, J. (2005). A pretext for war: 9/11, Iraq, and the 
abuse of America's intelligence agencies. Anchor 
Publishing. 

Barabási, A. L., & Albert, R. (1999). Emergence of scaling 
in random networks. Science, 286(5439), 509-512. 

Del Vicario, M., et al. (2016). The spreading of 
misinformation online. Proceedings of the National 
Academy of Sciences, 113(3), 554-559. 

DNI report (2017). Background to “Assessing Russian 
Activities and Intentions in Recent US Elections”: The 

3233



Analytic Process and Cyber Incident Attribution.  
https://www.dni.gov/ files/documents/ICA_2017_01.pdf 

Doerr, B., Fouz, M., & Friedrich, T. (2012). Why rumors 
spread so quickly in social networks. Communications of 
the ACM, 55(6), 70-75. 

Dreyfuss, R. & Vest, J. (2004, February). The lie factory. 
Mother Jones, pp. 34–41. 

Farmer, T. A., Christiansen, M. H., & Monaghan, P. (2006). 
Phonological typicality influences on-line sentence 
comprehension. Proceedings of the National Academy of 
Sciences, 103(32), 12203-12208. 

Fusaroli, R., Bahrami, B., Olsen, K., Roepstorff, A., Rees, 
G., Frith, C., & Tylén, K. (2012). Coming to terms 
quantifying the benefits of linguistic coordination. 
Psychological Science, 23(8), 931-939. 

Gandhi, S. P., Heeger, D. J., & Boynton, G. M. (1999). 
Spatial attention affects brain activity in human primary 
visual cortex. Proceedings of the National Academy of 
Sciences, 96(6), 3314-3319. 

Goldstone, R. L., & Gureckis, T. M. (2009). Collective 
behavior. Topics in Cognitive Science, 1(3), 412-438. 

Gow Jr, D. W., & Olson, B. B. (2015). Sentential influences 
on acoustic-phonetic processing: A Granger causality 
analysis of multimodal imaging data. Language, 
Cognition and Neuroscience, 31(7), 841-855. 

Kawamoto, A. H. (1993). Nonlinear dynamics in the 
resolution of lexical ambiguity: A parallel distributed 
processing account. Journal of Memory and Language, 
32(4), 474-516. 

Kello, C. T. (2013). Critical branching neural networks. 
Psychological Review, 120(1), 230-245. 

Kello, C. T., Beltz, B., Holden, J., & Van Orden, G. (2007). 
The emergent coordination of cognitive function. Journal 
of Experimental Psychology: General, 136(4), 551-568. 

Kim, N. S., Yopchick, J. E. E., & De Kwaadsteniet, L. 
(2008). Causal diversity effects in information 
seeking. Psychonomic Bulletin & Review, 15(1), 81-88. 

Louwerse, M. M., Dale, R., Bard, E. G., & Jeuniaux, P. 
(2012). Behavior matching in multimodal communication 
is synchronized. Cognitive Science, 36(8), 1404-1426. 

Lupyan, G., & Spivey, M. J. (2010). Making the invisible 
visible: Verbal but not visual cues enhance visual 
detection. PLoS One, 5(7), e11452. 

Lupyan, G., & Ward, E. J. (2013). Language can boost 
otherwise unseen objects into visual awareness. 
Proceedings of the National Academy of Sciences, 
110(35), 14196-14201. 

MacDonald, M. C., Pearlmutter, N. J., & Seidenberg, M. S. 
(1994). The lexical nature of syntactic ambiguity 
resolution. Psychological Review, 101(4), 676-703. 

McRae, K., Spivey-Knowlton, M., & Tanenhaus, M. (1998).  
Modeling the effects of thematic fit (and other 
constraints) in on-line sentence comprehension. Journal 
of Memory and Language, 37, 283-312. 

Nekovee, M., Moreno, Y., Bianconi, G., & Marsili, M. 
(2007). Theory of rumour spreading in complex social 

networks. Physica A: Statistical Mechanics and its 
Applications, 374(1), 457-470. 

Paxton, A., & Dale, R. (2013). Frame-differencing methods 
for measuring bodily synchrony in conversation. Behavior 
Research Methods, 45(2), 329-343. 

Prados, J. (2004). Hoodwinked: The documents that reveal 
how Bush sold us a war. New Press. 

Richardson, D. C., Dale, R., & Kirkham, N. Z. (2007). The 
art of conversation is coordination common ground and 
the coupling of eye movements during dialogue. 
Psychological Science, 18(5), 407-413. 

Richardson, M. J., Marsh, K. L., & Schmidt, R. C. (2005). 
Effects of visual and verbal interaction on unintentional 
interpersonal coordination. Journal of Experimental 
Psychology: Human Perception and Performance, 31(1), 
62-79. 

Roshani, F., & Naimi, Y. (2012). Effects of degree-biased 
transmission rate and nonlinear infectivity on rumor 
spreading in complex social networks. Physical Review E, 
85(3), 036109. 

Ryan, M. (2006). Filling in the ‘unknowns’: Hypothesis-
based intelligence and the Rumsfeld commission. 
Intelligence and National Security, 21(2), 286-315. 

Sebanz, N., Knoblich, G., Prinz, W., & Wascher, E. (2006). 
Twin peaks: An ERP study of action planning and control 
in coacting individuals. Journal of Cognitive 
Neuroscience, 18(5), 859-870. 

Shockley, K., Santana, M. V., & Fowler, C. A. (2003). 
Mutual interpersonal postural constraints are involved in 
cooperative conversation. Journal of Experimental 
Psychology: Human Perception and Performance, 29(2), 
326-332. 

Spivey, M. J. (2016). Semantics influences speech 
perception.  Language, Cognition, and Neuroscience, 31, 
856-859. 

Spivey, M. J., & Spirn, M. J. (2000). Selective visual 
attention modulates the direct tilt aftereffect. Perception 
& Psychophysics, 62(8), 1525-1533. 

Spivey-Knowlton, M. J. (1996). Integration of visual and 
linguistic information: Human data and model 
simulations.  PhD Dissertation, U. Rochester. 

Sporns, O. (2010). Networks of the Brain. MIT press. 
Sunstein, C. R. (2016). How Facebook makes us dumber. 

Bloomberg View, Jan. 8. 
Theiner, G., Allen, C., & Goldstone, R. L. (2010). 

Recognizing group cognition. Cognitive Systems 
Research, 11(4), 378-395. 

Trueswell, J. C., & Hayhoe, M. M. (1993). Surface 
segmentation mechanisms and motion perception. Vision 
Research, 33(3), 313-328. 

Zakaria, F. (2016). Bile, venom and lies: How I was trolled 
on the internet.  The Washington Post, Jan. 14. 

Zubiaga, A., Liakata, M., Procter, R., Hoi, G. W. S., & 
Tolmie, P. (2016). Analysing how people orient to and 
spread rumours in social media by looking at 
conversational threads. PLoS One, 11(3), e0150989. 

3234



Adapting to a listener with incomplete lexical semantics 
 

Sadhwi Srinivas (sadhwi@gmail.com) 
Cognitive Science Department, Johns Hopkins University 

Baltimore, MD 21218 USA 
 

Barbara Landau (landau@jhu.edu) 
Cognitive Science Department, Johns Hopkins University 

Baltimore, MD 21218 USA 
 

Colin Wilson (colin.wilson@jhu.edu) 
Cognitive Science Department, Johns Hopkins University 

Baltimore, MD 21218 USA 
 

Abstract 

Speakers involved in a communicative exchange construct an 
internal model of their addressees and draw upon the model to 
craft utterances that are likely to be understood. In many real-
world situations (e.g., when talking to a non-expert, non-native 
speaker, or a child), this process of audience design involves 
identifying gaps in the lexical-semantic knowledge of the 
listener and selecting alternative expressions. We examine 
speaker adaptation to a listener with incomplete lexical 
knowledge in the spatial domain, specifically a failure to 
comprehend the basic terms left/right. Experimental and 
modeling results provide evidence of rapid adaptation that is 
modulated by the availability of alternative spatial terms. We 
consider how our approach relates to recent work in 
computational pragmatics, and suggest that adaptation to the 
lexical knowledge of the addressee is an important but 
relatively understudied topic for future research. 
 
Keywords: language adaptation; audience design; spatial 
language; lexical semantics; computational pragmatics 

Introduction 

Speakers choose referring expressions on the basis of several 
factors, including their beliefs about the linguistic and 
conceptual knowledge of addressees (e.g., Pate & Goldwater, 
2015; Brennan & Clark, 1996). For example, speakers tend 
to avoid or supplement proper names that, in their judgment, 
listeners do not know (e.g., Isaacs & Clark, 1987; Fussell & 
Krauss, 1992; Wu & Keysar, 2007; Kutlak et al., 2016). This 
is part of a more general pattern of audience design (Clark & 
Murphy, 1982) in which speakers construct internal models 
of specific addresses and use these models to facilitate 
communication. Another example of audience design is the 
formation of partner-specific conceptual pacts during a 
conversation. Speakers also show some ability to adapt their 
descriptions to a listener’s viewing perspective when it is 
different from their own, presumably making it easier for the 
listener to identify intended referents in a scene (e.g., 
Schober, 2009). These adjustments to the needs of particular 
listeners in specific circumstances are analogous to the well-
known Lombard effect, in which people tend to talk louder in 
the presence of ambient noise (Lombard, 1911), suggesting 
that audience design is a fundamental phenomenon that 
occurs at many linguistic and conceptual levels. 

Empirical and computational work on audience design has 
largely adopted the assumption that discourse participants 
share knowledge of basic vocabulary items. For example, the 
Rational Speech Acts framework (Frank & Goodman, 2012) 
assumes that speakers and addressees have the same literal 
meanings for lexical expressions, and derives pragmatic 
usage from literal semantics through iterated probabilistic 
inference. However, the assumption of common word 
knowledge is not completely valid for many real-world 
scenarios. In the same way that experts addressing novices 
should avoid overly technical jargon, speech tailored to non-
native or child listeners must regularly work around basic 
lexical-semantic gaps. 

Recently, Ferrara et al. (2016) closely investigated the 
linguistic choices that parents made when communicating 
spatial information to their 3-4yo. children. The language 
used by parents to describe the location of items in simple 
spatial arrays differed significantly from that of adults 
addressing other adults in the same task. Most notably, 
parents avoided the horizontal axis terms left/right—terms 
that are known to be acquired relatively late by children in 
general, and that were not reliably understood by many of the 
particular children in the study—while they used many other 
spatial terms (e.g., the vertical axis terms above/below) in 
essentially the same way that adults do when taking to one 
another. These findings support the claim that parents have 
well-tuned internal models of their children’s lexical-
semantic knowledge and can design utterances for them by 
circumventing their lexical gaps. 

In this study, we investigated whether adaptation to gaps in 
spatial language would occur in a minimal communicative 
setting. The parents in Ferrara et al.’s study had developed 
internal models of their children through extensive 
interaction with them. Here we sought to determine whether 
calibration to the addressee’s lexical knowledge could 
develop much more rapidly, perhaps after only a few 
instances of communicative breakdown. Furthermore, 
parents presumably have access to a variety of top-down and 
bottom-up cues to gaps in children’s spatial lexicons (e.g., 
general experience with child spatial language, instances 
where children explicitly ask for clarification of spatial 
descriptions). Here we sharply restricted the interaction 
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among interlocutors, providing only ambiguous, bottom-up 
cues to the addressee’s knowledge of the spatial lexicon. 

Following Ferrara et al. (2016), our study took the form of 
a referential communication task. Participants provided 
spatial descriptions to a listener who had either full 
knowledge of lexical-semantics or full knowledge except for 
a gap in the horizontal terms left/right. This is the same gap 
observed in young children, and indeed comprehension of 
left/right can be demanding even for typical adults (Sholl & 
Egeth, 1981). If audience design is operative in this setting, 
participants should more often supplement or employ 
alternatives to the basic horizontal terms when addressing the 
listener who does not accurately comprehend them. 

We further investigated whether and how accommodation 
of the listener’s lexical gap was modulated by the stimulus 
array. For example, in describing the location of the object 
marked by the arrow in Fig 1A, alternatives other than 
left/right may not be obvious to the speaker. Contrast this 
with the arrangements of Fig 1B and 1C, in each of which a 
non-horizontal spatial relation is available to identify the 
target (i.e., inside the box, below a triangle). For 
arrangements such as Fig 1C, speakers might even prefer to 
refer to the vertical axis independently of any particular 
addressee (e.g., Logan, 1995; Ferrara et al., 2016). 

 

 
 
Finally, we were interested in whether the adaptation found 

experimentally could be accounted for with a simple 
inhibitory mechanism: one that penalizes the use of terms that 
have resulted in communication errors, leaving unchanged all 
other aspects of the speaker’s system for generating referring 
expressions. We formalize this mechanism in a high-level 
computational model of referential communication, show 
that it matches the detailed pattern of spatial language with 
minimal free parameters, and discuss how it relates to and 
extends previous work in computational pragmatics. The 
detailed empirical findings presented here contribute to the 
understanding of the form and limitations of lexical audience 
design, and our model delineates a way by which previous 
computational models may be augmented to account for 
lexical differences among interlocutors.  

Spatial communication experiment 

Our experiment involved communication between speakers 
(the participants) and a simulated listener. In each trial, the 

speaker described the spatial location of a target object in a 
visual array (see examples in Fig 1). The listener responded 
by selecting one of the objects, and the participant was then 
shown the listener’s choice alongside the original display. 
Apart from this minimal communicative interaction, 
participants were provided no information about or feedback 
from the listener. 

There were two conditions that differed by listener type. 
In the Full knowledge condition, the listener comprehended 
all English spatial expressions without error. In the Partial 
knowledge condition, the listener was identical except that 
comprehension of left/right and minor variants of those terms 
was at chance. We varied the spatial arrangements across the 
stimulus arrays to elicit a range of linguistic expressions and, 
most importantly, to provide varying opportunities for 
adaptation in the Partial condition. We were further interested 
in whether adaptation would involve primarily avoiding 
left/right or supplementing those terms with other spatial 
information, as well as in the coarse-grained time course of 
adaptation. Rapid avoidance of the lexical-semantic gap 
would provide evidence of an adaptation mechanism that is 
quite sensitive to bottom-up feedback and that inhibits 
expressions that have resulted in communication errors. 

Participants 

This experiment was part of a series conducted online using 
Amazon’s Mechanical Turk service. There were 48 
participants (Mage = 33.9 years, 25 males), 24 in each 
condition (Full vs. Partial knowledge). Individuals received a 
small monetary compensation for participating. 

Materials 

The stimuli consisted of 32 spatial arrays similar to those of 
Ferrara et al. (2016). Target objects, marked by red arrows in 
the display, could not be uniquely identified by intrinsic 
properties such as shape and color. For example, yellow circle 
would not be a uniquely identifying description of the target 
in Fig 1C, but yellow circle on the bottom or yellow circle 

below a triangle would both be sufficient. 
In all stimuli, the target could be identified by its position 

on the horizontal axis (e.g., yellow circle on the right). This 
maximized the potential contrast between participants in the 
Full condition, who could in principle describe all targets 
with left/right, and those in the Partial condition, who would 
have to employ other terms to communicate successfully. 

The arrays varied in the alternative spatial descriptions that 
they afforded. In the Horiz type (10 items), the target could 
be identified only by its relative position on the horizontal 
axis (Fig 1A). Under the assumption that left/right are 
generally the most accessible or preferred terms for 
horizontal position, these arrays would be expected to 
provide the greatest challenge for adaptation. 

All other array types contained alternative spatial relations 
that could be used in identifying descriptions: proximity of 
the target to another object; containment of the target within 
a bounding box (see Fig 1B); internal vertical or horizontal 
orientation of the target (e.g., a pencil pointing up or down); 

Figure 1: Examples of array types used in the 
spatial communication task 
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or a vertical relation between the target and another object. 
We grouped the proximity, containment, and vertical/ 
horizontal orientation arrays into a single type called 
Horiz+Other (18 total items). For such arrays, adaptation 
could involve using horizontal terms other than left/right or, 
perhaps more simply, reference to the other spatial relation 
(e.g., circle in the box instead of circle on the left). 

The Horiz+Vert array type (4 items; see Fig 1C) was 
separated from the others on the basis of extensive evidence 
that reference to the vertical axis is both linguistically and 
non-linguistically privileged relative to the horizontal axis 
(e.g., Logan, 1995; Carlson-Radvansky & Logan, 1997; 
Fitneva & Song, 2009). Speakers could prefer vertical terms 
for these arrays, not because of any specific beliefs about the 
experimental addressee, but as a reflection of this general 
privilege (as was observed in Ferrara et al., 2016). Adaptation 
would then be difficult to measure for these arrays, as 
left/right may be independently dispreferred by participants 
in both the Full and Partial knowledge conditions. 

Procedure 

In each trial, the participant was presented with a single 
spatial array and asked to describe the target so that it could 
be uniquely identified by the listener. Participant descriptions 
were typed into a text box; no restrictions were placed on the 
terms used (i.e., responses were completely free). Following 
a brief delay, participants were provided feedback about the 
object selected by the listener (marked with a blue arrow in a 
copy of the array): this was either the target or the distractor 
object of the same shape and color. 

In the Full knowledge condition, the simulated listener 
selected the target whenever the description contained at least 
one word from a large list of spatial expressions (determined 
through pilot testing).  While participants in this condition 
could in principle have communicated “successfully” by 
using spatial terms that did not pick out the target, as we 

report below the vast majority of responses were felicitous 
and identifying. In the rare instance that a description 
contained no spatial term, the Full knowledge listener 
selected the target or the distractor with equal probability. 

The simulated listener in the Partial knowledge condition 
behaved identically except when the description contained 
left/right (or variants such as leftmost/rightmost) without any 
other spatial terms. For such responses, the listener randomly 
selected the target or matched distractor with equal 
probability (i.e., the listener responded as if no spatial term 
was present in the description). 

Three practice trials at the beginning of the experiment 
emphasized the goal of providing complete, unambiguous 
descriptions (e.g., yellow circle at the bottom instead of 
simply circle or yellow circle for Fig 1C). Each stimulus array 
was repeated 4 times over the course of the experiment, 
resulting in 128 trials per participant. The order in which the 
arrays appeared was pseudo-randomized by participant, with 
the constraint that there were an equal number of Horiz trials 
in each half of the experiment (20 per half). This ensured that 
a participant who consistently used left/right for this array 
type would receive, on average, at least ten instances of 
negative feedback during the first half of the experiment.  

Results  

Descriptions tended to be brief, containing a single spatial 
expression (average number of words per utterance: 2.83 in 
the Full condition, 3.13 in the Partial condition). Two manual 
coders determined that more than 95% of the responses 
across both conditions were sufficient to uniquely identify the 
target (given complete knowledge of spatial terms). The rare 
insufficient responses were produced sporadically across 
participants (i.e., not concentrated on any particular speaker). 

Statistical analysis was performed on the sufficient 
descriptions. For these, communication errors could occur 
only in the Partial condition and only when left/right was 
used without any other spatial term. Accordingly, we focused 
on the way in which the rate of ‘left/right-only’ descriptions 
(i.e., left/right alone or combined with only shape or color 
terms) varied across conditions and array types (see Fig 2). 

A mixed-effects logistic regression was performed with 
left/right-only as the dependent variable and fixed factors of 
condition (Full vs. Partial), array type (Horiz, Horiz+Other, 
Horiz+Vert), and three experimental ‘phases’ (with 
approximately one-third of the total trials in each phase). 
Phase was included as a rough estimate of the time course of 
adaptation, which we informally gauged to occur quite 
rapidly (i.e., after only a few instances of negative feedback). 
All fixed effects were weighted sum-coded, and the model 
included random intercepts for participants and stimuli. In 
light of the number of comparisons involved and the relative 
novelty of our research question and design, a conservative 
level for significance was chosen (p < .01). 

As anticipated earlier, the left/right-only rate was higher 
overall for the Horiz array type (β = 2.24, p = .006), with the 
rate for the Horiz+Other type effectively equal to the mean 
across all types (β = 0.05, p > .8). Note that this implies a 

Figure 2: Proportion of responses using left/right only (i.e., 
without any additional spatial expression) produced by 

participants and predicted by the adaptation model. 
Errors bars show standard error of the mean. 
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much lower rate for the Horiz+Vert arrays (as expected from 
the vertical bias discussed earlier). There were no significant 
main effects of experimental condition or of phase. However, 
condition and array type interacted significantly, reflecting 
the fact that the difference in left/right-only rate for Horiz vs. 
Horiz+Other was much larger in the Partial condition 
(Condition × Horiz: β = -0.28, p < .01; Condition × 
Horiz+Other: β = 0.39, p = .01). In the Full condition, the rate 
of left/right-only descriptions was high for both Horiz and 
Horiz+Other. The Partial condition showed adaptation to the 
listener for the Horiz+Other array type that did not fully 
generalize to the Horiz arrays. 

Finally, condition and phase interacted significantly 
(Condition × Phase1: β = -0.5, p < .01). This accords with the 
numerical finding that left/right-only rate increased slightly 
across phases in the Full condition (phase1: 69%, phase2: 
71%, phase3: 73%) but decreased across the first two phases 
in the Partial condition (phase1: 57%, phase2: 47%, phase3: 
42%). The small increase in the Full condition may be due to 
the sufficiency of left/right for all arrays: implicit self-
priming may have elevated the frequency of these terms, or 
participants may have explicitly realized that there was little 
need to generate alternative expressions. The decline after the 
first phase in the Partial condition, and indeed the difference 
in the first phase across the two conditions, indicates that 
adaptation to the listener occurred rapidly (i.e., within 
approximately 43 trials, after an average of 12 instances of 
unsuccessful communication). 

In summary, we observed fine-grained adaptation to the 
addressee with a lexical-semantic gap in the spatial domain. 
There was little opportunity to find adaptation in the case of 
Horiz+Vert arrays, given the general bias to use vertical 
expressions. But for Horiz+Other arrays, participants in the 
Partial knowledge condition began to avoid left/right-only 
descriptions, responding to listener errors and performing 
differently than participants in the Full knowledge condition, 
within the first third of the experiment. Adaptation in the 
Partial condition was significantly lower for the Horiz arrays, 
which did not provide an alternative spatial relation that could 
be used to identify the target. 

The preceding analysis does not reveal whether 
participants in the Partial condition attempted to avoid using 
left/right altogether, or continued to use the problematic 
terms but supplemented them with additional spatial 
expressions. For the Horiz+Other arrays, we found that 
avoidance was the primary strategy. For the Horiz+Vert 
arrays, we observed more of a tendency to produce redundant 
descriptions (e.g., top right or bottom left). However, this 
tendency was observed in both the Full and Partial 
conditions, suggesting that it may reflect lexicalization o 
spatial collocations rather than any adaptation strategy. 

A major remaining issue is why the Partial condition 
participants found it relatively difficult to avoid (or 
supplement) left/right for the Horiz arrays. Replicating 
Ferrara et al. (2016), we found that when participants did 
switch to alternative expressions these were mostly ordinal 
terms such as first/second/last. Ordinals would in fact have 

been sufficient to identify the target in all of the array types, 
making their relative infrequency as alternatives to left/right 
all the more striking. One hypothesis is that, when exposed to 
errors on left/right, participants (implicitly) concluded that 
the listener has imperfect understanding of reference to the 
horizontal axis in general. If correct, this hypothesis would 
imply that adaptation occurred at the level of spatial relations 
or axes rather than at the level of spatial expressions. 

An alternative hypothesis is that ordinals—in contrast to 
proximity, containment, etc. terms—are strongly dispreferred 
relative to left/right for the purpose of describing our stimulus 
items. Under this hypothesis, the difficulty of adaptation for 
the Horiz arrays in the Partial condition should be mirrored 
by avoidance of ordinals in the Full condition. More 
generally, the probability of switching from left/right to 
another spatial expression in the Partial condition may 
closely track independently-established relative frequencies 
of terms used to describe our arrays. We formalized this 
hypothesis in the computational model of spatial language 
use and adaptation developed below. 

Computational model of adaptation 

The model has two main components: baseline (or pre-
adaptation) preferences for spatial term usage, and a 
mechanism for modifying the preferences in response to 
errors made by the listener. Our goal in this paper is not to 
explain the baseline preferences, but rather to estimate them 
from empirical usage frequencies. The estimates take the 
form of numerical (dis)preferences (or ‘weights’) assigned to 
various spatial and non-spatial term types (or ‘attributes’). 
Once the baseline has been established, we show that a single 
inhibition parameter (i.e., a penalty for using left/right) 
suffices to closely match the detailed adaptation pattern of the 
experiment. A uniform penalty for left/right has different 
effects across the array types because the viable alternative 
attributes for each type vary independently in their weights. 

Baseline preferences 

The baseline model assigns probabilities to a large set of 
array-specific sufficient descriptions. Each description 
contains one or more binary-coded attributes indicating the 
presence of spatial and other terms. Specifically, the spatial 
attributes we considered are horizontal (horiz: left/right), 
vertical (vert: above/below/up/down/top/bottom), proximity 
(prox: close to/next to/near/far/beside), containment (cont: 
inside /outside/within), vertical orientation (v.o.: pointing 

up/down, facing up/down), horizontal orientation (h.o.: 
facing towards/ away from), and ordinal (ord: 
first/second/last). The non-spatial attributes are shape 
(circle/pencil) and color (yellow/green) and. This coding 
abstracts away from minor syntactic permutations (e.g., 
circle to the right vs. right circle) and lexical variation (e.g., 
the circle on the right vs. rightmost circle). The set of 
sufficient descriptions for each array was formed by 
considering the spatial relations that could be used to identify 
the target and fully crossing these with one another and all 
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possible shape and color combinations (e.g., Table 1 lists the 
relations that are relevant for the Horiz+Other arrays). 

Relative frequencies of the sufficient descriptions for each 
array were determined, in part, from the results of the Full 
knowledge condition above. However, because all targets in 
that condition could be successfully identified with left/right, 
it is plausible that this data overestimates the frequency of 
horiz (e.g., due to participant self-priming). More generally, 
we were concerned that Full condition data may provide a 
somewhat skewed estimate of the relative accessibility of 
different sufficient descriptions. Therefore, we conducted an 
additional experiment in which each participant provided up 
to five descriptions of an array. This experiment was 
performed by 19 undergraduates at the Johns Hopkins 
University, each completing 32 trials (one per array) for a 
small amount of course credit. The total frequency of a 
description for a given array was equal to the sum of its 
frequencies in the Full condition and in this experiment. 

A conditional log-linear (or maximum entropy) probability 
distribution over descriptions was defined by assigning a 
weight wi to each binary attribute fi (e.g., Jurafsky & Martin, 
2009). The conditioning information was the array, which 
determines the set of alternative sufficient descriptions. 
Weights were tied across array types and fit by maximum 
likelihood to the array-specific description frequencies.  The 
resulting weights were as follows: horiz (-1.14), vert (-0.43), 
prox (-2.73), cont (-2.3), v.o. (-2.57), h.o. (-5.78), ord (-
3.06), shape (1.0) and color (-0.68), where a higher weight 
indicates a greater preference for the attribute. Note that the 
model assumes independence of attributes, an idealization 
that we show to be largely effective but which is not inherent 
to the maximum entropy formalism. 

Modeling adaptation 

Prior to experience with the listener, participants in the Partial 
condition should have the baseline attribute weights. After 
failed instances of communication with left/right, the weights 
could in principle be modified in various ways (e.g., by large 
changes after single errors, or much more gradually over the 
course of the entire experiment). Given the rapid adaptation 
found in the experiment, and in order to restrict the number 
of free parameters, we implemented adaptation as a single 
array- and speaker- independent decrease in the weight of 
horiz subsequent to the first listener error. 

The error-driven penalty against horiz was fit by maximum 
likelihood to the Partial data, with the weights of all other 
attributes fixed at their baseline values. The best-fitting 
penalty (≈ -0.70) was sufficient to make alternative spatial 
expressions more probable than left/right in the Horiz+Other 
arrays. However, left/right remained the most probable 
expression for Horiz arrays. Because the penalty was uniform 
across all array types, this and other asymmetries must reflect 
the relative frequencies of alternative spatial expressions in 
the baseline data. In this sense, the model derives the nuanced 
pattern of audience design in the Partial condition from 
independently-established usage patterns and a minimal 
assumption about the mechanism of adaptation (see Fig 2). 

Detailed results 

We examined the predictions of the model in more detail for 
the four subtypes of Horiz+Other arrays. Using the weights 
and horiz penalty above, we generated predicted frequencies 
of the sufficient descriptions for each subtype by sampling 
responses for 24 simulated participants. 

Collapsed over shape and color, the predicted frequencies 
of the various spatial attributes were highly correlated with 
the actual frequencies across the subtypes (r=0.96). In 
particular, for the Horiz+Other arrays offering containment, 
proximity and vertical orientation as alternatives to the 
horizontal relation, the experiment revealed that participants 
adapted by switching to these alternatives in the Partial 
condition, thereby increasing the frequencies of these 
features over the horizontal. However, in the arrays where 
horizontal orientation of the target was available as an 
alternative, participants continued to use left/right for 
identifying the target. Table 1 shows that the model captured 
this difference and other variations in attribute frequency. 

   
Table 1: Proportion of responses containing each relevant 
spatial attribute (in bold) produced by participants in the 

Partial knowledge condition, and predicted by the adapted 
model (in parentheses), for the Horiz+Other array subtypes. 
 

Proximity containment 
   horiz .48±.08 (.53)    horiz .44±.08 (.39) 

   ord .20±.08 (.21)    ord .13±.06 (.16) 
   prox .21±.06 (.20)    cont .26±.06 (.34) 

vertical orientation horizontal orientation 
   horiz .33±.09 (.45)    horiz .73±.08 (.69) 

   ord .17±.07 (.19)    ord .23±.08 (.25) 
   v.o. .36±.09 (.28)    h.o. .00±.10 (.02) 

Model limitations 

While highly successful relative to our original goals, the 
model contains a number of simplifications that could be 
addressed in future iterations. The attribute weights and horiz 
penalty were assumed to be identical for all participants (and 
trials), but there may be substantial individual (or even trial-
level) variation in preferences for referential descriptions. 
The assumption of independent attribute weights was for the 
most part viable, but some form of interaction is required to 
account for frequent vert+horiz collocations (e.g., top right). 
Our focus was on spatial expressions, but use of shape and 
color terms would also be of interest, especially when these 
are used redundantly. The assumption that the inhibition of 
horiz applies after the first communication error, rather than 
coming into effect more gradually, was also an idealization. 

Finally, no attempt was made to predict the baseline 
preferences for spatial terms or attributes (e.g., the strong 
preference for left/right over first/last in the Full knowledge 
condition). This raises the more general question of what 
cognitive representations and processes lead speakers to 
select particular utterances from a set of sufficient referential 
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descriptions, only some aspects of which are due to audience 
design. 

General discussion 

In this paper, we experimentally tested whether speakers 
adapt their language to listeners with a lexical-semantic gap. 
Such situations may arise commonly, both when experts talk 
to novices and when adult speakers of a language address 
second language learners or children. Inspired by previous 
work with children, we focused on the case in which the 
listener commands all spatial terms other than left/right. 

We found that participants were able to rapidly identify the 
listener’s lexical gap, and to avoid it in cases where other 
alternatives were readily available. Specifically, when the 
target object could be identified with another spatial relation, 
participants mostly switched to using that relation. However, 
adaptation occurred to a lesser extent when the target could 
only be identified by its horizontal relation. This pattern of 
results suggests that spatial language elicited in the 
experiment was shaped by audience design, but that other 
factors prevented complete adaptation to the listener. 

We formalized those factors with a computational model 
that assigns probabilities to sufficient descriptions with 
independent attribute weights. The weights were fit to 
utterances from the Full knowledge condition, supplemented 
by data in which participants provided multiple descriptions 
of each array. This model may reflect the endpoint of iterative 
pragmatic reasoning, as in the RSA framework (Frank & 
Goodman, 2012), but is closer in practice to the approach of 
Monroe & Potts (2015), who remedy limitations of that 
framework by setting attribute weights empirically. 
Adaptation was then modeled in a simple form, as an error-
driven inhibition of left/right that applied uniformly to all 
array types (and participants). Despite its simplicity, the 
model correctly predicted the different types and degrees of 
adaptation observed across arrays in the experiment. 

While some previous models have addressed adaptation 
from bottom-up information about the listener (e.g., 
Janarthanam et al., 2010), none have considered gaps in basic 
lexical knowledge. Indeed, much work in theoretical and 
computational pragmatics assumes a generic addressee with 
the same lexical semantics as the speaker. The model 
developed here could be applied to other cases in which 
listeners have idiosyncratic gaps in technical or non-technical 
vocabulary. Adaptation to the lexical knowledge of the 
listener is an important aspect of cooperative communication. 
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Abstract 

Because most common words have multiple meanings, 
children are often learning new senses of existing words, 
rather than entirely new words. Here, we explore whether 
children can use their knowledge of an existing word sense to 
constrain their interpretation of a new word meaning. Across 
two studies, we teach 3- and 4-year-olds and adults novel 
words for materials, and manipulate whether those words are 
also used flexibly, to label objects made from those materials. 
We find that participants of all ages assign markedly different 
interpretations to the object labels when they have a prior, 
material meaning: Rather than extending them to other 
objects of similar shapes, they extend them on the basis of 
shared material, thus overriding the well-documented shape 
bias. These findings suggest that language learners can use a 
word’s prior meaning to learn about the structure of its new 
meaning.  

Keywords: polysemy; lexical flexibility; word extension; 
word learning; shape bias 

Introduction 
A great deal of evidence in language development suggests 
that children constrain their guesses about the referents and 
extensions of new words through a variety of heuristics and 
biases (Clark, 1990; Markman, 1990). For instance, if 
children are told that a novel object is called a dax, they 
typically infer that dax will also refer to objects that are 
similarly shaped (Landau, Smith & Jones, 1988). This so-
called shape bias arises early in acquisition, and is thought 
to play an important role in lexical development.  

Of course, the shape bias is not sufficient for acquiring 
adult-like meanings for words, since the extension of many 
words meanings goes beyond shape. A single word can 
often apply to multiple items that vary in shape, but that 
share an underlying essence (e.g., natural kind terms like 
bird; e.g., Gelman & Markman, 1986), intended function 
(artifact terms like chair; e.g., Bloom, 1996), or substance 
(e.g., for mass nouns like bread). Consistent with this, in 
order to develop adult-like meanings for words, children are 
thought to draw on a variety of different cues – such as 
animacy, background knowledge, or functional affordances 
– to override the shape bias, and structure their new word 
meanings (Booth & Waxman, 2002; Jones & Smith, 1988; 
Kemler Nelson, 1995). 

While previous studies have investigated how children 
learn the meanings of entirely new words, they have yet to 
address the fact that many of the new word meanings that 

children have to acquire are not associated with novel word 
forms, but instead with word forms they are already familiar 
with. This is because most words are not unambiguous, but 
are instead flexible: Most common words are polysemous 
and denote a variety of different senses of meaning (Nerlich, 
Todd, Herman & Clarke, 2003). The word glass, for 
instance, refers to both a transparent material and a drinking 
vessel made from that material. This phenomenon, which 
we refer to as lexical flexibility, is common both within 
languages and across languages. Further, lexical flexibility 
follows systematic patterns in English and in other 
languages: Multiple English words, for example, can label 
materials and objects made from those materials (glass, tin, 
etc.), animals and their meat (chicken, lamb, etc.), tools and 
functional uses of those tools (hammer, saw, etc.), and more 
(see Srinivasan & Rabagliati, 2015).  

In the present studies, we investigate how children’s 
biases about word meanings interact with lexical flexibility: 
How does a word’s first-acquired meaning influence 
children’s guesses about the extension of new, additional 
senses of the word? In particular, are additional word senses 
learned in isolation, or does a word’s first meaning bias the 
application of constraints like the shape bias?  

Consistent with the idea that the extension of new word 
senses is constrained by knowledge of other word senses, 
many historically-derived senses of words appear to be 
partially influenced by their historically-primary sense. This 
can be observed with the word glass, whose extended 
drinking vessel sense is defined by a combination of shape, 
function and material (and whose meaning thus differs from 
words like cup, which are defined by shape and function 
alone). Lending support to the idea that children’s 
interpretation of new word senses could be constrained by 
their understanding of existing, already-learned senses, a 
recent body of work in language development indicates that 
even preschool-aged children understand the semantic 
relations that license lexical flexibility in their language. For 
example, children expect words to label animals and their 
meat, but not other thematically-related items (Srinivasan & 
Snedeker, 2014), and generalize patterns of lexical 
flexibility to new words (e.g., such that they expect new 
words to label tools and their functional uses; Srinivasan, 
Al-Mughairy, Foushee & Barner, 2017).  

Given these facts, it seems plausible that if children know 
one sense of a word, then they might use that knowledge to 
constrain their guesses about how that word should be 
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extended. This could cause them to override the shape bias 
in some cases, and extend new word senses according to 
other criteria. Some preliminary evidence for this idea 
comes from a study by Yoshida and Smith (2003), who 
showed that the shape bias was increased if a novel object 
was labeled with a familiar name that was strongly 
associated with a characteristic shape (e.g., ball), compared 
to a familiar name that was associated with a substance. 
However, subjects in this previous study were learning 
novel exemplars for existing words – as opposed to novel 
senses of existing words – thus leaving open the role of 
lexical flexibility in structuring new semantic categories.  

In the present studies, children and adults were first taught 
a novel name for a material. They were then presented a 
novel object made from the same material, and either 
learned that the object name was the same as the material 
name (both were called gup) or was labeled using a new, 
distinct word (the material was called zev and the object 
called gup). Our studies tested whether this manipulation of 
lexical flexibility affected participants’ guesses about the 
extension of the object name – e.g., by making them more 
likely to privilege shared material as basis for extension in 
the flexibility conditions – using a forced-choice task (Study 
1) and a more open-ended sorting task (Study 2). 

Experiment 1 
Adults and 3- and 4-year-olds participated one of three 
conditions: In the flexibility condition, the novel material 
and novel object were given the same label, and in the 
unambiguous condition they were given different labels. A 
final material vs. object condition tested whether 
participants learn distinct material and object senses of a 
flexible word, or instead a single vague meaning 
encompassing both objects and materials.   

Methods 
Participants  
This study included 100 3- and 4-year-olds from the 
Berkeley area (Range: 3;0-4;11; Mean age = 4;0), split 
roughly evenly among the three conditions. 48 adults were 
also recruited from the UC Berkeley campus community, 
with 16 participating in each condition. English was the 
primary language spoken by all participants. Children were 
tested in lab, and at local preschools and museums; Adults 
were tested in lab or at designated locations on the UC 
campus. Children were given a small gift for participating, 
and adults were given either course credit or a small gift. 16 
additional children participated but were excluded for 
failing catch trials administered at the end of the task 
(described below; n=12), parental interference (n=3), or 
experimenter error (n=1). Three adults were also excluded 
due to experimenter error. All participants were tested 
individually by a female experimenter. 
 
Warm-up trials Participants completed three warm-up 
trials to ensure that they understood the task. The stimuli 
consisted of three sets of toy animals: two identical animals 

and one contrasting animal (e.g. two bears and a horse). In 
each warm-up trial, the experimenter placed one of the 
duplicate animals on the table, and named it (e.g. “Here is a 
bear!”), and then placed the remaining two animals and 
asked the participant to point to the other matching animal 
(e.g. “I want another bear. Can you point to a bear?”).  
 
Test Trials Participants completed four test trials. The trials 
varied depending on which of the three conditions the 
participant was in. 

The stimuli consisted of four sets of novel objects. Each 
set included (1) a jar of small pieces of a novel material and 
a wooden spoon, (2) a standard object made out of the 
novel material, (3) a material-match test object that was 
made out the novel material, but was of a different shape 
than the standard, and (4) a shape-match test object that was 
the same shape as the standard, but was made out of a 
different material.  

 
Figure 1: Example test trial from the polysemy and unambiguous 
conditions of Experiment 1. The novel material and standard object 
were given the same word in the polysemy condition and different 
novel words in the unambiguous condition. 
 

In each test trial (Fig. 1), the experimenter brought out a 
jar of novel material and a wooden spoon. The experimenter 
labeled the material with a novel word, using mass syntax 
(e.g. “This stuff is called gup. This stuff is called gup. I have 
half a jar of gup here.”) and then stirred the material with 
the spoon and scooped some of it out of the jar to emphasize 
that it was a material. The name given to the material varied 
depending on the condition: The material was labeled with 
the same novel word (e.g. gup) that was later used to label 
the standard object in the flexibility condition, and was 
given a different name (e.g. zev) in the uanmbiguous 
condition (Fig. 1).  

Next, the experimenter brought out the standard object 
and named it (e.g. “Now look at this thing! This thing is 
called a gup.”), and illustrated that it was an object by using 
count syntax and attributing a vague function to it (“I have 
two gups and I use them in my garage.”). Then, the 
experimenter brought out the two test objects – the material-

3242



match object and the shape-match object (in the flexibility 
and unambiguous conditions) – and asked the participant to 
extend the label for the standard object to one of the two test 
objects, using count noun syntax (“I want another gup. Can 
you point to a gup?”; Fig. 1). We expected that if 
participants use a prior sense of the word to constrain their 
interpretation of a new word sense, they should be more 
likely to override a shape bias–which typically arises when a 
count noun labels a rigid object (Landau et al., 1988)–and 
choose the material-match object in the flexibility condition. 

The material vs. object condition was conducted to test 
whether participants who learned that the material and 
object were given the same word (e.g., when both were 
labeled gup) in fact learned two distinct senses of the word 
(as opposed to a single word that can label both materials 
and objects). To test this, at test participants were asked to 
choose between the material-match object and a pile of the 
material. We reasoned that if subjects had learned a novel 
object sense of the critical word, they would choose the 
material-match more often than the pile of material, since 
the request at test employed count syntax (Can you point to 
a gup?), and thus a request for an individual.  

 
Catch trials Finally, participants completed three catch 
trials at the end of the task to ensure that they had sustained 
their attention throughout the study. In these trials, the 
experimenter labeled a novel object with a novel word, and 
then asked participants to point to which of two subsequent 
objects could be labeled by the word. One of the choice 
objects was identical, and the other differed in shape and 
material. Participants who failed to correctly respond on at 
least two out of the three catch trials were excluded. 

Results 
Our results are consistent with the idea that the meaning of 
one word sense guides children’s guesses about subsequent 
senses. As indicated in Figure 2, children in the flexibility 
condition extended the name of the standard object to the 
material-match object (70% of trials; SE = 4%), and were 
more likely to do so than children in the unambiguous 
condition (27% of trials; SE = 4%), as revealed by a linear 
model (β = −1.86, SE = 0.27, z = −6.79, p < .001). Thus, 
while children in the unambiguous condition exhibited the 
robust shape bias documented in prior work (Landau, Smith, 
& Jones, 1988), children in the flexibility condition 
overcame this bias and extended the new word sense 
according to material, rather than shape.1 This tendency to 
select the material-match object could not be explained by a 
failure to learn distinct senses of the flexible word (i.e., to 
learn both a material and object sense of the word), as 
children in the material vs. object control condition reliably 
selected the material-match object over the pile of material 
on 83% of trials (SE = 3%) of the time. This suggests that 

                                                             
1 This model did not detect a significant effect of age, which was 

treated as a continuous variable (β = 0.03, SE = 0.02, z = 1.43, p 
= .15) 

children understood that the experimenter was requesting an 
object using the object sense of the novel word at test, as 
opposed to simply re-using the material word they had first 
been trained on. 

 
Figure 2: Percentage of trials in Experiment 1 in which children 
chose the material-match object across conditions. Error bars show 
+/- 1 SE. Dashed line shows 50% mark. 
 

 
Figure 3: Percentage of trials that adults chose the material-match 
object across the conditions of Experiment 1. Error bars show +/- 1 
SE. Dashed line shows 50% mark.  
 

Adults (Fig. 3) showed a similar pattern of word 
extension choices to children in the flexibility condition, 
and extended the name of the standard object to the 
material-match object on 89% of trials (SE = 4%), 
significantly more than they did in the unambiguous 
condition (2% of trials, SE = 2%; β = −6.24, SE = 1.08, z = 
−5.76, p < .001). Unexpectedly, however, adults did not 
show the same pattern of choices as children in the material 
vs. object condition, and only chose the material-match 
object on 56% of trials (SE = 6%). This surprising result 
leaves open whether adults differentiated between the two 
senses of the word as clearly as children. 

 
Discussion 

Experiment 1 showed that lexical flexibility allows children 
to override semantic heuristics like the shape bias: When a 
label for an object had previously also been used to label a 
material, then children’s guesses about the further extension 
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of that object label were less reliant on shape, compared to a 
condition in which different labels were given to the object 
and material. Importantly, the additional material versus 
object control condition provided evidence that children did 
not simply conflate the “object” and “material” senses of 
this novel word into a single vague meaning: When asked to 
choose “a gup” from an object and a pile of material, 
children consistently chose the object. Thus suggests that 
children understood that while one sense of the word gup 
referred to a kind of material, another sense of the word 
(identified with count syntax) referred to an object. 
Surprisingly, adults behaved a chance in this condition, and 
we return to this result in the General Discussion. 

What, then, is the status of the shape bias when children 
learn an additional sense under these conditions? In 
particular, did the participants believe that shape was 
entirely irrelevant to the meaning of the second sense, or did 
they simply privilege material when they were forced to 
choose between an item that matched in material (but not 
shape) and an item that matched in shape (but not material)? 
One possibility left open by the results of Experiment 1 is 
whether children in the flexibility condition might have 
chosen to extend the novel label for the object only to other 
items that matched in both material and shape, had they not 
been forced to choose between a material match and shape 
match (a limitation of the 2-alternative-forced-choice task 
used in Experiment 1). 

 
Experiment 2 

Here, we employed a more open-ended task, giving 
participants more choice in how they determined the 
extension of the newly-learned words. 4-year-olds and 
adults were taught a label for a novel material and a label 
for a novel standard object, just as in the flexibility and 
unambiguous conditions of Experiment 1. Then, participants 
were shown an array of new objects that varied in shape, 
material, and size from the standard object, and were asked 
to classify which of these additional objects could be labeled 
by the same word as the word for the standard object (Fig. 
4). As in Experiment 1, we varied whether the newly-
learned object and newly-learned material shared a label. 
Using this method, we were interested in whether 
participants in the flexibility condition would restrict word 
extension to only items of the same shape and material as 
the standard. 

Methods 
Participants  
Participants were recruited from the Berkeley area as 
described in Experiment 1. Experiment 2 included 32 4-
year-olds (Range: 4;0-4;11; Mean age = 4;6), divided 
evenly between the flexibility and unambiguous conditions. 
33 adults also participated (17 in the flexibility condition; 
16 in the unambiguous condition). English was the primary 
language spoken by all participants. Three additional 
children participated, but were excluded for failing the 

initial warm-up trials (n=2), or due to parental interference 
(n=1). All participants were tested individually by a female 
experimenter either at a children's museum or at designated 
locations on the UC Berkeley campus.  
  
Materials and procedure  
Warm-up trials Participants completed three warm-up 
trials. Participants who failed on two or more of these trials 
were excluded. The stimuli consisted of three sets of toy 
animals. Each set included three animals from a single 
category and two animals from contrasting categories (e.g. 
three horses, a cat, and a fish). In each trial, the 
experimenter brought out a toy animal and told the 
participant what is was (e.g. “Here is a horse!”). The 
experimenter then put the animal into a plastic box and told 
the participant that the box was for the target animals (e.g. 
horses). The experimenter then placed the animal on the 
table with the other four animals and asked the participant to 
sort all of the animals (e.g. horses) into the box and all the 
animals that were not in that category, into a plastic bowl. 

 

 
Figure 4: An example test trial from Experiment 2. Participants 
sorted five objects as belonging to the target category or not. The 
novel material and standard object either received the same label 
(flexibility condition) or different labels (unambiguous condition). 
 
Test Trials In each of the four test trials (Fig. 4), 
participants were first introduced to a novel material (but 
instead of pieces of a solid material, novel non-solid 
materials were used). As before, participants were then 
shown a standard object that was made out of the same 
novel material. Then, participants were asked to sort a set of 
five objects (four test objects plus the standard object itself) 
as either belonging to the target category or not. The four 
test objects varied in whether they matched the standard 
object in material and shape. In total, participants were 
asked to sort: (1) a +Material/-Shape Object that was made 
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out the same material, but was a different shape than the 
standard, (2) a –Material/+Shape Object that was the same 
shape as the standard, but was made out of a different 
material, (3) a +Material/+Shape object that shared the same 
material and shape as the standard, but was smaller, (4) a –
Material/-Shape object that contrasted with the standard in 
both shape and material, and finally (5) the Standard Object 
itself.  

In each test trial, the experimenter took out a jar of novel 
material. The experimenter told the participant the 
material’s name (e.g. “This stuff is called kiv.”) and then 
stirred the material with the spoon and then scooped and/or 
stretched the material, and took some material out of the jar 
(This was to underscore fact that the novel material was 
indeed a material). The name of the material varied 
depending on the condition, as before: In the flexibility 
condition, the material was labeled with the same novel 
word that was later used to label the standard object, and in 
the unambiguous condition was given a different name.  

Next, the experimenter brought out the standard object 
and named it, using count syntax (e.g. “This thing is called a 
kiv.”). The experimenter then brought out the four test 
objects and said “Some of these are kivs and some are not 
kivs.” and then asked the participant “Can you put all of the 
kivs into this box and all of the other things into this bowl?”  

Results 
The results from the more open-ended task of Experiment 2 
paralleled those of Experiment 1. In particular, participants 
were more likely to privilege material in their extensions in 
the flexibility than in the unambiguous condition. Consistent 
with this, children in the flexibility condition were more 
likely to sort the +Material/-Shape object (61%, SE = 6%) 
as a member of the target category than children in the 
unambiguous condition (14%, SE = 4%; β = −2.25, SE = 
0.44, z = −5.11, p < .001). In contrast, children in the 
unambiguous condition were more likely to show a shape 
bias, and sort the –Material/+Shape object (88%, SE = 4%) 
as a member of the target category than children in the 
flexibility condition (38%, SE = 6%; β = 2.46, SE = 0.46, z 
= 5.37, p < .001). Meanwhile, children in both the flexibility 
and unambiguous conditions almost always sorted the 
Standard Object (Flexibility: 98%, SE = 2%; Unambiguous: 
100%) and +Material/+Shape Object (Flexibility: 98%, SE = 
2%; Unambiguous: 100%) as members of the target 
category, and almost never sorted the –Material/-Shape 
Object as a category member (Flexibility: 2%, SE = 2%; 
Unambiguous: 0%).  

To examine whether individual children were internally 
consistent in their sorting, we coded the data in terms of 
their categorization strategies. Strategies were defined 
using a 75% cut-off: Participants who used the same 
strategy for 3 or 4 of the test trials were classified as having 
that categorization strategy, but were otherwise coded as 
other. As indicated in Figure 5, children in the flexibility 
condition more often sorted objects using a material-based 
strategy (i.e., sorting all three of the objects that matched in 

material as being part of the target category), than children 
in the unambiguous condition. In contrast, a shape-based 
strategy (i.e., sorting all three of the objects that matched in 
shape as part of the target category) was more prevalent in 
the unambiguous condition.  

 

 
Figure 5: Categorization strategies of children in the flexibility 
condition (left) and unambiguous condition (right).  

 
Adults showed a similar pattern of choices to children. 

Participants in the flexibility condition were more likely to 
sort the +Material/-Shape object (74%, SE = 5%), as a 
member of the target category than adults in the 
unambiguous condition (5%, SE = 3%; β = −4.03, SE = 
0.65, z = −6.19, p < .001). In contrast, adults in the 
unambiguous condition were more likely to show a shape 
bias, and sort the –Material/+Shape object (81%, SE = 5%) 
as a member of the target category than adults in the 
flexibility condition (19%, SE = 5%; β = 2.91, SE = 0.44, z 
= 6.54, p < .001). No adults in either condition sorted the –
Material/-Shape as a member of the target category, and all 
but one participant sorted the Standard object and 
+Material/+Shape object as a member of the target category.    

 

 
Figure 6: Categorization strategies of adults in the flexibility 
condition (left) and unambiguous condition (right). 

 
Finally, similar to the children, most adult participants in 

the flexibility condition sorted objects using a material-
based strategy, while most in the unambiguous condition 
used a shape-based strategy. Only three adults (1 in the 
flexibility condition, 2 in the unambiguous condition) 
employed a material- and shape-based strategy, 
constraining the target category to only the standard object 
and the +Material/+Shape object. Note that this third, more 
conservative strategy was never used by children. 

 
Discussion 
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While Experiment 1 showed how lexical flexibility can 
reduce reliance on the shape bias, Experiment 2 explored 
the nature of that reduction. We found that, in the presence 
of lexical flexibility, both children and adults tended to 
extend new meanings based on a single feature – material – 
rather than through a combination of multiple features, such 
as shape and material (only 1 out of 16 adults in the 
flexibility condition used the shape & material strategy), 
even though the task of Experiment 2 was open-ended 
enough to allow this strategy to emerge.  

This reliance on material when extending the object labels 
in some ways conflicts with how flexible material words are 
used in languages. For instance, although the object senses 
of words like glass and tin are defined partially by material 
(a wooden box is not a “tin”), they label specific kinds of 
objects that are defined by shape and function (not all 
artifacts made of tin can be called “tins”). One reason that 
children and adults in the flexibility condition may not have 
used shape in their strategies is because we did not provide 
specific information about the functions of the standard 
objects; Such information could constrain hypotheses about 
the likely shapes – and functional affordances – of kind 
members (Kemler Nelson, 1995).  

 
General Discussion 

How do children make inferences about the structure of new 
lexical categories? Guided by the fact that most common 
words are polysemous, our studies explored whether 
children’s understanding of one meaning of a word would 
affect how they interpreted a subsequent meaning for that 
word.  Two experiments demonstrated that, after children 
and adults learned that a substance name could also be used 
to label an object, they were less likely to extend that name 
according to shape, and instead privileged material.  

These findings are consistent with a recent proposal 
(Srinivasan & Rabagliati, 2015) that lexical flexibility plays 
an important functional role in language development, in 
facilitating the acquisition of the lexicon. By this account, it 
may be more difficult for children to learn an unambiguous 
lexicon in which each meaning has its own word, compared 
to one in which words label multiple meanings in 
predictable ways. Consistent with this idea, the present 
studies show that children’s knowledge of an initial word 
sense can facilitate their learning of a second word sense.  

Our findings also raise a host of interesting questions for 
future research. Some questions concern the precise 
meanings that children learned in our task. For instance, 
when children learned that gup could label both a material 
and an object, did they actually learn separate and 
conventionalized senses? Or did they simply realize that it 
was possible to “coerce” the meaning of gup from a material 
sense to a portioned object sense (cf. ordering two coffees, 
Frisson & Frazier, 2005). Experiment 2 provides some 
evidence for the latter account, as children (and adults) were 
willing to extend the newly learned object name to any other 
object made of the material, regardless of its shape. This 
might also help make sense of why adults were at chance in 

choosing between the material-match object and pile of 
material in Experiment 1: Adults may have thought that the 
flexible “object” label could apply to any individual made of 
the material, and may have been more flexible than children 
in construing a pile of material as an individual.  

Although we have only explored our hypothesis in the 
context of materials and objects, our results hold 
implications for how lexical flexibility might shape 
conceptual development more broadly. While prior research 
has focused on how children use labels as ‘invitations’ to 
group items into common categories, our findings show that 
children understand that labels can pick out items from 
distinct, but related categories. In particular, by attending to 
lexical flexibility, children could use naming practices to 
draw inductive inferences about the structure of the world. 
For instance, just as hammers are used for hammering and 
shovels for shoveling children could reason that something 
called a dax that supports daxing is probably designed for 
that function, and that all daxes should support this function.   
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Rationalizing subjective probability distortions
Nisheeth Srivastava

IIT Kanpur

Ed Vul
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Abstract: You cannot know the contents of a memory until after you have actually retrieved it. This paper considers the
implications of this straightforward observation upon the psychological process of preference construction. We show that this
constraint renders observers with random access memory susceptible to tail risks. We show that this difficulty can be rectified
by permitting observers to weight memory retrieval for such observations, that outcome utility cannot be used for this purpose,
but information-theoretic surprise can serve as a useful proxy for it. Using two novel experiments, we present evidence in
support of our account. With the first, we show that humans find surprising experiences easier to remember. With the second,
we show that surprising experiences in the past have a greater influence on future decisions than is statistically warranted. This
twofold demonstration substantiates a psychologically plausible account for the origin of subjective probability distortions.
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Memory of relative magnitude judgments informs absolute identification
Nisheeth Srivastava

IIT Kanpur

Abstract: The question of whether people store absolute magnitude information or relative local comparisons of magnitudes
has remained unanswered despite persistent efforts over the last three decades to resolve it. Absolute identification is one of the
most rigorous experimental benchmarks for evaluating theories of magnitude representation. We characterize difficulties with
both absolute and relative accounts of magnitude representation and propose an alternative account that potentially resolves
these difficulties. We postulate that people store neither long-term internal referents for stimuli, not binary comparisons of
size between successive stimuli. Rather, they obtain probabilistic judgments of size differences between successive stimuli
and encode these for future use, within the course of identification trials. We set up a Bayesian ideal observer model for the
identification task using this representation of magnitude and propose a memory-sampling based approximation for solving it.
Simulations suggest that the model adequately captures human behavior patterns in absolute identification.
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Abstract
Using data from a major commercial online game, Des-
tiny, we track the development of player skill across time.
From over 20,000 player record we identify 3475 players
who have played on 50 or more days. Our focus is on
how variability in elements of play affect subsequent skill
development. After validating the persistent influence of
differences in initial performance between players, we
test how practice spacing, social play, play mode vari-
ability and a direct measure of game-world exploration
affect learning rate. These latter two factors do not af-
fect learning rate. Players who space their practice more
learn faster, in line with our expectations, whereas play-
ers who coordinate more with other players learn slower,
which contradicts our initial hypothesis. We conclude that
not all forms of practice variety expedite skill acquisition.
Online game telemetry is a rich domain for exploring the-
ories of optimal skill acquisition.
Keywords: learning; games; skill acquisition; expertise;
game analytics

Introduction
Computer games afford a rich data set for the investi-

gation of skill acquisition. Players invest tens, hundreds
or even thousands of hours on individual games, and —
unlike offline domains of expertise — details of every ac-
tion during practice can be unobtrusively recorded. The
present analysis uses data from the online shooter video
game Destiny, which has over 30 million active users as
of 2016 (Nunneley, 2016). Using data on players’ per-
formance we trace their skill acquisition over time and
relate it to their practice habits. Specifically we are inter-
ested in how variability in practice relates to learning.

The power law of learning is justly well-known in cog-
nitive science (A. Newell & Rosenbloom, 1981; Ritter
& Schooler, 2001), both for being a dependable regular-
ity in skill acquisition data (Rosenbaum et al., 2001) and
for expressing a truth we know from personal experience:
when we first begin learning something new progress is
often rapid, but later it slows or stalls. Nonetheless the
presentation of Power Law learning curves based on av-
erages masks the variability that occurs both within and
between individuals (Gallistel et al., 2004; Gray & Lind-
stedt, 2016). This is important for two reasons. Firstly
because individual variability is interesting as an out-
come. We wish to know why some individuals learn
more rapidly, and achieve greater eventual levels of per-
formance (and why some individuals are hindered in

their learning). Secondly, variability is interesting as
a driver of learning. Previously it has been suggested
that greater initial variability in practice may drive higher
subsequent performance (Stafford et al., 2012; Stafford
& Dewar, 2014), a result which accords with compu-
tational accounts of how learning must balance explo-
ration and exploitation of options (Sutton & Barto, 1998;
Humphries et al., 2012).

In addition to looking at how a skill is practised, there
are also results which suggest an effect on skill acqui-
sition of when a skill is practised — the issue of prac-
tice spacing (Stafford & Haasnoot, 2017; Delaney et al.,
2010; Cepeda et al., 2008) — as well as an effect of vari-
ability in how different components are practised (Mag-
ill & Hall, 1990). From this perspective, variability is
as much an engine of learning as consistency (Schmidt,
1975; Van Rossum, 1990; K. M. Newell & McDonald,
1992; Ranganathan & Newell, 2010). This raises the
question of exactly which kinds of variability, and in
what quantities, support optimal skill acquisition.

Previous work has looked at skill learning in a simple
online game (Stafford & Dewar, 2014; Stafford & Haas-
noot, 2017), with the emphasis that even a simple online
game contains many fundamental cognitive processes -
perceptual, decision making and action implementation.
Others have looked at skill development in more complex
games (Thompson et al., 2017, 2013), and here we use
the opportunity to analyse data from one such game, Des-
tiny, to explore issues of how playing style, and particu-
larly variability within play, affects skill development.

Destiny is a science-fiction themed, massively multi-
player, online game where players need to defend the
Earth from various alien threats, taking on the role of
Guardians. Players journey to different planets, complete
missions, daily events, and perform a variety of different
tasks to build up their characters. Destiny is a hybrid
digital game that blends features from a number of tra-
ditional game genres including role-playing games and
massively multi-player online games but which is first
and foremost a shooter (Tammasia et al., 2016). The
main components of the gameplay is focused on tacti-
cal single-player or small-team combat against players
or artificial agents (Drachen et al., 2016).
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Thousands of behavioural or performance-based met-
rics are tracked and stored by Bungie, the developer of
Destiny, which in aggregate provides a detailed record of
the behavioural history of Destiny players.

The metrics that can be calculated based on such
datasets varies, and previous research in game analytics
and other domains have seen such behavioural data be-
ing used for a variety of purposes (Tammasia et al., 2016;
Rattinger et al., 2016; Drachen et al., 2016). For Destiny,
a number of these metrics are of key interest in relation
to evaluation of player skill and skill evolution.

• Playtime: Playtime in the current context simply refers
to the amount of time a player spends playing the game
per day, across either a single or all characters.

• Kills, Assists, Deaths: the shooter-heavy gameplay of
Destiny means that traditional skill indicators from
shooter games such as Kill/Death Ratio (KDR) form
an important means for evaluating player skill.
For Destiny, a variant of KDR, the Kill-Assists/Death
Ratio (KADR) is also used. An assist is a common
term in esports signifying that a player helped an-
other player take down a specific enemy (or in other
ways help another player), without scoring the killing
shot/hit on that enemy.
KADR is thus a more nuanced aggregate measure of
performance than KDR. We use KADR-KDR as a
measure of a players’ propensity for ‘social play’.

• Combat Rating: The Combat Rating (CR) is a game
metric designed to reflect a players’ overall skill.
How CR is based on the TrueSkill system (Her-
brich & Graepel, 2006), a Bayesian model used for
player/team ranking. TrueSkill and CR both serve a
similar functionality to ELO (Charness, 2005). While
the algorithm is confidential, it broadly works by ini-
tialising a player at CR 100. If the player is part of a
team that wins a match, their CR goes up, more if there
is a large difference in the CR between the two teams.
Conversely, if they lose, the CR goes down, again in
relation to the gap in CR between the two teams. CR
is used by the Destiny matchmaking system to config-
ure players into teams and balancing opponents. This
means that players will be playing with and against
players with similar CR (i.e. they are matched against
players of simialr skill-levels).

• Grimoire Score: A Grimoire in Destiny is a record of a
players experience — new cards are awarded the first
time a specific action is taken or challenge overcome.
In essence, the Grimoire score is an expression of the
degree to which a player has explored the world and
content of Destiny.

Working with very large datasets introduces some new
opportunities for the cognitive scientist (Goldstone &

Lupyan, 2016; Stafford & Haasnoot, 2017). Observa-
tional studies, however large, necessarily have reduced
power of causal inference compared to experimental
studies. Large numbers mean that the data can be ‘sliced’
to explore if and how potential effects play out through-
out the population, as well as allowing matching of in-
dividuals on various properties which might confound
any effect. With enough data any observable difference
can be ‘statistically significant’. In experimental studies
effort is expended in achieving enough power to make
convincing inferences. With large data set it is more im-
portant to invest effort in exploring possible confounds
and putting observable differences in the context of other
effects via calculation of effect sizes.

Our hypothesis is that early variability will be associ-
ated with faster skill acquisition. This assumes that play-
ers have a tendency to under-explore the space of pos-
sible actions, and so, due to this reliance on habit, will
be learning sub-optimally. We will test this hypothesis
against different indices of variability in early practice:
spacing of play, social play, world knowledge (grimoire
score), and distribution of play across game modes (event
entropy). These metrics are defined further below.

Data and method
Our data comprise low level daily metrics indicating

performance and meta information for over 20,000 ran-
domly selected Destiny players. The behavioral teleme-
try was provided by Bungie.

For each player the data consists of a unique player
ID and character IDs for each character the player has.
A player is allowed to have at most three characters per
account. For each character, the dataset contains daily
aggregate player behavior such as number of deaths,
completed objectives, weapon usage and average life
span, and importantly playtime, each across the six game
modes - or ways to play the game.

Our analytic strategy is first to split the data into a de-
velopment (8682 players) and validation set (12861 play-
ers). All exploratory analysis was finalised on the de-
velopment set, before being run on the validation set to
produce the figures presented here. All conclusions pre-
sented are unaffected by the minor differences between
the development and validation set results. This affords
us some protection against discovering false patterns in
our data that result from researcher degrees of freedom
in analysis. It is inappropriate to make inferences from
hypothesis testing p-values for an exploratory analysis
such as this, but we report them for completeness where
we have done standard analyses. Our main focus is on
measures of effect size and confidence estimates around
those measures.

Analysis scripts, player summary data, and full reports
of both development and validation set results are avail-
able at https://osf.io/c59n9/. For commercial con-
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fidentiality reasons the full raw dataset is not available at
the point of writing.

Analysis
First, we seek to confirm that players improve with

practice. Following the method of (Stafford & Dewar,
2014), we first select only players who play some min-
imum number of games (50). This produces a data set
of 3475 longer term players (in the validation set; 1984
in the development set) and then divide by ranking all
players according to the average of their three all time
best ratings (in terms of CR). Figure 1 shows the aver-
age score per game for those who scored in the top third,
middle third and lowest third of the high score table.
This shows that the learning curve exists for averaged
data, and that — in line with (Stafford & Dewar, 2014)
— players who end up with the highest scores begin the
game with performance already above that of lower scor-
ers (compare (Stafford & Dewar, 2014) Figure 2).
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Figure 1: Average performance rating as a function of
game number and ranking based on players’ highest
three ratings. Error bars show +/- 1 standard error.

Note that our learning curves show performance,
rather than speed, on the x-axis, and so are inverted
relative to the classic ’Power Law of Learning’. None
the less they reflect the expected decelerating function
of learning with practice amount. Our investigation of
other factors must take account this fundamental pattern
in how player performance changes over time, as well
as the stratification that we observe between players of
differing initial performance. To do this, we fit a linear
regression for each player’s performance against game
number. Because this regression produces a slope and
an intercept, we are able to subsequently analyse player
differences in both level of initial performance and sub-
sequent change in performance (i.e. rate of learning).
Henceforth when we refer to “learning rate” we mean
the slope of this regression for each player. In order to
explore which variables might be related to player learn-
ing rate we first visualise players split on some candi-
date variables against mean combatRating against prac-

tice amount (game number).

Variation in practice timing — spacing
In order to compare practice timing, we calculate the
time range over which players recorded their first 25 days
of play (obviously this has a minimum of 25 days, and no
theoretical maximum). This range correlates positively
(Pearson’s r= 0.18, 99% confidence interval 0.14,0.22)
with learning rate and negatively (Pearson’s r= −0.09,
99% confidence interval −0.14,−0.05) with initial per-
formance.

In order to visualise the effect of greater or less spac-
ing, we select players in the top quartile for spacing their
first 25 games (’spacers’) and those in the bottom quartile
for spacing their first 25 games (’groupers’) and plot the
average performance against game for the two groups.
This is shown in Figure 2.
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Figure 2: Average score as a function of game number
and high and low spacers. Error bars show +/- 1 standard
error.

Variation in practice type
Playing style — social play For each player we have a
game by game measure of their ‘assists’, which are kills
made by teammates which they are near to. Variation
on this measure allows us to rate players according to a
propensity for social play, i.e. a higher rate of assists will
reflect a player who coordinates their actions with their
team.

This measure correlates negatively (Pearson’s r=
−0.16, 99% confidence interval −0.20,−0.12) with
learning rate and positively (Pearson’s r= 0.50, 99% con-
fidence interval −0.47,0.54) with initial performance.

Figure 3 shows the learning curve for players split on
the average of their assists over their first 25 games, as
an index of players’ propensity for ”social play”. Those
in the top quartile of the distribution of assists we term
‘social players’. Those in the bottom quartile we term
‘lone wolves’.
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Figure 3: Social play and skill acquisition. Error bars
show +/- 1 standard error.

World knowledge — Grimoire score For each player
we are able to see the complete history of their Destiny
playing, including how many games they play in total.
Each player also has a ‘grimoire’ score, which is a count
of the items they have encountered in the world. Ob-
viously this is higher for players who have played more
games, but there is considerable between-player variabil-
ity, suggesting that some players focus on exploring the
world, completing actions and collecting items, whereas
others aren’t focused on this aspect of the game. In order
to compare grimoire scores between players who have
complete different numbers of games, we calculate a nor-
malised (Z) score for each player based on the distribu-
tion of grimoire scores among players who have com-
pleted the same number of games.

This measure does not correlate with learning rate
(Pearson’s r= 0.04, 99% confidence interval 0.00,0.09)
and correlates positively, but weakly (Pearson’s r= 0.13,
99% confidence interval 0.10,0.18) with initial perfor-
mance.

Figure 4 shows the average score, in terms of CR,
against game for players whose grimoire Z scores are in
the top and bottom quartiles of the distribution.

Playing style — mode entropy The play modes in
Destiny are:

• Strikes: 3 player cooperative events.
• Raid: 6 player cooperative missions, requiring high

level skills to complete.
• Story: the main single-player game mode, which can

be played cooperatively by up to 3 players.
• Patrol: a single-player exploration mode.
• PvP: all the player-vs-player (PvP) game modes of

Destiny

Note that due to the aggregation into daily sets, it is
possible for players to have played multiple sessions of
Destiny within the same 24 hour cycle. Because Destiny
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Figure 4: Average score by games for players with high
and low grimoire count. Error bars show +/- 1 standard
error.

has six different main game modes, it is of interest to
evaluate how a player spends his or her time across those
game modes. In order to quantify the measure of het-
erogeneity in terms of how a player splits their time be-
tween game modes, we use Shannon’s entropy [see e.g.
(Lessne, 2014; Algoet & Cover, 1988)] which is defined
as:

H =−∑
i

pi log2(pi) (1)

where pi denotes the probability of the player’s activ-
ity across game modes i. For game mode pi is calculated
as the amount of time spent in specific game mode i di-
vided by the total time spent playing all game modes that
day.

Event entropy over the first 25 games for each player
does not correlate with learning rate (Pearson’s r=
−0.02, 99% confidence interval −0.06,0.03) and corre-
lates positively (Pearson’s r= 0.22, 99% confidence in-
terval 0.17,0.26) with initial performance.

Figure 5 shows performance against game for those in
the top and bottom quartiles for event entropy calculated
over the first 25 games.

Statistical model Hitherto, we have explored our data
using visualisation of different groups and reported bi-
variate correlations. By entering all factors into a regres-
sion model we can check whether how all factors com-
bine to explain variation in the learning rate. This is an
essential complement to the visualisation. It allows us
to confirm that patterns visible in the data are statisti-
cally significant. As well as the four measures described
above — spacing, social play, grimoire score and event
entropy — we include maximum numbers of games a
player plays as a measure of overall motivation. The
results of the regression of our five factors against the
learning rate are shown in shown in Table 1.
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bars show +/- 1 standard error.

Table 1: Regression of player behaviours on
player learning rate

Factor B T p

Games played 0.044 1.99 0.0465
Spacing 0.199 10.90 0.0001
Assists -0.172 10.04 0.0001
Grimoire 0.003 0.16 0.872
Event entropy 0.011 0.62 0.537

R2 = 0.063,F(5,3287) = 44.47, p < 0.0001

Note that only spacing and assists, our measure of so-
cial play, are significant. Figure 6 shows the standard-
ised regression coefficients (beta weights) when our five
factors are used to predict learning rate (slope) and for
the initial performance (intercept) of individual learning
functions.

Discussion
Using a complex online game we show that changes

in player’s performance can be tracked and related to
aspects of how they play. We validate the separa-
tion of learning curves by initial performance shown by
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Figure 6: Beta weights for players factors used to predict
slope (learning rate) and intercept of individuals’ learn-
ing functions. Standard error bars shown.)

(Stafford & Dewar, 2014). As with that previous result,
players who achieve the eventual highest levels of perfor-
mance also perform better on their first game. Further,
the difference between those with high and low initial
performance only grows as more practice is completed.

Two other factors influence rate of learning — spac-
ing, and social play. The effect of spacing matches
that found in experimental studies of skill acquisition,
as well as previous analysis of a different, simpler, game
(Stafford & Haasnoot, 2017). The differences between
players who space their practice and those who don’t
is striking, such that the high-spacing players, on aver-
age, perform less well initially, but because they learn
at a faster rate their average rating exceeds that of the
low-spacing players by game 50. The effect of social
play was not predicted: those who play more socially,
as measured by their assist rate, learn slower — perhaps
because the demands of team coordination distract from
skill honing. Two other direct measures of exploration
are not found to relate to rate of learning, in contrast to
earlier results (Stafford et al., 2012; Stafford & Dewar,
2014). This suggest that curiosity alone is not sufficient
to enhance skill acquisition.

Destiny, and online games in general, represent a rich
test-bed for theories of skill acquisition. Games are
played for reasons of intrinsic motivation and so repre-
sent an important contrast to lab studies which are com-
pleted for financial incentives or as part of a course re-
quirement. In addition they represent an opportunity to
collect large data sets, which allow confidence in the esti-
mates of the effects of the factors analysed. Overcoming
statistical uncertainty allows researchers to move swiftly
to wrestling with interpretative uncertainty.

In this case, although variability in practice timing
— spacing — enhances skill acquisition, we failed to
demonstrate that our measures of other kinds of prac-
tice variability can be related to enhanced skill acquisi-
tion. This leaves open the possibility that the exploration
which supports skill acquisition is not captured by our
measures, or that more complex skills, such as Destiny
playing, require an equal match of habitual practice and
exploratory variability.
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Abstract
This paper presents a series of reference game experiments
(Frank and Goodman, 2012) and fits the results to a number
of Bayesian computational models in order to explore the role
of linguistic and perceptual bias in iterative pragmatic reason-
ing. We first discuss the modeling choices made by Franke and
Jäger (2016) and others who have used similar frameworks to
model reference game tasks. We introduce a space of different
plausible Bayesian models based on this work, and compare
models’ fit to new experimental data to replicate the basic find-
ings of Franke and Jäger (2016) regarding the strong role for
perceptual salience (e.g., the primacy of color over shape as
a differentiating property for possible referents) and linguis-
tic category (e.g., a preference for nouns over adjectives) in
pragmatic reference resolution. We then uncover an additional
possible effect of what we call labeling, whereby a hearer may
simply ignore non-salient, non-differentiating semantic prop-
erties, in a manner similar to how an incremental algorithm
(Reiter and Dale, 1992) might ignore certain semantic proper-
ties when generating referring expressions.
Keywords: Iterative pragmatic reasoning; probabilistic prag-
matics; reference games; computational modeling; perceptual
bias; reference resolution

Introduction
When someone says, “hold up your finger,” you are most
likely inclined, without much thought, to hold up your in-
dex finger. This may seem unsurprising, as your index fin-
ger is particularly salient for a number of reasons. But, as
Franke and Degen (2016) point out, further reflection raises
the question of why the thumb—which is technically a finger,
and which we might expect to be even more salient than the
index finger—is never a candidate for reference. The thumb
is a prime example of a pragmatic ‘blocking’ effect: though
it is indeed a finger, the existence of the more specific word
“thumb” tends to block it from reference by the word “fin-
ger”. Hence, there is a tension between salience and prag-
matic blocking in resolving the referent of “your finger”.

This paper presents an exploration of this kind of tension
using reference games (Frank and Goodman, 2012; Franke
and Degen, 2016, and others). Reference games are commu-
nicative tasks where subjects are asked to either produce or
interpret short utterances, which are potentially ambiguous in
the context, to describe shapes on a screen. Reference games
are used as a test of models of iterative pragmatic reason-
ing, whereby certain potential referents of an utterance are
blocked by the existence of a better, more informative alter-
native utterance available to the speaker.

We further probe work begun in Franke and Jäger (2016)
and Stevens (2016) by setting up reference games that favor
strong biases toward particular visually salient referents. We
test a range of different variants of the Rational Speech Act
(RSA) model of Frank and Goodman (2012) on our results.
We come to two conclusions:

• We replicate the basic findings of Franke and Jäger (2016),
while improving their implementation of RSA by reducing
the number of free parameters required from four to one.

• We examine variation between items and uncover a possi-
ble effect of what we call labeling—an independently mo-
tivated mechanism for assigning possibly incomplete se-
mantic labels to potential referents based on salient pre-
ferred properties. We show that by introducing labeling
into the model, the fit between model predictions and em-
pirical results is improved.

Before diving into these results, we review prior work on ref-
erence games, RSA models and bias in reference resolution.

Prior work
A recent movement toward probabilistic pragmatics—the use
of Bayesian, game-theoretic and other similar methods to
model how non-literal meaning is conveyed by utterances
in context— has been accompanied by an emphasis on us-
ing computational models of pragmatic reasoning to explain
empirical results (see Franke and Jäger, 2016, for a sum-
mary). This includes the rational speech act (RSA) model
(Frank and Goodman, 2012; Franke and Jäger, 2016; Bergen
et al., 2016, among many others) and its variants, as well
as game-theoretic and decision-theoretic models (see e.g.
Franke, 2009; Stevens, 2016). These frameworks all tell a
similar story at their core: pragmatic phenomena are largely
a byproduct of iterated reasoning of the form, ‘I expect that
she expects that I will say φ in context C,’ or some variant.

Reference games A reference game task (Frank and Good-
man, 2012) is a simple experiment which is designed to elicit
iterative pragmatic reasoning behavior. A speaker and a
hearer are presented with an array of colored and/or patterned
shapes like the one seen in Fig.1. The speaker is assigned
one of the shapes and is tasked with choosing a single word
to convey to the hearer which shape she has been assigned.
For Fig.1 the choices would be “circle,” “triangle,” “blue”
and “red.” The hearer receives one of these words from the
speaker and tries to guess correctly what was meant. A simple
game-theoretic model of Gricean pragmatic reasoning, such
as Franke’s (2009) iterated best response (IBR) model, makes
categorical predictions about the interpretation of ambiguous-
in-context words (“triangle” and “blue” in this case). Quite
simply, the hearer should assume that the speaker would have
used an unambiguous word if she could have, i.e. “red” for
the red triangle and “circle” for the blue circle, which leads to
the conclusion that either “blue” or “triangle” alone should be
taken to refer to the blue triangle. But such categorical models
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Figure 1: Simple three-image setup for a reference game task.

are typically meant to be normative, and do not aim to reflect
the probabilistic nature of how people actually behave. The
RSA approach, which builds a Bayesian probabilistic com-
ponent into a bounded IBR-style reasoning model (Frank and
Goodman, 2012; Franke and Jäger, 2016) allows for compu-
tational models that more closely match experimental results.

Rational speech acts The rational speech act (RSA) ap-
proach to modeling pragmatic reasoning computes the prob-
ability of a hearer choosing a referent r given a description
d via Bayes’ rule assuming the speaker chose their utterance
rationally, which in this case means the speaker attempted to
maximize the chance of successful communication. We be-
gin with a function encoding likelihood of referential success
of a description d given intended referent r assuming a naive
hearer—a hearer who randomly selects a referent consistent
with d’s denotation. Let’s call this function H0.

H0(r|d) =
1
|JdK|

if r ∈ JdK, else 0 (1)

The probability of a rational speaker producing description
d to describe intended referent r is taken to be a function of
H0, namely a soft max function, which has the effect of ap-
proximately maximizing H0 by introducing a rationality pa-
rameter, λ. The rationality parameter encodes the degree to
which speakers behave as perfect reasoners. As the value of λ

increases, this production probability—which we’ll call S1—
asymptotically approaches an arg max of H0. Similarly to
Franke and Jäger (2016), we also posit that a bias function,
β(d,r) is added to H0, which encodes possible prior bias to-
ward certain types of descriptions over others (e.g., a pref-
erence for nouns over adjectives, empirically determined for
our models). We’ll return to the exact nature of the bias func-
tion in the next section.

S1(d|r) =
eλH0(r|d)+β(d,r)

∑
d′

eλH0(r|d′)+β(d′,r)
(2)

Finally, the production probability S1(d|r) can be plugged in
to Bayes’ rule, where P(r) is the prior probability of refer-
ent r being referred to, to obtain a pragmatically motivated
probability function for the hearer, which we will call H2.

H2(r|d) =
S1(d|r)×P(r)

∑
r′

S1(d|r′)×P(r′)
(3)

We will use S1 to make predictions about production proba-
bility and H2 to make predictions about interpretation proba-
bility. We use empirically determined values of P(r).

Franke and Degen (2016) also implement a variant of RSA
that starts the iteration with the speaker instead of the hearer.
That variant begins with a ‘literal speaker’, which we could
call S0, who randomly selects from among appropriate de-
scriptions. Then H1 selects referents that maximize the prob-
ability of having been referred to by S0’s utterance, and then
a pragmatic speaker S2 chooses descriptions via Bayes’ rule
taking H1 into account. We implement this variant as well.

Biases and salience Cognitively oriented pragmatic mod-
els like RSA must take into account the prior biases that inter-
locutors bring to the table. Two such biases factor into Franke
and Jäger’s model of reference games. Firstly, the authors use
data from a prior elicitation task to show that hearers have
a prior bias toward picking referents that are more visually
salient. For example, there is expected to be a bias toward the
red triangle in Fig.1 due to the pop-out effect that its unique
color creates. Secondly, the authors use production experi-
ment data to show that there is a prior bias toward using shape
nouns rather than color-denoting adjectives to describe an in-
tended object. These biases are built into their probabilistic
model, the former being encoded in the prior probability dis-
tribution over speaker intentions, and the latter being encoded
as the bias parameter β which boosts production probability
for shape terms. This allows a closer fit to experimental re-
sults when compared to more purely Gricean models.

Investigating perceptual bias in the visual domain can shed
light on the role of salience in iterative pragmatic reasoning
more generally, given that parallels have been found between
visual salience and e.g., the use of definite referring expres-
sions (Duan et al., 2013). In this study we find evidence that
visual salience affects how hearers assign their own internal
semantic labels to the potential referents in a scene. Namely,
behavior on certain experimental items suggests that hearers
selectively consider properties of potential referents (i.e., the
object’s color, shape, pattern, etc.) which serve to differenti-
ate them from their competitors. More specifically, we sug-
gest that hearers can generate sets of expected linguistic de-
scriptions for each object using something like an incremental
algorithm (Reiter and Dale, 1992; Krahmer and Van Deemter,
2012), which has been used to generate referring expressions
in a psychologically plausible way. This algorithm is in-
formally sketched in Fig.2. To illustrate, consider the pic-
ture in Fig.1. Imagine that the most salient property type is
COLOR. To label the red triangle, the algorithm takes its value
for COLOR—‘red’—and checks whether there is at least one
member of the distractor set (the blue triangle and the blue
circle) which is not red. There is, and so ‘red’ gets added to
the label set, and both of the non-red items are removed from
the distractor set. This leaves an empty distractor set, and
so the algorithm halts on the singleton set of labels, {‘red’}.
The same algorithm will generate {‘blue’, ‘triangle’} for the
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• Given an object O in a set of objects Ω, let L be O’s label—a set of
semantic properties (e.g., {‘red’, ‘triangle’}) to describe O. Let
P∗ be an ordered sequence of property types which are ordered
by salience (e.g. 〈COLOR, SHAPE〉, if color is more salient than
shape). Let D be the set of distractors, i.e., Ω\O

• Initialize L to {}
• For P in P∗:

1. Let V be the value that O has for property P
2. Let Ω¬V be the set of objects that have a different value for P

than V
3. If D∩Ω¬V 6= {}, then add V to L and remove all members of

Ω¬V from D
4. If D = {}, return L

Figure 2: An informal presentation of an incremental algorithm for
generating salient and informative semantic labels for referents.

blue triangle and {‘blue’, ‘circle’} for the blue circle. The
red triangle is simply labeled as the red thing, because ‘red’
is a preferred property that uniquely differentiates it, while
the other two shapes are labeled according to both color and
shape.

Computational models
We implement a variety of models centered around the RSA
implementation of Franke and Jäger (2016), though we re-
duce the number of free parameters from four to one. The
first reduction comes from the choice to use a single value of
the rationality parameter λ to predict both speaker and hearer
behavior, where Franke and Jäger (2016) fit two λ values sep-
arately. The second reduction comes from the use of empir-
ical data to determine values of β(d,r)—the observed bias
toward nouns in production—where Franke and Jäger (2016)
use a pair of fixed values that were tweaked for best perfor-
mance. Using a speaker norming task, as described in the
next section, we obtain a prior probability of noun vs. adjec-
tive for each experimental item we want to model. We then
set β(d,r) to be proportional to this prior probability.

β(d,r) =
P(d)

∑
d′|r∈Jd′K

P(d′)
if r ∈ JdK, else 0 (4)

We now have a single-parameter RSA model that will make
predictions about both production and interpretation rates in
a reference game task, taking biases into account.

We implement a number of variants of this model to allow
us to assess some of the modeling choices we and others have
made. In particular, we want to answer the following three
questions about our modeling choices:

1. Bias vs. no bias: Do we really need the β(d,r) term?
2. Naive hearer vs. literal speaker: Should we really start with

a naive hearer H0, as opposed to with a literal speaker S0 à
la the variant in Franke and Degen (2016)?

3. Uniform level-0 prior vs. empirical level-0 prior: Should
the naive hearer and/or literal speaker select randomly from

Uniform level 0 Empirical level 0
S1 / H2, no bias F&G (2012)
S1 / H2, S1 bias F&J (2016)
S2 / H1, no bias F&D (2016)
S2 / H1, H1 bias

Table 1: Eight possible model variants based on the three questions
posed, where three of the cells are occupied by examples of a model
of that type—Frank and Goodman (2012), Franke and Jäger (2016)
and Franke and Degen (2016).

among semantically appropriate actions, as opposed to se-
lecting proportionally to the empirically determined prior?

There are a total of 23 = 8 possible combinations of yes/no
answers to these three questions, each corresponding to a dif-
ferent model variant. The variant we have described, based
on Franke and Jäger (2016), is the “yes/yes/yes” model.
That means that bias is implemented, we follow the trajec-
tory H0 → S1 → H2 rather than starting with a non-rational
speaker, and H0 chooses a random semantically compatible
meaning, ignoring the prior probability P(r). Table 1 lays out
the possibilities and points to examples of a few of the models
from the RSA literature.

We implemented all models with integer λ values between
one and ten1 and used root mean square error (RMSE) as a
measure of overall difference between model predictions and
experimentally determined values.

Experiments
Participants and materials We conducted four experi-
ments via Amazon Mechanical Turk, two experiments to de-
termine prior probabilities for referents and descriptions, and
two reference game tasks, one where the Turker played the
part of the speaker and one where they played the part of the
hearer. For each experiment, 100 Turkers were assigned to
one of two lists containing nine experimental items, for a total
of 18 items. Each item was an array of three images similar
to Fig.1, where one image was distinguished from the other
two by its shape, another image was distinguished by another
salient attribute, and the third image was not distinguished
along any dimension. The order of item presentation was ran-
domized, as was the order in which the shapes were presented
on the screen. Items fell into one of three categories based on
which salient distinguishing attribute was used, with 6 items
in each category:

1. Color: Red vs. blue, as in Fig.1
2. Pattern: Striped vs. solid (one striped and two solid)
3. Size: One shape bigger than the other two

Native language was assessed as part of a post-task question-
naire. Subjects were paid $0.70 for about 5 minutes of their
time. If any subject’s responses were incomplete, or if the

1The effect of λ on model performance is gradual enough, and
the differences between the different model variants large enough,
that not much fine-tuning is required to make our point.
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subject was not a native speaker of English, the data from
that subject was excluded from analysis.

Experiment 1: Eliciting hearer priors Following Frank
and Goodman (2012) and others, we use empirically deter-
mined values for the prior probabilities in our model. The
prior probability P(r) of choosing a referent r is taken to be
a measure of the salience or ‘newsworthiness’ of a referent,
i.e., a general measure of how likely r is to be talked about. To
elicit this experimentally, we asked subjects to select an im-
age to describe, giving them no guidance on which images to
select, and then type a description of it. The point of this ex-
periment was not what the descriptions were, but rather which
shapes they chose to talk about. We took this as a proxy for
the salience of the referent, and thus its prior probability of
being referred to. We asked them to type descriptions as a
secondary task in order to situate the shape selection within
a natural communicative setting. We used data from 97 sub-
jects after exclusions.

For the color items we obtained similar results to Franke
and Jäger (2016), where the red shape was picked much more
often (probability 0.5) than either of the blue shapes, and
where the distinguished blue shape (e.g., the circle in Fig.1)
was picked more often (0.33) than the non-distinguished blue
shape (0.17). For the size items, we found that the distin-
guished smaller shape had a high prior probability (0.5 vs.
0.26 and 0.24 for the large and small competitors, respec-
tively), and for the pattern items, the priors were closer to
equal for the striped and distinguished solid shapes (0.36
and 0.40, respectively), and lowest for the non-distinguished
shape (0.24).

Experiment 2: Eliciting speaker priors To empirically
determine whether and to what extent speakers are biased
toward nouns like ‘circle’ over adjectives like ‘red’, we ran
an experiment just like Experiment 1, but with two impor-
tant differences: (i) subjects were assigned one of the three
images to describe, rather than being asked to pick one them-
selves (image assignments were counterbalanced across lists
so that shape-distinguished, attribute-distinguished and non-
distinguished items were equally represented), and (ii) sub-
jects were told to limit their descriptions to a single word,
in order to bring the task more in line with a reference game
task. To discourage any kind of pragmatic reasoning, subjects
were asked to use the ‘first word that came to mind’ and not to
overthink it. We analyzed data from 84 subjects after exclu-
sions, and only looked at items where either a shape-denoting
noun or relevant attribute-denoting adjective was used (very
few did not fall into this category). The words were input
as free text, and thus we hand-tokenized the responses to ac-
count for spelling mistakes and superficial lexical differences
(e.g., ‘big’ vs. ‘large’). We found an overwhelming prior bias
toward nouns.Overall, shape terms were used two-thirds of
the time. There is evidence that this task successfully elicited
prior linguistic biases and limited the amount of pragmatic

Word
Image ATTRD ATTRN SHAPEN SHAPED
ATTRD SHAPEN .75 / 1 .00 / .00 .25 / .52 .00 / 0
ATTRN SHAPEN .00 / 0 .29 / .74 .71 / .48 .00 / 0
ATTRN SHAPED .00 / 0 .03 / .26 .00 / .00 .97 / 1

Table 2: Production of d given r (on the left, sum horizontally to 1)
/ selection of r given d (on the right in bold, sum vertically to 1) in
Experiments 3 and 4. Subscripts D and N mean ‘distinguishing’ and
‘non-distinguishing’, respectively, and ATTR stands for ‘attribute’.

reasoning being used to determine descriptions. For exam-
ple, for the items where an attribute term would uniquely dis-
tinguish the intended referent, shape terms nonetheless com-
prised 60% of responses, more than double the shape-term
response rate for Experiment 3, which was designed to elicit
pragmatic reasoning.

Experiment 3: Reference game, speaker role Experi-
ments 3 and 4 instantiate the canonical reference game task
described in the second section. Experiment 3 asks subjects
to play the role of the speaker in a reference game. Similarly
to Experiment 2, subjects are assigned one of the three im-
ages and asked to give a one-word description. But for this
experiment, they are explicitly told to select from a list of the
relevant words (e.g., “red”, “blue”, “triangle”, “circle”). And
unlike Experiment 2, the task is framed as a game. Subjects
are told they are sending a message, and to assume that a “re-
ceiver” will receive these descriptions and make a guess as to
which image was assigned. The goal, they are told, is for the
receiver to guess correctly as often as possible. Data from 79
subjects was used.

Experiment 4: Reference game, hearer role Experiment
4 asks subjects to play the role of the hearer, or the “receiver”.
For each item, a single word is displayed at the top of the
screen, which the subjects are told has been carefully selected
and sent to them by a sender who wants them to correctly
guess an image from a one-word description. Word selection
was counterbalanced across both lists. The subjects were re-
quired to select a single image for each item. Data from 91
subjects was used.

Results Our reference game experiment results are in line
with other reference game results in the literature, and are
summarized in Table 2. Like Franke and Jäger (2016), we
find that the expected propensity toward interpreting ambigu-
ous shape and attribute words (like “triangle” and “blue” in
Fig.1) as referring to the non-distinguished shape (like the
blue triangle) is dampened for the shape words, likely reflect-
ing hearer knowledge of speakers’ prior noun bias, where the
prior noun bias makes a shape term like “triangle” a less re-
liable signal that the non-distinguished referent is intended.
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Uniform level 0 Empirical level 0
S1 / H2, no bias .12 / .20 .14 / .23
S1 / H2, S1 bias .06 / .18 .09 / .22
S2 / H1, no bias .23/ .20 .23 / .20
S2 / H1, H1 bias .25 / .22 .24 / .23

Table 3: RMSE for speaker predictions (left) / hearer predictions
(right). Best-case λ value used for each reported RMSE. Best model
results are in bold.

Table 3 shows how our model variants line up with the em-
pirical results in terms of the root mean square error (RMSE),
which is a measure of overall difference between predicted
and observed values obtained by calculating the mean of the
square of the difference between each predicted vs. observed
value and taking the square root. We used the difference in
predicted vs. observed subject means for each experimental
item (i.e., each array of images) to determine RMSE. Not
only is our refinement of Franke and Jäger (2016) the best
model to predict these data, but our best-case value of the λ

parameters (λ = 4) is the best-case value for both the speaker
and hearer model independently. That is to say, we would not
do a lot better by allowing for separate λ values for speaker
and hearer. We take this to be a nice replication of the basic
finding of Franke and Jäger (2016), obtained using only one
free parameter that was only broadly tweaked.2

The numbers in Table 2 are somewhat closely replicated,
with every value being within three percentage points of the
real value. A plot of predicted vs. actual results from Table
2 is given in Fig.3. However, the numbers in Table 2 are av-
eraged over all items, and tell us nothing about the range of
variation of responses for different kinds of images. RMSE
gives us an overall assessment of error taking into account
error at the level of each individual item. What the RMSE
values in Table 3 tell us is that the speaker model fits consid-
erably better than the hearer model.

Why is the hearer model so noisy? Given the proximity of
predicted to actual results on average in Fig.3, the source of
the noisiness must be coming from differences between item
types. An item-level investigation of the source of the higher-
than-expected RMSE will lead us to posit that when there are
highly perceptually salient options, as in these experiments,
hearers are inclined to label their options in a way that is sim-
ilar to the output of an incremental algorithm (Fig.2).

Labeling
We now break down by-item behavior further, looking not
only at whether the image array was shape- color- or size-
distinguished, but also at which word was sent to the
hearer. We find that the predicted qualitative pattern—that
ambiguous descriptions (and only ambiguous descriptions)
should prompt a plurality of guesses of the non-distinguished

2Franke and Degen (2016) also consider the combination S1 /
H1, i.e., a non-iterative model. This would not do any better here, as
we see in Table 3 that H1 never makes better predictions than H2.
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Figure 3: Hearer predictions vs. observed values, averaged over
subjects and items.

image—holds in all but two cases. These two cases are de-
picted in Fig.4, where we see a deviation for (i) color items
when the hearer is sent an ambiguous color term and (ii) size
items when the hearer is sent an ambiguous shape term. There
is a pattern to these deviations. The pattern is that we see a
shift away from the non-distinguished image only in cases
where the semantically ruled out referent (e.g., the red thing
if the description is “blue”) has a high prior (in both cases,
∼50%). Let’s break down what this means for the three item
types. First, when the hearer receives “blue” for an item like
Fig.1, we find higher-than-expected selection of the unique
shape (the circle in Fig.1). This is the item type for which the
attribute-distinguished image (the red triangle) is maximally
salient according to Experiment 1. Second, when a hearer
receives an ambiguous shape term for a size-distinguished
item, we find higher-than-expected selection of the uniquely
large referent. This is the item type for which the shape-
distinguished image is maximally salient according Experi-
ment 1. Finally, the pattern-distinguished items fall entirely
in line with what we expect, and those are the items where the
priors for shape- and attribute-distinguished images are much
closer to each other.

Qualitatively speaking, we would expect this if the refer-
ents were labeled according to salient distinguishing proper-
ties along the lines of Fig.2, a well-established algorithm for
generating referring expressions, which we adapt for gener-
ating hearer-internal labels for possible referents. Consider
Fig.1 one more time: for the ∼50% of subjects in Experi-
ment 1 who chose the red triangle, we can assume that COLOR
would be their primary salient property type for purposes of
Fig.2. This would generate the labels {‘blue circle’, ‘blue tri-
angle’, ‘red’}. Assuming these same priors for Experiment 4
(as we have been) we could posit that on ∼50% of trials, the
subject has this same labeling. In that case, upon hearing the
description “blue”, the subject would be at chance between
the two blue shapes, because under this labeling, the speaker
could have used ‘triangle’ to uniquely describe the blue trian-
gle and ‘circle’ to uniquely describe the blue circle, leaving
no principled way to interpret “blue” other than to guess.

Labeling could explain the qualitative deviations, and even
though the numbers are not perfect, it does indeed improve
model fit to add a labeling component to the model. We can
do this by substituting a new S1 function S ′1 into the H2 equa-
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Figure 4: Predicted (left) and actual (right) referent selection for two combinations of item type and description type.

tion which takes labeling into account. Letting L be the set of
labels for each possible referent, S ′1 can be defined as follows:

S ′1(d|r) = ∑
L

P(L)× eλH0(r|d,L)+β(d,r)

∑
d′

eλH0(r|d′,L)+β(d′,r)
(5)

We introduce no new free parameters if we simply take P(L)
to be the prior probability of the shape-distinguished refer-
ent for the L obtained when shape is primary, the prior of
the attribute-distinguished referent for the L obtained when
attribute is primary, and the prior of the non-distinguished
shape for the ‘full’ L , which omits no information. Doing
this, we can reduce the RMSE from 0.18 to 0.15, and could
perhaps reduce it further if we could independently assess
how primary salient properties are chosen. Using multino-
mial choice probabilities to determine log likelihood, we can
show that the data from Experiment 4 are significantly more
likely under the model with labeling.3

Conclusion
Using a variety of models and experimental items and tasks,
we have replicated existing results regarding behavior in ref-
erence games, and potentially found a new one, an effect of
labeling under conditions where certain referents have highly
salient properties. That it might matter how people inter-
nally label possible referents is not really a new idea, and
is in fact in line with game-theoretic literature on coordina-
tion (see e.g., Sugden, 1995). But it provides somewhat of
a paradox. On the one hand, this and other studies find that
speakers exhibit a bias toward noun descriptions in reference
games, across the board, and yet it seems as if hearers are as-
signing labels to potential referents that in some cases would
lead them to expect the opposite (e.g., to expect “red” to de-
scribe the red triangle in Fig.1). Thus further work is war-
ranted to probe whether such a mismatch between speaker
behavior and hearer expectations is generally observable.

3Change in deviance between the two models, ∆D = 59.26,
where deviance is -2 times log likelihood, follows a chi-square dis-
tribution with degrees of freedom equal to the number of parameters
added to the more complex model. Six prior values must be specified
to the labeling model—two each for color, shape and size items—
yielding χ2 = 59.26, df = 6, p < 0.001.

Further work must also be done to probe the details of
exactly how labeling works in reference games, and what
the implications are for iterative pragmatic reasoning more
generally. For example, it remains to be seen whether la-
beling should be seen as part of a rational process of prag-
matic reasoning, or as something that competes with it, as
Stevens (2016) would suggest. Finally, future work will use
online measures to probe the mechanisms that give rise to
the probabilities in our models. This would take us beyond
computational-level models, using such models only as a
starting point to guide us toward a more fine-grained under-
standing of this behavior (see Yang, to appear).
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Abstract 

Many everyday activities involve the use of one action to 
modify the effects of another: When driving, shifting 
gears modifies the influence of pressing the gas pedal on 
acceleration; when cooking, the rate of adding a 
particular ingredient modifies the influence of stirring on 
viscosity.  Here, we investigate a general ability to learn 
how to use actions to control schedules of reinforcement.  
In Experiment 1, participants quickly discovered the 
optimal rate of responding on an action that controlled 
the rate of reward contingent on performing a different 
action.  In Experiment 2, when the modifying action was 
itself rewarded, participants failed to discover the optimal 
rate.  Implications for formal theories of instrumental 
behavior are discussed. 

Keywords: Schedules of reinforcement; reward learning; 
instrumental contingencies. 

Introduction 
Since the early 20th century, researchers have 
investigated the influence of various reward schedules 
on the rate and selection of instrumental responses. For 
example, ratio schedules, in which reward delivery 
depends on the number of responses since the last 
reward, produce higher rates of responding than do 
interval schedules, in which reward delivery depends on 
the time elapsed since the last reward (Fester & Skinner, 
1957).  When two or more action alternatives are 
available, that which yields the greatest, most 
immediate, or most certain reward is, all other things 
being equal, generally that most frequently selected 
(e.g., Rachlin et al., 1991).  However, in the real world, 
many responses serve only to modulate the effects of 
other actions: The rate and pattern of pressing strings on 
a guitar does not itself yield music, but profoundly 
impacts the sounds produced by strumming.  Here, we 
assess a domain-general capacity for learning about 
actions that control schedules of reinforcement on other 
actions.   

Formally, the relationship between a particular action 
and its outcome has been modeled as a complex 
associative structure (Dickinson & Balleine, 1993), as 
the difference between probabilities of reward given the 
presence versus absence of the action (Hammond, 
1980), as the probability and subjective utility of the 
outcome given the action (Savage, 1954), or as a cached 
value assigned to the action based on its reinforcement 
history (Watkins, 1989).  What these diverse approaches 
have in common is that they address the identity and/or 

latency of a single action at a time, ignoring situations in 
which multiple actions are performed in concert and 
potentially interact. In our paradigm, an intermediate 
rate of responding on one action maximizes the reward 
contingent on performing a different, concurrently 
available, action.  

Experiment 1 

Methods 
Participants Thirty undergraduates at the University of 
California, Irvine (22 females; mean age=20±2.17) 
participated in the study for course credit. All 
participants gave informed consent and the study was 
approved by the Institutional Review Board of the 
University of California, Irvine. 

 
Task & Procedure The task is illustrated in Figure 1.  
We used a free operant paradigm in which participants 
were allowed to respond at will on either or both of two 
concurrently available actions, graphically represented 
on the computer screen, by pressing the corresponding 
keys on the computer keyboard. Whenever a response 
was made a selection square appeared around the chosen 
action for 300ms.  If the response was rewarded, an 
image of a quarter appeared center screen for 500ms and 
a count of the cumulative monetary earning, 
continuously displayed above the quarter image 
location, would increment by +$0.25.  The task was 
comprised of ten 2-minute blocks separated by brief rest 
periods.  All monetary earnings were fictitious. 

In the “Modify” group (n=15), the rate of responding 
on a “modifying” action influenced the probability that 
the concurrently available “modified” action would 
produce a reward.  When the modifying action was 
performed at an “optimal” rate of 1.25 to 2.75 presses 
per second, the probability of reward given a response 
on the modified action was 0.9.  When response rates on 
the modifying action were outside of the 1.25 to 2.75 
range, the probability of reward given the modified 
action was 0.  The modifying action did not itself 
produce any reward. Response rates on the modifying 
action were tracked using a differential equation that 
increased by an impulse of 1 at the time of a response 
and decayed each impulse at a linear rate of 0.2 per 
second, so that each impulse from a response decayed to 
zero after 5 seconds.  
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Specifically, for an impulse (ai), which was 1 if an 
action were taken during the current iteration of the 
program and 0 otherwise, a decay rate of 0.2, a counter 
for the number of responses that occurred within the last 
5 seconds (N5) and the difference in time between the 
current iteration of the program and the previous 
iteration (dt), the response rate variable (R) was updated 
on each iteration i by: 

Ri ← Ri−1 + ai − 0.2N5dt  
This method adjusts more quickly to changes in 
response rate than the commonly used approach of 
dividing the number of responses in a time window by 
the length of the window (e.g., Soto et al., 2006). The 
probability of reward on the modified action was set to 
0.9 whenever the response rate variable, R, was in the 
optimal, 1.25 to 2.75, range and 0.0 otherwise.   

Note that the optimal rate of responding on the 
modifying action was intermediate; this was done to rule 
out the contribution of systematic biases of either very 
high or very low responding.  On the other hand, an 
intermediate rate might represent an average towards 
which most responders converge in free operant tasks.  
To address this possibility, a second, “Yoked”, group 
was included (n=15), in which the rate of responding on 
the modifying action had no influence, while the 
probability of reward on the modified action was yoked 
to that of a participant in the Modify group.  We 
predicted that, by the end of the session, participants in 
the Modify group would respond on the modifying 
action at a rate falling within the optimal range, while 
those in yoked group would not.  
 

	

 
 

Figure 1: Task Illustration, see text for details.   

Results 
We divided the number of responses on the modifying 
action in each 5-second bin of task performance with 5 
(i.e., responses per second), and computed the distance 
of this response rate from the bounds of the optimal 
range, for the first and last 5 seconds of the task.  We 
then used a mixed analysis of variance (ANOVA) with 
“group” as the between-subject factor and “bin” as the 
within-subject factor to assess a change in optimal 
responding between the first and last bins.  There was 
no main effect of bin, F(1,28)=3.19, p=0.09, but a main 
effect of group, F(1,28)=6.53, p<0.05, and, critically, a 

bin-by-group interaction, F(1,28)=5.78, p<0.05.  
Planned comparisons revealed that while the two groups 
did not differ with respect to optimal responding on the 
modifying action in the first bin, t(28)=0.13, p=0.89, by 
the last bin, participants in the Modify group were 
significantly closer to the optimal response rate than 
were participants in the Yoked group, t(28)=3.61, 
p<0.01.  As can be seen in Figure 2, while the mean 
deviation from the optimal rate significantly decreased 
from the first to the last bin in the Modify group, 
t(14)=2.69, p<0.05, they remained unchanged across 
bins in the Yoked group, t(14)=0.05, p=0.63. The 
apparent absence of a change in optimal responding by 
Yoked participants reflects a tendency to either increase 
or decrease responding on the modifying action across 
blocks, resulting in no net change for the group; in 
contrast participants in the Modify group coherently 
converged towards the optimal rate.  

 
Figure 2: Mean deviation of response rates on 
the modifying action from the optimal range in 
the first and last 5 seconds of task performance, 
for subjects in the Modify (black) and Yoked 
(blue) groups, and for the single group of 
Experiment 2, in which the modifying action 
was rewarded (red). Error bars=SEM. 

We also assessed performance in terms of the proportion 
of bins with optimal response rates, early and late in the 
task.  Bins were scored as optimal if the windowed (5 
seconds) response rate was in the optimal range of 1.25 
to 2.75 responses per second.  For each subject, we 
assessed the number of optimal 5-second bins in the first 
and last 30 seconds of the task.  (We used 30 seconds, 
rather than the full 2-minute blocks, to ensure that the 
index of early learning did not include already 
asymptotic performance.)  The results using this metric 
were consistent with those described above: The groups 
did not differ in the first 30-second block, t(28)=1.12, 
p=0.24, but by the last 30-second block, the mean 
proportion of optimal bins was significantly greater for 
the Modify group than for the Yoked group, t(28)=6.93, 
p<0.01.  Indeed, while the proportion of optimal bins 
increased significantly from the first to the last block in 
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the Modify group, t(14)=3.60, p<0.01, it decreased, 
albeit with marginal significance, t(14) = 2.09, p=0.06, 
in the Yoked group.  The mean proportion of optimal 
bins in each 30-second block throughout the task is 
shown in Figure 3.  

 
Figure 3: Mean proportion of bins with an 
optimal response rate on the modifying action in 
each 30-second block of the task for the Modify 
(black) and Yoked (blue) groups of Experiment 
1, and for the Reward group of Experiment 2 
(red). Shading=SEM. 

With respect to the modified action, response rates 
were, overall, higher than those on the modifying action, 
for both the Modify, t(14)=3.10, p<0.05, and Yoked, 
t(14)=6.76, p<0.05, groups.  This likely reflects the fact 
that, while the probability of reward given the modified 
action was either a function of (Modify) or independent 
of (Yoked) responding on the modifying action, the 
actual delivery of reward was contingent only on 
performing the modified action.    

Experiment 2 
A well-studied phenomenon closely related to our query 
is that of “melioration” – a tendency to select an action 
alternative that produces a greater immediate pay-off, 
but that, when selected repeatedly, lowers the overall 
rate of reward (Herrnstein, 1991).  Such tendencies are 
commonly attributed to impulsivity (Herrnstein, 1991; 
Otto, Markman, & Love, 2012), but have also been 
described as rational choices under uncertainty 
(Gureckis & Love, 2009a, 2009b; Sims et al., 2013).  
Other related paradigms, such as delay discounting 
(Ainslie, 1975; Johnson & Bickel, 2002) and differential 
reinforcement of low response rates (Wilson & Keller, 
1953; Carter & MacGrady, 1966), have convincingly 
demonstrated the interfering influence of salient reward 
on rational decision-making (Ainslie, 1975; Van den 
Broek, Bradshaw, & Szabadi, 1987). 

In Experiment 2, we assess whether the lure of an 
immediate reward results in a failure to suppress 
responding on the modifying action, thus interfering 

with the ability to control the schedule of reinforcement 
on the modified action. 

Methods 
Participants Fifteen undergraduates at the University of 
California, Irvine (10 females; mean age=19.7±1.1) 
participated in the study for course credit. All 
participants gave informed consent and the study was 
approved by the Institutional Review Board of the 
University of California, Irvine. 
 
Task & Procedure Participants performed a task that 
was identical to that of the Modify group in Experiment 
1, with one exception: In addition to modulating the 
schedule of reinforcement on the modified action, the 
modifying action was itself rewarded by $0.25, with a 
probability of 0.2.  Note that, since this reward 
probability is much lower than the conditional, 0.9, 
probability of reward on the modified action, 
maintaining an optimal, intermediate, response rate on 
the modifying action dramatically increases the average 
reward rate.  

Results 
We computed the same measures of optimal responding 
as those used in Experiment 1. Comparing the first and 
last 5 seconds of performance, there was no change in 
the deviation of response rates on the modifying action 
from the bounds of the optimal rate, t(14)=0.48, p=0.64 
(see Figure 2). Likewise, the proportion of optimal bins 
did not differ between the first and last 30-second 
blocks of the task, t(14)=0.00, p=1.00. In the absence of 
random assignment, we refrain from making any 
statistical comparisons between the results of this 
experiment and those obtained in Experiment 1.  
Nonetheless, it is worth noting that, as illustrated in 
Figures 2 and 3, when the modifying action was itself 
rewarded, the rate of responding on the modifying 
action was apparently closer to that in the Yoked group 
than in the Modify group.  Finally, although, overall, 
response rates were again higher on the modified than 
the modifying action, unlike for the groups in 
Experiment 1, this difference was only marginally 
significant, t(14)=2.09, p=0.06, presumably reflecting 
the fact that, in Experiment 2, reward delivery was 
potentially contingent on performing either action.   

General Discussion 
In two experiments, we assessed the discovery and 
performance of an action that controlled the schedule of 
reinforcement on another, concurrently available, 
action.  In Experiment 1, participants quickly discovered 
and implemented an optimal, intermediate, response rate 
on a modifying action that, while not producing any 
rewards itself, modulated the reward contingent on a 
distinct, concurrently available, action.  Response rates 
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in a yoked control group confirmed that convergence to 
the optimal rate was due to the influence of the 
modifying action on the reward schedule of the 
modified action.  In Experiment 2, consistent with a 
large literature on the failure to suppress inappropriate 
responding in the face of immediate reward (Ainslie, 
1975; Carter & MacGrady, 1966; Van den Broek et al., 
1987; Wilson & Keller, 1953), reinforcement of the 
modifying action apparently prevented discovery of the 
optimal response rate. The focus in the existing 
literature on the disruptive effects of immediate reward 
has largely overshadowed the question raised here of 
whether, and how, agents learn about actions that 
modify schedules of reinforcement.  Our results suggest 
that, in the absence of interfering or competing reward 
contingencies, increasing levels of instrumental control 
can be achieved by incorporating information about 
dependencies between actions. 

In a model-free reinforcement learning account of 
free operant responding, Niv et al. (2007) proposed that, 
for each decision, the agent selects both the latency and 
the identity of the to-be-executed action, based on the 
relative degree to which that action increases the 
average reward rate.  Although it is possible that 
participants in the Modify group of Experiment 1 
similarly learned about the modifying action based on 
its reinforcement history, several aspects of our task 
depart from the specification of Niv et al. (2007).  Most 
notably, participants in our task would have to include a 
representation of the modified action in their state space 
when updating the value of the modifying action – that 
is, assess the value of a particular latency of the 
modifying action given that the modified action is 
simultaneously1 or proximally performed – since the 
modifying action is never itself rewarded.  Likewise, the 
value of the modified action has to be specified 
conditional on the performance of the modifying action, 
since the probability of reward on the former is zero 
whenever responding on the latter falls outside the 
optimal range.  It is of course possible to specify a 
model-free learner that has enough conditionals built 
into its state-representation to identify the combination 
of responding on modifying and modified actions that 
maximizes reward2.  

An alternative, model-based, approach is for the agent 
to create a graphical probabilistic model representing 

                                                             
1 Note that even the possibility of simultaneously performing 
multiple responses falls outside the scope of Niv et al.’s (2007) 
model, according to which all action-latency pairs are serially 
implemented (i.e., no alternative actions may be executed 
while the time indicated by the chosen latency passes). 
2 Indeed, Niv et al.’s (2007) model hard-codes into the 
definition of each state several variables that are needed to 
discover an optimal policy in the environments addressed by 
the model (e.g., the time elapsed since the last response when 
modeling interval schedules and the number of presses since 
the last reward when modeling ratio schedules). 

the dependencies between actions, states and rewards 
(e.g., Acuna & Schrater, 2010).  Although initially 
ignorant of the nature of these dependencies, a Bayesian 
reinforcement learner generates beliefs over a set of 
possible dependency structures and updates those 
beliefs, after each observation, using Bayesian 
inference. For example, a learner in our task might 
postulate two possible worlds: one in which the latency 
to respond on an action can modulate the probability of 
reward given that same, or some other, action, and one 
in which response latencies have no influence on 
schedules of reinforcement.  The former possibility must 
of course be further partitioned into several putative 
structures, each with a particular set of links (e.g., an 
action modifying its own probability of reward vs. that 
of a different action) and associated parameters.  The 
learner then updates the belief distribution over 
structures based on sequences of actions, latencies and 
rewards. 

Critically, the approach sketched in the previous 
paragraph, to address model-based inferences regarding 
action dependencies, can also be used to explain some 
of the most basic aspects of instrumental behavior, such 
as the distinction between interval and ratio schedules – 
Recall that, whereas on interval schedules a response is 
rewarded based on the amount of time elapsed since the 
last reward, on ratio schedules a response is rewarded 
based on the number of responses since the last reward. 
 These qualitatively different schedules produce distinct 
response profiles (Fester & Skinner, 1957), suggesting 
some, implicit or explicit, discrimination by the agent. 
 Notably, the interval schedule can be conceptualized as 
a case in which the rate of performing an action 
modifies the schedule of reinforcement, rather than just 
the rate of reward: Specifically, on a given interval 
schedule, any response rate greater than “one per the 
required interval” will decrease the probability of 
reward conditional on that action.  Other well-
established schedules, such as differential reinforcement 
of high or low responding (Van den Broek, et al., 1987) 
can also be characterized as actions modifying 
schedules of reinforcement, as can the “seeking” 
component of seeking-taking schedules (Balleine, 
Garner, Gonzalez, & Dickinson, 1995).  Thus, the 
framework proposed here potentially applies to a wide 
range of instrumental phenomena. 

At the neural level, model-free and model-based RL 
approaches have been mapped to dissociable neural 
substrates, with the ventral striatum, posterior putamen 
and premotor cortex being implicated in model-free 
responding (Glascher et al., 2010; Lee et al., 2014; 
Tricomi et al., 2009; de Wit et al., 2012), and the 
caudate, ventromedial prefrontal cortex and inferior 
parietal lobule in model-based computations (de Wit et 
al., 2012; Liljeholm et al., 2011, 2013, 2015; Lee et al., 
2014). It should be noted, however, that, with some 
exceptions (e.g., Liljeholm et al., 2013), the work 
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identifying such dissociations has focused on relatively 
simple model-based processes, such as the encoding of 
individual action-outcome contingencies or sensitivity 
to changes in an outcomes utility.  In contrast, the 
model-based learner postulated here engages in complex 
reasoning regarding how actions may be used to control 
action-outcome relationships.  Such processes may 
warrant the involvement of brain regions known to 
support relational and inductive reasoning, including the 
rostolateral and dorsolateral prefrontal cortex (e.g., 
Krawczyk et al., 2011).  

Finally, an important point regarding action 
dependencies such as those addressed here is how they 
relate to the actual representations of actions. In our 
task, the instructions and materials clearly defined and 
distinguished between action alternatives (see Figure 1), 
so that there could be little doubt about how many, and 
exactly what, actions were available.  It is interesting to 
consider how inferences and performance might have 
differed had the grouping of elements into discrete 
action alternatives been more ambiguous.  One 
possibility is that increasing ambiguity would afford a 
more rapid acquisition of relevant dependencies 
(Pezzulo, Rigoli, & Friston, 2015) and, further, that 
those inferred dependencies might serve to configure 
action elements into more clearly delineated action 
representations based on reinforcement learning 
principles (e.g. Reynolds, & O’Reilly, 2009).       

In conclusion, we have demonstrated a domain-
general ability to learn about, and take advantage of, an 
action that modifies the schedule of reinforcement on a 
different action.  We have also sketched a model that, by 
making inferences about dependencies between 
response latencies and conditional reward probabilities, 
might account for behavior across a wide range of 
instrumental schedules.  Future work will focus on 
extensions of our experimental paradigm, further 
development of formal accounts, and investigations of 
mediating neural substrates.  
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Abstract 

During the first year of life, infants develop a remarkable ability to 

group objects based on their similarities and differences. This 

ability of category formation represents one of the main 

mechanisms underlying the organisation of the semantic system. 

Early categories are formed spontaneously, in a non-supervised 

fashion and this type of category acquisition remains present even 

when more sophisticated forms of supervised category learning 

emerge. Even though there are various models of categorisation 

mechanisms across the lifespan, there is a gap in the research 

investigating implicit categorisation at different stages of cognitive 

development. Therefore, the aim of the current study was to 

compare processes of spontaneous concept formation in infants 

and adults using an experimental paradigm based on novelty 

preference. We discovered that both infants and adults show 

evidence of category learning (Experiment 1), though with 

different amount of training being needed to achieve the task. 

Adults successfully categorised objects already after a single block 

of training. Infants reached a level comparable to that of adults 

after twice the amount of training. As these tasks inevitably pose 

different cognitive and sensory demands to the two groups, in 

Experiments 2 and 3 we explored how varying parameters of the 

learning context affect dynamics of category formation. 

Decreasing memory demands of the task resulted in an 

acceleration of infants’ category formation (Experiment 2), 

whereas posing memory load in an implicit category learning task 

decelerated adults’ dynamics of category formation (Experiment 

3). 

Keywords: categorisation, learning context, non-supervised 

category acquisition, novelty preference, cognitive load, memory 

demands, infants, adults, eye tracking 

Introduction 

The ability to group objects based on their similarities and 

differences represents one of the main mechanisms 

underlying the organisation of the semantic system. 

Concepts “embody much of our knowledge of the world 

telling us what things there are and what properties they 

have” (Murphy, 2002, p. 1). Therefore, categorisation 

ability is considered to be critical for the organisation and 

stability of cognition (Mareshal & Quinn, 2001). The ability 

to detect regularities in the environment and form categories 

emerges early in development. At the age of 3-4 months, 

infants already demonstrate the ability to differentiate 

categories of dogs and cats (Eimas & Quinn, 1994), but also 

to form abstract perceptual categories (Bomba & Siqueland, 

1983). This ability becomes even more refined around ten 

months of age when infants become able to shape categories 

based on statistical regularities of category members 

(Younger & Cohen, 1986). 

In the domain of infant research, novelty preference is a 

standard method employed to explore categorisation 

processes. Typically, a familiarisation phase consisting of a 

set of training items (for instance members of two 

categories), is followed with a test phase where infants are 

presented with two novel items, one belonging to the 

familiarised category and one coming from a different 

category. Under the assumption of novelty preference, i.e. 

that infants look longer at the object that is perceived as less 

familiar, differences in looking times are interpreted as an 

index of category formation (e.g. Eimas & Quinn, 1994). 

For instance, in a study exploring how infants form 

categories based on correlational feature structure, two test 

items are presented, one of them depicting an average of all 

presented items and the second object representing a sub-

category average of one of two categories that could be 

formed (e.g. Plunkett et al., 2008). Infants who formed two 

categories demonstrated preference for the novel out-of-

category overall average. 

Despite the fact that processes of implicit, non-supervised 

category formation have been extensively studied in adults 

as well as in different patient populations (Reed, Squire, 

Patalano, Smith, & Jonides, 1999), there have been few 

attempts to directly compare category learning processes in 

infants and adults. One recent computational model of 

categorisation offered an integrative account for infant and 

adult category learning (the SUSTAIN model, Gureckis & 

3267



Love, 2004). Initially developed as a model of adult 

categorisation, the model proposes that mechanisms 

underlying infant and adult categorisation are not 

substantially different and assumes a continuous trajectory 

of conceptual development. Two explanations are offered to 

account for developmental differences – memory limitations 

and stimulus encoding limitations (Gureckis & Love, 2004). 

In order to empirically test these assumptions, in the present 

study we developed an experimental paradigm for adults 

providing similar learning conditions as employed in the 

infant study. We aimed to address the question whether 

there are shared mechanisms of spontaneous conceptual 

organisation across the lifespan.  

To parallel the visual familiarisation procedure used with 

infants, we designed a task to explore implicit category 

learning in adults where preferential looking was used as an 

index of category learning, and which provided similar 

learning conditions as those encountered in the infant study. 

As infants were merely presented with a set of objects, 

adults did not receive any explicit training or feedback on 

category formation. The adult task was also designed to tap 

into implicit, unsupervised category learning. As in the 

infant experiment, we presented adults with a series of 

objects as part of the familiarisation phase, followed by a 

test phase in which two test objects were presented and 

looking preferences were measured. Several studies using 

visual paired-comparison procedure with adults have shown 

that novelty preference can be used as an index of visual 

recognition in adults (Richmond, Colombo & Hayne, 2007). 

As the magnitude of novelty preference increases with 

familiarisation time in object recognition (Richmond et al., 

2007), we propose that the same effect can be interpreted as 

an index of category formation.  

Even though the same type of experimental task was used 

with both infants and adults, there are inevitable differences 

in the demands to the two groups of participants this task 

poses. Task difficulty and memory demands might lead to 

differences in performance. One recent study has 

demonstrated the importance of learning conditions in 

altering categorisation in adult participants. Carvalho and 

Goldstone (2014) showed that category structure influences 

how efficiently category representations will be formed, and 

that this effect is tied to the way in which category members 

are presented. The authors conclude that there is category-

specific attention allocation – simultaneous presentation 

promotes attention to commonalities among objects, while 

sequential presentation emphasizes differences among 

objects. These studies suggest that categorisation cannot be 

seen only as an extraction of abstract rules or computation 

of feature statistics, but emphasize that the dynamics of 

learning have an important role in category formation.  

After discovering that adults and infants both showed 

categorisation, but at different rates (Experiment 1), we 

conducted Experiments 2 and 3 to investigate further which 

factors are relevant for categorsation in these cases. In order 

to explore how the context of learning affects category 

learning, we varied the task difficulty and investigated its 

effects on categorisation in infants and adults. Our 

hypothesis was that decreasing the task demands will 

accelerate category formation in infants (Experiment 2), 

whereas adding an additional cognitive load to the task will 

delay category formation even in adults (Experiment 3). 

 

Experiment 1 

The aim of the first experiment was to compare implicit 

category learning processes in infants and adults. In 

addition, we were interested in exploring the effects of the 

amount of training on forming categories based on statistical 

regularities, i.e. features correlations. Thus, three training 

blocks were interleaved with three blocks in which category 

formation was tested. 

Participants 

Thirty-two 10-month-old infants took part in this study (two 

participants were excluded due to fussiness and refusal to 

look at the screen). Participants were recruited at the local 

maternity ward and all were full-term babies with no known 

health conditions. All participants came from homes where 

English was the only language spoken.  

In addition, 24 adults took part in the experiment (mean 

age = 23.67 years (SD=3.08)). Two participants were 

excluded from the analyses (one due to calibration failure 

and one due to eye-tracker track loss). 

Stimuli 

A set of novel objects was designed for the purposes of this 

study. Coloured and textured 3D looking objects 

represented novel creatures (called Sukis). As illustrated in 

Figure 1, each Suki consisted of four features: body, 

antennae, hands and legs. Each feature varied systematically 

on a scale of seven dimensions (body shape, number of 

antennae, hand size, length of legs), (see table 1). A set of 

24 Sukis was designed in a way to resemble the structure of 

objects used in several categorisation studies (Younger & 

Cohen, 1986; Plunkett et al., 2008; Mather & Plunkett, 

2011). Values of one feature were predictive for values on 

other dimensions, thus inviting participants to form two 

categories (defined as the narrow condition in Plunkett et 

al., 2008). However, the range of potential dimensions each 

feature can take was extended, thus instead of a range of 5 

dimensions used in above mentioned studies, we introduced 

7 potential variations of each feature.  

 

 
 

Figure 1. Examples of the Sukis: Subcategory average 

objects  
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The reason for increasing the variability of the stimuli set 

is to have the possibility to create test items made of 

completely novel dimensions that have not been presented 

in any instance during the familiarisation phase. Four 

additional Sukis were designed to be presented as test items: 

an overall average object (consisting of mean values on each 

dimension, i.e. 4444), two subcategory averages (2222 and 

6666). In addition, completely novel, out-of-category 

objects which comprised of the same features as all objects, 

but organized in a completely different manner were 

presented in the final trials of the test phase. All objects 

were depicted against a 5% grey background. 

 

Table 1: Stimulus structure (first familiarisation set) 

 

Stimulus Category Antenna Hand Body Legs 

1 1 1 1 3 3 

2 1 1 3 1 3 

3 1 3 1 3 1 

4 1 3 3 1 1 

5 2 5 5 7 7 

6 2 5 7 5 7 

7 2 7 5 7 5 

8 2 7 7 5 5 

 

Procedure 

 

Infants After written consent was obtained from a carer, an 

infant was seated on a carer’s lap approximately 50 cm from 

a 1920x1080 inch screen in a sound-proof experimental 

booth. The parent was asked to keep their eyes closed for 

the duration of the experiment. Data was recorded using a 

Tobii TX300 Eye Tracker with a 120 Hz sampling 

frequency and four point calibration. The study was run 

with a custom Matlab stimuli presentation software 

PresentMate based on the Psychophysics Toolbox. Infants’ 

behaviour was monitored via a centrally-located camera 

above the screen. Trials were initiated by the experimenter 

when the infant was attending the screen. Each 

familiarisation block consisted of eight trials. Each trial 

started with a presentation of an animated star in the central 

location of the screen accompanied by a chiming sound for 

the duration of 2000 ms. Following this, one stimulus (500 x 

500 pixels) was presented in the central location for 6000 

ms. As a previous study has shown that the order in which 

stimuli are presented may affect category formation (Mather 

& Plunkett, 2011), we calculated mean Euclidean distance 

(as an average of seven distances between consecutive 

objects) for all possible stimuli sequences (40320 

sequences) and selected sequences that fall within the range 

between the 40th and 60th percentile (8112 sequences). 

Then, for each participant a particular sequence from this 

pool was randomly selected. Three test blocks were 

interleaved with learning blocks. In each test, after an 

attention getter was presented for 2000 ms, two test objects 

were presented simultaneously for 10 000 ms. The first two 

trials were category formation test trials in which the overall 

category average (object 4444) and a subcategory average 

object (2222 or 6666) were presented. The positions of the 

two objects were counterbalanced across the two trials. The 

third test trial was always a novelty preference test in which 

one of the learning items from the previous learning phase 

was presented along with the novel, previously unseen out-

of-category object. The purpose of this trial was to check 

whether infants were engaging in the task and expressing 

the expected novelty preference. The choice of the 

subcategory average object (2222 or 6666) presented in a 

particular test block was balanced across test blocks. The 

third test block was identical to the first test block for half of 

the participants, whereas others saw identical items as in the 

second test block. Which subcategory average object was 

presented first was counterbalanced across participants. 

 

Adults Participants were instructed they would take part in 

a free viewing task so their only task would be to look at the 

objects presented on the screen. After written consent was 

obtained, participants were seated in front of the eye-tracker 

and their eye-movements were recorded using 120Hz 

tracking frequency. Upon completion of the experiment, 

none of the participants reported they were aware what the 

purpose of the experiment was. The experimental design 

was kept as similar as possible to the infant version. 

Participants were presented with 3 blocks of training, each 

consisting of 8 trials. Each trial started with a centrally 

presented fixation cross for 500 ms followed by a 

presentation of a training items for the duration of 2000 ms. 

Training blocks were interleaved with test blocks. 

Analogous to the infant version, each test consisted of two 

categorisation test trials and a novelty preference trial. After 

the fixation cross was presented for 500 ms, test trials were 

presented on screen for 3000 ms.  

Results: Infants 

 

Category Formation Test For category formation test 

trials, preference scores were calculated for all trials by 

dividing looking at the overall average object by total 

looking time to the overall and modal object. A repeated-

measures ANOVA with factors Block (1, 2 and 3) and Test 

(1 and 2) showed no significant effects (all ps>0.05)
1
. 

Planned comparisons against chance were performed for 

each test. Infants expressed a preference for the overall 

average object in the second trial of the second test block 

(t(25)=1.99, p<0.05), (Figure 2).  

 

Novelty Preference Test To validate that infants’ behaviour 

was driven by novelty preference, infants were presented 

with the novelty preference test after each category 

formation test block. Infants’ looking to the novel object 

was divided by the total looking time and a one-way 

                                                           
1 Only participants who contributed to all trials were included in 

this analysis 

3269



ANOVA with Block as a within-subjects factor revealed no 

effect of Block. Planned comparisons showed that infants’ 

preference for the novel object differed from chance only in 

the second block (t(26)=2.58, p<0.05). 

 

 
Figure 2: Looking preferences in test  

Results: Adults 

 

Category Formation Test Looking preference scores were 

calculated in the same way as for infants. The proportion of 

looking toward the overall average object was divided by 

the total looking time to both overall and modal objects. A 

repeated measures ANOVA with the within-subject factors 

Block and Trial revealed a significant main effect of Block 

(F(2,44)=3.07, p=0.05). Planned comparisons against 

chance revealed that preference towards overall average was 

significant only in the first block (t(22)=2.07, p=0.05), 

whereas in the remaining does not significantly differ from 

chance (p>0.05; Table 2).  

 

Novelty Preference Test Participants exhibited preference 

for the out-of-category object in all three novelty 

preferences tests (no difference was found between 3 

novelty preference trials).  

 

Table 2: Mean looking preferences on test  

(Experiment 1, Adults, SDs provided in brackets) 

 

Block Test Novelty 

1 0.55 (0.17)* 0.67 (0.22)* 

2 0.51 (0.13) 0.67 (0.18)* 

3 0.47 (0.17) 0.61 (0.20)* 

 

Experiment 1: Discussion 

Results of Experiment 1 have shown that both infants and 

adults show evidence of category formation based on 

feature correlations in a free viewing task. In addition, this 

experiment revealed that paradigms based on novelty 

preference might be a useful tool in studying non-supervised 

category learning in adults. The results also showed that 

infants were slower in forming categories requiring a greater 

amount of familiarization to demonstrate similar level of 

performance as adults. The observed differences in the 

performance might be due to various factors related to 

developmental differences. We hypothesize that one of the 

main factors driving these differences are memory demands. 

In order to compare an item presented during familiarisation 

with a previously presented one, information about the 

former items needs to be kept active in the working memory 

for comparison with the currently presented item. This 

might result in slower category formation in infants as it 

takes more resources to perform in this task due to limited 

memory abilities.   

In order to test this hypothesis, we conducted the second 

experiment in which we decreased memory demands of the 

task by presenting familiarisation items in pairs. We 

hypothesized that, if memory load is reduced, infants will be 

faster in extracting category information.  

 

Experiment 2 

Participants 

Twenty-eight 10-months old infants took part in this study 

(two infants were excluded from the later analyses due to 

failing to reach minimum amount of looking time during 

familiarisation).  

Stimuli and procedure 

The stimuli set used in this experiment was identical to the 

one in Experiment 1. As opposed to sequential presentation 

in the first experiment, familiarisation items were presented 

in pairs. A total of four trials were presented in each 

learning block. Following the presentation of an attention 

getter, two objects were presented simultaneously for 12 

000 ms. Pairs of objects were selected based on sequences 

used in the sequential condition. Namely, each sequence 

used in Experiment 1 had a corresponding paired sequence 

in Experiment 2. It is important to note that despite the 

difference in the number of trials in each learning block, the 

total duration of learning blocks was identical across the two 

experiments.  

 

Results 

 

Category Formation Test For category formation test 

trials, preference scores were calculated for all trials by 

dividing looking at the overall average object by total 

looking time to the overall and sub-category average object. 

A repeated measures ANOVA with factors Block (1, 2 and 

3) and Test (1 and 2) revealed a main effect of Block (F(2, 

36)=3.15, p<0.05) (only participants who contributed to all 

trials were included in this analysis, N=19). As there was no 

main effect of Trial, we averaged performance in the two 

test of the same block and performed planned comparisons. 

Performance in each block was compared against chance 

and we found that preference for the overall average object 

was significantly above the chance in the first block 
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(t(25)=2.91, p<0.01), whereas in the remaining two blocks 

preference did not significantly differ from chance (mean 

preference values and dispersion are depicted in Table 3). 

 

Novelty Preference Test To validate that infants’ behaviour 

in test trials was driven by novelty preference, following 

each category formation test block, infants were presented 

with the novelty preference test. A one-way ANOVA with 

Block as a within-subjects factor revealed a near significant 

effect of Block (Greenhouse-Geiser F(2, 38)=0.76, p=0.06). 

Planned comparisons revealed that infants’ preference for 

the novel object differed from chance only in the first block 

(Wilcox signed rank test: V=242, p<0.05). 

Table 3: Mean looking preferences on test (Experiment 2, 

SDs provided in brackets). 

Block Test Novelty 

1 0.57 (0.12)* 0.63 (0.26)* 

2 0.46 (0.18) 0.48 (0.29) 

3 0.49 (0.14) 0.60 (0.27) 

 

Experiment 2: Discussion 

Experiment 2 revealed that the dynamics of infants’ 

category formation can be shaped by varying the parameters 

of the learning context. Decreasing memory demands in the 

task leads to a boost in extracting category relevant 

information. Infants’ faster learning was also resembled in 

the fact that they demonstrated novelty preference already in 

the first test. Diminished novelty preference in the following 

tests and well as a larger attrition rate suggests that infants 

learned faster and then disengaged from the task. We 

conducted Experiment 3 to investigate whether increasing 

memory demands would lead to a decrease in the speed of 

category formation in adult participants. For the purpose of 

investigating implicit category learning in adults we adapted 

the N-back task, which is typically used in studies of 

working memory. Infants in the sequential condition were 

presented with one object at a time and had to mentally 

compare objects that were presented. Thus, we used a 1-

back version of the task and investigated whether 

participants spontaneously form categories under higher 

cognitive load conditions. If this incidental categorisation 

occurs, we expect that participants will judge between-

categories pairs faster than they would judge within-

category comparisons. Having perceptual similarity and 

semantic distance between to-be-compared items controlled, 

we predict that differences in the discrimination speed might 

reflect processes of categorisation.  

 

Experiment 3 

Participants 

Twenty-four participants, students at Oxford University 

took part in this study (mean age = 23 years (SD= 2.54)). 

All participants were right handed and had normal or 

corrected-to-normal vision. Prior to taking part in the 

experiment, all participants signed an informed consent and 

upon experiment completion received course credits for 

their participation.  

Stimuli and Procedure 

An identical stimuli set to the one in Experiments 1 and 2 

was used in this study. The experiment consisted of seven 

blocks. Each block had two parts. A total of 36 learning 

trials were presented in the first part, and 10 test trials in the 

second part of each block. The order of presentation was 

pseudorandomised within each block.  In order to balance 

the number of “identical” and “different” responses, 

participants were instructed to give a response only for 

probed trials, where a red dot would appear in the centre of 

the screen. In the learning part, there were 16 “different” 

comparisons (and an equal number of “identical”), half of 

which were within category, whereas the other half crossed 

the category boundary. In the test part, there were four 

“identical” and four “different” comparisons. While visual 

similarity and semantic distance (expressed through 

Euclidean distance) between the two compared objects was 

identical, some pairs crossed the category boundary (3333-

5555), one pair was on the boundary (4444-6666) and some 

pairs were within the same category (1111-3333, 5555-

7777).  

 

Results 

In order to explore whether there is a difference in reaction 

times for between and within category judgments during the 

course of the experiment, growth curve analysis (Mirman, 

2014) was used. Mean reaction times in each test block are 

presented in the Figure 3. The reaction time in mismatch 

trials were modeled using a linear growth curve model with 

a fixed effect of mismatch type (within-category and 

between-categories comparison) on the intercept and slope 

terms and random effects of participants on the intercept and 

slope to model individual differences in initial speed and 

rate of change. The fixed effect was added to the base model 

and its’ effect on model fit was evaluated using model 

comparisons. All analyses were carried out in R version 

3.3.1 using the lme4 package (version 1.1-12). There was a 

significant effect of mismatch type on the intercept 

(χ
2
(1)=4.13, p<0.05) suggesting that participants responded 

faster when comparing items from different categories as 

opposed to performing within-category comparisons. This 

result suggests that participants organised items into two 

separate categories which resulted in making members of 

the same category look more similar than items belonging to 

different categories, even though perceptual similarity for 

both types of comparisons was identical.   
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Figure 3. Mean reaction time across 7 test blocks 

 

General Discussion 

Taken together, the results of the experiments reported in 

this paper demonstrate how changing parameters of the 

learning context affect the dynamics of category learning in 

infants and adults. Experiment 1 provided evidence that 

both infants and adults can form categories in a free-viewing 

task, though it takes a different amount of exposure to 

succeed. Infants showed evidence of category formation 

after two blocks of familiarisation, whereas adults reached a 

similar level already after one training block. In addition, 

this experiment suggests that experimental paradigms based 

on novelty preference, the standard approach in infant 

research, can be used to explore non-supervised category 

learning in adult population as well.  

Findings obtained in the second and the third experiment 

suggest that changing the task difficulty can accelerate 

(Experiment 2) or decelerate (Experiment 3) the process of 

extracting category relevant information for infants and 

adults, respectively. That the task structure can modulate 

infants’ learning is further confirmed by the significant 

interaction between Experiment (1 and 2) and Block (1, 2 

and 3) in a combined analysis (F(2, 66)=4.518, p<0.05). The 

finding that paired presentation leads to faster category 

formation in infants is consistent with existing literature 

suggesting positive effects of comparison on learning and 

memory (Oakes & Ribar, 2005). In addition, the results of 

Experiment 3 with adults also suggest that increasing the 

load impedes category formation. Initially developed to 

explain cross-modal effects of labels on categorisation, the 

perceptual load hypothesis can also offer a way of 

interpreting the obtained results (Plunkett, 2010). This 

hypothesis assumes that extraction of statistical information 

during category formation is also dependent on the 

perceptual load required to process individual stimuli and 

not exclusively on the feature correlations alone. Paired 

presentation may represent an optimal amount of available 

information for category formation in infants. Alternatively, 

it might be the case that the invitation to compare stimuli is 

contributing to the modulations of category learning. Future 

research needs to explore does manipulating load in other 

ways would result in a similar modulations of learning 

timecourse.  
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Abstract 
 

Motivated form-meaning mappings are pervasive in sign 
languages, and iconicity has recently been shown to facilitate 
sign learning from early on. This study investigated the role of 
iconicity for language acquisition in Turkish Sign Language 
(TID). Participants were 43 signing children (aged 10 to 45 
months) of deaf parents. Sign production ability was recorded 
using the adapted version of MacArthur Bates Communicative 
Developmental Inventory (CDI) consisting of 500 items for 
TID. Iconicity and familiarity ratings for a subset of 104 signs 
were available. Our results revealed that the iconicity of a sign 
was positively correlated with the percentage of children 
producing a sign and that iconicity significantly predicted the 
percentage of children producing a sign, independent of 
familiarity or phonological complexity. Our results are 
consistent with previous findings on sign language acquisition 
and provide further support for the facilitating effect of iconic 
form-meaning mappings in sign learning.  

 
Keywords: Iconicity, language acquisition, sign language 

          
Introduction 

Arbitrariness, lack of a motivated link between a 
linguistic form and its meaning, has long been 
considered as a design feature of human language (de 
Saussure, 1915, 1983; Hockett, 1960). However, recent 
evidence has shown that iconicity, resemblance between 
form and its referent, is a more pervasive feature of 
language than previously thought (e.g., Perniss, 
Thompson, & Vigliocco, 2010; Dingemanse, Blasi, 
Lupyan, Christiansen, & Monaghan, 2015).  For 
example, ideophones are used to express a wide range of 
features such as manner of movement, color, shape, size 
of an object, or emotional and psychological states (e.g., 
Japanese words ‘korokoro’ to refer to a light object 
rolling repeatedly and ‘gorogoro’ to a heavy object 
rolling repeatedly) or onomatopoeic words, which use 
the sound of a word to depict the sound of its referent 
(e.g., “moo” to refer to a cow) (e.g., Imai & Kita, 2014). 
Compared to spoken languages, the use of visual-spatial 
modality makes iconicity a more prominent feature in 
sign languages (e.g., Taub, 2001). Signers can, for 
example, use a curved handshape to refer to a cup or use 
the signing space in front of them to show the location of 
different objects in relation with each other. 
Pervasive existence of iconic forms in languages has 
intrigued many researchers about its role in language 
development. Accumulating evidence has shown that 
iconicity has a facilitating effect for early language 

development. Imai, Kita, Nagumo, & Okada (2008) 
reported an advantage for 3-year-old Japanese acquiring 
children in learning action words when these words are 
sound-symbolic compared to those which are arbitrarily 
linked to the sound of the action. In another study, 2.5-
year-old children showed a tendency to match the words 
with rounded vowels to rounded shapes and words with 
unrounded vowels to pointed shapes (Mauer, Pathman, 
& Mondloch, 2006). Onomatopoeic words constitute a 
substantial portion of early acquired vocabulary by 
German speaking children (Laing, 2014). Also, early 
acquired words in English and Spanish were rated more 
iconic than the ones acquired later (Perry, Perlman, & 
Lupyan, 2015; Massaro & Perlman, 2017).   
The potential effects of iconicity have also been explored 
in the context of sign language acquisition research – 
although in fewer studies compared to spoken language 
research. To understand the role of iconic nature of 
linguistic forms in sign languages, Orlansky & 
Bonvillian (1984) analyzed whether the first signs 
learned by signing children were more iconic, but their 
initial analyses did not find an overrepresentation of such 
signs in the first 10 words and beyond. In their data, only 
about a third of words were iconic, which was in line 
with the overall proportion of iconic signs in American 
sign Language (ASL). In contrast, Lloyd, Loeding, & 
Doherty (1985) reanalyzed the data based on a broader 
definition of iconicity and found an over-representation 
of iconic signs in early acquired signs. Since then it has 
become clear that iconicity is a more complex property 
rather than being a holistic concept, and it is now 
common to rate the iconicity of signs on a scalar scale of 
1 (not at all iconic) to 7 (highly iconic) (e.g., Vinson, 
Cormier, Denmark, Schembri, & Vigliocco, 2008 for 
BSL norms). However, iconicity of signs can also differ 
qualitatively in meaningful ways: for example, signs can 
represent actions or perceptual qualities of their referents 
(see Thompson et al., 2011; Ortega, Sümer, & Özyürek, 
2016). Under this new view of iconicity, recent studies 
with signing children have shown that iconicity has a 
predictive power in early sign learning, i.e., iconic signs 
are acquired earlier than non-iconic signs (Thompson, 
Vinson, Woll, & Vigliocco, 2012; Caselli & Pyers, in 
press). Thompson and colleagues (2012) explored the 
relationship between iconicity and sign language 
acquisition using a mixed cross-sectional, longitudinal 
design on productive and comprehensive vocabulary size 
of British Sign Language (BSL) acquiring deaf children 
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of deaf parents administering the MacArthur Bates 
Communicative Developmental Inventory (CDI). The 
CDI is a parental report in which parents indicate 
vocabulary learning by ticking items on a list of words if 
their child produces or understands them (Fenson, Dale, 
Reznick, Bates, Thal, & Pethick, 1994). They collected 
data from 31 deaf children aged between 8 and 30 
months and found that iconicity facilitates sign learning 
from early development on, but particularly in children 
older than 21 months. They argue that the advantage seen 
in older children could be due to more cognitive capacity 
or more environmental experience which children can 
use to understand and establish such iconic links between 
meaning and form. 
It has also been proposed that other properties of a sign 
may be as or even more important than iconicity such as 
lexical frequency (i.e., familiarity), neighborhood 
density (i.e., the number of lexical items that are 
phonologically related to a target), or phonological 
complexity (Caselli & Pyers, in press; Thompson et al., 
2012). Phonological complexity in sign language is 
based on motoric subunits and seems to be a crucial 
factor because children learning a sign language show 
phonological reductions and substitutions of features that 
are marked less – similar to children learning a spoken 
language (e.g., Meier et al., 2008). To what extent these 
factors are influential on early sign learning is also 
controversial since Thompson et al. (2012)’s results 
indicate iconicity to be a more powerful predictor than 
other factors such as familiarity or phonological 
complexity, while Caselli and Pyers (in press) argue that 
neighborhood density and lexical frequency (familiarity) 
are also as strong contributors as iconicity in early sign 
development.   
Studies with signing and speaking children provide 
converging evidence on the facilitating role of iconic 
form-meaning mappings in early lexical development 
regardless of the language modality. Investigating the 
effects of iconicity in sign language acquisition provides 
further evidence for this “modality-free” role of iconic 
forms in this domain of language development and 
contributes to our understanding on to what extent 
general principles of conceptual development influence 
the language development in signing children – a less 
studied population compared to speaking children.  
 

The Present Study 
The aim of the current study was to add to the growing 
literature on the role of iconicity in sign language 
acquisition by studying children acquiring TID, which 
has been studied less than many Western sign languages 
such as ASL or BSL. Analyzing data from other sign 
languages is crucial, because conflicting views on the 
role of iconicity in sign language acquisition still exist 
(e.g. Thompson et al., 2011). Based on Thompson et al. 
(2012) and Caselli & Pyers’ (in press) findings, we 
assumed that the visual-spatial modality of sign 
language, which is rich in iconic form-meaning 
mappings, would modulate language acquisition and that 
iconicity could present a potential advantage in early 

language development for TID acquiring children. We 
hypothesized that the iconicity of a sign would be 
correlated with the percentage of children producing the 
sign. We further expected iconicity to be a significant 
predictor of the percentage of children producing a sign, 
even if after controlling for familiarity and sign 
complexity. 
 

Method 
Design 
The experiment was realized with a correlational design. 
Simultaneous multiple regression was used to test 
whether different sign characteristics (iconicity, 
familiarity and phonological complexity) were good 
predictors for the percentage of children producing a 
sign. 
 
Participants 
Data were collected for 27 deaf children of deaf parents 
and 16 hearing children of deaf parents (i.e., CODAs), 
thus for a total of 43 children (female 28) born to deaf 
families and exposed to TID from birth. Where possible, 
parents participated in data collection at two separate 
time points, with a 3-month interval, thus increasing our 
data set to a total of 57. Although CDI typically tracks 
vocabulary development in children between 8-36 
months of age, the age of the children in the current study 
ranges between 10-45 months (M = 25.98, SD = 10.23) 
to increase sample size. The majority of children were 
from families with a middle or upper socio economic 
status, meaning that at least one parent works in a paid 
job and completed high-school education.  
 
Procedure 
Data were elicited from a version of the MacArthur Bates 
Communicative Developmental Inventory (CDI) 
adapted for TID. In this version, three source tests were 
taken into consideration to account for modality and 
cultural specific issues: ASL CDI (Anderson & Reilly, 
2002), BSL CDI (Woolfe, Herman, Roy, & Woll, 2009) 
and Turkish CDI (TIGE, Aksu-Koç, Küntay, Acarlar, 
Maviş, Sofu, Topbaş, & Turan, 2009). As a result, TID 
CDI consists of 500 items grouped into 18 categories 
such as “animals”, “toys” and “actions”.  
Although previous CDIs, both for sign and spoken 
languages, were administered in a pen-and-paper format, 
considering low reading abilities of deaf people (e.g., 
Bloomquist Traxler, 2000), we presented TID CDI in a 
web-based format where parents themselves logged onto 
the system to see videos of signs one after each other and 
decided whether their children produced the sign in the 
video. This procedure was preceded by a training session 
in which they saw instruction videos in TID and asked 
any clarification questions to a deaf assistant, who was 
also online during entire training session. Only sign 
production data was collected since a small pilot study 
with a group of deaf parents showed that it was often 
confusing to differentiate comprehension versus 
production of a sign for them. They also expressed that 
they were less sure about their answers regarding 
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comprehension since they cannot see comprehension but 
only production of the signs.  
As part of another study (Taşçı & Sumer, in prep), 4 deaf 
signers of TID (Mage = 32.3) were shown a total of 328 
signs on a computer screen and asked how iconic they 
think these signs are. Here, the iconicity was defined as 
the similarity between the linguistic form (i.e., sign) and 
the entity that it refers to, including both the perceptual 
and/or action-based properties. In another session, 5 deaf 
signers (Mage = 33.4), were asked how familiar they think 
these signs are.  Both iconicity and familiarity ratings 
were on a scale of 1 (not at all iconic/familiar) to 7 
(highly iconic/familiar) (e.g. see Vinson et al., 2008 for 
norms in BSL for comparison). We additionally included 
phonological complexity ratings following Mann, 
Marshall, Mason, & Morgan (2010), in which three main 
phonological parameters of signs (i.e., handshape, 
location, movement) were assigned a complexity value. 
For example, unmarked handshapes in TID, as 
determined by Kubus (2008), were rated less complex 
than other handshapes.  
 

Results 
We excluded data points with unrealistic productive sign 
scores aged 10 to 20 months, if they were outside the 
Mean plus Standard Deviation found for ASL norms 
(Anderson & Reilly, 2002) for the child’s age range. 
These sign scores can be attributed to a misunderstanding 
during data collection. Exceptionally high sign scores 
were not excluded for children aged older than 20 
months, as high variability is a key component of 
language acquisition. Thus, we included a total of 51 data 
points in our analyses. The productive sign score for the 
subsample of 104 signs was (M = 51.27, SD = 32) (Table 
1).  

Table 1. General descriptive statistics after excluding 
outliers (N = 51) 

Age Total Productive 
sign score 

Subset Productive 
sign score 

10 - 45 
M = 27.45 
SD = 9.74 

1 - 500 
M = 215.49 
SD = 154.56 

0 - 104 
M = 51.27 
SD = 32 

N = Sample size, M = Mean, SD = Standard deviation 

Each sign was on average produced by 44% of children 
(M = 0.44, SD = 0.18). Spearman’s correlation between 
age and subset productive sign score was significant (rs 
= .54, p < .001). 

	
Figure 1. Spearman’s correlation between subset productive 
sign score and age in months. Linear trend lines included.	
 
Iconicity, familiarity and complexity scores of 104 signs 
were available and used for further analyses (Table 2).  
 
Table 2. Sign ratings and descriptive statistics for the 
subset of 104 signs 

Iconicit
y 

Familiarit
y 

Complexit
y 

Mean Age 
of 
Productio
n 

PerPro
d 

1 - 7 
M = 5.15 

SD = 
1.89 

2 - 7 
M = 6.16 
SD = .91 

0 - 2 
M = .64 
SD = .67 

 

4 – 27 
M = 15.13 
SD = 5.84 

.11 - .84 
M = .44 
SD = .18 

M = Mean, SD = Standard deviation, Mean Age of Production 
= mean age of children capable of producing a sign, PerProd = 
percent of children capable of producing a sign 
 
Spearman’s correlations were carried out to clarify the 
relationship between the main variables in the study 
(Table 3). Mean Age of Production and Percentage 
Producing were highly positively correlated and 
therefore only percentage of production was used for 
further regression analyses. Iconicity rs= .38, p < .001 and 
familiarity ratings rs= .32, p = .001 were both significantly 
positively correlated with Mean Age of Production and 
Percentage Producing. However, iconicity and 
familiarity ratings were not correlated. Phonological 
complexity was not correlated with Mean Age of 
Production and Percentage Producing and was also 
unrelated to iconicity and familiarity ratings. 
 
Table 3. Spearman’s correlations between the main 
variables in the study 
 PerProd Icon Fam  Complexity 

Mean Age of 
Production 

1** .39*
* 

.32*
* 

-.13 

Percentage 
Producing 

 .38*
* 

.32*
* 

-.13 

Iconicity   .13 -.18 

Familiarity    -.03 

Complexity     
**p ≤ .005, PerProd = Percentage of children capable of 
producing a sign, Icon= Iconicity, Fam = Familiarity 
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Figure 2. Spearman’s correlation between iconicity ratings and 
percentage of children producing a sign. Linear trend line 
included. rs= .38, p < .001. 
 

 
 
Figure 3. Spearman’s correlation between familiarity ratings 
and percentage of children producing a sign. Linear trend line 
included. rs= .32, p = .001. 

The data were entered into simultaneous multiple 
regression analysis, using the percentage of children 
producing a sign as dependent variable and iconicity, 
familiarity and complexity as predictors. The results for 
the model indicate that the predictors explained 17% R2= 
.17, F(3,100) = 7.84, p < .001. Both iconicity β = .31, 
t(100) = 3.38, p = .001 and familiarity β = .25, t(100) = 
2.78, p = .006 significantly predicted the percentage of 
children producing a sign. Phonological complexity was 
not a significant predictor. Adjusted R Squared values 
were used in the analysis. 

Discussion and Conclusion 
We investigated the role of iconicity in the acquisition of 
Turkish Sign Language (TID) by signing children of deaf 
parents and found that the iconicity of a sign was 
positively correlated with the percentage of children 
producing a sign. In addition to iconicity, familiarity, but 
not phonological complexity, seems to be influential in 
early sign learning. We thus provide further evidence 
regarding the facilitating role of iconicity in early sign 
learning by signing children.  

Our results converge with what previous studies with 
signing children have found so far (Thompson et al., 
2012; Caselli & Pyers, in press). There is robust evidence 
showing that early acquired signs are iconic, which 
suggests that resemblance between form and meaning in 
sign languages bootstraps word learning in sign 
languages. Moreover, analyzing parental input to BSL 
signing children aged between 25-51 months, Perniss, 
Lu, Morgan, & Vigliocco (2017) suggest that deaf 
parents exploit iconicity while communicating with their 
children. These studies also show that iconicity seems to 
be more advantageous for sign language acquiring 
children when they are at around 30-months of age – 
although this age group is called “older” in Thompson et 
al. (2012) and “younger” in Caselli & Pyers (in press). 
This seems to be related to increasing cognitive skills or 
more experience with environment that enables 
establishing the link between linguistic form and 
meaning (Thompson et al., 2012).  
Further evidence from spoken languages, which are less 
rich in iconic forms than sign languages (Taub, 2001), 
has been presented about the facilitating role of iconicity, 
as well (e.g., Imai & Kita, 2014; Imai et al., 2008; Laing, 
2014; Perry et al., 2015; Massaro & Perlman, 2017). The 
effect of iconicity in early word acquisition in spoken 
languages seems to be more prominent earlier compared 
to what studies with signing children report. Studying 
expressive and receptive vocabulary development in the 
first four years of English acquiring children (6-47 
months of age), Massaro and Perlman (2017) show that 
iconicity is more prevalent early in acquisition and 
decreases with increasing age and vocabulary size. There 
might be a difference in the role of iconicity throughout 
development due to different modalities of sign and 
spoken languages: sign languages are rich in iconic 
forms and signing children are more likely to encounter 
iconic forms – not only at the lexical level but also at the 
level of morphology (e.g., classifiers) and syntax (e.g., 
expressing spatial relations in signing space) than 
speaking children whose lexicon gets enriched with less 
iconic words (more arbitrary forms) as they get older. 
Therefore, iconicity seems to help children in their early 
word learning, but its role might change as children 
acquiring languages in different modalities advance in 
their language development.    
Our results regarding other factors than iconicity such as 
familiarity and phonological complexity are partially in 
line with Thompson et al. (2012), who found iconicity to 
be a stronger predictor of early sign acquisition than 
others. The current study, on the other hand, reveals the 
role of familiarity as important as iconicity, which is in 
line with Caselli & Pyers (in press). The findings 
regarding the role of phonological complexity do not 
suggest that it predicts early sign learning – as opposed 
to Caselli & Pyers (in press). The difference might come 
from different definition of complexity since Caselli & 
Pyers (in press) focused on neighborhood density (the 
number of lexical items that are phonologically related to 
a target) rather than a complexity rating system as used 
in the current study. Thompson et al. (2012) also 
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observed an effect of phonological complexity, but this 
effect was restricted to younger children (11-20 months 
of age) only while Caselli & Pyers (in press) found the 
neighborhood density effect across all age groups (8-35 
months of age). This might be still a result of different 
approaches taken to the analysis of phonological 
complexity in different studies.  
However, one needs to be careful when interpreting our 
findings as the sample size was small and we had to 
exclude multiple outliers for the main analyses. 
Furthermore, only production scores were collected. 
Since comprehension scores are less prone to 
phonological and motor constraints, drawing 
conclusions from production scores only may 
underestimate the role of iconicity, especially for 
younger children who produce substitution errors while 
producing signs (e.g., Lu, Jones, & Morgan, 2016).  
It is also important to note that iconicity and familiarity 
ratings were mostly available for nouns which could 
have further skewed our sample as some of the first 
words were “come” or “kiss”. Perry et al (2015)’s results 
from English and Spanish suggest that adjectives are 
rated as more iconic than nouns and function words, and 
verbs as more iconic than nouns and function words in 
English. Perniss et al. (2017), however, found that signs 
for objects and actions are rated more iconic than those 
for properties (e.g., blue, fast). This might be the result 
of modality difference between sign and spoken 
languages and underlines the importance of including 
different lexical categories in such an analysis.    
Additionally, the current study is clearly limited by the 
correlational approach taken. With sufficient resources a 
Bayesian modelling approach similar to Thompson et al. 
(2012) or a mixed-effect logistic regression modelling 
approach will be more powerful as one can 
simultaneously account for child-specific and item-
specific variability while controlling for factors such as 
familiarity or phonological complexity. The current data 
set could be used as a basis for further analyses, but it 
will also be beneficial to collect iconicity and familiarity 
ratings for more signs, in particular for signs that are 
action related and represent a wider range of familiarity 
ratings. 
Finally, the present study is clearly limited by the use of 
parental reports – spontaneous production sessions that 
target sign and speech output and/or recordings of the 
children that are scored will be useful to further qualify 
results, particularly in regard to underlying mechanisms 
and driving forces. Innovative approaches towards 
testing are needed, such as Perniss et al. (2017) who 
analyzed child directed signing using only the parents in 
an experimental setting and showed that child-directed 
signing exploits iconicity, especially when referents are 
not present. Such studies will further qualify the input 
that signing children receive and might be decisive in 
determining the real importance of iconicity for language 
acquisition. 
Our study represents a further step on the way exploring 
iconicity in relation to sign language acquisition. While 
we do not agree with the notion that only cognitive 

development drives language acquisition based on our 
results, iconicity cannot explain all aspects of early sign 
language acquisition. Acquisition of these signs is likely 
to be driven by contextual factors such as use of 
frequency (with both adults and children) or 
neighborhood density (Caselli & Pyers, in press).  
In summary, language acquisition is likely to be 
facilitated by iconicity. Considering the potential benefit 
of meaningfully motivated form-meaning for language 
acquisition in general, both iconicity and arbitrariness 
should be re-evaluated as general properties of a 
language (Perniss et al., 2010), although more studies are 
needed to further support this claim and its relevance for 
all languages. 
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Abstract

The gambler’s fallacy has been a notorious showcase of human
irrationality in probabilistic reasoning. Recent studies suggest
the neural basis of this fallacy might have originated from the
predictive learning by neuron populations over the latent tem-
poral structures of random sequences, particularly due to the
statistics of pattern times and the precedence odds between
patterns. Here we present a biologically-motivated minimal
neural network model with only eight neurons. Through unsu-
pervised training, the model naturally develops a bias toward
alternation patterns over repetition patterns, even when both
patterns are equally likely presented to the model. Our analyses
suggest that the way the neocortex integrates information over
time makes the neuron populations not only sensitive to the
frequency signals but also relational structures embedded over
time. Moreover, we offer an explanation for how higher-level
cognitive biases may have an early start at the level of sensory
processing.
Keywords: gambler’s fallacy; alternation bias; waiting time;
temporal integration; predictive learning.

Introduction
The gambler’s fallacy—a belief that chance is a self-correcting
process where a deviation in one direction would induce a devi-
ation in the opposite direction—has been a notorious showcase
of human irrationality in probabilistic reasoning (Tversky &
Kahneman, 1974). For decades, this fallacy is thought to have
originated from a cognitive bias called the “representativeness
heuristic”, which is attributed to the belief of the “law of small
numbers” that small samples are highly representative of the
populations from which they are drawn (Gilovich, Vallone, &
Tversky, 1985; Tversky & Kahneman, 1974).

Recent development in neuroscience and computational
models suggests that the human mind develops structured prob-
abilistic representations about the world and performs near-
optimal Bayesian inferences (Pouget, Beck, Ma, & Latham,
2013; Tenenbaum, Kemp, Griffiths, & Goodman, 2011). For
example, representativeness has been defined with a Bayesian
belief-updating structure in which different hypotheses are
evaluated based on different sets of the input data (Gigerenzer
& Hoffrage, 1995; Griffiths & Tenenbaum, 2001). However,
it remains elusive how the structured hypothesis space has
originated in the first place, and how cognitive biases can arise
from normative probabilistic models.

On the topic of randomness perception, there has been a
growing speculation that people’s intuition about random pro-
cess, also known as the subjective randomness, is biased by
the statistical structures in the learning environment (Budescu,
1987; Falk & Konold, 1997; Hahn & Warren, 2009; Lopes &
Oden, 1987; Nickerson, 2002; Oppenheimer & Monin, 2009;
Oskarsson, Van Boven, McClelland, & Hastie, 2009; Sun,

Tweney, & Wang, 2010). Particularly, we have argued that
without a predefined hypothesis structure, biases underpinning
the gambler’s fallacy can emerge by simply capturing the tem-
poral relations between patterns as a random process unfolds
over time (Sun & Wang, 2010a, 2010b, 2012, 2015). With a
biologically realistic simple recurrent model that learns to re-
encode sequential binary data through unsupervised learning,
we show that dissociation of random patterns can naturally
emerge as the consequence of inhibitory competition between
overlapped representations (Sun et al., 2015). Our findings
indicate that cognitive biases in overt behavior can emerge
early and locally at the level of sensory processing, and neu-
rons’ sensitivity to the temporal structures in the learning
environment is the key in bridging the gap between neurons
and behavior.

In the following, we first introduce some basic normative
measures on the time of random patterns. Then, based on
the neural model we reported earlier, we present a minimal
neural network model with only eight units. We will show that
this minimal model can mostly replicate our previous findings
and provide new insights regarding the neural encodings of
sequential patterns.

Temporal Distance between Patterns
In sequences generated by a random process, there can be
fundamentally different types of statistical structures regarding
how often a pattern occurs and when a pattern is to occur. Our
previous works have been focusing on the distinction between
the mean time statistic that measures how often the pattern
occurs in a global sequence, and the waiting time statistic that
measures when a pattern will first occur since the beginning
of the observation. Here we introduce a more compact yet
more comprehensive framework that incorporates not only
both types of statistics for individual patterns but also the
statistics depicting the relational structures between different
patterns.

To compute the temporal distances between different pat-
terns with different initial states, we use the first-order de-
pendent Markov chains parameterized by the probability of
alternation (pA) between consecutive trials and the correspond-
ing generating functions (Figure 1). 1 Define E[Tj|i] as the
expected number of transitions from the initial state i until the

1The method of generating functions by Markov chains also ap-
plies to independent Bernoulli trials parameterized the probabilities
of single elements (e.g., the probability of heads or tails), and it
also generates higher-moment statistics such as variance (e.g., Sun
& Wang, 2015). Here we only present the main results and the exact
generating functions are omitted.
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Figure 1: Markov chains for generating the waiting times
E[THH|∅] and E[THT|∅] given the initial empty state ∅ (Fig-
ure A), and the additional times E[THH|H], E[THT|H], and E[TT|H],
given the same initial state H (Figure B). In each chain, states
S j|i represent all possible sequences that start from the pattern
i (i = ∅ means starting anew) and end with the first arrival
of the pattern j. States Mk represent all possible sequences
that end with the pattern k but do not contain the expected
pattern j. Transitions between nonempty states are labeled
as either repetition (R) or alternation (A). Figure C: Pairwise
precedence odds between patterns when the probability of
alternation pA = 1/2, for example, the odds are 3 to 1 that one
is to first encounter TH than to first encounter HH.

first arrival of the pattern j. When the initial state is empty
i = ∅ (i.e., the counting process starts anew), E[Tj|∅] is re-
ferred to as the waiting time of pattern j. For example, from
Figure 1A, the waiting times for the patterns HH and HT are
respectively,

E[THH|∅] = 1+
1

2pA
+

2
1− pA

,

E[THT|∅] = 1+
1

2pA
+

1
pA

.

(1)

When pA = 1/2 (namely, independent Bernoulli trials with a
fair coin where repetitions and alternations are equally likely),
we have E[THH|∅] = 6 and E[THT|∅] = 4.

When the initial state is not empty, E[Tj|i] is referred to as
the additional time for pattern j given the initial state i. For
example, from Figure 1B, we have

E[THH|H] =
2

1− pA
, E[THT|H] = E[TT|H] =

1
pA

. (2)

At pA = 1/2, we have E[THH|H] = 4 and E[THT|H] = E[TT|H] = 2.

When the initial state i is exactly the desired pattern j,
E[Tj|i] denotes the expected number of transitions between any
two consecutive occurrences of the pattern j, and is referred
to as the mean time of pattern j. Since the first-order Markov
chain is memoryless between consecutive transitions, we have
relations such as E[THH|HH] =E[THH|H], and E[THT|HT] =E[THT|T].
Therefore, the mean times for the patterns HH and HT are
respectively,

E[THH|H] =
2

1− pA
, E[THT|T] =

2
pA

. (3)

At pA = 1/2, we have E[THH|H] = E[THT|T] = 4. The inverse of
mean time is frequency. For example, E[THH|H] = 4 means that
we expect to see the pattern HH once in every 4 tosses of an
fair coin.

Among these different measures, the most striking distinc-
tion is that at pA = 1/2, we have E[THH|H] = 4 but E[THT|H] = 2,
in spite of the fact that given an H, the next digit is equally
likely to be either an H or a T. This is because a reoccurrence
of the pattern HH can “reuse” the ending elements from its
previous occurrence, but a reoccurrence of the pattern HT must
always start anew. This statistical property of faster transition
times when starting anew is known as new better than used
(NBU) (Ross, 2007). Essentially, the NBU property is due to
the overlap between a pattern and a shifted copy of itself or be-
tween different patterns. For example, as shown in Figure 1B,
pattern HH overlaps with its shifted copy by one element H,
but pattern HT does not. Then, towards the destination state
SHH|H, anytime things go astray (i.e., the process ends in state
MT), the waiting for HH has to start all over. In contrast, the
waiting for HT is always on average two flip away from the
state MH. As a result, the transition to SHH|H is “delayed” than
the transition to SHT|H. This overlap also explains the pairwise
precedence relation shown in Figure 1C. For example, in the
competition between the patterns HH and TH, the former reuses
the last element of the latter but the latter starts anew. As a
result, if we toss a fair coin repeatedly (i.e., pA = 1/2), the odds
are 3 to 1 that we first encounter TH than first encounter HH.

A Neural Model of Temporal Integration
The NBU property of pattern times has fundamental impli-
cations in neural encoding of pattern events. As shown in
Figure 1, different measures of waiting time, additional time,
mean time and pairwise precedence odds are all due to the
overlap between temporal patterns. Recent developments in
neuroscience and computational models suggest that neural
encodings of events and values are always overlapped, and it is
the encoding of neural populations that give rise to higher-level
and more abstract representations (Adolphs, 2015; Dehaene &
Brannon, 2010; Pouget et al., 2013). In the domain of temporal
integration, probabilistic encoding must consider the overlap
between representations at different times, namely, recurrent
processing (Elman, 1990). Then, we would immediately con-
jecture that via merely encoding the random sequences that un-
fold over time, populations of neurons would naturally capture
the temporal structures depicted by the pattern times statistics.
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Figure 2: A neural network model of temporal integration
(figures adopted from Sun et al., 2015). Figure A: A two-unit
input layer scans a sequence of binary digits one digit at a time
(“online” input at time t), while its temporal context represen-
tation keeps a copy of the previous input (“context” at time
t−1). A 100-unit internal prediction layer attempts to predict
the next input, while its temporal context representation keeps
a copy of the model’s prediction at time t−1. Figure B: Af-
ter unsupervised training, the model shows fewer repetition
detectors than alternation detectors (R : A ratio < 1) when the
actual probability of alternation is greater than 3/7.

We have recently reported a biologically-motivated neural
model that behaves consistently in accord with the pattern time
statistics (Sun et al., 2015). The architecture of the model and
the main result are shown in Figure 2. The model employs a
recently developed neural algorithm for temporal integration
(O’Reilly, Wyatte, & Rohrlich, 2014). At the sensory level, a
2-unit input layer scans non-overlapping signals of heads (H)
versus tails (T) one digit at a time from sequences generated
by the first-order dependent Markov trials. Then, a 100-unit
internal prediction layer attempts to predict the next input,
with the benefit of a prior temporal context representation.
The bidirectional activation dynamics between the input layer
and the internal prediction layer allow us to use a single input
layer for both providing inputs and receiving predictions.

Through unsupervised learning, the model was trained with
binary sequences generated at various levels of probability of
alternation (pA). After training, the model was tested with a
sequence generated at the same pA level. By activation-based
receptive field analysis, we decoded the representations on
the internal prediction layer and classified its units as either
repetition detectors (whose activations are significantly cor-
related with the input pattern either HH or TT), or alternation
detectors (activations correlated with either HT or TH). We then
counted the numbers of detectors and used the R/A ratio (rep-
etition over alternation) to measure the model’s performance
(Figure 2B).

Most interestingly, at pA = 1/2 (i.e., flipping a fair coin
independently), despite the same training frequency of the
patterns (i.e., the same mean time, see, Equation 3), the model
consistently produced fewer repetition detectors than alterna-
tion detectors at a ratio of R/A≈ .70. We then used this R/A
ratio to compute the subjective probability of alternation, p′A,

as the model’s internal representation of its experienced pA,

p′A =
A

R+A
=

1
1+R/A

≈ 0.59.

This p′A value was consistent with the value from empirical
findings. From a comprehensive review of previous studies
(Falk & Konold, 1997), a unanimous finding was that people
perceived or generated random sequences with a p′A value
around 0.58 ∼ 0.63. Moreover, we found that this p′A value
directly produces the besting-fitting bias-gain parameter in an
existing Bayesian model for subjective randomness of longer
patterns (Goodfellow, 1938; Griffiths & Tenenbaum, 2001).

A Minimal Neural Network Model
The model presented in Figure 2 has a prediction layer of 100
units, and its temporal context representation is equivalent
to another 100 units as in a recurrent neural network. Then,
an immediate question is, how many neurons are required to
produce the minimal effect of the alternation bias? Apparently,
to differentiate repetition versus alternation patterns, we need
at least two types of detectors. However, we also notice that
if patterns are aggregated too “early”, namely, combining HH
with TT and combining HT with TH before counting each of the
four detectors, the alternation bias would be “washed out” (see
the supplementary material by Sun et al., 2015). In addition,
the pairwise precedence odds shown in Figure 1C indicates
that to differentiate all patterns of length two, we need at least
four detector neurons.

HT TH

HH TT

T H T H
Context
(t−1)

Online
(t)

Detectors

Detectors 0.7
0.3

T H T H

Context Online

H T
(t−1)

HH
(t)

TData Stream

Input units

Figure 3: An eight-unit neural network model of temporal
integration. A two-unit input layer scans a sequence of binary
digits one digit at a time (“online” input at time t), while its
temporal context representation keeps a copy of the previous
input (“context” at time t−1). The prediction layer has four
units for detecting each of the four binary patterns of length
two. The status of each detector is determined by the projec-
tion weights from the input units. For example, detectors HH
and HT receive the same projection weights from the context
input units, but detector HH receives a stronger weight from
the online input unit H, and detector HT receives a stronger
weight from the online input unit T.

Figure 3 shows the structure of an eight-unit model for tem-
poral integration. The model is called “minimal” as it uses
the least number of neurons to produce the minimal effect of
the alternation bias in the gambler’s fallacy. Its input layer is
identical to the bigger model in Figure 2, with two units for
scanning the “online” input at time t and two units for keep-
ing a copy of the “context” input at time t−1. However, its
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prediction layer has only four units without explicit temporal
context representation. Also different from the bigger model
where the initial status of detectors was set by random weights,
the detectors in the eight-unit model are initially set by dis-
tinctive projection weights from the input units. For example,
detectors HH and HT receive the same projection weights from
the context input units, but detector HH receives a stronger
weight from the online input unit H, and detector HT receives a
stronger weight from the online input unit T. In other words,
given the same initial state H, detector HH tends to predict a
repetition and detector HT tends to predict an alternation.

Crucially, the controlled weights allow a more precisely con-
trolled experiment by eliminating variations produced by ran-
dom weights. In the bigger model, different detectors would
“naturally” emerge by a random initialization of weights. How-
ever, this may produce a disparity in the number of detec-
tor types at the initial stage (e.g., more HT detectors than HH
detectors), and such a disparity has to be accounted for by
averaging multiple simulations with different random initial-
izations. This disparity is eliminated in the eight-unit model,
such that the model as a whole is initially unbiased toward any
of the four patterns. (We have implemented different sets of
controlled weights, e.g., 0.2 versus 0.8, or 0.4 versus 0.6, and
find that they all produce the same results.)
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Figure 4: Pattern dissociation at different levels of the proba-
bility of alternation pA after training. The repetition detectors
HH and TT only showed higher activations when the model
was trained with sequences generated by pA < 1/3. Box plots
represent distribution quantile.

The eight-unit model was trained and tested in the same way
as the bigger model, and the only difference is the analyses of
the test results. Instead of counting the number of detectors,
we directly measure the activations of each detector given dif-
ferent input patterns. Figure 4 shows the main result. We first
notice that after being trained with truly random sequences
(i.e., pA = 1/2 in independent fair coin tossing), the aver-

aged activations of detectors were significantly lower when
the current inputs were repetition patterns (HH or TT) than al-
ternation patterns (HT or TH). That is, in spite of the initially
unbiased representations of all patterns and the equal training
frequency (i.e., the mean time is the same for all patterns at
pA = 1/2), repetition patterns eventually were significantly
under-represented than alternation patterns.
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Figure 5: The updating trajectories of projection weights from
context input units to detector units HH and TH during the train-
ing phase. The initial weight values are marked by the circles
at the first trial. For example, at pA = 1/2, the unit initially
designated as the HH detector became an TH detector after ap-
proximately 200 trials, as all its weight values from the context
units switched to the opposite side of 0.5, whereas the unit
initially designated as the TH detector remained stable. The
same trend was also observed between TT and HT detectors.
The projection weights from the online input units remained
about the same thus are not plotted here.

To locate the source of the alternation bias, we found that
during the training phase, the projection weights from the
context input units to each detector underwent a dramatic
remapping (Figure 5), whereas the projection weights from
the online input units remained about the same.

Specifically, at pA = 1/2, the detector unit HH initially re-
ceived a weight of 0.7 from the context input unit H and a
weight of 0.3 from the context input unit T (hence its initially
designated detecting status). After about 200 trials, these
two weights switched to the opposite sides of 0.5, effectively
“switching” the HH detector into a TH detector (but not a HT
detector). Similarly, the TT detector switched to an HT detec-
tor (but not a TH detector). The directions of these switches
corresponded exactly to the pairwise precedence relationship
depicted in Figure 1C. At pA = 2/3, the switch was even more
obvious. At pA = 1/6, it was the alternation detectors’ turn to
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be under-represented and switched to the repetition detectors.
Finally at pA = 1/3, all projection weights from the context
units approached then stabilized around 0.5, so that the model
eventually learned to be indifferent to the contextual informa-
tion, resulting in unbiased activations for all patterns as shown
in Figure 4.

Moreover, we also tested models with only a subset of
particular detectors (e.g., HH versus TH only). When pA = 1/2,
regardless of the initial pattern preference set by the projection
weights, the model would eventually react indifferently to all
patterns. This result indicates that in order to capture different
pattern time statistics or the pairwise precedence odds between
patterns of length two (Figure 1), the inhibitory competition
between at least four types of detectors is required. When we
tested models with only online input units, the model showed
the same indifference at pA = 1/2. This indicates that predictive
learning, namely, predicting what will happen next based on
the historical context, is critical in producing the alternation
bias. Together, these observations confirmed our hypothesis
that this eight-unit model is a minimal model to produce the
alternation bias in the gambler’s fallacy.

In comparison, the alternation bias exhibited by the minimal
eight-unit model in Figure 3 is in the same direction as that
exhibited by the bigger model in Figure 2. However, the equi-
librium point (the pA level where the model was indifferent to
all patterns) was different (compare Figure 2 with Figure 4).
Specifically, the equilibrium point was pA = 1/3 for the eight-
unit model but pA = 3/7 for the bigger model. This indicates
that the minimal model was more sensitive to the waiting time
(delay) than to the mean time (frequency) of pattern occur-
rences, because by Equations 1 and 3, all patterns have the
same waiting time but different mean times at pA = 1/3,

E[THH|∅] = E[THT|∅] = 11/2, E[THH|H] = 3, E[THT|T] = 6.

In contrast, the bigger model was more “balanced” toward
both statistics, because at pA = 3/7,

E[THH|∅]+E[THH|H] = E[THT|∅]+E[THT|T] = 55/6.

One particular reason for such difference is that the competi-
tion would be stronger among fewer detectors due to the home-
ostatic mechanism implemented in the network. This mecha-
nism keeps individual neurons from firing too much or too lit-
tle over time, which is essentially a normalization mechanism
in self-organizing learning at long time scales (Bienenstock,
Cooper, & Munro, 1982; Cooper, 2000; Hebb, 1949; O’Reilly,
Munakata, Frank, Hazy, & Contributors, 2012). As a conse-
quence, the bigger model with more neurons would be more
likely to maintain diversity in the specialization of neurons
thus its equilibrium point could be determined by both waiting
time and mean time statistics.

Conclusion
Overall, our results from both models suggest that pattern dis-
sociation can naturally emerge from temporal reconstructions
of the input data. Particularly with the minimal eight-neuron

model, detector neurons “reoriented attention” to the past in-
formation (i.e., remapping the projection weights from the
context units), and the driving force behind such reorientation
was more of the waiting time rather than of the mean time of
patterns. As for the model with more neurons we reported
earlier, the specialization of neurons would be more diversi-
fied thus would enable the model to develop sensitivity to both
types of pattern time statistics.

The observation that both models exhibited the alternation
bias is consistent with the representativeness bias underpinning
the gambler’s fallacy (Gilovich et al., 1985; Tversky & Kah-
neman, 1974). For example, Figure 4 show that at pA = 1/2,
the model had higher activations for alternation patterns than
repetition patterns, in spite of the sequential independence of
events. Critically, such bias emerged through unsupervised
training without any pre-defined hypothesis structures, since
both models were initially symmetrically structured, and were
not provided with any prior knowledge on how different pA
levels would affect the occurrences of different patterns.

Given the simplicity of our models, one far-reaching impli-
cation is that cognitive biases and structured abstractions can
emerge early and locally at the level of sensory processing.
Nevertheless, it should be noted that our models only address
purely bottom-up learning mechanisms without implementing
any top-down learning or higher-level representations such as
beliefs or goals. For the early and locally developed biases
to be maintained and utilized in later and global processes,
higher-level representations and top-down structures must also
be involved through a hierarchical structure of abstractions
(Munakata et al., 2011; Tenenbaum et al., 2011).

Lastly, probabilistic thinking has to consider the conse-
quence of time (Buchanan, 2013; Hawkins & Blakeslee, 2004).
Our findings suggest that rich semantics in the learning envi-
ronment can be extracted by neuron populations in predictive
learning through temporal integration. This learning over time
would lead to the structured hypothesis spaces such as those
required by Bayesian inference thus provide essential building
blocks in bridging the gap between neural computations and
overt behavior.
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Abstract

Moral judgments are known to change in response to
changes in external conditions. But how variable are
moral judgments over time in the absence of environ-
mental variation? The moral domain has been described
in terms of five moral foundations, categories that ap-
pear to capture moral judgment across cultures. We ex-
amined the temporal consistency of repeated responses
to the moral foundations questionnaire over short time
periods, fitted a set of mixed effects models to the data
and compared them. We found correlations between
changes in participant responses for different founda-
tions over time, suggesting a structure with at least
two underlying stochastic processes: one for moral judg-
ments involving harm and fairness, and another for
moral judgments related to loyalty, authority, and pu-
rity.

Keywords: morality, moral foundations theory, consis-
tency, variability

Introduction

Morality is a vital part of who we are. A person’s moral
beliefs are tied into their identity (Aquino & Reed II,
2002; Aquino et al., 2009) – humans believe that if their
moral values changed, they would change (Heiphetz et
al., 2016). Are people’s intuitions about this correct?
Are our moral values consistent over time?

Since moral beliefs tend to be associated with a per-
son’s sense of identity, we should expect people’s under-
lying moral values to largely endure over short time pe-
riods. Yet, there have been many recent explorations of
moral inconsistency. These have included manipulations
of two types – manipulations of response timing, or ma-
nipulations by exposure to new information or decisions.
In terms of timing, we now know that time-limited de-
cisions appear to be more altruistic (Rand et al., 2012)
and that choices can be influenced by forcing decisions
at a specific point in time (Pärnamets et al., 2015), indi-
cating that the actual decision outcome is time-sensitive.
Regarding information or decisions, dishonest behaviour
increases future dishonesty (Garrett et al., 2016; Engel-
mann & Fehr, 2016). A morally good action makes a
subsequent morally bad action more appealing and vice
versa, effects known as moral cleansing and moral licens-
ing (Merritt et al., 2010; Sachdeva et al., 2009). Expo-
sure to a moral dilemma leads to belief revision in moral
decisions that persists for multiple hours (Horne et al.,
2015).

The fact that changes in external circumstances can
influence the outcomes of moral decisions is hardly sur-
prising assuming morality evolved as an adaptive strat-
egy (Machery & Mallon, 2010). Likewise, viewing moral
judgment as a decision process, we would expect the
effects of changed response timing on general decision-
making (McClelland, 1979; Usher & McClelland, 2001)
to transfer into the moral domain. But in the absense
of such manipulations, are our moral judgments funda-
mentally noisy? Outside of the moral domain, there is
evidence in decision making research that people’s de-
cisions vary stochastically even in cases where external
conditions remain constant (Mosteller & Nogee, 1951).
We are interested in exploring whether there is a cor-
responding moral variability beyond the actual decision
process: are our moral values different from moment to
moment, even in the absence of new information or ma-
nipulations of response timing?

Moral Foundations Theory (MFT) provides a way to
look at this. It is based on a dominant model of morality,
the social intuitionist model, according to which moral
choices are made primarily intuitively and then justified
post hoc (Haidt, 2001). MFT maps out the moral do-
main in terms of six fundamental hidden parameters that
appear to capture an individual’s moral judgment (Gra-
ham et al., 2009), enabling us to distinguish between
conservative and liberal political profiles on the basis of
an agent’s foundation weights. This idea that there are
foundational categories that guide intuitive moral judge-
ment has the potential to explain people’s tendency to
disagree on moral issues, and predict future moral judge-
ment based on the individual scores. If we can find a
systematic structure in the stochastic changes of differ-
ent foundation scores beyond merely a layer of noise, this
would point towards moral variability, rather than just
motor variability or variability in how the response scale
is used.

In line with the aforementioned results indicating tem-
poral consistency, moral foundation scores appear sta-
ble over longer time periods; Graham et al. (2011)
tested participants again after approximately a month
and found that their moral foundation scores exhibited
test-retest reliability. Yet, effects such as moral licensing
and moral cleansing – where the outcome of an indi-
vidual’s moral decision influences subsequent moral de-
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cisions, even decisions made by others in their ingroup
(Kouchaki, 2011), over the course of single experimen-
tal sessions and thus shorter timescales – suggest the
possibility of an interaction between moral foundations.
Moreover, the list of known moral foundations is likely
incomplete – a view shared by moral foundations theo-
rists (Haidt & Joseph, 2011).

Viewing moral decisions as a sampling process from a
distribution that represents an agent’s moral values, we
can use the framework provided by MFT to investigate
hidden parameters which predict an individual’s moral
variability. Conversely, observing within-subject vari-
ability over time can help us understand to which extent
individual moral variability reflects between-individual
variability that has been used to support the existence
of MFT (Graham et al., 2011). Are we all sometimes
a little bit more conservative and sometimes a little bit
more liberal in our moral judgments and values?

In this paper, we aim to discuss the extent to which
randomness plays a role in moral judgment over time by
collecting responses to the moral foundations question-
naire delivered repeatedly. We subsequently fit a set of
models to the data and compare them. If the variability
we observe stems merely from randomness in the deci-
sion process, we expect variation in individual responses
to be explained by a single noise-generating process. We
find evidence for at least two separate stochastic pro-
cesses associated with different sets of moral foundations,
indicating the existence of inherent variability in moral
values.

Method

Participants

The participant pool consisted of 80 psychology under-
graduate students (mean age 19 years, 90% female).
14 participants were excluded from the analysis due to
wrong responses on the two ‘catch’ trials, as done by
Graham et al. (2011).

Materials

The original moral foundations questionnaire (MFQ30)
asks participants to respond using a 1–6 scale; to enhance
precision and avoid subjects simply recalling previous
answers, the participants in our task had to use a slider
bar to indicate their responses instead:

not at all a lot

In addition, our version of the questionnaire contained
four further questions (see Figure 1). Those were cho-
sen so as not to correspond in any obvious way to the
five foundations measured in the MFQ30, nor to the re-
cent addition of the liberty foundation (Graham et al.,
2012; Haidt, 2012). We added these questions because
we wanted the same number of presumably neutral tri-
als as the number of foundation-related questions – the

MFQ30 includes six question for each foundation but
only two neutral ‘catch’ items.

When you decide whether
something is right or wrong,
to what extent is the follow-
ing consideration relevant to
your thinking?

Please read the following sentence
and indicate your agreement or dis-
agreement:

Harm:

1. Whether or not someone
suffered emotionally

2. Whether or not someone
cared for someone weak
or vulnerable

3. Whether or not someone
was cruel

4. Compassion for those who are
suffering is the most crucial
virtue.

5. One of the worst things a person
could do is hurt a defenseless an-
imal.

6. It can never be right to kill a hu-
man being.

Fairness:

1. Whether or not some
people were treated dif-
ferently than others

2. Whether or not someone
acted unfairly

3. Whether or not someone
was denied his or her
rights

4. When the government makes
laws, the number one principle
should be ensuring that everyone
is treated fairly.

5. Justice is the most important re-
quirement for a society.

6. I think it’s morally wrong that
rich children inherit a lot of
money while poor children in-
herit nothing.

Loyalty:

1. Whether or not some-
one’s action showed love
for his or her country

2. Whether or not someone
did something to betray
his or her group

3. Whether or not someone
showed a lack of loyalty

4. I am proud of my country’s his-
tory.

5. People should be loyal to their
family members, even when they
have done something wrong.

6. It is more important to be a
team player than to express one-
self.

Authority:

1. Whether or not someone
showed a lack of respect
for authority

2. Whether or not someone
conformed to the tradi-
tions of society

3. Whether or not an action
caused chaos or disorder

4. Respect for authority is some-
thing all children need to learn.

5. Men and women each have dif-
ferent roles to play in society.

6. If I were a soldier and disagreed
with my commanding officer’s
orders, I would obey anyway be-
cause that is my duty.

Purity:

1. Whether or not someone
violated standards of pu-
rity and decency

2. Whether or not someone
did something disgusting

3. Whether or not someone
acted in a way that God
would approve of

4. People should not do things that
are disgusting, even if no one is
harmed.

5. I would call some acts wrong on
the grounds that they are unnat-
ural.

6. Chastity is an important and
valuable virtue.

Neutral:

1. Whether or not someone
was good at math

2. Whether or not someone
told the truth (*)

3. Whether or not someone
made a smart decision (*)

4. It is better to do good than to
do bad.

5. If one’s children live a happy life,
it is better to have children than
not to have children. (*)

6. Destroying beautiful things that
took long to create is worse than
destroying things that took less
time. (*)

Figure 1: Moral foundations questionnaire. Questions
added by us are marked with (*).

Procedure

The questionnaire was presented six times in randomised
order, with a word search task before the last two tri-
als. In each trial, one of the two question types was
displayed (see Figure 1, left and right side, respectively),
along with one of the statements for that question type.
Randomisation was implemented so that each statement
was shown to the participant exactly once in each block:
The set of questions within each block was shuffled, and
presented within the block in randomised order, so no
regular pattern in the order of foundations would occur.
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After four blocks, a word search task1 was shown for
6 minutes to provide a timed break2: Participants had
to find and mark words in a 18x18 letter square filled
with a selection of words and random letters, based on
the WordFind.js library (Scheidel, 2012). With the ex-
ception of the timed word search task, participants pro-
vided responses at their own pace. The experiment took
approximately 20-25 minutes to complete.

Results

Since participant responses are indicated using slider
bars, foundation scores change between the blocks (par-
ticipants will be unable to recall the exact position of
the slider for previous trials). But beyond the expected
variation resulting from differences in participant’s slider
operation accuracy, is there a relationship between these
changes in different moral foundation scores?

Means

As found by Graham et al. (2011), we anticipated and
found our psychology undergraduate subject pool in the
UK to remain largely at the liberal end of the U.S. polit-
ical spectrum. Welch’s t-test shows that the differences
between the means for harm and fairness (p=.16) and
for loyalty and authority (p=.44) are not significant. All
other pairs of means indeed differ significantly (p<.001).
In particular, the first two foundation means differ sig-
nificantly from the last three, with higher subject scores
for harm (M = 72.9, SD = 24.6) and fairness (M = 70.3,
SD = 23.6) and lower scores for loyalty (M = 51.1, SD =
27.1), authority (M = 48.8, SD = 26.1) and purity (M =
42.1, SD = 28.8). The between-subject standard devia-
tion is notably larger than the within-subject standard
deviation (see Figure 3), supporting the MFT framework
for examining between-subject differences.

A within-subjects ANOVA3 showed a main effect of
both foundation (F(5,325) = 72.67, p<.001) and block
(F(5,325)=6.26, p<.001) on average slider bar values,
as well as an interaction between foundation and block
(F(25,1625)=1.764, p=0.011). But we are mainly in-
terested in changes in the absence of new information,
and Figure 5 suggests that the very first block in which
the whole questionnaire was new to the participant qual-
itatively differs from the others. Excluding the first

1We removed words such as ’excellent’ from the task to
reduce the likelihood that word valence in this task would
influence future participant responses. This quiz block was
followed by three more blocks.

2Due to an off-by-one error in our code, the first statement
from the block after the word search task was erroneously
displayed before the word search task. We excluded this error
trial from the analysis.

3It should be noted that in this ANOVA, we are treat-
ing the block number as a factor variable rather than a nu-
meric variable due to the non-linear relationship between
block number and participant response; including the block
number as a numeric variable yields qualitatively the same
results.
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Figure 2: Spider plot of means for each foundation and
block.
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Figure 3: Average slider value for each response, and
the average of within-subject standard deviations. The
catch trials and the baseline level are marked in blue.

block from the analysis indeed makes the effects of block
(F(4,260)=6.26, p=.47) and the interaction effect be-
tween foundation and block (F(20,1300) = 1.201, p=.24)
in the ANOVA above no longer significant: While moral
foundation scores differ between Block 1 and the other
blocks, for the later blocks alone, this is no longer true.

Variability over time

We also expected that within-foundation variance, i.e.
the variance between participant responses to the sets of
questions for each respective foundation, would decrease
over time: As time passes, people’s certainty which
choice they will make will increase as they get more fa-
miliar with the questionnaire. Moreover, we thought we
might be able to observe a shift towards more extreme
values for each question over time – as people become
increasingly familiar with the set of questions they will

3287



encounter, there would be less need to for caution about
new options which are more or less morally upsetting
than the previous maximum or minimum, respectively.

We computed residual slider values by subtracting the
within-subject mean for each foundation from the slider
values for each trial. The two hypotheses above can be
rephrased as: The slider residual variance for each par-
ticipant and block decreases as a reflection of the increase
in certainty; and the average absolute residual value in-
creases over time as a result of the decision drifting to-
wards the extremes.
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Within−foundation changes

Figure 4: Changes over time, by foundation. The colours
represent the different blocks.

In fact, we found no significant effect of block num-
ber on foundation variance: Again, an ANOVA only
yields significant results for the variance hypothesis
(F(5,325)=18.71, p<.001) and the absolute residual
hypothesis (F(5,325)=47.4, p<.001) if we are taking
the very first block into account – here, a slight de-
crease after the first block can be spotted (see Fig-
ure 5). If we are looking at only the other blocks,
we do not find any significant change in the variance
(F(4,260)=1.90, p=.11), nor in the absolute slider resid-
ual (F(4,260)=1.22, p=.30).

Between-foundation variability

One hypothesis is that changes in moral foundations that
are opposed with respect to their representation on the
political spectrum, such as harm and purity, will balance
each other out – that is, they are negatively correlated
(Fig. 6a). Each person may have a constant morality
‘budget’, and thus an increase in a moral foundation
score will inevitably be accompanied by a decrease in
others. This would imply that people’s position on the
liberal-conservative spectrum might not be fixed. An-
other hypothesis is that changes in opposing moral foun-
dations are positively correlated (Fig. 6b). This would
for instance be the case if people’s moral profile was
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Figure 5: Absolute value and within-subject standard
deviation of slider residual over time

indeed fixed, and the sampled moral foundation scores
are scaled by a time-dependent factor. Alternatively,
changes in different moral foundations may not be cor-
related at all.

Harm: Purity:

(a)

Harm: Purity:

(b)

Figure 6: Relative changes in foundation scores

We did not find evidence for any of these relationships
between participant scores for different foundations. On
the contrary, the changes in foundation scores over time
were not particularly large.

To test for interactions between changes in different
foundation scores, we modelled the data using mixed ef-
fects models with a full covariance matrix and a diago-
nal covariance matrix, respectively. We created dummy
coded variables for each foundation. Since we did not de-
tect any notable change in the means after the first block,
we now focused on the variability and removed the influ-
ence of the means entirely by modelling slider residuals:
we calculated the mean slider value for each question for
each participant, and subtracted it from the raw slider
values. We used residuals for each question rather than
for each foundation score because of the differences in re-
sponses to the different questions within each foundation
(see Figure 4). Furthermore, we excluded the first block
in which all information had been newly introduced from
the analysis. We fitted two models to the data: First,
a model including a full covariance matrix and thus al-
lowing for interactions between the different foundations,
and second, a model with a diagonal covariance matrix
reflecting the assumption that sampling occurs for each
foundation individually.

As a baseline model, we used a model assuming a ran-
dom slider residual for each participant and block, sam-
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pled from the same distribution for each foundation (ran-
dom noise model). The models for the slider residual yi jkl
of Participant i in Block j for a question or statement l
relating to Foundation k are:

yi jkl = ui j + ui jk + εi jkl , (M1-M3)

with ui j ∼ N (0,σ), and

ui jk = 0 (M1)
ui j1
ui j2
ui j3
ui j4
ui j5

∼ N

0,


σ11 σ12 σ13 σ14 σ15
σ21 σ22 σ23 σ24 σ25
σ31 σ32 σ33 σ34 σ35
σ41 σ42 σ43 σ44 σ45
σ51 σ52 σ53 σ54 σ55


 (M2)


ui j1
ui j2
ui j3
ui j4
ui j5

∼ N

0,


σ11 0 0 0 0
0 σ22 0 0 0
0 0 σ33 0 0
0 0 0 σ44 0
0 0 0 0 σ55


 (M3)

The model M2 (χ2(10) = 26.98, p = .003) differs signifi-
cantly from the baseline model M1. Comparing the mod-
els M1-M3 to each other suggests that M2 (BIC=71058)
has a lower BIC value than M1 (BIC=70960) and M3
(BIC=70993). M2, which has a full covariance matrix,
shows an interesting pattern of dependencies between the
different foundation types:

Foundation Harm Fair Loya Auth
Fair 1
Loya -0.86 -0.86
Auth -0.95 -0.95 0.95
Puri -0.7 -0.7 0.64 0.80

Responses for harm and fairness appear to be posi-
tively correlated with each other and negatively corre-
lated with responses for the other foundations, and vice
versa. This would be less surprising if it was merely cap-
turing a between-participant relationship between foun-
dation scores. Note however that this model describes
the slider residuals which add up to zero for each foun-
dation and participant – yet, this result suggests that
participants who drag the slider bar a bit further to the
right for harm-related questions than in the last block
will do a similar thing with the fairness-question slider,
but the opposite with sliders on loyalty, authority and
purity trials.

Is there some overlap between which property of
morality harm and fairness on the one hand and loyalty,
authority and purity on the other hand are measuring?
Since the mean foundation scores for harm and fairness,
and the scores for loyalty, authority, and purity seem
similar to each other (see Figure 2), we introduced alter-
native models that only distinguish between these two
groups instead of the individual foundations.

To find out if we could confirm the five-dimensional
moral foundations structure, we fitted a set of linear

mixed effects models to the data. As an alternative,
we dummy-coded two foundation types (the ‘individual-
ising’ foundations harm and fairness and the ‘binding’
foundations loyalty, authority, and purity (Graham et
al., 2009)). Again, we fitted a full covariance model
and a diagonal covariance model to the data, adding the
two models below to our list of candidate models. They
are describing the slider residual yi jml of Participant i in
Block j for a question l of Foundation type m:

yi jml = ui j + ui jm + εi jml , (M4-M5)

with(
ui j1
ui j2

)
∼ N

(
0,
[

σ11 σ12
σ21 σ22

])
(M4)(

ui j1
ui j2

)
∼ N

(
0,
[

σ11 0
0 σ22

])
(M5)

We find that out of these, the model M5 differs signifi-
cantly from the baseline model (χ2(2) = 27.85, p < .001).
Comparing M4 (BIC=70960) and M5 (BIC=70951) to
the models above suggests that M5 is preferable to M2
and M4. Thus, it appears that from a model comparison
perspective, the main distinction in the moral founda-
tion framework lies in the two different foundation types
rather than the individual foundations, and that at this
level of description, between-foundation correlations do
not play a prominent role.

Discussion
We found that people showed moral variability even in
the absence of new information or time pressure. This
moral variability is distinguishable from response vari-
ability because we found two random processes that were
associated with different sets of moral foundations. The
evidence for MFT is based on an analysis of between-
individual responses to the MFQ (Graham et al., 2011),
and much of this may actually be due to the within-
individual variability that we have found. This within-
individual variability may also be what allows timing
interventions to have an effect (Pärnamets et al., 2015),
and might potentially even allow to influence the out-
comes of value-related decisions (such as election re-
sults).

While for our dataset a simpler two-type model was
preferable to the more complex model including five
moral foundations, we hesitate to draw general conclu-
sions about the number of moral foundations due to the
small size and relative cultural homogeneity of our sub-
ject pool. Yet, our brief glimpse at candidates for ad-
ditional foundations suggests the possibility of a wider
underlying structure of which MFT has captured but a
part.

A common criticism of MFT is that the known moral
foundations are unlikely to capture moral judgment in its
entirety (Suhler & Churchland, 2011). We had expected
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our added questions to be rated similarly irrelevant to
morality as the more conservative moral foundations in
our liberal subject pool. Somewhat surprisingly, the re-
sponses to our added, ‘neutral’ foundation appear to be
less neutral overall. We chose the four additional state-
ments in the neutral foundation because we suspected
that they might turn out to be morally relevant. Fig-
ure 3 suggests that questions 2 and 5 in particular (see
Figures 1 and 4) indeed resonate with our participants’
values. While the act of lying may arguably be related
to the purity scale, it is remarkably more morally rele-
vant than any of the purity questions. This particularly
utilitarian view on having children also appears to lie
outside of the given scales.

Interesting open questions remain that reach beyond
refining and expanding MFT. While we observe a range
of scores for different moral foundations, we do not yet
understand the actual decision process: How are differ-
ent moral values integrated in a decision between options
that are morally relevant for more than one moral foun-
dation, or options that are uncertain? Which impact
does moral variability have on the kinds of moral deci-
sions we face every day?
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Abstract 

The pointing gesture is regarded as indicating an object or 
location in the environment. People sometimes point to 
invisible objects, but the inferential mechanism is not known. 
This study examined comprehension of pointing with a bent 
index finger at an invisible object behind a wall. The 
experimenter pointed at an object using either typical pointing 
or “enforced pointing” behind a wall that was either opaque 
or transparent. In enforced pointing, the experimenter moved 
his arm in an arc movement. The participants guessed which 
object was being denoted. The wall was also either relatively 
high or relatively low. When the participants looked at typical 
pointing, they thought that objects both in front of the wall 
and behind the wall were being denoted. However, when they 
looked at enforced pointing, they more frequently thought that 
objects behind the wall were denoted. People seemed to use 
pragmatic knowledge on this “enforced” pointing gesture.  

Keywords: gesture; declarative pointing; common ground; 
non-linguistic information 

Introduction 

The pointing gesture usually indicates direction. If any 

object or location exists in the indicated direction, such 

object or location is interpreted as denoted. Clark (2003) 

discussed use of attention-getting gestures of pointing and 

placing. He noted that pointing at a referent and placing a 

referent are both useful ways to convey information about 

referents. In pointing, a person directs the addressee’s 

attention to the referent object; for example, a customer may 

point at a package of medicine that is difficult for him or her 

to reach but is easy for the clerk. In placing, a person puts a 

referent object in the area of an addressee’s attention; for 

example, a customer may place a package of medicine on 

the checkout counter where a clerk waits. These 

communications are possible without saying any words. To 

communicate smoothly, people must share mutual 

understanding of pointing at referents and placing referents 

in different situations. Clark (1996) proposed that people 

use “common ground” as implicit mutual knowledge in 

human communication. Previous research has focused 

mostly on language and verbally describable information 

included in common ground. Non-verbal information such 

as gestures must also be comprehended using common 

ground as to how people use gestures in different situations; 

however, usage of gestures as common ground has not yet 

been thoroughly explored. Pointing gestures are often used 

with demonstratives (Coventry et al., 2008; 2014). Pointing 

gestures are also used to examine children’s inferential 

ability (Doherty et al., 2004; Kobayashi, 2007). In these 

studies, the addresser can easily share information about 

visible objects using visual joint attention and common 

ground. 

Kita (2003) discussed that the semiotic processes—that is, 

interpretation of a pointing gesture and its referent—and 

intended meaning of the overall action must be analyzed in 

interpretation of a pointing gesture. The referent of a 

pointing gesture can be ambiguous in many situations and in 

many ways. People must make correct inferences about the 

observed pointing gesture. Tomasello (2008) discussed that 

a customer points at an empty glass, and a bartender 

understands the request of the customer (“Please fill the 

glass”). In other situations—for example, a client and a 

glass designer—the client is pointing at an empty glass may 

be interested in or selects the design of the glass. 

Goodwin (2003) suggests that an “activity framework” 

specifies which features of the environment are relevant for 

the ongoing activity and, hence, are likely to be the referent 

of a pointing gesture. Goodwin also suggests that different 

forms of pointing may correlate with particular types of 

referents.  

Pointing is usually used for visible objects when an 

indicator and an observer can jointly attend to the same 

object or location. People sometimes point to invisible 

objects, but the inferential mechanism is not known. 

Kobayashi and Yasuda (2015) examined how people 

interpret the experimenter’s pointing with a bent index 

finger at an invisible object behind a panel. The 

experimenter pointed at bottles that were placed either in 

front of the panel or behind the panel using a straight index 

finger or a bent index finger, and the participants guessed 

which object was being indicated. In the with-obstacle 

condition, bent pointing tended to be interpreted as referring 

to all the objects, both in front and behind the panel. 

However, this tendency was not observed with straight 

index-finger pointing. Thus, when the participants looked at 
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straight pointing, they thought that only the objects in front 

of the panel were being indicated. However, when they 

looked at bent pointing, they thought that objects both in 

front of and behind the wall were being indicated. The 

significance level of the shape of the pointing finger’s effect 

was substantially large (η
2
 = 0.804) and the results suggest 

that people think bent pointing can refer to objects behind 

walls, but straight pointing cannot. The study suggests that 

people have “common ground” in their interpretation of 

different types of pointing.  

This study examined comprehension of pointing with a 

bent index finger at an invisible object behind a wall. The 

present study examined participants’ interpretation of the 

experimenter’s pointing at an object using either typical 

pointing or “enforced pointing” behind a wall that was 

either opaque or transparent. In enforced pointing, the 

experimenter moved his arm in arc movement. The 

participants guessed which object was being denoted. The 

wall was also either relatively high (28 cm) or relatively low 

(14 cm). We examined the effect of pointing movement 

because this iconic movement may suggest the indicator’s 

intention of “overriding the wall.” We examined the 

transparency of the wall because, if the wall is transparent, 

“overriding” intention may look ambiguous. The reason is 

that objects behind the transparent wall can be indicated 

without such effortful movement. However, if the wall is 

opaque, the “overriding” intention may be naturally 

understood. We also examined the height of the wall. The 

enforced pointing movement was more easily understood 

when a relatively high (28 cm) wall was used than when a 

relatively low (14 cm) wall was used. 

Methods 

Participants 

Sixteen Japanese undergraduate university students (M age = 22.0 

years; SD = 0.816; 1 female) participated. The experiment was 

conducted in accordance with Tokyo Denki University’s code of 

ethics. 

Experimental setting 

Fig. 1 shows the experimental setup. On the table, there 

were 4 small bottles (W: 3 cm × H: 7 cm) designated 1, 2, 3, 

and 4 with a different color on each bottle. Bottles were 

placed 10 cm apart. Bottle #1 was placed 75 cm away from 

the edge of the side of the table where the experimenter sat. 

The experimenter sat on one side of the table and wore a 

black sun visor during the experiment so that participants 

could not see the experimenter’s gaze direction. The 

participant sat at the table at a right angle to the 

experimenter. The panel (W: 14 cm × H: 28 cm) was placed 

in the middle of the table between bottles #2 and #3. 

Participants were randomly assigned to all conditions. 

The experimental conditions consisted of two types each 

of pointing (2: typical vs. enforced), visibility (2: visible vs. 

invisible), and position (2: lengthwise vs. widthwise). 

Regarding the pointing condition, “typical pointing” was 

when the experimenter pointed at the referent with his arm 

extended horizontally and his index finger kept bent (Fig. 

2); “enforced pointing” was when the experimenter pointed 

at the referent with his arm moving in arc and his index 

finger kept bent (Fig. 3).  

 

 
 

Fig. 1: Experimental setup in “invisible” with 

“lengthwise” conditions. Objects were placed 10 

cm apart. 

 

 

 
Fig. 2: Flow of typical pointing 

 

 

 
Fig. 3: Flow of enforced pointing 

 

Regarding the visibility condition, “visible” meant that a 

transparent panel was used; the experimenter and the 

participant could see all bottles. “Invisible” meant that a 

black opaque panel was used; the experimenter could not 

directly look at bottles #3 and #4. The participant could see 

all bottles. In the obstacle position condition, the height of 

the “lengthwise” obstacle was 28.0 cm, and the width was 

14.0 cm. The height of the “widthwise” obstacle was 14.0 

cm, and the width was 28.0 cm. For example, in the 

“visible” with “lengthwise” obstacle condition, there was a 
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small transparent lengthwise panel on the table (Fig. 4a). In 

the “invisible” with “widthwise” obstacle condition, there 

was a small black opaque widthwise panel on the table (Fig. 

4b). 

 

 
 

Fig. 4: Each type of obstacle; “a” is used in 

“visible” with “lengthwise” conditions and “b” 

is used in “invisible” with “widthwise” 

conditions. 

Procedure 

First, the experimenter and the participant looked at all the 

bottles placed on the table. Then, the participant sat on the 

experimenter’s chair and looked at the table. Then, the 

experimenter put the panel between bottles #2 and #3, and 

the participant again looked at the table. Thus, the 

participant experienced the experimenter’s view in both 

visible and invisible obstacle conditions.  

In the typical pointing with invisible widthwise obstacle 

condition, the experimenter put the black-opaque widthwise 

panel between bottles #2 and #3 and said to the participant, 

“I cannot see bottles #3 and #4. Now, I will point at one of 

the four bottles.” Then, the experimenter pointed at bottle #3 

using the typical index finger. Next, the experimenter 

pointed at bottle #3 continuously and said, “Now, I am 

pointing at something. What is the color of the bottle you 

would guess I am pointing at?” The participant responded 

orally using the bottle color. The bottle corresponded to the 

distance from the edge of the table: Bottle #1’s distance was 

75 cm; #2, 85 cm; #3, 95 cm; and #4, 105 cm. All bottles 

were of different colors, and bottle positions were 

randomized. In addition, the experimenter wore a sun visor 

so that the participant could not see the experimenter’s eye 

gaze. 

In the enforced pointing condition, the procedure was the 

same as with the typical pointing except that enforced 

pointing was used. In the visible condition, the procedure 

was the same as with the invisible condition except that the 

visible condition was used. In each block, the experimenter 

pointed at bottle #3, and there were 24 trials in all. Overall, 

the order of color bottles of these blocks was 

counterbalanced between the participants.  

The experimenter’s pointing was trained to show the same 

pointing gesture in either the typical pointing or the 

enforced pointing in the aspects of speed of movement. In 

addition, the angle of his forefinger maintained the same 

shape (Fig. 2 and 3). 

Results 

Fig. 5 shows the participant’s responses when the 

experimenter pointed at the object in each pointing and each 

visibility condition. A 2 (Pointing: typical, enforced) × 2 

(Visibility: visible, invisible) × 2 (Position: lengthwise, 

widthwise) three-way ANOVA was performed with the 

number of the bottle that the participant responded as the 

dependent measure. There was a marginally significant 

main effect of Pointing, F(1,15) = 3.479, p = .08, η
2
 = 0.050. 

There was also a significant interaction of Pointing × 

Visibility, F(1,15) = 5.497, p < .05, η
2
 = 0.015. 

To explore the significant Pointing ×Visibility interaction, 

the simple main effects of Pointing within each Visibility 

and Visibility within each Pointing were analyzed. The 

simple main effect test revealed that there was a significant 

difference between typical pointing and enforced pointing in 

the invisible obstacle, F(1,15) = 7.120, p < .05, η
2
 = 0.106. 

There was also a marginally significant difference between 

the visible and invisible obstacles in typical pointing, 
F(1,15) = 3.407, p = .08, η

2
 = 0.029. Other effects were not 

significant (all p > .05). 

When enforced pointing was used (M = 2.958, SE = 

0.166), participants interpreted a farther bottle as being 
indicated than when the typical pointing was used (M = 

2.427, SE = 0.175) in the invisible obstacle condition.  

 

 
 

Fig. 5 Participants’ responses when the 

experimenter pointed at bottle #3 using each type 

of pointing in each visibility and position 

condition. * denotes a significant difference. 

Error bars denote the standard errors of the 

means. 
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Discussion 

This study examined comprehension of pointing with an 

enforced movement of a bent index finger at an invisible 

object behind a wall. The study examined participants’ 

interpretation of an experimenter’s pointing using either 

typical pointing or “enforced pointing” at an object behind a 

wall that was either opaque or transparent. In enforced 

pointing, the experimenter moved his arm in an arc 

movement. The participants guessed which object was being 

denoted. The wall was also either relatively high (28 cm) or 

relatively low (14 cm).  

When the participants looked at typical pointing, they 

thought objects both in front of the wall and behind the wall 

were being denoted. However, when they looked at enforce 

pointing with an opaque wall, they more frequently thought 

objects behind the wall were denoted. The height of the wall 

did not have any effect in this experiment. 

Participants interpreted that enforced pointing could 

“override” the wall if the wall was opaque. They might 

think enforced pointing suggested an overriding trajectory 

(Fig. 6) to point to an invisible object behind the wall. 

However, for the objects behind the transparent wall, 

enforced pointing was not necessary. Thus, this enforced 

movement was sufficiently informative for participants to 

interpret the indicator’s intention to “override” the wall. 

That seems to be the reason why the height of the wall had 

no effect. 

The study suggested that people use an indicator’s arm 

movement and the features of the environment to 

comprehend the referent of pointing. The result suggests 

that we have “common ground” in terms of interpretation of 

different types of pointing. Furthermore, we think the 

linguistic-cognitive framework presented by Relevance 

Theory (Sperber & Wilson, 1995; Wilson & Sperber, 2004) 

may be applied to our result. Discussing Relevance Theory 

from a biological perspective, Scott-Phillips (2010) stated 

that humans’ and other animals’ every signal carries a 

presumption of its own optimal pertinence. Here, non-verbal 

signals such as human gestures can be processed as relevant 

signals in addition to utterances.  

It can be said that the study suffers from reduction of 

pointing situations. The study investigated only the 

interpretation of enforced pointing in the controlled 

experiment. It is necessary to study the production in 

addition to the interpretation of enforced pointing in a more 

real human environment. 

 

 
 

Fig 6: Pointing trajectories 
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Abstract 

The present study was aimed at assessing the effect of object 
similarities on participants' evaluations of analogical quality. 
Results from an experimental condition in which the relations 
involved in the compared situations were explicitly 
highlighted, showed that general object similarities 
(membership to same category) positively affected the 
evaluations of analogical quality. In contrast, no such effect 
was found under another experimental condition in which the 
analogical comparisons between the same situations were 
framed by a schema-governed category. An analysis of 
participants' justifications revealed that the object similarities 
that were taken into account under this second condition were 
related to central dimensions of the schema-governed 
category that was used to frame the analogies. We explain 
these findings within the category assignment approach 
developed by Minervino et al., and discuss the implications of 
this alternative perspective of analogical reasoning for the role 
of similarities between entities playing several thematic roles. 
 

Keywords: analogy; schema-governed category; semantic 
similarity. 

Introduction 

Drawing an analogy consists in recognizing that two 

situations are comparable because they share a common 

relational structure despite their superficial differences.  

Frequently, the purpose of analogical comparisons is to 

transfer knowledge from one of those situations (the base 

analog) to the other (the target analog) to enhance its 

comprehension (Gentner, 1983; Holyoak, 1984).  

The structure-mapping theory (Gentner, 1983, 1989; 

Gentner & Markman, 1997) and the multiconstraint theory 

(Holyoak & Thagard, 1989; Hummel & Holyoak, 1997) 

have dominated the discussion about analogical reasoning 

since the 1980s. Due to the commonalities between these 

two theories we will refer to them as the standard approach. 

According to this approach, analogical reasoning involves, 

among other subprocesses, a mapping between base and 

target elements, and an evaluation of the quality of the 

analogy. Both theories agree in that the quality of a match 

will be considered higher or lower to the extent that the 

alignment satisfies the structural constraints of one-to-one 

mapping and parallel connectivity (Gentner, 1989; Holyoak 

& Thagard, 1989). Nevertheless, the mentioned theories 

differ with respect to the role of semantics in the evaluation 

of an analogy. Structure-mapping theory posits that 

relational similarity is the only factor that counts when 

evaluating an analogy, with object similarities playing no 

role at all (Gentner, 1983, 1989). On the other hand, the 

multiconstraint theory contends that semantic similarity 

between objects is also taken into account during quality 

evaluations (Holyoak, 1984; Holyoak & Thagard, 1989). 

The mechanisms proposed by these theories for estimating 

semantic similarity tend to resort to general knowledge like 

the one represented in networks (Minervino, Oberholzer, & 

Trench, 2013). The scarce available evidence (Gentner, 

Ratterman & Forbus, 1993; Gentner & Kurtz, 2006) is 

consistent with structure mapping theory: it shows a clear 

relational focus, with only a minimal influence of object 

similarities on judgments of analogical relatedness.  

To illustrate the implications of the relational focus in a 

more concrete way, suppose that people were faced with a 

task of rating the quality of the analogies that hold between 

the top and bottom scenes of Figure 1. Dismissing the 

similarity between the objects computer mouse and laptop 

as two members of the entity category computer equipment, 

and the semantic differences between a computer mouse and 

a pair of socks (two objects lacking a common entity 

category), people would probably rate Facts A and B as 

equally analogous to the Key fact, because they are three 

cases of giving, and what counts in quality evaluations are 

relational similarities.  

In the present research we present an alternative approach 

to standard theories of analogy, with implications on the 

role of object similarities during analogical comparisons. 

While we tend to agree with the multiconstraint theory in 

granting a role to object similarities, we posit that the 

computation of  object properties that takes place during  
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evaluations of analogical quality does not involve assessing 

the proximity between base and a target objects within a 

hierarchically organized network of concepts. The 

proposals of the standard theories may be suitable for 

certain kind of analogies like those used by Gentner and 

Kurtz (2006). For example, the analogical relatedness 

between John bought the candy and John took the lollipop 

could be decided considering the similarity between buy 

and take in isolation. However, standard proposals might 

not be appropriate in those cases in which the interaction 

between the propositional elements composing the analogs gives 

rise to exemplars of a schema-governed relational category.  

Exemplars of a given schema-governed category like 

aggression share a common schematic structure (Gentner & 

Kurtz, 2005; Goldwater, Markman & Stilwell, 2011; 

Markman & Stilwell, 2001), which could be instantiated by 

a wide range of exemplars, like the preschooler threw a pen 

to his partner, the soccer player broke a leg to his rival and 

the girl sank her brother's head into a bucket. The 

alternative approach of analogical reasoning that we are 

presenting here supposes that two situations would be 

considered analogous if they could be assigned to a 

common schema-governed category (Minervino et al., 2013; 

Oberholzer, Trench & Minervino, 2011). Frequently, in real 

communicational scenarios a certain schema-governed 

category is explicitly introduced previous to the acts of 

comparing and evaluating the analogability of two 

situations. For example, a man could tell to a friend: “Hey, I 

have seen cheating-like behaviors in my wife: The other day 

she hid her cellphone from me”. To express comprehension, 

the friend could reply by telling an analogous situation: 

“The same thing happened to me! My wife hid her credit 

card records from me”. On the other hand, in absence of a 

framing schema-governed category, the comparison could 

be alternatively focused in the lower-level actions implied in 

the compared situations (e.g., the two situations could be 

considered analogous just as cases of hide). While standard 

theories of analogies seem appropriate to explain the lower-

level type of analogical processing, the assignment approach 

is focused on a higher-level type of analogical reasoning 

guided by schema-governed categories. 

With respect to the evaluation of analogies, the 

assignment approach posits that relational similarity is not 

necessary nor sufficient. Note in above examples that the 

preschooler threw a pen to his partner and the soccer player 

broke a leg to his rival could be considered analogous as 

cases of aggression despite not sharing similar relations 

(i.e., throw is not semantically similar to brake). 

Furthermore, hiding the cellphone from the husband could 

be considered as not analogous to hiding the pie from the 

husband besides sharing the relation hide, due to the fact 

that they could not be assigned to a common schema-

governed category (e.g., cheating-like behavior). 

With respect to the role of objects in analogical 

relatedness judgments, the assignment approach posits that 

object similarities are taken into account to the extent that 

they could modify the value that the facts under comparison 

displayed on one dimension of the schema-governed 

category to which the analogs belong. For example, in 

Figure 1, the assignment approach predicts that if the 

comparison is framed by the schema-governed category 

awarding, people would rate Fact B as more analogous to 

the Key fact than Fact A because of the closeness of those 

first two situations in the value that they exhibit along the 

importance of the awarding. Object properties that count in 

evaluating the analogical relatedness of the Key fact with 

respect to Facts A and B are those related to the importance 

of the awarding, for example, the price of each object. Thus, 

as a pair of socks has a similar price than a computer mouse, 

the quality of the analogy between the Key fact and the Fact 

B would be better rated than the quality of the analogy 

between the Key fact and the Fact A, in which the award 

consists of a more expensive laptop. This treatment of 

semantics differs from the one given by standard theories of 

analogy, because it does not consider similarities and 

differences between objects like those provided by general 

knowledge networks (e.g., the similarity between a 

computer mouse and a laptop as members of the category 

computer equipment). Instead, the mechanism proposed by 

the assignment´s approach for computing semantic 

similarities takes into account those aspects of objects that 

become relevant as an effect of the schema-governed 

category that is framing the comparison. For example, the 

price of the objects becomes relevant because it affects the 

values that the compared situations exhibit in the dimension 

of importance of the awarding.  

The objective of this study was to assess whether the 

object similarities in properties that affect the value of the 

compared situations in a certain dimension of the framing 

 
 

Figure 1. One example of an analogy in which the base 

(key) and target situations (A and B) have similar relations, 

but hold general differences among their objects. 
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schema-governed category have an effect on quality 

evaluations of the analogy, as opposed to general object 

similarities, operationalized as membership to same 

category1. With this purpose, we designed an experiment in 

which two groups of participants received triplet of images 

like the ones displayed in Figure 1, which were framed 

either by a relation or by a schema-governed category. 

While one of the target objects maintained general 

similarities with respect to the base object in terms of their 

membership to a same category (e.g., computer mouse and 

laptop), the object of the second target did not hold general 

similarities with the base object (e.g., computer mouse and 

pair of socks). Nevertheless, the second target object could 

be considered more similar than the first one with respect to 

the base object in terms of a property (e.g., the price of the 

awards) that becomes relevant under a schema-governed 

category framing (e.g., awarding). In light of existing 

evidence regarding the negligible role of objects during 

standard analogical comparisons, we predicted that 

participants whose analogies were framed by the central 

relation (i.e., action represented by a verb) of the compared 

situations would rate both targets as being equally 

analogous to the base situation. However, the above 

considerations about the likely role of schema-governed 

categories during analogical comparisons led us to predict 

that framing the analogies under a common schema-governed 

category would lead participants to give higher scores to target 

analogs whose objects were not taxonomically related to those 

of the base situation, but which allowed a matching with 

respect to the base situation in terms of their value along a 

relevant dimension of the framing category. 

Method 

Participants and design 

Forty students of Psychology at the University of Comahue 

(mean age = 21.4 years, SD = 2.08) volunteered to 

participate in the experiment, and were randomly assigned 

to one of two experimental conditions. The experiment has a 

2x2 repeated measures design, with the independent 

variable framing of the analogies (same relation vs. same 

schema-governed category) as a between subject factor, and 

general object similarity between base and target (presence 

vs. absence), as a within subject factor. The dependent 

variable was the quality evaluation of analogies. 

 

Procedure 
Participants of the two conditions of the experiment 

received a brief instructional text. It anticipated that they 

would receive several sets of three drawings in which a first 

scene (Key fact) would be followed by two analogous 

                                                           
1 Traditionally, general object similarity was manipulated as the 

membership of two objects to a same taxonomic category (e.g., 

Gentner & Kurtz, 2006). However, general object similarities 

could also refer to other commonalities between objects taken in 

isolation, like, for example, intrinsic and functional properties.  

scenes (Fact A and B, respectively), that is, by two 

"situations that are analogous to the first one in essential 

aspects, despite being different in others". Participants were 

told that they should consider whether the Fact A or B 

seems to them as more analogous to the Key fact, or if both 

could be seen as equally analogous to the Key fact. The 

instructional material also anticipated that each set of scenes 

would be preceded by a brief description of the actions 

involved in the three drawings of the set, and followed by a 

prompt to provide ratings for the extent to which Facts A 

and B could be considered analogous to the Key fact, and a 

verbal justification for their scoring. After reading these 

instructions, participants were provided with a set of 

practice materials. They did not receive any feedback about 

the content of their responses during this practice or 

during the experiment itself, but they did receive feedback 

about how to carry out the tasks. Upon reading the 

instructions and solving the practice trial on a computer 

display, all of the participants were asked to analyze each of 

the subsequent triplets of visual scenes at their own pace, 

typing their responses into the spaces provided in the Word 

file, and advancing to the next screen once they had finished 

the tasks of each set. Participants of both groups received 

six critical sets of scenes interleaved by six filler sets 

designed to prevent participants from grasping the response 

pattern that was favored by the manipulation in each 

condition. Each trial, which appeared on a different screen 

of the computer file, displayed a first visual scene (the base 

analog, named Key fact) on the uppermost section of the 

screen, followed by two alternative visual scenes (the 

targets, named respectively Fact A and Fact B) placed one 

next to the other (see Figure 1). Participants in the similar 

relation framing condition (n = 20) received all triplets 

preceded by a brief statement stressing the verb that applied 

across the scenes (e.g., "These are three instances of giving"). 

In contrast, participants in the similar schema-governed 

category framing condition (n = 20) received all triplets 

preceded by a schema-governed category that could be applied 

to all scenes (e.g., "These are three instances of awardings").  

 

First task: Evaluation of the quality of the analogies 
Using a 5-point Likert scale (1 = barely analogous; 5 = 

completely analogous), participants were asked to rate (1) 

the extent to which the Key fact could be considered 

analogous to the Fact A, and (2) the extent to which the Key 

fact could be considered analogous to the Fact B. 
 

Second task: Verbal justifications of the quality scores 
Participants were encouraged to write down a verbal 

justification for the previously assigned scores. For this task, 

they were presented with three possible kinds of unfulfilled 

answers followed by a blank space: (1a) “I have assigned a 

higher score to the comparison between Key fact/Fact A 

than to the comparison between Key fact/Fact B 

because…”, (1b) “I have assigned a higher score to the 

comparison between Key fact/Fact B than to the comparison 

between Key fact/Fact A because…” or (1c) “I have 

assigned the same scores to both comparisons because…”.  
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Materials  

Six critical sets of drawings were built, each one comprising 

a base situation and two target situations (see Table 1). The 

characters and the actions they were performing were 

identical across the three scenes of each set, and could be 

framed either as instantiations of a common relation (e.g., 

two cases of giving) or as instantiations of a common 

schema-governed category (e.g., two instances of 

awarding). In contrast to the characters and their actions, 

which were kept constant across the three scenes of each 

set, the objects involved in such actions were varied. 

The object of one of the targets was similar in general 

aspects to its corresponding base object (e.g., a computer 

mouse and a laptop are two exemplars of the entity category 

computer equipment), but could not be equated to the base 

object along a central dimension of the schema-governed 

category that could be potentially applied to both scenes 

(e.g., if the base and the first target were framed under  

the schema-governed category awarding, then the 

importance of winning a laptop is not comparable to that of 

winning a computer mouse). The objects involved in the 

second target were chosen to display the opposite pattern: 

they did not maintain general object similarities with respect 

to the base object, but could nevertheless be equated to the 

base object in certain properties that become relevant under 

a schema-governed category framing that could be 

potentially applied to both scenes (e.g., while computer 

mouse and a pair of socks are not similar, they constitute 

awards of comparable importance). The order of 

presentation of the critical sets and the right/left position of 

their corresponding targets were counterbalanced.  

Results 

 A 2x2 ANOVA with Framing condition (same relation vs 

same schema governed category) as between-subjects factor 

and General object similarity (presence vs absence) as 

within-subjects factor was conducted to assess how these 

variables impacted the perceived quality of analogies. Main 

effects were neither found for condition, F(1,38) = 1.01, 

MSe = 0.76, p = .31, nor for general object similarity, 

F(1,38) = 3.93, MSe = 0.90 , p = .055). However, there was 

a significant interaction between the framing condition and 

general object similarity, F(1,38) = 146.32, MSe = 33.58, p 

< .01 (see Figure 2). Post-hoc Tukey HSD tests revealed 

that in the same relation condition the ratings of the quality 

of the analogy were significantly higher for items with 

general object similarity (M = 3.77, SD = 0.697) than for 

items without general object similarity (M = 2.68, SD = 

0.739, p < .01). Against structure mapping, these results 

showed that general object similarities affected the 

perceived quality of analogies framed by a relation. The 

opposite pattern of results was observed across the same 

schema-governed framing condition, in which the items 

without general object similarity but with similar 

dimensional value obtained significantly higher ratings (M = 

3.78, SD = 0.549) than items with general object similarities 

(M = 2.27, SD = 0.797, p < .01).  

A further qualitative analysis of the verbal justifications 

was performed in order to explore the principles underlying 

the evaluations of the quality of analogies. Two 

independent judges, both cognitive psychologists, were 

instructed to classify the principles applied by participants 

in their justifications into one of three categories: related to 

general object similarities, related to a verb, or related to a 

dimension of the framing schema-governed category. 

Judges should classify the principle as related to general 

object similarities if participants´ justifications referred 

object similarities and differences that were not related to 

the verb or to the schema-governed category used to frame 

each triplet of images (i.e., that could be identified and 

conceptualized independently of the specific framing verb 

or schema-governed category). Judges were told that 

responses of this type may include similarities and 

differences between intrinsic properties of objects, their 

functions or their taxonomic membership, and were 

provided with examples (e.g., a computer mouse has the 

same color than a laptop). The principle should be 

classified as related to a verb if participants mentioned 

similarities and differences in object properties that affect 

dimensions of the framing relations (e.g., a computer mouse 

is easier to give than a laptop). Judges should classify the 

principle as related to a dimension of the framing schema-

governed category if participants mentioned similarities 

and differences between object properties that are related to 

a dimension of the framing schema-governed category 

(e.g., receiving a laptop is a more important awarding 

compared to receiving a computer mouse). Judges agreed in 

86% of the cases, and cases of disagreement were resolved 

by discussion. This qualitative analysis showed that in the  

 

Table 1: Experimental materials 

 

Set 

# 

Framing SGC/ 

Relation 

Description of the pictorial situations  

1 Physical 

exercise/ 

Relocate 

A man is relocating big desks (BA)/ 

tiny stools (TA1)/ truck wheels (TA2) 
inside a room 

2 Bragging/ 

Point 

A man is pointing a sports car (BA)/ 

bicycle (TA1)/big house (TA2) to a woman 

3 Smuggling/ 

Load 

A man is loading led TV´s (BA)/  

fans (TA1)/ paintings (TA2) into a truck 

4 Celebration/ 

Open 

A woman is opening a bottle of champagne 

(BA)/ soda (TA1) / cake box (TA2) 

5 Awarding/ 

Give 

A man is giving a computer mouse (BA) / 

laptop (TA1)/ pair of socks (TA2) to a woman 

6 Electricity 

consumption/ 

Plug 

A woman is plugging in a table lamp 

(BA)/ floodlight (TA1) / radio (TA2) 

 

Note. SGC: Schema-governed Category; BA: Base Analog; 

TA1: Target Analog 1; TA2: Target Analog 2. 
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condition framed by a relation, participants’ justifications 

followed a principle related to general object similarities in 

75% of the cases, and a principle based on dimensions of 

the verbs in 25% of the cases. In contrast, in the condition 

framed by a schema-governed category, participants used 

the principle related to general object similarities only in 

7% of the cases, whereas in the remaining 93% of the cases 

they applied the principle related to a dimension of the 

framing schema-governed category. None of the responses 

of the schema-governed framing condition referred to a 

principle related to the verb. This analysis provides 

complementary evidence that general object similarities are 

taken into account in the same relation framing condition, 

but had almost no influence over quality evaluations of the 

schema-governed framing condition. Moreover, justifications´ 

analysis confirmed that object similarities that count in quality 

evaluations of analogies framed by a schema-governed 

category are those related to object properties that bear on the 

degree to which the facts under comparison match along a 

relevant dimension of the framing category. 

Discussion 

The present study showed that when matched objects belong 

to the same category, this similarity positively influences 

the perceived quality of a “standard” analogy (i.e., an 

analogy not framed by a schema-governed category). One 

possible explanation of the inconsistency between this 

finding and previous evidence (e.g., Gentner & Kurtz, 2006; 

Gentner et al., 1993) could be that in our study participants 

were asked to justify their ratings, and there is some 

evidence that justifying ratings of analogical relatedness can 

lead to poorer discrimination between superficial and 

structural aspects of analogies (Sieck, Quinn & Schooler, 

1999). In any case, the central finding of the present study 

was that when an analogy is framed in terms of a schema-

governed category, the object properties that matter when 

assessing analogical comparisons are those that affect the 

value of the compared situations along certain dimensions of 

the framing schema-governed category, as opposed to the type 

of object similarities considered by the standard approach.  

A question that may arise from our study refers to 

whether the framing of analogical comparisons under 

schema-governed categories (as in our schema-governed 

condition) represents a frequent or a rare occurrence in daily 

real-life scenarios. An example widely discussed by the 

multiconstraint theory indeed suggests that schema-

governed analogies are rather frequent, and that the 

conceptualization of similarities and differences between 

objects has clear implications for the generation of 

analogical inferences. In the context of the Vietnam/Persian 

Gulf analogy, Holyoak and Thagard (1995) mention that the  

contrast between the jungle of Vietnam and the desert sands 

of Kuwait was key to predicting whether the army of 

Saddam could be defeated by air strikes: As opposed to the 

aptness of the Vietnamese jungle for concealing the army, 

the desert sands are not of great help. As this example 

clearly illustrates, the comparison is framed under the 

schema-governed category war, and under this framing 

certain properties of the object ground become relevant—

properties that one would not analyze in the absence of such 

particular framing. It is our intuition that many analogical 

comparisons that take place in everyday contexts are 

contextually framed in terms of schema-governed 

categories: Is the economic crisis of 2008 analogous to that 

of 1930?, Are the terrorist attacks perpetrated by Muslim 

fanatics analogous to those of radical independists of 

Ireland?, Is the populism led by Donald Trump analogous to 

the one led by Cristina Fernández de Kirchner?  

The discrimination between analogies that are processed 

under a schema-governed category and those that are not is 

relevant to designing experimental materials as well as to 

interpret results of existing studies on analogical thinking. 

Just to illustrate, Figure 3 displays one of the sets of pictures 

employed by Markman and Gentner (1996, p. 242) to 

determine whether alignable differences count more than 

non-alignable differences during similarity judgments. If 

forced to decide which of the alternative target scenes is 

more analogous to the base situation, readers would 

probably choose the one on the left, as did participants of 

such study. As posited by the authors, what explains this 

preference is the fact that while the replacement of the target 

object by a bird represents an alignable difference in the 

context of the rightmost scene, such replacement represents 

a non alignable difference within the left scene. 

Alternatively, one could sensibly argue that while the left scene 

has to do with the physical ability of aiming at a target, the 

right scene represents a case of the schema-governed 

category zoocide. The processing of analogies under 

schema-governed categories does not always require the 

external provision of a suitable schema-governed category. 

As shown by Minervino et al. (2013), schema-governed 

categories could be naturally activated in reasoners by the  
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Figure 2. Interaction between framing condition and 

general object similarity in quality evaluations. 

3300



situations themselves. In fact, during the construction of the 

stimuli employed in the present study we found it hard to 

devise situations for which the schema-governed categories 

that were explicitly presented in the schema-governed 

category framing condition would not be automatically 

evoked by participants in the same relation condition. 

While the present study shows that a schema-governed 

category framing leads people to highlight object properties 

(e.g., price of the award) that are relevant to analogical 

quality evaluations, a question that may arise is whether just 

activating those properties without activating the whole 

schema will yield the same results. An experiment that 

could shed light on this would involve a comparison 

between the schema-governed framing condition of the 

present experiment and another identical condition in which 

the woman (i.e., the patient of the awarding) was replaced 

by a billionaire. While the consideration of the price of the 

objects under the first condition allowed participants to rate 

the Key fact as more analogous to the Fact A than to the 

Fact B, we hypothesize that under the other condition 

people would rate both facts A and B as almost equally 

analogous to the Key fact. This would evidence that in 

the schema-governed category framing condition people 

are not just taking into account object properties, but are 

considering the interaction between object and patient 

properties (e.g., object´s price and richness of the patient). 

Thus, it seems likely that people take into account the 

interaction between the fillers of every thematic-role (e.g., 

object, patient, agent, and instrument) and their relevant 

properties to judge the analogability of the compared situations. 

Future studies should assess the adequacy of these and other 

predictions that stem from the category assignment approach. 
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Abstract

Conventional seated audiences have relatively restricted op-
portunities for response. Perhaps the most salient is applause
but they use their hands to make other visible movements: to
fix hair, adjust glasses, scratch ears. The question we address
here is whether these apparently incidental movements may
provide systematic clues about an audience’s level of engage-
ment with a performance. We investigate this in the context
of contemporary dance performances by analysing audience
hand movements in four performances at the London Contem-
porary Dance School. Hand movements were tracked using a
reflective wristband worn by each audience member. A blob
detection algorithm applied to the video recording examined
whether changes in hand movement are associated with audi-
ence arousal levels to the performance. The results show that
hands move least during the most preferred and most during
the least preferred dance pieces. We conclude that still hands
are a signal of higher levels of engagement.
Keywords: Audience; Engagement; Blob Detection; Hand
movement; Handedness; Contemporary Dance.

Introduction: Interacting with Audiences
In many live performances audiences are separated from per-
formers; seated in the dark observing the performance. The
primary conventional opportunity for members of an audi-
ence to express their satisfaction or dissatisfaction about a
performance is through applause and/or cheering. Nonethe-
less, audiences have notoriously recruited other means of sig-
nalling their ongoing responses including the organised and
carefully timed use of apparently innocent activities such as
coughing (Wagener, 2012; Broth, 2011).

Our programmatic hypothesis is that audiences’ on-
going responses are part of a bi-directional system of
audience-performer communication that distinguishes live
from recorded performance. A key motivation for this hy-
pothesis is that performers themselves distinguish between
“good” or “bad” audiences for the same performance and
between moments of engagement or “lift” and moments of
boredom in an audience (Healey, Oxley, Schober, & Welton,
2009). The question this raises is what could performers be
detecting in these situations that informs their dynamic sense
of how well a performance is going. Here, we consider an
especially restrictive case: contemporary dance. In a typical
performance the audience will be in the dark, the performers
behind bright lights and loud music accompanying the danc-
ing. Audience behaviours are restricted by conventions on
the types of response that it is considered acceptable to dis-
play. Performers are constrained by the need to concentrate
on the physical movements required for their performance. In

contrast to live genres such as Street Performance, Stand-up
Comedy or Drama there few, if any, opportunities for direct
eye contact or verbal exchanges with the audience. Almost
the only available channel of communication between audi-
ence and performers is body movements.

One overt physical response that is visually salient and po-
tentially detectable by dancers is audience hand movements.
Casual observation of a dance audience reveals a wide range
of ongoing hand-movements by audience members involv-
ing an apparently diverse set of activities: scratching, ad-
justing hair, adjusting glasses, support the chin and drinking
amongst others. The question addressed here is whether these
movements may provide a signal of audience engagement and
thereby form part of a feedback cycle between the performers
and their audience.

Measuring Audience Responses
Understanding and sensing audience responses can provide
an evaluation tool to help performance directors understand
how their work is received. Performance unfolds in time,
making the collection of data more problematic for re-
searchers (Schubert, Vincs, & Stevens, 2009). However,
there are a growing number of studies in dance research
that use sensing technologies to examine dancer positions
in time (Calvo-Merino, Glaser, Grèzes, Passingham, & Hag-
gard, 2005) although very little research has focused specifi-
cally on audiences (Katevas, Healey, & Harris, 2015; Gardair,
Healey, & Welton, 2011; Vincs, Stevens, & Schubert, 2010;
Healey et al., 2009).

The most obvious way that one can measure satisfaction
in audiences is from the levels of applause. Mann, Faria,
Sumpter, and Krause (2013) used a mathematical model to
quantify the role of social contagion in the starting and stop-
ping of applause during a presentation. They found that the
rate at which new individuals start clapping is proportional
to how many people are already clapping. However, this is
a measure of response after the end of the presentation rather
than a concurrent response. An alternative approach asks par-
ticipants to make explicit self-reports of their responses dur-
ing a performance. Vincs et al. (2010) took this approach with
a ‘portable Audience Response Facility’ (pARF), a PDA that
records participant’s ratings of engagement during a dance
work. They found that periods of high self-reported engage-
ment often follow choreographic surprises, and that periods
of low engagement tend to be associated with more pre-
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dictable dance structures (Vincs et al., 2010; Vincs, Schubert,
& Stevens, 2009). Using a post-performance methodology,
Stevens et al. (2009), explored the reactions of 472 audience
members as they watched contemporary dance by using an
Audience Response Tool (ART) that collects responses us-
ing qualitative and quantitative questionnaires. Some of the
items probed participants on their experience and enjoyment
of the performance included visual and aural cues, dancer
characteristics, movement, choreography, novelty, spatial ele-
ments, intellectual and emotional stimulation. Unfortunately,
the act of asking participants to evaluate the performance after
its end has the disadvantage of the ”peak-end” effect, which
shows that a measure taken immediately after an experience
is strongly influenced by the peak emotion and by the emotion
experienced at the end of the experience.

Two non-intrusive approaches have demonstrated connec-
tions between the movements of performers and audiences
as an element of live feedback between performers and audi-
ence. Healey et al. (2009) pioneered the use of motion cap-
ture techniques in this context by exploring the intercorrela-
tions between patterns of head movement between a seminar
speaker and their audience during a seminar. The results of
their study indicate that head movements of the performer are
reliably triggered by head movement of audience members.
Using a detailed ethnographic approach, Gardair et al. (2011)
examined audience dynamics in a study of street performance
in Covent Garden. She explored how passers-by notice when
a street performance is happening, by first becoming watchers
and then transformed into audience members. Gardair argued
that people’s body orientations show the spaces that people
most often interact and also that people use their body torque
to express their engagement levels with the performance.

What Do Hand Movements Signal?
Although hand movements are visually salient they have a
wide variety of potential causes. It is especially challeng-
ing to interpret naturally occurring audience hand behaviour
without convergent verbal feedback. Most of the gesture liter-
ature focuses on explicitly designed co-speech gestures. Au-
dience hand behaviour includes hand to face gestures or self-
touch gestures (STG) that appear to lack overt, intentional
design and may be performed with little or no awareness
(Harrigan, Kues, Steffen, & Rosenthal, 1987). One impor-
tant class of non-speech hand movements that are relevant
for audiences are self-touch gestures (STG’s). According to
Harrigan et al. (1987), 55% of STG are applied to head or
face, 8% are applied to the legs and 2% of STG are directed
to the trunk. They are thus likely to be visible at a distance.

Studies have shown that there is an increase in self-
touching behaviour in stressful and fearful situations (Butzen,
Bissonnette, & McBrayer, 2005; Heaven & McBrayer, 2000)
although Ekman and Friesen (1972) suggested that STGs may
also occur when a person is relaxed. Butzen et al. (2005)
found a significant increase of STG in response to a video
about chiggers compared to another kind of video. In a study
from Heaven and McBrayer (2000) the participants listened

to texts about leeches and canaries and then had to answer
several questions. Although there were no differences be-
tween the two listening conditions there was an increase in
STG for the leeches text during the answering period. Rogels,
Roelen, and Van Meen (1990) found that children between 3
and 6 years showed more self-touch gestures while talking
about a cartoon they had just seen than while watching the
cartoon. Other studies (Grunwald, Weiss, Mueller, & Rall,
2014) hypothesise that there is a relationship between the fre-
quency of STG and arousal. Barroso and Feld (1986) inves-
tigated this by testing the occurrence of self-touch gestures
performed with one or both hands as a function of four differ-
ent auditory attention tasks. They found that with increasing
complexity and attentional demands both one and two handed
self-touch gestures increased. Handedness also appears to
play a role. Kimura (1972) showed right handed participants
perform STG’s equally often with the left and the right hand.
However, there is evidence that people use their right and left
hand for different reasons while talking. Kipp and Martin
(2009) found an association of handedness with the emotional
dimensions of arousal. In particular, they found that the right
hand is used more when experiencing anger and the left hand
when experiencing relaxed and positive feelings. According
to Roether, Omlor, and Giese (2010) the body seems asym-
metric in its emotional expressivity. The left side uses higher
energy and higher amplitude for emotional movements than
the right side.

Hand behaviour and boredom is another relationship that
might help us interpret audience hand movements. According
to Kroes (2005) people experiencing boredom tend to relax
their body muscles. Bull (1978) claims that there are specific
head positions that characterise boredom such as drops head,
turns head and head lean. Bored people also tend to use their
hands to support their head or perform self-touching gestures
(rubbing or clutching face). However, Kroes (Kroes, 2005)
notes that this hand behaviour is a sign of low arousal but it
might not be a sign of dissatisfaction. According to Bianchi-
Berthouze, Kim, and Patel (2007), boredom is mostly associ-
ated with the decrease of body movement. However, contra-
dictory findings show that increase of movement was associ-
ated with frustration, loss of interest and boredom (Kapoor,
Burleson, & Picard, 2007), this suggests that boredom can
also correlate with episodes of high movement. In summary,
we believe that the claims in the literature about movements
and boredom are not entirely consistent and seem to depend
a lot on the social context of the activity.

Overall, the interpretation of hand gestures is problematic
however, it appears that STG are implicated in the regulation
of emotional and cognitive processes. Based on the literature
presented above we believe that in the context of contempo-
rary dance audience hand movement might give us informa-
tion about audience engagement to the performance. We try
to investigate this by first testing the general hand behaviour
patterns that evoke in an audience and then examine whether
these patterns affect the audience engagement. This paper
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presents some initial results relevant to audience hand motion
patterns by testing the following hypotheses. The first two
hypotheses examine whether hands are an important sign of
audience engagement that might be detectable by the dancers.

Hypothesis 1 (H1): Audience hand movements provide a
potentially salient signal of response to performers.

Hypothesis 2 (H2): If hand movements have a special sta-
tus as a response signal they should diverge from other move-
ments.

In addition, hypothesis 3 and 4 examine the relationship
of hand speed with engagement and/or boredom. In contrast
to the association of boredom with low movement described
above, we believe that in the context of a dance performance
applies the opposite. Based on this we will test the following
hypotheses:

Hypothesis 3 (H3): Less movement of hands on face sig-
nals engagement.

Hypothesis 4 (H4): More movement of hands on face sig-
nals disengagement.

These hypotheses will be tested using the methodology de-
scribed below.

Performances by London Contemporary Dance
School

The study presented in this paper took place at ”ThePlace”
theater in London where four contemporary dance pieces
performed by dancers of the London Contemporary Dance
School(LCD). As part of our second study on audience re-
sponses, we filmed audiences and dancers during the perfor-
mance. The performance lasted for 1 hour and 40 minutes
and consisted of 4, 20 minute dance pieces (part 1 to part
4) and a 20 minute interval between the second and the third
piece (see figure 1). Each dance was performed by LCD post-
graduate students and directed by commissioned professional
choreographers.

Figure 1: Performances Part 1 to Part 4 (from left to right)
performed by LCD.

Methods
Equipment set-up
In order to be able to capture a big enough sample of the audi-
ence, we used two Basler ace (1280x1024px resolution) night
vision cameras. An infrared light (IR) was attached on top of
each camera so as to be able to film the audience during the
dark periods of the performance. Both cameras and IR lights
were placed on the theatre truss on top of the stage pointing
towards the part of the audience to be filmed (See figure 2).
For the filming of the dancers a JVC professional camera was

hanged from the rig facing the stage. For a synchronised dou-
ble GEV camera recording we used Gecko software made by
Vision Experts operated on a Windows 10 pc. Gecko gave
us more data accuracy since it provides a timestamp on each
frame and is able to capture 45 frames per second.

Figure 2: Plan drawing of ”ThePlace’s” theatre showing
equipment setup.

Hand tracking: Reflective Wristbands
Apart from filming the audience and the dancers, the method-
ological aim of this study was to extract the hand (wrist)
movements of each audience member automatically. In order
to do this, we created bracelets made of 5mm reflective rope.
A small plastic bag with two reflective bracelets together with
instructions of how to wear them was placed on the arm of
each theatre seat (See figure 3). Each audience member had
to wear one wristband on each hand. The bracelets were only
visible in the video recordings because of the IR lights shoot-
ing directly on them. This was the cheapest and easiest so-
lution we could find to do an automatic tracking and record
continuous wrist movements.

Figure 3: Front and back side of ziplock plastic bag with two
reflective wristbands and how to wear instructions (left). Blob
detection algorithm running on audience footage (right).

Hand and body data extraction
A blob detection algorithm made by the blobscanner process-
ing library was applied on audience footage to track the re-
flective wristbands on each frame (See right image on figure
3). Blob detection is a computer vision method that is able to
detect similar regions in a digital image, such as those with
the same brightness or colour, compared to surrounding re-
gions. In our case a blob is a region of white pixels (reflective
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wristbands) in the image. By applying this method on the
videos, we extracted the position x,y of each blob in the im-
age or in other words the right and left wrist locations of each
audience member in each frame of the performance.

However, due to the complexity of the human hand move-
ment and the limitations of the algorithm it was impossible
to get a stable continuous detection of the hands since the al-
gorithm was unable to attach and keep the correct blob on
each hand throughout the frames. Due to this limitation, the
data was extracted first, the hand positions x,y were played
back on top of the footage and some manual work was done
to help the algorithm pinpoint the correct blob for each hand
for the whole duration of the video. By doing this we ended
up with a datafile with the x,y positions of left and right hand
of each audience member during each dance piece. In order
to be able to test the significance of the hands in the perfor-
mance, we compare their behaviour with that of the rest of
the body. To measure the general upper-body movement of
the audience, we used an optical flow algorithm. In particular
we applied the algorithm on each person separately removing
the optical flow vectors of each person’s hands. This gave us
the upper-body movement of each person without the move-
ment of the hands (See images on figure 4).

Figure 4: Captured areas for optical flow.

Results
The informal observation of the video footage showed that
there were very few overt responses in the audience; the
most salient identifiable movements were those of bringing
the hands up to the face. Overall, we extracted hand motion
data from 27 audience members (18 females and 9 males). In
order to test if audience hands produce enough movement to
be detectable by the dancers (H1), we measure the duration
of hands being up and down as well as the hand speed during
the performance. The results indicate that people have their
hands on their faces for about half of the performance (42%
of the time have their hands up compared to 58% that they
have them down) while the hands are moving faster when
they are up compared to when they are down, in a resting
position. We examine separately the case of hands to the
face by calculating the number of times each hand is mov-
ing (fix hair, adjust glasses, scratch ears) or not (hands on
chin or supporting head). We found that overall the num-
ber of times the hands are moving is approximately the same
with the times the hands are still (48% moving, 52% still).

Therefore, it appears that the audience performs enough hand
movements for the performers to detect. In order to examine
if hand movement could provide us signals of audience af-
fective state (H2), we compare its similarity to the movement
of the upper-body. Figure 5 shows audience body movement
and hand movement for each part averaged every 1 minute.
From these two graphs, it is apparent that body and hands
behave differently throughout the performance while overall
there is a decrease of movement from part 1 to part 3 fol-
lowed by a sharp increase in the movement of the hands at
the end of part 4. From these two plots, it is apparent that
audience body movement is low in part 2 compared to the
other 3 parts while hand movement seems to be lowest in part
3. In summary, these findings provide us with some evidence
that hand movement might be a significant audience response
that might be detectable by the performers and can poten-
tially give us information regarding audience engagement to
the performance.

Figure 5: Upper-body speed (left) and hand speed (right) for
each part of the performance averaged every 1 minute.

Focusing separately on each part of the performance, we
next examine audience engagement levels by testing how
long people keep their hands up or down and how do hands
behave when they are up to the face (H3, H4). The left plot
on figure 6 shows the amount of time hands are up or down in
each part. It is apparent that people keep their hands on their
face for longer as the performance progresses from part 1 to
part 3, although that duration decreases slightly in part 4. The
right plot on figure 6 shows the number of times hands are up
(moving/not moving) for each part of the performance. From
this plot, it appears that the mobility of the hands decreases as
the performance progresses. Looking at the two plots, we see
differences between the 4 parts of the performance. In part
1, hands seem to be down for longer while when they are up
their mobility is relatively high. Overall, part 1 presents more
moving than still hands. In part 3, people have their hands up
for longer, however most of the time hands are still when they
are up. This means that in part 3 we have an increase in the
number of still hands on face. Finally, parts 2 and 4 are some-
where in between with the only difference that in part 2 hands
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are more likely to be found down while the opposite is true
for part 4. In summary, it seems that there is an increase in the
number of hands being on face while hands are getting stiller
as the performance progresses. This result fits with the move-
ment of the body that also decreases from part 1 to part 3.
At the end of part 4 both body and hand speed increase. We
compared these results with audience preference levels for
each part through an online survey sent to participants with a
range of familiarities to dance. The main aim of the survey
was to ask people to watch the footage of the 4 dance pieces
and rank them in order of preference. The order of the per-
formances was randomised for each participant. We collected
answers from 21 people (18 females and 3 males), 8 of which
were professionally connected to dance and were watching
dance more that 4 times a year. The rest were dance enthusi-
asts that were going to dance performances 3 to 4 times a year.
The results of the survey indicate that the 2nd part of the per-
formance is the most preferred, 3rd part comes next while 1st
and 4th are the least preferred in that order. In comparison to
the previously mentioned results, we observe that during the
most preferred parts (part 2,3) there are more hands still on
face while in the least preferred there is a higher mobility of
the hands that gets more distinct at the second half of part 4,
very end of the performance.

Figure 6: Duration of hands being up and down for each part
of the performance (left). Number of time hands are up (Mov-
ing and Not moving) for each part of the performance (right).

An unexpected finding of this study is the different be-
haviour between audiences left and right hand. Overall, dur-
ing the performance the left hand moves slightly faster than
the right while the right hand is more likely to be found up
on the face compared to the left. The first plot on figure 7
shows the mean speed of the left and right hand for each part
of the performance. In parts 1 and 2 the left hand seems to
move faster compare to the right while in the Part 3 and 4 is
the other way around, the speed of the right hand is slightly
higher compared to the left. Finally, the second plot on fig-
ure 7 shows the average number of times left and the right
hand were found up for each part of the performance. This
plot indicates that there is a difference between the number
of times people use their left and right hand which is getting

progressively bigger from part 1 to part 4.

Figure 7: Mean hand speed of left and right hand for each
part of the performance (left). Mean number of times left and
right hand were up during each part (right).

Discussion
The results described above provide us with some initial clues
to the importance of overt audience reactions to contempo-
rary dance. Like Theodorou, Healey, and Smeraldi (2016),
these results show that overall, audiences have their hands up
to their faces for about half the performance while the speed
of hand movements varies a lot throughout. This suggests
that there is audience hand movements that are both frequent
and potentially detectable to the dancers. Previous studies
have shown that audience faces tend to be expressionless
during dance performances and so hands might be the part
of the body provide signals of satisfaction or dissatisfaction
(Theodorou et al., 2016). Combined with the preferences ex-
pressed in the survey, the results show that the most preferred
performances are the ones that the audience moves least while
during the least preferred performances hand movement in-
creases and people perform more self-touching gestures. We
interpret this finding as suggesting that people become rest-
less and this leads to more spontaneous self-touching ges-
tures. These observations suggest that it is actually the lack of
movement that is a key signal of how engaged people are in
the performance and fidgeting and spontaneous self-touching
relate more to audiences boredom or nervousness (Healey,
Theodorou, & Woods, Forthcoming 2017). However, the rat-
ings collected by the online survey can only capture overall
preference levels, rather than the momentary engagement of
the audience. This is something that needs to be explored in
future work by, for example, showing people shorter videos
from different parts of a performance instead of judging the
dance piece as a whole.

An unexpected finding of the study was the systematically
different behaviour of the left and right hand throughout the
performance. In particular, the results indicate that overall the
left hand moves faster compared to the right while the right
hand is more likely to be found up. This finding is opposite
to what we found in our first study which showed that people
have their left hand up more times and for longer compared
to the right hand. These different hand responses may indi-
cate that people have a left-right asymmetry in their expres-
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siveness when watching dance. Kipp and Martin (2009) have
proposed that there is an association of gesture handedness
with the emotional dimensions of pleasure and arousal. In the
future we plan to examine this association further, and test the
aforementioned questions of boredom and engagement using
a more controlled methodology with recruited audience mem-
bers.
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Abstract 

Analogical reasoning, the mapping of structured relations across 
conceptual domains, is commonly recognized as essential to 
human cognition, but young children often perform poorly in the 
classical A:B::C:? analogical reasoning task. Particularly, young 
children have trouble when the objects in the task are not 
strongly associated with each other, and/or when there are strong 
associative lures among the potential answers. Here, we examine 
whether successive trials that repeat the same relation needed to 
solve the analogy can help overcome some of the challenges 
with weakly associated items. In the first of two experiments, 
our results were mixed. In the second, we simplified the design, 
and were able to more clearly show a benefit of repeating 
relations across consecutively solved problems. 

Keywords: Analogical reasoning; development. 

Introduction  

Analogical reasoning lies at the core of human cognition 

(Holyoak, 2012; Hofstadter & Sander, 2013). It refers to the 

transfer of a structured set of relations from a source domain 

to a target domain, which can often generate insights into 

how to solve novel problems and generate new ideas (e.g., 

Gick & Holyoak, 1980; Lindsey, Wood & Markman, 2008). 

A typical way to research and assess analogical thinking 

ability is the A:B::C:D analogy (e.g., dog:doghouse::bird: ? 

solution “Nest”, in which the “lives in” relation must be 

abstracted).  

Many experiments have been devoted to the study of 

ontogenetic changes in analogical reasoning ability 

(Gentner, 1988; Holyoak, Junn, & Billman, 1984; Richland, 

Morrison, & Holyoak, 2006; Thibaut, French, & Vezneva, 

2010b). Children’s analogical reasoning capacities improve 

as their knowledge of the involved relations, or their 

abilities to resist irrelevant information increase (e.g., 

Goswami, 1992). Several models have been proposed in 

order to explain these changes. They fall roughly into two 

subclasses: models that try to explain development of 

analogical reasoning by emphasizing the increase of 

structured knowledge about the world (Goswami, 1992) and 

models that emphasize the maturation of control processes, 

such as working memory or response inhibition (Halford, 

Wilson, & Phillips, 1998; Richland et al., 2006). 

Richland et al. (2006) and Thibaut and colleagues 

(Thibaut, French, & Vezneva, 2008, 2010b; Thibaut, 

French, Vezneva, Gérard, & Glady, 2011) posited that while 

knowledge of relations is necessary for analogical 

reasoning, it is insufficient. They claimed that cognitive 

control processes are also critical for strategically inhibiting 

irrelevant information and responding consistently with the 

task main goal. Thibaut et al. interpreted their results as 

showing that younger children’s difficulties with analogy 

making arose because of insufficiently developed control 

processes, specifically inhibition. In one experiment 

involving semantic A:B::C: ? analogies with four possible 

responses Thibaut, French, and Vezneva, (2010b) compared 

weak and strong analogies (i.e., analogies in which the items 

of the A:B and C:D pairs were weakly, or strongly, 

associated). Results revealed poorer results in weak (e.g., 

shirt:suitcase::toy:box) analogies than in strong ones, 

especially when the number of distractor items was high 

(i.e., three vs. one). Importantly, the authors controlled to 

ensure that the children knew the semantic relations within 

the pair (i.e., the semantic relations between A and B, and 

between C and D). Thus, children’s failure to map the A:B 

pair on the potential C:D target pair could not be explained 

by a lack of knowledge. They showed that a greater number 

of distractors led to poorer performance in the case of weak 

analogies. They suggested that for strongly associated A:B 

and C:D item pairs, children were not interfered with by the 

semantic distractors. In contrast, when the problem involved 

weakly associated items, mapping the A:B pair onto the C:D 

pair requires more than simply accessing the obvious 

semantic dimensions of the items. 

The authors characterized analogy-making as a search 

through a space of features and potential relations. The 

number of relations holding between any A:B pair is 

potentially large because, depending on the context, any 

number of different relations might be relevant (French, 

1995). As mentioned above, the structure of the search 

space and the presence or absence of competing non-

analogical solutions have an effect on the search, especially 

for young children, who have greater difficulty handling the 

cognitive load associated with a more elaborate search of 

the space of possible solutions. 

The notion of “searching in a semantic space” was 

directly investigated in an eye-tracking study by Thibaut 

and French (2016; Thibaut, French, Missault, Gérard, & 

Glady, 2011). The authors used an eye-tracker because 

cognitive monitoring is difficult to assess with the sole 
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performance measures (i.e., error measures and reaction 

times) that are usually used in the literature (e.g., 

Rattermann & Gentner, 1998; Richland et al., 2006).  

In a A:B::C:D format, they found key differences between 

adults and children in the temporal organization of their 

respective search profiles. First, adults focused on the A and 

B pair at the beginning of the trial, paying less or no 

attention to C and to stimuli in the solution set. Later they 

focused on C and the Target, which they compared with the 

semantically related distractor. By contrast, children 

devoted more time on C on which they actively focused 

during the entire trial and was used as an anchor stimulus, 

compared to A and B for adults, and that the Target and the 

semantic distractor were focused on earlier by children than 

by adults. These results suggest that children might fail in 

analogical reasoning tasks because they do not pay 

sufficient attention to A and B or do not include them in 

their search for the “one that goes with C”.  

This analysis led us to the central prediction of the present 

paper. We started with the general hypothesis that young 

children find it hard to follow the instructions, that is, to 

integrate A and B in their exploration of C and the solution 

set. However, as Thibaut et al (2010b) showed, strongly 

associated items constrain the search space sufficiently for 

children to readily map the relevant relation, with no ill 

effects of distractors. Here we examine whether presenting 

successive trials that require the same relation to solve the 

analogy will improves its use. That is, perhaps the semantic 

search does not need to start from scratch with weakly 

associated items if the relevant relation was still active in 

memory when the next item with the same relation is 

introduced. This account would predict that a blocked 

presentation of trials, which presents blocks of successive 

trial with same relation, would outperform an interleaved 

presentation format which would alternate between relations 

on successive trials (see Rohrer & Pashler, 2010). An 

advantage for blocked presentation would also be consistent 

with structural alignment accounts that emphasize that 

comparing pairs of objects bound by the same relation 

should help abstract that relation and generalize it to more 

disparate sets of objects because the process of comparison 

itself serves to shift attention to common relations and away 

from superficial differences between objects (Gentner, 

2010). That is, multiple strongly associated pairs objects 

bound by the same relation should help children recognize 

when that relation applies to more weakly associated 

objects. 

 On the other hand, models of memory and discrimination 

learning predict benefits from interleaved presentation 

(Rohrer & Pashler, 2010).  That is, spacing out instances of 

the same relation may elicit deeper processing each time it 

is retrieved, strengthening its memory compared to 

sequential presentations, which may reduce the attention 

paid to the repeated item (e.g., Greene, 1989). Additionally, 

spacing has been shown to aid not just memory, but 

generalization in young children (Vlach, Ankowsky, & 

Sandhofer, 2012) potentially because at each new instance, 

only the most relevant information is re-activated (i.e, the 

information common to both initial and later items), while 

irrelevant information is forgotten. Further, interleaving 

may build on the advantages of temporally spacing out 

examples by also filling in the temporal gaps with problems 

that rely on distinct structural relations. This interleaving of 

different relations can often aid learning and problem 

solving by setting up useful contrasts, sharpening the 

understanding of each relation.  

In two experiments, we directly test the prediction that a 

blocked presentation will improve performance, shared by a 

semantic-search account and a structural-alignment account, 

against the prediction that interleaved presentation will 

improve performance, made by memory and discrimination 

learning accounts. 

Experiment 1 

In the first experiment, we aimed to test (1) whether 
accuracy using a relation improved over multiple trials 

wherein that specific relation solved the analogy (2) whether 

Weak trials specifically benefitted from following Strong 

trials and 3. whether these benefits depended on either a 

Blocked or Interleaved presentation.  

Methods 

Participants 

Subjects were 47 4-5-year-old preschool children (M = 56 

months; range, 49 to 64 months). Their participation to the 

experiment was submitted to informed consent of their 

parents.  

The subjects were equally divided into two groups: 

Blocked group (N = 24; M = 55 months; range, 49-62 

months) and Interleaved group (N = 23; M = 57 months; 

range, 50-64 months). Participants were randomly assigned 

to the blocked or the interleaved condition. 

 

Materials 

The experiment consisted of 2 practice trials, 12 learning 

trials and 4 posttest trials, which occurred with a minute 

delay after the learning trials. (See Table 1 for the list of 

trials). Analogies were of the A:B::C:? format and were 

composed of 7 items (colored pictures; see Figure 1). The 

problem consisted of the A:B pair (the source), the C item 

(the target), and an empty rectangle. The solution set was 

composed of four stimuli: the analogical answer, two 

distractors that were semantically related to the C item, and 

1 distractor that was not semantically related to C. Positions 

of the different alternatives were counterbalanced across 

trials. There were two types of analogies, called “strong” 

and “weak”. Strong and weak analogies were defined in 

terms of the semantic association strength within each pair 

of pictures defining an analogy, that is between A and B, 

and between C and the analogical target. It was determined 

by university students. They were asked to rate to what 

extent each item of the pair made them think of the other 

one. It was stressed that the task was to rate how strongly 
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the two items were associated in their mind.  The ratings 

were on a 1-to-7 scale. The strongly associated trials were 

composed of strongly associated A-B and C- T(arget) pairs, 

and the weakly associated trials were composed of weakly 

associated A-B and C-T(arget) pairs. The mean C-Target 

association strength was 3.53 (SD = 1.11) for the weak 

analogies, and 4.89 (SD = 1.44). for the strong. 

In both learning conditions, there were 4 relations (tool 

for, produces, contains, becomes). For each relation, there 

were 3 learning trials, composed of 2 strong analogies and 1 

weak analogy. In half of the trials, the two strong analogies 

were introduced before the weak trial whereas the reverse 

was true for the other half of trials. In the blocked condition, 

the three trials for one relation came in a row (either weak, 

strong 1, strong2, or strong1, strong2, weak, with two 

relations starting with a strong analogy and two relations 

with a weak analogy) whereas in the interleaved condition, 

each of the 4 relations was displayed once in a row, 

followed by another exemplar of the four relations. Two 

relations out of 4 started with a weak analogy and two 

relations by a strong. This was done in such a way that in 

both conditions the same “weak-strong-strong” or “strong-

strong-weak” sequence were introduced for each relation.  

The 4 posttest trials were weak trials, one per relation. There 

were four versions of the blocked condition and four 

versions of the interleaved condition to counterbalance the 

order of the presentation of the relations, exemplars within 

the relations (e.g., which weak exemplar was in the post-test 

and which in the learning phase), which relations had strong 

exemplars first and which had weak.  

The trials were presented to the children on a screen 

through a PowerPoint file.  

 

Procedure 

Children were individually tested in their school, in a 

quiet room. In both the blocked and the interleaved 

conditions, the 7 items defining one trial were displayed 

simultaneously. There were two practice trials. In the first 

practice trial, the task was explained to children as follows: 

“Let me explain how it works. At first, you have to find why 

these two pictures [showing A and B] go well together. So, 

why do you think [A] goes with [B]? OK! You see this one 

[showing C]? It is alone. What you have to do is to find one 

picture in these four images [showing the four answer 

options] that goes well with this one [C] in the same way as 

this one [B] goes with [A] so the two pairs of pictures go 

together. Which picture goes up there [showing the empty 

slot] with [C] like [B] with [A]? The child gave an answer 

and justified his/her choice. Then, the experimenter 

rephrased the entire trial, explaining and emphasizing why 

“A and B” and “C and Target” go together for the same 

reason. During the second practice trial, they were asked to 

do the same. When children did not attend to the A:B pair 

while explaining their choice, they were asked to do so, and 

care was taken to ensure that they understood the 

instructions during the training trials. In the relational 

learning phase, they were asked to do the same thing that 

was explained to them during the experiment trials and to 

justify their answer afterward. No feedback was given for 

the relational learning trials. The experiment was then 

interrupted for one minute. The experimenter and the child 

talked freely. Then, the four test trials, one per relation, 

were introduced as novel trials.  

 

 

 
 

Figure 1: Two examples of analogies used for the 

“contains” relation, one “weak” and one “strong”. 

Analogical: Analogical answer; Semantic: Distractor 

semantically related to the C item; Unrelated: distractor 

semantically unrelated to C.  

 

At the end of the experiment, children’s understanding of 

the semantic relation between A and B and between C and 

Target was assessed. They were shown the A:B pairs and 

were asked why the two items of each pair went together. 

The same was true for the C:Target pairs (see Thibaut et al., 

2011, for more details).  

Results 

We first removed all the trials in which children could not 

identify one of the two semantic relations, either A:B or 

C:D. As a result, 49 trials out of 752 trials (the majority of 

them for “car producing exhausts) were removed from 

Contains- Weak 1

?

analogical semantic semantic unrelated

Contains- Strong 1

?

semantic semanticanalogical unrelated 
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subsequent analysis. We first ran a two-way ANOVA on the 

proportions of correct answers for weak analogies with 

Position of weak (Before strong, After strong, At test) as a 

within factor and Presentation (Blocked, Interleaved) as a 

between-subject factor. It revealed a significant main effect 

of Position of weak, F (2, 90) = 3.50, p < .05, η² = .07. See 

Table 1. A Tukey HSD test revealed that the weak analogies 

were marginally significantly better understood when they 

were introduced after strong items rather before strong (p = 

.056) or at test (p = .075) with 24%, 39% and 25% of 

correct answers for the weak before the strong items, after 

the strong and at test, respectively. There was a decline for 

the weak items at test, which failed to reach significance, p 

= .074, compared to the second weak item). There was no 

main effect of Presentation and no interaction. A three-way 

ANOVA was conducted on the percentage of correct 

answers for strong stimuli, with Type of trials (Before weak, 

After weak), Position (First, Second strong) as within 

factors, and Presentation (Blocked, Interleaved) as a 

between factor. It revealed a main effect of Position, F (1, 

45) = 6.00, p < .05, η² = .12), with the second strong higher 

than the first strong (M = 49% and 60%, for the first and 

second respectively). There was no main effect of Position 

and no significant effect of Presentation, and no interaction 

between any of the factors. 

 

Table 1: E1 Means (SD’s) for the proportion of accurate 

responses for each trial type 

   Blocked  Interleaved 

Strong 1   .49 (.22)  .49(.25) 

Strong 2   .55(.26)  .65(.20) 

Weak, before Strong .27(.36)  .22(.29) 

Weak, after Strong .35(.40)  .43(.43) 

Weak, after delay  .23(.21)  .27(.20) 

 

Discussion 

Results were mixed. On the one hand, for both Strong and 

Weak items, there were main effects of Position, suggesting 

that repeating relations improves performance. While the 

numerical increase of Weak trials following a Strong 

appears to be the root of the main effect of Position for 

those trials, post-hoc tests specifically looking at a benefit of 

a Weak trial following a Strong did not find a significant 

advantage contrasting it with either one of the other 

positions alone. In addition, there was no significant 

difference between a Blocked and an Interleaved mode of 

presentation, and not a significant effect specifically for 

Weak trials following Strong ones. Further, even after a 

delay of just one minute, there was quite low performance 

for weak items at test, perhaps due to that interruption. 

Indeed participants engaged in an informal discussion with 

the experimenter and this might have contributed to 

decrease their attention.  

 

Experiment 2 

Because of the mixed results, perhaps due to a lack of 

power, we simplified the design for the second experiment. 

First the teaching/test phase distinction was abolished. The 

same four relations were used with four trials each without 

any delay between trials. Another simplification was that the 

two strong analogies were always introduced before the 

weak analogies. The idea was to test whether weak 

analogies, that are more difficult than the strong analogies, 

would get more positive influence from strong analogies in 

the Blocked or in the Interleaved condition. The design of 

E1, with some Weak trials appearing after a delay and 

others before the Strong trials, may have prevented any 

potential benefit that a blocked presentation could provide. 

This simplified design will have a greater potential to detect 

any effect of Presentation. In addition, any effect of 

Presentation would show that experience with a specific 

relation improves performance over an above a general 

order effect which may simply reflect more general 

improvement at performing the task. The same hypotheses 

as in Experiment 1 apply here.  

Methods 

Participants 

Subjects were 57 4-5-year-old preschool children (M = 55.4 

months; range, 49 to 63 months). Their participation to the 

experiment was submitted to informed consent of their 

parents.  

The subjects were equally divided into two groups: 

Blocked group (N = 29; M = 54 months; range, 49 to 62 

months) and Interleaved group (N = 28; M = 56 months; 

range, 50 to 63 months). Participants were randomly 

assigned to the blocked or the interleaved condition. 

 

Materials 

The same set of analogies as in Experiment 1 was used, 

except for three pictures that were replaced in this novel 

version. In the two presentation conditions, the two strong 

analogies were always introduced before the two weak 

analogies. In the Blocked, the four analogies (trials) 

illustrating one relation (e;g., contains) were introduced 

before the four analogies depicting the next relation (e.g., 

tools for) were introduced. In each case, the two strong trials 

were introduced before the two weak trials. In the 

interleaved case, one strong analogy from each of the four 

relations were first introduced. It was followed by the 

second strong analogy of each of the fours relations which 

in turn was followed by the first and the second weak 

analogies. There were four versions of the blocked condition 

and four versions of the interleaved condition in which the 

order of presentation of the first and second strong, and of 

the first of second weak was modified.  

 

Procedure  

The same procedure as in Experiment 1 was used here, 

except that there was no test phase. The experiment started 

with two practice trials, and was followed by the 16 learning 

3311



trials. There was no feedback in the learning trials. 

 

Results 

 

We ran a three-way ANOVA, with Presentation (Blocked, 

Interleaved) as a between factor, Analogy type (Strong, 

Weak), and Item Position (First, Second) as within subject 

factors. It revealed that strong analogies were significantly 

better understood than weak analogies (52 vs 30%), F(1, 55) 

= 43.45, p < .0001, η² = .44, and that the blocked 

presentation gave better results than the interleaved 

presentation, F(1, 55) = 8.22, p < .01, η² = .13 (M= 46% vs 

36%). The key association strength x presentation 

interaction was also significant, F(1, 55) = 4.22, p < .05, η² 

= .07,showing that the difference between strong and weak 

analogies was larger in the interleaved case than in the 

blocked case. However, to examine effects on the Weak 

Trials specifically, we conducted a Presentation (Blocked, 

Interleaved) X Position (First, Second) mixed-effects 

ANOVA, which showed a main effect of Presentation, with 

Blocked (M = 38%) eliciting higher accuracy than 

Interleaved (M = 21%). F(1, 55) = 12.24, p < .005, η² = .18 

(no other effects approached significance).   See Figure 2.  

 

 
 

Figure 2: E2 Means and standard errors for proportion of 

accurate responses. 

 

Discussion 
Overall, the experiment showed that the Blocked condition 

led to better results than the Interleaved condition: seeing 

the four trials illustrating a given relation in a row led to 

better results than seeing the same relation in an interleaved 

way. Importantly, Presentation interacted with Association 

strength because the difference between Blocked and 

Interleaved conditions was concentrated in the Weak trials 

when analyzed alone. That is, examining Figure 2 clearly 

shows that Presentation order had little effect on the Strong 

trials, but did effect the Weak trials. When Weak trials 

directly followed Strong in the Blocked condition, this 

elicited more accurate use of the repeated relation.   

Taking the two experiments together, a clear picture 

starts to emerge. Both experiments showed effects of the 

position of individual trials, generally supporting the idea 

that the use of a relation in one analogy problem can 

constrain the semantic search in a subsequent problem. The 

more simple design of E2 revealed an overall advantage of 

blocked presentation, supporting a semantic-search or 

structural alignment account, and suggests that the design of 

E1 was not sensitive to this advantage. In addition, while 

potentially an overall order effect could explain the effect of 

position in E1, in E2 the Blocked advantage is independent 

of an overall order effect, as the trials were matched in 

terms of the number of trials preceding them. 

In Experiment 2, children in the blocked condition can 

first discover or build the relation using the two strong 

trials, then apply it to the following weak items that appear 

immediately after, without being interfered by the other 

relations. This limits memory decline between the strong 

and the weak trials. In the interleaved case, the larger 

decline between strong and weak items suggests that the 

interval between the weak and strong items was too 

important to allow a strong-to-weak generalization. Or the 

relations interfered one with the others.  

While we showed preliminary support for the Blocked 

advantage further research is needed to confirm this 

advantage, and to clarify what kind of effects, if any, exists 

for sequence and presentation on Strong trials. For example, 

in E1 the second Strong trial was performed at a higher rate 

than the first, but during E2, it was the reverse! Both 

experiments were properly counter-balanced, so this 

difference is not due to item-differences. Additionally, if the 

Blocked advantage is further confirmed, then further 

research needs to test how blocking trials supports 

analogical problem solving. At the moment it is unclear 

whether this potential advantage is rooted in aiding the 

strategic retrieval of the relevant relational representation 

without changing that representation (as deficits in strategic 

semantic retrieval often explains poor reasoning 

performance in young children, Whitaker et al., 2017), or 

whether the successive trials allow for the children to 

abstract the relational commonalities, creating a 

representation less tied to the specifics of highly associated 

objects. Regardless, at this point, there is little evidence that 

the kinds of memory processes that specifically produce 

spaced and interleaved advantages in other domains seem to 

not play a crucial role in strengthening the use of relational 

representations in analogical problem solving. Interleaved 

schedules seem most helpful when the primary challenge 

concerns refining representations to aid discrimination. Our 

data suggests that this kind of “relational fine-tuning” or 

discriminating among similar relations is not a primary 

cause for children’s poor performance. 

Here their effect, if any, was in favor of the Blocked 

trials. However, they may be crucial in helping to establish 

longer-lasting relational representations, given the post-test 

results from E1 showing the advantages from Blocked 

presentation may be quite short-lived. One way to test for 
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lasting effects of the blocked presentation, would be to add 

the same set of weak trials at the end of the experiment and 

compare how participants behave in that case. A lasting 

difference between the two conditions in favor of the 

blocked trials would be strong argument in favor of this 

condition. Understanding how relational representations can 

be robust to temporal delays is a crucial direction for future 

research. 
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Abstract 

In a comparison setting (two stimuli), we tested 4- and 6-year-
old children’s generalization of novel names for objects. We 
manipulated the semantic distance between the two learning 
items (e.g., two bracelets versus a bracelet and a watch), and 
the semantic distance between the learning items and the test 
items (e.g., a pendant versus a bow tie). We tested whether 
smaller semantic distance between learning items would lead 
to more taxonomic (vs. perceptual) choices at test, than 
broader semantic distance during learning, especially in the 
case of distant test stimuli. Results revealed main effects of 
learning distance, of generalization distance and that only 
children aged 6 years benefited from broader semantic during 
learning at test. Four year-old children failed to generalize to 
far test stimuli even with semantically distant learning items. 
We discuss how conceptual distance during learning 
differentially affects generalization performance across age 
groups. 
 

Keywords: Comparison, Distinctiveness, Conceptual 
development, Executive Functions. 

Introduction 

When learning novel concepts for objects, children have to 

capture which object dimensions are important to define the 

corresponding concept and neglect idiosyncratic aspects, 

particularly irrelevant perceptual dimensions (e.g., Murphy, 

2002, for a discussion). Indeed, in many cases perceptual 

similarities (e.g., objects from different categories 

displaying the same texture and/or the same color) or 

differences are more salient than variations along the 

relevant features.  

 Do children spontaneously generalize novel names 

according to perceptual similarities such as shape 

similarities or do they use deeper core knowledge? On one 

hand, there is large evidence showing that children’s early 

words refer to deep conceptual properties. This has been 

shown in triad selection tasks, in which young children are 

shown a standard object and are later asked to choose 

between a categorically related object and a thematic match. 

—“This [standard] is a dax. Can you find another dax?”. 

Children usually select the categorically related object 

(Markman, 1989, see Imai, Gentner, & Uchida 1994, for 

evidence that children generalize on the basis of shape in 

this paradigm). On the other hand, there is evidence that, 

early in development, children often generalize object novel 

names to perceptually similar objects, especially “shape-

similar objects” (Landau, Smith, & Jones, 1988; Smith, 

Jones, & Landau, 1992). 

In many cases, perceptual similarities between the 

standard and the test object are conceptually irrelevant. It 

has been shown that ignoring these salient irrelevant 

perceptual similarities can be challenging for young children 

(e.g., Augier & Thibaut, 2013; Gentner & Namy, 1999). 

Hence, understanding what situations promote nonobvious 

over salient properties is a crucial issue for cognitive science 

and concept learning. There is now considerable evidence 

that comparison learning situations promote generalization 

based on deeper conceptual properties than classical 

learning situations in which children are provided with only 

one learning exemplar.  

A large body of research in both children and adults shows 

that comparison can highlight nonobvious shared properties. 

For example, Gentner and Namy (1999) used pictures of 

objects from familiar taxonomic categories (e.g. fruits) to 

teach a novel name and tested 4-year-olds novel names 

extensions to other referents. In a one-standard condition 

(e.g. an apple introduced as a blicket) children preferred to 

extend the new label to a perceptually similar object (e.g. a 

balloon) rather than to a taxonomically-related-but-

perceptually-dissimilar object (e.g. a banana). This 

preference was reversed when children had the opportunity 

to compare two standards (e.g. an apple and an orange, 

introduced as blickets).  

The benefits of comparison have been demonstrated for 

object names (e.g., Gentner & Namy, 1999; Augier & 

Thibaut, 2013), adjectives (e.g., Waxman & Klibanoff, 

2000), action verbs (e.g., Childers & Paik, 2009), names for 

parts (Gentner, Loewenstein, & Hung, 2007), relational 

nouns (Gentner, Anggoro, & Klibanoff, 2011; Thibaut & 

Witt, 2015) and perceptual categories (e.g., Hammer, 

Diesendruck, Weinshall, & Hochstein, 2009). Augier and 

Thibaut (2013) also obtained this positive effect of 

comparison with unfamiliar objects. Four- and 6-year-olds 

were randomly assigned to a no-comparison (one object) 

condition or to a comparison condition (two objects). In 

both conditions, the same two posttest objects were used. In 

the no-comparison condition, the standard – training - item 

had the same texture but not the same shape as one of two 

test objects. The standard also shared its shape but not its 

texture with the other test object. In the comparison 

condition, they pitted an unfamiliar test object displaying a 

perceptually non-salient dimension (texture) that was shared 
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with both training items against another unfamiliar object 

that shared a perceptually salient dimension (shape) with 

one of the two training standards only. In the no-comparison 

condition, a majority of children extended the new label to 

the same-shape test object. By contrast, in the comparison 

condition, a majority of children extended the novel name to 

the same-texture match rather than to a stimulus that had the 

same shape as one of the two standards. Taken together, 

these results show that comparison situations are a powerful 

tool for conceptually-based rather than superficially based 

novel name learning in children. 

However, a growing body of research shows that 

comparisons generate cognitive costs. Recent studies on 

semantic analogies (Richland, Morrison, & Holyoak, 2006; 

Thibaut, French, & Vezneva, 2010a) or perceptual analogies 

(Thibaut, French, & Vezneva, 2010b) (see also Richland & 

Burchinal, 2013) support this cognitive costs hypothesis. In 

these studies, irrelevant perceptual features or semantic 

distractors explained part of children’s performance. The 

hypothesis was that these experimental conditions required 

inhibition and flexibility. Thus, finding out nonobvious 

relevant relations requires inhibiting superficial irrelevant 

dimensions and integrating more difficult dimensions.   

In this context, Augier and Thibaut (2013) manipulated 

the number of items to-be-compared in 4-year-old and 6-

year-old children. According to the authors, introducing 

more evidence in favor of the target dimension (texture) also 

means more comparisons and more information to integrate, 

generating more executive costs. They included age as a 

factor. They hypothesized that the younger group might not 

benefit from increasing the number of items in the same 

way. Results showed that both groups benefited from the 

two-standard condition. However, only the older group 

benefited from an increased number of standards (four 

standards versus two standards).  

In the same executive control framework, Thibaut and 

Witt (2015) studied relational categories with 42-month-old 

children. Relational categories are defined by relations 

between objects rather than by the intrinsic properties of the 

objects involved in these relations (e.g., neighbor). In this 

experiment, they used relational categories such as “the 

knife is the dax for the apple” (Gentner, Anggoro, & 

Klibanoff, 2011). They manipulated the number of pairs of 

pictures of objects used in the training phase to illustrate a 

relational category (2, 3 or 4 pairs such as an apple and a 

knife for “the knife is the dax for the apple”) and the 

distance between the domains depicting the relation. For 

example, a knife with an apple and another knife with an 

orange come from close domains whereas a knife with an 

apple and a log with a saw come from more remote 

conceptual domains. In the transfer phase, results revealed 

that three learning pairs were better than two or four and 

that learning pairs from remote domains were led to better 

generalization than learning pairs from close domains. 

These results suggest that increasing the quantity of relevant 

information might interfere with young children’s ability to 

abstract relevant dimensions in this type of task. More 

generally, they suggest that there is an optimal number of 

information that can be integrated in such comparison 

situations. It is likely that this optimal number increases 

with age. The distance between domain effect suggests that 

a broader conceptual distance between learning exemplars 

helped participants abstracting the relevant relation between 

objects. A smaller distance between domains might have led 

participants to constrain the semantic domains around very 

similar entities (e.g., fruits) and similar operators (e.g., 

knifes). 

Goals of the present experiment 

We examined the effect of learning and transfer distance in 

a comparison of real objects task (e.g., two apples, or two 

fruits, see Gentner & Namy, 1999). Most former studies 

with real object categories contrasted no-comparison and 

comparison conditions. We will focus on comparison 

conditions and study in which condition(s) comparison 

leads to better conceptual generalization in a novel name 

learning task. A closer look at the stimuli in former studies 

reveals that the objects in the learning pairs come from 

semantic domains the semantic distance of which is not well 

controlled for. The same is true for the conceptually related 

transfer item. In other words, the distance between semantic 

domains in the learning items, and the distance between the 

learning items and the transfer items (i.e. the conceptually 

related target) has not been controlled as independent 

variables. However, it can be argued that the “width” of 

learning and generalization depends on the learning 

exemplars. There is a large body of literature showing to 

what extent generalization depends on the nature of the 

training items (Son, Landy, & Goldstone, 2008), on the one 

side, and factors affecting the generalization width on the 

other side (e.g., Klahr & Chen, 2011). Thus, knowing at 

which distance children generalize is a main issue in the 

study of the ontogeny of categories, subordinate, basic, and 

superordinate categories.  

In the following experiment, we manipulated the semantic 

distances between both the learning items and the test items 

(in the generalization phase).  Further, we compared two age 

groups (4- and 6- year-olds) in order to study cognitive 

resources might interact with these distances. Indeed, 

children of different ages might not benefit from 

comparison situations in the same way as a function of the 

distance between learning instances and the distance 

between learning and transfer instances. For example, it 

might well be that both age groups would generalize 

similarly in the close learning and close generalization case, 

whereas younger participants might encounter more 

difficulties to capture conceptual similarities in the case of 

more distant learning items and or to apply them to more 

distant domains.  

Methods 

Participants One hundred French speaking preschoolers 

were tested individually in a quiet room at their school. Two 

age groups were recruited. The younger group was 
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composed of 48 children (mean age =4 years, 9 months; SD 

= 6.7 months; range: 50 - 65 months) and the older group 

was composed of 52 children (mean age = 6 years, 8 

months, SD = 3.8 months, range: 74– 87 months) were 

randomly assigned to one of the two experimental 

conditions with 52 (close learning items) or 48 (far learning 

items) children per condition. Informed consent was 

obtained from their school and their parents. 

 

Design Four and six-year-old children were compared. This 

factor was crossed with learning distance (Close vs. Far 

learning, between subject factor) and Generalization (Close 

vs. Far generalization, within subject factor). 

 

Materials Seven sets of six objects were created for each 

distance condition (close or far) (See Table 1). Each picture 

was displayed on a 8cm by 8cm piece of cardboard. Each 

set corresponded to one category of objects (e.g., clothing 

accessories, food, tools, etc.). The learning pair was 

composed of one learning object and either a close training 

object (close learning condition), or a more distant training 

object (far learning condition) (see Figure 1). Thus, we  

 

 

 
 

Figure 1: Example of a stimulus set and instructions 

adapted for the four experimental conditions crossing the 

learning distance (Close vs. Far learning) and 

Generalization (Close vs. Far generalization) factors. 

 

manipulated the conceptual distance between the two 

training objects that were compared in each learning 

condition (Close or Far) in our comparison paradigm. For 

each object category (e.g., clothing accessories), the close 

learning objects were composed of perceptually and 

semantically close items (e.g., a bracelet - a curb chain), 

while the far pairs were composed of perceptually similar 

but conceptually more distant items (e.g., a bracelet – a 

watch) (see Table 1). The two test pictures consisted of two 

objects in both the close and the far generalization 

conditions: an item that was perceptually similar but 

semantically unrelated to the two training items (e.g., a tire 

in our bracelet case) and a taxonomic choice. As a function 

of the generalization condition, close or far, the taxonomic 

choice was semantically close or more distant to the 

learning items (e.g., a jewel pendant in the close 

generalization case, or a bow tie in the far generalization 

case). Figure 1 depicts the objects used to instantiate the 

close and far learning distance and the close and far 

generalization conditions for the "clothing accessories" 

object category. 

 

Table 1: List of items for the close and far conditions 

 

 
 

Independent similarity ratings from 54 students confirmed 

that the close learning object condition were conceptually 

closer one to the other than the objects composing the far 

learning pairs, t(26) = 3.98, p < .001, and that close 

generalization stimuli were semantically more similar to the 

two learning stimuli than far generalization stimuli, t(26) = 

6.86, p < .001. For the purpose of our experiment it is 

crucial that semantically related generalization items are 

perceptually less similar to the learning items than the 

perceptually similar lures. Perceptual similarity ratings 

revealed that the perceptual choices were perceptually more 

similar to the learning items than the semantically related 

choices (taxonomic choices) in both the close and the far 

conditions, t(26) = 14.03, p < .001 and t(26) = 18.49, p < 

.001. Importantly, we also performed perceptual similarity 

and conceptual similarity ratings between the close learning 

stimuli (e.g., two apples) and the far learning stimuli (e.g., 

an apple and a cherry) on the one side and the taxonomically 

related generalization item. They showed that overall the 

generalization stimuli were equally distant to both types of 

learning items. This was true for both types of 

generalization items: close generalization items, perceptual 

distance, t(26) = .70, p = .46, semantic distance, t(26) = 

1.21, p = .41 ; far generalization: perceptual distance, t(26) 

= .24, p = .65, semantic distance, t(26) = .43, p = .89.  This 
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is central because we want to avoid that performance 

differences between close and far generalization items to be 

due to perceptual but also semantic similarity differences 

between learning items. We included semantic similarity 

differences in order to keep only taxonomic distance 

influence. For example, if we get a difference between close 

and far generalization items (e.g. between jewel pendent and 

bow tie) we do not want it to be due to other semantic 

information (e.g., the fact that the jewel pendent would be 

more thematically related to bracelet than the bow tie) than 

the taxonomic distance.  

Each learning pair was randomly associated with one out 

of 14 two-syllable novel names (e.g., youma, buxi, dajo, 

zatu, sepon, xanto, vira, etc.) (see procedure). 

 

Procedure 

The experiment started with two practice trials. They were 

followed by fourteen experimental trials presented in a 

random order. Each standard learning stimulus was 

introduced with a novel count noun (Landau, Smith & 

Jones, 1988) (e.g. “this is a buxi” and “this is a buxi TOO” 

for the other standard). A puppet named Yoshi was used in 

order to make the task more attractive for children and to 

make the use of non-words to refer to known objects more 

meaningful with the following instructions: “In this game 

we are going to learn the language of Yoshi. Yoshi is living 

far away from here”. The objects were presented 

sequentially and were left in view during the entire trial. The 

two learning stimuli were presented in a row and their 

location was determined randomly. The forced-choice test 

phase was identical in all conditions. The two test objects 

(i.e., the perceptual and the taxonomic matches) were 

introduced and the child was asked to point to the one which 

was also a member of the category (e.g., “Show me which 

one of these two is ALSO a buxi”). 

 

Results 

We performed a 2 Age (4 vs. 6-year-olds) x 2 Training 

distance (Close vs. Far distance) x 2 Generalization (Close 

vs. Far) ANOVA on the percentage of taxonomic choices 

(see Figure 2). Age and Training distance were between-

subject factors and Generalization a within-subject factor. 

There were significantly more taxonomic choices in the Far 

training condition (M = 64.4%; SD = 22.74) than in the 

Close training condition (M = 51.3%; SD = 28.73), F(1, 96) 

= 6.06, p = .016,    
  = .06 . The main effect of Age was not 

significant, F (1, 96) = 1.14, p = .29,    
  = .01 (4-years: M = 

54.9% ; 6-years: M = 60%) and Training distance did not 

interact with Age, F < 1. In addition, children performed 

better in the Close Generalization condition (M = 64.79%; 

SD = 29.69) than in the Far Generalization condition (M = 

51.4%; SD = 28.42), F(1, 96) = 29.79, p < .001,    
  = .24, 

but the Generalization effect did not interact neither with 

Age, F < 1, nor with Training distance, F < 1, and the triple 

Generalization x Age x Training distance interaction effect 

did not reach significance, F < 1. 

When comparisons with chance were run, student-t tests 

for independent groups with Bonferroni correction for 

multiple comparisons revealed that children performed 

above chance in the Close generalization condition, in the 

Far learning condition only, (respectively, 4 years: t(23) = 

3.49, p = .002; 6 years: t(25) = 6.82, p < .001) but not when 

the learning items were conceptually close (respectively, 4 

years: t(23) = 1.09, p = .28; 6 years: t(23) = 1.04, p = .30). 

Interestingly, in the Far Generalization condition, only the 

6-year-old children performed significantly above chance, 

t(25) = 3.29, p < .0125, while the performance of the 

younger children did not differ from chance, t(23) = .63, p = 

.53. 

 

 

 

 
 

Figure 2: Percentage of Taxonomic choices as a function of 

the conceptual distance between during learning (close vs. 

far learning distance) and at test (close vs. far 

generalization). The error bars correspond to one standard 

error and the dashed line represents chance level (50%). 

 

Taken together these findings show a clear impact of 

conceptual distance in our comparison framework, the Far 

learning condition giving more taxonomic choices than the 

Close learning condition. Our results also show that the 

Close generalization is easier than the Far generalization 

condition. Even though our results revealed no main effect 

of Age effect and interaction of this factor with learning 

distance, comparisons with chance confirm the beneficial 

role of conceptual distance between the learning items and 

suggested that in Far Generalization contexts only the older 

children may benefit of comparison between conceptually 

distant learning items. 

 

Discussion 

As mentioned in the introduction, there is a large body of 

studies showing that young children generalize novel names 

according to shape when only one standard stimulus is 

introduced in the learning phase. Our study capitalized on 

the idea that comparison situations during lexical learning 

favor deeper generalizations based on less obvious features 

that will, as a result, favor taxonomic generalization. 

However, Augier and Thibaut (2013) showed that 
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comparison situations generated cognitive costs that might 

prevent younger children from using all the available 

information. This result suggested that the effect of 

comparison on generalization depends on the ease of 

processing dimensional similarities and differences. Our 

rationale was that the deep commonalities in close learning 

items can easily be accessed because of many conceptual 

commonalities. However, this situation might have provided 

little information regarding conceptual similarities 

subtending generalizations to broader categories. On the 

contrary, comparisons between distant learning items may 

be more difficult to unify conceptually because conceptual 

similarities would be more difficult to abstract. By contrast, 

comparisons might provide more abstract knowledge 

supporting broader generalizations. Because younger 

children might encounter more difficulties to capture 

conceptual similarities in the case of distant learning items 

and or to apply them to distant domains, we hypothesized 

that conceptual distance during learning and at test might 

differentially impact benefits of comparison across groups 

of age. World knowledge might also contribute to the 

difference between age groups, since older children have 

more knowledge regarding the objects than younger 

children. 

Our results showed that both age groups benefited from 

broader inter-item conceptual distance during the learning 

phase since they perform better in the far learning case than 

in the close one. However, close generalization was better 

than the far generalization. Taken together, these two results 

suggest that broader learning range lead to better close 

generalization. The fact that only the older children 

performed above chance in the far generalization condition 

in the far learning case suggests a development from, first, a 

better performance in the case of broad learning distance to, 

second, a progressively better performance in the 

generalization width. This last result suggests that if all age 

groups were able to benefit from conceptual distance during 

the learning phase, the benefit is probably qualitatively 

different across age groups. We think that far learning 

allowed both groups to defocus from perceptual similarities 

and to access basic conceptual similarities ("is a jewel"), 

while far learning would help older children to abstract 

superordinate properties ("is a clothing accessory"), making 

the former able to perform correct taxonomic choices only 

in the close generalization condition ("the pendant is a jewel 

too"), while the latter were able to generalize in the close as 

well as in the far condition (" the pendant and the bow tie 

are clothing accessories too").  

Importantly, this pattern of results backs up the classical 

result in developmental psychology that superordinate 

categories are more difficult to learn than basic level 

categories (Mervis & Rosch, 1981; Murphy, 2002) and 

decomposes the sources of this difficulty. Children might 

have more difficulties to generalize to broad categories 

rather than to abstract from broad conceptual distances 

during learning. Here, we used a perceptual lure. It should 

be interesting to study how participants abstract categories 

that are less grounded in perceptually similar instances of 

the same category. 

To conclude, our study suggests that making appropriate 

use of comparison might entirely depends on tiny 

differences along the properties of what is compared and on 

executive capacity to process them. This finding has 

important implication about the role comparison plays in 

learning. Indeed, the executive constraints on comparison 

processing might explain under which conditions 

comparison can or cannot be fruitful.  
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Abstract 

Skepticism towards science has risen sharply in recent years. 
Cognitive scientists can help address this issue by 
illuminating how people conceptualize the scientific process, 
paving the way for improved communication with the public. 
We recruited a large sample of lay Americans, as well as 
academics in the sciences and humanities, to answer a series 
of questions assessing their views about science. Because 
metaphors have been identified as useful tools for 
communicating about complex domains, we asked 
participants to choose which of two metaphors––working on a 
puzzle or scaling a mountain––best captured their beliefs 
about the scientific process. Results revealed substantial 
variation in perceptions of science across groups, and we 
highlight the ways in which scientists seem to conceptualize 
science differently from non-scientists. Importantly, metaphor 
preference was associated with particular patterns of thinking, 
though not always in our originally hypothesized direction. 
We discuss the implications of these findings.  

Keywords: metaphor, science, concepts, public perceptions 

Introduction 
Scientific research requires a variety of skills and involves 

a range of tasks and experiences. It can be like piecing 
together a puzzle, in which a diverse set of empirical 
findings are connected to fill in the details of big-picture 
scientific theories. And it can be like climbing a mountain, 
in which careful planning and steadfast persistence are 
necessary to move projects forward. Both of these 
metaphors—working on a puzzle and scaling a mountain—
capture aspects of the scientific process. In this paper, we 
use these two metaphors to gauge how people think about 
science. We recruited a large sample of the general public, 
as well as academics in the sciences and humanities, to 
answer a series of questions assessing their views about 
science, scientific practices, and the priorities of working 
scientists. They also selected which of the two metaphors 
(puzzle or mountain) better represented their beliefs about 
science, and we explored associations between this choice 
and broader patterns of thinking about scientific practice. 

Understanding how people conceptualize science is 
important given the widespread anxiety about everything 
from climate change to vaccines to genetically modified 

organisms (Achenbach, 2015). Indeed, recent populist 
political movements have been accompanied by an 
increasing distrust in science and data. In a recent US poll, 
almost half of participants (and over two-thirds of President 
Trump’s base) said they did not trust the economic data 
being reported by government agencies (Ryssdal, 2016). 
There is also concern in the scientific community about the 
quality of science education and the lack of public 
investment in science: “An overwhelming majority of 
scientists [over 75%] see the public’s limited scientific 
knowledge as a problem for science,” according to another 
recent poll (Funk & Rainie, 2015). 

The lack of support for science represents a direct threat 
to addressing important real-world situations like climate 
change and, potentially, the stability of societal institutions 
at large (Otto, 2016). As one recent Washington Post article 
concluded, “This is how a democracy crumbles: not with a 
bang, but with data trutherism” (Rampell, 2016).  

Recent work in the cognitive sciences has explored how 
to improve communication with the public for specific 
scientific issues like climate change and public health 
(Flusberg, Matlock, & Thibodeau, 2017; Thibodeau, Perko, 
& Flusberg, 2015). Metaphors have been identified as useful 
communication and explanatory tools, as they can help 
people make sense of complex issues by relating them to 
more familiar domains, leveraging the schematic knowledge 
people already have in order to reason about new and 
complicated subjects (Thibodeau, Crow, & Flusberg, 2016). 
To date, however, little research has investigated the role of 
metaphor in thinking about the scientific process itself (but 
see Thibodeau, 2016, and Harwood, Reiff, & Phillipson, 
2005). 

In addition to addressing practical concerns about public 
perceptions of science, therefore, the present work also has 
theoretical implications, as cognitive scientists (particularly 
cognitive linguists) often treat metaphor as a window into 
how people think (e.g., Fairclough, 2013; Lakoff & 
Johnson, 1980). That is, puzzle and mountain metaphors for 
science seem to have different entailments, which may 
suggest that people who talk about science as a puzzle think 
about the scientific process differently than people who talk 
about science as a mountain. On the other hand, some have 
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questioned this approach because of the assumptions that 
are made about the nature of thinking simply from observing 
patterns of language use (Keysar & Bly, 1995; McGlone, 
2011; Murphy, 1996, 1997).  

One of the few studies to address this issue in the context 
of reasoning about science involved structured interviews 
with scientists aimed at identifying (a) key characteristics of 
scientific inquiry and (b) metaphors that scientists use to 
conceptualize these issues (Harwood et al., 2005). The goal 
was to improve science education by encouraging science 
teachers to use metaphors in the classroom more 
deliberately. The results indicated that scientists’ 
descriptions of the scientific process emphasized five key 
characteristics: open-mindedness, putting yourself in your 
work, utilizing resources, problem solving, and making 
connections. These characteristics were then matched to 
conceptual metaphors that the scientists used in the 
interviews. For example, a puzzle metaphor was often used 
to emphasize how scientists seek to make connections; an 
artist metaphor was used to stress the importance of being 
open-minded; a gardening metaphor was used to talk about 
immersing oneself in their work.  

One possibility is that these metaphors can encourage 
non-scientists to think about the scientific process in a way 
that is more consistent with how scientists think about 
scientific inquiry (Harwood et al., 2005). However, an 
alternative possibility is that the meaning of these metaphors 
will be different for scientists and non-scientists. That is, the 
knowledge and experience that people have with science 
may influence how they interpret metaphors for the 
scientific process. A recent investigation into how different 
groups of people understand militaristic metaphors in 
biology like invasive species suggests support for the latter 
possibility (Larson, Nerlich, & Wallis, 2005): a metaphor 
that means one thing to scientists can mean something else 
to non-scientists. 

Therefore, the present study represents an important 
empirical step in comparing how different groups of people 
interpret metaphors for the scientific process. Do people 
actually think about science in a way that is consistent with 
the metaphor they would use to talk about it? 

 
Experiment 

Methods 
Participants A sample of 518 people representing the 
general public was recruited from Amazon’s Mechanical 
Turk (60% female; Mage = 35). A second sample of 
academics was recruited from the faculty listings of college 
and university websites in the United States, drawn from a 
list of top research and liberal arts institutions. We created a 
list of 2,000 academics, roughly half representing the 
sciences (i.e. faculty working in Physics, Chemistry, or 
Biology Departments), and half representing the humanities 
(i.e. faculty working in English, History, or Philosophy 
Departments). An email asking for voluntary participation 
in the survey, yielded responses from 156 academics (93 
from the sciences and 63 from the humanities). 

Although we were primarily interested in comparing how 
scientists and the general public think about science, we 
were also interested in understanding why these groups may 
think differently. Including the group of academics from the 
humanities helps to address this question. Like scientists, 
this sample is highly educated, familiar with working on 
projects that can take long periods of time, and conduct their 
work in a college or university setting. On the other hand, 
like participants from the general public, this sample may 
not be as familiar with the day-to-day experience of 
conducting scientific work. As a result, including the 
humanists allows us to investigate why the general public 
might hold views about science that are different from 
scientists. For instance, are differences related to more 
general factors like education level or related to factors 
more directly tied to being immersed in scientific work? 
 
Materials & Design All participants were asked to choose 
between two metaphors for science. The instructions for this 
judgment read, “We are interested in how people think 
about science. Which of the following metaphors best 
captures how you view the process of working on a 
scientific project?” The order of the two options—Working 
on a puzzle or Scaling a mountain—was counterbalanced.1  

These two metaphors for science were chosen because of 
their use in prior work (Thibodeau, 2016), and because they 
are commonly used by scientists to talk about the scientific 
process (Harwood et al., 2005). Thibodeau (2016), for 
example, found that metaphorically framing a scientist’s 
work as a puzzle led people to value “testing completely 
novel theories” over “using methods that are simple for 
others to follow,” whereas framing the scientist’s work as a 
climbing a mountain led people to value using simple 
methods over testing novel theories.  

All participants were also asked to rank six aspects of the 
scientific process in order of importance, three of which 
were designed to be more consistent with the entailments of 
the puzzle metaphor and three of which were designed to be 
more consistent with the entailments of the mountain 
climbing metaphor (see Table 1). The relationship between 
the entailments and metaphors was based on prior work 
(Harwood et al., 2005; Thibodeau, 2016), and experimenter 
intuition; one goal of the study is to test whether different 
groups of people have similar intuitions about the 
relationship between the entailments and metaphors. The 
order of the statements was randomized across participants.2 

                                                             
1 In pilot testing we found no effect of subtle wording 

differences for these metaphorical phrases (i.e. “Working on 
a puzzle” versus “Solving a puzzle”; “Climbing a mountain” 
versus “Scaling a mountain”). In every case, about 90% of 
participants from the general public chose puzzle. 

2 Of note, the order of the metaphor preference judgment 
and the entailment ranking tasks was counterbalanced for 
the sample from the general public. Since there were no 
differences in how people responded on the two orderings, 
we did not counterbalance these tasks for the academics.  
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We compare how the three populations (General Public; 
Scientists; Humanists) rank the statements overall, and we 
test whether people who prefer the puzzle metaphor for 
science rank the puzzle-congruent statements as more 
important than the mountain-congruent statements (and vice 
versa for the mountain metaphor). 
 
Table 1. Tasks related to the scientific process that were 
ranked by participants.  
Actions and Behaviors Related to Science Metaphor  
1. Find creative ways to study important research questions Puzzle 
2. Seek insight from diverse sources Puzzle 
3. Find connections between seemingly unrelated ideas Puzzle 
4. Make a detailed research plan Mountain 
5. Persist in the face of setbacks Mountain 
6. Revise theories in light of new data or counter-evidence Mountain 
 

Finally, participants were asked to complete the 40-item 
Scientific Attitude Inventory II (SAI II), which is designed 
to measure attitudes related to science along six dimensions 
(Moore & Foy, 1997; see Table 2). This instrument has been 
used to measure perceptions of science among students and 
the general public, and to predict who is likely to pursue a 
career in a STEM field (e.g., Bathgate, Schunn, & Correnti, 
2014; Moore & Foy, 1997).  

As with the rank order task, we use responses from the 
SAI II to compare how the three populations think about 
science and to test whether certain dimensions of the scale 
map onto the view that science is like working on puzzle 
versus scaling a mountain.  
 
Table 2. Six dimensions of the SAI II and example items.. 
Dimension Example Item 
Theory Scientific ideas can be changed. 
Limited Scientists cannot always find the answers to their questions. 
Empirical Scientific questions are answered by observing things. 
Goal Ideas are the important result of science. 
Public Every citizen should understand science. 
Interest I would enjoy studying science. 
 

At the end of the survey, participants from the general 
public were asked background and demographic questions, 
including their gender, age, education level, math/science 
training, political ideology (0, Very liberal, to 100, Very 
conservative), and personality (the Big Five personality 
dimensions; Gosling, Rentfrow, & Swann, 2003). 
Academics were asked to identify as working in the 
humanities or sciences.  

 
Results 
Metaphor Preference Among participants sampled from 
the general public, 89% preferred the puzzle metaphor for 
science, χ2(1) = 315.09, p < .001. The puzzle metaphor was 
also preferred by 89% of academics, χ2(1) = 92.31, p < .001, 
although scientists (84%) were marginally more likely to 
choose the mountain metaphor compared to humanists 
(95%), χ2(1) = 3.71, p = .054. 

For the sample recruited from the general public, we 
tested whether any of the individual difference measures 
(i.e. gender, age, education level, math/science training, 

political ideology, personality) predicted participants’ 
choice of metaphor. The only reliable predictor of 
participants’ choice was age: older participants were 
especially likely to endorse the puzzle metaphor for science, 
B = .40, SE = .17, p = .016.  
 
Ranking Priorities We first compare how the three 
populations ranked the six statements about science, 
focusing on contrasts between scientists and (a) humanists 
and (b) participants from the general public. Then we test 
for a relationship between participants’ preferred metaphor 
and their rankings of the statements. For this second 
analysis, we excluded the humanists because of the small 
number who preferred the mountain metaphor (n = 3). 

First, a mixed-effects linear model was fit to the rankings 
with statement (1-6) treated as a within-subjects effect and 
sample (public, humanists, scientists) treated as a between-
subjects effect (Bates, Maechler, Bolker, & Walker, 2014). 
The model revealed that the samples gave different rankings 
to the statements, χ2(5) = 209.91, p < .001.  

 
Figure 1. Mean ranking of six statements about science by 
sample: of the general public, academics working in the 
humanities, and academics working in the sciences.  
 

Figure 1 illustrates how participants from the three groups 
ranked the statements overall. One pattern to note is that 
scientists tended to show more agreement on how the 
statements were ranked (Kendall’s W = .25) than 
participants from the general public (W = .07) or humanists 
(W = .21). For instance, “planning” was ranked as the most 
important aspect of science by the general public, with 53% 
of participants from this sample ranking it first or second. In 
contrast, “creativity” was ranked as the most important 
aspect of science by scientists, with 76% of participants 
from this sample ranking it first or second. On the other end 
of the spectrum, “finding connections” was ranked as the 
least important aspect of science by the general public (46% 
ranked it fifth or sixth), while “planning” was ranked as the 
least important aspect of science by scientists (66% ranked 
it fifth or sixth). This suggests that scientists, as a group, 
have a more consistent conception of the scientific process 
than the general public; the humanists showed an 
intermediate level of consistency.  
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Figure 2. Comparing rankings of scientists to those of 
people from the general public and humanists with a 
measure of effect size (Cohen’s d). Bars that extend to the 
right indicate that scientists ranked the statement as more 
important (purple: compared to participants from the general 
public; orange: compared to humanists); bars that extend to 
the left indicate that scientists ranked the statement as less 
important. Stars indicate a statistically significant difference 
between scientists and the comparison group.  

 
Figure 2 shows how scientists ranked the statements 

compared to the other two groups of participants by plotting 
a measure of effect size (Cohen’s d). As shown, scientists 
tended to place less emphasis on planning than humanists, 
t(154) = 3.69, p < .001, or participants from the general 
public, t(609) = 10.21, p < .001. On the other hand, 
scientists tended to place more emphasis on persistence than 
humanists, t(154) = 2.82, p = .005, or participants from the 
general public, t(609) = 2.95, p = .003. The two groups of 
academics ranked the other four statements similarly. 
Scientists and the sample from the general public ranked 
three of the remaining four statements differently: scientists 
placed less emphasis on seeking diverse sources of insight, 
t(609) = 2.49, p = .013, but more emphasis on finding 
connections between seemingly unrelated ideas, t(609) = 
2.21, p = .027, and creativity, t(609) = 6.72, p < .001; these 
two groups placed similar emphasis on revising theories in 
light of new data. 

A second analysis tested whether people who considered 
science to be more like a puzzle ranked puzzle-congruent 
statements as more important than people who considered 
science to be more like mountain climbing. A mixed-effects 
linear model was fit to the data with predictors for statement 
type (puzzle- or mountain-congruent), metaphor choice 
(puzzle or mountain), and sample (scientists versus general 
public), which revealed an interaction between the statement 
type and metaphor choice, χ2(1) = 4.07, p = .044. Contrary 

to our initial hypothesis, preference for the puzzle metaphor 
was associated with prioritizing the mountain-congruent 
statements (and vice versa). This pattern was consistent 
across both groups of participants (i.e. there was no 3-way 
interaction between statement type, metaphor choice, and 
sample), χ2(1) = 1.39, p = .239 (see Figure 3). Of note, the 
analysis also revealed an interaction between sample and 
statement type, χ2(1) = 38.44, p < .001, such that scientists 
tended to rank the puzzle-congruent statements as more 
important, regardless of preferred metaphor, than 
participants from the general public. 

 

 
Figure 3. Mean ranking of statements by type (puzzle- or 
mountain-congruent) and metaphor chosen (puzzle or 
mountain) for the two samples analyzed (from the general 
public and of scientists).  

 
People who preferred the mountain metaphor were 

particularly likely to rank “finding connections” (M = 3.69, 
SD = 1.52) as more important than people who preferred the 
puzzle metaphor (M = 4.15, SD = 1.53), whereas people who 
preferred the puzzle metaphor were particularly likely to 
rank “planning” (M = 3.09, SD = 1.91) as more important 
than people who preferred the mountain metaphor (M = 
3.44, SD = 2.00).  

This finding is consistent with the view that the two 
metaphors capture structured ways of thinking about the 
scientific process that are different from one another. People 
who reported thinking science was a puzzle ranked the 
statements in a systematically different way than people 
who reported thinking science was a mountain. However, 
the finding is inconsistent with how we had mapped the 
entailments of the metaphors onto the statements, 
suggesting that the intuitions of language researchers may 
differ from how metaphoric language is used and 
understood in the real world.  

It is also possible that behaviors on the two tasks—
choosing a metaphor and ranking the statements—were 
complementary. People may have had a sense of the 
limitations of their preferred metaphor, which they 
expressed in the rank-order task (or vice versa). For 
instance, a participant may believe that finding connections 
and planning are both vital to the scientific process. Such a 
belief may lead this participant to choose the puzzle 
metaphor as more appropriate (because it captures the value 
of finding connections) and also to rank planning highly 
(since it is captured less well by the puzzle metaphor). In 
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other words, participants may consider many aspects of 
science to be important, not just those that are consistent 
with the entailments of a single metaphor. This may lead 
them to express a preference for one metaphor, as required 
by our forced-choice task, and then to emphasize 
inconsistent entailments in the rank-order task. 
 
Scientific Attitude Inventory A similar set of analyses was 
applied to data from the SAI II. First, we found differences 
in the extent to which participants endorsed the six 
dimensions measured by the survey, χ2(5) = 1637.2, p < 
.001: participants agreed most strongly with statements 
about the necessity of adopting an empirical mindset, 
followed by statements about the importance of public 
outreach, about an interest in doing scientific work, that the 
scope of science is limited to observable phenomena, and 
finally, that the end goal of science is ideas (rather than a 
tangible product like technology).   
 

 
Figure 4. Comparing ratings of scientists to those of people 
from the general public and humanists with a measure of 
effect size (Cohen’s d). Bars that extend to the right indicate 
that scientists rated the dimension as more important 
(purple: compared to participants from the general public; 
orange: compared to humanists); bars that extend to the left 
indicate that scientists rated the dimension as less important. 
Stars indicate a statistically significant difference between 
scientists and the comparison group. 
 

Second, the analysis revealed differences in how the three 
samples rated the statements, χ2(2) = 196.57, p < .001. 
Overall, scientists tended to endorse the statements more 
strongly than participants from the general public, B = .45, 
SE = .03, p < .001, and humanists, B = .17, SE = .04, p < 
.001. Humanists endorsed the statements more strongly than 
participants from the general public, B = .28, SE = .04, p < 
.001. 

Third, the analysis revealed an interaction between ratings 
of the dimensions and the three samples, χ2(10) = 199.57, p 
< .001. As shown in Figure 4, scientists endorsed all six 
dimensions more strongly than participants from the general 
public, ps < .001. Compared to humanists, scientists more 
strongly endorsed having an empirical mindset, the view 
that public support is important, and were more likely to say 
they enjoyed doing scientific work, ps < .01, whereas 
humanists were more likely to view science as being limited 
to the study of natural phenomena, p < .001. The two groups 
of academics expressed similar views about scientific 
theorizing and about the end-goal of scientific work. 
 

 
Figure 5. Differences in ratings by metaphor chosen for 
people from the general public and scientists, illustrated by 
a measure of effect size (Cohen’s d). Bars that extend to the 
right indicate higher ratings among people who preferred 
the puzzle metaphor; bars that extend to the left indicate 
higher ratings among people who preferred the mountain 
metaphor. 
 

Finally, we tested for a relationship between the metaphor 
participants preferred and ratings of the dimensions 
(excluding data from humanists). As illustrated in Figure 5, 
among scientists, preference for the mountain metaphor was 
associated more strongly with the view that scientific study 
is limited to natural phenomena, t(91) = 2.72, p = .009; 
among the general public, preference for the puzzle 
metaphor was associated with a more empirical mindset, 
t(516) = 2.35, p = .019, the view that public support is 
important, t(516) = 2.53, p = .012, and a stronger interest in 
doing scientific work, t(516) = 3.46, p < .001. These results 
provide further evidence that the two metaphors capture 
different ways of thinking about the scientific process, but 
also suggest that what exactly is captured by the metaphors 
is different for scientists and non-scientists. 

-0.5 0.0 0.5 1.0 1.5 2.0

Interest

Public

Goal

Empirical

Limited

Theory Public
Humanists

Cohen’s d

Scientists > Scientists < 

Cohen’s d

Mountain > Puzzle Puzzle > Mountain 

-0.9 -0.6 -0.3 0.0 0.3 0.6 0.9

Interest

Public

Goal

Empirical

Limited

Theory Public
Scientists

3324



Discussion 
Skepticism towards scientific research can be found 

among the general public as well as politicians on both sides 
of the political aisle, raising significant concerns about the 
current quality of science education and communication.  As 
an initial step towards addressing this critical issue, we 
aimed to illuminate how people think about the scientific 
process itself, contrasting the beliefs of scientists with those 
of academics in the humanities and members of the general 
public, and exploring the role of metaphor in representing 
broad conceptual viewpoints.   

We found several notable similarities and differences in 
how scientists and non-scientists conceptualized the 
scientific process. Of particular interest, scientists tended to 
prioritize persistence more than the two samples of non-
scientists, who tended to prioritize planning more than the 
scientists. This suggests that being immersed in scientific 
work makes salient the determination needed to complete 
research projects. Simply hearing about scientific findings 
in the classroom or the news, on the other hand, may make 
it seem like scientists spend most of their time planning. In 
line with this distinction, scientists were more likely than 
non-scientists to think science was like scaling a mountain, 
although all three groups showed an overall preference for 
the puzzle metaphor.  

Individuals who preferred the puzzle metaphor tended, 
counter-intuitively, to value statements about science that 
were designed to be congruent with the mountain metaphor 
(and vice versa). Preference for the puzzle metaphor was 
also associated with a more empirical mindset, the view that 
public support is important for scientific progress, and an 
interest in doing scientific work—but only among the 
general public, not among scientists. These findings imply 
that metaphors for science will be interpreted differently 
depending on one’s scientific knowledge and expertise. The 
findings also highlight the importance of identifying the 
systems of knowledge associated with metaphor use rather 
than merely assuming them (Keysar & Bly, 1995; McGlone, 
2011; Murphy, 1996, 1997). 

Future research in this area should explore additional 
metaphors for scientific inquiry. For instance, one scientist 
in the study suggested that science was more like map-
making or exploring than it was like working on a puzzle or 
scaling a mountain. Future work should also investigate 
whether these metaphors can causally influence how people 
think about the scientific process.  
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Abstract 

Metaphors have been shown to be effective explanatory and 
communicative tools, shaping how people think and reason 
about complex domains. To date, however, most studies have 
addressed only coarse-grained effects of metaphor framing, 
leaving many questions unanswered about the relative power 
of metaphor compared to more literal linguistic framing 
devices. We addressed this issue in a large, pre-registered 
framing study, comparing the effects of describing the role of 
police officers as (a) metaphorical guardians of a community 
(b) literal protectors of a community, and (c) a no-label 
control. We found no main effect of framing condition, 
suggesting that positively valenced metaphors may exert little 
influence on their own in this domain. However, we did 
observe an interaction between condition and political 
ideology, such that the guardian metaphor was especially 
effective at improving attitudes towards police officers for 
liberals, whose initial approval ratings were relatively low.  

Keywords: metaphor, framing, attitudes, policing 

Introduction 
“Evolutionary sequences,” wrote the popular biologist 

Steven Jay Gould (1977, p. 61), “are not rungs on a ladder, 
but our retrospective reconstruction of a circuitous path 
running like a labyrinth, branch to branch, from the base of 
the bush to a lineage now surviving at its top.” Metaphorical 
explanations like this are common, and research has 
established that they can be effective as well: framing a 
discussion or explanation with metaphor has been shown to 
shape how people understand and reason about a range of 
complex issues (Flubserg, Matlock, & Thibodeau, 2017; 
Sopory & Dillard, 2002; Thibodeau, 2016; Thibodeau & 
Boroditsky, 2011; Thibodeau, Crow, & Flusberg, 2016).  

In a recent study, for example, Thibodeau, Crow, and 
Flusberg (2016) sought to test the explanatory power of 
metaphor in the context of people’s understanding of––and 
attitudes towards––law enforcement. Our primary research 
question was whether or not people would spontaneously 
use the structure of a metaphorical source domain (guardian 
or warrior) to reason about a target domain (policing).  

One way that we tested this question was by having 
participants read that police officers are either guardians or 
warriors of the community before reporting on their 
attitudes toward policing and the criminal justice system. 
We found that participants who had read that police officers 
are guardians expressed more positive attitudes about 
policing and the criminal justice system, overall, compared 
to people who had read that police officers are warriors. 

This effect may be the result of the emotional tone that is set 
by the metaphors: we found that guardian, in the context of 
policing, conveys a more positive emotional valence than 
warrior. 

In addition, we found that the metaphorical explanations 
selectively affected certain attitudes toward policing and the 
criminal justice system more than others. Specifically, 
people who read that police officers are guardians 
expressed a more favorable “attitude toward police 
practices” than people who read that police officers are 
warriors, but the metaphorical explanation had no effect on 
participants’ views about the “difficulty of being a police 
officer.” This was consistent with the results of an initial 
norming study, where a separate group of participants made 
an explicit judgment about which metaphor––guardian or 
warrior––was more appropriate for the current state of 
policing (rather than being exposed to just one of the 
metaphors). That is, the norming study found that people 
who came into the study with the view that police officers 
are more like guardians expressed more a favorable view of 
police practices compared to people who considered police 
officers to be warriors. However, people who considered 
police officers to be guardians expressed similar beliefs 
about the difficulty of being a police officer as people who 
considered police officers to be warriors. Taken together, 
these findings suggest that the metaphors instantiate 
different schematic knowledge structures for policing and 
the criminal justice system—and that they capture and 
convey more than an emotional tone. 

A second way that we tested our research question was by 
having participants list a synonym either to “guardian” or 
“warrior” before reporting on their attitudes toward the 
police and criminal justice system. We found no effect of 
these lexical primes: people who listed a synonym for 
“guardian” expressed similar attitudes toward policing and 
the criminal justice system as people who listed a synonym 
for “warrior.” Participants expressed more moderate 
attitudes in these conditions compared to the conditions in 
which a metaphor was used to explain the role of police 
officers (i.e. less positive than participants who read that 
police officers are guardians but more positive than 
participants who read that police officers are warriors).  

We interpreted these results as showing (a) that 
metaphorically framing police officers as guardians 
activates a different mental model of policing (with a 
different affective profile) than metaphorically framing 
police officers as warriors, and (b) that simply seeing the 
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word “guardian” or “warrior” is insufficient to activate this 
mental model. In other words, people have prior knowledge 
about what it means to be a guardian (and warrior). This 
knowledge influences how people think about policing 
when police officers are explicitly described as guardians 
(or warriors)—but not when people are asked questions 
about policing after simply seeing the word “guardian” (or 
“warrior”).  

A natural follow up question to this study might be: which 
metaphor has a bigger effect on how people think about 
policing? Intuitively, it may seem like there is an easy way 
to address this question: by running a condition that does 
not include a metaphorical explanation. One might expect 
that describing police officers as guardians would lead to a 
more positive view of policing compared to a “neutral 
control” condition, and that describing police officers as 
warriors would lead to a more negative view of policing 
compared to a “neutral control” condition. In addition, one 
might be tempted to infer that the metaphor condition that is 
more different from the “neutral control” condition is 
having a bigger effect on people (cf. Reijnierse, Burgers, & 
Steen, 2015; Steen, Reijnierse, & Burgers, 2014).  

However, as we have argued before (see Thibodeau, In 
press; Thibodeau & Boroditsky, 2015), there are many 
differences between metaphor frames and “neutral control” 
conditions that make such comparisons difficult to interpret. 
For example, it is not clear that there is a suitable non-
metaphorical counterpart to the “guardian” and “warrior” 
metaphors for policing (e.g., a term like “protector” could 
be used, since it is less metaphorical than the two 
metaphorical frames; but its meaning seems more similar to 
“guardian” than “warrior,” making it a poor candidate to 
serve a “neutral control” condition along side the two 
metaphorical conditions). Comparing the two metaphorical 
frames to a condition that omitted a nominal descriptor 
altogether would confound a variety of factors between the 
two metaphor conditions and the “neutral control” 
condition, including the valence, tone, and word frequency 
of the language used to describe policing—not just the 
metaphoricity of the conditions.  

We do, however, think that there are research questions 
that warrant a comparison between metaphorical frames and 
non-metaphorical counterparts. Here, we consider such a 
case. Namely, does a guardian metaphor lead people to 
adopt a more favorable view of policing than a comparable 
literal description of the role police officers play in the 
community? Addressing this question is important when 
considering the potential practical applications of research 
on the persuasive power of metaphor. Therefore, we 
compared three conditions in the present study, building on 
the work described in Thibodeau, Crow, & Flusberg (2016). 
Before reporting their attitudes towards law enforcement 
and the criminal justice system, participants read one of the 
following framing prompts: 

a. Police officers are the guardians of modern 
communities. They are strong men and women who 
serve a vital role in society. 

b. Police officers are the protectors of modern 
communities. They are strong men and women who 
serve a vital role in society. 

c. [No label control: participants simply answered the 
targeted questions about police officers in this 
condition] 

We chose “protector” as a non-metaphorical counterpart 
to guardian because it was the word most frequently used to 
explain what it means for police officers to be guardians in 
the original study (Thibodeau, Crow, & Flusberg, in press). 
In the context of this more applied question, we did not 
include a condition that described police officers as 
warriors, since such a description would be expected to 
elicit comparatively negative views of police officers. 
Instead, we compared the effects of a metaphor frame (and a 
matched literal frame) to a “neutral control” condition 
because we were interested in whether and to what extent 
describing police officers as guardians leads people to 
express a more favorable view of policing.  

We were also interested in a mechanistic question about 
the role of metaphor in explanatory discourse, which we 
addressed by comparing the guardian and protector 
conditions. Are metaphors more persuasive than literal 
counterparts? In a meta-analysis, Sopory and Dillard (2002) 
found that metaphors are about 6% more persuasive than 
literal language, which they attributed to the power of 
metaphors to organize the way people think about a target 
domain.  

The design of the current study provides a novel context 
for testing this claim. One possibility is that the guardian 
metaphor may call to mind a more coherent and favorable 
mental model of policing than the non-metaphorical 
counterpart, protector, and lead people to the most positive 
view of police officers and the criminal justice system—
more positive than the protector and “neutral control” 
conditions.  

An alternative possibility, though, is that the literal 
counterpart to guardian (protector) serves a similar 
organizational function in describing the role of police 
officers in the community. That is, depending on the 
complexity of the target domain and intended meaning of 
the metaphor, there may be issues for which a literal frame 
is as effective as a metaphorical one in shaping thought. 
Support for this possibility would be found if people express 
similarly positive views of the police in these two 
conditions—both of which should lead people to a more 
positive view of policing than the “neutral control” 
condition. Such a finding would contribute to the literature 
by identifying an important boundary condition on 
metaphor framing effects (cf. Steen, Reijnierse, & Burgers, 
2014).  

In addition to the framing experiment, we also conducted 
a norming study to assess the perceived metaphoricity and 
emotional valence of three possible descriptions of police 
officers: (a) guardians of modern communities, (b) 
protectors of modern communities, and (c) warriors of 
modern communities. One critical assumption that was 
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made in our prior work was that the terms guardian and 
warrior were actually interpreted as metaphors, and not, for 
example, as literal descriptions of the role of police 
officers1.  The norming study allows us to test this 
assumption. We expected that the guardian and warrior 
descriptions would be rated as more metaphorical than 
protector. The norming study also allowed us to quantify 
the emotional tone of the three descriptions. We expected 
that the guardian and protector descriptions would be rated 
as conveying a more positive emotional valence than 
warrior. Both studies were pre-registered on the Open 
Science Framework: osf.io/eb853. 

 
Norming Study 

Methods 
Participants We recruited 100 participants for the norming 
study from Amazon’s Mechanical Turk. After excluding 
participants who failed to finish the study or provide a valid 
completion code, we were left with data from 88 
participants for analysis (51% male; Mage = 33).  

 
Materials and Design Participants were asked to rate the 
metaphoricity (1, Not at all metaphorical, to 5, Very 
metaphorical) and valence (1, Very negative, to 5, Very 
positive) of three statements on 5-point scales (Thibodeau & 
Boroditsky, 2015).  

a. Police officers are guardians. 
b. Police officers are warriors. 
c. Police officers are protectors. 

These statements were presented on the same screen; the 
order of the statements was randomized across participants. 

Afterward, participants were asked background and 
demographic questions, including their gender, age, 
education level, political ideology (0, Very liberal, to 100, 
Very conservative), and political affiliation (Democrat, 
Independent, Republican, Other). They also completed the 
attitudes towards policing measure described in the 
experiment below, although we did not analyze responses to 
these questions for participants in the norming study. 

 
Results and Discussion 

A repeated measures ANOVA revealed differences in the 
rated metaphoricity of the three statements, F(2, 174) = 
27.59, p < .001, η2 = .24. Warrior (M = 3.56, SD = 1.33) 
was rated as more metaphorical than guardian (M = 3.02, 
SD = 1.21), t(87) = 3.48, p < .001, or protector (M = 2.38, 
SD = 1.28), t(87) = 6.35, p < .001; guardian was rated as 
more metaphorical than protector, t(87) = 4.82, p < .001 
(see Figure 1).  

                                                             
1 We do not view the boundary between the “literal” and the 

“metaphorical” as so sharp, “metaphoricity” is best thought of a 
continuous rather than categorical variable (cf., Rumelhart, 1979). 
That said, the distinction is still useful and informative in the 
context of understanding the nature of abstract thought (Lakoff & 
Johnson, 1980).  

On the one hand, this pattern of results confirms our 
intuition that the terms warrior and guardian are perceived 
as more metaphorical than the term protector in the context 
of describing the role of police officers. On the other hand, 
we did not predict that the term warrior would be viewed as 
more metaphorical than guardian.  

One possibility is that people consider the guardian 
metaphor to be more apt (cf. Glucksberg, 2001), which 
affects judgments of metaphoricity (Thibodeau, Sikos, & 
Durgin, 2015). In our original study, 82% of participants 
thought police officers should strive to be guardians (rather 
than warriors) of their communities (Thibodeau, Crow, & 
Flusberg, 2016). Talking about police officers in a way that 
is inconsistent with a preferred mental model of policing 
(i.e. in a way that is less apt) may lead people to think the 
description is more metaphorical. In any case, the critical 
difference in metaphoricity for the present study pertains to 
the contrast between guardian and protector: as expected, 
people interpreted guardian to be more metaphorical than 
protector.  

A second repeated measures ANOVA revealed 
differences in the rated valence of the three statements, F(2, 
174) = 51.01, p < .001, η2 = .37. Warrior (M = 3.38, SD = 
1.21) was rated as more negative than both guardian (M = 
4.32, SD = 0.80), t(87) = 7.22, p < .001, and protector (M = 
4.49, SD = 0.82), t(87) = 8.04, p < .001; protector was rated 
as more positively valenced than guardian, t(87) = 2.19, p = 
.031 (see Figure 1).  

Again, this pattern largely conforms to our predictions: 
guardian and protector both express a positive view of 
policing compared to warrior. Although protector was 
judged to be more positive than guardian, this difference 
was fairly small.  

 
Figure 1. Ratings of the metaphoricity and valence of three 
descriptions of police officers. Error bars denote standard 
errors of the means.  

 
Experiment 

In the experiment, we tested whether describing police 
officers as guardians, compared to protectors (and to a 
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more positive attitudes toward policing. That is, previous 
work has suggested that metaphorical language is more 
persuasive than literal language, owing to the organizational 
role that metaphors play in discussions of complex issues 
(Sopory & Dillard, 2002). The norming study suggests that 
guardian and protector differ substantially in the extent to 
which they are metaphorical, but only slightly in the 
emotional tone that they convey (in favor of the non-
metaphorical label).  

If the guardian label leads people to express to more 
positive attitudes towards policing than protector, the 
experiment would provide further evidence of the 
persuasive value of metaphor (over and above comparable 
literal language). If people express similar attitudes in the 
guardian and protector conditions, on the other hand, it 
would suggest that, in some cases, non-metaphorical 
language can serve a similar organizational function as 
metaphorical language. 
 
Methods 
Participants We recruited 600 participants to participate in 
the experiment on Amazon’s Mechanical Turk. After 
excluding participants who failed to finish the study or 
provide a valid completion code, we were left with data 
from 592 participants for analysis (49% male; Mage = 34). 
 
Materials and Design Participants were randomly assigned 
to one of three conditions. In one, police officers were 
described as guardians, “Police officers are the guardians of 
modern communities—strong men and women who serve a 
vital role in society.” In the second, police officers were 
described as protectors, “Police officers are the protectors of 
modern communities—strong men and women who serve a 
vital role in society.” A comparable sentence about police 
officers was omitted from the third condition. In other 
words, there was no description of police officers in the 
third condition; this group simply answered the follow-up 
questions about policing. Participants in all three groups 
were instructed, “Although most people agree that police are 
necessary for maintaining law and order, there is 
disagreement about a variety of issues related to policing. 
On the following screen, you will be asked several questions 
about your view of police officers and the criminal justice 
system. Please answer candidly; your responses are 
anonymous.”  

Then participants were asked eight questions about 
policing and the criminal justice system. Consistent with 
Thibodeau, Crow, and Flusberg (2016), three of the 
questions were asked on a 7-point scale: “Police officers 
have a __ job” (from very easy to very difficult), “Police 
officers are __ at maintaining law and order” (from very 
ineffective to very effective), and “How would you describe 
the criminal justice system in the U.S.?” (from very far from 
the ideal to very near to the ideal). The other five questions 
included two response options, asking about whether 
participants thought police treated citizens equally (yes/no), 
whether they thought the police were more fair or unfair, 

more honest or deceitful, more selfish or selfless, and 
whether participants felt safe or unsafe around police 
officers. Responses to all eight of these questions were 
combined into a single measure of participants’ attitudes 
toward policing, using principal components analysis (see 
Thibodeau, Crow, & Flusberg, 2016).  

Finally, participants completed the same demographics 
questions as participants in the Norming Study. 
 
Results 

A between-subjects ANOVA with predictors for 
condition (guardian, protector, none) revealed no effect of 
the descriptions on participants’ attitudes toward policing, 
F(2, 589) = 0.18, p = .837. That is, neither the guardian (M 
= 3.12, SD = 1.28) nor the protector (M = 3.14, SD = 1.45) 
labels for police officers led people to a more positive 
attitude toward policing compared to a description that 
lacked a label (M = 3.20, SD = 1.44). And the two treatment 
conditions (guardian vs. protector) did not differ from one 
another.  

Given the lack of support for our primary prediction, we 
considered alternative hypotheses that could be explored in 
the data. One salient possibility highlights the role of 
peoples’ prior beliefs (e.g., Hardisty, Johnson, & Weber, 
2009; Johnson & Taylor, 1981; Thibodeau & Boroditsky, 
2011; Thibodeau & Flusberg, 2017) in combination with a 
mechanistic claim about how metaphors are processed—by 
serving as peripheral or heuristic cues, rather than through a 
process of conscious deliberation and rationalization (cf. 
Chaiken, Wood, & Eagly, 1996; Petty & Cacioppo, 1986). 

That is, prior work has found that framing manipulations 
are, not surprisingly, more impactful on people who have 
room to be persuaded about an issue (i.e. are not already at 
ceiling). For instance, Hardisty, Johnson, & Weber (2009) 
found that Democrats would support a program designed to 
decrease the level of carbon dioxide in the environment, 
regardless of whether it was described as an “offset” 
program or a “tax.” Since Democrats tended to support this 
type of environmental action, their attitudes were relatively 
consistent, regardless of how it was framed (i.e. a ceiling 
effect). Republicans, on the other hand, showed lower 
support for the program overall, affording more opportunity 
for attitude change. In turn, Hardisty et al. (2009) found that 
Republicans were more likely to endorse the program when 
it was framed as an “offset” than a “tax.”  

Since political conservativeness tends to be associated 
with more positive attitudes toward policing (Gerber & 
Jackson, 2017), this suggests that the framing 
manipulation—describing police officers as guardians or 
protectors—may have a more pronounced effect among 
politically liberal participants.  

One reason to think that the guardian frame will be more 
persuasive among liberal participants than the protector 
frame is that metaphors have been argued to exert a 
persuasive influence through an indirect route. People who 
are skeptical about the increasing tendency for violence 
among police officers may perceive the term protector as an 
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overt attempt to change the way they think about police 
practices, making them resistant to the persuasive appeal. In 
contrast, the term guardian may not register as a persuasive 
message and, thus, bypass this sort of counter-arguing 
among participants (cf. Chaiken, Wood, & Eagly, 1996; 
Petty & Cacioppo, 1986). 

To examine these possibilities, we conducted a second 
analysis on the data in which political ideology (a 
continuous variable ranging from 0, Very liberal to 100, 
Very conservative) was included as a covariate. To conduct 
this analysis, we first tested for an expected positive 
relationship between political ideology and attitudes toward 
policing. We found a strong positive relationship, F(1, 590) 
= 79.54, p < .001: the more politically conservative the 
participant, the more positive their view of the police, B = 
.34, SE = .04, p < .001. We then tested for an interaction 
between political conservativeness and condition (guardian, 
protector, none), which was significant, F(2, 586) = 3.06, p 
= .048. Of note, the relationship between political 
conservativeness and condition did not differ for a contrast 
between the “neutral control” condition and the protector 
condition, F(1, 397) = 1.53, p = .217. However, the 
relationship between political conservativeness and 
condition did differ when contrasting the “neutral control” 
condition to the guardian condition, F(1, 391) = 6.52, p = 
.011 (see Figure 2).  
 

 
Figure 2. Attitudes toward policing by political ideology 
(left = very liberal; right = very conservative) and frame 
(none, protector, guardian). Lowess smoothing (f = 2/3) was 
applied to the lines to facilitate presentation of the trends. 
 

Specifically, among the most liberal participants (i.e., 
those who reported a score less than 33 on the continuum of 
political ideology that ranged from 0, very liberal, to 100, 
very conservative; n = 256), attitudes toward policing were 
more positive in the guardian condition (M = 2.93, SD = 

1.06) than in the protector condition (M = 2.54, SD = 1.44), 
t(160) = 1.98, p = .049; but no different from the condition 
that lacked a label (M = 2.63, SD = 1.52), t(178) = 1.54, p = 
.126. There were no differences between conditions for 
participants whose political ideology was in the middle of 
the ideological spectrum (i.e. between 33 and 66; n = 229), 
ps > .1, and no differences between conditions for 
participants whose political ideology was at the conservative 
end of the spectrum (i.e. > 66; n = 107), ps > .1.  
 
Discussion 

In response to mounting tensions between law 
enforcement and civilians, former president Barack Obama 
commissioned a task force on 21st century policing, which 
released its final report in 2015 (Ramsey & Robinson, 
2015). The report suggested that to increase trust between 
police officers and the communities they serve, “Law 
enforcement culture should embrace a guardian––rather 
than a warrior––mindset.” In a previous set of experiments, 
we used this real-world example as a case study to explore 
the power of explanatory metaphors, demonstrating that 
describing police offers as guardians did in fact lead people 
to express more positive attitudes towards law enforcement 
than describing them as warriors (Thibodeau, Crow, & 
Flusberg, 2016). Because of the real-world applications of 
this line of research, however, there are additional questions 
that warrant empirical investigation. 

In the present study, we took a preliminary step in this 
direction by asking whether metaphorical framing provides 
any additional persuasive power over and above a more 
literal linguistic descriptor. In an initial norming study, we 
confirmed that describing police officers as guardians of a 
community was perceived as more metaphorical than 
describing them as protectors of a community. In our main 
experiment, we contrasted the effects of framing the role of 
law enforcement using these two terms, along with a 
“neutral” control condition that included no framing device. 

Our initial analysis revealed that participants in these 
three conditions did not differ overall with respect to their 
attitudes towards policing. This could suggest that there is 
little advantage to using metaphorical framing compared to 
more literal language (or even to no frame whatsoever) in a 
practical attempt to improve attitudes towards policing in 
the United States. This also offers some support for the view 
that in our original study, it was the more negatively 
valenced warrior metaphor that was “doing the work,” so to 
speak, in shifting attitudes towards policing (i.e., in a 
negative direction). This would be consistent with a large 
body of work in psychology that suggests people are 
typically more sensitive to negative information (or losses) 
than positive information (or gains; Baumeister et al., 2001). 

However, we also considered an alternative possibility: 
that individual differences in prior attitudes towards 
policing (e.g., due to ideological commitments) might 
interact with our framing manipulation in a principled 
fashion. Previous research has shown that framing effects 
are most effective when they target people who are not at 
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ceiling (or floor) on an issue already (i.e., who have room to 
be persuaded; Hardisty, Johnson, & Weber, 2009; 
Thibodeau & Boroditsky, 2011; Thibodeau & Flusberg, 
2017). In the present case, we reasoned that because 
ideologically conservative participants would have come 
into the study with very positive views of policing already 
(Gerber & Jackson, 2017), they might be less persuaded by 
a positive metaphorical frame compared to more liberal 
participants. To test this possibility, we included a 
continuous measure of political ideology as a covariate in an 
exploratory analysis. 

The results of this analysis supported our revised 
hypothesis: for the most liberal participants, framing police 
officers as guardians of the community led to more positive 
attitudes compared to framing them as protectors of the 
community. This is consistent with previous work 
demonstrating a principled interaction between metaphor 
framing and prior beliefs (Hardisty, Johnson, & Weber, 
2009; Thibodeau & Boroditsky, 2011; Thibodeau & 
Flusberg, 2017), and lends support to the view that 
metaphors may provide an additional persuasive punch 
compared to more literal language (at least under certain 
conditions; Sopory & Dillard, 2002).  

Taken together, these findings paint a more nuanced 
picture of the relationship between, and consequences of, 
metaphorical versus literal framing, at least in domain of 
attitudes towards policing. To be sure, more research in this 
vein is required, especially considering the practical 
applications of this sort of work, and the assumptions that 
often accompany reasoning about metaphor and thought 
(Lakoff & Johnson, 1980; Ramsay & Robinson, 2015). We 
suggest researchers and public policy communicators 
interested in these issues should aim for more large-scale, 
pre-registered, and nuanced empirical studies of framing 
effects.   
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Abstract 

We present two experiments on the role of culture in the 
categorization of object part-whole structures. A triadic 
categorization task pitted shape against function as factors 
driving similarity judgments on selected parts of different 
types of objects. Speakers of American English were 
significantly more likely than speakers of two indigenous 
languages of Mexico, Tseltal Maya and Isthmus Zapotec, to 
choose categorization by function, even when familiarity of 
the various stimulus objects was factored in. In the second 
study, members of the two indigenous groups matched parts 
of a doll to parts of novel objects of unfamiliar shape. The 
Tseltal participants were significantly more likely to match 
according to a shape-analytical algorithm rather than global 
analogy, consistent with predictions based on prevalent 
strategies in verbal part labeling in the two languages. We 
conclude that while cognition of object parts undoubtedly has 
a strong biological basis, there are also robust cultural effects.  

Keywords: object mereology; meronymy; shape perception; 
function; cross-cultural research 

Introduction 

The ability to categorize objects crucially involves 

identifying their parts. In general, mereology – the 

conceptualization of parts, and of how they relate to each 

other and to the wholes they form – is deeply involved in 

how humans make sense of their physical world. 

A strong case can be made that the segmentation of 

physical objects into parts has a basis in shape recognition 

(Biederman 1987; Marr 1982; Palmer 1977; Tversky & 

Hemenway 1984; inter alia) and is thus likely biologically 

grounded. At the same time, function plays a key role in the 

categorization of both body parts of living things and object 

parts of artifacts (e.g., Croft & Cruse 2004: 153-156; Rose 

& Schaffer 2015; Svorou 1994: 78-79, 91-92; Tversky 

1989). Ears and lids can come in a great many distinct 

shapes; what unites these diverse manifestations is the 

function they play in the whole of which they are a part. But 

the attribution of functions depends on knowledge, beliefs, 

and assumptions that are at least to a large extent learned. 

Function dependence thus creates an opening for cultural 

effects in cognition of parts.  

In addition, there is some evidence suggesting that the 

role of shape, and geometry more generally, in mereological 

cognition may be to some extent subject to cultural variation 

as well. This evidence comes from meronymy, the 

nomenclature for object parts. In-depth studies of the 

meronymy of non-Indo-European languages are few and far 

between. But the few available reports present evidence of 

striking differences vis-à-vis the terminology familiar from 

English and other European languages.  

Our interest in this complex was aroused by descriptions 

of the meronymies of two indigenous languages of southern 

Mexico, Ayoquesco Zapotec (MacLaury 1989) and Tseltal 

Maya (Levinson 1994). Both languages belong to the 

Mesoamerican linguistic and cultural area, the members of 

which have been in contact with one another for millennia 

(Campbell, Kaufman & Smith-Stark 1986).  

A feature that the accounts of MacLaury (1989) and 

Levinson (1994) converge on is a core set of meronyms that 

are assigned both to body parts of humans and animals and 

to the parts of inanimate objects (though not generally to 

plants). They claim that labeling of object parts with 

general-purpose body part terms is pervasive, and based 

largely on shape and geometry. In contrast, function-based 

meronyms for inanimate objects are largely absent.  

Where the two systems appear to diverge is in the 

strategies used to assign the generalized meronyms to object 

parts. MacLaury (1989) describes a strategy strictly based 

on a global analogical mapping from the human body in 

canonical erect position to the object in its actual orientation 

at the time the assignment pertains to. (See Figure 1A for 

the part labelings that this account predicts for a novel 

object.) The parts that are named in this manner, the ‘head,’ 

‘face,’ ‘sides,’ ‘back,’ and ‘buttocks,’ have fixed spatial 
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relationships to each other in any object. For instance, if one 

knows which part of the object is called its ‘face,’ and the 

vertical axis is determined, one can correctly predict the 

locations of its ‘head,’ ‘sides,’ ‘back,’ and ‘buttocks.’ The 

orientation of the object with respect to gravity is crucial; 

for example, the topmost part is the ‘head,’ no matter what 

the structure of that part happens to be, and changing the 

orientation of the object causes the labels to be reassigned.  

In contrast, Levinson (1994) discusses the process by 

which meronyms are assigned to objects in Tseltal as an 

algorithm that takes a visual segmentation of the object as 

its input. (See Figure 1B for an example this account’s 

predicted labelings for a novel object.) Axes of generalized 

cones are identified for the main volume and any secondary 

volumes of the object, as well as axes of symmetry. A sense 

of direction is assigned to each axis, and meronyms are 

assigned to the ends of the axes, in some instances taking 

the shape of the part into account. So, for instance, the 

default meronym for the head (in the vector sense) of the 

main axis is the word for ‘head,’ but if that region of the 

object is pointy, ‘nose’ is used, and if it is a negative space, 

‘mouth’ is used. This system does not take into account the 

orientation of the object with regard to gravity, and because 

the axes are in certain ways independent of each other, 

meronyms do not occur in a fixed spatial schema.1 

The question we wish to address in this paper is whether 

these putatively distinctive properties of meronymy are 

restricted to language, or whether they are associated with 

deeper cognitive differences - between Mesoamericans and 

English speakers on the one hand, and between Zapotec and 

Tseltal speakers on the other. We present two studies. 

Experiment 1 explores the respective role of shape and 

function in object part categorization, comparing data from 

speakers of Tseltal, Zapotec, and American English in a 

three-population design. Based on the available descriptions 

of verbal behavior, we predict function to play a greater role 

in the mereological categorizations of Americans than in 

those of either Tseltal or Zapotec participants.  

Experiment 2 compares Tseltal and Zapotec participants 

in terms of their preference for categorizing the parts of 

unfamiliar objects by comparing them globally to the human 

body vs. by doing so based on the shape-analytical 

algorithm even when it is not licensed by a global mapping. 

If the differences in part categorization strategies go beyond 

language, we predict that the Tseltal participants should be 

more likely to prefer mappings that are at odds with global 

analogies.  

Experiment 1: shape vs. function 

Speakers of English, Tseltal Maya, and Isthmus Zapotec 

compared images (with one exception, photographs were 

used) of part-whole configurations. Isthmus Zapotec is 

                                                           
1 MacLaury (1989) characterizes the application of Zapotec 

body part terms to parts of inanimate objects as analogical or 

metaphorical mappings from human body parts. An alternate view, 

taken by Levinson (1994) in his work on Tseltal, is that the terms 

are general abstractions and not metaphorical. 

 
Figure 1. A: Meronyms predicted by the global mapping 

account. B: Meronyms predicted by the algorithmic account. 

 

closely related to Ayoquesco Zapotec as described by 

MacLaury (1989); ongoing field research by the third author 

suggests that MacLaury’s analysis of Ayoquesco meronymy 

applies to Isthmus Zapotec as well as far as the predictions 

of the present study are concerned, though with additional 

complications (Pérez Báez 2011). Each trial involved a triad 

of images. The participants selected the configuration that 

was least like the other two. The triads were composed so as 

to trade off functional against shape-based similarity. Since 

function attribution likely depends on the participants’ 

knowledge of the object, a norming study was carried out to 

assess their familiarity with the stimuli. 

 

Method 

Participants. 27 participants of each population were 

recruited at field sites in La Ventosa, Oaxaca, Mexico 

(Isthmus Zapotec – 16 women, 11 men; 14 young adult, 9 

middle-aged, 4 elderly) and Tenejapa, Chiapas, Mexico 

(Tseltal Maya – 18 women, 7 men; 16 young adults, 8 

middle-aged, and 1 elderly, with 2 participants’ 

demographic information missing), the University at 

Buffalo and in Raynham, Massachusetts (English – 19 

women, 8 men; 17 young adults, 6 middle-aged, and 4 

elderly). Recruitment was conducted by word of mouth and 

at the University at Buffalo by flyer. Participants completed 

the tasks in about 30 minutes and were compensated 100 

Pesos (approximately $5) and $10, respectively.  

 

Materials. Each participant was given 12 test trials 

interspersed with 17 fillers, for a total of 29 trials, preceded 

by one practice trial of the same design as the fillers. The 

three pictures for each trial were printed on a single sheet, 

and the sheets placed into a binder so that one triad could be 

displayed at a time. The placement of the images on each 

page was pseudo-randomized, in order to reduce any 

possible bias toward choosing the picture in any particular 

one of the three positions.  

Each trial consists of showing a participant three pictures 

of artifacts or plants that are presumably familiar to all three 

populations, with certain parts highlighted in red, and asking 

them to choose the one whose highlighted part they judge to 
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be most different from the other two. The experimental 

triads are designed to pit shape against function, in that 

there is a pivot object part and two alternates: the pivot 

shares its shape with one alternate, and its function with the 

other. An experimental triad is shown in Figure 2. 

The filler trials use the same visual layout as the 

experimental trials, and the action the participant is 

expected to perform is the same. However, instead of a 

single pivot, there are two pictures in which the indicated 

parts of the object are similar in both shape and function, 

while the remaining picture’s indicated part is the odd one 

out in terms of both shape and function. Therefore, a shape-

based strategy and a function-based strategy would tend to 

produce the same response. This provides a check on the 

participants’ attention to and comprehension of the task. 

 

Procedure. The participants were instructed in their native 

languages by the first author and, in the case of the Tseltal 

and Zapotec participants, by bilingual assistants with 

experience in linguistic field research, to pick out the part-

whole configuration in each triad they considered least like 

the others. The following standardized instructions were 

used: “In this game, I am going to show you some drawings 

and photos of various things – three at a time. And if you 

are not sure of what some of the objects are, please ask me. 

One part of each thing is red. Two of the parts are more 

similar, and the other is different. I want you to look at those 

parts, and find the different one. You should compare only 

the parts, not the whole objects. When you decide which is 

different, circle it using this marker. For example, let’s look 

at these three [the practice triad]. Here there’s a dog, with its 

leg red. And here is a cat, with its head red. And a pig, with 

its leg red. So, which part is different? Correct, the head. 

And so, do you have any questions before beginning?”2  

 

Norming. As part of the follow-up task ‘Shape-Function 

Norming,’ participants rated the familiarity of each 

individual picture used in the Shape-Function Triads. This 

serves the purpose of checking their interpretation of the 

pictures and providing additional factors for statistically 

modeling the experiment’s results. Participants rated each of 

the three pictures in each experimental trial for familiarity, 

using a five-point Likert scale in their native language. 

Results 

Participant exclusions. The responses of two Zapotec 

participants were excluded from the analysis because their  

performance on the filler trials was below the pre-

established 80% threshold, indicating that they did not 

sufficiently comprehend the task.  

 

Trial exclusions. Trials were excluded from the analysis 

in two situations. In one of these, the participant chose the  

                                                           
2 Since the instruction for the practice trial contained the 

meronyms ‘head’ and ‘leg’, a subvocal rehearsal effect on the test 

trials cannot be ruled out. 

 
Figure 2. Example of a test triad for Experiment 1 

 

pivot as the odd one out in the trial in question, which is not 

interpretable as classifying by shape or function (11  trials in 

the Zapotec data set, 12 in the Tseltal data set, and 8 in the 

English data set). In the other situation, they did not give an 

answer to that trial at all (1 trial in the Zapotec data, 0 in the 

Tseltal data, and 0 in the English data).  Approximately 4% 

of the data points were missing or excluded. 

 

Analysis. Figure 3 shows the breakdown of responses.  

The responses to the norming scale, interpreted as numerals, 

were centered so that -2 corresponded to “completely 

unfamiliar” and 2 corresponded to “completely familiar.” 

(The standard deviations of the ratings for each object 

ranged from 0.37 to 1.26 for the Zapotec speakers, and from 

0.23 to 1.49 for the Tseltal speakers.) Within each language 

population, the mean of these familiarity scores was 

calculated for each picture in order to generalize across 

participants. Any picture whose average rating was equal to 

or greater than 1 was counted as “familiar,” and any whose 

average rating was less than 1 was counted as “unfamiliar.”  

The overall familiarity of each triad was coded by the 

number of familiar and unfamiliar pictures it contained, 

from “A” for three familiar pictures through “D” for none, 

and this code was treated as an ordinal factor in the 

regression models of the responses. 

A binomial logistic mixed-effects regression model was 

fitted with population (identified by language) and code of 

triad familiarity as fixed factors, and random intercepts for 

participant and trial. Tseltal and Zapotec participants proved  

 

 
Figure 3. Experiment 1 responses by population and type. 

Error bars represent 95% prediction intervals. 
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significantly different from American participants at 

the p<.001 level and from one another at the p<.05 

level. No significant effect of familiarity was obtained. 

Discussion 

As predicted, the Mesoamerican participants were more 

likely to categorize parts by shape than the American 

participants. Shape in fact strongly dominated the Tseltal 

and Zapotec speakers’ categorizations (at 65.4% and 76.8% 

of responses), whereas function strongly dominated among 

the English speakers (67.7%).3 Familiarity did not appear to 

significantly affect these ratings, suggesting that the 

selection of the stimuli from among objects of everyday 

interactions for all three cultures was successful. It is 

possible, however, that the similarity judgments were 

influenced by subvocal use of meronyms. 

Experiment 2: global vs. shape-analytical 

mapping 

The purpose of this experiment was to test for population 

differences in mereological cognition, by obtaining 

responses of nonverbal mapping from body parts to the 

parts of novel objects. This was done with the researcher 

indicating various parts of a humanoid doll, and asking the 

participants to find as many corresponding parts as they 

could on the Novel Objects. In order to test for effects of 

subvocal rehearsal, this task had two conditions: In one 

condition, the participants did a verbal elicitation task before 

the experiment, and in the other condition, they did not. 

Method 

Participants. 44 Tseltal speakers (29 women, 16 men; 

mean age 39.7, SD 12.6) and 45 Isthmus Zapotec speakers 

(33 women, 12 men; mean age 33.2, SD 13.6) were 

recruited and tested in La Ventosa, Oaxaca, Mexico 

(Isthmus Zapotec) and San Cristóbal de las Casas, Chiapas, 

Mexico (Tseltal), relying again on word of mouth. The task 

took about an hour to complete and the participants were 

compensated 100 Pesos (approximately $5). 

 

Materials. The tasks used as stimuli a set of six solid plastic 

forms, part of the MesoSpace Novel Objects stimuli.4 These 

are abstract forms that, as far as possible, bear little 

resemblance to any item familiar to the participants, so that 

the objects are not biased toward any particular meronym 

assignment strategy, and the participants have to fall back 

on their general principles for construing mereological 

structure. Figure 1 features an example. For the practice 

                                                           
3 An anonymous reviewer points out that, since the instructions 

indicated there was a correct answer for each triad, the English 

speakers’ responses may have been motivated by trying to find 

counterintuitive answers, as in an IQ test. 
4 A total of nine Novel Objects were originally designed by the 

third author and produced for the project Spatial language and 

cognition in Mesoamerica (‘MesoSpace’; NSF Award #BCS-

0723694) directed by the second author.  

trial, instead of a Novel Object, a blobby humanoid figure 

made of Sculpey modeling clay was used. A plastic action 

figure doll representing a young adult male, fairly realistic 

in proportions, was used to represent a target body part in 

each trial - either the head, face, side (flank), back, or 

buttocks. These five parts were used because both 

MacLaury (1989) and Levinson (1994) had identified the 

meronyms for them as belonging to the languages’ most 

productive meronymic systems, and these Zapotec and 

Tseltal terms are rough translation equivalents with regard 

to the human body. The participants used bits of Play-Doh 

to mark the parts of the Novel Objects that they judged as 

corresponding with these target parts. This doll was in a 

standing position in each trial, which, if an orientation-

dependent mapping strategy is used, would favor the choice 

of the uppermost part of the Novel Object as corresponding 

with the doll’s head, the part(s) of the Novel Object to the 

participant’s left or right as corresponding to the doll’s side, 

etc. 

 

Procedure. Conditions: In order to detect possible subvocal 

rehearsal effects, half of the participants carried out a verbal 

labeling task prior to the experiment; the other half did not 

do this task. Participants were randomly assigned to one 

condition or the other. 

The verbal elicitation task was administered as follows: 

the participant was handed each of the Novel Objects, one at 

a time (in an opaque bag to avoid imposing any orientation 

on the object), asked to take it out and inspect it from all 

sides, and then prompted to delineate and label its parts. The 

experimenter recorded the delineated areas on two-

dimensional images of the objects. 

Setup: In each trial, the experimenter set one of the Novel 

Objects on the tabletop directly in front of participant, 

sticking it into a base of Play-Doh if it would not stay in the 

desired orientation unsupported. Each Novel Object was 

therefore relatively in front of the participant and absolutely 

to the north (the participants were seated to face north). 

Trials: In each trial, one of the target parts of the doll was 

manually indicated by the experimenter. In view of the 

importance of vertical orientation in Zapotec meronymy, the 

trials were administered in two orientation variants: 

“aligned” (that is, the gravitationally-defined vertical axis 

coincides with the Novel Object’s algorithmically-defined 

‘model axis’, i.e., the axis from which the central volume of 

the object is generated), or “unaligned” (these axes are 

orthogonal). This yielded a total of 60 test trials: 5 doll parts 

x 6 Novel Objects x 2 orientations. In addition, there was 

one practice trial employing instead of a Novel Object a 

blobby humanoid figure made of Sculpey, designed to 

abstractly resemble the doll. 

Instructions: The participants were instructed that when 

the experimenter indicated a part on the doll by delineating 

it with a finger, they should mark with the Play-Doh as 

many parts on the Novel Object as they thought 

corresponded to the doll’s part, whether this resulted in no 

part being marked, just one part, or multiple parts. The 
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participants were instructed in their native languages by 

bilingual research assistants working with the first author as 

follows: “I’m going to give you some objects, one at a time. 

This first object is an example. You can turn it around to see 

how it is. And I’m going to show you some part of this doll, 

and you should decide if the object has a part of the same 

kind. It’s possible that it doesn’t have any. In that case, 

simply tell me that it isn’t there. It’s also possible that it has 

a part like that, or more than one at a time. In that case, take 

a bit of this Play-Doh and stick it to the part or parts that are 

similar. And when it’s finished, I want you to lift the object 

and turn it slowly to show what you have done.” 

Recording: The responses, in terms of the landing sites on 

the Novel Objects the participants marked with Play-Doh, 

were recorded by the first author verbally in English on a 

coding sheet. The sessions were videotaped in their entirety.  

Results 

Participant exclusions. One Zapotec participant’s 

responses had to be excluded because the participant 

appeared unable to grasp the instructions. 

 

Trial exclusions. 16 of the 60 test trials were excluded from 

the analysis because the algorithm Levinson (1994) 

proposed for meronymic labeling in Tseltal predicted that 

the particular Novel Object lacked a corresponding part, and 

the Tseltal participants nevertheless in almost all cases 

identified some part of it despite having been given the 

option not to select a mapping. These responses therefore 

could not be evaluated for whether they fulfilled the 

predictions of the algorithm. One Tseltal trial was not 

completed. The analysis was thus performed on 1,936 trials 

with Zapotec participants and 1,979 trials with Tseltal 

participants. 

 

Coding. In order to code the responses for whether they fit 

the global mapping account, simplifying assumptions were 

adopted. When the ‘head’ of the doll had been indicated, the 

global prediction was considered fulfilled if and only if the 

Play-Doh was placed somewhere on the upper region of the 

object (as defined by the vector of gravity). Globally, the 

‘buttocks’ had to be on the lower region, the ‘face’ on the 

region toward the participant, the ‘back’ on the region away 

from them, and the ‘sides’ on the regions to their relative 

left or right. These regions were interpreted as both surfaces 

and volumes. So, for example, a placement that was both on 

the top surface of the object, and also displaced from the 

center of that surface in the direction toward the participant, 

would satisfy the prediction for ‘head’ by virtue of being on 

the upper part of the object, and would also satisfy the 

prediction for ‘face’ by virtue of being on a volume part that 

is toward the participant.  The volume interpretation of parts 

was also followed for the algorithmic predictions. 

 

Response types. Four response types were distinguished, 

based on whether the proposed match was predicted solely 

by global mapping (‘Global only’), solely by Levinson’s 

(1994) shape-analytical algorithm (‘Algorithm only’), by 

both, or by neither. From MacLaury’s (1989) global 

mapping account, two key predictions were derived: the 

‘face’ of any object faces toward the observer, and the 

‘head’ of any object points up against the pull of gravity. 

Since Levinson’s (1994) algorithm is orientation-

independent, it was assumed that given a part of the doll and 

a Novel Object, the intrinsic location of the matched part on 

the Novel Object will be constant across varied orientations. 

 

Analysis. Figure 4 shows the breakdown of the four 

response types across the two populations. 

 

 
Figure 1. Experiment 2 responses by population and type. 

 

Using Begg-Gray approximation of multinomial logistic 

regression (Begg & Gray 1984), four binomial logistic 

mixed effects regression models were fitted, one for each 

response category, with population identified in terms of 

language, condition, alignment, and trial as fixed factors, 

and random intercepts for the stimulus doll part, the Novel 

Object, and the participant. The Algorithm-only model 

showed significant effects of population and alignment at 

the p<.001 level. The Global-only model showed effects of 

alignment and trial at the p<.001 level. There was a 

significant interaction between Zapotec and alignment at the 

p<.05 level. The Both model yielded a significant effect of 

population at the p<.01 level and alignment and trial at the 

p<.001 level. The Neither model yielded no significant 

effects. None of the models produced a significant effect of 

condition. 

Discussion 

As predicted, the Zapotec participants were significantly 

more likely to propose matches that agreed with global 

analogical mapping, but violated Levinson’s (1994) shape-

analytical algorithm. Also in line with predictions, the 

orientation of the Novel Object had a significant effect on 

the Zapotec participants’ matches, but not on those 

proposed by the Tseltal participants. Also as predicted, the 

“aligned” trials favored responses in the ‘both’ category. 

There was no effect of condition; we take this to suggest 

that subvocal rehearsal played no major part in the results. 

Subvocal rehearsal would have predicted that the two 

populations should have performed significantly more 
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different from one another in the Verbal-priming condition, 

contrary to fact.5 

General discussion 

In both experiments, language proved a significant predictor 

of nonverbal mereological categorization: English speakers 

significantly preferred categorizing parts in terms of 

function, whereas Tseltal and Zapotec speakers were 

significantly more likely to categorize parts by shape 

(Experiment 1). And Zapotec speakers proved significantly 

more likely than Tseltal speakers to adhere to global 

analogy in mapping the parts of the human body to those of 

inanimate objects of unfamiliar shape, and were also 

significantly more likely to factor the orientation of the 

objects into their matches (Experiment 2).  

We cannot exclude the possibility of subvocal rehearsal 

effects in Experiment 1. It is possible that the participants 

used their native languages for guidance in deciding 

between function-based and shape-based categorization. 

Future research will have to determine to what extent our 

results are truly representative of the nonverbal cognition of 

these groups. However, our findings are in line with 

previous research suggesting that geometry, as opposed to 

function, plays a relatively greater role among 

Mesoamericans compared to Westerners (Lucy & Gaskins 

2001). Meanwhile, in Experiment 2, we plausibly ruled out 

a significant contribution from language as a direct resource, 

suggesting robust differences in nonverbal cognition. 

The findings presented here are also in line with Whorfian 

interpretations according to which language use may 

habituate speech communities to particular biases in 

mereological cognition and serve as a conduit of their 

cultural transmission (Bohnemeyer et al 2015). Here, too, 

we must defer to future research for ascertaining whether 

language merely reflects mereological cognition or is a 

causal factor in it. 

Conclusions 

We have provided evidence of the existence of significant 

cross-cultural differences in the categorization of the 

mereology of physical objects. This is hardly surprising, as 

the categorization of objects and their parts clearly depends 

in part on acquired knowledge. What is surprising, in our 

view, is that research into such cultural effects is still in its 

infancy. We hope to have made a small contribution 

towards rectifying this. 
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Abstract

For the last 80 years, the Stroop task has been used to
test theories of attention and cognitive control and it
has been applied in many clinical settings. Most theo-
ries posit that the overwhelming power of written words
overcomes strict instructions to focus on print color and
ignore the word. Recent evidence suggests that trials in
the Stroop task could in fact be a mixture of reading
trials and non-reading trials. Here we conduct a critical
test of this mixture hypothesis, where a mixture of pro-
cesses should satisfy the fixed-point property (Falmagne,
1968).

Keywords: Stroop Effect; Mixture Model; Fixed-Point
Analysis

The Stroop effect is one of the most replicated exper-
imental effects in cognitive psychology (see MacLeod,
1991, for a review). The effect has been used to investi-
gate cognitive control, and has also been applied in many
clinical settings (Strauss, Sherman, & Spreen, 2006, p.
477). The task involves naming the print color of a word,
where the word itself is typically the name of a color (e.g.,
the word GREEN printed in red print requires a response
of ’red’; Stroop, 1935). People are faster at naming the
print color when it matches the word (congruent stim-
uli, e.g., RED in red) compared to when the word and
print color do not match (incongruent stimuli, GREEN
in red).

A common measure of the Stroop effect is the differ-
ence in mean response time (RT) between congruent and
incongruent trials. In the Stroop task, participants are
instructed to name the color and ignore the word, yet it
seems people cannot help but read the word (e.g., Cohen,
Dunbar, & McClelland, 1990; Melara & Algom, 2003),
which gives rise to faster responses on congruent trials
than incongruent trials on average. Although reading
must happen on some trials for an effect to be observed,
it is not clear whether reading occurs on every trial, or
to the same extent across trials.

Eidels, Ryan, Williams, and Algom (2014) compared
the Stroop effect obtained from a standard Stroop task
to the effect obtained from a novel forced-reading task.
In the standard task, participants were asked to classify

the print color of color-words irrespective of the con-
tent of the word. In the forced-reading task participants
were asked to classify the print color of color-words (e.g.,
RED, GREEN), but withhold their response when pre-
sented with non-color-words (BED, GREED). To con-
form with the instructions, participants were forced to
read every word presented. Consequently, the forced-
reading Stroop task yielded a Stroop effect derived from
fully processed words on every trial. The researchers
found that the magnitude of the Stroop effect in the
forced-reading task was larger than in the standard task,
suggesting that the standard Stroop effect results from
reading on only a portion of trials (see also Tillman, Ei-
dels, & Finkbeiner, 2016).

One possible account for these results is that on any
particular trial of the standard task a participant might
only be processing the word to a limited extent, or not
processing the word at all. A simple, formal way of ex-
plaining how different processes are mixed to yield some
observed distribution of RTs is a probability-mixture
model (Eidels et al., 2014; Tillman et al., 2016). Un-
der this model, the empirical RT distributions observed
in either the congruent or incongruent conditions of the
standard task are a binary mixture of two unobserved
distributions: one distribution of reading trials and one
distribution of non-reading trials. A given trial is a sam-
ple drawn from the reading distribution (with probabil-
ity p) or the non-reading distribution (with probability
1-p). The forced-reading task increases the probability
of reading to (p=1).

This mixture-of-reading-processes hypothesis can be
tested in a number of ways. One method assumes that a
mixture of two different RT distributions should result in
a bimodal observed distribution, and applies Hartigan’s
dip test to assess the bimodality. The test assumes the
null hypothesis of unimodality over the alternative hy-
pothesis of multimodality. If the dip statistic is greater
than the 95th percentile of the reference distribution,
then the null hypothesis is rejected and the observed dis-
tribution is considered bimodal (Hartigan & Hartigan,
1985). Another method is to fit both a one-component
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and a two-component Gaussian mixture model to the
observed data and compare both models using model
selection techniques, such as AIC (Akaike, 1974).

In simulation studies, researchers have found that the
Hartigan’s dip test correctly identifies bi-model distri-
butions only 65% of the time and the AIC model se-
lection method falsely identifies bimodality 80% of the
time (Freeman & Dale, 2013). In general, bimodality
is difficult to detect in empirical data and requires the
underlying distributions to be well separated and vari-
ability to be low (Williams, Eidels, & Townsend, 2014).
However, recent software and computational advances
may facilitate a more robust approach to this problem.
In this paper, we test the hypothesis that the standard
Stroop effect results from a mixture of reading processes
by using a mathematical property of probability-mixture
distributions, the fixed-point property (Falmagne, 1968).

The Fixed-Point Property

A set of mixture distributions, which are all based on
the combination of two base distributions, will all inter-
sect at a common coordinate – the fixed-point property
(Falmagne, 1968, see Figure 1). Although this math-
ematical property could be a powerful means of iden-
tifying mixture models, researchers in the past have
not commonly employed the fixed-point property test
for two reasons (van Maanen, de Jong, & van Rijn,
2014). Firstly, estimating the probability density func-
tion (PDF) of the observed RT distribution from noisy
data is not trivial. Secondly, it has been difficult to pro-
vide statistical evidence for the presence of the fixed-
point property, which requires providing evidence for the
null hypothesis.

We address the first issue by using the Epanechnikov
kernel density function (Epanechnikov, 1969), which has
been shown to approximate the PDF of RT distributions
well (Silverman, 1986; Turner & Sederberg, 2014). To se-
lect a bandwidth for the kernel we use Silverman’s “rule
of thumb” (Silverman, 1986, p. 48, eq (3.31)). The de-
fault software libraries in R (R Development Core Team,
2016) allow for easy use of both the Epanechnikov kernel
and Silverman’s “rule of thumb”. We address the second
issue by using Bayesian methods to assess the degree to
which there is no difference between a particular crossing
point in all mixture distributions. Bayesian hypothesis
testing, or Bayes factors, quantify evidence in favor of
either the null hypothesis or the alternative hypothesis
as a ratio. For example, when BF 10 = 5 the observed
data are 5 times more likely under the alternative hy-
pothesis than under the null hypothesis. When BF 10 =
.2 the observed data are 5 times more likely under the
null hypothesis than under the alternative hypothesis.

There is some precedent for using a fixed-point analy-
sis to test mixture models in RT data (Brown, Lehmann,
& Poboka, 2006; van Maanen et al., 2014; van Maanen,
2016). For RT distributions, when the observed RTs are
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Figure 1: Illustration of the fixed-point property in
Stroop distributions. The ’No Reading’ distribution con-
sists of 0% reading trials and the Forced distribution con-
sists of 100% reading trials. The Standard distribution
is a mixture of trials from both distributions. All three
distributions will intersect at a common point, which is
labeled ”Fixed-point property” in the figure.

made up of a mixture of unobserved distributions, there
will be one RT for which the probability of providing a
response at that particular time is equal for all mixtures
(see Figure 1 again).

Here we test whether RT distributions in the Stroop
task satisfy this fixed-point property. In the Stroop task
participants are requested to classify the print color of
color words and ignore the words’ meaning. The ubiqui-
tous Stroop effect implies they fail to exclusively focus on
color and succumb to the overwhelming (perhaps auto-
matic) attraction of reading. Previous evidence suggests
that participants may not always process word meaning
to the same extent (Eidels et al., 2014; Tillman et al.,
2016). They may process words on some trials and not
on others, in a way commensurate with a binary mixture
model.

To test the mixture model we presented participants
with three experimental conditions, each intended to in-
duce a different level of reading (gauged by the probabil-
ity p): a color naming task involving rectangles (prob-
ability of reading, p = 0), forced reading Stroop task
in which each word must be read to its full extent, on
each and every trial (p = 1), and a standard Stroop task,
where participants may involuntarily read the words on
some proportion of the trials (0 < p < 1). A probability-
mixture account of reading in the Stroop task predicts
that RT distributions of the three conditions will cross
each other at a common point (the ’fixed-point prop-
erty’).
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Method

Participants

Twenty two students (19 females and 3 males) from the
University of Newcastle (mean age = 22.41 and SD age =
4.74) participated in the study. Participants had a pro-
ficiency in English and normal or corrected to normal
vision with intact color vision. Each participant com-
pleted the standard, forced, and color naming Stroop
tasks and participants were reimbursed $15 per session.

Apparatus

Each task was carried out on Dell computers running
Windows XP with 17” Diamond View color monitors.
Contrast and brightness were set to 80 and 50, respec-
tively. We used the Tektronix J17 Lumacolor digital
photometer and J1800 series sensor heads to calibrate
color clarity across all testing stations. The software
‘Presentation’ was used to run the experiment and record
data. Participants responded using a Cedrus response
pad, model RB-830. The response keys on the response
pad were marked with color stickers corresponding to the
red, green or blue response.

Stimuli

For the color naming task, the stimuli were color filled
rectangles in the center of the screen. For the standard
and forced task, the stimuli were were 12 words that were
printed in either the color red, green, or blue. The 12
words were RED, GREEN, and BLUE and three variants
for each of these words. The variants differed from the
color words by one letter and if substituting one letter
resulted in a non-word, two letters were changed instead.
The variants were GREED, GRAIN, QUEEN, RENT,
ROD, BED, BASE, BLUR, and GLUE.

The variants made up the neutral stimuli for the stan-
dard and forced-reading task. The neutral stimuli were
matched to the color stimuli on length, neighborhood
frequency, and phonetics using the software N-Watch
(Davis, 2005) and based on the CELEX word frequency
database. All words were written in uppercase bold Ar-
ial font, with no words exceeding 2.55cm, or 4 visual
degrees when the participant was seated 60cm from the
screen.

Red, green and blue print colors of the words and rect-
angles had RGB values of R= 220, G=0, B=0 for red,
R=0, G=0, B=240 for blue, and R=0, G=170, B=0 for
green. The stimuli made up three conditions in the stan-
dard and forced-reading task. The congruent condition
consisted of stimuli that had the print color and word
match (RED in red, GREEN in green). The incongru-
ent condition consisted of stimuli that had the print color
and word mismatch (RED in green, GREEN in red). All
non-color words were classified as neutral trials.

Procedure

Each participant completed three sessions on separate
days. Each session involved the standard, forced-
reading, or color naming task. The former two took
about an hour to complete and consisted of 10 experi-
mental blocks with 1 minute breaks between each. The
color task took 20mins and consisted of one experimen-
tal block. The order of task presentation and position of
the response buttons was counterbalanced across partic-
ipants.

Each task was completed in a dark room with a desk
lamp as the light source. At the beginning of each
session, participants were shown 9 example trials that
demonstrated the correct response. They also completed
two practice blocks that consisted of 24 trials, with feed-
back for correct and incorrect responses in the first block.

In the color naming task, participants were instructed
to respond to the print color of the rectangles by press-
ing the corresponding button on the response pad. In the
standard task, participants were instructed to ignore the
word and respond to the print color of the word. In the
forced-reading task, participants were instructed to re-
spond to the print color of words, but withhold responses
to neutral words (e.g., BED, GREED, RENT).

On each trial, a fixation cross appeared in the center
of the screen for 500ms, followed by a blank screen for
500ms. Following this, either a rectangle printed in color
(color naming task) or a word printed in color was pre-
sented for 500ms in a random position within 40 pixels
distance from the center. The spatial uncertainty pre-
vented participants from using spatial cues to respond.
Participants were required to respond within 2500ms af-
ter stimulus presentation before the trial timed out.

The color naming task involved 50 trials of blue, red,
and green rectangle presentations, making for 150 trials
in total per participant. For the standard and forced
task, each of the ten experimental blocks consisted of
18 congruent trials, 36 incongruent trials, and 54 neu-
tral trials. In the forced task, this allowed for half the
trials to contain no response, which controls for partici-
pants predicting a non-response trial. Each combination
of congruent and incongruent stimuli were presented 6
times per block. The order of stimulus presentation was
randomized within each block. The RT was recorded in
milliseconds.

Results

The probability mixture account makes two testable pre-
dictions. First the fixed cross point, where all three
Stroop distributions will have a single RT with equal
probability of providing a response at that time – we test
this in the following section. The mixture account also
predicts that the observed (mixture) distribution will be
bound between the faster non-reading distribution and
the slower forced-reading distribution. This is exactly
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what we observed in our data. The color naming task
had a mean RT of 436ms (SD = 132ms). In the con-
gruent condition, the standard and forced-reading tasks
had mean RTs of 470ms (SD = 150ms) and 700ms (SD
= 208ms), respectively. While in the incongruent condi-
tion, these tasks had mean RTs of 495ms (SD = 172ms)
and 832ms (SD = 233ms), respectively.

We also used Bayesian paired samples t-tests to eval-
uate the evidence for differences between the color nam-
ing, standard, and forced-reading mean RTs in the con-
gruent and incongruent conditions. In the congruent
condition, participants were slower in the standard task
than the color naming task (BF 10 = 8.8 × 10660) and
were slower in the forced-reading compared to the stan-
dard task (BF 10 = 5× 10559). In the incongruent condi-
tion, participants were slower in the standard task than
the color naming task (BF 10 = 1.2 × 101295) and were
slower in the forced-reading task compared to the stan-
dard (BF 10 = 6.9 × 102770).

Fixed-Point Analysis

The analysis was carried out using the ‘fp’ package
(van Maanen et al., 2014) in R (R Development Core
Team, 2016) – but we used the Epanechnikov kernel in-
stead of the default Gaussian kernel as recommended by
Silverman (1986, p. 43).

The analysis involved calculating the probability den-
sity of each RT distribution in each task. For exam-
ple, focusing only on the congruent condition (and later
similarly focusing on the incongruent condition) we es-
timated the RT distribution for the color naming task,
the standard task, and the forced reading task, which
by design have a mixture proportion of p = 0, 0 < p <
1, and p = 1, respectively. We then found the crossing
point of each pair of distributions (i.e., forced-standard,
forced-color naming, standard-color naming). The fixed-
point property holds if all pairs cross at the same point
along the x and y axis (see Figure 1).

We tested whether the fixed-point property holds for
the sample of participants in our study. We calculated
the crossing points per pair of mixture proportion tasks
for each of the participants for both the congruent and
incongruent distributions, but the color naming distri-
bution was the same for both the congruent and incon-
gruent comparison. We then subjected these crossing
points to Bayesian analysis of variance (ANOVA). The
Bayesian analysis was conducted using the Bayes Factor
package (Morey, Rouder, & Jamil, 2014; Rouder, Morey,
Speckman, & Province, 2012) in R. The Bayes factor
from the ANOVA provides evidence for or against the
fixed-point property.

We calculated the Bayes factor as the ratio of the ev-
idence for the null hypothesis over the alternative. The
null hypothesis posits that there is no difference in cross-
ing points between all distributions in question, and thus
suggests that the fixed-point property is satisfied. In line

with Kass and Raftery (1995) we consider a Bayes factor
greater than 3 as positive evidence in favor of the null
(fixed cross point) and against the alternative hypothesis
that there is a difference between crossing points.

The RT distributions for the congruent and incongru-
ent trials are presented in Figure 2. For the congruent
condition, the Bayes factor ANOVA revealed that the
null model was preferred to the alternative model by
a Bayes factor of 1.25. The data provide equivocal evi-
dence in favor of both the null and alternative hypothesis
for the congruent Stroop distributions. For the incongru-
ent condition, the Bayes factor ANOVA revealed that the
null model was preferred to the alternative model by a
Bayes factor of 2.27. The data provides evidence in fa-
vor of the hypothesis that there is no differences between
crossing points, but the evidence is inconclusive.

General Discussion

In the Stroop task, slower responses on incongruent trials
relative to congruent or even neutral trials implies par-
ticipants read the words despite instructions to focus on
color and ignore the words’ meaning. Recent evidence
suggests participants may read on some proportion of
the trials and not on others (Eidels et al., 2014; Tillman
et al., 2016). When the observed RT on a single trial is
sampled from a non-reading distribution, color naming
will not be slowed down by the incongruent word. When
the observed RT on a single trial is sampled from a read-
ing distribution, the speed of color naming will be slowed
down by an incongruent word, therefore, contributing to
a Stroop effect. The magnitude of an observed Stroop
effect reflects the proportion of trials in which the partic-
ipant has read on - the greater the proportion, the larger
the effect. To statistically test for this mixture of read-
ing processes in the Stroop task, we ran a fixed-point
property analysis on Stroop RT distributions with dif-
ferent reading proportions. We found some evidence for
a mixture of distributions in the incongruent condition,
but the results of the analysis were not conclusive.

The fixed-point property analysis is one method for
testing for a mixture of processes, but it requires the
strong assumption that there is a pure mixture of read-
ing and non-reading processes. That is, the approach
assumes that the only difference between the three tasks
is the proportion of reading trials. This assumption may
be compromised by other contaminant processes across
the tasks. For example, the Stroop effect can be ef-
fected by attentional resources (Kahneman & Chajczyk,
1983), practice (MacLeod & Dunbar, 1988), dimensional
discriminability and experimental correlation (Dishon-
Berkovits & Algom, 2000), target set size (La Heij &
Vermeij, 1987), and the number of colored letters in the
stimulus word (Besner, Stolz, & Boutilier, 1997). Fur-
ther, there are differences in stimuli (words vs rectangles)
across tasks. Whilst our results are inconclusive with re-
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Figure 2: Overall RT density for congruent and incongruent Stroop distributions.

gards to identifying a mixture process, they certainly do
not preclude the mixture hypothesis as being a viable
explanation for the Stroop effect.

Our study also reflects the difficulties in distinguishing
between single-process and dual-process mental phenom-
ena, which is an issue that besets cognitive psychology
(e.g., Yap, Balota, Cortese, & Watson, 2006; Wixted,
2007; Freeman & Dale, 2013). Nonetheless, the mixture
model of Stroop has clinical, empirical, and theoretical
implications. If the Stroop effect distribution is derived
from a reading distribution and a non-reading distribu-
tion, and the combination of these distributions makes
up the observed distribution, then clinical applications
of the Stroop task need to consider this mixture of read-
ing processes. For instance, differences in Stroop effect
magnitude may not only reflect differences in attentional
control, but could simply reflect a difference in the pro-
portion of reading across trials. Empirically, future work
could account for the proportion of reading trials by em-
ploying the benchmark forced-reading task along with
the standard task. Finally, theories of Stroop (e.g., Co-
hen et al., 1990; Melara & Algom, 2003) will need to con-
sider what mechanism allows for a Stroop effect to only
arise on some proportion of trials but not others. Given
these implications, we hope to see more robust testing
of the mixture-of-reading-processes hypothesis outlined
here.
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Abstract 

Typical mathematics instruction involves blocked practice 
across a set of conceptually similar problems. Interleaving, or 
practice across a set of conceptually dissimilar problems, 
improves learning and transfer by repeatedly reloading 
information and increasing discrimination of problem 
features. Similarly, comparing problems across different 
contexts highlights relevant and irrelevant knowledge. Our 
experiment is the first to investigate the relative effects of 
interleaving geometry problems and interleaving contexts. 
Thirty-three fourth-grade students received the same practice 
problems but were randomly assigned to one of three 
conditions: interleaved by math skill, interleaved by context, 
and interleaved by math skill and by context (i.e., hyper-
interleaved). Afterward, each participant was exposed to tests 
assessing declarative and procedural knowledge. The results 
suggest that interleaving math skill within varying contexts 
enhances the acquisition of mathematical procedures.  

Keywords: interleaving, cognitive development, mathematics 
instruction 

 
Introduction 

Mathematics has been subject to a broad array of 
interventions and techniques that could potentially improve 
learning, retention, and transfer of knowledge to novel 
contexts. One promising intervention is known as 
interleaved practice, in which exposures to concepts (e.g., 
math skills) are followed by exposures to dissimilar 
concepts (Rohrer, 2012). Another promising technique is 
presenting concepts in multiple contexts, which supports 
generalization (Vlach, Sandhofer, & Kornell, 2008). The 
purpose of the present study was to examine the effects of 
interleaving geometrical problems across two different, yet 
familiar, contexts. We investigated the effects of 
interleaving context, math skill, or context and math skill by 
presenting this information in blocks (i.e., the same format 
across a series of examples). The main hypothesis of the 
present study was that interleaving across both context and 
math skill (hereafter hyper-interleaving) produces an 
additive effect, which would increase learning, retention, 
and transfer beyond other conditions because such 
presentation highlights differences between examples and 
supports greater discrimination among math skills. 

 
Mechanisms underlying Interleaving  
Presenting math problems in an interleaved fashion 
improves performance outcomes because this type of 
presentation supports two fundamental mechanisms for 

successful learning: discrimination training and repeated 
reloading. Discrimination training involves comparing and 
contrasting problem features, which may leading to a higher 
likelihood of increased learning of concepts and procedures 
as well as an increased ability to transfer solution strategies 
to novel problems (Kang & Pashler, 2012; Rittle-Johnson & 
Star, 2007). Repeated reloading occurs when a student 
revisits the same type of problem and supports effortful 
recall of the information, which increases the likelihood for 
successful encoding (Bjork & Bjork, 2011).  
     Presenting interleaved problems typically consists of two 
components. The first component is the presentation of 
conceptually dissimilar problem types during the practice 
session (e.g., a problem about the area of a square following 
a problem about the area of a triangle). The second 
component is the distribution of those problems across 
multiple practice sessions. That is, the student returns to 
practice the interleaved problems on more than one instance 
(Rohrer et al, 2014). Presenting interleaved problems 
supports comparisons and contrasts between members of 
different categories (e.g., perimeter of squares vs. triangles). 
In this manner, comparing and contrasting perceptual and 
conceptual information not only promotes learning 
regarding how to perform each procedure, but trains the 
learner to discriminate which solution strategy is appropriate 
for each problem example (i.e., discriminative contrast; 
Birnbaum, Kornell, Bjork, & Bjork, 2013; Kornell & Bjork, 
2008). 

Initially, interleaved practice appeared to owe most of its 
effectiveness to spacing. Spacing is inherent in interleaved 
practice because there is time between each opportunity to 
practice concepts. This is distinct from massed practice as it 
allows students to forget irrelevant information between 
learning events, which increases the potency of encoding on 
subsequent presentations (Bjork and Allen, 1970; Cuddy 
and Jacoby, 1982). However, interleaving does not solely 
rely on the benefits and efficacy of spacing. Given the same 
amount of temporal space between each exposure, 
interleaved presentation produces greater gains in learning 
than blocked presentation (Kang & Pashler, 2012). More 
recent literature emphasizes the importance of repeated 
reloading (Bjork & Bjork, 2011), which suggests that 
accurate memory retrieval is enhanced when a learner must 
repeatedly reload specific concepts from long-term to short-
term memory. In fact, interleaved practice may provide its 
benefit more from repeated reloading rather than to the 
amount of time between successful reloads (e.g. temporal 
spacing; Kang & Pashler, 2012). 
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Learning with Contexts 
Learning is context-dependent (Willingham, 2009). Placing 
math problems in familiar contexts may not only be an 
effective presentation method but an additive one as it 
activates domain knowledge that may facilitate learning and 
problem solving by providing a framework in which the 
student can make sense of the concept (Willingham, 2009; 
Rittle-Johnson & Star, 2007). Context also offers the learner 
cues to solve a problem because it draws his/her attention to 
the right details and improves learning in memory retrieval, 
problem solving (Godden & Baddeley, 1975), and reasoning 
tasks (Cheng & Holyoak, 1985). The main finding across 
studies regarding context is that when learning and testing 
contexts are the same, there is an improvement in 
performance. These findings also suggest that if a student 
learns within a single context, she may fail to retrieve 
information outside the context (i.e., context dependency, 
Godden & Baddeley, 1975; Vlach et al., 2011). Distributing 
learning across multiple events that use multiple contexts 
can reduce context dependency (Rothkopf, Fisher & 
Billington, 1982; Smith, 1982). Additionally, learning 
across multiple contexts results in a greater number and 
variance of salient cues during learning, which may increase 
the likelihood of recall (Smith, 1982; Vlach et al., 2011). 
When multiple contexts are presented across multiple 
learning events and these contexts are similar, the shared 
contextual support leads to greater learning than does 
providing a single cue from one context (Thiessen & 
Saffran, 2003; Vlach et al., 2011).  

While ours is the first study to interleave both math skill 
and context, Rau, Aleven, and Rummel (2013) investigated 
how interleaving specific dimensions of math problems may 
affect performance. By either interleaving fraction problems 
(i.e., dividing fractions) or their graphical representations 
(i.e., pie chart, number line), they found that interleaving 
problems was most beneficial to learning whereas 
interleaving the representations was not. In a follow-up 
study, Rau, Aleven, Rummel, and Pardos (2014) found that 
interleaving both dimensions significantly benefited 
learning over interleaving problems alone.  

The present study investigated the relative contributions 
of interleaved sequencing across math skills and context on 
declarative knowledge (i.e., knowledge of facts), procedural 
knowledge (knowledge of how to choose and carry out a 
procedure), and transfer assessments (i.e., ability to apply 
knowledge in novel contexts). In addition, we investigated 
whether these elements produce an additive effect in which 
their combination produces greater learning gains than 
either element presented individually. To test these effects, 
we created a 2 x 2 factorial design as follows: math skill 
interleaved (interleaved math skill/blocked context), context 
interleaved (blocked math skill/interleaved context), 
hyperinterleaved (interleaved math skill/interleaved 
context). The authors chose to omit the fully condition 
(blocked math skill/blocked context) since it does not 
address the current research question, as both dimensions 
are blocked. As mentioned in the introduction, we 

hypothesized that the hyperinterleaved group would perform 
better than the math skill interleaved and context interleaved 
group on all assessments post-intervention (i.e., posttest, 
delayed posttest, transfer, and delayed transfer) due to 
increased discrimination training across contexts and 
procedures. We also predicted that the math skill interleaved 
group would perform better than the context interleaved 
condition since relevant problem features are highlighted. 

 
Method 

Participants    
Thirty-seven children (15 girls) ranging from nine to ten 
years of age were recruited from an elementary school in 
Northeast Ohio and completed up to six separate sessions. 
Each child was enrolled in the 4th grade during the 2016-
2017 school year.  Four students completed the first session 
but were not present for either the second or third session  
and their data were excluded from all analyses. The 
remaining 33 students completed both sessions of the 
intervention and were subject to analyses. 
 
Task 
Participants were taught to define and solve for area of four, 
two-dimensional geometrical shapes: square, triangle, 
rectangle, and parallelogram. Although various problems 
resulted in the same numerical solution during pretest, 
intervention, post-test, transfer, delayed posttest and delayed 
transfer test, no problem appeared more than once. In each 
problem, the participants were given the necessary features 
of each shape to solve the problems successfully (e.g., for a 
triangle, the base, height, and length of the sides were 
given). Throughout all sessions of the experiment, the 
participants needed to select and carryout the appropriate 
math skill (e.g., solving for the area of each shape). 
 
Design & Procedure 
The current study included five sessions: a pretest, first and 
second intervention, a one-day delayed posttest and transfer 
test, and a 30-day delayed posttest and transfer test. Each of 
the first four sessions occurred across four consecutive days, 
one session per day. The fifth session occurred 30 days after 
the fourth session ended. All sessions occurred in the 4th 
graders’ classroom. Each participant was randomly assigned 
to one of three conditions: math skill interleaved, context 
interleaved, or hyper-interleaved. Problems in the math skill 
interleaved condition were presented such that the area 
problems were interleaved but blocked by context. Problems 
in the context interleaved condition were presented such that 
problem contexts were interleaved but the math skill was 
blocked. Problems in the hyperinterleaved condition were 
presented such that both context and math skill were 
interleaved. See Table 1. The math skills used in the study 
were formulas in which to solve area (e.g., area of a square). 
The contexts used in the current study were “indoor 
maintenance” (How much carpet is needed to cover a 
bedroom?) and “outdoor renovations” (How many feet of 
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the playground is covered by mulch). The first author 
administered all procedures described below.  
 
Coding Rubric 
The coding rubric was created for the purpose of 
representing the performance expectations for all 
assessments. The rubric was separated into two component 
parts (i.e., declarative and procedural knowledge) and 
provided clear descriptions of criteria needed to satisfy each 
one. The declarative knowledge component assessed 
adequate shape drawing as well as accurate defining of 
geometrical terms (i.e., area). The rubric included 
acceptable answers (i.e., “space inside of a shape”) ranging 
from one to two points and unacceptable answers (i.e., area 
around the shape”), which were worth zero points. For the 
procedural knowledge component, the following criteria 
were included: two points for the application of the correct 
procedure, one point for correct answer, and one point for 
correct unit notation. Inter-rater reliability was strong for the 
declarative and procedural components, with Cohen’s kappa 
= .90 and .96, respectively. 
 
Table 1: Groups were presented problems interleaved by 
math skill, context, or by both math skill and context. 
 

 
Group 

 
Sequence of Math 

Skill 

 
Sequence of 

Context  
 

 
Math Skill 
Interleaved 

 
Interleaved 

 
Blocked 

 
Context 

Interleaved 

 
Blocked 

 
Interleaved 

 
Hyperinterleaved 

 

 
Interleaved 

 
Interleaved 

 
Session 1: Pretest 
During the first session, participants were administered a 
pre-test in order to assess prior declarative knowledge 
regarding the concept of area. One question was asked 
regarding the definition of area. Students earned up to two 
points if they included key terms listed on the scoring 
rubric. They were also asked to draw each shape, which was 
worth one point. Participants were also asked to define the 
shapes with the possibility of earning up to two points for 
each shape’s definition. Additionally, within the pretest the 
participants were given two area problems for each shape to 
solve, which assessed prior procedural knowledge. Each 
procedural problem was worth four points. As per the 
scoring rubric, the participants needed to demonstrate the 
correct procedure, correct answer, and correct notation of 
units (e.g., ft.2). In total, participants were able to earn up to 
46 points on the pretest. The participants were given 30 
minutes to complete the pretest. The pretest problems did 

not contain a context but a box below asking for the area. 
The participants were expected to show their work inside 
the box.  
 
Session 2: Intervention Phase 1 
During the second session, students were given a 
supplemental packet with the definitions of concepts (e.g., 
height, base, area, etc.) and worked examples (Sweller, 
1988) of area problems across all four shapes.  
 Shortly afterward, students were given a brief lesson 
about the area of each shape encouraging the students to 
identify key words such as “cover” for area, show their 
work in the specified boxes below each figure, and to use 
their supplemental packet to follow along in the lesson. The 
lesson lasted between 10-15 minutes.  
 After the lesson, participants were administered the first 
phase of the training packet. The entire training packet 
consisted of 24 area problems to be divided between three 
sessions of training. Two area problems of each shape were 
included in each training packet. The first phase of the 
training packet consisted of a mixture of 8 area problems 
across either one or both contexts depending on which 
condition the participants pertained. If the participants had 
questions, they were directed to the supplemental packet and 
were advised to focus on the cue words in order to solve for 
area of the four various shapes. Students were given 
minimal feedback for the duration of the intervention. The 
first phase of the intervention lasted approximately 30 
minutes.  
 
Session 3: Intervention Phase 2 
The second intervention session was similar to the first. The 
students received the second set of eight area problems of 
four different shapes across one or both contexts. The 
participants were given 25-30 minutes to complete the 
second session of the intervention.  
 
Session 4: Posttest and Transfer Test 
The posttest was similar to the pretest but differed in 
numerical measurements across all four shapes in order to 
avoid practice effects. The first section required that the 
students define the concepts of area along with drawing and 
defining the four different shapes. Again, this section 
assessed declarative knowledge and was worth a possible 14 
points. The participants then completed four area problems 
of each shape for a total of eight posttest problems. Six 
questions that contained novel contexts were included in the 
posttest, in order to assess for transfer of procedural 
knowledge. The purpose of including these problems was to 
investigate whether any of the presentation conditions 
would lead to increased transfer to novel contexts. The 
transfer problems dealt with contexts distinct from those 
seen previously in the experiment (baseball fields, cooking, 
distances riding a bike, etc.). Like the pretest, participants 
could earn up to four points on each posttest and transfer 
procedural problem provided that they demonstrate the 
correct procedure, answer, and unit notation. In total, 
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participants were able to earn up to 46 points on the posttest 
and 24 points on transfer problems. 
 
Session 5: 30-day Delayed Posttest and Transfer Test  
The delayed post-test and the delayed transfer test were 
similar to the original post-test and transfer test. The first 
section of the delayed posttest was identical to the one-day 
posttest: the participants defined, drew, and described the 
concepts and shapes listed. The problems on both the 
delayed post-test and delayed transfer test only differed 
slightly on the numerical measurements of the shapes and 
novel figures in order to avoid practice effects. In total, 
participants were able to earn up to 46 points on the delayed 
posttest and 24 points on delayed transfer problems.  
 
Table 2: Means and Standard Deviations (N = 33) 

 
 
 
Test 

 
Math Skill 
Interleaved 

(n = 12) 

 
Context 

Interleaved 
(n = 10) 

 
Hyper-

interleaved 
(n = 11) 

Pretest  
   

  Declarative 5.1 (3.0) 5.5 (2.8) 5.7 (2.8) 
 Procedural 5.1 (4.6) 1.7 (1.8) 4.4 (4.5) 

Posttest  
   

  Declarative 6.3 (1.6) 7.4 (2.2) 7.1 (2.2) 
  Procedural 18.2 (8.2) 9.3 (5.9) 20.0 (9.3) 
  Transfer 
 

12.3 (6.9) 9.2 (5.8) 15.8 (9.0) 

Delayed 
Posttest  

   

  Declarative 7.8 (1.9) 7.0 (2.3) 7.3 (2.7) 
  Procedural 19.4 (11.8) 14.3 (5.8) 23.2 (5.2) 
  Transfer 12.9 (7.0) 11.1 (5.1) 14.8 (7.0) 

 
 

Results 
Table 2 displays the means and standard deviations for the 
pretest, posttest, transfer, delayed posttest, and delayed 
transfer test separated by declarative items, problems, and 
transfer problems. It is clear in the table that there was a 
great deal of variability within each group on each of the 
problem and transfer test scores. 
    Three repeated measures ANOVAs were conducted to 
examine the differences in number of points scored as a 
function of (1) 3 Interleaving Types (between; Math Skill 
Interleaved, Context Interleaved, and Hyperinterleaved x 3 
Procedural Problems (within; Pre, Post, Delayed); (2) 3 
Interleaving Types x 2 Transfer Problems (within; Transfer 
& Delayed Transfer); (3) 3 Interleaving Types x 3 
Declarative Knowledge Problems (within; Pre, Post, 
Delayed).  
 
Interleaving x Declarative Knowledge 

In this analysis we used the three interleaving types as a 
between-subjects variable and pretest, posttest, and delayed 
posttest as a within subject variable. This was to examine 
whether or not interleaving types influenced declarative 
knowledge. The test of within subjects effects indicated a 
main effect of test, F(2, 54) = 7.746, MSe = 27.033, p < 
.001, ηp

2= .223. Within subjects contrasts indicated that 
participants performed better on the posttest declarative 
questions compared to the pretest declarative questions, F(1, 
27) = 6.133, MSe = 45.633, p = .020, ηp

2= .185. Although 
the mean for delayed posttest declarative questions was 
higher than posttest, this difference was not statistically 
significant, F(1, 27) = 3.381, MSe = 12.033, p  = .077, ηp

2= 
.111. There was not a significant interaction between test 
and group from posttest to delayed posttest declarative 
questions, F(2, 27) = 2.931, MSe = 10.433, p = .07, ηp

2= 
.178. Tests of between-subjects effects determined that there 
was not a significant effect of group, F < 1. 
 

 
Figure 3: Mean scores of each group on declarative 

knowledge. Error bars indicate standard errors of the means.   
 
Interleaving x Procedural Problems  
In this analysis we used the 3 interleaving types as a 
between subjects variable and pretest, posttest, and delayed 
posttest as a within subject variable. This was to answer the 
question of whether or not the different interleaving types 
impacted the problem solving accuracy of pre, post, and 
delayed posttest problems. As is evident in Figure 1 
regarding procedural problem accuracy, the test of within 
subjects effects indicated that there was a main effect of test, 
F(2, 54) = 53.46, MSe = 2235.54, p < .001, ηp

2= .66. Within 
subjects contrast indicated that students performed better on 
the posttest problems compared to the pretest problems, F(1, 
27) = 85.19, MSe = 4538.70, p < .001, ηp

2= .76. Although 
the mean for the delayed posttest problems was higher than 
the posttest problems, it was not statistically significant, 
F(1, 27) = 3.89, MSe = 407.01, p = .117, ηp

2= .089. The 
interaction between test and group was approaching 
statistical significance, F(1, 27) = 3.157,  MSe = 168. 175, p 
= .059, ηp

2= .190. 
 The test of between-subjects effects determined that there 
was a significant main effect of group, F(1, 27) = 5.209,  
MSe = 136.608, p = .012, ηp

2= .278. A Bonferroni test of 
multiple comparisons revealed that participants in the 
hyperinterleaved condition performed significantly better 
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from posttest to delayed posttest procedural problems when 
compared to the context interleaved condition, p = .011, 
whereas the math skill interleaved group did not, p = .108. 
The hyperinterleaved condition did perform better than the 
math skill interleaved condition on solving procedural 
problems from post- to delayed post test, however, these 
findings were not statistically significant, p > .088.  
 

 
Figure 1: Mean scores of each group on procedural 

knowledge. Error bars indicate standard errors of the means. 
 
Interleaving x Transfer  
In this analysis we used the 3 interleaving types as a 
between subjects variable and transfer and delayed transfer 
test as a within subject variable. This was to answer the 
question of whether or not the different interleaving types 
impacted the participants’ problem accuracy of transfer and 
delayed transfer test. The test of within subjects effects did 
not find a main effect of test, F(1, 28) < 1, MSe = 1.492, p = 
.805, ηp

2= .040. Although represented in Figure 2, the 
context and math skill interleaved groups encountered a rise 
in performance from transfer to delayed transfer problems, 
within subjects contrasts revealed that the interaction effects 
were not significant, F(1,  28) <  1,  MSe = 13.981, p = .566, 
ηp

2= .040. While the hyperinterleaved group performed best 
on both transfer tests, tests of between-subjects effects 
determined that there was not a significant effect of group, 
F(1, 28) = 2.25, MSe = 127.801, p = .124, ηp

2= .138.  
 

 
Figure 2: Mean scores of each group on transfer of 

procedural knowledge to novel contexts. Error bars indicate 
standard errors of the means. 

 
 Overall, all groups demonstrated significant learning of 
procedural problems from pretest to posttest. In fact, there 
was a main effect of group on the posttest procedural 

problems in which the hyperinterleaved group performed 
significantly better than the context interleaved group and 
the math skill interleaved group did not. However, the result 
pattern could be due to lower pretest scores for the context 
interleaved group. 
 To further examine the effect of group on assessments, 
change scores were computed and a one-way ANOVA was 
conducted. The ANOVA demonstrated that change scores 
from pretest to posttest of the hyperinterleaved group 
significantly differed from the context interleaved group, 
F(2, 28) = 3.301, MSe = 169.563, p = .05. Bonferroni tests 
of multiple comparisons indicated this difference was not 
statistically significant, p = .07. Change scores from pretest 
to delayed posttest and from posttest to delayed posttest 
indicated no significant differences between groups, ps > 
.05. Furthermore, there were no differences between groups 
in changes scores from transfer to delayed transfer, p > .05. 
 

Discussion 
Our results demonstrate that when math skill was 
interleaved (i.e., in the math skill interleaved and 
hyperinterleaved groups), procedural performance on 
posttest was significantly better than when math skill was 
blocked (i.e., context interleaved group). These findings 
provide additional support for interleaved practice as a 
technique that enhances memory by increasing the number 
of repeated reloads and by promoting discriminative 
contrast among problems. Recall that the context interleaved 
group blocked the math skill problems and interleaved the 
contexts. Blocking math skills does not allow the learner 
space between problems to reload relevant information. 
Additionally, blocking these problems does not allow the 
learner to discriminate between the features of other shapes 
in order to highlight key elements within the problem in 
order to apply the appropriate procedure.  
     The lack of statistical differences between the math skill 
interleaved and the hyperinterleaved group on posttest may 
be due to the lack of variation between contexts. Recall that 
practicing problems in multiple, varying contexts typically 
reduces context dependency, which supports generalization 
to novel situations. In the current study, the contexts may 
not have been different enough to decrease the level of 
context dependency. And, a stronger effect of 
hyperinterleaving may have been observed if more than two 
contexts were included in this study. Alternatively, the 
spacing of practice across two separate sessions of 
intervention may have equalized the effects of interleaving 
math skill and hyperinterleaving.  
    The results of our experiment align with those of Rau et 
al. (2013; 2014), suggesting two notions. One, math skill is 
the problem dimension that benefits most from an 
interleaved practice sequence. Two, interleaving both math 
skill and another dimension (i.e., context) may enhance 
learning when compared to interleaving math skill alone. It 
is important to note that the hyperinterleaved group 
demonstrated increased learning on all post, delayed 
posttest, and transfer procedural problems. One explanation 
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for these findings may be that interleaving context while 
also interleaving math skill may require more effort on the 
part of the learner during practice, resulting in enhanced 
memory. Another explanation is that shuffling familiar 
contexts during practice may facilitate the application of 
knowledge outside of the context in which it was learned. 
This experiment provided an important contribution in 
understanding the benefits of more effortful interleaved 
practice when learning new skills and transferring them to 
novel contexts.  
     Although the fourth-grade sample size in the current 
study was small, the apparent trend of interleaving math 
skills within different contexts that led to better performance 
seems to be promising. The results suggest that early 
learning of math skills such as solving for area may benefit 
from all types of practice, especially when spaced over time. 
For future research, it may be beneficial to examine the 
effect of context versus no context in interleaving 
experiments that evaluate retention and transfer of 
declarative and procedural knowledge. 
 

Conclusion 
Our experiment demonstrated the potential educational 
benefits of hyperinterleaving math skill with contexts. The 
results of the current study suggest that along with the 
advantages that interleaving area problems offers, shuffling 
contexts throughout this practice may also contribute to 
better generalization of these skills. Our study is one of the 
first to examine the effectiveness of combining interleaved 
practice with another common instructional technique. 
Placing examples in a familiar context is often used in 
classroom settings to make learning tasks recognizable for 
young learners and this study has provided unique insight 
on how this technique interacts with that of interleaved 
practice. More research is necessary to understand how 
interleaved practice interacts with context and other 
effective learning techniques, especially within the 
classroom environment.  
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Abstract 

Operating under limited resources poses significant demands 
on the cognitive system. Here we demonstrate that people 
under time scarcity failed to detect time-saving cues as they 
occur in the environment (Experiment 1a). These time-saving 
cues, if noticed, would have saved time for the time-poor 
participants. Moreover, the visuospatial proximity of the 
time-saving cues to the focal task determined successful 
detection, suggesting that scarcity altered the spatial scope of 
attention (Experiment 1b & 1c). People under time scarcity 
were also more likely to forget previous instructions to 
execute future actions (Experiment 2). These instructions, if 
remembered and followed, would have saved time for the 
time-poor participants. Failures of online detection and 
prospective memory are problematic because they cause 
neglect and forgetting of beneficial information, perpetuating 
the condition of scarcity. The current study provides a new 
cognitive account for the counterproductive behaviors in the 
poor, and relevant implications for interventions. 

Keywords: scarcity, attention, perception, memory, recall 

Introduction 

The condition of scarcity is widespread and manifests in 

many domains. For example, four billion people experience 

severe water scarcity during at least part of each year 

(Mekonnen & Hoekstra, 2016), and more than 10% of the 

world population live with less than US$1.90 per day 

(World Bank, 2016). A growing body of evidence has 

revealed how scarcity fundamentally shapes the way people 

perceive the environment and behave accordingly (Mani, 

Mullainathan, Shafir, & Zhao, 2013; Mullainathan & Shafir, 

2013; Shah, Mullainathan, & Shafir, 2012; Shah, Shafir, & 

Mullainathan, 2015; Tomm & Zhao, 2016).  

Since the cognitive system is limited in attentional and 

working memory capacity (Baddeley, 1992; Luck & Vogel, 

1997; Miller, 1956; Pashler, Johnston, & Ruthruff, 2001; 

Rock & Gutman, 1981), scarcity induces a trade-off of 

attentional and cognitive resources dedicated on the focal 

task and other tasks that also require attention (Tomm & 

Zhao, 2016). This corroborates with past research showing 

that engagement with complex tasks can cause a failure to 

notice highly salient events (Simons & Chabris, 1999), even 

at the expense of personal safety (see Strayer, Drews, & 

Johnson, 2003). 

In the current study, we investigate how time scarcity 

affects the online detection of information, and how time 

scarcity affects prospective memory performance. Our study 

is motivated by past work showing that people only start to 

increase their efforts to accomplish their goals when a 

deadline becomes salient (Gersick, 1988). Further, time 

pressure causes fewer attributes to be considered when 

choosing between alternatives (Wright, 1974). Given these 

findings, we propose that time scarcity may enhance 

attentional focus on the task at hand, while inducing neglect 

of other information in the environment, even if the 

information is beneficial. In two experiments, we examined 

the attentional and memory consequences of time scarcity. 

Experiment 1a 

The goal of the first experiment was to investigate how time 

scarcity affects the online detection of information in the 

environment. We hypothesize that time scarcity draws 

attention to the focal task, while inducing neglect of other 

useful information in the environment. 

Participants 

Undergraduate students (N = 90) were recruited from the 

Human Subject Pool at the Department of Psychology at the 

University of British Columbia (UBC), and participated in 

the experiment in exchange for course credit. All 

participants provided informed consent to participate. All 

experiments reported here were approved by the UBC 

Behavioral Research Ethics Board. We conducted a power 

analysis using G*Power (Faul, Erdfelder, Lang, & Buchner, 

2007), which showed that given an effect size of 0.6 (based 

on our prior work, Tomm & Zhao, 2016), a minimum of 90 

participants would be required to have 80% power to detect 

the effect in our design. 

Stimuli and Procedure 

In the experiment, each participant was asked to solve a 

series of puzzles on the computer. The puzzles were a total 

of 50 trials of the Raven’s Progressive Matrices (Raven, 

2000). Each matrix appeared at the centre of a computer 

screen. The bottom right corner of the matrix was missing, 

and participants had to find the right piece that fits with the 

general pattern in the matrix. Each participant was asked to 

correctly solve the matrices to earn as many points as 

possible. In each trial, participants were shown one Raven’s 
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matrix, with the numbered pieces appearing below. The 

response keys appeared in a vertical list on the left side of 

the screen. In the top-left corner of the screen, the question 

number and time remaining were displayed (see Figure 1). 

Participants were not told of the total number of trials until 

starting the first trial. To solve each matrix, participants 

pressed a number key corresponding to the correct piece. 

 

 
 

Figure 1. Trial screen for Experiment 1a. 

 

To manipulate time scarcity, participants were randomly 

assigned with either a rich time budget (they had 40 minutes 

in total to solve the matrices; the time-rich condition, N = 

45), or a poor time budget (they only had 10 minutes in total 

to solve the matrices; the time-poor condition, N = 45). 

Without explicit instruction or prompting, a time-saving cue 

appeared in the lower right part of the screen during the 

experiment. Specifically, on even-numbered trials starting 

from trial #24, the cue appeared on the screen stating: “This 

question is not worth any points. Press ‘A’ to skip.” (see 

Figure 1) Thus, 14 of the 50 trials were allowed to be 

skipped without any loss of points. The cue appeared at the 

same as the matrix for those trials, and remained on the 

screen for 5000ms, and then disappeared. These trials 

presented an opportunity to skip the question in order to 

save time. Participants were not told anything about the cue. 

We wanted to see if they were able to detect this message 

during the experiment and skipped the even-numbered 

questions from trial #24. 

Results and Discussion 

Participants in the time-poor condition almost unanimously 

used their entire time budget (10 minutes) while participants 

in the time-rich condition used less than half of their time 

budget (16 minutes). Given this constraint, the time-poor 

participants spent less time on the task overall compared to 

time-rich participants [t(88) = 6.51, p < .001, d = 1.37] 

(Figure 2a). The time-poor participants completed fewer 

trials than the time-rich participants [t(88) = 4.71, p < .001, 

d = .99] (Figure 2b). 

Notably, there was marginal difference in accuracy on the 

Raven’s Progressive Matrices between the time-poor and 

the time-rich participants [t(88) = 1.69, p = .09, d = .36] 

(Figure 2c). When accounting for the total amount of time 

spent on the task, the time-poor participants scored higher 

accuracy per minute than time-rich participants [t(88) = 

8.09, p < .001, d = 1.71]. This result suggests that time 

scarcity can cause a greater focus on the task at hand, 

enhancing task performance within the time limit.  

 
Figure 2. Results for Experiment 1a. Error bars represent ±1SEM. 

*p<.05, ***p<.001. Note: accuracy was computed for all trials 

excluding skipped trials.  
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Examining the number of questions skipped, we found 

that there was no significant difference in the average 

number of questions skipped between the time-poor and the 

time-rich participants [t(88) = 1.23, p = .22, d = .26] (Figure 

2d). However, only 26.7% of the participants in the time-

poor condition skipped at least once, and there were more 

time-rich participants (48.9%) who skipped at least once 

[X2(1,90) = 4.72, p = .03] (Figure 2e). This result suggests 

that time scarcity caused a failure to use the time-saving cue 

appearing on the bottom of the screen. 

To control for the total number of trials completed, we 

calculated skip efficiency as the number of questions 

skipped divided by the number of possible questions that 

could be skipped. There was no difference in skip efficiency 

between the time-poor and the time-rich participants [t(88) 

= .91, p = .36, d = .19] (Figure 2f).  

Among those who skipped at least once, there was no 

difference in the number of questions skipped between the 

time-poor and the time-rich participants [t(31) = .89, p = 

.38, d = .34] (Figure 2g). This means that if the participant 

noticed the cue at least once, they were able to skip the same 

number of questions, regardless of scarcity. 

To measure retrospective recall of the time-saving cues, 

we asked participants after completing the task during 

debriefing to report whether they saw any messages 

appearing on the screen during the task. We found that the 

time-poor participants were less likely to report seeing the 

cues than the time-rich participants [X2(1,84) = 3.81, p = 

.05] (Figure 2h). 

These results showed that fewer participants under time 

scarcity skipped the questions at least once, and reported 

seeing the cues, compared to time-rich participants. This 

suggests that time scarcity may narrow attention to the 

central task, while inducing a neglect of peripheral, even 

beneficial information in the environment. An alternative 

explanation is inattentional blindness, suggesting that the 

time-poor participants were less able to attend to salient but 

task-irrelevant information, than the time-rich participants. 

To tease these two accounts apart, we conducted the next 

experiment, probing whether scarcity alters the spatial scope 

of attention, or the ability to notice salient stimulus. 

Specifically, we manipulated the location of the time-saving 

cue, and examined the likelihood of skipping questions as a 

function of the spatial location of the cue under scarcity. 

Experiment 1b 

In this experiment, we reduced the spatial distance between 

the time-saving cue and the matrix (i.e., the focal task) by 

moving the cue closer to the center of the screen, and 

investigated how the spatial proximity of the time-saving 

cue to the focal task impacted its detection. 

Participants, Stimuli, and Procedure 

Participants (N = 87) were recruited from the Human 

Subject Pool at UBC, and participated in the experiment in 

exchange for course credit. The stimuli and the procedure 

were exactly the same as those in Experiment 1a, except one 

important change: the time-saving cue (i.e., the message to 

skip even-numbered questions after trial #24) now appeared 

directly underneath the Raven’s Progressive Matrix after 

trial #24 for even-numbered questions (Figure 3). 

If the neglect of the time-saving cue in Experiment 1a was 

due to the spatial narrowing of attention under scarcity, we 

would predict that the time-poor participants would be more 

likely to notice the cue, because it was not close to the 

central task. On the other hand, if the neglect of the time-

saving cue was due to inattentional blindness, moving the 

cue closer to the central task would not affect performance. 

 

Figure 3. Trial screen for Experiment 1b, where the time-saving 

cue appeared right below the matrix. 

Results and Discussion 

Since in Experiment 1a, time scarcity influenced the 

number of participants who skipped at least once, we 

examined the same measure here again. We found that now 

there was no statistical difference in the percent of 

participants who skipped at least once [X2(1,90) = .71, p = 

.40] (Figure 4a). Comparing Figure 4a to Figure 2e, the 

time-rich participants were not influenced by the change in 

the position of the cue, but the poor seemed to benefit from 

the closer proximity of the cue to the central task. This 

suggests that if the cue falls within the spatial scope of 

attention, the time-poor participants could still take 

advantage of the cue. 

 
Figure 4. Results for Experiment 1b. 
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During debriefing, the time-poor participants were 

marginally less likely to report seeing any messages during 

the task compared to the time-rich participants [X2(1,88) = 

3.78, p = .05] (Figure 4b). Compared to the time-poor 

participants in Experiment 1a (34% reported noticing the 

cue), the closer proximity seemed to provide a large benefit 

to the time-poor participants in Experiment 1b (48% 

reported noticing the cue). These results support the account 

that scarcity narrows spatial attention to the focal task. 

Experiment 1c 

To further explore the boundary condition of the spatial 

narrowing effect of scarcity, in this experiment we moved 

the time-saving cue farther away from the focal task, and 

examined how likely participants were to notice the cue. 

Participants, Stimuli, and Procedure 

Participants (N = 86) were recruited from the Human 

Subject Pool at UBC, and participated in the experiment in 

exchange for course credit. The stimuli and the procedure 

were identical to those of Experiment 1a, but this time the 

time-saving cue appeared in the bottom right corner of the 

screen (Figure 5), which was even farther away from the 

focal task than in Experiment 1a. 

 

Figure 5. Trial screen for Experiment 1c, where the time-saving 

cue appeared far from the matrix, on the bottom right corner of the 

screen. 

Results and Discussion 

We found that participants in both conditions failed to take 

advantage of cue. There was no statistical difference in the 

percent of participants who skipped at least once [X2(1,90) = 

1.54, p = .21] (Figure 6a). During debriefing, there was no 

difference in the likelihood to report seeing any messages 

during the task between the participants in both conditions 

[X2(1,87) = 2.70, p = .10] (Figure 6b). In fact, there was a 

floor effect in both the time-poor and the time-rich 

participants in skipping the questions or noticing the cue. 

This suggests that when the cue was spatially far away from 

the focal task, participants could not notice the cue, 

regardless of scarcity. 

 

Figure 6. Results for Experiment 1c. 

Experiment 2 

Experiments 1a-c showed that time scarcity narrowed 

attention on the focal task, resulting in the neglect of a time-

saving cue which appeared in the peripheral during the 

experiment. However, in daily life, we do not always have 

cues in the external environment as reminders for certain 

actions. Instead, we need to rely on internal cues from 

memory that need to be activated at the right time to direct 

actions. For example, in order to pick up groceries on the 

way home from work, we must remember to turn at the right 

intersection in order to go to the grocery store. This depends 

on prospective memory, which is the ability to remember to 

execute future actions based on previous instructions. Cues 

for prospective memory are internal, and must be present in 

mind in order to cue behavior at the right time (Graf, Uttl, & 

Dixon, 2002; Loftus, 1971). In this experiment, we 

examined how time scarcity affects prospective memory 

performance. 

Participants 

Participants (N = 90) were recruited from the Human 

Subject Pool at UBC and completed the study in exchange 

for course credit. 

Stimuli and Procedure 

Participants were asked to solve the same set of 50 Raven’s 

Progressive Matrices used in Experiments 1a-c. As before, 

participants were randomly assigned either a small time 

budget (5 minutes; the time-poor condition), or a large time 

budget (20 minutes; the time-rich condition). A critical 

difference in this experiment was that the time-saving cue 

never appeared in the experiment. Rather, all participants 

were explicitly instructed at the start of the experiment the 

following: “Even-numbered questions from number twenty-

four on are not worth any points. You can skip these 

questions without losing any points.” This instruction was 

presented on paper to participants to read, and the 

experimenter also read through these instructions with each 

participant to maximize the comprehension of the 

instruction. As before, the question number and remaining 

time appeared in the top-left corner of the screen, and the 

keys available for the participants to press were listed on the 
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left side of the screen. Note that now the “A (skip)” key is 

listed among the available keys and was listed for every 

single question (Figure 7). There were no visual cues during 

the experiment to remind participants which questions they 

were allowed to skip. Thus, participants needed to 

remember to use the opportunity to skip when the applicable 

questions were reached.  

 

Figure 7. Trial screen for Experiment 2. 

Results and Discussion 

Participants in the time-poor condition almost unanimously 

exhausted their time budgets, while participants in the time-

rich condition usually completed the experiment with some 

time to spare (Figure 8a). The time-poor participants spent 

less time solving the Raven’s Matrices than the time-rich 

participants [t(88) = 13.33, p < .001, d = 2.81]. They also 

completed significantly fewer trials than the time-rich 

participants [t(88) = 10.14, p < .001, d = 2.14] (Figure 8b), 

and were significantly less accurate [t(88) = 2.29, p = .02, d 

= .48] (Figure 8c). When accounting for the total amount of 

time spent on the task, the time-poor participants scored 

higher accuracy per minute than time-rich participants [t(88) 

= 9.53, p < .001, d = 2.01], suggesting that time scarcity 

enhancing performance on the focal task. 

The time-poor participants on average skipped fewer 

questions than the time-rich participants [t(88) = 2.52, p = 

.01, d = .53] (Figure 8d). However, this result is likely 

driven, at least in part, by the considerably smaller number 

of questions completed by the time-poor participants. 

Similarly, we found that fewer time-poor participants 

skipped at least once compared to the time-rich participants 

[X2(1,90) = 10.08, p < .01] (Figure 8e), but this could be due 

to the smaller number of possible skips experienced by the 

time-poor participants. Thus, we examined the skip 

efficiency defined as the number of questions skipped 

divided by the number of possible questions that could be 

skipped experienced by the participant. We found that the 

time-poor participants were less likely to skip than time-rich 

participants (two time-poor participants were excluded from 

this analysis due to failing to reach trial number twenty-

four) [t(86) = 2.01, p = .05, d = .43] (Figure 8f). This 

finding suggests that time scarcity impairs prospective 

memory performance. We should note that among 

participants who skipped at least once, there was no 

difference in the number of questions skipped between the 

time-poor and the time-rich participants [t(40) = .59, p = 

.56, d = .19] (Figure 8g), or in skip efficiency [t(40) = .76, p 

= .45, d = .26] (Figure 8h). 

 
Figure 8. Results for Experiment 2. Error bars represent ±1SEM. 

*p<.05, **p<.01, ***p<.001. 
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General Discussion 

The goal of the present study was to examine how time 

scarcity impacts attention and prospective memory. We 

found that people under time scarcity were less likely to 

take advantage of a time-saving cue that appeared peripheral 

to the focal task (Experiment 1a), but nonetheless performed 

well on the focal task under the time constraint. This 

suggests that people under time scarcity are ironically less 

likely to notice opportunities to save time. This effect could 

be explained by a narrowing of spatial attention to the focal 

task (Experiments 1b & 1c). In the absence of an external 

cue, participants under time scarcity were less likely to 

remember to skip questions in the future (Experiment 2), 

suggesting that they failed to retrieve a cue from memory to 

execute actions at the right time.  

These findings were particularly problematic for people 

under time scarcity because the attentional neglect of time-

saving opportunities or the failure to remember to save time 

could be detrimental, perpetuating the condition of scarcity 

and creating a vicious cycle of scarcity. These cognitive 

impairments could explain a range of counter-productive 

behaviors observed in the low-income individuals, such as 

forgetting to follow instructions, or not signing up for public 

benefit programs. In addition, prospective memory errors 

can be seen by others as an indication of incompetence of 

the poor (Graf, 2012). The present findings instead attribute 

the memory failures not to the poor individuals themselves 

but to the condition of scarcity. The current study provides 

useful implications for designing policies and programs to 

mitigate the impact of scarcity, such as the use of reminders, 

automatic enrolment, or setting the right default, to reduce 

the attentional and memory burdens in the poor. 
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Abstract 

In situated communication, reference to an entity in the 
shared visual context can be established using either an 
expression that conveys precise (minimally specified) or 
redundant (over-specified) information. There is, however, a 
long-lasting debate in psycholinguistics concerning whether 
the latter hinders referential processing. We present evidence 
from an eye tracking experiment recording fixations as well 
as the Index of Cognitive Activity – a novel measure of 
cognitive workload – supporting the view that over-
specifications facilitate processing. We further present 
original evidence that, above and beyond the effect of 
specificity, referring expressions that uniformly reduce 
referential entropy also benefit processing. 

Keywords: referential processing; over-specification; visual 
entropy reduction; eye tracking; Index of Cognitive Activity 

Introduction 
Grice’s maxims of Quantity (Grice, 1975) stipulate that 
speakers’ utterances be minimally informative, avoiding 
redundancy. In visually situated communication, this 
predicts utterances should provide strictly the information 
necessary for the identification of a referenced object. For 
example, in the context of a blue and a green ball, the 
adjective “blue” is necessary to unambiguously establish 
reference. When there is only one ball, however, the 
adjective becomes superfluous. Such over-specifications – 
expressions that convey more information than minimally 
required – are, however, produced by adult speakers at an 
estimated rate of 10-60% (see Engelhardt, Bailey & 
Ferreira, 2006, and references therein).    

Even though Grice arguably did not intend to make any 
implications about the cognitive processes associated with 
the violation of his maxims (cf. Geurts & Rubio-Fernández, 
2015), over the past few decades, psycholinguistic research 
has tried to test their empirical validity. It remains under 
debate, however, whether or not over-specifications are 
detrimental to referential processing. A number of studies 
have suggested that over-specifications impair listeners’ 
online processing and lead to slower and less accurate 
identification of the target (e.g., Engelhardt, Bailey & 
Ferreira, 2006; Engelhardt, Demiral & Ferreira, 2011; 
Davies & Katsos, 2013), while others find evidence that 
they are as good as minimal descriptions or may even 
facilitate processing (e.g., Arts, Maes, Noordman & Jansen, 
2011; Tourtouri, Delogu & Crocker, 2015). 

In an ERP experiment, Tourtouri, Delogu and Crocker 
(2015) presented participants with visual scenes of 6 objects 

and audio instructions to locate a target, like “Find the 
yellow bowl” (in German). The experiment manipulated the 
specificity of the referring expression by combining the 
same instruction with different visual displays that rendered 
it minimally or over-specified. An attenuated N400 effect 
was found on the noun for over- compared to minimally- 
specified references. This finding was interpreted as 
evidence that over-specifications are in fact beneficial to 
referential processing, at least when in the presence of 
visual displays where the over-specified adjective identified 
exactly one object. That is, at “yellow” the bowl was the 
only object that fit the description. Interestingly, both color 
and pattern adjectives were used to identify the target, and 
the effect was present for both types of adjectives, 
suggesting that any facilitation of over-specification is not 
merely due to the perceptual salience of color. It can be 
argued, however, that the reduced N400 for over-
specifications may just reflect the predictability of the noun 
as determined by the information on the visual scene in 
combination with the linguistic input up to the adjective. 
Therefore, it still remains unanswered whether over-
specification has a general facilitatory effect, even when 
displays allow the adjective to select a second object, which 
fits a minimally specified continuation of the referring 
expression, i.e., it is part of a contrast pair.  

A similar question was addressed by Sedivy, Tanenhaus, 
Chambers and Carlson (1999) in a series of experiments that 
tested (among other things) whether intersective adjectives 
such as color are interpreted contrastively. Participants’ eye 
movements were tracked while they heard instructions to 
manipulate objects in a workspace in front of them. The 
visual scenes consisted of four objects, two that formed a 
contrast pair differing in color, e.g. a yellow and a pink 
comb, and two singletons: one sharing the color feature with 
an object from the pair, e.g. a yellow bowl, and a distractor 
object of different color. The critical instruction mentioned 
either of the two objects with the shared feature, and was 
always heard second, following the instruction referring to 
an object from the contrast pair. An effect of referent type 
was found, such that if the target was part of the contrast 
pair it was looked at faster than if it was not. This result was 
taken to indicate that initially, before the noun was heard, 
listeners assigned a contrastive meaning to intersective 
adjectives, consistent with Grice’s maxim of Quantity. We 
believe, however, that this may not be the case, especially 
since listeners’ attention was already focused on the contrast 
pair, as the immediately preceding instruction always made 
reference to one of the contrasting objects (e.g., the pink 
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comb). Similar results were obtained in the subsequent 
experiments, where the critical instruction was heard first, 
but with the use of scalar adjectives, which inherently 
invoke comparisons between entities.  

 The current study seeks to determine whether and how 
over-specifications affect processing of pre-nominally 
modified referring expressions, when the visual context 
enables both a minimally and an over-specified reading of 
intersective adjectives, such as color and pattern. That is, 
how is referential processing influenced when the adjective 
is redundant (as in the bottom displays of Fig.1) as opposed 
to when it is required to uniquely identify the target (as in 
the top displays of Fig.1)? Furthermore, as the instruction 
sentence unfolds over time, incoming words incrementally 
restrict the set of referential candidates. Therefore, in 
situated communication, the information conveyed by a 
linguistic unit is determined by the extent to which it 
reduces the number of potential referents, in addition to the 
linguistic information of each word, as determined by its 
probability and preceding context (Shannon, 1948; Crocker, 
Demberg & Teich, 2016). In other words, the information 
on the word “blue” in the sentence “Find the blue ball” is 
not defined only in terms of its probability to occur in this 
(linguistic and visual) context, but also by the amount of 
uncertainty about the target (referential entropy) it reduces. 
For example, in the left-hand displays of Figure 1 “blue” 
reduces referential entropy by 1.58 bits, while in the right-
hand displays it only reduces it by 0.58 bits. The noun, then, 
eliminates the remaining entropy, reducing it by 1 bit in the 

former and by 2 bits in the latter case, resulting in a uniform 
and a less uniform entropy reduction profile, respectively. 
This study also touches on whether, above and beyond any 
effects of specificity, the rate at which the linguistic input 
reduces referential entropy also influences processing. To 
examine these questions, we recorded participants’ fixations 
as they viewed displays such as the ones in Figure 1, while 
listening to instructions like “Find the blue ball” in German, 
and present results from inspection probabilities to the 
objects of interest and the Index of Cognitive Activity 
(Marshall, 2000) per region. 

The Index of Cognitive Activity 
It is well established that fluctuations of the pupil size index 
cognitive effort in a variety of tasks, including language 
processing (e.g., Just & Carpenter, 1993). However, 
changes in the lighting conditions of the environment are 
also responsible for pupil dilation. The Index of Cognitive 
Activity (Marshall, 2000) is a measure of cognitive 
workload that separates variation in pupil size due to 
cognitive effort and due to light reflex, while also 
accounting for random noise. The small and rapid pupil 
dilations that remain are associated with higher cognitive 
workload (Marshall, 2002). Demberg and Sayeed (2016) 
showed, for example, that the ICA is sensitive to linguistic 
manipulations such as ungrammaticality, with conditions 
related to higher processing demands resulting in higher 
ICA values. They also demonstrated that ICA is particularly 
suitable for the Visual World Paradigm, since it is robust to 

A. B. 

C. D. 

Figure 1. Sample visual stimuli for a color item, combined with the instruction "Find the blue ball". The four resulting 
conditions were A. Minimally specified – High reduction (MS-HR), B. Minimally specified – Low reduction (MS-LR), C. 
Over-specified – High reduction (OS-HR), D. Over-specified – Low reduction (OS-LR) 
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the change of fixation positions and can thus complement 
the standard visual attention metrics in order to assess 
cognitive effort during linguistic processing.  

Experiment 
We used a 2x2 design crossing Specificity (Minimally 
specified vs Over-specified) and Entropy Reduction 
(Uniform vs Non-uniform). Based on findings that over-
specifications are commonly used by adult speakers during 
production (cf. Engelhardt et al., 2006; Pechmann, 1989; 
Rubio-Fernández, 2016; Tarenskeen, Broersma & Geurts 
2015), we hypothesized that over-specification would not 
impede referential processing, as rational speakers would 
unlikely use them so frequently if they did. We, therefore, 
expected that over-specified expressions (OS) would be as 
easy as, or easier than their minimally-specified (MS) 
counterparts (as found in the ERP study by Tourtouri et al., 
2015). As for the entropy reduction manipulation, we 
generally expected a greater processing advantage in the 
uniform reduction (UR) compared to the non-uniform 
reduction (NR) conditions, as has been proposed for the 
related measure of surprisal  (UID, Jaeger, 2010). Finally, 
we expected that the two factors should interact, namely that 
processing would be particularly benefited when the 
expression was OS and the redundant adjective contributed 
to the uniform reduction of entropy. 

Method 
Participants Twenty-four students from Saarland 
University (mean age 25, 7 male) participated in the 
experiment for monetary compensation. They were all 
native speakers of German with normal or corrected-to-
normal vision and normal color perception.  
  
Materials Pictures of 30 common use objects (e.g., balls, 
mugs, etc.) differing in color (blue, green and red) and 
pattern (checkered, dotted and striped) were employed to 
create the visual stimuli. Both color and pattern were used 
as distinguishing features, because they are intrinsic to the 
object, as opposed to scalar adjectives such as size that 
trigger comparisons to other entities on the display. This 
ensured that any looks to objects in contrast pairs would be 
driven due to the manipulation and not because of the 
adjective type. Furthermore, pattern was the mentioned 
property in half of the trials, in order to make sure that any 
effect of over-specification would not be merely due to 
color salience, but would be attributable to the experimental 
manipulation. Color hue and brightness were adjusted using 
GIMP (Version 2.8.10). Naming agreement was tested for 
the object pictures in an offline picture naming study to 
ensure that they were identifiable in all colors and patterns, 
and that the names used in the experiment matched 
participants' own naming preferences. Twenty-four 
independent participants were presented with the object 
images in all colors and patterns (distributed over 8 lists), 
and were asked to name them while always mentioning their 

colors and patterns. Only objects with a naming agreement 
of 80% or higher were employed in the visual stimuli.  

A set of 120 experimental items was created, each item 
comprising one spoken instruction (with either color or 
pattern as the target feature) and four visual scenes 
(essentially four versions of the same scene). The target 
color, pattern and position were counterbalanced throughout 
the experiment. Displays for experimental items 
accommodated all four conditions for both target features, 
so that nothing would reveal the target before the instruction 
was heard. To this end, one visual scene contained 6 objects 
(two pairs of same-type objects and two singletons) in two 
colors and two patterns, such that the pairs made up the two 
MS and the singletons the two OS referents for both target 
features, as shown in Figure 1. Furthermore, displays never 
contained phonetic competitors (e.g., [ʃʏsəl] vs [ʃʏrtsə]), 
ensuring that disambiguation of the target would always 
occur on noun onset. For the same reason only same-gender 
objects were used per display, as German marks determiners 
for gender. 

In total, 660 visual displays were created, of which 480 
were used in experimental items (120 x 4 conditions), and 
180 in fillers. Twelve of the fillers served as practice trials 
in a familiarization phase. Fillers differed from experimental 
items in multiple aspects. First, they differed in terms of 
their display structure, with almost half of the fillers 
depicting 4 objects (3 of the same type and one singleton) 
and the rest containing 6 objects. Six-object fillers either 
showed 2 contrast pairs and 2 singletons, where reference 
was always made to the contrast pair that was not relevant 
in the experimental items (e.g., the two rucksacks in Fig.1), 
or they showed a set of 3 same-type objects, a contrast pair 
and a singleton. The 3-object sets made a second modifier 
also required for target identification, thus adding more 
variation not only to the display types that participants 
viewed, but also to the referential entropy reduction 
possibilities. Secondly, fillers differed in terms of the 
specificity of their instructions, that could be minimally, 
over-, or under-specified (US), while care was taken so that 
throughout the entire experiment, participants would hear 
MS expressions to a greater extent than OS – as is the case 
in everyday language use – as well as a small portion of US. 
A set of fillers without pre-nominal modification was also 
used, that were essentially the minimally specified versions 
of the OS items, thus assuring that participants would not 
always expect to hear an adjective and that they would not 
get overly used to reference being redundant.  

In experimental items, displays were paired with audio 
instructions containing a pre-nominally modified referring 
expression like “Finde den blauen Ball” (Find the blue ball) 
in Figure 1, that identified the target by mentioning either its 
color or its pattern. In fillers, instructions had zero, one or 
two modifiers. For the latter the order of mention of color 
and pattern adjectives was counterbalanced. Audio stimuli 
were recorded with neutral intonation by a young, female 
speaker of German, in a soundproof booth using Cubase 
AI5. Speech was continuous and no artificial pauses were 
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inserted in between words. Sentences were then cut and 
annotated for adjective and noun onsets using Praat 
(Version 5.3). Mean word duration was 481.3ms (SD=32) 
for the adjectives and 557.2ms (SD=75.7) for the nouns.  

Stimuli were distributed over 4 lists using the Latin 
Square design, and were pseudo-randomized for each 
participant. At least one filler appeared between consecutive 
experimental items, and items of the same condition did not 
appear more than two times in a row. Each participant saw 
288 stimuli split in 4 blocks, which allowed for breaks in 
between blocks. Before the experiment started, a short 
practice session of 12 filler trials familiarized participants 
with the task. The experiment was implemented and run 
using E-prime 2.0 (Psychology Software Tools, Inc.). 
 
Procedure An SMI RED500 eye tracker (SensoMotoric 
Instruments) attached to the bottom of a 25inch Dell 
monitor was used to track participants’ eye movements at a 
rate of 250Hz. After they gave informed consent and read 
the instructions, participants were seated at a distance of 
approximately 60cm in front of the monitor using a chinrest 
to minimize head movements. They then completed a 
familiarization phase, during which the experimenter gave 
them feedback after each trial, ensuring that the task was 
clear before the experiment begun. Calibration was 
performed at the beginning of each block.  

A trial started with a fixation cross appearing in the 
middle of the display for a period controlled by the 
experimenter. The objects then appeared while the cross was 
still on screen for another 500ms, and 1500ms later the 
audio instruction started. The objects stayed on the screen 
for another 500ms after the audio offset, and a prompt 
screen to the task appeared asking participants to indicate 
which side of the screen the target entity was on, or whether 
it was not possible to tell (US fillers) by pressing the 
corresponding button on a response pad in front of them. 
Displays were presented at a 1680×1050 resolution. One 
experimental session lasted on average 40min, depending on 
whether calibration had to be repeated.  

 
Analysis For the analyses of both measures we considered 
the regions of the Adjective (“blauen”), and Noun (“Ball”). 
For the analysis of fixations, we compared inspection 
probabilities to areas of interest (AOI) across conditions. 
First, fixations shorter than 80ms were pooled with the 
immediately preceding or following fixation, if the distance 
between them was smaller than 12 pixels, otherwise they 
were excluded from the analysis. Subsequently, fixations to 
an AOI within a region, before a saccade outside the area 
was made, were counted as one inspection. For each AOI 
and region, we coded trials that contained at least one 
inspection to the AOI as 1, and trials that did not as 0. 
Therefore, mean values represent inspection probabilities 
per AOI and region.  

As information about the target became incrementally 
available, different objects and different comparisons were 
interesting per region. In particular, at the Adjective, the 

only available information about the target was its 
distinguishing property, so the specificity manipulation is 
still irrelevant (it is still unknown whether the target is 
minimally or over-specified). We, therefore, compared 
inspections to the singleton and contrasting objects that bore 
the target property (cf. the blue ball & mitten in A&B, 
Fig.1) between UR and NR (collapsing across Specificity). 
Finally, at the Noun, when the target is revealed, both 
factors become relevant, so we contrasted inspection 
probabilities to the target (the blue ball: MS in A&B, OS in 
C&D, Fig.1) and to the competitor (the blue mitten: OS in 
A&B, MS in C&D, Fig.1) across conditions. 

To calculate the ICA we used BeGazeTM with the ICA 
Module (SensoMotoric Instruments) and WorkloadRT 

(EyeTracking, Inc.). Since the ICA values that the 
BeGazeTM software outputs are too coarse-grained for the 
type of effects we expect, we used the ICA Coefficients to 
compute ICA values per 100ms (see Demberg & Sayeed, 
2016 for more details). Data points with a pupil diameter 
smaller than 2.5 SD of that participant were eliminated, and 
a mean ICA value for both eyes was calculated. As fixation 
positions are not relevant for the ICA, we were interested 
only in differences between UR and NR (collapsing across 
Specificity) for the Adjective, and across conditions for the 
Noun. We compared mean ICA values across conditions 
within a window of 600ms starting from the middle of each 
region. We analyzed inspection probabilities and ICA 
values using generalized linear mixed effects models (lme4 
package, R Version 3.3.2) with random intercepts for 
participants and items, as well as random slopes for the 
predictors of interest. For the analysis of the Adjective, 
Reduction (UR vs NR) was the predictor of interest. For the 
analysis of the Noun, the models included the effects of 
Specificity (OS vs MS), Reduction (UR vs NR), and Target 
Feature (Color vs Pattern), and their interaction. When the 
maximal models did not converge, we simplified the 
random effects structure as suggested by Barr, Levy, 
Scheepers, and Tily (2013). 

Results 

Adjective 
Singletons bearing the target feature (cf. the mitten in A&B, 
and ball in C&D) were inspected equally frequently in UR 
and NR (Coeff. = .083, SE = 2.317, Z = .829, p > .05). 
Contrast objects (cf. the blue ball in A&B), on the other 
hand, were more frequently inspected in UR than in NR 
(Coeff. = .329, SE = .0628, Z = 3.107, p = .001).1 The ICA 
values (see Fig.2) did not differ significantly between UR 
and NR (Coeff. = -.031, SE = .0249, Z = -1.236, p > .05).  

                                                             
1 Since in NR more entities bear the mentioned feature, and 

therefore attention is distributed across more objects, we do not 
take this difference to reflect any preference for a 
gricean/contrastive reading of the adjective.   
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Noun 
Analyses of inspection probabilities to the target (the blue 
ball) and competitor (the blue mitten) objects, including 
target feature as a predictor, produced a significant effect of 
feature (Coeff. = .205, SE = .104, Z = 1.971, p = .048). We 
followed up this effect with separate analyses for color and 
pattern items. For target inspections in color items (Fig.3), 
we found a main effect of Entropy Reduction with more 
inspections in UR than in NR (Coeff. = -.241, SE = .122, Z 
= -1.971, p = .048), as well as a marginally significant effect 
of Specificity (Coeff. = .237, SE = .127, Z = 1.877, p = .06), 
such that the target was inspected more frequently in OS 
than in MS. The analysis of inspections to the competitor 
resulted in a main effect of Entropy Reduction with the 
competitor receiving more inspections in UR than in NR 
(Coeff. = .39, SE = .151, Z = 2.583, p = .009), and no effect 
of Specificity (p > .05). For pattern items, none of the 
comparisons produced significant results (all p > .228). 
Interestingly, the ICA analysis produced main effects of 
both Entropy Reduction and Specificity for both color and 
pattern items (see Fig.2), such that ICA was higher for NR 
vs UR (Coeff. = -.07, SE = .024, Z = -2.96, p = .003), and 
for MS vs OS (Coeff. = .087, SE = .025, Z = 3.42, p < .001).  

General Discussion 
We investigated the effects of Specificity on situated 
language processing comparing listeners’ inspection 
patterns and cognitive effort when exposed to minimally or 
over-specified reference. In accordance with previous 
research (cf. Arts et al., 2011; Tourtouri et al., 2015) we 
found a facilitation for OS vs MS on the noun, with the 
target object receiving more inspections when the referring 
expression included a redundant vs a contrastive adjective. 
However, this effect was observed only for color items, 
raising the question whether what facilitates processing is in 
fact color salience as opposed to over-specificity in general. 
The answer is provided by ICA, a novel measure of 
cognitive workload based on the count of rapid pupil 
dilations, which we used to directly assess the cognitive 
effort expended in each condition, showing that in both 

color and pattern items OS was indeed easier to process than 
MS. This discrepancy between the two measures seems to 
suggest that, while pattern is more difficult to perceive than 
color, its mention is nevertheless as beneficial to visual 
search as that of color. Further research is necessary to 
determine the relation between visual attention as measured 
by inspection probabilities, and cogntive load as measured 
by the ICA.  

We further examined if and how processing is influenced 
by a more or less uniform reduction of referential entropy, 
i.e., of the size of the referential search space. Specifically, 
we contrasted conditions where the pre-nominal adjective 
reduced entropy from by 1.58 bits (UR) with cases in which 
entropy was decreased by only 0.58 bits (NR), to establish 
whether what determines efficient entropy reduction is 
determined by the more or less uniform decrease of entropy 
over the referential expression. Our results seem to provide 
evidence that processing is facilitated by the uniform 
reduction of referential entropy, though not in the predicted 
region. That is, in the Adjective there were no differences 
for either inspections (to singleton objects) or for ICA 
values between UR and NR. On the Noun, however, we 
found indications that the greater reduction of entropy at the 
first step contributing to a more uniform entropy reduction 
profile was preferred, since in (both MS and OS) UR 
conditions the target object collected more inspections 
(though only in color items), and, perhaps more 
interestingly, ICA values were lower than in NR (for all 
types of items). Importantly, this finding demonstrates that 
the ICA is sensitive to visual search difficulty, capturing 
differences in the cognitive effort expended with different 
rates of visual entropy decrease. With respect to our 
research question, visual search, and therefore referential 
processing, appears to be more efficient when the remaining 
set of possible referents at the final step is rather small, as is 
the case in UR. Interestingly, however, there is no penalty 
for this increased entropy reduction on the adjective.  

We acknowledge that these results are open to alternative 
interpretations. For example, the absence of an Entropy 
Reduction effect on the adjective may be due to our 
operationalization of Uniform and Non-uniform Reduction, 
and not because the entropy reduction rate only affects the 
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Figure 2. Mean ICA values per condition and region. 
Error bars represent 95% CI. 

Figure 3. Inspection probabilities for the noun region in 
color items. Error bars represent 95% CI. 
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final step. That is, reducing referential entropy by 1.58 bits 
vs 0.58 bits may not be sufficient to induce a differential 
cost on the adjective. So, if the difference between the 
remaining entropy in the two conditions was enhanced, by 
using a larger referent set and going from e.g. 12 to 2 versus 
to 8 potential referents in Uniform and Non-uniform 
Reduction, respectively, might serve to amplify a reduction-
related cost on the adjective in the Uniform condition. 
Relevant to this issue, it would be interesting to compare 
processing of OS as implemented in this experiment, with 
their MS counterparts, i.e. without modification of the noun 
(e.g., “Finde den Ball”), as the latter is not only a case of 
rapid reduction of entropy, but is also MS. Any facilitation 
for OS under this comparison should suggest that processing 
ease for OS is due to the insertion of an intermediate step in 
reducing visual entropy that makes reduction more uniform. 
A final possible explanation that is worth pursuing, as it is 
related to the nature of the ICA measurements, is that ICA 
may not be sensitive to such modulations of entropy 
reduction. In other words, ICA may only be able to capture 
whether visual search has been demanding or not. Future 
research is of course required to tackle these questions.   

In sum, we present eye-tracking evidence confirming that 
the use of redundant noun modifiers (over-specification) 
facilitates referential processing. In addition, we showed 
that listeners rapidly exploit incoming information about the 
target to reduce the referential search space in situated 
comprehension. Greater reduction in referential entropy on 
the adjective – while not associated with any increase in 
cognitive load in that region – results in an overall more 
uniform entropy reduction profile and in reduced cognitive 
effort when processing the noun. This result leads us to 
conclude that efficient processing is determined by both the 
degree of specificity of the reference, as well as to the 
distribution of entropy reduction across the utterance.  
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Abstract 

We describe two different cognitive process models of a well 
known experiment on social influence (Salganik, Dodds, & 
Watts, 2006).  One model, the social influence model, 
reproduced the choices that participants took by modeling 
both the cognitive processes the participant engaged in and 
the social influences that the participant saw.  The second 
model, the pure cognitive model, used only cognitive 
capabilities and did not model any social influences that the 
participant saw.  Somewhat surprisingly, the two models 
showed no difference in quality of fit (the pure cognitive 
model actually fit slightly better than the social influence 
model), suggesting that social influence models should take 
cognitive functions into account in their theories. 

Keywords: Cognitive models, social influence, cognitive 
architectures 

Introduction 
People are routinely influenced by other people: this is the 

crux of social influence.  There are many factors that can 
impact social influence, including the popularity of others 
(Cialdini, Reno, & Kallgren, 1990; Latane, 1981), authority 
or expertise (Cialdini et al., 1990; Milgram, 1963), and 
culture (Milgram, 1963).  While each of these factors can 
have a large impact in different situations, a fourth factor, 
visibility -- seeing what others have done or are doing -- 
seems to be among the most important (Cialdini et al., 
1990). 

Most models of social influence describe the effect in 
terms of social constructs (e.g., conformity, peer pressure, 
etc.) and/or networks of people (e.g., families or friends), 
and that cognition has a relatively minor explanatory role.   

For example, MacCoun (2012, in press) has proposed a 
very successful model of social influence called the uBOP 
(unidirectional burden of proof).  The model itself is a 
mathematical model in the form  

 
p = m / (1 + exp[c(S/T - b)])  

 
where p is the probability that an individual chooses an 
option, m is a ceiling parameter, S is the number of people 
advocating one option, T is the number of advocates 
advocating a second option, b denotes where an individual 
is more likely to adopt the group’s decision and c reflects 
the difficulty to make a decision (steepness).  This model 
can successfully characterize the classic Milgram (1969) 
and Asch (1951) studies with few changes in parameters 
(MacCoun, 2012; MacCoun, in press). 

Social network models have also been used to model 
social influences.  Social networks consist of nodes (people) 
who are linked through some form of interdependency 
(family, friends, beliefs, etc.).  Social networks have been 
very successful at differentiating the effects of social ties 
from other external influences and have been applied to 
explain phenomena as diverse as smoking (Christakis & 
Fowler, 2008) and obesity (Christakis & Fowler, 2007).  
Social network models typically use graph theoretic or 
network models or statistical models (e.g., structural 
modeling or autoregression). 

Cognition in all of these models serves, at best, a purely 
functional role: people perceive others' actions or remember 
actions that others have performed, but the theoretical power 
comes from social or network constructs.  The uBOP model 
can be used to describe both individuals and groups, but has 
nothing that could be considered a cognitive process.  Social 
network models describe relationships and membership 
rather than an individual's cognitive activities.  The fact that 
there are few (if any) cognitive processes in these models is, 
perhaps, not surprising: most of the existing models are not 
process models.  We believe that cognition is a large 
component of most social behavior and will explore this 
issue by developing a cognitive process model of a well-
known social influences study (Salganik et al., 2006; 
Salganik & Watts, 2009). 

Salganik and colleagues investigated the effects of social 
influence in a cultural market with a novel paradigm 
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(Salganik et al., 2006; Salganik & Watts, 2009).  Salganik et 
al. created an artificial music market where participants 
could listen and download previously unknown songs.  
Salganik and colleagues created independent instantiations, 
or worlds, where the markets could grow without influence 
from other worlds; this was a between subjects 
manipulation.  Individuals in each world could only be 
influenced by individuals in their own world. This approach 
allowed the authors to explore how social influences 
develop over time in different situations.  Across two 
experiments, they looked at two conditions, an independent 
world and a social influence world.  Participants in the 
independent world made decisions about what songs to 
listen to based only on the names of the bands and the song, 
while in the social influence worlds, participants could also 
see how many times each song had been downloaded by 
previous participants.  In their first experiment, they found a 
modest social influences effect, but in their second 
experiment they found a very strong social influences effect.  
We describe and model the second experiment. 

Method (Salganik et al., 2006) 
A complete description of the experiment can be found in 
Salganik et al. (2006) and Salganik and Watts (2009). 

Participants 
There were 7192 participants recruited from a music 
website (Bolt).  There were approximately 700 participants 
in each of eight social influence worlds and approximately 
1400 participants in the independent world.1  Participants 
logged onto the website and various times over 83 days. 

Setup and Procedure 
48 Songs were presented in a single column and sorted by 
the number of downloads for the social influence worlds 
and in a random order for the independent world.  The 
display was updated as every participant downloaded songs.  
Additionally, the social influence world displays contained 
information about the number of downloads each song had 
received; this information was dynamically updated as the 
experiment progressed; see Figure 1. 

 

                                                             
1 The participant size was unbalanced because the original 

authors were concerned about unpredictability.  For our purposes it 
should not impact our results. 

 
Figure 1:  A screenshot of the social influence world, 

taken from Salganik and Watts (2009). 
 
Participants were able to click any song on the list to 

listen to it.  While the song was playing, participants were 
asked to rate the song on a 1-5 scale where 1 was “I hate it” 
and 5 was “I love it.”  After rating the song, participants 
could download the song and then could go back to the 
primary display so they could listen, rate, and download 
more songs if they chose.  Participants were able to 
download as many of the 48 songs as they wished, but they 
had to listen to them and rate them before they could 
download each song. 

Each of the social worlds began in a random state, so each 
social world could evolve based on the participants’ 
behavior in that specific world. 

Measures 
There were several different variables that the authors coded 
in the data.  The number of songs each participant listened 
to and the number of downloads that were made was 
recorded.  The popularity of individual songs was also 
recorded.  One of the most informative variables that was 
recorded was how often participants listened to a song at a 
specific rank (regardless of what song it was).  When each 
participant examined songs, each song had a specific market 
rank (the song with the most downloads had a market rank 
of #1). 
 

Results and Discussion 
Salganik et al. reported that participants listened to an 
average of 3.6 songs and downloaded an average of 1.4 
songs.  Figure 2 shows the probability that a participant 
would listen to a song based on its rank market share.  Note 
that all the social influence worlds will be combined for this 
and all further analyses, as reported in Salganik et al. 
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Figure 2:  The probability that a participant would listen 

to a song based on its rank market share for both the 
independent and social influence conditions in Salganik et 
al.’s experiment. 
 

As Figure 2 suggests, the independent condition was 
mostly flat, with no strong effect of either social influence 
or of song quality.  However, the social influence conditions 
showed a very strong effect of social influence:  the top 
ranked song had a 45% chance of being listened to, while 
the average song had only a 5% chance of being listened to.  
There is also an interesting “hipster” effect when the song 
that was ranked last got listened to a great deal more than 
average. 

Salganik et al. suggest that these results “confirm that the 
popularity of the songs affected participants’ choices and 
generally led them to listen to the more popular songs—a 
result that is consistent with the large literature on social 
influence and conformity” (Salganik & Dobbs, 2009, p. 
447).  They also show that while specific songs were 
considered better than others, the social influence condition 
had a substantial effect on the success of the songs. 

As suggested earlier, most models of social influence are 
not cognitive process models.  So we developed a cognitive 
process model of the individuals in this experiment in order 
to examine the effect of cognition and social influence. By 
developing a process model, we were able to create two 
slightly different models:  a social influence model and a 
pure cognitive model. By developing the two models, we 
will be able to determine how much better the social 
influence model fits the data beyond the pure cognitive 
model and thus determine the importance of social influence 
over basic cognitive factors.  The models were developed 
using the ACT-R architecture.   

Architecture and Model Description 
ACT-R is a hybrid symbolic/sub-symbolic production-based 
system (Anderson et al., 2004; Anderson, 2007). ACT-R 
consists of a number of modules, buffers, and a central 
pattern matcher. Modules in ACT-R contain a relatively 
specific cognitive faculty usually associated with a specific 
region of the brain. For each module, there are one or more 
buffers that communicate directly with that module as an 
interface to the rest of ACT-R. At any point in time, there 
may be at most one item in any individual buffer; thus, the 
module’s job is to decide what and when to put a symbolic 
object into a buffer. The pattern matcher uses the contents of 
the buffer to match specific productions. 

ACT-R uses if-then rules (productions) that will fire when 
their preconditions are met by matching the contents of the 
buffers.  If there is more than one production that can fire, 
the one with the highest utility (production strength) will 
fire.  Each production can change either internal state (e.g., 
buffer contents) or perform an action (e.g., click on a 
button). 

ACT-R interfaces with the outside world through the 
visual module, the aural module, the motor module, and the 
vocal module. The architecture supports other faculties 
through intentional, imaginal, temporal and declarative 
modules.  

High Level Description of the Social Influences 
Model 
There are three components to each model:  search, 
consideration, and decision-making. Each component has 
different productions that instantiate the specific goal.  
There model is a pure performance model:  there is no 
learning in the model. 
 
Search ACT-R has a theory about visual attention (Byrne & 
Anderson, 1998), which this model follows.  In brief, the 
model searches for an unattended song, then moves its 
visual attention to that song and then encodes the 
information about the song. The model determines which 
song to search for in one of four ways:   

(1) The model begins at the top of the display to search 
for an unattended song.  This is typical ACT-R 
behavior for searching. 

(2) The model finds a random song and attends to it. 
(3) The model starts at the bottom of the display to 

search for an unattended song.  This is the “hipster” 
component of the model. 

(4) Stop searching completely and finish. 
All four of these rules are in competition any time the 

model has a goal to look for a song.  Note that if we were in 
a different culture where reading occurred in a different 
direction, the model would need to take those preferences 
into account.  Also note that sometimes the model will have 
a goal to search for a new song and then give up; 
participants also began the study and stopped the 
experiment before listening to any songs. 
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Consideration After a song has been attended to and 
encoded, the model next determines whether that song 
should be listened to or not. It has three options: 

(1) The model decides that the song “looks interesting” 
so it decides to listen to it.  We assume that people 
have some preference for the name of the band or 
the name of the song; this is a simple version  of 
that preference process. 

(2) The model decides that the song “looks terrible” so 
it decides not to listen to it.  Again, this is a simple 
way to model the preferences that people have. 

(3) The song is listened to based on its rank.  The 
probability is a very simple 1/rank.  There are 
other, more sophisticated versions of selection 
based on group behavior (Mullen, 1983), but this 
simple version suffices for this model.  Note that 
this is where social influence occurs in this model. 

All three of these rules are in competition any time the 
model has a goal for considering whether to listen to the 
song.  If the model decides not to listen to a song, it 
searches for another song.   

Decision-making If the model does listen to a song, it must 
next decide whether to download it. The decision to 
download is very straightforward:  there is a 50% chance the 
model will decide it should download the song.  If it does 
download the song, the world is updated; if it does not 
download the song the world is not updated in any way, but 
the model then searches for another song.  

A series of sample experimental model runs  
For the following example, three models are run in the same 
world; the social influences model is being run in the social 
influences condition.  We assume that each model 
corresponds to a single simulated participant.  The world is 
updated based on what each model does in the world, and 
the world is displayed appropriately based on what others 
have done.   

The first thing that the model does in an experiment is to 
search for a song.  The first model in the experiment stops 
searching and no updating occurs.   

The second model in the experiment starts at the top of 
the list of songs; the first song on the list is unattended, so it 
encodes it and considers whether to listen to it.  The model 
decides that it will listen to it and then must decide if it 
should download it.  There is a 50% chance the model will 
download it, which it does in this case.  This song now 
becomes the most popular with rank 1 and for future 
participants it will show as the top song on the display.  The 
model then searches for another song, again decides to 
search from the top and finds the second song, which is the 
top unattended song.  The second song does not look 
interesting, so the model does not listen to it (and thus does 
not download it, either).  The model next searches for 
another song, but then stops searching and this model is 
finished. 

The third model sees the previously downloaded song in 
the first slot.  The model, however, chooses a random song 
from the list and decides to listen and download it.  The 
model next starts at the bottom of the display and looks for 
an unattended song. The model will listen to this song based 
on its rank, which is currently 48; so it has approximately a 
2% chance of listening to the song.  Luckily, for this run the 
model will listen to it, so that song now is tied for rank 1, 
and all future models will evaluate appropriately.  After 
2000 model runs, the simulation is stopped and the 
simulated world is reported. 

The run just described was based on the social influences 
model.  In this model, social influence occurs during the 
consideration stage.2  The pure cognitive model was 
identical to the social influences model, except it did not 
have pay attention to any social influence.  Without social 
influences, the model simply considers a song based on 
whether it is “interesting” or “terrible.” 

For all models, we kept most of the ACT-R parameter 
defaults. The parameters that were changed include a 
production noise parameter (.4, which is within a normal 
range for this parameter) to provide some stocasticity and 
the aforementioned 50% probability for downloading a 
specific song.  Parameter fits were run using the social 
influence model and those same parameters were also used 
for the pure cognitive model. 

Model fit 
First, it is possible to examine how many listens and 
downloads each model performed and compare them to the 
experimental data.  On average, there were 3.6 listens per 
participant in the experimental data; both models made 3.2 
listens. Comparably, there were an average of 1.4 
downloads per participant; both models had 1.6. 

Figure 3 shows the fit of the independent condition; both 
models provide the same results.  As Figure 3 suggests, the 
fit is quite good, with the model data overlapping a great 
deal with the experimental data.  Calculating an R2 is 
uninformative because both the data and the model are flat.  
RMSD for this model is .02, which demonstrates quite a 
good fit. 

                                                             
2 Note that social influence also could have occurred at other 

places in the model (e.g., search).  However, preliminary testing 
showed that the model actually fit worse when social influence 
occurred in a stage other than consideration. 
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Figure 3:  Data and model of the independent condition. 
 
Figure 4 shows the fit for the social influence model and 

Figure 5 shows the fit for the pure cognitive model.  As is 
evident from Figures 4 and 5, they both show quite a good 
fit; Table 1 shows the quantitative fit statistics.  The social 
influence model had a very strong fit in both R2 and RMSE.  
Somewhat surprisingly, however, the pure cognitive model 
had a slightly better R2 fit and a comparable RMSE fit.  We 
can conclude from these analyses that the social influence 
model does not fit better than the pure cognitive model. 
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Figure 4:  Experimental data from the social influence 

condition and the social influence model. 
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Figure 5:  Experimental data from the social influence 

condition and the pure cognitive model.. 
 

Model R2 RMSE 
Social Influence .88 .023 
Pure cognitive model .92 .028 

Table 1:  Fit metrics for both the social influence model 
and the no social influence model.  Both models were 
compared to the social influence condition of Salganik et al. 
(2006). 

 

General Discussion 
We described a process model of a well-known experiment 
on social influence (Salganik et al., 2006; Salganik & Watts, 
2009).  The experiment showed that when people had access 
to what others had done, it greatly influenced their behavior, 
consistent with current theories on social influence (Cialdini 
et al., 1990; MacCoun, 2012).  We built two slightly 
different cognitive process models that perform the 
perceptual and cognitive steps in the experiment.  Both the 
social influence model and the pure cognitive model fit the 
data extremely well.  However, somewhat surprisingly, the 
pure cognitive model fit the experimental data slightly better 
than the social influence model.  We interpret these results 
as showing that for this experiment, the effect of social 
influence is very small:  a pure cognitive model was able to 
fit the data at least as well (if not slightly better) than the 
social influence model. 

It was a bit surprising that the pure cognitive model and 
the social influence model shared so much overlap:  this is 
almost assuredly one of the reasons for the similarity in the 
two models.  This should not come as a big surprise, 
however:  this type of task of searching and selecting 
objects on a computer screen is a classic cognitive task that 
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has been investigated both experimentally and theoretically 
many times. 

It could be argued that during the search phase, the 
scanning down rule is also a social influence rule since 
participants knew that songs were ranked from top to 
bottom in order of the number of downloads.  However, we 
would argue that scanning from the top to the bottom of a 
list is more a cognitive and cultural function than a social 
influence function.  Many other researchers have shown that 
people in the US search for objects approximately top-down 
and left-to-right on computer interfaces (Byrne, Anderson, 
Douglass, & Matessa, 1999; Norman, 1991; Schunn & 
Anderson, 1999).   

Note that we are not saying that people are not influenced 
by social influence.  There are many experiments and 
models that show the importance of social influence.  For 
example, Cialdini et al. (1990) found that when there was 
evidence that other people had littered, individuals were 
more likely to litter than when there was evidence that 
people had not littered.  Many other classic experiments 
have shown the importance of social influence (Asch, 1951; 
Milgram, 1963)  

The model presented here does, however, highlight the 
importance of cognitive processes in explaining at least 
some social influence effects.  We believe that providing a 
process level description of cognitive and social behavior 
will lead to a better understanding of how social influences 
impact people’s behavior.  Specificially, we can isolate 
those processes that may result from cognitive aspects of the 
task from those processes that result from social influence. 
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Abstract 
 
Mechanistic information can be characterized as the 
interacting causal components underlying a phenomenon - in 
short, how something works. Children and adults are 
notoriously poor at learning, remembering, and applying 
mechanistic information, so it comes as no surprise that the 
wisdom of teaching mechanism has come under increasing 
scrutiny in science education. However, while a rich memory 
for mechanistic details may be out of the average student’s 
grasp, we argue that exposure to mechanism does not leave 
students empty-handed. Instead, it refines their intuitions 
about science and the world in significant ways. For the 
current study, we focused on one kind of intuition in 
particular: beliefs about causal complexity. Children ages 6-
11 rated the complexity of a heart and a lock and were then 
given either mechanistic or non-mechanistic information 
about them. Afterwards, they were asked if their intuitions 
about complexity had changed and if so by how much. Three 
weeks later, children were asked again about their intuitions 
about complexity. Crucially, children who were given 
mechanistic information demonstrated a significantly greater 
shift in their assessments of complexity for both the heart and 
door lock compared to their counterparts who were given 
non-mechanistic information. This contradicts the notion that 
mechanism provides learners with few benefits while also 
demonstrating how mechanism can be a powerful force in 
shaping children’s intuitions. 

Keywords: causal mechanisms; explanation; complexity 
intuitions; meta-knowledge; cognitive development 

Introduction 
Humans possess cognitive systems that enable them to 

grasp causal relations around them. As early as eight 
months, children are able to predict outcomes of novel 
causal events (Sobel & Kirkham, 2006) and less than a year 
later, they are capable of making successful causal 
interventions (Gopnik et al., 2004; Gopnik, Sobel, Schulz, 

& Glymour, 2001), even for causal relationships defined by 
abstract relational properties (Walker & Gopnik, 2014).  

However, given the rapid growth of human knowledge 
and technology in the modern era, many of the known 
causal relations in the world are becoming increasingly 
complex and inaccessible (Arbersman, 2016). Except for 
relevant experts, this burgeoning set of causal patterns 
presents a challenge for how laypeople grasp the causal 
structure of the world around them. Most adults, for 
example, are unable to give even a basic explanation of the 
mechanisms underlying everyday objects like a door lock or 
a clock, let alone more complicated objects like a car engine 
or a computer. Similarly, we have a surprisingly poor 
understanding of the mechanisms underlying the 
functioning of living things and even how our own bodies 
work. To make matters worse, laypeople often believe they 
possess detailed mechanistic knowledge about the world 
despite having next to none, a phenomenon known as the 
Illusion of Explanatory Depth (IOED) (Alter, Oppenheimer, 
& Zemla, 2010; Rozenblit & Keil, 2002). These major gaps 
in adult causal knowledge occur not just in recall but also in 
recognition. For example, many adults fail to recognize the 
difference between a schematic of a functional bicycle and 
one that is completely inoperable (Lawson, 2006). In 
children, this illusion is present to an even greater degree 
(Mills & Keil, 2004). 

Our cognitive mechanisms dealing with causality seem to 
fall short in keeping vivid representations of somewhat 
complex causal patterns. Despite this tendency to forget 
mechanistic information, humans however show a certain 
curiosity about how things work. Children ask for 
mechanistic information about things they encounter, 
usually phrased as ubiquitous “why” and “how” questions, 
starting around three years of age (Callanan & Oakes, 
1992), and they are often relentless in their questioning until 
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they receive a mechanism-oriented response (Chouinard, 
2007; Frazier, Gelman, & Wellman, 2009). This preference 
for mechanistic explanation persists into adulthood (e.g., 
Ahn et al., 1995; Johnson & Ahn, 2015). In short, despite 
our poor ability to learn, retain, or recall mechanistic 
information, people of all ages often show considerable 
interest, and at times an outright preference, for mechanistic 
information.  

Mechanisms in the Classroom 
A natural reaction to the massive decay in our retention of 
mechanism is to downplay the need to learn it at all and 
refocus science education on topics such as the nature of 
science, epistemological stances, and methodology 
(Osborne et al, 2003). After all, even if students enjoy 
learning information about how things work, they fail to 
retain it; shouldn’t we focus on teaching them things they 
can actually remember? Without denying the importance of 
topics like epistemology, we argue there are insidious costs 
in failing to expose children to rich mechanistic details. At 
root, the benefits of mechanism lie not with the details 
learned, but with the higher order intuitions acquired and 
sharpened as a result of teaching mechanism.  

More precisely, we argue the bulk of cognitive gain from 
exposure to mechanism occurs at the “meta-knowledge” 
level (Kominsky, Zamm & Keil, in press). Even if we have 
no idea how a car engine actually works, we do have some 
intuitions about the underlying mechanisms: for example, 
we might think it involves metal and plastic components as 
opposed to organic parts, that it is extremely complex and 
difficult to learn about, and more crucially, we may also be 
able to tell apart experts from laypeople when hearing them 
talk about the mechanism. Thus, even if we do not know the 
details of how an object works, we often have surprisingly 
accurate intuitions about how much “stuff” is in a 
mechanism, how complicated a mechanism is, and whose 
expertise we can rely on. 

Indeed, despite the decay of knowledge about the 
mechanism itself, some kind of mechanistic information 
seems to persist: mechanistic information influences causal 
reasoning (Ahn et al., 1995; Schlottmann, 1999), and 
mechanism may constrain Bayesian causal learning by 
reshaping priors about what causal links exist or how strong 
they are (Griffiths & Tenenbaum, 2005, 2009). Thus, some 
aspects of mechanistic information are preserved, but are 
neither detailed nor complete (e.g., DiSessa, Gillespie, & 
Esterly, 2004; Straatemeier, van der Maas, & Jansen, 2008; 
Vosniadou, 2002). If most individuals do not retain deep, 
integrated understandings of “how things work”, what kind 
of mechanistic knowledge does persist? 

The current study pursues the beginnings of an answer to 
this broad question by focusing on intuitions about 
complexity. Intuition about causal complexity is a good 
candidate for a kind of meta-knowledge that would persist 
after memory decay. For instance, one may have a strong 
feeling that the mechanisms underlying the human ear or a 

clock are highly complex without being able to give any 
accurate descriptions of the mechanism itself. 

To summarize, we argue that mechanism instruction is 
essential to STEM learning as long as we acknowledge what 
is actually retained over time and what is not. Expecting 
children to retain fine-grained mechanistic details is simply 
an unrealistic goal. Instead, focusing mechanistic exposure 
on building richer meta-mechanistic knowledge establishes 
both achievable and useful goals. In particular, we argue 
that exposure to mechanism is a necessary pathway to other 
forms of more enduring representations such as intuitions 
about causal complexity, the focus of the current study. 

Experiment 

Stimuli 
We chose a heart and a door lock as stimuli because they 
look quite simple from the outside while having a somewhat 
rich causal mechanism on the inside. In order to control for 
a potential reaction of surprise to hidden complexity in the 
mechanistic condition, the verbal information provided in 
the non-mechanistic condition included, both for the heart 
and the door lock, some surprising facts such as “people 
think that the heart is red but actually the heart itself is dark 
brown”. 

The number of words of verbal information presented to 
the children was matched between the mechanistic (212 
words) and non-mechanistic condition (208 words). We also 
created the text stimuli so that the non-mechanistic 
information was more superficially complex than the 
mechanistic information (e.g., Flesh Reading Ease: 79.97 
for the non-mechanistic text and 91.53 for the mechanistic 
text). 

Predictions  
We had no predictions about the age of children in this 
study but included this variable in our analysis as 
exploratory. 

H1) Exposure to mechanistic information should shift 
children’s intuitions of complexity.  

H2) The children who underestimate complexity should 
move towards higher complexity judgments once provided 
with mechanistic information. 

H3) This shift towards higher complexity should still be 
observable three weeks later. 

Methods 
Participants We recruited 144 children from an elementary 
school in the New Haven, CT area. Our sample was 
somewhat atypical in two ways: the elementary school is 
situated in a low SES neighborhood and the elementary 
school has a strong focus on science  (classified as a STEM 
school). Our sample consisted of 20 Kindergarteners, 15 
first graders, 15 second graders, 41 third graders, 34 fourth 
graders and 18 fifth graders. The experimenters interviewed 
child participants individually for about ten minutes in a 
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quiet spot in the school. All participants were rewarded with 
a small toy.    
 
Training Phase Children were told they would be presented 
with pictures of things and would be asked if they thought 
the thing is simple or complicated. Participants were 
explicitly told both at the very beginning and just after the 
training phase “there are no right or wrong answers, I just 
want to know what you think”.  

The two training questions were designed to introduce 
children to our complexity scale and to have a clear criterion 
of exclusion. The training consisted in showing children 
black and white drawings of an hourglass and grandfather 
clock. In order to prevent children’s intuitions about 
complexity being driven only by the ease of use - as 
previous pilot experiments suggested - children were told 
that “both these two things are easy to use but the way they 
work is really different”, followed by a short justification of 
why the hourglass is simple (“It’s just sand going down”) 
and why a grandfather clock is more complicated (“It has 
many gears and pendulums inside that all work together to 
move the hands on the clock”). 

Children were then presented with black and white 
drawings of a bicycle and a motorcycle. For each, they were 
asked whether they thought it was simple or complicated. 
Depending of their first answer, they were asked if they 
thought it was “really” simple/complicated or “kind of” 
simple/complicated. Children’s answers on each entity can 
thus be coded on a 2 point scale (simple or complicated) or 
on a 4 point scale: really simple (0), kind of simple (1), kind 
of complicated (2) and really complicated (3).  
 
Test Phase Just after the training phase, children were 
presented with a black and white drawing of a heart or a 
door lock (order of presentation was counterbalanced). They 
were asked whether they thought the entity was simple or 
complicated in the same way as in the training phase. All 
participants were then told that some information about the 
entity would be presented to them. Half the participants 
were randomly assigned to the mechanistic condition and 
the other half were assigned to the non-mechanistic 
condition. Participants in the mechanistic condition were 
presented with pictures of the inside of a heart and of a door 
lock, along with some verbal information about how it 
works. Participants in the non-mechanistic condition were 
presented with pictures illustrating some facts about the 
heart or door locks along with corresponding verbal 
information matched in length to the mechanistic condition. 

After hearing the information, all participants were 
reminded of their initial complexity judgment and asked if 
they wanted to keep their answer or if they thought a heart / 
a lock was more complicated/simple than they had 
previously thought. Depending on their answer, they were 
then asked if it is much more complicated/simple than what 
they though before or a little bit more complicated/simple 
than what they though before. Their shifts in complexity 
judgments were coded with a 5 point scale: much more 

simple (-2), a little more simple (-1), still what I think (0), a 
little bit more complicated (+1) and much more complicated 
(+ 2). The exact same procedure was repeated with the 
second entity. 

 
Retention Test, Just after the complexity judgments, all 
children were asked a series of questions about the 
information (mechanistic or non-mechanistic) that had been 
given to them. This test was used to assess the children’s 
retention of the information that was just presented to them 
in order to measure retention scores on the exact same test 
three weeks later. Questions were either “yes – no” 
questions (0.5 point); questions about quantity or colors (1 
point) or open-ended (2 points). In the mechanistic 
condition, scores could range from 0 to 12.5; in the non-
mechanistic condition, scores ranged from 0 to 18.5. All the 
scores were normalized to range between 0 and 1. Based on 
the Yes/No questions, we calculated the chance level for 
each condition: 0.10 in the mechanistic condition and 0.04 
in the non-mechanistic condition. 
 
Exclusion The 24 children (17%) who, during the training 
phase judged a bicycle as more complex than a motorcycle 
were excluded from the analysis. In addition, since 50% (9) 
of the kindergarteners failed to judge a motorcycle as more 
complex than a bike, all the kindergarteners were excluded 
from the analyses. The following analyses apply to a sample 
of 111 children.  

Results  
Analysis Children were grouped into three age groups: 1st 
and 2nd graders (N = 26), 3rd graders (N =37), 4th and 5th 
graders (N = 48).  

Our analyses focus on three dependent variables, the 
absolute value of shift, the raw value – direction -- of shift, 
and the direction of long-term shift three weeks after the 
initial measure. We looked at the effect of three independent 
variables. Two variables were linked to our hypotheses, 
condition (mechanistic and non-mechanistic) and initial 
rating (which we grouped in two levels - simple or 
complicated - instead of the 4 measured ones - kind of  / 
really - in order to increase our statistical power). The third 
variable was age group (1st and 2nd graders, 3rd graders, and 
4th and 5th graders), which was exploratory. Only the 
interactions with condition were tested. 

Initial complexity judgments were significantly higher for 
the heart (M = 1.7, SD = 1.14) than for the lock (M = 0.96, 
SD = 1.03), paired t-test t(110) = 4.79, p < .001. In the 
following analyses the two entities were analyzed 
separately.  

 
Absolute value of shift For both the heart and the lock, we 
performed a 2 (condition) x 2 (initial rating) x 3 (age 
groups) fully between-subjects Analysis of Variance 
(ANOVA) with the absolute value of shift as DV. For both 
entities, the ANOVAs revealed a main effect of condition 
(Heart: F(1,103) = 4.13, p = .04,  ηp

2 = .04; Lock: F(1,103) 
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= 17.78, p < .001, ηp
2 = .14). Those main effects of 

condition came from a larger absolute value of shift for 
children in the mechanistic condition both for the heart (M = 
1.14, SD = 0.67 versus M = 0.87, SD = 0.75) and the lock 
(M = 1.22, SD = 0.60 versus M = 0.69, SD = 0.77).  

A main effect of initial ratings was also found for both 
entities (Heart: (F(1,103) = 4.10, p = .05,  ηp

2 = .04; Lock: 
F(1,103) = 4.07, p = .05,  ηp

2 = .03) corresponding to a 
larger absolute value of shift for participants initially 
judging an entity as simple. No other main effects or 
interactions were significant for either entity. 
 
Direction of shift For each entity, we performed a 2 
(condition) x 2 (initial rating) x 3 (age groups) fully 
between-subjects ANOVA with the shift in complexity 
judgment measured just after children were exposed to some 
information as a DV (from -2 to +2) (see Fig. 1). 

For the heart, a significant interaction between the initial 
rating and the condition was found (F(1,103) = 5.56, p = 
.02,  ηp

2 = .05). To further explore this interaction, two post-
hoc two sample t-tests with Bonferroni adjusted alpha levels 
of .025 per test (.05/2) showed that for the children who 
initially judged the heart as simple, being exposed to 
mechanistic information resulted in an average shift towards 
higher complexity (M = 0.70, SD = 1.36) compared to 
children exposed to non-mechanistic information (M = -
0.21, SD = 1.23; t(39.7) = 2.26, p = .02). As for children 
who initially judged the heart as complex, there was no 
difference in complexity shift between the mechanistic (M = 
-0.09, SD = 0.14) and non-mechanistic condition (M = 0.14, 
SD = 1.12; t(66.4) = -0.83, p = .41). 

For the lock, the same analysis did not show any 
significant effect or interaction.  
 
Analyses of High Initial Retention Participants Median 
scores were calculated on the retention task for each 
condition, entity, and crucially for each of the three age 
groups in order to avoid having mostly older children in the 
high retention group. In order to explore the possibility that 
some participants were not paying sufficient attention to the 
task or had difficulty understanding the material presented 
to them, children scoring lower than the median in each of 
the groups were dropped from the sample. All the following 
analyses are similar to the analyses presented before but 
includes only the high retention half of our sample (for the 
heart, N = 35 in the mechanistic condition and N = 29 in the 
non-mechanistic condition; for the lock N = 39 and N = 31 
respectively).  

In terms of absolute value of shift, results for the high 
retention group were similar to those of the entire sample 
with a significantly larger shift in the mechanistic condition 
(main effect of condition. heart: F(1,56) = 5.5, p = .02,  ηp

2 
= .08; lock: F(1,62) = 6.1, p = .01, ηp

2 = .09). As before, a 
main effect of initial judgment was found only for the heart 
(F(1,56) = 4.2, p = .05,  ηp

2 = .06) but not for the lock 
(F(1,62) = 2.6, p = .11,  ηp

2 = .04) ), likely due to a lack of 
power. 

Despite having our sample size cut in half, results on the 
direction of the shift and on the final ratings were even more 
in line with our initial hypotheses.  

With respect to the direction of the shift for the heart, the 
ANOVA revealed a significant interaction between 
condition and initial rating (Heart: F(1,56) = 9.92, p = .01,  
ηp

2 = .10). For the lock, as opposed to the same analysis 
with the entire population, the interaction between condition 
and initial rating was at trend level (F(1,62) = 3.97, p = .09, 
ηp

2 = .04). A main effect of initial judgment was also found 
for the lock (F(1,62) = 4.5, p = .04, ηp

2 = .06) but not for the 
heart (F(1,56) = 2.2, p = .14,  ηp

2 = .04). As displayed in 
Figure 1, one pattern seems similar for both entities: 
children who start by judging the entity as simple in the 
mechanistic condition tend to increase their complexity 
rating to a greater extent compared to both children in the 
non-mechanistic condition as well as children who start by 
judging the entity as complicated. 

 
Figure 1: Average value of shift (y-axis) with standard 
errors bars for the high initial retention group, in the 
mechanistic (grey) and non-mechanistic condition (white) as 
a function of initial complexity judgment (x-axis). Results 
for the heart and lock are presented on the left and right 
panels respectively. 
 
Shift in complexity three weeks later We again asked 
children about their intuitions of complexity three weeks 
later using the same methodology. Twelve children (11%) 
had changed schools or were absent during the times we 
were testing. Therefore, the following analyses apply to a 
sample of 99 children.  

For each entity, we performed the same 2 (condition) x 3 
(age group) x 2 (initial rating) with the shift between 
children’s initial rating and their rating three weeks later as 
a dependent variable (long-term shift).  

For both the heart and the lock, we found main effects of 
initial rating (heart: F(1,91) = 44.9, p < .001,  ηp

2 = .31; 
lock: F(1,91) = 33.6, p < .001, ηp

2 = .27). A main effect of 
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condition was found at trend level for the heart (F(1,91) = 
3.0, p = .08, ηp

2 = .02), but not for the lock. 
When performing the same analysis on the high initial 

retention group, ANOVAs continued to show a main effect 
of initial rating for both entities (heart: F(1,52) = 31.7, p < 
.001, ηp

2 = .33; lock: F(1,56) = 31.2, p < .001, ηp
2 = .34). 

This was the only significant effect for the lock. For the 
heart, there was also a significant interaction between 
condition and initial rating for the heart (F(1,52) = 6.42, p = 
.01, ηp

2 = .07) as well as a main effect of condition at trend 
level ((F(1,52) = 3.46, p = .07, ηp

2 = .04). As displayed in 
Figure 2, the interaction between condition and initial rating 
was driven by children initially judging the heart as simple, 
who moved towards higher complexity in the mechanistic 
condition (M = 1.46, SD = 0.97) compared to the non-
mechanistic condition (M = 0.25, SD = 0.88; Post-hoc t-test 
with Bonferroni adjusted alpha levels of .025 per test 
(.05/2), t(16.0) = 2.93, p = .009). For children initially 
judging the heart as complex, there was no significant effect 
of condition (mechanistic: M = -0.75, SD = 1.16; non-
mechanistic: M = -0.44, SD = 1.04; t(36) = -0.85, p = .40). 

 
Figure 2: For the high retention group, average value of long 
term shift (y-axis) with standard errors bars in the 
mechanistic (grey) and non-mechanistic condition (white) as 
a function of initial complexity judgment (x-axis). Results 
for the heart and lock are presented on the left and right 
panels respectively. 
 
Retention Tests Three weeks later, children’s retention 
scores had significantly dropped significantly by 0.20 in the 
non-mechanistic condition (from 0.64 to 0.44, paired t-test: 
t(95) = 9.30, p < .001) and by 0.11 in the mechanistic 
condition (from 0.44 to 0.33, t(101) = 4.67, p < .001)  

When dividing our population between high versus low 
initial retention, the low initial retention group did not show 
any decay in the mechanistic condition (from 0.19 to 0.25). 
By contrast, the high retention group had a decay of 0.20  
(from 0.57 to 0.37, t(64) = 7.33, p < .001). In the non-
mechanistic condition, both groups showed significant 

decay (low retention group had a decay of 0.17, from 0.48 
to 0.31, t(41) = 5.84, p < .001; high retention group had a 
decay of 0.24, from 0.76 to 0.53, t(53) = 7.40, p < .001 ).  

Discussion 
Our first hypothesis H1 is well supported by the data with 

an absolute value of shift significantly larger in the 
mechanistic condition than in the non-mechanistic condition 
for the two entities. In short, mechanistic information 
influences children’s intuitions about complexity more than 
non-mechanistic information. 

Hypothesis H2 is supported with respect to the heart: both 
when analyzing the full population and the high retention 
group, children in the mechanistic condition who initially 
judged the heart as simple moved toward higher complexity 
ratings more than children in the non-mechanistic condition. 
With respect to the lock, the same hypothesis was only 
supported by the high retention group. This pattern suggests 
that the influence of mechanistic information prompts more 
than unpredictable shifts in children’s intuitions. The 
influence of retention group also suggests that the quality of 
mechanistic exposure has a discernable impact on children’s 
ultimate intuitions. The finding that the low retention group 
slightly increased their retention score three weeks later 
likely means they were near floor from the start, indicating 
they had encoded and understood little to no mechanistic 
details presented to them. 

For both entities, we also found significant main effects of 
initial rating in the following direction: children initially 
judging an entity as simple move toward higher complexity 
and children initially judging an entity as complex tend to 
decrease their complexity judgments. This pattern raises a 
question: to what extent were the shifts simple regressions 
to the mean? At least in the cases of the heart, a tendency 
towards the mean is not the only significant influence on 
children’s complexity judgments, even if the influence of 
mechanistic information works in the same direction. 
Indeed, mechanistic information shifted initially low 
complexity judgments higher than the overall tendency to 
regress towards the mean can explain. 

Hypothesis H3 was only weakly supported in the case of 
the heart, with a main effect of condition at trend level. 
However, this modest effect fits with our hypothesis, since 
it is driven by children in the mechanistic condition initially 
judging the heart as simple who showed, three weeks later, a 
greater increase in their complexity judgments compared to 
the non-mechanistic condition. The size of this effect 
illustrates the challenge of trying to shift children’s long-
term intuitions about the world with less than 10 minutes of 
instruction. 

Participants’ SES, background, and attendance at a school 
having a strong science and engineering focus may also 
have diminished the hypothesized effects in two ways: first, 
low SES children often face increased attentional challenges 
in school settings (Mezzacappa, 2004; NICHD Early Child 
Care Research Network, 2003). These challenges may also 
help explain why our main hypotheses were supported more 
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by the high retention half of our sample. Second, the STEM 
focus of the school may have diminished the strength of the 
main effect of mechanism on the size of the shift by giving 
children more previous exposure to mechanism than is 
typical, in turn providing less room for intuitions about 
complexity to shift in a mere 5-10 minute span. 

Conclusion 
Our results have shown that even very short “mechanistic 

interventions” can lead to immediate and sizable changes in 
children’s intuitions about complexity. Crucially, when 
those changes happened, they were still observable three 
weeks later. These results suggest that teaching mechanism 
early in school can directly influence students’ intuitions 
about science and the world more broadly, even in the long 
term when the details are long forgotten. 
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Abstract 

The attraction effect in decision-making is a famous example 
of how preferences are influenced by the availability of other 
options. One emerging hypothesis for the effect is that biases 
in attention influence preferences. In the past, these ideas 
have been explored indirectly through computational 
modeling and eye tracking. In the present paper, we directly 
manipulate attention through presentation order, presenting 
choice options sequentially. Our results show that 
presentation order has a large impact on the effect – some 
presentation orders enhance the effect and other orders 
reverse the effect. To understand these results, we fit a 
dynamic model, called the Multiattribute Linear Ballistic 
Accumulator model, to the choice and response time data. 
Modeling results reveal that presentation order influences the 
allocation of attention on the positive and negative differences 
between options. In sum, our results show that attention has a 
direct impact on the attraction effect.    

Keywords: preferential choice; context effects; order effects; 
response time modeling; Bayesian parameter estimation 

Introduction 
Everyday we make hundreds of choices. Some are 
seemingly trivial -- what cereal should I eat for breakfast? 
Others have long lasting implications -- what stock should I 
invest in? Despite their obvious differences, these two 
decisions have one important thing in common; both can be 
sensitive to context. That is, our preferences for existing 
alternatives can be altered by the introduction of new 
alternatives. 
    Context effects -- preference changes depending on the 
availability of other options -- have attracted a great deal of 
attention among consumer researchers studying high-level 
decision tasks. In recent work, context effects have also 
been shown in low-level domains such as perception 
(Trueblood, Brown, Heathcote, & Busemeyer, 2013).  This 
suggests that context effects are a general feature of human 
choice behavior and calls for a common theoretical 
explanation that applies across paradigms. One emerging 
hypothesis is that context effects occur because of biases in 
attention. When comparing options, one might pay attention 
to some features more than others and this in turn influences 
preferences. This idea has been explored using dynamic 
models that implement attention-weighting mechanisms 
such as Multi-alternative Decision Field Theory (MDFT, 
Roe, Busemeyer, & Townsend, 2001), the Leaky 
Competing Accumulator model (LCA, Usher & 
McClelland, 2004), and the Multiattribute Linear Ballistic 
Accumulator model (MLBA; Trueblood, Brown, and 

Heathcote, 2014). In addition, Noguchi and Stewart (2014) 
used eye tracking to examine the role of visual attention in 
context effects. Their results suggest that alternatives are 
compared in pairs and specific patterns of gaze transitions 
are correlated with context effects. Further, recent work in 
economics has proposed that context effects might arise due 
to “rational inattention” (Woodford, 2012). The basic idea is 
that attention is a scarce resource and places constraints on 
the amount of information individuals can process during a 
decision. Taken together, this set of results strongly suggests 
attention is crucial to context effects. No previous work has 
directly manipulated attention in the attraction effect.  
    In the present paper, we directly manipulate attention by 
presenting choice options sequentially. Studies of context 
effects typically involve choices among three alternatives 
where one option is identified as the “target”, one option is 
the “competitor”, and the third option is the “decoy”. For 
example, suppose there are two options (X and Y) in a 
choice, which are almost equally attractive. If an alternative 
D is introduced that is similar to alternative X, but inferior, 
it makes X more attractive. This is known as the attraction 
effect (Huber, Payne, & Puto, 1982). In this example, X is 
the target, Y is the competitor, and D is the decoy. In all 
past studies of the attraction effect, the alternatives X, Y, 
and D were presented simultaneously and were visible to 
participants until they made a choice. In the current 
experiment, we presented the options X, Y, and D one at a 
time, thus manipulating what participants saw first, second, 
and last. Our goal is to understand if changes in attention (as 
manipulated by presentation order) influence final choices. 
    Our experiment uses a perceptual version of the attraction 
effect where participants judge which of three rectangles has 
the largest area, with height and width as the attributes. The 
experiment uses the same rectangle stimuli as Trueblood et 
al. (2013). Using a perceptual version of the attraction effect 
has a number of advantages including the ability to collect 
sufficient choice and response time data for computational 
modeling. In addition, the rectangle attraction task is well 
established in the literature and the results have been 
replicated in adults (Farmer, Warren, El-Deredy & Howes, 
2016), children (Zhen & Yu, 2016), and non-human 
primates (Parrish, Evans, & Beran, 2015).    

Experiment 

Participants 
Fifty undergraduate students from Vanderbilt University 
voluntarily participated in this computer-based experiment 
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in the laboratory at the time of their choosing and received 
course credit for their participation.  

Methods 
Participants were told that they would be shown three 
rectangles presented one at a time, and that they would have 
to choose the rectangle that they believed to have the largest 
area by pressing one of the three indicated keys. There was 
no value tied to the choice of rectangle (i.e., representation 
of an earned dollar amount), and participants did not receive 
feedback for their decisions. 
    Each rectangle stimulus had various dimensions of height 
and width, which both acted as attribute dimensions. The 
dimensions of the rectangles were set by numbers of pixels. 
The target, competitor, and decoy rectangles were 
determined by the following procedure. First a set of 
horizontally oriented rectangles, denoted H, were chosen 
out of a bivariate normal distribution with a mean of 50 
pixels for height and a mean of 80 pixels for width with a 
variance of 2 pixels. This noise allowed for variation in the 
rectangles across trials. A second set of rectangles, denoted 
V, were defined in terms of H, but were oriented vertically. 
Specifically, the height of the V rectangles was defined as 
the width of the H rectangles plus a random number selected 
from the interval [-2,2]. The width of the V rectangles was 
then calculated so that the V and H rectangles had equal 
area. In half of the trials, the target rectangle TH was defined 
using the H rectangles and in the other half of the trials the 
target TV was defined using the V rectangles. Thus, the 
orientation of the target (i.e., horizontal or vertical 
orientation) was counterbalanced so that half of the trials 
consisted of the horizontally longer target, TH, and half of 
the experimental trials consisted of the vertically longer 
target, TV. The competitor rectangles, C, were defined in the 
opposite manner of the target rectangles so that they were 
given the same area but were oriented opposite to the target 
(i.e. vertically if the target was horizontal and horizontally if 
the target was vertical). The decoys used in this experiment 
were “range” decoys, options that are a little weaker than 
the target on the target's weakest attribute. Let DH denote a 
horizontally oriented decoy similar to TH and DV denote a 
vertically oriented decoy similar to TV. A range decoy DH 
has the same width as TH but a shorter height since height is 
the shortest (weakest) dimension of a horizontally oriented 
target. Likewise, the DV decoy has the same height as TV but 
a shorter width since width is the shortest (weakest) 
dimension of a vertically oriented target (see Figure 1 for a 
schematic of the choice options). The shortest dimension of 
each decoy was defined as the shortest dimension of the 
corresponding target minus a random number selected from 
the interval [7,9].  
    Each experimental trial began with a fixation cross 
appearing at the center of a white screen for 0.250 ms. This 
was followed by the appearance of the numbers “1”, “2”, 
and “3” from left to right on the screen to indicate that one 
rectangle will appear above each number. Participants made 
their choice by pressing the corresponding “1”, “2”, or “3” 

key at the top of the keyboard. Black rectangles were shown 
one at a time. Each rectangle was shown above one of the 
numbers for 1.0 second before disappearing. The location of 
each rectangle was randomized across trials. The order of 
appearance for the rectangles was randomized in a 
controlled manner, such that experimental trials of each 
order appeared an equal number of times.  
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Figure 1: Schematic of the choice options in the rectangle 
attraction effect task. The options H (horizontally oriented 
rectangles), V (vertically oriented rectangles), and decoys 
DH and DV are plotted in a two-dimensional attribute space 
defined by the logarithm of height and width. The dotted 

line indicates options that should objectively be indifferent 
because they have the same area. In the attraction effect, 

preference for H and V can be affected by the presence of 
either DH or DV. 

     
    Each participant completed 720 randomized trials that 
were divided into eight blocks of 90 trials each. Within the 
90 trials of each block, there were 30 filler trials and 10 
trials for each of the possible six orders the rectangles could 
be presented. These six orders are as follows: TCD, CTD, 
TDC, CDT, DTC, and DCT. Within these orders, there were 
two variations, one where TH served as the target and one 
where TV served as the target to minimize effect based on 
orientation of the target rectangle. The 30 filler trials were 
meant to serve as an estimate of accuracy for participants. 
Each filler trial had a clearly larger rectangle that would 
allow participants to make a correct choice. 

Results 
One participant’s data were removed due to computer error. 
Overall, the mean accuracy of participants’ performance on 
filler trials was 66.62% correct with two participants falling 
two standard deviations below average. However, these 
participants’ data were not removed. This data is analyzed 
using the relative choice share for the target, or RST, which 
is defined as the number of target options selected divided 
by the total number of target plus competitor options 
selected (i.e., T/(C+T), Berkowitsch, Scheibehenne, 
Rieskamp, 2014). For the results described below we 
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collapsed across the two different orientations of the target. 
The attraction effect was still observed with an average of 
51.10% target chosen, significantly different from 50% 
target chosen, the theoretical RST if the decoy had no 
influence (t(48) = 2.77, p = 0.008). 
    Although the attraction effect was not observed for each 
presentation order, each presented order of rectangles were 
also significantly different from the 50% theoretical RST, 
refer to Table 1. Figure 2 shows a bar graph of the RST 
values for each of these orders. A one-way ANOVA showed 
a significant main effect of order (F(5,288) = 18.27, p < 
0.001). In particular, the orders CTD, CDT, and DTC 
showed the attraction effect, with RSTs significantly higher 
than 50%, and the orders TCD, TDC, and DCT had RSTs 
significantly lower than 50% (a reverse attraction effect).   
 
Table 1. The RST value as a percentage, the t-value, and the 
p-value for each order. 
 

Order RST (%) t(48) p-value 

TCD 41.99 -4.75853 < 0.001 

CTD 57.62 4.7803 < 0.001 

TDC 42.71 -3.0831 0.003 

CDT 60.25 4.8931 < 0.001 

DTC 57.81 3.7921 < 0.001 

DCT 45.93 -2.1742 0.035 
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Order

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
ST

 
 

Figure 2: Results show the RST for each presentation order 
of the rectangles as well as collapsed across all orders 

(combined). The dotted line at 0.5 indicates equal 
preference for the target and competitor. Bars above the 

dotted line show the standard attraction effect. Bars below 
the dotted line show a reversed attraction. Error bars show 

the standard error of the mean. 

Modeling 
In order to better understand how presentation order 
influences choices in the attraction effect, we fit the MLBA 
model (Trueblood et al., 2014) to the choice and response 
time (RT) data. MLBA is a dynamic model that explains 
why context effects occur in multi-alternative choice. This 
model explains how preferences are constructed through a 
dynamic process of comparing the different features of 
available options. Context effects occur because of 
differences in the amount of attention given to specific 
comparisons (for example, if two options are difficult to 
discriminate on a particular feature, an individual pays more 
attention to that feature). 

Model Details 
    MLBA is an extension of the Linear Ballistic 
Accumulator (LBA) model developed by Brown and 
Heathcote (2008). The LBA accounts for choice and RTs 
using independent accumulators that race toward a 
threshold. The accumulators are linear and accumulate 
information deterministically. At the beginning of each trial, 
each accumulator starts at a randomly determined amount of 
evidence drawn from a uniform distribution on the interval 
[0, A]. The accumulators increase at speeds defined by a set 
of drift rates, until one of the accumulators reaches the 
threshold b. The option associated with the accumulator that 
reaches the threshold first is selected. On each trial, the drift 
rates are drawn from normal distributions with different 
means and the same standard deviation, s = 1. The model 
also has a non-decision time parameter T0 that accounts for 
encoding and motor response times. The MLBA model adds 
to the LBA model by specifying how drift rates arise from 
the evaluation of choice options. 
    Consider three alternatives (indexed as i, j, k) that have 
two attributes, P and Q, where Pi and Qi denote the value of 
option i on the two attributes. The mean drift rate di for 
option i is defined as: di = γVij + γVik + I0. The term Vij 
represents a comparison between options i and j. Likewise, 
Vik represents a comparison between options i and k. The 
term I0 is a positive constant to ensure that at least one of the 
three mean drift rates is positive, avoiding non-termination 
in the LBA model. For our purposes, we can fix I0 = 1. The 
parameter γ is a scaling parameter that ensures that drift 
rates are in the appropriate range for the LBA model.  
    In the valuation function Vij, option i is the focal option 
and option j is evaluated relative to it. Let (uPi, uQi) and (uPj, 
uQj) be the subjective values for options i and j. In our 
experiment, the attribute dimensions, P and Q, are the 
height and width of the rectangles in pixels. A pair of 
options were experimentally defined as indifferent in they 
have equal area, for example, Pi ×Qi = Pj ×Qj. We define the 
subjective values simply as the logarithm of the number of 
pixels for each dimension (e.g., uPi = log(Pi)). Please see 
Trueblood et al. (2014) for other possible mappings from 
objective to subjective values. The valuation function Vij is 
defined by the difference in the subjective values of the 
options: 

3376



 
Vij = wPij (uPi - uPj)+wQij (uQi - uQj) 

 
where the weights wPij and wQij reflect the amount of 
attention given to a particular comparison. 
    Based on research showing that visual attention (e.g., 
fixation duration) increases with decreasing discriminability 
of items (Gould, 1967, 1973), we hypothesize that attention 
weights are larger when attribute values are more similar 
and smaller when they are more distinct. Using Shepard’s 
(1987) law of generalization, we define the attention 
weights as 
 

wPij = exp(-λ+ | uPi - uPj |) if uPi ≥ uPj 
wPij = exp(-λ- | uPi - uPj |) if uPi < uPj 

 
wQij = exp(-β λ+ | uQi – uQj |) if uQi ≥ uQj 
wQij = exp(-β λ- | uQi – uQj |) if uQi < uQj 

 
where λ+ and λ- are free parameters that allow for attention 
to be asymmetric. That is, the attention weights are different 
when comparing positive differences in attribute values (i.e., 
the parameter λ+) and negative differences in attribute 
values (i.e., the parameter λ-). This follows from work 
showing that similarity judgments often violate symmetry 
(Tversky, 1977) as well as modifications to Shepard’s law 
that allow for such violations (Nosofsky, 1991). The 
parameter β is a bias parameter that allows for attributes to 
be weighted differently. For example, in consumer choice, 
the attribute of price might receive more weight than the 
attribute quality. With rectangles, Holmberg and Holmberg 
(1969) suggested an “elongation effect” where height plays 
a more important role in area judgment than width. 
    In summary, the MLBA has the following free 
parameters: accumulator start-point A, threshold b, non-
decision time T0, drift rate scaling γ, positive attention 
parameter λ+, negative attention parameter λ-, and bias β. 

Hierarchical Bayesian Parameter Estimation 
    We fit the MLBA model with hierarchical Bayesian 
parameter estimation methods using DE-MCMC (Turner, 
Sederberg, Brown, & Steyvers, 2013). We note that, as far 
as we are aware, this is the first time the MLBA (or any 
dynamic model of context effects) has been fit to both 
choice data and the full distribution of RT data. In the past, 
dynamic models of context effects have only been evaluated 
by qualitative measures or when quantitative fitting was 
performed, only choice data was used. Thus, we see the 
present work as a significant methodological step forward in 
the evaluation of dynamic models of context effects. 
    In our experiment, there are six order conditions: TCD, 
CTD, TDC, CDT, DTC, and DCT. We hypothesized that 
order would influence attention and thus we had separate 
attention parameters λ+ and λ- for each condition. We also fit 
six γ scaling parameters, one for each condition. We 
allowed for different scaling parameters across conditions to 
accommodate the different attention weights, which directly 

impact the magnitude of the drift rates. The remaining 
parameters were assumed to be the same across conditions.  
    In our model, we had both group-level (or hyper 
parameters) and individual-level parameters. The 
individual-level parameters were drawn from normal 
distributions defined by the hyper parameters. Let µx and σx 
represent the hyper mean and standard deviation of the 
group-level normal distribution for parameter x. The priors 
for the hyper means were the following: µb ~ N(1, 0.5), µA ~ 
N(1, 0.5), µT0 ~ N(0.25, 0.25), γ ~ N(5, 1.5), λ+ ~ N(0.5, 1.5), 
λ- ~ N(0.5, 1.5), β ~ N(1, 1.5). The priors for all of the hyper 
standard deviations σx were defined as Gamma(1,1) 
distributions expect for the standard deviation for non-
decision time, which was Gamma(1, 0.5). We ran 24 
MCMC chains for 2500 iterations with a burn-in of 500 
iterations. All chains converged.  

Results 
    To assess the fit of the model, we calculated the 
correlation between choice and mean RT data with model 
predictions. The model predictions were calculated by using 
the mean of the posterior distributions of the individual 
parameters. The correlation between the choice data and 
model predictions was 0.886 (p < 0.001). The correlation 
between the mean RT data and the model predictions was 
0.588 (p < 0.001). Thus, the model does a good job at 
capturing general trends in the data. 
   We also examined how well the model accounted for the 
average choice data for each condition. Figure 3 shows the 
mean choice proportions for each option in the 12 different 
choice sets used in the experiment. The 12 choice sets arise 
from the two possible placements of the decoy (DH or DV) in 
each of the six order conditions. The model predictions were 
calculated using the mean of the posterior distributions of 
the individual parameters. 
    To understand how presentation order influences choices 
in the attraction effect, we examined the values of the 
attention weights for the six conditions (see Table 2). 
Specifically, we examined the posterior means of the group-
level attention weight parameters (λ+ and λ-) for each 
condition. We did not see any obvious trends in the 
attention weights when we examined them individually. 
However, the ratio of the positive weight to the negative 
weight revealed an interesting pattern. In the conditions that 
exhibited the standard attraction effect (i.e., CTD, CDT, and 
DTC), the ratio was smaller than the conditions that 
exhibited an inverse attraction effect (i.e., TCD , TDC, 
DCT). This suggests that presentation order influences the 
amount of attention given to positive and negative 
differences in attribute values. When the attraction effect is 
observed, more attention is placed on negative differences 
as compared to when the reverse attraction effect occurs. 

Discussion 
Our goal in the present paper was to explore the role of 
attention in the attraction effect through direct manipulation. 
We manipulated attention through presentation order,  
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Figure 3. Observed choice proportions and model predictions for 12 choice sets in the rectangle attraction effect task. Each 

choice set consists of three options (the target, competitor, and decoy). There are two choice sets for each order condition due 
to the two possible placements of the decoy (either near the horizontally oriented rectangle or the vertically oriented 

rectangle). The model predictions are shown in light gray and observed choice proportions in dark gray. 
 

 
presenting the options sequentially rather than 
simultaneously. The sequential presentation of the options 
had a large impact on choices – some presentation orders 
enhanced the attraction effect whereas other presentation 
orders reversed the attraction effect. To better understand 
why presentation order impacted choices, we used 
computational modeling. We fit the MLBA model to choice 
and response time data. Model fits revealed differences in 
the attention weights for different presentation orders. For 
the presentation orders that showed a standard attraction 
effect, there was increased attention on negative differences 
as compared to the presentation orders that showed a reverse 
attraction effect. 
    Recently, researchers have discovered large individual 
differences in context effects (Liew, Howe, & Little, 2016; 
Trueblood, Brown, & Heathcote, 2015). Some individuals 
show the standard effects, but others do not. For some 
individuals, the effects are even reversed. This has lead to 
the conclusion that context effects are fragile (Trueblood et 
al., 2015). This raises two important questions: (1) Why are 

the effects fragile? and (2) What underlies individual 
differences in the effects? The present work provides one 
possible explanation. The effects are fragile because they 
result from biases in attention. Small shifts in attention can 
have dramatic influences on choice. It is possible that 
individual differences in the effects arise because of 
individual differences in attention. 

 
Table 2: Posterior means of the group-level attention 

weight parameters for the six order conditions.  
 

Condition λ+ λ- λ+/ λ- 
TCD 1.50 4.25 2.83 
CTD 2.05 4.51 2.20 
TDC 0.92 2.06 2.24 
CDT 1.39 2.52 1.81 
DTC 1.86 3.43 1.84 
DCT 1.11 2.48 2.23 
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    The results of our experiment also pose a challenge to a 
recent rational model of context effects that claims the 
effects are a consequence of expected value maximization 
given noisy observations (Howes, Warren, Farmer, El-
Deredy, & Lewis, 2016). In our experiments, simply 
changing the presentation order of the same set of options 
has a dramatic influence on choices. It is unclear how a 
rational model could account for the influence of 
presentation order on the effects. 
    In sum, we have demonstrated that presentation order, 
which influences attention, can both strengthen and weaken 
the attraction effect. The MLBA model suggests that 
presentation order changes the allocation of attention 
between positive and negative differences between options. 
These findings provide an explanation for individual 
differences in context effects and also pose a challenge to 
recent rational models of the effects.  
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Abstract 

Classical quantifiers (e.g., “all”, “some” and “none”) have 
been extensively studied in logic and psychology. In contrast, 
generalized quantifiers (e.g., “most”) allow for fine-grained 
statements about quantities. The discrepancy in the underlying 
mental representation and its interpretation among interpreters 
can affect language use and reasoning. We investigated the 
effect of quantifier type, quantification space (set size) and 
monotonicity on processing difficulty (in response time, RT) 
and response diversity of 77 generalized quantifiers. Shannon 
entropy was employed to measure response diversity. Our 
findings indicate: (i) Set size is a significant factor of response 
diversity, which implies that the underlying space is relevant 
for the interpretation. (ii) Quantifiers possess a rather static 
underlying representation within and across tasks within a 
participant. (iii) Quantifier type and monotonicity can affect 
response diversity; while the response diversity can predict 
RT. (iv) In reasoning, the number of generalized quantifiers 
versus classical quantifiers in a syllogism is a factor of re-
sponse diversity. Diversity in the interpretation of generalized 
quantifiers may be a cause of human’s deviation from logical 
responses. 

Keywords: generalized quantifiers; syllogism; total set size; 
monotonicity, individual differences   

Introduction 

“Quantifiers” can have two definitions: In logic, a quantifier 

acts as the binder to denote the relationships between sets. In 

natural language, a quantifier is a determiner or pronoun 

indicative of quantity or amount. In daily English, it limits 

and modifies the quantity of the noun it is attached to. They 

map categories to types. Hence, they are the basis for many 

fundamental concepts in different fields, especially logic, 

linguistics and psychology. In first-order logic, there are 

only two basic quantifiers: the universal “for all, ∀” and the 

existential quantifier “there exist (or for some), ∃”, which 

denote quantities. In Aristotelian logic (Austin, et al., 1971; 

Westerståhl, 2011), there are three quantifiers, “all/every”, 

“some” (also for “some… not”), and “no”. However, the 

aforementioned first-order quantifiers are too restricted in 

daily language use. Generalized quantifiers (also known as 

the second-order predicates or binary quantifiers) are in a 

wider use in language, for example, when the exact amount 

is not available (which is quite usual in daily situations) or 

to emphasize a rather qualitative property of the amount 

(e.g., “more than half”, “most”, “a few”). Generalized quan-

tifiers (or just quantifiers) include words and phrases like 

‘most’, ‘many’, ‘few’, ‘a few’, ‘some’, ‘more than half’, 

‘commonly’, ‘typically’ and cardinal numbers (e.g., more 

than one, and exact numbers such as two, a hundred).  

Since the first articles by Barwise and Cooper (1981) in 

the field of linguistics and Lindström (1966) in the field of 

logic, an increasing number of research articles have fo-

cused on generalized quantifiers. The interpretation of gen-

eralized quantifiers can be affected by factors like the quan-

tification space – its total set size (Newstead, Pollard, & 

Riezebos, 1987), word frequency (Chase, 1969), monotonic-

ity (Szymanik & Zajenkowski, 2013), common belief and 

background knowledge (Newstead & Collis, 1987; Moxey 

& Sanford, 1993), and context and working memory 

(Zajenkowski, Szymanik, & Garraffa, 2014). Some psycho-

logical studies (e.g., Newstead et al., 1987; Ragni, Eichhorn, 

Bock, Kern-Isberner, & Tse, 2017) have demonstrated that 

many quantifiers do not have a precise true/false cutoff for 

the quantity they represent, on a scale from 0 to 100. Even 

more, the minimum and maximum values of human’s sub-

jective valuation responses to individual quantifier can vary 

a lot (Ragni et al., 2017). This may hint at a fuzzy underly-

ing space of quantifiers among people, in terms of using and 

interpreting quantifiers (Budescu & Wallsten, 1985).  

Generalized quantifiers have been recently employed in 

studies of syllogisms1, such as the Probability Heuristics 

Model (PHM; Oaksford & Chater, 1994). A recent study 

(Ragni, Singmann, & Steinlein, 2014) has extended three 

syllogistic reasoning theories (Matching Hypothesis, Mental 

Model Theory and Preferred Mental Models) to generalized 

quantifiers. However, only the two quantifiers – “most” and 

“few” were included. The interpretation of generalized 

quantifiers plays a role in most reasoning theories, especial-

ly regarding the set relationship. For example, in mental 

model theory, it is the basis for the construction of mental 

models. Endorsement of invalid conclusion can be resulted 

when reasoners commit the illicit conversion fallacy of 

interpreting “All As are Bs” as equivalent to “All Bs are As” 

and make a mistake in the initial mental model construction. 

This is indeed a very common error in syllogistic tasks. 

While for PHM, it is relevant to the selection of the pre-

ferred quantifier in the conclusion.  

Knowing the factors affecting the underlying representa-

tion of generalized quantifiers is essential for cognitive 

theories for reasoning. One example is that “most As are 

                                                           
1 Syllogisms are deductive reasoning problems in which one or 

more conclusions are derived from two premises. The two premis-

es are categorical propositions which are assumed to be true. For 

example, the conclusion “All As are Cs” can be drawn from the 

two premises “All As are Bs” and “All Bs are Cs”. The abstract 

terms, A, B and C can be substituted by concrete categorical terms 

like “apple” and “fruit”. 
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Bs” is “equivalent” to “most Bs are As” if A and B have the 

same set size. However, if B has a much larger set size or 

cardinality than A, then the proposition does not hold after 

the switch (also known as illicit conversion). About 50% of 

the participants in the experiments of a previous study chose 

“most” as the conclusion quantifier for a syllogism with 

“most” as the quantifier for both premises2 (Chater & 

Oaksford, 1999). It is interesting that half of the participants 

considered A, B and C as having the same cardinality while 

the other half of the participants may not. About 15% of the 

participants in experiment 1 and 20% of the participants in 

experiment 2 chose “no valid conclusion” as their responses. 

It is very possible that these participants may be aware of 

the fact that the differences in total set sizes of A, B and C 

can lead to different conclusions for the syllogism.  

Factors affecting the variety in the interpretation of quan-

tifiers and underlying space have to be controlled in studies 

employing these quantifiers. Besides, are there individual 

differences in the underlying representation of a quantifier? 

Does the underlying space affect the response diversity? The 

answers may provide insight for the questions why human 

participants do not always draw the same or logical conclu-

sions but some particular irrational conclusions are preferred 

and why more response diversity was found for more diffi-

cult reasoning problems (e.g., Khemlani & Johnson-Laird, 

2012). Also, would the degree of vagueness/uncertainty of a 

quantifier cause more individual differences? What are the 

factors of the response diversity in the interpretation of gen-

eralized quantifiers? Will the degree of uncertainty cause a 

larger processing difficult which can be reflected by a longer 

processing time? And what are the factors of processing 

difficulty of generalized quantifiers? This analysis investi-

gates these questions regarding the underlying space and 

processing time (difficulty) of generalized quantifiers. More 

precisely, we focus on three levels of tasks: 1. Spontaneous 

valuation of the quantity or frequency the quantifier repre-

sents in the Subjective Valuation Task. 2. A Truth Judge-

ment Task in which participants were asked to judge if a 

quantified statement holds true for a picture. 3. Finally, a 

syllogistic reasoning task with generalized quantifiers that 

participants were asked to reason and derive a conclusion 

from two premises of quantified statements. Please refer to 

the Method section for details about the three tasks. 

Two measures of response diversity were employed in 

this study, namely the standard deviation and Shannon en-

tropy. In information theory, Shannon entropy calculates the 

expected value of the information transmitted in a message 

(Shannon & Weaver, 1949), as a function of the probability 

of the occurrence of each possible message. For each quanti-

fier, the entropy in the Truth Judgement Task, was calculat-

ed by the aggregated normalized probabilities of the truth 

responses for each of the pictures/scenarios presented (see 

Method for the details) by the Shannon equation: -∑pilog2pi, 

where pi is the probability of a truth response. There will be 

                                                           
2 The syllogism mentioned here is the MM4 syllogism in the 

study: Premise 1 as “Most As are Bs”; Premises 2 as “Most Bs are 

Cs”; and conclusion as “Most Cs are As”. 

several “small” probabilities if the response is more diverse. 

Conversely, if the responses are condensed to a few values, 

the probabilities of these selected values will be high. The 

smaller the probability, the larger the entropy value calculat-

ed by the equation. And thus, a larger Shannon entropy 

value indicates more discrepancy in the responses. It was 

used to measure the response diversity in syllogistic reason-

ing in a meta-analysis study (Khemlani & Johnson-Laird, 

2012). Standard deviations of the responses in the Subjec-

tive Valuation Task and Truth Judgement Task were calcu-

lated as well to check if the two measures of diversity agree 

with each other. For answering the question regarding 

underlying space, Newstead et al. (1987) found that the 

amount of entities represented by certain quantifiers (e.g., 

“some”) could be affected by the assumed total set size of 

the experimental scenario. However, does this hold for all 

generalized quantifiers? Besides the extra-linguistic factor 

of total set size, several properties of the quantifier itself can 

also affect the diversity of human responses (interpretation) 

and response time. They include, among others, quantifier 

type, monotonicity, and word frequency. We will elaborate 

two aspects below. 

Quantifier Types  

There are many different ways of classifying quantifiers 

(e.g., logical quantifiers versus different types of binary 

quantifiers; simple versus complex quantifiers). In this 

study, the quantifiers were classified in the sense of natural 

language, namely frequency versus quantity quantifiers. 

Many studies have been conducted for quantity quantifier, 

while there are only few for frequency ones. For instance, 

Newstead and Collis (1987) studied the context effect in the 

interpretation of ten frequency quantifiers. In contrast to 

some previous findings for quantity quantifiers (Chase, 

1969; Newstead & Griggs, 1984; Newstead et al., 1987), no 

significant set size effect or effect due to the presence of 

other quantifiers were found. This supported that processing 

of quantifiers of different types may be different due to their 

specific properties. 

Monotonicity  

A generalized quantifier Qup is upward monotone/entailing 

(or monotone increasing) if and only if for all M and all A, 

B ⊆ B′ ⊆ M, QM(A,B) implies QM(A,B′). That means Qup 

license the inference from subsets to supersets. Similarly, a 

Qdown is downward monotone/entailing if and only if for 

all M and all A, B ⊆ B′ ⊆ M, QM(A,B’) implies QM(A,B). 

Contrastive to Qup, Qdown license the inference from super-

sets to subsets. For example, “Some men are Germans im-

plies some men are Europeans”. With the fact that “Ger-

mans” is within the set of “Europeans”, “some” is an up-

ward monotone quantifier. Similarly, “No men are birds” 

implies “No men are eagles”. With the fact that eagles are 

birds, “no” is downward monotone. There are non-

monotone quantifiers also, e.g., “exactly three”. For exam-

ple, “exactly three men are Germans” does not imply “ex-

actly three men are Europeans” or vice versa. According to 
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the definition, many natural language quantifiers are (either 

upward or downward) monotone, including the three Aristo-

tle quantifiers, “all”, “some” and “no”. Barwise (1981) sug-

gested that monotone quantifiers are easier to process than 

non-monotone ones. 

Aims of the Study and Research Questions 

We aimed to examine human’s interpretation of a large 

number of generalized quantifiers and factors affecting the 

response diversity and processing time of these quantifiers 

to facilitate further studies of generalized quantifiers in 

different fields. As mentioned before, the significant proper-

ties have to be controlled in studies involving these quantifi-

ers in order to eliminate some confounding factors. The 

analyses focus on three factors, namely total set size, quanti-

fier type (quantity quantifier and frequency quantifier), and 

monotonicity (upward, downward and non-monotone), 

according to two domains, namely degree of variation in 

underlying representation space (among interpreters, in 

terms of response diversity) and processing difficulty (in 

terms of processing time) of the generalized quantifiers.  

Research Question 1: Factors of Response Diversity  

Unlike “All”, “No” or “Seven” (numerical quantifiers), the 

amount (or proportion) represented by most generalized 

quantifiers can be rather fuzzy. Humans do not agree with 

each other regarding the representation space of individual 

quantifier. What are the factors affecting the differences in 

the underlying representation space of quantifiers? In other 

words, are total set size, quantifier type and monotonicity 

the factors affecting response diversity? Research question 1 

(RQ 1) was examined by analyzing the standard deviation 

(SD) and Shannon entropy measures in both the Subjective 

Valuation and Truth Judgement Tasks. We hypothesized 

that the smaller set size condition, quantity quantifiers and 

upward monotone quantifiers may exhibit smaller response 

diversities, i.e., smaller standard deviation and entropy 

measure values. 

Research Question 2: Processing Time  

Does greater degree of fuzziness cause a longer processing 

time (in terms of response time)? Besides, is the mono-

tonicity a factor of processing time as well? Szymanik and 

Zajenkowski (2013) found a significant interaction effect of 

monotonicity and the truth value of the quantified statement 

in a verification task of four quantifiers but failed to find a 

significant main effect of monotonicity. We extended the 

study with more quantifiers of different quantifier types. 

Word frequency was included as a covariant because it has a 

general effect in word recognition3. Quantifiers of higher 

                                                           
3  Quantifiers with higher word frequencies are supposed be pro-

cessed faster due to the availability heuristic or ease of retrieval, 

having a faster response time in a spontaneous timed task. A signif-

icant decrease of the recognition time for words with higher word 

frequency (e.g., O’Malley & Besner, 2008) is generally found. The 

word frequency measures were taken from the British National 

Corpus: http://www.natcorp.ox.ac.uk.  

word frequency are expected to be processed faster. We 

hypothesized that the entropy measures and word frequency 

are significant predictors of RT; and the quantifier type may 

affect the RT as well. 

Method 

Participants 

104 native English speakers (M = 40.8 years; range = 21-75 

years; 63 females) participated in the online experiment on 

Amazon Mechanical Turk. We controlled for one participant 

from a given computer. They received a nominal fee.  

Materials, Design and Procedure 

A search for common quantity and frequency quantifiers 

was performed in Google with the keywords “quantifiers”, 

“frequency quantifiers”, “frequency adverbs”, “determin-

ers”, “how often”, “how many”, and “how much”. 77 gener-

alized quantifiers were selected4, with 34 frequency quanti-

fiers (frequency adverbs); and 14, 13 and 16 quantity quanti-

fiers which can be used with countable, uncountable and 

both countable and uncountable nouns (type-both) respec-

tively. Each participant had to perform two tasks: 

 

A Subjective Valuation Task Participants were asked to 

provide a subjective value of the amount the quantifier rep-

resents. They had to move a slidebar to indicate their re-

sponses in terms of percentages (from 0% to 100%). Each 

quantifier was evaluated once. 

 

A Truth Judgement Task Participants had to evaluate the 

validity of a quantified statement presented above a picture. 

For the effect of total set size, participants were randomly 

assigned to either the smaller-set group or larger-set group. 

The number of participants in each group was counterbal-

anced. For countable and type-both quantifiers, pictures of 

10 circles or 100 circles were displayed, with 0 to all of 

them colored black (see Fig. 1). While for uncountable and  

type-both quantifiers, pictures of a heap of sand or desert 

(composed of 10 heaps of sand) were presented with 0 to 

100% of the sand or desert colored brown (see Fig. 2). 

 

 
 

Figure 1: Pictures for countable space in the Truth 

Judgement Task.  Participants received the left (10 circles) 

or right picture (100 circles) and had to evaluate whether 

a quantified statement like “Some circles are black” 

(presented at the left hand upper corner) is a true 

description of the picture or not. 

                                                           
4 The list can be retrieved from www.cc.uni-freiburg.de/data. 
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For frequency quantifiers, timelines of a week with a cof-

fee cup icon for 0 to 7 days or a monthly schedule with an 

icon of football for 0-31 days were presented. Each quantifi-

er was tested 2 times for each participant in two blocks. 

Pictures displayed were counterbalanced within participants 

in the sense that if the participant received less than or equal 

to half positive situation (e.g., 3 out of 10 circles colored 

black) in the first block, he/she would receive more than or 

equal to half positive situation in the second block (e.g., 7 

out of 10 circles are black) and vice versa. The same manip-

ulation was applied to all the three scenarios (circles, 

sand/desert, and timeline/calendar). Type-both quantifiers 

were tested four times for each participant as they were 

presented twice in both the circle and sand/desert scenarios. 

The possible picture options were counterbalanced among 

participants. For countable and type-both quantifiers, the 

statement was in the form of “Quantifier (of the) circles are 

black” or “These circles are Quantifier black” (for “com-

monly” and “typically”). For the sand/desert situation, the 

statement was “Quantifier sand is colored brown”. The 

statement was in the form of “Tim Quantifier drinks coffee” 

or “Tim drinks coffee Quantifier” for the weekly timeline 

scenario; and “Tim Quantifier plays soccer” or “Tim plays 

soccer Quantifier” for the monthly calendar scenario. Partic-

ipants were asked to judge as accurately and quickly as 

possible whether the statement was a truth description of the 

picture. Participants always performed the Subjective Valua-

tion Task first. 

 

 
 

Figure 2: Pictures for an uncountable space in the Truth 

Judgement Task. Participants had to judge whether a 

statement like “Most sand is colored brown” is a true 

description of the picture or not. 

Results 

The Underlying Representation Space  

For the first research question, the diversity in the responses 

was evaluated by the Shannon entropy and standard devia-

tion measures of the responses in both the Truth Judgement 

Task and Subjective Valuation Task, as the indices. The 

standard deviation and entropy measures of the responses 

were calculated according to the two different set size condi-

tions in the Truth Judgement Task (SD1, Entropy1; and 

SD2, Entropy2). SD1 and Entropy1 are the standard devia-

tion and entropy measure of the smaller set size pictures (10 

circles, 1 heap of sand and weekly timeline). SD2 and En-

tropy2 are the standard deviation and entropy measure of the 

larger set size condition (100 circles, desert and monthly 

schedule). The Spearman’s rank correlations between the 

three SDs and entropy measures were tested both within and 

across the two tasks. Significant correlations were found 

except for SD2 with the entropy in the Subjective Valuation 

Task and Entropy1, see table 1 for the results. For the effect 

of set size on the response diversity, significant differences 

were found between both SD1 and SD2; and Entropy1 and 

Entropy2, t(76) = -6.142, p < .001 and t(76) = -7.268, p < 

.001, respectively, with SD2 and Entropy2 being significant-

ly larger. The two measures (SD and entropy) provided 

similar results, as the entropy measures were more reliable 

indices for the response diversity (according to the positive 

correlations across tasks), we used the entropy measures for 

the following analyses for the sake of simplicity. 

Regarding the property of monotonicity, the quantifiers 

were classified into 28 upward monotone, 23 downward 

monotone, 11 monotone and 12 non-monotone quantifiers. 

The effects of the three quantifier properties on the two 

entropy measures (for underlying space) in the Truth 

Judgement Task were then tested. The 2 (quantifier type: 

frequency and quantity) x 4 monotonicity (monotonicity: 

upward, downward, monotone and non-monotone) MANO-

VA, with word frequency as a covariate,  for the two entro-

py measures showed that the quantifier type had a signifi-

cant multivariate effect on the two entropy measures, F(2, 

64) = 179.820, p < .001, Wilk’s λ = .151, ηp
2 = .849; as well 

as monotonicity and word frequency, F(6, 128) = 5.568, p < 

.001, Wilk’s λ = .629, ηp
2 = .207 and F(2, 64) = 10.130, p < 

.001, Wilk’s λ = .760, ηp
2 = .240, respectively. The interac-

tion effect of quantifier type and monotonicity was not sig-

nificant.  

The following post-hoc tests were performed according to 

quantifier type (frequency versus quantity) and monotonici-

ty (upward and downward). The t-tests showed that the two 

entropy measures (Entropy1 and Entropy2) were reliably 

different for frequency quantifiers, t(33) = -23.426, p < 

.001, but not for quantity quantifiers. Regarding the mono-

tonicity, the two entropy measures were reliably different 

for upward and downward monotone quantifiers, Entropy1: 

t(49) = 2.328, p = .024; Entropy2: t(49) = 3.198, p = .002. 

Differences between the response diversity indices for the 

first half and second half of the tasks were also examined. 

Regarding Entropy1 and Entropy2, both t-tests were not 

significant, Entropy1: t(76) = 1.236, p = .220, Entropy2: 

t(76) = .455, p = .650. For the Subjective Valuation Task, 

there was no difference between the first and second half of 

the task neither, t(73) = -.067, p = .946. 

Processing Time 

We filtered out the response times which exceed average RT 

+/- 2 SD according to individual participant. Firstly, a step-

wise regression was performed to test if the word frequency 

and the three entropy measures significantly predicted the 

response time. The results of the regression analysis showed 

that the two entropy measures in the Truth Judgement Task 

explained 38.6% of the response time (adjusted R2 = .386, 

F(2, 74) = 24.928, p < .001, Entropy1: β = .975, p < .001, 

Entropy2: β = -.603,  p < .001. As the response times of the 

two quantifier types were significantly different, 
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Table 1: Results of Spearman’s rank correlation of the standard deviation (SD) and entropy measures of the responses in the 

Subjective Valuation Task (SD and entropy) and Truth Judgement Task (SD1 and SD2; and Entropy1 and Entropy2).

  

Valuation Judgement 

  

SD Entropy1 Entropy2 SD1 SD2 

Valuation 
entropy -.359** .566** .425** .450** 0.188 

SD 
 

-.257* -.326** -.485** -.444** 

Judgement 

Entropy1 
  

.503** .483** -0.086 

Entropy2 
   

.557** .599** 

SD1 
    

.555** 

*Correlation is significant at the .05 level (2-tailed). 

**Correlation is significant at the .01 level (2-tailed). 

t(75) = 7.188, p < .001, the regression was repeated  accord-

ing to the two quantifier types. For frequency quantifiers, 

word frequency was the only significant predictor, adjusted 

R2 = .157, F(1, 32) = 7.128, p = .012; β = -.427, p = .012. 

While for quantity quantifiers, entropy in the Subjective 

Valuation Task was the only significant predictor of the 

response time, adjusted R2 = .136, F(1, 41) = 7.609, p = 

.009; β = .396,  p = .009. The effect of monotonicity on 

response time was not significant. Do generalized quantifi-

ers affect the response diversity in syllogistic reasoning? 

Syllogisms are chosen as quantifiers are the essence of syl-

logistic reasoning and so their effect may be most visible. 

Entropy in Reasoning with Generalized 

Quantifiers: Additional Empirical Support 

We reanalyzed the data from Ragni et al. (2014) with the 

entropy measure for response diversity. Twenty-five native 

English speakers participated in the online experiment on 

Amazon Mechanical Turk. Each participant had to solve 40 

syllogistic problems with at least one of “most” and “few” 

being the quantifier of one of the two premises. Participants 

had to choose the conclusion quantifier of the syllogism 

among the four classical Aristotle quantifiers and the two 

generalized quantifiers “most” and “few” (i.e., all, no, some, 

some…not, most and few), to the question “what follows?” 

after reading the two premises. The conclusion direction 

presented (a-c or c-a) was counterbalanced. 20 problems 

were tested for each conclusion direction. “Most” and “few” 

appeared in the first premise respectively in 6 of the syllo-

gisms, with the second premise being one of the six quanti-

fiers (6 x 2 = 12 problems). For the 8 remaining syllogisms, 

“most” and “few” appeared in the second premise, with the 

first premise being one of the four Aristotle quantifiers.  

The entropy measure of the responses for each syllogism 

was calculated and an ANOVA and a t-test were performed. 

The 2 (conclusion direction: a-c vs. c-a) x 2 (position of the 

generalized quantifier: first premise vs. second premise) 

ANOVA showed a significant main factor of the position, 

F(2, 39) = 4.738, p = .015, ηp
2 = .218, but both conclusion 

direction and the interaction effect were not significant. 

Post-hoc analysis showed that syllogisms with generalized 

quantifier in the first premise had a significantly higher 

entropy, t(30) = 2.174, p = .038 (2-tailed). The number of  

 

generalized quantifier affects the entropy as well. If both 

premises contained generalized quantifiers, the entropy was 

marginally smaller, Independent Samples Test: t(38) = 

1.957, p = .058 (2-tailed)5. The marginal result might due to 

the fact that only 8 syllogisms have two generalized quanti-

fiers but 32 problems have only one generalized quantifiers. 

General Discussion 

While extensive research in psychology of reasoning and 

logic has dealt with the four classical quantifiers (“all”, 

“some”, “some…not”, and “none”), few cognitive reasoning 

theories for syllogisms have been extended to generalized 

quantifiers – and often to “most” and “few” only. Different 

quantifiers possess different specific properties which affect 

their interpretation (especially in terms of interpretation 

diversity) in daily language. For example, for universal 

quantifiers like “All” and “No”, most participants would 

select 100% and 0%, respectively, in the Subjective Valua-

tion Task, with few selecting values within 95% to 99% and 

0% to 5%, respectively. In contrast, the more “fuzzy” gener-

alized quantifiers elicit a greater diversity in the responses. 

For example, for “some”, we got 6 responses for 20% and 

35%, 5 responses for 25%, and 10 responses for 45% 

(among 104 responses). In total, 47 different percentages 

(out of 101 possible choices) were selected as the responses 

in the Subjective Valuation Task. It seems that the right tool 

to analyze the interpretation diversity is missing. We argue 

that Shannon entropy, which was developed for communica-

tion, is an excellent method which can be employed to 

measure the response diversity of generalized quantifiers. 

Using Shannon’s entropy to measure response diversity 

was introduced in this study as it is a binary-based element 

which fits the dichotomous experimental design of the Truth 

Judgement Task. It shows reliable correlated results with the 

classical standard deviation measure within and across tasks. 

Shannon entropy seems a better measure for response diver-

sity across tasks than the SD. Our results show that the total 

set size, quantifier types (frequency versus quantity) and 

monotonicity can affect the interpretation diversity of a 

quantifier; while the interpretation diversity (in terms of 

                                                           
5 We performed the Levene's test for equality of variances and 

the results were not significant, i.e. equal variance can be assumed. 
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entropy measures) can in turn affect the response time. In 

accordance with the findings of Szymanik and Zajenkowski 

(2013), we did not find a reliable effect of the monotonicity 

of quantifiers on RT. One can speculate that the difference 

in processing difficulty applies to cardinal quantifiers only.  

The smaller set size condition has a smaller entropy value 

as hypothesized, in contrast to the frequency quantifiers and 

downward monotone quantifiers. Further studies are re-

quired to explain this finding. Quantity quantifiers have a 

slower RT in general and this might be affected by the larger 

discrepancy in the underlying representation space, which 

hints a fuzzier underlying representation of quantity quanti-

fiers among participants. However, our results suggest that 

quantifiers possess a rather static underlying mental repre-

sentation space within participants, not changing within or 

across tasks, as there is no difference for the response diver-

sity measures between the first and second half of the tasks. 

  Despite our finding of total set size being a factor in the 

interpretation of generalized quantifiers, it is still possible 

for human to interpret quantifiers without the knowledge of 

total set size (Van Tiel & Geurts, 2013). But we can specu-

late that participants usually represent the underlying set by 

a default mental model for the respective quantifiers.  

Our study shows that total set size, quantifier type, and 

monotonicity (and word frequency) are all contributing to 

the possible diversity in the use or reasoning of generalized 

quantifiers. Based on these factors, natural extensions of 

theories which already assume models of different sizes and 

are analogous representations of the state of affairs (like the 

mental model theory) to incorporate the proposed results is 

possible. Extension to generalized quantifiers is increasingly 

important for cognitive reasoning theories to avoid a self-

centered focus, which renders them ultimately useless for 

explaining or predicting complex everyday communication. 

Large-scale studies of these generalized quantifiers in rea-

soning tasks can test if the diversity in the interpretation of 

these quantifiers is the factor of the response diversity in 

reasoning tasks. It is possible that differences in the interpre-

tation of the quantifier contribute to the deviation from logi-

cal responses, other than reasoning/heuristic processes. 

Controlling the above significant factors is important for 

studies involving quantifiers, to avoid hidden experimental 

confounds. Also, for theories with predictions on response 

time, it is possible that interpretation diversity is a signifi-

cant factor. Further studies on this hypothesis are necessary. 

 

Acknowledgement 
This work is supported by DFG-Projects under grant num-

bers RA 1934/2-1, RA 1934/3-1, and RA 1934/4-1. 

References 

Austin, J. L., Strawson, P. F., Grice, H. P., Chomsky, N., 

Katz, J. J., Goodman, N., et al. (1971). The philosophy of 

language (Vol. 39). London: Oxford University Press. 

Barwise, J., & Cooper, R. (1981). Generalized Quantifiers 

and Natural Language. Linguistics and Philosophy, 4(2), 

159-219. 

Brysbaert, M., Buchmeier, M., Conrad, M., Jacobs, A. M., 

Bölte, J., & Böhl, A. (2011). The word frequency effect. 

Experimental psychology, 58(5), 412-424. 

Budescu, D. V., & Wallsten, T. S. (1985). Consistency in 

interpretation of probabilistic phrases. Organizational 

Behavior and Human Decision Processes, 36(3), 391-405. 

Chase, C. I. (1969). Often is where you find it. American 

Psychologist, 24(11), 1043. 

Chater, N., & Oaksford, M. (1999). The probability 

heuristics model of syllogistic reasoning. Cognitive 

psychology, 38(2), 191-258. 

Khemlani, S., & Johnson-Laird, P. N. (2012). Theories of 

the syllogism: A meta-analysis. Psychological Bulletin, 

138(3), 427-457. 

Lindström, P. (1966). First order predicate logic with 

generalized quantifiers. Theoria, 32(3), 186-195. 

Moxey, L. M., & Sanford, A. J. (1993). Prior expectations 

and the interpretation of natural language. European 

Journal of Cognitive Psychology, 5(1), 73-91. 

Newstead, S. E., Pollard, P., & Riezebos, D. (1987). The 

effect of set size on the interpretation of quantifiers used 

in rating scales. Applied ergonomics, 18(3), 178-182. 

Newstead, S., & Collis, J. M. (1987). Context and the 

interpretation of quantifiers of frequency. Ergonomics, 

30(10), 1447-1462. 

O'Malley, S., & Besner, D. (2008). Reading aloud: 

Qualitative differences in the relation between stimulus 

quality and word frequency as a function of context. 

Journal of Experimental Psychology: Learning, Memory, 

and Cognition, 34(6), 1400-1411. 

Ragni, M., Eichhorn, C., Bock, T., Kern-Isberner, G., & 

Tse, A. P. P. (2017). Formal Nonmonotonic Theories and 

Properties of Human Defeasible Reasoning. Minds & 

Machines, 27(1), 37-77. 

Ragni, M., Singmann, H., & Steinlein, E. M. (2014). Theory 

Comparison for Generalized Quantifiers. Proceedings of 

the 36th Annual Conference of the Cognitive Science 

Society (pp. 1330-1335). Austin, TX: Cognitive Science 

Society. 

Segui, J., Mehler, J., Frauenfelder, U., & Morton, J. (1982). 

The word frequency effect and lexical access. 

Neuropsychologia, 20(6), 615-627. 

Shannon, C. E., & Weaver, W. (1949). The mathematical 

theory of communication. Urbana: University of Illinois 

Press. 

Szymanik, J., & Zajenkowski, M. (2013). Monotonicity has 

only a relative effect on the complexity of quantifier 

verification. Proceedings of the 19th Amsterdam 

Colloquium, (pp. 219-225). Amsterdam. 

Van Tiel, B., & Geurts, B. (2013). Truth and typicality in 

the interpretation of quantifiers. Proceedings of Sinn und 

Bedeutung 18, (pp. 451-468). Basque Country. 

Zajenkowski, M., Szymanik, J., & Garraffa, M. (2014). 

Working memory mechanism in proportional quantifier 

verification. Journal of psycholinguistic research, 43(6), 

839-853. 

3385



Right hemisphere lateralization and holistic processing do not always go together: 
An ERP investigation of a training study 

 
Ricky Van-yip Tso (rvytso@eduhk.hk) 

1. Department of Psychology; and 2. Psychological Assessment and Clinical Research Unit, Centre for Psychological Health; 
The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, New Territories, Hong Kong 

 
Hangyu Chen (ariachan@connect.hku.hk), Yui Andrew Yeung (andrewy@connect.hku.hk) 

Terry Kit-fong Au (terryau@hku.hk), & Janet Hui-wen Hsiao (jhsiao@hku.hk) 
Department of Psychology, The Jockey Club Tower, Centennial Campus,  

The University of Hong Kong, Pokfulam Road, Hong Kong 
 

Abstract 
Holistic processing (HP) and right-hemispheric lateralization 
both mark expertise in visual object recognition such as face 
and sub-ordinate object perception. However, counter-
examples have been found recently: Experiences of selective 
attention to parts such as writing experiences in Chinese 
characters reduced HP while increased right hemisphere 
lateralization. We investigated the association between HP 
and brain activities measured by event-related potentials 
(ERP) in participants trained to recognize artificially-created 
scripts using either whole-word or grapheme-to-phoneme 
approaches. Stronger N170 activities were found in both 
hemispheres in both training approaches. Though the type of 
training approaches induced opposite directions in 
correlations between HP and the ERP signals in the right 
hemisphere: In the whole-word condition, the HP effect 
increased with stronger right-hemispheric N170 activities; 
while the direction of this correlation was reversed in the 
grapheme-to-phoneme condition. This demonstrates that HP 
and right hemispheric lateralization are separate processes 
that are associated with different perceptual mechanisms.  

Keywords: holistic processing, hemisphere lateralization, 
ERP, EEG, perceptual expertise 

Introduction 
Holistic processing and right hemisphere 
lateralization   
Holistic processing (HP) has consistently been reported to 
be a perceptual marker of visual expertise in face and 
subordinate-level visual object recognition (Bukach et al., 
2006; c.f. Mckone, Kanwisher, & Duchaine, 2007). For 
example, Gauthier, Williams, Tarr, and Tanaka (1998) 
trained participants to recognize “Greebles”—novel 
artificial objects—and found a positive relationship between 
HP and performance in within-category object recognition. 
Similarly, when participants were trained to individualize 
“Ziggerins” (an artificial object type), they showed an 
increase in HP (Wong, Palmeri, & Gauthier, 2009). 

HP in face perception can be demonstrated with the 
composite face illusion induced by the composite paradigm: 
Two identical top halves of two faces are more likely judged 
as different when the two bottom-half faces are from 
different faces, (see Rossion, 2013, for a review). The 
composite illusion suggests that all facial parts are 
obligatorily attended to, which results in the failure of 
selectively attention to parts (Richler, Wong, & Gauthier, 

2011). This paradigm demonstrates one of the three types of 
configural processing according to Maurer et al. (2002).  

Hemispheric asymmetry may be another expertise marker 
for object recognition. Neuroimaging studies generally 
showed stronger activation in the right occipitotemporal 
area for face recognition (Rossion, Hanseeuw, & Dricot, 
2012). Complementing this finding, Gauthier and Tarr 
(2002) found that as participants were trained to recognize 
individual Greebles, increase in HP was correlated with 
activation changes in the right occipitotemporal regions. 
Because of the concurrence of robust HP in face and 
objection recognition with stronger right-hemisphere (RH) 
activations, HP is suggested to be a property of RH visual 
processing (Ramon & Rossion, 2012). It is also consistent 
with the holistic-analytic dichotomy proposed in the 
hemispheric asymmetry literature (Cooper & Wojan, 2000).  

However, recent studies suggest that HP and RH 
lateralization do not necessarily go together. For example, in 
Chinese character perception, Hsiao and Cottrell (2009) 
found that while expert readers showed a reduced HP as 
compared with novice readers, the left-side bias effect, 
which is suggested to be an indication of RH lateralization, 
was shown only in experts1. Tso et al. (2014) reported an 
inverted U-shape development pattern in HP of Chinese 
characters: as compared with novices, Chinese readers with 
limited writing experiences showed increased HP, whereas 
Chinese readers skilled in writing Chinese characters 
showed reduced. This result suggests that HP is modulated 
by sensorimotor experiences while RH lateralization is not. 

Theories and model of hemispheric processing 
The RH has long been suggested to preferentially execute 
whole-based/configural/coarse/global processing while part-
based/analytic/fine/local processing is more involved in the 
left hemisphere (LH) (e.g., Sergent, 1982). Ivry and 
Robertson (1998) proposed the Double Filtering by 
Frequency (DFF) theory, which suggests that visual 
information is processed in the brain by frequency-based 

                                                             
1 Left-side bias in face perception refers to the phenomenon that 

people often judge chimeric faces formed by two left halves of the 
original face to be more similar to the original face than those 
formed with two right halves (Brady, Campbell, & Flaherty, 2005). 
This effect was also observed in Chinese literates viewing mirror-
symmetric Chinese characters (Hsiao & Cottrell, 2009). 
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representations at two stages: at the first stage, attention 
processes select a task-relevant frequency range; at the 
second stage, high spatial frequency (HSF) information is 
amplified in the LH while low spatial frequency (LSF) 
information is amplified in the RH. The DFF theory is able 
to account for hemispheric asymmetry in processing local 
(HSF) and global (LSF) information. For example, using 
Navon’s hierarchical patterns (1977; Fig. 1), Sergent (1982) 
found a left-visual field (LVF)/RH advantage in judgements 
made based on global information and a right-visual field 
(RVF)/LH advantage in judgements made based on local 
information. Similarly, a LVF/RH advantage was found in 
identifying LSF gratings while a RVF/LH advantage for 
HSF gratings (e.g., Christman, Kitterie, & Hellige, 1991). 
These results suggest that the LH is more tuned to 
processing local/HSF information while the RH more tuned 
to processing global/LSF information.  

 
Fig. 1. Hierarchical letter patterns. The pattern on the 
left shows the global form ‘L’ consisting of local 
elements ‘H’. The one on the right shows the global 
form ‘H’ and local elements ‘L’. 
 
In visual word recognition, a stronger LH lateralization is 

typically observed for alphabetic than logographic scripts. 
Hsiao and Lam (2014) showed that this effect could be 
accounted for by a computational implementation of the 
DFF theory: the decomposition of words into graphemes for 
grapheme-phoneme mapping requires more HSF/LH 
processing than logographic reading. Hsiao and Cheung 
(2011) and Hsiao and Galmar (2016) examined the 
relationship between HP and RH lateralization in visual 
recognition using the same model (with triangular symbols 
consisting of 3 English letters and faces respectively). They 
found a positive correlation between HP and RH 
lateralization when the recognition task relied purely on the 
distanced between features (i.e., the second order 
relationship, a type of configural processing; Maurer et al., 
2002), while this correlation became negative when the 
recognition task relied purely on the identity/features of 
local components. These results suggest that HP and RH 
lateralization are separate processes modulated by different 
recognition requirements. Since the recognition of words in 
alphabetic languages relies more on the identity of local 
components for grapheme-phoneme conversion than that in 
logographic languages, it is possible that alphabetic and 
logographic reading will result in different relationships 
between HP and RH lateralization.  

ERP component N170 
In EEG studies, the ERP component N170, peaking between 
150 and 200 ms after the onset of visual stimulus 
presentation, was found to be associated with perceptual 

expertise effects (e.g. ,Maurer, Zevin, & McClandiliss, 
2008). Consistent with neuroimaging and behavioural 
research on hemispheric asymmetry in visual object 
recognition, EEG/ERP studies also showed reliable 
hemispheric asymmetries of visual expertise effects in 
N170, such as a larger N170 response in the RH for faces 
(e.g., Scott & Nelson, 2007), and a larger N170 response in 
the LH for words (e.g. Maurer, Brandeis, & McCandliss, 
2005). Thus, the N170 responses towards visual stimuli, 
which are suggested to reflect occipito-temporal activities in 
visual object recognition, can be considered an 
electrophysiological indication of hemispheric asymmetry 
in visual object processing (e.g., Maurer et al., 2008).  

The present study 
Here we aim to examine how different visual object 
recognition requirements modulate the relationship between 
HP and RH lateralization. We specifically contrast the 
difference between visual word recognition in alphabetic 
and logographic languages, the two major types of scripts 
currently in use. To do this, we trained participants to 
recognize artificially-created characters and examined the 
perceptual and electrophysiological changes. Participants 
learned to recognize the same set of characters under which 
the decoding method was manipulated to be using either 
whole-word (logographic) or grapheme-to-phoneme 
(alphabetic) approaches. Any difference in the perceptual or 
hemispheric lateralization changes occurring after the 
training should mainly come from the difference in the 
decoding methods (logographic vs. alphabetic). According 
to the previous studies (e.g., Hsiao & Galmar, 2016), the 
requirement of grapheme-phoneme conversion in learning 
to read the characters alphabetically may induce a negative 
correlation between HP and RH lateralization, whereas a 
positive correlation may be observed when learning to read 
the same characters logographically. This is the first training 
study to investigate HP and its association with hemispheric 
lateralization of reading alphabetic and logographic scripts. 

Methods 
Participants 
54 college students aged 18 to 26 with no prior knowledge 
to Korean Hanguls were recruited: 18 of which spoke 
English as a native language and 34 were Cantonese-English 
bilinguals who spoke Cantonese as a native language. 25 of 
them were females. They were right-handed according to the 
Edinburgh Handedness Inventory (Oldfield, 1971) with 
normal or corrected to normal vision. Half of them were 
randomly assigned to the logographic condition while half 
of them were assigned to the alphabetic condition, with 
native language and gender matched between the conditions. 
 
Materials  
A total of 30 artificial components were created to make 80 
Artificial Korean-like Characters (AKC). The AKCs were 
of a top-bottom configuration with two top components and 
one bottom component in each character—this arrangement 
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simulated the top-heavy configuration of faces as well as a 
structure of Chinese characters. In the Alphabetic condition, 
each component in an AKC corresponded to a phoneme. 
Each AKC mapped onto a syllable with its combination of 
components following a consonant-vowel-consonant (CVC) 
phonological rule. In the Logographic condition, each AKC 
was randomly assigned a syllable pronunciation that 
appeared in the Alphabetic condition (Fig. 2). 
 

a  

b  
Fig. 2. Examples of (a) AKC components and (b) an AKC 

 
Training Phrase 
Each participant learned all 80 AKCs during 3 learning 
sessions in 3 consecutive days. Each learning session 
consisted of two blocks with 40 AKCs learned in each 
block. Two learning blocks in each learning session allowed 
participants to be exposed to all 80 AKCs per day. In the 
Logographic condition, each AKC was shown as a whole 
character for four times in each trial, accompanied by its 
pronunciation read by a female voice in each display. Each 
of the first three displays lasted for 500 ms, with the fourth 
display stayed on the screen for the participants to 
familiarize with for 5 seconds. In the Alphabetic condition, 
each AKC was also shown as a whole character for four 
times in each trial. A different component was highlighted 
in each of the first 3 displays, accompanied by the 
pronunciation of the component’s phoneme read in a female 
voice in each display, for 500ms. The last display of the 
AKC was accompanied by the pronunciation of the whole 
AKC and stayed on the screen for 5 seconds. 

To monitor and encourage learning progress, after each 
learning session, participants completed a forced-choice 
quiz. In each trial, two AKCs were displayed on the screen 
accompanied by a syllable sound. Participants chose the 
AKC that matched the sound by pressing the corresponding 
buttons on a response box. There were a total number of 160 
trials with each AKC-sound pair appearing twice. A 
feedback on the correctness with the accumulated 
percentage of correct responses was given immediately at 
the end of each trial. At the end of the last training session, 
participants in both the Alphabetic and Logographic 
condition developed over 80% accuracy in the quiz. 

Post-test and Pretest 
Participants performed a complete composite task and a 
sequential matching task with EEG recording with AKC 
stimuli once before and once after the training 
Complete Composite Task. We employed the complete 
composite paradigm to examine HP of AKCs, adopting the 
procedures from Hsiao and Cottrell (2009). Eighty pairs of 
AKCs taught in the training were selected. 20 pairs were 
presented in each of the four conditions: same-congruent, 
different-congruent, same-incongruent, and different-
incongruent trials (Fig. 3a). In the congruent trials, the 

attended halves and the irrelevant halves led to the same 
response (i.e. both the attended part and the irrelevant part 
were the same or different). In the incongruent trials, the 
attended halves and the irrelevant halves led to different 
responses: In same incongruent trials, the attended halves 
were the same while the irrelevant halves were different; 
whereas in different incongruent trials, the attended halves 
were different while the irrelevant halves were the same2. 

Each trial started with a fixation cross for 1000 ms, 
followed by a cue indicating the part that participants should 
attend to (either top or bottom) for 1000 ms. A pair of 
AKCs–one above and the other one below the initial 
fixation respectively, about five degrees of visual angel 
away from each other–appeared for 500ms, followed by a 
mask. Participants were instructed to judge whether the 
attended halves of the two AKCs were the same or not as 
quickly and as accurately as possible by pressing the 
corresponding buttons on the response box (Fig. 3). 
Accuracy of each trial was recorded. 

 
Fig. 3. (a) Illustration of stimulus pairs in the complete 
composite paradigm; the attended components are 
circled in red. (b) Trial sequences, the red line shows 
the splitting point between top and bottom halves. 

 
Each AKC was approximately 1.5 cm x 1.5 cm in size on 

the screen, spanned about 1.6 degree of visual angle at a 
viewing distance of 55 cm. The participants’ discrimination 
sensitivity A’ was measured as: 

 
where H and F are the hit and false alarm rate respectively. 
We used A' to measure sensitivity due to its bias-free 
nonparametric property, as d' may be affected by response 
biases when normality and equal standard deviations are not 
assumed (Stanislaw & Todorov, 1999). We measured 
Holistic A' as a normalized measure of HP that takes into 
consideration the individual baseline performance 
differences (Singer & Sheinberg, 2006): the greater the 
magnitude, the stronger the degree of holistic processing. 

 

                                                             
2 The part-whole paradigm (Tanaka & Farah, 1993) can also 

demonstrate HP (Maurer et al., 2002). However, it involves 
memory performance heavily (Piepers & Robbins, 2012). As the 
focus of this study is to examine perceptual effects, the complete 
composite paradigm was used to minimize memory demands and 
response biases (Richler, Cheung, & Gauthier, 2011). 
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EEG recording and analysis A sequential matching task 
was used to measure ERPs in response to the presentation of 
AKCs. The task consisted of 240 trials, separated into 6 
blocks. Each trial started with a central fixation for 500 ms, 
followed by an AKC appearing at the screen center for 150 
ms. The screen then turned blank for 1000 ms. A second 
character then appeared at the center and remained until 
participants made a response judging whether the two 
characters were the same or different. Each character 
subtended a visual angle of around 1.7 degree. Participants 
were instructed not to blink during a trial until they saw the 
letter ‘B’ on the screen. These trials were conducted using 
E-prime v2.0 (Psychology Software Tools, Pittsburgh, PA). 

EEGs were recorded using a 64-channel ANT system 
(Electro-cap International). EEG activities were sampled at 
512 Hz. The data analysis was performed using EEGLAB 
(Delarme & Makeig, 2004) and ERPLAB (Lopez-Calderon 
& Luck, 2014). Only trials with correct responses were 
included in the EEG analysis. Bin-based epochs were 
extracted from -200 ms to 800 ms of the stimulus onset. The 
time window 140 to 200 ms (170±30 ms) was chosen based 
on the grand average data of the participants in the 
Alphabetic and Logographic training conditions for 
identifying N170 peak amplitudes. PO7 electrode in the LH 
and its symmetrical electrode PO8 in the RH were selected 
for analysis as these electrodes were where the peak 
amplitude was found within the selected time window (see 
Hsiao et al., 2007 Yoncheva et al., 2010).  

Results 
Holistic processing (HP) 
Repeated-measures ANOVA was used to investigate HP 
effects (time: Pretest vs. Post-test x condition: alphabetic vs. 
logographic). For Holistic A', there was a marginal effect of 
time, F(1, 47) = 2.868, p = .097, ηp

 2 = .057: HP decreased as 
the result of training. There was no main effect of condition 
or an interaction between time and condition.3 (Fig. 4). 
 

 
Fig. 4. Holistic A’ in the pretest and post-test in the 
Alphabetic and Logographic conditions 

EEG neural correlates 
Mixed ANOVA was used for analyzing N170 peak 
amplitude data (Time: Pretest vs. Post-test x Hemisphere: 

                                                             
3 Hsiao and Cottrell (2009) showed that when character halves 

were misaligned, the HP effect of Chinese characters disappeared, 
suggesting that the effect reflected the inability to selectively 
attend to aligned character halves rather than inhibition control.  

Left vs Right x Condition: Alphabetic vs. Logographic). A 
significant main effect of time was observed, F(1, 53)= 
7.457, p = .009, ηp

 2 = .123, showing that N170 amplitude 
was increased after training. There was a marginal main 
effect of hemisphere, F(1, 53) = 3.064, p = .086, ηp

 2 = .055, 
and a marginal effect of condition, F(1, 53) = 3.678, p = 
.061, ηp

 2 = .065. No significant interaction effect was 
observed. 

 
Fig. 5. N170 responses (µV) in (a) PO7 (left 
hemisphere) and (b) PO8 (right hemisphere) in the 
pretest and post-test, averaged across all participants.  

 
Pearson’s correlation and moderation analysis 
Correlation analyses between Holistic A' and N170 
amplitude at PO7 (LH) and PO8 (RH) were performed 
separately for the Alphabetic and Logographic conditions to 
examine the relationship between HP and RH lateralization. 
In the Alphabetic condition, Holistic A' in the post-test was 
correlated positively with the N170 amplitude at PO8 (RH) 
in the post-test, r2 = .435, p < 0.05, as well as the N170 
amplitude change between the pretest and the post-test at 
PO8, r2 = .506, p < 0.05. In contrast, these correlations were 
negative in the logographic condition, r2 = -.483, p < 0.05, 
and, r2 = -.409, p < 0.05, respectively. See Fig. 6 

 
Fig. 6. The correlation between Holistic A’ and 
PO8 N170 Amplitude (µV). 

 
To further understand the differences in the direction of 

the correlations between Holistic A' and N170 amplitude at 
PO8 in the post-test, a moderation analysis was conducted. 
In the first step, training condition (Logographic vs. 
Alphabetic) and N170 amplitude at PO8 were entered in the 
regression analysis. In the second step, the interaction term 
between training condition (Logographic vs. Alphabetic) 
and N170 amplitude at PO8 was entered, and it explained a 
significant increase in variance in Holistic A', ΔR2 = 0.203, 
F(1,48) = 11.593, p = .001. Thus, training condition 
significantly moderated the correlations between Holistic A' 
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and N170 amplitude at PO8 in the post-test: While a more 
negative/larger N170 amplitude at PO8 correlated with a 
weaker HP effect in the alphabetic condition, a more 
negative/larger N170 amplitude at PO8 correlated with a 
stronger HP effect in the logographic condition (Fig. 5). 
This suggests a stronger N170 activity correlated with a 
weaker HP effect in the alphabetic condition, while it is vice 
versa in the logographic condition in the RH. However, we 
did not find significant correlations between HP and N170 
at PO7 in either condition. 

Discussions 
In the current study, we aimed to examine how learning to 
read words alphabetically or logographically modulates the 
relationship between holistic processing (HP) and right 
hemisphere (RH) lateralization in the perception of visual 
words. Previous computational modeling studies have 
suggested that in visual object recognition, when the 
recognition task relies purely on the distances among local 
components (second order relationships, a type of configural 
processing; Maurer et al., 2002), there was a positive 
correlation between HP and RH lateralization. In contrast, 
when the recognition task relies purely on the identity of 
local components, this correlation becomes negative (Hsiao 
& Cheung, 2011; Hsiao & Galmar, 2016). This result is 
consistent with the face recognition and perceptual expertise 
literature, which typically shows an increase in HP 
coincided with RH lateralization, especially when the task 
involved processing of configural information (e.g., 
Gauthier & Tarr, 2002; Ramon & Rossion, 2012). It is also 
consistent with the literature on expert Chinese character 
processing: decreased HP due to writing experience, which 
required selective attention to local components, was 
correlated with increased left side bias/RH processing (Tso 
et al., 2014). Here we tested this modeling prediction 
through a training study, in which we measured changes in 
HP and ERP N170 amplitude as the result of learning to 
read artificial Korean-like characters (AKCs) either 
alphabetically or logographically.  

Our study revealed that training to read AKCs in either 
the Alphabetic or the Logographic conditions increased 
N170 amplitude in both hemispheres at electrodes PO8 and 
PO7. This result is consistent with the perceptual expertise 
literature, which typically showed an increased N170 
amplitude as the result of the expertise (e.g. Maurer et al., 
2008; Tanaka & Curren, 2001). 

More importantly, in the post-test, we found that the HP 
effect of AKCs correlated with N170 amplitude in the RH 
differently between the 2 conditions: while the correlation 
analysis showed the stronger the HP effect, the more 
negative the N170 amplitude at PO8 in the Logographic 
condition, the direction of this correlation was reversed in 
the Alphabetic condition. It seems that different learning 
approaches to recognizing a written script moderates the 
direction of the correlation between HP and neural activities 
in the right occipital temporal regions. This effect is 
consistent with the modeling data based on the DFF theory 

(Hsiao & Galmar, 2016; Hsiao & Cheung, 2011). In the 
Logographic condition, participants may have used a whole-
word recognition approach, which led to increased HP, as 
well as a higher sensitivity to the distances the components, 
a type of configural processing (Maurer et al., 2002). This 
type of configural processing has been shown to involve RH 
lateralization (Scott & Nelson, 2006). Thus, in this 
condition, RH lateralization and holistic processing are 
positively correlated with each other. In contrast, in the 
Alphabetic condition, the requirement of grapheme-
phoneme conversion during learning may have encouraged 
local featural/high spatial frequency processing for 
identifying local component, which is typically left-
lateralized (Ivry & Robertson, 1998). In addition to 
identifying local components, word recognition in the 
Alphabetic condition also required recognizing components 
in a particular sequence/configuration, or more specifically, 
the first order relationship among features (Maurer et al., 
2002). This processing may require integration of 
information among components, leading to increase in HP. 
Thus, in the Alphabetic condition, HP was negatively 
correlated with RH lateralization, since the increase in HP 
due to the use of configural information for relative 
positions of components (i.e., the first order relationship 
among features) may coincide with decreased reliance on 
RH global processing. Future work will examine these 
possibilities. 

Consistent with the modeling data, the current results 
suggest that HP (as measured in the composite paradigm) 
and RH lateralization do not always go together in visual 
object recognition. It depends on the requirements of the 
recognition task. Consistent with this finding, in an fMRI 
study, Harris and Aquirre (2010) showed that neurons in the 
right occipito-temporal region (fusiform face area, FFA) 
could flexibly represented two facial features either 
conjointly (suggesting HP) or separately, depending on the 
recognition task requirements. Note however that our 
current results regarding the relationship between HP and 
RH lateralization is limited to the HP as measured in the 
composite paradigm. In the literature, HP effects have been 
demonstrated using different paradigms, such as the part-
whole task (Farah, Wilson, Drain, & Tanaka, 1998) in 
addition to the composite paradigm. HP effects 
demonstrated using different paradigms likely involve 
different underlying mechanisms (Richler et al., 2012). 
Future work will examine whether similar relationships 
between HP and RH lateralization can also be observed 
using other HP paradigms.  

In conclusion, this is the first training study to report on 
the changes in both HP and hemispheric lateralization in 
learning to read an artificial script under different decoding 
methods (i.e., logographic vs. alphabetic). Different learning 
approaches induced opposite directions of correlations 
between HP and RH activities: Learning a script 
alphabetically induced a negative correlation between HP 
and RH lateralization, while that induced by learning a 
logographic script was positive. It seems that HP and RH 
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lateralization do not always go together, depending on the 
decoding strategy in visual object recognition, or more 
specifically, the type of configural information used in the 
recognition processes. 
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Abstract

Even advanced Spanish speakers of second language English
tend to confuse the pronouns ‘he’ and ‘she’, often without
even noticing their mistake (Lahoz, 1991). A study by Antón-
Méndez (2010) has indicated that a possible reason for this er-
ror is the fact that Spanish is a pro-drop language. In order to
test this hypothesis, we used an extension of Dual-path (Chang,
2002), a computational cognitive model of sentence produc-
tion, to simulate two models of bilingual speech production of
second language English. One model had Spanish (ES) as a
native language, whereas the other learned a Spanish-like lan-
guage that used the pronoun at all times (non-pro-drop Span-
ish, NPD_ES). When tested on L2 English sentences, the bilin-
gual pro-drop Spanish model produced significantly more gen-
der pronoun errors, confirming that pronoun dropping could
indeed be responsible for the gender confusion in natural lan-
guage use as well.
Keywords: L2 pronoun errors, language transfer, Dual-path
model, bilingual sentence production

Introduction
Second language (L2) speech errors have been employed in
the past as a means to understand bilingual speech produc-
tion as well as the acquisition process of a foreign language
(Antón-Méndez, 2010; Poulisse, 1999). Certain L2 errors are
observed more often due to discrepancies between the first
language (L1) and the L2. For example, if the expression
of a message in the L2 requires the inclusion of a specific
feature that would not be necessary in the L1, then speakers
of these two languages may produce a speech error in their
L2 due to L1 transfer (Odlin, 1989). In this study, we focus
on a gender-related L2 pronoun error that has been observed
among native speakers of Spanish and Italian; namely, errors
involving the third person singular nominative pronouns ‘he’
and ‘she’. Even advanced Spanish speakers of L2 English oc-
casionally confuse the two pronouns, referring to an actress
as ‘he’ or a father as ‘she’, often without even noticing their
mistake (Lahoz, 1991). At first, this phenomenon seems sur-
prising because the Spanish language does have two equiv-
alent pronouns (‘él’ for ‘he’ and ‘ella’ for ‘she’), and also a
very strong separation between the two genders, even more
so than in English. For instance, depending on the suffix a
word can be feminine or masculine (e.g., maestro - teacher

[masculine], maestra - teacher [feminine]; niño - child [mas-
culine, a.k.a. boy], niña - child [feminine, a.k.a. girl]). This
means that the gender mistakes that Spanish speakers make
in English cannot be attributed to the lack of familiarity with
the distinction. Furthermore, the challenge the English pro-
noun system poses for native speakers of Spanish could not
be due to its inherent difficulty, as this would mean that most
non-native speakers of English, regardless of their L1, would
produce the same mistake. As Lahoz (1991) noted, a low
proficiency level of the native Spanish speakers is not a rea-
son either. This was also demonstrated in the experiments
of Antón-Méndez (2010), where the participants showed an
intermediate to upper intermediate knowledge of English. Fi-
nally, note that the gender mismatch error cannot be classified
as a syntactic error; the produced sentence is grammatically
correct, but it conveys the wrong meaning.

A hypothesis which has been put forward (Lahoz, 1991;
Antón-Méndez, 2010) regarding the cause of errors in the use
of English pronouns is the pro-drop status of the Spanish but
not the English language. In pro-drop languages, nominative
personal pronouns are often omitted (1b) because the number
and person information is conveyed in the conjugated verb
(Davidson, 1996), whereas in English the omission of the pro-
noun would result in an ungrammatical sentence (2b).

1.(a) Él/ella tiene un perro (Spanish)
(b) tiene un perro

2.(a) He/she has a dog (English)
(b) * has a dog

It is hard to imagine, however, how the pro-drop feature of
the L1 might result in a gender pronoun error (“He’s walk-
ing", when referring to a woman) instead of an omission (“Is
walking"), which would be the case in a direct language trans-
fer.

As a matter of fact, native speakers of Spanish have been
noted to produce another gender-related pronoun error in En-
glish, this time regarding possessive pronouns (‘his’, ‘her’).
Due to the high frequency of this type of errors, a lot more
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emphasis has been given to the misuse of these pronouns
than the subject pronouns (White, Muñoz, & Collins, 2007;
Anton-Mendez, 2011). The reason that English possessive
pronouns pose a challenge for native speakers of Spanish
is most likely that in Romance languages the possessive
pronoun agrees in gender and number with the possessum,
namely the noun that follows, whereas in Germanic lan-
guages such as English the possessive pronoun refers to the
antecedent. For example:

i. His daughters are on vacation.

[his: 3rd person masculine singular]

ii. Sus hijas están de vacaciones.

[sus: 3rd person feminine plural]

Due to the different information encoding Spanish speak-
ers of English may occasionally make gender mistakes such
as “He called her mother", where ‘her’ refers to the an-
tecedent (‘he’) and not a different female person. This is be-
cause ‘mother’ is female, and a Spanish speaker would use
that gender information to construct the possessive pronoun
in Spanish. The resulting error in English is, of course, con-
fusing, as a speaker of English would not guess that ‘her’ in
this case refers to the same subject (‘he’). The gender error in
the case of L2 English possessive pronouns seems clearly due
to L1 transfer, because the properties of Spanish are directly
applied to English. In the case of the subject pronoun gender
errors, on the other hand, it is not evident that the pro-drop
feature of one language would lead to a gender error in L2.
The present study addresses only the latter type of errors.

Antón-Méndez (2010) has investigated the hypothesis that
the pro-drop feature of Spanish is responsible for the gender
pronoun errors in L2 English (“pro-drop hypothesis"). She
conducted an experiment eliciting semi-spontaneous speech
in English, where she compared native Spanish and native
French speakers of L2 English with respect to the pronoun er-
rors they produced. French was chosen as it is a Romance lan-
guage that is similar to Spanish in several aspects, but which,
in contrast to the Spanish language, is not a pro-drop lan-
guage. Each test group consisted of 20 participants who were
comparable in terms of education, age of English acquisi-
tion, frequency of use and proficiency. The participants were
shown 43 illustrations and were asked questions designed to
elicit pronoun production. The subjects were instructed to
respond freely, and the pronoun errors they produced were
recorded. The types of reported errors fall in the following
categories: person errors (e.g., ‘I’ instead of ‘you’), number
errors (e.g., ‘I’ instead of ‘we’), gender errors (‘he’ instead
of ‘she’ and vice-versa), animacy errors (e.g., ‘he’ instead of
‘it’), omission errors (e.g., ‘is swimming’), insertion errors
(e.g., ‘the boy he played’ instead of ‘the boy played’) and
other errors (e.g., ‘it’ instead of ‘there’ in ‘there is’).

Spanish speakers of L2 English indeed made significantly
more gender errors (4.30%) compared to other types of pro-

noun errors and to the French group (0.68%)1. The pro-
noun errors recorded were not due to erroneous transfer of
the Spanish L1 grammar, as the Spanish speakers made no
omission errors (‘is swimming’); thus, in none of the items
of Antón-Méndez’s experiment did the subjects omit a pro-
noun, which would have been the case in a grammatical trans-
fer. Importantly, even though there were slightly more ‘he’
than ‘she’ errors (he: 5.68%, she: 2.98%), the difference is
not statistically significant. Therefore, the Spanish speak-
ers were not using a default pronoun (e.g., always ‘he’ in-
stead of ‘she’). The use of ‘he’ as the default pronoun would
have suggested that another factor might underlie the error,
for instance, the difficulty that the English phonology poses
for speakers of Spanish. The Spanish phonology does not
contain the phonemes /S/ in ‘she’ and /h/ in ‘he’, therefore
one explanation for the gender pronoun issue could be at the
phonological level. In the present study we focused only on
the pro-drop feature, not because we disregard the potential
role of the phonology, but because we wanted to investigate
whether the pro-drop feature has the capacity of causing this
type of gender errors in L2.

In order to focus on the pro-drop feature, we simulated
bilingual sentence production using computational cognitive
modeling. The pro-drop feature is not the sole difference be-
tween the French and Spanish languages, and one could ar-
gue that the differences in the error patterns between the two
groups could have been partially attributed to confounding
factors, for instance, to a different L2 English teaching sys-
tem in Spain and France.

Using computational modeling we can remove all possi-
ble confounds and therefore minimize the variance by focus-
ing only on the phenomenon of interest, which in this case
is the pro-drop feature and its possible effect on L2 English
pronouns. For this reason, we modified Dual-path (Chang,
2002), a computational cognitive model of sentence produc-
tion, to account for bilingualism. We then compared L2 En-
glish speech production of simulated native speakers of Span-
ish (ES) on the one hand, to L2 production of simulated native
speakers of a Spanish-like language (‘non-pro-drop Spanish’,
NPD_ES) on the other hand. The latter contained all the fea-
tures of the Spanish language (lexicon, allowed structures)
except the pro-drop feature; therefore, pronouns needed to be
used at all times. All input languages (ES, NPD_ES and EN)
were artificially generated and based on the Spanish and En-
glish language, using a subset of their lexica and syntactic
structures. If the bilingual Spanish-English (ES-EN) Dual-
path model produces significantly more subject pronoun er-
rors in English than its Spanish-like non-pro-drop equivalent
(NPD_ES-EN), it will be clear that the pro-drop feature of the
Spanish language is the reason for this particular L2 error in
the simulation, as the two simulated languages differ only in
their pro-dropness. If this is the case, we will have confirmed

1The percentages are calculated by Antón-Méndez (p. 129, Table
6) and they represent the frequency of the gender pronoun mistake
(68 and 10, respectively) with respect to the total number of pro-
nouns produced where this particular mistake could have occurred.
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that the pro-drop feature has the capacity to lead to gender
pronoun errors in L2 English.

Method
In order to simulate Spanish speakers of L2 English, we
developed two bilingual models using a modified version
of Dual-path which is a connectionist model based on the
Simple Recurrent Network (SRN; Elman, 1990) achitecture
(Chang, 2002).

Bilingual Dual-path model
Dual-path (Figure 1) learns to convert a message into a sen-
tence by predicting the sentence word by word (“next word
prediction"). It has two pathways (hence the name) that influ-
ence the production of each word; the meaning system which
learns concepts, roles and event semantics, and the sequenc-
ing system which is an SRN that learns to abstract syntactic
patterns. Both paths influence the word output layer. The
sequencing system consists of one recurrent hidden layer (of
30 units in our simulations) and two “compress" layers (of 12
units each) that are placed between the input word, the hidden
layer and the output word.

The meaning system learns to map the input word onto a
concept, which is linked to a specific thematic role (that is
given for each sentence through fixed connections). The fixed
connections allow the separation between concepts and roles,
which, in turn, enables the model to generalize and to pro-
duce words in novel places. The thematic role is connected to
the hidden layer, and so is the “event-semantics" layer. The
hidden layer spreads the activation to the next thematic role
(in the meaning path, and the “compress" unit in the syntactic
path), which is in turn linked to a specific predicted concept
that is used as input to the output word layer, along with the
“compress" unit.

In the original model, all layers use the tanh activation
function, except the output layer that uses softmax. In the
modified version of the model, we also employed softmax for
the predicted role layer. This led to a stricter selection of the
upcoming thematic role which helped overcome a difficulty
that the model had with learning the correct articles regarding
gender and definiteness (e.g., ‘a’ vs ‘the’). Furthermore, our
version has a “target language" layer in the meaning path that
is used as an additional input to the hidden layer, along with
the “event-semantics" layer. The “target language" denotes
the intended spoken language and helps the model handle
more than one language. The modified model can be found
at https://github.com/xtsoukala/dual_path .

Input languages
Message Dual-path is trained using randomly generated
sentences paired with their meaning (Chang, Dell, & Bock,
2006). The meaning (message) contained information
regarding four thematic roles (AGENT, PATIENT, ACTION,
RECIPIENT). A concept (e.g., ‘WOMAN’ for the English
word ‘woman’ or Spanish word ‘mujer’) was assigned to
each thematic role depending on the meaning that needed

to be expressed (e.g., in the sentence “the woman run -s"
the message would include AGENT=WOMAN, DEF).
Furthermore, the message contained event-semantic infor-
mation (denoted as ‘E’), which gave information regarding
the tense (PRESENT or PAST) and aspect (SIMPLE or
PROGRESSIVE). The message contained information about
the target language (ES or EN) as well. This information was
given at the beginning of the sentence along with the roles
and the event-semantics, so that the model knew whether it
was supposed to produce an English or Spanish sentence.

Structures The allowed structures for all languages were
the following (where ‘S’, the subject, is omitted in the pro-
drop case):

1. (S)V: (Subject) - Verb, e.g., “He runs"

2. (S)VO: (Subject) - Verb - Object, e.g., “She kicked the ball"

3. (S)VIODO: (Subject) - Verb - Indirect Object - Direct Ob-
ject, e.g., “He gave the girl a book"

4. (S)VDOIO: (Subject) - Verb - Indirect Object - Direct Ob-
ject, e.g., “He gave a book to the girl"

The sentences in English and in non-pro-drop Spanish
always started with a pronoun, and the sentences in pro-drop
Spanish never started with a pronoun but always with a verb.

Lexicon The total lexicon consisted of 34 nouns: 11 male
(‘man’, ‘boy’, ‘father’, ‘brother’, ‘dog’, ‘hombre’, ‘niño’,
‘padre’, ‘hermano’, ‘perro’, ‘maestro’), 11 female (‘woman’,
‘girl’, ‘mother’, ‘sister’, ‘cat’, ‘mujer’, ‘niña’, ‘madre’, ‘her-
mana’, ‘gata’, ‘enfermera’) and 12 inanimate (‘ball’, ‘stick’,
‘toy’, ‘kite’, ‘key’, ‘bag’, ‘pelota’, ‘palo’, ‘juguete’, ‘cometa’,
‘llave’, ‘bolso’), 24 verbs (e.g., ‘give’, ‘show’, ‘walk’,
‘throw’, ‘present’, ‘dar’, ‘lanzar’, ‘presentar’, ‘nadar’, ‘cam-
inar’) and 26 function words (e.g., articles (‘a’, ‘the’, ‘un’,
‘una’, ‘el’, ‘la’), pronouns (‘he’, ‘she’, ‘él’, ‘ella’) and auxil-
iary verbs (‘is’, ‘was’, ‘está’, ‘estaba’)).

The model treats the verb lemma (‘give’) and the suffix
(‘-s’) as two different units. Note that syntactic information
(such as ‘verb’, ‘noun’) is not given explicitly, but is learned
by the model during training through the syntactic path. The
syntactic gender was also learned implicitly during training
through the article of Noun Phrases (NP) and pronouns. Se-
mantic gender (e.g., ‘ACTRESS, F’, ‘ACTOR, M’) was not
included in the model.

Thematic roles could be expressed using either an NP
with definite (DEF) or indefinite (INDEF) articles (e.g., ‘the
woman’, ‘a woman’) or the pronoun (PRON) equivalent
(‘she’).
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Figure 1: Bilingual Dual-path model

Example The following message would be the same across
languages:

AGENT=WOMAN, PRON;

ACTION=GIVE;

PATIENT=INDEF, KEY;

RECIPIENT=DEF, GIRL;

E=SIMPLE, PRESENT, AGENT, PATIENT, RECIPIENT

and it would be expressed linguistically in the following
manner for the three languages:

1. she give -s the girl a key . [EN]

2. d -a a la niña una llave . [ES]

3. ella d -a a la niña una llave . [NPD_ES]

Training
The two models were trained on 2000 randomly generated
sentences (training set) and tested on 500 unseen sentences
(test set). The models contained almost identical sets, with
the only difference that the NPD_ES model expressed the
subject pronoun at all times, whereas the ES model never did
and always started with a verb. For each model we ran 100
simulations using the same input, but different random initial
weights per simulation, as the input and the weights are the
only non-deterministic parts of the model. The models were
trained for 20 epochs, where 1 epoch corresponds to a full
iteration of the training set (2000 sentences). At the begin-
ning of each epoch, the training set was shuffled. In order
to simulate late L2 acquisition, we first trained the models
for 20 epochs using Spanish input only, and then used the
fully trained weights as initial weights for the bilingual mod-
els. The bilingual input consisted of newly generated (2000
training and 500 test) sentences, this time using 50% (pro-
drop or non-pro-drop according to the model) Spanish and
50% English. We excluded from the analysis 7 simulations
that did not manage to learn at least 75% of the test set by
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Figure 2: Performance on the training and test sets over the
training period (20 epochs) averaged over 93 simulations for
the two bilingual models. Performance is measured in per-
centage of correctly produced Spanish and English sentences.

the end of the training in one of the two models, leading to
a total of 93 simulations. Both bilingual models were able
to perform equally well by the end of the training, reaching
99.69% correct for ES-EN and 99.70% correct for NPD_ES-
EN (Figure 2) on the test set that contained English and Span-
ish sentences.

Results
In order to assess the performance of the two bilingual mod-
els on L2 pronouns, we focused only on the English sentences
(50% of the test set). If a pronoun error was detected and the
sentence was grammatical, it was classified as a gender pro-
noun error. We compared the performance of the two bilin-
gual models with regard to the gender pronoun error produc-
tion. If the models had a comparable performance we would
not be able to confirm that the pro-drop feature has the capac-
ity to lead to gender pronoun errors in L2 English. If, on the
other hand, the NPD_ES model made fewer gender pronoun
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Figure 3: Production of English gender errors (in log scale)
averaged over 93 simulations for the two bilingual models.
Note that the gaps in the non-pro-drop model are because
log(0), for 0% error rate, is not defined, and therefore not
plotted.

errors than the ES model it would indicate that the pro-drop
feature is a possible explanation.

The non-pro-drop Spanish-English (NPD_ES-EN) bilin-
gual model (Figure 3) produced almost no gender pronoun
errors (maximum percentage: 0.11%) whereas the bilingual
model based on pro-drop Spanish (ES-EN) initially produced
9.75% pronoun errors, gradually dropping to 0.05%.

Crucially, the ES-EN model never reached 0% (minimum
error rate: 0.02%) whereas the NPD_ES-EN model did. Fol-
lowing visual inspection, we ran a z-test for proportions from
epoch 5 onwards to test for a difference in error rate between
the models. The difference is significant (z=7; p<.001).

Discussion
Our simulations showed that a bilingual model with L1 pro-
drop Spanish and L2 English produced significantly more
gender pronoun errors than a similar model with L1 non-pro-
drop Spanish. These sentences were grammatically correct:
the only error they contained was a pronoun with incorrect
gender. Given that the only difference between the two L1s
was the pro-drop feature, we have demonstrated that the pro-
drop nature of Spanish can indeed cause the gender pronoun
error as observed in L1 Spanish speakers of L2 English.

Why the pro-drop feature does not lead to a direct language
transfer (“is walking") in either the model or humans remains
to be investigated, as the current simulations and results do
not explain how pro-dropness in L1 could lead to gender er-
rors in L2. Nevertheless, having a computational model that
simulates the gender pronoun errors in L2 English can point
us in the right direction. Our hypothesis for the occurrence of
the gender error is that the gender information is not as cru-
cial for the message planning, at least in the subject position,
of a pro-drop language, and is therefore weaker or omitted,

even when producing sentences in a non-pro-drop L2.
It is important to point out that the Dual-path model does

not contain a phonological level (Garrett, 1988). One might
have thought that the reason Spanish speakers confuse the
words ‘he’ and ‘she’ is because of the difficulty the English
phonology poses for native speakers of Spanish. However,
our simulations have produced gender errors without having
any phonological representations. This does not mean that
phonology could not play a role, but rather that it is not the
only possible explanation.

It is also crucial to note two simplifying assumptions in
these simulations. First, as mentioned in the Method section,
the input for all three languages (EN, ES, NPD_ES) was arti-
ficially generated and it only represented a subset of the actual
languages. In general, using natural input would be prefer-
able as it would increase the validity and naturalness of the
results. However, the benefit of miniature languages that are
typically used in cognitive modeling is that they can be eas-
ily manipulated. For instance, in the simulations described
here we were able to add and remove the pro-drop feature at
will, leaving everything else the same, and thus to isolate this
important feature from confounding factors.

Second, a crucial simplifying assumption in the miniature
language is the absence of full NP subjects. We therefore re-
peated the simulations using new input for all languages, this
time including 50% pronouns at the subject position and 50%
noun phrases. Preliminary simulations show no gender errors
in either model, which means that further research is needed
using more natural language input, starting with a more natu-
ralistic proportion of pronouns and NPs in the subject position
based on English and Spanish corpora.

Conclusion
Computational modeling can be used to validate or generate
linguistic hypotheses while focusing on specific factors of in-
terest and minimizing the variance. In this study, we have ad-
dressed the question as to whether the pro-drop feature of the
Spanish language has the capacity to cause the gender pro-
noun errors that Spanish speakers of L2 English have been
shown to produce (Lahoz, 1991; Antón-Méndez, 2010). The
reported simulations showed that the model with L1 pro-drop
Spanish produced more gender pronoun errors in L2 English
than the model with L1 non-pro-drop Spanish, which is a nec-
essary but not sufficient condition for the pro-drop hypothe-
sis.
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Abstract 

Statistical learning paradigms traditionally use transitional 
probabilities as a measure of statistical distribution within a 
language. The current study suggests that alternative metrics 
may exist that can account for differences in language 
processing ability. Two primed lexical decision tasks are used 
to examine the effects of bigram frequency and diversity on 
speed and accuracy of word recognition. It is demonstrated 
that both frequency and diversity contribute to word 
recognition performance; findings and theoretical 
implications are discussed.    

Keywords: Statistical learning; lexical decision; language 

Introduction 

Humans are superlative learners capable of identifying and 

tracking patterns in their environment, both implicitly and 

explicitly. This ability has been investigated using both 

implicit and, more recently, statistical learning paradigms 

(Perruchet & Pacton, 2006) across a number of different 

domains including shapes (Kirkham, Slemmer, & Johnson, 

2002), music (Daikoku, Yatomi, & Yumoto, 2014; Koelsh 

et al., 2016; Saffran et al., 1999), tactile stimuli (Conway & 

Christianson, 2005) and, most prominently, language 

acquisition (Newport & Aslin, 2004; Saffran, Aslin, & 

Newport, 1996; Thiessen, & Erickson, 2013; Vouloumanos, 

2008) highlighting the ability of learners, ranging from 

infant (Saffran et al., 1996) to adult (Koelsh et al., 2016), to 

track the transitional probabilities (TPs) within a given set 

of stimuli. 

Over the past two decades a plethora of researchers have 

investigated this phenomenon and have found transitional 

probabilities to be a robust indicator of performance across a 

number of different tasks and languages (e.g. Liu & Kager, 

2011; Toro, Sinnett, Soto-Faraco, 2005). This has led to the 

acceptance of TPs as the standard metric of co-occurrence 

within natural (and artificial) languages. However, if we 

consider that the TP of any given stimulus stems from an 

interaction between the frequency of sequence XY and the 

number of potential candidates for Y then we are presented 

with two alternative metrics of statistical distribution. 

These, in turn, can be used to investigate the types of 

statistics which learners can attend to.  

When applied to words in natural language these metrics 

can be termed Bigram Frequency, which is equal to the total 

number occurrences for a given sequence of two words 

within a language or representative selection thereof; and 

Bigram Diversity which can be defined as the number of 

items that potentially follow word X in the sequence XY.  

It is logical to presume that both bigram frequency and 

diversity would be predictive of performance in language-

related tasks. Evidence from Freudenthal et al. (2015) 

demonstrates that a frequency-based chunking mechanism 

can successfully reduce output errors in children’s speech. 

This suggests that learners can track not only the TPs of the 

bigrams but also the frequency with which they occur. No 

evidence yet exists for a diversity-driven account of 

language proficiency. Nonetheless, it is recognised that 

predictability is an important facet of language processing 

(Bates & MacWhinney, 1987; Glenberg & Gallese, 2012; 

Goldberg, Casenhiser, & Sethuraman, 2005; Pickering & 

Garrod, 2004, 2007; Van Berkum et al., 2005); it follows 

therefore that a larger number of potential competitors for 

stimulus Y would serve to reduce predictability and thereby 

prove detrimental to response fluency. 

Historically statistical learning paradigms such as those 

developed by Jusczyk and Aslin (1995, also Saffran, Aslin 

& Newport, 1996) have exposed learners to artificial 

languages with carefully built-in TPs. This allows for 

admirable control of the input at the expense of both 

diversity and complexity. It has been argued that these 

languages are too simplistic to assess the extent to which 

learners are able to process distributional statistics within 

natural language (Frank et al, 2010; Johnson & Tyler, 

2010). To highlight this point, Saffran et al. (1996) reported 
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inter-syllable TPs of 1.0 in their seminal study whereas 

naturally occurring TPs are often considerably lower (the 

bigram little baby has a TP of less than 0.002). 

Thus, the true test of statistical learning theories is their 

application to a more naturalistic dataset, one which retains 

the complexity and diversity of natural language whilst 

allowing for the accurate tracking of distributional cues; 

natural language corpora represent such datasets. The 

British National Corpus (BNC) is a collection of 

contemporary natural language which comprises 

approximately 100-million words of written and spoken 

British English drawn from a variety of sources ranging 

from telephone calls to academic journals. By analysing the 

distributional statistics within the BNC it is possible to 

present learners with verisimilar but also quantifiable 

samples of natural language.  

This raises another issue however, in that learners already 

have a great deal of experience interacting with natural 

languages. This makes traditional methods of testing such as 

those used by Saffran et al. (1996, also Frank et al., 2010; 

Jusczyk & Aslin, 1995) unsuitable for natural language 

stimuli. Thus, two solutions are immediately apparent; the 

use of unfamiliar or non-native languages or an alternate 

method of assessment. Non-native languages would seem to 

be the ideal solution except that the complexity of these 

languages means that learners require either long periods of 

familiarisation or simplified samples in order to obtain 

actionable data. It is therefore favourable to introduce an 

alternate measure of language proficiency whilst retaining 

the complexity of the language and avoiding a lengthy 

familiarisation process.  

The current study seeks to address this issue by assessing 

language proficiency using a primed lexical decision task 

(LDT) where the first word of a bigram acts as the prime 

and the second word the target. It is predicted that, using 

bigram frequency and diversity as statistical primes, 

response time for stimuli Y will be predicted by the strength 

of its association with prime X. Based on this prediction two 

hypotheses are proposed: 

H1: Response times on a LDT will be quicker when 

primed with high frequency bigrams compared to low 

frequency or non-bigrams, and 

H2: Response times will also be quicker when primed 

with low diversity bigrams compared to high diversity or 

non-legal bigrams 

 

Table 1: Diagnostic means and standard deviations for 

target words 

Method 

Participants 

Thirty-one participants (25 females) aged between 18 and 

41 years (M= 20.77, SD= 4.17) were recruited from 

Nottingham, UK. All participants reported English as their 

first language and were screened for language difficulties. 

Participants took part in both experiments and received 

research credits in exchange for their participation where 

applicable. An a priori power analysis showed that a sample 

of at least twenty-four participants was necessary to achieve 

statistical power of above .8. 

Experiment One 

Design 

Experiment one used a LDT to assess the extent to which 

bigram frequency affects word recognition. The aim of the 

experiment was to identify any statistical priming effect that 

may result from high frequency word pairs within natural 

language. 

Materials 

Three 30-item lists were generated using bigrams found 

within the BNC in addition to one 90-item non-word list 

which was created using entries from the ARC Non-word 

database (Rastle, Harrington, & Coltheart, 2002). The BNC 

contains only samples of British English which increases its 

validity as a natural language representation for a UK 

sample. 

Bigrams were extracted from the BNC by using a python 

script to parse the .xml version of the corpus into word pairs 

before writing them to a database and tallying the number of 

occurrences. This resulted in a list of 12,293,349 unique 

bigrams. A further script was used to remove any bigrams 

with a frequency of less than 0.1 per million since these 

were considered too infrequent to provide meaningful data.  

The remaining corpus was then filtered to exclude any 

bigrams containing acronyms, initialisations, contractions, 

hyphenations, non-standard or non-English words, names, 

numbers expressed as digits, or words with fewer than three 

letters. 

 Bigram Type Log(Frequency) Concreteness Letters Phonemes 

Experiment one High Frequency 3.20 (3.86) 3.10 (1.09) 5.01 (1.48) 4.10 (1.24) 

 Low Frequency 3.21 (3.87) 3.11 (1.41) 4.92 (1.41) 3.97 (1.18) 

 Non-Bigrams 3.20 (3.86) 3.10 (1.08) 5.00 (1.48) 4.05 (1.27) 

Experiment two High Diversity 2.08 (0.27) 2.85 (0.98) 5.43 (1.17) 4.33 (1.15) 

 Low Diversity 2.01 (0.49) 3.96 (1.00) 5.00 (0.88) 4.00 (0.96) 

 No Diversity 2.18 (0.02) 3.21 (1.03) 5.06 (1.26) 4.20 (1.19) 
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Stimuli lists were organised according to the frequency 

with which the bigrams occur within the BNC; the three 

lists contained bigrams of high (>100 occurrences) or low 

frequency (<20 occurrences), or bigrams consisting of 

words that do not appear together in the BNC. A number of 

metrics were obtained for each of the bigrams including 

word frequency (http://ucrel.lancs.ac.uk/bncfreq/flists.html), 

concreteness (Brysbaert, Warriner, & Kuperman, 2014), 

number of letters, and number of phonemes. Due to the 

nature of the sample exact matching across conditions was 

impossible without compromising the number of available 

bigrams, however word lists were balanced so as to not 

differ significantly on any of these characteristics (each p > 

0.05); list diagnostics are presented in table 1. Individual 

word frequencies were log-transformed. Examples of 

stimuli can be seen in Table 2. 

Table 2: Example stimuli for experiment one 

 

Bigram Type Example Stimuli (prime target) 

High Frequency recent times; last night; other hand 

Low Frequency craggy face; local access; time across 

Non-bigrams oval hipster; meet gone; chilli call 

 

Procedure 

Participants were presented with letter strings and were 

asked to indicate whether the string constituted a real 

English word by pressing either ‘z’ or ‘m’ on a standard 

QWERTY keyboard; key mapping was systematically 

varied so that half of all participants used ‘z’ to indicate a 

word and ‘m’ to indicate a non-word whilst half responded 

with ‘m’ for words and ‘z’ for non-words. Strings were 

presented for a maximum of 1500ms and were immediately 

preceded by a 75ms prime. All prime-target pairs mapped 

exactly onto bigrams from the stimuli lists whereby the first 

word of the bigram acted as a prime and the second word as 

the target. A fixation point was presented in the centre of the 

screen for 500ms prior to each trial. Prime-Target pairs were 

presented in two blocks each containing fifteen low-

frequency bigrams, fifteen high-frequency bigrams, fifteen 

non-bigrams, and forty-five non-word trials. The order of 

presentation for both blocks and trials was randomised for 

each participant. 

Analysis and Results 

 

All participants scored more than 80% on the LDT. Data 

was then trimmed to exclude incorrect responses as well as 

those made faster than 200ms, slower than 1500ms (Perea et 

al., 2016), or more extreme than three standard deviations 

from the participant’s mean (Madan et al., 2016), following 

this procedure 2.29% of correct trials were removed across 

participants. 

All response time data were log-transformed; data was 

then analysed categorically using a repeated-measures 

analysis of variance to identify any differences in response 

time between the high and low frequency bigrams (M = 

6.310, SD = .080), non-bigrams (M 6.507, SD = .101) and 

non-words (M = 6.548, SD = .130).  

Bigram frequency had a significant effect on response 

time, F(3,28) = 53.759, p < .001, ηp
2 = .852. Post hoc 

pairwise comparison using Bonferroni correction show that 

words in the non-bigram condition were recognised more 

slowly than those in both the high (p < .001) and low (p < 

.001) bigram frequency conditions. There was no difference 

between high and low frequency bigrams (p = .305). Non-

words were recognised more slowly than words in the high 

frequency (p < .001), low frequency (p < 0.001), and non-

bigram conditions (p < .038). Figure 1 illustrates these 

differences. 

 

 

 
 

Figure 1: Non-transformed group means for bigram 

frequency, bars depict standard error 

 

A further repeated-measures analysis of variance was also 

conducted to assess any differences in response accuracy 

between the four conditions. Response accuracy also shows 

an effect of bigram frequency, F(3,28) = 6.796, p = .001, ηp
2 

= .421. Post hoc analyses using Bonferroni correction show 

that participants responded less accurately to words from the 

non-bigram condition than those in the high (p = .005) or 

low (p = .002) frequency conditions. All other comparisons 

were non-significant (each p > .062). Figure 2 shows means 

and standard error for accuracy. 
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Figure 2: Proportion of correct responses by group, bars 

depict standard error. 

 

Experiment Two 

Design 
Experiment two used a LDT to assess the extent to which 

bigram diversity affects word recognition. The aim of the 

experiment was to identify any statistical priming effect that 

may result from the predictability of the second word in a 

bigram given the diversity of the first. 

 

Materials 
Stimuli were obtained and processed using an identical 

procedure to experiment one with the exception that the 

word lists were organised according to high (>100 potential 

followers) or low (<2 potential followers) diversity or 

bigrams consisting of primes that do not have followers 

within the BNC. Word lists were balanced in the same way 

as the first experiment, each p >0.06 with the exception that 

the low diversity list differed significantly from both the 

high and no diversity list on concreteness (high: p <0.01, no: 

p <0.01); this is due to the relative scarcity of low diversity 

bigrams within the BNC and the theoretical decision to 

prioritise controlling individual word frequency since this 

represents the largest predictor of word recognition 

performance (Brysbaert & New, 2009; Ferrand et al., 2010; 

Keuleers, Diependaele, & Brysbaert, 2010; Keuleers et al., 

2012; Yap & Balota, 2009). List diagnostics are presented 

in table 1. Individual word frequencies were log-

transformed. Example stimuli can be seen in Table 3; none 

of the bigrams were repeated across the two experiments. 

 

Table 3: Example stimuli for experiment two 

 

Bigram Type Example Stimuli 

High Diversity that place; with number; this ancient 

Low Diversity revolve around; beady eyes; gilded cage 

No-Diversity yonder month; ribbed final; orate red 

 

Procedure 

The experimental procedure was identical to that used in the 

first experiment. 

 

Analysis and Results 

 

All participants scored more than 80% on the LDT. Data 

was trimmed in the same way as the first experiment and a 

total of 2.04% of correct trials were removed. Response 

time data was log-transformed. 

Data was analysed categorically using a repeated-

measures analysis of variance to identify any differences in 

response time between the high (M = 6.375, SD = .054), 

low (M = 6.395, SD = .059) and no diversity (M = 6.422, 

SD = .581) bigrams as well as non-words (M = 6.548, SD = 

.130); means and standard error can be seen in Figure 3. 

 

 

 
 

Figure 3: Non-transformed group means for bigram 

diversity, bars depict standard error 
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Bigram diversity had a significant effect on response time, 

F(3,28) = 35.932, p < .001, ηp
2 = .794. Post hoc pairwise 

comparison using Bonferroni correction shows that non-

words were recognised more slowly than those in high (p < 

.001), low (p < .001) and no diversity (p < .001) conditions. 

Words in the no diversity condition were also recognised 

more slowly than those in both the high (p = .007) and low 

(p = .011) diversity conditions; there was no significant 

difference between high and low diversity bigrams (p = 

.261). 

Bigram diversity had no effect on response accuracy, 

F(3,28) = 1.486, p = .208.  

 

Comparison with Transitional Probability 

Transitional probabilities were calculated for all bigrams 

using the formula: 

P(Y|X) = P(Y, X) 

                   P(X) 

Where Y is the target stimulus and X is the initial word of a 

given bigram pair. 

An item analysis was then run using a multiple linear 

regression with data from both experiments to assess the 

relationship between response time (log-transformed) on a 

LDT and the three key variables bigram frequency, bigram 

diversity, and transitional probability, F(3, 168) = 2.937, p = 

.035. Individual coefficients (see Table 4.) indicate that 

bigram frequency represents the strongest predictor of word 

recognition performance; neither bigram diversity or TP 

were significant predictors of response time. 

 

Table 4: Coefficients and p-values 

 

Discussion 

The current study aimed to assess whether bigram frequency 

and bigram diversity would have an effect when used as 

primes in a LDT. Findings from the categorical analyses 

suggest a binary interaction between bigram frequency and 

response time where naturally occurring bigrams are 

recognised significantly more quickly than illegal bigrams 

or non-words. The same is also true for bigram diversity. 

This suggests that any amount of exposure to a language 

is beneficial regardless of the frequency or diversity of 

individual structures within the input. This is an interesting 

effect which may have been overlooked by previous studies 

that have focussed on TPs since the methodologies 

employed tend to focus on recognition of familiar versus 

unfamiliar strings. It could be argued however that the 

bigram frequencies presented in the current study, although 

highly infrequent, do not accurately represent the extremes 

of low frequency within the BNC. It is therefore suggested 

that further investigation needs to access frequencies of less 

than 0.1 per million in order to identify the absolute 

minimum amount of exposure required to elicit statistical 

priming effects. 

 Comparison of the key predictors also suggests that 

bigram frequency outperforms TPs as a predictor of 

response time in a statistically primed LDT. This can be 

attributed to the lower computational costs associated with 

tracking bigram frequency compared to the calculation of 

TPs. To the authors knowledge, the current study is the first 

to assess statistical learning using a LDT. These findings 

should therefore be interpreted with caution until they can 

be demonstrated in alternative paradigms. 

It is proposed that the findings presented are evidence for 

the use of metrics other than TP in statistical learning 

paradigms, particularly when applied to natural language 

where TPs tend to be very small. A case can also be made 

that LDTs are a viable paradigm for the investigation of 

statistical effects in natural language where traditional 

recognition tasks may not be appropriate.  

Crucially, they suggest that theories of statistical learning 

can deal with the scale-up in variety and complexity that 

comes from moving between artificial and natural 

languages. This begins to address one of the most 

fundamental criticisms of statistical learning theory. 

When interpreting the data presented herein it would be 

prudent to consider that, although the BNC constitutes a 

multifarious selection of British English it does not 

encapsulate the entirety of written and spoken language. It is 

therefore posited that any findings presented be considered 

as representative rather than absolute in their accuracy. 

Future investigation should include the analysis of alternate 

corpora in order to ensure that any results are not artefactual 

in nature. 

It is recognised that neither bigram frequency or diversity 

represent a complete account of statistic learning, nor is it 

suggested that learners utilise these metrics in place of TPs. 

Rather, it is posited that bigram frequency and, to a lesser 

extent, diversity constitute ‘another brick in the wall’ which 

may one day lead to a comprehensive understanding of how 

humans process language. 

In conclusion, the current study demonstrates that 

individuals are capable of using bigram frequency and 

diversity to respond to statistical primes in a lexical decision 

task and that these metrics may be comparable to 

transitional probabilities when applied to natural language. 
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 Beta Stand. 

 Beta 

P 

Bigram frequency -2.51e-5 -.189 < .016 

Bigram diversity -1.21e-5 -.060 .456 

Trans. Probability -.038 -.107 < .169 
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Abstract 

Variability is important to learning; however, whether it 
supports or hinders language acquisition is unclear. 3D object 
studies suggest that children learn words better when target 
objects vary, however storybook studies indicate that 
contextual variability impairs learning. We tested a dynamic 
systems account in which background variability should boost 
learning by speeding the emergence of new behaviors. Two 
groups of two-year-old children saw arrays of one novel and 
two known objects on a screen, and heard a novel or known 
label. Stimuli were identical across conditions, with the 
exception that in the constant condition objects appeared on a 
white background, and in the variable condition backgrounds 
were colored. Only children in the variable condition showed 
evidence of word learning, suggesting that extraneous 
variability supports learning by decontextualizing 
representations, and indicating that adding low-level entropy 
to the developmental system can trigger a change in behavior. 

Keywords: word learning; language acquisition; 
variability; memory decontextualization; dynamic systems 
 

Children’s early word learning has long fascinated 
researchers. When a child hears the new word spaceship, 
linking it with a new toy flying machine rather than their toy 
dog – or indeed the flying machine’s wings, its color, the 
way it moves, and so on – seems to pose little problem. 
Given that the space of potential referents is theoretically 
infinite (Quine, 1960), this ability to quickly map a novel 
word to a novel object is impressive; indeed, robust referent 
selection has been observed in children as young as 18 
months (Carey & Bartlett, 1978; Halberda, 2006; Houston-
Price, Plunkett & Harris, 2005; Markman & Wachtel, 1988).  

However, there is mounting evidence that a single episode 
of referent selection is not sufficient for full word learning; 
rather, children learn word-object associations 
incrementally, forming in-the-moment mappings between 
labels and objects and strengthening memories of these 
mappings across repeated encounters via cross situational 
learning (Horst & Samuelson, 2008; Smith & Yu, 2008; 
Yurovsky, Fricker, Yu, & Smith, 2014). Clearly, then, 
memory and language are linked from very early in 
development (Taylor, Liu, & Herbert, 2016): learning a new 
word depends critically on children’s ability to form and 
retain word-object associations. Consequently, the field has 
recently focused on the multiple factors that affect 
children’s ability to retain word-object mappings, 
demonstrating that referent selection and word learning are 
flexible, even fragile processes which depend heavily on the 
temporal and visual availability of information in the 
learning environment, for example repetition, competition, 

and timing (e.g., Arias-Trejo & Plunkett, 2010; Horst, Scott, 
& Pollard, 2010; Mather & Plunkett, 2009).  

Developmental research has demonstrated that variability 
of to-be-learned items is a key influencing factor in early 
learning. For example, visual variability encountered across 
stimuli facilitates categorization in 6- to 7-month-old infants 
(Quinn & Bhatt, 2010), and phonological variability in 
affect or speaker has been shown to support early word 
recognition (Rost & McMurray, 2009). Recent work has 
revealed a similar effect of variability on word learning: 
when shown a novel 3D object category with exemplars that 
varied in color, 30-month-old children learned category 
labels, but did not when exemplars were identical, or varied 
in shape and color simultaneously (Twomey, Ranson, & 
Horst, 2014). Thus, while some target variability supports 
word learning, too much variability appears to disrupt it. 

In addition to target variability there is good theoretical 
reason to expect extraneous, non-target variability – entropy 
– to support word learning. Evidence from adult problem-
solving studies suggests that introducing entropy to a task 
facilitates learning. For example, adults solving a series of 
gear system problems presented on a computer screen 
learned a short-cut solution faster when the task contained 
entropy in the form of variability in spatial location of the 
stimuli than when stimuli were presented in a consistent 
spatial location (Stephen, Dixon, & Isenhower, 2009). On 
dynamic systems theories of cognition and development, 
cognitive structure emerges from the dynamic interactions 
of multiple, coupled components including the learner’s 
body, learning history and in-the-moment characteristics of 
the task (Thelen & Smith, 1996). Cognitive structure is 
instantiated as a stable state (“attractor”) in the behavior of 
this complex system. Dynamic systems of this type exhibit 
“phase shifts” from one attractor to another, resulting in 
qualitative and quantitative changes in the system’s 
behavior. Because phase shifts result in behavioral change, 
from the dynamic systems perspective, they index learning. 
As Stephen et al. (2009) demonstrate, extraneous entropy 
during learning destabilizes attractor states, speeding the 
onset of a phase shift. During development, then, non-target 
variability should speed up learning by helping new 
cognitive structure emerge via a shift from one behavioral 
state to another. 

Despite this strong theoretical prediction, evidence for an 
effect of non-target variability in early learning is mixed. 
The categorization literature suggests that non-target 
variability helps learning. For example, Goldenberg & 
Johnson (2015) presented 16- to 20-month-old infants with 
a looking time task. Children saw novel category exemplars 
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on backgrounds which (a) repeated, (b) varied randomly, or 
(c) varied within interleaved blocks. Only infants who saw 
backgrounds which varied in interleaved blocks correctly 
generalized category labels at test. In contrast, the word 
learning literature suggests that lack of contextual variability 
supports word learning: when learning words from a 
storybook, repeating the context in which 3-year-old 
children encounter novel words by reading from the same 
book repeatedly boosts word retention relative to teaching 
children the same novel words from multiple different 
books (Horst, Parsons & Bryan, 2011; Williams & Horst, 
2014). More broadly, however, the prediction from dynamic 
systems theory that additional entropy should boost word 
learning in a single task has yet to be explicitly tested. 
Critically, if background variability helps children learn 
words, this would provide evidence for continuity in the 
low-level mechanisms driving learning, from toddlerhood to 
adulthood. The current study addressed this gap by 
presenting children with a word learning task in which 
objects appeared either on a white background or on 
multiple colored backgrounds. We selected two-year-old 
children in line with previous research which demonstrates 
this age group’s success in similar looking-based referent 
selection tasks (Bion, Borovsky & Fernald, 2013). On the 
dynamic systems account, children in the variable color 
condition should show stronger retention of label-object 
associations than children in the constant color condition.  

Method 

Participants 
Thirty typically developing, monolingual English-learning 
two-year-old children (14 girls, M = 22.77 months, SD = 
1.87 months; range = 20.0 – 26.0 months) with a mean 
productive vocabulary of 176.04 words (SD = 117.50 
words, range = 4 – 413 words) and no family history of 
colorblindness participated. Half of the children were 
randomly assigned to the constant color condition, and half 
to the variable color condition. Children’s ages and 
productive vocabularies were the same in either condition 
(ps >.30). Data from six children were excluded due to 
fussiness (1), parental interference (3), bilingualism (1), and 
an eye tracker sample rate of under 25% (1). Parents were 
reimbursed for travel expenses and children received a small 
gift for participating.  
Stimuli  
Each child saw a warm-up, referent selection and test phase. 
Critically, stimuli for each phase were identical across 
conditions with the exception that during warm-up and 
referent selection in the variable color condition objects 
appeared on colored backgrounds, and in the constant color 
condition backgrounds were always white. Children also 
saw engagement and attention-getting stimuli. Overall, 
warm-up, referent selection and retention stimuli were 
videos containing 2D photographic images of known and/or 
novel objects (depicted in Fig. 1).  
 

 
Fig 1. Object depicted in the current study. 

Known objects were an apple, a ball, a banana, a car, a 
cup and a fork, and were selected because their labels are 
familiar to children of this age group (Fenson et al., 1993). 
Novel objects were a purple, green and black foam rocket 
(labeled zorch), a spherical yellow object with multiple 
flexible legs capped with pink and green balls (labeled tife), 
and a blue kazoo with raised orange spots (labeled blick), 
selected from an online database of objects unfamiliar to 
children of this age (NOUN Database; Horst & Hout, 2015). 
Each trial consisted of a single video of three objects. 
Videos were created in Microsoft Powerpoint 2010, and 
converted to .avi format using Microsoft Windows Live 
Movie Maker 2011. Each video was accompanied by 
embedded audio consisting of the same female speaker 
saying Can you find the [label]? Look at the [label]! 
Where’s the [label]?, as well as sound effects to keep 
children engaged in the task. Known labels were the 
appropriate English labels for those objects, and novel labels 
were blick (kazoo), tife (legs/balls) and zorch (rocket), 
selected as plausible but unfamiliar English object names. 
Auditory stimuli commenced 5 s after the start of each trial. 
First label onsets occurred from 0.78 – 0.90 s after the 
beginning of the auditory stimulus and offsets from 1.27 to 
1.58 s; second label onsets from 2.20 – 2.48 s and offsets 
from 2.65 – 3.25 s; and third label onsets from 3.54 s – 4.21 
s and offsets from 4.22 s to 5.19 s.  
Engagement. Engagement stimuli consisted of a 7 s video 
of a female experimenter on a white background, smiling 
and saying Hello! Let’s play a game! Can you find what I’m 
looking for? in child-directed speech. 
Warm-up. Warm-up stimuli were 16 s videos, each 
depicting a set of three of the known objects, designed to 
familiarize children with the task. In the first 0.5s, a small 
colored rectangle appeared in the middle of a black screen 
and spun in an anticlockwise circle, expanding until it filled 
the whole screen, at which point it became the background 
on which the objects would appear. In the constant color 
condition, the background on each of the three warm-up 
trials was white. In the variable color condition, the 
background was blue, green, pink, purple or red. In the next 
2 s the three objects appeared in the top left-hand corner of 
the screen and bounced diagonally downwards accompanied 
by a boing sound, coming to a rest in the center of the 
screen and remaining there for 9.5 s, during which time the 

Set 
1 

Set 
2 

Set 
3 

Known 1 Known 2 Novel  Novel label 

zorch 

tife 

blick 
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target object was labeled three times (e.g., Can you find the 
apple? Look at the apple! Where’s the apple). During the 
next 3 s the target object rotated accompanied by a 
twinkling sound, followed by ostensive auditory feedback 
(e.g., There’s the apple!). In the final 1 s the objects 
bounced diagonally towards the bottom right hand corner 
and offscreen, accompanied by the sound of children 
cheering. 
Referent selection. Referent selection trials were 13 s long, 
and identical to warm-up trials with the exception that 
children saw one novel and two known stimuli, and there 
was no ostensive feedback phase. Background colors were 
either white (constant color) or pseudorandom (variable 
color), as in the warm-up trials. Object location was 
pseudorandomized.  
Retention. Retention trials were 9.5 s long and proceeded in 
an identical manner to referent selection trials except that 
the background was always gray and appeared immediately 
(i.e., there was no 0.5 s period where the background 
appeared) and all three objects were novel. Each object was 
labeled on two trials.  

Procedure and Design 
Before the experiment began the experimenter showed 
caregivers pictures of the known and novel objects to ensure 
they were appropriately known and novel to the child. All 
children were familiar with the known objects and 
unfamiliar with the novel objects. Caregivers were asked to 
complete a UK adaptation (Hamilton, Plunkett, & Schafer, 
2000) of the MacArthur-Bates Communicative 
Development Inventory (Fenson et al., 1994), a vocabulary 
inventory commonly used to score toddlers’ receptive and 
productive vocabulary. Caregivers completed the 
vocabulary inventory either before or after the experiment, 
depending on the child’s level of engagement. 

The eyetracking session took place in a quiet, dimly-lit 
room. Children sat on their caregiver’s lap 50-70 cm in front 
of a 21.5” 1920 x 1080 computer screen. Beneath the screen 
a Tobii X120 eyetracker recorded the child’s gaze location 
at 17 ms intervals, and a video camera above the screen 
recorded the caregiver and child throughout the procedure. 
Caregivers were instructed not to interact with their child or 
look at the screen during the task to avoid biasing their 
child’s behavior, and were asked to sit at a 90° angle from 
their child to ensure the eyetracker tracked the child’s eyes 
only. 

The eyetracker was first calibrated using a five-point 
infant calibration procedure available in Tobii Studio. 
Immediately following calibration, children saw the 
engagement stimulus once. 

Warm-up. The three warm-up trials immediately followed 
the engagement stimulus. The warm-up phase in each 
condition was identical with the exception that in the 
constant variable color condition, backgrounds were 
multiple, uniform colors, while in the constant color 
condition, backgrounds were white. Which objects 
appeared, which served as targets, and left-right positioning 

of objects were pseudorandomized across children such that 
no object appeared on more than two successive trials. 

Referent selection. Fifteen referent selection trials 
immediately followed the warm-up phase. An example 
referent selection phase for the variable color condition is 
depicted in Fig. 1. Again, the corresponding warm-up phase 
in the constant color condition was identical with the 
exception that backgrounds were white. Referent selection 
trials were presented in three blocks of five trials for each 
set. Sets were kept constant across trials to maximize 
children’s retention of novel labels (Axelsson & Horst, 
2014); thus, one child might see a block of five repetitions 
of the apple + fork + zorch set, followed by the banana + 
cup + tife set, and finally the car + ball + blick set, with 
block order Latin square counterbalanced across children. In 
each referent selection block children were asked to look at 
a known object on two trials and a novel object on three 
trials. Known/novel trial order and background color 
(variable color condition only) was pseudorandomized such 
that no more than two of the same trial type appeared in 
succession. 

 
Fig. 2. Example referent selection phase. 

During referent selection an attention getting stimulus 
appeared six times pseudorandomly such that it was always 
succeeded by at least one referent selection trial, and 
consisted of a 3 s video of the speaker saying What’s next?. 
Finally, after the referent selection phase, children saw a 5 s 
“Well done” video of the speaker saying Well done! All 
finished! See you soon!  
Break. Following referent selection, children took a five-
minute break. During this time they either remained on their 
caregiver’s lap and watched an age-appropriate animation or 
moved to a seating area in the same room and colored 
pictures from a book. 
Warm-up. After the break children saw a further warm-up 
trial, presented on a gray background.  
Test. Three memory recativtaion and three retention trials 
immediately followed the warm-up trial, each depicting the 
three novel objects seen during referent selection. Trial 
order and object location were pseudorandomized. 

Coding and data cleaning. Left, middle and right AOIs 
were square and centered on each object’s stationary 
position after they had bounced into the screen. 
Unreliable/offscreen and non-AOI looks were discarded, 

Can you find the tife? Look at the tife! Where’s the tife? 

What’s next? 

Can you find the tife? Look at the tife! Where’s the tife? 

Can you find the apple? Look at the apple! Where’s 
the apple? 

Can you find the fork? Look at the 
fork! Where’s the fork? 

Can you find the tife? Look at the tife! Where’s 
the tife? 

What’s next? 
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resulting in a final dataset of 115,762 referent selection and 
61,247 test gaze samples. Individual gaze samples were 
numerically coded (1 = target look, 0 = non-target look), 
creating a raw looking time measure, which was further 
collapsed into 100ms time bins for statistical tractability. All 
subsequent analyses use this target looking measure, and are 
standardized from the offset of the first label plus 233ms 
(Swingley, Pinto, & Fernald, 1999) to 6733ms post-
labeling. 

Results 
Because the focus of the current paper is the effect of 
extraneous variability on children’s word learning, and due 
to space constraints, we present here the results from the test 
phase. Analyses of looking during referent selection are 
reported separately and discussed in detail in Twomey, Ma 
& Westermann (under review); overall, however, we found 
chance level looking and no difference between conditions. 
At test, each novel object served as a target on one memory 
reactivation trial and one retention trial. Fig. 3 depicts 
looking times during the memory reactivation trials and 
shows little difference in target looking in the two 
conditions. This conclusion was supported by a linear mixed 
effects model with main effects of time bin (treated as 
continuous) and condition and their interaction, with by-
participant random slopes and intercepts for condition and 
by-item random intercepts to rule out item effects (Barr, 
Levy, Scheepers & Tily, 2013). As in referent selection, 
there was a small but robust increase in looking with time 
(beta = 0.0019, SE = 0.00063, t = 2.99, χ2(1) = 10.49, p = 
.0012). However, condition had no independent effect on 
looking times, and did not interact with time bin (main 
effect of condition: beta = 0.043, SE = 0.00098, t = 0.66, 
χ2(1) = 0.12, p = .73; time bin x condition interaction: beta = 
-0.0080, SE = 0.00098, t = -0.81, χ2(1) = 0.67, p = .41). 

Data from the three retention trials show a markedly 
different pattern, however. As Fig. 4 illustrates, children in 
the variable color condition looked at the target at above-
chance levels immediately following labeling and again at 
around 4000ms, suggesting that encountering variable 
colored backgrounds during referent selection facilitated 
their retention of the novel label-object mappings. A mixed 
effects model with the same fixed effects structure as above 
and by-participant and by-item random intercepts and slopes 
for condition revealed that target looking decreased over 
time (time bin: beta = -0.029, SE = 0.00078, t = -3.65, χ2(1) 
= 32.55, p < .001). This effect was constant for children in 
either condition (time bin x condition: beta = -0.0010, SE = 
0.0011, t = -0.87, χ2(1) = 0.75, p = .39). Critically, however, 
proportion target looking was greater for children in the 
variable color condition than in the constant color condition 
(beta = -0.26, SE = 0.090, t = 2.85, χ2(1) = 5.41, p = .020).  

 

 Fig. 3. Proportion target looking during memory 
reactivation trials. Error bars represent 95% CIs. Where bins 

are marked with a point, looking is significantly above 
chance (0.33; p < .05, one-sample, two-tailed t-tests; ditto 

for Fig. 4). 
 

 
Fig. 4. Proportion target looking during retention trials.  

Discussion 
The current study explored whether extraneous variability 

would boost young children’s word learning. We trained 
two groups of two-year-old children with novel label-object 
associations via multiple referent selection trials. Stimuli 
presented to both groups were identical except that half the 
children saw arrays of novel objects displayed on a white 
background (constant color condition), and half saw objects 
on multiple colored backgrounds (variable color condition). 
Analyses of test trials revealed a clear effect of background 
variability: while children did not appear to correctly 
identify previously-seen novel objects during the memory 
reactivation trials, on retention trials children who had seen 
variable backgrounds during referent selection looked for 
longer at target objects than did children who had seen 
constant colored backgrounds, and did so at levels greater 
would be expected by chance. Thus, infants who had seen 
objects on variable backgrounds learned and retained the 
novel object-label mappings, but infants who had seen the 
objects on a constant background did not. These results 
offer converging evidence that following reactivation of 
memory traces, background variability facilitates learning, 
raising several interesting issues (see also Twomey et al., 
under review).  

The importance of memory reactivation Children in the 
variable color condition looked at target objects at chance 
levels on the three memory reactivation trials, but at levels 
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greater than expected by chance on the subsequent three 
retention trials. Typically in word learning studies children 
see only a single retention trial for each object. Our results 
suggest that null findings in these studies could be due to a 
lack of recall ability rather than a lack of learning. These 
data indicate that including memory reactivation trials in 
future studies could help shed light on whether children are 
failing to learn, or failing to recall. Establishing the locus of 
memory reactivation in the word learning field is therefore 
critical for a thorough understanding of the delicate memory 
processes underlying early language acquisition. 

Decontextualization in early learning The fact that only 
children in the variable color condition retained novel label-
object associations may seem unexpected in light of recent 
work in word learning indicating that consistency in context 
supports, not impairs, word learning (e.g., Axelsson & 
Horst, 2014). Given these results, why should what seems to 
be a more challenging task (i.e., variable color versus 
constant color backgrounds) lead to better learning? In fact, 
our results are in line with a wealth of adult literature 
demonstrating that background variability supports recall 
(e.g., Godden & Baddeley, 1975). More recent work has 
explored the effect of context on adults’ category learning; 
for example, Finch, Carvalho and Goldstone (2016) showed 
that variable backgrounds led to better retention of 
previously-seen exemplars of a bird category.  

These results are attributed to a decontextualisation 
mechanism. When memories are formed after a single 
encounter, both context and target are encoded. On 
subsequent encounters, if the context stays the same, it 
remains part of the representation. These context-dependent 
memories are harder to recall when the context changes. 
Godden and Baddeley (1975) describe a classic example of 
this effect, showing that divers who had learned word lists 
either on dry land or underwater were better at recalling 
words learned underwater when tested underwater, and 
better at recalling words learned on dry land when tested on 
dry land. When an item is encountered in multiple different 
environments, however, the representation becomes 
decontextualized: the context becomes less important to the 
representation. If an item with a decontextualized 
representation is encountered in a new environment, then, it 
is easier to recall than if the representation were context-
dependent. 

The same mechanisms that explain these adult data can 
account for children’s word learning in the current study. 
During referent selection, children in the constant color 
condition learned context-dependent representations, while 
children in the variable color condition learned 
decontextualized representations. At test children 
encountered objects on a gray screen – and critically, neither 
group had seen objects presented on a gray screen until this 
point. Thus, recall was possible for children in the variable 
color condition, who were able to generalize their 
decontextualized memory traces to the new test context. 
This raises the question of why contextual consistency in 
existing studies supports word learning  – the opposite of 

the current findings. It is possible that different types of 
context have qualitatively different effects. Here, in line 
with Stephen et al. (2009), “context” was low-level, 
extraneous variability. In contrast, the contexts in the 
existing literature were rich and salient: in the storybook 
studies, books were constructed from photograph-like 
images, resulting in a complex visual scene that varied from 
page to page. In addition, the sentence contexts in which 
novel words appeared also varied (Horst et al., 2011). 
Similarly, in the referent selection work, “context” consisted 
of the competitor objects presented alongside the targets, 
which were considerably more complex than a simple block 
of color (Axelsson & Horst, 2014). Thus, it may be that in 
rich learning environments, restricting complexity supports 
learning (Radesky & Christakis, 2016), while in simpler 
learning environments, increasing complexity by adding 
background noise helps learning. 

This decontextualization account provides a mechanism 
by which added variability can support learning, as 
predicted by the dynamic systems account. Importantly, 
decontextualization is one among many potential 
mechanisms by which learning under the dynamic systems 
account may be shaped. As noted above, this theory predicts 
that background entropy should facilitate learning by 
speeding up the emergence of new stable behavioral states 
(Stephen et al., 2009). However, the dynamic systems 
account also suggests that other types of variability should 
support learning, raising the intriguing possibility for future 
work that entropy introduced in a different modality, for 
example sound or spatial location, could also support word 
learning. Work is underway to test these predictions. 
Overall, however, on either the specific decontextualization 
account or the broader dynamic systems approach, the 
current work extends a well-established phenomenon in 
adult cognition to children with a new task, pointing to a 
view of development as a continuous process driven by 
domain-general mechanisms. 

 
Acknowledgements 

Data are available on request from the authors. The support 
of the Economic and Social Research Council is gratefully 
acknowledged (LuCiD: ES/L008955/1; Future Research 
Leaders grant to KT: ES/N01703X/1). GW was further 
supported by a British Academy/Leverhulme Trust Senior 
Research Fellowship (SF150163). We thank the parents and 
children who made this work possible. 

References 
Arias-Trejo, N., & Plunkett, K. (2010). The effects of 

perceptual similarity and category membership on early 
word-referent identification. Journal of Experimental 
Child Psychology, 105(1-2), 63–80.  

Axelsson, E. L., Churchley, K., & Horst, J. S. (2012). The 
right thing at the right time: Why ostensive naming 
facilitates word learning. Frontiers in Psychology, 3.  

3408



Axelsson, E. L., & Horst, J. S. (2014). Contextual repetition 
facilitates word learning via fast mapping. Acta 
Psychologica, 152, 95–99. 

Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). 
Random effects structure for confirmatory hypothesis 
testing: Keep it maximal. Journal of Memory and 
Language, 68(3), 255–278. 

Bion, R. A., Borovsky, A., & Fernald, A. (2013). Fast 
mapping, slow learning: Disambiguation of novel word–
object mappings in relation to vocabulary learning at 18, 
24, and 30months. Cognition, 126(1), 39–53. 

 Carey, S., & Bartlett, E. (1978). Acquiring a single new 
word. Papers and Reports on Child Language 
Development, 15, 17–29. 

Fenson, L., Dale, P. S., Reznick, J. S., Bates, E., Thal, D. J., 
& Pethick, S. J. (1994). Variability in early 
communicative development. Monographs of the Society 
for Research in Child Development, 59(5), R5–+.  

Finch, D., Carvalho, P., & Goldstone, R. L. (2016). 
Variability in category learning: The effect of context 
change and item variation on knowledge generalization. In 
Papafragou, A., Grodner, D., Mirman, D., & Trueswell, 
J.C. (Eds.) (2016). Proceedings of the 38th Annual 
Conference of the Cognitive Science Society. Austin, TX.: 
Cognitive Science Society. 

Godden, D. R., & Baddeley, A. D. (1975). Context-
dependent memory in two Natural environments: On land 
and underwater. British Journal of Psychology, 66(3), 
325–331.  

Goldenberg, E. R., & Johnson, S. P. (2015). Category 
generalization in a new context: The role of visual 
attention. Infant Behavior and Development, 38, 49–56.  

Halberda, J. (2006). Is this a dax which I see before me? 
Use of the logical argument disjunctive syllogism supports 
word-learning in children and adults. Cognitive 
Psychology, 53(4), 310–44.  

Hamilton, A., Plunkett, K., & Schafer, G. (2000). Infant 
vocabulary development assessed with a British 
communicative development inventory. Journal of Child 
Language, 27(3), 689–705.  

Hildreth, K., & Rovee-Collier, C. (1999). Decreases in the 
response latency to priming over the first year of life. 
Developmental Psychobiology, 35(4), 276–289.  

Horst, J. S., & Hout, M. C. (2015). The Novel Object and 
Unusual Name (NOUN) Database: A collection of novel 
images for use in experimental research. Behavior 
Research Methods, 1–17. 

Horst, J. S., Parsons, K. L., & Bryan, N. M. (2011). Get the 
story straight: contextual repetition promotes word 
learning from storybooks. Frontiers in Psychology, 2.  

Horst, J. S., & Samuelson, L. K. (2008). Fast mapping but 
poor retention by 24-month-old infants. Infancy, 13(2), 
128–157. 

Horst, J. S., Scott, E. J., & Pollard, J. P. (2010). The role of 
competition in word learning via referent selection. 
Developmental Science, 13(5), 706–713.  

Houston-Price, C., Plunkett, K., & Harris, P. (2005). 
“Word-learning wizardry” at 1;6. Journal of Child 
Language, 32(1), 175–189. 

Hsu, V. C., Rovee-Collier, C., Hill, D. L., Grodkiewicz, J., 
& Joh, A. S. (2005). Effects of priming duration on 
retention over the first 1 1/2 years of life. Developmental 
Psychobiology, 47(1), 43–54.  

Markman, E. M., & Wachtel, G. F. (1988). Children’s use 
of mutual exclusivity to constrain the meaning of words. 
Cognitive Psychology, 20(2), 121–157.  

Mather, E., & Plunkett, K. (2009). Learing words over time: 
The role of stimulus repetition in mutual exclusivity. 
Infancy, 14(1), 60–76.  

Morgan, K., & Hayne, H. (2006). Age-related changes in 
memory reactivation by 1-and 2-year-old human infants. 
Developmental Psychobiology, 48(1), 48–57.  

Quine, W. V. O. (1960). Word and object: An inquiry into 
the linguistic mechanisms of objective reference. 
Cambridge: MIT Press. 

Quinn, P. C., & Bhatt, R. S. (2010). Learning perceptual 
organization in infancy: The effect of simultaneous versus 
sequential variability experience. Perception, 39(6), 795–
806. 

Radesky, J. S., & Christakis, D. A. (2016). Keeping 
children’s attention: The problem with bells and whistles. 
JAMA Pediatrics, 170(2), 112–113.  

Rost, G. C., & McMurray, B. (2009). Speaker variability 
augments phonological processing in early word learning. 
Developmental Science, 12(2), 339–349.  

Smith, L. B., & Yu, C. (2008). Infants rapidly learn word-
referent mappings via cross-situational statistics. 
Cognition, 106(3), 1558–1568.  

Stephen, D. G., Dixon, J. A., & Isenhower, R. W. (2009). 
Dynamics of representational change: Entropy, action, and 
cognition. Journal of Experimental Psychology: Human 
Perception and Performance, 35(6), 1811.  

Swingley, D., Pinto, J. P., & Fernald, A. (1999). Continuous 
processing in word recognition at 24 months. Cognition, 
71(2), 73–108. 

Taylor, G., Liu, H., & Herbert, J. S. (2016). The role of 
verbal labels on flexible memory retrieval at 12-months of 
age. Infant Behavior and Development, 45, Part A, 11–17.  

Thelen, E., & Smith, L. B. (1996). A Dynamic Systems 
Approach to the Development of Cognition and Action. 
Cambridge, Mass.: MIT Press. 

Twomey, Ma & Westermann (under review). All the right 
noises: Background variability helps early word learning. 
Infancy. 

Twomey, K. E., Ranson, S. L., & Horst, J. S. (2014). That’s 
more like it: Multiple exemplars facilitate word learning. 
Infant and Child Development, 23(2), 105–122.  

Yurovsky, D., Fricker, D. C., Yu, C., & Smith, L. B. (2014). 
The role of partial knowledge in statistical word learning. 
Psychonomic Bulletin & Review, 21(1), 1–22.  

 

3409



Comparison strategies in the change detection task are influenced by task
demands.
Rob Udale

University of Bristol
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Abstract: Current models of visual working memory (VWM) assume that comparing memory with the environment obligato-
rily involves a spatial comparison process. Can changing task demands determine whether a spatial or non-spatial comparison
processes is employed? Study displays of three colored shapes were presented, followed by test displays of three coloured
shapes. Participants decided whether a feature changed between displays. Task-irrelevant changes to the probed item’s lo-
cations or feature bindings reduced memory performance, suggesting that participants employed spatially guided comparison
process. This finding occurred irrespective of whether participants decided about the whole display, or only a single cued
item within the display. When task-irrelevant feature changes occurred amongst uncued items, performance was unaffected by
irrelevant changes in location or feature bindings. These results suggest that participants can flexibly shift comparison strat-
egy in response to changing task demands. These findings have implications for models of VWM, which assume obligatory
location-based comparisons in VWM.
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Abstract

Languages commonly use physical properties to discuss dis-
tinctly non-physical states and events in the world (e.g., “I’m
not a huge fan of licorice”). Here, we investigate the degree
to which associations between physical properties and abstract
concepts are culturally specific constructs. To do this, we
tested three distinct populations—US adults, US children, and
adults from an indigenous group in the lowlands of Bolivia, the
Tsimane’—on their associations between the physical concept
of weight and a variety of abstract attributes (e.g., importance,
emotional state, moral worth). We find a strong relationship
between the associations of US and Tsimane’ adults, but little-
to-no relationship between US children and either adult popu-
lation. These results suggest that the property of weight plays
a similar role in everyday thought across cultures, but that it
takes time to develop. Further, we found that these associations
could not be recovered from a simple semantic embedding
analysis, suggesting that the cross-culturally shared connec-
tions between physical and abstract attributes may be learned
through more complex experiences than language alone.

Marty: Are you trying to tell me that my mother has got
the hots for me?
Doc: Precisely!
Marty: Whoa, this is heavy.
Doc: There’s that word again: ”heavy.” Why are things
so heavy in the future? Is there a problem with the Earth’s
gravitational pull?

(Back to the Future. Dir. Robert Zemeckis)

Introduction
Physical notions weigh in on everyday conversation. We say
a person forced herself to meet a deadline, as though she is
pushing a cart uphill. We say a deadline is fast approaching,
as though an actual train hurtling towards our location in time.

Our concepts of force, causality, space, and substance seem
to shape how we talk about the world (Talmy, 1988; Pinker,
2007). Certainly some abstract thoughts rely on a universal
understanding of the physical world. If a friend describes
writing a paper as ‘I’m banging my head against the wall’,
we can understand they are frustrated, and not literally writ-
ing a paper on the effects of head-banging (Figure 1, right).
In the reverse direction, our language also shapes how we
think about basic concepts, such space and time (e.g. Borodit-
sky, 2001; Núñez & Sweetser, 2006). And some thoughts are
culture- and language-dependent in their meaning. If a friend
says writing feels like carrying the day out in a basket, the
thrust would not be universally recognized (Figure 1, left).

Figure 1: Details from Flemish Proverbs by Pieter Bruegel
the Elder, 1559. Left: Carrying the day out in a basket, i.e.
wasting time Right: Banging one’s head against the wall.

The purpose of this paper is not to untangle the knot of de-
velopment, culture, language, and physical concepts. Rather,
we mean to pick up one strand of thought as it relates to an
understanding of a physical quality, and to tug on it gently.
In particular, we consider the concept of weight (heavy and
light), which has received less attention in terms of its impact
on thought, compared to concepts like force, space, and time
1. Intuitively, we seem to associate weight with worth: In
2015, a technical teardown of Beats headphones found that
30% of their weight was accounted for by metal objects that
add no function, but make them feel ’solid and valuable’ (Ein-
stein, 2015). When a character in Romeo and Juliet exclaims
‘O heavy day!’, we recognize that as an expression of dismay
at an unfortunate event. But is all this because of the quirks of
the English language, and our own WEIRD makeup (Henrich
et al., 2010), or something deeper about the way weight ties
in with concepts such as worth and sadness?

1Weight, mass, and density as physical notions have certainly
been studied in development, across infancy (e.g. Baillargeon,
2004), childhood (e.g. Carey, 1999, 2009), and adulthood (e.g. Ham-
rick et al., 2016). But there the concern is with questions such as
‘When do infants realize big things move small things’ and ‘When
do children understand weight and density are separate’, and ’Can
adults tell which block is heavy’, not ‘Do children think being
weighed down relates to being sad’.
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To examine this question, we asked three groups (US
adults, US children, and adults from the indigenous Tsimane’
of Bolivia) to pick which of two differently weighted, visu-
ally identical boxes was better described by various attributes
( external, internal, mental and non-mental). We reasoned
that if the three groups show a systematic bias for some at-
tributes within the group, but no relationship is found between
the judgments of these three groups, then the use of a weight
concept in our everyday thinking outside a strictly physical
context is more likely to be a cultural construct. If the three
groups all show similar judgments, then this is evidence in
favor of an early shared conceptual organization. If the West-
ern adults show similar judgments to Tsimane’ adults, but are
not similar to children, this would suggest a shared concep-
tual organization, but one that takes time to develop. A final
option is that all groups will show random behavior, failing
to associate any attribute with the boxes in a systematic way,
which would be evidence of certain poor decisions about ex-
periment design or a problem with the fundamental research
question. The authors were agnostic about the most likely
outcome out of the ones just listed.

Experiment 1: US Adults
Participants
Participants (N = 100, 42 female, median age 32.0 years)
were recruited through Amazon’s Mechanical Turk service
(Crump et al., 2013) and paid a monetary sum for their partic-
ipation, equivalent to $9 per hour. Participants were restricted
to those living in the United States.

Materials and methods
Participants were presented with an image of identical boxes
marked A and B (see Figure 2, top), and asked to imagine
that there were two boxes before them, as in the image. Par-
ticipants were asked to imagine lifting up the boxes and dis-
covering that one of the boxes is much heavier (the identity
of the heavy box was randomized across participants).

Participants read 12 descriptions in succession, choosing
the box that best fit the description. For each description,
participants were reminded which box was heavier, and then
given a prompt as follows: “Which box is [attribute]?”,
where the attribute varied from one question to the next. Par-
ticipants indicated their response using a radio button. The
12 attribute adjectives were presented in random order, cho-
sen from a list of 24 possible attributes that reflect inner
traits (e.g., good/bad), external qualities (pretty/ugly), emo-
tions (sad/happy), and external evaluation (cheap/expensive,
important/unimportant). For a full list, see Table 1.

Each participant saw only 12 attributes, rather than the
full list of 24, to prevent cognitive fatigue. Participants al-
ways saw only one of a possible antonym pair. In total, this
meant there were 50 individual ratings per attribute. Follow-
ing the attribute questions, the participants supplied basic de-
mographic information, and were invited to share any com-
ments they may have.

Important* / Unimportant* [Not Important]
Valuable* / Cheap* ; Old / Young
Serious* / Funny* ; Sad* / Happy*
Ugly* / Pretty* ; Interesting* / Boring*
Mean / Nice ; Smart* / Stupid* [Not Smart]
Good* / Evil* [Bad] ; Angry / Calm
Brave / Coward [Scared]

Table 1: The 24 attributes applied to the boxes in Experiments
1 and 2, grouped into antonyms. Attributes in [parentheses]
indicate a child-friendly replacement for the preceding word,
used in Experiment 2. Asterisks indicate words used in Ex-
periment 3.

A B

Which box is important?
Box A
Box B

(i)

(ii)

Figure 2: (i) Illustration of stimuli shown to participants in
Experiment 1, for a specific attribute (ii) The boxes used in
Experiment 2 with children, and in Experiment 3 with Tsi-
mane’ adults.

Results and analysis

Participants’ ratings for each attribute were converted into
the following measure: # participants that chose light

# total participants . This weight
choice fraction (WCF) goes from 0.0 (all participants chose
the heavy box for this attribute) to 1.0 (all participants chose
the light box). The results are shown in Figure 3, with bars
indicating 95% bootstrapped confidence intervals (CI, 1000
samples per attribute) around the WCF measure.
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Of the 24 attributes, 15 had WCFs with CIs that do not
overlap 0.5, indicating that participants considered these at-
tributes as statistically significantly associated with heavy or
light. The same result is obtained when using a two-tail bi-
nomial test at the p = 0.05 level. Such a result is highly
unlikely to occur by chance: Using an additional bootstrap
analysis that repeats the same procedure from the previous
paragraph (counting the number attributes with WCF CIs
that do not overlap 0.5), the median (and mean) expected
number of attributes with a measure that does not overlap
chance is 2. Also, the empirical distribution of participants’
WCF is statistically significantly different from a distribu-
tion drawn from a random sample that assumes the same
participant numbers, but with answers based on an unbiased
coin flip (Kolmogorov-Smirnov two-sided test for 2 samples,
KS = 0.28, p < 0.05).

The attributes significantly associated with heavy and light
seem partially in line with intuition 2. Heavier boxes are
more likely to be seen as valuable, important, and interest-
ing, as opposed to the cheap, unimportant, and boring lighter
boxes. This is consistent with the marketing-driven decision
by Beats to add superfluous weight to their headphones. This
association makes sense given that more weight may imply
more “stuff”, which could generally be considered more de-
sirable 3. Participants also associated more personality-type
traits with the boxes, in a way that is not accounted for by
a simple positive-negative spectrum. Heavy boxes are more
good and brave, but also mean and angry. Lighter boxes are
more cowardly, but also more pretty. Presumably participants
were able to anthropomorphize the boxes to some degree, see-
ing them as agents. For example, on this analysis a light agent
is more likely to run away, and is likely to be younger. How-
ever, this does not account for the full pattern of results, such
as seeing heavier boxes as more “good” and less “evil”.

This pattern also cannot be recovered from a semantic em-
bedding analysis. The analysis worked as follows: We em-
bedded the attributes from Table 1, as well as the words heavy
and light, in a high-dimensional semantic vector space, which
was constructed using the co-occurrence statistics of sev-
eral hundred-thousand words in a large corpus (Pennington
et al., 2014). Specifically, we used 100-dimensional GloVe
word vectors pre-trained on the Wikipedia 2014 + Gigaword
5 datasets. Such semantic embeddings have proved useful
for measuring similarity between words, in the service of
machine-learning applications such as sense-making, trans-
lation, and question answering (see for example Vedantam et
al., 2015; Wolf et al., 2014; Yu et al., 2015). Intuitively, a
shorter euclidean distance or larger cosine similarity between
two points in this space indicate a larger degree of similarity
between the words that those points represent. After embed-

2That is, with the intuition of the Western adult authors of this
paper.

3Although, in contrast, consider the value and importance cur-
rently associated with slim technology products, or human figures.
By the same logic, slim would imply less “stuff”. Thus, this expla-
nation is insufficient on its own.

0.0 0.25 0.5 0.75 1.0
Important

Valuable

Mean

Serious

Brave

Interesting

Good
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Smart

Happy

Funny

Ugly

Sad

Nice

Calm

Stupid

Pretty

Young

Boring

Unimportant

Cheap

Cowardly

  LightHeavy

Figure 3: Results of Experiment 1: Participant responses per
attribute are converted into WCF measure running from 0 (all
participants chose the heavy box) to 1 (all participants chose
the light box). Bars indicate 95% bootstrapped confidence
intervals around the mean of this measure. Colors indicate the
degree to which an attribute is associated with heavy (blue) or
light (red). Beige indicates WCFs with CIs overlapping 0.5,
indicating a random response or equal association.

ding our terms, we measured the relative euclidean distance
between the attributes and the terms heavy and light (that is,
distance(heavy,attributei)−distance(light,attributei)). We
found no correlation between participants’ response and this
distance. A similar analysis with cosine similarity also found
no such relation. This suggests that while useful, basic se-
mantic embedding does not necessarily capture association
that is based in physical properties.
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While the pattern shown by US adults is interesting on its
own, the original driving motivation was comparing this pat-
tern to children and non-US cultures. With that, we turn to
children.

Experiment 2: US Children
Participants
Fifty individuals were recruited from the Rochester Kid Lab
participant pool (28 female, Median 4.0 years, range 3-64).

Materials and Methods
Participants were tested in a designated room in the Rochester
Kid Lab. Parents gave their informed consent, and generally
did not accompany their children during the test, unless re-
quested, or children expressed shyness. Parents who accom-
panied their children were explicitly advised not to encourage
responses from their child. Families were compensated for
their time and child participants were also given a small gift
(a shirt or toy).

In the testing room, participants were asked to sit next to
a table, where two boxes were laid out. The boxes were
3x3x3 inches, made of wood, and covered in blue fabric with
a gold pattern (see Figure 2, bottom). The boxes were hollow,
and inside one of them was a 200 gram metal weight, along
with padding to prevent the weight from bouncing and rat-
tling when the box was handled. The locations of the boxes
with respect to a participant were randomized across children.

Participants were first asked if they noticed a difference
in the boxes, based on visual appearance. Participants were
then asked to hold the boxes, and to indicate if there was a
difference (which they were able to verbally verify).

The participant continued to hold the boxes in each hand,
as they answered the following question: “Which box do you
think is [attribute]?”, for a randomized set of 12 attributes
taken from 24 attributes similar to Experiment 1 (and see Ta-
ble 1). The study took a maximum of 10 minutes. Partic-
ipants answered verbally or with a gesture, with the exper-
imenter noting their response. Participants were also asked
to explain their answers, but their reasons were scantly sup-
plied and proved inconsistent across children 5. Again, to
prevent cognitive fatigue, participants were asked to judge 12
attributes rather than the full 24, with each participant seeing
only one of a possible pair of antonyms. Thus there were 25
individual ratings per attribute.

Results and analysis
Participants’ ratings for each attribute were again converted
into the WCF measure used in Experiment 1 (with 0.0 in-
dicating all participants chose heavy, and 1.0 indicating all
chose light). In this case, however, only 3 attributes were

4At this age children possess a sufficiently large vocabulary and
can correctly point to a heavier object when prompted, but have not
received much formal education.

5One participant designated the heavy box ‘The Hulk’ and the
light box ‘Captain America’. Captain America was funny, and The
Hulk was not smart.

different from chance, using a two-tailed binomial test at
the p = 0.05 level). The empirical distribution of children’s
WCFs was also not statistically significant from a distribution
drawn from a random sample, one that assumes the same par-
ticipant numbers but with answers based on the flip of an un-
biased coin (Kolmogorov-Smirnov two-sided test for 2 sam-
ples, KS = 0.21, p = 0.22). It is possible to conclude that
children did not understand the task, either because of low-
level explanations like inappropriate materials and framing,
or because physical weight does not play a similar associa-
tion role in their general thought as it does for US adults.

When correlating with the responses of adults from Experi-
ment 1, we find there is a weak correlation (rs = 0.4, p= 0.05,
and see Figure 4). Taken in a positive light, this may indicate
a fledgling understanding after all of the full adult association
between the attributes used and physical weight. Still, this re-
lationship is statistically tenuous. A median-split by age does
not show a difference between younger and older children.

Is it possible US adults exhibit a culture-specific pattern of
association with physical weight, one that requires years to
acquire? In the last experiment, we consider a non-WEIRD
adult population, an indigenous people of Bolivia.
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Figure 4: Comparison of adult responses from Experiment
1 with child responses from Experiment 2. The x and y axis
both use the same weight-fraction measure, going from heavy
to light. The shaded area indicates a 95% bootstrapped confi-
dence interval on the linear regression model fit.

Experiment 3: Tsimane’ Adults
The Tsimane are a native people of lowland Bolivia, consist-
ing of several thousand individuals, who live in mostly small
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communities in the northeastern department of Beni. Tradi-
tional Tsimane’ are farming-foragers who subsist off hunt-
ing, fishing, and some farming and trade. Members of the
Tsimane’ have highly variable education levels, and own few
artifacts (Huanca, 2006; Reyes-Garcı́a, 2001). As members
of a relatively isolated non-industrial society, Tsimane’ have
been the topic of several previous studies, from market behav-
ior (Reyes-Garcı́a, 2001) to counting (Piantadosi et al., 2014),
to color concepts (Cibelli et al., 2016), to notions of fairness
(Jara-Ettinger et al., 2016).

Participants
Our final sample included fifty-five individuals (33 female,
median age = 28.0 years, range 17-65) from twelve Tsimane’
communities.

Materials and methods
Experiments took place in a community classroom, with a
translator reading from a script, and a separate transcriber
recording responses. The experiments were conducted in Tsi-
mane’, translated from a Spanish script. The translation was
confirmed by a second Spanish-Tsimane’ translator. Other
people were present in the room, but could not see partici-
pant responses. Participants were compensated with gift bags
equivalent to roughly $10 per hour. Participants completed
other tasks in addition to the one in this study, with a total
testing time of approximately one hour.

0.0 0.2 0.4 0.6 0.8 1.0

US Adults
0.0

0.2

0.4

0.6

0.8

1.0

Ts
im

an
e'

 A
du

lts

Important

Unimportant

Valuable

Cheap

GoodEvil

Sad

Happy
Interesting

Boring

Funny
Serious

Smart

Stupid

Ugly

Pretty

rs = 0. 8 (p < 0. 001)

Figure 5: Comparing US adults from Experiment 1 with Tsi-
mane’ adults from Experiment 3. The x and y axis both use
the same WCF measure, going from heavy to light. Shaded
area indicates a 95% bootstrapped confidence interval.

Participants were presented with two identically marked

boxes on a table. These were same boxes used in Experiment
2, and weighted as in Experiment 2 (see Figure 2, bottom).
Participants were instructed to pick each box up before any
questions were asked. Participants were then asked: “Which
box is [attribute]?”, and were instructed to point to a box.
This was then repeated until all adjectives were covered. The
order of the adjectives was randomized, as was the particu-
lar adjective from a given pair was randomized. Participants
were allowed to pick up the boxes at any point. As partici-
pants saw only one word out of a possible pair, there were on
average 21 individual ratings per attribute. In general, partic-
ipants in this experiment went over a subset of 16 of the 24
adjectives in Table 1, due to translation difficulties.

Results and analysis
As in Experiments 1 and 2, participants’ ratings for each at-
tribute were transformed into a WCF measure. Four of the
16 attributes were different from chance, using a two-tailed
binomial test at the p = 0.05 level). In addition, the empiri-
cal distribution of Tsimane’ WCFs is statistically significant
from that drawn from a random sample that assumes the same
participant numbers, but with answers sampled from an un-
biased coin flip (Kolmogorov-Smirnov two-sided test for 2
samples, KS = 0.36, p < 0.05).

We also correlated Tsimane’ responses with those of US
adults in Experiment 1. We found a significant correlation
(rs = 0.8, p< 0.001, and see Figure 5). As a final comparison,
we correlated Tsimane’ responses with those of US children
in Experiment 2, and found no significant correlation (rs =
0.0, p= 0.94). We next consider the general pattern of results.

Discussion
Thoughts weigh nothing, but they can weigh heavily on us.
A man might feel lighthearted after dispensing with a heavy
obligation. We can take matters lightly, but we should not
take them too lightly.

Thoughts, obligations, and matters don’t actually weigh
anything, but we feel their press on us. Our language of
thought cleaves the world into concepts that behave like ob-
jects with physical properties, located in space and acted on
by force Pinker (2007). Conversely, our mental concepts can
color our perception of the physical. In this paper we consid-
ered the particular physical notion of weight, and its relation
to different non-physical qualities such as value, interest and
seriousness.

We examined people’s associations between weight and
these different qualities in Western adults and children, and
in members of the non-industrial Tsimane’ society. We found
a strong relation between the answers given by Tsimane’ and
Western adults, a tenuous relation between Western adults
and children, and no relation between Tsimane’ adults and
Western children. Taken together, these findings indicate that
weight acts a similar cross-cultural role in everyday thought,
but that it takes time to fully get its act together. So, it may be
language and culture-independent to think of important mat-
ters as physically weighing more, for example. However, a
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fuller treatment would require relating the attributes to other
measures beyond weight, such as imageability and affect.

Different alternative explanations can be put forward for
why children provided responses that were inconsistent with
one another. First, it is possible that children simply have not
had the life experiences required to form strong, systematic
associations between abstract attributes and physical prop-
erties like weight. Alternatively, it is possible they cannot
anthropomorphize the boxes. This seems unlikely, as chil-
dren can engage in pretend play with inanimate objects, but
attributing metarepresentations may have required a more ac-
tive signaling of the task as pretend play Lillard (1993). It
may be that young children lack the basic physical skills asso-
ciated with telling a heavy object from a light object and pre-
dicting their different behaviors, but previous research shows
most of the basic intuitions are in place by the lower end of
our age range, with young children predicting the effects of
different masses interacting, and taking weight into account
when planning actions (Baillargeon, 2004; Upshaw & Som-
merville, 2015). Under these alternative explanations that
posit children could have experienced confusion about the
task, we would typically expect certain behavioral indicators
of this state, such as failures, resistance or delays in providing
responses. However, in our sample we observed no such in-
dicators. Children were generally swift and willing to select
a particular box for each attribute about which we inquired.

This study does not give a definitive final answer to ques-
tions of culture, development, and the constructs of thought,
but it does shed light on a piece of the puzzle, in the form of
weight. Also, it is not hard to think of other physical prop-
erties that our methodology could stretch to accommodate,
roughly speaking.
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Abstract 

The organization of knowledge according to relations between 
concepts is critically involved in many cognitive processes, 
including memory and reasoning. However, the role of 
learning in shaping knowledge organization has received little 
direct investigation. Therefore, the present study investigated 
whether informal learning experiences can drive rapid, 
substantial changes in knowledge organization in children by 
measuring the effects of a week-long Zoo summer camp versus 
a control camp on the degree to which 4- to 9-year-old 
children’s knowledge about animals was organized according 
to taxonomic relations. Although taxonomic organization did 
not differ at pre-test, only Zoo camp children showed increases 
in taxonomic organization at post-test. These findings provide 
novel evidence that informal, real-life learning experiences can 
drive rapid knowledge organization change. 

Keywords: Cognitive Development; Semantic Knowledge; 
Semantic Development 

Introduction 

Knowledge is not merely a mentally stored body of 

information, but rather an interconnected network of 

concepts linked by meaningful relations (e.g., McClelland & 

Rogers, 2003). This organization of knowledge according to 

meaningful relations between concepts plays a critical role in 

many cognitive processes, including memory, reasoning, 

learning, and visual attention (Bjorklund & Jacobs, 1985; 

Bower, Clark, Lesgold, & Winzenz, 1969; Chi, Feltovich, & 

Glaser, 1981; Moores, Laiti, & Chelazzi, 2003; Pinkham, 

Kaefer, & Neuman, 2014). Therefore, a key facet of 

understanding cognition is understanding the development of 

knowledge organization.  

Current conceptual development accounts suggest that 

learning experiences drive changes in knowledge 

organization, though the posited nature of such learning 

processes and the degree to which learning is emphasized in 

contrast with early (possibly innate) conceptual biases varies 

across accounts (e.g., Carey, 1985; Fisher, 2015; Gelman, 

2003; Tenenbaum, Kemp, Griffiths, & Goodman, 2011). 

However, the role of learning in organizing knowledge can 

only be indirectly inferred from prior research, because no 

past studies have directly investigated learning experiences 

that may drive knowledge organization changes. This lack of 

direct evidence leaves open several key questions about 

learning-driven knowledge organization change.  First, it is 

unknown whether such changes result from the protracted 

accumulation of learning experiences over long-term 

developmental time-scales (e.g., months and years), or 

whether they can result from experiences over relatively brief 

developmental time-scales (e.g., days or weeks).  Second, the 

role of formal education versus day-to-day informal learning 

experiences in driving knowledge organization change 

remains poorly understood.  

Indirect evidence for the contribution of learning 

experiences to knowledge organization comes from cognitive 

development, expertise, and learning science research. 

Within the cognitive development field, the emergence of 

knowledge organization has been a focus since the field’s 

inception (Inhelder & Piaget, 1964). Specifically, numerous 

studies have attempted to characterize the developmental 

trajectory of knowledge organization by measuring the 

degree to which children of different ages possess knowledge 

of different types of relations between concepts. The relations 

that have received greatest interest to date include: Similarity 

based on shared perceptual features (e.g., shape or color); 

taxonomic relations based on membership in the same, stable 

category (e.g., mammal); and thematic relations based on co-

occurrence in the environment (e.g., dog and bone) (Blaye, 

Bernard-Peyron, Paour, & Bonthoux, 2006; Nguyen, 2007; 

Unger, Fisher, Nugent, Ventura, & MacLellan, 2016).  

Evidence from some cognitive development studies has 

suggested that children apprehend and reason on the basis of 

multiple types of relations from an early age (e.g., Gelman & 

Coley, 1990; Nguyen, 2007). For example, Nguyen and 

colleagues used match-to-sample tasks to demonstrate that 

young children can match target items to both taxonomically 

and thematically related items versus unrelated items from 

age two (Nguyen, 2007; Nguyen & Murphy, 2003). These 

findings suggest apprehension of multiple relations from 

early childhood, and thus de-emphasize learning-driven 

changes in knowledge organization throughout development. 

However, this conclusion remains controversial. For 

instance, studies using the same paradigm demonstrated that 

young children could explain perceptual and thematic, but not 

taxonomic matches (Sell, 1992; Tversky, 1985). Similarly, 

Blaye et al. (2006) demonstrated that five-year-old children 

relied on thematic and perceptual relations to complete an 

ostensibly taxonomic organization task, whereas older 

children increasingly used true taxonomic knowledge. These 
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findings suggest that (1) Young children can make decisions 

that are consistent with knowledge of a given relation without 

actually possessing such knowledge, and (2) Relations 

knowledge develops significantly beyond early childhood. 

A handful of recent studies provide direct evidence that 

knowledge organization indeed evolves gradually across 

development (Fisher, Godwin, & Matlen, 2015; Fisher, 

Godwin, Matlen, & Unger, 2014; Unger et al., 2016). These 

studies were designed to capture gradual knowledge 

organization changes by using a paradigm in which children 

make graded spatial judgments of the degree to which items 

are related (Goldstone, 1994). The results of these studies 

reveal that: (1) Overall, children increasingly differentiate 

related from unrelated items between ages four and seven, 

and (2) The influence of specific relations (i.e., thematic and 

taxonomic) on knowledge organization increases gradually 

across childhood. In contrast with the perspective suggesting 

early apprehension of different types of relations, it has been 

argued that this continuous evolution of knowledge 

organization implies a key role for learning experiences that 

transpire throughout childhood. However, these studies 

provide no direct insight into learning-driven knowledge 

organization change itself, including whether learning 

experiences must accumulate over months and years, and 

whether they must take place in formal education settings.  

Further indirect evidence for the effects of learning on 

knowledge organization comes from expertise studies, which 

show that expertise in a specialized domain is associated not 

merely with knowledge of more concepts than novices 

possess, but the organization of concepts according to 

relations that are meaningful in the domain (e.g., Chi et al., 

1981; Gobbo & Chi, 1986; Medin, Lynch, Coley, & Atran, 

1997). However, this research does not illuminate whether 

knowledge organization changes can transpire without 

extensive learning experiences. Moreover, some researchers 

have argued that the effects of learning that produce expertize 

in the formalized knowledge domains studied to date are 

qualitatively different from the effects of learning in 

everyday domains (Gelman, 2003). Therefore, the role of 

everyday learning experiences on driving the acquisition of 

relations knowledge remains open for debate.  

Finally, several learning science studies have measured the 

effects of brief learning experiences such as educational field 

trips on knowledge in everyday domains such as animals 

(e.g., DeWitt & Storksdieck, 2008; Farmer, Knapp, & 

Benton, 2007; Prokop, Tuncer, & Kvasničák, 2007). 

However, these studies almost exclusively measured 

children’s knowledge of individual concepts (e.g., "Kangaroo 

rats have giant feet", Gottfried, 1980, p. 172). Accordingly, 

this research does not illuminate whether such informal and 

relatively brief learning experiences can organize children’s 

knowledge according to meaningful relations. 

Present Study 

The present study aimed to bridge prior cognitive 

development, expertise, and learning sciences research by 

measuring the influence of real-world learning experiences 

on knowledge organization. To capture the effects of learning 

that appear in prior research to transpire over months or years 

(Fisher et al., 2015; Fisher et al., 2014; Unger et al., 2016), 

we measured the effects of a concentrated, immersive 

experience in a domain.  Specifically, we measured the 

effects of a week-long, zoo-based summer camp versus a 

control, school-affiliated summer camp on 4- to 9-year old 

children’s knowledge of biological taxonomic relations for a 

set of animals. We focused on the animal domain because it 

is familiar to children from an early age, and appears to 

undergo significant organizational changes with 

development (Unger et al., 2016). Therefore, this venue 

provides an ideal opportunity to investigate real-world 

experience-driven changes in knowledge organization.  

Methods 

Study Sites 

Zoo Camp. Zoo camp consisted of lessons, interactions with 

animals, zoo tours, games, and crafts. Activities for each day 

were designed around a specific theme, such as “creatures of 

the night”. Each year, the zoo camp organizers choose 

different themes for each age group. The themes for the age 

groups spanning our sample (4-5, 6-7, and 8-9 years of age) 

over the two summers during which testing took place are 

listed in Table 1. The majority of themes were not designed 

to teach biological taxonomic relations, with the exception of 

themes for children in the 8-9 age group in Year 2 and one 

instance of a “Reptiles” theme for children in the 4-5 age 

group in Year 2. These exceptions did not influence our 

results (see Results). To illustrate how themes shaped camp 

activities, the activities chosen for the “Extreme Families” 

theme were as follows. Children took part in two lessons: One 

about “Extreme Parents” that do or do not protect their 

offspring (e.g., chickens versus sharks), and another about 

benefits to animals that live in family groups (e.g., elephant). 

Children visited in person, completed crafts and played 

games related to a subset of animals described in lessons. 

 

Control Camp. The Control Camp was a school-affiliated 

summer camp that did not provide immersive experiences 

Table 1: Curriculum themes for each age group. 

 Year 1 Year 2 

4-5  Domestic Animals 

Super Senses 

Tropical Treasures 

Savanna Survival 

Animal Locomotion 

Reptiles 

Aquatic Animal Diets 

Savanna Animal Patterns 

6-7  Animal Babies 

How Animals Learn 

Animal Families 

Aquarium Animals 

Rainforest 

African Savanna 

Ocean 

Islands 

8-9  Extreme Families 

Extreme Senses 

Extreme Architects 

Animal All-Stars 

Mammals 

Birds 

Reptiles 

Amphibians 

 

3418



with animals. At camp, children engaged in outdoor play, 

dance, crafts, games, and cooking. Additionally, children 

went on a field trip each week (e.g., to a baseball game), but 

did not visit the Zoo during this study. 

Participants 

Participants were 4 to 9-year-old children enrolled in the Zoo 

or the Control Camp located in the same Northeastern US 

city. The initial sample included 33 Zoo Camp (19 females) 

and 32 Control Camp (17 females) children. Of this sample, 

data from six Zoo Camp children and one Control Camp child 

were not included in analyses of performance on one of the 

two outcome measures due to a camera malfunction (see the 

Scoring section below). Although random assignment to a 

camp was not possible, children enrolled in the two camps 

performed equivalently on measures of taxonomic 

knowledge at pre-test (see Results), and were approximately 

matched for age (Zoo Camp: Mage=6.89 years, SD=1.43; 

Control Camp: Mage=6.23 years, SD=1.21; t(57)=1.9, p=.06). 

Design 

The study was a quasi-experiment in which children recruited 

from Zoo and Control camps participated in both Pre- and 

Post-Test sessions at the beginning and end of a week of 

camp. To ensure sufficient number of participants in the Zoo 

camp condition, data in this condition were collected in the 

summer of 2015 (Year 1) and 2016 (Year 2), and collapsed 

across years for analysis. 

Stimuli 

The animal stimuli were selected from the zoo camp 

curricula, such that knowledge in a given age group was 

assessed for animals about which Zoo Camp children in that 

age group learned. Accordingly, we developed a separate 

stimulus set for each age group in each year. Each set 

consisted of 15 animals, with an equal number of items in 

each of three biological taxonomic categories: Mammals, 

birds, and reptiles. To represent the animal stimuli, we used 

line drawings chosen to minimize perceptual similarity 

between animals in the same taxonomic category (see 

examples in Figure 1A-B). 

Materials and Procedures 

Participants completed pre- and post-test sessions on Monday 

and Friday morning of the same week that took place during 

a “before care” period prior to the start of camp activities. In 

both Years 1 and 2, these sessions included a Spatial 

Arrangement Method (SpAM) task (Goldstone, 1994), and in 

Year 2, children additionally completed a Match-to-Sample 

task (Figure 1). These tasks have complementary advantages: 

The match-to-sample task provides a straightforward 

assessment of taxonomic reasoning that is well-established in 

developmental research (e.g., Fisher, 2011; Smiley & Brown, 

1979; Waxman & Namy, 1997), whereas SpAM yields a 

more graded measure of taxonomic relations knowledge and 

the degree to which it changes with training. A recent 

longitudinal study (Fisher et al., 2014) provided evidence that 

the two measures converge on the same underlying construct.  

 

SpAM Task. Participants were seated at a game board 

consisting of a 10x10 grid, and were told that they were going 

to play a game in which their job was to help a fictional 

character, Zibbo, organize his favorite animals on the board 

(Figure 1-A). The experimenter then showed participants a 

stimulus sheet that depicted all 15 animal stimuli selected for 

the child’s age group, named each animal, and removed the 

sheet from view. Next, the experimenter told the participant 

that they would organize the animals using cards that each 

depicted an animal on the game board, such that “animals that 

are the same kind of animal go close together, and different 

kinds of animals go farther apart”. The experimenter placed 

one of the 15 animal cards on a central game board square, 

then named and presented each of the remaining cards for the 

participant one-by-one. Cards were presented in a pre-

determined, pseudo-random order in which no more than two 

animals from the same taxonomic group appeared 

consecutively. Participants were allowed to move cards that 

they had placed earlier in the task. Finally, the experimenter 

photographed the board to record the locations of the cards.  

 

Match-to-Sample Task. The animal stimuli for a given age 

group were arranged into six triads that each consisted of a 

Target, a Taxonomic Match that belonged to the same 

taxonomic category as the Target and a Lure that belonged to 

a different category (Figure 1-B). Of the six triads, two had 

mammal Targets, two had bird Targets, and two had reptile 

Targets. Triads were designed to eliminate non-taxonomic 

cues to Taxonomic Matches, such as visual similarity or 

shared habitat. For example, a triad might consist of a type of 

flightless bird such as penguin as the Target, a bird capable 

of flight such as owl as the Taxonomic Match, and a non-bird 

such as polar bear as the Lure. 

For each triad, the experimenter asked participants to 

choose whether the Taxonomic Match or the Lure was “same 

kind of animal” as the Target. The experimenter pointed to 

and labeled the animals while providing these instructions 

(e.g., “Which one is the same kind of animal as the penguin, 

the owl or the polar bear?).  

Results 

Of the Zoo Camp sample, children in both Year 1 and Year 2 

(N=27) completed the SpAM task, whereas only children in 

Year 2 (N=16) completed the Match-to-Sample task. All 32 

children in the Control Camp sample were tested during Year 

          

 

Figure 1: Schematic depiction of the SpAM task 

(A) and the match-to-sample task (B). 

A B 

3419



2, and completed both tasks (although one participant’s 

SpAM data were excluded due to camera malfunction).  

Scoring 

SpAM Task. The photographs taken following each 

arrangement trial were scored by treating the 10x10 board as 

a coordinate plane, identifying the coordinates of each card, 

and calculating the Euclidean distance between the 

coordinates. The range of possible distances was 1 (adjacent 

cards) to 12.73 (cards on diagonally opposite corners of the 

board). These distances are taken as a measure of the degree 

to which participants judge a given pair of animals to be the 

“same kind of animal”, where shorter distances indicate 

stronger judgments that the pair are of the same kind. 

We used these distance data to calculate a Difference Score 

for each participant at both Pre- and Post-test that captured 

the degree to which participants placed taxonomically related 

animals closer together than unrelated animals by subtracting 

distances between pairs of animals from the same taxonomic 

category from distances between taxonomically unrelated 

pairs. Accordingly, larger Difference Scores reflected 

stronger judgments that taxonomically related versus 

unrelated animals were of the “same kind”.  

 

Match-to-Sample Task. We calculated an Accuracy score 

for each participant in which we calculated the proportion of 

times they chose the Taxonomic Match.  

Pre-Test Performance  

We first assessed whether participants in both camps 

performed comparably on the two measures of taxonomic 

relations knowledge at Pre-Test. Note that the range of 

Difference Scores on the SpAM task at Pre-Test was -.65 to 

5.25 (chance=0), and of Accuracy scores on the Match-to-

Sample task was .17 to .83 (chance=.5). The results of 

independent samples t-tests indicated that there was no 

significant difference at Pre-Test between the performance of 

participants in the two camps on either measure (SpAM: 

Mzoo=.80, Mcontrol=.61, t(56)=.57, p=.57; Match-to-Sample: 

Mzoo=.54, Mcontrol=.58, t(46)=.69, p=.49). Performance at Pre-

Test on the SpAM task was above chance in both camps (both 

ts>2.86, both ps<.01), whereas performance on the Match-to-

Sample task was above chance in the Control Camp only 

(Zoo: t(15)=.94, p=.362, Control: t(31)=2.61, p=.014). 

Effects of Zoo versus Control Camp 

These analyses measured the effects of Zoo Camp versus 

Control Camp on changes from Pre- to Post-Test in 

taxonomically organized knowledge: I.e., the degree to which 

participants’ SpAM Difference Scores indicated that they 

made “same kind” judgments based on taxonomic relations, 

and the degree to which participants chose the Taxonomic 

Match on the Match-to-Sample Task.  

For each measure, we assessed whether Zoo camp 

participants manifested greater improvements from Pre- to 

Post-Test than participants in the Control camp using two 

analyses. First, we used paired t-tests to compare Pre- versus 

Post-Test Difference and Accuracy Scores for participants in 

each camp separately, and found that whereas Zoo camp 

participants performed significantly better across both 

measures at Post- than Pre-test (SpAM: Mpre=.80, Mpost=1.30, 

t(26)=3.01, p=.006, Cohen’s d=.34; Match-to-Sample: 

Mpre=.54, Mpost=.73, t(15)=3.74, p=.002, Cohen’s d=1.02), 

Control camp participants’ performance did not improve 

from pre- to post-test (SpAM: Mpre=.61, Mpost=.59, t(30)=.19, 

p=.85, Match-to-Sample: Mpre=.58, Mpost=.56, t(31)=.61, 

p=.55).  

Second, to compare performance of participants at both 

camps directly, we calculated a Change Score for each 

participant in which we subtracted Pre- from Post-Test scores 

(such that larger Change Scores indicated larger 

improvements). We then used independent samples t-tests to 

compare  SpAM and Match-to-Sample Change Scores 

between the camps, and observed that across both measures, 

Change Scores for Zoo Camp participants were larger than 

those for Control Camp participants (SpAM: t(56)=2.61, 

p=.011, Cohen’s d=.68, Match-to-Sample: t(46)=3.48, 

p=.001, Cohen’s d=1.06; Figure 2).  

Effects of Camp across Age Range 

To test whether the effects of attending Zoo versus the 

Control camp varied with age, we measured the correlation 

between age and Change Score for each task in each camp. 

Age was not correlated with Change Score for either task in 

Control camp participants (rmatch-to-sample=-.033, rSpAM=-.002, 

ps>.86), whereas in Zoo camp participants, age was 

significantly correlated with Match-to-Sample task Change 

Score (r=.56, p=.024) and marginally correlated with SpAM 

task Change Score (r=.33, p=.09) (Figure 3). Moreover, these 

correlations were not merely due to older children having 

more taxonomic relations knowledge to start out with: In Zoo 

camp children, pre-test performance on the SpAM task was 

not correlated with Change Score (r=.11, p=.597) and pre-test 

performance on the Match-to-Sample task was marginally 

negatively correlated with Change Score (r=-.49, p=.052).  

Influence of Taxonomic Themes 

Finally, to test whether these results were driven by the 

handful of Zoo Camp themes designed to teach taxonomic 

relations, we re-ran all analyses excluding all data from 

  
 

Figure 2. Change scores for Zoo and Control Camp 

participants in SpAM (left) and Match-to-Sample (right) 

tasks. Error bars represent standard errors of the mean. 
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children in the 8-9 age group in Year 2 who experienced a 

week of taxonomically-oriented themes (N=2), and trials 

involving reptiles from children in the 4-5 age group in Year 

2 who experienced a reptile-oriented theme (N=4). All results 

reported above remained unchanged: Significant outcomes 

remained for Pre- to post-test Zoo Camp comparisons, Zoo 

vs. Control Camp Change Score comparisons, and 

correlation between age and Match-to-Sample task Change 

Score in Zoo Camp (all ps < .05). 

Discussion 

This study aimed to capture learning-driven changes in 

knowledge organization in action by measuring the effects of 

concentrated, real-world learning experiences on the 

organization of children’s knowledge about animals. 

Specifically, we measured the effects of a week-long Zoo-

based summer camp on children’s knowledge of biological 

taxonomic relations between animals. We observed that 

across two converging measures, taxonomic relations 

increasingly influenced knowledge organization in Zoo but 

not Control Camp children. These effects transpired despite 

equivalent Pre-Test performance, suggesting that the 

difference between camps at Post-Test cannot be attributed to 

greater prior taxonomic relations knowledge in Zoo Camp 

children. Moreover, the difference between camps remained 

even when data from Zoo Camp children who received 

explicit taxonomic instruction were removed from analyses. 

Finally, the results provided evidence that the degree to 

which Zoo Camp experiences improved taxonomic relations 

knowledge was associated with age, suggesting that older 

children learn relations more effectively than younger 

children (a possibility we discuss further below). Taken 

together, these findings provide the first direct evidence that 

learning experiences need not accumulate over lengthy 

periods of time or take place in formal education settings to 

shape knowledge organization. Instead, an immersive but 

relatively brief learning experience in an informal setting can 

promote significant knowledge organization changes.  

Open Questions 

The evidence for learning-driven knowledge organization 

change presented here highlights the importance of 

examining the mechanisms by which experience shapes 

knowledge organization. For example, although the present 

study was not designed to arbitrate between accounts of 

conceptual development that place different emphases on 

early conceptual biases versus domain-general processes and 

learning mechanisms, our findings are inconsistent with the 

perspectives emphasizing early conceptual biases towards 

perceiving entities as organized into taxonomic categories 

(e.g., Gelman, 2003; Keil, 2007; Wellman & Gelman, 1992). 

By the same token, these findings support a key role for 

learning throughout development in shaping the organization 

of semantic knowledge (e.g., Fisher et al., 2015; McClelland 

& Rogers, 2003; Tenenbaum et al., 2011). Research 

following on from the present study could further arbitrate 

between these accounts, particularly with respect to 

illuminating the nature of learning mechanisms posited to 

shape knowledge organization given environmental input.  

Finally, our results provide some evidence that the 

magnitude of learning-driven knowledge organization 

changes increased with age. One characteristic of the learner 

that may improve with age is prior knowledge organization 

(Unger et al., 2016). Although taxonomic knowledge at pre-

test for the specific animals tested in this study was not 

correlated with learning-driven improvements, it is possible 

that older children’s knowledge of animals in general was 

better organized than younger children’s knowledge. 

Consequently, it may have been easier for older versus 

younger children to integrate new information into existing 

knowledge structures. Future research that investigates the 

relationship between such learner characteristics and 

learning-driven knowledge organization changes could 

illuminate how learning from experience improves with age. 

Conclusions 

This study demonstrated that immersive learning experiences 

at a zoo summer camp produced changes in organization of 

children’s knowledge about animals. These findings build 

upon research in several domains, including cognitive 

development, expertise, and the learning sciences by 

providing the first direct evidence for learning-driven 

 

 

 

 

Figure 3: Correlations with age of Change Scores in 

SpAM and Match-to-Sample tasks for each camp shown 

with best-fit lines. 
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changes in knowledge organization. Future research should 

further investigate the mechanisms by which learning drives 

the development of knowledge organization. 
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Abstract 

This study investigates the effects of the social setting on 
prospective time estimation, how time is perceived when a task 
is performed (i) alone, (ii) with a collaborative, or (iii) with a 
competitive partner. N=90 participants were tested (30 in each 
condition). Participants performed a concurrent Simon task for 
three different durations (15, 30 and 45 seconds) which was 
followed by a time reproduction phase. Results revealed a main 
effect of social condition. Reproduction ratios in dual 
conditions were smaller than in the single condition and also 
smaller in the competitive condition compared to the 
cooperative condition. The results provide first evidence that 
social condition affects time estimation: time “flies” when we 
work together, in particular when we compete with a partner, 
showing that cognitive and social processes are heavily 
intertwined. 
 
Keywords: time cognition; time perception; joint task; joint 
action; social Simon effect; social cognition; prospective time 
estimation 

Introduction 

The passage of time has always captured the curiosity of 

humans. As archaeological studies revealed sundials were in 

use some 3500 years ago (Vodolazshkaya, 2014). However, 

measuring the passage of time with clocks is not the same as 

the “feeling” of how much time has passed. Therefore, it has 

been suggested that humans have internal and possibly innate 

mechanisms for keeping track of time and these mechanisms 

have been studied and explained with internal clock models 

which facilitate the understanding of how cognitive factors 

can affect time estimation (Droit-Volet, 2013).    

This study brings together two lines of study in cognitive 

science: time perception and joint action. Time perception is 

a basic cognitive ability implied in a wide variety of 

experimental tasks and daily activities (Grondin, 2010). 

Forming joint attention and performing joint action is another 

cognitive ability which has recently been the focus of several 

studies showing that people’s performance in any task is 

heavily affected by joint attention and joint action (Sebanz, 

Bekkering, & Knoblich, 2006; Sebanz, Knoblich, & Prinz, 

2003; Vesper et al., 2011). Also, studies in the literature 

suggest that time perception might be under the influence of 

a person’s mood at that time (Droit-Volet & Meck, 2007). 

The purpose of this study is to provide an experimental 

research paradigm linking the social aspect of the task setting 

to participants’ prospective time estimation during that task, 

in order to investigate the effects of the social setting of the 

task on time perception.  

Time Perception 

There are dedicated and intrinsic models for time processing 

(Ivry & Schlerf, 2008). The dedicated models are modular, 

such as the Attentional Gate Model (Block & Zakay, 2006) 

or the cerebellar timing hypothesis (Ivry et al., 2002). On the 

other hand, intrinsic models suggest that time perception is 

distributed in various neural networks instead of a certain part 

of the brain (Reutimann et al., 2004). 

The Attentional Gate Model contains a pacemaker which 

emits pulses continuously on a certain rate, and it can only be 

affected by arousal on a small scale. These pulses flow 

through an attentional gate, which is regulated by an 

executive function that determines whether attentional 

resources should be directed to the task at hand or to the 

keeping of time, which might be affected by diverting 

attentional resources to another task. A switch between the 

attentional gate and the counter starts or stops the connection, 

and the counter system keeps track of how many pulses have 

passed since the beginning of the event and stores that 

information in memory.  Later, the number of pulses are 

retrieved from memory to represent how much time has 

passed during the given event. Then the decision on the 

amount of time that has passed is based on the latest 

information from the counter and the beginning of the 

counting of the pulses. The additional attentional mechanism 

for the explanation of mistakes in time estimation seen in 

humans, especially when there are other attention-demanding 

tasks in parallel with time estimation (Block & Zakay, 2006).  

The temporal paradigm used in this study is prospective 

duration judgment, also called “experienced duration” 

(Block, 2014). In this paradigm, participants are aware that 

they will perform a time reproduction after some experienced 

duration (Zakay & Block, 2004). Participants use their 

attentional resources to keep track of time while they are 

performing a secondary task during that interval.  

In accordance with the Attentional Gate Model (Block & 

Zakay, 2006), the amount of attention devoted to keeping 

track of time decreases in more demanding secondary tasks, 

e.g., executive tasks, compared to easier tasks, which results 

in an underestimation of the actual duration of the interval 

(Duzcu & Hohenberger, 2014).  As the amount of cognitive 

load increases, the ratio of reproduced duration to actual 

duration decreases, which means that participants tend to 

underestimate time (Block, Hancock, & Zakay, 2010). This 

finding is explained by the Attentional Gate Model as 

follows: the attentional gate is down, because the participant 

is focusing on the difficult task at hand, and therefore more 

pulses of the pacemaker are missed. 
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The Simon Task 

The Simon task is a spatial compatibility task first described 

in a paper by Simon & Rudell (1967). The Simon task is a 

two-choice reaction task and stimulus has relevant (e.g. 

color) and irrelevant (e.g. location) dimensions. Participants 

are instructed to respond according to the relevant dimension 

of the stimulus and not to the irrelevant dimension. The 

Simon task consists of congruent trials in which the irrelevant 

dimension is spatially compatible and incongruent trials in 

which the irrelevant dimension is not spatially compatible. 

The first true Simon effect was shown in another study by 

Simon & Small (1969). The Simon effect is based on the 

universal tendency to respond faster when stimulus and 

response location overlap, i.e. the congruent condition 

(Hommel, 2011).  

Joint Action 

People frequently perform an action together, which is called 

joint action. The social Simon task is a joint action paradigm 

in which participants share a Simon task and respond only to 

half of the stimuli, e.g., blue or red stimuli, occurring on 

either side of the monitor, respectively. Interestingly, it has 

been shown that an individual’s actions in the social Simon 

task are represented in the other person’s mind and have an 

impact on their actions. Therefore, the social Simon task 

results in the same findings as the individual Simon task, i.e., 

people respond faster to a stimulus on their side (“congruent” 

condition) as compared to a stimulus on the opposite side 

(“incongruent” condition) even if the social Simon task does 

not necessitate a spatial reference as in the individual Simon 

task. This construction of a mental representation of each 

other results in an increase in the amount of cognitive load 

(Sebanz, Knoblich & Prinz, 2003).  

Previous studies have shown that the increase in the 

amount of cognitive load results in underestimation of time 

(Block, Hancock & Zakay, 2010) which is in accordance with 

the Attentional Gate Model. 

The present study brings together time perception and the 

social Simon task in a single study. It will broaden our 

understanding of how human time perception is affected by 

the social setting and the nature of this setting. 

Hypotheses 

Our hypothesis is that subjects’ time perception during a task 

is affected by the social setting of the task. In line with the 

Attentional Gate Model (Block & Zakay, 2006), we argue 

that joint settings require more attentional resources than the 

single setting, since participants co-represent their partners’ 

task, thus leaving less resources for time estimation. Due to 

social facilitation and attention demands, we expect that 

subjects will perceive time as proceeding faster during a 

joint-action task than in a single person task. Furthermore, the 

nature of the social setting – whether cooperative or 

competitive – may affect time perception. If subjects 

experience competitive settings as even more attention-

demanding they may perceive time as proceeding even faster 

during a competitive joint action task than a cooperative one.  

Method 

Participants 

A total of 90 participants (42 males, mean age: 25.90, 

SD=5.234) were tested in three different groups. The Single 

Task group (n=30, 14 males, mean age: 26.03, SD=6.206) 

were tested alone whereas the Cooperative Task group (n=30, 

14 males, mean age: 25.03, SD=5.442) and the Competitive 

Task group (n=30, 14 males, mean age: 26.63, SD=3.819) 

were tested in dyads. Dyads always consisted of participants 

from the same gender. Participants were recruited through e-

mail invitation. They were undergraduate or graduate 

students from various METU departments. All participants 

were right-handed and had normal or corrected-to-normal 

vision. Before the study, ethics approval has been obtained 

from METU Human Studies Ethical Committee. All 

participants volunteered to join the study and no monetary 

reward was offered for participation or performance, since it 

might affect time perception (Failing & Theeuwes, 2016).  

The Simon Task 

A Simon task was performed for three different duration 

lengths (15, 30 and 45 seconds) which was followed by a time 

reproduction phase. In the single condition, participants were 

tested alone and they did all Simon tasks and following time 

reproductions themselves. In the joint conditions 

(Cooperative and Competitive) participants performed a 

social Simon task in which each participant was assigned to 

a specific stimulus color and response button. The participant 

on the left side was instructed to use only the ‘z’ button and 

respond only to red stimuli whereas the participant on the 

right side was instructed to use only the ‘.’ button and respond 

only to blue stimuli. These buttons were chosen because on a 

Turkish Q-style keyboard they are the furthest apart 

horizontally. All participants used their right hand index 

finger to respond in order to achieve the same setting between 

dyads, since literature in the field suggests that the position 

of hands during a social Simon task might affect performance 

(Liepelt, 2014; Welsh, 2009). Stimuli occurred on the left and 

right side of the screen, randomly.  

Participants in all conditions were told that they would 

receive points for their correct responses in the Simon task. 

In the single condition they were told that their points would 

be compared with other participants individually, in the 

cooperative condition they were told that their points would 

be calculated as a team and compared with other teams, and 

in the competitive condition they were told that each 

participant’s points would be compared with the other 

participant in the dyad.  

Time Reproduction Task 

Before the reproduction phase begun, participants were 

informed through a message on the screen that they were 

going to see a big square in the middle of the screen, 
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indicating the time reproduction phase has begun. 

Participants used the same button for the time reproduction 

phase, depending on the color of the big square, i.e. ‘z’ for 

red and ‘.’ for blue.  

They were instructed to wait as long as they thought the 

previous trial has lasted and then press the button to indicate 

the end of the duration. A message on the screen warned the 

participants before each time reproduction phase, which 

stayed on the screen for 2 seconds and the time reproduction 

has begun automatically afterwards. In the cooperative and 

competitive conditions, participants were instructed that if 

the big square was in the color they were responsible for, they 

were assigned to do the time reproduction. In other words, if 

it was red, the left participant did time reproduction and if it 

was blue, the right participant did time reproduction. The 

order of the color was random and balanced between 

subjects. Participants in all conditions performed a total of 18 

time reproductions (6 of each duration length). 

The Questionnaire 

After the test, participants were presented with a short 

questionnaire. The first 5 questions were presented to 

participants in all social conditions and they were regarding 

their mood and self-assessment during the trials. The second 

part of the questionnaire, which consisted of questions 6 to 9, 

were only presented to participants in the joint conditions and 

were regarding partner-assessment and social warmth. There 

was also a 10th question which was different amongst the two 

social conditions. The participants in the cooperative 

condition were asked to evaluate the quality of their 

cooperation whereas the participants in the competitive 

condition were asked the quality of their competition. 

Statistical Analysis 

Collected data was analyzed in three different sections: Time 

Reproduction, the Simon Task and the Questionnaire. For the 

time reproduction, 3x3 mixed ANOVAs with social task 

setting (individual, cooperative, competitive) as a between-

subjects variable and duration (short, medium, long) as a 

within-subjects variable were conducted on three dependent 

measures: Duration Ratio (Reproduced Duration/Objective 

Duration), Absolute Error/Actual Duration and Coefficient of 

Variation (SD/Mean).  

For the Simon task, response times for compatible vs 

incompatible trials were analyzed as a dependent measure.  

For the analysis of the questionnaire, presented options 

were given values from 1 to 5, with the most negative option 

being 1 and the most positive option being 5. The first 5 

questions, which were presented to all participants, were 

analyzed with a One-way ANOVA for the 3 task settings 

(Single, Cooperative, Competitive). The second part, which 

consisted of questions 6-10, were only presented to the 

participants in dual task settings. A One-way ANOVA for the 

2 task settings (Cooperative, Competitive) was carried out for 

each question. 

Results 

Time Reproduction 

The first analysis was performed on Duration Ratios 

(Reproduced Duration/Objective Duration). The main effect 

of duration was statistically significant (F(2,174)=174.64, 

p<.001, ηp
2=.67). Simple contrasts revealed that reproduction 

ratios were smaller for long durations (M=.48, SE=.014) as 

compared to moderate (M=.53, SE=.015) (F(1,87)=49.93, 

p<.001, ηp
2=.37) and short durations (M=.65, SE=.015) 

(F(1,87)=225.26, p<.001, ηp
2=.72), indicating that long 

durations were underestimated more than moderate and short 

durations. There was a main effect of task setting 

(F(2,87)=14.59, p<.001, ηp
2=.25). Helmert contrasts revealed 

a significant difference when the single task setting was 

compared to both dual task settings (F(1,88)=18.30, p<.001, 

ηp
2=.17). The reproduction ratios in the dual task settings 

were smaller (M=.51, SE=.022) than in the single task setting 

(M=.64, SE=.027), indicating that duration was 

underestimated more by the participants in the dual task 

settings as compared to the single task setting. Also, the 

difference between the cooperative task setting compared to 

the competitive task setting was significant (F(1,58)=11.42, 

p=.001, ηp
2=.16). Reproduction ratios were smaller, hence 

durations were more underestimated in the competitive task 

setting (M=.46, SE=.023) compared to the cooperative task 

setting (M=.56, SE=.019) (see Figure 1). 

 

 

Figure 1: Mean Ratio of Reproduced/Objective Duration 

across duration lengths for all task settings. (Error bars 

represent SE and the numbers above the bars show the values 

of absolute time durations) 

 

The analysis of the absolute errors showed that the main 

effect of duration was significant (F(2,174)=157.77, p<.001, 

ηp
2=.64). Error ratios were higher, indicating that the 

inaccuracy of participants time estimation was higher in the 

long duration (M=.52, SE=.13) than the short (M=.36, 

SE=.12) and the medium duration (M=.47, SE=.14). The 

setting of the task had a significant effect on accuracy 

(F(2,87)=15.38, p<.001, ηp
2=.26). The first Helmert contrast 

revealed that participants in both dual task settings showed 

higher error ratios (F(1,88)=18.56, p<.001, ηp
2=.17), hence 
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were less accurate (M=.49, SE=.018) compared to the single 

task setting (M=.38, SE=.022). Moreover, as the second 

Helmert contrast revealed (F(1,58)=11.42, p=.001, ηp
2=.16), 

error ratios were higher, hence accuracy was lower in the 

competitive task setting (M=.54, SE=.016) than the 

cooperative task setting (M=.44, SE=.021). The effect of the 

interaction between duration and task setting was not 

significant (F(2,87)=1.45, p>.05, ηp
2=.03) (see Figure 2). 

 

 

Figure 2: Mean Values of Absolute Error/Objective 

Duration across duration lengths for all task settings. (Error 

bars represent SE and the numbers above the bars show the 

values of absolute errors) 

 

The third analysis was carried out on the Coefficient of 

Variation, which is calculated by dividing the standard 

deviation of reproduced durations by the mean reproduced 

durations. The CV is regarded as a very important variable in 

Scalar Expectancy Theory because a stable CV is a sign of 

the scalar invariance of subjective estimation of time across 

different duration lengths (Church & Meck, 2003). The 

effects of duration (F(2,174)=1.58, p>.05, ηp
2=.02) as well as 

task setting on the CV were not significant (F(2,87)=2.7, 

p>.05, ηp
2=.06), indicating scalar invariance, as expected.  

The Simon Task 

The analysis of the Simon task revealed that congruency had 

a significant effect (F(1,87)=101.03, p<.001, ηp
2=.54). 

Response times were significantly shorter in the congruent 

condition (M=525.66, SE=2.77) in comparison to the 

incongruent condition (M=533.21, SE=2.79) (see Figure 3). 

This difference amounts to the “Simon effect”. Task setting 

did not have a significant effect on overall response times 

(F(2,87)=1.53, p>.05, ηp
2=.03): participants’ reaction speed 

was similar in single (M=535.39, SE=4.29), cooperative 

(M=529.35, SE=5.79) and competitive (M=523.57, SE=4.18) 

task settings. The interaction effect between congruency and 

task setting was not significant (F(2,87)=2.24, p>.05, 

ηp
2=.05). Participants in all task settings were faster in the 

congruent condition than in the incongruent condition. 

Overall, these results revealed that the Simon effect was not 

affected by the various task settings, indicating that the 

primary time estimation task did not interfere with the 

secondary, concurrent task.  

 

Figure 3: Mean Values of Response Time for congruent 

and incongruent trials across task settings. (Error bars 

represent SE and the numbers above the bars show mean 

response times) 

 

In order to assess whether the side at which the participant 

was seated had any effect on the Simon task, a 2 

(Congruency: Congruent, Incongruent) x 2 (Participant’s 

Side: Left, Right) Mixed ANOVA was conducted on 

response times. Participant’s side was a between-subject 

factor and congruency a within-subject factor. This analysis 

revealed that congruency had a significant effect 

(F(1,58)=62.47, p<.001, ηp
2=.52). Participants’ response 

times were significantly lower in the congruent condition 

(M=522.32, SE=3.58) in comparison to the incongruent 

condition (M=530.59, SE=3.60). Participant’s side did not 

have a significant effect on overall response times 

(F(1,58)=0.27, p=.869, ηp
2=.00), i.e., participants’ reaction 

speed was similar on both the left (M=527.05, SE=5.17) and 

the right side (M=525.87, SE=4.99). The interaction effect 

between congruency and side was also not significant 

(F(1,58)=1.00, p=.321, ηp
2=.02). Participants on both sides 

were faster in the congruent condition than in the incongruent 

condition, which shows that the Simon Effect was observed 

in participants on both sides (see Figure 4). 

 

 

Figure 4: Mean Values of Response Time for participant’s 

side across congruency. (Error bars show SE and the numbers 

above show the values of mean response times) 
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The Questionnaire 

The analysis of the first five questions revealed that main 

effects were not significant for enjoyment/boredom during 

the trial (F(2,87)=.242, p=.785), excitement (F(2,87)=.079, 

p=.925), pressure (F(2,87)=.706, p=.496), self-assessment 

for the Simon task (F(2,87)=1.375, p=.258) and self-

assessment for the time reproduction task (F(2,87)=1.457, 

p=.239). 

The analysis of the second part of the questionnaire 

revealed that main effects were not significant for questions 

6 to 9: partner-assessment for the Simon task (F(1,58)=0, 

p=1), partner-assessment for the time reproduction task 

(F(1,58)=.887, p=.350), friendliness towards partner 

(F(1,58)=.267, p=.526) and social warmth (F(1,58)=0, p=1).  

The results of the 10th question on the quality of their 

cooperation/competition, revealed a significant main effect 

(F(1,58)=10.401, p=.002). Participants in the Cooperative 

task setting assessed their cooperation with a higher value 

(M=3.83, SD=.87) than participants in the Competitive task 

setting assessed their competition (M=2.90, SD=1.32). This 

means that cooperative dyads reported to feel more as a team, 

compared to competitive dyads which reported to feel more 

as rivals. 

Discussion 

The results of this study show that there is a strong relation 

between the social setting of a concurrent executive task and 

the subjectively perceived duration. Participants estimated 

the actual duration of the task to be shorter in the joint task 

settings compared to the single task setting. Also, the nature 

of the joint action had an impact on the amount of this 

underestimation, as participants in the competitive task 

setting underestimated time more in comparison to the 

participants in the cooperative task setting. These findings are 

in accordance with previous studies (Dolk et al., 2011; Ford 

& Aberdein, 2015; Vesper et al., 2011; Vlainic et al., 2010) 

showing that joint-action tasks affect cognitive performance. 

In these studies, the effect concerned their behavior in the 

Simon task, where a social Simon effect occurred. In our task, 

however, the social Simon effect is not in the focus of our 

attention. We were primarily interested in the effect of joint 

action on the primary task, i.e., the time perception task. 

The underestimation of the actual duration can be 

explained with the Attentional Gate Model (Block & Zakay, 

2006). Previous studies (Sebanz, Bekkering, & Knoblich, 

2006; Sebanz, Knoblich & Prinz, 2003) have shown that 

when two or more people are performing a task together, they 

need to create a mental representation of their partner’s part 

of the task, which requires attentional resources to be shifted 

towards this demanding task. Additionally, participants in the 

joint task settings had higher cognitive load due to inhibiting 

their response when the stimulus on the screen was the color 

of their partner and it was a no-go trial for them, whereas 

participants in the individual task setting always had a go-

trial since they responded to both colors, and only had to keep 

track of which button to respond. This means that participants 

in the joint task settings also had an increase in cognitive load 

caused by task switching. Furthermore, participants in the 

joint task settings had to monitor their partner’s responses as 

well, since their score contributed to the outcome in dual 

conditions.  

Since cognitive load is high and attention is focused on 

both the executive task and the mental representation of the 

partner in dual task conditions, the Attentional Gate is low, 

i.e., little attention is left to keep track of time, which results 

in a shorter experienced duration. The attention-depleting 

effect of executive tasks and the underestimation caused by it 

is well documented in the literature (Block, Hancock & 

Zakay, 2010; Duzcu & Hohenberger, 2014). Here, we have 

shown that also the social task setting affects this attentional 

mechanism. 

Another possible explanation for the decrease in time 

estimation observed in the social task settings in comparison 

to the single task setting might be the effect of the “switch” 

part of the Attentional Gate Model which determines when 

attending to the passage of time starts and ends. It might be 

that when the participant is not acting herself but the partner 

is acting, these parts are “cut out” of her time experience by 

the closing of the switch. The switch would only open again 

when it’s the subject’s turn again. However, it is not possible 

to explain the difference between cooperative and 

competitive task groups with this explanation whereas the 

difference in cognitive load can explain both results.  

Previous studies in the field (Decety et al., 2004; Ruissen 

& de Bruijn, 2016) showed that, although both cooperation 

and competition result in self-other integration, participants 

in the competitive condition also spend attentional resources 

on keeping track of the differences between themselves and 

the other participant in the dyad. Participants in our study had 

to manage different cognitive loads according to the social 

condition: Cooperative dyads only needed to follow their 

cumulative scores, but participants in the competitive 

condition needed to follow their performance and their 

partner’s performance as separate information, in order to 

predict who was more successful. This results in a higher 

cognitive load and thus more severe underestimation of time. 

The literature (Droit-Volet & Gil, 2016; Droit-Volet & 

Meck, 2007) suggests that mood has a certain effect on time 

estimation. However, our questionnaire did not reveal any 

difference in participants’ mood during the experiment, 

despite the significant contrast in their time estimation. This 

result suggests that the underestimations were caused by the 

depletion of attentional resources rather than by the effect of 

mood on the pacemaker. 

Our results have also revealed a significant congruency 

effect in the Simon task, individual and social, which is in 

line with the vast literature on the Simon task (Hommel, 

2011). The results also indicated that there was no difference 

in reaction times between participants who were seated on the 

right side and the left side, which shows that seating did not 

have any effect on participants’ performance. 
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Conclusion 

The results of this study provide first evidence that social 

condition affects time estimation: people perceive time to 

flow faster when they are performing a task with someone in 

comparison to when they are alone, and even faster when the 

nature of the social condition is competitive rather than 

cooperative. This finding can be applied to daily life in 

education and at the workplace, by supporting joint action 

over individual work. Our findings also add to the growing 

literature on “joint action” (Sebanz, Bekkering, & Knoblich, 

2006), showing that there is a strong link between cognitive 

and social processes. This study has methodological 

implications in terms of promoting the use of joint settings in 

cognitive science.  

For future studies, experiments that feature another task 

with similar cognitive load but no social setting would 

provide information in order to distinguish between the effect 

of cognitive load and the effect of sociality on time 

perception. Also, different social manipulations on the same 

task can provide further explanation whether the difference 

in time perception is the result of the attentional gate, the 

switch or the arousal.  
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Abstract 

Task dependent conflict has been shown to reduce 
metacognitive judgements of confidence and prolong 
response times in various reasoning tasks. For this study a 
modified version of the base rate task was used to induce 
conflict while measuring response times and judgements of 
confidence. The aim of this experiment was to determine the 
influence of different instruction conditions (reasoning 
according to belief or according to mathematical probability) 
on fluency and metacognitive judgements. As expected, 
participants experienced higher levels of conflict when 
reasoning according to mathematical probability even though 
conflict effects were present in both conditions. Additionally, 
higher believability items mitigated conflict influence while 
reasoning in accordance with belief and increased it when 
reasoning in accordance with mathematical probability. These 
results enrich the growing field of metareasoning research and 
are discussed as such. 

Keywords: metacognition; metareasoning; base rate neglect; 
conflict monitoring; judgement of confidence 

Introduction 

The dual process approach in the field of reasoning is 

based on the hypothesis of two distinct types of processing. 

Type 1 processing is heuristic based, fast and comes at a 

low cognitive resource cost, while Type 2 processing is 

analytic based, slower, less intuitive, and comes at a high 

resource cost (Evans, 2007). However, this is just a 

simplified representation of what is a large set of theories. 

Since this approach encompasses a large number of theories 

and models we recommend an excellent review by Evans 

(2012) for a better understanding of all the complexities in 

this field. Within this framework a cognitive bias can be 

defined as a dominant Type 1 response when it is not 

appropriate and results in a normatively incorrect answer. 

One of the most commonly studied biases is the belief bias 

in which a believable response is dominant and more 

acceptable regardless of correctness (Evans, Barston, & 

Pollard, 1983). Tasks which elicit the belief bias have 

mostly been used in studies of formal types of reasoning 

such as syllogistic logical reasoning. However, there are 

other tasks in which participants are led to reason according 

to their belief. One such task is a modified version of 

Kahneman and Tversky's (1973) classic base rate task.  

The modified base rate task is interesting to researchers 

because it is suitable for introducing conflict between 

processes that give rise to different responses. To better 

understand this task, examine a simple example. 

 

Person X is popular. 

Person X is chosen at random from a group consisting of 

875 postmen and 125 actors. 

 

The question: Which is more probable? 

1. Person X is a postman 

2. Person X is an actor 

 

In the example above there are two sources of information 

on which a person can base his or her response. The 

mathematical ratio (the base rate) of postmen to actors 

would indicate that the first answer is more probable. 

However, common belief based on personal, everyday 

experience would indicate actors are more likely to be 

popular than postmen. This strong association between the 

trait of popularity and the group of actors leads most 

participants to choose answer number two (e.g. Obrecht & 

Chesney, 2016; Pennycook, Fugelsang & Koehler, 2015). 

By changing the base rate, congruent versions of this task 

can be constructed and studied in comparison to conflict 

ones. 

Our research is based on the model proposed by 

Pennycook and his colleagues (2015). They propose that 

multiple processes generate initial responses to a particular 

task or problem (Type 1 processes). The initial responses 

may be congruent or in conflict. Conflict  monitoring then 

detects (or fails to detect) incongruent results of these 

processes which leads to Type 2 processing (or simple Type 

1 processing if no conflict is detected). Type 2 processing 

then includes both rationalization of the dominant initial 

response, and what is usually considered pure Type 2 

processing – cognitive decoupling (choosing an alternative 

response). It is important to note that rationalization and 

decoupling are not necessarily processed on a conscious 

level. The dominant response is the one with the highest 

weight, which would explain the difference in influence and 

persistence of those responses even when instructed to 

reason by different criteria. In the example given above the 

belief-based response would represent the dominant initial 

response, while the mathematical probability response 

would be the second initial response. This model provides 

clear hypotheses on the influence of conflict on response 

times, levels of confidence, required cognitive load and 

others. 

As indicated, conflict monitoring and detection are key 

processes which link Type 1 and Type 2 processes 
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according to the proposed model. For the purposes of this 

study inducing conflict was of the greatest importance. 

Conflict monitoring and detection have been identified as 

important processes in a variety of reasoning tasks (De 

Neys, 2014; De Neys & Glumicic, 2008). Conflict in base 

rate tasks is detected even when participants choose the 

stereotypical answer because it can be observed in 

prolonged response times (Pennycook et al., 2015). Since 

conflict detection in these tasks is present regardless of 

participant response it is interesting how this process effects 

other psychological constructs and processes. 

Metacognition is broadly concerned with knowledge 

about, the monitoring and evaluation of other mental 

processes (Nelson & Narens, 1990). Recent research in the 

field has been focused on possible sources of metacognitive 

judgements in various reasoning tasks (Markovits, 

Thompson, & Brisson, 2015; Thompson, Evans, & 

Campbell, 2013; Thompson & Johnson, 2014; Thompson et 

al., 2013). Building on older research concerning 

metamemory Ackerman and Thompson (2015) lay out a 

framework of metareasoning. They outline a number of 

different metareasoning judgements. For example, the 

judgement of solvability refers to the probability a particular 

task is solvable based on type of task, prior knowledge and 

experience of the participant. Of the basic metareasoning 

judgments we focus on the final judgements of confidence. 

These judgements represent retrospective confidence that a 

final solution to a problem or task is correct. Typically, 

metareasoning studies make use of a variety of tasks which 

include the possibility of both heuristic and analytical 

responses. The interpretation of results in these studies then 

naturally takes into account the dual-process approach to 

reasoning. Participants usually express more confidence for 

heuristic-based responses (Thompson, Evans, & Campbell, 

2013). It has also been established that in these types of 

tasks participants tend to be overconfident and their 

judgements are not dependent on accuracy (Thompson et 

al., 2013). Therefore, metacognitive judgements in these 

tasks are formed based on other cues such as fluency (the 

speed and ease of generating responses) and the presence of 

conflicting answers (Thompson et al., 2013). Conflict in 

base rate tasks has been shown to decrease final judgements 

of confidence (Pennycook Trippas, Handley, & Thompson 

2014) and prolong response times (Pennycook et al., 2015). 

Manipulating the content of tasks is only one way to 

influence reasoning processes. One of the more interesting 

manipulations is varying instruction types, giving more 

weight to a particular type of reasoning or to specific 

content. Explicit instruction to reason according to logic 

increases accuracy (Evans, Handley, Neilens, & Over, 2010) 

as well as confidence ratings (Trippas, Thompson, & 

Handley, 2016), depending on task difficulty. Within the 

described model of dual processing, instruction type 

modifies the weight of initially generated responses 

therefore influencing the level of experienced conflict.  

The focus of our study was to determine how simple 

effects (congruence, instruction type, believability) interact 

and effect response times and confidence levels. We 

predicted participants would experience a greater level of 

conflict when base rates and stereotypes do not point toward 

the same answer. This effect should be stronger when 

instructed to reason based on mathematical probability 

compared to reasoning based on belief. The level of 

experienced conflict is expected to increase the likelihood of 

Type 2 reasoning and manifest as prolonged response times 

and lowered judgements of confidence. We predicted the 

addition of different believability levels of stereotypes 

would influence judgements and response times differently 

depending on the type of instruction. When reasoning 

according to belief high believability should mitigate the 

influence of conflict while increasing it when reasoning 

according to mathematical probability. 

Method 

Participants and design 

The sample (N=38) was recruited among undergraduate 

psychology students. The experiment was a 2(instruction 

type) x 2(congruence) x 2(believability) repeated measures 

design. 

There were two different instructions. For half of the 

items participants were instructed to answer according to 

their belief. The exact instruction was “For the following 

items respond as fast as you can according to what you 

know to be probable from everyday experience”. For the 

other half of the items they were instructed to respond in 

accordance with mathematical probability. The exact 

instruction was “For the following items respond as fast as 

you can according to mathematical probability”. 

The second independent variable varied the level of 

congruence. For half of the items there was no conflict 

between belief and mathematics based probability while for 

the other half there was. 

Finally we varied the level of believability of the content 

by creating two types of items as displayed in the materials 

section. 

In order to control order effects half of the participants 

first completed the block based on belief instructions and 

then the one based on mathematical probability, while the 

other half had the reversed order. Items within each block 

were randomized for each participant. 

Materials 

Previous research with base rate tasks regularly used 

extreme base rate ratios to achieve the conflict effect, 995/5 

and higher (De Neys & Glumicic, 2008; De Neys, 

Vartanian, & Goel., 2008; Obrecht & Chesney, 2016; 

Pennycook et al, 2014). We chose to use less extreme and 

random ratios in order to control for a possible effect of 

repetitiveness on participant decisions. We implemented 

clear rules for ratio selection. The highest allowed ratio was 

900/100, while the lowest was set at 850/150. Within this 

spread ratios were generated randomly by a computer 

algorithm. 
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To vary believability we followed two different 

approaches. For half of the items, attributes associated with 

the person were characteristic of one group, but not 

exclusive to it. E.g. Person A is physically attractive. 

Person A is chosen from a group of supermodels or a group 

of secretaries. Obviously, secretaries can be attractive, but 

the attribute is an integral part of the concept supermodel. 

For the other half, we increased the difference in the 

believability of the attribute for the two groups. For one 

group the attribute was still integral, but for the other it was 

highly uncharacteristic, the opposite of what people would 

expect. E.g. Person B is courageous. Person B is chosen 

from a group of firefighters or a group of deserters. 

Courage is an integral part of what people think of 

firefighting, while cowardice is strongly associated with 

deserting. 

Conflict is achieved when base rate ratios and belief 

based probability do not point towards the same choice. By 

adhering to the before mentioned guidelines, forty main and 

four practice items were selected from a larger pool of 

constructed items based on researcher scores. Base rate 

ratios were assigned randomly to the items which were then 

randomly assigned to experimental conditions. Examples 

for the four possible combinations of believability and 

congruence can be seen in Table 1. When combined with 

the two different instruction types this forms a total of eight 

experimental conditions (five items per condition). 

 

Table 1: Examples of item types. 

 

 Attribute Subgroups 

Lower 

believability/Congruent 
Elegant 

854 ice skaters, 

146 teachers 

Lower 

believability/Conflict 
Creative 

866 waiters,       

134 painters 

Higher 

believability/Congruent 
Comical 

880 comedians, 

120 morticians 

Higher 

believability/Conflict 
Honest 

842 smugglers,   

158 judges 

 

The order in which subgroups appeared was randomized 

among items to avoid habitual responses from our 

participants. 

Procedure 

The experiment was designed in E-Prime v2.0.10.356 and 

conducted in the Laboratory for Experimental Psychology. 

Before the main experiment participants underwent practice 

to associate themselves with the way in which they were 

required to react. For the main experiment participants were 

told an attribute describing a person would be presented for 

a few seconds after which they would receive information 

about the groups from which the person was randomly 

selected. Finally, they were presented with a choice and 

were required to answer from which group they thought the 

person was probably chosen based on one of the instruction 

criteria (belief in one block, and mathematical probability in 

the other). Confidence judgements were made on a six point 

scale, with each point representing a percentage of 

confidence. Scale value 1 represented 50% confidence 

(guessing) with each successive value representing an 

increase of 10% with the scale value 6 representing 100% 

confidence (complete confidence). An example of the single 

trial procedure can be seen in Figure 1. 

 

 
 

Figure 1: Example of a single trial. 

Results 

Prior to analysis response time data was processed to 

eliminate outliers by removing responses outside of the +/- 

3 standard deviation range. Outliers made up of 2.2% of all 

responses. Response times were averaged for items within 

each experimental condition (5 items per condition) for final 

analysis. Confidence ratings were also averaged to get the 

final confidence judgements for each condition. Before the 

main analysis two 2x2x2x2 mixed analyses of variance were 

conducted with an additional variable of block order 

(instruction order) to determine whether the order in which 

participants completed the experiment influenced response 

times and confidence judgements. In both analyses the main 

effect of block order and interactions which include the 

effect were not significant. The results of these analyses 

show that the order in which participants completed the task 

had no influence on response times and confidence 

judgements. 

A 2 (instruction condition) x 2 (congruence) x 2 

(believability) repeated measures analysis of variance was 

conducted on response time data. Results of the analysis can 

be seen in Table 2. A strong main effect of congruence 

showed response times were significantly shorter for 

congruent compared to conflict trials. Higher believability 

in general led to slower responses, but this was due to a 

strong effect in conflict situations when participants were 

instructed to reason according to probability (see the three-

way interaction interpretation). The main finding of this 

study is reflected in the significant two-way interaction 

between instruction type and congruence which is shown in 
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Figure 2 (for all figures error bars represent 95% confidence 

interval for the mean). 

 

Table 2: ANOVA results for response times. 

 

Effect F (1, 37) ηp
2 

Instruction .05 .00 

Congruence 11.68** .24 

Believability 7.07* .16 

Instruction by Congruence 7.70** .17 

Instruction by Believability 2.32 .06 

Congruence by Believability 2.69 .07 

Three-way interaction 11.34** .23 

*p<.05; **p<.01 

 

 

 
 

Figure 2: Response times as a function of conflict and 

instruction type. 

 

The influence of conflict on response times was 

significantly lower when participants responded in 

accordance with belief (mean difference between congruent 

and conflict responses Mdiff = 76 ms) than when they 

responded in accordance with mathematical probability 

(Mdiff = 230.36 ms). The three-way interaction effect reflects 

the different influence of believability depending on the 

instruction. Higher believability mitigated the influence of 

conflict when participants responded according to belief, 

and increased it when they responded in accordance with 

mathematical probability. 

The same analysis was conducted for confidence 

judgements for which results can be seen in Table 3. The 

analysis showed a similar pattern of results. Participants 

expressed lower levels of confidence for conflict compared 

to congruent items, which is reflected in a large main effect 

of congruence. Believability, in general, slightly increased 

confidence ratings but was present in more complex 

interaction effects. Again, the main finding of this study is 

best observed by considering the significant two-way 

interaction between instruction type and congruence in 

Figure 3. Conflict lowered confidence judgements for 

mathematics based reasoning (mean difference between 

congruent and conflict responses Mdiff = 5.24%) more than 

for reasoning based on belief (Mdiff = 2.38%). 

 

Table 3: ANOVA results for confidence judgements. 

 

Effect F (1, 37) ηp
2 

Instruction .21 .00 

Congruence 20.49** .36 

Believability 6.54* .15 

Instruction by Congruence 5.63* .13 

Instruction by Believability .36 .00 

Congruence by Believability 2.30 .06 

Three-way interaction 4.77* .11 

*p<.05; **p<.01 

 

 

 
 

Figure 3: Confidence judgements as a function of conflict 

and instruction type. 

 

In the three-way interaction believability increased 

confidence ratings and mitigated conflict influence when 

participants responded in accordance with belief, and 

lowered confidence ratings for conflict items when they 

responded in accordance with mathematical probability. 

Next, we analyzed accuracy depending on instruction 

type. For the belief based instruction the stereotypical 

response could be considered as correct, and for the 

probability instruction the opposite. Accuracy was high for 

the two belief conditions and the congruent probability 

condition (above 86%), but low for conflict trials in the 

probability condition (46.84%). Since this data was not 

distributed normally, we tested differences using the Wilcox 

matched pairs test. Instruction to reason according to 

mathematical probability significantly lowered stereotypical 

responses in conflict trials (Z = 4.94, p<.01), the same was 

true for the belief instruction condition (Z = 2.65, p<.01). To 

evaluate confidence judgements we calculated differences 

between confidence levels and accuracy for each participant 

(for this and similar procedures see Koriat, Lichtenstein, & 

Fischoff, 1980). An instruction by congruence ANOVA 

showed a significant interaction effect (F(1, 34) = 34.81, 

p<.01, ηp
2 = .51). Results showed the difference between 
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confidence and accuracy was largest for conflict trials in the 

probability instruction condition (Figure 4). 

 

 
Figure 4: Differences between confidence and accuracy as a 

function of instruction type and congruence 

 

Additionally, analyses of variance were conducted only 

for responses that were correct depending on the instruction. 

A total of 25 participants made up this dataset while the rest 

did not have correct responses for all of the experimental 

conditions. For both response times and judgements of 

confidence, results followed a very similar pattern to the 

analysis of the full dataset. Once again participants were 

considerably slower for conflict items (F(1, 23) = 12.71, 

p<.01, ηp
2 = .36), and slightly slower for more believable 

items (F(1, 23) = 9.63, p<.01, ηp
2 = .29). The instruction 

type by congruence interaction (F(1, 23) = 9.54, p<.01, ηp
2 

= .29) was again the most interesting result. Conflict had a 

greater influence on response times when reasoning 

according to probability than when reasoning according to 

belief. The three-way interaction was no longer significant 

but showed the same pattern of results. For judgements of 

confidence the analysis showed significantly lower levels of 

confidence in conflict compared to congruent conditions 

(F(1, 23) = 19.60, p<.01, ηp
2 = .46). The instruction by 

congruence interaction remained significant (F(1, 23) = 

5.62, p<.05, ηp
2 = .20) and showed conflict lowered 

confidence judgements to a larger extent than when 

reasoning according to probability. Additionally, instruction 

by congruence (F(1, 23) = 12.37, p<.01, ηp
2 = .35) and 

congruence by believability (F(1, 23) = 4.92, p<.05, ηp
2 = 

.18) interactions showed participants were less confident for 

high believability items when reasoning according to 

probability and that conflict had a larger influence on 

confidence for higher believability items. The three-way 

interaction was no longer significant, but showed the same 

pattern of results as the analysis of the total response data. 

Finally, we calculated an item-level correlation between 

response times and confidence ratings. Results (r(38) = -.56, 

p<.01) showed that participants gave higher judgements of 

confidence for items they responded to faster. 

Discussion and conclusions 

According to the proposed dual-process model by 

Pennycook et al. (2015), initial responses are generated by 

Type 1 processes in reasoning tasks. If there is a conflict 

between the initially generated responses, and it is 

successfully detected, Type 2 processing resolves the 

conflict in two possible ways. One outcome is the 

acceptance of a dominant initial response (rationalization), 

and the other is choosing an alternative response (cognitive 

decoupling). Because of the expected dominance of belief 

based responses, we predicted that induced conflict would 

have a greater influence when instructed to reason based on 

mathematical probability compared to reasoning based on 

everyday belief. According to the prediction, this greater 

influence would initiate Type 2 processes to a larger extent, 

which would manifest in prolonged response times and 

lower confidence judgements in the mathematical 

instruction condition. Both three-way ANOVAs (Tables 2 

and 3) prove this prediction to be correct. The expected 

strong main effect of congruence was significant, which is 

the usual result in this type of research (Pennycook et al., 

2015; Pennycook et al., 2014; Thompson & Johnson, 2014; 

Thompson et al., 2013). The main findings show that 

participants responded slower in conflict trials when 

reasoning according to mathematical probability. Conflict 

influence was less prominent when reasoning in accordance 

with everyday belief. This pattern of results is evident for 

both response times and confidence judgements (Figures 2 

and 3). We hypothesize that stereotypical responses have a 

greater weight during initial response generation (Type 1 

processing), which leads to stronger interference of belief on 

probability based reasoning than vice versa. 

Our additional experimental manipulation of stereotype 

believability resulted in significant three-way interaction 

effects (Tables 2 and 3). When reasoning according to 

belief, higher believability mitigates the impact of conflict 

on response times and confidence levels. On the other hand, 

higher levels of believability increase the influence of 

conflict when reasoning based on mathematical probability. 

This result may represent further proof for the existence of 

differently weighted initial responses among which belief 

based responses are very prominent.  

Participants expressed a higher level of confidence for 

items which had shorter response times indicating response 

fluency is a strong cue in the formation of metacognitive 

judgements. This finding was obtained in recent studies 

using different thinking and reasoning tasks (see Thompson 

et al., 2013). 

Furthermore, when instructed to reason according to 

belief, conflict decreased stereotypical responses, but to a 

far lesser degree than when instructed to reason according to 

mathematical probability. It is important to note that even 

when instructed to reason according to probability 

participants chose belief based responses in over 50% of 

conflict trials. This further strengthens the conclusion that 

everyday belief dominates reasoning in this specific task. 

Within the framework proposed by Pennnycook et al. 

(2015), this would indicate instruction to reason according 

to probability influenced the relative importance of belief 

and probability information, but did not fully override the 
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initial dominance of belief based responses. Participants 

were overconfident only for conflict trials in the probability 

instruction condition (Figure 4). This was probably due to 

the fact that in the other three conditions the dominant belief 

based answers were correct, while in this one that was not 

the case.  

When we analyzed only correct responses the same 

pattern emerged. As the model predicts, participants were 

slower and less confident in conflict trials and the conflict 

had a larger effect when reasoning according to probability. 

Based on these results, we can conclude that emphasizing a 

particular way of reasoning can have an effect on the 

relationship between conflict, response fluency and 

metareasoning judgements. 

When these results are considered together we can 

conclude everyday belief has a stronger interference on 

mathematics based reasoning in this type of task than vice 

versa. Since a main effect of instruction (reasoning type) 

was not observed, we can speculate the two processes run in 

parallel, but that the result of the belief based process has a 

higher weight. 

The results may have practical implications, particularly 

in educational settings. Many tasks require students to 

ignore intuitive modes of reasoning in favor of analytical 

thinking, and it is in those types of tasks where results such 

as found by this study could be applied to increase 

efficiency.  

To conclude, the results of this study confirm the strong 

influence of conflict on response times and confidence 

levels in reasoning tasks. The study expands on previous 

research by introducing further complexity into established 

relationships between processes. Explicit instructions in 

combination with different levels of believability moderate 

the influence of conflict on fluency and confidence 

judgements. Results may indicate parallel processing of 

multiple, differently weighted processes, but more 

sophisticated research is required to explore the findings 

further. 
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Abstract 

We studied the effect of adjunct displays on recall in an 
expository text (based on McCrudden, Schraw, Lehman, & 
Poliquin, 2007) in order to find out which means of display 
aided pupils in the last years of secondary school to recall 
information. We included four conditions in the experiment: 
text only, text and causal diagram, text and images and causal 
diagram only. Participants were checked for their recall of 
main ideas and causal sequences. Recall for main ideas did 
not vary significantly across conditions. Contrary to 
McCrudden et al. (2007), our results for the causal sequences 
revealed that participants who studied a causal diagram only 
could recall more steps from causal sequences than 
participants in any of the other conditions. We will interpret 
the findings in the light of the literature on redundancy 
effects, dual coding theory, and the causal explication 
hypothesis. 
 

Keywords: Causal diagram; Text comprehension; Causal 
relationships; Visual/spatial display 

Introduction 

We set up an experiment studying the benefits of adding 

causal diagrams and illustrations to expository texts for 

recall of information. We will discuss the use of adjunct 

displays (i.e. visual representations that complement text 

with the purpose of making the information present more 

easily understandable and better recalled) in previous 

research. After that, we will go into more detail on the 

specific advantages of causal diagrams for text 

interpretation.  

Benefits of adjunct displays  

Adding so called “adjunct displays” i.e. powerpoint 

presentations, images, causal diagrams, etc. to a spoken or 

written text does not always entail the expected benefits for 

the reader or listener. When these kinds of adjunct displays 

are added to text, they restate the same information of the 

text in a new form (such as causal diagrams) or add new 

chunks of information (such as images). The audience’s 

preexisting knowledge about the topic and the amount of 

overlap between the two sources of information are two 

variables that need to be considered. When taking these 

nuances into account, adding visual displays can promote 

recall, provided they are implemented in the right way. 

Vekiri (2002) presented an overview of the advantages of 

different graphical displays for recall and suggested that 

graphics make a valuable contribution to learning only when 

readers can interpret and integrate the information without 

extra processing demands. The effects of adding graphics 

are mediated by variables such as the participants’ pre-

existing knowledge about the subject of study and 

visuospatial ability. Also, graphic displays need to be 

adjusted to task demands. E.g. when an important part of 

text comprehension is understanding cause-effect relations, 

the diagram should explicate these relations and their 

interactions (Mayer & Gallini, 1990). When graphs are used 

in a right way, they improve understanding. When this is not 

the case, they often interfere with learning because they 

impose extra processing demands reducing working 

memory capacity for learning activities. 

Because of the way diagrams organize text and explicate 

relations, they make it easier to draw inferences about the 

relations that are present (Robinson & Kiewra, 1995). 

Precisely because links are provided between information 

bits, relations that might otherwise have remained implicit 

are now more easily computed (Larkin & Simon, 1987). See 

also the causal explication hypothesis (Graesser & Bertus, 

1998; McCrudden et al., 2007, p. 372): adding causal 

diagrams improves text comprehension because “they 

provide an explicit visual representation of a text’s causal 

structure that helps the reader understand the text’s causal 

structure”. Analyzing causal relationships between text 

fragments is cognitively demanding. Presenting a causal 

diagram can help readers to construct a mental model of the 

text and hence leave more room for inference drawing and 

consequently a deeper comprehension of the text.  

McCrudden et al. (2009, p. 81) present four reasons why 

the use of adjunct displays boosts understanding of causal 

relationships. First, a saliency issue: the relevant causal 

steps are brought to the fore. Their second reason refers to 

the reduction of cognitive effort. Third, a holistic 

understanding of the causal structure of the text is more 

easily achieved. A last reason is concerned with spreading 

the information via different channels: “it is possible that an 

adjunct display distributes the information across verbal and 

spatial working memory stores, functionally increasing its 

capacity” (McCrudden et al., 2009, p. 81).  

Apart from causal diagrams, images are also often added 

to text. The visual “argument hypothesis” and “picture 

superiority effect” state that adding images is effective 

because they are more easily processed than text. In that 

respect, reference is often made to the “dual coding theory” 

(Paivio, 1990) that attributes these benefits to the 

assumption that there are two different codes for visual 

information (stemming from pictures or words). The dual 

coding theory postulates that there are two distinct cognitive 
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systems for information processing and retrieval. “Imagens” 

stores nonverbal information in mental images, whereas 

“logogens” stores verbal information in word-like codes 

(see also Vekiri, 2002). The dual coding theory had been 

called into question by Johnson-Laird (1998) claiming that 

information from both verbal and image cues is represented 

in a single amodal form (see also Vekiri, 2002). These 

challenges have received recent support from neurological 

studies. Specifically, recent neural evidence has shown 

(Shinkareva, Malave, Mason, Mitchell, & Just, 2011) that 

patterns of brain activity when thinking about concrete 

objects are independent of the stimulus presentation format 

(i.e. words or pictures). Neural states could be identified that 

are common to pictorial and verbal input referring to objects 

categories. Not only could they find this effect within 

participants, but regions of brain activity could also be 

predicted across participants. “The category of a noun that a 

person reads or thinks about can be identified solely on the 

basis of activation patterns obtained from other individuals” 

(Shinkareva et al. 2011, p. 2422). This evidence at least 

suggests that the dual coding theory and the picture 

superiority effect need rethinking.  

Influence of causal diagrams on comprehension 

In this section, we address the question whether causal 

diagrams bring specific advantages for text interpretation. 

Several studies with undergraduate students have revealed 

the beneficial nature of adding causal diagrams to texts. 

McCrudden et al. (2007) present participants with texts 

accompanied or unaccompanied by a causal diagram (i.e. a 

type of visual display that explicitly represents cause-effect 

relationships, McCrudden 2007, p. 367) summarizing the 

main ideas and causal sequences of the text. Their results 

showed that participants who studied both text and causal 

diagram understood better the five causal sequences in the 

text. In a second experiment, in which participants studied 

either the text or the causal diagram, no differences could be 

found for recall of main ideas or causal sequences between 

the two conditions. They conclude that causal diagrams are 

not merely redundant with text.  

McCrudden, Schraw, and Lehman (2009) set up two 

experiments in which participants read a text, either 

followed by the task to study a causal diagram, to study a 

list, or to reread the text. After that, participants were asked 

a range of questions focusing on the steps in the causal 

sequences and the transitive relationships between causes 

and effects. Participants in the reread condition performed 

worse than participants in the other conditions. On the basis 

of similar results in the two experiments they conducted, 

McCrudden, Schraw, and Lehman (2009, p. 80) conclude 

that explicating the steps in a causal chain improves 

comprehension of the text and learning of causal 

relationships. 

In another study McCrudden, Magliano and Schraw 

(2011) investigated the online reading processes of 

participants while they were reading a text or studying a 

diagram. In their first experiment participants either studied 

the causal diagram before reading the text or did not study 

the causal diagram before reading the text. Participants who 

studied a diagram before reading the text had faster overall 

reading times than participants who did not. Moreover, 

participants in the diagram condition recalled more 

information than participants in the no-diagram condition. 

In a second experiment, participants in the no-diagram 

condition had to read the text twice in order to make the 

experiment similar for the two groups, and in order to 

preclude the fact that the effect from the first experiment 

was due to the repetition of content (2011, p. 78). Again 

they conclude that “exposure to the diagram had a beneficial 

effect on comprehension over and above simple repetition” 

(2011, p. 81). Reading time data showed that reading times 

of the text of participants who first studied a causal diagram 

were longer than those of participants who simply reread the 

text. After that they compared text reading times of 

participants in the diagram condition with text reading times 

of participants (of the first reading of the text) in the reread 

condition. No differences could be found between them. In a 

third experiment participants were asked to “think aloud” 

while studying the texts or diagrams. It was shown that 

presence of a diagram improved the participants’ 

recognition of causal relations.  

Experiment: the contributions of text, images 

and causal diagrams for recall 

 

We investigate the effects of images and visual displays on 

recall of information from expository science texts. As in 

McCrudden et al. (2007) we included conditions with text 

only, text and diagram, and diagram only. The diagram 

consists of key terms of the text; relations and sequences are 

expressed by means of arrows. 

Our study diverged from the one by McCrudden et al. 

(2007) in five important respects. First, we added a 

condition with text and images. We wanted to find out 

whether visual displays aided recall of ideas and causal 

sequences and if they did, which kind of visual display was 

most beneficial for a thorough understanding and recall. Do 

causal diagrams entail a bigger advantage because they 

explicate causal relations? Or do images contribute equally 

to the comprehension process because they visually 

represent the content? Second, we did not include a reread 

condition in our experiment because we think this condition 

is not straightforwardly comparable to the other conditions. 

Participants who were asked to reread the text probably 

invested less effort than participants who received slightly 

new materials summarizing the main ideas of the text they 

had just read. In our opinion, rereading a text that is exactly 

the same as the one you have just read is bound to go a lot 

faster. Third, we opted for a direct comparison between all 

four conditions in one experiment. Fourth, participants were 

given less time to study the causal diagram than in the study 

by McCrudden et al. (2007). Less information needs to be 

processed and we wanted to find out whether similar results 

could be achieved with less studying time. Fifth, we decided 
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to recruit pupils from secondary schools because the lion’s 

share of research has been carried out with university 

students and elementary school children, and little attention 

has been paid to pupils in the last years of secondary school 

(see also: Mason, Tornatora, & Pluchino, 2013). Because 

pupils in this age category are studying many different 

subjects, are getting acquainted with studying larger chunks 

of information and need to make important decisions about 

their future study and career orientations, they are a very 

interesting group to look into in more detail.  

In the experiment participants were allocated to one of 

four conditions: study a text combined with images, a text 

combined with a causal diagram, only the causal diagram, 

or only the text. Participants were tested for their recall of 

main ideas and for their recall of steps from a causal chain. 

As in McCrudden et al. (2007) we expect no differences for 

recall of the main ideas, because their understanding does 

not rely on participants’ ability to link information. We do 

expect differences for recall of causal sequences because 

these require participants to build a mental model of the text 

with causal links, which burdens cognitive resources 

(Graesser & Bertus, 1998). If the participants in the text 

only condition outperform the other conditions, this 

provides evidence that accompanying materials are 

redundant. If on the other hand, participants in the condition 

of text accompanied by causal diagram or causal diagram 

alone outperform the other conditions, it provides evidence 

in favour of the causal explication hypothesis: explicating 

causal relations in a diagram helps processing. If the 

condition of text combined with images is better than the 

rest, this supports the visual argument hypothesis.  

On the basis of the literature, we hypothesize that 

participants will perform better in the conditions where text 

is accompanied by a visual aid, be it a causal diagram or an 

image.  

Method  

 

Participants 91 pupils from the fifth and sixth grade 

secondary education (mean age=17.05, SD=0.85) took part 

in the experiment. The participants’ mother tongue was 

Dutch.  

 

Design The materials were manipulated between subjects. 

Participants were randomly attributed to one of four 

conditions: text and images, text and diagram, text only, or 

diagram only. 

 

 Materials The materials varied in the four conditions. 

Basis in all cases was an explanatory scientific text about 

space travel. In the ‘text only’ condition participants read a 

text of 1171 words. The text was taken from McCrudden et 

al. (2007)1 and translated into Dutch. A few minor 

                                                           
1 “The text was a two-page, 1385-word passage entitled Space 

Travel (see Appendix A) that described effects of space travel on 

the human body at an introductory level. It was adapted from 

several sources including two Web-pages from an educational Web 

adaptations were made in order to make the text more easily 

readable in Dutch. In the ‘text and images’ condition the 

same text was used, but now accompanied by six images. 

Every image highlighted a particular step from one of the 

five causal sequences. Three images illustrated a step from 

the causal sequence (osteoporosis, an excess of bodily fluids 

in the upper regions of the body, contradictory signals in the 

brain about the body’s orientation). The other three images 

illustrated a consequence or danger of the causal sequence 

(kidney stones, muscle loss, heart shrink). In the ‘text and 

diagram’ condition, the text was accompanied by a causal 

diagram. Text and diagram were presented simultaneously. 

The causal diagram was taken from McCrudden et al. 

(2007) and translated into Dutch. The causal diagram 

consists of five cause-consequence relations originating 

from a common cause: lack of gravity during space travel. 

In the ‘diagram only’ condition participants only studied the 

diagram. In the ‘text and diagram’ condition and ‘diagram 

only’ condition, the materials were preceded by a few lines 

instructing the participants how to read and interpret the 

diagram. 

Test materials consisted of a questionnaire consisting of 

two parts. The first part contained three questions. The first 

asked about participants’ prior knowledge about space travel 

(1= knew nothing – 6 = already knew everything). The 

second question asked participants to write a short text 

about their willingness to become a space traveler after 

having read about the dangers of space traveling. This 

question was inserted in order to create a time buffer 

between reading the text and answering recall questions. 

The third question enquired about the “main ideas”: 

participants were asked to name parts of the body that were 

affected by space travel, and the associated risks (e.g. lack 

of gravity influenced bone structure, which augmented the 

risk of kidney stones). The second part of the questionnaire 

focused on the causal sequences. A particular risk was given 

(e.g. space travel may cause kidney stones) and participants 

were asked to list as many causal steps as they could 

remember. They were invited to explain why the risk 

existed and to name as many causes and consequences as 

possible. 

 

Procedure The experiment was conducted in a large study 

room. Participants in the ‘text only’, ‘text and images’, and 

‘text and diagram’ conditions were given 8 minutes to study 

the materials, participants in the ‘diagram only’ condition 

were given 4 minutes to study the materials. (Time needed 

was determined on the basis of a small pretest.) The 8 

minutes group was told after four minutes that four minutes 

remained. All groups were informed one minute before the 

end that one minute remained. The materials were collected 

                                                                                                  
site for NASA: When Space Makes You Dizzy (Phillips & 

Hullander, 2002) and Mixed up in Space (Phillips & Hullander, 

2001), and one Web-page from an educational Web site for the 

National Space Biomedical Research Institute: Human Physiology 

in Space (Lujan & White, 2002).” (McCrudden et al., 2007, p. 373) 
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and the first part of the questionnaires was handed out. 

When participants had finished the first part of the 

questionnaire, they raised their hands, handed in the first 

part and received the second part of the questionnaire. No 

time limits were imposed to fill in the questionnaires. The 

experiment took the participants approximately 45 minutes. 

  

Results  

 

Preliminary questions: On the question how well 

acquainted participants were with the subject of space travel 

on a scale from 1 (=knew nothing) to 6 (=knew everything 

already), an average of 2.3 was reached (23 participants 

chose 1 on the scale, 34 chose 2, 19 chose 3, 12 chose 4, 3 

chose 5, none chose 6). Correlations were checked between 

overall recall of main ideas and prior knowledge and 

between overall recall of causal sequences and prior 

knowledge but no significant correlations were found.  

 

Main ideas: An ANOVA was conducted with text type 

(causal diagram only – text only – text and diagram – text 

and images) as the independent variable and main ideas as 

the dependent variable. No main effect of text type could be 

found: F(3, 87)=.739, p=.53. Recall of main ideas did not 

differ significantly whether participants read the ‘text only’, 

‘text and diagram’, ‘text and images’ or the ‘causal diagram 

only’.  

 

Causal sequences: As for recall of the causal sequences, we 

conducted an ANOVA with text type as between subjects 

variable and causal sequence as within subjects variable 

(repeated measures). To allow for comparisons across 

causal steps, scores were converted to proportions. I.e. per 

causal sequence, the number of causal steps remembered 

was divided by the total number of causal steps for that 

particular sequence.   

There was a main effect of text type F(3, 87)=3.93, 

p=.011. Causal diagram (M=0.52) led to greater recall than 

any of the other text types (text only M=0.34 – text and 

diagram M=0.39 – text and images M=0.33). Planned 

comparisons revealed that ‘diagram only’ differed 

significantly from ‘text and diagram’ F(1, 87)=4.91, 

p=.0015, which was the second best condition for recall.  

There was a main effect of specific topic of the causal 

sequences: F(4, 348)=18.80, p=.00001. Planned 

comparisons revealed that the causal sequence of ‘muscle 

loss’ was significantly more recalled than the other four 

causal sequences (‘muscle loss’ M=0.57 - kidney stones 

M=0.43; F(1, 87)=10.66, p=.002). No difference was found 

between the causal sequence ‘kidney stones’ and ‘motion-

sickness’ (M=0.42), but these two causal sequences were 

better recalled than the causal sequence ‘infections’ 

(infections M=0.31 - kidney stones; F(1, 87)=4.61, p=.035), 

which was in turn more recalled than the causal sequence 

about ‘heart shrink’ (heart shrink M= 0.25 – infections F(1, 

87)=3.97, p=.049).  

The interaction between text type and causal sequence 

almost reached significance level: F(12, 348)=1.66, p=.07.  

The causal sequence that was easiest to remember (muscle 

loss) did not differ between the different text types. For the 

more difficult causal sequences, planned comparisons 

revealed that the participants in the “diagram only” 

condition always scored best (motion-sickness 

F(1,87)=6.96, p=.009; kidney stones F(1,87)=9.32, p=.003 

infections F(1,87)=8.25, p=.005, and heart shrink 

F(1,87)=7.59, p=.007).  

Discussion 

As in McCrudden et al. (2007) no differences were found 

between the groups for recall of the main ideas. 

The results for the causal sequences show that participants 

had higher recall rates when they studied a causal diagram 

only than any of the other types of materials (text only – text 

and diagram – text and images). No differences were found 

between the other conditions. Moreover, participants in the 

‘diagram only’ condition only had four minutes to study the 

diagram, whereas the participants in the other conditions 

could study the materials for eight minutes. The fact that 

participants were able to achieve better comprehension in a 

shorter period of time, is surprising. This result runs counter 

to the results obtained in McCrudden et al. (2007) where no 

differences in recall of causal sequences between diagram 

and text could be found.  

A straightforward explanation is the fact that the diagram 

only contained information that was relevant for the 

questions participants would receive (cf. the saliency issue 

discussed in the introduction). The other conditions with 

text also contained secondary information. A more in-depth 

explanation for these results might reside in the fact that 

participants need to invest more processing effort in 

understanding the diagram and this leads to deeper 

processing and hence a better retention of the studied 

materials in the brain. Ainsworth and Loizou (2003) and 

Moore and Scevak (1997) show that students make more 

inferences in diagrams than in running text. McCrudden, 

Magliano, and Schraw (2011) show that studying a diagram 

led to higher recall of information compared to text reading. 

This experiment provides evidence that studying a 

diagram leads to a better retention in memory. When 

participants study texts, they may opt for the easy way out: 

the text reads smoothly, deep processing is not necessary for 

superficial text comprehension. Additional evidence for this 

claim can be found in the fact that, similar to the results of 

McCrudden et al. (2007), the more complex the causal 

sequence, the better participants could recall the causal 

sequences when they had studied a diagram compared to the 

other conditions. Difficult causal sequences may not have 

been understood profoundly enough in the text condition, 

whereas the diagram condition made sure the more difficult 

causal sequences were studied thoroughly. This fits in with 

the finding by Cromley et al. (2010, p. 69) that “students 

used a significantly higher proportion of inferences and 

high-level strategies and a significantly lower proportion of 
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low-level strategies in diagrams than in text. (…) diagrams 

seemed to promote more high-level, integrative activity and 

seemed to discourage low-level superficial strategies.”  

An explanation why the ‘text and diagram’ condition did 

not have higher recall rates than the ‘text only’ condition, is 

to be found in the fact that students often skip diagrams or 

skim only parts of the diagram (see e.g. Schmidt-Weigand 

et al., 2010). Schmidt-Weigand et al. (2010) also showed 

that the time participants took to inspect visualizations of 

the text was considerably lower than the time participants 

took to read the text. Participants might find the information 

in the text sufficient and find the diagrams superfluous. 

When their expectations of relevance were met, they did not 

take the effort to study the diagrams in detail. This could be 

overcome in future research by presenting the diagram 

before the text.  

Another surprising finding is that our results fail to 

support the so called “picture superiority effect”  since the 

condition in which participants studied text and images had 

the lowest averages of all conditions (but not significantly 

lower than text only and text and diagram). It has been 

suggested that when words are processed meaningfully, 

memory for them may be comparable to that of pictures 

(Weldon & Coyote, 1996, p. 671). Processing of 

information (words, pictures, …) is optimized according to 

task requirements (Job & Tenconi, 2002). Once that purpose 

is defined, “the processing of information seems to proceed 

to levels that satisfy the task requirements” (Miller, 2011, p. 

719). So in our experiment, adding pictures did not lead to 

better recall because the information present in the text was 

sufficient to the participants. Adding pictures did not entail 

any additional benefits. Apparently participants thought that 

the information was processed satisfactorily for the current 

purposes. While Levin & Mayer, 1993 and  Marcus et al., 

1996 (as cited in Pike et al. 2010) provided evidence that the 

use of illustrations reduces the demands on working 

memory and hence leaves more resources for higher order 

processing of the text, no evidence for this could be found in 

our results. 

General Discussion 

Here we will situate our results with regard to the causal 

explication, verbal redundancy, and picture superiority 

hypothesis. We will also discuss the implications for 

devising course materials. 

 

Causal explication hypothesis 

McCrudden et al. (2007) provided evidence in favour of the 

causal explication hypothesis, when text and causal diagram 

were presented together, because participants in the 

condition text and causal diagram outperformed the ones in 

the text only condition. On the basis of our results, we can 

say that our results tilt toward a redundancy effect when two 

sources of information are presented together. Even though 

it is claimed in McCrudden et al. (2007) that causal 

diagrams are not merely redundant with texts, this seems to 

be the case in our study. When adding a causal diagram to 

text, recall rates drop to levels similar to those of text only. 

This may be due to the fact that participants only had a look 

at the diagrams after having already processed the text and 

hence devoted less attention to it than when they first would 

have had a look at the causal diagram instead of vice versa. 

However, when a causal diagram is presented on its own, 

recall for causal sequences improves. These results underpin 

the causal explication hypothesis. When implicit causal 

relations are made explicit in a causal diagram, recall 

significantly improves. Whether the effect is due to the fact 

that only the relevant information for the recall questions 

was summarized in the causal diagrams or whether it is 

actually due to their structure or both factors combined, will 

have to be left unresolved for the time being. However, 

there can be little doubt as to the role causal diagrams play 

in alleviating the strains put on our cognitive capacity. The 

resources made available in this way can then be devoted to 

storing the information and the links between bits of 

information more firmly in memory. 

 

Verbal redundancy 

The effect of redundant information has been studied on 

various levels. Many studies have been conducted 

investigating “verbal redundancy”. When similar 

information is simultaneously given via different channels 

(i.e. spoken and written information), comprehension and 

recall are not necessarily better than when the information is 

only given in one form. These studies have often been 

carried out in multimedia environments. The overall 

conclusion is that when redundant information is given, 

learning becomes impaired. Rey and Buchwald (2011), 

Sweller  (2005a, 2005b) have shown that offering redundant 

material often interferes with learning rather than facilitating 

it (see Sweller, 2005b, p. 159). This redundancy effect is 

attributed to the fact that working memory capacity is 

burdened excessively with integrating identical information 

received via different sources. The results of the experiment 

are in accordance with the aforementioned studies. When 

the information is twice presented  (causal diagram and text, 

or text and pictures) learning does not improve compared to 

the text only condition. So the fact that the information is 

given in two versions does not hinder learning but neither 

does it improve learning. 

  

Picture superiority 

As we have argued in the discussion, we fail to find 

evidence for the picture superiority effect. When pictures 

are added to text, recall does not improve. The positive 

effect of a causal diagram cannot be interpreted in terms of 

picture superiority, because causal diagrams are not 

pictures, but they are small summaries of causal information 

in the text. 

 

Suggestions for study materials 

In conclusion, we can say that causal diagrams turn out to 

be a very convenient study aid, when a deeper 

understanding of relations is aimed for. It is even the case 
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that causal diagrams appear to be the principal matter to 

study for students instead of texts when recall of causal 

relations is at stake. Participants who studied the causal 

diagram alone, outperformed the participants in any of the 

other conditions. So, we can recommend students to draw 

causal diagrams of the materials they have to study and 

authors of school and college books to add causal diagrams 

whenever possible summarizing the main ideas and the 

relations between them. Making the structure of the text 

more insightful is a vital characteristic of causal diagrams.  

In short, our findings hints towards the need to elucidate 

course material with diagrams in order to boost memory. 
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Abstract 

Accounts of abstract word learning suggest that learning these 
words relies primarily on access to linguistic cues, such as the 
statistical co-occurrence of words with similar semantic 
properties. Thus, children with language impairment (LI), 
who by definition have impoverished access to linguistic 
context, should have disproportionate impairments in abstract 
word knowledge. Here, we compared verbal definitions and 
lexical decisions to both abstract and concrete words of 
children with LI (ages 8 to 13) and both age-matched and 
vocabulary-matched typically developing (TD) peers. Relative 
to age-matched peers, children with LI had significant deficits 
in both tasks. Crucially, however, there was not greater 
impairment of abstract words. We conclude that that linguistic 
knowledge is not a sine qua non to learning abstract words 
and concepts and other mechanisms, which are not 
specifically impaired in LI, are at play. 
 
Keywords: abstract concepts; semantic representation; 
distributional semantics; lexical decision; specific language 
impairment (SLI); vocabulary development. 

Introduction 
Children learn thousands of words quickly and efficiently, 
often without any formal training, and even in impoverished 
environments. Learning words is hard because even when 
the referent is present in the physical environment, rarely it 
is isolated in the visual scene (Medina, Snedeker, Trueswell 
& Gleitman, 2011). To make the situation worse, referents 
are not always present in the physical environment, either 
because they are spatially and/or temporally displaced (e.g., 
talk about past or future events), or because they are abstract 
and have no tangible referent. Most theories of vocabulary 
acquisition focus on the mechanisms by which words 
referring to concrete concepts (i.e. objects, actions and other 
events that can be experienced with our senses and through 
our own actions) can be learnt; it is less clear how a child 
learns abstract concepts, which are not perceivable by the 
senses.  

It has been argued that children learn the meaning of 
concrete words such as “cat” or “run” by observing the 
statistical contingencies between the words and the objects, 

people and actions occurring in the physical environment 
(e.g., Yu and Smith, 2007). In addition, such contingencies 
could be enhanced by the use of social communicative cues, 
such as eye-gaze, or pointing, through which caregiver 
directs attention to the correct referent (Baldwin, 1991) or 
by infants actively isolating intended referents from the 
visual background by picking them up (Morse, Benitez, 
Belpaeme, Cangelosi & Smith, 2015).  

Word meanings, however, can also be learnt from the 
linguistic context in which the words occur (Firth, 1957). 
Recent work has demonstrated how models of semantic 
memory, based on co-occurrences of words in text (also 
called Distributional Semantic Models), can predict a 
variety of semantic effects in adults and children (e.g., 
Andrews, Vigliocco & Vinson, 2009; Bruni, Tran & Baroni, 
2014; Landauer & Dumais, 1997; Griffiths, Steyvers & 
Tenenbaum, 2007). This strategy could complement, at least 
for concrete words, other social-cognitive strategies. For 
abstract words, distributional information may provide a 
powerful, if not the most important, mechanism for learning 
(e.g., Andrews et al., 2009; Johns & Jones, 2012).  

In line with distributional semantic models, abstract 
words are acquired late in development (Kousta, Vigliocco, 
Vinson, Andrews & Del Campo, 2011; Ponari, Norbury & 
Vigliocco, in press; Schwanenflugel, 1991). Early studies of 
children’s language production (Brown, 1957, reported in 
Schwanenflugel, 1991) suggested that 75% of the words 
most frequently produced by school-aged children (6-12 
years of age) were concrete; in contrast, only 28% of the 
words used most commonly by adults were concrete. 
Schwanenflugel (1991) further reported that, while 6-year-
old children have already mastered the majority of concrete 
words most frequently used by adults, it is not until 
adolescence that children have mastered the majority of 
abstract words used by adults. These facts align well with 
the idea that a sufficient amount of linguistic input is 
necessary to extract meaning for abstract words.  

Thus, if the ability to learn meaning from co-occurrences 
in the input is critical for learning abstract concepts and 
words, abstract words should be especially challenging for 
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children with developmental language impairments (LI). 
Language impairment is a neurodevelopmental disorder 
affecting approximately 7.5% of children at school entry 
(Norbury et al. 2016, Tomblin et al. 1997). Children with LI 
have language abilities significantly below expectations for 
age in the absence of obvious social, sensory or 
neurodevelopmental explanations. Children with LI 
typically present with severe deficits in morphosyntax and 
other aspects of grammar (Rice, 2013), accompanied by 
vocabulary that is reduced in both breadth and depth relative 
to typically-developing peers (McGregor, Oleson, Bahnsen 
& Duff, 2013). Unfortunately there is a dearth of empirical 
investigation into the acquisition of abstract words by 
children with LI.   

Here, we investigate implicit and explicit knowledge of 
abstract and concrete words in children with Language 
Impairment (LI). Target words were selected at different age 
of acquisition bands and controlled for variables that are 
known to affect adult processing, including frequency, 
number of letters and valence. Lexical decision was used to 
test implicit knowledge, while verbal definitions were used 
to test explicit knowledge.  

Methods 

Participants 
Eighteen children with an existing diagnosis of Language 

Impairment (LI; 14 males; mean age = 10.03, SD = 1.76) 
were recruited from schools in Southeast England. Children 
in the TD groups were selected from a pool of 73 children 
who completed both tasks and were matched to the children 
with LI on age and gender (TDage; n = 18, 14 males; mean 
age = 10.34, SD = 1.44) or by raw scores on the British 
Picture Vocabulary Scale (BPVS; Dunn, Dunn, Whetton, & 
Burley, 1997) (TDvocab; n = 18, 14 males; mean age = 8.16, 
SD = 2.12). TD children were recruited from local schools 
and did not have any reported special educational needs, or 
history of language delay. Children’s non-verbal cognitive 
abilities were assessed using the Matrix Reasoning test of 
the Wechsler Abbreviated Scale of Intelligence (WASI, 
Wechsler, 1999). LI children were also administered the 
Recall Sentences subtest of the Clinical Evaluation of 
Language Fundamentals: Core Language Scales (CELF; 
Semel, Wiig, & Secord, 2006), see Table 1. The same 
children participated in both tasks. 
 
Materials 

Thirty-six abstract and 36 concrete words were selected 
from a pool of 3,505 words for which normative data on a 
range of lexical variables could be obtained. These variables 
included: Age of Acquisition (AoA; Kuperman,  
Stadthagen-Gonzalez & Brysbaert, 2012), concreteness, 
familiarity (Coltheart, 1981), valence (Warriner, Kuperman 
& Brysbaert, 2013), and frequency (Balota et al., 2007). 
AoA ratings were used to ensure the items selected were 
appropriate for our participants’ age: words were divided 
into Age of Acquisition bands (1: words acquired at 4-5 

years of age; 2: words acquired at 6-7 years; 3: words 
acquired at 8-9 years; 4: words acquired at 10-11 years). 
Within each AoA band, triplets of negative (valence ratings 
< 4.0), positive (valence ratings > 6.0) and neutral (valence 
ratings of 4.5-5.5) words matched on length (number of 
letters), concreteness, log frequency and familiarity were 
created. Triplets of abstract words were then paired to 
concrete triplets matching for average length, frequency and 
familiarity. Among these 72 words, 24 (12 abstract and 12 
concrete) were shared between the two tasks; 24 (12 abstract 
and 12 concrete) were used for the definitions task only, and 
the remaining 24 were used for the lexical decision task 
only. Additionally, for the lexical decision task, forty-eight 
pronounceable non-words were created by changing one 
phoneme from 48 words matched to the experimental words 
on length, AoA, valence and concreteness. All words and 
non-words were recorded by a native English speaker using 
Audacity v. 1.2.2.		

 

Procedure 
All children were tested in a quiet room in their school 

and received stickers for participation. Stimuli were 
presented acoustically using E-Prime version 2.0 software 
(Psychology Software Tools, Pittsburgh, PA) running on a 
Dell Latitude E6320 laptop with a touchscreen display. 
Children were presented with short computer games in 
which they were asked to help a cartoon alien learn English. 
The Definitions task was always presented before the 
Lexical Decision task, in a single session.  
Definitions. After wearing the headset (which included a 
microphone), children were presented with a practice trial 
(the concrete noun: “rose”) before the experiment. They 
were encouraged to provide an accurate and comprehensive 
definition, including as much information as they could on 
the meaning of each word. Each trial included the 
presentation of the alien in the center of the computer 
screen, along with the auditory presentation of an English 
word. Children’s responses were audio-recorded using E-
Prime and then scored off-line. The 48 words were 
presented in four blocks of 12-items arranged in AoA blocks 
(block 1: words acquired at 4-5; block 2: words acquired at 
6-7; block 3: words acquired at 8-9; block 4: words acquired 
at 10-11); words within each block were presented in 
random order. The task ended when the subject was unable 
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to define three words within a single AoA block or 
responded to all 48 words.  

Scoring of definitions We used a 0 to 4 scale. Four 
points were awarded if an answer showed complete 
semantic understanding of the word; 3 points if an answer 
showed a good understanding of the word (e.g., one or more 
features of the concept); 2 points if the answer provided 
correct but generic information that doesn't help to identify 
the element in an unequivocal way (e.g., giraffe = animal; 
anger = a feeling); 1 point if the answer was not wrong, but 
poor in content (e.g., evening = is when we dine); 0 point if 
the answer was wrong; no answer was given; or the concept 
was repeated (e.g. Photo = to take a photo). Scoring was 
performed by two independent researchers who were blind 
to the identity or diagnosis of the children. Interclass 
correlation coefficient (ICC) was computed to determine the 
level of agreement between the two scorers, yielding a high 
degree of reliability, ICC = .86 (95% CI: .845 - .879), p < 
.001. A third independent researcher moderated instances in 
which the scores differed by more than 1 point (12.6% of all 
definitions), and the instances in which only one scorer 
awarded a score of 0; all other scores were averaged.  
Lexical decision. Children were presented with six practice 
trials (three non-words and three words that were not used in 
the experiment). In each trial, a cartoon alien was presented 
in the middle of the screen for 1000ms, followed by the 
auditory presentation of either a real English word or a non-
word. Immediately after the offset of the word (average 
stimulus duration = 830 ms), two touch screen buttons 
appeared at the bottom left (a red thumbs-down icon) or the 
bottom right (a green thumbs-up icon) of the screen (see 
Figure 1).  
 

 
Figure 1 – Lexical decision task. Trial timeline. 

 
Children were instructed to press the green button when they 
heard a word they knew, or the red button if they heard a 
“funny, made-up” word. After the six practice items, 
participants completed all 96 items (24 abstract and 24 
concrete words, plus 48 non-words) presented in a 
randomised order.  
Data analysis Separate mixed-design ANOVAs with 
concreteness (abstract, concrete) as within-subject factor and 

group (LI, TD) as between-subject factor were used to 
analyse average rating (in the definition task) and accuracy 
(in the lexical decision task), for both age-matched groups 
and vocabulary-matched groups.  

We further assessed the individual performance of 
children with LI on abstract and concrete words against the 
difference in those conditions exhibited by matched TD 
controls, using the Revised Standardized Difference Test 
(RSDT) (Crawford and Garthwaite, 2005a, 2005b). This test 
was developed in neuropsychology research to test for 
dissociation between patient performance on two or more 
tasks. Here, the two concreteness sets (abstract, concrete) 
are treated as the two different ‘tasks’, and the difference in 
performance between them is evaluated against TD 
averages. The RSDT controls for Type I error rates when 
there are correlations between the tasks under study; we 
entered simple correlations between abstract and concrete 
raw scores from the TD groups.  

Results 
Definitions 

Only 13.4% of our TD children could provide any 
definition for words of AoA block 4 (words acquired at 10-
11); therefore, we excluded block 4 from further analyses, 
thus reducing the total number of items to 36 words (18 
abstract and 18 concrete).  
LI vs TDage. Average accuracy ratings for definitions 
provided by children with LI and matched TDage children for 
concrete and abstract words are shown on Figure 2 (top-
left). A mixed ANOVA yielded a significant main effect of 
concreteness, F(1, 34) = 9.277, p = .004, !"#			 = .214, with 
concrete words (1.31) attracting more complete and accurate 
definitions than abstract words (0.80). The main effect of 
group was also significant, F(1, 34) = 20.314, p < .001, !"#			 
=  .374; definitions provided by children with LI (0.80) were 
rated as significantly poorer in quality than those given by 
their age-matched TD peers (1.63). However, the group × 
concreteness interaction was not significant (p = .427), 
indicating that poor quality definitions were provided for 
both abstract and concrete words by children with LI. 
LI vs TDvocab. One TDvocab child did not complete the task 
and his definitions were excluded along with data from the 
matched child with LI. Average ratings of definitions 
provided by LI and matched TDvocab children (n = 17 per 
group) for concrete and abstract words are shown on Figure 
2 (top-right). Analyses demonstrate a significant main effect 
of concreteness, F(1, 32) = 21.687, p < .001, !"#			 = .404, 
with concrete words (1.31) eliciting more accurate and 
detailed definitions than abstract words (0.86). Importantly, 
the group × concreteness interaction were not significant (all 
p > .170). 
Individual LIs vs control group comparisons. 
Individual performance of LI children against matched 
TDage and TDvocab groups is shown on Figure 2 (bottom). For 
all children with the LI group, the abstract vs concrete 
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comparison was not significantly different from the pattern 
shown by both age-matched and vocabulary-matched peers. 
 

 
 
Figure 2 - Top: Average score (on a 0-4 scale) of definitions 
to abstract and concrete words, comparing performance of 
LI with TDage (N = 18; left), and with TDvocab (N = 17; right) 
children. Error bars indicate standard error of the mean. 
Bottom: Proportion of errors for individual LI children and 
the TDage and TDvocab groups in defining abstract and 
concrete words. ^Child LI4 was not included in the 
comparison with the TDvocab group. Error bars for the TD 
groups data indicate standard error of the mean. 
 
Lexical decision. In order to ensure children attention and 
compliance to task instructions, the examiner controlled 
stimulus presentation and did not ask the children to respond 
quickly, but rather as accurately as possible. Reaction times 
are therefore not reliable and our analyses are limited to 
accuracy (proportion of correct responses).  
Pre-processing. We checked the children’s overall 
performance with words and non-words to determine 
whether some of the children showed a bias toward either 
answering “word” or “non-word”. We computed the 
response bias (or criterion, c), calculated by multiplying the 
sum of the normalised hit rate (correctly identifying a word) 
and the normalised false alarm rate (incorrectly claiming 
that a non-word was a word) by -0.5 (e.g., Fox, 2004). The 
average criterion bias was -0.002 (SD = 0.33) for TD 
children, and -0.02 (SD = 0.50) for children with LI. 
Children who showed a criterion bias higher than 1.5 
standard deviations above their group mean (indicating a 
strong bias toward “non-word” responses) or lower than 1.5 
standard deviations below their group mean (indicating a 
strong bias toward “word” responses) were excluded from 
further analyses. Using these criteria, 3 children were 
excluded from the LI group (LI9: c = -0.97; LI12: c = -0.74; 
LI17: c = -0.97); to maintain the matching between the LI 
and TD groups, we also excluded the corresponding TD 
children.  

LIage vs TDage. Proportion of correct responses of the 14 LI 
and matched TDage children for concrete and abstract words 
is shown on Figure 3 (top-left). There was no main effect of 
concreteness, F(1, 26) = 1.203, p = .283; but the main effect 
of group was significant, F(1, 26) = 7.971, p = .009, !"#			 = 
.235, indicating that TDage children (.85) were more accurate 
overall than children with LIage (.72). Crucially, the group × 
concreteness interaction was not significant. 
LIvocab vs TDvocab. Two TDvocab children did not complete 
the task; therefore they were excluded along with their 
matched LI partner. This left 12 children per group for the 
LI – TDvocab comparison. The proportion of correct 
responses of LI and TDvocab children for concrete and 
abstract words is shown on Figure 2 (top-right). In this 
analysis, there were no significant main effects of 
concreteness, F(1, 22) = 1.234, p = .279, or valence, F(2, 
44) =.376, p = .689. Crucially, the main effect of group and 
the group × concreteness interaction were also not 
significant (all p > .330). 
 

 
 
Figure 3 – Top: Proportion of correct responses to abstract 
and concrete words, comparing performance of LI with 
TDage (N = 14; left), and LI with TDvocab (N = 12; right) 
children. Bottom: Proportion of correct responses of 
individual LI children and the TDage and TDvocab groups for 
recognition of abstract and concrete words. Children LI3 
and LI7 were not included in the comparison with the 
TDvocab group. The asterisk indicate one child who showed a 
greater difference between abstract and concrete words 
when compared against TDage data (p < 0.05, two-tailed).  
Error bars indicate standard error of the mean.  
Individual LIs vs control group comparisons. Individual 
performance of LI children against matched TDage and 
TDvocab groups is shown on Figure 3 (bottom). In general, 
the discrepancy between abstract and concrete words was 
not significantly different from the discrepancy pattern 
shown by both age-matched and vocabulary-matched TD 
children. Only one child with LI (LI8) showed a 
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significantly larger difference between abstract and concrete 
words when compared to TDage peers, t(13) = 3.342, p = 
.005. This difference reflected an advantage for concrete 
(.79) over abstract (.42) words. In all other children, the 
abstract vs concrete comparison was not significantly 
different from either TDage or TDvocab matched controls. 

Discussion 
We compared performance of children with LI to that of 
age-matched or vocabulary-matched TD peers on two tasks: 
the first, a verbal definitions task, provided an explicit 
measure of children’s semantic knowledge of abstract and 
concrete words. The second, a lexical decision task, did not 
require linguistic output and served as implicit measure of 
word processing. Both tasks used concrete and abstract 
words that were matched on a number of variables known to 
affect word processing in adults, such as frequency, valence, 
age of acquisition and length.  

In the definition task, we found a significant effect of 
concreteness, indicating that concrete words were easier to 
define by both children with LI and their age- and 
vocabulary-matched peers. This may be because to define 
abstract words, children need to retrieve other abstract 
words and these latter may be more difficult (not just 
because of their abstractness but also because they may be 
longer, less familiar etc) than the concrete words they need 
to retrieve for defining the concrete stimuli. Importantly, we 
found that children with LI were significantly worse than 
their age-matched peers in defining all words, both concrete 
and abstract. When compared with younger TD children 
matched for receptive vocabulary, no difference was found 
between the two groups. There were no significant 
interactions between concreteness and group, indicating that 
even when LI children are worse overall than TD peers in 
defining words, they do not have disproportionate 
difficulties defining abstract words. By analysing the 
performance of individual LI children against the difference 
between abstract and concrete words shown by the two TD 
comparison groups, we further demonstrated that this is a 
finding consistent across the whole sample. No individual 
child with LI showed a greater impairment defining abstract 
words relative to concrete words. 

In the lexical decision task, there was no significant 
effect of concreteness, which is consistent with findings in 
the adult literature that, when all lexical variables that have 
been shown to favour concrete words (such as length and 
familiarity) are tightly controlled, the concreteness 
advantage disappears (see Kousta et al., 2011). Critically, 
we again found that children with LI were significantly less 
accurate overall in making decisions about words relative to 
their age-matched TD peers, but there was no interaction 
between group and concreteness. In other words, even on 
this implicit task, children with LI were not 
disproportionately impaired in their processing of abstract 
words compared to concrete words. The case-series analyses 
comparing individual LI children with their age- or 
vocabulary-matched controls once again confirmed that 

even at an individual level, children with LI responded to 
abstract and concrete words in a similar manner to that of 
TD children, for all but one child (LI8).  

These findings challenge any theory that posits 
linguistic competence as a necessary prerequisite for 
acquiring abstract words. Children with LI do not have the 
same vocabulary competence as typically developing 
children (McGregor et al., 2013), moreover it has been 
shown that they do not take advantage of correlational 
information to the same extent as their typically developing 
peers (Evans, Saffran & Robe-Torres, 2009). For all these 
reasons, learning abstract words should present an almost 
insurmountable challenge for them. However, children with 
LI in the current study, despite their language limitations, 
did not show any evidence of disproportionate deficits in 
abstract word knowledge.  

Distributional Semantics models offer a powerful 
mechanistic account of how word meanings can be acquired 
from language. On the basis of the linguistic contexts in 
which a word is used, children could make inferences about 
word meaning (e.g., Landauer & Dumais, 1997, Griffiths et 
al., 2007; Andrews, Vinson & Vigliocco, 2009). Such a 
mechanism would be at play for both concrete and abstract 
words, although it could play a greater role for abstract 
words. Our results indicate that whereas these mechanisms 
can be at play, there is no evidence for them to have a 
different role for concrete and abstract words. Our results 
may also be considered to be problematic (especially if 
replicated with argument bearing verbs) for the “syntactic 
bootstrapping hypothesis (e.g., Gleitman et al., 2005), 
according to which phrasal and syntactic information is used 
to constrain possible word meanings. Gleitman et al. (2005) 
specifically discuss how this information may be especially 
important in learning verbs (which are more abstract than 
nouns). Under the plausible assumption that our children 
with LI have a history of problems in processing sentence-
level linguistic structure, our results suggest that such a 
strategy may not be the only manner in which children learn 
abstract vocabulary. 

Thus, other mechanisms are also at play. Ponari, 
Norbury, and Vigliocco (in press) presented initial evidence 
that learning abstract words could be based on multiple 
strategies and, at least in the earlier stages of acquisition, 
take advantage of the strong association between 
abstractness and emotional valence (Kousta et al., 2011). 
Emotional valence could support the establishment of the 
distinction between concrete and abstract domains of 
knowledge because, while concrete words would refer to 
observable entities and actions that we can experience with 
our senses and act upon, abstract words would refer to 
internal states of self and others that trigger embodied 
emotional reactions and experiences. These emotional 
reactions could come about from interactions with 
caregivers in which children associate words heard with 
emotions expressed by the caregivers or by the child 
themselves. Such a view posits that communicative social 
interaction would play a central role in language acquisition, 

3445



along the lines proposed by recent social-cognitive theories 
of lexical development (e.g., Tomasello, 2000). To this end, 
it is important to note that children with LI do not show 
evidence of fundamental socio-cognitive deficits. It is 
interesting to note that emotion, however, does not seem to 
have a privileged role abstract vocabulary after the age of 9 
(cf. Ponari et al., 2017). It is likely that by this age, 
strategies grounded in basic socio-cognitive processes (e.g., 
ability to make inferences on others intentions) or emotional 
experience become insufficient to differentiate among the 
meanings of an increasingly larger number of abstract words 
in the child’s vocabulary and language-based strategies may 
become more important.  
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Abstract

The face is a central communication channel providing infor-
mation about the identities of our interaction partners and their
potential mental states expressed by motor configurations. Al-
though it is well known that infants ability to recognise people
follows a developmental process, it is still an open question
how face identity recognition skills can develop and, in par-
ticular, how facial expression and identity processing poten-
tially interact during this developmental process. We propose
that by acquiring information of the facial motor configuration
observed from face stimuli encountered throughout develop-
ment would be sufficient to develop a face-space representa-
tion. This representation encodes the observed face stimuli as
points of a multidimensional psychological space able to as-
sist facial identity and expression recognition. We validate our
hypothesis through computational simulations and we suggest
potential implications of this understanding with respect to the
available findings in face processing.

Keywords: face perception; face processing; face-space; face
identity processing; face expression processing; mirroring

Introduction
Face processing capabilities are of paramount importance for
the development of social skills (Grossmann, 2015).

Developmental studies suggest that newborns can match
observed facial motor configurations via overt imitative be-
haviour (Meltzoff & Moore, 1983, 1992) or covert inner sim-
ulation mechanisms (Simpson, Murray, Paukner, & Ferrari,
2014; Gallese & Caruana, 2016), even well before the devel-
opment of early cognitive capabilities (but see Oostenbroek
et al., 2016 and Simpson et al., 2016 for a recent discussion
on the topic). Hence, it has been suggested that facial ex-
pression recognition may be mediated by early neural mech-
anisms mapping sensory information of the observed facial
configuration into a proprioceptive motor format (Gallese &
Caruana, 2016; Iacoboni, 2009) and therefore assisting imi-
tatory mechanisms (Simpson et al., 2014).

On the contrary, face identity processing capabilities fol-
low a developmental process (Grossmann & Vaish, 2009).
Currently, facial identity processing development is not yet
well understood. For example, we do not know yet where in
the face processing hierarchy representations of invariant (i.e.
identity features of the face) and dynamic (i.e. motor features
of the face) features interact (Simion & Di Giorgio, 2015).

According to the ‘face-space’ framework (Valentine, 1991;
Valentine, Lewis, & Hills, 2015), facial representations are
encoded in a multidimensional psychological space. The di-
mensions of this space are assumed to encode properties of
the facial signals that better discriminate one face from an-
other. The distance between two representations underlies
their dissimilarity from a psychological perspective. This

framework was initially designed to only account for cod-
ing identity-related features, such as sex, distinctiveness, age
and attractiveness (Valentine, 1991). Nevertheless, dynamic
aspects of faces, such as facial expressions, were neglected.
Recently, we developed a computational tool building on top
of the face-space framework (Vitale, Williams, & Jonhston,
2016) and able to exhibit interesting features in agreement
with modern understanding in face processing studies. In par-
ticular, we demonstrated that this novel face-space can repre-
sent both invariant and dynamic features of face stimuli under
a shared representation facilitating the recognition of both fa-
cial expression and identity exhibited by novel face stimuli
(Vitale et al., 2016).

In this paper we offer a new understanding of this face-
space, suggesting that facial identity processing capabilities
can plausibly develop by interpreting the motor configuration
of observed face stimuli.

In particular, from a functional level of analysis, we aim
to demonstrate that assuming the existence of an early or
innate system M otor(xi) ⇒ E (xi) able to map perceptual
information of the observed face stimulus xi onto a mo-
tor interpretation of the exhibited facial expression E (xi),
it is possible to develop another system Cognitive(Xnew)⇒
{E (Xnew),I (Xnew)} assisting the discrimination of facial ex-
pressions E (Xnew) and identities I (Xnew) exhibited by newly
encountered face stimuli Xnew. Therefore, this paper aims to
provide computational evidence supporting the following hy-
pothesis:

Hypothesis: It is possible to generalise the face-space
framework to realise a twofold multidimensional space
structure able to facilitate facial expression and identity
processing capabilities by only interpreting the motor config-
uration exhibited by the face stimuli encountered during the
developmental process.

This work is a significant contribution able to provide
a plausible explanation unifying traditional and modern
findings in face processing studies, as we will discuss in the
remainder of this paper.

Previous Findings
Recently, we provided a novel understanding of the face-
space framework (Vitale et al., 2016). The face-space frame-
work is a widely used tool in face perception and process-
ing research able to explain many of the phenomena underly-
ing facial identity discrimination in both human experimen-
tal settings (Lee, Byatt, & Rhodes, 2000; Rhodes, Jaquet, et
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Figure 1: The dual face-space presents a twofold structure: on
one side it allows observations with similar motor configura-
tions to lie within close spatial locations (l), whereas at the
same time “repulsing” observations of similar identities away
(a `); on the other side, it happens exactly the viceversa. This
facilitates respectively facial expression and identity recogni-
tion, under common multidimensional codings.

al., 2011) and computational simulations (A. J. Calder, Bur-
ton, Miller, Young, & Akamatsu, 2001). This framework is
so important in face studies that it is “virtually impossible
to explain the interactions between the computational and
cognitive approaches to understanding face recognition with-
out reference to this model. It serves as the glue that binds
the theoretical and computational aspects of the problem to-
gether” (A. Calder, 2011, page 17).

According to Valentine’s face-space, faces are points of
a multidimensional space based on their perceived proper-
ties. This structure can plausibly account for coding identity-
related features. Unfortunately, dynamic aspects of the face,
such as its motor configuration, were neglected in the tradi-
tional face-space account. This is a significant limitation, pre-
venting the analysis of the interactions happening between
facial expression and facial identity processing.

Therefore, to fill this gap, we introduced a novel hypothe-
sis: the duality hypothesis. This hypothesis suggests that the
face-space can plausibly exhibit a twofold structure integrat-
ing both dynamic and invariant features of the face into shared
codings, although preserving some separation among them to
facilitate both facial expression and identity recognition (see
Figure 1 for a visual example). We named this understanding
with dual face-space and we validated the hypothesis, from a
computational perspective, through a mathematical presenta-
tion and quantitative results.

The Dual Face-Space
Given a set of face stimuli shaped as column vectors of a
matrix X , these stimuli have dimension D equal to the total
number of pixels representing each face stimulus. By submit-
ting the matrix X to a Principal Component Analysis (PCA)
(Turk & Pentland, 1991) it is possible to obtain a mapping
matrix Vpca able to map the D-dimensional face stimuli X
into compressed d-dimensional representations X̄ . This pro-
cess preserves most of the information carried by the face
stimuli, but it compresses them in representations having di-

Figure 2: An example of face-space development resulting by
applying the mapping function in Equation 2. Face samples
belonging to the same identity are on average perceptually
closer to each other, thus being a bias for the classification of
facial expressions.

mension d � D and it ensures desirable properties in sub-
sequent stages of the model (e.g. positive definiteness, see
Vitale et al., 2016):

X̄ =V>pcaX (1)

It is important to note that in this paper we do not aim
to test the classification performance of the proposed model
against other computational models of face recognition, but
rather the plausibility of the proposed hypothesis in providing
a new understanding of the mechanisms potentially underly-
ing human face processing skills. Therefore, in our studies
we used the pixels intensities of static images as input to our
models to provide a simplified linear understanding of our
theory and related argument. Importantly, the input X̄ can be
any vector of features extracted by the given face stimuli and
able to encode perceptual information of the observed stim-
uli. Therefore, a viable non-linear alternative of our model
can be obtained by pre-processing the input face stimuli X
by using an unsupervised deep neural network model trained
to preserve invariant and dynamic features of the face in a
more compressed and smart representation (Le et al., 2013),
instead of the proposed linear PCA. Finally, temporal dynam-
ics can be included by pre-processing a set of consecutive
stimuli instead of static images, or by using other techniques
improving temporal coherence in the resulting pre-processed
representation (Mobahi, Collobert, & Weston, 2009). These
computational pre-processing stages resemble early process-
ing of human visual cortex and are therefore suitable exam-
ples for potential future extensions of our theory and related
model.

In our previous work (Vitale et al., 2016), we showed that
it is possible to implement the dual face-space by solving the
following objective function:

V ? = arg min
V∈Rd×d

Tr(V>X̄(IN−W E )X̄>V )

Tr(V>X̄(IN−W I )X̄>V )
(2)

where W E and W I are two weight matrices setting desired
topological constraints on the face-space via the resulting ob-
jective mapping matrix V ?. It is possible to obtain the weight
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matrix W E by knowing the facial expressions exhibited by the
training samples and, when this matrix is used in Equation 2,
it encourages pairs of samples associated with the same fa-
cial expression to be in nearby locations in the resulting face-
space:

W E
i j =

{
1

nEi
, if E (xi) = E (x j)

0, otherwise.
(3)

In Equation 3, nEi is the number of samples in X belonging
to the facial expression class E (xi) of the face stimulus xi in
the column i of matrix X .

It is possible to realise the weight matrix W I by knowing
the identities exhibited by the training samples and, when this
matrix is used in Equation 2, it promotes repulsive forces be-
tween pairs of samples belonging to the same identity, thus re-
ducing misclassification of facial expressions due to the iden-
tity bias (Sariyanidi, Gunes, & Cavallaro, 2015):

W I
i j =

{
1

nIi
, if I (xi) = I (x j)

0, otherwise.
(4)

In Equation 4, nIi is the number of samples in X belong-
ing to the identity class I (xi) of the face stimulus xi in the
column i of matrix X . Figure 1 and Figure 2 show examples
of the rationale behind the constraints set by the suggested
weight matrices in Equation 2.

Finally, given a generic matrix M and the following permu-
tation function:

M̃ = σ(M) =

(
m1 m2 m3 . . . md

md md−1 md−2 . . . m1

)
(5)

permutating each column vector mi with i ∈ [1, . . . ,d] of the
matrix M in the inverse order1 we demonstrated that Equa-
tion 2 is sufficient to provide multidimensional representa-
tions able to facilitate both facial identity and expression
recognition (Vitale et al., 2016).

In fact, given V ? as the optimal solution of the objective
function in Equation 2, we demonstrated that the mapping
matrix Ṽ ? = σ(V ?) is the optimal solution of another ob-
jective function promoting facial identity discrimination ob-
tained by inverting Equation 2. The mapping matrix Ṽ ? is
dual to the mapping matrix V ?, since it shares the same com-
ponents (i.e. column vectors) of V ? but sorted in the opposite
order. Therefore, the objective function in Equation 2 realises
common codings able to facilitate on one hand facial expres-
sion classification (V ?), and on the other hand facial identity
discrimination (Ṽ ?).

The ∆ Face-Space
To validate our hypothesis, we suggest to approximate the
weight matrix W I with another weight matrix W ∆ imple-
mented without necessarily knowing the identity classes of

1In this paper we will use the notation M̃ to denote a matrix hav-
ing the same column vectors of another matrix M, but sorted in an
inverse order.

the training face stimuli. In this way the weight matrix W I

in Equation 2 can be replaced by the matrix W ∆, thus realising
the following objective function:

V ∆? = arg min
V∈Rd×d

Tr(V>X̄(IN−W E )X̄>V )

Tr(V>X̄(IN−W ∆)X̄>V )
(6)

The optimal solution of the objective function in Equation 6
is the mapping matrix V ∆?. Thus, given a mapping matrix
Vpca gathered by submitting the training data X to a PCA, as
previously described, it is possible to obtain the final mapping
matrix V ∆

overall realising the ∆ face-space as following:

V ∆
overall =VpcaV ∆? (7)

The mapping matrix V ∆
overall is able to realise face-

space representations facilitating facial expression recogni-
tion, whereas the mapping matrix Ṽ ∆

overall = σ(V ∆
overall), hav-

ing the same component of V ∆
overall but permutated in the in-

verse order, realises representations able to facilitate facial
identity discrimination, although without the need of know-
ing the identities exhibited by the training samples, as sug-
gested by our hypothesis.

Defining the New Weight Matrix
The purpose of the weight matrix W I in Equation 2 is to
avoid that two face stimuli sharing the same identity, but ex-
hibiting different facial expressions, would get projected to
nearby locations of the face-space promoting their misclas-
sification in the same facial expression class (see Figure 2).
This misclassification can easily happen since face stimuli
of the same identity share most of their perceptual features,
and, on average, they are close-by in the perceptual space
(Sariyanidi et al., 2015; Turk & Pentland, 1991). This prop-
erty exhibited by face stimuli can be used to our advantage to
realise the desired weight matrix W ∆.

For each of the N training face stimuli xi, shaped as column
vectors i ∈ [1, . . . ,N] of the matrix X , we denote with ∆xi the
set containing the perceptual distances δ(xi,x j) between the
face stimuli xi and the face stimulus x j ∈ X with i 6= j and
exhibiting a different facial expression from the one exhibited
by xi:

∆xi = {δ(xi,x j) | x j ∈ X ∧ xi 6= x j ∧E (x j) 6= E (xi)} (8)

Since face stimuli of the same identity are perceptually
close, their respective distances would be, at least on average,
well below their distances from face stimuli with different
identities. Then, given the mean µ∆xi

and standard deviation
σ∆xi

of the distances included in the set ∆xi it is possible to
compute the set I ≈i described as follow:

I ≈i = {x j | δ(xi,x j)< µ∆xi
−βσ∆xi

} (9)

where β is a parameter suggesting how many standard devi-
ations below the mean distance would be set the maximum
threshold. In this work, β was set equal to 2.5 after empir-
ical tests with face stimuli gathered from different datasets
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available in face recognition literature. The resulting set I ≈i
includes most of the training samples sharing the same iden-
tity of the sample xi.

Therefore, the weight matrix W ∆ can be realised as follow:

W ∆
i j =

{
1

n∪i j
, if x j ∈I ≈i ∨ xi ∈I ≈j

0, otherwise.
(10)

where n∪i j is the number of unique samples in the set I ≈i ∪
I ≈j . The realised weight matrix W ∆ is clearly symmetric and
the associated Laplacian behaves as a block centring matrix,
thus promoting a norm-based space (for in-depth details and
mathematical proof refer to Vitale et al. (2016)). The objec-
tive function in Equation 6 can be solved through the iterative
algorithm proposed by Ngo, Bellalij, and Saad (2012), simi-
larly to our previous contribution (Vitale et al., 2016).

Experiments
In this paper, we will evaluate the proposed model using
the Karolinska Directed Emotional Faces (KDEF) dataset
(Lundqvist, Flykt, & Öhman, 1998), similarly to our previ-
ous contribution. The dataset contains static images of 70
subjects—35 female and 35 male—exhibiting seven differ-
ent prototypical facial expressions of basic emotions (anger,
disgust, fear, happiness, neutral, sadness and surprise). The
pictures are taken in various face orientations and in two dif-
ferent sessions (A and B).

We used the frontal pictures taken in session A. We ex-
tracted the facial region from the images and reduced their
resolution to 80× 80 pixels. Eyes and mouth were at ap-
proximately the same position. Illumination variations were
reduced by applying a simple equalisation process to the im-
ages (using the histeq function available in Matlab software).

We first pre-processed the data by submitting the pixels of
the images in input to a PCA as explained previously. We
retained the components able to explain 95% of the variance
of the original data resulting in 200 components.

Procedure
The present experiment tests the ability of the new ∆ face-
space, implemented without knowing the identity labels of
the training stimuli, to support subsequent processes of iden-
tity and facial expression recognition.

In both the two conditions (i.e. facial expression and iden-
tity recognition) we used repeated random iterations of the
dataset’s samples (in this work 35 iterations for both the
tasks). In each iteration 25 subjects were randomly selected
as the test set among the 70 possible subjects to simulate un-
familiar identities. For each of the 25 selected subjects were
randomly chosen 2 facial expressions as probes for the iden-
tity recognition task, and the remaining 5 facial expressions
as test samples, leading to a total of 125 test samples for each
iteration. The images of the other 45 subjects, together with
the 50 selected probes, were used as the training set of the
current iteration, leading to 365 training samples for each it-
eration.

With each training data we estimated the mapping ma-
trix V ∆

overall of the ∆ face-space proposed in this chapter as
per Equations 6 and 7. Then, each test sample was mapped
onto the ∆ face-space, thus obtaining the encodings Y ∆E =
V ∆>

overallX and Y ∆I = Ỹ ∆E = Ṽ ∆>
overallX , respectively used dur-

ing the expression and identity recognition tasks for the ∆

face-space condition.
For each iteration, we compared the performance of the

∆ face-space against a baseline approach. The baseline ap-
proach used all the pixels of the face stimuli to match sim-
ilar facial expressions or identities. This is a fair method-
ology considering we pre-processed raw pixels data with a
simple PCA. In our previous contribution (Vitale et al., 2016)
we showed that the baseline and PCA performance are not
differing. Thus, we used this approach as our baseline to
demonstrate that matching the expressions and identities of
the considered dataset samples in the perceptual space was
not a trivial task and that our psychological face-space can
indeed facilitate facial expression and identity recognition.

The classification was performed using the nearest neigh-
bour algorithm. For each sample, xi, used by the baseline ap-
proach, and y∆

i , used by the face-space model, we computed
the Euclidean distances from the centroids of each class in
the corresponding space, and we selected the class associated
with the centroid closer to the sample.

For each test sample during each iteration, the baseline ap-
proach provided a single prediction. Instead, our face-space
model can use the first k = [1, . . . ,d] components of the map-
ping matrix V ∆

overall to map the face stimuli in face-space rep-
resentations and perform recognition tasks. Thus, our model
provided d predictions for each test sample during each it-
eration. To gather a single prediction, we selected the most
frequent class (mode) predicted by the face-space model for
each test sample during each iteration, as per a majority vot-
ing approach. For each iteration, we then computed the over-
all recognition rate for the baseline approach and the ∆ face-
space in both facial expression and identity recognition con-
ditions. This process led to 35 samples for each considered
approach and task.

Results
The distribution of the sampled recognition rates was first
assessed for normality using a D’Agostino’s K-squared test
(D’Agostino & Pearson, 1973) finding that the samples from
both facial expression and identity tasks followed a normal
distribution (p-values respectively 0.8571 and 0.1382). Thus,
the effect between the baseline approach and our face-space
model were evaluated by a Student’s t-test (Keppel, 1991) at
a significant level of α = 0.01. The effect size was assessed
by computing Cohen’s d (Cohen, 1977).

The results for facial expression and identity recognition
are shown in Figure 3a and Figure 3b respectively. From the
plots, it is possible to see that the novel ∆ face-space can fa-
cilitate both facial expression and identity recognition.

In addition, the t-tests rejected the null hypothesis in both
facial expression (p-value=6.5e−19) and facial identity (p-
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(a) (b)

Figure 3: Comparative analysis of the performance. (a,b) The recognition rates of the baseline approach and our face-space
model respectively during facial expression and facial identity recognition tasks.

value=1.6e−6) recognition tasks. The computed effect size
suggested a large effect for both the two tasks (d = 3.03
for facial expression recognition and d = 0.98 facial iden-
tity recognition). The statistics reached high powers (both
> 0.98).

Potential Implications of the Hypothesis
Although we validated our hypothesis through computational
simulations and it is not our aim to suggest that human brain
implements the proposed face-space in this way, in this sec-
tion we will discuss how these results can be of major impor-
tance for cognitive science community, at least by focusing at
a functional level of analysis.

Modern literature in face perception studies widely sug-
gest interactions between invariant and dynamic features of
face stimuli. For instance, it has been shown that women
and younger individuals appear to increase cues associated
with happiness, whereas men and older people those of anger
(Becker, Kenrick, Neuberg, Blackwell, & Smith, 2007) and
studies in face processing broadly suggest that face stimuli
can be plausibly represented in multidimensional norm-based
spaces (Rhodes & Jeffery, 2006; Rhodes, Leopold, Calder,
& Rhodes, 2011) and that invariant and dynamic codings of
these spaces interact (A. J. Calder et al., 2001).

Interestingly, the proposed hypothesis well integrates with
traditional understandings in face studies suggesting distinct
routes processing invariant and dynamic features of the face,
while still supporting more recent findings suggesting that
representations of invariant and dynamic facial features par-
tially overlap (Pell & Richards, 2013). In fact, Haxby, Hoff-
man, and Gobbini (2000) suggest that changeable aspects of
the face (i.e. eye gaze, expression and lip movement) are
processed in the Superior Temporal Sulcus (STS), whereas
invariant aspects of the face necessary to classify the exhib-
ited identity are processed in a distinct brain area, the Lateral
Fusiform Gyrus (LFG). The STS presents neural connections
with the amygdala and other brain areas usually associated

with emotional processing capabilities (Adolphs, 2002) and
interactions were observed between the STS and the LFG
(Haxby et al., 2000). Recent neuroscience studies suggest
that the STS is also related to mirroring mechanisms and im-
itative capabilities (Buxbaum, Shapiro, & Coslett, 2014) and
Molenberghs, Brander, Mattingley, and Cunnington (2010)
provided evidence suggesting that the role of the STS in im-
itation is not only to passively register observed biological
motion, but rather to actively represent sensory-motor corre-
spondences between one’s actions and the actions of others.
Therefore, the STS, assisted by putative emotional brain areas
like the amygdala, can plausibly provide information neces-
sary to interpret the observed facial expression, as suggested
in this paper with the assumed system M otor. This informa-
tion, in turn, can be then used by the LFG to develop facial
identity recognition capabilities, as proposed by the psycho-
logical face-space discussed in this paper.

Conclusions
We provided a new understanding of the face-space frame-
work proposed by Valentine (1991) and able to realise a
twofold structure encoding invariant and dynamic features
of the face under shared codings and consequently facili-
tating facial expression and identity recognition capabilities.
This face-space can develop by only interpreting motor be-
haviour exhibited by face stimuli encountered during devel-
opment. We demonstrated the validity of our claim by pro-
viding compelling computational evidence and we discussed
the potential implications of this new theoretical understand-
ing in face perception and processing studies. Future works
aim in extending the model with non-linear techniques and
possibly include temporal features, while at the same time
testing the theory by collecting human data from perceptual
experiments.
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Forgetting My Memories by Listening to Yours: The Impact of Perspective-Taking
on Socially-Triggered Context-Based Prediction Error

Madalina Vlasceanu
Princeton University, Princeton, New Jersey, United States

Rae Drach
State University of New York Albany

Alin Coman
Princeton University, Princeton, New Jersey, USA

Abstract: The mind is a prediction machine. In most situations in which it finds itself, it has expectations as to what might
happen. But when people’s expectations are invalidated by experience, the memories that gave rise to these expectations are
suppressed. The present research explores the effect of these prediction errors on listener’s memories during social interaction.
We reasoned that listening to a speaker recounting experiences similar to one’s own would trigger prediction errors on the part of
the listener that would result in the suppression of his/her memories. Study 1 offers evidence for the effect of socially triggered
context based prediction errors on listener’s mnemonic representations. Study 2 replicates these findings and shows that this
effect is sensitive to a perspective-taking manipulation. Taken together, these findings provide evidence for a yet unrecognized
phenomenon by which our conversations shape the memories that we come to hold.
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Abstract

In this paper we compare several popular rank aggregation
methods by accuracy of finding the true (correct) ranked list.
Our research reveals that under most common circumstances
simple methods such as the average or majority actually tend
to outperform computationally-intensive distance-based meth-
ods. We then conduct a study to compare how actual people
aggregate ranks in a group setting. Our finding is that individ-
uals tend to adopt the group mean in a third of all revisions,
making it the most popular strategy for belief revision.

Keywords: rank aggregation; distance measure; probabilistic
model

Introduction
The problem of rank aggregation, where ranked lists from a
diverse set of “judges” are combined into a single “consen-
sus” ranked list, is an active research area in computer sci-
ence. Particularly, rank aggregation has found successful ap-
plications in meta-search (Dwork, Kumar, Naor, & Sivaku-
mar, 2001; Renda & Straccia, 2003; Fernández, Vallet, &
Castells, 2006), crowd-sourcing (Niu et al., 2015), and rec-
ommender systems (Baltrunas, Makcinskas, & Ricci, 2010).

Although extensive studies have already been conducted
on this topic by computer scientists, these largely concern
only the algorithmic issues, i.e., how to produce the “optimal”
ranked list, without questioning the very concept of “opti-
mal”. Typically, a distance measure is chosen, and the ranked
list with the minimum total distance to all the given ranked
lists is presumed to be the best one (Dwork et al., 2001). In
this paper, we challenge such a view and address the prob-
lem from the perspective of cognitive science. Just as impor-
tantly, much of the previous research has been theoretical in
nature and no empirical work has been conducted to deter-
mine how humans actually aggregate ranks. To that end, we
went beyond the theoretical models described in section 1 and
conducted a group study to better understand real-world rank
belief revision. To the best of our knowledge, there has been
no similar work to date.

Modeling
In the first instance, we developed a theoretical simulation to
test the accuracy of various rank aggregation methods. The
simulation can be thought of in terms of the most preferred
order in which to display results of a web search.

Given a set of m items (e.g., web pages), we consider n
ranked list of them, {r1, . . . ,rn}, each of which is given by a

judge (e.g., search engine). One, and only one, of the pos-
sible ranking orders (permutations) r∗ is deemed to be true
(correct).

Each judge is characterised by his “competence” which is
defined as the probability of providing the true list.

Our simulation takes the various generated lists and aggre-
gated them into a single list using one of the rules outlined
further down in this section.

Unlike in some previous work, such as Fernández et al.,
for each item in a list we know only its rank position, vis-a-
vis other items, and not any other numeric properties. It is
often impossible or unrealistic to obtain the scores of individ-
ual items and only their relative positioning to each other is
available (Dwork et al., 2001; Renda & Straccia, 2003). More
importantly, a wealth of psychological research suggests that,
in many domains, humans represent faithfully only ranking
order information and more detailed information is unhelpful
(Stewart, Chater, & Brown, 2006)

For the sake of simplicity our modeling considers that each
judge will produce a complete list and no ties are possible.
So when ranking items, they will rank all of the choices and
will rank them relative to each other in such a way that each
item will occupy a unique position. Furthermore, every judge
in our model has the same level of competence c ∈ [0,1].
Finally, when a certain rule produces multiple lists that are
equally optimal, one of them is selected at random. This work
could be generalized straightforwardly in the future by relax-
ing these constraints.

Following rank aggregation methods have been proposed
in previous studies and are widely used in practice, so we
will use them in our comparison:

• majority: the consensus list is just the ranked list that ap-
pears most frequently.

• average: the consensus list is generated by ranking the
items according to their average rank positions, which is
essentially same as the Borda’s count (Dwork et al., 2001).

• Spearman: the consensus list is the one with the mini-
mum sum of Spearman’s footrule to all the given ranked
list. Spearman’s footrule is defined as the total number of
displacements needed to achieve parity between two lists.

• Kendall: the consensus list is the one with the minimum
sum of Kendall’s tau to all the given ranked list. Kendall’s
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tau is defined as the total number of inversions required to
achieve parity between two lists.

• Kemeny-Snell: the consensus list is the one with the
minimum sum of Kemeny-Snell distance to all the given
ranked list. The Kemeny-Snell (KS) distance is similar to
Kendall’s tau, but more robust when dealing with ties.

While the first two methods are simple and easy to com-
pute, the other three that are based on distance measures and
have a high computational complexity. It has been shown
that finding the optimally ranked list based on Kendall’s tau
(known as the Kemeney optimal aggregation) is an NP hard
problem with just four full lists(Dwork et al., 2001).

Our research question is then: “which rank aggregation
method is most accurate?” Here by accuracy, we mean
how often the consensus list returned by a rank aggregation
method is indeed the true list.

Computer Simulations
We prepared a simulation in R, which samples a number of
judges and uses different aggregation methods to determine
the list reflective of the group of judges. The generated con-
sensus lists are then compared with the true list to calculate
accuracy, which we used as our “performance” measure for
the aggregation method. This procedure is repeated across
pools of judges of different sizes. In order to smooth out
effects of randomness, we performed bootstrapping at each
number of judges and took the average value. Therefore each
set of judges was simulated several times, before adding ad-
ditional judges.

Our simulation had a number of parameters that could be
altered:

• list size: number of unique items in a list

• competence level: individual probability of picking the
correct list

• aggregation method: methods of aggregation described
above

• number of runs: each run increased the number of judges
in a group by one

• number of simulations: a number of repeats of the same
simulation with the same conditions to smooth out any
noise due to randomness

We began with a list size of 4. With no ties there are 24
possible permutations. In the simulation k groups consisting
of n number of judges would draw a single list from the full
list of permutations. Using one of the aggregation methods, a
single list would be selected for each group as the aggregate
product, and then compared to the true list. Each group of
judges would be re-sampled a number of times to boostrap
the results to get a smoother result. Thus, scores reported
below are the average results sampled over multiple trials for
the same group.
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Figure 1: The comparison of aggregation methods in the
linear-decay error model.

Error Model One important consideration in the study was
the underlying error model that governed a judge’s probabil-
ity of picking the wrong list among all possible permutations.
Each judge had a competence measure which reflected the
probability of picking the true list. The rest of the probability
was distributed among the remaining possible choices. As-
suming that judges know anything about the domain in ques-
tion, the probability of picking a wrong list is likely to be an
inverse function of the distance from that list to the true list.
Without loss of generality, we used the Kemeny-Snell dis-
tance measure d(·, ·) to determine the probability of a given
list being selected as follows.

Pr[ri] =

{
c if ri = r∗,
(1− c) 1/d(ri,r∗)

∑ j 6=∗(1/d(r j ,r∗))
otherwise. (1)

In effect, lists that are closer to the true list, would be more
likely to be drawn than the lists further away.

We wanted to see relative performance of the various ag-
gregation methods, as the number of judges increased. For all
results, we maintained a constant competence level c = 0.1,
which meant a 10% chance for a judge to pick the true list r∗.
We selected the simulation range from 5 to 100 judges.

Results
After running several different simulations we produced a
number of interesting and insightful results. We present
our findings in a series of figures that illustrate the relative
performance of the different aggregation methods (see fig-
ures 1, 2, 3).

The majority rule performs significantly worse than the al-
ternatives and does not increase in accuracy as the number of
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Figure 2: The comparison of aggregation methods in the
fastest-decay error model.

judges increases. On the other hand, the other four methods
perform similarly to each other and their accuracy increases
as the number of judges goes up, as can be observed in fig-
ure 1. It is important to note that the Kemeny-Snell aggre-
gation method does not perform significantly better than the
other distance-based methods, despite the fact that the un-
derlying error model is based on the Kemeny-Snell distance!
Furthermore, average, which is a very simple method (both
computationally and cognitively), performs at least on par
with the distance-based methods.

A minor comment regarding high competence is due at
this point. When the competence level is above a thresh-
old, e.g., 0.2, we see a quick rise towards perfect accuracy of
all methods, which is not particularly interesting, or informa-
tive. Therefore, we kept the competence level low and tried
to understand how robust different rank aggregation methods
would be under the more challenging condition of lower in-
dividual competence.

The above linear-decay error model as described in Eq. (1)
is just one way of converting the underlying KS-distance to
the targeted true list into a probability of erroneous list se-
lection. Actually any monotonic decaying transformations –
such as an exponential decay – of those distances could be
utilised to pick the non-true lists. To generalise our results we
considered two extreme cases of monotonic decay functions
of distance: at the one end (fastest-decay), the selection prob-
ability drops so rapidly as a function of distance that only the
closest lists stand a chance of being selected; at the other end
(none-decay), the selection function is flat and the lists of all
distances are equally likely to be selected. We have examined
both of these extreme cases.

First, let us consider the case where only the ranked lists
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Figure 3: The comparison of aggregation methods in the
none-decay error model.

closest to the true list had a non-zero selection probability
(with each list at that distance equally likely to be picked).

From the results of the simulation we see that the major-
ity method plummets almost immediately towards zero accu-
racy. This is due to the fact that the competence level, i.e.,
the probability of picking the true list (10%), is significantly
lower than the probability of picking any of those closest lists
(which is 30% in this example as there are three closest lists
in total).

Interestingly, the average method appears to outperform
the other methods, and quickly moves towards perfect accu-
racy as the number of judges increases. There appears to be
little difference among the other distance-based methods and
they all behave similarly to the average method.

Second, we consider the case where a judge is equally
likely to pick any of the wrong lists, regardless of their dis-
tance to the true list.

The results of this simulation stand in stark contrast to the
other two simulations. The majority method performs signif-
icantly better and improves with the number of judges, which
is exactly reverse of what was observed in the earlier simula-
tions.

Although the observation was initially quite surprising, the
explanation is fairly intuitive. Since the probability of pick-
ing the true list is 10%, the remaining probability would be
distributed evenly over 23 other possible permutations, which
leads to only 3.9% per permutation. Therefore, the ranked list
occurred most frequently is almost guaranteed to be the true
list, and the majority method would always perform the best.

Just as importantly, the other aggregation methods appear
to falter at this stage. Although there is some improve-
ment along with the increase in the number of judges, the
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accuracy stays well below 0.5, even for groups with 100
judges. Notably, the average method performed the worst,
while the Spearman method performed the best among the
three distance-based methods.

Discussion
A few key insights emerge from our modeling efforts. The
first and most important one is that there appears to be lit-
tle benefit of using computationally-expensive distance-based
methods to conduct rank aggregation. Secondly, there is clear
robustness of adopting the group mean. Accuracy is con-
stantly increases in most scenarios and the method itself is
simple enough to calculate and act upon.

The one research question that remains open, however,
is what real human subjects would do given a similar task.
While it may appear that taking the group mean is advanta-
geous from the accuracy point of view, it is also more diffi-
cult to determine than simply adopting the majority opinion
for example. To test, this we designed a study that looked at
individual rank revision in a group setting.

Experiment - Rank Revision
This experiment was set up to test what rules, if any, indi-
viduals use to revise their beliefs in light of new informa-
tion. Unlike similar studies on the topic which have mostly
looked at absolute answers and estimates, we were interested
in applying this in the context of rank revision. In other
words, our interest was to understand better how participants
revise ranked orders when presented with information from
their peers. From the modeling exercises above we knew that
adopting the group mean is the most beneficial strategy a per-
son can take in most situations, however, we could not locate
any research that corroborated this in an empirical study.

Method
Participants Participants for this study were volunteers
from the University of London community. Participants were
paid 5 for taking part in the study. There were 19 participants
who took part, which created three panels of five participants
and one panel with four participants (n=19). Each group of
participants took part at the same time and were hosted in the
same room. No particular exclusion criteria were used and
participants were free to self select which of the time slots
worked best for them to attend the study. It did not appear
that any participants knew each other prior to the study.

Materials & Procedure Participants were seated in a com-
puter lab, spaced apart in a way that prevented them from
seeing each others’ screens. Each participant had a computer
in front of them that contained a NetLogo interface that was
connected in a network to other computers in the room. See
Figure 4 for a sample interface that each participant saw.

Initially, participants were read basic instructions regarding
the task. The task involved each participant to rank four cities
from the largest to smallest by population size. Each city was
presented in a text box and contained a number along with

Figure 4: NetLogo participant interface

Figure 5: NetLogo participant interface

Figure 6: Zoomed in participant view

the name of the city (see example in figure 4). In the drop
down box ‘City A’ they were instructed to put the number
of the city they believed to be the largest, ‘City B’ were to
contain the second largest, and so on. After all four boxed
were filled, participants had to submit their answers and wait
for everyone else in the room to finish. Once, all answers
were submitted, participants could see how everyone else had
ranked the cities. At this point, everyone had an opportunity
to revise their answers in light of additional information (see
figure 5 and zoomed in view in figure 6). They repeated this
process three times for each question, resulting in four rounds
- initial round, plus three revision rounds.

In total, each participant answered 21 questions. There is
an initial practice question which participants did in a directed
manner, followed by 20 other questions, which were done
independently and free from any additional instructions. Each
question contained a different set of cities and in different
order, but the task was the same. There was only a single
experimental condition and all participants were treated the
same; they were shown the same set of questions, in the same
order.
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Figure 7: Number of revisions per Participant

Results
In the first instance we were interested in individual belief
revision. We analyzed how often individuals changed their
answers and what rules they have have used to do so.

Individual Revision Discounting the first question, there
were 60 opportunities for revision for each participant (20
questions * 3 revision rounds). On average participants
changed their answers 10.3 (SD 7.51) times over the course
of the simulation, or about 10% of the time. With some par-
ticipants changed their answers as little as once, and others
changed almost a third of their answers. In total there were
196 revision for all participants. See figure 7 for a visual rep-
resentation of the number of revisions per participant.

Overall, most revisions occurred in the first round, where
almost as many revisions occurred as the subsequent two
rounds. Table 1 breaks down revisions by round.

Revisions occurred unevenly between questions. Seven
questions had between 13 and 15 revisions, while remaining
13 questions had between five and nine revisions.

The number of revisions made by participants was rather
low, but the overall profile of the changes, i.e. mostly in the
first round and more for some questions than others, is con-
sistent with some of the other studies in the field of decision-
making.

Table 1: Round Revisions

Revision Revision Revision
Round 1 Round 2 Round 3
96 58 42

Models of Revision We fitted several models presented in
the first part of the paper trying to predict individual belief
revision rules that induced the change (such as mean, me-
dian and majority models). We decided to restrict our fitting
to two models in particular: mean and majority. As these

models had very interesting properties and were most likely
to be available and calculable to participants. Since ranked
lists were presented near each other identifying the majority
list, or calculating the mean list was a conceivable task that a
participant could engage in prior to revising their beliefs.

In order to test whether participants actually behaved in
a way predicted by a model, we generated an answer that a
participant would pick if they were guided by a model and
then compared the predicted answer with the actual answer in
a binary fashion. We used two models: mean - using simple
Borda count - and majority lists.

Table 2 demonstrates that there were significantly more re-
visions that moved towards the mean than majority. In fact, of
the 196 total revisions, 62, or 31% were revisions that adopted
the group mean, and 44 or 22% that adopted the majority list.
On average, the mean model was adopted 3.26 times per par-
ticipant, while majority model was adopted 2.32 times. The
rest of the revisions were not accounted by these two models
and were being guided by unknown rules.

Naturally, there were instances where both models pre-
dicted the same list and the above numbers include revisions
where the mean and majority lists coincide. There were 35
revisions where both models predicted the same result.

When removed from the total revision count for each
model, there were 27 revisions that adopted the group mean
and only 9 revisions that adopted the majority list. This pro-
vides strong evidence to suggest that participants in our study
adopted the group mean much more readily than the majority
list.

Table 2: Model Revision

Model Total Model Only Average Revision %
Mean 62 27 3.263 31
Majority 44 9 2.316 22

Toward a Model of Rank Belief Revision Our findings
suggest that human participants are 3 times more likely to
adopt the group mean over the majority list in cases where the
two do not coincide. This suggests that computational models
that emphasize mean ranks may be closer to the way humans
make revisions given additional information in a ranked for-
mat.

We did not test other, more complex models on the study
dataset. Therefore, it is difficult to say at this point whether
adopting the group mean is the most preferred strategy. It
should also be noted that revisions represented only 11% of
all choices made by participants and most of the time partici-
pants did not change their answers and were not influenced by
additional information. However, where revisions did occur,
in a third of all cases it was towards the group mean, which is
a significant finding. Future models that seek to replicate hu-
man behaviour should take these findings into account when
constructing more human-like models.
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Conclusions
Our research outlined a basic error model as well as two limit
cases. In all three scenarios, distance-based methods did not
produce significantly better results, suggesting that the prob-
lem of rank aggregation could be satisfactorily solved by sim-
pler methods such as taking the average or majority.

As the performances of the two simple methods are diamet-
rically opposite, which method should be used depends on the
underlying error distribution in a population. Conversely, if
one is able to measure accuracy, the performances of various
rank aggregation methods can actually inform us the under-
lying error distribution and allow us to make inferences about
the cognitive process of ranking.

In order to expand on our findings, we conducted a lab ex-
periment where we tested actual belief revision in a group set-
ting. Our findings suggest that when revising their answers,
participants most often adopted the group mean, suggesting
that human cognition gravitates towards this method of re-
vision. This is significant, in light of the fact that adopting
group mean is both computationally less strenuous and quite
advantageous in most situations. This suggests that human
cognition is adaptive in this sense, using a strategy that our
modeling shows to be robust in most cases.
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Abstract 

Human beings are essentially – by nature or second nature - 
members of groups. They contribute to these groups not just 
as isolated individuals but also through their interaction with 
others. Consequently, personnel evaluation in companies and 
organizations requires assessing not only evaluating indivi-
dual performance but also the overall direct and indirect effect 
one has on a team. Others’ work may be improved or ham-
pered by the presence of a particular employee. We investi-
gate Two-level Personnel-Evaluation Tasks (T-PETs) with 
information on individual and group earnings, where an 
individual focus may lead to evaluate the overall best 
employee as being the worst. We have previously found a 
Tragedy of Personnel Evaluation where focus on direct 
individual impact did have such systematic effect. In two 
experiments, one on team size, the other on kinds of 
information provided, we explore the boundary conditions of 
this effect and suggest how it may be overcome. 

Keywords: Tragedy of Personnel Evaluation; Rationality of 
Personnel Decisions; Inner-Individual Dilemma; Social 
Psychology; Personnel Evaluation; Personnel Selection; 
Bounded Decision Making; Causal Induction  

Introduction 
The success of teams in organizations or companies not only 
relies on the direct performance of individuals, but often 
also on interactions between team members (Mathieu, 
Maynard, Rapp, & Gilson, 2008; Memmert, Plessner, 
Hüttermann, Froese, Peterhänsel, & Unkelbach, 2015). 
Individuals may, for instance, help or hinder each other. The 
vital role of prosocial or altruistic behaviours for teams in 
organisations and companies (George & Bettenhausen, 
1990; Li, Kirkman, & Porter, 2014; Nielsen, Hrivnak, & 
Shaw, 2009; Organ, 1997; Podsakoff, Whiting, Podsakoff, 
& Mishra, 2010) and for functioning societies on the whole 
is being increasingly acknowledged (Engel, 2011; Hendrich 
et al., 2005; Gollwitzer, Rothmund, Pfeiffer, & Ensenbach, 
2009; Post, 2005; cf. Melis et al., 2016). In Organizational 
Psychology several types of contextual performance (Organ, 
1997; van Scotter & Motowidlo, 1996) and prosocial 
behavior (Brief & Motowidlo, 1986; Li, Kirkman, & Porter, 
2014) have been distinguished. Researchers have also 
pointed out that not only is prosocial behavior crucial for the 
success of organizations, but that people are actually 
sometimes rewarded for it (Organ, 1997; Scotter, Cross, & 
Motowidlo, 2000; Grant & Patil, 2012, 562).  

In previous work, we began investigating participants’ 
behaviour as hypothetical human-resource managers 
evaluating employees working in different configurations 

each shift (von Sydow & Braus, 2016). We employed Two-
level Personnel-Evaluation Tasks (T-PETs) that, across 
several rounds (‘shifts’), provide information on how both 
individuals and teams contribute to a store’s earnings. Cru-
cially, the individual and team information suggest opposite 
rankings of the employees’ contributions. By design, the 
presence of a so-called ‘altruist’, someone who positively 
affects the performance of the others, was most positively 
correlated with the overall team performance (r = .99), even 
though the altruist individually performed the worst. We 
focused on the example of one employee strongly affecting 
the whole group, as this case is influential in biological 
models of altruism that assume an unconditional advantage 
to all group members in the presence of an altruist (Sober & 
Wilson, 1999; Wilson & Wilson, 2007; but Nowak & 
Sigmund, 2005). The participants’ task involved evaluating 
employees (Personnel Evaluation) and selecting the best 
team (Personnel Selection). Participants saw only one group 
(one shop) and the teams were assembled by selecting 4 out 
of 5 employees (thus 5 team configurations were possible).   

Results from von Sydow & Braus (2016) suggest what 
they called a “Tragedy of Personnel Selection”. After 40 
shifts, repeated measurement, and no time-constraint for 
analyzing the data of a shift, participants systematically 
judged the overall best employee to be the worst (on the 
different hidden-profile problem, Mojzisch, Grouneva, & 
Schulz-Hardt, 2010). Recently we also explored negative 
interactions (egoist detection) in T-PETs (subm.). This 
tragedy is reminiscent of the well-known “Tragedy of the 
Commons”, a notion for the often tragic outcomes of social 
dilemma situations (such as public-good games). Note 
however, that the ‘T-PETs’ do not strictly involve social 
dilemma, as the participant manager has the explicit goal of 
choosing the best team for the company. It is only what has 
been called an inner-individual dilemma (von Sydow, 2015) 
between two levels of goal descriptions, since it is irrational 
to optimize more specific goals at the expense of lowering 
overall utility. Since positive (and negative) interactions 
with other employees are ubiquitous, and number-based 
evaluations are important in HR-management, these results 
suggest such tragedy may well be found in everyday life.  

Here we present two new experiments exploring the 
generalizability or boundary-conditions of the tragedy. 
Experiment 1 varies team sizes and begins exploring the 
idea of multiple groups in parallel. Experiment 2 
investigates longer learning periods and whether with forced 
focus on the group level people are able to detect the 
altruist. 
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Experiment 1 

Design 
In the T-PETs we provided information on both individual 
and overall group level earnings. Experiment 1 investigates 
the extent to which the Tragedy of Personnel Evaluation 
depends on group size (number of workers: 3, 4, 5 versus 7) 
and the number of groups (one versus two) (Figure 1, Table 
1). From Conditions 1 to 4, group size increases. In a shift, 
all workers apart from one are working. Condition 5 has the 
same group size as Condition 4 but is characterized by a 
group-comparison scenario, where the 6 employees are split 
in two groups with three employees each. 

 
Table 1: Numbers of workers and groups, and their mean 
earnings (normal workers, NW; altruist, A) in the five 

conditions. 
 C1 C2 C3 C4 C5 

 Number 

Groups 1 1 1 1 2 

All Workers 3 4 5 7 7 

Shown Workers 2 3 4 6 3/3 

 Mean Earnings (€) 

NW with A 3000 3000  3000 3000 3000 

NW without A 2000 2000  2000  2000 2000 

Altruist (A) 1500 1500  1500  1500 1500 

Group with A 4500 7500 10500 16500 7500/ 
6000 

Group without A 4000 6000  8000 10000 6000/ 
6000 

Method 
Participants 221 Participants from the US began the 
experiment via MTURK. 158 participants finished it, 
passing all selection criteria (time spent on first page and 
correct answer out of four, rephrasing the instructions).  The 
participants obtained a reward of 2$. 46% were male, the 
mean age was 35 years; 53% mentioned having a Bachelor’s 
or Master’s degree, and 39% a high school degree as highest 
level of education. Participants were randomly assigned to 
one of the five conditions. 
Procedure and material The payoff structure for the 
individual employees remains constant over the five 
conditions, whereas the differing group sizes led to differing 
earnings of the groups (Table 1). We adopted the repeated 
measurement design with 18 shifts for each of the 4 rounds, 
and at the end of a round a rating followed by a selection 
task. The total number of shifts was 72. (This number is 
higher than the 40 trials investigated in previous studies.) In 
C3, for instance, the selection task was to select a team of 4 
from 5 available workers that would be best for the 
company (Figure 1). In C5 people could select 6 workers 

from 7 for both groups. In the last round, we additionally 
asked for the employee with the greatest and lowest utility, 
and assigned a Need-For-Cognition-Task (Cacioppo, Petty, 
& Kao, 1984), a working memory task, a Commentary, and 
demographics. 

 

Figure 1: Illustration of the materials. In the T-PETs the 
overview information for each round contains, in the first 
row the photos of the employee (in random order); in the 
second row their individual earnings; and in the third row 

the overall group/team earnings.  

Results 

 
Figure 2: Average ratings (with SE) for the normal 

workers (N1-N6) and the altruist worker (A) of Conditions 
1, 2, 3, 4 and 5 (Panels A to E). 

 
Figure 2 shows that the rating for the altruist in all 

conditions remained clearly below the other ratings. In an 
ANOVA of the altruist ratings only, Condition is a 
significant between-subject factor (F(4,153) = 3.57, p < .01) 
and Phase (the four test phases) a significant within-subject 
factor (Pillai-Spur-Test, PST, F(3, 151) = 3.92, p < .05), 
with no further significant interaction effects (p = .32). This 
outcome seems in line with the prediction that one obtains 
the best results for the condition with the fewest workers 
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(C1), despite the altruist increased overall effect on the 
mean group earnings in larger groups, and for the group 
condition (C5). Bonferroni-corrected post-hoc comparisons 
show significant differences between C1 and C4 (p < .01) 
and between C4 and C5 (p < .05). However, the ratings 
remain predominantly based on individual comparisons in 
all conditions. 

Figure 3: The proportion of ‘managers’ choosing a team and 
excluding the altruist (A) or a normal worker (N) in the test 
phases (Panel A to D) of the personnel selection task. The 
dark shading represent selections based on individual 
earnings, the light ones correspond to overall earnings. 

 
Figure 3 shows that in all conditions the largest pro-

portion of participants tends to expulse the overall most 
useful worker, the altruist, from the team. This is clearly the 
case in Phase 1 (always, p < .01).  The proportion of other 
choices overall increased over time (χ2(1, 316) = 13.15, p < 
.001). Nonetheless altruist expulsion remained statistically 
above chance in Phase 4 (apart from C1, p = .10; all other p 
< .01). For the variable which worker is deemed to have the 
least utility for the company (not presented here), in Round 
4, the choice of the altruist even remained dominant for all 
conditions (p < .01).  

Figure 4: Average altruist-detection rate for Conditions 1, 2, 
3, 4, 5 in the personnel selection task (Panel A) and the 

rating task (proportion of altruist rated larger than all other 
workers; Panel B). 

 
Figure 4A shows the increase of group-level answers 

particularly for only a few employees (C1). The group 
condition C5 has a relatively high start but does not 

increase. However, Figure 4B suggests that there is also an 
increase for C5 if one considers the stricter criterion of 
rating the altruist to be higher than all other workers.  

Figure 5A shows at least descriptively that in the highest 
utility task the altruist is positively singled out relatively 
frequently in C1 and C5 (but note the different numbers of 
workers). Additionally, participants’ comments were 
deemed ‘insightful’ if they detected possible differences be-
tween an individual’s direct and overall earnings (Figure 
5B). Note that this measure is not directly affected by the 
number of answer-options. There was a reliably higher 
number of insightful comments in C1 than C2, C3 and C4, 
but not higher than in C5. 

 
 

 
Figure 5: A) Proportion of Participants selecting the 

altruist to be of highest utility. B) Insight rate shown in 
Comments.  

 
Overall, Experiment 1 shows that the tragedy is quite 

stable over group size. However, it also suggests that 
although the altruist’s summative effect increased with the 
group size, the best participant performance was in the 
condition with the lowest number of employees (C1). The 
results also only showed subtle advantages of introducing 
different groups on the altruist detection rate (C4 vs C5). 

Experiment 2  
Experiment 2 investigates conditions where people are 
forced to focus on the group level only, to see whether all 
participants realize that the altruist performs better on this 
level. We thus investigate whether the tragedy of personnel 
evaluation is due to an inability to see complex effects on a 
group level (despite information concerning this level). 
Additionally, and in contrast to Experiment 1, we distin-
guish different mean individual earnings of normal workers 
to check the extent to which people distinguish even slighter 
performance differences on the individual level.  

Design 
The experiment had a mixed 2 (information: global-only 
versus local-and-global) × 2 (earnings of normal workers: 
homogeneous versus heterogeneous) between-subjects 
design, with a within-subjects factor of four test phases 
(Table 2). In each test phase both evaluation and personnel 
selection tasks were assigned. Additionally, in the last 
round, highest and lowest utility tasks and other tests were 
completed, as well as a Need-For-Cognition (NFC) test.  

In the local-and-global conditions, participants were 
provided with almost the same overview information as in 
Condition 3 of Experiment 1 (only the Altruist individually 
contributed 1600 instead of 1600). In each round, 
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information was given on both the direct earnings of the 
four workers on a shift and the overall earnings of the shift. 
The overall earnings involved not only the direct effects of 
individuals but also their indirect effects. In the global-only 
conditions, only the overall payoffs of a group (shift) were 
presented, without showing individual contributions.  
 

Table 2: The four conditions, also showing the overall 
versus direct impact of a worker on group-earnings  

Condition C1 C2 C3 C4 
Information Local 

and 
global 

Global 
only 

Local 
and 
global 

Global 
only 

Earnings NW Homogeneous Heterogeneous 
Overall   
   impact 

A >> NW1 = NW2 
= NW3 = NW4 

A >> NW1 > NW2 
> NW3 > NW4 

Direct  
   impact 

NW1 = NW2 = 
NW3 = NW4 > A 

NW1 > NW2 > 
NW3 > NW4 > A 

Note: NW = normal worker; A = altruist.  
 
The homogeneous and heterogeneous conditions 

correspond to either identical or different individual impact 
of the normal workers (see Table 2). The group earnings 
remained identical in both kinds of conditions. The ‘altruist’ 
(A) always has the most positive impact on the overall 
earnings. NW earnings (€) without A were 2000 
(homogeneous); 1400, 1800, 2200, 2600 (heterogenous); 
with A, 3000 (homogeneous); 2400, 2800, 3200, 3600 
(heterogeneous), but the altruist had the lowest direct 
(individual) impact, 1600.  

Method 
Participants As in Experiment 1, relatively strict selection 
criteria for participants were used to ensure high data 
quality. After passing a first criterion (time spent on the first 
page), 150 people properly started the task and 7 people 
failed the second criterion (correct rephrasing of the task; 
four options). Of the remaining 143 volunteers, 122 finished 
the experiment, and only their data was analysed. 
Participants were recruited from MTURK: 57% were male, 
42% female; mean age was 33, and 68% had a Bachelor’s or 
Master’s degree (with 32% a high school degree). They 
received $2 for participation.  

Procedure and material We used almost the identical 
materials and procedure as in Experiment 1, C3. The experi-
ment had 80 rounds, with four test phases administered after 
Rounds 20, 40, 60, and 80. In all four test phases, partici-
pants completed both a personnel-evaluation task and a per-
sonnel-selection task. In the final test phase, we additionally 
administered a highest-/lowest-utility task, a ranking task, a 
Kimchi-Palmer item, an attention-test item, and an 18-item 
Need-For-Cognition Test (Cacioppo, Petty, & Kao, 1984).  

In the global-and-local conditions, the overview in-
formation presented in each round corresponds to C3 in 
Figure 1. In the global-only conditions, the second line of 
this panel (presenting the individual earnings of each 
employee) was omitted.  

Results 
Figure 10 shows the mean ratings for the workers’ contri-
butions to company earnings. An overall ANOVA with 
Workers (5 workers) and Phases (4 phases) as within-sub-
jects factors, and Conditions as between-subject factor, 
yielded a highly significant effect of Conditions × Workers 
(Pillai-Spur Test, PST, F(12, 306) = 22.5, p < .001). This 
corresponds to the predicted change of rank of the altruist’s 
ratings in the global-only versus global-and-local 
conditions. Additionally, the factors Workers, Phase × 
Condition as well as Phase × Worker approached 
significance (PST, F(4, 100) = 17.3, p < .001; PST, F(9, 
309) = 1.69, p = .09; PST, F(12, 92) = 1.51, p = .13). 
Changes over the phases were not significant.  
 

 
Figure 6. Average ratings (with SE) in Experiment 4 for the 
four normal (N) and altruist (A) workers in test phases P1 to 

P4 of Conditions 1, 2, 3, and 4 (Panels A to D). 
 

In the homogeneous local-and-global condition (C1, Panel 
A), the altruist was again evaluated as the worst, despite 
being most strongly correlated with high overall earnings. In 
an ANOVA for Phase 4, the within-subject factor Workers 
was clearly significant (PST, F(4, 23) = 10.1, p < .001), and 
contrasts confirmed that all normal workers were rated 
higher than the altruist (all, p < .05). In the heterogeneous 
Condition 3, participants were well able to differentiate 
between normal workers with different individual 
performance. A corresponding ANOVA showed a general 
effect of Workers (PST, F(4, 24) = 38.8, p < .001) and 
significant contrasts between the workers in the predicted 
order, N1 > N2 > N3 > N4 > A (each, p < .001).  

In the global-only conditions (C2 and C4), in which 
people were to base their ratings of a worker’s utility on the 
teams’ overall earnings only, they clearly detected that, of 
all workers, the altruist correlated most demonstrably with 
high overall team earnings. Participants grasped this 
surprisingly early. An ANOVA for C2 (test phase 4) shows 
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significant results for the factor Workers (PST, F(4, 22) = 
23.04, p < .001), and pairwise contrasts show that the 
altruist is rated higher than all normal workers (always with 
p <.001). In Condition 4, the order of the average ratings of 
the altruist and the normal workers was likewise reversed 
(relative to Condition 3). In an ANOVA a significant effect 
of the factor Workers was found (PST, F(4, 26) = 15.5, p < 
.001); and contrasts show that the altruist was rated 
significantly higher than even the normal worker, who was 
rated highest (p < .001). One ANOVA without the altruist 
reached significance (PST, F(4, 27) = 3.62, p < .05), but 
only one Bonferroni-corrected post hoc comparison between 
normal workers (the one expected to differ most: NW1-
NW4) led to significant results (p < .05). In sum, despite 
clearly detecting that the altruist has a larger effect on  over-
all output in the global-only conditions, participants show a 
reduced ability to distinguish between the normal workers. 

Figure 6 shows the proportion of ‘managers’ choosing a 
worker to have the “highest” (Panel A) or “lowest” (Panel 
B) “total utility for the company” in the final test phase.  

 

 
Figure 7. Percentage of participants choosing a normal 

worker (N) or the altruist (A) as of highest (Panel A) or 
lowest (Panel B) overall utility for the company in Phase 4 

in Conditions C1, C2, C3, and C4. The choices 
corresponding to individual earnings are marked in black; 

those corresponding to overall earnings in dark gray. 
 
Figure 7 presents the team selections in the personnel 

selection task. In Condition 1, we replicated a strong 
tendency to select a team without the overall best member, 
the altruist (from five possible configurations). Even in 
Phase 4, after 80 rounds, 70% of the participants selected 
this team, χ2(1, N = 30) = 46.88, p < .001. Its reduction was 
not reliable, χ2(1, N = 60) = .80, p = .37. By contrast, 
Condition 2 shows that participants provided with global-
information-only were highly capable of quickly detecting 
that the altruist should be part of the team (Phase 1, χ2(1, N 
= 28) = 7.00, p < .001).  Also the contrast between 
Conditions 1 and 2 was highly significant (Phase 4), χ2(1, N 
= 58) = 27.15, p < .001. In the heterogeneous global-and-
local Condition 3, selections began with a high proportion 
of no-altruist team-choices in Phase 1 (Figure 12), χ2(1, N = 
32) = 67.57, p < .001. In Phase 4, these individual-related 
selections, which exclude A, are likewise found to be above 
chance (56%), χ2(1, N = 32) = 31.01, p < .001; but now the 
group-related selections are above chance as well (excluding 
N4, with 34%); χ2(1, N = 32) = 4.13, p < .05. By contrast, in 

Condition 4 (a global-only condition), even in Phase 1 the 
optimal team-related selection (with-altruist team excluding 
N4) was the most frequently selected (43 %), χ2(1, N = 32) 
= 11.28, p < .001; and the no-altruist team, conversely, was 
selected below chance (3 %), χ2(1, N = 32) = 5.70, p < .05. 
In Phase 4, the selection of the no-altruist team was still 
selected with low relative frequency (3 %), and the optimal 
team by 59 % of participants.  

 

 
Figure 8. The results of the personnel selection task in the 

four test phases show the proportion of ‘managers’ choosing 
a particular team, thus excluding either worker N1, N2, N3, 
N4, or the altruist A. In the global-and-local conditions, C1 

and C3, the black columns correspond to the predicted 
selections based on individual performance only.  In the 
global-only conditions, C2 and C4, no individual-level 

information was available. In all conditions, the dark gray 
columns represent the optimal selection(s) based on overall 

performance of teams. 
 

In the local-and-global conditions we coded comments as 
insightful that showed understanding of the differences 
between an individual and a group level. After 80 learning 
rounds, at least 38% of the participants in these conditions 
were classified as providing comments with insight (33% in 
C1 and 43% in C3). Of these participants, 87% selected the 
altruist personnel selection task (in Phase 4), whereas from 
the participants not demonstrating insight only 3% made 
this selection. Finally, from the additional tests, only the 
Need-For-Cognition Scale (2.6 vs. 10.5), t(60) = 1.93, p = 
.03 (one-tailed) correlated with insightful comments.  

General Discussion 
Experiment 1 shows that the tragedy of personnel selection 
is very stable across different team sizes. Even in the 
smallest team, most participants in the role of ‘managers’ 
evaluated the most useful worker for the group to be the 
worst. However, Experiment 1 suggests that small team 
sizes mitigates this problem, and a minority in this condition 
saw the difference between individual and overall 
contribution of an employee. Experiment 2 shows that 
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people are in principle well able to detect the strong 
correlation between presence of the altruist and high team 
performance (with r = .99) very early on from the group-
level information.  However, in other conditions most make 
no use of this ability and seem to ignore the overall payoff, 
focusing only on workers’ direct individual contribution. 

More generally, the findings may be due to people’s 
problems dealing with decisions involving a Simpson’s 
Paradox (Fiedler et al., 2003; Sydow et al., 2016; 
Waldmann & Hagmayer, 2001). If people do not merely 
optimize in a standard decision-theoretic way (here by 
simply choosing the team with the highest past 
performance), and instead, as we suggest, aim for a deeper 
understanding by identifying clear causal or logical patterns 
between events (e.g., Funke, 2001; Hagmayer & Meder, 
2013; Osman, 2010; Sloman & Hagmayer, 2006; von 
Sydow, 2016; Waldmann & Hagmayer, 2001), this may 
yield the disadvantage of overlooking small correlations, 
pathways, exogeneities or interactions (Novick & Cheng, 
2004), even if they may add up, tragically, to be the 
predominant effect of a scenario.  
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Abstract 

In the Wason-Selection Task debate it has been suggested that 
people may be able to detect cheaters but not co-operators or 
altruists. This position has been challenged. Here we focus on 
a scenario that is more ecologically valid with regard to 
different strategies for detecting workers who negatively 
interact with others (here ‘egoists’) and positive interactors 
(here ‘altruist’). The results on altruist detection in two-level 
personnel evaluation tasks (T-PETs), with information on 
individual and team performance, suggested a disregard of the 
team performance and a resulting “Tragedy of Personnel 
Evaluation”. Experiment 1 transfers the idea of altruist 
detection in a personnel evaluation and personnel selection 
task (von Sydow & Braus, 2016) to egoist detection and 
explores whether there are analogous problems for egoist 
detection. Experiment 2 explores egoist and altruist detection 
in more realistic settings where individual and group-selection 
may affect our sampling of the interactor. 

Keywords: Altruist/Egoist Detection; Wason Selection Task; 
Personal Selection Task; Tragedy of Personnel Selection; 
Group Selection; Learning Correlations; Decision Making 

Introduction 
In an influential debate on hypothesis-testing (Wason 
Selection Tasks, WST), it has been suggested that in social-
contract situations people are adapted for cheater detection 
but not for co-operator or altruist detection (Cosmides, 
1989). These proposals have contributed to differentiating 
between checking deontic rules and testing descriptive 
hypotheses (Oaksford & Chater, 1994; Beller, 2001; von 
Sydow, 2006). Despite evidence for subclasses within the 
deontic domain (Fiddick, Cosmides, & Tooby, 2000), other 
research shows that reasoning with standard deontic rules 
(including social contracts) seems to be a quite systematic 
faculty resembling deontic logic (Beller, 2001; Bucciarelli 
& Johnson-Laird, 2005; von Sydow, 2006) and depends on 
the goals pursued (von Sydow, 2006; Rand, Dreber, 
Ellingsen, Fudenberg, & Nowak, 2009; Sperber & Girotto, 
2002). However, the WST-paradigm has also been criticised 
as being too specific to address issues of real-life co-
operation (Sperber & Girotto, 2002). 

Von Sydow & Braus (2016) explored participants’ ability 
as personnel managers to detect how employees positively 
interacted with others’ performance. Research in 
organizational and social psychology has acknowledged the 
importance of teams beyond mere individual contributions 
(Mathieu, Maynard, Rapp, & Gilson, 2008; Memmert, 
Plessner, Hüttermann, Froese, Peterhänsel, & Unkelbach, 
2015) and the crucial role of prosocial or altruistic extra-role 
or role behaviours in teams (e.g., Li, Kirkman, & Porter, 

2014). Our tasks were more complex than WST and used 
two-level personnel selection tasks (T-PETs; in von Sydow 
& Braus, 2016). In these T-PETs, participants obtained 
information about employees’ performance on the direct 
individual level and on the overall group level. The presence 
of the altruist correlated consistently, reliably, and strongly 
with the teams’ overall performance (r = .99). Nonetheless, 
people tended to evaluate the altruist to be worst for the 
team, mostly based only on the individual information, and 
tended to ostracise him or her in selection tasks. This led us 
to suggest a potential “tragedy of personnel selection”. 

To explore the controversial asymmetry between altruist 
and egoist selection discussed in the WST literature in a 
more complex setting, and to explore the generality of the 
Tragedy of Personal Selection, Experiment 1 investigates T-
PETs not for altruist detection, but for egoist detection. 
Experiment 2 compares egoist and altruist detection in a 
single experiment and explores further potential factors of 
group vs. individual selection. This is broadly in line with 
the increasing influence of multi-level modelling in biology 
(Wilson & Wilson, 2007), and personnel psychology 
(Polyhart, 2012). Furthermore, we explore the resultant 
effect of sampling (Fiedler, 2008). We will suggest that 
group selection could lead to greater altruist and egoist 
detection, but that this does not necessarily imply deeper 
understanding. Thus we suggest that in such a perhaps 
ecologically more valid scenario several further factors 
come into play over and beyond a mere potential difference 
between egoist and altruist detection. 

Experiment 1 
The first experiment explores whether the Tragedy of 
Personnel Evaluation is unique to altruist detection, or 
whether there is an analogous phenomenon for egoist 
detection as well. Here ‘egoists’ have the highest individual 
earnings in the team while in fact most negatively affecting 
the team’s overall performance. In this study participants 
were again acting as personnel managers, repeatedly making 
personnel evaluations and selections.  

Table 1 shows the average earnings of the negative 
interactor, the egoist (E), and, depending on the latter’s 
presence or absence, the average earnings of the normal 
workers in the four conditions. The conditions vary 
homogeneous and heterogeneous earnings for the normal 
workers (C1, normal worker with homogeneous earnings 
condition; C4, most heterogeneous earnings of the normal 
workers) to investigate participants’ sensitivity to small 
differences in their impact on the individual level.  
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Design 
Table 1: Mean earnings of normal workers (NW: N1 to N4) 

and of ‘egoist’ worker (E), overall earnings with  
or without the egoist in the four conditions (C1 to C4), and 

resulting predictions 
 C1 C2 C3 C4 

 Predictions 

Indivi
-dual 

E>N1=N2
=N3=N4 

E>N1>N2
=N3=N4 

E>N1=N2
>N3=N4 

E>N1>N2
>N3>N4 

Over-
all 

N1=N2= 
N3=N4>E 

N1>N2= 
N3=N4>E 

N1=N2> 
N3=N4>E 

N1>N2> 
N3>N4>E 

 Mean of earnings without egoist 

N1 3000 3300 3400 2600 

N2 3000 2900 2400 3200 
N3 3000 2900 2600 2800 

N4 3000 2900 2600 2400 

 Mean of earnings with egoist 

N1 2000 2300 2400 2600 

N2 2000 1900 2400 2200 

N3 2000 1900 1600 1800 

N4 2000 1900 1600 1400 

E 3400 3400 3400 3400 

 Mean of overall earnings of a group 

With-
out E 

12000 12000 12000 12000 

With 
E 

9400 9400 9400 9400 

 

Method 
Participants 161 participants from MTURK passed a first 
participation-criterion (time spent on the first page > 20 sec. 
and < 6 min.) and began the task. 120 participants finished 
the experiment and were included in the analysis (52% 
male; mean age 33), most of them with a high school or 
even a university degree (59% Bachelor’s or Master’s; 38% 
high school). The volunteers obtained rewards of $1. 
Participants were randomly assigned to one of four 
conditions (cf. Table 1). 
Material and procedure The crucial difference to prior 
work was that we replaced altruist detection by egoist 
detection (Table 1). Apart from changed individual and 
overall earnings, the scenario, T-PET procedure, and 
dependent variables (von Sydow & Braus, 2016). But we 
were now concerned with individually best performing 
‘egoists’, whose presence correlated consistently and most 
negatively with the team’s overall performance. As in the 
altruist detection task, participants in each round obtained 
overview information in tables about workers’ individual 
earnings, together with their photographs and information 

about overall earnings of the team. The presentation order of 
the pictures was randomized. Again there were only five 
workers, with four workers per shift – thus only five 
possible team configurations. There were 40 rounds and 
four test phases, one after every ten rounds. The first three 
test phases included rating-tasks and a team selection task 
only; in the final test phase we asked participants 
additionally to choose the employee of highest and lowest 
utility, and to comment on the task and their decision. 

Results  
In all conditions, the average ratings (Figure 1) resemble 
more closely the predictions based on individual rather than 
overall team-contributions (cf. Table 1). An ANOVA with 
the between-subjects factor Conditions and the within-
subjects factors Workers and Phases (in a multivariate 
Pillai-Spur Test, PST) showed significant effects of 
Workers, F(4, 110) = 95.9, p < .001, Workers × Conditions, 
F(12, 336) = 21.9, p < .001, and Phases, F(3, 111) = 3.41, p 
< .05, and a marginally significant effect of Phase × Person, 
Workers × Conditions, F(12, 102) =1.78, p = .06.  

 
Figure 1: Average ratings (with SE) in Experiment 1 for 

the four normal workers (N) and egoist worker (E) in the 
test phases P1 to P4 of Conditions 1, 2, 3, and 4  

(Panels A to D) 
 

In Condition 1, the egoist is characterized by higher 
ratings than the other four workers throughout all phases; 
main effect of Worker: F(4, 26) = 4.19, p < .01. In 
Condition 2, there was again only a reliable effect of 
Workers, PST, F(4, 24) = 25.2, p < .001. Bonferroni-
corrected post hoc comparisons showed no differences 
between the egoist and normal worker 1 (E, N1), predicted 
to be the highest normal worker (p = 1.00); but N1, as 
predicted, had a higher rating than the other normal workers, 
which was also the case for the egoist (all, p < .001). In 
Condition 3, again only the factor Workers was significant 
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(PST, F(4, 22) = 24.1, p < .001). Bonferroni-corrected post 
hoc comparisons showed that the egoist was not rated 
higher than the normal workers predicted to be highest (N1, 
N2) (both p = 1.00), but that the worker in this group, as 
well as the egoist, reliably differed from the workers in the 
second group of normal workers (N3, N4; all p < .001). 
Condition 4 again showed an overall effect only for the 
factor Worker (PST, F(4, 28) = 58.6, p < .001), and in 
corrected post hoc comparisons significant effects even of 
all five workers in the order predicted by the individual 
earnings (all p < .01). 

The results of the Personnel Selection Task (Figure 2) 
show that the majority selected teams with optimal earnings 
on the individual level (black; individual-related selections). 
Only a few selected the team without the egoist (from five 
possible teams), even though this team had the best overall 
performance (dark gray; team-related selections). The 
remaining selections (light gray) selected the egoist for the 
team, along with other, individually non-optimal workers. 
With regard to temporal changes, there is an apparent 
increase in the proportion of team-related selections (dark 
gray) from Phases 1 (9%) to 4 (23%); χ2(1, N = 240) = 8.00, 
p < .01. But even in the final test phase, Phase 4, the 
individual-related selections over all conditions occurred 
more frequently than the team-related ones, χ2(1, N = 120) = 
34.7, p < .001. 

The highest-utility task (Figure 3, Panel A) reveals 
relatively frequent ‘egoist’-judgments (black). In all 
conditions these judgments were clearly above chance level 
(χ2(1, N = 31) = 63.9, p < .001; χ2(1, N = 30) = 44.5, p < 
.001; χ2(1, N = 27) = 15.8, p < .001; χ2(1, N = 32) = 47.5, p 
< .001). Considering the team-related judgments (dark 
gray), they are also above chance level relative to the other 
ones (light gray), χ2(1,N = 31) = 49.0, p < .001 (C2 to C4). 

  

 
Figure 2. Results of the personnel selection task in the four 

test phases of Experiment 1, showing the proportion of 
‘managers’ choosing a team of four out of five, thus 

excluding worker N1, N2, N3, N4, or the egoist worker E. 
Individual-related optimal selections are marked in black, 

with team-related optimal selections in dark gray and other 
selections in light gray. 

 
In the lowest-utility task (Fig. 3B), a similar pattern can be 

recognized. The individual-related selections (black) were 
chosen more often than chance level, χ2(1, N = 120) = 
300.8, p < .001. In the three conditions (C2 to C4), where 
one can contrast the team-related judgments (egoist has the 
lowest utility; dark gray) with judgments that were neither 
individually nor on group-level optimal (light gray), the 
team-related judgments overall occurred reliably more often 
than expected by chance (exact bin. test, N = 12, p < .001). 

As to the comments, 21% participants mentioned 
explicitly that the individual and overall group-level contri-
butions of a worker differ, or that there are interactions 
between participants. These insightful comments were 
highly associated with group-level selections and ratings. 

 

 
Figure 3. Percentage of ‘managers’ choosing either a 

normal worker (N) or the egoist worker (E) as of the highest 
(Panel A) or lowest (Panel B) utility for the company 

(Conditions C1, C2, C3, C4). The individual-related choices 
are marked in black, the team-related ones in dark gray and 
the neither-individual-nor-team-related ones in light gray. 

Discussion 
The results of Experiment 1 show that egoist detection 

seems to be affected by similar problems as altruist 
detection (von Sydow & Braus, 2016). When the negative 
interactor individually contributed the highest earnings but 
led overall to the lowest group earnings, the majority of 
participants nonetheless rated the egoist as most valuable. 
Moreover, in the personnel selection task they even 
systematically chose the egoist for the team, even though 
the latter consistently performed the worst. This was the 
case even though participants were sensitive to relatively 
small individual differences. Thus the results suggest a kind 
of tragedy of personnel selection as well with regard to 
‘egoists’ or negative interactors.  

In comparison to the results on altruist detection by von 
Sydow & Braus (2016), which seem comparable in popula-
tion and method, there is perhaps a slight advantage of 
egoist over altruist detection. In particular, there were signi-
ficantly more insightful comments for egoist than for altruist 
detection, χ2(1, N = 240) = 7.53, p < .01. This suggests that 
the content of egoist versus altruist detection leads to 
different interaction detection rates. However, the overall 
findings point rather to the similarity between altruist and 
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egoist detection. There also seems to be a Tragedy of 
Personnel Evaluation with regard to egoist detection. 

Experiment 2 
This experiment explores the potential effect of personnel 
selection on the individual versus group level and resulting 
distortions linked to sampling only particular information 
(thus favoring learning of specific relationships or not). We 
combine these issues with an investigation of egoist and 
altruist detection in a single experiment. We propose the 
hypothesis that group in contrast to individual selection may 
at least behaviourally increase selections corresponding to 
the group-level performance. However, deeper insight is 
predicted to depend on sampling effects that may affect both 
individual and group selection. To test the effect of 
sampling, the participants were given the opportunity to 
influence the material by their selections. Sampling may 
imply a greater inclusion of the interactor, which will lead to 
a better learning of the interactor’s impact either on the 
individual or on the group level and hence to a solution of 
the Tragedy of Personnel Selection. In contrast, if sampling 
leads to exclusion of the interactor, a correct selection needs 
not to improve the understanding of the interactor’s impact.  

Design 
Experiment 2 investigates how individual versus group 
selection and the presence of an ‘altruist’ versus an ‘egoist’ 
influence personnel selection and evaluations (Table 2). 
Apart from this, the conditions used almost identical 
scenarios and the interactors had comparable effects on the 
group level. The egoist is characterized by the highest and 
the altruist by the lowest individual earning. In contrast to 
the individual earnings, the presence of the egoist leads to 
lower overall earnings of the group, whereas that of the 
altruist yields greater overall earnings for the group. 

 
Table 2: Selection and interactor conditions and mean of 

earnings for normal workers (NW), altruist and overall for 
four conditions. 

Condition C1 C2 C3 C4 

Selection type Individual Individual Group Group 

Interactor type Altruist Egoist Altruist Egoist 

 Mean of earnings  

 NW with 
altruist/egoist 

3000 1500 3000       1500 

NW without 
altruist/egoist 

2000 2500 2000 2500 

Altruist/egoist 1500 3000 1500 3000 

 Mean of overall earnings of a group 

With 
altruist/egoist 

7500 6000 7500 6000 

Without 
altruist/egoist 

6000 7500 6000 7500 

Method 
Participants 182 participants from MTURK began the task. 
119 participants passed the strict selection criteria (time 
spent on first page; correct rephrasing the instructions), 
finished the task, and were included in the analysis (51% 
male; mean age 35); most of them had a degree (65% 
Bachelor’s or Master’s; 35% high school). The volunteers 
obtained rewards of $1. Participants were randomly 
assigned to one of four conditions (cf. Table 2). 

 
Material and procedure The material and procedure build 
on previous T-PETs but vary in some aspects. The data is 
again shown for each day or shift, containing individual and 
overall earnings. Whereas previous T-PETs involved one 
group (with different member configurations) only, here we 
also presented two groups, each with 3 employees. During 
the experiment, participants received data on a total of 10 
employees and 81 days (rounds). Moreover, in contrast to 
former T-PETs the participants’ judgments in personnel 
selection tasks influenced the materials presented to the 
participants. This task was repeated 11 times. On the first 
day of each of the 10 test phases (and in a final test phase), 
the altruist/egoist and 5 randomly assigned normal workers 
were presented. Based on the selection in the test phase, 
participants selected 3 out of 6 employees (individual 
conditions) or one of two groups (group conditions). This 
selected group or these individuals were excluded from the 
following 7 days (rounds). From the 7 employees left, we 
created the two groups in the successive 7 days, so that each 
one of the employees left was excluded for one day. 
Although we added some noise (SD = 600€) to the 
individual earnings, the presence of the interactor in such 
trials still strongly correlated with a higher overall outcome 
(r = .95-.98). In every second test phase (starting with the 
second phase), the participants additionally had to rate the 
10 employees before selection. On the last day, at test phase 
11, the participants had to complete a rating and selection 
task (here without consequences) as well as the utility-task 
(cf. Experiment 1) and a Need-For-Cognition task (NFC; 
Cacioppo, Petty & Kao, 1984); and finally to comment on 
the task.  

Predictions 
• Hypothesis 1 (H1): Participants may base their 

selections (partly) on the observed performance in the 
test phases, with the selection focusing them either on 
the group or the individual level. This would entail 
more selections optimal on the group level in the group 
condition than in the individual conditions: C3 = C4 > 
C2 = C1. 

• However, participants in line with H1 will tend to 
exclude the interactor in C4 (group selection) and C1 
(individual selection) and tend to include the interactor 
in C3 (group selection) and C2 (individual selection). 
Based on these expected sampling effects, one may 
derive the following hypothesis:  

3469



o Hypothesis 2 (H2): People in the inclusion 
conditions will learn more about the individual 
earnings, which vice-versa would lower judgments 
in line with adequate group-level predictions in the 
inclusion conditions: C1 = C4 > C2 = C3.  

o Hypothesis 3 (H3): Alternatively (or additionally), 
in the inclusion conditions people may start to 
realize the major impact of the interactor on group 
earnings, with inverse implications for group-level 
results: C1 = C4 < C2 = C3. 

H2 and H3 may both apply and cancel each other out. 
Alternatively one may find different effects over time (first 
H2 then H3). We predict that the hypotheses will have a 
major impact on different dependent variables: H1 may par-
ticularly affect the used selection task which may be domi-
nated by the currently shown data. H2 or H3 may dominate 
the overall results in the rating and utility tasks.  With re-
gard to insight in the two-level nature of the task in the com-
ments seems normally to be limited by realizing the group 
level effects; thus insight should follow the pattern of H3. 

Results 
As expected, different clusters of dependent variables 
referring to performance effects H1 (here selection tasks) 
and to effects of understanding, H2 versus H3 (evaluation 
tasks) reveal differential results: Considering the personnel 
selection task, compared to individual selection (Figure 5, 
Panel A), the group selection as expected (H1) appears to 
lead to greater (overall optimal) exclusion of the egoist and 
inclusion of the altruist. However, the results descriptively 
show optimal group-level answers in the rank order of C4 > 
C3 >> C1 > C2. This suggests a main effect in line with H1 
and an additional effect, even for this selection variable, in 
line with H2. Inferentially, the aggregated correct selections 
of each participant over the 11 selections revealed a strong 
effect of Selection type (F(1, 115)=119.60, p<.001, η2=.52) 
and a slight interaction effect of Selection and Interactor 
types, F(1, 115)=9.17,  p =.003,  η2=.07. As a high 
correlation between the accuracy of selection and amount of 
earnings suggests, the earnings replicate the strong positive 
effect of Selection type, F(1,115)=128.18, p<.001, η2=.52, 
Interactor type: F(1,115) =11.10 ,  p=.001, η2=.09, and 
Phase: F(6, 687) = 2.29, p< .05, η2=.02.  

The rating task (Figure 4) seems roughly to reflect the 
individual pay-off structure affected by sampling (H2). The 
altruist has lower ratings than the other workers, and the 
egoist is rated more positively. Comparing the ratings of the 
interactor to all normal workers, the interactor differs highly 
significantly across all 5 measurements (R1-R5), R1: 
F(1,116) = 1345.68, p < .001; R2: F(1,116) = 1369.64, p < 
.001; R3: F(1,116) = 1540.53, p < .001; R4: F(1,116) = 
2028.63, p < .001; R5: F(1,116) = 2731.81, p< .001.  

The highest-utility and lowest-utility tasks (Figure 5, 
Panel B) seem to mirror mainly the individual earnings of 
the employees (high rate of egoists in the highest utility 
task, and of altruist in the lowest utility task). Thus the 
Interactor type affects the accuracy of this task (highest: 

χ2(1,119) =11,84, p=.001; lowest: χ2(1,119) =19,02, 
p<.001); but the selection type had no impact.   

 
Figure 4: Average ratings (with SE) for the normal 

workers (N1-9) and the altruist/egoist worker (A, E) of  
Conditions C1, C2, C3 and C4 (Panels A to D). 

 
Insightful comments (Panel C), in line with H3, showed 

in C2 and C3 marginally significantly higher correct com-
ments than in C1 and C4, χ2(1,119) =3,55, p = .06. Parti-
cipants, commenting correctly, revealed greater aggregated 
correct selections (t(51)=-2,28, p < .01) and ratings (t(56)=-
2,80, p < .01), and tended to choose the person with the 
highest or lowest overall utility more frequently, highest: 
χ2(1,119) = 15,77, p < .001; lowest: χ2(1,119) = 3,05, p = 
.08. Participants with insightful comments can be 
characterized by higher NFC-Scores: t(117) = -2,65, p < .01. 

 

 
Figure 5: Average correct answer rate for Conditions 1, 2, 
3 and 4 (C1-C4) of the Selection, Utility- and Comment 

Tasks (Panel A to C). 

Discussion 
Experiment 2 shows intricate influences of sampling on 

the egoist and altruist detection in group and individual 
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selection scenarios. Group selection, at least on a direct per-
formance level in the selection tasks, leads to greater overall 
optimal selections compared to individual selection (H1). In 
addition, group selection increases economic outcomes. 
Considering the accuracy of personnel evaluation, the 
results create a more complex pattern. Egoist versus altruist 
detection does not have a great impact; neither does Indi-
vidual vs. Group-Selection. Sampling processes seem to 
matter and can have simultaneous opposed effects. The ra-
tings and the highest/lowest utility-tasks show that gaining 
more information about the interactor leads to stronger 
individual-based understanding (H2). Insight in the 
comments nonetheless revealed, as predicted, that gathering 
information about the interactor also increased the detection 
of group level effects (H3). In line with this finding, 
insightful comments were associated with the NFC-Score. 

General Discussion 
Experiment 1 shows that egoist detection, as with similar 
altruist-detection tasks, may systematically lead to judging 
the egoist as best for a company although he clearly 
correlates strongly with negative overall team performance. 
Although the results suggest a slight advantage of egoist 
over altruist detection, both show basically similar results, 
with participants in both scenarios falling prey to a Tragedy 
of Personnel Selection. In Experiment 2, instead of egoist 
versus altruist detection, other factors such as group versus 
individual selection (with group selection improving 
performance) and sampling processes (in different ways 
affecting understanding on individual and group levels) 
more strongly influenced participants’ judgments. 

With regard to the personnel selection literature (e.g., 
Polyhart, 2012; Li, Kirkman, & Porter, 2014), the results 
warn us against the generality of the suggested Tragedy of 
Personnel Selection shown here to affect not only altruist 
but also egoist detection. With regard to the Wason 
Selection Task debate (e.g., von Sydow, 2016; Sperber & 
Girotto, 2002), we found no large differences between 
altruist and egoistic detection in the T-PETs (however, a 
small one).  The results more generally pose the question as 
to how far the difficulties detecting the strongest overall 
correlation of variables’ presence with overall outcome 
points to problems linked to Simpson’s Paradox (Fiedler et 
al., 2003; Sydow et al., 2016; Waldmann & Hagmayer, 
2001); also whether it is a negative side effect of people’s 
constructing detailed logical or causal models over and 
above optimizing observed utilities (e.g., Funke, 2001; 
Hagmayer & Meder, 2013; Osman, 2010; Sloman & 
Hagmayer, 2006; von Sydow, 2016; Waldmann & 
Hagmayer, 2001), with the disadvantage that one tends to 
neglect small correlations, pathways, exogeneities or 
interactions, even if they tragically dominate a scenario.  
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Abstract 

Conjunction fallacies (CF) have not only been a major 
obstacle in justifying the rationality of a Bayesian theory of 
belief update; they have also inspired a variety of theories on 
probability judgment and logical predication. Here we provide 
an overview of Bayesian logic (BL) as rational formulation of 
a pattern-based class of conjunction fallacies. BL is described 
here as a generalization of Bayesian Occam’s razor. BL 
captures the idea that probabilities are sometimes used not 
extensionally but intensionally, determining the probabilistic 
adequacy of ideal logical patterns. It is emphasized that BL is 
a class of models that depend on representations and the mea-
nings of logical connectives. We discuss open questions and 
limits of BL. We also briefly discuss whether other theories of 
the CF may be good supplementary theories of CFs (and 
predication) as well, if linked to functional explanations.  
 
Keywords: probability judgments; biases; conjunction 
fallacy; inclusion fallacy; inductive logics; intensional logics; 
Bayesian logics; predication; strong sampling; categories; 
Lockean Thesis; rationality debate; Bayesian Occam’s razor 

Extensional vs. Intensional Probabilities 

Extension vs. Intension 

Figure 1: (A) Extensions as elements and intensions demar-
cated by set boundaries. (B) Characterization of extensional 

and (C) intensional probabilities (cf. McKay, 2003, 28). 
 
Although less known to the psychologist than to the 
philosopher or logician, the notions of extension  and inten-
sion (≠ “intention”) have a tradition going back to Leibniz, 
Carnap, and Stegmüller; with several analogous terms 
proposed by others, such as ‘meaning’ and ‘denotation’ 
(Russell) or ‘Sinn’ and ‘Bedeutung’ (Frege). Extension 
refers to the elements of a set, and intension to the meaning, 
which may be symbolized by the area determined by the set 
boundaries (Figure 1A). Correspondingly, a set can be 
described extensionally by specifying its elements or 
intensionally by specifying one or several defining features.  

Extensional narrow norms of predication 
Extensional approaches have long dominated set theory 
(Zermelo–Fraenkel set theory), logic (propositional logic), 

and probability theory (Kolmogorov’s axiomatization). 
According to these extensional approaches, two sets are 
identical if they have the same elements (the same exten-
sion). Such an approach entails that any logically stronger 
(more specific) proposition implies any more general propo-
sition (e.g., A∧B => A∨B); and that any more specific hypo-
thesis can never be more probable than a more general one.  

Extensional logic and extensional probabilities have been 
proposed to provide universal criteria of rational pre-
dication. Predication attributes a predicate or logical combi-
nation of predicates to a subject. First, valid (assertive) pre-
dication of general logical relationships has traditionally 
often been linked to a logical truth-table definition of con-
nectives (Frege, Russell, Whitehead, and Wittgenstein) 
(Table 1). Accordingly, if a conjunction A∧B is true in a 
universe of discourse (X), no cases in X fall outside of the 
corresponding set (the intersection) and the truth of the con-
junction implies, for instance, the truth of the affirmation A 
as well as of the disjunction A∨B (Table 1).  

 
Table 1: Truth tables of some dyadic logical connectives: 
conjunctions, exclusive disjunctions, affirmations, and 

inclusive disjunctions 

 
Assertive, contingent sentences, such as “Members of 

Species X are aggressive (A) AND curious (B)” (von Sydow 
& Fiedler, 2012) (in predicate logic: ∀x A(x) ∧ B(x)), can 
thus be falsified by a single observation (Popper, 1934; but 
see Oaksford & Chater, 2007). One problem in using (exten-
sional) logic as adequacy criterion of contingent general 
predications is that they often involve exceptions (von 
Sydow, 2013). The problem of exception refers to the 
phenomenon that we seem to employ general sentences, like 
ravens are black, even if there are known exceptions, such 
as albino ravens. One solution to this problem is to replace 
the logical criterion of adequate predication by a high-pro-
bability criterion (P(Assertion) > ϕ > .5) (Schurz, 2001; cf. 
Adams, 1986; Oaksford & Chater, 2007, Pfeiffer, 2013; BL 
makes use of this idea, but for intensional probabilities).  

Second, Kahneman & Tversky (1983) argued that any 
deviation from the probabilistic extensional conjunction 
rule, P(A∧B) ≤ P(A), involves a conjunction ‘fallacy’, even 
in the context of predication.  It is argued that extensional 
logic and extensional probability are narrow norms (cf. 
Gigerenzer, 1996; Fiedler & von Sydow, 2013) if applied as 

    

A B A ∧ B A >-< B A A ∨ B
T T T F T T
T F F T T T
F T F T F T
F F F F F F
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adequacy criterion for rational predication (von Sydow, 
2011, 2016). One problem of a direct application of an 
extensional probability criterion to predication is sample 
size. That is, (extensional) relative frequencies do not 
distinguish between 1/1 and 1000/1000 confirmative ravens.  

However, the main problem with extensional probability 
is that predicates referring to subsets can never yield a 
higher probability than those referring to supersets. 
However, it should be possible do deem more specific hypo-
theses to be more adequate; otherwise one could never pre-
fer a more specific hypothesis. And it seems absurd, if, for 
instance, “X are aggressive AND curious” (A∧B) could 
never be more probable and hence more adequate than “X 
are aggressive OR curious or both” (A∨B). Likewise, the 
tautology (or ‘verum’) “X are aggressive or not, and they are 
curious or not” (ATB) by definition (with a maximal exten-
sional probability of 1) could never be less adequate than a 
more suitable, specific hypothesis, independent of empirical 
evidence. Therefore a universal extensional high-probability 
criterion fails the requirement to be empirically informative.  

Intensional Probabilities of Bayesian Logic  

Bayesian Occam’s Razor 
The basic idea of a Bayesian Occam’s razor already offers a 
partial solution to the problem of inclusion (Jeffreys & 
Berger, 1992; Tenenbaum & Griffiths, 2001; McKay, 2003; 
cf. Navarro et al., 2012).  If a consequential region of hypo-
theses H1 is a subset of a consequential region of a hypo-
thesis H2 (Figure 1C), even a subjective Bayesian account 
may be extensional in the sense of requiring that the more 
specific hypothesis can never be more probable than a more 
general one (this is sometimes called ‘weak sampling’). 
However, if one treats the nested hypotheses nonetheless as 
alternative explanatory patterns (hypotheses) whose conse-
quence regions may each have produced the data, the size of 
the consequential regions matters (sometimes called ‘strong 
sampling’). In this case, data coherent with the specific (and 
also the general) hypothesis (cf. Figure 1C) is more likely to 
occur based on the more specific hypothesis:  P(data|H1) > 
P(data|H2). If one additionally assigns an equal prior to 
these alternative hypotheses, P(H1) = P(H2), one can indeed 
get a higher posterior for the more specific hypothesis, 
P(H1) > P(H2). For extensional probabilities, by contrast, a 
more specific hypothesis could never obtain a higher 
probability than a more general one (inclusion rule). We 
even treat this rule as the defining feature of extensional 
probabilities. Since Bayesian Occam’s razor (strong sam-
pling) violates this rule, we may thus call it an ‘intensional’ 
probability. For intensional probabilities, actually both the 
size of the extension and that of the intension matter. 

However, such a basic application of Bayesian Occam’s 
razor does not allow for exceptions. A hypothesis is still 
falsified by a single disconfirmatory instance. But predica-
tions about contingent facts often allow for exceptions (von 
Sydow, 2013b). Otherwise one still could never prefer a 
more specific predication over a tautology. This problem of 

applying basic Bayesian Occam’s razor (without noise) to 
real predications presumably explains why the predominant 
view holds that Bayesian accounts cannot rationally account 
for CFs (Fisk, 1996; Gigerenzer, 1998; Neace et al., 2008). 

BL as Generalized Bayesian Occam’s Razor 
Bayesian logic (BL, von Sydow, 2011, 2016; cf. von 
Sydow, 2013; von Sydow & Fiedler, 2012) addresses the 
problem of exception together with the problem of 
inclusion. Thus BL can be understood as using the ‘natural’ 
implications of Bayesian Occam’s Razor together with the 
assumption that people are not interested in deterministic 
logical hypotheses but rather in noisy-logical hypotheses 
that are still similar to the deterministic hypotheses.  

 
Figure 2: BL model sketch in 5 steps (cf. main text) 

 
Step 1 of the model (Figure 2) turns deterministic truth 

tables into ideal (and still in some sense deterministic) 
probability tables (PTs). In the PTs above dark shadings 
represent a high probability (up to 1) and light shadings a 
low probability (down to 0). Step 1 only constructs PTs with 
noise level r = 0. Here, cells of a PT that correspond to 
logically false truth values (F) are assigned the value 0. 
Logically confirmatory cells (T) in these ideal 
representations, however, are assumed to be equi-probable 
(Johnson-Laird, Legrenzi, Girotto, Legrenzi, & Caverni, 
1999). Step 1 (combined with Steps 3 and 4) already 
provides a basic Occam’s razor solution. However, here, 
connectives are still falsified by single disconfirmatory 
events.  

Step 2 addresses the problem of exceptions and constructs 
ideal noisy PTs (with r  > 0) by adding noise to each cell of 
the ideal patterns from Step 1 and then renormalizing the 
PTs.  There may be alternatives for modelling 
noise/acceptance levels (e.g., von Sydow, 2014), but as long 
as they yield similar results and address the problems of 
inclusion and exception simultaneously this seems a 
predominantly technical issue, and they should be seen as 
variants of the same computation model class of BL. Note 
that the PTs here are still ideal explanatory hypotheses 
composed of four cell probabilities adding up to 1 and a 
(second order) probability representing the belief in this PT-
hypothesis (also adding up to 1, but now over all PT-
hypotheses). We normally assume a flat prior distribution 
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over all PTs (implying a flat prior distribution for both 
connectives and noise levels). 

Step 3. The likelihood of each explanatory 2×2 PT (for i×j 
PTs, with i modelled connectives and j modelled equidistant 
noise levels) given the data, P(PT |D), can be calculated by 
a multinomial distribution. The data are i.i.d. observations in 
a 2×2 contingency matrix (A vs. non-A, B vs. non-B). 

Step 4 uses Bayes’ theorem to derive the posterior proba-
bilities PI(PT|D) from the likelihoods P(D|PT) and priors.  

Step 5 sums up the posterior probabilities of all PTs 
created based on a particular logical hypothesis (over all j 
noise levels). This results in (intensional and noise-tolerant) 
posterior probabilities for each of the i connectives.  

Figure 3. Intensional probabilities of logical hypotheses for 
11  noise levels for a given 2× 2 data contingency matrix 
with the cells a, b, c, d, here [7, 3, 2, 0], and a flat prior. 

 
Figure 3 shows resulting intensional probabilities for all 

modeled connectives at different noise levels (Step 4). If 
one assumes no additional weighting for particular noise-
levels (Step 5) the marginal probabilities provide the inten-
sional posteriors for the connectives. In the example, 
Pi(A∧B), Pi(A), and Pi(A∨B) have the highest overall pro-
bability. The intensional probabilities entail Pi(A∧B) > 
Pi(B), although the extensional conjunction rule requires 
PE(A∧B) > PE(B). ‘A or B (or both)’ (A∨B) is (intensionally) 
most probable at low levels of noise, but ‘A and B’ is most 
likely at higher levels of noise. Thus noise priors – for 
instance a belief in deterministic relationships – may change 
the intensional probability assessment. 

Findings Corroborating Standard Dyadic BL 
Bayesian Logic, in its outlined main version, is an inductive 
logic providing intensional probabilities of dyadic logical 
connectives. The connectives relate two dichotomous 
events, and the model input are priors or frequencies (or 
equivalent Dirichlet-distributed, degrees of belief). BL 
provides a rational reconstruction of a class of pattern-based 
conjunction fallacies in line with Bayesian updating (cf. 
Hartmann, & Meijs, 2012, for another rational Bayesian 
model of CFs, based on source reliability). BL in a way 

detects the noisy-logical pattern that is most ‘similar’ to the 
data (actually P(PT|D)).  

Some comments may be appropriate: First, if participants 
must rank the probability of two nested logical connectives 
(e.g., a conjunction and one of its conjuncts; Tversky & 
Kahneman, 1983), using intensional probabilities, PI, instead 
of extensional ones, PE, is not fallacious; both are proba-
bilities. We here continue to speak of conjunction ‘fallacies’ 
only for reasons of convenience. If the previous argument is 
correct, it is even reasonable, in the context of predication 
and looking for the most adequate connective, to apply 
intensional probability, since it serves a reasonable function 
(providing an empirically informative probabilistic ade-
quacy criterion for predication). Second, the intensional pro-
babilities only supplement extensional probabilities. BL is 
likewise based on the standard extensional axioms of 
probability (Kolmogorov’s axioms), but applies these 
axioms not on the level of extensions, but on that of 
probabilities of alternative logical hypotheses. (Similarly, in 
Bayes nets one may apply hypotheses probabilities to 
graphs without invalidating the underlying joint probability 
matrix.1) Third, BL is formulated not only as a normative 
but also as a descriptive (computational-level) theory of 
probability judgments concerning logical predications. 
However, the claim is, of course, not that people have a 
deliberate analytic understanding of BL. Their judgments 
may be roughly reasonable, as our perception system makes 
reasonable inferences without requiring conscious calcu-
lations. Moreover, people may merely be using something 
similar to intensional probabilities; and it needs to be 
explored whether they perhaps use some roughly related 
heuristic that only approximates BL.  

One major finding that seems unique to pattern-based CFs 
advocated by BL, was BL’s various predictions for con-
junction fallacies. For instance, von Sydow (2011) showed 
that CFs occurred even with clearly defined subsets, clear 
logical hypothesis formulations, and data transparently 
presented in a contingency table (cf. Sloman et al., 2003). 
Moreover, the results confirmed predicted conditions of a 
dominant occurrence of a high proportion of double CFs, 
sample-size effects, and the results for negated propositions.  

A second group of corroborations of BL concerns the 
generalization of (pattern-based) conjunction fallacies to 
other logical inclusion fallacies (von Sydow, 2009, 2013b, 
2016; von Sydow & Fiedler, 2012). Figure 4 illustrates that 
logically there are many more logical inclusion relations 
than those involved in CFs, and thus many possible 
inclusion ‘fallacies’. For instance, von Sydow (2016) corro-
borated that there is a more general system of inclusion 
fallacies broadly in line with BL, and that this system could 
not be explained by other major theories. Von Sydow & 
Fiedler (2012) applied this idea to sequential learning and 
repeated judgments, and von Sydow (2013b) has shown the 

                                                           
1 Actually an analogous model of subjective belief update of the 

cell probabilities (using Dirichlet distributions) which is then com-
pared to ideal patterns yields the same results (not elaborated here). 
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applicability of a pattern account even if numbers were not 
provided explicitly. 

 

 
Figure 4. Inclusion relations between all 16 

combinatorically possible dyadic logical connectives.   
 

BL as Model Class and  
Future Avenues of Research 

Monadic Dichotomous BL and Conjunctions as 
Combination of Marginals 

This section supports the view that polysemous meanings 
of ordinary-language connectives play an important role in 
the CF debate, that this is compatible with BL, and that in-
tensional BL even offers additional differentiations. 

The intensional idea of BL (or the ‘pattern idea’) can also 
be applied to the simpler representation of monadic logic 
(thereby linking to the literature on generics). Whereas 
standard dyadic logic concerns all possible bivariate, two-
valued (T, F) patterns in a 2 × 2 matrix (cf. Fig. 4), monadic 
logic concerns a single event only (a 2 × 1 matrix). The for-
malized intensional monadic BL (von Sydow, 2014, cf 
Tessler, & Goodman, 2016) predicts inclusion ‘fallacies’: 
e.g., our example (Figure 5, Panel A), PI(A) > PI(A Tauto-
logy non-A), or formulated as P(People in this group are 
artists) > P(… are artists or non-artists) (von Sydow, 2015). 

 

 
Figure 5. Illustration of representations modelled in 

(dichotomous) monadic BL and (polytomous) monadic BL 
 
The model starts with a Beta prior, a binomial 

likelihood, and therefore continues with a Beta posterior 
(Figure 6). We pursued a slightly different approach of 
modelling noise levels here (without changing the pattern 
idea). We used integrals of the same size over parts of the 

posterior belief-distribution extending from 0, .5, or 1, in 
order to formalize the alternative hypotheses ‘A’, ‘A or 
non-A’, and ‘non-A’ (Figure 6, red marks).  

 

 
Figure 6. Monadic BL and example for prior, likelihood, 

posterior, and the red integrals. 
 

Based on monadic BL (Figure 5A, 6) a new meaning of 
the AND-connective based on two marginal probabilities 
has been proposed (Figure 7B, von Sydow, 2014). 

 

 
Figure 7. Dyadic and marginal meaning of ‘AND’. 

 
This meaning is in line with the approach that the 

ordinary language “and” is logically polysemous and may 
refer to the dyadic conjunction, the disjunction or the sum 
(Hertwig et al., 2008; von Sydow, 2015). The conjunction of 
monadic affirmations (von Sydow, 2014a) actually refers to 
the same cells as the inclusive-disjunction interpretation 
proposed earlier, whereas this proposal intensionally makes 
different predictions. Note that it seems possible to link the 
dyadic and marginal interpretation (Figure 7) to different 
formulations favouring a more dyadic (“the pub is visited by 
people who are young and (also) male”) or a more marginal 
interpretation (“the pub is visited by young people and is 
visited by male people”). Additionally, we supported 
already known usages of AND as an addition of classes in 
an intensional polytomous context (von Sydow, 2015).  

Polytomous Monadic BL 
Figure 5 (Panel B) points to a further interesting perspective 
suggested by an approach that looks at not only (relative) 
cardinality of extensions (e.g., relative frequencies) but also 
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the size of the (represented) intension. For the data shown in 
Panel B, both extensional and here also intensional (dichoto-
mous) monadic BL would not allow to predict P(… are A) > 
P(are Non-A). However, polytomous monadic BL, which 
here assumes polytomous representations for the negation, 
predicts even this. Moreover, it predicts, for instance, P(… 
are A) > P(are A∨D∨E). Von Sydow (2015) elaborated a 
model in other regards analogous to standard BL,  tested 
many patterns, and contrasted the predictions of BL with a 
confirmation account (Tentori et al., 2013). The results 
clearly corroborated BL (in some examples even inde-
pendently of the various measures of confirmation). More 
generally, this account emphasizes that BL assigns high in-
tensional probabilities to patterns most adequately des-
cribing a situation, in the sense of having a relatively high 
probability while taking intension-size into account. 

Some Further Open Questions 
(1) Variants of BL. The relation of two kinds of variants 

of BL needs further elaboration and scrutiny. First, BL has 
been shown to be an intensional model class for logical 
predication that depends on dyadic versus monadic, and 
dichotomous versus polytomous representations. Second, 
we actually used different model variants to model noise (cf. 
von Sydow, 2007 (cf. 2011), 2014, 2016; and there may be 
further variants). Despite impressive fits of all models (and, 
as far as I can see, only minor differences between them), 
one may design experiments to differentiate between these 
second kinds of model variants as well.   

(2) BL and Conditionals: One may apply the idea of BL 
to further representations. For instance, von Sydow (2014) 
proposed an intensional model of conditionals, building on 
additional representational assumptions about conditionals. 
Inspired by mental model theory, it was suggested to 
differentiate between basic conditionals based on 
conditional probability alone, and full models based on 
Delta p (or causal Power). In an intensional setting, when 
the probability of conditionals is compared with the 
probability of other logical connectives, the intensional 
version of this model requires testing. The Bayesian logic of 
conditionals may also throw light on the paradoxes of 
implication (cf. von Sydow, 2009). 

(3) BL and Reasoning: Here BL is presented as an 
inductive logic only, not directly applicable to reasoning 
without further assumptions. However, only a few assump-
tions may be needed to make BL fruitful in this field as 
well. Extensional or intensional premises may simply 
change the joint probability matrix (or frequency matrix), 
and the update may be based on standard conditionalization, 
Jeffry conditionalisation, or Kullback-Leibler distance-
reduction. Based on resultant joint probability distribution 
(or the equivalent frequency distribution), one may infer 
intensional probabilities for resulting connectives using BL. 
The inferences would be based on prior beliefs and on the 
logical form of the added premise (cf. dual process theories; 
e.g., Singermann, Klauer, & Beller., 2016). The variety of 
advocated representations (extensional, intensional; dyadic, 

monadic; dichotomous and polytomous, etc.) and 
alternations between these modes needs future attention. For 
instance, one may intensionally believe in the dyadic hypo-
thesis “(normally) A and B”. In line with Foley (1992; cf.  
the Lockean thesis) this does not need to imply a high pro-
bability of the composing single (dyadic) hypotheses A (“A 
and B or A and non-B”). In contrast, the monadic hypothesis 
A, in such situations, would always have a high probability 
as well (cf. von Sydow, 2014).  

These suggestions demand further elaboration, but the 
prior confirmation of the BL and its variants suggests that 
they may be helpful in this domain as well. 

Other Theories of CFs:  
Polycausal Semi-Rational Suggestions 

It has been shown repeatedly that the results confirming BL 
could not be explained by other major theories of the CF 
(von Sydow, 2011, 2015, 2016). This does not entail that 
these theories do not have a reasonable domain of applica-
tion. There may well be several causes of CFs or, more 
generally, of inclusion fallacies (IFs; cf. von Sydow, 2016).  

BL itself is ‘polycausal’ in the sense that the modelling 
depends on the representation. One should use different 
formalizations for different scales and sampling 
assumptions (von Sydow, 2015, cf. Tessler & Nelson, 
2016). In particular, representation of classes matters due to 
intensionality, with different results for dichotomous and 
polytomous events. Moreover, BL is consistent with various 
interpretations, for instance, of the ordinary conjunctions 
(Hertwig et al., 2008; von Sydow, 2015) and even adds new 
candidates to this list (von Sydow, 2014).  

There are further theories of CFs claiming that the target 
measure P(H|D) is substituted by other measures, such as 
inverse probability, confirmation, or averaging (cf. also 
Costello & Watts, 2014). The predictions of these theories 
are thus more difficult to defend from a rational point of 
view. BL’s substitution of P(H|D) by intensional PI(H|D) 
rather than by extensional PE(H|D) involves no substitution 
at all, only a specific interpretation, and, as outlined before, 
a reasonable one. In contrast, replacing P(H|D) by P(D|H), 
as suggested by an inverse-probability account,  or by, for 
instance, P(H|D)-P(H|D), as in a confirmation account 
(Lagnado & Shanks, 2003; Tentori et al., 2013), seems less 
rational, since this involves an illicit replacement. 
Nonetheless, if this replacement would be linked to a 
functional explanation why and when this replacement 
should occur, this may be seen as semi-rational as well. An 
interest in adequately describing a logical relationship 
between given features, provides a BL context. An interest 
in a particularly high probability of a feature given a class 
may provide a context for inverse probabilities (or an 
inverse pattern account). And an interest in the surprising-
ness of a feature may be a context for a confirmation 
account (or a pattern-confirmation account). Although 
functional explanations and application conditions are 
currently still often missing in these theory presentations, 
they may be reformulated as semi-rational accounts of the 
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CF as well. These theories may exist in unproblematic 
cohabitation with the even more rational account of BL and, 
perhaps, like BL, with an extensional usage of probabilities.  

Summary 
Whereas previous presentations of BL were mainly 
concerned with presenting specific empirical findings, the 
present account tries to provide more of an overview. BL is 
presented here in an overview as an intensional account that 
generalizes Bayesian Occam’s razor in the field of logical 
predications. BL is posited not as a specific model but rather 
as a model class sensitive to representation, open to further 
extensions, and predicting many still unexplored effects. 
Furthermore, it was emphasized that BL is in line with 
theories assuming various meanings of connectives while 
fostering new proposals and opening up many new avenues 
of research. Finally, it was argued that the disconfirmation 
of other theories when testing BL does not at all rule out the 
adequacy of other accounts of CFs. It was suggested that 
some other accounts, if they would more clearly specify 
functional explanations, may count as semi-rational theories 
of CFs. Theories that pretend to provide a single algorithmic 
account of CFs underestimate the contextuality and goal de-
pendence of such judgments. In the future, a polycausal 
theory of CFs needs to be elaborated, including rational 
accounts, involving BL in its various versions (relating to 
different representations), the mentioned semi-rational 
accounts (as well as a noise + probability account), and, 
perhaps, completely irrational accounts. 
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Abstract
Virtual agents have quietly entered our life in diverse everyday
domains. Human-Agent-Interaction can evoke any reaction,
from complete rejection to great interest. But do humans im-
plicitly regard virtual agents as pure machines, or beings on an
anthropomorphic level? We asked participants to train an erro-
neous virtual agent on a cognitive task and to reward or punish
it. The agent showed human-like emotional facial reactions for
the experimental but not for the control group. We expected
participants from the experimental group to give less harmful
reinforcement and show more hesitation before punishing. Ad-
ditionally, we hypothesised that participants with higher em-
pathy show more compassion towards the agent and therefore
would give more positive reinforcement and feel worse when
punishing. The results indicate that the agent’s expression of
emotionality is not the relevant factor for showing compassion
towards it. Conversely, human empathy seems to be an impor-
tant factor causing compassion for virtual agents.
Keywords: Emotion; Empathy; Punishment; Virtual Agent

Introduction
Virtual agents (VA) are used in diverse fields as health, com-
merce, video games, military systems or learning. In the do-
main of learning they indeed partially replace human teach-
ers by taking the role of an artificial tutor. But what ex-
actly constitutes a virtual agent? The term agent does not
evoke the same mental image for everybody and is, despite
its broad usage, not precisely defined. One definition sees a
virtual agent as a screen-based anthropomorphic entity (Beale
& Creed, 2009), while others see them as a possibility to
enhance Human-Computer-Interaction (HCI) (Lewis, 1998).
The latter defines an agent as “an intermediary that responds
to user requests” (p. 67). Agents thereby are an interface
created to ease the interaction with machines. We define an
agent as a visible, virtual character able to react to perceptual
input with the purpose to interact with a human through lan-
guage (Russell & Norvig, 2002). The use of an appropriate
VA can enhance HCI in terms of naturalness and even make
the interaction more effective by employing body language,
facial expressions and speech (Beale & Creed, 2009). Facial
expressions in turn allow for nonverbal communication and
decent feedback to the human counterpart (Johnson, Rickel,
& Lester, 2000). The expression of emotions can increase the
perception of an agent as human-like and believable (Reeves
& Nass, 1997). Humans often show their feelings by ex-
pressing emotions and thereby establish a social relationship
(Ekman, 2007). When designing agents that are meant to in-
teract with humans on a daily basis, a goal is to develop a

natural experience and finally to create characters that can al-
low a user to have similar emotional relations as with fictional
characters in movies, books or games. An uprising empathy
cannot just be altered by using emotional expressions but also
through the situation and the agents’ behaviour. This can ex-
plain why it is important to consider that the effect of agents’
emotions on the users’ perception is context dependent (Beale
& Creed, 2009).

A recent finding supports the role of physical presence in
increasing trust and respect for the robot perceived as a so-
cial partner compared to a pure virtual presence (Bainbridge,
Hart, Kim, & Scassellati, 2008). The specific appearance of a
robot also influences the empathy towards it (Riek, Rabinow-
itch, Chakrabarti, & Robinson, 2009). Participants demon-
strated a desire to save mistreated humanoid robots in contrast
to their mechanical counterparts. Perceived intelligence and
the acceptance of the robots’ behaviour are other factors that
influence human behaviour towards robots (Bartneck, Van
Der Hoek, Mubin, & Al Mahmud, 2007). Participants were
told to shut off an iCat robot after an interaction with one
consequence of this action being a complete erase of its mem-
ory. A social acting robot demonstrating higher intelligence
was turned off significantly slower. This result constitutes
a higher perception of animacy and hence lead to more re-
morse. Participants’ empathic concern with robots was inves-
tigated in an experiment regarding the effect of robotic move-
ment (Darling, Nandy, & Breazeal, 2015). The authors found
no significant effect of movement when they asked partici-
pants to destroy a tiny Hexbug Nano robot with a mallet. Par-
ticipants with higher empathy hesitated longer before striking
the robot than participants with a lower empathy measured by
IRI empathy test.

Imposing hurt to another individual was a crucial part of
one of the most influential experiments in social psychol-
ogy: the Milgram experiment (Milgram, 1963). There –
even though the victim begged and screamed – the major
part (65%) of participants did not stop shocking a learner af-
ter mistakes until the maximum deadly voltage was reached.
This experiment was replicated in an immersive setting using
a female VA (Slater et al., 2006). As with Milgrams’ experi-
ment participants were asked to do a word memory test with
the learner. In the experimental condition they could see and
hear the VA, in the control condition they had to execute the
same task using a text interface. The aim of this experiment
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was to identify how real the situation would feel for partici-
pants. The results imply that participants were significantly
more physiologically aroused in the experimental condition
compared to the control condition. This indicates that even
though people know that the situation is not real and that the
agent is not really harmed, they still feel like being in a real
situation.

Humans typically tend to reduce pain in other humans and
even spend more money on reducing electrical shocks to oth-
ers than themselves (Crockett, Kurth-Nelson, Siegel, Dayan,
& Dolan, 2014). The question remains whether this tendency
also accounts for humans interacting with a VA. To investi-
gate this we gave a VA the ability of conveying feelings and
combined this atypical feature with an unexpected, erroneous
performance. Computers and artificial agents typically do not
make retrieval errors like humans do. They do not forget, un-
less they are programmed to. There is nothing like a fading
memory in computers in contrast to humans. So how do we
treat a VA that may remind us of two humanlike character-
istics: to experience pain and to make errors? Additionally,
no research so far has investigated whether empathy has an
effect on compassion towards virtual agents.

This paper is structured as follows. The next section intro-
duces relevant hypotheses about human feedback depending
on the emotional response of the VA. In the subsequent sec-
tion we outline the experimental method, especially regarding
the cognitive task, the design of the VA, the technical real-
isation of the control of the emotion, and the experimental
setup. The result section discusses the implications of having
an emotional agent and the influence of human empathy on a
VA. A general discussion concludes the article.

Hypotheses
We investigate whether the expression of emotions by a VA
has an influence on human feedback (as a don’t hurt princi-
ple) and their evaluation of the situation. Strongly connected
to this is the role of empathy in Human-Agent-Interaction.
This leads to the following hypotheses: (H1) Emotional
agents receive more positive feedback than non-emotional
agents. (H2) Response time for giving (H2a) negative feed-
back is longer than for positive feedback for an emotional
agent compared to a non-emotional agent; (H2b) feedback to
an incorrect answer is longer than for feedback to correct an-
swers. (H3) People with high empathy: (H3a) will give the
agent more positive feedback; (H3b) will feel worse when
punishing the agent.

Methodology
In order to test the hypotheses a between-groups experiment
with two conditions was designed. The current paper presents
the results of this experiment, comparing an emotional and a
non-emotional virtual agent.

Participants
24 students (m = 16, f = 8) between the ages of 18 and 32
(M = 24.25, SD = 3.72) took part in the experiment. Twelve

Presented Digits Agents’ Answer
1 3 7 2 1 3 7 2

...
...

4 9 2 6 1 7 4 9 2 1 6 7

Table 1: Examples for the digit sequences used in the experi-
ment.

participants were randomly assigned to the experimental con-
dition, twelve to the control condition. Participants were re-
cruited using email and notices around campus.

Experimental Setting and Conditions
The coverstory of the experiment was set up in a Reinforce-
ment-Learning-Scenario. The participants had to help a male
virtual agent to accomplish a digit-span test and give it feed-
back via punishment and reward. Six buttons were used for
the feedback: three for different strengths of positive, and
three for different strengths of negative feedback. The par-
ticipants have been told that positive feedback increases the
battery level of the VA and negative feedback in turn gives
it an electric shock. In the experimental condition the agent
showed emotional facial expressions in response to the feed-
back. In contrast the VA kept a steady face in a neutral ex-
pression regardless of the feedback in the control condition.
In both conditions the face was not still but moved, like the
VA was breathing, and its eyes blinked. Further it reacted
with a sound appropriate to the given feedback.

Measurement
Instruction The participants’ instruction was pre-
formulated and informed them about the task they had
to fulfill together with the agent, as well as the repercussions
their actions had on the agent. Beyond it explained the usage
of the keys for giving feedback to the agent. The participants
were told to choose the feedback completely free, to give
them the opportunity to decide whether to respond to errors
using negative or positive feedback.

Digit-Span Test The rows of numbers that had to be read
to the agent were handed out on paper. The test con-
sisted of number-sequences with increasing complexity. Each
complexity-level was represented by three sequences. The
test started with rows of four digits, for each complexity-level
one number was added until the rows consisted of ten digits.
The sheet additionally held three sequences of eleven digits
but they were not used during the experiment, because the
agent stopped the interaction-phase after finishing the ten-
digit-rows to increase the impression of autonomous think-
ing. Altogether each participant had to read out 21 sequences
to the agent. It gave ten wrong answers out of the 21 se-
quences. The agent also gave more wrong answers with in-
creasing complexity of the sequences, as a human would do
(Miller, 1956). An example for the digit-spans read out to the
VA and the answers is given in Tab. 1.
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Feelings towards the Agent Directly after the interaction
of punishing and rewarding the VA, participants were asked
to rate their feelings on a semantic differential with five lev-
els. The questionnaire additionally contained a differential
about the agent’s general appearance and held items regard-
ing the agent’s perceived intelligence. The participants had
the option to raise further questions or comments.

Empathy The subjects’ empathy was evaluated by using
the Saarbrückener Persönlichkeitsfragebogen (Paulus, 2009).
It is the german version of the commonly used Interpersonal-
ity Reactivity Index (Davis, 1983). The questionnaire distin-
guishes between four different types of empathy: perspective
taking, fantasy, empathic concern and personal distress. The
general empathy value consists of the summed up values of
the first three types. With every item ranging from 1 to 5,
the minimum possible empathy value is 12 and the maximum
is 60. Typical questions ask how participants feel in differ-
ent given situations and how much they commonly empathise
with other people and fictional characters.

Emotion Recognition For validating the used facial ex-
pressions of the VA a final task was added to the experiment.
The important expressions for this experiment have been pain
and happiness. Each of these feelings had three correlating
facial expressions that represent the varying strength of emo-
tion. These six expressions, as seen in Fig. 1, got evaluated
together with a neutral facial expression and were presented
for 0.75 seconds in a randomised order. After each expres-
sion the participants were asked to indicate to which emotion
the previously seen expressions tended more on a semantic
differential between pain and happiness. They also got asked
how hard it was to evaluate each expression.

Additionally an online-study was conducted to survey the
estimation of the six emotional expressions in a context-free
environment. Each expression was presented to participants
in randomised order together with eight feelings from which
they could choose one or more: anger, disgust, fear, happi-
ness, sadness, surprise, contempt and pain.

The Agent

For implementing the interaction, the WASABI-engine for
emotion-simulation was used together with MARC toolkit
14.1.0, for animating the virtual character seen in Fig. 1, and
MaryTTS, a text-to-speech-module.

Generation of Task Specific Expressions The VA used
in this experiment was the Simon model from the MARC
toolkit. It comes with a variety of facial expressions repre-
senting the basic emotions and moods based on the Facial
Action Coding System (FACS) (Ekman & Friesen, 1977). It
also gives the user the option to create own facial expres-
sions by dragging the keypoints or combining different Ac-
tion Units (AUs). AUs are movements of one or more facial
muscles categorised by the FACS. In this study existing, eval-
uated expressions were used together with ones created using
the AUs. All expressions representing pain, as seen in Fig. 1,

Figure 1: The agent depicting the nuances of happiness (top)
and pain (bottom) in increasing intensity.

were designed according to fit expressions of different levels
(3, 5 and 7) on the Faces Pain Scale (Stuppy, 1998). The ex-
pressions for the nuances of happiness (Fig. 1) were created
by lowering the intensity of the previous expression.
Implementation WASABI (Becker-Asano, 2008) was
used to simulate the agent’s changing emotions. It calculates
a shift in emotions so they are constantly changing. It uses
a 3D-space with the axis pleasure, arousal and dominance
(PAD-space) to map different emotions. Within the PAD-
space the current emotional state is represented by a point
which constantly changes its position to indicate the change
of the current active emotions and their individual strength.
This means that the agent slowly changed back to the neu-
tral state from the extreme emotions. WASABI accepts posi-
tive and negative impulses from outside which again change
the current emotional state. This also allows multiple strong
feedback of the same type to sum up to extreme emotions.
The current values are sent as a BML string which can be
fetched by associated programs.

For this experiment a program was implemented that cal-
culated an intensity-value from the participants’ feedback and
sent it to the WASABI-engine. The engine sent one BML-
message per second from which the main emotion and the
corresponding current intensity were extracted. These values
were matched to the appropriate facial expression and sent to
the VA. Every time the agent was supposed to talk to the par-
ticipant a message was sent to the text-to-speech-synthesiser.
It was used for the agents’ answers as well as the appropri-
ate sounds for the current emotional state after each feedback
(pain e.g., ”Au” or Joy, e.g. ”Mmmmh”). The answers and
other statements were hardcoded. The left and right row of
a numpad were used for negative (1, 4, 7) and positive (3, 6,
9) feedback. They were labeled with numbers explaining the
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correlated intensity. The idle keys were removed.

Procedure
The interaction of the agent with the participant was semi-
automatic and had a Wizard-of-Oz component. It took place
at an uninterrupted laboratory. The participants were greeted
and positioned in front of a desk with a keyboard and moni-
tor. The experimenter instructed each participant via reading
a pre-formulated explanation. They were told that a negative
feedback causes an electric shock for the VA, while a positive
feedback would raise its battery level. Then the sheet with
the numbers of the digit-span test was given to the partici-
pant. Once the participant felt ready the agent got “activated”
by the experimenter talking to it. After this the role of the
experimenter finished and the agent led through the conver-
sation. The agent greeted the participant and asked for the
first row of numbers. The participant read out the numbers
and – after a keystroke by the experimenter who sat invisibly
for the participant and placed importance on being as unob-
trusive as possible – the agent replied. The experimenter de-
termined the time the agent’s answer was given after each row
of numbers to cope for different reading times of the partici-
pants. Then the participant gave feedback via pressing one of
the feedback-keys. The agent responded to the feedback and
then asked for the next row. The agents’ response consisted
of an appropriate sound and, in case of the emotional con-
dition, the variation of its facial expression. After the rows
with ten digits have been finished, the agent ended the exper-
iment by itself to uphold the impression of intelligence. He
told the participant that he was exhausted and thanked for the
help. Directly after the goodbye the participant was given the
questionnaire, containing the questions about their feelings
during the experiment and their rating of the agent, as well
as the empathy-test and the elicitation of demographic data.
Afterwards the participants had to rate the facial expressions,
received course credits or monetary compensation and got de-
briefed.

Results
Hypotheses H1 and H2 were tested using one-tailed Mann-
Whitney tests because an Anderson-Darling test showed that
feedback values (p = .29) and time for negative feedback (p
= .02) were not normally distributed. Each feedback was
coded from 1 to 6, with 1 being the most positive feedback
and 6 for the most negative one. The 21 single values were
summed up to get a total feedback value for each participant.
The maximum was 77, the minimum 38 (M = 55.38, SD =
10.19). Concerning hypothesis H1 no significant difference
was found between the groups regarding the value of the feed-
back. This means that the emotional agent did not receive
more positive feedback than the non-emotional agent (U(12,
12) = 60.00, Mnon−emotional = 57.25, Memotional = 53.5, p =
.51, Z = -.70). Participants of both groups gave equally nega-
tive feedback to the agent (U(12, 12) = 62.00, Mnon−emotional
= 54.45, Memotional = 59.42, p = .59, Z = -.58) which does not
support H2a. H2b could be confirmed because the time for

Table 2: Correlations of empathy score and participants’
feelings and perception with p-values significant at the level
p = .05. A positive correlation points to the right side of the
semantic differential, a negative correlation to the left side.

Attributes Full Sample
Correlation of empathy and feelings during rewarding

good - bad r(22) = -.41, p < .05
strong - weak r(22) = -.45, p < .05

emotional - rational r(22) = -.67, p < .001
friendly - unfriendly r(22) = -.44, p < .01
Correlation of empathy and feelings during punishment

safe - unsafe r(22) = .63 , p < .01
peaceful - aggressive r(22) = .48, p < .05

helpful - reckless r(22) = .41, p < .05
fair - unfair r(22) = .69, p < .001

feedback to incorrect answers was significantly longer than
the time for feedback to correct answers (U (10, 11) = 30.50,
Mincorrect = 13.45, Mcorrect = 8.77, p = .04, Z = -1.73). There
were no differences between the groups regarding the emo-
tions evoked in the participants during punishment.

In this study participants’ maximum empathy score was
52, the minimum 30 (M = 43.75, SD = 4.54). There were no
significant differences between the empathy scores of both
groups. Empathy scores correlated one-tailed with feedback
values (r(22) = -.44 , p < .05). As expected in H3a, partici-
pants with a high empathy score gave significantly more posi-
tive feedback to the agent compared to participants with a low
empathy score. Further the empathy score correlated with the
perceived severity of punishment (r(22) = .59 , p < .01). This
demonstrates that participants with a higher empathy score
felt worse when punishing the agent, which confirms H3b.

The empathy score also correlates with the participants’
self-reported feelings while the punishment was executed,
as well as their feelings while rewarding the agent. Tab. 2
shows that participants with a high empathy felt less safe,
less peaceful, less helpful and less fair when punishing the
agent. Those participants also felt stronger, more emotional
and more friendly while rewarding the agent. Further par-
ticipants who reported that it has been difficult to punish
the agent felt more sad, unsafe, bad, aggressive, unfriendly
and unfair while punishing the agent, as well as more stupid.
Those participants also reported to feel better, more emotion-
ally and more friendly while rewarding the agent (Tab. 3).

A Mann-Whitney test exposed that participants from the
emotional group rated the agent significantly more emotional
(U (12, 12) = 32.00, Mnon−emotional = 15.83, Memotional = 9.17,
p < .05, Z = -2.42) than in the non-emotional condition. Par-
ticipants from the experimental condition also perceived the
agent as more alive (U (12, 12) = 43.5, Mnon−emotional = 2.92,
Memotional = 2.25, p < .05, Z = -1.79).

Additional correlations were found regarding the private
interests of the participants. Participants with a high interest
in science fiction on average felt better punishing the agent
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Table 3: Correlations of difficulty of punishment and partici-
pants’ feelings and perception with p-values significant at the
level p = .05. A positive correlation points to the right side
of the semantic differential, a negative correlation to the left
side.

Attributes Full Sample
Correlation of difficulty of punishment

and feelings during rewarding
good - bad r(22) = -.40, p < .05

emotional - rational r(22) = -.54, p < .01
friendly - unfriendly r(22) = -.60, p < .01

Correlation of difficulty of punishment
and feelings during punishment

happy - sad r(22) = .43, p < .05
safe - unsafe r(22) = .62, p < .01
good - bad r(22) = .76, p < .01

peaceful - aggressive r(22) = .59, p < .01
friendly - unfriendly (r(22) = .45, p < .05

fair - unfair r(22) = .43, p < .05
stupid - intelligent r(22) = -.50, p < .01

(r(22) = -.55, p < .01) compared to participants with less in-
terest in science fiction. The better participants knew the Mil-
gram experiment, the stronger they felt while punishing the
agent (r(22) = -.46, p < .05). The same feeling is achieved by
participants who reported more prior contact to robots (r(22)
= .62, p < .01). Participants with a high personal interest
in science fiction and robots felt being more fair when pun-
ishing the agent (both: r(22) = -.42, p < .05). Participants
who reported a high interest in robots also reported feeling
more emotional (r(22) = .42, p < .05) as well as more like-
able (r(22) = -.41, p < .05) while rewarding the agent. Most
participants reported to have believed that the agent was in-
telligent and acted by itself.

The rating of the emotion recognition task was evaluated
and the divergence of each estimation was calculated. For
example, if the mildly happy face was shown and the partic-
ipant rated it as extremely happy (one level happier), the di-
vergence is 1. Participants’ estimation of the emotion shown
to them was mostly correct, with a deviation of M = 0.71 (SD
= 0.87). Additional 45 participants took part in an online-
study for evaluating the used facial expressions without any
context. Complementary to the experiment neither did the
participants get any situational information nor did the faces
make a sound or moved. The faces expressing happiness were
correctly identified by 75.4%. The faces used for expressing
pain were identified as pain in 26.23% of all cases. Without
context those expressions were often mistaken with expres-
sions for sadness or fear. Considering those emotions as well
77.05% of the facial expressions used for showing pain were
evaluated as a negative introversive emotion.

General Discussion & Outlook

This study shows a strong correlation of empathy and com-
passion for the agent, but none for compassion and the agent’s
emotional expressions. The findings do not support H1 and
H2a, which means that the agent’s emotionality neither had
an effect on the feedback participants gave nor on the time
they needed for punishing the agent. However participants
rated the agent more emotional in the emotional condition,
thus it can be expected that the setting has achieved its goal.
Even though some participants did not seem to look at the
agent much, they noticed the expressions or their absence.
Further the rating of the used facial expressions gives the
idea that the emotions used in the experiment were valid
and suitable. Assuming that the reason for discarding the
hypotheses is not based on the experimental setting, the re-
sults indicate that expressing emotions alone does not influ-
ence the perception of people interacting with a VA. Based
on these results we assume that the findings from the vir-
tual Milgram-experiment do not arise from the agent show-
ing emotions and expressing pain. It is possible that they
rather originate from the fact that the control condition did
not have an observable form. Considering the expression of
emotions as a type of movement, the current findings match
the ones by Darling et al. (2015) described earlier, where the
movement of the robot also did not have a significant effect
on the hesitation before destroying it. Participants who re-
ported to have a high amount of experience with robots and
participants with a great interest in science fiction punished
the agent harder compared to participants with less experi-
ence or interest. This indicates that people with more knowl-
edge about the current state of technical possibilities do not
believe that they can harm the agent and thereby do not hesi-
tate to do so.

The mistakes in correctly identifying facial expressions in
the online study are ascribed to the missing context which
also makes it hard for humans to distinguish between facial
expressions that are alike. The recognition-test during the ex-
periment showed that participants were able to identify the
presented emotions very well after being informed about the
context. The results further show that participants with high
empathy scores gave the agent more positive feedback and
that punishing the agent was perceived as harder by them.
This indicates that the perception of VAs is highly dependent
on the ability to empathise with it. Empathy seems to be a
general trait and is possibly extended to artificial beings that
demonstrate similar behavior and errors as ourselves. Even
though the experimenter sat about 2.5 meters away from the
participant and pretended to not pay attention to the partic-
ipants’ behavior a “Rosenthal-effect” cannot completely be
excluded. A future study needs to investigate if participants
with higher empathy show the same effects without an experi-
menter in the room. However, the study investigated behavior
of humans towards agents and reflections on their emotional
state. Further on it seems likely that in the visible future other
humans will be around while someone is interacting with an
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agent. Another interesting byproduct of this research is that it
possibly opens up a new research test: If participants punish
a VA quicker, they might have a lower empathy towards other
beings in general. This speculation, however, requires future
research.

The experimental results lead to some conclusions for the
design and implementation of VAs. An emotional bonding
between humans and VAs can not simply be achieved by just
adding emotional facial expressions. Other ways might be
more important to establish a basis for empathising with an
agent from the beginning. Therefore future research should
focus on possibilities to build an emotional basis with a VA
that do not demand a long interaction. Of course this study
has some limitations to be considered. It is not generalis-
able to VAs with different gender, age or non-human looks.
The restricted setting may not be sufficiently interactive for
emotion-driven effects to emerge. The results show that even
though a non-human counterpart expresses emotions it does
not necessarily influence its perception as more human-like
and therefore is not more believable and will not be seen as
more trustful. Since some robots also use a monitor display-
ing a VA for interaction, the results can show that this inter-
action is influenced by factors beyond the simple expression
of emotions.
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Abstract 

When making decisions, we are often forced to choose 

between something safe we have chosen before, and 

something unknown to us that is inherently risky, but may 

provide a better long-term outcome. This problem is known as 

the Exploitation-Exploration (EE) Trade-Off. Most previous 

studies on the EE Trade-Off have relied on response data, 

leading to some ambiguity over whether uncertainty leads to 

true exploratory behavior, or whether the pattern of 

responding simply reflects a simpler ratio choice rule (such as 

the Generalized Matching Law (Baum, 1974; Herrnstein, 

1961)). Here, we argue that the study of this issue can be 

enriched by measuring changes in attention (via eye-gaze), 

with the potential to disambiguate these two accounts. We 

find that when moving from certainty into uncertainty, the 

overall level of attention to stimuli in the task increases; a 

finding we argue is outside of the scope of ratio choice rules. 

Keywords: Reinforcement Learning; Attention; Decision-

Making; Exploitation/Exploration Trade-Off; Bandit Task. 

Introduction 

In everyday decision-making, we often have to choose 

between trying something new, or sticking with what we 

know. For example, when deciding what to eat at a 

restaurant, we can choose to order our regular “safe” meal 

(e.g., spaghetti bolognese), or try a new “risky” meal (e.g., 

steak tartare). By ordering the risky meal, we learn about 

how tasty it is. If it is tastier than our regular meal, we may 

become more likely to order it on subsequent visits. 

However, if it is worse than the regular meal, we wasted an 

opportunity to sample our regular meal. This problem is 

known as the Exploitation/Exploration Trade-Off (or “EE 

Trade-Off”) (Cohen, McClure, & Yu, 2007; Knox et al., 

2012; Mehlhorn et al., 2015).  

One common method used to study the EE Trade-Off is 

the Multi-Armed Bandit Task (e.g., Daw et al., 2006; Gittins, 

1979; Knox et al., 2012; Speekenbrink & Konstantinidis, 

2015). On each trial, participants are presented several 

“arms” and are asked to pick one arm to receive some 

reward (e.g., points). Each arm provides a different amount 

of reward, with the goal of the participant being to 

maximize the amount of reward they receive. Participants 

are not told the value of each arm at the outset, and must 

learn these values through sampling each arm. The reward  

 

 

structure is generally stochastic, with the value of each arm 

changing gradually over time (e.g., Daw et al., 2006; 

Laureiro-Martinez et al., 2015). The key measurement of 

this task is how often participants choose the arm which 

gives the highest observed pay-off. Generally, a participant 

is considered to be “exploiting” an arm if they choose the 

arm with the highest observed pay-off, while they are 

considered to be “exploring” when making any other choice 

(Knox et al., 2012).  

Explanations for Exploration 

Work by Daw et al. (2006) found evidence that exploitation 

is the “default” for human behavior, while exploration is a 

high-level decision not to exploit on a given trial. 

Subsequent research with the multi-armed bandit task has 

primarily focused on determining what parameters induce 

exploratory responding over exploitative responding.  

Two major accounts have been proposed for what causes 

people to switch from exploitation to exploration. One 

influential account that has emerged argues that 

environmental uncertainty is key in motivating exploration 

(Beesley, Nguyen, Pearson, & Le Pelley, 2015; Gold & 

Shadlen, 2007; Knox et al., 2012; Speekenbrink & 

Konstantinidis, 2015). That is, the less certain a participant 

is about the dynamics of their environment, the more likely 

they are to spend time exploring it (Mehlhorn et al., 2015). 

For example, if the quality of food at a restaurant is highly 

variable, you may explore many different meals before 

settling on a preferred one. By contrast, if the quality of 

meals is fairly consistent, you may quickly settle on a 

preferred meal. The key implication of this account is that 

exploration is an intentional attempt to reduce the amount of 

uncertainty in the environment (and thus aid informed 

decision making). 

The other major account argues that in most cases, 

exploration can be explained by ratio choice rules (Sakai & 

Fukai, 2008). In their review, Gold and Shadlen (2007) 

suggested that most exploratory behavior might adequately 

be explained by a form of Herrnstein’s (1961) Matching 

Law (See also Baum, 1974). The Matching Law states that 

the ratio of responding on each arm is equivalent to the ratio 

of reinforcement for each of those arms. That is, participants 

“match” how often they select each arm, based on the 
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perceived average reward for the selected arm compared to 

others. For example, in a two-armed bandit task, where arm 

A is reinforced 3 times as often as arm B, the Matching Law 

states that people will select arm A 3 times as often as arm 

B. Importantly, while participants still preferentially select 

the optimal arm (A), they will also switch to the other, sub-

optimal arm (B) on 25% of trials. In this case, switching 

away from the optimal arm does not represent an intentional 

attempt to lessen uncertainty in the environment, but instead 

represents participants employing a (somewhat crude) ratio 

choice rule. 

Baum (1974) provided an extension to Herrnstein’s 

(1961) “Simple” Matching Law to account for a wider array 

of choice behavior. This “Generalized Matching Law” 

included two additional parameters: bias and sensitivity, 

where bias reflects a tendency for selecting a given option 

over other available options (irrespective of the 

reinforcement rate for each option), and sensitivity 

determines how strictly a participant conforms to the choice 

ratio for their selections. The Generalized Matching Law 

has been shown to account for a wider variety of choice 

behavior than the Simple Matching Law (Baum, 1974; 

Schneider & Lickliter, 2010), and is the version applied in 

this paper.  

It is important to note that, even when employing a ratio 

choice rule like the Matching Law, participants can still 

update their knowledge of the environment by picking sub-

optimal responses (as determined by the choice rule). 

However, the crucial distinction is that exploratory choices 

occur on the basis of a ratio determined by the choice rule, 

and are not an intentional attempt to lessen uncertainty. For 

the purpose of the current paper, this type of behavior may 

be considered synonymous with the phenomenon known as 

probability matching (Sakai & Fukai, 2008; Shanks, Tunney, 

& McCarthy, 2002 – though strictly these two phenomena 

are slightly different, see Shanks et al., 2002). 
The main difference between the uncertainty account and 

the ratio choice rule account of exploration is that, in the 

former, uncertainty is a catalyst for participants to explore 

(and thus lessen the total uncertainty in the task); while in 

the latter, exploration occurs as a product of some choice 

function. One key issue in attempting to differentiate these 

two accounts is that it is difficult to increase uncertainty 

without changing the reward value of the different arms. For 

example, in the commonly used “walking bandit task” (Daw 

et al. 2006; Laureiro-Martinez et al., 2015; Speekenbrink & 

Konstantinidis, 2015), uncertainty is implemented by 

stochastically walking (slowly changing) the mean reward 

for each arm every trial. While this does serve to make the 

value of each arm uncertain, it also necessarily causes 

changes to the probability of picking each arm as given by 

ratio choice rules. Therefore, it is hard to determine whether 

an attempt to reduce the uncertainty in the task, or a 

predetermined ratio choice rule, is responsible for 

motivating exploration under these circumstances.  

While it is possible to use cognitive modeling techniques 

to examine whether uncertainty motivates exploration (e.g., 

Daw et al., 2006; Knox et al., 2012; Speekenbrink & 

Konstantinidis, 2015; Stevyers, Lee, & Wagenmakers, 

2009), the conclusions of these methods have been mixed. A 

recent study by Beesley et al. (2015) argued that attention 

may be another viable metric for assessing the EE Trade-Off. 

Beesley et al. conducted a study in which participants were 

presented with two cues and were asked to make a choice 

between two responses. One cue was informative about 

what the optimal response was on that trial, while the other 

cue was task-irrelevant. Beesley et al. measured participants’ 

attention by tracking eye-gaze on the two cues. They 

showed that when cues were perfect predictors of the 

optimal response, participants attended to the informative 

cue over the task-irrelevant cue. However, when cues were 

imperfect predictors of the optimal response (i.e., predicted 

the optimal response on only two-thirds of trials), 

participants increased their attention to both the informative 

and task-irrelevant cue, indicating greater exploration of the 

cues. Beesley et al. argued that these findings were 

synonymous with the EE trade-off. The implication, 

therefore, is that exploration can be exhibited in behavioral 

domains outside of participant choice, and that exploration 

cannot be solely explained by ratio choice rules (the 

predictions of which are restricted to the response domain 

alone). 

One limitation to the Beesley et al. task was that the 

experimenters provided participants with feedback about 

which response was optimal on each trial. Therefore, while 

participants appeared to explore the information in the task 

by altering their attentional processing, they had no 

incentive to explore different responses to find the one that 

was most optimal (as they were told which response was 

optimal regardless of their choice). Thus, the current paper 

aims to assess whether uncertainty can induce exploratory 

behavior in both participants’ attention and responses, and 

hence provide wider support for the idea that uncertainty 

drives exploration. This would imply that exploration itself 

is perhaps a more complex, intentional process, which 

would place it outside the scope of ratio choice rules alone. 

Furthermore, it would suggest that exploration can manifest 

itself across more than one aspect of behavior (choice and 

attention). We used a four-armed bandit task where we 

manipulated uncertainty both within and between subjects. 

We measured responding and gaze-time to the different 

arms during the task.  In line with our hypotheses, we found 

that participants made fewer optimal responses and spent 

longer fixating on task elements when the task had an 

element of uncertainty, suggesting that uncertainty acts as a 

catalyst for exploration.   

Method 

This experiment aimed to examine the effect of uncertainty 

on attention and responding in a four-armed bandit task. 

Participants completed a variant of the bandit task, where on 

every trial they were presented four arms and asked to pick 

two. Two of the arms conferred 30 points (the High Value 

[HV] arms) and the remaining two arms conferred 15 points 
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(the Low Value [LV] arms). After making their choice, 

participants were rewarded with the cumulative score 

associated with each arm. For example, if the participant 

selected an HV arm worth 30 points and an LV arm worth 

15 points, they received a reward of 45 points for that trial.  

The experiment was conducted in two stages. Stage 1 of 

the task had a deterministic reward structure, in which each 

arm always yielded the same amount. Stage 1 was designed 

to be simple, such that participants could quickly learn the 

structure of the task and engage in what might be considered 

an exploitative pattern of behavior. In Stage 2 of the task, 

rewards were drawn stochastically from a uniform 

distribution for each combination of arms, with the mean 

reward value set at the same value as in the first stage. 

Stages 1 and 2 were coined the Certain and Uncertain 

stages respectively. In terms of participants’ responding, we 

hypothesized that when rewards became uncertain, 

participants would make more exploratory, non-optimal 

responses, and this exploration would be greater for 

participants who experienced greater uncertainty (consistent 

with Knox et al., 2012; Speekenbrink & Konstantinidis, 

2015). In terms of gaze-time, we hypothesized that when 

rewards became uncertain in Stage 2, participants would 

increase their gaze-time to all arms in the task. Furthermore, 

we hypothesized that the greater the level of uncertainty in 

those rewards in Stage 2, the more gaze time that would be 

allocated to the arms in the task, with more gaze time to HV 

arms over LV arms (consistent with Beesley et al., 2015). 

Design 

The design of the experiment is shown in Table 1. The key 

manipulation of the amount of uncertainty present in Stage 2 

was manipulated between-subjects. Uncertainty was 

operationalized as the range of possible scores around the 

mean reward value that could be received following a trial 

(in Stage 2). For example, a reward distribution of ±3 (Low 

Uncertainty) meant that after the participant made their 

selections, they received the cumulative score of those arms 

(e.g., 45 points if they picked one HV arm and one LV arm), 

±3 points (uniformly distributed across trials). Therefore, in 

this case, the participant could receive a score from 42 to 48. 

The Low Uncertainty condition had a reward distribution of 

±3, and the High Uncertainty condition had a reward 

distribution of ±18. The crucial difference between these 

two conditions was that in the High Uncertainty condition, 

the two score distributions overlapped, such that 

participants could sometimes earn more points after a choice 

of an HV arm and an LV arm than after a choice of two HV 

arms. By comparison, for participants in the Low 

Uncertainty condition, the optimal response was always 

picking two HV arms. The dependent variables were 

proportion of HV arms picked, and gaze-time on HV and 

LV arms as a proportion of trial time. 

 

 

 

 

Table 1: Design of Experiment 1 

Uncertainty 

condition 

HV 

Reward  

LV 

Reward  

Reward uncertainty 

(Stage 2) 

Low  30 15 ±3 

High  30 15 ±18 

Participants 

Sixty-five UNSW Sydney undergraduate students were 

recruited in exchange for course credit. The two highest 

scoring participants received a $20 prize. 

Apparatus and Materials 

Participants were tested individually in a quiet room. During 

the task, participants’ eye-gaze was tracked using a 58.4cm 

widescreen Tobii eye-tracking monitor (TX-300). 

Participants were seated approximately 60cm from the 

monitor, and had their heads steadied by a chin rest. The 

eye-tracker was calibrated at the start of the task. The 

experiment was run in MATLAB using the Psychophysics 

Toolbox extension (Brainard, 1997; Kleiner, Brainard, & 

Pelli, 2007; Pelli, 1997). Participants mades all responses 

via a standard keyboard and mouse. 

The four arms in the experiment were represented as four 

colored squares of 200 by 200 pixels (visual angle of 

approximately 5°). The four colors were always red, green, 

blue, and yellow (Figure 1). Color assignment to design 

elements (i.e., HV and LV arms) was counterbalanced 

between participants (24 permutations).  

Procedure 

At the start of the experiment, participants were instructed 

that they would be playing a simple guessing game, where 

the objective of the game was to maximize the number of 

points they received. On each trial, the four colored arms 

were presented in the four quadrants of the screen. The 

location of each arm was counterbalanced between trials, 

with a full counterbalance of positions taking 24 trials. 

Participants used the mouse to select two arms. Participants 

were allowed to deselect arms they had selected by clicking 

on the arm a second time. Once the participant had selected 

two arms, a small “Submit” (120 by 60 pixels) button 

appeared in the center of the screen. If the participant 

selected more than two arms, or deselected an arm, the 

button disappeared. 

 

 
 

Figure 1: A sample screen from Experiment 1. 
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Once the submit button was clicked, the four arms and the 

cursor disappeared, and the participant was told how many 

points they had earned on that trial, as well as the total 

points accumulated so far. Points were calculated by 

aggregating the value of the two arms the participant had 

selected, with the addition of the reward uncertainty in 

Stage 2 (see Design). Participants then pressed the spacebar 

to start the next trial. The location of the cursor was reset to 

the center of the screen on each trial.  

Stage 1 consisted of 96 trials and Stage 2 144 trials. The 

start of Stage 2 was not signaled to participants in any way. 

The only difference between Stage 1 and 2 was the addition 

of the variability (stochastic noise) for rewards (see Design 

and Table 1).  

Results 

Data were collapsed into blocks of 24 trials for analysis. If a 

participant had less than 50% of trials with valid eye-

tracking data recorded, they were excluded from analysis (n 

= 10). In addition, participants who selected the HV arms 

less than 70% of the time in the final block of Stage 1 were 

inferred to have not learnt the associations adequately, and 

were also excluded (n = 7). For each exclusion, we ensured 

a complete counterbalancing of design elements by 

recruiting a new participant with the same counterbalancing 

conditions. Trials in which the participant took two standard 

deviations longer than their mean trial time were excluded 

from all analyses. 

Response data are shown in Figure 2 and were analyzed 

in three parts, Stage 1 (blocks 1 to 4), the between-stage 

transition period (blocks 4 and 5), and Stage 2 (blocks 5 to 

10), using a repeated measures ANOVA with a within-

subjects factor of block and a between-subjects factor of 

condition. Effect sizes are reported as generalized eta-

squared, η2
G (see Bakeman, 2005). In Stage 1, a significant 

effect of block was observed, F(3, 138) = 98.84, p < .001, 

η2
G = .447, with participants in both conditions increasing 

selections of HV arms as they progressed through Stage 1.  

During the transition from Stage 1 to Stage 2, a significant 

effect of block was observed, F(1, 46) = 80.4, p < .001, η2
G 

= .465, with participants decreasing their selections of HV 

arms from Stage 1 to Stage 2. A significant effect of 

condition was also observed, F(1, 46) = 18.06, p < .001, η2
G 

= .165, with participants less likely to choose the HV arms 

in the High Uncertainty group. Finally, there was a 

significant interaction between block and condition, F(1, 46) 

= 22.56, p < .001, η2
G = .197, with the proportion of HV arm 

choices showing a greater decrease in the high uncertainty 

conditions than the low uncertainty condition during the 

transition period.  

In Stage 2, a significant effect of block was observed, F(5, 

230) = 22.68, p < .001, η2
G = .165, with participants 

increasing their selections of HV arms over the course of 

Stage 2. A significant effect of condition, F(1, 46) = 24.71, 

p < .001, η2
G = .243, and a significant interaction between 

condition and block, F(5, 230) = 5.02, p < .001, η2
G = .042, 

were observed, with participants picking HV arms less 

frequently in the High Uncertainty condition, but also 

showing a greater increase in their selection of HV arms 

over the course of Stage 2, compared to participants in the 

Low Uncertainty condition. 

Gaze-time data are shown in Figure 3. Gaze-time was 

calculated as the summed time of all fixations on the 

different arms in the task. A fixation was determined to have 

occurred if a participant’s gaze did not deviate more than 75 

pixels vertically or horizontally for at least 150ms. Total 

fixation time was calculated by extending this time until the 

participant’s gaze exited the 75 pixel limit (in accordance 

with Beesley et al., 2015; Salvucci & Goldberg, 2000). 

Proportion of gaze-time was calculated as the total fixation 

on each arm divided by the total trial time. Again, these data 

were analysed using a repeated measures ANOVA, with a 

within-subjects factor of block, a within-subjects factor of 

arm value  (high and low), and a between-subjects factor of 

condition. A significant effect of block was observed in 

Stage 1, F(3, 138) = 18.85, p < .001, η2
G = .062, with 

participants decreasing their total gaze-time to arms 

throughout Stage 1. A significant effect of arm value was 

also observed, F(1, 138) = 276.77, p < .001, η2
G = 0.675, 

along with a significant interaction between block and arm 

value, F(3, 138) = 17.86, p < .001, η2
G = .066, with 

participants gazing more at HV arms than LV arms, and this 

difference increasing over the course of Stage 1.  

 

 
Figure 2: Proportion of HV arms selected in each block. 

Stage 1 occurred in Blocks 1 to 4, while Stage 2 occurred in 

Blocks 5 to 10. Error bars represent ±1 SEM.  

 

 
Figure 3: Proportion of trial time gazing at HV and LV 

arms in each block for each condition. Stage 1 occurred in 

Blocks 1 to 4, while Stage 2 occurred in Blocks 5 to 10.  

Error bars represent ±1 SEM. 
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In the transition from Stage 1 to Stage 2, there was a 

significant effect of block, F(1, 46) = 15.80, p < .001, η2
G 

= .039, with participants increasing their total gaze-time at 

the onset of uncertainty. The significant effect of arm value 

was maintained, F(1, 46) = 282.29, p < .001, η2
G = .713.  

There was no effect of condition observed on gaze-time, F(1, 

46) = 2.21, p = .144, and there was no interaction between 

block and condition, F < 1. In Stage 2, the significant effect 

of arm value was maintained, F(1, 46) = 362.42, p < .001, 

η2
G = .721, and no effect of condition was observed, F < 1. 

No effect interaction between block and condition was 

observed in Stage 2, F(5, 230) = 1.19, p = .3161. 

Discussion 

In a reinforcement learning task, participants earned points 

for combinations of responses. In Stage 1, one combination 

of responses was optimal and participants readily learnt this 

relationship. In Stage 2, we introduced variation in the 

number of points received, while keeping the mean number 

of points per response constant. When moving from the 

certainty of Stage 1 to the uncertainty of Stage 2, 

participants in both conditions reduced their rate of optimal 

responding, and this reduction was greater for participants 

who experienced greater uncertainty. Following this change 

in behavior at the outset of Stage 2, participants in both 

conditions increased their rate of optimal responding over 

the course of Stage 2.  

In the High Uncertainty condition, the choice behavior of 

participants is well predicted by the Matching Law. 

However, crucially in the Low Uncertainty condition the 

Matching Law fails to predict the drop in optimal 

responding at the onset of. If a participant in the Low 

Uncertainty condition were following the Matching Law, 

they should not show a decrease in optimal responding at 

the onset of uncertainty. This finding suggests that 

exploratory choice cannot be solely explained by the 

Matching Law, and provides support to the idea that 

uncertainty can drive exploration. The reason why 

participants in the Low Uncertainty condition chose to 

switch away from the optimal response at the onset of 

uncertainty is not immediately clear. However, one possible 

explanation is that when participants perceived that the 

nature of the task had changed (i.e., rewards were no longer 

confined to three set values), they felt compelled to explore 

the other previously discounted responses to ensure they had 

not changed in any significant way.  

In terms of the attentional data, we found support for two 

of our three hypotheses. Unsurprisingly, participants began 

to pay more attention to HV arms over LV arms over the 

course of the experiment. This is compatible with a host of 

research from the associative learning literature (See Le 

                                                           
1 All data and analyses can be accessed on the Open Science 

Framework at osf.io/y6hqp. 

Pelley et al., 2016, for a review), showing that participants 

are likely to direct their attention to the most valuable 

predictors in a task (also see Le Pelley et al., 2015). 

Furthermore, there is evidence that participants will attend 

more to arms they are intending to select prior to making 

their response (e.g., Manohar & Husain, 2013). As 

participants selected more HV arms, this likely contributed 

to participants preferentially attending to them over LV 

arms. 

Crucially, we have shown evidence that an onset of 

uncertainty is associated with an increase in attention. Once 

rewards became uncertain at the onset of Stage 2, 

participants in all conditions increased their gaze-time to all 

arms in the task. Our data are in line with the findings of 

Beesley et al. (2015), and provide support to the idea that 

uncertainty can instigate exploratory behavior in both the 

choice responses and attentional bias. We argue that these 

data are beyond the scope of ratio choice rules, which do not 

provide a natural account of attentional changes under 

conditions of uncertainty and would not predict changes in 

response rate across the course of Stage 2. While the notion 

that uncertainty increases attentional processing of stimuli is 

not novel (Pearce & Hall, 1980), very little is known about 

attentional processing in multi-armed bandit tasks like the 

one used in the current experiment. The current findings 

suggest that pursuing this line of research may be important 

to gaining a more complete understanding of human 

decision-making. 

However, we did not find evidence for gaze-time 

interacting with the level of uncertainty. If the uncertainty 

account of exploration is correct, we should have observed 

greater exploration under greater uncertainty. Instead, the 

amount of gaze-time participants paid to the arms was 

comparable under both levels of uncertainty. One possible 

reason for this is that moving from a completely certain 

environment to an environment with any level of 

uncertainty may cause attention to increase. Yu and Dayan 

(2005) showed that participants behave differently when 

uncertainty is expected (i.e., present for the entire task) 

compared to when uncertainty is unexpected (i.e., a period 

of uncertainty occurs suddenly, following a period of 

certainty). It may be the case that when unexpected 

uncertainty occurred, attention increased by a set amount in 

response (regardless of the degree of that uncertainty). Also, 

while gaze-time does appear to be affected by uncertainty, 

the effect-size in our study was much smaller in comparison 

to the effect of uncertainty on responding (η2
G = .039 

compared to η2
G = .465). This may suggest that while 

changes in response rate and changes in overt attention are 

signals of exploration under uncertain conditions, that 

uncertainty affects these behavioral markers by distinct 

mechanisms. Alternatively, these data might suggest that 

gaze-time was less sensitive to uncertainty than was 
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participants’ responding, which made it harder to detect any 

effect of the different levels of uncertainty and gaze-time. 

In summary, we have shown that the introduction of 

uncertainty into a four-armed bandit task caused a general 

increase in attending, and a decrease in optimal responding. 

This provides support for the idea that environmental 

uncertainty causes an increase in exploratory behavior, and 

challenges the idea that exploration can be explained purely 

by ratio choice rules. 
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Abstract: Many grammatical dependencies in natural language involve elements that are not adjacent, such as between the
subject and verb in ”the dog always barks”. We recently showed that non-adjacent dependencies are easily learnable without
pauses in the signal when speech is presented rapidly. In this study, we used an online measure to look at the relationship
between online parsing and the learning performance from the offline assessment of non-adjacent dependency learning. We
found that participants who showed current parsing of the language online also learned the dependencies better. However, this
pattern disappeared when they are explicitly told where the boundaries are before parsing. Theories of non-adjacent dependency
learning are discussed.
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Abstract 

An intermediate level between neural circuits and behaviors is 
neural computations, various behaviors that animals exhibit 
following some basic control laws can be implemented by some 
canonical neural computations [Carandini, 2012]. To explore how 

the microscopic activity of neurons leads to macroscopic 
behavioral control strategy, we consider basic logic-like operations 
as some canonical computations in the brain. In this paper, firstly 
we designed the functional circuits for basic logic-like operations 
based on the known neurophysiological properties. Secondly, 
using basic functional circuits constructed a possible neural 
network for decision logic of animal’s behavior. This study 
provides a general approach for constructing the neural circuits to 

implement the behavioral control rules. Furthermore, this study 
will help us to establish a transitional bridge between the 
microscopic activity of the nervous system and the macroscopic 
animal behavior. 

Keywords: Neural circuits; Logic; Neural computations; 

Introduction 

Brain as a complex system, three distinct levels should be 

understood, i.e., behavior level, algorithm level and 

implementational level, which is famously known as Marr’s 

tri-level hypothesis [Marr 1982]. The benefit of this clear 

distinction is that researchers can focus on a certain level 

and do researches purposefully. In [Carandini, 2012], the 

brain was analogized to a computer, as we know, all 

applications in the computer can be reduced to the most 

primitive operations (Logic instructions) of CPU, so is the 

brain. Researches indicate that the brain deal with different 

problems by combining and repeating a core set of 
canonical neural computations [Carandini & Heeger, 2011]. 

We understand the every detail of instructions, which were 

implemented in CPU; however, we know little about the 

details of circuit’s constitution in brain. However, without a 

clear link to behavior and computational mechanism, it is 

hard to understand what is computed. Therefore, ―We need 

a foundational mechanistic, computational framework to 

understand how the elements of the brain work together to 

form functional units and ultimately generate the complex 

cognitive behaviors‖ [Brown, 2014].  

Obviously, understanding the canonical computations in 

the brain is helpful to reveal the computational framework 

from circuit to behavior. In this paper, we consider the basic 

logical operations as some kind of canonical computations 

in nervous system. Why can the logical operations be 

considered a kind of canonical computations in nervous 

system? We make the rational reasoning from the 

computational perspective, logic reflects the most basic 

requirement that any computation can be successfully 
implemented. Thus, the rules through which animals control 

their behavior can be described by logic language. In order 

for a biological nervous system to achieve a specific 

computation, its structure must be sufficiently complex to 

achieve the basic logic operations. Therefore, there must be 

many types of neural circuits to achieve various logical rules 

in the nervous system. Since, any type of behavioral logic 

can be formally described by propositional logical. With this 

reliable and complete formal language, we can describe the 

basic control rules accurately, with which behaviors comply. 

Furthermore, with different firing mode of neurons and the 
synergistic connections between pyramidal neurons and 

intermediate neurons, how does the nervous system 

assemble a circuit to achieve a set of specific logical rules?  

The aim of our work is not to construct the neural 

network to achieve the logic operations. In this paper, we 

attempt to explore computational framework how the 

microscopic neural activities can systematically explain the 

macroscopic behavior from the logic view. 

Related works 

Research indicates that the brain relies on a core set of 

computations to apply different functions for different 

problem [Carandini & Heeger, 2011]. Neural computations, 

which occur in populations of neurons, are a transitional 

level from circuit to behavior. Although, some computations 

have been discovered in nervous system, there are no details 

of such circuits’ constitution. In order to reveal the true 

mechanism of nervous system the research works involve in 

different field. Table1 lists the related works. 

Table1. List of related works 

Category Sub-category Attributes 

F
o
r 

C
o
m

p
u
ta

ti
o
n
al

 
P

u
rp

o
se

 

Numerical 
modeling 

MP model, BP model, CNN, RBM; 
[McCulloch,1943; Rumelhart et al,1986; Fischer & Ige, 2012; ] 

. Limited function approximation; 

. Violating basic biological facts *; 

Spike modeling 

HH model[Hodgkin & Huxley, 1952] 
HR [Hindmarsh& Rose, 1984] 

. Good biological plausibility; 

. Low efficiency;[Izhikevich, 2004] 

A simple Spike model  
[Izhikevich, 2003, 2004] 

. Good biological plausibility; 

. High efficiency; [Izhikevich, 2003, 2004] 

A cortical simulator 
[Aanthanarayanan & Modha, 2007] 

. Coarse clique-level simulation; 

. No certain behavior interrelated to; 

3491

mailto:weihui@fudan.edu.cn


Model of thalamocortical systems 
[Izhikevich & Edelman, 2008] 

. Good biological plausibility; 

. No certain behavior interrelated to; 

F
o
r 

P
h
y
si

o
lo

g
ic

al
 P

u
rp

o
se

 

Sensor-motor 
circuit 

Circuits for 
C.elegans’ 
behaviors: 

Using ANN to construct 
[Fer ée et al, 1996, 1999]; 

.Circuit in ANN-mode is of poor biological plausibility; 

Using DNN to construct 
[Jian-Xin & Xin, 2013] 

.Moderate biological plausibility; 

.No biological neuron was used; 

Reusable and 
combinable 
primitive circuit 

Canonical 
neural 
computations 

Linear filtering; 
Divisive; Normalization; 
Thresholding; 
[Carandini & Heeger, 2011;Wang, 2002; 

Carandini, 2005, 2012;] 

.Hypothesis on functionalism-level, not on implementation level 

.No constitution details of circuit; 

Decision-
making circuit 

Modulators of Decision-making 
[Kenji Doya, 2000, 2008] 

. Good biological plausibility; 

. No detail constitution of circuit; 

Model of two-choice decisions 
[Ratcliff & Rouder, 1998] 

. Less biological details; 

. Numerical approximation only; 

Probabilistic model for decision making 
[Wang, 2002; Wei & Dai & Bu, 2017; Wei & Bu & Dai, 2017] 

. Good biological plausibility; 

. Matching behaviorism data; 

. Statistical abstraction on group-level neural activities. 

* Violating basic biological facts includes:(1) the activation mode of the MP model is two-valued, but that of biological neuron is impulse-firing; (2)the 

type of ANN’s neuron is unitary, however, in the biological neural system, not only multiple types of neurons exist but also their proportion matters; (3)the 

numerical settings of threshold and connection weights of ANN being able to adjust at will are too idealistic; (4)numerical neurons in the same layer working 

with perfect synchronization are too idealistic, however, time differences of signal transmitting are more general. 

Biological neuron 

Neuron Model 

Izhikevich proposed a simple spiking neuron model that 

reduces the HH model to a 2-D system [Izhikevich, 2003]. 

Ordinary differential equations are of the form: 

 

20.04v 5v 140 u I

du
a bv u

dt

v c;
If v 30,Then

u u d;

dv

dt
   

 






 

 

                   (1) 

Interpretation of parameters refers to [Izhikevich, 2003]. In 

the paper, typical values of parameters for excitatory neuron 

were: a = 0.02, b = 0.25, c = -65, d = 8. Average firing 

rate (AFR) of pyramidal neuron was between 0 and 21 Hz. 
Typical values of parameters for inhibitory neuron were: a 

= 0.1, b = 0.2, c = -55 ~ -48, d = 2. AFR of intermediate 

neuron was between 0 and 200 Hz. 

Time delays in AP transmission 

Delay means the time of AP propagating from pre-synaptic 

neurons to post-synaptic neurons [Tolnai et al, 2009]. A 

wide range of time delays (up to 20 ms) could occur. Since 

most previous studies did not relate to specific behavioral 

control logic, which was easy to ignore. In fact, the duration 

from when the AP is generated to its arrival at the 

postsynaptic neuron is time-critical or time-sensitive. In this 
paper, the different delays of AP transmission may be 

similar to ―time multiplexing‖ in signal processing, which 

plays an important role in behavioral decision logic.  

In this paper, we simulated the propagation delays of AP 

using different queue lengths. For example, using four 

different queue lengths, as shown in Fig. 1 (b, Queue 1~4), 

simulated the different delays of AP propagating from the 

cell body to positions 1~4 in Fig. 1(a). If the length of a 

queue is n, then the AP is delayed n milliseconds. Four 

queues with sequential increases in length indicated that as 

the location of the synapse on the axon moved away from 

the cell body, the delays increased. If an AP was generated 

in the pre-synaptic neuron, we added 1 to the head of the 
queue; otherwise, we added 0. When the end of queue 

element was 1, it indicated that the postsynaptic neuron 

received an AP. Delays of single neuron were limited; if 

large delays are required in the nervous system, Fig. 1(c) 

presents a possible way. 
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Figure 1. Simulation of the delays in AP transmission along an 
axon using queues. 

The firing rate of pyramidal neurons is adjustable 

A study has indicated that intermediate neurons participate 

in regulating the firing rates of neural networks [Sanders, et 

al, 2013]. Fig. 2 shows a possible way of implementation 

that could achieve this regulation of AFR in the nervous 
system. This cooperative activity in which excitatory 

neurons and inhibitory neurons regulate the AFR of 

downstream neurons is a basic mechanism through which 

nervous systems function. 
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Figure 2. AFR of downstream neurons can be regulated by 
different combinations of upstream excitatory and inhibitory 
synapses. 

In Fig. 2, if pyramidal neuron E received AP with a stable 

AFR from upstream excitatory neurons (Eneus), then the 

AFR of E could be regulated successfully by increasing or 

decreasing the firing rate of upstream inhibitory neurons 

(Ineus), as shown in Fig. 3. Table 2 shows changes in the 

range of neuron E’s AFR with changes in the AFR of 

upstream Eneus and Ineus. This basic law revealed that 

nervous systems could regulate output firing rate through a 

precise configuration of types of neurons and connections. 
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Figure 3. (a) The AFR of neuron E increased with a decrease in the 
AFR of upstream Ineus. (b) The AFR of E decreased with an 
increase in the AFR of upstream Ineus. 

Table2. Regulating the AFR of neurons within a certain range. 
AFR of Eneus 17~19Hz 

AFR of Ineus 0~50Hz 50~100Hz 100~150Hz 150~200Hz 

AFR of E 16~18Hz 13~16Hz 9~13Hz 3~9Hz 

AFR of Ineus 75~80Hz 

AFR of Eneus 17~19Hz 12~16Hz 8~12Hz 5~8Hz 

AFR of E 14~16Hz 12~16Hz 8~12Hz 5~8Hz 

Neural circuit designs for logic-like operations 

AP from pre-synaptic neurons can produce excitatory 

post-synaptic potentials (EPSP) or inhibitory post-

synaptic potentials (IPSP). Since, single AP generates too 

small EPSP or IPSP to activate or inhibit the post-

synaptic neurons; we assume that a train of at least 40 AP 

could activate the postsynaptic neuron. We employ a 

group of neurons (neuron cluster) that included 50~100 

neurons as a functional unit, which is used to construct 

circuits to achieve the basic logic-like operations. Since, 

any of the complex logic can be expressed as a logical 

expression by four basic logical operations: And, Or, 

Negation, and Conditional. We implement four circuits 

that are equivalent to the function of these basic logic 

operations. The circuits contain excitatory neurons and 

inhibitory neurons.  
In the paper, when a constant stimulus 7.5 adding 

background noise is presented to a neuron cluster, AFR of 

cluster is higher than 10Hz; while a constant stimulus 3.8 

adding background noises is presented, AFR of cluster is 

lower than 5Hz. If the AFR of a neuron cluster is higher 

than 10 Hz, then the proposition expressed by the neuron 

cluster is True; if the AFR of a neuron cluster is lower 

than 7 Hz, then the propositions is False. 

And-like operation circuit 

As we know that the concept of the neocortex is as an 

assemblage of the basic functional units [Jean-Vincent Le 

Bé, 2007]. Neurons in the fourth layer accept the external 

signal input from the afferent fibers (area-b in Fig. 4). Small 

pyramidal cells and intermediate neurons in the second and 

third layers are responsible for processing the signal (area-a 

in Fig. 4). In the fifth layer, large pyramidal cells are 

responsible for propagating the ―results‖ out of the cerebral 

cortex (area-c in Fig. 4). Axons are shown in black and 

dendrites are shown in blue.  
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Figure 4. Morphological principles of connectivity between 

neocortical neurons (Corresponding to [Jean-Vincent Le Bé, 2007]). 

And-like operation is equivalent to that upstream neuron 

clusters A and B both fire AP at a high rate, followed by 

neuron cluster C firing at a high rate; otherwise, C fires at a 

low rate. As shown in Fig. 5-Left, neurons in A and B full 

connect to neurons in C. A and B represent two propositions, 

and C achieves the function of operation ―A And-like B‖. As 

shown in Fig.5-Right, A and B (corresponding to clusters A 

and B in Fig.5-Left) that represent the incoming information 

should be distributed in the fourth layer of the neocortex. C 

(corresponding to C in Fig.5-Left) that achieves the 

computation of the And-like operation for A and B should 
be distributed in the second and third layer. At last, the 

processing results are propagated out of neocortex by the 

large pyramidal cells in the fifth layers. We re-layout the 

Fig.5-Left and obtain the Fig.5-Right. The new circuit 

satisfies the anatomical discoveries and achieves the logic 

function. It is a feasible implementation in neurobiology. 
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Figure 5. Circuit of And-like operation 

AFR of A and B are stable due to the stable input. Neuron 

cluster C receives AP from A, and the time span is so long 

(about 20 ms) that the number of AP is small at any given 
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moment. The distribution property of AP from neurons in 

cluster B is similar to that of A. If neuron clusters A and B 

both fire at a high rate, AP trains from A and B at least 

partially overlap. The purpose of this design is that when 

only one of the two neuron clusters fires at a high rate, the 

strength of the subsequent EPSP is too weak to activate C 
fire at a high rate. However, when A and B both fire at a 

high rate, due to the overlap of EPSP, the strength of the 

EPSP is sufficiently strong that C fires at a high rate as well. 

However, we found that C would not fire with a high rate 

every time during the experiment. The EPSP from A and B 

does not necessarily overlap because the overlap is time-

critical or time-sensitive. Thus, it is possible that C fires at a 

low rate even if both A and B fire at high rate. To avoid 

such a situation, one feasible way that we used neuron 

clusters as functional units, and the properties of neurons in 

a cluster are different, including the model parameters and 

AP delays. Therefore, initiation of neuronal firing is 
asynchronous. As a result, EPSP always can be overlapped 

in C. When A and B both fire at high rate, and C fires with a 

high rate. Typical values for the delays of neuronal AP are 1 

ms, 2 ms, …20 ms in A and B; each delay has the same 

number of neurons, and the model parameters of each 

neuron is little different. As shown in Fig. 6, only when 

neuron clusters A and B both fire at a high rate, does C fire 

at a high rate [Fig. 6(d)]; otherwise, C fires at a low rate [Fig. 

6(a), (b), and (c)]. This circuit performs the function of And-

like operation. 
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Figure 6. AFR of the And-like operation circuit 

Or-like operation circuit 

Or-like operation is equivalent that if at least one of 

upstream neuron clusters A and B fires AP at a high rate, 

then C fires at a high rate; otherwise, C fires at a low rate. 

The structure in Fig5 can also achieve the function of Or-

like operation through modifying the parameters to make 
sure that APs from neuron clusters A and B are synchronous 

and concentrated, and when one of the two clusters fires at a 

high rate, at least 40 AP have reached C at one given 

moment. Typical values for the delays of the neuronal AP 

are 1 ms for A and 5 ms for B. The purpose of this design is 

that when at least one of the two neuron clusters (A, B) fires 

at a high rate, the strength of subsequent EPSP is 

sufficiently strong to make C fire at a high rate [as shown in 

Fig. 7(b), (c), and (d)]. Only when neuron clusters A and B 

both fire at a low rate, C fires at a low rate [as shown in Fig. 

7(a)]. This circuit performs the function of  ―A Or-like B‖. 
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Figure 7. AFR of the Or-like operation circuit 

Conditional-like operation, Negation-like operation 

circuit 

Conditional-like operation is equivalent to a simple 

projection relationship from upstream to downstream 

neurons, such that if upstream neurons fires with a high rate, 

then downstream neurons fires with a high rate; otherwise, 

downstream neurons fire at a low rate. Negation-like 

operation is equivalent that if A fires AP at a high rate, then 

C fires with a low rate; otherwise, C fires with a high rate. 

As shown in Fig.8-left, neurons in A fully connect to 

neurons in I1… Im, E1… Ek, and neurons in I1… Im, E1… Ek, 

full connect to neurons in C. In addition, for local circuits: 
E1 Conditional-like C, and Ek Conditional-like C. Neurons in 

I1… Im are all inhibitory, and the others are excitatory. A 

represents a proposition, and C performs the function of 

operation ―Negation-like A‖. Its possible form in neocortex 

is shown in Fig. 8-right. 
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Figure 8. Circuit of Negation-like operation. 

The circuit contains excitatory neurons and inhibitory 

neurons. When neuron cluster A fires at a high rate, which 

activate intermediate neuron firing at 60~110Hz, and the AP 

are asynchronous, which led to neuron cluster C receiving 

nearly continuous IPSP. Thus, neurons in C are inhibited, 

and C could not fire at a high rate. When A fires at a low 

rate, the intermediate neurons fire less than 60 Hz, which 

could not inhibit the activity of downstream neurons. Here, 

the excitatory signal that from A activated C with ―time 
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division multiplexing‖ by neuron clusters E1, E2, and E3 (m 

= 3, k = 3). Thus, the AFR of C is about 3 times greater than 

that of A. Typical values of delays from A to I1, I2, and I3 

were 1 ms, 10 ms, and 20 ms, and AP delays from A to 

neuron clusters E1, E2, and E3 are 20 ms, 40 ms, and 60 ms, 

respectively. AP delays from I1, I2, and I3 to neuron cluster 
C are 1 ms, and AP delays from E1, E2, and E3 to C are 30 

ms. Each delay had about the same number of neurons. The 

above settings are not absolute. The circuit performs the 

transfer of a low firing rate to a high firing rate [Fig. 9(a)], 

and a high firing rate to a low firing rate [Fig. 9(b)]. 
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Figure 9.  AFR of the Negation-like operation circuit 

Constructing a neural network for a specific 

behavior based on the logic-like operations 

Any of the propositional logical expressions can be 

transferred into an equivalent conjunctive or disjunctive 

paradigm. Thus, the nervous system could possibly perform 

a logic function by realizing the corresponding paradigm. 

We demonstrated the implementation of a neural circuit 

for decision-making logic using a rat’s behavioral decision. 

In the behavioral experiment [Yang et al., 2014], the rat was 

trained to go to alternate arms of a Y-maze for drinking, and 

after the training, the rat never made a mistake to the same 
side two times as shown in Fig. 10. This experiment verified 

that the rat formed a set of accurate rules for decision 

making (turning left or right), which depended on the 

information that the side from which the rat obtained the last 

drink, and whether the rat reached the neck of the Y-maze.   
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Figure 10. Behavior decision experiment of rat (Corresponding to 

[Yang et al, 2014]). 

We outlined the behavior in a set of logical expressions: 

Drink_L, the rat last drank on the left side of the Y-maze; 

Drink_R, the rat last drank on the right side; Thirsty, the rat 

was in a thirsty state; At_Neck, the rat reached the neck of the 

Y-maze; Turn_L, the rat made a decision with turning left; 

Turn_R, the rat made a decision with turning right. The 

decision logic could be described such that the rat was 

thirsty, and working memory retained the left (or right) side 

of the Y-maze from which the rat last drank. Then, when the 
rat reached the neck of the Y-maze again, it executed the 

command of turning right (or turning left). The process of 

decision logic could be expressed by a proposition logical 

expression: (Thirsty ˄ Drink_L ˄ At_Neck → Turn_R) ˅ (Thirsty 

˄ Drink_R ˄ At_Neck → Turn_L). A plausible neural network 

could achieve this decision logic, as shown in Fig. 11. 
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Figure11. Neural circuit for rat’s decision-making. 

Taking the rat executing the turning-right command as an 

example, the details of the circuit were such that: First, four 

neuron clusters represented the four propositions, Thirsty, 

Drink_L, At_Neck, and Turn_R. If the AFR of a neuron cluster 

was higher than 10 Hz, then the corresponding proposition 

was true; otherwise it was false. Second, we constructed the 

neural circuit for the logical expression: Thirsty ˄ Drink_L 

based on the And-like circuit. Third, we constructed the 

neural circuit for the logical expression: Thirsty ˄ Drink_L ˄ 

At_Neck based on the And-like circuit. Finally, we 

constructed the circuit (Thirsty ˄ Drink_L ˄ At_Neck)→Turn_R 
based on the Conditional-like circuit. In addition, we 

designed two groups of intermediate neurons (I3 and I4) 

between Turn_R and Turn_L to avoid misuse; Drink_L and 

Drink_R were also mutually exclusive, if the two 

propositions were both true, the decision making would be 

disordered. When the rat was in a given status, the neuron 

cluster that expressed the opposite status was inhibited. The 

complete circuit for decision-making is shown in Fig. 11.  

We simulated the process of decision-making for a rat in 

a Y-maze. As shown in Fig. 12, (L-Choice) If the rat last 

drank at the right side of the Y-maze (Drink_R=True), then 

when the rat reached the neck of the Y-maze (At_Neck= True) 
it executed the command turning-left (Turn_L=True); 

otherwise, the rat executed the command turning-right 

(Turn_L=False). (R-Choice) If the rat last drank at the left 

side of the Y-maze, then when the rat reached the neck of 

Y-maze, rat executed the command turning-left; otherwise, 

the rat executed the command turning-right. 
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        Figure 12.  Decision-making in Y-maze 

Conclusion 

Finally, we summarize our work through Marr’s three-

level hierarchy. (a) What is computed? Our answer is that 

some logical rules are computed. Modeling from this 

perspective can help us to understand the functional base 

line of it. (b) Why is it computed? For sake of accurate 

behavior-controlling, these logical rules must be 

computed, which is the fundamental demand to a specific 

behavior. (c) How is it computed? In this paper, we 

design some types of local neural circuits to achieve four 

basic logic-like operations as canonical computations and 

assemble them to simulate a rat’s decision making 

behaviors in Y-maze. Firstly, our circuit design is highly 

faithful to neurobiological facts like neuron firing mode, 

two major types of neuron, the proportion constrain of 

their numbers, and pulse-based mode of communication. 

Secondly, in the scope of cortical column our logical-

equivalent local circuits are biologically plausible to be 

implemented. Thirdly, these basic functional modular are 

configurable, reusable and combinable. 
We lack a bridge theory from circuit to behavior 

[Carandini, 2012]. For example, how do microscopic 

activities of neurons and logical relationships in circuits 

support the achievement of cognitive ability? Our aim is to 

construct a biological neural network for behavioral control 

rules from a logic perspective. This study may be useful for 

gradually transitioning from microscopic neural activity to 

macroscopic behavioral control. In our future works, we 

will explore neural computational mechanism about how 

a proper circuit is formed. 
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Abstract 

The CRT is an increasingly well-known and used test of bias 
susceptibility. While alternatives are being developed, the 
original remains in widespread use and this has led to its 
becoming increasingly  familiar to psychology students 
(Stieger & Reips, 2016), resulting in inflated scores. 
Extending this work, we measure the effect of prior exposure 
to the CRT in a sample of oil industry professionals. These 
engineers and geoscientists completed the CRT, seven bias 
tasks and rated their familiarity with all of these. Key results 
were that: familiarity increased CRT scores but tended not to 
reduce bias susceptibility; and industry personnel, even 
without prior CRT exposure, scored very highly on the CRT - 
greatly reducing its predictive power. Conclusions are that the 
standard CRT is not a useful tool for assessing bias 
susceptibility in highly numerate professionals – and doubly 
so when they have previously been exposed. 

Keywords: cognitive reflection test; familiarity; predictive 
power; bias; industry professionals. 

Introduction 

The Cognitive Reflection Test (CRT), due to its impressive 

predictive power for biases (Frederick, 2005; Toplak, West, 

& Stanovich, 2011), is widely used in bias research. Perhaps 

its most recognisable item is the following: 

A bat and a ball together cost $1.10. The bat costs $1 

more than the ball. How much does the ball cost? 

This question and its two companions have strongly 

intuitive but incorrect answers – 10c in the bat-and-ball 

question’s case – such that answering the questions 

correctly implies greater reflection on one’s answer. Thus, 

the CRT yields a score from 0-3 with higher values 

reflecting greater ‘cognitive reflection’, which has been 

linked to lessened bias susceptibility. 

Despite the CRT’s success, concerns have been raised 

about it. Firstly, it conflates numerical ability with 

measurement of decision style (see, e.g., Primi et al., 2015; 

Weller et al., 2013; Welsh, Burns, & Delfabbro, 2013); and, 

secondly, consists of only three, quite memorable items.  

While these problems have been previously noted and 

attempts made to improve the CRT by inclusion of 

additional items and attempts to reduce the mathematical 

emphasis (Primi et al., 2015; Thomson & Oppenheimer, 

2016; Toplak, West, & Stanovich, 2014), the original CRT, 

due to its speed and ease-of-use, remains in widespread use. 

This is problematic in that, once a person has been 

exposed to the CRT, its usefulness may be compromised. 

Recent work by Stieger and Reips (2016), for example, has 

shown that familiarity with CRT questions inflated CRT 

scores amongst psychology students. 

Key questions remain, however. First, whether CRT 

familiarity extends beyond psychology students to people in 

industries interested in bias reduction strategies. For 

example, the oil and gas industry has a 4 decade long 

history of following the judgement and decision making 

literature – beginning with Capen’s (1976) work on 

overconfidence. With the success of popular science books 

like Kahneman’s (2011) Thinking Fast and Slow, which are 

often taken up by managers, it seems likely that industry 

knowledge of the CRT will also expand. This could render 

it decreasingly useful as a means of distinguishing between 

individuals because people who have undertaken decision 

making training may be increasingly likely to have 

encountered the CRT or similar questions before. 

The second question relates to the degree of familiarity 

required to undermine the CRT’s validity. For example, the 

above bat-and-ball problem is memorable. Its format, 

however, is nearly as memorable. That is, assume someone 

has seen the bat-and-ball question; when, then, asked: 

A jug and a cup together cost $2.20. The jug costs $2 

more than the cup. How much does the cup cost? 

It seems unlikely that anyone would fail to make the 

connection between the two. That is, despite not having 

seen the specific question before, recollection of the 

question format could be sufficient to prime them for 

reflection on their answer. This would result in them scoring 

higher on the CRT – not due to superior cognitive reflection 

but simple familiarity. Given the low score ‘ceiling’ of the 

3-item CRT, this could reduce the CRT’s ability to predict 

susceptibility to biases by truncating its range of scores. 

Hypotheses 

1. Decision making training courses will increase familiarity 

with bias questions and CRT. 

2. Familiarity will inflate CRT scores. 

3. This will reduce the CRT’s predictive power. 

4. Familiarity will increase bias resistance. 

Method 

Participants 

Participants were 116 personnel employed at Australian oil 

companies. Of these, 93 completed all of the (below) tasks 

in the allotted time. These included 70 males and 23 

females, with a mean age of 41.3 years (SD = 10.8) and an 

average of 16.4 years of industry experience (SD = 10.0).  

Procedure 

Participants were recruited during several visits to oil 
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companies and tested in groups of 25-30. They were given 

the pencil and paper battery of questions described below 

and allowed 45 minutes to complete it.  

Materials 

The questionnaire asked demographic questions, Frederick’s 

CRT (spread throughout the questionnaire) and 10 bias 

measurement tasks commonly seen in managerial decision 

making books/courses (see, e.g., Bazerman, 2002). Three of 

these (base rate neglect, optimism and unpacking) were 

included for separate analyses and are not discussed here. 

The remaining biases were: anchoring, overconfidence, 

framing, conjunctive/disjunctive events bias, sample size 

invariance, the Wason selection task and illusory 

correlations. Each, except for overconfidence, was tested 

using a single item and all were scored in line with the CRT; 

that is, higher scores indicated less bias susceptibility. The 

specific tasks are described below. 
 

Demographics. 

Participants provided their age, gender, technical specialty 

and years of industry experience. They also indicated 

whether they had undertaken training courses in decision 

making and when, where and with whom this was done. 
 

Anchoring. 
Participants were asked whether world proved oil reserves 

in 2009 were greater or less than an anchoring value prior to 

being asked to make an estimate. The assumption here is 

that oil industry personnel, while unlikely to have a figure 

for this already in mind, would be capable of constructing a 

reasonable estimate from their industry knowledge but that, 

in line with the anchoring and adjustment heuristic (Tversky 

& Kahneman, 1974), people’s estimates would tend towards 

the anchor they had seen. Participants saw one of two 

anchors –150% or 50% of the known true value, although 

participants were unaware of this – and were assessed as 

showing the bias if their estimate was closer to the anchor 

they saw (scored 0) than the unseen alternative (scored 1).  
 

Overconfidence. 

This task included 10 questions asking the participant to 

generate an 80% confidence interval around an unknown 

quantity related to the oil industry – a task commonly 

undertaken the oil industry but at which people are known 

to perform poorly (see, e.g., Lichtenstein, Fischhoff, & 

Phillips, 1982; Welsh & Begg, 2016).  

Performance was calculated as the proportion of 

generated ranges that contained the true value. This was ten 

converted to a 0 to 1 scale for easier comparison with the 

other bias scores with 0 indicating the worst performance 

and 1 the best as follows: Score = 1-|Hits/10 - .8|*1.25 
 

Framing. 

This question, adopted from Pieters (2004), asked 

participants to select between options for dealing with a 

hypothetical oil spill – one certain to reduce it by a set 

amount (1/3) and one giving a 1/3 chance of containing it 

entirely but a 2/3 chance of it spreading to its maximum 

extent. That is, both options had an expected value of a 1/3 

reduction in the slick. Half of participants had these 

explained to them in terms of how much the oil would 

spread (negative frame) while the rest were told how much 

oil would be contained (positive frame) by each option. 

In line with Prospect Theory (Kahneman & Tversky, 

1979), the expectation is that having the problem framed 

positively will tend to produce risk aversion – causing 

participants to select the certain option – while a negative 

frame tends to result in selecting the riskier option. A 

participant’s response was, thus, scored as to whether they 

conformed to the Prospect Theory prediction (0) or not (1). 
 

Conjunctive/Disjunctive Events Bias 

This question asked participants to select which of three 

possible responses to a probability question was correct. 

Specifically, which event was more likely of: a single 50% 

prospect finding oil; all of seven 90% prospects finding oil 

(~48%); or at least one of seven 10% prospects finding oil 

(~52%). As noted by Bar-Hillel (1973), people tend to 

overestimate the likelihood of conjunctive events and 

underestimate the likelihood of disjunctive events. Given 

this, participants were scored 1 if they correctly identified 

the third option and 0 otherwise. 
 

Sample Size Invariance. 

This task asked whether a statistically unlikely result was 

more likely to occur in a larger or smaller sample – or be 

similarly likely. Specifically, participants were asked 

whether, on a given day, it was more likely that 60% of oil 

wells would produce above their average rate in a larger (45 

well) or smaller (15 well) field. As noted by Tversky and 

Kahneman (1974), people can pay too little attention to the 

size of the sample and fail to realise that deviant results are 

more likely in a smaller sample. Given this, selecting the 

smaller option was scored correct (1) while any other 

response was scored incorrect (0). 
 

Selection Task. 

Based on Wason’s (1968) selection task, participants were 

asked which of four oil prospects needed to be retested with 

an alternative tool in order to test a consultant’s claim that 

Tool 2 would always produce a positive result when Tool 1 

did. A correct response (scored 1) was to retest prospects 

where the Tool 1 had given a positive result and those 

where Tool 2 had given a negative result. Any other 

combination of choices was deemed incorrect (scored 0). 
 

Illusory Correlations. 

The illusory correlations task (Chapman & Chapman, 

1967), asked participants to examine a 2x2 contingency 

table and determine whether the data supported a 

relationship between two events: AVO anomalies (from 

seismic data) and hydrocarbon presence. In fact, the data 

offered no support for this despite a preponderance of 

observations in the AVO present/HC present cell. 

Participants were scored as correct (1) only if they correctly 

identified there was no relationship in the data and that all 

four cells needed to be examined to establish this fact. 
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Claiming that the data supported a relationship or that only 

some cells needed to be examined resulted in a score of 0. 
 

Cognitive Reflection Test. 

The three questions from Frederick’s (2005) CRT were 

spread amongst the other tasks. A person’s score on this 

task is simply the number of questions answered correctly.  
 

Familiarity. 

At the end of the survey, participants were asked to look 

back and, for each question, indicate whether they had:  
 

1) Never seen it prior to testing (score 0). 

2) Seen a similar question previously (score 0.5). 

3) Seen that exact question previously (score 1). 
 

Tasks involving more than one question (CRT and 

overconfidence) had the familiarity scores for all composite 

questions averaged to produce a single, familiarity score. 

Results 

Demographic Data 

In addition to the data described in the Method section, 

several demographic questions were asked of participants. 

Key observations from this are presented in Table 1. 

 

Table 1: Summary of demographic measures. 

Measure  

Technical Area 32 Engineers, 52 Geoscientists, 8 Other 

Training* 38 trained, 55 untrained 

Yrs since training Mean = 4.8 years, SD = 4.6 

* Training courses in decision making, heuristics and biases. 

Descriptive Statistics 

Table 2 summarises participant performance on the various 

measures and their stated familiarity with the questions. 

Looking, first, at the scores in Table 2 a number of things 

are immediately clear. The first is that a majority of 

participants display bias on each of the bias measures. On 

the six which reflect a simple proportion correct, the highest 

mean is 0.32 for the Conjuntive/Disjunctive events bias – 

which reflects chance performance on a three-option choice. 

On the other, single-item tasks, performance ranges from 

12% up to 27% correct - indicating a significant majority 

displaying the expected biases. Overconfidence requires 

more explanation as it indicates the proportion of generated 

ranges containing the true value compared to the expected 

number. Thus, the 0.49 average in Table 1 reflects a person 

achieving around half of their expected calibration – that is 

~40% of their “80%” ranges containing the true value, 

which is a typically strong level of overconfidence. 

Finally, the CRT scores are very high. Frederick’s (2005) 

paper listed 11 samples with average CRT scores ranging 

from 0.57 to 2.18 (and an overall mean of 1.24). A 95% CI 

around the industry sample’s mean CRT extends from 2.24 

to 2.60 - excluding not just the overall average from 

Frederick’s results but that of the highest group as well.  

Table 2’s familiarity data also shows interesting results. 

Specifically, while no familiarity scores are particularly 

high – recalling that a score of 1 would indicate definitely 

recalling an entire task – participants’ highest familiarity 

rating is observed for the CRT. The average (0.25) score 

here lies between what would be observed from participants 

having recalled seeing one of the CRT’s actual questions 

before (0.33) and having seen one similar one (0.17). 

 

Table 2: Performance on bias and CRT measures. 

 Score Familiarity 

Measure Mean SD Mean SD 

Anchoring 0.27 0.45 0.23 0.27 

Framing 0.27 0.45 0.12 0.23 

Con/Disjunctive 0.32 0.47 0.14 0.24 

Sample Size 0.22 0.41 0.09 0.22 

Selection Task 0.12 0.32 0.17 0.27 

Illusory Correlation 0.17 0.38 0.16 0.30 

Overconfidence 0.49 0.31 0.20 0.25 

CRT 2.42 / 3 0.88 0.25 0.27 

Note: N = 93. The unshaded parts reflect tasks where the 

Mean value equals the proportion of correct responses. 

Training and Familiarity with Bias and CRT  

To test Hypothesis 1 – that industry courses in decision 

making would increase familiarity with bias and CRT 

questions - familiarity ratings of participants with and 

without such training were compared. Looking at Table 3, 

Hypothesis 1 is clearly supported by the data. In all cases, 

participants who had undertaken training courses reported 

significantly higher familiarity with the bias and CRT 

questions. An interesting observation, however, is that the 

CRT is an outlier amongst untrained personnel – its mean 

familiarity more than double that of any other question. This 

may go some way to explaining the distribution of CRT 

scores across the trained and untrained groups, shown in 

Figure 1, where three-quarters of the trained group score 

3/3, but so do half of the untrained group.  

 

Table 3: Familiarity with bias and CRT measures by 

training group. 

 Trained Untrained t(91) p 

Anchoring .45 .07 8.93 <.001 

Overconfidence .37 .08 6.69 <.001 

Framing .21 .05 3.46 <.001 

Con/Disjuntive .24 .07 3.47 <.001 

Sample Size .18 .03 3.59 <.001 

Selection .33 .05 5.56 <.001 

Illusory Corr. .17 .05 5.12 <.001 

CRT .35 .18 3.21 .002 

Note: p-values are two-tailed. Independent samples t-tests. 

CRT Familiarity and Score 

Hypothesis 2 held that familiarity with CRT questions 

would inflate CRT scores. The correlation between CRT 

scores and familiarity with CRT questions supported the 

hypothesis, showing a weak, significant effect, r(91) = 0.29,  
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p = .004 (see Table 5). That is, participants who had seen 

CRT (or similar) questions before scored higher. 
 

 
Figure 1: Distribution of CRT scores by training group. 

 

To better understand the magnitude of the effect, the CRT 

scores of participants unfamiliar with all of the CRT 

questions (i.e., CRT Familiarity = 0) were compared to 

those who recalled at least one similar question. Looking at 

Table 4, one sees that the familiar group scored more than 

half a mark higher on the CRT, which an independent 

samples t-test confirmed as a significant difference. 

 

Table 4: Mean CRT scores by familiarity group 

CRT Familiarity   

0 (n=41) >0 (n=52) t(91) p(2-tailed) 

2.12 (SD=1.08) 2.65 (SD=0.59) 3.0 .003 

Predictive Power of CRT 

Hypothesis 3 held that the inflation of CRT scores as a 

result of familiarity would reduce the its predictive power – 

measured herein by correlations calculated between all bias 

measures, CRT and CRT familiarity, and shown in Table 5.  

Looking at Table 5, one sees that the CRT has relatively 

little predictive power for the seven biases. It very weakly 

predicts better performance on the Selection task and on 

Overconfidence questions. This analysis, however, includes 

participants familiar and unfamiliar with the CRT. To assess 

the impact of familiarity on CRT’s predictive power, 

correlations were calculated separately for participants 

familiar and unfamiliar with the CRT as seen in Table 6.  

Here, one sees that, the CRT does not significantly predict 

bias for familiar or unfamiliar participants. The pattern of 

results, however, is for the correlation to be higher in the 

group familiar with the CRT (5 of 7 biases). While the 

smaller samples resulting from dividing the group renders 

these non-significant, the correlations are higher than the 

significant ones in the full dataset, suggesting prior CRT 

familiarity may predict better performance on these biases. 

Thus, while the overall result does not, technically, 

support Hypothesis 3, it identifies the lack of predictive 

power for the CRT in the industry sample that is unfamiliar 

with the CRT and suggests that what predictive power is 

observed in the group familiar with the CRT may result 

from either prior CRT experience somehow priming people 

to be more aware of biases – or, more likely, that 

participants with prior exposure to the CRT may also have 

experience with bias questions and thus perform better. 

Table 5: Correlations between CRT, CRT familiarity and 

bias measures. 
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Note: N=93. Values in the lower triangle are correlation 

coefficients. Upper triangle data are two-tailed p-values. 

Bold results are significant. Italic results are significant as 

directional hypotheses. NB – for binary bias measures, the 

correlations are equivalent to t-tests and used in preference 

for consistency and ease of display. 

 

Table 6: Correlations between CRT and biases in 

participants familiarity and unfamiliar with CRT. 

 Correlation with CRT 

 Unfamiliar (n=41) Familiar (n=52) 

Bias Task r p (2-tailed) r p (2-tailed) 

Anchoring .11 .512 .04 .787 
Overconf. .04 .828 .26 .066 
Framing -.07 .647 -.11 .421 
Con/Dis. Bias -.12 .469 .09 .549 
Sample Size .05 .756 .07 .647 
Selection  .13 .416 .21 .144 
Ill. Corr. .02 .914 .21 .144 

Familiarity and Bias Resistance 

As noted above, the results suggest support for Hypothesis 4 

– that familiarity with bias questions would improve 

performance. Data in Table 5 also show CRT Familiarity 

has stronger relationships with bias performance than a 

participant’s CRT score. Given the likely co-occurrence of 

bias and CRT questions in decision training courses, the 

effect of familiarity on bias was thus also examined. 
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To test this, χ
2
 tests were conducted for the six, binary-

scored biases. Given low numbers of participants recalling 

seeing exact bias questions before, familiarity with a bias 

was also treated as binary by combining groups who had 

seen the exact or a similar question together. Table 7 shows 

the proportion of correct responses for each of these groups 

for each bias and the results of the corresponding χ
2
 tests. 

 

Table 7: Proportion correct by bias question and familiarity. 

 Familiarity   

Bias Task 0 >0 χ
2
(1) p 

Anchoring 0.23 (n=53) 0.33 (n=40) 1.13 .288 

Framing 0.28 (n=72) 0.24 (n=21) 0.13 .718 

Con/Dis  0.29 (n=68) 0.40 (n=25) 0.94 .333 

Sample Size 0.22 (n=78) 0.20 (n=15) 0.02 .877 

Selection  0.08 (n=65) 0.27 (n=22) 3.54 .060 

Illusory Corr. 0.16 (n=69) 0.21 (n=24) 0.30 .584 

Overconfidence r(93) = 0.25 .016 

Note: p values are two-tailed. Overconfidence and its 

corresponding familiarity are both non-binary, therefore a 

correlation is used rather than χ
2
. 

 

Looking at Table 7, one sees that, participants familiar 

with bias questions do better in 5 of the 7 tasks but 

significantly only on the Overconfidence and Selection 

tasks (given a directional hypothesis). That is, Hypothesis 4 

is supported for Overconfidence (r(93) = 0.25, p = .016) and 

the Selection Task (χ
2
(1) = 3.54, p = .060) – the two biases 

showing the strongest relationships with CRT amongst 

participants familiar with the CRT in Table 6. 

Discussion 

The results offer support for two hypotheses: that taking part 

in decision making training courses increases the likelihood 

of having seen the CRT or bias questions previously; and 

that having seen CRT-style questions previously results in a 

significant increase in CRT score – of more than half a mark 

on the 0-3 scale. The fact that results (largely) failed to 

support the other hypotheses has, along with observations 

on the limited predictive power of the CRT herein, 

implications for the use of the CRT, as expanded on below. 

Predictive Power of the CRT 

As noted above, our third hypothesis was that the CRT’s 

predictive power would be eroded by participant’s 

familiarity with CRT questions. The reasoning being that, 

given a limited set of memorable questions, prior exposure 

would push results towards ceiling, weakening the 

relationship between CRT and the biases. Our results, 

however, showed CRT having little predictive power to start 

with. This lack of initial, predictive power in our sample 

may have made it impossible to convincingly demonstrate 

the impact of familiarity on CRT’s predictive power. 

The reason for this lack of predictive power, however, 

seems to be the same as that prompting our Hypothesis 3 – 

that CRT scores are too close to ceiling. As noted above, 

even the CRT scores of participants with no familiarity with 

CRT questions were, at 2.12, similar to the highest of the 11 

groups tested by Frederick (2005) and much higher than his 

average of 1.24.  

Part of this, we argue, must stem from the nature of our 

sample. Rather than undergraduate students, we tested oil 

industry professionals – primarily engineers and scientists. 

As such, our sample is likely to have much higher than 

typical numeracy scores and, consequently, higher CRT 

scores (for discussions of the links between CRT and 

numeracy, see, e.g., Weller et al., 2013; Welsh et al., 2013).  

While this has made certain of our planned comparisons 

more difficult – effectively rendering our ‘control’ group of 

people unfamiliar with the CRT too similar to those who 

had prior experience, the implications of this for the use of 

the CRT in expert samples are more troubling. It suggests 

that, even prior to their first exposure to the CRT, the 

skewed scores seen in a sample of technical experts will 

limit the test’s ability to differentiate between individuals 

and predict performance.  Combined with the observation 

that the CRT’s highest predictive power was observed 

amongst people with prior experience on exactly those 

biases where prior experience aided the most – this argues 

against the CRT’s usefulness. 

While these concerns may be lessened when dealing with 

experts from less numerically-focussed fields, expert 

decision making and forecasting tends towards exactly these 

groups, meaning that the CRT may have limited utility. 

Bias vs CRT Familiarity 

Analyses of familiarity with both biases and the CRT used 

to examine Hypothesis 4 found limited evidence of prior 

experience with biases improving performance. Only for the 

Overconfidence and the Selection Task did prior exposure 

lead to better performance – perhaps due to greater 

memorability or that understanding these biases suggests a 

solution. For example, overconfidence implies too narrow 

ranges, which immediately suggests widening ranges. Such 

awareness generally reduces but does not remove 

Overconfidence (Welsh, Begg, & Bratvold, 2006). Amongst 

the other biases, little evidence was seen of prior bias 

question experience enabling one to avoid those biases – 

even in an educated, highly numerate sample.  

This is doubly important in light of familiarity’s effect on 

CRT. If CRT is inflated by prior exposure more than bias 

performance, then knowing who has been exposed to the 

CRT-style questions becomes essential when interpretting 

results. Adding to this is the fact that the CRT was more 

familiar than the biases to people who had not completed 

training, suggesting that these questions occur through other 

channels or that CRT questions are particularly memorable.  

This seems likely to remain true even when ‘similar’ tasks 

are used. The structures of CRT questions, once recognized 

as ‘trick’ questions, may trigger greater scrutiny of intuitive 

answers. Certainly, while few participants indicated having 

seen the exact CRT questions before, reporting having seen 

similar ones (for now, ignoring questions about the accuracy 

of their recall) also resulted in higher CRT scores.  
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Future Research 

Given the problems observed with CRT, an obvious next 

step is to attempt a replication using one of the newer 

variants developed to have less reliance on numeracy and a 

larger number of items (e.g., Primi et al., 2015; Thomson & 

Oppenheimer, 2016; Toplak et al., 2014). Whether such a 

substitution will work depends on whether familiarity is 

highly specific for particular question types or simply 

primes generic “I know this is a trick question” responses. 

Another necessary step is to look at biases discussed here 

in greater detail. While a (mostly) single item per bias 

approach is useful for an exploratory approach - allowing 

multiple biases to be examined without overloading the 

goodwill of participants - binary scoring is, of course, a 

crude measure of susceptibility to any bias. Research using 

a set of bias questions for each bias (and focusing on fewer 

biases so as to keep the total number of questions down) 

would allow finer-grained measurement of susceptibility 

and shed further light on the findings discussed herein (and 

allow more detailed discussion of the biases, their modes of 

action and some of the controversies in the literature 

regarding their nature - or even existence). 

Finally, the very high CRT scores we observed in our oil 

industry sample suggest that additional work should be 

conducted to determine how CRT scores vary in other fields 

amongst both naïve and CRT-familiar personnel.  

Conclusions 

Our results have important implications for the use of the 

CRT as a bias susceptibility measure for decision making 

research in professional settings. Our technical experts, 

while susceptible to biases, have inflated CRT scores - 

resulting from greater numerical ability as well as any prior 

exposure to CRT-style questions. These effects result in the 

original CRT retaining little to no predictive power.  

Given this, future work is required to see whether 

alternate versions of the CRT, developed to include more 

items and be less numerically-based, avoid such problems 

and can provide useful results in professional populations. 
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Desires influence 4- to 6-year-old children’s probabilistic judgments
Adrienne Wente

University of California, Berkeley

Mariel Goddu
University of California, Berkeley

Elyanah Posner
University of California, Berkeley

Teresa Garcia
University of California, Berkeley

Marı́a Fernández Flecha
Pontificia Universidad Católica del Perú
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Abstract: Research on wishful thinking suggests that desires bias adult’s probability judgments. Previous research has yet to
explore if this extends to young children. In Experiment 1, 260 4- and 6-year-olds in the U.S. and Peru played a card game,
where selecting a desirable card was unlikely. In Experiment 2, 200 4- to 6-year-old children were shown a bag of plastic
eggs; a few contained desirable prizes. Children were asked to make predictions about what card / egg would be randomly
selected. Answers were compared to control conditions in which probability was comparable, but children had no reason to
desire a specific outcome. In control conditions, children tended to state that the majority card/ egg would be selected. In the
experimental conditions, children were more likely to state that the desirable (and improbable) card/ egg would be selected.
Results suggest that a desire bias extends to children as young as 4.
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Abstract 

We contrast two views of how contextual influence on sentence meaning 

composition can be explained. The Semantic Similarity View maintains 

that discourse context affects sentence meaning mainly because of the 

semantic similarity between the words in the discourse context and the 

words in the sentence (as measured by Latent Semantic Analysis). The Free 

Pragmatic View, in contrast, defends the claim that also pragmatic aspects 

of the discourse context can affect sentence meaning composition. This 

effect can be quantitatively modelled by Bayesian Pragmatics. We 

introduce a Predictive Completion Task in which the hearer at every 

moment in a communicative situation has to generate a probabilistic 

prediction about how a discourse being uttered by the speaker is continued. 

We test the predictions of the two views in EEG using the well-established 

observation that the conditional probability of a word given a context is 

negatively correlated with the amplitude of its N400 component. 

Keywords: Latent Semantic Analysis, Bayesian Pragmatics, N400, 

Generative Lexicon, Telicity, Affordances, Context, Predictive 

Coding 

Introduction 

It has been widely acknowledged that a preceding 

discourse can influence the way sentence meaning is 

composed from lexical meaning. In this paper we want to 

adjudicate between two competing views of how discourse 

context affects sentence meaning. A prominent view is that 

the contextual influence is mainly due to the semantic 

similarity between parts of the discourse context and the 

words in the target sentence (e.g., as in semantic priming; 

Otten & Van Berkum, 2008). It is however highly 

controversial whether also pragmatic aspects of the 

discourse context other than the mere resolution of 

indexicals and anaphors can immediately affect sentence 

meaning composition. Nieuwland and Van Berkum (2006) 

have argued that discourse contexts can overturn violations 

of animacy. For a noun denoting an object that would 

normally be regarded as inanimate (e.g. peanut) the feature 

of animacy can be introduced if the preceding discourse 

context specifies a suitable situation (e.g., a romantic story 

whose protagonist is a peanut). Here predicates that would 

normally conflict with the noun because they require 

animacy (the peanut was in love) were actually more easily 

predictable than canonical predicates (the peanut was 

salted), as revealed by an enhanced N400 for canonical 

predicates as compared to animacy-violating predicates. 

To investigate the contrast between a Semantic Similarity 

account of contextual influence and a Free Pragmatic 

account that allows for free pragmatic enrichment in 

sentence meaning composition, we will look into the way 

subjects make probabilistic predictions on the completion of 

a sentence given a preceding discourse. Quantitatively, the 

semantic similarity can be determined by Latent Semantic 

Analysis (Landauer & Dumais, 1997), whereas we will use 

the framework of Bayesian Pragmatics (Frank & Goodman, 

2012) to calculate the pragmatic influence – in particular, 

concerning the rationality of the speaker’s intentions in a 

narrative. As a model of lexical structure we apply the 

Generative Lexicon approach (Pustejovsky, 1995). In our 

experimental design we will use the established observation 

that the conditional probability of a word given a preceding 

context is negatively correlated with the amplitude of its 

N400 component measured in EEG. 

Background 

The general idea of Bayesian Pragmatics is to account 

for the rational cooperation between speaker and hearer in 

an act of communication by modelling the hearer’s 

probabilistic expectations about the speaker’s 

communicative intentions by Bayes’s Theorem. Bayesian 

pragmatics has been successfully used e.g. to explain results 

in a number of behavioral experiments (e.g., Frank & 

Goodman, 2012). It has so far not been validated in EEG 

studies. 

Bayesian pragmatics offers itself as a model also in what 

one might call the Predictive Completion Task (PCT) of 

communication. Predictive coding is widely acknowledged 

in cognitive science as a general mechanism by which the 

subject at every point in time generates the most probable 

prediction of the next event on the basis of ongoing 

perceptual input and learned statistical regularities (Hohwy, 

2013). In a PCT the hearer at every moment in a 

communicative situation has to generate a probabilistic 

prediction about how a sentence/discourse being uttered by 

the speaker will be continued. To get a quantitative grasp of 

this task, we define 𝑃𝑇(𝑎|𝑐) as the conditional probability of 

a sentence/discourse being continued with the word 𝑎 given 

that the word is preceded by a context 𝑐 under the 

assumption that the complete sentence/discourse is true. We 

will call 𝑃𝑇 the truth-guided predictive probability function 

of the hearer. The problem of the hearer is to estimate the 

truth-guided predictive probability. 

The Semantic Similarity and the Free Pragmatic views 

provide competing theories of how the hearer accomplishes 

the Predictive Completion Task. To be able to discern 

between the two theories and given that the overall 

frequency of the word 𝑎 in language use and the syntactic 

congruency of the word 𝑎 relative to the preceding context 
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is known to have a major influence on 𝑃𝑇(𝑎|𝑐), we will in 

the course of this paper (and in the experiment) presuppose 

that the frequency of 𝑎 is held invariant and that the 

syntactic congruency between 𝑎 and its context is granted. 

According to the first view, 𝑃𝑇(𝑎|𝑐) should be estimated 

solely on the basis of the semantic similarities between the 

lexical meaning of the word 𝑎 and the semantic properties 

of the preceding context 𝑐. The semantic similarity can be 

quantified by Latent Semantic Analysis, LSA (Landauer & 

Dumais, 1997). 

The Free Pragmatic View in contrast maintains that 

pragmatic aspects of the discourse directly interact with 

meaning components retrieved from the lexicon as well as 

with any further node in the sentence meaning composition 

tree. It thus challenges a rigorous notion of 

compositionality, according to which the meaning of a 

complex expression is determined by the meanings of its 

syntactic parts and the way the parts are combined 

(Werning, 2004, 2005a, 2005b, 2012). Pragmatic 

enrichment is supposed to be “free” because not only lateral 

modulations of a word or phrase are allowed, e.g. when the 

meaning of a word is modulated by the meaning of its 

argument – cut the cake (vertical cutting) vs. cut the grass 

(horizontal cutting) – but any, however remote information 

can in principle modulate the meaning of a linguistic 

expression at any stage in semantic composition. For 

example, cut the grass, given a lawn-seller situation, might 

be interpreted as vertical cutting. Accordingly, a situation 

introduced in a discourse preceding the sentence may result 

in the modulation of the meanings of words or phrases in 

the sentence and of the sentence itself (Cosentino, 

Adornetti, & Ferretti, 2013). These modulations will then 

influence the intuitive truth-conditions of the sentence. This 

view, as developed for example by Recanati (2012) amounts 

to a weakening of the rigorous notion of compositionality 

by introducing context-dependent semantic flexibility by 

means of modulation. In the Predictive Completion task 

Bayesian Pragmatics can be used to quantitatively model the 

Free Pragmatic account (see Predictions). 

Design 

The contrasting quantitative predictions of the Semantic 

Similarity and the Free Pragmatic views can be applied to a 

previous EEG experiment of ours (Cosentino, Baggio, 

Kontinen, Garwels, & Werning, 2014; Cosentino, Baggio, 

Kontinen, & Werning, 2017). To design the experiment we 

combined a particular idea of Pustejovsky’s (1995) 

Generative Lexicon approach with Gibson’s (1979) notion 

of affordances. According to the Generative Lexicon 

approach, the lexical entry of concrete nouns (e.g. banana) 

contain a “Qualia Structure” which, among others, specifies 

a so-called Telic component (e.g. eat) that is retrieved in 

sentence meaning composition. This retrieval is typically 

triggered by verbs like use and enjoy that take the respective 

noun as argument. This explains why sentences such as (a) 

and (c) are typically understood as having the meaning of 

(b) and, respectively, (d): 

(a) The child enjoyed the banana. 

(b) The child enjoyed eating the banana. 

(c) The man used his jackknife for the cake. 

(d) The man used his jackknife for cutting the cake. 

In turn, Gibson proposed that many objects come with 

subject- and situation-dependent affordances. These are 

dispositional properties (e.g., sit-ability) that relate to 

actions to be potentially performed on that object (Werning, 

2010). We distinguish between ad-hoc affordances and 

generic affordances. Generic affordances are affordances of 

a class of objects that are represented as part of the mental 

concept of the class (e.g., chair – sit). Ad-hoc affordances 

are affordances that a particular object has for a particular 

agent in a particular situation (e.g., this chair – hide under, 

for a child in a peekaboo game). In line with Pustejovsky, 

generic affordances are often stored as telic components in 

the lexicon of nouns and thus in semantic long-term 

memory. 

 

 +TLex −TLex 

TStd-

Ctx 

Clare got herself a funnel to 

perform a little chemistry 

experiment at home and to this 

end she put some dye in water. 

Once she has done so, she uses 

the funnel to pour water into a 

container. 

Clare got herself a funnel to 

perform a little chemistry 

experiment at home and to this 

end she put some dye in water. 

Being an unconventional 

person, she uses the funnel to 

hang her coat. 

TNew

-Ctx 

Clare has an extra funnel and, 

after having decided what to do 

with it, she glues it to the wall 

leaving the narrow end facing 

outward. 

Once she has done so, she uses 

the funnel to pour water into a 

container. 

Clare has an extra funnel and, 

after having decided what to do 

with it, she glues it to the wall 

leaving the narrow end facing 

outward. 

Being an unconventional 

person, she uses the funnel to 

hang her coat. 

Table 1. Sample stimuli for EEG experiment on context effects on Telic 

lexical component. The table illustrates a 2x2 design, in which two 
categories of noun-verb combinations, +TLex and −TLex, are combined 
with two categories of discourse contexts, Telic Standard Context 
(TStdCtx) and Telic New Context (TNewCtx). The cue verb is underlined 
while the corresponding noun preceding the cue verb is in bold. The 
original stimuli were Italian and here are translated to English. 

 

In our 2x2 experimental design (see Tab. 1) the first 

variable – TelicLexicalMatch - refers back to Pustejovsky’s 

notion of a Telic component. The Telic component of the 

lexical entry specifies the function or the purpose of an 

object. With regard to the variable TelicLexicalMatch the 

two conditions, +TLex vs. −TLex varied in whether the cue 

verb (e.g., pour or, respectively, hang) expresses the telic 

component in the lexical entry of a given noun 𝑛 (e.g., 

funnel). With regard to the second variable – TContext – we 

varied the discourse context such that in the first condition 

TStdCtx a standard context preceded the target sentence, 

whereas in the second condition TNewCtx the preceding 

discourse context introduced a new telic role as an ad-hoc 

affordance for the object denoted by the noun, facilitating an 

action expressible by the −TLex verb (hang). 
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Predictions 

Semantic Similarity View: With word frequency held 

constant and syntactic congruency granted, the Semantic 

Similarity view now entails that the only predictor for a verb 

given its preceding context is the semantic similarity of the 

former to the latter. Given that we leave the corresponding 

noun 𝑛 (funnel), which precedes the cue verb 𝑣𝑖 

(pour/hang), the same in all four conditions, the semantic 

similarity is a cumulative (i.e. in both arguments strictly 

monotonously increasing) function 𝑓+ of the semantic 

similarity 𝑆(𝑣𝑖 , 𝑛) between the verb and the noun and the 

semantic similarity 𝑆(𝑣𝑖 , 𝑐𝑗) between the verb and the 

preceding context 𝑐𝑗 excluding the noun. According to this 

view the truth-guided predictive probability 𝑃𝑇,𝑛(𝑣𝑖|𝑐𝑗) of 

the verb 𝑣𝑖 following the noun 𝑛 given the context 𝑐𝑗 should 

hence be estimated by the hearer as follows (see Eqn. (4) in 

Table 2). 
 

Semantic Similarity view: 

𝑃𝑇,𝑛(𝑣𝑖|𝑐𝑗) = 𝑓+(𝑆(𝑣𝑖 , 𝑛), 𝑆(𝑣𝑖 , 𝑐𝑗)). 
 

The experimental settings were chosen such that the 

semantic similarity – determined by LSA –between the cue 

verb and the context excluding the noun was invariant 

across all four conditions (see Eqn. (6) in Table 2). 

Therefore, 𝑃𝑇,𝑛(𝑣𝑖|𝑐𝑗) should depend solely on whether the 

verb expresses the telic lexical component of the noun, i.e. 

belongs to +TLex, and correspondingly has a high semantic 

similarity to the noun – determined again by LSA – as 

opposed to a verb belonging to –TLex with a low semantic 

similarity to the noun (see (5)). We can now immediately 

mathematically derive the four comparative predictions 

regarding 𝑃𝑇,𝑛(𝑣𝑖|𝑐𝑗) for 𝑖 ∈  {+𝑇𝐿𝑒𝑥, −𝑇𝐿𝑒𝑥} and 

𝑗 ∈ { 𝑇𝑆𝑡𝑑𝐶𝑡𝑥, 𝑇𝑁𝑒𝑤𝐶𝑡𝑥}. These predictions are captured 

by the formulae (11), (15), (16) and (17) shown in Table 2 

together with their derivations. 

Bayesian Pragmatics: If the Free Pragmatic as opposed 

to the Similarity View is true the hearer will use a different 

strategy to estimate 𝑃𝑇(𝑎|𝑐). From a pragmatic point of 

view, narratives are goal-directed discourses. In our 

examples the speaker has the goal to attribute an action to 

the narrative’s protagonist which s/he performs on a given 

object: In the above examples, performing the action of 

pouring or, respectively, hanging on the funnel. In the 

narrative, the speaker embeds this action in a situation 

which he may introduce by a discourse context that precedes 

the description of the action. The speaker in other words has 

to choose a preceding context to let this action appear 

rational. To describe this choice situation quantitatively we 

can define the rationality-guided conditional probability 

𝑃𝑅,𝑛(𝑐𝑗|𝑣𝑖) as the probability of the speaker to choose – 

under the assumption of narrative rationality – a context 𝑐𝑗 

given that he aims at attributing to the protagonist the action 

denoted by 𝑣𝑖 to be performed on the object denoted by 𝑛. 

Using Bayes’s Theorem 𝑃𝑅,𝑛(𝑐𝑗|𝑣𝑖) can be transformed to 

allow the hearer, in the PCT, to estimate the truth-guided 

predictive probability by equating it to the rationality-guided 

probability of the speaker (see Eqns. (1) and (3) in Table 2): 
 

Free Pragmatic view: 

𝑃𝑇,𝑛(𝑣𝑖|𝑐𝑗) = 𝑃𝑅,𝑛(𝑣𝑖|𝑐𝑗), 

where, according to Bayes’s Theorem, 

𝑃𝑅,𝑛(𝑣𝑖|𝑐𝑗) = 𝐾(𝑐𝑗) ∙ 𝑃𝑅,𝑛(𝑐𝑗|𝑣𝑖)𝑃𝑅,𝑛(𝑣𝑖). 
 

Here 𝐾(𝑐𝑗) = (∑ 𝑃𝑅,𝑛(𝑐𝑗|𝑣)𝑃𝑅,𝑛(𝑣)𝑣∈𝑉 )
−1

   is a 

normalizing factor and 𝑉 is the set all (syntactically 

congruent) verbs. We may assume that the rationality-

guided prior probability 𝑃𝑅,𝑛(𝑣𝑖) of an action expressed by 

the verb 𝑣𝑖 being performed on the object denoted by the 

noun 𝑛 is fully determined by the semantic similarity 

between the verb and the noun as computed by LSA (see 

Eqn. (2)): 

𝑃𝑅,𝑛(𝑣𝑖) =  𝑆(𝑣𝑖 , 𝑛). 

For, the lexical entry of a concrete noun can be assumed 

to reflect the semantic memory of the learned statistical 

regularities between objects denoted by the noun and 

actions rationally performed on them. This assumption is 

part and parcel also of the idea that concrete nouns have 

telic lexical components in the sense of Pustejovsky’s 

(Pustejovsky, 1995) Generative Lexicon. If the verb 

corresponds to the telic lexical entry of the nouns, the 

semantic similarity between them should hence be high. In 

the experimental settings we can implement a comparative 

variation of the rationality-guided probability 𝑃𝑅,𝑛(𝑐𝑗|𝑣𝑖) of 

the speaker to choose a context 𝑐𝑗 given that he aims at 

attributing to the protagonist the action denoted by 𝑣𝑖 to be 

performed on the object denoted by 𝑛 as captured by the 

inequalities (7)-(10) in Table 2. This immediately allows us 

to generate comparative predictions about the conditional 

predictive probability of the hearer as a consequence of the 

Bayesian interpretation of the Free Pragmatic view. Making 

the idealizing assumption that the normalizing factor, which 

is unknown not only to us, but also to the hearer, is the same 

for all contexts and in particular, 𝐾(𝑐1) = 𝐾(𝑐2) = 𝐾, we 

can generate predictions not only for comparisons within the 

same context, but also across contexts. The so attained 

predictions of the Free Pragmatic view are captured in 

formulae (11), (12), (13) and (14) in Table 2, shown 

together with their mathematical derivation history. 

Correlation with N400 amplitude: To test the 

predictions, we exploited an empirically already well 

established relationship between the probability of a word 

given a preceding context and the amplitude of the N400 

component of the event-related potential measured on the 

onset of the word in EEG. Granted that the cue word is 

syntactically congruent with its context (i.e., no syntactic 

violation) and that the frequency as well as length of the 

word are invariant, the truth-guided predictive probability 

𝑃𝑇(𝑎|𝑐) of the word 𝑎 given the preceding context 𝑐 is 

negatively correlated with the amplitude of the word’s 

N400. Support for the negative correlation between the 

truth-guided predictive probability of a word given a 
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preceding context and the word’s N400 comes from 

multiple sources of evidence. Most importantly, Cloze 

probability is a strong predictor of the amplitude of the 

N400 component. Cloze probability values are obtained by 

asking participants in a Cloze task to complete an 

incomplete sentence with the word they consider to be the 

most likely completion. Kutas & Hillyard (1984) found that 

the amplitude of the N400 component measured on the 

target word has a nearly inverse linear relationship with its 

Cloze probability, that is, relative to more expected words, 

the N400 amplitude increases as the expectancy of a word in 

context decreases. DeLong, Urbach, & Kutas, 2005 

confirmed that the preceding words in a sentence are used 

by readers to estimate relative likelihoods for upcoming 

words and the differences in the likelihood of the target 

word are reflected in differences regarding the N400 

component. This effect has been observed not only in single 

sentences (Van Petten, Coulson, Rubin, Plante, & Parks, 

1999), but also for short texts (Otten & Van Berkum, 2007; 

Van Berkum, Brown, Zwitserlood, Kooijman, & Hagoort, 

2005). Even more subtle differences in the semantic 

relatedness between the words in a sentence are found to 

influence the conditional probability of an upcoming word 

and affect the amplitude of the N400 measured on that 

word. For instance, in the sentence The girl was writing 

letters when her friend spilled coffee on the 

tablecloth/paper” the semantically unrelated word 

tablecloth elicits a larger N400 than the semantically related 

word paper (Baggio, van Lambalgen, & Hagoort, 2008). 

The integration of world knowledge during the 

interpretation of sentences such as The Dutch trains are 

yellow/white/sour and very crowded (the target words are 

underlined) also modulates the amplitude of the N400 

component. This reflects the role of the (Dutch) subjects’ 

knowledge that Dutch trains are typically yellow for 

establishing the conditional probability of the target word 

(Hagoort, Hald, Bastiaansen, & Petersson, 2004). This 

stresses the point that the predictive conditional probability, 

in fact, is guided by expectations regarding the truth of the 

continuing sentence. Additional evidence of a negative 

correlation between the predictive conditional probability of 

a word and the amplitude of its N400 component is 

provided by a study previously conducted in our laboratory. 

In a sentence-picture verification study on scalar 

implicatures, logical and pragmatic responders provide 

different truth-value judgements to under-informative 

sentences (e.g., Some As are B, when it is known that all As 

are B). Whereas logical responders evaluate these sentences 

as true, pragmatic responders reject them as false. These 

divergent responses correlate with significant differences 

regarding the N400 and can be explained on the basis of 

expected probabilities of words relative to truth presumed 

by the subject (Spychalska, Kontinen, & Werning, 2016). 

Similar findings have been reported in a study about bare 

numerals (Spychalska, Kontinen, Noveck, Roesch, & 

Werning, 2015). 

Experiment 

Method: Twenty-two right-handed native speakers of 

Italian (13 males; mean age = 29.2 years) were presented 

with a total of 160 stories in a 2x2 design (see Table 1). The 

ERPs recording was time-locked to the onset of the cue 

words, which were always verbs occurring in the midst of 

the sentence and matched on word length, number of 

syllables and mean word frequency. The preceding contexts 

were pair-wise matched for number of words. The 

experimental stimuli were translated into English and 

underwent Latent Semantic Analysis to check for the 

semantic similarity values between the cue verbs and the 

preceding nouns or, respectively, between the cue verbs and 

the preceding contexts. Whereas the difference 

between 𝑆(+𝑇𝐿𝑒𝑥, 𝑛) and 𝑆(−𝑇𝐿𝑒𝑥, 𝑛) was significant 

(t(39)=5,449, p<.001), there was no significant difference 

between the cue verbs and the preceding contexts across all 

experimental conditions. Using average amplitude per 

condition across all EEG electrodes, a 2(Context: TStdCtx 

vs. TNewCtx) × 2(TelicLexicalMatch: +TLex vs. −TLex) 

repeated measures analysis of variance (ANOVA) was 

performed in the time window between 400 and 500 ms 

after critical word onset. A follow-up ANOVA was 

performed which involved specifically a predetermined 

region over centro-parietal sites at which the N400 is 

maximal. In this case, a 2(Context: TStdCtx vs. TNewCtx) 

× 2(TelicLexicalMatch: +TLex vs. −TLex) × 7 (Electrodes: 

CP1, CP2, CPz, Pz, P1, P2, POz) ANOVA was conducted. 

Bonferroni-adjusted planned comparisons were performed 

to decompose the effect of trial type in this region. 

Figure 1. Crossing over regarding the N400 component. Bars show the 
average amplitude of the N400 for the four conditions. The numbers in 
brackets correspond to the inequalities as predicted by the Free Pragmatic  
View (see Table 2, (11), (12) and (13)). Note that the fact that the 
difference between the +TLex and the −TLex verb in TNewCtx is not 
significant is also consistent with Free Pragmatic View (14). 
 

Results: Given the standard context TStdCtx, the N400 

for –TLex (M(TStdCtx, –TLex) = -1.67 µV) is significantly 

enhanced compared to +TLex (M(TStdCtx, +TLex) = -.64 

µV, t(20)=3.069, p=.006, CI 1.03 ± .70). Relative to the 

standard context TStdCtx, the TNewCtx significantly 

enhances the N400 component for +TLex (M(TStdCtx, 

+TLex) = -1.15 µV, t(20)=2.276, p=.034, CI .51 ± .47), 

whereas it significantly reduces the N400 component for –

TLex (M(TStdCtx, –TLex) = -.88 µV, t(20) = -2.745, 
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p=.012, CI -.79 ± .60. Finally, given a preceding context 

TNewCtx, the mean amplitude of the N400 component 

measured on +TLex was not significantly different 

compared to that measured on –TLex (t(20)=.964, p=.34) 

See Fig. 1. The follow-up ANOVA of the predetermined 

N400 region showed a significant Context× 

TelicLexicalMatch interaction, F(1, 20) = 11.267, p<.005. 

There was no interaction with electrodes in this region. 

Discussion 

In order to test the predictions made by the Free 

Pragmatic View and the Semantic Similarity View, we rely 

on the empirically well-founded observation that the truth-

guided conditional probability 𝑃𝑇(𝑎|𝑐) of the word 𝑎 given 

the preceding context 𝑐 (granted that no syntactic violation 

is involved and that features such as the frequency and 

length of the word are constant) is negatively correlated 

with the amplitude of the N400 component measured on that 

word succeeding the context. 

In our experimental settings, we determined the 

semantic similarity 𝑆𝑛(𝑣𝑖) between the meaning of the verb 

𝑣𝑖 and the preceding noun 𝑛 using LSA. This value gives us 

the prior probability of 𝑃𝑅,𝑛(+𝑇𝐿𝑒𝑥) and, respectively, 

𝑃𝑅,𝑛(−𝑇𝐿𝑒𝑥) with the former (pour corresponds to the telic 

lexical component of funnel) being higher than the latter 

(hang does not correspond to the lexical component of 

funnel), as reported in equation (5). We also determined the 

semantic similarity values between the verb 𝑣𝑖 and the 

discourse context 𝑐𝑗 excluding the noun and kept these 

values constant across all experimental conditions (see (6)). 

With regard to what is relevant for the Semantic Similarity 

View, the experimental conditions differ only in the 

semantic similarity values between the verb 𝑣𝑖 and the 

preceding noun 𝑛. The Semantic Similarity view entails that 

these values are the only predictor of differences in the 

truth-guided conditional probability of the verb given the 

preceding context and the noun (see (11), (15), (16) and 

(17)) and, hence, they are the only predictor of differences 

regarding the amplitude of the N400 component. 

The Free Pragmatic view focuses instead on the 

differences in the rationality-guided probability of the 

speaker choosing a certain context given that he attributes to 

the narrative subject the aim of performing a certain action 

with an object. In the Free Pragmatic framework, the 

rationality-guided probability that the speaker chooses a 

standard context TStdCtx (e.g., funnel in a chemistry 

experiment) given that he attributes to the narrative subject 

the aim of performing the action denoted by the +TLex verb 

(pour) with the object denoted by the noun 𝑛 (funnel) is 

higher than that of choosing this context given the attributed 

aim of performing with that object the action denoted by the 

–TLex verb (hang) (see inequality (7)). Furthermore, it is 

more rational for the speaker to choose a context TNewCtx, 

which introduces a new ad-hoc affordance for the object 

(funnel glued to the wall), compared to choose the standard 

context TStdCtx, given that he attributes to the narrative 

subject the aim of performing the action denoted by the –

TLex verb (hang) with the object denoted by 𝑛 (see (8)). As 

captured by inequality (9), the rationality-guided probability 

of the speaker choosing the standard context TStdCtx 

compared to TNewCtx is higher given that he attributes to 

the narrative subject the aim of performing the action 

denoted by the +TLex verb with the object denoted by 𝑛. 

Finally, as expressed by (10), the rationality-guided 

probability that the speaker chooses TNewCtx given that he 

attributes to the narrative subject the aim of performing the 

action denoted by the −TLex verb with the object denoted 

by 𝑛 is higher than the rationality-guided probability of 

choosing this context given the attribution to the narrative 

subject of the aim of performing the action denoted by the 

+TLex verb with the object denoted by 𝑛. 

Given that the Free Pragmatic view estimates the truth-

guided predictive probability of a word by equating it with 

its rationality-guided probability (see (1)), the Free 

Pragmatic view not only predicts (11), in line with the 

Semantic Similarity View, but, in contrast to the Semantic 

Similarity View, predicts a crossing-over regarding the 

N400 component, as expressed by the inequalities (12), 

(13). With regard to the comparison expressed in (14) the 

Free Pragmatic View does not make an unambiguous 

prediction. For, a greater/smaller comparison of the values 

of the product 𝑃𝑅,𝑛(𝑣𝑖|𝑐𝑗) = 𝐾(𝑐𝑗) ∙ 𝑃𝑅,𝑛(𝑐𝑗|𝑣𝑖)𝑃𝑅,𝑛(𝑣𝑖) 

depends not only on the numerical value of the prior 

probability 𝑃𝑅,𝑛(𝑣𝑖) , which is given through the equation 

𝑃𝑅,𝑛(𝑣𝑖) =  𝑆(𝑣𝑖 , 𝑛), but also on the unknown numerical 

value of and not just the inequalities between the likelihoods 

𝑃𝑅,𝑛(𝑐𝑗|𝑣𝑖). 

Given the negative correlation between the truth-guided 

conditional probability of a word given a preceding context 

and the amplitude of its N400 component, the results of our 

EEG study can be used to directly evaluate the different 

predictions of the two views. In our experiment, we found 

that, if preceded by a standard discourse context TStdCtx, a 

–TLex verb incongruent with the noun’s telic component 

(funnel-hang) elicited an enhanced N400 compared to a 

+TLex verb congruent with the telic component (funnel-

pour) (confirming (11)). However, given a discourse context 

TNewCtx, in which a new function for the object is 

introduced as an ad-hoc affordance, we observed a crossing-

over regarding the direction of the N400 effect: Comparing 

TNewCtx with TStdCtx, first, the N400 for the –TLex verb 

was significantly smaller in TNewCtx than in TStdCtx 

(disconfirming (15) and confirming (12)). Second, the N400 

for the +TLex verb was significantly greater in TNewCtx 

than in TStdCtx (disconfirming (16) and confirming (13)). 

Finally, given a preceding context TNewCtx, the N400 

measured on the +TLex verb was not significantly different 

compared to that measured on the –TLex verb (see Fig. 1). 

This result is not decisive between the two views (neither 

confirming nor disconfirming (17) and being consistent with 

(14)). 

The reported differences regarding the N400 component 

are best explained by the assumption that hearer 

accomplishes the Predictive Completion Task as envisaged 
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by the Free Pragmatic View, namely by estimating 

𝑃𝑇,𝑛(𝑣𝑖|𝑐𝑗) through equating it with 𝑃𝑅,𝑛(𝑣𝑖|𝑐𝑗) and 

applying Bayes’s Theorem to it. Indeed, the crossing-over 

regarding the N400 cannot be explained solely in terms of 

the differences in the semantic similarity values between the 

target verb and the preceding noun, as assumed by the 

Semantic Similarity account. 

  

Free Pragmatic View Semantic Similarity View 

T
h

. 

A
ss

p
ts

. (1) 𝑃𝑇,𝑛(𝑣𝑖|𝑐𝑗) = 𝑃𝑅,𝑛(𝑣𝑖|𝑐𝑗) 

(2) 𝑃𝑅,𝑛(𝑣𝑖) =  𝑆(𝑣𝑖 , 𝑛) 

(3) 𝑃𝑅,𝑛(𝑣𝑖|𝑐𝑗) = 𝐾 ∙ 𝑃𝑅,𝑛(𝑐𝑗|𝑣𝑖)𝑃𝑅,𝑛(𝑣𝑖) 

(4) 𝑃𝑇,𝑛(𝑣𝑖|𝑐𝑗) = 𝑓+(𝑆(𝑣𝑖 , 𝑛), 𝑆(𝑣𝑖 , 𝑐𝑗)) 

E
x

p
. 
S

et
ti

n
g

s 

(5) 𝑆(+𝑇𝐿𝑒𝑥, 𝑛) > 𝑆(−𝑇𝐿𝑒𝑥, 𝑛) 

(6) 𝑆(+𝑇𝐿𝑒𝑥, 𝑇𝑆𝑡𝑑𝐶𝑡𝑥) = 𝑆(−𝑇𝐿𝑒𝑥, 𝑇𝑆𝑡𝑑𝐶𝑡𝑥) = 𝑆(+𝑇𝐿𝑒𝑥, 𝑇𝑁𝑒𝑤𝐶𝑡𝑥) = 𝑆(−𝑇𝐿𝑒𝑥, 𝑇𝑁𝑒𝑤𝐶𝑡𝑥) 

(7) 𝑃𝑅,𝑛(𝑇𝑆𝑡𝑑𝐶𝑡𝑥|+𝑇𝐿𝑒𝑥) > 𝑃𝑅,𝑛(𝑇𝑆𝑡𝑑𝐶𝑡𝑥|−𝑇𝐿𝑒𝑥) 

(8) 𝑃𝑅,𝑛(𝑇𝑁𝑒𝑤𝐶𝑡𝑥|−𝑇𝐿𝑒𝑥) > 𝑃𝑅,𝑛(𝑇𝑆𝑡𝑑𝐶𝑡𝑥|−𝑇𝐿𝑒𝑥) 

(9) 𝑃𝑅,𝑛(𝑇𝑆𝑡𝑑𝐶𝑡𝑥|+𝑇𝐿𝑒𝑥) > 𝑃𝑅,𝑛(𝑇𝑁𝑒𝑤𝐶𝑡𝑥|+𝑇𝐿𝑒𝑥) 

(10) 𝑃𝑅,𝑛(𝑇𝑁𝑒𝑤𝐶𝑡𝑥|−𝑇𝐿𝑒𝑥) >  𝑃𝑅,𝑛(𝑇𝑁𝑒𝑤𝐶𝑡𝑥|+𝑇𝐿𝑒𝑥) 

P
re

d
ic

ti
o
n

s 

(11) 𝑃𝑇,𝑛(+𝑇𝐿𝑒𝑥|𝑇𝑆𝑡𝑑𝐶𝑡𝑥) > 𝑃𝑇,𝑛(−𝑇𝐿𝑒𝑥|𝑇𝑆𝑡𝑑𝐶𝑡𝑥)  

(from(1),(2), (3), (5), (7)) 

(12) 𝑃𝑇,𝑛(−𝑇𝐿𝑒𝑥|𝑇𝑁𝑒𝑤𝐶𝑡𝑥) >  𝑃𝑇,𝑛(−𝑇𝐿𝑒𝑥|𝑇𝑆𝑡𝑑𝐶𝑡𝑥) 

(from(1),(2), (3), (8), (10)) 

(13) 𝑃𝑇,𝑛(+𝑇𝐿𝑒𝑥|𝑇𝑆𝑡𝑑𝐶𝑡𝑥) >  𝑃𝑇,𝑛(+𝑇𝐿𝑒𝑥|𝑇𝑁𝑒𝑤𝐶𝑡𝑥) 

(from(1),(2), (3), (9)) 

(14) 𝑃𝑇,𝑛(−𝑇𝐿𝑒𝑥|𝑇𝑁𝑒𝑤𝐶𝑡𝑥) ⋛  𝑃𝑇,𝑛(+𝑇𝐿𝑒𝑥|𝑇𝑁𝑒𝑤𝐶𝑡𝑥) 

(from(1),(2), (3), (5), (10)) 

(11) 𝑃𝑇,𝑛(+𝑇𝐿𝑒𝑥|𝑇𝑆𝑡𝑑𝐶𝑡𝑥) > 𝑃𝑇,𝑛(−𝑇𝐿𝑒𝑥|𝑇𝑆𝑡𝑑𝐶𝑡𝑥) 

(from (4), (5), (6)) 

(15) 𝑃𝑇,𝑛(−𝑇𝐿𝑒𝑥|𝑇𝑆𝑡𝑑𝐶𝑡𝑥) = 𝑃𝑇,𝑛(−𝑇𝐿𝑒𝑥|𝑇𝑁𝑒𝑤𝐶𝑡𝑥) 

(from (4), (6)) 

(16) 𝑃𝑇,𝑛(+𝑇𝐿𝑒𝑥|𝑇𝑆𝑡𝑑𝐶𝑡𝑥) = 𝑃𝑇,𝑛(+𝑇𝐿𝑒𝑥|𝑇𝑁𝑒𝑤𝐶𝑡𝑥) 

(from (4), (6)) 

(17) 𝑃𝑇,𝑛(−𝑇𝐿𝑒𝑥|𝑇𝑁𝑒𝑤𝐶𝑡𝑥) < 𝑃𝑇,𝑛(+𝑇𝐿𝑒𝑥|𝑇𝑁𝑒𝑤𝐶𝑡𝑥) 

(from (4), (5), (6)) 

Table 2. Overview of the different theoretical assumptions and predictions of the Free Pragmatic View and the Semantic Similarity View given our 

experimental settings. 
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Abstract 

The ability to reason about information is an essential human 
capability. It is less understood from the perspective of neuro-
cognitive processes which can serve to constrain cognitive 
theories by implications from neuroscientific data. Despite 
some progress in the last decades, some disagreement about 
the experimental results and the cognitive processes of 
reasoning with abstract relations versus visuospatial relations 
persist. We conducted a cross-study meta-analysis of 
neuroimaging studies to determine the neural correlates of 
visuospatial and abstract relational reasoning. We analyzed 
884 stereotactic data points from 38 studies and 692 subjects. 
We found that relational reasoning is mediated by the fronto-
parietal network, especially the right precuneus and the left 
pars triangularis. Problems with abstract relations are 
processed by enhanced activation in the inferior parietal lobe, 
whereas visuospatial reasoning is promoted by prefrontal 
domains. Our results disentangle the neurocognitive 
mechanisms of different representational types of relational 
reasoning across study designs.  

Keywords: meta-analysis; fMRI; reasoning; relational 
reasoning; analogical reasoning; mental representation, 
precuneus, pars triangularis 

Introduction 

Relational reasoning expedites human everyday life to a 

great extent. Using relational expressions can decrease the 

number of statements we would need otherwise to describe 

the situation. If we want to ‘decompress’ this information, 

we draw inferences from the given information to extract 

what is implicitly present. For example, suppose you are 

visiting London for the first time and you want to visit 

London Eye. You take the underground, arrive at Waterloo 

Station and ask a fellow passenger for the directions. She 

tells you that the London Eye is behind Jubilee Gardens 

which are, from your perspective, in front of Waterloo 

Station. Due to this description, you can easily find your 

goal destination. But how would you find your way from 

the station to London Eye without having any explicit 

information about the spatial orientation? You do need to 

reason, that means, you need to extract the information from 

the two statements by inferring that the London Eye is 

located behind the train station.  

Reasoning has been subject to neurocognitive research for 

the past thirty years. With the advent of neuroimaging 

methods such as positron emission tomography (PET) and 

functional magnetic resonance imaging (fMRI) in the late 

1990s and early 2000s, seminal work has been 

accomplished by investigating the neural correlates of 

reasoning (Prado, Chadha & Booth, 2011). The potential for 

research in relational reasoning is manifold. For instance, 

Knauff and Johnson-Laird (2002) proposed to differentiate 

deductive relational reasoning tasks based on the kind of 

mental representation necessary to represent relations. They 

established the categories of visual, spatial and visuospatial 

mental representation of the relations which differs from   

the mental representation of objects they relate. For our 

study, we decided to reevaluate the differentiations and 

employed new definitions for the types of mental 

representation. A relation helps to structure human 

experiences about one or many objects in everyday life and 

they can be of different types. A spatial relation reflects 

implicitly or explicitly an order of objects (e.g., the apple is 

to the left of the pear). Such a relation can be perceived by 

the visual system and additionally by other sensory systems 

that allow to perceive order such as ‘touch’ for instance. A 

pure visual relation in turn is only perceivable by the visual 

system and by no other perception system (e.g., the grass is 

greener than the tree). Visuospatial relations are perceivable 

by both, the visual and other systems, such as ‘laying on top 

of something’ – this is an ordered relation and at the same 

time the relation ‘top’ presupposes a surface perceived 

visually. Abstract relations are inconceivable by any sensory 

systems, such as mental attributions (e.g., smarter than) or 

abstract mathematical operations (e.g., ‘=’).  

To the best of our knowledge, there is currently no study 

investigating such aspects of relational reasoning that 

directly relate to different degrees of imaginability of 

relations. To collect a sufficient number of data by often 

diverse study designs, we decided to use a broader, more 

inclusive relaxation on the data aggregation. Such a 

relaxation on the rather strict definitions is necessary since 

methods such as activation likelihood estimation (ALE) are 

more accurate for larger datasets (Eickhoff et al., 2016). 

On the basis of this experimental background, we decided 

to investigate relational reasoning in general as well as two 

of its variants, visuospatial and abstract relational reasoning. 

Our hypotheses are: (1) For the abstract condition, we 

expect enhanced activation in the posterior parietal cortex 

(PPC) (Hobeika, Diard-Detoeuf, Garcin, Levy & Volle, 
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2016; Maier, Ragni, Wenczel & Franzmeier, 2014; 

Wendelken 2015) and the rostrolateral prefrontal cortex 

(RLPFC) which are regions known to be involved in the 

processing of abstract information (Christoff, Ream, Geddes 

& Gabrieli, 2003). (2) We expect activation in the right 

superior parietal lobule (SPL) for the visuospatial condition. 

This is because it is hypothesized that visuospatial mental 

representations in reasoning are constructed and maintained 

by the help of these regions (Maier et al., 2014; Ragni, 

Franzmeier, Maier & Knauff, 2016).  

To study the neural correlates of relational reasoning we 

considered 38 experiments with a total of 692 participants 

and 884 foci to find the neural sites which are most likely to 

be active during relational reasoning in general and in 

visuospatial and abstract relational reasoning. The results 

are interpreted in the light of prior neurocognitive research.  

 

Table 1: Overview of the experiments included in the meta-

analysis with details about the experimental setup. 

 

Publication Foci Subj. Rep. Stim. 

Goel et al., 1998 6 12 vs v, sen 

Goel & Dolan, 2001 36 14 vs, ns v, sen 

Christoff et al., 2001 7 10 vs v, sha 

Prabhakaran et al., 

2001 

202 7 ab v, sen 

Knauff et al., 2002 16 12 vs aud, sen 

Acuna et al., 2002 17 15 vs v, sha 

Knauff & Johnson-

Laird, 2002 

2 12 v/v, s aud, sen 

Knauff et al., 2003 28 12 vs, v, 

s, ab  

aud, sen 

Ruff et al., 2003 20 12 vs aud, sen 

Goel et al., 2004 19 14 s v, sen 

Fangmeier et al., 

2006 

36 12 vs v, let 

Green et al., 2006 2 14 ab v, wor 

Lee et al., 2006 8 36 vs v, sha 

Melrose et al., 2007 14 19 v, s v, sha 

Wendelken et al., 

2008 

24 20 ab v, wor 

Eslinger et al., 2009 17 16 vs v, sha 

Fangmeier & Knauff, 

2009 

21 12 vs aud, let 

Goel et al., 2009 10 17 v v, sen 

Prado, Noveck et al., 

2010 

3 15 vs v, sen 

Wendelken & Bunge, 

2010 

17 16 vs v, sha 

Prado, van der  

Henst et al., 2010 

7 13 vs v, sen 

Hinton et al., 2010 2 24 v v, let 

Cho et al., 2010 9 17 v v 

Hampshire et al., 

2010 

15 16 ab v, sha 

Preusse et al., 2010 8 17 vs v, sha 

Volle et al., 2010 68 16 vs v, let 

Preusse et al., 2011 6 40 vs v, sha 

Jia et al., 2011 39 20 ab v 

Brzeziczka et al., 

2011 

40 17 ab v, let 

Prado et al., 2012 3 30 v v, sen 

Shokri-Kojori et al., 

2012 

20 20 vs v, sha 

Watson & Chatterjee, 

2012 

3 23 vs v, sha 

Kalbfleisch, 2013 21 34 vs v, sha 

Bazargani et al., 2014 12 37 v v, sha 

Liang et al., 2014 24 23 ab v, let 

Parkin et al., 2015 53 20 vs v, sha 

Jia et al., 2015 24 15 ab v, num 

Jia & Liang, 2015 21 13 ab v, num 

Abbreviations: Subj.: Number of subjects, Rep.: 

Representation type, Stim.: Stimulus, vs: visuospatial, v: 

visual, ns: nonspatial, ab: abstract, spa: spatial, sen: 

sentence, aud: auditory, sha: shapes, let: letters. 

 

Methods  

We apply the ALE method (Eickhoff, Bzdok, Laird, Kurth 

& Fox, 2012) which has become a standard to conduct 

meta-analyses to investigate neural correlates (e.g., Hobeika 

et al., 2016). We include as neuroimaging methods 

functional magnet resonance imaging (fMRI) and positron 

emission tomography (PET) data.  

Paper Acquisition and Selection 

For acquiring neuroimaging data, we conducted several 

online search queries via the online platforms PubMed, 

ScienceDirect and Google Scholar to find peer-reviewed 

fMRI and PET studies (see Table 1) between 1998 and 

2017. We used the search terms ‘fMRI OR PET OR 

Neuroimaging’, ‘relational OR transitive reasoning’ and 

‘visual reasoning OR spatial reasoning OR visuospatial 

reasoning’ in all queries and additionally for the query in 

Science direct ‘healthy’, and for Google Scholar ‘MNI OR 

Talairach’. Additional articles were found via the reference 

lists of similar papers, the meta-analysis conducted by 

Prado, Chadha and Booth (2011) and the reviews by Knauff 

(2006) and Maier et al. (2014). Due to a review of the meta-

analysis conducted by Prado, Chadha and Booth (2011), 

‘reasoning vs. baseline’ conditions (such as fixation cross or 

maintenance tasks, see e.g., Wendelken, Nakhabenko, 

Donohue, Carter & Bunge, 2008 and Ruff, Knauff, 

Fangmeier & Spreer, 2003, respectively) as well as ‘high- 

vs. low-level reasoning’ conditions were included since they 
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represent an aspect of reasoning. Additionally, experimental 

data were only included when they were reported in MNI or 

Talairach space and yielded from whole brain analyses. 

Paper Categorization 

We decided to categorize the data along different axes: by 

the type of mental representation of the relation (abstract, 

spatial, visual, visuospatial, none), by the stimulus (letters, 

sentences, shapes, words, numbers) and the type of stimulus 

presentation (visual or auditory) (see Tables 1 and 2). We 

acknowledge that these differences may reflect differences 

in neural activation as well but chose to only consider the 

types of mental representation and subtraction for the sake 

of including more studies in each group and yielding more 

robust results. 

When reviewing the articles, we realized that our 

definitions for the mental representations of relations did not 

fit to what can be found in actual studies. Because of that, 

we decided to lower our criteria so that we merged the 

groups ‘visual’, ‘spatial’ and ‘visuospatial’ to the group 

‘visuospatial’ (see Table 2). Also, we redefined the criteria 

so that visuospatial relations are relations that are easy to 

mentally envision in a spatial and/or visual manner in the 

aforementioned sense. For abstract tasks, we included all 

tasks that are impossible to potentially perceive by senses, 

such as mathematical tasks and operators (e.g., ‘=’, ‘<’, ‘>’). 

Activation Likelihood Estimation 

ALE is an established method for conducting meta-analyses 

of neuroimaging data (Eickhoff et al., 2012). It is 

implemented in the statistical tool GingerALE1 (we used 

version 2.3.6) to determine the likelihood of individual brain 

regions activating for a specific task. GingerALE features 

the conduction of either single dataset analyses or 

conjunction and contrast analyses between datasets.  

The ALE algorithm maps the stereotactic data of each 

experiment on a template brain to generate Modeled 

Activation (MA) maps. Since the reported data are as 

points, it reconstructs the scanning data by assigning each 

data point the center of a Gaussian distribution. The points 

are blurred by the full width at half maximum (FWHM) 

which is determined by the subject size of the respective 

dataset (Eickhoff et al., 2012). The MA maps are merged to 

render the final ALE file. For each voxel, the likelihood 

confidence of finding each value is calculated by neglecting 

spatial information from the dataset and analyzing the 

probabilities of values being part of an MA map. The 

information from the two files is combined and a threshold 

is applied to constitute the final ALE map (Eickhoff et al., 

2012). In our analysis, we chose a standard setting of 1000 

permutations, the cluster-level family-wise error (FWE) 

method with a p-value of 0.01 and an uncorrected p of 0.001 

(Eickhoff et al., 2016). The cluster-level FWE method 

generates a random dataset tantamount to the set at hand 

(regarding subject size, number of foci and number of 

                                                           
1 http://www.brainmap.org/ale/ 

studies) which is compared to the actual data set. Foci 

originally represented in MNI (Montreal Neurological 

Institute) space were converted to Talairach space. In 

conjunction and contrast analyses, the ALE maps of two 

sets are examined in activation likelihood for their overlap 

and distinctness respectively. 

 

Table 2: Details of the paper categorizations with regard to 

the quantitative parameters of the groups. 

Representation Studies Subjects Foci 

all 38 692 884 

abstract 10 179 394 

spatial 2 16 23 

visual 8 161 47 

visuospatial 28 521 445 

none 2 26 23 

 

Results 

Relational Reasoning 

For the relational reasoning condition, activation was most 

likely found in the right precuneus (BA 7) and the left 

middle occipital gyrus (BA 31). Concerning the frontal lobe, 

the left inferior frontal gyrus (pars triangularis), left 

posterior-medial frontal, left and right middle frontal gyrus 

(BA 6) and the left middle orbital gyrus (BA 46) were 

found. Additionally, activation was found in the right basal 

ganglia (Tables 3 and 4).  

 

Table 3: Overview of brain activation  

 Frontal Parietal S O 

 
46 6 44 45 7 40 13 31 

Relational ◖  ◐   ◖  ◗   ◗  ◖  

Visuospatial  ◐  ◖  ◗  ◐     

Abstract     ◗  ◖    

Note. Semicircles indicate significant clusters in the 

respective hemisphere. Filled halves indicate that the 

respective side’s cluster was larger in this half. 

Abbreviations: S: Sub-Lobar, O: Occipital. 

Reasoning with Visuospatial Relations 

In the visuospatial condition, activation was most likely in 

the left inferior frontal gyrus (triangularis, BA 44), 

posterior-medial frontal (BA 6), right and left middle frontal 

gyrus (BA 6) and the left inferior parietal lobule (hIP3, BA 

7) and right superior parietal lobule (BA 7A). 
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Reasoning with Abstract Relations  

Activation in reasoning about abstract relations was found 

in the right angular gyrus and left superior parietal lobule 

(hIP 1/3 respectively, both BA 7) and the left and right 

inferior frontal gyrus (triangularis, BA 45) and precentral 

gyrus (BA 45). 

 

 

Table 4: ALE Results. Only significant clusters and a 

differentiated anatomical localization is reported. 

 

Macroanatomical Location BA Coordinates (Tal) 

   X Y Z 

Relational Reasoning Inference 

R Precuneus 7 0 -61 43 

L IFG (p. Triangularis) 45 -45 13 32 

L Posterior-Medial 

Frontal 
6 -1 11 48 

R IFG (p. Triangularis) 9 45 18 32 

L Middle Frontal 

Gyrus 
6 -27 0 53 

R Middle Frontal 

Gyrus 
6 28 -1 52 

R Basal Ganglia 13 27 23 3 

L Middle Orbital 

Gyrus 
46 -41 43 6 

L Middle Occipital 

Gyrus 
31 -27 -77 25 

Relational Reasoning abstract 

R Angular Gyrus 7 23 -65 42 

L Superior Parietal 

Lobule  

7 

 
-26 -65 44 

L IFG (p. Triangularis) 45 -44 23 26 

L Precentral Gyrus 44 -43 3 33 

Relational Reasoning visuospatial 

L IFG (p. Triangularis) 44 -46 12 33 

L Posterior-Medial 

Frontal 
6 -1 12 47 

L Inferior Parietal 

Lobule 
7 -35 -55 44 

R Middle Frontal 

Gyrus 
6 28 -1 53 

L Middle Frontal 

Gyrus 
6 -26 -1 56 

R IFG (p. Triangularis) 45 46 25 33 

R Superior Parietal 

Lobule 
7 23 -65 44 

Abbreviations: BA: Brodmann Area, IFG: Inferior Frontal 

Gyrus. 

 

Discussion 

Relational Reasoning involves the fronto-parietal 

network and occipital lobe 

For reasoning about relations, we found activation 

likelihood in the fronto-parietal network (right pars 

triangularis, posterior-medial frontal lobe, middle frontal 

gyrus, precuneus, left dorsolateral prefrontal cortex 

(DLPFC) and pars triangularis). These results are in 

accordance with the activation detected in the studies by 

Hobeika et al. (2016) and Prado, Chadha and Booth (2011). 

The largest cluster was found in the right precuneus (16800 

mm3). The weighted center of this cluster is located in the 

frontal precuneus which is assumed to be involved in mental 

imagery (Cavanna & Trimble, 2006).  The second largest 

cluster (6256mm3) was found in the left pars triangularis, 

also known as DLPFC. It is known to be involved in 

working memory and relational integration (Waltz et al., 

1999), as well as speech and language production (Foundas, 

Eure, Luevano & Weinberger, 1998)   

Furthermore, activation was found in the right basal 

ganglia (BA 13), which are involved in reasoning and rule 

application (Melrose, Poulin & Stern, 2007), a demand 

inductive reasoning tasks pose. Additionally, activation was 

found in the occipital lobe (left middle occipital gyrus). 

Prado, Chadha and Booth (2011) did not find such 

activation for relational reasoning, though they only 

considered deductive reasoning tasks. This reliable 

activation pattern might be due to the portion of tasks with 

visual contents which are not considered classical deduction 

tasks. In contrast to Prado, Chadha and Booth (2011), 

Hobeika et al. (2016) and Wendelken et al. (2008), we did 

not find any activation of the RLPFC. A rather surprising 

result when considering the consistent reports thereof in the 

literature. 

Visuospatial relational processing is executed by 

prefrontal activation 

In visuospatial relational reasoning, the fronto-parietal 

network exhibited activation as well. Activation was mainly 

found in the left pars triangularis (BA 44) and posterior 

medial frontal (BA 9) and the inferior parietal lobule (hIP3) 

and right middle frontal gyrus (BA 45). This suggests that 

visuospatial relational reasoning is rather mediated by 

prefrontal activation, considering the multitude of clusters 

across the PFC. Also, parietal activation in the inferior 

parietal lobule (IPL) was found, suggesting that visuospatial 

processing does more heavily rely on context related 

processes than on mental imagery.  

Abstract relational reasoning relies on the 

intraparietal sulcus 

In the abstract reasoning condition, we found activation in 

the right intraparietal sulcus (IPS) and left IPL. Since the 

analysis consisted of 10 studies only, the results are sparse. 

Nonetheless, they indicate that the IPL is essential for 
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abstract relational reasoning. Since the IPL is known to be 

involved in abstraction (Wurm & Lingnau, 2015), this might 

imply the IPL’s crucial role in the abstraction of contents 

from relational information.  

Conclusion 

The meta-analysis unraveled some crucial details about 

the neural mechanisms of relational reasoning. Our results 

suggest that relational reasoning heavily relies on mental 

imagery and representation as well as a multitude of regions 

in the prefrontal cortex such as the DLPFC for relational 

integration and pars triangularis for language processing. No 

significant activation in the RLPFC was found, opposed to 

predictions by previous studies. We found striking 

differences between the type of representation of relations, 

so that visuospatial relations seem to rather rely on context, 

opposed to abstract relations which rely on abstraction of 

relation and mental imagery. Since the inclusion criteria 

concerning stimulus presentation and task requirements 

were relaxed, we assume that these areas mediate the 

general process of relational reasoning. 
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Abstract 

Is it possible to lie despite not saying anyhing false? While the 
spontaneous answer seems to be ‘no’, there is some evidence 
from ordinary language that a lie does not require what is said 
to be believed-false. In this paper, we will argue for a pragmatic 
extension of the standard definition of lying. More specifically, 
we will present three experiments which show that people’s 
concept of lying is not about what is said, but about what is 
implied by saying it that way. We test three Gricean 
conversational maxims. For each one of them we demonstrate 
that if a speaker implies something misleading, even by saying 
something semantically true, it is still considered lying.  

Keywords: lying; concept of lying, deceiving; Grice; 
conversational implicature 

Introduction 

According to the standard philosophical definition of lying, 

an agent lies if she makes “a believed-false statement to 

another person with the intention that that other person 

believes that statement to be true” (Mahon, 2008). Such a 

definition of lying entails four necessary conditions, namely 

the Statement Condition, the Untruhfulness Condition, the 

Addressee Condition, and the Intention-to-Deceive Condition. 

According to Intention-to-Deceive Condition, a lying agent 

aim to deceive. In order to deceive, however, the lie needs to 

be directed at someone capable of forming false beliefs 

(Addressee Condition; for a critical perspective see 

Rutschmann & Wiegmann, 2017). The means to deceive the 

addressee is said to be a linguistic statement. The Statement 

Condition is not limited to verbal or written statements but 

further includes other linguistic symbols. Finally, this 

statement need to be uttered untruthfully. Untruthfulness does 

not require the uttered statement to be objectively false but 

that the speaker believes his statement to be false. As a 

consequence, an agent might be lying even if what she 

believes to be false turns out true. In an empirical study, 

Wiegmann, Samland, and Waldmann (2016) demonstrated 

that lay people’s intuitions about lying are in line with the 

Untruthfulness Condition  

However, there seem to be cases in which lies do not even 

require that the agent believes what is said to be false. 

Benjamin Franklin famously said that “Half a truth is often a 

great lie”. So-called lies of omission seem quite frequent in 

ordinary conversations. The American elections 2016 provide 

many interesting examples in which both presidential 

candidates were criticized for lying, even though what they 

said was not, strictly speaking, false. Those cases include 

oversimplifications, using outdated or misleading statistics 

(for instance on the murder rate, African American 

unemployment, or tax deficits), and suspiciously loose 

speech.  

In this paper, we will empirically test the possibility that 

lying is not tied to semantic falsity but rather about false 

implicatures. We hypothesise that at the core of people’s 

concept of lying is the discrepancy between what the speaker 

believes to be true and the belief she believes to create in the 

addressee by what she says or by what she implies by saying 

it.  

Conversational Implicatures 

Many philosophers and linguists believe that what is 

relevant for a conversation is not only what we say but also 

what we imply by saying it. According to Grice (1975), every 

conversational context rests on the assumption that both 

speakers share a conversational goal, for instance making a 

decision on where to travel, or discussing various political 

opinions. Conversational goals can be introduced in various 

ways, most easily by direct questions, such as “Where shall 

we go for the summer holidays next year?”. In light of this 

shared goal, both speakers can expect the other to be 

cooperative, that is to make their “conversational contribution 

such as is required, at the stage at which it occurs, by the 

accepted purpose or direction of the talk exchange in which 

[they] are engaged.” (Grice, 1975, p. 46) In order to make 

pursuing this joint conversation goal as efficient as possible, 

four Maxims should be obeyed: 

1. Quantity 

• Make your contribution as informative as required 

(for the current purpose of the exchange) 

• Do not make your contribution more informative 

than is required 

2. Quality 

• Do not say what you believe to be false 

• Do not say that for which you lack adequate 

evidence 

3. Relation (Be relevant!) 

4. Manner 

• Avoid obscurity of expression 

• Avoid ambiguity 

• Be brief (avoid unnecessary prolixity) 

• Be orderly 

Violations of these maxims at the level of what is said are 

very typical in ordinary language—so typical that we are 

seldom surprised when people do it. Non-literal speech such 

as irony (“If you want to have a heavenly summer experience, 
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I recommend London! Warm and sunny all day!"), metaphors 

(“You’re a peach!”), or hyperbole (“This is the best cake I 

have ever eaten in my entire life.”) provide the most obvious 

examples in which people immediately infer what is meant 

beyond what is said (cf. Viebahn, in press). Such an inference 

is possible because we expect our conversational partner to be 

cooperative, and therefore interpret even violations of the 

conversational maxims as furthering the joint communicative 

goal (cf. Dinges, 2015). 

Lying and Falsely Implicating 

If there is such a thing as lying by falsely implicating, it 

might work very similarly. A speaker utters something that 

violates a conversational maxim. The addressee immediately 

tries to infer what this utterance might contribute to the joint 

conversational goal. However, most crucially, in addition to 

violating a maxim, the speaker also violates the Cooperative 

Principle. For the addressee, there is yet no indication that the 

Cooperative Principle has been violated.  

We suggest that lying is not only a matter of what is said 

but also of what is implied (cf. Meibauer, 2005). If a person 

intentionally violates a maxim in order to create a belief in the 

addressee which the speaker believes to be false, this violation 

is considered a case of lying, irrespective of what is said is 

true at a semantic level. If this hypothesis is correct, then the 

Untruhfulness Condition under its semantic reading is too 

limited to adequately capture the folk concept of lying. Rather, 

central to the folk concept of lying is a discrepancy between 

what the speaker believes to be true and what he believes to 

make the listener believe. Whether this belief is generated by 

what is said or what is implied by so saying seems to be 

secondary. 

Experiment 1: Violating the Maxim of Quantity 

According to Grice, the Cooperative Principle requires the 

agent to make their contribution as informative as required, 

and to not omit relevant information. In our first experiment, 

we test whether violations of the Maxim of Quantity are 

considered lies. Our hypothesis presupposes that deceiving by 

violating conversational maxims is only possible of the 

addressee believes the speaker to be cooperative, that is to 

share with her a conversational goal. Consequently, we 

created vignettes in which to agents conversationally interact 

and agent A asks a question. Agent B, however, intentionally 

omits information which he believes to be relevant to agent A 

but which might also get B into trouble.  

In the literature on lies of omission, two variants are 

discussed. On the one hand, a speaker might completely 

refrain from making a declarative statement. In our 

experiment, the speaker suggests changing the topic and asks 

a question in return. On the other hand, lies of omissions might 

also be told by using half-truths (Vincent and Castelfranchi, 

1981). In the experimental condition Half-Truth, the speaker 

provides an answer to the question, and, thus, makes a 

statement. However, he omits the relevant, yet potentially 

troublesome piece of information. Again, the speaker is not 

untruthful as he believes his statement to be true. We predict 

that participants will consider both scenarios instances of 

lying. 

Methods 

The experiment was run online in the U.K (same in all 

following experiments) using Prolific Academics. 474 

participants started the experiment, 451 were included in the 

analysis (we excluded participants who did not finish the 

survey, went through it in less than 40 seconds, or failed an 

attention check – we used the same criteria in all following 

experiments). 50% identified as male, 50% as female. Mean 

age was 32 years and participants earned £ 0.20 for their 

participation (same amount in all experiments). 

Participants first read general instructions (same procedure 

in all following experiments). They were then randomly 

assigned to one of four conditions in a 2 (vignette: Couple vs. 

Car) * 2 (deception: ChangeTopic vs. Half-Truth) between-

subjects design. They were presented with one of two 

vignettes, namely either Couple or Car. The Couple vignette 

reads as follows. 

Couple: Peter and Jane have been a couple for a year now. 

They are very happy and just moved in together. Peter trusts 

Jane, but he knows about her ex- fiancé Steven who still tries 

to win Jane back. Thus, Peter is very jealous and does not like 

Jane meeting Steven. Jane is sometimes thinking about getting 

back together with Steven. As they work in the same company, 

they have coffee from time to time to talk about their joint 

projects. Today, Jane and Steven have coffee after lunch to 

finalize a cost calculation they are supposed to send to their 

client the next morning. After a few minutes, Steven asks Jane 

if they could talk about each other and getting back together. 

Jane tells Steven that they don’t have much time and need to 

focus on the project. 

In the evening, Peter and Jane have dinner. Peter asks Jane  

“What did you do during your lunch break?” 

In the ChangeTopic Condition, the story continued as 

follows: 

To avoid mentioning that she saw Steven during lunch, Jane 

quickly changes the subject and says: 

“Let's talk about something other than work. How was the 

football training?” 

Just as Jane intended, Peter never asks about her lunch 

break and does not believe Jane met with Steven.” 

In the Half-Truth Condition, the ending was changed to: 

“To avoid mentioning that she saw Steven during lunch, 

Jane tells Peter only half the truth, omitting her meeting with 

Steven: 

“I had lunch at the cafeteria. Then I had a coffee and went 

back to the office. It was such a busy day.” 

Just as Jane intended, Peter never asks about her lunch 

break and does not believe Jane met with Steven. 

After reading the vignettes, participants were asked: “Do 

you rather agree or disagree with the following statement: 

Jane lied to Peter”; and they could choose between “I 

(rather) agree” and “I (rather) disagree” (same test question 

and response options in all following experiments except of 

Experiment 3c). 
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Results and Discussion 

The results of the experiment are summarized in Figure 1. 

In the Couple condition, only 30% (34 out of 113) consider 

Jane’s behaviour as a case of lying in ChangeTopic. However, 

65% (74 out of 113) did so in Half-Truth. The difference 

between ChangeTopic and Half-Truth in the Couple vignette 

is statistically significant, χ2 (df = 1, N = 226) = 28.37, p < 

0.001. Moreover, agreement in ChangeTopic is significantly 

below chance (50%) level (binomial test, 34 out of 113, test 

value = .5, p < .0.0001), whereas agreement in Half-Truth is 

significantly above chance level, (binomial test, 74 out of 113, 

test value = .5, p < .0.01).  

In the Car condition, 56% (60 out of 107) agreed that Nick 

lied to Kathy when Nick changed the topic. In contrast, 69% 

(81 out of 118) did so in Half-Truth. The difference between 

ChangeTopic and Half-Truth in Car is marginally significant 

χ2 (df = 1, N = 225) = 3.79, p = 0.0516. ChangeTopic is not 

significantly different from chance (binomial test, 60 out of 

107, test value = .5, p = .2459), but Half-Truth is above 

chance level (binomial test, 81 out of 118, test value = .5, p < 

.0.0001). Comparing Car and Couple showed a significant 

difference for ChangeTopic, χ2 (df = 1, N = 220) = 15.17, 

p < 0.001, but no difference for Half-Truth, χ2 (df = 1, 

N = 231) = 0.26, p = 0.61.  

The results of our first experiments allow for a more 

nuanced view on whether we can lie by omission. If an agent 

deceives by answering to a question but omits facts which are 

relevant to the question, the agent is judged to have lied. 

However, changing the topic and omitting an answer 

altogether is not considered a case of lying. 

 
Figure 1: Proportions of lie judgments as a function of 

vignette and kind of deception in Experiment 1  

Experiment 2: Violating the Maxim of Relation 

The Maxim of Relation requires a speaker to only provide 

relevant information. In this experiment, we altered the 

vignettes used in experiment 1 such that the speaker provides 

information which is completely irrelevant to the actual 

question, but which seems relevant. All information that is 

given is true, and, thus, the Untruthfulness Condition of the 

standard definition of lying is not met. 

Methods 

220 participants started the experiment, 208 were included 

in the analysis (44% identified as male, 56% as female). Mean 

age was 34 years. Participants were randomly assigned to one 

of two conditions (vignette: Couple vs. Car) in a between-

subjects design. Here is the vignette for Couple. 

Couple: Peter and Jane have been a couple for a year now. 

They are very happy and just moved in together. Peter trusts 

Jane, but he knows about her ex-fiancé Steven who still tries 

to win Jane back. Thus, Peter is very jealous and does not like 

Jane meeting Steven. Jane is sometimes thinking about getting 

back together with Steven. As they work in the same company, 

they have coffee from time to time to talk about their joint 

projects. 

Today, Jane and Steven have coffee after lunch to finalize a 

cost calculation they are supposed to send to their client the 

next morning. After a few minutes, Steven asks Jane if they 

could talk about each other and getting back together. Jane 

tells Steven that they don’t have much time and need to focus 

on the project. Steven has been sick the whole week, but he 

has nevertheless been at work.  

In the evening, Peter and Jane have dinner. Peter asks 

Jane: 

“You told me about this project with your ex-fiancé. Did 

you see him today?” 

To avoid confirming that she saw Steven during lunch, Jane 

says:  

“Steven has been sick the whole week.” 

Just as Jane intended, Peter does not believe Jane met with 

Steven.  

Results and Discussion 

The results of the experiment are summarized in Figure 2. 

Let us start with the Couple vignette. The clear majority of 

participants, 81% (84 out of 104) considered Jane’s behaviour 

a case of lying. This proportion is significantly different from 

chance (50%) level (binomial test, 84 out of 104, test 

value = .5, p < .0.0001). For the Car vignette, we obtained 

similar results. 76% (79 out of 104) considered Nick’s 

behaviour a case of lying. This proportion is significantly 

different from chance (50%) level (binomial test, 79 out of 

104, test value = .5, p < .0.0001). Comparing Car and Couple 

showed no significant difference, χ2 (df = 1, N = 208) = 0.71, 

p = 0.40. Again, even though the agent was being truthful 

under a said-based definition of lying, people consider the 

agents’ responses as lies.  

 
Figure 2: Proportions of lie judgments as a function of 

vignette in Experiment 2  

Experiment 3: Violating the Maxim of Manner 

The Maxim of Manner is not so much concerned with what 

is said, but how it is said. In this experiment, we empirically 

test whether the violation of its sub-maxims lead to an answer 

being considered a lie. Experiment 3 is therefore divided into 

sub-chapters, with section a) investigating Ambiguity and 
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Context-Sensitivity, section b) Obscurity, and section c) the 

maxim of Order. In all conditions, what the speakers says is 

true under a semantic reading, and the speaker is being 

truthful. However, the speaker deceives the addressee by 

using ambiguous terms, or terms whose reference is highly 

context-dependent, or by presenting information in an order 

that does not reflect the temporal order of events. 

In Experiment 3 c, we also address a potential objection to 

our experiments. It might be argued that the results we have 

gotten so far are a mere artefact of our experimental design. 

The argument might go like this: Lying is typically considered 

a case of deceiving or misleading. In all experiments presented 

so far, we only asked people whether they agreed or disagreed 

that the agent lied, and we did not give any alternative options. 

However, it is well-known that deceiving others for one’s own 

benefit is morally condemned. Thus, participants might have 

agreed to lie statement only to express their disapproval, while 

not in fact believing that the agent lied. If we had also asked 

participants whether the agent deceived, agreement with the 

lie statement might decline. We believe that this point is well 

taken. In Experiment 3, we therefore added a new independent 

variable, namely the number of questions asked after the 

scenarios. 

Exp. 3a) Ambiguity 

Methods 204 participants started the experiment, 197 were 

included in the analysis. 42% identified as male, 58% as 

female. Mean age was 34 years. Participants were randomly 

assigned to one of two conditions (vignette: Couple vs. Car) 

in a between-subjects design.  

Car: Nick is a car salesman. He is currently trying to sell a 

small car. Nick’s wife is the boss of the company. They have 

been a couple since high school. She drives the same model as 

the one Nick is trying to sell. She is satisfied with her car and 

the thinks that the boot is spacious enough. 

Kathy is interested in buying the car. However, she needs 

the car for grocery shopping, and to take her two kids to their 

rugby matches. Thus, she needs a spacious boot. Kathy 

wonders if the car’s boot is big enough for her daily needs. 

She asks: 

“I always need to move a lot of stuff in the boot. This one 

looks rather small to me. Do you believe that the boot is big 

enough?” 

Nick realizes that Kathy might not buy the car if he can't 

convince her that the boot is big enough for her daily needs. 

To avoid mentioning that he only knows one person who 

drives the car and who is very happy with the boot’s size, Nick 

says: 

“My wife has the same car and shared your worries, but 

then she was surprised how spacious the boot is. Also my boss 

has never had any problems with the boot. And even my first 

love in high school with her three kids says that the boot is big 

enough.”. 

Just as Nick intended, Kathy believes that Nick knows three 

different people who are satisfied with the size of the boot. She 

does not believe that the three people are in fact one and the 

same person. 

Results and Discussion 

The results of the experiment are summarized in Figure 3. 

For the Couple vignette, the clear majority of participants, 

83% (80 out of 96) considered Jane’s behavior a case of lying. 

This proportion is significantly different from chance (50%) 

level, (binomial test, 80 out of 96, test value = .5, p < .0.0001). 

For the Car vignette, we obtained similar results. 80% (81 out 

of 101) considered Nick’s behaviour a lie. This proportion is 

significantly different from chance (50%) level (binomial test, 

81 out of 101, test value = .5, p < .0.0001). Comparing Car 

and Couple revealed no significant difference, χ2 (df = 1, 

N = 197) = 0.32, p = 0.57. 

In both conditions, participants believed that the speaker 

told a lie, even though what the speaker said was true and 

believed to be true. The results put additional pressure on 

advocates of a semantically grounded understanding of the 

Untruthfulness condition and the Statement Condition.  

 
Figure 3: Proportions of lie judgments as a function of 

vignette in Experiment 3a 

Exp. 3b) Obscurity 

Methods 210 participants started the experiment, 206 were 

included in the analysis. 45% identified as male, 55% as 

female. Mean age was 34 years. Participants were randomly 

assigned to one of two conditions (vignette: Couple vs. Car) 

in a between-subjects design. They were presented with one 

of the following stories. 

Car: Nick is a car salesman. He is currently trying to sell 

his brother’s car which has 55,000 miles on it. Nick’s brother 

needs to get as much money for the car as possible. For this 

reason, he set the milometer back to 25,000 miles before 

asking Nick to sell it. As a consequence of the manipulation, 

the milometer shows 30,000 miles less than actually driven. 

Nick has decided to ask for 5000 GBP. Nick knows that if a 

client learned about the manipulated milometer, Nick won’t 

be able to sell the car for 5000 GBP. 

Kathy is interested in buying the car. Kathy is surprised that 

a 10-year old car has only 25,000 miles on it. She says to Nick: 

“Is this milometer accurate?” 

To avoid mentioning that the milometer does not show the 

correct distance driven with this car (55,000 miles), Nick 

mentions that the milometer measures distances perfectly 

accurate, in the sense that if you drive one mile the tolerance 

is less than 0.1% (i.e., the milometer measures something 

between 1,758 and 1,762 yards): 

“The milometer is super accurate and only allows for a 

0.1% tolerance”. 

Just as Nick intended, Kathy believes that the milometer 

shows the correct distance driven with the car, and she does 

not believe that the milometer was set back. 
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Results and Discussion The results of the experiment are 

summarized in Figure 4. The clear majority of participants, 

90% (93 out of 103) considered Jane’s behavior a case of 

lying. This proportion is significantly different from chance 

(50%) level (binomial test, 93 out of 103, test value = .5, 

p < .0.0001).  

For the Car vignette, the results are similar. 78% (80 out of 

103) agreed that Nick lied to Kathy. This proportion is 

significantly different from chance (50%) level, (binomial 

test, 80 out of 103, test value = .5, p < .0.0001).  

Comparing Car and Couple showed a significant difference, 

χ2 (df = 1, N = 206) = 6.10, p < 0.05, with higher lying rates 

for the Couple vignette. 

 
Figure 4: Proportions of lie judgments as a function of 

vignette in Experiment 3b 

Exp. 3c) Order 

Methods 407 participants started the experiment, 386 were 

included in the analysis. 46% identified as male, 54% as 

female. Mean age was 35 years. 

Participants were randomly assigned to one of four 

conditions in a 2 (vignette: Couple vs. Car) x 2 (number of 

questions: OneQuestion vs. FiveQuestion) in a between-

subjects design.  

Couple: Peter and Jane have been a couple for a year now. 

They are very happy and just moved in together. Peter trusts 

Jane, but he knows about her ex-fiancé Steven who still tries 

to win Jane back and works in the same company as Jane. 

Thus, Peter is very jealous and does not like Jane meeting 

Steven. Jane is sometimes thinking about getting back 

together with Steven.  

Today, the traffic on Jane’s way to work was very busy. At 

work, Jane always do the things that feels most important for 

her first and the things she does not consider important last. 

Peter knows about this habit. He also knows that today Jane 

is supposed to meet to talk about a joint project but also that 

the project is not very important. Today, Jane first wants to 

see Steven. This is not because she thinks that the project is 

the most important thing to do today but rather because she 

aches for Steven. So she visits him for a few minutes and 

discusses a few questions about a joint project. She then works 

on a big project of a client. Afterwards, she writes a couple of 

emails to clients and before she drives home she started 

writing an application for a higher position in her company.  

In the evening, Peter and Jane have dinner. Peter wants to 

know about Jane’s day: 

“When did you meet Steven?”  

To avoid mentioning that seeing Steven was the first thing 

she did, she does mention this event last: 

“The traffic on my way to the company was really busy. I 

worked on this big project I told you about recently. I wrote a 

couple of emails to clients and started writing my application 

for the higher position in our company. I shortly visited 

Steven, discussed a few question about our joint project and 

drove home.”    

Just as Jane intended, Peter thinks that meeting Steven was 

the last thing she did at work. 

In the OneQuestion Condition, participants were asked: 

“Do you rather agree or disagree with the following 

statement: Jane lied to Peter”. Participants could choose 

between “I (rather) agree” and “I (rather) disagree”. In 

FiveQuestions, participants were asked: “Do you rather agree 

or disagree with the following statement: 

Jane deceived Peter. 

Jane's behaviour was morally bad. 

Jane did not want to hurt Peter's feelings. 

Jane's behaviour is blameworthy.  

Jane lied to Peter. 

And could choose for each statement between “I (rather) 

agree” and “I (rather) disagree”.  

Results and Discussion The results of the experiment are 

summarized in Figure 5. Let us start with the standard (One 

Question) Couple vignette. The clear majority of participants, 

(74%, 68 out of 92) agreed that Jane lied to Peter. This 

proportion is significantly different from chance (50%) level 

(binomial test, 68 out of 92, test value = .5, p < .0.0001). In 

the 5Question variant of the Couple vignette, we found a 

similar pattern. The clear majority of participants (75%, 74 out 

of 99) considered Jane’s behaviour a case of lying. This 

proportion is significantly different from chance (50%) level, 

(binomial test, 74 out of 99, test value = .5, p < .0.0001). There 

was no significant difference between the OneQuestion and 

the FiveQuestion variant of the Couple vignette, χ2 (df = 1, 

N = 191) = 0.02, p = 0.90.  

In the standard (OneQuestion) Car condition, the clear 

majority of participants (86%, 83 out of 96) considered 

Nicks’s behaviour a case of lying. This proportion is 

significantly different from chance (50%) level (binomial test, 

83 out of 96, test value = .5, p < .0.0001).  

This pattern was similar for the 5Question variant of the Car 

vignette. The clear majority of participants (79%, 78 out of 

99) considered Nick’s behaviour a case of lying. This 

proportion is significantly different from chance (50%) level 

(binomial test, 78 out of 99, test value = .5, p < .0.0001). There 

was no significant difference between the OneQuestion and 

the FiveQuestion variant of the Couple vignette, χ2 (df = 1, 

N = 195) = 1.992, p = 0.16. 

Deceiving by mentioning the relevant facts in reversed 

order was considered lying. Furthermore, providing 

participants with the opportunity to express their moral 

evaluation of the agent and allowing them to indicate that the 

agent did only deceive another person (in contrast to: lied to) 

did not affect lie judgments.  
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Figure 5: Proportions of lie judgments as a function of 

vignette and number of questions in Experiment 3c 

General Discussion 

Do people consider utterances that are not semantically 

wrong but pragmatically misleading lies? In this paper, we 

showed that for something to be a lie, subjective falsity at the 

semantic level is not necessary. A speaker might say 

something which is both true and which he believes to be true. 

What seems to be at the heart of people’s concept of lying is 

that the speaker believes to create a belief in the addressee 

which he himself believes to be false. Whether this false belief 

is the result of a wrong statement or a false implicature seems 

to be secondary. In three experiments, we tested whether the 

violation of three Conversational Maxims would lead to 

something semantically true being considered a lie. For all the 

Maxims (Quantity, Relation, and Manner) this effect showed.  

When the speaker violates the Maxim of Quantity by 

omitting relevant information (Exp. 1), participants 

considered such a statement to be a lie. These results support 

those philosophers and linguists who have argued for lies of 

omissions to be actual lies. However, those results put 

pressure on a semantically grounded understanding of the 

standard definition of lying and on authors who have denied 

that lies of omissions can be actual lies (Mahon 2003; Dynel 

2011). Furthermore, Experiments 2 and 3 also indicate that 

said-based definitions cannot account for people’s concept of 

lying. Our results rather indicate that lying occurs at the level 

of pragmatics, by deceiving others through falsely 

implicating.  

There are two argumentative lines one might want to argue 

for in line of our results. The most radical way to deal with 

our results is to reject the standard definition of lying and to 

search for a radically new definition that focuses on 

pragmatics alone. We believe such a dismissal of the standard 

definition to be too rash. The standard definition seems to 

adequately capture the folk’s intuitions in most cases of lying. 

However, things get messier around the edges. Alternatively, 

we suggest a reinterpretation that allows us to adequately map 

folk intuitions by making as few changes as possible. First, the 

Untruthfulness Condition seems more appropriately 

understood at the level of pragmatics. In line with previous 

research, we suggest maintaining a subjective understanding 

of untruthfulness, but to decouple it from what is said in the 

semantic sense. Accordingly, an agent is being untruthful if 

there is a discrepancy between what the agent believes to be 

true and what he believes to communicate by saying 

something. Second, such an adaption allows for 

untruthfulness to be demonstrated without making a 

statement. If our account is appropriate, we believe that an 

agent may lie by falsely implicating by answering with a 

question in return (“Did you see your ex-fiancé today?”—

“Are going to ask me this question every day now? What is 

wrong with you?), by requesting (“Don’t you ever ask me this 

again!”), etc. Additional research is required on the extent to 

which we should re-interpret the Statement Condition in a 

more pragmatic fashion. 
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Abstract

When middle school students learn science content with
graphs, the graphing and science knowledge may be mutually
reinforcing: understanding the science content may help stu-
dents interpret a related graph, and information from a graph
may illustrate a scientific concept. We examine this relation-
ship between graphing and science by studying how students
learn from interactive computer models with accompanying
data graphs. The computer models provide an animated simu-
lation that illustrates an unobservable phenomenon, while the
data graph tracks one or more quantities over time. This or-
dering study, on middle school students learning about photo-
synthesis, indicates that engaging with novel graph concepts
helped students interpret their data as they experimented with
the computer model. The study also provided some support
for the opposite direction: experimenting with the model first
helped students make sense of the graphs.
Keywords: Graphing; Photosynthesis; Knowledge Integration

Learning From Graphs in Science
Graphs are important in science and improving students’ in-
tegration of graph and science concepts is often neglected, es-
pecially at the middle school level (Lai et al., 2016). Graphs
can help students test hypotheses to make sense of new sci-
ence concepts (e.g., Vitale, Madhok, & Linn, 2016). When
linked to an animated simulation, time-series graphs can
record and summarize information that points to key rela-
tionships. Identifying the main points of a computer simula-
tion is not trivial for students: animations can be deceptively
clear, giving a false sense of understanding (Chiu, Chen, &
Linn, 2013), and students may focus on discrete events in-
stead of looking for an underlying pattern (Vitale et al., 2016).
While animations provide visualizations of mechanisms and
processes, graphs provide visualizations of relationships be-
tween variables. Thus, graphs may help students focus on the
underlying quantitative relationships in the animations.

While graphs have the potential to be extremely useful for
learning science content, middle school students often have
difficulty interpreting them (Lai et al., 2016). Graphs are gen-
erally taught in math classes, and students may not sponta-
neously transfer their knowledge to science contexts (Grant,
2013). Prior work notes common student problems in graph
interpretation, many stemming from misunderstanding what
the graph axes represent (e.g., Clement, 1985). This type of
confusion may result from shallow reasoning based on super-
ficial similarity (e.g., Janvier, 1981) or the ease of extracting

irrelevant data from the graph (e.g., Clement, 1985; McDer-
mott, Rosenquist, Popp, & van Zee, 1983). Therefore, while
graphs can be powerful tools, novices need support to work
with them. Misinterpretations of graphs could lead students
to misunderstand the science being conveyed. On the other
hand, if students have a firm grasp of the science content, that
knowledge may help them interpret the graph by constraining
potential interpretations to ones that are consistent with their
science knowledge (Ainsworth, 2006). It is therefore plau-
sible that graph and science knowledge could be mutually
reinforcing. To examine if this reinforcement is uni- or bi-
directional, we assigned students to see graph-focused steps
either before or after an animated computer model of plant
growth. Graph First students learned more science from the
simulation, with some advantage for Model First students in
interpreting a specific graph feature.

Photosynthesis in the WISE Platform
The ordering experiment on graphing was implemented via
a seventh-grade unit on photosynthesis, which was designed
with the Knowledge Integration (KI) framework (Linn, Lee,
Tinker, Husic, & Chiu, 2006), using the Web-Based Inquiry
Science Environment (WISE: http://www.wise.berkeley.edu).
The unit focuses on processes of energy transformation and
aligns with the Next Generation Science Standards (NGSS
Lead States, 2013). In photosynthesis, glucose is created and
stores energy. The energy is released during cellular respira-
tion. A key difference between photosynthesis (making glu-
cose) and cellular respiration (using glucose) is that plants
can only make glucose when there is light, but they must use
glucose all the time to perform basic cellular functions. This
concept is targeted in the plant growth activities (Figure 1).

The plant growth activities begin with predicting when the
plant will make and use glucose (multiple-choice text selec-
tion). Next, students interact with the animation from the
plant growth model, which shows the plant’s glucose stores
growing when the light is on and shrinking when the light is
off. Students then draw a graph to show their predictions for
the cumulative glucose that will be made, used, and stored
with the light on for a few weeks and then off, and also select
which graph shapes match their predictions (multiple choice:
all lines increase with light. In the dark, one is horizontal,
one decreases, one increases at the same rate, and one in-
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Figure 1: Sequence of activities in Studies 1 and 2.

creases more sharply). Finally, students see the experimen-
tal steps: interacting with the full plant growth model (with
the graph) and graph interpretation. The two experimental
steps, described below, are ordered randomly. Test questions
assessed how students connect ideas. As shown in Figure 3a,
one prompt presented a graph of glucose stored and asked stu-
dents to explain how turning the light off affected the shape of
the graph (Glucose Stored). Another prompt gave an incor-
rect prediction: that glucose stored would not change when
the light was off (Marcia’s Prediction). Students explained
if the prediction was correct and matched it to a graph (Fig-
ure 3b). These questions were intended to measure how well
students can connect a graph’s shape to its meaning.

Exploring the Plant Growth Model
The plant growth model allows students to turn a light on
or off, while the accompanying time-series graph shows the
cumulative amounts of glucose made, used, and stored (Fig-
ure 2c). In this model, glucose is made at a constant rate
when the light is on, and glucose is used at a constant rate all
the time. Students were again asked when the plant makes
and uses glucose. The cumulative graph shows these rela-
tionships directly: the running total for glucose made only
increases while the light is on, but the running total for glu-
cose used increases until the plant dies.

Students were also asked to run a specific trial with the
model: leave the light on for 4 weeks in a row, and then turn
it off. This trial shows that plants draw on stored glucose to
survive in the dark. To structure students’ thinking about this
trial, students were asked when the plant died, and what best
explained why the plant died (Figure 2c). Correctly answer-
ing both questions requires reading the graph.

Ordering Study: Graph First vs. Model First
The graph that accompanies the photosynthesis model is
complex: it is cumulative rather than instantaneous and it
presents three quantities changing over time. Science knowl-
edge may help students avoid the error of reading the graph
as instantaneous (e.g., the line for glucose made is not zero
in the dark). While science knowledge could help students
interpret the graph, the graph may also help students learn
science by illustrating a relationship between quantities of
glucose made, used, and stored that explains how plants sur-
vive periods of darkness. The KI framework proposes that
eliciting students’ ideas is crucial for learning because ideas

cannot be leveraged or inspected if they are not first brought
to the student’s attention. We designed a graph interpretation
step to elicit students’ ideas about graphs and to prompt them
to connect their ideas about a graph’s shape to its meaning.
Questions asked if an interpretation of a given graph was cor-
rect (e.g., the plant is making glucose when the glucose made
line is flat). The graph interpretation step was more extensive
in Study 1, and is described in more detail for each study.

To examine the effects of graph and science knowledge on
each other, we sequenced the graph interpretation step either
directly before or after the computer model. Two seventh
grade teachers at Bay Area public schools used this WISE
unit to teach photosynthesis, and their students were ran-
domly assigned to either the Graph First or Model First se-
quence. Students did pre- and post-tests individually, and did
the unit individually or in teacher-assigned pairs.1

Study 1: Extensive Elicitation of Graph Ideas

We ran the first iteration of the study in six 7th grade classes,
all taught by Mrs. R.2 Students completed a pretest, but it is
not included in the analyses because it was not matched to the
post-test. Since the pre-test and the unit took longer than Mrs.
R. expected, she requested a revised and shortened post-test.

Materials. The post-test3 included the questions Glucose
Stored and Marcia’s Prediction (Figure 3). Students could
access the plant growth model on both the pre- and post-test.
The experimental step to elicit students’ graph ideas asked
students to interpret four cumulative graphs, all showing glu-
cose made, used, and stored when the light was shining (three
also showed darkness). Two graphs were consistent with the
model and two were incorrect. For each graph, students were
given one or two interpretations and asked if those interpre-
tations were correct. In total, the elicitation step included
five true/false items (one shown in Figure 2a) and three open-
ended prompts for students to explain their reasoning.

1A separate, unrelated study comparing forms of scaffolding for
essays was run concurrently in the same unit. The target essays did
not involve the computer model or graphs, and condition assignment
was independent for the two studies. Our results do not show condi-
tion effects of the unrelated study.

2The full unit is available at http://wise.berkeley.edu/ preview-
project.html?projectId=18309

3The post-test is available at http://wise.berkeley.edu/ preview-
project.html?projectId=18463
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Figure 2: Screenshots. (a) A true/false graph interpretation item in Study 1. (b) The graph interpretation item in Study 2. (c)
The plant growth model, with an animation on the left and graphed the output on the right. Correct answers in bold.

Method and Participants. The pretest was administered
over 1-2 class days before students began the unit. Students
then worked on the unit for seven class days. Most students
worked in teacher-assigned pairs, and they were randomly as-
signed to the Graph First or Model First conditions (within-
class). Most students completed the model-related steps over
two class periods. The posttest was administered two school
days after the unit, and took one class period.

177 students across Mrs. R’s six classes worked on the
WISE unit, with 24 to 35 students per class. Five students
worked individually, with the rest in pairs. The 89 groups
(176 students; 43 Graph First and 46 Model First) who did
the experimental activities are included in the analyses of em-
bedded items. Of those, 173 did the posttest and are included
in the post-test analyses.

Results: Embedded Assessments. 96% of groups correctly
selected that the plant would make glucose only when the
light was on (Graph First: 98%, Model First: 93%). 71%
of groups correctly selected that the plant would use glucose
all the time (Graph First: 72%, Model First: 70%). Students
selected which of four shapes (or none) best matched their
ideas for glucose made, used, and stored (all lines increase
when the light is on. When the light is off, one increases at
the same rate, one increases more sharply, one decreases, and
one is horizontal.). Most students selected the correct shapes
for glucose made and stored, but only 43% did so for glucose
used. The most common incorrect shape was flat after the
light was turned off (22%). Of students who predicted, in
text, that plants would use glucose all the time, only 55%
selected the correct graph. Thus either students hold multiple
conflicting ideas about when plants use glucose or are unable
to connect their science ideas to the graph shape.

Students were engaged with the model; 93% of groups ran
at least one trial where the plant died. However, students’
choice to run the suggested trial (light on for four weeks,
then off) differed by condition: 88.4% of Graph First groups
vs. 71.7% of Model First groups. 70% of Graph First groups
and 45% of Model First groups chose the correct explana-

tion for why the plant died. A logistic regression on answer
correctness (with factors for conditions in this study and the
unrelated study) confirmed that there was a main effect of
condition on whether they responded correctly (t(86) = 2.27,
p = .023). A logistic regression on whether students ran the
suggested trial found a marginally significant effect of condi-
tion (t(86)= 1.92, p= .055). To determine if running the trial
mediated the effect of condition, we re-ran the previous logis-
tic regression on students’ answers with running the trial as
an additional factor. Running the trial was the only significant
factor (t(85) = 3.20, p= .0014; 67.6% correct if trial was run
vs. 16.7% correct without this trial), indicating that running
the trial mediated the effect of condition. Thus, structuring
exploration with a specific trial is more effective for learning
than non-structured exploration, even when both uncover the
key information (i.e. the plant dying).

To determine if lack of engagement in general led stu-
dents to ignore the directions, we coded all five open-response
items within the activity (but before the experimental steps)
as on-task (answering the question, correctly or not) or off-
task (blank, I don’t know, or nonsense answers). 20 responses
were coded by two authors with 100% agreement; remaining
responses were coded by one of the authors. Both conditions
showed high engagement, with means of 98% on-task re-
sponses (means were 4.91/5 for Graph First, 4.89/5 for Model
First, t(87) = .16, p = .87). We repeated the logistic regres-
sion on students’ answers with all covariates above and en-
gagement as an additional covariate (t(84) = 0.68, p = .50)
and found that only running the suggested trial was signifi-
cant (t(84) = 3.39, p = .0007). Repeating the logistic regres-
sion on whether students ran the suggested trial with factors
for conditions and engagement also showed the same effect:
ordering condition was marginally significant (t(85) = 1.90,
p = .058), and engagement was not (t(85) = 0.54, p = .58).

Performance on the graph items did not show differences
across conditions, suggesting that interacting with the model
first did improve graph interpretation in general. Two ques-
tions focused on interpretation of a flat line in a cumulative
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2: Vague, incorrect, or not focused on stored glucose. (1) When the light was turned off less glucose was used. (2) no because, if you
leave the light off it will die

3: Partially correct or simple. (1) The total glucose stored was steadily going up then when the light turned off it went down. (2)
Marcia’s prediction is not correct. Even though the plant will not make glucose or use anymore, the amount of glucose stored would go
down and so will the glucose made.

4S: Plants survive in the dark by using stored glucose. (1) when the light turned off the plant did not make glucose but only used the
glucose that the plant stored. (2) No, a plant to use glucose needs glucose. And plant don’t get the needed sunlight when the light is off so
has to eat into the glucose stored.

4G: Explanation of graph shapes. (1) Turning the light off in addition to causing the glucose stored to go down, it would also cause
the glucose made to stop increasing and just stay the same. Turning the light off would not, however, effect the total glucose used, which
would keep going up. (2) Marcia’s prediction is incorrect because the glucose stored line in the graph goes down and doesn’t stay level.

5: Relating the graph’s shape to the plant’s use of stored glucose. (1) It affected the shape of the graph because the plant cannot make
glucose, so the plant has to use the stored glucose. This makes the stored glucose go down in quantity. (2) No, because if the plant doesn’t
make any at night and still uses it where is it coming from. It must be the storage and that must make it go down.

Table 1: Rubric for scoring (1) Glucose Stored and (2) Marcia’s Prediction (0 is blank, 1 is off-topic or “don’t know”).

graph. Groups in the Graph First condition had lower av-
erage scores on these items than groups in the Model First
condition (average score 55% vs. 80%; ANOVA with factors
for conditions in both studies found a main effect of order-
ing condition: F(1,88) = 13.23, p < .001). Both conditions
scored near chance for the other items, 46%-63%.

Results: Post-Test. The test items Glucose Stored and Mar-
cia’s Prediction each have one question with an objectively
correct answer (when is the light turned off and which graph
matches Marcia’s prediction) and one open-response that en-
courages connections between graph and science ideas. The
objective questions were scored as correct or not. For the
open-ended questions, we developed KI rubrics that required
linking the graph shape to processes of plant growth to get
the highest score (a 5). Full explanations of either the graph
or the science concepts were scored a 4, and were coded for
graph or science ideas (see Table 1). Two of the authors coded
an initial set of responses for each question, reconciling dif-
ferences and revising the rubric. The same two authors coded
a second test set for each question (39 answers for Glucose
Stored, with 85% agreement and Cohen’s kappa of .79; 31
answers for Marcia’s Prediction, with 90% agreement and
Cohen’s kappa of .85). For both questions, the second test
sets included responses from both studies.

For Glucose Stored, most students correctly identified that
the light was turned off in week 6 (Graph First: 88%, Model
First: 90%). Mean scores for their explanations of how turn-
ing the light off affected the shape of the graph were 2.9 over-
all (2.94 for Graph First and 2.85 for Model First). All stu-
dents scored a 2 or higher, indicating engagement with the
task (0s are blank and 1s are off task). 24% of the Graph First
and 21% of the Model First condition scored a 4 or 5.

For Marcia’s Prediction, students were below ceiling but
above chance for selecting the graph that matched her incor-
rect prediction (Graph First: 62% correct; Model First: 57%
correct). Mean scores for their explanations of why the pre-
diction was correct or not were 3.4 overall (3.5 for Graph
First and 3.2 for Model First). 98% of students gave on-task
answers. 60% of the Graph First and 50% of the Model First

condition scored a 4 or 5. A MANOVA on the two explana-
tion items with conditions in both studies as factors showed
no significant difference by condition for either study (order-
ing condition: F(2,168) = 1.2, p = .3).

Study 2: Targeted Elicitation of Graph Ideas
Materials. Since Mrs. R’s students took longer than we an-
ticipated to complete the experiment, we shortened the mate-
rials before repeating the study with Mr. W’s classes. The
first questions on the pre- and post-test were the same as
on the post-test in Study 1, with additional questions after-
ward. In the unit, on steps that all students saw in the same
order, we removed open-response explanation prompts or re-
placed them with multiple-choice questions. Since Mrs. R’s
students were confused about the flat segment of the glucose
made line, we added a cumulative graph activity. Students
were given a table of glucose made each week and filled in
a column with the running total. This running total was then
shown as a graph, and students were asked to interpret the
flat segment. In Study 1, students drew prediction graphs and
then characterized the shapes afterward. In Study 2, we re-
versed this sequence to help students plan their predictions.
We also shortened the steps in the ordering experiment. In-
stead of eliciting ideas about several graphs, we asked stu-
dents to interpret the flat segment of the glucose made graph
with a multiple choice question and an open-response expla-
nation (see Figure 2b). In the modeling activity we removed
all open-ended prompts, and replaced them with one prompt
that asked students if their initial predictions on when the
plant would make and use glucose had been correct. We re-
tained all multiple choice questions.

Method and Participants. As in Study 1, the pre- and post-
test were done individually, each on a single class day, with
the pretest two days before students started the unit and the
posttest right after. Students did the unit in groups of 1-2 over
five class days, with a one-week gap between the first three
days and the final two days. As in Study 1, most students took
1-2 class days for the experimental steps.

79 students across Mr. W’s 7th grade classes used the
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Is Marcia's prediction correct? Explain why or why not. Students had access to model at pre- and post-test

This plant started growing with the light on, and then the light 
was turned off. What week was the light turned off? How did 
turning the light off affect the shape of the graph? Write about 
glucose used and glucose made in your answer.

(a) (b) Marcia made this prediction: (1) When the light is off: the amount of glucose stored will 
not change, the plant will not make more glucose, and the plant will still use glucose. 
(2) When the light is on, the plant will make, use, and store glucose.
Which graph shows Marcia's prediction?

Figure 3: (a) Glucose Stored requires graph interpretation and science knowledge of when a plant makes and uses glucose. (b)
Marcia’s Prediction requires finding a graph shape to show an idea, and critiquing that idea with science knowledge.

WISE unit, with 23-29 students per class. As in Study 1,
groups were assigned randomly to conditions (within-class).
24 groups did not reach the experimental steps and are not
included in the analysis. The 10 Graph First groups and 18
Model First groups are included in the analysis below (43 stu-
dents total. 11 did the unit individually, the rest in pairs). Of
those students, 39 did both the pre- and post-test and are in-
cluded in those analyses (13 Graph First and 26 Model First).

Results: Embedded Assessments. 79% of groups correctly
predicted when the plant would make glucose (Graph First:
90%, Model First: 72%) and 29% correctly predicted when
the plant would use glucose (Graph First: 30%, Model First:
27%). Students were not above chance (11−25%) in select-
ing which graph shapes matched glucose made, used, and
stored. In the most common shape for total glucose made
(35%), the line decreased in the dark, a nonsensical answer
for cumulative glucose made. Students with the correct text
predictions were somewhat more likely to select the correct
graphs, but still performed poorly (14% correct for glucose
made and 25% for stored). These predictions suggest that stu-
dents struggled both with the science content and the graphs.

Only 75% of groups interacted with the model. To mea-
sured engagement, we coded for on-task responses on earlier
step. On the two earlier steps, overall 75% of responses were
on-task (means were 1.6/2 for Graph First, 1.4/2 for model
first, t(26) = .56, p = .57). Despite lower engagement, we
ran the same analyses as in Study 1. Graph First groups ran
the suggested trial more frequently than Model First (50%
vs. 27.8%), but were not more correct in explaining why the
plant died (10% vs. 11%). These trends were not signifi-
cant for condition (all analyses here are logistic regressions
with factors for conditions in both studies; ordering condi-
tion t(25) = 1.17, p = .24 for suggested trial and t(25) = 0.0,
p = 1.0 for answering correctly). Of the 10 groups who ran
the trial, 3 answered correctly, compared with none of the 18
groups who did not run the trial, but this trend was not sig-
nificant (t(24) = .0003, p = .99). We repeated the logistic
regression on running the trial with engagement as an ad-
ditional covariate, which was not significant (t(23) = 0.96,
p = .33). The replication of trends but not reliable effects
may be due to small sample sizes, lack of engagement, or
lack of prior knowledge, leading to very low performance on
many items. Performance on the graph interpretation item

was above chance but below ceiling; 54% of groups correctly
said that the plant was not making glucose when the line was
flat. There was no significant difference by condition.

Results: Pre- and Post-tests. On Glucose Stored, identifica-
tion of when the light was turned off rose from pre- to posttest
(from 4/13 to 9/13 for Graph First, and from 12/26 to 16/26
for Model First; McNemar test from pre- to posttest, p= .02).
A logistic regression on posttest scores with pretest score and
study conditions as covariates was not significant for order-
ing condition. Mean explanation scores also rose from pre-
to post-test (Graph First: 1.2 to 2.3, Model First: 1.4 to 1.9).
For selecting which graph matched Marcia’s Prediction, stu-
dents were below chance at pretest (2/13 correct for Graph
First, 5/26 for Model First) and just above chance at post-test
(Graph First: 4/13 correct, Model First: 7/26). Explanation
scores rose from pre- to post-test for the Graph First group
(.6 to 1.6) but not for Model First (.8 to .7). 82% of responses
at pre-test were blank or off task, with the remaining students
answering with incorrect or overly simple ideas. At post-test,
1 Model First and 3 Graph First students had a complex idea
about the graph or the science.

A full factorial repeated measures ANOVA with test time,
question, and conditions in both studies indicates improve-
ment from pre- to posttest on the explanation items, with
significant factors for test time (F(1,36) = 10.3, p = .003),
question (F(1,36) = 36.7, p < .001), and a time by ordering
condition interaction (F(1,36) = 4.8, p = .035). While esti-
mated marginal means for Graph First were lower than Model
First at pretest (.9 vs. 1.1) and higher at posttest (1.9 vs. 1.3),
ordering condition was not significant in a MANCOVA on
the two post-test explanation scores (with pretest scores as
covariates and condition in the unrelated study as a factor).

Discussion
This study provided support for graph understanding help-
ing students to interpret a science model and some support
for science understanding helping students interpret specific
graph features. While students had difficulty interpreting cu-
mulative graphs, eliciting students’ ideas about those graphs
helped them make sense of glucose production, use, and stor-
age in the photosynthesis model.

Graph First students were more likely to figure out that the
plant dies when it runs out of stored glucose. Interestingly,
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this effect was strongly mediated by whether students ran the
suggested trial leading to plant death (significant in Study 1,
with the same pattern in Study 2). The finding that elicitation
of graph ideas, without feedback, improved learning from the
model is consistent with other research on knowledge inte-
gration (Linn et al., 2006). The cumulative graph in the
model was more familiar to Graph First students since they
had just been examining cumulative graphs. To run the sug-
gested trial, students needed to read the graph to turn the light
off at the right week, and Graph First students may have ex-
tracted this information better than Model First students. Fur-
thermore, students in both conditions were equally engaged
on prior steps and engagement was not predictive of follow-
ing the directions to run the suggested trial. We note that con-
dition differences were significant in Mrs. R’s classes, and
the pattern was similar in Mr. W’s classes.

In both studies, performance was not mediated by running
any trial where the plant died, only the suggested trial, which
was followed by questions to structure students’ thinking.
This result is consistent with prior work showing that without
structure, students may uncover the necessary information but
miss key patterns (Reiser, 2004; Vitale et al., 2016).

Study 1 provides some evidence that exploring the model
helped students interpret flat lines in cumulative graphs, as
Model First groups performed better than Graph First groups
on those questions. Science knowledge may have helped
constrain students’ interpretations of those graphs. How-
ever, there were no condition differences when considering
all of the graph interpretation questions together; exploring
the model may help only with particular graph features.

This research only varied the order of activities. All stu-
dents were prompted to think about cumulative graphs be-
fore the experimental steps (Figure 1). The treatment elicited
students’ ideas about relevant graphs by suggesting interpre-
tations that connected graph shapes to their meanings. This
treatment may have prepared students to distinguish among
alternative interpretations while exploring the model.

Further, this study captures difficulties that students have
with cumulative graphs in science. In the graph prediction
step, many students chose graph shapes that did not match
their text predictions, and in the graph interpretation step,
many students agreed with interpretations that did not follow
from the given graph. Of the 71% of Mrs. R’s groups who
said that plants use glucose all the time, only 55% of them se-
lected a graph shape that matched this prediction. The most
common incorrect answer suggested that students were inter-
preting the graph as instantaneous instead of cumulative. Mr.
W’s students also seemed to demonstrate this error: the most
common graph selected for glucose made decreased when
the light was off. This would have been a more reasonable
choice if the graphs were instantaneous instead of cumula-
tive, as it would have been the only shape consistent with the
plant making less glucose in the dark. While these exam-
ples show difficulties going from meaning to graph, students
also had difficulty with the reverse in the graph interpretation

steps. Students in Study 1 were near chance for those steps,
and almost half of the groups in Study 2 did not recognize
that no glucose is made when that line is flat. Graph miscon-
ceptions documented in prior work have focused on instan-
taneous graphs. Our results show that the type of misinter-
pretations noted in prior work also affect cumulative graphs
(specifically, interpreting the graph as if the axes were differ-
ent, i.e., instantaneous vs. cumulative). Though students ex-
hibited difficulties, Study 2 shows pre- to post-test improve-
ment on graph interpretation and on explanations.

Conclusion. When learning science from computer models
with complex graph output, students may benefit from inter-
preting graphs before interacting with the model. This study
demonstrates the power of eliciting student ideas, a compo-
nent of the knowledge integration framework that is intended
to prepare students to distinguish among alternatives in the
experiment (Linn et al., 2006). While graphs are currently
under-utilized in middle school science, this study shows how
graphs can be leveraged to help students connect graph and
science ideas.
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Abstract 

Counterfactual thinking is the consideration of how things 
could have turned out differently, usually taking the form of 
counterfactual conditionals.  This experiment examined the 
psychological mechanisms that transform counterfactuals into 
deontic guidance rules for the future.  We examined how 
counterfactual thinking translates into deontic guidance rules 
by asking participants to infer these deontic conclusions from 
the counterfactual premises.  Participants were presented with 
a vignette and a counterfactual conditional, and assigned to 
either a control condition or a suppression condition in which 
they were additionally presented with conflicting normative 
rules.  The presence of conflicting norms reduced the 
likelihood of positive deontic conclusions being endorsed and 
increased the likelihood of negative deontic conclusions being 
endorsed. Future intentionality and regret intensity ratings 
were reduced in the suppression condition.  The same 
conditions that affect normative inference also affect regret 
and future planning, suggesting similar cognitive mechanisms 
underlie these processes.   

Keywords: conflicting norms; counterfactual thinking; 
deontic introduction; new paradigm; regret  

Introduction  

All of us have to make many deontic judgments about what 

we ‘should’ and ‘ought’ to do. As Elqayam, Thompson, 

Wilkinson, Evans and Over (2015) note, when we learn 

about poverty in Somalia, we naturally infer that we ought 

to donate to famine relief.  Such inferences are made on a 

daily basis, often about such everyday matters as the type of 

coffee we ‘must’ or ‘should’ buy, or the types of food we 

'must not' or 'should not' eat. People readily infer these 

deontic statements from premises that contain no deontic 

content. However, very little is known about the 

psychological processes underlying the inferences.  

Recently reasoning research has undergone a shift 

towards the ‘new paradigm’ of reasoning (Elqayam & Over, 

2013 and see other contributions in this special issue; Evans, 

2012).  The ‘new paradigm’ of reasoning rejects binary 

logic, regards reasoning as strongly related to judgement 

and decision making, focuses on probabilities and 

emphasizes pragmatic factors.  Such an approach 

demonstrates how reasoning can be applied to our everyday 

judgement and decision making.  If this is the case, then it is 

persuasive that reasoning, judgement and decision making 

may adopt similar psychological processes.   

This paper expands upon our previous work within this 

area (Elqayam et al., 2015), where we examined how we 

make such deontic judgements from non-deontic content, a 

process termed deontic introduction.  The next section 

presents an overview of our previous research on this area 

with the use of conflicting norms.  Our aim for this paper is 

to see if we can extend Elqayam et al.'s (2015) findings with 

counterfactual conditionals and this is why the section after 

examines previous work on counterfactual thinking to set 

the scene for our own research.  Within this section we refer 

to literature on the functional basis of counterfactual 

thinking (e.g., Epstude & Roese, 2008) which provides a 

rationale for us extending our work on deontic introduction 

into this domain.  The final section before the method 

section provides an overview of the hypotheses for our 

current experiment.      

  

Previous Work on Deontic Introduction  
Elqayam et al. (2015) examined the process of deontic 

introduction which entails making deontic inferences from 

content that contains no deontic material and which is 

pragmatic or informal type of inference (e.g., Hahn & 

Oaksford, 2007).  Deontic introduction is an inference 

which is socially contextualised, based on previous beliefs 

and desires and is probabilistic and defeasible (e.g., 

Oaksford & Chater, 2007).  By defeasible we mean an 

inference can be withdrawn or suppressed in light of 

additional information (Elio & Pelletier, 1997).   

Elqayam et al. (2015) propose that deontic introduction 

depends on a chain of inferences which are largely implicit.  

We begin with a conditional that bears utility (utility 

conditional) (e.g., If you pull the dog’s tail, then it will bite 

you).  When presented with this statement we make a goal 

valence inference in that a valenced outcome (positive 

negative or neutral) is implicitly inferred from the 

description of the outcome (e.g., being bitten is bad).  We 
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then make a causal inference which infers a causal link 

between the action and outcome (e.g., pulling the dog’s tail 

makes the dog bite).     Given we now have the information 

that being bitten is bad and that pulling to dog’s tail makes 

the dog bite psychological value passes via the causal link 

from the inferred goal to the action (e.g., pulling the dog’s 

tail is costly) this is known as valence transference.  This 

then feeds into deontic bridging: the valence can bridge into 

a novel norm expressed by a deontic operator (e.g., you 

should not pull the dog’s tail).   

Elqayam et al. (2015) conducted a series of experiments 

to test various features of the model.  They adopted the 

same core design throughout their studies: they presented a 

vignette describing a protagonist and a situation with a 

utility conditional presented underneath.  Then participants 

had to rate the degree to which it follows that the 

protagonist must, should and may (positive deontic 

operator) and must not, should not and need not (negative 

deontic operator) and going to and not going to (inductive 

conclusion) take the action to bring around the outcome.  

This experiment examines Elqayam et al.’s defeasibility 

hypothesis, and so the inference suppression paradigm was 

adopted (e.g., Stevenson & Over, 1995) in which an 

additional premise is presented to weaken the strength of the 

initial argument.   Our particular focus is on conflicting 

norms.  Say we are informed that going to a particular 

holiday region will lead us to having a good holiday.  Since 

this is something we wish to do it is likely that we would 

choose to go to that location.  If we are later informed that 

the particular holiday region has hunts for endangered 

species, and we are against such hunting, this causes a 

conflict between the norm generated by deontic introduction 

and the pre-existing norm presented separately.  This blocks 

deontic bridging by priming a normative conclusion that is 

opposite to the one generated by deontic bridging.   The 

result is that participants are less likely to infer positive 

deontic operators when a conflicting norm is presented 

compared to when it is not, and more likely to endorse 

negative deontic operators when a conflicting norm is 

present compared to when it is not, as found by Elqayam et 

al. (2015).  We wish to examine whether this effect occurs 

for counterfactual conditionals.   

 

Previous Work on Counterfactual Thinking   
Counterfactual thinking can be defined in more than one 

way, but in the context of this paper, we take it to be 

considering how things could have turned out differently, 

for better or worse (see Byrne, 2016 for a review).  A 

student who does not study hard for an exam and then 

subsequently fails that exam may imagine a world in which 

they did study and they received a good mark.  This process 

may in turn then lead them to the decision that in future they 

will study for exams.  Whilst such a process of 

counterfactual thinking elicits emotions such as regret (e.g., 

Wilkinson, Ball, & Alford, 2015; Zeelenberg, 1999) it is 

said to have functional properties in that it can help people 

prepare for similar situations in the future (e.g., Epstude & 

Roese, 2008).   
Research on counterfactual thinking has often employed 

vignette-based paradigms, where participants are presented 

with a scenario about a protagonist and are required to make 

a judgement.  This research has yielded some consistent 

results. One is the temporal order effect, in which actions 

are regretted more in the short term, and inactions more in 

the long term (e.g., Gilovich & Medvec, 1994). Much 

related research has been done on counterfactual 

conditionals. These conditionals, of the form if p had been q 

would have been, presuppose that p and q are false. In the 

example of us going on holiday to a particular region, it 

could be asserted, "If I had gone on holiday to that particular 

region, then I would have enjoyed my holiday better".    

When we are faced with a conflicting norm and the 

outcome turns out negatively we could argue that the 

outcome was out of our control since taking the action 

would mean that we behave in a manner which conflicts 

with our norms in life.  In this instance participants may 

report that the protagonist may feel less regret when a 

conflicting norm is present relative to when it is not.  

Previous work has demonstrated that people are more likely 

to mutate controllable rather than uncontrollable features in 

the wake of a negative event (e.g., Girotto, Legrenzi & 

Rizzo, 1991).  If people are more likely to mutate 

controllable aspects of events, then it may follow that when 

an outcome is in a protagonist’s control participants predict 

they will feel greater regret in the wake of a negative 

outcome relative to when it is not as much in their control.   

Counterfactual thinking arises from comparing what 

actually happened to what might have happened. Such 

comparison, made ‘upwards’ (it could have been better), or 

‘downwards’ (it could have been worse), help us plan for 

the future (e.g., Roese, 1994; Epstude & Roese, 2008). We 

propose that these future plans are mediated by normative 

rule generation. For example, faced with a disappointing 

exam result, a student might think she could have done 

better had she not been hung over. This in turn leads to the 

creation of a normative rule, ‘I should not drink on an 

exam’s eve’. In the psychology of reasoning, this process is 

called ‘deontic introduction’ (Elqayam et al., 2015). Our 

goal is to study the psychological mechanisms governing 

this transition from counterfactual thinking to deontic rule, 

and its effect on future planning 

 

Hypotheses 
This experiment aimed to extend that of Elqayam et al. 

(2015) by adopting counterfactual conditionals, rather than 

indicative conditionals, to examine the effect of conflicting 

norms.  Indicative conditionals are of the form ‘If p than q’, 

linking an antecedent p to a consequent q.   Please see 

below an example of a set of stimuli for one of the scenarios 

that participants had to reason about.  The predictions were 

presented with reference to the stimuli.  
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Martin has a new girlfriend, Gabrielle.  He is keen to 

impress her by cooking a meal and is at the supermarket 

looking at different oils since he is making an Italian dish.  

Martin can buy a special olive oil produced in Fontignani.  

He opts for the cheaper oil and goes home.  After he has 

cooked the meal and serves up he finds that the pasta is a 

bit greasy. He says to his girlfriend:  

 

 If I had opted for the Fontignani olive oil, then our pasta 

dish would have tasted better.  (control condition)  

 

 However, the Fontignani olive oil is produced using 

intensive farming practices.  If Martin uses the Fontignani 

oil, then he will be contributing to environmental 

degradation of the area (additional information for 

suppression condition)  

 

There are a number of predictions we have: (1) that 

conflicting norms will suppress deontic introduction for 

counterfactual conditionals in the same manner that they do 

for indicative conditionals.   With a conflicting norm 

present, conclusions with positive deontic operators will be 

less likely to be rated and conclusions with negative deontic 

operators more likely to be rated relative to no conflicting 

norm being present.  In the example above, (2) Martin will 

be viewed as less inclined to use Fontignani oil if there is a 

conflicting norm present, e.g. a wish to avoid environmental 

degradation. When participants are asked how likely the 

protagonist is to take the action in the future, they will rate it 

as less likely than when a conflicting norm is absent, and (3) 

the participants will predict the protagonist will feel less 

regret intensity in the conflicting norm condition relative to 

the control condition.   The reason for this is that they would 

have needed to take an action that conflicted with a norm 

(e.g., contribute to environmental degradation) to bring 

around the desirable outcome. 

 Both the first and second hypotheses derive out of the 

work of Elqayam et al. who found that conflicting norms 

defeated deontic introduction and the third hypothesis 

relating to regret emerges from the previous literature on 

counterfactual thinking which indicates that participants are 

more likely to mutate controllable relative to uncontrollable 

aspects that led to an unfortunate outcome (e.g., Girotto et 

al., 1991).  It therefore follows that if participants are more 

likely to mutate controllable aspects then these controllable 

aspects may in turn lead to the inference that the protagonist 

will feel greater regret when the situation was in their 

control and no conflicting norm was present then when the 

conflicting norm may have taken the outcome somewhat out 

of their control.   

Method  

Participants  
Seventy-eight participants completed the experiment and 

were recruited via Crowdflower a crowd sourcing platform 

enabling members of the public to participate in research for 

a small financial reimbursement.  There were 40 females 

and 37 males with 1 participant not disclosing gender.  

Participants age range was 21-75 years. Twenty participants 

stated Canada was their country of residence, 27 UK, 29 

USA and 1 Australia.  One participant did not disclose a 

country of residence.  If participants reported a diagnosis of 

dyslexia, if English was not their first language or they 

failed to answer the attention checking question correctly 

their data were excluded from analysis.  This left us with 62 

participants.     

 

Experimental Design, Materials and Procedure   
A mixed design was adopted.  Participants were either 

randomly assigned to the control condition, in which they 

were just presented with the vignette and conditional 

statement or the suppression condition, in which participants 

were additionally presented with a conflicting norm.  

Participants had to then complete three tasks which are 

explained below: (1) a deontic rating task, (2) an 

intentionality question and (3) a regret intensity question.  

The independent variables were whether participants were 

in the condition to which participants were assigned (control 

or suppression) and the deontic operators (must, should, 

may and must not, should not and need not).  The dependent 

variables were conclusion rating of the deontic operators 

from 1 = definitely does not follow to 7 = definitely follows, 

future intentionality rating from 1 = not at all likely to 7 = 

highly likely and regret intensity rating from 1 = low regret 

to 7 = high regret.   Each task was presented on a separate 

page.  There was a practice item at the top of each page to 

get participants used to each task. Participants reasoned 

about five vignettes.  Materials were modified from 

Elqayam et al. (2015) Experiment 3.   

The deontic rating task asked participants to rate the 

degree to which it followed that the protagonist must, must 

not, should, may and need not take the action in the 

vignette.  Participants were required to state for each deontic 

operator whether they thought it definitely does not follow, 

follows very weakly, follows weakly, follows to some 

degree, follows strongly or follows very strongly.  

Participants completed a regret rating task. They had to rate 

the degree of regret they thought the protagonist would feel 

on a 7-point scale from 1 = low regret to 7 = a high regret.  

The future intentionality task asked participants to state the 

degree to which they thought that the protagonist would be 

likely to take the action in the future.  Again, participants 

rated this on a 7-point scale from 1 = not at all likely to 7 = 

highly likely.  

 

Results 
Deontic Introduction   
As can be seen in Table 1, all positive deontic operators 

receive higher ratings in the control condition relative to the 

suppression condition and all negative operators receive 

higher ratings in the suppression condition relative to the 

control condition.  A 2 (condition: suppression or control) x 

6 (operator: must, must-not, should, should-not, may and 

need-not) ANOVA was conducted and found an operator x 
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condition interaction F(5, 255) = 12.63, MSE = 2.65, p < 

.01,   ηp
2= .20. A significant main effect of operator was 

observed using a Greenhouse-Geisser correction F(2.73, 

139.25) = 45.50, MSE = 2.65, p < .05, ηp
2 = .47 but no main 

effect of condition F(1, 51) = 1.04, MSE = 2.56 p = .31, 

ηp
2= .02.       

 

Table 1: Mean (and standard deviation) ratings for each 

deontic operator as a function of condition   

 

Operator  Control  Suppression  

Must  4.31 (1.62)  2.96 (1.15)  

Should  5.55 (0.92)  3.80 (0.93)  

May  5.37 (1.21)  4.93 (1.19)   

Must not  1.96 (1.28)  2.76 (1.38)  

Should not  2.06 (1.35)  3.09 (1.24)  

Need not  2.93 (1.24)  3.54 (1.62)  
 

In order to unpack the operator x condition interaction, we 

conducted six independent samples t-tests for each operator 

separately.  This was found to be significant for the 

operators must, should and should not with a p < .008 with 

the adoption of a Bonferroni correction but not for the must 

not p = .03, may p = .19 and need-not p = .13.  These fit 

with our first hypothesis that conflicting norms will lead to 

lower ratings for positive deontic operators compared to the 

control condition with the reverse the case for negative 

deontic operators.   

 

Future Intentionality and Regret Ratings   
We then examined the future intentionality ratings 

comparing the control condition to the suppression 

condition.  We compared mean likelihood ratings across the 

scenarios for the control and suppression conditions and 

found future intention ratings were higher in the control 

condition (M = 5.95, SD = 0.49) compared to the 

suppression condition (M = 4.48, SD = 0.96) a finding 

which reached significance when conducting an 

independent samples t-test t(51) = 6.80 p < .01.  This 

supports our hypothesis that future intentionality will be 

weakened in the suppression condition.   

Our final analysis considered the reported regret intensity 

that participants thought the protagonist would feel.  It was 

found that participants thought the protagonists in the 

control condition would experience greater regret intensity 

(M = 5.61, SD = 0.66) comparative to the suppression 

condition (M = 4.44, SD = 1.09) a finding which was 

significant when undertaking an independent samples t-test 

t(51) = 4.58, p < .01.   This supports our hypothesis that the 

level of regret intensity the participant thinks the protagonist 

will feel is less in the suppression condition compared to the 

control condition.     

General Discussion  

The aim of this experiment was to examine the process of 

deontic introduction for counterfactual conditionals rather 

than indicative conditionals.  We examined the defeasibility 

hypothesis adopting conflicting norms to block the deontic 

bridging stage of deontic introduction.  We proposed three 

hypotheses at the start of our paper (1) that conflicting 

norms will suppress deontic introduction in the context of 

counterfactual conditionals, as they do with indicative 

conditionals, (2) when a conflicting norm is present 

participants will rate the protagonist’s intention to take the 

action in the future as lower than when no conflicting norm 

is present and (3) when a conflicting norm is present regret 

intensity for the outcome will be rated as lower compared to 

when no conflicting norm is present.    

Support was found for the first hypothesis with positive 

deontic operators rated as lower in the conflicting norms 

condition relative to the control condition with the reverse 

pattern occurring for negative deontic operators.  This 

finding supports the defeasibility hypothesis of Elqayam et 

al. (2015) and extends to findings of Elqayam et al. to 

counterfactual conditionals.  We propose the same 

explanation for these findings that Elqayam et al. offer in 

their paper.  Deontic bridging is not able to occur due to a 

conflict between the pre-existing norm and the invited 

normative conclusion (generated by deontic introduction).   

When it came to our item analysis for each of the 

operators we observed significant effects for must, should 

and should not.   Taking into consideration the marginal 

significant effect of must not we note that the significant 

differences lie in those operators that express obligations 

and forbidding but not permissions.  This finding suggests 

that perhaps the role of counterfactual thinking is to direct 

future action, making it functional (e.g., Epstude & Roese, 

2008).  In this respect, obligations and forbidding are more 

powerful than permissions, and this could provide an 

explanation for the pattern of results we observed.  

Our second hypothesis was that, for future intentionality 

ratings, participants would predict the protagonist would be 

less likely to take the action when a conflicting norm was 

present compared to when it was not. This is what we 

found.  We propose that this result occurs because a 

conflicting norm prevents deontic bridging.  Such a finding 

supports our prediction that deontic introduction can be used 

to direct future actions as a result of the presence of 

counterfactuals. This is in line with the notion of 

counterfactual thinking is functional (e.g., Epstude & Roese, 

2008).    

Our third hypothesis was participants would report the 

protagonist feeling less regret when a conflicting norm was 

present compared to when it was not.  This hypothesis was 

supported.  We propose that this finding may occur for one 

of two reasons.  The first is that the conflicting norm serves 

to distance the protagonist from the regretted incident by 

providing a justification or rationale for them not taking the 

action.  In the case of Martin and the Fontignani olive oil, 

that justification would be the conflict between having the 

better meal and the fact that he does not want to contribute 

to environmental degradation.  If this process is occurring, 

the decision could be seen as self-enhancing allowing one to 

distance oneself from the regretted outcome (e.g., Feeney, 
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Gardiner, Johnston, Jones & McEvoy, 2005).  A second 

reason this effect may occur could be linked to the 

controllability of the outcome.  If we take away the 

conflicting norm in the case of Martin and the Fontignani 

olive oil the outcome is entirely within Martin's hands: he 

did not select the correct olive oil for the dish resulting in 

the dish not being as nice.  However, when we add a 

conflicting norm, that outcome becomes less controllable, 

since he does not want to behave in a manner that conflicts 

with his normative framework.   We propose that perhaps 

less regret is predicted in the suppression condition because 

participants view the outcome as less in control of the 

protagonist.  Girotto et al. (1991) found that participants 

prefer to mutate controllable relative to uncontrollable 

events that lead to a negative outcome.  We propose that, 

when a conflicting norm is presented, this makes taking the 

action to bring about the desired outcome less "controllable" 

in a normative sense: it becomes less permissible or even 

forbidden. Since people are more likely to mutate 

controllable than uncontrollable events that led to a negative 

outcome, it seems intuitive that greater regret intensity will 

be predicted for the control condition, where the outcome is 

within the protagonist's control, than in the suppression 

condition, in which the conflicting norm serves to block the 

action, making it uncontrollable in the normative sense.  

Both hypotheses are possible but the controllability one may 

be stronger since when it comes to distancing oneself from 

the outcome controllability may act as a moderator.  A 

future avenue of research could use a controllability 

manipulation (controllable versus uncontrollable outcome) 

to examine what effect this direct manipulation has on 

deontic introduction.   

A final suggestion for the result lies in the fact that 

participants have to make a comparison when presented 

with a conflicting norm.  For Martin it is the choice between 

using the other oil and the meal not being as tasty to using 

the Fontignani oil and contributing to environmental 

degradation.  It is possible that in these cases preference 

construction occurs on the spot.    

The fact that conflicting norms demonstrate such 

consistent results when also accounting for Elqayam et al.’s 

(2015) findings strongly indicates that people are unwilling 

to go against their normative framework.  Although we did 

not test it directly in our study one proposal is that whilst 

people will generally not go against their normative 

framework for small instances (e.g., having a nice meal) 

they may do so when the outcome generates sufficient 

benefit.  For example, we may be told as children that it is 

wrong to lie, and we must tell the truth, and we may hold 

that norm.  However, if we are placed in a situation in which 

lying could garner a benefit and especially a moral benefit 

(e.g., saving a life) then it may be the case that we act 

against our normative framework in this instance.    

These findings have extended those of Elqayam et al. 

(2015) through demonstrating that their proposed model for 

deontic introduction can be applied to counterfactual 

conditionals.  This is an important theoretical development 

since it indicates that similar cognitive processes are at work 

when reasoning about counterfactual to indicative 

conditionals.  We propose that an avenue for future research 

could be to test different components of the model of 

Elqayam et al. to see whether they are applicable for 

counterfactual counterfactuals in the same manner as they 

are for indicative conditionals.   Elqayam et al.’s work has 

demonstrated that factors such as utility and probability, 

which are deeply rooted in the new paradigm, have an 

impact on deontic introduction for indicative conditionals.  

We propose that such effects may also occur when 

counterfactual conditionals are used.   

Research on deontic introduction has begun by adopting a 

vignette-based paradigm like many areas of reasoning 

research.  One challenge of that paradigm though is seeing 

the degree to which the model can apply to everyday life.   

We propose an interesting extension would entail asking 

participants to recall an instance of real life regret, to 

consider a counterfactual conditional, and then to complete 

the deontic rating task.  Through adopting this approach, we 

hope to learn how deontic introduction can be applied to 

real life regrets, and whether the same experimental 

manipulations, such as conflicting norms, demonstrate the 

same suppression effects as they do in a vignette-based 

paradigm, where the participant is reasoning about an 

unknown protagonist.    

From a methodological perspective we believe it would 

be interesting to examine the cognitive processes 

participants adopt directly via the adoption of think-aloud 

protocols.  This is a process-tracing technique that requires 

participants to think aloud whilst working through a 

problem in order for the researcher to gain insight into 

participants’ thought processes (see Ericsson & Simon, 

1993).  Wilkinson, Ball and Cooper (2010) have utilised 

think aloud protocols using counterfactual vignettes about 

mental states to good effect. Stenning and van Lambalgen 

(2008) show that experimental data can be enriched by the 

use of think aloud protocols, revealing how participants 

understand the task, and the trajectory of their reasoning 

processes. By adopting think aloud protocols whilst asking 

participants to complete the deontic rating task, future 

intentionality and regret questions could provide insights 

into their cognitive processes and potentially add further 

weight to the model of Elqayam et al. (2015).  It would 

enable participants to state how they deal with the presence 

of a conflicting norm within their reasoning.  This would 

enable the test of some of the predictions for the findings 

made within this section.        

This experiment has extended one of the findings of 

Elqayam et al. (2015), demonstrating that deontic 

introduction in the context of conflicting norms is not only 

affected by indicative conditionals but also by 

counterfactual conditionals.  This is an important finding for 

the new paradigm of reasoning (e.g., Evans, 2012; 

Manktelow, Over, & Elqayam, 2011; Over, 2009) with 

subjective degrees of belief at its heart and social pragmatics 

and subjective psychological value having a significant role 
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to play (Elqayam & Over, 2013).  We believe that our 

research adds to this field by showing how counterfactual 

conditionals can give rise to new deontic norms. It supports 

the conclusion that, whilst our counterfactual thinking may 

cause us pain, it is truly functional (e.g., Epstude & Roese, 

2008).  As Elqayam et al. (2015) noted, humans are quite 

ready to infer an ‘ought’ from an ‘is’ (see also Hume, 

2000/1739-1740). Our findings indicate that humans are 

also often keen to infer an ‘ought’ from a ‘would have 

been’.    
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Abstract 

A classic effect in the timing field is that “sounds are judged 
longer than lights” (Goldstone, Boardman & Lhamon, 1959). 
Recently, judgements for tactile durations have been found to 
fall between the two (Jones, Poliakoff & Wells, 2009). These 
modality differences are commonly interpreted within scalar 
timing theory as the work of a central pacemaker which runs 
faster for sounds, then vibrations, and slowest for lights 
(Wearden, Edwards, Fakhri & Percival, 1998). We 
investigated whether verbal estimates and temporal difference 
thresholds are correlated within each modality, but found this 
not to be the case. This suggests that differences in pacemaker 
speed may not be the main driver for modality differences in 
thresholds. In addition, we investigated sensory bias as an 
alternative to the pacemaker explanation, but this was found 
not to correlate with modality differences in timing. 

Keywords: Time perception; interval timing; sensory 
modalities; pacemaker-accumulator; sensory bias. 

Introduction 

The timing of stimulus duration by humans has historically 

been under-researched compared to other perceptual 

domains. One reason is that although humans possess a very 

sensitive discrimination for duration (with difference 

thresholds as low as 10 ms), there is no sensory organ for 

time. This forces explanations to draw on hidden processes 

more heavily than for other sensory systems, such as vision 

and hearing. To date the most successful models of human 

timing have centred on the idea that humans possess an 

internal clock of a pacemaker-accumulator type, such as in 

scalar timing theory (SET: Gibbon, 1977; Gibbon, Church 

& Meck, 1984). The pacemaker generates internal events 

(‘pulses’ or ‘ticks’) which are connected to an accumulator 

via a switch. The accumulator contents increase linearly 

with the duration being estimated and forms the basis for 

timing judgments (further memory and decision modules are 

also typically added to this clock model – see Gibbon et al., 

1984). 

Support for the idea of a pacemaker-accumulator internal 

clock comes from several sources. People (and animals) can 

stop and start timing like a stopwatch, even managing to 

‘pause’ timing and continue after a short gap (Buhusi & 

Meck, 2009). In addition, people can perform ordinality 

judgements, express one duration as a proportion of another, 

and average durations together, again suggesting a linear 

relationship between perceived time and real time (Wearden 

& Jones, 2007). 

Furthermore, it appears the speed of the internal clock can 

be altered. A key signature of a change in pacemaker speed 

is the ‘slope effect’. In verbal estimation
1
 tasks, when the 

stimulus durations are plotted against estimates of those 

durations, the difference between the experimental condition 

and control manifests itself as a difference in slope. This is 

consistent with a multiplicative increase in pacemaker 

speed, rather than a simple bias (which manifests as a 

difference in intercept). Such slope effects have been found 

for certain drugs (Meck, 1984), body temperature changes 

(for review see Wearden & Penton-Voak, 1995), repetitive 

stimulation (Penton-Voak, Edwards, Percival & Wearden, 

1996), and filled versus unfilled durations (Wearden, 

Norton, Martin & Montford-Bebb, 2007). 

It is known that durations of sounds are judged longer 

than lights (Goldstone et al., 1959). This effect manifests as 

a difference in slope (Wearden et al., 1998), where the 

auditory slope is steeper than the visual slope. It has been 

argued that the pacemaker runs at a faster speed for auditory 

than visual stimuli (Wearden et al., 1998; Penney, Gibbon & 

Meck, 2000). This has sparked a debate about whether there 

is a central pacemaker that runs at different speeds for 

different modalities, or separate pacemakers for each 

modality (See Grondin, 2010). These auditory-visual 

differences have been found to occur on a range of timing 

tasks, from temporal generalization (Wearden et al., 1998), 

to temporal bisection (Penney et al., 2000), to temporal 

difference thresholds (Jones et al., 2009), suggesting the 

effect is not task-dependent.  

Recently, the temporal judgement of tactile stimuli has 

been investigated. Jones et al. (2009) found that verbal 

estimation slopes and temporal difference thresholds for 

tactile stimuli fall between those for auditory and visual 

stimuli. Additionally, the two tasks share an inverted 

pattern, where estimation slopes are highest (most accurate) 

and thresholds are lowest (most sensitive) for auditory 

stimuli, for example. It has been suggested that a faster 

pacemaker is a more accurate pacemaker (Troche & 

Rammsayer, 2011), which appears to be the case, but this 

assertion has yet to be empirically investigated. Therefore, 

the present series of studies will begin with a replication of 

Jones et al. (2009), but analysis will also examine whether 

estimation slopes and difference thresholds correlate with 

each other for auditory, visual, and tactile stimuli. 

In contrast to the pacemaker speed explanation, it has 

been suggested that modality differences could be due to 

                                                           
1 ‘Verbal estimation’ is a misnomer stemming from experiments 

where participants verbalized their estimates of duration, before 

the introduction of computers. 
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intrinsic differences between the different sensory systems 

(Yuasa & Yotsumoto, 2015), e.g. some combination of 

differences in transduction rates (Zampini, Shore & Spence, 

2003) and attentional biases (Spence, Shore & Klein, 2001). 

Therefore, we will investigate whether these aspects of 

sensory bias or salience correlate with differences between 

auditory, visual and tactile stimuli. The present study will 

operationalise sensory bias as the ‘point of subjective 

simultaneity’ on a temporal order judgement task, i.e. the 

duration that one modality has to precede another by, in 

order for the two modalities to be judged as simultaneous. 

In summary, the aim of the current work is to investigate 

whether verbal estimates and temporal difference thresholds 

correlate within each modality, and whether modality 

differences can be alternatively explained by a measure of 

sensory bias. 

Experiment 1a: Verbal Estimation 

Method 

Participants 52 right-handed participants (staff and 

students of the University of Manchester and some members 

of the general population) completed all three tasks in a 

counterbalanced order and received £10 for their time.  
 

Apparatus and Materials Participants were seated at a 

table in a dark room, with their chin on a chin rest. A PC 

presented the experiments, written in E-Prime (Psychology 

Software Tools, Pittsburgh, PA). A 17” Samsung 

Syncmaster monitor stood at a distance of 60 cm. 

Participants’ eyes were level with the top of the monitor and  

the fixation cue and questions were displayed 20° below eye 

level. A black foam grip (5.5 x 9.5 x 4.5 cm) was secured to 

the table 30cm in front of participants in the centreline. 

Behind the grip was a Sony speaker, which presented the 

auditory stimuli (500 Hz sine wave tones), and to the left of 

the grip was a numerical keypad (8.5 x 12 cm) for use with 

the left hand.  

The grip housed an Oticon-A (100 Ohm) bone conductor 

with vibrating surface 1.6 cm x 2.4 cm. The bone conductor 

was inset into the foam in the index finger position when 

gripped with the right hand, and driven by a 500 Hz sine 

wave signal through a TactAmp 4.2 amplifier (Dancer 

Design). Visual stimuli were presented via a 6 mm green 

LED light (87 cd/m
2
), embedded in a black plastic casing (4 

x 4 x 1.75 cm) and attached on top of the foam block. The 

LED was 16° below the fixation cue (36° below eye level) 

and 32 cm in front of participants. 

Participants wore 3M Peltor ear protectors with inset 

earphones, which played white noise (56 dB) during the 

tasks to mask the sound of the vibrations.  
 

Procedure On each trial participants estimated the duration 

of a stimulus. The task contained 150 trials, where ten 

stimulus durations (77, 203, 348, 461, 582, 767, 834, 958, 

1065, and 1183 ms) were presented in each modality 

(auditory, visual, and tactile) five times. Trials were grouped 

into three counterbalanced blocks by modality. 

Each trial began with the presentation of a fixation cross 

for 500-1000 ms, which was followed by the stimulus. 

Participants were prompted on-screen to type in their 

estimate in milliseconds and were reminded that 1 second = 

1000 ms. The task lasted approximately 17 minutes. 

Results 

Outliers were defined as estimation functions that were 

invariant to stimulus duration (identified as linear 

regressions not significantly different to 0), which suggested 

an inability to perform the task. This led to the exclusion of 

one individual, leaving a sample of 51 participants. See 

Figure 1 for the mean verbal estimates for each modality. 

The hypothesis that verbal estimates would be highest for 

auditory stimuli and lowest for visual stimuli was examined 

using a factorial ANOVA with two repeated measures 

factors: modality (auditory, visual and tactile) and stimulus 

duration.  
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Figure 1: Mean verbal estimates for each modality 

against stimulus durations.  
 

The ANOVA found a main effect of stimulus duration, 

F(2.60, 130.17) = 750.70, p < .001, ƞp
2
 = .938. Post hoc analyses 

revealed that each of the 10 stimulus durations were 

estimated as significantly differently from each other (p 

< .001 for all comparisons). 

There was also a main effect of modality, F(2, 100) = 7.50, p 

= .001, ƞp
2
 = .131. Post hoc analyses revealed that 

participants estimated auditory stimuli to be significantly 

longer than visual (p = .006) and tactile (p = .012) stimuli. 

However, estimates for visual and tactile stimuli did not 

significantly differ (p = .909).  

The interaction between stimulus duration and modality 

was also significant, F(8.39, 419.32) = 4.914, p < .001, ƞp
2
 

= .089. In order to investigate this interaction, linear 

regressions were conducted to extract the slope and 

intercept values of each participant’s verbal estimation 

function for each modality. See Figure 2 for mean slope 

values.  
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Figure 2: Mean slope values for auditory, visual and 

tactile stimuli. Error bars denote standard error. 
 

A repeated measures one-way ANOVA comparing the 

slopes across modalities found a significant difference 

between them, F(2, 100) = 12.76, p < .001, ƞp
2
 = .203. Post hoc 

analyses confirmed that auditory slopes were significantly 

higher than visual slopes (p < .001), but not significantly 

different to tactile slopes (p = 1.00). In addition, the tactile 

slopes were significantly higher than visual slopes (p = 

.001). 

Discussion 

Verbal estimation slopes for auditory stimuli were 

significantly and multiplicatively higher than those for 

visual stimuli, with tactile slopes falling between the two. 

As perfect estimates would have a slope of 1, this suggests 

that people are more accurate when estimating durations of 

sounds and vibrations than lights, but tend to underestimate 

all three modalities. This is the same pattern of results found 

as in Jones et al. (2009). 

Auditory and tactile estimates differed significantly in the 

first ANOVA, but further analysis on slopes (as pacemaker 

speed differences are said to manifest as slope effects) found 

the slopes not to differ. The significant difference between 

the two in the first ANOVA was perhaps due to a difference 

in intercept.  

Experiment 1b: Temporal Difference 

Thresholds 

Method 

Participants The same participants completed this 

experiment as in Experiment 1a. 
 

Apparatus and Materials The same apparatus and 

materials were used as in Experiment 1a. 
 

Procedure Participants completed a 50-trial threshold task 

in each of the three modalities in a counterbalanced order. 

The test stimuli were the same as in Experiment 1a. 

 Each trial began with the presentation of a fixation cross 

for 500-1000 ms, which was followed by the stimuli. The 

first stimulus (the standard) was always 700 ms, while the 

second stimulus (the comparator) began at 1000 ms in 

duration. A 500-1000 ms delay occurred between the two 

stimuli, and a 125-250 ms delay followed the second 

stimulus. The order of the standard and the comparator was 

counterbalanced between trials. Participants pressed ‘1’ or 

‘2’ on the keypad depending on whether they thought the 

first or the second stimulus was longer. 

This task used a weighted 3-up 1-down staircase method 

(Kaernbach, 1991), which allowed for the calculation of the 

difference in stimulus durations that participants can 

discriminate 75% of the time. The step size was 15 ms for 

the first 30 trials, then 10 ms for the last 20 trials. 

Thresholds were calculated as the mean difference between 

the standard and comparator durations across the last 20 

trials. The task took approximately 18 minutes to complete. 

Results 

Outliers were defined as thresholds greater than 600 ms 

(twice the starting difference) which suggested an inability 

to perform the task. However, no participant had thresholds 

above this value, giving a full sample of 52 participants.  

Figure 3 shows the mean difference between the standard 

and comparator durations across the 50 trials for the three 

modalities. The resulting temporal difference thresholds can 

be seen in Figure 4. 
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Figure 3: Mean difference between the standard and 

comparator across the 50 trials for each modality. The 

vertical dashed line separates the last 20 trials over which 

the temporal difference thresholds were calculated. 
 

The hypothesis that thresholds would differ according to 

the modality of the stimuli was examined using a one-way 

repeated measures ANOVA. This test found a significant 

difference between thresholds for the different modalities, 

F(2, 102) = 30.89, p < .001, ƞp
2
 = .377. Post hoc analyses 
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confirmed that thresholds for auditory stimuli and tactile 

stimuli were significantly lower than thresholds for visual 

stimuli (p < .001 for each comparison). However, thresholds 

for auditory and tactile stimuli did not significantly differ (p 

= .079). 
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Figure 4: Mean temporal difference thresholds for each 

modality. Error bars denote standard error. 

Discussion 

Thresholds for visual stimuli were significantly higher than 

both auditory and tactile stimuli, while auditory and tactile 

thresholds did not significantly differ. This suggests that 

people have greater sensitivity to the durations of sounds 

and vibrations than lights. This pattern of thresholds was 

reported previously by Jones et al. (2009). 

Research Question 1: Do Estimates and 

Thresholds Correlate within Each Modality? 

Results 

The same outlier criteria were applied as in the previous 

sections, with the addition of values 2.5 SDs from the mean. 

Following removal, this left 51, 49 and 51 participants for 

auditory, visual and tactile correlations respectively. 

Three Pearson’s product-moment correlation coefficients 

found no correlations between estimation slopes and 

thresholds within each modality (See Table 1).  
 

Table 1: Correlations between verbal estimation slopes and 

temporal difference thresholds within each modality. 
 

Modality df  r    p 

Auditory 49 -.099 .490 

Visual 47 -.123 .398 

Tactile 49 -.130 .362 

Discussion 

It had been argued that the differences between modalities 

in these two tasks were due to the pacemaker running at a 

faster rate for auditory stimuli and a slower rate for visual 

stimuli (Wearden et al., 1998; Jones et al., 2009) and that a 

faster pacemaker leads to greater  accuracy and sensitivity 

(Troche & Rammsayer, 2011). However, accuracy in 

estimates (slopes) and sensitivity to duration (thresholds) 

did not correlate for within any modality. This poses a 

problem for applying the pacemaker explanation to both of 

these tasks. It could be argued that estimates (magnitude 

judgements) and thresholds (discrimination judgements) 

rely on different mechanisms and are of different levels of 

abstraction, but we expected small correlations despite the 

transformative nature of estimations.  

Experiment 2: Sensory Bias, measured by PSS 

 

This experiment will calculate sensory bias, as measured by 

the point of subjective simultaneity (PSS) on a temporal 

order judgement task. The PSS measures the duration that 

one modality has to precede another by, in order for the two 

modalities to be judged as simultaneous. This can be seen as 

a measure of relative salience between the different senses 

and is affected by the intrinsic properties of each sensory 

system, e.g. transduction rates (Zampini et al., 2003) and 

attentional biases (Spence et al., 2001).  

Previous research has found sensory biases (measured by 

PSS) in favour of auditory stimuli when compared with 

visual (Zampini et al., 2003) and tactile stimuli (Zampini, 

Shore & Spence, 2005) and in favour of tactile stimuli when 

compared with visual stimuli (Spence et al., 2001). 

Therefore, PSSs appear to follow the same modality pattern 

as estimates and thresholds. 

This measure of sensory bias will be investigated as an 

alternative explanation for the differences between auditory, 

visual and tactile performance on estimation and threshold 

tasks in the next section. 

Methods 

Participants The same participants completed this 

experiment as in Experiment 1a and 1b. 
 

Apparatus and Materials The same apparatus and 

materials were used as in Experiment 1a and 1b. 
 

Procedure Participants were presented with two cross-

modal stimuli (15 ms each) in quick succession and were 

asked which occurred first. The task contained 300 trials, 

where participants were presented with three modality pairs 

(Aud-Vis, Aud-Tac, Vis-Tac), at 10 different stimulus onset 

asynchronies (SOAs, -400, -200, -90, -55, -20, +20, +55, 

+90, +200, and +400 ms), each repeated 10 times. Negative 

SOAs mean that the first-named stimulus in the pairing 

came first (e.g. auditory in the Aud-Vis stimulus pair), 

whereas positive SOAs indicate that the second-named 

modality came first. Trials were separated into three 

counterbalanced blocks by modality pair.  

On each trial a fixation cross appeared on the screen after 

a 500 ms delay, where it remained for the rest of the trial. 

The first stimulus was presented following a random 
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duration between 500-1000 ms. After the randomly selected 

SOA, the second stimulus was presented. For example, if 

the Aud-Vis modality pair was presented with the -400 ms 

SOA, participants heard a 15 ms tone, followed by a delay 

of 385 ms, and then saw the green LED illuminate for 15 

ms. After a 125-250 ms delay, participants were then 

prompted to answer “Which stimulus came first?” and 

participants pressed ‘1’ or ‘2’ on the keypad. The task took 

approximately 15 minutes to complete. 

Results 

Cumulative Gaussian psychometric functions were fitted to 

participants’ individual data, coded according to ‘proportion 

auditory-first’, for example. The PSS and just noticeable 

difference (JND) were extracted for each individual for each 

modality pair. 

Participants’ PSSs were inspected for outliers, identified 

as those with related JNDs greater than 400 ms (Zampini et 

al., 2003), which suggested an inability to complete the task. 

This resulted in the exclusion of eight individuals, leaving a 

sample of 44 participants. See Figure 5 for PSSs for each 

cross-modal comparison. 
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Figure 5: Mean Point of Subjective Simultaneity for 

auditory-visual, visual-tactile and tactile-auditory 

comparisons. Error bars denote standard error. 
 

No significant sensory bias was found between auditory 

and visual stimuli, indicated by the PSS not departing from 

zero (t(43) = .94, p = .354). However, the PSS for visual-

tactile comparisons was significantly above zero, t(43) = 

3.24, p = .002. Participants were biased in favour of tactile 

stimuli in this comparison, and required visual stimuli to be 

presented 37 ms before tactile stimuli, for the pair to be 

judged as simultaneous. In addition, the PSS for auditory-

tactile comparisons was also significantly above zero (t(43) = 

3.21, p = .003). Participants were biased in favour of 

auditory stimuli in this comparison, and required tactile 

stimuli to be presented 22 ms before auditory stimuli for 

subjective simultaneity. 

Discussion 

Significant sensory biases were found in favour of auditory 

stimuli when compared with tactile stimuli, and in favour of 

tactile stimuli when compared with visual stimuli, which 

concurs with previous research (Spence et al., 2001; 

Zampini et al., 2005). However, no significant sensory 

biases were found between auditory and visual stimuli. This 

was unexpected and is contrary to both previous research 

(Zampini et al., 2003), and our hypothesis that the large 

differences between auditory and visual estimates and 

thresholds may be due to large sensory biases. 

Nevertheless, the next section will investigate whether 

these sensory biases correlate with the differences between 

modalities in estimates and thresholds. 

Research Question 2: Do cross-modal PSSs 

correlate with the differences between 

modalities in estimates and thresholds? 

Results 

The same outlier criteria were applied as in the previous 

sections, leaving a sample 44 participants.  

Six Pearson’s product-moment correlation coefficients 

found no correlations between PSSs and estimation slopes 

or thresholds for any cross-modal pair (See Table 2).  
 

Table 2: Correlations between cross-modal PSSs and slope 

and threshold differences for each cross-modal pair. 

 

Variable 1 Variable 2 r p 

Aud-Vis PSS Aud – Vis Slope .004 1.00 

 Aud – Vis Threshold .061 1.00 

Aud-Tac PSS Aud – Tac Slope -.217 .314 

 Aud – Tac Threshold .288 .116 

Tac-Vis PSS Tac – Vis Slope .323 .066 

 Tac – Vis Threshold -.333 .054 

Discussion 

Cross-modal sensory biases, as measured by PSSs, were 

found not to correlate with the differences in estimates and 

thresholds between each modality pair. This suggests that 

the differences in auditory, visual and tactile estimates and 

thresholds cannot be explained by the intrinsic sensory 

biases of the three different systems. 

General Discussion 

We aimed to investigate the pacemaker explanation for 

differences between auditory, visual and tactile estimates 

and thresholds, and discovered three main findings. Firstly, 

the pattern of differences between the modalities appears to 

be robust as we replicated these in Experiments 1a and 1b 

(with minor differences in magnitude). Secondly, estimates 

and thresholds do not correlate within each modality. This 

poses a problem for the idea that both the slopes in verbal 
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estimation and the order of thresholds are mostly 

determined by pacemaker rate. Finally, the modality 

differences in estimates and thresholds did not correlate 

with sensory biases, potentially ruling out this alternative 

explanation. These findings generate several possible 

conclusions: 

1. Pacemaker rate does not determine estimation slopes or 

threshold values 

2. Pacemaker rate determines estimation slopes but not 

threshold values (or vice-versa) 

3. Pacemaker rate contributes to both slopes and 

thresholds, but this contribution is washed out by other 

cognitive processes 

Despite these theoretical uncertainties, the present research 

can state that the assertion that faster pacemakers give rise 

to smaller thresholds (Troche & Rammsayer, 2011) is 

flawed, if one assumes that the pacemaker underlies both 

estimation and threshold tasks.  

At present, there is no published model of how the scalar 

timing theory system operates in threshold tasks, unlike  

for temporal generalization (Droit-Volet, Clément & 

Wearden, 2001), temporal bisection (Wearden, 1991) and 

verbal estimation (Wearden, 2015).  Additionally, the 

mathematical consequences of increasing pacemaker speed 

on timing performance (and the assumptions this is based 

on) in tasks are not explored or predicted in any great detail 

in the literature. Therefore, our future work will examine the 

role of the pacemaker in a model of threshold behavior and 

model mathematical implications of altering pacemaker rate. 

Overall, the simple pacemaker speed explanation appears 

to fail and a more nuanced explanation is required. 
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Without the knowledge of human cognitive processes, instructional 

design is blind. (Sweller, Ayres, & Kalyuga, 2011) 

 

Abstract 

Based on the established framework of Cognitive Load 
Theory, the presented research focuses on the inspection of 
cognitive load factors in an interrupted learning task. The task 
itself is inspired from basic cognitive research and demands 
participants to learn abstract symbol combinations of varying 
complexity. In addition, they have to deal with interruptions 
while performing the task. Experimental results indicate the 
influence of task complexity on how interruptions effect 
learning performance. However, questions on underlying 
learner cognition persist, rising the need for a more in-depth 
way of examination. For this purpose, a cognitive model 
within the cognitive architecture ACT-R is developed to 
clarify cognitive processes and mechanisms within different 
conditions of the task. Preliminary results from a first model 
for the easy task condition already indicate some fit between 
human and model data. Modeling work continues with 
adjusting the current model and implementing a model for the 
difficult task condition.   

Keywords: Cognitive Load; Interruptions; Learning; ACT-R 

Introduction 

Learning constitutes an omnipresent requirement 

throughout the entire life, whether practicing to bring out 

the first words as a toddler, preparing for an exam within a 

course of study or gaining knowledge in a foreign language 

in mature age. When approaching learning from a 

psychological perspective, a variety of cognitive processes 

related to information capture, storage and retrieval come to 

the fore. They share the commonality to pose load on 

learners’ limited mental resources, raising the need of well-

designed instructional material. Such should support 

learners’ efforts in acquiring the desired knowledge, skills 

and abilities without overloading their mental capacities. 

Theoretical background 

A prominent and often quoted theory in the field of 

instructional design is the Cognitive Load Theory (Sweller, 

1988; Sweller, Ayres, & Kalyuga, 2011). It deals with the 

question how certain aspects of a learning scenario demand 

learners’ cognitive resources. The theory postulates a 

practically unlimited storage capacity of long-term memory, 

the mental representation and organization of knowledge via 

schemata, and a limitation of working memory in terms of 

duration and capacity. In addition, mental resource demands 

in learning situations arise from different sources: Schema 

acquisition and automation build the core focus of each 

learning process and characterize the facet of germane load. 

Task complexity in relation to learners’ previous knowledge 

constitutes intrinsic load and is traditionally defined in 

terms of related information that has to be processed 

simultaneously, referred to as element interactivity (Sweller, 

2010). Extraneous load is increased by inappropriate 

instructional presentation and situational constraints. The 

latter comprise, for instance, aspects like performing the 

learning task in a distracting context with competing goals 

being present. The activation of such task-irrelevant 

information detracts cognitive resources needed for the 

learning task (Gerjets, Scheiter, & Schorr, 2003). In 

consequence, learners are prone to switch to simpler task-

solving strategies that are less demanding, but at the same 

time less effective. 

Cognitive Load Theory assumes that learning 

performance would be impaired if the sum of load imposed 

by the outlined factors exceeds the provided capacity of 

human working memory. However, the assumption of pure 

additivity has been questioned in more recent research 

(Park, 2010; Kalyuga, 2011; Wirzberger, Beege, Schneider, 

Nebel, & Rey, 2016), supporting the need for a theoretical 

reformulation. A possible time-related extension assumes 

that intrinsic and extraneous aspects affect performance on a 

structural and short-term level, while the germane aspect has 

to be considered on processual and long-term accounts 

(Wirzberger et al., 2016). In consequence, load induced due 

to schema acquisition should change over time, while 

structural load facets should pose a constant level of load. A 

further essential pre-assumption within the postulated 

framework comprises the fact that spare cognitive capacity 

is primarily devoted to foster schema acquisition. 
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Research focus 

The overall project goal comprises to addresses cognitive 

processes behind the outlined facets of cognitive load. 

Within the subsection of research introduced in this paper, 

the particular influence of structural load components over 

various stages of the task is queried. In more detail, 

demands posed by increased task complexity and embedded 

interruptions are assumed to impair performance to different 

extents, depending on the achieved progress in the process 

of schema acquisition.  

Experimental setting 

A basic learning task was used to approach the research 

focus, facilitating the concise definition and control of 

experimental factors. Since it required no previous 

knowledge, potential confounding effects of this relevant 

predictor could be ruled out. 

Methods 

The experimental setting comprised 116 student 

participants (Mage = 23.25 years, SDage = 4.34, range: 18-44 

years, 80% female) from different courses of study. They 

were required to figure out and memorize four combinations 

of arbitrary geometric symbols within 64 trials while being 

interrupted five times over the task. Interruptions occurred 

at the same predefined points in time (i.e., after trials 8, 24, 

32, 40 and 56) for reasons of comparability across 

participants. Symbol combinations were either easy (two 

symbols) or difficult (three symbols) and split up in input 

(one or two symbols) and response (always one symbol). 

Participants were randomly assigned to one of the two 

combination conditions, resulting in a between-subjects 

manipulation of task complexity. 

 

 

 
 

Figure 1: Schematic structure of a learning trial followed by 

an interruption in the easy task condition.  

 

As depicted in Figure 1, in the learning part, symbols 

were presented one after another at the outset of each trial 

and participants had to indicate which symbol completed the 

combination. Responses were provided by selecting the 

correct symbol from an offered choice on the screen via 

mouse click. For instance, a square being displayed should 

result in choosing a star. After indicating their response, 

participants received feedback, as well as the correct 

solution in the case of an incorrect response. The target 

combinations represented the knowledge schemata that 

should be obtained over the task.  

Within the interrupting secondary task, participants had to 

search, count and indicate two out of four types of 

geometric symbols from a visual search picture. Inspired by 

evidence from the subitizing task (Jensen, Reese, & Reese, 

1950), seven to nine instances per symbol were displayed, to 

ensure that equal cognitive mechanisms were used across 

participants. Performance was recorded continuously during 

both subtasks via correctness and duration of responses.  

Regarding the experimental design, performance 

efficiency computed as quotient from correct responses and 

reaction times in seconds (Hoffman & Schraw, 2010), 

represented the dependent variable. It reflected the amount 

of mental resources invested to acquire the task-related 

schema, characterizing the germane load component. Both 

structural load components were considered as independent 

variables: The number of symbols that defined a 

combination determined the intrinsic load component. Such 

a priori estimation of task complexity by the number of 

interacting elements followed Beckmann (2010) and 

Wirzberger et al. (2016). The interrupting secondary task 

represented the extraneous load component that was 

addressed in terms of inappropriate situational constraints. 

Results 

The influence of interruptions on task performance in 

both conditions was inspected by analyses of variance 

(ANOVAs) based on linear mixed models with Type III 

sums of squares and Satterthwaite approximation for 

degrees of freedom of fixed effects.  

Results showed significant main effects of pre- vs. post-

interruption performance, F(1,118.12) = 16.71, p < .001, 

and time of interruption occurrence over the task, 

F(4,152.12) = 11.72, p < .001. Moreover, significant 

interactions between condition and pre- vs. post-interruption 

performance, F(1,118.12) = 16.86, p < .001, and the 

condition and interruption occurrence, F(4,152.12) = 11.75, 

p < .001, were observed. Post-hoc pairwise comparisons 

with Tukey's HSD supported the pattern depicted in Figure 

2. They indicated a loss in performance efficiency after 

facing an interruption, but only in the easy task condition. 

The entire model achieved a conditional pseudo-R2 of .44, 

indicating about 44% of explained variance.  
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Figure 2: Changes in efficiency due to interruptions. Error 

bars indicate 95% confidence intervals. 

 

In terms of interruption performance, a significant main 

effect showed up for interruption occurrence over the task, 

F(4,464.77) = 12.53, p < .001, while no significant 

difference between conditions was observable. Such pattern 

also receives visual support from Figure 3. The entire model 

obtained a conditional pseudo-R² of .36, indicating about 

36% of explained variance. 

 

 
 

Figure 3: Changes in interruption performance over the task. 

Error bars indicate 95% confidence intervals. 

 

By contrast, when comparing the amount of totally 

recalled and correctly recalled symbol combinations in both 

conditions, participant achieved nearly equal scores that did 

not differ significantly. 

Discussion 

Taken together, experimental results support influences of 

both structural load features on the observed task 

performance. However, the demand to inspect differences 

between conditions in more detail on a cognitive level 

arises. Although experimentally manipulated performance 

measurement provides a controlled way of assessment, it 

merely operates on indirect means and therefore lacks 

accessibility. On that point, the method of cognitive 

modeling becomes of value, since it offers the opportunity 

to clarify cognitive processes and mechanisms that underlie 

observable performance. 

Cognitive modeling approach  

Implementing a cognitive model structure raises the need 

to clearly think about each step within a given task and to 

ensure compatibility with founded psychological theories on 

human information processing. The cognitive architecture 

ACT-R (Anderson & Lebiere, 1998; Anderson, 2007) 

provides an elaborated cognitive modeling approach to 

establish a relationship between underlying biological 

structures and emerging patterns of behavior. It operates on 

a set of modules mapping the structure of the brain, 

illustrated in Figure 4. While the peripheral modules are 

responsible for handling visual and auditory inputs and 

motor and vocal outputs, the central modules focus on goal 

planning, declarative memory, intermediate problem states 

and action coordination (Anderson, 2007). The predicted 

BOLD responses in the corresponding brain regions, for 

instance the basal ganglia in terms of the procedural 

module, have already been validated by fMRI data (Borst & 

Anderson, 2015). Although processes in different modules 

can be executed in parallel, a limitation in capacity to one 

element at the same time exists, representing known 

bottlenecks in information processing resources (Borst, 

Taatgen, & van Rijn, 2010; Nijboer, Borst, van Rijn, & 

Taatgen, 2016).  

 

 
 

Figure 4: Overview of ACT-R core modules. Adapted from 

Borst & Anderson (2015) and Anderson (2007). 

 

In contrast to other cognitive modeling approaches, ACT-

R is characterized by applying both symbolic and 

subsymbolic features (Anderson, 2007). Amongst the 

symbolic aspects, information is stored and processed by 

chunks. Interaction between modules happens by selection 

of production rules in the procedural module that scans the 

content of the buffers and, based on the resulting pattern, 
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chooses a suitable production rule that triggers the related 

action. If more than one production rule fits, the 

subsymbolic cost-benefit mechanism of utility decides, 

which production rule is selected. The level of activation, 

another important subsymbolic feature, reflects the 

availability of information in declarative memory and is 

determined by the context and history of use.  

Model concept 

A draft of the steps to be performed during the 

interrupting task and the learning trials are sketched in 

Figure 5 and Figure 6. If an intended action cannot be 

finished within the given timeframe, the model can switch 

to the next logical step instead.  

 

 

 
 

Figure 5: Outline of steps to perform in each learning trial of 

the task. 

 

The concept of the cognitive model for the actual task 

setting is inspired by several sources of research. At first, 

Whelan (2007) framed a potential fMRI based measurement 

approach of the outlined cognitive load facets. In line with 

existing evidence from neuroimaging literature, he states 

that extraneous load triggers activity in particular in brain 

regions corresponding with sensory processing. Such aligns 

well to the extraneous load induction by a visual search task 

and is incorporated in the model due to the broad occupation 

of visual resources. The intrinsic load component is 

proposed to be associated with activity in brain regions 

responsible for maintaining and manipulating the attentional 

focus. In more complex tasks, entailing more interrelated 

elements, higher demands are posed on the corresponding 

goal and problem state resources. In addition, this provides a 

toe-hold for subsymbolic mechanisms like spreading 

activation, directly mapping the concept of activation 

distribution between related nodes of information. 

Regarding the germane load facet, Whelan (2007) 

postulates a correspondence in particular with brain 

activation patterns representing motivation. This is 

plausible, since learners need to be motivated to dedicate 

available cognitive resources exclusively to schema 

acquisition. Based on that, in the difficult condition, a 

strategy shift towards a more heuristic encoding approach 

with increasing task progress is assumed. In detail, 

participants more and more tend towards retrieving the 

potential solution right with encoding the first symbol, 

which compensates for interruption costs and enables faster 

responses. Due to the resulting reduction in reaction time, 

they can achieve a better performance efficiency. The model 

incorporates such behavior by applying the subsymbolic 

mechanism of utility learning, which rewards each 

successful strategy adjustment.  

 

 

 
 

 

Figure 6: Outline of steps to perform in each occurrence of 

the interrupting task. 

 

Beyond that, the model bases upon existing modeling 

work regarding interruption and resumption during task 

3543



processing (Trafton, Altmann, Brock, & Minz, 2003; 

Wirzberger & Russwinkel, 2015). In brief, this tradition of 

research explains the loss in task performance after facing 

an interruption due to a decay in activation of the task 

representation. The resulting failure in accessibility of 

information can be adjusted within the model via 

subsymbolic chunk-related parameters like retrieval 

threshold, base-level decay or retrieval latency. On the 

perceptual level, the cognitive switch between both tasks is 

triggered bottom-up, at which the change in instruction 

color represents the salient screen change (Wirzberger & 

Russwinkel, 2015). On the processing level, due to this 

salience, the interrupting task receives immediate attention, 

represented by a high utility of the task switch. In addition, 

during both stages of the task, more specific actions are 

regarded as more useful, for instance attending and 

encoding available stimuli instead of just searching around. 

Thus, the related productions receive slightly higher utility 

and can be performed as soon as they match. 

Related to the concept of memory activation is the 

important question, which components constitute working 

memory in ACT-R models. The current model follows a 

recently introduced approach by Nijboer et al. (2016), who 

discuss a multi-component working memory system that 

can explain memory interference in dual tasking. It involves 

the problem state as limited short-term resource to hold and 

manipulate information, the activated content of the 

declarative memory as well as the mechanism of 

subvocalized rehearsal as additional support to prevent 

activation decay. In particular processes of rehearsal are 

occupied to a greater extent in the difficult condition, 

potentially explaining the diverging patterns between 

conditions.  

Preliminary results1 

The currently available preliminary model is able to 

complete the easy task condition, highly demands visual 

perception, and already employs some subsymbolic 

parameters. Besides of an enabled base-level learning 

parameter, defaulting to the well-established value of 0.5, it 

operates on increased visual-number finsts, aligning to the 

available button selection on the screen. Moreover, it 

induces some instantaneous noise in retrieval-related 

activation to better account for human variability in memory 

performance. 

Approaching the comparison between human and model 

data, aside from a graphical inspection, Schunn and Wallach 

(2005) recommend a combination of numerical goodness-

of-fit measures on relative trend magnitude and those 

assessing deviation from the exact location. In particular, 

they approve R2 as a measure of relative magnitude, for it 

relates directly to the accounted proportion of variance and 

better evaluates models with strong correlations to human 

data. In order to assess deviation from the exact location, the 

RMSSD (root mean squared scaled deviation) constitutes 

                                                         
1 Based on n = 55 model runs and n = 55 human participants. 

the measure of choice. It scales the deviation between each 

mean of human and model data by the corresponding 

standard error of the human data mean. In this vein, the 

RMSSD provides a scale invariant opportunity to assess 

model fit in units of the standard error.  

 

 
 

Figure 7: Comparison of performance in trials before and 

after an interruption. 

 

At first glance, Figure 7 indicates a reasonable fit in terms 

of impaired task performance due the induced interruptions. 

This impression receives support by the quite well RMSSD 

of 3.73 and an explained proportion of variance of 32 %           

(R = .32) for the selected pre-post interruption trials. When 

examining task performance in more detail, although the 

model can relatively map the given amount of correct 

responses during the learning trials, it shows a decreased 

match in terms of reaction time. The model constantly reacts 

much faster than human participants, which degrades the 

overall fit in performance efficiency. In addition, the model 

needs to better map interruption performance, indicated by 

Figure 8 as well as the rather high RMSSD of 7.84 and 

smaller proportion of explained variance of 29 % (R2 = .29). 

 

 
 

Figure 8: Comparison of performance in interruption task 

 

As a potential solution, the model has to speed up 

counting during the visual search task, since mostly it is not 
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able to successfully finish the second counting run or even 

end counting earlier. 

Further steps 

Pending steps within the ongoing modeling project 

involve the adjustment of outlined weaknesses in model 

performance. Moreover, due to the theoretical match with 

the concept of element interactivity, spreading activation 

has to be included as well. A second stream of work 

concerns the implementation of the difficult task condition. 

This involves the inclusion of productions that represent the 

aforementioned alternating task processing strategies. 

Conclusion 

Overall, this project constitutes an elaborated contribution to 

understanding cognitive processes that underlie knowledge 

acquisition from given instructional content. In doing so, it 

provides relevant insights into a so far rather vague defined 

theoretical framework, and additionally contributes to 

interconnect methodological approaches from different 

fields of research. 
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Abstract 
 
Previous research has found that people frequently provide 

incorrect predictions about the path of moving objects when given 
an idealised physics problem to solve. The aim of this research was 
to explore whether these incorrect predictions are due to the 
application of an incorrect naïve physics theory, whether incorrect 
perceptions generated from past experiences lead to 
misconceptions of how moving objects behave, or whether it is a 
combination of both. Thirty-one participants volunteered to take 
part in the experiment which followed a two (experience 
congruent/incongruent with naïve physics theory) by two (carried 
versus free-moving object) within-subject design. The dependent 
variable was participant response (straight down or curved 
forwards). Results of the study revealed that participants provided 
answers both consistent and inconsistent with the naïve physics 
theory. This suggests that responses were primarily elicited 
through the retrieval of associatively-mediated memories of similar 
scenarios - some of which contain perceptual illusions. Possible 
methodological limitations and alternative theoretical explanations 
are discussed, along with practical and theoretical implications for 
education and learning. 

 

Introduction 
 

Objects are constantly moving all around us. Therefore, it 
seems realistic that an individual should be able to correctly 
predict the path of a moving object (Zago & Lacquaniti, 
2005). However, research has found that people are 
frequently incorrect in their predictions when given an 
idealised problem to solve (McCloskey, Caramazza & 
Green, 1980; McCloskey, Washburn & Felch, 1983; 
McLaren, Wood & McLaren, 2013). The aim of this study is 
to investigate whether conscious reasoning leads people to 
apply an incorrect theory to basic physics problems (a 
propositional account, cf. Mitchell, De Houwer and 
Lovibond, 2009) or whether automatic associative memories 
(McLaren, 2011) generate misperceptions of how moving 
objects behave (the associative account), or even if a 
combination of both is needed to explain these predictions 
(a dual-process account (McLaren et al., 2014)). We first 
introduce the on-going debate as to whether human mental 
life is best explained in propositional terms, associative 
terms or both, before going on to consider other related 
examples of problem solving in humans (and other animals) 
which may cast light on this research question. 

 

Both the propositional (see also Shanks, 2007) and dual-
process (McLaren et al., 2014) approaches agree that human 
learning incorporates a conscious, calculating component, 
and that past experiences play a crucial role. However, 
disagreement exists on whether human learning can be 
explained by one unitary set of processes or requires 
multiple processes for its full characterisation. The dual-
process approach refers to two modes of processing which 
are fundamentally distinct: associative processes which 
create links between representations without conscious 
knowledge and regardless of the individual’s intentions, and 
cognitive processes which consciously employ rules and 
reasoning (McLaren, Green & Mackintosh, 1994). It is 

argued that whilst both human and non-human species are 
capable of associative learning, humans alone possess rule-
based processes which allow logical reasoning (Povinelli, 
2004). However, Mitchell, De Houwer and Lovibond (2009) 
argue that evidence for these two distinct learning processes 
is ambiguous. They state that rule-based learning and 
associative learning are part of a combined system where 
associative learning relies on conscious, effortful and 
calculated processes, rather than implicit, automatic 
processes. 

 

The present study explores all three of the theoretical 
approaches discussed above, in relation to how people solve 
physics problems. However, the working hypothesis is that 
associative processes, in the form of associative memory, 
primarily drive responses to physics problems in most 
people. Mental rotation tasks share similarities to the basic 
physics problems used in this current study, in requiring a 
simulation of the physical world (Neiworth & Rilling, 
1987). Therefore, they provide a solid starting point for 
exploring whether associative memory plays a primary role 
in responding to these types of problems. During a 
discrimination task involving shape rotations, Shepard and 
Metzler (1971) found an increased reaction time for larger 
rotations. This linear relationship led Shepard and Metzler 
to conclude that people have a general purpose rotation 
ability. They suggested that participants created mental 
representations of the first image and then, when shown the 
second image, mentally rotated it to match the first. 
However, something resembling mental rotation has also 
been demonstrated in pigeons (Neiworth & Rilling, 1987). If 
humans alone possess rule-based processes which allow 
logical reasoning (Povinelli, 2004), then mental rotation in 
pigeons might suggest a role for associative processes in 
these tasks. Pigeons were trained to respond to images of 
clocks with rotating hands and were then tested in a 
discrimination task. Neiworth and Rilling found the pigeons 
not only performed above chance when discriminating 
rotations they had been trained on, but also in trials 
involving rotations they had not been trained on. The 
pigeons appeared to know where the clock hand should 
reappear given the time that had gone by, and were able to 
indicate whether it was right or wrong when the clock hand 
reappeared. These findings provide support for the primary 
role of associative memory because the pigeons had 
considerable experience of successive events during 
training, and, as a result, were later able to extrapolate novel 
rotations similar to the rotations they had previously 
experienced. It can, therefore, be argued that it is also 
extrapolation based on experience that enables humans to 
solve similar problems. Rather than utilising a general-
purpose rotation ability, people’s ability to apparently 
mentally rotate objects might instead come from their vast 
experience of objects in different orientations in the 
environment (Edelman & Bülthoff, 1992). A corollary of 
this position is that if people’s responses are driven by 
associative memory and experience, then changing 
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contextual variables (i.e. the surface features of the task) 
should potentially change people’s answers. We make use 
of this logic in the study reported here.  

 

Previous research on naïve physics problems has helped 
inform the current research. According to McCloskey, 
Caramazza and Green (1980), when presented with 
problems involving a ball bearing entering a horizontally 
positioned curved tube, people tend to utilise the belief that 
the ball will exit the tube with a “curvy impetus”. The 
majority of participants verbally indicated in a later 
interview that they believed the ball would acquire a force 
or momentum in the tube that would cause it to continue to 
travel in a curved motion upon its exit, gradually losing 
momentum until the trajectory became straight. This led 
McCloskey et al. (1980) to conclude that participants were 
using a naïve theory of motion. McCloskey, Washburn and 
Felch (1983) later provided evidence for a naïve physics 
theory in problems involving falling objects. Participants 
appeared to apply the incorrect non-Newtonian theory that, 
whilst free-moving objects will fall in a curved motion, 
carried objects will fall straight down. McCloskey et al. 
(1983) suggest that a perceptual illusion occurs when people 
observe a carried object falling. For instance, when an 
individual drops something whilst cycling, the object ends 
up behind them due to the cyclist maintaining a constant 
speed before noticing the object has fallen. Whilst the 
cyclist continues at a constant speed,  the object gradually 
loses speed as soon as it starts to fall. Although the object 
falls forward in a curved motion, the observer is likely to 
believe that the object fell straight down (or backwards) 
because it is behind the cyclist in their frame of reference.  

 

Whilst it appears that participants are consistently getting 
basic physics problems wrong due to explicitly applying an 
incorrect non-Newtonian theory, there is the alternative 
possibility that these responses are primarily elicited 
through the retrieval of associatively-mediated memories of 
similar scenarios - some of which contain perceptual 
illusions (Zago & Lacquaniti, 2005). Participants may later 
offer an explanation congruent with a naïve physics theory 
to justify their reasoning, in an attempt to rationalise their 
responses in a scientific way. In order to provide evidence 
for the use of associatively-mediated memories in these 
problems, it needs to be demonstrated that individuals can 
produce systematically different answers to essentially the 
same problem (Sloman, 1996) when the contextual cues 
accompanying it are varied. If participants cannot explain 
their answers using a consistent rule, then this indicates 
automatic associative processing followed by conscious 
reasoning to justify their initial automatic responses.  

 

A study by McLaren, Wood and McLaren (2013) explored 
whether experience is primary in explaining why people 
incorrectly predict the directions of moving objects. 
Participants were required to complete a questionnaire 
containing eight physics problems, each concerning falling 
objects, and were asked to indicate which path they thought 
each falling object would take. They found that participants 
gave responses that were both consistent and inconsistent 
with the naïve physics theory, depending on the context of 
the problem. In a series of structurally identical but 
contextually varied scenarios, around half of the carried 
objects were predicted (on the basis of extrapolation from 
experience) to fall in a curved forwards motion whilst the 

others were predicted to fall straight down. Equally, around 
half of the free-moving objects were predicted to fall 
straight down whilst the others were predicted to fall in a 
curved forwards motion. A naïve physics view would 
predict that all the carried objects fall straight down, and all 
the free-moving objects follow a curved forwards path. 
McLaren et al. (2013) argued that if participants’ responses 
were produced by applying a naïve physics theory, the 
theory would have to be consistently applied across all 
scenarios. In fact, the variation in contextual cues led to 
responses that were consistent with their predictions rather 
than the naïve physics view. Therefore, a more feasible 
explanation for the responses is that participants were 
primarily responding to these problems using their own 
experiences of events similar in structure or context to 
predict the paths of the falling objects. 

 

The present research was predicated on the existence of 
both propositional and associative processes in humans. 
Whilst it might appear that people apply an incorrect naïve 
physics theory when solving basic physics problems 
(McCloskey et al., 1980; McCloskey et al., 1983) the 
presence of the inconsistent responses seen in McLaren et 
al.’s (2013) study suggests that associative memory plays a 
significant role in generating these incorrect predictions. 
Thus, it is possible that participants’ responses are based on 
associative memory rather than propositional inference or 
reasoning and that naïve physics accounts are later presented 
as a reason for these responses (i.e. an epiphenomenon). 
This study aims to extend McLaren et al.’s (2013) work in 
order to determine whether results in support of the 
associative account can be replicated under more controlled 
conditions. In order to do this, a number of possible 
weaknesses and limitations that were identified in McLaren 
et al.’s (2013) study were eliminated. Firstly, the number of 
possible paths of falling objects that participants could pick 
from was reduced from five to two in order to simplify the 
analysis of participants’ responses. Secondly, the number of 
problems was increased from eight to twelve to improve 
reliability. Thirdly, each image was carefully refined to 
avoid any confounding characteristics such as motion lines 
and object position – these are now equated across 
problems. Fourthly, each participant was tested on a 
computer individually and then interviewed afterwards 
rather than given a questionnaire to complete in class. This 
was to strengthen validity of the experiment by avoiding 
confounding variables such as responses of classmates at the 
same table and noisy distractions. The interview was done to 
ensure enough information was provided to generate reliable 
qualitative data. If these findings show responses that are 
both consistent and inconsistent with the naïve physics 
theory, depending on the context in which they are 
presented, this will support the theory that people are 
making use of associative memories when responding to 
these problems.  

 

Experiment  
 

Method 
Participants 

 

Thirty-one participants volunteered to take part in the 
experiment. Participants consisted of 17 females and 14 
males (M=26.45 years, SD=8.37) living in Exeter and the 
surrounding areas (15 undergraduate students, 5 college 
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students, 10 professionals and 1 postgraduate student). All 
participants had a GCSE in Physics and one had an A Level 
in Physics. Final year psychology students with prior 
knowledge of the theories explored in this study were 
excluded from participation.  

 

Materials and Design 
 

The experiment followed a 2 (experience congruent/ 
incongruent with naïve physics theory) by 2 (carried/free-
moving object) within-subject design. The dependent 
variable was participant response (straight down/curved 
forwards). Each participant was presented with the same 12 
basic physics problems, constructed using Microsoft Word 
and Microsoft PowerPoint and programmed using SuperLab 
software on a Macintosh computer. The experiment 
contained what was essentially the same physics problem 
presented in 12 different ways, using different contextual 
features. All of the problems were framed around falling 
objects travelling at the same speed. Six problems involved 
carried objects and the other six problems involved free-
moving objects.  These two types of problems were divided 
into subcategories, based on whether the predicted answer 
was congruent or incongruent with the naïve physics theory. 
Therefore, the four categories of problems were: Carried – 
Congruent (e.g. Figure 1), Carried – Incongruent (e.g. 
Figure 2), Free-moving – Congruent (e.g. Figure 3) and 
Free-Moving – Incongruent (e.g. Figure 4).  

 
There were three problems in each of the four categories. 

Carried – Congruent: a seagull in flight dropping an ice-
cream, a plane dropping a crate and a running student 
dropping a book; Carried – Incongruent: a swinging monkey 
dropping a banana, a plane dropping a bouncing bomb and a 
running cricketer dropping a ball; Free-Moving – 
Congruent: a cannonball fired off a cliff, a skier approaching 
a crevasse and a toy car falling off a table; Free-Moving 
Incongruent: a river flowing off a cliff, a skater dropping 
into a half-pipe and a toy train falling off a broken track. 
The congruent problems were based on problems used in 
previous research that resulted in responses congruent with 
the naïve physics theory (i.e. straight down for carried 
objects and curved forwards for free-moving objects). The 
incongruent problems, which were designed to elicit 
responses incongruent with the naive physics theory (i.e. 
curved forwards for carried objects and straight down for 
free-moving objects), were selected based on the research 
team’s own visualisations of how the objects would appear 
to behave from associated experiences (e.g. a skater can be 
associated with dropping straight down into a half-pipe). 

 
Procedure 

 

Firstly, participants were given a consent form to sign, 
which briefed them on the procedure of the experiment and 
their right to withdraw at any time. They then read the 
onscreen instructions as follows: “You are about to view a 
series of scenarios in which objects are seen falling to the 
ground. Firstly, look at the scenario and decide which path 
you think the object will take on its journey, and then, from 
the two choices offered, select which path you think most 
resembles the one you thought of. Indicate your choice by 
pressing the corresponding number on the keyboard. For 
example, if you think Path 1 is most similar to the path you 
thought of, press the key ‘1’. When making your choice, 

please ignore the effects of air/wind resistance and friction. 
All objects are travelling at the same speed (Speed V). When 
you have made your choice, let the experimenter know. You 
will then be asked a couple of brief questions before moving 
on to the next scenario. Please give as full an answer as 
possible. If you are happy to continue, press the space bar 
to begin the experiment.” 

 

       

       

       

       
 
The experiment began with one of the 12 scenarios 

appearing on the screen. Participants were provided with 
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information about the scenario (see Figures 1-4) and were 
then asked to press the space bar to see the possible paths of 
the falling object (see Figure 5). These were shown side by 
side, with the object falling straight down or curved 
forwards. Participants were asked to select the path they 
thought was most likely. They were then asked to let the 
experimenter know that they had made their decision. The 
experimenter responded by asking a set list of questions 
about the scenario: “What was happening in the scenario?”, 
“Which answer did you select?” and “Why did you select 
that answer?” The 12 scenarios were presented in random 
order to prevent bias. 

  
Figure 5. Example of choices provided. 

 

At the end of the experiment, participants were asked if 
they followed any specific rules to help them complete the 
experiment and if they had any general comments about the 
experiment. Participants 13 to 31 were also asked if they felt 
their approach changed at all during the experiment. This 
was because it became apparent during the experiment that 
some participants felt they were trying to apply a rule at first 
and then they later noticed their responses were inconsistent 
with the rule they had said they were applying. The 
experimenter then verbally debriefed participants about the 
nature of the study. The duration of the experiment was 
approximately 15 minutes for each participant.  

 

Results 
 

As a first step, the data was analysed using a 4 (condition) 
x 2 (response) contingency chi-square test to see if the 
condition (carried-congruent, carried-incongruent, free-
congruent or free-incongruent) had a significant effect on 
the responses given (straight down or curved forwards). A 
contingency chi-square test was chosen because it 
investigates whether there is a significant relationship 
between two variables. A significance level of p = .05 was 
used for all statistical tests. The results of the 
analysis,	𝜒#(3) 	= 66.94, p < .001 suggest that there was a 
highly significant effect. In other words, the responses given 
were not independent of the condition. As the condition did 
appear to have an effect on the responses given (see Table 
1), a number of 2 x 2 contingency chi-square analyses were 
carried out to determine the nature of this effect. Collapsing 
over carried/free-moving, 	𝜒#(1) 	= 2.43, p = .119 (ns) 
indicates that congruency had no main effect. A similar 
analysis for carried/free-moving after collapsing over 
congruency gave a 	𝜒#(1) 	= 3.89, p = .049, which suggests 
there was a marginally significant relationship between this 
factor and response. Straight down was the most common 
response for carried problems and curved forwards was the 

most popular response for free-moving problems. This 
finding is consistent with a naïve physics effect.  

 
 

However, a naïve physics theory predicts a preference for 
straight down responses for carried objects and curved 
forwards responses for free-moving objects, regardless of 
congruency classification. These results were further broken 
down to investigate whether carried versus free-moving had 
an effect on response when looking at congruent and 
incongruent problems independently. The	𝜒#(1) = 48.31, p 
< .001 for congruent problems and the 	𝜒#(1) = 16.89, p < 
.001 for incongruent problems suggest that carried versus 
free-moving had a highly significant but quite opposing 
effect on responses for both congruent and incongruent 
problems (see Figure 6). It can clearly be seen from Figure 6 
that, whilst it is possible to get a pattern of results consistent 
with a naïve physics theory (congruent problem data shown 
in blue), it is also possible to construct similar problems that 
elicit the reverse pattern of results. In the congruent 
problems, carried objects tended to produce a straight down 
response and free-moving objects tended to produce a 
curved forwards response. Conversely, the incongruent 
problems, revealed the opposite pattern of responses,  
directly contradicting the naïve physics theory.  

 
Figure 6. This graph represents the response difference score 

(No. curved forwards – No. straight down) for each of the four 
conditions, where a positive score denotes a bias for the curved 
forwards response over the straight down response. 

  

Discussion 
 

The aim of this study was to determine whether 
experiences are primary in predicting the answer of basic 
physics problems. In order to do this, an extension of 
McLaren et al.’s (2013) study was developed. Specifically, 
the interest was whether participants responded both 
consistently and inconsistently with the naïve physics theory 
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depending on the context in which the problems were 
presented. The hypothesis was that associative processes in 
the form of associative memory primarily drive responses to 
physics problems in relatively naïve participants. Therefore, 
it was predicted that participants would provide answers 
both consistent and inconsistent with the naïve physics 
theory based on congruency categorisation. The results of 
the study revealed that they did.  
 

Evidence for Associative and Cognitive Processes? 
 

Whilst we have strong evidence that contextual variables 
can influence the responses to essentially the same physics 
problem, a result which strengthens the case for associative 
memory influencing these responses, we also have a main 
effect of carried/free-moving that is consistent with a naïve 
physics view. Admittedly this effect could be due to the fact 
that memories of carried objects have a general tendency to 
elicit a straight down response (and more than a curved 
forwards response) because of an incorrect perception 
generated from past experience (McLaren et al., 2013). If 
the carrier of the object is still moving at a constant speed 
when the object falls then it will appear that the object has 
fallen straight down. Nevertheless, this is a post-hoc 
explanation of this finding, which would have undoubtedly 
been predicted by a naïve physics account. Thus, we must 
acknowledge the possibility of a more cognitive component 
to the responses made to our problems. 

 

When exploring the qualitative data, it becomes clear that 
many participants do offer something reminiscent of a naïve 
physics theory when asked to explain their responses. 
However, the theory provided is inconsistently applied, as 
congruent questions are predominately explained using a 
naïve physics theory, whereas incongruent problems are 
predominately explained by an appeal to experience. If 
participants were consciously applying different rules in 
different situations, then they should be able to explain these 
diverse rules afterwards. However, this was not the case.  
For instance, in the seagull problem, the majority of 
participants’ explanations were of the form: “I thought it 
was most likely to fall straight down or backwards because 
the bird is in motion but the ice cream is not”. This sounds 
like a naïve physics theory, but on the other hand, in the 
skateboarder problem, the majority of participants’ 
explanations did not refer to theory but to experience: “If 
you see skaters on a ramp they usually go straight down”. 
Other incongruent problems are explained using an 
alternative theory. For instance, some participants failed to 
apply the straight down belief to carried objects but instead 
attempted to apply the rules of Newtonian physics by simply 
mentioning gravity: “gravity will pull it straight down”. 
These inconsistent explanations for responses suggest that 
participants are automatically responding to problems and 
later coming up with rules when asked to explain why they 
selected their responses.  At the end of the experiment, 
many participants indicated they had later become aware 
that the rule they provided as an explanation directly 
contradicted some of their responses. 74.4% of participants 
said that they felt their approach to the task changed as the 
experiment progressed. When asked if they had any further 
comments about the experiment, 71.0% said “no”. However, 
the remaining 29.0% asked if all the problems had the same 
answer. This shows that whilst some of the participants 
suspected that the answers may all be the same due to the 

similar structure, perceptions based on their own 
experiences were so powerful that they overrode these 
suspicions. The fact that the problems used in this 
experiment were essentially the same basic problem with 
different surface features shows how vulnerable 
associatively-mediated retrieval is to a change in the surface 
features of a problem.  

 

Implications 
 

The findings in this study suggest that when participants 
are presented with problems, such as the ones in this study, 
memories are elicited first and rules are inferred later. These 
findings may have significant implications for education. If 
experiences are primary to predicting the answer of basic 
physics problems, this needs to be factored into the teaching 
methods applied to physics. For instance, children who are 
studying GCSE Physics are likely to have already formed 
many memories about the behaviour of moving objects, and 
because they are likely to believe things that they see with 
their own eyes rather more than what they are told (Wallach, 
1987) this will need to be taken into account. Just telling 
them the correct theory may not be enough; some explicit 
acknowledgement of their own experience and why it might 
be misleading in terms of the physics of the situation may be 
required. 

 

Strengths and Limitations 
 

This study has successfully replicated McLaren et al.’s 
(2013) findings using an improved methodology, whereby 
participants underwent the study in a controlled 
environment and were able to provide both quantitative data 
and qualitative data. The results of this study provide strong 
evidence for the case that associative memory plays an 
important role in problem solving and learning. However, 
one limitation of this study is the method of obtaining 
incongruent problems. The problems which were designed 
to elicit responses incongruent with the naive physics theory 
(i.e. curved forwards responses for carried objects and 
straight down responses for free-moving objects) were 
selected based solely on the research team’s own experience 
of how the objects appear to behave. It would be useful for 
future research to find a more independent method of 
selecting incongruent problems. Another limitation of the 
study could be that it lacks ecological validity due to the use 
of images of two-dimensional objects on a computer 
monitor rather than real-life objects. 

 

It is possible that some propositional theorists may argue 
that this study does not provide evidence for the primary 
role of associative memory in problem solving. Mitchell et 
al. (2009) allow that associative memory may have a role in 
learning. However, they believe it is propositional reasoning 
that elicits memories based on previous experience and 
extracts a rule from them. Therefore, it could be argued that, 
although the responses appear to be based on the 
participants’ past experiences, it is conscious, propositional 
reasoning that enables the participants to apply these past 
experiences to the problems presented in the study. 
Although this alternative explanation covers most of the 
facts, it cannot easily explain the pattern of qualitative 
results found in this study. Participants’ inconsistent 
explanations for their responses suggest that they responded 
to each problem automatically and later came up with a 
post-hoc justification to fit the response they had given, 
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even if their justification directly contradicted an 
explanation they had given for a previous problem. At the 
end of the experiment, many participants indicated that they 
had later become aware that their explanations directly 
contradicted some of their responses. This shows that 
perceptions based on their own experiences were so 
powerful that they overrode any logic. 

 

Directions for Future Research 
 

As pointed out earlier, the experiment involves people 
predicting the path of objects drawn in two-dimensional 
images on a computer monitor. Although the results of this 
experiment are highly significant, it is important to find out 
whether the findings can be generalised to other more 
practical contexts. A possible extension of this study 
involves participants predicting the path of falling objects in 
real-life situations. For instance, a student running with a 
book along a corridor marked with a tape measure. The 
student could initially run without dropping the book to give 
participants a real-life illustration. The experimenter would 
then explain to the participant that the student will drop the 
book at a specified point the next time he runs along the 
corridor and ask them to indicate where they expect the 
book will fall. This may result in more accurate responses 
due to greater ecological validity. Alternatively, the 
scenarios could be presented using a video recording.  

 

This study could be extended by running the experiment 
with a number of samples of participants from different age 
groups, academic disciplines, professions, or demographics, 
in order to determine whether the results can be generalised 
to different groups of participants. It would also be 
interesting to run the experiment with children in different 
developmental stages. Although younger children will have 
less experience with falling objects, they are likely to rely 
more on automatic associative memory because, according 
to Piaget (1972), they will not yet have developed the ability 
to apply a theory when solving problems. However, 
interestingly, some research has found evidence for children 
as young as 5 years old applying what appears to be a naïve 
physics theory to basic physics problems (Blown & Bryce, 
2013; Kaiser, Proffitt & McCloskey, 1985; Vosniadou, 
2002). It would be interesting to explore this further. 

 

Another possible direction for future research is to study 
the transition from associatively-based to rule-based 
performance when solving basic physics problems. This 
could be achieved by firstly running the initial experiment 
with a group of participants to get a set of responses based 
on associative memory, and then training the same group of 
participants on Newtonian mechanics before running the 
experiment (using different problem variants) with them 
again. In the second trial, the participants would presumably 
respond correctly to the problems because they would be 
able to apply a rule they had recently learnt. This may sound 
straightforward, but note that most of the participants in this 
study had some knowledge of physics, and still made 
systematic errors. 
 

Conclusion 
 

In conclusion, this study has provided strong evidence for 
the primary role of associative memory in human learning 
and problem solving. The highly reliable results show that 
people are frequently incorrect in their predictions of the 

paths of moving objects, highlighting the importance of 
studying associative processes in humans and their 
interaction with more cognitive (propositional) processing. 
We suspect that our results will have practical implications 
for education, especially instruction in physics and applied 
mathematics. 
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Abstract: People automatically imitate observed actions, including speech. Automatic Imitation (AI) is linked to observation-
execution associations in the mirror neuron system (MNS). AI is measured using interference tasks, in which prompts (say
”ba” or ”da”) are paired with congruent or incongruent distracters (video of someone saying ”ba” or ”da”). Faster responses for
congruent than for incongruent prompt-distracter pairings signal AI. Observation-execution associations for speech actions are
thought to be inflexible, unlike associations for manual actions, which have been shown to be flexible. We trained participants
to reinforce or abolish their AI response by providing them with compatible (say ”ba” for a video of someone saying ”ba”) or
incompatible training (say ”ba” for a video of ”da”). After training, the AI response was reduced for participants who received
incompatible training, thus showing that the MNS for speech actions is also flexible and subject to experience, like the MNS
for manual actions.
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Whoa! Aww . . . Ohh . . . Hee! and Mmm: Infants’ nuanced distinctions about the
probable causes of emotional expressions
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Abstract: Can infants map diverse positive emotional expressions to their probable causes? Across two studies (including
one pre-registered experiment), we used a preferential-looking task to find that infants as young as 12-17 months (mean:
14.8 months) successfully matched non-verbal vocalizations elicited by funny, exciting, adorable, sympathetic, and delicious
images to their probable causes (Experiments 1 and 2). Do infants also posit unobserved causes of emotional expressions? In
both exploratory and pre-registered experiments, an adult peeked into a box and made one of two distinct positive emotional
vocalizations (Experiment 3: “Aww!” or “Mmm!”; Experiment 4: “Aww!” or “Whoa!”). Infants reaching into the box retrieved
either a probable or improbable cause of the reaction. Infants were more likely to search again on incongruent trials. These
results suggest that infants make nuanced distinctions among emotions, and infer probable causes of emotional reactions.
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Abstract

With rapid increase in the size of videos online, analysis and
prediction of affective impact that video content will have
on viewers has attracted much attention in the community.
To solve this challenge several different kinds of information
about video clips are exploited. Traditional methods normally
focused on single modality, either audio or visual. Later on
some researchers tried to establish multi-modal schemes and
spend a lot of time choosing and extracting features by differ-
ent fusion strategy. In this research, we proposed an end-to-
end model which can automatically extract features and target
an emotional classification task by integrating audio and vi-
sual features together and also adding the temporal character-
istics of the video. The experimental study on commonly used
MediaEval 2015 Affective Impact of Movies has shown this
method’s potential and it is expected that this work could pro-
vide some insight for future video emotion recognition from
feature fusion perspective.
Keywords: videos; multi-modal scheme; modal fusion; end-
to-end; temporal characteristics

Introduction
To better understand and analyse people’s emotion response
during watching videos, it is essential to study the cognitive
determinants beneath the video presentation. Currently, con-
tent based approaches are the main trend for video emotion
analysis, and a lot of models have been proposed to help iden-
tify the emotions evoked by videos (Hanjalic, 2006), among
which affective analysis based on video visual contents have
been studied for several years. Several approaches which em-
ployed different machine learning models such as Bayesian
network (Soleymani, Kierkels, Chanel, & Pun, 2009), Hid-
den Markov Models (Kang, 2003) have been proposed and
proven applicable to tackle with this challenge.

Though visual content based video emotion analysis has
proven applicable in real applications, there still exists chal-
lenges since even the same scene could cause different emo-
tions (Choe, Chun, Noh, Lee, & Zhang, 2013). Recently au-
dio related features have also proven its effectiveness in emo-
tion analysis (Cui, Jin, Zhang, Luo, & Tian, 2010). For ex-
ample, Xu et al. tried to use audio emotional events (AEE)
such as laughing, horror sounds and other features to detect
horror and comedy movies (Xu, Chia, & Jin, 2005).

While previous studies focused on video or audio features
alone in detecting video emotion have proven their ease in
implementation, to further improve the classification perfor-
mance, some researchers indicate the possibility by combin-
ing visual features with audio features to form a hybrid fea-

ture that can carry information from two different modalities
(domains) at the same time. Such methods can be roughly di-
vided into two categories in terms of the way the features are
combined, i.e., later fusion of classifiers (Yi, Wang, Zhang,
& Yu, 2015), and early fusion scheme, in which features
are concatenated into a final classifier (Dai et al., 2015; P.,
Hayrapetyan, Tapaswi, & Stiefelhagen, 2015).

In this research, we employed the idea of modal fusion and
then proposed an end-to-end framework to integrate the vi-
sual and audio features for video emotion analysis. Recently
with the development of deep learning techniques, a lot of
advanced methods have been proposed for feature extraction.
In this research, we used convolutional neural network (CNN)
to extract video emotion related features as CNN has proven
its success in learning intermediate representations from low-
level features (Acar, Hopfgartner, & Albayrak, 2014). Af-
terwards, taking into account the temporal characteristics of
video, we further use Long Short Term Memory (LSTM)
model (Hochreiter & Schmidhuber, 1997) to integrate the ex-
tracted temporal features since it performs well on tasks that
require integration of state information over time. Finally a
multi-layer perceptron (MLP) is employed to classify the fi-
nal video emotions.

To confirm the validity of the proposed method, we imple-
ment it in the Affective Impact of Movies Task 3 in the Medi-
aEval challenge 2015 (Sjöberg et al., 2015). The task has now
become a state-of-the-art benchmark which attracted a large
number of research teams to test their models on this data set.
The experimental study result against different bench experi-
ments on this dataset shows the proposed method’s potential
in detecting video’s emotion.

Related Work
In the content-based video research, many researchers have
used a lot of models to identify the emotions triggered by
the video. Hanjalic argued the possibility to classify films
according to their emotions and proposed the concept of “ex-
pectation of emotion”, which is defined as one or a group
of emotions that a filmmaker wishes to use to communicate
with a certain culture or a particular audience through the
film (Hanjalic, 2006). Through this concept, he proposed the
video content information and its underlying characteristics
to predict emotion. Later on, Soleymani et al. proposed a
Bayesian framework to detect scene affect and the arousal
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Figure 1: Visual and Audio Aware Video Emotion Analysis Framework

and valence values with content features were used to clas-
sify video emotions into 3 classes, i.e., calm, excited positive
and excited negative (Soleymani et al., 2009). Similarly Ar-
ifin and Cheung established a framework based on the hier-
archical coupling of dynamic Bayesian networks to establish
the dependencies of the pleasure-activity-dominance emotion
model (Arifin & Cheung, 2008).

There are also various studies on video affective charac-
terization using audio features, e.g., rhythm, tempo, mel-
frequency cepstral coefficients (MFCC), pitch, zero crossing
rate. For example, three feature sets, i.e., intensity, timbre and
rhythm were extracted from audio to classify video emotion
using Gaussian mixture models (Lu, Liu, & Zhang, 2006).
Similarly, Xu et al. tried to use audio emotional events (AEE),
including laughing, horror sounds and other features to detect
horror and comedy movies (Xu et al., 2005).

In fact, there is a complex interaction between the audio
and visual contents to determine the perceived mood. As
such the video emotion analysis has begun to use feature
fusion method to classify emotion into different classes (Yi
et al., 2015). Similarly, Trigeorgis et al. selected the low
level descriptors with the traditional adaboost as a classifier
(Trigeorgis et al., 2015). Wang and Cheong derived the char-
acteristics of multimodality by probabilistic inference based
on two SVM models (Wang & Cheong, 2006), where one
SVM model is designed to process audio data and extracts
the corresponding advanced audio information, while another
SVM model is used to classify the captured video segments.

However, since these framework extracts basic features,
they lack the ability to use raw inputs to automatically learn
mid-level representations. With the development of deep
learning techniques, some deep learning based approaches
are also proposed in the literature. For example, Kahou et
al. used a deep convolution neural network to analyse facial
expressions within a frame and used a deep belief net to cap-
ture audio feature (Kahou et al., 2016). Levi and Hassner also

used convolution neural network to capture visual features to
classify video into seven emotions (Levi & Hassner, 2015).

Proposed Approach

The overall pipeline of the proposed visual and audio aware
emotion analysis framework is depicted as Fig. 1, where the
whole process is divided into three steps: 1) video segment
and low level feature extraction; 2) bi-modal visual and audio
feature fusion; and 3) temporal feature integration and emo-
tion classification.

Video segment and low level feature extraction

To analyze video emotion, it is necessary to firstly divide a
video into short videos with a length of t seconds. In this
study we set t = 1 so that a video of length T will have T
slices. This segmentation has two benefits. First, since the
length of each video is different, this segmentation gives us
better access to the visual and audio features. Second, Be-
cause of the temporal characteristics of the video, cutting the
video into the same segments can be used for subsequent re-
current neural networks.

For each segment, we need to extract its visual and audio
features separately. As to the visual features, we extract the
k key frames for each segment. Due to the strong correla-
tion among frames within a second, we select k = 1. The
key frame is defined as the frame with the closest RGB his-
togram to the mean RGB histogram of the whole video clip
using the Manhattan distance (Zhu, Jiang, Peng, & Zhong,
2016). Assume that a video clip V contains n frames, the
RGB histogram of i-th frame is defined as h(i). The Man-
hattan distance D between two frames i and j is calculated as
follows:

D(i, j) = |h(i)−h( j)| (1)
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and the key frame will be:

argmin
i

D(i,
1
n

n

∑
j=1

h( j)) (2)

After getting the key frame, it will be resized to 256∗ 256
pixel, as suggested in (Krizhevsky, Sutskever, & Hinton,
2012) as input for fine-tuning. The concept of fine-tuning
is to use a model pre-trained on a large dataset, replacing its
last layers, and fine-tune the weights on new task using back-
propagation. In this study, AlexNet (Krizhevsky et al., 2012)
is employed. AlexNet consists of five convolution layers and
three fully connected layers. Here we select the fc7 layer of
AlexNet which has 4096 neurons as our visual features.

As to the audio features, the traditional methods for audio
emotion analysis need to select proper audio features, e.g.,
MFCC, energies, flatness, and etc. But they often have to con-
duct a lot of repeat tests to choose the best features. In order
to take full advantage of the depth convolution neural network
model in extracting data features, the original features of the
data should be kept as much as possible in order to avoid
losing information. In this research, we process the audio
to spectrogram (Barker & Virtanen, 2016), which is a visual
representation of the spectrum of frequencies in a sound. We
set the window function to 40ms and the hop size to 20ms to
generate a spectrogram every second using short-time Fourier
transform with a Hamming window (Allen, 1977). The re-
sulting image is resized to 256∗256 pixels, here we also use
the method of AlexNet finetune to extract the fc7 layer as a
feature of the spectrogram.

Bi-modal visual and audio feature fusion
From the last step we obtained visual and audio features for
video emotion analysis. However, the length of features of
both visual and audio is long and there maybe many redun-
dancy in the features. It will be helpful if we can combine the
two types of features and then reduce the overall dimension.

Let xa ∈ RD denotes audio features and xv ∈ RD denotes
visual features, where D ∈ R is the dimension of audio and
visual features, the joint representation of features by fusion
modal can be written as:

x f = αag(xa;wa)+αvg(xv;wv) (3)

where g(.) denotes the hidden layer of both audio and visual
channel. αa defines the weights of audio features and αv de-
fines the weights of visual features at the same time. The
hidden layer of audio features is:

g(xa;wa) = θ((wa,xa)+ba) (4)

where θ denotes the activation function (rectified linear units
(Zeiler et al., 2013), sigmoid etc.) of the audio hidden layer.
Similarly the hidden layer of visual feature is:

g(xv;wv) = θ((wv,xv)+bv) (5)

Temporal feature integration and emotion analysis
Though previous steps we have obtained fused features from
visual and audio perspective, there is still a challenge about
how to predict corresponding emotion status. Furthermore,
in previous step the features are about a single frame, taking
into account the temporal characteristics of video, it is nec-
essary to study how these features can be used over time. In
this research we will use the LSTM model to fuse sequence
features together.

Recurrent Neural Networks (RNNs) are powerful networks
and it can model input sequences of different lengths, be-
cause the parameters of the network can be shared over dif-
ferent parts (Mikolov, Karafiát, Burget, Cernocký, & Khu-
danpur, 2010). RNNs are often trained by Back-Propagation
Through Time (BPTT) algorithm, but the main problem with
the BPTT is that the gradients tend to vanish or explode which
was resulted by propagating the gradients down through lay-
ers. Therefore it is difficult to learn efficient long-term de-
pendencies. To overcome this limitation, the Long-Short-
Term-Memory (LSTM) (Hochreiter & Schmidhuber, 1997)
units have been created to capture long-term dependencies.
LSTMs have the ability to remove or add information to the
cell state through a well-designed structure called a “gate”. It
is believed that the LSTMs can model the temporal aspect
of induced emotions in our task. Various units have been
proposed in the community to constitute a LSTM. In this re-
search, we employed the LSTM units described in (Zaremba
& Sutskever, 2014). The LSTM unit of time step t consists
of three sigmoidal gates, i.e., input gate it , output gate ot , for-
getting gate ft . The most important part of the LSTM unit is
a linear self-loop state cell ct . The memory cell unit ct is a
sum of two terms: the previous memory cell unit ct−1 which
is modulated by ft , and gt , a function of the current input and
previous hidden state, modulated by the input gate it. ht de-
notes the hidden layer’s output at step t. We can update our
hidden layer for time step t as follows:

it = σ(Wxixt +Whiht−1 +bi) (6)

ft = σ(Wx f xt +Wh f ht−1 +b f ) (7)

ot = σ(Wxoxt +Whoht−1 +bo) (8)

gt = tanh(Wxcxt +Whcht−1 +bc) (9)

ct = ft � ct−1 + it �gt (10)

ht = ot � tanh(ct) (11)

where xt is the current fusion feature, ht−1 is the previous
hidden layer vector. x� y denotes the element-wise product
of vectors x and y. In addition, Wxi, Wx f , Wxo, Wxc, Whi, Wh f ,
Who, Whc are weights for the gates, and bi, b f , bo, bc are biases
for the gates. σ is the nonlinear methods (e.g., sigmoid or
tanh).

The output of the last time step of LSTM unit will be the
input of the fully connected neural network, also known as
multi-layer perception (MLP).The hidden layers and parame-
ters of MLP will discuss in experiment. The prediction layer
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will have 3 units yl (l = 0,1,2) and the class probability is
calculated by taking the softmax as below:

yl : p(yl = c) =
exp(yl ,c)

∑c′∈C exp(yl ,c
′
)

(12)

where C denotes the three emotion states. Finally the label
with the max probability will be the expected label.

Experimental Study
Dataset
In order to fairly verify the performance of our proposed
method, we implement it on the dataset provided by Me-
diaEval 2015 Afective Impact of Movies task (Sjöberg et
al., 2015), which consists of 10,900 short video clips ex-
tracted from 199 Creative Commons-licensed movies of var-
ious genres. It is an extension of the LIRIS-ACCEDE dataset
(Baveye, Dellandréa, Chamaret, & Chen, 2015), which origi-
nally contains 9,800 excerpts extracted from 160 movies.The
MediaEval 2015 task added 1,100 video clips additionally
from 39 movies. The dataset is divided into training set and
test set. The training set consists of 6,144 videos extracted
from 100 movies while the test set includes 4,756 videos
extracted from the remaining 99 movies. These videos last
from 8 to 12 seconds and start and end with a cut or fade.
The ground truth for each of 10,900 video clips consists of
discrete labels for arousal (calm-neutral-active) and valence
(negative-neutral-positive).

Evaluation Metrics & Baseline
In order to evaluate the affective detection task, the offi-
cial and complete method is global precision (Sjöberg et al.,
2015), which is the proportion of the number of correctly as-
signed videos in the total video samples and is defined as:

Precision = Nc/Nt (13)

where Nc is the number of videos which are assigned to the
correct class, and Nt is the total number of test videos. In this
research, we only compare the results obtained for the arousal
classification. This is because compared to arousal, valence
is not sensitive in the dataset. As such comparing the results
of the arousal classification is a commonly adopted choice
(Sjöberg et al., 2015).

To evaluate applicability of the model fusion approach, in
this research we compared it against the proposed approach
in predicting arousal values using only the image features or
audio features. Furthermore, we also compared the proposed
approach against early fusion and later fusion methods, re-
spectively. In the early fusion model we simply concatenate
the audio and video features together, while in later fusion
schema, we firstly trained two MLP classifiers to represent
the two modalities separately. Their predictions are denoted
as pa and pt and the overall output emotion class can be as-
signed by

p = αpa +(1−α)pt (14)

where α indicates the relevant importance between audio and
visual features. In this research we set α = 0.56, as indicated
in (Goyal, Kumar, Guha, & Narayanan, 2016).

Afterwards we also compare our results against state-of-
art systems in the MediaEval 2015 challenge. These systems
include: later fusion models with manually selected features
(Yi et al., 2015; Chakraborty et al., 2015), early fusion mod-
els with manually selected features (P. et al., 2015; Trigeorgis
et al., 2015), later fusion models with automatically selected
features (Tiwari et al., 2016), early fusion models with au-
tomatically selected features (Dai et al., 2015; Seddati et al.,
2015).

Experiment Settings
We tested the different feature dimensions and found that the
final result did not change much in the range of 250 to 1000.
We decided to use feature size of 512 for both visual pathway
and audio pathway. Therefore the fusion feature as the final
LSTM model input has 512 dimensions. LSTM model can
handle different video length, the longest video is 18 seconds
that is 18 time steps. The system is trained end-to-end to pre-
dict the videos emotion class at each time step. It is found
that the most significant parameter is the number of LSTM
hidden layers. We compared LSTM networks with 64, 128,
256, and 512 hidden units, separately. Finally, we found that
256 hidden units can be selected to achieve the best results,
as shown in Fig. 2. Afterwards we selected MLP as our clas-
sifier in which rectified linear units were used as nonlinear
functions and stochastic gradient descent with minibatches
was used for parameter updates (Zeiler et al., 2013). Also we
used categorical cross-entropy loss function to get the best
results. The hidden layer uses dropout to prevent overfitting,
and the factor is set 0.5. The number of hidden layer of MLP
and the units’ number can also affect the model results, and
ultimately we chose one hidden layer with 64 hidden units.
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Figure 2: Arousal Accuracy with Different Number of Hid-
den Layer Units

Result and Analysis
Table 1 presents the proposed method’s performance using
different feature space and fusion strategy. It is observed
that the performance of all feature fusion strategies are bet-
ter than using only single feature. It is because that video
images are the main cause of people’s emotions, but audio

3557



can complement the lack of information in video images. It
is further found that our proposed model fusion method is
better than both the simple early fusion and late fusion, af-
firming the effectiveness of multi-modal emotion classifica-
tion. This maybe because early fusion leads to the sparsity of
input vectors and late fusion has little consideration for visual
and audio’s correlation (Williams et al., 2009).

Table 1: Comparison of accuracy by different fusion models
Approaches Arousal Accuracy(%)

Visual features only 55.51
Audio featues only 55.14

Early fusion 55.71
Later fusion 55.70

Modal fusion 55.89

Table 2 is the experimental result of the propose method
against most recently revealed results. The result demon-
strates the feasibility and superiority of end-to-end training
for video emotion classification. It is found that one system’s
result (Yi et al., 2015) is slightly higher (less than 0.1%) than
the proposed one. However, its features are selected manu-
ally, which is time-consuming, not universal and not portable.
What’s worse, their feature dimension is also long. End-to-
end training has better transfer learning properties and the
training process is convenient. Using a well-trained model
for another similar problem only needs a simple refinement.
It is also observed from the table that the method proposed in
(Tiwari et al., 2016) has the similar feature size to ours, while
the proposed model outperforms their final arousal accuracy.
This may because their feature fusion approach is rough and
does not consider the temporal characteristics. This demon-
strates that temporal features could play a role in video emo-
tion analysis to a certain extent. As for the other methods, our
result can outweigh them which shows that modal fusion has
a great advantage compared with simple early fusion and later
fusion. Fusing visual and audio feature in a mid-level is a po-
tential strategy since visual and audio information in video
have a certain interaction. It can also inferred that CNN has
good performance in visual and audio feature extraction.

Conclusion and Future Work
Video emotion recognition is an important challenge as de-
tecting affective attitudes is an important research field in
cognitive science. It is argued that visual and audio informa-
tion are both important in detecting video emotion. There-
fore in this paper we used a deep learning architecture to
fuse visual and audio modalities for video affective classi-
fication. This end-to-end framework has the advantages of
simple training and convenient transplantation and demon-
strates that modal fusion with small size of features can com-
pare against most state-of-art results obtained by participants
of the MediaEval 2015 Affective Impact of Movies task. Fur-
thermore, it would be interesting to study if it is feasible to

include information from other domains/modalities, e.g., ab-
stract words (Siakaluk, Knol, & Pexman, 2014), which de-
serve future study in the future work.
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Abstract

Researchers have debated whether instructional-based teach-
ing or exploration-based active learning is better for decades
with unsatisfying results. A main obstacle is the difficulty in
precisely controlling and characterizing the pedagogical meth-
ods used and the learning conditions in empirical studies. To
address this, we leveraged existing computational models of
teaching and active learning to formalize the methods and the
learning process. We compared the two pedagogical methods
in a concept-learning framework and investigated their effec-
tiveness under various scenarios. Our results show that when
the learner and teacher are conceptually aligned, teaching is
at least as effective as, and often much more effective than ac-
tive learning, but when the alignment is broken, active learning
can yield moderate improvement over teaching. We conclude
by discussing our results’ implications for the debate and the
prospects of bringing computational models to bear on com-
plex real-world problems that are resistant to simple experi-
mental investigation.
Keywords: pedagogical methods; direct instruction; self ex-
ploration; Bayesian teaching; active learning

For centuries, the predominant pedagogical method has
been instructional-based teaching such as lecturing. Over the
past several decades, constructivism has received increased
attention, and educational practitioners have been incorporat-
ing constructivist pedagogical methods that emphasize active
learning, exploration, and discovery by the learners them-
selves (Bruner, 1961; Vygotsky, 1978). These methods are
typically described as being opposite: the instruction-based
method is teacher-centred and passive, while the exploration-
based method is learner-centred and active.

Researchers have taken up the debate between instruction-
based teaching and active learning, with unsatisfying results.
Early cognitive science extolled the virtues of active learning
(Bruner, 1961). However, more recently researchers have al-
ternately found evidence for both teaching (Mayer, 2004) and
active learning (Sweller, 1988; Gureckis & Markant, 2012).
Researchers have also found instances of equivalence (Klahr
& Nigam, 2004) and nuanced interplay between teaching
and active learning when in sequence (Bonawitz et al., 2011;
DeCaro & Rittle-Johnson, 2012). This has led researchers
to propose new constructs, such as Guided Play (Weisberg,
Hirsh-Pasek, & Golinkoff, 2013), which have moved forward
the debate. However, when and why teaching or active learn-
ing may yield better outcomes remain largely unresolved.

One of the greatest barriers to resolving this debate is
the difficulty in fully characterizing the pedagogical meth-
ods used and precisely controlling the conditions under which
they are used (Prince, 2004). We argue that by abstracting
away from the particulars of specific learning material (e.g.,
biology or mathematics) and idealizing the learning process
(to be rational and normative), we may use computational

models to formalize the methods and conditions and thus
clarify when and why teaching may outperform active learn-
ing, and vice versa. Computational models of both teaching
and active learning exist in the cognitive science and machine
learning literature (e.g., Shafto & Goodman, 2008; MacKay,
1992). These models have been shown to describe human be-
havior well in a variety of simple learning settings and higher-
level perceptions (Shafto, Goodman, & Griffiths, 2014; Cas-
tro et al., 2009; Gureckis & Markant, 2009; Yang, Lengyel,
& Wolpert, 2016). However, the two types of models have
never been compared in the same framework.

We provide the first computational comparison between
teaching and active learning. Following previous computa-
tional work, we use a concept learning task to assess the ef-
fectiveness of the two pedagogical methods. To approximate
some of the complexity of real-world learning problems, we
design the concept space to be hierarchical and introduce par-
tial ambiguity between concepts by introducing overlap be-
tween the concepts. As an illustration, the categories “bird”
and “sea animals” are partially ambiguous due to the exis-
tence of examples that are in both categories. Such ambiguity
makes certain examples uninformative for grasping distinc-
tions between the concepts, thus limiting the performance of
active learning. In these cases the guidance of a knowledge-
able and helpful teacher may be of great import, by avoiding
such ambiguous examples. Using varying degrees of ambi-
guity, we will investigate under what scenario is the effec-
tiveness of teaching more pronounced.

Given perfect knowledge and rational inference, we know
that teaching is at least as effective as active learning. This
assumes that the teacher is knowledgeable and helpful and
that the learner and teacher use the same inference scheme.
There is little reason to believe that these assumptions are met
in everyday educational settings (Chi, Siler, & Jeong, 2004).
The effect of an unhelpful teacher is easy to imagine (random
guidance), but the effects of a teacher with imperfect knowl-
edge of a learner or a teacher operating with incorrect beliefs
about the world is less apparent. To investigate this, we in-
troduce a conceptually misaligned teaching model in which
we vary the types and degrees of misalignment between the
teacher’s and learner’s concept spaces. Using this, we explore
scenarios under which exploration outperforms teaching.

Framework
The most common and simplest concept learning tasks use
concept spaces with a single-layer of Boolean concepts where
the features can be discrete or continuous (e.g., Shafto &
Goodman, 2008; Castro et al., 2009; Gureckis & Markant,
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2009). While this is a sensible framework for certain ques-
tions, to accentuate differences between the models and en-
sure that we can model the kinds of challenging concept
learning problems that appear in more realistic scenarios,
we adopt a more complex concept space with two-layered
Boolean concepts, where the features of the higher-level con-
cepts are themselves concepts. In particular, a two-layered
concept space allows us to introduce partial ambiguity be-
tween the concepts that only teaching, but not exploration,
can resolve (explained later in more details with an exam-
ple). Similarly, this allows us more interesting variations in
the ways that teachers may be incorrect about learner’s be-
liefs, or the true state of the world. Below we begin the de-
scription of the framework by describing the concept space
and setting notations before presenting a detailed example,
and the simulations results.

Concept space
A concept space contains two concepts. A concept contains
at least 1 and up to 6 distinct patterns. There are in total
6 types of patterns (Fig. 1 left), and they are all the Boolean
concepts that have 4 features with balanced binary labels, that
is, two features labeled 0 and two features labeled 1. Figure 1
provides two example concept spaces. Formally, we denote
the concept space by H, the concepts by h = {h1,h2}, the jth

pattern in a concept by f j, the features by x, and the feature’s
binary label by y = {0,1}.

The prior probability on the concept space is hierarchi-
cally uniform. This means that P(h1) = P(h2) =

1
2 and that

P( f j|hk) =
1

Nk
for all j, where Nk is the number of patterns in

hk. We say that the concepts are ambiguous when two con-
cepts have shared patterns, and the degree of ambiguity, a,
is defined by the number of shared patterns (see Fig. 1 for
example). Recall that ambiguous concepts allow a stronger
distinction to be made between teaching and active learning.

For the discussion of concept misalignment—where the
teacher may be incorrect about the learner’s beliefs or the true
state of the world—we denote the learner’s concept space by
HL, the teacher’s concept space by HT , and the true world
space by HW . We quantify the degree of misalignment, m,
between two concept spaces by the the minimum number of
pattern “moves” within a concept space to make the two con-
cept spaces equivalent. The move operation includes mov-
ing a pattern between two concepts, removing a pattern, or
adding a pattern. Misalignment with HW is sometimes re-
ferred to as misconception. Later we will investigate how
the effectiveness of teaching degrades when the learner has
misconceptions (HW = HT 6= HL) and when the teacher has
misconceptions (HW = HL 6= HT ).

An example trial
First, a concept in HW is chosen as the correct answer; then,
a pattern within that concept is chosen as the underlying pat-
tern. On the first trial, a pedagogical method of choice (op-
timal exploration or teaching) computes scores (according to
Eq. 3 or Eq. 6, respectively) for all four potential features.

Patterns Concept space A
Concept 1

Concept 2

Concept space B
Concept 1

Concept 2

Figure 1: The six types of patterns, denoted f , are used to construct
concepts. The positions—top left (TL), top right (TR), bottom left
(BL), and bottom right (BR)—of the small squares with blue outline
represent the four features. The colors—white or black—represents
the binary feature labels which correspond to individual observa-
tions. For Concept space A, the prior for each pattern in Concepts
1 and 2 are P( f |h1)P(h1) =

1
5 ×

1
2 and P( f |h2)P(h2) =

1
3 ×

1
2 , re-

spectively. The degree of ambiguity, a, is 2 because f3 and f5 in
h1 are also in h2. For Concept space B, P( f |h1)P(h1) =

1
6 ×

1
2 ,

P( f |h2)P(h2) = 1× 1
2 , and a = 1. The degree of misalignment be-

tween Concept spaces A and B is 2: one has to make two “moves”
in Concept space A (delete the last pattern in Concept 2 and move
the second pattern from Concept 2 to Concept 1) in order to make it
equivalent to Concept space B.

The learner queries the world the feature with the highest
score, and the world labels the query according to the prede-
termined underlying pattern. With this observation, the cho-
sen pedagogical method computes the scores for the remain-
ing three features. Then, the learner queries; the world labels;
and the process repeats until every feature is queried. Before
the first query and after each query, the learner’s posterior be-
lief (via Eq. 2) about the correct concept is recorded.

We now give a concrete example that compares optimal ex-
ploration with optimal teaching. We first name the features as
Top Left (TL), Top Right (TR), Bottom Left (BL), and Bot-
tom Right (BR; see Fig. 1 caption). Figure 2A shows the
concept space under consideration, the target concept, and
the target underlying pattern. In this case, the teacher’s con-
cept space, the learner’s concept space, and the world are all
aligned (HW = HT = HL). Figure 2B shows the scores that
exploration and teaching assign to each query. The reasoning
behind the scoring is based on predicted outcomes. For ex-
ample, if TL is queried and labeled black, then one can rule
out all patterns in h2 and be certain that h1 is the answer. This
is good. But if TR is queried and labeled black, one can only
rule out f2 in h1 and f1 in h2, leaving the two concepts equally
likely, which is not good. Following this reasoning, the active
learner or teacher considers all the possible outcomes (if TL
is white...; if TB is black...; if TB is white...; and so on) and
chooses the one that best resolves the answer. In this case,
before observing anything, both optimal exploration and op-
timal teaching scores TL or BR the highest. In this trial the
learner chooses TL and observes white.

Given this data, D = {x1 = T L,y1 = 1}, the learner rules
out f1 and f2 in h1; thus, at this point, the learner believes
that P(h1|D) = 1

4 and that P(h2|D) = 3
4 . Optimal explo-

ration chooses a query that reduces the expected uncertainty
about arriving at an answer. Intuitively, uncertainty is high-
est when h1 and h2 are equally likely and lowest when one
is definitely correct. Following the above reasoning, an ac-

3561



0.5 0

0 0.5

x 0

0 1

0.5 0

0 0.5

Concept 2

x 0

0 1

x 0.5

0.5 0

Exploration TeachingConcept space

Score 
(1st query)

Score 
(2nd query)

observation

Concept 1

Concept 1

Concept 2

A B C D

Figure 2: An example trial. A. The concept space under consideration. The predetermined underlying pattern is f3 in h2 (red box), which
happen to be equivalent to f3 in h1. B. Query scorings for optimal exploration according to Eq. 3 (left) and for optimal teaching according
to Eqs. 6 (right). The ”x” indicates that an observation has been made on that feature, so that feature is excluded from the set of potential
queries. The chosen query in each step is highlighted yellow and outlined with a thick border. C-D. Performances of optimal exploration and
teaching following the observation sequences given in B. Blue squares indicate that the feature value has not yet been observed.

tive learner computes the expected uncertainty in each pre-
dicted case. After summing over all the expected uncertainty
weighted by the chance those case would occur, the optimal
explorer can then assign a score to each query to indicate how
much certainty was gained (or uncertainty is reduced). Here,
the sum shows that BR leads to the highest information gain,
mainly because it helps reach certainty with a 50% chance.

Optimal teaching chooses a query to maximize the
learner’s inference for a desired concept. As such, the query
depends on the answers that the teacher has in mind. The rea-
soning behind optimal teaching is again based on predicted
cases and goes as follows: If the real answer is h1, BR will
be white, and TR and BL will be black. Hence, when BR is
revealed, the learner will infer that both concepts are equally
likely, and when TR or BL is revealed, the learner will con-
sider h2 to be more likely. Thus, to help the learner infer the
hypothetical answer of h1, the teacher will guide the learner
to query BR, even though it is, in some sense, ambiguous.
Following the same kind of reasoning, the teacher concludes
that, for h2, TR or BL is the better choice. Now, because
the learner knows that the teacher is helpful, the learner can
actually infer the answer with certainty just by the teacher’s
guidance because the guidance is answer-dependent.

This line of reasoning shows that optimal teaching can
be better than optimal exploration for two reasons. First,
the teacher helps reduce irrelevant search by tailoring guid-
ance based on the answer. This is consistent with theories
that support instructional-based teaching (Kirschner, Sweller,
& Clark, 2006). Second, because the guidance depends on
teacher’s knowledge of the answer, the learner can leverage
pedagogical reasoning—the fact that the teacher is knowl-
edgeable and helpful—to make stronger inferences.

Figure 2C-D show the performance with optimal explo-
ration and teaching, respectively. The performance is defined
as the learner’s posterior belief about the target concept af-
ter observing some data (Equation 2 is used for exploration,
and Eq. 4 is used for teaching). The performance with opti-
mal exploration eventually reaches chance level because the

underlying pattern, f3 in h2, is ambiguous in this case. The
performance with teaching reaches 1 even for the ambiguous
pattern because in optimal teaching the learner can use ped-
agogical reasoning to break this ambiguity. This type of per-
formance difference via pedagogical reasoning is not possible
with single-layered concept space.

Inference
The learner’s inference follows Bayes’ rule. Given some data
D = {xi,yi}N

i=1, the learner’s joint posterior is

P(h, f |D) =
P(D|h, f )P(h, f )

∑k, j P(D|hk, f j)P(hk, f j)
=

1
Z

P(D| f )P( f |h)P(h)

=
1
Z ∏

i
P(yi|xi, f )P( f |h)P(h) . (1)

In our framework, labelling is deterministic, so the likelihood
P(yi|xi, f j) is either 0 or 1. The normalizing constant, Z, can
be computed exactly by enumeration in our simple setting.

The joint posterior of Eq. 1 can be used to obtain the con-
cept posterior,

P(h|D) = ∑
j

P(h, f j|D) , (2)

by marginalizing out f . It can also be used to obtain the pat-
tern posterior, P( f |D) = ∑k P(hk, f |D), by marginalizing out
h. This is used for computing the predictive distribution.

Optimal exploration
We model optimal exploration following a Bayesian active
learning model that chooses query x to myopically maximize
the expected information gain (MacKay, 1992). The proba-
bility of choosing an x is

P(x|D) = lim
α→∞

1
Z

[
〈H[h|D]−H[h|D,x,y]〉P(y|x,D)

]α

. (3)

Here, Z = ∑x′

[
〈H[h|D]−H[h|D,x′,y]〉P(y|x′,D)

]α

is the nor-
malizer to produce a probability distribution over x, and
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H[h|·] = −∑h P(h|·) log P(h|·) is the Shannon entropy. Be-
cause H[h|·] is a measure of the uncertainty of the posterior,
the difference in entropy before and after receiving a new ob-
servation pair {x,y} in Eq. 3 quantifies the expected reduction
in h uncertainty, which is information gain. The expectation
operator, 〈· · · 〉P(y|x,D), indicates that the learner does not know
exactly whether the label for x∗ will be 0 or 1 but maintains a
predictive distribution. The predictive distribution is given by
P(y|x,D) = ∑ j P(y|x, f j)P( f j|D). The limit α→ ∞ assigns
probability uniformly over the x’s that produce the highest ar-
gument value. It returns the set of values that have the highest
probability when there is more than one; it is equivalent to
argmax when there is a single highest argument value.

Optimal teaching
We define optimal teaching to satisfy three assumptions
(Shafto & Goodman, 2008; Shafto et al., 2014). First, the
teacher knows the correct answer. Second, HW = HT = HL,
and the teacher and learner use exactly the same inference
scheme. Third, the teacher and the learner are cooperative.
From the learner’s perspective, this means that the learner rea-
sons about how the teacher, knowing the answer, chooses the
most helpful guidance. From the teacher’s perspective, this
means that the teacher provides guidance while being aware
of the learner’s inference.

We begin the formulation with the learner’s inference.
Given the guidance, x, from the teacher and the correspond-
ing new observation, y, the learner’s inference follows

PL(h, f |x,y,D) =
P(y|x, f )PT (x|h,D)PL( f ,h|D)

∑ j,k P(y|x, f j)PT (x|hk,D)PL( f j,hk|D)
.

(4)

Note that the teacher’s guidance carries information about the
answer via the likelihood, PT (x|h,D). The cooperative infer-
ence mentioned above can be modeled by combining Eq. 4
with

PL(h|x,D) =
1
Z

〈
∑

j
PL(h, f j|x,y,D)

〉
PL(y|x,h,D)

(5)

PT (x|h,D) = lim
α→∞

[PL(h|x,D)P(x)]α

∑x′ [PL(h|x′,D)P(x′)]α
(6)

where PL(y|x,h,D) = ∑ j P(y|x, f j)PL( f j,h|D), Z is a nor-
malizer, and P(x) is a uniform distribution over x. This
system of equations (4-6) is first iterated until convergence,
then an x is sampled from Eq. 6 conditioned on the teacher’s
knowledge of the true concept. A sensible initial condition is
a uniform PT (x|h,D) in Eq. 4. Compared to Eq. 3, the extra h
in the expectation operator, 〈· · · 〉PL(y|x,h,D), shows that teacher
and learner reasons about one h at a time. The subscript L
in PL(·) emphasizes that the concept-pattern joint prior and
posterior are based on the learner’s reasoning; the subscript T
in PT (x|h,D) emphasizes that the x is based on the teacher’s
reasoning; and the unsubscripted P(y|x, f ) indicates that the
label likelihood is provided by the true world. 1

1The formulation here appears different from (Shafto et al.,

Conceptually misaligned teaching
Optimal teaching is always at least as good as optimal explo-
ration because the teacher’s guidance offers extra informa-
tion about the correct answer. But what happens when the
assumptions of optimal teaching are violated? We consider
two types of violation that breaks the second assumption of
the learner and teacher sharing the same inference by intro-
ducing misconception in the learner (type 1: HW = HT 6= HL)
and misconception in the teacher (type 2: HW = HL 6= HT ).
Note that the first and third assumptions of optimal teaching
are still kept. The first assumption poses that regardless of
whether the teacher has misconception, the teacher knows the
correct concept label. The third assumptions poses that the
teacher and learner still reason cooperatively. This leads us to
introduce conceptually misaligned teaching, where the two
agents, the learner and teacher, reason about each other while
wrongly assuming the other agent’s concept space. Computa-
tionally, the teacher provides x by going through Eqs. 4-6 with
HT , thinking that the learner also operates with HT . Having
received x, the learner also goes through Eqs. 4-6, while as-
suming that the teacher also has HL in mind. The first type
of violation (misconception in learner) is a common issue in
education (Chi et al., 2004), and the second type (miscon-
ception in teacher but not in learner) is a natural counterpart
simulation to do.

Simulations: systematic comparison
In the Framework section, we gave a detailed example of how
exploration compares to teaching given a particular underly-
ing pattern and concept space. In this section, we compare the
performance of the two pedagogical methods in a systematic
manner over different classes of concept spaces. This will
lead us to address more broadly the condition under which
teaching is better than active learning and vice versa. To this
end, we consider three scenarios.

For all three scenarios, a concept space with degree of am-
biguity, a, contains 6+ a patterns. All 6 patterns in Fig. 1
are used at least once, but no pattern is used more than twice.
Figure 1 shows two example concept spaces that satisfy the
above criteria. The first scenario assumes that HW =HL =HT
and entertains concept spaces of varying degree of ambiguity
from a = 0 to 5. For a given a, the simulation includes all
combinations of assignments of 6 + a patterns to two con-
cepts, with isomorphic concept spaces counted only once.
The second scenario assumes HW = HT 6= HL and a fixed
a = 1. We consider all pairings of HT and HL with a = 1 up
to concept-space pair isomorphism, and label each pair with
their degree of misalignment, m, which can vary from 0 to 6.
The third scenario assumes HW = HL 6= HT and a = 1. The

2014) because the setup is different in two ways. First, the query
and the label are kept distinct to match the setup of exploration. This
gives rise the two likelihoods in Eq. 4, one for y and one for x. It also
gives rise to the expectation in Eq. 5 with respective to the predictive
distribution over y. Second, in this setup, the teacher knows the con-
cept from which the pattern is drawn from but not the pattern itself;
thus, there is the marginalization over patterns in Eq. 5.
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Figure 3: A. Double-performance plot for the trial in Fig. 2. B. Double-performance plot averaged over concept spaces with differing degree
of ambiguity. The numbers indicate the a of the curve, ranging from 0 to 5 in increments of 1 from the rightmost curve to the leftmost
curve. C. Double-performance plot for a learner with differing degree of misconception, m, as described in the Concept Space section under
Framework. The numbers indicate the m of the curves. All concept spaces have a = 1, so the curve with m = 0 matches the curve with a = 1
in A. D. Double-performance plot for a teacher with differing degree of misconception. The numbers again indicate m and increases from the
top to bottom in order of the curves’ end points.

pairing and labeling are done as in the second scenario.
To visualize the relative performances of exploration and

teaching, we plot the two pedagogical methods against each
other (Fig. 3A). On this double-performance plot, curves
above the diagonal indicates that teaching is better than opti-
mal exploration, and curves below indicates that teaching is
worse. To reveal higher-order trends, we average single-trial
performances firstly over the patterns in individual concept
space, weighted by the patterns’ prior probabilities, and sec-
ondly over concept spaces that have the same label; that is,
the same a or m, with each concept space contributing equal
weight. Figure 3B, C, and D show the relative performances
under the first, second, and third scenario, respectively.

Figure 3B shows that optimal teaching is better than op-
timal exploration when the concepts are partially ambiguous
but no better or worse when the concept spaces are fully un-
ambiguous. When the concept space is fully ambiguous, per-
formances remain at chance level for both teaching and explo-
ration. The advantage of of teaching in absolute performance,
as judged by the end points on the double-performance plot, is
most pronounced with a 30% improvement over exploration
at a medium degree of ambiguity of a = 3. Overall, teaching
is better than exploration under partial ambiguity because of
the reduction in irrelevant search and pedagogical reasoning
described in the example task.

Figure 3C shows that on average, teaching and exploration
perform similarly when the learner’s concept space is wrong.
On the one hand, this shows that teaching is robust against
learner’s misconceptions (in terms of hurting learning) even
when the misconception is strong; on the other hand, it shows
that the benefits of teaching (in terms of boosting learning)
diminishes in the face of a little misconception. The trial-
by-trial performances reveal extreme cases when teaching is
much worse than exploration (0% vs. > 80%). This happens
when the learner’s concept space looks like Concept space B
in Fig. 1, where h1 contains all the patterns and h2 contains
only one pattern which is also in h1. This suggests that the
learner’s strong prior bias for an ambiguous pattern ( f3 from
h1 or f1 from h2) being associated with a particular hypothesis

(i.e., with h2) can distort the effect of pedagogical reasoning
when there is conceptual misalignment.

Figure 3D shows that teaching with the wrong concept
space leads to evidently poorer performance (roughly 10-20%
worse) during learning, but only somewhat poorer perfor-
mance (up to about 10% worse) at the end of learning (af-
ter observing all feature values). The exceptions are when
0 < m < 3; then teaching ends up very slightly (< 5%) bet-
ter. Thus, while the advantage of teaching quickly diminishes
with misalignment, the final performance of teaching is rather
robust. Interestingly, the first and third scenarios combine to
show that exploration before teaching is better than the other
way around, as the advantage of teaching comes in after the
first observation (Fig. 3C), but its disadvantage due to poten-
tial misalignment comes in at the first query (Fig. 3E). This
is consistent with previous findings on the interplay between
exploration and teaching in learning mathematical concepts
(Schwartz & Martin, 2004; DeCaro & Rittle-Johnson, 2012).

In summary, our analysis shows that if one knows little
about the structures of HW , HT , and HL and their alignments,
teaching is the preferred pedagogical method because it can
potentially be much better and will unlikely be much worse
than exploration. If one knows that there is moderate amount
of misalignment, exploration is the preferred method. If one
knows the detailed structures of HW , HT , and HL, the align-
ments among them, and a particular target concept, detailed
analysis should be done to choose the better method.

Lastly, it is worth considering our results in the context of
popular explanations in favor of active learning. These rea-
sons, including attentional control, enhanced memory, stress
relief, and etc. (Springer, Stanne, & Donovan, 1999; Prince,
2004; Markant, Ruggeri, Gureckis, & Xu, 2016), all suggest
that a learner who explores actively maintains an HL more
consistent with HW than a leaner who receives passive teach-
ing guidance. A model that includes pedagogical-method-
dependent effect on the concept space is an important direc-
tion for future work.
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Discussion
Researchers have debated whether teaching or active learn-
ing is better for decades without reaching a consensus. A
main barrier is the difficulty in precisely controlling the peda-
gogical method and learning conditions for meaningful com-
parison of results that support generalization. We argue that
by formalizing the learning conditions and the pedagogical
methods, we may clarify when and why which pedagogical
method is more effective. We adopt existing models for opti-
mal exploration and optimal teaching and introduce a model
for conceptually misaligned teaching. Our computational
analysis showed that optimal teaching is much better than ex-
ploration when the concepts in play are partially ambiguous,
but this effect diminishes very quickly with conceptual mis-
alignment between the learner and teacher.

We expect this trend in our results to generalize to larger
concept spaces with richer structures. Optimal teaching
should be increasingly more effective than optimal explo-
ration because a larger space allows for greater reduction in
irrelevant search and a richer structure allows for finer ped-
agogical reasoning. However, when there is conceptual mis-
alignment, we expect this advantage of teaching to diminish
quickly because the ways of misinterpreting guidance and ob-
servation also increases with the complexity of the concept
space. The exact scaling between the rate of diminishing ben-
efit and the size and complexity of concept space and is an
interesting question for future work.

We have focused on the pedagogical method that best leads
the learner to a specific concept. This approach is common
to concept learning experiments. However, in many real-
world scenarios, we may also be interested in generalization:
what does performance on one task predict about future per-
formance on related tasks. To capture this, we would need
to consider concept spaces with much richer structure that
would support incremental building of compositional con-
cepts and/or transfer learning. Although beyond the scope
of the current research, even defining what such conceptual
structures should look like in order to capture some of the
richness of real-world concept learning problems is another
interesting question for future work.

Debates about the relative efficacy of different pedagogical
methods have plagued the literature. Because of the complex-
ity of concepts and the variability in the application of the
pedagogical methods themselves, empirical tests have been
largely inconclusive. Our approach has been to abstract away
from some of the details and ask the question in an idealized
setting: under what circumstances would we expect teach-
ing or active learning to perform better. Our results yielded
the surprising conclusion that, even when the assumptions of
teaching are not perfectly met, it is quite robust. While there
is more work to be done to capture the richness of psycholog-
ical theories of active learning, our approach provides a way
forward where empirical research has not been as successful
as initially hoped. Considerable work remains, but systematic
computational analysis of theories themselves provides a po-

tentially promising complement to more traditional empirical
methods for uncovering more optimal methods of delivering
educational content.
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Abstract 
Visual aids have been found to provide an unusually efficient 
means of risk communication for diverse and vulnerable 
individuals facing high-stakes choices (e.g., health, finance, 
natural hazards).  Research indicates the benefits of visual aids 
follow from scaffolding of cognitive and metacognitive 
processes that enable independent evaluation and 
understanding of risk—i.e., risk literacy (see Skilled Decision 
Theory; Cokely et al.,. 2012; in press). Here, we present a brief 
review and progress report on the development of an online 
adaptive graph literacy tutor developed as part of the 
RiskLiteracy.org decision education platform. We begin with 
a brief review of theoretical foundations of the current tutor 
based on graph comprehension theory. Next, we discuss key 
steps in developing and validating our pseudo-intelligent 
adaptive tutor with emphasis on cognitive and psychometric 
item analyses and transfer assessments (i.e., decision-making 
biases). Finally, we present recent changes in technical 
implementation of the RiskLiteracy.org platform (i.e., Python 
based with a NoSQL database) that are designed to facilitate 
interactive, yet brief (5 minute to 3 hour) and easier-to-develop 
training and risk communication tutors. Discussion focuses on 
emerging opportunities including cognitive oriented usability 
analyses that should help promote an effective, enjoyable, and 
inclusive user experience.        

 

Keywords: Graph literacy, decision making, risk literacy,   
intelligent tutors, risk communication, brain training, numeracy 

 
Introduction 

Well-informed, skilled decision making is associated with a 
wide-range of socially and economically valuable decision 
making outcomes (e.g., health, wealth, happiness; for a 
review see Skilled Decision Theory, Cokely et al., in press). 
In part, the benefits of general decision making skill, as 
measured by tests like the Berlin Numeracy Test, result 
because skilled decision makers tend to be better prepared to 
independently evaluate and understand risk as presented in 
common risk communications (e.g., information about 
health, finance, natural hazards; RiskLiteracy.org) (Cokely et 
al., 2012). Unfortunately, individuals with lower skill levels, 
including many at-risk individuals, are routinely biased by 
standard and well-intentioned risk communication practices, 
which can result in dangerous decision errors (e.g., ignoring 
a heart attack; Petrova et al., 2016).  
 To help address limitations of current risk communication 
practices, recent scientific efforts have endeavored to develop 
more inclusive decision education technologies and outreach 
platforms (e.g., adaptive decision support and training). For 
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example, simple, transparent visual aids have been found to 
dramatically enhance risk literacy and independent decision 
making, conferring major benefits to diverse decision makers 
who vary widely in ages, backgrounds, abilities, cultures, and 
values (Garcia-Retamero & Cokely, 2013). Consider a recent 
systematic review by Garcia-Retamero and Cokely (2017) 
spanning dozens of experiments involving more than 25,000 
participants from 60 countries. This work specifically 
mapped informed, skilled decision-making and how it 
interacts with graph literacy and visual aids, presenting 
insights on (a) visual aid effectiveness, (b) heuristics for 
construction and evaluation of user-friendly visual aids, and 
(c) the relatively large and robust benefits of visual aids for 
diverse individuals. While the review documented 
remarkably large benefits of visual aids for “real world” 
decision making in general, the review also identified some 
significant problems, namely: 1) Despite the successes of 
well-designed visual aids, some at-risk users lack basic graph 
evaluation and interpretation skills and are not graph literate 
enough to benefit from effective risk communications 
(Galesic & Garcia-Retamero, 2011) and 2) Given conflicts of 
interests and other factors, it can be hard to get risk 
communicators to adhere to best design practices (e.g., 
distorted visual aids can shape attitudes and perceptions 
without violating truth in advertising regulations, etc.).  
 In what follows, we present an overview of details, 
successes, and obstacles in our ongoing efforts to develop a 
brief and adaptive computerized training programs using the 
RiskLiteracy.org platform.  Focus will be on the development 
of our Graph Literacy Tutor (Cokely et al., in press; Woller-
Carter, 2015). A growing body of evidence has documented 
that substantial, decision-relevant benefits tend to emerge in 
a relatively short amount of time. Recent advances in the 
platform also enable more rapid and robust development of 
pseudo-intelligent (adaptive, but not fully intelligent) 
interfaces that reduce the costs and time required for 
development of brief interactive training and risk 
communication programs (Koedinger & Corbett, 2006).  
Accordingly, we begin by reviewing our formal cognitive 
science based on graph comprehension research and Skilled 
Decision Theory.  We then discuss the development and 
testing of specific graph literacy modules and assessments 
and we present results from a recent control trial study 
documenting near and (relatively) far transfer (i.e., graph 
literacy training improved graph literacy skills, but also 
improved text based decision skills including resistance to 
framing and reference class neglect). Next, we consider 
advances in platform design and implementation, including 
efforts to integrate psychometric approaches to circumvent 
the need for more extensive intelligent tutor engines. We 
close with brief discussion of future directions, limitations, 
and ongoing projects focusing on user experience 
optimization. 
 
Cognitive Processes in Graph Comprehension 

Theoretically, the design of an efficient graph literacy 
training program will depend on the accuracy of our 

understanding of the underlying essential (causal) cognitive 
processes. As such, we drew from the well-established body 
of empirical literature on graph comprehension to provide a 
foundation for our tutor development.  Graph comprehension 
models generally indicate that when an individual views a 
graph they engage in three processes: 1) encoding of the 
visual pattern, 2) translation of the identified visual features 
into conceptual relations, and 3) the selection of referents for 
the identified concepts (Bertin, 1983; Carpenter & Shah, 
1998; Cleveland & McGill, 1986; Kosslyn, 1989; Lohse, 
1993; Okan, Galesic, & Garcia-Retamero, 2016; Pinker, 
1990; Simkin & Hastie, 1987; Shah & Carpenter, 1995).  
Together these processes allow for individuals to make a 
piece-wise interpretation of graphs before fully integrating 
the underlying mental model required for inductive and 
deductive inferences (e.g., reasoning that goes beyond 
givens). Theoretically, each step of this evaluation process 
involves essential processes and judgments that an individual 
must accurately make to correctly interpret the visualized 
data.  
 Broadly, it is often assumed that graph comprehension 
focuses on encoding the visual pattern, which requires the 
identification of key features of the graph (e.g., attending to 
many bars of varying height in a bar chart).  Once key 
features are identified, a relative visual judgement is made to 
determine relative shape of the graph (e.g., positions of the 
graph elements within the axis, size, and length of the 
elements within the graph, the slope or angle of graph items).  
 Translating the identified visual features into conceptual 
relations then assigns relative quantitative meaning to the 
features of the graph. The comparison of size and spatial 
relations between graph features (e.g., a line graph with one 
positive and one negatively slopped line).  For example, tall 
bars on a traditional bar graph would be interpreted as “more” 
compared to short bars. There is reason to believe that the 
spatial-to-conceptual mappings (e.g., “higher equals more,” 
“steeper equals faster”) found with graphs are analogous to 
ecological heuristics that persist within both adults and 
children with zero graphing experience (Gattis, 2002; Gattis 
& Holyoak, 1996).   
 Theoretically, the final step in graph comprehension is 
determining the referents of the concepts identified.  Here, 
one must accurately identify the associations of variables 
within the graph with numerical values.  This is where the 
conventional features of the graph (title, axes labels, legends, 
and numerical values) are added into the mental 
representation of the whole graph.  For instance, one must 
identify the context that the graph represents or the scale at 
which the y-axis is set before an inference can be made.  This 
process seems to be closer to a skill that is not analogous to 
real-world conventions (Okan, Garcia-Retamero, Galesic, & 
Cokely, 2012).  This assumes that the skills needed to create 
proper schema for the conventional elements are trainable.  

 
Skilled Graph Comprehension 

The idea that reading a graph is trainable is embodied in many 
theories.  One holds that graph schema will be formed in 
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long-term memory (Maichle, 1994; Peebles & Cheng, 2001; 
Pinker, 1990; Ratwani & Trafton, 2008).  Training graph 
literacy should then aim to increase the available schemas and 
enhance the already present ones, aiding in the identification 
of the conventional graph features and improving inferences 
made.  Specifically, the training of skills would be aimed at 
the increasing of knowledge content, and thus can be 
relatively independent of limited working memory or 
visuospatial abilities (Hegarty & Waller, 2005; Shah et al., 
2005). Previous research has found that expertise in a specific 
domain can increase associations between visual patterns and 
concepts (Tabachneck-Schijf, Leonardo, & Simon, 1997) and 
that inferences become easier to make (Roth & Bown, 2003).  
One strategy to train is the use of online adaptive tutors 
(Anderson, Corbett, & Koedinger, 1995; Koedinger & 
Corbett, 2006; Lovett, Meyer, & Thille, 2008). 
 The benefits of tutors are often attributed to factors such as: 
reduction of cognitive load during learning via worked 
examples, faster (ideally immediate) performance feedback, 
easier to understand instructions, frequent and more precise 
diagnostic tests of knowledge, consistent and direct modes of 
delivering material, and greater opportunities for detection 
and self-correction of errors during learning (Corbett & 
Anderson, 1991; Koedinger & Aleven, 2007; Mathan & 
Koedinger, 2005; Roediger & Karnicke, 2006; Sweller, Van 
Merrieoboer, & Pass, 1998).  
 Validated adaptive tutors are currently available for many 
topics in math, statistics, reading, and physics. However, 
despite the ubiquitous nature of visual aids in risk 
communications, there are few validated computerized graph 
tutors available.  However, the available graph tutors are 
generally designed for specialized, narrow audiences (e.g., 
geared toward younger high school students). Among the few 
graph literacy training programs that have been specifically 
designed for diverse adults, none have been subject to 
evidence-based validity studies providing estimates of: 1) the 
efficacy of graph literacy training for various users, 2) the 
magnitude of associated benefits for naturalistic decision 
making (e.g., interpreting real high-stakes risk 
communications about health and natural hazards), and 3) 
essential usability and user experience outcomes, strengths, 
and weaknesses. 

 
RiskLiteracy.org Graph Tutor Methods 

Woller-Carter (2015) created an online graph tutor for 
RiskLiteracy.org that trained participants on the foundations 
of graph literacy and the application of graphs to everyday 
risky situations.  The graph tutor was the prototype that which 
the new online graph tutor was created upon.  The goal of the 
graph tutor is to briefly and efficiently train adult learners in 
essential selection, design, and display of graphs that are 
common in risk communications and related decision 
education programs. Broadly, the graph tutor contains two 
major components.  The first consists of graph selection tasks 
where participants choose the correct graph that (by current 
standards) is best-suited for depicting specific types of data. 
The second major training component is the graph design 

task, which requires participants to identify the necessary 
information from data to create a graph that accords with best 
practices by selecting from four candidate graphs.  
 Note that all graph selection tasks were chosen from an 
initial study where 217 participants completed multiple graph 
selection problems, the Berlin Numeracy Test, and the Graph 
Literacy Assessment (Cokely, Galesic, Schulz, & Garcia-
Retaneri, 2012; Galesic & Garcia-Retamero, 2011).  An item 
analysis based on Classical Testing Theory was conducted to 
parse out item difficulty and discriminability, in accordance 
with Formal Item Response Theory approaches.  The same 
procedure was followed for the graph design task. In total, 
862 participants completed a random sample of 10-11 graph 
design problems (e.g., Approximately 100 
participants/problems). Analyses provided a detailed account 
of the relevant psychometric properties of all task items, 
facilitating a theoretical optimization of problem type across 
the underlying skill dimensions (e.g., precisely selected items 
that were most representative and unbiased problems 
spanning the difficulty range; see Woller-Carter, 2015).   

Control Trial Results 
Woller-Carter (2015) found large pre-test, post-test 
differences in graph literacy that remained significant even 
after controlling for initial levels of graph literacy (t(89) = 
5.23, p ≤ .001, d = 1.10) after participants completed the 
graph tutor. Interestingly, beyond general competency in 
graph literacy, compared to a control group that completed a 
STEM Foundations study skills training, graph literacy 
training also significantly improved some general decision 
making skills for decision tasks that did not otherwise include 
any visual aid or graphical content (F(3, 87) = 10.08, p ≤ .001, 
R2 = .033, d = 1.30).  Findings are consistent with Skilled 
Decision Theory and theoretical accounts of risk literacy 
(Cokey et al., in press). Partial mediation between condition 
and decision task performance indicated that improvements 
in graph literacy directly mediated observed improvements in 
general decision making skills (e.g., learning how to 
represent data in a graph also helps people represent decision-
relevant data in useful ways).  
 

Additional Decision-Making Items 
To further explore how risky decision-making interacts with 
graph literacy the creation of sensitive measurement tools is 
needed.  The results of the 2015 tutor indicated what type of 
tools may be necessary. Training graph literacy aided in 
general decision-making skills that focused on “visualizable” 
risk situations (e.g., sunk cost).  For instance, if someone is 
confronted with a risky decision and the aid of a graph would 
increase their ability to decide (e.g., icon arrays and safe sex 
practices), then graph literacy training will help (Cokely & 
Garcia-Retamero, 2015).  Our lab took the firsts steps by 
conducting a battery of previous, validated bias questions. 
Then we used Formal Item Response Theory to analyze the 
problems for difficulty and discriminability.  The battery 
focused on three different biases: Sunk cost, reference class 
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neglect, and framing.  Fifty-three University of Oklahoma 
students completed 90 (30 each bias) decision tasks taken 
from various sources.  
 The finished product are six psychometrically sensitive 
questions for each of the three types of bias.  Results of the 
analysis are seen below in Figure 1. 
 
Sunk Cost 
 

  
 
Reference Class Neglect 
 

 
 
Framing 
 

 
Figure 1. Visual representations of the Formal Item Response 
Theory analysis for the three biases in our pilot measurement 
study: Sunk cost (top), reference class neglect (middle), and 
framing (bottom).  
 
Construction of Python Graph Literacy Tutor 

To better create a tutor development platform that meets the 
needs of brief risk interventions the decision was made to 
transfer the initial graph tutor from a Flash based platform 
built in Carnagie Mellon University’s Cognitive Tutor 
Authoring Tools (CTAT) to an independent Python built, 
Flask tutor. For an example of the original graph tutor see 
figure 2. A large and growing body of research has made 
CTAT a quintessential and evolving intelligent tool for large 
scale tutors. Despite many advantages, there are many 
potentially valuable applications for (pseudo)intelligent and 
adaptive tutors which may be narrow. For example, many 
general-use decision support systems or decision aids made 
for risk communication may only require between 10 and 120 

minutes to complete (e.g., mortgage or surgical risk 
disclosure; medical treatment risk information).  There is 
currently no well-established solution, like CTAT, for the 
creation of small scale, brief, scientifically validated 
interventions. To fill this gap, following a survey of the 
available literature, we developed a “proof of concept” 
application in Python, following best practices based on 
CTAT and related efforts (Aleven, Mclaren, Sewall, & 
Koedinger, 2009; Anderson, Corbett, Koedinger, & Pelletier, 
1995; Walker, Koedinger, Mclaren, & Rummel, 2006). 
Specifically, we implemented the Risk Literacy Graph Tutor 
platform in Python, to assess viability and trade-offs, as 
compared to standard approaches implemented in Adobe 
Flash. 
 

 

 
Figure 2. The original graph literacy tutor programmed in 
CTAT.  The tutor was hosted on moodle.com, an open source 
Learning Management System. 
 
 The new graph tutor was built from the ground up with 
Flask, a micro web framework written in Python.  Some 
notable advantages of Flask include: 

• Flask is not tied to specific libraries or tools allowing 
flexible design of the graph tutor to better suit immediate 
needs (e.g., database connectivity, form validation, etc.). 
• Flask is lightweight (no object-relational mapping, 
simple routing, and easy set-up) reducing the system 
requirements and development time.  
• Flask is documented and community adopted, 
reducing the learning curve of implementing new 
solutions.  

  
 Beyond several notable benefits of re-development of the 
graph tutor, there are also some notable costs. First, the initial 
tutor programmed in Flash proved problematic with the 
number of online interfaces pivoting from the platform and 
potentially requiring extra authentication. These issues were 
persistent enough that, ultimately, an entirely new web 
template (e.g., User interface) had to be created.  Second, the 
Learning Management System (LMS) platform (e.g., Moodle 
or Blackboard) had to be entirely abandoned to better 
accommodate easier implementation for experimentation, 
which could prove problematic whenever researchers want to 
track large numbers of specific users over extended periods 
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of time (e.g., months). Third, creating online tools that use 
the Intelligent Tutoring System (ITS) model.     
 Creating an authorizing adaptive tutor in Python also 
required development of additional infrastructure 
components. First, we developed APIs (“Application 
Programming Interfaces”) for user profiles and tutor 
validation, database connectivity, and a user interface. More 
specifically, the previous graph tutor used a LMS to track 
students, which needed a student to enroll in the created class 
and be approved by the class admin. Now, users can create 
their own profile that is encrypted and inserted into a 
database.  This design allows for the sharing of the tutor to 
participants for experimental purposes or for a casual user to 
independently take the tutor. 
 Backend and platform development also employed 
MongoDB, a NoSQL database, to power our tutor 
application. As a NoSQL database, MongoDB records are 
structured like that of Python dictionary objects. This feature 
was emphasized in our selection of a database management 
system (DBMS) as it relied on existing knowledge of Python, 
reducing the prerequisites to contribute new features for the 
graph tutor in the future. There are many technical 
differences between MongoDB and other DBMS; however, 
the nuances of SQL versus NoSQL, or variations of DBMS 
within the NoSQL categories generally seem practically 
irrelevant for (most) projects of similar size and scope.  
Finally, authorizing via Java Script allows for the immediate 
feedback essential to worked-example tutors, which proved 
essential given the theoretical and practical importance of 
immediate user feedback during training.  
 

Conclusions 
 Graphs are ubiquitous across modern media and risk 
communications.  For many people, graphs simplify and 
clarify important information about risk, which is essential 
for informed decision making. In this paper we presented a 
brief overview of progress and ongoing efforts aimed at 
developing inclusive decision education programs designed 
to efficiently improve fundamental adult graph literacy and 
decision making skills.  These efforts represent a significant 
extension to the RiskLiteracy.org platform, which has been 
accessed by more than 50,000 people from 166 countries 
since 2012. The mission of this multinational collaborative 
effort is to advance the science for informed decision making, 
with support of a network of scientists who provide validated 
educational resources such as research instruments (e.g., 
Berlin Numeracy Test) and inclusive decision education 
programs (e.g., the Graph Literacy Tutor).  Beyond 
increasing the availability of skilled decision making 
resources, the current review also provides an overview of the 
first proof-of-concept for the Python-based (simplified) 
extension of the RiskLiteracy.org platform. Although this 
new approach may streamline development of related 
dynamic risk communications and training programs, several 
pressing issues remain.  For example, we currently have a 
need for greater integration of iterative (life-cycle) 
approaches to user-experience and usability optimization. 

There is also a need to further investigate the robustness of 
and longitudinal stability of training effects across diverse 
participants and naturalistic decision tasks.  
 In closing, it is useful to note that most consumers should 
not expect to gain any general cognitive benefit from 
commercially available products designed to train general 
cognitive capacities. While this may seem problematic for us 
given our stated goals, our approach is actually quite 
different. Our goal is not to train basic abilities or capacities.  
Instead, we are focused on complex types of cognitive skills 
that must be acquired through deliberate practice and training 
(Cokely et al., in press), with an emphasis on acquired skills 
that are known to be valuable for everyday and high-stakes 
naturalistic decision making (e.g., numeracy, risk literacy, 
graph literacy). Accordingly, it should not be surprising that 
our basic skill tutor results indicate near and far(ish) transfer 
to applications beyond the specific training context (e.g., 
learning how bar graphs can be used to deceive in general 
may help people navigate complicated graphs in political, 
financial, or health contexts). Just as skilled reading 
comprehension is a valuable component of many everyday 
activities, the ability to evaluate and understand risk is also 
widely-applicable. To the extent our control trial results 
generalize, we should expect that there are likely many 
currently under-appreciated opportunities to develop and 
apply pseudo-intelligent tutoring programs to great effect.  
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Abstract

Decades of research in decision making have established that
there are some situations where human judgments cannot be
modelled according to classical probability theory. Yet if we
abandon classical (Bayesian) probability theory as an overar-
ching framework for constructing cognitive models, what do
we replace it with? In this contribution we outline a way to di-
vide the space of possible computational level models of prob-
abilistic judgment into a hierarchy of levels of increasing com-
plexity, with classical Bayesian probability models occupying
the lowest level. Each level has a unique experimental sig-
nature, and we examine which level is best able to describe
human behavior in a particular probabilistic reasoning task.
Keywords: Probabilistic reasoning, disjunction fallacy, quan-
tum theory.

Introduction
2017 marks 35 years since the publication of the volume
“Judgment under Uncertainty: Heuristics and Biases” edited
by Kahneman, Slovic and Tversky (1982), which has since
become a seminal text for those interested in violations of
normative reasoning. The years since have seen a great deal
of research aimed at better understanding the conditions un-
der which human decision makers do or do not make ‘norma-
tive’ decisions, that is, decisions that can be thought of as be-
ing ‘correct’ by some measure. Note that in this contribution,
in common with many other studies, we take the definition of
‘normative’ to be essentially equivalent to compatibility with
classical/Bayesian probability theory. That is, behaving in a
normative way is less about providing judgments that are ‘ac-
curate’ in the sense of reflecting real likelihoods, and rather
about self consistency (Oaksford & Chater, 2009).

Despite the large amount of research that has been done to
understand when and why these deviations from normative
prescription occur, there are some notable gaps in our un-
derstanding of the structure of non-normative judgments. In
part this has been caused by a tendency amongst researchers
to define non-normative judgments by the properties they do
not possess, ie a simple relation to an underlying probability
distribution representing a belief state. This has led to a pecu-
liar splintering of the study of decision making, most visible
in the heuristics programme, where different decision mak-
ing tasks are assumed to be executed with the aid of different
heuristics (eg Gigerenzer et al, 2015). Few have considered
the relationships between heuristics, or whether they reflect
some deeper structure.

A different approach, advocated by some adherents of the
Bayesian cognition program (see Jones & Love, 2011), has
been to deal with violations of normative (Bayesian) prescrip-
tion by including extra variables and relations that, while they
may be framed in a Bayesian way, conflict somewhat with
the spirit of the Bayesian approach. An example is provided
by Bayesian efforts to deal with order effects in probabilis-
tic inference, where, for example, decision makers may judge
p(E|A,B) 6= p(E|B,A). One possible solution is to posit that
decision makers are sensitive also to the order in which ev-
idence is presented, and that the probabilities for judgments
therefore should also be conditioned on the order of presenta-
tion. Formally this saves face for the Bayesian approach, but
it is hard to see how this does anything other than redescribe
the problem. A genuine solution to the problem of order ef-
fects would also need to explain why decision makers possess
this sensitivity, and make testable predictions.

What we want to do in this contribution is approach the
problem from a different angle. Suppose we assume that
there is some sort of computational structure underlying non-
normative behaviour, presumably that can be understood as a
generalisation of the Bayesian approach, and we ask whether
we can constrain the structure of this theory in some way.
Specifically, can we derive predictions that are sensitive only
to some general fact about the structure of the theory and not
to the precise details? If we can do this we can perhaps sketch
out a space of acceptable computational level theories which
can then be investigated in more detail by other means.

This approach is inspired in part by recent work in the field
of quantum cognition (Pothos & Buseyemer, 2013), which
is the attempt to use the formal probability theory derived
from quantum physics to describe human decision making.
The advantage of such an approach, so proponents claim, is
that quantum probability theory is a formal, all encompassing
framework that is nevertheless able to account for deviations
from classical, Bayesian, behaviour. However quantum prob-
ability theory has a very particular structure (see Busemeyer
& Bruza 2012), and it is not obvious that this is either nec-
essary or sufficient to explain human behaviour. The study
reported here can therefore be thought of as an attempt to test
the sufficiency of the quantum approach for explaining cer-
tain types of non-normative behaviours. However it is also
much more general, since we will see that quantum theory
is just one example of a specific class of models sharing the
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same structural properties. In order to avoid getting bogged
down in arguments about the suitability of quantum theory
to describe human decision making, we will avoid making
reference to specific computational models beyond classical
probability theory.

The rest of this contribution is structured as follows: In
Section 2 we explain how we can situate different computa-
tional level models of decision making in a hierarchy, and we
show that classical and quantum probability theories belong
to two different levels, each with a unique experimental sig-
nature. In Section 3 we describe an experiment designed to
test which level in the hierarchy is necessary and sufficient to
explain human behaviour in a particular probabilistic reason-
ing task. In Section 4 we conclude and outline some future
directions.

A Hierarchy of Formal Theories
Given two disjoint events, A and B, a key property of classical
probability theory is that the probability of the disjunction,
A∪B is equal to the sum of the probabilities of the individual
events. This can be generalised for an arbitrary number of
disjoint events as,

p(∪iAi) = ∑
i

p(Ai) (1)

This result expresses the property of classical probability
known as linearity (more formally σ-additivity, Kolmogorov,
1933/1950). Classical probability models are therefore exam-
ples of linear models mapping events to probabilities.

In order to allow for the possibility of response errors it is
useful to generalise this notion somewhat. Suppose we con-
sider a more general class of models where, p(A) = f (A)+ε,
where ε is a constant. We will call these models linear if,

f (∪iAi) = ∑
i

f (Ai) (2)

Classical probability theory is obviously a special case of
these linear models. These models can be used to capture the
idea that judgments are noisy, so for example the probability
assigned to the null event is not 0. They can also capture sim-
ple types or response biases, for example an aversion to using
the endpoints on a response scale.

It is important to note that general linear models can violate
some properties of classical probability theory. For example
for two disjoint events A,B we have,

p(A∪B) = f (A∪B)+ε= f (A)+ f (B)+ε= p(A)+ p(B)−ε

(3)
Which is a violation of the classical law for disjoint events.
However it is easy to see that any law of classical probability
that is violated by a general linear model will be violated by
some multiple of ε, and so these sorts of effects are easy to
spot. In particular, consider the quantity,

I2(A,B) = p(A∪B)− p(A)− p(B) =−ε (4)

We call expressions of this form ‘interference’ terms, because
of the analogy with quantum models. In a simple classical
probability theory model this quantity is 0. In a general linear
model this term is no longer zero, but it is instead equal to
some constant which should be the same for all events A,B.
The way to test the general class of linear models is therefore
to examine different sets of events and test whether I2(A,B)
depends on the alternatives under consideration. This gener-
alises the notion of the failure of a simple classical model.

The occurrence of widespread violations of classical prob-
ability rules in decision making experiments, including con-
junction and disjunction fallacies (Tversky & Kahneman,
1983), has lead many to reject linear models as accounts of
the way human decision makers assign probabilities to events.
However few have explored proposals for concrete models
beyond linear ones.

A natural generalisation of linear models is to consider
those which contain a bilinear term. The appropriate gen-
eralisation is to have,

p(A) = g(A,A)+ f (A)+ ε (5)

where f (·) is linear as above, and g(·, ·) is linear in both its
arguments,

g(∪iAi,B) = ∑
i

g(Ai,B), g(A,∪iBi) = ∑
i

g(A,Bi), (6)

If we now consider the probability assigned to the disjunction
A∪B we see,

p(A∪B) =g(A∪B,A∪B)+ f (A∪B)+ ε

=g(A,A)+g(B,B)+g(A,B)+g(B,A)

+ f (A)+ f (B)+ ε

=p(A)+ p(B)+g(A,B)+g(B,A)− ε

(7)

Considering again the quantity I2(A,B) we see,

I2(A,B) =p(A∪B)− p(A)− p(B)

=g(A,B)+g(B,A)− ε
(8)

which is generally non-zero, but also crucially will depend
on A and B, allowing us to distinguish bilinear models from
linear ones.

Although we will not prove this here, the class of bilinear
models includes quantum theory as a special case (Sorkin,
1994). However clearly this framework is more general than
any specific model.

Once we have made the choice to step beyond linear mod-
els, a whole world of possibilities is opened up. Why stop
at bilinear models? Why not consider a model containing a
trilinear a function h(A,B,C)? The answer is that such mod-
els are possible, and in the same way that the quantity Eq.(8)
provides us with a way to test between linear and bilinear
models, a generalisation of this lets us distinguish between
bilinear models and more complicated theories.
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This rule comes from exploring what happens when we
have three possible disjoint events A,B,C. Because g(A,B) is
bilinear it is straightforward, if tedious, to show,

p(A∪B∪C) =p(A∪B)+ p(B∪C)+ p(A∪C)

− p(A)− p(B)− p(C)+ ε
(9)

So if we define an analogue of I2(A,B) for three events,
I3(A,B,C), then we have,

I3(A,B,C) =p(A∪B∪C)− p(A∪B)− p(B∪C)− p(A∪C)

+ p(A)+ p(B)+ p(C)

= ε

(10)

so this three way interference term is constant for all events
A,B,C if the underlying model is bilinear. This does not hold
in higher order theories, such as ones based on a trilinear
function (Sorkin, 1994). Therefore this provides a test of bi-
linear models versus more complex theories. Note also that
this relation holds trivially for a linear model.

Although we will not show it here, it is straightforward to
prove by induction that at every level in this hierarchy of pos-
sible model types there is a corresponding interference term
In(A,B,C...) which is constant for any model at that level or
below (Sorkin, 1994). In other words we can make a very
general statement; The experimental signature of a level n
model (ie a model based on a ‘n-linear’ function) is that a)
The quantity In(A,B,C...) depends on the events A,B, ..., but
b) the quantity In+1(A,B,C...) is constant.

We know from previous work that any theory that can cap-
ture human behavior, in particular disjunction fallacies, must
be at least level two. The question is whether a level two
theory is also sufficient, that is, whether there are particu-
lar effects in human decision making that arise when consid-
ering three alternatives. We will provide experimental evi-
dence below that a level two theory is sufficient to explain
behavior in a particular decision making task, however we
can also motivate sufficiency on general grounds. Looking
at the structure of Eq(8) for a bilinear theory, we see that the
important terms involve the general function g(·, ·) evaluated
on two different events, A,B. This framework is a computa-
tional level account, but presumably such a term must arise
from a process level account wherein the two events A,B are
processed in parallel. In contrast a linear theory only ever in-
volves functions with a single argument, and thus would not
require a process level account with simultaneous consider-
ation of multiple events. This strongly suggests that there is
a specific sense in which a bilinear model requires a more
complex underlying process to instantiate it. By analogy, the
analagous term in a level n model will involve a function of n
arguments, and, presumably, would require a process model
in which n events are considered in parallel.

If a higher order computational theory requires a more
complex underlying process to produce it, then we can ar-
gue on general grounds that it is unlikely that human deci-
sion making is described by a theory of very high order. Of

course, this argument does not tell us whether to expect a bi-
linear, trilinear etc model, only that a lower level is likely to
be preferred over a very high one. The question of exactly
what level is needed is an empirical one, which we shall now
examine.

Experiment
We want to test the hypothesis that a bilinear model is nec-
essary and sufficient to capture non-normative effects in hu-
man probabilistic reasoning. To do this we need to find sets
of at least three disjoint alternatives such that are robust two
way disjunction fallacies, in the sense that the interference
term I2(A,B) depends on the events A,B. Our approach will
be to set up three scenarios, each with three disjoint events,
and show that the term I2(A,B) can be manipulated by in-
troducing joint causes for some of the events. This will prove
that a cognitive model capturing these judgments must be at
least bilinear. We will then examine the higher order inter-
ference term I3(A,B,C) in each scenario to check that a bi-
linear model is sufficient. The joint causes we will introduce
will either cause the three events to be grouped into two nat-
ural sets, with one element shared between sets, or into one
set with one singleton event. There are therefore two differ-
ent ways of presenting each scenario, so we run each as a
between participants condition.

Methods
We recruited 300 participants, equally split into two between
participants counterbalancing conditions. Recruitment was
through Amazon Mechanical Turk, restricting geographical
location to North America. Participants required approxi-
mately 20 minutes to complete the task and they were com-
pensated $1 for their time.

Both conditions consisted of three scenarios and each sce-
nario described a hospital ward in a fictional town, special-
izing in a particular type of ailment. For example partici-
pants were told of a cancer ward, treating only patients of
three types, those with lung cancer, stomach cancer, or throat
cancer. For each scenario, participants were given some in-
formation creating a common cause between ailment pairs.
For example, in one case participants were told that throat
and lung cancers are caused by smoking, but throat and stom-
ach cancers by alcoholism. Some rationale was provided to
justify each association between ailments. All relations were
constructed to look semi-plausible (the authors independently
assessed this), but we did not aim for medical accuracy. The
between participants condition implemented a counterbalanc-
ing manipulation, that presented the same scenarios but var-
ied the common causes.

Participants went through each scenario in a blocked for-
mat presentation, so that, for example, no information about
a subsequent scenario would be presented prior to finishing
all questions relevant to the current scenario (scenario order
was randomized). The block for each scenario had analogous
format. Participants were first presented with the informa-
tion about the hospital ward, the ailments treated there, and
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the causal relations. Subsequently participants went through
four or five multiple choice questions testing knowledge of
the causal relations. The questions were meant to be straight-
forward and answerable on the basis of simple understanding
of the presented information. Participants received corrective
feedback, specifically if they responded incorrectly they were
told so and asked to try again until they answered correctly
(there were more than two alternatives for each question).

Once the training part was over, participants were told that
they would be asked to make judgments about the propor-
tion of various categories of patients at the fictional hospital.
With each question, the text describing the hospital ward and
the causal dependencies was included so that participants did
not have to memorize anything, just understand the informa-
tion provided. Each of the questions was prompted with the
statement that each patient was brought to the hospital ward
for only a single type of ailment (e.g., a single cancer type
or a single fracture, depending on the scenario). Then, par-
ticipants were asked to indicate on a 0 (None of them), to
100 (All of them) slider the proportion of patients likely to
be admitted for ailment A in some questions, A or B in other
questions, and A or B or C in another question; note, each
combination of possibilities was shown only once. The triple
disjunction was implemented as a catch question, since the
total number of patients was fixed at 100. An additional three
catch questions were included, where participants were just
told to select a particular response, as a check that they were
paying attention.

After participants finished responding to the questions for
the three scenarios they were given a version of the the Cogni-
tive Reflection Test (Frederick, 2005). The CRT is designed
to discriminate between participants adopting either a more
intuitive or a more deliberative thinking style (Toplak et al.,
2011). The CRT has previously been shown to correlate well
with measures of non-normativity in probabilistic judgments
such as conjunction fallacies (Yearsley et al, 2016).

Aside on the physical analogue of this experiment It may
be useful for those familiar with interference in physics to
outline the analogy between this phenomena and ‘interfer-
ence’ effects in human probabilistic decision making. This
might help to motivate some of the experimental design, but
this subsection can be safely skipped by any reader who
wishes.

In the classic two slit interference experiment a particle can
arrive at a given point via one of two paths. In quantum theory
because of the wave-like nature of particles two things hap-
pen: 1) The particle in some sense (which we don’t intend
to make precise here) takes ‘both’ paths, and 2) The phase
of the particle’s wave-function depends on the details of the
paths taken. By choosing the paths in a particular way we can
cause the two paths to interfere in either a constructive way
(so that the total probability of arriving at a point is greater
than the sum of the probabilities to follow either path) or a
destructive way (so that the total probability of arriving at a
point is less than the sum of the probabilities to follow either

path.)
The analogy in decision making is that a disjunction A∪B

of two disjoint events can happen in one of two ways. By
manipulating the information we give about the events, for
example by introducing a possible common cause, we can,
empirically, cause the disjunction to be judged more likely
than the sum of the probabilities for the individual events.
This is the analogue of constructive interference in the physi-
cal set up. This helps us understand why the key experimental
manipulation is essentially the stories we tell about the rela-
tionship between the different ailments. A pictorial represen-
tation is given in Fig 1.

Of course, this analogy is not meant to constitute a formal
theory of quantum cognition, but such a theory can be for-
mulated (Busemeyer & Bruza, 2011; Yearsley & Busemeyer,
2016).

Figure 1: Sketch of the analogy between the physical experiment
and the decision making one. a) In a physical interference experi-
ment, a quantum state can take one of three possible paths to a de-
tector, and the different alternatives interfere. b) In our experiment,
a patient ends up in a hospital ward due to one of three ailments.
c) A pictorial representation of the different ailments for Condition
1. In Scenario 1 the three ailments were Lung, Throat and Stom-
ach cancers. Lung and Throat cancers were linked (smoking), and
Throat and Stomach cancers were linked (alcoholism). In Scenario 2
the three ailments were auto accidents, alcohol poisoning, and falls.
Auto accidents and alcohol poisoning were linked (young people)
and falls (old people) was a singleton. For Scenario 3 the ailments
were fractures to wrists, ankles, or lower legs. Wrist and ankle frac-
tures were given a common cause (everyday falls) and angle and
lower leg fractures likewise (playing sports).

Results
There are two critical tests to perform; firstly we must check
that the two way interference terms I2(A,B) vary depend-
ing on the events in each scenario and condition. Second,
we must examine three way interference I3(A,B,C) for each
scenario and condition. In this contribution, we only re-
port Bayesian statistical tests that were performed using JASP
(JASP team, 2016). In particular we report Bayes factors for
the alternative versus the null hypothesis, so that values > 1
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indicate evidence for the alternative hypothesis.
Recall that the two way interference term I2(A,B) =

p(A∪ B)− p(A)− p(B). To check the behaviour of these
terms we perform a Bayesian RM ANOVA, with scenario and
event pair as the repeated measures, and the counterbalancing
condition as a between subjects factor. We omit the CRT from
this analysis to save space, but there are no interesting effects
of CRT. The analysis of effects is shown in Table 1.

Table 1: Analysis of effects for Bayesian Repeated Measures
ANOVA of two way interference terms

Effect p(incl) p(incl|data) BFInclusion
Scenario 0.737 1.000 2.44×104

Condition 0.737 0.999 2.49×102

Pair 0.737 1.000 “∞”
Scenario*Condition 0.316 0.998 1.37×103

Scenario*Pair 0.316 1.000 2.11×104

Condition*Pair 0.316 0.998 1.35×103

Scenario*Condition*Pair 0.053 0.998 1.12×104

Recall that if the best description of this situation is via a
linear model, ie if non-normative effects are either absent, or
due only to response error, then we expect to see no effect of
scenario, condition or pair. In contrast JASP actually returns
a BF of inclusion for the pair variable of ∞, indicating an
extremely large effect of pair. The other variables, and all
the interaction terms, all have large Bayes factors. The large
Bayes factors for the interaction terms are unsurprising given
the experimental design - the difference between the same
scenario in a different condition and a different scenario in
the same condition is really a matter of convention.

This analysis shows that a model beyond a linear one is
needed to explain these data. Now we perform the analogous
test for I3(A,B,C) to check if a bilinear model is sufficient.

Recall the three way interference term for each scenario is
computed as I3(A,B,C) = p(A∪B∪C)− p(A∪B)− p(B∪
C)− p(A∪C)+ p(A)+ p(B)+ p(C). To check the behaviour
of these terms we perform a Bayesian RM ANOVA, with sce-
nario as the repeated measure, and the counterbalancing con-
dition and CRT as between subjects factors. The analysis of
effects is shown in Table 2.

Table 2: Analysis of effects for Bayesian Repeated Measures
ANOVA of three way interference terms

Effect p(incl) p(incl|data) BFInclusion
Scenario 0.737 0.313 0.163
Condition 0.737 0.407 0.245
CRT 0.737 0.141 0.059
Scenario*Condition 0.316 0.299 0.923
Scenario*CRT 0.316 2.92×10−4 6.33×10−4

Condition*CRT 0.316 0.003 0.006
Scenario*Condition*CRT 0.053 2.2×10−7 3.97×10−6

The results are striking; none of the Bayes factors for in-
clusion are greater than 1, indicating that no model contain-
ing any combination of these effects is preferred over a null
model. The conclusion then is that the terms I3(A,B,C)

are constant - they do not vary when we manipulate com-
mon causes implied for the events in the way that the terms
I2(A,B) do. This implies that a bilinear model is sufficient
to explain these effects.

The lack of a significant effect of the CRT is actually re-
assuring; recall that the terms I3(A,B,C) should be constant
regardless of whether a decision maker is using a linear (clas-
sical) or bilinear (quantum) model. The CRT has previously
been associated with the strength of various measures of non-
normativity (Yearsley et al, 2015) and the fact that it is not
predictive here suggests that these effects behave very dif-
ferently from other measures such as the size of conjunction
fallacies.

Conclusions and Future Directions
The empirical finding of so-called probabilistic fallacies in
decision making has led to an intense debate over how much
(if any) of human cognition should be understood in terms of
the principles of classical, Bayesian, probability theory (Tver-
sky & Kahneman, 1983). Those who believe these findings
cast doubt on the applicability of classical probability the-
ory have tended to respond by abandoning all together the
idea of a formal probabilistic framework for decision mak-
ing. Recent advances in applying quantum probability theory
to modelling human decision making (Pothos & Busemeyer,
2013) raise the possibility that all (or most) of human cogni-
tion can be understood in formal probabilistic terms, but the
appropriate approach is not classical probability theory but
quantum probability.

However at least one objection to using quantum probabil-
ity theory (there are many) is that it is unclear how exactly
this expands the space of possible models. Most accounts of
the relationship between quantum and classical models tend
to focus on the issue of incompatibility, but this is notori-
ously hard to make precise. In addition, it is far from clear
that quantum probability theory is the only way to generalise
classical probability to include incompatible events.

What we have tried to do in this paper is to show how we
may take a particular approach to divide up the space of pos-
sible computational level accounts of interference effects in
decision making. The space of models is split into differ-
ent levels, of increasing complexity in the sense of higher
level interference effects. Classical probability theory, and its
generalisations in the form of linear models, occupy the low-
est level of this hierarchy, whereas bilinear models such as
quantum theory sit at the next level up in complexity. Above
these bilinear models are an infinite number of different lev-
els, although we can argue on general grounds that we expect
human behavior to be characterised by a relatively low level
model.

Each level in the hierarchy has a unique experimental sig-
nature, and we used this to show that behavior in a partic-
ular probabilistic reasoning task is consistent with a bilin-
ear theory. Of course, whether all current examples of non-
normative probabilistic reasoning are likewise consistent with
a bilinear model is an open question. This level consists of

3576



theories where interference between alternatives is computed
pairwise. Quantum theory is situated at this level, however
our approach is not able to distinguish between different mod-
els in a given level. Further work, for example looking at con-
straints obeyed by quantum theory but not other non-classical
probability theories, could address this.

We finally want to outline some future directions for re-
search. One important question is how well our findings gen-
eralise when we consider different kinds of relationships be-
tween events. In our scenarios different ailments were related,
if at all, by common causes, for example smoking can cause
both lung and throat cancer. This means that the associated
interference terms I2(A,B) = p(A∪B)− p(A)− p(B), tend
to be positive. It would be useful to show that we can generate
negative interference terms by implying the appropriate rela-
tionships between conditions, and check that our conclusions
still hold. Another future direction would be to extend this
approach to other areas of cognition where quantum models
have been proposed, for example perceptual decision making.

Another future direction is to try and extend this analysis
to models which fall just outside our framework. One such
example is the classical probability plus noise model due to
Costello and Watts (2014). They propose a general linear
model but with an error term which, rather than be a con-
stant, depends on the type of event being considered, eg a
single event, a conjunction or disjunction etc. The idea is that
more complex events are associated with larger error terms,
and they showed this can lead to conjunction fallacies in par-
ticipants responses, even though the underlying belief states
obey classical probability theory. This theory has a slightly
different experimental signature from linear or bilinear mod-
els, but it can still be tested against them in a similar way. The
results of this analysis will be presented elsewhere.
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Abstract 

We investigated the effect of gesture redundancy and speech 
disfluency on listeners’ fixations to gestures. Participants 
watched a speaker producing a redundant or non-redundant 
gesture, while producing fluent or disfluent speech. Eye 
movements were recorded. Participants spent little time on a 
speaker’s gestures regardless of condition. Gesture 
redundancy and speech disfluency did not affect listeners’ 
percentage dwell time to a speaker’s gestures. However, 
listeners were more likely to fixate to a speaker’s gestures 
when they expected the gesture to be non-redundant. 
Listeners were also more likely to fixate to a speaker’s 
gestures when the speaker was disfluent. Thus, listeners 
allocate overt visual attention based on the expected 
usefulness of a speaker’s gestures, although evidence does not 
suggest that they spend more time fixating on these gestures. 
Furthermore, listeners are sensitive to disfluency in a 
speaker’s utterance and change how they attend to gestures 
based on qualities of the speech. 

Keywords: gesture; eye tracking; communication; 
multimodal information processing; spatial features 

Introduction 
Speakers usually move their hands when conveying a 
message. It seems intuitive to suggest that speakers gesture 
to communicate information to their audience. Indeed, at 
times speakers appear to produce gesture specifically for the 
purpose of communicating with the listener (Alibali, Heath 
& Myers, 2011). 

During the process of comprehension, listeners integrate 
speech and gesture (Willems, Özyürek, & Hagoort, 2007). 
Since co-speech gestures can influence listeners’ 
comprehension of messages, how then do listeners allocate 
visual attention resources to speakers’ gestures? Some 
researchers have argued that the content of gestures could be 
perceived peripherally (Gullberg &  Holmqvist, 1999).  If 
true, this would negate the need for listeners to fixate to 
gestures during comprehension. However, gestures have 
also been shown to convey additional semantic content not 
found in speech (e.g., McNeill, 1992; Alibali, Evans, 
Hostetter, Ryan & Mainela-Arnold, 2009; Hostetter, 2011). 
Fixating to these gestures could help comprehension. 
Communicating in everyday life is often a multimodal 
process that involves auditory input from speech and visual 
input from the speaker’s face and body (i.e., MacDonald & 

McGurk, 1978; Ekman, 2004). Hence, understanding how 
listeners allocate visual attention during the process of face- 
to-face comprehension is important for understanding the 
mechanisms involved in the online process of interpersonal 
communication. 

There is some evidence that listeners extend overt visual 
attention to a speaker’s gestures (Nobe, Hayamizu, 
Hasegawa, & Takahashi, 1997; 2000). In these studies, the 
authors presented participants with animations of a speaker 
uttering short phrases while making hand gestures, and 
recorded eye movements of the participants during the 
animations. Participants in the study were found to fixate to 
gestures consistently on most of the videos presented, 
preferring to fixate to gestures that occurred more slowly. In 
the follow-up study (Nobe et al., 2000), participants were 
found to be able to complete gesture reproduction and 
comprehension tasks without necessarily fixating to the 
specific gesture, suggesting that listeners indeed can encode 
aspects   of   speakers’   gesture   without   gaze   fixations. 
However, this raises the question of why listeners would 
consistently fixate to speakers’ gestures if comprehension 
can occur without fixation. 

In contrast, other studies of visual attention to gesture 
have found that listeners rarely fixated to a speaker’s 
gestures, even when those gestures were essential for 
comprehension (i.e., listeners seldom fixated to gestures that 
offered information absent from, and thus, non-redundant,  
with speech). Listeners fixated overwhelmingly on the 
speaker’s face (Gullberg & Holmqvist, 1999, 2006; 
Gullberg & Kita, 2009; Beattie, Webster, Ross, 2010), 
contrary to the findings by Nobe and colleagues (1997; 
2000). 

A possible explanation for the differences found in overt 
visual attention to gestures in these studies is that the speech 
content of the speakers in the previous experiments was 
vastly different. Some studies used stimuli that contained a 
narrative element, while other studies used shorter 
utterances without a story element, such as “let’s count 
fingers”. The difference in speech content could have 
caused listeners to attend more to the face of the speaker due 
to the expectation or existence of emotion cues in the 
speaker’s face. Therefore, listeners might spend more time 
fixating to non-redundant gestures for speakers if the speech 
content does not contain a narrative element. 
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In cases where listeners were found to fixate to a 
speaker’s gestures, numerous factors have been cited as 
potentially driving the fixations. These factors include 
whether the speaker fixated upon the gesture, the duration of 
the post-stroke hold (i.e., an aspect of the “form” of the 
gesture) and the location of the gesture in the speaker’s 
gesture space (e.g., Gullberg & Holmqvist, 2006; Gullberg 
& Kita, 2009).  The focus in the literature has thus been on 
particular physical features of gestures, with little research 
into the role of listener expectation on overt attention to 
gestures. Expectations, or predictions, that listeners hold 
about the usefulness of a speaker’s gestures could influence 
how they attend to the speaker’s gestures. In this study, we 
examine a higher-level feature of gesture, expected 
redundancy. Keeping all other physical features constant, 
we test whether the expected redundancy of a speaker’s 
gestures will affect how listeners attend to those gestures. If 
listeners do allocate attention differently to gestures 
depending on whether they expect the gesture to be useful 
for comprehension, then we should see listeners spend more 
time fixating to gestures and also be more likely to fixate to 
a speaker’s gesture when the gesture offers disambiguating 
information absent in speech. 

As mentioned above, previous studies that examined 
visual attention to gestures have focused on how physical 
qualities of a gesture influenced listeners’ fixations. In 
multimodal communication, however, elements of speech 
can also influence how listeners attend to a speaker’s 
gestures based on existing expectations. To date, no study to 
our knowledge has examined the role of speech disfluencies 
on listeners’ fixations to a speaker’s gestures. Disfluencies 
such as filled pauses cause a break in speech content and 
can occur at several points in speech (Ferreira & Bailey, 
2004). A filled pause (i.e., um) that occurs in the middle of a 
clause has been linked to the need for the speaker to select 
an option for production from among several competing 
choices  (Clark  & Fox Tree, 2002). Listeners were more 
likely to remember a word when it was preceded by a filled 
pause (Corley, MacGregor & Donaldson, 2007), suggesting 
that a filled pause could give rise to expectation in listeners 
that what is to follow is important, signaling listeners to 
allocate more attentional resources to encode what follows 
from it. When listeners hear an  “um” from a speaker, they 
might also be more likely to fixate to the speaker’s gesture 
space when the disambiguating information might be 
produced in gesture as compared to a situation where there 
is no need for disambiguation.  

In this study, we examine the effect of gesture redundancy 
(i.e., whether a gesture is useful for disambiguating between 
two options) and speech disfluency on listeners’ visual 
attention to gesture. To do this, we conducted a 2 by 2 fully 
within-subjects experiment, manipulating gesture 
redundancy and speech disfluency. We recorded the gaze 
fixation data (i.e., how long each participant fixated and 
how many fixations) of each participant as they watched a 
video of a speaker on each trial. The speaker produced 
either redundant or non-redundant gestures for a following 

task and spoke with either disfluency or without disfluency. 
We hypothesize that listeners will be more likely to fixate to 
gestures that are non-redundant with speech. Participants are 
predicted to fixate at least once to gestures more often for 
trials with non-redundant gestures than for trials with 
redundant gestures. Participants are also predicted to spend 
more time fixating on these gestures. In addition, we also 
hypothesize that listeners will be more likely to fixate to 
gestures that accompany disfluent speech than to gestures 
that accompany fluent speech. This experiment will also 
allow us to examine whether spatial speech free from 
narrative content provides a context in which listeners 
attend less to the speaker’s face. However, if the narrative 
nature of the stimuli used in previous studies was not the 
reason for the little time listeners spent gazing at gestures, 
then we expect participants in this study will display 
similarly low durations of fixations to gesture. 

 

Method 
Participants 
Participants were 30 undergraduate students, all of whom 
reported being native English speakers. They were recruited 
from an Introductory Psychology course in exchange for 
extra credit. 
 
Materials 
There were two sets of stimuli: shape arrays and speaker 
videos. We created four pairs of shape arrangements using 
Microsoft PowerPoint, giving eight arrays in total. Each of 
these eight arrays was repeated twice in the experiment, 
once paired with a speech-fluent video and once paired with 
a speech-disfluent video. Thus, there were sixteen target 
trials in total. 

Each pair of shape arrays was identical in every aspect 
except for a single shape. In the arrays used for the gesture 
redundant condition, only one triangle was present. In the 
arrays used for the gesture non-redundant condition, two 
triangles were present. Thus, to create the arrays for the 
gesture non-redundant condition, one of the non-triangle 
shapes in the arrays for the gesture redundant condition was 
replaced with a triangle (Fig. 1). 

 

             
Figure 1. An example of a shape array in the gesture 

redundant condition (left) and in the gesture non-redundant 
condition (right). 

 
Next, we created eight videos, four featuring fluent 

speech and four featuring disfluent speech. Each video 
lasted approximately six seconds and showed a speaker 
describing a triangle according to a script, while facing the 
camera (Fig. 2). In the videos with fluent speech, the 
speaker produced an utterance, such as “the triangle 
changed color and turned green”. In videos with disfluent 
speech, the speaker produced an utterance with the “um” 
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disfluency, for example, “the, um, triangle changed color 
and turned green”. In the other of these eight videos, the 
actor produced exactly the same utterance except with a 
different color (e.g., orange/red/yellow instead of green). 
We created the videos such that there were fluent and 
disfluent pairs containing the same utterance that differed 
only in the inclusion, or exclusion, of the disfluency “um”. 
In addition, the speaker produced four types of gestures that 
were paired with corresponding shape arrays. These 
gestures referred to the triangle that was undergoing the 
color change. Thus, in the gesture non-redundant condition, 
the gesture functioned to disambiguate the target triangle 
from the other triangle in the array. In each video, the 
speaker’s gesture depicted either the pointed tip of the 
triangle (pointing up or down), or the relative placement of 
the triangle in the shape array (located high in the array or 
located above a line). Each gesture was scripted such that 
the actor began forming the gesture just before the word 
“triangle” in the utterance and held the gesture for 
approximately 2 seconds before dropping her hands. In each 
video, the actor produced only one gesture and gazed at the 
camera for the duration of the video. 

 

 
Figure 2. Screen capture of the speaker producing a gesture 
of an upward-pointing triangle. 

 
We also created shape arrays and speaker videos for filler 

trials. The purpose of the filler trials was to present the 
participant with variation in the speaker videos so as to 
reduce the chances of the participant inferring the purpose 
of the study. These filler trials contained an assortment of 
videos where the speaker did not gesture, or gestured while 
producing a slightly different utterance, such as “the orange 
triangle changed color and turned green”. There were ten 
filler trials in total. The eight target trials and the filler trials 
all contained the same actor wearing the same clothing.  
 
Procedure 
Participants were tested individually. Each participant was 
seated in front of a computer screen and a desk-mounted 
Eyelink 1000 eye tracker camera. The eye tracker recorded 
real-time fixations of each participant throughout the entire 
experiment and was calibrated for each participant before 
the trials began. 

Before the experiment, participants were told that the 
speaker would always describe a color change of a triangle 
in the array. Thus, participants began the experiment 
knowing that it would always be a triangle that changed 
color. They were not told that the speaker would gesture; 
participants were not informed in any way that the study 

was about gesture or speech disfluency. 
During the experiment, each participant viewed 26 trials 

presented in random order using Experiment Builder from 
SR Research (Canada). Each trial contained a shape array 
that was presented onscreen for 5 seconds, followed by a 
video of the speaker describing the color change occurring 
to a triangle in the array. The video was programmed to start 
automatically. After the video, participants were presented 
with four options of shape arrays and were instructed to say 
aloud the option that fit the description of the speaker in the 
video. For example, if a trial presented the array in the 
gesture non-redundant, speech fluent condition (e.g., the 
array on the right in Fig. 1) followed by a video of the 
speaker producing an upward-pointing gesture (Fig. 2) 
while saying, “the triangle changed color and turned green”, 
the correct option (in Fig. 3) to select would be option C. 

The trials in the gesture non-redundant, speech disfluent 
condition were identical except that the speaker produced a 
filled pause, for instance, “the um, triangle changed color 
and turned green”. Thus, gesture redundancy was 
manipulated by having either one or two triangles in the 
shape array. 

 

 
Figure 3. Example of four response options in the gesture 
non-redundant conditions. 

 
An example of a trial in the gesture redundant, speech 

fluent condition would be the left array in Figure 1 followed 
by a video of the speaker producing an upward-pointing 
gesture (Fig. 2) while saying, “the triangle changed color 
and turned green”. The four response options would then 
contain the same shapes as in the original array but with the 
single triangle colored in four different colors. The trials in 
the gesture redundant, speech disfluent condition were 
identical except that the speaker produced a filled pause, for 
instance, “the um, triangle changed color and turned green”. 
Thus, gesture redundancy and speech disfluency were 
perfectly orthogonal. 

Each participant’s verbal response for each trial was 
recorded with a microphone that was clipped on to his or 
her clothing. The verbal responses were recorded to audio 
files in the computer. At the end of the experiment, 
participants were debriefed and asked if they could guess 
the purpose of the study. None of the participants correctly 
stated the hypothesis about gesture redundancy or speech 
disfluency on listeners’ fixation to a speakers’ gestures. 
Throughout the whole procedure, an experimenter sat in a 
corner in the room unobtrusively and had no interaction 
with the participant. The whole experiment lasted for about 
20 minutes. 
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Coding 
Each video was divided into interest areas for eye tracking 
analysis. The speaker’s face was a separate interest area 
from her gesture space. The fixations of interest for this 
study were those that occurred to the speaker’s gestures 
from the start to the end of her utterance, since her gestures 
always occurred as she was speaking. Fixation data that 
included each dwell time on each area and number of 
fixations was then exported from Data Viewer (SR 
Research) for analysis. For each trial, we thus obtained data 
regarding how long a participant fixated to the speaker’s 
face, how long a participant fixated to the speaker’s gesture 
space, how many fixations a participant made to the 
speaker’s face and how many fixations a participant made to 
the speaker’s gesture space. 
 

Results 
Averaging across all conditions, participants spent the 
majority of the time fixated on the speaker’s face, spending 
only 9.3% of the time fixating on the speaker’s gestures.  

Table 1 displays the average percentage dwell time spent 
by participants on the listeners’ gestures across conditions. 
We conducted two-way within-subjects analysis of variance 
on the average percentage dwell time spent fixating on the 
speaker’s gestures as a function of gesture redundancy and 
speech disfluency. There was no significant main effect of 
gesture redundancy, F (1, 112) = 1.34, p  = 0.25, nor was 
there a significant main effect of speech disfluency, F  < 1, 
p = .66. 

There was also no significant interaction between gesture 
redundancy and speech disfluency on participants’ dwell 
time to speaker’s gestures, F (1, 112) = 2.30, p  = .13. Even 
though participants on average spent a higher percentage of 
dwell time on non-redundant gestures, this difference was 
not significant. 

 
Table 1. Average dwell time % to the speaker’s gestures as 

a function of gesture redundancy and speech disfluency. 
 

 Gesture 
Speech Redundant Non-redundant 

Disfluent 7.33 10.1 
Fluent 9.02 10.8 

 
Since participants overwhelmingly fixated to the 

speaker’s face in this experiment, we wanted to examine 
whether gesture redundancy and speech disfluency affected 
the likelihood of participants fixating at least once to the 
speaker’s gestures. To test whether participants were more 
likely to fixate to a speaker’s gestures as a function of 
gesture redundancy or speech disfluency, we classified 
whether each participant fixated on the video speaker’s 
gesture space at least once while the speaker was talking. 
Thus, the outcome variable for this analysis was 
dichotomous, i.e., whether or not the participant fixated at 
least once to the speaker’s gesture in each trial. 

We analyzed these data using a binomial multilevel model 
with gesture redundancy and speech disfluency as fixed 
effects and participant as a random effect. The dependent 
variable was whether the participant had fixated to the 
speaker’s gesture space (yes/no). The mean proportion of 
trials on which participants fixated at least once to the 
speaker’s gesture space is displayed as a function of gesture 
redundancy (Fig. 4) and speech disfluency (Fig. 5). 

 

 
Figure 4. Proportion of trials on which participants had at 
least one fixation to the speaker’s gesture  space  as  a 
function of gesture redundancy. Error bars are ±SE. 

 

 
Figure 5. Proportion of trials on which participants had at 
least one fixation to the speaker’s gesture space as a 
function of speech disfluency. Error bars are ±SE. 

 
Listeners were significantly more likely to fixate to the 

speaker’s gesture in the gesture non-redundant condition 
than in the gesture redundant condition, Wald’s z = 3.06, p < 
.01, odds ratio = 2.41. Additionally, listeners were 
significantly more likely to fixate to the speaker’s gesture in 
the disfluent speech condition than in the fluent speech 
condition, Wald’s z = 2.21, p = .027, odds ratio = 1.88. 
There was no significant interaction between gesture 
redundancy and speech disfluency on the likelihood of 
participants fixating to a speaker’s gesture, Wald’s z = 1.35, 
p = .18. In sum, participants were more likely to fixate at 
least once to non-redundant gestures, and they were also 
more likely to fixate at least once to the speaker’s gestures 
when the speaker was disfluent. 

 
Discussion 

The finding that participants spend little time fixating to a 
speaker’s gestures reflects the results from some past 
studies. For example, Gullberg and Kita (2009) reported that 
listeners fixated on gestures only 8% of the time, even 
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though these gestures were first fixated by the speaker, 
showing that gesture  fixation  duration  was  low even 
when there was social impetus (i.e., directed gaze) to fixate 
at a gesture. Our findings align with this value. Listeners 
fixated to gestures on average about only 10% of the time, 
even for gestures that contained information not present in 
the speaker’s utterance. These findings do not support the 
hypothesis that the previously reported low fixation 
durations on gestures were due to the narrative element in 
speech. Instead, listeners fixate overwhelmingly on the 
speaker’s face even when the narrative element in speech is 
absent or greatly reduced. 

However, we do not yet know if listeners direct so little 
overt visual attention to gesture because of the 
communicative context.  Past studies, including this  one, 
have featured speakers passively describing objects or 
actions.   Although   strengths   of   this   paradigm   are   its 
simplicity and ease of experimental control, a limitation is 
that it tells us little about how people attend to each other’s 
gestures when they are  engaging  in  dialogue.  During 
dialogue, speakers gesture differently depending on the 
feedback they receive from the listener (Holler & Wilkin, 
2011). This finding reflects observations of research 
involving instructional gestures. In the classroom, teachers 
have been found to gesture more when students lack 
understanding of the lesson (Alibali et al., 2013). Further 
research could explore how listeners attend to gestures in an 
instructional setting or in dialogue, using a wearable eye 
tracker. 

As predicted, participants were more likely to fixate to 
non-redundant gestures than to redundant gestures. This 
finding implies that listeners preferentially direct overt 
visual attention to gestures that they expect to be useful for 
comprehension.   Listeners   direct   overt   attention   to   a 
speaker’s gestures more often when the gesture conveys 
relevant information not present in speech, implying that 
listeners generate expectations about the perceived 
importance of the speaker’s gestures and direct attention 
accordingly. However, we did not find support for the 
hypothesis that listeners would spend more time fixating to 
a speaker’s gestures. While listeners were more likely to 
gaze at least once to the speaker’s non-redundant gestures, 
they did not spend more time dwelling on those gestures, 
implying that the additional fixations to non-redundant 
gestures occurred very quickly. A potential explanation for 
this behavior is that visual information from fixated gestures 
is gleaned very quickly, making it unsurprising that fixation 
durations across conditions did not differ significantly. 

On the surface, it might be unsurprising that listeners are 
less likely to fixate to  gestures that  are  redundant. This 
study demonstrates that listeners are less likely to fixate to 
gestures that are redundant even when those gestures are 
holds (i.e., the form of the gesture is held in a pause) and 
occur in the center of the speaker’s body, qualities that were 
reported to best attract listeners’ fixations (e.g., Gullberg & 
Holmqvist, 1999; 2006) Since we controlled for these 
features across the gesture redundant and gesture non- 

redundant conditions, our findings imply that top-down 
factors such a redundancy can influence listeners’ visual 
attention to gestures beyond the physical characteristics of 
those gestures. Few studies to date have explored the role of 
higher-level cognitive factors, such as expectations, on how 
listeners process gestures. For example, individuals could 
hold expectations about the usefulness of gesture based on 
an individual’s communicative fluency, or individual’s 
communicative style. A further direction would be to 
examine how these factors influence how listeners attend to 
gestures.  

In this study, we also found support for the hypothesis 
that speech disfluency causes listeners to be more likely to 
attend to gestures during communication. These findings 
support the idea that disfluencies in speech can function as a 
signal to listeners on how to direct their cognitive resources 
during comprehension. However, we did not find support 
for the hypothesis that listeners spent more time fixating to 
gestures that co-occurred with disfluent speech as compared 
to gestures that occurred with fluent speech. Once again, it 
is possible that listeners quickly obtained information from 
gestures. If filled pauses in speech do indeed work as a 
signal for cross-modal attention shifts, future work could 
examine if how other forms of speech disfluencies (e.g., 
false   starts) influence visual attention to   a   speaker’s 
gestures. 

As with any investigation, there are some limitations to 
this experiment. Due to convenience sampling, our sample 
was comprised of college undergraduates. Undergraduates 
could offer little variation in terms of cognitive skills as 
compared to the population at large. While little published 
research to date exists examining the role of individual 
differences in cognitive skills on attention to gestures, there 
is evidence suggesting that people produce gestures 
differently due to individual differences in spatial  abilities  
(Hostetter  & Alibali, 2007; 2011). It may be the case that 
listeners with vastly different spatial skills could process a 
speaker’s gestures differently. One way to address this 
would be to administer measures of verbal and spatial skills 
to undergraduate participants in future studies. Another way 
to address this  limitation  would  be  to  recruit  participants 
outside of the undergraduate pool. 

Our participants were English speakers in the Midwestern 
USA, thus the results might not generalize to speakers of a 
different language or culture. Past studies on visual attention 
to gestures have sampled from English-speaking students in 
the United Kingdom (Beattie, Webster & Ross, 2010), 
Dutch-speaking students (Gullberg & Kita, 2009) and native 
Swedish speakers (Gullberg & Holmqvist, 2006). 
Consistently low fixation durations to gesture across these 
samples appears to suggest that the effect is generalizable. 
However, Nobe and colleagues (1997; 2000) sampled from 
Japanese speakers, raising the question of whether the 
difference in attention to gestures of a speaker is partly due 
to cultural norms.  

For instance, Graham and Argyle (1975) found that 
Italian speakers were better able to decode shapes being 
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described by the speaker when gesture was produced, in 
contrast to English speakers. If speakers’ gestures   possess   
different   utility   value   to   listeners depending on the 
language, we might expect listeners to attend to gestures 
differently too. Further research should test the assumption 
that listeners’ processing of speakers’ gestures is universal. 
There are undoubtedly common processes involved in 
multimodal communication across humans, but cultural 
norms in communication or in the use of hand gestures 
could also influence how listeners process these gestures. 

Another limitation of this study involves the nature of 
scripted disfluencies. When disfluencies are produced 
naturally, they could be accompanied by changes in speech 
rate, tone of voice, or changes in facial expression. Having 
an actor utter a statement with a scripted disfluency across 
multiple trials is unnatural. While this choice was made to 
reduce stimuli variability, further research could use videos 
of speakers conversing naturally and examine the gaze of 
listeners when disfluency occurs naturally. 

In conclusion, these findings provide another perspective 
on the question of how listeners process gestures. We show 
that listeners are more likely to fixate to a speaker’s gestures 
when those gestures are non-redundant, after controlling for 
physical properties of gesture that have been reported to 
capture the attention of listeners. We also demonstrate that 
speech disfluencies can act as signals for listeners to shift 
attention multimodally. These findings highlight the causal 
role of expectations in how listeners attend to speakers’ 
gesture. 
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Abstract
In this paper, we present a new task that investigates how peo-
ple interact with and make judgments about towers of blocks.
In Experiment 1, participants in the lab solved a series of prob-
lems in which they had to re-configure three blocks from an
initial to a final configuration. We recorded whether they used
one hand or two hands to do so. In Experiment 2, we asked
participants online to judge whether they think the person in
the lab used one or two hands. The results revealed a close
correspondence between participants’ actions in the lab, and
the mental simulations of participants online. To explain par-
ticipants’ actions and mental simulations, we develop a model
that plans over a symbolic representation of the situation, exe-
cutes the plan using a geometric solver, and checks the plan’s
feasibility by taking into account the physical constraints of the
scene. Our model explains participants’ actions and judgments
to a high degree of quantitative accuracy.
Keywords: planning; problem solving; logic-geometric pro-
gramming; intuitive physics; scene understanding

Introduction
Physical problem solving – converting knowledge into be-

havior to achieve a goal that involves physical object manipu-
lation – is a core component of human intelligence and ubiq-
uitous in everyday cognition. From young children playing
with stacking cups to an adult moving furniture to redesign a
room or to load a truck, our intuitive understanding of how to
manipulate the physical world in order to meet our goals is
remarkable. For instance, when rearranging the furniture in a
room, one needs to form and execute a plan which takes into
account both spatial and physical constraints, such as how big
are the objects, and which objects might be stacked on top of
others.

Two independently developed lines of research provide in-
sights and starting points into exploring these computations:
reasoning based on mental models, and motor control based
on forward models. Firstly, the theoretical and behavioral
work on reasoning and problem solving in symbolic domains
(e.g., logical reasoning, or visuo-spatial reasoning) empha-
sizes the importance of common-sense knowledge. For in-
stance, early Artificial Intelligence (AI) systems that were
built to reason like humans do, focused on building models
that capture aspects of common-sense knowledge about the
physical world in the form of knowledge representations and
methods to efficiently manipulate them (e.g., Newell, Shaw,
& Simon, 1958). Similarly, in cognitive psychology, the
idea that problem solving begins with the construction of a
mental model of the situation was explored in more detail
by mental model theory (Johnson-Laird, 2005). While still
operating over logical representations, mental model theory
makes additional assumptions about what aspects of a situ-
ation people naturally represent, and how these representa-

tions support reasoning (Johnson-Laird, Khemlani, & Good-
win, 2015). However, the theoretical and behavioral work
on human reasoning and problem solving has tended to focus
on symbolic domains (e.g., logical, spatial, and visuo-spatial
reasoning Newman, Carpenter, Varma, & Just, 2003; Byrne
& Johnson-Laird, 1989), and has not yet looked into situa-
tions that require reasoning about physical objects, and form-
ing plans about how to interact with them.

Secondly, research on computational motor control and ob-
ject manipulation emphasizes the knowledge and transforma-
tions necessary for skillful manipulation of objects. For in-
stance, work on sensorimotor control and object manipulation
extensively studied internal models of the forward dynam-
ics of the arm and the objects, as well as how to choose ac-
tions to efficiently achieve one’s goals based on internal mod-
els (Nagengast, Braun, & Wolpert, 2009; Franklin & Wolpert,
2011). However, this line of work has tended to focus on rela-
tively simple actions, instead of settings that involve planning
longer sequences of moves.

In this paper, we aim to bring these two different research
traditions together. To better understand physical problem
solving, we introduce an intuitive, yet complex task in which
participants are asked to manipulate a stack of blocks to gen-
erate a target configuration. Consider Problem 1 shown in
Figure 1. The task is to manipulate the blocks so that the
scene on the left is turned to the scene on the right. While par-
ticipants have no trouble doing this task, and even young chil-
dren naturally perform such tasks, modeling people’s actions
is far from trivial and robotic systems rarely implement this
kind of flexible manipulation. The task requires representing
the initial state, the final state, and making a plan for how to
get from A to B. Finding good action sequences in this task
not only requires a symbolic high-level plan (e.g., which se-
quence of actions to take) and visuo-spatial reasoning, it also
requires intuitive physical reasoning about how objects sup-
port each other (i.e., their dynamics) and actual motor control
required to execute the high-level abstract plan. Such combi-
nation of rich behavior is common in everyday cognition, but
has rarely been studied in the lab. We used two different ver-
sions of the task. In one version, participants in the lab were
asked to generate the different configurations. In another ver-
sion of the task, we had online participants judge whether
they think the person in the lab used one or two hands to get
from A to B (cf. Figure 1E).

We develop a novel computational model of physical prob-
lem solving that goes all the way from formulating an ab-
stract symbolic plan to executing the low-level motor com-
mands that are required to realize the plan. The model is com-
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Figure 1: Experimental setup. A: Example for an initial and final configuration of the three blocks. B: Illustration for what moves were
legal (green border) or illegal (red border). C and D: Some example problems. E: Screenshot of the experimental interface for participants in
Experiment 2.

posed of three components: (1) a symbolic representation of
the scene, (2) a geometric solver for motion synthesis, and
(3) a physics engine for physical reasoning. Planning in the
model operates over the symbolic representation of the scene.
Each plan is composed of subgoals and finds a sequence of
moves that turn the initial into the final configuration (see,
e.g., Figure 3C, left side). An optimization-based kinemat-
ics solver takes the symbolic plan as its input and generates
a full motion plan which we implement in a simulated two-
armed robot (Figure 3C, right side). We use a physics engine
to check whether the plan that the kinematic solver came up
with is feasible. More specifically, we test at each point when
a subgoal is reached, whether the configuration is physically
stable. If the plan includes an unstable configuration, it is dis-
carded (Figure 3D for a plan that includes an unstable state).
The model’s task is to get from the initial stack shown in A
to the target stack. However, just taking the red block and
moving it to the right so that it’s correctly positioned relative
to the yellow block, causes the blocks to fall over.

For each pair of initial and target stack, the model is able
to generate plans using either only one arm, or both arms. We
score each plan based on its efficiency which is a function
of the number of the moves it takes to get from the initial to
the target stack, as well as the effort that the plan takes. We
evaluate the contributions of the three different components
of our model through lesion studies (i.e. we remove parts of
the model and see how well it does, in order to gauge what
components are necessary to capture people’s behavior).

The remainder of this paper is organized as follows: first,
we describe a novel, physical problem-solving task and show
how participants solve the task in the lab and online. Next,
we describe our computational model and analyze how well
it does in accounting for participants’ behavior. We conclude
by highlighting the key contributions of the paper, and by sug-
gesting several lines of future research.

Stack re-configuration problems
Most classical paradigms used to study problem solving,

such as the Tower of Hanoi and its variants require visuo-
spatial reasoning and planning for successful solutions. Here
we present a novel problem which requires the problem-
solver to also take into account physical constraints, such as
considering whether a particular configuration of blocks will
be stable.

The problems involve an initial stack of three physical
blocks on a table paired with an image showing the desired
target stack of the same three blocks (Figure 1A). The three
wooden blocks had the same size and mass, and were colored
in red, yellow, and blue. Given the pair of initial and target
stacks, the problem is to re-configure the initial stack such
that it will match the target stack in the image. While interact-
ing with the blocks, participants aren’t allowed to touch more
than one block at a time. Example legal and illegal moves
are shown in Fig 1B. To solve each stack re-configuration
problem, participants have to plan and execute a set of moves
(using one or both hands) that will generate the target stack
from the initial stack.

Experiment 1: Physical task
The goal of Experiment 1 was to assess how participants

interact with the scene to get from the initial to the final con-
figuration for each problem. In particular, we were interested
in seeing whether they used one hand or two hands to get
from A to B.

Methods
Participants 10 participants (Mage = 35,SDage =
16.4,Nfemale = 6) were recruited from MIT’s subject
pool. The study took about 15 minutes to complete, and all
participants were compensated for their participation.
Stimuli The three physical blocks used in the experi-
ment were of size 10cm-5cm-5cm (height-width-depth) and
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Figure 2: The probability that participants used one hand in the lab (Physical) together with the mean judgments provided by participants
online (Mental) for 34 different problems. Note: Error bars indicate 95% bootstrapped confidence intervals.

weighed about 50 grams. We manually arranged these 3
blocks into 38 different configurations and took a picture of
each configuration. The configurations were constrained such
that all blocks remained within a spatial boundary on a table,
and the block or blocks touching the table were centered at
one of three designated spots. Figure 2 shows some examples
of initial and final configurations.1

Procedure After providing written consent, participants
were introduced to the task, including what moves were legal
and which ones were illegal. Starting from the initial stack
configuration of Problem 1, participants were asked to re-
configure the blocks to the target stack of Problem 1, which
was presented on a computer screen in front of them. They
clicked on the “Continue” button on the screen to indicate
that they were done and the experiment moved on to the next
problem.

The initial configuration of the next problem, Problem 2
(Figure 2C), was the target configuration from the previous
problem, and so on. This sequence of problems continued
for a total number of 37 problems.2 The presentation order
was the same for all participants. All participant responses
were video-recorded. For each problem, we coded whether
participants used one or two hands to solve it.

Results

Figure 2 shows the proportion of participants who used one
hand for each trial. In some trials, most participants used
only one hand (e.g., Problem 21, Figure 1D), and in others
most participants used both hands (e.g., Problem 34, Fig 1D).
Across all trials, participants used one or two hands about
equally. Participants often solved the problem with one hand
if it was possible to do so. Some participants only used their
non-dominant hand if it was impossible to achieve the target
configuration with one hand only.

1For the full set of problems as well as example videos
for how the model described below solves the differ-
ent trials please see: https://github.com/iyildirim/
stack-reconfiguration-problems

2Because several participants had trouble to successfully gener-
ate the trials 35–37, we will focus on the first 34 trials.

Discussion
Overall, we found that participants had no trouble doing

the task. There was considerable variance in how partici-
pants solved the different problems with some participants al-
most exclusively using one hand (if possible) and others being
more likely to use two hands to get to the target configuration.

Experiment 1 serves as a baseline to see how participants
actually interact with the physical scene. In Experiment 2,
we were interested to see how people mentally simulate the
way in which they would interact with the scene to get from
the initial to the final stack. If participants are able to men-
tally do this task, we would expect a close correspondence
between the judgments participants make based on their men-
tal simulation, and the actual behavior of participants in the
lab.

Experiment 2: Mental task
The goal of this experiment was to test whether partici-

pants can simulate how another person would interact with a
physical scene to get from A to B.

Methods
Participants 40 participants (Mage = 35,SDage =
14,Nfemale = 22) were recruited via Amazon’s crowd-
sourcing service Mechanical Turk. The experiment took
8.7 minutes (SD = 4.4) to complete and participants were
compensated at an hourly rate of 6.0$.
Stimuli The same pairs of initial and target stacks as Exper-
iment 1 were used, with the exception that both stacks were
presented on the screen side by side.
Procedure Participants saw two images side by side with the
left image showing the initial stack and the right image show-
ing the target stack (example pairs in Figure 1 except panel
B). They were instructed that “The image on the left shows
you the initial configuration of the blocks. The image on the
right shows you the configuration after the person interacted
with the blocks.” Their task was to judge whether the per-
son had used one hand or two hands to re-configure the stack.
They entered their response by adjusting a slider bar at the
bottom of the screen (see Figure 1). Then they clicked on
the “Continue” button to proceed to the next problem. The
different problems were presented in randomized order.
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Results
Figure 2 shows participants’ mean judgments for the differ-

ent problems. To assess how well participants’ mental sim-
ulations correspond with the actions that participants took in
the experiment, we compared the mean responses in Experi-
ment 2 with the proportion of participants who used one hand
in Experiment 1.

Overall, we found that participants’ judgments about how
many hands the person used correlated well with participants’
actual behavior in the lab, r = .73, p < .05. Whereas there
were many trials for which the correspondence between judg-
ments and actions was very high (e.g. Problems 1–6, or 21–
32), there were also situations in which actions and judgments
came apart. For example, in Problem 34 almost all partici-
pants in the lab used two hands, whereas online participants
believed that it was likely that a person would only use one
hand to re-configure the scene.

Model
The model consists of three components: (1) a set of ab-

stract motion primitives that can be composed to symbolic
plans for re-configuring an input stack to a target stack, (2) a
hierarchical kinematics-based optimization algorithm to find
manipulation trajectories conditioned on the symbolic plan,
(3) and a physics engine to evaluate the stability of the inter-
mediate stages produced by the execution of the manipulation
trajectories. The first two components of our model are based
on the logic-geometric programming framework (Toussaint,
2015).

Logic-geometric programming framework
The logic-geometric programming framework presents a

solution to problems of combined task and motion planning.
Such tasks involve sequential manipulation of a scene based
on a geometrically defined goal function. It utilizes symbolic
task descriptions as (in-)equality constraints within a hierar-
chical geometric solver to find full manipulation and object
trajectories starting from a coarse-level solution to eventually
fine-grained full-paths. Below, we present our representations
and an algorithm for symbolic planning as well as a general
outline of the geometric solver.
Symbolic plans Symbolic plans are sequences of a set of ab-
stract move types defined using actuators, movable objects
and fixed objects in a simulated world. The moves change
the state of the actuators and the movable objects. The world
is described as a linked list of fixed and movable objects with
relative world coordinates: the position and rotation of a child
object is defined relative to its parent.

In order to model our stack re-configuration tasks, we pop-
ulated the world with three movable objects (red block R,
green block G, and blue block B), and a fixed object (table T).
The world also includes a robotic body with arms and pincer
hands (actuators: handL and handR) overall consisting of 12
degrees of freedom (two at each shoulder, two at each wrist,
and two at each hand).

There are three types of moves: Grasp(Obj, Act) speci-

fies a grasp action with an actuator on a movable object. For
example, Grasp(R, handR) specifies a right hand grasp of
the red block. This move changes the position of the object to
inside in the actuator while clearing its previous location for
moving other objects. The symbolic planning stage doesn’t
take into account rotation of the objects or the actuators.

Place(Obj, Supp_Obj, Act) specifies any place action
that is not final of a movable object on another object using an
actuator. For example, Place(B, T, handL) specifies plac-
ing the blue block on the table using the left hand. This move
changes the position of the object (e.g., the red block) to be
on top of the support object (e.g., an empty location on top
of the table) while clearing its previous location. The rotation
again is not handled at the symbolic planning stage.

Fix(Obj, Supp_Obj, Act) specifies any place action
that is final of a movable object on another object using an
actuator. For example, Fix(G, R, handR) specifies final
fixation of the green block on top of the red block using the
right hand. This move changes the position of the object (e.g.,
the green block) to be on top of the support object (e.g., red
block) while clearing its previous location. Fix action is al-
ways final – the object isn’t moved after.

Given a pair of stack configurations as input, we wish to
find sequences of moves (symbolic plans) that transform the
initial stack to the target stack. We used Monte Carlo tree
search (MCTS) to find satisfying sequences by branching the
search tree using the three move types, the three objects, the
four support objects, and the two actuators. Our pruning al-
gorithm was efficient to a certain extent – for example, if an
object is already grasped, we did not branch the grasp move
on it again. We also imposed a condition to produce a spe-
cialized set of solutions which we labeled as the efficient set,
leaving the label inefficient for the universal set of solutions.
To produce the efficient set, we would only branch the search
tree to a Place(Obj,.,.) if the Fix(Obj,.,.) was not cur-
rently available for the block. We increased the maximum
length of move sequences until no new unique solutions could
be found.

After a sequence was deemed satisfactory, we assigned in-
tegral timestamps to each of the abstract moves that it is com-
posed of. These timestamps indicated the discrete-time val-
ues that an abstract move should be executed at. The assign-
ment was done in a way to allow the execution of as many
concurrent moves as possible. Of course, when a solution is
one-handed, only one move can be executed at a time, thereby
each abstract move must be assigned a separate timestamp.
However, with two-handed solutions, different blocks can be
concurrently actuated by different hands. Example symbolic
plans for a pair of initial and target stack configurations are
shown in Fig 3.

We assigned a complexity score to every symbolic solu-
tion generated, denoted si, j where i indexes problems and j
indexes its solutions. The score for a sequence is equal to the
discrete-time that this sequence takes to terminate.
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Figure 3: Illustration of how the model works. A: The model successfully went from the inital to the final configuration. B: The symbolic
plan for going from Step 1 to Step 2 using two hands. C: A more involved plan that requires 8 moves. D: Example of a scene where a plan
fails because it created an unstable configuration (as determined by the physics engine).

Geometric solver The geometric solver can be thought of as
compiling a symbolic plan to manipulation trajectories of ac-
tuators and movable objects. It is based on a hierarchical op-
timization procedure for combined task and motion planning
where the tasks come from the symbolic plan. Conditioned on
the symbolic plan, the geometric solver generates a number of
equality and inequality constraints that need to be met by the
optimization procedure. These constraints are solved using
an optimization package (k-order motion optimization frame-
work, KOMO Toussaint, 2014) that can handle long-distance
dependencies such as the dependencies between actuator and
object trajectories across time steps. Due to space limits,
we cannot provide any further the details of KOMO and the
logic-geometric programming framework (but see Toussaint,
2015, 2014). Snapshots of example manipulation trajectories
generated by this optimization procedure for a pair of initial
and target stack configurations are shown in Fig 3.

Physical stability inference

Because the geometric solver only considers kinematics
and not the physical dynamics of the scene, it can find so-
lutions that have physically unstable intermediate steps. In-

spired by (Battaglia, Hamrick, & Tenenbaum, 2013), we infer
whether a given intermediate configuration is stable by physi-
cally instantiating it in a physics engine (PhysX) and measur-
ing the total kinetic energy over a total simulation duration of
1 sec with a burn-in period of 100 msecs. We reject a solution
if the total kinetic energy exceeds an empirically determined
threshold of 0.1 joules.

Similar to the complexity score for the symbolic solutions,
we assigned an approximately metabolic cost score to every
full model solution found (that is, solutions after the physical
stability inference step), denoted fi, j where i indexes prob-
lems and j indexes its solutions. This score captures the ex-
tent to which a particular plan requires effort to execute. The
score starts with the symbolic complexity score, si, j, but adds
two more quantities: (1) an extra cost of 0.5 for moves involv-
ing multiple blocks (e.g., actuating–i.e., grasping, placing or
fixing– the red block while the blue block rests on top of it),
and (2) an extra cost of 0.5 for moves that result in an in-
termediate physically unstable configuration from which the
solver can recover to reach the correct stable configuration
(e.g., moving the yellow block while the red block is leaning
on it, and subsequently moving the red block).

3588



Figure 4: Scatter plots showing the relationship between different
versions of the model (columns) and participants’ actions in the lab
(top), or mental simulations online (bottom). Note: 1 = definitely
one hand, 0 = definitely two hands.

Simulations and results
In addition to our full model, we also considered a lesioned

model which leaves out the physical inference component.
We assume that people aim to reach their goal efficiently.
Hence, we assume that sequences with higher complexity
scores or metabolic costs are less likely to be chosen (in the
lab) or simulated (online) than those with lower complexity
scores or costs. For a given problem i, we obtain the probabil-
ity of choosing one-hand based on the symbolic complexity

scores in the following way ∑ j∈one−hand solutions e−si, j

∑ j∈all solutions e−si, j . This means

that the model is more likely to choose a one-hand solution
the lower the cost of one-hand solutions are relative to all pos-
sible solutions.For the full model, the probability of choosing
one-hand, Pr(One-hand), is calculated identically but using
the full model scores, fi, j.

Overall, we found that the model accounted well for the
data (see Fig. 4). In particular, we found that both physical
stability inferences and efficiency were necessary to account
for participants’ judgments in Experiment 2 (r = .74, com-
parisons to symbolic-efficient, symbolic-inefficient and full-
model-inefficient p < .05 using direct hypothesis testing with
the bootstrap samples).

Similarly, in Experiment 1, we found that physical stability
inferences were necessary to best explain participants’ behav-
ior (with r = .68 of the full model compared to r = 0.63 of a
model that doesn’t take into account efficiency). But we did
not find a statistical difference between using only the effi-
cient solutions versus all solutions (p = .06).

General Discussion
We presented a novel paradigm – the stack re-configuration

problems – and studied people’s solving these problems in the
laboratory (Experiment 1) and mentally simulating what they
think a person would do (Experiment 2). We found that par-
ticipants’ judgments about whether they think a person used
one or two hands to get from the initial to the target configu-
ration correlated well with participants’ actual behavior in the
lab.

In order to explain participants’ behavior, we developed
a computational model that flexibly combines a symbolic,
geometric, and physical representation of the scene. It effi-

ciently plans over this representation by first forming a sym-
bolic plan, trying to execute the plan using a geometric solver,
and then checking whether the plan was feasible by consult-
ing a physics simulation engine to make sure that each move
resulted in a physically stable configuration.

The full model accounts well for participants’ actions as
well as mental simulations. A model that does not take into
account the efficiency of different plans fares worse (partic-
ularly when trying to explain mental simulations). More-
over, it is crucial to consider how much effort different plans
would take into account well for participants’ actions and
judgments. Participants chose to use two hands only when
a one-hand solution would have required considerably more
effort.

A striking aspect of problem solving is that it demands
flexible systems that can operate with very little training op-
portunity, leading many researchers to emphasize the role of
common-sense reasoning and model-building as the building
blocks of human problem solving (Johnson-Laird, 2005). We
find such flexibility and data efficiency in stark contrast with
some of the main approaches to artificial intelligence today,
in particular to deep learning (Silver et al., 2016). These
approaches require huge amounts of data, yet their gener-
alization capacity is limited in contrast to human’s flexibil-
ity. Turning these data-hungry approaches to flexible prob-
lem solvers is a substantial challenge. This paper makes a
few (block) moves in this direction.
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Abstract

To avoid interference among similar memory traces it is re-
quired to form complex memory structures that include mul-
tiple components of the event, which helps one to distinguish
one event from another. In a laboratory setting, these complex
binding structures have been studied through a paradigm where
one has to form a memory structure that includes two items and
the context together (i.e., three-way binding). However, de-
spite the long history of the theoretical concept, its importance,
and the existence of the laboratory paradigm, three-way bind-
ing structures have only been examined in recall paradigms.
Moreover, not all memory models consider the ability to form
three-way binding structures as a default. Therefore, the cur-
rent study examined the use and formation of three-way bind-
ing structures in an associative recognition paradigm. Results
provide evidence that three-way binding structures are used
during recognition, which implies that it is critical for mem-
ory models to properly represent them.
Keywords: episodic memory; recognition; three-way binding

Introduction
LeSean McCoy is a running back in the National Football
League (NFL) who started his career with the Philadelphia
Eagles. After receiving several awards, and leading the team
to the conference finals two times, McCoy was traded with
Kiko Alonso, who was Buffalo Bills’ linebacker with an
“NFL Defensive Rookie of the Year” title. Knowing this fact,
how would one later recall which team McCoy was play-
ing before the trade? Even after restricting that there was
a trade between McCoy and Alonso, simply recalling which
team McCoy played for does not solve the answer since Mc-
Coy played for both the Eagles, and the Bills. Additionally
retrieving the team that existed in the pre-trade period also
does not help since both team existed before and after the
trade. The only way to correctly retrieve this information is
forming a coherent memory structure of [McCoy]-[Eagles]-
[pre-trade] together, and later using the two cues together at
retrieval (i.e., [McCoy] and [pre-trade]) as a compound cue.

Memory researchers call this kind of memory structure
a three-way binding structure (Humphreys, Bain, & Pike,
1989), and controlled laboratory experiments using recall
paradigms provide evidence that adults robustly form these
memory structures (e.g., Postman, 1964). Binding struc-
tures in memory research have been mainly studied using
a paired associate learning paradigm, where participants are

given (usually two) lists of paired words to study, and are later
tested. Especially the three-way binding structure could be
examined when the word pairs in one list are repaired in an-
other list (i.e., ABABr condition; Porter & Duncan, 1953). As
in the notation, in an ABABr condition the words in one list
(i.e., first two letters ‘AB’) are identical in the other list (i.e.,
second two letters ‘AB’) but paired differently (i.e., last letter
‘r’ representing that the words are re-paired). Therefore the
structure creates a strong interference between the two lists
when trying to retrieve a piece of memory as in the NFL trad-
ing example. To correctly retrieve which words were paired
in which list, one needs to use a three-way binding structure
that includes the context of a specific list, and the two words
together (e.g., [list 1]-[word 1]-[word 2]).

Correctly retrieving information from an ABABr condition
could be thought as an exclusive or (XOR) problem since the
arrangement of the ABABr condition is similar to the XOR
operation (Wiles & Humphreys, 1993). In the XOR opera-
tion, which is expressed by using the symbol Y, when zero
is operated with zero the answer is one (i.e., 0Y 0 = 1), and
zero operated with one is zero (i.e., 0Y 1 = 0). When one is
operated with zero the answer is zero (i.e., 1Y0 = 0), and one
operated with one is one (i.e., 1Y1 = 1). Considering the first
two terms as the cues at test (i.e., first term as the context, and
second term as the item cue), and considering the answer of
the XOR operation as the to-be-retrieved target, the process
of retrieving an answer from the ABABr condition becomes
identical to the XOR problem. The solution of the XOR has
been well known to be impossible within a two dimensional
plane that has independent inputs (e.g., Minsky & Papert,
1969), and could be solved by increasing the dimension of the
inputs such as using multiplicative (configural) coding of the
inputs (Sloman & Rumelhart, 1992). Similarly, the ABABr
condition could not be solved with a two-way binding struc-
ture, in fact not even with multiple two-way binding struc-
tures (e.g., Humphreys, Bain, & Pike, 1989), and requires a
higher dimensional representation such as three-way binding
structure.

Empirical evidence for the ability to form and use three-
way binding structures implies that our memory system
should be able to store three-way binding structures, and use
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compound cues when retrieving these structures. However,
not all theoretical accounts of episodic memory, and their
computational models consider three-way binding structures
as a default.

For example, the Search of Associative Memory (SAM;
Gillund & Shiffrin, 1984; Raaijmakers & Shiffrin, 1981) the-
ory does not consider three-way binding structures as a mem-
ory representation. The model assumes that memories are
stored as association strengths between two components such
as item and context, or item and item. Because these associa-
tions contain only two components, it is not possible to repre-
sent three-way bindings. On the retrieval side, SAM is unable
to use compound cues when multiple cues are provided dur-
ing retrieval. Rather it treats each cue independently and then
combines the retrieved information of each cue by seeking
overlapping information that are retrieved by each cue.

The Temporal Context Model (TCM) and its variants also
do not employ three-way binding structures (Howard & Ka-
hana, 2002; Lohnas, Polyn, & Kahana, 2015; Polyn, Nor-
man, & Kahana, 2009; Sederberg, Howard, & Kahana, 2008).
TCM employs a two-way binding between an item and the
current context representation, which are stored in a matrix
of item-context bindings. In TCM, the context is defined as
a weighted sum of all past items where more recent items
have a stronger weight in representing the current context.
These assumptions even hold when word pairs are studied
in a paired associate learning paradigm (e.g., Howard et al.,
2009). TCM resembles SAM in that the representational
structure is fundamentally restricted to two-way associations,
and therefore cannot represent three-way bindings without
extensive modification.

On the other hand, models that are capable of explain-
ing the use and formation of three-way binding structures
have slightly different assumptions. MINERVA 2 (Hintzman,
1984) encodes events as separate traces, in which context
and item representations are concatenated into a single vector.
Thus, items A (IA) and B (IB) in context 1 (C1) could be repre-
sented as C1⊕ IA⊕ IB. Recognition decisions in the model are
made by matching the cue vector to each memory trace and
summing the similarities to produce a single index of memory
strength that is then compared to a decision criterion.

MINERVA 2 is sensitive to three-way associations by
virtue of a non-linearity at retrieval, where the similarity be-
tween a cue and a stored trace vector is raised to the third
power. This enables the model to be more sensitive to con-
junctions among studied elements, rather than the individual
elements themselves. Consider if pairs A, B and C, D were
studied in context 1 and pairs A, C, and B, D were studied
in context 2. A foil such as C2 ⊕ IA ⊕ IB contains studied
elements, but these were not all studied together. After the
cubing process (increasing the similarity to the third power),
the target C1⊕ IA⊕ IB receives a stronger match than the sum
of the partial matches to C2 ⊕ IA ⊕ IB. Models in the Re-
trieving Effectively from Memory (REM; Criss & Shiffrin,
2005; Shiffrin & Steyvers, 1997) framework employ a sim-

ilar idea, where instead of a cubing process at retrieval the
likelihood of feature match is multiplied across each element
in the vector to calculate a likelihood ratio that the trace was
a studied item, producing stronger matches to conjunctions
of studied elements than studied elements distributed across
different memory traces.

The MATRIX model (Humphreys, Bain, & Pike, 1989;
Osth & Dennis, 2015; Pike, 1984) has a slightly different
assumption about its storage representation by using tensor
representations. Items and contexts are represented as vec-
tors and the vectors are bound together using outer products
to form a third-order tensor (i.e., C1⊗ IA⊗ IB ). Rather than
having individual traces for each event, the MATRIX model
sums all representations for each event into a single compos-
ite tensor. The tensor representation naturally allows the use
of compound cues during retrieval by forming a second-order
tensor (i.e., an outer product of an item and a context) to rep-
resent the compound cue. At retrieval, the cues are com-
bined into a tensor and matched against the memory tensor
using the dot product operation which produces a measure of
memory strength that reflects how similar the combined cues
match the contents of memory.

Interestingly, evidence for the use of three-way binding
structures have only been examined with cued recall tasks
(e.g., Porter & Duncan, 1953; Shimamura, Jurica, Mangels,
Gershberg, & Knight, 1995; Yim, Dennis, & Sloutsky, 2013)
where a context and an item is given at test as a cue to re-
call the paired item during study (e.g., what was the word
paired with ‘apple’ in ‘the first list’?). To our knowledge, no
recognition paradigm examined the use of three-way binding
structures. A number of studies have examined the role of
inter-item bindings in recognition memory by using an as-
sociative recognition task, where participants study pairs of
items such as A-B, C-D, and E-F in a single list. At test, par-
ticipants have to make discriminations between intact pairs,
which were studied on the list (e.g., A-B), and rearranged
pairs, which are studied items but in a novel arrangement
(e.g., C-F).

Moreover, associative recognition tasks with the ABABr
condition have been used in other studies with different pur-
poses (e.g., Aue, Criss, & Fischetti, 2012; Criss & Shiffrin,
2005; Postman & Stark, 1969). However, the design and goal
of the studies do not focus on the use of three-way binding
structures, mostly by not testing the word pairs from both
lists together. This is especially relevant because the role of
context has been generally neglected in models of associa-
tive recognition. For instance, the TODAM2 model of Mur-
dock (1997) did not bind context to inter-item bindings due to
an assumption that context was not employed in associative
recognition as it was not relevant to the goal of the task.

Therefore, the current study examined whether three-way
binding structures are used during recognition using a asso-
ciative recognition task with the ABABr condition. We con-
structed an ABABr condition by presenting pairs in different
contexts, such as A-B and C-D in context 1 and A-D and C-B
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in context 2. At test, participants are given a pair and a con-
text cue and asked if the pair occurred in the particular con-
text. Successful discrimination in ABABr conditions would
suggest a memory structure that is capable of representing
three-way bindings. Demonstration of such bindings in both
recognition and recall tasks would provide further evidence
that memory models need to consider such representations.

Experiment
The experiment tested whether people use three-way binding
structures in an associative recognition paradigm. In addition
to the ABABr condition, which requires a three-way bind-
ing structure for a correct recognition, we used an ABAC,
and ABCD condition. In the ABAC condition, as in the no-
tation, one item from each pair in the first context (i.e., A
in ‘AB’) overlap with an item from each pair in the second
context (i.e., A in ‘AC’) which results in a moderate overlap
between the two contexts compared to the ABABr condition.
At the minimum, it is required to form two two-way bind-
ing structures (i.e., item-to-item, and context-to-item) for a
correct retrieval (Humphreys, Bain, & Pike, 1989). Using
the same scheme, in the ABCD condition there are no over-
lapping items between the contexts which results in two con-
texts with unique items. Since there is no overlap between the
two contexts, a correct retrieval only requires a single item-
to-item binding at the minimum (i.e., item-item, or cue-target
binding). Therefore the level of overlap increases from the
ABCD condition to the ABABr condition. Moreover, a more
complex binding structure is required for a correct retrieval at
test as the level of interference increases. Previous studies us-
ing a recall paradigm showed a negative correlation with the
level of interference and performance (e.g., Yim, Dennis, &
Sloutsky, 2013). Therefore, the additional two conditions will
serve as a reference point for the performance on the ABABr
condition.

As part of the design, we defined context as the identity
of the speaker that presents the word pair instead of using the
temporal order of the ’list’ (i.e., first list, and second list) as in
previous studies. Embedding the context in the trial enables
us to intermix different context in the study phase, and pre-
vents the participants from using the temporal cue. A weak-
ness of previous ABABr designs which use two successive
study lists as their contexts is that the first list is naturally ex-
pected to have weaker memory strength than the second list.
This enables participants to infer that an item is from the first
list due to its weaker memory strength even with a two-way
binding structure (e.g., Lohnas, Polyn, & Kahana, 2015). By
eliminating the memory strength confound, our design en-
sures that participants require a three way binding structure
to achieve above chance performance in the task.

Methods

Participants Forty-three undergraduate students at The
University of Newcastle participated for course credit (36 fe-
males, M = 25.12 years, SD = 9.87).

Materials The stimuli were video clips of a speaker saying
a word. There were nine female and nine male speakers, and
each speaker had its own unique background scene (see Fig-
ure 1A). All words were high frequency words consisting of
54 adjectives, and 63 nouns. Most of the words were selected
from the MacArthur-Bates Communicative Development In-
ventory through the Wordbank repository (Frank, Braginsky,
Yurovsky, & Marchman, 2016).

Procedure Participants were tested individually in the lab-
oratory. There were nine blocks where each block had a study
phase followed by a retention interval and a test phase. In
the study phase, participants were told that they will be see-
ing two speakers each presenting different word pairs one at
a time. They were also told to exactly remember who said
which words together since they will be tested later. Each
trial started with a fixation cross for 500 msec followed by a
blank screen of 500 msec and a video clip presenting a word
pair, which lasted for approximately 3400 msec (see Figure
1B). In all blocks, one of the speakers was always a female,
and the other a male. Also, the video clips were presented
on one side of the screen throughout the experiment depend-
ing on the speaker’s sex (e.g., female on the left side, male on
the right side), but was randomized across participants. There
were eight trials in each study phase consisting of the ABCD,
ABAC, and ABABr structures (see Table 1 for an example).
The first word was always an adjective and the second word
was always a noun. The presentation order of the eight tri-
als corresponding for each structure were randomized every
block.

Table 1: An example of the eight trials in each study phase.
Each triplet in the Trials column represents the speaker’s sex
(M: male, F: female), first word (adjective), and second word
(noun) in order. There are four trials for the ABABr structure,
two trials each for the ABAC and ABCD structures.

Condition Trials

ABABr [M] – green – hand [F] – green – toy
[M] – hot – toy [F] – hot – hand

ABAC [M] – empty – cat [F] – empty – shoe

ABCD [M] – tall – rain [F] – quiet – ball

During the 60 second retention interval participants were
presented with two groups of dots on each side of the screen,
and were told to choose the side that had more dots. After
a 500 msec fixation (+++) the two groups of dots were pre-
sented for 250 msec followed by a random color dot mask,
which was presented until a response was made. The number
of dots varied between 10 and 40 where the ratio of the two
numbers were randomly chosen among the following range:
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Figure 1: Design and stimuli used in the experiment. (A) an example of the videos used in the experiment, (B) an example of
the study phase, (C) an example of the test phase.

1.0991-1.1915, 1.1915-1.2917, 1.3302-1.4421, and 2.2906-
2.4833 (adapted from Halberda & Feigenson, 2008).

In the test phase, participant were presented with a video
clip as in the study phase and were asked whether it was an
old video that they saw during the study phase (i.e., same
speaker saying the exact same word pair), or a new one
(see Figure 1C). Responses were collected using a computer
mouse by clicking the corresponding image on the screen.
There were 18 test trials consisting of eight old videos, eight
new videos that had the speaker swapped (re-arranged pairs),
and two new videos that had a new word pair spoken by the
female speaker and the male speaker (lure pairs). The words
in the lure pair did not appear in the study phase, and the trials
were randomized every block.

Presentation of all stimuli was controlled using MAT-
LAB with Psychtoolbox-3 (Kleiner, Brainard, & Pelli, 2007)
equipped with a 22 inch monitor, and an individual head-
phone. The combination of the word pairs, and speakers were
randomized across participants.

Results
We analyzed and compared each condition regarding hit rate
(HR), false alarm rate (FAR), d′, and correct reaction time
(RT). As shown in Figure 2A, HR was the highest for the
ABAC condition (M = .76, SD = .14) followed by the ABCD
condition (M = .71, SD = .15) and ABABr condition (M = .67,
SD = .11). A linear mixed-effects model1 with subject as a
random factor (random intercept model) supported the effect
of Condition (χ2(2) = 16.70, p < .001), while a Tukey post-

1All mixed-effects models here and hereafter were implemented
using the lmer4 package in R (Bates, Mächler, Bolker, & Walker,
2015), and all effects were calculated by a likelihood-ratio test
against the null-model that only had the random effect of subject
(random intercept model).

hoc test only provided evidence for the difference between
the ABAC condition and the other two condition (ABAC -
ABABr: p < .001; ABAC - ABCD: p = .057; ABCD -
ABABr: p < .001). Similarly, the FAR measured by the
re-arranged pairs was the highest for the ABABr condition
(M = .40, SD = .15) followed by the ABCD (M = .25, SD
= .16), ABAC (M = .23, SD = .15), and the lures (M = .17,
SD = .16; see Figure 2B). A linear mixed-effects model with
subject as a random factor supported the effect of Condition
(χ2(2) = 94.62, p < .001), while a Tukey post-hoc test pro-
vided evidence for the difference between the ABABr con-
dition and the other conditions (p < .001), and between the
lures and the ABAC (p = .046) and ABCD conditions (p =
.001). There was no evidence for a difference between the
ABCD and ABAC conditions. Unlike previous studies using
a recall paradigm, where the ABCD condition shows a bet-
ter performance than the ABAC condition, the current results
show a higher HR and lower FAR for the ABAC condition
than the ABCD condition.

We measured discrimination using d′ by comparing old
pairs against rearranged pairs (d′rearranged). As shown in Fig-
ure 2C the ABABr condition showed the lowest (M = .74,
SD = .64), followed by the ABCD condition (M = 1.30, SD
= .71), and ABAC condition (M = 1.53, SD = .80). Also,
all conditions showed an above chance performance (ts(42)
> 7.60, Bonferroni adjusted ps < .001, Cohen’s d > 1.16),
as evidenced by d′ scores above zero in each condition. A
linear mixed-effects model with subject as a random factor
supported the effect of Condition (χ2(2) = 59.12, p < .001),
while a Tukey post-hoc test provided evidence for the differ-
ence between the ABABr condition and the other two condi-
tions (ABAC: p < .001; ABCD: p < .001), and between the
ABAC and the ABCD condition (p = .028).
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Figure 2: Results of the Experiment. (A) hit rate (HR), (B) false alarm rate (FAR), (C) d′ of distinguishing the re-arranged
pairs from studied (old) pairs (d′rearranged), (D) d′ of distinguishing the lures from non-lures (d′lure), and (E) correct reaction time
(RT). Error bars represent ±1 SEM.

Discriminability of lures (new pairs) from intact pairs
(d′lure) was also calculated (see Figure 2D). The ABABr con-
dition showed the lowest d′lure (M = 1.49, SD = .73), followed
by the ABAC condition (M = 1.77, SD = .88), and ABCD
condition (M = 1.60, SD = .79), while all conditions showed
an above chance performance (ts(42) > 13.18, Bonferroni ad-
justed ps < .001, Cohen’s d > 2.01). A linear mixed-effects
model with subject as a random factor showed supported the
effect of Condition (χ2(2) = 17.87, p < .001), where evi-
dence for difference was found between the ABAC condition
and the other two conditions (Tukey post-hoc test, ABABr: p
< .001; ABCD: p = .022), but not between the ABABr and
ABCD conditions (p = .198).

RT was first pre-processed by taking the median value of
each condition for each participant. RT was the slowest for
the ABABr condition (M = 988 msec, SD = 299 msec) fol-
lowed by the ABAC condition (M = 974 msec, SD = 344
msec), and ABCD condition (M = 866 msec, SD = 267 msec;
see Figure 2E). A linear mixed-effects model with subject
as a random effect showed a statistically significant effect of
Condition (χ2(2) = 9.11, p = .011), where a Tukey post-hoc
test provided evidence for the difference between the ABCD
condition and the other two conditions (ABAC: p = .035;
ABABr: p = .015), but not between the ABAC and ABABr
conditions (p > .25).

General Discussion
In the current study we examined whether three-way binding
structures are formed and used in a recognition task. Even
though three-way binding structures are crucial in everyday
life since items could be easily re-paired in different contexts,
previous studies have only examined the structure with recall
paradigms. The results most importantly showed that par-
ticipants reliably use three-way binding structures during an
associative recognition task. Based on both d′rearranged , and
d′lure measures, participants showed robust above chance level
performance in the ABABr condition, which indicates that
three-way bindings were formed and used. The overall pat-
tern was similar to previous findings using recall tasks (e.g.,
Yim, Dennis, & Sloutsky, 2013) where the ABABr condition

showed above chance accuracy while less accurate than the
other two conditions, and required more time to respond due
to greater interference. Our results also extend on previous
studies by using two contexts that are inter-mixed within a
single list. Past studies which have employed two temporally
separated study lists allow for the possibility that participants
could infer list membership on the basis of a difference in
memory strength between the two lists.

One interesting difference from previous results was the
performance in the ABAC condition. Previous studies show
a better performance in the ABCD structure compared to
the ABAC condition since there are less interference in the
ABCD condition. However, the ABAC condition showed the
best performance in the current results. One possible expla-
nation could be a speed-accuracy trade off since it took longer
to respond in the ABAC condition than in the ABCD condi-
tion while the accuracy was higher. However, it will be hard
to disentangle the cause with only relying on the current data
set.

The evidence of using three-way binding structures in both
recall and recognition tasks implicate that models that do not
represent three-way binding structures should be re-examined
(e.g., Gillund & Shiffrin, 1984; Howard & Kahana, 2002;
Lohnas, Polyn, & Kahana, 2015). Our results also cast doubt
on the proposal that the associative recognition task does not
employ a context representation (Murdock, 1997). However,
future work may be needed to discriminate between the ex-
isting classes of models that are capable of predicting above
chance ABABr performance. For instance, our results do not
discriminate between multiple trace models such as MIN-
ERVA 2 (Hintzman, 1984) and REM (Shiffrin & Steyvers,
1997) which can predict above chance ABABr performance
by virtue of their non-linear similarity metrics at retrieval, and
the class of tensor models (Humphreys, Bain, & Pike, 1989;
Osth & Dennis, 2015) which employ explicit three-way bind-
ings as third-order tensors. Another interesting possibility for
future work concerns the time course of when three way bind-
ings are accessible. Although there are studies showing that
associative information arrives after information (e.g., Gron-
lund & Ratcliff, 1989), further research should examine these
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possibilities with three-way bindings.
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Abstract 

Situational interest is the positive affect and sustained attention 
triggered by particular contexts (Hidi & Renninger, 2006). 
Some studies show interesting information enhances learning 
while others find it hinders learning, producing the seductive 
detail effect. Limited evidence suggests the seductive detail 
effect is weakened if emotionally interesting information is 
relevant to main ideas. The present research shows the 
seductive detail effect occurs only under certain conditions. 
Harp and Mayer (1997) proposed that generating cognitive, 
rather than emotional, interest is more effective for improving 
learning by cueing relationships among concepts for easier 
processing. Hidi and Renninger (2006) argue distinguishing 
between the emotional and cognitive might be artificial. 
Present research found benefits from cognitive interest but no 
support as to whether cognitive interest is necessarily a distinct 
type of interest from emotional interest. There were some 
challenges with operationalizing cognitive interest, as well as 
validating strategies utilized to manipulate cognitive interest 
levels.  

Keywords: learning, instruction, situational interest, cognitive 
interest, seductive detail effect 

Introduction 

The idea of creating an interesting experience to enhance 

learning is at the forefront of educational issues, particularly 

with science, technology, engineering, and math (STEM) 

education and massive open online courses (MOOCs) 

(National Governor’s Association, 2011; Norman, 2013).  

However, ensuring that interesting features are not detracting 

from the primary instructional purpose is difficult. This 

challenge of mediating a desire for interest and engagement 

with the need to produce effective learning outcomes is 

mirrored in educational and cognitive psychology, with 

research finding contradictory or mixed results for increasing 

interest levels in students (Rey, 2012). 

Interest Learning Theory 

Empirical support exists for interest learning theory – the idea 

that the more interesting learning material is the more likely 

a student is to learn and remember the information (Ainley, 

Hidi. & Berndorff, 2002; Schiefele, 1991; Schraw, Bruning, 

& Svoboda, 1995). This is especially true when measuring 

elaborative processing and comprehension, rather than 

simple recall or recognition (Schiefele, 1991). Statistically 

significant correlations have been found between interest and 

text order choice, interest and positive affect regarding the 

text, affect and time spent reading, and ultimately between 

persistence and test scores (Ainley et al., 2002). This implies 

that students’ interests and enjoyment lead to more time and 

effort spent on a text, enabling them to learn more effectively.  

Interest is typically divided into three categories: 

individual, topic, and situational (Ainley, Hidi, & Berndorff, 

2002). Individual interest and topic interest, which both 

involve attributes of a person, are not considered here 

because the focus of the present research is to examine 

manipulations of learning material. Situational interest refers 

to environmental stimuli and the general structural features 

of a situation, such as organization of information, 

unexpectedness, text cohesion, use of concrete ideas, and 

intensity of triggered emotions (Ainley et al., 2002; Schraw 

et al., 1995). Situational interest is briefer in duration than the 

other forms of interest but is still characterized by positive 

affect and sustained attention toward the material. 

Seductive Details 

Not all research supports interest-based learning. Garner, 

Alexander, Gillingham, Kulikowich, and Brown (1991) 

found that efforts to artificially induce interest, particularly 

with extraneous details, divert the learner’s attention and 

reduce the ability to recall relevant information. They termed 

these interesting but distracting details “seductive.” These 

seductive details were highly memorable to participants on 

tests of learning compared to details that were of high 

importance but lower interest and also could lead to poorer 

recall and transfer scores (Harp & Mayer, 1991).  

 In a meta-analysis of findings on seductive details, nearly 

two-thirds of the studies included in the analysis supported 

fully or partially the detrimental effects of seductive details 

(Rey, 2012). The data in aggregate appear to demonstrate up 

to a small to medium effect size (d = 0.3) for the reduction in 

recall and a medium effect size (d = 0.48) for transfer of 

knowledge tasks.  

Still one-third of the experiments seductive details did not 

hurt and sometimes even improved learning (Rey, 2012). 

These studies show that particular types of interesting detail, 

the learning domain, time limits, and amount of cognitive 

load can temper the distracting effects of seductive details. 

One example of how mitigating factors result in mixed data 

comes from the study by Garner et al. (1991). Researchers 
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found that moderately relevant and moderately interesting 

details were recalled more frequently by participants. 

Although the most important details, which were rated 

uninteresting, were not remembered as well, the finding that 

some of the germane details could be recalled if considered 

interesting gives interest learning theory some merit.  

Studies considering illustrations that accompany text 

indicate that relevance is the key difference in determining 

whether details enhance or reduce learning. In the case of 

reading text, purely decorative illustrations do not benefit the 

understanding of the content of the text, but illustrations that 

depict the information, help to organize or interpret 

information, or provide memory devices for learning can 

moderately benefit the retention of that information (Carney 

& Levin, 2002). Any lack of enhanced learning with purely 

decorative images could possibly be moderated by other 

variables, such as the learner’s prior knowledge (Magner, 

Schwonke, Aleven, Popescu, & Renkl, 2014). While 

decorative illustrations that incite situational interest can 

distract learners with little prior knowledge, illustrations can 

enhance learning for students with more prior knowledge. 

Cognitive Interest 

Instead of adding emotional interest with seductive details, 

Harp and Mayer (1997) suggest using cognitive interest as an 

alternative way to enhance learning. Harp and Mayer argue 

that emotionally interesting seductive details do little to help 

cognitively. To generate cognitive interest, instruction on a 

topic should signal the underlying structure of relationships 

of relevant concepts. Such strategies would include 

identifying main ideas, relating information to prior 

knowledge, and linking related topics. The idea is that, if 

topics are presented in a way that learners find easier to 

understand, the topics will seem more interesting. When 

comparing performance on both recall and problem-solving 

transfer, Harp and Mayer (1997) found that students scored 

higher marks if using text and illustrations that helped to 

organize and explain a topic (i.e. cognitively interesting 

details) than if the text and illustrations included extraneous, 

irrelevant content (i.e. seductive details).  

A criticism of cognitive interest comes from a 

neuroscientific perspective (Hidi & Renninger, 2006). 

Separating affective from cognitive processes and, therefore, 

emotional from cognitive interest is arguably an artificial 

distinction because of the function of the lateral 

hypothalamus. The lateral hypothalamus plays a major role 

in seeking behavior and is responsible for inducing feelings 

of interest and curiosity (Panksepp, 1998). Hidi and 

Renninger (2006) claim that, regardless of the stimulus that 

triggers interest or regardless of whether the person is 

cognitively processing or affectively responding to the 

stimulus, the lateral hypothalamus is activated in the brain.  

Current Investigation 

The present study focused on multimedia, specifically 

educational videos. Video was selected as the educational 

medium because it would be more directly applicable and 

relevant to the growing use of technology in the classroom 

with MOOCs and other online formats. Participants in all 

conditions watched a video on human digestion that varied 

by condition.  

 

Relevance of Interesting Details The purpose of the main 

study was twofold: to explore the mitigation of the seductive 

detail effect through increased relevance of interesting details 

to main ideas and to examine the distinction between 

cognitive and emotional interest.  

Many of the previous studies have measured learning by 

using free recall after learners had been exposed to the 

learning material (Garner et al, 1991; Harp & Mayer, 1997; 

Harp & Mayer, 1998; Schiefele, 1991; Schraw et al., 1995).  

Free recall might not account for prior knowledge sufficiently 

or for variables, such as writing abilities or motivation to 

write large amounts of text, that could affec performance 

(Schiefele, 1991). Due to this possibility that free recall alone 

could be an insufficient measure, a post-test score also 

measured learning. A pretest score was used to explore the 

possibility of prior knowledge as a covariate for the 

experimental groups. Both the pre- and post-test consisted of 

multiple choice, fill-in-the-blank, and short answer questions, 

but the questions were different for the two forms. Some of 

the questions asked students to identify a concept through 

recall or recognition while other questions measured required 

students to explain causal relationships and make inferences. 

The variety of questions was used to overcome any potential 

issues with using only free response or essay questions.  

By creating situational interest with statements that were 

emotionally engaging but less similar to the main idea of the 

video, the study was expected to replicate the findings of 

seductive detail effect researchers (Garner et al., 1991; Harp 

& Mayer, 1997; Mayer et al., 2008; Rey, 2012). However, 

performance was predicted to improve with emotionally 

interesting details if relevance to the content of the videos 

was controlled. When the interesting details did not contain 

less relevant additional information, but instead contained 

similar information as the main idea, the distracting effect 

seen with seductive details was not expected to be found.  

 

Distinguishing Emotional and Cognitive Interests The 

second aim of this research was to examine whether 

emotional interest and cognitive interest are separate 

constructs. The distinction between cognitive and emotional 

aspects contradicts the definition of interest, which 

necessitates both affective and cognitive changes. Therefore, 

the phrase “cognitive interest” is used in the remainder of this 

document to refer to interest incited by strategies used by 

Harp and Mayer (1997) emphasizing the cognitive processes 

of interest. “Emotional interest” will refer to strategies 

emphasizing affective processes, as exemplified by most 

interest learning researchers, such as Schiefele (1991). The 

use of “cognitive interest” and “emotional interest” does not 

indicate necessarily a true differentiation between the 

cognitive and emotional processes of interest.  
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For the possibility to remain that emotional interest and 

cognitive interest are indeed the same phenomenon, as 

proposed by Hidi and Renninger (2006), there should not be 

any interactive effects with emotional interest conditions and 

cognitive interest conditions. Lack of interaction, however, 

would not necessarily indicate that cognitive and emotional 

interests are undeniably the same, but the hypothesis that they 

are the same would remain tenable. On the other hand, the 

presence of significant interactions possibly would suggest 

they are indeed different phenomena. Due to the evidence 

from Harp and Mayer (1997), learning outcomes were 

expected to demonstrate an interactive effect. Learning was 

predicted to improve with more cognitive interest compared 

to conditions with low interest material or material with 

seductive details by increasing the efficiency of processing 

the material. However, when there was emotionally 

interesting material that was also relevant to the learning 

material, adding cognitive interest should not produce any 

additional benefits relative to what was already provided by 

details that were emotionally interesting and relevant. 

Methods 

Participants were 93 undergraduates in introductory 

psychology courses. The experiment was a 3 x 2 factorial 

design with six videos total – one for each condition. Students 

were randomly assigned to each of the six conditions (Table 

1).   One hour-long session was required per participant. 

Table 1: Participants in each experimental condition. 

 
 Emotional Interest 

Low Relevant Irrelevant 

(Seductive Details) 

Low Cognitive 

Interest 16 16 16 

High Cognitive 

Interest 15 15 15 

 

During the experimental session, students completed a 

preliminary questionnaire and an exit questionnaire. The first 

questionnaire given before the video viewing contained basic 

demographic questions including age, year in school, major, 

GPA, and SAT scores; Likert-type items regarding interest 

levels on science, biology, and anatomy; and a prior 

knowledge assessment. The exit questionnaire completed 

after viewing that video was divided into two sections. The 

first section repeated the same Likert-type items from the 

preliminary questionnaire and included a free response 

prompt. The final section contained items about the content 

of the learning material. One such item was: “True or false: 

Chemical digestion begins in the mouth.” Thirteen of the 

post-test questions required students to recall or recognize 

information presented directly in the videos. Twelve of the 

items required students to make inferences based on the 

information presented in the videos. The tests were piloted to 

determine validity and appropriate levels of difficulty.  

Videos ranging from 11.5 to 12 minutes in length and 

involving screen capture and narration were used in each of 

the six conditions. The types of illustrations that were used in 

the screen capture for all conditions were representational 

pictures. Representational pictures are those that simply 

depict the concepts being described in the audio but do not 

provide any type of organizational support for the concepts 

(Carney & Levin, 2002). Three of the videos did not include 

any features that would add cognitive interest and 

manipulated only the amount and relevance of emotional 

interest. The first of these three videos for the low cognitive 

interest conditions contained only basic facts about human 

digestion and served as the control (Table 2). In the highly 

relevant emotional interest condition, the video narrative 

supplemented the information in the control video with facts 

that had been rated as more interesting and more relevant to 

the main ideas in a previous pilot study. The video for the 

irrelevant emotional interest condition – or the seductive 

detail condition – included anecdotes and facts that had been 

rated interesting but less relevant to the video’s main idea.  

Table 2: Sample texts from video scripts. 

 

Control 

Relevant 

Emotional 

Interest 

Irrelevant Emotional 

Interest  

(Seductive Details) 

In addition to 

producing bile, the 

liver functions to 

filter your 

bloodstream, store 

some vitamins and 

minerals, and help 

to breakdown 

some of the excess 

hormones in the 

blood. 

Because its bile-

producing and 

blood-filtering 

jobs are so 

important, the 

liver is the 

largest human 

organ by weight 

and regenerates 

all its cells 

within 30 days. 

The liver produces 

bile and filters the 

blood. Because there 

is a shortage of 

donors and a great 

need for donated 

organs, researchers 

are experimenting 

with 3D-printed 

livers for use in  

transplant patients. 

 

A second set of videos used the same scripts as the previous 

set emotional interest videos but also included explanative 

summaries to provide cognitive interest. Explanative 

summaries were used in the study by Harp and Mayer (1997) 

to create cognitive interest. These explanative summary 

paragraphs of 3-6 sentences highlighted major components of 

the human digestive system, important steps involving these 

components, and some of the causal processes that occur. 

Because all the information was presented aurally, the 

explanative summaries were also presented through narration 

at 6 different points within each video.  

Learning was measured with a free recall exercise and a 

post-test. For the free recall assessment, participants were 

instructed to write everything they could remember from the 

video about the digestive process. Raters awarded a point for 

each complete and correct statement and 0.5 points for a 

partially correct or partially complete statement. The free 

recall assessments were scored by the researcher and a second 

rater. The interrater reliability for the scores was calculated 

to be α = 0.96. For the pre- and post-tests, raters deducted a 

point for incorrect answers. No partial points were deducted. 
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The raw score was then converted to a percentage score for 

the post-test. The free recall score was not converted to a 

percentage because it is scored on a basis of accumulating 

points, unlike post-tests scored on a point-deduction basis. 

Even if an attempt was made to convert recall scores to 

percentages, comparisons would have been difficult with 

mean recall scores around 12% and mean post-test scores of 

57%. Comparing patterns of results across the 2 dependent 

measures, rather than considering comparably scaled means, 

was more important to underscore the reasons for conflicting 

results in previous studies.  

Results and Discussion 

For the free recall exercise, SAT math scores (F = 5.92, p = 

0.02), pre-test scores (F = 8.54, p < 0.01), and biology interest 

levels (F = 7.13, p = 0.01) were found to covary significantly 

with free recall scores. Pre-test scores (F = 10.66, p < 0.01) 

and interest in biology (F = 7.87, p = 0.01) also significantly 

covaried with the post-test scores. Once the indicated 

covariates were considered, MANCOVAs show main effects 

for both cognitive (F = 9.32, p < 0.01) and emotional (F = 

4.65, p = 0.02) interest for free recall. A significant main 

effect for only cognitive interest (F = 4.44, p = 0.04) resulted 

for the post-test scores. Interactions were not significant for 

either the free recall scores (F = 0.65, p = 0.53) or post-test 

scores (F = 0.30, p = 0.74).   

The results replicate the findings on cognitive interest of 

Harp and Mayer’s 1997 study (Figure1). Compared to the 

conditions without cognitive interest, participants learning 

from the high cognitive interest materials had higher free 

recall (M = 8.52, SD = 4.82) and post-test scores (M = 59.02, 

SD = 16.95) when compared to free recall scores (M = 6.84, 

SD = 3.40) and post-test scores (M = 55.83, SD = 17.66) of 

those in the control condition (Figures 2 and 3). 

Such results support the idea that material that is easier to 

process for learning also provides some level of situational 

interest – cognitive interest being a form of situational 

interest – and contributes to improved learning. One possible 

problem with this interpretation, however, is that adding 

explanative summaries to create cognitive interest 

consequently added a second opportunity to hear information 

that was being presented in the videos. Repeated exposure to 

learning material can improve performance on immediate 

recall (Tulving, 1967). Further studies investigating whether 

the improvement in learning can be attributed to the 

frequency of exposure or to the cognitive interest that arises 

from the clarity of organization and concepts is necessary. 

 

                  

Figure 1: Effects of adding explanative summaries for cognitive interest on free recall scores and post-test scores.  

 

                 

Figure 2: Effects of relevance of interesting material on free recall scores and post-test scores.
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The results for emotional interest and the relevance of 

emotionally interesting details were mixed. Pairwise 

comparisons with Sidak-adjusted p values were statistically 

significant when comparing free recall results between the 

control groups and the seductive detail group (t = 2.80, p = 

0.02) (Figure 2). The control group’s scores (M = 8.10, SD = 

5.38) were greater on average than the scores for the 

seductive detail condition (M = 7.00, SD = 3.77). This result 

lends additional support to the seductive detail findings of 

Garner et al. (1991), Harp and Mayer (2006), and Mayer et 

al. (2008). Details in learning material that are not relevant to 

the main learning object appear to be harmful for learning 

when learning is measured by the ability to recall 

information. However, there were no other significant 

differences (t = 2.00, p = 0.15) between the control and the 

relevant interest groups (M = 7.85, SD = 3.24) or between the 

seductive detail and relevant interest groups (t = 2.00, p = 

0.74). These results could suggest that, while relevant 

emotional interest can compensate for any distracting aspects 

of seductive details, the amount of interest generated in the 

relevant emotional interest condition is not enough to be 

advantageous compared to low-interest learning material. 

However, due to the null results for relevant interest, making 

any conclusive statements is difficult. 

Perhaps any effects of including such emotionally 

interesting information would have impacted affective states 

more so than cognitive processes. Further work using a 

variety of strategies to measure affect and cognition is 

necessary to determine what effects these details have.  

As predicted, the format of assessment appears to affect the 

measure of learning outcomes (Figure 2). Recall assessments 

consisting of writing paragraphs tend to be more difficult to 

write, require more information to be encoded, and produce 

worse scores compared to assessments that rely on 

recognition (Tversky, 1973). Because the post-test questions 

relied on a combination of both recall and recognition items 

requiring only short answers or marking answer selections, 

the detrimental effects of seductive details were no longer 

observed. No discernible effects (F = 1.03, p = 0.37) were 

found for overall post-test scores across the control (M = 

56.77, SD = 19.33), relevant emotional interest (M = 58.45, 

SD = 14.78), and seductive detail (M = 56.90, SD = 18.00) 

conditions. The difference between the free recall results and 

the post-test questionnaire could imply that seductive details 

are more harmful when deeper encoding is required. In 

contrast, when less encoding is needed for recognition tasks, 

seductive details seem to have less of an impact.  

 

       

Figure 3: Effects of relevance of interesting material on free recall and post-test scores with and without cognitive interest. 

 

Because interactions between cognitive and emotional 

interest were not statistically significant (Figure 3), the 

current study was unable to provide any further support to the 

idea that the two phenomena are distinct constructs. Firstly, 

the F values (F = 0.65, p = 0.53 for free recall; F = 0.30, p = 

0.74 for post-test scores) were less than one for the 

interactions, suggesting other variables at play that could 

cause the relationships to appear nonlinear and lead to F 

values smaller than 1. Secondly, Hidi and Renninger’s (2006) 

proposal that emotional and cognitive interests are part of the 

same construct remains tenable, as does Harp’s and Mayer’s 

(1997) idea that a dichotomy exists. However, reassessing the 

premise of the Harp and Mayer study (1997) provides some 

indications as to why finding a distinction would be difficult 

using their methods. While the positive results found by Harp 

and Mayer (1997) seemed promising for learning based on 

cognitive interest, the separation between cognitive and 

emotional interest is problematic. Interest is defined as 

having both affective and cognitive dimensions, according to 

Hidi and Renninger (2006). To distinguish the two 

components would suggest that either an entirely different 

construct is being studied or that an essential component was 

neglected when interpreting the results of the study.  

The latter possibility could be the case for the Harp and 

Mayer study (1997).  When participants were asked to rate 

how interesting the learning material was, the average rating 

for the passage containing cognitively interesting details was 

not significantly different from the passage with emotionally 
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interesting details, showing that both passages were enjoyed 

equally. The interest ratings in all the conditions were greater 

than 7 out of a possible 10 points. These results demonstrate 

that positive affect was experienced in the cognitive interest 

conditions equal to that in the emotional interest conditions. 

Even though the researchers conducted a subsequent 

experiment to have participants distinguish interest based on 

“entertainment” as an approximation of emotion and interest 

based on how much the text supported the learner’s 

understanding, participants initially interpreted “interest” as 

encompassing both these dimensions. Due to the 

questionable premise of manipulating only cognitive 

components of interest, in addition to the previously 

discussed problems of repeated exposure with explanative 

summaries, finding nonsignificant results for the interaction 

between emotional interest and cognitive interest is 

unsurprising. 

Conclusion 

Although positive results for relevant interesting details and 

negative results for seductive details were expected, 

statistically significant differences were found only for 

seductive details. The seductive detail effect, however, did 

not appear with the post-test and could indicate that irrelevant 

details are problematic only when recall tasks require more 

encoding.  

The current study was unable to demonstrate a distinction 

between the constructs of emotional and cognitive interest. 

Therefore, the lack of significant results for any interactive 

effects should not be interpreted as indicating that the two 

constructs are the same or different. 

The difficulty in developing appropriate manipulations and 

measures serve to emphasize the importance of careful 

planning in the design of instructional material. Generating 

interest and possibly the right type of interest to increase 

learning outcomes is a challenge. The results of this 

experiment and the both corroborating and conflicting results 

in the literature illustrate the need for intentionality in the 

development of learning content. Failure to make the 

appropriate considerations can lead to unintended results or 

no effects for the attempts made to improve instruction.  

There remains a need for a more substantive basis for 

beliefs that interest is a necessary motivating factor for 

learning. Additional studies with improved materials are 

needed to further explore whether the relevance of high-

interest materials can mitigate the detrimental effects of 

seductive details and support interest learning theory. Finding 

more empirical evidence would support popular 

recommendations for stimulating interest in improving 

educational outcomes, especially for STEM subjects 

(National Governors Association, 2011). There would even 

be value to adding to a possible foundation for creating 

guidelines on how to select interesting information that is 

appropriate for a learning purpose, particularly with 

multimedia. If learning improvements cannot be consistently 

found, then perhaps this can deter misguided efforts in 

encouraging instruction that is interesting but ineffective. 

Acknowledgments 

Much gratitude is given to Frank Durso and Paul Verhaeghen 

for their guidance, patience, and support. 

References  

Ainley, M., Hidi, S., & Berndorff, D. (2002). Interest, 

learning, and the psychological processes that mediate their 

relationship. Journal of Educational Psychology, 94(3) 

545-561. 

Carney, R. N., & Levin, J. R. (2002). Pictorial illustrations 

still improve students' learning from text. Educational 

Psychology Review, 14(1), 5-26. 

Garner, R., Alexander, P.A., Gillingham, M.G., Kulikowich, 

J.M., & Brown, R. (1991). Interest and learning from text. 

American Educational Research Journal, 28(3), 643-659. 

Harp, S. F., & Mayer, R.E. (1997). The role of interest in 

learning from scientific text and illustrations: On the 

distinction between emotional interest and cognitive 

interest. Journal of Educational Psychology, 89 (1), 92-

102. 

Hidi, S., & Renninger, K.A. (2006). The four-phase model of 

interest development. Educational Psychologist, 41(2), 

111-127. 

Magner, U. I., Schwonke, R., Aleven, V., Popescu, O., & 

Renkl, A. (2014). Triggering situational interest by 

decorative illustrations both fosters and hinders learning in 

computer-based learning environments. Learning and 

Instruction, 29, 141-152. 

Mayer, R. E., Griffith, E., Jurkowitz, I.T.N., & Rothman, D. 

(2008). Increased interestingness of extraneous details in a 

multimedia science presentation leads to decreased 

learning. Journal of Educational Psychology: Applied, 

13(3), 329-339. 

National Governors Association. (2011). Building a Science, 

Technology, Engineering, and Math Education Agenda: 

An Update of State Actions. Washington, DC: NGA Center 

for Best Practices. 

Norman, D. (2013, October). MOOCs and Online Education. 

Seminar presented at the Georgia Institute of Technology 

GVU Brown Bag, Atlanta, GA. 

Panksepp, J. (1998). Affective neuroscience: The 

foundations of human and animal emotions. New York: 

Oxford University Press. 

Rey, G.D. (2012). A review of research and a meta-analysis 

of the seductive detail effect. Educational Research 

Review, 7(3), 216-237. 

Schiefele, U. (1991). Interest, learning, and motivation. 

Educational Psychologist, 26(3-4), 299-323. 

Schraw, G., Bruning, R., & Svoboda, C. (1995). Sources of 

situation interest.  Journal of Reading Behavior, 27(1), 1-

17.  

Tulving, E. (1967). The effects of presentation and recall of 

material in free-recall learning. Journal of Verbal Learning 

and Verbal Behavior, 6, 175-184. 

Tversky, B. (1973). Encoding processes in recognition and 

recall. Cognitive Psychology, 5(3), 275-287. 

3601



“I won’t lie, it wasn’t amazing”: Modeling polite indirect speech
Erica J. Yoon, Michael Henry Tessler, Noah D. Goodman and Michael C. Frank

{ejyoon, mtessler, ngoodman, mcfrank}@stanford.edu
Department of Psychology, Stanford University

Abstract
Why are we polite when we talk to one another? One hypoth-
esis is that people expect others to choose what to say based
on their goals both to transfer information efficiently (an epis-
temic goal) and to make the listener feel good (a social goal).
In our previous work, we found that when these two goals con-
flict, they sometimes produce white lies. In the current work,
we expand on this theory to consider another prominent case of
polite speech: indirect remarks using negation (e.g., “It wasn’t
amazing”). With minimal extensions from our previous frame-
work, our formal model suggests that a pragmatic speaker will
produce more indirect remarks when the speaker wants to be
informative and seem considerate at the same time. These
predictions were borne out in a language production experi-
ment. These findings suggest that the conflict between social
and epistemic goals can account for a broad range of politeness
phenomena.
Keywords: Politeness; computational modeling; communica-
tive goals; pragmatics

Introduction
Language users hear and produce polite speech on a daily
basis. Adults and even young children spontaneously pro-
duce requests in polite forms (Axia & Baroni, 1985; Clark
& Schunk, 1980), and speakers use politeness strategies even
while arguing, preventing unnecessary offense to their inter-
actants (Holtgraves, 1997). But being polite conflicts with
one important goal of cooperative communication: exchang-
ing information efficiently and accurately (Grice, 1975). Peo-
ple tell white lies (“Your new dress is gorgeous!”) and pro-
duce indirect speech that is longer and more nuanced than the
simplest form of their intended message (“I don’t think that
dress looks phenomenal on you” as opposed to “It looks ter-
rible”) to make others feel good. Speakers risk potential loss
of their intended message (indirect speech), intentionally con-
vey wrong information (lies), and suffer inefficiencies – all in
the service of being polite. If information transfer were the
only currency in communication, politeness would be both
infelicitous and undesirable.

A cooperative speaker, however, can be imagined as one
with both an epistemic goal to improve the listener’s knowl-
edge as well as a social goal to minimize potential damage to
the hearer’s (and the speaker’s own) self-image, called face
(Brown & Levinson, 1987). If the speaker’s intended mean-
ing contains no threat to the speaker or listener’s face, then the
speaker will choose to convey the meaning in an explicit and
efficient manner (putting it “on the record”). As the degree
of face-threat becomes more severe, however, a speaker will
choose to be polite by producing more indirect utterances.

Inspired by this set of ideas, we have argued that listeners
think about polite speech as reflecting a tradeoff between two
goals: information transfer (which we called epistemic util-
ity) and face-saving (social utility; Yoon, Tessler, Goodman,

& Frank, 2016). A speaker with a high weight on social util-
ity will try to save her listener’s face: She hides or risks losing
information in her intended message by making her utterance
false to some degree. On the other hand, a speaker with a
high weight on epistemic utility prioritizes truthfulness and
informativity, and she may risk a loss of the listener’s (or the
speaker’s own) face. These ideas were formalized in a model
of pragmatic language understanding, building on the Ratio-
nal Speech Act (RSA) theory (for a review, see Goodman &
Frank, 2016). We tested the polite RSA model (pRSA) by ex-
amining white lies. The model captured human participants’
inferences about a speaker’s goals given her utterance (e.g.,
saying a good talk was “amazing” implies that she is being
nice) and about the true state of the world given a speaker’s
goal (e.g., saying “good” may mean the talk was only okay if
the speaker wanted to be nice).

In the current work, we extend our framework to another
polite speech act: indirect speech. White lies are produced
when a speaker tries to save the listener’s face by stretch-
ing the truth. But instead of lying, people sometimes try to
be polite by being more indirect. Through indirect speech,
a speaker can express meaning that is different from the lit-
eral meaning of the utterance (Searle, 1975). In this work, we
focus on negation (“not”), which has the potential to be in-
direct. For instance, “Mark isn’t the cleanest person I know”
may suggest that the speaker thinks Mark is unclean (inferred
meaning) rather than not being the person who has the great-
est degree of cleanliness (literal meaning). Negation can be
used as a hedging or mitigating device to address an undesir-
able state that is face-threatening to the addressee (Brown &
Levinson, 1987; Grice, 1975).

What may lead a speaker to produce indirect remarks? An
indirect remark may be motivated by the speaker’s goal to
convey some face-threatening information, while being seen
as a polite person who avoids threatening others’ face. In our
previous work, we described a pragmatic listener that jointly
inferred the true state and the goals of the speaker. Build-
ing on this model, we describe here a speaker whose goal is
to lead this pragmatic listener to infer the true state and at-
tribute to the speaker certain goals (e.g., face-saving). For
instance, “It wasn’t amazing” does not preclude the possibil-
ity that the presentation was bad, and may in fact be prag-
matically strengthened to mean that it was actually bad. Yet
because the speaker does not choose the more direct “It was
bad”, the listener will infer a face-saving goal. Thus saying
“It wasn’t amazing” can accomplish the goal of conveying
that the presentation was bad while the speaker is seen as not
wanting to make the listener feel bad. On the other hand, if
the speaker does not care about being seen as face-saving,
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she will produce less indirect speech. Further, if the presenta-
tion was actually good, or even decent, the speaker will pre-
fer to produce a directly positive remark (“It was good”) in
either case. Thus we predict more indirect speech when the
true state is bad, and an interaction with the speaker’s desire
to both be informative and be seen as wanting to save face.
In what follows, we derive our hypotheses using our formal
model and present an empirical test of the hypotheses.

Computational Model
In the current work, we introduce a minimal extension to our
previous RSA model (pRSA; Yoon et al., 2016) to allow for
speaker production of indirect remarks using negation.

Polite RSA
RSA models assume speakers choose utterances approx-
imately optimally given a utility function (Goodman &
Stuhlmuller, 2013). pRSA posited that the speaker’s utility
function can be decomposed into two components. First,
epistemic utility (Uepi) refers to the standard, informative
utility in RSA: the amount of information a literal listener
(L0) would still not know about world state s after hearing
a speaker’s utterance w. Second, social utility (Usoc) is the
expected subjective utility of the state inferred given the ut-
terance w. The expected subjective utility is related to the
intrinsic value of the state, and we use a value function (V )
to map states to subjective utility values. This captures the
affective consequences for the listener of being in state s. Fi-
nally, some utterances might be costlier than others. The util-
ity of an utterance subtracts the cost c(w) from the weighted
combination of the social and epistemic utilities.

U(w;s; β̂) = βepi · ln(PL0(s |w))+βsoc ·EPL0 (s|w)
[V (s)]−C(w)

The speaker (S1) in pRSA chooses utterances w softmax-
optimally given the state s and his goal weights β̂. The prag-
matic listener (L1) jointly infers the state s and the utility
weights of the speaker, βepi and βsoc (Goodman & Lassiter,
2015; Kao, Wu, Bergen, & Goodman, 2014).

PL1(s, β̂ | w) ∝ PS1(w | s, β̂) ·P(s) ·P(β̂) (1)

PS1(w | s, β̂) ∝ exp(λ1 ·E[U(w;s; β̂)]) (2)
PL0(s | w) ∝ [[w]](s) ·P(s) (3)

Within our experimental domain, we assumed there were
five possible states of the world corresponding to the value
placed on a particular referent (e.g., rating deserved by the
presentation the speaker is commenting on, akin to a Yelp rat-
ing): S = {s1, ...,s5}. We assume a uniform prior distribution
over possible states of the world. The states have subjective
numerical values V (si) = α · i, where α is a free parameter.
[[w]](s) corresponds to the lexical meaning of the utterance w
(e.g., “good”) when applied to state s. We gather independent
ratings for these literal meanings.

Extensions to pRSA
We build on pRSA by adding negative utterances and mod-
eling a more sophisticated speaker. First, we extend the ut-
terance alternatives to include negation. Previously we con-
sidered five possible utterances: {It was terrible, bad, okay,
good, and amazing}, all direct assertions of specific states
(e.g., “It was amazing” would be true for the state of 5 but
untrue for the states of 1 or 2). Now the speaker may say, {It
wasn’t terrible, bad, okay, good, and amazing}. These utter-
ances indirectly address the referent by negating certain state.
We assume that it is more costly to say utterances with nega-
tion, which makes the utterance morphemically longer and
is harder to process (Clark & Chase, 1972). In our full data
analysis, we put a prior on this negation cost parameters and
infer its likely values from the data.

Most importantly, we extended the recursive reasoning in
the model. For our experiment, we consider the pragmatic
speaker (S2) who chooses an utterance based on the pragmatic
listener model (Eq. 1), thinking about the state as well as goal
weights that the pragmatic listener will infer.

PS2(w | s, β̂) ∝ exp(λ2 · ln(PL1(s, β̂ | w))−C(w))

This crucially captures the idea that the speaker both wants
to convey the state s, and to be seen as someone with goals
β̂. We simplify from the Yoon et al. (2016) model by in-
cluding only a single mixture parameter φ governing the ex-
tent to which the speaker is being informative vs. face saving:
βepi = φ, βsoc = 1−φ.

We implemented this model using the probabilistic pro-
gramming language WebPPL (Goodman & Stuhlmuller,
2014)1. In the next section, we explore the model’s predic-
tions for speaker productions of indirect speech with negation
vs. direct speech with no negation.

Model predictions
Before describing our experimental data, we derive predic-
tions from the pRSA model. In these initial simulations, we
use fixed goal weights and parameters – in later fits, we will
derive these parameters from the data using Bayesian data
analysis. Since the model requires measurements of literal
semantics (e.g., what “not good” means on a given dimen-
sion), we first describe these measurements and then give
model predictions using them.

Semantic measurement
We probed judgments of literal meanings of the target words
assumed by our model and used in all our experiments.

Materials, methods, and results 25 participants with IP
addresses in the United States were recruited on Amazon’s
Mechanical Turk. We used 13 different context items that
were previously used in Yoon et al. (2016), in which someone

1A complete implementation of the model, raw data and anal-
yses, and links to the experiments and pre-registration of hypothe-
ses and method can be found at https://github.com/ejyoon/
cogsci2017.
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Figure 1: Semantic measurement results. Proportion of acceptances of utterance types (colors) combined with target words
(facets) given the true state represented on a scale of hearts. Error bars represent 95% confidence intervals.

Figure 2: Schematic model predictions (left), experimental results (center) and fitted model predictions (right) for average
proportion of negation produced among all utterances, given true states (x-axis) and goals (colors).

evaluated a performance of some kind. For example, in one
of the contexts, Ann saw a presentation, and Ann’s feelings
toward the presentation (true state) were shown on a scale out
of five hearts (e.g., two out of five hearts filled in red color).
The question of interest was “Do you think Ann thought the
presentation was / wasn’t X?” and participants responded by
choosing either “no” or “yes.” The target could be one of five
possible words: terrible, bad, okay, good, and amazing, giv-
ing rise to ten different possible utterances (with negation or
no negation). Each participant read 50 scenarios, depicting
every possible combination of states and utterances. The or-
der of context items was randomized, and there were a max-
imum of four repeats of each context item per participant.
For this and subsequent experiments, we analyzed the data
by collapsing across context items.

For each utterance-state pair, we computed the posterior
distribution over the semantic weight (i.e., how consistent X
utterance is with Y state) assuming a uniform prior over the
weight. Meanings of the words as judged by participants were
as one would expect (see Figure 1). We used the fraction of
participants that endorsed utterance w for state s to set infor-
mative priors to infer posterior credible values of the literal
meanings from data in the speaker production experiment.

Model parameters and predictions
The S2 speaker in our model has the goal to convey the state
and to be seen as having a particular set of goals. We ex-
plore predictions for 3 hypothetical speakers, corresponding
to 3 different φ mixture parameter weights: (a) an informative
speaker who wants to convey high epistemic utility (prioritiz-
ing information transfer; φ = 0.9) (b) a social speaker who
wants to convey high social utility (making the listener feel
good; φ = 0.1) (c) a both-goal speaker who wants to convey
a balance between the two utilities (φ = 0.5).2

Figure 2 (left) shows the speaker’s production probabilities
associated with producing an indirect speech act (i.e., an ut-
terance with negation) for the three different speakers as the
true state of the world is varied. We see, consistent with our
intuition, that indirect speech was relatively more preferred in
bad states than in good states. As well, we see higher prob-
ability of negation production for the speaker who wants to
convey both goals (epistemic and social) relative to each goal

2In addition, the model has a few parameters not of theoretical
interest. For the purposes of generating model predictions a priori,
we assign values to these parameters consistent with the previous
literature with this class of models: the speaker optimality parameter
(λ1 assigned to 2); the pragmatic speaker optimality parameter (λ2
to 2); the value scale parameter (α to 1) in the utility function; and
the parameter governing the cost of producing a negation (C(u) to
2).
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independently. Indirect speech does not convey that much in-
formation and so the informative speaker (a) would disprefer
it. The social speaker (b) who wants to convey a face-saving
goal would tend to signal a better-that-actual state through
direct positive remarks. The both-goal speaker produces in-
direct remarks to avoid direct remarks that are either true but
face-threatening, or face-saving but false.

Speaker production experiment

To compare against our model predictions, we measured par-
ticipants’ predictions for the most likely utterance (w) pro-
duced by the speaker, given a description of the true state.
For example, given that Ann wanted to make Bob feel good
but felt that his poem deserved 2 out of 5 hearts, what would
she say? We hypothesized that when there was no tradeoff
between informativity and face-threat avoidance (i.e., when
the addressee’s performance was great), speakers would use
truthful and face-saving direct remarks (“[Your poem] was
amazing”) regardless of their described goals. However,
when there was a conflict between the epistemic and social
goals (i.e., when the addressee’s performance was poor), a
speaker who tried to convey both goals would use vague indi-
rect remarks (“[Your poem] wasn’t terrible”) more often than
direct face-threatening remarks (“[Your poem] was bad”; pre-
ferred by a speaker who only considered the epistemic goal)
or direct face-saving remarks (“[Your poem] was good”; pre-
ferred by a speaker who wanted to convey only a social goal).

Method

Participants 202 participants with IP addresses in the
United States were recruited on Amazon’s Mechanical Turk.

Stimuli and Procedure As in the semantics measurements
above, we used scenarios in which a person (e.g., Bob) gave
some performance and asked for another person (e.g., Ann)’s
opinion on the performance. Additionally, we provided infor-
mation on the speaker Ann’s goal – to make Bob feel good, or
to give as accurate and informative feedback as possible, or
both – and the true state – how Ann actually felt about Bob’s
performance (e.g., 2 out of 5 hearts). Each participant read
15 scenarios, depicting every possible combination of goals
and states. The order of context items was randomized, and
there were a maximum of two repeats of each context item
per participant.

Each scenario was followed by a question that read, “If
Ann wanted to make Bob feel good but not necessarily give
informative feedback (or to give accurate and informative
feedback but not necessarily make Bob feel good, or BOTH
make Bob feel good AND give accurate and informative feed-
back), what would Ann be most likely to say?” Participants
indicated their answer by choosing one of the options on
the two dropdown menus, side-by-side, one for choosing be-
tween was vs. wasn’t and the other for choosing among ter-
rible, bad, okay, good, and amazing (see Figure 3).

Figure 3: Example of a trial in Experiment 1.

Behavioral results
Our hypotheses for utterance production by speakers with dif-
ferent goals were borne out (see full results in Figure 4).
For good states (4 and 5 hearts), positive direct remarks were
judged to be the most likely utterances across all three goal
conditions. For less-than-perfect, but still decent states, there
was a greater degree of expectation of white lies (e.g., “It was
amazing” for 4 hearts) given a social goal. For bad states
(1 and 2 hearts), as predicted, there were more instances of
expected indirect remarks overall across all goal conditions
given bad states. Critically, speakers with both informative
and social goals produced more indirect remarks than were
observed in the other two goal conditions (Figure 2, center).

Model results
Model fitting In this experiment, participants were told
what speakers’ intentions were (e.g., wanted to make Bob feel
good). We assume that the intention descriptions conveyed
the weight mixture φ that the speaker was using. We put un-
informative priors on this mixture (φ∼ Uniform(0,1)) and in-
ferred their credible values separately for each goal condition
(“wanted to X”) using Bayesian data analytic techniques (Lee
& Wagenmakers, 2014). We also used the fraction of partic-
ipants that endorsed utterance w for state s to set informative
priors to infer posterior credible values of the literal meanings
from data.

There were four additional parameters of the model, on
which we put uninformative priors: the speaker optimality
parameter (λS1 ∼Unif(0,20)); the pragmatic speaker optimal-
ity parameter (λS2 ∼ Unif(0,5)); the value scale parameter
(α ∼ Unif(0,5)) in the utility function; and the cost param-
eter (C(u)∼ Unif(1,10)). We inferred their posterior credible
values from the data. We ran 4 MCMC chains for 80,000
iterations, discarding the first 40,000 for burnin. The Max-
imum A-Posteriori (MAP) estimate and 95% Highest Prob-
ability Density Interval (HDI) were: λS1 : 2.16 [2.02, 3.61];
λS2 : 0.91 [0.83, 1.75]; α: 2.71 [0.98, 4.59]; C(w): 2.04 [1.95,
2.25]. To generate utterance predictions, given our model and
the inferred parameters, we evaluated the posterior predictive
distribution, marginalizing out all parameters.
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Figure 4: Experimental results (solid lines) and fitted model predictions (dashed lines) for speaker production. Proportion
of utterances chosen (utterance type – direct vs. indirect – in different colors and words shown on x-axis) given the true
states (columns) and speaker goals (rows). Error bars represent 95% confidence intervals for the data and 95% highest density
intervals for the model.

Results The inferred weights for each goal condition were
largely as expected: For the “wanted to give informative feed-
back” (informative) condition, the model put a relatively high
weight on epistemic utility (0.81). For the “wanted to make
[listener] feel good” (social) condition, the model inferred
that the speaker was using a moderate weight on epistemic
utility (0.51). For the “wanted BOTH to make [the listener]
feel good and give informative feedback” (both) condition,
the model assigned a weight on epistemic utility between the
weights for the other two goal conditions (0.57). Overall,
the weights tended to be more biased towards prioritizing the
epistemic utility.

The predictions for the speaker’s utterance were overall
highly consistent with the experimental findings (Figure 4).
The posterior predictive of the model explained almost all
of the variance in the production data r2(150) = 0.962 (Fig-
ure 5). The model successfully predicted distinct patterns for
each goal condition. The informative speaker produced direct
remarks whose literal meanings mapped onto the true states
(e.g., “It was terrible” given 1 heart). The social speaker pro-
duced remarks that were positively biased compared to the
true states (e.g., “It was okay” given 2 hearts).

While the model in the both condition did produce indi-
rect utterances (e.g., “It wasn’t terrible” given 1 heart) it did
so slightly less than the empirical data. For this reason, the

model did not yield the expected difference for negation pro-
duction between both-goal and social conditions (Figure 2,
right); though the trend was numerically correct, the effect
was much smaller in the fit model than the schematic one.
There are several possible explanations for this small devi-
ation. In our experimental data, the social speaker placed a
higher weight on epistemic utility than in our schematic pre-
dictions. Thus, the particular goal descriptions we used in the
experiment may have suggested that the social speaker still
wanted to be seen as informative, and have led to little dif-
ferentiation between the social vs both-goal speaker. Another
possible cause is that participants preferred a different kind
of indirect speech than the model – in particular, the both-
goal speaker preferred to produce “It wasn’t amazing” in the
schematic model predictions, whereas participants in our ex-
periment chose “It wasn’t terrible.” This discrepancy between
the two remarks is interesting, because their implied meaning
is similar. In a pilot experiment where participants were asked
to infer the true state (number of hearts) from an utterance, “It
wasn’t amazing” and “It wasn’t terrible” were very similar (˜2
hearts).

Discussion
Why are we polite? Here we explored a formal instantiation
of the hypothesis that two conflicting speaker goals – epis-
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Figure 5: Full distribution of human responses vs. model
predictions. Error bars represent 95% confidence intervals
for the data (vertical) and 95% highest density intervals for
the model (horizontal).

temic and social – can be used to explain a range of polite
behavior, including white lies and indirect speech acts us-
ing negation. Our model predicted that speakers should pro-
duce more indirect remarks in cases of greater face threat
(given the addressee’s poorer performance) and in cases
where speakers wanted to be both informative and nice. Our
experimental data confirmed these predictions. The model’s
overall fit to the data was very strong, although it did not show
the predicted dominance of indirect speech for the both-goal
speaker at low states. Whether this discrepancy between the
initial and data-fitted predictions was due to variation in goal
weight based on experimental scenarios or a discrepancy in
preferences for particular utterances is a question for future
work.

An important contribution of this work is in showing the
generalizability of our formal model (pRSA) to the case of
indirect speech acts. The current work took a step in address-
ing speakers’ self-presentation: Not only do speakers want
to save the listener’s face, but they also want to save their
own face, by appearing informative and considerate to the lis-
tener. In future work we hope to explore this aspect more and
test how our model’s utilities can be extended to capture the
speaker’s desire to appear polite, genuine, and even modest.
Using the model to explore other kinds of polite speech such
as indirect requests (“Would you mind closing the window?”;
Clark & Schunk, 1980) and manifestations of polite speech
in different cultures (e.g., Holtgraves & Joong-nam, 1990)
are also important future directions.

In sum, our formal model and experimental work represent
an advance in polite speech understanding. With a minimal
extension to our existing model, we were able to capture sub-
tle patterns in people’s inferences about indirect speech pro-
duction. Our empirical findings suggest that neither epistemic
nor social motives alone motivate indirect speech; instead,

the need for indirect speech results from the conflict between
these two. These findings provide strong support for a utility-
theoretic framing of politeness, and suggest new directions in
understanding of pragmatic language use in social contexts.
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Abstract: We conducted a study of 400 preschool children to determine whether spatial and numerical skills rely on common
processes. Children completed a battery of mathematical tasks as part of an ongoing preschool formative assessment develop-
ment project. We created theoretically meaningful skills from these tasks and carried out item response theoretic analyses on
each skill. We extracted Rasch scores for each of the skills and carried out multiple factor analyses to determine whether one
or more factors best characterized spatial and numerical skills. Finally, we regressed factor scores on demographic variables,
including age, gender, socioeconomic status, and verbal ability. We discuss how our results add to our understanding of the
connection between spatial and numerical processes and their implications for closing the achievement gap in early education.
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Abstract 

Binary information is prevalent in the environment. In this 
study, we examined how people process repetition and 
alternation in binary sequences. Across four paradigms 
involving estimation, working memory, change detection, and 
visual search, we found that the number of alternations is 
under-estimated compared to repetitions (Experiment 1). 
Moreover, recall for binary sequences deteriorates as the 
sequence alternates more (Experiment 2). Changes in bits are 
also harder to detect as the sequence alternates more 
(Experiment 3). Finally, visual targets superimposed on bits 
of a binary sequence take longer to process as alternation 
increases (Experiment 4). Overall, our results indicate that 
compared to repetition, alternation in a binary sequence is 
less salient in the sense of requiring more attention for 
successful encoding. The current study thus reveals the 
cognitive constraints in the representation of alternation and 
provides a new explanation for the over-alternation bias in 
randomness perception. 

Keywords: alternation bias, randomness perception, working 
memory, attention, numerosity perception 

Introduction 

Perceptually, many events in the world can be interpreted as 

binary, from the outcomes of coin flips to the daily 

alternations between the sun and the moon. Past research 

that examines the perception of binary information has 

focused on the perception of randomness (Bar-Hillel & 

Wagenaar, 1991; Nickerson, 2002) and regularities (Julesz, 

1962; Lopes & Oden, 1987). Although it is difficult to 

define randomness (Ayton et al., 1989; Beltrami, 1999; 

Chater & Vitányi, 2003; Fitelson & Osherson, 2012; 

Oskarsson et al., 2009), there are systematic biases in 

people’s conception of randomness, such as the gambler’s 

fallacy (Kahneman & Tversky, 1972) and the hot hand 

fallacy (Gilovich et al., 1985). One particular bias that has 

received much attention in the past is the over-alternation 

bias: a binary sequence that alternates more than expected 

on the basis of random generation tends to be judged as 

random (Bar-Hillel & Wagenaar, 1991; Falk & Konold, 

1997; Lopes & Oden, 1987; Nickerson, 2002), and people 

tend to produce random sequences that contain too many 

alternations (Kahneman & Tversky, 1972; Wagenaar, 1972). 

This bias is robust across different stimulus types, sensory 

modalities, or presentation modes (Yu et al., in press). 

A number of accounts have been proposed to explain the 

over-alternation bias. One explanation focuses on the limits 

of working memory (Baddeley, 1966; Kareev, 1992). Since 

people can only hold a limited number of items in working 

memory at any given time, the amount of bits being 

processed is constrained, leading to a biased sample of 

randomness (Hahn & Warren, 2009; Miller & Sanjuro, 

2015; Yu et al., in press). Another prominent account of the 

over-alternation bias is the idea of local representativeness, 

which suggests that people assume equal frequency of 

outcomes within a local sequence (Tversky & Kahneman, 

1971). A recent account is offered by Falk and Konold 

(1997) who proposed an encoding hypothesis that states that 

the probability that a bit sequence is labelled random varies 

directly with the time needed to correctly memorize or copy 

it. However, this account has been challenged by recent 

work showing a discrepancy between encoding difficulty of 

the binary sequence and labeling the sequence as random 

(Zhao et al., 2014). While these explanations have offered 

valuable insights, there remains a possibility that people 

have an accurate view of randomness, but the cognitive 

limitations contribute to a biased conception of randomness 

(Rapoport & Budescu, 1992). 

The current study 

We explore a new explanation focusing on a perceptual 

limitation in the ability to represent alternations vs. 

repetitions. If alternations are under-represented compared 

to repetitions, there needs to be more alternations in the 

sequence in order for people to perceive a 50% alternation 

rate that is typically assumed in a random sequence.  

In order to generate a binary sequence that contains 

different levels of alternations while maintaining the equal 

probability of outcomes, we used an algorithm that deviates 

from stochastic independence by allowing previous bit to 

influence the next one. Specifically, for each p in the unit 

interval (from 0 to 1), let D(p) generate a sequence of bits 

consisting of zeros and ones as follows:   

 
A fair coin toss determines the 1st bit. Suppose that the nth bit 

(for n≥1) has been constructed. Then with probability p the 

n + 1st bit is set equal to the opposite of the nth bit; with 

probability 1 − p the n + 1st bit is set equal to the nth bit. 

Repeat this process to generate a sequence of any length. 
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This procedure was first introduced by Zhao, Hahn, and 

Osherson (2014). D(.5) is a genuinely random device. For 

p<.5, D(p) tends to repeat itself, resulting in long streaks, 

whereas for p>.5, D(p) tends to alternate. The expected 

proportion of each bit is 50% for all p∈[0, 1], although 

empirically, the output might deviate from 50%; however 

such deviations should be small and random (Yu et al., in 

press). For any sequence produced by D(p), the expected 

proportion of alternation, called the “switch rate” of the 

generating process, is p. The expected proportion of 

repetitions, called the generating “repeat rate”, is 1 – p. 

We conducted four experiments to examine how people 

represent alternations vs. repetitions. In Experiment 1, 

participants viewed a binary sequence and estimated the 

number of switches or repeats in the sequence. In 

Experiment 2, participants viewed a binary sequence and 

recalled the sequence. In Experiment 3, participants viewed 

two sequences and judged whether the sequences were the 

same or different. In Experiment 4, participants searched for 

a target embedded in a binary sequence. 

Experiment 1 

This experiment examined if there are differences in the 

estimation of alternation vs. repetition in binary sequences. 

Participants 

Forty-five undergraduate students (32 female, mean 

age=19.9 years, SD=2.3) from the University of British 

Columbia (UBC) participated for course credit. Participants 

in all experiments provided informed consent. All 

experiments reported here have been approved by the UBC 

Behavioral Research Ethics Board. We conducted a power 

analysis using G*Power (Faul, Erdfelder, Lang, & Buchner, 

2007), which showed that given an effect size of 0.53 (based 

on our prior work, Zhao & Yu, 2016), a minimum of 38 

participants would be required to have 95% power to detect 

the effect in our design. 

Stimuli 

In each trial, participants viewed a 30-bit sequence. Each 

sequence contained circles of two colors: green (RGB: 0 

255 0) and blue (RGB: 0 0 255). Each circle subtended 0.9° 

in diameter (Figure 1a). There were five levels of switch 

rates in D(p) in generating the sequences, where p = 0.1, 

0.3, 0.5, 0.7, and 0.9. Correspondingly, there were five 

levels of repeat rates (1 – p) = 0.9, 0.7, 0.5, 0.3, and 0.1. 

Temporal sequences. For half of the trials, participants 

viewed a temporal sequence where the 30 circles were 

presented one after another, making simple visual grouping 

impossible. Each circle was presented at the center of the 

screen for 100ms, and the inter-stimulus interval (ISI) was 

100ms with a blank screen (Figure 1a). 

Spatial sequences. For the other half of the trials, 

participants viewed a spatial sequence, where the 30 circles 

were presented on the screen simultaneously. The circles 

were presented left to right. The space between two adjacent 

circles in the sequence subtended 0.1°. Each sequence was 

presented on the screen for 1000ms (Figure 1a). 

Procedure 

There were 200 trials in total for each participant. In each 

trial, participants viewed a sequence with one of the five 

generating switch rates (0.1, 0.3, 0.5, 0.7, or 0.9). Each level 

of switch rate contained 40 trials, among which 20 trials 

were temporal sequences and 20 trials were spatial 

sequences. After viewing the 30-bit sequence, participants 

were asked to estimate either the number of the color 

switches (10 trials), or the number of color repeats (10 

trials). Specifically, the instruction for estimating color 

switches was “How many times did a dot have a 

DIFFERENT color from the previous dot in the sequence?” 

and the instruction for estimating color repeats was “How 

many times did a dot have the SAME color as the previous 

dot in the sequence?”. Participants were also told that the 

range of their estimate was from 0 to 29 (29 was the 

maximum possible number of switches or repeats in the 

sequence). Participants typed in their estimate after seeing 

each sequence. In sum, there were three within-subjects 

factors: the generating switch rate of the sequence (from 0.1 

to 0.9), the presentation of the sequence (temporal vs. 

spatial), and the estimation type (switches vs. repeats). The 

order of the trials was randomized for each participant. 

There was no mention of randomness in all experiments. 

Results and Discussion 

Estimated switch rate was the derived by dividing the 

estimated number of switches from the participants by 29 

(the maximum possible switches in the sequence). Likewise, 

estimated repeat rate was calculated by dividing the 

estimated number of repeats from the participants by 29 (the 

maximum possible repeats in the sequence). Observed 

switch rate was the objective switch rate in the sequence 

presented to the participants in each trial. Likewise, 

observed repeat rate was the objective repeat rate in the 

sequence presented in each trial. The generating switch rate 

was the p in D(p) in the algorithm that generated the 

sequence. The generating repeat rate was 1 – p. To verify 

that the presented sequence actually exhibited the generating 

switch rate or repeat rate, we plotted the observed switch 

rate or repeat rate for each sequence (Figure 1 b to e), which 

mapped closely to the generating switch rate or repeat rate. 

We computed the signed error (estimated – observed 

switch rate or repeat rate) at each of the five generating 

levels. For temporal trials (Figure 1 b and d), a 5 (generating 

rate: 0.1, 0.3, 0.5, 0.7, and 0.9) × 2 (estimation type: 

switches vs. repeats) repeated-measures ANOVA revealed a 

main effect of generating rate [F(4,176)=162.3, p<.001, 

ηp
2=0.79] and of estimation type [F(1,44)=49.34, p<.001, 

ηp
2=0.53], and a reliable interaction [F(4,176)=10.75, 

p<.001, ηp
2=0.20]. Pair-wise comparisons at each generating 

rate showed that participants underestimated the number of 

switches more than repeats at each of the five generating 

rates [p’s<.01]. For spatial trials (Figure 1 c and e), the same 
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ANOVA revealed a main effect of generating rate 

[F(4,176)=107.2, p<.001, ηp
2=0.71] and of estimation type 

[F(1,44)=114.2, p<.001, ηp
2=0.72], but no interaction 

[F(4,176)=0.07, p=.99, ηp
2<0.01]. Again, pair-wise 

comparisons at each generating rate showed that participants 

underestimated the number of switches more than repeats at 

each of the five generating rates [p’s<.001]. 

 

 
Figure 1. Experiment 1. (a) Participants (N=45) were presented 

with temporal or spatial sequences, and estimated either the 

number of circles that had a different color from the previous circle 

(switch) or the number of circles that had the same color as the 

previous one (repeat). (b) The estimated switch rate and the 

observed switch rate were plotted for temporal trials. (c) The 

estimated switch rate and the observed switch rate were plotted for 

spatial trials. (d) The estimated repeat rate and the observed repeat 

rate were plotted for temporal trials. (e) The estimated repeat rate 

and the observed repeat rate were plotted for spatial trials. (Error 

bars reflect ± 1 SEM; *p < .05, **p < .01, ***p<.001) 
 

 

We further compared the estimated switch or repeat rate 

with the observed switch or repeat rate. For temporal trials 

(Figure 1b), participants over-estimated the switch rate at 

0.1 and 0.3, but under-estimated the switch rate at 0.5, 0.7, 

and 0.9. They also over-estimated the repeat rate at 0.1 and 

0.3, but under-estimated the repeat rate at 0.7 and 0.9 

(Figure 1d). For spatial trials (Figure 1c), participants over-

estimated the switch rate only at 0.1, and under-estimated 

the switch rate at 0.3, 0.5, 0.7, and 0.9. They over-estimated 

the repeat rate at 0.1, 0.3, and 0.5, but under-estimated the 

repeat rate at 0.7 and 0.9 (Figure 1e). 

Interestingly, when estimating the number of repeats, 

participants were the most accurate around 0.5 where the 

sequences were truly random. For the same random 

sequence, participants were significantly under-estimating 

the number of switches. In fact, for people to perceive a 0.5 

switch rate, the sequence must contain more than 50% 

switches, with a switch rate of around 0.7 (Figure 1 b and c). 

This perceptual insensitivity to switches may underlie the 

conceptual over-alternation bias of randomness. Taken 

together, these results suggest that alternations in a binary 

sequence were under-represented compared to repetitions. 

Experiment 2 

One explanation for the under-estimation of switches could 

involve working memory. Specifically, people may have 

trouble representing switches accurately in memory, 

mistaking them for repeating bits, thus leading to under-

estimation. To examine this possibility, here participants 

were asked to recall each sequence. 

Participants 

Forty-five students (30 female, mean age=19.6 years, 

SD=1.2) from UBC participated for course credit. 

Stimuli and Procedure 

The stimuli were the same as those in Experiment 1, except 

for these differences: there were 10 circles per sequence to 

circumvent a floor effect in the recall task; each circle was 

slightly larger, subtending 1.4° in diameter, and the distance 

between each circle in spatial sequences was 0.2°; and each 

spatial sequence was presented for 500ms (Figure 2a). 

The procedure was identical to Experiment 1, except for 

one difference: after seeing each sequence, participants were 

asked to recall the sequence as accurately as they could, by 

pressing two keys to produce the green circle (the “G” key) 

or the blue circle (the “B” key). Participants were instructed 

to recall the dots in the same order as they appeared. After 

each key press, the corresponding circle was presented on 

the screen for 100ms, and then disappeared. To recall the 

spatial sequence, participants pressed one key and the 

corresponding circle appeared from left to right on the 

screen, and remained on the screen. 

Results and Discussion 

Since the observed switch rate of the sequences mapped 

closely onto the generating switch rates (Experiment 1), for 

all following experiments task performance was plotted 

against the five generating switch rates.  

To assess the accuracy of participants’ recalled sequences, 

we divided the exact matches between the presented 

sequence and the recalled sequence by 10. The accuracy 

was plotted over the five levels of switch rates. For temporal 

trials (Figure 2b), a one way repeated-measures ANOVA 

revealed a significant difference in accuracy across the five 

switch rates [F(4,176)=75.61, p<.001, ηp
2=0.63]. Post-hoc 

Tukey HSD analysis showed all pair-wise comparisons were 

significant except between 0.7 and 0.9, and 0.5 and 0.9. For 

spatial trials (Figure 2c), accuracy was different across the 

switch rates [F(4,176)=111.5, p<.001, ηp
2=0.72], and post-

hoc Tukey HSD analysis showed that all pair-wise 

comparisons were significant except between 0.7 and 0.9. 

These results demonstrate that as the switch rate of the 

sequence increased, recall accuracy decreased. 
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To obtain a more fine-grained analysis, from the second 

bit on, we calculated the recall accuracy of each bit 

depending on whether the bit repeated or switched from the 

previous bit. We compared the recall accuracy of switching 

versus repeating bits. For temporal trials (Figure 2d), a 5 

(generating rate: 0.1, 0.3, 0.5, 0.7, and 0.9) × 2 (bit type: 

repeating vs. switching) repeated-measures ANOVA 

showed a main effect of generating rate [F(4,176)= 75.61, 

p<.001, ηp
2=0.63] and of bit type [F(1,44)=206.7, p<.001, 

ηp
2=0.82], and a reliable interaction [F(4,176)=37.4, p<.001, 

ηp
2=0.46]. Pair-wise comparisons at each generating rate 

showed that the recall accuracy of repeating bits was 

consistently higher than that of switching bits [p’s<.01]. For 

spatial trials (Figure 2e), the same ANOVA showed a main 

effect of generating rate [F(4,176)= 111.5, p<.001, 

ηp
2=0.46] and of bit type [F(1,44)=28.84, p<.001, ηp

2=0.40], 

and a reliable interaction [F(4,176)=7.18, p<.001, ηp
2=0.14]. 

Pair-wise comparisons at each generating rate showed that 

the recall accuracy of repeating bits was higher than that of 

switching bits [p’s<.001] at switch rates 0.1, 0.3, and 0.5. 

 

 
 

Figure 2. Experiment 2. (a) Participants (N=45) were presented 

with 10-bit temporal or spatial sequences, and recalled the 

sequences. Accuracy was calculated as the proportion of exact 

matches between the presented sequence and the recalled sequence 

for temporal trials (b) and spatial trials (c). From the second bit on 

in each sequence, recall accuracy of each bit was calculated 

depending on whether the bit repeated the previous bit, or switched 

from the previous bit, for temporal sequences (d) and spatial 

sequences (e). We also calculated the switch rate of the recalled 

sequences, plotted with observed switch rate of the presented 

sequences for temporal trials (f) and spatial trials (g). (Error bars 

reflect ± 1 SEM; *p < .05, **p < .01, ***p<.001) 

 

One problem with the accuracy measure based on exact 

matches was that it penalizes cases where participants 

reversed or misplaced bits but were nonetheless accurate. To 

circumvent this problem, we conducted another analysis 

where we calculated the switch rate of the recalled 

sequence, and compared that to the observed switch rate of 

the presented sequence (Figure 2 f and g). 

We computed signed error (switch rate of the recalled 

sequences – observed switch rate) separately for temporal 

and spatial trials. For temporal trials (Figure 2f), a one way 

repeated-measures ANOVA revealed a significant 

difference in signed error across the five generating switch 

rates [F(4,176)=140.7, p<.001, ηp
2=0.76]. Post-hoc Tukey 

HSD analysis showed all pair-wise comparisons were 

significant except between 0.1 and 0.3, and 0.1 and 0.5, 

suggesting that errors were greater at higher switch rates. 

For spatial trials (Figure 2g), the same ANOVA revealed a 

significant difference in signed error across the five switch 

rates [F(4,176)=92.54, p<.001, ηp
2=0.68]. Post-hoc Tukey 

HSD analysis showed all pair-wise comparisons were 

significant except between 0.1 and 0.3, and 0.1 and 0.5, 

suggesting errors were greater at higher switch rates.  

These results showed that as the sequence alternated 

more, recall accuracy diminished. The greater recall error in 

switching bits compared to repeating bits suggests that 

people are more likely to encode switches as repeats, than to 

encode repeats as switches. 

Experiment 3 

What explains the encoding difficulty of switching bits? 

One explanation is that switching bits may be less salient 

than repeating bits. To examine salience, Experiment 3 used 

a change detection task where participants detected changes 

in two sequences that were presented one after another. 

Participants 

Forty-five students (24 female, mean age=20.6 years, 

SD=1.8) from UBC participated for course credit. 

Stimuli and Procedure 

There were 200 trials in total. In each trial, participants were 

presented with two back-to-back sequences of 15 green and 

blue circles (Figure 3a). The color and size of the circles 

were identical to those used in Experiment 2. The sequences 

were generated with one of the five switch rates (0.1 to 0.9) 

as before. There were 40 trials per switch rate, 20 of which 

contained a change where the color of one randomly 

selected circle was different between the two sequences, and 

20 of which contained no change where the two sequences 

were the same. In each trial, all circles in the first sequence 

were presented simultaneously at the center of the screen for 

500ms, with an ISI of 500ms, followed by the second 

sequence also presented for 500ms. Participants had to 

judge whether the two sequences were the same or different 
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by pressing the “Y” key or the “N” key, respectively. The 

trials were presented in a random order. 

Results and Discussion 

To examine the performance of the change detection task, 

we calculated A’ by dividing the average of correct rejection 

rate and correct hit rate by two, then adding 0.5 to the 

resultant number (Pollack & Noman, 1964). A’ was plotted 

across the five generating switch rates (Figure 3b). There 

was a reliable difference in A’ across the five rates 

[F(4,176)=24.64, p<.001, ηp
2=0.38]. Post-hoc Tukey HSD 

analysis showed all pair-wise comparisons were significant 

except for between 0.5, 0.7, or 0.9. 

 

 
 

Figure 3. Experiment 3. (a) Participants (N=45) viewed two 

back-to-back sequences, and judged if the two sequences were the 

same or different. (b) Performance was assessed using A’. (c) 

Trials with changes were categorized into three change groups: 1. 

repeats to switches, 2. switches to repeats, and 3. switches to 

switches. (Error bars reflect ± 1 SEM; ***p<.001) 

 

We also examined change detection accuracy depending 

on the local environment where the change occurred. For all 

change trials, we categorized them into three groups: repeats 

to switches (e.g., 000 to 001, 010, or 100), switches to 

repeats (e.g., 010, 001, or 100 to 000), and switches to 

switches (e.g., 001 to 011 or 101, 010 to 110 or 011, 100 to 

101 or 110). Since we only considered trials where a change 

occurred, there was no false alarm. Therefore, we used 

accuracy as the measure here (Figure 3c). Among the three 

types changes, there was a reliable difference in accuracy 

[F(2,88)=55.95, p<.001, ηp
2=0.56]. Post-hoc Tukey HSD 

analysis showed that accuracy in the repeats to switches 

group was reliably higher than that in the switches to repeats 

and switches to switches groups [p’s<.001]. 

These results showed that as the sequence became more 

alternating, a change in the sequence was harder to detect. 

This suggests that repetitions were more salient than 

alternations. Moreover, a change was more salient when a 

streak was interrupted, than when an alternating pattern 

became streaky or remained alternating. This differential 

performance suggests that people may have paid more 

attention to the streak presented in the first sequence, than to 

the switches presented in the first sequence. 

Experiment 4 

To provide further support for the salience account, 

Experiment 4 used a visual search task to measure attention 

to switching vs. repeating sequences. 

Participants 

Forty-five students (33 female, mean age=19.6 years, 

SD=2.1) from UBC participated for course credit. 

Stimuli and Procedure 

As in Experiment 3, there were 200 trials, and in each trial, 

a sequence containing 15 colored circles were presented 

simultaneously on the screen. As before, the sequences were 

generated with one of the five switch rates, and there were 

40 trials per switch rate. For each trial, participants had to 

search for a target (a red arrow pointing left “<” or right 

“>”) in one of the randomly selected circles in the sequence. 

They were asked to identify the direction at which the arrow 

was pointing as fast and as accurately as they could (Figure 

4a). Half of the trials contained an arrow pointing left, and 

the other half contained an arrow pointing right. Each 

sequence was presented for 1500ms. The trials were 

presented in a random order. 

 

 
 

Figure 4. Experiment 4. (a) Participants viewed 15-bit spatial 

sequences. The target was a small red arrow, pointing to the left or 

right, in one of the circles. Participants reported the direction of the 

arrow as fast and as accurately as they could. (b) Response time of 

correct trials was plotted. (Error bars reflect ± 1 SEM) 

Results and Discussion 

The accuracy of the target search task was high 

(mean=97.5%, SD=2%). Thus, we only examined the 

response times of correct trials as our measure of attention 

(Figure 4b). There was a reliable difference in response time 

across the five switch rates [F(4,176)=2.55, p<.05, 

ηp
2=0.05]. Post-hoc Tukey HSD analysis showed a reliable 

difference in response times only between switch rates 0.1 

and 0.5. This result showed that participants were faster to 

find the target in sequences with more repetitions than with 

more switches. One explanation is that repeating sequences 

may draw attention more strongly than switching sequences. 
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General Discussion 

The goal of the current study was to examine how people 

represent alternations vs. repetitions in a binary sequence. 

Across four experiments using estimation, working 

memory, change detection, and visual search tasks, we 

found that the number of alternations was under-estimated 

more strongly than the number of repetitions (Experiment 

1). This under-estimation of switches could be explained by 

the fact that recall accuracy diminished as the sequence 

became more alternating (Experiment 2). The greater 

encoding difficulty of alternations could be explained by the 

finding that changes were harder to detect as the sequence 

became more alternating (Experiment 3). Finally, visual 

targets were slower to be found as the sequence became 

more alternating, suggesting that alternating sequences draw 

attention less strongly than repeating sequences (Experiment 

4). Overall, these results converge to support the same 

finding that people are more blind or insensitive to 

alternations than to repetitions, which suggests that 

alternations are under-represented compared to repetitions. 

The current findings support a new account on the over-

alternation bias. Specifically, there is a perceptual limitation 

in the ability to accurately represent alternations as opposed 

to repetitions in a binary sequence. This means that for 

people to perceive a 0.5 switch rate, the sequence must 

contain more than 50% alternations (in fact around 70%). 

Why are alternations under-represented compared to 

repetitions? We offer two explanations. First, two 

alternating bits (e.g., 10) may be perceptually more complex 

than two repeating bits (e.g., 11), and this higher complexity 

in an alternation could be more difficult to encode. Second, 

people may implicitly chunk an alternation into a unit (e.g., 

perceiving 101010 as three chunks of 10, Zhao & Yu, 

2016), but rely on numerosity perception for repetitions 

(e.g., perceiving 111111 as 1 repeating five times). 

The current study reveals a perceptual limitation in the 

representation of alternations. The study is important in 

several ways: first, it provides a new explanation of the 

over-alternation bias in randomness perception; second, it 

reveals new insights on the limits in the perception of binary 

information; and finally, the same finding was replicated in 

four different paradigms using different measures. The 

current findings shed light on how people process binary 

information, which is fundamental to understanding the 

limits of the cognitive system. 
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Abstract 

Optimizing the study of vocabulary words for high-
stakes tests such as the SAT or GRE prep can be 
problematic, given that many words are semantically, 
orthographically, or phonologically confusable. Companies 
marketing test preparation programs make multiple 
recommendations, such as clustering words on some basis, 
but little research has been carried out to examine what that 
basis should be. Across two experiments, we compare the 
efficacy of different types of clustering—categorical, 
alphabetical, and confusable--for the learning of 
semantically related words (Experiment 1) and confusable 
words (Experiment 2). We demonstrate that, in contrast 
to most learners’ intuitions, an alphabetical sequence yields 
superior learning. 

 

Keywords: memory, vocabulary learning, optimal 
sequencing, semantic clustering, alphabetical clustering 

Introduction 
Vocabulary learning is a crucial component of learning 
languages, not only because knowing some minimum 
number of words is needed for a basic level of 
communication in a new language, but also because 
increasing one’s vocabulary in one’s own language can 
be critical in the context of high-stakes testing of various 
types. Applicants to undergraduate or graduate programs, 
for example, often spend months preparing for standardized 
examinations, such as the ACT, SAT, or GRE, and 
memorization plays an essential role in such preparation. 
Such vocabulary learning can be especially daunting for 
international applicants from non-English speaking 
backgrounds. To meet this demand from anxious test-
takers, a huge test-preparation industry has sprung up, with 
each different business promising a different set of 
“secrets” to crack the SAT and GRE codes for a price. 

Many of these organizations make recommendations for 
how   very   large   sets   of   new   words   may   be   learned, 
including (a) using mnemonics (e.g.,  word imagery),  
(b) grouping words by their category membership, and (c) 

by Greek/Latin roots. Test preparation programs—and 
hence, their students—often strongly promote one over the 
other, yet there has been only minimal research testing the 
relative efficacy of such methods. 

The best way(s) to learn new vocabulary, therefore, is still 
an open question, and what method yields the best learning 
outcomes may in part depend on the characteristics of the 
to-be-learned words. When it comes to learning new 
vocabulary, for example, in preparation for the GRE or SAT 
exams, there are two large sources of difficulty. First, these 
tests require individuals to learn and distinguish between 
many semantically related words (e.g., personality traits: 
mendacious–callow). Second, there is a need to distinguish 
between confusable but semantically distinct words, such 
as   words   that   are   similar-looking   and/or similar-
sounding (e.g., decry–descry). 

While little to no research has been conducted on optimal 
sequencing for the learning of confusable pairs, there has 
been some research on semantic clustering, but evidence in 
support of semantic clustering, however, has been mixed. 
In the present studies, we specifically examine two popular 
methods—clustering by semantic category or by 
confusability, and alphabetically-clustered—and compare 
them against a random sequence. We examine the 
alphabetically-clustered   sequence for a practical reason: 
lists of words are often organized alphabetically, and for 
this reason, there are many who may attempt to learn 
words in that order, out of convenience. Indeed—at least 
anecdotally—studying words alphabetically appears to be 
common among Chinese students preparing for the SAT and 
GRE exams. This alphabetical organization is not 
necessarily a conscious, explicit strategy, but simply a 
byproduct of how reading typically proceeds (i.e., start 
on page 1 and work your way through to the end). 
Studying words alphabetically does offer some structure, 
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but unlike semantic clustering or clustering of confusable 
words, clustering by initial letter appears somewhat 
arbitrary. However, given that it is a strategy that is widely 
used, and little is known as to whether this strategy is 
truly beneficial for vocabulary learning, we examine it in 
the present studies. 

Semantic Clustering 
“Semantic clustering” refers to the practice of grouping 
vocabulary words into different categories based on their 
meanings (Tinkham, 1993). Such clustering  is believed  to 
be effective  for several  reasons,  including  that presenting 
words  in  semantic  clusters  allows  for  intra-category  and 
inter-relational  reinforcement  (e.g., Seal, 1991), makes 
the meanings  of words  clearer  by enabling  learners  to 
notice fine-grained distinctions between words (e.g., Gairns 
& Redman, 1986), better reflects semantic networks in the 
“mental   lexicon”   (e.g.,   Aitchison,   2002),   and   draws 
attention to the semantics which may lead to deeper levels 
of mental processing  (Erten & Tekin, 2008). On the other 
hand, Schneider, Healy, and Bourne (1998) found that while 
clustering words semantically aided initial learning, it 
appeared to hinder relearning a week later. 

What constitutes a “semantic cluster” has, however, 
differed greatly across researchers. Possible constructs 
include, but are not limited to, near synonyms (e.g., man, 
fellow, and guy; (Hippner-Page, 2000), topic-related items 
(e.g., crime: smuggling, jury, and court; Papasanasiou, 
2009), and exemplars that fall under a super-ordinate 
category (e.g., fruit: apple, pear, and peach) (Waring, 
1997). There is some, albeit limited, evidence supporting 
the facilitating effects of semantic clustering (e.g., 
Finkbeiner & Nicol, 2003), but these conclusions have 
largely been drawn from examination of acquisition during 
training, rather than on the basis of long-term memory tests. 
Considerable research, however, has demonstrated that the 
manipulations that boost performance during training do 
not always boost learning (see, e.g., Soderstrom & Bjork, 
2015). Furthermore, conclusions are hard to draw because 
the random and semantically clustered conditions compare 
learning of different sets of words, making it unclear 
whether it is the sequence that enhances learning or 
whether a semantically related set of words is simply easier 
to learn. 

The Present Studies 
We   conducted   two   studies   to   examine   the   optimal 
sequence of vocabulary learning. Although previous 
studies have used separate lists for different conditions (e.g., 
Tinkham, 1993, 1997), we created one single set of GRE 
words for each experiment, ensuring that only sequencing 
would differ across conditions. Moreover, to test long-term 
memory, rather than just performance during acquisition, 

we employed final criterion tests that were delayed by at 
least 24 hours. 

In Experiment 1, we examined the optimal sequencing 
for learning semantically related words by comparing the 
efficacy of alphabetical, categorical (i.e., semantic 
clusters), and random sequences. 

In Experiment 2, we examined the optimal sequencing 
for learning confusable words by comparing the efficacy of 
alphabetical, paired (confusable clusters), and random 
sequences. Whether confusable clusters or random 
sequencing creates more difficulties is unclear. Because 
confusable pairs are similar-looking and/or similar-
sounding, similarities in orthography and/or phonology 
could well interfere with performance during training, but 
then might also enhance retention performance. 
Alternatively, an alphabetical sequence resembles a hybrid 
of random and paired schedules to some degree, and thus 
might incorporate the best (or worst) of both worlds. 

Experiment 1 
The purpose of Experiment 1 is to address the first 
challenge of vocabulary learning—the need to distinguish 
between semantically related words. 

Participants and Design 
Participants were 152 undergraduates from the University 
of California, Los Angeles (UCLA) who participated in the 
experiment in exchange for course credit. Eight-two of 
them were native English-speakers, and 70 spoke English as 
a Second Language (ESL; M length of speaking English = 5.34 years). 
ESL students were expected to be at a decent English level 
due to the University’s requirements. Participants were 
randomly assigned to one of three sequencing conditions: 
categorical, alphabetical, and random.  

Materials  
A pool of 36 GRE word-synonym pairs was selected from 
GREedge, a theme-based word list. This word list 
contained six words from each of six different categories: 
Communication, Crime & Law, Nature, Personality, 
Thoughts & Ideas, and Time. College-level participants 
were expected to know the meaning of each paired synonym. 
Table 1 shows an example of the “Communication” related 
words. Within each category, there was one word that 
began with one of six initial letters—a, c, i, m, p, and s—
which allowed us to construct the six sets of words for the 
alphabetical condition. Table 2 shows an example of the 
words that begin with the letter a. 
 
Table 1 
Example of one of the six-word categorical sets: words 
relating to “Communication” 
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Category Initial GRE Word Synonym 
 
 

Communication 

a acrimonious bitter 
c circumlocution rambling 
i importune beg 
m missive letter 
p prattle babble 
s sententious pithy 

 
Table 2 
Example of one of the six-word alphabetical sets: words 
beginning with the letter a 
 

Initial Category GRE Word Synonym 

a 

Communication acrimonious bitter 
Crime & Law abjure withdraw 
Nature arroyo environment 
Personality abstemious restrained 
Thoughts & Ideas apotheosis exaltation 
Time antediluvian ancient 

Procedure 
Participants were told that their task was to learn 36 GRE 
words. Participants were presented one GRE word- 
synonym pair at a time, and, for each pair, they were first 
asked to generate the synonym (8 sec) before they were 
shown the correct answer (3 sec). Therefore, the study phase 
consisted of tests-with-feedback trials (for a discussion of 
the benefits of testing and feedback on long-term retention, 
see Roediger & Karpicke, 2006). The six pairs of a given 
set (e.g., a random set, a category set, or an alphabetical set) 
were always presented consecutively. Each set were 
presented three times, with the order of pairs randomized 
each time (hence, the alphabetical sequence was not strictly 
alphabetical, but grouped words starting with the same 
initial letter). Thus, any given pair was presented on an 
average spacing interval of 5-5. Between individuals, the 
order of the six sets was randomized. 

After they completed studying all 36 pairs (3 times each), 
participants were asked to predict how many of the 36 pairs 
they would be able to answer correctly on the test the 
next day.  They were then informed of the three different 
study sequences that had been used for different participants 
and asked to judge which one they believed would be most 
effective for learning vocabulary. 

Twenty-four hours later, participants were emailed a 
link to take the final test. The test phase consisted of two 
portions:  First, they were asked to complete a cued-recall 
task in which they were presented with the GRE word and 
asked to generate the synonym. Second, they were given a 
multiple-choice in which they were given the synonym and 
four options. The options, illustrated in Figure 1, were 
constructed such that one was the correct answer, one was 
a wrong answer from the same category, one was a wrong 

answer with the same initial letter, and one was a random 
lure selected from the other GRE words they had studied. 

Finally, we collected information about participants’ GRE 
preparation status and language fluency and number of 
languages spoken. 
 

 
 

Figure 1: Example of a multiple-choice trial in Experiment 
1. Participants were only shown contents inside the square. 

The rest is only for illustration purpose. 

Results and Discussion 
Sixteen participants were removed from subsequent 
analysis for the following reasons: five looked up answers, 
seven reported serious technical issues with the experiment, 
and four people indicated both. Among the remaining 136 
participants, 74 were native English-speakers and 62 were 
ESL students (M length of speaking English = 5.42 years).   
 
Acquisition The increase in acquisition from the to the third 
time a given pair was presented during the study phase is 
shown in the left panel of Figure 2.  By the end of the 
final trial, there was a trend for a difference between the 
three conditions, F(2,133)  =  .2.24,  MSE  =  .07,  p  =  .11. 
Post-hoc analyses revealed that the random condition (M = 
.73, SD = .18) was marginally worse than the alphabetical 
(M = .79, SD = .18, p = .06) and categorical conditions 
(M = .79, SD = .18, p = .08). No significant difference 
between the alphabetical and categorical conditions was 
obtained, p = .96. 
 
Final test Performance   on   the   final   cued   recall   test, 
illustrated in the right panel of Figure 2, suggested some 
differences (although limited) between conditions, F(2,133) 
= 3.105, MSE = .04, p = .048, but the pattern was 
somewhat different from that of the acquisition pattern. 
Post-hoc pairwise comparisons revealed that participants 
in the alphabetical condition (M = .50, SD = .03) 
performed significantly better than those in the random 
condition (M = .40, SE = .03), p = .02), but neither was 
significantly different from the categorical condition (M = 
.44, SD = .21), ps > .10. No significant differences in 
performance on the multiple-choice test among conditions 
were observed, F(2,133) = 1.764, p = .18. 
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Figure 2: Study phase acquisition curves and final cued 

recall test in Experiment 1. Error bars represent one 
standard error of the mean. 

 
Metacognitive responses With respect to the question 
“What sequence do you think is best for learning?” asked of 
participants at the end of the acquisition phase, 94 (70%) 
of the 134 participants responding reported believing that 
categorical clustering would lead to the best learning, 35 
(26%) reported believing that a random sequence would be 
best, and only 5 (4%) reported believing that an alphabetical 
sequence would be best. These metacognitive responses did 
not differ by assigned condition, χ2  (4) =7.34, p = .12. 

Overall, while Experiment 1 neither show evidence in 
favor of nor against categorical sequencing, it surprisingly 
suggested some benefits associated with an alphabetical 
sequencing strategy. Participants’ metacognitive beliefs, 
however, showed limited faith in this “new” strategy. 

Experiment 2 
Experiment 2 aimed to address the second challenge in GRE 
word learning: students’ ability to distinguish between 
similar-looking and/or similar-sounding words. 

Participants and Design 
Participants were 112 undergraduates from UCLA who 
participated in the experiment in exchange for course credit. 
Sixty-five of those participants were native English-
speakers, and 47 ESL students (M length of speaking English = 5.60 
years). Despite being non-native English-speakers, these 
ELS students were expected to be at a decent English level 
due to the University’s requirements. Participants were 
randomly assigned to one of three sequencing conditions: 
paired, alphabetical, and random. 
 
Materials 
As in Experiment 1, we selected 36 GRE word- synonym 
pairs from several sites (e.g., Magoosh). However, each 
GRE word was also matched with another GRE word that 
was highly confusable. That is, 36 GRE words were broken 

down into 18 confusable pairs. The words in nine of these 
pairs shared the same initial letters (e.g., augur-bode and 
auger- drill) and the remaining nine of these pairs did not 
(e.g., astringent-bitter and stringent-strict). Across all the 
GRE words, any initial letter was also made to appear at 
least three times (e.g., three words that began with ‘a’). 
College-level participants were expected to know the 
meaning of each paired synonym. 

In the random condition, one randomized sequence of 
the 36 words was created for each participant. In the paired 
condition, the confusable paired-GRE words were always 
presented consecutively (e.g., augur-bode followed by 
auger- drill, or vice versa), and   the   order   of   pairs   was 
randomized for each participant. In the alphabetical 
condition, the GRE words were presented in alphabetical 
order. Table 3 shows an example of two confusable pairs 
in alphabetical order: One same-initial pair (veracious and 
voracious) and one different-initial pair (pabulum and 
vinculum). As demonstrated below, Same-initial pairs by 
definition would still appear close to each other in 
alphabetical order (not necessarily consecutively), but 
different-initial pairs would for sure be shuffled.  
 
Table 3 
Example of two confusable pairs in alphabetical order: One 
same-initial pair and one different-initial pair. 
 

Initial GRE Word Synonym 
p pabulum sustenance 

… … … 

v 
veracious honest 
vinculum bond 
voracious greedy 

 
Procedure 
The procedure of Experiment 2 was similar to that of 
Experiment 1 with three exceptions: (a) Instead of 
repeating in sets of six, all 36 pairs were presented before 
they were repeated, yielding an average spacing interval 
of 35-35; (b) the alphabetical order here was strictly 
alphabetical,  so the order of words in each of the three 
cycles of 36 trials was the same; and (c) the multiple-
choice test used the GRE word as the cue and presented 
four studied synonyms as the options (the correct answer,   
the  synonym   of  the  confusable   GRE  word,  a synonym  
of  a  word  sharing  the  same  initial  letter,  and another 
random synonym). 

Results and Discussion 
Sixteen participants were removed from subsequent analysis: 
five looked up answers, and 11 reported serious technical 
issues with the experiment. Among the remaining 96 
participants, 57 were native English-speakers and 39 were 
ESL students (M length of speaking English = 5.76 years). 
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Acquisition The increase in acquisition from the first to 
the third time a given pair was presented during the study 
phase is shown in the left panel of Figure 3. Participants in 
different conditions exhibited a similar amount of 
accuracy boost by the end of the study phase, and the 
proportions of synonyms correctly recalled were not 
different, although performance in the alphabetical 
condition (M = .43, SD = .20) was numerically better than  
that in the random (M = .39, SD = .18) and paired (M = 
.37, SD = .18) conditions. Unlike in Experiment 1, the 
curves were nearly linear with no indication of 
deceleration in learning rates at the end of the 3rd 
presentation. One interpretation of this finding was that 
intrinsic confusion in confusable words made them 
naturally more difficult to learn than regular ones (indeed, 
accuracy rates were lower). Thus, three learning trials 
still left space for learning to improve at an accelerating 
rate before starting to slow down. 

 
Figure 3: Study phase acquisition curves and final 

cued recall test in Experiment 2. Error bars 
represent one standard error of the mean. 

 
Final test Performance on the final cued recall test is 
illustrated in the right panel of Figure 3.   A 3 (sequencing 
condition) x 2 (pair type) mixed effects ANOVA 
performed on the cued-recall test performance, revealed a 
main effect of condition, F(2,93) = 3.45, MSE = .10, p = 
.036. Additionally, post-hoc pairwise comparisons revealed 
that the alphabetical condition (M = .53, SD = 25) yielded 
significantly better learning than the paired condition (M = 
.39, SD = .19, p = .01). The random condition (M = .44, 
SD = .25) was not significantly different from either the 
paired condition (p = .33) or the alphabetical condition (p 
= .12).  

A main effect of pair type was also observed, F(1, 93) = 
50.55, MSE = .01, p < .001, with the GRE words from 
the pairs having different initial letters (M = .50, SD = .23) 
being learned significantly better than the words from pairs 
sharing the same initial letter (M = .39, SD = .24). There 

was no interaction between condition and pair type, 
F(2,93) = 1.12, MSE = .01, p = .33. 

Figure 4 shows multiple-choice test performance by 
condition and pair type.  A 3 (sequencing condition) x 2 
(pair   type) mixed effects ANOVA performed on the 
multiple-choice test performance revealed similar patterns 
to that obtained for the cued-recall test performance. Again, 
there was a trend-level effect of condition, F(2,93) = 2.22, 
MSE  =  .10,  p  =  .12.  Pairwise comparisons revealed a 
similar pattern as found with the cued-recall test: the 
alphabetical condition (M = .77, SD = .03) was marginally 
better than the paired (M = .70, SD = .03, p = .06) and the 
random (M = .70, SD = .03, p = .08) conditions. 

Again, a significant effect of pair type, F(1,93) = 53.03, 
MSE  =  .01,  p <  .001,  was  observed,  with  the  different- 
initial letter pairs (M = .77, SD = .18) learned better 
than the same-initial  letter pairs (M = .67, SD = . 18). 
Finally, there was no condition x pair type interaction, 
F(2,93)  = 1.57, MSE = .01, p = .21 

 

 
Figure 4: Multiple-choice test performance on 

Experiment 2 by condition and pair type. Error bars 
represent one standard error of the mean. 

 
Metacognitive Responses When asked what sequence they 
believed was best for learning, 42 (44%) participants 
reported that they believed that pairing confusable words 
would lead to the best learning, 39 (41%) a random 
sequence would be best, and 15 (16%) believed that an 
alphabetical sequence would be best. These metacognitive   
responses   did not differ   by experienced 
condition, χ2 (4) = 6.30, p = .18. 

Overall, the findings of Experiment 2 demonstrate that 
when trying to learn confusable words, contrary to many 
people’s belief (a majority of 84% thought that either 
random or paired order would be the best), an alphabetical 
order led to the greatest learning.   

General Discussion 
The current study is one of the very few instances where 
the alphabetical order has been studied. Experiments 1 and 
2 revealed some preliminary evidence on the merits of an 
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alphabetical word learning sequence. There was some 
suggestion that this strategy can be equally, if not more 
effective than strategies that are traditionally considered 
good (e.g., categorical or paired clustering). 

It is worth pointing that while both being referred to as an 
“alphabetical sequence,” the structures of the alphabetical 
order in Experiments 1 and 2 were not identical. In 
Experiment 1, the structure was not strictly alphabetical, but 
rather grouped words beginning   with   the   same   initial   
letter   together. Participants went through an alphabetical 
cluster three times, so they were only exposed to one initial 
letter at any given time.  Thus, it was more of an 
“alphabet-informed grouping.” We speculate that one 
possibility is that this grouping offers an optimal level of 
support and difficulty:  The support from the small degree 
of structure (i.e., shared initial letters) may ease extraneous 
cognitive processing load from the difficult word learning 
task; the otherwise-random nature of the words maintains 
a sense of difficulty to promote deeper processing. An 
alternative explanation could simply be that clustering 
alphabets gives learners another, redundant, cue to aid 
learning. The initial letter is another cue to the context in 
which words were learned. For example, the initials may 
have already narrowed down the list from 36 to six words, 
which may well require less cognitive effort to identify the 
correct answer, given that words in the same initial cluster 
are not too similar orthographically/phonologically. 
Therefore, while shared categories may be a contextual cue 
in categorical clustering, list position could be a contextual 
cue in an alphabetical sequencing. Each clustering method 
has its own advantage and both lead to respectable results.  

In Experiment 2, the alphabetical sequence was truly 
alphabetical, with half same-initial and half different-initial 
confusable pairs. The advantage of this strategy was 
primarily reported in learning different-initial than same-
initial pairs. Thus, the benefit of alphabetizing a confusable 
word-list was observed at a global (the entire list with 
multiple initials) rather than a local (same-initial pairs 
grouped to the same alphabetical cluster) level. 
Consequently, an alphabetical condition represents a  hybrid 
of randomization of the easier pairs (i.e., different-initial 
pairs) and confusability- clustering of the more difficult 
pairs (i.e., same initial pairs), which may have incidentally 
created a degree of “desirable difficulty” (Bjork, 1994). 
Alternatively, because learners in Experiment 2 learned all 
36 words before repeating, those in the alphabetical 
condition may have simply used list position as a contextual 
cue to aid learning. For example, they may have linked to-
be-learned words to some known knowledge (i.e., an 
alphabetical list) to help memorize.   

We have already demonstrated some caveats when 
alphabetizing to-be-learned words. As suggested above, 
there might be differences in the role of “alphabet-informed 
grouping vs. alphabetical order. It is therefore unclear how 
far the benefits of an alphabetical sequence would extend. 
In the present studies, we presented participants relatively 
difficult words in a language that they were familiar with 

Hence, knowledge about word etymology (e.g., Latin roots) or 
even passing familiarity with the to-be-learned words 
themselves (note the large jump in performance between the 
first and second trial of the study phase) may have supported 
learning. It is unclear how   the   optimal   sequence   might   
change   for   foreign language learning, where learners do not 
have this type of background knowledge. 

As part of a critical factor in high-stakes tests, GRE word 
learning is a major concern of many students. The present 
studies extend the literature by suggesting the powerful 
potential of learning words in alphabetical order, a widely 
used, yet under-investigated   alternative   to clustering   or 
random sequencing.  Whether, however, the benefits of an 
alphabetical   sequencing   might generalize   to vocabulary 
words that are less difficult and abstract than GRE words 
remains to be seen. In the meantime, it appears that 
generations of Chinese students who have been learning 
English vocabulary words grouped alphabetically may not 
have been engaging in what may seem, by some 
arguments, to be a misguided practice. 
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Abstract

Several computational models have been proposed to
explain the mental processes underlying analogical reasoning.
However, previous models either lack a learning component
or use limited, artificial data for simulations. To address these
issues, we build a domain-general neural network model that
learns to solve analogy tasks in different modalities, e.g., texts
and images. Importantly, it uses word representations and
image representations computed from large-scale naturalistic
corpus. The model reproduces several key findings in the
analogical reasoning literature, including relational shift and
familiarity effect, and demonstrates domain-general learning
capacity. Our model also makes interesting predictions on
cross-modality transfer of analogical reasoning that could be
empirically tested. Our model makes the first step towards a
computational framework that is able to learn analogy tasks
using naturalistic data and transfer to other modalities.

Keywords: analogical reasoning; learning; cross-modality
transfer; neural network models.

Introduction
Analogy is arguably one of the most important mechanisms
through which people acquire new knowledge (Gentner,
Holyoak, & Kokinov, 2001). Verbal analogy task such
as “PIG:BOAR::DOG:? a. WOLF b. CAT” and visual
analogy task such as Raven’s Progressive Matrices has
been widely used in standardized test to assess students’
intellectual ability (Buck et al., 1998). For a long time,
there has been a heated debate over whether analogy-mapping
is a domain-specific or domain-general process (Forbus,
Gentner, Markman, & Ferguson, 1998). Nowadays, it has
been increasingly clear that there are both a domain-general
component and a domain-specific component in learning
analogical reasoning.

One phenomenon related to the domain-general
component is the relational shift in child development,
i.e., early in development children tend to choose the item
that is more associated to the third item in the analogy
question A:B::C:[D1|D2] (Sternberg & Nigro, 1980), and
only older kids are able to use relational matching rather
than associations to perform the task. Some researchers have
argued that the lack of inhibitory control, which requires a
full-blown pre-frontal cortex is partially responsible for the
associative response (Richland & Burchinal, 2013). The
ability to inhibit associative responding and maintain the
relational constraints imposed by A:B is domain-general, i.e.,
it is a universal prerequisite for analogy-making no matter
which sensory modality or semantic domain the analogy task
is built on. Hence, if one person is trained to perform analogy
task in a particularly domain or modality, it is likely that the
training will help them do better in other domain or modality,

due to enhanced ability to suppress associative responses and
to maintain contexts.

The evidence for a domain-specific component comes
from the finding that children’s ability to perform analogy
task depends on their familiarity with the test material.
Goswami and Brown (1990a, 1990b) found that when
familiar concepts were used in analogy tasks, performances
were much better. These findings underscore the contribution
of domain-specific knowledge in analogy-making, yet change
in this aspect is unlikely to boost task performance in other
domain or modality.

Several computational models have been proposed to
account for how people solve analogy tasks. A useful
classification scheme is to group them into three types
of models (French, 2002; Gentner & Forbus, 2010):
symbolic models (Kuehne, Forbus, Gentner, & Quinn,
2000; Falkenhainer, Forbus, & Gentner, 1989), connectionist
models (Holyoak & Thagard, 1989; Hummel & Holyoak,
1997; Kollias & McClelland, 2013) and hybrid models
(Mitchell, 1993; Kokinov & Petrov, 2000). Most of symbolic
models represent analogy questions using predicates and
logical forms. When asked to solve an analogy task such
as A:B::C:?, they use symbolic manipulations and search
algorithms to find the correct answer. One of the most
influential symbolic approach to analogy-mapping is the
Structure Mapping Engine (SME) (Falkenhainer et al., 1989;
Gentner, 1983). It represents the base and source using
predicate-calculus and compares the two representations to
see if there is any structural similarities between them. Once
optimal matching structures are identified, the system then
transfer structure in the source to the target. Later version of
SME have relaxed matching criteria to allow similar, but not
identical predicate to match (Brian, 1990), but whether two
predicates are similar need to be explicitly computed.

Contrary to these symbolic approaches, connectionist
models often use distributed representation for the items in
an analogy task and encode their semantic and structural
similarity in a more implicit and continuous way, e.g., Kollias
and McClelland (2013). The connectionist models learn to
make a correct response by adjusting connection weights so
that the spreading activation within the neural networks could
reveal the distributed representation of the target, thus leading
to the correct answer.

Previous computational models of analogy-making have
significantly deepened our understanding of the mental
processes underling analogical reasoning. Many of such
models claim that they provide a domain-general explanation
of how people perform analogy tasks. For example, the
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Structure Mapping Engine, which was originally introduced
to solve analogy task in discrete semantic space, was later
used to answer analogy questions in continuous visual
domain (Lovett, Forbus, & Usher, 2007). Most of the
connectionist models are theoretically domain-general as
well, since we can easily feed the distributed representation
of stimuli from different domain/modality to the input
placeholders of those models. It is important for these
models to be domain-general, since humans are able to
make within-modality generalization, such as recognizing
examples that they have never encountered before (Lake,
Salakhutdinov, & Tenenbaum, 2015), or make cross-modality
transfer (Hupp & Sloutsky, 2011). Specifically, it has been
shown that relational knowledge is critical to the development
of analogical reasoning (Goswami, 1991). If one person has
received sufficient training to solve verbal analogy tasks, they
would gain some experience in relational knowledge. When
later asked to solve a visual analogy-making task, they do not
need to learn it from scratch (Figure 1).

Figure 1: Stimuli used in the current study. Left: Verbal
analogy task. Right: Visual analogy task.

Despite the generalization ability that previous
computational models may have claimed, they are often
missing some critical components. Symbolic approaches,
for example, rarely address how people learn to make an
analogy. Since the knowledge representations and the search
algorithms in those models are preprogrammed, it is not clear
how experience of analogy-making in one domain could
facilitate analogy-making in another unfamiliar domain.

As for the connectionist models, despite their theoretically
domain-general nature, none of the previous studies has
directly tested cross-modality transfer. Particularly, they
only demonstrate within-modality generalization, i.e., the
models are trained on some examples and tested on a
different set of examples in the same modality. Also,
the distributed representation of stimuli are either manually
defined according to the semantic features of the items, or
randomly assigned to some localist codes, which are not very
naturalistic.

Finally, all the previous modeling works have used small
datasets, containing hundreds of examples at most. We are
wondering if we could build a model that scales up to handle
a very large and naturalistic dataset. Particularly, we want
to understand if we use a dataset that reflects the statistical
distribution of stimuli in real life, can the model still learn
analogical reasoning and even make cross-modality transfer?
This idea is motivated by the statistical learning account
of language acquisition (Frost, Armstrong, Siegelman,

& Christiansen, 2015), which proposes that language
acquisition relies partially on a domain-general mechanism,
which is learning and processing sensory stimuli unfolding
across time and space (Saffran, Aslin, & Newport, 1996).
Early since 1990s, researchers have found that if you train
a recurrent neural network to predict the next word in
a sentence, the word representation it learns reveals the
syntactic and semantic role of the word (Elman, 1990).
Inspired by these previous studies, we use distributed
representations of words that reflect the statistics of word
co-occurrence in everyday life, which are more naturalistic.

As for the representations of visual stimuli, we process the
images (geometric figures) using a deep convolutional neural
network that has been trained to perform object recognition
task (Krizhevsky, Sutskever, & Hinton, 2012), and use the
activation of the 7th hidden layer as the representations of
the visual stimuli. Previous studies have shown that deep
convolutional networks share a lot of similarities with human
visual system (Yamins, Hong, Cadieu, & DiCarlo, 2013).
After we obtain the representations (embeddings) of the
words and the images, we build a simple, light-weighted
neural network to learn the analogy tasks.

Experiment
Data. We first describe the representation we use for the
word. The distributed representation of words are computed
using the continuous Skip-Gram model (Mikolov, Sutskever,
Chen, Corrado, & Dean, 2013). It takes the current word to
predict the surrounding window of context words. Hence,
the estimated word embeddings capture the semantic and
syntactic role of the words (Mikolov, Yih, & Zweig, 2013).
We download the pre-trained word vectors from Google
Word2Vec1, which have 300 dimensions. For computational
simplicity and efficiency, we reduce the dimensionality to 30
using principle component analysis (PCA) so that each word
has a 30-d vector representation.

We use the same verbal analogy dataset from Mikolov, Yih,
and Zweig (2013)2, which contains 19529 examples in total
with 907 unique words. We divide the dataset into three
sets, a training set (percentage: 80%, 15634 examples)3, a
validation set (10%, 1955 examples) and a test set (10%,
1955 examples). We use the accuracy on validation data to
tune the hyper-parameters of the model and report accuracies
on the test data. We run two types of tasks. The first
one is A:B::C:[D1|D2|...|Dn], in which the model is given
some choices and has to select the correct one (Task 1). We
simulate Task 1 with different number of choices ranging
from 2 to 5. The second type of task takes the form of
A:B::C:?, i.e., the model is required to find the correct D from
all words in its vocabulary (Task 2).

To simulate associative responses children usually give

1https://code.google.com/archive/p/word2vec/
2http://download.tensorflow.org/data/questions-words.txt
3Training with fewer data (e.g., 50%) does not lead to

qualitatively different results.
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when first learning analogy tasks, we construct three
datasets from the original analogy dataset. All of them
are binary-choice questions, but the incorrect alternatives
have different levels of associations with the third item C
in the question. In the High Association Dataset, each
questions has an incorrect response alternative (foil) that
is strongly associated with the third word in the analogy
question, whereas examples in the Low Association Dataset
contain alternatives that is weakly associated with the third
item. Finally, in the Random Association Dataset, the
incorrect response alternatives are randomly selected from
the vocabulary so that it does not necessarily has a strong or
weak association with the third item C. We determine word
associations by calculating the cosine distance between the
word vectors of the two words. The smaller the distance, the
stronger the association.

As for the visual stimuli, we use the Shape dataset from
Reed, Zhang, Zhang, and Lee (2015). It is a dataset of 2-D
colored shapes, with 8 colors, 4 shapes, 4 scales, 5 row and
column positions, and 24 rotation angles. We only use one
value for the rotation variable to avoid potential confusion
(e.g., a square rotated 180◦ would be the same figure as the
original figure, but it has a different label in the dataset), and
vary the other 5 variables to create a dataset. An example
question is showed in Figure 1, right. We generate 19080
examples in total and randomly split them into a training set
(80%), a validation set (10%) and a test set (10%). Next, we
use the AlexNet, a deep neural network trained to recognize
objects (Krizhevsky et al., 2012), to process these images. We
use the pre-trained connection weights from Caffe (Jia et al.,
2014) to process each image in our dataset and use the hidden
activation of the 7th layer as its embedding. We also reduce
the dimensionality of the image embeddings to 30 using PCA.

Model. The model architecture is fairly simple (Figure 2).
There are three layers, the input layer, the hidden layer and
the output layer. The input layer contains three pools that
encode the first three items (A, B and C in the analogy
question). Each pool has 30 nodes, which corresponds to
the dimensionality of the word/visual embeddings. The
connection weights from the input pool encoding A to the
hidden layer H and the ones from the pool encoding C to H
are the same, denoted by W1. The connection weights from
the pool encoding B to the hidden layer H are denoted by W2.
The connection weights from the hidden layer H to the output
layer O is the embedding matrix of either the choices in the
current example (Task 1) or the whole vocabulary (Task 2).
Mathematically, the model can be described by the following
equations:

H =W1vA +W2vB +W1vC +b

O = φ(W0H)
(1)

where vA,vB,vC ∈ R30 are the word/image embeddings for
the stimuli, W1,W2 ∈R30×30 are the connection weights from
the input pools to the hidden layer, b ∈ R30 is the bias in
the hidden layer, and W0 = [VD1 ;VD2 ; ...;VDn ]

T ∈ R30×30 is a
matrix composed of embeddings of all the choices. We use

the softmax function φ(xxx)i =
exi

∑
n
j=1 ex j to normalize the input

xxx to the final layer O, which amounts to W0H. The ith value
of the output, φ(xxx)i, indicates the probability of the ith choice
being correct.

Figure 2: Model Architecture with an exemplar question
“Boy:Girl::Brother:[Sister|Mom]”

Training. The model is trained by back-propagation
using the TensorFlow framework (Abadi et al., 2015). We
only update the weights W1,W2 and b. We train the neural
networks with a batch size of 50 for each task. We find that
the model cannot learn well in the Task 2 setting, where it
needs to pick up the correct D from all the possible words.
Therefore, in the following section we only report our results
for Task 1. We run 2 simulations. In the first simulation,
we examine whether we could reproduce the relational shift
phenomenon. To this end, we train the model on a verbal
analogy dataset with random association. As the training
proceeds, we test it periodically on verbal High Association
test set and verbal Low Association test set (within-modality),
as well as the visual High Association test set and visual
Low Association test set (cross-modality). In the second
simulation, we look at the influences of number of choices on
within-modality generalization and cross-modality transfer.
Particularly, we first train the model to perform verbal
analogy tasks with different numbers of choices, then test it
on visual analogy tasks. We also conduct another version
of the experiment in which the visual analogy tasks are
learned first. We run each of the simulations 10 times with
different random initialization of parameters, and in each run
the model is trained for 41 epochs.

Results
Simulation 1. We first test if our model reproduces
the relational shift observed during child development.
Figure 3 shows the accuracy curves of four test sets: verbal
High Association Dataset, verbal Low Association Dataset,
visual High Association Dataset and visual Low Association
Dataset.

First of all, we notice that our model clearly demonstrates
the tendency of associative responding in the early stage of
learning, since the accuracy on the High Association Dataset
grows slowly (solid curves), compared with the accuracies
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on the Low Association Dataset. As the training proceeds,
the model gradually learns to inhibit associative responses for
High Association Dataset (black solid curve).

Second, the test accuracies on verbal sets are consistently
higher than those on the visual test sets, which is not
surprising given that the model is only trained on verbal
stimuli. However, we still find a decent amount of
cross-modality transfer. For one thing, the tendency to
give associative responses earlier in the training is carried
over to the visual modality, even though no visual stimuli
has been used to train the network. In addition, as the
accuracy on verbal Datasets gradually increases, the model
also becomes better at answering questions in visual Low
Association Dataset (gray dash-dot curve). However, this
improvement is not reliably transferred to the visual High
Association Dataset, as the accuracy of this dataset remains
near chance-level after prolonged training (gray solid curve).

Third, we find that when the accuracy on verbal Low
Association test stops to grow after roughly 3 epochs,
the accuracy on the corresponding visual dataset continues
to improve until after 11 epochs, which then slowly
decreases (gray dash-dot curve). This can be explained
by the domain-general and the domain-specific component
of analogical reasoning. The model first learns the
domain-general component of analogical reasoning from the
training in the verbal domain, but later the training becomes
detrimental to cross-modality transfer since it continuously
shapes the model to be specific to the verbal domain, thus
reducing the accuracy in the corresponding visual domain.
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Figure 3: The effect of association on accuracy and
cross-modality transfer. The dotted line indicates the
chance-level.

Simulation 2. To understand the effect of number of
choices on accuracy for different data type (train/test) and
modality (verbal/visual), we run two linear models. In
the first linear model, we look at two sets of data, which
are obtained from the experiment “learning verbal analogy
first” and the one “learning visual analogy first”. In the
“learning verbal analogy first” experiment (Figure 4, left),
we find that both training and same-modality test accuracy
are almost perfect, whereas the cross-modality accuracy is
not. The linear model shows that for all of these three
conditions, the accuracy decreases as the number of choices
increases (train: β = −0.005, t(114) = −2.57, p = 0.011,

same-modality test: β =−0.004, t(114) =−2.12, p = 0.036,
different-modality test: β = −0.1, t(114) = −54.63, p <
.001). However, we also find an interaction between test
conditions and choice numbers. Particularly, the influence of
choice numbers on different-modality test is much larger than
the one on same-modality test, β = 0.096, t(114) = 37.13,
p < .001. In the “learning visual analogy first” experiment
(Figure 4, right), we find a similar effect of choice numbers
on the different-modality test condition, as well as a similar
interaction between test conditions and choice numbers, β =
0.071, t(114) = 14.07, p < .001.

Although both modalities demonstrate near perfect
performance of within-modality generalization after
sufficient training (∼40 epochs), the performance of
“learning verbal analogy first” is consistently better than
the one of “learning visual analogy first” throughout the
training. For instance, half way through the training, the
same-modality test accuracy of “learning verbal analogy
first” is higher than the one of “learning visual analogy first”
(mean difference is 4.77 %, t(234) = 3.279, p = 0.001). This
implies that the semantic space of word embeddings may
have a stronger structural regularity, which makes it easier to
discover relations between words than images.
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Figure 4: The influence of number of choices on accuracy.
Solid dots indicate chance-levels.

Visualization of connection weights
To get a deeper understanding of what the model has learned,
we visualize the weight matrix W1 and W2. We find that W1 is
very much like a identity matrix (Figure 5, left), whereas W2
does not have a easily describable pattern (Figure 5, right).

We compare our model with the vector offset method,
which was used by Mikolov, Yih, and Zweig (2013) to solve
analogy tasks. Given the problem A:B::C:?, they found the
word D such that its embedding vector had the greatest cosine
similarity to xB−xA+xC. Their method amounts to assigning
an identity matrix I to W1, −I to W2, and a zero vector to
the bias b in our model. The weights of our neural network
show that our model is not doing exactly the same thing as
the vector offset method does, since B does not approximate
the negative identity matrix. Hence, its weights are tuned to
solve the current analogy task, and the same weights are also
capable of solving analogy task in another modality.
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(a) (b)

Figure 5: (a): Connections from A to the hidden layer.
(b): Connections from B to the hidden layer. Lighter areas
represent larger weights.

Discussion
In this article, we build the first neural network model that can
learn to solve analogy tasks and make cross-modality transfer.
It uses word representations and image representations
estimated from large-scale naturalistic corpora. The
model demonstrates both the domain-general and the
domain-specific component of analogical reasoning.

Specifically, we see that the accuracy on the same-modality
test set is consistently higher than the accuracy on the
cross-modality test set. This is aligned with the empirical
finding that domain-specific knowledge boosts performance
in analogical reasoning (Goswami & Brown, 1990b). On
the other hand, the model demonstrates the domain-general
property of analogy-making by showing cross-modality
transfer. This is relevant to a broader topic in cognitive
science, the zero-shot learning. Zero-shot learning refers
to the ability to solve a task despite not having received
any training examples of that task. As human beings,
we do zero-shot learning all the time. Only recently did
researchers begin to simulate zero-shot learning using neural
network models. For instance, in Socher, Ganjoo, Manning,
and Ng (2013), they showed that learning the distributions
of words in texts as a semantic space helps the model
understand the visual appearances of objects, and enables
the model to recognize objects even if no training data is
available for that category. Our model contribute to the
zero-shot learning literature by showing that zero-learning
is possible for analogy-making task as well. It also makes
some interesting predictions that can be empirically tested.
The success of our model suggests the possibility that there
might be some similar structural regularities in the word
embeddings extracted from naturalistic corpus and in the
image embeddings extracted from object recognition models.
This similarity explains why our model makes cross-modal
transfer.

Our results are also relevant to another line of research,
the one-shot learning. One-shot learning refers to the
problem of learning from one or very few examples. Classic
deep learning neural networks could not perform one-shot
learning, which is a common criticism of neural networks
being plausible cognitive models of human learning (Lake,
Ullman, Tenenbaum, & Gershman, 2016). However, recently
Vinyals, Blundell, Lillicrap, Wierstra, et al. (2016) showed

that if you match the training task with the test task, neural
networks are able to learn from few examples. In their paper,
they trained a network to map a query example to one of the
four candidates example so that both of them belong to the
same category. The model learned the task very well. Our
results lend further support to their approach. We find that
our model only learns efficiently under the Task 1 setting,
where it chooses among a few choices rather than the whole
vocabulary. Our work extends Vinyals and colleagues’ results
by showing that our network model can make an inference
not only on unseen stimuli, but also on unseen stimuli from a
completely different modality.

There are some limitations of the current work. First,
the model is a simplification of the actual mental processes
underlying analogy-making. A lot of previous computational
model have given very insightful explanations of those mental
processes (Gentner, 1983; Morrison et al., 2004; Kollias &
McClelland, 2013; Gergel’ & Farkaš, 2015), and our goal
is not to argue against those models or to provide a better
model. Instead, our goal is to demonstrate the possibility
that domain-general neural network models can learn from
large-scale, realistic datasets to solve analogy tasks. Second,
we have not directly compared our model performance with
human performance. It would be interesting to see how
human would respond to the analogy questions in the current
study and whether our model predictions align with human
data in the future.
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Abstract 

In this study, we tested the effectiveness of a computer-based 
persuasive dialogue system designed to promote a plant-based 
diet. The production and consumption of meat and dairy has 
been shown to be a major cause of climate change and a 
threat to public health, bio-diversity, animal rights and human 
rights. A system promoting plant-based diets was developed, 
comprising conversational, motivational and argumentational 
elements. 280 participants were randomly assigned to one of 
four conditions, each representing a particular combination of 
motivational and argumentational modules. Male participants 
showed higher intention scores in the motivational conditions 
compared to the argumentation-only or control condition. 
Female participants scored higher overall, unaffected by 
condition. These results suggest that men and women are 
differentially sensitive to persuasive strategies regarding the 
adoption of a plant-based diet. It seems to be particularly 
worthwhile to use motivational - as opposed to merely 
argumentational - elements in a persuasive conversation. 

Keywords: human-machine interaction; dialogue system; 
persuasive communication; cognitive dissonance; 
motivational interviewing.  

Introduction 
When individuals experience a mismatch between their 
beliefs and their actual behavior, the phenomenon of 
cognitive dissonance (Festinger, 1957) kicks in: "an 
aversive state which motivates cognitive or behavioural 
actions to lower itself” (Dijkstra, 2009, p.792). For instance, 
most people do have a desire to behave ethically, but this 
desire is often not reflected in their actual behavior. People 
are often 'wilfully ignorant' when it comes to their ethical 
beliefs, actively ignoring or discarding relevant information 

about those beliefs (Zane, Irwin & Reczek, 2013).There are 
two ways in which you can deal with and/or solve cognitive 
dissonance. The first one is to change your cognitions in 
line with your current behavior. For example, you could 
change your belief: “behaving ethically is not so important 
for me (anymore).” The second way is to change your 
behavior in line with their current beliefs: actually acting in 
an ethical manner (Dijkstra, 2009; Hewstone, Jonas & 
Stroebe; 2012).    

The latter way of solving cognitive dissonance is often an 
ultimate goal of – for instance - health and sustainability 
communication professionals: they want people to change 
their behaviour, like: exercise more often (Riet et al., 2010); 
quit smoking (Ballast & Dijkstra, 2011); reduce fat-intake 
(Wright, Velicer & Prochaska, 2008); behave 
environmentally friendly (Bolderdijk et al., 2012) etc. 
However, people often change their cognitions instead of 
their actual behavior. Therefore, persuaders often start by 
trying to change people’s cognitions. In order to achieve 
this, one has to address the most focal cognitions that people 
hold about a particular behaviour (Fishbein & Yzer, 2003).  

One problem area that is often associated with cognitive 
dissonance, is the consumption of meat and other animal 
products. Meat eaters are assumed to experience cognitive 
dissonance resulting for instance from the perceived 
aversive consequences of their diet (“I eat meat but eating 
meat hurts animals”) (Cooper & Fazio, 1984); or because it 
threatens their self-integrity (“ethical people don’t eat meat, 
but I do”) (Aronson, 1968). Most people believe it is wrong 
to hurt animals, while at the same time around 95% of the 
consumers in the U.S. eat meat. Researchers have referred 
to this phenomenon as the ‘meat-paradox’, and claim that 
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cognitive dissonance lies at the heart of this phenomenon 
(Bastian, Loughnan, Haslam & Radke 2012; Rothgerber, 
2014).  

Besides solving the unpleasant feeling of cognitive 
dissonance that consumers may experience due to eating 
meat, there are several other important reasons to address 
meat consumption. First, the livestock industry is one of the 
largest polluters worldwide. In order to meet stringent 
climate change targets, the consumption of animal products 
should be reduced at least by half (Donham et al., 2007; 
Hedenus, Wirsenius & Johansson, 2014; Hertwich et. al., 
2010; Steinfeld et al., 2006). Second, the production of 
animal products is threatening rights and wellbeing of both 
humans and animals due to poor working conditions for the 
first, and poor living conditions for the latter (Pew 
Commission, 2008). Third, individual and public health is 
negatively affected by meat and dairy consumption. For 
instance, the growing consumption animal products is 
associated with an increase of diseases like obesity, type II 
diabetes (Cooney, 2014; Montonen et al., 2013), heart and 
vascular diseases (Yokoyama et al., (2014) and a variety of 
cancers, like colorectal, lung and bladder cancer (Lippi, 
Mattiuzzi & Cervellin, 2016). Thus, a successful promotion 
of plant-based diets - diets without meat, dairy and eggs – 
could have a great many positive outcomes for animals, 
humans, and the environment.   

It has been claimed that one of the most effective 
strategies to reach persuasion is through conversation and 
interaction (Helme et al., 2011; Noar, Carlyle & Cole, 
2006). However, even if that were the case, face-to-face 
conversations are obviously very time consuming and costly 
(Southwell & Yzer, 2007). A fruitful solution for this could 
be the deployment of human-machine interaction systems. 
There is a huge benefit in using online dialogue systems as 
larger target groups can be reached at lower costs. In 
addition, automated dialogues can also easily be tailored, 
which lowers resistance to persuasion and makes messages 
individually more relevant (Dijkstra, 2008). An added 
benefit for experimental research is that manipulations can 
be held more constant, making it easier to measure the 
effect(s) of the strategy/strategies employed within the 
dialogue system separately - and/or combined.  

The Dialogue System 
We devised and tested a persuasive online dialogue system 
that promotes plant-based diets. Our system incorporates 
persuasive strategies aimed at reducing the consumption of 
animal products. First, an ‘argumentation’ module was 
designed to target cognitive dissonance by addressing focal 
beliefs about meat consumption. This module provides 
individually tailored arguments that address the individual’s 
so-called ‘disengagement’ beliefs: beliefs that may be true 
in themselves, but that are not valid arguments in the 
discussion at hand (e.g., “Our ancestors ate meat” is true, 
but it is not a valid reason why a present-day individual 
should still be eating meat).  

In addition, a second module was designed to reduce the 
likelihood of experiencing negative affect and resistance to 
counter arguments and persuasion. In building this module, 
we borrowed heavily from the theoretical framework of 
Motivational Interviewing (MI). MI is "a collaborative 
conversation style for strengthening a person’s own 
motivation and commitment to change" (Miller & Rollnick, 
2002). In this method, the receiver formulates its own goals, 
capacities and reasons regarding his/her behavior change 
towards the targeted behavior. Dialogue in MI is framed in 
such a way to emphasize one's autonomy and to avoid any 
direct confrontation with the target individual. Important 
elements of MI are: 1) an explicit consent question, asking 
whether an individual agrees with talking about a specific 
topic; 2) a ‘motivation ruler’, which consists of asking one 
to number or 'grade' their motivation to change and 
subsequent questioning and giving feedback on the number 
they choose (e.g., “You chose “2”, what would it take for 
you to get a higher level of motivation?”); and 3) a 
‘confidence ruler’, which asks about a person’s confidence 
in his/her own capacity to change towards the target 
behavior. Digital applications of this conversational method 
have proved to be effective in achieving positive intentional 
and behavioral outcomes (Shingleton & Palfai, 2015). 

To increase the ‘feel’ of an actual conversation, we 
include a picture (of a young female) to visualize the 
‘person’ talking to the participant. We use personal 
pronouns like “I” and “you” in conversation; and talk is 
individually tailored by the system throughout the 
conversation based on responses of the - non-digital - 
conversational partner. In the future, we would like to 
develop a more sophisticated dialogue system, capable of 
reacting to natural language input. Previous research has 
shown that technological social agents - like robots - are 
able to induce behavior change by providing interactive 
feedback with regard to for instance sustainability-related 
behavior like energy conservation (Ham & Midden, 2014). 
However - to our knowledge - no research has yet looked 
into computerized agents that are active in the field of plant-
based eating. We used survey-builder Qualtrics to design a 
straightforward, tree-based conversational system with 
feedback based on answers on - for the most part - multiple 
choice questions.  

 
Table 1: Example of tree-based conversation with Eliza 

 
"When are you planning to make changes to your diet?"  
Participant's answer Eliza's answer 

• Within a week  
• Within a month 

"That's pretty soon, good to 
hear! Can I ask you more?" 

• Within 3 months 
• Within a year 

"You're taking your time, 
but that's OK! Are there any 
ways to potentially speed up 
this process for you?"  
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Method 

Participants 
Three-hundred-and-seventy-one Dutch participants took 
part in the research. Participants were recruited from social 
media, mailing lists and the researchers' personal networks. 
Data from participants who had a vegetarian or vegan diet - 
or failed to complete the questionnaire - were excluded from 
analysis. Two-hundred-and-eighty participants remained. Of 
this sample, 76% was female (N=212) and 24% male 
(N=68). Participants' mean age was 26 years (SD=9.9), 
ranging from 17 to 65. Male and female participants were 
dispersed evenly across four conditions (15-20 men and 55-
60 women in each condition).  

Measures 
Disengagement Belief Strength The strength of the various 
disengagement beliefs was measured by asking participants 
about the extent they (1) totally disapprove - (7) totally 
approve of fourteen disengagement beliefs about eating 
meat (i.e. "Without meat you cannot be healthy"; "Lions eat 
meat too"). These fourteen disengagement beliefs were 
formulated based on a belief elicitation study in which 
twenty-three participants stated the most important reasons 
for them to keep eating meat. In the present study, 
participants were asked which three of these fourteen beliefs 
were the most important reasons for them to keep eating 
meat. Subsequently, they received tailored feedback based 
on the answers they provided. This feedback was framed as 
a short text in a what-if question format (i.e. "You state that 
meat is too tasty. That is hard to deny! But what if you find 
out that some meat substitutes are quite good and sometimes 
even as good as real meat. Would you then be open to 
change your current diet towards a more plant-based diet?"). 
When a participant answered "no", the dialogue system 
would give similar ‘what-if’ feedback for the second and/or 
third reason, until the participant either answered "yes" or 
all three reasons were addressed. Note that all responses of 
the dialogue system consisted of valid arguments, based on 
scientific findings.  
 
MI module In the full MI version, participants were 
explicitly asked for their approval to talk about their dietary 
habits ("In this program, I will talk about the advantages of 
having a plant-based diet [...] Are you open to talk about 
your own eating habits and possible changes to it?"). When 
participants did not consent, there was a short feedback page 
after which the experiment ended. As we described above, 
motivation to change towards a plant-based diet was 
measured by asking one's motivation on scales ranging from 
(0) No motivation at all - (10) very highly motivated. (e.g. 
"It looks like reducing your meat consumption is not that 
high of a priority for you! Could you tell me why?") A 
similar procedure was used for measuring how much 
participants trusted their own capacity to perform the 
requested behavior (self-efficacy). 

 
Attitude and Behavioral Intention Attitude was measured 
by evaluating the following statement on a semantic 
differential scale: "If I would change my current diet to a 
vegan diet, that would be...": i.e. good-bad; foolish-wise; 
unnecessary-necessary. In addition, participants evaluated 
several statements on a seven-point scale ranging from (1) 
strongly disapprove - (7) strongly approve (i.e. "A diet 
without animal product is more environmentally friendly."). 
Behavioral intention towards three kinds of behavior was 
measured: going completely or partially vegan; going 
completely or partially vegetarian; going completely or 
partially organic where meat was concerned. These 
intention measures were weighted and summed into one 
intention-score that indicated their willingness to change 
their diet towards a more - or less - plant-based diet (the 
higher, the more willing).  
 
Evaluation questions At the end of the session, we asked 
1) whether participants felt they were addressed in a nice 
manner, and 2) whether they liked to communicate with 
Eliza by means of evaluating statements on a Likert-type 
scale: (1) completely disagree - (7) completely agree.   

Procedure and Design 
When starting the dialogue system, participants saw a 
picture of a young girl who was introduced as “Eliza”. She 
asked if they cared to join her in a conversation about their 
eating habits. Subsequently, participants were asked about 
their gender, age, education and actual eating habits. Next, 
participants received information about several benefits of a 
plant-based diet. In three of the four conditions the 
disengagement belief handling module (‘DBH’) was 
included to address the participant's most focal beliefs about 
eating meat. Two of the four versions also included a 
motivational interviewing module (‘MI’), either a full (with 
an explicit consent question) or partial (without an explicit 
consent question) module. A fourth version did not include 
DBH and MI modules and served as - baseline - control 
condition. Table 2 shows how the modules were combined 
in the different versions of the system that were used in this 
study.  

 
Table 2: Experimental conditions 

 
 Full MI Partial 

MI 
DBH Control 

Consent + - - - 
MI + + - - 
DBH  + + + - 
INFO + + + + 
Note. MI = Motivational Interviewing; DBH = Disengagement 
Belief Handling; Consent = consent question; INFO = 
information on plant-based diet. 
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Analysis 
We used between-groups univariate Analysis of Variance to 
investigate the patterns of results for Attitude, Intention and 
Evaluation. Condition was one factor, with four levels (Full 
MI, Partial MI, DBH and Control), and Sex of Participant 
the other factor (male versus female). This latter factor has 
consistently been shown to influence behavioral outcomes 
concerning reduction of meat consumption (e.g. Cooney, 
2014). In the analysis on Evaluation there were only three 
levels of Condition, as the Control condition did not feature 
a conversation with Eliza. 

Results 
Table 3 shows the means for attitude towards adopting a 
plant-based diet, and the composite scores for intention to 
reduce meat consumption per condition. 

 
Table 3: Means and Composite Scores (plus standard 

errors) of intention and attitude 
 

 Intention Attitude 
Condition Men  Women Men Women 
Full MI 95.45 

(7.95) 
99.67 
(5.24) 

5.56 
(.21) 

5.62 
(.14) 

Partial MI 95.67 
(10.72) 

106.80 
(5.24) 

5.21 
(.28) 

5.56 
(.14) 

DBH 80.65 
(8.89) 

101.72 
(4.80) 

4.74 
(.23) 

5.45 
(.12) 

Control 65.95 
(7.76) 

102.23 
(4.41) 

5.11 
(.20) 

5.77 
(.11) 

Note. MI = Motivational Interviewing; DBH = Disengagement 
Belief Handling 

 

Effects of Condition and Sex on Attitude 
A Univariate Analysis of Variance showed a significant 
main effect of Condition on Attitude towards adopting a 
more plant-based diet (F(3,269)=2.67, p=.048). Attitude 
scores of participants in the Control (M=5.44, SE=.12) and 
Full MI (M=5.59, SE=.12) condition were significantly 
higher than Attitude scores of participants in the DBH 
condition (M=5.10, SE=.13). In addition, there was a main 
effect of Sex on Attitude (F(1.269)=11.54, p=.001). Women 
(M=5.60, SE=.06) scored significantly higher on attitude 
measures than men (M=5.16, SE=.06) regardless of 
exposure to experimental condition. No interaction effect of 
Condition x Sex was found (p-value>.23). 

Effects of Condition and Sex on Intention 
A Univariate Analysis of Variance showed a marginally 
significant main effect of Condition on Intention to adopt a 
more plant-based diet F(3,272)=2.29, p=.078. In addition, 
there was a main effect of Sex on Intention. Men (M=84.44, 
SE=4.56) scored significantly lower on intention to adopt a 
more plant-based diet than women (M=102.61, SE=2.47), 
F(1,272) = 12.74, p=.000. The interaction of Condition x 

Sex was found to be marginally significant (F(3,272) = 2.2, 
p=.09).   

Further exploration of these effects showed that intention 
scores were only significant between conditions for male 
participants (F(3,64)=2.85, p=.044) but not for female 
participants (F(3,208)=.332, p=.80). A post-hoc test showed 
that intention scores of men who were exposed to the 
Control condition (M=66.0, SE=7.8), were significantly 
lower than mean intention scores of men who were exposed 
to either the full MI condition (M= 95.5, SE=8.0), p=.011; 
or the partial MI condition (M=95.67, SE=10.8), p=.030. 
Intention scores between men in the DBH condition and the 
control condition did not differ.    

Evaluation questions 
Table 4 shows the mean scores about the participants' 
appreciation for the way they were addressed by Eliza and 
the extent they liked talking to her.  

 
Table 4: Means (plus SE) of appreciation and liking 

 
 Appreciation Liking 
Condition Men  Women Men Women 
Full MI 5.26 

(.32) 
5.33 
(.21) 

4.42 
(.32) 

4.04 
(.20) 

Partial MI 4.91 
(.43) 

5.23 
(.22) 

4.46 
(.42) 

4.18 
(.21) 

DBH 5.53 
(.36) 

5.02 
(.19) 

4.73 
(.36) 

4.06 
(.19) 

Note. MI = Motivational Interviewing; DBH = Disengagement 
Belief Handling 
 
In general, participants felt they were addressed in a nice 
manner: mean scores ranged from 4.9 to 5.5 (maximum 7). 
A 3 x 2 ANOVA was carried out - no evaluation questions 
about Eliza were asked in the control condition - which 
showed no significant main  or interaction effects (p-values 
> .37). Participants also seemed to like to communicate with 
Eliza, though the marginally significant main effect of Sex 
of Participant (F(1,182)=3.39, p=.067) suggested that male 
participants enjoyed talking to Eliza a little bit more 
(M=4.54, SE=.21) than female participants  (M=4.09, 
SE=.12). No other effects were significant (p-values > .77). 

Discussion 
The aim of this research was to find out 1) whether it would 
be effective to design a dialogue system to promote plant-
based diets, and 2) which elements or modules contribute to 
the persuasive power of the system. To this end, four 
versions of a computer-based dialogue system were 
developed, which ‘talked’ about the benefits of plant-based 
diets and provided - individually tailored - conversations 
based on different persuasive strategies.        

Most importantly, we saw positive effects of 
incorporating persuasive strategies in a dialogue system. 
This implicates the usefulness of using a dialogue system to 
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promote sustainable behavior concerning the promotion of 
adopting a (more) plant-based diet. 

We discovered effects of the different versions on 
behavioral intention towards adopting a plant-based diet. 
These effects were only present for men. Women were in 
general more willing to change their diet, regardless of the 
condition they were assigned to. So contrary to 
expectations, men seemed to be most sensitive to persuasion 
in the area of moving towards a plant-based diet. Men who 
were exposed to the Full MI and the Partial MI conditions - 
which both contained a motivational interviewing  module - 
showed  higher intentions to adopt a more plant-based diet 
than men in the control condition. The DBH condition that 
only contained disengagement belief handling did not 
significantly differ from the control condition. 

Apparently, if we restrict our persuasive attempt to mere 
argumentation, we will not get far, at least not with our male 
conversational partners. This conclusion is underscored by 
the findings regarding participants' attitudes. Incorporating 
an argumentational component even seems to negatively 
affect those: attitude scores were significantly lower in the 
argumentation-only (DBH) condition than in the Control 
condition for both men and women. Because a DBH module 
is included in all experimental conditions, it is still possible 
that DBH is effective, but only in combination with a 
motivational module. Future research including an ‘only 
MI’ condition could perhaps answer that question.  

A second important finding concerns the effects of Sex of 
the Participant. Our results support the notion that men and 
women think differently about adopting a more plant-based 
diet and that they are persuaded by different means (e.g. 
Cooney, 2014). However, as we said, the outcome was not 
quite as we anticipated, as we expected that women would 
be more susceptible to persuasion in this area. What our 
results do suggest is that women are generally more likely to 
have or adopt a plant-based diet. While it is true that in this 
research only men were positively affected by two versions 
of the intervention, women showed more positive attitudes 
and higher intentions to adopt a more plant-based diet than 
men overall. 

Of specific interest is that there was also a (trend towards 
a) main effect of Sex on the scores of one of the evaluation 
questions, when participants were asked whether they had 
enjoyed talking to Eliza. Men had enjoyed the conversation 
with Eliza more than women. Perhaps if we would use a 
picture of a young male, this ‘Elisus’ would work better 
with a majority of female participants. We will tackle this 
issue in a future version of the present experiment.  

Future studies in our lab will focus on a number of issues. 
First of all, we will perform a replication of this study in a 
different participant group to gauge the extent to which we 
can generalize the specific findings of this study 

Second, we measured intention immediately after 
participants were exposed to the intervention. It is very 
likely the case that interventions need much more time 
before they have a detectable effect. Especially with 
difficult behaviors like changing dietary habits, the 

occurrence of what is sometimes called ‘sleeper effects’ 
seems very plausible (Kumkale & Albarracín, 2004).  

In addition, as in most studies, the present research 
measured behavioral intention and not actual behavior. 
While intention is thought to be a potent predictor of actual 
behavior (Fishbein & Ajzen, 2010), being able to measure 
and predict actual behavioral outcomes is the ultimate goal 
of persuasion research. We would like to use some form of 
longitudinal design, where we measure - self-reported - 
eating behavior over a longer period.  

Finally, the present research measured the effects of a 
single intervention. In the real world, people are often 
exposed more than once to the same, or related persuasive 
information – they read advertisements in newspapers and 
magazines, see posters, look at commercials etc.  Perhaps 
we need multiple exposures to create more persuasive 
results.  

In conclusion, then, our research suggests that a dialogue 
system can induce behavior change in the field of a plant-
based life-style. However, strategy-wise, only giving people 
arguments in trying to persuade them is not going to work. 
People, especially men, may want to feel their own 
autonomous motivation, which can be fueled by a 
supporting dialogue based on - for instance – elements from 
motivational interviewing. Future research should test   
designs that incorporate different combinations of 
persuasive strategies (and pictures/avatars); multiple 
exposures to/conversations with the system; over a longer 
time span; and should measure actual consumption behavior 
instead of intention as outcome.    
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Abstract 

The numerous studies on pseudoneglect have generated 
inconsistent results and disagreement concerning the 
underlying mechanisms. Most research supports the 
hypothesis that hemispheric lateralization is the main reason 
for the persistent leftward bias in spatial tasks. Findings on 
the influence of reading direction, handedness and participant 
age are largely contradictory. As a result of brain maturation 
adults usually perform with significant leftward bias. 
However, both hemispheric activation and scanning habits 
exert an influence on space representation, which varies 
across age groups. Preschoolers, middle school children and 
adults were tested on the line and word bisection tasks and on 
house-person-tree drawing tasks. The analysis of their 
performance produced results consistent with an explanatory 
account that the direction of the spatial bias shifts leftwards in 
the course of development. 

Keywords: pseudoneglect, line bisection, age differences, 
house-person-tree drawing task   

Introduction 

Cognitive processes have their limitations that may lead to 

distortion in perception or judgment. Different biases arise 

when cognitive resources are challenged, but are also 

partially rooted in the cultural context and can be learned 

implicitly, including our ability to navigate through space 

and construct adequate spatial representations of the close 

environment. The temporal and spatial structure of the 

viewing behavior is independent from the goal of the task 

and is attributed to the horizontal asymmetries of the visual 

and attentional systems. 

The hemispatial neglect syndrome is a 

neuropsychological disorder where patients have difficulties 

processing stimuli from the contralesional hemispace. The 

condition is generally due to impairment of the ability to 

direct attention and movement, although it might as well be 

attributed to the inability to form spatial representations 

(Bisiach, 1996). Patients with left visuospatial neglect bisect 

horizontally presented lines to the right of their objective 

center. In contrast, neurologically normal people usually 

perform the task with significant leftward bias. This 

exploratory inclination to look slightly to the left of the 

center of the presented stimuli is known in the literature as 

pseudoneglect (Bowers & Heilman, 1980). 

Pseudoneglect is typically interpreted in terms of the 

hemispheric lateralization of the brain and has two 

complementary components – visual and motor. The visual 

component incorporates the scanning habits and the 

attentional and perceptual effects, while the motor 

component refers to the overdriven movements, like 

directional hypometria, perceptual motor activation and 

cueing (Macdonald-Nethercott, Kinnear, & Venneri, 2000). 

In one of the first studies on pseudoneglect leftward errors 

were made only in the paper-and-pencil version of the line 

bisection task and not in the computer version of the task 

(Luh, 1995). This result supports the contribution of the 

above mentioned motor factor to the leftward spatial bias. 

Both hemispheres are engaged in directing attention to the 

contralateral space, but as the right hemisphere is generally 

more active during spatial tasks this could lead to 

subsequent enhanced attendance to the left visual 

hemispace. This was demonstrated in a cancellation task 

designed to deliberately activate the left or the right 

hemisphere (Vingiano, 1991). A more recent fMRI study 

also showed increased activation in the right intra-parietal 

sulcus and lateral peristriate cortex during judgment and 

performance of line bisection tasks (Cicek, Deouell, & 

Knight, 2009). 

In a series of eye-tracking experiments on viewing 

behavior in exploring complex scenes participants 

demonstrated a marked initial leftward bias that was 

independent of the category of the presented images 

(Ossandon, Onat, & Konig, 2014). It is generally accepted 

that people tend to scan the visual field in the direction that 

they read. Opposite reading habits give rise to opposite 

spatial bias when performing the line bisection task – left-

to-right readers bisect the lines to the left of their veridical 

center, while right-to-left readers deviate to the right 

(Chokron & Imbert, 1993). In a similar study the line 

bisection performance of adults, 8-year-olds and 

preschoolers coming from cultures with opposite reading 

habits was compared and differences were found in all 

groups (Chokron & De Agostini, 1995). Usually the 

developmental shift in the observed bias in line bisection is 

from right to left, as demonstrated in an experiment with 4-5 

and 10-12 years old children (Dellatolas, Coutin, & De 

Agostini, 1996). 

There is evidence that with the maturation of the corpus 

callosum during puberty, spatial processing shifts from the 

contralateral to the right hemisphere. Right-handed 

prepuberty children showed rightward bias in line bisection 

tasks when using their right hand and a leftward bias with 

their left hand. The adult and puberty groups bisected the 

lines to the left with both hands (Hausmann, Waldie, & 

Corballis, 2003). Another study also showed that learned 

directionality and movement preferences have little 

influence on placement of single object on a page. Both 
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French and Moroccan dextral children manifested similar 

leftward bias in a draw-a-tree task, supporting the advantage 

of brain lateralization over learned cultural habits, including 

reading direction (Picard & Zarhbouch, 2014).  

Both neglect and pseudoneglect, despite the difference in 

the underlying neurological mechanisms, have similar 

behavioral manifestation and are assessed with the same 

tasks, such as line and word bisection, drawing or bisecting 

a simple figure and exploration of complex scenes. 

Basically, both lines and words are bisected to the left of 

their objective center by adults, in accordance with the 

hemispheric activation hypothesis and the reading direction 

hypothesis. However, the effect is more pronounced in word 

bisection showing that an additional mechanism might be 

involved. In a series of experiments with lines and 

orthographic strings (words, pseudowords, symbols), lines 

were bisected always to the left, while words yielded a 

different result depending on their length – short ones (3-4 

letters) were bisected with a general right-side bias 

(Arduino, Previtali, & Girelli, 2010). 

As the beginning of the word is more informative than its 

end, oculomotor behavior shows that attention is usually 

directed to the left of the word center, while trying to access 

the mental lexicon in establishing a matching cohort. 

According to the Attentional scaling hypothesis, proposed 

by Fischer (1996), orthographic strings are processed 

differently than other symbolic or pictorial material. Word 

bisection is biased toward the beginning of the horizontally 

presented words, depends on their length and the ease of 

lexical access - Hebrew-American bilinguals showed a 

greater leftward bias in their second language (English) than 

native English readers (Fischer, 1996). Both English and 

Hebrew readers showed greater leftward bias for words and 

pseudowords than for lines (greatest for low-frequency 

words), and people with developmental dyslexia deviated 

more to the left than controls (Gabay, Gabay, Henik, Schiff, 

& Behrmann, 2015). Interestingly, dyslexic children have 

been reported to show inversed pseudoneglect in line 

bisection tasks, shifting their subjective center to the right of 

the veridical one (Michel, Bidot, Bonnetblanc, & Quercia, 

2011).  

There are numerous studies on pseudoneglect with 

inconsistent results as well as disagreement concerning the 

underlying mechanisms. The goal of the current study was 

to combine explicit and implicit measures to dissociate the 

attentional component in spatial processing. We tested three 

age groups – preschoolers, sixth-graders and adults on line 

and word bisection tasks and draw-a-house-person-tree 

tasks. In accordance with previous studies, we used paper-

and-pencil tasks and only long and low-frequency words. 

As different spatial tasks supposedly tap into different 

aspects of spatial awareness, we compared performance on 

active (implicit) and passive (explicit) spatial tasks across 

three developmental stages with different reading expertise 

(see Barrett, Kim, Crucian, & Heilman, 2002 for a 

discussion on the difference of implicit and explicit tasks). 

Both the hemispheric activation and the directionality 

hypotheses predict that right-handed preschool children 

would exhibit a right spatial bias in all tasks, because of the 

prevalence of the motor component in spatial judgments and 

their inability to read. Sixth-graders should have mixed 

results due to already established reading habits but 

incomplete brain lateralization. Adults were expected to 

have a strong leftward bias, especially in the word bisection 

tasks, in accordance with the Attentional scaling hypothesis. 

 

Method  

In order to address the research questions above, we carried 

out an experimental study protocol consisting of a series of 

five tasks used in previous research on pseudoneglect in 

three population age groups – preschool children, middle 

school children, and young adults. The experimental tasks 

were line bisection, word bisection, and drawing a house, a 

person, and a tree on a blank sheet of paper in landscape 

orientation. The dependent variable was the degree of lateral 

(left or right) spatial bias in participants’ performance. 

Participants were asked to perform two passive (line and 

word bisection) and three active spatial tasks (drawing a 

simple figure). Line bisection is the most widely used and 

rigid measure for neglect in clinical settings, and for 

pseudoneglect in neurologically normal people, and is more 

connected to attention. The word bisection task is thought to 

activate semantic processing together with the spatial 

representations. Drawing reflects higher order cognitive 

functions – instead of passive judgment, it involves the 

ability to plan and execute a simple task in peripersonal 

space. We hypothesized that with age the direction of the 

bias should shift from right to left, and this would be 

reflected in the performance of the middle school group. 

Participants 

60 Bulgarian speaking participants (22 men) took part in the 

study. The preschool group consisted of 19 children (8 

boys), with a mean age of 4 years and 4 months (M = 53.37, 

SD = 3.47, range 49-59, calculated in months). The middle 

school group consisted of 20 children (4 boys), with a mean 

age of 148 months (12 years and 3 months), SD =3.65 and 

range 139-154 months. The adults were 21 (10 men), with a 

mean age of 28 years, SD = 11.02 and range 18-51 years. 

All adults gave their written informed consent before the 

study. Informed written consent for the children was given 

by their parents. 

All participants underwent assessment for handedness, 

given that some studies report a significant influence of 

handedness on bisection and drawing tasks (e.g. Jewell & 

McCourt, 2000; Picard & Zarhbouch, 2014). Only right-

handed participants’ data were considered further. From the 

analyses were excluded data from two preschoolers who 

used predominantly their left hand in the drawing tasks (in 

accordance with Kastner-Koller, Deimann, and Bruckner, 

2007), two participants from the 12-year-old group who 

self-reported as left-handed; three adult participants who 

self-reported as ambidextrous but reported predominant use 

of their left hand on the handedness questionnaire. 
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 Thus, statistical analyses were performed on the data 

from 17 preschool children (7 boys), 18 middle-schoolers (4 

boys) and 18 adults (9 men). The mean age of the adult and 

middle school groups remained the same, and a t-test 

showed no significant difference between the age of the 

recruited and the analyzed groups of preschoolers (p = 

.890). None of the preschool children had reading or writing 

habits. 

Stimuli  

Two types of stimuli were used in the study – five straight 

horizontal lines and ten words, presented on two separate 

sheets of paper A4 format, portrait orientation. The lines and 

the words were printed in advance, while the drawing tasks 

were executed on blank sheets of paper format A4 with 

landscape orientation. The lines had a mean length of 10.9 

cm (SD = 2.2), and were positioned to the left or to the right 

side of the sheet, in a way that no two lines was exactly 

below each other. Only very long and low frequency words 

were chosen for the task. The mean length of the words in 

characters was 13.4 (SD = 2.1), or 3.9 cm (SD = 0.7) and 

their mean objective frequency was 0.19 (SD = 0.23, range 

0.00-0.59). Objective frequency data for the Bulgarian 

words (Simov, Osenova, Kolkovska, Balabanova, & 

Doikoff, 2004) was converted into frequency score per 

million and 10-base logarithm of the score was taken with 

one added to the score per million to avoid the undefined 

Lg(0). The words had an odd number of characters in order 

to avoid an overlap between their orthographic and physical 

center. For the same reason a handwriting script and not 

block letters, was used. The words were written in Segoe 

Script, bold, font size 13, again on different positions to the 

left or to the right of the A4 sheet. 

 

Table 1: Means and SDs (in parentheses) of the line and 

word length in centimeters; word length in number of 

characters and their objective frequency (Simov et al., 2004) 

 
 Length in cm Length in characters Frequency 

Words 3.9 (0.7) 13.4 (2.1) 0.19 (0.23) 

Lines 10.9 (2.2)  

 

Procedure 

All participants had to perform line and word bisection, and 

also draw a house, a person and a tree on three separate 

sheets of paper. The order of the line and word bisection 

tasks and the drawing tasks was counterbalanced for the 

adults and the middle-schoolers. Preschoolers performed the 

tasks in random order. The sheets of paper were placed one 

by one in front of the participants and taken away after the 

execution of each task. Participants were asked to cross the 

middle of the lines and words as fast and as accurately as 

possible, and to draw a house, a person and a tree, on their 

own terms. For the 4-year-olds the instructions were more 

detailed, as the experimenter had to be sure that they 

understood the task well.  

 

Results  

The performance on the active and passive tasks was 

measured with two different types of indices. For the 

analyses of the line and word bisection data, a Percent 

deviation score was calculated as the difference between the 

left bisected part and the true half, divided by the true half 

and multiplied by 100 ((left bisected-half)/half*100) (see 

Fujii, Fukatsu, Yamadori, & Kimura, 1995; Failla, 

Sheppard, & Bradshaw, 2003). 

Also, a novel drawing bias index was developed that took 

into account both the size of the drawing and its deviation 

from the center. First, the distance between the two outmost 

points on the lateral axis of the drawing was divided by two. 

The distance from this central point C1 to the outer points 

was taken as the drawing`s radius R. Each Bias index was 

calculated as the proportion of the shortest distance (⊥) from 

C1 to the sheet’s midline C2 (±⊥C1C2, negative values coded 

left), and the absolute sum of ±⊥C1C2 and R.  

 

                   
 ⊥    

          
 

 

This calculation yielded values between -1 and +1, with 

zero for the centrally positioned objects. For both measures 

negative values indicated left bias and positive values 

indicated right bias. 

 

Preschool children 

The data of 17 four-year old children from the preschool age 

group were subjected to analyses of Bias for each of the five 

tasks. Table 2 shows the means, standard deviations, and 

range of values for Line Bisection and Word Bisection Bias.  

 

Table 2: Means, standard deviations, and range for 

Deviation Percent Score (Line/Word Bisection) in 4 year 

olds.  

 

Experimental 

Task (Bias) 

M  SD Min Max 

Line Bisection  6.88  11.84 -12.83 30.20 

Word Bisection  6.05 9.47 -16.20 22.18 
Note: Negative values correspond to a Left side preference. 

 

In the Line Bisection Task, children’s choices were 

significantly biased towards the right-hand side of the lines, 

as seen in the percent deviation score, M = 6.88, SD = 

11.84, t(16) = 2.40, p = .03. Children’s performance in the 

Word Bisection Task was similarly biased rightwards, M = 

6.05, SD = 9.47, t(16) = 2.63, p = .02. 

The drawing placement choices of the preschool children 

were analyzed in terms of the House bias index, Person bias 

index, and Tree bias index, respectively. 

One-sample t-tests evaluated whether children’s drawings 

were positioned with significant lateral bias. Table 3 shows 

the means, standard deviations, and range for each drawing 

task.   
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Table 3: Means, standard deviations, and range for the 

drawing tasks bias indices in preschool children.  

 

Experimental 

Task: Bias Indices 

M  SD Min Max 

Draw a House   .24 .54 -.83 .90 

Draw a Person -.01 .56 -.82 .93 

Draw a Tree .11 .49 -.73 .71 
Note: Negative values correspond to a Left side preference. 

 

There was no lateral bias in the Draw-a-house task, M = .24, 

SD = .54, t(16) = 1.79, p = .09, the Draw-a-person Task, M = 

-.01, SD = .56, t(16) = .11, p > .1, or the Draw-a-tree Task, M 

= .11, SD = .49, t(16) = .96, p > .1. In neither of the three 

object drawing tasks did children’s object placements 

deviate reliably from the sheet’s midline. 

 

Middle school children 

The data of 18 twelve-year olds from the middle school age 

group were analyzed for Bias for each of the five tasks. 

Table 4 shows the means, standard deviations, and range for 

the Line Bisection and Word Bisection Bias measures.  

 

Table 4: Means, standard deviations, and range for 

Deviation Percent Score (Line/Word Bisection) in the 

middle school group.  

 

Experimental 

Task (Bias) 

M  SD Min Max 

Line Bisection  .22  4.94 -9.69 9.25 

Word Bisection  -.97 9.71 -26.09 12.31 
Note: Negative values correspond to a Left side preference. 

 

In both bisection tasks, twelve-year olds’ choices were not 

reliably biased to one of the sides, all p’s > .1.  

The drawing choices of the 12-year olds were analyzed in 

a similar way to the data of the preschool children. One-

sample t-tests yielded a reliable lateral bias for the Person 

and Tree Bias index measures. Table 5 shows the means, 

standard deviations, and range for each drawing task.   

 

Table 5: Means, standard deviations, and range for the 

drawing tasks bias indices in 12-year old children.  

 

Experimental 

Task: Bias Indices 

M  SD Min Max 

Draw a House   -.06 .17 -.39 .21 

Draw a Person -.40 .14 -.60 -.13 

Draw a Tree -.13 .15 -.41 .15 
Note: Negative values correspond to a Left side preference. 

 

The analyses revealed no lateral bias in the Draw-a-house 

task, p > .1, but we found a reliable Left bias in the Draw-a-

person and Draw-a-tree tasks, t(17) = 11.87, p < .001, and t(17) 

= 3.59, p = .002, respectively.  

 

 

 

Adult group 

The data of 18 adult participants were analyzed for Bias. 

Table 6 shows the means, standard deviations, and range for 

the Line Bisection and Word Bisection Bias measures.  

 

Table 6: Means, standard deviations, and range for 

Deviation Percent Score (Line/Word Bisection) in adults. 

 

Experimental 

Task (Bias) 

M  SD Min Max 

Line Bisection  -1.21  5.49 -13.10 7.25 

Word Bisection  -.83 3.21 -8.45 4.78 
Note: Negative values correspond to a Left side preference. 

 

In neither task, did adults’ performance show any lateral 

bias, p’s > .1.  

The drawing choices of the adults were analyzed in terms 

of the House, Person, and Tree bias indices. Table 7 shows 

the means, standard deviations, and range for each object 

drawing task.   

 

Table 7: Means, standard deviations, and range for the 

Draw-a-House, Draw-a-Person, and Draw-a-Tree indices, in 

the adult group.  

 

Experimental 

Task: Bias Indices 

M  SD Min Max 

Draw a House   -.27 .26 -.72 .25 

Draw a Person -.45 .22 -.77 .03 

Draw a Tree -.25 .21 -.58 .13 
Note: Negative values correspond to a Left side preference. 

 

In all three object drawing tasks, adults exhibited a reliable 

Left bias: in the Draw-a-house task, M = -.27, SD = .26, t(17) 

= 4.23, p = .001, in the Draw-a-person Task, M = -.45, SD = 

.22, t(17) = 8.79, p < .001, and in the Draw-a-tree Task, M = - 

.25, SD = .21, t(17) = 5.07, p < .001. 

In summary, we found a reliable Right bias in preschool 

children’s performance on the two bisection tasks, and a 

reliable Left bias in adults’ performance on the drawing 

tasks. Twelve-year olds had no lateral bias on the bisection 

tasks, and a reliable Left bias on two of the three drawing 

tasks. In addition, in order to evaluate whether their 

performance differed from each of the other age groups we 

analyzed their performance measures in combination with 

the other groups in separate multiple analyses of variance on 

the bisection tasks and on the drawing tasks. A MANOVA 

revealed a significant main effect of age group in line and 

word bisection (F(4,98) = 3.75, p = .007; ƞ2
p = .133). A 

post-hoc analysis (Scheffé) revealed that the difference was 

between the adults and the preschoolers (p = .016 for the 

line bisection task; and p = .05 for the word bisection task). 

No difference was found between the performance of the 

middle school children and either of the other two groups 

(Figure 1). 
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Figure 1. Percent deviation line and word scores as a 

function of age group. Positive values indicate deviation to 

the right and negative values indicate deviation to the left. 

Error bars denote .95 confidence intervals. *  p < .05. 

 

A MANOVA showed a significant main effect of age 

group in the drawing tasks (F(6,96) = 4.73, p < .001; ƞ2
p = 

.228). Post-hoc analysis (Scheffé) revealed that the adults 

and the preschoolers performed differently in all drawing 

tasks – in the draw-a-house task (p = .001), in the draw-a-

tree task (p = .006) and in the draw a person task (p = .003).  

Middle school children differed from preschoolers only in 

the draw-a-person task (p = .01). Again, no difference was 

found between the performance of the middle school 

children and the adults (Figure 2). 

 

 
 

Figure 2. Drawing bias index as a function of age group. 

Positive values indicate deviation to the right and negative 

values indicate deviation to the left. Error bars denote .95 

confidence intervals. *** p < .001; ** p = <.01; *  p < .05. 

 

Discussion 

The present study showed spatial bias in different 

cognitive spatial tasks across three age groups. Interestingly, 

the direction of the demonstrated bias depended 

significantly on the nature of the tasks. In the passive tasks 

(line and word bisection), results showed bias only for the 

preschool group, and in the active (drawing) tasks - only for 

the middle school children and the adults. This suggests that 

implicit and explicit tasks might reflect different types of 

spatial processing. Furthermore, with development the 

direction of the bias was indeed shifted from right to left, 

but also across the tasks. Generally, all participants deviated 

more to the left in the implicit tasks. One explanation would 

be that the explicit instruction in the bisection task made 

participants more attentive, resulting in overdriven 

movements for the preschoolers because of the pervasive 

motor component. Another speculation would be that a 

certain familiarity effect could enhance the ability to form 

object representations in the peripersonal space, resulting in 

difference in performance. 

Preschoolers exhibited significant rightward bias in the 

line and word bisection tasks, consistent with reports of 

previous studies (Dellatolas et al., 1996; Dobler, Manly, 

Atkinson, Wilson, Ioannou, & Robertson, 2001). As 

reported by Dellatolas et al. (1996), when four-year-old 

children use their right hand,  a low degree of hemispheric 

interaction due to callosal immaturity may be the reason 

which leads to enhanced left hemisphere involvement, shift 

of attention to the right side and rightwards overestimation.  

The 12-year-old middle school children were not reliably 

biased in the bisection tasks. As reported by Hausmann et 

al. (2003), there is a robust developmental step to the adult 

pattern of pseudoneglect between the ages of 10-12 and 13-

15. In their study, a group of 10-12 year old children 

demonstrated a symmetrical neglect for the line bisection 

task, whereas their eldest group (13-15 year olds) showed a 

leftwards bias. As proposed by Hausmann et al. (2003), this 

developmental step can be attributed both to corpus 

callosum maturation and hormonal change during puberty.  

Furthermore, for the adult group, the line and word 

bisection task showed no significant bias although the 

overall mean scores indicated a leftward directionality. 

In order to assess the leftward bias we used implicit 

measures of visual-spatial computation as in the person-tree-

house drawing task (Barrett et al., 2002). As expected, the 

adult group demonstrated a leftward bias for all three types 

of object drawings, similar to the results in the study of 

Barret et al. (2002). The middle-schoolers` drawings also 

showed a leftward bias though to a smaller degree. This 

leftward bias is consistent with previous studies using the 

draw-a-person task (Heller, 1991) and the draw-a-tree task 

(Picard & Zarhbouch, 2014) and indicates that at this age 

the right hemisphere asymmetric activation is evident and 

reading habits affect spatial attention.  

Notably, Barrett et al. (2002) reported that reading habits 

(left to right or right to left) could not reverse the leftward 

bias in the house-tree-person drawings of adults. In our 

study we found that preschoolers exhibited no lateral bias 

and tended to place their drawings in the middle of the page. 

Thus, when reading habits are not established and there is 

no imbalanced left hemispheric activation, children’s 

perceptual right space is not attenuated.  
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Conclusion 

The present study used both implicit and explicit tasks in 

three age groups with different reading skills. Age had 

significant effect in all tasks, but results depended on the 

nature of the tasks. Adults differed from preschoolers in all 

tasks. Middle school children performed like the adults, and 

differed from the preschoolers in only one of the implicit 

tasks.  These results are consistent with previous studies 

stressing the importance of corpus callosum maturation in 

the the asymmetric activation of the right hemisphere, as 

well as the importance of the reading habits.  

Unlike previous research, we did not find significant 

spatial bias for the adults and the middle school children in 

the explicit tasks. One explanation might be the enhanced 

executive control over motor performance. This would 

mean that when attention is engaged, pseudoneglect might 

be attenuated with maturation. However, due to the small 

sample sizes, not definite conclusion can be made. 

Notably, in the present study was used a novel index to 

assess the spatial bias in the drawings` placement, taking 

into account not only the deviation of the drawing but its 

size. That is why it is difficult to compare our results with 

earlier results. Subsequent studies are planned with 7-8 year 

old children and illiterate adults in order to examine further 

the influence of brain maturation and scanning habits on the 

spatial representation of the immediate surroundings. 
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Is Red Fire Warmer than Blue Fire? Colored Thermal Words in a Stroop Task
Yordanka Zafirova

Department of Cognitive Science and Psychology, New Bulgarian University, Bulgaria

Armina Janyan
Research Center for Cognitive Science, New Bulgarian University, Bulgaria

Abstract: In many languages there are concepts for warm and cold colors. Research on color-temperature correspondence
and their interaction is quite scarce, and based mostly on subjective measures. It is still unknown whether and to what extent
colors bear the thermal information. The current study explored the relationship between warm and cold colors (red and
blue) and thermal aspects of the word semantics (sun, snow), using the Stroop paradigm in a color categorization task. It
was hypothesized that if colors activate the thermal meaning then Stroop effect should occur. The results suggested a color-
temperature compatibility effect – faster responses when associated color and thermal meaning corresponded (e.g. sun presented
in red). This provides important information on the automaticity of thermal activation during word processing, and on the
strength of conceptual associations in color perception. It was suggested that words induced mental simulation of the thermal
concepts, together with the associated color.
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Abstract 

The blocking effect, canonical in the study of associative 
learning, is often explained as a failure of the blocked cue to 
become associated with the outcome. However, this 
perspective fails to explain recent findings that suggest 
learning about a blocked cue is superior to a different type of 
redundant cue. We report an experiment designed to test the 
proposal that blocking is not a failure of association, but a 
performance effect arising from a comparator process 
(Denniston, Savastano, & Miller, 2001). Participants received 
A+ AX+ BY+ CY- training containing a blocked cue X and 
another redundant cue Y, before rating outcome expectancies 
for individual cues. These ratings were inconsistent with the 
association-failure view. After subsequent A- Y+ training, 
participants rated cues again. Ratings in the second test were 
inconsistent with the comparator theory. Our data suggest that 
neither perspective is likely to provide a complete account of 
causal learning. 
 

Keywords: associative learning; comparator theory; 
redundancy effect; blocking; cue competition 

Introduction 
In a typical causal learning task, participants are required to 
learn which cues cause an outcome. Many such tasks 
involve presentation of more than one cue on each trial, and 
this typically results in cue competition. That is, learning 
about a cue is dependent to some extent on accompanying 
cues. Probably the best-known example of cue competition 
is blocking (e.g. Dickinson, Shanks, & Evenden, 1984). In a 
blocking task, participants receive trials on which cue A is 
paired with an outcome (denoted A+) and trials on which A 
is presented alongside a second cue, X, and paired with the 
outcome (AX+). Blocking is said to have occurred if 
learning about X is restricted by the presence of A, relative 
to a control condition in which A+ trials are omitted. 
Learning about X is therefore influenced by the presence 
and associative history of A. This finding is analogous to 
classic demonstrations of blocking in nonhuman animals 
(e.g. Kamin, 1969). 

Following the discovery of cue competition effects, 
Rescorla and Wagner (1972) outlined an elegant and much-
cited model according to which an outcome will only 
support learning if it is surprising. Surprise is equivalent to 
prediction error, or the discrepancy between the outcome 
that is expected and the outcome that occurs. When an 
unexpected outcome occurs, the resulting prediction error 
enables the formation of an association between any cues 

present and the outcome. Critically however, outcome 
expectancy is based on all the cues that are present rather 
than individual cues. To illustrate this, consider the blocking 
effect. On AX+ trials, expectancy of the outcome is based 
on the extent to which it is predicted by both A and X. 
Because A is established as a predictor of the outcome on 
A+ trials, the outcome is expected on AX+ trials and little 
learning can take place. Learning about X is therefore 
‘blocked’ by the presence of A. If A were not separately 
paired with the outcome, blocking would not occur. 
Informally, we can say that X is blocked because it is 
informationally redundant; it indicates no change in the 
outcome that is predicted by A. According to the Rescorla-
Wagner model, this is operationalized as a failure by X to 
become associated with the outcome. 

This description of blocking as a failure of association 
formation has been called into question by a recent result 
comparing learning about a blocked cue with another kind 
of redundant cue. Uengoer, Lotz, and Pearce (2013) 
compared learning about the blocked cue X with cue Y from 
a BY+ CY- discrimination. Here, the outcome was predicted 
by B and its absence was predicted by C. We refer to the 
common cue, Y, as an uncorrelated cue because it is paired 
with both the presence and the absence of the outcome. 
Uengoer et al. gave participants A+ AX+ BY+ CY- training, 
followed by test trials on which they were asked to rate 
outcome expectancy for each cue. The Rescorla-Wagner 
(1972) model predicts that learning about X should be 
blocked by A, as described above. The prediction for Y is 
perhaps more complex, but the model predicts that the 
strength of the association between Y and the outcome will 
increase overall during training. This results from the use of 
a combined prediction error in determining learning, as 
follows: On BY+ trials, the associations between B and Y 
and the outcome should strengthen. On CY- trials, the 
association between Y and the outcome should lead to 
expectation of the outcome, and its non-occurrence will in 
turn lead to decreases in the extent to which both C and Y 
predict the outcome. As a consequence, C should be 
established as an inhibitor of the outcome. This will enable 
Y to maintain its association with the outcome to some 
extent. Informally, we can say that Y could be a cause of the 
outcome if its absence on CY- trials is explained by the 
preventative status of C. The Rescorla-Wagner model, then, 
predicts that Y will become better associated with the 
outcome than will X. Contrary to this prediction, Uengoer et 
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al.’s participants rated X as a more likely cause of the 
outcome than Y. This finding is known as the redundancy 
effect (for corresponding results using rats and pigeons, see 
Jones & Pearce, 2015; Pearce, Dopson, Haselgrove, & 
Esber, 2012).  

Comparator theory 
While the redundancy effect is not predicted by the 
Rescorla-Wagner (1972) model, it perhaps makes intuitive 
sense because X is consistently paired with the outcome. Y, 
on the other hand, is paired with the outcome only 
intermittently. Ignoring any effect of cue competition, we 
might expect X to become better associated with the 
outcome than Y. Accordingly, Uengoer et al. (2013) 
considered whether their results might be better accounted 
for by supposing that blocking occurs not because X fails to 
become associated with the outcome, but because of an 
additional process that acts during the test. According to 
comparator theory (Denniston, Savastano, & Miller, 2001), 
association formation is non-competitive and driven by an 
individual prediction error for each cue. Cue competition is 
then accounted for by a comparator process that operates at 
test to influence performance. This process compares the 
associative status of the target cue with that of any cues that 
have previously been presented alongside the target. This 
results in a decrease if companion cues have a strong 
association with the outcome, and an increase if the 
association is weak. In the case of X, outcome expectancy 
will be reduced because A is strongly associated with the 
outcome, and blocking will occur. This model also predicts 
the redundancy effect, because association formation is 
governed by each cue’s relationship with the outcome. X 
should be better associated with the outcome than Y, 
because Y is only followed by the outcome on 50% of trials. 
The comparator theory therefore seems like a promising 
candidate for explaining both blocking and the redundancy 
effect. 

However, two attempts have been made to test this 
account and both have cast doubt on its validity. Jones and 
Pearce (2015) conducted an experiment in which rats were 
given A+ AX+ BY+ CY- training, where each cue was an 
auditory or visual stimulus and the outcome was the 
delivery of a sucrose solution. Rats were subsequently 
tested in extinction with B, X, and Y. A larger response was 
elicited by X than Y, demonstrating the redundancy effect. 
Responding was also higher for B than for X. Jones and 
Pearce suggested that this was important, because it allowed 
a further test of the comparator theory. According to this 
theory, because B and X were both consistently paired with 
the outcome, they should have become associated with the 
outcome to the same extent. The larger response for B than 
for X at test must therefore have been the result of the 
comparator process. Because B had been presented 
alongside Y, which was only weakly associated with the 
outcome, the response to B was left largely intact. For X, 
however, the response was moderated because X had been 
trained alongside A, which was strongly associated with the 

outcome. To test this account, rats were given A- Y+ 
training. Following this, they were again tested with B and 
X. The comparator theory now predicts greater responding 
for X than for B, but the results closely resembled those 
from the first test. B elicited more responding than X 
despite revaluation of the comparator cues A and Y, 
apparently in contradiction of the theory. An objection may 
be raised, however, because of the nature of the outcome 
used in this experiment. Miller and Matute (1996) suggested 
that, once a target cue becomes associated with an outcome 
of motivational significance, the target cue itself acquires 
motivational significance. As a result, attempts to deflate 
responding to the target cue by further conditioning of an 
associate cue may be unsuccessful. In the experiment 
reported by Jones and Pearce, the appetitive outcome is 
likely to have had substantial motivational significance. It is 
therefore possible that responding to B was unaffected by 
Y+ training, not because the comparator theory is incorrect 
but because the manner in which it was tested was 
inadequate. Urushihara and Miller (2010) noted that such 
revaluation effects are difficult to observe in nonhuman 
animals because of the use of motivationally significant 
outcomes, but occur frequently in human causal learning.  

There also exists a test of whether the comparator theory 
can account for the redundancy effect in humans, reported 
by Uengoer et al. (2013). Since blocking is dependent on a 
comparison between X and A, it follows that revaluation of 
A should increase outcome expectancy for X. In one 
experiment, following initial A+ AX+ BY+ CY- training 
and subsequent individual cue testing, participants were 
given A- training and a further test. They found that 
outcome expectancy for X was equivalent for the two tests, 
contrary to the predictions of the comparator theory. This 
conclusion should be treated with caution, however. The 
crucial comparison is between outcome expectancy for X 
during the first and second tests. This means that the results 
are likely to have been contaminated to some extent by 
order effects. In the present paper, we report an experiment 
intended to provide a fairer test of the comparator theory. 
The experiment is conceptually similar to the Jones and 
Pearce experiment, except that it used human participants 
and a causal learning task. It therefore combines the better 
aspects of the existing evaluations of the comparator theory 
described above, while eliminating the shortcomings. The 
use of human participants should provide ideal conditions 
for observing revaluation effects and, because the adequacy 
of the comparator theory can be assessed by comparing B 
and X in the same test, the confounding effect of order 
present in the Uengoer et al. experiment is avoided.  

A test of the comparator theory 
The design of this experiment is summarized in Table 1. 
Stage 1 of the experiment was designed to establish the 
causal status of B, X, and Y. Each participant received four 
types of trial: A+, AX+, BY+, and CY-. Following Uengoer 
et al. (2013), training was embedded in a variant of the 
classic allergist task (Aitken, Larkin, & Dickinson, 2000). 
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On each trial, participants were shown one or two food 
pictures and asked to predict whether they would lead to 
stomach ache in a fictional patient, Mr. X. After participants 
made their predictions, they received feedback on whether 
stomachache did (+) or did not (-) occur. After the 
completion of Stage 1, a test stage was administered in 
which participants were shown the five individual food cues 
and asked to rate the likelihood of stomach ache for each 
food using a rating scale. These ratings served as the 
measure of outcome expectancy for each cue. We expected 
these ratings to resemble those obtained by Uengoer et al. 
That is, we expected ratings to be higher for X than for Y 
(the redundancy effect) and to be higher for B than for X. 
We also expected ratings to be high for A and low for Y. 
After this test, participants received further training in Stage 
2. This training was designed to revalue A and Y, and 
consisted of A- and Y+ trials. Following this training, 
outcome expectancies were again measured in the same way 
as in the earlier test. If the comparator theory (Denniston, 
Savastano, & Miller, 2001) is correct, ratings for X should 
be higher than ratings for B in this test. Alternatively, if the 
outcome expectancy for B was higher than for X at Test 1 
because of a difference in the strength of associations 
formed between these cues and the outcome during Stage 1, 
then ratings should still be higher for B than for X at Test 2. 

 
Table 1: The design of the experiment. 

 

 

Method 
Participants The participants were 50 Plymouth University 
undergraduate students studying Psychology. They received 
course credit for their participation in this experiment. They 
were aged 18-53 years (M=21.86, SD=7.1) and five were 
male.  

 
Materials The experiment was run using computers 
attached to 22-inch monitors with a 1920 x 1080 resolution. 
The experiment was designed, cues presented and responses 
recorded, using E-prime 2.0 software (Psychology Software 
Tools, PA, US).  

The cues were five images of foods on a white 
background, each measuring 300 x 300 pixels. The foods 
were: apple, cherry, grape, lemon and strawberry. Foods 
were randomly assigned to serve as each cue (A, B, C, X, 
Y) for each participant. Outcomes were stomach ache, 
signified by text and a sad face on a red background, and no 
stomachache, indicated by text and a happy face on a green 

background. Cues and outcomes were presented on a black 
background with white text. Participants responded using 
the mouse.  
 
Procedure Each participant was initially asked to read on-
screen instructions that were identical to those used by 
Uengoer et al. (2013). In the first stage of the experiment 
participants were presented with eight blocks of trials. Each 
of the four trial types (A+, AX+, BY+, CY-) were presented 
once per block, and were randomized within each block. 
Each trial started with the presentation of either one or two 
images of foods, below the phrase “The patient ate the 
following food(s):” The sentence “Which reaction do you 
expect?” was presented below the images. Participants 
responded by clicking one of two response buttons placed at 
the bottom of the screen. The left-hand button was labelled 
“No stomach ache”, and the right-hand button was labelled 
“Stomach ache”. As soon as the participant responded, the 
response buttons and the sentence above them were replaced 
by a statement and image showing the outcome of the trial. 
When the outcome was stomach ache, the statement was 
“The patient has stomach ache” and the picture of a sad face 
was shown. When the outcome was no stomach ache, the 
statement was “The patient has no stomach ache”, and the 
picture of a happy face was shown. This feedback display 
remained on the screen for 3 s and was then followed by the 
next trial.  

After the completion of Stage 1, Test 1 began. Here the 
participants were instructed to judge the probability with 
which specific foods will cause stomach ache in the absence 
of feedback. On each trial a single food was presented on 
the screen below the sentence “What is the probability that 
the food causes stomach ache?” Participants responded by 
clicking on an 11-point rating scale ranging from 0 
(Certainly not) to 10 (Very certain). After participants chose 
a rating for each food, a blank screen was shown for 1 s. 
Each food that appeared in Stage 1 was presented twice, 
with the order of trials randomly determined for each 
participant. For each participant, the average of the two 
outcome expectancy ratings was calculated and used in 
subsequent analyses. 

Participants then received further training in Stage 2. 
Training consisted of eight blocks of two trial types (A-, 
Y+) appearing once per block in a random order. The 
procedure for this stage was otherwise identical to Stage 1. 
Test 2 then measured final outcome expectancies, using the 
same procedure as Test 1.  

Results 
We applied an inclusion criterion of 60% correct predictions 
in Stage 1, commonly used in similar work (e. g. Le Pelley 
& McLaren, 2003). Four participants failed to meet this, and 
are excluded from all subsequent analyses. The remaining 
46 participants learned readily, and made 98% correct 
responses during the final block of trials of Stage 1. These 
participants also made correct predictions on 98% of trials 

Stage 1 Test 1 Stage 2 Test 2 
A+ 
AX+ 
BY+ 
CY- 
 
8 blocks 

A 
B 
C 
X 
Y 
2 blocks 

A- 
Y+ 
 
 
 
8 blocks 

A 
B 
C 
X 
Y 
2 blocks 
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during the final block of Stage 2. Our analyses here focus on 
the critical test data.  

Mean ratings from Tests 1 and 2 are shown in Figure 1. 
The pattern of results in Test 1 closely resembles those 
obtained by Uengoer et al. (2013), with higher ratings for X 
than for Y, and higher ratings for B than for X. For the 
comparator theory, the crucial comparison is between B and 
X at Test 2. As for Test 1, ratings for B were higher than for 
X. A two-way ANOVA with test and cue variables was 
conducted. This revealed a significant effect of test, F(1, 45) 
= 6.59, p = .014, ηp

2 = .128, a significant effect of cue, F(4, 
180) = 80.76, p < .001, ηp

2 = .642, and a significant 
interaction, F(4, 180) = 207.85, p < .001, ηp

2 = .822. To 
explore this interaction, simple effects analyses were used to 
compare ratings from Tests 1 and 2 for each cue. Ratings 
differed between tests for A, F(1, 45) = 431.15, p < .001, ηp

2 
= .905, for B, F(1, 45) = 29.30, p < .001, ηp

2 = .394, for C, 
F(1, 45) = 23.28, p < .001, ηp

2 = .341, and for Y, F(1, 45) = 
359.38, p < .001, ηp

2 = .889. Ratings for X did not differ 
between tests, F < 1. 

Separate analyses were conducted to test the most 
informative comparisons. Firstly, in order to check that the 
redundancy effect was obtained, we used a within-subjects 
t-test to compare ratings for X and Y at Test 1. Ratings for 
X were significantly higher than for Y, t(45) = 7.58, p < 
.001. Secondly, to confirm that the revaluation of A and Y 
was successful, we conducted a two-way ANOVA 
comparing ratings for A and Y in the two tests. We found an 
effect of cue, F(1, 45) = 6.37, p = .0151, ηp

2 = .124, an 
effect of test, F(1, 45) = 5.12, p = .029, ηp

2 = .102, and 
importantly, a significant interaction, F(1, 45) = 559.83, p < 
.001, ηp

2 = .926. Exploring this interaction, we found that 
ratings for A were higher than for Y at Test 1, F(1, 45) = 
559.62, p < .001, ηp

2 = .926, but that ratings were higher for 
Y than for A at Test 2, F(1, 45) = 112.41, p < .001, ηp

2 = 
.714. The revaluation of A and Y was therefore successful. 
Thirdly, to test the predictions of the comparator theory, we 
conducted a similar two-way ANOVA to compare ratings 
for B and X at Test 1 and Test 2. We found an effect of cue, 
F(1, 45) = 46.82, p < .001, ηp

2 = .510, an effect of test, F(1, 
45) = 21.40, p < .001, ηp

2 = .322, and a significant 
interaction, F(1, 45) = 18.81, p < .001, ηp

2 = .295. Exploring 
the interaction, we found that ratings for B were higher than 
for X at both Test 1, F(1, 45) = 62.86, p < .001, ηp

2 = .583, 
and Test 2, F(1, 45) = 16.52, p < .001, ηp

2 = .268. This 
disconfirms the predictions of the comparator theory. If 
outcome expectancies for B and X were determined by a 
combination of direct associations with the outcome and 
comparison with Y and A respectively, then ratings for X 
should have been higher than for B at Test 2. One notable 
feature of the data that might suggest some role for a 
comparator process is the change in ratings for B between 
the two tests. Participants rated B as a less likely cause of 
the outcome after Y+ training than they did before, which is 
consistent with the comparator theory. However, an 
opposite effect was observed for C. Ratings for C were 
higher at Test 2 than at Test 1, which is the opposite change 

to that predicted by the comparator theory. It therefore 
seems likely that these changes are not the result of a 
comparator process, but rather a general decrease in 
certainty at Test 2. Since A and Y had been revalued in 
Stage 2, some participants may have assumed that 
associations learned during Stage 1 were no longer reliable.  

 

 
 

Figure 1: Mean ratings for Test 1 and Test 2, for each cue. 
Error bars show the standard error of the mean. 

 

Discussion 
The experiment reported here was designed to test an 
explanation of the redundancy effect based on the 
comparator theory (Denniston, Savastano, & Miller, 2001). 
Following A+ AX+ BY+ CY- training, participants were 
asked to rate the probability of the outcome occurring for 
each individual cue in Test 1. Ratings were higher for X 
than for Y; we therefore replicated the redundancy effect 
(Uengoer et al., 2013). This finding is consistent with the 
comparator theory, which states that the strength of the 
association formed between a cue and an outcome is 
determined by an individual (i.e. non-competitive) 
prediction error.  Since X was consistently paired with the 
outcome and Y was not, it follows that X should have 
become better associated with the outcome than Y. 
Participants also gave higher ratings for B than for X during 
Test 1. Again, this is consistent with the comparator theory. 
Although the theory predicts that each of these cues will 
have become associated with the outcome to the same 
extent, it also states that outcome expectancies should have 
been moderated by the comparator process at test. 
Specifically, outcome expectancy for X should have been 
reduced because it had been trained alongside A, which was 
strongly associated with the outcome. Any reduction in 
outcome expectancy for B should have been smaller, 
because it had been trained alongside Y, which was only 
weakly associated with the outcome. However, the 
comparator theory is not consistent with the results of Test 
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2. Following Stage-2 A- Y+ training, participants again 
rated the probability of the outcome occurring for each cue. 
Ratings for B were again higher than for X. The comparator 
theory, however, predicts the opposite pattern of results. 
This is because, although the associations with the outcome 
should have remained unchanged for both B and X, the 
associative status of their comparator cues had changed. We 
therefore conclude that the comparator theory cannot 
account for our results. Of course, this conclusion relies on 
the assumption that Stage-2 training was successful in 
revaluation of A and Y. This is apparent in the higher 
ratings given for Y than for A at Test 2.  

Our results are also difficult to reconcile with the model 
of learning proposed by Rescorla and Wagner (1972). 
Because it describes learning as being the result of a 
combined prediction error, X should have failed to become 
associated with the outcome and should have been rated as a 
less likely cause of the outcome than Y at Test 1. In other 
words, the Rescorla-Wagner model fails to account for the 
redundancy effect because it incorrectly predicts that 
learning about the blocked cue will be prevented. However, 
Vogel and Wagner (2017) have suggested a way in which 
the prediction of blocking can be modified to accommodate 
the redundancy effect. Their modification is based on the 
assumption that each cue shares some common features, 
denoted K. The training given in Stage 1 here could 
therefore be re-described as AK+ AXK+ BYK+ CYK-. K 
should become associated with the outcome, with two 
consequences that are relevant for interpreting the 
redundancy effect. Firstly, because K is present on CYK- 
trials, overexpectation of the outcome is increased and the 
weakening of the association between Y and the outcome on 
these trials is more substantial than when K is omitted. 
Secondly, When XK is presented at test, outcome 
expectancy is boosted by K; the model can therefore predict 
greater outcome expectancy for XK as a result of including 
the common features. Combination of these two changes 
allows the model to predict the redundancy effect. This 
version of the model also makes an interesting prediction 
regarding the effect of adding further trial types to Stage-1 
training. Because the extent to which K becomes associated 
with the outcome is critical, adding extra trials on which the 
outcome does not occur (e.g. DK-) should reduce the 
influence of common features and eliminate the redundancy 
effect. This prediction remains untested. If it is correct, it 
would lend support to an account that provides a way to 
reconcile the Rescorla-Wagner model with the redundancy 
effect.  

Another possibility is that learning is governed by quite 
different rules. Not all models of learning make such strong 
predictions about the restriction of learning about blocked 
cues. Pearce’s (1987, 1994) configural model, for instance, 
predicts substantial outcome expectancy for blocked cues. 
According to this model, participants learn about configural 
representations that include all cues present on a given trial, 
rather than each cue entering into its own association with 
the outcome. In the case of blocking, participants would 

come to associate A with the outcome on A+ trials, and to 
associate AX with the outcome on AX+ trials. Outcome 
expectancy for X alone would then be determined by 
generalization from AX, based on their similarity. Outcome 
expectancy for X would therefore be weaker than for AX, 
but considerably stronger than it would have been without 
any training. However, Pearce at al. (2012) note that the 
theory is unable to predict the redundancy effect because it 
predicts that outcome expectancy for Y will be higher still. 
As with the Rescorla-Wagner (1972) model, it is possible 
that some modification of the configural model would alter 
this prediction, but it is not clear at present what that 
modification might be.  

Whether cues are learned about individually or as 
configurations, the redundancy effect might be 
accommodated if we suppose that the amount of attention 
paid to blocked and uncorrelated cues changes during 
training. For instance, it is commonly assumed (Le Pelley, 
2004; Mackintosh, 1975) that cues are processed to the 
extent that they have predictive value. Since blocked and 
uncorrelated cues are both redundant, we might expect the 
amount of attention they are paid to be reduced. In order to 
explain the redundancy effect, however, we need to propose 
that this reduction in attention differs in magnitude for 
blocked and uncorrelated cues. If we suppose that 
participants learn quickly that Y is irrelevant during BY+ 
CY- training, then we might expect substantial decreases in 
the amount of attention paid to Y and a weak association 
between Y and the outcome as a result. Attention to X, on 
the other hand, might be maintained for longer, allowing a 
stronger association to form between X and the outcome. In 
an attempt to evaluate this claim empirically, Jones and 
Zaksaite (2017) monitored participants’ eye gaze during A+ 
AX+ BY+ CY- training. The duration of eye gaze for each 
cue has been used extensively as a measure of overt 
attention in learning tasks (e.g. Beesley & Le Pelley, 2011). 
Jones and Zaksaite found that participants spent more time 
looking at Y than at X, but that this was likely to have been 
a consequence of differing trial durations. When X and Y 
were presented on the screen together in a subsequent stage 
of training, gaze was equivalent for each. This experiment 
therefore failed to provide any evidence that the amount of 
attention paid to blocked and uncorrelated cues differs.  

In addition to associative accounts of blocking, others 
(e.g. Lovibond, Been, Mitchell, Bouton, & Frohardt, 2003) 
have argued that blocking is the result of inferential 
reasoning. According to this view, blocking occurs because 
participants do not have independent evidence that the 
blocked cue causes the outcome (i.e. training trials on which 
X is presented without A). However, since participants also 
lack evidence that the blocked cue does not cause the 
outcome, they should be uncertain about the causal status of 
X and blocking should be relatively weak. This uncertainty 
might be enhanced because the magnitude of the outcome is 
fixed, meaning that compound presentation of two causal 
cues would lead to the same outcome as either cue alone.   
Lovibond et al. provided support for this position by 
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showing that blocking is enhanced when the magnitude of 
the outcome varies in accordance with the number of causes 
present, allowing participants to infer that the blocked cue is 
not a cause of the outcome. In light of this account, we 
should consider whether the intermediate ratings for X in 
the present experiment were the result of an intermediate 
level of learning, or of uncertainty about its causal status. 
An unpublished experiment from our laboratory suggests 
that this might be a promising approach. In addition to 
rating the probability of the outcome for each cue, 
participants rated their confidence in these judgments. 
Confidence ratings were lower for blocked than for 
uncorrelated cues, suggesting that the redundancy effect 
might be due at least in part to uncertainty about X. 

Conclusion 
We have considered theories that account for learning by 
using individual and combined prediction errors. While 
combined prediction error models (e.g. Rescorla & Wagner, 
1972) are difficult to reconcile with the redundancy effect, 
individual prediction error does not result in cue 
competition effects such as blocking, unless an additional 
process is invoked. We tested a theory that includes such a 
process (Denniston, Savastano, & Miller, 2001), but found 
that it was not consistent with the results of Test 2. We 
suggest two lines of future enquiry. Firstly, data should be 
collected that evaluate the predictions arising from Vogel 
and Wagner’s (2017) addition of common features to 
simulations of the Rescorla-Wagner model. While the cues 
used in the present experiment are likely to have shared 
some common features, we cannot currently evaluate the 
claim that learning about these features enables the 
redundancy effect to occur. Secondly, since neither 
combined nor individual prediction errors seem capable of 
producing our results, attempts should be made to evaluate 
some combination of the two. In particular, any models 
containing both kinds of prediction error should be tested 
against the idea that cue competition occurs because of 
inferential reasoning processes. 
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Abstract 

Psychologists have used the semantic fluency task for 
decades to gain insight into the processes and representations 
underlying memory retrieval. Recent work has suggested that 
a censored random walk on a semantic network resembles 
semantic fluency data because it produces optimal foraging. 
However, fluency data have rich structure beyond being 
consistent with optimal foraging. Under the assumption that 
memory can be represented as a semantic network, we test a 
variety of memory search processes and examine how well 
these processes capture the richness of fluency data. The 
search processes we explore vary in the extent they explore 
the network globally or exploit local clusters, and whether 
they are strategic. We found that a censored random walk 
with a priming component best captures the frequency and 
clustering effects seen in human fluency data. 

Keywords: memory; search; semantic networks; fluency  

Introduction 
One important task for the human mind is to retrieve 
knowledge from memory when it is needed. To investigate 
how the mind solves this task, psychologists have used the 
semantic fluency task (Bousfield, & Sedgewick, 1944), in 
which participants generate as many unique items as they 
can from a category (e.g., “Name as many animals as you 
can”) in a fixed amount of time (e.g., one minute). Semantic 
fluency data are richly structured. For example, researchers 
have found a frequency effect: Items that occur more often 
in the world are also produced more often in fluency lists. 
Under the assumption that knowledge is represented as a 
semantic network, we evaluate a number of possible process 
models of memory retrieval by determining how well they 
can reproduce the rich structure of human fluency data.  

A debate has emerged as to whether a censored random 
walk over a semantic network (Abbott, Austerweil, & 
Griffiths, 2015) or a strategic search in a high-dimensional 
space (Hills, Jones, & Todd, 2012) better describes how the 
mind retrieves knowledge from memory. Central to the 
debate has been one property of fluency data: People tend to 
retrieve items in clusters in a manner consistent with 
optimal foraging (Hills et al., 2012). This is the tendency to 
search in memory within a cluster (sub-category) until the 
gains from further search in that cluster are outweighed by 
the benefits of switching to a new cluster. Both models can 
retrieve items in a manner consistent with optimal foraging. 
One issue in resolving this debate is that the semantic 
network account has only made computational-level claims 
and qualitative comparisons to human data. To advance the 
debate, we explore different possible search processes and 
compare their retrieval behavior to human retrieval behavior 

by examining two traditional effects seen in semantic 
fluency data: frequency and clustering effects. We test 
processes that vary in the extent that they search 
strategically and  explore the network. 

The semantic fluency task is often scored by a simple 
count of the number of items named. While healthy controls 
typically have no trouble generating many items, patients 
with memory deficits such as Alzheimer’s disease or 
semantic dementia recall fewer items (Troyer, Moscovitch, 
Winocur, Leach, & Freedman, 1998). In addition, items that 
are typical of a category are reported more frequently than 
items that are atypical (Henley, 1969). For instance, cat is 
more likely to be named by a participant than lynx. This is 
particularly pronounced in patients with memory deficits, 
who often only recall items that are frequent in natural 
statistics (Sailor, Antoine, Diaz, Kuslansky, & Kluger, 
2004). Another well-studied property of semantic fluency 
data is clustering (Troyer, Moscovitch, & Winocur, 1997). 
Healthy control participants tend to cluster items together in 
recall. For example, a participant may list cat, dog, and 
hamster in sequence because all three items belong to a 
common sub-category: pets. 

In this paper, we evaluate how well different search 
processes on a semantic network reproduce frequency and 
clustering effects found in human fluency data. To do so, we 
first describe several search processes. Next, we measure 
frequency and clustering performance in humans using 
previously collected semantic fluency data (Zemla, Kenett, 
Jun, & Austerweil, 2016). Then, we implement several 
network search procedures on a standardized semantic 
network and calculate those same measures for comparison. 

Memory Retrieval as Search  
A model of memory retrieval is a search process over some 
representation. A search process begins with a cue (e.g., a 
category label) and uses that cue to locate relevant 
information (e.g., category members). A crucial component 
to any search process is the procedure used to navigate the 
representation (i.e., how the next item in search is 
determined). Search processes vary in whether they are 
local or global, or have aspects of both. A local search 
process will move from the current location to one nearby 
(in the representation) using information associated with the 
current location. A global search process may move from 
the current location to one far away using information 
encoded across the representation. Search is typically 
performed in conjunction with some executive process, to 
determine the relevance of the information encountered. For 
example, when searching through memory for “animals”, it 
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is necessary to recognize that some items in the search path 
are not animals, and that some animals have already been 
found. This executive process does not need to be overt; in 
the search processes described below, it is assumed that 
search can traverse over items without conscious awareness 
and without being reported. In addition, search processes 
vary in whether they are strategic or not. Strategic search 
processes involve greater use of working memory and 
executive functioning to determine where to direct search 
next. Note that these dimensions are meant to help organize 
search processes and are idealized (e.g., most search 
processes are not purely local or global). 
    From behavioral evidence alone, it is difficult to infer 
properties of human search. For example, clustering in 
semantic fluency data has been taken as evidence of a 
strategic search process that leverages local cues (Troyer et 
al., 1997). To list animals we may start search at a random 
animal, say elephant. At this point, it may be more efficient 
to limit search to only African animals, as these items are 
more accessible. Once search exhausts its store of African 
animals, we switch back to a global search of any animal. 
This strategic cluster-and-switch process produces clustered 
fluency data as seen in participants. However, the switch 
between global and local cues does not need to be strategic 
if the underlying memory representation is organized in 
clusters (Abbott et al., 2015). Under this view, even a 
simple search process can produce clustered data simply by 
listing items in the order they are encountered in memory—
the burden of efficiently retrieving items is built into the 
representation, rather than the process. 
    In this paper, we assume semantic memory is best 
represented as a semantic network and evaluate different 
search processes on it. Without specifying both a 
representation and a process, it is not possible to make 
claims from behavioral results (Abbott et al., 2015). We do 
so as a first step towards resolving the semantic network vs. 
space debate.  

Search Processes Over a Semantic Network 
In this section, we define a semantic network and outline 
different possible search processes on it. Some processes, 
such as node degree search (NDS), rely on global cues, 
selecting the next item independent of the current item. 
Others, such as cluster-based depth first search (CbDFS) or 
the censored random walk (CRW), exploit local clusters by 
constraining search to nearby nodes. Most processes use a 
mixture of these cues, including three variations of the 
CRW which implement random jumping (CRW+RJ), 
strategic jumping (CRW+SJ), and priming (CRW+PV) We 
also implement a basic spreading activation model (SA), 
which has been conceptually influential in the history of 
semantic networks (e.g., Collins & Loftus, 1975). Figure 1 
illustrates how the search processes are approximately 
distributed over the local-global dimension, and Figure 2 
depicts a hypothetical semantic network and a possible 
search outcome for each search process. 

 

 
Figure 1. Search processes ranked in terms of how far they 
tend to move on each step. Note that the ordering is given 
for the parameter values used in the paper and the precise 

ordering depends on the parameter values (e.g., CRW+RJ is 
more global-like when the jump probability is close to 1). 

 

 
CRW A, B, C, D, F, E 
CRW+PV A, B, C, D, F, E 
CRW+RJ A, B, C, F, D, E 
CRW+SJ A, B, C, F, D, E 
SA A, B, C, E, D, F 
NDS A, D, B, E, C, F 
CbDFS A, C, B, E, D, F 

Figure 2. (top) A hypothetical network. (bottom) Example   
observed search paths for each method. 

 
Semantic networks A common way to represent 
knowledge in memory is using a semantic network. A 
semantic network consists of nodes and edges. A node 
encodes a specific item in memory, such as dog or cat. Two 
nodes are connected to each other via an edge whenever 
those two items are semantically similar. For instance, dog 
and cat may be connected by an edge because they are both 
pets, but dog and elephant are unlikely to be connected.  

In this work, we examine a semantic network that is both 
undirected and unweighted. Undirected means that if there 
is an edge between camel and horse, search could go from 
camel to horse or horse to camel (even though people might 
be more likely to say horse after camel than vice versa). 
Unweighted means that all edges imply the same amount of 
relatedness between two nodes. For example, if the network 
has one edge connecting horse and pony and another edge 
connecting horse and camel, the network encodes that a 
horse is as related to a pony as it is to a camel. Nodes 
sharing an edge are called neighbors. Although these 
assumptions may seem unrealistic, previous work found that 
a random walk over an undirected and unweighted semantic 
network captures optimal foraging behavior (Abbott et al., 
2015). These distinctions may influence the clustering and 
frequency properties of semantic fluency data, but using 
directed and weighted edges increases the complexity of 
model substantially. So, we use an undirected network 
without weights and determine whether fluency data can be 
approximated by different search processes over it.  
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Node Degree Search (NDS) Node degree search selects 
nodes with probability proportional to a node’s degree (the 
number of edges connected to a node). This corresponds to 
the relative frequency each node is visited by an “infinite” 
length random walk, which is a predictor of phonetic 
fluency data (Griffiths, Steyvers, & Firl, 2007). Nodes with 
a large degree have many neighbors, and are typically 
encountered more frequently than nodes with a small 
degree. This search process chooses items based on their 
approximate frequency within the network regardless of the 
current location. Thus, it is a global and non-strategic 
process. 
 
Cluster-based Depth First Search (CbDFS) Cluster-based 
depth-first search is equivalent to traditional depth-first 
search, except that the primary unit is a node and its 
neighbors (cluster) rather than a single node. Search begins 
at a starting node and outputs all of the neighbors of that 
node (in random order), skipping any node that has already 
been output. The process then moves to the most recently 
output node that has new neighbors and outputs those 
neighbors. Search is local, always emitting the current 
node’s nearest neighbors and traversing one edge at a time.  
 
Censored Random Walk  (CRW) A censored random 
walk (Abbott et al., 2015) begins at a starting node and 
proceeds to follow a random walk, outputting each node the 
first time it is traversed (subsequent traversals over the same 
node are not output, i.e., they are “censored”). It is a local 
search process because it only depends on the neighborhood 
of the current node and can only move to a neighbor of the 
current node. However, because it only outputs the nodes it 
observes for the first time, items adjacent in its output may 
be far apart on the network. Nonetheless, it is much more 
likely to output a sequence of nodes that are close (in 
network space). 
 
Censored Random Walk with Random Jumps 
(CRW+RJ) A censored random walk with random jumps is 
equivalent to a CRW with one key exception: At each step, 
the walk may jump to another node in the network (possibly 
one unconnected to the current node) with probability θRJ. 
(Goñi et al., 2010). The target node is chosen proportional to 
the node’s degree (number of edges). As such, nodes that 
have more edges are more probable jump targets. As with 
the CRW, this search process is partially local, but due to 
random jumps, it has a global component. The decision to 
switch between local and global cues is random, and not a 
strategic decision. 
 
Censored Random Walk with Strategic Jumps 
(CRW+SJ) A censored random walk with strategic jumps is 
similar to one with random jumps, except jump points are 
not chosen at random. Rather, the jumps occur after 
encountering θSJ censored nodes. The number of censored 
nodes is a proxy for time spent without outputting a new 
item, and is as a metacognitive cue that the current cluster is 

exhausted. As with the CRW+RJ, this model will switch 
between local and global search. However unlike the 
random jump model, this switch is strategic: the switch is 
performed when there is evidence that the local cluster has 
been exploited sufficiently. 
 
Censored Random Walk with Priming Vector 
(CRW+PV) One artifact of collecting multiple fluency lists 
from the same individual is that they are not independent. 
This is particularly pronounced when multiple lists are 
collected during a single session, as in our data set (Zemla et 
al., 2016). This results in search being biased by transitions 
made in a previous search (priming effects). 

The censored random walk with priming vector attempts 
to capture this by biasing transitions toward those transitions 
produced in the previous list. Search is still a random walk, 
but whenever it reaches a node present in the previous list, 
with probability θPV it transitions to the next observed node 
in the previous list (if such a transition exists) and with 
probability 1 – θPV it moves to a random adjacent node. This 
search is primarily local, and does not have a strategic 
component. 

 
Spreading Activation (SA) Classic models of semantic 
networks (e.g. Collins & Loftus, 1975) explain priming 
effects using spreading activation. Each node has an 
activation value attached to it. An initial activation value of 
1.0 is given to the starting node, with all other nodes given 
an activation of 0.0. Activation spreads between all nodes 
through edges, decaying as it propagates through the 
network with proportion θSA at each step. At each step, after 
performing a batch update of all node activation values, the 
search process chooses a node with probability proportional 
to its activation value. This node is then assigned an 
activation of 1.0. Note that we bound all activation values to 
be between 0.0 and 1.0. As activation begins to spread 
throughout the network, search quickly resembles global 
search as every node’s activation eventually reaches and 
stays at 1.0. Once this happens, the search returns 
unobserved nodes with uniform probability. 

Experiment and Simulation Details 
In this section, we describe the previous data used to 
evaluate the search processes, as well as the simulation and 
parameter fitting procedures. 

Human Data 
We use human data from a previously reported experiment 
(Zemla et al., 2016). In their study, twenty participants were 
recruited from Amazon’s Mechanical Turk. Each participant 
performed the semantic fluency task three times for three 
categories (animals, vegetables, and fruit). Participants 
entered items as they came to mind and hit “Enter” after 
each item, which notified the participant that the item was 
recorded and cleared it from the screen. Participants were 
instructed not to repeat an item within a list, but could 
repeat items across lists. Categories were pseudo-
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randomized so that no participant received the same 
category twice in a row and each triad of lists contained 
each category once. For each list, participants were asked to 
generate as many items as they could from the category in 
three minutes (with a visible timer). We only analyze the 
results for the animal category. The data were cleaned after 
collection, correcting any spelling mistakes, removing 
pluralizations, and standardizing synonymous animals.  

Simulations 
Following previous work (Abbott et al., 2015), we used the 
University of South Florida (USF) free association data to 
construct a semantic network (Nelson, McEvoy, & 
Schreiber, 2004).  This network was constructed by pooling 
the free association data of 149 participants. Given a set of 
cue words, participants were asked to generate the first word 
that came to mind. A semantic network was constructed by 
drawing edges between each cue-response pair. For our 
simulations, we used only the largest connected component 
of the animal subset of the USF network. This network 
contains 160 nodes, 786 edges, and has an average node 
degree of 4.91. 

Simulated fluency data was generated for each participant 
using every search process. The simulated data were yoked 
to real participant data in two ways: First, the simulated 
fluency lists were matched in length to real participant lists. 
For instance, if a participant generated lists containing 25, 
30, and 35 items, a corresponding set of simulated fluency 
lists would also contain 25, 30, and 35 items. Second, the 
yoked list always started with the first item of the 
participant’s real list. In some cases, participants generated 
items that were not in the USF network. For these cases 
(15% of  items), the simulated lists were instead seeded with 
a close semantic neighbor (as judged by the first author). 
For example if a participant list started with beagle (not in 
the USF network), the yoked list would start with dog. 

This seeding process ensures that the lists explore 
different parts of the USF network when applicable. 
Moreover, it mimics the strong primacy effects seen in the 
experimental data: thirteen of twenty participants started at 
least two lists with the same animal, six of whom started all 
three lists with the same animal. Removing this constraint is 
likely to overestimate the extent to which participants are 
able to generate novel animals from list to list. One hundred 
yoked data sets (sets of three lists, matched for length) were 
generated for each participant. Clustering and frequency 
metrics were calculated as the average across all 100 data 
sets for each participant. 

Parameter fitting 
Four of the seven search processes contained one free 
parameter. The best-fit parameter was found using a grid 
search which minimized the maximum z-score compared to 
the human data across all clustering and frequency measures 
(described below). CRW+RJ, CRW+PV, and SA models 
searched parameters 0.0 through 1.0 in intervals of 0.05. For 
CRW+RJ, the best fitting parameter was 0.0 (no jumping) 

and so we chose the second best fit for comparison. The best 
fit parameters were θRJ = .6, θSJ = 1, θPV = .75, and θSA = .25. 
CRW, NDS, and CbDFS have no free parameters. 

Quantifying Cluster and Frequency Effects 
Although there are many possible statistics based on clusters 
and frequency, we opt for simple, transparent measures to 
evaluate and compare the above search processes. 
 
Clustering The clustering of fluency data is evaluated with 
three measures: cluster size, number of cluster switches, and 
number of cluster types. Cluster size is the average number 
of items output from a given cluster before switching to a 
new cluster. The number of cluster switches is the average 
number of times a participant switches clusters within a list.  

Clusters are determined by assigning each animal to 
different categories as coded by Troyer et al. (1997) and 
extended by Hills et al. (2012). We have further extended 
this coding scheme by including any animals in the data that 
were not in the coding scheme (14% of animals). Because 
each animal may belong to multiple categories, determining 
cluster switch points can be done in multiple ways. We used 
a fluid switch measure, which counts a cluster switch as any 
two adjacent items that do not share any categories. 

Our third cluster-based statistic is the number of unique 
cluster types. This is calculated by counting the total 
number of categories within a list (counting all categories to 
which an item belongs). Intuitively, the number of unique 
clusters appears to measure the same thing as cluster 
switches—but note that a cluster switch does not imply 
switching to a novel cluster. That is, a participant may 
switch back and forth between the same two clusters. 
Nonetheless, participant cluster switches and number of 
cluster types are highly correlated (r = .74, p < .001). 
 
Frequency We evaluate frequency effects in three ways: the 
number of unique animals named (unigrams), the number of 
unique ordered pairs of animals named (bigrams), and the 
distribution of unigrams. The number of unigrams and 
bigrams was counted across all three lists. Finally, we 
calculated the distribution of unigrams in the data: How 
many items appeared only once, twice, or three times? 

Results 
Because simulations were performed on an idealized (USF) 
semantic network, our discussion of the results focus on the 
relative patterns of fit. Figure 3 shows error bars (standard 
error of the mean) to help gauge quantitative fit. 

 
Cluster Size Figure 3a depicts cluster sizes for participants 
and search processes. On average, participants generated 
clusters with 2.1 items (SD .44). Processes that behaved like 
global search (node-degree search and spreading activation) 
strongly underestimated cluster sizes. Cluster-based depth 
first search also underestimated cluster size, despite using a 
local search procedure. This is surprising because clusters 
are close in a semantic network. 

3649



The censored random walk produced clusters close in size 
to the actual human data. Variations of the CRW that 
included a priming vector (CRW+PV) or strategic jumps 
(CRW+SJ) showed very little difference in cluster size 
compared to the CRW. However the censored random walk 
with random jumps (CRW+RJ) produced smaller clusters, 
as compared to CRW and compared to human data. Abbott 
et al. (2015) had previously explored censored random 
walks with and without random jumps and found no 
discernible difference with respect to optimal foraging. Our 
results suggest that when cluster size is taken into account, 
the random jump model fits worse. 

 
Cluster Switches Figure 3b shows the average number of 
cluster switches for participants and search processes. 
Participants switched clusters an average of 16.85 times per 
list (SD 5.71). The pattern of cluster switches mimicked the 
inverse of cluster size—models that underestimated the 
cluster size overestimated the number of cluster switches. 
This is not surprising, as participant cluster size and cluster 
switches are negatively correlated in the data (r = -.45, p = 
.045). Again, processes that relied strictly on global (NDS, 
SA) or local (CbDFS) cues overestimated the number of 
cluster switches. In contrast, the CRW, CRW+SJ, and 
CRW+PV all closely resembled human performance. 
However the CRW+RJ suffered from the inclusion of 
random jumps, overestimating the number of cluster 
switches. 
Number of Cluster Types Figure 3c shows the number of 
cluster types for participants and search processes. 
Participants produced an average of 16.7 cluster types per 
list (SD 2.7). In contrast to the cluster size and switch data, 

counting the average number of cluster types per list 
produced a different pattern of results. Search processes that 
behaved more like global search (NDS, SA, CRW+RJ) 
performed closest to the actual data, while other search 
processes tended to underestimate the number of cluster 
types encountered.  

Of course, processes that rely on global cues will tend to 
have more breadth than processes that rely on local cues. It 
is interesting that our participants were able to generate a 
breadth of cluster types resembling global search, but switch 
clusters less often (as expected by local search). This 
suggests that participants try to exploit local clusters, but 
that when they do switch, they tend to avoid old clusters. 
 
Number of Unique Items (Unigrams) Figure 3d plots the 
average number of unique items listed by participants and 
the search processes. Across three lists, participants 
generated an average of 54.4 unique items (SD 19.8), 
though an average of 99.4 token items (SD 29.9). CRW+PV 
and CbDFS both produced lists containing a similar number 
of unique items as the human participants.  Both of these 
models do so by limiting exploration in different ways. 
CbDFS will tend to generate similar fluency lists on 
successive trials as there is no mechanism to make long-
distance transitions within the network. CRW+PV will tend 
to produce similar lists because it will make the same 
transitions as it has in previous lists with high probability. 

Distribution of Unigrams Figure 3e depicts the distribution 
of unigrams for participants and the search processes. On 
average, participants listed 23.2 items once, 17.3 twice, and 
13.9 three times (SDs 16.3, 7.1, 6.1). The large number of 

Figure 3. Each clustering and frequency measure is shown for the human data (left) and each search process. (a) Average 
cluster size per list, (b) Average number of cluster switches per list, (c) Average number of cluster types per list, (d) Number 
of unique unigrams across three lists, (e) Distribution of unigrams across three lists, (f) Number of bigrams across three lists 
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items listed twice and three times is indicative of priming 
effects from earlier lists. CRW+PV was the only search 
process that produced a similar distribution of unigrams (in 
particular, the large number of items produced three times). 
The other search processes strongly overestimate the 
number of items that appear only once, and strongly 
underestimate the number of items that appear three times. 
 
Number of Bigrams Figure 3f plots the number of bigrams 
produced by participants and the search processes. 
Participants listed 87.1 unique bigrams (SD 28.4). Nearly all 
models produced a similar number of bigrams as people, 
except for CRW+PV, which produced too few bigrams. 
Because CRW+PV often follows the same transitions as in 
previous lists, fewer unique bigrams are generated. 

General Discussion 
We explored whether several search processes on a 
semantic network adequately captured the frequency and 
clustering effects seen in semantic fluency data. We found 
that local search processes captured the average cluster sizes 
and number of clusters, but failed to capture the number of 
cluster types produced by people. A priming component to 
the search process is needed to capture the unigram 
frequency statistics, but this priming component interferes 
with producing the appropriate number of bigrams. 
Although none of the search processes captured human 
behavior on every measure, the censored random walk with 
priming performed well across many.  

More broadly, the censored random walk model (CRW), 
and its variations that include strategic jumping (CRW+SJ) 
or recent memory (CRW+PV), captured much of the 
clustering behavior seen in human data. Search processes 
that heavily favored only global or local search tended to 
produce too many cluster switches and underestimate cluster 
size. Thus, people balance between local and global search. 
While previous research was not able to discriminate 
between the CRW model with or without jumps (Abbott et 
al., 2015), our results suggest that a random jumping model 
does not capture human performance well. 

The search processes were less successful at modeling 
frequency effects in the data, though CbDFS and CRW+PV 
produced the best fits. Overall, this suggests that for our 
experimental procedure—collecting multiple fluency lists 
from a single participant in a single setting—the censored 
random walk with priming vector produces the closest fits 
to human data with respect to clustering and frequency 
effects. Its performance may be improved by including a 
strategic component, where it jumps to unvisited nodes or 
clusters after censoring multiple items in a row. Future 
research should investigate this and whether the different 
processes also replicate optimal foraging. 

The current work is limited in several ways. It relies on 
the validity of the USF semantic network, and the 
assumption of unweighted and undirected edges (De Deyne, 
Navarro, & Storms, 2013). This network is constructed from 
an aggregate of participants, and does not reflect the 

variability across participants. While these may not be 
unreasonable assumptions, we have established a baseline to 
compare additional search processes in the future. One 
possibility is to use crossvalidation: with enough lists from 
each participant, some lists could be used to estimate an 
individual’s semantic network using U-INVITE (Zemla et 
al., 2016), while the remaining lists are used to evaluate the 
search processes. 
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Abstract

In this study, we explored the impact of the decision agency
(Student vs. Tutor) and granularity (Problem vs. Step) across
students with different levels of incoming competence (High
vs. Low). Students were randomly assigned to four conditions
and split into High and Low groups based on their pre-test
scores. All students used the same Intelligent Tutoring Sys-
tem (ITS) called Pyrenees, followed the same general proce-
dure, studied the same training materials, and worked through
the same training problems. The only substantive differences
among the four conditions were decision agency and granular-
ity. That is: who decided to present an example or to solve
a problem: the student or the ITS tutor; and was the deci-
sion made problem-by-problem or step-by-step? Our overall
results showed that there were significant different impacts of
the decision agency and granularity between High and Low
students on learning performance. More specifically, for High
students granularity was the more dominant factor in that step
level decisions can be more effective than problem level deci-
sions regardless of the decision agency; for Low students there
was a significant interaction effect in that: Low students ben-
efit significantly more when they were making problem-level
decisions than making step-level decisions, but no significant
difference was not found when the decisions were made by
the tutor. Much to our surprise, both High and Low groups
showed strong decision-making preference for problem solv-
ing over worked example at both problem and step levels.

Keywords: Aptitude Treatment Interaction, Pedagogical deci-
sions, granularity, student-centered learning,

Introduction
Certain learners are less sensitive to learning environments
and can always learn; while others are more sensitive to vari-
ations in learning environments and may fail to learn. In
order to fully honor their promises, effective learning en-
vironments should exhibit an aptitude-treatment interaction
(ATI), that is, its instruction should match to the aptitude of
the learner (Cronbach & Snow, 1977). Intelligent Tutoring
Systems (ITSs) are powerful educational technologies that
support learning by providing step-by-step support and con-
textualized feedback adapted to individual learners and ITSs
have demonstrated great success in many complex domains
(Koedinger & et al., 1997; Vanlehn, 2006). In our work,
we explored the possibility of improving the effectiveness of
ITSs from two perspectives: decision agency and granular-
ity. Here we split students into High and Low groups based
on their incoming competence and investigated the impact of
these two perspectives on ATI: how the decision agency and
granularity would impact students’ learning across the High
and Low groups.
Decision Agency: ITSs are generally designed to sup-
port users’ learning by providing instructions, scaffolded
problem-solving practice and on demand help. Most of ex-
isting ITSs are tutor-centered. The tutor is responsible for

selecting the next action to take at any given time. Each
of these decisions affects student’s successive actions and
performance. In learning literature, the skills used to make
such decisions are generally referred to as pedagogical skills.
More formally, Chi et al. defined pedagogical skills are
those “involve skillful execution of tactics, such as giving
explanations and feedback or selecting the appropriate prob-
lems or questions to ask the students” (Chi, Siler, & Jeong,
2004). Most ITSs generally employ fixed pedagogical poli-
cies that do not adapt to users’ needs. For example on most
ITSs students are asked to solve a series of training problems
while research showed that studying worked examples can be
more effective than solving problems and the former gener-
ally takes much less time (McLaren & Isotani, 2011).

On the other hand, previous research showed that it is de-
sirable for students to experience a sense of control over their
own learning. For example, Cordova and Lepper (Cordova &
Lepper, 1996) found that offering student choices over their
learning could lead to significantly better learning outcome
than those who were not offered. Letting students make deci-
sions during the tutorial process should make them feel that
they are actively directing their own learning process and not
just passively following it. Furthermore, prior research sug-
gested that offering student learning choices often exhibits
an ATI effect: students with different levels of competence
should be offered with different choices. For example, Young
split learners into High vs. Low based on survey results and
found that the performance difference between the High and
Low learners was significantly greater under learner’s con-
trol than under system control (Young, 1996). In this paper,
we provided the students with different yet both reasonable
choices and let them decide how they would like to study
the materials and our goal is to investigate how these choices
would impact their learning differently across High vs. Low
students.

Granularity: Tutoring in domains such as math and science
can be viewed as a two-loop procedure (Vanlehn, 2006). In
the outer loop, the tutor makes tasks or problem-level deci-
sions such as deciding what problem to solve next, while the
inner loop controls step level decisions such as whether or
not to give a hint. In educational literature, ‘steps’ often re-
fer to the application of a major domain principle such as
Newton’s Third Law of Thermodynamics. Solving a com-
plete problem generally involves applying many individual
principles in a logical order. In theory, problem-level deci-
sions are at a larger grain size and thus once students make
one ‘big’ decision, they can focus on comprehending an ex-
ample or solving a problem. However, such ”big” decision
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might not be very sensitive to students’ specific moment-by-
moment needs. For example, offering a complete worked ex-
ample to students facing difficulty with a single principle may
rob them of the chance to exercise other skills. When making
step-level decisions, by contrast, students may be better able
to tailor their decisions to their immediate needs and current
knowledge level. However, making fine-grained decisions of-
ten requires more sophisticated decision-making skills. Prior
research has shown interleaving worked examples with prob-
lem solving in both problem level and step level could result
in improved learning performance comparing to doing prob-
lem solving only (Van Gog et al., 2011; Salden et al., 2010).
However, it remained unclear how worked example and prob-
lem solving tasks should be provided to maximize the tutor-
ing effectiveness. Therefore, in this paper, we are going to
examine the impact of different decision granularity across
learners with different incoming competence.

In this study, we strictly controlled the content to be equiv-
alent for all participants by: 1) using an ITS which provides
equal support for all learners; and 2) investigating on tutorial
decisions that cover the same domain content at both problem
and step levels, in this case Worked Examples (WE) versus
Problem-Solving (PS). In WE, students were given a detailed
example showing the expert solution for the problem or step.
In PS, the students were tasked with solving the same prob-
lem or step using the ITS.

Previously we investigated the impact of granularity on the
effectiveness of students’ pedagogical decisions by compar-
ing students’ decisions against tutor’s random yet reasonable
decisions. Overall, our results showed that there was a sig-
nificant interaction effect between decision agency (Tutor vs.
Student) and granularity (Problem vs. Step) on learning. We
found that step level decisions can be more effective than
problem level decisions but the students were more likely to
make effective pedagogical decisions at problem level than at
step level (Zhou et al., 2016). In this paper, we further inves-
tigate the impact of decision agency and granularity across
students with different levels of incoming competence. Fol-
lowing prior research, we divided students into High and Low
groups based on their pretest scores and our primary research
question is: would the impact of decision agency and granu-
larity on learning differ between the High and Low students?

Background
WE/PS, vs. FWE: A number of researchers have exam-
ined the impacts of problem-level PS, problem-level WE,
vs. Faded Worked Example (FWEs) (Renkl et al., 2002;
Schwonke et al., 2009; Najar et al., 2014; Salden et al., 2010).
FWEs interleave problem-solving steps with worked exam-
ple steps within a single problem. Renkl et al. compared
WE-PS pairs with FWE using a fixed fading policy (Renkl
et al., 2002). In that study the number of example steps
and problem-solving actions were strictly equal between the
conditions. They found that FWEs with fixed fading pol-
icy significantly outperformed the WE-PS pairs, but no sig-
nificant time-on-task differences were found. Schwonke et

al. compared FWE with a fixed fading policy to tutored PS
(Schwonke et al., 2009). Over the course of two studies,
they found no significant differences between the two condi-
tions in terms of their learning outcomes. However the FWE
group spent significantly less time on task than the tutored PS
group. Najar and colleagues compared FWE with an adap-
tive fading policy to WE-PS pairs. They found that the FWE
condition significantly outperformed the WE-PS condition in
their learning outcomes and spent significantly less time on
task (Najar et al., 2014). Finally, Salden et al. compared
three conditions: FWE with a fixed fading policy, FWE with
an adaptive fading policy, and PS-only (Salden et al., 2010).
They found that the adaptive FWE group outperformed the
fixed FWE who, in turn, outperformed PS-only and there is
no significant time-on-task differences among three groups.

Thus prior researchers have shown that FWEs with effec-
tive pedagogical polices can outperform fixed WE-PS pairs.
It has also been shown that the former may need significantly
less time on task than the latter. However all of these stud-
ies relied on hand-coded tutor pedagogical polices whereas
in this study, we investigated how students with different
levels of incoming competence would differ on pedagogical
decision-making at both problem and step level.

Students Pedagogical Decision on ITS: Prior research on
student problem-level decision-making has primarily focused
on decisions of choosing instructional content, e.g. problem
selection, but not how, e.g. WE vs. PS. Mitrovic et al. showed
that learners, even college students, often make poor problem
selections (Mitrovic & Martin, 2003). Long et al. compared
the impact of joint student/system control again full system
control over problem selection (Long & Aleven, 2014). In
joint control, the system adaptively selects the problem type
while the students select the individual problems. They found
no significant difference on learning between the joint con-
trol groups and the full control group. In another study, Long
et al. augmented a ITS with features that help students de-
velop effective problem selection strategies with shared stu-
dent/system control and compared its effectiveness with full
system control ITS (Long & Aleven, 2016). They found that
students in the shared control group learned significantly bet-
ter than those in the full system control group. The results for
student step-level pedagogical decision-making are inconclu-
sive. Aleven & Koedinger studied students’ help-seeking be-
haviors in the Cognitive Tutor (Aleven & Koedinger, 2000).
They found that students cannot use hints effectively in that
they tended to wait too long before asking for hints. Roll
et al. by contrast examined the relationship between stu-
dents’ help-seeking patterns and their learning (Roll et al.,
2014). They found that asking for help on challenging steps
was generally productive while help abusing behaviors were
correlated with poor learning. Finally, Wood et al. found that
learners with high prior knowledge can exhibit more effective
help-seeking behaviors than those with low prior knowledge
learners(Wood & Wood, 1999).

Therefore prior research on students’ decision suggests that
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students can benefit substantially from effective pedagogical
decision-making. Yet they often lack the necessary metacog-
nitive skills to do so. On the other hand, help in ITSs is gen-
erally provided on demand, and some students might never
need to request. In this study, we controlled for this possible
conflict by focusing on WE/PS decisions, and by examining
both problem and step-level decision-making. By letting both
High vs. Low students make pedagogical decisions, we can
fully investigate the impact of decision agency and granular-
ity on learning across students of different levels of incoming
competence.

Our Approach
We will investigate the impact of students’ pedagogical deci-
sions on learning by comparing students’ decisions to tutors’
random decisions at either problem or step level in order to
avoid the impact of possibly misguided pedagogical policies.
This study is 2 {Student, Tutor} × 2 {Problem, Step} design
with four conditions: 1) StudProb: problem-level student de-
cisions; 2) StudStep: step-level student decisions; 3) TutProb:
problem-level random tutor decisions and 4) TutStep: step-
level random tutor decisions.

Methods
Participants: This study was conducted in the undergraduate
Discrete Mathematics course at the Department of Computer
Science at NC State University in the Fall of 2015. 279 stu-
dents participated in this study, which was given as their final
homework assignment.
Conditions: The students were assigned to the four con-
ditions via balanced random assignment based upon their
course section and performance on the class mid-term exam.
Since the two tutor-random decision groups were already
compared in our prior study (Zhou et al., 2015) and the pri-
mary goal of this work is to examine the nature and effec-
tiveness of students’ pedagogical decision-making and ATI
effect, we assigned twice more students to the two student-
decision groups, StudProb & StudStep, than the two tutor-
random groups, TutProb & TutStep. The final group sizes are
as follows: N = 92 for StudProb, N = 93 for StudStep, N = 47
for TutProb, and N = 47 for TutStep.

Due to the holiday break, preparations for final exams, and
length of the experiment, 212 students completed the exper-
iment. 11 students were excluded from our subsequent anal-
ysis because they performed perfectly on the pretest. The
remaining 201 students were distributed as follows: N = 70
for StudProb; N = 59 for StudStep; N = 38 for TutProb; N = 34
for TutStep. A χ2 test examining the relation between con-
dition and completion rate showd no significant difference:
χ2(3) = 1.159,p = 0.763.
Probability Tutor –Pyrenees Pyrenees is a web-based ITS
for probability. It covers 10 major principles of probability,
such as the Complement Theorem and Bayes’ Rule. Pyrenees
provides step-by-step instruction, immediate feedback and
on-demand hints prompting students with what they should

do next. As with other systems, help in Pyrenees is pro-
vided via a sequence of increasingly specific hints. The last
hint in the sequence, the bottom-out hint, tells the student ex-
actly what to do. For the purposes of this study we incorpo-
rated four distinct pedagogical decision modes into Pyrenees
to match the four conditions.

Procedure In this experiment, students were required to com-
plete 4 phases: 1) pre-training, 2) pre-test, 3) training on
Pyrenees, and 4) post-test. During the pre-training phase, all
students studied the domain principles through a probability
textbook, reviewed some examples, and solved certain train-
ing problems. The students then took a pre-test which con-
tained 10 problems. The textbook was not available at this
phase and students were not given feedback on their answers,
nor were they allowed to go back to earlier questions. This
was also true of the post-test.

During phase 3, students in all four conditions received the
same 12 problems in the same order on Pyrenees. Each pri-
mary domain principle was applied at least twice. The min-
imum number of steps needed to solve each training prob-
lem ranged from 20 to 50. The steps included variable def-
initions, principle applications and equation solving. The
number of domain principles required to solve each problem
ranged from 3 to 11. For the FWE problems, the StudStep stu-
dents were asked to make decision only on two types of steps:
principle selection and principle application. To apply a
principle, students need to first choose the principle they will
use (principle selection) and then write the appropriate equa-
tion to apply it (principle application). We evaluated the stu-
dents’ decisions on both types of steps in our analysis below.
The only procedural differences among the four conditions
were the decision agency: Student vs. Tutor and the granu-
larity of the decision: Problem vs. Step. Apart from this, the
system was identical.

Finally, all of the students took a post-test with 16 prob-
lems. Ten of the problems were isomorphic to the pre-test
problems given in phase 2. Note that the rest of six questions
are non-isomorphic complicated problems.

Grading Criteria: The test problems required students to
derive an answer by writing and solving one or more equa-
tions. We used three scoring rubrics: binary, partial credit,
and one-point-per-principle. Under the binary rubric, a so-
lution was worth 1 point if it was completely correct or 0 if
not. Under the partial credit rubric, each problem score was
defined by the proportion of correct principle applications ev-
ident in the solution. A student who correctly applied 4 of 5
possible principles would get a score of 0.8. The One-point-
per-principle rubric in turn gave a point for each correct prin-
ciple application. All of the tests were graded in a double-
blind manner by a single experienced grader. The results pre-
sented below were based upon the partial-credit rubric but the
same results hold for the other two. For comparison purposes,
all test scores were normalized to the range of [0,1].
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Table 1: Learning Performance

High Group Students
Cond Pre Iso Post Overall Post
StudProb(31) .851(.059) .909(.111) .843(.143)
StudStep(28) .846(.074) .936(.062) .882(.104)
TutProb(20) .857(.074) .889(.088) .785(.141)
TutStep(20) .868(.058) .931(.061) .877(.113)

Low Group Students
Cond Pre Iso Post Overall Post
StudProb(39) .551(.144) .863(.107) .731(.126)
StudStep(31) .512(.164) .772(.182) .658(.195)
TutProb(18) .603(.188) .764(.272) .693(.282)
TutStep(14) .591(.132) .856(.158) .773(.167)

Results
We split students into High and Low groups based on their
pre-test scores. Using a median split of 0.75 and students
were divided into: High (n = 99) and Low (n = 102) groups.
As expected, the High group scored significant higher than
the Low group: t(199) = 17.462, p < 0.0001, d = 2.464.
The numbers in the parentheses in the first column of Table 1
shows the numbers of High vs. Low students across the four
conditions. No significant difference was found among the
four conditions on the distribution of High vs. Low students:
χ2(3) = 1.1879,p = 0.7559.

Fortunately, random assignment balanced the four condi-
tions and this balance persisted even with the groups were
subdivided into High and Low. The second column in Ta-
ble 1 shows the pretest scores of High and Low groups. A
one-way ANOVA test on students’ pre-test score shows that
there is no significant difference among the four conditions:
F(3,197) = 1.969, p = 0.12, or the four conditions in High
group: F(3,95) = 0.581, p = 0.629 or the four conditions in
the Low group: F(3,95) = 0.449, p = 0.719.

Learning Performance
Table 1 shows a comparison of the pre-test, isomorphic post-
test (10 isomorphic questions), and overall post-test scores
among the four conditions, showing the mean (and SD) for
each score.

To investigate the impact of decision agency and gran-
ularity on learning performance across High and Low stu-
dents, two three-way ANOVAs were conducted using de-
cision agency (tutor vs. student), granularity (problem vs.
step), and incoming competence (High vs. Low) on the iso-
morphic post-test scores and the overall post-test scores re-
spectively. For the isomorphic post-test scores, there is a
significant three-way interaction effect: F(1,193) = 4.079,
p = 0.045, a significant two-way interaction effect on deci-
sion agency and granularity: F(1,193) = 5.324, p = 0.022, a
significant main effect on incoming competence: F(1,193) =
26.23, p < 0.0001 and a marginal interaction effect on gran-
ularity and incoming competence: F(1,193) = 2.854, p =

0.093. For the overall post-test scores, there is a significant
two-way interaction effect on decision agency and granular-
ity: F(1,193) = 4.415, p= 0.037, a significant main effect on
incoming competence: F(1,193) = 38.96, p < 0.0001 and a
marginal significant interaction effect on granularity and in-
coming competence: F(1,193) = 3.521, p = 0.062. Overall,
our results showed that the impact of decision agency and
granularity on learning performance differs significantly be-
tween the High and the Low groups. Next we will examine
the learning performance of High and Low groups separately.

High Groups A repeated measure analysis using test type
(pre-test vs. isomorphic post-test) as factors and test score
as the dependent measure showed a main effect for test type
F(1,95) = 34.74, p < 0.0001. Thus, overall the High stu-
dents learned significantly by training on Pyrenees. How-
ever, further comparisons on the condition by condition ba-
sis revealed that: no significant improvement was found
from pre-test to isomorphic post-test for the High TutProb
group:F(1,19) = 1.817, p = 0.194, but the remaining three
High groups showed significant improvement: F(1,30) =
6.385, p = 0.017 for StudProb; F(1,27) = 22.58, p < 0.0001
for StudStep and F(1,19) = 16.37, p = 0.0007 for TutStep.
This suggests that random problem level pedagogical deci-
sions may not be very effective for High students.

To fully compare the learning performance among the four
High groups, a two-way ANOVA analysis using decision
agency and granularity as factors was conducted on the over-
all post-test scores. Our results showed while there is no
significant interaction effect, there is a significant main ef-
fect on granularity: F(1,95) = 5.504, p = 0.021, that is,
the step level decisions are significantly more effective than
problem level decisions across the decision agencies. More
specifically, the two step level decision groups, StudStep and
TutStep scored significantly higher than the TutProb group:
t(38) = −2.263, p = 0.029, d = 0.716 for the TutStep group
and t(46) = −2.749, p = 0.009, d = 0.805 for the StudStep
group respectively. For isomorphic post-test scores. Two-
way ANOVA analysis showed a marginal main effect on
granularity: F(1,95) = 3.563, p = 0.062. Pairwise t-tests
showed the StudStep group outperformed the TutProb group
significantly: t(46) = −2.178, p = 0.035, d = 0.638 and
the TutStep group tended to outperform the TutProb group:
t(38) = −1.757, p = 0.087, d = 0.556. Therefore, our re-
sults showed that step-level decisions are more effective for
High group students than problem-level ones.

Low Groups A repeated measure analysis using test type as
the repeated factor shows that Low group students learned
significantly after training on Pyrenees. F(1,98) = 200.01,
p< 0.0001. In fact, all four groups made significant improve-
ment from pre-test to isomorphic test: F(1,38) = 117.99,
p < 0.0001 for StudProb; F(1,30) = 63.89, p < 0.0001
for StudStep; F(1,17) = 8.537, p = 0.010 for TutProb; and
F(1,13) = 39.98, p < 0.0001 for TutStep. This suggests that
for Low students, the basic practice and problems, domain
exposure, and interactivity of Pyrenees might help students
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Table 2: Student Decisions

Problem Level Decisions
Competence WE PS Total
High 1.55(1.31) 8.45(1.31) 10
Low 1.56(1.48) 8.44(1.48) 10

Step Level Decisions
Competence WE PS Total
High 21.14(24.34) 115.07(27.03) 136
Low 18.84(17.28) 114.26(16.84) 133

to learn even when the problem- and step-level decisions are
made randomly.

A two-way ANOVA analysis using decision agency and
granularity on isomorphic post-test showed a significant in-
teraction effect across the four Low groups: F(1,98)= 5.819,
p = 0.018. Post hoc Pairwise t-test reveals that the StudProb
Low group scored significantly higher than the StudStep Low
group: t(68) = 2.591, p = 0.012, d = 0.624. For overall post-
test, our two-way ANOVA showed a marginal interaction ef-
fect: F(1,98) = 3.591, p = 0.061. Pairwise t-tests showed
a trend that the StudProb group outperformed the StudStep
group: t(68) = 1.903, p = 0.061, d = 0.458. Therefore, our
results showed that Low group students benefited more from
making problem level decisions than step level ones and no
significantly difference was found between the two tutor de-
cision groups: TutProb and TutStep.

To summarize, our results showed that: 1) for the High
group, step level decision was more effective 2) for the Low
group, letting students make problem level decisions can be
more beneficial than letting them make step level decisions.

Student Pedagogical Decisions and Training Time
Student Decisions Much to our surprise, our analysis on
students’ decision-making preference revealed that both High
and Low Groups are far more likely to choose problem solv-
ing than worked examples. For the tutor decision groups,
our random policies generated a balanced 50-50 selection of
WE and PS. Table 2 shows the number of pedagogical deci-
sions made by students at both problem level and step level.
Columns 2 and 3 show the average number of worked ex-
amples and problem-solving decisions made by each group.
We required all students to solve two problems in order to
familiarize them with Pyrenees. Therefore each student in
problem-level condition made or received 10 problem-level
decisions. Within each of the 10 problems, there are 6 to 24
step-level decisions. Therefore each student in step-level con-
dition made or received about 135 step level decisions. In the
following, we will compare the decision making preference
across High and Low groups.

We compared the percentage of WEs students selected
among different groups. For problem level decisions, both
High and Low groups selected around 15%-16% of WEs on
average. That is, both groups chose significantly less WEs
than the two corresponding tutor groups: t(49) = 8.717, p <

0.0001, d = 2.500 for the High groups and t(55) =−10.668,
p < 0.0001, d = 3.040 for the Low groups. The results
for step level decisions are similar. High group students
chose an average of 15.52% WE steps; while Low group stu-
dents chose 14.16%. Again, both groups chose significantly
less WEs than the two corresponding tutor decision groups:
t(46) = 8.920, p< 0.0001, d = 2.612 for the High groups and
t(43) = 10.27, p < 0.0001, d = 3.308 for the Low groups.
The results suggested that students were significantly more
likely to choose PS than WE at both levels.

Training Time Given that our results showed that the type
of student decisions was not impacted by granularity and our
preliminary results showed that similar patterns were found
across the two different granularities on the training time. In
the following, we will combine the step and problem level de-
cision groups and mainly focus on the impact of the decision
agency on time on task for High vs. Low students.

Despite the fact that students selected more PS, surpris-
ingly, not all of them spent more time on learning comparing
to those received equal number of PS and WE from the tu-
tor. Table 3 shows the average total training time on Pyrenees
(in seconds). A two-way ANOVA analysis examining the
effect of incoming competence and decision agency shows
a marginal significant interaction effect: F(1,196) = 3.345,
p = 0.069. More specifically, while no significant difference
was found between the two High groups, there is a significant
difference between the two Low groups in that the student de-
cision group spent significantly more time on training than the
tutor decision group: t(99) =−2.272, p = 0.025, d = 0.490.

Since student decision groups chose more PS than WE and
PS is generally more time consuming than WE, we further
investigated the impact of decision agency on training time
by comparing the average time on each WE step and PS step.
The third and fourth columns in Table 3 shows the average
amount of time students spent on each WE and PS steps re-
spectively. For the average WE step time, no significant dif-
ference was found among the four groups. For the average
time on PS steps, a two-way ANOVA on decision agency
and incoming competence showed a significant main effect
of decision agency: F(1,196) = 14.53, p = 0.0002. That is
the student decision groups spent significantly less time on
each PS step than the tutor decision groups. Pairwise t-test
showed that this difference is significant for both High and
Low groups: t(97) = 6.118, p < 0.0001, d = 1.253 for the

Table 3: Time Results

High Group Students
Cond Total WE PS
HighStud 7977(1811) 9(10) 35(8)
HighTut 8041(2503) 8(5) 51(18)

Low Group Students
LowStud 8612(2428) 9(9) 39(10)
LowTut 7457(2179) 9(7) 50(16)
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High group and t(99) = 3.888, p = 0.0002, d = 0.839 for the
Low group. Therefore, students worked faster on PS steps
when they made decisions than when tutor decided.

Discussion
In this study, we investigated the impact of decision agency
(student vs. tutor) and granularity (problem vs. step) on
learning across students with different levels of incoming
competence (High vs. Low). Students were randomly as-
signed to four experiment conditions and split into High
and Low groups based on their pre-test scores. Our results
showed that all four Low groups and three out of four High
groups (except the High TutProb group) learned significantly
after training on Pyrenees. In general, the Low students
learned more than their High peers. This suggests that the
training of Pyrenees is generally effective especially for low
students.

We found that there were significantly different impacts of
decision agency and granularity across High and Low stu-
dents. For the High ones, granularity is the more dominant
factor in that the two step-level groups significantly outper-
formed the two problem-level decision groups on the overall
post-test. For the Low groups, there is a significant decision
agency and granularity interaction effect: while no signifi-
cant difference was found between the two Low tutor decision
groups, the Low Student Problem-level group learned signif-
icantly more than the Low Student Step-level group. The re-
sults suggest that for High students step level decisions can
be more effective than problem level decisions, but for Low
students making problem level decisions are more beneficial
than making step level ones.

Surprisingly, both High and Low students selected more
problem solving than worked example at both problem and
step level. However, students worked faster on PS steps when
they selected them than received them. A potential explana-
tion is that the control of their own learning process produced
increases in motivation and depth of engagement. Currently,
we are applying Reinforcement Learning (RL) to induce ef-
fective pedagogical policies based on which we will derive
a methodology for teaching effective pedagogical decision-
making strategy. After that, we will augment our ITS with
decision-making development features to help students learn
those strategies and examine its effectiveness.
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Abstract

When faced with delayed, uncertain rewards, humans and
other animals usually prefer to know the eventual outcomes
in advance. This preference for cues providing advance infor-
mation can lead to seemingly suboptimal choices, where less
reward is preferred over more reward. Here, we introduce a
reinforcement-learning model of this behavior, the anticipated
prediction error (APE) model, based on the idea that predic-
tion errors themselves can be rewarding. As a result, animals
will sometimes pick options that yield large prediction errors,
even when the expected rewards are smaller. We compare the
APE model against an alternative information-bonus model,
where information itself is viewed as rewarding. These mod-
els are evaluated against a newly collected dataset with human
participants. The APE model fits the data as well or better
than the other models, with fewer free parameters, thus provid-
ing a more robust and parsimonious account of the suboptimal
choices. These results suggest that anticipated prediction er-
rors can be an important signal underpinning decision making.
Keywords: information seeking; early resolution of uncer-
tainty; anticipated prediction errors; forward sampling.

Introduction
Humans and other animals have a strong preference for infor-
mative options. They are inherently curious and will explore
unknown options, even sacrificing rewards to resolve an un-
certain outcome early. Sometimes the search for predictive
information can be independent of profit and have no effect
on the delivery of primary rewards, as if consuming infor-
mation itself was rewarding (Wyckoff, 1952; Prokasy, 1956;
Bromberg-Martin & Hikosaka, 2009; Iigaya, Story, Kurth-
Nelson, Dolan, & Dayan, 2016). On occasion, this infor-
mation seeking can lead to seemingly suboptimal behaviors
with animals preferring options with lower expected values
(Spetch, Belke, Barnet, Dunn, & Pierce, 1990; Roper & Zen-
tall, 1999). In this paper, we develop a new computational
model of this information-seeking behaviour based on the
idea that animals’ choices reflect both the expected rewards
and the anticipated prediction errors from any upcoming cues.

This preference for advanced information has been widely
observed across species, including rats (Prokasy, 1956;
Chow, Smith, Wilson, Zentall, & Beckmann, 2016), pigeons
(Spetch et al., 1990), starlings (Vasconcelos, Monteiro, &
Kacelnik, 2015), monkeys (Bromberg-Martin & Hikosaka,
2009, 2011; Blanchard, Hayden, & Bromberg-Martin, 2015),
and humans (Iigaya et al., 2016). In some cases, animals
even give up food or water for advance information about
impending rewards, even though these advanced signals do
not change the eventual reward. For example, pigeons re-
liably choose an alternative that provides delayed access to
food 50% of the time over one that always provides the same

amount of food with the same delay, but only when an imme-
diate cue is provided, which signals to the pigeons whether or
not food will eventually be available on that trial (Spetch et
al., 1990; Gipson, Alessandri, Miller, & Zentall, 2009). The
choice of the 50% option is clearly suboptimal in terms of
reward-intake maximization. Similarly, when choosing be-
tween delayed, probabilistic rewards, monkeys and humans
will prefer an option that informs them about the eventual
outcome of that trial over one that leaves the resolution of un-
certainty to the time of reward delivery (Bromberg-Martin &
Hikosaka, 2009, 2011; Iigaya et al., 2016).

In addition to the presence of advance information, a few
variables have proven critical to the emergence of this subop-
timal choice (see McDevitt, Dunn, Spetch, and Ludvig (2016)
for review). First, the contingencies between the predictive
cues and the outcomes is important because it influences the
amount of uncertainty resolved by the cues: The more infor-
mation conveyed by the predictive cues, the more preferred
the associated choice target (Bromberg-Martin & Hikosaka,
2009). Second, humans and other animals also exhibit a pref-
erence for earlier advanced notice of the eventual outcome.
Increased information seeking has been found in the case of
longer delays (Spetch et al., 1990; Iigaya et al., 2016). Third,
the subjective value of advance information scales with the
reward magnitude of the potential outcomes (Blanchard et
al., 2015). Finally, aversive outcomes can sometimes pro-
duce outright information avoidance in human subjects, as in
the Ostrich effect (Karlsson, Loewenstein, & Seppi, 2009).

Given this rich set of empirical findings, we endeavored to
build a computational model that can capture as many of these
empirical results as possible, but first we briefly review the
existing computational models for this information-seeking
behaviour.

Existing Computational Models
The apparent departures from optimality observed when ad-
vance information is available poses a significant computa-
tional challenge to standard models of reinforcement learn-
ing (RL) (Niv & Chan, 2011). Previous research has ex-
plored several possible extensions and refinements to the
usual RL framework, including the information bonus model
(Bromberg-Martin & Hikosaka, 2011), the disengagement
model (Beierholm & Dayan, 2010), and the anticipatory util-
ity model (Iigaya et al., 2016). The information bonus model
encapsulates the idea that receiving advance information acts
as if it were a primary reward. This information bonus has
alternatively been operationalized as either a free parameter
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(Bromberg-Martin & Hikosaka, 2011) or as the Shannon en-
tropy of the reward probability (Bennett, Bode, Brydevall,
Warren, & Murawski, 2016). These ideas successfully ex-
plain the observed preference for more informative options
(Bromberg-Martin & Hikosaka, 2009). Formalizing the in-
formation bonus as the Shannon entropy, however, fails to
deal with, for instance, the fact that animals prefer to observe
more even when the number of bits they receive by doing so
is less (Roper & Zentall, 1999). On the other hand, without
using Shannon entropy, the information bonus cannot capture
the relationship between information seeking and probabil-
ity, which resembles an inverse U-shaped function (Green &
Rachlin, 1977).

The anticipatory utility model is a recently proposed alter-
native model for these data, which formalizes the economic
idea of savouring (Loewenstein, 1987; Iigaya et al., 2016).
According to this model, animals are hypothesized to enjoy or
savour the anticipation of guaranteed rewards to come. Antic-
ipatory utility alone, however, cannot explain why the delay
to reward would influence how much the informative option
is preferred (Spetch et al., 1990; Iigaya et al., 2016). This lim-
itation emerges because delay renders anticipatory utility less
rewarding at the same speed as the primary reward. To rec-
tify this, an additional boosting mechanism was introduced
to enhance anticipatory utility, and thereby slow down effect
of discounting future rewards (Iigaya et al., 2016). The full
model, including this boosting mechanism, explains a wide
range of information-seeking behaviours, including many of
the properties of sub-optimal choice. One challenge for the
anticipatory utility model is how such a mechanism could be
learned locally, as the computations require full knowledge of
the eventual time to reward in advance (Niv & Chan, 2011).

The Anticipated Prediction Error Model

Given these limitations on prior models, here, we develop an
alternative formalism centered around the idea of anticipated
prediction errors (APE). According to the APE model, ani-
mals draw one-step samples of their anticipated futures from
a simple model of the world and calculate the prediction error
that would be associated with that sample. These anticipated
prediction errors are then treated as though they were reward-
ing in and of themselves, reminiscent of how momentary sub-
jective well-being correlates with prediction errors (Rutledge,
Skandali, Dayan, & Dolan, 2014). These samples are biased
such that futures which contain positive prediction errors are
more likely to be sampled. This forward sampling (i.e. an-
ticipation) from the current state using imagined experiences
and learned environmental dynamics, such as developed in
the Dyna-2 architecture (Silver, Sutton, & Müller, 2008), can
provide useful anticipatory signals that guide decision mak-
ing. The critical difference between the APE model and the
standard RL model is that the APE model maintains two sepa-
rate valuation systems: one estimated from actual experience
(model-free), and the other estimated through this forward-
sampling process (model-based). The prediction errors gen-

erated via the forward traces are called anticipated prediction
errors (APEs). Together with the conventional value func-
tions, these APEs drive the preference to seek or avoid certain
future states. The bias in the sampling process toward posi-
tive prediction errors can even induce suboptimal choices.

Model Specification
We extend the standard Temporal-difference (TD) model
(Sutton & Barto, 1998) where agents are assumed to estimate
an action-value function for each experimental stimulus:

Q(st ,at) = E[
∞

∑
k=1

γ
krt+k−1] (1)

where t indexes time, st specifies the state visited at time t,
rt indicates the immediate reward delivered at time t, and γ ∈
[0,1) is a discount factor, which devalues delayed rewards.
This action-value function represents the expected discounted
future reward. In TD learning, this action-value function is
estimated through a simple incremental update mechanism:

Q(st ,at)← Q(st ,at)+αδt+1 (2)

where α is the learning rate and δ is the reward prediction
error (RPE), calculated as follows:

δt+1 = rt+1 + γmax
a

Q(st+1,a)−Q(st ,at) (3)

This RPE signal represents the difference between the value
of the current state-action pair and the value of the best next-
state-action plus the reward achieved in the transition. Thus,
RPEs are triggered by each state transition; the mechanics of
the APE model hinge on the transition from choice to the pre-
dictive cues which reveals what the eventual outcomes will be
on that trial. In particular, a good cue, which resolves reward
uncertainty appealingly, will generate positive RPEs, whereas
a bad cue will generate negative RPEs. The RPEs will be zero
in response to non-predictive cues, once the values are well
learned.

Here, we define anticipated prediction errors (APE) as the
perceived discrepancy between the current state (what it is
like at present) and an anticipated future state (how it would
be in the future) (see Figure 1). Formally, if there is no im-
mediate primary reward delivered during the trajectory from
state s to s′ (e.g., the transition from choice state to cue states
in the information choice task), then the value of APE in state
s when anticipating future state s′ is defined as the product
of prediction errors between the two states and the transition
probability:

APE(s′|s,a) = T (s′|s,a)× [γDss′ max
a′

Q(s′,a′)−Q(s,a)] (4)

where Dss′ is the time taken to travel from s to s′, and
T (s′|s,a) is the transition probability from s to s′ by taking
action a. In the simulations here, this travel time is always
taken to be 1, but the formulation is more general.
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Figure 1: Formal representation of the information-choice
task as a Markov Decision Process (MDP). Two offers (red
and blue circles) are presented and the animal must choose
one of them. A cue then appears after this initial choice,
which is either informative (green S+ indicates a rewarding
outcome, and yellow S0 indicates a neutral outcome) or unin-
formative (black S∗ leaving the animal in a state of uncer-
tainty). Following a delay (Tdelay), the animal obtains the
outcome (reward or no reward). The anticipatory signals pro-
posed by the APE model are illustrated as purple dashed lines.

Note that this computation relies on the samples generated
based on the learned environment dynamics. The primary
assumption of the APE model is that humans and other an-
imals treat APEs as though they were rewarding, whereby
positive APEs are reinforcing and negative APEs punishing.
The APEs are positive when the anticipated value of the fu-
ture sampled state is better than value of the present state and
negative in the opposite case. These quantities can also be un-
derstood as measurements of the pleasure (displeasure) one
derives from anticipating the good cue (bad cue). Further-
more, attention weights are assigned to each individual APE,
specifying the relative likelihood that a particular future state
will be sampled. Accordingly, the decision value Q̄ of taking
action a is defined as the weighted sum of APEs for antici-
pated future outcomes plus the value function for the corre-
sponding state:

Q̄(s,a) = ∑
sk∈S

wkAPE(sk|s,a)+Q(s,a) (5)

where S denotes the set of all possible future states after tak-
ing action a at the state s that a subject can attend to.

Given the decision values of both the cued and the un-
cued options, the softmax function is then used to compute
the probability of choosing the cued option:

P(a) =
eβQ̄(s,a)

∑a′∈A eβQ̄(s,a′)
(6)

where A is the set of all possible actions at state s, and β is
an inverse temperature parameter, which controls the degree
of exploration.

Experiment
We conducted an empirical experiment to evaluate the qual-
ity of the APE model in comparison with the information-
bonus model discussed above. In the experiment, people
were repeatedly given a choice between an informative or
non-informative option, where the outcomes were delayed
20s. Outcomes were either positive (erotic images), neutral
(images of objects) or negative (aversive images). Good tri-
als involved positive or neutral images, Mixed trials involved
positive or negative images, and bad trials involved negative
or neutral images. These outcomes were always delivered
with 50/50 odds on each trial. Qualitatively, the APE model
predicts that people will seek information in the positive and
mixed cases, but not the negative cases. This prediction
emerges from bias toward sampling future states with posi-
tive outcomes. The information bonus model would expect
equivalent information seeking in all cases, as the amount of
information present is equal in all three types of choices.

Methods
Participants Eighty human participants were recruited from
the Warwick University SONA system. All participants gave
informed consent and were paid a flat rate of 5 pounds for
their participation.

Task Participants performed the experiment on Windows
PCs running PsychoPy (Peirce, 2007). The task was a simple
two-alternative forced choice between an uncued target (Keep
It Secret), which was followed by a non-predictive cue, and
a cued target (Find Out Now), which was immediately fol-
lowed by predictive cues that signalled the eventual outcome.
Choosing either the cued or the uncued option did not alter the
odds nor the eventual outcomes. The only difference between
the two options was the presence or absence of advance infor-
mation about those eventual outcomes. After choice, the cue
was present for 20 seconds in all trials. The outcome image
was presented immediately at the end of this cue. To ensure
participants viewed the image, they had to press a randomly
selected key (indicated on the image proper) to advance to the
next trial.

The experiment consisted of three different conditions in
terms of the valence of eventual outcomes. In the Good con-
dition, the gamble included 50% erotic images and 50% neu-
tral images (as illustrated in Figure 2). In the Bad condition,
the gamble included 50% aversive images and 50% neutral
images. In the Mixed condition, the gamble included 50%
erotic images and 50% aversive images. The images used
in the experiment were previously validated in the Interna-
tional Affective Picture System (Lang, Bradley, Cuthbert, et
al., 1999). Sixteen images from the “EroticCouple” category
were selected as positive images for heterosexual subjects and
another 16 images from “Mutilation” category were selected
as the aversive images. Images were chosen as the rewards
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so that they could be consumed immediately, as opposed to
monetary rewards (Crockett et al., 2013). All participants
completed 16 interleaved trials for each condition, making
48 trials in total. Participants were informed about the nature
of the potential outcomes before the experiment started.

Erotic image

Neutral image

100%

100%

50%

50%

100%
50%

50%

t

choice cue outcome
20 sec

Erotic image

1.5 sec

Neutral image

Find
Out
Now

Keep
It

Secret

Figure 2: Human information choice task. The diagram illus-
trates the Good condition, which contains a gamble of 50%
erotic and 50% neutral images. The experiment also tested a
Bad condition (50% aversive and 50% neutral images) and a
Mixed condition (50% erotic and 50% aversive images).

Results
A total of 69 heterosexual participants (48 female and 21
male) completed the task. Eleven participants were excluded
(6 non-heterosexual, 4 did not disclose their sexual orienta-
tion, and 1 did not complete the task). Only the data from the
last nine trials per condition are reported here.

As shown in Figure 3, participants chose the cued op-
tion on average 42.8%±8.2%, 60.2%±7.6%, and 71.8%±
6.5% in the Bad, Mixed, and Good conditions respectively.
Choices in the Good condition and the Mixed condition
were significantly higher than chance responding (Good:
t(68) = 6.72, p< 0.001,d = 1.143; Mixed: t(68) = 2.68, p=
0.009,d = 0.456). In the Bad condition, people chose the
informative slightly below chance, but not significantly so
(t(68) = −1.75, p = 0.085,d = −0.297). There were, how-
ever, considerable individual differences in the preferences
for advance information (dashed grey lines in Figure 3). This
pattern of responses qualitatively agree with the predictions
of the APE model, but not the information-bonus model.

Model Comparisons
Next, we attempted a quantitative model comparison, fitting
both the APE model and the information-bonus model to the
individual choice proportions in the current dataset.

To fit the APE model to the data, first note that the ex-
pected rewards for both options are held constant in the ex-
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Figure 3: Mean percentage of choosing cued option (Find
Out Now) in the Bad, Mixed, and Good conditions. Error
bars indicate± SEM in mean choice proportions. The dashed
black line indicates the 50% choice probability. The dashed
grey lines are individual choice probabilities.

perimental task, Q(cued) = Q(uncued). In addition, receiv-
ing non-predictive cues leaves participants equally uncertain
about the eventual outcomes, and thus sampling from those
states does not generate any anticipated prediction errors,
APE(S∗|uncued) = 0. This analysis suggests that only the
APEs related to the predictive cues determine choices in the
current task. Following this logic, from equation (5), we can
calculate differences in the action values of the cued and un-
cued options in the Good, Bad, and Mixed conditions, respec-
tively as follows:

∆Q̄Good = w+APE(S+|cued)+w0APE(S0|cued) (7)

= (w+−w0)
γT R

4
(8)

∆Q̄Bad = w−APE(S−|cued)+w0APE(S0|cued) (9)

= (w0−w−)
γT R

4
(10)

∆Q̄Mixed = w+APE(S+|cued)+w−APE(S−|cued) (11)

= (w+−w−)
γT R

2
(12)

where T is the length of the delay, R is the absolute magni-
tude of rewards or punishment, and S+,S−,S0 are the cues in-
dicating positive, negative, or neutral outcomes. The weight
factors are associated with their corresponding future states.
Note that only the differences in weights matter for model
behavior.

Any individual differences are reflected by the weight pa-
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rameters in the APE model. The APE model predicts no
preference for advance information when w+ = w− = w0.
We hypothesize that the differences in weights for various
future outcomes give rise to information seeking or avoid-
ance behaviors. The preferences for advance information
would arise, for instance, in the Mixed condition if the model
weights S+ more heavily than S−: w+ > w−.

As described above, the information-bonus model
(Bromberg-Martin & Hikosaka, 2011) assumes that infor-
mation has an intrinsic value, rinfo, which in our setting was
delivered upon each state transition to an informative cue
state. This model would predict the differences in decision
values as follows:

∆Q̄ = rinfo (13)

for all situations where information is sometimes available.
We also considered a potential extension to the information-
bonus model which would assign different values to differ-
ent types of information: r+info,r

−
info,r

0
info for viewing reward

predicting cues, punishment predicting cues, and neutrality
predicting cues respectively.

Model Fitting
The models were fit to the the data using hierarchical
Bayesian modeling (Huys et al., 2011), in which the maxi-
mum a posteriori estimate of each parameter hi for each par-
ticipant i is calculated. These parameters are treated as a
random sample from a Gaussian population distribution with
means and variance θ = {µθ,Σθ}. Model comparison was
based on the integrated Bayesian Information Criteria (iBIC)
scores with an uninformative prior. As such, we analyzed the
log likelihood p(D|M) of each model directly:

p(D|M) =
∫

p(D|θ)p(θ|M)dθ (14)

≈−1
2

iBIC (15)

= log p(D|θML)− 1
2
|M| log |D| (16)

where |D| is the number of choices made by all participants,
and |M| is the number of parameters fitted. We compute the
log p(D|θML) as the sum of integrals over individual parame-
ters:

p(D|θML) = ∑
i

log
∫

p(Di|h)p(h|θML)dh (17)

≈∑
i

log
1
K

K

∑
k=1

p(Di|hk) (18)

where the integrals are replaced by a sum over samples
from the empirical prior. This step ensures that we evalu-
ate how well the model fits the data only using information
about the group parameters.

As a result, the iBIC penalizes for model complexity, and
the model with the lowest iBIC is taken as the best-fitting

model. As shown in Table 1, the best-fitting APE model
vastly outperformed the different information-bonus models.
We use the iBIC score of the best fitted model as a baseline
and derive the differences in iBIC as ∆iBIC.

Table 1: Quality of model fit to behavioral data

Model Free parameters Model iBIC ∆iBIC
APE w+−w−,w−−w0 2065.1 40.4
APE w+−w−,w−−w0,γ 2126.3 101.6
APE w+−w−,w−−w0,β 2024.7 0.0
APE w+−w−,w−−w0,β,γ 2137.2 112.5
Info Bonus rinfo 2361.5 336.8
Info Bonus rinfo,β 2430.8 406.1
Info Bonus r+info,r

−
info,r

0
info 2098.8 74.1

Info Bonus r+info,r
−
info,r

0
info,β 2081.0 56.3

Discussion
We have introduced a novel model of information-seeking in
choice, which assumes that preferences are driven by antic-
ipated prediction errors (APEs) accumulated through simu-
lated forward trajectories. These APEs are treated like re-
wards, which combined with a bias toward sampling trajec-
tories with positive outcomes, leads to information seeking
in situations with potential positive outcomes. The model
was compared against an information-bonus model through
a novel empirical experiment, whereby people were given the
opportunity to get early information about rewarding or aver-
sive outcomes. As the APE model predicted, and contrary to
the information-bonus model, people only sought early infor-
mation for positive outcomes. Quantitative model selection
supported these conclusions.

In addition to better fitting the novel dataset, the
APE model provides potential insights into other types of
information-induced sub-optimal choices (McDevitt et al.,
2016). For example, the positive APE scales with the prob-
ability of reward (larger with lower probabilities), provid-
ing a mechanism through which a lower probability reward
could be preferred to a higher probability one, as some-
times observed in animals (Spetch et al., 1990; Roper &
Zentall, 1999; Gipson et al., 2009). In addition, unlike an
information bonus, the APE is sensitive to the magnitude
of reward and would grow with larger rewards leading to
greater preference for informative options, as observed with
information-seeking in monkeys (Blanchard et al., 2015). Fu-
ture work will require direct simulation of these other find-
ings, as well as further comparison to existing models, in-
cluding the different information-bonus models (Bromberg-
Martin & Hikosaka, 2011; Bennett et al., 2016) and the antic-
ipatory utility model (Iigaya et al., 2016).

The current experimental protocol only involved a shal-
low decision tree, and the corresponding APE model pre-
sented here only used one-step anticipation. For decision
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trees with high branching factors and/or larger depths, how-
ever, it would be computationally intractable to sample from
all possible forward trajectories. For example, one recent
study used a four-stage information-seeking game, and ob-
served systematic deviations from the optimal strategy (Hunt,
Rutledge, Malalasekera, Kennerley, & Dolan, 2016). This
type of task poses yet another computational challenge for
all the models discussed here. The APE model, which al-
ready involves look-ahead experiences, is readily adaptable
to incorporate other, more sophisticated, planning algorithms
such as Monte-Carlo tree search (Coulom, 2006). This po-
tential extension of the model to more complex tree search
remains a question for further research.
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Abstract 

The relationship between confidence and accuracy has been 
modeled many times. This paper compares and contrasts three 
decision-making mathematical models (2DSD, Poisson, 
RTCON2) of confidence and investigates how each model 
predicts the effects of interruptions on accuracy, decision 
response time, confidence, and confidence response time. 

Keywords: 2DSD; Poisson model; RTCON2; confidence; 
accuracy; interruptions; response time; decision-making 

Introduction 

In 2016, the U.S. Justice Department released guidelines for 

law enforcement on how to collect confidence judgments 

for witness identification (“Justice Department Issues New 

Guidance On Securing Eyewitness IDs,” 2016). These 

evidence-based guidelines consider the role memory plays 

in confidence judgments.  

Memory researchers have found that the more an item is 

rehearsed in memory, the more confident a person will be in 

the accuracy of that retrieval (Busey, Tunnicliff, Loftus, & 

Loftus, 2000). For witnesses, repeating a testimony prior to 

trial is not uncommon. As a result, by the time a trial occurs, 

the confidence a witness has about their testimony has 

increased beyond the confidence of their first testimony 

(Wixted, Mickes, Clark, Gronlund, & Roediger III, 2015).  

Inflated confidence is a concern for the justice system 

because of the often replicated finding that the relationship 

between accuracy in memory and confidence is positive 

(DeSoto & Roediger, 2014; Dunlosky & Metcalfe, 2008; 

Roediger & DeSoto, 2014; Roediger III & Desoto, 2012; 

Roediger III & DeSoto, 2014; Wixted et al., 2015). Because 

this positive relationship is often noticed by laypersons, 

jury’s mistake inflated witness confidence for accuracy. The 

Justice Department encourages law enforcement to guard 

against inflated confidence by recording confidence during 

the first testimony so as to better reflect the accuracy that 

the testimony happened as described. 

.Although this policy change at the U.S. Justice 

Department is likely to result in higher quality evidence in 

courtrooms, formally modeling the relationship between 

confidence and accuracy has been very difficult because it 

has been hard to determine when confidence judgments 

begin. There have been many attempts to model the 

relationship between confidence and accuracy (see 

Dunlosky & Metcalfe, 2008; Pleskac & Busemeyer, 2010; 

Ratcliff & Starns, 2013 for a review). It seems intuitive that 

the process of forming a confidence judgment should begin 

after some choice has been made. However, Petrusic & 

Baranski (2003) showed that when a confidence judgment 

was required, participant’s response times for the primary 

choice were longer than when the confidence judgment was 

not required. Petrusic & Baranski (2003) interpreted this 

finding to mean that at least some of the processing for a 

confidence judgment occurs during the primary judgment. 

As a result, many researchers have attempted to extend 

previous models of primary choice to account for 

confidence judgments.  

Three of the most popular models to attempt to explain 

confidence judgments are 2DSD (Pleskac & Busemeyer, 

2010), the Poisson model (Merkle & Van Zandt, 2006; Van 

Zandt & Maldonado-Molina, 2004), and RTCON2 (Ratcliff 

& Starns, 2009, 2013). Each model relies on sequential 

sampling to determine the selection of a choice. Sequential 

sampling models assume that information is collected from 

memory or sensory input and summatively translated to 

evidence towards a particular choice. 

Evidence collection through sequential sampling is a 

common theme across all three models. According to each 

model, choice is based on the collection of evidence. 

Evidence is collected until a threshold is reached for one of 
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the choice alternatives. Crossing a threshold and the 

subsequent response (e.g key-press) is the decision time for 

a primary choice. The primary choice is the evidence 

accumulation and response to questions like “Did you see 

item ‘A’ or item ‘B’ before?” Confidence time is the time it 

takes to make a confidence judgment about the probability 

that the primary choice was correct. The confidence 

judgment is a secondary choice in response to questions like 

“How would you rate your confidence on a Likert scale of 1 

to 6?” Thresholds are variable and so can be determined in a 

trial-by-trial and person-to-person basis (Audley, 1960; D. 

Vickers, 1970; Douglas Vickers, 2014).  

Below is a description of each of the three models. The 

goal is to briefly summarize each model and highlight how 

each model suggests confidence judgments are calculated 

from evidence accumulation and how primary choice may 

relate to confidence judgments (when specified). 

2DSD 

The 2-stage-dynamic-signal-detection theory (2DSD) was 

first introduced by Pleskac & Busemeyer in 2010 and 

suggests that confidence judgments involve post-decision 

processing of the primary choice. 2DSD is specifically 

adapted to a 2-alternative forced-choice task (2AFC). 

 In the 2DSD model, participants make a primary choice 

by collecting evidence that pushes a single counter towards 

one choice alternative or the other. When the counter 

reaches a criterion for one alternative, a primary choice is 

made. If a decision is prompted before a threshold is passed, 

the alternative choice that is closest to the counter is 

selected. 

After a primary choice is made, evidence continues to be 

collected for a confidence judgment. Evidence continues to 

accrue for the single counter until evidence passes a 

threshold for a particular confidence judgment and a 

secondary choice is made. Each possible confidence 

response has a separate threshold. Similar to primary choice, 

if a choice is prompted before a threshold is passed; the 

confidence judgment that is closest to the counter is 

selected. 

According to 2DSD decision time for primary and 

secondary choice is the product of drift rate. Drift rate is 

determined by the quality of the evidence collected. Because 

drift rate towards one alternative or the other determines 

how fast a choice is made, response time is a function of the 

quality of the evidence.  

2DSD extends the idea that high drift rates lead to fast 

choices to confidence judgments. The often replicated 

finding that there is a negative relationship between 

confidence judgments and response times (Baranski & 

Petrusic, 1998; Petrusic & Baranski, 2003) suggests that 

lower drift rates will produce lower confidence responses. 

Poisson Model 

The Poisson model was introduced by Pike (1971;1973) 

and modified for confidence by Merkle & Van Zandt, 

(2006). The Poisson model assumes that in a 2AFC task, 

there is one counter of evidence for each of the possible 

primary choice alternatives. Counters accrue evidence for 

each alternative. Whichever counter reaches its respective 

choice threshold first is the primary choice. If the decision is 

prompted, whichever counter is closest to the criterion 

threshold is selected. 

After the primary choice is made, evidence collection 

stops and a secondary choice for confidence is ready to be 

made. In the Poisson model, confidence is a function of the 

difference in evidence between counters. If the difference 

between the collected evidence is large, confidence is high. 

If the difference between the collected evidence is small, 

confidence is low. 

The idea of confidence being generated by separate 

counters was made most popular by the balance of evidence 

hypothesis (D. Vickers, 1970; Douglas Vickers, 2001, 

2014). The balance of evidence hypothesis suggests that the 

difference in evidence between counters is scaled to produce 

a confidence response. The Poisson model is unclear about 

whether or not confidence is scaled immediately after a 

choice is made or a computation is required first. 

According to the Poisson model, decision time for the 

primary choice is the sum of the time to retrieve each piece 

of evidence and increment the winning counter. The model 

does not specify confidence as a second choice that is 

calculated as a post-decision. However, Van Zandt & 

Maldonado-Molina (2004) have suggested that additional 

evidence collection and post-processing could occur after a 

primary choice but may not always be necessary. 

RTCON2 

 RTCON2 is  a model of making confidence judgments 

only and not of primary choice (see Ratcliff, 1978 for their 

diffusion model of primary choice). As a result, it is unclear 

from RTCON2 how primary choice influences confidence 

judgments. 

RTCON2 suggests that there is a separate counter for 

each of the possible confidence responses. A confidence 

judgment is selected when a counter reaches a predefined 

threshold. According to RTCON2, participants do not have 

access to the amount of evidence each counter has accrued 

and therefore can only make a choice when a counter has 

reached a threshold. In addition, because people do not have 

access to the evidence, there is no comparison between the 

amount of evidence for different confidence judgments.   

 Importantly RTCON2 differs from the original RTCON 

(Ratcliff & Starns, 2009) in that each counter for a 

confidence judgment is affected by the behavior of other 

counters so as to maintain no net difference. As a result, if 

evidence facilitates an increment in one counter, the other 

counters decrease so as to have a net zero effect. 

Similar to 2DSD, RTCON2 also uses higher drift rates to 

explain faster response times and higher confidence 

responses. 
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Memory 

One major component of the 2DSD, Poisson model, and 

RTCON2 models is their reliance on memory for their 

evidence counters. A sufficient model should be able to 

predict what happens when memory quality changes. 

Many researchers have investigated the relationship 

between accuracy and confidence by manipulating memory 

(see Dunlosky & Metcalfe, 2008 for a review). One well-

researched way of manipulating memory is using 

interruptions. A long history of research has shown a 

decrease in task performance (e.g increased response time, 

decreased accuracy, increased time to return to the task) 

following an interruption (Altmann & Trafton, 2007; 

Altmann, Trafton, & Hambrick, 2014; Cades, Boehm-

Davis, Trafton, & Monk, 2011; Gillie & Broadbent, 1989; 

Trafton, Altmann, & Ratwani, 2011; Trafton, Jacobs, & 

Harrison, 2012).  

More recently, confidence in the accuracy of a memory 

has been shown to be lower after an interruption (Aguiar, 

Zish, McCurry, & Trafton, 2016; Zish, Hassanzadeh, 

McCurry, & Trafton, 2015). In an experiment we replicate 

these findings and discuss the predictions of each of the 

three models. 

Model Predictions 

All of the models suggest that decision-making is the 

result of some form of sequential evidence collection. There 

are two primary differences between each of the models.  

First, decisions are either the result of the use of one counter 

for evidence (2DSD) or multiple competing counters 

(Poisson and RTCON2). Second, confidence judgments are 

the result of the winning counter choosing the confidence 

response (2DSD and RTCON2) or the winning counter 

choosing the time when the delta between multiple counters 

is used to calculate confidence (Poisson). 

The number of counters (one or multiple) and the role of 

the counter (choosing a response or calculating the delta 

between counters) results in testable predictions for how 

interruptions will affect performance. 

For all three models accuracy should be lower after an 

interruption because drift rates will experience more 

fluctuations when the quality of the evidence collected 

decreases. Fluctuations in drift rates can result in an error if 

noise allows for evidence to increment towards the incorrect 

choice threshold.  

Drift rates also drive response time for all three models. 

Any decrease in the drift rate should increase response time. 

Because interruptions increase the amount of time to 

retrieve an item from memory, interruptions should increase 

decision response times and confidence response times. 

As for confidence, 2DSD and RTCON2 predict that 

confidence decreases whenever drift rate decreases. 

Although 2DSD relies on one counter and RTCON2 uses 

multiple counters, both models suggest that confidence is 

chosen when one counter crosses a threshold for a 

confidence judgment. Alternatively the Poisson model uses 

two counters where confidence is the delta between the two 

counters. An interruption is likely to slow the increment of 

both counters equally. Therefore, the Poisson model 

predicts that confidence should be no different after an 

interruption trial than a non-interruption trial.  

Given the predictions of these three models, the number 

of counters clearly does not matter when it comes to 

predicting accuracy or response time. The primary 

difference between the predictions of the three models is 

whether or not confidence will be the same after an 

interruption trial as compared to a non-interruption trial. 

Methods 

Participants 

Fifty-five George Mason University undergraduates 

participated for course credit.  

 

Tasks 

Primary Task The primary task consisted of a simulated 

stock exchange where participants filled out Buy and Sell 

orders. Each order had 12 widgets that needed different 

information about the state of the stock market and the Buy 

or Sell request (e.g Stock Symbol, Exchange, Transaction 

Type).  

To begin, participants were presented with an auto-

selected Buy or Sell request at the bottom of the screen 

(colored gray) and a red arrow designating which of the 12 

widgets required information first. The red arrow’s location 

was randomized so that participants learned to start from 

multiple widgets. 

Participants located and selected a “Start” button on the 

side of the widget designated by the red arrow. Selecting 

“Start” would teleport the widget to the bottom middle of 

the screen so that it became the main focus of the task. 

Participants would use information from the gray-colored 

request and the stock market information along the middle 

of the screen to fill in the widget with the correct 

information. When the correct information was selected 

from the widget’s dropdown menu, the widget would return 

to its original place on the screen (Figure 1). Participants 

repeated the process by finding information for the next 

widget. Widgets were completed left-to-right and top-down. 

A trial ended when the active order was replaced by 

another auto-selected Buy or Sell request. 
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Figure 1:  Primary task with auto-selected order and widget. 

Interruption Task For half of the trials, participants were 

given a secondary task that served as an interruption. The 

interruption lasted for 20-seconds after completing an order. 

The interruption consisted of a series of addition problems. 

Addition problems completely occluded the screen until the 

secondary task was complete. Participants were instructed to 

complete the addition problems as quickly and as accurately 

as possible. 

Signal Position Question After a trial ended or after a trial 

and interruption ended, participants were presented with a 

facsimile of the stock order screen. A blue arrow pointed to 

one of the 12 widgets with the question: “Is the arrow 

pointing to the next correct step?” Participants would 

respond by clicking the word “Yes” in the top left corner or 

the word “No” in the top right corner (Figure 2). Once the 

participant made a selection, they were presented with the 

next order to complete with a new Buy or Sell request. 

The placement of the blue arrow was evenly split between 

the next correct or incorrect step. 

 

 
 

Figure 2: Signal Position Question with a blue arrow 

pointing at a possible next correct step. 

Confidence Question Once the signal detection question 

was complete, the screen was replaced with a question that 

asked: “How confident are you that the [widget name] was 

the next correct step?” The participant selected a button on 

the bottom of the screen that represented their confidence on 

a scale of 1 through 6 with 1 being “Not at all Confident” 

and 6 being “Entirely Confident.” 

Design 

The study was a 2 factor (interruption/non-interruption) 

repeated measures design. 

Each participant had 32 interruptions across 64 trials. The 

order of screens participants saw was the primary task for 2-

5 completed widgets, a 20-second secondary task after half 

of the trials, a signal position question, and a confidence 

question. 

 The 64 trials were equally divided between 2, 3, 4, and 5 

completed widgets in length. The length of the trial was 

varied to reduce the likelihood that participants could 

prepare for an interruption and/or signal position question. 

Each participant had half of the signal position arrows 

pointing to the next correct step. 

Procedure 

Participants filled out an approved IRB consent form as well 

as biographical information. Participants were seated 

approximately 47cm from the computer monitor. The task 

was first described using screenshots of the primary and 

secondary tasks as well as the signal position and question.  

Three practice trials were completed that were each 12 

widgets long. This was to give the participant the 

opportunity to experience the order of the widgets before 

being given partial orders to fill. The experimenter provided 

the opportunity for participants to ask clarifying questions 

about the behavior of the task. Participants could begin once 

the experimenter left the room and were debriefed and 

dismissed once finished. 

Measures 

Behavioral data based on mouse clicks was collected for all 

participants in addition to screen recordings. Accuracy for 

identifying the next correct step in the task, response time 

(RT) for identifying the next correct step in the task, 

confidence in identifying the next step of the task, and 

response time for the confidence judgment were calculated. 

Results 

Fifty-five participants made 3176 correct responses and 

3520 confidence responses. 

Behavioral Results 

A within-subjects ANOVA between interruption and non-

interruption trials show that interruptions hurt performance 

metrics for accuracy (F(1,54) = 132.4, MSE = 0.59, p < .05, 

η
2
=.56), confidence (F(1,54) = 135.7, MSE = 22.813, p < 

.05, η
2
=.73), decision response time (F(1,54) = 134.8, MSE 
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= 78,277,425, p < .05, η
2
=.75), and confidence response 

time (F(1,54) = 30.47, MSE = 844,342, p < .05, η
2
=.11). A 

summary of the means of each performance metric across 

interruption condition can be found in Table 1. 

 

Table 1: Means of performance measures. 

 

Performance Metric Interrupted 

Trials 

Non-

Interruption 

Trials 

Accuracy 82.9% 97.5% 

Confidence 4.95 5.86 

Decision RT (ms) 4493.96 2806.82 

Confidence RT (ms) 1492.30 1317.08 

Empirical Data and Model Predictions 

All three models predicted the decrease in accuracy, the 

increase in decision response time, and the increase in 

confidence response time that appeared after an interruption 

trial compared to a non-interruption trial. Most importantly, 

only 2DSD and RTCON2 predicted a decrease in 

confidence after an interruption. 

Discussion 

In this paper we describe three sequential-sampling models 

of decision making and apply their predictions to the results 

of an experiment. 

 2DSD used one counter to make a primary choice and 

then subsequent post-decision processing to provide a 

confidence judgment once the single counter passed a 

threshold. The Poisson model used two counters to make a 

primary choice where the first counter to cross a threshold 

determines the time when a delta between the two counters 

is calculated for confidence. Finally, RTCON2 is a multiple 

counter confidence-only model where the winning counter 

crosses a threshold that informs the confidence judgment. 

We compared the predictions of these three models to the 

results of an experiment where participants completed a task 

in a simulated stock market. Participants were interrupted 

50% of the time and then asked to choose if a widget was 

the next correct step of the task followed by a confidence 

judgment. 

This study replicated the results of many other 

interruption-based studies in that performance suffered after 

an interruption. An addition to previous work is that 

confidence response times are slower following an 

interruption. 

In terms of model predictions, all three models can 

account for a decrease in accuracy after an interruption. All 

three models suggest that accuracy is a function of the 

fluctuations in the drift rate. Counters can reach the 

threshold for the incorrect choice first when there is more 

noise in the drift rate, particularly when the thresholds are 

lowered. To fully explain a decrease in accuracy after an 

interruption, each model would need to explain why there is 

more noise in drift rate and/or lower choice thresholds after 

an interruption trial than a non-interruption trial.  

A strength of each model is a fairly comprehensive 

explanation for decision response time and confidence 

response time after an interruption. All three models suggest 

that response times are a function of the speed of evidence 

collection. As a result, anything that reduces the speed of 

evidence collection should reduce response time. While no 

link has  been produced that shows that quality of evidence  

decreases after an interruption, there is certainly a large 

amount of literature showing interruptions increase retrieval 

time (Altmann & Trafton, 2007; Altmann et al., 2014; 

Cades et al., 2011; Trafton et al., 2011, 2012). An increase 

in retrieval time would slow down evidence collection and 

lead to longer decision and confidence response times. 

As for confidence only 2DSD and RTCON2 were able to 

predict lower confidence judgments after an interruption. In 

both models confidence decreases when the drift rate is 

lower. Therefore, interruptions are likely to lower the drift 

rate.  

The Poisson model is unclear about explaining a change 

in confidence after an interruption. Confidence in the 

Poisson model is driven by the balance of evidence 

hypothesis and calculated by scaling the delta between the 

counters. According to the Poisson model, confidence after 

an interruption should stay the same as before an 

interruption because both counters in a 2AFC would be 

affected by the interruption equally. Thus, the Poisson 

model does not predict the difference in confidence found in 

this study. 

This paper compared and contrasted three mathematical 

models of decision making. The 2DSD, Poisson model, and 

RTCON2 can explain changes in accuracy with drift rate but 

do not provide a clear mechanism to explain the effect of 

interruptions. However, each model does have a fairly 

robust explanation of decision response times and 

confidence response times via speed of evidence collection. 

As for confidence judgments, it is easier for models to 

explain changes in confidence judgments when there is a 

single counter that chooses a response than models that use 

multiple counters to calculate the delta between alternatives.  
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Abstract: Humans are remarkably flexible tool users. We not only recognize a wide range of existing tools, but also produce
new tools by seeing objects in new ways, or by making or repurposing objects to solve a problem confronting us. Here we
study the cognitive processes supporting flexible tool use, including deciding what makes a good tool, and how it should be
used. Participants played a video game which requires selecting an object from a set of options and placing it in a virtual
physical scene in order to accomplish goals such as tipping another object over or launching it into a container. People appear
to use a combination of simulation-based planning and experience-based heuristics: fast heuristics drive the initial selection
and placement of a candidate tool, and that solution can then be refined by several rounds of mental simulation interspersed
with trial-and-error experimentation to rapidly converge on goal-satisfying solutions.
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Abstract: One challenge in studying cognition over the lifespan is designing tasks that measure the same construct in dif-
ferent age groups and relate reliably to real-world outcomes. The current study confronts this challenge by testing a new
paradigm to assess attention in preschool-aged children for comparison with other measures. Children completed the new
“Pop-the-Bubbles” paradigm plus Flanker and Visual Search tasks, for comparison with parental reports of behavioral regula-
tion. Correlations between behavioral regulation and measures from both Flanker and Pop-the-Bubbles suggest that children’s
ability to ignore irrelevant stimuli in these lab tasks relates to their ability to behave appropriately in everyday situations. Fur-
ther development of Pop-the-Bubbles for eye-tracking and a color version of Flanker are underway to test these relationships
more extensively in young children.
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Why do we punish negligent behaviors?
Sarin Arunima
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Cushman Fiery
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Abstract: Prior research suggests that negligent harms are punished because of the resulting negative outcomes. Under this
account, negligent but completely harmless acts should not be punished. An alternative possibility is that negligence is punished
as a way of modifying future thought and behavior. Across three studies we find support for this second proposal. Study 1
demonstrates that punishment is assigned to negligent agents, irrespective of whether or not a harm actually occurs. Study 2
demonstrates that non-negligent agents who cause harm are punished less than negligent agents who do not cause harm. Study
3 shows that the punishment of harmful negligent actions is only judged to be successful when it results in the agent ceasing to
act negligently, and not when it results in the harm ceasing to occur. Together, these results suggest that a primary function of
punishment in cases of negligence is modify future thought.
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When I say ‘Black Lives Matter,’ why do some people hear ‘Others Lives Matter
Less’?

E. Malemma Azumah
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Abstract: The statement ”Black lives matter” is commonly construed as implying other lives matter less, even though the
statement does not explicitly reference other lives. Bias is a common explanation for this construal. However, other factors may
contribute. We hypothesized that the linguistic structure of “Black lives matter” plays an important role. ”Black lives matter”
takes the form of a generic, or statements in which a property is attributed to members of a set (e.g., “lions have manes”).
Generics are often interpreted as implicit comparisons (e.g., “lions are more likely to have manes than other animals”). We
report two experiments in which we find evidence that the statement “Black lives matter” is often construed as an implicit
comparative claim, similarly to other generics. This research contributes to our understanding of generics, while providing a
novel explanation for why when I say ”Black lives matter,” some people hear ”Other lives matter less.”
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Abstract: Messages that are tailored to specific audiences (matched messages) are typically more persuasive compared to
messages that are crafted for a general audience (Hirsh, Kang, & Bodenhauser, 2012). However, tailoring messages can have
the effect that messages are less persuasive for audiences for which they were not tailored (mismatched messages; Sillince,
Jarzabkowski, & Shaw, 2012). Eisenberg (1984) introduced the concept of strategic ambiguity to appeal to multiple audiences
simultaneously. We systematically compared effects of matched/mismatched tailored messages with the effects of ambiguous
messages on multiple-criteria choice behavior. We found evidence that ambiguous messages can be used under certain con-
ditions to simultaneously appeal to multiple audiences within the context of credit card choices. Using the financial control
typology developed by Shefrin and Nicols (2014) to define different audiences, the study (154 participants) provided some
support for the use of ambiguity as a tool for tailoring messages to diverse credit-card holders.
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Social wayfinding in complex environments
Iva Barisic
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Abstract: Wayfinders in a group can be influenced by various factors, including other group members and environmental
structure, but social wayfinding is an underexplored topic. This experiment investigated differences in wayfinding decisions
between individuals and groups and their dependence on environmental structure. Participants navigated through a train station
with or without market stalls, either as individuals or as groups. There was a significant main effect of environmental structure
on task efficiency, and an inconclusive interaction between environmental structure and group membership on task efficiency
(p=0.05). Because of heterogeneity of variance, we conducted targeted t-tests. T-tests revealed that groups were slower than
individuals with market stalls (p=0.02) but not without (p=0.91). There was significant main effect of the environmental
structure on number of turns. The main effect of group membership on number of turns and the interaction were not significant.
We will analyze walked and Levenstein distance as wayfinding efficiency indicators.
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Projecting space into the future: peripersonal space remaps in anticipation of an
object manipulation

Anna Belardinelli
University of Tübingen

Johannes Lohmann
University of Tübingen

Martin Butz
University of Tübingen

Abstract: Manipulation planning relies on anticipatory processes, aimed at achieving the desired goal state, such as a grasp.
This implies that peripersonal space is remapped to the anticipated grasp posture on the targeted object. Vibrotactile-visual
interactions were probed at different times during a grasp-and-place task. Thumb or index finger were stimulated concurrently
with a visual distractor on the to-be-grasped object. Object orientation (upright/upside down) afforded a thumb-up or thumb-
down grasp, inverting the congruency between haptic and visual stimulation. Response times about which finger was stimulated
show the expected crossmodal congruency effect already before motion onset, with shorter times when the visual distractor and
the future position of the stimulated finger overlapped. Moreover, eye-tracking data show that the tactile stimulation influences
the gaze in anticipation of the upcoming grasp. Thus peripersonal hand space is mapped into the future, predictively mediating
between tactile and visual perceptions as a function of the final state.
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Characterizing Human-Machine Teams with Process Algebras
Leslie Blaha
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Robert Jasper
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Abstract: We conceptualize human-machine (computer, robot) teams as concurrent processes. Such a conceptualization
means: (1) the human and machine agents have a common goal or mission; (2) each agent may have different subtasks within
the goal space; (3) they do not have a shared memory, but (4) they do have a means of communicating with each other. Process
algebras, such as communicating sequential processes (Hoare, 1977), are formal languages for describing the ways in which
two concurrent processes interact through message passing across information channels. In this research, we enumerate the
ways in which human-machine interactions can be structured, such as strictly serial, parallel, and cascade-like architectures.
We use process algebras to characterize the interactions in candidate architectures. We discuss design implications for active
and interactive machine learning systems.
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Bottom-up attentional cueing in category learning in children
Nathaniel Blanco
Ohio State University

Vladimir Sloutsky
Ohio State University

Abstract: Young children tend to differ from adults in how they learn new categories. In comparison to adults (who rely
on selective attention and tend to form explicit rules), children distribute attention widely, forming similarity-based category
representations. But, when attention is explicitly directed toward the rule with top-down feedback, children exhibit rule-
based classification–though memory performance still indicates distributed attention. Little is known, however, how bottom-up
attentional cueing affects the category representations that children form. In our experiment 4-year-olds learned to classify
alien creatures composed of binary features. A single “deterministic” feature perfectly predicted category membership, while
other features were probabilistically predictive. We manipulated the saliency of the deterministic feature, making it grow
and shrink. This manipulation was remarkably effective at facilitating category learning and rule-based classification, but
recognition memory still showed evidence of distributed attention. These results help elucidate the important role of attentional
processes in the development of categorization.

3678



Infusing Cognitive Science Content in Teacher Preparation
Julie Booth

Temple University

Abstract: Surprisingly, foundational knowledge about cognitive science (CS) is not included in all teacher preparation
programs or required for certification in all states. Here, I examine the impact of infusing CS content into teacher-
candidates’ coursework by providing half of the pedagogy instructors with professional development on big ideas in CS (mem-
ory/attention/transfer/problem solving/practice/expertise) and encouraging them to use the materials to deliver mini-lectures on
these topics and discuss their relevance to instructional practice. Control instructors did not receive PD or CS materials. In
both experimental and control classes, CS knowledge was measured at the beginning and end of the semester; we also collected
lesson plans where teacher-candidates explained their reasoning for each instructional decision. We saw no CS knowledge
improvement, but teacher-candidates exposed to CS reduced their use of folk reasons (e.g., buzz words such as learning styles,
concrete thinking, active learning, etc.) when planning lessons compared with peers in control classes.
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Using Analogical Processing to Categorize Musical Patterns
Janet Bourne
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Abstract: Participants often categorize musical melodies (“themes”) based on perceptual features (e.g. loudness, fastness) in-
stead of structural or relational features (e.g. pitch, rhythm) (Lamont & Dibben, 2001; Ziv & Eitan, 2007). In the present study,
we investigate whether within-category analogical comparison (Markman & Gentner, 1993) influences participants to cate-
gorize musical themes based on relational features, a prediction from structure-mapping theory (Gentner, 1983). Participants
completed a forced-choice triad task where they had to choose whether one theme (relational match) or another (perceptual
match) best fit the target theme. In a “no-compare” condition (between-subjects), participants heard one target theme. In a
“compare” condition, participants heard and compared two target themes. Initial results indicate that participants who com-
pared two themes chose more relational matches. We found this result for Western Classical themes and popular music chord
progressions. These results and their implications are discussed with respects to analogical processing and musical categoriza-
tion.

3680



How infants map nonce phrases to scenes with objects and predicates.
Angelica Buerkin-Pontrelli

University of Pennsylvania

Daniel Swingley
University of Pennsylvania

Abstract: When infants hear sentences containing unfamiliar words, are some language-world links (such as noun-object)
more readily formed than others (verb-predicate)? What if the context renders verb-predicate and noun-object interpretations
equally plausible? We examined 14-15-month-olds’ capacity for linking semantic elements of scenes with simple bisyllabic
nonce utterances. Each syllable either referred to the object, or the object’s motion. Infants heard the syllables in either a VS-
or SV-consistent order. Learning was tested using 2AFC language-guided looking. Infants learned the nouns and verbs equally
well, showing no bias favoring nouns. In all conditions, infants learned the meaning of the utterance-final syllable, but not the
initial one, suggesting that noun or verb biases played a smaller role than utterance position when noun- and verb-learning were
equally supported by context.
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No Tranfer of Training in Simple Addition
Jamie Campbell
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Abstract: Several researchers have proposed that skilled adults may solve single-digit addition problems (e.g. 3+1=4, 4+3=7)
using a fast counting procedure. Practicing a procedure often leads to transfer of learning and faster performance of unpracticed
items. Such transfer has been demonstrated using a counting-based alphabet arithmetic task (e.g., B+4 = C D E F) that indicated
robust RT gains when untrained transfer problems at test had been implicitly practiced (e.g., practice B+3, test B+2 or B+1).
Here we constructed analogous simple addition problems (practice 4+3, test 4+2 or 4+1). In three experiments (n=108) there
was no evidence of generalization for these items, but there was robust speed up when the items were repeated. The results are
consistent with direct retrieval of addition facts from long-term memory rather than a counting procedure.
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Vowel Harmony as a Distributional Learning Problem
Spencer Caplan
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Abstract: Vowel harmony is a class of phonotactic restrictions in which vowels in a language are divided into two or more
subclasses, and words must contain only vowels from only one such subclass regardless of intervening consonants. Languages
worldwide (Turkish, Finnish, Mongolian, Warlpiri, but not English) exhibit vowel harmony. The opacity of such potentially
long distance alternations poses a challenge for the learner. Nevertheless, infants are sensitive to vowel harmony alternations
at as young as seven months. We present a computational model for vowel harmony acquisition. By normalizing transitional
probabilities over the vowel tier, and making minimal assumptions about the phonology, we successfully determine which test
languages have harmony processes and correctly categorize their vowels into harmonizing classes. Using universal typological
patterns to inform the search space, we find that phenomena which appear opaque can be captured by simple distributional
learning.

3683



A comparative assessment of embodied and computational topic extraction
James Carney

Department of Psychology, Lancaster University, Lancaster, Lancashire, United Kingdom

Abstract: Word embedding algorithms like word2vec (Mikolov et al., 2013) have enabled advances in topic modelling by
training shallow neural networks on the co-occurrence of words in corpuses of sentences. However, it is not clear how this
process reflects human cognition. This poster will compare the results of document classification using the word2vec skipgram
model and the 20k sensorimotor word norms collected by the presenter and colleagues (Lynott & Connell 2013; Carney et al.,
in prep.) (These latter norms establish how concepts are processed by way of perceptual and motor schemes, and thus offer a
useful proxy for human conceptual classification.) The results of the comparison will generate insights into the different ways
in which higher-order concepts are inferred, and allow systematic biases in concept formation to be identified. It will also allow
for machine learning processes to be finessed so as to more accurately reflect human-level modes of cognition.
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Mapping hand to world; Development of iconic representation in gesture and
homesign

Erica Cartmill
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Abstract: In both gesture and sign, objects and events can be represented by reproducing some of their features iconically.
Iconic gestures do not typically appear until well into children’s second year of life, suggesting that the cognitive and/or com-
municative resources required are not trivial. Here we investigate how manual iconicity develops in two different communica-
tive systems. Using longitudinal video corpora, we compare the emergence of manual iconicity in 52 hearing children learning
a spoken language (co-speech gesture) to a deaf child creating a manual communication system (homesign). We focus on the
shape of the hand, asking how handshape use changes between age 1 and 5, and how handshape choice relates to semantic
content. We find broadly similar patterns of handshape development in co-speech gesture and homesign. This suggests that the
cognitive building blocks underlying children’s ability to iconically map forms to meanings are shared across vastly different
communicative systems.

3685



One-shot word learning under high and low sentential constraints in adult L2
learners of Chinese

Jenn-Yeu Chen
National Taiwan Normal University

Yu-Shu Huang
National Taiwan Normal University

Abstract: New words were embedded in high- and low-constraint sentences and presented three times in a random order to
adult learners of Chinese as a second language. The learners explained the meaning of each word in their native languages and
their answers were scored by other native speakers. The overall accuracy was .47 with no effect of constraint or frequency.
When the data were limited to those words the learners reported having no prior encounters with and those sentences they
reported comprehending, the accuracy was .45. The results demonstrated fast mapping of word learning in adult L2 learners but
indicated that extended mapping was necessary to achieve ultimate attainment. The results are also consistent with Krashen’s
(1982) “comprehensible input” and “i+1” hypothesis.
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Comparing Human Use of Fast & Frugal Tree with Machine-Learning Tree
Yee Siang Chng

UNIVERSITY COLLEGE LONDON, LONDON, LONDON, United Kingdom

Abstract: Previous studies have shown that the predictive accuracy of fast and frugal decision trees (FFTs) is comparable to
decision trees generated by machine-learning (Martignon et al., 2008). FFTs are thought to be useful decision tools that are
cognitively plausible to internalise, as opposed to complex machine-learning algorithms. Nonetheless, there seems to be a lack
of behavioural studies in the literature to support such a claim. In this between-group experiment, we examined the human use
of an FFT versus a C4.5 algorithm tree when completing a car evaluation task. Participants had to learn the rules of their given
tree before making evaluations based on their memory. Preliminary results show that FFTs may indeed be easier to use, even
when the number of cues for both trees are the same. Interestingly, participants who were successful in using the C4.5 tree
exhibited tree pruning strategies, resulting in a heuristic similar to an FFT.
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Incorrect responses salience affects strategy use in a figural analogy task
Iwona Ciechanowska
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Abstract: Previous studies of multiple-choice analogy problems suggested that some people use a more efficient but also harder
constructive strategy (they build the complete representation of analogy), whereas others tend to use a less effective but simpler
response elimination. We tested whether salience of incorrect options (five per figural analogy problem) affected strategy use.
Salient options in 18 problems missed many features from the (sixth) correct option; options in 18 non-salient problems missed
only few features. When controlling for working memory capacity, eye tracking yielded strongly correlating patterns of data
that suggested, in line with previous reports, large individual variance in strategy use. However, participants overall spent
50% less time analyzing salient than non-salient options, suggesting that salience promoted the constructive strategy. This
conclusion was supported by pupil size significantly predicting accuracy on problems with salient options, but not on those
with non-salient options (which additionally yielded lower accuracy).
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Learning Object Names from Visual Pervasiveness: the Visual Statistics Predict
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Abstract: Recent analysis of a corpus of infant-perspective head-camera images found an extremely right-skewed frequency
distribution of objects present in 8- to 10-month-old infants’ visual environments (Clerkin, et al., 2017). Furthermore, the
objects most pervasively present in these scenes have names normatively acquired first by learners of English. New analyses
show that the names for these objects occur only sparsely in infants’ environments, and object name frequency is not correlated
with object visual frequency. Therefore, we designed a simple associative model simulating word-object co-occurrence in order
to investigate how visual pervasiveness without high-frequency naming could lead to learning of word-object correspondences.
With random sampling from distributions reflecting the actual frequency of words and objects in infants’ environments, we find
that the most frequent objects have a distinct advantage over less frequent objects in their conditional probability. This suggests
visual experience with objects may be the principal predictor of early word-referent learning.
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Relations Between Intuitive Biological Thought and Scientific Misconceptions
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Abstract: Students enter educational settings with complex and well-established intuitive conceptual understandings of the
world, which have important educational consequences. In biology, intuitive thinking can be characterized in terms of cogni-
tive construals (anthropocentric, teleological, and essentialist thinking, Coley & Tanner, 2015). We examined relations between
intuitive thinking and biological misconceptions, and how formal biology education might influence such relations. 137 bi-
ology and non-science majors completed measures of anthropocentric, teleological, and essentialist thinking, and indicated
agreement/disagreement with common misconceptions and explained their responses. Teleological thinking (but not anthro-
pocentric or essentialist thinking) predicted teleological misconceptions. Anthropocentric and teleological thinking (but not
essentialist thinking) predicted anthropocentric misconceptions. Agreement with essentialist misconceptions was unrelated to
intuitive thinking. Similar patterns for non-majors and majors suggests formal biology education may have little influence on
relations between intuitive reasoning and misconceptions. These findings demonstrate a clear impact of intuitive thinking on
learning biology at the university level.
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A picture falls under many categories: How ancient mathematical marks became
extinct

Peter Coppin
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Abstract: The development of mathematical marking conventions from prehistory to the present is characterized by a trend
from conventions with more iconic relationships to concrete structures of the physical world (such as more pictorial ancient land
surveying marks) to marking systems with less-iconic relationships to physical structures (that represent numbers, operations,
infinity, and other more abstract concepts). We propose how certain constraints of perception-cognition induced conventions
that made more-iconic (pictorial) marks controversial. These became too conceptually ambiguous to convey more abstract
conceptual categories during the formalization of mathematics: Iconic properties of ancient proto-mathematical conventions
recruited lower level perceptual capabilities developed to perceive-act in a concrete world of occluded surfaces-edges and
were suitable for conveying concrete structures (such as landforms during surveying). However, these were too conceptually
ambiguous to convey more abstract conceptual categories that emerged when mathematics was formalized because a (pictured)
concrete structure can fall under many possible conceptual categories
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ANCHORING is amodal: evidence from a signed language.
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Abstract: Modern linguistic theory posits the existence of universal constraints. But whether these constraints concern lan-
guage structure, generally, or speech, specifically, is unknown. To address this question, here we ask whether the constraints
identified in spoken languages transfer to sign languages. ANCHORING (McCarthy & Prince, 1993) is a putatively universal
constraint on reduplication. ANCHORING requires that the final element of a suffixed reduplicant match the final element of
the base (e.g., pana ‘chase’––>panana, ‘run’ not panapa). Here, we examine whether ANCHORING is likewise operative in a
signed language. In our experiments, native ASL signers rated novel reduplicated forms: either ones consistent or inconsistent
with ANCHORING (i.e., ABB vs. ABA, where A and B are syllables). Results showed that signers reliably favored ABB forms
over ABA. These findings show for the first time that ANCHORING constrains a sign language. This conclusion is consistent
with the existence of amodal linguistic principles.
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Don’t forget to bind: Memory binding and interference in development
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Abstract: This work investigates the development and causes of memory interference effects. Specifically, we measured
proactive and retroactive interference effects in children and adults when learning multiple sets of contingencies, as well as
individuals’ memory binding for the same contingencies. We measured proactive interference by examining memory for a
second set of contingencies after learning a first set, and retroactive interference by examining memory for the first set of
contingencies after learning the second set. We measured memory binding by presenting participants with partial information
about each contingency and measuring their accuracy and pattern of errors when asked to identify the completed contingency.
Results indicate that both children and adults experienced substantial interference effects, but children were more prone to
interference and substantially worse at memory binding. Additionally, individuals’ memory binding abilities were predictive
of the magnitude of interference effects, suggesting that memory binding is an important mechanism modulating memory
interference.
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Developmental Changes in Visual Scene Statistics
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Abstract: Mature visual experience is tuned by inputs to the developing visual system. However, little is known about the
low-level statistics of available visual input as infants interact with the world in rapidly changing ways. Recent studies of the
contents of infant-perspective scenes (sampled from a corpus of over 5 million head camera images) indicate that these contents
change dramatically over the first year of life. Faces, ceilings, wall edges, and high-contrast patterns characterize younger babies
(below 3 months), while more crowded images characterize older babies. These differences suggest possible developmental
changes in lower-level visual statistics. After analyzing a sample of infant-perspective scenes from 4- to 10-week-old infants,
and from 28- to 34-week-old infants, we found that mean Feature Congestion and Subband Entropy—measures of visual clutter
in natural scenes—increase with age. The full analyses include spatial frequency, orientation, contrast, and clutter measures
across 1,821,021 frames.
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Speed and accuracy trade-off of semantic composition involving highlighting and
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Abstract: In a Speed-Accuracy-Tradeoff (SAT) paradigm we investigated how adjective type and polarity modulate the on-
line semantic composition of noun phrases (NPs). 22 German speakers read sentences like “The tradesman — buys — a
real diamond”. Enriched adjectives (“real/fake”) highlighted or adjusted the noun’s meaning, whereas non-enriched adjectives
(“white/flawed”) simply specified a property. Adjectives had positive (“white/real”) or negative polarity (“flawed/fake”). Upon
the display of critical NPs, participants indicated by a series of key presses if the sentence was correct. For the SAT response
function we computed the (i) asymptote (response accuracy as d’), (ii) rate (response speed) and (iii) intercept (point when ac-
curacy departs from chance). Accuracy was significantly lower for semantically enriched vs. non-enriched NPs, suggesting that
highlighting and adjusting certain properties during composition is costly. Polarity affected temporal dynamics with negative
NPs showing a slower rate than positive NPs, indicating that negative information is processed in more depth.
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A Neurodynamical Model of How Prior Knowledge Influences Visual Perception
Dražen Domijan
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Mateja Marić
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Abstract: Recent behavioral studies showed that prior knowledge can directly influence visual perception. In the current work,
we offer an explanation of the observed findings based on the adaptive resonance theory (ART). The ART neural network was
designed to solve the problem of catastrophic forgetting during learning in non-stationary environment. In the ART, stability of
learning is achieved by matching bottom-up sensory signals with top-down expectations. Resonant state that corresponds with
conscious perception develops in the network when the bottom-up and top-down signals are closely aligned. On the other hand,
mismatch produces global reset signal that clears the traces of erroneous top-down expectations. Therefore, prior knowledge can
influence conscious perception only when it already closely matches with sensory signals. We performed computer simulations
with real-time implementation of the ART circuit that confirm our analysis. Simulations also showed how observed behavioral
findings arise from response bias.
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Couples Emotion Dynamics During Conversations Involving Stress and
Enjoyment
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Abstract: While conversing face-to-face, romantic partners are thought to form a coupled and co-regulatory system, uninten-
tionally shaping each other’s emotional states on a moment-by-moment basis. What has been less explored, however, are the
ways in which this coupling is modulated by high-level interpersonal factors, such as discussing topics that are stressful for
one or both partners. We provide an initial exploration by examining the emotion ratings of 42 romantic, heterosexual couples
during conversations involving stress or enjoyment. Ratings were generated via continuous dials (sampled every second) as
participants watched video playback of their interactions. The resulting time series were assessed for time-lagged patterns of
emotional coupling using cross recurrence quantification analysis. Initial results show that for topics that involved a mutual
sense of stress or enjoyment, overall coupling was high, but this coupling was largely disrupted once the stress was more
asymmetrically experienced.
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Information Signatures in Children’s Language Environment
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Abstract: In auditory statistical learning, children are sensitive to the transitional structure of their language environment. Vari-
ability and stability of utterances in the language environment are important properties of statistical learning but are currently
understudied across laboratory and naturalistic research contexts. In this study, we quantify variability and stability in the lan-
guage environment of children as measured by amount of information within the temporal structure of caregivers’ utterances. In
this work we present a new method for understanding information signatures in the temporal structure of parent-child free play
contexts and document information signatures of caregiver utterances at multiple timescales. Our results suggest information
signatures of parental utterances increase across development (9-24 months), but decrease within individual play sessions (5-6
minutes). We speculate that the dynamics of information signatures varies across multiple timescales. Possible implications of
the observed information signatures inherent in caregivers’ naming of objects to their young children are explored.
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The acquisition of verb morphology in Polish and Finnish: Model and experiment
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Abstract: Usage-based approaches suggest that language acquisition is a function of the statistical properties of the input. We
compare predictions from neural network models with results of two elicited-production experiments on verb inflection with
children in the morphologically complex languages Polish and Finnish. Three-layer neural networks were trained to produce
person/number-inflected present-tense verb forms in Polish and Finnish from phoneme representations of verb stems using
frequency information from child-directed speech corpora. Simulated acquisition in both languages was affected by token
frequency and phonological neighbourhood density (PND) as well as an interaction such that low-frequency forms benefited
more from PND than high-frequency forms. Suffix errors showed overgeneralisation and substitutions of low-frequency forms
with higher-frequency forms. The model predictions are consistent with our empirical findings, except for the frequency X
PND interaction. We discuss the experimental and simulated data and their implications.
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What makes a joke funny: Analysing joke humor through single-word ratings.
Tomas Engelthaler
University of Warwick

Thomas Hills
University of Warwick

Abstract: The appreciation of humor is a universal phenomenon and a key aspect of cognition. It has been studied in the
context of jokes, where the incongruity in expected and observed context results in the perception of humor. The present study
examines how the humor appreciation of single words relates to the humor of the whole joke – is a joke simply a sum of its
parts? Using a novel dataset of single-word humor ratings, collections of jokes from the JESTER database were analyzed. A
multiple regression analysis showed joke length and individual word arousal were the best predictors of joke funniness. Longer
jokes with fewer individually arousing words were found funnier. Individual word humor did not contribute to the humor of
the overall joke. These findings suggest the cognitive aspects of humor are likely driven by broader semantic context, whereas
appreciating humor on a per-word basis links to separate factors.
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What’s on your wandering mind? The content of mind wandering during text-
and film comprehension
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Abstract: What do we think about when our mind wanders? We asked 88 students to read an instructional text and watch a
film (each 20 minutes) and report whenever they found themselves zoning out. Each time they did, we asked them to report
their thoughts and what, if anything, triggered them. We then categorized these thoughts (1208 in total) based on their content,
and found that in contrast with previous studies, only 17% involved prospection whereas 33% consisted of autobiographical
and semantic memory retrieval. This discrepancy might be driven by the rich content of stimuli: 71% of autobiographical
and semantic retrieval was explicitly triggered by the text or film, compared to 28% of prospection. Latent semantic analysis
revealed that memories were more similar to their triggers than prospective thoughts, suggesting that a substantial proportion
of mind wandering is driven by the content of our environment.
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Interaction with a robot changes human motor behavior
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Tobias Meilinger
Max Planck Institute for Biological Cybernetics, Tübingen, Germany
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Abstract: Social judgments about other people are often made based on visual appearance. In this study, we investigated
whether visual appearance of an interaction partner influences action coordination in social interactions. In a novel interactive
augmented reality setup participants interacted (i.e. carried out a high-five) with a life-sized 3D avatar that was either human-
looking or robot-looking. Importantly, the kinematics of the avatars were identical for both appearances. We examined whether
motion trajectories of a high-five action and other motion trajectory parameters such as velocity, radial error, synchrony, and
variability were modulated by the visual appearance of the avatar. Results showed that participants carried out the high-five
faster and applied different motion trajectories for the human-looking than for the robot-looking avatar. These findings suggest
that visual appearance does not only influence social judgments but also the immediate behavior towards the interaction partner.
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The differential effects of transmission and interaction on linguistic variation
Olga Feher

University of Edinburgh

Kenny Smith
University of Edinburgh

Abstract: Variation in natural language is constrained: languages tend to lose competing variants over time, and where vari-
ation persists, its use tends to be conditioned on grammatical or sociolinguistic context. We had adult participants learn and
communicate with artificial languages exhibiting unpredictable variation in plural marking. Using an iterated learning pro-
cedure, the languages produced by participants were used as training languages for other participants. We passed on either
the language produced during a post-training recall test (Recall condition) or the language used while communicating with
another participant (Interaction condition). We found that alignment during interaction leads to the elimination of variability:
in Interaction chains, one plural marker typically came to dominate. However, in Recall chains, variation became conditioned
on linguistic context, rather than being eliminated. This suggests that the pattern of restricted, conditioned variation in natural
language reflects the combined influences of biases in learning, recall and interaction.
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Production of morphologically complex words as revealed by a typing task:
Morphological influences on keystroke dynamics

Laurie Feldman
SUNY Albany & Haskins Labs

Rick Dale
UC Merced

Jacolien van Rij
U Groningen, NL

David Vinson
UC Merced

Abstract: In a production by typing task, with extraneous factors (e.g., length) controlled, measures such as latency to initial
keystroke as well as mean inter keystroke interval typically vary systematically according to the word’s lexical properties.
Conventionally, lexical effects in production tasks get interpreted as evidence of cascaded processing between central and
peripheral levels. We compare mean and distribution of keystroke latencies within the same stem as it undergoes affixation in
sets such as DEPRESS, DEPRESSION, DEPRESSIVE. Novel is the comparison of stems that differ with respect to number of
affixes like SUPER, SUPERIOR, SUPERIORITY. Results provide new insights into the ways in which morphological structure
can influence purportedly peripheral motor processing.
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Probability matching as a cognitive basis of cultural drift
Vanessa Ferdinand

Santa Fe Institute, Santa Fe, New Mexico, USA

Abstract: In the field of cultural evolution, cognitive agents are either seen as perfect imitators who reproduce cultural variants
veridically (e.g. Boyd & Richerson 1985) or as imperfect imitators who transform the variants as they replicate them (e.g.
Sperber 1996). In this poster, I explain how the transformative view of cognition applies to not only to the generation of
variants, but also to the way we learn frequency distributions. Probability matching is a widely-observed human behavior
where learners reproduce a frequency distribution over variants with a small amount of error and is equivalent to Wright-
Fisher drift when the variance in error is binomial/multinomial. However, humans and learning algorithms can produce error
distributions that are non-binomial/non-multinomial, which constitute a broader class of drift processes than those that exist in
genetic evolution or in perfect-imitator models of cultural evolution.
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Is gender-fair langauge needed? How grammatical gender influences
representations of discourse referents

Evelyn Ferstl
Centre for Cognitive Science, University of Freiburg

Lena Dietsche
Centre for Cognitive Science, University of Freiburg

Abstract: The use of gender-fair language is an important measure to boost gender equality. However, there is wide-spread
scepticism as to the usefulness of avoiding male bias in language, even in gendered languages. For instance, in German all
nouns carry grammatical gender, and role names are considered generic, even when their gender is masculine. We used a
sentence-picture matching task to test whether male references in language induce gendered representations. After presenting
a sentence with a role name, a picture of a person was shown. In 48 trials, the factors gender of the role name (masculine
vs. feminine) and sex of the person in the picture (woman vs. man) were crossed. The results of 40 participants showed that
women after masculine referents were more readily accepted than men after feminine referents, but reaction times increased.
Thus, readers interpret some masculine forms as generic, but only with considerable cognitive effort.
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Introducing a New JavaScript Framework for Professional Online Studies.
Holger Finger

University of Osnabrueck

Dorena Diekamp
University of Osnabrueck

Caspar Goeke
University of Osnabrueck

Abstract: New possibilities such as online crowdsourcing (Amazon Mechanical Turk), open data repositories (Open Science
Framework), and online analysis (Ipython notebook) offer rich possibilities to improve, validate, and speed up research. How-
ever, until today there is no cross-platform integration of these subsystems. Furthermore, implementation of online studies still
suffers from the complex implementation (server infrastructure, database programming, security considerations etc.). Here we
present LabVanced, a JavaScript framework that constitutes methodological innovation by combining three essential aspects for
online research. With our framework studies can be implemented in an intuitive graphical user interface without programming.
Second, the framework takes care about participant recruitment and third, it outlines options for data visualizations and statisti-
cal analysis. Additionally, the framework can be used for sharing not only the recorded data, but also the study design and the
analysis. In summary, we introduce a new powerful JavaScript framework for improving and accelerating online research.
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How to communicate uncertainty in severe weather forecasts?

Nadine Fleischhut
Max Planck Institute for Human Development

Stefan Herzog
Max Planck Institute for Human Development

Ralph Hertwig
Max Planck Institute for Human Development

Abstract: Communicating uncertainty to lay audiences is as challenging as indispensible if people are to understand medical
test results, gains from financial investments, or weather warnings.

Compared to risk communication in the medical domain, there is so far only limited evidence on how to best communicate
uncertainty for continuous quantities, such as financial returns or wind speeds (Spiegelhalter et al., 2011).

The poster presents results from a longitudinal study investigating this question within a real-life setting. We implemented
different representations communicating probabilistic weather forecasts within an online information system operated by the
German National Weather Service. The system is used by fire brigade coordination centers throughout Germany to prepare for
severe weather conditions.

By analyzing web usage and search behavior, we investigate which representations users rely upon under real operational
constraints. We link the analysis to tests which representations are best understood and could thus aid emergency managers in
their decisions.
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Developing Visual Closure in Infancy
Samuel Forbes

University of Oxford

Kim Plunkett
University of Oxford

Abstract: Visual closure is the ability to complete a picture from partial information. In children it is a requisite in many
skills such as fluent reading, and is also used in many tests of colour vision. Here we present a test of visual closure in infants
across two age groups, 1;4 and 1;7, both to test their abilities in visual closure, but also as a prototype for a colour vision test
for younger infants. The results of the study show evidence of development in visual closure abilities across those two ages,
suggesting that visual closure is a perceptual ability that continues to develop in the second year of life. The results of this study
are discussed in terms of perceptual development in infants and toddlers, and have consequences for both medical and scientific
understanding of visual closure in children.
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Executive Functions and Academic Achievement in a High-Poverty Sample
Gill A. Francis (1)

University of Cambridge

Zewelanji Serpell (2)
Virginia Commonwealth University

Teresa Parr (3)
Ashley Parr LLC

Michelle R. Ellefson (1)
University of Cambridge

Abstract: Research exploring cognitive theories of executive function (EF) report positive associations with academic out-
comes, but whether such general cognitive theories generalise to when children are exposed to social or economic poverty
contexts require more in-depth investigating. This study explores associations between EF and academic achievement for an
ethnic minority sample aged 8–10 years, from high poverty, urban backgrounds. EF skills were measured using stop-signal (in-
hibition), continuous performance (sustained attention), task-switching (cognitive flexibility), spatial span (working memory)
and Tower of Hanoi (planning). In addition, we included a popular standardized test of academic ability commonly used by
schools to measure literacy, numeracy and science skills and the Raven’s Progressive Matrices task to measure general cognitive
ability. EF is differentiated in this sample and is linked to academic achievement. The role of important mediators like cognitive
ability are considered in the context of children with high-poverty urban backgrounds.

3710



Neural Phase Synchrony on Understanding Meanings of Symbols
Masayuki Fujiwara

Japan Advanced Institute of Science and Technology

Takashi Hashimoto
Japan Advanced Institute of Science and Technology

Guanhong Li
Japan Advanced Institute of Science and Technology

Jiro Okuda
Kyoto Sangyo University

Takeshi Konno
Kanazawa Institute of Technology

Kazuyuki Samejima
Tamagawa University

Junya Morita
Shizuoka University

Abstract: The establishment of symbolic communication system, i.e., making a shared meaning system from meaningless
signals, is studied in experimental semiotics (Galantucci, 2005). Local neural activities within a brain region during a symbolic
communication task (Konno et al., 2013), where two participants try to establish a symbolic communication system from
scratch, has been studied (Li et al, 2015). It is, however, not certain how information bindings between different brain regions
is involved in a cognitive process associated with the establishment process. We analyzed EEG phase synchronization, as a
measure of functional connectivity, of participants engaged in the symbolic communication task. We found the recruitment
of fronto-occipital synchronization at 40 Hz frequency (gamma band), when a symbolic message was displayed, became fast
when establishing a symbolic communication system. This finding suggests that frontal-occipital information binding by phase
synchronization becomes efficiently used in the course of mutual understanding of symbolic messages.
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Jumping in Japanese: Converting linguistic instructions into physical
performances

Chie Fukada
Kyoto Institute of Technology

Noriyuki Kida
Kyoto Institute of Technology

Hiromichi Hagihara
Graduate School of Human and Environmental Studies, Kyoto University

Takatsugu Kojima
Shiga University of Medical Science

Abstract: This study explores the difficulties in physically realizing linguistic instructions concerning the action of jumping.
We carried out a questionnaire on the understandability and physical feasibility of various jumping actions in Japanese, and
then conducted an experiment in which participants were asked to jump according to these instructions. After the physical
performances the participants were asked to rate the easiness of the actions in a second questionnaire, and the results of the
two questionnaires were compared. The results show that the understandability of the instructions and the participants’ beliefs
about the physical feasibility of the instructions were closely correlated. However, the results of the two questionnaires did not
correlate. The results suggest that although participants believe they can convert jump instructions into physical performances
if the instructions are easy to understand, there are some gaps between the understandability of the linguistic instructions and
the physical realization of them.
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The Price of Fear: Developing a behavioural assessment of fear-related avoidance
incorporating dynamic response measures.

Santiago Garcia-Guerrero
National University of Ireland, Galway

Denis O’Hora
National University of Ireland, Galway

Arkady Zgonnikov
National University of Ireland, Galway

Abstract: In economics, “willingness to pay” reflects subjective value which has been employed to price goods, and more
recently, negative outcomes. The current project proposes a protocol for the behavioural assessment of fear-related avoidance
based on how much an individual is willing to pay to avoid their fears.

The proposed protocol consists of a “card game” interface in which participants make choices in several stages. During
baseline, participants chose between two decks that provide differential point rewards. Across a series of experimental blocks,
feared stimuli (e.g. a spider image) were presented in addition to rewards when the richer deck was chosen. Rewards were then
manipulated, in a staircase fashion, to establish the value of the feared stimulus. Mouse and eye movements were tracked in
an attempt to track cognitive processes during decision-making and avoidance. Preliminary results indicate sensitivity of the
protocol, and strengths and weaknesses will be discussed.
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On the road to . . . somewhere? Change-blindness in event description tasks is
informative about the interrelation between visual perception and language

planning
Johannes Gerwien

Heidelberg University, Heidelberg, Germany

Ines Marberg
Heidelberg University, Heidelberg, Germany

Abstract: The visual processing of complex event stimuli and the planning of utterances to describe them happen rapidly
and partly overlap in time, posing a challenge to researchers on vision and language: How exactly do the processes interact?
As a test case we investigate how sudden content-changes in visual scenes affect speakers of different languages. In a novel
approach, we elicit event descriptions from naturalistic video stimuli of motion events consisting of two segments (240ms each),
each followed by a mask (80ms). A potential change-blindness situation regarding the presence/absence of the goal of motion
is created. We exploit typological differences between French and German regarding the verbal encoding of goal-orientation.
Analyses of the linguistic data (content and timing) reveals a language-specific effect regarding how subjects accommodate to
seemingly unnoticed changes (e.g., distribution of hesitations, temporal onsets of words). Furthermore, we find differences in
overt change detection frequency depending on conditions.
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Mental computations underlying morphosyntax acquisition
Heidi Getz

Georgetown University

Elissa Newport
Georgetown University

Abstract: Research in theoretical linguistics has shown that human languages require abstract and highly detailed grammatical
representations. However, we understand surprisingly little about the mechanisms through which these representations are
acquired. What kinds of statistical relationships would learners need to compute to construct representations like those posited
by linguistic theory? We created miniature languages containing patterns found in natural languages and also patterns not
found in natural languages. We showed that complex word-order contingencies are acquired only when they correlate with
morphological patterns like those in natural languages. We then asked how learning changes when the statistical evidence for
these patterns is manipulated. These experiments illuminate the nature of learners’ computations and the units over which they
are performed.
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Computational Modelling of Embodied Semantic Cognition: A Deep Learning
Approach

Ajitesh Ghose
Centre for Cognition, Computation and Modelling Department of Psychological Sciences, Birkbeck,

University of London Malet Street, London, WC1E 7HX, United Kingdom

Rick Cooper
Centre for Cognition, Computation and Modelling Department of Psychological Sciences, Birkbeck,

University of London Malet Street, London, WC1E 7HX, United Kingdom

Abstract: Barsalou’s (1999, 2003) perceptual symbol systems hypothesis describes how semantic knowledge is grounded in
sensorimotor experience. According to the theory, knowledge is acquired through sensorimotor simulations. This challenges
the classical view supported by the disembodied cognition hypothesis, which generally favours an abstract and symbolic sys-
tem. We propose a unified perspective, in which, the embodied cognition hypothesis, with a particular focus on the semantic
domain, is provided with a mechanistically tractable computational framework based on the parallel distributed processing
(PDP) paradigm. A critical difference between the current approach and previous mechanistic accounts of embodied cognition
is that the current approach avoids using hand-coded representations and instead, relies on an agent-based simulation with
environmental interaction for the creation of situated inputs and outputs, supplemented with supervised and unsupervised deep
learning mechanisms, from which semantic cognition emerges.
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The Perceived Duration of Vast Spaces
Devin Gill

University of Utah, Salt Lake City, UT, USA

Jeanine Stefanucci
University of Utah, Salt Lake City, UT, USA

Abstract: Experiencing awe may make us believe we have more time (Rudd, Vohs, & Aaker, 2012). Awe can be evoked by
encountering a vast experience (Keltner & Haidt, 2003), for example an endless ocean or large mountains (Klatzky, Thompson,
Stefanucci, Gill, & McGee, 2017). Vast environments may lead to distortions in perceived time that are reported after awe expe-
riences. Participants reproduced the perceived duration of images of natural environments that varied in vastness and estimated
the degree awe they would experience in those spaces. Results show that as actual duration increased, perceived duration of the
image decreased, whereas estimated awe increased. The perceived duration of highly vast images was underestimated less than
other images. Participants reported they would experience more awe in highly vast images compared to low and medium vast
images. These findings suggest that distortions of time associated with awe may be related to the vastness of the environment.
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The role of spatial skills in mathematics cognition: Evidence from children aged
5-10 years

Katie Gilligan
UCL Institute of Education, London, United Kingdom

Alex Hodgkiss
UCL Institute of Education, London, United Kingdom

Michael Thomas
Birkbeck College, University of London

Emily Farran
UCL Institute of Education, London, United Kingdom

Abstract: While there is evidence of associations between spatial skills and mathematics, relatively few studies explore these
associations in children aged 5-10 years. I will present findings from longitudinal and cross-sectional studies to highlight the
importance of spatial skills as both longitudinal and concurrent predictors of mathematics. First, secondary data analysis of the
Millennium Cohort Study indicates that spatial performance at both 5 and 7 years is a significant predictor of mathematics at age
7 (N = 12099). Second, cross-sectional findings from children aged 5-10 years (N=156), suggest that spatial skills explain 10-
12% of the variation in standardised maths performance and approximate number sense, even after accounting for vocabulary
skills. That is, spatial scaling was a significant predictor of mathematics for all age groups, while the role of mental rotation
and mental folding varied with age. These findings have implications for the design of mathematics interventions customised
for specific developmental stages.
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Investigating the predictions of a memory-based account of statistical learning
Sandrine Girard

Carnegie Mellon University

Erik Thiessen
Carnegie Mellon University

Abstract: Statistical learning (SL) refers to the ability to extract statistical regularities from the environment. Many researchers
believe that SL arises as a consequence of the way that information is stored and accessed in memory (Thiessen, Kronstein,
& Hufnagle, 2013). Accordingly, manipulations that influence memory should have similar effects in SL experiments. In the
current study, participants were presented with artificial languages that varied along two dimensions known to impact memory:
number of distractors in the input and timing of presentation (e.g., spaced vs. massed). Participants’ performance was clearly
influenced by these manipulations; for example, the ability to segment a word (e.g., ”dupona”) differed as a function of whether
there was one frequent competitor (e.g., ”dugalo”) or several less frequent competitors (e.g., ”dugalo,” ”dufalu,” ”dumiso”).
Experimental results were compared to two memory-based computational models of SL (PARSER and TRACX). Implications
of the experimental results and model comparisons will be discussed.

3719



Motor Fluency Effects on Causal Judgment: The Role of Grip-Strength
Asymmetries and Spatial-Numeric Associations

Kelly Goedert
Seton Hall University

Daniel Czarnowski
Seton Hall University

Abstract: Human understanding of causation may be grounded in our experience of physical forces in the world. We investi-
gated whether right-handers, who exert greater force with their right than left hands, judge candidate causes on the right side
as more causal. In two experiments, subjects simultaneously learned about a moderately effective and an ineffective cause
on a trial-by-trial basis. Subjects rated the moderately effective cause as more causal when it appeared on the right side of
space. This effect was also present in subjects’ trial-by-trial predictions, but the effect reversed with a left-right reversal in the
spatial-numeric mapping of the causal judgment scale. The results are not consistent with the notion that our understanding of
causation is grounded in our ability to exert force. However, they are consistent with influences of motor fluency and polarity
correspondence on judgment.
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Comparison of directed gaze during vocalizations in bonobo and human infants
Ulrike Griebel

The University of Memphis, Memphis, TN, USA

Josep Call
Max Planck Institute for Evolutionary Anthropology. Leipzig, Germany

Eugene Buder
The University of Memphis, Memphis, TN, USA

D. Kimbrough Oller
The University of Memphis, Memphis, TN, United States, USA

Abstract: A crucial step in language evolution was likely joint attention with alternating gaze between vocalizing individuals
and an object. This triadic interaction likely formed a foundation for labeling of objects. We have argued that vocalizations
used for “social glue” – flexible low intensity and low arousal vocalizations given during e.g. grooming, keeping in contact with
the group, etc. – are a probable source of raw material for first labels. It is critical that these vocalizations be socially directed,
by gaze contact. We longitudinally investigated directed gaze during vocalizations in low arousal interactions during the first
year in three bonobo mother-infant pairs and compared them with 9 human mother-infant pairs. We found that bonobo infants
directed their gaze to a conspecific during vocalizations only 8% of the time while human infants directed it 44% of the time.
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How does of initial inaccuracy benefit cross-situational word learning?
Chris Grimmick
New York University

George Kachergis
Radboud University

Todd Gureckis
New York University

Abstract: Both children and adults are able to extract several intended word-referent mappings from a series of scenes con-
taining multiple words and objects. Known as cross-situational learning, this ability is thought to be an important means of
acquiring language. Proposed models of this ability range from hypothesis-testing accounts to associative accounts, but most
formal models assume learners store one or more feasible word-referent mappings per experience, and that the correct map-
pings emerge through consistent co-occurrence. These theories would all predict that presenting unambiguous evidence for a
correct pair would benefit learning, but recent evidence indicates the reverse is true: giving unambiguous evidence for incorrect
pairs improves subsequent cross-situational learning (Fitneva and Christiansen, 2015). With some nuances, we replicate these
results, and show why future models may need to include an error-driven learning mechanism to explain word learning.
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On the Detection of “Alternative Facts” in Environmental Messages: The Effects
of a Sequential versus a Simultaneous Presentation Format

Mona Guath
Uppsala University, Uppsala, Sweden

Peter Juslin
Uppsala University, Uppsala, Sweden

Abstract: Reasonable rational information processing is important in people’s in everyday decision-making. A number of
features affect how environmental messages are processed, including the presentation format and the reliability of the informa-
tion source. One way to measure the importance assigned to the source reliability is to frame the question in terms of Bayes’
theorem (Hahn & Harris, 2009). In two online experiments, we investigated how people process environmental messages in a
Bayesian integration task where the participants rate the probability of an energy crisis. The information about the prior, like-
lihood ratio, and source reliability were presented either sequentially or simultaneously. The results showed that, as prescribed
by Bayes’ theorem, participants integrated the sentences multiplicatively. However, with sequential presentation they assigned
more weight to source reliability, and this effect remained when the source reliability was presented next to last, suggesting that
participants assigned more weight to the source regardless of its position.
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Exploring inductive bias of visual scenes
Jessica Hamrick

University of California, Berkeley, Berkeley, CA, USA

David Bourgin
University of California, Berkeley, Berkeley, CA, USA

Thomas Langlois
University of California, Berkeley, Berkeley, CA, USA

Tom Griffiths
University of California, Berkeley, Berkeley, CA, USA

Abstract: When people encode a representation of a scene, they do not necessarily represent the exact locations and orientations
of the constituent elements. Instead, people rely on preexisting inductive biases to simplify their encoding of new scene
configurations. We investigated people’s inductive biases in their memory for configurations of simple 2D shapes (such as
circles, triangles, etc.) using a serial reproduction paradigm (Bartlett, 1932). This paradigm establishes an iterative process in
which information is transmitted through a chain of people (like the ”telephone” game). In our experiment, we asked people
to memorize configurations of simple shapes (which were either generated at random or by other participants) and then asked
them to reproduce those configurations. In analyzing the final generation of reproductions, we found that people have strong
preferences for the scale of individual shapes, as well as the alignment, distance, overlap, and relative rotation between pairs of
shapes.
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Choosing while Losing: The Effects of Valence and Relative Magnitude on
Decision Dynamics.

Avril Hand
National University of Ireland, Galway, Ireland

Denis O’Hora
National University of Ireland, Galway, Ireland

Rick Dale
University of California, Merced, USA

Petri Piiroinen
National University of Ireland, Galway, Ireland

Abstract: Framing decision options as gains or as losses affects how we evaluate those options. The current study assessed
the effects of gain- and loss-framing on the acquisition of outcome values across decisions and on the dynamics of computer
mouse responses to those decisions. In a series of 36 decisions per block, four arbitrary symbols were presented, two of which
were assigned high points (e.g., 20) and two of which were assigned low points (e.g., 5). Participants (N=86) learned to choose
high values and avoid low values when values were positive and to choose low values and avoid high values when they were
negative. Loss-framed outcomes (i.e., negative valence) were learned faster and more reliably. Response trajectories following
acquisition were slower, more curved and exhibited greater vacillation when choosing between two poor outcomes. These
effects were stronger when poor outcomes were negatively valenced.
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The Relationship between Anxiety, Mind Wandering and Task-switching: A
Diffusion Model Analysis

Andree Hartanto
Singapore Management University

Hwajin Yang
Singapore Management University

Abstract: The current study aims to examine the mechanisms underlying the negative impact of anxiety on task-switching. To
do so, we employed a stochastic diffusion model analysis along with a thought-probe technique in task-switching paradigm.
Across 152 participants, we found state anxiety was associated to higher switch costs in nondecision time but not drift rate
parameter of diffusion model, implying that the locus of task-switching impairment in anxious individuals is pertinent to the
efficiency of task-set reconfiguration but not proactive interference processes. Furthermore, we found boundary separation
parameter – which quantifies conservative decisional styles – heightened as a function of anxiety, supporting the existence of
compensatory strategy in anxious individuals. Lastly, we found that impaired performance by anxiety was not attributed to
the frequency of worrisome thoughts during task-switching. These findings elucidate several theoretical assumptions on the
relationship between anxiety and task-switching.
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Do people behave dishonestly easily?
Hajimu Hayashi

Kobe University

Abstract: This study examines whether dishonest behaviors occur easily. In 60 trials, 100 undergraduate students viewed
20 dots on a square divided into right and left sides and had to decide which side contained more dots within one second
(developed by Gino et al., 2010). In with-reward condition, participants received 0.1 point for each left decision and 1 point
for each right decision, and they received more sweets depending on points. Therefore, this asymmetrical payment structure
triggered motivation to dishonestly report more right-side dots, even when there are actually more left-side dots. The results
demonstrate that participants decided at greater frequencies that more dots were on the right side in with-reward condition
than in without-reward condition, indicating dishonest behaviors occurred. Furthermore, participants with greater right-side
frequencies in with-reward condition showed lower points on a morality scale. These results suggest dishonest behaviors occur
easily and are related with a decline in morality.
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Hierarchical Processing of Response Production and Categorisation
Liusha He
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Rick Cooper
Birkbeck, University of London, London, England, United Kingdom

Abstract: Early research on categorisation suggested that verbalizable and nonverbalizable category-learning are qualitatively
different. Toward this end, the implementational-level model (COVIS–COmpetition between Verbal and Implicit Systems) of
categorisation assumes that category-learning involves separate but parallel sub-systems. Specifically, for verbalizable tasks
abstract category-labels are learned by a hypothesis-testing sub-system, while for nonvertbalizable tasks response position is
learned by a procedural-learning sub-system. However, recent research has revealed that: 1) regardless of category structure,
reversal learning is easier than learning novel categories; 2) qualitative difference between verbalizable and nonverbalizable
tasks disappears when automaticity has developed; and 3) control of automatic categorisation is different from both proposed
sub-systems. These challenges suggest a fundamental revision of the mechanisms of categorisation. Contrary to the separate,
parallel-processing sub-systems theory, we argue that categorisation involves hierarchical-processing sub-systems of response-
production and category-label association. This framework, when combined with Supervisory Attentional System theory, may
facilitate the unification of human categorisation.
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Where are you? The Effect of Uncertainty and its Visual Representation on
Location Judgments in GPS-like Displays

Mary Hegarty
University of California, Santa Barbara

Alinda Friedman
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Alexander P. Boone
University of California, Santa Barbara, Santa Barbara, CA, USA

Trevor J. Barrett
University of California, Santa Barbara

Abstract: Two experiments revealed how non-experts interpret visualizations of positional uncertainty on GPS-like displays
and how the visual representation of uncertainty affects their judgments. Participants were shown maps with representations of
their current location; locational uncertainty was visualized as either a circle (confidence interval) or a faded glyph (indicating
the probability density function directly). When shown a single circle or faded glyph, participants assumed they were located
at the center of the uncertain region. In a task that required combining two uncertain estimates of their location, the most
common strategy – integration – was to take both estimates into account, with more weight given to the more certain estimate.
Participants’ strategies were not affected by how uncertainty was visualized, but visualization affected the consistency of their
responses. The results indicate that non-experts have an intuitive understanding of uncertainty and that the best visualization
method is task dependent.
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Semantic Bootstrapping in Frames: A Computational Model of Syntactic
Category Acquisition

John Hewitt
University of Pennsylvania

Charles Yang
University of Pennsylvania

Abstract: Semantic Bootstrapping in Frames: A Computational Model of Syntactic Category Acquisition
According to the semantic bootstrapping hypothesis, children map certain (prototypical) semantic concepts to syntactic

categories (e.g., objects as nouns, actions as verbs), which are then used to learn other elements of language. We report a
computational model of syntactic category acquisition that combines semantic bootstrapping with the distributional learning of
language. The model has access to a small set of “seed” words, with labeled categories. It then iteratively constructs syntactic
frames from the seeds; sufficiently frequent frames are used to categorize non-seeded words which then contribute to the
construction of additional frames, including frames that incorporate category information. The model is online and effective.
Simulation on child-directed English corpus shows that with only 100 seed words, classification precision exceeds 70%.

3730



Tangible rhythm: Sensorimotor representations of metrical structure and learning
musical rhythm with gesture

Courtney Hilton
The University of Sydney, Sydney, NSW, Australia

Micah Goldwater
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Michael Jacobson
The University of Sydney, Sydney, NSW, Australia

Abstract: When we listen to music, we can mentally control how we perceive the beat. This ability is thought to be subserved by
sensorimotor imagery, having top-down effects on attentional-allocation and perception. Here, we examine whether imagined
“up and down” gestures can support an internal generation of metrical accent in rhythmic sequences. We also examine how
this type of motor imagery interacts with either metrically congruent or incongruent auditory imagery. This is explored using
EEG with a frequency-tagging approach, quantifying the strength of metrical accent with the amplitude of beat-related SSEPs.
Gesture supports our ability to think and learn by fostering an alignment between sensorimotor representations and more
abstract conceptual structure. Therefore, the imagined gestures may act as a bridge between perceptual and action-oriented
understandings of metrical structure and the more abstract conceptual ones that musicians struggle with in their training. These
imagery strategies may then be beneficial to music education.

3731



Eye movement-based probabilistic models for physical scene understanding
Eghbal Hosseini

Massachusetts Institute of Technology
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Tobias Gerstenberg
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Abstract: Humans make prediction about physical environments and future events through inference. Previous research has
proposed that a common sense engine implementing probabilistic programming is used to build an internal model of the
environment, and simulations of that internal model are used for inferences. Battaglia et al.(2013) have demonstrated an
application of this formulation in physical scene understanding and stability judgment in the case of block tower. Here we
augment this formulation by including the subjects’ eye movements as a process of sampling the environment, and propose that
the underlying common sense model guides gaze toward sampling the features of the space with relevant information for the
judgments about stability. We compare a base probabilistic model with one that takes the statistics of the saccades into account,
and argue that the additional information improves the model predictions about subjects’ judgment.
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Data Driven Eye Gaze Path Segmentation
Joseph Houpt

Wright State University, Dayton, Ohio, USA
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Abstract: The first stage of analyzing eye-tracking data is commonly to code the data into sequences of fixations and saccades.
This is usually automated using simple, predetermined rules for classifying ranges of the time series into events, such as “if
the dispersion of gaze samples is lower than the threshold, then code as a fixation.” More recent approaches incorporate
additional eye-movement categories in automated parsing algorithms, particularly glissades, by using time-varying, data-driven
thresholds. We describe an alternative approach using the beta-process auto-regressive hidden Markov model (BP-AR HMM).
The BP-AR-HMM offers two main advantages over existing frameworks. First, it provides a statistical model for eye movement
classification rather than a single estimate. Second, the BP-AR-HMM uses a latent process to model the number and nature
of the types of eye-movements and hence is not constrained to predetermined categories. We present comparisons between
BP-AR-HMM parsing and standard analyses on multiple datasets.
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Case Markers Facilitate Abstraction of Syntax among Mandarin-speaking
preschoolers

Dong-Bo Hsu
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Abstract: In light of the studies that investigate when and how English-speaking young children exhibit adult-like abstraction
of syntax, this study explores these issues by examining Mandarin-speaking preschoolers ranging from 2- to 5-year-olds’
comprehension of the Mandarin SVO-, ba-, long-passive, and short-passive constructions using the forced-choice pointing
paradigm. The results indicated that at the age of 2, Mandarin preschoolers exhibited abstraction of syntax in these four
constructions. These results went against the predictions of accounts derived from the structure mapping account and from the
competition model. Instead, Mandarin ba- (used in the ba-construction) and bei-markers (used in the long- and short-passive
constructions) play an important role in Mandarin-speaking young children’s demonstrations of abstraction of syntax.

3734



An Exploratory Study on Remote Associates Problem Solving: Evidence of Eye
Movement Indicators
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Abstract: Remote associates problems (RAP) have been widely used to measure creative processes. However, studies have
rarely explored the RAP processes. The main purpose of this study was to record eye movements while solving RAP. The
results show that: (1) The mean fixation duration increases throughout the problem-solving process, which indicates that more
problem solvers encounter impasses. This result supports the “impasse encounter” phase of insight. (2) During the initial period
of problem solving, individuals display more regression counts in the fixation region than in the key region, which supports
that the impasses are caused by inappropriate initial representation. (3) During the middle period of the process, the time
individuals spend gazing at the key region increases, while the time spend at the fixation region decreases. This supports the
“impasse resolution and insight” phase of insight.
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Processing of Filler-gap Dependency in Island Constraints and its Relation to
Working Memory for Non-native Speakers of English
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Abstract: Whether non-native speakers’ on-line processing can be native-like remains a hot issue. Recently many have shown
that qualitatively native-like processing is attainable, especially for learners with high proficiency. However, most of the studies
recruited learners who had been immersed to the English-speaking country. The current study investigated processing of filler-
gap dependency and island constraints for Chinese learners of English as a second but foreign language. We also attempted to
look into individual differences by taking different variables into account. The results showed that native-like active gap-filling
strategy positively correlated with L2 proficiency, native-like island effect negatively correlated with age of acquisition, but
neither one correlated with working memory capacity. These findings lent more support to the grammar-based account for
island effects, though future studies adopting more precise measure of working memory would be needed. The study also
called for further investigation into L1 background on processing islands in an L2.
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Linguistic processes in translation: Eye-tracking reveals differential effects of
phrase order and lexical choice

Xin Huang
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Abstract: What are the processes underlying the judgments of translation? And what is the role of language proficiency?
This study addresses these questions by examining how Chinese-English bilinguals evaluate poetry translations. Participants
were shown haikus in Chinese and the corresponding English translations and were asked to rate the translation quality. The
English translations ranged from literal to free style and differed in two source text factors — phrase order and lexical choice.
Results indicated an interaction between translation style and language proficiency, with the high proficiency bilinguals giving
free translations higher ratings. Furthermore, the analyses of eye movements revealed that, (a) in contrast to low proficiency
bilinguals, high proficiency bilinguals tended to integrate discourse information regardless of intra-text re-ordering, and (b)
among the good quality translations, the phrase order effect was more prominent than the lexical effect. These findings suggest
the interplaying roles of language proficiency and linguistic factors in translation.
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How reactivation strength affects memory updating
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Abstract: Memory reactivation induces plasticity, rendering reactivated memories susceptible to interference. The current
study examined whether the method and strength of reactivation modulates retroactive interference effects. Two days after
learning AB word pairs, memory for these pairs was either not reactivated, moderately reactivated (presentation of A cues in an
unrelated task), or strongly reactivated (restudy of AB pairs or cued recall of B targets). Immediately afterwards, participants
either learned AC word pairs, DE word pairs, or performed an unrelated distractor task. Cued recall of target words was
tested two days later. Strong reactivation before learning new material protected memory from retroactive interference and
intrusions, whereas moderate reactivation resulted in both. This finding suggests that strong reactivation enhances event-based
distinctiveness, counteracting memory modification. Results are discussed in reference to the testing effect literature and the
reconsolidation account, and implications for educational practice are outlined.
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An fNIRS Hyperscanning Study on Brain-Brain Interactions of a Dyad during a
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Abstract: Existing studies in cognitive neuroscience predominantly focus on a single participant’s behavioral and brain re-
sponses. Lack of an interactive context for joint action particularly limited social neuroscience studies to simulated social
contexts. Advances in portable brain imaging technologies have made it practical to simultaneously monitor the brain activity
of two or more people in an interactive context to investigate neural correlates of social interaction. In this study, the rela-
tionship between behavioral synchrony and inter-brain coherence is investigated during simultaneous reading of matching and
mismatching sentences in different auditory conditions. A dual-fNIRS hyperscanning setup was used to obtain simultaneous
recordings of hemodynamic activity from the prefrontal cortices of the participants while they jointly read-aloud the sentences
displayed on their screens. The results suggest that the level of inter-brain coherence in the right superior cortex tends to
increase depending on the level of behavioral synchrony among the participants.
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Abstract: Forming reliable predictions about upcoming events are both essential to and the product of successful learning.
Using fNIRS recording of cortical hemodynamics, we measured infants’ prediction of upcoming visual events that were pre-
ceded by auditory cues in infants who are at-risk for poor development due to premature birth and their full-term peers. We
compared prediction and learning across groups by fitting their occipital cortex response (which we assumed to reflect the
magnitude of the prediction error) to a reinforcement learning model with a dynamic learning rate. We found that preemies had
a lower learning rate than full-terms. These findings shed light on the origins of the developmental difficulties associated with
prematurity.
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Yue Ji

University of Delaware

Anna Papafragou
University of Delaware

Abstract: Events unfold over time, i.e., they have a beginning and endpoint. Previous studies have illustrated the importance of
endpoints for the perception and memory of various events (Lakusta & Landau, 2005, 2012; Papafragou, 2010; Regier & Zheng,
2009; Strickland & Keil, 2011; Zacks & Swallow, 2007). However, this work has not compared endpoints to other potentially
salient points in the internal temporal profile of events (e.g., midpoints). Building on the “picky puppet task” (Waxman &
Gelman, 1986), we presented 4-to-5-year-old children and adults with a puppet that liked clips of events containing brief screen
blanks that disrupted either the midpoint or the endpoint of the event. Both children and adults learned the puppet’s preferences
better (as evidenced by their extension to novel events) when the puppet liked midpoint compared to endpoint interruptions.
These findings suggest a bias for event endpoints that is present from an early age.
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Dynamic and multiplexed networks for working memory
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Abstract: Working memory (WM) provides the neurobiological infrastructure for human cognition. Dominant models posit
that prefrontal cortex (PFC) supports WM by coordinating control over distributed memory representations. In two studies,
multimodal electrophysiology data reveal that PFC control over WM is rhythmic, fundamentally dynamic, and not altogether
necessary. Direct brain recordings (n=10) demonstrate that PFC and medial temporal lobe (MTL) theta-band rhythms direct
a complex system of higher-frequency neural activity across regions, uncovering initial support for bidirectional PFC-MTL
interactions related to WM demands. Then, data from patients with unilateral PFC damage (n=14) challenge dominant models
on the central role of PFC (note 8% accuracy decrease in patients). In healthy controls (n=20), delta-theta-band rhythms precess
from PFC toward parieto-occipital sites, concurrent with alpha-beta-band rhythms precessing in the opposite direction. All PFC
effects are diminished with unilateral damage, revealing an independent posterior WM mechanism. These results reveal that
rapid, parallel processing governs WM.
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Abstract: Perceptual reasoning is the ability that incorporates fluid reasoning, spatial processing, and visual motor integration.
Several theories of cognitive functioning emphasize the importance of fluid reasoning. Tasks that require fluid reasoning involve
the process of manipulating abstractions, rules, generalizations, and logical relationships. A pretest–posttest with control group
design was used, with 43 (28 boys, 15 girls) children in the experimental group and 42 (26 boys, 16 girls) children in the
control group. The sample was selected from children studying in two private schools from South India, which included
both the genders. The experimental group underwent weekly one-hour chess training for one year. Perceptual reasoning was
measured by three subtests of WISC-IV INDIA. Pre-equivalence of means was established. Statistical analyses revealed that
the experimental group shows statistically significant improvement in perceptual reasoning compared to the control group. The
present study establishes a correlation between chess learning and perceptual reasoning.

3743



Measuring Demand Avoidance with the Demand Selection Task: Challenges and
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Abstract: When given the chance to choose between two tasks, one will more likely choose the easier, less demanding task.
This effect has been shown in various domains and referred to as the law of minimum effort or demand avoidance. Kool
and colleagues (2010, 2013) designed the demand selection task (DST) and showed that most of their participants exhibited
clear demand avoidance. We attempted to replicate and extend their results in a series of three studies. Here we argue that
DST confounds demand detection and demand selection, which weakens its ability to reliably measure demand avoidance in
different populations. In our first study, most participants did not show reliable demand avoidance and those who showed it
had higher working memory capacity. The following two studies aimed to de-confound the two processes. We define a new
measure of demand avoidance that affords a more robust estimation of demand avoidance in different populations.
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Optimizing Mathematic Learning: Effects of Continuous and Nominal Practice
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Charles Kalish
University of Wisconsin-Madison, Madison, Wisconsin, USA

Rui Meng
University of Wisconsin-Madison, Madison, Wisconsin, USA

Ayon Seng
University of Wisconsin-Madison, Madison, Wisconsin, USA

Percival Matthews
University of Wisconsin-Madison, Madison, Wisconsin, USA

Abstract: Should we give learners a lot of practice with a few problems, or a little practice with a variety of problems? The
best practice set depends on the way people are learning. We describe two models people employ when learning arithmetic
problems. We show that features of the task environment influence model use. When problems are presented in a purely
symbolic format, people learn an item-specific model. When the task format linked problems to representations of magnitudes,
people learn a continuous model. We also test the effects of different practice sets on learning. In both formats people learned
the practice sets well with a few repeated examples. With a continuous magnitude format people showed better transfer with a
wide variety of practice problems. Variety led to poor learning in the symbolic format. In ongoing research we are attempting
to identify the optimal practice set for each type of learning model.
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Priors, informative cues and ambiguity aversion
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Abstract: Ambiguity aversion, or the preference for options with known rather than unknown probabilities, is a robust finding
within the decision making literature (see Camerer & Weber, 1992, for a review). There are some suggestions this averseness
is due differences in the inferred prior distribution (Güney & Newell, 2015). In this study we investigated the relationship
between prior distributions and information cues on decision making and participants’ judgments of underlying distribution.
We used three different prior cues; a positive underlying distributional cue, a negative underlying distributional cue, and a
neutral cue. We also used five different information cues which varied both the bias of the information and the degree of
ambiguity. Whilst we found that both prior and information manipulations had the expected impact for participants’ judgments
of underlying distributions, they only impacted the decisions participants made in some cases. There were also interesting
interactions between the prior and information manipulations.
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Abstract: Previous research suggests that participants may be susceptible to confirmation bias after making decisions in moral
dilemmas. We manipulated the type of moral dilemmas (personal or impersonal) and the framing of the question prompting
participants to respond (emphasizing saving five people or sacrificing one person). The actors in the dilemmas were represented
by a series of silhouettes. Eye tracking data revealed that both manipulations had an effect on participants’ gaze. Further
analysis of utilitarian choices has shown that there were no framing effects of the prompting question when the dilemmas were
impersonal. The data suggests that participants’ subsequent gaze patterns are sensitive to both how the situation is described
and the framing of their hypothetical actions. Taken together, our results provide some support to the claim that confirmation
bias may arise after making moral decisions.
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Abstract: There is currently little understanding on whether significant word retrieval difficulties appear during midlife and if
so, whether they relate to decrease in grey matter (GM) density that accompanies aging. To answer this question, we studied
retrieval of proper names in 125 cognitively healthy middle-aged persons (49.7, ±3.2) comparing their performance on a
tip-of-the-tongue (TOT) task with that of 86 young persons (25.4, ±3.5) from the Cam-Can data repository (http://www.mrc-
cbu.cam.ac.uk/datasets/camcan/). The middle age (MA) group was worse in word retrieval (U = 23950.5, p = 0.003) and had
less GM volume in a range of left fronto-temporal areas relative to the young group, but there were no statistically significant
correlations between volumes of the regions known to be implicated in word retrieval and MA’s TOT scores. Thus, midlife
word retrieval decline is not associated with GM volume reduction; more likely it is due to changes in connectivity.
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The relationship between verbal route descriptions and personal characteristics of
empathy
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Abstract: Empathy is important for good verbal navigation instructions. The present study examined the relationship between
verbal route descriptions and personal characteristics of empathy using a verbal navigation task and the Japanese Interpersonal
Reactivity Index (IRI-J). In the verbal navigation task, participants were presented a maze map and were instructed to provide
verbal route instructions to reach a goal, to a person who is lost in the maze. Then, the participants answered a questionnaire
about their own navigation abilities and responded to the IRI-J. The descriptive data were objectively evaluated with reference to
the following three points: types of spatial description (survey or route), consideration for the other person’s point of view, and
unambiguity of instruction. We analyzed the relationships between the descriptive traits and scores on the two questionnaires,
and found that the three points were good predictors for some empathy-related factors measured by the IRI-J.
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Abstract: Explanations have no bound in principle, but in practice, people prefer explanations that are complete (Zemla et
al., 2017), and the explanations that they generate are bounded (Miyake, 1986). We tested reasoners’ ability to assess whether
some explanations are incomplete. Participants in three experiments received explanations, i.e., chains of causal events, e.g., A
causes B causes C. Their task was to choose questions relevant to links in the chain. Some explanations contained ”breaks” in
the chain, whereas others did not. Participants in three studies were able to detect the breaks, and preliminary data suggest that
they assess explanations with breaks as less complete than those without breaks. Many participants also chose to ask questions
about the initial event in a causal chain (e.g., A in the chain above), suggesting that such initial events are themselves seen as
incomplete. The studies reveal a novel pattern in reasoners’ ability to formulate explanations.
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Abstract: Scientific reasoning includes deciding whether information is relevant to explaining an event. In some cases, seeing
information as relevant requires having a background theory or explanation that can make sense of the information. College
students were shown a possible explanation for an event, along with two pieces of possibly relevant information (Info1 and
Info2), and one of two possible alternative explanations (Alt1 or Alt2). Info1 was seen as more relevant when Alt1 rather than
Alt2 was presented; Info2 was seen as more relevant when Alt2 rather than Alt1 was presented. In addition, relevance ratings
of the information increased as did initial ratings of the Alternative. People from different backgrounds might bring with them
different alternative theories that can hinder the understanding of why some information is relevant and other information not. In
addition, finding the initial alternative compelling might enable people to better assess the relevance of additional information.
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Abstract: People can often generalize concepts from just a single example, while machine learning algorithms typically
require hundreds. Lake, Salakhutdinov and Tenenbaum (2016) studied this ability in the domain of handwritten characters,
and proposed a model for one-shot learning of new concepts based on inferring compositionally structured generative models,
and transfer (or learning to learn) from familiar concepts. Lake et al showed that their model fit well with the classifications and
drawings of adults, but provided no direct evidence for the role of learning to learn which presumably occurs mostly in children
learning to draw. Here we study the drawing and classification abilities of children ages 3-5, asking whether their ability to
classify novel objects and handwritten characters is related to their ability to infer an appropriate motor program for drawing or
tracing characters. Preliminary results suggest at least a weak relationship between these abilities, independent of age.
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Abstract: What governs how much information speakers include in referring expressions? Atypical properties of objects are
more likely to be included in referring expressions than typical ones. E.g., speakers are more likely to call a blue banana a “blue
banana” and a yellow banana a ”banana”. A unified account of this phenomenon is lacking. When should a rational speaker
mention an object’s color? Reference production is modeled within the Rational Speech Act framework. Utterances (“banana”,
“blue”, and “blue banana”) are taken to have a graded semantics: rather than assuming all bananas are equally good instances
of “banana”, we empirically elicited object-utterance typicality values for all possible utterances. Pragmatic speakers select
utterances proportionally to the probability that a literal listener using a graded semantics will select the intended referent. We
evaluate the proposed model on a dataset of freely produced referring expressions collected in an interactive reference game
experiment via the web.
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Abstract: Relational Match to Sample (RMTS) is a common test of relational reasoning involving matching cards based on
the relations “same” and “different”. Children below the age of five fail RMTS, even with corrective feedback. Given that
success on RMTS depends on the ability to represent and compare ”same” and ”different”, such failure has been interpreted as
indicative of the absence of these abilities (Penn, Holyoak & Povinelli, 2008; Hochmann, Mody & Carey, 2016).

In the current studies three, four and five-year-old children were provided explicit instructions on RMTS. Results show
success in all groups, including three-year-olds - two years earlier than previous work. This suggests the ability to represent
and compare ”same” and ”different” emerges significantly earlier than spontaneous success on RMTS, undermining previous
interpretations. More generally, this work begins to explore the nature of the development which allows existing relational
reasoning capacities to be spontaneously deployed in RMTS.
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Abstract: When pronouncing novel/unknown words, readers often use prior experience with similar, neighbor words. Com-
parison to neighbors can be helpful for unknown or novel words (wug is like pug), but it can also lead to errors (pint is not
like mint). We investigate whether pronunciation can be affected by top-down influences, specifically the perceived taboo-ness
of a known neighbor. While orthographic similarity typically biases novel-word pronunciation to be similar to a known word,
taboo-ness might bias pronunciation away from a likely one. Adults read aloud words from three lists– novel words that were
neighbors to taboo words, novel words that were neighbors to benign words, and known control words. All known neighbors
and controls were frequency matched. Results show differences in the correspondence between pronunciation of novel words
and known neighbors depending on the relative taboo-ness of the known neighbor. Findings suggest that perceived taboo-ness
has top-down influences on reading.
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Abstract: The objective of this study was to investigate the effects of varying Response-to-Stimulus interval (RSI) on sequence
learning by systematically varying it across three different groups (Group1: 0-300ms, Group2: 400-700ms and Group3: 800-
1100ms) and to assess the implicitness and explicitness of the knowledge acquired through such learning. Serial Reaction time
task followed by generation task and recognition task were used for this purpose. Results of the SRT task showed learning in all
the three groups and the results of the free generation task and recognition task revealed that the sequence learning was implicit
in Groups 1 and 2 while it was explicit in Group3. These results were discussed in the context of a recent theoretical framework
that proposes conditions in which a switch from implicit to explicit knowledge acquisition is facilitated.
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Abstract: This research addresses the generation of meaningful interpretations of real-world perceptual stimuli. According
to a widespread framework we will call the features-first view, a stimulus is initially encoded via semantically-laden, symbol-
like properties that are compared to stored category representations to find the best match. Alternative theoretical perspectives
challenge the features-first view, but there has been no direct empirical test. In our experiment, participants were shown
photographic images of everyday objects and asked to judge as quickly as possible whether a provided verbal descriptive
matched the picture. We tested different levels of delay between image and descriptive and found evidence that basic-level
category labels were verified faster than clearly manifested descriptions of physical or functional properties. Accordingly,
people know the category of the stimulus before knowing its semantic properties. The present evidence suggests that the
category is used to achieve a property-level description of the meaning of the stimulus, not vice-versa.
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Abstract: Texture is an important source of information for distinguishing surface properties. We are able to perceive various
textural properties of surfaces from tactile or visual inputs. However, it is unclear how touch-produced sounds influence the
various surface texture perceptions. In this study, we examined whether the touch sounds produced by different surface textures
influence the various surface perceptions. Consequently, the surface textures with high height and wide interval resulted in
rough, bumpy, soft and cool perceptions and the surface textures with the low height and narrow interval resulted in smooth,
flat, hard and warm perception. Also, there were statistically significant differences in these measures between two surface
texture groups. Furthermore, significantly positive correlations were found in “rough – smooth”, “bumpy – flat”, “sticky –
slippery”, “wet – dry” and “unpleasant – pleasant” measures between touch-produced sounds and actual touch. This indicate
that the touch-produced sounds influence various surface perceptions.
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Abstract: One of the key characteristics of human cognition is the ability to learn causal structure from data. An influential
thread of research into causal learning relies on causal graphical models as a theoretical foundation, and emphasizes the role
of prior knowledge, interventions, and statistical independence as tools with which people learn causal structure. What if these
sources of information are all absent, as in the problem of identifying causal direction from observations of just two variables?
Most work has either ignored this problem or asserted that it is inherently unsolvable. However, recent machine learning
algorithms can sometimes infer causal directionality in this setting, by exploiting simple assumptions about the relationship
between causes and the noise observed in their effects (Mooij, et al 2016). We investigate whether humans are able to exploit
these assumptions or others in order to infer the causal connection between two statistically dependent variables.
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Abstract: Across diverse cognitive and behavioral domains, humans confront a fundamental tension between exploiting current
knowledge about the environment and exploring the environment in order to acquire new knowledge. Individuals differ idiosyn-
cratically in how they balance this explore/exploit tradeoff, although the sources of these individual differences have not been
systematically studied. In the current study, we sought to do so, in terms of trait-level affective phenotypes. Specifically, we
investigated whether intolerance to uncertainty (IU), characterized by a negative disposition toward uncertainty, predicted both
random and directed exploration in a two-armed bandit task which manipulated decision horizon. We found that greater IU was
associated with diminished exploration, both random (p<0.001) and directed (p<0.05). These results suggest the importance
of explicitly considering affective states and dispositions in human decision-making and also have psychiatric implications, to
the extent that IU is a transdiagnostic dimension central to a range of anxiety-related disorders.
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Abstract: We examined whether and how image’s semantics and emotion content interact during visual processing. In each
trial, we briefly presented two emotional or neutral images (a scene context and an object), manipulating the semantic con-
sistency and the emotional consistency of the pair. Participants categorised one image semantically or emotionally. Semantic
categorisation was overall better than emotional categorisation, but reduced in emotional compared to neutral images, and es-
pecially in negative images. Emotional categorisation was better for positive than neutral or negative images; moreover, it was
facilitated by emotional consistency and, for accuracy in context images, by semantic consistency. Our results show easiness
of semantic compared to emotional categorisation. They suggest that semantic and emotion processes are interdependent, al-
though emotional influence on semantic processing seems stronger than the counterpart, with in particular an interfering effect
of aversive images. Conversely, image’s attractiveness seems beneficial when evaluating the quality of the emotional content.

3761



The effect of binaural beats on inhibition
Kimery Levering

Marist College, Poughkeepsie, NY

Molly Poinan
Marist College, Poughkeepsie, NY

Kristin Jay
Marist College, Poughkeepsie, NY

Abstract: A binaural beat is the perceptual experience that occurs when two tones of slightly different frequencies are presented
dichotically, creating the experience of a third tone corresponding to the difference in frequencies. Many temporary cognitive
effects have been linked to the presentation of a binaural beat, including increased working memory capacity. In the present
study, a version of the flanker test was used to investigate the effect of short-term alpha wave binaural beat stimulation on
inhibition processes specifically. Participants were presented with 10 minutes of either mid-alpha range binaural beats combined
with a recording of waves or only the sound of waves. After this, participants completed a flanker test. The difference between
reaction times of congruent and incongruent trials on the flanker task was significantly lower in the binaural beats condition
than the wave condition, suggesting that even brief exposure to binaural beats aids in the inhibition of irrelevant stimuli.
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Perception of others: Representation of immigrant groups in newspaper articles
Ying Li
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Abstract: Immigrants always have difficulties in integrating into a local society, and sometimes these difficulties come from
the fact that they are subconsciously regarded as someone from the outside. How they are represented in the main stream media
could reflect people’s perceptions towards the ‘otherness’ of different social members. We analyzed the representation of 29
US immigrant groups in newspaper articles in 2 related studies. The favorability of an immigrant groups is highly associated
with its perceived social distance (reflected through usage of concrete language) in our research. To further understand what
caused the positive or negative image of immigrants, we applied Latent Dirichlet Allocation to identify topics associated with
immigrant groups. We also investigated into how these news topics differ in terms of lingual social distance and favorability.
The results provide both qualitative and quantitative insights in how the image of immigrants are reproduced in social media.
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Abstract: Individuals implicitly learn the statistics of environmental stimuli. We used ”contraction bias”, the tendency to
perceive stimuli closer to the estimated mean of similar previous stimuli, to characterize the dynamics of these implicit inference
processes. Using a simple auditory discrimination task we found that listeners build a rich representation of the distribution of
past stimuli, and yet over represent very recent events. This combined pattern allows both learning of the stable environment,
and flexibility to fast changes.

We further characterized populations who have difficulties in acquiring specific expertise, i.e. specific developmental dis-
orders, focusing on reading (dyslexia) and non-verbal communication (high functioning ASD, autism spectrum, individuals)
disability, respectively. We found that the pattern of their perceptual inference differs from controls’. Both underweight pre-
vious events. However, dyslexics’ implicit memory decays fast and they underweight earlier events, whereas ASD individuals
underweight recent events. This pattern parallels, and perhaps underlies, their strengths and weaknesses.
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The Effects of Familiarity and Typicality on Naming Objects and Faces
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Abstract: It is found that when we name an object or a face, we often use basic level name (e.g., dog) rather than a name
at superordinate level (e.g., animal) or subordinate level (e.g., Labrador). In addition, although abundant evidence generally
suggested that both familiarity and typicality influence object recognition, how each of the two factors involves categorization
in terms of naming is not fully investigated yet. The present studies were performed to examine the familiarity and typicality
effects on naming either an object or a face. Names for basic, superordinate, and subordinate levels were prepared for testing
the speed and correctness of object/face identification. As a result, familiarity, not typicality, induced a down-shift pattern for
naming. In contrast, typicality led to overall faster responses. The findings of the study indicated that familiarity and typicality
have dissimilar effects on categorization by naming.
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The Effect of CSAL AutoTutor on Deep Comprehension of Text in Low-Literacy
Adult Readers
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Abstract: It is well documented that reading strategies of low-literacy readers are suboptimal when text requires deeper levels
of comprehension. Deep comprehension demands causal or goal-oriented reasoning and functional conceptual knowledge.
Alternatively, shallow comprehension entails recall of definitions or text features without necessitating a coherent understanding
of the text. The Center for Adult Literacy (CSAL) AutoTutor is an interactive intelligent tutoring system designed to foster deep
and shallow comprehension in low-literacy readers. The present work represents the first empirical study of the effect of CSAL
AutoTutor on comprehension type in low- and high-literacy readers. Community members and students interacted with CSAL
Autotutor and then were assessed on recall ability for the structure (shallow) and meaning (deep) of sentences from lesson
text. Preliminary analysis suggests CSAL AutoTutor promotes comparable deep level comprehension in low- and high-literacy
readers. Implications for CSAL AutoTutor as a literacy intervention and future goals are discussed.
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Abstract: Context (such as our location or current goal) informs everyday decisions, both by predicting stimuli and determining
relevant responses. How do we develop priors that are general enough to apply in various contexts yet specific enough to
maximize reward in a given context? We investigated this using the AX-CPT, a task in which a cue determines which button
to press for a probe that appears seconds later. We manipulated the frequency of the probe given the cue across participants
and built a diffusion model to estimate how the cue informs participants’ priors for the decision. We found that participants’
context-dependent priors were closer to each other and less extreme than those predicted by a model that maximizes reward
rate given the true stimulus frequencies. However, participants’ priors were optimal given their subjective frequency estimates,
which showed that they averaged response probabilities across cues when the cues made sufficiently similar predictions.
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Abstract: The present research aimed to investigate children’s comprehension of Chinese classifiers. Sixty-five Chinese-
speaking children between the ages of 4 and 6 recruited in Taiwan participated in the experiment. The results indicate that
children can make generalization based on their understanding of classifiers instead of solely relying on classifier-noun associ-
ations. The results also show that the participants performed equally on both shape-based and feature-shared classifiers, which
suggests that children not only use shape salience to learn Chinese classifiers, but are also sensitive to other relations between
objects classified by the same Chinese classifier. Besides, the complex patterns in the results imply that in spite of the exposure
to classifiers, the semantic transparency between classifiers and objects varies considerably in both semantic types of classifier,
which might be the primary reason that some classifiers are more difficult for children to acquire.
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Cumulative response probabilities: Estimating time course of lexical activation
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Sahil Luthra
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Abstract: An aim of research on spoken word recognition is to characterize the influence of various lexical characteristics
(e.g., word frequency, neighborhood size) on lexical access. Dynamics can be coarsely estimated from single-point measures
like naming or more directly assessed using time course measures like fixation proportions over time in the visual world
paradigm (e.g., Tanenhaus et al., 1995). We propose that cumulative response probabilities (CRPs) over time may allow a
new characterization of the activation dynamics of lexical access from single-point measures. We assume that the timing of
responses in a naming task reflects probabilistic sampling of underlying continuous activation dynamics that can be recovered
by CRPs. We applied CRP analyses to visual word recognition data collected for 40,481 words from 472 participants (the
English Lexicon Project; Balota et al., 2007) and report initial efforts to validate this new approach.
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Abstract: The implicit association test (IAT) measures bias towards often controversial topics (race/religion), while newspapers
typically take strong positive/negative stances on such issues. In a pre-registered study, we developed and administered an im-
migration IAT to readers of the Daily Mail (typically anti-immigration) and Guardian (typically pro-immigration) newspapers.
IAT Materials were constructed based on co-occurrence frequencies from each newspapers’ website for immigration-related
terms (migrant) and positive/negative attributes (skilled/unskilled). Target stimuli showed stronger negative associations with
immigration concepts in the Daily Mail corpus compared to the Guardian corpus, and stronger positive associations in the
Guardian corpus compared to the Daily Mail. Consistent with these linguistic distributional differences, Daily Mail readers
exhibited a larger IAT bias, revealing stronger negative associations to immigration concepts compared to Guardian readers.
This difference in overall bias was not explained by other variables, and raises the possibility that exposure to biased language
contributes to biased implicit attitudes.
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Abstract: French beginning readers might rely on syllables during reading acquisition. However, no in-depth developmental
study has been carried out to determine how and when the syllable becomes this prelexical and segmental unit used in the time
course of reading acquisition. We recruited 800 French-speaking children distributed in grade 1-5. We used a lexical decision
task in a visual masked priming paradigm and a visual identification task. We manipulated the initial syllable frequency, the
initial bi/trigram frequency, and the initial syllable structure (CV; CVC). Our main results describe a clear developmental course.
The syllable-based effects are early (G1) and sustainably observed (G5), and primarily depend on the syllable frequency. From
G2, we found the systematic, automatic use of the syllable as prelexical and segmental unit but the syllable frequency has
facilitatory syllable-based effects in the task with lexical access, while it has inhibitory effects in the task without lexical access.
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Epistemically Suspect Beliefs can be partly explained by individual’s propensity
towards contradiction
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Abstract: Studies on epistemically suspect beliefs (ESB) have suggested that individual’s analytic cognition suppresses un-
warranted beliefs, however, our previous studies also showed that an inhibitory effect of analytic cognition was higher among
Westerners than Easterners. Rather, intuitive cognition was a common predictor of beliefs between two cultures. Among sev-
eral cultural differences in cognitive style, we suspect that tendency towards dialectic thinking, i.e., tolerance for contradiction
may contribute cultural differences on ESB. The present study aimed to explore this possibility and investigated the association
between beliefs and other cognitive measures including individual’s cognitive abilities, thinking dispositions, personality traits
and propensity towards dialectic thinking. The results showed that the ESB resulted from our intuitive cognition for the most
part, and that the effect of culture diminished whilst controlling individual’s tendency towards dialectic thinking and style of
causal cognition. The cultural difference in a relationship between beliefs and cognitive style was discussed.
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Practicing an auditory working memory task recruits lower-level auditory areas in
a task-specific manner
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Abstract: We studied the impact of the trained auditory task on the pattern of behavioural improvement, and its relation to
the underlying neural mechanisms. Specifically, we asked whether training with tone retention and manipulation (working
memory, WM) transferred to pitch discrimination and vice versa, and whether training modified the brain areas that underlie
task performance. Training substantially improved performance, but did not transfer across tasks, even when using the same
stimuli. Pre and post training fMRI scans revealed that WM training enhanced activity in bilateral auditory cortices, but
not in frontal areas that are initially associated with higher cognitive functions. These results suggest that training-induced
improvement is associated with back-tracking along the reverse hierarchy in a task specific manner, as predicted by the Reverse
Hierarchy Theory of perceptual learning (Ahissar & Hochstein, 2004). Thus, low-level areas are recruited, but there is no
general upgrade in WM or in auditory skills.

3773
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Abstract: The conventionalization of figurative comparisons is one source of lexical evolution. For example, anchor once
only meant a device for mooring a ship, but may now be used to describe any source of stability or confidence. Our goal
is to understand this process. Following the Career of Metaphor framework, figurative mappings are interpreted through a
structure-mapping process, rendering common structure salient. As figurative terms become conventionalized, (1) the figurative
sense becomes associated with the base term; and (2) there is shift from simile form to metaphor form. In two studies we
investigated psycholinguistic properties that may influence this process: relationality and aptness. We use relative preference
for the metaphor form as an estimate of degree of conventionalization; by determining the preferred form for a set of figuratives,
we find evidence that both aptness and relationality influence this process. We speculate that figurative comparisons may give
rise to new relational terms.
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Abstract: Children typically apply a novel label to a novel object, rather than to a familiar object; a phenomenon called Mutual
Exclusivity (Markman et al., 2003). A recent explanation is that children tend to associate novel stimuli together (Horst et al.,
2011). We show that pragmatic factors may override novelty. In our study two-year-old children first played with a novel object
together with E1. Then E1 left the room and E2 brought another three novel objects for the child to manipulate on his/her own.
Finally, E1 came back and requested the child to give her the ‘Bitye’. Most children chose the first object, with which they
had a common history with E1, even though it was the least novel. This suggests that children understand a novel word by
considering to which object the speaker is most likely to have intended to refer.
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Search Your Feelings, Luke: Emotional Fluency Predicts Well-being and
Emotional Intelligence
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Abstract: How we feel reflects a combination of recalled and recognized emotions. All existing self-report measures are based
solely on recognized emotions. To understand the influence of recalled emotions, we developed a new method to recover human
emotional states based on emotional free association, in a task we call the emotional fluency. The present work investigated the
differences between recall and recognition in human emotional states. We compared the emotional fluency task with self-report
measures, including PANAS, WEMWBS, and the Emotional Intelligence Scale. Using language statistics computed from the
emotional fluency task, we developed multiple models for predicting self-report measures. We find that while recalled emotions
can predict recognized emotions, they highlight important problems with existing recognition measures, including emotional
coverage and the difference between availability and accessibility. We also investigate the search process in emotional memory,
supporting the role of unbiased memory sampling and higher emotional intelligence and mental well-being.
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Abstract: When reasoning about several numbers, past work has shown that adults mentally summarize data sets and reason
based on set characteristics such as the mean and variance (Morris & Masnick, 2015). In the current study, we asked 10- and
12-year-old children to look at two columns of numbers (framed as the distances two golfers drove a golf ball, when doing
so repeatedly), and to choose which golfer hit the ball farther. We examined reaction time, accuracy, and eye movements, in
addition to self-reported strategy use. We found children reasoned using some of the same summary characteristics as adults,
though less consistently, and had more varied strategy uses. For example, some children focused only on one number in each
set, a pattern not seen in adults. These findings suggest that instruction building on these intuitions may help develop children’s
numerical cognition skills.
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Abstract: Most Brain-inspired Visual Object Recognition Models(BVORMs) do not consider local and global reciprocal con-
nections in visual pathway. We addressed this weakness and implemented an attention modulation mechanism based on feed-
back connections in BVORMs, where feature-selectivity is shaped and modulated by categorization of objects based on their
visual features. This modification is inspired by the top-down neuromodulatory signals that make changes in post-synaptic
activities of the feature-selective neurons. We also incorporated an implicit memory unit in BVORMs to accumulate recent
Hebbian synaptic plasticity’s of the neurons in each task. This mechanism guides the top-down feature-based attention modula-
tion to retrieve the interrelated feature-selectivity pattern for each task.HMax and CNN models were used as two BVORMs and
tested on a visual categorization problem: natural versus artificial objects in CALTECH-256. Based on experimental results,
our proposed modifications not only increased their biological-plausibility but also significantly improved their categorization
accuracies compared to the original models.
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Abstract: Because complex span tasks were designed to create a demanding concurrent task, the average span is usually lower
(4 ± 1 items) than in simple span tasks (7 ± 2 items). One possible reason for the higher span of simple span tasks is that
participants can take profit of the spare time to chunk a few stimuli into 4± 1 groups. It follows that the respective spans of these
two types of tasks could be equal (at around 4 ± 1) when regularities are absent. We therefore predicted an interaction between
task and chunkability, supporting a single higher span for a simple span task using chunkable items. However, observation of
the spans in the non-chunkable vs. chunkable series refuted the idea that chunking is important solely in simple spans. Indeed,
information compression processes contributed to performance levels to a similar extent in simple and complex span tasks.
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Abstract: In the Michotte (1963) launching scenario, an object (X) moves toward a resting object (Y), eventually colliding with
it. In the moment of contact, X stops und Y starts moving - creating the strong impression that X caused Y’s motion and that X
exerted a force on Y (but not vice versa). These asymmetries contradict the (symmetrical) laws of Newtonian mechanics, which
are at the heart of the popular “noisy Newton” theories of intuitive physics. As an alternative, we propose that inferences in
physical scenarios operate over pre-Newtonian representations that are based on the asymmetrical concept of impetus, a motive
force that keeps objects moving and that is transferred and reflected in object collisions. We present a formal model of impetus
and show that, unlike noisy Newton theories, it provides an explanation of asymmetrical judgments. Other related findings can
also be modeled (e.g., biases in mass judgments).
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Abstract: We examined whether children feel regret when their failure to make a prosocial choice negatively affects a peer.
Five-to-six-year-olds and 7-to-9-year-olds played a game in which they completed a sticker sheet to win a prize. Children then
decided whether to donate a spare sticker to another child; most children did not donate. Children discovered that the next child
did not have enough stickers to win a prize, and rated their emotions. At this point, children did not know whether the next
child could have been able to win the prize if they had donated the sticker in question. This counterfactual information was
then provided, and children rated whether they felt happier, sadder, or the same as before. Only the 7-to-9-year-olds’ responses
suggested that they experienced interpersonal regret. We also showed that experiencing interpersonal regret in the sticker task
resulted in children making more prosocial choices in a separate task.
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Abstract: As problems of understanding arise in conversational interaction, we must find a means to indicate to our interlocutor
the reason for our misunderstanding. However, we are simultaneously constrained by social interactive practices that limit face
threat and adhere to epistemic rights. Thus, the challenge is to communicate our own misunderstanding - as specifically as
possible - while avoiding explicitness. This challenge may be increased in contexts of language emergence in which alignment
is necessary to promote communicative efficiency and conventionalization. Participants in novel communication tasks relied
on certain gesture-driven other-initiated repair strategies to gain interactive alignment. The embodied display of cognitive and
interactive misalignment cues the interlocutor to repair in a way that reflects their own understanding of the repair initiation and
trouble source. The breakdown of intersubjectivity - and its subsequent re-building - is observed in the negotiation of evolving
signal-meaning matches through interactive repair sequences.
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Abstract: A central finding in dialogue research is that interlocutors rapidly converge on referring expressions which become
progressively contracted and abstract. However there is currently no consensus on which mechanisms underpin convergence:
The interactive alignment model (Pickering and Garrod, 2009) favours alignment processes, the grounding model (Clark, 1996)
prioritizes positive feedback, while Healey (2002) demonstrates the importance of miscommunication in identifying differences
of interpretation.

To investigate convergence we report a variant of the maze-task in which both participants are given misaligned instructions:
One participant is primed with instructions that conceptualize the maze as consisting of horizontal vectors (e.g .”4th row, 2nd
square”); the other is primed with instructions that conceptualize the maze as consisting of vertical vectors (e.g .”3rd column,
2nd square”). Compared with a baseline, misaligned dyads converged on more abstract referring expressions. We argue this
pattern is due to participants interactively combining their perspective with that of their partner.
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Abstract: We used a non-linguistic experimental paradigm to explore the instantaneous creation and adaption of novel commu-
nicative systems of conventions. Groups of participants played a computer game, in which they sent and interpreted minimal
signals to obtain shared rewards within a virtual scene. Within groups, trials manipulated the space of possible signals that
could be sent, and the set of meanings to be expressed (the range of cases for the locations and quantities of rewards). Between
groups, initial conditions were manipulated through early exposure to different sets of communicative cases.

We observed participants spontaneously develop systems of conventions that were adapted to the full range of signal-meaning
mappings encountered. Groups favoured systems optimised to their particular initial learning environment. These systems
become entrenched and transferred to new signal-mapping environments to which they were not adapted.
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Abstract: A central problem concerning the organization of the cognitive semantic web is to understand how different cate-
gories of words are stored in the brain with a well-defined topographical organization. This topography is a natural construction
that plausibly is strongly related with the syntactic and semantic organization of natural languages. An eloquent experimental
evidence of the existence of a continuous semantic representation of object and action categories in the human brain has been
published by Huth et al (Neuron 76:1210, 2012). One of the ways to explain the emergence of a topographical organization in
the brain cortex using neurocomputational models, is by means of Kohonen’s self-organizing maps. Here we show that these
topographies can be operationally represented with associative memories spatially organized by tensor contexts. We illustrate
formally and numerically this fact. In addition, we show that, consistently with evidence from pathology, different semantic
categories can be specifically damaged.

3785



Picture book reading in the lives of 18-30 month old children: A diary study
Jessica Montag

University of California, Riverside

Linda Smith
Indiana University

Abstract: Picture book reading is a common activity in the lives of many children. This work describes the frequency and
character of picture book reading in American homes. Seventy-seven monolingual English-speaking families with children
between the ages of 18-30 months took part in a 5-day diary study in which caregivers recorded details about picture book read-
ing activities. This sample is characteristic of some laboratory samples but less nationally representative; 92.2% of caregivers
held a college degree. Relative to previously reported averages, caregivers reported reading to children more often (6.8x/day),
reported beginning reading at a younger age (2.2 months) and reported more books in the home (111.1 books). Caregivers
reported both reading the book text and discussing the pictures with their children. These numbers suggest an extremely high
upper-limit to the amount of language input some children receive from picture book reading. Consequences for language
environments and language development will be discussed.
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Abstract: Similarity measures, extent to which two concepts have similar meanings, are key to understanding how concepts
are represented, with different theoretical perspectives relying on very different sources of data from which similarity can
be calculated. Experiential/embodied theories use verbal features or property ratings; distributional/relational ones use co-
occurrence. Similarity may also be estimated from tasks like word-association, priming, and other rating studies. Often the
different theoretical perspectives are placed in opposition; here we test the extent to which similarity representations based
on different measures converge. We used Representational Similarity Analysis and multidimensional scaling on 31 similarity
measures. Similarity in age-of-acquisition and word-length were related to similarity in naming and priming; and affective
similarity and co-occurrence were also related. More importantly, representational resemblance was shown among embodied,
distributional and association-based representations, demonstrating that different data sources are employed in a similar way in
building meaningful conceptual representation.
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Abstract: Technology-based, interactive test questions are common in large-scale assessments, yet how alternative question
formats influence test-taker cognition is not well understood. In a series of studies, we investigated test-taker performance on
isomorphic questions using alternative presentation layouts and modes of responding. Adult participants solved math prob-
lems in three formats, each of which regularly appear in many large-scale assessments: 1) forced-choice (explicit True-False
options) presented in a table format, 2) check-all-that-apply (implicit True-False options) presented in a table format, and 3)
check-all-that apply presented as separate questions. Participants’ solution time and affirmative selection rate suggested dif-
ferent cognitive processes for the question formats, particularly when they were uncertain of their answers. We propose a
cognitive model to account for the results and predict the impact of alternative question formats on test-takers. We discuss how
principles of cognitive science and human-computer interaction provide direct implications for designing assessment questions
and understanding test-taker cognition.
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Abstract: Metaphor is replete in discourse about immigration. Recent work shows that metaphoric framing can influence
attitudes toward immigration (e.g., Landau et al., 2009). However, we know little about how and when specific information in
the source domain drives this effect. Our study takes a novel approach, examining how varying intensity of information in the
source domain frame influences attitudes toward immigrants and immigration in the U.S. We analyze various metaphors but
we focus especially on intensity effects in the conceptual metaphor IMMIGRATION IS FLUID TRANSFER. For the FLUID
TRANSFER source domain, we investigate how varying intensity of flow (e.g., rate) influences attitudes about immigration,
including whether immigrants should have access to social services and what type of wall should be built, if at all. Our results
make a valuable contribution to metaphor research by revealing what information within the source domain has the most (or
least) robust effects on reasoning.
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Abstract: How sleep impacts the accuracy of identifications that eyewitnesses make from lineups is unknown. For a com-
prehensive understanding of eyewitness performance, two types of eyewitness ID accuracy are considered: discriminability
(the ability to distinguish innocent from guilty suspects) and reliability (the probability that the identified suspect was the of-
fender). The well-known role sleep plays in memory consolidation should apply to an eyewitness’s ability to discriminate, but
not necessarily their reliability. That is what we investigated in a large-scale forensically-relevant experiment. We compared
discriminability and reliability from sleep (sleep occurs between witnessing a crime and lineup test) and wake (remains awake
between crime and lineup) conditions. Furthermore, theorists have long been using signal-detection models to understand
recognition memory, but its use is new to the field of eyewitness ID research. Thus, we compared signal-detection models with
different decision rules. Our findings shed light on the impact sleep has on eyewitness IDs.
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Abstract: Previous work has shown that preschoolers—in comparison to older children and adults—tend to view categories
as homogeneous, generalizing properties of individuals broadly to all category members (e.g., this dax has wings, so all daxes
do). Here, we explore whether the testimony used to describe category individuals as well as children’s prior knowledge of
categories attenuates their homogeneity expectations. Using a novel induction task, 4 to 7-year-olds were asked to predict the
distribution of properties among members of familiar/unfamiliar animal categories based on a single exemplar. Exemplars were
introduced as “special” to half of participants. Preliminary findings (N = 71) suggest that prior knowledge may contribute to
beliefs about category homogeneity: responses for familiar animals varied appropriately given the real-world prevalence of each
property whereas children overestimated the property’s prevalence for unfamiliar animals. The complete dataset will speak to
how language choice in testimony shifts children’s beliefs about homogeneity.
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Learning to Consider Alternative Causes: Can Practice Make Us More Aware of
Our Imperfection?

Edward Munnich
University of San Francisco

Ana Maria Hoffmann
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Nancy Ortega
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Emma Weinberger
University of San Francisco

Dana-Lis Bittner
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Abstract: In hindsight bias, upon learning an outcome, one is overly confident that one would have “known it all along.”
Several researchers have been able to neutralize hindsight bias by prompting participants to consider alternative outcomes,
but can we learn to avoid bias for novel outcomes, without prompting? Foresight participants read brief summaries of five
psychology studies, and learned the mean performance of one group in each study. They estimated the other group’s perfor-
mance—reflecting their sense of the effect size—stated possible causes, and then learned the other group’s mean performance.
Hindsight participants learned both groups’ mean performance at the outset, then indicated what they would have estimated.
We asked whether (1) participants would show superior estimation and/or consideration of alternative causes for novel stimuli
one week later, and (2) whether Foresight participants would benefit more given the feedback they received on the accuracy of
their estimates.
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Bidirectional effect of emotional contagion for pain during face-to-face interaction
Aiko Murata

Waseda University

Tatsuya Kameda
The University of Tokyo

Katsumi Watanabe
Waseda University

Abstract: The automatic contagion of emotion is considered crucial in interpersonal communication. In face-to-face interac-
tions, people could be both the receiver and sender of emotional content. Thus, contagion may have bidirectional influences
on the emotional states of individuals. However, many studies have mainly dealt with unidirectional contagion, such that the
expression of pain in a target entails a reaction of pain in the observer. In this study, we demonstrated bidirectional emotional
contagion in the experience of thermal pain during interaction. Firstly, we showed that the physiological responses of dyad
members were correlated with each other when they could interact compared to when they were impaired to see each other.
Further, we demonstrated that individuals showed higher or lower physiological responses when their partners experienced
stronger or weaker stimuli respectively. Thus, people can develop similar physiological responses through interactions, and this
effect seems to induce a change in the responsivity to stimuli.
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Agent’s symmetry elicits egocentric transformations for spatial perspective-taking
Hiroyuki Muto

Graduate School of Human Sciences, Osaka University Japan Society for the Promotion of Science

Soyogu Matsushita
Graduate School of Human Sciences, Osaka University

Kazunori Morikawa
Graduate School of Human Sciences, Osaka University

Abstract: Spatial perspective-taking is an ability to understand in which direction an object is located relative to an agent (e.g.,
another person or a chair). Previous studies showed that left/right judgments prompted an egocentric transformation strategy
(i.e., mental rotation of the self) whereas front/behind judgments prompted other strategies (e.g., tracing a line of sight). To
examine whether the symmetrical shape of an agent could affect the choice of strategies, we used as an agent a cuboid which
has a prong on one of its sides. We labeled the prong side as the front (Experiment 1) or right (Experiment 2) of the agent,
about which participants made left/right and front/behind judgments. The results revealed that egocentric transformations were
more favored for judgments about directions along symmetrical than asymmetrical axes of the agent, regardless of whether the
judgment was about left/right or front/behind. This suggests similar processing underlies left/right and front/behind judgments.
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Robot as Moral Agent: A Philosophical and Empirical Approach
Shoji Nagataki
Chukyo University

Masayoshi Shibata
Kanazawa University

Tatsuya Kashiwabata
Keio University

Takashi Hashimoto
Japan Advanced Institute of Science and Technology

Takeshi Konno
Kanazawa Institute of Technology

Hideki Ohira
Nagoya University

Toshihiko Miura
University of Tokyo

Shinichi Kubota
Kanazawa University

Abstract: What is necessary for robots to coexist with human beings? In order to do so, we suppose, robots must be moral
agents. To be a moral agent is to bear its own responsibility which others cannot take for it. We will argue that such an
irreplaceability consists in its having an inner world — one which others cannot directly experience, just as pleasure and pain.
And personality of a moral agent, which is to be irreducible to a mere difference of traits or features of individuals, is firmly
rooted in such an inner world.

We will support our theses by referring to our experiment in which humans and robots interact with each other doing a
coordination task. This experiment will provide an empirical analysis of the human-robot relationship with regard to learning
mechanism, moral judgement, and the ascription of the inner world.
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Iconicity vs. Systematicity in Artificial Language Learning
Alan Ks Nielsen

Max Planck Institute for Psycholinguistics

Julia Simner
University of Sussex

Simon Kirby
University of Edinburgh

Kenny Smith
University of Edinburgh

Abstract: A foundational assumption in linguistics has been that words and their meanings are arbitrarily related; however, this
position has been challenged recently. Experiments have shown that both systematic (where similar objects have similar labels)
and iconic (words ‘resemble’ the objects they label) associations between words and objects facilitate learning. However, these
two literatures remain confounded: the degree to which increased learnability is driven by iconicity rather than systematicity
has not been disentangled. Here we present the results of two studies testing the differences in learnability between artificial
lexica that are either conventionally systematic, or both systematic and cross-modally iconic. In the first study we find that both
conventional and iconic systematic lexicons are equally learnable, but iconic mappings provide an early learnability advantage.
In the second study we find that the presence of sound-symbolic associations for one dimension can interfere with the learning
of conventional associations on another dimension.
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The space and time of contamination: Complete, continual, spreading effects
Laura Niemi

Harvard University, Cambridge, MA, USA

Liane Young
Boston College, Chestnut Hill, MA

Abstract: People sometimes report feeling “totally” different (complete affectedness) and that “they’ll never be the same again”
(continual affectedness) after negative events. It’s been proposed that complete, and continual negative effects characterize
contamination or impurity. Meanwhile, whether impurity is a legitimate moral domain apart from harm has been debated in
moral psychology. We address these matters using novel approaches from cognitive linguistics. First, according to a prominent
theory of verb semantics, verbs that convey impurity (contaminate, taint) belong to a class that implies complete affectedness
(the “fill” class), such that contaminated entities are seen as completely contaminated. Second, people rated perpetrators equally,
and highly, “contaminated”, “contaminating”, and “injuring”, whereas victims were rated straightforwardly “injured” (Turk;
n=126, replicated twice). For ”contaminated” perpetrators, the taint carried on – they were continually ”contaminating”. In
sum, impurity is distinct from harm: the process underlying impurity, contamination, involves inferences of complete, continual
negative effects that spread.
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Construction of design activity index based on the value of artifact
Kunio Nikata

Kanazawa College of Art

Kentaro Inomata
Kwansei Gakuin University

Toru Sato
Kwansei Gakuin University

Keigo Kawasaki
Kanazawa College of Art

Noriko Nagata
Kwansei Gakuin University

Abstract: Digital personal fabrication refers to the creation of products using ICT-tools by individuals. In order to support
the users of such tools who are untrained in design, it is necessary to develop a support system that makes it possible to use
expert knowledge on designing products. For this study, we selected 26 items from the values that are considered important
for design (e.g., unique, modern; Inomata et al., 2016), and investigated the design activities for realizing these values. Eighty
professionals in design participated in the survey. Many design activities concerning shapes and colors were observed as
ways to realize the values. In addition, various activities such as improvements on materials and motifs or advices to satisfy the
practical design activity were observed. We created an index of the frequently used activities to realize each value and discussed
its potential as an actual design support tool.
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Indirection Explains Flexible Tuning of Neurons in Prefrontal Cortex
David Noelle

University of California, Merced

Abstract: The prefrontal cortex (PFC) is broadly seen as supporting cognitive flexibility - quickly adapting behavior in response
to changing circumstances. Some PFC neurons appear to actively maintain rule-like information associated with the current
task, with firing changing with task context. Some PFC neurons, however, have been found to exhibit activity related to specific
stimulus features or action options, but the tuning of these neurons appears to dynamically change with task shifts (Duncan,
2001). Short-term synaptic plasticity has been proposed as the primary mechanism for rapidly adapting the response profiles
of these cells. Using a computational cognitive neuroscience model of hierarchical structure in PFC (Kriete, Noelle, Cohen, &
O’Reilly, 2013), an alternative account is offered in which flexible neural tuning arises not from fast synaptic change but from a
frontal representational scheme involving neurons that encode references to other PFC areas rather than directly encoding task
relevant sensory/motor information.
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Five-Year-Old Children Transfer a Metacognitive Strategy to a Novel Task
Allison O’Leary

The Ohio State University

Vladimir Sloutsky
The Ohio State University

Abstract: Previous work has demonstrated that interventions like 1) giving in-the-moment performance feedback and 2) pro-
viding a strategy rule can improve children’s metacognitive learning. However, there is little evidence to suggest that this
learning transfers to a novel task. We trained 5-year-olds’ metacognitive control in a task requiring participants to select the
easier of two games to acquire the highest amount of points. Compared to a control group who received no training, children
who were trained to control behavior (by selecting an easier dot discrimination task) showed greater evidence of transfer to a
novel task (by selecting an easier line length discrimination task). This suggests that the learned strategy rule (i.e., to select an
easier task) was not stimulus-specific, and was abstract enough to apply to a novel task with new stimuli. In sum, 5-year-olds
were able to learn a strategy rule and spontaneously apply the strategy to a novel task.
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Do forgiving God primes strengthen support for state sanctioned punishment?
Katherine O’Lone

Royal Holloway, University of London, LONDON

Ryan McKay
Royal Holloway, University of London

Abstract: Do forgiving God primes strengthen support for state-sanctioned punishment?
Laurin et al (2012) found that beliefs in powerful, intervening Gods (both in general and when made salient) reduce people’s

endorsement of state-sanctioned punishment. In light of this, we investigated whether the manner in which God intervenes (via
forgiveness or punishment) influences people’s endorsement of state-sanctioned punishment.

Across four studies we explored a) whether priming participants with a forgiving God and b) whether salient, forgiving God
beliefs increase endorsements of state-sanctioned punishment. The rationale being that a forgiving God will lead people to
view punishment as a responsibility that lies with them rather than one outsourced to God. Our results revealed no evidence for
effects of forgiving God primes or salient forgiving god beliefs on endorsements of state-sanctioned punishment. We discuss
the implications of these findings for extant theories of religious prosociality and proportionality-based accounts of morality.
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Effects of motives of search and prior experiences on online browsing
performance: Considerations from searchers cognitive load

Kayoko Ohtsu
Waseda University

Takako Sakawaki
Waseda University

Abstract: The present study aimed to develop effective education methods of online search for unskilled college students. In
the preparatory stage of the study, an experiment using simple browsing tasks was conducted to examine the effects of important
factors of searching focusing on cognitive load. Under two conditions (Casual and Formal) promoting different motivations,
search result lists were displayed to fifty-nine college students to look for two types of information: seeking statistical data (task
A) and seeking views and opinions to answer open questions (task B). Analyses of each task using two factors (the conditions
and their presentation orders) revealed that in task A, only when the Casual condition was first, the participants performed
better in the Formal condition. In task B, only when the Formal condition was first, browsing time in the Casual condition was
shorter. We assume that these effects are associated with the workload of browsing.
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Anticipatory Active Inference from Learned Recurrent Neural Forward Models
Sebastian Otte
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Theresa Schmitt
University of Tübingen, Tübingen, Baden-Württemberg, Germany
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Abstract: We demonstrate that inference-based goal-directed behavior can be done by utilizing the temporal gradients in re-
current neural network (RNN). The RNN learns a dynamic sensorimotor forward model. Once the RNN is trained, it can be
used to execute active-inference-based, goal-directed policy optimization. The internal neural activities of the trained RNN
essentially model the predictive state of the controlled entity. The implemented optimization process projects the neural activ-
ities into the future via the RNN recurrences following a tentative sequence of motor commands (encoded in neurons akin to
recurrent parametric biases). This sequence is adapted by back-projecting the error between the forward-projected hypothetical
states and desired (goal-like) system states onto the motor commands. Few cycles of forward projection and goal-based error
backpropagation yield the sequences of motor commands that control the dynamical systems. As an example, we show that a
trained RNN model can be used to effectively control a quadrocopter-like system.

3803



Application of fuzzy logic in dyslexia user modelling to design customizing
assistive technology

Tereza Pařilová
Masaryk University

Eva Hladká
Masaryk University

Abstract: Cognitive psychology studies phenomena that cannot be directly observed. Scientific knowledge about the brain is
extensive, but there is still a lot to be understood about its functions. Cognitive functions are weakened in dyslexic children; this
is reflected in highly individual problems regarding the reading skills. Reading is a process which consists of decrypting graphic
characters (perceptual level) and understanding the meaning of words (cognitive level). These levels cannot be separated.
An approach – fuzzy logic – is used in order to address this issue and create a model of the dyslexic user, based on which
technologies can be individually tailored to a particular dyslexic. We discusse the possibilities of the use of the mathematical
apparatus for the categorisation of users with regard to their ”black box”. Further, we focuse on the development of new
assistive technologies targeted at specific attention disorders, reading disorders, as well as information processing disorders.
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An Exploratory Study of the Influence of Pretend Play on Children’s
Self-Regulation and Language Skills

Tanya Paes
University of Cambridge, Cambridge, Cambridgeshire, United Kingdom

Michelle Ellefson
University of Cambridge

Abstract: Recently, there has been increased interest regarding how pretend play contributes to children’s cognitive develop-
ment. This study examines the efficacy of a pretend play intervention on self-regulation and language skills of 4- to 5-year-olds
and explores parents’ perceptions about children’s engagement in pretend play. The small-scale intervention includes eight 30-
minute sessions over 6 weeks, in groups of five children. Each session included: (1) shared storybook reading; (2) role-playing;
and (3) review. During shared story-book reading the children were read two books with explicit phonological awareness and
vocabulary instruction for 18 words in each book. Role-playing included providing the children with props, which allow for
engagement in pretend play activities. Several measures were used pre- and post-intervention to evaluate children’s self- reg-
ulation and language skills. The improvements that occurred in the intervention are considered alongside other cognitive and
educational factors to better understand the role of pretend play in educational settings.
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Interpreting nonsignificant findings in psychological research
Bence Palfi
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Abstract: In this study, we examined the current practice and alternative methods for interpreting nonsignificant findings in
psychological research. The traditional null-hypothesis testing presents a challenge for researchers to interpret nonsignificant
findings. We reviewed the abstracts of all empirical articles published in three high-esteem psychological journals in 2015
and selected those which referred to a nonsignificant result (N=134).We found that the majority of the statements interpreted
the results only within the sample, yet in 23% the authors inferred from the results to the absence of an effect. Bayes factor
analyses on these statistics indicated that the support of these results for the null-hypothesis is strong only in 4%, moderate in
70% and anecdotal in 26%. The results revealed that Bayes factor analysis can help researchers in interpreting nonsignificant
results and also highlight that psychological studies with traditional sample sizes are unlikely to present strong evidence for the
null-hypothesis.
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Perceived control in bounded-rational decision-making
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Abstract: The amount of control perceived by an agent governs their ability to learn. Bounded rationality, or the idea that we
are limited by the amount cognitive work we can perform, provides an appealing framework within which perceived control
could be formulated. When modeling the world, the bounded-rational agent balances the trade-off between the utility and
complexity of this constructed model in order to choose an optimal policy. Here, we present a novel formulation of behavioral
control, bounded inference, which explicitly models control as the perceived constraint experienced by an agent during the
inference process, employing a version of the free energy functional with an additional boundedness parameter as the variational
principle of this constrained optimization. The utility of bounded inference is demonstrated in simulations that capture various
characteristics of dysfunctional behavioral patterns as observed in a range of psychiatric disorders for which control beliefs
play a central role.
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Applications of Cognitive Science to Enhancing Scholarly Communication
Purav Patel

University of Minnesota - Twin Cities, Minneapolis, Minnesota, USA

Abstract: Learning from and building on the accomplishments of scholarly publications is often difficult. To address this
challenge, this work leverages well-replicated cognitive science phenomena to promote people’s understanding of research
found in journal articles. It forms the conceptual groundwork for a digital platform through which users can author and learn
from interactive multimedia documents that communicate research more effectively. One of the many recommendations is to
reduce the split-attention effect by integrating text and graphics in figures. Doing so may help readers understand complex
visuospatial representations. Encouraging active processing via comprehension questions and responsive simulations of ex-
perimental procedures embedded in articles may boost learning even more. To promote the creative extension of research,
evidence-based brainstorming prompts that trigger analogical reasoning and episodic specificity induction should be adopted.
If scholarly communication is centered on scientific principles like these, then the dissemination and dynamics of science may
both advance.
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Novel metacognitive problem solving task
Jwalin Patel
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Abstract: Metacognition is important for decision making, problem solving and learning. Despite the widespread interest in
metacognitive skills and their development, it is challenging to measure metacognitive skills in children. Some excellent quali-
tative and observational measures exist, but use metrics that are different from traditional metacognition tasks for adults. Some
meta-cognition tasks of memory have been developed for children, but these only offer a narrow range of the skills involved
in metacognition. Here, we compared performance on a meta-memory task for children with a new task of metacognition
for problem solving. Our sample includes about 800 children aged 8-10 years who were part of a larger study exploring the
development of thinking skills. The results indicated similarities and differences between the memory and problem solving
tasks, suggesting that the new task could be a bridge between existing qualitative and quantitative measures of metacognition
in children.
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Comparing comparison indices: Assessing the validity of different magnitude
comparison measures across presentation formats and age groups

Marcie Penner-Wilger
King’s University College at Western University

Aaron Cecala
Elizabethtown College

Melissa Elfers
King’s University College at Western University

Abstract: Magnitude comparison tasks are used to assess the precision of numerical representations. Recent research, how-
ever, questions the validity of different measures of magnitude comparison. We investigated the validity of five performance
measures: overall RT, overall accuracy, numerical ratio effect (RT), numerical ratio effect (accuracy), and Weber fraction.
Kindergarten and university students completed symbolic and non-symbolic magnitude comparison tasks and a math skill mea-
sure. For children and adults, we calculated Chronbach’s α separately for each presentation format. All values were in the
unacceptable range, indicating that the different indices were not measuring the same construct. For children, a multiple re-
gression predicting KeyMath scores from symbolic and non-symbolic indices showed that only non-symbolic overall accuracy
and symbolic overall RT were predictors. For adults, a multiple regression predicting French Kit scores showed that only the
symbolic numerical ratio effect (RT) was a predictor. No index demonstrated predictive validity across formats or age groups.
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Language input and development during a year in an early intervention classroom
Lynn Perry
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Abstract: By the time they are three-years-old, children raised in poverty hear 30 million fewer words than their socioeconomi-
cally advantaged peers. This word gap predicts later school readiness outcomes and sets the stage for achievement gaps that can
follow the child through life. Although parent speech has become a subject of increasing study and intervention, less is known
about speech in childcare settings. We conducted a longitudinal study in an early-intervention classroom for 2-3-year-old chil-
dren from low-income, at-risk backgrounds. We examine the relationship between language input from teachers and peers and
children’s language skills over one year. Results show that vocabulary knowledge influences children’s talkativeness in the
classroom, and talkativeness and the amount of language they hear positively relates to increases in their language abilities.
Our application of automated measurement provides new insight into the dynamics of the classroom language environment and
consequences for language development in at-risk children.
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Early Visual Evoked Potentials (VEPs) in Infant Siblings of Children with ASD,
ADHD and Age-Matched Controls

Elena Serena Piccardi
Centre for Brain and Cognitive Development, Birkbeck University of London

Mark H. Johnson
Centre for Brain and Cognitive Development, Birkbeck University of London

Teodora Gliga
Centre for Brain and Cognitive Development, Birkbeck University of London

Abstract: Atypicalities in sensory perception are observed in individuals diagnosed with ASD and ADHD but have rarely been
contrasted in experimental studies. In the visual domain, superior performance on visual search tasks and hypersensitivity to
flickering lights have been cited as evidence of unusual sensory profiles.

To measure a reliable visual response, black-and-white checkerboards were presented under free-viewing conditions to three
groups of 10-month-olds: siblings of children with ASD (N=47), ADHD (N=21) and controls (N=18). Continuous EEG was
recorded and VEPs time-locked to checkerboards presentation computed.

Analysis of VEPs amplitude and latency revealed statistically significant group differences in the first 200ms post-stimulus
onset. Early components were enhanced in amplitude (P100) and delayed in latency (P100-N100) in at-risk infants compared
to controls (p<.05).

Atypical VEPs to low-level information might index a domain-general aberration in at-risk populations. The nature of this
atypicality will be further investigated by analyzing its association with background EEG.
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How does social touch modulate arousal states? An investigation in early
development.
Laura Pirazzoli
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Abstract: Caregiver-infant interaction through touch was shown to have long-term effects on child’s cognitive development,
but the mechanisms are poorly understood. Our aim is to investigate how affective touch (slow gentle caressing) affects arousal
states in young infants. Previous work showed that slow-touch decreases heart rate in 9-month-old infants.

We tested two groups of 6-months-old (n=26) and 9-months-old infants (n=23). We measured heart rate and saccadic reaction
time while infants performed a visual orienting task, where speed of re-orienting from a central fixation to a peripheral target
was measured. During the experiment, infants received either slow or fast-touch on their back in blocked trials. We found no
effects of touch on heart rate in either age-group, and only marginal effects of slow-touch on reaction times in 9-month-old
infants. We are currently testing 2 months-old infants to investigate if these effects are observed earlier in life; these new results
will be discussed.
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Hand, spoon or toothbrush? Towards the understanding of the neural
underpinnings of affective touch in 5 months-old infants.

Laura Pirazzoli
Birkbeck College, London, United Kingdom

Sarah Lloyd-Fox
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Mark H. Johnson
Birkbeck College, London, United Kingdom

Teodora Gliga
Birkbeck College, London, United Kingdom

Abstract: It is known that affective touch leads to broad cortical activations including posterior STS, key region of the so-
cial brain. Our goal is to discover if a similar pattern of activation can be observed in 5-months-old infants, or whether the
development of this cortical specialization results from extensive postnatal experience.

Over two studies we used functional-Near-InfraRed-Spectroscopy (fNIRS) to compare social touch (a human caress) to
non-social touch (a caress performed with a spoon in study1 -n=22- or with an electric toothbrush in study2 -n=17-).

In study1 we found similar patterns of activation to the social and non-social stimulus. In study2 we report broad responses
to the non-social stimulus, but, to our surprise, we found no activations to the human caress.

In light of these results we conclude that it is possible that at this age discrimination between social and non-social touch in
the posterior temporal lobe is still undergoing specialization.
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Do we see things better when we know grammar?
Fenna Poletiek
Leiden University

Maartje Van de Velde
Leiden University

Abstract: Language affects perception. But how? Recent findings (Boutonnet & Lupyan, 2015; Bocanegra, Poletiek &
Zwaan, submitted) suggest a dissociation between perception that is mediated as compared to not mediated by language.
One explanation is that language –that is combinatorial in nature- stresses the separate features of objects. We investigated
the effect of combinatorial (two words) and non-combinatorial (one word) labels on the perceptual separation of features in
visual recognition. Participants were trained to categorize meaningless objects with two dimensions: shape and height. Each
category had either a one word name; or a two words name reflecting its features. Participants then were tested on new objects
. Combinatorial labels enhanced categorization performance as compared to single labels. This suggests that language, by
decomposing objects into parts, might drive dimension separation in vision as well.
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Patterns of Cortical Activation Correlate With Speech Understanding After
Cochlear Implantation

Luca Pollonini
University of Houston
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Stanford University

Abstract: Cochlear implantation is a standard intervention for deafness, yet the ability of implanted patients to understand
speech varies widely. To better understand this variability, we used functional near-infrared spectroscopy to image auditory
cortex activation in response to different classes of sound and compared that to behavioral measures of speech perception. Both
control and implanted participants with good speech perception exhibited greater cortical activity to natural speech than to
unintelligible speech. In contrast, implanted participants with poor speech perception produced pronounced cortical activation
across stimulus classes. Moreover, the ratio of cortical activation in response to normal speech relative to that of scrambled
speech directly correlated with their comprehension scores, though not with auditory threshold, age, side of implantation,
or time after implantation. Because implanted adults with low speech perception scores produced indistinguishable cortical
activation across stimulus classes without preferential response to speech, we interpret this as demonstration of compensatory
processing effort.
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Encouraging Fruit and Vegetable Consumption Through Intuitive Theory
Building

Derek Powell
Stanford University

Ellen Markman
Stanford University

Abstract: Although routinely informed of the benefits of fruits and vegetables, Americans eat far short of the recommended
amounts. Instead of just telling people that fruits and vegetables are healthy, providing a compelling causal and teleological
explanatory framework could increase both people’s conviction about their health benefits and commitment to increasing the
amount and variety of fruits and vegetables they consume. Our brief intervention: (1) emphasizes that fruits and vegetables have
thousands of health-promoting phytochemicals, well beyond just vitamins, (2) describes clear causal mechanisms by which
these foods ensure cellular health, (3) draws an analogy between the benefits of plant-based foods and the power of plant-
derived medicines, and (4) explains that plants contain abundant nutrients because they must manufacture these chemicals for
their own survival. This novel intervention improved understanding and increased participants’ intentions to eat more fruits and
vegetables, illustrating how intuitive theories can shape motivation for behavioral change.
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Scientific Reasoning Ability in Middle Schoolers related to MasterMind Discovery
Strategy

Jean-Baptiste Quillien
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Abstract: A study, investigating the relationship between scientific reasoning and the capacity to discover the strategy to play
an hypothetico-deductive game (MasterMind), posits that students being able to discover Complex Strategies (vs. General
Strategy, Feedback Related, No Strategy) were also, on average, performing higher on our measure of scientific reasoning,
itself composed of evaluative, experimental and scientific knowledge measures. In addition to bridge the discovery of complex
strategies with higher SR ability, the finding also suggests the necessity to integrate rule discovery exercises in curriculum to 1-
practice while 2- recognize valid reasoning procedures. Finally, inquiring about the middle schooler’s capacity to recognize the
most effective strategy, will help to assess the class level as a whole. Such assessment will help the teacher identify some needs
and target effective lessons to explain and facilitate the transfer of CoV strategies to novel situations, as suggested by “real life”
problem demands.
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Neural responses decrease while performance increases with practice: A neural
network model
Milena Rabovsky
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Abstract: Why do neural responses decrease with practice? We used a predictive neural network model of sentence processing
(St. John & McClelland, 1990) to simulate neural responses during language understanding, and examined the model’s correlate
of neural responses (specifically, the N400 component), measured as stimulus-induced change in hidden layer activation, across
training. N400 magnitude first increased and then gradually decreased over training while comprehension performance at
the output steadily rose with practice. These results fit the developmental trajectory of N400 amplitudes. Importantly, they
also address the reduction of neural activation with practice. In the model, the reduction is due to continuous adaptation of
connection weights over training. As connection weights between hidden and output layer grow stronger, less hidden layer
activation is necessary to efficiently modulate the output. This shift of labor from activation to connection weights might be an
important mechanism contributing to the reduction of neural activation with practice.

3819



Age-related top-down and bottom-up guidance on eye movements when searching
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Hanane Ramzaoui
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Abstract: Efficient selection of targets is crucial in everyday activities across the lifespan. Studies reporting age-related decline
have, however, typically utilised arrays of simple, unrealistic objects. Using real-world scenes, we investigated how reliability of
scene semantics (consistent vs. inconsistent targets), target template specificity (name vs. precise picture) and target perceptual
salience influence oculomotor search behaviour in older vs. young viewers. Aging resulted in slower search considering initial
saccade latency, time and number of fixations to locate the target, and verification of object-template matching. No group
differences emerged in accuracy and in search facilitation due to a pictorial template or a semantically consistent target. Target
high salience enhanced efficiency in both groups, with stronger effects in older viewers. Aging seems therefore to lead to an
overall search speed reduction not due to specific deficits in utilisation of scene semantic guidance or in target recognition, and
possibly reduced by enhancing target perceptual guidance.
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The Long and Short of It: The Role of Verb Stem Vowel Duration in Sentence
Processing
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Abstract: When native English speakers say active and passive sentences, verb stems are longer in passive sentences than
in their active counterparts (Stromswold et al., 2002; Rehrig et al., 2015) because phrase-final lengthening and polysyllabic
shortening cause the verb stem vowel to be longer in passives (Aveni et al., 2016; Mayro et al., 2016). Eye-tracking and gating
studies of unaltered sentences revealed that listeners are able to predict whether a sentence is active or passive prior to hearing
the inflection on the verb (Stromswold et al., 2002; 2016). To examine whether listeners use vowel duration in online sentence
comprehension, we lengthened the vowel in half of the active verb stems and shortened it in half of the passive verb stems.
Reaction times were longer for sentences with altered verb stem vowels (p < .001), consistent with listeners using verb stem
vowel duration as a predictive cue in online comprehension.
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Recycling or Trash Bin? Modeling Consumers’ Recycling Behavior in a Field
Study

Torsten Reimer
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Abstract: What affects people’s behavior when they dispose items? The distance hypothesis predicts that the number of
misplaced items is a function of the distance of an appropriate bin. We categorized and mapped bins at 140 locations on
the campus of a major research university in the Midwest and calculated the distances between adjacent bins. The distance
hypothesis predicts that users dispose more recyclables in single, isolated trash bins than in trash bins that are paired with
recycling bins. Likewise, it is expected that more trash items can be found in isolated compared to paired recycling bins. We
conducted a field study that involved systematic comparisons of matched locations and focused on behavioral data that were
obtained through systematic audits of trash and recycling bins. The study provided partial support for the distance hypothesis,
which was supported for certain items. The role of item difficulty and weather conditions will be discussed.
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Is Neurocomputational Self-Organization a Core Mechanism of AGI Systems?
Spyridon Revithis
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Abstract: Artificial General Intelligence (AGI) is a term that describes a variant of a Strong AI revival in the mind sciences.
Irrespective of its definition limits, and leaving aside the non-scientific metaphysical or philosophical aspirations, AGI studies
the feasibility and implementation aspects of artificial systems that would have the capacity of domain non-specific (domain-
general) human-level intelligence.

The importance of self-organization in natural neural systems as well as in neuromimetic computational systems, especially
the class of Self-Organizing Map (SOM) neural networks, has been extensively demonstrated and supported in the literature.
Neurocomputational self-organization exhibits unique characteristics, including non-deterministic epigenetic (post-genetic) be-
havior, which enable direct functional and structural comparisons with the neocortex more than most existing relevant compu-
tational mechanisms. If the problem of artificial general intelligence is approached from a biologically relevant computational
standpoint then SOM mechanisms are currently a very strong candidate as a core component of a computational AGI system.
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Does a present bias influence exploratory choice?
Alexander S Rich
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Abstract: Balancing exploration and exploitation is difficult, and across a wide variety of situations under-exploration of
uncertain alternatives appears prevalent. We propose that one possible cause of under-exploration is present bias, whereby
immediate rewards (like those gained from exploitation) loom larger than future rewards (like those gained from exploration).
This possible cause of under-exploration is not addressed by past studies, in which choices generally yield token rewards that
are converted to money at the end of the experiment, removing the inter-temporal aspect of the decision-making process. To
address this issue, we developed an exploratory choice task with immediately-consumed rewards. We then tested whether
whether imposing a temporal delay before the consumption of rewards increased exploration by decreasing present bias, and
report on our results.
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Everyday object affordance enhances automatic inhibitory control: an ERP study
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Abstract: High affordance stimuli are associated with an enhancement in the activation of the corresponding motor programs.
Such over-activation of motor programs may imply a decrease in performances based on inhibitory control. However, recent
data suggest that high affordance stimuli are associated with a widespread privileged neural activation that goes beyond motor
representations. In this case, we can expect that high affordance objects will be associated to a higher level of flexibility in
an oddball task with Go-NoGo procedure. By measuring ERPs, we observed that, in the case of high affordance objects,
the amplitude of the N200 is decreased when the inhibition of the motor response is more difficult. Data suggests that high
affordance objects facilitate inhibitory control, probably due to a higher activation of automatic attentional resources.
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Abstract: The ability to monitor our cognitive performance (i.e., metacognitive monitoring) is central to efficient functioning.
Research investigating this ability has focused largely on tasks that rely exclusively on internal processes. However, our day-to-
day cognitive activities often consist of mixes of internal and external processes. For example, we can offload memory demands
onto external media (e.g., computers, paper). In the present investigation, we expand research on the metacognitive monitoring
of performance to this domain. Specifically, we examine participant’s ability to accurately monitor their performance in tasks
that require them to rely on only their internal processes (e.g., short term memory to remember a series of letters) and tasks that
require them to rely on both (e.g., paper and pencil to remember a series of letters). Results suggest that the former results in
superior monitoring relative to the latter. Implications for understanding metacognition in more distributed cognitive domains
will be discussed.
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From Concrete Examples to Abstract Relations: A model-based neuroscience
approach to how people learn new categories
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Abstract: The ability to form relational categories for objects that share few features in common is a hallmark of human
cognition. However until recently, neuroimaging research largely focused solely on how people acquire categories defined by
features. In the current electroencephalography (EEG) study, we examine how relational and feature-based category learning
compare in well-matched learning tasks. Building on a previous functional magnetic resonance imaging study by our labo-
ratory, we capitalise on the rich temporal information offered by EEG. Focusing on the neural dynamics of how people learn
category memberships over individual trials in an experimental task, we investigate how these single trial dynamics modulate
computational estimates from decision-making modelling frameworks. Specifically, by sorting participants’ individual trials
by their position in the experimental sequence we observe striking relationships between EEG dynamics (e.g., frontal theta
oscillations and P300 component) and feature-based and relational categorisation behaviour.
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Progress in building a machine that can ask interesting and informative questions
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Abstract: Asking creative questions is a hallmark of human cognition. In comparison, machine learning systems that attempt
to mimic this ability are still extremely limited (e.g., current chatbots ask questions based on preprogrammed routines). In the
present work, we developed a computational model of question generation. Based on a corpus of questions collected from online
participants playing an information-seeking game, we designed a “grammar of questions.” The grammar is powerful enough to
represent all human questions we collected and thus defines the “question space.” Given a particular context (game scenario),
people are more likely to ask (generate) some questions that others. Our computational model predicts these likelihoods, that
is, a probability distribution over the question space. In addition, the model can generalize to novel contexts. Key model
ingredients are informativity, compositionality, and length of a question.
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Shifting backward to say what’s front? Spatial referencing of dorsal object
arrangements
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Abstract: When referring to spatial arrangements of two objects in the visual field, German native speakers prefer reflection
as a subtype of the relative frame of reference. Whether this preference transfers to objects in one’s back and whether a mental
turn has to precede such dorsal references (turn hypothesis), has recently been explored in studies implementing questionnaires.
However, the results hardly supported the turn hypothesis and rather suggested backward projection as an alternative strategy for
dorsal references. To test the two assumptions more rigorously, a series of experiments implemented dorsal object arrangements
in interview situations and induced dorsal perspectives via turning, shifting or reflecting the actual view of participants. Across
experiments and conditions, backward projection consistently emerged as the preferred referencing strategy and only a small
proportion of dorsal references accorded with the turn hypothesis. Participants’ retrospective descriptions supported this pattern
and suggested backward projection to be involved in dorsal referencing.
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The time course of Intentional Binding
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Abstract: Environmental stimuli caused by actions (i.e., effects) are perceived earlier than stimuli not caused by actions. This
phenomenon is termed intentional binding (IB), and serves as implicit measure of sense of agency. We investigated the influence
of effect delay and temporal predictability on IB, measured with the classic clock procedure as the bias to perceive the effect
as temporally shifted towards the action. For short delays, IB increased with delay (Experiment 1: 200 ms, 250 ms, 300 ms)
and this initial increase declined for longer delays (Experiment 2: 100 ms, 250 ms, 400 ms). These results extend previous
findings showing IB to decrease with increasing delays for delay ranges of 250 ms to 650 ms. Further, the indication that IB,
that is, sense of agency, might be maximal for different delays depending on the specific characteristics and context of action
and effect, has important implications for human-machine interfaces.

3830
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Abstract: Subjective life expectancy (SLE) has been related to psychological variables, such as optimism. Based on previous
studies where positive attitude was related with longer lifetime, the present study examined whether modifying participants’
attitude would influence their SLE. Therefore, 50 participants were randomly assigned either to a positive or to a neutral attitude
group. During one week, participants of the positive (neutral) group, had to choose the three most accurate positive (neutral)
sentences (among 22) to describe their day. After this week, they had to estimate the probability of being 60, 70, 80, or 90
years old (traditional measure) and to situate themselves on a line representing their lifetime (spatial based measure). Results
show that 1) a more positive attitude increased SLE more than a neutral one, 2) the spatial based measure was sensitive to the
intervention and 3) both measures correlated positively with participants’ optimism.
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Probability matching in choice behavior influenced by virtual rewards
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Abstract: We recognize the amount of ”reward” according to our choices. In repeated binary choice tasks, human behave
according to the theoretical basis of ”probability matching” (Shanks et al., 2002), which has been advocated in several studies.
However, the quality of reward may influence their choice-behavior. It is acknowledged that the sensitivity of values for gains or
losses differs among individuals because of risk aversion (Kahneman & Tversky, 1979). We conducted a series of experiments
to investigate how participants’ choices change when the ratio of hit-items was set up. Virtual rewards, -3/0, -3/+3, and 0/+3
point for each choice, were given to participants. The results showed that the choice-ratio of the weighted correct side was
higher in conditions involving losses, suggesting that participants’ choices indicate risk aversion even though rewards were
virtual. Our results suggest that probability matching can be found only when people implicitly recognize their choices have
no loss.
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SIERRA Project-Team (ENS/INRIA/CNRS), Département d’Informatique, Ecole Normale Supérieure,

PSL Research University, France

Emmanuel Dupoux
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Abstract: Adult speech perception is tuned to efficiently process native phonetic categories, causing difficulties with certain
non-native categories. For example, Japanese has no equivalent of the distinction between American English /r/ and /l/ and na-
tive speakers of Japanese have a hard time discriminating between these two sounds. Here, we ask whether standard Automatic
Speech Recognition (ASR) systems trained on large corpora of continuous speech can make correct quantitative predictions
regarding such non-native phonetic category perception effects. By training an ASR system on language L1 and evaluating
it on language L2, we obtain predictions for a native L1 speaker tested on L2 phonetic contrasts. Using a variety of L1 and
L2, we show that ASR models correctly predict several well-documented effects. Beyond the immediate results, our evaluation
methodology, based on a machine version of ABX discrimination tasks, opens the possibility of a more systematic investigation
of computational models of phonetic category perception.
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Which test to perform? Modeling utility of medical tests: information gain,
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Abstract: In medical diagnosis, as in many cognitive domains, asking the right questions is crucial. Medical tests differ not
only in the type of information they provide, but in their financial costs and physical risks to a patient. We develop a model
that combines informational and cost constraints, describing specific medical scenarios of a patient with realistic symptoms.
We then define a finite number of existing medical tests that are available in this situation. The tests differ in their sensitivity
and specificity concerning different possible underlying diseases as well as in their financial costs and the physical risks they
pose to a patient. Combining these, we compare the utilities of the different tests if performed alone as well as if performed in
combination. We show how purely informational considerations are not adequate for the analysis of such a scenario; test costs
and patient outcomes must also be taken into account.
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Intuitive system control: Challenging the standard model of dynamic decision
making

Wolfgang Schoppek
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Abstract: Dynamic decision making (DDM) is usually operationalized in a way that subjects explore and control computer-
simulated dynamic systems consisting of interconnected variables. Most authors in the field agree on a “standard model of
DDM” that assumes that decision makers have to learn the causal structure of the system through appropriate explorative
behavior before they can bring the system to given goal states. This strategy draws heavily on cognitive ressources, such as
working memory. The standard model predicts that performance in DDM, as well as structural knowledge should be severely
impaired when a second cognitive task has to be executed while exploring the system. An experiment with a dual task as the
main factor revealed no differences in knowledge and performance between the conditions. Participants in both conditions
appeared to rely on rudimentary structural knowledge and adopted intuitive strategies. We interprete the findings within a dual
processing framework.
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Abstract: We introduce a modular recurrent neural architecture, which learns distributed, generative temporal models of bio-
logical motion. It encodes modal visual and proprioceptive (angular) biological motions separately by means of autoencoders,
structuring respective postures, motion directions, and motion magnitudes separately. The submodal encoders are interdepen-
dent by predicting each other’s next autoencoder states temporally. As a result, distributed attractor states can develop from
self-generated motions. We show that the architecture is able to synchronize its activities across modalities towards overall
consistent action-encoding attractors. Moreover, the developing spatial and temporal structures can complete partially observ-
able actions, e.g., when only providing visual information. Furthermore, we show that the network is capable of simulating
whole-body actions without any sensory stimulation, thus imagining unfolding actions. Finally, we show that the network is
able to infer the visual perspective on a biological motion. Thus, the neural architecture enables embodied perspective taking
and action inference.
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The Sufficiency Principle: Predicting when children will regularize inconsistent
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Abstract: Children exposed to inconsistent language variation regularize this variation in their productions (Hudson-Kam &
Newport, 2005). Existing demonstrations of regularization observe this behavior when the signal-to-noise ratio is greater-than-
or-equal-to 40%, but whether regularization occurs when the dominant form is less widespread has not been investigated. A
recent computational model, the Sufficiency Principle, quantifies when a pattern is widespread enough to generalize (Yang,
2016): Let R be a generalization over N items, of which M are attested to follow R. R extends to all N items iff: N-M<N/ln(N).
To test this model, we exposed children to artificial languages in which the dominant form occurred either above or below this
threshold for generalization. We found that, as predicted, children regularized only under circumstance in which the Sufficiency
Principle threshold for generalization is met. Thus, regularization may be governed by a basic principle of generalization that
is well captured by this model.
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Impaired phonological processing of lexical tones in Cantonese speakers with
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Abstract: Congenital amusia is a lifelong musical disorder. It has been found that tonal-language speakers with amusia are
impaired in lexical tone perception. But it has also been found that tonal-language experience compensates the deficit in certain
scenario, reducing prevalence rate of amusia in speakers of a highly complex tonal-language – Cantonese. Thus it remains
unclear whether lexical tone perception, especially its phonological processing, is impaired in Cantonese-speaking amusics.
This study investigated the categorical perception of a continuum of lexical tone stimuli and pure tone analogues in Cantonese-
speaking amusics and controls. The amusics showed reduced discrimination peak across the categorical boundary compared
to controls in lexical tone condition, suggesting impaired categorical perception; in pure tone condition, the amusics showed
inferior performance on both between- and within-category discriminations, suggesting a deficit in auditory pitch processing.
These findings indicate that phonological processing of tone is impaired in Cantonese-speaking amusics, despite possible
compensation effect.
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Abstract: Humans have a remarkable ability to think about the future. Our abilities to think about the future are essential for
the level of goal construction, planning, and execution of plans that is only observable in humans. Thinking about the future has
also been found to be important for the development of sense of self and for health and well-being. In spite of the importance of
future-oriented thought, very little empirical work has been conducted on the nature of future-oriented thought. In this research,
we demonstrate how automated methodologies can be used to identify references to the future from natural text (Study 1) and
how machine-learning techniques can be used to identify categories of future-oriented thought (Study 2). We also demonstrate
how the categories that emerge from these analyses can help us better understand the relation between future-oriented thought
and many of the positive outcomes associated with future-oriented thought (Study 3).
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The influence of word-order harmony on structural priming in artificial languages
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Abstract: Structural priming occurs when interlocutors copy the syntactic structure of their partners’ utterances, and is di-
agnostic of their underlying representations. We trained adult participants on an artificial ‘alien’ language in which nouns
appeared with adjectives or numerals in two-word phrases; participants then used that language to communicate with an alien
interlocutor. Input languages had variable word-order with the two modifier types tending to appear on the same side of the
noun (harmonic) or on different sides of the noun (non-harmonic). Participants in all conditions acquired the dominant or-
der of their input; however, structural priming only occurred within modifier types (e.g. encountering Numeral-Noun primed
Numeral-Noun order only, not Adjective-Noun), even for participants exposed to harmonic input where both modifier types
patterned the same way. This suggests that the abstract representations tapped by structural priming in rapidly-learnt artificial
languages encode distinctions that are not based purely on distributional properties of the input.
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Recently rewarded task-irrelevant stimuli do not distract 2-year-olds during visual
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Abstract: In adults, stimuli associated with reward capture attention, even when task-irrelevant, resulting in distraction (Awh
et al., 2012). Here we examine whether rewarded stimuli capture attention in 2-year-old children. Toddlers (N = 46, mean age:
28;10, range: 19;16 - 36;18) performed a visual search task where the target switched between blocks. Search arrays consisted
of the current target, a previous target, and six feature conjunction distractors. On each trial, the current target was cued, and
following a fixed search period, rotated as a reward. We used a Tobii T120 eye-tracker to record toddlers’ eye-movements.
Following a target switch, toddlers fixated the current target before the previous target, despite the previous target’s recent
reward history F(1, 44) = 31.183, p < 0.001). Our study is one of the first to investigate the early development of reward-based
attentional selection.
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Disambiguating Disfluencies: What Do Speech Disfluencies Tell Us About Speech
Production?
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Abstract: Speech disfluencies occur frequently in spontaneous speech but their source is unclear. Disfluencies can take several
forms, most commonly as verbalized disfluencies such as “um”, “uh”, and “so”, as well as silent pauses. In the present
exploratory study we examined the relationship between disfluencies as distinct entities, individual differences in working
memory capacity, and linguistic markers of complexity. We found that disfluencies diverge in their relationship with these
variables. The “um” disfluency was most closely related to working memory capacity and linguistic complexity. The “uh”
disfluency was associated with infrequent word production. The “so” disfluency predicted of the number of words produced.
Silent disfluencies were not related to working memory capacity. However, micro-pauses were related to word production,
and macro-pauses were negatively correlated with the “so” disfluency. Results are discussed in terms of potential relationships
between disfluencies and speech production processes.
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Phonological Competition during Spoken-Word Recognition in Infants and Adults
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Abstract: An ongoing debate concerns whether spoken word recognition happens in an incremental or continuous manner
(Marslen-Wilson & Zwitserlood, 1989; McClelland & Elman, 1986). In the current study, participants (31 adults and 49 infants
aged 24-30months) were presented with four images while they heard a sentence like “Look at the cat”. Among the images
was one object that rhymed with the spoken word, one object that shared its onset and two phonologically unrelated objects.
Growth curve analysis of eye-tracking data revealed that adults preferentially fixated onset competitors over unrelated objects
soon after word onset but did not preferentially fixate rhyme competitors. Fixations of the onset competitors were modulated
by the degree to which the onsets of the three remaining competitors were phonologically similar to the spoken word. Infants
showed no preference for either type of phonologically related competitor. The absence of a rhyme effect contradicts continuous
theories of spoken word recognition.
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Abstract: Naming practices offer a window onto linguistic processes of productivity that rely on input from interacting streams
of information. Previous studies have looked at proper personal names and binomial combinations of proper personal names to
show that phonological features such as rhythm, semantic features such as gender, and corpus features such as word frequency
play an important role in naming and ordering of names. In comparison to personal names, business names tend to be more
diverse in terms of constituent structure, often incorporating binomial constructions that may or may not consist of proper names
themselves. In this study, we investigate whether the ordering of binomials in business names reflects the features identified
in previous work, with a focus on the following: syllable count, metrical stress, animacy, concreteness, word frequency, and
binomial frequency. We report here on an initial analysis of data from the Yelp Dataset Challenge.
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The time course of colour guidance in realistic scene search
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Abstract: Colour is a source of attentional guidance and object segmentation when viewing a scene. In an eye-tracking study,
we examined its role during search of targets placed in consistent or inconsistent locations within realistic scene contexts. Both
the target template and the whole scene were presented in full colour or grayscale. Colour presence did not influence early
search, considering latency, direction or gain of the first saccade, but affected later phases, with longer scene scanning and
more fixations required to locate the target in the grayscale condition, which also lengthened verification of template-object
matching. These effects were enhanced in inconsistent scenes. Our results suggest that observers may not utilise colour cues
when initiating scene inspection during search but also that colour information modulates efficiency of the search process in
terms of attentional selection and object recognition, in particular when the context of the scene does not provide reliable
high-level guidance.
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Abstract: The optimal perceptual decision making strategy for weighting serially presented information depends on the degree
of sample dependence. Uniform weighting produces optimal estimates from independent samples, but increases in autocorre-
lation should be matched by increasing and symmetric overweighting of early and late samples in order to maintain optimal
performance.

In the current experiment, participants (N = 30) observed briefly presented sequences of eight dots and were asked to estimate
their center of mass by dragging the cursor. The autocorrelation of the series was manipulated in two distinct blocks (either 0
or .7). Preliminary results show that the weight assignment to uncorrelated inputs did not differ significantly from the optimal
uniform allocation. In contrast, in the high-dependence block participants used different weighting profiles - overweighting
the first and/or last samples of the sequence. This suggests that humans flexibly adapt to changes in statistical structure in the
predicted direction of optimality.
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Abstract: A hallmark of optimal decision making is that cues are weighted by their reliability. Previous studies have reported
evidence for reliability weighting in several human perceptual decision-making tasks in which sensory noise was the only
possible source of errors. Here we use a target detection task to test whether optimality generalizes to situations where stimulus
ambiguity is an additional source of uncertainty. Target and distractor orientations were drawn from distributions with different
means and the level of ambiguity was varied through the amount of overlap between the two distributions. In line with previous
studies, we found clear evidence for sensory reliability-weighting, regardless of the level of ambiguity. However, using a richer
set of models than before, we also found that the estimated weights deviated from the optimal ones. Finally, we found no effect
of ambiguity level on task efficiency, which suggests that subjects optimally accounted for this source of uncertainty.
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It is new, but will it be good? Context-driven exploration of novel options
Hrvoje Stojic
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Abstract: How do people decide whether to try out novel options? We argue that they utilize contextual information to
efficiently generalize from learned functional relations in order to decide between known or novel options. In a contextual
multi-armed bandit task, in which rewards are a noisy function of observable features, we assess participants’ preferences for
newly introduced options. We show that participants preferably choose a novel option if its features indicate high rewards,
but shun the option if its features indicate low rewards, a behavior that can only be explained by functional generalization.
Moreover, we assess people’s preferences for novel options that have medium rewards to test whether they prefer options less
similar to experienced options, consistent with choices guided by uncertainty. Given that novel options normally come with
observable features, we argue that contextual learning is a parsimonious yet powerful explanation of behavior in the face of
novelty.

3848



Mathematical Symbol Recognition in Children
Sandra Street
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Abstract: In early mathematics development the development of symbolic skills is critical to math learning. Our mathematical
system is based on Arabic number symbols which do not provide any semantic meaning relevant to the number words and
symbols. In order to succeed in math one must be able to recognize and understand the meaning of numeric and other math-
ematical symbols. Little is known about the development of these symbolic skills. The current study examines 4 -7-year-old
children’s understanding and recognition of number and arithmetic symbols. The youngest children made significant errors in
identifying numbers as well as confusing letter symbols with number symbols. Results reveal a developmental progression of
numeric symbol recognition.

3849



Speaking in English, sorting in Chinese: interaction in L2 can reinforce existing
categories in L1
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Abstract: How does interaction affect categorization, and how might this vary between native and non-native speakers? When
people use shared labels to categorize objects, they categorize more similarly to each other. We investigated whether interaction
leads non-native speakers to categorize in the same way as native speakers. In six rounds, L1-English and L2-English/L1-
Mandarin speakers individually categorized dishware using labels (BOWL, PLATE), then discussed their categories or an
unrelated topic after each round. L2 speakers’ categories shifted following category-relevant interaction with L1 speakers, but
their categories did not become more L1-like. Unexpectedly, category-relevant interaction reduced alignment within pairs and
within language groups; however, this effect was weaker in the L2 than L1 group. Hence, L2 speakers showed a stronger
tendency than L1 speakers to use categories that were similar to other speakers from their language group. This suggests that
interaction in an L2 can reinforce L2 speakers’ categories in their L1.
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The effect of overt language use on category induction
Justin Sulik
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Abstract: Successfully solving a problem should help people solve similar problems, but such generalization is often surpris-
ingly limited. We investigated generalization performance when people explicitly verbalized solutions to open-ended category-
induction ”Bongard problems”, compared to tacitly indicating that they had found a solution. In a Bongard problem people are
presented with an array of items falling into two classes, and have to induce the basis for the classification by working out what
(sometimes quite abstract) feature of the items is relevant, from a vast set of possibilities. We measured objective performance
by testing people with new items, and observed how explicitly vs. tacitly expressed solutions affected generalization across
concretely similar or abstractly similar problems. For the concretely similar problems, explicitness boosted transfer of correct
solutions. For the abstractly similar problems, there was no evidence of transfer, though there was a general positive effect of
explictness.
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Respecting UP and Despising DOWN: Emotional and Body-based Image in
Japanese Verbs

Tomohiro Taira
Osaka City University

Abstract: The aim of this study was to examine the image-schematic representations that arise from sentences referring to
concrete/abstract action in Japanese verbs. We used a free positioning task that required the participants to draw the position of
an object in a sentence referring to an agent’s concrete/abstract action and a simple rating task that investigated the agent’s need
for body movement and emotional evaluation for the object. The results showed that the drawn object’s position in not only a
concrete but also an abstract action sentence is changed before and after the action. Further, the results indicated that the height
and distance from the agent to the object in the sentence is related to the emotional evaluation of the agent for the object in the
sentence.
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A time-series eye-fixation analysis of the similarity-compromise effect in
multi-alternative choice

Tsuzuki Takashi
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Abstract: In decision-making tasks with two attributes and three alternatives, the similarity effect implies that, if the total
expected utility is equal between two opposite alternatives (i.e., the target and competitor), the probability of the target being
chosen decreases with the addition of the decoy similar to the target. This study demonstrated the similarity-compromise
effect, wherein the probability of the target being chosen increased with the addition of the decoy, under the same conditions
as the similarity effect, by setting all attribute values of three alternatives to broken numbers rather than rounded numbers.
To determine the mechanism underlying this effect, we examined information acquisition patterns using eye-movement data
collected from 37 undergraduates who made 10 hypothetical purchase tasks with two attributes and three alternatives. Time-
series analysis of fixation time for the three alternatives revealed dynamic temporal features distinct from those of attraction
and compromise effects observed in our previous research.

3853



Relationship between four measures reflecting representations of fraction
magnitude in adults: number line estimation, comparison, calculation of fractions,

and immediate serial recall of fractions
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Abstract: Our previous studies (presented at the London meeting of EPS in 2017 and submitted for ICPS 2017) suggested that
immediate serial recall tasks access magnitude representation of fraction. A subsequent research task is to explore the inter-
correlations among four tasks stimulating representations of fraction magnitude: an immediate serial recall task with fraction
stimuli and three typical tasks, number line estimation, comparison, and calculation of fractions. The purpose of this study is to
examine whether our new measure, the size of the magnitude similarity effect on immediate serial recall of fractions, relates to
other typical measures for adults. The results from 36 university students showed a significant correlation between the size of
the magnitude similarity effect and the RT of fraction calculation tasks but no correlations among any other tasks. This result
suggests that it is necessary to reexamine what tasks could access the magnitudinal representation of fraction in adults.
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Slow Change: The Visual Context for Real World Learning
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Abstract: The visual world can be a noisy and dynamic place. This poses problems for novice word learners who must map
heard names to objects in scenes with their many potential referents. In this study, we consider how the visual stability and
selectivity of scenes from the first-person perspective may simplify the learning problem. 12- and 30-month-old children wore
head cameras and played with a large set of toys. Through analyzing head-camera video frame by frame, we measured the rate
of change of scene information in the natural world of children in this context, and found that the visual world from the child’s
perspective changes continuously. However, this change is slow and incremental – tiny steps – even across increasingly larger
timescales. We discuss the importance of understanding the dynamics of real world environments for understanding visual
processing, sustained attention, and early object name learning.
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Effects of attention to emergent phenomena on rule discovery
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Abstract: In this study, we focused on effects of finding of emergent phenomena in rule discovery. In the experiment, we
used Conway’s Game of Life, which generates high-order phenomena from fundamental rules. Our research question is to
realize the effects of attention to emergent phenomena on finding the fundamental rules. The two experimental conditions
(chaotic and static) differed only in initial states. In the chaotic condition, the initial state consisted some Methuselahs, which
take long period until they become stable. On the other hand, in the static condition, the initial condition consisted many
emergent patterns: still lifes and oscillators, which repeat same pattern in short period. We classified the hypotheses reported
by the participants to either mentioning about emergent phenomena or not. This result revealed that people might see emergent
phenomena not only in the static condition but also in the chaotic condition, which do not include the emergent patters.
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Scheduling system delays for optimal user performance: Don’t predict time; let
time predict!

Roland Thomaschke
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Abstract: System delays affect user performance and experience when interacting with computers. We investigated the effects
of different prediction relations between delay duration and response requirements on user performance. In one experiment,
delay duration predicted, to different degrees (50 % vs. 75 % vs. 100 %), the following system response. Predictability
substantially increased users’ response speed, while adaptation was highly flexible, between different prediction regimes. In
a second experiment, users’ responses predicted system delay duration. Compared to the first experiment, users’ response
speed was moderately increased, while the adaptation was rather inflexible across different prediction regimes. In a third
experiment, we directly compared both types of predictability. The results confirmed a stronger and more flexible adaptation
effect when time predicted the system response, compared to when users’ responses predicted time. These findings have
important implications for scheduling data transmission rates across different users in internet-based parallel computing.
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Computational Foundations of Cultural Evolution: Modeling the Emergence of
Systems from Higher-order Probabilistic Inference

Bill Thompson
Max Planck Institute for Psycholinguistics

Abstract: Cumulative cultural evolution in humans is the process through which behaviours gain structure and complexity
as they are transmitted from one generation of learners to the next. A central challenge in the cultural evolution literature
is to understand how the unique computational principles of human cognition scaffold the emergence of complex behavioural
systems. I explore how the human ability to make inferences at higher order levels of abstraction can lead to cultural complexity,
in two ways: by allowing initially independent behaviours to gradually acquire group-like structure as new learners repeatedly
impose an expectation for statistical dependence; and by allowing inferences in one domain to be rapidly transferred to new
domains which share features at higher-order levels of abstraction. I model these processes in populations using a probabilistic
cognitive model for the acquisition of vowel systems in human language.
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Counterfactual thoughts and judgments about morally good actions
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Abstract: Evaluating the morality of an action is affected by thoughts about whether the outcome might have turned out
differently. We report experimental results that show a moral action effect occurs for judgments about morally good actions.
Participants read stories about a morally elevating situation, e.g., an agent is found to be a match as a bone-marrow donor for
someone else. The agent decided to act or not to act, and the outcome turned out well or it did not turn out well. Participants
created counterfactual thoughts and they also made judgments about whether the agent should have acted, and whether the
agent was morally responsible for the outcome. The results show a moral action effect: participants judged that the action
should have been taken, and that the agent was morally responsible for the outcome, when the agent acted compared to when
they did not act, regardless of the outcome.
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Gradually ascending sound with accelerating automatic driving vehicle might
change passengers’ tension or anxiety: analysis of biometrical index.
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Abstract: When people ride an autonomous car, they might feel anxiety because they cannot know how it may move. Adding
artificially augmented signals, which represent coming changes of the vehicle, it may be useful to reduce anxiety by change
expectation. Thus we executed an experiment examining whether ascending sound could decrease passenger’s anxiety, while
riding on virtual autonomous car. In the experiment, participants saw 360-degree computer-graphics world through a head-
mounted-display. The stimuli were views from a moving car with 2 speed (19 and 320 km/h), half of which was added
ascending and descending sound at first / last 6 secs. Results of the heart-wave analysis as biometric index, i.e., index of
sympathetic nervous (LF/HL), showed a marginal interaction between existence of sounds and the vehicle speed; while sounds
reduced participants’ anxiety with high-speed condition, they showed higher tension with sound at slow-speed conditions.
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Does sonority influence the syllable segmentation in visual identification?
Evidence in French skilled readers.
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Abstract: Many studies focused on the importance of statistical and distributional properties to account for the prelexical
and segmental role of syllable-sized units in silent reading in French. We explored how skilled readers segmented printed
(pseudo)words when no reliable statistical cues were available around and within the syllable boundary. We were interested
in how sonority, a universal phonological element, might be a reliable source for syllable segmentation. We tested 160 native
French-speaking adults with pseudowords in which orthographic and phonological statistical properties were (quasi)null for the
first three letters including the syllable boundary in a revisited version of the paradigm used by Treiman and Chafetz (1987).
Five sonority profiles within the syllable boundaries along a continuum from legal to illegal clusters were designed. Our results
showed that segmentation does not strictly depend on statistical cues; participants were also sensitive to the legality of the
sonority profile to locate the syllable boundary.
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Poverty of materials makes recursive combination operation evolvable
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Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan
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Abstract: Humans can use recursive combination operation in various behaviors; other primates, however, rarely perform this
operation. In our previous research, using an evolutionary simulation of combination behavior, we showed that recursive com-
bination was more adaptive than repetitive combination in cases where the robustness of production or the diversity of products
was required. In this research, we examined the evolvability of recursive combination in combinatorial space parametrized
by kinds of elemental materials and the number of elements per product. Recursive combination evolved in the region of low
kinds of elemental materials and large number of elements per product. This region may be compared with the situation of the
middle stone age when invented diversified tools with limited kinds of materials such as stone, bone, and woods. The recursive
combinatorial operation could scaffold the evolution of general recursive combination abilities including language, technology,
music, and mathematics.
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Fitting a Stochastic Model to Eye Movement Time Series in a Categorization Task
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Abstract: Our goal is to develop an efficient framework for fitting stochastic continuous-time models to experimental data in
cognitive psychology. As a simple test problem, we consider data from an eye-tracking study of attention in learning. For each
subject, the data for each trial consists of the sequence of stimulus features that the subject fixates on, together with the duration
of each fixation. We fit a stochastic differential equation model to this data, using the Approximate Bayesian Computation
framework. For each subject we infer posterior distributions for the unknown parameters in the model.
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Gaze during utterances and silence in L1 and L2 Conversations
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Abstract: Gazing activities during utterances and silence were analyzed in a face-to-face three party conversation setting in a
native language (L1) and in a second language (L2). The function of each utterance was categorized according to the Grounding
Acts defined by Traum (Traum, 1994) so that gazes during utterances could be analyzed from the viewpoint of grounding in
communication (Clark, 1996). Factor analyses of gaze activities showed similar factor structures in L1 and L2 conversations:
the first factor was characterized by speakers’ gazes and gazes during silence, and another factor was characterized by listeners’
gazes in each condition. Analyses of the participants based on the factor scores, however, showed different tendencies between
the two conditions, suggesting that language proficiency affects gaze activities during utterances.
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Statistical Learning Contributions to Semantic Knowledge Development
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Abstract: The organization of semantic knowledge according to relations between concepts influences many facets of higher
cognition. Therefore, understanding the origins of relations knowledge is a key focus of cognitive development research. This
study investigated the contributions of environmental statistical regularities to relations knowledge in preschool-age children.
Using CHILDES to estimate co-occurrence between familiar items, we constructed triads consisting of a target, related distrac-
tor, and unrelated distractor in which targets and related distractors consistently co-occurred (e.g., sock-foot), belonged to the
same taxonomic category (e.g., sock-coat), or both (e.g., sock-shoe). Using a Visual World paradigm, we then measured rela-
tions knowledge as the degree to which children looked at related versus unrelated distractors when asked to look for targets.
The results revealed that co-occurrence, regardless of taxonomic relatedness, influenced whether participants looked signifi-
cantly more at related versus unrelated distractors. These findings demonstrate that co-occurrence regularities between entities
in the environment shape knowledge organization.
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Improving Number Foundations in Preschoolers: ANS versus Symbolic
Knowledge
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Abstract: The current study examined whether preschoolers who are low achievers (LA) on mathematical tasks benefit more
from a training programme that focuses on magnitude comparisons or ANS abilities (PLUS games) compared to games that
target symbolic knowledge (DIGIT games).

Twenty-four preschoolers played PLUS games and 21 children played DIGIT games 3 times per week for 5 weeks. Perfor-
mance scores were compared to 25 typical control children who did not play any games. All children were assessed pre and
post-intervention on Test of Early Mathematics (TEMA), a computerized ANS task, the Give a Number task (Wynn, 1990) to
assess cardinality and a counting and Digit Recognition task.

The results showed that, although the DIGIT and PLUS groups performed lower than the Control group, both PLUS and
DIGIT games improved mathematical abilities in LA children. These results suggest that there is a complex interaction between
ANS, symbolic, and formal mathematical abilities.
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Biological and Artificial Perspectives on Metacognition
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Abstract: Metacognition may be broadly understood as awareness, monitoring, and regulation of an intelligent agent’s own
internal processing, a “thinking about thinking”. The cognitive complexity and self-maintenance value of this introspective
skillset has considerable current interest in the study of both biological and artificial intelligence, with intriguing parallels.
Study of metacognition in some nonhuman species and Biologically-Inspired Cognitive Architecture (BICA) systems reflect
evidence of, at best, an attenuated form of the elaborated human manifestation, with ongoing difficulties in operationalizing
metacognitive components and traits. A linked exploration of these “inhuman” forms of metacognition may better clarify the
locus of divergence from the human form and illuminate the role of the skill in supporting potentially emergent cognitive
traits, from self-recognition to Theory of Mind understanding. The current review will take a comparative approach in as-
sessing metacognitive systems in nonhuman biological and artificial agents in pursuit of clarity for future methodological and
conceptual directions.
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Abstract: Gradient Boosting Classification (GBC) models are well known to machine learning and artificial intelligence.
Having the ability to predict user performance is imperative to the outcomes and purpose of an intelligent tutoring system.
The Center for the Study of Adult Literacy (CSAL) intelligent tutoring system aims to improve reading comprehension in
low-literacy adult learners. A GBC was applied to preliminary data gathered from high-literacy adult readers (N =1800 ob-
servations). Our model was shown high accuracy in predicting users’ correct/incorrect responses to our multiple choice items.
Specifically, users’ reaction times and order of question presentation are important features of the model to consider. Less
important features are difficulty of the item and the users reading ability. Our next steps are to apply GBC to high-literacy
college students, followed by low-literacy readers, as a test set. Our eventual goal is to predict correctness prior to scoring.
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Interactivity, Stereotype threat, and Working memory
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Abstract: The purpose of the current study was to investigate the role of interactivity (the use of pen and paper) in defusing
the impact of stereotype threat on difficult mental arithmetic tasks, covering all four operations of mathematics. Eighty-four
16-year-old girls from secondary schools in South East England (UK) participated in this study. Participants carried out (in an
educational setting) difficult, multi-digit mental arithmetic tasks in a stereotype threat or control condition, crossed with interac-
tivity or no interactivity. The primary dependent variables were the overall performance of the participants in accuracy, latency
to solution, working memory, and mathematics anxiety. Increased interactivity enhanced mental arithmetic performance. Girls
in the stereotype condition performed worse in the working memory test than the participants in the control condition. However,
there was no causal role of working memory in reduced mathematics performance under stereotype threat. Reasons for this
finding and recommendations for future studies are discussed.
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Judging Magnitude: Is there a Common Cognitive System for Different Types of
Magnitude Judgments?
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Abstract: It has been suggested that a common cognitive system is employed in magnitude judgments across multiple modal-
ities (Walsh, 2003). To test this theory, we examined whether performance on magnitude judgments of number, surface area,
duration, and loudness correlated with each other in both magnitude comparison (e.g., determine which is more), and mag-
nitude estimation (e.g., if magnitude 1 value = 100, estimate the value of magnitude 2) tasks. For magnitude comparison,
significant correlations were observed between number, surface area, and loudness (but not duration) tasks (percent correct
measured). Similar results were observed for magnitude estimation (mean absolute percent deviation of value estimates from
correct measured). These results are indicative of a common cognitive system for at least some magnitude judgment modalities,
and suggest that such a system may play a role not only in more-than/less-than magnitude judgments, but also in the process of
assigning numerical values to magnitudes.
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Abstract: Recent research in human behavioral dynamics has demonstrated that co-actors often successfully achieve joint
goals by adopting functionally asymmetric patterns of behavior. To better understand the evolution of such patterns in a
naturalistic musical context, the current study examined how auditory-feedback delays and individual musical roles affect
collective temporal stability and relative adaptability during duet performance. The delays between pianists were short (10-
40 ms), bidirectional, and remained constant during a single trial, simulating those typical in internet-mediated performance.
Preliminary results show increasingly reduced collective stability for longer delays along with a distinct pattern of asynchronies
across the points where temporal synchrony would be expected, in which individuals exhibited consistent alternation between
playing before or after their co-performer. Furthermore, asynchronies became greater when the two musical parts were less
similar. Thus, emerging coordinative dynamics appear to be shaped both by asymmetries in co-performers’ assigned roles and
external constraints on shared information.
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Abstract: Warning labels can be considered as descriptions added to repeated decisions-from-experience. Limited research
so far has looked at the theoretical integration of decisions from descriptions and decisions from experience when the two are
available concurrently. We explore how the presence and timing of such warning labels influence behaviour. We expected the
provision of warning labels to subsequently reduce risk taking, and that more prior experience before the appearance of such
labels would lead to stronger habit formation and reduce their behavioural impact. Instead, we show how the appearance of
descriptions warning against risks can have a perverse effect of increasing risk taking. And counter-intuitively, we also observe
that the amount of previous experience prior to the appearance of descriptions does not impact behaviour. Briefly presented
warning labels also have the same effect as constantly present ones. All of these findings have strong implications on the design
of effective warning labels.
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Abstract: We investigated object naming in Dutch-French bilingual children to determine the developmental trajectory of the
cross-language convergence in naming patterns shown by bilingual adults. We collected name choices for nearly 200 common
household containers from French-Dutch simultaneous bilinguals of 6 different age groups, along with monolingual control
groups. Multidimensional scaling analysis on a group level suggests that convergence is present in bilinguals at all ages. On
the individual level, pairwise between-subject correlations show that monolingual naming patterns in different languages show
a remarkable correspondence at younger ages. Between age 5 and adulthood, the naming patterns of monolingual children
demonstrate increasing divergence as they learn the language specificities of their L1. Bilingual children, however, maintain a
fully converged naming pattern up till age 10. They start learning some language-specific idiosyncrasies from age 12 onwards,
but never to the extent of monolinguals. We propose a gradual divergence perspective for bilingual lexical development.
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Abstract: Accessible data analytics—that can be experienced through vision, hearing, and touch—poses a challenge to in-
teraction design. It is also a human rights requirement because many societies mandate that all individuals have the right to
experience products and services, yet not every individual accesses media visually. As more data is presented through visual-
ization, accessibility for populations who do not access data through vision decreases.

Guidelines that claim to make visual media accessible through text fail to translate the iconic properties of visual shapes, thus
subtracting affordances for pattern recognition. Non-linguistic sonication can be a means for non-visual pattern recognition.

Hearing is optimized for detecting locations on a horizontal plane, and our approach for presenting data analytics recruits
this optimization by using an immersive binaural horizontal plane. We will demonstrate our approach via two case studies: A
sonic translation of a map and a sonic translation of a computational fluid dynamics simulation.
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Abstract: Language requires mindreading for entertaining communicative intentions, and mindreading in turn profits from
language as a means for sharing mental states. Hence it has been hypothesised that the two skills have co-evolved.

We present a Bayesian agent-based model to formalise this hypothesis. This model combines referential signalling with
mental states, such that a speaker’s topic choice is probabilistically dependent on their perspective on the world. In order to
learn the language, a learner has to simultaneously infer the speaker’s lexicon and perspective. Learners can solve this task by
bootstrapping one with the other, but only if the speaker uses an informative language.

We will present results of an iterated learning version of this model, showing that selection on communication results in
the emergence of a fully informative lexicon from scratch. However, selection on perspective-taking alone also results in the
emergence of partially-informative lexicons, which is sufficient for inferring others’ perspectives.
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Abstract: This paper reports a reading intervention programme, the LMVS (Linguistically Mediated Visual Search) among
pre-adolescent Chinese EFLs. It sets out to test whether managing the process of silent reading might modify text complexity
as perceived. The paper is a combination of two studies. The first study was the development and assessment of a reading com-
prehension test. The second study piloted an intervention for pre-adolescents. Item-by-item analysis of students’ performance
in the post-test show changes in the perception of item difficulty after the intervention. Chinese EFL struggling readers were
found to be weaker in lexical analysis. They also faced difficulties in decoding main ideas in compound/complex sentences. In
response to the analysis, strategies were developed for automatic syntactic processing. The paper proposes seeing language as
a process, rather than a product so that learner management skills might be prepared for reading intervention.
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Influences of the Matching Effects of Cognitive and Emotional Factors on Attitude
Change

Tung-Cheng Wu
National Cheng Kung Univeristy, Tainan, Taiwan, ROC

Jon-Fan Hu
National Cheng Kung Univeristy, Tainan, Taiwan, ROC

Shu-Ling Peng
National Cheng Kung Univeristy, Tainan, Taiwan, ROC

Abstract: This research is aimed to study whether we will have the same attitude change when we have the same intensity
of cognitive or emotional level for attitude. People who have higher involvement will be persuaded by central route and low
involvement will be persuaded by peripheral route: the matching effect in attitude change. The present study controlled the
intensity of both cognitive and emotional factor and instructed participants to express their initial attitude as well as attitude
change under four experimental manipulations. Results showed that only matching effect of emotional factor was found but
not cognitive factor. A connectionist model was therefore built to simulate the processes and found that there would have
different thresholds for cognitive and emotional routes and the threshold of cognitive route should be higher than emotional
route. Implications are proposed based on the behavioral and simulation investigations.
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Is infants’ mutual exclusivity response based on preference to novelty or non-name
of an object?

Qinmei Xu
Center for Learning and Cognitive Science, College of Education, Zhejiang University, Hangzhou, China

Ye Tao
Department of Special Education, Zhejiang Normal University, Hangzhou, China

Yuyan Wang
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Jon-Fan Hu
National Cheng Kung University, Tainan, Taiwan, ROC

Abstract: Although “mutual exclusivity (ME)” is the term to refer to the behavior that infants map a novel label onto a novel
object rather than a familiar object, two studies, using preferential looking paradigm, aimed to investigate whether infants’ ME
is based on preference to novelty or non-name of an object. In Study 1, 18-month-olds were tested on 2 conditions: familiar-
object/novel-object trials with known label and familiar-object/novel-object trials with unknown label. The infants preferred
to novel objects before naming but no naming effect found for both conditions. In Study 2, 18-month-olds in the same two
conditions as Study 1 were pre-familiarized to both of novel and familiar objects. The results showed that the naming effects
were found for both conditions, indicating that ME occurred. The findings of the present studies suggest that pre-familiarization
could be used to validate if 18-month-olds’ ME response is based on non-name preference of an object.
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Children’s Attention to Semantic Content versus Emotional Tone: Differences
between Two Cultural Groups

Yang Yang
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Qi Wang
Cornell University, Ithaca, NY, United States

Abstract: People from varied cultural backgrounds differ in their attention to particular aspects of emotional cues. Whereas
semantic content explicitly expresses feelings, vocal tone conveys implicit information regarding emotions. This study exam-
ined the attention to different emotional cues in European-American and Chinese children. Participants were 121 European-
American and 120 Chinese children (4-9 years old). They played two games in which they listened to spoken words and judged
the pleasantness of the word meaning while ignoring the vocal tone (meaning game) or judged the pleasantness of the vocal
tone while ignoring the word meaning (tone game). Preliminary results showed that European-American children paid more
attention to word meaning than did Chinese children. Additionally, older (8-9 years old) Chinese children attended more to
vocal tone than did their European-American counterparts. The results suggest that children acquire culturally specific attention
bias by 8-9 years old.
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Knowledge partitioning in forecasting
Lee-Xieng Yang
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Abstract: In this study, we would like to examine whether the learned forecasting function can be separated for use by context.
The participants were asked to learn to forecast the position of a target, defined as a sine function of trial number. A context cue
was paired with the moving of the target systematically and randomly in two conditions. The learning performance was quite
good in both conditions. In the transfer phases, in the systematic-context condition, some participants learned to rely on context
to direct their prediction (i.e., knowledge partitioning), whereas some others and those in the randomized-context condition
learned to rely on the concept about the function for forecasting. However, contrary to the precedent knowledge partitioning
studies, the variety of using context or not was found within participants across transfer phases. The modeling results favored
the associative account over the rule account on accommodating the training and transfer response patterns.
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Working Memory and lexical ambiguity resolution in Chinese
Michael Yip

The Education University of Hong Kong

Abstract: Two cross-modal priming experiments were conducted to examine the underlying mechanism of lexical disam-
biguation process was in activational nature or in inhibitory approach. In experiment one, forty native Cantonese listeners were
recruited to participate in two tasks (1) a Chinese version reading span task (Daneman & Carpenter, 1980) to measure their
WM capacity and (2) a cross-modal priming task (Yip, 2015). In experiment two, another group of native Mandarin listeners
were recruited to participate in the same two tasks in Mandarin. The results revealed that sentence context had an early effect
on the disambiguation processes for both high- and low-WM span groups and the underlying mechanism of the disambiguation
process for the high-WM span group seemed to be in an inhibitory nature.
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Impact of Polarity, Rationality, and Math Ability on Numerical Magnitude
Knowledge
Laura Young
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Abstract: Previous research has shown that numerical magnitude knowledge is related to current mathematic abilities and
predictive of future mathematics performance. Much of this early research examined magnitude knowledge of positive whole
numbers, more recently this has been extended to positive rational numbers. However, research about negative number mag-
nitude knowledge is less abundant. The present study aims to understand how different types of magnitude knowledge relate
to one another and whether performance differs according to the type of number line scale. Thirteen number line scales were
used to assess 7th grade students’ (N=180) magnitude knowledge of positive and negative, whole and rational numbers. Cor-
relational analyses illustrate that performance on most scales are significantly related. Further analyses reveal that students’
performance differed depending on the scale’s polarity and the number type of the scale. Moreover, performance differences
were found to vary according to students’ mathematics classroom ability level. Educational implications are discussed.
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Global consequences of local complexity: evidence from recall of visually
presented nonwords

Mackenzie Young
Johns Hopkins University
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Abstract: There is extensive evidence that structural regularities affect the processing of visually-presented words. However,
it is not known whether the processing consequences of an orthographic violation are limited to the offending subpart (e.g.,
an unattested onset cluster) or apply more globally (e.g., to the entire word). We provide evidence of global disruption from
the recall of briefly-presented nonwords that were manipulated for degree of orthographic markedness and length. Error rates
were higher for both the initial and final portions of nonwords beginning with more marked onsets; symmetrically, report of
marked onsets was degraded in words with longer endings. These effects suggest that, as in other visual tasks, the fidelity with
which one element can be represented depends on the overall stimulus complexity. We present a modified version of rational
models of visual word perception in which global effects result from the distribution of a limited processing resource over letter
positions.
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Children’s Reasoning about Geometric Footprints
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Abstract: We explored preschool’s children’s understanding of the correspondence of 3-D objects and 2-D faces in a novel
task. In the “footprints” task children were shown a geometric solid, such as a pyramid or a prism, and asked to select which
shape the solid would make if it were dipped in ink and stamped on a piece of paper. Through a latent class analysis of children’s
errors we found children differed significantly in their misconceptions about object structure. Three distinct classes of children
emerged: children who could only match visible faces, children who believed solids have an ‘essential’ face irrespective of
rotation, and children who differentiated faces based on a solid’s rotation. We examined the characteristics of children in each
of these classes using a battery of spatial tasks and numeric tasks. Our results suggest errors found in older children’s and
adults’ reasoning about geometric concepts develop prior to formal schooling.
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Relevance Theory, Pragmatic Inference and Cognitive Architecture
Wen Yuan
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Abstract: Relevance Theory (RT: Sperber&Wilson, 1986) argues that human interpretative processes maximize relevance and
postulates that there is a relevance-based procedure that a listener follows when trying to understand utterances. However, Maz-
zone (2013) points out that RT fails to explain how speaker-related information, such as the speaker’s abilities or preferences, is
incorporated into pragmatic processes. He proposes that situational or goal schemata, with the speaker represented as a compo-
nent, are sufficient to activate the hearer’s speaker-related knowledge and further asserts that human communication is driven
by goal management and action rather than relevance maximization. Yet Mazzone cannot fully explain how linguistic meaning
and speaker-related knowledge are integrated within a modular system. Based on RT’s cognitive requirements and contempo-
rary cognitive theory, we argue that this integration is realized within working memory via production-like conversational rules
with which the constructed utterance interpretation should be consistent, and present a simple model of this process.
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Do you forgive past mistakes of virtual assistant? A study on changing impressions
of virtual character when using its assistance multiple times

Masahide Yuasa
Shonan Institute of Technology

Abstract: We investigated the gain-loss effect of virtual/personal assistant character, which provides intelligent assistance to
humans, and focused on not only the first impression of using the assistance but also changing impression about the character
when used multiple times for assistance. The experiment used a fictive retrieval system (searching onomatopoeia), and the
virtual assistant character looked up for suitable words for the user (success), or failed to find the words (mistake). There were
three sessions, differing by the task of character’s mistake; two tasks were successes and one was a failure in each session. The
results showed that the group of people who had low expectation from its first appearance, formed negative impressions after
the final mistake, significantly. Consequently, final mistake influenced the formation of negative impression more than other
mistakes, thus showing that the final mistake in multiple times of assistance was associated with loss effect.
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Knowledge acquiring on event chronology in Russian-language texts
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Abstract: Chaining the sequence of events through awareness of their temporal relations is an important aspect of text un-
derstanding. As a rule, text provides only partial knowledge of event unfolding however various types of additional sources
(documents, personal diaries, etc.) provide an added knowledge to make chronology more precise.

The paper argues the novel approach to automated retrieval of information on temporal relations between events marked in
the text. The data retrieved will provide additions to computer ontology which formally represents the actual events chronology.

A system of linguistic algorithms for analyzing the contexts with specific verbal (or linguistic situations) inputs is suggested
within the present approach. We use syntactic graphs of the sentences and some grammatical characteristics of the words
produced by the system for the automatic syntactic analysis of Russian texts.
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The Impact of Presentation Order on Category Learning Strategies: Behavioral
Data and Self-Reports
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Abstract: The presentation order in supervised categorization learning can influence the category representation. For example,
the order can bias a rule-based approach focusing the identification of relevant features or an exemplar-based approach focusing
the similarity of category members. In a blocked design stimuli can either be presented in a way that relevant features over
stimuli become obvious or that two succeeding stimuli share as many common features as possible (cf. Mathy & Feldman,
2016). In an empirical study with 21 participants we investigated both orders for the 5-4 category structure (Medin & Schaffer,
1978) and assessed categorization behavior and self-reports in the first trials. Results suggest that the answer behavior and self-
reports during the first trials can be influenced by the presentation order. However, in both groups feature-based and similarity-
based explanations were reported. Additionally, the similarity-based group named more feature-based rules including irrelevant
features.
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Walking dynamics of intertemporal choice
Arkady Zgonnikov
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Iñaki Rañó
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Abstract: The notion that cognitive processes ”leak” into motor output of decisions inspired much recent process-tracing
research. In mouse-tracking, an increasingly popular decision-making paradigm, difficult choices lead to increased curvature
of the mouse trajectories towards the unchosen option. Here we explore whether traces of a decision process can be found in
its motor output in a more naturalistic setting. Our subjects performed a series of choices between a smaller reward now and a
larger reward at some delay. Using Kinect camera, we recorded subjects’ walking trajectories when they moved towards their
preferred option displayed in one of the corners across the room. We found that deviation of subjects’ trajectories from the
ideal trajectory increased with delay when they preferred the ”later” option, and decreased with delay in trials where the ”now”
option was chosen. Our results suggest that walking trajectory of a person can provide information about their ongoing thought
processes.
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A Spatial-Temporal Analysis of a Visual Working Memory Task with EEG and
ECoG

Qiong Zhang
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Abstract: In this study, we investigated the neural correlates of a visual working memory task. Two experiments were carried
out using scalp electroencephalography (EEG) and Electrocorticography (ECoG), respectively. In each trial, participants judged
whether a test face had been among a small set of recently studied faces. We used a combination of hidden semi-Markov models
(HSMMs) and multi-variate pattern analysis (MVPA) to decompose the neural signal into a sequence of latent stages. Analyzed
separately, EEG and ECoG data yielded converging results on the durations of recovered stages. Combining these stages with
the high spatial resolution of ECoG suggested that activity in the temporal cortex reflected item familiarity in the retrieval
stage; and that once retrieval is complete, there is active maintenance of the studied face set in the medial temporal lobe (MTL).
During this same period, the frontal lobe guides the decision by means of theta coupling with the MTL.
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To organize or not to organize? Examining biases in search strategies using Lego
building blocks
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Abstract: A widely-accepted notion is that organization can improve task performance and generally allow us to better function
within a given task environment (Kirsh, 1995; 1996). However, it remains unclear the extent to which individuals believe that
organization will help to improve task performance when they are asked to carry out mundane tasks in the real world. To
examine this, individuals were asked to search through a pile of Lego building blocks for specific pieces. Prior to the search
task, they were asked their preferred strategy for this task (e.g., organizing vs. not organizing the Lego pile prior to search) and
to estimate how much time and effort each strategy would take for task completion. While both strategies were comparable in
terms of objective task completion time and subjective time and effort estimations, participants were overwhelmingly biased
against choosing the organization strategy. Implications for the current study will be discussed.
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Emotion in Deceptive Language
Iraide Zipitria

University of the Basque Country (UPV/EHU)

Basilio Sierra
University of the Basque Country (UPV/EHU)

Imanol Sopena-Garaikoetxea
University of the Basque Country (UPV/EHU)

Abstract: Deception involves emotions of fear and guilt. These negative emotions are expressed in language in terms of
psychological distance from the deception object. The psychological distance and emotional experience reflect an attempt
to control the negative mental representation. More especifically emotional distance is represented in deceptive language by
means of cues of reference, verb tense and detail avoidance. Then, hints of emotions of fear and guilt should be displayed
in language.The present work analyses emotional language cues for deception detection by means of Machine Learning(ML)
techniques and Linguistic Inquiry and Word Count (LIWC). Results show that Support Vector Machines (SVM) best represents
the discrimination between true and false information (up to 74.15 % of accuracy rates) based only on the effect of emotion in
deceptive speech.
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